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Summary
Lateral AlAs/GaAs superlattices on vicinal surfaces are grown and their electronic
properties are investigated by transport measurements. Numerical calculations are
developed to understand the experimental measurements comprehensively. For the
first time, the existence of minigaps and minibands in these kind of structures are
convincingly demonstrated by temperature and charge density dependent resistiv-
ity measurements.

Organized molecular beam epitaxy on vicinal surfaces allows to create two -
dimensional electron systems, which are periodically modulated on a nanometric
scale in one direction. Due to the periodical lateral potential modulation, which
is generated by the alternate deposition of Al and Ga atoms (under low Arsenic
background pressure) on vicinal surfaces, minigaps and minibands arise in one
direction of the bandstructure of the lateral modulated electron system.

The minigaps and -bands are demonstrated by temperature dependent mobility
measurements. For this purpose, the anisotropy ratio of the mobility r(T) = ILL”/,LLJ_
is measured for different charge densities. Depending on the charge density, they
exhibit pronounced maxima at finite temperature which arise from an anomaly in
the mobility perpendicular to the lateral potential modulation.

This is shown by calculating the bandstructure in a self - consistent Hartree
approximation. The resulting wave functions are used to solve the semiclassi-
cal linearized Boltzmann transport equation in a relaxation time approximation,
considering ionized impurity, alloy and acoustic phonon scattering. Equally, the
strong anisotropy of the collision time due to the anisotropy of the band structure
is taken into account. The impact of the second Fourier coefficient of the lateral
potential modulation as well as the effect of including higher subbands (up to
three) in the dielectric function is studied systematically for a small angle scatter-
ing (remote ionized impurity) and a large angle scattering (alloy) potential. Due
to this detailed analysis, it is possible to obtain a thorough explanation of the
experimental data, and especially to understand the anomaly in the perpendicular
direction which arises, if the Fermi energy is close to the second miniband.

Measuring the perpendicular and parallel mobility as a function of charge den-
sity at low temperature, seems to indicate an answer to the theoretical open ques-
tion, which scattering angle (0‘7}; or fz) has to be taken when solving the linearized
Boltzmann transport equation in a relaxation time approximation for a modu-
lated electron system: taking the angle 6z, one finds better agreement between the
experimental data and the calculations than when taking 0~E.

The importance of including higher subbands in the dielectric function at
higher temperature or charge density is equally demonstrated for an unmodulated
2DEG. It is pointed out that the inclusion of higher subbands is more important
if the average scattering vector is small.



Zusammenfassung

Es wurden mittels Molekularstrahlepitaxie laterale AlAs/GaAs Ubergitter auf
verkippten Oberflichen hergestellt und im Hinblick auf ihre elektronischen Eigen-
schaften durch Transportmessungen untersucht. Numerische Modellrechnungen
wurden entwickelt, um die experimentellen Ergebnisse zu verstehen. Erstmals
ist es gelungen, die Existenz von Minibdndern und Miniliicken in derartigen Sys-
temen iiberzeugend anhand von temperatur- und ladungstrigerdichteabhingigen
Messungen nachzuweisen.

Molekularstrahlepitaxie auf verkippten Oberflichen erméglicht die Herstellung
zweidimensionaler Elektronensysteme, welche periodisch in der Grossenordnung
von Nanometern in einer Richtung moduliert sind. Aufgrund der perodischen lat-
eralen Potenzialmodulation, welche durch die alternierende Abscheidung von Al
und Ga - Atomen (unter geringem Arsendruck) auf der verkippten Oberfliche
erzeugt wird, entstehen in der Bandstruktur eines solchen lateral modulierten
Elektronensystems Minibander und Miniliicken. Diese Minibdnder und Miniliicken
werden mittels temperaturabhidngigen Beweglichkeitsmessungen nachgewiesen. Zu
diesem Zweck wird das Anisotropieverhéltnis r(T) = g /pL fiir verschiedene La-
dungstrigerdichten gemessen. Abhingig von der Ladungstrigerdichte existieren
mehr oder weniger ausgepriagte Maxima bei endlicher Temperatur, welche auf einen
anomalen Verlauf der Beweglichkeit senkrecht zur lateralen Potenzialmodulation
als Funktion der Temperatur zuriickgefiihrt werden kénnen.

Dieses wird durch Bandstrukturrechnungen in selfkonsistenter Hartree - Pois-
son Niherung gezeigt. Die daraus resultierenden Wellenfunktionen werden ver-
wendet, um die linearisierte Boltzmann - Transportgleichung in Relaxationszeit-
ndherung unter Beriicksichtigung von Verunreinigungs-, Legierungs- und akusti-
scher Phononenstreuung zu l6sen. Ebenso wird die starke Anisotropie der Kollisions-
zeit aufgrund der Anisotropie der Bandstruktur beriicksichtigt. Der Einfluss des
zweiten Fourierkoeflizienten als auch die Rolle energetisch héherer Subbander in
der dielektrischen Funktion (bis zu drei) wird systematisch fiir ein Kleinwinkelstre-
upotential (remote ionized impurity) und ein GroBwinkelstreupotenzial (Legierungs-
streuung) untersucht. Aufgrund dieser detaillierten Analyse ist es moglich, eine in
sich konsistente Erklarung der experimentellen Daten zu erhalten und insbesondere
die Anomalie, die in der Beweglichkeit senkrecht zur lateralen Potenzialmodula-
tion auftritt, wenn die Fermienergie in der Nihe der zweiten Miniliicke liegt, zu
verstehen.

Die Messung der senkrechten und parallelen Beweglichkeit als Funktion der
Ladungstrigerdichte bei tiefen Temperaturen gibt offenbar einen Hinweis zur Bean-
wortung der theoretisch offenen Frage, welcher Streuwinkel (0‘7}; oder 6r) verwen-
det werden sollte, wenn die linearisierte Boltzmann - Transportgleichung in Re-
laxationszeitndherung fiir ein moduliertes zweidimensionales Elektronengas gel6st
wird: verwendet man 67, so erhilt man bessere Ubereinstimmung zwischen den
experimentellen Daten und Rechnungen gegeniiber der Verwendung von 0»};.

Die Bedeutung der Beriicksichtigung héherer Subbander in der dielektrischen
Funktion bei héheren Temperaturen oder Ladungstriagerdichten wird ebenfalls fiir
ein nicht moduliertes Elektronengas gezeigt.
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Chapter 1

Introduction

A great success in physics in the last century was the explanation of electronic
properties in atoms by quantum mechanics. The same principles were then
applied to describe electronic effects in solids. This represents the starting
point of modern solid state physics. An important difference between exper-
iments with atoms and solids is the possibility in solids to tailor almost any
artificial potential by combining metals, semiconductors, and insulators or
by the application of external fields. Due to this, solid state physics offer an
ideal playground for the investigation of quantum mechanic effects.

In order to explore quantum mechanic in its full range, one major goal
until today is the reduction of the system’s dimensionality. After the real-
ization of a two dimensional electron gas (2DEG), also 1D and 0D systems
could be demonstrated, i.e. quantum wires and quantum dots. Further-
more, systems of intermediate dimensionality are feasible (systems between
1D and 2D). The fabrication and exploration of such a system is the goal of
this work. Specially, a 2DEG shall be modulated by a 1D periodic potential
in the lateral plan, which can be described in the physical picture of an array
of parallel quantum wires coupled by the tunneling effect. The consequence
of this coupling are minigaps and minibands in the band structure, which re-
sult in special features of the conductivity in the longitudinal and transverse
direction. Although many attempts have already been made to demonstrate
these effects, clear evidence has not yet been achieved. The objective of this
work is to prove the existence of minigaps in transport measurements.

In the following the attempt is made to convey to the reader the back-
ground of the subject so that the interest and significance of the subject can
be understood.

The experimental investigation of the physics of low dimensional electron



systems, e.g. systems in which the motion is at least quantized in one di-
rection, dates back to the 60’s, when Metal - Oxide structures [Fowler 66] of
Silicon were studied. At the same time, considerable progress in the growth
technics like in MBE or MOCVD could have been achieved, allowing to
realize heterostructures of the semiconductors I1I-V of high purity. Con-
cerning the transport properties of low dimensional systems, the invention of
modulation doped heterostructures [Dingle 78] was a mile stone: The idea
of separating the electrons from their donors allows to produce two dimen-
sional electron systems of high mobility. Due to these technological pro-
gresses, many new physical effects could have been observed. For example,
the fractional quantum Hall effect [Tsui 82] or the Wigner cristallization
of the electrons [Andrei 88] in doped structures, the confined Stark effect
[Miller 85] or the Wannier - Stark effect [Voisin 88] in undoped structures
could be demonstrated. These effects are equally interesting from a tech-
nological point of view and are already used commercially in micro and op-
toelectronic dispositifs like quantum well laser [Tsang 82] or Wannier Stark
commutators [Bar - Joseph 89]. A direct consequence of the invention of the
modulation doping is the fabrication of new field effect transistors (HEMT)
[Delagebeaudeuf 80], which are today widely used in cellular phones.

Exploring such rich physics of 2D systems, it seems natural to reduce
further the dimensionality of the system, e.g. trying to fabricate quantum
wires (1D), quantum boxes (0D) or lateral superlattices (modulated 2D). Ad-
ditionally, new effects which cannot be realized in multilayered superlattices
of Esaki and Tsu [Esaki 70] are expected. For example, it has been predicted
that carrier scattering probability by ionized impurities [Sakaki 80] and by
polar optical phonons [Sakaki 89] can be suppressed in quantum wires. In a
theoretical paper Sakaki [Sakaki 76] proposed 1976 a system of lateral quan-
tum wires in order to obtain a differential negative resistance.

But how can one achieve such structures of reduced dimension? Ex-
perimentally, many of the methods, applied to obtain a lateral structuring,
associate electronic lithography to an edge [Perez 90] or metallization pro-
cess [Winkler 89] [Gerhardts 89]. Weiss et al. had the original idea to exploit
the persistent photoconductivity in modulation doped heterostructures effect
at low temperature in order to modulate laterally [Weiss 89]. In these sys-
tems, new oscillations in the conductivity (Weiss Oscillations) as a function
of magnetic field have been detected. However, these lithographically tech-
niques do not allow to obtain good electronic properties, if one tries to reduce
the lateral dimensions beneath 100 nm.

Other approaches are essentially based on growth techniques [Petroff 84]



[Kapon 89][Pfeiffer 90]. One method to introduce a lateral structure is to use
periodic atomic steps on vicinal substrates. The idee dates back in the 70’s,
when the first trial was made in a Si metal - oxide - semiconductor (MOS)
inversion layer on the misoriented surface; however, although the existence of
minigaps was demonstrated [Cole 77], it was found that the minigaps do not
originate from lateral superlattice effects [Sham 78]. Petroff et al. [Petroff 84]
proposed an alternative approach, in which the selective growth of GaAs and
AlAs is achieved by the alternate deposition of submonolayer GaAs and AlAs
on misoriented substrates tilted slightly by an angle o (0.5° - 2°). The period
of such a lateral superlattice is determined by the average terrace width L
and is given by a - cota, where a is the thickness of one monolayer (a=0.283
nm in GaAs). The lateral organization has first been demonstrated by trans-
mission - electron microscopy [Gaines 88]. Recently, also convincing evidence
of the minigaps has been reported by photoluminescence and photolumines-
cence - excitation measurements [Mélin 98]. However, the observation of
minigaps in transport measurements has not been demonstrated yet.

In transport measurements, Sakaki et al. [Motohisa 89] were the first who
measured an anisotropy of the mobilities in the parallel and perpendicular
direction of a lateral structure grown on GaAs vicinal surfaces. The lateral
structure was produced by the insertion of half an Aluminum monolayer in
the channel region of a heterojunction grown on a vicinal surface. A plausible
approach of interpretation was that the anisotropy is a sign of nonparabolicity
in the miniband structure of a periodic lateral potential. However, a single
anisotropy in the mobilities does not demonstrate the existence of a lateral
organization, e.g. the formation of a periodic modulation. The anisotropy
of the mobility can equally arise from the formation of anisotropic islands.
For instance, J. Bloch demonstrated that the anisotropy in optical properties
of lateral structures due to the fractional deposition of one monolayer is not
due to the lateral periodic organization along the steps but to the formation
of anisotropic islands [Bloch 94]. The optical properties were independent
of the lateral period given by the terrace length of the vicinal surfaces. In
contrast, in lateral super - lattices, which consist of at least 10 monolayers,
the optical properties depend strongly on the terrace length, indicating the
influence of the lateral potential modulation [Bloch 94].

In this work, with the aim of demonstrating the existence of minigaps
in transport measurements, doped lateral superlattices AlAs/GaAs on GaAs
vicinal surfaces, 0.5 © misoriented with respect to the direction [001] are grown
and their transport properties are studied. Calculations have been developed
which predict effects which are due to the lateral potential. Due to the



comprehensive approach of combining detailed calculations with experiment,
the evidence of minigaps can be demonstrated in transport measurements.

The introductory chapter presents the fundamental physics of lateral
modulated 2D systems and explains the bandstructure calculations (chap-
ter 2). The transport formalism (chapter 3) is essential to understand the
numerical (chapter 5) and the experimental (chapter 6) results. The method
of fabricating lateral superlattices is presented in chapter 4.
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Chapter 2

Physical Fundamentals of
Heterostructures

”Nanotechnology - the last industrial revolution” is the title of a book
[Schulenburg 95], recently published. It shall not be discussed here, whether
the nanotechnology is in fact a revolution. But for sure is that the progress
achieved in the technology due to Molecular Beam Epitaxy allowed the ad-
vancing in a revolutionary manner. Using the Molecular Beam Epitaxy
(MBE), one is nowadays able to create almost every potential one desires
with the precision of one monolayer. This is often described by the expres-
sion "band gap engineering” [Capasso 87]. In this work different potentials,
e.g. heterojunctions with lateral potential modulations are fabricated and
measured. This is the reason why in the first part of this chapter the princi-
ple of the band gap engineering is explained. In the second part, one and two
dimensional self - consistent Hartree - Schrodinger calculations are presented.
They have been developed in the group and modified during this thesis.

2.1 1D Modulated Heterostructures

Growing a crystal and changing abruptly the composition of the material or
the material of the semiconductor itself, causes a discontinuity in the band-
structure of this crystal arises, leads to a so called heterostructure. The het-
erostructures are fabricated by molecular beam epitaxy (MBE) in this work.
They are composed of the materials Al,Ga;_,As/GaAs (where x describes
the Aluminum fraction in the ternary alloy Al,Ga;_,As).

In order to obtain high quality heterostructures, two factors are funda-
mental: the material choice and the doping technique, as will be explained
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in the following.

The combination of the materials Al,Ga;_,As/GaAs is widely used, be-
cause Aluminiumarsenid (AlAs) and Galliumarsenid (GaAs) have almost per-
fect lattice match in any range of the Al concentration. Thus, during growth
the Al-concentration can be changed without disturbing the crystal lattice.
On the contrary, the band structure strongly depends on the Aluminum con-
centration: in GaAs the band gap is direct (I' = ', E,j(T)rzax = 1.5192
eV), whereas in AlAs the band gap is indirect (I' = X, E, = 2.4 eV), for an
alloy Al,Ga;_,As, the band gap depends on the average Al -concentration
x. For x < 0.35, the band gap remains direct and increases linearly with x:

E, = (1.5192 + 1.42 % 2)eV (2.1)

Similarly, the effective mass of the electron is a function of the Al- concen-
tration:

m”™ = (0.067 + 0.084 * z)m, (2.2)

where m, is the free electron mass.

The key feature of a heterostructure is the bandstructure discontinuity
formed at the interface due to the different energy gaps of the used materials.
With respect to the valence and conduction edge of an Al,Ga;_,As/GaAs
structure, the material Al,Ga;_,As (high band gap material) acts for both
the valence and conductance charge carriers as a barrier: they are confined in
the narrow gap material (e.g. GaAs). The band offset discontinuity between
the materials Al,Ga;_,As and GaAs is distributed to 67 % to the conduction
and to 33 % to the valence band [Danan 87]. This results - in a first order
approximation - in a potential modulation of approximately 10 meV per Al
- percent in the conduction band.

In order to obtain high charge densities, doping of the structure is nec-
essary. The most appropriate technique is modulation doping [Wood 80,
Ploog 87].! The mechanism which will take place due to the doping is shown
in Fig. 2.1: a heterostructure (e.g. Al,Ga;_,As/GaAs) is grown and the high
band gap material is doped. Until thermodynamical equilibrium is reached,

!The doping type is determined by the way one introduces the dopant: it is called
either volumic doping, if one incorporates the dopant during the growth of the high band
gap material, or d - doping, if one interrupts the growth process (As - flux continued),
resulting in the deposition of the dopant into ideally one single monolayer. It is the latter
type of doping with the n - dopant Si, which is used for all structures fabricated in this
work. Additionally, one can introduce a second ¢ - doping plane closer to the surface. It
saturates the surface states and one can then assume that all electrons, steeming from the
doneurs, located in the §- plane close to the channel, will transfer in the channel.

12
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Figure 2.1: Conduction band of a heterostructure as a function of the growth
direction r,. Due to the doping, band bending at the interface takes place, which
leads to a triangular confinement potential for electrons.

the electrons associated with the donors will transfer to the lower lying en-
ergy states in the narrow bandgap material, also called channel. The spatial
separation of the positive -ly charged donors and negatively charged electrons
has two effects: It firstly produces an additional electric field* (Sit — e7)
governed by the Poisson equation (discussed in more detail in section 2.1.1),
which creates the confining potential for electrons in the channel, as shown
in Fig. 2.1. Secondly, due to the physical separation of ionized scattering
centers and electrons, the mobility of the electrons is increased. This effect
is in general intended to be enhanced: one places the dopants some distance
away from the heterointerface by including an intermediate undoped ”spacer”
region.

Due to the strong band bending, which takes place on a small scale (~
5 nm), the transferred electrons are confined in a quasi triangular potential
near the interface. This confinement is defined by the conduction band dis-
continuity on one side and by the r, - dependent electrostatic potential on the
other side (see also Fig. 2.1). As the potential extension is of the same order
as the de Broglie wavelength of an electron, bound states are formed for the
r, - motion. If the energy spacing E,, - E, between levels « (typically 25 meV
in samples used here) is much larger than the thermal broadening of the elec-

In samples used here, it is typically 100kV /cm.
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tron distribution function, a quasi - twodimensional electron gas (Q2DEQG)
is formed: confined in the growth direction (e.g. r.-direction) and free in the
interface plane (e.g. cin the r|-r, plane). The term ”quasi-twodimensional”
refers to the fact that the electron gas has a finite spatial extension in the r, -
direction, i.e. the wavefunctions &,(r,) are not 6(r,) functions. The envelope
wavefunction [Bastard 88] of an electron is thus given in the effective mass
approximation by (A corresponds to the surface area of the sample)

\Iloz(r||7T'J_7Tz) = Sa(rz)ei(k”r”—}—klrl)' (23)

-

with total energy

2

Eo (K, kL) = Ea—l—%(kﬁ—l—ki). (2.4)
E, is the eigenvalue associated to the subband wavefunction &,(r,) which is
obtained by solving the one - dimensional Schrodinger equation. It corre-
sponds to the energy of the quantum level o« which depends on the confine-
ment potential. The second term describes the free energy dispersion parallel
to the heterostructure. The term subband refers to an energy level E, in the
r, - direction with a continuous energy spectrum in the r, r; plan. In Fig.

2.2 subbands in the k - space are shown: To each subband corresponds a
two - dimensional energy - parabola. As a two - dimensional system (and
neglecting non parabolic effects (see below), the density of states is constant

in each subband : §
m

wh

Since in GaAs there is no valley degeneracy (valley degeneracy factor g,=1)
the spin degeneracy factor gs equals 2.

The effective mass m* of electrons at the minimum of the GaAs con-
duction band is 0.0672. Using the Eﬁ approximation, the energy dispersion
E(f;) for an electron in the vicinity of the Brillouin zone can be written as
(an anisotropy of the band - structure and the spin splitting is negligible)
[Bastard 88]:

Rk RR? _

L (2.6
with + being the non - parabolicity coefficient. We can also neglect non -
parabolic effects (e.g ¥ = 0), because they proved to be very small. In Fig.
2.3 the Fermi energy E., which corresponds to the energetical highest oc-

E(k) = Eo +

cupied state at T = 0 K, is shown as a function of charge density for an

14



Figure 2.2: Energie dispersion of a 2DEG in the first two subbands: The energy
is quantized in the r, - direction and free in the n, r, direction.

Al 33GagerAs/Alg gsGaAs heterostructure. Taking the bandstructure para-
bolic, the slope represents the constant density of states D(E) = m*/7h* of
the first subband. Non - parabolic effects of the bandstructure results in
deviations from the slope of less than 2%, corresponding to a AE} ~ 0.3
meV. This is negligible in comparison to the distance between the first two
subbands, which is typically between 25 and 30 meV in the investigated struc-
tures. The range of the achievable electron density N in a heterojunction
AlAs/GaAs depends on the quality of the sample (e.g. residual impurities)
and of the width of the spacer. N, varies typically between some 10'° and
10'%2 cm™2. If there is only one subband filled®, the Fermi energy is given by

g o= ™y (2.7)
B m* '
_ meV .

Fig. 2.1 gives only a qualitative idea of the electrostatical potential of a
heterostructure. How it can exactly be calculated, will be explained in the
next section.

3This situation called electrical quantum limit is at low temperature the most often
case in AlGaAs/GaAs - heterostructures: it corresponds to electron densities up to Ny =
7-8*10M em™2
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Figure 2.3: Calculated Fermi energy EY. as a function of charge density for an
Aly 33GagerAs/Aly g5 GaAs structure, obtained by a 1D Hartree - Schrédinger cal-
culation (section 2.1.2): Deviation from the constant density of state (parabolic
case, straight line) due to non - parabolic effects of the band - structure (straight
line with points) are shown to be small. The points represent the charge densities
Jor which the relation is calculated. Only the first subband is occupied.

2.1.1 Electronic Properties

The qualitative and quantitative understanding of the mechanism of charge
transfer and its amount is of importance for two reasons: It provides insight in
the electronic structure of the system (e.g. heterostructure) and consequently
allows the optimization of the structure for any desired behavior. Given the
exact structure, one can calculate the electron distribution straight forward.
Hence one has access to the electron wave functions which are required to
determine transport properties.

The charge transfer depends on the confining potential and the confining
potential depends on the electron distribution again. This condition of self
consistency makes the problem a bit more complicated. In the following
the 1D - calculations (e.g. the Hamiltonian depends only on one direction)
to determine the electrostatic potential in the Hartree approximation are
described in detail. They are a prerequisite to understand the later detailed

16



bandstructure calculations for a modulated 2DEG. Since in this work one is
only dealing with doped structures, the electronic properties of the structure
will be dominated by the electrons in the conduction band. One thus can
neglect the existence of valence bands in the calculations.

2.1.2 1D Calculations

Electrons are described in the simplest form by the one - particle Schrodinger

equation
H(T2)|§Q(T2) >= Ea|§a(rz) > (29)
The Hamiltonian H(r,) is given by
I
H(TZ) = 2;,:* + ‘/CTySt(rz) + ‘/electrost.(rz) (210)

with

® Vi st (r,) representing the conduction band discontinuity at the inter-
face (see previous section). In our structures the barrier acting mate-
rial is AlGaAs, with a typical Aluminum content of 33%. The channel
acting material is equally AlGaAs, but with an average of only 5%
Aluminum.

o the effective mass m* being considered as the mass of the alloy
Al,Ga;_;As at the minimum of the conduction band. Since in the
structures, which are studied here, the average Aluminum content in
the channel is equal to 5%, m* = 0.071 m, (see also equation 2.2).

® Viictrost.(12) is an averaged electrostatic potential (Hartree potential):
it describes the potential which an electron at point r, "feels” due to
both the other electrons and the fixed charges.

Equation 2.9 is coupled with the Poisson equation

YV oetroen (1) = TS Noféa(r) 2 = Np(r) + N3(r)] (2.11)

€€

where N} (r.) corresponds to the donor concentration and N7(r,) represents
the concentration of ionized acceptors due to residual doping in the channel.
This small acceptor concentration (in our structures: N4 ~ 5 * 10'3 - 5
* 10" ¢cm™?) steams from carbon atoms (of the MBE - Chamber), which
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substitute As-atoms in the structures. ¢y refers to the dielectric permittivity
in vacuum, €, to the relative permittivity (for GaAs = 13.1). n, is the areal
concentration of the a -th subband. It is related to the chemical potential
Er* and the temperature T by

kT bp-io
B In[l + ¢ b7 ). (2.12)

2
™

Noy(Ep,T)=m"

(The effective mass m* is assumed to be constant for each subband.)

The boundary conditions necessary for the solution of these two cou-
pled equations are given by the requirement of electrical and thermodynamic
equilibrium of the heterostructure.

Electrical equilibrium means charge neutrality

S NalBr, T) 4 [ dr[N5(r2) = Nj(r)] = 0 (2.13)

and thermodynamic equilibrium implies

dEr
dr,

From these equations follows that the Fermi energy E% (T = 0K) coincides

= 0. —o00 <1, <00 (2.14)

in the neutral zone of the doped layer of the structure with the energy level
of the donors, near the substrate with the energy level of the acceptors. By
raising the temperature, the concentration of ionized donors changes and
the chemical potential Er does no longer coincide with the energy level of
the donors. It will now be determined by the requirement of local charge
neutrality in the plane of the donors as well as far away from the channel on
the substrate side.

The Schrodinger equation is solved by the transfer matrix method: The
potential is split into different sections of constant potential, where the Schro-
dinger equation is solved. The boundary conditions of each potential section
are given by requiring the continuity of the wavefunctions and the partical
current, e.g. the first derivative, divided by the effective mass. So, once hav-
ing calculated the Poisson equation 2.11 with a guess of the electron distribu-
tion, one can solve the Schrodinger equation with the potential Vejeerrost. (72)
obtained from the Poisson equation. As a result, one now obtains the elec-
tron distribution, which again will be partially (to facilitate the convergence
[Ando 82]) introduced in the Poisson equation. This iterative calculation will

“Ef refers to the chemical potential, whereas E% refers to the Fermi energy.
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proceed until there is no more significant change of the electrostatic potential
(e.g. Hartree term).

These calculations, executed at a given temperature, give thus access to
the eigenstates £,(r,) and the eigenvalues (= eigenenergies) E, of a het-
erostructure as well as it determines the chemical potential Ep and charge

density N, of each subband E,.

2.2 2D Modulated Heterostructures

In this thesis a one - dimensional periodic potential with the periodicity L
is inserted in a heterostructure. The periodicity L, is hereby much greater
than the periodicity a which is due to the crystal structure of the material,
e.g. a represents in our case the GaAs unit cell. Due to this one dimensional
lateral potential modulation, the bandstructure of a free two - dimensional
electron gas is modified. The way the bandstructure is modified and how
this can be calculated, is discussed in this section.

2.2.1 General Effects of the Lateral Potential

In the case of no lateral potential modulation, the solution to the Schrodinger
equation

H(TJ_)|¢ >= E|qb >

. . B2k
are plane waves with eigenvalues E = ——t with —oo <k, < occ.

Assuming the lateral potential modulation V,,.q4 (r1) of periodicity L, °,
the Fourier series of V,,,q(r) will only contain plane waves with the peri-
odicity L} and therefore with wavevectors that are vectors of the reciprocal
lattice 27 /L :

Pk 2mr)

Vioa(ri) =2 > VTI(EC)ICOS(G_)TJ_) =2 Vﬂg];)dcos( ) (2.15)
é:p*?‘ﬂ'/LL p L

where ngd is the p - th Fourier component of the Fourier series. A way to
determine each Fourier component is discussed in the next section.
Due to this property, the perturbation will only couple states k; and k',

with Ak, =k, -k, = :I:QLLf, p € N, e.g. states which differ by a p-th multiple

5The periodicity corresponds in the case of lateral superlattices to the terrace length
L,.

19



reciprocal lattice vector will be coupled by the p -th Fourier component of
the lateral potential modulation:

* 21 y® p21
Ky >= (k) =kt T
2 L,

< kL| dcos(

Additionally, due to the periodic potential, the introduction of the concept
of the Brillouin zone in the r; - direction becomes meaningful. Instead of
having plane waves (as in the unperturbed case) one now has functions of

the form
2
B (1) = 200, 4o et Bk iburs (2.16)
with k, restricted to [L , ﬁ[ The wave functions are expanded on plane

waves but with an amphtude, which has the same periodicity as the lateral
potential modulation (Bloch part).

& (o, p): o: Subband Index
m% p: Miniband Index
bl A

I, m '
}»u (0,+1) =
r L L |
30
% ®(,0) { 2nd |ateral
E 20 4 (0,-1) 1L minigap
§ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
c 10
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0
II/L
0 Wave vector l& / 1

Figure 2.4: FEnergy vs ki in reduced BZ: due to the lateral potential modulation
minibands and minigaps emerge in the bandstructure at ky = 0 and k; = w/L;.
In thin lines the bandstructure of an unmodulated 2DEG is shown as reference.

In Fig. 2.4 a typical band structure calculation for a modulated two -
dimensional electron gas is shown in reduced Brillouin zone schema. Due
to the coupling of states differing by Ak, = +p*27/L, minigaps at the
Brillouin zone edge and at the center of the Brillouin zone arise. They are in
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first order proportional to one single Fourier coefficient V(") of the effective
modulation (atomic potential and electron screening). Each miniband in
Fig. 2.4 is labeled by two indices: The first one refers to the subband index
(one still has the quantization in r, - direction!), the second index refers to
the plane wave index, corresponding to the eigenstate in the unmodulated
system, e.g. to the number of the B.Z. in extended zone schema. Equally
shown as a reference is the band structure of an unmodulated electron gas
(thin lines).

One now has an idea how the bandstructure of a modulated 2DEG (e.g.
free motion in one direction and modulated in the other one) looks like. But
of course the exact band structure depends on the lateral potential mod-
ulation one inserts in the calculations. In the next section a model which
describes the lateral potential modulation, produced by the growth of a lat-
eral superlattice on a vicinal surface, will be presented. This model was
developed by F. Lelarge [Lelarge 97] and is close to the growth model pro-
posed by A. Lorke [Krishnamurthy 94]. It allows to explain the origin of the
amplitude of the lateral modulation, which is measured experimentally and
which is approximately reduced by a factor 10 with respect to an ideal lateral
modulation.

2.2.2 Amplitude and Form of the Lateral Potential

It shall first briefly be described by which means the lateral potential modula-
tion in this work is generated (Fig. 2.5, a more complete description is found
in chapter 4): vicinal surfaces are used as templates (Fig. 2.5 a)), on which
alternatively Al and Ga atoms are deposited in a monolayer by monolayer
growth. Each of them incorporates itself preferably at the step sides, so that
a regular sequence of the materials AlAs/GaAs results. In an ideal picture,
one obtains stripes of pure AlAs and stripes of pure GaAs (Fig. 2.6.a, left).
Due to the different conduction band offsets of AlAs and GaAs, these stripes
introduce a lateral potential modulation of amplitude of 190 meV (taking an
average of Aluminum concentration x4 = 5 %, Fig. 2.6.a, right). In this
idealized picture, the AlAs barriers have a width of L, x4, and the lateral
GaAs "quantum wells” a width of (1 - L )-x4;. This ideal periodic lateral
potential can be equally described by its Fourier development:

Pk 2mry

Vmod(TJ_) = AEchl(l + 2 Z V'n(@po)d * COS(

p#0 L

))s (2.17)

21



B [100]
a) A
v re
AlAs = |~
GaAs \
b) ' L,
|
0) ' AlGaAs
- 0 B B B B B H |4Nmonolayer:
LSL AlGaAs

Figure 2.5: Schema of the fabrication of the lateral potential modulation used in
this work: a) Al and Ga - atoms are alternatively deposited on a vicinal surface.
b) Due to their preferred incorporation at the step edges and the monolayer by
monolayer growth, a lateral superlattice of N - monolayers is grown (c).

(A E. ~ 0.95 eV is the AlAs/GaAs conduction band offset) In reality, how-
ever, there are two major effects which reduce the lateral potential modula-
tion: the segregation effect [Etienne 95] and the effect of step disorder
[Lelarge 97] of the GaAs step arrays. These two effects shall be discussed in
the following. The segregation effect is due to the vertical atomic exchange
of Al-atoms pinging on the surface. Instead of migrating to the step edges
(Fig. 2.7.a), they exchange with underlying Ga-atoms Fig. 2.7.b), incorpo-
rated in the surface, in order to minimize the dangling - bond energy. Thus, in
contrast to the ideal picture, one finds barriers of ternary alloy Al Ga;_,,As
(with xp < x4;) and equally wells of ternary alloy Al,, A Ga;_,, As (Fig. 2.6.b,
left). Hereby it is assumed, that the lateral potential modulation is reduced,
but preserves its form, e.g. barriers (wells, respectively) of width L -x4; ((1
- L1 )-xa1, respectively). Under this assumption, one determines the concen-
trations to be x,, = 0.037 and xg = 0.303, assuming the average Aluminum
concentration Xg.e, = 5 %. By this segregation mechanism the lateral am-
plitude is reduced by a factor 3.8, thus obtaining a reduced amplitude of the
lateral potential modulation of about 29 meV (Fig. 2.6.b (right)). Due to
the assumption, that the form of the lateral potential modulation remains
unchanged, the Fourier transform of the lateral potential modulation should
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Figure 2.6: Sketch of the grown lateral superlattice (left) and corresponding lateral
potential modulation (right). Due to segregation and disorder effects the lateral
potential modulation is reduced by a factor 10 with respect to the ideal one. The
thick line in Fig. c¢) corresponds to the lateral potential form, when taking two
Fourier component into account, whereas the thin line corresponds to a sinusoidal
lateral potential modulation.

display many components of order p given by

sin(p* mry)

VP = (25 — 2, (2.18)

p*xm

Equation 2.18 describes the atomic potential modulation V4, resulting by
taking only the segregation effect, but no other "damping effects”, into ac-
count. The first term of the product on the right side of equation 2.18 is
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Figure 2.7: Sketch of the segregation effect. Instead of migrating to the step (a),
the on the surface impinging Al - alom exchanges with the underlying Ga - atom
(b) for energetical and entropical reasons.

due to the segregation effect and the second term describes the (standard)
Fourier transformation of a rectangular function. As it is seen easily, the
function decays slowly with p for small average Al - concentrations. In order
to estimate the number of Fourier components to be taken into account, one
is led to examine the second limiting factor: it is the step disorder of the
GaAs step arrays. AFM - measurements ex - situ have allowed to visualize
the vicinal surface [Lelarge 96]. Although showing a well defined period-
icity at long distance (see Fig. 2.8.a), they exhibit step array fluctuations,
which reduce each Fourier coefficient of the lateral potential modulation. The
strength of the reduction is depending on the order of the considered Fourier
component of the lateral potential modulation. Performing a 2 D - Fourier
transformation of the ledge positions, three peaks centered at k; = 0, k; =
QLLLP (p = 1,2,3) can be localized, giving directly access to each attenuation
factor [Laruelle 99]. On a test sample (e.g. only a GaAs layer is grown, no

Al is involved), it is found Vi? = 0.4, Vif} = 0.2 and Viﬂf” < 0.1. Hence,
taking more than three Fourier components into account in order to simu-
late the lateral potential modulation would not be justified. Consequently,
the lateral potential will be smoothed and broadened (Fig. 2.6.c, left, thick
line). However, it shall be emphasized that a simple sinusoidal lateral poten-

tial (e.g. considering only one Fourier component, as previously done, thin
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Figure 2.8: AFM - image and its Fourier Transformed: Two Fourier peaks can
be clearly identified, corresponding lo Vi? = 0.4 and Vif“)) = 0.2, reducing the first
Fourier component Vgi) by 60% and the second one Vﬁ? by 80%.

line in Fig. 2.6.c) is not sufficient to understand the experimental results.

In summary, each Fourier component of the lateral potential modula-

tion will accordingly be the product of a factor® V((f;), obtained by a growth

model and a damping factor” Vifl) determined on a GaAs template by AFM
measurements. Since in real space the total lateral potential modulation

Vimod(r1) results from the convolution of these two effects, each Fourier com-

ponent Viﬁid of the lateral superlattice is just given as the product of the

6at = atomic, the atomic potential, having taken the segregation effect into account.
“sd = step - disorder, reduction factor due to step disorder.
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Figure 2.9: Scheme of a tilted lateral superlattice: a) on each wafer there are
zones, where there is an excess or reduction of group III - atoms with respect to
one monolayer deposition. This leads to a tilted lateral superlattice (b).

Fourier coeflicients of each effect:

v = @), ) 2.19
od

m

The number of Fourier components which can be taken into account is
limited by the step disorder and is determined to be three. In the calculations,
only the first two Fourier coefficients, which are clearly distinguishable, are
taken into account.

An additional numerical difficulty, but experimental advantage, is the
fact that each grown sample will have zones, where the lateral superlattice
is tilted (see fig 2.9.a). This effect steams from the spatial variation of the
flux of the elements of group III during MBE - growth. Due to this variation
there are regions where the GaAs and AlAs coverage ratior = 1 + ¢, defining
the real amount of matter deposited per nominal monolayer (with e being the
coverage error) is not exactly equal to one: the lateral superlattice is tilted
with respect to the growth axis in this region. Hence, the lateral potential
modulation also depends on the r, - direction [Mélin 98]:

Viod (1, 72) Z ®) cos[2pm 2— + e, (2.20)
1

a

where a is the monolayer thickness.
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The states |oz,1; > and |oz’,k_*7 > are now coupled (o = ¢’ intrasubband
coupling, @ # «': intersubband coupling). To obtain the expression for the
inter - and intrasubband - coupling, one has to evaluate:

VO(a,a,r) = / - ONa drEa(r)VO(r r)em(ry),  (2.21)
(N being the number of monolayers of the lateral superlattice) for each
Fourier component p. The obtained lateral potential modulation V,,,q(r.) is
weakened with respect to the untilted one (given in equat. 2.17) due to the
cosines - integration along r,. Physically, the weakening can be understood
as the effect that the electrons "feel” simultaneously the periodic potential
dephased in the r, - direction.

The tilt of a lateral potential modulation can also be advantageously
exploited by doing transport measurements on this wafer zone. One thus
has access to two zones of different magnitude of the lateral potential on the
same wafer, as will be seen in 6.2.3.

This is the lateral potential modulation, which will be inserted in the
numerical calculations (detailed in the next chapter) to obtain the band-
structure of a lateral modulated electron gas. It will or will not be a function
of r,, depending on the zone of the wafer which is studied.

2.2.3 Electronic Properties

If the periodicity of the lateral potential modulation is comparable to the
Fermi wavelength (as it is the case in the structures studied in this work),
the application of first order perturbation theory is no longer justified. Fur-
thermore, the Thomas - Fermi method would not be very accurate and a two
- dimensional calculation of the band structure in the self - consistent Hartree
approximation is necessary. It takes into account the temperature dependent
in-plane screening of the atomic modulation by the charge modulation along
r; [Etienne 96.1].

The principal difficulty to overcome is that one now has to solve the
coupled Poisson and Schrodinger equations for a Hamiltonian, which is no
longer to be separated in the r; - and r, - direction.

The Hamiltonian is written in the following manner:

2
P,
2m*

H(rz) = + ‘/cryst.(rz) + Vmod(rJ_y rz) + ‘/electrost.(rJ_a rz) (222)

The two first terms are identical to the one in the one - dimensional case.
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Vimod(r1, 1.) describes the lateral potential modulation. Its average is
taken to be zero, since the average is already included in Vs ().

The Hartree term does not remain one - dimensional. It now couples
the r; and r, direction due to the non-separability of the Coulomb poten-
tial. Hence, one is obliged to perform a fully 2D self - consistent Hartree
calculation. The key ideas of the 2D - calculations will be presented in the
following (a more detailed description can be found in [Etienne 96.2]), before
discussing the results obtained by these calculations. These results show that
the coupling between the r; and r, - direction is rather weak and one can
assume the resulting wave functions to be proportional to only one subband
- wavefunction. Consequently, one can neglect the coupling between the r;
- and r, - direction if the lateral superlattice is not tilted for the transport
calculations, which will be presented in chapter 3.

The Hartree potential and the charge distribution, which both have the
same periodicity as the lateral potential modulation are developed in a Fourier
series with V7__,. . (r.) (p™(r.) respectively) being the m-th Fourier com-
ponent of the Hartree potential (charge distribution).

The Poisson equation can then be written for each Fourier coefficient:

electrost.

87“2 _( LJ_ ) e?éctrost.(rz) = - (223)

€o€r

2y m (r,) 2mm 2 Amp™(r,)

with the following two boundary conditions:

® Veieetrost.(TL, T» = 1, ) = 0. The underlying assumption is that the
doped layer represents an equipotential surface (and hence the potential
can be defined as 0). This is justified by the fact that the potential

Nn2Trz

modulation diminishes exponentially as a function of r, (~ e 1 ., n
€ 7). Consequently, at the doping layer, the potential can be regarded
as constant.

e The second hypothesis consists in the requirement, that away from the
accumulation region, there does not exist any electric field:

IWVeiectrost. —
algctra (ro,r, > rzdep) = 0.

The Hamiltonian of equation 2.22 can be split into two parts:

_i? o2
HO(TZ) = Im* W + ‘/07’1/575~(TZ) + ‘/e?ectrost.(rz) (224)
- R o
H(TZ) = 9.2 —I_ VmOd(rJ_a TZ) —I' ‘/elec ros .(TJ_y Tz) (225)
2m* Or? trost
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As easily seen, H%(r,) is equal to the one - dimensional, not on r; de-
pending, Hamiltonian in equation 2.10. The Hamiltonian H%(r,) represents
the one of a heterostructure which has no lateral modulation, but the same
average of Aluminum concentration in the channel. Consequently, the eigen-
states and eigenvalues of the heterostructures are known by the calculation
discussed in the previous section.

The wave functions one is looking for are Bloch functions in the perpendic-
ular direction, possessing the periodicity of the lateral potential modulation.

A reasonable Ansatz to take into account the variations of the lateral
potential in the r, - direction is thus to develop the r, - dependent part on
the set of eigenfunctions &,, given by the 1D bandstructure calculations.

Hence, the wavefunction can be written as (A is the surface sample)

1 .
(I)OMPJCJ_(TJJTZ) = \4/2[2 fa(r2)¢p(a)7kL] (226)

The periodic part of the Bloch function® is developed in a Fourier series:

1 2mp

(I)%p,kl (ri-a TZ) = \4/2[2 Sa(rz) Z Ap(a),ky ei i ]eih‘“‘ (227)
a p

As it is seen from equation 2.27, the modulated wave function is devel-
oped on the base of the wave - functions of a non - modulated electron gas
with vector k; + p*27 /L. The Hamiltonian is diagonalized in that base for
each value of k. The charge distribution is calculated by starting with these
wave functions and their subband occupation (given by the 1 D calculation of
the previous chapter), including also Fermi Dirac statistics at finite temper-
ature. This charge distribution is then introduced in the Poisson equation,
which is solved by a Green resolved function. This cycle continues until the
convergence limit is obtained, e.g. just until the Hartree term Vi jectrost. (T,
ry) and the charge distribution p(ry., r,) are coherent.

Fig. 2.10 shows an example of a typical (screenied) potential in the ry -,
r, - direction (r)| direction is omitted). The amplitude of the lateral potential
modulation V peqktopear 18 assumed to be 23 meV. One clearly recognizes (from
the left to the right): The barrier, the channel in which the lateral potential
is seen in r; direction, and the vertical superlattices to avoid the charge
transfer far from the interface.

81t shall be again reminded that the Bloch part of the wave function is due to the
lateral potential modulation
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Figure 2.10: Lateral screened potential modulation in real space. From left to right:
The barrier, the channel in which the lateral potential is seen in ry direction, and
the vertical superlattice to avoid the charge transfer far from the interface.

Fig. 2.11 shows the corresponding energy dispersion as a function of k; in
reduced Brillouin zone. The result of taking the first two Fourier components
of the lateral modulation (as discussed in the previous section) into account
is shown in thick lines in Fig. 2.11. For comparison reasons, the resulting
bandstructure, while taking only the first Fourier component into account,
is equally shown.? It shall be reminded that the first index refers to the
subband, the second to the miniband index. For the samples studied in
this work the Fermi energy lies in the middle of the second miniband, when
no electrical field is applied. Emphasis shall be drawn to the fact that, by
taking the first two Fourier components into account, the size of the second
minigap is comparable to the first minigap. In contrast, by taking only
the first Fourier component into account, the second minigap is very small.
This is now understandable: The states k; = 427 /L, are coupled by the
second Fourier component, resulting in the opening of the second minigap.
Additionally, the second minigap is not screened since in the structures,
studied in this work, one has 27n/L < 2kp < 4m/L. Also observable in

°The first minigap is slightly smaller, when taking V? into account. This steams from
the second order energy shift, which is of opposite sign.
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Figure 2.11: Energy vs k; in reduced Brillouin zone: thick lines: resulting poten-
tial modulation, while taking the first two Fourier components into account, thin
line: only the first Fourier components is taken into account. Taking the first two
Fourier components into account, the second minigap is of comparable size to the
first one.

Fig. 2.11 is the weak coupling between subbands (~ 0.05 meV). This allows
to separate the wave functions in r; - and r, - direction of the modulated
system:

1 L ik o
Gppi, (ri,re) = 4—\/Z§a(rz) D (o), € TLEFE (2.28)
P

Physically, it is possible to separate the r; - dependent part of the wave
function from the r, - dependent one, because it is only the screening poten-
tial Vejeetrost.(r1, r2) (in the case of the untilted LSL), which couples both
directions. However, V jeetrost.(r2) (p(r,) varies very little on the size of the
extension of the subband wavefunction &,(r,) in comparison to the energeti-
cal distance between two subbands. This separability in the wave functions
is exploited in the calculations of the transport properties.

Summarizing this paragraph, the energy dispersion obtained by the band
structure of an electron in a subband « will have the form

21,2

h
Ea(kHakJ-) = ﬁ + Eoz(kJ_)7 (229)
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Figure 2.12: The Fermi energy surface of an modulated 2DEG. For comparison,
the Fermi energy surface of an unmodulated 2DEG is shown (dashed line). The
discontinuity at the BZ edges due to the minigaps are clearly observable.

having the free energy dispersion in r - direction and the one above dis-
cussed in r, - direction for each subband. From this energy dispersion it is
straightforward to obtain the Fermi surface'®, shown in Fig. 2.12. The Fermi
surface of an unmodulated 2DEG is given as reference in dashed line. It is
important to realize that the Fermi surface of the modulated electron system
remains basically a circle. The difference with respect to the unmodulated
2DEG manifests itself mostly at the zone edges of the Brillouin zone, where
the minigaps lead to a discontinuity of the Fermi surface. This form of the
Fermi surface indicates that the electron properties are not simply described
by a direction dependent effective mass as done in the work of [Hirakawa 86].
Rather, the transport properties emerge to a great extent from the modifi-

cation of the group velocity v of each state k (Vg ~ %) One is thus led to
calculate a % - dependent collision time. Due to the relation
dk
D(E) = jf i (2.30)

one immediately obtains the density of state D(E) as a function of energy.

10The term ” Fermi surface” is kept in analogy to the three dimensional case, though it
would be more correct to speak of a ” Fermi line”.
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Figure 2.13: Density of state as a function of energy at T = 0K: The two minigaps
in the first subband manifest themselves by the 1D density of state behavior. For
comparison, in dashed line the constant two dimensional density of state is equally
shown.

Y designs constant energy surfaces over which will be integrated. Once
again, as a reference, the constant state density % of a two dimensional
unmodulated electron gas is indicated in dashed line. One identifies clearly
the on - set of the first (at 100.4 meV) and second electrical subband (at 127.8
meV). More important, one finds the signature of the two first minigaps in
the first subband, having the typically one -dimensional behavior (~ ﬁ)
of the density of states. The density of states remains one - dimensional,
because the minigaps exist only in the perpendicular direction, whereas in
the parallel direction the free electron motion continues. All these figures

were obtained by executing the band - structure calculation at T = 0K.

Influence of the temperature While the atomic potential of the lateral
modulation does not depend on the temperature, the electron distribution
does. And consequently does the charge distribution p(ry,z). Thus, the
temperature has an influence of the screening potential and hence on the
resulting total modulation. This is the reason, why one has to recalculate
the bandstructure for each temperature.
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Chapter 3

The Boltzmann Transport
Equation

The aim of this thesis is to understand the transport properties of modulated
2DEG’s. To support and understand the experimental data, a theoretical
analysis of the transport properties (without magnetic field) will be later
presented. The results of this analysis are obtained by solving the linearized,
semi - classical Boltzmann transport equation [Calecki 69] in a relaxation
time approximation. The solution obtained by this method is exact if the
system is isotrop and if only elastic collisions take place [Ashcroft 76]. In the

anisotropic case (e.g. for the modulated 2DEG) we follow Ziman [Ziman 61]

and define a I% - dependent relaxation time. A similar approach has been

chosen by Gerhardts and Menne [Menne 98] to calculate the magnetic field
dependent conductivity.

After having introduced the Boltzmann equation, special emphasize is
given to the screening mechanisms. One of the results of this work will be the
demonstration of the necessity of including higher subbands in the dielectric
function calculations at higher charge density or higher temperature. This
is equal to say that one does no longer consider the dielectric function as
a scalar. Consequently, as will be shown in the end of this chapter, the
transition probabilities have to be calculated differently.

Starting point for the numerical calculations is the linearized semi-classical
Boltzmann equation, given by

F’eztlag(lg) _ ag(E)| I (31)

where
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o g.(7, f;,t) is the non equilibrium function defined so that
9a(7, k,t)drdk /473 is the number of electrons in the o - th band at

time t in the semi - classical phase space volume didk about the point

—

7, k. In equilibrium g, (7, k,t) reduces to the Fermi Dirac Function

—

9a(F 1) = gU(F iy t) = flea(k))
with

1

exp (“GL70) + 1

flealk)) =

but in the presence of applied fields (as it is usually the case) and /
or temperature gradients it will differ from its equilibrium distribution.
It can be written as g, (7, ]g,t) = g2(7, lg,t) + gk (7, ]g,t), where gl (7, f;,t)
refers to the perturbation term, e.g. describes the deviation from equi-
librium function.

o F°o' is the sum of all external forces, e.g.

Fe'(7 k) = —efs + =¥ x H

a |-

where E is the electrical field and H the magnetic field.

Equation 3.1 describes the "equilibrium” between the "accelerating” action
of the external fields (e.g. electric, magnetic field) and the ”slowing down”
actions of the internal forces (e.g. collisions).

The complexity of this equation comes from the collision term g—i conl and

will be treated in the next section.
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3.1 Scattering Probability

Making the assumptions that

e there is a calculable probability per unit time (determined by suitable
microscopic calculations) that an electron in band a with wave vector
k = (kj, kL) will, as a result of a collision, be scattered into band o

with wave vector &’ (assuming spin conversation).

e Collisions can be well localized in space and time, so that the colli-
sion occurring at 7, t are determined by properties of the solid in the
immediate vicinity of 7 and by the time interval (t - dt).

one can define a scattering probability which is given by the quantity
Paa(k'k). The quantity

—

P (K'E)dtdk’
(2m)? ’

expresses the probability that an electron with wave vector k of subband a
will be scattered into any one of the group of levels (with the same spin)
contained in the infinitesimal k-space volume element dk' about k' in the
subband o' (assuming that these levels are all unoccupied and therefore not
forbidden by the exclusion principle) in an infinitesimal time interval dt.
The particular form taken by Pa/a(ig’lg) depends on the particular scat-
tering mechanism and will be discussed in more detail in section 3.7.
Having defined this transition probability, the collision term can be ex-

pressed by
ago = _, = ago N — = 1,7 1.7
_—a|coll = _eE\_;(k)(—a) = Poz’oz( /k)[ga(k) - ga/(k’)]. (32)

This is remarkable in that sense that it is only the deviation gi(l_z:) from
the equilibrium function who determines the collision term.

3.2 Solution of the Boltzmann Equation

Once again, the difficulty in finding a solution arises from the complexity of
the collision term. Only for very special cases this equation is analytically
solvable. In the following a solution of the Boltzmann Transport equation
will be derived, having made the following assumptions:
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o the effective mass m* is direction independent.

e the transition probability does not depend on the distribution function
ga(k).

e all scattering events are elastic or quasi - elastic, i.e. Ea(l;) = Eu (k).

Under these assumptions one readily finds[Siggia 70] :
h o o Ogh(F)

k.l 7
m* ] oE

where 7, is the relaxation time discussed in the next section.

gh(k) = —ema(Eo(k))[

(3.3)

3.3 Relaxation Time 7

3.3.1 Relaxation Time 7 for an Unmodulated 2DEG

In an unmodulated 2DEG the relaxation time 7 is a function of energy, but
does not depend explicitly on k due to its isotropic Fermi energy surface. It

is defined by [Mori 80]
_aga(k)| _ 9alk)
at coll TQ(E)

(3.4)

i.e. 1t is inversely proportional to the collision term. This is intuitively under-
standable, if one considers what happens when the external forces have been
removed instantaneously. In this case the perturbation in the distribution
function will be changed due to collisions and decay exponentially:

gL(E,1) = gL(,0)e” 7 (3.5)

The time 7(E) thus represents a system characteristic time constant for
the relaxation of the perturbation, i.e. the time until the unperturbed system
has reached its thermodynamic equilibrium.

7(E) is determined by the coupled Boltzmann equations[Siggia 70]

TO‘(E) _)7 2 Z Wozoz E, ;7 (E) 1. (36)
a#al

with
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o [ &K , »
; @< BNV ok > [F(1 — cos0)S(Eu(E) — Ear(F)
m

2 [ d*K - —
+ 3 5 Gyl < B WassloR > Pa(EL(F) — E.(R)
’?foz
- - R 2n kg [ d2E'
W (B, K'Y = Woaa (B, E o
(R ) = Wer B F) = T [ 65

cos00(Eq(K) — Eo(K'))

Waalk, k') =

| < oK' \Viigrlak > |* *

with ¥(E) being a constant energy surface and d*k = dk,dk,. The matrix
element | < o'k'|Vyifslak > |* describes the transition probability per unit

time from the state |, k > to the state |, k' > due to a scattering potential.
This will be discussed in more detail in the next section.

In the case of the electrical quantum limit equation 3.6 simplifies to

1 d*k 1 dif f 5 . .
(B) vy 2m S| <KV lak > |*(1 = cos0)§(Ea(k) — Ex(K)) (3.7)

with @ being the angle between the state |E > and |k_*7 >. Hence, every
scattering event is averaged over its projection of the outgoing wave vector
on the incident direction. The relaxation time is thus inversely proportional
to the (integrated) probabilities of transitions into and out of each state
|]; >, weighted by an angle dependent factor to allow for the big effect on the
change of the distribution function of scattering through large angles. The
averaged geometrical factor

Joqm) LE| < ak!|Voert|ak > [2(1 — cos0)5(Ea(k) — Eo(K'))
fsm) LR\ o]Vl |k > [26( Ba(k) — Ear(E))

) 27h

<1 —rcosl >=

(3.8)
will strongly depend on the type of interaction potential V¥// one is consid-
ering. If one considers a scattering potential, which depends on the scattering
vector § = k — k" and hence on 0 (¢ = kasm(H/Z) one can have favored
forward scattering, e.g. <(1- cos #) < 1, 8§ < 90° or backward scattering, i.e.
6 > 90° (see also Fig. 3.1). On the opposite, for a q - independent scattering
potential the term <(1 - cos 6) > will be equal to one, expressing the equal
probability of having forward and backward scattering.
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g independent diffusion potential, g — dependent diffusion potential,
e.g. (unscreened) alloy scattering: e.g. remoteionized impurity :

5 4

Theredistribution of the Small angle scattering
scattered state isisotrop. is here prefered.

Figure 3.1: Sketch of the q - dependence of different scattering potentials: while
forward and backward scattering have equal probabilities in the case of an q - in-
dependent scattering potential, small (or large) angle scattering is strongly favored
in the case of a q - dependent scattering potential.

3.3.2 Relaxation Time 7 for a Modulated 2DEG

In a modulated 2DEG the assumption of a % - independent relaxation time

is no longer valid due to the anisotropic Fermi energy surface. Nevertheless,
one can try to find an approximated expression by defining a k- dependent
relaxation time T(E)[Ziman 61]. T(E) can be interpreted, in analogy to the
isotropic case, as a characteristic time for the desexcitation of one state k.
In the following the notation £ = (e, ];) shall be used.

Starting again from equ. 3.4 (but with a & - dependent relaxation time)

dg(R), _ ¢'(R) ,
- ot |CO” - (/25) ) (39)
one obtains
Lo_ N G .

Inserting equat. 3.3 in equ. 3.10, one deduces:
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b

oy, | =

3y

)

7(K)

V()

-V

7

= Z W (R, k)1 —

. (3.11)

7(%)

—~
&l
~—

One clearly realizes that now each relaxation time for one state £ depends on
all the other K - dependent relaxation times. Equation 3.11 can be simplified
to

- —

=> W (k'R)[1 — =) ¥ /)](6‘080 — tanasing), (3.12)

T(R) 2 7(R) V(%)

~—
<l

where « is chosen as the angle between the electrical field E and the vector
k. Since one is only looking for solutions linear in the electrical field, the
transport time 7(%) does not depend on the electrical field E. Consequently,
the a - dependent term is 0 and it remains:

=Y W(Rk")[1 — (7) (7 |cosb, (3.13)

The angle § has not been defined yet: In an unmodulated 2DEG, the
angle @ is chosen as the angle between the state |E > and |]g’ >, which is
identical to the angle between the group velocities of state |E > and |ig’ >
(e.g. \7(/{?’) | |]; >). Contrarily, in an modulated 2DEG, due to the anisotropic
Fermi surface, the assumption that the angle between the states (E, /{7) is
equal to the angle between the group velocities \7(];’)) is no longer justified.
In the chapter and 5.4.3, comparison will be made between the calculated
mobilities, taking § as the angle between the wave vector states and taking 6
as the angle between the group velocities of states k and &' Intuitively, one
can try to justify this choice by having in mind that the relaxation time (%)
of a system should not be affected by forward scattering, e.g. if \7(15’) I \7(12),
and be strongly affected by backward scattering, e.g. v(k _)) I —V(E) This is
mathematically taken into account by choosing 0 as the angle of the group
velocities rather than taking the angle 6, between the states |k > and |k’
But, as mentioned above, taking § as the angle between the group Veloatles
cannot be justified rigorously [Ziman 61].

For the numerical calculations, the auto - coherency of equation 3.13 will
be ignored. Thus the transport time can be written formally identical to the
transport time of an unmodulated electron gas,
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1 &k

VI ok > (1 = cosO)d(Ey (k) — Eo(K)) (3.14)

ro(k)  Jop 27h

but this time with a k - dependent relaxation time.

3.4 Calculation of the Macroscopic Quanti-
ties

Once having calculated the relaxation time 7,(%), the diagonal components
of the conductivity tensor are obtained in the usual manner:

oss(T'=0) = Z/E d’kg' (R (B=m,rL)

g ;](f) )r(R)72(R). (3.15)

The integral over 42k signifies that one integrates over the constant energy
surfaces Ypg,: d*k = dkjdk, where dk) is the element of the surface of Xg
and dk; = dE/hvz.

The temperature dependence of the conductivity is given by the statistical

weight dg°(K)/OE:

oss(T) = / i~ 2 B with (3.16)
dk .

o) = oY ]g r(R)T(F), (3.17)

EVK

where Y corresponds to all constant energy surfaces lying in the energy
range AE = Ep46kgT'. Accordingly, at T = 0K only states of the Fermi
surface contribute to the conductivity, whereas at finite temperature states
in between Ep £6kgT contribute to the conductivity.

In the case of an unmodulated 2DEG, the integral of the energy surface
is equal to 2nE/h and one obtains (a corresponds to the « - th subband):

n = 6 is chosen throughout the whole work. It is chosen such that 99.8% of the
population is included, when integrating over the Fermi - Dirac distribution function
between Ep-6kgT and Ep+ 6kgT.
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¢? —Jg5(E)
el B) = 5 fn 08

Introducing explicitly the charge density of the « - th subband:

m* —0go(E)
nh? /dE oF L

Er,(E) (3.18)

N, = m—Q/dEgg(E) =
mh

one finds the habitual form (Drude form) of the conductivity of the a-th
subband:

2_
N e“T,

m*

Gaa( E) = (3.19)

with

ok

Ta 575
[dE=25E

 [dE7ZEEr,(E)

7o(E) has to be determined by the coupled equations of equat. 3.6.

3.5 Scattering Processes

According to the Bloch theorem [Ashcroft 76], an electron in a perfectly
periodic array of atoms experiences no collisions at all. So, within the in-
dependent electron approximation, collisions can only arise from deviations
from perfect periodicity.

These deviations fall into two broad categories:

1. Extrinsic deviations from periodicity in a perfect crystal.

Impurities of point defects (e.g. ions in the "wrong” place) provide a
localized scattering center. In this work, the scattering due to ionized
impurities in the barrier, impurities in the channel and scattering due
to the alloy given in our structures (normally 5 % Aluminum in the
channel) will be discussed.

2. Intrinsic deviations from periodicity in a perfect crystal.

Intrinsic deviations are due to thermal vibrations of the atoms. The
ions do not remain rigidly fixed at the points of an ideal periodic ar-
ray, since they possess some kinetic energy which increases with higher
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temperature. At low temperature the kinetic energy enables the ions
only to undergo small vibrations and the scattering mechanism is not
important. Increasing the temperature, the scattering mechanism be-
comes more and more important. We take acoustic phonon scattering
in our calculations into account, but neglect optical phonons. This is
justified because we are only concerned with temperatures up to 70K,
where scattering due to optical phonons plays a minor role.

All the scattering processes are considered as elastic scattering processes.
This signifies that the state does not alter its energy, e.g. E!/ore(k) =
E*/*"(k). (As a consequence, changing the subband means, changing the
kinetic energy of the charge, but not its total energy E.)

In all calculations the validity of the Born approximation is assumed. This
is equal to say that one considers the (already screened, see next section)
scattering potential sufficiently small to apply perturbation theory and to
consider only the first term ("Fermi’s Golden rule”). Thus the transition
probability (e g. the probability that an electron of the a - th subband with
wave vector k will be scattered in the o/ - th subband into the state k’)
given by

—

. 2 . - . S
Woaa (K, k') = % < BV ok > 26(En(F) — Ea(K)).  (3.20)

Before discussing each scattering process in detail, the response of the
electrons towards an external potential (e.g. scattering potential) shall be
explained.

3.6 Screening of an Electron Gas: Dielectric
Constant €(q)

By calculating the screening of an electron gas, one has access to the screened
scattering potential V°*** which is introduced in the scattering matrix ele-
ments, discussed in the previous section. Naturally, the interaction between
a scattering center and an electron is strongly modified by the presence of
the other electrons. The scattering center induces in fact a perturbation po-
tential, which acts on all electrons surrounding this center. The electrons
"react” by rearranging themselves, leading to a spatially dependent charge
density in the electron gas. This Coulomb potential created by the electrons
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and opposed to the perturbation potential is called screening potential. The
equilibrium, described by an auto - coherent solution, which includes these
two (antagonist) potentials, leads to a reduced perturbation potential V*°**
It is the effect of screening which finally defines the strength of this scattering
potential V*<***- by which the electrons are scattered. So it is very important
to describe the screening adequately.

Describing the effect of screening, there are two physical involved quan-
tities which are closely related:

e the polarizibility function II(g, T, Er) of a system.

e the dielectric function €(¢, T, Ep) of a system

Both physical quantities become important when different screening models
are discussed in Chapter 5.1 and are introduced in the following.

Assuming the considered system homogeneous and translational invari-
ant, the polarizibility function H(C?, T, Er)? relates the external applied po-
tential with the induced charge density in Fourier space by [Ashcroft 76]

p™(Q) = THQ)V(Q). (3.21)
with the polarizibility H(Cj) defined as

) [PdK ¢°(K + Q) — ¢(K)
Am® LK + Q) — K?)

2m

() = —c

(3.22)

The dielectric function related the unscreened potential with the screened
one by . . .
Ve(Q) = dQ)VII(Q) (3.23)
Comparing equation 3.21 with equation 3.23, one remarks that the dielec-
tric function 6(@) and the polarizibility H(Cj) of a system (here shown for a
3D system) are directly proportional. Its explicit relation, however depends
on the dimensionality of the system, one is regarding [Bastard 88].
In this work, one is considering unmodulated and modulated Q2DEG, e.g.
systems, which are quantized in the z - direction. Since there are discrete
energy subbands in the system, the dielectric function is not simply a function

of momentum? as in bulk materials.

26} is the Cj -th Fourier component of the three dimensional space vector R= (Rz, Ry,
R.).

3In this work one concentrates only on the static dielectric function.
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It also depends on the electron distribution in each of the subbands.
Therefore the treatment of the dielectric function is more complicated. For
simplicity, in literature it is often assumed that there is only one single sub-
band occupied, even at high charge density or higher temperature [Hiraka-
wa 86]. This leads to an underestimation of the screening, as will be shown
later. In the RPA - approximation the dielectric tensor takes the form

carnlirar) = a4 oy Mal®

[Ea(rar)Ear(r2)] /dz”fa(rzu)fau(rzn) exp (—q|r, — run|)
with the polarizibility

1 Z gO(Ear(E + (7)7 EF) - gO(Ea(E), EF)
S ol k Ea/(k + (7, EF) — Ea(k, EF)

Ha',a(q_j =

At low charge density and low temperature, only the fundamental sub-
band is occupied by electrons. The dielectric function can be reduced to a
function of that subband only, e.g. €(§) reduces to a scalar, without com-
mitting a big error. However, at higher temperature and / or greater charge
density, the spatial extents and the occupations of higher lying subbands
must be considered: The evaluation of the dielectric function is no longer
straightforward. Theoretically, one has to sum over all subbands of the sys-
tem, in practice one will keep a finite number N of subbands. Accordingly,
one deals with a linear equation system, consisting of N? integrals. To obtain
these last terms, one thus has to invert the dielectric matrix (N? x N?) for
every vector q, leading to

< L (P ) Vel (@ ra)|€a(r) >= S [l @]at g < Epr(ra) Vet (472) 6p(r2) >
55
with
e’ Mgis(q)

2

[€(D]ara,prp = Oatayprs + Forapp()

where the form factor ¥, g5(¢) is given by

Forapp(q) = /drszzlfgI(TZl)fa/(rzl)fﬁ(rz)ga(rz)e—qm—rzll

The subband indices «, 3 denotes the initial subbands occupied by the two
interacting electrons, and the indices o', 3’ denote the final subbands.
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These are the matrix elements, which enter directly in the transition
probability to calculate the scattering probability. It is important to note
that in these calculations the scattering matrix element intervene linearly, in
contrast to the case, where the dielectric function is taken as a scalar. Lee
et al. [Lee 97] calculated the transition probabilities in the case of ionized
impurity scattering. In this work, the influence of taking higher subbands
in the dielectric function into account is investigated as a function of charge
density as well as a function of temperature, using the above described for-
malism, for remote ionized impurity, alloy and acoustic phonon scattering.
This is the reason why the calculations to obtain the linear scattering matrix
elements for the different scattering potentials are presented in the following
section.

3.7 Types of Interactions

In this section the interactions taken into account in this work shall be dis-
cussed in detail:

1. Coupling by local perturbations of the crystal (e.g. ionized impurities)

2. Coupling by non - local perturbation of the crystal (e.g. alloy scatter-
ing)
3. Electron - Phonon coupling (e.g. acoustic phonons)

In the following each interaction, one by one, shall be first explained for a
non - modulated two - dimensional electron gas, before then special attention
to the modifications for a modulated electron gas is paid. The discussion is
important, since the transition probabilities cannot be written any longer
as the quotient of the square of the unscreened transition probability and
the square of the dielectric function, e.g. as [V**"(§)|?/]e(¢)|* due to the
previous discussion: one has to sum over all terms ~ < Vs > ¢=1 hefore
taking the square.

1. Coupling by local perturbations of the crystal

The Coulomb potential between an impurity of charge Z; (positive or
negative) at point R; = (r,,,7;) and an electron with charge -e at point
R = (1., ) is given by

—GQZZ' 1
oo F- T

Vi (£)

(3.24)
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where the last equation results from the two - dimensional Fourier
expansion of the Coulomb potential. Writing the wave - functions of

the 2 DEG as

—

Vo (R) = ﬁﬁa(w)em, (3.26)

and summing over all impurities (having the same charge 7), the matrix
element for the (unscreened) potential V= ( R) is given by

r —e’Z; 5 o o Fara(@,72,)
/k/ exrt k _ € 4y 5 Bk igr; Ya'a\dy Tz
< RVl >= 300 S0 R e fee )
(3.27)
with the form factor
Faralq.rs,) /dm/)a (rs)ha(r, ) e (3.28)

The screened matrix element can be written formally in the same form:

S —e*Z; - o e FL ()
/k/ 6ff k — € ¢ 5 k‘/ o k - igr; T oo vz
< @RV (ol >= 5 78 Yo R - o Feifire)
(3.29)
with the (effective) form factor®
Fil(a (@Bl =) (3.30)
60['04 B8 q 86 q, Z; .

B'6

Neglecting all correlations between impurities and replacing the sum
over i by an integral over the volume density of impurities® N(r,,), the
transition probability for the interaction between the remote ionized
impurity doping in the barrier and an electron in state |, k > becomes:

tMPparr

17.01y7ef f 2 offaf(_)’rze) 2 q
| < BV ok > 2 = /dr% )[ferald =2 (g 37

*If one neglects the intersubband transitions, the effective form factor becomes: FZJ:(’;
— _ Fa’a(qyrl,)
(@:r) = =25

®SN(r,,) is the density per unity of the spacer.
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The homogeneous background doping is parameterized by the (three -
dimensional) impurity density N, (i = 1,2): Np, for the Al,Ga;_,As
and Np, for the background doping of the GaAs. Hence, the potential
is written

. F (G r,
| < O/k/|viir{gbarr o'a (q% TZz)

7.
(3.32)

- e?Z
ofi > ! =[S [ dre Na, )]

2. Coupling by non - local perturbation of the crystal

In the Al,Ga;_,As alloy, the Arsenic atoms occupy the sites of one
of the face - centered cubic lattice of the zinc - blende crystal (e.g.
they form the anionic sub - lattice). The other kind of atoms (Ga and
Al) are randomly distributed on the sites of the second face - centered
cubic lattice. Thus, although the underlying potential is periodic, the
crystal potential is actually not. Hence, in principle, one can not define
bloch waves, dispersion relations, etc. The simplest way to overcome
this difficulty is to use the virtual crystal approximation [Brum 85]. In
this approximation, the unscreened scattering potential is written as

| < BV ak > [P = %x(l — 2)[§V]? (3.33)
], delea ()1,

where (g is the volume of the unit cell and x the mean Aluminum
content of the considered structure. The screened transition probability
takes the form

. . 0
| < o'V (F)|ak > |2 = g%u — z)[6V]? (3.34)

/L dr. Y earapplés (r2)][Es(r2)])

Ba!

As expected, equation 3.33 is ¢ - independent, reflecting the short range
nature of the alloy scattering potential. However, equation 3.34 is ¢ -
dependent, which is due to the ¢ - dependent dielectric function.

3. Electron - Phonon coupling
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Under a thermic agitation, the atoms of the lattice can have two types
of vibrations, which correspond to two types of branches (acoustic and
optic) in the dispersion relation. If the atoms vibrate in phase, one is
dealing with the acoustic branch, which has a linear dispersion relation
at the center of the Brillouin zone. In opposite, if the atoms move in
opposite phase, one is dealing with the optical branch, characterized
by a constant energy hwy in the vicinity of the Brillouin zone center.
Each of the two branches has three different modes, one longitudinal
and two transversal modes. Accordingly, one needs a certain energy,
provided by the temperature of the crystal to excite optical phonons.
In this work, one is only interested in a temperature range up to 70K.
This allows to neglect the optical phonons, which become dominant at
higher temperatures [Hirakawa 86].

The propagation of a phonon disturbs the perfect periodicity of the
crystal which is required to establish Bloch functions, energy disper-
sions, etc.. These phonon perturbations) can influence the electron
motion in two different ways:

(a) Short range perturbations of the crystal potential are described
by a deformation potential and hence the electron - phonon in-
teraction is called coupling by deformation potential. They are
found in every solid.

(b) Equally, the lattice deformation can perturb the local electrical
neutrality of the lattice. Consequently, an electric field is pro-
duced, which will influence the electron motion. This is a coulomb
type of perturbation and thus of long range. These phonon- elec-
tron interaction are called coupling by the piezoelectric potential.
They exist only in polar materials, like in GaAs, e.g. in materials
which have a lack of inversion symmetry.

An approximation often used but not justified rigorously assumes the
energy of the phonons to be small, so that the scattering can be con-
sidered elastic.

In order to discuss the electron - phonon interaction, one needs to resort
to quantum theory of the harmonic oscillator.

The lattice vibrations represent coupled oscillators and the displace-
ment , representing the deformation of the unit cell or the two atoms
in the unit cell, must be represented in "normal” coordinates, where
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the different modes are uncoupled. In first order perturbation theory,
the electronic energy perturbation is related linearly to the strain in
the crystal Vu and is given by

ou
OR
where = is the deformation potential for the particular valley of inter-

—
N

est.® Expressing the displacement # in normal coordinates Ug, equation
3.35 becomes:

Vi(R) == (3.35)

’le-"UQ-'

VN

eicjﬁ

Vi (R) =

[1]

>

d(D)

+ complex conj., (3.36)

where N is the number of unit cells in the periodic crystal and g@
the polarization vector. The normal coordinate displacement can be
written in terms of the phonon creation and destruction operators a™
and a:

h

Vdee? = EZ: [QNMWQ]EiQ(GQ‘ + ai— ")eiQR7 (337)
Q

Q

where M is the mass of the oscillator, e.g. the total mass of the unit
cell and wy corresponds to the angular frequency of the mode with

wavevector Cj This leads to the following matrix element:

— — — h 1
/1.0 - = 3
9z q(2D) Q

Fora(@)5(k — k = §) (3.38)

iQ(ag + “J_r@)em

with Fora(q) = [ dz[€u(2)][€a(2)]e 7]
For the screened (= effective) potential, one has formally the same
expression by replacing Fu/ ,(¢.) with FZ{J;(Q;)

Fof/fi(@a q) = Z 6;,2',5,5/(@]75‘,5(@;) (3.39)
8,6

Having the equation

(agta_g+)Ing,n_g >= \/nglng—1,n_g > +y/n_g + ling,n_g+1 >,
(3.40)

6The acoustic phonons are taken three dimensional in this work.
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where n; denotes the number of phonons in the mode wg. for the
phonon operators, one obtains for the transition probability between
state |a, k > and |/, k' >, neglecting again any kind of correlations,

51; = 7 27T - Q2 5] ) 7
| < o'k| Vi (R)|ak > |* = W m 222[ |Faff k' —k)? -

S(k =k — Plngd(Eg — g—|hw@|>+n_@+1>6<Ek~,— Eg — |hwgl)}

Taking the scattering process elastic, means that one neglects the dif-
ferences on energy. Beyond, one also neglects 1 with respect to nj in

the phonon population. Given wz = v, * é and ng

Ve 2n =2 . ~
| <RV (R)lak > P = s Zznm@w“(qz,k B)[?

S(k =k — ) (3.41)

Beyond, one approximates nzhwgs ~ kgT, which is valid, it kg T < hwg.
Using the relations SL, = Qg (volume of the unit cell) M/Qy = p
(volumic mass) and pv? = ¢y, (elastic constant, v, the sound velocity),
one finally obtains for the transition probability:

L,=?
NMuv,

—

| < oWV (B)lak > | = g [P R - R, (3.42)

where L, is the length of the channel. As the alloy scattering potential,
the deformation potential scatters isotropic in the r| -, v, - plane. This
interaction potential is in the experimentally considered temperature
range (T = 0 - 70 K) negligible. This is the reason, why this scattering
potential will not be explained in detail when discussing the results.
Nevertheless, it has been included in the numerical calculations.

2D Modulated Electron Gas Instead of having the plane wave functions
\I}a(rHarJ_;rz) \/_504( z) (kg ”+kJ_“_)7

wave Tunctions of the form

1 p2r
Vo (r),rL,r:) = \/Z cilkyr ||+klm)25a (r,) Za T (3.43)

pEZ

it shall be recalled that one now has

As discussed in section 2.2.3, the intersubband - coupling is negligible in the
untilted zone of the wafer (the splitting between two subbands is of the order
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of 0.05 meV. and hence only the projection on a single subband, the most
important for a given state, is kept). Thus the lateral subband-index « is

dropped for readability: a, = ap). kL lies in the first Brillouin zone and

ap(EL) is the coefficient of the modulated function’s in plane variation on
. 2
the plane wave \/sza(rz)el(kllrll"'k“i)emLL. £, are the wave functions cor-
responding to the electrical subband of the same structure, but laterally
unmodulated.

Taking these wavefunctions and calculating the transition probability for

a general (unscreened) scattering potential V***(R) (V****(g, r,) is the 2D
in - plane Fourier transform of the scattering potential), one obtains:

| < a/];/|vscatt.(é)|a]; < |2 _ Z [< Vscatt.(q;Z) >§(7’z) .
q7p7m

- — -

- - . - . 2T .
ap(K L)@y (K LIO(KY — Ry = Gip)d (k' — kL — o +mk =) (3.44)

L

Some general remarks on this equation:

o < Vot (g, r,) >¢(r, is the scattering potential, averaged over the r, -
direction.

o The ¢ - function reflects the momentum conversation in the r - di-
rection and the quasi - momentum conversation in the r; - direction.
Thus, the magnitude of the diffusion vector g,, assumes the following

form:
— - ~ - 2m _
G = \/(’f’n — Ry (R = ke )2 (3.45)
L
with m = 0 describing a "direct” process, with m# 0 an "umklapp”
process.

e The wavefunction amplitudes a,(k,) are determined from the self -
consistent band structure calculation. Without modulation, the only
non - zero amplitude is the one corresponding to the miniband index.
With modulation, the Fourier component V(¥ (= V{=?)) couples states
of same wave vector and belonging to minibands with index differing
by + p: as an example, miniband (-1) is coupled to the lower miniband
(0) by V) and to the upper miniband (4-1) by V(). Hence, this results
in additional non - zero coefficient ag(ky ) and a; (k) to a_;(k, ). Nat-
urally, a given process is only relevant (e.g. the transition probability
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is different from 0), when the product [ap(EL)aﬁm(l_@:L)], summed over
p, is not zero. This proves that due to the lateral potential modulation
additional scattering processes become possible. How they intervene in
the transversal resistivity, will be discussed in chapter 5.
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Chapter 4

Technological Processing of a
Lateral Superlattice

From a theoretical point of view, one ”introduces” a lateral potential mod-
ulation. From a practical point of view the question arises, how can one
actually succeed in realizing a lateral potential modulation? In order to
resolve the miniband structure of a lateral potential modulation, it is nec-
essary (i) to reduce the periodicity of the lateral potential to length scales
comparable to the Fermi wavelength of the electrons (~40 nm in GaAs het-
erojunctions), (ii) to impose a sufficiently strong potential modulation and
(iii) to achieve a sufficiently high mobility modulated 2DEG such that broad-
ening due to impurities and inhomogeneities does not obscure the minibands.
One approach to meet these conditions seems to be provided by the growth
of lateral superlattices on vicinal surfaces. The original idea steams from P.
Petroff [Petroff 84]. The idea consists of the deposition of fractional mono-
layers (GaAs),,(AlAs), with p = m 4+ n ~ | in a monolayer by monolayer
growth on vicinal surfaces.

It was four years later that the first successful growth of lateral super-
lattices could be reported by transmission electron microscope micro-graphs
[Gaines 88]. The substrates which are used were GaAs substrates deliberately
misoriented with a surface normal oriented 2° from [001] toward [110]. The
average Al - composition is 50 %. These results are little later reproduced by
Hirokoshi’s group [Yamaguchi 89]. It becomes clear by regarding the TEM
micrographs that the tilt of the lateral superlattices depends strongly on the
coverage ratio p. Indeed, if the lateral superlattice coverage (GaAs and AlAs)
differ from one by € then the lateral superlattice is tilted with the tilt angle
(3 = arc(tan €¢/a) where « is the misorientation angle of the vicinal surface.
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Figure 4.1: Sketch of a serpententine superlattice (a) and a tilted lateral super-
lattice (b) .a): An intentional change of the per - cycle coverage during growth
leads to serpentine superlattices [Miller 85]. b): The substrate is not turned during
growth. Due to a lateral flux gradient, there are zones on the sample, where the
lateral superlattice is tilted and other where not.
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To circumvent this difficulty, Miller et al. [Miller 91][Miller 92] proposed
an original structure: the serpentine superlattices (see Fig. 4.1.a). The idee
consists of sweeping intentionally the per - cycle coverage during growth
through a range including that needed for a vertical (untilted) structure.
Additionally, the sample was rotated (one rotation per monolayer) to avoid
any lateral flux gradient. The disadvantage of these structures is that the
width of the lateral superlattice (in growth direction) is very small.

Another approach to succeed in non - tilted lateral superlattice was pro-
posed by F. Laruelle [Laruelle 97]: The substrate is not turned during
growth. Due to the lateral flux gradient, one thus has zones, where the
lateral superlattice is tilted and zones, where the lateral superlattice is ver-
tical. Moreover, F. Laruelle could show that the relevant parameter is not
the tilt angle 3 but the product Ne (N is the number of lateral superlattice
monolayers) as far as electronic properties are concerned [Laruelle 97](Fig.
4.1.b). It is the latter approach which is chosen in this work.

The optical properties of these tilted and untilted superlattices were an-
alyzed in a systematic study as a function of the lateral periodicity by Bloch
[Bloch 94]. She could demonstrate that pronounced features due to the lat-
eral potential modulation are exhibited in the polarization spectra, when
taking a periodicity of 32 nm. These structures in the polarization spectra
diminish when diminishing the period of the lateral potential modulation, e.g.
taking vicinal surfaces with smaller terrace length. This is due to the stronger
coupling of the quantum wires. By this experiments, e.g. the strength of the
features depends on the terrace length, it is equally demonstrated that the
observed features are due to the formation of a lateral superlattice and not,
for example, due to anisotropic AlAs island formations.

In this section the idea of the structure and fabrication of lateral super-
lattices on vicinal surfaces shall be developed in more detail: first the grown
structures are discussed, next the growth conditions are explained and fi-
nally, the way, how the structures are processed, is described. It shall be
emphasized that the achievement of low disordered lateral superlattices is in
praxis quite difficult. The difficulties are mainly due to the great number of
critical parameters during preparation of the substrate and growth (quality
of the substrate, purity of the products, used for the chemical etching, purity
of the water, precision of the indication of the temperature during growth,
purity of the cells, ...) which are not always well known.
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4.1 Doped Lateral Superlattices

Fig. 4.2 shows a typical structure of a doped lateral superlattice: One starts

001
(001
N gl <7doping layer Si
[110]
1000A Barrier Ga g7Al0.33AS
lateral superlattice:
(GaAs)a20/(AlAS) 1720
vertical superlattice
GaAs)y/
300 A (
(Gap.67Al0.33AS)1
4000A

Substrat GaAs

(misorientation 0.5°)

Figure 4.2: A typical structure of the samples studied in this work. The lateral
superlattice is embedded in the heterostructure.

with a vicinal surface substrate on which one grows ~luym GaAs. The pur-
pose of this layer (called "buffer”) is to smooth the surface. Next, one grows
a vertical superlattice which has a double function:

e It serves as a barrier for the electrons which will be confined in the
lateral superlattices.

o It purges the impurities, improving thus the quality of the heterostruc-
ture.
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A channel of typical 30 nm is grown in which the lateral superlattice is
embedded (with an averaged Aluminium content between x4, = 5% and 7%).

It follows the barrier (averaged Aluminium content typically x4 = 33%)
with two planes of Silicon doping. The first plane assures the charge transfer
in the heterostructure, the second plane satisfies surface states. The spacer,
which is the distance between the heterostructure and the first plane of Sili-
cium varies between 9 and 20 nm, according to the desired charge transfer.
To hinder the oxidation of the sample, one finishes the growth by passivating
the sample with 10 nm GaAs.

How these structures are obtained technologically, shall be described in
the next paragraphs.
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4.2 Growth Conditions

Substrate Choice Substrates for the lateral superlattices growth were
semi - insulating GaAs wafers grown by the liquid encapsulated Czochral-
ski technique obtained by Sumitomo. In all the structures studied here the
misorientation angle is 0.5°, corresponding to a terrace length L = 32 nm.
This terrace length was proven to be the best [Bloch 94]: Shorter periods en-
hance the coupling in the lateral superlattices and thus leading to an effective
smaller potential modulation. Larger lateral terraces have for consequence a
greater disorder, since a great part of the atoms stick to the surface before
reaching the step-border, e.g. the averages diffusion length is smaller than
a terrace length for the temperature range chosen in this work [Lelarge 96].
(The reason for the chosen temperature is given later.)

Substrate Preparation The best vicinal surface quality and luminescene
and electronic results were obtained when the substrate was treated by a
chemical attack just prior to loading into MBE. This substrate preparation
consists of a degreasing procedure (two trychlorethylene and two isopropanol
bath), an etch in an 4:1:1: solution of HySO4:H2045:H,0 for 80 s., followed
by a thorough rinse in deionized water. This substrate preparation proved to
be a critical and very important step in the successful fabrication of lateral
superlattices. The highest possible purity of each ingredient is absolutely
necessary. An empirical method to estimate the quality of the substrate
after the chemical attack is the time between the start of the growth on the
substrate and the appearance of the splitting (see RHEED -measurements!).

Desoxidation The MBE chamber is equipped with an introduction cham-
ber and three ultrahigh vacuum chambers (introduction, analyse and transfer
chamber) and one growth chamber. The substrate are attached with Indium
on a molybden sample holder which has been degassed approximately 12
hours at 700°C in the introduction module before.

Substrate and sample are deoxidized in the analyse module at 500° C for
ca. 12 hours just before the growth will take place. The purpose of this
procedure is avoiding the desoxidation of the sample in the growth chamber
in order to keep the evaporation cells as pure as possible. Nevertheless, the
sample will be heated 5 minutes at 650°C under As pressure in the growth
chamber, so that impurities have segregated on the surface will evaporate.

60



RHEED - Monitoring Growth conditions are very critical and have thus
to be controlled in situ. A powerful technique is the in situ RHEED - tech-
nique [Larsen 87]. RHEED (Reflection high electron energy diffraction) is a
very surface - sensitive technique where most of the scattered electron inten-
sity is reflected from just the top couple of monolayers. Thus it gives insight
in the surface morphology of the substrate as well as it reflects the growth
mechanism responsible for heterostructures and LSL quality.

Surface morphology of a lateral superlattice

Ewald's sphere
2n/a 2n/lLcosa 2m/L
~ step—split
e e S specular
/ 77 SUTT spot
[001] ,a/ Direct
Beam
[110]

Figure 4.3: Left: Reciprocal lattice construction of a vicinal surface. Right: The
geomelry for monitoring the surface of a vicinal surface is shown [Chalmers 89].
The electron beam is incident from the left and scattered electrons impinge on the
RHEFED screen on the right. An intenisty profile along the central steak is equally
sketched: Due to the vicinal surface, the specular beam is split.

A vicinal surface can be viewed as the convolution of a single terrace of
atoms and a periodic lattice of points, where each point represents a terrace
location [Henzler 74]. Therefore, the reciprocal lattice of the vicinal surface
can be derived as the intersection of the reciprocal lattice rods of a single
terrace with the reciprocal lattice planes of the periodic step lattices. When
the incident beam satisfies a Bragg condition, all reflected electrons are in
phase and form a sharp peak. In an out of phase condition the interference
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from different terraces results in a splitting of the beam into two separate
peaks. The angular separation of the two peaks is determined by the terrace
width [Pukite 84]. If the terrace widths are nonuniform, they will lead to
broadening of the individual peaks. Hence, the peak widths and their sep-
aration give an indication of the step distribution on the surface. Equally,
the time between the start of the growth and the appearance of this splitting
allows to draw conclusions on the surface quality after the chemical etching.
(The splitting can only appear, if the surface is sufficiently smooth that the
perodicity due to the terraces can form a lattice!) Moreover, the steady ob-
servation of these spots allows to improve or adjust adequately the growth
conditions in situ. However, having a well defined splitting of the specular
spot all along the growth is only a necessary condition to obtain a lateral
superlattice with good optical and electronic properties, unfortunately, it is
not a sufficient one!

6 T T T T T T T T 10 T T T T 7]J1r T T1T°7
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Time (s) Growth velocity (A s1)

Figure 4.4: Typical Rheed oscillations (left) and its Fourier transformated (right).
The growth rate is in this case 0.22 nm/s.

Atomic Flux calibrations Before the growth, it is important to know
with high precision the growth rate of each material. The measuring of
the growth rate (e.g. atomic flux calibration) is also done by Rheed mea-
surements, or more precisely by measuring the associated frequency of the
intensity oscillations of the specular spot of the RHEED (see Fig. 4.4).
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The oscillations transmit the variation of the surface roughness during
growth. The Ga - atoms, which hit the surface, react with the Arsenic by
forming islands. Hence, the surface roughness increases and will increase
while the distance between the islands remain greater than the Ga diffusion
length. The change of the surface roughness causes a change in the surface
reflectivity, e.g. the specular spot intensity diminishes. In contrast, when the
distance between the island becomes smaller than the diffusion length of the
Ga - atoms, the adatoms incorporate themselves preferably at the islands’
boundary and the intensity of the specular spot increases again. Once a
monolayer is completed, the majority of the island has disappeared and the
surface becomes smooth again. Accordingly, the periode of the oscillations
correspond exactly to one monolayer. By this method one is able to calibrate
the flux of the elements of group III with the precision of 1 %.

The RHEED - oscillations are measured on a nominal substrat GaAs (2*2
mm) heated to a temperature of 560°C. Nominal Ga-flux is typically set to a
continous growth rate of 0.05 nm/s, the Al-flux to 0.025 nm/s for the MEE
regime (see below) and to 0.2 nm/s (Ga-flux) (0.1 nm/s Al - flux) for the
MBE -regime.

Growth Conditions The decisive fact for the achievement of a low disor-
dered lateral superlattice, is that the adatoms, once deposited on the surface
will migrate to the steps to get incorporated there. Only then a lateral reg-
ular ordered and low disordered superlattice can be realized. The physical
quantity which describes the possibility for an adatom to wander around is
the migration length. This length will depend on the substrate tempera-
ture, the purity of the substrat (because if the surface has a low impurity
amount, the interaction probability of the adatoms is diminished) and the
arsenic pressure. Practically one has to find a compromise between these
physical quantities. It was found in the MEE - method (”Migration en-
hances Method”) proposed 1986 by Horikoshi [Horikoshi 86]: It consists in
interrupting the As - flux while depositing the elements of group III in order
to improve the surface mobility of the adatoms. Naturally, one has to stay
below the critical temperature T., above which the surface reconstruction
changes from (2 x 4) to (4 x 2), transiting from an As - rich surface to a Ga
- rich surface. The optimal growth temperature was demonstrated to be 580
°C [Horikoshi 86](and also taken for all samples grown in this work). Beyond,
one deposits the Ga by quarter - monolayer. Between the depositions, the
growth is stopped, keeping a low As - flux.

By this growth cycle one assures that the surface remains stabilized on
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As (e.g. no Ga - islands can be formed, which is detrimental for the optical
and electronic properties of the structure.)

4.3 Sample Fabrication

To obtain well defined lateral superlattices, besides the high stability of the
materials flux, another prerequisite is necessary: The individual layers must
be stacked exactly on top of each other. This prerequisite is only fullfilled for
a small zone on the grown sample due to the flux gradient of the MBE cham-
ber’s cells. In this work it is the Ga - flux (the lateral superlattice consists to
95% of GaAs), which is dominant, leading to Ga - rich and Ga - low zones,
e.g. to zones, where the lateral superlattice is tilted. The consequence of
the tilt is basically a reduction of the lateral potential modulation (discussed
in 2.2.3). One thus needs a method to find the zone of maximal potential
modulation, e.g. the zone p = 1. How this zone is experimentally found,
shall be briefly described next.

4.3.1 Experimental Detection of the zone p =1

The zone p = 1 corresponds to the zone where the lateral superlattice is
not tilted (see also end of section 2.2.3). Hence, the lateral potential mod-
ulation is maximal, resulting in a maximal spectral shift at the center of
the first miniband, which can be detected by photoluminescence measure-
ments. One "scans” the sample in a distance of Az = 500 ym, and can thus
exactly identify the zone of maximal potential modulation. The maximum

of the energetical shift is accompanied by a maximum in the correspond-
-1

Li=dy”
absorbed light polarized perpendicularly (respectively parallely) to the step
edges [Bloch 94]. In praxis, one takes photoluminescence spectra and linear

ing linear polarization value P, = where 1| (IH) corresponds to an

polarization spectra simultaneously. This allows a cross - check to be sure
about the zone of maximal lateral potential modulation. In Fig. 4.5 a typical
photoluminescence and polarization spectrum is shown, once for the untilted
(p = 1) and once for the tilted zone. Taking these spectres over the whole
sample allows to determine the zone p = 1, which then will be processed for
transport measurements.
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Figure 4.5: Photoluminescence and corresponding linear polarization spectrum for
the zone p = 1 (left) and p #1 (right). As the potential modulation increases, the
absolute value of the polarization rate P,y increases and gets more structured.
The mazimum of the PL spectrum is at lower energy (here 1608 meV with respect
to 1612 meV in the tilted zone) due to the spectral shift at the center of the first
miniband at the Brillouin zone center, allowing to detect the zone p = 1.

4.3.2 Sample Processing

The process to fabricate Hall bars seems to be quite standard. However,
for the first time ohmic contacts (AuGe/Ni/AuGe) as well as non - leaking
gates were succesfully realized on these structures. This is the reason, why
the "working recipies” shall be briefly documentated.

1. Choice of the sample layout:

To measure the resistance corresponding to the perpendicular and par-
allel direction with respect to the lateral superlattice, the sample layout
shown in Fig. 4.6 is used. The advantage of such a sample layout is
that one measures the resistance corresponding to the perpendicular
and parallel direction with respect to the lateral superlattice is mea-
sured at exactly the same place. The sample is patterned by UV -
lithography.

2. Ohmic Contacts
To find the "recipy” to realize ohmic contacts, a modified TLM -
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Figure 4.6: Sample layout used for transport measurements: The central zone is
50*50 pm?.

method [Heiblum 82][Pardo 00] was applied. The best parameters were
to be found: 5 nm Ni/34 nm Ge/68 nm Au/15 nm Ni/15 nm Ge/30
nm Au which were alloyed by the following manner: 5 min. at 110°, 2
min. at 360° and 40 s. at 430°.

3. Realization of a gate

(a) Change of the growth condition

To change the Fermi energy, and hence the electron density, one
needs to be able to apply an electric field between the metal on top
of the sample (= gate) and the electron gas. This will only work,
if no current passes between the gate and the two dimensional
electron gas. Up to now this was one of the technical problems to
overcome in order to get more insight into the physics of modu-
lated electron systems.

Kim and al. [Kim 96] showed that even thick ternary alloy (300
nm Alp 33Gag 7As) barrier between gate and 2DEG do not prevent
a current leakage due to microscopic structural inhomogeneities.
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The idea is that by using (even thick) ternary alloy, there will
always be zones rich on Ga, which allow the current to find a
"way” between gate and 2DEG.

To overcome this problem, it is essential to use a digital alloy
barrier (we find that 100 nm composed of 2 monolayer AlAs / 4
monolayer GaAs is enough to hinder any leakage current). The
idea is that alternating the deposition of AlAs/GaAs prevents Ga
rich zones.

Another crucial point is the reduction of the growth temperature
(typically from 580° to 540°) after the first plane of the doping to
avoid the diffusion of Si towards the surface.

(b) Deposition of the gate
The gate was deposited in two steps: first, 5 nm Ti is deposited.
Since Titanioum is semitransparent, one has the additional pos-
sibility to perform optically measurement. To avoid the non -
functionality of the gate due to (unintended) charges, in a second
step a Ti/Au (20 /200 nm) with holes were deposited (see also
Fig. 4.6).

Once having the sample grown, optically characterized and processed, the
sample can now be investigated by transport measurements.

Before presenting the experimental results obtained in this work, the nu-
merical results shall be discussed. The next chapter starts with the discussion
of the results obtained for unmodulated 2DEG’s and is followed by the one
obtained for modulated 2DEG’s.
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Chapter 5

Numerical Results

In this chapter numerical results obtained during this work are presented. In
the first section, the effect of including higher subbands in the dielectric func-
tion is analyzed. On the basis of this analysis, different screening models can
be defined. The importance of the difference between these screening models
is investigated in section two: Different mobilities - depending on the chosen
screening model - are calculated for the remote ionized impurity and for the
alloy scattering potential as a function of charge density and temperature
and compared. Finally, mobilities of a modulated 2DEG are calculated as a
function of charge density and temperature (section 3). Hereby, the influence
of the scattering angle, the second Fourier coefficient of the lateral potential
modulation and the impact of higher subbands are systematically studied.

All calculations are executed with the following parameters of a het-
erostructure: The Aluminum content in the channel is assumed to be xy;
= 5 %, in the barrier x4 = 33 %, the spacer r, .. = 9 nm, the residual
impurities are Ny = 2.9%10" c¢cm™>, resulting in a charge transfer of N, =
4.5%10" cm™ at T = 4.2K. It shall be emphasized that these parameters
are identical for a modulated and an unmodulated 2DEG (However, in the
case of a modulated 2DEG, the Aluminum content x4 = 5 % is modulated
in one lateral dimension!)

5.1 Screening

In the following, the effect of including higher subbands in the dielectric
function is analyzed.

The motivation to study the effect of including higher subbands in the di-
electric function arises from experimental mobility measurements of unmod-
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ulated and modulated 2DEG. The here presented results are one necessary
part to understand the experimental results.

The first actual calculation of the mobility in the multisubband system
was done by Nelson and Brown [Nelson 74| for bulk Si. Similar calculations
were then performed by many other authors (for example [Ando 76][Stern 78]
[Hai 95]). However, in these references, no comparison between different
screening models were made.

The physical origin of enhanced screening when the second subband is
populated (due to a high charge density (N, >9*10"cm™2) or to higher
temperature (> 40K) shall be first explained.

Principally, one has to distinguish between three different regimes at a
given temperature:

o Ep - Eg <« 6kgT: the electron system is not degenerate.
o Ep - Eg > 6kgT: the electron system is degenerate.

o Er - E; > 6kgT: the electron system is degenerate and the second
subband is occupied.

Hence, the transition from one regime to the other depends on the position
of the Fermi level' with respect to the (fundamental) subband and is thus a
function of the charge density N and the temperature T: at sufficiently low
density or sufficiently high temperature every system will not be degenerate.
Reduced or enhanced charge densities are obtained by the application of
an electric field. The five lowest subband energies, the Fermi level and the
thermal energies kg'T are listed in the following table for T = 0K and T
= 70K for the three different cases N (4.2K) = 2*¥10" em™2, Ny (4.2K) =
4.5%10" em™2, N4(4.2K) = 1*10*% em™2.

As already discussed in chapter 3.6, the screening is described by the
dielectric function. If there is only one subband populated, the dielectric
function is a scalar and is given by [Stern 67]

«(q, T, Ep) =1+ QOF(% TZ’TZI)QH(% L EF), (5.1)
with qp = m*62/27rh2606,,. In the case of including more than one subband,
the dielectric function becomes a matrix which its elements given by

Foapp(Gore,ra)Ups(q, T, Er)
q

[€(Q7 T7 EF)]oz’oe,ﬁ’ﬁ = 5a’a,ﬁ’ﬁ + do (52)

!Fermi level EF is taken as a synonym of the chemical potential. With the Fermi energy
E% is meant the Fermi level at T = 0K, i.e. E% = Ep(T = 0K).
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Ny, = 2el0M em™ | N, = /.5e10* em™ | Ny = lel2 em™2
T (K) 42K 70K 4.2K 70K 4.2K 70K
Ep(meV) 7.69 5.78 15. 17 14.12 33.66 32.01
E[0] (meV) | 87.69 88.40 101.7 102.1 128.9 129.6
E[l] (meV) | 112.1 113.1 128.2 129.3 161.5 164.6
E[2] (meV) | 140.8 141.9 157.3 158.5 190.6 193.8
E[3] (meV) | 154.6 155.9 172.4 174.0 208.7 213.1
E[4] (meV) | 167.6 169.0 185.7 187.3 221.8 226.2
kgT (meV) | 0.35 5.83 0.35 5.83 0.35 5.83

Table 5.1: Subband energies and Fermi levels at T = 4.2K and 70K for the three
charge densities, exemplarily used in the calculations of this chapter.

with the T - dependent polarizibility Il,./(¢,T,Fr) and the form factor F(q,
r,, 7). It shall be reminded that o, denote the initial subbands occu-
pied by the two interacting electrons, and the indices o', 3" denote the final
subbbands.

To show the influence of higher subbands on the screening, the total
transition probability of a screened potential has to be calculated. It is given

by [Sotirelis 93]

| < Earlr) Vi (@ o) Ealr) > P =

| D [e(@)] b5 < Eor(r)IVEL (@, 72)lEs(2) >IP.
6.6

This signifies that one sums over all #-subband transition ”densities”, with 3
the number of subbands one takes into account. It shall be underlined that it
is of no interest to compare single inverse dielectric matrix elements with the
(scalar) dielectric function 1/e(¢) as found in literature [Tang 89]. Rather,
the total transition probability of a screened potential has to be calculated.

5.1.1 Multisubband Polarizibility Matrix

The multisubband static polarizibility matrix for the subbands a and o is
given by [Stern 67]

U(Bo + £, Br) — ¢°(Br + £ ( + @)%, Br)
ot £ (k + 9 — £k

o g
Haa’(Q, T, EF) =2 Z
k
(5.3)
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which can be written in an integral representation [Maldague 78] by

o (4,7, Er) = /OO dE G(Ep — E,T)II° (3, E), (5.4)
0g° 1
G(Er—E.T)= 29 .
(Er 1) oE 4kBTc03h2[€£;f]

11° (g, Er) is the static polarizibility function at T = 0K defined as [Tang 89]

05, T = 0K, Ep) = (5.5)
m* , 2E% .1 mrw_ .
Tllon — sign(wn)? = ST 0" o B, 0(R,)
. 2 %a‘qq 1 miwy 0
[y + signuen )k = 0 o B O(ER, )}
with
hZ—Q
wo = By — By — —1
2m*
R

W+:EQ—EQI+

2m*

EY = EY— E,

Furthermore, sgn(x) = +1 (-1), if x is positive (negative). © is the Heaviside
function.

If only one subband is occupied, equation 5.5 simplifies to the well - known
equation [Stern 67]

2kp

m*
( q

U(GT = 0K, ) = ==(1 = 0(§— 2kp)(1 = L= (=) (5.6)

Inspection of equation 5.4 indicates that the main contribution to the integral
is in the region £ = Ep. The factor G(Ep - E, T) approaches 6( Ep—F) as the
temperature decreases to zero and becomes 1/4kgT for very large T, which
is due to the property of the derivative of the Fermi - Dirac function %. The
behavior of the intrasubband polarizibility matrix element of the ground state
[lgp is shown in Fig. 5.1 as a function of ¢/2k for different temperatures for
N, = 4.5*10" cm™2. For small ¢ the polarizibility is constant and equal to the
density of state :’:—; and diminishes as % for ¢ > 2kp. At higher temperature,
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Figure 5.1: Intrasubband polarizibility as a function of q/2kp for T = 0K, 10K, ...,

70K for Ny = 4.5% 10' ¢m™2%: with higher temperature the polarizibility decreases
for small q.

the polarizibility is weakened for ¢ < 2kp with respect to the case T = 0K
and enhanced for ¢ > 2kp. This is well known [Stern 67]. However, less
well known is that the temperature dependence of the polarizibility function

also depends on the considered charge density, as will be discussed in the
following.

It is important to note that in the case of T > 0K, the decrease of the po-
larizibility for small ¢ is intrinsically related to the temperature dependence
of ¢°(E) and depends on the position of the Fermi level (and hence on the
considered charge density) with respect to the fundamental subband: if Ep
- Eo is small (slightly degenerate system), the polarizibility will diminish as
soon as the temperature increases (and hence 6kgT > Ep - Eg; in opposite,
if 6kgT < Ep - Eg (strongly degenerate system), the polarizibility is hardly
temperature dependent. This behavior is depicted in Fig. 5.2 where the
intrasubband polarizibility of the fundamental subband is calculated a) for
a weakly degenerate case (N = 2*10* ecm™2 E} - Eg = 7.7 meV at T = 0K
and b) for a strongly degenerate case (N; = 1¥10'? cm™2, E%. - Eg = 33.7 meV
at T = 0K. While the polarizibility matrix elements remain nearly constant
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Figure 5.2: Polarizibility as a function of q/2kp in the case for an undegenerate
(left) and degenerate (right) 2DEG. While in the case of an undegenerate 2DEG the
polarizibility depends strongly on the temperature, the polarizibility of a degenerate
2DEG remains almost temperature independent.

between T = 0K and T = 70K for the strongly degenerate case (b), it dimin-
ishes for T greater than T = 20K for the weakly degenerate case (a). This
is easily understandable by looking at Fig. 5.3, where the derivative of the
Fermi Dirac function (according to the corresponding temperature), centered
at each Fermi level Ef (corresponding to the undegenerate case) is shown.
(Note that the Fermi level is in the given examples almost temperature inde-
pendent and thus the temperature dependence of the polarizibility function
is in first order determined by the Fermi - Dirac function.) In the case for
the weakly degenerate case, at T > 20 K, when integrating d¢°/0FE, one
"looses” states on the lower energetical side, since no states for E < Eq exist.

Oppositely, for the strongly degenerate case, dg°/JF is always integrated in
a range pu £ 6kT > Eo.

Another important feature are the intersubband polarizibility matrix el-
ements, which shall be discussed next. As one can see from equation 5.5,
one expects also intersubband contributions, even if only one subband is be-
neath the Fermi energy, since one term in equat. 5.5 will be different from
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Figure 5.3: Sketch of the integration limits for the polarizibility function: as soon

as 6kgT>Fy, the polarizibility matriz elements diminish for ¢ < 2kp due to the
non - existence of states with E<Fy.

zero. This is shown in Fig. 5.4, where the intersubband polarizibility matrix
elements Iy, with a = 0...4 for T = 0K are shown.

The Fermi energy is 16 meV above the first energy level, thus 12 meV be-
neath the second one. As seen in the figure, the intersubband polarizibility
ITp; matrix element is non - vanishing: it has a value of ~ 60 % of the intra-
subband matrix element Ilgg. Naturally, the magnitude of the intersubband
polarizibility elements 11, depends on the position of the Fermi level with
respect to the subbands «, o/, determining the intersubband matrix elements
II,,. In Fig. 5.5 the intersubband matrix element Ily; is shown for different
Fermi energy positions: as the Fermi energy E%. approaches the second sub-
band, the polarizibility increases, thus resulting in an enhanced screening.
However, if the Fermi energy is far away from a subband, the contributions
from this intersubband polarizibility element are negligible. This justifies a
n - subband approximation (with an n - subband approximation is meant
that only the n lowest subbands are considered and all higher subbands are
neglected.) Already at this point it becomes obvious that taking only one
subband into account leads to an underestimation of the screening. Natu-
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Figure 5.4: Intersubband matriz elements as a function of q/2kp for T = 0K:
with increasing distance E, - EY., the strength of the matriz element decreases.

rally, the error committed by only taking one subband into account becomes
more pronounced at higher temperatures and or higher charge densities when
energetical higher subbands are occupied.

The result that higher, unoccupied subbands contribute to the screening,
even when they are above the Fermi level, is at first glance a surprising fact.
These classical not allowed transitions to states above the Fermi level are
due to the quantum mechanical allowed virtual transitions [Hai 95].

The second important term to determine the strength of the interaction
(e.g. in which way the interactions are screened) is given by the formfactor
Faorap3(q) (equation 5.2) which will be discussed next.

5.1.2 Formfactor

The formfactor

Fatas(@,reyra) = [ dradra€an(ra)a(ra)ésr)Ealr)e(—alr = ral) (5.7

is due to the finite extension in the r, - direction of the wavefunctions of the
quasi two - dimensional electron system [Bastard 88]. Its role is to average
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Figure 5.5: Intersubband matriz element gy for different positions of the Fermi

energy at T = OK. The contribution increases as the Fermi energy approaches the
second subband.

over the charge distribution in the quantum structure. Naturally, it does not
depend explicitly on the temperature. Taking a two subband structure, one
obtains six different form factors which are depicted in Fig. 5.6 as a function
of ¢q/2kp. They are all of similar value at large ¢. In the limit ¢ — 0, the
form factors for interactions which involve intrasubband transitions tend to
unity, while the form factors for interactions involving intersubband transi-
tions tend to zero. This is due to the orthogonalization of the wavefunctions.

Before comparing transition probabilities (e.g. mobilities) for different
interaction potentials for an unmodulated 2DEG, one effect, which will turn
out to be of special importance for modulated 2DEG’s shall be emphasized:
The importance of taking higher subbands into account, depends also on the
considered scattering vector ¢. This is immediately clear, if one looks once
again at Fig. 5.1. At greater ¢, regardless of the temperature, the polariz-
ibility becomes similar; oppositely, at smaller ¢ the polarizibility depends for
lower charge density on the temperature. This behavior is visualized in Fig.
5.7: The transition probability for remote impurity scattering is calculated
as a function of temperature for two different values of the scattering vector
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Figure 5.6: Formfactors for a system of two subbands: for large q, they are all of
stmilar value, whereas at small g the formfactors involving intersubband transitions
tend to unity whereas the one involving intersubband transitions become equal to

ZETO.

g, once in the frame of a one subband dielectric function model, once while
taking five subbands into account. For this calculation the band structure is
always the one calculated at T = 0K. Consequently, all temperature effects
arise solely from the polarizibility function.

The effect of diminishing the unscreened potential modulation is more
important for smaller ¢ and especially in the temperature range between 40
- 60K. As expected, taking higher subbands (here five) into account, results
in a smaller effective scattering potential. The difference between the one
subband approximation and five subband approximation becomes more im-
portant at higher temperature. For comparison, the transition probability
when taking a temperature independent one subband dielectric function is
also shown (in a thin line). It is remarkable that within the temperature
range of this work (up to 70K) one commits a smaller error by taking a tem-
perature independent €(§) (with respect to the the temperature dependent,
multisubband dielectric function), than taking the temperature dependent
one subband dielectric function. This is easily understandable, because the
temperature dependence of ¢(¢) and the inclusion of more than one subband
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Figure 5.7: Transition probability for remote ionized impurity scattering as a
function of temperature for two different values of the scatlering vector ¢, once
while taking one subband, once while taking five subbands into account: The effect
of enhanced screening due to higher subbands is the more important, the smaller
the scattering vector is.

have the tendency to compensate each other: having reduced polarizibility
matrix elements at higher temperature (e.g. the screening is reduced), the
inclusion of higher subbands results in an increase of the screening (due to
the contribution of intersubband polarizibility matrix elements). This, once
again is more pronounced for small ¢ - vectors, where the variations of the
polarizibility as a function of temperature is more important.

5.2 Effective Interaction Potentials for Un-
modulated 2DEG’s

The impact of the in the previous section discussed enhanced screening on the
mobility shall be discussed. For this reason, the mobility limited by remote
ionized impurity scattering and the mobility limited by alloy scattering is
calculated as a function of charge density and temperature for the following
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different screening models:

e model 5 subbands: when calculating the dielectric function, the five
lowest energy subbands are taken into account.

e model 2 subbands: when calculating the dielectric function, only the
two lowest subbands are taken into account.

e model 1 subband: when calculating the dielectric function, only the
fundamental subband is taken into account. This means that every
matrix element is screened by the dielectric function of the first sub-
band, regardless to which subband the states belong to.

e model 75 subbands, no intersubband screening”: This is a model which
is also quite often found in literature: it consists of neglecting all inter-
subband screening, e.g. every transition is screened by the proportional
dielectric function matrix element respectively e.g.

< a|Vd§§’}|a’ >

Caar(G)

< Vel >=

e long wavelength limit approximation ("Thomas - Fermi approxima-
tion”): In this approximation, the small ¢ limit is assumed, regardless
of the scattering vector ¢ of the considered transition, e.g. the polariz-

ibility is I1(§, T) = 11 (0, T).

It shall be reminded that the two considered scattering potentials have a
different scattering vector dependence. This is visualized in Fig. 5.8, where
the transition probability | < 0[V***|0 > |? is calculated as a function of
the scattering vector q. The remote ionized impurity scattering favors small
angle scattering (the most probable q is at about qp..6.~0.1 kg). Since the
q - distribution is peaked around q..., the averaged q (<q>) is equally
approximately 0.1 kg. In contrast, the alloy scattering potential favors scat-
tering processes, involving large scattering vectors, leading to a qpurop.~2kp.
Due to the large q - distribution, <q> is approximately given by kg. This
different q - dependence leads to the well known charge density and temper-
ature behavior of the mobilities attached to these scattering potentials (Fig.
5.9) [Hirakawa 86]: The mobility limited by remote ionized impurity scatter-
ing increases with increasing charge density and with increasing temperature
(Fig. 5.9.a), whereas the mobility limited by alloy scattering decreases with
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Figure 5.8: The transition probabilities | < 0|V,;|0 > |? as a function of q/2kp
for the screened remote ionized impurity scattering (left) and for the screened alloy
scattering potential (right): Remote ionized impurities favor small angle scattering,
whereas the alloy scattering potential favors large angles scattering, spread in a

large q - distribution.

increasing charge density and temperature (Fig. 5.9.b). This is discussed in
more detail in [Hirakawa 86].

To evaluate the differences between the above present screening models,
in Fig. 5.10 the mobility limited by remote ionized impurity scattering (a)
and limited by alloy scattering (b) is calculated as a function of charge density
for T = 0K for the above discussed screening models.

One distinguishes three different zones:

1. Ny <« Nj(eintersubband): only one subband is occupied.

2. Ny = Ny(intersubband): the second subband starts to be populated.
This becomes obvious in the mobility by a decrease due to intersubband
scattering.

3. N5 > Ny(intersubband): the first and second subband are populated.
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Figure 5.9: Mobility limited by impurity scattering (a) and by alloy scattering
(b) as a function of temperature for three different charge densities: The mobility
increases with increasing charge density and with increasing temperature in the case
of remote tmpurity scattering, whereas it decreases in the case of alloy scattering.
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different screening model. Including higher subbands in the dielectric constant,
becomes especially important when the second subband starts to be populated.

83



Looking on the different curves in Fig. 5.10.a (remote ionized impu-
rity scattering), the difference between including one or five subbands in the
dielectric function is more pronounced when the second subband becomes
populated. In the inset of Fig. 5.10.a, the relative difference between the
mobilities, including five or one subbands in the dielectric function is shown.
The difference increases gradually with increasing charge density and be-
comes significant as soon as the second subband is populated. Regarding
Fig. 5.10.b (alloy scattering), one basically finds the same results of enhanced
screening when N3N (intersubband) as in the case of remote ionized impu-
rity scattering. However, the difference between the five subband model and
the one subband model is less pronounced. As the second subband gets pop-
ulated, the mobility limited by alloy scattering decreases 19% when including
five subbands in the dielectric function, whereas including only one subband
leads to a mobility drop of 40%. This is consistent with the above explained
q - dependence of the effect of enhanced screening: as smaller the scattering
vector q is, as greater is the effect of the inclusion of higher subbands in the
dielectric function.

Calculated results of other screening models are equally shown. Sup-
pressing contributions from intersubband matrix elements in the dielectric
subband calculations turn out to be a fairly good approximation, differing
7% from the as most exact considered five subband screening model. Thus, to
simplify the numerical calculations, one can justify for remote ionized and for
alloy scattering in the here considered charge density range the intersubband
matrix elements. Naturally, the long wave length approximation (Thomas
Fermi approximation) overestimates the screening, thus calculating a higher
mobility. There is no significant difference to observe between taking two
or five subbands into the screening model into account. The difference be-
comes greater as one approaches the third subband (not shown here). This
demonstrates the justification of taking (n + 1) - subbands into account,
when calculating the dielectric function, where n is the number of occupied

subbands.

In Fig. 5.11 the temperature dependent mobility for a charge density of
ng = 4.5*10" ¢m™? is shown for remote ionized impurity scattering (a) and
alloy scattering (b) for different screening models. In the insets the relative
increase of the mobility, when taking five subbands into account with respect
to the one subband screening model is shown as a function of temperature.
Once again, it is obvious that taking higher subbands into account becomes
more important when higher subbands are populated, thus at higher tem-
perature (resulting in a difference in the calculated mobilities up to 35% at

84



a)

400

i 35 Remdteimpurity ‘scattering
|2 n =4510" cif
o -2
"o 2|
o é
I B
= g
NEo -2 © 70 sh: 2
023 TemperaturéK) Sb: 5’
X no inter.
2 |
E
o
=
150 | | ! ! ! |
0 10 20 30 40 50 60 70
b) 210 ‘ ‘ _
Alloy Scattering
ng=4.5 16 cn?
HA
|(/)
T &5 |
> / ’
N ) 2
z |8 @5
% L2 no.in'ter.
= é
z LA sb: 1
= 0 70 |
TemperaturgK)
150 ‘ : : ‘ ‘ ‘
0 10 20 30 40 50 60 70

Temperature (K)

Figure 5.11: Mobility limited by remote ionized impurity scattering (a) and for
alloy scattering (b) for different screening models: at higher temperature the mobil-
ity when taking higher subbands into account is up to 35 % higher (remote ionized
impurity scattering) with respect to a one subband dielectric function.
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T = 70K, when remote ionized impurity is considered). Integrating II(g, T,
Er) at higher temperature has the contribution of intersubband polarizibility
matrix elements in the dielectric function calculation for consequence. This
can be nicely seen by comparing the results of the 2 (or 5 subband) screen-
ing model with the five subband screening model, neglecting intersubband
contributions: at low temperature the difference in the mobility of these two
calculations is solely due to the intersubband matrix element Ilg,, o denot-
ing upper subbands. As the temperature increases, higher subbands become
populated, resulting in a more efficient screening by the following processes:

e the intrasubband polarizibility matrix elements of higher subbands
start to contribute. This is documented by the beginning difference
between the model "five subbands no intersubband transition” and the
model taking one subband into account: between T = 0K and T = 30K,
there is no difference between the two models, showing that there are
no intrasubband contributions from higher subbands. From T = 30K
on, a difference of the two models can be remarked, becoming greater
at higher temperature.

e equally, the intersubband contributions increase slightly. This mani-
fests itself by the difference between the models "five subbands” and
"five subbands no intersubband transition”, which increases slightly
with temperature. However, this contribution is far less important
than the contribution due to the intrasubband polarizibility of higher
subbands.

Remarkably, the difference of including five subbands instead of one in the
dielectric function is five times more pronounced for the impurity scattering
potential than for the alloy scattering potential. This is due to the different
q - dependence of the considered scattering potentials and the fact that the
effect of enhanced screening is more dominant at smaller scattering vector.

In conclusion, a significant difference between a screening model taking
higher subbands into account and the one taking only one subband into
account becomes apparent at higher temperature and higher charge density.
Taking higher subbands into account, the screening is more efficient, resulting
in a higher mobility. In a simplified picture, this corresponds well to the idea
that going from 2D to 3D, the Coulomb interaction V(q) changes from 1/¢
to 1/¢* implying a better small q screening.

The consequence of this ¢ - dependent effect of the multisubband screen-
ing will be even more interesting for modulated 2DEG’s. The reason for this
will be explained in the next section.
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5.3 Effective Interaction Potentials for Mod-
ulated 2DEG’s

To deal with a modulated 2DEG means looking at the bridge between a two
- dimensional and a one - dimensional electron gas. Interesting new effects
are expected due to the lateral potential modulation in one direction.

This section discusses these effects (with respect to an unmodulated elec-
tron gas) and shows, how they manifest themselves in the transport prop-
erties of a modulated 2DEG. Similar calculations were already made 1979
by T. Ando [Ando 79]. However, he only assumes a short range scattering
potential and discusses only the energy range around the first minigap. Addi-
tionally, he does not discuss temperature dependent effects. In the following
the parallel and perpendicular mobility of a lateral modulated 2DEG are
discussed for both a long range scattering potential (remote ionized impu-
rity scattering) and a short range scattering potential (alloy scattering) as
a function of charge density as well as temperature. This discussion allows
to show how the parallel and perpendicular mobility of a modulated 2DEG
is changed due to the modified bandstructure, i.e. due to the minigaps and
minibands in the perpendicular direction.

The discussion will be mainly based on regarding the change of the Fermi
surface, as the Fermi energy is swept through the band structure, and its
consequences for the transport properties. All Fermi energy surfaces will be
presented in reduced Brillouin zone.

As already stated, in the best realized lateral superlattices of this work,
the potential modulation has an estimated potential modulation peak to
peak of about V,, ~ 15 meV and the periodicity is given in these samples
by the terrace length L., = 32 nm, corresponding to an inclination angle
of 0.5°. One thus finds Ap ~ L; and Er ~ V,,, leading to a strongly
modulated electron system. Their Fermi surfaces are expected to be strongly
modified with respect to the unmodulated case: Due to the lateral periodical
potential modulation, minigaps and minibands arise in the direction of the
lateral potential modulation, leading to the modification of the Fermi surface
and thus changing the transport properties of the considered modulated two
dimensional electron gas. The way, in which the Fermi surface differs from
the isotropic two dimensional Fermi surface depends naturally on the position
of the Fermi energy with respect to the band structure of the modulated two
dimensional electron gas.

In Fig. 5.12 three band structures with its corresponding Fermi surfaces
are depicted: in Fig. 5.12.a, the Fermi energy is in the middle of the first
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Figure 5.12: Bandstructures (a) at T = 0K and corresponding Fermi surface (b)
Jor different positions of the Fermi energy. From left to right: E%€ Egazzd’ ES.€
Eglap and E%.€ E}()an' The first and second minigap are indicaled by zebras. As
the Fermi energy is in the second miniband, "lenses” due to the second miniband
appear in the Fermi surface. At higher enerqgy, the second subband is equally visible.

miniband (E%.€ Egild) The corresponding Fermi surface does not differ sig-
nificantly from the one of a 2DEG, e.g. differs only little from a circle. For
this reason one does not expect a great difference of the transport properties
of a modulated 2DEG with respect to an unmodulated electron gas in this
energy range. In Fig. 5.12.b, the Fermi energy is in the first minigap E%.€
Ega)p The corresponding Ferml surface is strongly modified with respect to
an isotropic Fermi surface. As the Fermi energy approaches the second mini-
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band, the minigaps become greater. Consequently, the deviation from the
Fermi surface of an unmodulated electron gas becomes more important. The
deviation is greatest just before the Fermi energy enters the second miniband
and its magnitude depends naturally on the strength of the lateral poten-
tial modulation. Once the Fermi energy has crossed the second miniband
(Fig. 5.12.c), "lenses” due to the second miniband appear at the edges of
the Brillouin zone in the Fermi surface. As the Fermi energy increases, these
”lenses” become larger.

In the following, the mobility of a modulated 2DEG and especially the
consequences of the distortion of the Fermi surface for the mobility shall be
investigated. In a first step, numerial results as a function of Fermi energy
at T = OK will be presented. In a second step, the temperature dependence
of the transport properties is discussed.

Comparing the mobility limited by remote ionzed impurity scattering
(long range scattering potential) with the mobility limited by alloy scat-
tering (short range scattering scattering) gives the possibility to sensor or
analyze the particular feature of the Fermi surface of a modulated 2DEG in
two different approaches: The characteristic of the remote ionized scattering
potential is the small angle scattering. One thus is especially sensitive to the
local change of the Fermi surface. Contrarily, regarding the alloy scattering
potential, one gets an averaged, global view of the Fermi surface, since the
averaged scattering vector is rather great (around kg, see section 5.2).

5.4 Mobility as a Function of Fermi Energy

In this section, the temperature is always assumed to be T = 0K. The Fermi
energy is changed by changing the charge density. Since the calculations are
performed at T = 0K, the Fermi energy corresponds to the kinetic energy of
the electrons. The strength of the lateral potential modulation is assumed

to be V,, = 23 meV, leading to a first minigap of size Egla)p =6 meV and a
(2)

second minigap of size Eﬁ)p =9 meV (le = 2.0). The scattering angle 6 is
taken as the one between the group velocities of the states k and k' in the
discussion of the general behavior of the mobility, e.g. § = 65, and only one
subband is taken into account while calculating the dielectric function. In a
first approach, the general behavior of the mobility of a modulated 2DEG as
a function of Fermi energy shall be discussed for remote ionized impurity and
alloy scattering, in a second step, the influence of the following parameters
on the mobility shall be discussed in detail:
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L. the scattering angle 0. "against” the scattering angle 0y,

2. the influence of the second Fourier component of the lateral potential
modulation,

3. the influence of taking higher subbands in the dielectric function into
account.

It shall be reminded that the parallel (perpendicular) direction corre-
sponds to the direction, which is parallel (perpendicular) to the lateral po-
tential modulation. Hence with parallel (perpendicular) mobility is meant
the parallel (perpendicular) component of the mobility.

5.4.1 Small Angle Scattering Potential

It shall be reminded that the remote ionized impurity potential is given by

- —e*Z; 1
VELR) = S 5.8
) = et (5.9
—e*Z; 2m A
= - 7r _e_q|7’z—7’2,;|€—ZQ(7’—7’i) 59
Amege, S (;(%) q (5.9)

and favors strongly scattering processes with small scattering vector ¢ (see
Fig. 5.8).

In Fig. 5.13, the parallel (a) and perpendicular (b) mobility limited by
remote ionized impurity scattering is shown as a function of Fermi energy.
As a reference , the mobility of an unmodulated 2DEG with the same struc-
ture parameters is shown (dashed line). The energy of the minibands and
minigaps are indicated by vertical straight lines.

The behavior of the parallel and perpendicular mobility limited by remote
ionized scattering can be explained by the following two features:

1. the scattering potential favors small angle scattering, leading to a gen-
eral increase of mobility with increasing Fermi energy. This general
behavior is equally shown in Fig. 5.9.a for an unmodulated 2DEG.

2. the density of state increases drastically on the energetical lower side
of a minigap, decreases like 1/v/E (one -dimensional behavior) in the
energy range of the minigap and a has a step function like increase at
the onset of a miniband (see. Fig. 2.13).
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Figure 5.13: Parallel (a) and perpendicular (b) mobility as a function of Fermi

energy: As soon as Y. >

bind’ the parallel mobility is strongly enhanced whereas

the perpendicular mobility is reduced by a factor of ten with respect to an unmod-
ulated 2DEG. Equally shown is the mobility of an unmodulated 2DEG (dashed

line).
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The different energy ranges E%.€ E(()Bld, E%e Eg}l)p, E%e E,(jzld and E%.€
Eé?l)p of Fig. 5.13 shall be discussed:

o BYe B,
The parallel and perpendicular mobilities are similar to the one of an
unmodulated 2DEG, if the Fermi energy is in the energetical lower
part of the first miniband, since the Fermi surfaces of an unmodulated
and modulated 2DEG are similar in this energy range. As the Fermi
energy approaches the first minigap, two effects become important:
a) The density of states increases drastically, leading to an enhanced
scattering probability and thus to a reduction of the mobility.
b) Due to the distortion of the Fermi surface, when the Fermi energy
approaches the first minigap, the parallel velocity component increases
while the perpendicular velocity component decreases. This explains,
why the decrease in the perpendicular mobility (Fig. 5.13.b) is stronger
than the decrease of the parallel mobility (Fig. 5.13.a).

o E2€ E(Y)
parallel direction:
The mobility increases drastically with respect to an unmodulated
2DEG. This is due to the flattening of the Fermi surface. As a the
consequent, the scattering angle 05, decreases: 0g. < 0p for scattering
processes taking place in the first miniband.

perpendicular direction:

The most striking feature is that the mobility barely increases with in-
creasing Fermi energy (e.g. for the chosen parameters about ten times
less than for an unmodulated 2DEG). This is mainly due to the flatten-
ing of the minigaps and thus the reduction of the perpendicular velocity
component.

o Bjc B,
As the Fermi energy enters the second miniband, a step function like
decrease appears in the parallel as well as in the perpendicular mobility:
this is related to the step like increase of the density of states [Cole 77].
Because of the increase of the density of states, the scattering time and
consequently the mobilities diminish, when the Fermi energy enters the
second miniband. As the Fermi energy increases, the "lenses” of the
Fermi surface, corresponding to the second miniband become greater,
leading to the increase of the mobility attached to the states of the
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second miniband. This increase of mobility has thus the same physical
origin as the mobility increase which is seen in an unmodulated 2DEG.
However, as the Fermi energy increases, another effect (besides the
increase of the density of states) becomes more important and finally
dominant: the umklapp process (e.g. backscattering process), leading
to a new decrease of the perpendicular mobility. A detailed explanation
is given in 5.4.4.

E%e E2)
parallel direction:

Once the Fermi energy enters the second minigap, the umklapp pro-
cesses are reduced for the parallel direction. The parallel mobility fol-
lows basically the one of an unmodulated 2DEG. As the Fermi energy
increases, the Fermi surface become flatter, resulting in an increase of
the mobility.

perpendicular direction:

Oppositely, the perpendicular mobility increases barely. This is under-
standable by looking on Fig. 5.14. The first and second miniband are
close to each other and interminiband scattering becomes important.
They are the most important for states k; ~m /L, , because for these
states the minibands are close in the k - space and hence only a small
scattering vector is necessary. These interminiband scattering processes
become more important with increasing Fermi energy. As sketched in
Fig. 5.14, these scattering processes involve a large scattering angle
0z.. Consequently, the perpendicular mobility remains low.

Having gained an understanding of the general behavior of the mobility

of a modulated 2DEG for scattering potential, which favors small angle scat-
tering, it shall now be looked on the mobility of a modulated 2DEG for a
scattering potential, which favors rather large angle scattering processes.

5.4.2 Large Angle Scattering Potential

As it has been previously shown (Fig. 5.8), the probability is maximum for a

scattering vector q = 2k, resulting in an averaged q~ kr. Moreover, it shall

be reminded that the screened alloy scattering potential (which enters in the

scattering matrix elements) does have a scattering vector dependence due to

the ¢ - dependent dielectric function. Especially, the scattering probability
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Figure 5.14: Fermi surface corresponding to the position of the Fermi energy in
the second minigap. For states vicinal to k; = 7 /L, , interminiband scattering
becomes tmportant.

for the screened alloy scattering potential goes to zero as g goes to zero (due
to the divergence of the dielectric function for ¢ = 0).

Regarding the parallel and perpendicular mobility (Fig. 5.15) limited by
alloy scattering, one finds again special features which are due to the behavior
of the density of states:

o Bf€ Ef),
The mobilities decrease as a function of energy as in the case of an

unmodulated 2DEG.

o E%.c E()
Interestingly, the parallel and perpendicular mobility have an opposite
behavior: whereas the parallel mobility increases as the Fermi energy
increases, the perpendicular mobility decreases. This is again due to

the flattening of the part of the Fermi surface, corresponding to the first
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Figure 5.15: Parallel and perpendicular mobility of a modulated 2DEG lim-
ited by alloy scattering as a function of Fermi energy: The mobilities are
not a monotonously decreasing function of energy (in contrast to a 2DEG

behavior).

miniband. Consequently, the parallel velocity component is increased,
whereas the perpendicular velocity component is decreased.

o Bl B,
In this energy range, the mobility behavior is reversed: whereas the
parallel mobility decreases, the perpendicular mobility increases in the
lower part of the second miniband. As the Fermi energy increases, the
perpendicular mobility saturates and then decreases.

The decrease of the parallel mobility is the same as seen in an unmodu-
lated 2DEG. The perpendicular mobility increases due to the "lenses”
which are now seen in the Fermi surface, corresponding to the second
minibands and increasing the averaged perpendicular velocity compo-
nent.

o E2e E(2)
The mobilities have about the same behavior as in the first minigap
due to the same physical reason.
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Summarizing the general behavior of the mobility limited by remote ion-
ized impurity scattering and limited by alloy scattering, one notices the fol-
lowing effects: The mobility decreases, as the Fermi energy approaches a
minigap. As the Fermi energy enters a miniband, e.g. the second one, a
step like decrease of the mobility is seen * The reason is given by the low
mobility and hence the small discontinuity . These characteristics are due
to the dependence of the density of states (e.g. due to the van Hove singu-
larities) and are sometimes called "w” - structure [Matheson 82]. Moreover,
the perpendicular mobility shows special features, i.e. it decreases, when the
Fermi energy approaches the second minigap. These special features are now
analyzed by comparing the mobilities with the one, when having changed one
parameter (e.g. the angle, the form and magnitude of the lateral potential
modulation or taking higher subbands into account, when calculating the
dielectric function).

5.4.3 Scattering Angle 07 ”against” 0}

The parallel and perpendicular mobility limited by ionized impurity scatter-
ing (Fig. 5.16) are shown as a function of Fermi energy, once taking the
scattering angle 6 (the corresponding mobility will be referred to as p(6;))
and once the angle 0z, between the group velocities of the states k and k'
(1(03,), respectively).

This allows to evaluate the difference on the mobility arising from the
choice of angle, which shall be pointed out in the following.

o By€ Ef),

There is no significant difference between the two calculated mobilities,
in agreement with the corresponding energy surface, which is in this
energy range basically a circle, e.g. 07. = 0y.

o By E[),
A significant difference on the slopes between the two curves becomes
obvious. Taking the angle 0., the mobility increases (in the parallel
and perpendicular direction) by a factor 3 faster than taking the angle
0z. This is due to the flattening of the Fermi surface and thus the
"aligning” of the group velocities in the parallel direction, e.g. 0. <

0.

?In the perpendicular mobility limited by alloy scattering, the discontinuity is not seen

because a) the discontinuity is small due to the low mobility and b) the mobility has not

been calculated exactly for the onset of the second miniband, i.e. E% = Egzzzt(z)
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Figure 5.16: Parallel (a) and perpendicular (b) mobility as a function of Fermi
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o« Bhe B,
The discontinuity, which appears as the Fermi energy enters the sec-
ond miniband, is more pronounced in the mobility curves ,u(@gg) than
in the mobility curves p(0z). This demonstrates the effect of the ap-
pearing "lenses” (see Fig. 5.12). Since the curvature of these "lenses” is
stronger with respect to the Fermi surface of an unmodulated 2DEG,
the angle ;. is greater than 0. As the Fermi energy increases, the
mobility ,u(@gﬁ) increases with about the same slope as in the case of
an unmodulated 2DEG, whereas the mobility p(0z) has a slower in-

crease. This is mainly due to the states k= (kj ~0, kp): The k
attributed to these states are smaller in comparison to the & attached
to the Fermi surface of an unmodulated 2DEG. Hence for a given scat-
tering vector ¢, the scattering angle is in average greater. This effect
becomes more important, as the Fermi energy increases (the distance
between the ”lenses” becomes smaller!), leading to a small increase of
the mobility p(6z) as a function of Fermi energy. As the Fermi en-
ergy approaches the second minigap, other processes, however, become
even more important, leading to a new decrease of the mobility: the
umklapp processes. They are more important for the mobility M(Gv};)
than for the mobility p(0z) due to the stronger curvature of the part of
the Fermi surface belonging to the second miniband (”lenses”) with re-
spect to the curvature of a Fermi surface, belonging to an unmodulated

2DEG.
o E%¢ E@)

As the gFgrmi energy enters the second minigap, the umklapp processes
disappear progressively: the mobilities assume a similar behavior to
the one of an unmodulated 2DEG, except the perpendicular mobility
,u(@vﬁ): The effect of the opening of the second minigaps leads to inter-

miniband scattering with great scattering angle (see also Fig. 5.14).

Regarding now the parallel and perpendicular mobility limited by alloy
scattering (Fig. 5.17), one practically does not observe any difference. This
is due to the characteristic of a large angle scattering potential: The Fermi
surface is often crossed (the average scattering vector ¢ is in the order of f;F)
This explains why one does not see any signatures of the local change of the
Fermi surface in the mobility curves, e.g. u(6z) ~pu(6y.).

The partial conclusion can be drawn, that choosing 0, instead of 0
contributes to the enhancement of the anisotropy of the mobility ) and p;
in the case of a long range scattering potential. However, from a theoretical
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point of view, the choice of the angle remains an open question [Ziman 61].

5.4.4 Impact of the Second Fourier Coefficient

In this section it is discussed, how the second Fourier coefficient of the lateral
potential modulation (see also chapter 2.2.2) influences the mobility of a
modulated 2DEG. The motivation for this study arises from experimental
data: The resistivity in the perpendicular direction increases with a greater
slope than for an unmodulated 2DEG as a function of temperature. To
explain these results, scattering processes are needed, which strongly change
the group velocity of the perpendicular direction of the participating states.
As it will be shown, such scattering processes are introduced by the second
Fourier coefficient.

The inclusion of the second Fourier coefficient in the band structure cal-
culation has two related, but nevertheless different effects:

1. Modification of the bandstructure (e.g. flattening of the Fermi surface).
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2. Introduction of umklapp processes which involve two reciprocal lattice
vectors.

These two effects shall be detailed in the following.

In Fig. 5.18, the bandstructures of modulated 2DEG’s, once assuming a
sinusoidal potential modulation and once including a second Fourier compo-
nent are shown.

Without a second Fourier component, the second minigap is small (EgQ)
= 1.3 meV) and consequently one has a greater energy dispersion of the sec-
ond miniband with respect to the case where the second Fourier coefficient is
included in the band structure calculations: in this case, one introduces an
energy gap, comparable to the first energy gap (EgQ) = 9.5 meV). Hence, the
second miniband becomes almost dispersionless with respect to the second
miniband calculated by including only one Fourier coefficient. This results
also in a difference of the corresponding Fermi surfaces: The "lenses” of
the second miniband belonging to the band structure calculations having in-
cluded the second Fourier component are closer at a given Fermi energy (due
to the less dispersive second miniband). How this fact contributes to the
enhancement of the scattering probability is explained next.
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As discussed in chapter 3.7, the scattering matrix element is written the
following:

. 2
|< erlVaigslow > = > {< Vg, r.) ><(r2)} [ap(kL)

q7p7m

e (KPS (R) = Ry = a)S(KL — kL — qu +mx —)

It shall be reminded, that the wave functions @i are written in the form
ok(R) = (1/\/2) exp(ikyr +koiri)X,, np(ky)expli2prry /L1 ]Co(r2), with
p =0, £1,... and (,(r,) the wave functions corresponding to the electrical
subbands of the same structure but unmodulated. The amplitudes a,(k,)
are obtained from the self-consistent band structure calculations, as discussed
in chapter 2.2.3. Without modulation, the only non-zero amplitude is that
corresponding to the miniband index. The important feature is now that
with a lateral potential modulation, each Fourier component V() (= V{=7))
couples states of same wavevector but belonging to minibands with indexes
differing by +p (see Fig. 5.18) by the rule —m - m’— = p (m, m’ are the
miniband indexes).

Fig. 5.19 shows an example for the Fermi surface when the Fermi energy
is close to the second minigap. The most important scattering process which
reduces the perpendicular mobility are given by backward scattering between
the parts of the Fermi surface, corresponding to the miniband (-1) and (+1)
around k; = 0. Such scattering processes (umklapp processes) are only al-
lowed by the second Fourier component. The scattering vector is small (see
Fig. 5.19, ¢ = 2 kp - AIl/ L, ). Since the remote ionized impurity scattering
favors small angle scattering, the process is highly probable, leading to a
decrease of the perpendicular mobility as the Fermi energy approaches the
second minigap.

The importance of the contributions of these states k= (kj ~ 0, ky),
belonging to the extremities of the second miniband are nicely demonstrated
in Fig. 5.20. The transport time T(E) for remote ionized impurity scattering
is calculated for each k - state at T = 0K, once with and once without the
second Fourier coefficient: While there is no difference in the first miniband,
an important difference becomes apparent for states, belonging to the second
miniband. The transport time diminishes, when including the second Fourier
coefficient in the bandstructure calculations, reflecting the importance of the
umklapp processes.

In order to differentiate between the effects which arise from the devia-
tions of the Fermi surface (e.g. flattening of the parts corresponding to the
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Figure 5.19: Sketch of the scattering vector, involved in the scattering processes
between states belonging to miniband (-1) and states belonging to (+1). These
scattering processes are only allowed by the second Fourier coefficient of the lateral
potential modulation.

first miniband and stronger curvature of the parts corresponding to the sec-
ond miniband) and those which are due to the umklapp processes, induced
by the second Fourier coefficient, one is led to regard again Fig. 5.16.b, where
the perpendicular mobility is shown once while taking the angle ;. and once
the angle 6;. Whereas the mobility ,u((%ﬁ) contains both effects, e.g. the
distortion of the Fermi surface and the modification of the wave functions
due to the second Fourier coefficient, the mobility p(0z) is barely sensitive
to the distortion of the Fermi surface. Accordingly, the decrease of the per-
pendicular mobility x(6;) as the Fermi energy approaches the second energy
gap is mainly due to the manifestation of the umklapp processes. The differ-
ence between the mobilities 1i(y.) and u(07) are due to the distortion of the
Fermi surface. It shall be emphasized that these backscattering process play
only an important role when one discusses a long range scattering potential,
which favors small angle scattering. This is equally documented by the fact
that one basically finds no difference between the mobilities u(6;) and (6,
in the case of alloy scattering.
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Figure 5.20: Transport time (normalized to the one of an unmodulated 2DEG) as
a function of the wave vector k. in extended Brillouin zone, once having included
the second Fourier coefficient (solid line), once without (dashed line): The trans-
port time corresponding to the extremities of the second miniband have a reduced
transport time, when including the second Fourier coefficient in the bandstructure
calculations. This is due to the umklapp processes, induced by the second Fourier

component.

Comparing the difference between a "one subband” or "three subbands”
dielectric functions (Fig. 5.21 for the perpendicular mobility limited by re-
mote ionized impurity scattering, taken as example), one does not find a
decisive difference between the calculated mobilities, since all these calcula-
tions are executed at T = 0K and the Fermi energy remains always inferior to
the second subband. To see the interesting effects of the dielectric function,
one has to study the mobilities as a function of temperature. This is done in
the next section.

5.5 Influence of the Temperature

Experimentally, one remains always at finite temperature. Thus, one ques-
tions about the temperature effect on the perpendicular and parallel mobil-

103



T T
30 EQ E®Q E@ E@
band gap band gap
o
I(I‘)
T 20+
>
E
3 L
™
o
3
2 10f -
=
o
= . .
= Impurity scattering -
perpendicular direction
Y T=0K
O | | | | [
0 5 10 15 20 25

Fermi enegy (meV)

Figure 5.21: Perpendicular mobility as a function of Fermi energy for remote
tonized tmpurity scattering, including once one and once three subbands in the
dielectric function at T = O0K. The maximum difference is only 10%: the Fermi
enerqgy is always inferior to the second subband energy and the calculation is per-
formed at low temperature.

ity of a modulated 2DEG. At finite temperature all states within the energy
range Ep+ 6kgT contribute to the conductivity. One thus has to average
the electronic properties by integrating them, weighted by their statistical
impact, e.g. x(E) = % -2(E)dE. (g° is the Fermi - Dirac distribution.)

The averaging of the electronic properties can be regarded as a disadvan-
tage, since it will cause to disappear pronounced structures in the perpen-
dicular and parallel directions, which were analyzed in the previous section.
On the other hand, it is interesting to look at the temperature effect on
the mobility for a given charge density and to focus on the question how
one can find signatures of the lateral minigaps and -bands in the parallel
and perpendicular mobility. As will be shown in chapter 6.2.1, taking tem-
perature dependent mobility curves for different charge densities leads to a
consistent picture, demonstrating the existence of minigaps and -bands in
the perpendicular direction.

In the following the effect of temperature will be again separately dis-
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cussed for the remote ionized impurity - and alloy scattering potentials.

5.5.1 Vanishing of the Bandstructure Effects

As intuitively expected, the structures in the mobility curves discussed in
the previous section vanish when one raises the temperature. This is shown
in Fig. 5.22, where the perpendicular and parallel mobility is shown as a
function of Fermi energy for different temperatures. Already at T = 10K,
one can only guess the at T = 0K (and still T = 4.5K) pronounced structures
in the mobility curves as a function of Fermi energy. (The small fluctuations
around the discontinuity are due to numerical instabilities.)

However, this is only one side of the temperature effect. The other side
is that one does expect interesting temperature dependent effects in the par-
allel and perpendicular mobility. The reason is schematically indicated by
the arrows in Fig. 5.22: Depending on the Fermi position at low tempera-
ture, the mobility increases or decreases as a function of temperature. Ac-
cordingly, one does not expect a monotonous behavior of the mobility as a
function of temperature. Remarkably, when the Fermi energy is in the lower
part of the second miniband, the parallel mobility decreases as a function
of temperature, whereas the perpendicular mobility increases. This differ-
ent temperature behavior of the mobilities is due to the lateral potential
modulation. More precisely, the temperature dependence of the parallel and
perpendicular mobility will be determined by the position of the Fermi en-
ergy at T = 0K with respect to the lateral potential modulation (see also Fig.
5.23): Increasing the temperature, means integration over an energy range
Erp+6kgT. If the mobility attached to the states within Ep+6kgT were a
linear function of energy, the mobility would remain, in first approximation,
constant, since one integrates over the same number of states with enhanced
mobility than with reduced mobility. If, however, there is for example a
maximum (minimum) in the mobility close to Ex(T = 0K), the mobility will
decrease (increase) as the temperature increases. This can be generalized to
the following "rule” which will help to explain the results: The temperature
dependence of the mobility is in first approximation proportional to the
second derivative of the mobility with respect to the Fermi energy:

Ou(T)  *u(Er)
aT BYop

| T=o0K (5.10)

One can now distinguish between three cases:
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Figure 5.22: Total mobility for the parallel (a) and perpendicular (b) direction as
a function of Fermi energy for different temperatures: At higher temperature the
specific structures due to the lateral potential modulation vanishes. However, the
temperature dependency of the mobilities depends strongly on the Fermi level posi-
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mobililies.
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Figure 5.23: Sketch to explain the reduction or increase of mobility as a func-
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as a function of energy, leads to a mobility decrease (increase) when raising the
temperature.

e The Fermi position is at T' = 0K at (or close to) a (local) maximum:

O*u(E
Mh“:o]{ <0— w(T) decreases (5.11)
0F%
e The Fermi position is at T = 0K at (or close to) a (local) minimum.
O*u(E
Mh:o]{ >0— w(T) increases (5.12)
0F%
e The Fermi position is at T' = 0K at (or close to) an insertion point.
2
V)
MQFMT:OK =0— w(T)  constant. (5.13)
IE;

In the following, the temperature dependent mobility shall be investi-
gated for different positions of the Fermi energies. It allows to get insight in
the temperature dependent features of the mobilities and how they can be
attributed to the lateral potential modulation. The above established "rule”
will be the basis of the explanations.
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5.5.2 Mobility as a Function of Temperature

First the temperature dependent mobility is calculated for three different
charge densities, e.g. for different positions of the Fermi level with respect
to the lateral potential modulation. In these calculations, the temperature
dependence of the bandstructure is taken into account, e.g. for each tem-
perature the band structure is recalculated, as well as the second Fourier
component and three subbands in the dielectric function are included. In a
second step, these calculations are again compared to other calculations, in
which one parameter is systematically changed.

The three charge densities are chosen as follows (see Fig. 5.24): At T =

250

T=0K
Alloy Scattering |
T"\ 200~ perpendicular direction .
L ]
o B) N =45* 10" cni?
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o L N=23* 10 "em™ (A) i
3
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o
=
50+
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Figure 5.24: Indication of the Fermi level at T = 0K with respect to the lateral
potential modulation for three different charge densities. For these charge densities
the mobility as a function of temperature will be discussed.

0K, once the Fermi energy is just on the top of the first minigap (A), once
in the middle of the second miniband (B) and once in the second minigap
(C). In Fig. 5.25 the parallel and perpendicular mobility as a function of
temperature for remote ionized impurity scattering is shown. Interesting
features are seen in the parallel and perpendicular mobility as a function of
temperature:
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Figure 5.25: Parallel mobility (a) and perpendicular mobility (b) for ionized impu-
rity scattering as a function of temperature for three different charge densities: the

temperature dependent behavior of the mobilities depend strongly on the position
of the Fermi energy at T = 0K.
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o Curves A:
The parallel and perpendicular mobility decreases in the beginning of
temperature increase. This feature is more accentuated in the parallel
mobility. At higher temperature, the mobilities increase.

e Curves B:
While the parallel mobility increases as a function of temperature, the
perpendicular mobility decreases slightly for T<50K. For T>50K, the
perpendicular mobility equally increases.

e Curves C:
The parallel and perpendicular mobility remains constant and increases
at higher temperature. This increase is in the perpendicular direction
strong in comparison to the mobility curves corresponding to the other
charge densities.

Regarding the mobility curves limited by alloy scattering as a function of
temperature, even more pronounced features are seen:

o Curves A:
While the parallel mobility decreases monotonously as a function of
temperature, the perpendicular mobility increases first as a function of
temperature and remains then constant (in the considered temperature
range).

e Curves B:
While the parallel mobility remains in first order constant, the perpen-
dicular mobility decreases as a function of temperature.

o Curves C:
While parallel mobility decreases as a function of temperature, the
perpendicular mobility increases slightly.

As explained in the beginning, the temperature dependence of the mobil-
ity can be predicted from the position of the Fermi energy on the ”Mobility
- Fermi energy curve at T = 0K (see also Fig. 5.24). This is as an example
demonstrated for the perpendicular mobility limited by alloy scattering, but
is equally valid for the parallel direction and for the mobilities limited by
remote ionized impurity scattering:

o Curve A:
At T = 0K, the position of the Fermi energy (corresponding to the
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Figure 5.26: Parallel (a) and perpendicular (b) mobility for alloy scattering as a
function of temperature for three different charge densities. The different temper-
ature behaviors are discussed in the text.
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charge density of curve A) corresponds to a local minimum in the mo-
bility - Fermi energy curve. This leads to an increase of the mobility
as the temperature increases.

e Curve B:
At T = 0K, the position of the Fermi energy (corresponding to the
charge density of curve B) is close to a maximum in the mobility -
Fermi energy curve. This leads to a decrease of the mobility as the
temperature increases.

e Curve C:
At T = 0K, the position of the Fermi energy (corresponding to the
charge density of curve C) corresponds to a plateau. Hence, in first
approximation, the mobility remains constant, as one increases the
temperature.

Inclusion of the second Fourier coefficient As already discussed, the
second Fourier coefficient broadens significantly the second minigap (accom-
panied with the warping of the Fermi surface when the Fermi level is close
to the second minigap) and enhances the number of scattering processes.
At T = 0K, its most important impact has been seen on the perpendicular
mobility, when the Fermi energy is in the second miniband.

In the following, two different types of calculations will be presented:
once, only the first Fourier coefficient of the lateral potential modulation is
included and once a second Fourier coefficient (keeping the first one constant)
is added.

Regarding the parallel mobility as a function of temperature (Fig. 5.27)
for the three different charge densities (Fig. 5.24), the temperature behavior
of all curves is quite similar. The difference between including one or two
Fourier coefficients in the bandstructure calculations, expresses itself basi-
cally in a shift of the different mobility values.

Looking on the perpendicular direction, one assumes to see more pro-
nounced features due to the lateral potential modulation - but only if the
Fermi energy is in the second miniband.

o Curve A:
There is no significant difference between the mobility curves, having
taken one or two Fourier coefficients into account. This reflects the
fact that the inclusion of the second Fourier coefficient becomes only
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Figure 5.27: Parallel (a) and perpendicular (b) mobility for ionized impurity scat-
tering as a function of temperature for the three different charge densilies, once
having included the second Fourier coefficient and once considering a sinusoidal
lateral potential: While there is no fundamental difference in the parallel direction,

a difference for the perpendicular mobility becomes apparent for higher charge den-
sities.
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important for higher charge densities, e.g. if the Fermi energy is in the
upper part of the second miniband.

e Curve C and D:
Remarkably differences are seen for these two curves in the mobility
values as well as in the temperature dependence: If one does not include
the second Fourier coefficient, the mobility values at low temperature
assume more than the double.

Additionally and even more exciting for the experimental detection of
the existence of minigaps are the different slopes between the mobilities,
when taking the second Fourier coefficients into account or neglecting
them: Taking the first Fourier coefficient into account, the mobility
increases by about a factor 3 between 0 K and 70 K with respect to a
factor 2 when taking the first two Fourier coefficients into account.

Inclusion of higher subbands in the dielectric function Already in
the case of an unmodulated 2DEG, the consequence of including higher sub-
bands in the dielectric function was demonstrated: as soon as the tempera-
ture is high enough to integrate over states belonging to the second subband,
the calculated mobility is higher when including higher subbands in the di-
electric function. Moreover, it was pointed out that the difference between
the calculated dielectric function (when including one or more than one sub-
band) becomes the more important the smaller the scattering vector is (see
also section 5.1). Consequently, one assumes that the effect of the dielectric
function is especially important for remote ionized impurity scattering, since
it is a scattering potential which favors small scattering vectors.

In Fig. 5.28 the temperature dependent parallel and perpendicular mobil-
ity, once while including one subband, when calculating the dielectric func-
tion, once while taking the three lowest subbands into account, are shown
for different charge densities. As expected, the effect is more important for
higher charge density and higher temperature is. For completeness, the mo-
bilities limited by alloy scattering as a function of temperature are equally
shown (Fig. 5.29), once having taken one subband, and once having included
three subbands in the dielectric function. Once again, the difference is more
important at higher temperature. However, the effect is much smaller in
comparison to the one seen for the remote ionized impurity potential. This
is due to the fact that the effect of taking higher subbands into account when
calculating the dielectric function is more important for smaller scattering
vector ¢ as discussed in chapter 5.1.
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Figure 5.28: Parallel (a) and perpendicular (b) mobility for ionized impurily scat-
tering as a function of temperature for the three different charge densilies, once
having included three subbands in the dielectric function, once taking only the fun-
damental subband into account: at higher temperature and for higher charge den-
sities a strong enhancement of the mobility is seen, which is more pronounced in
the perpendicular direction.
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three subbands in the dielectric function, once taking only the fundamental subband
into account: the effect of the enhancement of the mobility when including three
subbands in the calculations is small in comparison to ionized impurity scattering.
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In summary, one finds for different charge densities different tempera-
ture dependences of the parallel and perpendicular mobility. This has been
explained in terms of the position of the Fermi level with respect to the
modulated bandstructure. Such a mobility behavior can be considered as a
signature of the existence of minigaps and minibands in the bandstructure.
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Chapter 6

Experimental results

In the following the experimental set - up and the acquisition of data shall
be described first. Then, the experimental results are presented. They will
be analyzed with the help of the numerical results, presented in the previous
chapter.

e Experimental Set - up: During this thesis, an experiment has been
constructed which allows the following experiments:

— measuring the longitudinal resistance and Hall resistance as func-
tion of gate voltage V,, applied between a top gate and the 2DEG,
at a fixed temperature in the range T = 4.2 - 300K.

— measuring the longitudinal resistance and Hall resistance as a
function of temperature.

— illuminating the sample with a laser of wavelength Ap,s., = 628

nimm.

To be able to do these experiments, a coil is used which provides a mag-
netic field B up to 0.5 Tesla. A carbon - class resistance is placed just
next to the sample to measure accurately the sample’s temperature.
The temperature could be stabilized within £+ 0.3K.

e Data acquisition:
The Hall mobility is given in its general form by

1] (6.1)

p = Rlong. : NH : 67
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where pg is the Hall mobility, ff the formfactor of the sample geome-
try, Ny the Hall charge density, Ry,,, the longitudinal resistivity and e
the charge of an electron. All experiments are DC measurements. The
longitudinal resistance is measured in four point geometry by a current
- voltage curve I(V) at zero magnetic field. The current I is typically
swepted between - 1¥107°A < I <1*10°A.

The Hall charge density is given by

B 1
 eBRy’

with the Hall resistance Ry = Vg /1.

Nu

(6.2)

To obtain Ry as a function of the magnetic field, at 20 different constant
low magnetic fields (B < 0.5 T), current - voltage (Vg(I), -1¥107%A <
I <1*107%A) curves are taken. Each Vg(I) curve gives thus the Hall
resistance Ry at a given magnetic field. Plotting Ry as a function of
the magnetic field B, one obtains from a linear fit the Hall density Ny.

To obtain the real charge density N, the Hall charge density has to be
multiplied by a correction factor, by the Hall factor ry [Szmulowics 86]:

Ns = NH*T‘H. (63)

The Hall factor ry takes the different group velocity distribution of the
electrons at finite temperature into account. It is defined as:

7(BE)X(E
r m* < 1(+X) (E()Q) - (6 1)
H T(E T(EYX(E -
B(< 1TX(E2 )(,(E))Q >)2 + (< 1( )),(E()Q) >)2

with X(E) = w.m(F) (w. = an* is the cyclotron frequency of an elec-
tron). It thus depends on the magnetic field, the temperature and the
scattering processes, one is considering. In the case of a modulated
2DEG one has to define two Hall factors IH, and ry,, where T||(E)
and 7, (F) are integrated over the Fermi surface in the same way it
is done in the conductivity and mobility calculations (see section 3.4).
The Hall factor was calculated for every measured temperature. The
scattering potentials remote ionized impurity scattering, residual im-
purity scattering, alloy scattering and acoustic phonon scattering are
included in all calculations. The difference between N, and Ny proved
to be very small in the case of unmodulated two - dimensional elec-
tron systems (<2%) and becomes only important for modulated two -
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dimensional electron systems, when Ny < 1.6*107'* ¢cm™2 (The Hall
factor as a function of charge density is shown later in section 6.2 for

a modulated 2DEG).

6.1 Unmodulated 2DEG: Effect of Enhanced
Screening

In this section the enhancement of the screening, when the second subband
of an unmodulated 2DEG is populated is demonstrated in two experiments.
The first one consists in deducing the mobility as a function of charge density
by measuring the longitudinal and Hall resistivity as a function of gate voltage
V, at T = 4.2K. In the second one, the mobility is investigated as a function
of temperature for a given charge density. The sample lay out used for these
samples is a standard Hall - bar geometry.

An experiment similar to the first one was done by Mori [Mori 80] on an
n - channel inversion layer on the silicon (100) surface. However, they did
not compare different screening models. Additionally, they did not convinc-
ingly see the onset of the second subband, since they did not reach a high
enough charge density. In AlAs/GaAs heterostructure, it was Stormer et al.
[Stormer 82], who observed clearly for the first time the onset of the second
subband in a mobility - charge density curve. They correctly attributed the
decrease of mobility to the interssubband scattering, which takes place as
soon as the second subband gets populated, but did not show any calcula-
tions. Vinter [Vinter 83] found a qualitative, but not quantitative agreement
between the charge - density - voltage dependence of the sample studied in
[Stormer 82], but did not discuss the mobility - charge density behavior. Hai
et al. [Hai 95] studied the effect of the inclusion of higher subbands in the
dielectric function when the second subband gets populated by comparing
calculations and transport measurements in peaked ¢ - doped quantum wells.

An additional motivation to study the effect of enhanced screening as a
function of temperature arises from the fact, that one expects the impact of
including higher subbands in the dielectric function to be even stronger at
higher temperature in modulated two - dimensional electron gas.

To investigate the screening effects experimentally, a standard AlAs/
GaAs heterostructure (Q632) Alg33GagerAs with one ¢ - doping plan has
been grown. The spacer thickness r,, is 2.5 nm. The spacer thickness is
chosen to be sufficiently small to provide a high charge transfer into the
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Figure 6.1: Mobility as a function of charge density at T = 4.2K (points) for
sample Q632 with two fits, once having included three subbands in the dielectric
function and once having taken only one subband into account. The agreement
between the experimental data and the "three subbands” model is excellent.

channel of the heterostructure. Thus, even at low temperature, the second
subband is populated. Due to the small spacer the remote ionized impu-
rity scattering is far dominant (99 %) with respect to all other scattering
processes at low temperature.

In Fig. 6.1 the mobility as a function of charge density, measured at
T = 4.2 K is shown for sample Q632 (r,,, = 2.5 nm). Equally shown are
the corresponding calculations, having taken three (or one, respectively) sub-
bands in the dielectric function calculations into account (The calculations
are explained in detail in section 3.6). The number of ionized impurities is
assumed to be N7, = 1.75%10" c¢cm™2. This value has been chosen to obtain
good agreement between the calculated and measured mobility, when only
the first subband is populated. It is also in good agreement with nominal
doping of Np = 2.5%10'2 cm™2. The calculations are executed at T = 0K. The
fit, corresponding to the inclusion of three subbands is in excellent agreement
with the experimental data. Contrarily, taking only one subband in the di-
electric function into account, the mobility drops far below the experimental
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Figure 6.2: Mobility as a function of temperature for sample Q634 with two fits
(solid lines), once including three subbands in the dielectric function and once tak-
ing only one subband into account. In dashed line, a one subband calculation with
an artificial low number of ionized donors to assure agreement between experiment
and fit at low temperature is shown. However, the discrepancy at higher temper-
ature shows that a "one subband” fit is less appropriate. In the inset the mobility
of sample Q634 is shown as a function of charge density at T = 4.2 K. The num-
ber of ionized donors is kept constant for both the charge densily and temperature
dependent mobility calculations.

values, when the second subband gets populated. This experiment together
with the numerical fits demonstrate clearly that a "one - subband” model
of the dielectric function does not calculate correctly the mobility of an un-
modulated 2DEG as soon as the second subband is populated. If the second
subband is populated, higher subbands have to be included in the dielectric
function. As explained in 5.2, the number of subbands which have to be
taken into account is hereby determined to be n+1, where n is the number
of occupied subbands.

To evaluate the difference in the temperature dependence of the screen-

ing models the mobility of sample Q634 (zspq.. = 3.5 nm, Ny(T = 4.2K) =
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1.1¥10* ¢m™?) is investigated as a function of temperature. The results are
shown in Fig. 6.2. In the inset the mobility as a function of charge density is
shown. Although the spacer is greater with respect to Q632, a lower mobility
is obtained. This demonstrates that the growth conditions were worse than
the one for sample Q632. To calculate the mobility as a function of charge
density, and to find good agreement between the calculated and measured
mobility, when only one subband is populated, one has to assume Nj, =
5.0*10'2 cm™2,

Calculating the mobility as a function of temperature, the same value N7,
is taken. The mobility increases slowly and decreases from T = 65K due to
optical phonon scattering. A pronounced difference between the theoretical
curves, once including three subbands and once having taken only one sub-
band into account, is visible. Even, if one assumed an (artificial) low number
of ionized impurities Nf; = 3.0¥10" ecm~? to find agreement between the
experimental data and the calculations at low temperature, one would not
find good agreement at higher temperature (see Fig. 6.2, dashed line).

In summary, the good agreement between experiments and calculations
demonstrate the importance of including higher subbands in the dielectric
function at higher charge density and / or higher temperature. The number
of subbands which have to be included is hereby determined to be n+1, where
n is the number of occupied subbands.

6.2 Modulated 2DEG: Evidence of Minigaps

Having all the theoretical results discussed in chapter 5.3 in mind, the ques-
tion arises which kind of effects can be experimentally demonstrated. The
first trial to observe minigaps was done in two dimensional electron inversion
layers on (119)Si [Cole 77]. They detected a for the existence of a minigap
characteristic "w” - structure (see section 5.2) in the dc conductivity as a
function of charge density. T. Evelbauer et al. [Evelbauer 86] observed a
similar ”w” - structure in metal - oxide - semiconductor structures prepared
on high index surfaces of p-InSh. However, it was shown that these minigaps
do not originate from a lateral superlattice effect [Sham 78].

In transport measurements, Sakaki et al. [Motohisa 89] were the first who
measured an anisotropy of the mobilities in the parallel and perpendicular
direction of a lateral structure grown on GaAs vicinal surfaces. The lateral
structure was produced by the insertion of half an Aluminum monolayer in
the channel region of a heterojunction grown on a vicinal surface. A plausible
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approach of interpretation was that the anisotropy is a sign of nonparabolicity
in the miniband structure of a periodic lateral potential. However, a single
anisotropy in the mobilities does not demonstrate the existence of a lateral
organization, e.g. the formation of a periodic modulation. The anisotropy
of the mobility can equally arise from the formation of anisotropic islands.
For instance, J. Bloch demonstrated that the anisotropy in optical properties
of lateral structures due to the fractional deposition of one monolayer is not
due to the lateral periodic organization along the steps but to the formation
of anisotropic islands [Bloch 94]. The optical properties were independent
of the lateral period given by the terrace length of the vicinal surfaces. In
contrast, in lateral super - lattices, which consist of at least 10 monolayers,
the optical properties depend strongly on the terrace length, indicating the
influence of the lateral potential modulation [Bloch 94].

Recently, for the first time, clear evidence of the minigap induced by a su-
perlattice has been shown by magnetoresistance measurements [Albrecht 99].
The periodic modulation of the 2DEG is obtained by means of patterned top
gates The miniband structure is manifested by modified Shubnikov-de Haas
oscillations with higher periodicity.

However, the direct observation of the minigaps by measuring the mo-
bility as a function of charge density at low temperature or the (indirect)
observation by measuring the mobility as a function of temperature has so
far been illusive in modulated two - dimensional electron systems. In this sec-
tion, the evidence of minigaps in temperature dependent and charge density
dependent measurements is given.

Two different kind of experiments are discussed:

e Temperature dependent measurements at a certain charge density. The
charge density is changed by illuminating the sample with a laser wave-
length of 628 nm at low temperature (T = 4.2K).

e Density dependent measurements at low temperature (T = 4.2K). The
charge density is changed by the application of a bias voltage between
a front gate and the modulated 2DEG.

In order to understand the experimental results, they are then compared
to the previously obtained theoretical results.

The studied samples are all AlAs/GaAs lateral superlattices. The specific
characteristics are listed in Table 6.1. It shall be reminded that in the case
of a modulated electron gas, longitudinal and Hall resistance are measured
in four point geometry for the parallel and perpendicular direction with re-
spect to the lateral superlattice (see Fig. 6.3, sketched for a configuration,
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Sample L.206.1 1.206.2 K508

x&oL: 5 % 5 % 5 %

xBarr-, 33% 33% 33%

spacer: 9 nm 9 nm 9 nm

width of LSL: | 20.4 nm 20.4 nm 12.4 nm

lat. pot. mod.: | max. tilted max.

ng(T = 4.5K): | 5.1 * 10em™2 | 5.1 * 10" em™ | 4.2 * 10" em™2

Table 6.1: Parameters of the samples studied in this work. The difference between
sample L206.1 and L206.2 is the strength of the lateral potential modulation, e.g.
L206.2 is tilted.

T— r,
perpendicular direction Ny

parallel direction

Figure 6.3: Measurement configuration, when measuring the perpendicular direc-

tion: with one multimeter the longiludinal voltage Vi, —1is measured, with the
other one the Hall voltage Vi

when measuring the longitudinal and Hall resistance of the perpendicular
direction). All presented experimental results are measured in four - point
geometry with this sample lay-out. Equally, the data acquisition procedure is
the same for all measurements, described below. Due to the sample layout,
the parallel and perpendicular resistance cannot be measured at the same
time. Thus, for a given charge density and for a given temperature, first the
parallel direction is measured, then the perpendicular one. Accordingly, one
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Figure 6.4: Hall factor rg as a function of charge density Ns. rg differs only

stgnificantly from one, when the Fermi level is in the first minigap.

now defines a ”parallel” and ”perpendicular” Hall mobility:

The mobilities g, and p; are determined in the same manner as in the
case of an unmodulated two - dimensional electron gas (via the Hall factor
I, and rgy, ). In Fig. 6.4 the Hall factor, calculated for the parallel (rH”)
and perpendicular (rg, ) direction of a modulated electron gas is shown as a
function of charge density N;. In the here considered charge density range,
which is the one, which were experimentally accessible, ry differs from one,
when the Fermi level is in the first minigap. The Hall factor, calculated for
the perpendicular direction is greater than for the parallel direction, reflecting
that the spread in the velocity distribution is greater in the perpendicular

HH

than in the parallel direction.
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6.2.1 Parallel and Perpendicular Mobility as a Func-
tion of Temperature

The experimental determined parallel and perpendicular mobilities of a mod-
ulated 2DEG as a function of temperature for different charge densities are
discussed. The mobilities are deduced from the experimentally measured
longitudinal and Hall resistances, as described above. These mobilities are
then compared to numerical calculations. The agreement between the ex-
perimental results and fits allows to determine the amplitude of the lateral
potential modulation. Once the amplitude of the lateral potential modulation
is known, one can position the Fermi levels corresponding to the experimen-
tally determined charge densities on the (calculated) mobility - Fermi energy
curve. This allows to understand the physical reasons for the experimentally
observed different temperature dependent behaviors of the mobilities.
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Figure 6.5: Parallel (left) and perpendicular (right) Hall charge density as a func-
tion of temperature: the measured difference in the Hall voltage, leading to a dif-
ference value in the Hall charge density, between the two directions is smaller than

4 %.
In Fig. 6.5 the Hall density Ny, and Np,, obtained by measuring the
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parallel and perpendicular Hall resistance is shown. As expected, the differ-
ence between the parallel and perpendicular Hall density is very small (<
4%), reflecting the homogeneity of the sample and a well defined geometry
of the sample layout. The curve corresponding to the lowest charge density
is obtained by a different temperature cycle, without having illuminated the
sample. The other charge densities have been obtained by illuminating the
sample at low temperature until the desired charge density is obtained. The
temperature dependent measurements were then started 30 min. later.
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Figure 6.6: Mobility (left) and resistance (right) anisotropy as a function of tem-
perature: The parallel mobility is up to about a factor four stronger than the per-
pendicular one, resulting in a strong anisotropy.

The difference of the parallel and perpendicular mobility, e.g. the aniso-
tropy of the mobility rp.4(T) = p(T)/pL(T) is shown in Fig. 6.6 (left)
for sample 1.206.1: At low temperature, r,,,(T) assumes a value between
2.8 and 3.6, depending on the charge density. Additionally, for some charge
densities an anisotropy maximum is seen at higher charge density. In order
to understand the origin of the anisotropy, which is equally reflected in the
resistance anisotropy (Fig. 6.6, right), one is led to look on the parallel and
perpendicular mobility separately (Fig. 6.7). Different interesting features
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ters. In contrast, the perpendicular mobility shows different temperature behaviors,

depending on the charge density.
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are observed:

e At low temperature the parallel and perpendicular mobilities increase
basically with decreasing charge density. As one increases the tem-
perature, the parallel mobility decreases, regardless of the considered
charge density.

Remarkably, all parallel mobilities show the same temperature depen-
dence at higher temperature.

e Considering the perpendicular direction, different temperature depen-
dent behaviors are seen: depending on the charge density, the mobility
either decreases (A), remains constant (B) or increases (C,D). This
different temperature behavior even leads to the crossing of different
mobility curves.

In order to understand the temperature dependence of the parallel and
perpendicular mobility, numerical calculations are performed. This allows in
particular to determine the position of the Fermi level with respect to the
band structure, i.e. with respect to the minibands and minigaps.

The charge density is assumed the one which is experimentally determined
within 5 %. The incertitude of 5% allows to change slightly the Fermi energy
with respect to the lateral potential modulation in order to obtain better
agreement between experimental results and fits. The fitting procedure is an
iterative process including two steps:

e The 2D bandstructure is calculated for a given temperature. Hereby
the amplitude of the lateral potential (e.g. the first and second Fourier
coefficient) is adjusted (e.g. taken as fit parameters) within limits, given
by optical measurements ([Mélin 98], for the first Fourier coefficient)

and AFM - measurements ([Laruelle 99], for the coefficient ng)).

e The from these band structure calculation obtained wavefunctions are
then injected in the linearized Boltzmann transport equation. Remote
ionized impurity scattering, residual impurity scattering, alloy scatter-
ing and acoustic phonon scattering are taken into account.

The number of ionized impurities is assumed to be equal to the charge
density, e.g. Nf, = N,. This assumption is justified because a) one has
a second ¢ - doping plan which saturates the surface states and b) the
charge density is changed by illumination. The exact ratio between the
different scattering contributions, e.g. between remote ionized impu-
rity scattering and alloy scattering, depends on the charge density: at
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higher charge density the remote ionized impurity scattering becomes
even more dominant, since NE = N, although pg,, diminishes with
higher Ny and fj,,. increases with higher N;. For example at T =
0K, one finds an alloy scattering contribution to the total resistance
of about 30% and a remote ionized scattering contribution of 70% for
N, = 5.3*10'" ¢m™. Considering a charge density of N, = 6.9%10'!
cm™? | the contributions are given by 22 % (alloy scattering) and 78 %
(remote ionized impurity scattering) at T = 0K. At T = 70K the con-
tribution of acoustic phonon scattering to the total resistivity is about
10 %. The screening is taken into account by the dielectric function,
including the three lowest subbands in the calculation. The scattering
angle is taken as the angle between the states v and \7’1-;.

To obtain good agreement between the experimental curves and the nu-
merical calculations, the lateral potential modulation is taken as V,, = 11

meV (and V(?l) (see section 2.2.2) was found to be 0.15). This corresponds

to a first minigap of approximately Eg}l)p = 4 meV and a second one of E(2)

= 2 meV. (These values are deduced from a band structure calculation fozlj’
a charge density of N, = 5.3*10' ¢cm™2. The gap size are slightly differ-
ent for other charge densities due to screening effects, which depend on the
charge density.) Accordingly, the lateral potential modulation is less pro-
nounced than the one (V,, = 23 meV) considered for the calculations dis-
cussed in chapter 5.3. As a consequence, the transport features due to the
lateral potential modulation are less accentuated. However, they still mani-
fest themselves by the different temperature dependence of the parallel and
perpendicular mobility. In Fig. 6.8. the experimental measurements (left)
and corresponding numerical calculations (right) are juxtaposed. It shall be
emphasized that all curves in Fig. 6.8 are calculated with the same set of
parameters (e.g. amplitude of lateral potential modulation, structure pa-
rameters, etc.) It is only the charge density, which is changed between the
different curves and which is given by the experimental data (see explana-
tion above). This is in that aspect important that thus (experimentally and
numerically) the ratio between remote ionized impurity scattering and al-
loy scattering changes: the at higher charge density remote ionized impurity
scattering becomes more important (Nf, = N,).
One numerically finds

e at low temperature

— for the parallel and perpendicular mobilities the same charge den-
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perpendicular (lower graph) mobility as a function of temperature for different
charge densities. The experimentally observed typical temperature behavior of the
parallel and perpendicular mobility is refound in the numerical calculations.
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sity dependency as experimentally: The mobilities basically de-
crease as a function of increasing charge density.

e as one increases the temperature

— the decrease of the parallel mobilities, e.g. the first rather gentle
decrease of the mobilities and from a certain temperature on the
faster decrease as a function of temperature.

— the anomalies of the perpendicular mobilities, e.g. the mobilities
decrease as a function of temperature at lower charge density and
the mobilities increase at higher charge density in the temperature

range T=4-25K.
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Figure 6.9: Parallel and perpendicular mobility as a function of Fermi energy.
The positions of the Fermi energy, which correspond to the in the calculations
considered charge densities, are indicated by arrows: whereas one expects a mobility
decrease for A and B as a function of temperature, p(C) will remain constant in
the beginning of increasing temperature and p(D) will increase.

One thus finds good qualitative agreement, demonstrating the existence
of minigaps in the electronic bandstructure of the modulated 2DEG. Only by
assuming the existence of the first and second minigap in the bandstructure,
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one is able to fit the different behavior of the parallel and especially perpen-
dicular mobility as a function of temperature. It is assumed that one could
even find better quantitative agreement between experimental data and cal-
culations by changing either slightly the amplitude of the lateral potential
modulation or the ratio between the contributions of the different scattering
processes. This has not been done, because the calculations are very time
consuming.

To understand the physical reasons of these different temperature effects,
one is once again led to regard the position of the Fermi level on the mobility
- Fermi energy curve (Fig. 6.9). The charge densities for which the mobili-
ties as a function of temperature have been calculated (Fig. 6.8, right) are
indicated by arrows. As discussed in detail in Chapter 5.5, one expects the
following temperature dependent mobility behavior for the different charge
densities:

o Curve A
The position of the corresponding Fermi energy is close to a maximum.
Hence, as one increases the temperature, the mobility decreases. This
is experimentally observed.

e Curve B
The position of the corresponding Fermi level is close to an inflection
point: In the beginning of temperature increase, the mobility varies
little. This is experimentally observed.

e Curve C and D
The Fermi positions are close to a minimum in the mobilities curve.
Hence, the mobilities increase, as one increases the temperature. This
is experimentally observed.

In conclusion, the interplay of experiments and calculations have allowed
to demonstrate the existence of minigaps. Only by the assumption of a
lateral potential modulation, the different mobility - temperature curves for
different charge densities have been explained.

6.2.2 Impact of the Second Fourier Coefficient

In Fig. 6.10 the experimentally measured parallel and perpendicular resis-
tance as a function of temperature is shown for a modulated 2DEG, for
sample K508. These measurements together with numerical calculations,
equally shown in Fig. 6.10, allow to study the impact of the second Fourier

135



1.2 ‘
K508
N, = 4.2%101 cm2

v, v, 1ssh

1.0 v, v, 3ssb |
s

<
v 0.8 M
o v 1ssb
g
'% 0.6 Perpendicular N
o
2
n 047 ]

OZ%MW + o+ T

0.0 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80

Temperature (K)

Figure 6.10: Resistance as a function of temperature with different numerical fits:
The experimental data are best reproduced when taking into account the second
Fourier coefficient in the lateral bandstructure calculations as well as including
three subbands in the dielectric constant.

coefficient of the lateral potential modulation and the effect of the inclusion
of higher subbands in the dielectric function. Experimentally, one observes
at T = 4.2K a ratio of a factor 3.4 between the perpendicular and parallel
resistance. As one increases the temperature, the perpendicular resistance
first raises strongly, saturates at about T = 50K and then even decreases.
The parallel resistance does not exhibit any spectacular effect: it increases
slightly with increasing temperature.

If one tries to fit these experimental data, one obtains the following re-
sults: Taking only one Fourier coefficient (V,, = 18 meV) into account, one
reproduces well the measured resistance at low temperature. However, as one
increases the temperature, the fit does no longer agree with the experimental
data: the experimentally observed strong increase is not reproduced. To be
able to reproduce the experimentally observed increase, the second Fourier
coefficient of the lateral potential modulation has to be taken into account.
The amplitude of the lateral potential modulation was hereby found to be
V,p = 16 meV, V(? = 0.32, corresponding to a first minigap of size E{)) =

s gap
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5 meV and a second minigap of size Eé?l)p = 3 meV. This can be interpreted
as the signature of enhanced ionized impurity scattering introduced by the
second Fourier coefficient: As it was demonstrated in chapter 5.4.4, the main
impact of the second Fourier coefficient is the increase of the perpendicular
resistance as the Fermi energy approaches the second miniband, e.g. if one
takes in the mobility calculations states into account, which are in the vicin-
ity of the second minigap. Since at T = 4.2K, the Fermi level corresponding
to the measured charged density (N; = 4.2*10* ¢m™?) is in the middle of the
second miniband, increasing the temperature has the consequence that one
integrates the more and more over states being in the vicinity of the second
minigap. Moreover, it is interesting to remark that even at low temperature
the total resistance depends also on the second Fourier coefficient. This is
the reason why the amplitude of the lateral potential modulation has to be
differently chosen (V,, = 16 meV, when taking a second Fourier coefficient
into account, whereas V,, = 18 meV, when considering a sinusoidal lateral
potential modulation).

Up to now only the lower temperature anomaly (e.g. the strong raise of
the perpendicular resistance as a function of temperature) has been discussed.
Nothing has been said about the experimentally observed decrease of the
resistance when one increases further the temperature.

Higher temperature implies the population of higher subbands. One thus
has to take higher subbands in the dielectric function into account. This has
been already demonstrate for the case of an unmodulated 2DEG.

In Fig. 6.10 the numerical calculations, taking one subband in the di-
electric function into account are shown in comparison with calculations, in-
cluding three subbands in the dielectric function. Both curves fit rather well
the experimentally observed increase of the perpendicular resistance. How-
ever, the measured decrease of the perpendicular resistance with increasing
temperature can only be reproduced, by the inclusion of higher subbands
(here three) in the dielectric constant . This demonstrates again the impor-
tance of the inclusion of higher subbands in the dielectric constant at higher
temperature.

6.2.3 Effect of the Tilt of the Lateral Potential Modu-
lation

Further support for the importance of taking the second Fourier coefficient
of the lateral potential modulation into account is given by regarding the
effect of the tilt (see also section 2.2.2) of the lateral potential modulation
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on the resistance anisotropy rycs = Riong., / Rlong.”. For this purpose, the
resistance as a function of temperature is measured for sample L206.1 and
1.206.2 (without the application of a bias voltage), e.g. for two samples, dif-
fering in their lateral potential modulation amplitude. (L206.1 has maximal
lateral modulation amplitude, whereas L.206.2 is taken from a tilted region,
e.g. where the lateral potential modulation is weakened.) The resistance
anisotropy r,es is shown as a function of the inverse of temperature in Fig.
6.11. L206.1 exhibits an anisotropy of about 2.8 at lower temperature and
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Figure 6.11: Resistance anisotropy as a function of the inverse of temperature for
an untilted sample (L206.1) and a tilted sample (L206.2). The corresponding fits
are explained in the text.

a pronounced maximum at finite temperature. As it is now understood, the
anomaly arises from an anomaly in the perpendicular direction. Oppositely,
[.206.2 has only a small anisotropy at low temperature and does not show
any anomaly as a function of temperature.

The interest of this measurement is revealed by the corresponding nu-
merical calculations: The solid lines, fitting [.206.1 and L206.2, corresponds
to the calculations, where the same lateral potential modulation (V,, = 11
meV) has been assumed and the tilt parameter € (see chapter 2.2.2, here
found to be 1.3) has been taken as fit parameter for sample 1.206.2. The ex-
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Figure 6.12: Relative variation V() (€) as a function of the coverage error € in
tilted lateral superlattices: Fach Fourier coefficient diminishes as a special function
of €. Dashed line: Indication of the lilt value, used to fit L206.2.

perimental data are fairly well reproduced. In contrast, if one tries to fit the
experimental data of L206.2 by assuming a weakening of the lateral potential
modulation (e.g. each Fourier coefficient is divided by the same factor), one
does not find good agreement with the experiment (fit in dashed line) for
1.206.2.

The explanation is found by regarding Fig. 6.12, where the first three
Fourier coefficients, being averaged by the fundamental subband V®) (1, ¢) =
<V®(r, + T2) >0 ()| Etienne 96.1] are shown as a function of the coverage
error €. Higher Fourier coefficients decrease faster as a function of the tilt
than the first one. This is well taken into account by using the tilt parameter
as fit parameter. In contrast, assuming a weakening of the lateral potential
modulation, results in an overestimation of the second Fourier coefficient,
resulting in a resistance anisotropy for L.206.2, not observed experimentally.

In summary, this experiment gives further support to the importance
of taking the second Fourier coefficient of the lateral potential modulation
into account. Or, otherwise said, this result implies that assuming only a
sinusoidal lateral potential is not justified.
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6.2.4 Which Scattering Angle: ;. against 6,7
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Figure 6.13: Parallel and perpendicular Hall mobility obtained from experimental
data as a function of Hall charge density at T'= 4.2 K (points) with the correspond-
ing calculations, once having taken the angle 0y (green line) and once the angle 045
(red line). Better agreement for the perpendicular mobility is found, when taking
the angle 6. The inset shows the (total) perpendicular mobilities p(0s.) and p(6y)
as a function of Fermi energy.

In section 5.3 the mobility as a function of Fermi energy has been analyzed.
Special features in the mobility curves are attributed to the existence of a
periodic lateral potential modulation. One characteristic, which is experi-
mentally easy to determine, is the anisotropy of the mobilities, i.e. 1, =
/L as a function of charge density at low temperature. However, it shall
be again emphasized that the reason for the mobility anisotropy is not nec-
essarily due to a periodic lateral potential modulation [Bloch 94]. In order
to understand the origin of the anisotropy and especially in oder to explain
the from experimental data deduced parallel and perpendicular mobility be-
haviors, numerical calculations are necessary.

In order to demonstrate the existence of minigaps by measuring the par-
allel and perpendicular mobility as a function of charge density at low tem-
perature, the (parallel and perpendicular) longitudinal and Hall resistance of
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sample 1.206.2 is measured at T = 4.2K. A gate was deposited (after having
done the measurements, presented in section 6.2.1) on this sample, which
allows to change the charge density at low temperature. The experimental
data are shown in Fig. 6.13 (points). The parallel Hall mobility exhibits
two different slopes. For N, < 3*10' cm™2, the mobility increases faster
as a function of charge density than for N, > 3*10'! ¢m™2 The perpen-
dicular Hall mobility can even be divided into three different "regimes”: At
low charge density (N, < 2.5*10* c¢cm™?2), the mobility increases gently with
increasing charge density. At N, = 2.5%10'" ¢cm™2, the mobility changes its
slope and increases faster with increasing charge density up to N, ~ 4.5*10%!
cm™2 For N, > 4.5*10'" ecm™2, one remarks a saturation in the mobility
curve. However, no typical "w”- structure is seen as it was seen by T. Evel-
bauer in metal - oxide - semiconductor structures prepared on high index
surfaces of p-InSb at T = 4.2K [Evelbauer 86]. This might be due to the
relatively high temperature. For instance, Cole et al. [Cole 77] observed
the "w” - structure in inversion layers on (119)Si at T = 1.7K, whereas no
sign of the "w”- structure was seen at T = 4.2K. Moreover, in Fig. 6.13,
the perpendicular Hall mobility does not exhibit a pronounced maximum,
when the Fermi level is close to the second minigap. At first glance a rather
disappointing result! However, at a second glance, the experiment is quite
important since it seems to give a hint for the choice of angle which has to
be chosen in the numerical calculations.

At this point, it shall be reminded that the most remarkable effect be-
tween taking the scattering angle 03, and taking the scattering angle 7 when
solving the linearized Boltzmann transport equation (section 5.4.3) is seen,
when the Fermi energy is in the second miniband: taking the scattering angle
03, a pronounced maximum is seen, whereas it is less accentuated, when tak-
ing the angle 6 (see Fig. 5.16 and inset of Fig. 6.13). Mathematically, the
question which scattering angle has to be taken when solving the linearized
Boltzmann transport equation for a modulated 2DEG has not been resolved
yet [Ziman 61].

Performing the calculations in order to understand the experimental data,
while assuming the same strength of lateral potential modulation with re-
spect to the temperature dependent calculations, once taking the angle 0.
and once taking the angle 0z, one obtains the following curves, shown in Fig.
6.13. The calculations are performed assuming a temperature of T = 4.2K.
Since one changes the charge density by the application of a gate voltage V,
between the gate and the 2DEG, it is assumed, that the number of remote

ionized donors remains constant, Nf, = N,(V, = 0mV) = 4.5%10'" cm™2.
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This is a different assumption with respect to the measurements as a func-
tion of temperature. As a consequence, the alloy scattering becomes more
important at higher charge density (at N, = 6*10"* cm™2, the contribution of
alloy scattering to the total resistance is 40% with respect to 60% of remote
ionized impurity scattering (T = 4.2K).

Taking the angle 6, one finds in the perpendicular direction a good agree-
ment between the experimental data and numerical calculations. The exper-
imental data are especially (also quantitatively!) well reproduced, when the
Fermi energy is in the second miniband. In contrast, taking the angle 0.
(dashed line) leads to an overestimation of the perpendicular mobility when
the Fermi energy is in the second miniband, e.g. the characteristic maxi-
mum of the second miniband is not seen experimentally. This might indicate
that the angle 6; should be considered as scattering angle when solving the
linearized Boltzmann transport equation.

Regarding the parallel direction, one does not find such good quantitative
agreement. The numerical calculations have been shifted in mobility (—|—2>"104
cm?V~!s71) and in charge density (+ 0.5*10''cm™2). This might be due to
the fact that one has not yet found the optimal estimation of the lateral
potential modulation. This experiment demonstrates again, independently
of the question of scattering angle, the existence of the first and second
minigap. Only with the help of the lateral potential modulation, the parallel
and perpendicular mobility behavior as a function of charge density can be
understood.

As a conclusion, in this chapter it was shown by the interplay of experi-
mental and theoretical results:

e The importance of including three subbands in the dielectric function
when trying to understand both the mobility of a modulated and un-
modulated 2DEG at higher charge density or at higher temperature.

e The existence of minigaps in the bandstructure of a modulated 2DEG,
manifesting themselves in both temperature dependent and charge den-
sity dependent mobility measurements.

e The importance of taking the second Fourier coefficient of the lateral
potential modulation into account, i.e. the modulation potential cannot
be considered in a sinusoidal approximation.

e The scattering angle ; seems to be the more reliable approach (in
comparison to 9‘7;) for the scattering angle in the linearized Boltzmann
transport equation for a modulated 2DEG.
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Chapter 7

Conclusion

Lateral AlAs/GaAs superlattices on vicinal surfaces are grown and their
electronic properties are investigated by transport measurements. Numerical
calculations are developed to understand the experimental measurements
comprehensively. For the first time, the existence of minigaps and minibands
in these kind of structures are convincingly demonstrated by temperature and
charge density dependent resistivity measurements.

Organized molecular beam epitaxy on vicinal surfaces allows to create
two - dimensional electron systems, which are periodically modulated on a
nanometric scale in one direction. Due to the periodical lateral potential
modulation, which is generated by the alternate deposition of Al and Ga
atoms (under low Arsenic background pressure) on vicinal surfaces, mini-
gaps and minibands arise in one direction of the bandstructure of the lateral
modulated electron system.

The minigaps and -bands are demonstrated by temperature dependent
mobility measurements. For this purpose, the anisotropy ratio of the mobility
r(T) = py/py is measured for different charge densities. Depending on the
charge density, they exhibit pronounced maxima at finite temperature which
arise from an anomaly in the mobility perpendicular to the lateral potential
modulation.

This is shown by calculating the bandstructure in a self - consistent
Hartree approximation. The resulting wave functions are used to solve
the semiclassical linearized Boltzmann transport equation in a relaxation
time approximation, considering ionized impurity, alloy and acoustic phonon
scattering. Equally, the strong anisotropy of the collision time due to the
anisotropy of the band structure is taken into account. The impact of the
second Fourier coefficient of the lateral potential modulation as well as the
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effect of including higher subbands (up to three) in the dielectric function is
studied systematically for a small angle scattering (remote ionized impurity)
and a large angle scattering (alloy) potential. Due to this detailed analysis,
it is possible to obtain a thorough explanation of the experimental data, and
especially to understand the anomaly in the perpendicular direction which
arises, if the Fermi energy is close to the second miniband:

e At low temperatures (T < 30K), the perpendicular resistance increases
much faster than in the parallel direction. This initial increase as a
function of temperature is due to the second Fourier coefficient of the
lateral potential modulation. It does not only cause the opening of a
second minigap of similar size to the first one, it also couples states,
uncoupled before, enhancing thus the scattering probability. Hereby
the umklapp processes proved to be of special importance for the per-
pendicular direction.

e The perpendicular resistivity decreases at higher temperature. This is
due to enhanced screening at higher temperature. Numerically, it has
to be taken into account by including higher subbands in the dielectric
function.

Measuring the perpendicular and parallel mobility as a function of charge
density at low temperature, seems to indicate the answer to the theoretical
open question, which scattering angle (9% or ;) has to be taken when solving
the linearized Boltzmann transport equation for a modulated electron system
in a relaxation time approximation: taking the angle 0, one finds better
agreement between the experimental data and the calculations than when
taking 0.

The importance of including higher subbands in the dielectric function at
higher temperature or charge density is equally demonstrated for an unmod-
ulated 2DEG. It is pointed out that the inclusion of higher subbands is more
important if the average scattering vector is small, e.g. the effect is more
pronounced for remote ionized impurity scattering than for alloy scattering.

In spite of these achievements, modulated two dimensional electron sys-
tems are just in the beginning of being systematically studied by transport
measurements. There are still many exciting experiments to do:

It would be very interesting to perform capacity voltage measurements,
because the capacity of a 2DEG is directly proportional to the density of
states of the system. Since the density of states becomes one dimensional as
soon as the Fermi energy enters a minigap, the minigaps should be equally
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easy to observe. Up to now far - infrared measurements in lateral superlat-
tices fabricated by the growth on vicinal surfaces did not show evidence of the
existence of minigaps. It would be worth to try these measurements again
with the samples studied in this work. Due to the here presented results,
the experimental data should be easier to analyze. Additionally, one is now
capable to adjust the position of the Fermi level, which was not possible in
former experiments.

It would be also desirable to be capable to create stronger lateral po-
tential modulations. Lateral superlattices based on InAs/GaAs seem to be
promising. However, additional difficulties in the growth will arise due to the
lattice constant mismatch of InAs and GaAs (7 %).

From a more theoretical point of view, it is interesting to compare the
experimental results and theoretical analysis presented in this work with the
recently performed experiments in quasi 1D organic conductors [Moser 98|.
One finds in these structures similar anomalous behavior (as discussed in
this work) on the c - axis conductivity at temperatures above 100 K, which
was interpreted as Luttinger Liquid phase. Although the anomaly is much
stronger in these systems and shifted in temperature, it is worth to question,
under which conditions one could expect a precursor of Luttinger liquid in
the structures studied in this work.
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