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Summary

The initial condition problem with respect to the temperature distribution in the Earth’s mantle is
Pandora’s box of geodynamics. The heat transport inside the Earth follows the principles of advec-
tion and conduction. But since conduction is an irreversible process, this mechanism leads to a huge
amount of information getting lost over time. Due to this reason, a recovery of a detailed state of the
Earth’s mantle some million years ago is an intrinsically unsolvable problem. In this work we present
a novel mathematical method, the adjoint method in geodynamics, that is not capable of solving
but of circumventing the presented initial condition problem by reformulating this task in terms of
an optimisation problem. We are aiming at a past state of the Earth’s mantle that approaches the
current and thus, observable state over time in an optimal way. To this end, huge computational
resources are needed since the ’optimal’ solution can only be found in an iterative process. In this
work, we developed a new general operator formulation in order to determine the adjoint version of the
governing equations of mantle flow and applied this method to the high-resolution numerical mantle
circulation code TERRA. For our models, we used a global grid spacing of approx. 30 km and more
than 80 million mesh elements. We found a reconstruction of the Earth’s mantle at 40 Ma that is,
with respect to our modelling parameters, consistent with today’s observations, gathered from seismic
tomography. With this published fundamental work, we are opening the door to a variety of future
applications, e.g. a possible incorporation of geological and geodetic data sets as further constraints
for the model trajectory over geological time scales.

Where high-resolution numerical models and even the implementation of inversion schemes have be-
come feasible over the past decades due to increasing computational resources, in the community there
is still a high demand for analytical solution methods. Restricting the physical parameter space in
the governing equations, e.g. by only allowing for a radial varying viscosity, it can be shown that in
some cases, the resulting simplified equations can even be solved in a (semi-)analytical way. In other
words, in these simplified scenarios, no large scale computational resources or even high-performance
clusters are needed but the solution for a global flow system can be determined in minutes even on
a standard computer. Besides this apparent advantage, analytical and numerical solutions can even
go hand-in-hand since numerical computer codes may be tested and benchmarked by means of these
manufactured solutions. Here, we spend a large portion of this work with a detailed derivation of these
analytical approaches. We basically start from scratch, having the intention to cover all possible traps
and pitfalls on the way from the governing equations to their solutions and to provide a service to
future scientists that are stuck somewhere in the middle of this road. Besides the derivation, we also
present in detail how such an analytical approach can be used as a benchmark for a high-resolution
mantle circulation code. We applied this theory to the prototype for a new high-performance mantle
convection framework being developed in the Terra-Neo project and published the results along with
a small portion of the derived theory.

In an additional chapter of this work, we focus on a detailed analysis of the current state of the
Earth’s gravitational field that is measured in an unimaginably accurate way by the recent satellite
missions CHAMP, GRACE and GOCE. The origin of the link of our work to the gravitational field
also lies in the analytical solution methods. It can be shown that due to the effect of flow induced
dynamic topography, the Earth’s gravity field is highly sensitive to the viscosity profile in the Earth’s

3



SUMMARY

mantle. We show that even without using any other external knowledge or data set, the gravitational
field itself restricts the possible choices for the Earth’s mantle viscosity to a well-defined parameter
space. Furthermore, in the course of these examinations, we found that mantle processes are not
capable of explaining the short wavelength signals in the observed gravity field at all, even with the
best-fitting viscosity profile. To this end, we developed a simple crustal model that is only based on
topographic data (ETOPO) and the principle of isostasy and showed that even with this very basic
approach we can explain the majority of short length-scale features in the observed gravity signal.
Finally, in combination with a (simple, static and analytic) mantle flow model based on a density field
derived from seismic topography and mineralogy, we found a nearly perfect fit of modelled and ob-
served gravitational data throughout all wavelengths under consideration (spherical harmonic degree
and order up to l = 100).
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Introduction

Over the past few decades, numerical codes that are designed to simulate dynamic processes in the
Earth have become more and more sophisticated due to continuously increasing computational re-
sources and the availability of modern supercomputers and high-performance clusters. Even the quest
for exa-scale machines is not an unrealistic scenario any more. For geodynamicists this means that at
the present time, it is possible to construct models of mantle flow with resolutions on the km-scale for
the whole Earth’s mantle (Burstedde et al., 2013; Rudi et al., 2015; Weismüller, 2016; Bauer, 2018).
Where on the one hand, these models are permanently increasing in complexity and more and more
additional physics are incorporated into the numerical codes, on the other hand the demand for analyt-
ical solution methods is still very high inside the geodynamics community. Analytical solution means
that if we a-priori restrict the physical parameter space in the flow equations, e.g. by only allowing
for a radial varying viscosity or assuming an incompressible flow, it can be shown that in some cases,
the resulting simplified equations can even be solved in an analytical way. In other words, in these
special scenarios, no large scale computational resources or even high-performance clusters are needed
but the solution for a global flow system can be determined in minutes even on a standard computer.
Besides this apparent advantage, analytical and numerical solutions can even go hand-in-hand since
numerical computer codes may be tested and benchmarked by means of these manufactured solutions.

Due to increasing complexities in the numerical codes, it is a crucial task to develop efficient methods
for the testing and verification of individual code components. Since analytical solutions can be de-
signed to fulfil exactly these needs, they are of growing importance at the present time. To this end,
the main part of our work is designed to give an extended review of these analytical approaches. We
basically start from scratch, having the intention to cover all possible traps and pitfalls on the long
road from the governing equations to their solutions. Our overall intention is to provide a service to
all scientists that will deal with these analytic approaches in the future and to not miss out any crucial
details in the derivation. Since in the course of this work, we will mainly focus on the mathematical
details and perform a careful step-by-step derivation of the underlying equations of the Stokes matrix
and propagator approach, here is the right place to give a brief historic overview how the analytic
solutions methods have evolved over time.

The famous work by Hager and O’Connell (1978) was the first time appearance of a global flow
model that was derived by analytical means. The authors used this concept to address the question
if such a simple model can explain the dip angles of subduction zones when they enter the deep
mantle. In the presented theory, the concept of a spherical harmonic analysis was applied to the
governing equations in mantle dynamics. This is exactly the approach that we intend to rediscover in
all details within the course of this thesis. The set of harmonic relations that were presented in their
work still were of simple structure, they did not yet involve the coupling to the gravitational Poisson
equation, i.e. self-gravity. Since there was no reference to the gravitational potential, also the concept
of dynamic topography was not yet included in these equations. In order to achieve a scenario that
can be compared to observations, in their work, a plate velocity data set was used for the velocity
boundary condition at the Earth’s surface. As we also will show in our work, it turns out that this
is an inconsistent assumption due to the non-vanishing toroidal component of the plate velocity field,
which the model is intrinsically not able to cope with. It should be mentioned that this work was
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INTRODUCTION

not the first time where a spherical harmonic approach was applied to the equations of motion. Also
Hager and O’Connell (1978) states a reference to an earlier work by Takeuchi and Hasegawa (1965),
where the main parts of the system of equations can already be found. At this point, we want to
highlight the work by Takeuchi and Hasegawa (1965) also due to personal reasons. A tiny sub-clause
in their publication yielded a real breakthrough in the derivations that we did for our work. As at one
point we were completely stuck, the discovery of this sentence changed our overall perspective and led
us to a path that in the end turned out to be a successful one.

This ground-breaking work by Hager and O’Connell (1978), in particular the demonstration of pos-
sible applications to real data of this new analytic approach, marks the starting point of a variety
of proceeding publications. In Hager and O’Connell (1979) they provided an even more detailed ex-
tension of their original work on the subduction zone dip angles. The next essential step was then
developed in Hager and O’Connell (1981) where the previous system of equations was coupled to the
gravitational Poisson equation. In this certain work, the authors also revived the discussion about
the application of plate velocities as a boundary condition at the Earth’s surface and the most prob-
able intrinsic inconsistency of this approach. A final step of extending the equations can be found
in Panasyuk et al. (1996), where the effects of compressibility of the Earth’s mantle are incorporated
into the system of equations.

With the coupling of the Poisson equation to the Stokes system, it was possible to extend the exami-
nations of the derived flow solutions in terms of the Earth’s gravitational field. Soon, it became clear
that the mechanism of dynamic topography, that is coupled to the radial stresses at both domain
boundaries, needs to be incorporated into the equations. Here, the first publications that related
surface topography and gravity anomalies, derived by analytical flow models, were Parsons and Daly
(1983); Ricard et al. (1984); Hager (1984); Forte and Peltier (1987). The work by Richards and
Hager (1984) provides an extended analysis of the explicit mathematical formalism that is needed for
the new formulation of the boundary conditions due to dynamic topography. Moreover, this work
also creates a link to the Love number formalism (see e.g., Love, 1911; Munk and MacDonald, 1960)
since like the Love numbers, also the kernels that are derived by the analytical approach describe the
response (velocity, stresses, gravity signal, topography) of the system to a certain stimulus (density
anomaly). Even though a detailed analysis of the relation between gravity signal and dynamic topog-
raphy became a popular research topic at these times, the observation that the gravitational signal
is also indirectly dependent on the mantle flow properties has already been noticed in an early work
by Pekeris (1935) where it is stated that the gravitational effect due to surface deformation is oppo-
site in sign and comparable in magnitude to that of the driving density contrast. In particular, this
observation yielded the definition of the admittance as the ratio between gravity signal and surface
dynamic topography. A recent review of this ratio with respect to its meaning and interpretation can
be found in Colli et al. (2016).

All of the previously mentioned publications show that the modelled gravitational field is strongly
sensitive to the underlying viscosity profile that was assumed for the mantle flow. All models show
that a general fit to the observed data can only be achieved by creating a viscosity difference between
upper and lower mantle, where the upper mantle has a 2−3 magnitudes lower viscosity than the lower
mantle. Further studies (see e.g., Schaber et al., 2009) show that the quest for a unique best-fitting
viscosity profile is an unsolvable task since there is an intrinsic trade-off between viscosity jump and
thickness of the low-viscosity zone. This is an observation that also could be verified by models of post
glacial rebound (see e.g., Paulson and Richards, 2009). In Chapter 4 of our work, we are uncovering
exactly this process of using satellite derived gravity data to constrain the flow parameters in terms
of the viscosity profile in a systematic way.

Nevertheless, it turns out that static flow models are intrinsically not capable of resolving this non-
uniqueness. Thus, at this stage we are forced to leave the analytical approach behind and turn the
head towards time-dependent solutions. The idea behind this approach is that by incorporating time
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OUTLINE OF THIS WORK

into the equations, we are not restricted any more to a single state of the Earth’s mantle but are
equipped with a whole time series (trajectory) that can be checked against suitable time-dependent
data sets.

Time-dependency enters the system of the flow equations by including conservation of energy. The
energy equation is a differential equation in terms of the temperature and thus, an initial condition
is required. The heat transport inside the Earth follows the principles of advection and conduction.
But since conduction is an irreversible process, this mechanism leads to a huge amount of informa-
tion getting lost over time. Due to this reason, a recovery of a detailed state of the Earth’s mantle
some million years ago is an intrinsically unsolvable problem. Here we present a novel mathematical
method, the adjoint method in geodynamics, that is not capable of solving but of circumventing the
initial condition problem by reformulating this task in terms of an optimisation problem, i.e. we are
aiming at a past state of the Earth’s mantle that approaches the current and thus, observable state
over time in an optimal way.

Our general aim is that with a consistent time-dependent model for the temperature evolution in-
side the Earth’s mantle and thus, also for all derived data like e.g. the gravitational field or dynamic
topography, we open the door to a potentially wide area of time-dependent data sets, especially from
geology, which our model, i.e. our assumed model parameters, may be tested against in the future.

At the end of this introduction, we want to present the structure of this work in a more detailed
way and give a short summary and an overview of the topics that are included in each chapter.

Outline of this work

Chapter 1: Mathematical preliminaries

The first chapter of this work builds up the mathematical foundation that is used within the whole
thesis. Since the main part of this work deals with the detailed derivation of analytic solutions to
the Stokes equation, our goal was to be as accurate as possible in setting up the mathematical basis.
The analytic solution methods require a representation of the governing equations in terms of scalar,
vector and tensor spherical harmonics. To this end, we give a detailed introduction to these special
functions, including their basis, the Legendre polynomials and associated Legendre functions. At the
end of this section we even briefly dive into spheres that are way beyond the scope of this work.
Where in the course of this work, we will in general only consider harmonic degrees up to l = 100, the
geodetic community has to operate in a completely different setting. Due to the high resolution of
the measurements of current satellite missions, here, one has to cope with harmonic degrees beyond
l = 2500, the ultra-high harmonics. Here, we give a brief overview of the main challenges that come
to the fore when dealing with spherical harmonics in this ultra-high frequency band.

The end of this chapter forms one of the most crucial parts of this thesis. The representation of
the various differential operators, i.e. divergence, gradient, curl, Laplace, in terms of spherical har-
monics turns out to be the key for a successful transfer of the flow equations into the frequency domain
that we will perform in Chapter 2.

Chapter 2: Continuum mechanics

Here, we give a brief introduction to the governing equations in mantle dynamics that are based on
the physical principles of mass, momentum, angular momentum and energy conservation. In case
of the Earth’s mantle, due to the low Reynolds number, the momentum equation reduces to the
time-independent Stokes equation. In the course of this chapter, we adapt the way of thinking in
terms of harmonic coefficients that we have learned in the first chapter onto the derived conservation
equations. We find explicit relations between the harmonic coefficients of the physical quantities under
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INTRODUCTION

consideration and in the end, we are able to transform these relations into a system of differential
equations that can be solved by the famous propagator matrix method.

Chapter 3: A semi-analytic accuracy benchmark for 3-D Stokes flow

In this part of the work we investigate a special case of the equations that we derived in Chapter 2.
Assuming the most simple scenario of an incompressible and isoviscous flow, the system of differential
equations even reduces to a ordinary differential equation that can be solved in a straightforward way
without applying the propagator matrix approach that was necessary in the previous chapter.

We demonstrate the importance of this special case by showing that in this way it is possible to
set-up a straightforward and easy-to-implement test scenario, i.e. a benchmark, for numerical mantle
circulation codes. Besides showing the theory, we also apply our derived test apparatus to the pro-
totype for a new high-performance mantle convection framework being developed in the Terra-Neo
project.

The results of this chapter are published together with some parts of the mathematical preliminaries
(Chapter 1) and some foundations on continuum mechanics (Chapter 2) in the ’International Journal
on Geomathematics’ (GEM) (2020) as ’Horbach, A., Mohr, M., Bunge, H.-P.: A Semi-Analytic Accu-
racy Benchmark for Stokes Flow in 3-D Spherical Mantle Convection Codes’, doi.org/10.1007/s13137-
019-0137-3 (see Horbach et al., 2020).

Chapter 4: The Earth’s gravitational field

In this chapter, we use satellite derived measurements of the Earth’s gravity field in order to constrain
the free parameter space of the analytic flow models that we derived in Chapter 2. Furthermore,
we perform a harmonic analysis on the observed gravity field and try to relate different harmonic
frequency bands to their different origin and the physical processes behind. Here we learn that mantle
flow processes are in general not capable of explaining the high-frequency parts of the observed gravity
field. To this end, we develop a simple crustal model, only based on topography data and isostasy.
We find that already this basic model explains the main gravity signals in the higher harmonics.

Chapter 5: The adjoint method in geodynamics

Where all previous chapters have dealt with the static problem, in the final chapter of this work, we
introduce time-dependency into the flow equations by means of the conservation of energy. Here we
present a novel mathematical technique, the adjoint method, i.e. a strategy to overcome the intrinsic
initial condition problem with respect to the temperature field. We present a detailed derivation of
the adjoint equations in geodynamics using a general operator approach and apply the theory to the
high-resolution numerical mantle circulation model TERRA. As a final result, we reconstructed a
state of the Earth’s mantle at 40 Ma that is, with respect to our modelling parameters, consistent
with today’s observations, gathered from seismic tomography.

The results of this chapter are published together with some parts of the mathematical prelimi-
naries (Chapter 1) and some foundations on continuum mechanics (Chapter 2) in the ’International
Journal on Geomathematics’ (GEM) (2014) as ’Horbach, A., Bunge, H.-P., Oeser J.: The adjoint
method in geodynamics: derivation from a general operator formulation and application to the initial
condition problem in a high resolution mantle circulation model’, doi.org/10.1007/s13137-014-0061-5
(see Horbach et al., 2014).
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Chapter 1

Mathematical preliminaries

In this chapter we present fundamental mathematical techniques that are used throughout this whole
work. We especially focus on properties of a spherical geometry, where the representation of differential
operators in a spherical coordinate system plays an essential role. Furthermore, we investigate the
role of scalar, vector and tensor spherical harmonics as appropriate basis systems for functions on the
sphere.

1.1 General notation and basics

We denote the set of all positive integers as N and all non-negative integers as N0. The set of all
integers is denoted by Z, where R forms the set of all real numbers with R+ being all positive real
numbers and R+

0 being all non-negative real numbers.

For two elements x, y ∈ Rn, n ∈ N, we define the Euclidean scalar (or inner) product (in the
Euclidean case also denoted as dot product) as the mapping 〈·, ·〉 : Rn × Rn → R with

〈x, y〉 := x · y :=

n∑
i=1

xiyi , (1.1)

and the Euclidean norm as the mapping ‖ · ‖ : Rn → R with

‖x‖ := |x| :=

√√√√ n∑
i=1

x2
i . (1.2)

In general, every inner product 〈·, ·〉 induces a norm ‖ · ‖ by ‖ · ‖ :=
√
〈·, ·〉, thus, we see that the

Euclidean norm is the norm that is induced by the Euclidean scalar product. With respect to the
Euclidean norm and scalar product, the vector triple ε1 := (1, 0, 0)T , ε2 := (0, 1, 0)T , ε3 := (0, 0, 1)T

forms an orthonormal system in R3 and is called Euclidean basis system. Furthermore, in any Hilbert
space H, the inner product can in general be used to define the angle α := ∠ (x, y) between two
elements x, y ∈ H. More precisely, we define

α := arccos
〈x, y〉
‖x‖‖y‖

. (1.3)

Due to the Cauchy-Schwarz(-Bunjakowski) inequality

〈x, y〉 ≤ ‖x‖‖y‖ , (1.4)
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that is valid for all x, y ∈ H, we see that the argument of arccos in the previous equation is well-defined.
For the Euclidean scalar product we find the well-known relation

x · y = |x||y| cosα . (1.5)

We see that in a geometrical sense, the dot product is a measure for the parallelism of two vectors. Its
absolute value becomes maximal for α = 0 and α = π (then |x · y| = |x||y|) and minimal for α = π/2
and α = 3π/2 (then |x · y| = 0).

The so-called vector (or cross) product is designed to reflect exactly the opposite. We define
the mapping ∧ : R3 × R3 → R3 - sometimes also denoted by ’×’ - as

x ∧ y := (|x||y| sinα)n , (1.6)

where n ∈ R3 is a (normalised) vector that is orthogonal to either x and y. The natural ambiguity
of the orthogonal vector is erased by the convention that (x, y, n) has to span a right-handed system.
If x or y is the zero vector then x ∧ y is defined to be zero. If x is parallel to y then there is also
no unique orthogonal vector but due to sinα = 0, the vector product is zero anyway. In analogy to
the dot product, the vector product is geometrically spoken a measure for the perpendicularity of two
vectors. Its absolute value becomes maximal for α = π/2 and α = 3π/2 (then |x ∧ y| = |x||y|) and
minimal for α = 0 and α = π (then |x∧y| = 0). It can easily be verified that the absolute value of the
vector product equals the area of the parallelogram that is spanned by x and y, since |y| sinα equals
its height. We will use this property later when we define surface integrals. Furthermore, it is also
possible to define the vector product for n-dimensional spaces, i.e. find a vector that is orthogonal to
n− 1 given vectors, but here, we restrict ourselves to the R3.

It can be shown that the vector product satisfies the following conditions: First, it is anti-symmetric,
i.e.

x ∧ y = −y ∧ x (1.7)

for all x, y ∈ R3 - which implies that x ∧ x = 0 for all x ∈ R3 - and it is (bi-)linear, i.e.

(λx+ y) ∧ z = λx ∧ z + y ∧ z (1.8)

for all x, y, z ∈ R3 and λ ∈ R. If we assume that there is a right-handed orthonormal system {εi}i=1,2,3

(not necessarily Cartesian) such that any x ∈ R3 can be represented as
∑
i xiε

i we find the well-known
representation

x ∧ y =

(
3∑
i=1

xiε
i

)
∧

(
3∑
i=1

yiε
i

)
=

3∑
i=1

3∑
j=1

xiyjε
i ∧ εj

= x1y1 ε
1 ∧ ε1 + x1y2 ε

1 ∧ ε2 + x1y3 ε
1 ∧ ε3+

x2y1 ε
2 ∧ ε1 + x2y2 ε

2 ∧ ε2 + x2y3 ε
2 ∧ ε3+

x3y1 ε
3 ∧ ε1 + x3y2 ε

3 ∧ ε2 + x3y3 ε
3 ∧ ε3

= x1y2 ε
3 − x1y3 ε

2 − x2y1 ε
3 + x2y3 ε

1 + x3y1 ε
2 − x3y2 ε

1

=

 x2y3 − x3y2

x3y1 − x1y3

x1y2 − x2y1

 .

(1.9)

The combination of dot and vector product of the form

x · (y ∧ z) (1.10)

is called triple product. Since

|x · (y ∧ z)| = |x||y ∧ z| cosα = A|x| cosα , (1.11)
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where A is the area of the parallelogram spanned by y and z and α the angle between x and the normal
n of the area A, the absolute value of the triple product equals the volume of the parallelepiped spanned
by x, y and z. This property will later be useful when we will define volume integrals. Using the
representation (1.9) of the vector product, we find for the triple product that

x · (y ∧ z) = x ·

 y2z3 − y3z2

y3z1 − y1z3

y1z2 − y2z1


= x1(y2z3 − y3z2)− x2(y1z3 − y3z1) + x3(y1z2 − y2z1) .

(1.12)

Due to Laplace’ formula for determinants, we can identify the previous relation by means of a deter-
minant, i.e. the determinant of the matrix that is built by the vectors x, y and z, i.e.

x · (y ∧ z) = det (x | y | z) = det

 x1 y1 z1

x2 y2 z2

x3 y3 z3

 . (1.13)

Thus, the determinant of a matrix especially equals the volume of the parallelepiped that is spanned
by its column (or row) vectors. This is not only true for the previously discussed case R3 but also for
all dimensions n ∈ N (especially n = 2 where the parallelepiped is just a parallelogram).

If A ∈ Rn×l, B ∈ Rl×m, n,m, l ∈ N are two matrices, the matrix multiplication, which results in
an n×m matrix, is defined by

AB :=

(
l∑

k=1

AikBkj

)
i,j

. (1.14)

A variation of the special case l = 1, where we have the multiplication of a column and a row vector,
is called the tensor (or dyadic) product ⊗ : Rn × Rm → Rn×m, n,m ∈ N. More precisely, here we
have for x ∈ Rn and y ∈ Rm that

x⊗ y := x yT = (xiyj)i,j =

 x1y1 . . . x1ym
...

. . .
...

xny1 . . . xnym

 . (1.15)

For a vector x ∈ Rm and a matrix A ∈ Rn×m, n,m ∈ N, we define the vector-matrix product
· : Rm × Rn×m → Rn as the row-wise application of the dot product. More precisely, we have

x ·A := (x ·Ai·)i =

n∑
i=1

xi
(
Aεi
)
, (1.16)

where here, the εi, i = 1, ..., n, represent the Euclidean basis vectors in Rn.

With n,m ∈ N, k ∈ N0 and D ⊂ Rn and W ⊂ Rm we denote the space of all k-times continu-
ously differentiable functions F : D →W as C(k)(D,W ). In case of k = 0, the space of all continuous
functions, we use the abbreviation C(D,W ) := C(0)(D,W ) and we also allow k =∞, the space of all
arbitrarily often continuously differentiable functions (e.g. polynomials). Since in this work we will
only consider scalar, vector and tensor valued functions, we define the convention to use upper case
letters for scalar, lower case letters for vector and bold lower case letters for tensor valued functions
and spaces. Especially, we define C(k)(D) := C(k)(D,R) with elements F,G, ..., c(k)(D) := C(k)(D,R3)
with elements f, g, ... and c(D) := C(k)(D,R3 × R3) with elements f ,g, .... Furthermore, from now
on - if not explicitly stated differently - D ⊂ R3 denotes a compact subset of R3 and Ω is defined as
the unit sphere in R3, i.e. Ω := {x ∈ R3||x| = 1}. Note that using the Euclidean basis vectors, every
vector field f may be represented by f =

∑
i fiε

i and every tensor field by f =
∑
i,j fijε

i ⊗ εj , where

11



CHAPTER 1. MATHEMATICAL PRELIMINARIES

fi and fij are scalar functions.
The respective sets of all continuous scalar, vector and tensor valued functions C(D), c(D), c(D) can
be equipped with a norm, the so-called maximum norm, i.e. for all F ∈ C(D), f ∈ c(D), f ∈ c(D) we
define

‖F‖C(D) := ‖F‖∞ := max
x∈D
|F (x)| ,

‖f‖c(D) := ‖f‖∞ := max
x∈D
|f(x)| ,

‖f‖c(D) := ‖f‖∞ := max
x∈D
|f(x)| .

(1.17)

The space of all scalar functions F on D that are p-integrable, i.e.(∫
D

|F (x)|p dx

) 1
p

<∞ , (1.18)

is denoted by Lp(D), with p > 1. If we merge all functions that are equal except for null sets
into equivalence classes, the set of all resulting equivalence classes can be equipped by a norm using
the property above (this cannot be done without the equivalence classes because in that case, the
norm would not be positive definite). More precisely, we define the set N p(D) := {F ∈ Lp(D)|F =
0 almost everywhere} such that Lp(D) := Lp(D)/N p(D) forms the set of all equivalence classes of
almost everywhere identical functions F ∈ Lp(D). Now, for all F ∈ Lp(D) the p-norm is defined by

‖F‖p :=

(∫
D

|F (x)|p dx

) 1
p

. (1.19)

In the special case of p = 2, we can even define a scalar product, the L2 scalar product, where for
F,G ∈ L2(D), we set

〈F,G〉L2(D) :=

∫
D

F (x)G(x) dx . (1.20)

We see that the L2 norm is induced by the previously defined L2 scalar product. Together with the
L2 scalar product, the space L2(D) is a Hilbert space. Indeed, we can find a general relation of the
p-norms and the previously defined maximum norm. For the special case of D = Ω we find for all
F ∈ C(Ω) that

‖F‖Lp(Ω) ≤ (4π)
1
p ‖F‖C(Ω) . (1.21)

This relation also implies that C(Ω) ⊂ Lp(Ω) for all p > 1. In 1D we find for the special case
D = [−1, 1] that

‖F‖L2([−1,1]) ≤ 2
1
p ‖F‖C([−1,1]) , (1.22)

and thus also C([−1, 1]) ⊂ L2([−1, 1]). All of the previous definitions can be analogously transferred
to vector and tensor fields. Here we denote the respective spaces as lp(D) and lp(D).

In spaces, where scalar products and norms are available, a variety of ways open up how to rep-
resent and even approximate elements within. Provided by an orthonormal system {un}n∈N in the
Hilbert space H, it can be shown that the following statements are equivalent:

a) The system {un}n∈N0
is closed in X, i.e. for all x ∈ X and for all ε > 0 there exists an N ∈ N0

and coefficients a0, ..., aN ∈ R such that∥∥∥∥∥x−
N∑
i=0

aiui

∥∥∥∥∥
X

< ε .
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b) The Fourier series of an element x ∈ X converges to x with respect to ‖ · ‖X , i.e.

lim
N→∞

∥∥∥∥∥x−
N∑
i=0

〈x, ui〉X ui

∥∥∥∥∥
X

= 0 .

c) The Parseval identities hold, i.e. for all x, y ∈ X we have:

〈x, y〉X =

∞∑
i=0

〈x, ui〉X 〈y, ui〉X ,

‖x‖2X =

∞∑
i=0

|〈x, ui〉X |2 .
(1.23)

d) The system {un}n∈N0 is complete in X, i.e. let x ∈ X, then

〈x, un〉X = 0 for all n ∈ N0 ⇔ x = 0 .

e) Each x ∈ X is uniquely determined by its Fourier coefficients, i.e. let x, y ∈ X, then

〈x, un〉X = 〈y, un〉X for all n ∈ N0 ⇔ x = y .

The second Parseval identity can be regarded as a generalisation of Pythagoras’ Theorem, i.e. the
sum of the squares of each vector component - with respect to the orthonormal system - equals the
square of the total vector length. Furthermore, this identity implies that due to the convergence of
the series, for all x ∈ X the inner product 〈x, un〉X converge to 0 for n → ∞ or in other words, the
elements un of the orthonormal system converge weakly to 0.

This is one of the most important fundamental theorems in the theory of Hilbert spaces. But note
that this theorem just provides equivalences and no general statements for orthonormal systems. In
general, one needs an entrance to this theorem via one of the conditions a)-e) to ensure that all other
statements are also valid. Commonly, this is achieved via a), the closure property. A proof of this
theorem can be found e.g. in Heuser (1986).

Regular surfaces

In the course of this work we will regularly come across functions that are defined on any kind of
surfaces Σ ⊂ R3, like e.g. the Earth’s surface or the core-mantle boundary. Since in most cases it will
be necessary to analyse these functions with respect to their differential behaviour, we need to ensure
that the application of the desired kind of differential operators is possible on the respective domain,
i.e. the determination of a unique normal vector must be guaranteed for each x ∈ Σ, the surface needs
to be kind of smooth and there may be no edges or double points. These requirements can formally
be fulfilled if we assume that:

(i) For each s ∈ Σ there exists an open set V ⊂ R3 with s ∈ V such that there exists a parametri-
sation of V ∩ Σ, i.e. there exists an open set U ⊂ R2 and a function φ : U → V ∩ Σ that is a
homeomorphism (i.e. bijective and continuously invertible).

(ii) φ is differentiable and for each u ∈ U the differential of φ, which is the linear mapping Dφ(u) :
R2 → R3 defined as Dφ(u)(x) := Jφ(u)x, x ∈ R2, where Jφ(u) denotes the Jacobian of φ,
evaluated at u ∈ U , is injective. This is equivalent to the condition that rank(Jφ(u)) = 2.

Property (i) ensures that the surface contains no edges or double points where property (ii) guarantees
that we find a unique normal vector for each s ∈ Σ and thus, it is also possible to define a unique
tangential plane at each point in Σ. It can be shown that this tangential plane is spanned by the two
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Figure 1.1: Left: rotational ellipsoid with the parametrisation φ(u, v) =
(2
√

1− t2 cosu, 2
√

1− t2 sinu, t)T , u ∈ [0, 2π[, t ∈ [−1, 1]. Right: hyperboloid with the
parametrisation φ(u, v) = (cosu− t sinu, sinu+ t cosu, t)T , t ∈ [−2, 2], u ∈ [0, 2π[.

column vectors of the Jacobian Jφ(s) at s. Since Jφ(s) has rank 2, the two column vectors always are
linearly independent.

A surface Σ that satisfies the two previous conditions is called a regular surface. Common ex-
amples of a regular surface is the sphere, the ellipsoid or the hyperboloid which can be found in
Figure 1.1. Contrarily, Figure 1.2 shows two examples of surfaces that are not regular. The surface on
the left is defined by the parametrisation φ(u, v) = (u3, v3, uv)T , u, v ∈]− 1, 1[. This surface satisfies
property (i) but it can be easily shown that the Jacobian of φ does not have full rank for (u, v) = (0, 0),
φ(u, v) = (0, 0, 0)T . Thus, it is not possible to define a unique normal vector at (0, 0, 0) which can
also be verified by just having an attentive view at the plot of the surface.

The surface on the right is defined by the parametrisation φ(u, v) = (sinu, sin 2u, v)T , u ∈]0, 2π[,
v ∈ [0, 1]. We see that this is a parametrisation of a ribbon in shape of an ’eight’. Is can be shown
that this is not a regular surface since the inverse of the parametrisation φ is not continuous for points
of the form (0, 0, v), v ∈ [0, 1]. Even - due to the definition of u (open interval) - the ribbon is open
and not touching itself, at the endpoints, the distance to the other part of the ribbon is infinitely small
such that the continuity of the inverse parametrisation is no longer satisfied. But if we e.g. refined
the interval for u and changed it to u ∈]π2 ,

3π
2 [, the surface would be regular.

Just for the use in this work we define an additional third property that regular surfaces need to
satisfy. This property does not belong to the definition of regular surfaces that can be commonly
found in literature but is necessary for the applications in this work:

(iii) Σ divides R3 into a bounded inner region Σint and an unbounded outer region Σext = R3 \Σint

with Σint = Σint ∪ Σ.

This means that Σ is closed in a geometrical sense which makes e.g. the hyperboloid not a regular
surface any more. The definition of inner and outer regions allows us to define that from now on, all
normal vectors point per definition into the outer region of the regular surface.

1.2 Differentiation in R3

Any x ∈ R3 \ {0} can be uniquely represented by x = rξ, where r = |x| and ξ ∈ Ω. A suitable way to
represent an element on the unit sphere is the usage of the longitude and the polar distance (or the
(co)latitude). These considerations lead to the following definition of spherical polar coordinates and
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Figure 1.2: Left: A surface with parametrisation φ(u, v) = (u3, v3, uv)T , u, v ∈ [−1, 1]. This surface
does not satisfy the differentiability condition. At (0, 0, 0)T a normal vector to the surface cannot be
defined. Right: A surface with the parametrisation φ(u, v) = (sinu, sin 2u, v)T , u ∈]0, 2π[, v ∈ [0, 1].
This is not a regular surface since the parametrisation is not continuously invertible.

their transformation into Cartesian coordinates. For any x ∈ R3 we find that:

x(r, ϕ, t) = r

 √1− t2 cosϕ√
1− t2 sinϕ

t

 or x(r, ϑ, ϕ) = r

 sinϑ cosϕ
sinϑ sinϕ

cosϑ

 , (1.24)

where r := |x| ∈ R+
0 is the distance to the origin, ϕ ∈ [0, 2π[ the longitude, t := cosϑ ∈ [−1, 1]

the polar distance with the colatitude ϑ ∈ [0, π]. This representation yields a (local) orthonormal
basis of R3, the so-called moving orthonormal triad that can be obtained explicitly by calculating the
(normalised) partial derivatives of the representation above. Here we find that

∂x

∂r
=

 √1− t2 cosϕ√
1− t2 sinϕ

t

 ,
∂x

∂ϕ
=

 −r√1− t2 sinϕ

r
√

1− t2 cosϕ
0

 ,
∂x

∂t
=

 − rt√
1−t2 cosϕ

− rt√
1−t2 sinϕ

r

 , (1.25)

and we denote their respective absolute value by

br :=

∣∣∣∣∂x∂r
∣∣∣∣ = 1 , bϕ :=

∣∣∣∣ ∂x∂ϕ
∣∣∣∣ = r

√
1− t2 , bt :=

∣∣∣∣∂x∂t
∣∣∣∣ =

r√
1− t2

. (1.26)

Thus, our local orthonormal basis can be determined as

εr(ϕ, t) =

 √1− t2 cosϕ√
1− t2 sinϕ

t

 , εϕ(ϕ) =

 − sinϕ
cosϕ

0

 , εt(ϕ, t) =

 −t cosϕ
−t sinϕ√

1− t2

 (1.27)

where εr ∧ εϕ = εt, εϕ ∧ εt = εr and εt ∧ εr = εϕ, or alternatively

εr(ϑ, ϕ) =

 sinϑ cosϕ
sinϑ sinϕ

cosϑ

 , εϑ(ϑ, ϕ) =

 cosϑ cosϕ
cosϑ sinϕ
− sinϑ

 , εϕ(ϕ) =

 − sinϕ
cosϕ

0

 . (1.28)

where εr ∧ εϑ = εϕ, εϑ ∧ εϕ = εr and εϕ ∧ εr = εϑ. Note that εt = −εϑ.

In the geophysical and geodetic community it is common to use the colatitude ϑ what implies the
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usage of εϑ, where in the geomathematical community, people are quite familiar with the polar dis-
tance t and εt as the third basis vector. In this work we will consequently follow the geomathematical
approach.

The inverse mapping, representing the Cartesian basis vectors in terms of the local basis can eas-
ily be determined as

ε1 =
√

1− t2 cosϕ εr − sinϕ εϕ − t cosϕ εt

ε2 =
√

1− t2 sinϕ εr + cosϕ εϕ − t sinϕ εt

ε3 = t εr +
√

1− t2 εt .

(1.29)

Applying this result to the dyadic products, we find the following conversion rules for the tensor basis
vectors:

ε11 =
(
1− t2

)
cos2ϕ εrr −

√
1− t2 sinϕ cosϕ εrϕ − t

√
1− t2 cos2ϕ εrt

−
√

1− t2 sinϕ cosϕ εϕr + sin2ϕ εϕϕ + t sinϕ cosϕ εϕt

− t
√

1− t2 cos2ϕ εtr + t sinϕ cosϕ εtϕ + t2 cos2ϕ εtt ,

ε12 =
(
1− t2

)
sinϕ cosϕ εrr +

√
1− t2 cos2ϕ εrϕ − t

√
1− t2 sinϕ cosϕ εrt

−
√

1− t2 sin2ϕ εϕr − sinϕ cosϕ εϕϕ + t sin2ϕ εϕt

− t
√

1− t2 sinϕ cosϕ εtr − t cos2ϕ εtϕ + t2 sinϕ cosϕ εtt ,

ε21 =
(
1− t2

)
sinϕ cosϕ εrr −

√
1− t2 sin2ϕ εrϕ − t

√
1− t2 sinϕ cosϕ εrt

+
√

1− t2 cos2ϕ εϕr − sinϕ cosϕ εϕϕ − t cos2ϕ εϕt

− t
√

1− t2 sinϕ cosϕ εtr + t sin2ϕ εtϕ + t2 sinϕ cosϕ εtt ,

ε22 =
(
1− t2

)
sin2ϕ εrr +

√
1− t2 sinϕ cosϕ εrϕ − t

√
1− t2 sin2ϕ εrt

+
√

1− t2 sinϕ cosϕ εϕr + cos2ϕ εϕϕ − t sinϕ cosϕ εϕt

− t
√

1− t2 sin2ϕ εtr − t sinϕ cosϕ εtϕ + t2 sin2ϕ εtt ,

ε13 = t
√

1− t2 cosϕ εrr +
(
1− t2

)
cosϕ εrt

− t sinϕ εϕr −
√

1− t2 sinϕ εϕt − t2 cosϕ εtr − t
√

1− t2 cosϕ εtt ,

ε31 = t
√

1− t2 cosϕ εrr − t sinϕ εrϕ − t2 cosϕ εrt

+
(
1− t2

)
cosϕ εtr −

√
1− t2 sinϕ εtϕ − t

√
1− t2 cosϕ εtt ,

ε33 = t2 εrr + t
√

1− t2 εrt + t
√

1− t2 εtr −
(
1− t2

)
εtt ,

ε23 = t
√

1− t2 sinϕ εrr +
(
1− t2

)
sinϕ εrt

+ t cosϕ εϕr +
√

1− t2 cosϕ εϕt − t2 sinϕ εtr − t
√

1− t2 sinϕ εtt ,

ε32 = t
√

1− t2 sinϕ εrr + t cosϕ εrϕ − t2 sinϕ εrt

+
(
1− t2

)
sinϕ εtr +

√
1− t2 cosϕ εtϕ − t

√
1− t2 sinϕ εtt ,

(1.30)

where εij := εi ⊗ εj for all i, j = 1, 2, 3 and i, j = r, ϕ, t respectively.

The Jacobian of the coordinate transformation from Cartesian to spherical polar coordinates can
be derived as

J :=


√

1− t2 cosϕ −r
√

1− t2 sinϕ −r t√
1−t2 cosϕ√

1− t2 sinϕ r
√

1− t2 cosϕ −r t√
1−t2 sinϕ

t 0 r

 , (1.31)
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with its inverse

J−1 :=


√

1− t2 cosϕ
√

1− t2 sinϕ t
− 1
r

1√
1−t2 sinϕ 1

r
1√

1−t2 cosϕ 0

− t
r

√
1− t2 cosϕ − t

r

√
1− t2 sinϕ 1

r

(
1− t2

)
 . (1.32)

Thus, the partial derivatives transform in the following way:

∂x =
√

1− t2 cosϕ∂r −
1

r

1√
1− t2

sinϕ∂ϕ −
t

r

√
1− t2 cosϕ∂t ,

∂y =
√

1− t2 sinϕ∂r +
1

r

1√
1− t2

cosϕ∂ϕ −
t

r

√
1− t2 sinϕ∂t ,

∂z = t ∂r +
1

r

(
1− t2

)
∂t .

(1.33)

In the following we will introduce differential operators that will regularly be used in this work and
state how they can be represented in terms of the previously introduced spherical polar coordinates.
Since these representations build the foundation of most following chapters, all derivations (or at least
sketches of the derivations) will be explicitly given here.

1.2.1 Gradient

Let D ⊂ R3. The gradient ∇ : C(1)(D)→ c(D) transfers a continuously differentiable scalar field F
into a vector field ∇F by

∇F :=

3∑
i=1

(∂iF ) εi , (1.34)

i.e. the gradient is defined as the column vector of all partial derivatives of F . It can be shown that
- geometrically speaking - the vector ∇F (x) always points into the direction of the steepest slope at
x ∈ D which makes it a very useful tool e.g. for solving minimisation problems (see e.g. the conjugate
gradient method in Fletcher and Reeves, 1964).

In order to find a representation of the gradient in terms of the spherical polar coordinates, we
may exploit the orthogonality of the underlying coordinate system. Hence it is possible to determine
the respective components by projecting the gradient - as it was defined above - onto each of the three
basis vectors εr, εϕ and εt. For the r-component we then find:

(∇F )r = εr · ∇F

=
1

br

∂x

∂r
· ∇F

=
1

br

(
∂F

∂x1

∂x1

∂r
+
∂F

∂x2

∂x2

∂r
+
∂F

∂x3

∂x3

∂r

)
.

(1.35)

At this point, we can make use of the chain rule, inversely, to find:

(∇F )r =
1

br
∂rF . (1.36)

Since all transformations can analogously also be performed for the two other spherical components,
we can immediately state the following result:

∇F =

(
1

br
∂rF

)
εr +

(
1

bϕ
∂ϕF

)
εϕ +

(
1

bt
∂tF

)
εt . (1.37)

Using (1.26), we eventually arrive at the spherical polar coordinate representation of the gradient:

∇F = εr∂rF +
1

r

(
εϕ

1√
1− t2

∂ϕF + εt
√

1− t2 ∂tF
)
. (1.38)
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Based on this equality, for functions F ∈ C(1)(Ω) on Ω we call the operator ∇∗ with

∇∗F := εϕ
1√

1− t2
∂ϕF + εt

√
1− t2 ∂tF , (1.39)

which is r-times the tangential part of ∇, the surface gradient on Ω (see e.g., Backus, 1986; Fletcher
and Reeves, 1964). Furthermore, we define a closely related operator, the surface curl gradient L∗

as the cross product of the evaluation point ξ ∈ Ω and the surface gradient, i.e.

L∗F (ξ) := ξ ∧∇∗F (ξ) = −εϕ
√

1− t2 ∂tF (ξ) + εt
1√

1− t2
∂ϕF (ξ) . (1.40)

Both differential operators will play an important role in the next sections when we talk about basis
functions of l2(D), the vector spherical harmonics. Another motivation for the definition of both
operator is the so-called spherical Helmholtz decomposition of vector fields. It can be shown
that any f ∈ c(1)(Ω) can be represented as

f(ξ) = ξ F1(ξ) +∇∗F2(ξ) + L∗F3(ξ) , (1.41)

for any ξ ∈ Ω, where F1, F2, F3 ∈ C(1)(Ω) are three scalar functions that are uniquely determined for
each f . Since both ∇∗ and L∗ are purely tangential operators, we immediately see that in general
F1 = fr must hold.

It is also possible to define the gradient of vector fields. The result then is a tensor field, where
- interpreted as a matrix - the respective rows and columns contain the partial derivatives of each
component of f . More precisely, ∇ : c(1)(D) → c(D) is defined as the dyadic product of f and the
nabla operator, i.e.

∇f := f ⊗∇ :=
∑
i,j

∇j
(
fi ε

i
)
⊗ εj , (1.42)

where the εi can represent any basis system - in our case especially the Cartesian or spherical polar
system. Applying the product rule then yields

∇f =
∑
i,j

(
(∇jfi) εi ⊗ εj + fi

(
∇jεi

)
⊗ εj

)
=
∑
i,j

(∇jfi) εi ⊗ εj +
∑
i

fi∇εi .
(1.43)

We find that for the calculation of the second sum we need to determine the vector gradient ∇εi of
the basis vectors εi for i = 1, 2, 3 or i = r, ϕ, r respectively. In Cartesian coordinates, ∇εi = 0 for all
i = 1, 2, 3 since the basis vectors are static. Furthermore, ∇i = ∂i in (1.43) for all i = 1, 2, 3 which
then simply yields

∇f =

3∑
i,j=1

∂jfi ε
i ⊗ εj . (1.44)

for the representation of the vector gradient in Cartesian coordinates. In spherical polar coordinates,
the partial derivatives of the basis vectors do not vanish since they move with the location. For the
respective derivatives we find, applying (1.38) to (1.26), that

∇rεr = 0, ∇ϕεr =
1

r
εϕ, ∇tεr =

1

r
εt ,

∇rεϕ = 0, ∇ϕεϕ =
1

r

(
t√

1− t2
εt − εr

)
, ∇tεϕ = 0 , (1.45)

∇rεt = 0, ∇ϕεt = −1

r

t√
1− t2

εϕ, ∇tεt = −1

r
εr .
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1.2. DIFFERENTIATION IN R3

Note that these relations are very important and will also be necessary for the derivation of the
spherical polar coordinate representation of all following differential operators. Now, using (1.45) we
find for the vector gradient of the basis vectors:

∇εr =
∑
j

(∇jεr)⊗ εj =
1

r

(
εϕ ⊗ εϕ + εt ⊗ εt

)
,

∇εϕ =
∑
j

(∇jεϕ)⊗ εj =
1

r

(
t√

1− t2
εt ⊗ εϕ − εr ⊗ εϕ

)
,

∇εt =
∑
j

(
∇jεt

)
⊗ εj = −1

r

(
t√

1− t2
εϕ ⊗ εϕ + εr ⊗ εt

)
.

(1.46)

Together with (1.43) these relations finally determine the spherical polar coordinate representation of
the vector gradient, here in matrix notation:

∇f =

 ∂rfr
1
r

1√
1−t2 ∂ϕfr −

1
rfϕ

1
r

√
1− t2 ∂tfr − 1

rft

∂rfϕ
1
r

1√
1−t2 ∂ϕfϕ −

1
r

t√
1−t2 ft + 1

rfr
1
r

√
1− t2 ∂tfϕ

∂rft
1
r

1√
1−t2 ∂ϕft + 1

r
t√

1−t2 fϕ
1
r

√
1− t2 ∂tft + 1

rfr


r,ϕ,t

. (1.47)

In the context of the stress tensor σ that will be introduced in the next chapter, the transposed vector
gradient will also play an important role:

(∇f)
T

= ∇⊗ f =
∑
i,j

εi ⊗∇i
(
fj ε

j
)
. (1.48)

Since both Cartesian and spherical polar coordinates are orthonormal systems in R3 - i.e. the trans-
formation matrix between the two systems is orthogonal (A−1 = AT ) - in order to find the respective
representation of this operator in spherical polar coordinates it is sufficient to transpose the matrix
representation of ∇f from above without further calculations, i.e.

(∇f)
T

=

 ∂rfr ∂rfϕ ∂rft
1
r

1√
1−t2 ∂ϕfr −

1
rfϕ

1
r

1√
1−t2 ∂ϕfϕ −

1
r

t√
1−t2 ft + 1

rfr
1
r

1√
1−t2 ∂ϕft + 1

r
t√

1−t2 fϕ
1
r

√
1− t2 ∂tfr − 1

rft
1
r

√
1− t2 ∂tfϕ 1

r

√
1− t2 ∂tft + 1

rfr

 .

(1.49)

1.2.2 Vector surface gradient

Replacing the nabla operator in the definitions above with their surface equivalents, the surface gra-
dient ∇∗ and the surface curl gradient L∗ we are able to define two additional operators, the vector
surface gradient ∇∗⊗ : c(1)(Ω)→ c(Ω) with

∇∗ ⊗ f =
∑
i,j

εi ⊗∇∗i
(
fj ε

j
)

=
∑
i,j

(∇∗i fj) εi ⊗ εj +
∑
j

fj ∇∗ ⊗ εj , (1.50)

and the vector surface curl gradient L∗⊗ : c(1)(Ω)→ c(Ω) with

L∗ ⊗ f =
∑
i,j

εi ⊗ L∗i
(
fj ε

j
)

=
∑
i,j

(L∗i fj) ε
i ⊗ εj +

∑
j

fj L∗ ⊗ εj . (1.51)

These operators will later be helpful to define basis functions for tensor fields, the tensor spherical
harmonics.
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The vector surface gradient of the basis vectors can immediately be deduced from (1.45). Here
we find that

∇∗ ⊗ εr =
∑
i

εi ⊗ (∇∗i εr) = εϕ ⊗ εϕ + εt ⊗ εt ,

∇∗ ⊗ εϕ =
∑
i

εi ⊗ (∇∗i εϕ) =
t√

1− t2
εϕ ⊗ εt − εϕ ⊗ εr ,

∇∗ ⊗ εt =
∑
i

εi ⊗
(
∇∗i εt

)
= − t√

1− t2
εϕ ⊗ εϕ − εt ⊗ εr .

(1.52)

and together with the definition (1.39) of ∇∗ we immediately find:

∇∗ ⊗ f =

 0 0 0
1√

1−t2 ∂ϕfr − fϕ
1√

1−t2 ∂ϕfϕ −
t√

1−t2 ft + fr
1√

1−t2 ∂ϕft + t√
1−t2 fϕ√

1− t2 ∂tfr − ft
√

1− t2 ∂tfϕ
√

1− t2 ∂tft + fr

 . (1.53)

Also for the spherical polar coordinate representation of the vector surface curl gradient we first need
to determine the results of its application to the basis vectors. First, for the partial derivatives we
find that

L∗rε
r = 0 , L∗ϕε

r = −εt , L∗t ε
r = εϕ ,

L∗rε
ϕ = 0 , L∗ϕε

ϕ = 0 , L∗t ε
ϕ =

t√
1− t2

εt − εr , (1.54)

L∗rε
t = 0 , L∗ϕε

t = εr , L∗t ε
t = − t√

1− t2
εϕ .

Leading to

L∗ ⊗ εr =
∑
i

εi ⊗ (L∗i ε
r) = −εϕ ⊗ εt + εt ⊗ εϕ ,

L∗ ⊗ εϕ =
∑
i

εi ⊗ (L∗i ε
ϕ) =

t√
1− t2

εt ⊗ εt − εt ⊗ εr ,

L∗ ⊗ εt =
∑
i

εi ⊗
(
L∗i ε

t
)

= εϕ ⊗ εr − t√
1− t2

εt ⊗ εϕ .

(1.55)

And together with the definition (1.40) of L∗ we finally find that

L∗ ⊗ f =

 0 0 0

−
√

1− t2 ∂tfr + ft −
√

1− t2 ∂tfϕ −
√

1− t2 ∂tft − fr
1√

1−t2 ∂ϕfr − fϕ
1√

1−t2 ∂ϕfϕ −
t√

1−t2 ft + fr
1√

1−t2 ∂ϕft + t√
1−t2 fϕ

 . (1.56)

We notice that in contrast to the surface gradient and the surface curl gradient that generate purely
tangential vector fields, the tensor gradients do not generate purely tangential tensor fields due to the
non-vanishing first column even if the initial vector field is purely tangential.

The apparent application of both tensor gradients to the surface gradient and the surface curl gra-
dient (of a scalar field F ) itself will reveal some interesting relations. Moreover, in the next section
we will learn that these operators will provide the foundation for constructing (some of the) basis
functions we will need to describe tensor fields. Therefore, we will now explicitly state the result of
these applications. Also using√

1− t2 ∂t
1√

1− t2
∂ϕ = ∂t∂ϕ +

t

1− t2
∂ϕ ,√

1− t2 ∂t
√

1− t2 ∂t = ∂t
(
1− t2

)
∂t + t ∂t ,

(1.57)
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we find for F ∈ C(2)(Ω):

∇∗ ⊗∇∗F =

 0 0 0
− 1√

1−t2 ∂ϕF
1

1−t2 ∂
2
ϕ2F − t ∂tF t

1−t2 ∂ϕF + ∂ϕ∂tF

−
√

1− t2 ∂tF t
1−t2 ∂ϕF + ∂ϕ∂tF ∂t

(
1− t2

)
∂tF + t ∂tF

 . (1.58)

∇∗ ⊗ L∗F =

 0 0 0√
1− t2 ∂tF − t

1−t2 ∂ϕF − ∂ϕ∂tF
1

1−t2 ∂
2
ϕ2F − t ∂tF

− 1√
1−t2 ∂ϕF −∂t

(
1− t2

)
∂tF − t ∂tF t

1−t2 ∂ϕF + ∂ϕ∂tF

 . (1.59)

L∗ ⊗∇∗F =

 0 0 0√
1− t2 ∂tF − t

1−t2 ∂ϕF − ∂ϕ∂tF −∂t
(
1− t2

)
∂tF − t ∂tF

− 1√
1−t2 ∂ϕF

1
1−t2 ∂

2
ϕ2F − t ∂tF t

1−t2 ∂ϕF + ∂ϕ∂tF

 . (1.60)

L∗ ⊗ L∗F =

 0 0 0
1√

1−t2 ∂ϕF ∂t
(
1− t2

)
∂tF + t ∂tF − t

1−t2 ∂ϕF − ∂ϕ∂tF√
1− t2 ∂tF − t

1−t2 ∂ϕF − ∂ϕ∂tF
1

1−t2 ∂
2
ϕ2F − t ∂tF

 . (1.61)

When we have a closer look at these representations, we notice that we can make a majority of the
components vanish if we combine the tensors in a smart way. More precisely, we find

(∇∗ ⊗∇∗ + L∗ ⊗ L∗)F

=

 0 0 0
0 1

1−t2 ∂
2
ϕ2F + ∂t

(
1− t2

)
∂tF 0

0 0 1
1−t2 ∂

2
ϕ2F + ∂t

(
1− t2

)
∂tF


=
(
εϕ ⊗ εϕ + εt ⊗ εt

)
∆∗F ,

(1.62)

where ∆∗ := 1
1−t2 ∂

2
ϕ2 + ∂t

(
1− t2

)
∂t is the Laplace-Beltrami operator (sometimes in literature

just Beltrami operator) of the unit sphere. In analogy, we also find

(∇∗ ⊗ L∗ − L∗ ⊗∇∗)F =
(
εϕ ⊗ εt − εt ⊗ εϕ

)
∆∗F . (1.63)

Later, we will learn that the Beltrami operator may also be identified with the tangential part of the
Laplace operator ∆, which then also justifies the notation ∆∗.

1.2.3 Divergence

The divergence div : c(1)(D) → C(D) transfers a continuously differentiable vector field f into
a scalar field div f and is defined as the dot product of the nabla operator and f - and therefore
commonly also denoted by ∇ · f . More precisely, we have:

div f := ∇ · f :=
∑
i

εi · ∇if =
∑
i,j

εi · ∇i
(
fj ε

j
)

=
∑
i,j

(
(∇ifj) εi · εj + fj ε

i · ∇iεj
)

=
∑
i

∇ifi +
∑
i

fi∇ · εi .

(1.64)

In analogy to the vector gradient (1.43), for Cartesian coordinates it holds that ∇ · εi = 0 for all
i = 1, 2, 3 since the basis vectors are static. The above definition then simplifies to

∇ · f =

3∑
i=1

∂ifi . (1.65)
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In order to yield the respective representation of the divergence in spherical polar coordinates we need
to determine the divergence of the three basis vectors. Applying again (1.45) we find that

∇ · εr =
∑
i

εi · (∇iεr) =
2

r
,

∇ · εϕ =
∑
i

εi · (∇iεϕ) = 0 ,

∇ · εt =
∑
i

εi ·
(
∇iεt

)
= −1

r

t√
1− t2

.

(1.66)

Inserting these results into (1.64) immediately yields the spherical polar coordinate representation of
the divergence:

∇ · f = ∂rfr +
1

r

(
1√

1− t2
∂ϕfϕ +

√
1− t2 ∂tft

)
+

2

r
fr −

1

r

t√
1− t2

ft

=

(
∂r +

2

r

)
fr +

1

r

(
1√

1− t2
∂ϕfϕ + ∂t

(√
1− t2 ft

))
.

(1.67)

It is also possible to develop a corresponding consistent definition to the divergence for the previously
introduced surface operators ∇∗ and L∗. More precisely we define:

∇∗ · f :=
∑
i,j

εi · ∇∗i
(
fj ε

j
)

=
∑
i

∇∗i fi +
∑
i

fi∇∗ · εi ,

L∗ · f :=
∑
i,j

εi · L∗i
(
fj ε

j
)

=
∑
i

L∗i fi +
∑
i

fi L∗ · εi ,
(1.68)

for a vector function f ∈ c(1)(Ω). We call ∇∗ · f the surface divergence of f and L∗ · f the surface
curl divergence of f . The application to the spherical polar coordinate basis vectors yields

∇∗ · εr =
∑
i

εi · (∇∗i εr) = 2 ,

∇∗ · εϕ =
∑
i

εi · (∇∗i εϕ) = 0 ,

∇∗ · εt =
∑
i

εi ·
(
∇∗i εt

)
= − t√

1− t2
.

(1.69)

and

L∗ · εr =
∑
i

εi · (L∗i εr) = 0 ,

L∗ · εϕ =
∑
i

εi · (L∗i εϕ) =
t√

1− t2
,

L∗ · εt =
∑
i

εi ·
(
L∗i ε

t
)

= 0 .

(1.70)

Inserting these results into (1.68) then immediately yields the explicit spherical polar coordinate
representation of ∇∗ · f and L∗ · f :

∇∗ · f =
1√

1− t2
∂ϕfϕ + ∂t

(√
1− t2 ft

)
+ 2fr ,

L∗ · f =
1√

1− t2
∂ϕft − ∂t

(√
1− t2 fϕ

)
.

(1.71)
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From these representations it can easily be verified that

∇∗ · L∗ = L∗ · ∇∗ = 0 ,

∇∗ · ∇∗ = L∗ · L∗ = ∆∗ .
(1.72)

The divergence operator is also defined for tensor fields, formally as the vector-matrix product of the
nabla operator and a tensor field f . More precisely we define the tensor divergence∇· : c(1)(D)→ c(D)
as

div f := ∇ · f :=
∑
i

(∇if) εi =
∑
i,j,k

(
∇i
(
fjk ε

j ⊗ εk
))
εi

=
∑
i,j,k

(
∇ifjk

(
εj ⊗ εk

)
εi + fjk

(
∇iεj ⊗ εk + εj ⊗∇iεk

)
εi
)

=
∑
i,j

∇ifji εj +
∑
i,j,k

fjk
(
∇iεj ⊗ εk + εj ⊗∇iεk

)
εi

=
∑
i,j

∇ifji εj +
∑
i,j

fij ∇ · εij .

(1.73)

Again, in Cartesian coordinates the second sum vanishes due to the static basis vectors and we find

∇ · f =

3∑
i,j=1

∂ifji ε
j . (1.74)

When f is identified as a matrix, this can be interpreted as an application of the (scalar) divergence
to each row of f . For the representation in spherical polar coordinates we again need the results of
the application of this operator to the respective basis vectors. Using∑

i

(
∇iεj ⊗ εk

)
εi = ∇kεj , (1.75)

for all j, k = r, ϕ, t, we find:

∇ · εrr = ∇rεr +
∑
i

(εr ⊗∇iεr) εi =
2

r
εr ,

∇ · εϕr = ∇rεϕ +
∑
i

(εϕ ⊗∇iεr) εi =
2

r
εϕ ,

∇ · εtr = ∇rεt +
∑
i

(
εt ⊗∇iεr

)
εi =

2

r
εt ,

∇ · εrϕ = ∇ϕεr +
∑
i

(εr ⊗∇iεϕ) εi =
1

r
εϕ ,

∇ · εϕϕ = ∇ϕεϕ +
∑
i

(εϕ ⊗∇iεϕ) εi =
1

r

(
t√

1− t2
εt − εr

)
,

∇ · εtϕ = ∇ϕεt +
∑
i

(
εt ⊗∇iεϕ

)
εi = −1

r

t√
1− t2

εϕ ,

∇ · εrt = ∇tεr +
∑
i

(
εr ⊗∇iεt

)
εi =

1

r

(
εt − t√

1− t2
εr
)
,

∇ · εϕt = ∇tεϕ +
∑
i

(
εϕ ⊗∇iεt

)
εi = −1

r

t√
1− t2

εϕ ,

∇ · εtt = ∇tεt +
∑
i

(
εt ⊗∇iεt

)
εi = −1

r

(
εr +

t√
1− t2

εt
)
.

(1.76)
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Inserting these results into (1.73) then immediately yields the spherical polar coordinate representation
of the tensor divergence:

∇ · f = εr
((

∂r +
2

r

)
frr +

1

r

(
1√

1− t2
∂ϕfrϕ + ∂t

(√
1− t2 frt

)
− fϕϕ − ftt

))
+ εϕ

((
∂r +

2

r

)
fϕr +

1

r

(
1√

1− t2
∂ϕfϕϕ + ∂t

(√
1− t2 fϕt

)
+ frϕ −

t√
1− t2

ftϕ

))
+ εt

((
∂r +

2

r

)
ftr +

1

r

(
1√

1− t2
∂ϕftϕ + ∂t

(√
1− t2 ftt

)
+ frt +

t√
1− t2

fϕϕ

))
= εr

(
∇ · fr· −

1

r
(fϕϕ + ftt)

)
+ εϕ

(
∇ · fϕ· +

1

r

(
frϕ −

t√
1− t2

ftϕ

))
+ εt

(
∇ · ft· +

1

r

(
frt +

t√
1− t2

fϕϕ

))
.

(1.77)

Furthermore, it can easily be shown that for a scalar field G and a tensor field f it holds that

∇ · (Gf) = ∇G · f +G∇ · f . (1.78)

In the context of continuum mechanics, we will later find that for a velocity field v it is only possible to
have a non-zero divergence without violating conservation of mass, if we allow for spatial and/or tem-
poral density variations. Therefore, a velocity field with non-zero divergence is called compressible,
a velocity field with zero divergence incompressible.

1.2.4 Curl

Another very important differential operator - especially in fluid dynamics - is the curl (or sometimes
rotation) of a vector field f . The mapping curl : c(1)(D) → c(D) transfers a continuously differen-
tiable vector field f into another vector field curl f and is formally defined as the vector product of
the nabla operator and f - and therefore commonly also denoted by ∇∧ f . More precisely, we have:

curl f := ∇∧ f :=
∑
i

εi ∧∇if =
∑
i,j

εi ∧∇i
(
fj ε

j
)

=
∑
i,j

(
(∇ifj) εi ∧ εj + fj ε

i ∧∇iεj
)

=
∑
i,j

(∇ifj) εi ∧ εj +
∑
i

fi∇∧ εi .

(1.79)

In Cartesian coordinates the second sum vanishes again and we find

∇∧ f =

3∑
i,j=1

(∂ifj) ε
i ∧ εj =

 ∂2f3 − ∂3f2

∂3f1 − ∂1f3

∂1f2 − ∂2f1

 . (1.80)

In order to yield the respective representation of the curl in spherical polar coordinates we need to
determine the curl of the three basis vectors. Applying again (1.45) we find that

∇∧ εr =
∑
i

εi ∧ (∇iεr) = 0 ,

∇∧ εϕ =
∑
i

εi ∧ (∇iεϕ) =
1

r

(
t√

1− t2
εr + εt

)
,

∇∧ εt =
∑
i

εi ∧
(
∇iεt

)
= −1

r
εϕ .

(1.81)
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Inserting these results into (1.79) immediately yields the spherical polar coordinate representation of
the curl:

∇∧ f =
1

r
εr
(

1√
1− t2

∂ϕft − ∂t
(√

1− t2 fϕ
))

+
1

r
εϕ
(√

1− t2 ∂tfr − ∂r (rft)
)

+
1

r
εt
(
∂r (rfϕ)− 1√

1− t2
∂ϕfr

)
.

(1.82)

From these representations we can - in combination with (1.67) - easily find that the curl of a vector
field f is always divergence-free. Furthermore, in combination with (1.38) the curl of a gradient field
(f = ∇F ) also always vanishes, i.e.

∇ · (∇∧ f) = 0 ,

∇∧∇F = 0 .
(1.83)

In addition, vector fields with a zero curl are called irrotational.

1.2.5 Laplacian

At last, we want to introduce the Laplacian ∆ that is defined as the application of the divergence to
the gradient of a scalar field F or a vector field f . Since the combination of two differential operators
of first order generates second derivatives, here we require functions that are two times continuously
differentiable. Hence, for a scalar field F , we define the Laplacian ∆ : C(2)(D)→ C(D) as

∆F := ∇ · ∇F . (1.84)

Applying the explicit representation of the divergence and the gradient in Cartesian coordinates we
find that the Laplacian reveals itself as the sum of the second (partial) derivatives of F:

∆F =

3∑
i=1

∂i (∂iF ) =

3∑
i=1

∂2
x2
i
F . (1.85)

For spherical polar coordinates we find the following representation of the Laplacian, also just exploit-
ing the results of the previous subsections:

∆F =

(
∂r +

2

r

)
(∇F )r +

1

r

(
1√

1− t2
∂ϕ (∇F )ϕ + ∂t

(√
1− t2 (∇F )t

))
=

(
∂r +

2

r

)
∂rF +

1

r2

(
1√

1− t2
∂ϕ

(
1√

1− t2
∂ϕF

)
+ ∂t

(√
1− t2

√
1− t2 ∂tF

))
=

(
∂2
r2 +

2

r
∂r +

1

r2

(
1

1− t2
∂2
ϕ2 + ∂t

(
1− t2

)
∂t

))
F

=

(
∆r +

1

r2
∆∗
)
F ,

(1.86)

where ∆∗ denotes the already introduced Laplace-Beltrami operator and ∆r the radial Laplacian

∆r := ∂2
r2 +

2

r
∂r

(
=

1

r2
∂r
(
r2∂r

))
. (1.87)

In analogy to the scalar case, the Laplacian of a vector field f is also defined as the application of the
(tensor) divergence to the (vector) gradient of f , i.e. we define ∆ : c(2)(D)→ c(D) as

∆f := ∇ · ∇f . (1.88)
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In Cartesian coordinates this reduces to

∆f =

3∑
i,j=1

∂i (∇f)ji ε
j =

3∑
i,j=1

∂i (∂ifj) ε
j =

3∑
i,j=1

∂2
x2
i
fj ε

j =

3∑
j=1

∆fj ε
j . (1.89)

which can also be interpreted as a (row-wise) application of the scalar Laplacian to the vector com-
ponents of f .

In spherical polar coordinates we find that

∆f = εr
(
∇ · (∇f)r· −

1

r

(
(∇f)ϕϕ + (∇f)tt

))
+ εϕ

(
∇ · (∇f)ϕ· +

1

r

(
(∇f)rϕ −

t√
1− t2

(∇f)tϕ

))
+ εt

(
∇ · (∇f)t· +

1

r

(
(∇f)rt +

t√
1− t2

(∇f)ϕϕ

))
.

(1.90)

With

∇ · (∇f)r· = ∆fr −
1

r2

(
1√

1− t2
∂ϕfϕ + ∂t

(√
1− t2 ft

))
,

∇ · (∇f)ϕ· = ∆fϕ +
1

r2

(
1√

1− t2
∂ϕfr −

t

1− t2
∂ϕft

)
,

∇ · (∇f)t· = ∆ft +
1

r2

(
t

1− t2
∂ϕfϕ + ∂t

(√
1− t2 fr

))
,

(1.91)

we finally find that

∆f = εr
(

∆fr −
2

r2

1√
1− t2

∂ϕfϕ −
2

r2
∂t

(√
1− t2 ft

)
− 2

r2
fr

)
+ εϕ

(
∆fϕ +

2

r2

1√
1− t2

∂ϕfr −
2

r2

t

1− t2
∂ϕft −

1

r2

1

1− t2
fϕ

)
+ εt

(
∆ft +

2

r2

t

1− t2
∂ϕfϕ +

2

r2

√
1− t2 ∂tfr −

1

r2

1

1− t2
ft

)
.

(1.92)

Moreover, it can easily be verified that the application of the divergence to the transposed gradient
(∇f)

T
yields:

∇ · (∇f)
T

= ∇ (∇ · f) . (1.93)

The following special relations involving the Beltrami operator and the radial Laplacian will also be
used in the course of this work. These equalities only require product and chain rule to be proven but
nevertheless should be stated here. For F ∈ C(3)(Ω) we find:

∆∗
(

1√
1− t2

∂ϕ

)
F =

(
1√

1− t2
∂ϕ

)
∆∗F +

1

1− t2

(
1√

1− t2
∂ϕ

)
F

+
2t

1− t2
∂ϕ

(√
1− t2 ∂t

)
F ,

∆∗
(√

1− t2 ∂t
)
F =

(√
1− t2 ∂t

)
∆∗F +

1

1− t2
(√

1− t2 ∂t
)
F

− 2t

1− t2
∂ϕ

(
1√

1− t2
∂ϕ

)
F .

(1.94)

Functions that satisfy the Laplace equation

∆F = 0 , (1.95)
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are called harmonic. The study of such harmonic functions is called potential theory. In the next
section we will find that such harmonic functions will play an important role when developing basis
functions on the unit sphere, the so-called spherical harmonics. In case of a non-vanishing right-hand
side this differential equation is called Poisson equation. We will revisit this kind of equation espe-
cially in Chapter 4 when we discuss the Earth’s gravity field and the gravitational potential.

A special case, i.e. solutions of the Laplace equation that are radially symmetric, can be derived
quite straightforwardly even for the general case of N ∈ N dimensions. These solutions play an im-
portant role in the concept of deriving fundamental solutions (sometimes also denoted as Green’s
functions, where strictly speaking, the expression ’Green’s function’ implies the incorporation of
respective boundary conditions). In general, a fundamental solution of a (linear partial) differential
equation LxF = H is defined as a distribution G(x, y) that satisfies LxG = δx in the distributional
sense. Here, Lx is the respective differential operator (with respect to x) and δx denotes the (x-)delta
distribution. Equality in the distributional sense means that for any Ψ ∈ D, where D is an appropriate
set of (test) functions (in many cases continuously differentiable functions with a compact support),
it holds that ∫

LxG(x, y) Ψ(y) dy =

∫
δx(y) Ψ(y) dy , (1.96)

where the expression on the right-hand side is not a Riemann integral but a common notation for the
defining property of the delta distribution, i.e.∫

δx(y) Ψ(y) dy :=

∫
δ(x− y) Ψ(y) dy := Ψ(x) . (1.97)

In this way, we can understand (1.96) as∫
LxG(x, y) Ψ(y) dy = Ψ(x) , (1.98)

The power of this strategy reveals by showing that due to the linearity of the differential operator, a
solution of the original differential equation LxF = H can be found by combining various fundamental
solutions. More precisely, it can be shown (see e.g., Wermer, 1974) that if the right-hand side H of
the differential equation is also contained in the space of test functions D, the following integral exists
and it holds that

F (x) =

∫
G(x, y)H(y) dy . (1.99)

Note that the fundamental solution G does not depend on the heterogeneity H. This has the practical
advantage that for a varying H, one does not need to determine new fundamental solutions. The only
required step in order to find a solution to the respective differential equation is the evaluation of the
previous integral. This property will be of big advantage when we will discuss fundamental solutions
to the Stokes equation in Chapter 2, where the right-hand side of the differential equation essentially
reflects the density anomalies in the Earth’s mantle.
If the differential operator Lx even has constant coefficients (like e.g. the Laplace operator), it can be
shown that the fundamental solutions are invariant with respect to translation. This implies that the
two parameter dependency of G(x, y) simplifies to a dependency on the distance between x and y,
i.e. G(x, y) = G(x−y), where we define the one-parameter fundamental solution G(x−y) := G(0, x−y)
as the distributional solution to LxG = δ0. The representation (1.99) of the solution F then turns
into the convolution

F (x) =

∫
G(x− y)H(y) dy = (G ∗H)(x) . (1.100)

Now, returning to the Laplace equation, we assume - as already annouced - the solution F to be radially
symmetric, i.e. F (x) = F (|x|) = F (r) for all x with r = |x|. Then, we find for any component of the
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Laplace operator, i.e. the second partial derivative with respect to any component xi, i = 1, ..., N ,
N ∈ N, using the chain and product rule that

∂2
x2
i
F (x) = ∂i (∂iF (r)) = ∂i

(
F
′
(r)

xi
r

)
= F

′′
(r)

x2
i

r2
+ F

′
(r)

(
1

r
− x2

i

r3

)
.

(1.101)

For the Laplace operator we then find

∆F (x) =

N∑
i=1

∂2
x2
i
F (r) =

N∑
i=1

F
′′
(r)

x2
i

r2
+ F

′
(r)

(
1

r
− x2

i

r3

)
= F

′′
(r) + F

′
(r)

N − 1

r
.

(1.102)

Since we require F to satisfy ∆F = 0 we find by substituting G := F
′

and separation of variables
that

G
′
(r) +G(r)

N − 1

r
= 0

⇒
∫

1

G
dG = (1−N)

∫
1

r
dr

⇒ ln(|G(r)|) = (1−N) ln(r) + C̃

⇒G(r) = C r1−N

(1.103)

with an integration constant C ∈ R. Re-substituting and integrating yields for the solution F of the
Laplace equation

F (r) =

∫
C r1−N =

{
C

2−N r2−N , N 6= 2

C ln(r) , N = 2 .
(1.104)

Thus, especially for the 3-D case, we find that

F (r) = −C 1

r

(
i.e. F (x) = −C 1

|x|

)
(1.105)

is a (radially symmetric) solution to the Laplace equation (not defined for x = 0). The similarity of
the Laplace equation to the defining distributional equation of a fundamental solution LG = δ reveals
that the previously found expression may also play an important role in the concept of determining
fundamental solutions of the Laplace operator. And indeed, it can be shown (see e.g., Wermer, 1974)
that (1.105) with the constant C = 1/4π satisfies ∆F (x) = δ(x) for all x ∈ R3 in the distributional
sense. Furthermore, since the Laplacian has constant coefficients, we can immediately solve ∆F = H
for any arbitrary right-hand side H - the Poisson equation - using the convolution ansatz of (1.100),
i.e.

F (x) = −
(

1

4π| · |
∗H

)
(x) = −

∫
H(y)

4π|x− y|
dy . (1.106)

As an example, if we choose H(x) := 4πGρ(x), where G is the gravitational constant and ρ a density
field, we obtain

F (x) = −G
∫

ρ(y)

|x− y|
dy , (1.107)

which is the well-known integral representation of Newton’s gravitational potential. Due to these
relations, we can already deduce from here that the gravitational potential U satisfies the Poisson
equation

∆U(x) = 4πGρ(x) , (1.108)
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for all x in the considered domain. In particular, this yields

∆U(x) = 0 , (1.109)

for all x with ρ(x) = 0, i.e. the gravitational potential is harmonic outside the masses. Please note
that all previous considerations are based on the knowledge of the fundamental solution, which we
just stated and did not prove here (see e.g., Wermer, 1974). Nevertheless, at least we will prove the
last relation (1.109) explicitly in Chapter 4.

Where we intentionally remained imprecise in the notation of the integrals in the previous equa-
tions, in the next section, we will investigate a variety of possible integration methods in R3 - line,
surface and volume integrals - in a detailed way.

1.3 Integration in R3

In this section we present different types of integrals that will be used in this work and state after-
wards some essential relations that build the bridge between these integrals on the one hand and the
previously introduced differential operators on the other hand.

First, we define a path γ as a continuously differentiable function γ : [a, b] → R3 with a, b ∈ R
and a < b. Its image γ([a, b]) is called a curve. Now, let F ∈ C(1)(D) be a scalar function where
γ([a, b]) ⊂ D. In analogy to the Riemann integral, in order to approximate the contribution of
each part of the curve to the total integral, we subdivide the domain [a, b] of the path into N ∈ N
equally spaced - by ∆t := (b − a)/N - intervals with boundary points ti, i = 1, ..., N + 1. Now,
we can approximate each contribution by multiplying the value of F at one arbitrary point inside
the interval, e.g. at the left boundary, with the length of the curve corresponding to that interval,
i.e. |γ(ti+1)− γ(ti)| = |γ(ti + ∆t)− γ(ti)| for the i-th interval. We then find as an approximation RN
for the total integral:

RN =

N∑
i=1

F (γ(ti)) |γ(ti + ∆t)− γ(ti)| . (1.110)

The mean value theorem now states that in each interval, there exists an si with

γ(ti + ∆t)− γ(ti) = γ′(si)∆t . (1.111)

Inserting this result into the previous equation we find that

RN =

N∑
i=1

F (γ(ti)) |γ′(si)|∆t . (1.112)

In the limit N → ∞, ti and si fall into the same point and the sum turns into an integral where
∆t→ dt . Thus, we define the line integral of F along γ as

∫
γ

F (x) ds(x) :=

b∫
a

F (γ(t)) |γ′(t)| dt . (1.113)

This definition can be regarded as an extension of the ordinary Riemann integral. Instead of integrat-
ing a function along the real axis, here, we even allow for a curved base line.

This definition of a line integral can also be extended to vector fields f ∈ c(1)(D) in a straight-
forward manner. The only difference to the scalar case is that at each line segment, we first have to
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determine the part of the vector field that follows the direction of the line segment - represented by
the tangential vectors to the curve - and thus contributes to the integral. This immediately yields the
following definition for a line integral of a vector field f :∫

γ

f(x) · ds(x) :=

∫
γ

f(x) · τ(x) ds(x) =

b∫
a

(f(γ(t)) · τ(γ(t))) |γ′(t)| dt , (1.114)

where τ(x) is the unit tangential to the curve at x ∈ γ([a, b]). But as we have already seen in the
derivation of the scalar line integral, the tangential is nothing else than the derivative of the path, we
find ∫

γ

f(x) · ds(x) =

b∫
a

(
f(γ(t)) · γ

′(t)

|γ′(t)|

)
|γ′(t)| dt =

b∫
a

f(γ(t)) · γ′(t) dt . (1.115)

In contrast to the line integral of a scalar field, we notice that the line integral of a vector field is not
independent of the parametrisation of the curve since its tangential is not unique, i.e. it depends on
the direction we go along the curve. More precisely, the magnitude of the integral is unique but its
sign depends on the direction of the curve.

Gradient fields, i.e. vector fields f that can be represented by a scalar function G through f = ∇G
have the important (and nice) property that their line integrals are in general independent of the path
and only depend on the value of G at the two end points of the curve. Since, due to the chain rule,

d

dt
G(γ(t)) = ∇G(γ(t)) · γ′(t) , (1.116)

we find that∫
γ

f(x) · ds(x) =

∫
γ

∇G(x) · ds(x) =

b∫
a

∇G(γ(t)) · γ′(t) dt =

b∫
a

d

dt
G(γ(t)) dt

= G(γ(b))−G(γ(a)) .

(1.117)

If we integrate along a closed path, i.e. a = b, the line integral of a gradient field always vanishes.

In analogy to a line integral it is also possible to define the integral of a scalar field across a surface
Σ. To ensure that the surface has a unique normal vector at each point, we require the surface to be
a regular surface as defined above, i.e. there is a parametrisation Φ : U → R3, where U = [a, b]× [c, d],
a, b, c, d ∈ R with Φ(U) = Σ. Now, we divide both domains [a, b] and [c, d] of the surface parametrisa-
tion into N ∈ N equally spaced - by ∆s := (b− a)/N and ∆t := (d− c)/N - intervals with boundary
points si, ti, i = 1, ..., N + 1. Again, each contribution can now be approximated by multiplying the
value of F at one arbitrary point of the surface, e.g. at the point, corresponding to the left boundary
of the parametrisation, with the area Ai,j of the part of the surface corresponding the current inter-
vals that we estimate by calculating the area of the parallelogram, spanned by the two connecting
lines in each direction, which we can express in terms of the vector product. Thus, we find as an
approximation RN of the total integral:

RN =

N∑
i,j=1

F (Φ(si, tj))Ai,j

=

N∑
i,j=1

F (Φ(si, tj))|Φ(si + ∆s, tj)− Φ(si, tj)||Φ(si, tj + ∆t)− Φ(si, tj)| sin(αi,j)

=

N∑
i,j=1

F (Φ(si, tj))|(Φ(si + ∆s, tj)− Φ(si, tj)) ∧ (Φ(si, tj + ∆t)− Φ(si, tj))| ,

(1.118)
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where αi,j is the angle between the spanning vectors of the area Ai,j . Again, applying the mean value
theorem yields

RN =

N∑
i,j=1

F (Φ(si, tj)) |∂sΦ(ui,j , tj) ∧ ∂tΦ(si, vi,j)|∆t∆s , (1.119)

with si ≤ ui,j ≤ si+1 and tj ≤ vi,j ≤ tj+1 for all i, j = 1, ..., N . Again, in the limit N →∞, all points
fall together and the sum turns into an integral. Thus, we are able to define the surface integral of
F across a (regular) surface Σ as

∫
Σ

F (x) dω(x) :=

b∫
a

d∫
c

F (Φ(s, t)) |∂sΦ(s, t) ∧ ∂tΦ(s, t)| dtds . (1.120)

As an example, as we have already learned, we can represent any point x on the surface of a ball BR
with radius R ∈ R by the parametrisation Φ : [0, 2π]× [−1, 1] with

Φ(ϕ, t) = R

 √1− t2 cosϕ√
1− t2 sinϕ

t

 . (1.121)

We then find that

|∂ϕΦ(ϕ, t) ∧ ∂tΦ(ϕ, t)| = R2

∣∣∣∣∣∣
 −√1− t2 sinϕ√

1− t2 cosϕ
0

 ∧
 − t√

1−t2 cosϕ

− t√
1−t2 sinϕ

1

∣∣∣∣∣∣
= R2

∣∣∣∣∣∣
 √1− t2 cosϕ√

1− t2 sinϕ
t

∣∣∣∣∣∣ = R2 ,

(1.122)

and thus e.g. ∫
∂BR

1 dω(x) =

1∫
−1

2π∫
0

R2 dϕdt = 4πR2 , (1.123)

which is the surface area ∂BR of BR.

At this point we should also mention a special kind of functions that will play an important role
especially in the context of spherical harmonics, the zonal functions. A zonal function Gξ ∈ L2(Ω)
with respect to ξ ∈ Ω (also called ξ-zonal function) is a function on the unit sphere, that for any η ∈ Ω
only depends on the distance of η and ξ. More precisely, if G ∈ L2([−1, 1]) and ξ ∈ Ω, the function
Gξ, defined by

Gξ(η) := G(ξ · η) , (1.124)

for all η ∈ Ω, is called a ξ-zonal function. If we especially choose ξ = ε3, due to construction, we have
ε3 · η = t (see (1.121)), the polar distance of η, and the surface integral of Gε3 across the unit sphere
turns into ∫

Ω

Gε3(η) dω(η) =

∫
Ω

G
(
ε3 · η

)
dω(η) =

1∫
−1

2π∫
0

G(t) dϕdt = 2π

1∫
−1

G(t) dt . (1.125)

The previous relation is even not restricted to ε3-zonal functions but applicable to any ξ-zonal function
with ξ ∈ Ω since it is possible to transfer any ξ ∈ Ω to the north pole ε3 by a rotation A (with

31



CHAPTER 1. MATHEMATICAL PRELIMINARIES

det(A) = 1). It can be shown that under such a rotation, the integral on the right-hand side does not
change. Thus, we have for any zonal function Gξ ∈ L2(Ω), ξ ∈ Ω, that

∫
Ω

Gξ(η) dω(η) = 2π

1∫
−1

G(t) dt . (1.126)

This means that it is possible to transfer the surface integral of a zonal function into an ordinary
one-dimensional integral and vice versa, the integral of a scalar function on the interval [−1, 1] can be
transferred into a surface integral in the presented way.

In analogy to the line integrals, also the concept of surface integral can be extended to vector fields.
One possible way is just to interpret the integral component-wise, i.e. the result of the integral is again
a vector. We define ∫

Σ

f(x) dω(x) :=

3∑
i=1

∫
Σ

fi(x) dω(x)

 εi . (1.127)

Another physically concept that becomes interesting when investigating surfaces, is the so-called flux.
In a very general way, flux is just defined as a quantity that passes through a surface. If we interpret
this quantity as the vector field f ∈ c(1)(D), we immediately find that the part of the vector field that
is tangential to the surface, does not cross it, and therefore has no contribution to the flux. We only
have to take into account the part of f that is normal to the surface. This immediately leads to the
following definition of the flux of f across a surface Σ:

∫
Σ

f(x) · dω(x) :=

∫
Σ

(f(x) · n(x)) dω(x) =

b∫
a

d∫
c

(f(Φ(s, t)) · n(Φ(s, t))) dtds , (1.128)

where n(x) is the (outer) unit normal vector to Σ at x. Since we can identify n with the cross product
of the partial derivatives of the parametrisation Φ, we find - in analogy to the line integrals - that∫

Σ

f(x) · dω(x)

=

b∫
a

d∫
c

(
f(Φ(s, t)) · ∂sΦ(s, t) ∧ ∂tΦ(s, t)

|∂sΦ(s, t) ∧ ∂tΦ(s, t)|

)
|∂sΦ(s, t) ∧ ∂tΦ(s, t)|dtds

=

b∫
a

d∫
c

f(Φ(s, t)) · (∂sΦ(s, t) ∧ ∂tΦ(s, t)) dtds .

(1.129)

Since we can identify the last expression as a triple product, we also find the following representation
for the flux: ∫

Σ

f(x) · dω(x) =

b∫
a

d∫
c

det(f | ∂sΦ | ∂tΦ) dtds

=

b∫
a

d∫
c

det

 f1 ∂sΦ1 ∂tΦ1

f2 ∂sΦ2 ∂tΦ2

f3 ∂sΦ3 ∂tΦ3

 dtds .

(1.130)

The last integral type we want to discuss, is the volume integral of a scalar field F ∈ C(1)(D). It is a
natural extension of the line and surface integral to three dimensions. Instead of a line part or an area
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of a surface, here we consider a part of a volume as the basis of the integral, which is multiplied by the
value of the scalar field corresponding to this volume. In analogy to lines and surfaces, we also need a
parametrisation for the volume V , which then naturally consists of three free parameters, i.e. we have
a parametrisation Φ : U → R3, with U = [a, b] × [c, d] × [e, f ], a, b, c, d, e, f ∈ R and Φ(U) = V ⊂ D.
Without further derivation, it can easily be deduced from all previous considerations that the volume
of one volume element can be represented by the triple product of the three partial derivatives of Φ.
This immediately leads to the following definition of the volume integral of F :∫

V

F (x) dV (x) :=

∫
U

F (Φ(s, t, u)) |∂sΦ(s, t, u) · (∂tΦ(s, t, u) ∧ ∂uΦ(s, t, u))| dudtds

=

b∫
a

d∫
c

f∫
e

F (Φ(s, t, u)) |det (∂sΦ | ∂tΦ | ∂uΦ) | dudtds

=

b∫
a

d∫
c

f∫
e

F (Φ(s, t, u))

∣∣∣∣∣∣det

 ∂sΦ1 ∂tΦ1 ∂uΦ1

∂sΦ2 ∂tΦ2 ∂uΦ2

∂sΦ3 ∂tΦ3 ∂uΦ3

∣∣∣∣∣∣ dudtds

=

b∫
a

d∫
c

f∫
e

F (Φ(s, t, u)) |det(J(Φ(s, t, u))) | dudtds

=

b∫
a

d∫
c

f∫
e

F (Φ(s, t, u)) |det(∇Φ(s, t, u)) | dudtds ,

(1.131)

where J is the Jacobian, i.e. the vector gradient, of the volume parametrisation Φ. Except for a
component-wise application, there is no additional reasonable definition of a volume integral for vec-
tor fields.

As an example, we again consider a solid ball BR with radius R ∈ R and use the already known
parametrisation (1.121) but additionally let r vary to have Φ(r, ϕ, t). We already know the Jacobian
of Φ from (1.31) and therefore find applying Laplace’ rule for the determinant:

det(J(Φ(r, ϕ, t)) = t2r2 + r2(1− t2) = r2 . (1.132)

Thus, the (unweighted) volume integral over the solid ball BR becomes∫
BR

1 dV (x) =

R∫
0

2π∫
0

1∫
−1

r2 dtdϕdr = 4π

R∫
0

r2 dr =
4

3
πR3 , (1.133)

which is the volume of the solid ball BR.

One of the most important features of the previously discussed integral types is that, under certain
conditions, it is possible to transfer one integral into another. There are a couple of useful identities
that build the bridge between line, surface and volume integrals on the one hand and the previously
introduced differential operators on the other hand. These transfer mechanisms will especially be
crucial for the derivations of the integral and differential representations of the governing equations
in continuum mechanics. We start with a relation between volume and surface integrals, more pre-
cisely the flux, the so-called Gauss’ theorem (also divergence theorem). It can be shown that
for an arbitrary volume V ⊂ R3 which is bounded by a regular surface ∂V , we find for a vector field
f ∈ c(1)(V ) that ∫

V

∇ · f(x) dV (x) =

∫
∂V

f(x) · dω(x) , (1.134)

33



CHAPTER 1. MATHEMATICAL PRELIMINARIES

i.e. the flux of f through the boundary of V equals its divergence inside the volume. Since the volume
V can be of arbitrary shape, especially also arbitrarily small, the divergence can be interpreted as
a representation of the flux in the infinitesimal limit. In other words, the divergence at a point x
measures the presence of sources and sinks of f at this point.

To prove this relation we approximate the volume V by N ∈ N rectangular shaped blocks Vi,

i = 1, ..., N that fall into the coordinate axes x1, x2 and x3 and such that we have
⋃N
i=1 Vi

N→∞−−−−→ V .
Due to construction, the fluxes through the surfaces of any inner cube equals the negative flux through
the respective surface of its adjacent block, thus, all fluxes in the interior cancel each other and only
the contributions of the surfaces at the boundary that have no adjacent blocks remain. Therefore, we
can easily deduce that in the limit N → ∞, the sum of the fluxes through the surfaces of all cubes
equals the flux just through the outer boundary of the volume, i.e.

lim
N→∞

N∑
i=1

∫
∂Vi

f(x) · dω(x) =

∫
∂V

f(x) · dω(x) . (1.135)

The flux through one specific block Vi, i = 1, ..., N , can be divided into the contribution of the six
sides, where two of them are always pairwise parallel and their normal vectors are the canonical
unit vectors ε1, ε2 and ε3. Defining Ii,1 × Ii,2 × Ii,3 := [ai,1, ai,2] × [bi,1, bi,2] × [ci,1, ci,2] = Vi with
ai,1 ≤ x1 ≤ ai,2, bi,1 ≤ x2 ≤ bi,2 and ci,1 ≤ x3 ≤ ci,2 and furthermore, writing f(x) = f(x1, x2, x3) to
emphasize the explicit dependence of f on the three components of x, we find using the mean value
theorem of differentiation that∫

∂Vi

f(x) · dω(x) =

∫
Ii,2

∫
Ii,3

(f1(ai,2, x2, x3)− f1(ai,1, x2, x3)) dx2 dx3

+

∫
Ii,1

∫
Ii,3

(f2(x1, bi,2, x3)− f2(x1, bi,1, x3)) dx1 dx3

+

∫
Ii,1

∫
Ii,2

(f3(x1, x2, ci,2)− f3(x1, x2, ci,1)) dx1 dx2

= |Ii,1|
∫
Ii,2

∫
Ii,3

∂1f1(āi, x2, x3) dx2 dx3

+ |Ii,2|
∫
Ii,1

∫
Ii,3

∂2f2(x1, b̄i, x3) dx1 dx3

+ |Ii,3|
∫
Ii,1

∫
Ii,2

∂3f3(x1, x2, c̄i) dx1 dx2 ,

(1.136)

for some values ai,1 ≤ āi ≤ ai,2, bi,1 ≤ b̄i ≤ bi,2 and ci,1 ≤ c̄i ≤ ci,2. Applying the mean value theorem
of integration, the previous relation turns into∫

∂Vi

f(x) · dω(x) =
(
∂1f1(āi, b̃i, c̃i + ∂2f2(ãi, b̄i, ĉi) + ∂3f3(âi, b̂i, c̄i)

)
|Ii,1||Ii,2||Ii,3|

=
(
∂1f1(āi, b̃i, c̃i) + ∂2f2(ãi, b̄i, ĉi) + ∂3f3(âi, b̂i, c̄i)

)
|Vi| ,

(1.137)

for some ai,1 ≤ ãi/âi ≤ ai,2, bi,1 ≤ b̃i/b̂i ≤ bi,2, ci,1 ≤ c̃i/ĉi ≤ ci,2. For the limit N → ∞, all cubes
become infinitesimal small and all points on the right-hand side of the equation fall into one point.
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Thus, we finally find

lim
N→∞

N∑
i=1

∫
∂Vi

f(x) · dω(x) = lim
N→∞

N∑
i=1

(
∂1f1(āi, b̃i, c̃i) + ∂2f2(ãi, b̄i, ĉi) + ∂3f3(âi, b̂i, c̄i)

)
|Vi|

=

∫
V

(∂1f1(x) + ∂2f2(x) + ∂3f3(x)) dV (x)

=

∫
V

∇ · f(x) dV (x) .

(1.138)

A similar conversion rule can be found for surface and line integral. Here, we find the following relation
involving the curl instead of the divergence in Gauss’ Theorem. The so-called Stokes’ Law states
that for any regular surface Σ that is bounded by ∂Σ we find that∫

Σ

(∇∧ f(x)) · dω(x) =

∫
∂Σ

f(x) · ds(x) . (1.139)

We see that in the infinitesimal limit, the curl is equivalent to the (closed) line integral around a point
x, which can be physically interpreted as the circulation around or at this point. In analogy to the
divergence, we prove this relation by approximating the surface Σ by N ∈ N rectangles Σi, i = 1, ..., N
of three types that fall into the coordinate planes x2/x3, x3/x1 and x1/x2 respectively, and such that

we have
⋃N
i=1 Σi

N→∞−−−−→ Σ. Due to construction, the line integral contribution at one side of one
rectangle equals the exact negative contribution of the respective side of its adjacent rectangle. Thus,
in analogy to the divergence, all contributions in the interior of the surface cancel each other and only
the lines at the boundary of the surface without an adjacent rectangle remain. Therefore, we can
easily deduce that in the limit N → ∞, the sum of the line integrals around all surfaces Σi in the
interior equals the line integral just around the outer boundary of the surface, i.e.

lim
N→∞

N∑
i=1

∫
∂Σi

f(x) · ds(x) =

∫
∂Σ

f(x) · ds(x) . (1.140)

The line integral around one specific rectangle Σi, i = 1, ..., N , can be divided into the contribution
of the four sides, where two of them are always pairwise parallel and their tangential vectors are
the canonical unit vectors ε1, ε2 or ε3, depending on the specific type of the rectangle. We now say
that the contribution of one rectangle can be expressed by three terms, each representing a rectangle
Σi,j , j = 1, 2, 3 of one type, where only one term is not equal to zero. We - hypothetically - arrange
these three areas as the front, left and lower side of a rectangle that is defined by Ii,1 × Ii,2 × Ii,3 :=
[ai,1, ai,2] × [bi,1, bi,2] × [ci,1, ci,2] with ai,1 ≤ x1 ≤ ai,2, bi,1 ≤ x2 ≤ bi,2 and ci,1 ≤ x3 ≤ ci,2.
Furthermore, we write f(x) = f(x1, x2, x3) to emphasize the explicit dependence of f on the three
components of x. Again, we also apply the mean value theorem of differentiation and obtain - always
respecting the correct orientation of the line integrals with respect to the right-hand rule - that∫

∂Σi

f(x) · ds(x) =

3∑
j=1

∫
∂Σi,j

f(x) · ds(x)

=

∫
Ii,2

(f2(ai,2, x2, ci,1)− f2(ai,1, x2, ci,1)) dx2 +

∫
Ii,1

(f1(x1, bi,1, ci,1)− f1(x1, bi,2, ci,1)) dx1

+

∫
Ii,3

(f3(ai,1, bi,2, x3)− f3(ai,1, bi,1, x3)) dx3 +

∫
Ii,2

(f2(ai,1, x2, ci,1)− f2(ai,1, x2, ci,2)) dx2

+

∫
Ii,3

(f3(ai,1, bi,1, x3)− f3(ai,2, bi,1, x3)) dx3 +

∫
Ii,1

(f1(x1, bi,1, ci,2)− f1(x1, bi,1, ci,1)) dx1
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= |Ii,1|
∫
Ii,2

∂1f2(āi, x2, ci,2) dx2 − |Ii,2|
∫
Ii,1

∂2f1(x1, b̄i, ci,2) dx1 (1.141)

+ |Ii,2|
∫
Ii,3

∂2f3(ai,2, b̃i, x3) dx3 − |Ii,3|
∫
Ii,2

∂3f2(ai,2, x2, c̄i) dx2

+ |Ii,3|
∫
Ii,1

∂3f1(x1, bi,1, c̃i) dx1 − |Ii,1|
∫
Ii,3

∂1f3(ãi, bi,1, x3) dx3 .

for some values ai,1 ≤ āi/ãi ≤ ai,2, bi,1 ≤ b̄i/b̃i ≤ bi,2 and ci,1 ≤ c̄i/c̃i ≤ ci,2. Applying the mean value
theorem of integration, the previous relation then turns into∫

∂Σi

f(x) · ds(x) =
(
∂1f2(āi, b̂i, ci,2)− ∂2f1(âi, b̄i, ci,2)

)
|Ii,1||Ii,2|

+
(
∂2f3(ai,2, b̃i, ĉi)− ∂3f2(ai,2, ḃi, c̄i)

)
|Ii,2||Ii,3|

+ (∂3f1(ȧi, bi,1, c̃i)− ∂1f3(ãi, bi,1, ċi)) |Ii,3||Ii,1|

=
(
∂2f3(ai,2, b̃i, ĉi)− ∂3f2(ai,2, ḃi, c̄i)

)
|Σi,1|

+ (∂3f1(ȧi, bi,1, c̃i)− ∂1f3(ãi, bi,1, ċi)) |Σi,2|

+
(
∂1f2(āi, b̂i, ci,2)− ∂2f1(âi, b̄i, ci,2)

)
|Σi,3| .

(1.142)

for some ai,1 ≤ âi/ȧi ≤ ai,2, bi,1 ≤ b̂i/ḃi ≤ bi,2, ci,1 ≤ ĉi/ċi ≤ ci,2. For the limit N → ∞, again all
areas become infinitesimal small and all points on the right-hand side of the equation fall into one
point. Thus, we finally find

lim
N→∞

N∑
i=1

∫
∂Σi

f(x) · ds(x) = lim
N→∞

N∑
i=1

(
∂2f3(ai,2, b̃i, ĉi)− ∂3f2(ai,2, ḃi, c̄i)

)
|Σi,1|

+ (∂3f1(ȧi, bi,1, c̃i)− ∂1f3(ãi, bi,1, ċi)) |Σi,2|

+
(
∂1f2(āi, b̂i, ci,2)− ∂2f1(âi, b̄i, ci,2)

)
|Σi,3|

=

∫
Σ

(∇∧ f(x)) · n(x) dω(x) =

∫
Σ

(∇∧ f(x)) · dω(x) .

(1.143)

since for all j = 1, 2, 3, εj is the unit normal vector to the plane Σi,j .

A direct consequence of Gauss’ theorem are the first and second Green’s identities. Defining f := F ∇G
for two scalar fields F ∈ C(1)(D) and G ∈ C(2)(D) and inserting it into (1.134) we find∫

V

(F (x) ∆G(x) +∇F (x) · ∇G(x)) dV (x) =

∫
∂V

(F (x)∇G(x)) · dω(x)

=

∫
∂V

(F (x)∇nG(x)) dω(x) ,

(1.144)

which is Green’s first identity. Here, ∇nF := ∇F · n denotes the so-called normal derivative of F .
Interchanging the position of F and G (also assuming F ∈ C(2)(D) now), subtracting the result from
the previous equation, we arrive at Green’s second identity:∫

V

(F (x) ∆G(x)−G(x) ∆F (x)) dV (x) =

∫
∂V

(F (x)∇nG(x)−G(x)∇nF (x)) dω(x) . (1.145)
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Since Green’s identities involve the Laplacian it turns out that these relations are quite useful in
potential theory, where harmonic functions, i.e. functions F that satisfy ∆F = 0, are investigated
properly. Indeed, in the next section we will have a closer look at such harmonic functions on the unit
sphere.

1.4 Spherical harmonics

1.4.1 Scalar spherical harmonics I

In this chapter we will present the so-called (scalar) spherical harmonics. These special functions
form a basis system for squared integrable scalar functions that are defined on the unit sphere Ω. Since
these functions play an essential role in spherical analysis and provide the basis for most of the topics
in this work, we will have a detailed look at these functions and their origin, mainly following Freeden
et al. (1998) and Michel (2013), two reference books for this topic. Furthermore, we took additional
input from non-published notes for a lecture in Geomathematics (Mayer, 2007), which provides a great
summary of this topic.

Spherical harmonics are defined as restrictions of homogeneous, harmonic polynomials to the unit
sphere Ω. A polynomial Hl, defined on R3, is called homogeneous of degree l ∈ N if for any scalar
λ ∈ R it holds that Hl(λx) = λlHl(x) for all x ∈ R3. The space of all homogeneous polynomials of de-
gree l is denoted by Homl(R3). It can be shown that the set of all monomials {x 7→

∏
i x

αi
i |

∑
i αi = l}

form a basis of Homl(R3). The number of these monomials is equal to the number of possible ways
to select D − 1 (number of vector components, where the first component is fixed) from a total of
D − 1 + l (free vector components + degree) items, where D is the dimension of the domain, i.e.

dim
(
Homl

(
RD
))

=

(
D − 1 + l
D − 1

)
. (1.146)

Thus, for D = 3 we find

dim
(
Homl

(
R3
))

=

(
l + 2

2

)
=

(l + 2)(l + 1)

2
. (1.147)

The space of all homogeneous polynomials of degree l on R3 that are additionally harmonic, i.e. ∆Hl =
0, is denoted by Harml(R3). It can be shown that any Hl ∈ Harml(R3) can be represented using
homogeneous polynomials of degree 0 to l, where all polynomials with degree < l − 1 are determined
by a recurrence formula from the polynomials of degree l and l−1. Thus, the dimension of Harml(R3)
is equal to the number of free parameters of these two polynomials, i.e. l + 1 and l, thus

dim
(
Harml

(
R3
))

= 2l + 1 . (1.148)

We define a spherical harmonic Yl of degree l as the restriction of a homogeneous harmonic polynomial
of degree l to the unit sphere Ω, i.e. Yl = Hl | Ω, where Hl ∈ Harml(R3). Furthermore, we denote the
space of all spherical harmonics of degree l by Harml(Ω) := Harml(R3) | Ω.

It can be shown that spherical harmonics of different degrees are orthogonal in the sense of L2(Ω), i.e.

∫
Ω

Yn(ξ)Ym(ξ) dω(ξ) = 0 (1.149)

for m 6= n. Now, let Hl ∈ Harml(R3) and Yl ∈ Harml(Ω) be its restriction to the unit sphere. Since
Hl is harmonic and homogeneous, we find for any x = rξ, r = |x|, ξ ∈ Ω:

0 = ∆Hl(x) = ∆Hl(rξ) = ∆
(
rl Yl(ξ)

)
. (1.150)
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Applying the spherical polar representation (1.86) of the Laplace operator we find

0 = Yl(ξ) ∆rrl + rl−2∆∗Yl(ξ) = l(l + 1) rl−2 Yl(ξ) + rl−2∆∗Yl(ξ) (1.151)

and thus

∆∗Yl(ξ) = −l(l + 1)Yl(ξ), (1.152)

i.e. any spherical harmonic Yl of degree l is an eigenfunction of the Beltrami operator ∆∗ to the
eigenvalue −l(l + 1). This is one of the most essential properties of spherical harmonics and will be
used repeatedly throughout this whole work.

To reveal the dimension of Harml(Ω), we let {Hl,m}m=1,...,2l+1 be a linearly independent system
in Harml(R3) with their respective restrictions {Yl,m}m=1,...,2l+1 and state the (natural) assumption
that by the restriction of the space to Ω, also the dimension is reduced, i.e. dim (Harml(Ω)) < 2l+ 1.
Then, if we construct a function F ∈ Harml(Ω) that satisfies

F (ξ) :=

2l+1∑
m=1

amYl,m(ξ) = 0 (1.153)

for all ξ ∈ Ω, there must be at least one set of non-trivial coefficients am ∈ R, m = 1, ..., 2l + 1, such
that the previous equation holds, since the Yl,m cannot be linearly independent. Now we consider the
so-called Interior Dirichlet Problem (IDP), where we seek a function G ∈ C(2)(Ωint) ∩ C(1)(Ω)
that is harmonic in the interior and equals a given function F ∈ C(Ω) on Ω, i.e.

∆G(x) = 0 for all x ∈ Ωint , G(ξ) = F (ξ) for all ξ ∈ Ω . (1.154)

Assuming that F has the representation as assumed above, it can easily be verified (in analogy to
(1.151)) that a solution to the IDP is given by

G(x) =

2l+1∑
m=1

amr
l Yl,m(ξ) . (1.155)

On the other hand, also G ≡ 0 is a (trivial) solution to the IDP. In general, it can be shown - with
the help of Green’s identities - that the IDP is uniquely solvable. Thus, both found solutions must be
equal, i.e., also using that the Yl,m are restrictions of the Hl,m:

G(x) =

2l+1∑
m=1

amr
l Yl,m(ξ) =

2l+1∑
m=1

amHl,m(x) = 0 (1.156)

for all x ∈ Ωint. Since the Hl,m are polynomials, the previous equation can only be satisfied if G
is the zero polynomial, i.e. G(x) = 0 for all x ∈ R3. Since the Hl,m are linearly independent, the
previous equation implies that ai = 0 for all i = 1, ..., 2l + 1, which is a contradiction to our original
assumption. Thus, we showed that indeed

dim (Harml(Ω)) = dim
(
Harml(R3)

)
= 2l + 1 . (1.157)

In accordance to the geophysical and geodetic community, from now on, we denote an (L2(Ω)-)
orthonormal system of Harml(Ω) by {Yl,m}m=−l,...,l and call the second index order of the spherical
harmonic, in contrast to the geomathematical literature, where the order m is regularly denoted by
m = 1, ..., 2l + 1. For such an ONS, the following very important relation, the so-called addition
theorem of scalar spherical harmonics, can be shown. For any ξ, η ∈ Ω, it holds that

l∑
m=−l

Yl,m(ξ)Yl,m(η) =
2l + 1

4π
Pl(ξ · η) , (1.158)
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where Pl is the so-called Legendre polynomial of degree l. In literature, this relation is sometimes
regarded as the extension of the trigonometrical relation

cos(α) cos(β) + sin(α) sin(β) = cos(α− β) (1.159)

to the sphere, since Pl(ξ · η) only depends on the (cosine of the) angle between ξ and η and the
spherical harmonics consist of linear combinations of sine and cosine functions as we will see later in
this section. In the special case of ξ = η we trivially find

l∑
m=−l

(Yl,m(ξ))
2

=
2l + 1

4π
, (1.160)

since Pl(1) = 1 for all l ∈ N (see below). This relation then can be regarded as the extension of

cos2(α) + sin2(α) = 1 (1.161)

to the sphere. The proof of the addition theorem is not trivial and requires a lot of additional theory
(see e.g., Freeden et al., 1998). Here, we only state an interesting general equality that is used to
build the bridge to the Legendre polynomials. It can be shown (see e.g., Hobson, 1955) that for any
x ∈ R3 \ {0}

(∂i)
l 1

|x|
= (−1)l

(2l)!

l! 2l
1

|x|2l+1

[l/2]∑
s=0

(−1)s
l! (2l − 2s)!

(2l)! (l − s)! s!
|x|2s ∆s

xli , (1.162)

where [
l

2

]
=

1

2

(
l − 1

2

(
1− (−1)l

))
(1.163)

is the Gauss bracket and ∆s denotes a s-times application of the Laplace operator. Later we will
state an explicit representation of the Legendre polynomials that is similar to the right-hand side of
the previous equation.

1.4.2 Legendre polynomials

Now, we have a more detailed look at the Legendre polynomials {Pl}l∈N themselves since the addition
theorem suggests a close relationship between them and the spherical harmonics. In this section, we
will provide a lot of details and include a variety of own calculations and derivations where it seemed
appropriate, since this can basically not be found in any textbook. We consider this to be quite helpful
or even necessary to gain a deeper insight into this topic.

In general, there are various - equivalent - ways to introduce the Legendre polynomials. From a
historical point of view, for the first time they were discovered in Legendre (1785) when investigating
the multipole expansion of the electric potential of a point source at x ∈ R3 with x = rξ, r ∈ R, ξ ∈ Ω.
The potential at a point y ∈ R3 with y = Rη, R ∈ R, η ∈ Ω is proportional to the inverse distance
1/|x− y| between both points. Assuming - without loss of generality - that R > r, this expression can
be reformulated as

1

|x− y|
=

1√
〈x− y, x− y〉

=
1√

R2 − 2x · y + r2
=

1

R

√
1− 2

(
r
R

)
ξ · η +

(
r
R

)2 , (1.164)

where the square-root term on the right-hand side can be interpreted as a more general function

ft(h) :=
1√

1− 2ht+ h2
. (1.165)
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In the case of the inverse distance, the scalar product ξ · η plays the role of t and the ratio of both
vector norms, i.e. r/R, plays the role of h, such that we have

1

|x− y|
=

1

R
f(ξ·η)

( r
R

)
. (1.166)

Expanding ft in a power series in h, i.e. a Taylor series centred at 0, we can (formally - the series does
not necessarily converge) represent ft as

ft(h) =

∞∑
l=0

f
(l)
t (0)

l!
hl . (1.167)

But indeed, it can be shown that for a fixed t ∈ [−1, 1] this Taylor series has a convergence radius of
1, more precisely, it converges for any h ∈] − 1, 1[. We see that due to the assumption of R > r and
t = ξ · η, both conditions are especially satisfied for the case of the inverse distance. The coefficients
of this power series - that are dependent on the choice of t - turn out to be polynomials in t. They
are called Legendre polynomials (of the first kind) and are denoted by Pl(t), i.e. we define

Pl(t) :=
f

(l)
t (0)

l!
, (1.168)

t ∈]− 1, 1[, such that we have per definition

ft(h) =
1√

1− 2ht+ h2
=

∞∑
l=0

Pl(t)h
l . (1.169)

For the inverse distance, this yields the well-known representation

1

|x− y|
=

∞∑
l=0

rl

Rl+1
Pl(ξ · η) , (1.170)

which, in combination with the addition theorem (1.158), immediately yields a representation of the
inverse distance in terms of spherical harmonics, i.e.

1

|x− y|
=

∞∑
l=0

l∑
m=−l

4π

2l + 1

rl

Rl+1
Yl,m(ξ)Yl,m(η) . (1.171)

The index l of a Legendre polynomial is called degree and it turns out that this degree coincides with
the polynomial degree of Pl. The definition (1.168) already provides us with an explicit instruction
to calculate the Legendre polynomials, e.g. for the first three degrees, we find that

P0(t) =
f

(0)
t (0)

0!
=

1√
1− 2ht+ h2

∣∣∣∣
h=0

= 1 ,

P1(t) =
f

(1)
t (0)

1!
=

t− h
(1− 2ht+ h2)

3
2

∣∣∣∣
h=0

= t ,

P2(t) =
f

(2)
t (0)

2!
=

1

2

(
3t2 − 4ht+ 2h2 − 1

(1− 2ht+ h2)
5
2

)∣∣∣∣
h=0

=
1

2

(
3t2 − 1

)
.

(1.172)

From here, we can already guess that the l-th Legendre polynomial seems to be a polynomial of degree
l. But we notice that this calculation becomes very tedious for higher degrees. Nevertheless, taking
the first derivative with respect to h on both sides of (1.169), which yields

t− h
(1− 2ht+ h2)

3
2

=

∞∑
l=1

l Pl(t)h
l−1 =

∞∑
l=0

(l + 1)Pl+1(t)hl , (1.173)
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and inserting again the expression from (1.169) gives us

(t− h)

∞∑
l=0

Pl(t)h
l = (1− 2ht+ h2)

∞∑
l=0

(l + 1)Pl+1(t)hl

⇔
∞∑
l=0

(
t Pl(t)h

l − Pl(t)hl+1
)

=

∞∑
l=0

(
(l + 1)Pl+1(t)hl − 2t(l + 1)Pl+1(t)hl+1 + (l + 1)Pl+1(t)hl+2

)
.

(1.174)

Expressing all parts in terms of the same exponent in h yields
∞∑
l=0

t Pl(t)h
l −

∞∑
l=1

Pl−1(t)hl

=

∞∑
l=0

(l + 1)Pl+1(t)hl −
∞∑
l=1

2tl Pl(t)h
l +

∞∑
l=2

(l − 1)Pl−1(t)hl.

(1.175)

By comparison of the coefficients we find the following (recurrence) relation between the Legendre
polynomials of different degrees for l ≥ 1:

(l + 1)Pl+1(t) = (2l + 1) t Pl(t)− l Pl−1(t) , (1.176)

or equivalently

l Pl(t) = (2l − 1) t Pl−1(t)− (l − 1)Pl−2(t) , (1.177)

for l ≥ 2. In combination with the initial values P0(t) = 1 and P1(t) = t from (1.172) - figuratively
also called seed values or seeds - this provides an efficient way to evaluate Legendre polynomials of
higher degrees. Basically, since for l = 1 the second term on the right-hand side cancels due to the
factor (l−1), we can just ignore the (non-existing) P−1 (or define P−1 ≡ 0), which makes the previous
relation even valid for l = 1. Thus, technically speaking, P0 remains the only seed in the recurrence
scheme.

From this recurrence relation, we can deduce that with ascending degree, also the polynomial de-
gree rises by 1 due to the factor of t, such that indeed, deg(Pl) = l for all l ∈ N. Furthermore, it can
be shown that the Legendre polynomials are orthogonal in the sense of L2, i.e.

〈Pm, Pn〉L2([−1,1]) =

1∫
−1

Pm(t)Pn(t) dt = 0 (1.178)

for m 6= n. By these two properties, along with the normalisation condition that Pl(1) = 1 for all
l ∈ N, the Legendre polynomials are also uniquely determined. Thus, they are also introduced by
many authors as the one and only system of polynomials on the interval [−1, 1] that satisfy the three
conditions stated above.

Moreover, simply combining (1.169) and (1.173), we find that

1− h2

(1− 2ht+ h2)
3
2

=
1√

1− 2ht+ h2
+

2h(t− h)

(1− 2ht+ h2)
3
2

=

∞∑
l=0

(2l + 1)Pl(t)h
l . (1.179)

Now exploiting the orthogonality of the Legendre polynomials and the fact that P0(t) = 1 for all
t ∈ [−1, 1], the previous relation yields the following impressive result:

1

2

1∫
−1

1− h2

(1− 2ht+ h2)
3
2

dt =
1

2

∞∑
l=0

(2l + 1)hl
1∫
−1

Pl(t)P0(t) dt = 1 , (1.180)
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Figure 1.3: Top left: Abel-Poisson kernels on the interval [-1,1] for the values h = 0.5, h = 0.7 and
h = 0.9. Top right: Abel-Poisson kernel on the sphere for the value h = 0.5. Bottom left: Abel-
Poisson kernel on the sphere for the value h = 0.7. Bottom right: Abel-Poisson kernel on the sphere
for the value h = 0.9. For all spherical plots, the reference point ξ ∈ Ω was chosen to be the North
pole.

or equivalently, using the zonal function conversion rule (1.126),

1

4π

∫
Ω

1− h2

(1− 2h(ξ · η) + h2)
3
2

dω(η) = 1 , (1.181)

for any ξ ∈ Ω. In Figure 1.3 we show a plot of both functions, the function on the left-hand side in
(1.180) on the interval [−1, 1] and the corresponding zonal function from (1.181) on the sphere, both
for different values of h. We see that for increasing values of h, on the interval [−1, 1] the function
shows more and more similarity to a delta distribution with a peak at t = 1. Furthermore, since the
integral over the whole interval remains finite - and especially equals 1 - for all h ∈] − 1, 1[, we can
actually interpret the function as a kind of delta sequence that approaches the delta distribution as
h→ 1 (from below). On the sphere, we see exactly the same behaviour with the peak at η = ξ. Thus,
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we potentially could expect that for any F ∈ L2([−1, 1]) there is a behaviour like

lim
h→1−

1

2

1∫
−1

1− h2

(1− 2ht+ h2)
3
2

F (t) dt = F (1) , (1.182)

and equivalently in the context of the zonal function, for any F ∈ L2(Ω) that

lim
h→1−

1

4π

∫
Ω

1− h2

(1− 2h(ξ · η) + h2)
3
2

F (η) dω(η) = F (ξ) , (1.183)

for all ξ ∈ Ω. And indeed, the previous relation can be formally proven for any F ∈ C(Ω) (see e.g.,
Freeden et al., 1998; Michel, 2013) and is called Poisson integral formula. The function

Kh(ξ, η) :=
1

4π

1− h2

(1− 2h(ξ · η) + h2)
3
2

(1.184)

is called Abel-Poisson kernel and also plays a crucial role in the context of Sobolev spaces, spher-
ical splines and wavelets (see e.g., Horbach, 2008). The systematics that is described by the Poisson
integral formula is called approximate identity. For a fixed h that we choose for the Abel-Poisson
kernel, we can find an approximation to F , using (1.183), where in the limit h→ 1−, this approxima-
tion converges to the actual function F .

Now we return to the Legendre polynomials. The orthogonality is a very important property, since the
system {Pl}l=0,...,N for any N ∈ N can now be regarded as a basis system for all polynomials of degree
l ≤ N . Since also the monomials {xl}l=0,...,N form a basis system, due to uniqueness, the Legendre
polynomials are the result of the application of the Gram-Schmidt orthogonalisation scheme to this
set of monomials. But this condition is also of special interest since Rodrigues (1816) showed that
orthogonal polynomials can - under some additional conditions that are satisfied here - be represented
by an explicit reconstruction formula. In case of the Legendre polynomials, this Rodrigues’ formula
(also known as Ivory-Jacobi formula) (see Ivory, 1824; Jacobi, 1827, for a historical context) states
as:

Pl(t) =
1

2l l!

(
d

dt

)l
(t2 − 1)l (1.185)

for all l ∈ N. There are similar Rodrigues’ formulae for other systems of orthogonal polynomials
like e.g. the Laguerre polynomials and the Hermite polynomials. This explicit representation of the
Legendre polynomials now opens the door to a variety of further applications and representations.
Amongst others, this formula e.g. leads to the representation

Pl(t) =

[l/2]∑
s=0

(−1)s
(2l − 2s)!

2l (l − 2s)! (l − s)! s!
tl−2s (1.186)

that now reminds of the right-hand side of (1.162). Furthermore, we can use (1.185) to show the
following recurrence formula, including derivatives of the Legendre polynomials (using the abbreviation
dt := d

dt ):

dtPl+1(t) =
1

2l+1(l + 1)!
dl+2
t

(
t2 − 1

)l+1

=
2(l + 1)

2l+1(l + 1)!
dl+1
t t

(
t2 − 1

)l
=

1

2l l!
dlt

((
t2 − 1

)l
+ 2lt2

(
t2 − 1

)l−1
)

=
1

2l l!
dlt

((
t2 − 1

)l
+ 2l

((
t2 − 1

)l−1
+
(
t2 − 1

)l))
= (2l + 1)Pl(t) + dtPl−1 ,

(1.187)

43



CHAPTER 1. MATHEMATICAL PRELIMINARIES

or in an equivalent representation

(2l + 1)Pl(t) =
d

dt
(Pl+1(t)− Pl−1(t)) . (1.188)

In literature, using the Rodrigues representation is also the most common way to prove the orthog-
onality of the Legendre polynomials (by iterative partial integration). But since the orthogonality
originally even was a condition for the validity of the Rodrigues formula, this is - historically speaking
- not a consistent way.

Furthermore, the Rodrigues representation can be used to show that the Legendre polynomial of
degree l is a solution to the so-called Legendre differential equation(

d

dt

(
1− t2

) d

dt

)
P (t) +

(
l(l + 1)− m2

1− t2

)
P (t) = 0 (1.189)

in case of m = 0. In other words, the Legendre polynomials are eigenfunctions of the Legendre
operator

Lt :=
d

dt

(
1− t2

) d

dt
(1.190)

to the corresponding eigenvalue λl = −l(l + 1). Note that these eigenvalues coincide with the eigen-
values of the spherical harmonics with respect to the Beltrami operator. In literature, this is also a
popular way to introduce and define the Legendre polynomials, i.e. as the polynomial eigenfunctions
of the Legendre operator Lt. Since we introduced the Legendre polynomials in a different way - with
the help of the Taylor series of the inverse distance - we are now able to prove this important property
via already shown identities. Here, also the product rule for arbitrary orders of differentiation plays
a key role, i.e. for two n-times differentiable functions f and g, we have

(fg)(n) =

n∑
k=0

(
n

k

)
f (k) g(n−k) . (1.191)

Respecting this differentiation rule, we find that

dl+2
t

(
1− t2

) (
t2 − 1

)l
=
(
1− t2

)
dl+2
t

(
t2 − 1

)l − 2t(l + 2) dl+1
t

(
t2 − 1

)l − (l + 1)(l + 2) dlt
(
t2 − 1

)l
.

(1.192)

For the Legendre polynomial Pl of degree l ∈ N, we can then show, using (1.185) and (1.192), that

LtPl(t) = dt
(
1− t2

)
dtPl(t)

=
1

2l l!
dt
(
1− t2

)
dl+1
t

(
t2 − 1

)l
=

1

2l l!

((
1− t2

)
dl+2
t

(
t2 − 1

)l − 2tdl+1
t

(
t2 − 1

)l)
=

1

2l l!

(
−dl+2

t

(
t2 − 1

)l+1
+ 2t(l + 1) dl+1

t

(
t2 − 1

)l)
+ (l + 1)(l + 2)Pl(t)

=
1

2l l!

(
−2(l + 1) dl+1

t t
(
t2 − 1

)l
+ 2t(l + 1) dl+1

t

(
t2 − 1

)l)
+ (l + 1)(l + 2)Pl(t)

=
1

2l l!

(
−2(l + 1)2 dlt

(
t2 − 1

)l)
+ (l + 1)(l + 2)Pl(t)

= − l(l + 1)Pl(t) .

(1.193)

This property will be essential for the derivation of an explicit representation of the spherical har-
monics. Since (1.189) is a linear differential equation of second order, there are two sets of (linearly
independent) functions that satisfy this relation. The solutions that are not the Legendre polynomials,
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Figure 1.4: Normalised associated Legendre polynomials of different degrees and orders. In each plot,
we fixed the order m and varied the degree l. In the plot on the top left, the order is set to m = 0,
thus, here we find the ordinary (normalised) Legendre polynomials.
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are called Legendre functions of the second kind and are often denoted by Ql(t) in literature.
They are no polynomials and have singularities at t = ±1.

In the general case that the second parameter m in (1.189) is a positive integer not equal to 0,
the Legendre equation also has two sets of non-trivial solutions. The first set of solutions that are
connected to the Legendre polynomials are denoted by Pl,m(t) and are called associated Legendre
polynomials or also associated Legendre functions of degree l and order m. Here, the expression
’function’ is more appropriate than ’polynomial’ since the Pl,m are only polynomials if m is even (see
below). The second set of solutions is closely connected to the Legendre functions of the second kind
and are thus denoted by Ql,m(t) and called associated Legendre functions of the second kind.
In the case of m = l, the associated Legendre polynomials are called sectoral. In Figure 1.4 we show
the plots of a selection of associated Legendre functions of different degrees and orders.

It can be shown that the associated Legendre functions (of the first and second kind) can be cal-
culated explicitly by differentiating the ordinary Legendre functions in the following way:

Pl,m(t) = (1− t2)
m
2

(
d

dt

)m
Pl(t) ,

Ql,m(t) = (1− t2)
m
2

(
d

dt

)m
Ql(t) .

(1.194)

Thus, we find e.g.

P1,1(t) =
√

1− t2 ,

P2,1(t) = 3t
√

1− t2 ,
P2,2(t) = 3

(
1− t2

)
.

(1.195)

In the previous relations, some authors introduce an additional factor of (−1)m which is called the
Cordon-Shortley phase. This factor is commonly used in quantum mechanics (introduced in Con-
don and Shortley, 1935) whereas it is omitted in most mathematical, geophysical and geodetic litera-
ture. Thus, we also neglect it here in this work. Furthermore, we see the expected identities Pl,0 ≡ Pl
and Ql,0 ≡ Ql and due to the factor of (1 − t2)m/2 we also see that the resulting function is a poly-
nomial (of degree l) only in the case that m is an even integer. If m is odd, the associated Legendre
functions are polynomials (of degree l − 1) that are multiplied by the factor of

√
1− t2. Due to this

factor, we can also immediately deduce that - except for m = 0 - all associated Legendre polynomials
equal zero for |t| = 1, i.e. Pl,m(−1) = Pl,m(1) = 0 for all m > 0. In the following, we restrict ourselves
again to the Legendre polynomials of the first kind. Combined with Rodrigues’ formula the previous
equation can be reformulated as

Pl,m(t) =
(1− t2)

m
2

2l l!

(
d

dt

)l+m
(t2 − 1)l . (1.196)

This representation yields a natural extension of the associated Legendre polynomials to negative
values of m. Furthermore, from here, we can deduce that Pl,m ≡ 0 for m > l. We will not need the
extension to negative m in the process of constructing an explicit representation of spherical harmonics
and thus, we will only consider positive values of m in the following. Moreover, using dnt t

n = n!, the
previous representation yields for the sectoral polynomials that

Pl,l(t) =
(1− t2)

l
2

2l l!

(
d

dt

)2l

(t2 − 1)l =
(
1− t2

) l
2

(2l)!

2l l!
=
(
1− t2

) l
2

l∏
i=1

(2i− 1)

=
(
1− t2

) l
2 (2l − 1)!! ,

(1.197)
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where n!! :=
∏n

2−1
i=0 (n− 2i) is the double factorial.

We now prove that (1.194) is valid by showing that the previously defined functions indeed satisfy the
Legendre differential equation. First, we show - again using (1.191) - that

dmt Lt = dmt
((

1− t2
)

d2
t − 2tdt

)
=
(
1− t2

)
dm+2
t − 2tmdm+1

t −m(m− 1) dmt − 2tdm+1
t − 2m dmt

=
(
1− t2

)
dm+2
t − 2t(m+ 1) dm+1

t −m(m+ 1) dmt .

(1.198)

Furthermore, the application of the Legendre operator to an associated Legendre polynomial yields

LtPl,m(t)

= dt
(
1− t2

)
dtPl,m(t)

= dt
(
1− t2

)
dt
(
1− t2

)m
2 dmt Pl(t)

= dt
(
1− t2

) ((
1− t2

)m
2 dm+1

t − tm
(
1− t2

)m−2
2 dmt

)
Pl(t)

= (1− t2)
m
2

((
1− t2

)
dm+2
t − t(m+ 2) dm+1

t −m dmt − tmdm+1
t +

t2m2

1− t2
dmt

)
Pl(t)

= (1− t2)
m
2

((
1− t2

)
dm+2
t − 2t(m+ 1) dm+1

t −m(m+ 1) dmt +
m2

1− t2
dmt

)
Pl(t) .

(1.199)

Now, inserting (1.198) into (1.199) and using the already proven eigenfunction property (1.193) of the
Legendre polynomials, we indeed find that

LtPl,m(t) = (1− t2)
m
2

(
dmt Lt +

m2

1− t2
dmt

)
Pl(t)

= (1− t2)
m
2

(
−l(l + 1) +

m2

1− t2

)
dmt Pl(t)

=

(
−l(l + 1) +

m2

1− t2

)
Pl,m(t) .

(1.200)

In analogy to Rodrigues’ formula for the Legendre polynomials, the representation (1.196) is also not
suitable for determining explicit representations of the associated Legendre polynomials in an efficient
way. To overcome this problem, we developed the recurrence formula (1.177) for the (ordinary)
Legendre polynomials. In order to prepare the derivation of a similar scheme, we first transfer the
relation (1.188) to the associated Legendre polynomials. Here, we find

(2l + 1)Pl,m(t) =
(
1− t2

)m
2 dmt (2l + 1)Pl(t)

=
(
1− t2

)m
2 dm+1

t (Pl+1(t)− Pl−1(t))

=
1√

1− t2
(Pl+1,m+1(t)− Pl−1,m+1(t)) ,

(1.201)

or equivalently

(2l − 1)
√

1− t2 Pl−1,m−1(t) = Pl,m(t)− Pl−2,m(t) . (1.202)

Now, by exploiting the recurrence relation (1.177) and inserting it into (1.194) we find that

l Pl,m(t) = l (1− t2)
m
2 dmt Pl(t)

= (1− t2)
m
2 dmt ((2l − 1)t Pl−1(t)− (l − 1)Pl−2(t))

= (1− t2)
m
2

(
(2l − 1)

(
tdmt Pl−1(t) +m dm−1

t Pl−1(t)
)
− (l − 1) dmt Pl−2(t)

)
= (2l − 1)t Pl−1,m(t) + (2l − 1)m

√
1− t2 Pl−1,m−1(t)− (l − 1)Pl−2,m(t) .

(1.203)
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In combination with (1.202) we can represent the previous recurrence scheme in an even more compact
way and notice a structure that is very similar to the recurrence scheme of the ordinary Legendre
polynomials:

(l −m)Pl,m(t) = (2l − 1)t Pl−1,m(t)− (l +m− 1)Pl−2,m(t) . (1.204)

As we should expect, for the case m = 0, the previous relations transfers into (1.177). In principle, for
each degree l ≥ 1, this scheme is valid for all orders m = 0, ..., l (in the case m = l−1 the second term
on the right-hand side vanishes) but in the case of m = l, we do not gain any information but only
the trivial relation 0 = 0. Thus, for the sectoral polynomials, we need to apply the original relation
(1.203) and find:

Pl,l(t) = (2l − 1)
√

1− t2 Pl−1,l−1(t) . (1.205)

Note that for each order m, the sectoral polynomial Pm,m, that can be reconstructed by (1.205)
from the respective sectoral polynomial of one degree less, serves as a seed for the recurrence relation
(1.204).
We already learned in (1.178) that Legendre polynomials of different degrees are orthogonal to each
other. Also the associated Legendre polynomials satisfy orthogonality relations. First, for a fixed
order m, the polynomials of different degrees are orthogonal to each other, i.e. for a fixed m ∈ N

〈Pl,m, Pj,m〉L2([−1,1]) =

1∫
−1

Pl,m(t)Pj,m(t) dt = 0 (1.206)

for l 6= j. In contrast, for a fixed degree l ∈ N, the associated polynomials of different orders are not
orthogonal to each other in the L2-sense but orthogonal with respect to the weight function (1−t2)−1.
More precisely, for a fixed l ∈ N we have

1∫
−1

Pl,m(t)Pl,n(t)
(
1− t2

)−1
dt = 0 (1.207)

for m 6= n. In the case of l = j in (1.206), it can be shown - commonly also using Rodrigues’ formula
- that the integral, which then can be identified with the L2 norm, can be determined as

‖Pl,m‖2 =

 1∫
−1

(Pl,m(t))
2

dt


1
2

=

√
2

2l + 1

(l +m)!

(l −m)!
. (1.208)

Thus, for the case of m = 0 - the ordinary Legendre polynomials - we gain

‖Pl‖2 =

√
2

2l + 1
. (1.209)

We notice that, where the norm of the Legendre polynomials decreases with increasing degree l, the
norm of the associated Legendre polynomials dramatically increases for increasing degree and order,
e.g. for the sectoral polynomial - with has the largest norm among all orders for a fixed degree - of
degree l = 10 we already have ‖P10,10‖ ≈ 108. Since for double precision, the Institute of Electrical
and Electronic Engineers (IEEE) standard 754 for binary floating-point arithmetic (Coonen, 1980)
allows the allocation of numbers of an absolute value between ≈ 2−1024 and 21024 - which equals
the range of ≈ 10−308 and 10308 - the norm of the sectoral associated Legendre functions provides
a natural border for the implementation of the Legendre polynomials. This double precision limit is
reached for l = 150, where we have ‖P150,150‖ ≈ 1.42 · 10306. For l = 151, the sectoral norm already
generates an overflow.
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Figure 1.5: Left: magnitude of the sectoral associated Legendre function (ALF) of different degrees,
evaluated at various latitudes, measured in angular distance to the pole(s). Right: plot of the crossing
points of the curves on the left plot with the underflow barrier at the magnitude −308 for all harmonic
degrees. These crossing points are a measure of the maximum harmonic degree still available at each
latitude.

Thus in practice, the previously presented recurrence formulae turn out to be numerically very un-
stable and it is in general very convenient to use the normalised polynomials and also to include the
normalisation factors already in the recurrence schemes. More precisely, if we define the normalised
polynomials as

P̄l,m :=
Pl,m
‖Pl,m‖

(1.210)

and insert Pl,m = ‖Pl,m‖P̄l,m into the recurrence schemes (1.204) and (1.205), we gain the following
relations for the normalised associated Legendre polynomials:

P̄l,m(t) =

√
2l + 1

(l +m)(l −m)

(
√

2l − 1 t P̄l−1,m(t)−
√

(l +m− 1)(l −m− 1)

2l − 3
P̄l−2,m(t)

)
,

P̄l,l(t) =

√
2l + 1

2l

√
1− t2 P̄l−1,l−1(t)

(1.211)

with the (only) seed P̄0,0(t) = 1/
√

2. This (normalised) scheme is much more stable than the original
recurrence relation from a numerical point of view and is recommended to be implemented for an
explicit calculation of the Legendre polynomials. Indeed, we also used the previous scheme to calculate
the associated Legendre polynomials wherever it was necessary within this work. From here - or
alternatively just by including the normalisation into the product representation (1.197) - we see that
the normalised sectoral polynomials can also be rewritten as

P̄l,l(t) =
(
1− t2

) l
2

√
(2l + 1)!!

2(2l)!!
=

(
1− t2

) l
2

√
2

l∏
i=1

√
2i+ 1

2i
. (1.212)

From all previous representations we see that the norm of the associated Legendre functions is not
the only trouble zone where problems can arise from during the evaluation of the polynomials. Since
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the factor (1− t2)l/2 equals 0 for |t| = 1 and the polynomials are continuous, there is a neighbourhood
around the points t = −1 and t = 1 - which equal the poles if we identify t with the polar distance -
where the value of the Legendre polynomials becomes very small and is almost approaching 0. Due to
the degree l in the exponent, this problem becomes more and more evident with increasing degree. As
we have learned before, if the value descends below the barrier of 10−308, we create an underflow and
the evaluation of the Legendre function is not possible any more. In Figure 1.5 we plot the magnitude
of the value of the sectoral polynomial of degrees l = 100, 500, 1000, 2500 at different latitudes (using
the polar distance t = cosϕ) together with the underflow barrier at magnitude −308. We see that for
l = 100, basically for all latitudes, we are still above the barrier, but already for l = 500 we cannot
even more reach all points that are 10 degrees or closer to the pole. For l = 1000 we already cross the
barrier at 30 degrees and for l = 2500 we cannot even reach half of the upper/lower sphere any more.
On the right plot in Figure 1.5 we plot exactly these crossing points with the underflow barrier at
−308 for all harmonic degrees. In this way we get for each latitude a maximum harmonic degree which
is still evaluable there. In the subsection about spherical harmonic synthesis we will learn strategies
how to evaluate a spherical harmonic series in spite of the presented underflow problems.

As a final remark in this section it should be mentioned that there are also recurrence formulae
for integrals of the associated Legendre polynomials. These are especially useful for the calculation of
the gravitational potential of a spherical cube and we will discuss them later in a more detailed way
in Chapter 4.

1.4.3 Scalar spherical harmonics II

We now return to the spherical harmonics and focus on deriving an explicit representation. We already
learned that a spherical harmonic of degree l is an eigenfunction of the Beltrami operator with respect
to the eigenvalue −l(l + 1). Thus, applying the spherical polar representation of ∆∗, where we now
recognise the Legendre operator Lt, we find(

1

1− t2
∂2
ϕ2 + ∂t

(
1− t2

)
∂t

)
Yl,m =

(
1

1− t2
∂2
ϕ2 + Lt

)
Yl,m = −l(l + 1)Yl,m . (1.213)

Now, we do a separation ansatz and assume that a spherical harmonic, that depends on the spherical
coordinates ϕ and t, can be represented as a product of two functions that each depend on only one
of the two variables, i.e. we assume Yl,m(ϕ, t) = A(ϕ)B(t) for some functions A and B. Inserting this
ansatz into the previous equation yields

0 =

(
1

1− t2
∂2
ϕ2 + Lt + l(l + 1)

)
A(ϕ)B(t)

= A(ϕ) (Lt + l(l + 1))B(t) +B(t)

(
1

1− t2
∂2
ϕ2

)
A(ϕ) .

(1.214)

Due to (1.189) we notice that the associated polynomials would be an appropriate choice for the
function B(t). By choosing B(t) = Pl,m(t) for some degree l and order m and inserting (1.189) into
the previous equation, we can eliminate the Legendre operator and find

0 = A(ϕ)
m2

1− t2
Pl,m(t) + Pl,m(t)

(
1

1− t2
∂2
ϕ2

)
A(ϕ)

=
1

1− t2
Pl,m(t)

(
∂2
ϕ2 +m2

)
A(ϕ) .

(1.215)

At last, we now require the function A to satisfy(
∂2
ϕ2 +m2

)
A(ϕ) = 0 (1.216)

for all ϕ ∈ [0, 2π]. This property is fulfilled by both trigonometric functions sin(mϕ) and cos(mϕ).
Thus, we now know that a spherical harmonic of degree l ∈ N is the product of an associated Legendre
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polynomial of degree l and a sine or cosine function, where the order m of the Legendre polynomial
corresponds to the frequency parameter of sine and cosine. Since for each degree l there are l + 1
eligible orders and for each order, the respective associated Legendre polynomial can be combined
with one of both sin or cos, we have 2(l + 1) possible combinations. But since sin(0 · ϕ) is the zero
function and thus, per definition, does not contribute to a system of basis functions, (2l + 1) eligible
combinations remain. This corresponds well to the dimension of Harml(Ω) that is already known from
(1.157). Indeed, due to the orthogonality of sin and cos it can easily be shown that the presented
system of functions forms an orthonormal system with respect to the L2 norm. Thus, including the
normalisation of the trigonometrical functions, i.e.

2π∫
0

sin2(mϕ) dϕ =

2π∫
0

cos2(mϕ) dϕ = π and

2π∫
0

dϕ = 2π (1.217)

we can denote an orthonormal system of spherical harmonics of degree l by

Yl,m(ϕ, t) :=

√
1

(1 + δm,0)π
P̄l,|m|(t)

{
cos(|m|ϕ) , m = 0, ..., l
sin(|m|ϕ) , m = −l, ...,−1 .

(1.218)

In the following, we want to explicitly state all spherical harmonics up to degree and order 2. Es-
pecially, the degree 2 representations will be of use in Chapter 4, where we find a link between the
harmonic coefficients of the Earth’s gravitational potential and the inertia tensor. It holds that

Y0,0(ϕ, t) =

√
1

4π
, Y1,0(ϕ, t) =

√
3

4π
t ,

Y1,1(ϕ, t) =

√
3

4π

√
1− t2 cosϕ , Y1,−1(ϕ, t) =

√
3

4π

√
1− t2 sinϕ ,

Y2,0(ϕ, t) =

√
5

16π

(
3t2 − 1

)
, Y2,1(ϕ, t) =

√
15

4π
t
√

1− t2 cosϕ , (1.219)

Y2,−1(ϕ, t) =

√
15

4π
t
√

1− t2 sinϕ , Y2,2(ϕ, t) =

√
15

16π

(
1− t2

)
cos(2ϕ) ,

Y2,−2(ϕ, t) =

√
15

16π

(
1− t2

)
sin(2ϕ) .

Figure 1.6 shows the illustration of spherical harmonics of different degrees and orders. We see that
the spherical harmonic representation can be compared with a Fourier analysis in 1-D and the degree
l can be interpreted as the frequency where the order m characterises the structure of the function.
Spherical harmonics with order m = 0 are called zonal spherical harmonics since they are only depen-
dent on the polar distance and constant with respect to the longitude (compare to the zonal functions
in (1.126)). In accordance to the associated Legendre polynomials, spherical harmonics with order
|m| = l are called sectoral and all other combinations are declared as tesseral spherical harmonics.

But in spite of this explicit representation, at this point, it is still an open question how the spherical
harmonics can help us to represent and also approximate functions on the unit sphere, which is our
primary goal. Since we know from the Weierstrass theorem that a continuous function on an interval
can be approximated arbitrarily well by polynomials, we hope to have a similar behaviour for contin-
uous functions on the sphere and the spherical harmonics that also basically consist of polynomials
of different degrees. Indeed, the bulk part of the answer to this question is already contained in the
Poisson integral formula (1.183). Using the abbreviation

Fl,m := 〈F, Yl,m〉L2 =

∫
Ω

F (η)Yl,m , (η) dω(η) (1.220)
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Figure 1.6: Normalised scalar spherical harmonics of different degrees and orders.

52



1.4. SPHERICAL HARMONICS

for the L2 Fourier coefficients, the application of the addition theorem (1.158) and the relation (1.179)
yields for a fixed h ∈]− 1, 1[, F ∈ C(Ω) and ξ ∈ Ω that

∞∑
l=0

l∑
m=−l

hl Fl,mYl,m(ξ) =

∞∑
l=0

l∑
m=−l

hl
∫
Ω

F (η)Yl,m(η)Yl,m(ξ) dω(η)

=
1

4π

∞∑
l=0

∫
Ω

(2l + 1)hl Pl(ξ · η)F (η) dω(η)

=
1

4π

∫
Ω

1− h2

(1− 2h(ξ · η) + h2)
3
2

F (η) dω(η) .

(1.221)

It is allowed to interchange summation and integration in the previous steps due to Lebesgue’s domi-
nated convergence theorem (see e.g., Heuser, 1981). And from the Poisson integral formula, we know
that in the limit h→ 1−, the previous integral converges pointwise to F (ξ), i.e. we have

lim
h→1−

∞∑
l=0

hl
l∑

m=−l

Fl,m Yl,m(ξ) = F (ξ) . (1.222)

Furthermore, it can be shown that for a fixed h ∈]0, 1[, the series converges uniformly with respect
to ξ. The immediate consequence of the previous results is that the system of spherical harmonics
{Yl,m}l∈N0,m=−l,...,l is closed in C(Ω) with respect to ‖ · ‖C(Ω). But since C(Ω) is not a Hilbert space
(only a Pre-Hilbert space, equipped with the L2-norm), we have not yet found an entrance to the
fundamental theorem (1.23), which would provide us with desired approximation properties in terms
of a Fourier series.

But from here, we can quite easily build a bridge to the space L2(Ω) since on the one hand, there is an
explicit connection between both norms, i.e. we know from (1.21) that ‖F‖L2(Ω) ≤

√
4π ‖F‖C(Ω) for

all F ∈ C(Ω), and on the other hand, we know that the space C(Ω) is dense in L2(Ω) with respect to
‖ · ‖L2(Ω). In combination, these two properties yield that actually, the system {Yl,m}l∈N0,m=−l,...,l is
also closed in L2(Ω) with respect to ‖ · ‖L2(Ω), which finally provides an entrance to the fundamental
theorem.

From (1.23) b) we now immediately gain the desired property of the convergence of the Fourier
series, i.e. for any F ∈ L2(Ω) we find that

lim
N→∞

∥∥∥∥∥F −
N∑
l=0

l∑
m=−l

Fl,m Yl,m

∥∥∥∥∥
L2(Ω)

= 0 , (1.223)

where Fl,m are the Fourier coefficients of F as already defined in (1.220). The Fourier series with
respect to the spherical harmonics is sometimes also referred to as Laplace series. In the special
case of a ε3-zonal function, i.e. if F does not vary with ϕ but only with the polar distance t, only the
zonal coefficients in the Laplace series remain - this can easily be verified using (1.218). Furthermore,
we can identify F with a corresponding function G ∈ L2([−1, 1]) (see also (1.126)) and we end up
with the Legendre series, fulfilling

lim
N→∞

∥∥∥∥∥G−
N∑
l=0

Gl P̄l

∥∥∥∥∥
L2([−1,1])

= 0 , (1.224)

where

Gl :=

1∫
−1

G(t) P̄l(t) dt , (1.225)
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l ∈ N0, denote the Legendre coefficients.

An essential implication of (1.223) and (1.224) is that these equalities only state convergence in
the sense of L2 (!) which does not imply pointwise convergence. This means that in general, for
F ∈ L2(Ω) and ξ ∈ Ω we have

F (ξ) 6=
∞∑
l=0

l∑
m=−l

Fl,m Yl,m(ξ) . (1.226)

But if we want to use the spherical harmonic series as an approximation and representation method for
functions on the sphere in practice, pointwise convergence would be an inevitably necessary condition.
Luckily, Jackson (1912) proved for the Legendre series that indeed the Lipschitz continuity of F serves
as a sufficient condition for a pointwise convergence. Based on this work, Gronwall (1914) was able
to prove the same behaviour for the Laplace series. Thus, from now on, if not stated differently, we
assume every function that we discuss in the context of spherical harmonics to be at least Lipschitz
continuous - or even continuously differentiable, what implies Lipschitz continuity - such that we
ensure to have

F (ξ) =

∞∑
l=0

l∑
m=−l

Fl,m Yl,m(ξ) . (1.227)

If there exists an L ∈ N0 such that the series turns into a finite summation, i.e. F even satisfies

F (ξ) =

L∑
l=0

l∑
m=−l

Fl,m Yl,m(ξ) (1.228)

for all ξ ∈ Ω, i.e. Fl,m = 0 for all l > L or in other words, all Fourier coefficients above a certain
degree L vanish, F is called (L-)bandlimited. Note that in literature, a function is sometimes called
L-bandlimited if all Fourier coefficients of degree l ≥ L are equal to zero (see e.g., Driscoll and Healy,
1994; McEwen and Wiaux, 2011). These different conventions may cause confusion.

Expansion to a spherical shell

Though it is nice to have basis functions in L2(Ω), almost all physical quantities that will be discussed
within this work are not defined on the unit sphere Ω but on a sphere ΩR with radius R 6= 1. If we
focus on problems related to e.g. circulation within the Earth’s mantle, we will investigate quantities
like velocity, pressure or temperature which are defined in a thick spherical shell ΩE which is bounded
by the Earth’s surface and the core-mantle boundary.

It can quite easily be shown that the concept of spherical harmonics can be extended to general
spheres with radius R > 0 (see e.g., Freeden and Michel, 2004; Luther, 2007) but for our purposes this
is not even necessary. Due to the fact that the space L2(Ω) is isomorphic to L2(ΩR) for any R > 0,
any function F ∈ L2(ΩR) can uniquely be identified with a function G ∈ L2(Ω) on the unit sphere.
We can define the isomorphism T : L2(ΩR) → L2(Ω) by TF = G with G(ξ) := F (Rξ) for all ξ ∈ Ω.
Reversely the inverse T−1 can be determined as T−1G = F with F (x) := G( xR ) for all x ∈ ΩR.

Thus, for a scalar field F ∈ L2(ΩR) (Lipschitz continuous to guarantee the pointwise convergence)
and the corresponding scalar field G ∈ L2(Ω) on the unit sphere as defined above we find that

F (x) = F (Rξ) = G(ξ) =
∑
l,m

∫
Ω

G(η)Yl,m(η) dω(η)Yl,m(ξ)

=
∑
l,m

∫
Ω

F (Rη)Yl,m(η) dω(η)Yl,m(ξ)

=
∑
l,m

F
(R)
l,m Yl,m(ξ) ,

(1.229)
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where the spherical harmonic coefficients of F are defined as

F
(R)
l,m :=

∫
Ω

F (Rη)Yl,m(η) dω(η) . (1.230)

If we extend these properties even to a spherical shell we find for F ∈ L2 (ΩE) with α, β > 0 that

F (x) =
∑
l,m

∫
Ω

F (rη)Yl,m(η) dω(η)Yl,m(ξ)

=
∑
l,m

Fl,m(r)Yl,m(ξ) ,
(1.231)

where the spherical harmonic coefficients now are dependent on r (x = rξ):

Fl,m(r) :=

∫
Ω

F (rη)Yl,m(η) dω(η) (1.232)

for all r ∈ [α, β].

Spherical Harmonic Analysis

Equipped with a pointwise converging Fourier series from a theoretical point of view, we want to
briefly discuss computational / numerical aspects and challenges that occur when applying the spher-
ical harmonic series in practice. Basically, on the one hand, the Fourier series now allows one to
approximate a given Lipschitz continuous function F on the unit sphere, or in practice a function
that is sampled on a certain spherical grid, by a truncated series up to a certain harmonic degree.
In literature, this is referred to as global spherical harmonic analysis. In other words, here it is
possible to separate contributions from different degrees, i.e. frequencies, of the total function. For
this task, it is necessary to compute the respective spherical harmonic coefficients Fl,m according to
(1.220). Here, the task is to determine a variety of spherical integrals, where especially the evaluation
of the spherical harmonic Yl,m at a specified set of points on the sphere is needed.
On the other hand - since a function is uniquely determined by its Fourier coefficients - in the case
that the coefficients Fl,m are given, one can reconstruct the original function - or in practice an ap-
proximation of the function up to a certain degree - by applying (1.227). In literature, this task is
referred to as global spherical harmonic synthesis.

We start with the explicit Fourier series (1.227) and see that with a simple rearrangement, i.e. an
interchange of degree and order, we gain further insight into the structure of this representation. This
turns out to be very helpful in the context of implementation aspects. Also applying the explicit
representation (1.218) we find that

F (ξ) =

∞∑
l=0

l∑
m=−l

Fl,m Yl,m(ξ)

=

∞∑
m=0

∞∑
l=m

(Fl,m Yl,m(ξ) + Fl,−m Yl,−m(ξ))

=

∞∑
m=0

√
1

(1 + δm,0)π

(
cos(mϕ)

∞∑
l=m

Fl,m P̄l,m(t) + sin(mϕ)

∞∑
l=m

Fl,−m P̄l,m(t)

)
.

(1.233)
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Furthermore, using the abbreviations

Am(t) :=

∞∑
l=m

Fl,m P̄l,m(t) ,

Bm(t) :=

∞∑
l=m

Fl,−m P̄l,m(t) ,

λm :=

√
1

(1 + δm,0)π
,

(1.234)

we arrive at

F (ξ(ϕ, t)) =

∞∑
m=0

λm (Am(t) cos(mϕ) +Bm(t) sin(mϕ)) . (1.235)

This representation reveals that the spherical harmonic expansion can be regarded as a one-dimensional
Fourier expansion in each latitude (or polar distance), where the λmAm and λmBm are the latitude
dependent Fourier coefficients with respect to the (non-normalised) sine and cosine functions. We
also notice that the coefficients Am and Bm are defined as a series - or a sum in the finite case - of
associated Legendre polynomials of a fixed order m.

A similar observation can be made for the determination of the Fourier coefficients if we apply (1.218)
to (1.220). Here we find

Fl,m =

∫
Ω

F (η)Yl,m(η) dω(η)

=

1∫
−1

P̄l,|m|(t)

 2π∫
0

λm

{
cos(|m|ϕ)
sin(|m|ϕ)

}
F (ϕ, t) dϕ

 dt

=

1∫
−1

P̄l,|m|(t)

{
Am(t)
Bm(t)

}
dt .

(1.236)

We notice that also the determination of the Fourier coefficients Fl,m can be divided into a two-step
analysis. First, one can calculate the one-dimensional Fourier coefficients of F with respect to the
trigonometrical basis system, built from sine and cosine functions. The result equals the coefficients
Am(t) and Bm(t) which serve as input for the integral in combination with an associated Legendre
function.

Especially in the geodetic community, the task of determining the Fourier coefficients of a spheri-
cal function from a given set of samples is of fundamental importance. Due to novel satellite missions,
the Earth’s gravity field can be sampled in a more and more detailed resolution. Thus, there is an
intrinsic need of finding efficient algorithms to derive spherical harmonic coefficients even of very high
degree and order from the given data set.
First investigations were already done by Gauss and Neumann in the early 19th century since at this
time global magnetic data became available (Gauss, 1839) what triggered research in the context of an
appropriate global representation of the data. In his early work, Gauss approached this task in a very
natural and straightforward way. He reformulated the problem in terms of a minimisation problem,
i.e. given a data set yi, i = 1, ..., N , N ∈ N, for a representation up to a specified degree L ∈ N0

find Fourier coefficients cj , j = 1, ...,M - where M = (L + 1)2 equals the total number of Fourier
coefficients up to degree L - such that the total approximation error of the Fourier series with respect
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to the data becomes minimal. More precisely, we are looking for a coefficient vector copt ∈ RM with

copt = arg min
c∈RM

‖Ac− y‖RN , (1.237)

where the i-th row of A ∈ RN×M consists of the values of the respective basis function - the spherical
harmonics - at the evaluation point corresponding to yi. This is nothing else than the well-known
least-squares approach. A solution to the previous equation can e.g. be found by applying a QR
decomposition. Alternatively, one can show that the previous relation is equivalent to the normal
equation (

ATA
)
copt = AT y . (1.238)

This can e.g. be solved by determining the inverse (ATA)−1 directly or - since the matrix ATA is
positive definite - using the Cholesky decomposition, a conjugate gradient method and/or some ad-
ditional regularisation techniques. The main advantage of this Gaussian least-squares formulation is
that it is applicable to any given data vector y. There is no explicit requirement at which points of the
domain the data has to be given. This is in contrast to the methods we will present in the following
paragraphs. We will see that there are various methods that even guarantee an exact and not only
approximate determination of the Fourier coefficients but each of them has strict requirements on the
distribution of the data points. This is one of the main reasons why even today the least-squares
method is very popular in the context of a spherical harmonic analysis.

Almost at the same time as Gauss, Neumann (1838) dealt with the same subject but used a dif-
ferent approach. He mainly followed the two-step analysis that we presented in (1.236) and showed
that under certain circumstances it is even possible to calculate the desired integrals exactly and
not just approximatively. A sufficient condition for an exact representation of these integrals is the
so-called discrete orthogonality of the involved basis functions. Discrete orthogonality means that
the basis functions fulfil the orthogonality condition - up to a certain index / degree L ∈ N0 - even if
only an evaluation at a finite point set (that has to be determined) is considered, i.e. for an orthogonal
system {Bl}l∈N0 it holds that

N∑
i=0

wiBj(xi)Bk(xi) = δj,k , (1.239)

for all j, k ≤ L and some xi, i = 0, ..., N and where wi are some weights, dependent on the evalua-
tion points. This discrete orthogonality then guarantees the exact reproduction of an L-bandlimited
function F . Expressing F in terms of the basis functions as F (x) =

∑L
m=0 amBm(x), we find

L∑
m=0

(
N∑
i=0

wiBm(xi)F (xi)

)
Bm(x) =

L∑
m=0

N∑
i=0

wiBm(xi)

L∑
j=0

aj Bj(xi)Bm(x)

=

L∑
j=0

L∑
m=0

aj

N∑
i=0

wiBj(xi)Bm(xi)Bm(x)

=

L∑
m=0

amBm(x) .

(1.240)

Due to the uniqueness of the coefficients, this implies

am =

N∑
i=0

wiBm(xi)F (xi) , (1.241)

for all m = 0, ..., L. In other words, given the discrete orthogonality, the Fourier coefficients am are
indeed determined only by the values of the function F and the basis functions Bm at a finite number
of grid points xi, i = 0, ..., N . The remaining task is the determination of the required distribution of
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these points and the weights wi such that (1.239) is fulfilled.

Indeed, for the trigonometrical basis system it can be shown that - on the domain [0, 2π] - for a
given degree L ∈ N0 it holds that

1

L

2L−1∑
i=0

sin(jϕi) sin(kϕi) = (1− δj,0 − δj,L) δj,k ,

1

L

2L−1∑
i=0

cos(jϕi) cos(kϕi) = (1 + δj,0 + δj,L) δj,k ,

2L−1∑
i=0

sin(jϕi) cos(kϕi) = 0 ,

(1.242)

for all 0 ≤ j, k ≤ L, in the case that ϕi := iπ/(2L), i = 0, ..., 2L − 1, i.e. for an equiangular grid
across the domain [0, 2π]. At first sight, the number of required grid points equals exactly twice
the value of the degree L. But we notice that the orthogonality condition for the sine terms does
not hold for j = 0 and j = L. Where the j = 0 case is just not defined due to construction, the
behaviour for j = L means that the coefficients for the L-degree sine cannot be reconstructed using
this ansatz. Fortunately, this scenario can simply be avoided by increasing the bandlimit degree by 1
such that a reconstruction of the L-degree sine coefficient is just not necessary. Thus, applying (1.241)
we can state that for an L-bandlimited function, the Fourier coefficients am (cosine) and bm (sine),
m = 0, ..., L with respect to the trigonometrical functions can be determined by{

am
bm

}
=

1

L+ 1

2L+1∑
i=0

1

(1 + δm,0)

{
cos(mϕi)
sin(mϕi)

}
F (ϕi)

=
π

L+ 1

2L+1∑
i=0

λ2
m

{
cos(mϕi)
sin(mϕi)

}
F (ϕi) ,

(1.243)

using an equiangular grid with ϕi := iπ/(L + 1), i = 0, ..., 2L + 1. The previously presented method
is well-known as the Discrete Fourier Transform (DFT).

Now returning to the spherical harmonic representation and applying this result to (1.235) we imme-
diately see that {

Am(t)
Bm(t)

}
=

π

L+ 1

2L+1∑
i=0

λm

{
cos(mϕi)
sin(mϕi)

}
F (ξ(ϕi, t)) , (1.244)

Furthermore, also taking (1.236) into account, we can conclude that in general, for every L-bandlimited
function F (with respect to the trigonometrical functions), it holds that

2π∫
0

{
cos(mϕ)
sin(mϕ)

}
F (ϕ) dϕ =

π

L+ 1

2L+1∑
i=0

{
cos(mϕi)
sin(mϕi)

}
F (ϕi) , (1.245)

and especially for m = 0 this yields

2π∫
0

F (ϕ) dϕ =
π

L+ 1

2L+1∑
i=0

F (ϕi) . (1.246)

We now insert (1.244) into (1.236) to find that the determination of the spherical harmonic coefficients
of an L-bandlimited function simplifies after the first discretisation step to

Fl,m =
π

L+ 1

2L+1∑
i=0

λm

{
cos(|m|ϕi)
sin(|m|ϕi)

} 1∫
−1

P̄l,|m|(t)F (ξ(ϕi, t)) dt . (1.247)
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Now, the second step is to find a similar discretisation method for the Legendre functions and then
to apply this method to the remaining Legendre integral. Neumann (1838) showed that here, the
task of finding weights and grid points to fulfil the discrete orthogonality condition (1.239) can be
reformulated as the task to find coefficients wi and grid points ti, i = 1, ..., 2L+ 1, that satisfy

1∫
−1

tn dt =

2L+1∑
i=1

wi t
n
i , (1.248)

for all n = 0, ..., 2L. In contrast to the longitudinal case, here we start with the index 1 in the notation
of weights and grid points. Since the product of two Legendre functions P̄j,m and P̄k,m of the same
order is a polynomial of degree j + k - since the order of the product equals 2m which is in any case
an even number - we can represent this product using monomials by

P̄j,m(t) P̄k,m(t) =

j+k∑
n=0

an t
n , (1.249)

for some coefficients an, n = 0, ..., j + k. In our case, we can restrict ourselves to Legendre functions
of degree ≤ L such that j + k ≤ 2L since the underlying function was assumed to be L-bandlimited.
This representation in combination with the condition (1.248) then yields

1∫
−1

P̄j,m(t) P̄k,m(t) dt =

2L∑
n=0

an

1∫
−1

tn dt

=

2L+1∑
i=1

wi

2L∑
n=0

an t
n
i

=

2L+1∑
i=1

wi P̄j,m(ti) P̄k,m(ti) ,

(1.250)

which indeed proves the orthogonality condition (1.239) for the weights and points generated by
(1.248). Since we can express the integral on the left-hand side of (1.248) analytically, this relation
can be reformulated as a system of linear equations:

1 . . . 1
t1 . . . t2L+1

...
...

t2L1 . . . t2L2L+1




w1

w2

...
w2L+1

 =


2
0
...
2

2L+1

 . (1.251)

The n-th entry (starting from 0) of the vector on the right-hand side represents the value of
∫ 1

−1
tn dt

which is zero if n is odd and equals 2/(n + 1) in case that n is even. The matrix on the left-hand
side is a square Vandermonde matrix which is invertible if and only if the t1, ..., t2L+1 are pairwise
distinct. This means that in order to guarantee a discrete orthogonality of the Legendre functions up
to degree L, if suffices to choose 2L + 1 arbitrary pairwise distinct points that are distributed along
the interval [−1, 1]. The respective weights are then uniquely determined by (1.251). This procedure
can be found in literature as Neumann’s first method.

Since the previous system of linear equations turns out to be numerically unstable, a slight varia-
tion of this procedure is recommended. It can be noticed that the choice of the monomials as basis
functions in (1.249) is not unique. If here an orthogonal basis system is chosen, all but the 0-th entry
of the vector on the right-hand side of (1.251) vanish. If we use the normalised Legendre polynomials
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Table 1.1: This table shows the weights wj , j = 1, ..., 2L + 1 (approximate up to 3 digits) and the
corresponding evaluation points (colatitude) to be used within the Driscoll-Healy quadrature for the
cases L = 0, 1, 2, 3. We see that the weights are symmetric with respect to the equator and they sum
up to 2.

1
8π

1
6π

1
4π

1
3π

3
8π

1
2π

5
8π

2
3π

3
4π

5
6π

7
8π

∑
wj

L = 0 - - - - - 2 - - - - - 2

L = 1 - - 2
3 - - 2

3 - - 2
3 - - 2

L = 2 - 14
45 - 18

45 - 26
45 - 18

45 - 14
45 - 2

L = 3 0.178 - 0.248 - 0.393 0.362 0.393 - 0.248 - 0.178 2

instead of the monomial basis, the system of linear equations turns into
P̄0(t1) . . . P̄0(t2L+1)
P̄1(t1) . . . P̄1(t2L+1)

...
...

P̄2L(t1) . . . P̄2L(t2L+1)




w1

w2

...
w2L+1

 =


√

2
0
...
0

 . (1.252)

This system of equations can also be thought of as the result of the application of various Gauss
elimination steps to (1.251). Now applying this result to the functions A(t), B(t) and their defining
equations from (1.234), we find that

Fl,m =

2L+1∑
j=1

wj P̄l,|m|(tj)

{
Am(tj)
Bm(tj)

}
, (1.253)

and in combination with (1.244) this yields the following (exact) representation of the spherical har-
monic coefficients only using finite sums:

Fl,m =
π

L+ 1
λm

2L+1∑
j=1

wj P̄l,|m|(tj)

2L+1∑
i=0

{
cos(mϕi)
sin(mϕi)

}
F (ξ(ϕi, tj))

=
π

L+ 1

2L+1∑
i=0

2L+1∑
j=1

wj Yl,m(ξ(ϕi, tj))F (ξ(ϕi, tj)) .

(1.254)

If we compare this relation to the original definition of the Fourier coefficients Fl,m we find that∫
Ω

F (η)Yl,m(η) dω(η) =
π

L+ 1

2L+1∑
i=0

2L+1∑
j=1

wj Yl,m(ξ(ϕi, tj))F (ξ(ϕi, tj)) , (1.255)

and especially for the case m = 0 that∫
Ω

F (η) dω(η) =
π

L+ 1

2L+1∑
i=0

2L+1∑
j=1

wj F (ξ(ϕi, tj)) , (1.256)

for any L-bandlimited function F ∈ L2(Ω) on the sphere. As an example, for the simple case of F ≡ 1
we indeed find that ∫

Ω

1 dω(η) =
π

L+ 1

2L+1∑
i=0

2L+1∑
j=1

wj = 2π

2L+1∑
j=1

wj = 4π . (1.257)
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Table 1.2: This table shows the weights wj , j = 1, ..., L + 1 (approximate up to 3 digits) and the
corresponding evaluation points (colatitude) to be used within the Gauss-Legendre quadrature for
the cases L = 0, 1, 2, 3. We see that the requirement that the sum of the weights have to equal 2 is
not fulfilled for lower degrees (except L = 0). This reflects the approximation behaviour of the used
formula for the zeros of the Legendre polynomials.

3
18π

3
14π

3
10π

7
18π

1
2π

11
18π

7
10π

11
14π

15
18π

∑
wj

L = 0 - - - - 2 - - - - 2

L = 1 - - 0.947 - - - 0.947 - - 1.894

L = 2 - 0.497 - - 0.889 - - 0.497 - 1.883

L = 3 0.296 - - 0.647 - 0.647 - - 0.296 1.886

In analogy to the longitude, an appropriate choice for the latitudinal grid is an equiangular distribution
of the evaluation points, i.e. we define ϑi := iπ/(2L+2) - with the respective polar distances ti = cosϑi,
i = 1, ..., 2L + 1. There are two main reasons why this case is of special interest. First, in many
applications, the available data is given on an equiangular grid (e.g. the topographic data set ETOPO
that we will also use within this work) and second, Driscoll and Healy (1994) showed that in the
equiangular case, it is possible to find the following closed expression for the weights wj :

wj =
2

L+ 1
sinϑj

L∑
k=0

sin((2k + 1)ϑj)

2k + 1
. (1.258)

This is a very useful property since in this case, we avoid the task of solving the system of linear
equations (1.251) or (1.252), including all respective numerical inaccuracies and challenges. In Table
1.1 we show the Driscoll-Healy grid points and their respective weights for the cases L = 0, 1, 2. Here,
it can also be verified that the sum of the weights equals 2 as prescribed in (1.251) and (1.252).
For the spherical harmonic coefficients we then find the following explicit representation using the
Driscoll-Healy grid:

Fl,m =
2π

(L+ 1)2
λm

2L+1∑
j=1

P̄l,|m|(tj) sinϑj

L∑
k=0

sin((2k + 1)ϑj)

2k + 1

2L+1∑
i=0

{
cos(mϕi)
sin(mϕi)

}
F (ξ(ϕi, tj)) .

(1.259)

Since in the previous cases, the required number of grid points in latitudinal direction (2L + 1) is
almost of identical size as in the longitudinal direction (2L + 2), one could have the intuition that
there should be a possibility to optimise - i.e. to reduce - the amount of required data since the lati-
tudinal domain is only half the size of the longitude. And indeed, also Neumann (1838) showed that
it is possible to reduce the amount of latitudinal grid points to L + 1 if their location is chosen in a
particular way. This number also turns out to be the theoretical minimum for the amount of required
latitudinal grid points such that no further optimisation can be achieved.

To this concern, Neumann (1838) adopted the quadrature integration rule that was earlier found
by Gauss (1814), where he showed that by choosing the evaluation points in a special way, a one-
dimensional integral can be determined exactly by a finite sum in case the investigated function is a
polynomial. Based on the work of Gauss, Jacobi (1826) showed that the required evaluation points
coincide with the zeros of orthogonal polynomials. Using e.g. the Legendre polynomials then leads to
the Gauss-Legendre quadrature. Neumann (1838) applied this rule to the remaining integral of the
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Legendre functions in (1.247) and showed that the following representation is valid:

1∫
−1

P̄l,m(t)F (ξ(ϕ, t)) dt =

L+1∑
j=1

wj P̄l,m(tj)F (ξ(ϕ, tj)) , (1.260)

where tj , j = 1, ..., L+1 are the zeros of P̄L+1, the Legendre polynomial of degree L+1. In literature,
this method is referred to as Neumann’s second method. Here, the weights are given by

wj =
(2L+ 1)

(
1− t2j

)
(L+ 1)2 P̄L(tj)2

. (1.261)

Using the Gauss-Legendre grid, the spherical harmonic coefficients then can be explicitly determined
by

Fl,m =
(2L+ 1)π

(L+ 1)3
λm

L+1∑
j=1

(
1− t2j

) P̄l,|m|(tj)
P̄L(tj)2

2L+1∑
i=0

{
cos(mϕi)
sin(mϕi)

}
F (ξ(ϕi, tj)) . (1.262)

Besides the obvious advantage of reducing the number of required grid points by a factor of 2, the grid
is simultaneously also the drawback of this quadrature rule. There is no elementary representation
of the roots of the Legendre polynomials such that they cannot be determined straightforwardly.
Furthermore, in most applications the values of the function that needs to be evaluated are available
on a regular, mainly on an equiangular, grid and not coincidently at the roots of Legendre polynomials.
This means that the data would need to be preprocessed first and interpolated to the required grid
before the quadrature procedure could be applied. Due to these reasons, in practice, the Driscoll-Healy
grid is the preferred choice in most cases in spite of the larger amount of required data. At least there
are quite accurate approximative representations for the zeros of the Legendre polynomials like e.g.

xk ≈ cos

(
4k − 1

4n+ 2
π

)
, (1.263)

for the k-th zero, k = 1, ..., n, of the Legendre polynomial of degree n ∈ N (see e.g., Abramowitz and
Stegun, 1965). In Table 1.2 we show the Gauss-Legendre grid points - using the previous approxima-
tion for the zeros - and their respective weights for the cases L = 0, 1, 2, 3. From previous results, we
know that the sum of the weights should always equal 2. Here we see a significant mismatch for low
orders which is due to the approximation quality of the previous formula for the zeros of the Legendre
polynomials which is quite bad for low degrees and becomes better with increasing degree (see also
Abramowitz and Stegun, 1965). But since for the lower degrees, the zeros of the Legendre polynomials
can still be determined analytically, here, it is recommended to use these representations instead of
the approximative formula (1.263).

In Figure 1.7 we show the distribution of the required grid points for the Driscoll-Healy (green stars)
and the Gauss-Legendre (blue triangles) grid in case of a bandlimit of L = 5, with and without in-
cluding their respective weights. We see that due to construction, the general grid point density is
much higher in polar regions than at the equator. But actually, this might not only be considered as
a shortcoming of this method but can also be an advantageous feature since e.g. magnetic data also
shows a higher density data distribution at the poles (see e.g., Mayer, 2003).

We deeply acknowledge the work by Sneeuw (1994), where a very detailed and inspiring summary and
an outline of the historical context of all the previously presented methods can be found.

Further optimisation techniques can be found e.g. in Healy et al. (2003), where efficient algorith-
mic techniques are presented for calculating all spherical harmonic coefficients up to a certain degree
and order. Here, the concept of Fast Fourier Transforms (FFT) and recurrence formulae for the Leg-
endre functions are applied, using shifted Legendre polynomials. Furthermore, McEwen and Wiaux
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Figure 1.7: Grid point distribution for the Driscoll-Healy (green stars) and the Gauss-Legendre quadra-
ture (blue triangles) in case of a bandlimit of L = 5. The point density along a fixed longitude is
approximately half for the Gauss-Legendre quadrature compared to the Driscoll-Healy grid. In the left
plot, all points are plotted with the same size to illustrate the high point density in the polar regions.
In the right plot, the size of each point equals its weight within the respective quadrature rule. In
order to minimise overlapping of symbols, we shifted all longitudes of the Driscoll-Healy points by 3
degrees to the East.

(2011) found a novel sampling theorem that features the advantages from both Driscoll-Healy and
Gauss-Legendre grid. They found the possibility of using an equiangular grid, consisting of only L+1
latitudinal parallels. This method, that uses spin spherical harmonics and a topological connection of
the sphere to the torus, even shows an improved numerical stability compared to the Driscoll-Healy
and Gauss-Legendre reconstruction method. Also here, a review of the historical evolution of the
presented methods of a spherical harmonic analysis can be found.

Spherical Harmonic Synthesis

As we already learned, spherical harmonic synthesis denotes the task of reconstructing a function
F ∈ C(1)(Ω) on the sphere by means of its spherical harmonic coefficients. Applying the fundamental
theorem and the rearrangement of the summation of degree and order that we presented in (1.233)-
(1.235) we found that for a maximum reconstruction degree L ∈ N0 we have

F (ξ(ϕ, t)) =

L∑
m=0

λm (Am(t) cos(mϕ) +Bm(t) sin(mϕ)) , (1.264)

ξ ∈ Ω, where A(t) and B(t) are weighted sums of associated Legendre functions of a fixed order m:

Am(t) =

L∑
l=m

Fl,m P̄l,m(t) ,

Bm(t) =

L∑
l=m

Fl,−m P̄l,m(t) .

(1.265)

In the spherical harmonic synthesis, the previous representation is especially useful and the supposedly
trivial interchange of degree and order reveals again its real strength. The so-called Clenshaw

63



CHAPTER 1. MATHEMATICAL PRELIMINARIES

algorithm provides an efficient and numerically stable method to calculate exactly these kind of
weighted sums that are required in the synthesis. In a more general form, here we consider a truncated
series of the form

SN (x) :=

N∑
k=0

ak(x)Fk(x) , (1.266)

where ak(x) ∈ R, k = 0, ..., N , N ∈ N, are given coefficients and Fk is a sequence of functions - defined
on some domain D - that can be represented by a two-level recurrence scheme, i.e. for k ≥ 2 the k-nth
member of the sequence can be found by

Fk(x) = Ak(x)Fk−1(x) +Bk(x)Fk−2(x) , (1.267)

for all x ∈ D, where Ak(x) and Bk(x), k = 2, ..., N , are pre-determined coefficients. Clenshaw (1955)
says that under this condition, the sum SN (x) can be calculated without determining the values of
the functions Fk(x) explicitly. This is a very powerful method especially for the case that the explicit
calculation of the values Fk(x) is rather complicated (or just impossible). To determine SN explicitly,
we first define auxiliary coefficients Uk(x), k = N, ..., 1, by the inverse recurrence scheme

Uk(x) := ak +Ak+1(x)Uk+1(x) +Bk+2(x)Uk+2(x) (1.268)

with the initial values UN+1(x) = UN+2(x) = 0. Then, it can be shown that SN (x) is determined by

SN (x) = (a0 +B2(x)U2(x))F0(x) + U1(x)F1(x) . (1.269)

If (1.267) is also valid for k = 1, i.e. A1 is given and B1 ≡ 0 such that F1(x) = A1(x)F0(x), it is
possible to calculate an additional step in the Clenshaw algorithm and gain U0(x) = a0+A1(x)U1(x)+
B2(x)U2(x). Under this condition (1.269) simplifies to

SN (x) = U0(x)F0(x) . (1.270)

Here, we see that the first function of the sequence F0 serves as a seed. It should be noted that the
well-known Horner scheme for evaluating polynomials is a special case of the Clenshaw algorithm,
i.e. for the monomials it trivially holds that Ak(x) = x and Bk(x) = 0 for all k = 1, ..., N and all
x ∈ D in the recurrence scheme (1.267).

For the case of the (normalised associated) Legendre polynomials of a fixed order m ∈ N, (1.211)
determines the recurrence coefficients Ak and Bk as

Ak(t) =

√
(2k + 1)(2k − 1)

(k +m)(k −m)
, Bk(t) = −

√
(2k + 1)(k +m− 1)(k −m− 1)

(k +m)(k −m)(2k − 3)
, (1.271)

for k = m + 1, ..., N . Since in the recurrence procedure of the associated Legendre polynomials, the
coefficients are only defined for k > m, the Clenshaw algorithm terminates here and we find for any
coefficients al ∈ R, l = m, ..., N , that

N∑
l=m

al(t) P̄l,m(t) = Um(t) P̄m,m(t) , (1.272)

where the coefficients Uk, k = m, ..., N + 2 are defined by (1.268). We notice that in the previous
representation the sectoral polynomials P̄m,m serve as a seed and need to be calculated a-priori, e.g. by
the product representation (1.212).
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In spite of the Clenshaw algorithm being capable of avoiding an explicit calculation of the associ-
ated Legendre functions, especially since the sectoral functions still serve as a seed, the method as
presented also does not solve the underflow problem, illustrated in Figure 1.5. But here, Holmes
and Featherstone (2002) provide a very elegant way to circumvent this scenario by substituting the
Legendre functions everywhere inside the summation by P̃l,m(t)/(1− t2)l/2 to avoid the conflict at the
poles. Then, in a concluding step, the Horner scheme is used to include the factor of (1− t2)l/2 again
iteratively. In this way, the underflow problems can be perfectly avoided. Actually, in this process,
an additional scaling by 10−280 is needed to prevent overflow. But with this scaling, all calculation
steps turn out to be in a numerically secure range.

We deeply acknowledge the work by Holmes and Featherstone (2002) since, in addition to the pre-
viously mentioned strategy to take account of the numerical problems, they also give a helpful and
interesting overview of the historical development in this field of research.

1.4.4 Vector spherical harmonics

In the final sections of this chapter, we will (briefly) show that (and how) the concept of scalar spher-
ical harmonics as basis functions can also be extended to vector fields and tensor fields. This will
become of essential significance in the following chapters where we will investigate the basic conser-
vation laws - including various vector and tensor fields (e.g. stress tensor) - in terms of a spherical
harmonic representation.

In analogy to the scalar case it can be shown that it is possible to represent a function f ∈ l2(Ω) as
follows:

f(ξ) =

3∑
i=1

∞∑
l=0i

l∑
m=−l

f
(i)
l,m Y

(i)
l,m(ξ) , (1.273)

for all ξ ∈ Ω, where we define the individual starting index 0i for the harmonic degree as

0i :=

{
0 , i = 1 ,
1 , i = 2, 3 .

(1.274)

Furthermore, we find the Fourier coefficients

f
(i)
l,m :=

∫
Ω

f(η) · Y(i)
l,m(η) dω(η) , i = 1, 2, 3 . (1.275)

The so-called vector spherical harmonics are given by

Y(1)
l,m(ξ) := Yl,m(ξ) ξ

Y(2)
l,m(ξ) :=

1

µl
∇∗Yl,m(ξ)

Y(3)
l,m(ξ) :=

1

µl
L∗Yl,m(ξ) =

1

µl
ξ ∧∇∗Yl,m(ξ) ,

(1.276)

where µl :=
√
l(l + 1) is a degree dependent normalisation factor. These functions form an orthonor-

mal basis system in l2(Ω). Note that the vector spherical harmonics with upper index 2 and 3 are
not defined for l = 0. Inserting the already known spherical polar coordinate representation of the
respective differential operators we find the following explicit representation of a vector field f :

f =
∑
l,m

εr f
(1)
l,m Yl,m+ εϕ

1

µl

(
f

(2)
l,m

1√
1− t2

∂ϕ − f (3)
l,m

√
1− t2 ∂t

)
Yl,m

+ εt
1

µl

(
f

(2)
l,m

√
1− t2 ∂t + f

(3)
l,m

1√
1− t2

∂ϕ

)
Yl,m .

(1.277)
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Note that the extension of the previous definition to a thick spherical shell - that we already derived
for the scalar spherical harmonics - also holds for the vectorial case, i.e. for a vector field f ∈ l2 (ΩE)
(Lipschitz continuous) we find that:

f(x) =

3∑
i=1

∞∑
l=0i

l∑
m=−l

f
(i)
l,m(r)Y(i)

l,m(ξ) (1.278)

for all x ∈ Ωα,β , x = rξ, ξ ∈ Ω with

f
(i)
l,m(r) :=

∫
Ω

f(rη) · Y(i)
l,m(η) dω(η) , (1.279)

for i = 1, 2, 3. From now on, in our notation, we assume all vector fields to be Lipschitz continuous
to guarantee the pointwise convergence as stated above.

The part of the vector field that is associated with the Y(3)
l,m vector spherical harmonic is called

toroidal part, the part related to the Y(1)
l,m and Y(2)

l,m vector spherical harmonic is called poloidal
part. We will have a more detailed look at this separation and the physical interpretation behind this
in the final section of this chapter. There, we will find that under certain conditions it is possible to
represent both poloidal and toroidal part of a vector field only with the help of one scalar function
respectively. In this case it is possible to describe the total vector field just by two scalar functions or
in other words, the intrinsic three free variables of a vector field can be reduced to two.

1.4.5 Tensor spherical harmonics

In this subsection, we will expand our knowledge about scalar and vector spherical harmonics even
to tensor fields. Instead of 1 (scalar) or 3 (vector) types of basis functions, in the tensorial case we
will need to introduce 9 types of different (and orthogonal) basis functions. In analogy to the scalar
and vector spherical harmonics it can be shown that it is possible to represent a function f ∈ l2(Ω) as
follows:

f(ξ) =

3∑
i,j=1

∞∑
l=0i,j

l∑
m=−l

f
(i,j)
l,m Y(i,j)

l,m (ξ) , (1.280)

for all ξ ∈ Ω, where we define the individual starting index 0i,j for the harmonic degree as

0i,j :=

 0 , (i, j) ∈ {(1, 1), (2, 2), (3, 3)} ,
1 , (i, j) ∈ {(1, 2), (1, 3), (2, 1), (3, 1)} ,
2 , (i, j) ∈ {(2, 3), (3, 2)} .

(1.281)

Furthermore, we find the Fourier coefficients

f
(i,j)
l,m :=

∫
Ω

f(η) ·Y(i,j)
l,m (η) dω(η) , i, j = 1, 2, 3 . (1.282)

The so-called tensor spherical harmonics are given by:

Y(1,1)
l,m (ξ) := ξ ⊗ Yl,m(ξ) ξ = (εr ⊗ εr)Yl,m(ξ) ,

Y(1,2)
l,m (ξ) := ξ ⊗ 1

µl
∇∗Yl,m(ξ)

=
1

µl
(εr ⊗ εϕ)

1√
1− t2

∂ϕYl,m(ξ) +
1

µl

(
εr ⊗ εt

)√
1− t2 ∂tYl,m(ξ) ,

Y(1,3)
l,m (ξ) := ξ ⊗ 1

µl
L∗Yl,m(ξ)

= − 1

µl
(εr ⊗ εϕ)

√
1− t2 ∂tYl,m(ξ) +

1

µl

(
εr ⊗ εt

) 1√
1− t2

∂ϕYl,m(ξ) ,
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Y(2,1)
l,m (ξ) :=

1

µl
∇∗Yl,m(ξ)⊗ ξ

=
1

µl
(εϕ ⊗ εr) 1√

1− t2
∂ϕYl,m(ξ) +

1

µl

(
εt ⊗ εr

)√
1− t2 ∂tYl,m(ξ) ,

Y(3,1)
l,m (ξ) :=

1

µl
L∗Yl,m(ξ)⊗ ξ

= − 1

µl
(εϕ ⊗ εr)

√
1− t2 ∂tYl,m(ξ) +

1

µl

(
εt ⊗ εr

) 1√
1− t2

∂ϕYl,m(ξ) ,

Y(2,3)
l,m (ξ) :=

1

µ̄l
(∇∗ ⊗∇∗ − L∗ ⊗ L∗) Yl,m(ξ) +

2

µ̄l
∇∗Yl,m(ξ)⊗ ξ

=
2

µ̄l

(
t ∂t + ∂t

(
1− t2

)
∂t −

∆∗

2

)(
εt ⊗ εt − εϕ ⊗ εϕ

)
Yl,m(ξ)

+
2

µ̄l

(
∂ϕ∂t +

t

1− t2
∂ϕ

)(
εϕ ⊗ εt + εt ⊗ εϕ

)
Yl,m(ξ) ,

Y(3,2)
l,m (ξ) :=

1

µ̄l
(∇∗ ⊗ L∗ + L∗ ⊗∇∗) Yl,m(ξ) +

2

µ̄l
L∗Yl,m(ξ)⊗ ξ

=
2

µ̄l

(
∂ϕ∂t +

t

1− t2
∂ϕ

)(
εt ⊗ εt − εϕ ⊗ εϕ

)
Yl,m(ξ)

− 2

µ̄l

(
t ∂t + ∂t

(
1− t2

)
∂t −

∆∗

2

)(
εϕ ⊗ εt + εt ⊗ εϕ

)
Yl,m(ξ)

Y(2,2)
l,m (ξ) :=

1√
2

(
εϕ ⊗ εϕ + εt ⊗ εt

)
Yl,m(ξ) ,

Y(3,3)
l,m (ξ) :=

1√
2

(
εt ⊗ εϕ − εϕ ⊗ εt

)
Yl,m(ξ) ,

(1.283)

where µl :=
√
l(l + 1), µ̄l :=

√
2l(l + 1)(l(l + 1)− 2). These functions form an orthonormal basis

system in l2(Ω).

Here, we already made explicit use of the spherical coordinate representation of the surface ten-
sor gradient and the surface tensor curl gradient. In particular, we used (1.58) - (1.63) where we
determined a variety of useful connections between these operators. If we have a closer look at the
transformations, we see that the additional terms 2 L∗Yl,m(ξ) ⊗ ξ and 2∇∗Yl,m(ξ) ⊗ ξ in the (2, 3)
and (3, 2) harmonic serve as a ’correction’ in order to erase all radial dependencies and form purely
tangential harmonics. Furthermore, note that the radial harmonics are constructed in analogy to the
vector harmonics such that especially we find here:

εr · f = fεr =

3∑
i,j=1

∞∑
l=0i,j

l∑
m=−l

f
(i,j)
l,m Y(i,j)

l,m εr

=

∞∑
l=0i,j

l∑
m=−l

(
εrf (1,1) Yl,m +

1

µl

(
f (2,1)∇∗Yl,m + f (3,1) L∗Yl,m

))
.

(1.284)

Comparing the previous equation with the vector harmonic representation (1.273) we can immediately
conclude that in this special case the vector and tensor harmonic coefficients transfer in the following
way:

(εr · f)
(1)
l,m = (fεr)

(1)
l,m = f

(1,1)
l,m ,

(εr · f)
(2)
l,m = (fεr)

(2)
l,m = f

(2,1)
l,m ,

(εr · f)
(3)
l,m = (fεr)

(3)
l,m = f

(3,1)
l,m .

(1.285)
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This relation will especially be useful in the next chapter in the context of the Stokes equation and
the stress tensor.

In analogy to the vectorial case, the normalisation factors can be calculated by determining the
respective adjoint operators and transforming the normalisation integral in terms of scalar spherical
harmonics by using the theorems of Gauss and Stokes. Furthermore, note that only the diagonal
tensor harmonics, i.e. (1, 1), (2, 2) and (3, 3) are defined for degree l = 0, the summation for all other
harmonics starts with l = 1, except for the harmonics (2, 3) and (3, 2) that are only defined from
degree l = 2 on.

The extension of the previous definition to a thick spherical shell - that we already derived for the scalar
and vector spherical harmonics - also holds for the tensorial case, i.e. for a tensor field f ∈ l2 (ΩE)
(Lipschitz continuous) we find that:

f(x) =

3∑
i,j=1

∞∑
l=0i,j

l∑
m=−l

f
(i,j)
l,m (r)Y(i,j)

l,m (ξ) (1.286)

for all x ∈ Ωα,β , x = rξ, ξ ∈ Ω with

f
(i,j)
l,m (r) :=

∫
Ω

f(rη) ·Y(i,j)
l,m (η) dω(η) , (1.287)

for i, j = 1, 2, 3. From now on, in our notation, we assume all tensor fields to be Lipschitz continuous
to guarantee the point-wise convergence as stated above.

1.5 Spectral representation of differential operators

In the course of this work it will in particular be very useful to represent the result of an application
of the various differential operators that we introduced in this chapter, i.e. divergence, gradient, curl
and Laplacian, to a scalar, vector and resp. tensor field in terms of the previously defined spherical
harmonics. In the following we will use the spherical polar coordinate representation of the various
differential operators in order to build the bridge to the spherical harmonic representation.

Divergence

We start with the divergence of a vector field f ∈ c(1)(D), D ⊂ R3. Since the application of the
divergence to a vector field yields a scalar field, it should be possible to represent this resulting scalar
field in terms of scalar spherical harmonics. Indeed, using the vector spherical harmonic representation
of f and inserting the explicit definition from (1.277) into the spherical polar coordinate representation
of the divergence, we find that:

(∇ · f)(x) =

(
∂r +

2

r

)
fr +

1

r

(
1√

1− t2
∂ϕfϕ + ∂t

(√
1− t2 ft

))
=
∑
l,m

[(
∂r +

2

r

)(
f

(1)
l,m(r)Yl,m(ξ)

)
+

1

rµl

1√
1− t2

∂ϕ

(
f

(2)
l,m(r)

1√
1− t2

∂ϕ − f (3)
l,m(r)

√
1− t2 ∂t

)
Yl,m(ξ)

+
1

rµl
∂t

(√
1− t2

(
f

(2)
l,m(r)

√
1− t2 ∂t + f

(3)
l,m(r)

1√
1− t2

∂ϕ

)
Yl,m(ξ)

)
=
∑
l,m

[(
∂r +

2

r

)(
f

(1)
l,m(r)Yl,m(ξ)

)
+

1

rµl
f

(2)
l,m(r)

(
1

1− t2
∂2
ϕ2 + ∂t

(
1− t2

)
∂t

)
Yl,m(ξ)

]
.

(1.288)
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Here we notice that all f
(3)
l,m terms cancel each other. This should not be a surprising result since the

coefficients f
(3)
l,m belong to the Y(3)

l,m vector spherical harmonic - which represents the toroidal part of
f - that is defined as the surface curl gradient of a scalar spherical harmonic Yl,m. Thus, since in
general ∇· (∇∧ ·) = 0, the divergence per definition always cancels out the toroidal part of the vector
field which it is applied to.

Furthermore, we recognise the Beltrami operator in the f
(2)
l,m term and use the eigenvector prop-

erty of the spherical harmonics, i.e. ∆∗Yl,m = −l(l + 1)Yl,m. Additionally, from now on we will
neglect the explicit dependences on r and ξ in our notation and e.g. just write Yl,m instead of Yl,m(ξ).
Nevertheless, for the following calculations one should always remind that a partial derivative with
respect to r only acts on the spherical harmonic coefficients and not on the spherical harmonics itself.
On the other hand, partial derivatives with respect to ϕ or t only act on the spherical harmonics
and not on the coefficients. Note that this separation is a very valuable advantage of the spherical
harmonic representation. The previous equation can now be written as:

∇ · f =
∑
l,m

((
∂r +

2

r

)
f

(1)
l,m −

l(l + 1)

rµl
f

(2)
l,m

)
Yl,m . (1.289)

In other words, the scalar spherical harmonic coefficients of the divergence of a vector field f can be
determined as:

(∇ · f)l,m =

(
∂r +

2

r

)
f

(1)
l,m −

l(l + 1)

rµl
f

(2)
l,m . (1.290)

Curl

We continue by applying the same procedure to the curl of a vector field f ∈ c(2)(D), D ⊂ R3. Since
the application of the curl to a vector field yields again a vector field, it should be possible to represent
the result of such an application in terms of vector spherical harmonics. In analogy to the previous
analysis of the divergence, here we also use the vector spherical harmonic representation of f and
insert the explicit definition from (1.277) into the spherical polar coordinate representation of the
curl. First we look at each component individually and consolidate the results afterwards. We find
that:

(∇∧ f)r =
1

r

(
1√

1− t2
∂ϕft − ∂t

(√
1− t2 fϕ

))
=
∑
l,m

[
1

rµl

1√
1− t2

∂ϕ

((
f

(2)
l,m

√
1− t2 ∂t + f

(3)
l,m

1√
1− t2

∂ϕ

)
Yl,m

)

− 1

rµl
∂t

(√
1− t2

((
f

(2)
l,m

1√
1− t2

∂ϕ − f (3)
l,m

√
1− t2 ∂t

)
Yl,m

))
=
∑
l,m

1

rµl

(
1

1− t2
∂2
ϕ2 + ∂t

(
1− t2

)
∂t

)(
f

(3)
l,m Yl,m

)
.

(1.291)

Applying again the eigenvector property of the spherical harmonics we can write the previous equation
as:

(∇∧ f)r = −
∑
l,m

l(l + 1)

rµl
f

(3)
l,m Yl,m . (1.292)
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We go on with the lateral components.

(∇∧ f)ϕ =
1

r

(√
1− t2 ∂tfr − ∂r (rft)

)
=
∑
l,m

1

r

(√
1− t2 ∂t

(
f

(1)
l,m Yl,m

)
− 1

µl

(
∂rr

(
f

(2)
l,m

√
1− t2 ∂t + f

(3)
l,m

1√
1− t2

∂ϕ

))
Yl,m

)

= −
∑
l,m

1

r

(
1

µl
∂r

(
rf

(3)
l,m

) 1√
1− t2

∂ϕ −
(
f

(1)
l,m −

1

µl
∂r

(
rf

(2)
l,m

))√
1− t2 ∂t

)
Yl,m .

(1.293)

For the t-component we find that:

(∇∧ f)t =
1

r

(
∂r (rfϕ)− 1√

1− t2
∂ϕfr

)
=
∑
l,m

1

r

(
− 1√

1− t2
∂ϕ

(
f

(1)
l,m Yl,m

)
+

1

µl

(
∂rr

(
f

(2)
l,m

1√
1− t2

∂ϕ − f (3)
l,m

√
1− t2 ∂t

))
Yl,m

)

= −
∑
l,m

1

r

(
1

µl
∂r

(
rf

(3)
l,m

)√
1− t2 ∂t +

(
f

(1)
l,m −

1

µl
∂r

(
rf

(2)
l,m

)) 1√
1− t2

∂ϕ

)
Yl,m .

(1.294)

Now we compare (∇∧f)r, (∇∧f)ϕ and (∇∧f)t to the explicit vector spherical harmonic representation
of (1.273) and (1.277) to reformulate the previously derived three equations as

∇∧ f = −
∑
l,m

(
l(l + 1)

rµl
f

(3)
l,m Y

(1)
l,m +

1

r
∂r

(
rf

(3)
l,m

)
Y(2)
l,m +

1

r

(
µlf

(1)
l,m − ∂r

(
rf

(2)
l,m

))
Y(3)
l,m

)
. (1.295)

In other words, this means that the vector spherical harmonic coefficients of ∇∧f can be written as:

(∇∧ f)
(1)
l,m = − l(l + 1)

rµl
f

(3)
l,m ,

(∇∧ f)
(2)
l,m = −1

r
∂r

(
rf

(3)
l,m

)
,

(∇∧ f)
(3)
l,m = −1

r

(
µlf

(1)
l,m − ∂r

(
rf

(2)
l,m

))
.

(1.296)

We can cross-check this result by inserting the derived coefficients into (1.290) and indeed, we find
that the divergence of the curl vanishes, as expected.

Furthermore, we notice that the poloidal part of ∇ ∧ f is only influenced by the toroidal part of
f and vice versa. In other words, the curl transforms a purely poloidal into a purely toroidal vector
field and a purely toroidal field into a purely poloidal one. Theoretically, in that way it is possible
to create an infinite series of purely poloidal and toroidal fields by iteratively applying the curl to a
purely poloidal or toroidal field.

As we will need this result in the course of this work, we also explicitly determine the next ’iter-
ation’, the curl of the curl of f . Since we already know the coefficients of ∇ ∧ f it is possible to
immediately deduce the desired coefficients from (1.296) without extensive calculations:

(∇∧∇ ∧ f)
(1)
l,m =

l(l + 1)

r2µl

(
µlf

(1)
l,m − ∂r

(
rf

(2)
l,m

))
,

(∇∧∇ ∧ f)
(2)
l,m =

1

r
∂r

(
µlf

(1)
l,m − ∂r

(
rf

(2)
l,m

))
,

(∇∧∇ ∧ f)
(3)
l,m =

1

r

(
l(l + 1)

r
f

(3)
l,m − ∂

2
r2

(
rf

(3)
l,m

))
.

(1.297)
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Gradient

We go on and analyse the gradient of a scalar function in terms of the vector spherical harmonics.
We start by restating the spherical polar coordinate representation of the gradient of a scalar field
F ∈ C(1)(D), D ⊂ R3:

∇F =

(
εr ∂r +

1

r

(
εϕ

1√
1− t2

∂ϕ + εt
√

1− t2 ∂t
))

F . (1.298)

Inserting the scalar spherical harmonic representation of F yields:

∇F =
∑
l,m

(
εr ∂r +

1

r

(
εϕ

1√
1− t2

∂ϕ + εt
√

1− t2 ∂t
))

Fl,m Yl,m . (1.299)

As before, we compare the term on the right-hand side to the explicit vector spherical harmonic
representation of (1.273) and (1.277) to reformulate the previous equation as

∇F =
∑
l,m

(
(∂rFl,m)Y(1)

l,m +
µl
r
Fl,m Y(2)

l,m

)
. (1.300)

Thus, the vector spherical harmonic coefficients of ∇F can be written as:

(∇F )
(1)
l,m = ∂rFl,m ,

(∇F )
(2)
l,m =

µl
r
Fl,m ,

(∇F )
(3)
l,m = 0 .

(1.301)

Again, we can cross-check this result by inserting these coefficients into (1.296) and (1.297) and find
that - as expected - both terms vanish.

In analogy to the vectorial case it should also be possible to represent the gradient of a vector field
f in terms of the previously defined tensor spherical harmonics. As before, we use the explicit vec-
tor spherical harmonic representation (1.277) of f and insert it into the spherical polar coordinate
representation (1.47) of ∇f . We find that:

∇f =
∑
l,m

(εr ⊗ εr) ∂rf (1)
l,m Yl,m

+
∑
l,m

(εϕ ⊗ εr) 1

µl

(
∂rf

(2)
l,m

1√
1− t2

∂ϕ − ∂rf (3)
l,m

√
1− t2 ∂t

)
Yl,m

+
∑
l,m

(
εt ⊗ εr

) 1

µl

(
∂rf

(2)
l,m

√
1− t2 ∂t + ∂rf

(3)
l,m

1√
1− t2

∂ϕ

)
Yl,m

+
∑
l,m

(εr ⊗ εϕ)
1

rµl

((
µlf

(1)
l,m − f

(2)
l,m

) 1√
1− t2

∂ϕ + f
(3)
l,m

√
1− t2 ∂t

)
Yl,m

+
∑
l,m

(
εr ⊗ εt

) 1

rµl

((
µlf

(1)
l,m − f

(2)
l,m

)√
1− t2 ∂t − f (3)

l,m

1√
1− t2

∂ϕ

)
Yl,m

(1.302)
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+
∑
l,m

(εϕ ⊗ εϕ)
1

rµl

(
µlf

(1)
l,m + f

(2)
l,m

(
1

1− t2
∂2
ϕ2 − t ∂t

)
− f (3)

l,m

(
∂ϕ∂t +

t

1− t2
∂ϕ

))
Yl,m

+
∑
l,m

(
εt ⊗ εt

) 1

rµl

(
µlf

(1)
l,m + f

(2)
l,m

(
t ∂t + ∂t

(
1− t2

)
∂t
)

+ f
(3)
l,m

(
∂ϕ∂t +

t

1− t2
∂ϕ

))
Yl,m

+
∑
l,m

(
εϕ ⊗ εt

) 1

rµl

(
f

(2)
l,m

(
∂ϕ∂t +

t

1− t2
∂ϕ

)
− f (3)

l,m

(
t ∂t + ∂t
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If we compare this representation to the definition of the tensor spherical harmonics we see that first,
we need to introduce the Beltrami operator into the purely tangential parts of ∇f before being able
to determine the desired tensor harmonic coefficients. We can reformulate these parts of ∇f as

(∇f)ϕ,ϕ =
∑
l,m

1

rµl

(
µlf
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(1.303)

Now, comparing (1.302) and (1.303) with the definition of the tensor harmonics (1.283) and using the
eigenvalue property of the Beltrami operator we find the following representation of ∇f in terms of
the tensor spherical harmonics:

∇f =
∑
l,m

(
∂rf

(1)
l,mY(1,1)

l,m + ∂rf
(2)
l,mY(2,1)
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f
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f
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(1.304)
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Thus, we finally find the following tensor spherical harmonic coefficients of the vector gradient ∇f :

(∇f)
(1,1)
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(1)
l,m , (∇f)
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1
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(
µlf
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r
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(3)
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f

(3)
l,m .

(1.305)

In analogy, we can determine the following tensor harmonic coefficients for the transposed gradient
(∇f)T . Due to construction of the tensor harmonics, we find that all coefficients remain the same as
in ∇f except for the (1, 2)/(2, 1) and (1, 3)/(3, 1) coefficients that are interchanged:
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(1.306)

As a preparation for the upcoming sections, applying the relation (1.285), in particular we find that

(εr · (∇f))
(1)
l,m = ∂rf

(1)
l,m,

(εr · (∇f))
(2)
l,m = ∂rf
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(1.307)

and (
εr · (∇f)

T
)(1)

l,m
= ∂rf

(1)
l,m ,(

εr · (∇f)
T
)(2)

l,m
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T
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r
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(1.308)

Laplacian

At last, we focus on the Laplacian, first, applied to a scalar field F . We start by using the spherical
harmonic representation of the (scalar) Laplacian, i.e.

∆F =

(
∂2
r2 +

2

r
∂r +

1

r2
∆∗
)
F . (1.309)
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We do not express the Beltrami operator by its individual components since as before, in the next
step we will exploit the eigenvector property of the spherical harmonic. More precisely, inserting the
scalar spherical harmonic representation of F then yields:

∆F =
∑
l,m

(
∂2
r2 +

2

r
∂r +

1

r2
∆∗
)
Fl,m Yl,m

=
∑
l,m

(
∂2
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2

r
∂r −

l(l + 1)

r2

)
Fl,m Yl,m .

(1.310)

Thus, the spherical harmonic coefficients of ∆F are given by

(∆F )l,m =

(
∂2
r2 +

2

r
∂r −

l(l + 1)

r2

)
Fl,m . (1.311)

Since the Laplacian is also defined for a vector field f we can present this application in terms of the
vector spherical harmonics. First, in analogy to the curl, we look at each component individually and
consolidate the results afterwards.
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(1.312)

We recognise the Beltrami operator in the f
(2)
l,m part and furthermore we see that the f

(3)
l,m part vanishes.

Thus, we can simplify the previous equation to:

(∆f)r =
∑
l,m

((
∆r − l(l + 1) + 2

r2

)
f

(1)
l,m +

2l(l + 1)

r2µl
f

(2)
l,m

)
Yl,m . (1.313)

We go on with the lateral components.
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(1.314)
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Note that here, the Beltrami operator does not directly act on Yl,m because of the 1√
1−t2 and

√
1− t2

terms in front of the spherical harmonics. We need to introduce the correction terms from (1.94)
which then yield a substantial reduction of complexity:
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(1.315)

In analogy, we find for the t-component that
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(1.316)

Using (1.94) also yields the desired simplifications:
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(1.317)

Again, we compare (∆f)r, (∆f)ϕ and (∆f)t to the explicit vector spherical harmonic representation
of (1.273) and (1.277) to reformulate the previously derived three equations as
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 . (1.318)

Thus, to state the final result, the vector spherical harmonic coefficients of ∆f can be written as:
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(3)
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(
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r2

)
f

(3)
l,m .

(1.319)

As a side remark, we are aware that - since µl =
√
l(l + 1) - the factor in front of the f

(2)
l,m term in

the first harmonic could also be written as 2µl/r
2 to illustrate the symmetry to the second harmonic.

But in general, we do not cancel the normalisation factor µl with the Beltrami eigenvalue −l(l+ 1) in
order to keep track of the origin of the respective factors.

With the derivation of the scalar, vector and tensor spherical harmonic coefficients of all differen-
tial operators that will be used within the next chapters, we have gained a very powerful tool to
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examine all types of governing equations that we will come across within this work in terms of a spec-
tral analysis. In the next two chapters we will find that this spectral approach will lead to a variety
of simplifications of the underlying equations and - under certain conditions - even the determination
of analytic solutions, that will open the door to a variety of different applications. But first, to finish
this chapter, we will have a look at a special kind of vector fields.

1.6 Mie representation

We start this subsection by introducing a special type of functions, so-called solenoidal (Greek:
pipe-shaped) functions. We will find that this property is strongly related to the physical property of
incompressibility of a fluid, which can - to first order - be assumed for the circulation in the Earth’s
mantle. Due to this direct application it is worth looking at these functions in a more detailed way.

To be able to introduce the principle of solenoidality we need to remember the concept of regular
surfaces that we introduced in the first section of the preliminaries. We recall that a regular sur-
face Σ divides the space R3 into a bounded inner Σint and an unbounded outer part Σext. Moreover,
it is possible to determine for each x ∈ Σ a unique normal vector that points into the outer region Σext.

Now, let Ωα,β ⊂ R3 be a spherical shell with 0 ≤ α < β ≤ ∞. Then, a vector field f ∈ c(1)(Ωα,β) is
called solenoidal if for every regular surface Σ ⊂ Ωα,β we have∫

Σ

f(x) · n(x) dω(x) = 0 , (1.320)

where n is the outer normal field on Σ, i.e. the total flux of f across the surface Σ vanishes. Because
this holds for every arbitrary regular surface inside Ωα,β we may conclude that there are no (positive
or negative) sources of f inside Σ which would relate the statement above to the divergence of f .
Indeed, with the help of Gauss’ Theorem (1.134) it can easily be shown that:

f solenoidal in Ωα,β ⇒ ∇ · f = 0 in Ωα,β .

Probably, one would expect that due to Gauss’ Theorem both properties are equivalent but this is
only true for sufficiently nice domains, e.g. for R3 or star-shaped domains in general. Even if we
just remove the origin from R3 a divergence-free field does not need to be solenoidal any more. If
we e.g. consider the function f : Ωα,β → R3 with α > 0 and β > α arbitrary with f(x) = x/|x|3,
x ∈ Ωα,β , we find that

∇ · f =

3∑
i=1

∂i
xi
|x|3

=

3∑
i=1

1

|x|3
− 3

x2
i

|x|5

=
1

|x|5

(
3|x|2 − 3

3∑
i=1

x2
i

)
= 0 ,

(1.321)

but for any sphere Ωr with α < r < β we find that∫
Ωr

f · n(x) dω(x) =

∫
Ωr

x

|x|3
· x
|x|

dω(x)

=

∫
Ωr

1

|x|2
dω(x) =

1

r2

∫
Ωr

1 dω(x)

=
1

r2

(
4πr2

)
= 4π .

(1.322)
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Figure 1.8: An illustration of a purely poloidal (left) and toroidal (right) vector field. The colours
indicate the amplitude of the vectors, descending from red (large) to blue (small).

But nevertheless it can be shown - also quite easily by using Gauss’ Theorem - that if the domain is a
thick spherical shell, both properties are equivalent if and only if we enforce a zero flux through one
of the shell boundaries in addition to the zero divergence of f , i.e.∫

Ωα

f · n(x) dω(x) = 0 or

∫
Ωβ

f · n(x) dω(x) = 0 . (1.323)

In case of Earth’s mantle flow, this property will hold since we will assume that there is neither flow
out of the Earth’s surface nor from the core-mantle boundary into the outer core. We will refer to
this assumption later as the no-outflow condition.

Particularly, from the above relations it can be deduced that if f is divergence-free and satisfies
one of the conditions in (1.323), the other condition must also be satisfied. For the Earth’s mantle
this implies that if we have a divergence-free velocity field and enforce a no-outflow condition at the
Earth’s surface, the no-outflow condition is also automatically fulfilled for the core-mantle boundary.

One of the most relevant properties of solenoidal fields is the so-called Mie representation. Us-
ing the general Helmholtz decomposition of vector fields (see e.g., Freeden et al., 1998) it can be
shown that it is possible to describe a solenoidal vector field entirely by only two (unique) scalar fields
S and Q. In other words, the intrinsic three free parameters of a vector field can be reduced to two.
More precisely, for f ∈ c(1)(Ωα,β) solenoidal there are two unique scalar field S,Q ∈ C(2)(Ωα,β) with∫

Ωr

S(x) dω(x) =

∫
Ωr

Q(x) dω(x) = 0 , (1.324)

for any sphere Ωr with α ≤ r ≤ β, which satisfy that

f = −∇ ∧ L∗S − L∗Q = ∇∧∇ ∧ Sξ +∇∧Qξ , (1.325)

where x = rξ, ξ ∈ Ω. The first part, including the scalar field S, represents the poloidal part of f
where the second part, including the scalar field Q, represents the toroidal part of f . In literature, it is
also common to use the more apparent notation of P for the poloidal and T for the toroidal scalar. We
deliberately go a different way here because otherwise, P and T could be confused with pressure and
temperature, respectively, in particular in Chapter 3. A few paragraphs below, we will explicitly find
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the connection to the poloidal-toroidal decomposition that we already know from the vector spherical
harmonic representation. Containing plots of purely poloidal and toroidal fields, Figure 1.8 illustrates
the nomenclature since the poloidal field lines are directed towards (or away from) the poles, where
the toroidal field lines form a circle (i.e. torus) around the poles.

The minus sign originates from the definition of the surface curl gradient L∗ and is just convention.
In literature one can also find the previous equality without the minus sign which is an equivalent
statement. Both can easily be transformed into each other by choosing S̃ := −S and Q̃ := −Q to
arrive at f = −∇∧∇∧ S̃ξ −∇∧ Q̃ξ = ∇∧ L∗S + L∗Q. Additionally, one can find definitions where
ξ is replaced by x but also this is just a (normalising) convention.

If f satisfies the conditions above we can now analyse the previous representation in terms of the
vector spherical harmonics. With the results of the previous section that provides us with the vector
spherical harmonic coefficients of the curl (1.296) and the double curl (1.297), we can immediately
find the following relations for the vector spherical harmonic coefficients of f :
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(
r (Sξ)

(2)
l,m

))
− l(l + 1)

rµl
(Qξ)

(3)
l,m ,

f
(2)
l,m =

1

r
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(1.326)

Here, the only things missing are the vector spherical harmonic coefficients of Sξ and Qξ but this
determination is trivial since ξ only induces a radial component in the simplest possible way and both
tangential coefficients vanish. More precisely we have

(Sξ)
(1)
l,m = Sl,m ,

(Sξ)
(2)
l,m = 0 ,

(Sξ)
(3)
l,m = 0 ,

(1.327)

and an analogous statement for Q. Inserting this result into (1.326) then yields the final representation
for the harmonic coefficients of a solenoidal vector field:

f
(1)
l,m =

l(l + 1)

r2
Sl,m ,

f
(2)
l,m =

µl
r
∂rSl,m ,

f
(3)
l,m = −µl

r
Ql,m .

(1.328)

Again, here we explicitly see that the three determining coefficients for the vector field f only depend
on the two scalar functions S and Q, where S can be found in both poloidal components and Q only
in the toroidal component of f .

In Chapter 3 of this work, we will learn that exactly this property will help us to develop an analytic
benchmark for the special case of an incompressible flow - which yields a divergence-free velocity field
and therefore the previously derived representation of the harmonic coefficients of the velocity field.
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Chapter 2

Continuum mechanics

”You can compare mass conservation with your wallet. If you take money out of it, the amount inside
becomes equally less. Well, it’s a little bit different with governments. They eventually just print
money and then suddenly, there is more, though actually, there is still none ... erm ... we better do
not consider this case here.”

Prof. Paul Wagner, University of Vienna

2.1 Conservation laws

In this section, we briefly introduce conservation laws that build the foundation for a mathematical
formulation of flow inside the Earth’s mantle. There is an uncountable number of literature for classic
continuum mechanics, here, we just want to point to the standard work by Landau and Lifshitz
(1959) and in addition to Bunge and Kennett (2008) that build the bridge to modern geodynamic
applications. Wherever one finds the theory in our work not to be detailed enough, both previously
mentioned books will provide the desired supplementary material.

2.1.1 Conservation of mass

Conservation of mass builds on the basic assumption that within a closed system, mass cannot be
created or be destroyed out of nothing. Looking at an arbitrary volume V inside the system, this
means that if ever the total mass in the interior of V changes over time due to mass transportation
(induced by an existing flow field with velocity v), exactly this amount of mass must have passed
through its boundary in the same time. In Chapter 1 we learned that the flux of a vector field f
across a surface Σ - see (1.128) - can be regarded as a measure of the amount of f passing through
this surface. In case that we identify f with a velocity field v, we gain the volume flux (unit: m3/s)∫

Σ

v(x) · dω(x) , (2.1)

a measure of how much volume passes through Σ per time. By additionally weighting this amount by
the respective density at each point, we gain the mass flux across the surface∫

Σ

(ρ(x) v(x)) · dω(x) . (2.2)
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Equipped with these quantities, we can formulate the above stated principle of mass conservation as

∂t

∫
V

ρ(x) dV (x) +

∫
∂V

(ρ(x) v(x)) · dω(x) = 0 , (2.3)

where the first term describes the change of the total mass of the volume V per time, which is balanced
by the respective mass flux across the boundary ∂V of V . Interchanging integration and differentiation
and applying Gauss’ divergence theorem (1.134) to convert the surface into a volume integral we gain:∫

V

(∂tρ(x) +∇ · (ρ(x) v(x))) dV (x) = 0 . (2.4)

Since the previous relation must hold for each volume V inside the domain of interest, we can conclude
that the integral itself has to vanish, i.e.

∂tρ+∇ · (ρv) = 0 , (2.5)

which is the so-called continuity equation (compare to the continuity equation in electrodynamics
which describes the conservation of charges).

For applications in the Earth’s mantle it is appropriate to neglect time variations of the density -
i.e. acoustic waves - since the acoustic wave speed is many magnitudes higher than the velocity of
Earth’s mantle flow and thus, does not play any role when looking at the Earth’s mantle circulation
over geological time scales. This is called the anelastic limit. With ∂tρ = 0 the continuity equation
then turns into

∇ · (ρv) = ρ∇ · v + v · ∇ρ = 0 . (2.6)

From the Preliminary Earth Model PREM (Dziewonski and Anderson, 1981) we learned that the
density inside the Earth’s mantle has a clear radial dependence mainly due to the increasing pressure
with depth. The difference in magnitude is of approximately a factor of 2 from the Moho to the core-
mantle boundary (CMB). Since the lateral density variations - a few percent of the respective radial
mean density - that drive the Earth’s mantle flow are significantly smaller than these radial variations
we may neglect the lateral dependence of ρ and only consider a radial dependent background density
ρ0(r) in the continuity equation above.

In the next subsection we will see that also in the momentum equation, the lateral density varia-
tions will only enter the system in the buoyancy term combined with the gravitational acceleration
where in all other terms it is sufficient to refer only to the background density ρ0(r). This approxi-
mation is called the Boussinesq approximation (Boussinesq, 1903), an approximation that is thus
appropriate and also regularly used for simulations of the Earth’s mantle circulation.

Due to these considerations the continuity equation simplifies to

∇ · (ρ0v) = ρ0∇ · v + v · ∇ρ0 = ρ0∇ · v + vr ∂rρ0 = 0 . (2.7)

In this chapter we will from now on denote radial derivatives with dotted variables since they will
appear regularly especially in the section about the spectral representation of the governing equations,
i.e. here we define ρ̇0 := ∂rρ0. Furthermore, we introduce a new variable

χ(r) := r
ρ̇0(r)

ρ0(r)
= r

∂ ln ρ0

∂r
=
∂ ln ρ0

∂ ln r
, (2.8)

which is called the compressible factor that includes all parts of the continuity equation that are
related to density variations. The scaling factor r is just a convention to transfer χ to the order of
unity. Indeed, in a realistic Earth model, e.g. when we consider the radial density profile of PREM,
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compressible factors in the range of −1.0 < χ < 1.0 can be found for almost all parts in the mantle
except for regions of phase changes in the upper mantle, where density jumps are significantly larger.
Also except for some of these special regions, χ(r) is negative throughout the whole mantle since the
density increases with depth. Using this convention, we then end up with

∇ · v = −χ
r
vr . (2.9)

If we even assume a constant density and neglect the factor of 2 in the radial profile, i.e. we assume
incompressibility of the Earth’s mantle, we obviously find χ(r) = 0 that transfers the continuity
equation into its simplest form

∇ · v = 0 , (2.10)

i.e. we find that in case of an incompressible flow, the corresponding velocity field is divergence-free.

2.1.2 Conservation of momentum

Applying conservation of mass and momentum to a viscous fluid, we find the Cauchy-Euler equation
of motion. It states a relation between the inertia forces on the left-hand side of the equation that
are balanced by surface forces acting on the volume, entering the equation via the Cauchy stress
tensor σ and external body forces b, that commonly represent forces like e.g. the gravitational or the
Coriolis force. In differential notation it holds that

ρDtv = ∇ · σ + b , (2.11)

where Dt := ∂t ·+ (v · ∇) · denotes the material time derivative where ∂tv represents the temporal and
v · ∇v the advective acceleration.

Now, in order to connect the stress tensor σ explicitly to the velocity field v, a constitutive law
has to be applied that describes the general response of the material - change in volume and/or shape
- to an external force. The Earth’s mantle may be regarded as a highly viscous Newtonian fluid.
The fundamental property of such a fluid is the linear relation between stress and the applied strain
rate ė. The representation of the strain rate tensor can be derived as

ė =
1

2

(
∇v + (∇v)

T
)
. (2.12)

Where the strain rate may represent both changes in volume and shape, there are two additional
principles that contribute to a possible change in volume, the hydrostatic pressure Ph - which even
applies when the fluid is at rest - and the expansion rate of the volume, expressed by the divergence
of v. Summarising all described effects we end up with the following (general) constitutive relation
for Newtonian fluids:

σ = −Ph 13 + λ (∇ · v)13 + 2ηė

= (−Ph + λ∇ · v)13 + η
(
∇v + (∇v)

T
)
,

(2.13)

where the proportionality constants λ and η reflect specific material properties. Here, λ denotes the
first Lamé parameter - compare to Young’s modulus in the context of elasticity - and η represents
the (dynamic) viscosity of the fluid (also second Lamé parameter) - compare to the shear mod-
ulus in the context of elasticity).

In particular, please note in the previous representation that σ is symmetric, i.e. σ = σT . This is a
very important property since it can be shown that in general, conservation of angular momen-
tum is equivalent to the stress tensor being symmetric. Thus, under the assumption of a Newtonian
rheology, as in our approach, conservation of angular momentum is intrinsically fulfilled.
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In order to also distinguish formally between the different contributions, it is appropriate to divide
the total stress tensor into two parts: one part that is only responsible for changes in volume and a
second part that is only responsible for changes in shape, i.e. pure shear stress. It can be shown that
in general only the trace of σ is responsible for changes in volume. This means that dividing σ into a
traceless and a non-traceless part - which is called the deviatoric stress tensor - would acknowledge
for these two types of stress. We find that

tr(σ) = −3Ph + 3λ∇ · v + 2η∇ · v = −3Ph + (3λ+ 2η)∇ · v , (2.14)

and thus, d, the deviatoric part of σ, can be defined as:

d := σ − 1

3
tr(σ)13 = σ −

(
−Ph +

(
λ+

2

3
η

)
∇ · v

)
13

= η

(
∇v + (∇v)

T − 2

3
(∇ · v)13

)
.

(2.15)

Obviously, tr(d) = 0. The total stress tensor σ then states as

σ =

(
−Ph +

(
λ+

2

3
η

)
∇ · v

)
13 + d

= (−Ph + ζ∇ · v)13 + η

(
∇v + (∇v)

T − 2

3
(∇ · v)13

)
,

(2.16)

where ζ := λ+ 2
3η is the volume (also bulk or second) viscosity - compare to the bulk modulus in

elasticity. The volume viscosity is a material dependent property that measures its resistance against
imposed changes in volume. Landau and Lifshitz (1959) describes it as a measure of the relaxation time
that is required for the fluid to restore thermodynamic equilibrium. Thus, together with ∇· v - which
represents the expansion rate of the material - it forms a part of the stress tensor that counteracts the
compression effect due to the hydrostatic pressure. Therefore, it is convenient to unite both effects
under the roof of a total pressure variable, i.e. from now on, we define P := Ph − ζ∇ · v and end up
with

σ = −P13 + η

(
∇v + (∇v)

T − 2

3
(∇ · v)13

)
. (2.17)

In the Earth’s mantle, due to the small expansion rates, relaxation times are considerably small and
thus, the hydrostatic pressure Ph dominates ζ∇ · v by far such that in our case we can safely assume
P = Ph. For the special case of an incompressible flow (∇ · v = 0), ζ∇ · v vanishes anyway and the
total stress tensor even reduces to

σ = −P13 + η
(
∇v + (∇v)

T
)
. (2.18)

But for now, we continue with the more general - compressible - formulation (2.17) and insert it into
(2.11) to find the Cauchy-Euler equation for Newtonian fluids:

ρDtv = ∇ · (−P13 + d) + b

= ∇ ·
(
−P13 + η

(
∇v + (∇v)

T − 2

3
(∇ · v)13

))
+ b

= −∇P +∇ ·
(
η

(
∇v + (∇v)

T − 2

3
(∇ · v)13

))
+ b .

(2.19)

At this point, it is possible - and crucial - to compare the magnitude and thus, the importance of both
sides of the previous balance equation. Here we find the inertia forces on the left-hand side and the
viscous forces on the right-hand side. The non-dimensional Reynolds number

Re :=
ρvd

η
, (2.20)
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where d is a characteristic length scale and v a characteristic velocity, exactly describes the relation
of both balanced forces. With ρ ≈ 3 · 103 kg/m3, v ≈ 1 cm/yr = 3 · 10−10 m/s, d ≈ 1000 km = 106 m
and η ≈ 1021 Pas (kg/(m · s)) we find a Reynolds number of Re ≈ 10−21. This small Reynolds number
means that in the Earth’s mantle the inertia force is significantly (≈ 1021 times) smaller than the
viscous force and thus, may be dropped in the previous equation, i.e. ρDtv ≈ 0. The remaining
balance equation is often referred to as the Stokes equation:

−∇P +∇ ·
(
η

(
∇v + (∇v)

T − 2

3
(∇ · v)13

))
= −b . (2.21)

We notice that this equation does no longer contain any time derivatives. This implies that the bal-
ance between surface (left-hand side) and body (right-hand side) forces is reached instantaneously.
Later we will see that thus, in mantle circulation codes, time dependency is introduced to the system
only by the energy equation.

If we have a closer look at the Stokes equation, we see that further simplification can be achieved in
case of a spatially constant viscosity η(x) = η̂0. We use the ’hat’-notation to distinguish this constant
value from a radially varying background viscosity profile η0 that we will introduce a few paragraphs
below. In that special case, it is possible to drag η̂0 out of the divergence operator and together with
∇ · (∇v)

T
= ∇ (∇ · v) we arrive at

−∇P + η̂0

(
∆v +

1

3
∇ (∇ · v)

)
= −b . (2.22)

If we additionally assume incompressibility, the Stokes equation then even turns into a Poisson equa-
tion:

η̂0 ∆v = ∇P − b . (2.23)

The assumption of a spatially non-varying viscosity is certainly not true for the Earth’s mantle, where
a narrow layer of low viscosity in the upper mantle, the asthenosphere, is at least 100 times less viscous
than the lower mantle (see e.g., Hager and O’Connell, 1979; Hager, 1984, or the following sections
here in this work).
Nevertheless, it can be shown (in particular see Chapter 3) that it is possible to derive analytic
solutions to the Poisson equation (2.23) by exploiting the spectral representation of the underlying
operators and functions. Since the existence of analytic solutions is crucial for constructing objective
test scenarios for numerical codes, this simplified version of the Stokes equation is of large interest -
not only in the geophysics community.

Finally, in order to complete our investigations with respect to the momentum equation, we still
have to determine the body force(s) b. The predominant mechanism driving mass transport inside the
Earth’s mantle is thermal buoyancy, i.e. in a more general term: gravity. Denoting the gravitational
potential by U , the gravitational force generated by the density field ρ is given by:

b = −ρ∇U , (2.24)

where U is determined by the Poisson equation (see (1.108) and Chapter 4):

∆U = 4πGρ , (2.25)

with the gravitational constant G. When we investigated the conservation of mass in the previous
section, we introduced a radially dependent background density ρ0(r) which allows us now to separate
lateral density variations from the total density field. For this purpose, we define ρ̃(x) := ρ(x)−ρ0(r),
where x = rξ with ξ ∈ Ω. In analogy, we can divide U = U0 + Ũ with ∆U0 = 4πGρ0 and ∆Ũ = 4πGρ̃
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into contributions from the radial density profile and the lateral variations. This transforms (2.24)
then into

b = − (ρ0 + ρ̃)∇
(
U0 + Ũ

)
= −

(
ρ0∇U0 + ρ0∇Ũ + ρ̃∇U0 + ρ̃∇Ũ

)
.

(2.26)

We define g0 := |∇U0| which is the reference gravitational acceleration, generated only by the radial
density profile. Note that since U0 = U0(r), also g0 = g0(r) is a radially dependent quantity. Since
per definition, there are no lateral density variations in the background profile, (∇U0) (x) points in
the (positive) εr direction (since the force −∇U0 is directed towards the centre of the Earth) for each
x ∈ ΩE , i.e. ∇U0 = g0ε

r. Furthermore, we will drop from now on the second order term ρ̃∇Ũ that
is reasonably small compared to the remaining terms in the previous equation and end up with a
sufficiently accurate first order approximation:

b = −
(
g0ρ0ε

r + ρ0∇Ũ + g0ρ̃ε
r
)
. (2.27)

Here, g0ρ̃ε
r is the buoyancy force, generated by lateral density variations, the main driving mechanism

behind mantle circulation. ρ0∇Ũ is called self-gravity, a minor effect that takes into account the
change of the gravitational potential due to the lateral mass anomalies. This term is sometimes ne-
glected, also because of the reason that under this assumption, the Poisson equation of the disturbed
gravitational potential ∆Ũ = 4πGρ̃ can be removed from the total set of equations. Nevertheless,
e.g. Panasyuk et al. (1996) showed that self-gravity has a considerable effect (up to ≈ 50% on the low
harmonic degrees) on the calculation of synthetic geoids and gravity fields from mantle circulation
models and thus, may not be neglected in general. Furthermore, if we incorporate self-gravity in the
governing equations, we also have to consider that the disturbed potential Ũ changes the hydrostatic
pressure state outside the spherical shell, i.e. in the Earth’s core and the exterior, which results in a
difference in the normal stress levels at the boundaries - ρcŨ and ρaŨ , where ρc is the mean density
of the core and ρa(= 0) is the density outside the Earth - with respect to the undisturbed reference
state. We will need to include these conditions when we explicitly formulate the boundary conditions
for the total system of equations in Chapter 4.

The term g0ρ0ε
r expresses the gravitational force that is only generated by the radial density model,

which determines a hydrostatic state of equilibrium. Thus, this force exactly cancels out the corre-
sponding hydrostatic pressure gradient which is directed in the opposite direction. More precisely we
find ∇P0 = −g0ρ0ε

r, where P0 denotes the hydrostatic pressure generated by the background model.
These considerations then yield

b = ∇P0 − ρ0∇Ũ − g0ρ̃ε
r . (2.28)

Inserting this result into the Stokes equation (2.21), we find that we may subtract the hydrostatic
pressure from the total pressure gradient, defining P̃ := P − P0, what yields the following final
representation of the complete Stokes equation including an explicit formulation of the body forces b:

−∇P̃ +∇ ·
(
η

(
∇v + (∇v)

T − 2

3
(∇ · v)13

))
= ρ0∇Ũ + g0ρ̃ε

r . (2.29)

As we already stated before, the assumption of a constant viscosity in order to further simplify the
previous equation would not be justified. Nevertheless, to first order, it is appropriate and convenient
to assume that - in analogy to the radial background density profile - the viscosity does not vary
laterally but only radially, i.e. η(x) = η0(r), where η0(r) is a radially varying background viscosity.
At the end of this chapter, we will find that with this assumption it is even still possible to derive
(semi-)analytic solutions to the Stokes equation. For a purely radially dependent viscosity, we find
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∇η0 = ∂rη0ε
r = η̇0ε

r and with ∇ · (η0σ) = η0∇ · σ +∇η0 · σ, (2.29) becomes

−∇P̃ + η0

(
∆v +

1

3
∇ (∇ · v)

)
+ η̇0

(
εr · ∇v + εr · (∇v)T − 2

3
(∇ · v) εr

)
= ρ0∇Ũ + g0ρ̃ε

r . (2.30)

Due to the appearance of projections of ∇v onto the r-component, from here, we may deduce that a
representation of the whole previous equation in spherical polar coordinates, especially of the included
differential operators (see Chapter 1), will be helpful to gain even more insights into the nature of
the equation and the relation between the different physical quantities. Indeed, we will revisit this
equation in Section 2.2 and analyse it in terms of spherical polar coordinates.

2.1.3 Conservation of energy

As we have learned before, in the low-Reynolds-number limit of the Navier-Stokes equation, i.e. the
Stokes equation, we no longer find any time-dependency, the balance of forces is reached instanta-
neously. But in addition, there are time-dependent processes that transport the energy that is fed into
to system by bottom heating from the Earth’s core through the Earth’s mantle. There are mainly
two ways to achieve this, advection and conduction, and it depends on the flow regime and the do-
main geometry, which of them are dominating. For the Earth’s interior, we find that advection is the
dominant mechanism of heat transport, where at the thermal boundary layers - the Earth’s surface
and the CMB - conduction is dominating. In case of the Earth, we are faced with an additional
non-negligible heat source, which is internal heating, generated by the decay of radiogenic isotopes.
Taking all the previously presented mechanisms into account, we end up with the following energy
balance, formulated in terms of the temperature T :

∂tT + v · ∇T − κ∆T +H = 0 , (2.31)

where v · ∇T is the advective, κ∆T the conductive part, with the thermal diffusivity κ and H repre-
sents the additional radiogenic heat source.

Where the velocity field v couples to the momentum equation in a direct way, we do not find the
temperature T in the equation of motion since here, density anomalies are the driving forces. In order
to make the total system of equations remain solvable, we thus need a connection between temperature
and density. Such a relation that connects different material parameters is called equation of state.
In a historical perspective, Boyle’s law, that states that for an ideal gas, the product of pressure and
volume remains constant (assuming a constant temperature), i.e. PV = const., can be regarded as
the first discovered equation of state. Later, the anti-proportionality constant could be determined as
PV = nRT , where n is the amount of substance [mol] of the gas, R the universal gas constant and T
the temperature. This relation is called the ideal gas law. It can be imagined that by translating
all these theoretical and experimental considerations to fluids and solids, one opens the door to a
large area of research and complexity. Early and still commonly used results for fluids and solids are
the Murnaghan (Murnaghan, 1944) and the Birch-Murnaghan (Birch, 1947) equations of state, where
pressure, volume and the compressibility factor of a material are related to each other.

When returning to density and temperature, in order to keep things simple, we may use a natural
first-order approach where an increase in temperature is connected to the respective volume expansion
just by a multiplicative factor. This factor is called the thermal expansion coefficient α [1/K] and
gives the percentage increase of a volume per Kelvin. We now introduce T0 := T0(r) as a radially de-
pendent reference temperature that identifies with the respective reference density ρ0(r) from above.
If we now increase (decrease) the temperature by an absolute value of T̃ (starting from T0), due to
the expanding (contracting) volume, the density decreases (increases) to

ρ =
1

1 + αT̃
ρ0 . (2.32)
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Restating the previous equation in terms of the absolute density variation ρ̃ = ρ− ρ0, we find that

ρ̃ =

(
1

1 + αT̃
− 1

)
ρ0 = − αT̃ρ0

1 + αT̃
. (2.33)

For small values of αT̃ it is possible to neglect this term in the denominator of the term on the right-
hand side since the percentage error εerr that would be caused by this simplification exactly equals

εerr =
αT̃ρ0

1

αT̃ρ0

1+αT̃

− 1 = 1 + αT̃ − 1 = αT̃ . (2.34)

In an Earth-like scenario, α is approximately of magnitude 10−5 and lateral temperature variations
are at most of the order of 103, such that one ends up with values in the range of a few percent for
αT̃ . Thus, also the maximum error lies in the range of a few percent and it is safe to approximate the
previous relation between density and temperature variations to first order as

ρ̃ = −αT̃ρ0 . (2.35)

Equipped with this equation of state, the coupling between momentum and energy equation is com-
plete. In order to illustrate the connection between density and temperature even further, we may
substitute the previously found relation directly into the momentum equation. The complete Stokes
equation (2.29) then turns into

−∇P̃ +∇ ·
(
η

(
∇v + (∇v)

T − 2

3
(∇ · v)13

))
= ρ0∇Ũ − g0αT̃ρ0ε

r , (2.36)

which reduces under the assumption of incompressibility to

−∇P̃ +∇ ·
(
η
(
∇v + (∇v)

T
))

= ρ̂0∇Ũ − g0αT̃ ρ̂0ε
r . (2.37)

Note that here, due to the incompressibility, we use a globally constant reference density ρ̂0 instead of
the radially varying ρ0. In the isoviscous case, i.e. η(x) = η̂0 (compare to (2.22)), (2.36) turns into:

−∇P̃ + η̂0

(
∆v +

1

3
∇ (∇ · v)

)
= ρ0∇Ũ − g0αT̃ρ0ε

r . (2.38)

In the following sections, our focus remains on the static problem such that we will again neglect
the energy equation for now and proceed with the Stokes equation in the ’density format’ (2.29),
resp. (2.30). But we will use the Stokes equation in the ’temperature format’ again in the next chap-
ter where we build the bridge from the static solutions to time-dependent mantle circulation models
and show that analytic solutions to the Stokes equation may be well-suited to test numerical models
and to construct benchmark scenarios.

The energy equation in its full pride will cross again our path in the final chapter of this thesis
where we will open Pandora’s box and discuss if there is a possibility to cope with its inherent initial
condition problem. Since (2.31) is a differential equation with respect to temperature, initial and
boundary conditions are needed such that this equation may be solved. While the boundary condi-
tions (temperature at the surface and the CMB) do not provide large problems (to first order), the
initial condition (temperature distribution at some point in the past, usually in the range of millions
of years) is apparently indeterminable. In Chapter 5 we will discuss a very elegant solution strategy
for navigating out of this trouble.

2.2 Spectral representation and analytic solutions

For now, we return to the static problem. In this section, we will apply the mathematical strategies
presented in Chapter 1 to the previously derived Stokes equation. This is one of the most important

86



2.2. SPECTRAL REPRESENTATION AND ANALYTIC SOLUTIONS

parts of this work since the results of this section will provide the basis for the following chapters.
With the help of a spherical harmonic representation of the physical quantities and the representation
of all differential operators in spherical polar coordinates, we will be able to convert the second order
non-linear partial differential equation into a set of first order ordinary differential equations.

This technical simplification directly leads to the possibility of deriving analytic solutions to (spe-
cial cases of) the Stokes equation. We will use the results of this section e.g. in Chapter 3 (for the case
of incompressibility and constant viscosity) to derive a method of creating objective benchmark test
scenarios for mantle circulation codes. Furthermore, in Chapter 4 we will use the following results to
analytically determine the velocity and stress field induced by a certain buoyancy field (e.g. derived
from seismic tomography) even under the Earth-like condition of a radially varying viscosity profile.
We will find that these procedures naturally yield further applications like e.g. the determination of
flow-induced dynamic topography and gravitational signals (geoid, gravitational acceleration).

In order to perform these transformations, the only restriction we have to face is that the viscos-
ity η may only vary radially, as we already discussed in Section 2.1.2. Thus, from now on, we set
η(x) = η0(r) (compare to (2.30)). This is a legitimate assumption if we focus on investigating the
properties of Earth’s mantle flow to first order. In the real world, viscosity may strongly be depen-
dent on temperature, such that especially in regions with subducting slabs or rising plumes there are
significant lateral temperature gradients which induce non-negligible lateral viscosity variations. But
a simulation of these more realistic scenarios would require a more complex equation of state in the
governing equations. Numerical codes may be adapted to this but it should not be very surprising
that these complexities are beyond analytical approaches.

2.2.1 Continuity equation

We start the transformation by restating the already derived continuity equation (2.9), an equivalent
formulation of the conservation of mass in the anelastic limit:

∇ · v = −χ
r
vr . (2.39)

We now represent the velocity field v in terms of vector spherical harmonics, using the notation
introduced in Chapter 1. Since the (background) density (and later also the viscosity η in the Stokes
equation) may only vary radially, a harmonic representation is not useful for these quantities, so they
remain as ρ0 := ρ0(r) (and therefore also χ := χ(r) and later η0 := η0(r) respectively). The vector
spherical harmonic representation of the divergence (1.290) then directly yields(

∂r +
2

r

)
v

(1)
l,m −

l(l + 1)

rµl
v

(2)
l,m = −χ

r
v

(1)
l,m , (2.40)

for all l ∈ N and m = −l, ..., l. From now on we will focus on one individual l and m and drop the
harmonic degrees of the coefficients in our notation. Furthermore, we change the upper vector index
to a lower index. To avoid confusion we will in the following also extend the coefficients of scalar
fields (e.g. pressure P ) by a (lower) vector index ’1’. Otherwise, one could not distinguish between the
harmonic coefficient and the function itself. In the new notation - and using the already introduced
dot notation for the radial derivative - the previous equation reformulates as

v̇1 = −2 + χ

r
v1 +

l(l + 1)

rµl
v2 . (A1)

Furthermore, we separated the coefficient that contains a radial derivative (v̇1) from all other quanti-
ties. In the following subsections our goal will be to find similar relations for the radial derivative of all
other harmonic coefficients of the involved physical quantities in order to build a system of ordinary
differential equations. In our further notation, we will from now on denote equations that contain
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information about the poloidal coefficients (harmonic coefficients ’1’ and ’2’) of the different physical
quantities with (A) and equations relating toroidal coefficients (harmonic coefficient ’3’) with (B).
Equations that are not directly relevant but that will be helpful in course of the further derivation are
denoted by (H).

2.2.2 Stress tensor

Before we continue by applying the procedure above in exactly the same way to the previously derived
Stokes equation, we first have a look at the original representation of the stress tensor of a Newtonian
fluid itself and restate (2.17) - replacing η(x) by η0(r) - where we learned that:

σ = −P13 + η0

(
∇v + (∇v)

T − 2

3
(∇ · v)13

)
. (2.41)

When we discussed the momentum equation we learned that the hydrostatic pressure that is part of
the total stress tensor cancels with the hydrostatic pressure that is introduced into the equation by the
gravitational (body) force (compare to (2.29)). Thus, also here it suffices to consider the ’disturbed’
(non-hydrostatic) part of the stress tensor, i.e. σ̃ := σ−P013. Combining the previous representation
of the stress tensor with the continuity equation (2.9) we find that

σ̃ = −P̃13 + η0

(
∇v + (∇v)

T
+

2

3

(χ
r
vr

)
13

)
. (2.42)

Now, applying the spherical polar coordinate representation of the vector gradient (1.47), we find the
following relations for each of the different components of the (disturbed) stress tensor. We will not
explicitly need these relations in the further course of this work but we state them here for the sake of
completeness. Note that due to the symmetry (conservation of angular momentum) there are only 6
independent components of σ̃. If we look for the representation of σ instead of σ̃, the only difference
is that P̃ has to be substituted by P . We find that:

σ̃rr = −P̃ +
2η0

r

(
r ∂rvr +

χ

3
vr

)
,

σ̃ϕϕ = −P̃ +
2η0

r

(
vr +

1√
1− t2

∂ϕvϕ −
t√

1− t2
vt +

χ

3
vr

)
,

σ̃tt = −P̃ +
2η0

r

(
vr +

√
1− t2 ∂tvt +

χ

3
vr

)
,

σ̃rϕ =
η0

r

(
r ∂rvϕ +

1√
1− t2

∂ϕvr − vϕ
)

(= σ̃ϕr) ,

σ̃rt =
η0

r

(
r ∂rvt +

√
1− t2 ∂tvr − vt

)
(= σ̃tr) ,

σ̃ϕt =
η0

r

(
1√

1− t2
∂ϕvt +

t√
1− t2

vϕ +
√

1− t2 ∂tvϕ
)

(= σ̃tϕ) .

(2.43)

But what we really need is to keep thinking in terms of spherical harmonic coefficients and not of the
six individual components above. Thus, based on (1.305), the tensor harmonic representation of ∇v,

and (1.306), the tensor harmonic representation of (∇v)
T

that we derived in the previous chapter,
we can extract information about the harmonic coefficients of the stress tensor from (2.42). The
remaining parts - the pressure and divergence term - are only present on the diagonal of σ̃. Here, we
can directly infer from (1.283) that all tensor harmonic coefficients vanish except for((

−P̃ +
2

3
η0
χ

r
vr

)
13

)(1,1)

l,m

= −P̃1 +
2

3
η0
χ

r
v1 ,((

−P̃ +
2

3
η0
χ

r
vr

)
13

)(2,2)

l,m

=
√

2

(
−P̃1 +

2

3
η0
χ

r
v1

)
,

(2.44)
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where we already used the notation with the lower index for the spherical harmonic coefficients of P̃
and V . Now also including the ∇v and (∇v)T parts, we find that

σ̃1,1 = −P̃1 +
2

3
η0
χ

r
v1 + 2η0v̇1 , σ̃1,2 = η0

(
v̇2 −

v2

r
+
µl
r
v1

)
,

σ̃1,3 = η0

(
v̇3 −

v3

r

)
, σ̃2,1 = η0

(
v̇2 −

v2

r
+
µl
r
v1

)
,

σ̃3,1 = η0

(
v̇3 −

v3

r

)
, σ̃2,3 = η0

µ̄l
rµl

v2 , (2.45)

σ̃2,2 =
√

2

(
−P̃1 +

2η0

r

(χ
3

+ 1
)
v1 − η0

l(l + 1)

rµl
v2

)
, σ̃3,2 = η0

µ̄l
rµl

v3 ,

σ̃3,3 = −
√

2 η0
l(l + 1)

rµl
v3 .

Note that the tensor harmonic coefficients are not ’symmetric’ since σ̃2,3 6= σ̃3,2 but this is not related
to the symmetry of the stress tensor itself, this just arises naturally from the construction of the tensor
harmonics.

Stress is a surface force and thus, in general, the stress at a point x ∈ R3 depends on the sur-
face under consideration which the stress has to be applied to. The stress tensor is constructed in a
way that the stress vector s(x) (in literature also denoted as traction vector or surface traction) with
respect to the surface Σ - where x ∈ Σ - can be determined by

s(x) = σ(x)n(x) , (2.46)

where n is the unit normal vector to Σ at x ∈ Σ. It is common to split the resulting stress into two
components, the normal stress sn := (s(x) · n(x))n(x) that operates orthogonal to the plane and
the remaining part, the shear (or tangential) stress st(x) := s(x)− sn(x) that acts parallel to the
plane. In this work, where we are only considering scenarios inside a spherical shell, the plane of
consideration will always be a sphere with a certain radius around the origin, especially both domain
boundaries. The stresses exerted onto these planes will play an essential role e.g. when we will define
appropriate boundary conditions for flow inside the mantle or when we will discuss the phenomena
of dynamic topography. Due to the spherical symmetry and the transformation into spherical polar
coordinates, we immediately see that the normal vector of all planes is equal to the εr basis vector.
The previous equation then transforms into

s(x) = σ(x) εr(x) . (2.47)

Now, using (1.285) and - again - considering just the disturbed quantities, we can immediately deter-
mine the vector harmonic coefficients of the (disturbed) stress vector s̃ as

s̃1 = σ̃1,1 = −P̃1 +
2

3
η0
χ

r
v1 + 2η0v̇1 ,

s̃2 = σ̃2,1 = η0

(
v̇2 −

v2

r
+
µl
r
v1

)
,

s̃3 = σ̃3,1 = η0

(
v̇3 −

v3

r

)
.

(2.48)

In order to simplify the notation in the course of the further derivation of the harmonic relations,
from now on, we will neglect the special ’tilde’ labelling for the disturbed quantities and write e.g. σ
instead of σ̃. Nevertheless, we have to keep in mind that σ, P , U and ρ in fact denote disturbed
quantities. We also change the notation for the harmonic coefficients of the stress vector and define
σ1 := s1, σ2 := s2 and σ3 := s3 to emphasise the direct connection to the harmonic coefficients of the
stress tensor itself.
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In analogy to the continuity equation in the previous chapter, separating the derived quantities from
the others yields the following relations that help to extend our system of differential equations. We
do not execute this separation for the first equation since in the previous subsection, the continuity
equation already provided us with information about v̇1. Nevertheless, this equation will be very
useful in the next subsection in order to substitute the (harmonic coefficient of the) pressure field
inside the relations that we will gain from analysing the Stokes equation. Therefore, here, we separate
the harmonic coefficient of the pressure field and denote the relation by (H1):

P1 = −σ1 + 2η0v̇1 +
2

3
η0
χ

r
v1 . (H1)

v̇2 = −µl
r
v1 +

v2

r
+
σ2

η0
. (A2)

v̇3 =
v3

r
+
σ3

η0
. (B1)

We notice that at this point, we already gained differential equations for all harmonic coefficients of
the velocity field v. In the next subsection we will learn that the Stokes equation will provide us with
respective differential equations for the harmonic coefficients of the stress vector, resp. tensor.

2.2.3 Stokes equation

Now, we refocus on the Stokes equation (2.30) and analyse the first (vector) harmonic coefficient
by exploiting the derivation of the harmonic coefficients of the respective differential operators of
the previous chapter. After also inserting the final representation (2.9) of the continuity equation -
neglecting the tilde notation for the disturbed quantities - the Stokes equation becomes

−∇P + η0

(
∆v − 1

3
∇
(χ
r
vr

))
+ η̇0

(
(∇v)r· + (∇v)·r +

2

3

(χ
r
vr

)
εr
)

= ρ0∇U + g0ρε
r . (2.49)

Using the harmonic coefficient representations (1.301), (1.319), (1.305), (1.307) and (1.308) we imme-
diately find for the first vector harmonic coefficient that:

0 = −Ṗ1 + η0

(
v̈1 +

2

r
v̇1 −

l(l + 1) + 2

r2
v1 +

2l(l + 1)

r2µl
v2 −

1

3
∂r

(χ
r
v1

))
+ 2η̇0

(
v̇1 +

1

3

(χ
r
v1

))
− ρ0U̇1 − g0ρ1 .

(2.50)

Now, the first goal has to be to remove the pressure field P from the previous equation since - as
already discussed in the previous subsection - we try to find relations that only involve the stress
tensor, the velocity field and the body forces. Obviously, we can use the first radial derivative of (H1),
i.e.

Ṗ1 = −σ̇1 + 2η̇0v̇1 + 2η0v̈1 +
2

3
η̇0
χ

r
v1 +

2

3
η0∂r

(χ
r
v1

)
. (Ḣ1)

and replace Ṗ1 in (2.50) to find

0 = σ̇1 − 2η̇0v̇1 − 2η0v̈1 −
2

3
η̇0
χ

r
v1 −

2

3
η0∂r

(χ
r
v1

)
+ 2η̇0

(
v̇1 +

1

3

(χ
r
v1

))
− ρ0U̇1 − g0ρ1

+ η0

(
v̈1 +

2

r
v̇1 −

l(l + 1) + 2

r2
v1 +

2l(l + 1)

r2µl
v2 −

1

3
∂r

(χ
r
v1

))
= σ̇1 + η0

(
−v̈1 +

2

r
v̇1 −

l(l + 1) + 2

r2
v1 +

2l(l + 1)

r2µl
v2 − ∂r

(χ
r
v1

))
− ρ0U̇1 − g0ρ1 .

(2.51)
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We can already guess that at the end, this relation will provide us a differential equation with respect
to σ̇1. But we notice that now, we even have to deal with a second order derivative, i.e. v̈1. An
appropriate way to replace this term is to use the first radial derivative of (A1), i.e.

v̈1 = −2

r
v̇1 +

2

r2
v1 − ∂r

(χ
r
v1

)
+
l(l + 1)

rµl
v̇2 −

l(l + 1)

r2µl
v2 . (Ȧ1)

Now, we replace v̈1 in (2.51) and separate the harmonic coefficient of σ to find:

σ̇1 = η0

(
−4

r
v̇1 +

l(l + 1) + 4

r2
v1 +

l(l + 1)

rµl
v̇2 −

3l(l + 1)

r2µl
v2

)
+ ρ0U̇1 + g0ρ1 . (2.52)

In order to eliminate the first order derivative v̇2, we substitute (A2) into the previous equation to
find:

σ̇1 =
l(l + 1)

rµl
σ2 + η0

(
−4

r
v̇1 +

4

r2
v1 −

2l(l + 1)

r2µl
v2

)
+ ρ0U̇1 + g0ρ1 . (2.53)

We notice the radial derivative of the harmonic coefficient of the (disturbed) gravitational potential
U̇1 in the previous relation. In contrast to the other derived variables, i.e. Ṗ1, v̇1 and v̇2, there is no
additional information, resp. equation, with respect to U̇1 that we can use here to replace this deriva-
tive. We know that U is related to ρ by the gravitational Poisson equation but this equation even
contains second derivatives what makes this equation not suitable for a simplification of the previous
one. Thus, there is no other possibility than to keep U̇1 in the equation as it is. Therefore, from now
on, we have to basically treat U̇1 like a non-derived variable and in order to take this into account,
we will introduce an auxiliary variable and use the notation W1 := U̇1.

Furthermore, we remove the first order derivative v̇1 by inserting (A1), the relation derived from
the continuity equation, to arrive at

σ̇1 = 4 (3 + χ)
η0

r2
v1 − 6l(l + 1)

η0

r2µl
v2 +

l(l + 1)

rµl
σ2 + ρ0W1 + g0ρ1 . (A3)

We continue by applying exactly the same procedure to the second vector harmonic coefficient of both
sides of the Stokes equation. Applying again the respective harmonic coefficients of the differential
operators from the previous chapter yields:

0 = −µl
r
P1 + η0

(
v̈2 +

2

r
v̇2 −

l(l + 1)

r2
v2 +

2µl
r2

v1 −
1

3

µlχ

r2
v1

)
+ η̇0

(
v̇2 +

µl
r
v1 −

v2

r

)
− µl

r
ρ0U1 .

(2.54)

We substitute the pressure field P1 again by applying (H1):

0 =
µl
r
σ1 + η0

(
v̈2 +

2

r
v̇2 −

2µl
r
v̇1 −

l(l + 1)

r2
v2 +

µl (2− χ)

r2
v1

)
+ η̇0

(
v̇2 +

µl
r
v1 −

v2

r

)
− µl

r
ρ0U1 .

(2.55)

As before, we have to deal with a second derivative, v̈2. Obviously, we can replace this quantity by
using the radial derivative of (A2), i.e.

v̈2 =
σ̇2

η0
− η̇0

η0
2
σ2 −

µl
r
v̇1 +

µl
r2
v1 +

v̇2

r
− v2

r2
. (Ȧ2)
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We insert this result into (2.55) and separate σ̇2 since here, this seems to be the crucial quantity for
the differential equation. We find

σ̇2 =
η̇0

η0
σ2 −

µl
r
σ1 + η0

(
−3

r
v̇2 +

3µl
r
v̇1 +

l(l + 1) + 1

r2
v2 −

µl (3− χ)

r2
v1

)
+ η̇0

(
−v̇2 −

µl
r
v1 +

v2

r

)
+
µl
r
ρ0U1 .

(2.56)

In order to remove v̇2 we apply (A2) to find

σ̇2 = −3

r
σ2 −

µl
r
σ1 + η0

(
3µl
r
v̇1 +

l(l + 1)− 2

r2
v2 +

µlχ

r2
v1

)
+
µl
r
ρ0U1 . (2.57)

Finally, after also replacing v̇1 by using (A1) we gain the final result

σ̇2 = −2 (3 + χ)
η0µl
r2

v1 + (4l(l + 1)− 2)
η0

r2
v2 −

µl
r
σ1 −

3

r
σ2 +

µl
r
ρ0U1 . (A4)

We end this subsection by applying the already familiar procedure to the third vector harmonic
coefficient of both sides of the Stokes equation. Here, we find:

0 = η0

(
v̈3 +

2

r
v̇3 −

l(l + 1)

r2
v3

)
+ η̇0

(
v̇3 −

v3

r

)
. (2.58)

In order to replace the second order derivative v̈3 we use the radial derivative of (B1), i.e.

v̈3 =
v̇3

r
− v3

r2
+
σ̇3

η0
− η̇0

η0
2
σ3 . (Ḃ1)

We insert this result into (2.58) and separate σ̇3 to find

σ̇3 =
η̇0

η0
σ3 + η0

(
−3

r
v̇3 +

l(l + 1) + 1

r2
v3

)
+ η̇0

(
−v̇3 +

v3

r

)
. (2.59)

Inserting (B1) then yields the final result

σ̇3 = (l(l + 1)− 2)
η0

r2
v3 −

3

r
σ3 . (B2)

As already announced in the previous subsection, we notice that the Stokes equation now has pro-
vided us with an ordinary differential equation for all three harmonic coefficients of the stress vector.
Furthermore, note the astonishing result that all derivatives η̇0 of the viscosity cancel each other in
each of the previously derived relations, even if η̇0 is present in the original Stokes equation. Thus, in
spite of the assumption that the viscosity may vary radially, we do not have to take derivatives into
account and the equations remain easier to handle.

2.2.4 Poisson equation

Summarising the two previous subsection, we have already found four differential equations (A1) -
(A4) for the poloidal coefficients and two equations (B1) and (B2) for the toroidal coefficients. Since
with v3 and σ3 the governing equations only contain two toroidal coefficients, the system of equations
created by these two equations is already (potentially) solvable. With σ1, σ2, v1, v2, U1 and W1 there
are 6 poloidal variables involved in the governing equations. Note that ρ does not play any role here
since the overall task is to determine the stress and velocity field, i.e. the flow, given a certain den-
sity distribution, i.e. these coefficients are externally provided and serve as a constant in the derived
equations.
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Thus, there are still two poloidal equations needed to complete the system. Since until this point
we have not considered the relation between the gravitational potential U and the density field ρ yet,
we will have now a detailed look at the Poisson equation (2.25):

∆U = 4πGρ . (2.60)

We apply the same procedure as in the previous subsections and find, using (1.311) the following
relation for the (scalar) harmonic coefficient of both sides of the equation:

Ü1 +
2

r
U̇1 −

l(l + 1)

r2
U1 = 4πGρ1 . (2.61)

Since we do not want to handle second derivatives, it seems appropriate to reformulate the previous
relation in terms of W1. We then immediate find

Ẇ1 = −2

r
W1 +

l(l + 1)

r2
U1 + 4πGρ1 . (A6)

Now, the only thing missing to complete the system of differential equations is a relation between U̇1

and any non-derived variables but this is trivial since per definition it holds that

U̇1 = W1 . (A5)

The previous two relations (A5) and (A6) now complete the poloidal part of the equation system.
Note that in the special case when self-gravity is not taken into account in the Stokes equations,
U1 and W1 are not present in the relations (A1) - (A4) and there would be no need to include the
gravitational Poisson equation. The system (A1) - (A4) would already be complete and entirely
decoupled from (A5) and (A6), which then just serve as a representation of the Poisson equation
without any connection to the quantities representing the flow.

2.2.5 Summary: system of first order ODEs

We summarise all relations that were derived in the course of the previous subsections and briefly state
their origin to get a decent overview. For the poloidal coefficients we have found the following relations:

(A1) - continuity equation:

v̇1 = −2 + χ

r
v1 +

l(l + 1)

rµl
v2 .

(A2) - stress-strain relation, 2nd vector harmonic:

v̇2 = −µl
r
v1 +

v2

r
+
σ2

η0
.

(A3) - Stokes equation, 1st vector harmonic:

σ̇1 = 4 (3 + χ)
η0

r2
v1 − 6l(l + 1)

η0

r2µl
v2 +

l(l + 1)

rµl
σ2 + ρ0W1 + g0ρ1 .

(A4) - Stokes equation, 2nd vector harmonic:

σ̇2 = −2 (3 + χ)
η0µl
r2

v1 + (4l(l + 1)− 2)
η0

r2
v2 −

µl
r
σ1 −

3

r
σ2 +

µl
r
ρ0U1 .

(A5) - definition of auxiliary quantity W1:

U̇1 = W1 .
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(A6) - gravitational Poisson equation:

Ẇ1 = −2

r
W1 +

l(l + 1)

r2
U1 + 4πGρ1 .

For the toroidal coefficients we have found the following relations:

(B1) - stress-strain relation, 3rd vector harmonic:

v̇3 =
v3

r
+
σ3

η0
.

(B2) - Stokes equation, 3rd vector harmonic:

σ̇3 = (l(l + 1)− 2)
η0

r2
v3 −

3

r
σ3 .

Furthermore, due to construction it is possible to represent these equations also in a compact matrix
form. For the poloidal part, we find that (A1)-(A6) can be represented by the system of differential
equations

U̇A = AuA + α , (2.62)

with

uA := (v1, v2, σ1, σ2, U1,W1)
T
,

A :=


−(2 + χ)/r l(l + 1)/(rµl) 0 0 0 0
−µl/r 1/r 0 1/η0 0 0

4(3 + χ)η0/r
2 −6l(l + 1)η0/(r

2µl) 0 l(l + 1)/(rµl) 0 ρ0

−2(3 + χ)η0µl/r
2 (4l(l + 1)− 2)η0/r

2 −µl/r −3/r µlρ0/r 0
0 0 0 0 0 1
0 0 0 0 l(l + 1)/r2 −2/r

 ,

α := (0, 0, g0ρ1, 0, 0, 4πGρ1)
T
.

(2.63)

α is called the driving vector of the system since this vector contains the lateral density variations
that are responsible for the existence of the flow. Without the driving vector - and neglecting the
influence of boundary conditions for this moment - the system of differential equations would only
have the trivial solution uA ≡ 0, which means that there was no flow and the system was in equilibrium.

If we use the same notation for the toroidal part of the equation system, i.e.

˙uB = BuB + β , (2.64)

with

uB := (v3, σ3)
T
,

B :=

(
1/r 1/η0

(l(l + 1)− 2)η0/r
2 −3/r

)
,

β := (0, 0)
T
,

(2.65)

we see that there is indeed no driving vector for the toroidal part. This means that without imposing
boundary conditions that generate a toroidal field, we find that uB ≡ 0. This is a direct consequence
of the assumption of a purely radially varying viscosity since with a full laterally dependent viscosity,
there would be additional terms also in the toroidal parts of the equation.

Nevertheless, in numerical geodynamics it is common to impose a velocity field on the surface that has
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been derived by plate motion history. In time-dependent simulations this is even necessary in order to
generate realistic flow scenarios since it is mainly the boundary conditions that determine the detailed
flow behaviour inside the mantle. If we do a harmonic analysis of a current plate motion velocity
field model, we find that it (naturally) contains an essential toroidal component (see e.g., Hager and
O’Connell, 1981). Since we just learned that our model does not intrinsically support toroidal flow,
unfortunately such a data derived boundary condition would result in inconsistencies.

If we have a closer look at the matrices A and B we notice that the magnitude of the different
components vary significantly from each other. This has an essential negative impact on the condition
number of the matrix, which makes the numerical determination of the solution of a potential system
of linear equations that contains A or B infeasible if not impossible. To approach this problem, we
redefine some of the involved coefficients by multiplying the respective variables with appropriate
scaling factors, including the normalisation factor µl of the tangential harmonics. Furthermore, since
the factor 1/r is present in almost all components, it seems appropriate to extract this factor from
the matrices. More precisely, we define the new system of coefficients as:

v̄1 := v1 , σ̄1 :=
r

η̂0
σ1 , Ū1 := r

ρ̂0

η̂0
U1 ,

v̄2 :=
1

µl
v2 , σ̄2 :=

r

µlη̂0
σ2 , W̄1 := r2 ρ̂0

η̂0
W1 , (2.66)

v̄3 : =
1

µl
v3 , σ̄3 :=

r

µlη̂0
σ3 ,

where η̂0 is a constant reference viscosity (compare to (2.23)) and ρ̂0 a constant reference density.
Additionally, we define η∗0 := η0/η̂0 as the viscosity variation factor and ρ∗0 := ρ0/ρ̂0 as the density
variation factor. Due to the necessary radial scaling of some of the variables and the presence of
radial derivatives in the system of equations, we have to reformulate all relations in terms of the new
variables. In terms of the scaled quantities, the equations then state as:

(A1)

r ˙̄v1 = − (2 + χ) v̄1 + l(l + 1) v̄2 .

(A2)

r ˙̄v2 = −v̄1 + v̄2 +
σ̄2

η∗0
.

(A3)

r∂r

(
η̂0

r
σ̄1

)
= 4 (3 + χ)

η0

r
v̄1 − 6l(l + 1)

η0

r
v̄2 + η̂0

l(l + 1)

r
σ̄2 +

ρ∗0η̂0

r
W̄1 + rg0ρ1

⇔ η̂0

(
˙̄σ1 −

σ̄1

r

)
= 4 (3 + χ)

η0

r
v̄1 − 6l(l + 1)

η0

r
v̄2 + η̂0

l(l + 1)

r
σ̄2 +

ρ∗0η̂0

r
W̄1 + rg0ρ1

⇔ r ˙̄σ1 = 4 (3 + χ) η∗0 v̄1 − 6l(l + 1)η∗0 v̄2 + σ̄1 + l(l + 1) σ̄2 + ρ∗0 W̄1 +
g0r

2

η̂0
ρ1 .

(A4)

r∂r

(
µlη̂0

r
σ̄2

)
= −2 (3 + χ)

η0µl
r

v̄1 + (4l(l + 1)− 2)
µl η0

r
v̄2 − η̂0

µl
r
σ̄1 − µl η̂0

3

r
σ̄2 + η̂0

µl
r
ρ∗0 Ū1

⇔ η̂0

(
˙̄σ2 −

σ̄2

r

)
= −2 (3 + χ)

η0

r
v̄1 + (4l(l + 1)− 2)

η0

r
v̄2 −

η̂0

r
σ̄1 −

3η̂0

r
σ̄2 +

η̂0

r
ρ∗0 Ū1

⇔ r ˙̄σ2 = −2 (3 + χ) η∗0 v̄1 + (4l(l + 1)− 2) η∗0 v̄2 − σ̄1 − 2σ̄2 + ρ∗0 Ū1 .
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(A5)

r∂r

(
Ū1

r

)
= ˙̄U1 −

1

r
Ū1 =

W̄1

r

⇔ r ˙̄U1 = W̄1 + Ū1 .

(A6)

r2∂r

(
W̄1

r2

)
= −2

r
W̄1 +

l(l + 1)

r
Ū1 +

4πGρ̂0r
2

η̂0
ρ1

⇔ ˙̄W 1 −
2

r
W̄1 = −2

r
W̄1 +

l(l + 1)

r
Ū1 +

4πGρ̂0r
2

η̂0
ρ1

⇔ r ˙̄W 1 = l(l + 1) Ū1 +
4πGρ̂0r

3

η̂0
ρ1 .

(B1)

r ˙̄v3 = v̄3 +
σ̄3

η∗0
.

(B2)

r∂r

(
η̂0

r
σ̄3

)
= (l(l + 1)− 2)

η0

r
v̄3 − η̂0

3

r
σ̄3

⇔ η̂0

(
˙̄σ3 −

σ̄3

r

)
= (l(l + 1)− 2)

η0

r
v̄3 − η̂0

3

r
σ̄3

⇔ r ˙̄σ3 = (l(l + 1)− 2) η∗0 v̄3 − 2σ̄3 .

Summarised, we finally end up with the following linear systems of differential equations. The poloidal
part transfers into:

r ˙̄uA = ĀūA + ᾱ , (2.67)

with

ūA :=
(
v̄1, v̄2, σ̄1, σ̄2, Ū1, W̄1

)T
,

Ā :=


−(2 + χ) l(l + 1) 0 0 0 0
−1 1 0 1/η∗0 0 0

4(3 + χ)η∗0 −6l(l + 1)η∗0 1 l(l + 1) 0 ρ∗0
−2(3 + χ)η∗0 (4l(l + 1)− 2)η∗0 −1 −2 ρ∗0 0

0 0 0 0 1 1
0 0 0 0 l(l + 1) 0

 ,

ᾱ :=

(
0, 0,

g0r
2

η̂0
ρ1, 0, 0,

4πGρ̂0r
3

η̂0
ρ1

)T
= ᾱ0ρ1 ,

(2.68)

where we defined

ᾱ0 :=

(
0, 0,

g0r
2

η̂0
, 0, 0,

4πGρ̂0r
3

η̂0

)T
. (2.69)

And for the toroidal equations we find that:

r ˙̄uB = B̄ūB + β̄ , (2.70)
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with

ūB := (v̄3, σ̄3)
T
,

B̄ :=

(
1 1/η∗0

(l(l + 1)− 2)η∗0 −2

)
,

β̄ := (0, 0)
T
.

(2.71)

In literature, it is common to split the matrix Ā into three parts Ā = Āα + Āβ + Āγ that illustrate
the contributions from the different physical effects. We define

Āα :=


−2 l(l + 1) 0 0 0 0
−1 1 0 1/η∗0 0 0

12η∗0 −6l(l + 1)η∗0 1 l(l + 1) 0 0
−6η∗0 (4l(l + 1)− 2)η∗0 −1 −2 0 0

0 0 0 0 1 1
0 0 0 0 l(l + 1) 0

 , (2.72)

and

Āβ :=


−χ 0 0 0 0 0
0 0 0 0 0 0

4χη∗0 0 0 0 0 0
−2χη∗0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

 , Āγ :=


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 ρ∗0
0 0 0 0 ρ∗0 0
0 0 0 0 0 0
0 0 0 0 0 0

 . (2.73)

where Āα denotes the basis matrix, Āβ the contribution due to compressibility and Āγ accounts for
the effects from self-gravitation. As already mentioned before, note that in the basis matrix, the
5th and 6th row/column that correspond to the gravitational potential are decoupled from the other
entries. The coupling is only (optionally) introduced by Āγ . Thus, without taking self-gravity into
account, a 4× 4 matrix would be sufficient to determine all necessary flow parameters.

All presented matrices and vectors are still dependent on the radius r since the viscosity η∗0(r), the
background density variation ρ∗0(r) and thus, also the background gravitational acceleration g0(r) and
the compressible factor χ(r) may vary with depth. In practise, the domain, i.e. the Earth’s mantle,
will be divided into n layers, where in each layer, the above mentioned quantities are assumed to be
constant. In the limit n→∞ we then find the continuous dependence on r. The number of layers is
commonly determined by the origin of the data corresponding to the lateral density variations. An
image of the Earth’s mantle at the present time can e.g. be deduced by seismic tomographic data,
where the number of layers is given by the used model and/or by the spatial data distribution that
was used in order to derive the tomographic image.

In the next section we will present a standard method to solve the presented linear system of dif-
ferential equations in a spherical shell. Here, the assumption of a layer-wise constant matrix will be
essential for providing an appropriate and suitable solution method.

2.3 The propagator matrix technique

2.3.1 The 1-D approach

A spectral analysis of the Stokes and continuity equation has lead to a linear system of differential
equations of the form

u̇(r) = A(r)u(r) + α(r) , (2.74)
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where A ∈ Rn×n, n ∈ N is a real matrix. For the special case n = 1, A is just a multiplicative factor
a(r) ∈ R and the solution to this 1-D problem can be found by a standard exponential ansatz, first
determining the solution for the homogeneous problem, i.e. α(r) ≡ 0, then determining a particular
solution for the inhomogeneous problem by variation of the constant. By separation of the variables
we find for the homogeneous equation that

ln(u(r)) =

r∫
r0

a(τ) dτ + c̃ ⇒ u(r) = e

(
r∫
r0

a(τ) dτ

)
c , (2.75)

with an integration constant c ∈ R. The lower limit r0 of the integration evolves from one boundary
of the domain. Please keep in mind that one explicit boundary condition, i.e. u(r0) = u0 is required
to find a specific solution to the differential equation. Based on the previous result, a solution for
the inhomogeneous problem can be found by the assumption that also the constant c depends on r
(variation of the constant), i.e. we assume

u(r) = e

(
r∫
r0

a(τ) dτ

)
c(r) ⇒ u̇(r) = e

(
r∫
r0

a(τ) dτ

)
ċ(r) + a(r)u(r) .

(2.76)

Comparing this to the 1-D version of (2.74) we see that this relation is true for

α(r) = e

(
r∫
r0

a(τ) dτ

)
ċ(r) .

(2.77)

Thus, for c(r) we find

ċ(r) = e
−
(
r∫
r0

a(τ) dτ

)
α(r) ⇒ c(r) =

r∫
r0

e
−
(
s∫
r0

a(τ) dτ

)
α(s) ds+ C , (2.78)

with an integration constant C ∈ R. Inserting this result into the ansatz (2.76) we get

u(r) = e

(
r∫
r0

a(τ) dτ

) r∫
r0

e
−
(
s∫
r0

a(τ) dτ

)
α(s) ds+ C


= e

(
r∫
r0

a(τ) dτ

)
C +

r∫
r0

e

(
r∫
s

a(τ) dτ

)
α(s) ds .

(2.79)

Please verify that this specific u(r) indeed satisfies the differential equation (2.74). The explicit value
for C can be determined by choosing r = r0 in the previous equation, since in that case, all integrals
vanish and the equation reduces to u(r0) = C. Thus, the integration constant C can be identified
with the value of u at the inner boundary, which we will denote from now on by u0. Note that u0

does not necessarily need to be prescribed a-priori since it is also possible that u1 := u(r1) is given,
the value of u at the outer boundary. But in that case, the equation just needs to be rearranged. We
will discuss this scenario explicitly a few paragraphs below.

For the special case that the multiplicative factor a(r) is just a constant that does not depend on
r, i.e. a(r) = a, the representation of u simplifies to:

u(r) = ea(r−r0) u0 +

r∫
r0

ea(r−s) α(s) ds . (2.80)
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In most applications, we are facing a mixed scenario where the domain is equally divided into n layers
with thickness ∆r := (r1 − r0)/n where a(r) is constant in each layer. We denote the different layer
boundaries by bi, i = 1, ..., n+ 1, where b1 = r0 and bn+1 = r1 and we formally assume w.l.o.g. that
the respective properties of each layer are defined at its lower boundary, i.e. the value of a for layer 1
is defined by a(b1), the value of a for layer n is defined by a(bn) and a(bn+1) is not defined. In this
case the solution transfers into:

u(bk) = e

(
k∑
i=2

a(bi−1)(bi−bi−1)

)
u0 +

bk∫
b1

e

(
k∑

i=is

a(bi−1)(bi−bi−1)

)
α(s) ds , (2.81)

for all k = 1, ..., n+1, where is is the layer number corresponding to the current value of the integration
variable s. To dissolve the situation of a mixed continuous and discrete form in the second term, we
also include the (natural) assumption that α(r), the driving vector (which is technically not yet a
vector since we are still discussing the 1-D case), is also constant in each of the layers defined above,
which yields

u(bk) = e

(
k∑
i=2

a(bi−1)(bi−bi−1)

)
u0 +

k∑
j=2

e

(
k∑
i=j

a(bi−1)(bi−bi−1)

)
α(bj−1)(bj − bj−1)

=

(
k∏
i=2

ea(bi−1)(bi−bi−1)

)
u0 +

k∑
j=2

 k∏
i=j

ea(bi−1)(bi−bi−1)

α(bj−1)(bj − bj−1) .

(2.82)

In principle, the solution u(r) is defined continuously for all r ∈ [r0, r1], we just determine its value at
the layer boundaries to simplify the calculation of the right-hand side of the equation. Note that in
contrast to the ’material property’ variables a and α that are defined for the n layers, the solution u is
defined at the n+ 1 layer boundaries, where especially u(b1) = u(r0) = u0 and u(bn+1) = u(r1) = u1

are the boundary values at the inner and outer boundary.

As a side remark: In order to make the transfer from (2.81) to (2.82), in literature, the lateral
density contrasts are sometimes expressed as a sum over delta impulses of sheet density contrasts
σ(r), i.e. ρ̃(r) =

∑
i σ(bi) δ(r− bi), where σ(bi) := ρ̃(bi)(bi+1− bi) (see e.g., Richards and Hager, 1984;

Panasyuk et al., 1996). Inserting this representation into (2.81) also exactly yields (2.82) but since
there is no further advantage using these (artificial) sheet density contrasts, this detour is unnecessary.
Even more, there are two shortfalls using this density representation, i.e. first, in most papers there is
no proper definition of σ(r) which is at least irritating or even misleading, e.g. in Richards and Hager
(1984), σ(r) is just introduced as ’sheet density’ without any definition, thus, the reader is especially
not aware of the important factor (bi+1 − bi), the layer thickness. Second, since the representation
contains the delta distribution, this immediately leads the reader to the concept of fundamental solu-
tions (Green’s functions, kernels) but here, we need a completely different approach as we will learn in
one of the following paragraphs. Therefore, there is no further need to follow the ansatz of (synthetic)
sheet density contrasts.

Returning to (2.82), the expression

Pg(bi) := ea(bi)(bi+1−bi) , (2.83)

is called propagator since it symbolises the transition from one layer to another (with ascending
radius). We also define the backward propagator in the opposite direction as

Pgb(bi) := ea(bi)(bi−bi+1) . (2.84)
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We immediately find that Pg(bi)
−1 = Pgb(bi) for all i = 1, ..., n. For the propagation between more

than one layer, we introduce for j ≥ i

Pg(bi, bj) :=

j−1∏
k=i

Pg(bk) , (2.85)

as the propagator from layer i to j and accordingly,

Pgb(bj , bi) :=

j−1∏
k=i

Pgb(bk) , (2.86)

as the backward propagator from j to i. Also here, for j > i we immediately find that Pg(bi, bj)
−1 =

Pgb(bj , bi). Furthermore, for the theoretical case of i = j, we get from the definition of the propagators
that

Pg(bi, bi) = Pgb(bi, bi) = 1 , (2.87)

and for i > j we define

Pg(bi, bj) := Pgb(bj , bi) := 0 . (2.88)

Furthermore, it holds that

Pg(bi, bj) Pg(bj , bk) = Pg(bi, bk) ,

Pgb(bk, bj) Pgb(bj , bi) = Pgb(bk, bi) ,
(2.89)

for all i ≤ j ≤ k. Using this notation (2.82) then turns into its final form

u(bk) = Pg(b1, bk)u0 +

k−1∑
j=1

Pg(bj , bk)α(bj)(bj+1 − bj) . (2.90)

Now, with given u0 and α, the solution u can be determined at each layer boundary bi, i = 1, ..., n+1,
using the previous equation. Basically, this is the final form of the solution u but at this point, it turns
out that it is quite insightful to recall again the principle of fundamental solutions that we already
discussed briefly in Chapter 1 in the context of the Laplace operator and harmonic functions.

2.3.2 Fundamental solutions

In Chapter 1 we learned that a distribution G that satisfies (LxG)(x) = δ(x− y) in the distributional
sense, for the respective differential operator Lx and various y, is called fundamental solution or
Green’s function to the operator Lx. As we have seen before, the term ’fundamental solution’ evolves
from the fact that by determining this special solution, the solution of the original differential equation
LxF = H can be found for any inhomogeneity H without solving the original differential equation.
More precisely, having found such a G, the solution F states as

F (x) =

∫
G(x, y)H(y) dy . (2.91)

This is a very popular strategy since first, in many cases, determining a distributional solution G
turns out to be an easier task than solving the original differential equation. In particular, if the
original equation is formulated as - or can be transformed - into an integral formulation, there may be
a straightforward way to execute the transition into distributional space. Second, also from a physical
perspective, fundamental solutions reveal much insight into the underlying differential equation. They
represent the response of the system to a ’stimulus’ just at a certain point y. Thus, by determining
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a variety of fundamental solutions for different points y, one can gain much understanding about the
different contributions to any solution to the general problem LF = H.

Fortunately, in our case, now returning to the original representation of the continuity (2.9) and
of the momentum equation (2.30), we see that all underlying field equations are linear and the prin-
ciple of fundamental solutions may be applied. In general, we could reformulate all equations - albeit
vectorial - in the way LF = H, where L is a combination of linear differential operators. In (2.30),
we notice that in our case the right-hand side, i.e. H in the previous formulation, only consists of the
lateral density variations ρ̃(r) - including some proportionality factors. Thus, a fundamental solution
to the system would be the response to a (unit) density anomaly at a certain depth, i.e. in a certain
layer bj . This would be a very precious information since then, we could directly see how anomalies
at different depth levels contribute to the total solution, i.e. the velocity field, the stress field and
especially the gravitational signal.

Therefore, in order to construct fundamental solutions, we now choose the density anomaly to be
ρ̃(r) = δ(r − bj) for one fixed j ∈ {1, ..., n}, and with (2.68), the driving vector then becomes
α(r) = α0(r) δ(r − bj). Note that at the moment, we are still considering the 1-D case where α0(r)
is just a multiplicative factor. Later, in the multidimensional case, α0 then exactly takes the form
(2.69). As a side remark, in the ansatz of the fundamental solution, a delta peak at b1 = r0, i.e. at a
domain boundary, is theoretically and physically not meaningful and has to be ignored in the following
considerations. At the end, when we will investigate the integral representation of the total solution,
this will become meaningful again due to our layer convention that the properties of each layer are
formally prescribed at their lower boundary.

Now, inserting this ansatz into (2.81) yields for all k = 1, ..., n+ 1, (compare to (2.90)) that

u(j)(bk) = e

(
k∑
i=2

a(bi−1)(bi−bi−1)

)
u

(j)
0 + e

(
k−1∑
i=j

a(bi)(bi+1−bi)
)
α0(bj)

=

(
k∏
i=2

ea(bi−1)(bi−bi−1)

)
u

(j)
0 +

k−1∏
i=j

ea(bi)(bi+1−bi)

α0(bj)

= Pg(b1, bk)u
(j)
0 + Pg(bj , bk)α0(bj) .

(2.92)

Here we introduced the upper index (j) to the solution u (and to the boundary value u0) to denote
that this certain u is a fundamental solution with respect to bj . Note that for k = j = 1 the previous
equation turns into

u
(1)
0 = Pg(b1, b1)u

(1)
0 + Pg(b1, b1)α0(b1)

= u
(1)
0 + α0(b1) ,

(2.93)

leading to α0(b1) = 0, which underlines the previously made statement that formally, a delta peak
at the domain boundary is not meaningful. Furthermore, note that due to Pg(bj , bk) = 0 for j > k,
the driving vector only influences layers above the density anomaly and not below. This is due to the
assumed a-priori known boundary condition u0 at the inner boundary and only true if u0 is indeed
given. But in practice, in the multidimensional case, we will see that the boundary conditions for each
individual component of u may not only be imposed at one of the domain boundaries but on different
ones, i.e. for some components of u the value at r1 and for some components, the value at r0 could
and will be prescribed. We see that if we evaluate the previous equation at the outer boundary of the
domain, i.e. at bn+1 = r1, we find the following relation between u0 and u1:

u
(j)
1 = Pg(r0, r1)u

(j)
0 + Pg(bj , r1)α0(bj) . (2.94)
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Equivalently, rearranging the previous equation yields

u
(j)
0 = Pg−1(r0, r1)

(
u

(j)
1 − Pg(bj , r1)α0(bj)

)
= Pgb(r1, r0)u

(j)
1 − Pgb(r1, bj) Pgb(bj , r0) Pg(bj , r1)α0(bj)

= Pgb(r1, r0)u
(j)
1 − Pgb(bj , r0)α0(bj) .

(2.95)

Both of these relations can equivalently be used to construct a system of linear equations to determine

all remaining boundary values, the complete vector u
(j)
0 , resp. u

(j)
1 . Then, by applying again (2.92) or

the following relation that can be gained by inserting (2.95) into (2.92):

u(j)(bk) = Pg(b1, bk)u
(j)
0 + Pg(bj , bk)α0(bj)

= Pg(b1, bk)
(

Pgb(r1, r0)u
(j)
1 − Pgb(bj , r0)α0(bj)

)
+ Pg(bj , bk)α0(bj)

= Pgb(r1, bk)u
(j)
1 − Pgb(bj , bk)α0(bj) (1− δj,k) .

(2.96)

(to derive the third line one needs to evaluate three cases: j > k, j = k and j < k) we are able to
evaluate the solution vector u(j) at all desired layer boundaries by propagating the solution from r0

(CMB) ’upwards’ (2.92) or from r1 (surface) ’downwards’ (2.96). In the final section of this chapter,
we will briefly discuss the range of appropriate boundary conditions and we will set up the respective
resulting system of linear equations explicitly.

But first, we return to the original differential equation that we derived in the previous section and
have a look at (2.67). We notice that there is an essential difference between this equation and the
one we have discussed in this section so far: the additional factor of r on the left-hand side of the
equation:

ru̇(r) = a(r)u(r) + α(r) . (2.97)

But by a change of variables, defining s := ln(r) and the layer boundaries si := ln(bi), i = 1, ..., n+ 1,
respectively, it is possible to transfer both types of equations into each other. With

du

dr
=

du

ds

ds

dr
=

1

r

du

ds
, (2.98)

we see that instead of (2.97), by substitution, we can equivalently solve the differential equation

ẇ(s) = a (es) w(s) + α (es) , (2.99)

where the ’dot’ now symbolises the derivative with respect to s. Afterwards, we can determine the
solution to our original system (2.97) by back substitution, i.e. u(r) = w(ln(r)). In order to find a
solution to the new system, we just follow all steps that we have discussed in this section so far. We
directly step into (2.81) that now takes the form

w(sk) = e

(
k∑
i=2

a(bi−1)(si−si−1)

)
w0 +

sk∫
s1

e

(
k∑

i=is

a(bi−1)(si−si−1)

)
α (es) ds , (2.100)

for all k = 1, ..., n + 1. We already re-substituted the discrete layers esi = bi, i = 1, ..., n + 1, in the
argument of the factor a. Also here, we see that the integration constant w0 := w(s1) = u(r0) = u0

turns out to be the inner boundary condition. Now, heading towards a distributional formulation, we
again use the ansatz

α (es) = α0 (esj ) δ (es − esj ) = α0(bj) δ(r − bj) , (2.101)

for one specific j ∈ {1, ..., n} to arrive at

w(j)(sk) = e

(
k∑
i=2

a(bi−1)(si−si−1)

)
w0 +

sk∫
s1

e

(
k∑

i=is

a(bi−1)(si−si−1)

)
α0(bj) δ (r − bj) ds . (2.102)
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Where in standard conversion rules for integrals the Jacobian of the variable transformation comes
into play, the situation is slightly different when the delta distribution is involved. Here, in general,
it holds that

δ(g(r)) =
∑
i

δ(r − xi)
|g′(xi)|

, (2.103)

where g is a continuously differentiable function with simple roots xi, i ∈ N. In our case, g(r) =
ln(r)− ln(bj) with the only root g(bj) = 0 and g′(bj) = 1/bj and thus, here we find

δ(s− sj) = bj δ(r − bj) , (2.104)

for all j = 1, ..., n. Inserting this result into (2.102) and replacing w0 by u0 yields

w(j)(sk) = e

(
k∑
i=2

a(bi−1)(si−si−1)

)
u0 +

sk∫
s1

e

(
k∑

i=is

a(bi−1)(si−si−1)

)
α0(bj)

bj
δ (s− sj) ds

=

(
k∏
i=2

ea(bi−1)(si−si−1)

)
u0 +

k−1∏
i=j

ea(bi−1)(si+1−si)

 α0(bj)

bj
.

(2.105)

In analogy to (2.83), it now makes perfect sense to define the logarithmic propagator as:

lnPg(bi) := ea(bi)(si+1−si) = ea(bi)(ln(bi+1)−ln(bi)) = e
a(bi) ln

(
bi+1
bi

)

= e
ln

((
bi+1
bi

)a(bi)
)

=

(
bi+1

bi

)a(bi)

,
(2.106)

and also the respective logarithmic backward propagator as

lnPgb(bi) :=

(
bi
bi+1

)a(bi)

, (2.107)

for all i = 1, ..., n. As a side remark: we are aware that it would be more consistent to define the
logarithmic layers si as the argument of the logarithmic propagators but due to the back substitution
later, the choice of the ’original’ layer bi turns out to be more convenient.

With these definitions, all essential relations (2.92) - (2.96) simply transfer to the logarithmic version
of the differential equation by using the logarithmic propagators and the radial scaling of the driving
vector. Explicitly, in analogy to the non-logarithmic case, the ’j-th’ fundamental solution can now be
written for all k = 1, ..., n+ 1, as:

u(j)(bk) = w(j)(sk) = lnPg(b1, bk)u
(j)
0 + lnPg(bj , bk)

α0(bj)

bj
, (2.108)

or

u(j)(bk) = w(j)(sk) = lnPgb(r1, bk)u
(j)
1 − lnPgb(bj , bk)

α0(bj)

bj
(1− δj,k) , (2.109)

with the logarithmic layer propagators

lnPg(bi, bj) :=

j−1∏
k=i

lnPg(bk) =

j−1∏
k=i

(
bk+1

bk

)a(bk)

,

lnPgb(bj , bi) :=

j−1∏
k=i

lnPgb(bk) ,

(2.110)
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for all i, j = 1, ..., n + 1. Moreover, in analogy to (2.94), the relation between both boundary values
u0 and u1 then becomes

u
(j)
1 = lnPg(r0, r1)u

(j)
0 + lnPg(bj , r1)

α0(bj)

bj
, (2.111)

and in terms of the backward propagators

u
(j)
0 = lnPgb(r1, r0)u

(j)
1 − lnPgb(bj , r0)

α0(bj)

bj
. (2.112)

Now that we have determined an explicit representation of a fundamental solution, we are finally able
to solve our original differential equation using (2.91):

F (x) =

∫
G(x, y)H(y) dy , (2.113)

where in our case - as we have seen before - the role of H is taken by the density anomaly distribution
ρ̃(r), or more precisely, by their harmonic coefficients ρ̃l,m(r). The y-dependent G reflects the (dis-

crete) j-dependent fundamental solutions u
(j)
l , j = 1, ..., n, that we derived above - now also including

a lower index l to emphasise again the dependence on the harmonic degree. The integration domain
reflects the radial dependence of j and ρ̃ and is bounded by the inner and outer domain boundaries
r0 and r1.

Summarised, we find for the solution u of (2.97):

ul,m(r) =

r1∫
r0

u
(j(r))
l (bk) ρ̃l,m(r) dr , (2.114)

for all harmonic degrees l ∈ N and orders m = −l, ..., l, and where j(r) indicates the respective discrete
layer at radius r. Here, we still have a mixed discrete and continuous representation but in practise,
this is immediately resolved because also ρ̃ is only provided at the discrete layers bi and thus, we are
also only interested in the solution u at the respective layers. The previous representation then turns
into

ul,m(bk) =

r1∫
r0

u
(j(r))
l (bk) ρ̃l,m(bk) dr

=

n∑
j=1

u
(j)
l (bk) ρ̃l,m(bj) (bj+1 − bj)

=

n∑
j=1

u
(j)
l (bk) ρ̃l,m(bj) ∆r .

(2.115)

In literature, the fundamental solutions u
(j)
l are regularly also called kernels and denoted by K

(j)
l .

Note that the kernels only depend on the harmonic degree l but not on the order m. The harmonic
order only enters the system by the coefficients of the density anomalies ρ̃l,m. Especially, for both
domain boundaries, the Earth’s surface and the CMB, we then find

ul,m(r0) =

n∑
j=1

u
(j)
0,l ρ̃l,m(bj) ∆r ,

ul,m(r1) =

n∑
j=1

u
(j)
1,l ρ̃l,m(bj) ∆r ,

(2.116)
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also introducing the harmonic degree l as one lower index to the boundary values. These relations
are important since in practise we are often interested in the solution at both boundaries, like e.g. the
gravitational response or the radial stresses at the Earth’s surface and the CMB. At last, also inserting
the explicit representation (2.108) of the fundamental solutions into (2.115) yields

ul,m(bk) =

n∑
j=1

(
lnPgl(r0, bk)u

(j)
0,l + lnPgl(bj , bk)

α0(bj)

bj

)
ρ̃l,m(bj) ∆r , (2.117)

for all k = 2, ..., n. Not that this representation is only valid for the layers inside the spherical
shell, for the boundary values, (2.116) needs to be considered. One could also equivalently insert the
representation of the fundamental solution (2.109) that is based on the outer boundary condition u1.
In this case, we arrive at:

ul,m(bk) =

n∑
j=1

(
lnPgb(r1, bk)u

(j)
1,l − lnPgb(bj , bk)

α0(bj)

bj
(1− δj,k)

)
ρ̃l,m(bj) ∆r . (2.118)

2.3.3 The multidimensional case

The remaining (and essential) task remains to formulate all presented theory for the multidimensional
case where the multiplicative factor a(r) in the differential equation is an n × n matrix A(r) with
n > 1 and the driving vector α(r) turns into an n-dimensional vector. Luckily, all equations can be
transferred in quite a straightforward way with the help of the matrix exponential function that is
defined by

etA :=

∞∑
k=0

tk

k!
Ak , (2.119)

A ∈ Rn×n, t ∈ R. The matrix exponential basically satisfies all known properties of the one-
dimensional exponential transferred into the multidimensional case, especially the differentiation prop-
erty

d

dt
etA = AetA . (2.120)

The application of the matrix exponential and its properties to our system of linear equations also
leads to propagators (see (2.83)) that now turn into propagator matrices

Pg(bi) = eA(bi)(bi+1−bi) . (2.121)

Furthermore, also the logarithmic propagators (2.106) turn into corresponding propagator matrices

lnPg(bi) =

(
bi+1

bi

)A(bi)

. (2.122)

Here, we find the general matrix exponential function xA, x ∈ R, where there is no fundamental
representation like the series of the matrix exponential eA, but Gantmacher (1960) showed that in
general, for any matrix function f(A) it is sufficient to know the value of the function at the eigenvalues
λi, i = 1, ..., n, of A to calculate the explicit value of f(A). More precisely, in case of a minimal
polynomial of A that has no multiple roots - which can be shown to be valid in our case - f(A) is
determined by the distinct eigenvalues of A, i.e. the roots of the minimal polynomial, λi, i = 1, ...,m,
m ≤ n, by

f(A) =

m∑
i=1

(A− λ11n) · · · (A− λi−11n) (A− λi+11n) · · · (A− λm1n)

(λi − λ1) · · · (λi − λi−1) (λi − λi+1) · · · (λi − λm)
f (λi) . (2.123)
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Thus, in order to explicitly calculate the propagator matrices corresponding to the linear system of
differential equations that we derived in the previous section, it is essential to determine the eigen-
values of the Stokes matrices Ā (2.68) and B̄ (2.71), i.e. the roots of their respective characteristic
polynomials. We will perform these calculations in a detailed way in the next subsection.

In the multidimensional case, there is one essential error source that one should be well aware of.
The important additivity property

eA+B = eA eB (2.124)

for exponential functions is only valid for the matrix exponential if A and B commute, i.e. AB = BA,
which is in general not true. Recalling the derivation of the propagators, we see that we applied this
relation in (2.82) in order to formulate transitions from one layer to another in terms of recurring
(matrix) multiplications. This was basically the source of the definition of the propagators. But for
non-commutative matrices, this essential step is not valid. In general, an additional correction term
appears when the previous relation is applied to general matrices. Here, we find that

eA+B = eA eB eC1 , (2.125)

where C1 can be determined explicitly by just applying the series representation (2.119) to eA+B . To
first order, one finds that C1 ≈ −[A,B]/2, where [A,B] := AB − BA is the so-called commutator
of A and B. This can be interpreted as a measure of how far the matrices are away from being
commutative. Via the Baker-Campbell formula (see e.g., Achilles and Bonfiglioli, 2012, for a
historical overview) a complete representation of C1 only in terms of commutators can be found. But
not only the additivity property is a potential error source, also when we change the order of matrix
multiplications, additional correction terms are introduced into the system. More precisely, it holds
that

eA eB = eB eA eC2 , (2.126)

where C2 ≈ [A,B] to first order. We have used such rearrangements e.g. to show the transitivity
property (2.89) of the propagators.

Summarised, this means that essential steps in the previous derivation provide potential error sources
if the Stokes matrices Ā(r) (see (2.68)) of adjacent layers are not commutative. Since most entries
of the matrices are constant or dependent on the harmonic degree l that also does not change from
layer to layer, the problem reduces to the behaviour of the radially dependent properties density and
viscosity. In the simplest case of incompressibility and a constant viscosity, the Stokes matrices are
perfectly commutative and all previous steps are exact. Furthermore, since we only observe density
contrasts of approximately a factor of 2 from the surface to the CMB, where the viscosity can easily
vary between 3 or 4 magnitudes, the viscosity stratification has by far the main impact on the po-
tential error. Thus, when explicitly choosing a viscosity profile, one should keep in mind to reduce
the jumps between two adjacent layers as far as possible. Obviously, also increasing the number
of layers and thus, reducing the discontinuities, helps to minimise these problems. Panasyuk et al.
(1996) states that dividing the Earth’s mantle into ≈ 30 layers suffices to guarantee ’almost’ com-
mutative matrices but nevertheless, it mainly depends on the choice of the underlying viscosity profile.

We did some basic numerical tests to investigate this error source in a slightly more detailed way.
Using an equidistant radial profile of 128 layers between the Earth’s surface at a radius of 6370 km
and the CMB at 3480 km we see that the radius ratios that are needed for the logarithmic propaga-
tors (and inverse ratios for the backward propagators) are very close to 1. More precisely the ratio is
varying from 1.0036 (surface) to 1.0065 (CMB) and the inverse ratio from 0.9965 (surface) to 0.9935
(CMB). Thus, all logarithmic propagators are close to the unit matrix. Moreover, we found that the
matrix multiplication of two propagators provides less error (compared to the exact solution) if the
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propagator with the smaller exponential base is multiplied from the left instead of from the right.
This is just an empirical observation but this is something one should be aware of. Using the ’wrong’
multiplication direction would provide additional and non-negligible errors. In practise, this means
that using the standard logarithmic propagators and the propagation direction from the CMB to the
surface, lnPg(bi, bj), i < j should be calculated as

lnPg(bi, bj) =

j−1∏
k=i

lnPg(bk) = lnPg(bj−1) lnPg(bj−2) · · · lnPg(bi) , (2.127)

where the multiplication of the backward propagators should be executed in the opposite direction,
i.e.

lnPgb(bj , bi) =

j−1∏
k=i

lnPgb(bk) = lnPg(bi) lnPg(bi+1) · · · lnPg(bj−1) . (2.128)

As already mentioned before, in the incompressible and isoviscous case, the propagator matrices are
commutative and the multiplication direction does not affect the result.

2.3.4 Eigenvalues of the Stokes matrix

As we learned before, the determination of the eigenvalues of the Stokes matrices Ā and B̄ is crucial
for an explicit calculation of the (logarithmic) propagators (see (2.123)). We state the two matrices
here again for convenience:

Ā =


−(2 + χ) l(l + 1) 0 0 0 0
−1 1 0 1/η∗0 0 0

4(3 + χ)η∗0 −6l(l + 1)η∗0 1 l(l + 1) 0 ρ∗0
−2(3 + χ)η∗0 (4l(l + 1)− 2)η∗0 −1 −2 ρ∗0 0

0 0 0 0 1 1
0 0 0 0 l(l + 1) 0

 , (2.129)

and

B̄ :=

(
1 1/η∗0

(l(l + 1)− 2)η∗0 −2

)
. (2.130)

For the 2× 2 matrix B̄, we immediately find that∣∣B̄ − λ12

∣∣ = (1− λ)(−2− λ)− l(l + 1) + 2 = λ2 + λ− l(l + 1)

=

(
λ+

1

2

)2

− 1

4
− l(l + 1) =

(
λ+

1

2

)2

−
(
l +

1

2

)2

.
(2.131)

Thus, we see that λ
(B̄)
1 = l and λ

(B̄)
2 = −l − 1. We continue with the matrix Ā. Here, we can exploit

its block structure with the zero block in the lower left corner and calculate the required determinants
by ∣∣Ā− λ16

∣∣ = |A1| |A2| , (2.132)

with

A1 :=

∣∣∣∣ 1− λ 1
l(l + 1) −λ

∣∣∣∣ ,
A2 :=

∣∣∣∣∣∣∣∣
−(2 + χ+ λ) l(l + 1) 0 0

−1 1− λ 0 1/η∗0
4(3 + χ)η∗0 −6l(l + 1)η∗0 1− λ l(l + 1)
−2(3 + χ)η∗0 (4l(l + 1)− 2)η∗0 −1 −(2 + λ)

∣∣∣∣∣∣∣∣ .
(2.133)
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For the 2× 2 matrix A1 we find

|A1| = −λ(1− λ)− l(l + 1) = λ2 − λ− l(l + 1)

=

(
λ− 1

2

)2

− 1

4
− l(l + 1) =

(
λ− 1

2

)2

−
(
l +

1

2

)2

.
(2.134)

and thus, λ
(Ā)
1 = −l and λ

(Ā)
2 = l + 1 for the first two eigenvalues of Ā. Now, we use Laplace’s rule

and expand the 4× 4 matrix A2 along the first row to find:

|A2| =− (2 + χ+ λ)

∣∣∣∣∣∣
1− λ 0 1/η∗0

−6l(l + 1)η∗0 1− λ l(l + 1)
(4l(l + 1)− 2)η∗0 −1 −(2 + λ)

∣∣∣∣∣∣
− l(l + 1)

∣∣∣∣∣∣
−1 0 1/η∗0

4(3 + χ)η∗0 1− λ l(l + 1)
−2(3 + χ)η∗0 −1 −(2 + λ)

∣∣∣∣∣∣ .
(2.135)

Again using Laplace’s rule and expanding each of the 3× 3 matrices along the first row, we find

|A2| =− (2 + χ+ λ) [(1− λ) [−(1− λ)(2 + λ) + l(l + 1)]

+ 6l(l + 1)− (1− λ) (4l(l + 1)− 2)]

− l(l + 1) [(1− λ)(2 + λ)− l(l + 1)− 4 (3 + χ) + (1− λ) (2 (3 + χ))]

= λ4 + (2 + χ)λ3 − (2l(l + 1) + 1)λ2 − (2 + χ) (l(l + 1) + 1)λ

+ l(l + 1) (l(l + 1)− (2 + χ)) .

(2.136)

We try to guess one of the roots of this polynomial in λ by inserting one of the already known

eigenvalues, e.g. λ
(Ā)
1 = −l. This procedure is successful if Ā has eigenvalues with an algebraic

multiplicity of more than 1. And indeed, by polynomial division we can verify that −l is a root of
|A2| and we find:

|A2| = (λ+ l)
[
λ3 + ((2 + χ)− l)λ2 −

(
l2 + (4 + χ) l + 1

)
λ+ (l + 1) (l(l + 1)− (2 + χ))

]
. (2.137)

We also insert the other already known root λ
(Ā)
2 = l + 1 and indeed we find that:

|A2| = (λ+ l) (λ− (l + 1))
[
λ2 + (3 + χ)λ− (l(l + 1)− (2 + χ))

]
. (2.138)

Thus, the remaining two eigenvalues are determined as

λ
(Ā)
5/6 = −3 + χ

2
± 1

2

√
4

(
l +

1

2

)2

+ χ (χ+ 2) . (2.139)

In the special case of an incompressible flow (χ = 0), we find that λ
(Ā)
5 = l − 1 and λ

(Ā)
6 = −l − 2.

Summarising the previous results, the eigenvalues of Ā and B̄ - in a rearranged order - read as:

λ
(Ā)
1/5 = −l , λ

(B̄)
1 = l ,

λ
(Ā)
2/6 = l + 1 , λ

(B̄)
2 = −l − 1 ,

λ
(Ā)
3 = −3 + χ

2
+

1

2

√
4

(
l +

1

2

)2

+ χ (χ+ 2) (2.140)

= l − 1 for χ = 0 ,

λ
(Ā)
4 = −3 + χ

2
− 1

2

√
4

(
l +

1

2

)2

+ χ (χ+ 2)

= −l − 2 for χ = 0 .
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Note that neither the viscosity η∗0 nor the density variation factor ρ∗0 that both play a crucial role in the
Stokes matrices appear in the eigenvalue but next to the harmonic degree l, also the compressibility
factor χ can be found.

With the previously derived (distinct) eigenvalues we are finally able to explicitly calculate the re-
spective logarithmic propagators for every layer boundary bi, i = 1, ..., n+ 1, by

lnPg(bi) =

4∑
k=1

(
Ā− λ(Ā)

1 1n

)
· · ·
(
A− λ(Ā)

k−11n

)(
A− λ(Ā)

k+11n

)
· · ·
(
A− λ(Ā)

4 1n

)
(
λ

(Ā)
k − λ(Ā)

1

)
· · ·
(
λ

(Ā)
k − λ(Ā)

k−1

)(
λ

(Ā)
k − λ(Ā)

k+1

)
· · ·
(
λ

(Ā)
k − λ(Ā)

4

) (bi+1

bi

)λ(Ā)
k

.

(2.141)

The only missing part now is how to choose valid and meaningful boundary conditions such that our
derived system of equations can be solved in practice. We will discuss this topic in the following
section of this chapter.

2.4 Boundary conditions

In general, for a differential equation there are two main and common types of boundary conditions.
First, the Dirichlet condition where you set the discussed quantity to an explicit value at the bound-
ary. Second, the Neumann condition where you make some assumption on the (normal) derivative
of the quantity instead of the quantity itself along the boundaries.

Here, the solution vector ūA of the poloidal part of the Stokes system consists of six unknowns,
the radial velocity v̄1, the poloidal velocity v̄2, the radial stress σ̄1, the poloidal stress σ̄2, the gravi-
tational potential Ū1 and the radial derivative of the gravitational potential W̄1. Thus, in total, we
need to formulate six boundary conditions in order to gain a (uniquely) solvable system of equations.

We start with the gravitational potential. There is no subjective decision on how to formulate the
boundary conditions since its values at the boundaries are explicitly determined by Newton’s grav-
itational law. By providing both values at the surface and at the CMB, we already find two of the
required six conditions. To this end, we need a result from a subsequent chapter of this work where
we investigate Newton’s law in a more detailed way, especially in terms of a spherical harmonic rep-
resentation. In the previous section, we formulated the system of the governing differential equations
in terms of fundamental solutions, i.e. also for the boundary conditions we need to consider the case
of a unit density anomaly - that is formally described with the help of the delta distribution - at a
certain layer boundary bj , j ∈ {1, ..., n+ 1}. In this case, for R > bj Newton’s law turns into (4.28):

Ul,m(R) = − 4πG

2l + 1
bj

(
bj
R

)l+1

, (2.142)

and in the case of R < bj into (4.29):

Ul,m(R) = − 4πG

2l + 1
bj

(
R

bj

)l
, (2.143)

for all respective harmonic degrees l and orders m. Inserting the domain boundaries r0 and r1 and
using again our previous notation, these results immediately lead to the conditions

U1(r0) = − 4πG

2l + 1
bj

(
r0

bj

)l
, U1(r1) = − 4πG

2l + 1
bj

(
bj
r1

)l+1

, (2.144)

and in analogy for the scaled quantity:

Ū1(r0) = − 4πG

2l + 1

ρ̂0

η̂0
r2
0

(
r0

bj

)l−1

, Ū1(r1) = − 4πG

2l + 1

ρ̂0

η̂0
b2j

(
bj
r1

)l
, (2.145)
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Since we are interested in flow solutions inside a closed system, for the velocity field, a natural
assumption should be that we do not want the flow to exceed the boundaries of our domain. This
means that we do not allow for any outflow out and inflow into the domain. This no-outflow
condition translates into a vanishing radial velocity at both boundaries. More precisely, we require
the radial velocity (and scaled quantities) to satisfy

v1(r0) = v̄1(r0) = 0 , v1(r1) = v̄1(r1) = 0 . (2.146)

For the tangential part of the velocity, there are mainly two possible ways - that are related to the
Dirichlet and Neumann condition - to model an appropriate physical behaviour. First, we can decide
to just externally prescribe the velocity field at the boundaries, this is called the no-slip condition.
The easiest way would be the special case of zero velocity, the simulation of a fixed wall. Further, we
could also think about prescribing actual data that arise from plate tectonic observations - converted
into a spherical harmonic representation. Probably the main drawback of this possibility is the in-
consistency between data and model. Where the observed plate velocities have a large contribution
from the toroidal component (e.g., Hager and O’Connell, 1978), the presented model intrinsically is
not able to generate toroidal motion, especially since no lateral viscosity variations are supported.

Second, we can also imagine not to prescribe any velocity externally but let the boundary move
with the motion of the fluid. This is called the free-slip condition. In this case, there is no direct re-
striction on the tangential velocity component itself, it behaves in the way whatever the fluid dictates.
Here, we only have to make sure to avoid any (frictional) force between boundary and motion and set
the shear (i.e. tangential) stress to zero. Technically, due to the direct relation between velocity field
and stress tensor, this translates into a (weighted) Neumann condition for the velocity field. More
details on this relation and a comparison between spherical and Cartesian case can be found in the
subsequent Chapter 3. Since the objectively best proxy to reality, i.e. imposing actual plate velocity
data at the surface, leads to inconsistencies, in this work we will use the free-slip condition as our
preferred assumption at the boundaries, both the surface and the CMB. But nevertheless, in general,
one may think about four different cases that we will investigate in the following.

The no-slip/no-slip case

In this case, we prescribe the (poloidal) velocity field v2 explicitly both at the inner and at the outer
boundary of the domain. For consistency reasons, we still assume the velocity field to only possess a
poloidal component and neglect a possible forced toroidal field at any boundary. For the surface, we
introduce the fixed velocity vS and for the CMB, the (fixed) velocity vC . Both vS and vC implicitly
are dependent on the harmonic degree. We then find that

v2(r0) = vC , v2(r1) = vS , (2.147)

and in analogy for the scaled quantity:

v̄2(r0) =
1

µl
vC , v̄2(r1) =

1

µl
vS . (2.148)

Together with the no-outflow condition (2.146) and the expressions for the gravitational potential
(2.145) we are equipped with the required six boundary conditions for our system of linear differential
equations. Now we explicitly make use of equation (2.111), applied to the scaled Stokes system, i.e.

ū
(j)
1 = lnPg(r0, r1) ū

(j)
0 + lnPg(bj , r1)

ᾱ0(bj)

bj
, (2.149)
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to relate the conditions on both boundaries to one another. Introducing the abbreviations

γ(l) :=
4πG

2l + 1
b2j

(
bj
r1

)l
,

ψ(l−1) :=
4πG

2l + 1
r2
0

(
r0

bj

)l−1

,

P (0) := lnPg(r0, r1) ,

P (j) := lnPg(bj , r1) ,

(2.150)

we arrive at 
0

−vS/µl
−σ̄1(r1)
−σ̄2(r1)
γ(l)ρ̂0/η̂0

−W̄1(r1)

 = P (0)


0

−vC/µl
−σ̄1(r0)
−σ̄2(r0)

ψ(l−1)ρ̂0/η̂0

−W̄1(r0)

− P
(j)


0
0

g0bj/η̂0

0
0

4πGρ̂0b
2
j/η̂0

 . (2.151)

Rearranging the previous relations in terms of the six unknown variables then yields a system of linear
equations Cx = b with

C =



−P (0)
1,3 −P (0)

1,4 −P (0)
1,6 0 0 0

−P (0)
2,3 −P (0)

2,4 −P (0)
2,6 0 0 0

−P (0)
3,3 −P (0)

3,4 −P (0)
3,6 1 0 0

−P (0)
4,3 −P (0)

4,4 −P (0)
4,6 0 1 0

−P (0)
5,3 −P (0)

5,4 −P (0)
5,6 0 0 0

−P (0)
6,3 −P (0)

6,4 −P (0)
6,6 0 0 1


, x =


σ̄1(r0)
σ̄2(r0)
W̄1(r0)
σ̄1(r1)
σ̄2(r1)
W̄1(r1)

 ,

b =



P
(0)
1,2 vC/µl − P

(0)
1,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
1,· · ᾱ0)/bj

P
(0)
2,2 vC/µl − P

(0)
2,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
2,· · ᾱ0)/bj −vS/µl

P
(0)
3,2 vC/µl − P

(0)
3,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
3,· · ᾱ0)/bj

P
(0)
4,2 vC/µl − P

(0)
4,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
4,· · ᾱ0)/bj

P
(0)
5,2 vC/µl − P

(0)
5,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
5,· · ᾱ0)/bj +γ(l)ρ̂0/η̂0

P
(0)
6,2 vC/µl − P

(0)
6,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
6,· · ᾱ0)/bj



=



P
(0)
1,2 vC/µl − P

(0)
1,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
1,3 g0bj + P

(j)
1,6 4πGρ̂0b

2
j )/η̂0

P
(0)
2,2 vC/µl − P

(0)
2,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
2,3 g0bj + P

(j)
2,6 4πGρ̂0b

2
j )/η̂0 −vS/µl

P
(0)
3,2 vC/µl − P

(0)
3,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
3,3 g0bj + P

(j)
3,6 4πGρ̂0b

2
j )/η̂0

P
(0)
4,2 vC/µl − P

(0)
4,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
4,3 g0bj + P

(j)
4,6 4πGρ̂0b

2
j )/η̂0

P
(0)
5,2 vC/µl − P

(0)
5,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
5,3 g0bj + P

(j)
5,6 4πGρ̂0b

2
j )/η̂0 +γ(l)ρ̂0/η̂0

P
(0)
6,2 vC/µl − P

(0)
6,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
6,3 g0bj + P

(j)
6,6 4πGρ̂0b

2
j )/η̂0


,

(2.152)

that can now be solved by any standard routine. In the special (and common) case of vC = vS = 0
the vector b reduces to

b =



−P (0)
1,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
1,· · ᾱ0)/bj

−P (0)
2,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
2,· · ᾱ0)/bj

−P (0)
3,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
3,· · ᾱ0)/bj

−P (0)
4,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
4,· · ᾱ0)/bj

−P (0)
5,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
5,· · ᾱ0)/bj +γ(l)ρ̂0/η̂0

−P (0)
6,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
6,· · ᾱ0)/bj


. (2.153)
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At this point, it should also be mentioned that instead of (2.111), also the equivalent rearrangement
(2.112) in terms of the backward propagators may be used. Here we found that

ū
(j)
0 = lnPgb(r1, r0) ū

(j)
1 − lnPgb(bj , r0)

ᾱ0(bj)

bj
. (2.154)

Using this representation and keeping the vector x of the unknown quantities the same as above,
furthermore introducing the abbreviations B(0) := lnPgb(r1, r0) and B(j) := lnPgb(bj , r0), we arrive
at the system of linear equations C(B)x = b(B) with

C(B) =



0 0 0 −B(0)
1,3 −B(0)

1,4 −B(0)
1,6

0 0 0 −B(0)
2,3 −B(0)

2,4 −B(0)
2,6

1 0 0 −B(0)
3,3 −B(0)

3,4 −B(0)
3,6

0 1 0 −B(0)
4,3 −B(0)

4,4 −B(0)
4,6

0 0 0 −B(0)
5,3 −B(0)

5,4 −B(0)
5,6

0 0 1 −B(0)
6,3 −B(0)

6,4 −B(0)
6,6


,

b(B) =



B
(0)
1,2vS/µl −B

(0)
1,5γ

(l)ρ̂0/η̂0 − (B
(j)
1,· · ᾱ0)/bj

B
(0)
2,2vS/µl −B

(0)
2,5γ

(l)ρ̂0/η̂0 − (B
(j)
2,· · ᾱ0)/bj −vC/µl

B
(0)
3,2vS/µl −B

(0)
3,5γ

(l)ρ̂0/η̂0 − (B
(j)
3,· · ᾱ0)/bj

B
(0)
4,2vS/µl −B

(0)
4,5γ

(l)ρ̂0/η̂0 − (B
(j)
4,· · ᾱ0)/bj

B
(0)
5,2vS/µl −B

(0)
5,5γ

(l)ρ̂0/η̂0 − (B
(j)
5,· · ᾱ0)/bj +ψ(l−1)ρ̂0/η̂0

B
(0)
6,2vS/µl −B

(0)
6,5γ

(l)ρ̂0/η̂0 − (B
(j)
6,· · ᾱ0)/bj


, (2.155)

which is equivalent to the forward propagator system Cx = b. Not only do we state this result
for the sake of completeness, the presence of two equivalent equation systems also is of immediate
practical use. Solving both systems simultaneously and comparing the results provides a first, simple
indicator of the integrity of the solution. Possible differences can give an insight into numerical /
scaling problems first, in the formulation of the system of equations and second, in the numerical
solver itself. And indeed, it turns out that with increasing harmonic degree l, it becomes more and
more likely that the difference between both solutions exceeds negligible ranges. This is due to the
increasing condition number of the Stokes matrix with larger harmonic degrees.

The free-slip/free-slip case

As we have discussed before, in the free-slip case, we impose the condition that the tangential (poloidal)
part of the stress vanishes, where on the other side, there are no restrictions on the poloidal velocity
field as in the no-slip case. More precisely, now we have

σ2(r0) = σ̄2(r0) = 0 , σ2(r1) = σ̄2(r1) = 0 , (2.156)

and v̄2(r0) and v̄2(r1) become unknown quantities again. Under these considerations, our basis equa-
tion becomes 

0
−v̄2(r1)
−σ̄1(r1)

0
γ(l)ρ̂0/η̂0

−W̄1(r1)

 = P (0)


0

−v̄2(r0)
−σ̄1(r0)

0
ψ(l−1)ρ̂0/η̂0

−W̄1(r0)

− P
(j)


0
0

g0bj/η̂0

0
4πGρ̂0b

2
j/η̂0

0

 . (2.157)
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The resulting (forward propagator) system of linear equations then turns into Cx = b with

C =



−P (0)
1,3 −P (0)

1,2 −P (0)
1,6 0 0 0

−P (0)
2,3 −P (0)

2,2 −P (0)
2,6 0 1 0

−P (0)
3,3 −P (0)

3,2 −P (0)
3,6 1 0 0

−P (0)
4,3 −P (0)

4,2 −P (0)
4,6 0 0 0

−P (0)
5,3 −P (0)

5,2 −P (0)
5,6 0 0 0

−P (0)
6,3 −P (0)

6,2 −P (0)
6,6 0 0 1


, x =


σ̄1(r0)
v̄2(r0)
W̄1(r0)
σ̄1(r1)
v̄2(r1)
W̄1(r1)

 ,

b =



−P (0)
1,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
1,· · ᾱ0)/bj

−P (0)
2,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
2,· · ᾱ0)/bj

−P (0)
3,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
3,· · ᾱ0)/bj

−P (0)
4,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
4,· · ᾱ0)/bj

−P (0)
5,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
5,· · ᾱ0)/bj +γ(l)ρ̂0/η̂0

−P (0)
6,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
6,· · ᾱ0)/bj


. (2.158)

where now, in comparison to the no-slip/no-slip case, v̄2 takes the place of σ̄2 in the vector of unknown
quantities x. Here, we only state the system of equations for the forward propagators. The equivalent
system for the backward propagators can be derived in analogy to the no-slip/no-slip case.

The no-slip/free-slip case

In theory, there are also two possible mixed cases, no-slip at the surface/CMB and free-slip at the
CMB/surface. Here, we find a combination of the two already considered cases before. First, when
we force a no-slip condition at the surface and a free-slip condition at the inner domain boundary, the
CMB, the propagator equation turns into

0
−vS/µl
−σ̄1(r1)
−σ̄2(r1)
γ(l)ρ̂0/η̂0

−W̄1(r1)

 = P (0)


0

−v̄2(r0)
−σ̄1(r0)

0
ψ(l−1)ρ̂0/η̂0

−W̄1(r0)

− P
(j)


0
0

g0bj/η̂0

0
4πGρ̂0b

2
j/η̂0

0

 . (2.159)

and the system of linear equations to solve states as Cx = b with

C =



−P (0)
1,3 −P (0)

1,2 −P (0)
1,6 0 0 0

−P (0)
2,3 −P (0)

2,2 −P (0)
2,6 0 0 0

−P (0)
3,3 −P (0)

3,2 −P (0)
3,6 1 0 0

−P (0)
4,3 −P (0)

4,2 −P (0)
4,6 0 1 0

−P (0)
5,3 −P (0)

5,2 −P (0)
5,6 0 0 0

−P (0)
6,3 −P (0)

6,2 −P (0)
6,6 0 0 1


, x =


σ̄1(r0)
v̄2(r0)
W̄1(r0)
σ̄1(r1)
σ̄2(r1)
W̄1(r1)

 ,

b =



−P (0)
1,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
1,· · ᾱ0)/bj

−P (0)
2,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
2,· · ᾱ0)/bj −vS/µl

−P (0)
3,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
3,· · ᾱ0)/bj

−P (0)
4,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
4,· · ᾱ0)/bj

−P (0)
5,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
5,· · ᾱ0)/bj +γ(l)ρ̂0/η̂0

−P (0)
6,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
6,· · ᾱ0)/bj


. (2.160)
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The free-slip/no-slip case

Now, as the last case, forcing a free-slip condition at the surface and a no-slip condition at the CMB,
we gain the following propagator equation:


0

−v̄2(r1)
−σ̄1(r1)

0
γ(l)ρ̂0/η̂0

−W̄1(r1)

 = P (0)


0

−vC/µl
−σ̄1(r0)
−σ̄2(r0)

ψ(l−1)ρ̂0/η̂0

−W̄1(r0)

− P
(j)


0
0

g0bj/η̂0

0
4πGρ̂0b

2
j/η̂0

0

 . (2.161)

Then, the system of linear equations turns into Cx = b with

C =



−P (0)
1,3 −P (0)

1,4 −P (0)
1,6 0 0 0

−P (0)
2,3 −P (0)

2,4 −P (0)
2,6 0 1 0

−P (0)
3,3 −P (0)

3,4 −P (0)
3,6 1 0 0

−P (0)
4,3 −P (0)

4,4 −P (0)
4,6 0 0 0

−P (0)
5,3 −P (0)

5,4 −P (0)
5,6 0 0 0

−P (0)
6,3 −P (0)

6,4 −P (0)
6,6 0 0 1


, x =


σ̄1(r0)
σ̄2(r0)
W̄1(r0)
σ̄1(r1)
v̄2(r1)
W̄1(r1)

 ,

b =



P
(0)
1,2 vC/µl − P

(0)
1,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
1,· · ᾱ0)/bj

P
(0)
2,2 vC/µl − P

(0)
2,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
2,· · ᾱ0)/bj

P
(0)
3,2 vC/µl − P

(0)
3,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
3,· · ᾱ0)/bj

P
(0)
4,2 vC/µl − P

(0)
4,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
4,· · ᾱ0)/bj

P
(0)
5,2 vC/µl − P

(0)
5,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
5,· · ᾱ0)/bj +γ(l)ρ̂0/η̂0

P
(0)
6,2 vC/µl − P

(0)
6,5ψ

(l−1)ρ̂0/η̂0 + (P
(j)
6,· · ᾱ0)/bj


. (2.162)

Summary

We notice that the final system of linear equations is similar throughout all combinations of assumed
boundary conditions. Thus, introducing some auxiliary variables, we can merge all these systems into
one. This description is especially useful for implementing the equations on a computer. Defining

fC :=

{
1 , free-slip at the CMB
0 , no-slip at the CMB

, fS :=

{
1 , free-slip at the surface
0 , no-slip at the surface

, (2.163)

all four versions of the propagator equation fall into:


0

−v̄2(r1)fS − vS/µl(1− fS)
−σ̄1(r1)

−σ̄2(r1)(1− fS)
γ(l)ρ̂0/η̂0

−W̄1(r1)

 = P (0)


0

−v̄2(r0)fC − vCµl(1− fC)
−σ̄1(r0)

−σ̄2(r0)(1− fC)
ψ(l−1)ρ̂0/η̂0

−W̄1(r0)

− P
(j)


0
0

g0bj/η̂0

0
4πGρ̂0b

2
j/η̂0

0

 .

(2.164)
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For the resulting system of linear equations, we gain Cx = b with

C =



−P (0)
1,3 −P (0)

1,2(2−fC) −P (0)
1,6 0 0 0

−P (0)
2,3 −P (0)

2,2(2−fC) −P (0)
2,6 0 fS 0

−P (0)
3,3 −P (0)

3,2(2−fC) −P (0)
3,6 1 0 0

−P (0)
4,3 −P (0)

4,2(2−fC) −P (0)
4,6 0 1− fS 0

−P (0)
5,3 −P (0)

5,2(2−fC) −P (0)
5,6 0 0 0

−P (0)
6,3 −P (0)

6,2(2−fC) −P (0)
6,6 0 0 1


, x =


σ̄1(r0)

v̄2(r0)fC + σ̄2(r0)(1− fC)
W̄1(r0)
σ̄1(r1)

v̄2(r1)fS + σ̄2(r1)(1− fS)
W̄1(r1)

 ,

b =



P
(0)
1,2 vC/µl(1− fC)− P (0)

1,5ψ
(l−1)ρ̂0/η̂0 + (P

(j)
1,· · ᾱ0)/bj

P
(0)
2,2 vC/µl(1− fC)− P (0)

2,5ψ
(l−1)ρ̂0/η̂0 + (P

(j)
2,· · ᾱ0)/bj −vS/µl(1− fS)

P
(0)
3,2 vC/µl(1− fC)− P (0)

3,5ψ
(l−1)ρ̂0/η̂0 + (P

(j)
3,· · ᾱ0)/bj

P
(0)
4,2 vC/µl(1− fC)− P (0)

4,5ψ
(l−1)ρ̂0/η̂0 + (P

(j)
4,· · ᾱ0)/bj

P
(0)
5,2 vC/µl(1− fC)− P (0)

5,5ψ
(l−1)ρ̂0/η̂0 + (P

(j)
5,· · ᾱ0)/bj +γ(l)ρ̂0/η̂0

P
(0)
6,2 vC/µl(1− fC)− P (0)

6,5ψ
(l−1)ρ̂0/η̂0 + (P

(j)
6,· · ᾱ0)/bj


. (2.165)

For the sake of completeness, here we also state the merged system using the backward propagators.
For the same vector of unknowns x as above we find the system C(B)x = b(B) with

C(B) =



0 0 0 −B(0)
1,3 −B(0)

1,2(2−fS) −B(0)
1,6

0 fC 0 −B(0)
2,3 −B(0)

2,2(2−fS) −B(0)
2,6

1 0 0 −B(0)
3,3 −B(0)

3,2(2−fS) −B(0)
3,6

0 1− fC 0 −B(0)
4,3 −B(0)

4,2(2−fS) −B(0)
4,6

0 0 0 −B(0)
5,3 −B(0)

5,2(2−fS) −B(0)
5,6

0 0 1 −B(0)
6,3 −B(0)

6,2(2−fS) −B(0)
6,6


,

b(B) =



B
(0)
1,2vS/µl(1− fS)−B(0)

1,5γ
(l)ρ̂0/η̂0 − (B

(j)
1,· · ᾱ0)/bj

B
(0)
2,2vS/µl(1− fS)−B(0)

2,5γ
(l)ρ̂0/η̂0 − (B

(j)
2,· · ᾱ0)/bj −vC/µl(1− fC)

B
(0)
3,2vS/µl(1− fS)−B(0)

3,5γ
(l)ρ̂0/η̂0 − (B

(j)
3,· · ᾱ0)/bj

B
(0)
4,2vS/µl(1− fS)−B(0)

4,5γ
(l)ρ̂0/η̂0 − (B

(j)
4,· · ᾱ0)/bj

B
(0)
5,2vS/µl(1− fS)−B(0)

5,5γ
(l)ρ̂0/η̂0 − (B

(j)
5,· · ᾱ0)/bj +ψ(l−1)ρ̂0/η̂0

B
(0)
6,2vS/µl(1− fS)−B(0)

6,5γ
(l)ρ̂0/η̂0 − (B

(j)
6,· · ᾱ0)/bj


. (2.166)

Numerical calculations show that the condition number of the matrix C attains only half the value
of the condition number of the matrix C(B) for any harmonic degree l. This is probably one of the
reasons why in practice, it turns out that solving the forward propagator equation Cx = b is much
more stable than solving the backward propagator equation C(B)x = b(B). But in theory, both systems
of equations are mathematically equivalent.

2.5 Kernel gallery I

In the final section of this chapter, we present some graphical illustrations of solutions of the Stokes
system in terms of fundamental solutions for different harmonic degrees. Defining a radial viscosity
and density stratification, we are now able to solve the governing flow equations in an explicit manner.
Solving the system of linear equations that we introduced above provides us with fundamental solu-
tions for the velocity field, stress field and gravitational potential (and radial derivative of the latter)
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Figure 2.1: The two different radial viscosity profiles that were chosen for the examples in this section.
First, a uniform viscosity of 1023 Pas and second, a profile that contains a viscosity reduction of a
factor 100 in the upper mantle.

at each respective radial layer, assuming a density anomaly at an a-priori defined location inside the
domain.

Here we follow two main ways of setting up an example. First, we keep the radial layer fixed where
we want to observe the respective quantity and vary the location of the density anomaly. These
are classic plots of the fundamental solutions, i.e. kernels, that illustrate which influence a density
anomaly at a certain depth has on the total signal. Here, we choose the location of observation to be
the Earth’s surface. Furthermore, we calculate the solutions for two choices of boundary conditions,
i.e. first, no-slip at both boundaries and second, free-slip at both boundaries. In addition, we perform
all calculations for the two different viscosity profiles that are shown in Figure 2.1. First, we assume
the simplest case of a uniform viscosity (of 1023 Pas), second, we choose a profile with a low viscosity
zone in the upper mantle. The reason why we choose explicitly this profile will be explained in further
detail in Chapter 4.

The solutions for all six quantities under consideration are shown in Figure 2.2, 2.3, 2.4 and 2.5.
In particular, we see that the radial velocity is zero in all four examples, which is due to the no-
outflow condition. In the no-slip cases, also the tangential velocity vanishes, where in the free-slip
cases, the tangential stresses are zero. In the models with the low-viscosity zone, we see that the
radial and tangential stresses induced by density anomalies below this zone are nearly cancelled out
or in other words, blocked by the low viscosity channel. In the gravitational potential, we basically
see the expected result that masses near the surface have a larger impact on the gravity field than
masses that are located deeper in the mantle. In addition, we see that the gravitational potential does
not vary with the changing flow properties.

In the second set of our examples, we fix the location of the density anomaly at 1600 km depth
and vary the layer where we observe the quantity of interest, i.e. the velocity field, the stress field and
the gravitational potential. In these plots we see how the values of the respective quantities explicitly
change inside the mantle. Basically, this is a 1-D spherical harmonic illustration of the 3-D mantle
structure. The flow properties are varied in the same way as in the first set of our examples. The
results are presented in Figure 2.6, 2.7, 2.8 and 2.9. Again, we nicely see the effect of the different
boundary conditions. The radial velocity always vanishes at both boundaries, where in the no-slip
case, also the tangential velocities vanish. In the free-slip case, we notice a zero tangential stress at
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both boundaries. In general, we see a jump in radial stress and a jump in the radial gravitational
acceleration at the location of the mass. In the equations, the origin of this jump can be found in the
non-vanishing components 3 and 6 of the driving vector. In the plots, the jump in the gravitational
acceleration can immediately be explained by looking at the gravitational potential which takes its
maximal absolute value at the mass itself.

Before applying the mathematical foundation to real data, in the next chapter, we first investigate a
special case of the governing equations, which is the scenario of an incompressible flow. In that case,
we are able to apply the Mie representation (1.328) for the velocity field which will lead to further
simplifications of the spectral representation of the governing equations. In case of a uniform viscosity,
a direct analytic relation between velocity field and driving forces can be found. Here, the propagator
approach is no longer necessary and the remaining system of equations becomes very simple. This
will allow us to construct a ’first level’ benchmark for mantle circulation solvers, a benchmark that
can be implemented straightforwardly in order to check the integrity of an underlying numerical code.
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Figure 2.2: Solution of the Stokes equation system at the surface for a unit density anomaly of unit
radial extension, placed at various depth levels. The flow parameters are no-slip at both boundaries
and a uniform viscosity profile.
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Figure 2.3: Solution of the Stokes equation system at the surface for a unit density anomaly of unit
radial extension, placed at various depth levels. The flow parameters are no-slip at both boundaries
and a viscosity profile with a low viscosity zone in the upper mantle.
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Figure 2.4: Solution of the Stokes equation system at the surface for a unit density anomaly of unit
radial extension, placed at various depth levels. The flow parameters are free-slip at both boundaries
and a uniform viscosity profile.
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Figure 2.5: Solution of the Stokes equation system at the surface for a unit density anomaly of unit
radial extension, placed at various depth levels. The flow parameters are free-slip at both boundaries
and a viscosity profile with a low viscosity zone in the upper mantle.
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Figure 2.6: Solution of the Stokes equation system at various depth levels for a unit density anomaly
of unit radial extension, placed at a depth of 1600 km. The flow parameters are no-slip at both
boundaries and a uniform viscosity profile.
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Figure 2.7: Solution of the Stokes equation system at various depth levels for a unit density anomaly
of unit radial extension, placed at a depth of 1600 km. The flow parameters are no-slip at both
boundaries and a viscosity profile with a low viscosity zone in the upper mantle.
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Figure 2.8: Solution of the Stokes equation system at various depth levels for a unit density anomaly
of unit radial extension, placed at a depth of 1600 km. The flow parameters are free-slip at both
boundaries and a uniform viscosity profile.
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Figure 2.9: Solution of the Stokes equation system at various depth levels for a unit density anomaly
of unit radial extension, placed at a depth of 1600 km. The flow parameters are free-slip at both
boundaries and a viscosity profile with a low viscosity zone in the upper mantle.
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Chapter 3

A semi-analytic accuracy
benchmark for 3-D Stokes flow

This chapter is published together with some parts of the mathematical preliminaries (Chapter 1) and
some foundations on continuum mechanics (Chapter 2) in the ’International Journal on Geomathemat-
ics’ (GEM) (2020) as ’Horbach, A., Mohr, M., Bunge, H.-P.: A Semi-Analytic Accuracy Benchmark
for Stokes Flow in 3-D Spherical Mantle Convection Codes’, doi.org/10.1007/s13137-019-0137-3 (see
Horbach et al., 2020). Here we use the spherical harmonic representation of the governing flow equa-
tions, that we derived in the previous chapter, in the special case of an incompressible and isoviscous
flow regime. In this simplified scenario, it is possible to construct an objective, easy-to-implement
semi-analytic benchmark for numerical mantle convection codes, where even the previously presented
propagator matrix approach can be avoided.

The following sections are taken one-to-one from the publication except for Section 3.2, which we
adjusted in order to follow the flow of this work and to build a connection to the derivations that we
have performed in the previous chapters.

3.1 Introduction

Mantle convection is a primary driving force for large scale tectonic activity of our planet. Processes
from plate tectonics at the Earth’s surface to the thermal structure at the core mantle boundary are
influenced by it, making mantle convection studies essential for our understanding of how our planet
works. Mantle convection is governed by hydrodynamic field equations, expressing fundamental laws
of mass, momentum and energy conservation (see Jarvis and Mckenzie, 1980, for an extended deriva-
tion of the mantle convection equations). Their non-linear nature and the geometric and time scales
involved necessitate computational solution approaches.

Much progress in our understanding of mantle convection has been achieved through numerical sim-
ulations exploring the influence of key parameters on the mantle flow regime (see recent reviews by
Tackley, 2012; Zhong and Liu, 2016). The current forward studies of convection are bound to grow
further in importance as they will take advantage of next-generation computational architectures.
New computational platforms will allow geodynamicists to discretise Earth’s mantle at the km-scale
(Burstedde et al., 2013; Rudi et al., 2015; Weismüller, 2016; Bauer, 2018), providing unprecedented
opportunities to explore the convection process from local to global scales.

In addition to the forward modelling approach, new optimisation techniques based on the adjoint
method (e.g., Bunge et al., 2003; Ismail-Zadeh et al., 2004; Horbach et al., 2014; Ghelichkhan and
Bunge, 2016, 2018) are coming to the fore as a powerful approach to the recovery of past deep Earth
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structure. The inverse approach to mantle convection links current to past mantle flow states, po-
tentially allowing one to resolve uncertain modelling parameters by testing mantle convection models
against observations gleaned from the geologic record (e.g., Colli et al., 2018).

The above makes it clear that numerical simulation is a crucial tool for geodynamicists to advance
our understanding of mantle dynamics. Thus, it is not surprising that numerous benchmark studies
have been performed to verify the accuracy of the solution methods deployed. Commonly, for one
or a few well-defined problem(s), one computes key output variables, such as the Nusselt number
or the peak flow velocity, with different computer codes at high numerical resolution, and reports
the convergence behaviour as a function of resolution. For instance, for 2-D convection problems
important benchmark studies were conducted by Blankenbach et al. (1989); van Keken et al. (1997);
Gerya and Yuen (2003). For 3-D spherical convection codes an early benchmark problem includes
the European Benchmark reported in Bunge (1997) and Richards et al. (2001). This benchmark, also
reported in Zhong et al. (2008), involves two cases of low Rayleigh number (Ra=14,000), isoviscous
and incompressible convection at steady-state, having either a tetrahedral or a cubic flow symmetry.
More recently Kameyama et al. (2013) described a linear stability analysis on the onset of thermal
convection of a fluid in a spherical shell, where a spectral representation of the flow equations included
a temperature-dependent viscosity that varied in radial direction.

Comparing convection-related key output variables from different modelling codes is one strategy
to approach the benchmark problem. A drawback comes from the fact that it is difficult to identify
potential error sources should one obtain different results for different modelling codes, as they involve
coupled solutions for mass, momentum and energy conservation. This makes it attractive to explore
benchmark solutions targeted specifically to the respective conservation equations. To this end Popov
et al. (2014) presented analytical solutions for benchmarking 2-D and 3-D Cartesian geodynamic
Stokes problems. For 3-D spherical geometry Takeuchi and Hasegawa (1965); Richards and Hager
(1984); Ricard et al. (1984) developed semi-analytical solutions for Stokes flow with radially varying
viscosity, using a spectral analysis of the governing equations and the propagator matrix technique
(Gantmacher, 1960). In this approach, one ends up with a linear system of differential equations that
connects the harmonic coefficients of the flow velocity field, stress tensor and gravitational potential
- in case of non-neglected self-gravity.

Here we address the benchmark problem for the momentum balance in 3-D spherical geometry from
a similar perspective using scalar and vector spherical harmonics as basis functions for the underlying
physical quantities. Our primary goal is to present a benchmark that is intended to play the role
of an initial first level test within a hierarchy of benchmark set-ups of ascending complexity. In our
opinion, this is a crucial step to systematically investigate any shortcomings in the numerical code
implementation. Per definition, such a first level benchmark should be based on an analytic solution,
so it can easily be implemented by everyone with minimal scope for error sources. It should also reflect
as little physical complexities as possible, which arguably are primarily of rheological nature.

Indeed, we prove that under the assumption of incompressibility and a uniform viscosity it is possible
to gain a direct relation between velocity field and driving forces. The latter can be evaluated without
solving a whole linear system of differential equations. This is the essential difference of our method to
the propagator matrix approach, where algebraic functions of matrices need to be calculated, matrix
multiplications must be performed and a more complex (and potentially numerically more unstable)
system of linear equations has to be solved. All of the above provide additional error sources, also re-
garding numerical aspects, compared to our method. We regard the propagator approach as a second
level benchmark, where more complex physics can be addressed, such as a radially varying viscosity
and density profile and self-gravitational effects.

Here, the simplicity of the resulting equations allows us to develop a set-up of analytical benchmarks
that is easily implemented and applied to any numerical convection code in 3-D spherical geometry.
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As proof of concept we present results for our analytical benchmark obtained with the prototype for
a new high-performance mantle convection framework being developed in the Terra-Neo project (see
e.g., Weismüller et al., 2015; Bauer et al., 2016, 2019).

3.2 Analytic solutions to the incompressible Stokes equation

As we already mentioned at the begin of this chapter, in this part of the work we want to consider a
special case of the equations that we have derived in the course of the previous chapter. We will see
that assuming incompressibility and an isoviscous flow regime, the governing equations of mantle flow
simplify in such a significant way that the propagator approach will no longer be necessary and we
find a direct connection in form of an ordinary differential equation between the harmonic coefficients
of velocity and temperature.

In the following, the procedure is to investigate the governing equations of mantle flow in terms
of harmonic coefficients. We restate the results of the previous chapter and look how the relations
simplify using the assumptions from above. First, we restate the continuity equation that reduces in
case of an incompressible flow (χ = 0) to (2.10):

∇ · v = 0 . (3.1)

The key here - and what is different to the basis equations in the propagator approach - is that with
the above statement we are able to enforce the Mie representation for the velocity field v and represent
it solely in terms of two scalar functions S and Q, where S represents the poloidal part and Q the
toroidal part of v. More precisely, according to (1.328) we can deduce from now on for the respective
harmonic coefficients that

v1 =
l(l + 1)

r2
S1 ,

v2 =
µl
r
Ṡ1 ,

v3 = −µl
r
Q1 ,

(3.2)

where we stick to the already familiar notation of the lower index ’1’ for the harmonic coefficients of a
scalar field and the ’dot’ symbol that indicates the radial derivative. We proceed with the momentum
equation and use the temperature version (2.38) in order to emphasise the immediate connection to
a numerical mantle circulation code - where temperature is the key quantity - that we want to build
here:

−∇P̃ + η̂0

(
∆v +

1

3
∇ (∇ · v)

)
= ρ0∇Ũ − g0αT̃ρ0ε

r . (3.3)

Applying incompressibility (3.1) and assuming a constant density ρ0(r) = ρ̂0 (see (2.66) for the first
appearance of this notation) and a constant gravitational acceleration g0(r) = ĝ0 throughout the
whole domain, and further, also neglecting the second-order effect of self-gravity ρ0∇Ũ within the
body forces, we arrive at

−∇P̃ + η̂0∆v = −g0αT̃ ρ̂0ε
r . (3.4)

As in the previous chapter, the key to a deeper insight into the equations is the thinking in terms
of harmonic coefficients. We start again with the first harmonic coefficient and here, we can go back
to (2.50) and find, using η0 = η̂0 (isoviscous) (⇒ η̇0 = 0), χ = 0 (incompressible) and U1 = 0 (no
self-gravity), that

−Ṗ1 + η̂0

(
v̈1 +

2

r
v̇1 −

l(l + 1) + 2

r2
v1 +

2l(l + 1)

r2µl
v2

)
= −ĝ0αT1ρ̂0 , (3.5)
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where we also - in analogy to the previous chapter - neglect the ’tilde’ notation for the disturbed
quantities. For the second harmonic coefficient, we go back to (2.54) and find - using the same
assumptions as above - that

−µl
r
P1 + η0

(
v̈2 +

2

r
v̇2 −

l(l + 1)

r2
v2 +

2µl
r2

v1

)
= 0 . (3.6)

We notice that we can eliminate the pressure coefficients P1 by taking the first radial derivative of
the second equation and substitute the result into the first one. Multiplying by r/µl and taking the
derivative of the second relation yields

−Ṗ1 + η̂0

(
r

µl

...
v2 +

3

µl
v̈2 −

l(l + 1)

rµl
v̇2 +

l(l + 1)

r2µl
v2 +

2

r
v̇1 −

2

r2
v1

)
= 0 . (3.7)

By inserting (3.7) into (3.5) we find

v̈1 −
l(l + 1)

r2
v1 −

r

µl

...
v2 −

3

µl
v̈2 +

l(l + 1)

rµl
v̇2 +

l(l + 1)

r2µl
v2 = − ĝ0ρ̂0α

η̂0
T1 , (3.8)

which is a direct relation between poloidal velocity coefficients and the temperature (without the de-
tour of involving the stress tensor). Note that the harmonic coefficient representation (1.296) of the
curl and (1.297) of the double curl reveals that the previously executed operation, i.e. f1−∂r(rf2) for
a vector field f , can also be interpreted as determining the third harmonic coefficient of the curl of f
or - which is identical - the first (or radial) coefficient of the double curl of f .

Since we assumed v to be incompressible we can now apply the Mie representation (3.2) and ex-
press v1 and v2 in terms of the scalar field coefficients S1. Using

v̇1 = ∂r

(
l(l + 1)

r2
S1

)
=
l(l + 1)

r2

(
Ṡ1 −

2

r
S1

)
,

v̈1 =
l(l + 1)

r2

(
S̈1 −

4

r
Ṡ1 +

6

r2
S1

)
,

v̇2 = µl∂r

(
1

r
Ṡ1

)
= µl

(
1

r
S̈1 −

1

r2
Ṡ1

)
,

v̈2 = µl

(
1

r

...
S1 −

2

r2
S̈1 +

2

r3
Ṡ1

)
,

...
v2 = µl

(
1

r

....
S1 −

3

r2

...
S1 +

6

r3
S̈1 −

6

r4
Ṡ1

)
,

(3.9)

we then find

....
S1 −

l(l + 1)

r4

(
2r2S̈1 − 4rṠ1 + (6− l(l + 1))S1

)
=
ĝ0ρ̂0α

η̂0
T1 . (3.10)

The left-hand side of the previous equation can be reformulated into a more compact way such that
finally, we find that the scalar harmonic coefficients S1 of the poloidal part of v must satisfy the
following fourth-order ordinary differential equation:(

∂2
r2 −

l(l + 1)

r2

)2

S1(r) =
ĝ0ρ̂0α

η̂0
T1(r) , (3.11)

for all r ∈ [r0, r1].

We go on by inspecting the toroidal part, i.e. the third harmonic coefficient, of the Stokes equa-
tion. Due to the results of the previous chapter, the expected result should be obvious. Even without

129



CHAPTER 3. A SEMI-ANALYTIC ACCURACY BENCHMARK FOR 3-D STOKES FLOW

the assumptions of a ’simple’ flow scenario as stated above, we have learned that the toroidal part in
our model generally vanishes. We should find exactly this result also here. For the third harmonic
coefficient we go back to (2.58) and find

η̂0

(
v̈3 +

2

r
v̇3 −

l(l + 1)

r2
v3

)
= 0 . (3.12)

As a side remark, in analogy to the poloidal part, also here we find an interpretation of the previous
step in context of the curl, i.e. the harmonic coefficients (1.296) reveal that the toroidal part f3 of a
vector field f is equivalent to the radial harmonic coefficient of the curl.

We again use the Mie representation of v and express v3 in terms of the scalar field Q. For the
radial derivatives we then find

v̇3 = −µl∂r
(

1

r
Q1

)
= −µl

(
1

r
Q̇1 −

1

r2
Q1

)
,

v̈3 = −µl
(

1

r
Q̈1 −

2

r2
Q̇1 +

2

r3
Q1

)
.

(3.13)

By inserting these relations into (3.12) we immediately find the following second-order ordinary dif-
ferential equation for the toroidal part of v:(

∂2
r2 −

l(l + 1)

r2

)
Q1(r) = 0 , (3.14)

for all r ∈ [r0, r1].

For any l ∈ N0 this second-order ODE is a Cauchy-Euler differential equation. It can be shown
that its general solution is given by

Q(r) = c1r
(l+1) + c2r

−l , r ∈ [r0, r1] , (3.15)

with constants c1, c2 ∈ R. The latter are fixed by the velocity boundary conditions. Let us now
impose the constraint that the velocity at the domain boundaries Ωr0 and Ωr1 does not contain any
toroidal part, i.e. we enforce Q(r0) = Q(r1) = 0. Then (3.15) yields c1 = c2 = 0 and consequently
Q ≡ 0 must hold in Ωr0,r1 .

Here, we demonstrated again that in a simple, incompressible convection model, with spatially con-
stant viscosity, the velocity field v will not contain any toroidal components, if these are not explicitly
imposed at the boundaries. In other words, this means that in such a simple model, the buoyancy
forces alone are unable to produce motion of tectonic plates on the Earth’s surface, which are naturally
containing toroidal components.

3.3 Boundary conditions

3.3.1 The no-outflow condition

Since (3.11) is a fourth-order differential equation, four boundary conditions, in practice two at each
boundary, the surface and the CMB, need to be imposed on the harmonic coefficients Q1 in order to
solve this equation. When discussing the Mie representaion, we learned that here, it is required to
fulfill the no-outflow condition

vr(x) = 0 , (3.16)
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for all x ∈ Ωr0 ∪ Ωr1 , which already states a Dirichlet boundary condition for the radial component
of v. Using the Mie representation (3.2) we immediately find that the no-outflow condition directly
transfers into the following condition for the harmonic coefficients of S:

S1(r0) = S1(r1) = 0 . (3.17)

These are the first two boundary conditions we need the coefficients S1 to satisfy. For the other two
conditions that are required, we have to think about additional physical properties we want the model
to satisfy. In other words, which restrictions do we want to impose on the tangential parts of v, i.e. vϕ
and vt at the boundaries of our domain. Basically, there are two physically appropriate options we
may choose for each of the two boundaries:

3.3.2 The no-slip boundary condition

In case of a no-slip boundary condition, we assume a rigid boundary, fixed in time and space, which
means that - in addition to the zero radial component that is forced by the no-outflow condition, we
also assume that the tangential components of the velocity vanish at the respective boundary, i.e.

vϕ(x) = vt(x) = 0 , (3.18)

for all x ∈ Ωr0 ∪ Ωr1 . This is again a Dirichlet boundary condition, here, for both of the tangential
components of v. Again, using the Mie representation (3.2) and the fact that the harmonic coefficients
Q1 of the toroidal part of v vanish, we see that these assumptions directly transfer into the following
condition for the harmonic coefficients of S:

Ṡ1 (r0) = Ṡ1 (r1) = 0 . (3.19)

We see that assuming the no-slip case at both boundaries together with the no-outflow condition gives
us the required four additional constraints for the scalar function S in order to be able to solve the
fourth-order differential equation (3.11).

3.3.3 The free-slip boundary condition

Going back to Section 2.2.2, we learned that the shear stress is represented by the σ2 and σ3 coefficients
of the stress vector s. In (2.48) we found the relations

σ2 = η̂0

(
v̇2 −

v2

r
+
µl
r
v1

)
,

σ3 = η̂0

(
v̇3 −

v3

r

)
.

(3.20)

Since there is no toroidal velocity v3 the toroidal shear stress coefficient σ3 just vanishes. Considering
the poloidal part, we may set v1 = 0 due to the no-outflow condition at the boundaries and apply the
Mie representation (3.2) and (3.9) to substitute v2 and v̇2. This immediately yields the condition

0 = v̇2 −
v2

r
= r∂r

(
1

r
v2

)
= rµl∂r

(
1

r2
Ṡ1

)
, (3.21)

such that summarised, we find the following two conditions for both domain boundaries:

∂r

(
1

r2
Ṡ1

)
(r0) = ∂r

(
1

r2
Ṡ1

)
(r1) = 0 . (3.22)

In analogy to the no-slip case, we see that assuming a free-slip behaviour at both boundaries together
with the no-outflow condition provides the four constraints to the scalar function S that are required
to solve the fourth-order differential equation (3.11). Obviously, it is also possible to use a combination
of no- and free-slip conditions for both boundaries.
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3.3.4 A side remark: The Cartesian perspective

Having a look at the relations in (3.20) and (3.21) that are formulated in terms of the velocity
coefficients, we see that the free-slip condition, i.e.

∂r

(
1

r
v2

)
= 0 , ∂r

(
1

r
v3

)
= 0 , (3.23)

shows up as a kind of Neumann condition for the tangential coefficients, but with an additional weight-
ing factor of 1/r. This weighting factor arises from the spherical geometry of the domain. To illustrate
this point, we want to have a short review on the Cartesian case and show how the respective relations
evolve in this case. We consider a 3-D Cartesian box and assume the bottom (Σ0) and the top (Σ1)
faces of the box to be parallel to the x1x2-plane.

In analogy to the previous section, in the free-slip case we need the shear stress at the boundaries to
vanish. Applying the gradient in Cartesian coordinates to the stress tensor representation (2.18) the
stress tensor becomes

σ =

 −P + 2η∂1v1 η (∂1v2 + ∂2v1) η (∂1v3 + ∂3v1)
η (∂1v2 + ∂2v1) −P + 2η∂2v2 η (∂2v3 + ∂3v2)
η (∂1v3 + ∂3v1) η (∂2v3 + ∂3v2) −P + 2η∂3v3

 . (3.24)

In the case of the described Cartesian box, the outer normal of the boundary surfaces Σ0 and Σ1

points into the x3-direction, so we find for the traction at a point x ∈ Σ0 ∪ Σ1 that

s(x) = σ(x)n(x) = ±σ(x)

 0
0
1

 = ±

 η (∂1v3 + ∂3v1)
η (∂2v3 + ∂3v2)
−P + 2η∂3v3

 . (3.25)

If here we also assume a no-outflow condition, which states in this scenario as

v3(x) = 0 , (3.26)

for all x ∈ Σ0 ∪Σ1, the derivatives in x1- and x2-direction of the x3-component of the velocity vanish
at the boundaries. Inserting this result into (3.25) yields

s(x) = ±

 η∂3v1

η∂3v2

−P + 2η∂3v3

 . (3.27)

In this geometry, the shear stress is the stress in x1- and x2-direction, so if we want to assure the
shear stress to vanish, (3.27) implies that we have to impose the constraints

∂3v1 = ∂3v2 = 0 , (3.28)

at the boundaries. In other words, the normal derivative of the tangential components must vanish.
This result looks remarkably similar to the constraints in the scenario of a spherical geometry but in
contrast, it can be noticed that in the Cartesian case no additional weighting factor 1/r is found.

3.4 The benchmark

3.4.1 General setting

In the previous section we discussed two different boundary conditions for the fourth-order ordinary
differential equation (3.11), which we restate here for convenience:(

∂2
r2 −

l(l + 1)

r2

)2

S1(r) =
ĝ0ρ̂0α

η̂0
T1(r) . (3.29)
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Given these boundary conditions and a right-hand side, i.e. a temperature distribution inside the
domain or more precisely the spherical harmonic coefficients T1, (3.29) provides a way to reconstruct
S - in case (3.29) possesses a solution to the prescribed right-hand side. This would be the normal
condition encountered in a numerical model, where we seek a velocity field for a given buoyancy field.
It represents an inverse approach to the equation. However, our idea to derive an accuracy benchmark
for evaluating existing numerical codes evolves from a forward consideration of equation (3.29). The
general scheme is presented in Figure 3.1. At first we prescribe a velocity field with the desired bound-
ary conditions, no-slip or free-slip. Next we compute the resulting temperature distribution applying
the differential operator of (3.29). This temperature field is fed into the numerical code, which we
use to compute a numerical approximation of the velocity field. This result can then directly be com-
pared to the a-priori defined velocity structure to quantify the quality of the numerical approximation.

Thus, in order to execute the benchmark, first, we need to construct a radially dependent scalar
function H(r) that satisfies the no-slip, free-slip or mixed boundary conditions as described in the
previous section. H(r) then plays the role of the radially dependent harmonic coefficients of the
poloidal velocity potential S1(r) in (3.29). While there are infinitely many ways to accomplish this,
the only constraints arise from the pre-described four boundary conditions. The latter imply that the
chosen basis function needs to have at least 4 free parameters. From the desire of constructing an
as-simple-as-possible test scenario, one would select an ansatz function that is as smooth as possible to
avoid artificial complexities. This naturally leads to a polynomial approach and the Hermite interpo-
lation problem, corresponding to the chosen set of boundary conditions. Upon choosing a third-order
polynomial, we find for the no-slip case that the interpolation problem leads to the trivial solution
H ≡ 0, such that it is required to include an additional free parameter. More precisely, we need to
determine coefficients a, b, c, d ∈ R such that

H(r) = H0 + ar + br2 + cr3 + dr4 . (3.30)

Prescribe poloidal velocity
field v

Select type of boundary conditions

Choose pair(s) of (l,m)

Select coefficient function(s) Sl,m(r)

Compute associated forcing
term / right-hand side for
Stokes problem

Apply differential operator to Sl,m(r) to obtain Tl,m(r)

Assemble Tl,m(r) terms into forcing term

Solve Stokes problem with
code being benchmarked

Compare computed velocity
field vcode to prescribed one

Figure 3.1: Schematics of the individual steps of the benchmark.
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where H0 is an additional free parameter that must be chosen a-priori and that allows one to adjust
the amplitude of the desired velocity field / temperature variations. We point out that it is not
necessary to assume that H is a polynomial. More general, we can reformulate the previous equation
as the task of finding a function H that satisfies

H(r) = H0 + aH1(r) + bH2(r) + cH3(r) + dH4(r) , (3.31)

with H0 ∈ R and where H1, H2, H3 and H4 are linearly independent functions such that the result-
ing linear system of equations remains (uniquely) solvable. For example, another appropriate choice
would be H1(r) := sin(r), H2(r) := cos(r), H3(r) := sin(2r) and H4(r) := cos(2r).

Besides this natural approach of a smooth ansatz function, one can imagine a variety of further
choices for H. This is an essential advantage of the method presented here. In general, H can be
chosen in such a way that more complex physical scenarios can be addressed. For instance, one could
imagine to construct a velocity profile with much higher values in specific layers compared to others,
i.e. an asthenosphere-like scenario. This would imply locally steeper velocity gradients that are in
general harder to resolve in a numerical code. It would also provide a strong test on the ability to
handle large localised variations in lateral and radial shear stresses. The latter would be of significant
value in the testing of a geodynamic mantle model.

Nevertheless, here we focus on the four free parameters and especially fourth-order polynomial ansatz,
motivated by our original task of presenting a benchmark for an as-simple-as-possible reference case.

3.4.2 No-slip boundary conditions

From section 3.3.2 we know that in the no-slip case the function H has to satisfy the following four
constraints:

H(r0) = 0 , H(r1) = 0 , Ḣ(r0) = 0 , Ḣ(r1) = 0 . (3.32)

Following the ansatz in (3.31) this immediately leads to the following system of linear equations:
H1(r0) H2(r0) H3(r0) H4(r0)
H1(r1) H2(r1) H3(r1) H4(r1)

Ḣ1(r0) Ḣ2(r0) Ḣ3(r0) Ḣ4(r0)

Ḣ1(r1) Ḣ2(r1) Ḣ3(r1) Ḣ4(r1)




a
b
c
d

 =


−H0

−H0

0
0

 . (3.33)

Solving this system for a given H0 determines the coefficients a, b, c and d and, thus the function H.
The latter can then be inserted into (3.29). This leads, straightforwardly, to the spherical harmonic
coefficients Tl,m of the temperature distribution.

For the fourth-order polynomial ansatz (3.30) we discuss the procedure in a more detailed way. Here
the system of linear equations we have to solve is

r0 r2
0 r3

0 r4
0

r1 r2
1 r3

1 r4
1

1 2r0 3r2
0 4r3

0

1 2r1 3r2
1 4r3

1




a
b
c
d

 =


−H0

−H0

0
0

 . (3.34)

We choose H0 = 1, r0 = 1 and r1 = 2, which is an almost Earth-like scenario since rs/rc ≈ 1.83, where
rc := 3, 480 km is the radius of the CMB and rs := 6, 370 km is the radius of the Earth’s surface. The
system of equations then turns into

1 1 1 1
2 4 8 16
1 2 3 4
1 4 12 32




a
b
c
d

 =


−1
−1

0
0

 , (3.35)
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with the unique solution a = −3, b = 13/4, c = −3/2 and d = 1/4. Thus, the fourth-order polynomial
that satisfies the desired boundary conditions is

H(r) =
1

4
r4 − 3

2
r3 +

13

4
r2 − 3r + 1 . (3.36)

If we now identify this function with the spherical harmonic coefficients of the toroidal part of the
velocity field S1 in (3.29), we find the respective temperature field by

T1(r) =
η̂0

ĝ0ρ̂0α

(
∂2
r2 −

l(l + 1)

r2

)2

H(r) . (3.37)

Note that the toroidal ansatz function depends neither on degree l nor on order m. Inserting (3.36)
into (3.37) yields(

∂2
r2 −

l(l + 1)

r2

)2

H(r) =
....
H (r)− l(l + 1)

r4

(
2r2Ḧ(r)− 4rḢ(r) + (6− l(l + 1))H(r)

)
=
l(l + 1)

r4

((
6

l(l + 1)
+
l(l + 1)

4
− 7

2

)
r4 +

(
9− 3l(l + 1)

2

)
r3

+

(
13l(l + 1)

4
− 13

2

)
r2 + (6− 3l(l + 1)) r + l(l + 1)− 6

)
.

(3.38)

Thus, e.g. for the spherical harmonic degree l = 2 we find that

T1(r) = − 6η̂0

ĝ0ρ̂0αr3

(
r3 − 13r + 12

)
. (3.39)

3.4.3 Free-slip boundary conditions

For the free-slip case we remember that the ansatz function H has to satisfy the following four
constraints:

H(r0) = 0 , H(r1) = 0 , ∂r

(
1

r2
Ḣ

)
(r0) = 0 , ∂r

(
1

r2
Ḣ

)
(r1) = 0 . (3.40)

Applying (3.31) immediately leads to the following system of linear equations:
H1(r0) H2(r0) H3(r0) H4(r0)
H1(r1) H2(r1) H3(r1) H4(r1)

∂r

(
1
r2 Ḣ1

)
(r0) ∂r

(
1
r2 Ḣ2

)
(r0) ∂r

(
1
r2 Ḣ3

)
(r0) ∂r

(
1
r2 Ḣ4

)
(r0)

∂r

(
1
r2 Ḣ1

)
(r1) ∂r

(
1
r2 Ḣ2

)
(r1) ∂r

(
1
r2 Ḣ3

)
(r1) ∂r

(
1
r2 Ḣ4

)
(r1)




a
b
c
d

 =


−H0

−H0

0
0

 .

(3.41)
In analogy to the no-slip case we take a more detailed look at the polynomial case (3.30), which leads
to 

r0 r2
0 r3

0 r4
0

r1 r2
1 r3

1 r4
1

−2/r3
0 −2/r2

0 0 4

−2/r3
1 −2/r2

1 0 4




a
b
c
d

 =


−H0

−H0

0
0

 . (3.42)

For the choice H0 = 1, r0 = 1, r1 = 2, this system turns into
1 1 1 1
2 4 8 16
−2 −2 0 4
−1/4 −1/2 0 4




a
b
c
d

 =


−1
−1

0
0

 , (3.43)
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Figure 3.2: This figure shows the polynomial H for the different kinds of boundary conditions (upper
left), as well as the resulting forcing terms f from (3.50) for different harmonic degrees l and no-slip
(upper right), free-slip (lower left) and mixed (lower right) boundary conditions.

with the unique solution a = −7/2, b = 49/12, c = −15/8 and d = 7/24. Thus, the fourth-order
polynomial that satisfies the desired boundary conditions is

H(r) =
7

24
r4 − 15

8
r3 +

49

12
r2 − 7

2
r + 1 . (3.44)

Inserting this polynomial into (3.29) then yields the desired temperature distribution as already de-
scribed in detail in the previous section.

3.4.4 Mixed boundary conditions

In this section, we combine the results from both previous sections, defining an Earth-like scenario
that contains a no-slip condition on the outer shell - surface - and a free-slip condition on the inner
shell - CMB - of the volume boundary. Combining the various properties of both types of boundary
conditions we find as necessary constraints for H:

H(r0) = 0 , H(r1) = 0 , ∂r

(
1

r2
Ḣ

)
(r0) = 0 , Ḣ(r1) = 0 . (3.45)
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Table 3.1: In this table, we present the coefficients of the radial forcing function, i.e. the temperature
field, depending on the harmonic degree l, for the specific polynomial ansatz function H that was
chosen in this work.

coefficient no-slip free-slip mixed

c0
1

4
(12− µ2

l )(2− µ2
l )

7

24
(12− µ2

l )(2− µ2
l )

3

8
(12− µ2

l )(2− µ2
l )

c1
3

2
µ2
l (6− µ2

l )
15

8
µ2
l (6− µ2

l )
17

8
µ2
l (6− µ2

l )

c2
13

4
µ2
l (µ

2
l − 2)

49

12
µ2
l (µ

2
l − 2)

17

4
µ2
l (µ

2
l − 2)

c3 3µ2
l (2− µ2

l )
7

2
µ2
l (2− µ2

l )
7

2
µ2
l (2− µ2

l )

c4 µ2
l (µ

2
l − 6) µ2

l (µ
2
l − 6) µ2

l (µ
2
l − 6)

Again, applying (3.31) leads to the following system of linear equations:
H1(r0) H2(r0) H3(r0) H4(r0)
H1(r1) H2(r1) H3(r1) H4(r1)

∂r

(
1
r2 Ḣ1

)
(r0) ∂r

(
1
r2 Ḣ2

)
(r0) ∂r

(
1
r2 Ḣ3

)
(r0) ∂r

(
1
r2 Ḣ4

)
(r0)

Ḣ1(r1) Ḣ2(r1) Ḣ3(r1) Ḣ4(r1)




a
b
c
d

 =


−H0

−H0

0
0

 .

(3.46)
Inserting (3.30) here leads to

r0 r2
0 r3

0 r4
0

r1 r2
1 r3

1 r4
1

−2/r3
0 −2/r2

0 0 4

1 2r1 3r2
1 4r3

1




a
b
c
d

 =


−H0

−H0

0
0

 . (3.47)

For the choice H0 = 1, r0 = 1, r1 = 2, this system turns into
1 1 1 1
2 4 8 16
−2 −2 0 4
1 4 12 32




a
b
c
d

 =


−1
−1

0
0

 , (3.48)

with the unique solution a = −7/2, b = 17/4, c = −17/8 and d = 3/8. Thus, the fourth-order
polynomial that satisfies the desired boundary conditions is

H(r) =
3

8
r4 − 17

8
r3 +

17

4
r2 − 7

2
r + 1 . (3.49)

In analogy to the two previous sections, inserting this polynomial into (3.29) then yields the desired
temperature distribution. In general, applying the differential operator in (3.29) to a fourth-order
polynomial - here H - results in a rational function f(r). Its form can be expressed as

f(r, l) =

4∑
k=0

ck(l)

rk
, (3.50)

with coefficients ck(l) ∈ R, k = 0, ..., 4, that vary with degree l. Table 3.1 lists these coefficients
resulting from our three different selections of boundary condition pairs, while Figure 3.2 gives a
graphical representation of the function for some selected harmonic degrees in case of all three settings.
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Table 3.2: Details of the meshes used in our experiments: mt represents the number of subdivisions
along the edges of the initial triangles of the icosahedron, #refs the number of refinement steps
performed, #tets the number of tetrahedrons in the fine mesh, #dofs the number of degrees of
freedom in the Stokes problem, #resolution the approximate resolution on the outer surface when
scaled to the Earth’s radius.

mt #refs #tets #dofs resolution

32 4 1,966,080 1.3 · 106 240 km
64 5 15,728,640 10.4 · 106 120 km

128 6 125,829,120 83.6 · 106 60 km

3.5 Numerical experiments

We demonstrate the applicability of our suggested accuracy benchmark by testing it within the proto-
type of a new mantle convection framework. The latter is based on Hierarchical Hybrid Grids (HHG),
a carefully designed and implemented software package for high performance finite element simula-
tions with multigrid solvers. HHG employs an unstructured mesh for geometry resolution which is
then refined in a regular fashion. The resulting mesh hierarchy is well suited to implement matrix-free
geometric multigrid methods. Multigrid techniques form an essential building block in any large-scale
Stokes solver, most commonly as pre-conditioner within a Krylov solver, or alternatively as inner
solver in a Schur complement approach or in the form of a monolithic solver that treats the full Stokes
system all-at-once. For details on HHG and the mantle convection prototype implementation see
e.g. Bergen and Hülsemann (2004); Bergen et al. (2005, 2006, 2007); Gmeiner et al. (2015); Bauer
et al. (2016, 2019).

For our tests we implemented the no-slip version of the benchmark that was presented in the previous
chapter, i.e. we generate a synthetic velocity field v by means of the polynomial ansatz function H
from (3.36). Selecting a degree and order pair (l,m) the temperature field that is generated by v can
be derived using (3.50) and is used as forcing term for the Stokes equation in HHG.

The Stokes problem is solved on a thick spherical shell with inner radius 1 and outer radius 2. This
domain is discretised using an icosahedral meshing approach, similar to the one described in Baum-
gardner (1985); Baumgardner and Frederickson (1985), to generate a coarse input mesh for HHG.
The resulting mesh is composed of 480 tetrahedra. The latter are then uniformly refined several times
following the rules of Bey (1995). The resulting new vertices are then projected onto radial layers
to form the actual computational mesh (see Weismüller, 2016; Bauer et al., 2019). Table 3.2 gives
further details on the meshes used in our experiments.

On the mesh the Stokes problem is discretised with P1 elements, i.e. first-order Lagrangian ansatz
functions. As this approach is not inf-sup stable, we stabilise it by treating pressure on a mesh that
is one times less often refined than the one for velocity, a strategy commonly referred to as P1-iso-P2

approach.

We make two comments concerning the discretisation approach. The original HHG framework and,
thus, also the prototype convection code employed in our tests was basically limited to P1 elements.
A new framework, based on the original HHG ideas, is currently being developed which supports data
structures allowing to implement more sophisticated element types. Details on the new framework,
denoted HyTeG, can be found in Kohl et al. (2019). Also, the tested configurations are very moderate
for HHG, which has been shown to be able to efficiently solve the core equations of mantle convection
with up to 1013 dofs (Gmeiner et al., 2016), and been successfully used to simulate geodynamical
models involving variable viscosity and dynamic topography with up to 1011 dofs (Bauer et al., 2019).
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Figure 3.3: Relative deviation and discrete L2 norm of the error for different harmonic degrees and
mesh resolutions.

However, for our purposes such extreme resolutions are not necessary.

The linear system of equations resulting from the discretisation process is solved using a classical
Schur complement approach with conjugate gradients (CG) as outer iteration and multigrid (MG)
as inner iteration, both implemented in HHG in a matrix-free fashion, see Bauer et al. (2016) for
details. We stop the iteration once the discrete L2 norm of the error has not changed for four consec-
utive steps. Due to the moderate problem sizes tested the simulations could be run on the Tectonic
High-Performance Simulator (TETHYS-2G), a machine dedicated to geophysical capacity simulations,
(Oeser et al., 2006). The solution for v that is calculated with HHG can then be compared against
the synthetic field.

Figure 3.3 presents the results of our experiments. Here we always fixed the order m to be zero
and only varied the harmonic degree and the mesh resolution. The left part of the figure shows
the development of the relative deviation for varying harmonic degree. This quantity represents the
ratio of the discrete L2 norm of the error, between the analytic velocity and its reconstructed dis-
crete approximation, and the L2 norm of the analytic velocity itself. The results are as were to be
expected. The relative deviation increases with harmonic degree, as high-frequency structures are of
course harder to resolve, while it reduces with increased resolution. For mt=128 the observed relative
deviation is always smaller than 6% for all l up to degree 50 and smaller than 1% for l 6 20.

In the right part of Figure 3.3 the discrete L2 norm of the absolute error is shown for selected degrees.
As one can see we obtain second-order convergence in this quantity, just as one would expect from
Finite Element theory for piecewise-linear ansatz functions.

It is quite obvious that during an ongoing project and development of a new numerical code, bench-
mark tests like the one presented in this work, are crucial to verify the suitability of the selected
numerical algorithms and the correctness of their implementation.

3.6 Discussion

Modern supercomputers provide immense computational power. This trend is bound to continue
with exa-scale machines looming on the horizon. For geodynamicists this means that it is possible to
construct models of dynamic processes in the Earth that are more and more sophisticated. On the
one hand, in forward models, higher spatial resolutions - on the km-scale for the whole Earth’s mantle
- may be implemented and simulations be conducted over longer times scales using more complex
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physics. On the other hand, in inverse models, determinations of the unknown initial temperature
distribution of the Earth’s mantle at some point in the past may become feasible (e.g., Colli et al.,
2018). Here repeated executions of forward and adjoint runs are necessary to achieve an iterative
approach to the optimal initial condition, resulting in higher computational costs. In order to exploit
these trends to their full potential, efficient methods for the testing and verification of individual code
components for numerical accuracy are important. To this end, mantle convection benchmarks have
relied on the computation with different codes of a few well-defined problem(s).

In this work, we presented a detailed derivation of a semi-analytic solution to the 3-D Stokes equation
in a spherical shell using methods of spectral analysis. Whereas a coupled system of second-order
partial differential equations evolves from the original continuity and momentum equation, we find
essential simplifications. Our approach ends up with a single ordinary differential equation that relates
the velocity field directly to the flow inducing driving forces. The simplification arises from various
assumptions we make on the flow properties. Due to imposed incompressibility, the intrinsic three free
parameters of the velocity field are reduced to two, a poloidal and a toroidal component. Furthermore,
a constant viscosity inside the whole domain enforces the toroidal part to vanish, and one single free
parameter remains.

The derived direct relation between velocity and driving forces is only valid under the described
assumptions on the flow properties. If we additionally allow for a radially varying viscosity and/or
density profile, we end up with a more complex linear system of differential equations (Richards and
Hager, 1984) that needs to be solved by a propagator matrix approach. A further level of complexity
can be introduced by making this radial viscosity profile even temperature-dependent. A spectral
representation of the resulting coupled system of momentum and energy equation can be found in
Kameyama et al. (2013), where a linear stability analysis on the onset of thermal convection of a fluid
in a spherical shell is described.

The derived relation of our work can be exploited to determine the forcing term from a prescribed
velocity field. In other words, for a given velocity field it is possible to compute the corresponding
right-hand side. This feature lends itself to the design of a benchmark set-up for numerical Stokes
solvers, where a velocity field is sought for a given right-hand side. Our benchmark is self-contained
and can be performed without relying on the numerical solutions from other codes. Implementation of
the benchmark is straightforward as it relies on building blocks, such as the Stokes solver and tools to
evaluate the associated Legendre functions for spherical harmonics, that are readily available in 3-D
spherical mantle convection codes. We demonstrate the applicability of the benchmark by verifying
the convergence behaviour of the Stokes solver in the prototype of a new mantle convection modelling
framework for high performance computing based on Hierarchical Hybrid Grids.
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Chapter 4

The Earth’s gravitational field

4.1 Mathematical formulation

Recent satellite missions like CHAMP, GRACE and GOCE have been measuring the Earth’s grav-
itational field in a highly accurate way. Due to the (almost) global coverage of the satellite’s orbit,
a nearly uniform dataset is provided and may be analysed and interpreted by a variety of scientists.
Since the Earth’s gravitational field is a direct response of the processes, i.e. redistribution of masses,
within the Earth’s interior, gravity is one of the most important datasets that geoscientists are pro-
vided with. Newton’s law states that the gravitational force between two bodies with masses mx

at the position x ∈ R3 and my at y ∈ R3 is proportional to their respective masses and inversely
proportional to the distance between them. At x we find:

Fgrav(x) = −G mxmy

|x− y|3
(x− y) , (4.1)

where G = 6.67 · 10−11 m3/(kg · s2) is the gravitational constant. With Fgrav(x) = mxg(x) with g(x)
the gravitational acceleration at x, we find a representation of g, independent of mx:

g(x) = − Gmy

|x− y|3
(x− y) . (4.2)

This is the gravitational acceleration that can be observed at the point x. The presented scenario,
involving two point masses can be extended to N ∈ N point masses mi, i = 1, ..., N , that are located
at yi ∈ R3, i = 1, ..., N . In the limit N →∞, we can interpret the masses as a density distribution in
the considered volume V :

g(x) = −G
N∑
i=1

mi

|x− yi|3
(x− yi)

N→∞−−−−→ −G
∫
V

ρ(y)

|x− y|3
(x− y) dV (y) . (4.3)

Furthermore, it can be shown that the gravitational field is a potential, i.e. there exists a scalar field
U such that g(x) = −∇U(x). It can easily be verified that

U(x) = − Gmy

|x− y|
, (4.4)

for the single point mass scenario. In analogy, for a density distribution we find that

U(x) = −G
∫
V

ρ(y)

|x− y|
dV (y) . (4.5)
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Remembering (1.171), we notice that we can express the inverse distance in terms of a spherical
harmonic expansion. Defining x := Rξ and y := rη with ξ, η ∈ Ω and r,R ∈ R+, R > r, we
immediately find that

U(x) = −G
∫
V

1

R

∞∑
l=0

( r
R

)l 4π

2l + 1

l∑
m=−l

Yl,m(ξ)Yl,m(η) ρ(y) dV (y)

= −
∞∑
l=0

l∑
m=−l

Yl,m(ξ)
4πG

2l + 1

1

Rl+1

∫
V

rl Yl,m(η) ρ(y) dV (y) .

(4.6)

Note that here we assumed x to be located in the exterior of the mass distribution. From this
representation we see that the spherical harmonic coefficients of U can thus be expressed by

Ul,m(R) = − 4πG

2l + 1

1

Rl+1

∫
V

rl Yl,m(η) ρ(y) dV (y) . (4.7)

In case that the observation point x is located below the mass distribution, i.e. R < rR in the terms
from above, the roles of r and R in the expansion of the inverse distance interchange and we end up
with:

Ul,m(R) = − 4πG

2l + 1
Rl
∫
V

1

rl+1
Yl,m(η) ρ(y) dV (y) . (4.8)

Even though it is not possible to explicitly calculate the integral on the right-hand side, yet - the vol-
ume V is still arbitrary at this point - nevertheless, we can already identify the harmonic coefficients
ρl,m(r) of the underlying density field, hidden in the surface part of the volume integral. Thus, one of
the most important observations that we can make from this representation, is the direct coupling
between the potential and density harmonic coefficients of same degree and order. Later, when we
explicitly discuss spherical geometries, this coupling becomes even more evident (see e.g. (4.23)).

The essential coupling factor (r/R)l (or (R/r)l, respectively) indicates that the gravitational sig-
nal of a density structure fades out exponentially with growing distance to the observer. This effect
even amplifies exponentially with increasing harmonic degree. As a consequence, for high harmonic
degrees, the potential coefficients can be identified almost directly with the respective density coeffi-
cients of the masses that are closest to the observer. Applied to the Earth, this means that small scale
density structures that are located in the deep mantle, are just invisible for a gravitational observer
at the surface. Thus, we can already deduce from here, that in order to explain the higher harmonic
degrees of the Earth’s gravitational field, we will probably have to look at processes that are located
close to the Earth’s surface. Signals from the deep mantle only survive the whole way up to the
observer if they are generated by large scale structures, represented by the very low harmonic degrees.
In the upcoming sections, we will find out that these immediate deductions that we just took from
the representation (4.7) indeed turn out to be true.

Furthermore, in (4.7) we see that the dependence on the location of the observer only enters the
equation through the factor of Rl+1 in the denominator. Now, choosing the respective radial position
as R1 (in the exterior of the volume), we can rephrase (4.7) as

Ul,m(R1) =
1

Rl+1
1

C , (4.9)

where C is some fixed value that is dependent on the mass distribution. From this representation we
immediately find that for a different radial location R2 outside the volume, the harmonic coefficients
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at the two different radii are related to each other by

Ul,m(R2) =

(
R1

R2

)l+1

Ul,m(R1) . (4.10)

For R2 > R1 this transformation is called upward continuation, where for R2 < R1 it is called
downward continuation. Without diving much into details here, from the previous formula it can
already be deduced that the process of upward continuation is stable, where the downward continuation
is unstable since in that case, the fraction R1/R2 is greater than 1 and grows exponentially with degree
l. Thus, in the process of downward continuation, errors and noise in the higher degree harmonics
are getting amplified. The concept of stability in this context can directly be linked to the ill- and
well-posedness criteria of Hadamard (1902) for inverse problems. Now choosing R from above as the
lower reference radius, we can express the potential at any x ∈ R3 with |x| = r > R, x = rξ, ξ ∈ Ω,
in terms of the coefficients at radius R by

U(x) =

∞∑
l=0

l∑
m=−l

(
R

r

)l+1

Ul,m(R)Yl,m(ξ) . (4.11)

In particular, we can use this expression to determine the radial derivative of the potential in terms
of the harmonic coefficients. Here we find that

∂rU(x) = −
∞∑
l=0

l∑
m=−l

l + 1

r

(
R

r

)l+1

Ul,m(R)Yl,m(ξ) . (4.12)

In the following, we will have a closer look at some particular harmonic coefficients of the gravitational
potential, especially in terms of their physical meaning. Returning to (4.7) and using the explicit
representation of the spherical harmonics (1.219), we find that

U0,0(R) = −4πG

R

∫
V

Y0,0(η) ρ(y) dV (y)

= −
√

4πG

R

∫
V

ρ(y) dV (y)

= −
√

4π
GM

R
,

(4.13)

with the total mass M of the volume. (GM)/R equals the gravitational potential of a homogeneous
sphere with mass M and radius R. Thus, all coefficients of degree greater than zero describe the
deviation of the potential from the one of a solid sphere. Here we also recognise the reason why
in the geodetic community, the spherical harmonic normalisation is not set to 1 but to

√
4π. This

geodetic normalisation yields that the U0,0 coefficient exactly equals the reference potential (GM)/R.
Furthermore, in geodesy it is also common to extract this factor from the harmonic coefficients in
order to achieve U0,0 = 1.

When we examine the harmonic coefficients of degree 1 in detail, we find by using again (1.219)
that

U1,0(R) = −
√

4π

3

G

R2

∫
V

r t ρ(y) dV (y) ,

U1,1(R) = −
√

4π

3

G

R2

∫
V

r
√

1− t2 cosϕρ(y) dV (y) ,

U1,−1(R) = −
√

4π

3

G

R2

∫
V

r
√

1− t2 sinϕρ(y) dV (y) .

(4.14)
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Having a closer look at the integrals, we see that here we find all vector components from the trans-
formation of spherical polar into Cartesian coordinates (see (1.24)), i.e. the integrals can be rewritten
as

U1,0 :

∫
V

x3 ρ(y) dV (y) , U1,1 :

∫
V

x1 ρ(y) dV (y) , U1,−1 :

∫
V

x2 ρ(y) dV (y) . (4.15)

From mechanics it is known that these integrals represent the coordinates of the center of mass.
Thus, if we follow the convention that the origin of our coordinate system falls into the center of mass
(geocentric coordinate system) - which we do and which is used in the actual measurements of
gravitational data that we present in the following chapter - then all these integrals vanish and all
harmonic coefficients of degree 1 turn out to be zero.

Furthermore, in Section 4.8 we will show that the degree 2 coefficients can directly be translated
into components of the inertia tensor of the considered volume. Since per definition the x3 axis falls
into the rotation axis, i.e. the largest principle axis of inertia, the inertia tensor is diagonal with re-
spect to the x3 component, i.e. all off-diagonal elements that include x3 vanish. From the McCullagh
formula (4.85) and (4.86) that we will derive in Section 4.8 we see that these non-diagonal elements
correspond to the harmonics of order 1, i.e. the U2,1 and U2,−1 coefficient of the gravitational potential.
Thus, we also expect these two coefficients to vanish. Actually, in the satellite derived data that we
will present in the next section, both of these coefficients are not exactly zero due to slight differences
between the Earth’s rotational axis and largest principle axis of inertia but negligibly small compared
to the other coefficients (three orders of magnitude smaller). These five non-present coefficients in the
harmonic expansion of the gravitational potential are called forbidden or inadmissible harmonics
(Heiskanen and Moritz, 1967).

Now, we continue by examining special cases of (4.7) and (4.8) that will be useful in the follow-
ing proceeding. If we assume the volume V to be a spherical shell that is bounded by the radii r0 < r1

we find for R > r that

Ul,m(R) = − 4πG

2l + 1

1

Rl+1

r1∫
r0

rl+2

∫
Ω

Yl,m(η) ρ(rη) dω(η) dr . (4.16)

In case of a constant density ρ̂0, we can put ρ̂0 outside the integral and the previous relation simplifies
to

Ul,m(R) = − 4πGρ̂0

(2l + 1)(l + 3)

rl+3
1 − rl+3

0

Rl+1

∫
Ω

Yl,m(η) dω(η) . (4.17)

This representation will explicitly be used in Section 4.7 where the gravity signals of spherical cubes
with constant density need to be calculated. There, the integration on the right-hand side will then
not be executed over the whole unit sphere Ω but only over a part of it, which will make the explicit
evaluation quite complex. If we indeed consider a complete spherical shell with constant density, the
integral simplifies remarkably. In this case we can rephrase (4.17) and find

Ul,m(R) = − (4π)
3
2Gρ̂0

(2l + 1)(l + 3)

rl+3
1 − rl+3

0

Rl+1

∫
Ω

Yl,m(η)
1√
4π

dω(η)

= − (4π)
3
2Gρ̂0

(2l + 1)(l + 3)

rl+3
1 − rl+3

0

Rl+1

∫
Ω

Yl,m(η)Y0,0(η) dω(η) .

(4.18)

Now, due to the orthonormality of the spherical harmonics, the degree zero coefficient is the only one
that is not vanishing and can be determined as:

U0,0(R) = −
√

4π
G

R

(
4

3
π
(
r3
1 − r3

0

)
ρ̂0

)
. (4.19)
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This result perfectly coincides with our previous interpretation of the zero harmonic (4.13) since here,
on the right-hand side, we find the total mass of the spherical shell.

If we again switch the roles of r and R and define the observation point to be located below the
mass distribution, i.e. in this example in the interior of the spherical shell, (4.16) turns into

Ul,m(R) = − 4πG

2l + 1
Rl

r1∫
r0

1

rl−1

∫
Ω

Yl,m(η) ρ(rη) dω(η) dr , (4.20)

and instead of (4.17) we find

Ul,m(R) =
4πGρ̂0

(2l + 1)(l − 2)

(
1

rl−2
1

− 1

rl−2
0

)
Rl
∫
Ω

Yl,m(η) dω(η) . (4.21)

Also here, we can exploit the orthonormality of the spherical harmonics to find for the only non-
vanishing coefficient U0,0 that

U0,0(R) = −
√

4π (2πGρ̂0)
(
r2
1 − r2

0

)
. (4.22)

Here, it is very interesting to see that there is no more dependence on R on the right-hand side of
the equation. This means that the gravitational potential is constant everywhere inside the spherical
shell and as a consequence there is no gravitational acceleration. The interior of a spherical shell with
a homogeneous density distribution is gravity-free space.

As we already have discussed before, we can identify the surface integral on the right-hand side
of (4.16) and (4.20) with the spherical harmonic coefficients of the density distribution. In this way,
we can reformulate (4.16) as

Ul,m(R) = − 4πG

2l + 1

1

Rl+1

r1∫
r0

rl+2ρl,m(r) dr , (4.23)

and for R < r we find:

Ul,m(R) = − 4πG

2l + 1
Rl

r1∫
r0

1

rl−1
ρl,m(r) dr . (4.24)

Finally, we discuss the scenario that we have already come across in Section 2.3 when we investigated
an explicit solution method for the Stokes system in mantle dynamics, i.e. the propagator matrix
approach. Here we divided our domain of interest, the spherical shell, into n equidistant layers of
thickness ∆r := (r1 − r0)/n with layer boundaries bj , j = 1, ..., n + 1. Each of these sub-shells has
a constant density, or more precisely, constant respective harmonic coefficients ρl,m(bj). Under these
conditions, the integral in (4.23) turns into a finite sum and the coefficients of the exterior solution
can be written as:

Ul,m(R) = − 4πG

2l + 1

1

Rl+1

n∑
j=1

ρl,m(bj)

bj+1∫
bj

rl+2 dr . (4.25)

Here, one could easily solve the integrals on the right-hand side exactly, like we also did before in
various other representations. But at this point it is common and regularly found in literature to
additionally approximate the radial integrals by the product of layer thickness and the value of the
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integrand at one of the boundaries. This simplification is perfectly valid if the radial grid is sufficiently
fine. Under this assumption, (4.25) becomes

Ul,m(R) = − 4πG

2l + 1

n∑
j=1

bj

(
bj
R

)l+1

ρl,m(bj) ∆r . (4.26)

In analogy, for the interior solution we find

Ul,m(R) = − 4πG

2l + 1

n∑
j=1

bj

(
R

bj

)l
ρl,m(bj) ∆r . (4.27)

These are the most commonly used representations of the harmonic coefficients of the gravitational
potential for a given layered density distribution inside the Earth’s mantle.

At last we again make a detour to the distributional space. As we have learned before in this work,
within the concept of fundamental solutions (or Green’s functions), it is crucial to convert the un-
derlying equations into a distributional formulation and represent the driving quantities - here the
density field - in terms of a delta distribution. Thus, if we set - see e.g. Section 2.3.2 for a detailed
explanation - ρl,m(r) = δ(r − bj) for a fixed layer bj , j ∈ {1, ..., n}, we immediately find from (4.23)
and (4.24) that for R > bj we have

Ul,m(R) = − 4πG

2l + 1
bj

(
bj
R

)l+1

, (4.28)

and in the case of R < bj we find

Ul,m(R) = − 4πG

2l + 1
bj

(
R

bj

)l
. (4.29)

These are exactly the relations that we already used in Section 2.4 in the context of defining appro-
priate boundary conditions for the linear system of differential equations that evolved from the Stokes
equation (see (2.142) and (2.143)).

Moreover, in the previous chapters, we have learned that for all governing equations, like e.g. the
Stokes or the continuity equation, it was very helpful to have a representation in terms of differential
operators instead of an integral formulation. The advantage here lies in the possible conversion of the
respective operators into spherical coordinates and the exploitation of the eigenfunction property of
the spherical harmonics. In Chapter 1 we already gave a brief insight into the strategy on how to
find an equivalent formulation of the gravitational potential, i.e. the gravitational Poisson equation
(1.108):

∆U(x) = 4πGρ(x) . (4.30)

For the complete proof, one needs a descent basis of distributional theory, which is beyond the scope
of this work. Here, the reader is referred to e.g. Wermer (1974). Nevertheless, one special case of this
equation, i.e. the statement that the gravitational potential is harmonic outside a mass distribution,
is not difficult to prove. We define V ⊂ R3 to be closed and choose an x /∈ V as the observation point.
Starting from the representation (4.3) of the gravitational acceleration, we apply the divergence to
both sides of the equation to find:

∇x · g(x) = −G∇x ·
∫
V

ρ(y)

|x− y|3
(x− y) dV (y) = −G

∫
V

ρ(y)∇x ·
(

x− y
|x− y|3

)
dV (y) . (4.31)

Since x /∈ V and V is closed, the integrand contains no singularity and thus, interchanging differenti-
ation and integration is valid without further concerns. If V was not closed, x could theoretically be

146



4.2. MEASUREMENT AND REPRESENTATION

an accumulation point of V and thus, again produce a singularity in the integrand. Now, a straight-
forward calculation shows that

∇x ·
(

x− y
|x− y|3

)
=

1

|x− y|3
∇x · (x− y) + (x− y) · ∇x

(
3∑
i=1

(xi − yi)2

)− 3
2

=
3

|x− y|3
+ (x− y) ·

(
3∑
i=1

εi
(
−3 (xi − yi)
|x− y|5

))

=
3

|x− y|3
− 3

|x− y|5
3∑
i=1

(xi − yi)2
= 0 .

(4.32)

With this information, (4.31) immediately turns into

∇x · g(x) = 0 . (4.33)

Including the relation of g to the gravitational potential U , g = −∇U , we end up with the Laplace
equation

∆U(x) = 0 , (4.34)

for all x /∈ V .

4.2 Measurement and representation

Next to the previously introduced gravitational potential U itself, there are a couple of (equivalent)
alternative ways to represent the Earth’s gravitational field. A very popular method is the usage of
the so-called geoid, a representation that is based on the comparison of the actual potential U to a
reference figure and its corresponding (reference) potential - which we denote by U0 in the following.
Here, we investigate how much the actual potential level U on the (virtual) surface of the reference
figure deviates from the reference potential U0. We then define the geoid height N for any point on
this reference surface as the elevation (in [m]) that we have to move radially up or down to feel the
potential U0. Thus, under the assumption of a reference figure with a surface that is homeomorphic to
the unit sphere - like the most common choice of e.g. a spherical or ellipsoidal object - we can define
the geoid as a function on the unit sphere N : Ω→ R.

In theory, since it always depends on the context and the objects under consideration, the refer-
ence potential U0 also may vary along its surface, i.e. also be a function on the unit sphere. But in
practice, it is most common to choose a reference object with a surface that has the same potential
U0 everywhere. In this case, also the geoid is - per definition - an equipotential surface. While per se,
it is just a mathematical construct, this certain property makes it also very useful in a practical con-
text. Since the potential is equal everywhere along the surface, the gradient of the potential, i.e. the
vector of gravitational acceleration g, is orthogonal to the geoid at each point on its surface. This
makes the geoid very interesting e.g. in the context of plumb lines (see also Heiskanen and Moritz,
1967). Furthermore, since there are no gravitational forces tangential to the geoid surface, a fluid
would take exactly the form of the geoid to be in equilibrium - without taking external forces into
account. Therefore, considering the real Earth, the ocean surfaces can be regarded as being a good
approximation to the Earth’s geoid.

Since per definition - as being a disturbed quantity (compare to the ’tilde’ quantities of the pre-
vious chapters) - in most cases the geoid height N is much smaller than the radius (or radii) of the
reference surface, the application of Taylor’s series provides a suitable way to determine N explic-
itly. More precisely, for the potential at a point xN ∈ R3 with |xN | = R + N , where N � R and
xN = (R+N)ξ, ξ ∈ Ω, we find to first order that

U(xN ) = U(x) + ∂rU(x)N(ξ) , (4.35)
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Figure 4.1: Geoid derived from the GRACE data set EIGEN-5C using the reference potential of a
non-rotating reference frame. The predominant effect is the equatorial bulge and the polar flattening
due to the centrifugal force.

where x ∈ R3 with |x| = R and x = Rξ with the same ξ ∈ Ω as above is a point on the reference
surface. Since g(x) = −∇U(x) and assuming that the tangential components of g are significantly
smaller than the radial parts, we can approximate ∂rU(x) ≈ |g(x)|. Inserting this into (4.35) then
yields

N(ξ) =
U(xN )− U(x)

|g(x)|
=
U0(ξ)− U(x)

|g(x)|
= − Ũ(x)

|g(x)|
, (4.36)

where Ũ(x) - in analogy to the previous chapter - denotes the disturbed potential with respect to U0(ξ).
The above transformation between geoid and gravitational potential is called Brun’s formula. Note
that in this work we use the convention that the gravitational potential is negative and tends to zero
towards infinity. Thus, a negative disturbed potential equals a positive density anomaly, such that
the previous relation indeed identifies a geoid high with mass surplus and a geoid low with mass deficit.

While in theory, the reference potential may be chosen arbitrarily, one plausible strategy is to choose
it in such a way that the zero harmonics of reference and actual field are identical. In this way one can
ensure that the total mass of both volumes of consideration are exactly the same. A non-vanishing
difference between the degree zero terms would only result in an overall positive or negative shift in
the amplitude of the geoid but not affect its lateral shape. Furthermore, since when using a geocentric
coordinate approach there are no degree 1 terms in the gravitational potential - as we showed in the
previous section - the first non-zero coefficients in the harmonic representation of the geoid are then
the degree 2 terms.

Note that so far, the above statements only consider a scenario where there are no rotational ef-
fects. This is perfectly fine for all analytic models that we have derived in the course of this work.
In this case, we can identify U0 and Ũ one-to-one with the already introduced quantities. The geoid
reference object then simply states as a solid sphere with radius R (or r1 as in Chapter 2) and constant
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Figure 4.2: Geoid derived from the GRACE data set EIGEN-5C using the potential of the WGS 84
ellipsoid as the reference potential.

potential U0. In very simple models (like e.g. the benchmark scenarios of Chapter 3), we can even
consider to approximate |g(x)| by a reference acceleration g0.

But when we do a step towards observational quantities, e.g. gravitational signals or models that
are derived from satellite based measurements, we are suddenly situated in a rotating reference frame.
Here, the centrifugal force plays a non-negligible role and contributes to the total observed accel-
eration, creating an equatorial bulge and a polar flattening, which makes the Earth resemble more
an ellipsoid than a sphere, both, in physical and in gravitational terms. In order to respect these
additional physics in our notation, we substitute - for both observed and reference field - the purely
gravitational potential U by the geopotential Φ that contains contributions from both gravitational
and centrifugal effects. We then have

Nrot(ξ) = −Φ(x)− Φ0(ξ)

|γ(x)|
, (4.37)

where Φ0(ξ) is the respective reference geopotential and γ(x) := −∇Φ(x) the acceleration in terms of
the geopotential. In contrast to the non-rotating case, due to the centrifugal content, the reference
potential Φ0 now can no longer be identified with the potential of a homogeneous sphere but with
the one of a homogeneous ellipsoid. In order to illustrate the difference between the rotating and
the non-rotating reference frame and to get an idea how much the centrifugal force influences the
measurements, in Figure 4.1 we plot geoid data (up to degree l = 100) - derived from the satellite
mission GRACE - using the non-rotating reference potential U0 instead of the geopotential Φ0 in the
previous equation. We see that in this ’raw’ data, the bulge is by far the predominant observation and
in terms of the geoid, we notice an overall range in the amplitudes between ±8 km. Here we used the
EIGEN-5C data (see Foerste et al., 2008, in addition, a detailed description and data can be retrieved
from http://op.gfz-potsdam.de/grace/results/grav/g007 eigen-05c.html), a hybrid gravity model up to
harmonic degree and order 360 that is derived by combined satellite measurement from GRACE and
various terrestrial data sets.
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Since we just learned that the centrifugal part is not negligible and contributes a large signal to
the overall data, the remaining task is now how to exactly choose the reference geopotential Φ0 in
order to take this effect into account. Here, the geodetic and geophysics community follow completely
different approaches and goals. In geodesy, the goal is first, to find a reference ellipsoid that fits the
observed data in the best possible way. And here, ’best’ means that the goal is to minimise the (norm
of) the respective geoid that corresponds to the chosen ellipsoid. Second, since there is a variety of
institutes, research labs and scientists that process and work with the observed data, the goal is also
to define a reference ellipsoid that is accepted in the whole community such that all publications may
refer to the same reference field. In this way one would accomplish a high order of consistency through-
out all published gravitational models. These two considerations have led to the World Geodetic
System (WGS), a universal standard with the latest revision WGS 84, that declares the reference to
be the ellipsoid with semi-major axis a = 6, 378, 137 m and semi-minor axis b = 6, 356, 752.314245 m,
which results in an inverse flattening of 1/f = 298.257223563. In particular, WGS 84 is the reference
system that is used by the Global Positioning System (GPS).

When looking at the shape of the geoid in Figure 4.1 a natural feeling arises that also here, a repre-
sentation in spherical harmonics may be appropriate. Due to the rotational emergence, the ellipsoid is
symmetric with respect to the equator and has no longitudinal dependence. Remembering the three
different kinds of spherical harmonics of a fixed degree (compare to Figure 1.6), we see that only the
zonal harmonics of even degree (odd degrees are not symmetric with respect to the equator) are able
to contribute to this shape. Thus, we deduce that the only difference between U0 and Φ0 can be
found in the even zonal harmonics. In reality, we even find that only the (2,0) and the (4,0) harmonic
contains a significant contribution to the total signal. Using the parameters above, it is possible to
determine these coefficients for the WGS 84 ellipsoid that can then be used as a reference value for all
geoid calculations. Here, we find for the first two even zonal harmonics (Lemoine et al., 1997) that

ΦWGS
2,0 =

1√
10π

ME G

RE
0.10826 · 10−2 , ΦWGS

4,0 = − 1√
18π

ME G

RE
0.23709 · 10−5 , (4.38)

where ME is the total mass and RE the mean radius of the Earth. Using this reference system in
(4.37) we find the geodetic geoid, derived from the gravity model EIGEN-5C, shown in Figure 4.2
with the famous pronounced geoid low over India. All effects due to the rotational bulge now seem to
be erased and the geoid mainly reflects processes of the Earth’s interior.

We deliberately chose the word seem in the last sentence since we know that the WGS reference
geoid was designed just to provide a best fitting model but has no direct physical meaning. Thus,
the geophysics community follows a completely different approach for the definition of the reference
potential Φ0. Geophysicists are interested in processes of the Earth’s interior and in particular want to
use the gravity data as a constraint for modelling these effects. Thus, the main goal here is to remove
as much information as possible from the set of measured gravity data that does not correspond to pro-
cesses of the solid Earth. More precisely, geophysicists are not interested in an ellipsoid that provides
the best fit to the gravity data but want the resulting geoid to contain as little noise or error sources
as possible with respect to processes inside the Earth. Thus, the idea here is to explicitly simulate or
in other words, to create a model for the effects of the centrifugal force and use the respective ’purely
physical’ ellipsoid as a reference. Since this ellipsoid can in physical terms be described as being
in a hydrostatic equilibrium, it is also called hydrostatic ellipsoid. In consequence, the geoid
corresponding to the hydrostatic ellipsoid is regularly referred to in literature as non-hydrostatic
geoid, since here, all hydrostatic effects are removed. As a personal side remark: people are regularly
confused by this name since one could easily also imagine the contrary term ’hydrostatic geoid’ for the
same object. Here, the idea would be to especially emphasise the correspondence to the hydrostatic
ellipsoid that serves as the basis object. So, you better make sure to explain in detail what you mean
when using these expressions naively in public.
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Figure 4.3: (Non-hydrostatic) geoid derived from the GRACE data set EIGEN-5C using the hydro-
static reference ellipsoid derived by Chambat et al. (2010).

A standard reference that developed the underlying equations and provided values for the respec-
tive (2, 0) and (4, 0) harmonics has been for a long time Nakiboglu (1982). In 2010, Chambat et al.
(2010) provided an updated version of the work by Nakiboglu (1982), where some original errors were
corrected and more recent values for estimates of the total mass and inertia of the Earth were used.
The final values determined by Chambat et al. (2010) then state as

ΦHYD
2,0 =

1√
10π

ME G

RE
0.10712 · 10−2 , ΦHYD

4,0 = − 1√
18π

ME G

RE
0.296 · 10−5 . (4.39)

We see that - naturally - the coefficients of WGS and hydrostatic ellipsoid are similar but nevertheless,
these differences turn out to be quite essential. This becomes more evident when we explicitly com-
pare the data derived geoid corresponding to both reference frames. Already from the coefficients we
can deduce that the WGS ellipsoid is more ’pronounced’ than the hydrostatic one. This means that
in the WGS system the gravitational effects arising from interior process are underestimated in the
equatorial region and overestimated in polar regions. Exactly this shift can be observed when looking
at the non-hydrostatic geoid, shown in Figure 4.3, where the Indian geoid low is elevated compared to
the WGS geoid and the most pronounced low is now located in the area of the Ross Sea (Antarctica).
Furthermore, we also see that the overall amplitudes are higher in the non-hydrostatic geoid than in
the WGS version. This is a totally expected behaviour since the WGS system is especially constructed
in the way that it minimises the residual geoid amplitude. Thus, the geoid with respect to any other
reference frame will have larger amplitudes compared to WGS. Due to these essential differences, it
is obligatory to use the non-hydrostatic reference frame in studies that try to refer gravity signals to
geophysical processes. Thus, also in this work, from now on, we will only refer to the non-hydrostatic
geoid as our reference model.

Besides the geoid, there is also a second common representation of the (disturbed) potential, which
is the gravity anomaly ∆g. It is defined as the difference of the absolute value of the gravitational
acceleration on the geoid and of the one on the reference surface. Note that in contrast to our previous
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Figure 4.4: (Non-hydrostatic) gravity anomalies derived from EIGEN-5C.

convention for lower case letters, ∆g is not a vector but a scalar quantity (and ∆ does neither denote
the Laplacian nor a (formal) difference), but we decided here to stick to the established notation in
geodetic literature. We can safely do this without totally confusing the reader since this quantity will
only appear explicitly in this section. Where we could think about the radial derivative ∂rŨ of the
disturbing potential as being a good approximation for ∆g at a first glance, we also have to take into
account that the normal vector on the geoid differs from the one on the reference potential. Thus,
the vectors of gravitational acceleration do not point into the same direction on both surfaces. From
these considerations an additional correction terms arises (see e.g., Heiskanen and Moritz, 1967, for a
detailed derivation) and we find for a point x ∈ R3 on the reference surface with |x| = R and x = Rξ,
ξ ∈ Ω, that

∆g(ξ) = ∂rŨ(x) +
2

R
Ũ(x) . (4.40)

Note that in analogy to the geoid, also the gravity anomaly can be regarded as a function on the unit
sphere Ω. Also here, the information about the reference object is implicitly included in the disturbed
potential Ũ .

At this point - a little bit triggered by the radial derivative in the previous equation - we want
to focus again on the spherical harmonic perspective and especially investigate how the harmonic
coefficients of the different representations of the potential, that we have discussed in this section so
far, are related to each other. Using (4.12) for the case r = R, we can restate (4.40) in terms of the
spherical harmonic coefficients of the disturbed potential as

∆g(ξ) = −
∞∑
l=2

l∑
m=−l

l + 1

R
Ũl,m(R)Yl,m(ξ) +

2

R

∞∑
l=2

l∑
m=−l

Ũl,m(R)Yl,m(ξ)

= − 1

R

∞∑
l=2

l∑
m=−l

(l − 1) Ũl,m(R)Yl,m(ξ) .

(4.41)
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Figure 4.5: Filtered non-hydrostatic geoid (harmonic degrees l = 12− 100) derived from EIGEN-5C.

Note that the summation starts at degree 2 since the degree 0 and degree 1 terms in the disturbed
potential vanish in our case, as already demonstrated above. Since due to Brun’s formula (4.36), there
is a straightforward relation between the geoid and the disturbed potential, the spherical harmonic
representation of the geoid immediately states as:

N(ξ) = − 1

|g(x)|

∞∑
l=2

l∑
m=−l

Ũl,m(R)Yl,m(ξ) . (4.42)

Summarised, we find that the harmonic coefficients of the three different representations of the dis-
turbed potential, i.e. the potential Ũ itself, the geoid N and the gravity anomaly ∆g, are related to
each other by:

Nl,m = − 1

|g(x)|
Ũl,m(R) ,

∆gl,m = − 1

R
(l − 1) Ũl,m(R) =

|g(x)|
R

(l − 1)Nl,m .

(4.43)

In particular, here we see that even in the case that N had contributions from degree 1 harmonics,
they would vanish in the gravity anomalies due to the factor of (l − 1). In general, the unit for the
gravity anomalies is m/s2 but due to usual small magnitude that can be observed in gravity data,
one introduces the unit Gal, defined by 1 Gal := 0.01 m/s2 and mGal = 10−5 m/s2. Since the Earth’s
reference gravity acceleration at the surface is approximately 10 m/s2, 1 mGal is the equivalent of
approximately one millionth part of the surface gravity.

Furthermore, the degree dependent factor of (l − 1) leads to an emphasis of the higher degrees in
the representation of the gravity anomalies compared to the geoid. In Figure 4.4 we present the data
of Figure 4.3, i.e. gravity data derived from EIGEN-5C using the hydrostatic ellipsoid, in terms of
gravity anomalies. We immediately notice the effect of the factor (l − 1) that yields that much more
small scale structures (higher degrees) can be seen that were ’hidden’ in the representation of the
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geoid, even it is the exact same data set. We can interpret the gravity as a kind of high-pass filter of
the geoid, where only higher frequencies are pronounced. In order to underline this interpretation, in
Figure 4.5 we again show the geoid of Figure 4.3 but without the lower harmonic degrees 2− 11. We
see that this filtered version of the geoid corresponds to the gravity anomalies quite well.

4.3 The rigid Earth

In this section, we take a first step into the process of trying to explain the origin of the observed
gravitational signals that we presented in the previous section and trying to assign them to different
origins within the Earth’s interior. The question of what is the closest look we can get inside the Earth,
leads us to the research field of seismic tomography. Here, in principle, one uses the concept of ray
theory and tries to solve the inverse problem of deducing material properties in the Earth’s interior
from travel times and/or complete waveforms of seismic waves (see e.g., Fichtner, 2011, for a detailed
review), detected at a broad range of seismometers distributed around the Earth.

Mineralogical methods allow to convert the found seismic properties - assuming a certain material
composition, temperature and pressure (depth) - into one another and even into other material prop-
erties like e.g. density. In practice, this means that using an appropriate assumption about the radial
temperature and pressure stratification inside the Earth’s mantle, e.g. based on a convection model or
even just PREM, it is possible to convert the seismological quantities that arise from seismic tomog-
raphy into a mineralogically consistent density model for the Earth’s mantle. In the following course
of our work, we make use of the global seismic tomography s-wave model by Grand et al. (1997). The
s-wave speed anomalies of this model are converted into respective density anomalies by applying the
published mineralogical model by Piazzoni et al. (2007). Furthermore, for all our following investiga-
tions, we will cut the seismic model at a depth of 150 km and do not incorporate density structures
above this barrier into our models. This is due to the fact that in these shallow depth levels, the
seismic models are strongly dominated by crustal effects that do not play a significant role in global
mantle flow and thus, would lead to artefacts. In Figure 4.6 we show the resulting density distribution
for various depth slices. From now on, this model will serve as our ’standard’ density model for the
Earth’s mantle at the present time.

Note that the previous two paragraphs mirror the actual situation in an extremely(!) simplified
way. Both seismic tomography and mineralogy form scientific research fields on their own, provided
with own theories, experiments, data, (un)certainties, error models, ... We are aware that this density
model that from here, we take ’for granted’ contains an accumulation of all errors and ambiguities on
the way from the seismometer to the mineralogical conversion scheme.

Due to the low Reynolds number flow behaviour of the Earth’s mantle (mainly due to the high
viscosity), we know that with a given density structure, a force balance is reached instantaneously
and the current flow field can be determined by the Stokes equation. Now, we apply the methods that
we learned about solving the Stokes equation in Chapter 2 and use the derived global density field
- represented as deviations from a radial mean - as an input to the driving vector on the right-hand
side of the equation. There is a controversy about how to choose this radial mean that on the one
hand, serves as the basis for the density deviations in the driving vector and on the other hand enters
the Stokes matrices on the left-hand side of the equation. The first possibility is to simply calculate
radial means based on the absolute density values that are provided by the mineralogical model. The
essential drawback of this method is that this radial density structure is derived in a purely min-
eralogical context and thus, need not to coincide with a density profile that is consistent with real
mantle convection in the Earth. Second, simulations that are based on real Earth parameters, should
include a density profile that suits the gravitational acceleration g = 9.81 m/s2 that is measured at
the Earth’s surface. A profile derived from mineralogy has no such intrinsic constraint. To overcome
this inconsistency it is a valid approach to only extract density deviation percentages from the min-
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Figure 4.6: Density anomalies derived from the s-wave seismic tomography model of Grand et al.
(1997). The s-wave velocities were converted into density values by using the mineralogical model of
Piazzoni et al. (2007).
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Figure 4.7: Geoid of a global density field derived from seismic tomography. We notice an overall
dominance of degree 2 and a correlation of slab regions with geoid highs and regions with ascending
mantle plumes with geoid lows. The overall amplitude exceeds the satellite based data by a factor of
4− 5.

eralogical model, and combine them with an externally derived radial profile. Here, an appropriate
choice is a density profile from a prior mantle circulation model or as an alternative, the radial density
profile provided by PREM, in order to have a best fit to real data. In our calculations, we decided to
choose a density profile from a prior mantle circulation model that contains similar intrinsic physical
parameters in order to (subjectively) achieve the highest degree of consistency.

Assuming a certain radial viscosity profile, we can now solve the Stokes equation by the propaga-
tor approach as presented in Chapter 2 and determine the global velocity and stress field inside the
Earth’s mantle. We choose a free-slip boundary condition at the CMB and a no-slip boundary con-
dition at the Earth’s surface. With this choice we want to take account for the tectonic plates that
are not explicitly incorporated in our analytic model - which is even impossible without creating in-
consistencies (see paragraph before (2.66) for a technical explanation). Furthermore, with the given
density structure, we can also determine the respective gravitational potential. Actually, this is of our
primary interest, since we are able to compare this model data to the actual data we presented in the
previous section, i.e. the satellite based measurements of the gravitational field.

Figure 4.7 shows the gravitational field, in terms of the geoid, up to spherical harmonic degree l = 31,
that is derived from the density model based on the seismic tomography by Grand et al. (1997).
We notice that the overall structure is dominated by degree 2 and regions that we can identify with
cold, dense slabs within the mantle are associated with geoid highs, where regions, where we find
hot, upwelling material within the Earth’s mantle, e.g. the East Pacific rise or the African plume,
especially Afar, are associated with geoid lows. This is basically just what we expect from Newton’s
gravitational law.

The most remarkable feature of this synthetic geoid is the excessive amplitude level compared to
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Figure 4.8: Left: spectral power of the harmonic degrees of the model geoid derived from a density
model based on seismic tomography, compared to the spectral powers of the reference geoid. Right:
degree dependent correlation of model and reference geoid. In both graphs, also the contribution of
upper (up to 500 km depth) and lower mantle (from 500 depth) to the total signal is shown. The
different background colours are chosen to illustrate the frequency bands with a dominating upper or
lower mantle signal (or both).

the satellite derived geoid. The amplitudes of this model exceed the data easily by a factor of 4− 5.
Moreover, also the overall geoid pattern shows almost no similarities to the observed gravitational
field. This observation can also be formulated in mathematical terms. Since we are already situated
in the frequency domain, a suitable mathematical measure for the similarity of two scalar fields A and
B, is the correlation κ between their harmonic coefficients. The correlation is defined as the coefficient
covariance divided by the product of the respective variances, i.e. more precisely, we find:

κ(A,B) :=

∑
l,m

Al,mBl,m√√√√(∑
l,m

A2
l,m

)(∑
l,m

B2
l,m

) .
(4.44)

Due to the Cauchy-Schwarz(-Bunjakowski) inequality (1.4), the absolute value of κ is always less or
equal than 1. Where a correlation of 1 corresponds to a perfect fit of both fields, a correlation of 0
indicates no similarity at all. A correlation of −1 also declares a perfect correspondence, but with
both fields having opposite signs. The correlation is only capable of measuring similarities in shape
and is not sensitive to amplitudes. Where in the definition above, we consider all harmonic degrees
and orders, it is also possible to define the correlation κl(A,B) for a single harmonic degree. Here, we
keep the degree l fixed and only consider the summation over all orders, corresponding to this fixed
degree.

For the model geoid of Figure 4.7, we find a correlation to the (non-hydrostatic) reference geoid
of κ = −0.019, thus, from a purely mathematical perspective, there is no similarity between model
and dataset at all. However, in Figure 4.8 we compare both model and dataset in an even more
detailed way, especially in terms of harmonic degrees and second, we subdivided the Earth’s mantle
into an upper and lower part, with the imaginary break at 500 km depth. In the left figure, we plot
the power spectrum sl, a measure of the strength of each harmonic degree in terms of the amplitude.
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More precisely, for a scalar field A and harmonic degree l, we have

sl(A) :=

√√√√ 1

2l + 1

l∑
m=−l

A2
l,m . (4.45)

Additionally to the total model signal, we also show the power spectrum graphs for the contribution
of upper and lower mantle density anomalies. Besides the overall large amplitude of the model geoid,
we notice that in the very low degrees, i.e. l = 2 and l = 3 the signal almost solely consists of lower
mantle origin, where in the higher frequency band, starting from degree 12, the total signal is almost
identical to the upper mantle contribution. In the medium degrees l = 4 to l = 11, we have a ’mixed
zone’, where both upper and lower mantle density anomalies equally contribute to the total signal. We
illustrated this division into three harmonic sectors by choosing different background colours in the
plots. Where this property of the power spectrum is not totally surprising since we already learned in
the first section of this chapter that small scale structures far away from the observer exponentially
fade out due to the factor of (r/R)l in the harmonic coefficients. Thus, we already expected that the
deep mantle has basically no influence on the higher harmonic degree. But the intriguing result here
is that we see this partition into the three different harmonic sectors also on the right plot, where we
present the correlation of the different harmonic degrees. From here we get the insight that the overall
bad correlation of −0.019 mainly is due to non-matching lower degrees l = 2 and l = 3, where we even
find an anti-correlation of around −0.4. In the middle sector, the correlation is ok, even good for some
degrees and only from degree l = 12 on, the correlation rapidly decreases again and similar to the
power spectrum, we see that from here, the correlation is influenced only by upper mantle structure
(the purple curve equals the blue curve).

Summarised, from the previous result we have to conclude that it seems that so far, we have missed
essential parts of the physics. First, from our recent investigations, we may conclude that there is
an additional mechanism that primarily influences the lowest harmonic degrees 2 and 3 of the geoid
and further, there must be a second mechanism that just enters the system around a harmonic degree
of 12 and higher. Moreover, from the degree dependent correlations we learned that the answer to
the lower degree mechanism must lie in the deeper mantle where for the higher harmonic degree, the
answer should be hidden in shallower structures. We will find the answer to the first question in the
next section.

4.4 Dynamic topography

Remembering the kernels that we developed in Chapter 2 for the Stokes flow, we notice that indepen-
dent of the choice of the boundary conditions, in contrast to the radial velocity, poloidal velocity and
poloidal stress, we are always facing a non-zero radial stress at both domain boundaries (see Figure
2.2 - Figure 2.9). Where these values are intrinsic (and correct) solutions of the stress field inside
the spherical shell, this solution does not know about the physical conditions outside the domain.
In reality, the flow would always try to behave in a way that the stresses are continuous across the
domain boundaries. Especially at the surface, where we have air (or water) above the boundary, it
becomes evident that with a non-zero radial stress at the boundary there was a unrealistic discon-
tinuity, since the stress drops to zero just above the surface (the same scenario applies at the inner
domain boundary, with the difference that there, the stress does not drop to zero). But in contrast
to the mathematical formulation, in reality, the boundaries are not fixed in space (and time) and the
flow deflects the boundaries exactly in a way that these discontinuities do not occur.

Thinking about gravitational aspects, as a consequence, these deflections also naturally change the
total gravitational signal since e.g. a positive deflection at the surface means that air/water is replaced
by mantle material. At the CMB, a positive deflection would induce denser core material to replace
mantle material and the other way around. Since these deflections are flow induced and thus, change
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dynamically over time, they are called dynamic topography. In this ’updated’ scenario, a dense,
cold downwelling that intrinsically leads to a geoid high, also induces a negative boundary deflection
at the surface and at the CMB, which both yield a negative contribution to the total gravitational
signal. For a hot, light upwelling, the scenario exactly states the other way around. The intrinsic
negative geoid signal is balanced by the positive distribution of both topography signals at the surface
and at the CMB. Even if these considerations have only been of qualitative nature yet, they already
indicate a probable amplitude reduction of the total gravitational signal. Based on the results of the
previous section, this is exactly what we hoped for. Furthermore, the sign of the total gravitational
signal is not determined a-priori any more but will now depend on the ratio between the gravitational
signal from the dynamic topography and from the density anomaly itself. It will turn out that this
ratio is strongly dependent first, on the flow parameters, especially the viscosity structure and second,
on the location of the density anomaly within the mantle.

In order to quantify this flow induced dynamic topography, we need to determine the change in
radial stress that would be caused by a positive or negative deflection and then determine the point
of equilibrium where there is no discontinuity across the (newly defined) boundary any more. Having
a look at the representation of the stress tensor (see e.g. (2.43)), we immediately see that by far,
the main contribution to the radial stress is the hydrostatic pressure, where the pressure and stress
deviations caused by the flow only have a minor contribution to the total stress signal. Thus, applying
the hydrostatic principle, an additional topography of hr at a radius r causes a pressure (and thus,
negative stress) difference of

Ph(r) = −σ(h)
rr (r) = (ρ2 − ρ1)g0(r)hr , (4.46)

compared to the undisturbed state, at the bottom of the topography. Here, ρ1 and ρ2 are the respective
densities of the adjacent layers, where layer 2 is located below layer 1 and we neglect any changes in
g due to the additional (or reduced) height and lateral density variation. Equating this hydrostatic

stress σ
(h)
rr (r) with the boundary value of the radial stress, derived from the Stokes system, we can

deduce the surface deflection that is needed to create this stress level at the mathematically fixed
boundary:

σrr(r) = σ(h)
rr (r)

⇒ σrr(r) = −(ρ2 − ρ1)g0(r)hr

⇒ hr = − σrr(r)

(ρ2 − ρ1)g0(r)
.

(4.47)

In literature, the previous relations are commonly also derived in an equivalent way, arguing with
a Taylor expansion of the radial stress around the fixed boundary (see e.g., Panasyuk et al., 1996).
We have to be aware that in this form, these equations are only valid above the respective density
anomaly, i.e. at the upper domain boundary. At the lower boundary, we are facing a sign change due
to an inverted perspective and a sign jump in the radial stress that occurs at the location of the density
anomaly (see kernels). This sign chance can also be illustrated by imagining a density anomaly inside
the Earth’s core, i.e. below the lower domain boundary, that drives an equivalent velocity field around
the CMB but with the exact opposite radial stress distribution. To take this scenario into account,
we can rephrase the previous relation as

hr = − σrr(r)

(ρin − ρout)g0(r)
, (4.48)

where ’in’ and ’out’ are meant in terms of the flow domain, i.e. the Earth’s mantle. The choice of
the used reference densities for the inner and outer regions is of significant importance since these
values influence the amplitude of the dynamic topography and in the following, also the resulting
gravitational potential or geoid. For the density jump at the CMB, we choose ρC ≈ 9.900 kg/m3 that
is provided by PREM (Dziewonski and Anderson, 1981) for the core density near the boundary. The
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values for the Earth’s mantle mainly depend on the choice if we want to incorporate incompressibility
or not. For an incompressible model, where the radial density ρ0 does not vary with depth, we may
choose the already introduced ρ̂0 = 4.500 kg/m3 as a consistent mean value. These values yield a
density jump of ρMS = 4.500(3.480) kg/m3 between mantle and surface (air or (in brackets) water,
with an assumed density of ρw = 1.020 kg/m3) and ρCM = 5.400 kg/m3 between core and mantle.

In a compressible model, the density increases approximately by a factor of 2 from the upper mantle
to the CMB. PREM and also radial mean values generated by a numerical mantle circulation model
here suggest approximate values of ρUM = 3.380 kg/m3 for the upper mantle and ρLM = 5.560 kg/m3

for the lower mantle. Thus, using these values we find a density jump of ρMS = 3.380(2.360) kg/m3

at the upper and ρCM = 4.340 kg/m3 at the lower domain boundary (also compare to the scenarios
investigated by Panasyuk et al., 1996). Summarised, the flow induced dynamic topography at the
Earth’s surface then states as

hS = − σrr(r1)

g0(r1) ρMS
, (4.49)

and in analogy, at the CMB, we find

hC =
σrr(r0)

g0(r0) ρCM
. (4.50)

But these relations are only true to first order. When investigating the stress levels at the boundaries,
we also have to take account of an additional effect that we already mentioned when we evaluated
the different contributions to the buoyancy force in Chapter 2. Due to self-gravitational effects,
the deviatoric gravitational potential U1, directly and indirectly generated by the density anomalies
inside the mantle, changes the gravitational pressure that is exerted by the material outside the
flow domain onto the domain boundaries. In other words, a negative deviatoric potential attracts
the material of the Earth’s core by a small amount which yields a force onto the CMB from below,
counteracting the stress that is induced by the flow itself. In principle, the same applies at the Earth’s
surface but here, the self-gravitation is amplifying the deformation in case of a negative deviatoric
potential. Nevertheless, here, we have a much minor (or even no) effect due to the small density
of water/air. Introducing these self-gravitational terms into the previous relations (recalling that U1

is negative for a positive density anomaly), we find the following final expressions for the dynamic
topography at the Earth’s surface and the CMB - now in terms of the spherical harmonic coefficients
and also in terms of the scaled quantities in order to be able to embed these equations into the Stokes
system in the following:

hS = −σ1(r1)− U1(r1)ρS
g0(r1) ρMS

= −
η̂0

(
σ̄1(r1)− Ū1(r1)ρS/ρ̂0

)
r1 g0(r1) ρMS

,

hC =
σ1(r0)− U1(r0)ρC

g0(r0) ρCM
=
η̂0

(
σ̄1(r0)− Ū1(r0)ρC/ρ̂0

)
r0 g0(r0) ρCM

,

(4.51)

where now, hS and hC also depend on the harmonic degree l. Where the effect of self-gravity on
the gravitational potential remains indisputable, in literature, the term dynamic topography is treated
ambiguously. Authors differ in including the self-gravitational effect into the total topographic height
or not. But commonly, in the geophysical community, most authors only refer to the flow induced

parts h
(f)
S and h

(f)
C as dynamic topography, i.e. here we have (independent of the gravitational effect

that we will derive in the following):

h
(f)
S = − σ1(r1)

g0(r1) ρMS
, h

(f)
C =

σ1(r0)

g0(r0) ρCM
. (4.52)

Now that we derived a closed representation of the amplitude of the dynamic topography at both
domain boundaries, we are also able to quantitatively determine the influence of the deflected bound-
aries on the gravitational potential. Now, the disturbed gravitational potential does not depend only
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on the density anomalies inside the Earth’s mantle any more but is also coupled indirectly to the flow
properties.

We now return to the Stokes system (2.165) that we derived in Chapter 2. Where in (2.145) we
only took the gravitational effect from the density anomaly into account, now, we also have to include
the disturbed potential caused by the dynamic topography at the surface and at the CMB into both
boundary conditions. In order to calculate the gravitational potential of these additional ’blocks’
with height hS (hC) and constant density ρMS (ρCM), we can apply (4.26) and (4.27) - under the
assumption of just one single layer. For the total gravity signal at the CMB we then find the following
expression:

U1(r0) = − 4πG

2l + 1

(
bj

(
r0

bj

)l
+ r1

(
r0

r1

)l
hS ρMS + r0

(
r0

r0

)l
hC ρCM

)
. (4.53)

Inserting (4.51) yields

U1(r0) = − 4πG

2l + 1

(
bj

(
r0

bj

)l
− r1

(
r0

r1

)l
σ1(r1)− U1(r1)ρS

g0(r1)
+ r0

σ1(r0)− U1(r0)ρC
g0(r0)

)
. (4.54)

In analogy, for the surface it holds that

U1(r1) = − 4πG

2l + 1

(
bj

(
bj
r1

)l+1

+ r1

(
r1

r1

)l+1

hS ρMS + r0

(
r0

r1

)l+1

hC ρCM

)
. (4.55)

Also here, applying (4.51) yields

U1(r1) = − 4πG

2l + 1

(
bj

(
bj
r1

)l+1

− r1
σ1(r1)− U1(r1)ρS

g0(r1)
+ r0

(
r0

r1

)l+1
σ1(r0)− U1(r0)ρC

g0(r0)

)
. (4.56)

In analogy, for the scaled quantities (be aware of the different scaling of r0 and r1 quantities), we find

Ū1(r0) = − 4πG

2l + 1

(
ρ̂0

η̂0
r2
0

(
r0

bj

)l−1

− r1

(
r0

r1

)l+1
σ̄1(r1)ρ̂0 − Ū1(r1)ρS

g0(r1)
+ r0

σ̄1(r0)ρ̂0 − Ū1(r0)ρC
g0(r0)

)
,

Ū1(r1) = − 4πG

2l + 1

(
ρ̂0

η̂0
b2j

(
bj
r1

)l
− r1

σ̄1(r1)ρ̂0 − Ū1(r1)ρS
g0(r1)

+ r0

(
r0

r1

)l
σ̄1(r0)ρ̂0 − Ū1(r0)ρC

g0(r0)

)
.

(4.57)

Also using the previously defined abbreviations γ(l), ψ(l−1) (see (2.150)), i.e.

γ(l) =
4πG

2l + 1
b2j

(
bj
r1

)l
, ψ(l−1) =

4πG

2l + 1
r2
0

(
r0

bj

)l−1

, (4.58)

and introducing

α(l) :=
4πG

2l + 1

r0

g0(r0)
, β(l) :=

4πG

2l + 1

r1

g0(r1)
, q :=

r0

r1
, (4.59)

these relations turn into

α(l)ρ̂0σ̄1(r0) +
(

1− α(l)ρC

)
Ū1(r0)− β(l)ql+1

(
ρ̂0σ̄1(r1)− ρSŪ1(r1)

)
= −ψ(l−1) ρ̂0

η̂0
,

α(l)ql
(
ρ̂0σ̄1(r0)− ρCŪ1(r0)

)
− β(l)σ̄1(r1)ρ̂0 +

(
1 + β(l)ρS

)
Ū1(r1) = −γ(l) ρ̂0

η̂0
.

(4.60)
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With a slight rearrangement of the previous relations, we can illustrate the different contributions to
the gravitational potential at both boundaries even better. In particular, we see how effects at the
opposite boundary only contribute with the distance factor ql and ql+1, respectively:

Ū1(r0) = − ψ(l−1) ρ̂0

η̂0︸ ︷︷ ︸
density
anomaly

−α(l)ρ̂0σ̄1(r0)︸ ︷︷ ︸
dyn. topo

CMB

+β(l)ρ̂0σ̄1(r1)ql+1︸ ︷︷ ︸
dyn. topo
surface

+α(l)ρCŪ1(r0)︸ ︷︷ ︸
self-gravity

core

−β(l)ρSŪ1(r1)ql+1︸ ︷︷ ︸
self-gravity
air/water

,

Ū1(r1) = − γ(l) ρ̂0

η̂0︸ ︷︷ ︸
density
anomaly

−α(l)ρ̂0σ̄1(r0)ql︸ ︷︷ ︸
dyn. topo

CMB

+β(l)ρ̂0σ̄1(r1)︸ ︷︷ ︸
dyn. topo
surface

+α(l)ρCŪ1(r0)ql︸ ︷︷ ︸
self-gravity

core

−β(l)ρSŪ1(r1)︸ ︷︷ ︸
self-gravity
air/water

.

(4.61)

Compared to our previous Stokes system, the two boundary values for the gravitational potential
cannot be determined a-priori any more. They now serve as two additional unknowns in the system of
linear equations. But together with the two relations (4.61) there is still enough information such that
the total system remains solvable. We go back to the end of Chapter 2 where we find the final form of
the (merged) propagator equation (2.164). Here, we now have to incorporate Ū1(r0) and Ū1(r0) into
the fifth row of the vectors of unknowns. The equation then takes the form:

0
−v̄2(r1)fS − vS/µl(1− fS)

−σ̄1(r1)
−σ̄2(r1)(1− fS)
−Ū1(r1)
−W̄1(r1)

 = P (0)


0

−v̄2(r0)fC − vCµl(1− fC)
−σ̄1(r0)

−σ̄2(r0)(1− fC)
−Ū1(r0)
−W̄1(r0)

− P
(j)


0
0

g0bj/η̂0

0
4πGρ̂0b

2
j/η̂0

0

 .

(4.62)

In analogy to Chapter 2, if we rearrange this equation in terms of the now eight unknown variables,
we find in combination with (4.61) an 8× 8 system of linear equations Cx = b - an extended version
of (2.165) - with

C =



−P (0)
1,3 −P (0)

1,2(2−fC) −P (0)
1,5 −P (0)

1,6 0 0 0 0

−P (0)
2,3 −P (0)

2,2(2−fC) −P (0)
2,5 −P (0)

2,6 0 fS 0 0

−P (0)
3,3 −P (0)

3,2(2−fC) −P (0)
3,5 −P (0)

3,6 1 0 0 0

−P (0)
4,3 −P (0)

4,2(2−fC) −P (0)
4,5 −P (0)

4,6 0 1− fS 0 0

−P (0)
5,3 −P (0)

5,2(2−fC) −P (0)
5,5 −P (0)

5,6 0 0 1 0

−P (0)
6,3 −P (0)

6,2(2−fC) −P (0)
6,5 −P (0)

6,6 0 0 0 1

α(l)ρ̂0 0 1− α(l)ρC 0 −β(l)ρ̂0q
l+1 0 β(l)ρSq

l+1 0
α(l)ρ̂0q

l 0 −α(l)ρCq
l 0 −β(l)ρ̂0 0 1 + β(l)ρS 0


,

x =



σ̄1(r0)
v̄2(r0)fC + σ̄2(r0)(1− fC)

Ū1(r0)
W̄1(r0)
σ̄1(r1)

v̄2(r1)fS + σ̄2(r1)(1− fS)
Ū1(r1)
W̄1(r1)


, (4.63)
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b =



P
(0)
1,2 vC/µl(1− fC) + (P

(j)
1,· · ᾱ0)/bj

P
(0)
2,2 vC/µl(1− fC) + (P

(j)
2,· · ᾱ0)/bj −vS/µl(1− fS)

P
(0)
3,2 vC/µl(1− fC) + (P

(j)
3,· · ᾱ0)/bj

P
(0)
4,2 vC/µl(1− fC) + (P

(j)
4,· · ᾱ0)/bj

P
(0)
5,2 vC/µl(1− fC) + (P

(j)
5,· · ᾱ0)/bj

P
(0)
6,2 vC/µl(1− fC) + (P

(j)
6,· · ᾱ0)/bj

−ψ(l−1)ρ̂0/η̂0

−γ(l)ρ̂0/η̂0


.

For the sake of completeness, here we also state the equivalent backward propagator system C(B)x =
b(B) with

C(B) =



0 0 0 0 −B(1)
1,3 −B(1)

1,2(2−fS) −B(1)
1,5 −B(1)

1,6

0 fC 0 0 −B(1)
2,3 −B(1)

2,2(2−fS) −B(1)
2,5 −B(1)

2,6

1 0 0 0 −B(1)
3,3 −B(1)

3,2(2−fS) −B(1)
3,5 −B(1)

3,6

0 1− fC 0 0 −B(1)
4,3 −B(1)

4,2(2−fS) −B(1)
4,5 −B(1)

4,6

0 0 1 0 −B(1)
5,3 −B(1)

5,2(2−fS) −B(1)
5,5 −B(1)

5,6

0 0 0 1 −B(1)
6,3 −B(1)

6,2(2−fS) −B(1)
6,5 −B(1)

6,6

α(l)ρ̂0 0 1− α(l)ρC 0 −β(l)ρ̂0q
l+1 0 β(l)ρSq

l+1 0
α(l)ρ̂0q

l 0 −α(l)ρCq
l 0 −β(l)ρ̂0 0 1 + β(l)ρS 0


,

b(B) =



B
(1)
1,2vS/µl(1− fS)− (B

(j)
1,· · ᾱ0)/bj

B
(1)
2,2vS/µl(1− fS)− (B

(j)
2,· · ᾱ0)/bj −vC/µl(1− fC)

B
(1)
3,2vS/µl(1− fS)− (B

(j)
3,· · ᾱ0)/bj

B
(1)
4,2vS/µl(1− fS)− (B

(j)
4,· · ᾱ0)/bj

B
(1)
5,2vS/µl(1− fS)− (B

(j)
5,· · ᾱ0)/bj

B
(1)
6,2vS/µl(1− fS)− (B

(j)
6,· · ᾱ0)/bj

−ψ(l−1)ρ̂0/η̂0

−γ(l)ρ̂0/η̂0


. (4.64)

Here, we see that only the first six equations that are related to the propagators, differ from the
forward propagator system.

Remark 1: The effect of self-gravity

Where in the Stokes system of Chapter 2 we could switch the self-gravitational effect on and off by
simply including or neglecting the Āγ-part of the Stokes matrix (see (2.73)), the situation now becomes
a little bit more complex when including the gravitational effects of the dynamic topography. Here, we

have to pay attention that we also only include the flow induced parts of the dynamic topography h
(f)
S

and h
(f)
C (see (4.51)) into the calculation of the gravitational effects. As a consequence, this means

that in (4.61), where we gathered all contributions to the gravitational potential, both terms that are
related to self-gravitational effects have to be excluded. Under these assumptions, the 8 x 8 system
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of linear equations turns into Cx = b with

C =



−P (0)
1,3 −P (0)

1,2(2−fC) −P (0)
1,5 −P (0)

1,6 0 0 0 0

−P (0)
2,3 −P (0)

2,2(2−fC) −P (0)
2,5 −P (0)

2,6 0 fS 0 0

−P (0)
3,3 −P (0)

3,2(2−fC) −P (0)
3,5 −P (0)

3,6 1 0 0 0

−P (0)
4,3 −P (0)

4,2(2−fC) −P (0)
4,5 −P (0)

4,6 0 1− fS 0 0

−P (0)
5,3 −P (0)

5,2(2−fC) −P (0)
5,5 −P (0)

5,6 0 0 1 0

−P (0)
6,3 −P (0)

6,2(2−fC) −P (0)
6,5 −P (0)

6,6 0 0 0 1

α(l)ρ̂0 0 1 0 −β(l)ρ̂0q
l+1 0 0 0

α(l)ρ̂0q
l 0 0 0 −β(l)ρ̂0 0 1 0


, (4.65)

and x and b as above. Additionally, one has to pay attention that here, the propagators inside the
matrix C are determined using the Stokes matrix A without the contribution of the self-gravity part
Āγ - as before.

Remark 2: The effect of compressibility

In analogy to the self-gravitational effects, compressibility first enters the system via a distinguished
part of the Stokes matrix, Āβ (also see (2.73)), where we find all entries that include the compress-
ibility factor χ(r). Since in the incompressible scenario, per definition the radial mean densities ρ0(r)
do not vary, i.e. we have ρ0(r) = ρ̂0 for all r inside the domain, for the compressibility factors it holds
that χ(r) = 0 for all r. Thus, by assuming a constant radial mean density for the whole Earth’s
mantle, the Āβ part of the Stokes matrix vanishes automatically and has not to be excluded manually
- in contrast to the self-gravity case. The Stokes matrix remains the only part where compressibility
enters the system in a direct way. The two additional constraints (4.61) for the gravitational potential
only contain compressible effects in an indirect way - via the stress distribution - and need not to be
adapted. Thus, the system of equations Cx = b remains unmodified in the incompressible case.

Nevertheless, one has to pay attention that the choice of compressibility or incompressibility has a
direct impact on the absolute value of the dynamic topography at the surface and the CMB due to the
changing density contrasts between the interior and the exterior of the domain. As we have learned
before, in an incompressible model, we have density jumps of approximately ρMS = 4.500 kg/m3

and ρCM = 5.400 kg/m3, where in the compressible case, both values reduce to approximately
ρMS = 3.380 kg/m3 and ρCM = 4.340 kg/m3. It is important to keep in mind that also these values
have to be adjusted accordingly in the respective code segments. Due to (4.51), from these numbers,
we expect larger topography amplitudes both at the surface and at the CMB for compressible Earth
models.

4.5 Kernel gallery II

In analogy to Section 2.5, also at this point, we want to present examples for the solution of the new
extended Stokes system. We proceed in exactly the same way as in the first kernel gallery in Chapter
2 and classify two type of examples. First, fixing the observation point at the Earth’s surface and
changing the location of the density anomaly (Figures 4.9 - 4.12) and second, changing the observation
point and fixing the location of the anomaly at a depth of 1600 km (Figures 4.13 - 4.16). We again
investigate the no-slip/no-slip and free-slip/free-slip boundary condition cases and the two viscosity
profiles that were presented in Figure 2.1. In this way, one can nicely compare between the respective
figures of the two galleries. The main difference to the examples of Chapter 2 is that now, also the
gravitational potential is (strongly) influenced by the flow properties.
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Figure 4.9: Solution of the extended Stokes equation system at the surface for a unit density anomaly
of unit radial extension, placed at various depth levels. The flow parameters are no-slip at both
boundaries and a uniform viscosity profile.
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Figure 4.10: Solution of the extended Stokes equation system at the surface for a unit density anomaly
of unit radial extension, placed at various depth levels. The flow parameters are no-slip at both
boundaries and a viscosity profile with a low viscosity zone in the upper mantle.
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Figure 4.11: Solution of the extended Stokes equation system at the surface for a unit density anomaly
of unit radial extension, placed at various depth levels. The flow parameters are free-slip at both
boundaries and a uniform viscosity profile.
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Figure 4.12: Solution of the extended Stokes equation system at the surface for a unit density anomaly
of unit radial extension, placed at various depth levels. The flow parameters are free-slip at both
boundaries and a viscosity profile with a low viscosity zone in the upper mantle.
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Figure 4.13: Solution of the extended Stokes equation system at various depth levels for a unit density
anomaly of unit radial extension, placed at a depth of 1600 km. The flow parameters are no-slip at
both boundaries and a uniform viscosity profile.
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Figure 4.14: Solution of the extended Stokes equation system at various depth levels for a unit density
anomaly of unit radial extension, placed at a depth of 1600 km. The flow parameters are no-slip at
both boundaries and a viscosity profile with a low viscosity zone in the upper mantle.
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Figure 4.15: Solution of the extended Stokes equation system at various depth levels for a unit density
anomaly of unit radial extension, placed at a depth of 1600 km. The flow parameters are free-slip at
both boundaries and a uniform viscosity profile.
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Figure 4.16: Solution of the extended Stokes equation system at various depth levels for a unit density
anomaly of unit radial extension, placed at a depth of 1600 km. The flow parameters are free-slip at
both boundaries and a viscosity profile with a low viscosity zone in the upper mantle.
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Figure 4.17: Synthetic geoid (top) and flow induced dynamic topography (bottom) of a global density
field derived from seismic tomography. The underlying extended Stokes system is solved using a
uniform viscosity profile for the whole mantle. We see the overall dominance of the topographic
effects in the total gravitational signal. In particular, this geoid serves as the initial guess within the
Monte Carlo approach for determining an appropriate radial viscosity profile for the Earth’s mantle.

4.6 A Monte Carlo approach

In contrast to the rigid Earth (Section 4.3), we have learned that, including the dynamic topography
(Section 4.4), the gravitational signal is in particular (indirectly) also influenced by the underlying
mantle flow properties. Especially the assumed viscosity profile has a strong influence on the stress
distribution inside the mantle and thus, a direct effect on the amplitude of the flow induced dynamic
topography. Since the gravitational effect of the (surface) topography is of similar magnitude (and of
opposite sign) as the gravitational effect of the density anomaly itself, the radial viscosity profile also
has a strong effect on the total gravitational signal. The remaining question is now how to choose an
appropriate viscosity profile that reflects a realistic flow scenario inside the Earth’s mantle.

Especially from studies of post glacial rebound (see e.g., Paulson and Richards, 2009), it is possi-
ble to infer constraints about the viscosity inside the Earth’s mantle. But even without any external
knowledge, due to the known gravitational potential at the surface (more precisely, at satellite alti-
tude), the quest for an appropriate viscosity profile can be formulated in terms of an inverse problem,
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Figure 4.18: From left to right: the evolution of the radial viscosity profile within the Monte Carlo
inversion scheme. In the first set of iterations (top) we put no constraints on the profile, where in
the second set of iterations (bottom) we kept the viscosity of the lower mantle at a constant level to
reduce the number of free parameters. We notice that the inversion scheme in all cases tries to create
a viscosity contrast between upper and lower mantle.

using the previously derived Stokes system. Having a look at system and the underlying equations, we
can directly infer that the flow velocity scales with the absolute viscosity, but the stresses only depend
on velocity gradients. This means that the dynamic topography and thus, also the total gravitational
potential in general may only serve as a source to constrain radial viscosity contrasts and that they
are not sensitive to absolute values.

The most straightforward and quite simple way to approach such an inverse problem, is a Monte
Carlo scheme. Here, the general idea is to select viscosity profiles in a random way and then to look
which of them yields a reasonable good fit to the observed data. In our case this means that for each
chosen profile, we solve the Stokes system and compare the derived gravitational potential / geoid
to the satellite based data in terms of the correlation of the harmonic coefficients and the respective
geoid amplitudes.

Under the assumption of no external knowledge, the strategy is to start with a uniform viscosity,
i.e. in the Stokes matrix, for all radial layers bi, i = 1, ..., N , we set the viscosity variation factor to
η∗0(bi) = 1. It turns out that in this scenario, the synthetic geoid we gain by solving the respective
Stokes system, shows a correlation of κ = 0.22 to our (non-hydrostatic) reference geoid (Figure 4.3).
We present this initial state of the Monte Carlo process in Figure 4.17, where we show the model
geoid and dynamic topography for a uniform radial viscosity distribution. Since the correlation here
is close to zero, we can safely assume that a uniform viscosity is not a good proxy for the real situ-
ation inside the Earth’s mantle. Moreover, in contrast to our previous model (Figure 4.7) we see an
overall amplitude reduction of approximately a factor of two, while the shape of the geoid remained
the same but with an inverted sign. This means that in this model, the newly featured dynamic
topography has such a large gravitational impact that it even outmatches the pure gravitational sig-
nal of the previous model. But comparing our model geoid with the reference geoid in Figure 4.3,
we see that actually, we are aiming at regional differences in the question if the dominating effect
is the gravitational field of the anomaly itself or the dynamic topography. In the following, we will
indeed find that the Monte Carlo scheme delivers a first hint of how this goal may possibly be achieved.
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Figure 4.20: Geoid of a global density field derived from seismic tomography, including gravitational
signals from dynamic topography. The underlying Stokes system is solved using the viscosity profile
of Figure 4.19. Here we find a correlation to the observed data of κ = 0.811.

 0

 500

 1000

 1500

 2000

 2500

 3000
1020 1021 1022 1023 1024

de
pt

h 
[k

m
]

[Pas]

Figure 4.19: The best-fitting viscosity pro-
file derived from the Monte Carlo inversion
scheme, after applying Occam’s razor.

Now, starting from the uniform viscosity, in the further
iterations, we change the viscosity variation factor of each
radial layer by a randomly chosen small amount (at most
5%). If the geoid correlation with the new profile is higher
than with the profile of the previous iteration, we keep
the new profile and proceed. If not, we take the old pro-
file again and try a completely new random variation on
it. In general, with this algorithm, we let the profile de-
velop just in the way that it prefers to. There is only
one exception and this is that we put a constraint on
the amplitude. The reason for this is quite straightfor-
ward. The inversion scheme is designed to optimise the
correlation of model and data geoid. However, and as we
already learned, the correlation is not capable of reflect-
ing a fit between the amplitude of two data sets. Thus, in
case that the inversion works, the algorithm will always
try to improve the correlation even if this falls together
with an unrealistic amplitude. Since the amplitude of our
first guess geoid is already multiple factors higher than
the reference, we expect the algorithm to scale the am-
plitude down. This is indeed what happens and in order
to prevent the iterative scheme to even approach unre-
alistic low amplitudes, we force the algorithm to always
keep the amplitude above the maximal amplitude of the
reference geoid.
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Figure 4.21: Flow induced dynamic topography, driven by a global density field derived from seismic
tomography. The underlying Stokes system is solved using the viscosity profile of Figure 4.19.

Now, examining the iterative evolution of the radial viscosity profile, we find the distinct result that
the Monte Carlo inversion scheme in all cases tries to enforce a strong viscosity contrast between upper
and lower mantle. In a second set of iterations we then tried to reduce the free parameters and keep
the viscosity of the lower mantle at a constant level. Also here, the Monte Carlo inversion scheme
reduces the viscosity in the upper mantle down to a specific level where the best geoid correlation is
achieved. We plot an example of the iterative evolution of the viscosity profile for both sets of the
inversion scheme in Figure 4.18. Since we put no further constraints on the profile, we notice a lot of
unrealistic and unphysical kinks in the profiles of all stages of the inversion, thus, the results of this
(very simplistic) scheme should not be interpreted in every single detail. However, what we certainly
learn from this task is that the geodetic data set strongly supports a strong viscosity contrast be-
tween upper and lower mantle. In literature, this low-viscosity zone is named asthenosphere
and is indeed a non-debatable feature of the Earth’s mantle according to innumerable publications
during the past decades.

In this work, we now proceed by applying Occam’s razor and erase all of the unrealistic kinks
and artefacts in the viscosity profile that was produced by the Monte Carlo method. We just use the
simplest possible way to implement the desired viscosity contrast, i.e. by assuming a fixed value for
the viscosity of the upper and the lower mantle, respectively, including a smooth continuous transition
between both values. The resulting radial viscosity profile is shown in Figure 4.19. This certain profile
should look familiar to the reader since it is exactly one of the two profiles that we used in both kernel
galleries (Section 2.5 and Section 4.5) within the illustrations of the solutions of the Stokes system.
And indeed, from our current investigations, this certain choice turns out to be quite a realistic one.
From now on, we take this viscosity profile as our standard choice for all further models and simula-
tions.

If we solve the Stokes system using our new standard profile, we find the remarkably good corre-
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Figure 4.22: Left: Spectral power of the harmonic degrees of the model geoid presented in Figure
4.20 and of the reference geoid. Right: degree dependent correlation of model and reference geoid.
In contrast to Figure 4.8 here, the model geoid incorporates effects of dynamic topography. We see
a significant improvement of the correlation throughout all harmonic degrees but in particular in the
very low frequency band (first harmonic sector).

lation of κ = 0.811 between model and observed geoid. The iteration scheme indeed did a good effort.
We present the model in Figure 4.20 and immediately notice the good fit to the observed data, even in
terms of the overall amplitude. In contrast to our previous models, now, there seems to be a regional
difference of how certain mass anomalies inside the mantle are treated. We find a geoid high over the
African plume - a negative density anomaly, thus here, the gravitational effect of dynamic topography
seems to dominate. Contrarily, a geoid high also established over Indonesia, a region where especially
young slaps are located, i.e. positive density anomalies. Thus, we can conclude that in this certain
region, the gravitational effect from the density structure itself seems to dominate. The secret behind
this different regional behaviour lies in the kernel for the gravitational potential that can be seen in
Figure 4.12. Here we see that in contrast to the solutions of the Stokes equation in the isoviscous case
(and in contrast to the non-extended Stokes system of Chapter 2), the kernel performs a sign change
within the mantle. This means that the specific depth of a density anomaly decides if this mass will
contribute as a positive or a negative signal to the total gravitational field. The reason behind this
sign change lies in the kernel of the radial stress - which is proportional to the dynamic topography.
Here we see that in the non-isoviscous case, the asthenosphere basically cuts off all stress effects from
the deeper mantle. Where e.g. slabs in the mid-mantle have a pronounced topographic effect in the
isoviscous case, the asthenosphere in the non-isoviscous case smears this effect out and figuratively
prevents all radial stress signals from reaching the surface to create a dynamic topopgraphy. And
indeed, comparing the new model to the dynamic topography map shown in Figure 4.17, we notice a
drastic amplitude reduction.

As before, we also want to convert this prosaic comparison between different models and data sets into
established mathematical means and investigate in Figure 4.22 the power spectrum and correlation
in terms of the respective spherical harmonic coefficients. Compared to our previous model, we see
an improved fit both on the spectral density side as on the harmonic correlation. Especially the low
harmonic degrees now show an almost perfect behaviour. Where this result suggests that we solved
the question of the missing physical mechanism in the first harmonic sector, we see that the high
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degree harmonics are still not covered appropriately at the current stage.

Before answering this final question, we shortly want to put our focus again on the viscosity pro-
file that we just declared to be our new standard. Here, if we go even one step further and extend our
analysis, it can be shown that the found amplitude of the viscosity contrast between asthenosphere
and lower mantle can directly be related to the radial strength of this specific layer. Indeed, in studies
of post-glacial rebound, Paulson and Richards (2009) showed that their models can rarely be distin-
guished if they share the same factor of η0 ·D3, where η0 is the factor of the viscosity reduction and D
the thickness of the asthenosphere. Thus, e.g. assuming a thickness of 600 km with a viscosity reduc-
tion of a factor 100, in case of narrowing the layer to e.g. 300 km we need to increase the viscosity jump
by a factor of 8 to 800. And indeed, Schaber et al. (2009) was able to show the same behaviour when
investigating the geoid correlation of different models. Though the Monte Carlo approach seemed to
be very successful at first glance, in reality, we are facing a trade-off between asthenosphere thickness
and viscosity reduction. We see that this is an inherent non-uniqueness of the underlying inverse
problem. There are infinitely many viscosity profiles that yield the same gravitational field.

This means that our work and the previously mentioned studies show that static flow and geoid sim-
ulations are in general not capable of resolving the asthenospheric properties further than the above
presented non-uniqueness. Only additional data sets could in theory serve as further constraints to
overcome these ambiguities. Here, one possible approach would be to incorporate a quantity that we
have not considered yet in the investigations of this chapter: time. We will discuss this new content
line in the next and final chapter of this work. There, we will see that including time will give rise
to various other major challenges. Technically, this means that we will incorporate the conservation
of energy into our governing equations, i.e. adding the energy equation (2.31) to our system. It will
immediately become evident that the major challenge here is the determination of appropriate initial
conditions for the temperature field. A mathematically elaborate method that finds a way to approach
this certain task will be presented in Chapter 5.

Furthermore, since the satellite based gravitational data set is - in geologic time scales - also only
a static view at the present time, one could imagine that gravity itself will not play a major role in
serving as a constraint for time-dependent mantle flow. But here, two other derived quantities may
come to the fore. First, the time evolution of dynamic topography may be related to geological data
sets and thus serve as a quantity on its own to constrain the flow parameters. Second, in the final
section of this chapter, we build a relation from the gravitational field to the inertia tensor and thus,
a time series of modelled gravity data can thus be transferred into varying principle axes of inertia
and thus, a change in the rotational axis, which is called true polar wander and is a paleomagnetic
observable. Thus, by incorporating time, we build a direct link between the research fields of geody-
namics, geology and paleomagnetics.

But first, before opening Pandora’s box, we stay at the present time, keep our focus on the static
gravity field and try to find an explanation for the remaining parts of the data set that could not be
explained by our previous work so far: the third harmonic sector.

4.7 The crustal field

4.7.1 Topography and isostasy

In the previous sections we have seen that the large scale structures of the Earth’s gravity field can
be explained in an almost perfect way with the density anomalies in the Earth’s mantle - that were
derived from seismic tomography - and their induced dynamic topography signals. But nevertheless,
Figure 4.22 reveals that apparently, we are still missing out the physical mechanisms that correspond
to the third harmonic sector of shorter wavelengths.
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Figure 4.23: Left: the Earth’s topography, data set provided by ETOPO (Amante and Eakins, 2009),
evaluated on a 12′ × 12′ grid. Right: degree-dependent correlation of the Earth’s topography field
(left) and the reference geoid. In addition, we restate the correlation curve of our current geoid model
from Figure 4.22.

However, if we have again a closer look at our reference field in terms of the gravity anomalies, which
we showed in Figure 4.4, we can definitely recognise some features that remind ourselves of the Earth’s
topography that we plot in Figure 4.23, like e.g. in a most prominent way, the Himalayas mountain
chain. And indeed, thinking in terms of spherical harmonics, the Earth’s topography mainly consists
of regional and thus, spatially high-frequency features. Furthermore, these crustal mechanisms are not
covered by the seismic tomography model at all and thus, have clearly been missing in our previous
examinations. Just to clarify, also the previously discussed mechanism of dynamic topography is not
related at all to these surface processes since, as we have seen, dynamic topography is a pure mantle
feature. Facing the similarities between observed gravity anomalies and the Earth’s topography, in
order to get a primary result if our hypothesis could be true, we try to express these ’similarities’
in a mathematical way. In the previous sections we learned that the correlation is a mathematical
indicator for similarity. However, in order to be able to correlate the (gridded) topographic data
from ETOPO (Amante and Eakins, 2009) with the reference gravitational field, we have to perform
a spherical harmonic analysis on the gridded data. Since ETOPO is provided on an equiangular grid,
the given data is perfectly suited for the Driscoll-Healy quadrature rule that we presented in Chapter
1 of this work, i.e. using (1.259) we are able to extract the desired frequency information from the
data. In Figure 4.23 we show the correlation of the derived harmonic data set to the reference geoid
and indeed, we find the astonishing result that even just the topographic heights already show a
reasonably good correlation to the gravitational data set. Even without calculating any gravitational
signal so far, this indicates that we seem to be on the perfectly right track.

In order to be able to perform a real gravitational analysis of the crustal effects that are related to
the observed topography, we need a density model. To this end, we recall the principle of Archimedes
that states that a floating body displaces its own weight of the liquid it is floating in. This state
is then called hydrostatic equilibrium (compare to the stress balance in the context of dynamic
topography, see e.g. (4.51)). In the previous chapters and sections we have learned that the Earth
behaves as a viscous fluid over long time scales and furthermore, static geoid studies suggested the
presence of a less viscous asthenosphere below the uppermost layer of the Earth’s interior, the litho-
sphere. Therefore, it could be appropriate to think about the lithosphere as a body that is floating
above a ’liquid’ and mobile asthenosphere. In this case, the principle of Archimedes may be applied
and it could be proposed that it even holds for topographic features like mountain chains or oceanic
trenches. The previously stated equilibrium, which is in this special scenario referred to as isostatic
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Figure 4.24: The isostatic principle of Airy (left) and Pratt (right). The sketches were taken from
Thalhammer et al. (1996)).

equilibrium can naturally be achieved by two different methods. Either we assume regions with a
positive topography to be underlain by a lower density structure and the other way around regions
with a negative topography, e.g. oceans, to be underlain by a higher density structure than an area at
sea-level. This mechanism is called Pratt isostasy and is illustrated in the sketch on the right-hand
side of Figure 4.24. Using the nomenclature from this figure, in order to fulfil the isostatic princi-
ple that each of the vertical columns contains the same total mass, the following relations must be
satisfied:

Dρu = (D + h)ρ1 = (D − d)ρd + dρw , (4.66)

where ρu is a reference density for the crust, ρs (which does not appear in the equations) is a reference
density for the sub-layer, i.e. the lithosphere, and ρw the density of water. h denotes the height about
sea level for a positive topography and d the depth of the ocean in case of a negative topography. D
is called the compensation depth. For each vertical column, this depth marks the barrier between
crust and lithosphere. As we can see in Figure 4.24, in case of the Pratt hypothesis, the compensation
depth is the same for each vertical column and is a free variable that has to be chosen in advance.
Therefore, ρs does not show up in the equations since here, the same amount of mass would just be
added to each column and this term cancels out. Thus, for given values of D, ρu and ρw, the column
densities ρ1 and ρd are determined by

ρ1 =
Dρu
D + h

, ρd =
Dρu − dρw
D − d

. (4.67)

There is a third case we need to consider that is not explicitly shown in the sketch. When we have a
closer look at the topography map in Figure 4.23, we see that besides e.g. the Himalayas and Andes,
we also find large topographic elevations in Greenland and especially on the continent of Antarctica.
But the difference here is that the elevation consists of ice and not of solid rock material. Due
to the large density contrast between ice and solid rocks, this has a large impact on the isostatic
mechanisms and thus, on the resulting gravitational signal. Indeed, we are able to cope with this
situation since the ETOPO files contain information about the exact locations where ice sheets are
present. Incorporating this case into the previous equations, i.e. assuming that a block of positive
elevation h1 has the (ice-)density ρi, we find:

Dρu = Dρ1 + h1ρi =⇒ ρ1 =
Dρu − h1ρi

D
. (4.68)

The isostatic principle of Airy turns all assumptions of Pratt’s hypothesis into the exact opposite.
Here, all densities are kept constant but each vertical column now has its own respective compensation

180



4.7. THE CRUSTAL FIELD

−60 −50 −40 −30 −20

[km]

Figure 4.25: Compensation depth of the vertical columns, derived from Airy’s isostasy principle.
As already indicated in Figure 4.24 we see the deepest roots under high mountain chains, where in
contrast, oceans in general induce anti-roots.

depth. In order to keep the total mass of one single column equal to the reference, an additional density
block due to a positive topography needs to be compensated by a respective root that replaces an
area of higher density (ρs). As we can see in the sketch of Figure 4.24, this yields mountains to
have deep roots and oceans to cause anti-roots, with respect to the reference compensation depth.
This reference compensation depth, denoted by t in the sketch, is not a free variable like in Pratt’s
hypothesis but needs be determined for each of the individual columns separately. From the sketch
we see that the reference compensation depth t for sea-level altitudes must always be greater or equal
to the sum of the depth of the deepest ocean d and the largest anti-root r3, using the nomenclature of
the sketch. Otherwise, the anti-root would reach into the ocean. This constraint translates into the
condition t ≥ dmax + rmax

3 . Furthermore, applying the isostatic principle, we find in the case of Airy’s
hypothesis that the following relations must hold:

tρu + r1ρs = (h1 + t+ r1)ρu = (r1 + r3)ρs + (t− d− r3)ρu + dρw

= tρu + r1ρs + r3(ρs − ρu)− d(ρu − ρw) .
(4.69)

Thus, the amplitudes of the respective roots and anti-roots are determined by:

r1 =
h1ρu
ρs − ρu

, r3 =
d(ρu − ρw)

ρs − ρu
. (4.70)

Also here, incorporating the third case of an assumed ice sheet topography h1, we find the relation

tρu + r1ρs = (t+ r1)ρu + h1ρi =⇒ r1 =
h1ρi

ρs − ρu
. (4.71)

Now, equipped with these relations, we are able to create a crustal model, containing of blocks
of constant densities, based on the isostatic principle using the given topographic data set from
ETOPO. In the following, we will choose Airy’s principle as the hypothesis of our choice, just because
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of the simple reason that we have less free parameters than in Pratt’s hypothesis. Where at Pratt’s,
in addition to the reference densities, we would also need to make assumptions about the overall
compensation depths - and maybe choose different values for continent and oceans - at Airy’s we
just need to fix ρi, ρw, ρu and ρs. We choose these reference densities to be in accordance to another
published crustal model, 3SMAC (Nataf and Ricard, 1996), where we find the values ρi = 1.000 kg/m3,
ρw = 1.020 kg/m3, ρu = 2.800 kg/m3 and ρs = 3.400 kg/m3. Using these values, the respective roots
and anti-roots of each vertical column may be calculated using (4.70) and (4.71). In particular, the
total compensation depth of each column then states as D = t + r1 for continents and D = t − r3

for oceans, where here, we choose t to be the minimal compensation depth t = dmax + rmax
3 . The

resulting compensation depths of each column are plotted in Figure 4.25, where we indeed see the
deep roots under high-elevated mountain chains and large anti-roots at oceanic trenches. The reference
compensation depth t for sea-level regions can be determined to be at t ≈ −42 km.

4.7.2 Mathematical strategy

Figure 4.26: The crust is divided into spheri-
cal cubes with constant density (sketch taken
from Thalhammer et al., 1996).

Now being equipped with a self-consistent isostatic
crustal model, the task is to determine the synthetic
gravitational potential generated by this certain den-
sity structure. Using the previously introduced iso-
static hypothesis of Airy, to this end, we divide our
domain of interest into N ∈ N spherical cubes of con-
stant densities ρi, i = 1, ..., N , as indicated in Figure
4.26. In the following, we will derive how to calcu-
late the gravitational potential of such a single cube
with density ρc, measured at a point x = Rξ, |x| = R,
ξ ∈ Ω. R−RE has to be larger than the maximum el-
evation of the crustal structure, i.e. the highest moun-
tain. This can be interpreted as the measurement of
a satellite orbiting around the Earth at an altitude of
R −RE . We define that in radial direction, the cube
extends from r1 to r2 and is bounded in tangential
direction by the longitudes ϕ1 and ϕ2 and the polar
distances t1 and t2. We denote this respective spher-
ical segment as Ωc. Since the density inside the cube
is assumed to be constant, we can immediately apply
(4.17) to find for the spherical harmonic coefficients
of the generated gravitational potential U c that

U cl,m(R) = − 4πGρc
(2l + 1)(l + 3)

rl+3
2 − rl+3

1

Rl+1

∫
Ωc

Yl,m(η) dω(η) . (4.72)

Here, in order to be able to calculate the integral on the right-hand side, we use the explicit represen-
tation of the spherical harmonics - including the normalised Legendre polynomials - from (1.218) to
find

U cl,m(R) = − 4πGρc
(2l + 1)(l + 3)

rl+3
2 − rl+3

1

Rl+1

ϕ2∫
ϕ1

t2∫
t1

√
1

(1 + δm,0)π
P̄l,|m|(t)

{
cos(|m|ϕ)
sin(|m|ϕ)

dϕdt

{
m ≥ 0 ,
m < 0 .

= − 4
√
πGρc

(2l + 1)(l + 3)

rl+3
2 − rl+3

1

Rl+1

ϕ2∫
ϕ1

√
1

(1 + δm,0)

{
cos(|m|ϕ)
sin(|m|ϕ)

dϕ

t2∫
t1

P̄l,|m|(t) dt

{
m ≥ 0 ,
m < 0 .
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=
4
√
πGρc

(2l + 1)(l + 3)

rl+3
2 − rl+3

1

Rl+1


1
|m| (sin(|m|ϕ1)− sin(|m|ϕ2))

1√
2

(ϕ1 − ϕ2)
1
|m| (cos(|m|ϕ2)− cos(|m|ϕ1))

t2∫
t1

P̄l,|m|(t) dt

 m > 0 ,
m = 0 ,
m < 0 .

(4.73)

Due to the linearity of the gravitational potential, the task of determining the total potential Utot,
generated by all of the N blocks, reduces to a summation of the harmonic coefficients of each of the
cube potentials that we here denote by U (i), i = 1, ..., N :

Utot(R) =

N∑
i=1

U (i)(R) =

N∑
i=1

∑
l,m

U
(i)
l,m(R)Yl,m(ξ) =

∑
l,m

(
N∑
i=1

U
(i)
l,m(R)

)
Yl,m(ξ) . (4.74)

From (4.73) we see that for an explicit calculation of the potentials, the evaluation of integrals of the
(normalised) associated Legendre polynomials, i.e.

Īl,m(t1, t2) :=

t2∫
t1

P̄l,|m|(t) dt , (4.75)

for t1, t2 ∈ [−1, 1], is an essential step. In analogy to the well-known recurrence relations for the
Legendre polynomials that we derived in Chapter 1, recurrence procedures can also be found for their
respective integrals. Here, we implement results from Paul (1978) where the following schemes for the
integrals of the normalised Legendre polynomials were derived and carefully checked. Let l > 1 and
yi :=

√
1− t2i , i = 1, 2, then for m < l it can be shown that

Īl,m(t1, t2) =
1

l + 1

√
(2l + 1)(2l − 1)

(l −m)(l +m)

(
y2

1 P̄l−1,m(t1)− y2
2 P̄l−1,m(t2)

)
+
l − 2

l + 1

√
(2l + 1)(l +m− 1)(l −m− 1)

(2l − 3)(l +m)(l −m)
Īl−2,m(t1, t2) .

(4.76)

For the case l = m we find the following iteration scheme

Īl,l(t1, t2) =
1

2l + 2

√
2l + 1

l(l − 1)

(
y2

2 P̄l−1,l−2(t2)− y2
1 P̄l−1,l−2(t1)

)
+

1

2l + 2

√
l(2l + 1)(2l − 1)

l − 1
Īl−2,l−2(t1, t2) .

(4.77)

Paul (1978) has shown that the previous recurrence relation for m = l is numerically unstable for
points that are located in the polar region, i.e. for |t| ≈ 1. For these special scenarios, a different
relation that originates from a Taylor representation of (1− t2)−1/2 has been derived:

Īl,l(t1, t2) =

√
(2l + 1)(2l − 1) · · · 3

2l(2l − 2) · · · 4

(
yl+2

1

(
1

l + 2
+

1

2

y2
1

(l + 4)
+

1 · 3
2 · 4

y4
1

(l + 6)
+ ...

)
− yl+2

2

(
1

l + 2
+

1

2

y2
2

(l + 4)
+

1 · 3
2 · 4

y4
2

(l + 6)
+ ...

))

=

yl+2
1

jmax∑
j=0

∏j
k=1(2k − 1)(∏j

k=1 2k
)

(l + 2(j + 1))
y2j

1 − y
l+2
2

jmax∑
j=0

∏j
k=1(2k − 1)(∏j

k=1 2k
)

(l + 2(j + 1))
y2j

2


×

√√√√∏l
j=1 (2(l − j) + 3)∏l−1
j=1 (2(l − j) + 2)

,

(4.78)
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l=60 (0◦, 5◦)
m our code Paul* error [%]
0 0.548137705785E-02 0.548137850049E-02 -0.263188635108E-04
1 -0.474761583730E-02 -0.474760732301E-02 0.179338467321E-03
2 -0.169633318012E-01 -0.169633306239E-01 0.694052562089E-05
25 -0.364717745907E-17 -0.364719758524E-17 -0.551825700756E-03
30 -0.134465132932E-22 -0.134466017166E-22 -0.657588965580E-03
35 -0.167973992087E-28 -0.167975273604E-28 -0.762920141606E-03
58 -0.152682262798E-62 -0.152684163609E-62 -0.124493027239E-02
59 -0.171767824827E-64 -0.171769999157E-64 -0.126583789914E-02
60 -0.134955038763E-66 -0.134956775310E-66 -0.128674301466E-02

l=60 (45◦, 50◦)
m our code Paul* error [%]
0 -0.101501811403E-01 -0.101502934228E-01 -0.110619917115E-02
1 0.163371896427E-01 0.163370227936E-01 0.102129451534E-02
2 0.149331880610E-01 0.149333427060E-01 -0.103556825053E-02
25 0.412159553478E-01 0.412161664812E-01 -0.512258634555E-03
30 0.633027336132E-01 0.633025657142E-01 0.265232563446E-03
35 -0.237914912085E-01 -0.237920622310E-01 -0.240005459521E-02
58 -0.428354175582E-06 -0.428357998853E-06 -0.892541041708E-03
59 -0.650247417791E-07 -0.650253457088E-07 -0.928760471408E-03
60 -0.682275133554E-08 -0.682281709959E-08 -0.963884043748E-03

l=100 (0◦, 5◦)
m our code Paul* error [%]
0 -0.327290673516E-02 -0.327290603108E-02 0.215122339053E-04
1 -0.305798259411E-02 -0.305799103935E-02 -0.276169488267E-03
2 0.535140785031E-03 0.535137868013E-03 0.545096481464E-03
45 -0.290613928686E-30 -0.290616724692E-30 -0.962094124768E-03
50 -0.927121140811E-36 -0.927131041231E-36 -0.106785546944E-02
55 -0.153164505270E-41 -0.153166302422E-41 -0.117333364004E-02
98 -0.712434519253-105 -0.712449302422-105 -0.207497843696E-02
99 -0.621778195895-107 -0.621791227936-107 -0.209588694637E-02
100 -0.380856547661-109 -0.380864609779-109 -0.211679366552E-02

l=100 (45◦, 50◦)
m our code Paul* error [%]
0 0.120761501689E-01 0.120791752063E-01 -0.250434101141E-01
1 0.194193663745E-01 0.194196687389E-01 -0.155700064481E-02
2 -0.167221122861E-01 -0.167217779233E-01 0.199956483937E-02
45 -0.128075968186E-01 -0.128076596002E-01 -0.490188180191E-03
50 -0.186984771543E-02 -0.186983132913E-02 0.876351936596E-03
55 -0.408698562889E-02 -0.408706067914E-02 -0.183628901416E-02
98 -0.115089495372E-10 -0.115091070674E-10 -0.136874393810E-02
99 -0.135912052963E-11 -0.135914144133E-11 -0.153859610527E-02
100 -0.111947034646E-12 -0.111926685751E-12 0.181805571783E-01

Table 4.1: A comparison of the values of the Legendre integrals determined by our code to the values
given by Paul (1978).
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Figure 4.27: Geoid (top) and respective gravity anomalies (bottom) derived from our isostatic crustal
model, based on the isostatic principle of Airy.

with a large enough jmax such that a suitable convergence is achieved. For the following simulations,
we choose jmax = 100 and use the Taylor series formula for values of |t| > 0.87. Our implementation is
tested with the help of Table 1 in Paul (1978), where values for Īm60 and Īm100 for some ϑ1 (= arccos t1)
and ϑ2 (= arccos t2) are given. We present our results in Table 4.1. In all cases we do not exceed
errors larger than 0.03% which is quite a good value since recurrence formulae are highly sensitive to
numerical errors since even small errors are propagated and amplified dramatically due to the repeated
application of the scheme.

In the following section we will now apply the previously derived formulae to the isostatic crustal
model and investigate if the presented model is indeed capable of explaining the short scale features
in the Earth’s gravitational field.

4.7.3 Results

Applying the spherical cube calculations of the previous section to our isostatic crustal model, derived
from ETOPO and Airy’s hypothesis, we find the model geoid that we present in Figure 4.27. Addi-
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Figure 4.28: Top: spectral power and correlation (to the reference) of the crustal geoid model, derived
from Airy’s isostatic hypothesis. In addition, we restate the properties of our current mantle geoid
model (see Figure 4.22). Bottom: hybrid model of both mantle and crustal features. The resulting
correlation shows an almost perfect fit to the observations throughout all harmonic frequency bands.

tionally, we show the respective gravity anomaly map in order to get also a distinct view at the higher
harmonic degrees. We see that the geoid mainly reflects the topographic structure, i.e. we find geoid
heights generated by elevated mountain chains and geoid lows over oceans. The overall amplitude is
much smaller than the observed geoid but this is perfectly what we expected since the main spectral
power of the geoid is generated by the lower degree harmonics that we already associated with deeper
mantle structures. However, the much more intriguing plot here is the lower one that shows the gravity
anomalies. Here, we focus at the high frequency band and indeed find large similarities to the observed
gravity anomalies that we presented in Figure 4.4. Finally, we turn these optical similarities again
into the common mathematical formalism and show in Figure 4.28 the degree dependent correlation
of the derived gravitational field from isostasy to the reference field up to degree l = 100. In addition,
we restate the correlation curve from our previous geoid model (see Figure 4.22). And indeed, we
find that the gravitational field derived from the crustal model shows an astonishing correlation to
the observations throughout all harmonic degrees in the third harmonic sector. Furthermore, we also
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Figure 4.29: The synthetic gravitational field, derived from a hybrid model of crustal and mantle
features (left), compared to the observed data set, derived from EIGEN-5C (right). The gravitational
field is represented in terms of the geoid (first row), a filtered version of the geoid, where only the
harmonic degrees l = 12− 100 are shown (second row) and gravity anomalies (third row).
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see that the crustal field has basically little to almost no influence on the harmonics of the first and
second sector. This is also illustrated by the much less intense power spectrum of the crustal model in
these degrees, compared to the reference field and the model geoid derived from pure mantle structures.

These correlation plots highly suggest to merge both crustal and mantle geoid into one hybrid model.
As we have already stated earlier, we even have not considered the uppermost 150 km of the density
structure derived from seismic tomography before. Thus, in a final step, we just added the derived
crustal to our mantle density structure to gain a final model that is intended to fit both lower and
higher harmonic degrees of the observed gravitational field. And indeed, the expected result can be
found in the lower part of Figure 4.28, where we see an almost perfect correlation of the hybrid model
throughout all harmonic degrees. A plot of the model geoid, generated by this hybrid model can be
found in Figure 4.29. The first row shows the total geoid, the second row a filtered version, where
only the harmonic degrees of the third frequency sector, i.e. l = 12 − 100 are shown. The last row
presents the total gravitational field in terms of gravity anomalies. The first column shows the results
from our hybrid model, where the second column represents the observed data sets.

We want to finish this chapter with a very brief overview of true polar wander, i.e. variations
in the Earth’s rotational axis over time due to changes in the mass distribution in the Earth’s man-
tle. The mathematical principles behind true polar wander are closely connected to the gravitational
potential and thus, worth mentioning in this chapter. Furthermore, since true polar wander directly
relates to mass changes in the Earth’s mantle, it may even serve as an additional data set that helps
to constrain time-dependent mantle circulation models that we will examine in the next and final
chapter of this work.

4.8 True polar wander (brief overview)

For a rotating body, a stable axis of rotation can be determined by its inertia tensor, which is a
measure of how the mass inside the body is distributed. It turns out that in general, two of the
three principle axes of the inertia tensor are stable rotation axes, where the third one always remains
unstable. The Earth is a rotating body. Thus, changes of the interior mass distribution due to mantle
circulation naturally also leads to a change in the inertia tensor and as a consequence, also to a varying
axis of rotation over geological time scales. This time variable change of the Earth’s rotation axis
due to a change in internal mass distribution is called true polar wander (TPW) - in contrast
to apparent polar wander (APW) which describes the motion of the lithosphere with respect to
the magnetic pole. In particular due to paleomagnetic reconstructions (see e.g., Besse and Courtillot,
2002) constraints for true polar wander of the Earth can be determined. These data sets show changes
in the rotational axis of approx. 0.3◦ − 0.5◦ per Myr and a total amplitude of approx. 30◦ over the
last 200 Myrs. Thus, due to its natural time-dependency, true polar wander may serve as a valuable
data set for constraining time-dependent numerical mantle circulation models. In order to compare
model to data, in this case, the task would be to derive synthetic true polar wander paths from the
numerical simulations. In this section, we show that indeed, this is possible by explicitly linking the
inertia tensor to the gravitational field.

The inertia tensor I ∈ R3×3 is defined in Cartesian coordinates by

Iij :=

∫
V

(r2 δij − xi xj)ρ(x) dV (x) , (4.79)

i, j = 1, 2, 3, with r = |x|, x ∈ R3. Note that I is symmetric. In order to be able to find a
connection between this representation and the gravitational potential, as usual, a step into the
harmonic perspective will again reveal the essential insights. Here, the obvious first step is to transfer
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the formula above from Cartesian in spherical polar coordinates. We find:

I12 = −
∫
V

x1x2 ρ(x) dV (x) = −
∫
V

r2
(
1− t2

)
cosϕ sinϕρ(x) dV (x) ,

I23 = −
∫
V

x2x3 ρ(x) dV (x) = −
∫
V

r2t
√

1− t2 sinϕρ(x) dV (x) ,

I13 = −
∫
V

x1x3 ρ(x) dV (x) = −
∫
V

r2t
√

1− t2 cosϕρ(x) dV (x) ,

I11 =

∫
V

(x2
2 + x2

3) ρ(x) dV (x) =

∫
V

r2
(
t2 +

(
1− t2

)
sin2ϕ

)
ρ(x) dV (x) ,

I22 =

∫
V

(x2
1 + x2

3) ρ(x) dV (x) =

∫
V

r2
(
t2 +

(
1− t2

)
cos2ϕ

)
ρ(x) dV (x) ,

I33 =

∫
V

(x2
1 + x2

2) ρ(x) dV (x) =

∫
V

r2
(
1− t2

)
ρ(x) dV (x) .

(4.80)

In (1.219) we stated the explicit form of the spherical harmonics of degree 2, which we repeat here.
In addition, we substitute the cos(2ϕ) and sin(2ϕ) terms using the addition theorems

sin(2ϕ) = 2 cosϕ sinϕ , cos(2ϕ) = cos2ϕ− sin2ϕ . (4.81)

We then find:

Y2,0(ϕ, t) =

√
5

16π

(
3t2 − 1

)
, Y2,1(ϕ, t) =

√
15

4π
t
√

1− t2 cosϕ ,

Y2,−1(ϕ, t) =

√
15

4π
t
√

1− t2 sinϕ , Y2,2(ϕ, t) =

√
15

16π

(
1− t2

) (
cos2ϕ− sin2ϕ

)
, (4.82)

Y2,−2(ϕ, t) =

√
15

4π

(
1− t2

)
cosϕ sinϕ .

Substituting these relations into (4.80) and performing some additional rearrangements in the diagonal
components yields the following representation of the inertia tensor in terms of the spherical harmonics:

I12 = −
√

4π

15

∫
V

r2 Y2,−2(ϕ, t) ρ(x) dV (x) ,

I23 = −
√

4π

15

∫
V

r2 Y2,−1(ϕ, t) ρ(x) dV (x) ,

I13 = −
√

4π

15

∫
V

r2 Y2,1(ϕ, t) ρ(x) dV (x) ,

I11 =

∫
V

r2

(
t2 +

1

2

(
1− t2

)
sin2ϕ+

1

2

(
1− t2

) (
1− cos2ϕ

))
ρ(x) dV (x)

=

∫
V

r2

(
1

2

(
t2 − 1

3

)
+

2

3
+

1

2

(
1− t2

)
(sin2ϕ− cos2ϕ)

)
ρ(x) dV (x)

=

∫
V

r2

(
2

3
+

√
4π

15

(√
1

3
Y2,0(ϕ, t)− Y2,2(ϕ, t)

))
ρ(x) dV (x) ,

(4.83)
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I22 =

∫
V

r2

(
t2 +

1

2

(
1− t2

)
cos2ϕ+

1

2

(
1− t2

) (
1− sin2ϕ

))
ρ(x) dV (x)

=

∫
V

r2

(
1

2

(
t2 − 1

3

)
+

2

3
+

1

2

(
1− t2

)
(cos2ϕ− sin2ϕ)

)
ρ(x) dV (x)

=

∫
V

r2

(
2

3
+

√
4π

15

(√
1

3
Y2,0(ϕ, t) + Y2,2(ϕ, t)

))
ρ(x) dV (x) ,

I33 =

∫
V

r2
(
1− t2

)
ρ(x) dV (x)

=

∫
V

r2

(
2

3
−
(
t2 − 1

3

))
ρ(x) dV (x)

=

∫
V

r2

(
2

3
−
√

16π

45
Y2,0(ϕ, t)

)
ρ(x) dV (x) .

From here, only a small step is left to find the explicit connection to the harmonic coefficients of the
gravitational potential U . To this end, we restate (4.7), where we found that

Ul,m(R) = − 4πG

2l + 1

1

Rl+1

∫
V

rl Yl,m(η) ρ(y) dV (y) . (4.84)

Finally, by just comparing (4.83) and (4.84) we find that:

I12 =
R3

G

√
5

12π
U2,−2(R) ,

I23 =
R3

G

√
5

12π
U2,−1(R) ,

I13 =
R3

G

√
5

12π
U2,1(R) ,

I11 = −R
3

G

√
5

12π

(√
1

3
U2,0(R)− U2,2(R)

)
−
∫
V

2

3
r2 ρ(x) dV (x)

I22 = −R
3

G

√
5

12π

(√
1

3
U2,0(R) + U2,2(R)

)
−
∫
V

2

3
r2 ρ(x) dV (x)

I33 =
R3

G

√
5

9π
U2,0(R)−

∫
V

2

3
r2 ρ(x) dV (x) .

(4.85)

Where the non-diagonal terms of the inertia tensor find a direct correspondence to respective potential
coefficients, the diagonal terms are combinations. Here, for the inverse transform we find

U2,0 =
G

R3

√
4π

5

(
I33 −

1

2
(I11 + I22)

)
,

U2,2 =
G

R3

√
3π

5
(I11 − I22) .

(4.86)

The relations (4.85) and (4.86) are called McCullagh’s formula. On the diagonal of I we notice
an additional term next to the second degree harmonics of the gravitational potential. Since this
term shows up only on the diagonal, it must be related to purely symmetric components of V . Thus,
if we transfer the previous relations from the total potential U to the disturbed potential Ũ , where
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a symmetric reference field is subtracted, these diagonal elements vanish and we find a respective
relation between disturbed potential and disturbed inertia tensor with respect to the reference field.

In particular, equipped with the McCullagh formula we can transfer a time series of gravitational
potentials into a time series of corresponding inertia tensors, where the time scales can reach e.g. from
the lifetime of gravity satellite missions to even geological times. Especially, since the gravitational
potential time series is a possible output of a mantle circulation model (e.g. by using the Stokes ma-
trix formalism as presented in this work), in this way it is possible to simulate the variation of the
Earth’s inertia tensor over a period of 10−100 Myr. Where in a perfect spherical Earth, the rotational
axis would adjust almost instantaneously to a change in the principles axes of inertia, in reality, the
equatorial bulge due to the centrifugal force provides a large stability mechanism (see e.g., Munk and
MacDonald, 1960). Thus, in reality, the rotational axis always follows the largest axis of principle
inertia with a certain time delay that mainly depends on the viscoelastic behaviour and adjustment
times of the Earth’s mantle. The theoretical background for this time-dependent behaviour can be
found in the conservation of angular momentum for a rotating system, which states in the case under
consideration as the so-called Liouville equation. Here we find that

d

dt
(Iω) + ω ∧ (Iω) = 0 , (4.87)

where ω ∈ R3 is the rotational axis and I the inertia tensor. In practise, here, the inertia tensor is
split into three parts. The first part describes the effect of a spherical non-rotating Earth. Here we
only find non-vanishing entries on the diagonal of the matrix. A second part contains information
about the equatorial bulge through the centrifugal force and its deformation due to a change of the ro-
tational axis. Here, one enters the systematics of Love numbers that describe the dynamic response
of a system due to a certain stimulus. Thus, this theory is a very close relative to the concept of the
kernels, Green’s functions and fundamental solutions that we have followed in the course of this work.
The third part in the inertia splitting takes account of the change in the interior mass distribution
due to mantle convection, where - as already stated before - the McCullagh formula is used to build
the connection between disturbed gravity field and inertia tensor.

We used the described formalism to examine mantle circulation models that differ in the assumed
value of the CMB temperature (2900 K - 4200 K) in terms of true polar wander paths and amplitudes.
This was published in ’Geochemistry, Geophysics, Geosystems’ (2009) as ’Schaber K., Bunge H.-P.,
Schuberth B.S.A., Malservisi R., Horbach A.: Stability of the rotation axis in high-resolution mantle
circulation models: Weak polar wander despite strong core heating’, doi.org/10.1029/2009GC002541
(see Schaber et al., 2009).
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Chapter 5

The adjoint method in geodynamics

This chapter is published in the ’International Journal on Geomathematics’ (GEM) (2014) as ’Hor-
bach, A., Bunge, H.-P., Oeser J.: The adjoint method in geodynamics: derivation from a general
operator formulation and application to the initial condition problem in a high resolution mantle
circulation model’, doi.org/10.1007/s13137-014-0061-5 (see Horbach et al., 2014). Where all previous
chapters have dealt with the static problem, in the final chapter of this work, we introduce the time-
dependency into the governing equations by means of the energy equation (2.31) which is formulated
in terms of a differential equation with respect to the temperature field. Thus, we are immediately
faced with the problem how appropriate initial conditions for the temperature field may be chosen.
Since we cannot expect to have real data for the temperature field for the Earth’s state some million
years ago, we need to develop new strategies how to overcome this intrinsic problem in mantle dy-
namics.

The following sections are predominantly taken from the publication, except for passages where ad-
justments were considered to be appropriate in order to sustain the flow of this work. For example in
Section 5.3, where the governing equations are introduced, we changed the overall notation in a way
that it fits consistently to all former chapters. We also added some additional remarks and references
in order to build a connection to the derivations from the previous course of this work.

Moreover, we corrected an error that is contained in the publication, i.e. after (5.60) (which is (59) in
the paper), it is written that:

”We discussed earlier that v̂ · n(x) can be arbitrary on the boundary ∂V . Thus we must impose
γ(x, t) = 0 for all x ∈ ∂V and t ∈ I on the test function γ to make the surface integral vanish.”

This is a wrong statement, since the no-outflow condition forces v̂r = 0 and the surface integral
vanishes without the need of imposing any constraints on γ. Therefore, since γ turns out to play the
role of the pressure field in the adjoint momentum equation, we have to set an additional (arbitrary)
boundary condition at one of both domain boundaries in order to make this equation remain solvable.
In analogy to the forward equations, we then chose γ(x, t) = 0 for all x ∈ S and t ∈ I. For the sake of
clarity, we want to state that this was just a misprint and all presented calculations were performed
using a correct implementation of the boundary conditions.

5.1 Introduction

Mantle convection is a vital part of the Earth system. The continuous deformation produced inside
the Earth’s mantle by slow, viscous creep has a far greater impact on our planet than might be imme-
diately evident. Reshaping the Earth’s surface, mantle convection for instance provides the driving
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forces necessary to support large-scale horizontal motion in the form of plate tectonics and the asso-
ciated earthquake and mountain-building activity.

The time scale of tectonic processes, typically on the order of millions of years, is sufficiently long that
the Earth’s mantle, although behaving like a solid on seismic time scales and capable of transmitting
seismic shear waves, can be treated as a fluid. Mantle convection is thus governed by hydrodynamic
field equations expressing the fundamental principles of mass, momentum, and energy conservation
(see Jarvis and Mckenzie, 1980, for an extended derivation). Because of the high viscosity of the
Earth’s mantle (on the order of 1021 Pas, see Mitrovica and Forte, 2004, for a review), the momentum
conservation law simplifies to the Stokes equation. The inertia terms can be ignored owing to the negli-
gible flow velocities (on the order of cm/year) and accelerations, resulting in an instantaneous balance
of frictional and buoyancy forces. Time-dependence enters the mantle convection system through the
energy equation, which describes the transport of heat inside the Earth’s mantle by advection and
conduction.

A rich spectrum of physics is compatible with the governing equations. Powerful computer mod-
els are available for simulating the mantle convection process (see Tackley, 2012, for a recent review)
and new software is opening a path to exa-scale computing (Burstedde et al., 2013; Gmeiner et al.,
2013). However, much uncertainty compromises our knowledge of crucial material parameters (tem-
perature, composition, strength) in the mantle. In principle, it is possible to resolve the uncertainties
by testing mantle convection models against constraints gleaned from the geologic record. For in-
stance, paleo-shorelines and the structure of sedimentary basins varied in time, due in part to changes
in mantle induced dynamic topography of our planet (see Braun, 2010, for a review of the surface
expressions of mantle dynamics). However, geologic events - by definition - happened in the past.
Modelling paleo-mantle convection currents, so that they can be linked to the geologic record requires
knowledge of the state of the convective system in the past. This state, of course, is not available to us.

Over the past two decades, geophysicists have constructed mantle circulation models (MCMs) to
overcome the initial condition problem (Bunge, 1998). The models compensate for lack of initial
condition information by postulating a-priori a pattern of mantle heterogeneity for an earlier geologic
period. A given mantle flow model is integrated forward in time from the assumed initial state to the
time of interest, with a model for the history of past plate motion (see e.g., Seton et al., 2012, for a de-
tailed discussion of a particular global plate motion model) serving as the surface boundary condition
for velocity in the momentum equation. It would be impossible to obtain meaningful MCMs without
past plate motion models: tectonic plates cover 4/5 of the total surface area of the mantle, with the
core-mantle boundary (CMB) accounting for the other 1/5. Thus past plate motion models constrain
the history of mantle surface velocities by 80 percent, substantially reducing the non-uniqueness in-
herent in attempts to model mantle flow through time. MCMs have yielded important insight into
the relation of mantle heterogeneity and the history of plate motion: they demonstrated that much
of the large-scale structure of the Earth’s mantle can be attributed to the sinking of dense, old ocean
floor to the CMB (e.g., Bunge et al., 2002; McNamara and Zhong, 2005). They also show that the
mantle is likely to be of uniform chemical composition at the scale of convection cells (Schuberth et al.,
2009a; Davies et al., 2012). Thus past plate motion models provide key constraints also on the man-
tle thermal structure, as advocated early on by geodynamicists (e.g., Richards and Engebretson, 1992).

The ad hoc nature of the initial conditions assumed in MCMs is a limitation and prompted an alter-
native approach, known as backward advection. Here, an estimate for present day mantle structure,
commonly derived from global-scale seismic imaging, serves as the initial condition for a flow calcula-
tion. The underlying heat equation is then integrated backward in time, neglecting thermal diffusion.
Backward advection exploits the immense convective vigour of the mantle, i.e., for short time peri-
ods, on the order of a few million years, thermal advection (which is time-reversible) dominates over
diffusion. Running mantle convection models back in time has given us a glimpse of many of the
geologic phenomena affected by secular mantle variations. For instance, one has learned that hot spot
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movement and significant vertical motion in the interior of continents is associated with the evolving
mantle density structure (Steinberger and O’Connell, 1998; Conrad and Gurnis, 2003; Heine et al.,
2010; Moucha et al., 2008b). The primary reason for the failure of backward integration as a viable
strategy for inferring mantle paleo-structure is simple: it leads to an accumulation of artefacts, espe-
cially near thermal boundary layers, where diffusion is, by definition, important; these are not optimal
for retrieving the mantle paleo-state (Bunge et al., 2003).

For this reason, optimisation techniques are coming to the fore as a powerful approach to the re-
covery of past deep Earth structure. Geophysicists seek solutions that minimise the difference be-
tween mantle heterogeneity inferred (in some form) from seismic imaging and predictions of dynamic
models, subject to optimal initial conditions. This is an inverse problem. Crucial to its solution is
that the model derivative be found relative to the unknown initial state. Obtaining the derivative by
means of classic finite differencing techniques is impractical due to the large number of parameters
(on the order of 1012) in modern dynamic Earth models. The adjoint method, advocated early on in
meteorology (Talagrand and Courtier, 1987) and seismology (Tarantola, 1984), is a mathematically
elegant and computationally efficient method for obtaining the gradient information needed in the
inversion. Increasing computational resources make the adjoint approach attractive across the geo-
sciences - in, for example, oceanography (Menemenlis and Wunsch, 1997), seismology (Tromp et al.,
2005; Fichtner et al., 2006a,b), and simulations of tectonics (Iaffaldano et al., 2007) and the geody-
namo (Fournier et al., 2010). The adjoint equations for mantle dynamics have been derived using
the concept of Lagrangian multipliers (Bunge et al., 2003; Liu and Gurnis, 2008; Ismail-Zadeh et al.,
2004) and a detailed discussion of model, data and parameter errors is provided in Bunge et al. (2003).

Here we start with a more general approach. Using a general operator formulation in Hilbert spaces,
we derive the adjoint versions of the energy, Stokes and continuity equation. This allows us to connect
to recent work in seismology (Fichtner et al., 2006a,b), where the approach was used to derive the
adjoint equations for the scalar wave equation in two dimensions. We organise our paper as follows:
A first part of the paper consists of a detailed derivation of the adjoint equations in geodynamics. We
present a general operator approach to the adjoint method and apply the results to the incompressible
mantle flow equations, i.e. conservation of mass, momentum and energy. A second part applies the
theory to a high-resolution numerical mantle circulation model. We explore the ability to restore
earlier mantle structure and demonstrate the robustness of the method to converge to an optimal
initial state.

5.2 Preliminaries

We introduce the adjoint method in a general way using an operator formulation. To this end we
recall that one can extend the usual definition of a derivative to general operators. Let X and Y be
Banach spaces and F : X → Y be an operator that maps an element x ∈ X to an element y ∈ Y . We
call F Fréchet differentiable at x0 ∈ X if and only if there exists a linear and bounded operator
Lx0

: X → Y such that:

lim
h→0,h∈X

‖F (x0 + h)− F (x0)− Lx0
(h)‖Y

‖h‖X
= 0 , (5.1)

where ‖ · ‖X and ‖ · ‖Y are the respective norms in X and Y . If this operator exists for all x ∈ X, then
F is Fréchet differentiable and we can define DxF := Lx as the Fréchet derivative of F with respect
to x. DxF is a linear operator that can be applied to any δx ∈ X, which is then commonly referred
to as the direction of the derivative. Thus, in the following we call DxF (δx) ∈ Y the derivative of
F with respect to x in the direction δx. The Fréchet derivative D·F itself can be considered as a
mapping D·F : X → L(X,Y ), where L(X,Y ) is the set of all linear and bounded operators between
X and Y . Here, the term ’direction’ is deliberately chosen since there is a direct connection to the
well-known directional derivative. More precisely, the Fréchet derivative is a generalisation of the
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total differential to Banach spaces.

It can be shown (e.g., Kress, 2014) that the common rules of differentiation (e.g., chain rule, prod-
uct rule) transfer straightforwardly to Fréchet derivatives. For an operator H : X → Z, with
H(x) := G(F (x)), x ∈ X and F : X → Y , G : Y → Z, applying the chain rule yields for the
derivative of H with respect to x ∈ X in the direction δx ∈ X:

DxH(δx) = Dx(G ◦ F )(δx) =
(
DF (x)G

)
(DxF (δx)) . (5.2)

In the course of the upcoming derivations, we will regularly make use of this property.

In the following we have a detailed look at explicit definitions of inner products that we will use
in this chapter. As mantle dynamics is a time-dependent process, we denote the relevant time interval
with I := [t0, t1], where t1 is the present time and t0 some point in the past. Our spatial domain of
consideration is a spherical shell V , i.e. the Earth’s mantle, with boundary ∂V=S ∪ C, where S de-
notes the Earth’s surface and C the CMB. Thus, we define for two squared-integrable scalar functions
(e.g. the temperature and pressure field) F,G ∈ L2(D), D := V × I:

〈F,G〉L2 :=

∫
D

F (z)G(z) dz =

∫
I

∫
V

F (x, t)G(x, t) dV (x) dt , (5.3)

and for two squared-integrable vectorial functions (e.g. the velocity field) f, g ∈ l2(D):

〈f, g〉l2 :=

∫
D

f(z) · g(z) dz =

∫
I

∫
V

f(x, t) · g(x, t) dV (x) dt . (5.4)

Moreover, it can be shown that for Hilbert spaces X, Y and a linear and bounded operator F : X → Y
there exists a unique operator F ∗ : Y → X with

〈F (x), y〉Y = 〈x, F ∗(y)〉X , (5.5)

for all x ∈ X and y ∈ Y . This property is a direct consequence of Riesz’ representation theorem.
F ∗ is then called the adjoint operator to F . This property turns out to be a key aspect of the
adjoint method, and thus, also giving it its name. As an example, in case of finite-dimensional real
spaces and a linear operator A, which then can be identified with a matrix with real entries, we find
that A∗ = AT with respect to the Euclidean inner product. Indeed, we will also use this special
property in the course of this chapter. While we will not discuss the linearity and boundedness of
the respective operators, we will prove the existence of the adjoint operators in the context of mantle
convection by determining them explicitly.

5.3 Forward equations and initial condition problem

Also here, all following considerations are built on the fundamental conservation equations. The
essential difference to the previous work is the inclusion of the energy equation or in other words,
time-dependency. Furthermore - and probably kind of irritating to the reader - in this chapter, we
will not consider a harmonic analysis but work with the pure unmodified equations (shock!). We start
again with the continuity equation, under the assumption of incompressibility. Then, from (2.10) we
may restate

∇ · v = 0 . (5.6)

Since in the following, we will explicitly include the energy equation and examine its coupling to the
momentum equation, it is obligatory to choose a version of the momentum equation that is formulated
in terms of temperature. For this reason, we restate (2.37), neglecting the tilde notation for the
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disturbed quantities. Furthermore, we also do not consider the second-order effect of self-gravitation.
We then arrive at:

−∇P +∇ ·
(
η
(
∇v + (∇v)

T
))

= −g0α (Tav − T ) ρ̂0ε
r , (5.7)

where we explicitly expanded the temperature deviation T̃ = Tav − T . In contrast to the previous
chapters, here we denote the radial reference temperature by Tav (and not by T0), since T0 will later
be used herein for the initial condition, the temperature at time t = 0. In addition to the momentum
equation, we restate the explicit representation (2.18) of the stress tensor σ under the assumption of
incompressibility:

σ = −P13 + η
(
∇v + (∇v)

T
)
. (5.8)

This relation will be necessary in the context of the boundary conditions since in this chapter, we do
not have the possibility for an elegant formulation in terms of the harmonic coefficients.

Finally, time-dependency enters the system via the energy equation. Here, we restate (2.31) to find

∂tT + v · ∇T − κ∆T +H = 0 . (5.9)

The coupled system of continuity, momentum and energy equation can only be solved by defining
suitable initial and boundary conditions. Where the determination of the initial temperature is the
key topic under consideration in this chapter, at least for the remaining conditions, we can make
appropriate assumptions. In analogy to the previous chapters, for the velocity at the surface and
the CMB, we may assume a no-slip or free-slip condition. Since we are now considering numerical
circulation models and are not restricted to analytical solutions any more, we may also include toroidal
velocity components as a boundary condition and use velocity fields that were derived from plate
reconstruction models (e.g., Müller et al., 2008; Gurnis et al., 2012) for the tangential part of the
velocity field at the surface (Dirichlet condition). More precisely, we set:

vtan(x, t) = vp(x, t) , x ∈ S, t ∈ I . (5.10)

In analogy to the models that we calculated in Chapter 4, for the velocity field at the CMB we choose
a free-slip boundary condition. The latter reflects the low viscosity of the Earth’s outer core - liquid
iron - that is in contact with the lower boundary of the mantle. Thus, there exist no shear stresses
along that boundary - i.e. σtan = 0 - which turns with (5.8) into:((

∇v(x, t) + (∇v(x, t))
T
)
n(x)

)
tan

= 0 , x ∈ C, t ∈ I . (5.11)

Here, n(x) denotes the outer normal vector at x ∈ C with respect to the CMB. As we have already
learned, this property can be regarded as a Neumann condition for the tangential part of the velocity
field (with an additional factor of 1/r, see Section 3.3.3). For the radial part of the velocity we restate
the well-known constraint of a no-outflow condition. Here we set:

vr(x, t) = v(x, t) · n(x) = 0 , x ∈ ∂V, t ∈ I . (5.12)

The existence of the gradient of the pressure field P in the momentum equation requires a boundary
condition at only one of the domain surfaces. We set:

P (x, t) = 0 , x ∈ S, t ∈ I . (5.13)

For the boundary conditions of the temperature field we choose temporally and spatially constant
values TS and TC (Dirichlet condition) that describe the reference temperatures at the surface and
the CMB, i.e. here we have:

T (x, t) = TS , x ∈ S, t ∈ I ,
T (x, t) = TC , x ∈ C, t ∈ I .

(5.14)
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The momentum equation is time-independent and does not require an initial condition for velocity
and pressure. But now, we come to the crucial part. The energy equation requires an initial condition
for temperature, i.e. more precisely we need a T0 with:

T (x, t0) = T0(x) , x ∈ V . (5.15)

As we already remarked before, the paleo state of the Earth’s mantle is simply unknown, making it
impossible to specify an appropriate initial condition for a mantle circulation model at some time in
the past. But in the following, we will explicitly derive how the adjoint method allows us to navigate
around this (inherently unsolvable) problem by approaching this difficulty in terms of an optimisation
problem.

5.4 A general operator approach to the adjoint method

The goal of the optimisation is straightforward: we start from an unconstrained model trajectory, say
a mantle convection model with an arbitrary guess for the initial temperature sometime in the past.
Then this trajectory is corrected in such a way that it provides an optimal fit to the available con-
straints, say the thermal structure of the Earth’s mantle today. Mathematically speaking, we minimise
an objective (or misfit) function χ(p) that measures the difference between modelled temperature and
a reference thermal field, representative of the Earth’s mantle. In general χ(p) depends on a vector p
of various model parameters. But for our problem at hand, p is one-dimensional and consists only of
the initial temperature T0.

Minimisation of χ, e.g. with the help of the conjugate gradient method (Fletcher and Reeves, 1964),
requires computing the gradient of χ with respect to the model parameters p. In practice, the forward
equations are differential equations. They are solved numerically and often involve discretisations
with millions of grid points. This precludes determining the gradient of χ by numerical methods,
like e.g. finite differencing. But luckily, the adjoint method is capable of providing a computationally
efficient way to obtain this key value.

The misfit function χ may depend not only explicitly on the model parameters p, but also implicitly
via a function u(p). As we want to know the change of χ if we change the model parameters p by
a small amount δp, we are seeking the Fréchet derivative of χ with respect to p in the direction δp.
Applying the chain rule yields:

Dpχ(u, p)(δp) = ∂uχ(u, p) (Dpu(δp)) + ∂pχ(u, p)(δp) . (5.16)

Note that the total derivative of χ with respect to p has turned into three derivatives. Now, an
important step is that we assume that χ can be expressed in terms of a scalar product, i.e. there exists
a function χ̃ such that χ(u, p) = 〈χ̃(u, p), 1〉. In most applications, this assumption can be satisfied
using the L2 scalar product. Using this representation, we find:

Dpχ(u, p)(δp) = ∂u 〈χ̃(u, p), 1〉 (Dpu(δp)) + ∂p 〈χ̃(u, p), 1〉 (δp)
= 〈∂uχ̃(u, p) (Dpu(δp)) , 1〉+ 〈∂pχ̃(u, p)(δp), 1〉 .

(5.17)

Since in practice, the misfit function χ, respectively χ̃, is in most cases not very complex, the de-
termination of the partial derivatives ∂uχ̃(u, p) and ∂pχ̃(u, p) does commonly not cause insuperable
problems. Obtaining Dpu, however, is as hard to calculate as the total derivative of χ itself. In mantle
dynamics, Dpu is a measure of how the initial temperature T0 influences the temperature T at any
point inside the mantle at any later point in time. Thus, it would be very beneficial if there was a
way to eliminate this term from the right-hand side of (5.17). Here, our first step is to use the adjoint
operators of the derivatives of χ̃ to isolate Dpu. In this way, we transform (5.17) into:

Dpχ(u, p)(δp) =
〈
Dpu(δp), (∂uχ̃(u, p))

∗
(1)
〉

+
〈
δp, (∂pχ̃(u, p))

∗
(1)
〉
. (5.18)
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Next we assume that there exists a functional L that depends on u and p with L(u, p) = 0. In
most cases L is a differential operator - or a combination of differential operators - that describes the
underlying physics. In our case, L(u, p) = 0 can be thought of as one of the conservation laws we
discussed above. For the Fréchet derivative of L we find - in analogy to (5.16) - by applying the chain
rule that:

0 = DpL(u, p)(δp) = ∂uL(u, p) (Dpu(δp)) + ∂pL(u, p)(δp) . (5.19)

Note that this equation also contains the derivative Dpu that we isolated in (5.18). Now, converting
(5.19) into a weak formulation allows us to connect both equations. Thus, we multiply both sides
with an arbitrary test function Ψ and apply the scalar product. Under the assumption that there also
exists an adjoint operator to the partial derivatives of L, (5.19) turns into:

0 = 〈∂uL(u, p) (Dpu(δp)) ,Ψ〉+ 〈∂pL(u, p)(δp),Ψ〉
=
〈
Dpu(δp), (∂uL(u, p))

∗
(Ψ)
〉

+
〈
δp, (∂pL(u, p))

∗
(Ψ)
〉
.

(5.20)

Now, as the last step, adding (5.20) to (5.18) yields:

Dpχ(u, p)(δp) =
〈
Dpu(δp), (∂uχ̃(u, p))

∗
(1) + (∂uL(u, p))

∗
(Ψ)
〉

+
〈
δp, (∂pχ̃(u, p))

∗
(1) + (∂pL(u, p))

∗
(Ψ)
〉
.

(5.21)

From this representation we now can conclude that the critical term Dpu on the right-hand side of
the equation can be eliminated if it is possible to find a test function Ψ that satisfies:

(∂uL(u, p))
∗

(Ψ) = − (∂uχ̃(u, p))
∗

(1) . (5.22)

This is the so-called adjoint equation to L(u, p) = 0. We see that the first task to approach this
equation is the determination of the adjoint operator (∂uL)∗. If then, a test function Ψ can be found
such that the previous equation holds, (5.21) reduces to:

Dpχ(u, p)(δp) =
〈
δp, (∂pχ̃(u, p))

∗
(1) + (∂pL(u, p))

∗
(Ψ)
〉
. (5.23)

Here we notice the presence of (∂pL)∗ and the test function Ψ from above, which emphasises again
that determining adjoint operators to the functional L - respectively to its derivatives - is the crucial
aspect of the theory. In order to shed light into the dark, next, we will apply this method explicitly
to the governing equations of mantle circulation.

5.5 The adjoint equations in mantle dynamics

5.5.1 The objective function

As we have learned before, the objective - or misfit - function is the key element of our theory. At
the end of the day, this is the function that we want to minimise with the help of the adjoint method.
Per definition, this function has the requirement to serve as a measure for comparing our geodynamic
model to a reference data set. As we discussed earlier, in our specific case, this data set is the
temperature distribution inside the Earth’s mantle at the present day, inferred from seismological and
mineralogical means. A straightforward way to solve this task would be to define the misfit function
just as the cumulative difference of model and data temperatures at the present time. Thus - staying
in L2 context - we use the squared difference and set:

χ(T ) :=
1

2

∫
V

(T (T0, x, t1)− TE(x))
2

dV (x) , (5.24)

where TE denotes the reference data for the present time t1, and T is our geodynamic temperature
model. In order to emphasise the dependence of the model temperature on the initial state T0, we
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explicitly included T0 as a parameter of T , together with the location x ∈ V inside the Earth’s mantle
and the time t ∈ [t0, t1]. Moreover, as required in the previous section, we can express χ in terms of
the L2 scalar product as:

χ(T ) =
1

2

∫
I

∫
V

(T (T0, x, t)− TE(x))
2
δ(t− t1) dV (x) dt = 〈χ̃(T, ·, ·), 1〉L2 , (5.25)

with

χ̃(T, x, t) :=
1

2
(T (T0, x, t)− TE(x))

2
δ(t− t1), x ∈ V, t ∈ I . (5.26)

From here on, we follow exactly the steps that we discussed in theory in the course of Section 5.4. We
start with (5.18) and calculate the total derivative of the misfit function with respect to T0, in the
direction δT0. Here, the initial temperature T0 plays the role of p and the temperature distribution T
the role of u in the notation of the previous section. In our case, χ̃ does not explicitly depend on T0,
but indirectly via T . Thus, the second term on the right-hand side in (5.18) vanishes and we obtain:

DT0
χ(T )(δT0) =

〈
DT0

T (δT0), (∂T χ̃)
∗

(1)
〉

= 〈DT0
T (δT0), ∂T χ̃(T )〉 ,

(5.27)

where

∂T χ̃(T ) = (T (T0, x, t)− TE(x)) δ(t− t1) , x ∈ V, t ∈ I , (5.28)

and we dropped the dependence on x and t in the notation of the function χ̃. On the right-hand
side of (5.27) we identify DT0

T , the total derivative of the temperature field T with respect to the
initial thermal distribution T0. This term is as hard to calculate as the total derivative of the misfit
function itself. Now, recall that in order to eliminate DT0T from (5.27) in a next step, we need to
use the underlying governing equations and derive their Fréchet derivatives and corresponding weak
formulations. Here, we have three coupled forward equations (i.e. three operators L1, L2, L3 in the
sense of the previous section). Hence we perform the requested transformations for each of them
individually, starting with the energy equation.

5.5.2 The energy equation

As a first step, we take the total derivative of both sides of the forward energy equation (5.9) with
respect to T0 and apply it to the direction δT0. Using the chain rule we find that:

∂t(DT0T )(δT0) + (DT0v)(δT0) · ∇T + v · ∇(DT0T )(δT0)

− κ∆(DT0T )(δT0) + (DT0H)(δT0) = 0 .
(5.29)

The internal heating H is independent of the initial temperature T0, thus DT0
H(δT0) vanishes. Now,

we convert the above equation into a weak formulation, multiply each side with an (at this point)
arbitrary scalar test function Ψ and apply the inner product 〈·, ·〉L2 . In order to keep everything
as compact as possible, from now on we will drop the differential direction δT0 in our notation.
Furthermore, we denote all Fréchet derivatives with respect to T0 by a ’hatted’ variable, e.g. we
rename T̂ := DT0

T . (5.29) then turns into:

〈
Ψ, ∂tT̂

〉
L2

+ 〈Ψ, v̂ · ∇T 〉L2 +
〈

Ψ, v · ∇T̂
〉

L2
−
〈

Ψ, κ∆T̂
〉

L2
= 0 . (5.30)

This equation serves as our basis in this subsection. Now, the crucial point is to isolate T̂ in the
respective terms. At first glance, this sounds like a very challenging task but it turns out that in this
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work, we have already come across a variety of transformation rules that we can apply in the following
(see in particular Chapter 1). Furthermore, as the test function Ψ is arbitrary, another strategy is
it to choose Ψ in such a way that its properties are useful for the required transformations. The
determination of these properties will play an essential role in the course of all upcoming derivations.

We start with the first term on the left-hand side of (5.30), where we apply partial integration with
respect to time, and arrive at:〈

Ψ, ∂tT̂
〉

L2
=

∫
I

∫
V

Ψ
(
∂tT̂

)
dV (x) dt

=

∫
V

(
ΨT̂
)∣∣∣t1
t=t0

dV (x)−
∫
I

∫
V

(∂tΨ) T̂ dV (x) dt

=

∫
V

(
Ψ(x, t1) T̂ (x, t1)−Ψ(x, t0) T̂ (x, t0)

)
dV (x)−

〈
∂tΨ, T̂

〉
L2
.

(5.31)

As a side remark, in our notation, from now on we will also drop the dependence on (x, t) of any
function, where it is not explicitly necessary. We see that the second term on the right-hand side of
the equation already has the desired form, i.e. we isolated T̂ inside the inner product. The first term
still looks a little bit more complicated but here, we see that in order to make the first part of the
integral vanish, we could just impose Ψ(x, t1) = 0 for all x ∈ V on the test function Ψ. Thus, we
already found one property that we could put as a constraint on the test function that would be very
helpful for reaching our goals. Furthermore, since T̂ (x, t0) = (DT0

T0)(δT0) = δT0, also the second
part of the integral can be simplified and (5.31) turns into:

〈
Ψ, ∂tT̂

〉
L2

= −
〈
T̂ , ∂tΨ

〉
L2
−
∫
V

Ψ(x, t0) δT0(x) dV (x) . (5.32)

The next term in (5.30) that involves T̂ contains no time but spatial derivatives. We apply the identity
F (∇G · u) = ∇ · (FGu)− FG(∇ · u)−G(∇F · u), that is valid for any scalar fields F,G and a vector
field u, and find:〈

Ψ, v · ∇T̂
〉

L2
=

∫
I

∫
V

∇ ·
(

ΨT̂ v
)

dV (x) dt−
∫
I

∫
V

ΨT̂ (∇ · v) dV (x) dt

−
∫
I

∫
V

T̂ (∇Ψ · v) dV (x) dt .

(5.33)

Conservation of mass (5.6) allows us to drop the second term in this equation. Furthermore, with the
help of the divergence theorem, we can convert the volume integral in the first term into a surface
integral. We then find:〈

Ψ, v · ∇T̂
〉

L2
=

∫
I

∫
∂V

ΨT̂ (v(x, t) · n(x)) dω(x) dt−
〈
T̂ , v · ∇Ψ

〉
L2
, (5.34)

where n(x) is the unit outer normal at x ∈ ∂V . Here, we recognise the no-outflow condition inside
the surface integral. Thus, this term also vanishes, and we find without any further constraints on
the test function Ψ that: 〈

Ψ, v · ∇T̂
〉

L2
= −

〈
T̂ , v · ∇Ψ

〉
L2
. (5.35)
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In the third term that involves T̂ in equation (5.30) we find the Laplace operator. Applying Green’s
second identity (1.145) yields:〈

Ψ, κ∆T̂
〉

L2
= κ

∫
I

∫
∂V

Ψ
(
∇T̂ · n

)
dω(x) dt− κ

∫
I

∫
∂V

T̂ (∇Ψ · n) dω(x) dt

+ κ

∫
I

∫
V

T̂ (∆Ψ) dV (x) dt .

(5.36)

We assumed T to be constant at the boundaries, i.e. T (x, t) = TS/C on ∂V . This implies T̂ (x, t) = 0

on ∂V , and the second term vanishes. The normal derivative of T̂ , i.e. (∇T̂ · n) in the first integral,
in contrast, can be arbitrary. But in order to eliminate this term, we could force Ψ to vanish at the
boundaries, i.e. Ψ(x, t) = 0 for all x ∈ ∂V and t ∈ I. Under these constraints, we find that:〈

Ψ, κ∆T̂
〉

L2
= κ

∫
I

∫
V

T̂ (∆Ψ) dV (x) dt =
〈
T̂ , κ∆Ψ

〉
L2
. (5.37)

Note that this equation shows that - under the assumed constraints and boundary conditions - the
Laplace operator is self-adjoint. Now that we discussed all terms in (5.30) that contains the Fréchet
derivative of T , we can collect our results and rewrite (5.30) as follows:

−
∫
V

Ψ(x, t0) δT0(x) dV (x) + 〈Ψ, v̂ · ∇T 〉L2 −
〈
T̂ , ∂tΨ + v · ∇Ψ + κ∆Ψ

〉
L2

= 0 . (5.38)

We were able to perform these transformations under the constraints that

Ψ(x, t1) = 0 , x ∈ V,

Ψ(x, t) = 0 , x ∈ V, t ∈ I .
(5.39)

Now, adding the left-hand side of (5.38) to (5.27), we can reformulate the derivative of the misfit
function as:

DT0
χ(T )(δT0) =

〈
T̂ , ∂T χ̃(T )− ∂tΨ− v · ∇Ψ− κ∆Ψ

〉
L2

+ 〈v̂,Ψ∇T 〉l2

−
∫
V

Ψ(x, t0) δT0(x) dV (x) ,
(5.40)

where we also isolated the derivative v̂ of the velocity field, by expressing the L2 in terms of the l2

scalar product. At this point, we notice that imposing the additional constraint

∂tΨ + v · ∇Ψ + κ∆Ψ = ∂T χ̃(T ) , (5.41)

on the test function Ψ would cancel T̂ in the above equation, which was our primary goal. Unfor-
tunately, we notice an additional Fréchet derivative v̂ = DT0

v in the second term, a measure of how
the initial temperature field - through the buoyancy force - influences the velocity field at any point
in time and space. Obviously, the calculation of DT0v is no less expensive than the determination of
DT0T itself. In the next section, we will see that the momentum equation will provide us with some
help to address this problem.

However, the high viscosity of the Earth’s mantle (≈ 1021 Pas) yields a spatially non-localised velocity
field that is much smoother than the respective temperature field. Thus, DT0

v can be considered as

201



CHAPTER 5. THE ADJOINT METHOD IN GEODYNAMICS

small compared to DT0
T in the context of mantle circulation and one may choose to drop the term in

the previous equation (see e.g., Liu and Gurnis, 2008). With this simplification, (5.40) reduces to

DT0χ(T )(δT0) = −
∫
V

Ψ(x, t0) δT0(x) dV (x) , (5.42)

if the additional constraint (5.41) holds for Ψ and all x ∈ V and t ∈ I. We note that this simplification
will not be valid for low viscosity fluids, where the velocity field is spatially more localised. In adjoint
geodynamo simulations for the Earth’s core (see e.g., Fournier et al., 2010; Li et al., 2011) the DT0

v
term is significant, and a system of adjoint equations comparable to those we will derive in the following
sections must be solved.

5.5.3 The momentum equation

In analogy to the previous section, as the first step, we take the total derivative of both sides of the
momentum equation (5.7) with respect to T0 and apply it to the direction δT0. We then find:

∇ ·
(
η
(
∇ (DT0

v) (δT0) + (∇ (DT0
v) (δT0))

T
))
−∇(DT0

P )(δT0)

+ g0α ((DT0Tav)(δT0)− (DT0T )(δT0)) ρ̂0ε
r = 0 .

(5.43)

The radial average temperature Tav is independent of T0, such that the derivative DT0
Tav vanishes.

Again for clarity of notation, we drop from here on the direction δT0 in our notation, and use the hat
notation for the Fréchet derivatives. Now, as the second step, we convert this equation into a weak
formulation, i.e. we multiply each hand side with an (at this point) arbitrary vectorial test function
ϕ and apply the inner product 〈·, ·〉l2 , to find:

〈
ϕ,∇ ·

[
η
(
∇v̂ + (∇v̂)

T
)]〉

l2
−
〈
ϕ,∇P̂

〉
l2
−
〈
ϕ, g0αρ̂0T̂ ε

r
〉

l2
= 0 . (5.44)

As before, the task is now to isolate the total derivative v̂ in the respective terms, examining each of
the scalar products separately. Using the identity

∇ · (F (∇u)v)−∇ · (F (∇v)u) = v · (∇ · (F∇u))− u · (∇ · (F∇v)) , (5.45)

that is valid for any vector fields u, v and a scalar field F , we can convert the first term in (5.44) into:

〈
ϕ,∇ ·

[
η
(
∇v̂ + (∇v̂)

T
)]〉

l2
=

∫
I

∫
V

∇ ·
[
η
(
∇v̂ + (∇v̂)

T
)
ϕ
]

dV (x) dt

−
∫
I

∫
V

∇ ·
[
η
(
∇ϕ+ (∇ϕ)

T
)
v̂
]

dV (x) dt

+

∫
I

∫
V

v̂ ·
(
∇ · η

(
∇ϕ+ (∇ϕ)

T
))

dV (x) dt .

(5.46)

First, we have a look at the first two integrals on the right-hand side of the previous equation. Applying
the divergence theorem yields:∫

I

∫
V

∇ ·
[
η
(
∇v̂ + (∇v̂)

T
)
ϕ
]

dV (x) dt−
∫
I

∫
V

∇ ·
[
η
(
∇ϕ+ (∇ϕ)

T
)
v̂
]

dV (x) dt

=

∫
I

∫
∂V

η
((
∇v̂ + (∇v̂)

T
)
ϕ
)
· n(x)− η

((
∇ϕ+ (∇ϕ)

T
)
v̂
)
· n(x) dω(x) dt ,

(5.47)
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where n(x) is the outer normal at x ∈ ∂V . At this point, we can elegantly exploit the formerly
mentioned property that the adjoint of a real matrix is equal to its transposed. We reformulate the
respective dot products with the normal vector n in terms of an inner product and then find that the
right-hand side of (5.47) is equal to∫

I

∫
∂V

η
〈
ϕ,
(
∇v̂ + (∇v̂)

T
)∗
n(x)

〉
− η

〈
v̂,
(
∇ϕ+ (∇ϕ)

T
)∗
n(x)

〉
dω(x) dt

=

∫
I

∫
∂V

η ϕ ·
((

(∇v̂)
T

+∇v̂
)
n(x)

)
− η v̂ ·

((
(∇ϕ)

T
+∇ϕ

)
n(x)

)
dω(x) dt .

(5.48)

Now, we have a closer look at the remaining integrals and think about the boundary conditions that
we imposed on v in our forward equations. In the first part of the integral, we recognise the free-slip
condition (5.11) for the CMB that implies that (∇v̂ + (∇v̂)T )n(x) has no tangential component for
all x ∈ C and t ∈ I. Thus, we only have to consider the radial components here. In addition, also the
integral over the Earth’s surface S remains. In the second part of the integral, we immediately notice
that the radial components at both boundaries vanish, due to the no-outflow condition. Furthermore,
since we impose plate velocities at the surface (see (5.10)), the tangential part of the surface velocity
does not depend on T0 and thus, its derivative also vanishes. Thus, the remains of (5.48) state as:∫

I

∫
S

η ϕ ·
((
∇v̂ + (∇v̂)

T
)
n(x)

)
dω(x) dt+

∫
I

∫
C

η ϕr

((
∇v̂ + (∇v̂)

T
)
n(x)

)
r

dω(x) dt

−
∫
I

∫
C

η v̂ ·
((
∇ϕ+ (∇ϕ)

T
)
n(x)

)
dω(x) dt .

(5.49)

If we have a careful look at this term, we see that we can make all parts vanish, if we impose on
the up-to-now arbitrary test function ϕ the same boundary conditions that are satisfied by v. More
precisely, in our case, for ϕ it must hold that

ϕtan(x, t) = 0 , x ∈ S, t ∈ I , (no-slip)

((∇ϕ+ (∇ϕ)T )n(x))tan = 0 , x ∈ C, t ∈ I , (free-slip)

ϕr(x, t) = 0 , x ∈ ∂V, t ∈ I . (no-outflow)

(5.50)

It can easily be verified that also for all other possible choices of no-slip/free-slip combinations as
boundary conditions for the velocity field v, they transfer into equal boundary conditions for ϕ.
Under these constraints (5.46) then drastically simplifies to:〈

ϕ,∇ ·
[
η
(
∇v̂ + (∇v̂)

T
)]〉

l2
=
〈
v̂,∇ ·

[
η
(
∇ϕ+ (∇ϕ)

T
)]〉

l2
. (5.51)

Now we have isolated the total derivative v̂ in the first part of equation (5.44). But the second term

in (5.44) contains the total derivative P̂ = DT0P of the pressure field P with respect to the initial
temperature T0. As before, determining the latter would be as costly as the calculation of DT0

T and

DT0
v itself. Nevertheless, we also try to isolate P̂ within the inner product. We apply the identity

∇ · (Fu) = F ∇ · u + u · ∇F , which holds for any scalar field F and vector field u, and again the
divergence theorem to find:〈

ϕ,∇P̂
〉

l2
=

∫
I

∫
V

∇ ·
(
P̂ϕ
)

dV (x) dt−
∫
I

∫
V

P̂ (∇ · ϕ) dV (x) dt

=

∫
I

∫
∂V

(
P̂ϕ
)
· n(x) dω(x) dt−

〈
P̂ ,∇ · ϕ

〉
L2
.

(5.52)
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P̂ can become arbitrary at the boundaries but remembering that we just have imposed the no-outflow
condition on ϕ, i.e. ϕr(x, t) = ϕ(x, t) · n(x) = 0 for all x ∈ ∂V and t ∈ I, the surface integral vanishes
and we obtain: 〈

ϕ,∇P̂
〉

l2
= −

〈
P̂ ,∇ · ϕ

〉
L2
. (5.53)

What still remains is the third term on the left-hand side of (5.44). Here, we find the total derivative
of the temperature field T , which we encountered in the energy equation before. Expressing the l2

scalar product in terms of the L2 scalar product allows us to combine the results from the energy and
the momentum equation later on:〈

ϕ, g0αρ̂0T̂ ε
r
〉

l2
=
〈
T̂ , g0αρ̂0ε

r · ϕ
〉

L2
=
〈
T̂ , g0αρ̂0ϕr

〉
L2
. (5.54)

At the end, we again collect the results of this section and rewrite equation (5.44) as follows:

〈
v̂,∇ ·

[
η
(

(∇ϕ) + (∇ϕ)
T
)]〉

l2
+
〈
P̂ ,∇ · ϕ

〉
L2
−
〈
T̂ , g0αρ̂0ϕr

〉
L2

= 0 . (5.55)

Note that as before, this representation is only valid under the constraints (5.50). Now, adding the
left-hand side of (5.55) to (5.40) leads us to the following updated expression for the total derivative
of the objective function χ:

DT0
χ(T )(δT0) =

〈
T̂ , ∂T χ̃(T )− ∂tΨ− v · ∇Ψ− κ∆Ψ− g0αρ̂0ϕr

〉
L2

+
〈
v̂,Ψ∇T +∇ ·

[
η
(
∇ϕ+ (∇ϕ)

T
)]〉

l2
+
〈
P̂ ,∇ · ϕ

〉
L2

−
∫
V

Ψ(x, t0) δT0(x) dV (x) .

(5.56)

Here, we now see that the inner product term corresponding to v̂ would vanish if ϕ satisfied

Ψ∇T +∇ ·
[
η
(
∇ϕ+ (∇ϕ)T

)]
= 0 . (5.57)

Likewise, P̂ , the total derivative of the pressure field, would vanish if ϕ was divergence-free. This
condition immediately reminds of the continuity equation for the velocity field v in the forward equa-
tions. Having this in mind, we notice that the derived adjoint equations are generally quite similar
to the forward equations. Here, ϕ takes the role of the velocity field and indeed, in literature one
commonly refers to ϕ as the adjoint velocity field. In the forward momentum equation, one sat-
isfies ∇ · v = 0 by adjusting the pressure field P such that the resulting velocity field v becomes
divergence-free. Mathematically speaking, the gradient of pressure serves as a Lagrangian multiplier
(e.g., Braess, 2001). Unluckily, we do not see such a possibility in the current equations, yet. But
there is still one step to go.

5.5.4 The continuity equation

As in the two previous sections, we take the total derivative of both sides of the underlying equation
with respect to T0 and apply it to the direction δT0. For incompressible flow, the continuity equation
simplifies to a divergence-free criterion, and we find:

∇ · (DT0v)(δT0) = 0 . (5.58)
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Multiplication with another (scalar) test function γ and applying the inner product 〈·, ·〉L2 yields:

〈γ,∇ · v̂〉L2 = 0 . (5.59)

We apply the identity ∇ · (Fu) = F ∇ · u+ u · ∇F that is valid for any scalar field F and any vector
field u, and - as usual - the divergence theorem, to obtain:

〈γ,∇ · v̂〉L2 =

∫
I

∫
∂V

(γv̂) · n(x) dω(x) dt− 〈v̂,∇γ〉l2 . (5.60)

In the surface integral, we recognise again the no-outflow condition, i.e. v̂r = 0, such that this integral
vanishes. Thus, without the need of putting any constraints on the test function γ, we can rewrite
(5.59) as:

− 〈v̂,∇γ〉l2 = 0 . (5.61)

Next to the effect that we were again successful in isolating v̂, the previous equation has a very inter-
esting additional implication. Since γ is arbitrary and we did not need to put any constraints on it
to reach this representation, we can deduce from here that in general, the inner product of v̂ and any
gradient field vanishes. As we have seen before, this is an immediate consequence of the no-outflow
condition and the divergence theorem. Thus, this very remarkable property also holds true for the
forward velocity field v.

Back to the adjoint equations, we are now able to add the left-hand side of this equation to (5.56).
Then, we gain the final expression for the total derivative of the misfit function χ:

DT0χ(T )(δT0) =
〈
T̂ , ∂T χ̃(T )− ∂tΨ− v · ∇Ψ− κ∆Ψ− g0αρ̂0ϕr

〉
L2

+
〈
v̂,Ψ∇T +∇ ·

[
η
(
∇ϕ+ (∇ϕ)

T
)]
−∇γ

〉
l2

+
〈
P̂ ,∇ · ϕ

〉
L2

−
∫
V

Ψ(x, t0) δT0(x) dV (x) .

(5.62)

5.5.5 Summary

We introduced scalar (Ψ, γ) and vectorial (ϕ) test functions to find the total derivative of the objective
function DT0χ(T )(δT0), determined by equation (5.62). From this representation, we see that the three

total derivatives v̂, T̂ and P̂ vanish if we impose the following constraints on the test functions:

∇ · ϕ = 0 , (5.63a)

Ψ∇T +∇ ·
[
η
(
∇ϕ+ (∇ϕ)T

)]
−∇γ = 0 , (5.63b)

∂tΨ + v · ∇Ψ + κ∆Ψ + g0αρ̂0ϕr = ∂T χ̃(T ) , (5.63c)

with ∂T χ̃(T ) = (T (T0, x, t)− TE(x)) δ(t − t1), x ∈ V , t ∈ I. One calls these equations the adjoint
equations in mantle dynamics. They must hold for all x ∈ V and t ∈ I. Their similarity to the
forward energy, momentum and continuity equation allows one to refer to Ψ as the adjoint temper-
ature, to ϕ as the adjoint velocity and to γ as the adjoint pressure. And indeed, this similarity
is not only visually attractive but has also direct implications on practical solution methods. Due to
this property, a solution strategy - i.e. a numerical code - that is formulated for the forward problem,
can - with little adaptation - immediately be used to solve the adjoint equations.
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Since the latter are differential equations, they require initial and boundary conditions for their solu-
tion. To this end, we collect the following previously derived constraints reminiscent to the boundary
conditions of the forward equations:

Ψ(x, t) = 0 , x ∈ ∂V, t ∈ I ,
ϕtan(x, t) = 0 , x ∈ S, t ∈ I ,

((∇ϕ+ (∇ϕ)T )n(x))tan = 0 , x ∈ C, t ∈ I ,
ϕr(x, t) = 0 , x ∈ ∂V, t ∈ I .

(5.64)

We notice that the adjoint transformations have not forced us to put any constraints on the test
function γ so far. But since this quantity takes the role of the pressure in the adjoint momentum
equation (5.63b), due to the presence of the gradient, in analogy to the forward equation, we have
to set an (arbitrary) boundary condition at one of both boundaries such that the equation remains
solvable. In the forward equation we set P (x, t) = 0 for all x ∈ S and t ∈ I, thus, here, we follow the
same approach for the adjoint pressure and set

γ(x, t) = 0 , x ∈ S, t ∈ I . (5.65)

Furthermore, the initial condition for temperature is replaced by a terminal condition for the adjoint
temperature field Ψ:

Ψ(x, t1) = 0 , x ∈ V . (5.66)

The adjoint equations do not only relate the adjoint variables Ψ, γ and ϕ. They are additionally
coupled to the forward temperature T and velocity field v. In practice this requires solutions of the
forward problem, before one solves the adjoint equations. From (5.62) we see that if solutions to the
adjoint equations are found, the total derivative of the objective function with respect to T0 in the
direction δT0 reduces to:

DT0
χ(T )(δT0) = −

∫
V

Ψ(x, t0) δT0(x) dV (x) . (5.67)

This expression now only depends on the differentiation direction δT0 and the adjoint temperature Ψ
at time t0. At this point, the only remaining question is how to choose an appropriate differentiation
direction for our purpose. Since we - and the optimisation scheme - are interested in how the misfit
function reacts to a change in the initial temperature T0 at one specific point y ∈ V inside our domain,
the only reasonable1 differentiation direction states as

δT0(x) = δy(x) = δ(y − x) , x ∈ V , (5.68)

for any fixed y ∈ V . This leads to the final representation of the derivative of the misfit function for
any fixed y ∈ V :

DT0
χ(T )(δy) = −Ψ(y, t0) . (5.69)

At the end of this section, we want to summarise our gained insights in form of an algorithmic proce-
dure that describes in detail how to optimise the initial condition for the temperature in a numerical
mantle circulation model:

(a) Solve the forward equations (5.6), (5.7), (5.9), using T i0, i ∈ N as the initial condition for the
temperature field. Appropriate choices for the first guess initial condition T 0

0 will be discussed
in Section 5.6. Store temperature T (x, t) and velocity v(x, t) for all t ∈ I and x ∈ V (i.e. at all
grid points for all time steps when using a numerical scheme).

1”Let a physicist choose a function for an integrand
and he’ll pick a delta function every time.”
(old Chinese saying)
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(b) Compute the difference of the temperature field at the end of the forward simulation, T (T i0, ·, t1),
and the reference field TE .

(c) Solve the adjoint equations (5.63a), (5.63b), (5.63c) backwards in time. Use the result from (b)
as the driving source for the adjoint energy equation (see (5.63c)). The stored values for T and
u from (a) have to be used during the backward simulation.

(d) The adjoint temperature at the end of the backward simulation, Ψ(·, t0), determines the negative
gradient of the misfit function with respect to the initial condition (see (5.69)).

(e) Update the initial condition T i0 using the result of (d), e.g. by applying the conjugate gradient
method (see Section 5.6), and start again from step (a), using the updated initial condition T i+1

0 .

Besides choosing an a-priori fixed N ∈ N for the total number of iterations, one may think about
an exit criterion in step (b) when the difference between model and reference falls below a certain
(a-priori chosen) border.

5.6 Computational example

5.6.1 Modelling assumptions for global mantle flow

We apply the theory outlined above to the initial condition problem in global mantle flow. The
example demonstrates the technical aspects of the adjoint method in geodynamics and proceeds in
three steps. First, we take a representation of present day mantle structure, derived from a published
tomographic model of the Earth’s mantle. This allows us to define the objective function χ, see (5.24).
Second, we compute the gradient of the objective function for the unknown paleo mantle structure
corresponding to a time period 40 million years (Myrs) before present. The time span is chosen for
computational reasons, as longer integrations periods exceed our computational resources. Third, we
model an initial condition field that is optimal relative to our definition of the present day mantle
structure and the assumed geodynamic Earth model.

Our geodynamic forward model is identical to the published Mantle Circulation Model M2 of Schu-
berth et al. (2009a). M2 compares well with a number of tomographic shear velocity models in terms
of spectral characteristics (essentially a statement on flow length scales) and the amplitude of seismic
velocity anomalies. This is crucial for computing a meaningful objective function. The mantle flow
equations are solved with the help of the parallel finite element code TERRA (Bunge et al., 1996,
1997), implemented on a cluster dedicated to large-scale geophysical modelling (Oeser et al., 2006).
M2 employs a computational mesh with more than 80 million finite elements throughout the mantle.
This is equivalent to horizontal grid points located every 30 km on the surface, decreasing to half the
value at the CMB, with a uniform radial grid spacing of 25 km. The high resolution relative to earlier
MCMs (e.g., Bunge et al., 2002) is crucial to represent the convective vigour of the Earth’s mantle
with a Rayleigh number (based on internal heating) of Ra ≈ 108. It is also one of the reasons that the
heterogeneity strength of M2 provides a good match to tomographic studies (Schuberth et al., 2009b).

Apart from high numerical resolution, we restrict M2 to a minimum number of modelling assump-
tions: (1) a large-scale flow structure related to the history of plate motions (Müller et al., 2008;
Gurnis et al., 2012), (2) a simple radial three-layer viscosity profile consistent with observations of
post-glacial rebound and the geoid (e.g., Hager and Richards, 1989; Paulson et al., 2007), (3) an
isochemical whole mantle flow in the pyrolite composition, and (4) a significant core heat flux of 12
TW (35 percent of the outflow at the top of the mantle) owing to a thermal boundary condition
that sets the CMB temperature to 4200 K (see Boehler, 2000, for a review). The latter agrees with
considerations of elastic parameters and the melting curve of iron under core conditions. Combined
with seismic constraints, this places estimates of the inner-core boundary temperature at 5400− 5700
K (Steinle-Neumann et al., 2001). Assumed values for the three-layer viscosity profile are 1023, 1021
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and 1023Pas in the lithosphere, the upper and the lower mantle, respectively, separated at depths of
100 and 650 km. M2 incorporates the dynamical effects of compressibility that are associated with
the non-negligible density increase of about a factor of 2 from the Earth’s surface to the CMB (e.g.,
Dziewonski and Anderson, 1981). As is customary, we apply the anelastic fluid formulation (Jarvis
and Mckenzie, 1980; Glatzmaier, 1988), which ignores the time derivative of density in the continuity
equation and assumes that convective flow velocities are small compared to the local sound speed. In
the Earth’s mantle, where acoustic waves propagate many orders of magnitude faster than oceanic
plate velocities, the assumption is valid. Detailed modelling parameters and a quantitative comparison
of M2 with a range of tomographic mantle studies are given in Schuberth et al. (2009b, 2012).

We derive our estimate for present day mantle structure from the global shear-wave tomographic
model of Grand et al. (1997). Elastic mantle heterogeneity of the S-wave study is converted into
thermal variations using a thermodynamically self-consistent model of mantle mineralogy (Piazzoni
et al., 2007) in the pyrolite composition. The mineralogic model computes equilibrium phase assem-
blages for the CFMAS (CaO FeO MgO Al2 O3 SiO2) compositional system by Gibbs free energy
minimisation. Note that the CFMAS system is consistent with our assumption of isochemical flow.
The initial condition for mantle flow sometime in the past is necessarily unknown. Thus, for the sake
of simplicity, we opt for using the present day mantle structure as our first guess of the unknown
mantle structure 40 Myrs ago.

5.6.2 Gradient of the misfit function and optimised initial condition field

Starting from the terminal condition (5.66) for the adjoint temperature, one must solve the adjoint
energy equation backwards in time. To this end, we recall the sign change in the adjoint diffusion
term κ∆Ψ, compared to the forward energy equation, which makes the adjoint temperature equation
numerically stable to backward integration. Minimisation of the objective function χ then proceeds
iteratively, through repeated solutions of the system of forward and adjoint equations. We apply
the conjugate gradient method (Fletcher and Reeves, 1964), starting with our first guess T 0

0 for the
initial temperature as noted before, and update the initial condition field N ∈ N times. Then, for all
i = 1, ..., N , we find that

T i0(x) = T i−1
0 (x) + γDT0

χ(T )(δ(x− ·)) , (5.70)

where γ ∈ R is a step size, determined by the conjugate gradient scheme. Inserting (5.69) then yields:

T i0(x) = T i−1
0 (x)− γΨ(x, t0) . (5.71)

The efficiency of the iterative procedure in minimising χ is evident from Figure 5.1. Here we compare
the heterogeneity prediction of our flow model at the present day (middle column) to the mantle
structure (right column) imaged by the S-wave study of Grand et al. (1997). Already after 7 con-
jugate gradient iterations (8 forward and 7 adjoint iterations), there is a good match for both fields
particularly in the lower mantle. Agreement is also good in the hot thermal boundary layer near the
CMB. This is an interesting result since in this region, thermal conduction per definition dominates
over advection. Since diffusion is a non-invertible process, one might expect poorer convergence here
than in other regions of the mantle. The success of the inversion scheme even in this region underlines
the strength of the adjoint method. In the mid mantle, cold regions associated with subducting slabs
are sharper and more pronounced in the flow model compared to the tomographic image. The differ-
ence reflects the high numerical resolution of the computational model, combined with the fact that
seismic tomography invariably delivers a filtered image of true mantle heterogeneity. Near the surface,
anomalous regions in the tomography associated with deep continental roots (Jordan, 1978) are not
fitted by the MCM. This is expected, since our geodynamic model does not account for the complex
thermo-chemical nature of the continental lithosphere (e.g., Artemieva, 2009). Minimising the objec-
tive function χ requires changes to the assumed first guess initial condition. In Figure 5.2 we illustrate
these changes by showing the adjoint temperature Ψ at time t0 at different depth levels after adjoint
iteration 1, 2 and 7, respectively. Since Ψ represents the gradient of the misfit function (see (5.69))
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Figure 5.1: Present day lateral temperature variation in the Earth’s mantle (red = hot, blue = cold)
at four depth levels (630, 1450, 2030, 2800 km) predicted after 40 Myrs of model run from an adjoint
mantle circulation model (left, middle), which was started for the sake of simplicity from a first guess
initial condition (see text) corresponding a representation of present day mantle heterogeneity as
mapped by the seismic shear wave study of Grand et al. (1997) (right column). Adjoint model shown
after 1 (left) and 7 (middle) conjugate gradient iterations. The optimisation improves the fit of the
geodynamic model relative to present day mantle structure, i.e. the seismic study, in each iteration by
minimising the objective function χ, see equation (5.24). A good match between seismic (right) and
geodynamic model after 7 (middle) conjugate gradient iterations confirms the efficiency of the adjoint
method in minimising the objective function. Note the excellent agreement between geodynamic and
seismic heterogeneity in the mid mantle, and also near the CMB, even though thermal conduction
dominates over advection in the lowest mantle region. In the upper mantle, slabs are sharper and
more pronounced in the geodynamic model, as expected, owing to the high numerical resolution of
the computational model.
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Figure 5.2: Adjoint temperature Ψ at time t0, i.e. gradient of objective function χ (see equation (5.24)),
at four depth levels (630, 1450, 2030, 2800 km) after adjoint iteration 1 (left), 2 (middle) and 7 (right),
indicating where the first guess initial condition (see text) of unknown mantle structure 40 Myrs ago
must be adjusted by the conjugate gradient scheme in order to minimise the objective function. There
are large amplitudes of Ψ in the first iterations (left, middle) as expected, especially near the CMB,
where diffusion dominates advection. Importantly, at iteration 7 (right), the amplitude is reduced in
all depth levels, indicating an optimal initial condition (relative to the particular representation of
present day mantle structure, i.e. the seismic study of Grand et al. (1997), and the assumed parameters
of the geodynamic model) has been found.
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Figure 5.3: Lateral temperature variations (red = hot, blue = cold) in the Earth’s mantle 40 Myrs ago
predicted from the adjoint mantle circulation model after 1 (left), 2 (middle), and 7 (right) conjugate
gradient iterations at four depth levels (630, 1450, 2030, 2800 km). Iteration 7 (right) corresponds
to the best guess initial condition, where we must qualify that the predicted heterogeneity is optimal
relative to the particular representation of present day mantle structure, i.e. the seismic study of Grand
et al. (1997) (see Figure 5.1, right), and the assumed parameters of the geodynamic model (see text).
Compared to the seismic study we note that the optimisation scheme requires lateral adjustment in
mantle heterogeneity near the CMB, where horizontal flow dominates over vertical motion. In the
upper and mid mantle cold downwellings and hot upwellings are adjusted primarily in their vertical
location.
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Figure 5.4: Four first guess starting models T 0
0 for the unknown initial temperature distribution (red =

hot, blue = cold) of the Earth’s mantle 40 Myrs ago, shown at three depth levels (330, 1450, 2800 km).
(a) Lateral temperature variations at present day derived from a particular tomographic representation
of the Earth’s mantle, i.e. the seismic shear wave study of Grand et al. (1997), see text. This field
may be regarded as a reasonable approximation of the unknown initial condition, as the restoration
period of 40 Myrs is small relative to a mantle transit time (Bunge, 1998). (b) Rotated tomography
field derived from a 90 degrees westward rotation of the initial condition field (a), where prominent
cold and hot mantle regions associated with thermal up and downwellings are interchanged relative to
(a). (c) Laterally homogeneous temperature distribution derived by averaging lateral heterogeneity at
each radial level in the initial condition field (a). (d) Temperature distribution derived from 40 Myrs
backward advection of the initial condition field (a). Note that artificial cold downwellings beneath
the global mid ocean ridge system, for instance at the East Pacific Rise, are associated with backward
advection, which degrades the convergence measure in Figure 5.5.
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Figure 5.2 shows, where the initial condition must be adjusted to achieve a reduction of the overall
misfit. Looking at results after the first adjoint iteration, we notice that large changes to the first
guess initial condition are needed predominately in the thermal boundary layer region near the CMB.
In other mantle regions, much smaller changes are necessary. Importantly, after adjoint iteration 7,
the overall amplitude of Ψ in all depth levels is reduced. This indicates that a nearly optimal ini-
tial condition has been found by the adjoint procedure, and that there is little need for further change.

The iterative adjustments yield an optimised initial condition field, which we show in Figure 5.3.
We present the prediction of the geodynamic model for mantle heterogeneity at 40 Myrs ago, for ad-
joint iteration 1, 2 and 7, respectively. It is not surprising that the most pronounced changes relative
to the first guess initial condition occur in the vicinity of the CMB. The large changes in this region
reflect the large amplitude of the adjoint temperature Ψ at time t0 in the CMB region, as observed
before in Figure 5.2. The net effect, after 7 iterations of the adjoint procedure, is a significant change
in the lateral CMB heterogeneity structure compared to the first guess initial condition (see Figure
5.1). This is consistent with expectations for large scale mantle dynamics, as horizontal flow dominates
over vertical motion in the CMB region (Bunge et al., 1997). Notable changes in other mantle regions
are associated with the prominent, cold downwellings under the Americas and the Indo-Asian regions.
In the updated initial condition field, these downwellings are placed higher up in the mantle by the
adjoint procedure, corresponding to a location at an earlier time. The change reflects the dominance
of vertical over horizontal transport in the mid mantle, and is thus expected.

5.6.3 Convergence measures and sensitivity to first guess initial conditions

It is important to verify how the choice of the first guess for the unknown initial condition affects the
convergence of the optimisation problem. Full waveform inversion in seismology (Fichtner, 2011) shows
that a good starting model for seismic heterogeneity is crucial in the successful misfit minimisation
between synthetic and observed seismogram, owing to the large number of local minima in the inverse
problem. A spectral approach improves the convergence, with long wavelength structure fitted in
the early iterations before one models finer scale seismic heterogeneity. The initial condition problem
in geodynamics differs from seismology in that the momentum balance of mantle flow is represented
by a Stokes system, in contrast to the hyperbolic wave equation. In this case, significant control is
exerted by the boundary conditions. Thus the known motion of the lithospheric plates influences the
accompanying large-scale flow in the Earth’s mantle, an insight exploited early on in the global mantle
flow models of Hager and O’Connell (1978, 1979). We test the robustness of our results to changes
in the first guess initial condition and show four different initial temperature T 0

0 fields in Figure 5.4.
Present day mantle structure as a proxy for unknown mantle heterogeneity 40 Myrs ago is illustrated
in Figure 5.4 (a). We used this starting field in the previous section, as noted before. An alternative
choice, shown in Figure 5.4 (b), also takes the first guess initial condition from Figure 5.4 (a). But
we rotate the starting field T 0

0 by 90 degrees, yielding a pattern of mantle heterogeneity, where cold
and warm regions are interchanged.

Our third choice, intended to reflect more fully our lack of initial condition information, utilises a
1-D temperature profile (Figure 5.4 (c)) with no lateral heterogeneity. We obtain this starting field
by averaging lateral heterogeneity at each radial level from the initial condition field shown in Figure
5.4 (a). The starting fields in Figs. 5.4 (b,c) are designed to challenge the convergence of the adjoint
procedure: their buoyancy structure is either identical to zero or opposing the large scale flow implied
by the present day mantle structure.

Our fourth approach, Figure 5.4 (d), to produce a first guess initial condition employs backward
advection (e.g., Steinberger and O’Connell, 1997; Moucha et al., 2008a). Starting from the represen-
tation of present day mantle heterogeneity (Figure 5.4 (a)), we run our MCM backward in time for
40 Myrs, solving the energy equation (5.9) backwards in time and reversing the sign of the diffusion
term for the sake of numerical stability.
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Figure 5.5: Temperature residual (L2 norm) between geodynamic model at present day and tomogra-
phy as function of adjoint iteration for the four first guess starting models T 0

0 of the unknown initial
temperature shown in Figure 5.4. The residual over the whole mantle (top) is also shown divided into
its contributions from the upper (0 − 800 km) and the lower (800 − 2890 km) mantle (mid, bottom
panel). Convergence is reached after a few iterations, regardless of the choice for T 0

0 . While there
is an excellent overall fit in the lower mantle, convergence in the upper mantle is weaker, owing to
crustal features not resolved by the geodynamic model. In the upper mantle, the geodynamic model
that was initialised from backward advection yields poorest convergence, due to artefacts near thermal
boundary layers (see Figure 5.4). In the lower mantle, the rotated tomography model starts with the
poorest fit. But after a few iterations, all models yield similar convergence.

Figure 5.5 shows how the efficiency of minimising χ depends on our starting models. The temperature
residual in the L2 norm between the MCM at present time and the tomographic mantle image as a
function of the adjoint iteration serves as a quantitative measure of the misfit. To facilitate a physical
interpretation of the misfit, we divide the residual into contributions from the upper (0−800 km) and
the lower (800− 2890 km) mantle each, in addition to the mantle as a whole. In general, the first five
iterations are the most significant for correcting the initial condition. We also notice that the overall
magnitude of the residual is smaller in the lower than the upper mantle, owing the effects of crustal
structure and subducting slabs. But importantly, we see that the choice of the initial starting model
has little effect on the overall convergence behaviour.

After one adjoint and forward iteration, as expected, the rotated tomography starting field yields
the worst fit to the present day mantle structure. But after a few iterations there is the same con-
vergence as if we had started with a more reasonable proxy for the unknown initial condition, e.g.,
the tomography field or the backward advection model. In the upper mantle, the model that started
from backward advection shows the poorest convergence, reflecting artefacts near thermal boundary
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Figure 5.6: Best guess initial condition temperature distribution at 2000 km depth (red = hot, blue
= cold) in the Earth’s mantle 40 Myrs ago predicted by the adjoint method after 7 iterations for
the four starting models shown in Figure 5.4. Note that all models, regardless of their first guess
initialisation, show the same temperature heterogeneity, demonstrating uniqueness in the inverse
problem. The uniqueness property may be explained by the prescribed surface velocity field which
serves as a regularisation of the inverse problem (see text).

layers that arise from backward advection, as mentioned before. In the lower mantle, the rotated to-
mography model starts with a poor fit to the present day mantle structure. But after a few iterations,
all models show a similar convergence behaviour. This is confirmed by looking at Figure 5.6, which
gathers depth slices at 2000 km of the optimal initial condition at 40 Myrs ago for each of the four
models. Here even at smaller scale structures, the models look quite similar.

5.7 Discussion

We presented a general operator formulation of the adjoint theory in Hilbert spaces. We applied the
theory to the three coupled conservation equations for mantle flow in geodynamics and demonstrated
the ability of the method to restore an earlier mantle structure in a high resolution global mantle
circulation model.

Reformulating the initial condition problem in geodynamics as a general optimisation problem yields
the task of determining the derivative of a physical observable, i.e. the objective function (5.24), rel-
ative to the initial condition. Where standard means to obtain the derivative by finite differencing
become impractical, owing to the large parameter space of modern geodynamic mantle models, the
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adjoint method allows us to determine the derivative in a way that is computationally efficient and
mathematically elegant.

The adjoint and forward equations are similar. Their similarity originates from self-adjoint or near
self-adjoint differential operators in the equations. Thus in addition to computational efficiency, there
is a practical consideration: any existing numerical code that solves the forward problem may be used
to solve the adjoint equations with little adaptation. Our derivation of the adjoint equations shows
that boundary conditions in the forward equations translate one-to-one into corresponding boundary
conditions in the adjoint equations. As well, the initial condition of the forward problem is replaced
by a terminal condition in the adjoint equations, making it necessary to solve the adjoint equations
backward in time.

Thermal residuals at the final stage of the model run act as the source term of the adjoint energy
equation (5.63c). The residuals are transported backward in time by the adjoint advective term along
a trajectory governed by the forward velocity field. The coupling of forward and adjoint variables is a
crucial part of the adjoint theory. It is here that physical constraints from the forward system enter
as information into the restoration problem. The adjoint energy equation also contains an adjoint
diffusive term, which corrects thermal diffusion effects back in time. This contrasts to the approach of
backward advection (see e.g., Steinberger and O’Connell, 1998), where one neglects thermal diffusion
at the expense of artefacts near thermal boundary layers (Bunge et al., 2003). Finally there is an
adjoint buoyancy term in the adjoint energy equation. This term couples the adjoint energy and mo-
mentum equation through the adjoint velocity field ϕ which is computed from the adjoint momentum
equation (5.63b). The adjoint buoyancy term corrects for errors in the forward velocity field that
arise from errors in the assumed initial condition. Constraints on the adjoint velocity field (in our
derivation a condition on incompressibility) enter through the adjoint continuity equation (5.63a).

Ignoring the adjoint buoyancy (and hence the adjoint momentum and continuity equation) in the
restoration problem (e.g., Liu and Gurnis, 2008) is equivalent to the assumption that initial condition
errors have no influence on the forward velocity field (see (5.40). While strictly speaking, this would
be incorrect, we note that the viscosity of the Earth’s mantle is high, so that errors in the forward
velocity field are smooth relative to those in the initial condition field. The inherent smoothness of the
Stokes system dampens the influence from erroneous initial conditions on the forward velocity field.
This interpretation agrees with the self-adjoint nature of the momentum equation in mantle flow and
links to simplified implementations of the adjoint equations in mantle flow. We note that the mantle
flow problem in this regard differs from adjoint systems of the geodynamo (e.g., Fournier et al., 2010;
Li et al., 2011).

The adjoint problem in geodynamics has a one-to-one analogy in seismology. Here dissipation is
the equivalent physical phenomenon to diffusion. If we ignore dissipation, in analogy to backward
advection, the wave equation may be inverted by integrating the wavefield back in time. Alterna-
tively, one may account for dissipation. The adjoint method in seismology (full waveform inversion)
then introduces constraints of the physical system in a way that is similar to the adjoint system in
geodynamics, by coupling forward and backward wavefield (Tromp et al., 2005; Fichtner et al., 2006a).

A computational bottleneck is associated with the coupling of forward and adjoint system, because
the full temperature and velocity field must be stored at each time step of the forward run. Our choice
of 40 Myrs for the restoration period is dictated by computational considerations, mainly the storage
capacity of our local cluster system TETHYS (Oeser et al., 2006). Our geodynamic models involve a
computational mesh with more than 80 million finite elements. The models run on 512 cores of our
computer system and need a disk space of ≈ 20 GB per node (≈ 10 TB total). The iterative nature of
the optimisation scheme, moreover, requires repeated solutions of the forward and adjoint equations
to achieve convergence. Each forward-backward iteration needs a runtime of ≈ 1 week. Thus ≈ 2
months of runtime were necessary to complete the 7 conjugate gradient iterations presented here for
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each of the four starting models.

The existence of a strong global minimum for the initial condition problem is the most important
finding in our study. Hadamard (1902) classified well-posed inverse problems by existence, uniqueness
and stability of the solution. It is reasonable to expect that the initial condition problem in mantle
convection is ill-posed: the governing equations are non-linear and there is a loss of information due
to thermal diffusion processes. In other words, uniqueness and stability are in question. In seismology
the existence of a variety of local minima for the objective function is known, and spectral methods
help to regularise full waveform tomography (Fichtner, 2011). Relevant to mantle convection, how-
ever, is the uniqueness theorem by Serrin (1959). It states that two incompressible Stoke systems are
equivalent, if they share identical initial and boundary conditions. Knowledge of the history of plate
motion amounts to satisfying one of the two conditions of the uniqueness theorem. Past plate motion
models therefore provide constraints not only on the mantle thermal structure through the history of
subduction. They also regularise the accompanying large-scale mantle flow, an insight that informs
the pioneering work of Hager and O’Connell (1978, 1979). Figure 5.6 illustrates the strength of the
regularisation. The four different starting models we used as our first guess for the unknown initial
condition lead to the same optimal initial condition field after a small number of adjoint iterations.
Our results agree with the finding of Vynnytska and Bunge (2015) who demonstrate that the restora-
tion problem of mantle flow becomes ill-posed, if one assumes a (free-slip) surface boundary condition
that does not include knowledge on the history of the surface velocity field.

The source term of the adjoint energy equation equals the partial derivative of the misfit function
(see (5.63c)). So the choice of the latter affects the optimal initial condition determined by the ad-
joint procedure. While we restrict ourselves in this paper for the sake of convenience to a simple
L2 difference between model and reference field, one could consider more sophisticated measures of
the objective function. For instance, one could account for variations in the spatial resolution of
tomographic models as well as the inherently different resolution between heterogeneity computed by
mantle circulation models and seismic tomographic representations of mantle structure. Here we recall
that comparing two data sets with locally different resolutions suggests a spectral or wavelet based
approach (e.g., Freeden et al., 1998; Freeden, 2001; Freeden et al., 2003), yielding a locally adaptive
definition of the objective function.

We must qualify our results by drawing attention to an important limitation of this study. While
our adjoint simulations reveal the existence of a strong global minimum in the initial condition prob-
lem of mantle convection, we obtained the minimum relative to a particular representation of mantle
heterogeneity, i.e. the seismic study of Grand et al. (1997), and relative to the particular modelling pa-
rameters in our mantle circulation study (Schuberth et al., 2009a). A minimum number of modelling
assumptions was made in the geodynamic model for the sake of simplicity: we assumed isochemical flow
with mantle heterogeneity dominated by thermal effects, and we considered a simple three-layer man-
tle viscosity profile consistent with post-glacial rebound and geoid studies (e.g., Hager and Richards,
1989; Paulson et al., 2007). Our justification for the former is straightforward. Mounting evidence
from mineralogy (e.g., Zhang et al., 2013) and geodynamics (e.g., Schuberth et al., 2009b; Forte et al.,
2010; Davies et al., 2012) suggests that whole mantle flow of pyrolitic composition provides a good
match to seismic observations. But it is clear that more studies on complex thermo-chemical mantle
flow scenarios (Tackley, 2012) will help to complement these findings. Our choice for the latter is more
uncertain, as we lack a robust description of the mantle deformation behaviour in the exotic regime of
low strain rates, high temperature, and high pressure that characterises the deep Earth. Spasojevic
et al. (2009) used uplift data of the Western United States to optimise the viscosity profile in an
adjoint model of mantle flow. Their result required the specification of a high viscosity layer (stress
guide) embedded in the upper mantle beneath the continent, which makes them difficult to interpret.
But it is clear that future applications of the adjoint method in geodynamics must be directed at
improving our understanding of the rheologic properties of the Earth’s mantle.
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Outlook

First, at this point, we hope that with this work we may provide a valuable service to all students,
senior scientists and whoever crosses the path with analytical solution methods to the Stokes equation
and the infamous propagator matrix technique. It took more than a decade to overcome all traps
and pitfalls that are hidden in the course of the derivation of these solution methods and we sincerely
hope to ease the way of future scientists at least in this regard.

But besides the detailed derivation of the Stokes matrix and propagator approach, at the end of
this work we even opened Pandora’s box and tried to address the intrinsically unsolvable initial con-
dition problem in mantle dynamics. Applied to a high-resolution numerical mantle circulation code,
we successfully showed the convergence of the iterative adjoint method to an ’optimal’ solution for
the initial temperature condition in the energy equation. Furthermore, we showed that even in case
of an initial guess that was artificially constructed in the most possible inconsistent way, the iteration
scheme still converges to the ’right’ solution. As shown by Vynnytska and Bunge (2015) this is most
probable due to the velocity boundary condition at the surface that we chose to be set to velocities
derived from plate reconstruction models. It seems to be that the influence of this boundary con-
dition is so large that in any case, even literally, everything is pushed into the right direction. In
general, these and our results give hope to future adjoint simulations but at the same time, also rise
the question, which model parameters the adjoint method is even sensitive to. In this work, we were
in particular interested in the radial viscosity profile and demonstrated in Chapter 4 that with pure
static flow models, there will always be a trade-off and infinitely many solutions remain. We raised
the hope that with time-dependent models we will be able to distinguish between feasible profiles but
at the current development stage, this is not even clear. In our opinion, now that we demonstrated
that the adjoint method works in principle - and not only in artificially constructed test scenarios, but
even with real data - the main task in the course of the upcoming years could (or even should?) be
the focus on analysing the sensitivity of the adjoint method to the various free parameters, e.g. the
viscosity profile, the used plate reconstruction model or for instance, the used tomography for the
reference field at the final state. A first and already very profound work addressing this certain
topic has just been published by Colli et al. (2020). However, in our opinion this is only a first step
in a long process of examining and revealing the true capability of the adjoint method in geodynamics.

In the last chapter we derived the adjoint equations of mantle dynamics using a general operator
approach. Where in principle, we gained a coupled system of adjoint equations that is very similar to
the forward system, we found - only by experiment - that it seems to be that in the adjoint runs, the
influence of the momentum equation is so little that it completely decouples and even may be entirely
neglected. This has the apparent advantage that we saved most of the required computational time
since the momentum equation is - due to its elliptic nature - by far the most time-consuming part of
the solver. Nevertheless, from a mathematical and even physical point of view it still remains unclear
why exactly this is the case. This is an apparent contrast to the forward equations that has not been
understood very well up to this point. This topic may be gathered under the umbrella of the general
future task of examining the capability and also the intrinsic properties of the adjoint method in a
more detailed and structured way.
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Probably the most powerful feature of the adjoint method is that in principle, it opens the door
and builds a connection to various other disciplines in the geosciences. Not that the adjoint method
only determines an ’optimal’ initial state of the Earth’s mantle at some time in the past, it creates a
whole trajectory, a complete and consistent time evolution of the temperature field inside the Earth
and - that is the essential point - also of all derived quantities like e.g. the Earth’s gravitational field,
dynamic topography or True Polar Wander paths. Today, it seems that there is a high probability
that among these observables, in particular the time evolution of dynamic topography will play an
essential role in further adjoint simulations. Numerous geological data sets seem to be capable of
providing estimates of uplift or subsidence rates, at least at certain times in the past and for selected
regions. Thus, one of the key research points in the future will be the incorporation of these newly
available data into the modelling process and to exploit them for constraining and - hopefully - reduc-
ing the model parameter space. It may also well be that there are additional useful data sets available
from geoscientific research fields, where at the present time, no one could even imagine a possible
connection to geodynamics.
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Waluga C., Weismüller J., Wellein G., Wittmann M., Wohlmuth B., 2016. Hybrid Parallel Multigrid
Methods for Geodynamical Simulations. In H.J. Bungartz, P. Neumann, E. Wolfgang (editors),
Softw. Exascale Comput. – SPPEXA 2013-2015, volume 113 of Lecture Notes in Computational
Science and Engineering, pp. 211–235. Springer.

Baumgardner J.R., 1985. Three-dimensional treatment of convective flow in the earth’s mantle. J.
Stat. Phys., 39 (5-6), 501–511.

Baumgardner J.R., Frederickson P.O., 1985. Icosahedral Discretization of the Two-Sphere. SIAM J.
Numer. Anal., 22 (6), 1107–1115.
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avec la théorie mécanique de la lumière, volume 2. Gauthier-Villars.

Braess D., 2001. Finite elements: Theory, fast solvers, and applications in solid mechanics. Cambridge
University Press.

Braun J., 2010. The many surface expressions of mantle dynamics. Nat. Geosci., 3 (12), 825–833.

Bunge H.-P., 1997. Numerical models of mantle convection. PhD Thesis, University of California,
Berkeley.

Bunge H.-P., 1998. Time Scales and Heterogeneous Structure in Geodynamic Earth Models. Science
(80-. )., 280 (5360), 91–95.

Bunge H.-P., Hagelberg C.R., Travis B.J., 2003. Mantle circulation models with variational data
assimilation: inferring past mantle flow and structure from plate motion histories and seismic
tomography. Geophys. J. Int., 152 (2), 280–301.

Bunge H.-P., Kennett B.L.N., 2008. Geophysical Geocontinua. Cambridge University Press.

Bunge H.-P., Richards M.A., Baumgardner J.R., 2002. Mantle–circulation models with sequential data
assimilation: inferring present–day mantle structure from plate–motion histories. Philos. Trans. R.
Soc. London. Ser. A Math. Phys. Eng. Sci., 360 (1800), 2545–2567.

Bunge H.-P., Richards M.A., Baumgardner J.R., 1996. The effect of depth-dependent viscosity on the
planform of mantle convection. Nature, 379 (6564), 436–438.

Bunge H.-P., Richards M.A., Baumgardner J.R., 1997. A sensitivity study of three-dimensional
spherical mantle convection at 10 8 Rayleigh number: Effects of depth-dependent viscosity, heating
mode, and an endothermic phase change. J. Geophys. Res. Solid Earth, 102 (B6), 11991–12007.

Burstedde C., Stadler G., Alisic L., Wilcox L.C., Tan E., Gurnis M., Ghattas O., 2013. Large-scale
adaptive mantle convection simulation. Geophys. J. Int., 192 (3), 889–906.

Chambat F., Ricard Y., Valette B., 2010. Flattening of the Earth: Further from hydrostaticity than
previously estimated. Geophys. J. Int., 183 (2), 727–732.

Clenshaw C.W., 1955. A note on the summation of Chebyshev series. Math. Comput., 9 (51), 118–120.

Colli L., Bunge H.P., Oeser J., 2020. Impact of model inconsistencies on reconstructions of past mantle
flow obtained using the adjoint method. Geophys. J. Int., 221 (1), 617–639.

Colli L., Ghelichkhan S., Bunge H.-P., 2016. On the ratio of dynamic topography and gravity anomalies
in a dynamic Earth. Geophys. Res. Lett., 43 (6), 2510–2516.

221



BIBLIOGRAPHY

Colli L., Ghelichkhan S., Bunge H.-P., Oeser J., 2018. Retrodictions of Mid Paleogene mantle flow
and dynamic topography in the Atlantic region from compressible high resolution adjoint mantle
convection models: Sensitivity to deep mantle viscosity and tomographic input model. Gondwana
Res., 53, 252–272.

Condon E.U., Shortley G.H., 1935. The Theory of Atomic Spectra. Cambridge University Press,
Cambridge.

Conrad C.P., Gurnis M., 2003. Seismic tomography, surface uplift, and the breakup of Gondwanaland:
Integrating mantle convection backwards in time. Geochemistry, Geophys. Geosystems, 4 (3).

Coonen J.T., 1980. An Implementation Guide to a Proposed Standard for Floating-Point Arithmetic.
Computer (Long. Beach. Calif)., 13 (1), 68–79.

Davies D.R., Goes S., Davies J., Schuberth B.S.A., Bunge H.-P., Ritsema J., 2012. Reconciling
dynamic and seismic models of Earth’s lower mantle: The dominant role of thermal heterogeneity.
Earth Planet. Sci. Lett., 353-354 (0), 253–269.

Driscoll J.R., Healy D.M., 1994. Computing Fourier Transforms and Convolutions on the 2-Sphere.
Adv. Appl. Math., 15 (2), 202–250.

Dziewonski A.M., Anderson D.L., 1981. Preliminary reference Earth model. Phys. Earth Planet.
Inter., 25 (4), 297–356.

Fichtner A., Bunge H.-P., Igel H., 2006a. The adjoint method in seismology - I. Theory. Phys. Earth
Planet. Inter., 157 (1-2), 86–104.

Fichtner A., Bunge H.-P., Igel H., 2006b. The adjoint method in seismology - II. Applications:
traveltimes and sensitivity functionals. Phys. Earth Planet. Inter., 157 (1-2), 105–123.

Fichtner A., 2011. Full Seismic Waveform Modelling and Inversion. Advances in Geophysical and
Environmental Mechanics and Mathematics. Springer Berlin Heidelberg, Berlin, Heidelberg.

Fletcher R., Reeves C.M., 1964. Function minimization by conjugate gradients. Comput. J., 7 (2),
149–154.

Foerste C., Flechtner F., Stubenvoll R., Rothacher M., Kusche J., Neumayer H.K., Biancale R.,
Lemoine J., Barthelmes F., Bruinsma S., Koenig R., Dahle C., 2008. A new global combined high-
resolution GRACE-based gravity field model of the GFZ-GRGS cooperation. In AGU Fall Meet.
Abstr., volume 2008, pp. G13A–0626.

Forte A.M., Peltier W.R., 1987. Plate tectonics and aspherical Earth structure: the importance of
poloidal- toroidal coupling. J. Geophys. Res., 92 (B5), 3645–3679.
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Rev. Matemática Complut., 16 (1).

Freeden W., Michel V., 2004. Multiscale Potential Theory. Birkhäuser Boston, Boston, MA.
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Neumann F.E., 1838. Über eine neue Eigenschaft der Laplaceschen Yˆ(n) und ihre Anwendung zur
analytischen Darstellung derjenigen Phanomene, welche Functionen der geographischen Lange und
Breite sind. Astron. Nachrichten, 15 (21), 313–324.

Oeser J., Bunge H.-P., Mohr M., 2006. Cluster Design in the Earth Sciences: TETHYS. In M. Gerndt,
D. Kranzlmüller (editors), High Perform. Comput. Commun. - Second Int. Conf. HPCC 2006,
Munich, Ger., volume 4208 of Lecture Notes in Computer Science, pp. 31–40. Springer, Berlin.

Panasyuk S.V., Hager B.H., Forte A.M., 1996. Understanding the effects of mantle compressibility on
geoid kernels. Geophys. J. Int., 124 (1), 121–133.

Parsons B., Daly S., 1983. The relationship between surface topography, gravity anomalies, and
temperature structure of convection. J. Geophys. Res., 88 (B2), 1129.

Paul M.K., 1978. Recurrence relations for integrals of Associated Legendre functions. Bull. Géodésique,
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2015. Fast asthenosphere motion in high-resolution global mantle flow models. Geophys. Res. Lett.,
42 (18), 7429–7435.

Wermer J., 1974. Potential Theory. Advances in Geophysical and Environmental Mechanics and
Mathematics. Springer Berlin Heidelberg, Berlin, Heidelberg.

Zhang Z., Stixrude L., Brodholt J., 2013. Elastic properties of MgSiO3-perovskite under lower mantle
conditions and the composition of the deep Earth. Earth Planet. Sci. Lett., 379, 1–12.

Zhong S., Liu X., 2016. The long-wavelength mantle structure and dynamics and implications for
large-scale tectonics and volcanism in the Phanerozoic. Gondwana Res., 29 (1), 83–104.

Zhong S., McNamara A., Tan E., Moresi L., Gurnis M., 2008. A benchmark study on mantle convection
in a 3-D spherical shell using CitcomS. Geochemistry, Geophys. Geosystems, 9 (10).

228



Acknowledgements

There is no question about where my first and most cordial thanks go to. I thank you, Peter, for your
unconditional support throughout these numerous years. When I started my PhD I had no idea about
geophysics at all. Some people might argue that this is still the case - which probably is partially true
- but at least I have gained a lot of experience over these years and most of my current knowledge
is based on our various extensive discussions. Especially in times of the rising adjoints, we spent an
uncountable number of hours in your office discussing the results. That is the essence of science, right?
At least it felt like that.
I am sure to have disappointed you when I decided to leave the scientific world behind me right in
the middle of my PhD. But you always accepted this decision in a very professional manner and
even continued to support me during the following couple of years when I was away from the insti-
tute and trapped in a world where life just felt so mundane. Even in those times, your support has
not reduced even though there were periods where I probably was not the most reliable person on
Earth - to express it in a positive way ... The amount of my gratitude towards your unconditional
support can not be measured any more in a traditional (and/or mathematical) way. Thank you for
everything, for being my mentor and especially now, for giving me the opportunity to this ’comeback’ !

And when talking about comeback, I have to explain that approximately two years ago, the idea
of quitting my job in industry without having a backup and trying to develop again into a scientific
direction evolved in the back of my head like a virus. During this time I had a lot of fruitful and
deep conversations with a friend of mine, Tobi, who supported me a lot and deeply encouraged me to
proceed in the way I intended to at this time. I want to thank you a lot for this. I am not sure if I
were in the current situation without your words.

The basis of my mathematical education was mainly formed by one person. Now almost 17 years
ago (half of my life), in 2003 I took my first maths class at the Technical University of Kaiserslautern.
’Analysis I’, lectured by Volker Michel. Where ’Lineare Algebra’ always left some strange, uncom-
fortable feeling in my stomach, the lecture by Volker already got me in the first moment. During
my studies, our paths have crossed a couple of times, I even became your last Diploma student in
Kaiserslautern and up until now, your excellence in teaching and mentoring and your commitment to
mathematical details is something I am admiring and permanently aiming at. From you I learned to
be persistent and to question everything until it is entirely understood. Now I know that this is a real
gift ... and a curse ... but there is no alternative.

Since the gravitational field has played an important role in my thesis, already from the first weeks of
my PhD there was a close connection to the Institute of Astronomical and Physical Geodesy at the
TUM. Thank you, Reiner Rummel and Roland Pail for always welcoming me in a very cordial way.
It is very helpful to discuss scientific topics with very experienced scientists from a different institute.
There is little more intriguing than leaving your personal ’bubble’ from time to time. Needless to
say that it has also always been a personal pleasure and honour! Furthermore, for two years, I had
the opportunity to co-lecture the ”Introduction to Earth System Science” with Reiner Rummel. This
turned out to be one of the most significant and challenging experiences in my early scientific career.
When a mathematician has to talk about geophysics ...

229



ACKNOWLEDGEMENTS

When talking about mathematicians ... it is always good to have a ’partner in crime’. So, thank you,
Marcus, for keeping the mathematics flag up high at the institute! Always when I had the impression
that nobody understands me, I knew where I could go ... and in particular I am very thankful that we
have shared a lot of teaching experiences over the years. I really learned a lot from you and besides,
it was always fun discussing about exercises, exams, grades and stuff ... :)

When it comes to IT, I have no clue what I am doing at all. So thanks a lot, Jens, for always
coping with my total ignorance, honestly. I always tried to destroy as little as possible ... and thank
you for regularly extending my account even if I was not at the institute any more and only checked
my geophysics mailbox once a year or even less ...

Now after a total of almost 12 years after the start of my PhD and 6 net years at the institute,
a lot of people have crossed my path. So probably, I will forget to mention a couple of names here,
please don’t be mad at me. When writing this section, I was thinking about my various office mates I
had during these years ... and I am still not sure if I can recall everybody. But ok, let’s give it a try, in
chronological order: Andreas Fichtner, Christoph Moder, Moritz Bernauer, Thomas Chust, Roberta
Esposito, Lorenzo Colli, Eva Eibl, Jens Weismüller, Sophie Roud, Tobias Megies, Sandra Ostner and
- last but not least - Max Moorkamp :)

Ok, now, besides the usual ’I also thank everybody else at the institute, especially everyone in the
[insert your division here] group, I decided to pick up a few nice little stories that are still present in
my memory.

Well, the first person I met at the institute was Heiner Igel. Probably people don’t know but originally,
I applied for a PhD position in seismology. I still remember the situation where I showed you how I
prepared for my initial talk that I had to give in the process of my application. You basically told
me to change everything ... The reason why finally, I didn’t end up in seismology but in geodynamics
was the at first glance insignificant decision that I did not take the stairs but the elevator at the 4th
floor when I was already on my way home on that certain day. This ’small step’ changed the line
of my entire upcoming life, since here I just accidentally bumped into Peter and he invited me to
accompany him to a talk by his diploma student, Katrin Schaber, who referred about geoids ... as you
have probably noticed when reading through this work, this topic somehow seemed to have fascinated
me. Sometimes life takes strange routes and has a very nice sense of humour, I guess ... each small
step you take (even literally) can make a huge difference.
In the end, the person that went into the position that I originally applied for, was a guy called Chris-
tian Pelties. We actually have become good friends and I especially thank you for a great time we
spent together at AGU in 2009. Brilliant times, especially when suddenly the roof opened ... (sorry,
he is the only person that will get this) ... ;)

Why I stayed at the institute and not gave up everything during the first weeks, solely was due
to my first office mate, some guy called Andreas Fichtner. In my opinion, he is the most intelligent
person on Earth and additionally one of the nicest and most friendly persons I have ever met. At the
beginning, I was just unable to cope with the whole situation. As a mathematician I could not find
any entrance to the geophysical world and was completely lost, no idea what I was doing here. With
time, Andreas’ attitude of being very calm and always supportive basically took my initial fear away.
You always gave me the feeling of being welcome and you never gave me the impression that you were
bothered by the questions I had. And those were a lot and probably most of them stupid ... thank
you for being a friend! :)
I will always remember the evening where in 2013, we were at the SIAM conference and wanted to
have dinner together at ’Olive Garden’. So, we drove to the address but were absolutely unable to
find the spot, it was quite strange and confusing ... until we noticed that we were in the wrong city(!)
(am I actually allowed to tell this to people?). We ended up at a very dubious Indian place (and found
the real Olive Garden two days later ;)) ......

230



I cordially apologise to Alan Schiemenz who was present at probably the most embarrassing mo-
ment during my PhD. When we were at a conference in Iceland, I was responsible for him being left
alone and get lost during one of the social trips we were doing there with the whole conference group.
Our bus had an unscheduled stop somewhere in Reykjavik and it was unclear when we can proceed.
So, at some point, Alan told me that he leaves the bus to find a restroom somewhere in the near area
and in case that we will proceed with our tour during his absence, it would be very nice of me to
prevent the bus driver from just driving away ... Well, I am completely unsure what happened inside
my brain afterwards but at some point, the bus continued the trip and it took me about 20 minutes
to notice that Alan is not in his spot and suddenly a cold shiver ran across my whole body ... Well,
we reconvened in the evening and I already apologised a lot but now, you get my apology also in an
official written format ... ;)

I thank Simon Stähler for probably the funniest moment during my time as a PhD student when
we were driving with the orange bus, on our way back from a conference in Zürich, and both suddenly
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