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Abstract

The observational study of the universe and its galaxy clusters, galaxies, stars, and

planets relies on multiple pillars. Modern astronomy observes electromagnetic sig-

nals and just recently also gravitational waves and neutrinos. With the help of radio

astronomy, i.e. the study of a specific fraction of the electromagnetic spectrum, the

cosmic microwave background, atomic and molecular emission lines, synchrotron ra-

diation in hot plasmas, and many more can be measured. From these observations a

variety of scientific conclusions can be drawn ranging from cosmological insights to

the dynamics within galaxies or properties of exoplanets.

The data reduction task is the step from the raw data to a science-ready data prod-

uct and it is particularly challenging in astronomy. Because of the impossibility of

independent measurements or repeating lab experiments, the ground truth, which is

essential for machine learning and many other statistical approaches, is never known

in astronomy. Therefore, the validity of the statistical treatment is of utmost impor-

tance.

In radio interferometry, the traditionally employed data reduction algorithmCLEAN

is especially problematic. Weaknesses include that the resulting images of this algo-

rithm are not guaranteed to be positive (which is a crucial physical condition for fluxes

and brightness), it is not able to quantify uncertainties, and does not ensure consis-

tency with the measured data. Additionally, CLEAN is not aware of the signal-to-noise

ratio. This leads to suboptimal results regarding the image resolution.

In this thesis, Bayesian imaging and calibration methods for radio interferometry,

collectively referred to as resolve, are investigated. While Bayesian approaches de-

liver strictly better results and solve all of the above outlined problems, they are noto-

riously computationally expensive. This thesis provides the transition from Bayesian

imaging algorithms being a theoretical consideration to having a specific implemen-

tation that can be applied to data from modern telescopes. These improvements con-

stitute a significant step towards optimal information extraction from given radio-

interferometric data.

By-products of this thesis enabled, among others, the three-dimensional cartogra-

phy of dust in parts of the Milky Way and a new map of the Faraday galactic rotation.

On top of that, it can be envisioned to transfer the developedmethods to medical imag-

ing in general and magneto-resonance tomography in particular. This shows that the

developedmethods are transferable and facilitate insights in a variety of other domains

of research.
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Zusammenfassung

Die Beobachtung des Universums mit seinen Galaxienhaufen, Galaxien, Sternen und

Planeten steht auf mehreren Säulen. Die moderne Astronomie beobachtet elektroma-

gnetischen Wellen und seit Neuestem auch Gravitationswellen und Neutrinos, die die

Erde aus dem Universum erreichen. Mit Hilfe von Radioastronomie, also der Beob-

achtung von astronomischen Radiowellen, können der kosmische Mikrowellenhinter-

grund, atomare und molekulare Übergangslinien, Synchrotron-Strahlung in heißen

Plasmen und vieles mehr gemessen werden. Aus diesen Beobachtungen lassen sich

eine Vielzahl von wissenschaftlichen Erkenntnissen ziehen, die von kosmologischen

Fragen über die Dynamik von Galaxien zu Exoplanten reicht.

Die Datenverarbeitung von astronomischen Daten ist besonders herausfordernd:

Weil keine unabhängigenMessungen in Laborumgebungen durchgeführt werden kön-

nen, gibt es nie Ground-Truth-Datensätze, was essenziell für Ansätze des maschinellen

Lernens wäre. Deshalb ist die Richtigkeit der statistischenMethode besonders wichtig.

In der Radiointerferometrie ist der traditionell eingesetzte Datenreduktionsalgorith-

mus CLEAN besonders problematisch. Zu seinen Schwächen gehört, dass die resultie-

renden Bilder dieses Algorithmus nicht notwendigerweise positiv sind, was eine ent-

scheidende physikalische Bedingung für Flüsse oder Helligkeit ist, er gibt keine Unsi-

cherheitsinformationen aus und gewährleistet keine Konsistenz mit den gemessenen

Daten. Außerdem kennt CLEAN das Signal-Rausch-Verhältnis nicht, was zu subopti-

malen Ergebnissen bezüglich der Bildauflösung führt.

In dieser Arbeit werden bayessche Bildgebungs- und Kalibrierungsmethoden, zu-

sammenfassend als resolve bezeichnet, für Radiointerferometrie vorgestellt. Bayes-

sche Ansätze liefern zwar grundsätzlich bessere Ergebnisse und lösen die oben skiz-

zierten Probleme alle, sind aber deutlich rechenintensiver. Diese Arbeit stellt den Über-

gang von der theoretischen Betrachtung bayesscher Bildgebungsalgorithmen zu ei-

ner konkreten Implementierung, die auf Daten von modernen Teleskopen angewen-

det werden kann, dar. Dies ist ein wichtiger Schritt auf dem Weg zu einer optimalen

Informationsextraktion aus gegebenen radio-interferometrischen Daten.

Nebenprodukte dieser Arbeit ermöglichten u.a. die dreidimensionale Kartographie

von Staub in Teilen der Milchstraße und eine neue Karte der galaktischen Faraday-

Rotation. Darüber hinaus ist eine Übertragung der entwickelten Methoden auf die

medizinische Bildgebung im Allgemeinen und Magnetresonanztomographie im Spe-

ziellen denkbar. Die entwickelten Methoden sind also übertragbar und ermöglichen

Erkenntnisse in einer Vielzahl von anderen Forschungsgebieten.
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1 Introduction

Looking at the sky sourced inspiration since the dawn of mankind. Over time the mys-

tical aspect of the sky has been superseded by the insight that we can learn about the

fundamental laws of physics by watching the universe. For a long time, optical obser-

vations were the only way of measuring properties of astrophysical objects. In the last

century, the view on the sky could be substantially augmented. The development of

electronics and microchips enabled observing the electromagnetic sky at wavelengths

from radio to 
 -ray emission including microwave, infra-red, ultraviolet and X-ray ra-

diation. In the last years, even astronomical neutrinos and gravitational waves could

be detected as well. Radio astronomy plays a prominent role in the big picture of

astrophysics and cosmology. It allows to study a variety of astrophysical emission

processes, provides resolutions down to 20 �as (micro arc-seconds) for earth-bound

interferometers (EHT Collaboration 2019a), and the possibility to increase sensitivity

by increasing the collection area of the antennas (Dewdney et al. 2009).

The thesis is based on four peer-reviewed first-author articles (Arras, Bester, et al.

2020a; Arras, Frank, Leike, et al. 2019; Arras, Knollmüller, et al. 2018; Arras, Reinecke,

et al. 2020), one article that is under review (chapter 4), one unpublished project idea

(chapter 6), and a collaborative software project (Arras, Baltac, et al. 2019). This sum-

marizes my work on Bayesian imaging and calibration algorithms, which collectively

are called resolve. In contrast, CLEAN is the standard imaging algorithm used by

virtually the whole radio interferometric community (Clark 1980). This thesis aims

at solving basic problems in imaging and calibration that are caused by the design of

CLEAN.

The introduction is structured as follows: First, the physical processes and examples

of astronomical sources that emit radio light are discussed (section 1.1). Section 1.2

describes the measurement principles that are employed in radio astronomy. This

naturally leads to the discussion of the necessity of Bayesian data reduction algorithms

in section 1.3. Finally, section 1.4 provides an overview of the rest of the thesis.

1.1 Astrophysics and cosmology with radio

interferometers

This thesis focuses on the process of extracting the physics from radio astronomi-

cal data. As examples, reconstructions of the supernova remnant SN1006 (chapters 5

and 6), the radio galaxy Cygnus A (chapters 2 and 3) and the centre of the radio galaxy

M87, calledM87*, (chapter 4) are presented. Section 1.1.1 provides a quick introduction

to radio astronomy, followed by an overview of active galactic nuclei, radio galaxies
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1 Introduction

(section 1.1.2), and supernova remnants (section 1.1.3). The following sections are ded-

icated to the emission mechanism that is most relevant for the sources analysed in this

thesis: synchrotron radiation (section 1.1.4) and Fermi acceleration (section 1.1.5).

1.1.1 Introduction to radio astronomy

A unique definition of the exact range of radio frequencies does not exist. Classical

radio astronomy observes the electromagnetic sky from roughly 10MHz to approx-

imately 20GHz. Beyond that, telescopes like the Event Horizon Telescope (EHT) has

published data at 227GHz to 229GHz. The Atacama Large Millimeter/submillimeter

Array (ALMA), which is one part of the EHT, is sensitive almost up to 1 THz that al-

ready may be counted to the infra-red regime. The Institute of Electrical and Electronics

Engineers (IEEE) bounds the radio spectrum from above by 2GHz and calls the next

spectral band microwaves. Independently of definitions, the measurement principles

of radio interferometers—correlating the digitized output of pairs of antenna feeds—

can be applied from 10MHz to 1 THz which is more than 16 octaves. This range is

bounded from below by the transmission of the ionosphere that reflects all radio radi-

ation below its characteristic plasma frequency, and from above by the absorption by

water vapour in the atmosphere. Therefore, high-frequency instruments like ALMA

are built at high and dry sites. In this thesis, observations ranging from 2GHz to

229GHz are analysed.

The huge range of observational frequencies allows to study a variety of astrophys-

ical mechanisms, sources, and phenomena: Examples are synchrotron radiation, spec-

tral lines of atoms and molecules, black body radiation, free-free radiation, and in-

verse Compton scattering. An incomplete list of radio sources includes the CosmicMi-

crowave Background (CMB), merging galaxy clusters, active-galactic nuclei (AGNs) in

general, radio galaxies and the centre of the Milky Way specifically, the inter-galactic

and inter-stellar medium, supernova remnants, super-massive black holes like Sagit-

tarius A* or M87*, pulsars, the Sun, and other planets in our solar system. More exoti-

cally, radio telescopes are used to search for extra-terrestrial intelligence (Ekers et al.

2002; Tarter 2001; Tremblay and Tingay 2020; Zhang et al. 2020). AGNs and supernova

remnants are discussed in some detail in the following two sections.

A landmark of imaging the radio sky provides an image of the closest active galac-

tic nucleus, the galactic centre of the Milky Way (fig. 1.1). A prominent example of

further analysis of radio data is the galactic Faraday sky (Hutschenreuter and Enßlin

2020; Oppermann et al. 2012) that has been computed with methods that have partly

been developed for this thesis. All in all, the massive body of research based on radio

interferometric data implies that work on the information extraction procedure from

this data is scientifically valuable.

1.1.2 Active radio galaxies and super-massive black holes

One important example for extra-galactic radio sources are active radio galaxies or

active galactic nuclei (AGNs). They are compact regions at the centres of galaxies,
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1.1 Astrophysics and cosmology with radio interferometers

Figure 1.1: MeerKAT Public release photo (Heywood et al. 2019).

are more luminous than normal, and have spectra that are inconsistent with stellar

models. Many AGNs feature a jet whose ejection direction is determined either by the

angular moment of the accretion disc or by the spin axis of the black hole. The exact

ejection mechanism in the immediate vicinity of the black hole is not understood and

subject to active research. A review of the current state of research regarding AGNs is

given in Padovani et al. (2017) and the following outline is partly guided by it.

The main limitation for obtaining an understanding of active radio galaxies is in-

sufficient resolution of telescopes to resolve the processes at the centre of the galaxies.

Recently, the Event Horizon collaboration achieved to image the direct environment

of a super-massive black hole in the centre of the galaxy M87 with an unprecedented

resolution of around 20 �as. However, the observed structures are exactly at the tele-

scope’s expected resolution scale. Therefore, it remains unclear whether the actual

source has smaller-scale structures or whether its intrinsic scales match the EHT res-

olution by chance.

In EHT Collaboration (2019e), the scientific conclusions drawn by the EHT collab-

oration are summarized. One can observe an asymmetric ring that is interpreted to

be gravitationally lensed synchrotron emission from a hot plasma orbiting near the

black hole event horizon (EHT Collaboration 2019e; Yuan and Narayan 2014). EHT

Collaboration (2019e) analyses the ring-like structure, the peak brightness tempera-

ture (roughly 6 × 109 K), the total flux density (roughly 0.5 Jy) and the asymmetry of

the ring which is brighter in the South than in the North. Their analysis of the peak

brightness temperature assumes that the source is fully resolved by the EHT and their

imaging procedure. Collecting all evidence, also fromX-ray observations and previous

VLBI radio observations, the EHT collaboration states that the source is remarkably

consistent with a Kerr black hole. Additionally, the ring is fitted to a large library
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of GRMHD simulations and synthetic images by general relativistic ray tracing. This

contributes to the general consistent picture of a Kerr black hole.

It may be noted that this analysis does not conclusively describe the process by

which the jet is launched from the black hole. While it is clear that non-spinning black

holes cannot produce such strong jets (EHT Collaboration 2019e), the specific dynam-

ics of the jet generation of a Kerr black hole is unclear. Possibly, external magnetic

fields enable the jet to use the electro-magnetic energy of the black hole itself in order

to accelerate the matter constituting the jet (Blandford and Znajek 1977). This is called

the Blandford-Znajek process. Alternatively, the jet may be interpreted as magnetically

collimatedwind from the accretion disk (Blandford and Payne 1982; Lynden-Bell 2006).

Since the understanding of the dynamics is fundamentally determined both by the

time evolution and the resolution, we, the authors of Arras, Frank, Haim, et al. (2020a),

decided to apply our Bayesian radio imaging algorithm to the EHT data set. The re-

sults are presented in chapter 4. Our independent reconstruction of M87* provides a

higher resolution and thereby a slightly higher peak brightness temperature. Since this

is only a slight effect, we do not believe that our reconstruction significantly changes

qualitative discussion in EHT Collaboration (2019e) at this point. However, the quan-

titative comparison of our results to the GRMHD models by the EHT collaboration is

still pending.

Based on their analysis the EHT collaboration concludes that M87* is a Kerr black

hole but still alternative explanations are discussed. They range from general relativity

black holes that include additional fields, black hole solutions from alternative theories

of gravity, or compact objects within general relativity whose properties could be fine-

tuned to resemble black holes (EHT Collaboration 2019e). While some theories, like

the presence ofmassive scalar field configurations, can be ruled outmost other theories

are indistinguishable based on the EHT observations. Especially, imaging the polarized

emission will help to constrain the nature of M87* further. The polarization model that

is described in chapter 6 could be combined with the EHT likelihood (see section 4.2)

and applied to the EHT data as soon as the data is released.

As a second radio galaxy, I chose the source Cygnus A (3C 405) to test the per-

formance and super-resolution capabilities of my radio interferometric imaging algo-

rithm resolve. Cygnus A is a representative example of the class of Fanaroff-Riley II

galaxies (Fanaroff and Riley 1974). Given its luminosity, Cygnus A is not very far from

us: it is located at z = 0.056 (Spinrad and Stauffer 1982). The combination of high lumi-

nosity and small angular size (around 3′) are necessary properties for demonstrating

the high-resolution capabilities of imaging algorithms since high luminosity implies

an advantageous signal-to-noise ratio and at the same time the source has interest-

ing small features. A scientifically interesting feature of Cygnus A is its exceptionally

high polarized intensity. While typical fractional polarizations are 40%, it can reach up

to 70% in the lobes of Cygnus A (Carilli, Dreher, and Perley 1989). Another interest-

ing feature of Cygnus A is both its exceptional rotation measures and their gradients

(Dreher, Carilli, and Perley 1987). Rotation measures RM are related to the Faraday

effect that causes the orientation of linear polarization to be rotated proportionally

to the projection of the magnetic field along the direction of propagation B∥ and the
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Figure 1.2: Sky brightness distribution of Cygnus A at 4811MHz on logarithmic scale. The
left-hand and right-hand side have been generated with single-scale CLEAN and
resolve, respectively.

electron number density ne (Longair 2010):

� = RM �2, with RM ≔ ∫ ne(s)B∥(s) ds, (1.1)

where � is the rotation angle and the integral is taken along the propagation direction.
A more complete summary of the current state of research on Cygnus A is provided

by Sebokolodi et al. (2020).

Amongst other findings Sebokolodi et al. (2020) report that the polarized emission of

their reconstruction of the Cygnus A emission is subject to significant depolarization

at low frequencies leaving almost no polarization at 2GHz. They conclude that this

depolarization is not intrinsic to the source but rather so-called ‘beam depolarization’.

In other words, it is an artefact of CLEAN, the imaging algorithm that has been used.

If the resulting resolution of an image is lower than the intrinsic polarized features,

the polarized intensity is reduced by averaging. Since the polarization provides crucial

information on the magnetohydrodynamics of the plasma of the source and thereby

is essential for the physical understanding of it, there is a tangible reason to put effort

into the development of algorithms that can provide the maximum resolution possible.

Imaging of polarized emission is particularly challenging. First, Stokes I imaging

needs to be fully understood from a Bayesian perspective. In chapter 3, the same data

that has been used by Sebokolodi et al. (2020) is imaged with resolve. It was possible

to sufficiently increase the resolution such that the beam depolarization effect may not

appear any more according to the estimates in Sebokolodi et al. (2020) (see fig. 1.2). As

a next step, resolve needs to be generalized to polarized emission. First ideas for this

are described in chapter 6.

Summarizing, the science of active galactic nuclei in general and radio galaxies

specifically directly benefits from the advancement in imaging (and calibration) algo-

rithms. More broadly speaking, these insights will help to deepen and consolidate our

understanding of the laws of physics in extreme regimes like the immediate vicinity

of a super-massive black hole that is dominated by general relativity and magnetohy-

drodynamics (Chan et al. 2015; Mościbrodzka et al. 2009).
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1.1.3 Supernova remnants

The second category of astrophysical objects that are considered in this thesis are

supernova remnants. A supernova is a thermonuclear explosion of a white dwarf in a

binary system (referred to as Type Ia supernova) or a core collapse of a massive star,

that is a star that has more than eight solar masses. In both cases the explosion ejects

the previous stellar material at very high velocities (up to 0.1c). Since these velocities
are supersonic, a shock front forms, runs through the ambient interstellar medium,

and leaves heated plasma behind at temperatures of typically more than 106 K.

In chapters 2 and 5, the supernova SN1006 is imaged The following description

of this source follows the review in Katsuda (2017). It is a type Ia supernova and

the brightest one that has been observed and recorded. It has an apparent radius of

30′ and a distance of approximately 1.45 kpc. While most supernova remnants are

found close to the galactic plane, SN1006 is located far above. Thereby it is the least

obscured supernova remnant in our neighbourhood. SN1006 is a source with historical

significance, as it is the first supernova remnant in which synchrotron X-ray emission,

which corresponds to ultra-relativistic electrons at approximately 100 TeV has been

detected (see section 1.1.4).

In general supernova remnants enable, amongst others, the study of nucleosynthe-

sis of type Ia supernovae and collision-less shock physics including cosmic ray ac-

celeration (see section 1.1.5). To this end high resolution imaging algorithms that can

faithfully represent diffuse emission are needed. While current imaging algorithms are

particularly good at modelling point sources, the algorithms presented in this thesis

excel at diffuse emission. Therefore, it is natural to apply my calibration and imaging

algorithms, resolve, to observational data of supernova remnants.

1.1.4 Synchrotron radiation

Most of the examples of astrophysical sources that appear in this thesis and more gen-

erally many cosmic radio sources emit synchrotron radiation. The following outline

shall give the reader an idea what kind of physical mechanisms are responsible and is

not supposed to be a complete review of this broad topic. It follows the description in

Burke, Graham-Smith, and Wilkinson (2019).

Synchrotron radiation is generated by relativistic electrons spiralling through mag-

netic fields. For non-relativistic velocities the spiralling frequency � is given by:

� =
eB

2�mc
, (1.2)

where e and m are charge and mass of the particle, c is the speed of light, and B is

the magnetic field strength. For relativistic particles this frequency is subject to time

dilation (with Lorentz factor 
 ) that results in the gyro-frequency �g :

�g =
�



(1.3)
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These frequencies are independent of a potential pitch angle of the moving charge. In

contrast the radius r of the circling charge does depend on the pitch angle � :

r =

mc2 sin �

eB
. (1.4)

As an example, Burke, Graham-Smith, and Wilkinson (2019) consider an electron at

10GeV that moves at � = 90° in an interstellar field with magnetic field strength B =

3 µG. This results in a Lorentz factor of 
 ≈ 20 000, a radius of r ≈ 7 au, and gyro-

frequency �g ≈ (40 h)−1.

Relativistic beaming is the next relevant effect. In the rest frame of the electron the

radiation is emitted isotropically. Transforming into the observer’s frame the emission

is beamed towards the movement direction of the electron. This is a ∝ 
−1 effect. For
our example electron at 10GeV the opening angle of the beam is roughly 10′′.

Given a single electron, relativistic beaming leads to the observation of light pulses.

In the observer’s frame, the time scale of these light pulses is �tobs ≈ (
 3�g)
−1 since

the transformation of the time during which the beam points towards the observer

introduces another 
−2 factor (Burke, Graham-Smith, and Wilkinson 2019). Thus, the

spectrum is concentrated at the characteristic frequency �0 = 
 3�g . For the example

electron this is 3.4GHz.
The full spectrum of a single electron can be computed in closed form (Ginzburg

and Syrovatsk 1969):

P (�) d� =

√
3e3B sin �

mc2
F ( �

�crit) d�, (1.5)

where

�crit =
3

2

 3�g sin �, (1.6)

F (x) = x ∫ ∞

x
K5/3(y) dy, (1.7)

and K5/3 a modified Bessel function.

So far only a single charge has been considered. A realistic electron plasma is a

statistical systemwith a number-density distribution in energyN (E). For now, assume

that this distribution is given by a power law with spectral index p (Burke, Graham-

Smith, and Wilkinson 2019):

dN (E) ∝ E−pdE. (1.8)

Convolving the energy spectrum of a single electron, eq. (1.5), with the energy dis-

tribution, eq. (1.8), leads for optically thin sources to the specific intensity I� (Burke,
Graham-Smith, and Wilkinson 2019; Ginzburg and Syrovatsk 1969):

I� ∝ B(p+1)/2�−(p−1)/2. (1.9)
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1 Introduction

It is remarkable that the spectral index � of a synchrotron-radiating source is directly

linked to the energy distribution spectral index p:

� =
1 − p

2
or p = 1 − 2�. (1.10)

It may be noted that the assumption of optically thin sources can only be valid for

relatively high emission frequencies. For long wavelengths, the synchrotron emission

eventually becomes subject to so-called synchrotron self-absorption. Basic radiative

transfer considerations (Burke, Graham-Smith, andWilkinson 2019, ch. 2.5) imply that

the specific intensity of radiation from a source is bounded from below by the tem-

perature of the source. Strictly speaking this statement assumes the source to be in

thermodynamic equilibrium, whereas the radiating electrons that emit synchrotron ra-

diation are not necessarily in thermodynamic equilibrium with the rest of the plasma.

While this affects the specific numeric values, the general idea that low-energetic radi-

ation is self-absorbed by the electrons remains true. A detailed treatment is provided

in Ginzburg and Syrovatsk (1969).

Concluding, synchrotron radiation can be characterized by its broad non-thermal

power-law spectrum. The spectrum can reach from the radio regime up to hard X-ray

emission.

1.1.5 Fermi acceleration

In the previous section, in eq. (1.8), it was assumed that electrons in a typical radio

plasma have a power-law energy distribution. In general already in the early days of

radio astronomy, many radio sources have been observed that do not feature a ther-

mal spectrum. As solution Enrico Fermi proposed that so-called Fermi acceleration is

responsible for the production of non-thermal power-law particle distributions (Fermi

1949; Rieger, Bosch-Ramon, and Duffy 2007) and also for the observed inverse Comp-

ton radiation (Jones 1965, 1968).

The basic idea is that charged particles, in this case electrons, are repeatedly re-

flected by magnetic mirrors and thereby gain energy. A magnetic mirror is a region

with an over-density of magnetic field strength. Specifically, the magnetic moment �
of a charged gyrating particle with mass m is a conservation quantity in an adiabatic

system:

� =
mv2⟂
2B

, (1.11)

where v⟂ is the velocity component of the charge that is perpendicular to the magnetic

field. It increases with increasing magnetic field strength. By energy conservation the

velocity component that is aligned with the magnetic field lines decreases. Thereby,

the particle is slowed down when approaching the magnetic mirror.

For relativistic velocities it can be shown that a collision of a moving charge with

a magnetic irregularity accelerates the particle. By energy conservation in the co-

moving scattering frame, the energy change ΔE due to an elastic collision between

8
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the charge and the irregularity is (Rieger, Bosch-Ramon, and Duffy 2007):

ΔE = 2
 2(E1(u/c)
2 − p⃗1 ⋅ u⃗), (1.12)

where u is the characteristic velocity of the magnetic irregularity and E1 and p⃗1 are
the energy and the momentum of the charge before the collision. Depending on the

sign of the second term p⃗1 ⋅ u⃗, the net change in energy ΔE can be both positive or

negative, meaning that the particle gains energy or is slowed down.

While the above outlines the general mechanism of Fermi acceleration, phenomeno-

logically speaking Fermi acceleration is divided into first-order and second-order Fermi

acceleration. The first one is, by definition, a localized process occurring at a single

shock front, whereas the second one is defined to be a continuous stochastic non-local

process that can happen along jets of radio galaxies for example.

Fermi acceleration can be linked to the in section 1.1.4 discussed synchrotron radi-

ation. There we assumed a power-law energy distribution of the relativistic electrons.

For the case of a non-relativistic plane shock, that runs through an infinitely extended

magnetized medium with magnetic inhomogeneities both upstream and downstream

of the shock, a surprising relationship can be deduced. By considering the number of

compression cycles of a given electron, it can be shown that the particle spectrumN (
 )
produced by the Fermi acceleration in the shock is a power law whose index depends

on the shock compression ratio � only (Berezhko and Krymskij 1988; Blandford and

Eichler 1987):

N (
 ) ∝ 
−s , with s =
� + 2

� − 1
, (1.13)

where � > 1. In the case of a mono-atomic medium and a strong shock (� = 4) the

energy distribution is given by a power lawwith the universal index −2 (Blandford and

Eichler 1987; Drury 1983). In non-linear cases, where the back-reaction of the particles

on the shock wave is non-negligible and so-called shock modifications occur, � can

take even larger values, leading to flatter power laws. The limit � → 1 corresponds to

no shock front at all. This kind of first-order Fermi acceleration happens for example

at non-relativistic shocks at shells of supernova remnants (Aharonian et al. 2004).

Generally speaking in order for first-order Fermi acceleration to be effective, the par-

ticle energy must be much higher than the thermal energy of the medium. This opens

up the so-called problem of injection: Which processes generate the high initial veloci-

ties needed to initiate Fermi acceleration? This is partially an open question. Given this

initial condition, first-order Fermi acceleration can produce electrons that in turn emit

synchrotron radiation from radio to hard X-ray. However, high resolution studies have

revealed that first-order acceleration alone cannot explain the large regions with high

energy emission as for example observed at the radio galaxy Cygnus A (section 1.1.2

and chapter 3). As a solution second-order Fermi acceleration can re-accelerate elec-

trons all along magnetic irregularities of a jet. Interestingly, even if random velocities

are present in the medium and the electrons can have both head-on and overtaking

collisions, the rate of collisions is proportional to (Rieger, Bosch-Ramon, and Duffy
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2007):

v1 − u

v1
. (1.14)

Therefore, energetic particles have more head-on collisions and an average energy

gain of: ⟨ΔE⟩
E1

∝ (uc )2

. (1.15)

In real jets first-order and second-order Fermi acceleration are mixed and addition-

ally a possible back-reaction of the accelerated particles may be relevant resulting

in strong shock modification, viscous kinetic energy dissipation or significant wave

dumping (Rieger, Bosch-Ramon, and Duffy 2007). Specifically, for example Lemoine,

Pelletier, and Revenu (2006) argue that efficient Fermi acceleration at ultra-relativistic

shock waves require significant amplification effects in the magnetic field.

A new direction to the study of Fermi acceleration is pursued in Lemoine (2019)

where a new description of Fermi acceleration is developed. He proposes a general-

ized description in which the accelerated particles are traced through a continuous

sequence of accelerated frames. These frames are defined by the condition that the

electric field vanishes along the particle trajectory. Then, the energy of the parti-

cles does not change due to the Lorentz force but rather just from the curvature of

space-time in the comoving coordinates. This provides a unified GR approach that

can be applied in both the sub- and ultra-relativistic regime and both flat and non-flat

space-times. One possible application is the centrifugo-shear acceleration close to the

horizon of a black hole.

On general grounds, the discussion of Fermi acceleration and synchrotron radi-

ation shall illustrate that the study of astrophysical sources, where these processes

are relevant, need high-quality and high-resolution imaging algorithms. As discussed

above, the interesting physics, i.e. second-order Fermi acceleration, takes places on

scales (a couple astronomical units) that cannot be directly observed in distant galax-

ies. Therefore, all possible resolution should be extracted from the data during imaging

the effective field configurations in order to maximize the amount of scientific conclu-

sions that can be drawn from an observation with radio interferometers. Furthermore,

synchrotron emission from Fermi accelerated particles has a non-trivial polarization

structure (for a review refer to Burke, Graham-Smith, and Wilkinson (2019)). To this

end, the polarization imaging approach presented in chapter 6 may be valuable.

1.2 Measurement principles in radio astronomy

Radio astronomy can be divided into two major parts: observations with conventional

telescopes versus observations with interferometers. The two most important criteria

by which telescopes are compared are sensitivity and resolution. Under this perfor-

mance metric, interferometers and single-dish telescopes excel in different regimes.
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1.2.1 Single-dish radio astronomy

Examples for conventional telescopes include the Effelsberg Telescope in Germany or

the Parkes Observatory in Australia. As measurement principle these telescopes use

a mirror to collect radio waves and focus them in a focal point. There, a detector

measures the electric field strength. Together with the telescope geometry it is then

possible to turn these measured intensities into an image. These conventional radio

telescopes have two major advantages: they have a high sensitivity and are sensitive

to large-scale flux. However, their resolution is severely limited by diffraction. The

resolution �� of a general optical system is approximated by:

�� ≈ 1.22
�

D
,

where � is the observing frequency and D the aperture diameter. Therefore, the longer

the wavelength, the worse the resolution. As an example a 12 metre dish at an observ-

ing frequency of 1 GHz has a diffraction limit of �� ≈ 2°. This contrasts the resolution

of e.g. the famous Hubble Space Telescope which operates in the optical regime. It

reaches a resolution of ∼ 0.05′′.

Nonetheless single-dish instruments are of high value for science. For example the

prototype SKA-MPG telescope in South Africa is planned to be used for precise measure-

ments of the foreground synchrotron emission that superimposes the faint polarized

CMB (Basu et al. 2019). Especially, providing bounds on the B-mode polarization of

the CMB, that may be caused by primordial gravitational waves, will significantly im-

prove our understanding of inflation. Another special example of single-dish radio

telescopes is the Arecibo Telescope. With its help major scientific breakthroughs could

be achieved: amongst others the rotation period of Mercury was accurately measured

(Dyce, Pettengill, and Shapiro 1967), the first binary pulsar was discovered (Hulse and

Taylor 1975), and the rotational period of the pulsar in the Crab Nebular was signif-

icantly measured for the first time (Lovelace and Tyler 2012). For the binary pulsar

discovery, Hulse and Taylor received the Nobel Prize in Physics in 1993. Sadly, it has

been severely damaged in the year 2020 and is decommissioned.

1.2.2 Interferometry

In order to observe radio emission at smaller angular scales compared to single dish in-

struments, interferometers are employed. The highest resolution that can be achieved

by classical (single-site) interferometers today is the resolution of ALMAwith shortest

observing wavelength � = 0.3mm and a maximum baseline of 15 km): �� ≈ 0.005′′. In-
terferometers turn the disadvantage of long wavelengths for conventional telescopes

into an advantage: radio frequencies are low enough to be processed by micro chips.

This enables the following measurement setup. na radio antennas are spread over an

area in which the distances between antennas can range from a couple of meters to

over 10 000 km. the electromagnetic signal at every antenna is digitized and from then

on further processed by computers. the sampling rate needs to be at least twice the
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Figure 1.3: Schematic setup of an interferometer with two antennas.

observing frequency. This limit is imposed by the Nyquist-Shannon sampling theo-

rem. In the following, the measurement equation for radio interferometers is derived.

The discussion is restricted to the Stokes I component of the radiation.

To this end, consider a given pair of antennas, a and b, observing at wavelength �
with electric field strengths ea�(t) and eb�(t). Figure 1.3 shows the schematic setup. In

the case of monochromatic radiation from a single direction:

ea�(t) ∝ cos(�t), (1.16)

eb�(t) ∝ cos(�t + 2�ΔL

� ) , (1.17)

where ΔL denotes the difference in the path length between the two antennas (marked

red in fig. 1.3) and � = 2�c�−1. Define ⟨f (t)⟩t to be the temporal average over a given

function f ∶ ℝ → ℝ. By correlation and applying trigonometric addition theorems,

V�ab,cos ≔ ⟨ea�(t) eb�(t)⟩t ∝ cos(2� ΔL

� ) , (1.18)

it becomes apparent that the antenna pair is sensitive to the odd part of a specific

spatial frequency on the sky. For measuring the even part as well, a delay is inserted

into the processing chain of one antenna:

V�ab,sin = ⟨ea� (t + �

4c) eb�(t)⟩
t

∝ sin(2� ΔL

� ) . (1.19)

So far, the case for a single source has been discussed. This is now generalised to the

full sky brightness distribution. Let B⃗�ab be the connection vector between antenna a
and antenna b in units of the observing wavelength �. Then, the direction-dependent
ΔL can be expressed as:

ΔL(!⃗) = �B⃗�ab ⋅ !⃗, (1.20)

where !⃗ = (�, �) is the position on the celestial sphere in spherical coordinates. Since

the proportionality constant is given by the apparent brightness of the considered
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source in both cases and since the full sky is a collection of incoherent sources that

can be summed up:

V�ab,cos = ∫ I (!⃗)A(!⃗) cos [2� (B⃗�ab ⋅ !)] dΩ, (1.21)

V�ab,sin = ∫ I (!⃗)A(!⃗) sin [2� (B⃗�ab ⋅ !)] dΩ, (1.22)

where I is the source intensity and A is the normalized effective area of the antennas.

This motivates the definition for visibilities (Richard Thompson, Moran, and Swenson

Jr 2017):

V�ab ≔ V�ab,cos − iV�ab,sin = ∫
4�
I (!⃗)A(!⃗) e−2�iB⃗�ab ⋅!⃗dΩ. (1.23)

For practical applications, eq. (1.23) is rewritten in terms of the Cartesian coordinate

system (l, m) that is tangentially attached to the celestial sphere at the phase centre

!⃗0 of the interferometer. Let (u, v) denote coordinates that are aligned with the co-

ordinates (l, m) but specify the distance between two antennas. Further, let w be the

coordinate that is orthogonal to u and v and points from the interferometer to the

sky. Then, we can compute B⃗�ab ⋅ !⃗ in the coordinates (l, m) and (u, v, w). For this the
celestial coordinate ! is decomposed into the phase centre !0 and the position relative

to it !̃:

B⃗� ⋅ !⃗ = B⃗� ⋅ !⃗0 − B⃗� ⋅ ⃗̃! (1.24)

The projection of the antenna baseline B⃗� onto the direction of the phase centre !⃗0 is

by definition w . Since the coordinate systems (l, m) and (u, v) are aligned with each

other,

B⃗� ⋅ ⃗̃! =
1

�
(ul + vm + wn), (1.25)

where n is the length parallel to w such that (l, m, n) are the Cartesian coordinates of

a point on the unit sphere for all l and m with l2 +m2 ≤ 1:

n ≔
√
1 − l2 −m2 ⇔ l2 +m2 + n2 = 1. (1.26)

Together, the phase factor can be rewritten as:

B⃗� ⋅ !⃗ =
1

�
(ul + vm + wn − w). (1.27)

The second part of the transformation of eq. (1.23) into Cartesian coordinates is

the integration measure dΩ. By construction the relationship of the old coordinates

!⃗ = (�, �) and the new ones (l, m) is given by:

sin � = l2 +m2, tan � =
m

l
. (1.28)
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Computing the Jacobian determinant of this transformation gives:

dΩ = sin � d� d� =
dl dm

n
, (1.29)

with n defined in eq. (1.26). Combining eqs. (1.23) and (1.29) returns the well-known

radio interferometry measurement equation (Richard Thompson, Moran, and Swen-

son Jr 2017):

V�ab = ∬ I (l, m)A(l, m)

n(l, m)
e−2�i

1
� [ul+vm+w(n(l,m)−1)] dl dm. (1.30)

The space in which the visibilities V�ab are defined is referred to as uvw-space. In

the following, R refers to the map I ↦ V that is defined by eq. (1.30) and is called

measurement operator or instrument response operator. This equation plays a central

role in the following chapters but already analysing it as it stands provides multiple

insights:

• The map I ↦ V defined by eq. (1.30) is ℝ-linear.

• Equation (1.30) has strong similarities to a two-dimensional Fourier transform.

If w(n − 1) is negligible, it actually reduces to one.

• The values of (u, v, w) are not defined on a grid in general. Therefore, eq. (1.30)

cannot be computed via a Fast Fourier transform. A new implementation of

a convolutional gridding approach for computing eq. (1.30) and its adjoint is

provided in chapter 7.

• The total intensity of the observed sky brightness I (l, m) would be encoded in

visibilities that have u = v = w = 0. Since the distance between two antennas

cannot be zero, interferometers are not sensitive to the total intensity of the sky.

If the autocorrelation would be recorded, this information would be available.

However, receivers for interferometric antennas typically do not have the noise

properties that are needed for total intensity measurements.

• With the help of the analogy to Fourier transforms, we can see from eq. (1.30)

that the resolution of an interferometer is limited by the length of the longest

baseline, where 1
�2 (u

2 + v2 + w2) takes the maximum value. In the extreme case

antennas can be spread over the whole globe (EHT Collaboration 2019a).

After this quick introduction to radio interferometry, it becomes apparent that radio

interferometers excel in terms of resolution. The resolution of conventional telescopes

is limited by the size of the aperture and the mirror. Today, it is not imaginable to

build telescopes with diameters of much more than 1 km. Therefore, the resolution

of conventional radio telescopes is fundamentally limited by our ability to build large

mirrors. In contrast, the resolution of interferometers can easily be increased by adding

antennas at large distances to an interferometric array. Typical baseline lengths range
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from 10m to 100 km. As an example, the longest baseline of the Very Large Array1

is approximately 35 km long. Data from this telescope will be used in chapters 2, 3, 5

and 6.

1.2.3 Very long baseline interferometry (VLBI)

As discussed in the previous section, the resolution of an interferometer is given by

the maximum distance of antenna stations. To achieve the maximum possible reso-

lutions the baseline lengths have to be maximized. The Very Long Baseline Array2

is presumably the most famous VLBI system that operates throughout the year. It

has ten stations, a maximum baseline of more than 8600 km, a maximum observing

frequency of 96GHz, and, thereby, a resolution of 170 �as. The Event Horizon Tele-

scope (EHT) pushes this limit even further by employing antennas that are located on

Antarctica and in South America, North America, Europe, and Africa. With longest

baselines of over 10 000 km and observing frequencies of over 200GHz it achieves the

unprecedented resolution of approximately 20 �as. This is the highest resolution that

has been achieved with any telescope to date. Data from the Event Horizon Telescope

is analysed in chapter 4.

It is important to note that, although the nominal resolution of interferometric ar-

rays can be increased easily (at least up to the longest possible baseline lengths on

Earth), this comes not only with a plethora of challenges from an organisational per-

spective but also in the data post-processing. There are two possibilities how the sig-

nals from the antennas can be correlated to form visibilities. First, the data is sent

via the internet (or rather dedicated science subnets of the internet) in real time to a

central location where the data is correlated and stored. As an alternative, if no high-

speed connection is available that connects all antenna sites, the raw data needs to be

stored on hard drives or magnetic tapes at the antenna site and shipped to a central

location and correlated off-line. In both cases highly accurate time measurements at

each antenna site are crucial for the data quality. Therefore, each antenna is supplied

with an atomic clock that is synced via GPS with the clocks of the other antennas.

In very long baseline interferometry calibration becomes an even harder issue com-

pared to standard interferometers because the design of the antennas varies from site

to site and the atmospheric seeing is completely different for every antenna. Therefore,

it is difficult if not impossible to use the raw visibilities for imaging. In the simplest

model, the effect of seeing is an antenna-based multiplicative term that corrupts the

visibilities (Smirnov 2011):

Vab → g∗agbVab , ga, gb ∈ ℂ (1.31)

Closure phases and closure amplitudes are designed to be invariant under this trans-

formation (Jennison 1958). A closure phase is computed from a triple of visibilities that

1https://public.nrao.edu/telescopes/vla/
2https://public.nrao.edu/telescopes/vlba/
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Figure 1.4: A section of the first map obtained with the radio star interferometer (Ryle and
Hewish 1960, p. 229).

are arranged in a triangular form and closure amplitudes are formed from quadrangles:

�abc = arg(Vab) + arg(Vbc) − arg(Vac), (1.32)

Aabcd =
||||VabVcdVacVbd

|||| , (1.33)

where a, b, c, and d are antenna labels. With the help of these closure quantities the

first image of the immediate vicinity of a black hole was created (EHT Collaboration

2019a,b,c,d,e,f). It may be noted that the EHT collaboration mostly used traditional

imaging techniques that leave room for improvement. Chapter 4 discusses how re-

solve can significantly improve the results and, even more importantly, can create

the first four-dimensional (two space dimensions, time, and frequency) astronomical

movie on the time-scale of days.

VLBI measurements have a variety of other fields of application. Specifically, they

can be used to detect and monitor Earth’s tectonic plate movement. This is possible

because the astronomical sky is effectively static on human time scales (apart from

few very interesting exceptions). Therefore, changes in the data of given baselines

can inform about variations in the distance of antenna stations.

1.3 Bayesian synthesis imaging

Let us turn to the main topic of this thesis: the computation of images from interfer-

ometric data. Sir Martin Ryle and Antony Hewish received the Nobel prize in physics

in 1974 amongst others for their work on aperture synthesis. While Karl Guthe Jan-

sky discovered the radio emission from the Milky Way with a single-dish telescope in

the year 1932, Ryle and Hewish built the first interferometer and invented the very

first radio synthesis imaging algorithm (Ryle and Hewish 1960). Their first image is
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displayed in fig. 1.4 and has a resolution of around 1°. In contrast, the EHT operates

at more than a factor of 109 higher resolution! This illustrates the significance of the

work of Ryle and Hewish and the huge progress over time.

The main insight by Ryle and Hewish was that with the help of interferometry the

notoriously bad resolution of radio telescopes can be overcome since it is possible

to place the antennas at large spacings and thereby increase the resolution without

the need of huge reflectors. This theoretically increased resolution comes at the cost

of non-trivial data post-processing since interferometers do not output an image but

rather irregularly spaced measurements in uvw-space (see eq. (1.23)). Imaging algo-

rithms like CLEAN and resolve are needed for turning the data into images.

In this section, it will be discussed how Bayesian statistics and information field the-

ory are natural approaches to the synthesis imaging problem in radio interferometry

(section 1.3.1). Then, the Stokes I version of resolve is described (section 1.3.2) and

generalized to include calibration (section 1.3.3) and polarized emission (chapter 6).

1.3.1 Bayesian inference and information field theory

Whenever being confronted with a data set, the main question to answer is: What

does this data set tell me about the physical object I am actually interested in? For

this question to be answered Bayesian statistics can be used. In fact, there is a strong

mathematical argument, Cox’ theorem, that Bayesian statistics is the unique consis-

tent approach as soon as certain criteria are met (Cox 1946). In the following, a very

brief and thereby necessarily incomplete and informal introduction to the most impor-

tant aspects of Bayesian statistics is provided. For a complete treatment of Bayesian

statistics and the Bayesian notion of probabilities refer to Gelman et al. (2013) and

Jaynes (2003).

As a side remark, probabilities are viewed as representation of knowledge in Bayesian

statistics. This approach is disjunct to the so-called frequentist notion of probabilities

as frequencies. While this separation seems to be of philosophical nature, it has a tangi-

ble influence on the practical computations that are performed during data reduction.

During the last century the existence of these two orthogonal approaches triggered

numerous discussions. An introduction to this controversy from the Bayesian side is

presented in Jaynes (2003). For this thesis, I rely on Cox (1946) and Jaynes (2003) and

choose the Bayesian approach.

In Bayesian statistics, the knowledge about some quantity of interest, which is called

s in the following, is strictly separate from the data d that may contain information

on s.3 Knowledge is represented by probability densities (s). Strictly speaking, prob-
ability densities are defined over statements and not over numbers or fields like s. In
this thesis by a slight abuse of notation, (s) shall represent the probability for the

statement that the quantity of interest takes the value s.
Assuming the value of s to be known with infinite certainty or equivalently without

uncertainty, this probability density would be a delta function: (s) = �(s − s0). By as-

3Since the data in radio interferometry is called visibilities, in eq. (1.23) the symbol Vab is used for the
data that we call d here. Likewise, the sky brightness distribution I (!⃗) corresponds to s here.
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signing non-delta functions to (s), Bayesian statistics naturally supports reasoning

with uncertainty. Additional concepts in Bayesian statistics include joint probabili-

ties denoted by (a, b) and conditional probabilities (a|b). Two properties of these

concepts are the factorization rule:

(a, b) = (a|b)(b), (1.34)

for all a and b, and the fact that joint probabilities are symmetric:

(a, b) = (b, a) (1.35)

for all a and b.
With the help of these concepts, the general data reduction problem in science can

expressed: Given some data d , what can be learned about the quantity of interest

s? More explicitly, this boils down to computing the probability density (s|d), i.e. a
probability density over all realizations of the quantity of interest s given the data d .
This density is called posterior density or simply posterior. Employing the above two

properties eqs. (1.34) and (1.35), (s|d) can be expressed:

(s|d) = (d |s)(s)

(d)
. (1.36)

This is the celebrated Bayes’ theorem. The posterior can be computed with the help

of the likelihood (d |s), the prior (s), and the evidence (d). All information on the

measurement process, the measurement device, and its noise properties is encoded in

the likelihood. For radio interferometers the likelihood can be approximated very well

by a Gaussian distribution with diagonal covariance. The prior density expresses the

knowledge of the quantity of interest s before having looked at the data. In the case

of radio interferometry, where s is the sky brightness distribution in the radio regime,

it is clear that a brightness cannot be negative. Therefore, it is sensible to set (s) = 0

for all s in which at least one direction on the sky is negative. Finally, the evidence

(d) is the probability of having obtained the data. While it is hard to compute the

evidence in practice, the approach that is mostly followed in this thesis, called Metric

Gaussian Variational Inference (Knollmüller and Enßlin 2019), evades calculating the

evidence.

It can be easily imagined that computing Bayes’ theorem in general cases is com-

putationally challenging if not impossible: The posterior may be viewed as a func-

tion s ↦ (s|d). If s is a high-dimensional vector this results in representing a

very high dimensional function. Interesting properties of the posterior, like the mean

m = ⟨s⟩(s|d) or the variance ⟨(s − m)2⟩(s|d), involve an integration of this function:

m = ∫ s(s|d) ds. Integrating high dimensional functions is the holy grail of Bayesian

statistics: it poses a difficult problem that has not been satisfactorily solved in full

generality. Approaches include Hamilton Monte Carlo sampling (Duane et al. 1987) or

nested sampling (Skilling 2004). However, these algorithms do not converge efficiently

if the number of dimensions exceeds 1 000 or often already earlier. In order to be able

to treat tens of millions of dimensions, which is done in chapter 4, the posterior is
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1.3 Bayesian synthesis imaging

approximated with the help of MGVI, a novel approach that has been developed by

Jakob Knollmüller and Torsten Enßlin (Knollmüller and Enßlin 2019).

After this general introduction to Bayesian statistics the focus shall be on imaging

and calibration in radio interferometry. In this case, the quantities of interest s are
the calibration solutions and the sky brightness distribution. For the example of the

sky brightness distribution, the underlying physical quantity is not, strictly speaking,

a collection of discrete numeric values but rather a (physical) field, i.e. a function s ∶
S2 → ℝ that maps each point on the celestial sphere to a real number. In this picture

s can be viewed as infinite-dimensional vector.

This is the realm of information field theory (Enßlin 2013, 2018; Enßlin and Frommert

2011; Enßlin, Frommert, and Kitaura 2009) that is the application of Bayes’ theorem

to the situation where s is a field and thereby infinite-dimensional. Information field

theory provides the mathematical framework to formulate infinite-dimensional infer-

ence problems and provides prescriptions how these problems can be discretised in

order to be evaluated on computers. A detailed mathematical treatment of the case

where both prior and likelihood are Gaussian densities is provided in Stuart (2010).

Since information field theory solves the Bayesian inference problem on an abstract

level many computational steps can be implemented generically. To this end the li-

brary Numerical Information Field TheorY or NIFTy has been developed (Arras, Baltac,

et al. 2019; Selig, Bell, et al. 2013; Steininger et al. 2017).

This shows that Bayesian statistics and information field theory provide a sensible

framework to approach the calibration and imaging problem in radio interferometry.

Since the involved spaces are necessarily high dimensional, one cannot get around

employing approximations. Throughout the whole thesis MGVI will be used to this

end.

1.3.2 Stokes I imaging

Turning interferometric data into images in radio astronomy has a long tradition start-

ing with Ryle and Hewish (1960). Since then the most widely applied imaging algo-

rithm is called single-scale CLEAN (Clark 1980; Högbom 1974; Schwab and Cotton

1983). It transforms the data in an ad hoc way into image space and collects in a

greedy fashion the point sources in this image in order of descending brightness. To

mimic physicality of the images, these point sources are convolved with a Gaussian

beam that represents the resolution of the interferometer as a post-processing step.

Already from this high-level overview it becomes apparent that single-scale CLEAN

can perform well on point sources but not so well on diffuse emission. Additionally,

the point sources are not constrained to be positive. Therefore, typical CLEAN images

feature negative flux regions (see for example fig. 3.1) that are obviously non-physical.

Moreover, CLEAN is not able to compute Bayesian uncertainties on its final imaging

result.

In order to improve performance on diffuse emission, multi-scale CLEAN uses as ba-

sis functions not only point sources but also Gaussian shapes of different sizes (Corn-

well 2008; Offringa and Smirnov 2017; Rau and Cornwell 2011). While this approach
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significantly improves the situation for diffuse emission, old problems remain like the

absence of uncertainty quantification or the user’s choice how to transform the data

into image space and thereby ignoring noise properties of the data. A detailed intro-

duction to the commonly used imaging algorithms single-scale andmulti-scale CLEAN

is given in sections 3.1, 3.4.1 and 3.4.2.

As a solution to these problems this thesis suggests a Bayesian approach to imaging.

The likelihood (d |s) does not depend on the chosen imaging approach. It is deduced

from the measurement equation eq. (1.23), which relates the sky brightness distribu-

tion to the data and the knowledge that to first order the noise is Gaussian and additive

(Richard Thompson, Moran, and Swenson Jr 2017). Therefore, the likelihood is given

by:

(d |s) = G (d − Rs, N ) ≔=
1√
2�N

exp [−12(d − Rs)†N −1(d − Rs)] , (1.37)

where N is the (diagonal) noise covariance matrix. Apart from the definite knowledge

that the sky brightness distribution is non-negative, the prior is subject to more dis-

cussions and debate. In this thesis the diffuse emission is modelled by homogeneous

and isotropic log-normal Gaussian processes with unknown correlation structure and

point sources are represented by inverse-gamma priors. For the chosen prior model

for the different applications refer to sections 2.4, 3.3.3 and 5.2.3.

1.3.3 Unify calibration and imaging

One of the major ideas developed in the context of this thesis is the unification of

calibration and imaging into one single inference machinery. This development was

driven by the goal to include the uncertainties that arise during the calibration proce-

dure into the uncertainty quantification of the final image.

In radio interferometry calibration errors can be classified into direction-dependent

vs. direction-independent effects and antenna-based vs. baseline-based effects. In this

thesis only direction-independent antenna-based effects are considered. These can be

represented by (see eq. (1.31)):

d = Ṽab = g
∗
agbVab , (1.38)

where Ṽab are the corrupted visibilities. Therefore, for a given time stamp na calibra-
tion degrees of freedom exist for 1

2na(na−1) data points. Thus, if a noise-less calibration
observation of a known source would be available, the calibration degrees of freedom

could be solved for. The presence of noise makes a probabilistic treatment necessary.

In this thesis the calibration degrees of freedom g are treated as quantity of interest
themselves. Then, Bayes’ theorem takes the form:

(s, g|d) = (d |s, g)(s)(g)

(d)
, (1.39)

assuming that the sky brightness distribution and the calibration degrees of freedom

are independent a priori. A posteriori s and g are correlated: The uncertainties on
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1.4 Overview of the work presented in this thesis

the final image contain the uncertainty that is induced from the calibration proce-

dure, which are the uncertainty arising from the incompletely sampled uvw-space
(see eq. (1.30)), and the uncertainty induced by noise.

1.4 Overview of the work presented in this thesis

In order to approach and answer big scientific questions like the applicability of gen-

eral relativity, or magnetohydrodynamics of AGNs, or the inter-stellar and inter-

galactic medium, or studying the anisotropies in the CMB, first-class imaging and

calibration algorithms are needed to extract the information from the data in the best

possible way. Scientists cannot afford to have their theoretical insights limited by

flawed or inefficient data reduction algorithms because the scientific progress is domi-

nated by noticing and explaining slight differences between observations and theoret-

ical expectations. In this context, uncertainty quantification of results is particularly

important: If a deviation from theoretical predictions is noticed, it is crucial to be

able to quantitatively assign a certainty of deviation. In the following thesis, multiple

aspects of providing images from radio interferometric data together with Bayesian

uncertainty estimates are presented.

Chapter 2 describes a Bayesian approach to imaging together with an application

on real VLA data. This chapter discusses that the error bars reported by the telescope

cannot be trusted and that they need to be adjusted. The content of this chapter has

been peer-reviewed and published in the context of the 2018 26th European Signal

Processing Conference (Arras, Knollmüller, et al. 2018).

Chapter 3 presents the application of a further developed version of the imaging and

noise-estimation algorithm of chapter 2. Additionally, a new model for the Gaussian

randomfields with unknown power spectrum has been developed. This model enabled

the research of chapter 4 and a variety of other to date unpublished projects including

an application on data from the Fermi 
 -ray telescope (Platz et al. 2021) and an analysis
of COVID-19 infection data (Guardiani et al. 2021). The content of this chapter has

been peer-reviewed and published in Astronomy & Astrophysics Arras, Bester, et al.

(2020a).

In chapter 4, the data taken by the Event Horizon Telescope (EHT) in 2017 is im-

aged in a revolutionary manner: We present the first spatio-spectral-temporal (four-

dimensional) reconstruction of an astronomical object, in this case M87*. This super-

massive black hole is of particular interest because it allows validating general rela-

tivistic magneto-hydrodynamic models and allows to directly probe general relativity

on small, i.e. non-cosmological and non-galactical, scales. For this a likelihood for VLBI

observations that is based on closure phases and closure amplitudes is developed and

the model for Gaussian random fields from chapter 3 is generalized to support outer

products of power spectra as prior. The content of this chapter is a joint effort with

colleagues of mine and has been submitted to Nature Astronomy, where it is currently

under review (Arras, Frank, Haim, et al. 2020a).

Chapter 5 unifies the calibration and imaging problem for radio interferometry. This
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is particularly useful because the uncertainty estimates on the final image include not

only the uncertainty that arises from noise in the data and the incomplete sampling

of the Fourier plane but also that from the calibration procedure. Additional to radio-

specific discussions this chapter updates the model introduced in chapters 2 and 5

that can generate realizations of Gaussian random processes with unknown power

spectrum. This model has scientific impact beyond radio astronomy. It has been

used and successfully applied for general studies on Bayesian inference (Knollmüller,

Steininger, and Enßlin 2017; Knollmüller and Enßlin 2019; Oberpriller and Enßlin

2018), the Faraday map of the MilkyWay (Hutschenreuter and Enßlin 2020), for three-

dimensional tomography of interstellar dust (Leike 2020; Leike, Celli, et al. 2020; Leike

and Enßlin 2019; Leike, Glatzle, and Enßlin 2020), combination of single-dish and in-

terferometric data (Rüstig, Arras, and Enßlin 2021), and for fundamental research on

lossy data compression derived from Bayesian statistics (Harth-Kitzerow et al. 2021).

The content of this chapter has been peer-reviewed and published in Astronomy &

Astrophysics (Arras, Bester, et al. 2020a).

Chapter 6 contains a first outline of a unified polarization imaging approach. To

this end, non-trivial but mathematically natural a-priori correlations are employed.

In a first application on SN1006 data, it can be shown that the algorithm works in

principle and recovers the polarization features of the supernova remnant that have

already been found by Reynoso, Hughes, and Moffett (2013). At the same time, the

polarization maps are less noisy as the results in Reynoso, Hughes, and Moffett (2013).

Noise in polarization maps and consistency across the different polarization degrees

of freedom is a common problem. The first results of chapter 6 indicate that resolve

may help to overcome these problems. The full analysis of the polarization imaging

algorithm is left for future work.

Chapter 7 covers a more technical aspect of the imaging procedure. All imaging

algorithms need an implementation of the instrument response operator R that sim-

ulates a noise-free measurement. In the case of radio interferometry, this is a mod-

ified non-equidistant Fourier transform as specified in eq. (1.30). If the algorithm is

based on some form of gradient descent, which is true for both resolve and CLEAN,

the derivative of the measurement operator is needed. In the special case of a linear

measurement, like eq. (1.30), it suffices to implement the adjoint action of the linear

measurement operator: R†. Since these two functions are universal to the imaging

algorithm and can be used in the conventional method, CLEAN, as well, it is worth

putting a substantial amount of work into it. The resulting implementation provides

an increase in accuracy by a factor of around 109 compared to the standard imple-

mentation, a significantly better scaling behaviour that enables the efficient use of big

multi-threaded machines, and in the multi-threaded regime an improvement in wall

time by a factor of > 10. These improvements in terms of accuracy and wall time

enabled the improvement in image quality and resolution from chapters 2 to 6. The

content of this chapter has been peer-reviewed and published in Astronomy & Astro-

physics (Arras, Reinecke, et al. 2020).

The last chapter, chapter 8, contains summarizing aspects of the entirety of the

thesis. Additionally, it provides an outlook how this work fits into the broader picture
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1.4 Overview of the work presented in this thesis

of research that is possible with the help of radio interferometers and cutting-edge

imaging algorithms.
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2 Imaging with independent automatic
weighting

The following chapter has first been published at the 2018 26th European Signal Pro-

cessing Conference (EUSIPCO) with me as the first author (Arras, Knollmüller, et al.

2018). While this article is based on prior work by Jakob Knollmüller and Hendrik Jun-

klewitz, the research of this article has been performed by me in collaboration with Jakob

Knollmüller and Torsten Enßlin. All authors read, commented, and approved the final

manuscript. Since the layout of this thesis differs from the EUSIPCO layout, the figures

have been adapted.

Abstract

Data from radio interferometers provide a substantial challenge for statisticians.

It is incomplete, noise-dominated and originates from a non-trivial measurement

process. The signal is not only corrupted by imperfect measurement devices but

also from effects like fluctuations in the ionosphere that act as a distortion screen.

In this paper we focus on the imaging part of data reduction in radio astronomy

and present resolve, a Bayesian imaging algorithm for radio interferometry in

its new incarnation. It is formulated in the language of information field theory.

Solely by algorithmic advances the inference could be speed up significantly and

behaves noticeably more stable now. This is one more step towards a fully user-

friendly version of resolve which can be applied routinely by astronomers.

2.1 Introduction

To explore the origins of our universe and to learn about physical laws on both small

and large scales telescopes of various kinds provide information. An armada of tele-

scopes including many radio telescopes all over the earth and in space collect data

to be put into one consistent theoretical picture of our universe by astrophysicists.

Radio interferometers are of specific interest from a data reductionist’s point of view

since they do not measure a direct image of the sky as optical telescopes do. As a con-

sequence radio interferometers provide only very incomplete information about the

patch of the sky they are looking at. These two factors render the problem of radio

imaging non-trivial and in order to obtain high-quality images sophisticated statistical

methods need to be developed and applied. In this paper, we want to present the latest

state of the art of reducing data from radio interferometers with the help of information

field theory (Enßlin 2013).

25



2 Imaging with independent automatic weighting

IFT is a statistical field theory which enables statisticians to solve complex Bayesian

inference problems which involve fields. A field is a physical quantity defined over a

continuous space like a three-dimensional density field or two-dimensional flux field.

Treating these fields as continuous objects IFT does not suffer from side-effects induced

by introducing a pixelation scheme right from the beginning. Moreover, a theory for-

mulated in the language of fields enables IFT statisticians to employ the machinery

having been developed by field theorists.

The algorithmic idea presented here is called resolve (Radio Extended SOurces

Lognormal deconvolution Estimator) and was first presented in Junklewitz, Bell, Selig,

et al. (2016). Since then the inference machinery has evolved dramatically with subse-

quent speedups of a factor of around 100.

This paper is organised as follows: In section 2.2 the measurement principle of ra-

dio interferometers is outlined. Section 2.3 gives a quick introduction to information

field theory followed by section 2.4 in which the Bayesian hierarchical model used by

resolve is explained. We conclude with an application on real data in section 2.5.

2.2 Measurement process and data in radio astronomy

Radio telescopes measure the electromagnetic sky in wave-lengths from � = 0.3mm

(lower limit of ALMA1) to 30m (upper limit of LOFAR2). This poses a serious prob-

lem. The angular resolution of a single-dish telescope �� scales with the wavelength

� divided by the instrument aperture D:

�� = 1.22
�

D
. (2.1)

As an example consider � = 0.6 cm and �� = 0.1 arcsec which are typical values

for the VLA3. Then the size of the aperture would need to be approximately 15 km

which is not feasible technically. Therefore, many radio telescopes apply a different

measurement principle.

Radio telescopes like VLA are in fact radio interferometers. They consist of several

antennas (a total number of 27 in the case of the VLA). The electromagnetic radio

wave which arrives at each antenna is converted to a digital signal and sent to a cen-

tral supercomputer, called correlator. As its name suggest, it correlates the signal of

each antenna with every other antenna in temporal windows of typically around 10 s.

These correlation coefficients are called visibilities. Each visibility corresponds to the

strength of excitation of a Fourier mode in image space. The distance between two

antennas is proportional to the spatial frequency and the orientation of the antennas

gives the orientation of the Fourier mode.

All in all, the radio interferometric measurement process is modeled by the Radio

1Atacama Large Millimeter Array, Chile
2Low-Frequency Array, Europe
3Karl G. Jansky Very Large Array, New Mexico
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2.3 Information field theory

Interferometric Measurement Equation (Smirnov 2011):

dpq = ∫ I (l, m)ei(lup+mvq) dl dm + npq . (2.2)

Put into words, the data is given by the Fourier transform of the flux distribution I (l, m)

where l andm are the direction cosines of the angular coordinates � and � on the sky.

Please note that this formula is based on several assumptions and simplifications. First,

this version of the RIME is only valid for narrow field of views since it assumes a flat

sky. Second, it assumes that all antennas are located at the same altitude. Third, it does

not account for different polarizations and assumes that the antennas simply measure

Stokes I . Finally and perhaps most importantly, it assumes that the data has been

perfectly calibrated for all possible instrumental and additional measurement effects

(e.g. receiver instabilties, ionispheric interference,…). In this paper we treat only radio

imaging and build on top of datawhich is calibrated by established algorithms. In other

words, it is assumed that the data is calibrated perfectly.

2.3 Information field theory

In a nutshell, IFT is information theory with fields. It is a framework which uncov-

ers the connection between statistical field theory and Bayesian inference. Exploiting

this connection enables us to translate all knowledge physicists have gathered about

statistical field theory and thermodynamics to Bayesian inference.

The general idea is that given some finite data set d , it is inferred how likely different

realizations of the observed physical field s is. This is done with the help of Bayes

theorem which combines the likelihood (d |s) with the prior knowledge (s) and
some normalization constant (d) into the posterior distribution (s|d):

(s|d) = (d |s)(s)

(d)
=
(s, d)

(d)
. (2.3)

This can be rewritten as:

(s|d) = 1

(d)
e−(s,d), (2.4)

where Z (d) ≔ ∫ s (s, d) and(s, d) ≔ − log(s, d). ∫ s is the path integral which
is defined as the continuum limit of the product of integrals over every pixel ∫ ∏i dsi .
For details on that refer to Enßlin (2013).

The above formula is well-known in statistical physics and inspires us to call the

information Hamiltonian. In order to obtain the maximum a-posterior estimate (MAP)

of s one has to minimize  with respect to s because the exponential is a monotonic

increasing function. Since the information Hamiltonian is given by

(s, d) = (d |s) +(s), (2.5)

27



2 Imaging with independent automatic weighting

it knows both about themeasurement process via the likelihood term(d |s) and about
the prior knowledge via(s). Please note that additional constants in s can be dropped
from (s, d) since they only change the normalization of the posterior but not its

shape. This will be indicated by ‘≃’.

As an illustrative example, let us re-derived the famous Wiener filter (Wiener et al.

1949). Suppose we observe a noisy random process with known stationary signal and

noise spectra and additive noise. More precisely, suppose we are given some measure-

ment data d described by the following measurement equation:

d = Rs + n, (2.6)

where d is a finite-dimensional vector, s is the unknown signal field and n the additive
noise. s and n are assumed to be zero-centered Gaussian random fields drawn from

G (s, S) and G (n, N ), respectively, where the covariances S and N are known. R, the
linear response operator, models the measurement device and is also known. It maps

the signal s defined over a continuous domain to a finite data vector d . Note that

eq. (2.2), the RIME, is of that form. Also note that in this specific case the response

operator R contains a Fourier transform.

Let us compute the posterior distribution or equivalently the information Hamilto-

nian for this problem. The likelihood (d |s) is essentially given by eq. (2.6):

(d |s, n) = �(d − (Rs + n)). (2.7)

Then marginalize over the noise field:

(d |s) = ∫ n(d |s, n)(n) = G (d − Rs, N ). (2.8)

Combining this with the prior probability (s) = G (s, S) and taking the negative log-

arithm gives the information Hamiltonian:

(s, d) = 1
2 (d − Rs)†N −1(d − Rs) + 1

2 s
†S−1s

− 1
2 log |2�N | − 1

2 log |2�S|, (2.9)

where ⋅† denotes transposition and element-wise complex conjugation of a matrix or

a vector. The above expression is a second order polynomial and the square in s can
be completed:

(s, d) ≃ 1
2 (s −m)†D−1(s −m), (2.10)

where m = Dj, j = R†N −1d and D−1 = S−1 + R†N −1R. In other words, the posterior

probability distribution is

(s|d) = G (s −m,D) (2.11)

where m is called the Wiener filter solution.
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In this fashion theWiener filter turns out to be the simplest filter which can be build

within the framework of IFT. Note that already here one of IFT’s strength becomes ap-

parent: Pixelation schemes have not appeared yet. This is a general feature of IFT.

The theory is formulated with fields (which infinitely many degrees of freedom which

are not pixelated yet). Only when the filter is implemented on the computer the fields

become discretised. To this end the Python package NIFTy provides customized func-

tionality to implement IFT algorithms (Reinecke, Selig, and Steininger 2018; Selig, Bell,

et al. 2013; Steininger et al. 2017). It even enables the user to easily switch between

different pixelation schemes.

2.4 IFT model for radio interferometers

In radio interferometry, the situation is somewhat more difficult than theWiener filter

scenario discussed so far: First, the radio sky cannot be sensibly modeled by a Gaus-

sian random process since electromagnetic flux is always positive and varies on many

different orders of magnitude: a radio source typically is many magnitudes brighter

than the surrounding background flux. Second, we do not know the signal covariances

S of the brightness distribution on the sky. Therefore, we need to infer it as well. And

finally, the noise covariance provided by the telescope might not be entirely correct.

Radio frequency interference or calibration errors might enhance the error bars on the

data significantly. Therefore, the noise level of each data point needs to be inferred as

well. The underlying assumptions and priors of the following calculations are:

1. The sky obeys log-normal statistics, i.e. the measurement can be written as:

d = Res + n, (2.12)

where s is a Gaussian field again and R is the linear response operator which

maps the sky field onto visibilities.4 This is the proper choice since it enforces

positivity of the flux field and can easily vary on different scales.

2. s is drawn from a probability distribution describing a isotropic and homoge-

neous process.

3. Power spectra of s preferentially follow a power law. In other words, curva-

ture on double-logarithmic scale in the power spectrum shall be punished in the

inference.

4. The noise covariance matrix is diagonal: N = ê�, where � is a vector whose

entries are the logarithms of the variance of every data point.5

5. Large noise covariances are punished by an Inverse-Gamma prior on �.

4Here and in the following, exponentials of vectors are understood to be taken element-wise.
5The hat operator ê� denotes the diagonal operator with the vector e� on its diagonal.
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6. The posterior probability distribution can be approximated by ̃(s, � , �|d) =

G (� − � ∗,Ξ) �(� − � ∗) �(�−�∗), where � is the logarithm of the power spectrum, Ξ

is the posterior covariance of the map estimation and the starred quantities are

the means of the respective variables.

For starters let us introduce some notation. Because s is drawn from an isotropic and

homogeneous probability distribution the Wiener-Khinchin theorem (Wiener 1930)

implies that S is diagonal in Fourier space and its diagonal is given by a power spectrum
p(k):

S
k⃗k⃗′

= (2� )2�(k⃗ − k⃗′) p(|k⃗|). (2.13)

The power spectrum is a positive function, thus we can apply the same trick as for the

sky map. Define:

p(|k⃗|) = e� (|k⃗|) (2.14)

For convenience define a projection operator ℙ which sums all values of a field b in

harmonic space which lie in one bin in the power spectrum:

b
k⃗
= ℙ

k⃗�
a� =

1

�k
∫|k⃗|=� p� , (2.15)

where �k is the bin volume. Defining  to be the Fourier transform mapping from

harmonic space to signal space, the signal prior covariance S can be expressed as:

S =  (ℙ̂†e�)†. (2.16)

Finally, we split the field s into two parts in harmonic space: s =  (A� � ). � is a

white Gaussian random field, i.e. it has the covariance matrix , and A� = ℙ
†
√
e� , i.e. it

contains all information coming from the power spectrum.

With the above notation it is now possible to write down all Hamiltonians we need

for the reconstruction. The Hamiltonian which is to be minimized for the � recon-

struction is computed analogously to eq. (2.9):

(� , d |� , �) ≃ 1
2 (d − Re (A� � ))

†
ê−�(d − Re (A� � )) + 1

2�
†� . (2.17)

Since it will be needed later, the curvature of the above Hamiltonian is to be computed:

Ξ ≔
�2(� , d |� , �)

�� ��†
= A†

� (e
s)†R†N −1ResA� + (2.18)

− (d − Res)†N −1ResA�A� . (2.19)

The last term is not necessarily positive definite which is not allowed for a covari-

ance operator6. However, this term is small in the vicinity of the minimum because it

contains the residual d − Res . Therefore, it is dropped right from the beginning.

6Note that the curvature of the information Hamiltonian is at the same time used as an approximative
covariance of the posterior.
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The Hamiltonian for the power spectrum reconstruction has a very similar struc-

ture: The likelihood is accompanied by the prior. Here, we choose a smoothness prior

on double-logarithmic scale. Δ is the Laplace operator acting on logarithmic scale

y = log k:

(� , d |� , �) ≃ 1
2 (d − Re (A� � ))

†
ê−�(d − Re (A� � ))

+ 1
2�2 �

†Δ†Δ� .
(2.20)

The parameter � controls the strength of the smoothness prior.

The Hamiltonian for the noise covariance estimation has again the same structure

except for the prior: Here, an Inverse-Gamma prior is employed:

(�, d |� , � ) ≃ 1
2 (d − Re (A� � ))

†
ê−�(d − Re (A� � )) (2.21)

+ �†(� − 1) + q†e−� + 1
2
†�. (2.22)

Note that the last term originates from the term − 1
2 log |2�N | in eq. (2.9).

In order to compute an estimate for the posterior � ∗ and �∗, the deviation between

the correct posterior probability and the approximate one needs to be minimized. The

metric of choice to compare probability distributions is the Kullback-Leibler diver-

gence:

KL(̃(� , � , �|d) ‖(� , � , �|d)) = ∫ � � � ̃ log
̃


. (2.23)

The posterior shall be approximated by the distribution:

̃(s, � , �|d) = G (� − t,Ξ) �(� − � ∗) �(� − �∗). (2.24)

The integrals over � and � simply collapse due to the �-distributions. What remains are

two objective function, one for the power spectrum and one for the noise covariance

estimation:

KL,� = ⟨ 1
2 (d − Re (A� � ))

†
ê−�(d − Re (A� � ))⟩

G (�−t,Ξ)
(2.25)

+
1

2�2
�†Δ†Δ� , (2.26)

KL,� = ⟨ 1
2 (d − Re (A� � ))

†
ê−�(d − Re (A� � ))⟩

G (�−t,Ξ)
(2.27)

+ (� − 1)†� + q†e−� + 1
2
†�. (2.28)

The expectation value ⟨…⟩G (�−t,Ξ) can be computed by sampling from G (� − t,Ξ). For
details on that refer to Knollmüller, Steininger, and Enßlin (2017).

All in all, the complete inference algorithm for applying IFT to radio interferometric

data has been derived. The free parameters of the machinery are: the strength of the

smoothness prior on the power spectrum � and the shape of the Inverse-Gamma prior

on the noise covariance estimation � and q.
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Figure 2.1: Exemplary application of resolve on real data which was taken in 2003 by the
VLA of the source 3C405 also known as Cygnus A. Left: posterior mean m (loga-
rithmic brightness). Right: relative error on m.

2.5 Application

Finally, let us apply the above derived Bayesian inference algorithm to real data. To

this end, let us take a VLA measurement set of Cygnus A from 2003. It has a total

integration time of 49100 seconds. Since we deal only with single-band imaging in

this paper, let us take one channel centered at 327.5MHz with a bandwidth of 2.8Mhz.

As prior settings we choose an uninformative flat Inverse-Gamma prior for the noise

(q = 10−5, � = 2) and � = 1 for the smoothness prior on the power spectrum.

The main result is presented in fig. 2.1. On the left-hand side, it shows the mean m
of the Gaussian that approximates the sky part of the posterior, G (s −m,D), displayed
on logarithmic scale. What singles out resolve from many other imaging algorithms

is its ability to provide an uncertainty map. It is depicted on right-hand side of fig. 2.1.

Additional to the sky model, the algorithm learns the power spectrum e� as well. It
is shown in fig. 2.2. Note that it does not possess much curvature on log-log scale as

was expected by the Laplace prior on � .

Finally, resolve provides error bars on the data points (see fig. 2.3). The resolve er-

ror bars are up to five orders of magnitude bigger than the error bars that are provided

by the telescope.

The reconstruction was run on an Intel Core i5–4258U CPU using 300 MB main

memory. The resolution of the reconstruction is 2562 pixels for the sky model and

32 pixels in the power spectrum. The response operator R which incorporates a non-

equispaced fast Fourier transform was implemented by employing the NFFT library

which provides OpenMP parallelization (Keiner, Kunis, and Potts 2009).
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Figure 2.2: Power spectrum of Cygnus A reconstruction.

Figure 2.3: Comparison of error bars provided by the telescope and by resolve. In the both
plots the standard deviation normalized by the absolute value of the visibility is
depicted. Left: standard deviation from the data set. Right: learned standard devi-
ation.
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The reconstruction including the analysis of the posterior statistics took approxi-

mately two hours of wall time.

2.6 Conclusion

In this paper, resolve in its new incarnation was presented for the first time. Mini-

mizing the Hamiltonian with respect to the map and the KL-divergence with respect

to the power spectrum and the noise level provide a major speed-up. Also, the noise

level of each data point was learned simultaneously with the map reconstruction for

the first time. The main insights are:

• resolve’s noise estimation suggests a much higher noise level compared to the

noise level which comes with the data set. This might be rooted in calibration

artifacts which resolve detects and puts into the noise.

• The migration from a simple fix-point iteration to minimization of Hamiltonian

and KL-divergences was successful and is a big step forward towards an easy-

to-use version of resolve which can be shipped to a broad range of end-users.

The apparent next step towards a fully-integrated IFT radio data reconstruction pipeline

is to include the calibration into the IFT inference. Other possible future work is to

develop a fancier radio response function which can deal with wide-field images and

to include point source reconstructions in the spirit of Pumpe, Reinecke, and Enßlin

(2018).
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Abstract

CLEAN, the commonly employed imaging algorithm in radio interferometry, suf-

fers from a number of shortcomings: in its basic version it does not have the

concept of diffuse flux, and the common practice of convolving the CLEAN com-

ponents with the CLEAN beam erases the potential for super-resolution; it does

not output uncertainty information; it produces images with unphysical nega-

tive flux regions; and its results are highly dependent on the so-called weighting

scheme as well as on any human choice of CLEAN masks to guiding the imag-

ing. Here, we present the Bayesian imaging algorithm resolve which solves the

above problems and naturally leads to super-resolution. We take a VLA obser-

vation of Cygnus A at four different frequencies and image it with single-scale

CLEAN, multi-scale CLEAN and resolve. Alongside the sky brightness distri-

bution resolve estimates a baseline-dependent correction function for the noise

budget, the Bayesian equivalent of weighting schemes. We report noise correc-

tion factors between 0.4 and 429. The enhancements achieved by resolve come

at the cost of higher computational effort.

3.1 Introduction

Radio interferometers provide insights into a variety of astrophysical processes which

deepen our knowledge on astrophysics and cosmology in general. A common strategy

to improve radio observations is to upgrade the hardware: increase the number of

antennas or their sensitivity. This paper takes the orthogonal approach and improves

one part of radio pipelines, the imaging and deconvolution step. Interferometers do not

directly measure the sky brightness distribution but rather measure modified Fourier

components of it. Therefore, the step from the data to the image is non-trivial.
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3 Imaging with automatic weighting and detailed comparison to CLEAN

One of the first deconvolution algorithms, single-scale CLEAN (Högbom 1974), is

still in use today. It was developed for the computational resources of the 1970s and

assumes that the sky brightness distribution consists of point sources. The basic idea

behind single-scale CLEAN is to transform the Fourier data into image space, find

the brightest point sources in descending order, simulate a measurement of those

point sources, subtract them from the data and iterate. Finally, the collection of point

sources, called CLEAN components, is usually convolved with the so-called CLEAN

beam which is supposed to represent the intrinsic resolution of the radio interferom-

eter. In practice, this algorithm converges to some approximation of the actual sky

brightness distribution.

The assumption that the sky consists of point sources is problematic, because typical

radio interferometers are capable of capturing faint diffuse emission as well. There-

fore, Cornwell (2008), Offringa and Smirnov (2017), and Rau and Cornwell (2011) ex-

tended CLEAN to using Gaussian-shaped structures as basis functions. The resulting

algorithm is called multi-scale CLEAN and is the de-facto standard for deconvolving

extended structures.

There are several major reasons to rethink the CLEAN approach to imaging and

deconvolution, now that more computational resources are available and significant

progress in Bayesian inference has been made compared to the 1970s. First, in order

to allow CLEAN to undo initial and too greedy flux assignments, CLEAN components

are usually not required to be positive. Therefore, the final sky brightness distribu-

tion is not necessarily positive and almost all maps produced from radio interferomet-

ric data contain unphysical negative-flux regions. Second, the convolution with the

CLEAN beam fundamentally limits the resolution of the image although it is known

that super-resolution is possible (Dabbech et al. 2018; Honma et al. 2014). In particular,

the location of bright compact sources can be determined with much higher accuracy

than suggested by the CLEAN beam. Third, the weighting scheme, which is a function

which rescales the influence of each data point on the final image depending on the

baseline length or proximity of other measurements, crucially influences the output

image. A prescription for setting the weighting scheme, such that the resulting im-

age resembles the actual sky brightness distribution in the best possible way, does not

exist. Finally, CLEAN does not output reliable uncertainty information.

We intend to address the above issues by updating the Bayesian imaging algorithm

resolve developed in (Arras, Frank, Leike, et al. 2019; Arras, Knollmüller, et al. 2018)

and originally pioneered by Junklewitz, Bell, and Enßlin (2015) and Greiner et al.

(2016). Bayesian inference is the framework of choice for this as it is the only consistent

extension of Boolean logic to uncertainties via real-valued probabilities (Cox 1946).

resolve is formulated in the language of information field theory (Enßlin, Frommert,

and Kitaura 2009) in symbiosis with the inference algorithm Metric Gaussian Varia-

tional Inference (MGVI, Knollmüller and Enßlin 2019). It combines the imaging and

deconvolution steps of the CLEAN approach. Indeed, resolve significantly improves

the resolution of the image, super-resolution is built in.

Bayesian imaging in radio astronomy is not new. Most prominently, maximum en-

tropy imaging was one of the first such algorithms based on the minimalistic prior
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assumption that photons could arrive from all directions and no intrinsic emission

structures shall be assumed a priori (Cornwell and Evans 1985; Gull and Skilling 1984).

While this is been proven to be particularly successful for imaging diffuse emission,

Junklewitz, Bell, Selig, et al. 2016, Section 3.2.2 demonstrate that resolve can outper-

form maximum entropy imaging. The reasons include that the latter does not assume

any correlations between pixels a priori and a brightness distribution for each pixel

with an exponential cut-off for high values.

Related approaches include Sutton and Wandelt (2006) and Sutter et al. (2014), who

use Bayesian inference as well. Those are, however, limited to Gaussian priors and

relatively few pixels, because Gibbs sampling is used.

Another approach to deconvolution has leveraged convex optimization theory, and

in particular, the relatively new field of compressive sensing (Candès et al. 2006). Orig-

inally formulated as the SARA (sparsity averaging) reconstruction algorithm (Carrillo,

McEwen, and Wiaux 2012), this has produced approaches such as PURIFY (Carrillo,

McEwen, and Wiaux 2014) and HyperSARA (Abdulaziz, Dabbech, and Wiaux 2019).

These methods have demonstrated good performance on extended emission, and in

particular, on the data we use for this study (Dabbech et al. 2018). This class of algo-

rithms can be thought of as yielding maximum-a-posterior point estimates of the sky

under a sparsity prior, however recent work by Repetti, Pereyra, and Wiaux (2019)

shows a way to incorporate uncertainty estimates into the approach. These uncer-

tainty estimates are not an uncertainty map for the whole sky brightness distribution

but rather a hypothesis test to assess the discovery significance of single sources. This

approach is based on the assumption that the functionals which need to be optimised

are (log-)convex and has been demonstrated to work on large data sets. One of our

main insights is that noise inference is needed (at least for the data sets which we have

analysed) because otherwise the noise statistics of the data are not correct. Uncertain-

ties which are derived from incorrect error bars on the data cannot be reliable. In our

understanding noise inference would render the optimization problem non-convex.

Cai, Pereyra, andMcEwen (2018) propose a hybrid approach, where compressive sens-

ing is combined with Markov Chain Monte Carlo sampling.

This paper is structured as follows: section 3.2 describes the underlying data model

common to the compared imaging algorithms. Section 3.3 defines the novel resolve

algorithm and specifies the prior assumptions and section 3.4 recapitulates the single-

scale CLEAN and multi-scale CLEAN algorithms. All three algorithms are compared

in section 3.5 by applying them to the same four data sets.

3.2 Measurement model

Astrophysical signals undergo a variety of transformations as they travel from their

source to where they are observed on Earth. We restrict ourselves to an ideal, unpo-

larised phase tracking interferometer, in which case the measurement process obeys
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(e.g., Richard Thompson, Moran, and Swenson Jr 2017):

duvw = nuvw+∬
{(l,m)∈ℝ2∣l2+m2<1}

a(l, m) I (l, m)√
1 − l2 −m2

e2�i[ul+vm+w(1−
√
1−l2−m2)] d(l, m)

(3.1)

where duvw represents the data taken by the interferometer (commonly referred to

as visibilities), nuvw represents an additive noise realization, a(l, m) is the antenna

sensitivity pattern and I (l, m) the true sky brightness distribution. The data space

coordinates (u, v, w) record the relative positions of antenna pairs as the Earth rotates

under the frame of the sky. The coordinates (l, m,
√
1 − l2 −m2) denote the positions

of points on the celestial sphere. The integral goes over the half of the sphere which

is above the horizon. If the array is arranged such that w → 0 or if the field of view

is very small (l2 +m2 → 1), eq. (3.1) reduces to a two-dimensional Fourier transform

of the apparent sky a(l, m) I (l, m). This assumption, referred to as the coplanar array

approximation, is discussed further in section 3.4.

In practice the integral in eq. (3.1) is discretised to allow numerical evaluation. Then,

the measurement model simplifies to:

d = RI + n, (3.2)

where R ∈ Linℝ(ℝ
N ,ℂM ) is a discretization of eq. (3.1), which maps a discretised image

I ∈ ℝ
N to visibilities in ℂ

M , and n ∈ ℂ
M is the noise present in the observation.

Both resolve and wsclean use the software library ducc1 (Distinctly Useful Code

Collection) for evaluating the integral.

Since visibilities consist of an average of a large number of products of antenna

voltages, it can be assumed, by the central limit theorem, that the noise is Gaussian

with diagonal covariance N : n x G (n, N ). Thus, the likelihood probability density is

given by:

(d |I , N ) = G (d − RI , N ) ∶=
1√|2�N | e− 1

2 (d−RI )
†N −1(d−RI ), (3.3)

where † denotes the complex conjugate transpose. For better readability, but also

because it is the quantity which needs to be implemented for resolve, we define the

information Hamiltonian(d |I , N ) ∶= − log P (d |I , N ) (Enßlin, Frommert, and Kitaura

2009). Then,

(d |I , N ) =
1

2
(d − RI )†N −1(d − RI ) + ℎ(N ), (3.4)

where ℎ(N ) is a normalization term constant in I . Many traditional imaging algo-

rithms employ this expression without ℎ(N ) as the data fidelity term which ought to

be minimised.

1https://gitlab.mpcdf.mpg.de/mtr/ducc

38

https://gitlab.mpcdf.mpg.de/mtr/ducc
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We conclude this section with two comments. First, note that eq. (3.4) stores all

information about the measurement device and the data at hand. No specific assump-

tions about the data processing have been made yet. Therefore, eq. (3.4) is the starting

point of both resolve and CLEAN. We call the process of turning eq. (3.4) into an im-

age ‘imaging’ and do not differentiate between ‘imaging’ and ‘deconvolution’. Second,

the process of recovering the true sky brightness distribution from the measured visi-

bilities is an inverse problem. In eq. (3.2), the sky I cannot be computed uniquely from

d and N alone because the Fourier space coverage (commonly called uv-coverage) is

not complete and because of the presence of noise. We may know the noise level N
but we never know the noise realization n. This is why turning data into the quantity

of interest, in our case I , is a non-trivial task. The appearance of uncertainties is a

direct consequence of the non-invertibility of R and the presence of n.

3.3 Resolve

resolve is a Bayesian imaging algorithm for radio interferometers. It is formulated

in the language of information field theory (Enßlin 2018; Enßlin and Frommert 2011;

Enßlin, Frommert, and Kitaura 2009) and was first presented in Junklewitz, Bell, and

Enßlin (2015) and then upgraded in Greiner et al. (2016) and Junklewitz, Bell, Selig, et

al. (2016) and Arras, Knollmüller, et al. (2018). Arras, Frank, Leike, et al. (2019) added

antenna-based direction-independent calibration to resolve such that calibration and

imaging can be performed simultaneously. This paper presents another resolve fea-

ture for the first time: automatic data weighting. Additionally, the diffuse sky model is

updated to a special case of the model presented in Arras, Frank, Haim, et al. (2020a).

The implementation is free software2.

3.3.1 Inference scheme

resolve views radio interferometric imaging as a Bayesian inference problem: it com-

bines a likelihood and a prior probability density to a posterior probability density. We

generalise the likelihood to depend on general model parameters � (previously I and
N ). The likelihood contains all information about the measurement process and the

noise. In contrast, the prior (� ) is a probability density which assigns to every pos-

sible value of the model parameters � a probability which represents the knowledge

on the model parameters before having looked at the data. These two quantities are

combined with a normalization factor (d) to Bayes’ theorem:

(� |d) = (d |� )(� )

(d)
. (3.5)

(� |d) gives the probability for all configurations of themodel parameters after having

looked at the data.

2https://gitlab.mpcdf.mpg.de/ift/resolve
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resolve uses Bayes’ theorem together with the reparameterisation trick (Kingma,

Salimans, and Welling 2015): It is always possible to transform the inference problem

such that the prior density is a standard normal distribution: (� ) = G (� , ). In this

approach, all prior knowledge is formally encoded in the likelihood. Put differently, the

task of defining the inference problem is towrite down a functionwhich takes standard

normal samples as input, transforms them into sensible samples of the quantity of

interest with their assumed prior statistics and finally computes the actual likelihood.

For our imaging purposes � is a roughly 10 million-dimensional vector. Exactly rep-

resenting non-trivial high-dimensional probability densities on computers is virtually

impossible. Therefore, approximation schemes need to be employed. For the applica-

tion at hand, we choose the Metric Gaussian Variational Inference (MGVI, Knollmüller

and Enßlin 2019) implementation in NIFTy (Arras, Baltac, et al. 2019) because it strikes

a balance between computational affordability and expressiveness in the sense that it

is able to capture off-diagonal elements of the posterior uncertainty covariance matrix.

3.3.2 On weighting schemes

CLEAN assumes a certain weighting scheme which induces changes in the noise level.

A weighting scheme is necessary for two reasons: It can be used to reweight by the

density of the uv-coverage to make it effectively uniform which CLEAN needs to per-

form best (see section 3.4). resolve does not need this kind of correction because it

is based on forward modelling and Bayesian statistics: a more densely sampled region

in uv-space leads to more information in this region and not to inconsistencies in the

inference.

Additionally, there exist weighting schemes which further reweight the visibilities

based on the baseline length. This weighting represents the tradeoff between sensi-

tivity (up-weight short baselines) and resolution (uniform weighting). Depending on

the application CLEAN users need to choose between those extremes themselves.

Moreover, we find that short baselines are subject to higher systematic noise. For

the data sets at hand, this systematic noise is up to a factor of 429 higher than the ther-

mal noise level (see fig. 3.8). If the noise variance of the visibilities were correct, that

value would be 1. To CLEAN higher systematic noise is indistinguishable from non-

uniform sampling; to a Bayesian algorithm, which takes the uncertainty information

of the input data seriously, it makes a crucial difference. Therefore, the advanced ver-

sion of resolve presented here assumes that the thermal measurement uncertainties

need to be rescaled by a factor which depends only on the baseline length and which

is correlated with respect to that coordinate. This correction function (or Bayesian

weighting scheme) is learned from the data alongside the actual image. The details on

this approach are described in the next section.

3.3.3 Assumptions and data model

To specify resolve, the standardised likelihood (d |� ) in eq. (3.5) needs to be defined.

In addition to the thermal noise level �th which is generated by the antenna receivers,
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calibrated visibilities may be subject to systematic effects. In order to account for

these the thermal variance is multiplied by a correction factor � which is unknown

and assumed to depend on the baseline length:

� (� (� )) = �th ⋅ �(�
(� )), (3.6)

where � (� ) refers to the part of � which parameterises � . Consequently the noise

standard deviation � itself becomes a variable part of the inference. The sky brightness

distribution I is variable as well (meaning that it depends on � ) and the simulated data

s are given by:

s(� (I )) = ∫ a ⋅ I (� (I ))√
1 − l2 −m2

e2�i[ul+vm+w(1−
√
1−l2−m2)] d(l, m), (3.7)

where � (I ) refers to the part of � which parameterises I and I (� (I )) is the discretised

sky brightness distribution in units Jy/arcsec2.

The remaining task is to specify I (� (I )) and �(� (� )). For the sky brightness distribu-

tion we assume two additive components: a point source component modelled with

a pixel-wise inverse gamma prior (Selig, Vacca, et al. 2015) and a component for dif-

fuse emission. A priori we assume the diffuse emission to be log-normal distributed

with unknown homogeneous and isotropic correlation structure. This is motivated

by the expectation that emission varies over several magnitudes. Furthermore, we as-

sume that the noise correction function � is log-normal distributed since it needs to

be strictly positive and also may vary strongly.

Let F (n)(� ) be a function which maps standard normal distributed parameters � on a

n-dimensional Gaussian random field with periodic boundary conditions and homo-

geneous and isotropic correlation structure (Enßlin 2018). The specific form of F (n)(� )
is explained in section 3.3.4. Then:

I (� (I )) = exp F (2)(� (I )) + (CDF−1InvGamma ◦ CDFNormal)(�
(I )), (3.8)

�(� (� )) = (C ◦ exp) [F (1)(� (� ))] , (3.9)

where ◦ denotes function composition, CDFNormal and CDF
−1
InvGamma refer to the cumu-

lative density function of the standard normal distribution and the inverse cumulative

density function of the Inverse Gamma distribution, respectively, and C is a cropping

operator which returns only the first half of the (one-dimensional) log-normal field.

This is necessary because � is not a periodic quantity and we use Fast Fourier Trans-

forms which assume periodicity. While the diffuse component of the sky brightness

distribution is not periodic either, it is not necessary to apply zero-padding there since

the flux is expected to vanish at the image boundaries. The point sources are restricted

to the locations a priori known to contain point sources.

All in all, the likelihood density is given by:

(d |� (� (� )), s(� (I ))) = |2��̂2|−1e− 1
2 (s−d)

†�̂−2(s−d), (3.10)

(d |� (� (� )), s(� (I ))) = 1

2
(s − d)†�̂−2(s − d) + 2∑

i

log �i + c, (3.11)
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where x̂ denotes a diagonal matrix with x on its diagonal and c is a normalization

constant. The sum goes over all data points and the dependency of � and s on � is

left implicit. The normalization factor in eq. (3.10) is chosen such that eq. (3.10) is

normalised if d is viewed as combination of two sets of real random variables:

d = Re(d) + iIm(d), ∫ (d |� ) dRe(d) dIm(d) = 1. (3.12)

The following two subsections (sections 3.3.4 and 3.3.5) describe the technical details of

the resolve sky model and the sampling procedure. Section 3.4 describes the techni-

cal details of single-scale CLEAN and multi-scale CLEAN. Non-technical readers may

safely skip directly to section 3.4 or even section 3.5.

3.3.4 Correlated field model with unknown correlation structure

The following section closely follows Arras, Frank, Haim, et al. 2020a, Methods section

which derives the correlated field model in a more general context. For reasons of

clarity and comprehensibility, we repeat the derivation here for the specific case at

hand and adopted to the notation used here. The main reason for the complexity of

the model below is that for modelling diffuse emission neither a specific correlation

kernel nor a parametric form for the kernel shall be assumed. Rather, our goal is to

make the correlation kernel part of the inference as well. This reduces the risk of

biasing the end result by choosing a specific kernel as prior.

In order to simplify the notation we drop the indices (I ) and (� ) for this section
and write: F (n) = F (n)(� ). Still the model F (n) is used for both the correction func-

tion � and the diffuse component of the sky brightness distribution while we note

that the domains are one-dimensional and two-dimensional, respectively. In the fol-

lowing, standard normal variables will appear in various places. Therefore, we write

� = (�0, �1,…) and �>n = (�n+1, �n+2,…) where each �i is a collection of standard normal

variables.

The task is to write down a function that takes a standard normal random variable

� as input and returns a realization of a correlated field with unknown homogeneous

and isotropic correlation structure. This means that the two-point correlation function

depends on the distance between the sampling points only:

S = ⟨F (n)(� )(x) F (n)(� )(y)⟩G (� ,)
= f (|x − y |), (3.13)

where ⟨x⟩P denote the expectation value of x over he distribution P . For homoge-

neous and isotropic processes theWiener-Khintchin theorem (Khintchin 1934; Wiener

et al. 1949) states that the two-point correlation function of the process is diago-

nal in Fourier space. Let the n-dimensional discrete Fourier transform be the map

 (n) ∶ Xℎ → X where X is a regular grid space with shape (N1,… , Nn) and pixel sizes
(Δx1,… ,Δxn) and Xℎ its harmonic counterpart: it has the same shape and pixel sizes

((N1Δx1)
−1,… , (NnΔxn)

−1). Define:

F (n)(� ) = offset +  (n) (vol ⋅ A(�>0) ⋅ �0) , (3.14)
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where offset is the (known) mean of the Gaussian random field, ÂÂ† = S in Fourier

basis, vol = ∏i NiΔxi is the total volume of the space and � is a standard normal

random field. The volume factors in the Fourier transform are defined such that the

zero mode in Fourier space is the integral over position space:

x0⋯0 =
N1∑
i1=0

⋯

Nn∑
in=0

(Δx1⋯Δxn ⋅ 
(n)(x)) (3.15)

for all n-dim fields x . Then the set
{
F (n)(� ) ∣ � x G (� , )

}
is a collection of correlated

fields with unknown correlation structure, meaning that A still depends on � . �0 is
defined on that space as well and ‘⋅’ denotes pixel-wise multiplication.

If we could derive a sensible form of the correlation structure A for both the diffuse

emission and the correction function a priori, we could insert it here and infer only

� . However, we are not aware of a method to set the correlation structure by hand

without introducing any biases for a given data set. Therefore, we let the data inform

the correlation structure A as well and set a prior on A. This approach may be viewed

as a hyper parameter search integrated into the inference itself. In the following we

will see that even the parameters needed to model A are inferred from the data. So it

is really a nested hyper parameter search.

The presented model has five hyper parameters. In order to emulate a hyper param-

eter search, we do not set those directly but rather make them part of the inference and

let the algorithm tune them itself. The hyper parameters which are necessarily posi-

tive are modelled with a log-normal prior as generated from standard normal variables

�i via:

LogNormal(�i ;m, s) ∶= exp (m + s̃ �i −
1
2 s̃

2) , (3.16)

s̃ ∶=

√
log(1 + ( s

m)2) , (3.17)

where m and s refer to mean and standard deviation of the log-normal distribution;

the ones which can be positive or negative have a Gaussian prior and are denoted by

Normal(�i ;m, s) ∶= m + s �i . The values for m and s as well as for the other hyper

parameters are summarised in table 3.1.

The zero mode controls the overall diffuse flux scale. Its standard deviation A0 is a

positive quantity and we choose it to be log-normal distributed a priori:

A0⃗(�1) = LogNormal(�1;m1, s1). (3.18)

The non-zero modes k⃗ ≠ 0 control the fluctuations of the random process. In order

to be able to set a prior on the total fluctuations, we define:

A
k⃗
(�>1) =

√
p
k⃗
(�>2)∑

k⃗
p
k⃗
(�>2)

⋅ fluc(�2), for k⃗ ≠ 0, (3.19)

where p
k⃗
is the model for the power spectrum of F (n) up to the multiplicative term

‘fluc’. By this definition we ensure that ‘fluc’ is the point-wise standard deviation
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of the final process: ⟨sxsx⟩ = fluc2 for all x after having subtracted the contribution

from A0⃗. ‘fluc’ is strictly positive and we model it with a log-normal prior: fluc =

LogNormal(�2;m2, s2).

The remaining piece is the actual form of p
k⃗
for k⃗ ≠ 0. The prior knowledge we

want to encode into this model is:

1. Diffuse emission is correlated, meaning that falling power spectra and specifi-

cally p|k⃗| ∼ |k⃗|−s , s > 0 shall be preferred.

2. Periodically repeating patterns in the sky brightness distribution are not ex-

pected or equivalently strong peaks in the power spectrum shall be penalised.

In order to define p
k⃗
in a non-parametric fashion and to represent the above power-

law property, we choose to transform p
k⃗
into double-logarithmic space inwhich power

laws become affine linear functions:

p
k⃗
= eat , with t = log |k⃗|, k⃗ ≠ 0⃗. (3.20)

We choose to model at as an integrated Wiener process, that is a general continuous

random process:

)2t at = �t , (3.21)

where �t is Gaussian distributed. In this form the process is not Markovian and is not

suited to be evaluated as a forward model. Therefore, we track the derivatives bt of at
as degrees of freedom themselves:

)t (atbt) +(0 −1

0 0 )(atbt) = (√asp flex �3
flex �4 ) , (3.22)

where the specific form of the variances on the right-hand side of the equation will be

interpreted below. Subsequently, we will call ‘asp’ asperity and ‘flex’ flexibility. The

solution to eq. (3.22) for bt is a Wiener process. Therefore, at is an integrated Wiener

process for asp = 0. asp > 0 leads to an additional (not integrated) Wiener process on

at . The solution to eq. (3.22) is:

btn = btn−1 + flex
√
Δtn �4 (3.23)

atn = atn−1 +
Δtn
2

(btn + btn−1) + flex

√
1

12
Δt3n + aspΔtn �3 (3.24)

where tn is the nth (discretised) value of t and Δtn = tn − tn−1. This formulation al-

lows us to compute samples of the process at from standard normal inputs �3 and �4.
‘flex’ and ‘asp’ are both positive quantities and are modelled with lognormal priors:

flex = LogNormal(�5;m5, s5) and asp = LogNormal(�6;m6, s6). As can be seen from

eq. (3.22) ‘flex’ controls the overall variance of the integrated Wiener process. The

model is set up such that it produces power spectra which can deviate from a power
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law. ‘asp’ determines the relative strength between the Wiener and the integrated

Wiener process. The limit asp → 0 is well-defined. In this case, at is a pure inte-

grated Wiener process and asp > 0 adds non-smooth parts to it. More intuitively,

this means that vanishing ‘asp’ lead to effectively turn off the non-smooth part of the

power spectrummodel. Then, the generated power spectra can be differentiated twice

on double-logarithmic scale. A non-vanishing ‘asp’ gives the model the possibility to

add small non-smooth structures on top of the smooth power spectrum. Since ‘asp’ is

also variable during the inference process, we choose not to set it to zero a priori since

the algorithm can do it itself if needed.

Finally, we modify the model such that it is possible to set a prior on the average

slope of the integrated Wiener process. This is necessary to encode a preference for

falling spectra. To this end, the difference between the first and the last pixel of the

integrated Wiener process is replaced by a linear component whose slope is ‘avgsl’:

ãti = ati − atn ⋅
ti − t1
tn − t1

+ (ti − t1) ⋅ avgsl, ∀i ∈ {1,… , n} (3.25)

The slope is modelled with a Gaussian prior: avgsl = Normal(�7;m7, s7).
In summary, this defines a model which is able to generate Gaussian random fields

of arbitrary dimension with unknown correlation structure. The random field is as-

sumed to have homogeneous and isotropic correlation structure. The power spectrum

itself is modelled in double-logarithmic space as a mixture of a Wiener process and an

integrated Wiener process with the possibility of specifying the overall slope of the

process. This model is used in its one-dimensional version for the weighting scheme

field � and in its two-dimensional version for the diffuse component of the sky bright-

ness distribution I .

3.3.5 Sampling with variable noise covariance

This section has been written by Reimar Leike.

To find approximate posterior samples, resolve employs theMGVI algorithm (Knollmüller

and Enßlin 2019). This algorithm performs a natural gradient descent to find the min-

imum of:

E(� ) =
1

N

N∑
i=1

(d |� = � + �i) +
1

2
�
†
� , (3.26)

where � is the latent posteriormean and �i are sampleswhich represent the uncertainty

of the posterior. They are drawn as zero centered Gaussian random samples with the

inverse Bayesian Fisher metric as covariance:

�i x G(� ||| 0, [ + ∇� (�, s)
†||� F�,s ∇� (�, s)||�]−1), (3.27)

where∇� (�, s)||� is the Jacobian of s and � as a function of � evaluated at the latentmean

� , and F is the Fisher information metric of the likelihood in terms of the visibility
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s and the noise standard deviation � . These samples from this inverse metric can be

drawn without the need of inverting explicit matrices, by using the conjugate gradient

algorithm. We refer to Knollmüller and Enßlin 2019, discussion around eq. (58) for a

detailed description.

For the computation of the Fisher metric of a complex Gaussian distribution, the

real and imaginary parts of the visibility s are treated individually in order to avoid

ambiguities related to complex vs. real random variables. Using eq. (3.11) we arrive at:

F�,s = ⟨⎛⎜⎜⎝
∇�(d |�, s)

∇Re(s)H (d |�, s)
∇Im(s)H (d |�, s)⎞⎟⎟⎠

⎛⎜⎜⎝
∇�(d |�, s)

∇Re(s)H (d |�, s)
∇Im(s)H (d |�, s)⎞⎟⎟⎠

T

⟩
P (d |�,� )

=
⎛⎜⎜⎝
4�−2 0 0

0 �−2 0

0 0 �−2

⎞⎟⎟⎠ . (3.28)

To draw random variates with this covariance we use normal random variates and

multiply them with the square root of the diagonal of the matrix in eq. (3.28). In the

NIFTy package implementing these operations, this Fisher metric is given as a function

of �−2 instead, which can be obtained from eq. (3.28) by applying the Jacobian )�
)�−2 :

F�−2,s =
⎛⎜⎜⎝(

)�
)�−2 )T 4�−2 ( )�

)�−2 ) 0 0

0 �−2 0

0 0 �−2

⎞⎟⎟⎠
=
⎛⎜⎜⎝
�4 0 0

0 �−2 0

0 0 �−2

⎞⎟⎟⎠ . (3.29)

For computational speed, the real and imaginary parts of the visibilities are combined

into complex floating point numbers where possible.

3.4 Traditional CLEAN imaging algorithms

3.4.1 Single-scale CLEAN

This section has been written by Rick Perley, Landman Bester and me.

This section outlines the main ideas behind the CLEAN algorithm. First, the most

basic variant of CLEAN (Högbom 1974) is described followed by a discussion of addi-

tional approximations thatmake it more efficient (Clark 1980) and amore sophisticated

version of the algorithm which overcomes coplanar array approximation (Schwab and

Cotton 1983).

At its heart, CLEAN is an optimization algorithm which seeks to minimise eq. (3.4).

But since this problem is ill-posed (the operator R†N −1R occurring in eq. (3.4) is not

invertible), a unique minimum does not exist. For a patch of sky consisting purely of
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point sources, one could seek the smallest number of points which would result in the

dirty image when convolved with the PSF.

A practical solution, as formalised by Högbom (1974), involves starting from an

empty sky model and then iteratively adding components to it until the residual image

appears noise-like. More precisely, noting that the residual image equates to the dirty

image at the outset, we proceed by finding the brightest pixel in the residual image.

Then, using the intuition that the dirty image is the true image convolved by the PSF,

we center the PSF at the current brightest pixel, multiply it by the flux value in the pixel

and subtract some fraction of it from the residual image. At the same time, the model

image is updated by adding in the same fraction of the pixel value at the location of the

pixel. This procedure is iterated until a satisfactory solution is found, e.g., when the

residual appears noise-like or its brightest pixel is less than some predetermined value.

This solution loosely corresponds to the smallest number of point sources necessary

to explain the data. The one tunable parameter in the algorithm is the fraction of the

flux of the point source which is added to the model at a time. This parameter is called

loop gain.

This surprisingly simple procedure is so effective that it is still the most commonly

used deconvolution algorithm in radio astronomy. However, it relies on the approxi-

mation

R†N −1R ≈ I PSF ∗, (3.30)

where ∗ denotes convolution and I PSF is an image of the point spread function (PSF),

i.e. the result of applying R†N −1R to an image which has only a unit pixel at its center.

In eq. (3.30), equality only holds when the coplanar array approximation is valid3. This

leads to two alternate forms of the derivative of the likelihood Hamiltonian:

∇I(d |I , N ) = R†N −1 (d − RI ) ≈ ID − I PSF ∗ I , (3.31)

where the latter approximation is exact if the coplanar array approximation is valid

and the primary beam structure is negligible or ignored. For the maximum likelihood

solution, set the right hand side of eq. (3.31) to zero. This leads to the classic notion

that the dirty image is the image convolved by the PSF:

ID = I PSF ∗ I . (3.32)

Especially if the number of image pixels is much smaller than the number of data

points, this allows computation of the gradients in eq. (3.31) very efficiently. The rea-

son for this is that the operator I PSF ∗ can be implemented efficiently using the fast

Fourier transform (FFT), whereas R†N −1R requires a combination of convolutional

gridding (including possible w-term corrections) and the FFT.

The key to the speed of the CLEAN algorithm comes from the intuition provided by

eq. (3.32). During model building the convolution is not performed explicitly, rather

3The PSF is direction-dependent when the array is non-coplanar.
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the PSF is centered on the location of the current pixel and subtracted from the resid-

ual pixelwise. Since point sources can be located right at the edge of the image, the

PSF image needs to be twice the size in both dimensions of the residual image. To save

memory and computational time, Clark (1980) approximated the PSF by a smaller ver-

sion and restricted the regions in which PSF side lobes are subtracted. This is possible

since the PSF side lobes typically fall off fairly rapidly, especially for arrays with good

uv-overage. However, it is paid for by artifacts being added to the model if the approx-

imation is not done carefully. For this reason the Clark approximation is often used

in combination with a CLEAN mask4, the region in which real emission is expected.

Outside the mask boundaries the algorithm is not allowed to allocate components.

However, even with a mask, such aggressive image space approximations inevitably

lead to artifacts. Thus, to prevent artifacts from accumulating, the residual has to be

computed by subtracting the model convolved with the full PSF from the dirty im-

age. This step, which uses an FFT-based convolution, was termed the major cycle to

distinguish it from the less accurate but much faster approximate computation of the

residual termed the minor cycle. Schwab and Cotton (1983) generalised this idea to

use the full measurement operator instead of an FFT-based convolution leading to a

different and more robust form of major cycle.

A major cycle corresponds to an exact evaluation of the gradient using the first of

the two expressions for the gradient in eq. (3.31). It removes artifacts stemming from

incomplete subtraction of PSF side lobes by subtracting the model correctly in visibil-

ity space. In addition, by incorporating w-projection Cornwell, Golap, and Bhatnagar

(2008) or w-stacking Offringa, McKinley, et al. (2014) techniques into the implemen-

tation of the measurement operator, it is possible to compute the gradient without

utilising the coplanar array approximation. Since computing the gradient exactly is

an expensive operation, it should preferably be done as few times as possible. Högbom

CLEAN can be used in combinationwith the Clark approximation to addmultiple com-

ponents to the model while keeping track of the approximate gradient. This is called

the minor cycle. Eventually, the current model is confronted with the full data using

the exact expression for the gradient and the procedure is repeated until some conver-

gence criteria are met. Since new regions of emission are uncovered as the corrupting

effects of the brightest sources are removed, dynamic masking strategies, in which the

mask is adapted from one major cycle to the next, are often employed.

The criterion at which to stop the minor cycle and perform another exact evaluation

of the gradient affects both the computational cost and the quality of the final result.

Careful user input is often required to balance the tradeoff between these two factors.

Because of the convolutional nature of the problem, the level of artifacts introduced

by exploiting image space approximations is proportional to the brightest pixel in the

residual image. Thus, running the minor cycle for too long adds artifacts to the model.

In principle it is possible to correct for these artifacts in subsequent iterations, but in

practice this is potentially unstable. As convergence criterion for the minor loop, a

4Note that CLEANmasks are not only used to limit deconvolution artifacts but also to preclude possible
calibration artifacts, a topic that is beyond the scope of the current discussion.
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parameter called major loop gain or peak factor is defined: iterate minor loops until

the residual has decreased by the peak factor. A sensible choice depends on the field

of view and the degree of non-coplanarity of the array. Typical values are around 0.15.

In AIPS, the software we used for our single-scale CLEAN maps, a new major cycle

i + 1 starts if the flux of the next clean component is smaller than mi(1 + ai), a current
map specific reference flux mi times a cycle dependent factor 1 + ai , which is stirred

according to the following heuristic. The starting value for this factor, a0, depends on
the ratio � = r0−m0

m0
where ri andmi are the peak and lowest flux of the absolute residual

image in the ith major cycle, respectively, and is defined as:

a0 =

⎧⎪⎪⎨⎪⎪⎩
0.05 ⋅ � ∶ � ≥ 3

0.02 ⋅ � ∶ 1 ≤ � < 3

0.01 ⋅ � ∶ � < 1

(3.33)

Then, a increases at each iteration: ai+1 = ai+n
−1
i (mi

ri )f where ni is the current number

of CLEAN components and f is a free parameter. Larger f s let ai decrease more slowly.

Especially if extended emission is present, model images produced by CLEAN are

so far from realistic representatives of the true sky that astronomers can’t work with

them directly. They are the best fit to the data under the implicit prior imposed by

CLEAN but fail miserably at capturing extended source morphology or frequency

spectra. Therefore, the results produced by CLEAN are interpreted with the help of the

so-called restored image. The first step in creating the restored image is to convolve

the model image with the CLEAN beam, a Gaussian that approximates the primary

lobe of the PSF. This represents the intrinsic resolution of the instrument which is

assumed to be constant across the image. Next, in an attempt to account for any unde-

convolved flux and set the noise floor for the observation, the residual image is added

to the model convolved with the PSF. The noise floor, which is taken to be the RMS of

the resulting image in regions devoid of structure, is then supposed to give an estimate

of the uncertainty in each pixel.

All in all, careful user input is required to successfully use CLEAN for imaging.

Fortunately the tunable parameters are actually quite easy to set once the user has

developed some intuition for them. However, the model images produced by single-

scale CLEAN are completely unphysical when there are extended sources in the field.

In extreme cases, single-scale CLEAN fails to fully deconvolve the faint diffuse emis-

sion in the field and can lead to imaging artifacts. A possible explanation for this is

that, at each iteration, single-scale CLEAN tries to minimise the objective function by

interpolating residual visibility amplitudes with a constant function. This limitation

has been partially addressed by the multi-scale variants of the CLEAN algorithm.

3.4.2 Multi-scale CLEAN

This section has been written by Landman Bester and me.

Multi-scale CLEAN (Cornwell 2008; Offringa and Smirnov 2017; Rau and Cornwell

2011) is an extension of single-scale CLEAN which imposes sparsity in a dictionary

49



3 Imaging with automatic weighting and detailed comparison to CLEAN

of functions, as opposed to just the delta function. Most implementations use a pre-

determined number of either circular Gaussian components or the tapered quadratic

function (Cornwell 2008) in addition to the delta function. While this model is still not

a physical representation of the sky, diffuse structures within the field of view aremore

faithfully represented. Most multi-scale CLEAN implementations share the major and

minor cycle structure of Cotton-Schwab CLEAN with the major cycle implemented in

exactly the same way. However, the minor cycle differs between the many variants of

multi-scale CLEAN. The implementation used for the current comparison is described

in detail in Offringa and Smirnov (2017) and implemented in the wsclean software

package (Offringa, McKinley, et al. 2014).

The starting point for wsclean’s multi-scale algorithm is to select the size of the

scale kernels. While this can be specified manually, wsclean also provides a feature to

determine them automatically from the uv-coverage of the observation. In this case,

the first scale always corresponds to the delta function kernel scale. The second scale

is then selected as the full width window of the tapered quadratic function which is

four times larger than the smallest theoretical scale in the image (determined from

the maximum baseline). The size of the corresponding Gaussian scale kernels is set

to approximately match the extent of the tapered quadratic function. As noted in

Offringa and Smirnov (2017), the factor of four was empirically determined to work

well in practice. If smaller scales are used, point sources are sometimes represented

with this scale instead of the delta scale. Each subsequent scale then has double the

width of the previous one and scales are added until they no longer fit into the image

or until some predetermined maximum size is reached.

Once the scales have been selected, the algorithm identifies the dominant scale at

each iteration. This is achieved by convolving the residual image with each Gaussian

scale kernel and comparing the peaks in the resulting convolved images subject to a

scale bias function (conceptually similar to matched filtering). The scale bias function

(see Offringa and Smirnov (2017) for full details) can be used to balance the selection of

large and small scales. It introduces a tunable parameter to the algorithm, viz. the scale

bias � . With the dominant scale identified, the model is updated with a component

corresponding to this scale at the location of the maximum in the convolved residual

image. As with single-scale CLEAN, the model is not updated with the full flux in the

pixel but only some fraction thereof. The exact fraction is scale-dependent (see again

Offringa and Smirnov (2017) for details). To keep track of the approximate residual,

the PSF convolved with the scale kernel multiplied by this same fraction is subtracted

from the residual image.

The additional convolutions required to determine the dominant scale at each it-

eration introduce an additional computational cost compared to single-scale CLEAN.

For this reason, wsclean provides the option of running an additional sub-minor loop

which fixes the dominant scale until the peak in the scale convolved image decreases

by some pre-specified fraction (or for a fixed number of iterations). This significantly

decreases the computational cost of the algorithm but it is still more expensive than

single-scale CLEAN. While we will not delve into the exact details of how the sub-

minor loop is implemented, we will note that it introduces yet another tunable param-
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eter to the algorithm which is similar to the peak factor of Cotton-Schwab CLEAN.

This parameter, called multiscale-gain in wsclean, determines how long a specific

scale should be CLEANed before re-determining the dominant scale in the approx-

imate residual. Importantly, the sub-minor loop also makes use of a Clark-like ap-

proximation to restrict regions in which peak finding and PSF subtraction should be

performed. This improves both the speed and the quality of the reconstructed images.

While we have not discussed all the details behind the multi-scale CLEAN imple-

mentation in wsclean, our discussion should make it clear that it introduces additional

tunable parameters to the algorithm. Most of the time the algorithm performs reason-

ably well with these parameters left to their defaults. However, some degree of tuning

and manual inspection is sometimes required, especially for fields with complicated

morphologies.

3.4.3 Motivation to improve CLEAN

Classical radio interferometric imaging suffers from a variety of problems. Two of

these problems stand out in particular: the lack of reliable uncertainty estimates and

the unphysical nature of model images produced by CLEAN. As we discuss below,

CLEAN forces astronomers to conflate these two issues in a way that makes it very

difficult to derive robust scientific conclusions in the sense that it is guaranteed that

two observers would convert the same data set into the same sky image and that mean-

ingful statistical uncertainty information would be provided by the algorithm.

Astronomers need to account for uncertainties in both flux and position and these

two notions of uncertainty are correlated in a non-trivial way that is determined by

both the uv-coverage and the signal-to-noise ratio of the observation. However, model

images produced by CLEAN are not representative of the true flux distribution of the

sky and comewithout any uncertainty estimates. This can be attributed to the fact that

CLEAN is not based on statistical theory but rather is a heuristic that tries to represent

flux in form of pre-determined basis functions (delta peaks, Gaussians) via flux-greedy

algorithms. As a result, astronomers turn to the restored image (see section 3.4.1) in-

stead of relying directly on the model produced by CLEAN. Compared to the model

image, the restored image has two favourable qualities viz. it accounts for the (assumed

constant) intrinsic instrumental resolution and it displays structures in the image rel-

ative to the noise floor of the observation. These two aspects are supposed to roughly

account for uncertainties in position and flux respectively. However, besides the fact

that adding the residuals back in introduces structures in the image which are not real,

and that the restored image has inconsistent units5, this is completely unsatisfactory

from a statistical point of view. Firstly, the restored image completely neglects the

correlation between uncertainties in flux and position, information which is crucial to

determine whether a discovery is real or not. In fact, since the act of convolving the

model image by the CLEAN beam assumes that the resolution is constant across the

image, whereas it is known that super-resolution of high signal-to-noise structures is

5The residual has different units from the model convolved by the CLEAN beam.
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possible, the restored image paints a rather pessimistic picture of the capabilities of

radio interferometers. Secondly, both the ‘noise in the image’ and the size of the clean

beam depend on the weighting scheme which has been used. It is difficult to attach

any degree of confidence to the results since the weighting scheme is a free parameter

of CLEAN. Dabbech et al. 2018, Figure 1 and 2) shows the impact of different weight-

ing schemes on the final image. This limitation is borne out quite explicitly in the

data set chosen for the current comparison in section 3.5. Furthermore, since CLEAN

outputs images which contain regions with unphysical negative flux6, astronomers

need to assess for themselves which parts of the image to trust in the first place. The

above limitations provide opportunities for speculative scientific conclusions which

cannot be backed up by statistically rigorous arguments. They also make it impossible

to quantitatively compare images from radio interferometers processed by CLEAN to,

e.g., astrophysical simulations.

In addition to the above, CLEAN relies on user input which involves the careful

construction of masks, selecting an appropriate weighting scheme and setting hyper-

parameters such as loop gains and stopping criteria etc. This results in an effective

prior: it is known that CLEAN imposes some measure of sparsity in the chosen dictio-

nary of functions, but it is unclear how to write down the explicit form of the effective

prior. The problem is exacerbated by CLEAN using a form of backward modelling

which does not perform well when there are very little data available or when the

uv-coverage is highly non-uniform, as is the case for typical VLBI observations. Thus,

the way that CLEAN is implemented is fundamentally incompatible with Bayesian

inference making it impossible to infer, or indeed marginalise over, optimal values

for the parameters it requires. This is clearly problematic as far as scientific rigour is

concerned.

This illustrates that the notions of uncertainty, resolution and sensitivity are tightly

coupled concepts when interpreting images produced by radio interferometers. As

such it is not sufficient to apply a post-processing step such as making the restored

image to derive scientific conclusions from radio maps. In fact, doing so potentially

limits the usefulness of interferometric data because it eliminates the possibility of

super-resolution at the outset. This is a result of incorrect prior specification and not

properly accounting for the interaction between the data fidelity and the prior term

during imaging. Obtaining sensible posterior estimates requires combining the lin-

ear Fourier measurement taken by the interferometer with a prior which respects the

physics of the underlying problem, such as enforcing positivity in the spatial domain

for example. To this end, resolve approximates the posterior withMGVI, an algorithm

that can track non-trivial cross-correlations. Instead of providing a point estimate with

associated error bars, MGVI provides samples from the approximate posterior which

can then be used to compute expectation values of any derived quantities while ac-

counting for cross correlations between parameters.

In summary, the absence of proper uncertainty information, potential negativity

6Note that negative flux is also an artifact of discretising the measurement operator eq. (3.2) since the
response of a point source situated exactly in between two pixels is a sinc function.
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� mean � sd I mean I sd

Offset 0 — 21 —

[1] Zero mode variance 2 2 1 0.1

[2] Fluctuations 2 2 5 1

[5] Flexibility 1.2 0.4 1.2 0.4

[6] Asperity 0.2 0.2 0.2 0.2

[7] Average slope -2 0.5 -2 0.5

Table 3.1: Hyper parameters for resolve runs. The numbers in the brackets refer to the index
of the excitation vector � to which the specified mean m and standard deviation s

belong, see, e.g., eq. (3.18).

of flux, the arbitrariness of the weighting scheme, problems with little data and non-

uniform uv-coverage and loss of resolution by convolving with the CLEAN beam il-

lustrate the necessity to improve beyond the CLEAN-based algorithms.

3.5 Comparison of results from resolve and CLEAN

Here we compare the performance of the three imaging approaches presented in sec-

tions 3.3 and 3.4. To this end we use VLA observations of Cygnus A which have been

flagged and calibrated with standard methods. For more details on the data reduction

process refer to Sebokolodi et al. (2020). We use single-channel data sets at the frequen-

cies 2052, 4811, 8427 and 13360 MHz. The CLEANmaps have been converted from the

unit Jy/beam to Jy/arcsec2 bymultiplicationwith the half-width-half-maximum area of

the CLEAN beam. All data and the results of the three different methods are archived

Arras, Bester, et al. (2020b)7.

3.5.1 Configuration

All values for the hyper parameters of resolve are summarised in table 3.1. The re-

solve parameters separate into those for the sky brightness distribution and those for

the Bayesian weighting scheme. For the latter, they are chosen such that the model

has much flexibility to adopt to the exact situation. Because � provides a multiplica-

tive correction to the noise levels, the offset is set to zero (which becomes one, i.e.

no correction, after exponentiation). The zero mode standard deviation is set to a

high value because the overall noise level might be completely different. Also the

fluctuations have a large standard deviation such that the algorithm can easily tune

that parameter. A value of 2 means that we expect the correction function � to vary

within one standard deviation two e-folds up and down. The flexibility and asperity

parameters of the power spectrum ‘flex’ and ‘asp’ are set such that the algorithm can

pick up non-trivial values but not too extreme ones here. The average slope of the

7https://doi.org/10.5281/zenodo.4267057

53

https://doi.org/10.5281/zenodo.4267057


3 Imaging with automatic weighting and detailed comparison to CLEAN

power spectrum is chosen to vary around -2. In other words, the Bayesian weighting

scheme � depends in a differentiable fashion on the baseline length a priori. A rela-

tively high a priori standard deviation of 0.4 enables the algorithm to tune the slope

to the appropriate value. The most important aspect of the hyper parameter setting

is that the resulting prior has enough variance to capture the actual Bayesian weight-

ing scheme and sky brightness distribution. As discussed above the model is set up

in such a way that it can adjust its hyper parameters on its own. All parameters dis-

cussed in this section are really hyper parameters of that hyper parameter search. For

the sky brightness distribution we know a priori that typical flux values in regions

with emission vary on scales of 108 and 1012 Jy/sr. Therefore a sensible offset for the

Gaussian field is log(109) ≈ 20. A priori we let that value vary two e-folds up and down

in one standard deviation which means that within three standard deviations typical

flux values between ≈ 106 and ≈ 1011 Jy/sr can be reached. However, as always we

make the standard deviations themselves a parameter and choose 2 for the standard

deviation of the standard deviation of the zero mode which makes virtually all offsets

possible. As positions for the point sources modelled with an inverse-gamma prior

(see eq. (3.8)) we assume a point source at the phase center and a second one located

at (0.7, −0.44) arcsec relative to the phase center (Cygnus A-2, Perley et al. 2017).

Apart from the hyper parameters we need to specify the minimization procedure

for resolve (Knollmüller and Enßlin 2019). In order to arrive at a sensible starting

position for the actual inference we proceed in the following steps:

1. Compute the maximum-a-posterior solution assuming the error bars provided

by the telescope. This means that we set � = 1 in eq. (3.6).

2. Use five mirrored parameter samples � , as generated by MGVI, to approximate

the Metric Gaussian Kullback-Leibler divergence and solve the inference prob-

lem with respect to � (� ) only. In other words, we find a good weighting scheme

� conditional to the sky brightness distribution found before.

3. Solve the MGVI inference problem for the sky brightness distribution condi-

tional to the found weighting scheme using five mirrored samples.

4. Solve the full inference problem for the sky brightness distribution and the

Bayesian weighting scheme simultaneously.

5. Terminate after the second iteration.

6. Flag all data points which are more than 6� away from the model data taking

the Bayesian weighting scheme into account. Restart from step 1.

In all cases, we approximate the Metric Gaussian Kullback-Leibler divergence using

five mirrored samples. These samples are drawn with the help of conjugate gradient

runs (see section 3.3.5). These conjugate gradients are declared converged when the

conjugate gradient energy does not change by more than 0.1 three times in a row. As

an upper limit for the maximum number of conjugate gradient steps we choose 2000.
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3.5 Comparison of results from resolve and CLEAN

Parameter Value

j 20

size 4096 3072

padding 2.0

scale 0.04asec

weight briggs 0

gain 0.1

mgain 0.8

niter 1000000

nmiter 10

multiscale-gain 0.1

auto-mask 2.0

Table 3.2: Common hyper parameters for multi-scale CLEAN runs. The parameters which
differ for the four runs are described in the main text. Additionally, the options
multiscale, no-small-inversion, use-wgridder, local-rms have been used.

Not iterating the conjugate gradient algorithm until convergence (which is not com-

putationally feasible) does not introduce biases in the inference but rather increases

the posterior variance as discussed in Knollmüller and Enßlin (2019).

The multi-scale CLEAN results produced for the current comparison were obtained

by first doing an imaging run with uniform weighting down to a fairly low threshold

and using wsclean’s auto-masking feature. The resulting images were used to define

an external mask containing themost prominent features. A second imaging run down

to a deeper threshold was then performed using Briggs weighting with a robustness

factor of -1. These imageswere then used to refine themask and to flag obvious outliers

in the data. The outliers were identified by computing whitened residual visibilities

and flagging all data points with whitened residual visibility amplitudes larger than

five time the global average. On average this resulted in about 1% of the data being

flagged which is more than expected from the noise statistics. This could indicate

that a small amount of bad data slipped through the initial pre-processing steps (e.g.,

flagging and calibration). The final imaging run was then performed using the refined

mask and Briggsweightingwith a robustness factor of zero. While the procedure could

be refined further, we found that doing so results in diminishing returns in terms of

improving the final result.

Thewsclean settings reported in table 3.2 are common to all the data sets for the final

multi-scale CLEAN imaging run. The image size was set so that the PSF for the 13 GHz

data set has just more than five pixels across the FWHM of the primary lobe, a rule of

thumb that is commonly employed to set the required pixel sizes for an observation.

Twenty threads are employed to approximately match the computational resources

given to resolve. In addition to auto-masking which is set to kick in when the peak

of the residual is approximately twice the value of the RMS in the image, a manual

FITS mask was supplied using the fits-mask option. The masks for the different
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Figure 3.1: Overview of imaging results. The first column shows the resolve posterior mean,
the middle and last column show single-scale CLEAN multi-scale CLEAN results,
respectively. The colour bar has units Jy/arcsec2. Negative flux regions are dis-
played in white. See also different scaled version in fig. 3.14.

data sets are shown in fig. 3.9. In all cases the scales were automatically selected.

The only parameter that differs between data sets is the threshold at which to stop

CLEANing, specified through the threshold parameter in wsclean. These were set

to 0.002, 0.0007, 0.0003 and 0.0002 for the 2, 4, 8 and 13 GHz data sets, respectively,

which approximately matches the noise floor in the final restored images. A value

of zero for the Briggs robustness factor was chosen as it usually gives a fairly good

tradeoff between sensitivity and resolution. However, as discussed in section 3.4.3,

the need to specify the weighting scheme manually is one of the main limitations of

CLEAN. This is especially evident in the 8 GHz observation where the Cygnus A-2 is

just visible using a robustness factor of zero whereas it is clearly visible in the images

with a robustness factor on minus one. Cygnus A-2 is completely lost when using

natural weighting, which is where the interferometer is most sensitive to faint diffuse

structures.

For single-scale CLEAN, the default settings as implemented in AIPS are used.

3.5.2 Analysis of results

Figure 3.1 shows a summary of the results of the twelve runs: four frequencies im-

aged with three different algorithms. The units of the CLEAN images have been

converted to Jy/arcsec2 (by dividing the CLEAN output in Jy/beam by the beam area
�

4 log 2 ⋅BMAJ⋅BMIN). Then the pixel values of all images can be directly compared to each

other. As discussed above, the output of resolve is not a single image but rather a col-

lection of posterior samples. For the purpose of comparison we display the pixel-wise
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3.5 Comparison of results from resolve and CLEAN

Frequency [GHz] Source 0 [mJy] Source 1 [mJy]

2.052 585 ± 7 17 ± 3

4.811 1166.3 ± 0.9 5.5 ± 0.8
8.427 1440.4 ± 0.7 3.5 ± 0.2
13.36 1601.49 ± 0.03 4.5 ± 0.1

Table 3.3: resolve point source fluxes. Source 0 refers to the central source Cygnus A and
Source 1 to the fainter secondary source Cygnus A-2. The standard deviation is
computed from the resolve posterior samples and does not account for calibration
uncertainties and other effects, see main text.
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Figure 3.2: Relative pixel-wise posterior uncertainty of resolve runs. All plots are clipped to
0.7 from above and the two pixels with point sources are ignored in determining
the colour bar. Their uncertainty is reported in table 3.3.

posterior mean.

Figure 3.1 shows that the resolve maps do not feature any negative flux regions.

Since this was a strict prior assumption for the algorithm, this is the expected result.

The single-scale CLEAN and the multi-scale CLEAN have many negative flux regions

where no (bright) sources are located. Otherwise, the results of these two algorithms

are similar. Additionally, figs. 3.2 and 3.10 show the pixel-wise posterior uncertainty

of the resolve runs. These figures do not contain the whole uncertainty information

which is stored in the posterior samples. The posterior distribution for each pixel

is not Gaussian and therefore the higher moments are non-trivial. Additionally, the

cross-correlation between the pixels cannot be recovered from the pixel-wise posterior

uncertainty.

In order to investigate the results further, figs. 3.3 to 3.5 show the western lobe of

the 13.36 GHz observation only and fig. 3.6 shows the bottom left hot spot of all obser-

vations. In the CLEAN results it can be seen that the resolution improves significantly
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3 Imaging with automatic weighting and detailed comparison to CLEAN

Figure 3.3: Zoomed-in version of the single-scale CLEAN reconstruction of the 13.36 GHz
data set focusing on the western lobe and rotated conter-clockwise by 90 degrees.
The colour bar is the same as in fig. 3.1. Negative flux regions have been set to
lower limit of the colour map.
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3.5 Comparison of results from resolve and CLEAN

Figure 3.4: Same as fig. 3.3, just with multi-scale CLEAN reconstruction.
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3 Imaging with automatic weighting and detailed comparison to CLEAN

Figure 3.5: Same as fig. 3.3, just with resolve posterior mean.
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Figure 3.6: Overview of imaging results. Zoomed-in version of fig. 3.1 focusing on the Eastern
hot spot.

when going to higher frequencies. This is due to the natural increase of an interfer-

ometer: the higher the observation frequency, the higher the intrinsic resolution. The

same is true for the resolve maps. However, resolve also achieves higher resolu-

tion than CLEAN at lower frequencies. By eye, the resolution of the resolve 4.8 GHz
map is comparable to the CLEAN 13.4 GHz map. This phenomenon is called super-

resolution and is possible by the non-trivial interaction between likelihood and prior:

by adding the constraint that the sky brightness distribution is positive, information

about Fourier modes which correspond to baselines longer than the actual maximum

baseline can be inferred from the data. The high resolution features that turn up at

lower frequencies can be validated at the higher frequency CLEAN maps. This is pos-

sible because the synchrotron radiation which is responsible for the emission has a

very broad frequency spectrum. Unless there are internal or external absorption ef-

fects which are not believed to be happening here, there cannot be major differences

in the brightness over frequency ratios of a few. Additionally, it can be observed that

the ripples in the fainter regions next to the hotspot which are present in both CLEAN

reconstructions are not present in the resolve one. This is rooted in the fact that re-

solve can take the noise level properly into account and let the prior smooth within

the regions which are less informed by the data because the flux level is lower.

Figure 3.7 shows a direct comparison of the multi-scale CLEAN result and posterior

samples of resolve. It can be observed that the resolve samples significantly devi-

ate from the multi-scale CLEAN map. In addition, it becomes apparent that resolve

assigns significant flux in regions which have negative flux in the single-scale CLEAN

result.

Figure 3.8 displays posterior samples of the Bayesian weighting scheme. It can be

observed that the prior samples have higher variance and show a huge variety of cor-
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3.5 Comparison of results from resolve and CLEAN

relation structures. This shows that the prior is agnostic enough not to bias the result

in a specific direction. Generally, the correction factor decreases with baseline length.

Its minimum and maximum values are 0.4 and 429, respectively, across all four data

sets and all posterior samples. That means that the actual noise level of some visibili-

ties is 429 times higher than promised by the SIGMA column of the measurement set.

For medium to long baseline lengths the correction factor takes values between ≈ 0.5
and ≈ 1. A relative factor of 0.5 could originate from different conventions regarding

the covariance of a complex Gaussian probability density. For the 2 GHz data set the

correction factor remains at values ≈ 8 even at longer baseline lengths. So this data set

seems to have an overall higher noise level than specified. For long baseline lengths the

noise level increases consistently. This effect may be explained by inconsistencies in

the data due to pointing errors. Especially at high frequencies, Cygnus A has compa-

rable angular size to the primary beam. Particularly near the zenith (Cygnus A transits

8 degrees from the zenith), the VLA antennas do not point accurately. The errors in-

duces by this cannot be modeled by antenna-based calibration solutions. Therefore,

pointing errors introduce inconsistencies in the data. An additional source of inconsis-

tencies in the data might be inconsistent calibration solutions which have been intro-

duced in the data during the self-calibration procedure in which negative components

in the sky brightness distribution have been used. An approach similar to Arras, Frank,

Leike, et al. (2019) may be able to compute consistent calibration solutions in the first

place.

In the following, we briefly discuss some of the materials that can be found in sec-

tion 3.8. Figure 3.11 displays residual maps as they are computed by wsclean. Residual

maps are defined by the r.h.s. of eq. (3.31) divided by trN −1. It is uncommon to plot

the residual image based on the restored image in the CLEAN framework. However, if

the science-ready image is considered to be the restored image, it is vitally important

to actually compute the residuals from it and not from a different image. It can be

observed that the multi-scale CLEAN model image fits the data very well whereas the

restored multi-scale CLEAN image performs significantly worse.

From a signal reconstruction point of view these residual maps have to be takenwith

a grain of salt, since, e.g., a non-uniform uv-coverage biases the visual appearance of

the maps and overfitting cannot be detected. Therefore, figs. 3.12 and 3.13 show his-

tograms in data space for all three methods of the (posterior) residuals weighted with

the resolveweights � (� (� )) and the wsclean imaging weights, respectively. For better

comparison, the residuals for the multi-scale CLEANmodel image are included. These

histograms show how consistent the final images and the original data are. For this

comparison the error bars on the data are needed. As stated above the error bars which

come with the data and represent the thermal noise cannot be trusted. Therefore, we

compute the noise-weighted residuals based on the error bars which resolve infers

on-the-fly and the error bars (also called weighting scheme) which wsclean uses for

our multi-scale CLEAN reconstructions. If the assumed data model is able to represent

the true sky brightness distribution and its measurement the noise-weighted residu-

als should be standard-normal distributed. This expected distribution is indicated in

figs. 3.12 and 3.13 with dashed black lines. Table 3.4 provides the reduced � 2 values

63



3 Imaging with automatic weighting and detailed comparison to CLEAN

for all histograms in figs. 3.12 and 3.13. If the noise-weighted residuals are standard-

normal distributed, � 2reduced = 1. The reduced � 2 values of the resolve posterior with
Bayesian weighting are all close to 1. This means that the error bars indeed can be

rescaled by a baseline-length-dependent factor and that resolve is successful in do-

ing so. The multi-scale CLEANmodel image overfits the data according to the wsclean

weighting scheme but achieves values close to 1 using the Bayesian weighting scheme

as well. In contrast the reduced � 2 values for the restored images produced by single-

scale CLEAN and multi-scale CLEAN exceed all sensible values for both weighting

schemes. One may argue that an image which comes with reduced � 2 values of > 100

does not have much in common with the original data. All in all, the residuals show

that the resolve and the CLEAN reconstructions differ significantly already on the

data level.

For inspecting low flux areas fig. 3.14 displays a saturated version of fig. 3.1 and

fig. 3.15 compares the multi-scale CLEAN result with the resolve posterior mean for

the 2.4 GHz data set. It can be observed that all three algorithms pick up the faint

emission. For resolve, the three higher frequency data reconstructions exhibit regions

next to the main lobes which are very faint. It looks like resolve tries to make these

regions negative which is not possible due to the prior. For the 13.4 GHz data set, even
the central regions features such a dip. All this can be explained by inconsistencies

described above as well.

Table 3.3 summarises the fluxes of the two point sources including their posterior

standard deviation. Most probably, the provided uncertainty underestimates the true

uncertainty for several reasons: First, these uncertainties are conditional to the knowl-

edge that two point sources are located at the given positions. Therefore, the infor-

mation needed to determine the position of the point sources is not included in the

error bars. Second, inconsistencies in the data induced by the calibration can lead to

underestimating posterior variance because contradictory data points pull with strong

force in opposite directions in the likelihood during the inference. This results in too

little posterior variance. Third, MGVI only provides an lower bound on the true uncer-

tainty but still its estimates are found to be largely sensible as shown in Knollmüller

and Enßlin (2019).

Generally, it can be observed that the posterior standard deviation decreases with

increasing frequency. This is expected since interferometers with effectively longer

baselines are more sensitive to point sources. Our results from table 3.3 can be com-

pared to Perley et al. 2017, Table 1. At 8.5 GHz Perley et al. (2017) reports 1368 mJy

for the central source and (4.15 ± 0.35) mJy for Cygnus A-2. At 13 GHz they report

1440 mJy and (4.86 ± 0.17) mJy. These measurements have been taken in July 2015

whereas our measurements are from Nov 30 and Dec 5, 2015. The comparison is still

valid since Perley et al. (2017) showed that the sources are not significantly variable on

the scale of one year. We can observe that all flux values are in the right ballpark and

the fluxes of Cygnus A-2 agree within 2� . The fluxes for the central source cannot be
compared well because Perley et al. (2017) do not provide uncertainties on it. However,

taking only the resolve uncertainties into account, the flux values differ significantly.

For the lower two frequencies no data are available in Perley et al. (2017) because the
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sources are not resolved by CLEAN. The resolve results give the posterior knowledge

on the secondary source given its position. In this way, statements about the flux of

Cygnus A-2 at low frequencies can be made even though it is not resolved. Thus, we

can claim the discovery of Cygnus A-2 given its position on a 3� and 7� level for the

2.1 and 4.8 GHz observations, respectively.

3.5.3 Computational aspects

Each resolve run needs ≈ 500 000 evaluations of the response and ≈ 400 000 evalua-

tions of its adjoint. That makes the response part of the imaging algorithm a factor of

≈ 50 000 more expensive compared to CLEAN approaches. The good news is that the

implementation of the radio response eq. (3.7) in the package ducc scales well with

the number of data points and that the response calls can be parallelised over the sum

in eq. (3.26).

The resolve runs have been performed on a single node with five MPI tasks, each

of which needs ≈ 2.2 GB main memory. Each MPI task uses four threads for the par-

allelization of the radio response and the Fast Fourier Transforms. The wall time for

each resolve run is between 80 and 90 h.

Single-scale CLEAN takes below 30 minutes for imaging each channel on a modern

laptop. Thus, resolve is approximately 180 times slower that single-scale CLEAN

here. This comparison does not include that the resolve had five times the number

of CPUs available.

Multi-scale CLEAN takes about 2 hours during the final round of imaging on the

13 GHz data set. This number does not account for the time taken during the initial

rounds of imaging used to tune the hyper parameters and construct the mask which

can be a time-consuming process. However, it should be kept in mind that CLEAN

scales much better when the dimensionality of the image is much smaller than that

of the data, which is not the case here. This is because CLEAN only requires about

10–30 applications of the full measurement operator and its adjoint, even including all

preprocessing steps. Taking 90 min for the average multi-scale CLEAN run, resolve

is 60 times slower than multi-scale CLEAN.

3.6 Conclusions

This paper compares the output of two algorithms traditionally applied in the ra-

dio interferometry community (single-scale CLEAN and multi-scale CLEAN) with a

Bayesian approach to imaging called resolve. We demonstrate that resolve over-

comes a variety of problems present in traditional imaging: The sky brightness distri-

bution is a strictly positive quantity, the algorithm quantifies the uncertainty on the

sky brightness distribution, and theweighting scheme is determined non-parametrically.

Additionally, resolve provides varying resolution depending on the position on the

sky into account, which enables super-resolution. We find that single-scale CLEAN

and multi-scale CLEAN give similar results. In contrast, resolve produces images

with higher resolution: the 4.8 GHz map has comparable resolution to the 13.4 GHz
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Figure 3.9: Masks used for multi-scale CLEAN runs.

CLEAN maps. These advantages are at the cost of additional computational time, in

our cases ≈ 90 h wall time on a single node.

Future workmay extend resolve tomulti-frequency reconstructions where the cor-

relation structure in frequency axis is taken into account as well in order to increase

resolution. Also, direction-independent and antenna-based calibration may be inte-

grated into resolve. Finally, the prior on the sky brightness distribution may be ex-

tended to deal with polarization data as well.
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two pixels with point sources are ignored in determining the colour bar.
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multi-scale CLEAN model image with wsclean weighting. All colour bars have
the unit Jy and are defined to be symmetric around zero with maximum five
times the median of the absolute values of each image individually. The sign of
the residual maps is determined by the r.h.s. of eq. (3.31).
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Figure 3.12: Histogram of (posterior) residuals weighted with � (� (� )), i.e. both the thermal
noise and the Bayesian weighting scheme. Blue and orange bars denote real and
imaginary parts, respectively. The black dotted line displays a standard normal
Gaussian distribution scaled to the number of data points. Formulti-scale CLEAN
the residuals for both the model and restored image are shown. Histgram counts
outside the displayed range are shown in the left- and rightmost bin.

Data set Weighting Resolve msCLEAN model msCLEAN ssCLEAN

2052-2MHz Bayesian 1.4, 1.1 0.5, 0.5 210.3, 207.7 379.9, 390.7
wsclean 3.6, 3.6 0.1, 0.1 79.7, 78.6 119.2, 120.8

4811-8MHz Bayesian 1.6, 1.4 0.7, 0.7 79.2, 49.1 110.8, 84.3
wsclean 3.5, 5.6 0.2, 0.2 31.2, 18.1 38.4, 26.0

8427-8MHz Bayesian 1.1, 1.0 0.8, 0.8 233.4, 19.2 216.3, 46.1
wsclean 7.3, 36.3 0.2, 0.2 82.3, 5.5 76.4, 12.5

13360-8MHz Bayesian 1.0, 0.9 0.8, 0.8 199.4, 3.4 211.7, 49.8
wsclean 26.9, 73.9 0.2, 0.2 97.7, 0.9 101.8, 16.9

Table 3.4: Reduced �2 values of all reconstructions weighted with the Bayesian � (� (� )) and
the wsclean weighting scheme. The first and the second value of each table entry
correspond to the reduced �2 value of the real and imaginary part of the resid-
ual, respectively. The latter has been used for the multi-scale CLEAN reconstruc-
tion. These �2 values are in direct correspondence to the histograms displayed in
figs. 3.12 and 3.13. Some values are grayed out in order to emphasise the weighting
which has been applied for the resolve and the multi-scale CLEAN reconstruction.
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Figure 3.13: Histogram of noise-weighted (posterior) residuals weighted with wsclean
weighting scheme, i.e. both the thermal noise and the imaging weighting scheme
employed by wsclean. This weighting scheme has been used for the multi-scale
CLEAN reconstruction. The histograms are plotted analogously to fig. 3.12.
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Figure 3.15: Comparison multi-scale CLEAN (blue, negative regions gray), resolve posterior
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√
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4 Four-dimensional
(spatio-spectral-temporal) imaging of
M87*

The following chapter is an excerpt from a manuscript that has been submitted to Nature

Astronomy (Arras, Frank, Haim, et al. 2020a). It emerged from a close collaboration be-

tween Philipp Frank, Philipp Haim, Jakob Knollmüller, Reimar Leike, and me. I initiated

the project, contributed a prototype for the closure quantity likelihood, and serve as cor-

responding author. Philipp Frank, Philipp Haim, Jakob Knollmüller, Reimar Leike, and

I implemented the instrument response, likelihood, and model. Jakob Knollmüller devel-

oped the inference heuristic. Philipp Frank and I contributed the amplitude model which

features outer products of power spectra. Philipp Frank, Philipp Haim, Jakob Knollmüller,

Reimar Leike, and I tested and validated the method. Martin Reinecke provided imple-

mentations and numerical optimisation for many of the employed algorithms. Torsten

Enßlin coordinated the team and contributed to discussions. The text has been written as

a collaborative effort by all of us unless otherwise specified below.

Abstract

Observing the dynamics of compact astrophysical objects provides insights into

their inner workings and allows to probe physics under extreme conditions. The

immediate vicinity of an active super-massive black hole with its event horizon,

photon ring, accretion disk, and relativistic jets is a perfect place to study gen-

eral relativity, magneto-hydrodynamics, and high energy plasma physics. The

recent observations of the black hole shadow of M87* with Very Long Baseline

Interferometry (VLBI) by the Event Horizon Telescope (EHT) open the possibility

to investigate dynamical processes there on time scales of days. In this regime,

radio astronomical imaging algorithms are brought to their limits. Compared

to regular radio interferometers, VLBI networks have fewer antennas. The re-

sulting sparser Fourier sampling of the sky brightness distribution can only be

partially compensated for by co-adding observations from different days, as the

source changes. Here, we present an imaging algorithma that copes with the data

scarcity and the source’s temporal evolution, while simultaneously providing un-

certainty quantification on all results. Our algorithm views the imaging task as a

Bayesian inference problem of a time-varying brightness, exploits the correlation

structure between time frames, and reconstructs an entire, 2 + 1 + 1 dimensional

time-variable and spectrally resolved image at once. The degree of correlation in
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4 Four-dimensional (spatio-spectral-temporal) imaging of M87*

the spatial and the temporal direction is not assumed a priori, but also learned

from the data. We apply the method to the EHT observation of M87* (Collabora-

tion 2019) and validate our approach on synthetic data. The time- and frequency-

resolved reconstruction of M87* confirm variable structures on the emission ring

on a time scale of days. The resolution along the frequency axis potentially re-

veals spectral index variations that coincide with the movement of the accretion

disk. Our reconstruction also exhibits extended emission structures outside the

ring itself.

ahttps://gitlab.mpcdf.mpg.de/ift/vlbi_resolve

4.1 Main part

This section has partly been written by my coauthors.

To address the imaging challenge of time-resolved VLBI and in particular of the EHT

data, we employ Bayesian inference. In particular, we adopt the formalism of infor-

mation field theory (IFT) (Enßlin 2018) for the inference of field-like quantities such as

the sky brightness. IFT combines the measurement data and any included prior infor-

mation into a consistent sky brightness reconstruction and propagates the remaining

uncertainties into all final science results. Assuming limited spatial, frequency, and

temporal variation we can work with such highly incomplete data as the 2017 EHT

observation of M87*.

A related method based on a Gaussian Markov model was proposed by Bouman et

al. (2017) and another approach based on constraining information distances between

time frames was proposed by Johnson et al. (2017). These methods also impose cor-

relations in space and/or time, but in our approach the correlation is not fixed and

can flexibly adapt to the demands of the data. We also enforce strict positivity of the

brightness and instead of maximizing the posterior probability, we perform a varia-

tional approximation, taking correlations between all model parameters into account.

Data from interferometric observations essentially consist of the source brightness

distribution, Fourier transformed within the image plane and probed only sparsely at

a limited number of locations. The measured Fourier modes, called visibilities, are

determined by the orientation and distance of antenna pairs, while the Earth rotation

helps to partly fill in the gaps bymoving these projected baselines relative to the source

plane. For a time-variable source, this coverage in Fourier coordinates is extremely

sparse, as measurements at different times are looking at a changed source and need

to be represented by separate image frames. In the case of the EHT observation of

M87*, data were taken during four 8-hour cycles spread throughout seven days. All

missing image information needs to be restored by the imaging algorithm, exploiting

implicit and explicit assumptions about the source structure.

Fortunately, physical sources (including M87*) evolve continuously in time. Images

of these sources separated by time intervals that are short compared to the evolution-

ary time scale are thus expected to be strongly correlated. Imposing these expected

correlations during the image reconstruction process can inform image degrees of free-
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4.1 Main part

dom (DOFs) that are not directly constrained by the data.

In radio interferometric imaging, correlations are usually enforced by convolving

the image with a kernel, either during imaging or afterwards. The specific structure

of such a kernel can have substantial impact on the image reconstruction.

To reduce the risk of biasing our result by choosing an inappropriate kernel, our al-

gorithm infers the correlation kernel of the logarithmic brightness in a non-parametric

fashion simultaneously with the image. This renders the reconstruction exceptionally

hard, as it introduces redundancies between DOFs of the convolution kernel and those

of the pre-convolution image. The introduction of redundant DOFs is challenging, as

the inference has to account for their strongly intertwined uncertainties. These corre-

lations are essential, but accounting for them is expensive due to the quadratic scaling

of their number with the model DOFs.

An inference algorithm that is capable of tracking uncertainty correlations between

all involved DOFs that has only linearly growingmemory requirements isMetric Gaus-

sian variational inference (Knollmüller and Enßlin 2019, MGVI). MGVI represents

uncertainty correlation matrices implicitly without the need for an explicit storage

of their entries. It provides uncertainty quantification of the final reconstruction in

terms of samples drawn from an approximate Bayesian posterior distribution, with a

moderate level of approximation. Compared to methods that provide a best-fit recon-

struction, our approach provides a probability distribution, capturing uncertainty. A

limitation of the Gaussian approximation is its uni-modality, as the posterior distri-

bution is multi-modal (Sun and Bouman 2020). Unfortunately it is extremely hard to

represent such posterior in high dimensions. Instead, our results will describe a typical

mode of this distribution, taking the probability mass into account. MGVI is the cen-

tral inference engine of the Python packageNumerical Information Field Theory (Arras,

Baltac, et al. 2019, NIFTy)1, which we use to implement our imaging algorithm as it

permits the flexible implementation of complex hierarchical Bayesian models. NIFTy

turns a forward data model into the corresponding backward inference of the model

parameters with the use of automatic differentiation and MGVI.

For time-resolved VLBI imaging, we therefore need to specify the corresponding

data model and implement it in NIFTy. This model encodes all physical knowledge

about the measurement process and the brightness distribution of the sky, which we

decide to take into account to guide and inform the image reconstruction.

For the sky brightness, we require strictly positive structures with characteristic

correlations in space, time, and frequency. These brightness fluctuations can vary ex-

ponentially over linear distances and time intervals. These properties are represented

by a log-normal distribution together with a Gaussian process prior on the logarithmic

brightness. The correlation structure of this process is assumed here to be homoge-

neous and isotropic in space and time, and independent between space and time.

Consequently the spatial and temporal correlations are represented by a direct outer

product of rotationally symmetric convolution kernels, or equivalently by a product

of one-dimensional, isotropic power spectra in the Fourier domain. As power spectra

1https://gitlab.mpcdf.mpg.de/ift/nifty
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Figure 4.1: Visualiation of the hierarchical model that was used as prior on the four-
dimensional (frequency, time and space) image.
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are typically close to power laws, we model them as relatively stiff integrated Wiener

processes on a double logarithmic scale (Goldman 1971). Their DOFs, which finally

determine the spatio-temporal correlation kernel, are inferred by the MGVI algorithm

alongside the sky brightness distribution. While the adopted model can only describe

homogeneous and isotropic correlations, this symmetry is broken for the sky image

itself by the data, which in general enforces heterogeneous and anisotropic structures.

For frequency resolved imaging, we also need to specify the correlation structure in

the frequency axis. The EHT collaboration has published data averaged down to two

frequency bands at about 227GHz and 229GHz. Accordingly, we reconstruct two sep-

arate, but correlated, images for these bands, with a priori assumed log-normal devi-

ation on the 1 % level, which amounts to spectral indices of ±1 within one standard

deviation. The measurement itself does not constrain the absolute brightness of the

two channels. Thus, we can reconstruct the relative spectral index changes through-

out the source but not the global one. In principle, the degree of correlation in the

frequency direction could be also learned in the same fashion as the other two, but we

leave this as an extension for future work, once more than two channels are available.

The sky model is visualised in fig. 4.1. For a complete definition refer to Arras, Frank,

Haim, et al. (2020a).

Bayesian imaging further requires an accurate model of the instrument response.

Just as the prior model is informed by our physical knowledge of the source, the in-

strument model is informed by our knowledge of the instrument. We consider two

sources of measurement noise, which cause the observed visibilities to differ from the

perfect sky visibilities: additive Gaussian thermal noise and multiplicative, systematic

measurement errors.

The magnitude of the thermal noise is provided by the EHT collaboration in the

data set. Systematic measurement errors are mainly caused by antenna-based effects,

e.g. differences in the measurement equipment, atmospheric phase shift, and absorp-

tion of the incoming electromagnetic waves. All those effects can be summarized in

one complex, possibly time-variable, number per telescope, containing the antenna

gain factors and antenna phases. It would be possible to learn these as part of the

imaging process (Arras, Frank, Leike, et al. 2019), or by using calibration targets and

self-calibration in between imaging iterations.

For VLBI, however, extremely high accuracy is required and the systematic effects

are often so severe that a different strategy is advantageous. Certain combinations

of visibilities are invariant under antenna-based systematic effects, so called closure-

phases and -amplitudes (Rogers et al. 1974). Those quantities will serve as the data for

our reconstruction and we briefly discuss the details in the methods section.

An excellent first test case for the method we developed so far is the super-massive

black hole M87*. With a shadow of the size of 4 light days and reported superluminal

proper motions of 6c (Biretta, Sparks, and Macchetto 1999), its immediate vicinity is

expected to be highly dynamic and subject to change on a time scale of days. This

variability was confirmed by the EHT, whose exceptional angular resolution allowed

for the first time to directly image the shadow of this super-massive black hole. We

compare our results to theirs (EHT Collaboration 2019a,b,c,d,e,f). In this letter, we
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Figure 4.2: Visualisation of the posterior mean. All figures are constrained to half the recon-
structed field of view. The first row shows time frames of the image cube, one for
each day. The second row visualises the brightness for dayN +1minus dayN . Red
and blue visualises increasing and decreasing brightness over time, respectively.
The third row visualises the relative difference in brightness over time. The over-
plotted contour lines show brightness in multiplicative steps of

√
2 and start at the

maximum of the posterior mean of our reconstruction. The solid lines correspond
to factors of powers of two from the maximum.

present a time- and frequency-resolved reconstruction of the shadow of M87* over

the entire observational cycle of seven days, utilizing correlation in all dimensions. All

information on the total flux is lost when using closure amplitudes. We therefore fix

it such that the flux in the entire ring of fig. 4.2 is constant in time and agrees with the

results of the EHT collaboration for the first frame of our reconstruction. Similarly,

the absolute source location is lost by using closure phases. When reconstructing

only an image, this is not an issue, but in the time-resolved case this could lead to

jumping sources. We achieve the source alignment through our inference heuristic,

where we initially only use the data of only the first two observations and later on add

the remaining days.

The frequency-averaged posterior mean image for the first observing day is shown

in fig. 4.3 together with its pixel-wise posterior uncertainty. In full agreement with the

EHT result, our image shows a bright emission ring. We also find the ring to be brighter

on its southern part, most likely due to relativistic beaming effects. A saturated version

of our and the EHT-imaging shown in fig. 4.3 highlights morphological differences. In

our reconstruction we obtain two dim, but clearly visible extended structures, posi-

tioned opposite to each other along the south-western and north-eastern direction.

They do not have the shape of typical VLBI-imaging artefacts, i.e. are no faint copy

of the source itself. We also do not obtain such structures in any of our validation

examples. In our eyes these structures are in the data, either of physical origin or

due to baseline-based calibration artefacts, which we do not account for. Compared to
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Figure 4.3: The top row shows the reconstructed mean and relative error for the first observ-
ing day. Note that the small-scale structure in regions with high uncertainty in
the error map is an artefact of the limited number of samples. Bottom left: sat-
urated plot of the posterior mean, revealing the emission zones outside the ring.
Bottom right: the result of the EHT-imaging pipeline in comparison, saturated to
the same scale and with overplotted contour lines. The over-plotted contour lines
show brightness in multiplicative steps of

√
2 and start at the maximum of the pos-

terior mean of our reconstruction. The solid lines correspond to factors of powers
of two from the maximum.
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Figure 4.4: Time evolution of the brightness and flux for posterior samples and their ensem-
ble mean at specific sky locations and areas as indicated in the central panel. The
peripheral panels show brightness and flux values of posterior samples (thin lines)
and their mean (thick lines). Of those, the bottom right one displays the flux in-
side (red) and outside the circle (green), as well as the sum of the two (blue). For
comparability, only brightnesses within the field of view of the EHT collaboration
image, indicated by the black box in the central plot, is integrated. The remaining
panels give local brightnesses for the different locations labelled by numbers in
the central panel. The corresponding brightnesses of the single day EHT collabo-
ration images are shown as points over a line for the observational time periods.

the imaging methods employed by the EHT collaboration, our method allows to use

all four observations at once, allowing us to partially integrate the information. This

allows us to obtain deeper reconstructions, potentially revealing previously hidden

structures.

Figure 4.2 shows frequency-averaged time frames for each day of the observation

and their absolute and relative differences between adjacent days. These exhibit mild

temporal evolution with brightness changes of up to 6 % per day, in particular within

the western and southern part of the ring, validating the observations made by EHT

Collaboration (2019d). Figure 4.4 shows the detailed temporal evolution of a selected

number of locations and areas. For most of these, there is a good agreement to the

EHT-imaging results, but for some, clearly visible and significant differences exist.

The time evolution of fluxes for the ensemble of posterior samples, also shown in

fig. 4.4, indicates that the flux is almost time-invariant in most locations. For location

7, which corresponds to the extended structure in the south-western direction, the

average brightness decreases with about 5% between adjacent days throughout the

entire observation. Here we might witness temporal evolution.

Following the analysis of EHT Collaboration (2019d), we compute empirical pa-

rameters describing the asymmetric ring, the diameter d , width w , orientation angle
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d (�as) w (�as) � (◦) A fC

difmap

April 5 37.2 ± 2.4 28.2 ± 2.9 163.8 ± 6.5 0.21 ± 0.03 0.5
April 6 40.1 ± 7.4 28.6 ± 3.0 162.1 ± 9.7 0.24 ± 0.08 0.4
April 10 40.2 ± 1.7 27.5 ± 3.1 175.8 ± 9.8 0.20 ± 0.04 0.4
April 11 40.7 ± 2.6 29.0 ± 3.0 173.3 ± 4.8 0.23 ± 0.04 0.5

eht-imaging

April 5 39.3 ± 1.6 16.2 ± 2.0 148.3 ± 4.8 0.25 ± 0.02 0.08
April 6 39.6 ± 1.8 16.2 ± 1.7 151.1 ± 8.6 0.25 ± 0.02 0.06
April 10 40.7 ± 1.6 15.7 ± 2.0 171.2 ± 6.9 0.23 ± 0.03 0.04
April 11 41.0 ± 1.4 15.5 ± 1.8 168.0 ± 6.9 0.20 ± 0.02 0.04

smili

April 5 40.5 ± 1.9 16.1 ± 2.1 154.2 ± 7.1 0.27 ± 0.03 7 × 10−5

April 6 40.9 ± 2.4 16.1 ± 2.1 151.7 ± 8.2 0.25 ± 0.02 2 × 10−4

April 10 42.0 ± 1.8 15.7 ± 2.4 170.6 ± 5.5 0.21 ± 0.03 4 × 10−6

April 11 42.3 ± 1.6 15.6 ± 2.2 167.6 ± 2.8 0.22 ± 0.03 6 × 10−6

Our method (uncertainty like EHT Collaboration 2019d, Table 7)

April 5 44.6 ± 2.6 23.6 ± 5.7 165.8 ± 12.1 0.23 ± 0.05 0.404
April 6 44.6 ± 2.6 23.4 ± 5.4 163.2 ± 10.6 0.24 ± 0.04 0.393
April 10 45.1 ± 2.7 23.2 ± 4.9 175.2 ± 7.3 0.23 ± 0.03 0.389
April 11 45.3 ± 2.7 23.5 ± 5.0 178.1 ± 8.2 0.22 ± 0.04 0.391

Our method (sample uncertainty)

April 5 44.5 ± 1.3 23.5 ± 2.5 163.1 ± 7.1 0.25 ± 0.03 0.403 ± 0.092
April 6 44.5 ± 1.4 23.4 ± 2.5 161.4 ± 7.0 0.25 ± 0.03 0.401 ± 0.092
April 10 45.1 ± 1.4 23.4 ± 2.6 176.3 ± 6.6 0.23 ± 0.03 0.400 ± 0.095
April 11 45.2 ± 1.4 23.5 ± 2.6 178.3 ± 6.7 0.23 ± 0.03 0.401 ± 0.096

Table 4.1: Comparison of diameter d , widthw , orientation angle �, asymmetryA and floor-to-
ring contrast ratio fC as defined by EHT Collaboration 2019d, Table 7 and computed
for images published by the EHT collaboration (first three sections of table) as well
as for our reconstruction (last two sections). Section four provides the result of the
estimators and their standard deviations as defined by EHT Collaboration (2019d)
applied to our posterior mean. Section five provides means and standard deviations
based on processing our posterior samples individually through the estimators and
by computing mean and standard deviations from these results.
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4 Four-dimensional (spatio-spectral-temporal) imaging of M87*

�, azimuthal brightness asymmetry A, and floor-to-ring contrast ratio fC . Table 4.1

summarises our findings. For the uncertainty quantification, table 4.1 displays the

results of two different approaches. First, we follow the procedure of EHT Collabora-

tion (2019d) with our posterior mean. Second, we perform the same analysis on every

sample individually, and then calculate means and variances.

Most parameter values fall in the range as reported by EHT Collaboration (2019d)

and agree within the uncertainties between the different methods. We can therefore

confirm the findings of EHTCollaboration (2019d) that diameter d , widthw , azimuthal

flux asymmetry A and floor-to-ring contrast ratio fC are all consistent with being

stationary during the seven days, whereas the orientation angle � exhibits a signif-

icant time evolution. In this sense, we can report temporal variability on the ring

itself. These might be caused by flickering of emission spots (Nalewajko, Sikora, and

Różańska 2020). Our method reports a slightly larger diameter d = (45 ± 3) �as, which
seems compatible with the result reported by the EHTCollaboration of d = (42 ± 3) �as
(EHT Collaboration 2019a).

Figure 4.6 provides validation results for our method using six synthetic data sets.

Figure 4.7 shows spatial correlation spectra for our scientific and validation images.

Figure 4.5 displays the results of the imaging methods used by the EHT Collaboration

together with our posterior mean, and two samples for all observation periods.

In conclusion, we present and validate an imagingmethod that is capable of simulta-

neously reconstructing emission over spatial, temporal and spectral dimensions from

closure quantities, utilizing correlation and providing uncertainty quantification via

samples. With our method, we largely confirm the findings of the EHT collaboration,

the overall morphology of the emission ring aroundM87* and an apparent evolution of

its orientation. The frequency-resolution allows us to obtain a relative spectral index

map, which indicates variations that coincide with movement of the accretion disk

around the black hole. In addition to the emission ring, we resolve significant and

potentially dynamic emission structures along the south-western and north-eastern

direction. Future observations will be required to validate our findings, but with these

our method can be used to explore more intricate structure in the spatial, spectral, and

temporal domain of M87∗ and other sources. Another step for future applications is

the extension of the model to also learn the correlation in the frequency axis, or even

dynamical structures of the source directly.

Our method is based on Bayesian statistics. The central quantity is the negative

logarithmic posterior probability of our latent variables which parametrise the sky

brightness distribution. This logarithmic probability density, called the information

Hamiltonian, is composed of the logarithmic likelihood and the prior. The posterior

mean and its uncertainty are obtained with MGVI, which requires only the likelihood

and its derivatives as input. In the following we further describe the components of

the likelihood and our algorithm.
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4.1 Main part

EHT imaging, day 0

50 µas

EHT imaging, day 1

50 µas

EHT imaging, day 5

50 µas

EHT imaging, day 6

50 µas

Mean, day 0 Mean, day 1 Mean, day 5 Mean, day 6

Sample 1, day 0 Sample 1, day 1 Sample 1, day 5 Sample 1, day 6

Sample 2, day 0 Sample 2, day 1 Sample 2, day 5 Sample 2, day 6

0.0 0.1 0.2 0.3 0.4

[mJy/µas2]

0.0 0.1 0.2 0.3 0.4

[mJy/µas2]

0.0 0.1 0.2 0.3 0.4

[mJy/µas2]

0.0 0.1 0.2 0.3 0.4

[mJy/µas2]

Figure 4.5: Comparison of our imaging result to that of the EHT-imaging pipeline. All panels
have the same colorbar. The columns label the four days for which observational
data exist. The first row shows snapshot images from the EHT-imaging pipeline
for each of the 4 days. The second row shows our mean reconstruction for the
same time frame. The third and fourth row each show one posterior sample from
our imaging pipeline.
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4 Four-dimensional (spatio-spectral-temporal) imaging of M87*

4.2 Likelihood

This section has partly been written by Philipp Frank.

The likelihood of the measured visibilities given the sky brightness distribution s
is computed independently for each time frame. The visibilities for all measured data

points are assumed to follow the measurement equation in the flat sky approximation:

R(s)AB = ∫ e−2�i(uABx+vABy)s(x, y) dx dy (4.1)

= e�ABei�AB . (4.2)

Here AB runs through all ordered pairs of antennas A and B for all non-flagged base-

lines. The visibilities are complex numbers and we express them in polar coordinates

in terms of phases �AB(s) and logarithmic amplitudes �AB(s). To avoid antenna based

systematic effects, we compute closure quantities from these visibilities (Blackburn

et al. 2020). Closure phases are obtained by combining a triplet of complex phases of

visibilities via:

'ABC = �AB + �BC + �CA. (4.3)

Closure amplitudes are formed by combining the logarithmic absolute value of four

visibilities:

%ABCD = �AB − �BC + �CD − �DA. (4.4)

These closure quantities are invariant under antenna based visibility transformations

of the form

R(s)AB → cAc
∗
BR(s)AB (4.5)

for all antennas and multiplicative calibration errors cA and c∗B, where ∗ denotes the

complex conjugate. Note that forming the closure phases is a linear operation on

the complex phase, while forming the closure amplitudes is linear in the logarithmic

absolute value. We can thus represent these operations using matrices:

% = L�, ' = M�. (4.6)

The closure matrices L and M are sparse and contain in every row ±1 for antennas

associated with the closure, and zero elsewhere. They are constructed such that they

correspond to a maximal non-redundant set of closure quantities. Closure sets are

non-redundant if and only if

rank(L) = dim(%) and rank(M) = dim('), (4.7)

and they are maximal if no closure phase or amplitude can be added without violating

these conditions. This means that out of the set of all possible closure quantities, only

a limited number can be chosen before redundancies occur. We build the closure sets
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4.2 Likelihood

to be used in the imaging with help of a greedy algorithm taking those quantities with

better signal-to-noise ratio first. Here, as a signal-to-noise ratio we take the diagonal

of the matrices of eq. (4.10).

We compute the observed closure quantities %d and 'd from the published visibility

data d = e�d ei�d as:

%d = L�d and 'd = M�d . (4.8)

We assume the thermal noise of the phase and logarithmic amplitude to be indepen-

dently Gaussian distributed with covariance

N = diag( �2|d |2) , (4.9)

where � is the reported thermal noise level and diag(x) denoting a diagonal matrix

with x on its diagonal. This is valid in first order approximation for sufficiently high

signal-to-noise ratio. The closure quantities are formed as a linear combination of

phases and logarithmic amplitudes, and linear combinations of Gaussian random vari-

able are still Gaussian, but with modified covariance. The noise covariances N% and N'
of the closure quantities are related to the visibility error RMS vector � due to thermal

noise via:

N% = ⟨Ln(Ln)†⟩ (n|0,N ) = LNL
† and N' = MNM†. (4.10)

Here, the mixing introduced by applying L and M leads to a non-diagonal noise co-

variance matrices of the closure quantities. The resulting likelihood of the closure

quantities is:

(%d |%, L, N ) =  (%d |%, N%), (4.11)

(ei'd |',M, N ) =  (ei'd |ei' , N'). (4.12)

 ( | ̄ ,Ψ) denotes a Gaussian distribution over  with mean  ̄ and covariance Ψ.

Note that we do not directly use the complex phases, but their position ei'd on the

complex unit circle, which mitigates the problem of phase wraps at the price of ap-

proximating the corresponding covariance. This approximation yields errors on the

1% level if the noise standard deviation is smaller than 0.1. Most of the data points

are below that threshold, and the error goes down quadratically. Since data with the

lowest standard deviation are also the most informative, we believe the impact of the

approximation on the reconstruction to be negligible. Also note that eq. (4.12) makes

use of a Gaussian distribution on complex numbers, which is defined through its prob-

ability density function as

 (x |y, X ) = |4�X |− 1
2 exp(−12(x − y)†X −1(x − y)) , (4.13)

with hermitian covariance X . Since the difference of complex and real Gaussian distri-

butions is only in their normalization constant, which is irrelevant for our variational

approach, we do not distinguish them explicitly.
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4 Four-dimensional (spatio-spectral-temporal) imaging of M87*

4.3 Metric Gaussian Variational Inference

This section has partly been written by my coauthors.

So far, we have developed a probabilistic model in the generative form of the joint

distribution of data and model parameters. In the end we want to know what the data

tell us about the model parameters, as given in the posterior distribution according to

Bayes’ theorem. Our model is non-conjugate and we cannot solve for the result ana-

lytically. Instead, we will approximate the true posterior distribution with a Gaussian

using variational inference.

This is fundamentally problematic, as we are approximating a multimodal poste-

rior with an unimodal distribution, which has multiple local optima. In the end, only

the mode of the posterior is captured by the variational distribution, underestimating

the overall uncertainty. We can consider some of these solutions equivalent. For ex-

ample, the absolute source location is neither constrained by the closure phases, nor

the prior, but it is also irrelevant for the analysis. However, this shift-invariance also

introduces several unphysical and pathological modes in the posterior, which might

have low probability mass, but are local optima. An example for this is the appearance

of multiple or partial copies of the source all over the image. Every reconstruction

method that performs local optimization in the context of closure quantities will run

into these issues and our approach is no exception. The scale of the envisioned infer-

ence task with 7.4million parameters does not allow for exhaustive posterior sampling

or approximations that can capture the full structure. Our chosen method, as well as

several procedures in our inference heuristic partially mitigate these issues and pre-

dominantly provide robust results. For now we discard reconstructions in which these

known pathologies appear, as we do not know how to exclude them a priori.

We will use Metric Gaussian Variational Inference (MGVI), which allows us to cap-

ture posterior correlations between all model parameters, despite problem scale. MGVI

is an iterative scheme that performs a number of subsequent Gaussian approximations

 (� |�̄ ,Ξ) to the posterior distribution. Instead of learning a parametrised covariance,

an expression based on the Fisher information metric evaluated at the intermediate

mean approximations is used, i.e. Ξ ≈ I (� )−1, with

I (� ) =
)%(s(� ))

)�
N −1
% ()%(s(� ))

)� )†

+
)ei'(s(� ))

)�
N −1
' ()ei'(s(� ))

)� )†

+ 1 . (4.14)

The first two terms originate from the likelihood and the last from the prior. All these

are expressed in terms of computer routines and we do not have to store this matrix

explicitly. This is a non-diagonal matrix capturing correlations between all param-

eters. To learn the mean parameter �̄ we minimise the Kullback-Leibler divergence

between the true posterior and our approximation:

KL( (� |�̄ ,Ξ) ||(� |'d , %d )) = ∫ d�  (� |�̄ ,Ξ) ln(  (� |�̄ ,Ξ)
(� |'d , %d )) . (4.15)

This quantity is an expectation value over the Gaussian approximation and measures

the overlap between true posterior and our approximation. As we minimise this quan-
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4.4 Implementation details

tity, the normalisation of the posterior distribution is irrelevant and we can work with

the joint distribution over data and model parameters. We estimate the KL-divergence

stochastically by replacing the expectation value through a set of samples from the

approximation. The structure of the implicit covariance approximation allows us to

draw independent samples from the Gaussian for a given location.

� ∗ ∼  (� |0,Ξ), therefore �̄ ± � ∗ ∼  (� |�̄ ,Ξ). (4.16)

Using the mean of the Gaussian plus and minus samples corresponds to antithetic

sampling, which reduces the sampling variance significantly, leading to performance

increases. MGVI now iterates between drawing samples for a given mean parame-

ter and optimising the mean given the set of samples. The main meta-parameters of

this procedure are the number of samples and how accurately the intermediate ap-

proximations are performed. The procedure converges once the mean estimate �̄ is

self-consistent with the approximate covariance. To minimise the KL-divergence, we

rely on efficient quasi-second-order Newton-Conjugate-Gradient in a natural gradient

descent scheme. In the beginning of the procedure, the accuracy of KL and gradient es-

timates, as well as overall approximation fidelity, will not be as important. In practice

we gradually increase the accuracy to gain overall speedups.

4.4 Implementation details

This section has partly been written by my coauthors.

We implement the generative model in NIFTy (Arras, Baltac, et al. 2019), which also

provides an implementation of MGVI utilising auto-differentiation. We represent the

spatial direction with 256×256 pixels, each with a length of 1 �as. In the time direction

we choose a resolution of 6 hours for the entire observation period of 7 days, thus

obtaining 28 time frames. The implementation of the generative model utilizes Fast

Fourier Transform and thus defines the resulting signal on a periodic domain. To avoid

artifacts in time direction, we add another 28 frames resulting in a temporal domain

twice the size of the observed interval.

For the frequency direction only two channels are available and we do not expect

them to differ much from each other. Instead of learning the correlation along this

direction, as we do for the spatial and temporal axis, we assume a correlation between

the two channels on the 99 % level a priori, i.e. we set � = 0.01.
This adds another factor of 2 of required pixels to the reconstruction. For future re-

constructions with deeper frequency sampling we can extend the model and treat this

direction equivalently to the space and time directions. Overall we have to constrain

256 × 256 × 56 × 2 + power spectrum DOFs ≈ 7.4 million pixel values with the data.

The Gaussian approximation to the closure likelihoods is only valid in high signal-

to-noise regimes (Blackburn et al. 2020). We increase the signal-to-noise ratio by av-

eraging the visibilities over the individual scans of ∼2 minutes. To validate that this

averaging is justified we compare the empirical standard deviation of averaged data

values with the corresponding thermal noise standard deviation and find it to be 1.48

85



4 Four-dimensional (spatio-spectral-temporal) imaging of M87*

Parameter Value

�� 0.2

�� 0.1

�(x)a 0.7

� (x)
a 1

�(x)m -1.5

� (x)
m 0.5

�(x)� 0.01

� (x)
� 0.001

�(t)a 0.2

� (t)
a 1

�(t)m -4

� (t)
m 0.5

�(t)� 0.01

� (t)
� 0.001

� 0.01

Table 4.2: The hyperparameters for the generative model.

on average, consistent with the expected
√
2 for complex valued data. We also remove

the intra-site baselines of ALMA–APEX and SMT–JCMT.

4.5 Hyperparameters

This section has partly been written by my coauthors.

The hyperparameter choices for the presented reconstruction are given in table 4.2.

This setting follows two main considerations. First, we want to be relatively agnostic

in terms of the spatial direction. Constraining the a priori slope of the spatial ampli-

tude to −1.5 ± 0.5 allows to express structures ranging from the rough Wiener process

to the smooth integratedWiener process within one standard deviation. Also the over-

all variance of the logarithmic sky brightness is only constrained within two e-folds
around e1.5. Second, we do not expect strong variability in the temporal direction due

to the physical scale of the system, extending over several light-days. We express this

through the slope of the temporal amplitude of −4 ± 0.5, imposing long correlations in

time, whereas the overall fluctuations are again relatively unconstrained. We strongly

restrict deviations from power-law spectra in space and time. This is necessary due

to the small amount of data. For the frequency direction we only have two channels

available for which we set an a priori difference of 1 % as we do not expect them to

differ much from each other.
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4.6 Inference heuristic

Iteration Data Set Tempering Optimizer Sample Pairs

i = 0 i ≥ 0 i ≥ 0 i ≥ 0 i ≥ 0

full likelihood

first two days

i ≥ 10 V-LBFGS

4 ∗ (4 + i//4)
iterations

i ≥ 30 alternating

N = 10 ∗ (1 + i//8)

all days i ≥ 50 i ≥ 50

Natural Gradient

full likelihood 20 iterations

i = 59

Table 4.3: Minimisation scheme used for the inference. In addition to the mentioned samples,
their antithetic counterparts were used as well.

4.6 Inference heuristic

This section has been written by Jakob Knollmüller.

Here we want to give the motivation behind the choices for our inference heuristic,

as it is described in table 4.3. These are ad-hoc, but using the described procedure

provides us with robust results throughout all examples.

Our initial parametrization corresponds to a signal configuration that is constant in

time and shows a Gaussian shape centred in the field of view with standard deviation

of 30 �as. This breaks the translation symmetry of the posterior distribution, concen-

trating the the brightness towards the centre. It does not fully prevent the appearance

of multiple source copies, but they are not scattered throughout the entire plane. A

similar trick is also employed in EHT-Imaging pipeline.

The next issue we are facing is source teleportation. Close-by frames are well-

constrained by our assumed correlation, but the data gap of four days allows for so-

lutions in which the source disappears at one place and re-appears at another. This

is also due to the lack of absolute locations and not prohibited by our dynamics prior.

To avoid these solutions, we start by initially only using data of the first two days. For

these we recover one coherent source, which is extrapolated in time. Once we include

the data of the remaining two days, the absolute location is already fixed and only

deviations and additional information to previous times have to be recovered.
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4 Four-dimensional (spatio-spectral-temporal) imaging of M87*

The appearance of multiple source-copies can be attributed to multi-modality of

the posterior. The stochastic nature of MGVI helps, to some degree, to escape these

modes towards more plausible solutions. Nevertheless, this is not enough for strongly

separated optima. We therefore employ a tempering scheme during the inference.

The phases constrain the relative locations in the image, whereas the amplitudes con-

strain the brightness. Smoothly aligning source copies while keeping the amplitudes

constant is either impossible or numerically stiff. Allowing to violate the observed clo-

sure amplitudes for a short period of time makes it easier to align all copies to a single

instance. We achieve this by not considering the closure amplitude likelihood during

one intermediate step of MGVI. The same issue persists for the closure amplitudes.

We therefore alternate between only phase-likelihood and amplitude-likelihood. In

between these two we always perform a step using the full data. We start this proce-

dure after a certain number of steps, once a rough source-shape is established. In the

end we use the full likelihood for several steps.

MGVI requires to specify the number of sample pairs used to approximate the KL-

divergence. The more samples we use, the more accurate the estimate, but the larger

the overall computational load. We steadily increase the number of samples through-

out the inference for two reasons. Initially the covariance estimate is not particu-

larly accurate to describe the posterior mode, so we do not want to waste resources in

these early stage. Fewer samples also increase the stochasticity of the inference, which

makes it more likely to escape pathological modes of the posterior. Towards the end,

once we ended up in a suitable optimum, we want accurate estimates and it is worth

to invest into a large number of samples.

Finally, we have to specify how and how well the KL is optimized in every MGVI

step. In the beginning, we do not want to optimize too aggressively, as we only use a

limited number of samples and we want to avoid an over-fitting on the sample realiza-

tions. We therefore use the LBFGS (Liu and Nocedal 1989) method with an increasing

number of steps. For the last period, where we have accurate KL estimates, we em-

ploy the more aggressive natural gradient descent equivalent to scipy’s NewtonCG

algorithm (Virtanen et al. 2020) to achieve deep convergence.

To demonstrate the robustness of this procedure we perform the reconstruction

of M87∗ and the six validation examples for five different random seeds, in total 35

full reconstructions. Using the described heuristic, we do not encounter any of the

discussed issues and we obtain consistent results. This corresponds to a success rate

of at least 97%.

4.7 Validation

This section has partly been written by my coauthors.

We validate our method on six synthetic examples, three of which exhibit temporal

variation.

The first two time-variable examples are slowly rotating crescents; a toy model of

the vicinity of the black hole. The first one follows the validation analysis of the EHT
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4.7 Validation

April 5 April 6 April 10 April 11

ehtcrescent 1.2, 1.0 1.3, 0.9 1.0, 0.9 1.4, 1.1
sim1 1.2, 1.2 1.3, 1.2 1.4, 1.4 1.1, 1.2
sim2 1.4, 1.0 1.3, 1.0 1.3, 1.0 1.2, 1.0
crescent 1.2, 1.1 1.1, 1.0 1.0, 1.0 1.0, 1.0
disk 1.5, 1.1 1.4, 1.3 1.5, 1.3 1.3, 1.1
blobs 1.2, 1.1 1.2, 1.1 1.4, 1.2 1.4, 1.1
m87 1.0, 0.9 1.1, 0.8 1.0, 0.8 1.1, 0.8

Table 4.4: Reduced �2 values. The left and right values are the reduced �2 values for the
closure phase and the closure amplitude likelihood, respectively.

Collaboration (EHT Collaboration 2019d) with identical ring parameters (the diameter

is 44 �as). To re-create the temporal variation of M87*, we rotate the crescent accord-

ing to the reported shift of the orientation throughout the observation. The second

crescent has a smaller diameter of 40 �as and more pronounced asymmetry. In the

third example we attempt to recover two Gaussian shapes that approach each other.

The static examples consist of a uniform disk with blurred edges with a diameter of

40muas and two simulations of black holes, taken from the EHT imaging challenge2.

For our validationwe simulate theM87* observation, using the identical uv-coverage,

frequencies, and time sampling. We add the reported thermal noise from the original

observation. We have four observation periods throughout the seven days. The re-

construction follows the identical procedure as for M87*.

The results of the dynamic examples versus the ground-truth and the pixel-wise un-

certainty are shown in fig. 4.6. For all static examples we do not find time-variability

in the reconstructions. Thus, we only show the first frame versus ground-truth,

smoothed ground-truth, and the pixel-wise uncertainty in the figure.

The time-resolved residuals-� 2 of the closure-phase and -amplitudes for all valida-

tion examples, as well as for M87∗ are shown in table 4.4. Additionally, we display the

noise-weighted residuals for the M87∗ reconstruction in fig. 4.8. As the likelihood is

invariant under shifts, offsets in the reconstruction are to be expected. We are able to

recover the shapes of the different examples, irrespective of the source being static or

not.

The recovered spatial correlation structures for the log-brightness, as well as the

brightness itself is shown in fig. 4.7. The relation between the power spectrum of the

brightness Ps and the log-brightness |A|2 is given by:

Ps ∝ FeF
−1 |A|2 , (4.17)

where F denotes the Fourier transformation. On large scales, these agree with the

ground truth within the error bounds. Our examples do not have prominent small-

scale features, so the ground truth power spectra drop off rapidly. We have only

2http://vlbiimaging.csail.mit.edu/imagingchallenge
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d (�as) w (�as) � (◦) A fC

Ground truth (uncertainty as per EHT Collaboration 2019d, Table 7)

April 5 44.5 ± 0.7 10.0 ± 0.8 150.0 ± 0.0 0.23 ± 0.00 0.000
April 6 44.5 ± 0.7 10.0 ± 0.8 152.9 ± 0.0 0.23 ± 0.00 0.000
April 10 44.5 ± 0.7 10.0 ± 0.8 164.3 ± 0.0 0.23 ± 0.00 0.000
April 11 44.5 ± 0.7 10.0 ± 0.9 167.1 ± 0.0 0.23 ± 0.00 0.000

Our method (uncertainty as per EHT Collaboration 2019d, Table 7)

April 5 43.9 ± 2.6 16.5 ± 3.1 149.9 ± 6.4 0.22 ± 0.06 0.192
April 6 43.9 ± 2.6 16.5 ± 3.0 152.6 ± 2.4 0.22 ± 0.04 0.187
April 10 43.9 ± 2.7 16.5 ± 3.4 166.3 ± 2.9 0.23 ± 0.04 0.187
April 11 43.9 ± 2.7 16.5 ± 3.4 169.7 ± 4.1 0.23 ± 0.04 0.187

Our method (sample uncertainty)

April 5 43.5 ± 0.7 15.6 ± 1.8 151.4 ± 4.5 0.23 ± 0.01 0.192 ± 0.045
April 6 43.5 ± 0.7 15.6 ± 1.7 152.1 ± 4.4 0.23 ± 0.01 0.191 ± 0.045
April 10 43.5 ± 0.7 15.7 ± 1.8 166.0 ± 4.4 0.22 ± 0.02 0.192 ± 0.045
April 11 43.5 ± 0.7 15.8 ± 1.8 168.9 ± 4.2 0.23 ± 0.02 0.192 ± 0.045

Table 4.5: The crescent parameters recovered from the ‘ehtcrescent’ validation example ver-
sus ground truth. Analogue to table 4.1.

limited data on these scales due to the measurement setup, so the reconstruction is

primarily informed by the prior distribution. As the prior favours power-law like be-

havior, the large scale information about the slope of the spectrum is extrapolated as a

straight line towards small-scale modes. Therefore, deviations from a straight line can-

not be captured in these regions and the variability of these deviations is limited by the

prior variance. In addition, the posterior statistical properties of the power spectrum

cannot fully be captured by the variational approximation of MGVI. In particular for

small-scale features, the posterior uncertainty becomes asymmetric since deviations

above and below the mean have an asymmetric effect on the observed data: If the

mean power of these scales is small compared to the power on large scales, further de-

creasing the power on these scales has almost no effect on the observed data whereas

increasing the small-scale power has a significant impact. This forced symmetry of the

posterior uncertainty can lead to an over-estimation of the small-scale power as the

uncertainty towards less power is underestimated (see fig. 4.7). On large image scales,

where good data is available, the correlation matches the ground truth exceptionally

well, including characteristic features such as the disk diameter. An exception are the

spectra of both simulations. We believe that the mismatch is explained by the diverse

and pronounced structure of the simulations on all scales that cannot be resolved by

the data.

The ring-parameter analysis is applied on the two crescent as well. The results

for the recovered diameter d , width w and orientation angle � are shown in tables 4.5

and 4.6. Here we compare the ground truth to the analysis of the mean reconstruction,
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d (�as) w (�as) � (◦) A fC

Ground truth (uncertainty as per EHT Collaboration 2019d, Table 7)

April 5 40.0 ± 1.1 7.0 ± 1.4 150.0 ± 0.0 0.50 ± 0.00 9.7 × 10−7

April 6 40.0 ± 1.0 7.0 ± 1.3 152.9 ± 0.0 0.50 ± 0.00 9.6 × 10−7

April 10 40.1 ± 1.0 7.1 ± 1.3 164.3 ± 0.0 0.50 ± 0.00 9.6 × 10−7

April 11 40.1 ± 1.1 7.2 ± 1.4 167.1 ± 0.0 0.50 ± 0.00 9.6 × 10−7

Our method (uncertainty as per EHT Collaboration 2019d, Table 7)

April 5 37.5 ± 13.2 21.0 ± 11.2 150.6 ± 7.6 0.42 ± 0.08 0.217
April 6 37.5 ± 12.9 20.6 ± 10.9 150.4 ± 2.6 0.41 ± 0.08 0.210
April 10 38.3 ± 12.1 20.7 ± 11.0 163.1 ± 5.4 0.41 ± 0.07 0.203
April 11 38.2 ± 12.1 20.5 ± 10.8 164.5 ± 3.7 0.41 ± 0.07 0.204

Our method (sample uncertainty)

April 5 37.5 ± 1.1 18.2 ± 1.8 149.1 ± 4.3 0.44 ± 0.03 0.227 ± 0.045
April 6 37.6 ± 1.1 18.1 ± 1.8 151.0 ± 4.5 0.43 ± 0.03 0.225 ± 0.047
April 10 38.2 ± 1.1 18.1 ± 1.9 163.1 ± 4.1 0.43 ± 0.04 0.219 ± 0.047
April 11 38.3 ± 1.2 18.2 ± 1.9 165.0 ± 3.9 0.43 ± 0.04 0.220 ± 0.047

Table 4.6: The crescent parameters recovered from the ‘crescent’ validation example versus
ground truth. Analogue to table 4.1.

following the approach of the EHT collaboration. In order to propagate the uncertainty

estimate of our reconstruction directly, we can extract the crescent parameters of all

samples individually to obtain a mean estimate with associated uncertainty. The vari-

ational approximation has the tendency to under-estimate the true variance and in this

case should be regarded more as a lower limit. For the estimation of the ring diameter

we adopt the approach described in Appendix G of EHT Collaboration (2019d) to cor-

rect the diameter for the bias due to finite resolution. Starting with the first crescent,

we recover well the diameter d , orientation angle �, and asymmetry A. The ground

truth is within the uncertainty of both procedures. The width w of the crescent is

below the angular resolution of the telescope, so it is not surprising that we do fully

resolve it in the reconstruction. Both ways to calculate the uncertainty do not account

for the discrepancies. Interestingly, all quantities, except for the orientation angle, are

static in time. For this example, we additionally show the temporal evolution of se-

lected points in fig. 4.9, analogously to M87*. The reconstruction follows the dynamics

of the ground truth, as indicated by the dashed line.

More challenging is the reconstruction of the more pronounced crescent. Due to the

weak signal, we do not recover the faint part of the circle. For an accurate extraction

of the ring parameters, however, this area is vital to constrain the radius. As for the

other crescent, tables 4.5 and 4.6 shows the resulting ring parameters for this example.

Here we only recover well the orientation angle. The diameter estimate has large

error bars, when following the approach of the EHT collaboration. In this scenario

the uncertainty estimate seems to be a bit too conservative. In contrast to that, using
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samples for the uncertainty, significantly smaller error bars are obtained. A variational

approximation tends to under-estimate the true uncertainty and this could be a result

of this behaviour. This sample-uncertainty should therefore be regarded as a lower

bound to the true uncertainty, but stating it provides valuable insight.

We recover well the dynamics of the two Gaussian shapes and our model correctly

interpolates through the gap of three days without data.

Overall, our method is capable of accurately resolving dynamics that are compara-

ble to the ones expected in M87*. Therefore, our findings regarding on the temporal

evolution of M87* may be trusted.

The reconstructions of the three static examples are shown in fig. 4.10. These consist

of two simulated black holes in different orientation, as well as a uniform disk. For

illustrative purposes we also show a blurred image of the ground truth, which we

obtain by convolving with a Gaussian beam of 12 �as. Overall we recover the general
shape and main features of the sources.

None of the validation reconstructions suffers from imaging artefacts that are sim-

ilar to the elongated structures in the south-western and north-eastern direction of

M87 ∗. Especially the first crescent model, which has a strong similarity to M87 ∗, is

accurately recoveredwithout a trace of spurious structures. We conclude that the elon-

gated features of M87 ∗ either of physical origin or due to baseline-based calibration

errors and not an imaging artefact.
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Figure 4.6: Validation on synthetic observations. In the figure, time goes from left to right
showing slices through the image cube for the first time bin of each day. Dif-
ferent source models are shown from top to bottom: ehtcrescent, crescent, and
double sources. For each source the ground truth, the posterior mean of the re-
construction, and the relative posterior standard deviation (from top to bottom)
are displayed. The central three columns show moments in time in which no data
is available since data was taken only during the first and last two days of the
week-long observation period.
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Figure 4.7: Spatial correlation power spectra of our reconstruction for the EHT-observation of
M87* (top left panel) and five of our validation data sets. The red curves show the
power spectra of the reconstructed brightness. The blue curves show the power
spectra of the logarithmic brightness. For the three validation sets, the correspond-
ing power spectra of the ground truth are plotted as a dashed line.
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Figure 4.8: Noise-weighted residuals for M87∗ reconstruction for all posterior samples.
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Figure 4.9: Time evolution of the validation data set ‘ehtcrescent’. Analogous to fig. 4.4. The
dashed lines represent the ground truth. In subfigures 5 to 7 the groundtruth is
constantly zero.
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50 µas 50 µas 50 µas

Figure 4.10: Static validation plots. The rows depict the ground truth, the smoothed ground
truth, the posterior mean, and the relative standard deviation for our three static
validation examples. The plots in the first three rows are normalized to their
respective maximum, are not clipped, and the minimum of the color var is zero.
In the last row the color bar is clipped to the interval [0�, 1�].
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The following chapter has first been published in Astronomy & Astrophysics with me

as the first author (Arras, Frank, Leike, et al. 2019). All authors read, commented, and

approved the final manuscript. Since the layout of this thesis differs from the A&A layout,

the figures have been adapted.

Abstract

The data reduction procedure for radio interferometers can be viewed as a com-

bined calibration and imaging problem. We present an algorithm that unifies

cross-calibration, self-calibration, and imaging. Because it is a Bayesian method,

this algorithm not only calculates an estimate of the sky brightness distribution,

but also provides an estimate of the joint uncertainty which entails both the un-

certainty of the calibration and that of the actual observation. The algorithm is

formulated in the language of information field theory and uses Metric Gaussian

Variational Inference (MGVI) as the underlying statistical method. So far only

direction-independent antenna-based calibration is considered. This restriction

may be released in future work. An implementation of the algorithm is con-

tributed as well.

5.1 Introduction

Radio astronomy is thriving. Super-modern telescopes such as MeerKAT, the Aus-

tralian Square Kilometre Array Pathfinder (ASKAP), the Very Large Array (VLA), and

the Atacama Large Millimetre Array (ALMA) are operating and the Square Kilometre

Array (SKA) is in the planning stages. All these telescopes provide high-quality data

on an unprecedented scale andmuch progress is beingmade instrumental-wise, which

facilitates enormous improvements in sensitivity and survey speed.

Impressed by these novel facilities we would like to turn our attention to the cal-

ibration and imaging algorithms that are fed by the data from these telescopes. The

amount of scientific insight that can possibly be extracted from a given telescope is

limited by the capability of the employed data reduction algorithm. We suggest that

there is room for improvement regarding the calibration and imaging procedure: the

most widely applied algorithms view calibration and imaging as separate problems

and are not able to provide uncertainty information. The latter is desperately needed

to quantify the level of trust a scientist can put on any result based on radio observa-

tions. Furthermore, a statistical sound confrontation of astrophysical models to radio
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data requires reliable uncertainty quantification. Treating calibration and imaging as

separate steps ignores their tight interdependence.

The algorithmic idea presented in this work is an advancement of the original re-

solve algorithm (Radio Extended SOurces Lognormal deconvolution Estimator; Jun-

klewitz, Bell, Selig, et al. (2016)) and may retain its name. The resolve algorithm is

formulated in the language of information field theory (IFT; Enßlin (2018) and Enßlin,

Frommert, and Kitaura (2009)), which is a view on Bayesian statistics applicable wher-

ever (physical) fields are supposed to be inferred. From a Bayesian point of view the

question when reducing radio data is the following: Given prior knowledge as well

as measurement information about the brightness distribution of a patch of the sky,

what knowledge does the observer have after obtaining the data? This question is

answered by the Bayes theorem in terms of a probability distribution over all possible

sky brightness distributions conditional to the data.

Reconstruction algorithms may be judged based on their statistical integrity or by

their performance. The first perspective ultimately leads to pure Bayesian algorithms,

which are too expensive for typical problems computationally. The latter often leads

to ad hoc algorithms that may perform well in applications, but these can have ma-

jor shortcomings such as a missing uncertainty quantification or negative-flux pixels,

which is the case, for example, for CLEAN (Högbom 1974). The resolve algorithm

attempts a compromise between these two objectives. It is based on purely statistical

arguments and the necessary operations are approximated such that they can effi-

ciently be implemented on a computer and be used for actual imaging tasks. Thus,

the approximations and (prior) assumptions on which resolve is based can be written

down explicitly.

resolve is reasonably fast but cannot compete in pure speed with algorithms like

the Cotton-Schwab algorithm (Schwab 1984) as implemented in CASA. This is rooted

in the fact that resolve not only provides a single sky brightness distribution but

needs to update the sky prior probability distribution according to the raw data in

order to properly state how much the data has constrained the probability distribu-

tion and how much uncertainty is left in the final result. This uncertainty is defined

in a fashion such that it can encode the posterior variance and also cross-correlations.

Thus, the uncertainty is quantified by(n2) pieces of information where n is the num-

ber of pixels in the image. Given this massive amount of degrees of freedom it may

be surprising that resolve is able to return its results after a sensible amount of time.

Having said this, there is still potential for improvement. The technical cause for the

long runtime is the complexity of the gridding and degridding operation, which needs

to be called orders of magnitude more often than for conventional algorithms. This

problem may be tackled from an information-theoretic perspective in the future.

Turning to the specific subject of the present publication, the data reduction pipeline

of modern radio telescopes consists of numerous steps. In this paper, we would like

to focus on the calibration and imaging part. Calibration is necessary because the

data is corrupted by a variety of effects including antenna-based, baseline-based, and

direction-dependent or direction-independent effects (Smirnov 2011). For the scope of

this paper only antenna-based calibration terms are considered, a simplification which
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is sensible for telescopes with a small field of view such as ALMA or the VLA. The cru-

cial idea of this paper is to view the amplitude and phase corrections for each antenna

as one-dimensional fields that are defined over time. These fields are discretised and

regularized by a prior which states that the calibration solution for a given antenna

is smooth over time. This removes the ambiguity of an interpolation scheme in be-

tween the calibrator observations and the subsequent application of self-calibration.

Because resolve is an IFT algorithm, there is no notion of solution intervals, which

are time bins in which traditional calibration algorithms bin the data (see, e.g., Kenyon

et al. 2018). Instead IFT takes care of a consistent discretisation of the principally con-

tinuous fields. Similarly, the sky brightness distribution is defined on a discretised

two-dimensional space; only single-channel imaging is performed in this work.

In practice, the current approach in the IFT community is to define a generative

model that turns the degrees of freedom, which are learned by the algorithm into

synthetic data that can be compared to the actual data in a squared-norm fashion (in

the case of additive Gaussian noise). This approach is similar to the so-called radio

interferometric measurement equation (RIME; Hamaker, Bregman, and Sault (1996),

Perkins et al. (2015), and Smirnov (2011)). Therefore, our notation closely follows the

notation defined in Smirnov (2011). Calibration effects that are part of the RIME but left

out for simplicity in this publication could in principle be integrated into the resolve

framework.

The resolve approach may be classified according to the notion of first, second,

and third generation calibration established in Noordam and Smirnov (2010): it unifies

cross-calibration (1GC), self-calibration (2GC), and imaging. Still it is to be strictly dis-

tinguished from existing approaches like Cai, Pereyra, andMcEwen (2018) and Kenyon

et al. (2018), and Salvini and Wijnholds (2014). This is because it focuses on a strict

Bayesian treatment combined with consistent discretisation (one of the main benefits

of IFT) and does not use computational speed as an argument to drop Bayesian rigidity.

The actual posterior probability distribution of the joint imaging and calibration

problem is highly non-Gaussian and therefore not easily storable on a computer. In

order to overcome this apparent problem the posterior is approximated by a multi-

variate Gaussian with full covariance matrix. The algorithm prescribes to minimize

the Kullback-Leibler divergence (KL divergence) between the actual posterior and the

approximate one which is the information gain between the two probability distri-

butions. We use the variant of this known as Metric Gaussian Variational Inference

(MGVI) (Knollmüller and Enßlin 2019).

Together with this publication we contribute an implementation of resolve that is

available under the terms of GPLv3.1 It is based on the Python library NIFTy (Arras,

Baltac, et al. 2019), which is freely available as well.

The paper is divided into four sections. Section 5.2 discusses the structure of likeli-

hood and prior for the statistical problem at hand. This defines an algorithm which is

verified on synthetic data in section 5.3 and afterwards applied to real data from the

VLA in section 5.4. Section 5.6 finishes the paper with conclusions and a outlook for

1https://gitlab.mpcdf.mpg.de/ift/resolve
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future work.

5.2 The algorithm

5.2.1 Bayes’ theorem

Every reconstruction algorithm needs a prescription of how the quantity of interest s
affects the data d . This prescription is called the data model. Combined with statistical

information, this model defines the likelihood (d |s), which is a probability distribu-

tion on data realizations conditioned on a given realization of the signal s. Bayes’

theorem,

(s|d) = (d |s)(s)

(d)
, (5.1)

requires us to supplement the likelihood with a prior probability distribution (s),
which assigns a probability to each signal realization s. This distribution encodes the

knowledge the scientist has prior to looking at the data. Since it is virtually impossible

to visualize the posterior probability distribution(s|d) in the high dimensional setting

of Bayesian image reconstruction we may compute the posterior mean and posterior

variance as

m ≔ ⟨s⟩(s|d) ≔∫ s (s|d) s, (5.2)⟨|m − s|2⟩(s|d) ≔∫ s (s|d) |m − s|2. (5.3)

The notation ∫ s is borrowed from statistical physics and means integrating over

all possible configurations s. For a discussion on this measure in the continuum limit

see Enßlin 2018, section 1.8. In practice, this integral is discretised as follows: ∫ s =∫ ∏i dsi where si refers to the pixel values of the discretised quantity s. The term(d)
is independent of s and serves as a normalization factor. It expresses the probability

to obtain the data irrespective of what the signal is, i.e. (d) = ∫ s (d, s).
In the following we describe the data model and implied likelihood employed by re-

solve. This includes the assumptions resolvemakes about the measurement process.

Afterwards, resolve’s prior is discussed. For definiteness the notation established in

Smirnov (2011) is used.

5.2.2 Data model and likelihood

The measurement equation of a radio interferometer can be understood as a modi-

fied Fourier transform followed by an application of data-corrupting terms, the terms

which need to be solved for in the calibration procedure. Assume that the data is only

corrupted by so-called antenna-based direction-independent effects. Then Smirnov

2011, equation 18 is written as

Vpq = Gp (∫ B(l, m)

n(l, m)
e−2�i[upq l+vpqm+wpq(n(l,m)−1)] dl dm)G†

q , (5.4)
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where

• l, m: Direction cosines on the sky and n(l, m) =
√
1 − l2 −m2.

• p, q ∈ {1,… , Na}: Antenna indices where Na is the total number of antennas of

the interferometer.

• Vpq ∈ ℂ
2×2: Visibility for antenna pair (pq).

• (upq , vpq , wpq): Vector that connects antenna p with antenna q. The coordinates
upq and vpq are aligned with l and m, respectively. The value wpq is perpendic-

ular to both and points from the interferometer toward the centre of the field of

view.

• Gp ∈ ℂ
2×2: Antenna-based direction-independent calibration effect.

• B ∈ ℝ
2×2: Intrinsic sky brightness matrix. Since only the Stokes I component is

considered in this publication, this matrix is proportional to the identity matrix.

Equation (5.4) can be understood as a Fourier transform of the sky brightness distribu-

tion, which is distorted by the terms involving n(l, m) and corrupted by the calibration

terms Gp . For the purpose of this publication we make the following simplifying as-

sumptions: First, only the total intensity I is reconstructed. Second, Gp is assumed

to be diagonal, which states that there is no significant polarization leakage and espe-

cially no time-variable leakage. Finally, the temporal structure of the data is needed for

the construction of the prior. Therefore, a time index is added to the above expression

that is written as

Vpqt = Gp(t)(∫ B(l, m)

n(l, m)
e−2�i[upq l+vpqm+wpq(n(l,m)−1)] dl dm)G†

q (t), (5.5)

where Gp(t) are diagonal matrices and B(l, m) is a diagonal matrix, which is propor-

tional to unity in polarization space. We note that Gp(t) needs to absorb the V -term
from eq. (5.4), which is possible as long as polarization leakage is not too time variable.

Thew-term can be taken care of byw-stacking (Offringa, McKinley, et al. 2014), which

means that the range of possible values for wpq is binned linearly such that the inte-

gral becomes an ordinary Fourier transform. Technically, the non-equidistant Fourier

transform in eq. (5.5) is carried out by the NFFT library (Keiner, Kunis, and Potts 2009)

in our resolve implementation.

All in all, eq. (5.5) prescribes how to simulate data Vpqt given calibration solutions

Gp(t) and an inherent sky brightness distribution B(l, m), which is what we wanted. In

order to declutter the notation in the following let us denote the quantities of interest

by s = (Gp(t), B(l, m)) and the map R such that Vpqt = R(s).

The commonly used data model is the following: d = R(s) + n. It assumes additive

Gaussian noise (Thompson, Moran, Swenson, et al. 1986). Let N be a diagonal noise

covariance matrix with the noise variances on its diagonal and G (s −m, S) refers to a
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Gaussian random field with meanm and covariance matrix S. Then, the additive noise
can be marginalized over to arrive at an expression for the likelihood

(d |s) = ∫ n(d |s, n)(n) (5.6)

= ∫ n �(n − (d − R(s)))G (n, N ) (5.7)

= G (d − R(s), N ). (5.8)

The likelihood distribution(d |s) contains all information about the measurement de-

vice and the measurement process that the inference algorithm will take into account.

We conclude the discussion on data and likelihood with three remarks: First, the

likelihood does not depend on the statistical method at hand. All simplifications being

made are rooted in practical reasons in the implementation process. There is no fun-

damental reason for not taking, for instance, a more accurate noise model or a more

sophisticated calibration structure into account.

Second, the employed notation already hints at the goal of describing an algorithm

that jointly calibrates and images: the generalized response function R takes at the

same time the calibration parameters Gp(t) and the intrinsic sky brightness distribu-

tion B as an argument.

Finally, we consider what happens if the telescope alternates between observing

the science target and observing a calibration source. Then, both the data set and the

intrinsic sky brightness consists of two parts and the likelihood separates into

(d |s) = (dc |s)(dt |s) (5.9)

From the likelihood perspective, calibration and science source are two separate things.

However, as soon as the one-dimensional calibration fields are supplemented by a prior

that imposes temporal smoothness the degrees of freedom regarding the science tar-

get and calibration target interact. This solves the problem of applying interpolated

calibration solutions in traditional cross-calibration in a natural way.

5.2.3 Prior

Turning to the prior probability distribution, we note that the technical framework

in which resolve is implemented allows for a variety of different priors, which may

supersede that presented in this paper.

As stated before Gp(t) are assumed to be diagonal,

Gp(t) = (g(0)p (t) 0

0 g(1)p (t)) . (5.10)

The elements of this matrix are functions defined over time and take the following

complex non-zero values:2

g(i)p ∶ [t0, t1] → ℂ
∗, i ∈ {0, 1}, p ∈ {1,… , Na}. (5.11)

2
ℂ
∗ are the units of ℂ, i.e., ℂ∗ ≔ ℂ ⧵ {0}.
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The natural way of parametrising a function taking values inℂ∗ is in polar coordinates,

i.e.,

g(i)p (t) = exp (�(i)p (t) + i�(i)p (t)) , (5.12)

where �(i)p ∶ [t0, t1] → ℝ and �(i)p ∶ [t0, t1] → ℝ/2�ℤ. The modulus and phase of the

complex gains g(i)p have different physical origins. The modulus describes a varying

amplification of the signal in the antenna electronics, which is rooted amongst others

in fluctuating temperatures of the receiver system. Varying phases stem from fluctua-

tions in the atmosphere. Therefore, these two ingredients of gp have differing typical

time scales a priori.

The prior knowledge on �(i)p and �(i)p is the following: {�(i)p }, {�(i)p }, respectively,

share a typical behaviour over time for all antennas p, both of which are not known a

priori and need to be inferred from the data as well. This typical behaviour does not

change over time. Additionally, all �(i)p , �
(i)
p evolve smoothly over time. Mathematically,

this can be captured by Gaussian random fields,

 ((�(i)p , �(i)p )i,p |||Λ,Φ) = ∏
i,p

G (�(i)p ,Λ)G (�(i)p ,Φ) , (5.13)

where Λ,Φ is defined such that the Gaussian random fields obey homogeneous but

still specifically unknown statistics. This means that not only the calibration solutions

themselves but also their prior correlation structure is inferred. For this a prior on the

covariances needs to be supplemented: (Λ),(Φ). In section 5.2.4 we describe how

to set up the prior on Λ and Φ such that they implement homogeneous statistics and

which parameters they take.

Next, let us discuss the prior on the sky brightness distribution B(l, m). We recall

that the matrix B(l, m) is assumed to be diagonal and proportional to unity, i.e.,

B(l, m) = (b(l, m) 0

0 b(l, m)) , (5.14)

where b(l, m) ∶ [lmin, lmax] × [mmin, mmax] → ℝ>0 map the field of view to the set

of positive real numbers since sky brightness is inherently a positive quantity.3 For

the scope of this publication, the sky brightness contains only a diffuse component.

It shall be modelled similarly to the modulus of the calibration terms: it is strictly

positive a priori, smooth over its domain and may vary over large scales. Therefore,

we define b(l, m) = e (l,m) and let  (l, m) be a two-dimensional Gaussian random field

with correlation structure Ψ, which is going to be inferred as well:

( |Ψ) = G ( ,Ψ). (5.15)

All in all, the basic structure of the priors on all terms appearing in eq. (5.5) has been

described apart from the construction of the prior on all covariance matrices, which is

the objective for the next section.

3We note the difference to Högbom’s CLEAN, which has positivity not built in (Högbom 1974).
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5.2.4 Correlated fields

To account for correlations of a Gaussian distributed field  the following statements

are assumed to be true:

1. The autocorrelation of  can be characterized by a power spectrum PΨ(|k|),
where k is the coordinate of the Fourier transformed field.

2. The power spectrum PΨ(|k|) is a positive quantity that can vary overmany orders

of magnitudes.

3. Physical power spectra are falling with |k|, typically according to a power law.

4. Given enough data, it is possible to infer any kind of differentiable power spec-

trum.

Note that the first assumption is equivalent to the seemingly weaker assumptions:

• In absence of data, there is no special direction in space or time, i.e., a priori the

correlation of the field is invariant under rotations.

• In absence of data, there is no special point in space or time, i.e., a priori the

correlation of field values is invariant under shifts in space or time.

The fact that homogeneous and isotropic correlation matrices are diagonal in Fourier

space and can be fully characterized by a power spectrum is known as the Wiener-

Khinchin theorem (Khintchin 1934; Wiener et al. 1949).

It is assumed that  as well as its power spectrum PΨ(|k|) are unknown. Therefore,
both need a prior that may be formulated as generative model: an operator that gen-

erates samples for  and its square root power spectrum (henceforth called amplitude

spectrum) from one or multiple white Gaussian fields. Formulating a prior as a gener-

ative model has several theoretical and practical advantages (Knollmüller and Enßlin

2018).

We propose the following ansatz for an operator that converts independent normal

distributed fields, � and � to the amplitude spectrum of the correlated field  . This
operator is called amplitude operator AC (see fig. 5.1 for an illustrative example), i.e.

AC (� , �) = (Exp∗Exp)(0.5 ⋅ [ log(k)(�m�m + m̄) + �y0�y0 + ȳ0

+ (sym ◦ ̃log(k)t )(cp(t) ⋅ �(t))]), (5.16)

where C = (a, t0, m̄, ȳ0, �m, �y0 , �, �) denotes the tuple of parameters (all real numbers),

Exp∗ denotes the pullback of a field by the exponential function acting on log(|k|)4, Exp
4Let � ∶ U → V with U , V ⊆ ℝ open and f ∶ V → ℝ a smooth function, i.e., a field. Then
(�∗f )(t) ≔ f (�(t)) denotes the pullback of f by �. In other words, the field f is transformed to a
different coordinate system whose coordinates are related to the original one by �.
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Figure 5.1: Steps of the generative process defined in eq. (5.16). Top left: Smooth, periodic
field defined on the interval [t0, 2t1 − t0]. Bottom left: (anti-)symmetrized version
of the above. Top right: Projection of the symmetrized field to half of the original
domain [t0, t1]. Bottom right: Resulting double logarithmic amplitude spectrum
after addition of the power law (orange) to the above.

denotes exponentiation of the field values, ̃log(k)t denotes the Fourier transform of a

space with coordinates t to the logarithmic coordinates log(k) of the power spectrum,

m̄ and ȳ0 are the slope and the y-intercept of the a priori mean power law, sym is an

(anti-)symmetrizing operation defined to operate on a field � over the interval [t0, t1]
as

2 ⋅ sym(�)(x) = �(x) − �(2t1 − t0 − x), (5.17)

for x ∈ (t0, 2t1 − t0). In words, sym mirrors the field and subtracts it from itself, then

restricts the domain to half the original size. Finally, cp is the log-cepstrum,

cp(t) = a ⋅ (1 + (t/t0)
−2) . (5.18)

Let us show that eq. (5.16) meets the requirements stated at the beginning of sec-

tion 5.2.4. Requirement 1 is trivial. Requirement 2 is met since the amplitude spectrum

is constructed by applying an exponential function to a Gaussian field. Thus, all values

are positive and can vary over several order of magnitudes.

To requirement 3: In absence of data, the mean of the inferred white fields � and

� , to which the amplitude operator is applied, remains zero. For � = 0 and � = 0,

eq. (5.16) becomes

(Exp∗Exp)(0.5 ⋅ [m̄ log(k) + ȳ0]), (5.19)

which is the equation for a power law with spectral index m̄. A preference for falling

spectra can be encoded by choosing the hyperparameter m̄ to be negative.

To requirement 4: Let us show that any differentiable function lies in the image

space of the amplitude operator. This implies that any differentiable amplitude spec-

trum can be inferred given enough data. Let � be an arbitrary smooth field over the
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interval [t0, t1] and �sym be a smooth field that has a point symmetry at (t1, �(t1)) and
is defined on the interval [t0, 2t1 − t0] as

�sym(t) =

{
�(t) for t ∈ [t0, t1],

2�(t1) − �(2t1 − t) for t ∈ (t1, 2t1 − t0].
(5.20)

The function �sym is a continuous and differentiable continuation of � at t1. Now, we
decompose �sym into a linear part and a residual term:

�sym(t) = m ⋅ (t − t0) + y0 + �res(t), (5.21)

where

y0 = �sym(t0), (5.22)

m =
�sym(2t1 − t0) − �sym(t0)

2(t1 − t0)
, (5.23)

�res(t) = −m ⋅ (t − t0) − y0 + �sym(t). (5.24)

The residual term is a differentiable periodic function, i.e.,

�res(t0) = �res(2t1 + t0)

⇔ �sym(t0) − �sym(t0) = −�sym(2t1 − t0) + �sym(t0)

− �sym(t0) + �sym(2t1 + t0)

(5.25)

�′res(t0) = �
′
res(2t1 + t0)

⇔ �′(t0) −m = �′sym(2t1 + t0) −m

⇔ �′(t0) −m = �′(t0) −m.

(5.26)

Thus, �res can be represented in Fourier space by a field that falls of at least with second
order. This is exactly how �res is represented in eq. (5.16). Assuming that the mean and

the slope of the linear part are well represented by its prior distribution, it is indeed

possible to represent any kind of differentiable amplitude spectrum. All in all, all four

requirements are met by eq. (5.16).

There remains one unconstrained degree of freedom, the value of the power spec-

trum at |k| = 0, the zero mode. As the zero mode describes the magnitude of the overall

logarithmic flux, it is decoupled from the remaining spectrum and should have its own

prior. This value is fixed by imposing an inverse gamma prior on the zero mode, which

restricts it to be a positive quantity, while still allowing for large deviations.

To sum up, the amplitude operator depends on the following eight hyper parame-

ters:

• a, t0: The amplitude parameter and cut-off scale of the log-cepstrum.

• m̄, ȳ0: The prior means for the slope and the height of the power law.

• �m, �y0 : The corresponding standard deviations.
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• � , � : The shape and scale parameter of the inverse gamma prior for the zero

mode.

We note that the assumptions made at the beginning of section 5.2.4 apply to a

wide variety of processes, regardless of their dimensionality. This generic correlated

field model has already been successfully used in a number of synthetic and real

applications (Hutschenreuter and Enßlin 2020; Knollmüller and Enßlin 2018, 2019;

Knollmüller, Frank, and Enßlin 2018; Leike and Enßlin 2019). In resolve, the am-

plitude operator is used as a prior for the amplitude spectra of the antenna calibration

fields and the image itself.

5.2.5 Full algorithm

In the foregoing sections, the full likelihood and prior are described. Now, we stack

all the ingredients together to build the full algorithm. Let us assume that the data set

consists out of two alternating observations: observations of a calibrator source and

observations of the science target. This means that the likelihood splits into two parts

as indicated in eq. (5.9). In contrast to the sky brightness distribution of the science

target that of the calibrator Bc is known: it is a point source in the middle of the field

of view. The sky brightness distribution of the science target is reconstructed.

The full likelihood takes the form

(dt |� )(dc |� ) = ∏
a∈{t,c}

G (da − Ra({G
(i)
p }, Ba), Na ⊗ 1), (5.27)

Bt = exp ◦ ◦ (�B ⋅ A
B), (5.28)

G(i)
p = (g(i)p 0

0 g(i)p ) , (5.29)

g(j)p = exp (�(j)p + i�(j)p ) , (5.30)

�(i)p = Z ◦  ◦ (�
�(i)p

⋅ A�), (5.31)

�(i)p = Z ◦  ◦ (�
�(i)p

⋅ A�), (5.32)

AB = ACB (�AB ), (5.33)

A� = AC� (�A� ), (5.34)

A� = AC� (�A� ), (5.35)

where Cx denote the tuple of parameters of the respective amplitude operator, Z is a

padding operator. The unit matrices in eq. (5.27) is a 2 × 2 matrix acting on the same

space as the sky brightness matrix B. The tuple of all excitation fields is called � , where

� = (�B, �AB , �A� , �A� , ��(0)0
,… , �

�(1)Na
, �
�(0)0
,… , �

�(1)Na) . (5.36)

As discussed before this model is set up such that the excitation fields � have white

Gaussian statistics a priori,

(� ) = G (� ,1). (5.37)
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The posterior probability distribution is given by

(� |dt , dc) ∝ (dt , dc , � ) = (dt |� )(dc |� )(� ). (5.38)

Finally, the statistical model that is employed in this publication is fully defined.

5.2.6 Inference algorithm

The probability distribution eq. (5.38) has too many degrees of freedom to be repre-

sented on a computer. The resolve algorithm solves this problem by approximating

this full posterior distribution by a multivariate Gaussian distribution whose covari-

ance is equated with the inverse Fisher information metric. The latter can be repre-

sented symbolically alleviating the need for an explicit storage and handling of other-

wise prohibitively largematrices. This algorithm is calledMGVI and is described in full

length in Knollmüller and Enßlin (2019) and implemented in NIFTy.5 The following is

an outline of Knollmüller and Enßlin (2019).

The algorithm MGVI prescribes to minimize the KL divergence6 between the actual

posterior and approximate posterior such that

KL(1||2) = ∫ s 1(s) log(1(s)

2(s)) , (5.39)

where 1 is more informed compared to 2. However, it is apparent that it is virtually

impossible to perform the integration with respect to the posterior distribution as in-

tegration measure. Therefore, MGVI exchanges the order of the arguments of the KL

divergence such that the integral can be approximated by samples of the approximate

posterior, i.e.,

F [� ] = ⟨(� + x, d)⟩xxG (x,D(� )) , (5.40)

where (� , d) ≔ − log(� , d) is the information Hamiltonian and D(� ) the Fisher

information. The parameter F [� ] is a cost function that can be minimized with respect

to � . Suitable (second order) minimizers are provided by NIFTy.

With the help of the above approximation scheme we gets a computational handle

on the posterior. The drawbacks of this approach include the uncertainty estimate

of MGVI sets a lower bound on the variance of the posterior and it is not suited for

extremely non-Gaussian and especially multi-modal probability distributions. But we

note that the posterior is approximated with a Gaussian in the space on which the

parameters are defined. After processing the parameters through non-linearities as

discussed in this section the actual quantities of interest such as the sky brightness

distribution are not Gaussian distributed anymore andmay even havemultiple modes.

A detailed discussion on the abilities of MGVI is provided in Knollmüller and Enßlin

(2019).

5https://gitlab.mpcdf.mpg.de/ift/nifty
6Also known as discrimination information.
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5.3 Verification on synthetic data

Figure 5.2: Random sample (30000 points) of uv-coverage of a G327.6+14.6 (SN1006) obser-
vation with the VLA. The grey and red points indicate the uv-coverage of the
calibration source and science target, respectively.

5.3 Verification on synthetic data

This section is devoted to the verification of the algorithm, i.e., the reconstruction

of a synthetic sky brightness distribution from a simulated observation and artificial

noise. The setup is described followed by a comparison of the ground truth and the

reconstruction. Application to real data, where effects that are not modelledmay occur

and the ground truth is unknown, is presented in section 5.4.

We employ a realistic uv-coverage. It is an L-band observation of the supernova

remnant SN10067. For the purpose of this paper we randomly select 30000 visibili-

ties from this data set to demonstrate that joint calibration and imaging is possible

even without much data. (see fig. 5.2). We use the field shown in fig. 5.3a as the syn-

thetic sky brightness distribution. It is a random sample assuming the power spectrum

shown in orange in fig. 5.4b. The noiseless simulated visibilities are corrupted by noise

whose level is visualized in fig. 5.5. The resulting information source, i.e., the naturally

weighted dirty image, is shown in fig. 5.4a.

This synthetic observation is set up in a fashion such that the calibration artefacts

are stronger and the noise level is higher as compared to real data (see section 5.4)

to demonstrate the capability of the resolve in bad data situations. The calibration

artefacts that have been applied are visualized in fig. 5.6.

The resolve algorithm is run on this synthetic data to compare its output and un-

certainty estimation to the (known) ground truth. The prior parameters are listed in

table 5.1. Additionally, we choose a resolution of 642 pixels for the sky brightness dis-

tribution with a field of view of 60′ and 256 pixels for the calibration fields that are de-

7VLA archive project code: source G327.6+14.6, AM0754, Jan 24, 2003, L-Band 1369.95 MHz, CnD con-
figuration.
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(a) Ground truth b(l, m) with 60’ field of view. (b) Posterior mean.

(c) Absolute value of the difference between ground
truth and posterior mean. (d) Pixel-wise standard deviation.

Figure 5.3: Sky brightness distributions of synthetic observation b(l, m).

(a) Information source j = R†
t N

−1
t dt .

(b) Posterior power spectrum of log-sky brightness
distribution.

Figure 5.4: Synthetic observation. Orange: Ground truth; green: posterior mean; and blue:
posterior samples.
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Figure 5.5: Synthetic observation: Visibilities of calibrator observation (polarization L, only
visibilities of antennas 1 and 3). Thus, a constant value of (1 + 0i) Jy is expected.
All deviations from this are either noise or calibration errors. The error bars show
the standard deviation on the data points.

Figure 5.6: Synthetic observation: Calibration solutions. The first two rows show the am-
plitude and the bottom two rows show the phase calibration solutions. The first
and the third row refer to LL-polarization and the second and last row to RR-
polarization. The third column shows the absolute value of the difference between
posterior mean and ground truth. The fourth column display the point-wise pos-
terior standard deviation as provided by resolve. Amplitudes do not have a unit
as they are a simple factor applied to the data. Phases are shown in degrees.
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a t0 m̄ ȳ �m �y0 � �

A 2 2 −4 5 1 3 4 5 ⋅ 10−3

� 1.5 1 −4 −37 0.5 1 2 20

� 1.5 1 −4 −36 0.5 1 2 20

Table 5.1: Synthetic observation: Prior parameters.

fined on a temporal domain. As the total length of the observation was approximately

220min one temporal pixel is approximately 50 s long. These temporal pixels should

not be confused with solution intervals of traditional calibration schemes where the

data is binned on a grid and then the calibration parameters are solved for. In IFT fields

are by their nature continuous quantities that are discretised on an arbitrary grid. For

convenience a regular grid was chosen. Then the data provides information on each

pixel that is propagated to the neighbouring pixels through the prior; the calibration

fields are assumed to be smooth over time. Therefore, the user is free to choose the

resolution of the fields in IFT algorithms as long as it is finer than the finest structure

that shall be reconstructed.

As pointed out resolve is a Bayesian algorithm whose output is not a single image

of the observed patch of the sky but rather a probability distribution of all possible

sky configurations. The MGVI algorithm approximates this non-Gaussian probability

distribution with a Gaussian in the space of � , i.e., the eigen space of the prior covari-

ance. This again implies non-Gaussian statistics on quantities such as b(l, m), �(i)p , and

�(i)p since they depend in a non-linear fashion on � . The only useful way to visualize

this probability distribution is to analyse a finite number of samples from it which

resolve can generate. A given set of samples can then be analysed with standard

statistical means such as the pixel-wise mean and variance.

Figures 5.3b to 5.3d show the posterior mean, the absolute value of the residual, the

standard deviation of the sky brightness distribution, and a histogram of the residual

divided by the standard deviation computed from 100 posterior samples, respectively.

The algorithm has managed to perform the calibration correctly and to reconstruct

the sky brightness distribution. The total flux of the ground truth (fig. 5.3a) could not

totally be recovered because of the noise on the synthetic measurement. Remarkably,

the proposed uncertainty is a bit too small compared to the residuals which is what is

to be expected from MGVI.

Since resolve does not assume a specific power spectrum as prior for the recon-

struction but rather learns it together with the sky brightness from the data, resolve

also provides the user uncertainty on the power spectrum; see fig. 5.4b. We note that

the posterior variance on the power spectrum increases toward the boundaries of the

plot. This is because interferometers do not provide information on scales larger than

those that belong to the shortest baseline. On small scales an interferometer is limited

by the noise level, which leads to an increased variance in the power spectrum on the

right-hand side of the plot.

Next, we turn to the calibration solutions. Figure 5.6 shows a comparison of the
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(a) Phase solutions for antenna 15 and polarization
R. The phases are plotted in degrees.

(b) Amplitude solutions for antenna 0 and polariza-
tion L.

Figure 5.7: Synthetic observation: exemplary phase and amplitude solutions. Orange: Ground
truth; green: sampled posterior mean; and blue: posterior samples. The calibra-
tion data density shows how many data points of the calibrator observation are
available. We note that a Bayesian algorithm can naturally deal with incomplete
data or data from different sources. The bottom plot shows the residual along with
the pixel-wise posterior standard deviation.

ground truth and the posterior provided by resolve. Since two polarizations are con-

sidered (LL and RR) for both the amplitude and the phase of the antenna-based cali-

bration term, fig. 5.6 has four rows. On first sight, the posterior mean and the ground

truth are indistinguishable by eye and the residuals and posterior standard deviation

fit together nicely. There is a significant increase of the uncertainty for, for example,

antenna 2 toward the end of the observation. This is because a flagged data set was

used and that simply all data points involving this antenna have been flagged from the

beginning of the observation up to ∼ 2h.

To illustrate this more explicitly, figs. 5.7a and 5.7b show the calibration solution for

one antenna, respectively. The ground truth lies within the bounds of uncertainty in-

dicated by the samples. We note that all data points have been flagged on the left-hand

side of fig. 5.7a. Since no information about the phase is available the only constraint

is the prior, which enforces temporal smoothness. Consistently, the uncertainty in-

creases where no information is available.

Finally, we demonstrate what kind of other information posterior samples can re-

veal. Say, a scientist is interested in the integrated flux over a certain region. In addi-

tion to the image, this integrated flux comes with an uncertainty that can be calculated

by averaging over posterior samples of the sky brightness distribution. An example is

shown in fig. 5.8. The scatter of the histogram is caused by the noise influence on the

data, the (un)certainty of the calibration solutions, and ultimately the uv-coverage.
We are not aware of any other radio aperture synthesis algorithm that is able to pro-

vide this kind of probabilistic posterior information. All in all, the proposed method

is able to recover the ground truth and is able to supplement it with an appropriate

uncertainty estimation.
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Figure 5.8: Synthetic observation: Histogram over samples of integrated flux in the region
shown in the top right corner. Orange: Ground truth.

(a) Information source j = R†N −1d .
(b) Posterior power spectrum of logarithmic sky

brightness distribution.

Figure 5.9: Like fig. 5.4 but for SN1006 reconstruction.

5.4 Application to VLA data

We continue with an application of resolve to real data. To this end, take the VLA

data set whose uv-coverage and time stamps have already been used in the preceding

section. Also, the resolution of all spaces is taken to be the same.

Starting from raw data, the first thing to look at is the information source (see

fig. 5.9a). No structure of the supernova remnant is visible whatsoever since the data is

not calibrated yet. This illustrates that resolve is able to operate on raw (but already

flagged) visibilities that have not been processed further. Table 5.2 summarizes the

prior parameters for the following reconstruction.

All calibration solutions are shown in fig. 5.10 together with two exemplary plots

in figs. 5.11a and 5.11b. The major characteristic of these solutions are hidden in the

right-hand column of fig. 5.10: the uncertainty on the calibration decreases whenever
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a t0 m̄ ȳ �m �y0 � �

A 2 2 −4 2 1 2 4 1

� 1.5 1 −4 −37 0.5 1 2 20

� 1.5 1 −4 −36 0.5 1 2 20

Table 5.2: SN1006: Prior parameters.

Figure 5.10: SN1006: Overview of calibration solutions. The four rows indicate amplitude and
phase solutions for LL polarization and RR polarization as in fig. 5.6.

(a) Exemplary amplitude solution. (b) Exemplary phase solution.

Figure 5.11: Exemplary calibration solutions for SN1006. Similar to fig. 5.7.
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(a) Sampled mean. (b) Sampled mean (logarithmic colour bar).

(c) Pixel-wise standard deviation.
(d) Pixel-wise standard deviation normalized by

posterior mean.

Figure 5.12: SN1006: Visualization of posterior of the sky brightness distribution.

the calibrator source is observed as expected. Additionally, the uncertainty increases

dramaticallywhere the data has been flagged. The amplitude solutions are surprisingly

stable over time although the prior would allow for more variance in the solution as

can be seen from section 5.3, where the same prior parameters have been used.

There is a systematic difference between the samples for the amplitude solutions

and those for the phases. The former vary around a mean solution whereas the latter

exhibit a certain global offset. This is explained by the fact that the likelihood is in-

variant under a pixel-wise global phase shift, which is broken by the prior to a global

phase shift to all temporal pixels at once. This residual symmetry is again broken by

the prior on the zero-mode variance of the phase solutions. However, this prior is very

weak to allow for phase solutions of arbitrary magnitude. Therefore, the phase solu-

tions cannot have an arbitrarily large offset but still can globally vary to some degree,

which is shown in fig. 5.11b.

Next, the posterior sky brightness is discussed. Figures 5.12a and 5.12b, along with
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figs. 5.12c and 5.12d, show the posterior mean and pixel-wise standard deviation of

b(l, m). The posterior standard deviation is higher wherever more flux is detected.

Therefore, fig. 5.12d provides a descriptive visualization of the posterior uncertainty

of the sky brightness distribution.

Last but not least the power spectrum of the logarithmic sky brightness distribution

also needs to be reconstructed; this is shown in fig. 5.9b. The power spectrum is more

constrained compared to that of section 5.3 since the noise level is much lower in

this data set as compared to the synthetic data set. We might expect the posterior

power spectrum to feature nodes or distinct minima because the Fourier transform of

compact objects typically exhibit such. This is suppressed by the smoothness prior on

the power spectrum. However, we note that this does not mean that the algorithm

cannot reconstruct the object because it can still choose to not excite the respective

modes in �B.

All in all, this demonstrates that resolve is not only able to operate on synthetic data

but is actually capable of solving for the sky brightness distribution and the calibration

terms at the same time for real data sets.

5.5 Performance and scalability

Performance and scalability are crucial aspects of the applicability of algorithms. The

expensive part of the evaluation of the sky model is a fast Fourier transform (FFT),

which is in (n log n) where n is the total number of pixels of the sky model. For

real-world data sets the cost for the (de)gridding exceeds the FFTs by far such that one

likelihood evaluation is in (N ), where N is the number of data points that need to

be degridded once for each polarization. To compute the sampled KL divergence we

need to compute the likelihood ns times, where ns is the number of samples (typically

3 – 20). The memory consumption scales linearly with the number of samples used to

approximate the KL divergence, number of pixels, and number of data points. This is

possible since NIFTy is designed such that no explicit matrices need to be stored.

Both reconstructions in this paper each took ≈ 60 minutes to be computed on a

mobile CPU (Intel(R) Core(TM) i5-4258U CPU @ 2.40GHz) with 4GB main memory.

The response and adjoint needed to be called ≈ 30000 times, respectively.

These values might improve in the future. Barnett, Magland, and Klinteberg (2019)

have proposed a novel gridding kernel that features speed-ups of several times in first

experiments. This is possible since it needs relatively small support and can be com-

puted on the fly. Also, the structure of the algorithm allows for various forms of paral-

lelization. The gridding/degridding can be computed in parallel with OpenMP. More-

over, the data set could be split into several parts and distributed on a cluster. This is a

general feature of Bayesian statistics: a likelihood can be split into the product of two

likelihoods each of which contains only a subset of the data. Additionally, the evalua-

tion of the KL divergence, which is a sum of few but expensive independent summands,

can be distributed. Finally, NIFTy offers the (experimental) feature to distribute large

fields on a cluster. Orthogonal to computational speed-up ideas the algorithm might
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also benefit from compressing the likelihood itself such that fewer (de)gridder calls are

necessary.

5.6 Conclusions

We have presented the probabilistic resolve algorithm for simultaneous calibration

and imaging. After a derivation from first principles of the full posterior probabil-

ity distribution for the joint calibration and imaging algorithm resolve, it has been

shown how this distribution can be approximated by a multivariate Gaussian prob-

ability distribution to render the problem computationally solvable. This method is

called MGVI and provides a prescription for how to draw samples from the approx-

imate posterior distribution. The calibration algorithm resolve has been verified on

synthetic data. The results indicate that the uncertainty quantification is qualitatively

sensible but should be taken with a grain of salt since MGVI systematically underes-

timates posterior variance. Furthermore, it has been demonstrated that the algorithm

has the capability to reconstruct a sky brightness distribution of a intricate source,

the supernova remnant SN1006, together with uncertainty information from raw VLA

L-band data.

There aremany open ends to continue the investigation that we started with this pa-

per. First, the model for the sky brightness distribution may include point source and

multi-frequency correlations. On top of that the response may be described more thor-

oughly. Direction-dependent calibration and non-trivial primary beam effects may be

taken into account. Moreover, we performed the flagging by a standard CASA flagging

algorithm. This can be replaced with an algorithm rooted in information theory that

unifies flagging with calibration/imaging. Additionally, a major/minor cycle scheme

similar to that in CLEAN may be introduced to avoid to frequent (de)gridding oper-

ations. This is necessary to apply resolve to big data sets from telescopes such as

MeerKAT. Finally, resolve can be extended to polarization imaging. On an orthog-

onal track resolve may be used for imaging of a variety of sources from different

telescopes including ALMA and especially the Event Horizon Telescope.
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6 Polarization imaging

The content of the following section is unpublished and has been developed together with

Torsten Enßlin.

6.1 Model derivation

For polarization imaging the concept of Stokes parameters is needed (Stokes 1851).

The four Stokes parameters I, Q, U, and V represent the polarization state of electro-

magnetic waves. They denote the absolute intensity, the two linear polarization de-

grees of freedom, and the circular polarization, respectively. A detailed introduction

is provided in Hamaker, Bregman, and Sault (1996) and Smirnov (2011).

Traditionally, polarized emission is imaged with the help of a maximum likelihood

approach together with some unspecified effective regularization provided by the

CLEAN imaging algorithm. CLEAN performs its greedy peak search on the Stokes Q

and Stokes U image separately. One way of improving the situation is by searching

for peak intensities in the total polarized emission Q2 +U 2 +V 2 (Pratley and Johnston-

Hollitt 2016). Alternative approaches include Akiyama et al. (2017) and Birdi, Repetti,

and Wiaux (2020).

In contrast, we derive a model that features correlation between all four Stokes

parameters a priori. The basic idea for Stokes-I imaging in section 1.3.2 (at least for the

diffuse emission) was to model the sky brightness distribution I with an exponentiated
Gaussian process s:

I = es (6.1)

This approach can be generalized to polarization imaging in the following fashion.

The polarized sky brightness distribution is a complex 2 × 2 matrix:

X = (⟨ea,le∗b,l⟩ ⟨ea,le∗b,r⟩⟨ea,re∗b,l⟩ ⟨ea,r r ∗b,r⟩) =
1

2 ( I − V Q + iU
Q − iU I + V ) (6.2)

in circular basis, that is the electromagnetic field is measured with circular feeds sec-

tion 1.2.2, and

X = (⟨ea,xe∗b,x⟩ ⟨ea,xe∗b,y⟩⟨ea,ye∗b,x⟩ ⟨ea,yr ∗b,y⟩) =
1

2 ( I + Q U + iV
U − iV I − Q ) (6.3)

in linear basis (Smirnov 2011). The indices a, b are antenna labels and the indices l, r
and x, y refer to the circular and linear feeds, respectively. The matrix X has to satisfy

three constraints in order to be physically sensible:
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6 Polarization imaging

1. X is positive definite and Hermitian.

2. The total flux I is strictly positive: I > 0.

3. The polarized part of the emission cannot exceed the Stokes I flux:

I ≥
√
Q2 + U 2 + V 2. (6.4)

The crucial idea for our polarization model is to generalize eq. (6.1) to matrix form and

express X as matrix exponential:

X = ex ≔ exp( a + b c + id
c − id a − b) , (6.5)

where a, b, c, and d are real numbers for each pixel, i.e. they can be positive and neg-

ative.

Let us verify that eq. (6.5) indeed satisfies the above conditions. From the fact that

Hermitian conjugation and exponentiation of a matrix commute and x is Hermitian,

ex is Hermitian as well and thereby has only real eigenvalues. Since the eigenvalues of

the exponential of a matrix are given by the exponentiated eigenvalues of the matrix

and because x has only real eigenvalues, ex is positive definite. This shows condition 1.
For showing condition 2, eq. (6.2) and eq. (6.5) need be combined to express I , Q, U and

V in terms of a, b, c and d :

I = ea cosh p, Q =
b

p
ea sinh p, (6.6)

U =
c

p
ea sinh p, V =

d

p
ea sinh p, (6.7)

with p ≔
√
b2 + c2 + d2. It is apparent that I > 0 is naturally guaranteed in this formu-

lation. Condition 3 (eq. (6.4)) is true as well because ex has only positive eigenvalues.

Therefore, the determinant that is the product of the eigenvalues is positive:

0 < detX = I 2 − Q2 − U 2 − V 2. (6.8)

Since I > 0, there is no sign ambiguity and eq. (6.8) is indeed equivalent to condition 3.

Thus, all three conditions are fulfilled.

For illustration, fig. 6.1 shows the application of eqs. (6.6) and (6.7) on correlated

random Gaussian fields a, b, c, and d . It can be observed that the model mixes the

components in a non-obvious fashion. Additionally, fig. 6.2 shows the fractional po-

larization that is guaranteed to lie in the interval [0, 1] by construction. In the case at

hand, the circular polarization that is encoded in Stokes V is relatively large, Therefore,

the fraction of linear polarization is generally substantially smaller than the total frac-

tional polarization. The plot on the right-hand side of fig. 6.2 shows the polarization

angle � of the linear polarization that is defined by:

� ≔
1

2
arctan(U

Q) . (6.9)
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6.1 Model derivation

a b c d

Stokes I Stokes Q Stokes U Stokes V

−2.5 0.0 2.5 −2.5 0.0 2.5 −2.5 0.0 2.5 −2.5 0.0 2.5

100 102 −50 0 50 −50 0 50 −50 0 50

Figure 6.1: Illustration of the polarization model. The first and second columns display the
input random fields and the output of the model, respectively.

Fractional polarization Fractional linear polarization Polarization angle

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 -90° -45° 0° 45° 90°

Figure 6.2: The same example as in fig. 6.1 is shown. The fractional polarization is defined as√
Q2+U 2+V 2/I and the fractional linear polarization is

√
Q2+U 2/I . The linear polariza-

tion angle is defined in eq. (6.9).

.
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Figure 6.3: Application of the polarization model to VLA data of SN1006. The first and second
row show the posterior mean and posterior standard deviation, respectively. All
colour bars have the unit [Jy arcmin−2].

All in all, this approach provides a natural way to model polarized emission of, for

instance, radio sources. Its major advantages are that it correlates the Stokes I and the

Stokes Q, U, andV components in a non-trivial yet natural way. Additionally, it ensures

that the polarized emission cannot exceed the Stokes I component and that the Stokes I

component is strictly positive. Both are physical constraints that are strictly speaking

necessary to build into an imaging algorithm because as soon as these constraints are

violated the result of the imaging algorithm is definitely not a faithful representation

of physical reality. To my knowledge this approach has not been described in the

literature yet.

6.2 Application to SN1006 data

Figures 6.3 to 6.5 show the preliminary results of the application of the presented

model to a VLA observation of SN1006. Since it can be assumed that the Stokes V

component vanishes, it is not included in this reconstruction. The fields a, b, c, and d
are generated with the model defined in section 3.3.4. Contrarily to Reynoso, Hughes,

andMoffett (2013), who analyse a similar data set, the polarized intensity map features

correlation structures and does not appear noise-like (see fig. 1b in Reynoso, Hughes,

and Moffett (2013) vs. my fig. 6.4). In fig. 6.4 the magnetic field orientation has been

computed by assuming a constant galactic Faraday screen within the field of view of

RM = 12 rad/m2, the same value Reynoso, Hughes, and Moffett (2013) used for their

analysis in order to facilitate the comparison. Additionally, the magnetic orientation
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Fractional linear polarization Polarized intensity Magnetic field orientation

0% 10% 20% 0 20 40 60 -90° -45° 0° 45° 90°

Figure 6.4: Fractional polarization
√
Q2+U 2

I , polarized emission
√
Q2 + U 2 in Jy/arcmin2, and

magnetic field orientation of SN1006 reconstruction assuming a constant Faraday
screen with RM = 12 rad/m2.
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Figure 6.5: Background: polarized emission in Jy/arcmin2 (same as middle plot of fig. 6.4).
Foreground: Magnetic field orientation assuming a constant Faraday screen with
RM = 12 rad/m2.
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6 Polarization imaging

is orthogonal to the polarization angle. Therefore, the third plot in fig. 6.4 shows the

angle � − RM�2 − 90°. The results are similar Reynoso, Hughes, and Moffett 2013,

fig. 3 which indicates a certain validity of the implementation. At the same time it

may be stressed again that our Bayesian polarization algorithm is able to quantify the

uncertainty of the results including the polarization angles. These first tests on real

data indicate that this approach is promising. The full analysis is left for future work.
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7 Efficient wide-field radio
interferometry response

The following chapter has first been published in Astronomy & Astrophyics with me as

the first author (Arras, Reinecke, et al. 2020). This article emerged from a close collabora-

tion between Martin Reinecke and me. It would not have been possible without massive

input by Martin Reinecke. He implemented the algorithm in C++ and contributed parts

of sections 7.3.2 and 7.7, all of section 7.3.3, and most of section 7.4; all other parts were

mostly written by me. All authors read, commented, and approved the final manuscript.

After publication the accuracy of the implementation could be increased even more. Fig-

ure 7.5 shows the updated new values. For the original plot refer to Arras, Reinecke, et al.

(2020).

Abstract

Radio interferometers do not measure the sky brightness distribution directly, but

measure a modified Fourier transform of it. Imaging algorithms therefore need a

computational representation of the linear measurement operator and its adjoint,

regardless of the specific chosen imaging algorithm. In this paper, we present a

C++ implementation of the radio interferometric measurement operator for wide-

field measurements that is based on so-called improved w-stacking. It can pro-

vide high accuracy (down to ≈ 10−12), is based on a new gridding kernel that al-

lows smaller kernel support for given accuracy, dynamically chooses kernel, ker-

nel support, and oversampling factor for maximum performance, uses piece-wise

polynomial approximation for cheap evaluations of the gridding kernel, treats

the visibilities in cache-friendly order, uses explicit vectorisation if available, and

comes with a parallelisation scheme that scales well also in the adjoint direction

(which is a problem for many previous implementations). The implementation

has a small memory footprint in the sense that temporary internal data structures

are much smaller than the respective input and output data, allowing in-memory

processing of data sets that needed to be read from disk or distributed across sev-

eral compute nodes before.

7.1 Introduction

The central data analysis task in radio interferometry derives the location-dependent

sky brightness distribution I (l, m) from a set of complex-valued measured visibilities

dk . In the noise-less case they are related by the expression (e.g. Richard Thompson,
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7 Efficient wide-field radio interferometry response

Moran, and Swenson Jr 2017)

dk = ∬ e2�i�
−1
k w̃k (n(l,m)−1)

n(l, m)
I (l, m) e−2�i�

−1
k (ũk l+ṽkm) dl dm. (7.1)

Here, l, m, and n ∶=
√
1 − l2 −m2 are direction cosines with respect to the central

observation axis, while ũk , ṽk , and w̃k are the coordinates of the baselines in metres

and �k are the observation wavelengths. When we assume that I (l, m) is approximated

by discretised values on a Cartesian (l, m) grid, the double integral corresponds to a

discrete Fourier transform. The entries dk of the data vector d correspond to delta

peak readouts of the three-dimensional Fourier transformed sky brightness at Fourier

location (uk , vk , wk), which are commonly called ‘visibilities’. It suffices to discuss the

noise-less case here. While taking the noise into account is the task of the chosen

imaging algorithm, all such algorithms need an implementation of eq. (7.1).

Typical problem sizes range from 106 to beyond 109 visibilities, fields of view can

reach significant fractions of the hemisphere, and image dimensions exceed 10 000 ×

10 000 pixels. It is evident that naïve application of eq. (7.1) becomes prohibitively

expensive at these parameters; a single evaluation would already require ≈ 1017 calls

to the complex exponential function.

Massive acceleration can be achieved by using ‘convolutional gridding’ (in other

fields often called ‘non-uniform fast Fourier transform’; Dutt and Rokhlin 1993). Here,

the information contained in the dk is transferred onto a regular Cartesian grid by

convolving the delta peak readouts at (uk , vk , wk) with an appropriately chosen ker-

nel function, which is evaluated at surrounding (u, v) grid points. Transformation

between u, v and l, m can now be carried out quickly by means of a two-dimensional

fast Fourier transform (FFT; Cooley and Tukey 1965), and the smoothing caused by the

convolution with the kernel is compensated for by dividing the I (l, m) by the Fourier-

transformed kernel.

When the term e−2�i�
−1w̃(n−1)/n is very close to 1, no further optimisation steps are

required. This criterion is not fulfilled for non-planar instruments and for wide-field

observations. Therefore the visibilities need to be gridded onto several uv-planes with
different w , which are Fourier-transformed and corrected separately. Perley (1999)

has pointed out that eq. (7.1) can be written as a three-dimensional Fourier transform.

Based on this idea, Ye (2019) applied the convolutional gridding algorithm not only for

the uv-coordinates, but also for the w-direction. Because this approach naturally gen-

eralises w-stacking (Offringa, McKinley, et al. 2014) to use gridding in the w-direction
as well, we propose the term ‘w-gridding’ instead of the term ‘improved w-stacking’
(Ye 2019).

This paper does not present any new insights into the individual components of the

radio interferometric measurement operator implementation (except for the introduc-

tion of a tuned gridding kernel in section 7.3.2); our code only makes use of algorithms

that are already publicly available. Instead, our main point is to demonstrate how sig-

nificant advances in performance and accuracy can be achieved by appropriate selec-

tion of individual components and their efficient implementation. Our implementation
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has been integrated into the well-known imaging tool wsclean1 (Offringa, McKinley,

et al. 2014) since version 2.9, where it can be selected through the -use-wgridder

flag, and the imaging toolkit codex-africanus2. Furthermore, the implementation

presented here has been used in Arras, Bester, et al. (2020a) and Arras, Frank, Haim,

et al. (2020a), for instance.

Section 7.2 introduces the notation used in this paper and summarises the algo-

rithmic approach to numerically approximate eq. (7.1) and its adjoint. Section 7.3 de-

scribes all algorithmic components in detail from a computational point of view, and

section 7.4 lists the design goals for the new code, which influence the choice of algo-

rithmic components from the set given in section 7.3. Here we also list a number of

additional optimisations to improve overall performance. The new code is validated

against discrete Fourier transforms in section 7.5, and an analysis of its scaling be-

haviour as well as a performance comparison with other publicly available packages

is presented in section 7.6.

7.2 Notation and formal derivation of the algorithm

The data that are taken by radio interferometers are called ‘visibilities’. Equation (7.1)

already shows that the operation that is to be implemented is similar to a Fourier

transform modulated by a phase term. In the following, we introduce all notation that

is required to describe the algorithm and present the three-dimensional (de)gridding

approach from Ye (2019) in this notation.

Let � ∈ ℝ
n� be the vector of observing wavelengths in metres and (ũ, ṽ, w̃) the

coordinates of the baselines in metres, each of which are elements of ℝnr . In other

words, n� and nr are the number of observing wavelengths and number of rows of the

data set, respectively. Then, the effective baseline coordinates (u, v, w) are defined as

u ∶= ũ ⊗ �−1, v ∶= ṽ ⊗ �−1, w ∶= w̃ ⊗ �−1. (7.2)

These are the effective locations of the sampling points in Fourier space. To simplify

the notation, we view the above three coordinates as elements of a simple vector space,

for example, u ∈ ℝ
nd with nd = nrn� . Because the measurement equation (7.1) is to be

evaluated on a computer, it needs to be discretised,

(R0I )k ∶= ∑
l∈L

∑
m∈M

e−2�i[uk l+vkm−wk (nlm−1)] Ilm
nlm

, k ∈ {0,… , nd − 1}, (7.3)

where R0 is the (accurate) response operator defined by the right-hand side of the

equation, and L,M are the sets of direction cosines of the pixels of the discretised sky

brightness distribution in the two orthogonal directions. (Δl,Δm) are the pixel sizes,

1https://gitlab.com/aroffringa/wsclean
2https://github.com/ska-sa/codex-africanus
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and (nl , nm) are the number of pixels. Then, formally, L and M can be defined as

L ∶=
{
(−nl

2 + j) Δl | j ∈ {0,… , nl − 1}
}
, (7.4)

M ∶=
{
(−nm

2 + j) Δm | j ∈ {0,… , nm − 1}
}
. (7.5)

It is apparent that computing eq. (7.3) is prohibitively expensive because thewhole sum

needs to be performed for each data index k individually. As a solution, the convolu-

tion theorem can be applied in order to replace the Fourier transform by an FFT that

can be reused for all data points. As it stands, eq. (7.3) is not a pure Fourier transform

because of the phase term wk(nlm − 1). As discussed above, we follow Perley (1999)

and introduce an auxiliary Fourier integration in which w and nlm − 1 are viewed as

Fourier-conjugate variables,

(RI )k = ∑
l∈L

∑
m∈M

∫
ñ∈ℝ

e−2�i[uk l+vkm+wk ñ]
�(ñ − (1 − nlm))

nlm
Ilm dñ. (7.6)

The next goal is to replace the above three-dimensional non-equidistant Fourier trans-

form by an equidistant one. This can be done by expressing a visibility dk as a con-

volution of a field defined on a grid with a convolution kernel. This convolution is

undone by dividing by its Fourier transform in sky space.

For this, we need to define the convolution kernel. Let � ∶ ℝ → ℝ
+ be a function

that is point-symmetric around 0 and has compact support supp(�) = [−�
2 ,

�
2 ] with

the kernel support size � ∈ ℕ. In other words, the kernel function is zero outside

a symmetric integer-length interval around zero. In practice, this means that every

visibility is gridded onto the � × � uv-grid points that are closest to it. We use � as

convolution kernel to interpolate all three grid dimensions. Let  ∶ [− 1
2 ,

1
2 ] → ℝ be

its Fourier transform:  (k) ∶= ∫ ∞

−∞ �(x)e
ikx dx .  needs to be defined only on [− 1

2 ,
1
2 ]

because � is evaluated on a grid with pixel size 1.

Now, the (discrete) convolution theorem can be applied to turn the sums in eq. (7.6)

into a discrete Fourier transform followed by a periodic convolution on an oversam-

pled grid (with oversampling factor � ) and to turn the integral over ñ into a regular

convolution. Some degree of oversampling (� > 1) is required to lower the error of the

algorithm to the required levels; ultimately, the error depends on � , � , and the kernel

�. Specifically for the w-direction, using the coordinate transform c(x) = wk + xΔw
and the definition of  ,

e2�i (nlm−1)wk ([nlm − 1]Δw) = ∫ ∞

−∞

e2�i (nlm−1)(wk+Δwx)�(x) dx (7.7)

= ∫ ∞

−∞

e2�i (nlm−1)c�( c−wk
Δw ) dc

Δw
(7.8)

≈ ∑
c∈W

e2�i (nlm−1)c�( c−wk
Δw ), (7.9)
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withW =
{
w◦ + jΔw || j ∈ {0,… , Nw − 1}

}
. It follows that

e2�i (nlm−1)wk ≈
∑c∈W e2�i (nlm−1)c�( c−wk

Δw )
 ([nlm − 1]Δw) . (7.10)

This expression replaces the w-term in eq. (7.6) below. The idea of rewriting the w-
term as a convolutionwas first presented in Ye (2019). w◦,Nw , andΔw denote the as yet

unspecified position of the w-plane with the lowest w-value, the number of w-planes,
and the distance between neighbouring w-planes, respectively. The approximation

eq. (7.9) is only sensible for all l ∈ L,m ∈ M and all k if Δw is small enough. The

proper condition is given by the Nyquist-Shannon sampling theorem (Ye 2019),

max
(l,m)∈L×M

2Δw � |nlm − 1| ≤ 1. (7.11)

The factor � appears because the accuracy of a given gridding kernel � depends on

the oversampling factor. Therefore, the optimal, that is, largest possible, Δw is

Δw = min
(l,m)∈L×M

1

2� |nlm − 1| . (7.12)

For a given � this determines Δw . w◦ and Nw are still unspecified. Combining eq. (7.6)

and eq. (7.10) leads to the final approximation of the measurement equation,

(RI )k ∶= ∑
a∈U

∑
b∈V

∑
c∈W

Φk(a, b, c)∑
l∈L

∑
m∈M

e−2�i[al+bm+c(nlm−1)]
Ilm

nlmΨlm
, (7.13)

where R is the linear map that approximates R0 in our implementation, and Φ and Ψ

are the threefold outer product of � and  , respectively,

Φk(a, b, c) = �(Nu � (a − ukΔl)) �(Nv � (b − vkΔm)) � ( c−wkΔw ) , (7.14)

Ψlm =  ( l
�nxΔx) ( m

�nyΔy) ([nlm − 1]Δw), (7.15)

with � (a) = a − ⌊a⌋ − 0.5 where ⌊a⌋ ∶= max{n ∈ ℤ | n ≤ a}. To define the sets U , V , and
W , the discretisation in uvw-space needs to be worked out. The number of pixels in

discretised uv-space is controlled by the oversampling factor � ,

Nl = ⌈�nl⌉, Nm = ⌈�nm⌉, for � > 1, (7.16)

where ⌈a⌉ ∶= min{n ∈ ℤ | n ≥ a}. Thus, the set of pixels of the discretised uvw-space
is given by

U =
{
−
1

2
+

j

Nu
|| j ∈ {0,… , Nu − 1}

}
, (7.17)

V =
{
−
1

2
+

j

Nv
|| j ∈ {0,… , Nv − 1}

}
. (7.18)
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For the w-dimension we can assume wk ≥ 0 for all k without loss of generality

because the transformation

(uk , vk , wk , dk) → (−uk , −vk , −wk , d
∗
k) (7.19)

leaves eq. (7.3) invariant individually for each k. Because of this Hermitian symmetry,

only half of the three-dimensional Fourier space needs to be represented in computer

memory.

For a given Δw , the first w-plane is located at

w◦ = min
k
wk −

Δw (� − 1)

2
, (7.20)

that is, half of the kernel width subtracted from the minimum w-value, and the total

number of w-planes Nw is

Nw =
maxk wk − mink wk

Δw
+ � , (7.21)

because below the minimum and above the maximum w-value, half a kernel width

needs to be added in order to be able to grid the respective visibilities with extreme

w-values.

In eq. (7.13), we can view the sky brightness distribution I as element of ℝnlnm and

d ∈ ℂ
nk . Then eq. (7.13) can be written as d = R(I ) with R ∶ ℝ

nlnm → ℂ
nk being

a ℝ-linear map. In imaging algorithms this linear map often appears in the context

of functionals that are optimised, for example, a negative log-likelihood or a simple

� 2 = |d − R(I )|2 functional between data and expected sky response. To compute the

gradient (and potentially higher derivatives) of such functionals, not only R, but also
R†, the adjoint, is needed. It can be obtained from eq. (7.13) by reversing the order of

all operations and taking the conjugate of the involved complex numbers. In the case

at hand, it is given by

(R†d)lm =
1

nlmΨlm
∑
a∈U

∑
b∈V

∑
c∈W

e2�i[al+bm+c(nlm−1)] ∑
k

Φk(a, b, c) dk . (7.22)

Here we can already observe that parallelisation over the data index k is more difficult

in eq. (7.22) than in eq. (7.13). In eq. (7.22), the grid in Fourier space is subject to con-

current write accesses, whereas in eq. (7.13), it is only read concurrently, which is less

problematic. In section 7.4.4 we discuss this in more detail and present a parallelisation

strategy that scales well in both directions.

All in all, the scheme eq. (7.13), which approximates the discretised version (eq. 7.3)

of the radio interferometric response function (eq. 7.1), has been derived. That it can be

computed efficiently is shown in the subsequent sections. The choice of the gridding

kernel function �, the kernel support � , and the oversampling factor � have not yet

been discussed. Tuning these three quantities with respect to each other controls the

achievable accuracy and the performance of the algorithm (see section 7.3.2).
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7.3 Algorithmic elements

Equation (7.13) prescribes a non-equidistant Fourier transform that is carried out with

the help of the as yet unspecified gridding kernel Φ. Its choice is characterised by

a trade-off between accuracy (larger kernel support � and/or oversampling factor � )
and computational cost. As a criterion for assessing the accuracy of a kernel, we use

a modified version of the least-misfit function approach from Ye et al. (2020).

7.3.1 Gridding and degridding and treatment of the w-term

For the implementation, eq. (7.13) is reordered in the following way:

(RI )k = ∑
c∈W [∑a∈U ∑

b∈V

Φk(a, b, c)∑
l∈L

∑
m∈M

e−2�i[al+bm] Ĩlmc] (7.23)

Ĩlmc ∶= e
2�ic(1−nlm) Ĩlm (7.24)

Ĩlm ∶=
Ilm

nlmΨlm
. (7.25)

In other words, first the geometric term n and the gridding correction Ψ are applied to

the input Ilm (eq. 7.25). Then, thew-planes are handled one after another. For everyw-
plane the phase term e2�ic(1−nlm), calledw-screen, is applied to the image (eq. 7.24). This

is followed by the Fourier transform and the degridding procedure with Φ (bracketed

term in eq. (7.23)). Finally, the contributions from all w-planes are accumulated by the

sum over c ∈ W to obtain the visibility dk .
For the adjoint direction, eq. (7.22) is reordered to

(R†d)lm =
1

nlmΨlm
∑
c∈W

e−2�ic(1−nlm) Hc , (7.26)

Hc ∶= ∑
a∈U

∑
b∈V

e2�i[al+bm]∑
k

Φk(a, b, c) dk . (7.27)

In words, the w-planes are handled one after another again. First, the visibilities that

belong to the current w-plane are gridded onto a two-dimensional grid with Φ and

the two-dimensional Fourier transform is applied (eq. 7.27). Then, its result Hc is mul-

tiplied with the complex conjugate w-screen and the contributions from w-planes to
the image are accumulated by the sum over c ∈ W (eq. 7.26). Finally, the gridding

correction Ψlm and the geometric factor nlm are applied.

The number of iterations in the loop over the w-planesW can be reduced by up to

a factor of two by restricting the w coordinate to w ≥ 0with the help of the Hermitian

symmetry (eq. 7.19). The implementation scheme described above highlights that the

choice of the kernel shape � and its evaluation are crucial to the performance of the

algorithm: The support � should be small in order to reduce memory accesses and

kernel evaluations. At the same time, the oversampling factor � needs to be small

such that the Fourier transforms do not dominate the run time. Additionally, the kernel

itself needs to be evaluated with high accuracy, while at the same time, its computation

should be very fast.
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7.3.2 Kernel shape

This section has partly been written by Martin Reinecke.

As already mentioned, the shape of the employed kernel function � has a strong

effect on the accuracy of the gridding and degridding algorithms. The historical evo-

lution of preferred kernels is too rich to be discussed here in full, but see Ye et al. (2020)

for an astronomy-centred background and Barnett, Magland, and Klinteberg (2019) for

a more engineering-centred point of view.

It appears that the kernel shape accepted as ‘optimal’ amongst radio astronomers

is the spheroidal function as described by Schwab (1980). This function maximises

the energy in the main lobe of the Fourier-transformed kernel compared to the total

energy, which is essential to suppress aliasing artefacts.

However, this concept of optimality only holds under the assumption that gridding

and degridding are carried out without any oversampling of the uv-grid and the corre-
sponding trimming of the resulting dirty image. While this may have been the default

scenario at the time this memorandumwas written, most currently employed gridding

algorithms use some degree of oversampling and trimming (i.e. � > 1), which requires

restating the optimality criterion: instead of trying to minimise the errors over the

entire dirty image, the task now is to minimise the error only in the part of the dirty

image that is retained after trimming, while errors in the trimmed part may be arbitrar-

ily high. More quantitatively: Given a kernel support of � cells and an oversampling

factor of � , a kernel shape is sought that produces the lowest maximum error within

the parts of the dirty image that are not trimmed.

Ye et al. (2020) demonstrated an approach to determine non-analytic optimal ker-

nels. However, very good results can also be obtained with rather simple analytical

expressions. Barnett, Magland, and Klinteberg (2019) presented the one-parameter

kernel called ‘exponential of a semicircle kernel’ or ‘ES kernel’,

�� ∶ [−�
2 ,

�
2 ] → ℝ

+, x ↦ exp(�� [√1 − (2x/�)2 − 1]), (7.28)

for � > 0. In the following, we use a two-parameter version derived from this,

��� ∶ [−�
2 ,

�
2 ] → ℝ

+, x ↦ exp (�� [(1 − (2x/�)2)� − 1]), (7.29)

for � > 0 and � > 0 and call it ‘modified ES kernel’.

To determine optimal values for the two parameters for given � and � , we use the
prescription described in Ye et al. (2020). The idea is to consider the squared difference

between the outputs of the accurate and the approximate adjoint response operator

R0 and R. Without loss of generality, we restrict the following analysis to the case

of a one-dimensional non-equidistant Fourier transform. For readability, we define

 ̃ (x) ∶=  ( x
�nxΔx) and �̃k(a) ∶= � (Nu � (a − ukΔl)) and

(R̃†0 d)(x) ∶= ∑
k

dke
2�iukx , (7.30)

(R̃†d)(x) ∶=  ̃ (x)−1 ∑
k

dk ∑
a∈U

�̃k(a) e
2�iax . (7.31)
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Using the Cauchy-Schwarz inequality, the squared error can be bounded from above

with

|||(R̃0d − R̃d)(x)
|||2 = ||||||∑k dke

2�iukx (1 − ∑
a∈U

e2�i (a−uk )x �̃k(a)

 ̃ (x) )||||||
2

(7.32)

≤ (∑
k

|dk |2)∑
k

|||||1 − ∑
a∈U

e2�i (a−uk )x �̃k(a)

 ̃ (x)

|||||2 . (7.33)

The first term of the right-hand side of the inequality is purely data dependent and

therefore not relevant in quantifying the (upper limit of the) approximation error of

the linear map R†. The actual approximation error does depend on the data d , and
for a given data vector, more accurate approximation schemes could be derived in

principle. However, because generic statements about d are difficult to make and a

data-independent generic kernel is desired here, we optimise the right-hand side of the

inequality. If the number of visibilities is large (tests have shown that in generic setups

already > 10 visibilities suffice), the values of (a − uk)x mod 2� sample the interval

[0, 1) sufficiently uniformly. Then the second term is approximately proportional to

the data-independent integral

l2(x) ∶= ∫ 1

0

|||||1 − ∑
a∈U

e2�i (a−�)x �̃k(a)

 ̃ (x)

|||||2 d�. (7.34)

Because the actual error is quantified by l(x), we call l(x) the ‘map error function’ in

contrast to Ye et al. (2020), who used this name for l2(x). l(x) depends on the choice

of the functional form of �, the kernel support � , and the oversampling factor � . Ye
et al. (2020) used eq. (7.34) in a least-squares fashion to determine the ‘optimal gridding

kernel’ for a given � and � .
We propose to use eq. (7.34) slightly differently. Instead of the L2-norm, we use the

supremum norm tominimise it because the error should be guaranteed to be below the

accuracy specified by the user for all x . Additionally, we use the two-parameter mod-

ified ES kernel. The parameters that result from a two-dimensional parameter search

are hard-coded into the implementation. For explicitness, a selection of parameters is

displayed in section 7.8.

As an example, fig. 7.1 shows the map error function of the modified ES kernel in

dependence on the oversampling factor � and for fixed � . Increasing the oversam-

pling factor allows a reduction of the convolution kernel support size while keeping

the overall accuracy constant, which reduces the time required for the actual grid-

ding or degridding step. At the same time, however, an increase in � implies both a

larger uv-grid and a higher number of w-planes. The former aspect leads to increased

memory consumption of the algorithm, and both aspects increase the total cost of FFT

operations. As a consequence, for a given number of visibilities, dirty image size, w
range, and desired accuracy, it is possible to minimise the algorithm run-time by find-

ing the optimal trade-off between oversampling factor and kernel support size. The
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Figure 7.1: Map error function for kernel support � = 6 for a varying oversampling factor � .
The horizontal dotted lines display the advertised accuracy of the kernel.

sweet spot for most applications lies in the range 1.2 to 2.0 for the oversampling factor.

Our chosen functional form of the gridding kernel naturally leads to higher accuracy

towards the phase centre, that is, x = 0.

For the comparison of our modified ES kernel and the least-misfit kernel, we note

that the kernels are designed to minimise the supremum norm and the L2-norm map,

respectively, of the map error function. All least-misfit kernels in the following were

computed using the software released alongside Ye et al. (2020). For given � and � , the
least-misfit kernel is therefore not necessarily optimal in our metric and vice versa,

and comparison becomes non-trivial. Figure 7.2 displays the map error function for

the modified ES kernel and the least-misfit kernel with the same � and � and compares

it to the least-misfit kernel with � = 1.45. The steep increase in the map error function

of the least-misfit kernel for � = 1.5 significantly affects the supremum norm but still

leads to a lower value for the L2-norm because the function is considerably smaller

for small x . For the following comparison we select the least-misfit kernel for � = 1.45
by hand. It is optimal under the L2-norm for � = 1.45, but still performs better than

the modified ES kernel even at � = 1.5 under the supremum norm. It is to be assumed

that with a more systematic search, even better least-misfit kernels can be found, so

that the selected one should be regarded only in a qualitative sense.

Figures 7.3 and 7.4 display a comparison for given oversampling factor and kernel

width of different gridding kernels. For all kernels (except for the least-misfit kernel)

the same hyperparameter search for optimal parameters given � and � was performed.

The ES kernel (Barnett, Magland, and Klinteberg 2019) is less accurate than the optimal

Kaiser-Bessel kernel, while our modified ES kernel exceeds both other kernels in terms

of accuracy. Figure 7.4 again shows that it is possible to find a kernel shape with

this code that leads to more accurate transforms than our modified ES kernel. We

also plot the spheroidal function kernel, which evidently performs much worse than

the other kernels within the retained part of the image. The comparison with this
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Figure 7.2: Comparison of the map error function for least-misfit kernels with different over-
sampling factor and modified ES kernel. The kernel support size is � = 6 for all
three kernels. The dashed lines denote the supremum norm of the respective func-
tions. We display only positive x (in contrast to fig. 7.4). All map error functions
are symmetric around x = 0.

10−5

10−4

10−3

10−2

10−1

100

�

Spheroidal function (� ≈ 134 ⋅ 10−5)

ES (� ≈ 15 ⋅ 10−5)

Modified ES (� ≈ 5 ⋅ 10−5)

Kaiser-Bessel (� ≈ 10 ⋅ 10−5)

−3 −2 −1 0 1 2 3

0

1

2

�

M
o
d
if
ie
d
E
S

Figure 7.3: Optimal kernel shapes for � = 1.5 and � = 6 with achieved accuracy �.
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Figure 7.4: Map error function of different kernel shapes for � = 1.5 and � = 6. A least-misfit
kernel for a slightly lower oversampling factor is added for qualitative comparison
(see the main text for a discussion of this choice), as well as the classic spheroidal
function kernel. The arrows highlight the differences of the supremum norm of
map error function of the different kernels with respect to our modified ES kernel.

particular error function illustrates that the other kernels, which are chosen based on

the knowledge that a part of the image will be trimmed, produce lower errors inside

the final image in exchange for much higher errors in the trimmed regions.

Although the least-misfit kernel achieves a slightly more accurate gridding, we used

the modified ES kernel for our implementation because only two real numbers are

needed to specify the kernel for given � and � in contrast to much larger tables for

the least-misfit kernel. Additionally, it is non-trivial to minimise the supremum norm

of eq. (7.34) for a general least-misfit kernel. With only two parameters, a brute force

parameter search is affordable, but this does not work for the many more degrees of

freedom of the least-misfit kernels.

7.3.3 Kernel evaluation

This section has mostly been written by Martin Reinecke.

In addition to choosing a kernel function that yields low errors, for the design of a

practical algorithm it is also crucial to have a highly efficient way of evaluating this

chosen function. Because for every visibility processed it is necessary to evaluate the

kernel at least 3� times (� times each in u-, v-, and w-direction), this is definitely a

computational hot spot, and therefore a single evaluation should not take more than

a few CPU cycles.

From the candidate functions listed in section 7.3.2, it is obvious that this rules out

direct evaluation in most cases. The only exception here is the original ES kernel

(eq. 7.28), which can be evaluated up to several hundred million times per second on

a single CPU core using vector arithmetic instructions. To retain high flexibility with

respect to the choice of kernel function, some other approach is therefore needed.
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Traditionally, this problem is often addressed using tables of precomputed function

values evaluated at equidistant points, from which the desired kernel values are then

obtained by interpolation. Typically, zeroth-order (i.e. nearest-neighbour selection)

and linear interpolation are used.

Interpolation at low polynomial degree soon leads to look-up tables that no longer fit

into the CPU Level-1 and Level-2 caches when the required accuracy is increased, thus

leading to high load on the memory subsystem, especially when running on multiple

threads. To overcome this, we adopted an approach presented by Barnett, Magland,

and Klinteberg (2019) and approximated the kernel in a piece-wise fashion by several

higher order polynomials. Barnett, Magland, and Klinteberg (2019) reported that for a

given desired accuracy �, it is sufficient to represent a kernel with support � by a set

of � polynomials of degree � + 3. This means that a kernel evaluation can be carried

out using only � + 3 multiply-and-add instructions, and the total storage requirement

for the polynomial coefficients is �(� + 4) floating point numbers, which is negligible

compared to the traditional look-up tables and much smaller than the CPU cache.

Because this approach is applicable to all kernel shapes discussed above, has suffi-

cient accuracy (which can even be tuned by varying the degree of the polynomials),

and has very low requirements on both CPU and memory, we used it in our imple-

mentation. Details on the construction of the approximating polynomials are given in

section 7.4.2.

7.4 Implementation

This section has mostly been written by Martin Reinecke.

7.4.1 Design goals and high-level overview

This section has mostly been written by Martin Reinecke.

In order to make our code useful (and easy to use) in the broadest possible range

of situations, we aim for the library to have minimum external dependencies (to sim-

plify installation), have a minimum simple interface and be easily callable from differ-

ent programming languages (to allow convenient use as a plug-in for existing radio-

astronomical codes), be well-suited for a broad range of problem sizes and required

accuracies, have a very low memory footprint for internal data structures, and reach

very high performance, but not at the cost of significant memory consumption. We

decided to provide the functionality as a component of the ducc3 collection of numer-

ical algorithms. Because this package already provides support for multi-threading,

SIMD data types, FFTs, and all other algorithmic prerequisites, the code does not have

external dependencies and only requires a compiler supporting the C++17 language

standard. Its interface only consists of two functions (to apply the gridding operator

and its adjoint), which take a moderate number of parameters (scalars and arrays). For

illustration purposes, we list the interface documentation for the Python frontend of

3https://gitlab.mpcdf.mpg.de/mtr/ducc
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the library in section 7.9. Similar to many other gridder implementations, the interface

allows specifying individual weights for each visibility, as well as a mask for flagging

arbitrary subsets of the measurement set; both of these parameters are optional, how-

ever (see section 7.9). For an easy explicit understanding of the algorithm, we provide

a compact Python and a slightly optimized Numpy and a Numba implementation of

the w-gridding4.

One importantmotivation for choosing C++was its ability to separate the high-level

algorithm structure from low-level potentially architecture-dependent implementa-

tion details. As an example, while the algorithm is written only once, it is instanti-

ated twice for use with single-precision and double-precision data types. The single-

precision version is faster, requires less memory, and may be sufficient for most ap-

plications, but the user may choose to use double precision in particularly demanding

circumstances. Similarly, advanced templating techniques allow us to make transpar-

ent use of vector arithmetic instructions available on the target CPU, be it SSE2, AVX,

AVX2, FMA3/4, or AVX512F; this is invaluable to keep the code readable and easy to

maintain. The SIMD class of ducc supports the x86_64 instruction set, but could be

extended to other instruction sets (such as ARM64) if needed.

Especially due to the necessity of having a low memory footprint, the w-planes are
processed strictly sequentially. For the gridding direction (the degridding procedure is

analogous), this means that for every w-plane, all relevant visibilities are gridded onto
the uv-grid, weighted accordingly to their w-coordinate, the appropriate w-screen is

applied to the grid, the grid is transformed into the image domain via FFT, and the

resulting image is trimmed and added to the final output image. This approach is ar-

guably suboptimal from a performance point of view because it requires re-computing

the kernel weights in u- and v-direction for every visibility at each w-plane it con-

tributes to: the number of kernel evaluations necessary to process a single visibility

increases from 3� to �(2� + 1). On the other hand, processing several planes simulta-

neously would increase the memory consumption considerably, and at the same time

the speed-up would probably not be very significant because kernel computation only

accounts for a minor fraction of the overall run time (/ 20%).

Overall, our approach requires the following auxiliary data objects: a two-dimensional

complex-valued array for the uv-grid (requiring 2�2 times the size of the dirty image),

a temporary copy of the dirty image (only for degridding), and a data structure describ-

ing the processing order of the visibilities (see section 7.4.3 for a detailed description

and a size estimate). Processing only a single w-plane at a time implies that for paral-

lelisation the relevant visibilities need to be subdivided into groups that are gridded or

degridded concurrently onto/from that plane by multiple threads. To obtain reason-

able scaling with such an approach, it is crucial to process the visibilities in an order

that is strongly coherent in u and v; in other words, visibilities falling into the same

small patch in uv-space should be processed by the same thread and temporally close

to each other. This approach optimises both cache re-use on every individual thread

4https://gitlab.mpcdf.mpg.de/mtr/ducc/-/blob/ducc0/python/demos/wgridder_

python_implementations.py
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as well as (in the gridding direction) minimising concurrent memory writes. However,

finding a close-to-optimal ordering for the visibilities in short time, as well as storing

it efficiently, are nontrivial problems; they are discussed in section 7.4.3.

As mentioned initially, parameters for interferometric imaging tasks can vary ex-

tremely strongly: the opening angle of the field of view can lie between arcseconds

and � , visibility counts range from a few thousands to many billions, and image sizes

start below 106 pixels and reach 109 pixels for current observations, with further in-

creases in resolution to be expected. Depending on the balance between these three

quantities, the optimal choice (in terms of CPU time) for the kernel support � , and
depending on this the choice, of other kernel parameters and the oversampling fac-

tor � , can vary considerably, and choosing these parameters badly can result in run

times that are several times slower than necessary. To avoid this, our implementation

picks near-optimal � and � depending on a given task’s parameters, based on an ap-

proximate cost model for the individual parts of the computation. For all available �
(� ∈ {4,… , 16} in the current implementation), the code checks the list of available

kernels for the one with the smallest � that provides sufficient accuracy and predicts

the total run-time for this kernel using the cost model. Then the kernel, � , and � with

the minimum predicted cost are chosen.

7.4.2 Gridding kernel

This section has mostly been written by Martin Reinecke.

Our code represents the kernel function by approximating polynomials as presented

in section 7.3.3. A kernel with a support of � grid cells is subdivided into � equal-length

parts, one for each cell, which are approximated individually by polynomials of degree

� + 3. When the kernel is computed in u- and v-directions, evaluation always takes

place at locations spaced with a distance of exactly one grid cell, a perfect prerequisite

for using vector arithmetic instructions. As an example, for � = 8 and single precision,

all eight necessary kernel values can be computed with only 11 FMA (floating-point

multiply-and-add) machine instructions on any reasonably modern x86 CPU.

We used the family of modified ES kernels introduced in section 7.3.2. They are

convenient because an optimised kernel for given � and � is fully characterised by

only two numbers � and �, and therefore it is simple and compact to store a compre-

hensive list of kernels for a wide parameter range of � , � and � directly within the

code. This is important for the choice of near-optimal gridding parameters described

in the preceding section.

When a kernel has been picked for a given task, it is converted to approximating

polynomial coefficients. For maximum accuracy, this should be done using the Remez

algorithm (Remez 1934), but we found that evaluating the kernel at the respective

Chebyshew points (for an expansion of degree n, these are the roots of the degree

(n + 1) Chebyshev polynomial, mapped from [−1; 1] to the interval in question) and

using the interpolating polynomial through the resulting values produces sufficiently

accurate results in practice while at the same time being much simpler to implement.

Chebyshew abscissas are used because the resulting interpolants are much less prone
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to spurious oscillations than those obtained from equidistant abscissas5 (Runge 1901).

Even better accuracy could be obtained by switching from modified ES kernels to

least-misfit kernels, but there is a difficult obstacle to this approach: determining a

least-misfit kernel for a given � and � , which is optimal in the supremum-norm sense

instead of the L2-norm sense, may be possible only by a brute-force search, which may

be unaffordably expensive. Because the obtainable increase in accuracy is probably

modest, we decided to postpone this improvement to a future improved release of the

code.

7.4.3 Optimising memory access pa�erns

This section has mostly been written by Martin Reinecke.

With the highly efficient kernel evaluation techniques described above, the pure

computational aspect of gridding and degridding no longer dominates the run time

of the algorithm. Instead, most of the time is spent reading from and writing to the

two-dimensional uv-grid. Processing a single visibility requires �3 read accesses to

this grid, and for the gridding direction, the same number of additional write accesses.

While it is not possible to reduce this absolute number without fundamentally chang-

ing the algorithm (which in turn will almost certainly lead to increasing complexity

in other parts), much can be gained by processing the visibilities in a cache-friendly

order, as was already pointed out in section 7.4.1. Making the best possible use of the

cache is also crucial for good scaling behaviour because every CPU core has its own

L1 and L2 caches, whereas there is only a small number of memory buses (with limited

bandwidth) for the entire compute node. For multi-threaded gridding operations, this

optimisation is even more important because it decreases the rate of conflicts between

different threads trying to update the same grid locations; without this measure, R†

would have extremely poor scaling behaviour.

Reordering the visibility and/or baseline data is not an option here because this

would require either creating a rearranged copy of the visibilities (which consumes

an unacceptable amount of memory) or, in the gridding direction, manipulating the

input visibility array in-place (which is fairly poor interface design). Consequently,

we rather used an indexing data structure describing the order in which the visibilities

should be processed.

For this purpose, we subdivided the uv-grid into patches of 16 × 16 pixels, which al-

lowed us to assign a tuple of tile indices (tu , tv) to every visibility. The patch dimension

was chosen such that for all supported � and arithmetic data types, the ‘hot’ data set

during gridding and degridding fit into a typical Level-1 data cache. Inw-direction, the
index of the first plane onto which the visibility needs to be gridded is called tw . For
compact storage, we used the fact that the uvw-locations of the individual frequency
channels for a given row of the measurement set tend to be very close to each other.

In other words, it is highly likely that two visibilities that belong to the same row and

neighbouring channels are mapped to the same (tu , tv , tw ) tuple.

5https://en.wikipedia.org/wiki/Runge%27s_phenomenon
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The resulting data structure is a vector containing all (tu , tv , tw ) tuples that contain
visibilities. The vector is sorted lexicographically in order of ascending tu , ascending
tv , and finally ascending tw . Each of the vector entries contains another vector, whose
entries are (irow, ichan,begin, ichan,end) tuples, where irow is the row index of the visibility

in question, and ichan,begin and ichan,end represent the first and one-after-last channel in
the range, respectively. Each of these vectors is sorted lexicographically in order of

ascending irow and ascending ichan,begin.

While fairly nontrivial, this storage scheme is extremely compact: for a typical mea-

surement set, it consumes roughly one bit per non-flagged visibility and is therefore

much smaller than the visibility data themselves (which use eight bytes for every visi-

bility, even the flagged ones). In the most unfavourable case (which occurs, e.g., when

the measurement set only contains a single channel or when every other frequency

channel is flagged), the memory consumption will be around eight bytes per non-

flagged visibility.

Processing the visibility data in this new ordering leads to a more random access

pattern to the visibility array itself. This is only a small problem, however, because

entries for neighbouring channels are still accessed together in most cases, and also

because the number of data accesses to the visibility array is lower by a factor of �2

than the one to the uv-grid in our algorithm.

7.4.4 Parallelisation strategy

This section has mostly been written by Martin Reinecke.

Our code supports shared memory parallelisation by standard C++ threads, that is,

it can be run on any set of CPUs belonging to the same compute node. To achieve good

scaling, all parts of the algorithm that contribute noticeably to the run time need to

be parallelised. In our case these parts are: building the internal data structures, per-

forming the (de)gridding process, applying w-screens, evaluating Fourier transforms,

and evaluating and applying kernel corrections.

For the construction of the data structures (discussed in section 7.4.3), we subdivided

the measurement set into small ranges of rows that are processed by the available

threads in a first-come-first-serve fashion. The threads concurrently update a global

sorted data structure (using mutexes to guard against write conflicts), which is finally

converted into the desired index list in a single-threaded code section. While consider-

able speedups can be achieved by this approach compared to a purely single-threaded

computation, this part of the algorithm does not scale perfectly and can become a

bottleneck at very high thread counts.

With the list of work items in hand, parallelising the actual gridding and degridding

steps is straightforward: first, the list is subdivided into a set of roughly equal-sized

chunks with nchunks ≫ nthreads. Each thread fetches the first chunk that has not been

processed yet, performs the necessary operations, and then requests the next available

chunk, until all chunks have been processed. This kind of dynamic work balancing is

required here because it is difficult to determine a priori how much CPU time a given

chunk will require.
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The way in which the list was constructed ensures that each chunk is confined

to a compact region of the uv-plane and therefore reduces potential write conflicts

between threads during gridding. Still, it might happen that different threads try to

update the same pixel in the uv-grid simultaneously, which would lead to undefined

program behaviour. To avoid this, each thread in both gridding and degridding rou-

tines employs a small buffer containing a copy of the uv-region it is currently working
on, and when the gridding routine needs to write this back to the global uv-grid, this
operation is protected with a lockingmechanism. In practice, the amount of time spent

in this part of the code is very small, so that lock contention is not an issue.

Furthermore, the application of the w-screens and the kernel correction factors are

parallelised by subdividing the array in question into equal-sized slabs, which are si-

multaneously worked on by the threads. The FFT component has a built-in paralleli-

sation scheme for multi-dimensional transforms that we make use of.

As mentioned above, the provided parallelisation can only be used on a single

shared-memory compute node. A further degree of parallelism can be added easily, for

example by distributing the measurement set data evenly over several compute nodes,

performing the desired gridding operation independently on the partial data sets, and

finally summing all resulting images. Analogously, for degridding, the image needs to

be broadcast to all nodes first, and afterwards, each node performs degridding for its

own part of the measurement set. How exactly this is done will most likely depend on

the particular usage scenario, therefore we consider distributed memory parallelisa-

tion to be beyond the scope of our library. A distribution strategy over several compute

nodes will increase the relative amount of time spent for computing the FFTs. Still,

our implementation partially compensates for this effect by picking a combination of

� , � , and kernel shape that is optimised for the changed situation.

7.5 Accuracy tests

This section reports the accuracy tests that we have performed to validate our im-

plementation. The tests can be subdivided into two major parts: the accuracy with

respect to the direct evaluation of the adjoint of eq. (7.3),

(R†0 d)lm =
1

nlm
∑
k

e2�i[uk l+vkm−wk (nlm−1)] dk , l ∈ L,m ∈ M, (7.35)

and the adjointness consistency between the forward and backward direction of the

different calls.

7.5.1 Adjointness consistency

First, the degridding and the gridding calls were checked for their consistency. This is

possible because mathematically, the two calls are the adjoint of each other. Therefore

Re(⟨R(I ), d⟩(1)) !
= ⟨I , R†(d)⟩(2)

, ∀ I ∈ ℝ
nlnm , ∀ d ∈ ℂ

nk , (7.36)
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where ⟨a, b⟩(1) ∶= a†b and ⟨a, b⟩(2) ∶= aTb are the dot products of ℂnk and ℝ
nlnm ,

respectively. On the left-hand side of the equation, the real part needs to be taken

because R maps from an ℝ- to a ℂ-vector space. Still, Im(R(I )) is tested by eq. (7.36)

because evaluating the scalar product involves complex multiplications. Therefore the

real part of the scalar product also depends on Im(R(I )).
For the numerical test, we chose nl = nm = 512 and a field of view of 15◦ × 15◦. The

observation was performed at 1 GHz with one channel. The synthetic uvw-coverage
consisted of 1000 points sampled from a uniform distribution in the interval [−a, a],
where a = pixsize/2/�, pixsize is the length of one pixel and � is the observing wave

length. The real and the imaginary parts of the synthetic visibilities d were drawn

from a uniform distribution in the interval [−0.5, 0.5]. Analogously, we drew the pixel

values for the dirty image I from the same distribution. We consider this setup to be

generic enough for accuracy testing purposes.

As discussed above, our implementation supports applying or ignoring thew-correction
and can run in single or double precision. This gives four modes that are tested indi-

vidually in the following. Moreover, the kernel sizes and the oversampling factor were

chosen based on the intended accuracy �, specified by the user. As a criterion for the

quality of the adjointness, we use

�adj ∶=

|||||Re(⟨R(I ), d⟩(1)) − ⟨I , R†(d)⟩(2)

|||||
min (‖‖d‖‖ ⋅ ‖‖R(I )‖‖, ‖‖I ‖‖ ⋅ ‖‖R†(d)‖‖) . (7.37)

For all four modes and for all tested � in the supported range (≥ 10−5 for single pre-

cision, ≥ 10−14 for double precision), this quantity lay below 10−7 and 10−15 for single

and double precision, respectively.

7.5.2 Accuracy of R†

Second, we compared the output of our implementation to the output of the direct

Fourier transform with and without w-correction. It suffices to test only R† and

not also R because the consistency of the two directions was already verified in sec-

tion 7.5.1. The error is quantified as rms error,

�rms(d) =

√√√√√√
∑lm

|||(R†0 d)lm − (R†d)lm
|||2∑lm

|||(R†0 d)lm |||2 . (7.38)

As testing setup, the same configuration as above was employed. Figure 7.5 shows

the results of the (approximate) gridding implementation against the exact DFT. It

is apparent that single precision transforms reach the requested accuracy for � '
10−7, while double precision transforms are reliably accurate down to � ≈ 10−14. We

deliberately also show results for � outside this safe range to demonstrate how the

resulting errors grow beyond the specified limit due to the intrinsic inaccuracy of
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Figure 7.5: Accuracy of R†. The ratio of measured root mean square error to the requested
accuracy � is plotted as a function of � itself. The grey line denotes the identity
function. Points lying in the region below the line represent configurations that
are more accurate than specified by the user.

floating-point arithmetics. Inside the safe region, the achieved accuracy typically lies

in the range between 0.03� and �, which indicates that the estimation in eq. (7.33) is

not overly pessimistic.

The saw-tooth pattern of the measured errors is caused by the dynamic parameter

selection during the setup process of each gridding operation mentioned near the end

of section 7.4.1: Moving from higher to lower accuracies, a fixed combination of � , � ,
and the corresponding kernel shape results in decreasing �rms/�, which is indicated by

the individual descending line segments. At some point, a new parameter combination

(lower � , or lower � with increased � ) with sufficiently high accuracy and lower pre-

dicted run time becomes available. This is then selected and the relative error jumps

upwards, while still remaining well below the specified tolerance.

7.6 Performance tests

The tests in this section were performed on a 12-core AMD Ryzen 9 3900X CPU with

64GB main memory attached. g++ 10.2 was used to compile the code, with notable op-

timisation flags including -march=native, -ffast-math, and -O3. The system sup-

ports two hyper-threads per physical CPU core, so that some of the tests were executed

on up to 24 threads. As test data we used a MeerKAT (Jonas and MeerKAT Team 2016)

L-band measurement set corresponding to an 11-hour synthesis with 8s integration

time and 2048 frequency channels, using 61 antennas (824476 rows in total, project id

20180426-0018). We worked on the sum of XX and YY correlations only, ignoring po-

larisation, and after selecting only unflagged visibilities with non-vanishing weights,

roughly 470 million visibilities need to be processed for each application of the grid-

ding or degridding operator. The size of the dirty image was 4096×4096 pixels, and the
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Figure 7.6: Strong-scaling scenario. The vertical dotted gray line indicates the number of
physical cores on the benchmark machine. Efficiency is the theoretical wall time
with perfect scaling divided by the measured wall time and divided by the single-
thread timing of ‘R† ducc’.

specified field of view was 1.6◦ ×1.6◦. Unless mentioned otherwise, computations were

executed in single-precision arithmetic and with a requested accuracy of � = 10−4. We

compared the timtings of our implementation to the standard radio software wsclean

and the general-purpose library FINUFFT6.

7.6.1 Strong scaling

First, we investigated the strong-scaling behaviour of our implementation. Figure 7.6

shows the timings of this problem evaluated with a varying number of threads. The

ideal scaling would of course be ∝ n−1threads, but this cannot be fully reached in practice.

As mentioned in section 7.4.4, the setup part of the algorithm does not scale perfectly,

and the same is true for the FFT operations because of their complicated and not always

cache-friendly memory access patterns.

Still, the implementation scales acceptably well, reaching a speed-up of roughly 8.0

when running on 12 threads. While the further improvements are much lower when

scaling beyond the number of physical cores, as has to be expected, a total speed-up

of around 9.6 is reached when using all hyper-threads available on the system.

In this test, degridding is slightly, but consistently slower than gridding, which ap-

pears counter-intuitive because degridding only requires roughly half the number of

6https://github.com/flatironinstitute/finufft, type 1, two-dimensional transform.
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Figure 7.7: Comparison to FINUFFT. The vertical dotted grey line indicates the number of
physical cores on the benchmark machine. Efficiency is the theoretical wall time
with perfect scaling divided by the measured wall time and divided by the single-
thread timing of ‘ducc’.

memory accesses. We assume that this is due to the horizontal addition of vector reg-

isters that has to be performed when a computed visibility value is written back to the

measurement set. This kind of operation is notoriously slow on most CPUs, while the

corresponding broadcast operation that is needed during gridding is much faster. If

this interpretation is correct, it indicates that in the selected regime (single precision

with an accuracy of 10−4) memory accesses do not completely dominate computation.

For higher accuracies this is no longer true, as shown in section 7.6.3.

Figure 7.6 also shows analogous timings for the standard gridder in wsclean, but

it is important to note that these cannot be directly compared to those of our code.

While we tried to measure the timings with as little overhead as possible (we used

the times reported by wsclean itself for the operations in question), the wsclean de-

fault gridder always interleaves I/O operations (which do not contribute at all to our

ownmeasurements) with the actual gridding and degridding, so there is always an un-

known, non-scaling amount of overhead in these numbers. Additionally, the accuracy

of wsclean cannot be set explicitly; based on experience, we expect it to be close to

the target of 10−4 near the image center, but somewhat worse in the outer regions.
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7.6.2 Comparison to non-equidistant FFT

As mentioned in the introduction, gridding or degridding without the w-term can

be interpreted as a special case of the non-uniform FFT, where the uv coordinates

of the individual points are not independent, but vary linearly with frequency in each

channel. For this reason we also performed a direct comparison of our implementation

with the FINUFFT library (Barnett, Magland, and Klinteberg 2019). We still used the

same measurement set as above, but performed a gridding step without the w term,

using double precision and requiring � = 10−10.

Because a general non-uniform FFT algorithm cannot be informed about the spe-

cial structure of the uv coordinates, we supplied it with an explicit coordinate pair

for every visibility. This implies that a much larger amount of data is passed to the

implementation, and it also increases the cost of the preprocessing step. To allow a

fairer comparison, we also ran ducc on an equivalent flattened data set, which only

contained a single frequency channel and therefore as many uv coordinates as there

are visibilities. We verified that both implementations returned results that are equal

to within the requested tolerance. The performance results are shown in fig. 7.7. In

contrast to our implementation, FINUFFT features a separate planning phase that can

be timed independently, so we show FINUFFT timings with and without the planning

time, in addition to ducc timings for processing the original and flattened measure-

ment set.

To a large extent, the results confirm the expectations. FINUFFT is always slower

than ducc when ducc works on the un-flattened data. This can be attributed to the

slightly higher accuracy of the ducc kernels and/or to its advantage of knowing the

internal structure of the uv data, which reduces setup time and the amount of mem-

ory accesses considerably. Furthermore, ducc performs rather poorly on the flattened

data compared to its standard operation mode, especially with many threads. Here

it becomes obvious that the index data structure, which has many benefits for multi-

channel data, slows the code down when it is not used as intended by providing only

a single channel. Finally, pre-planned FINUFFT performs worse than ducc with flat-

tened data at low thread counts, but has a clear speed advantage on many threads;

again, this is probably due to the ducc data structures, which are suboptimal for this

scenario.

Memory consumption also behaves as expected, meaning that ducc without flat-

tening requires the least amount of memory (because it does not need to store the

redundant uv data), followed by both FINUFFT runs, while ducc with flattening con-

sumes the most memory because it stores the full uv coordinates as well as a really

large index data structure. Overall, we consider it very encouraging that despite dif-

ferences in details, the performance and scaling behaviour of these two independent

implementations are fairly similar to each other.
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Figure 7.8: Wall time vs. specified accuracy � measured with six threads.

7.6.3 Run time vs. accuracy

For the following tests, we again used the setup described at the beginning of this

section, but we fixed the number of threads to six and varied the requested accuracy

� as well as the data type of the input (single or double precision). Figure 7.8 shows

the expected decrease in wall time for increasing �, that is, lower accuracy. In single-

precision mode the evaluation is indeed slightly faster than in double precision, most

probably because more visibilities and grid points can be communicated per second

between CPU and RAM for a given memory bandwidth. Moreover, the number of

elements in the CPU vector registers is twice as large for single-precision variables.

In analogy to the observations in section 7.6.1, degridding is slightly slower than

gridding for these measurements. For double precision, the same is only true at very

low accuracies; for � / 10−3, gridding becomes the more expensive operation, and

this trend becomes very pronounced at the lowest reachable � values. In these runs,

the kernel support � is quite large and most of the run-time is presumably spent on

data transfer from/to main memory. The results also show that while certainly attain-

able, high accuracy comes at a significant cost: going from a typical � of 10−4 to 10−12

increases the run-time by about an order of magnitude.

7.7 Discussion

This section has partly been written by Martin Reinecke.

We have presented a new implementation of the radio interferometry gridding

and degridding operators, which combines algorithmic improvements from different

sources: an accurate and efficient treatment of the w-term for wide-field observations

published by Ye (2019), an easy-to-use, high-accuracy, functional form for the grid-

ding kernels presented by Barnett, Magland, and Klinteberg (2019), with some slight

improvements, a piecewise polynomial approximation method for arbitrary kernels
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(also published by Barnett, Magland, and Klinteberg (2019)), which is very well suited

for the task at hand), a parallelisation strategy, dynamic parameter selection, and in-

dexing data structure of our own design. To the best of our knowledge, the resulting

code compares favourably to other existing Fourier-domain gridders (both for wide-

and narrow-field data) in terms of accuracy, memory consumption, single-core per-

formance, and scalability. Our implementation is designed to have minimum depen-

dencies (only a C++17 compiler is needed), and it is free and open-source software.

Therefore it may be advantageous to add it as an alternative option to existing radio

interferometry imaging packages, as was already done in the wsclean code.

Compared with the fairly recent image-domain gridding approach (IDG, Tol, Veen-

boer, and Offringa 2018), it appears that our implementation currently has a perfor-

mance advantagewhen both algorithms are run onCPUs, but theGPU implementation

of IDG easily outperforms all competitors on hardware of comparable cost. Further-

more, IDG can incorporate direction-dependent effects (DDEs) in a straightforward

manner, which are difficult and costly to treat with Fourier-domain gridding algo-

rithms.

However, it may be possible to address this within the w-gridding framework. The

A-stacking algorithm (Young et al. 2015) might be combined with w-gridding, for in-
stance. This would imply approximating all possible DDE patterns as linear combi-

nations of a small set of Nb basis functions fb(l, m), computing (for every visibility)

the projection of its particular DDE pattern onto this set of functions, running the

w-gridder Nb times with the appropriate sets of weights, multiplying each result with

the corresponding basis function, and finally adding everything together. Investigat-

ing the actual feasibility and performance of such an approach is left for future studies.
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7.8 Kernel parameters

Optimal kernel parameters and associated accuracy � for the modified exponential

semicircle kernel (eq. 7.29) given the oversampling factor � and the kernel support size

� . Larger � and larger � lead to smaller �. Larger � and smaller � increase the fraction

of the FFT of the total computation time. FFT and gridding costs are represented in our

implementation with a simple cost model such that the algorithm can choose optimal

� and � automatically. For brevity, we display only the tables for � ∈ {4, 7, 8, 12, 16}.
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� � � �

1.15 0.025654879 1.3873426689 0.5436851297

1.2 0.013809249 1.3008419165 0.5902137484

1.25 0.0085840685 1.3274088935 0.5953499486

1.3 0.0057322498 1.3617063353 0.5965631622

1.35 0.0042494419 1.384549988 0.5990241291

1.4 0.0033459552 1.4405325088 0.5924776015

1.45 0.0028187359 1.4635220066 0.5929442711

1.5 0.0023843943 1.5539689162 0.5772217314

1.55 0.0020343796 1.5991008653 0.5721765215

1.6 0.0017143851 1.6581546365 0.5644747137

1.65 0.0014730848 1.7135331415 0.5572788589

1.7 0.0012554492 1.7464330378 0.5548742415

1.75 0.0010610904 1.7887326906 0.5509877716

1.8 0.00090885567 1.8122309426 0.5502273972

1.85 0.0007757401 1.8304451327 0.550396716

1.9 0.0006740398 1.8484487383 0.5502376937

1.95 0.00058655391 1.8742215688 0.5489738941

2.0 0.00051911189 1.90694363 0.5468009434

Table 7.1: Optimal parameters for � = 4.

The rest can be looked up in the ducc code repository. The least-misfit kernels (Ye

et al. 2020) achieve an accuracy � = 10−7 for � = 7 and � = 2.

7.9 Python interface documentation

def ms2dirty(uvw, freq, ms, wgr, npix_x, npix_y,

pixsize_x, pixsize_y, nu, nv, epsilon,

do_wstacking, nthreads, verbosity, mask):

"""

Converts an MS object to dirty image.

Parameters

----------

uvw: numpy.ndarray((nrows, 3), dtype=numpy.float64)

UVW coordinates from the measurement set

freq: numpy.ndarray((nchan,), dtype=numpy.float64)

channel frequencies

ms: numpy.ndarray((nrows, nchan),

dtype=numpy.complex64 or numpy.complex128)

the input measurement set data.

Its data type determines the precision in which

the calculation is carried out.

wgt: numpy.ndarray((nrows, nchan), float with same

precision as ‘ms‘), optional
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� � � �

1.15 0.00078476028 1.5248706519 0.5288306317

1.2 0.00027127166 1.5739348793 0.5287992619

1.25 0.00012594628 1.6245240723 0.527921777

1.3 7.0214545e-05 1.6835745981 0.5257484101

1.35 4.1972457e-05 1.7343424414 0.5239793844

1.4 2.378019e-05 1.7845017738 0.5224266045

1.45 1.3863408e-05 1.8180597789 0.5221834768

1.5 9.1605353e-06 1.868082272 0.5206277502

1.55 6.479159e-06 1.9188980015 0.5183134674

1.6 4.6544571e-06 1.9536166143 0.5178695891

1.65 3.5489761e-06 1.9786267068 0.5178430252

1.7 2.7030348e-06 2.0027666534 0.5178577604

1.75 2.0533894e-06 2.0289949199 0.5176300336

1.8 1.6069122e-06 2.0596412946 0.5167551932

1.85 1.2936794e-06 2.0720606842 0.5178747891

1.9 1.0768664e-06 2.090898174 0.5181009847

1.95 9.0890421e-07 2.1086185697 0.5184537843

2.0 7.7488775e-07 2.1278284187 0.5186377792

Table 7.2: Optimal parameters for � = 7.

� � � �

1.15 0.00026818611 1.568124649 0.5223052481

1.2 7.8028732e-05 1.620926145 0.5219287175

1.25 2.7460918e-05 1.6851585171 0.519925059

1.3 1.3421658e-05 1.7442373315 0.5182155619

1.35 7.5158217e-06 1.7876782642 0.5176319503

1.4 4.2472384e-06 1.8294321912 0.5171860211

1.45 2.5794802e-06 1.871691821 0.5161733611

1.5 1.6131994e-06 1.9213040541 0.5145350888

1.55 1.0974814e-06 1.9637229131 0.5134005827

1.6 7.531955e-07 2.0002761373 0.5128849282

1.65 5.5097346e-07 2.0275645736 0.5127082324

1.7 4.0136726e-07 2.0498410409 0.5130237662

1.75 2.906467e-07 2.073158517 0.5131757153

1.8 2.1834922e-07 2.0907418726 0.5136046561

1.85 1.6329905e-07 2.1164552354 0.5133333878

1.9 1.2828598e-07 2.126157016 0.5143004427

1.95 1.0171134e-07 2.1363206613 0.515235491

2.0 8.1881369e-08 2.1397013368 0.5166895497

Table 7.3: Optimal parameters for � = 8.
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� � � �

1.15 2.7535895e-06 1.6661837519 0.5098172147

1.2 5.2570038e-07 1.7294557459 0.5089239596

1.25 1.378658e-07 1.7698182384 0.5099240718

1.3 4.4329167e-08 1.8092042442 0.510607427

1.35 1.7038991e-08 1.8619112597 0.5093832337

1.4 6.5438748e-09 1.9069147481 0.5089479889

1.45 2.9874764e-09 1.9318398074 0.5098082325

1.5 1.4920459e-09 1.9628483155 0.5100985753

1.55 8.0989276e-10 2.0129847811 0.5085327805

1.6 4.1660575e-10 2.0517921747 0.5079102398

1.65 2.3539727e-10 2.06983884 0.5085131064

1.7 1.3497289e-10 2.0887365361 0.5090417146

1.75 8.3256938e-11 2.106955733 0.5095920671

1.8 5.8834619e-11 2.1359415217 0.5091887069

1.9 2.6412908e-11 2.2006369514 0.5075889699

1.95 1.7189689e-11 2.2146741638 0.5080017404

2.0 1.2174796e-11 2.2431392199 0.5075191177

Table 7.4: Optimal parameters for � = 12.

� � � �

1.3 1.1509596e-10 1.7892839755 0.5122877693

1.35 3.2440049e-11 1.8914441282 0.5063521839

1.4 8.4329616e-12 1.9296369098 0.5065170208

1.45 3.1161739e-12 1.9674735425 0.5063244338

1.5 1.2100308e-12 2.0130787701 0.5055587965

1.55 4.6082202e-13 2.0438032614 0.5056309683

1.6 1.7883238e-13 2.0329561822 0.5089045671

1.65 9.2853815e-14 2.0494514743 0.5103582604

1.7 5.6614567e-14 2.0925119791 0.5083767402

1.75 2.875391e-14 2.1461524027 0.5062037834

1.8 1.6578982e-14 2.1490040175 0.508272183

1.85 1.1782751e-14 2.1811826814 0.5072570059

1.9 8.9196865e-15 2.1981176583 0.5075840871

1.95 6.6530006e-15 2.234001135 0.5060133105

2.0 5.0563492e-15 2.2621631913 0.5056924675

Table 7.5: Optimal parameters for � = 16.
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If present, its values are multiplied to the

input before gridding.

npix_x, npix_y: int

dimensions of the dirty image (must both be even

and at least 32)

pixsize_x, pixsize_y: float

angular pixel size (in radians) of the dirty image

nu, nv: int

obsolete, ignored

epsilon: float

accuracy at which the computation should be done.

Must be larger than 2e-13. If ‘ms‘ has type

numpy.complex64, it must be larger than 1e-5.

do_wstacking: bool

if True, the full w-gridding algorithm is carried

out, otherwise the w values are assumed to be zero

nthreads: int

number of threads to use for the calculation

verbosity: int

0: no output

1: some output

2: detailed output

mask: numpy.ndarray((nrows, nchan),

dtype=numpy.uint8),

optional

If present, only visibilities are processed

for which mask!=0

Returns

-------

numpy.ndarray((npix_x, npix_y), dtype=float of same

precision as ‘ms‘)

the dirty image

Notes

-----

The input arrays should be contiguous and in C memory

order. Other strides will work, but can degrade

performance significantly.

"""
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def dirty2ms(uvw, freq, dirty, wgr, pixsize_x,

pixsize_y, nu, nv, epsilon, do_wstacking,

nthreads, verbosity, mask):

"""

Converts a dirty image to an MS object.

Parameters

----------

uvw: numpy.ndarray((nrows, 3), dtype=numpy.float64)

UVW coordinates from the measurement set

freq: numpy.ndarray((nchan,), dtype=numpy.float64)

channel frequencies

dirty: numpy.ndarray((npix_x, npix_y),

dtype=numpy.float32 or numpy.float64)

dirty image

Its data type determines the precision in which

the calculation is carried out.

Both dimensions must be even and at least 32.

wgt: numpy.ndarray((nrows, nchan), same dtype as

‘dirty‘), optional

If present, its values are multiplied to the

output.

pixsize_x, pixsize_y: float

angular pixel size (in radians) of the dirty image

nu, nv: int

obsolete, ignored

epsilon: float

accuracy at which the computation should be done.

Must be larger than 2e-13.

If ‘dirty‘ has type numpy.float32, it must be

larger than 1e-5.

do_wstacking: bool

if True, the full w-gridding algorithm is carried

out, otherwise the w values are assumed to be zero

nthreads: int

number of threads to use for the calculation

verbosity: int

0: no output

1: some output

2: detailed output

mask: numpy.ndarray((nrows, nchan),

dtype=numpy.uint8),

optional

If present, only visibilities are processed

for which mask!=0

Returns

-------

numpy.ndarray((nrows, nchan), dtype=complex of same

precision as ‘dirty‘)

the measurement set data.
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Notes

-----

The input arrays should be contiguous and in C memory

order. Other strides will work, but can degrade

performance significantly.

"""
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8 Conclusion

8.1 Summary

This thesis provides a round trip through various aspects of radio interferometry and

the ability of drawing scientific conclusions from the data. It has been argued that

Bayesian statistics and information field theory are the natural and proper ways to

solve the synthesis imaging problem in radio interferometry.

In this thesis the Bayesian imaging algorithm resolve is summarized and it was

possible to show that it outperforms the standard approach called ‘CLEAN’ in various

ways: The result of an imaging run by resolve are approximate posterior samples of

the sky brightness distribution. These samples represent the uncertainty on the image

that is induced by the inevitably incomplete measurement and the noise on the data.

This uncertainty information is of utmost importance for the ability to draw conclu-

sions in any form from an observation. Additionally, resolve surpasses CLEAN in

its resolution meaning that it can provide higher resolved images from the same data.

The reason for this is that it is a Bayesian algorithm that makes sure that the recon-

struction harmonizes with the data by the likelihood term in the imaging Hamiltonian.

Moreover, the prior term in the Hamiltonian guarantees that all posterior samples of

the sky brightness are strictly positive. This solves another major issue of CLEAN: Its

images contain so-called ‘negative-flux regions’ where the pixel values for the flux are

partly negative which is definitely unphysical.

Another aspect of the work presented here is the unification of imaging and calibra-

tion. This enables propagating the uncertainty arising from the calibration procedure

into the final result. Additionally, first results with a natural prior for polarization

imaging were presented.

In principle, all imaging procedures in the community—and definitely ‘wsclean’,

a widely employed implementation of CLEAN—experienced a boost in computational

performance and accuracy due to our work on the computational representation of the

radio interferometric response function. This aspect of this thesis has and will have

a tangible impact on the radio community irrespective of the time scale on which the

community will swap CLEAN for a Bayesian algorithm.

The major scientific breakthrough in the context of this thesis may be the first si-

multaneous spatio-spectral-temporal reconstruction of an astrophysical source. This

work has been favourably received by parts of the EHT collaboration and thereby may

contribute to the long-term success of the EHT project.

On the way, the versatile software library NIFTy benefited significantly from the

work on this thesis since its refactoring, adding the models for Gaussian random

fields with unknown power spectrum from chapters 3 and 5, and implementing auto-
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differentiation were crucial to be able to approach the challenges of the projects of this

thesis.

8.2 Outlook

The work on radio interferometry with information field theory is not anywhere near

completed. The first most obvious future project is the proper implementation and

application of the concepts for polarization imaging that are presented in chapter 6.

Until now related approaches do not exist and this would be the first time to consis-

tently image all four Stokes parameters at the same time and include natural cross

correlation between them a priori. Especially merging the EHT likelihood defined in

section 4.2 with the polarization model chapter 6 will be of major scientific interest

(EHT Collaboration 2019e, sec. 7.4). However, this project needs to wait until the EHT

collaboration publishes the polarization data that has been taken in April 2017.

A second major path for future work is the extension of the algorithm of chapter 3

to the frequency dimension. Here both continuum imaging (of sources like Cygnus A)

and spectral line imaging for exploring the dynamics of, e.g., galaxies with the help

of CO-lines are worthy projects. In both cases the consistent handling of the data

at all observing frequencies and the absence of concepts like the ‘restoring beam’ of

CLEAN, which enforces a fixed frequency-dependent resolution throughout an image,

will improve the resolution capabilities of radio interferometers at low frequencies

even more. This is an improvement purely on the algorithmic side that is paid for

by computational power which is cheap compared to building bigger telescopes for

increasing the resolution. Here the single-frequency calibration procedure of chapter 5

needs to be augmented to multi-spectral calibration for this. A consistent handling of

uncertainties and ‘missing data’ will overcome all overfitting issues the community is

experiencing during calibration. With the help of multi-spectral reconstruction tools,

the spectral behaviour of for example supernova remnants (see section 1.1.3) and radio

galaxies (see section 1.1.2) can be studied. Since all scientific conclusions are bound by

the resolution and the sensitivity of the telescope but also of the imaging algorithm,

these advances in Bayesian image reconstruction may help to understand more deeply

the processes that lead to the dynamics and chemical composition of supernovae and

supernova remnants and the plasma properties and acceleration mechanisms of radio

galaxies.

These two research goals could then be combined by implementing a full Fara-

day synthesis algorithm (Bell and Enßlin 2012). This idea could even be combined

with a component separation that is part of the imaging procedure along the lines

of Knollmüller and Enßlin (2017). Both approaches would provide insights into the

dynamics of different components, e.g. the free-free emission and the synchrotron

emission, that could not be disentangled otherwise.

Another major research direction would be the combination of multiple telescopes

that possibly rely on a variety of measurement processes and use them in the imag-

ing algorithm together. A natural field of application would be the ALMA telescope. It
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consists of two interferometers with different dish diameters and four single-telescope

dishes. The interferometer collects data on the small-scale structures whereas the

single-dish telescopes inform about the large-scale structures on the sky. By today,

no imaging algorithm exists that consistently combines the data into one imaging

step. A Bayesian algorithm for this would significantly improve the capabilities of

the ALMA telescope as a whole. Additionally, also the combination of data over large

frequency ranges can easily be imagined. For example the X-ray photons and the radio

emission of radio galaxies or supernovae contribute complementary information on

the astrophysical processes therein and could be used for an even more sophisticated

component separation.

Finally, this work may also be of relevance for medical imaging. Especially, the

data for nuclear magnetic resonance imaging (MRI) and radio telescopes is very simi-

lar: Both measure in the Fourier-conjugate domain to the space on which the signal of

interest is defined (in one case the sky brightness distribution and in the other the den-

sity of e.g. Hydrogen atoms). Interestingly, the standard method for imaging in MRI,

a filtered back projection, has strong similarities to the standard imaging algorithm in

radio astronomy, CLEAN. If a similar improvement in resolution to the one presented

in chapter 3 could be achieved this would result in either higher-resolved images or

shorter scan times, which are desirable from the patient perspective since MRI scans

are not particularly comfortable for many people, from a medical perspective, because

shorter observations reduce the problem of for example breathing-induced organ mo-

tion, and also from an economic perspective because more scans could be conducted

per time.

All these ideas for future work illustrate the plethora and richness of Bayesian radio

interferometry. At the same time it shows that given great instruments like ALMA,

MeerKAT or the EHT, today significant scientific progress can be made by improving

data reduction algorithms alone. This concludes my PhD thesis on ‘Radio interferom-

etry with information field theory’.
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