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ABBREVIATIONS 
 

AI allelic imbalance 

AML acute myeloid leukemia 

AMLCG German AML Cooperative Group 

AMLSG German-Austrian AML Study Group 

AS alternative splicing 

cDNA complementary DNA 

CNV, -s copy number variation, -s 

DNA-seq DNA sequencing 

dNTP, -s deoxynucleoside triphosphate, -s 

EHA European Hematology Association 

ELN European Leukemia Net 

INDEL, -s insertion deletion, -s 

mRNA messenger RNA 

NGS next-generation sequencing 

pre-mRNA precursor messenger RNA 

RNA-seq RNA sequencing 

rRNA ribosomal RNA 

SBS sequencing by synthesis 

SF  splicing factor 

snRNP, -s small nuclear riboprotein, -s 

SNP, -s single nucleotide polymorphism 

SNV, -s single nucleotide variation, -s 

VAF, -s variant allele frequency, -ies 

VC variant calling 

WES whole exome sequencing 

WGS whole genome sequencing 
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INTRODUCTION 
 

1. Acute myeloid leukaemia  
Acute myeloid leukaemia (AML) is a malignant neoplasm with an incidence of 4.3 per 

100.000 men and women every year, which corresponds to a lifetime risk of receiving 

an AML diagnosis of 0.5%.1 The scientific community has invested a sizeable amount 

of time, effort and resources into improving the prognosis of AML. However, despite 

continuous improvement, the relative five-year survival rate of AML is still only at 

28.7%.1 The advent of next-generation sequencing (NGS), has revolutionized the field 

of cancer genomics. NGS continues to provide scientists and medical professionals 

with new ways to improve the diagnosis and classification of neoplasms and builds the 

foundation for new treatment options through the identification of cancer-specific, 

molecular targets.2 In AML specifically, NGS methods have allowed scientist to detect 

recurring mutations with high accuracy, observe their pattern of co-expression and 

shed light on their often genome-wide consequences on core biological processes.3,4 

In this thesis two articles are presented, which employ two complementary NGS 

methods in conjunction with standard statistical tools in order to investigate the 

pathomechanisms of recurring mutations in AML.  

Acute myeloid leukaemia refers to a group of malignant neoplasms that are derived 

from undifferentiated myeloid precursor cells.5 The disease is characterized by rapid 

clonal expansion of myeloid blasts in the bone marrow and peripheral blood, leading 

to impaired haematopoiesis and bone marrow failure. Depending on the impaired cell 

line, patients may present with symptoms of anaemia (lethargy and fatigue, shortness 

of breath, pale skin), easy bruising or unusual bleeding (e.g. frequent nosebleeds, or 

bleeding from the gums), fever and frequent infections. Known risk factors include old 

age, male sex, exposure to radiation or carcinogenic chemicals (e.g. benzene), other 

blood disorders such as myelodysplastic syndrome, previous chemotherapeutic 

treatment and certain genetic disorders such as Down syndrome. Although several 

treatment options are available, including allogeneic stem cell transplants, the disease 

is often refractory or recurs after treatment.6 

Carcinogenesis and consequently leukaemogenesis has been linked to mutations that 

disrupt the balance between proliferation and programmed cell death (apoptosis) 

leading to uncontrolled cell growth. The emergence of new technologies, especially 
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next-generation sequencing, has led to the discovery of genes that are recurrently 

mutated in AML and other haematopoietic malignancies.7–9 This has shifted the focus 

from morphological classifications of AML to more accurate cytogenetic and molecular 

classifications that have improved the diagnosis and management of the disease. One 

such classification, the European Leukemia Net (ELN) 2017 classification includes a 

large spectrum of cytogenetic and molecular parameters and has supported physicians 

in the selection of treatment options for AML patients.10 The parameters of the ELN 

2017 classification were used in Publication I in order to create a regression model with 

the purpose of characterizing the prognostic relevance of splicing factor (SF) 

mutations, which make up a relevant portion of the recurring mutations in AML.4 A 

prerequisite for interpreting the impact of SF mutations is understanding the process 

of splicing, a core concept of cancer genomics and molecular biology in total for that 

matter.11 The next section covers this biological mechanism and its implications for the 

field of cancer genomics.  

 

2. Splicing 
 
2.1. Definition 
The central dogma of molecular biology states that the information in a cell flows via 

transcription from DNA to RNA, which is then translated into a polypeptide sequence 

(a protein) that executes a specific function in the cell.12 In the past decades scientist 

have taken a closer look at this process and have refined our understanding of it. The 

regions on the DNA that are transcribed to RNA are referred to as genes. While all 

genes are by definition transcribed to RNA, only messenger RNA (mRNA) is used as 

a template for the synthesis of a protein. However, the initial product of transcription is 

in the vast majority of cases a precursor messenger RNA (pre-mRNA). This primary 

transcript must undergo processing prior to translation. Several post-transcriptional 

modifications take place, such as 5’-capping, polyadenylation (which is used for 

poly(A) selection of mRNA in RNA-seq experiments13) and splicing.  

 

2.2. The splicing process 
The term splicing refers to the removal (cleavage) of non-coding regions of the pre-

mRNA and the ligation of the remaining fragments. Regions on the pre-mRNA that 
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contain information for protein coding are termed exons, while non-coding regions are 

referred to as introns. The molecular machine responsible for splicing is the 

spliceosome, which is comprised of five small nuclear RNAs and a number of 

associated protein factors that combine and form small nuclear riboproteins (snRNPs). 

In eukaryotic organisms, the major spliceosome that is responsible for splicing most 

genes is comprised of five such snRNP units (U1, U2, U4, U5 and U6) that assemble 

anew on each pre-mRNA.14,15  

 

 
Figure 1: mRNA splicing. Schematic illustration depicting the core steps of the splicing process. 

Illustration taken from Wikimedia Commons where it is available under a Creative Commons license 

(https://en.wikipedia.org/wiki/RNA_splicing#/media/File:RNA_splicing_reaction.svg).  

 

Splicing occurs at specific conserved sequences that are found at the 5’ and 3’ ends 

of the spliced intronic sequence and are known as splice sites. Another critical 

sequence for splicing is the branch point, which is a sequence usually located a few 

bases (~20-50) upstream of the 3’ splice site that is loosely conserved, but always 

contains an adenine nucleotide.16 The process is initiated by the binding of the U1 

snRNP unit to the 5’ splice site, committing the pre-mRNA to splicing. This causes the 

5’ splice site to pair with the adenine at the branch point through a chemical process 

called transesterification. This requires the pre-mRNA to “bend” and form a circular 
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structure called a “lariat”. The free 3’-end of the upstream exon is covalently bound to 

the 5’ splice site and the lariat structure is cleaved away, concluding the splicing 

process (Figure 1).14  

 
2.3. Alternative splicing 
In the past decades, scientist have observed that a gene can produce multiple products 

although it is a singular template. This capability of genes is facilitated by a process 

referred to as alternative splicing (AS), which is a major contributor of proteomic 

diversity between individuals and different tissue types in an individual.17 While up to 

the beginning of the 21st century this process was believed to be an exception, current 

studies suggest that it is in fact a universal phenomenon that occurs in up to 95% of 

human genes.18,19 Alternatively spliced genes can produce several transcripts 

isoforms, which are translated 

into proteins that can serve different or even opposing purposes.17,20 AS has also been 

linked to other cellular mechanisms, including gene regulation21,22 and intracellular 

transport of mRNAs and proteins.23,24 AS can produce transcript isoforms, where an 

exonic sequence is excluded or an intronic sequence is included. Four main types of 

AS have been described: a “cassette” exon, mutually exclusive exons, alternative 5’ or 

3’ splice sites and intron retention and are shown in Figure 2. A cassette exon 

describes an exon that is included in one isoform, but excluded completely from 

another. Mutually exclusive exons are not spliced in together in one isoform, i.e. when 

one exon is spliced in, the other exon is spliced out. Alternative splice sites refer to the 

fact that splicing can occur upstream or downstream of the 5’ or 3’ splice sites at a 

sequence, which also contains a splice junction motif. Finally, intron retention refers to 

the inclusion of an intronic sequence in the final mature mRNA product. 

 

2.4. Identification of disease-relevant aberrant splicing 
Splicing and AS, are highly regulated processes.25 However, mutations can induce 

aberrant splicing in cancer cells.26 The resulting aberrant transcript isoforms are 

translated into proteins that are missing domains or are truncated. As a consequence, 

proteins may be degraded prematurely (e.g. through nonsense-mediated decay27), 

have severe functional impairments, or may even present with a completely new 

function. 
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Figure 2: Modes of alternative splicing. The 

most common types of alternative splicing are 

shown. Exons are colored blue and introns are 

depicted in yellow. The blue lines connecting 

exons represent splice junctions. Illustration 

taken from Wikimedia Commons where it is 

available under a Creative Commons license. 

(https://commons.wikimedia.org/wiki/File:Alt

_splicing_bestiary2.jpg)    
 
Increasing evidence has come to light that 

aberrant splicing is integral to cancer 

development and thus a growing body of 

research aims at uncovering aberrant 

splicing patterns in tumor cells. The recent 

discovery of mutations in genes, which are 

directly involved in the transcription and 

splicing pathway (e.g. SF mutations), has 

provided an additional incentive.28 The 

emergence of RNA-seq has greatly contributed to the detection of aberrant splicing, 

as it comes with genome-wide capabilities of splice junction detection. Through 

transcriptome assembly tools it is possible to reconstruct transcript isoforms of a 

sample or a sample group and compare them to an existing reference transcriptome, 

thereby detecting novel transcript isoforms.29 The usage of tools with powerful novel 

splice junction detection algorithms has also supported the identification of aberrant 

splicing. The following sections cover the fundamentals of NGS and its applications in 

molecular biology using the Illumina sequencing method as an example. 

 

3. Next-generation sequencing 
 
3.1. Overview 
Sequencing in molecular biology refers to the identification of the primary order of 

biological structures. Depending on the genomic region studied, DNA-sequencing 

(DNA-seq) can be classified into whole genome sequencing (WGS; sequencing of the 

11



complete DNA of an organism), whole exome sequencing (WES; only gene-coding 

regions are sequenced) or targeted sequencing (only selected genomic regions are 

sequenced). RNA-sequencing (RNA-seq) provides the ability to sequence the total 

transcriptome of a sample (whole transcriptome sequencing; corresponds to WES). 

However, RNA-seq can also be used to study specific RNA populations, such as 

mRNA, micro RNA, transfer RNA and ribosomal RNA (rRNA) or more recently the total 

RNA population of a single cell (single-cell RNA sequencing30). Other applications 

include ribosomal profiling and targeted RNA-seq.31  

The sequencing data analyzed in this thesis included both DNA and RNA data and 

was created on an Illumina sequencing platform, the most broadly used, commercially 

available NGS platform.32 A typical Illumina NGS workflow consist of four steps: library 

preparation, cluster (“bridge”) amplification, sequencing by synthesis, and data 

analysis. The studies presented in this thesis cover different ways of interpreting NGS 

data and thus fall under the data analysis step. However, accurate data analysis 

requires understanding of all steps of an NGS workflow, which is why they will briefly 

be covered in the following sections.  

 

3.2. Library preparation  
Prior to the actual sequencing process a sequencing library (a collection of DNA or 

complementary DNA (cDNA) fragments) needs to be created, which will serve as the 

primary sequencing input. This creation process is called library preparation and 

requires isolated and purified DNA or RNA.33 Core steps in the isolation and purification 

of DNA include cell lysis, the removal of membrane lipids, the denaturation and 

removal of proteins (through protease treatment), and other cellular components, as 

well as the removal of RNA through ribonuclease treatment. Common DNA extraction 

and purification methods are organic extraction, magnetic separation, silica-based and 

anion exchange technology.34,35 The use of a specific extraction kit varies depending 

on the sample source type. While the process of RNA isolation and purification is 

similar to DNA purification, the ubiquitous presence of RNases in the environment 

(including human skin) provide an additional challenge in the collection of intact RNA 

molecules. The most common RNA extraction methods are the acid guanidinium 

thiocyanate-phenol-chloroform extraction and silica-based methods.36 In most RNA-

seq studies only the mRNA is of interest, however rRNA accounts for most (~80%) of 

the RNA in eukaryotic organisms. Therefore, an additional step to enrich for mRNA is 
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required. Two common methods that address this issue are poly(A) selection and rRNA 

depletion, each having their own advantages and drawbacks.13,37–41 In the whole-

transcriptome RNA-seq protocol used to generate data for the studies presented in this 

thesis poly(A) selection was used to enrich for mRNA. The RNA molecules of interest 

are then converted into cDNA molecules through reverse transcription.  

The obtained DNA (or cDNA) molecules are fragmented into smaller segments (usually 

a few hundred base pairs each), through mechanical methods (e.g. sonication, 

nebulization) or enzymatic methods (e.g. enzymatic digestion42,43), which is followed 

by the 3’ and 5’ ligation of synthetic oligonucleotides (known as adapters) to the 

fragments. The final library preparation step includes polymerase chain reaction 

amplification and gel purification of the adapter-ligated fragments. The inclusion of 

unique, library-specific index sequences in the adapters, called multiplexing, permits 

the pooling and concurrent sequencing of up to 96 samples in a single sequencing run 

and has contributed significantly to the increased output potential of NGS methods.  

 

3.3. Cluster generation 
The cluster generation step begins by loading the adapter-ligated fragments onto a 

proprietary flow cell. The flow cell is, in essence, a glass slide with up to eight physically 

separate lanes, each of which can host an independent analysis. The flow cell is coated 

with oligonucleotide sequences that are complementary to one of the adapter 

sequences of the fragments, which allows for the binding of the fragments to the flow 

cell. A polymerase then creates a complement to the bound fragment. The double-

stranded DNA is then denatured and the original fragment (forward strand) is washed 

away, leaving only the reverse complement (reverse strand), which is covalently bound 

to the flow cell.  

Clusters are created through a procedure known as bridge amplification. During this 

procedure, the free end of the bound reverse strands bends over and binds (“bridges”) 

to the oligonucleotide bound on the flow cell, which is complementary to its free end. 

The strands are then amplified through repeated extension and denaturation cycles. 

As the fragments are continuously bound on one end to the flow cell, the clonal 

amplification takes place locally, resulting in millions of unique clonal clusters across 

the flow cell. These clusters contain both the forward and the reverse strand of each 

original molecule. The reverse strand is cleaved and washed away prior to the actual 

sequencing process.  
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In the case of paired-end sequencing, where sequences are created in pairs, the 

reverse strand is synthesized again after the sequencing of the forward strand has 

been concluded and the forward strand is cleaved and washed away. The reverse 

strand is then sequenced as well, resulting in a sequencing pair (a “paired-end” read). 

Paired-end sequencing is currently used for most scientific questions, including the 

ones addressed in the studies presented in this thesis, as it is more time efficient and 

more accurate in the detection of artifacts, genomic rearrangements and insertion-

deletion variants, as opposed to single-end sequencing.44 Nevertheless, single-end 

still finds its applications (e.g. in small RNA sequencing).  

 

3.4. Illumina sequencing by synthesis (SBS) 
The standard Illumina sequencing by synthesis (SBS) method uses fluorescently-

labeled deoxynucleoside triphosphates (dNTPs), which contain an element that can 

reversibly terminate polymerization. These dNTPs each contain one of the four 

nitrogenous bases necessary to synthesize a DNA molecule (adenine, thymine, 

cytosine or guanine). Firstly, primers and polymerization enzymes are added to the 

flow cell. During each sequencing cycle, all four fluorescently-labeled dNTPs are 

added to the flow cell containing the clonally amplified forward strands. After the 

incorporation of a single dNTP, which happens in a massively-parallel fashion for all 

the clones across the flow cell, the polymerization is terminated and the remaining 

dNTPs are washed away. The concurrent presence of all four dNTPs leads to natural 

competition, thus reducing incorporation bias.45 After laser excitation, the fluorophores 

on the dNTPs incorporated in each cluster emit light at a characteristic wavelength, 

which is captured by a camera and used to identify the dNTP type, i.e. the nitrogenous 

base contained within the dNTP molecule. This method is not sensitive enough to 

capture the light emitted from a single molecule, however the clonal amplification step 

prior to sequencing allows for accurate identification of the incorporated dNTP by signal 

enhancement. The certainty with which a base is identified depends on the signal 

intensity captured and is quantified through a Phred quality score (Q score).46 After the 

base has been identified the reversible polymerization terminator is enzymatically 

cleaved along with the fluorophore, ending the sequencing cycle. The repetition of 

multiple sequencing cycles results in a sequence of bases (a “read”), which in Illumina 

sequencing usually has a length between 50 and 300 base pairs (bp). If paired-end 

sequencing is performed, the reverse strand is also sequenced and the end result are 
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two sequences of equal length with an unsequenced region of a few hundred bp in 

between. Millions of these pairs are created per sample and used for the subsequent 

data analysis.  

  

3.5. Data analysis 
The data analysis for DNA and RNA sequencing is computationally intensive and thus 

requires time- and memory-efficient tools. As the cost for sequencing decreases at a 

fast pace and therefore sequencing experiments tend to have larger sample sizes, the 

need for specialized tools that scale well with increasing input size and have multi-

threading capabilities intensifies. Each analysis pipeline must be customized to answer 

the biological question at hand, however some core steps exist that are mandatory in 

most analyses.  

Prior to any analysis, samples need to be demultiplexed, if multiplexing has occurred 

during library preparation, as each sample usually represents a biological or technical 

replicate. This process should be followed by a quality control step, where each sample 

is checked for sufficient coverage over the genomic regions covered in the experiment, 

as well as the average read quality elicited from the Phred score provided by the 

sequencer.46 Depending on the quality of the reads some reads or rarely whole 

samples may need to be excluded from downstream analysis, however in most cases 

trimming of the reads (removal of low quality 3’ or 5’ bases) is sufficient. Tools that 

possess trimming capabilities can frequently also remove (incomplete) adapter 

sequences that were not removed sufficiently by the sequencer.  

The quality-controlled reads are then (in most experiments) “aligned” to the reference 

genome, meaning that a computational tool identifies the genomic location from which 

these reads originated and maps them to specific genomic coordinates. This task 

differs between DNA- and RNA-seq, as for RNA-seq reads splicing has occurred, 

therefore aligners need to be “splice-aware”. This procedure is followed by another 

quality control step to assess the quality of the alignment.  

Sequencing workflows usually diverge after alignment and are tailor-made to fit the 

scientific research question examined. Some common applications of a sequencing 

data analysis are variant calling, gene and isoform expression analyses, gene fusion 

detection and the detection of novel isoforms. For some analyses DNA-seq data 

provide more accurate results (e.g. variant calling, an issue addressed in Publication 

II), while others are only possible with RNA-seq data (e.g. novel isoform detection). A 
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variant calling pipeline was the cornerstone of Publication II. The core concepts of 

variant calling, as well as its capabilities and limitations are covered in the following 

sections.   

 

4. Genomic variants 
 

4.1. Classification 
Genomic variants are present ubiquitously across the genome and contribute to the 

genomic diversity of a species. The term variant is neutral in respect to the effect of 

the genomic variation, while the term polymorphism usually describes a benign 

variation. However, there is no clear distinction and the term single nucleotide 

polymorphism (SNP) is often used synonymously with the term single nucleotide 

variation (SNV). In contrast, the term mutation is usually reserved for a variant with a 

harmful effect often in association with a specific disease.  

When variants are mentioned in the context of sequencing experiments they refer to 

genomic variations that exist in the sample or samples studied compared to the 

reference genome (sequencing variant). They can be classified according to their type 

into single nucleotide variations, insertions, deletions and substitutions, as well as 

structural variants and chromosomal aberrations. SNVs are sequence variations where 

the sample examined has a single different nucleotide compared to the reference 

genome. Insertions describe the addition of a nucleotide sequence to the genome, 

while deletions describe the removal of a nucleotide sequence. Substitutions occur 

when a sequence of nucleotides is replaced by another nucleotide sequence and is 

usually reserved for cases where both the replacing and the replaced sequences have 

the same length. In contrast INDELs, short for insertion and deletion polymorphisms, 

describe the insertion or deletion of a sequence, resulting in an absolute difference in 

the number of nucleotides. The term is also used for cases where both an insertion 

and a deletion occur at the same genomic coordinates or it is not possible to clearly 

distinguish between them. Structural variants affect a large genomic region (usually > 

1000bp) and can present themselves as deletions, duplications, insertions, inversions, 

translocations and copy number variations (CNVs). CNVs are repetitions of a specific 

genomic segment a set number of times that can differ between individuals. Similarly, 
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chromosomal abnormalities affect a large genomic sequence (the term is loosely 

defined) with often severe functional impairments (e.g. Trisomy 21).  

INDELs can be further classified into frameshift and non-frameshift INDELs. A 

frameshift is defined as the occurrence of an INDEL in a coding region of the genome, 

which causes a nucleotide difference that is not a multiple of three. As a triplet of 

nucleotides (a codon) is translated into an amino acid, a shift in the reading frame of a 

coding region leads to a completely altered sequence of amino acids in the resulting 

protein. As the stop codon (the last codon signifying the end of the translation process) 

is also altered, the protein can be truncated or abnormally long and is very like to have 

an impaired or completely lacking function. The earlier in the reading frame a frameshift 

occurs, the more detrimental the effect on the protein function will be. Non-frameshift 

or in-frame INDELs cause an insertion or deletion (or both) that is divisible by three.  

Lastly, mutations can be classified according to their effect on the amino acid sequence 

of a protein (Figure 3). Mutations that do not alter the amino acid sequence are called 

“silent” mutations and are usually benign. Conversely, mutations that lead to a different 

amino acid sequence are termed “missense” mutations. Frameshift mutations or 

substitutions that introduce a stop codon usually lead to a completely altered or 

truncated amino acid sequence and are called “nonsense” mutations, as the protein 

can no longer fulfill its function.  

 

 
Figure 3. Effect of point mutations on protein structure. Mutations can be characterized according 

to their effect on the amino acid sequence of the resulting protein into silent, nonsense or missense 

mutations. Missense mutations can be further classified based on the similarity (in terms of chemical 

properties) between the resulting amino acid and the amino acid that would have resulted from the 
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unmutated RNA sequence. Illustration taken from Wikimedia Commons where it is available under a 

Creative Commons license (https://en.wikipedia.org/wiki/File:Different_Types_of_Mutations.png).    
 

4.2. Variant calling 
Variant calling (VC) describes the in silico process by which sequencing variants are 

identified from sequencing data. After a sample has been sequenced and aligned to 

its corresponding reference genome, the alignment file undergoes quality control and 

pipeline specific filtering steps. The alignment file then serves as input for VC tools. 

The underlying algorithm of VC tools checks for sequence variations between aligned 

reads and the reference genome. If a variant is present in a sufficient number of reads 

(criteria are provided by the user), the detected variant is “called” and its genomic 

coordinates are provided along with the type of variation (e.g. SNV or INDEL). One 

additional critical information that is provided by VC tools, is the variant allele frequency 

(VAF). The VAF is a measure of frequency, which represents the relative frequency of 

a variant in a specific gene locus. The gene locus containing a variant is called an allele 

(therefore variant allele frequency).  

In a sequencing experiment, if a variant is detected in 20 out of 100 reads, it has a VAF 

of 20%. As the VAF depends on the number of reads covering a genomic region, the 

more coverage a region has (the higher the sequencing depth) the more accurate the 

VAF will be. Additionally with increasing coverage, variants with low VAF can be 

detected. The VAF is often used to determine whether a variant is valid or the result of 

a sequencing error. Due to the direct dependence of the VAF on the coverage of the 

genomic locus, targeted sequencing experiments, where a few loci are sequenced with 

a high sequencing depth, are superior to whole genome/transcriptome sequencing, 

where the coverage over individual genomic regions tends to be low. Furthermore, as 

mRNA undergoes post-translational modifications and RNA-seq is more prone to 

sequencing errors, DNA-seq is the preferred sequencing method for VC.47  

When both the variants and the RNA expression profile of an individual is of interest, 

as is often the case in cancer samples, a joint approach using both DNA- and RNA-

seq is used. A limited amount of studies have compared VC in samples where both 

DNA and RNA sequencing data is available and observed that the VAFs of variants 

can differ significantly between DNA- and RNA-seq.47 When such a difference is 

observed it is coined allelic imbalance (AI).48 For example, in a sample where a variant 

has a VAF of 10% in DNA-Seq and a VAF of 50% in RNA-seq, AI is present. One of 
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the underlying biological mechanisms that leads to an AI is termed allele-specific 

transcription. Allele-specific transcription describes the fact that one allele is 

transcribed disproportionally with respect to its VAF, a phenomenon especially 

interesting when it occurs in mutated cancer-related genes.48 The next section covers 

allelic imbalance along with alternative splicing as pathomechanisms of recurring 

mutations in AML patients.  

 

5. Differential splicing and allelic imbalance as pathomechanisms of recurring 
mutations in AML 
In the studies presented in this thesis the authors attempted to illuminate the 

pathomechanism of recurring mutations in AML. Both studies included an in silico 

analysis using whole-transcriptome RNA-sequencing and shared several common 

data analysis steps. All patients who received RNA-sequencing were participants in 

two trials of the German AML Cooperative Group (AMLCG). The trials were 

randomized phase III trials and patients were treated with intensive induction 

chemotherapy. Matched targeted DNA-seq and cytogenetic data was available for all 

RNA-seq patients. Additional cohorts were used for validation and are highlighted 

below. The first study focused on SF genes harboring recurring mutations in AML, 

while the second study analyzed 11 recurrently mutated genes with respect to the 

presence of AI.  

 

Publication I:  

In this study we examined mutations in the three most commonly affected SF genes in 

AML, namely the Serine/arginine-Rich Splicing Factor 2 (SRSF2), the U2 small nuclear 

RNA Auxiliary Factor 1 (U2AF1) and the Splicing Factor 3B Subunit 1 (SF3B1). 

Mutations in these genes are, in the majority of cases, heterozygous point mutations 

and rarely co-occur within the same patient.49,50 They have been shown to occur early 

on in cancer evolution and are common events in MDS and AML that frequently 

coincide with other recurring mutations.8,51 Several studies have characterized them 

thoroughly in MDS and have highlighted their importance as independent prognostic 

markers.3,52,53 Furthermore, two large RNA-seq studies have been performed on MDS 

patients delineating the splicing changes that they induce, leading to the dysregulation 

of several disease-relevant genes.52,54 Corresponding previous literature in AML 

patients is limited to small sample sizes and specific AML subgroups.55  
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In the first part of the study the clinical characteristics of SF mutated patients are 

outlined in two large cohorts (AMLCG cohort, n = 1119 and AMLSG cohort, n = 1540, 

Figure 4) treated in randomized clinical trials. The large number of SF mutated patients 

(n = 216; AMLCG cohort) enabled the analysis of the four most frequent individual 

point mutations: SRSF2(P95H), SRSF2(P95L), U2AF1(S34F) and SF3B1(K700E). SF 

mutations were correlated with demographic and molecular parameters using standard 

statistical tests. Briefly, our findings show that SF mutations are frequent in AML and 

even more frequent in elderly and secondary AML patients and are co-expressed with 

a number of recurrent mutations. A survival analysis using Kaplan-Meier curves and 

log-rank testing showed that SF mutated patients presented with inferior relapse-free 

survival and overall survival (Figure 4), which could be validated with simple Cox 

regression models. However, multiple Cox regression models incorporating 

parameters of the ELN 2017 classification did not show that SF mutations are individual 

prognostic markers.  

 

 

Figure 4: Overall survival of SF 
mutated patients (Bamopoulos et al. 
2020, Supplementary Material56). 
Kaplan-Meier graphs for patients with 
SRSF2 (A), U2AF1 (B), and SF3B1 (C) 
mutations and SF wildtype patients 
showing overall survival (censored for 
transplant). P-values correspond to log-
rank tests. Tables at the bottom of the 
graphs correspond to numbers at risk 
for each stratum (one-year intervals).  
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For the functional analysis of SF mutations an RNA-seq analysis was performed on a 

subgroup of the AMLCG cohort (n = 246). In addition, a subset of the Beat AML cohort 

(n = 177)9 was used for validation. In a first step, a differential isoform expression 

analysis showed little overlap in the genes differentially expressed in each SF mutant 

subgroup. This was confirmed through unsupervised clustering, which showed an 

expression profile characteristic for each SF mutation, with several dysregulated genes 

being cancer-relevant genes. We next developed a novel differential splice junction 

usage pipeline to identify splice junctions that are over- or underused in SF mutants. 

Importantly, this pipeline allows for the accurate detection of both known and novel 

splice junctions, which we were able to show by validating our findings in the Beat AML 

cohort. A gene ontology analysis combing the differential isoform expression and 

differential splice junction usage analysis results supported a strong dysregulation of 

the splicing pathway in SF mutants. Lastly, we identified two splice junctions in the 

genes EVL and NBEAL2 the usage of which correlated with worse prognosis in both 

datasets analyzed, thereby exemplifying the clinical relevance of our approach (Figure 

5).  

In summary, this study provides a comprehensive overview of SRSF2, U2AF1 and 

SF3B1 mutations in AML patients. The first half covers their frequency and association 

with patient characteristics and other molecular markers in AML, while also showing 

that they do not have independent prognostic value for patient survival in AML. The 

latter half consist of a functional RNA-seq analysis highlighting differentially expressed 

isoforms in AML-related genes, while also shedding light on the genome-wide effect of 

SF mutations on splicing and identifying splice junctions with clinical relevance in AML.  
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Figure 5. Differential splice junction usage correlates with patient survival (Bamopoulos et al. 
202056). Cox regression models incorporating normalized measurements of splice junction usage for 

one junction in the gene EVL and one in NBEAL2 showed that the usage of these splice junctions can 

predict patient overall survival (also visualized with Kaplan-Meier graphs). The junction in EVL showed 

clear overusage in SF mutated patients. 
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Publication II:  

Mutations and their contribution to cancer are a central focus of current cancer 

research. However, few studies have focused on whether recurrent mutations are 

transcribed from DNA to RNA and whether the observed transcripts are proportional 

to the DNA VAF of those mutations.48,57,58 One reason for this omission is the difficulty 

of identifying true genomic variants in RNA-seq data, mostly due to the large number 

of false positive variants, which is why DNA-seq is still considered the gold standard 

for variant discovery.59 In this study, we established a pipeline that enables the 

comparison of DNA-seq and RNA-seq variant calling results to determine allelic 

imbalance using mutations in recurrently mutated AML genes.  

For our analysis we considered 36 genes recurrently mutated in our dataset with a VAF 

of >1%. Out of those, 11 met our filtering criteria and were considered for further 

analysis. Variants were categorized to DNA-exclusive, RNA-exclusive or transcribed 

variants (when detected in both DNA- and RNA-seq). As expected due to sequencing 

errors, RNA-exclusive variants were relatively high (47.9% of all variants), which 

necessitated strict filtering criteria to remove false positives. For this purpose we 

calculated the proportion of heterozygous to homozygous mutations, which stabilized 

at a cut-off of around 10x. Additional filtering criteria further reduced false positives. 

After application of the filtering criteria, most variants detected in DNA-seq could also 

be detected in RNA-seq (95.4%). Of these around 5.3% were overrepresented in RNA-

seq, while 9.9% could not be detected in RNA-seq.  

The large differences in coverage between targeted DNA-seq and whole-transcriptome 

RNA-seq, which are common in these approaches require a workflow that addresses 

this issue. We solved this by defining a “weighted” AI based on the differences between 

expected and observed mutant allele reads. Using weighted AI in a regression model 

we showed imbalance towards wild-type transcript abundance in CEBPA, PTPN11 and 

WT1. In contrast, in GATA2, IDH2, NPM1, RUNX1, SRSF2 and TET2 an AI towards 

the mutant allele was observed (Figure 6). An analysis of SNPs in these genes did not 

identify any AI, suggesting that AI is specific to recurrent mutations in these genes. 

Using pooled sample data from three additional cohorts (DKTK, TCGA and HELSINKI 

cohorts) we were able to validate an AI towards the mutant-allele for GATA2. 

Differential isoform expression analysis was performed to check whether preferential 

expression of the mutant alleles correlated with the differential expression of specific 

isoforms, which however was not the case.  
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Figure 6. Weighted allelic imbalance of recurring AML mutations (adapted from Batcha et al. 
201960). Weighted allelic imbalance is shown separately for SNVs and INDELs. A value below one 

signifies an allelic imbalance towards the wildtype allele. Conversely, a value above one denotes an 

allelic imbalance towards the mutant allele. 

 

In summary, we established a method to compare the VAFs of variants in DNA and 

RNA and defined several filtering criteria to remove false positive variants while 

retaining as many likely true variants as possible. Using this method we were able to 

show AI for 9/11 recurrently mutated genes examined in this study, which correlated 

with the presence of recurrent mutations, but not with common SNPs present in these 

recurrently mutated genes. Our analysis suggests that AI is a common phenomenon 

in AML and further studies are required to reveal its potential implication in 

leukemogenesis.  
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ENGLISH SUMMARY 
 
Acute myeloid leukemia is an aggressive malignancy which proves fatal if left 

untreated. Most patients respond to intensive chemotherapy, however refractory or 

relapsing disease is still a major contributor of poor patient outcome. New 

generation sequencing methods enabled the identification of genes harboring 

recurrent mutations in this disease, and they are being used to inform clinical 

decisions. In the studies presented in this thesis the aim was to improve our 

understanding of these mutations to further refine clinical decision making. The first 

study provided an overview of splicing factor mutations, which affect around 20% 

of all acute myeloid leukemia patients. It highlighted the association of splicing 

factor mutations with clinical and molecular parameters and further showed that 

splicing factor mutations are not independent prognostic markers in acute myeloid 

leukemia. A novel differential splice junction usage pipeline was used to quantify 

aberrant splicing patterns in mutated patients in two large sequencing datasets. 

The usage of two splice junctions was shown to identify patients with poor 

prognosis thereby providing an example of how our findings can be translated to 

clinical practice. The purpose of the second study was to examine allelic imbalance 

of recurrent mutations, a currently underappreciated phenomenon in acute myeloid 

leukemia. Using a large patient sample pool with matched DNA- and RNA-

sequencing data we were able to compare variant calling pipelines between both 

sequencing methods to determine whether recurrent mutations are over- or 

underrepresented in RNA. We defined weighted allelic imbalance as a parameter 

for statistically comparing variant allele frequencies between DNA and RNA and 

identified allelic imbalance in nine out of eleven recurrently mutated genes 

examined in this study. Furthermore, recurrent mutations in GATA2 were also 

shown to exhibit preferential transcription for the mutant allele in a pooled validation 

cohort of three independent datasets. In summary, our studies show how 

customized bioinformatics pipelines can lead to an improved pathomechanistic 

understanding of recurrent mutations in acute myeloid leukemia and provide a 

foothold for further study of these mutations in high throughput sequencing 

experiments.  
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GERMAN SUMMARY / DEUTSCHE ZUSAMMENFASSUNG 
 

Die Akute Myeloische Leukämie ist eine aggressive Krebserkrankung die 

unbehandelt tödlich verläuft. Die Mehrheit der Patienten spricht auf eine intensive 

Chemotherapie an, jedoch resultieren refraktäre Erkrankungsverläufe oder 

Rezidive immer noch in einer schlechten Gesamtprognose. Hochdurchsatz-

Sequenzierungsverfahren erlaubten die Identifikation von Genen, die in dieser 

Erkrankung häufig mutiert sind. Diese Mutationen ermöglichen eine 

Risikostratifizierung der Patienten und fließen in Therapie-Entscheidungen ein. Das 

Ziel der in dieser Dissertation präsentierten Studien war es, die funktionelle 

Bedeutung einiger dieser Mutationen genauer zu charakterisieren. Die erste Studie 

charakterisierte Spliceosom-Mutationen, die bei etwa 20% aller Patienten mit einer 

Akuten Myeloischen Leukämie beobachtet werden. Die Assoziation von 

Spliceosom-Mutationen mit klinischen und molekularen Parametern wurde 

untersucht und zeigte, dass Spliceosom-Mutationen keine unabhängige 

prognostische Wertigkeit besitzen. Eine neue Analyse-Methode zur Splicing-

Quantifizierung wurde zur Untersuchung von aberranten Splicing-Mustern in 

Patienten mit Mutationen in diesen Genen entwickelt. Diese wurde in der Folge auf 

zwei große Sequenzierdatensätze angewandt. Zwei der aberranten Splicing-

Muster konnten genutzt werden, um Patienten mit einer schlechten Prognose zu 

identifizieren und stellen damit die klinische Bedeutung der Ergebnisse beispielhaft 

dar. 

Das Ziel der zweiten Studie war es, ein allelisches Ungleichgewicht von häufigen 

Mutationen zu untersuchen. Mittels eines großen Patientenkollektivs mit gepaarten 

DNA- und RNA-Sequenzierungsdaten konnten eine Über- oder 

Unterrepräsentation von häufigen bei AML Patienten beobachteten Mutationen auf 

RNA-Ebene bestimmt werden. Wir definierten die “weighted allelic imbalance” als 

einen Parameter für den statistischen Vergleich der Allelfrequenzen von 

rekurrenten Mutationen in DNA und RNA und stellten ein allelisches 

Ungleichgewicht in neun von elf untersuchten Gen-Mutationen fest. Weiterhin 

konnte die bevorzugte Transkription des mutierten Allels von GATA2 in einer 

Validierungskohorte, bestehend aus drei unabhängigen Datensätzen, gezeigt 

werden.  
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Zusammenfassend, zeigen diese Studien wie maßgeschneiderte bioinformatische 

Arbeitsabläufe zu einem verbesserten pathomechanistischen Verständnis von 

rekurrenten Mutationen in der Akuten Myeloischen Leukämie führen können und 

stellen einen Baustein für die weitere Erforschung solcher Mutationen mit Hilfe von 

Hochdurchsatz-Experimenten dar. 
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