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Summary

One of the major goals of quantum chemistry is to develop electronic-structure methods,
which are not only highly accurate in the evaluation of electronic ground-state properties,
but also computationally tractable and versatile in their application. A theory with great
potential in this respect, however, without being free from shortcomings is the random
phase approximation (RPA).

In this work, developments are presented, which address the most important of these
shortcomings subject to the constraint to obtain low- and linear-scaling electronic-
structure methods. A scheme combining an elegant way to introduce local orbitals
and multi-node parallelism is put forward, which not only allows to evaluate the RPA
correlation energy in a fraction of the time of former theories, but also enables a scalable
decrease of the high memory requirements. Furthermore, a quadratic-scaling self-
consistent minimization of the total RPA energy with respect to the one-particle density
matrix in the atomic-orbital space is introduced, making the RPA energy variationally
stable and independent of the quality of the reference calculation. To address the
slow convergence with respect to the size of the basis set and the self-correlation
inherent in the RPA functional, range-separation of the electron-electron interaction is
exploited for atomic-orbital RPA, yielding a linear-scaling range-separated RPA method
with consistent performance over a broad range of chemical problems. As a natural
extension, the concepts including local orbitals, self-consistency, and range-separation
are further combined in a RPA-based generalized Kohn–Sham method, which not only
shows a balanced performance in general main group thermochemistry, kinetics, and
noncovalent interactions, but also yields accurate ionization potentials and fundamental
gaps.
The origin of the self-correlation error within RPA lies in the neglect of exchange-

effects in the calculation of the interacting density-density response functions. While
range-separation is a reasonable approach to counteract this shortcoming — since
self-correlation is pronounced at short interelectronic distances — a more rigorous but
computationally sophisticated approach is to introduce the missing exchange-effects,



at least to some extent. To make RPA with exchange methods applicable to systems
containing hundreds of atoms and hence a suitable choice for practical applications, a
framework is developed, which allows to devise highly efficient low- and linear-scaling
RPA with exchange methods.

The developments presented in this work, however, are not only limited to RPA and
beyond-RPA methods. The connection between RPA and many-body perturbation
theory is further used to present a second-order Møller–Plesset perturbation theory
method, which combines the tools to obtain low- and linear-scaling RPA and beyond-
RPA methods with efficient linear-algebra routines, making it highly efficient and
applicable to large molecular systems comprising several thousand of basis functions.
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1
Introduction

The central equation in quantum chemistry is the Schrödinger equation,[1] which exactly
describes the correlated movement of particles in a non-relativistic physical system.
However, even the time-independent Schrödinger equation in the Born–Oppenheimer
approximation[2] will probably never be solved analytically for molecular systems
containing more than one electron due to the complexity of the interactions between
electrons. Therefore, one needs to rely on further approximations and numerical
schemes to approach the solution of the electronic Schrödinger equation for systems of
relevant size.
Two main directions evolved over the years after the publication of the Schrödinger

equation in 1926 pursuing this goal: wave-function-based methods (e.g., Ref. [3]) and
Kohn–Sham[4] (KS) density functional theory (DFT). The beauty of wave-function-
based methods lies in the fact that they are systematically improvable and hence can be
ranked in a strong hierarchy of accuracy which indeed goes up to the exact numerical
solution of the electronic Schrödinger equation. However, in case of wave-function-
based methods, high accuracy is often coupled to high computational cost, which makes
highly accurate wave-function methods only applicable to molecular systems on the
few atoms scale and hence unsuitable for most problems of practical relevance.
Density functional theory on the other hand follows a more pragmatic path, which

lacks a strict hierarchy, but yields useful accuracy at an affordable cost, making it the
most popular approach to describe the electronic structure in most areas of quantum
chemistry. However, since the pioneering work of Kohn and Sham[4] hundreds of
different density functional approximations (DFAs)[5] have been developed,[6] which
is sometimes referred to as functional inflation.[7] One reason for this still increasing
number is that a functional might perform very well for certain types of compounds and
properties, but fail for others. Furthermore, it should be noted that there are well-known

1



deficiencies of standard density functional approximations such as the incomplete
correction of the unphysical Coulomb self-interaction[8–17] and the missing description
of nonlocal phenomena like long-range dispersion interactions.[18] This, of course,
makes the selection of a suitable functional for a specific problem challenging and
underlines the necessity to develop methods which are broadly applicable and come
with a tractable computational cost.

An electron-correlation method, which places itself on the border of wave-function-
based methods and density functional theory, is the random phase approximation
(RPA). The roots of RPA lie in a series of three papers by Bohm and Pines published
between 1951 and 1953,[19–21] in which they attempted to solve the many-electron
problem of the homogeneous electron gas. In the high-density limit the electrons
are so close to each other that the movement of one electron will also effect all other
electrons. This strong coupling of the motions of the electrons leads to wave-like density
fluctuations called plasmon oscillations.[22] In order to describe the collective motion of
the electrons, Bohm and Pines made use of a coupled harmonic oscillator Hamiltonian
and corrected it with a short-range term, accounting for the random thermal motion
of the electrons, which also appears in the noninteracting system. The description
of the collective motion was further separated into in-phase oscillations and coupled
out-of-phase oscillations. Bohm and Pines[20] showed that the out-of-phase terms
can be neglected and called this approximation the random phase approximation. In
1957, Gell-Mann and Brueckner[23] showed for the first time that the RPA ground-state
correlation energy of the homogeneous electron gas can equivalently be obtained
by summing over all ring-diagrams in a many-body perturbation theory expansion,
which is the reason why RPA is sometimes also referred to as ’ring-approximation’.
However, the most accepted definition of the random phase approximation to date
is that of Langreth and Perdew,[24,25] who combined the concept of an adiabatic-
connection between the interacting and the noninteracting system within DFT with
the fluctuation-dissipation theorem[26] and showed that RPA arises as a zeroth-order
approximation within this framework. They termed this formalism the adiabatic-
connection fluctuation-dissipation theorem (ACFDT).[24,25]

With the initial work of Furche in 2001,[27] RPA as a post-KS method found its
way into quantum chemistry and became increasingly popular in the last years.[7,27–51]

However, this first implementation of 2001, which was based on molecular orbitals
(MOs), showed a prohibitive O(M6

) scaling with the molecular size M, making the
method only applicable to systems of few atoms. Introduction of the resolution of
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Introduction

the identity (RI) in combination with a numerical integration scheme by Furche and
co-workers[34] in 2010 allowed for a O(M4

) scaling formulation, opening the door
for calculations on systems comprising around 100 atoms. In 2016, a formulation of
RPA in the local atomic-orbital (AO) basis by Schurkus and Ochsenfeld[50] decreased
the scaling behavior with the molecular size further to linear, however, at the cost
of increased scaling with the size of the basis set. Luenser et al.[51] remedied the
above-mentioned drawback by introducing local Cholesky orbitals, making AO-RPA
competitive with MO-RPA also for small systems without locality in the electronic
structure.

In Publication I, the central transformation, allowing for a pure AO formulation of
RPA, is shown to be equivalent to a Fourier transform of the noninteracting density-
density response function connecting the imaginary-time and imaginary-frequency
representation thereof. This allows for the use of improved integration schemes, which
not only increase the accuracy of the method with respect to MO-RPA by orders of
magnitudes, but also decrease its computational cost by a factor of four. Furthermore, a
new scheme to introduce local Cholesky orbitals is presented that only makes use of
the one-particle density matrix, significantly reducing the memory requirements of the
method on a single node. Finally, a multi-node parallel algorithm of the new method
is brought forward, which decreases the computation time and additionally leads to a
scalable decrease of the memory requirements. All together, the new method allows for
RPA correlation energy calculations on systems far out of reach before.

Besides a few exceptions,[37,52–56] RPA is routinely performed in a post-KS fashion.
Since the RPA functional is a functional of the fifth rung on Jacob’s Ladder,[57] this
means that orbitals and the respective orbital energies are used that stem from a
preceding, in general semi-local, DFT calculation. This, of course, is accompanied by
some drawbacks, the most obvious being that the total RPA energy is not variationally
minimized. Furthermore, as mentioned above, DFAs can give accurate energies for
some compounds, but fail for others. This, of course, is not only true for the energy
itself, but also for the orbitals and the respective orbital energies, especially if one bares
in mind that most DFAs are constructed to yield accurate energies and not necessarily
good orbitals/orbital energies. It goes without saying that such orbitals/orbital energies
can lead to significant errors when they are used in a subsequent RPA calculation. In
Publication II, a method is presented, which minimizes the total RPA energy with
respect to the one-particle density matrix in the atomic-orbital space. It is shown
that this method yields lower errors in the description of noncovalent interactions
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and removes errors, stemming from low-quality references as demonstrated on the
dissociation of the helium dimer. Furthermore, a scheme is presented, which allows for
an asymptotically quadratic-scaling implementation by applying Cholesky-factorized
projectors on the RPA correlation potential, making this method applicable to systems
comprising hundreds of atoms.

Within the ACFDT framework, the central quantities are the density-density response
functions for different interaction-strengths between the electrons along the adiabatic-
connection path. While the response function for the noninteracting system — the KS
response function — is well-known, the response functions for all other interaction-
strengths are unknown and need to be approximated. To be more specific, the quantity
which needs to be approximated is the frequency-dependent exchange-correlation kernel.
Within the random phase approximation, the exchange-correlation kernel is neglected
completely, which is the reason why it is sometimes called the Hartree approximation
within time-dependent density functional theory[58] (TDDFT).[7,59] As a result, there
is no Pauli repulsion between same-spin particle-hole pairs, leading to a too deep
on-top correlation hole and hence over-correlation, especially for short interelectronic
distances.[7,60–63] Another problem is the slow convergence of the energy with respect
to the basis-set size.[27,64] The reason for this observation is the fact that the electron-
electron cusp[65] needs to be modeled explicitly, which requires a lot of basis functions
with high angular momentum. Both self-correlation and the slow basis-set convergence
can be tackled with a range-separation ansatz, using a standard density functional for
the short-range part and RPA for the long-range part.[64,66–79] In Publication III, a
range-separated RPA method is presented, which is based on the method introduced
in Publication I. Compared to the O(M6

) scaling of existing range-separated RPA
methods,[64,66–79] the new method shows asymptotically linear scaling with the system
size. The efficiency of the method allows for a detailed benchmark of range-separated
RPA, which, first, confirms the faster convergence with respect to the basis-set size
and the tremendously improved performance on self-interaction related problems, and,
second, demonstrates that range-separated RPA performs more stably over a broad
range of different chemical problems than standard RPA.

The range-separated RPA method of Publication III evaluates the long-range RPA
correlation energy using orbitals and orbital energies obtained with the range-separated
hybrid PBE (RSHPBE) functional,[80] which lacks a long-range correlation potential.
However, it is known that the reference has a significant impact on the correlation
energy obtained with the RPA functional.[53,76,81–83] In Publication IV, the RSHPBE
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Introduction

functional is extended by a long-range RPA correlation potential, making the new
method a full-featured variational generalizedKohn–Sham (GKS) functional, combining
all advantages of the methods presented in Publications I-III. The new method is, on
average, more accurate than all other tested methods including PBE,[84,85] RSHPBE,
RPA, range-separated RPA, and self-consistent RPA on test sets covering general
main group thermochemistry, kinetics, and noncovalent interactions. Furthermore,
it outperforms the popular G0W0 method in approximating ionization potentials and
fundamental gaps using the quasi-particle spectra obtained from the GKS Hamiltonian,
demonstrating the high quality of the underlying potential.

Another way of tackling self-correlation within RPA— besides the above-mentioned
range-separation approach — is to explicitly include exchange-effects, cancelling this
spurious self-interaction. Since there are several ways to include exchange-effects into
RPA, a number of different RPA with exchange methods exist to date.[35,40,48,64,70,86–92]

However, they all have one thing in common, which is their steep computational
cost, limiting their applicability to small systems. In Publication V, methodologies
combining the insights of Publication I with novel integral estimates for integral
screening are presented, which allow for the derivation of low- and linear-scaling RPA
with exchange methods of all different kinds. The new methodologies are demonstrated
on the example of RPA with second-order screened-exchange (RPA-SOSEX),[87,90]

allowing for calculations on systems comprising up to 500 atoms, which is far beyond
what was possible before.

As mentioned above, RPA can also be derived in the framework of many-body
perturbation theory (MBPT) as an infinite sum of ring-diagrams. In case of RPA with
exchange methods, further diagrams accounting for exchange-effects occur in the series
expansion. In fact, the well-known second-order Møller–Plesset perturbation theory[93]

(MP2) energy expression (in terms of KS orbitals) is a second-order approximation
to RPA-SOSEX and all the other beyond-RPA methods presented in Publication V.
In Publication VI, the ideas to devise low- and linear-scaling beyond-RPA methods
are transferred to MP2 and combined with a modified version of the natural blocking
approach of Head-Gordon and co-workers,[94] yielding a MP2 method much more
efficient than the methods presented before.
In the following, Chapter 2 briefly outlines the theoretical foundations of this work.

Chapter 3 constitutes the main part of this cumulative dissertation and reproduces
Publications I-VI in their entirety. Finally, a conclusion is given in Chapter 4.
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2
Theoretical Background

This Chapter is intended to set the theoretical foundations of the work presented in
Chapter 3. In Sections 2.1 to 2.4 some basic aspects of quantum chemistry, including the
time-independent electronic Schrödinger equation (Section 2.1), second quantization
(Section 2.2), the Hartree–Fock approximation (Section 2.3), and Kohn–Sham density
functional theory (Section 2.4) are briefly outlined. Section 2.5 describes the adiabatic-
connection within density functional theory. This concept is then combined with
the fluctuation-dissipation theorem in Section 2.6 to form the adiabatic-connection
fluctuation-dissipation framework. Section 2.7 gives a short introduction to density-
density linear response functions obtained from time-dependent linear response theory
and establishes the random phase approximation in the context of the adiabatic-
connection fluctuation-dissipation theorem. Finally, in Sections 2.8 and 2.9 the RPA,
beyond-RPA, and perturbation theory methods are derived, which form the basis of
Chapter 3.

2.1 The Time-Independent Electronic Schrödinger
Equation

The time-independent electronic Schrödinger equation[1] in the Born–Oppenheimer
approximation[2] is given by

ĤΨ = EΨ, 2.1

where Ĥ denotes the electronic Hamilton operator in atomic units

Ĥ = −
Nel∑
i

1
2
∇

2
i −

Nel∑
i

Natoms∑
A

ZA

riA
+

Nel∑
i

Nel∑
j>i

1
ri j

2.2
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of a system consisting of Nel electrons and Natoms atoms with riA denoting the distance
between electron i and nucleus A, ri j denoting the distance between electrons i and j,
and ZA denoting the charge of nucleus A. Ψ is the molecular wave function, which can
be expanded in terms of antisymmetrized products of a complete set of one-electron
functions {ϕp}. The antisymmetry of fermionic wave functions[95,96] is a generalization
of the Pauli exclusion principle,[97,98] stating that two electrons cannot have identical
values for all four quantum numbers. One elegant way to account for the antisymmetry
of the wave function is to employ so-called Slater determinants[99] defined as

Φ0(x1, x2, . . . , xNel
) =

1√
Nel!

����������
ϕ1(x1) ϕ2(x1) . . . ϕNel

(x1)

ϕ1(x2) ϕ2(x2) . . . ϕNel
(x2)

...
...

. . .
...

ϕ1(xNel
) ϕ2(xNel

) . . . ϕNel
(xNel
)

���������� 2.3a

=
��Φ0

〉
. 2.3b

It can be shown that any antisymmetric function with N variables can be exactly
expanded in terms of all unique N-variable Slater determinants formed from a complete
set of one-variable functions and hence the same holds true for the exact wave function,
which can, therefore, be expressed as

|Ψ〉 =
∑

i

ci

��Φi
〉
. 2.4

Since each of the different Slater determinants
��Φi

〉
is formed from a specific set

of one-particle functions — also called configuration — this approach is known as
configuration interaction (CI) or full configuration interaction (FCI; cf. Ref. [100]) in
case of the complete expansion.

Another very convenient way to account for the antisymmetry of the wave function
lies in the concept called second quantization, which will be discussed in more detail in
the next section.
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Theoretical Background

2.2 Second Quantization

The formalism of second quantization[101–103] is another elegant way to account for the
antisymmetry property of the electronic wave function. It should be noted that within
this formalism, the electronic Schrödinger equation is merely rewritten, it does not
introduce any new physics.
In second quantization, the state of the system is described in the basis of abstract

state-vectors ��n1n2 . . . nN
〉
, 2.5

where the one-particle states are ordered according to their quantum numbers and n1, n2,
..., nN denote their occupation numbers. Just like the basis of Slater determinants, this
state-vector basis is required to be orthogonal and complete. To account for the statistics
of fermions, the creation â†p and annihilation âp operators, which raise and lower the
respective occupation number by one, are introduced in the abstract occupation-number
space, satisfying the following anticommutation rules:[104]{

âp, â
†
q

}
= âpâ†q + â†qâp = δpq 2.6{

âp, âq
}
=

{
â†p, â

†
q

}
= 0, 2.7

with δpq denoting the Kronecker delta. Using the anticommutation rules and introducing
the vacuum state |vac〉, it can be trivially shown that��nin j

〉
= â†i â†j |vac〉 = −â†j â

†

i |vac〉 = −
��n jni

〉
2.8

and hence the antisymmetry property of the wave function has been transferred to the
algebraic properties of the creation and annihilation operators.
Another appealing feature of the second quantization formalism is the simple

description of operators. One-particle operators, e.g., take the form[104]

Ô1 =
∑
pq

〈p|Ô1 |q〉 â†pâq, 2.9

where p and q run over all one-particle states and

〈p|Ô1 |q〉 =
∫

dx ϕ∗p(x)Ô1(x)ϕq(x), 2.10
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with x denoting a combined spin- and space-index. Analogously, two-particle operators
are defined according to

Ô2 =
1
2

∑
pqrs

〈pq |Ô2 |rs〉 â†pâ†qâsâr, 2.11

where

〈pq |Ô2 |rs〉 = (pr |Ô2 |qs) =
∫∫

dx1dx2 ϕ
∗
p(x1)ϕr(x1)Ô2(x1, x2)ϕ

∗
q(x2)ϕs(x2). 2.12

The expressions can be further simplified by introducing so-called field operators[104]

Ψ̂(x) =
∑

p

ϕp(x) âp 2.13

Ψ̂†(x) =
∑

p

ϕ∗p(x) â
†
p, 2.14

which linearly combine the creation and annihilation operators using the one-particle
states as coefficients and satisfy the following anticommutation relations:[104]{

Ψ̂(x1), Ψ̂
†
(x2)

}
= Ψ̂(x1)Ψ̂

†
(x2) + Ψ̂

†
(x2)Ψ̂(x1) = δ(x1 − x2) 2.15{

Ψ̂(x1), Ψ̂(x2)
}
=

{
Ψ̂†(x1), Ψ̂

†
(x2)

}
= 0, 2.16

where δ(x1 − x2) is the Dirac delta function. The one- and two-particle operators are
then given by[104]

Ô1 =

∫
dx Ψ̂†(x)Ô1(x)Ψ̂(x) 2.17

Ô2 =
1
2

∫∫
dx1dx2 Ψ̂

†
(x1)Ψ̂

†
(x2)Ô2(x1, x2)Ψ̂(x2)Ψ̂(x1). 2.18

The form of the operators in Equations 2.17 and 2.18 appears to be very similar to
the expressions for taking their expectation values with respect to |Ψ〉. However, as
mentioned above, Ψ̂ and Ψ̂† are operators not wave functions. Further, it is to be noted
that in second quantization the operators of first quantization are just coefficients and
the fields are the operators. Hence the name second quantization.
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Theoretical Background

2.3 The Hartree–Fock Approximation

As mentioned in Chapter 1, there are two main avenues to approach the numerical
solution of the time-independent Schrödinger equation: wave-function-based methods
and density functional theory. The simplest wave-function method used to date is the
Hartree–Fock (HF) method,[105–107] which also forms the basis of more sophisticated
wave-functionmethods. TheHFmethod uses the exact Hamiltonian Ĥ, but approximates
the wave function as a single Slater determinant.
In second quantization, the energy expression — given by the expectation value of the
Hamiltonian — is obtained according to

〈Φ0 |Ĥ |Φ0〉 =
∑
pq

〈p| ĥ|q〉 〈Φ0 |â
†
pâq |Φ0〉 +

1
2

∑
pqrs

〈pq |rs〉 〈Φ0 |â
†
pâ†qâsâr |Φ0〉 2.19

=

Nocc∑
i

〈i | ĥ|i〉 +
1
2

Nocc∑
i j

〈i j | |i j〉 =
Nocc∑

i

(i | ĥ|i) +
1
2

Nocc∑
i j

(ii | | j j) , 2.20

where Nocc denotes the number of occupied orbitals and

ĥ = −
1
2
∇

2
1 −

Natoms∑
A

ZA

r1A
2.21

〈i j |i j〉 = (ii | j j) =
∫∫

dx1dx2 ϕ
∗
i (x1)ϕi(x1)

1
r12

ϕ∗j (x2)ϕ j(x2) 2.22

〈i j | |i j〉 = 〈i j |i j〉 − 〈i j | ji〉 . 2.23

Minimization with respect to the one-particle functions ϕi under the orthonormality-
constraint yields, after unitary transformation, thewell-known canonicalHF equations[108]

F̂ϕi(x1) = εiϕi(x1), 2.24

with the Fock operator

F̂ = ĥ +
Nocc∑

j

[
Ĵj − K̂ j

]
, 2.25

where the Coulomb operator Ĵ and the exchange operator K̂ are defined as

Ĵjϕi(x1) =

∫
dx2 ϕi(x1)

1
r12

ϕ∗j (x2)ϕ j(x2) 2.26
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K̂ jϕi(x1) =

∫
dx2 ϕ j(x1)

1
r12

ϕ∗j (x2)ϕi(x2). 2.27

Introduction of (atomic) basis functions leads to the Roothaan–Hall[109,110] equation

FC = SCε, 2.28

which can be solved by orthogonalization of the basis functions followed by a diagonal-
ization.
Although same-spin electrons are correlated to some extent in this simple method,

due to the effect of the exchange operator and the resulting exchange-hole around each
electron, there are still important correlation-effects missing in the description. In the
next sections, approaches are presented, which try to go beyond that and account for
correlation effects of all kinds.

2.4 Kohn–Sham Density Functional Theory

A more pragmatic way to approximate the solution of the Schrödinger equation, which
goes beyond the HF approximation, is density functional theory. As the name suggests,
the central quantity in DFT is the (electron) density

ρ(r) = Nel

∫∫
. . .

∫
dσ1dx2 . . . dxNel

Ψ∗(x1, x2, . . . , xNel
)Ψ(x1, x2, . . . , xNel

), 2.29

which is used to describe the probability of finding one of the Nel electrons in a volume
element dr at r according to ρ(r)dr. The legitimation for the use of the density as
the central quantity is given by the first Hohenberg–Kohn theorem,[111] which states
that there is a one-to-one mapping between the external potential vext(r)— typically
given by the electrostatic potentials of the nuclei — and the ground-state density. Since
the external potential of a non-degenerate ground-state (together with the number of
electrons) uniquely determines the ground-state wave function, the ground-state wave
function is a unique functional of the ground-state density

Ψ0(x1, x2, . . . , xNel
) = Ψ[ρ0]. 2.30
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Theoretical Background

Therefore, the ground-state expectation value of any observable is also a functional of
the density[112]

O[ρ0] = 〈Ψ[ρ0]|Ô |Ψ[ρ0]〉 , 2.31

with the ground-state energy being the most important one:

E[ρ0] = 〈Ψ[ρ0]|Ĥ |Ψ[ρ0]〉 . 2.32

Equation 2.32 further implies that the variational principle is valid

E[ρ0] = 〈Ψ[ρ0]|Ĥ |Ψ[ρ0]〉 6 〈Ψ[ρ
′
]|Ĥ |Ψ[ρ′]〉 = E[ρ′], 2.33

where ρ′ denotes a trial density, and is known as the second Hohenberg–Kohn theorem.
While it is very appealing to replace the highly complicated 4Nel-dimensional wave

function by the 3-dimensional electron density, the exact density functional is unknown
and accurately approximating it has shown to be extremely challenging. The general
energy expression in terms of the density is given by

E[ρ] = T[ρ] + Vee[ρ] + Eext[ρ], 2.34

where T[ρ] denotes the (correlated) kinetic energy, Vee[ρ] denotes the electron-electron
interaction energy, and Eext[ρ] denotes the potential energy. In fact, even expressing
the kinetic energy only in terms of the density showed to be problematic. In their
groundbreaking work, Kohn and Sham[4] circumvented that problem by introducing
single-particle functions φi(r)— the Kohn–Sham orbitals — stemming from a nonin-
teracting local and multiplicative potential vKS(r)— the Kohn–Sham potential — to
DFT, which yield the exact ground-state density according to

ρ0(r) =
Nocc∑

i

φ∗i (r)φi(r). 2.35

That has the important advantage that the total kinetic energy of a noninteracting system
is known exactly (as the sum of the individual kinetic energies of the particles):

Ts[ρ] = −
1
2

Nocc∑
i

∫
dr φ∗i (r)∇

2
1φi(r). 2.36
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The total energy of the Kohn–Sham approach is then given by

E[ρ] = Ts[ρ] + Eext[ρ] + EH[ρ] + Exc[ρ], 2.37

with

Eext[ρ] =

∫
dr ρ(r)vext(r) 2.38

EH[ρ] =
1
2

∫∫
dr1dr2

ρ(r1)ρ(r2)

r12
2.39

Exc[ρ] = T[ρ] − Ts[ρ] + Vee[ρ] − EH[ρ], 2.40

where EH[ρ] denotes the Hartree (or classical Coulomb) energy and Exc[ρ] denotes the
exchange-correlation energy, which contains all unknown terms and hence constitutes the
target ofmostmodern density functional approximations. Minimization of Equation 2.37
with respect to the KS orbitals yields the well-known KS equations[4]

F̂KSφi(r) = εiφi(r), 2.41

with

F̂KS = T̂ + vKS(r) 2.42

T̂ = −
1
2
∇

2
1 2.43

vKS(r) = vH(r) + vxc(r) + vext(r) 2.44

vH(r) =
dEH[ρ]

dρ(r)
=

∫
dr2

ρ(r2)

r12
2.45

vxc(r) =
dExc[ρ]

dρ(r)
, 2.46

where vH(r) denotes the Hartree potential and vxc(r) denotes the unknown exchange-
correlation potential. One way to find an exact expression for the exchange-correlation
functional is described by the adiabatic-connection formalism, which will be discussed
in the next section.
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Theoretical Background

2.5 The Adiabatic-Connection Formalism

The adiabatic-connection approach introduced by Langreth and Perdew[24,25] is a way
to obtain an exact expression for the unknown exchange-correlation energy in DFT.
The central idea is to scale the interaction-strength between the electrons by a single
parameter α to smoothly interpolate between the interacting system

Ĥ = −
Nel∑
i

1
2
∇

2
i +

∫
dr ρ̂(r)vext(r) + V̂ee ĤΨ = EΨ 2.47

and the noninteracting system, which is chosen to be the Kohn–Sham system

ĤKS = −

Nel∑
i

1
2
∇

2
i +

∫
dr ρ̂(r)vKS(r) ĤKSΦKS = EKSΦKS, 2.48

where
ρ̂(r) = Ψ̂†(r)Ψ̂(r) 2.49

denotes the one-particle density operator. The Hamiltonian of the system with scaled
electron-electron interactions is then given by[33]

Ĥα = −

Nel∑
i

1
2
∇

2
i +

∫
dr ρ̂(r)vα(r) + αV̂ee, 2.50

with eigenfunctions Ψα. In Equation 2.50, vα(r) is a local multiplicative potential,
which equals the external potential vext(r) and the KS potential vKS(r) for α = 1 and
α = 0, respectively, and is further constrained to keep the electron-density fixed for all
values of α.

To obtain an expression for the exchange-correlation energy, the difference between
the ground-state energy of the interacting and the noninteracting system is expressed in
terms of an integral along the adiabatic-connection path according to[113]

Eα=1
0 − Eα=0

0 =

∫ 1

0
dα

∂E0(α)

∂α
=

∫ 1

0
dα

∂〈Ψα0 |Ĥα |Ψ
α
0 〉

∂α
. 2.51

Using the Hellmann–Feynman theorem[114]

15



∂〈Ψα0 |Ĥα |Ψ
α
0 〉

∂α
= 〈Ψα0 |

∂Ĥα

∂α
|Ψα0 〉 2.52

yields

Eα=1
0 − Eα=0

0 =

∫ 1

0
dα 〈Ψα0 |V̂ee +

∫
dr ρ̂(r)

∂vα(r)
∂α

|Ψα0 〉 . 2.53

Since vα(r) is local and multiplicative and the density is kept fixed along the adiabatic-
connection path, it follows that

Eα=1
0 − Eα=0

0 =

∫ 1

0
dα 〈Ψα0 |V̂ee |Ψ

α
0 〉 +

∫
dr ρ(r)vext(r) −

∫
dr ρ(r)vKS(r). 2.54

Using Equation 2.38 for the potential energy and

Eα=0
0 −

∫
dr ρ(r)vKS(r) = Ts[ρ] 2.55

yields

Eα=1
0 = Ts[ρ] + Eext[ρ] +

∫ 1

0
dα 〈Ψα0 |V̂ee |Ψ

α
0 〉 . 2.56

Comparing this result with Equation 2.37 reveals that∫ 1

0
dα 〈Ψα0 |V̂ee |Ψ

α
0 〉 = Exc[ρ] + EH[ρ] 2.57

and hence

Exc[ρ] =

∫ 1

0
dα 〈Ψα0 |V̂ee |Ψ

α
0 〉 − EH[ρ]. 2.58

Since the expression for the exchange energy Ex is known exactly in terms of non-
interacting single-particle functions from Hartree–Fock theory — as is the Hartree
energy EH — it can be subtracted from Equation 2.58 to yield the remaining correlation
energy[33]

Ec[ρ] =

∫ 1

0
dα 〈Ψα0 |V̂ee |Ψ

α
0 〉 − EH[ρ] − Ex[ρ] 2.59

=

∫ 1

0
dα 〈Ψα0 |V̂ee |Ψ

α
0 〉 − 〈Φ

KS
0 |V̂ee |Φ

KS
0 〉 . 2.60
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Theoretical Background

Although the derivation of an exact expression for the correlation energy is a
great achievement, Equation 2.60 is of no practical use. In the next section, the
adiabatic-connection fluctuation-dissipation framework is established, which allows to
reformulate Equation 2.60 in terms of density-density linear response functions known
from TDDFT and hence constitutes a further step towards the efficient evaluation of the
electron-correlation energy.

2.6 The Adiabatic-Connection Fluctuation-Dissipation
Theorem

The adiabatic-connection fluctuation-dissipation theorem (ACFDT)[24,25] provides a way
to use time-dependent DFT[58] — a successful tool to describe excited state properties
— in the description of the ground state. To establish the connection to TDDFT,
the electron-electron interaction operator V̂ee is expressed in second quantization (cf.
Equation 2.18) as

V̂ee =
1
2

∫∫
dx1dx2

Ψ̂†(x1)Ψ̂
†
(x2)Ψ̂(x2)Ψ̂(x1)

r12
2.61

=

∫∫
dx1dx2

P̂(x1, x2)

r12
, 2.62

where P̂(x1, x2) =
1
2 Ψ̂
†
(x1)Ψ̂

†
(x2)Ψ̂(x2)Ψ̂(x1) is the two-particle density operator.

Using the anticommutation rules of the field operators, the two-particle density operator
can be rewritten according to[33]

P̂(x1, x2) =
1
2
(ρ̂(x1)ρ̂(x2) − δ(x1 − x2)ρ̂(x1)). 2.63

In the next step, the density-fluctuation operator[33]

∆ρ̂(x) = ρ̂(x) − ρ(x) 2.64
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is introduced, yielding

P̂(x1, x2) =
1
2
(∆ρ̂(x1)∆ρ̂(x2) + ∆ρ̂(x1)ρ(x2) + ρ(x1)∆ρ̂(x2) + ρ(x1)ρ(x2)

− δ(x1 − x2)ρ̂(x1)). 2.65

Using Equation 2.65 in the expression for the electron-electron interaction operator
(Equation 2.62) and subsequently inserting it into the electron-correlation functional
(Equation 2.60) yields[33]

Ec =
1
2

∫ 1

0
dα

∫∫
dx1dx2

〈Ψα0 |∆ρ̂(x1)∆ρ̂(x2)|Ψ
α
0 〉 − 〈Φ

KS
0 |∆ρ̂(x1)∆ρ̂(x2)|Φ

KS
0 〉

r12
2.66

since all one-electrons terms cancel due to the constancy of the density along the
adiabatic-connection path. It is worthwhile to note that—as can be seen in Equation 2.65
— the difference between the Hartree approximation to the two-particle density and the
exact two-particle density solely amounts to the correction of the self-interaction (last
term in Equation 2.65) and quantum fluctuations about the expectation value of the
density. Therefore, quantum fluctuations give rise to quantum correlations between
interacting particles, which rationalizes the result of Equation 2.66.

Now that the correlation energy is expressed solely in terms of density fluctuations,
the connection to time-dependent linear response theory can be established. To that
end, the expectation value of the product of density-fluctuation operators is transformed
into a sum of products of density-fluctuation operator expectation values using the
completeness of the space spanned by the states

��Ψαn 〉
∑

n

��Ψαn 〉 〈
Ψαn

�� = 1̂ 2.67

according to[33]

〈Ψα0 |∆ρ̂(x1)∆ρ̂(x2)|Ψ
α
0 〉 =

∑
n

〈Ψα0 |∆ρ̂(x1)|Ψ
α
n 〉 〈Ψ

α
n |∆ρ̂(x2)|Ψ

α
0 〉 . 2.68

Using that the ground-state expectation value of the density-fluctuation operator is zero

〈Ψα0 |∆ρ̂(x1)|Ψ
α
0 〉 = 0 2.69
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and introducing the transition densities[33]

ρα0n(x) = 〈Ψ
α
0 |∆ρ̂(x)|Ψ

α
n 〉 = 〈Ψ

α
0 | ρ̂(x)|Ψ

α
n 〉 2.70

yields
〈Ψα0 |∆ρ̂(x1)∆ρ̂(x2)|Ψ

α
0 〉 =

∑
n,0

ρα0n(x1)ρ
α
n0(x2). 2.71

Next, the Lehmann representation[115] of the (density-density linear) response function
known from TDDFT is considered:[116]

χα(x1, x2, ω) = lim
η→0+

∑
n,0

[
ρα0n(x1)ρ

α
n0(x2)

ω −Ωα0n + iη
−
ρα0n(x2)ρ

α
n0(x1)

ω +Ωα0n + iη

]
, 2.72

where ω is the frequency of the perturbing potential, Ωα0n = Eα
n − Eα

0 are the excitation
energies, and η shifts the poles occurring at ω = ±Ωα0n away from the real axis. Since
for real wave functions

ρα0n(x) = ρ
α
n0(x) 2.73

holds true, the two terms in Equation 2.72 can be combined to yield

χα(x1, x2, ω) =
∑
n,0

2Ωα0n

ω2
− (Ωα0n)

2 ρ
α
0n(x1)ρ

α
0n(x2) 2.74

after setting η to zero. To avoid the poles, a switch from real to imaginary frequencies
is employed, yielding[117]

χα(x1, x2, iω) =
∑
n,0

−2Ωα0n

ω2
+ (Ωα0n)

2 ρ
α
0n(x1)ρ

α
0n(x2). 2.75

Since the excitations are always positive (Ωα0n > 0) and∫ ∞

0
dω

a

a2
+ ω2 =

π

2
∀a > 0, 2.76

the following relation is obtained:[33]

−
1

2π

∫ ∞

0
dωχα(x1, x2, iω) =

1
2

∑
n,0

ρα0n(x1)ρ
α
0n(x2) =

1
2
〈Ψα0 |∆ρ̂(x1)∆ρ̂(x2)|Ψ

α
0 〉 .

2.77
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Equation 2.77 relates internal density fluctuations to the response function in the
imaginary-frequency domain and is known as the zero-temperature fluctuation-
dissipation theorem.[26] Combining Equation 2.77 with the adiabatic-connection
expression (Equation 2.66) yields

Ec = −
1

2π

∫ 1

0
dα

∫ ∞

0
dω

∫∫
dx1dx2

χα(x1, x2, iω) − χKS(x1, x2, iω)
r12

, 2.78

which is called the adiabatic-connection fluctuation-dissipation theorem.[24,25]

The question is now: How to obtain the response functions of all the systems with
scaled electron-electron interactions along the adiabatic-connection path? This question
will be addressed in the next section.

2.7 Density-Density Linear Response Functions

The response of the density to a small perturbation δvext(x, ω) with frequency ω can be
expressed by a Taylor series with respect to δvext(x, ω) according to

[116]

ρ(x, ω) = ρ(0)(x) + ρ(1)(x, ω) + ρ(2)(x, ω) + . . . . 2.79

In the following, only the linear response

ρ(1)(x1, ω) =

∫
dx2χ(x1, x2, ω)δvext(x2, ω) 2.80

is considered. Note that Equation 2.80 is for the interacting system. However, since
the exact time-dependent density ρ(x, t) can also be computed from a noninteracting
time-dependent effective one-particle potential — the time-dependent KS potential —
the same is true for the first-order change of the density[116]

ρ(1)(x1, ω) =

∫
dx2χKS(x1, x2, ω)δvKS(x2, ω), 2.81
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where δvKS(x2, ω) denotes the first-order change in the time-dependent KS potential
(formulated in the frequency domain). Since for the noninteracting system the excitation
energies are simply the KS orbital energy differences ΩKS

ia = εa − εi and for real KS
orbitals the transition densities are trivially given by[33,36]

ρKSia (x) = φi(x)φa(x), 2.82

the KS response function can be expressed exactly according to

χKS(x1, x2, ω) =

Nocc∑
i

Nvirt∑
a

2(εa − εi)φi(x1)φa(x1)φi(x2)φa(x2)

ω2
− (εa − εi)

2 , 2.83

where Nvirt denotes the number of virtual (unoccupied) orbitals. However, the change
in the time-dependent KS potential given by[116]

δvKS(x1, ω) = δvext(x1, ω) +

∫
dx2

ρ(1)(x2, ω)

r12
+

∫
dx2 fxc(x1, x2, ω)ρ

(1)
(x2, ω), 2.84

where fxc(x1, x2, ω) denotes the frequency-dependent exchange-correlation kernel,
which is the Fourier transform of

fxc(x1, t1, x2, t2) =
∂vxc(x1, t1)
∂ρ(x2, t2)

, 2.85

is unknown since the exchange-correlation potential and hence also its change with
respect to the density are unknown. Combining Equations 2.80, 2.81, and 2.84 yields
the Dyson-like equation for the interacting response function in real space:[118]

χ(x1, x2, ω) = χKS(x1, x2, ω)

+

∫∫
dx3dx4χKS(x1, x3, ω)

[
1

r34
+ fxc(x3, x4, ω)

]
χ(x4, x2, ω). 2.86

Since in quantum chemistry it is more common to work with matrices in the molecular-
orbital or particle-hole space instead of the real space, Equation 2.86 is rewritten
according to

Π(ω) = ΠKS(ω) +ΠKS(ω)
[
V + Fxc(ω)

]
Π(ω), 2.87
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with

ΠKS
ia, jb(ω) = δi jδab

2(εa − εi)

ω2
− (εa − εi)

2 2.88

Via, jb = (ia| jb) 2.89

Fxc
ia, jb(ω) =

∫∫
dx1dx2φi(x1)φa(x1) fxc(x1, x2, ω)φ j(x2)φb(x2). 2.90

As mentioned before, the exchange-correlation kernel is unknown and hence approx-
imations are necessary to compute the interacting response function. The simplest
approximation in this regard is to neglect the exchange-correlation kernel completely
and keep only the known Hartree kernel V:

ΠRPA(ω) = ΠKS(ω) +ΠKS(ω)VΠRPA(ω). 2.91

This approximation is called the random phase approximation and is the reason why it
is sometimes also referred to as the Hartree approximation within TDDFT.[7,59] Note,
however, that the derivation shown until now is not just a complicated way to shift
the problem of approximating the exchange-correlation potential to the problem of
approximating the exchange-correlation kernel since in the random phase approximation
important physical phenomena like dispersion interactions are already captured.[7,59,119]

The next section is dedicated to the derivation of actual working equations based on
the random phase approximation, implemented in modern quantum chemistry program
packages.
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2.8 Random-Phase-Approximation Methods

2.8.1 Plasmon Formula

The derivation of the plasmon formula[36] presented here starts from an expression of
the correlation energy in terms of transition densities (combination of Equations 2.66
and 2.71) given by

Ec =
1
2

∫ 1

0
dα

∑
n,0

∫∫
dx1dx2

ρα0n(x1)ρ
α
n0(x2) − ρ

KS
0n (x1)ρ

KS
n0 (x2)

r12
. 2.92

In order to obtain the transition densities for the systems with scaled electron-electron
interactions, a generalization of Equation 2.91 to the interacting density-matrix density-
matrix linear response function (also called retarded polarization propagator)[7] is
considered:[35,91,120]

Πα

r,RPA
(ω) = Π

KS
(ω) +Π

KS
(ω)αV Πα

r,RPA
(ω), 2.93

with

Π
KS
(ω) =

(
−(ΩKS

− ω1)−1 0
0 −(ΩKS

+ ω1)−1

)
2.94

ΩKS
ia, jb = δi jδabΩ

KS
ia 2.95

V =

(
V V
V V

)
, 2.96

where Π
KS
(ω) denotes the KS polarization propagator. Equation 2.93 is called the

Bethe–Salpeter equation.[121] Rearranging Equation 2.93 yields

(1 −Π
KS
(ω)αV)Πα

r,RPA
(ω) = Π

KS
(ω) 2.97[

Πα

r,RPA
(ω)

]−1
= Π−1

KS
(ω) − αV 2.98

and hence
Πα

r,RPA
(ω) =

[
Π−1

KS
(ω) − αV

]−1
. 2.99
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As mentioned above, the response function and thus also the polarization propagator
diverge when the frequency ω equals an excitation energy Ωα0n. Considering Equa-
tion 2.99 it follows that for these frequencies the eigenvalues of

[
Π−1

KS
(ω) − αV

]
equal

zero, leading to [
Π−1

KS
(Ωα0n) − αV

] (
Xα

0n

Yα
0n

)
= 0. 2.100

Equation 2.100 can then be rewritten to yield the well-known RPA eigenvalue
problem[27,122] [(

Aα Bα

Bα Aα

)
−Ωα0n

(
1 0
0 −1

)] (
Xα

0n

Yα
0n

)
= 0, 2.101

with Xα
0n and Yα

0n denoting the transition vectors and

Aαia, jb = δi jδab(εa − εi) + αVia, jb 2.102

Bα
ia, jb = αVia, jb. 2.103

With the transition vectors at hand, the transition densities can be expanded in terms of
KS orbital products according to[36]

ρα0n(x) =
Nocc∑

i

Nvirt∑
a

(Xα
0n + Yα

0n)iaφi(x)φa(x). 2.104

Using the shorthand-notation

Λα =

(
Aα Bα

Bα Aα

)
2.105

��Xα
0n,Y

α
0n

〉
=

(
Xα

0n

Yα
0n

)
, 2.106

the excitation energies can be expressed as

Ωα0n = 〈X
α
0n,Y

α
0n |Λα |X

α
0n,Y

α
0n〉 . 2.107
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According to the Hellmann–Feynman theorem, the derivative of the excitation energy
with respect to the coupling-strength is given by[36]

∂Ωα0n

∂α
= 〈Xα

0n,Y
α
0n |
∂Λα
∂α
|Xα

0n,Y
α
0n〉 2.108

=

∫∫
dx1dx2

ρα0n(x1)ρ
α
n0(x2)

r12
2.109

and hence

ERPA
c =

1
2

∫ 1

0
dα

∑
n,0

[
∂Ωα0n

∂α
−
∂Ωα0n

∂α

����
α=0

]
. 2.110

The coupling-strength integration can now be performed analytically, resulting in the
plasmon formula[36]

ERPA
c =

1
2

∑
n,0

[
Ω0n −Ω

(1)
0n

]
, 2.111

where
Ω
(1)
0n = Ω

KS
0n +

∂Ωα0n

∂α

����
α=0
= (εa − εi) + (ia|ia) 2.112

is a first-order approximation of the RPA excitation energy.
Since this method requires the calculation of the RPA excitation energies obtained

by diagonalizing Λ, it shows a prohibitive O(M6
) scaling with respect to the system

size. In the next section, a reformulation of RPA using the resolution of the identity
and a numerical frequency-integration is presented, which lowers the overall scaling of
the method to O(M4

) and in this way greatly increases its applicability.

2.8.2 Molecular-Orbital Resolution-of-the-Identity RPA

Dielectric Matrix Formulation

To derive a RI-based formulation of RPA in the molecular-orbital space, first consider
the expression for the response function in the imaginary-frequency domain for a system
with scaled electron-electron interactions:

Πα
RPA(iω) = ΠKS(iω) +ΠKS(iω)αVΠα

RPA(iω). 2.113
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Rearranging yields

Πα
RPA(iω) = (1 −ΠKS(iω)αV)−1ΠKS(iω) 2.114

= (κα(iω))
−1ΠKS(iω), 2.115

where κα(iω) is the matrix representation of the generalized dielectric function,[7] which,
from a physical perspective, captures screening effects of the bare KS particle-hole pairs
arising from other particle-hole pairs via the Hartree kernel. Inserting Equation 2.114
into Equation 2.78 represented in the particle-hole space gives

ERPA
c = −

1
2π

∫ 1

0
dα

∫ ∞

0
dω Tr

{[
[1 −ΠKS(iω)αV]−1ΠKS(iω) −ΠKS(iω)

]
V
}
,

2.116
where the coupling-strength integration can now be performed analytically to yield[91]

ERPA
c =

1
2π

∫ ∞

0
dω Tr

{
ln(1 −ΠKS(iω)V) +ΠKS(iω)V

}
2.117

=
1

2π

∫ ∞

0
dω Tr

{
ln(κ(iω)) +ΠKS(iω)V

}
. 2.118

This expression is sometimes also referred to as the dielectric matrix formulation.[91]

Resolution of the Identity

The next step is to introduce the resolution of the identity[123–128] to reduce the order of
the electron repulsion integral (ERI) tensor by replacing it with a product of lower-order
tensors. In this context, RI is also frequently referred to as density-fitting, although
the two approaches — while leading to the same result — are, strictly speaking, not
identical since they argue from different perspectives. In the following, the concept
will be briefly explained from the density-fitting point of view.

The fourth-order ERI tensor in the atomic-orbital basis is given by

Vµν,λσ = (µν |λσ) , 2.119

where µ, ν, λ, and σ denote atomic orbitals. The basis-function product |µν) can be
seen as a N2

basis-dimensional function space to represent densities (transition densities
in case of RPA), where Nbasis denotes the total number of basis functions.
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Fitting this product in the space of auxiliary functions |M) according to

|µν) ≈ | µ̃ν) =

Naux∑
M

|M) cM
µν, 2.120

with fitting coefficients cM
µν and Naux denoting the number of auxiliary basis functions,

yields for the complete ERI tensor

(µν |λσ) ≈ (µ̃ν |λ̃σ) =

Naux∑
MN

cM
µν (M |N) c

N
λσ . 2.121

The fitting coefficients are obtained by minimizing the residual self-repulsion[123]

∂

∂cM
µν

(µν − µ̃ν |m12 |µν − µ̃ν)
!
= 0 2.122

in a chosen metric m12 and are given by

cM
µν =

Naux∑
N

(µν |m12 |N) (N |m12 |M)
−1 , 2.123

where matrix operations are to be taken before indexing. The final result for the ERI
tensor is hence

(µν |λσ) ≈ (µ̃ν |λ̃σ) =

Naux∑
MNPQ

(µν |m12 |M) (M |m12 |N)
−1
(N |P) (P |m12 |Q)

−1
(Q |m12 |λσ)

2.124

=

Naux∑
MN

BM
µνṼMN BN

λσ, 2.125

where

BM
µν = (µν |m12 |M) 2.126

ṼMN =

Naux∑
PQ

(M |m12 |P)
−1
(P |Q) (Q |m12 |N)

−1 . 2.127
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As can be seen in Equation 2.124, using the density-fitting approach, the fourth-
order tensor can be factorized into products of second- and third-order tensors, which
greatly reduces the computational cost and hence led to extensive use in quantum
chemistry.[127–132]

MO-RI-RPA

Using the result of Equation 2.125 to factorize the ERI tensor in the particle-hole space
V in Equation 2.117 gives

ERPA
c =

1
2π

∫ ∞

0
dω Tr

{
ln(1 −ΠKS(iω)BṼBT

) +ΠKS(iω)BṼBT
}
. 2.128

Since the matrix logarithm can be expanded as[133]

ln(1 −ΠKS(iω)BṼBT
) = −

∞∑
n=1

1
n
(ΠKS(iω)BṼBT

)
n 2.129

and the trace over a matrix product is invariant with respect to cyclic permutation of the
matrices, Equation 2.128 can be expressed in the space of the auxiliary basis functions
according to

ERPA
c =

1
2π

∫ ∞

0
dω Tr

{
ln(1 − XKS(iω)Ṽ) + XKS(iω)Ṽ

}
, 2.130

with

XKS
MN (iω) =

Nocc∑
i j

Nvirt∑
ab

BM
iaΠ

KS
ia, jb(iω)B

N
jb. 2.131

Note that the formulation in Equation 2.130 is not identical to the originally published
MO-RI-RPA formulation[34] since a different factorization of the ERI tensor is used in
the present work. Conceptually, however, the two formulations are identical.

Compared to the O(M6
) scaling of the plasmon method, evaluation of Equation 2.130

only scales as O(M4
), which significantly extends the applicability of RPA. However,

for very large systems O(M4
) scaling is still prohibitively steep, making further

improvements necessary. In the next section, a formulation of the RPA correlation
functional in the AO space is derived, which can be evaluated with effective linear
time-complexity.
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2.8.3 Atomic-Orbital Resolution-of-the-Identity RPA

The time-determining step of MO-RI-RPA is the calculation of the noninteracting
response function in the imaginary-frequency domain

XKS
MN (iω) =

Nocc∑
i j

Nvirt∑
ab

BM
iaΠ

KS
ia, jb(iω)B

N
jb 2.132

=

Nocc∑
i

Nvirt∑
a

BM
ia
−2(εa − εi)

ω2
+ (εa − εi)

2 BN
ia 2.133

formally scaling as O(NoccNvirtN
2
aux). As can be seen in Equation 2.133, a straightfor-

ward reformulation purely in terms of atomic orbitals is prohibited by the structure of
the response function in the imaginary-frequency domain, since the MO energies cannot
be decoupled. However, expressing the response function in the imaginary-frequency
domain by a Fourier transform[134] of its representation in the imaginary-time domain

ΠKS
ia, jb(iω) = −2

∫ ∞

0
dτ cos(ωτ)ΠKS

ia, jb(iτ) 2.134

= −2
∫ ∞

0
dτ cos(ωτ)δi jδab exp(−(εa − εi)τ) 2.135

allows to decouple the MO energies due to the properties of the exponential function.
Note that the Fourier transform in this case reduces to a cosine transform since the
response function is symmetric with respect to iω. Inserting Equation 2.134 into
Equation 2.132 yields

XKS
MN (iω) = −2

∫ ∞

0
dτ cos(ωτ)

Nocc∑
i j

Nvirt∑
ab

BM
iaΠ

KS
ia, jb(iτ)B

N
jb 2.136

= 2
∫ ∞

0
dτ cos(ωτ)XKS

MN (iτ), 2.137

with XKS
MN (iτ) denoting the auxiliary-basis representation of the KS response function

in the imaginary-time domain. The expression for XKS
MN (iτ) is trivially transformed into

the AO space according to

XKS
MN (iτ) = −

Nbasis∑
µνλσ

Nocc∑
i

Nvirt∑
a

CµiCνaBM
µν exp(−εaτ) exp(εiτ)B

N
λσCλiCσa, 2.138

29



with the occupied Cµi and virtual Cµa MO coefficients. Introducing the one-particle
Green’s function in the imaginary-time domain

G0(iτ) = Θ(−iτ)G0(iτ) + Θ(iτ)G0(iτ) 2.139

G0
µν(iτ) =

Nocc∑
i

CµiCνi exp(−εiτ) 2.140

G
0
µν(iτ) = −

Nvirt∑
a

CµaCνa exp(−εaτ), 2.141

with the Heaviside step-functionΘ, the expression for XKS
MN (iτ) can be further simplified

to

XKS
MN (iτ) =

Nbasis∑
µνλσ

G0
µν(−iτ)BM

νλG
0
λσ(iτ)B

N
σµ. 2.142

Note that Equation 2.142 in combination with the Fourier transform (Equation 2.137) is
equivalent to one of two integral transforms decoupling the MO energies in the original
derivation of AO-RI-RPA by Schurkus and Ochsenfeld,[50] however, derived in a
different way. The second integral transform was introduced in the original formulation
since numerical problems arose when only one transform was used. In Publication I,
the above-mentioned equivalence is used to establish a connection between AO-RI-RPA
and the work of Kaltak et al.[134] on cubic-scaling RPA in the plane-wave basis. Based
on that connection, optimized quadrature schemes[134] for the Fourier transform and
the final frequency-integration (Equation 2.130) are introduced, making the second
integral transform of the original AO-RI-RPA formulation obsolete.

Since all quantities in Equation 2.142 get sparse for large systems with a nonvanishing
gap between the highest occupied and the lowest unoccupied molecular orbital, it can be
evaluated with an asymptotic linear time-complexity, opening the door for large-scale
applications of RPA.

2.9 Beyond the Random Phase Approximation

As already mentioned in Chapter 1, a major problem of RPA is the inherent self-
correlation error, occurring due to the neglect of exchange-effects in the Dyson-like
equation for the interacting response function (cf. Equation 2.91).[7,60–63] Since self-
correlation is, of course, especially pronounced at short interelectronic distances,
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processes introducing large changes in that region — as for example atomization
reactions — are described poorly by RPA methods. The most rigorous way to remedy
this problem is to include the missing exchange-effects, at least to some extent. This
section is intended to briefly outline, how the beyond-RPA equations, forming the basis
of Publication V, are obtained.
All of the beyond-RPA methods used in this work are derived starting from the

Bethe–Salpeter equation[121] (BSE) for the causal polarization propagator of a system
with scaled electron-electron interactions

Π
α
(ω) = Π

KS
(ω) +Π

KS
(ω)

[
αV +K

α
(ω)

]
Π
α
(ω). 2.143

It should be noted that the causal polarization propagator discussed here is not equal
to the retarded polarization propagator (obtained by generalizing Equation 2.87 to the
interacting density-matrix density-matrix linear response function), although they yield
the same density-density response function and hence also the same correlation energy
within the ACFDT.[7,35] The difference between the two stems from the fact that the
frequency-dependent exchange-correlation kernel in case of the retarded polarization
propagator known from TDDFT corresponds to local interactions — as it should
be in the KS framework — while the frequency-dependent BSE kernel K

α
(ω) in

case of the causal polarization propagator corresponds to nonlocal interactions.[35]

Further, it should be noted that Equation 2.143 is given in terms of 2 × 2 supermatrices
with dimensions 2Nph × 2Nph, where Nph denotes the number of particle-hole pairs.
However, since all final equations are of dimensions Nph × Nph, it is sufficient for the
discussion here to work with reduced dimensions right from the beginning. The analog
of Equation 2.143 is then given by

Πα(ω) = ΠKS(ω) +ΠKS(ω)
[
αV +Kα(ω)

]
Πα(ω) 2.144

and the correlation energy within the adiabatic-connection fluctuation-dissipation
framework (Equation 2.78) in the particle-hole space is

Ec = −
1

2π

∫ 1

0
dα

∫ ∞

0
dω Tr

{
Πα(iω)V −ΠKS(iω)V

}
. 2.145
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A relatively simple approach to include exchange-effects is the second-order screened-
exchange (SOSEX) correction in the ACFDT.[70,91] Note that the SOSEX correction was
originally introduced in the direct-ring coupled-cluster doubles framework,[87,90] which
was shown to be identical to the random phase approximation, but is not discussed in
the present work.[47] The idea of the SOSEX correction is to calculate the interacting
response function like in standard RPA (only keeping the Hartree kernel) and use
integrals with exchanged particles in the ACFDT correlation energy expression:

∆ESOSEX
c =

1
2π

∫ 1

0
dα

∫ ∞

0
dω Tr

{
Πα

RPA(iω)K −ΠKS(iω)K
}
, 2.146

with
Kia, jb = (ib| ja) . 2.147

Insertion of the interacting RPA response function (Equation 2.114) and analytical
coupling-strength integration as described in Section 2.8 then yields

∆ESOSEX
c = −

1
2π

∫ ∞

0
dω Tr

{
ln(1 −ΠKS(iω)V)V

−1K +ΠKS(iω)K
}
. 2.148

The other two approaches which will be discussed in the present work leave the
Hartree kernel in the ACFDT correlation energy expression unchanged and aim to
approximately account for exchange-effects in the calculation of the interacting response
function (Equation 2.144). The RPAwith exchange (RPAx) method[91] approximates the
frequency-dependent BSE kernel Kα(ω) in Equation 2.144 by the static Hartree–Fock
like exchange-kernel K already introduced in the SOSEX correction, however, in a
different fashion. That is, the RPAx interacting response function is given by

Πα
RPAx(ω) = ΠKS(ω) +ΠKS(ω)αW Πα

RPAx(ω), 2.149

with
W = V −K, 2.150

and the ACFDT correlation energy expression becomes[91]

ERPAx
c = −

1
2π

∫ 1

0
dα

∫ ∞

0
dω Tr

{
Πα

RPAx(iω)V −ΠKS(iω)V
}
. 2.151
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Reformulating Equation 2.151 along the lines of Section 2.8 finally yields

ERPAx
c =

1
2π

∫ ∞

0
dω Tr

{
ln(1 −ΠKS(iω)W)W

−1V +ΠKS(iω)V
}
. 2.152

The approximate exchange-kernel (AXK) correction proposed by Furche and co-
workers[35] uses in a first step the random phase approximation for the interacting
response function

Πα
RPA(ω) =

[
Π−1

KS(ω) − αV
]−1

2.153

and afterwards expands Πα(ω) in terms of Πα
RPA(ω) in a geometric series according to

Πα(ω) =
[ (

Πα
RPA(ω)

)−1
−Kα(ω)

]−1
2.154

= Πα
RPA(ω) +Πα

RPA(ω)Kα(ω)Π
α
RPA(ω) + . . . . 2.155

Truncating the expansion in second order and using the static Hartree–Fock like
exchange-kernel to approximate Kα(ω) as in the RPAx method discussed above yields
the AXK correction:[35]

∆EAXK
c =

1
2π

∫ 1

0
dα

∫ ∞

0
dω Tr

{
Πα

RPA(iω)αKΠα
RPA(iω)V

}
. 2.156

Insertion of the interacting response function within the random phase approximation
(Equation 2.114) and analytical coupling-strength integration then yields

∆EAXK
c =

1
2π

∫ ∞

0
dω Tr

{
ln(1 −ΠKS(iω)V)V

−1K + (1 −ΠKS(iω)V)
−1ΠKS(iω)K

}
.

2.157
All beyond-RPA methods discussed in this section yield the well-known MP2

correlation energy expression (in terms of KS orbitals) in a second-order approximation
and hence are correct up to this order. This can be easily shown, e.g., for the RPAx
method. Expanding the matrix logarithm (cf. Equation 2.129) lets the first-order term
vanish and yields for the second-order term

ERPAx,(2)
c = −

1
4π

∫ ∞

0
dω Tr

{
ΠKS(iω)WΠKS(iω)V

}
. 2.158

Since ∫ ∞

0
dω
−2a

a2
+ ω2

−2b

b2
+ ω2 =

2π
a + b

∀a, b > 0 2.159
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Equation 2.158 becomes

ERPAx,(2)
c = −

1
2

Nocc∑
i j

Nvirt∑
ab

Wia, jbVia, jb

ΩKS
ia +Ω

KS
jb

= EMP2
c , 2.160

which connects the discussed beyond-RPA method(s) with MP2 and thus enables to
transfer all of the insights obtained in the development of efficient beyond-RPA methods
to MP2 as it is done in Publication VI.
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Abstract

An efficient algorithm for calculating the random phase approximation (RPA)
correlation energy is presented that is as accurate as the canonical molecular orbital
resolution-of-the-identity RPA (RI-RPA) with the important advantage of an effective
linear-scaling behavior (instead of quartic) for large systems due to a formulation in the
local atomic orbital space. The high accuracy is achieved by utilizing optimizedminimax
integration schemes and the local Coulomb metric attenuated by the complementary
error function for the RI approximation. The memory bottleneck of former atomic
orbital (AO)-RI-RPA implementations (Schurkus, H. F.; Ochsenfeld, C. J. Chem. Phys.
2016, 144, 031101 and Luenser, A.; Schurkus, H. F.; Ochsenfeld, C. J. Chem. Theory
Comput. 2017, 13, 1647–1655) is addressed by precontraction of the large 3-center
integral matrix with the Cholesky factors of the ground state density reducing the
memory requirements of that matrix by a factor of Nbasis

Nocc
. Furthermore, we present a

parallel implementation of our method, which not only leads to faster RPA correlation
energy calculations but also to a scalable decrease in memory requirements, opening the
door for investigations of large molecules even on small- to medium-sized computing
clusters. Although it is known that AO methods are highly efficient for extended
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systems, where sparsity allows for reaching the linear-scaling regime, we show that
our work also extends the applicability when considering highly delocalized systems
for which no linear scaling can be achieved. As an example, the interlayer distance
of two covalent organic framework pore fragments (comprising 384 atoms in total) is
analyzed.
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of Munich (LMU), D-81377 Munich, Germany
‡Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany

ABSTRACT: An efficient algorithm for calculating the random
phase approximation (RPA) correlation energy is presented that
is as accurate as the canonical molecular orbital resolution-of-the-
identity RPA (RI-RPA) with the important advantage of an
effective linear-scaling behavior (instead of quartic) for large
systems due to a formulation in the local atomic orbital space.
The high accuracy is achieved by utilizing optimized minimax
integration schemes and the local Coulomb metric attenuated by
the complementary error function for the RI approximation. The
memory bottleneck of former atomic orbital (AO)-RI-RPA
implementations (Schurkus, H. F.; Ochsenfeld, C. J. Chem. Phys. 2016, 144, 031101 and Luenser, A.; Schurkus, H. F.;
Ochsenfeld, C. J. Chem. Theory Comput. 2017, 13, 1647−1655) is addressed by precontraction of the large 3-center integral
matrix with the Cholesky factors of the ground state density reducing the memory requirements of that matrix by a factor of N

N
basis

occ
.

Furthermore, we present a parallel implementation of our method, which not only leads to faster RPA correlation energy
calculations but also to a scalable decrease in memory requirements, opening the door for investigations of large molecules even
on small- to medium-sized computing clusters. Although it is known that AO methods are highly efficient for extended systems,
where sparsity allows for reaching the linear-scaling regime, we show that our work also extends the applicability when
considering highly delocalized systems for which no linear scaling can be achieved. As an example, the interlayer distance of two
covalent organic framework pore fragments (comprising 384 atoms in total) is analyzed.

1. INTRODUCTION

Density functional theory (DFT) is the most widely used
electronic structure method in chemistry, physics, and materials
sciences. This is mainly because of the excellent cost-
performance ratios and good accuracies of its parametrized
functionals for certain types of compounds and properties.
However, the high sensitivity of semilocal DFT results to the
parametrization has led to the development of many hundreds
of different functionals, which not only makes the selection of a
suitable functional for a specific problem challenging1 but also
limits its predictive power. Additionally, the general failure of
GGA functionals in describing noncovalent interactions2,3

necessitates the development of more broadly applicable
correlation models.
One theory to describe electron correlation, which has

become increasingly popular over the past decade, is the
random phase approximation (RPA). RPA is a post Kohn−
Sham4 method that was originally introduced by Bohm and
Pines in 1953.5 It contains an ab initio description of dispersion
effects,6 is size consistent,7 and does not depend on any
empirical parameters. Additionally, it is applicable to vanishing
electronic gap systems,7−9 making it highly interesting for a
wide range of applications in the field of quantum chemistry.

However, in its original form,10,11 the calculation of RPA
correlation energies of molecular systems scales as M( )6 with
system size M, making it impractical for larger molecules. In
2010, Furche and co-workers12−14 successfully employed the
resolution-of-the-identity (RI) approximation to reduce the
scaling to effective M( )4 , which can be viewed as a
breakthrough because it opened the door for RPA calculations
beyond the few atoms scale. In 2014, Kresse and co-workers15

presented an algorithm for the RPA that employed minimax
grids for the time as well as the frequency domain and a Fourier
transform scheme to reduce the scaling to cubic. Effective
linear-scaling of RPA calculations for molecules with non-
vanishing band gaps was achieved by Kaĺlay16 as well as
Schurkus and Ochsenfeld:17 The approach of Kaĺlay16 is based
on local correlation theory, which finds its origin in the
1980s,18−20 whereas the method of Schurkus et al.17 builds
upon the transformation into the local atomic orbital space.
Recently, Hutter and co-workers21 presented a different
approach toward large-scale RPA calculations by a cubic scaling
but highly parallel implementation, opening the door to
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calculations comprising up to 8000 electrons on a Cray XC40
supercomputer.
To obtain the desired linear-scaling behavior, Schurkus et

al.17 employed the local but with canonical auxiliary basis sets
less accurate overlap RI metric22 instead of the longe-range
Coulomb metric. Additionally, the pilot implementation was
strongly hampered in its applicability to larger basis sets
because the scaling with basis set size Nbasis and auxiliary basis
set size Naux is increased from N N N( )aux

2
basis occ to N N( )aux

2
basis
2

for a fixed molecular size. In 2017, Luenser et al.23 remedied
these drawbacks by switching to the Coulomb metric
attenuated by the complementary error function24−26 as well
as utilizing pivoted Cholesky decomposition27−31 of density
and pseudodensity matrices, which brought the scaling with
basis set size back to N N N( )aux

2
basis occ while scaling linearly

with molecular size. The improved implementation was termed
ω-CDD-RPA.23

However, in both the original atomic orbital RI-RPA as well
as the ω-CDD method, the complete 3-center integral matrix B
in the atomic orbital (AO) basis needs to be stored in memory,
which is a bottleneck when aiming for large systems.
Additionally, two different formulations for constructing the
frequency-dependent energy kernel Q(u) are necessary to avoid
numerical problems arising from the use of unoptimized
weights and roots for the numerical quadratures. Furthermore,
the final frequency integration is carried out with the
Clenshaw−Curtis scheme32 with optimization of the scaling
parameter as described by Furche and co-workers,13 where at
least 60 node points are necessary to obtain μHartree accuracy.
The focus of the present work is to overcome the drawbacks

described above: The use of an optimized minimax grid for the
frequency integration as described by Kresse and co-workers15

reduces the number of necessary quadrature points from
60−100 to 10−20. Utilizing optimized weights and roots for
the integrated double-Laplace expansion17 enables us to obtain
Q(u) without using the second equation, decreasing the
prefactor of our RPA reformulation by a factor of 4 and,
additionally, increasing the accuracy of the calculations by up to
4 orders of magnitude. Reformulating the formation of FINT as
described in this work reduces the memory effort of the

algorithm by a factor of N
N

basis

occ
and yields an additional speed-up.

Besides improved integration schemes, a parallel implementa-
tion of the new method is presented, which not only reduces
the evaluation time of correlation energies significantly but also
leads to a scalable decrease in memory requirements. Here, the
focus of our present parallel implementation is on small- to
medium-sized computing clusters typically available in local
research groups.
In the following, we first give a brief review of the derivation

of our ω-CDD-RI-RPA method23 in section 2.1. We then
establish the connection of our double-Laplace approach17 and
the cosine transformation of Kresse and co-workers15 in section
2.2. In section 2.3, the memory efficient reformulation of
evaluating FINT is outlined before we present the parallel
implementation of the method to further reduce the memory
requirements and speed up the calculations in section 2.4.
Computational details are given in section 3. Accuracy and
performance benchmarks as well as a illustrative application of
the new implementation are reported in section 4, followed by
the conclusions in section 5.

2. THEORY
2.1. Linear-Scaling Atomic Orbital Random Phase

Approximation. To create a complete picture of our new
effective linear-scaling atomic orbital RPA method, we will
briefly review the most important steps in the derivation of our
recently reported ω-CDD method.23 In this work, the following
notation has been adopted: μ, ν, λ, σ denote atomic orbitals
(AOs); i, j denote occupied molecular orbitals (MOs); a, b
denote virtual MOs; i, j denote Cholesky orbitals; and M, N
denote auxiliary RI functions. The number of basis functions is
represented by Nbasis; the number of auxiliary RI functions is
represented by Naux; and the numbers of occupied and virtual
molecular orbitals are represented by Nocc and Nvirt,
respectively. For 2-, 3-, and 4-center integrals, the Mulliken
notation will be employed. Furthermore, Einstein’s sum
convention33 is used, and the spin index is dropped for
convenience.
Within the adiabatic connection formalism,34 the total energy

can be expressed as10,11

ϕ ϕ ϕ= + + +E E E E E[{ }] [{ }] [{ }]T KS J KS X KS C (1)

where ET, EJ, and EX denote the kinetic, Coulomb, and exact
exchange energies, respectively. The expression for the
correlation energy35 EC, obtained by using the zero-temper-
ature fluctuation−dissipation theorem and the RPA,36 is given
by

∫ π
χ χ= − +

−∞
+∞

E
u

v iu v iu
d
4

Tr[ln(1 ( )) ( )]C 0 0 (2)

where v represents the Coulomb operator

′ = | − ′|v r r
r r

( , )
1

(3)

with the electronic coordinates r and r′, and χ0 denotes the
noninteracting density−density response function in the
occupied and virtual orbital representation in the zero-
temperature case37

χ
ϕ ϕ ϕ ϕ

ε ε
ϕ ϕ ϕ ϕ

ε ε

′ = −
* * ′ ′

− −
−

* ′ ′ *
− +

iu
iu

iu

r r
r r r r

r r r r

( , , )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

i a a i

a i

i a a i

a i

0

(4)

with the occupied and virtual molecular spin orbitals ϕi and ϕa
and their respective orbital energies εi and εa. Note that v and
χ0(iu) denote matrices of which v(r, r′) and χ0(r, r′, iu)
represent the respective (r, r′)-th element and that

∫ ∫χ χ= ′ ′ ′v iu v iur r r r r rTr[ ( )] d d ( , ) ( , , )0 0 (5)

The correlation energy can also be expressed in a supermatrix
formalism38,39

∫ π
Π Π= − +

−∞
+∞

E
u

iu iu1 V V
d
4

Tr[ln( ( ) ) ( ) ]C 0 0 (6)

where we introduced the Kohn−Sham (KS) polarization
propagator in the canonical orbital space

π

π
Π =

−

+
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟iu

iu

iu
( )

( ) 0

0 ( )
0

(7)

with
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π Δ= − ±± −iu iu1( ) ( ) 1
(8)

δ δ ε εΔ = −( )ia ij ab a i,jb (9)

and the Hartree kernel matrix

∫ ∫= ′ ′ ′ = * *
† ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟vV r r b r r r b r

V V

V V
d d ( ) ( , ) ( )

11 12

12 11 (10)

with

ϕ ϕ ϕ ϕ= ··· * ··· * ···b r r r r r( ) ( , ( ) ( ), , ( ) ( ), )T
i a i a (11)

and its submatrices

= |V ia jb( )iajb11, (12)

= |V ia bj( )iajb12, (13)

For real-valued orbitals

= * = = *V V V V11 11 12 12 (14)

holds and, therefore, the Hartree kernel matrix simplifies to

= ⎜ ⎟⎛
⎝

⎞
⎠V

V V
V V (15)

The matrices appearing in eq 6 have dimensions (2NPH ×
2NPH) with NPH denoting the number of products between
occupied and virtual orbitals (particle-hole). To reduce the
dimensions to (NPH × NPH), we use the series expansion of the
matrix logarithm

∑Π Π− = −
=

∞
iu

n
iu1 V VTr[ln( ( ) )]

1
Tr[( ( ) ) ]

n

n
0

1
0

(16)

Application of the unitary transformation40

= −⎜ ⎟⎛
⎝

⎞
⎠U

1 1
1 1

1
2 (17)

cyclic permutation of the matrix products and considering that
only the trace is relevant leads to

∑ ∑ π πΠ− = − +
=

∞
†

=

∞
− +

n
iu

n
iu iuU VU V

1
Tr[( ( ) ) ]

1
Tr[({ ( ) ( )} ) ]

n
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∑ ∑Π− = − −
=

∞
†

=

∞

n
iu

n
uU VU G V

1
Tr[( ( ) ) ]

1
Tr[( 2 ( ) ) ]

n

n

n

n

1
0

1 (19)

where

Δ
Δ

= +u
u

G
1

( ) 2 2 (20)

Applying the Coulomb-RI metric attenuated by the comple-
mentary error function24,26 as described by Luenser et al.23

| ≈ ̃ia jb B C B( ) ia
M

MN jb
N

(21)

ω=
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟B ia

r
r

M
erfc( )

ia
M 12

12 (22)

̃ = − −C S CS1 1 (23)

= | |−C M r N( )MN 12
1

(24)

ω=
⎛
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⎟⎟S M

r
r

N
erfc( )

MN
12

12 (25)

to factorize the 4-center integrals into 3-center integrals Bia
M, and

2-center-2-electron integrals C̃MN leads to

∑ ∑− − = − − ̃
=

∞

=

∞

n
u

n
uG V G BCB

1
Tr[( 2 ( ) ) ]

1
Tr[( 2 ( ) ) ]

n

n

n

T n

1 1
(26)

Cyclic permutation of the matrix products and defining

=u uQ B G B( ) 2 ( )T
(27)

finally yields17

∫ π
= + ̃ − ̃+∞

E
u

u u1 Q C Q C2
d
4

Tr[ln( ( ) ) ( ) ]C
0 (28)

As shown by Schurkus and Ochsenfeld,17 the Kohn−Sham
energy-based G(u) can be decoupled by a contracted double-
Laplace expansion

= Δ
Δ +u

u
G( ( ))ia jb

ia jb

ia jb
,

,

,
2 2

(29)

∫= Δ −Δ∞
u

up
u

p pG( ( ))
sin( )

exp( ) dia jb ia ia, ,jb
0

,jb (30)

yielding two different equations for calculating Q(u)

∫= ∞
u up pQ F( ) 2 cos( ) dp

0
INT
( )

(31)

∫= + ∞
u

u
up

u
pQ

F
F( ) 2 2

cos( )
dp

(0)

2 0 2 D
( )

(32)

after partial integration with three different forms of F matrices
defined in ref 23. As evaluating the trace of the matrix logarithm
in the final frequency integration (eq 28) has a very small
prefactor, the time determining step of the algorithm is the
calculation of these three F matrices. Rewriting the expressions
for these matrices in the local atomic orbital basis allows for a
linear-scaling calculation because all occurring quantities
become sparse for large systems.17

2.2. Polarization Propagators in the Imaginary
Frequency and Time Domain in AO-RI-RPA Theory. As
mentioned in the section above, within the ω-CDD method
two equations for the calculation of Q(u) are necessary because
eq 31 suffers from numerical instability when u approaches
infinity and eq 32 becomes numerically unstable where u tends
to zero.17 It is assumed that these problems occur because
weights and roots are used for the numerical quadratures, which
are not optimized for these specific transformations.17 There-
fore, determining optimized weights and roots for the
integrated double-Laplace expansion should allow for using
eq 31 alone for calculating Q(u). This would decrease the
computational cost significantly while at the same time
increasing the accuracy of the quadrature. Kresse and co-
workers15 have described in great detail a procedure for finding
optimal weights and roots for their nonuniform cosine
transformation, which is based on minimax grids and allows
for transforming the polarizability χ ̂ from the imaginary time
domain into the imaginary frequency domain and vice versa.
We show in the following that the described cosine
transformation is equivalent to eq 31 stemming from the
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double-Laplace transform, which enables us to follow the
procedure outlined by Kresse and co-workers to obtain
optimized weights and roots for this transformation.
Therefore, consider the definition of Q(u)

ε ε
ε ε

= −
+ −u B

u
BQ ( ) 2

( )MN ia
M a i

a i
ia
N

2 2
(33)

Combination of the two indices i and a according to κ = (i, a)
and defining

ε ε= −κx a i (34)

results in

= Φκ κ κu B u x BQ ( ) ( , )MN
M N

(35)

where

Φ = +κ
κ

κ
u x

x
u x

( , )
2

2 2
(36)

Next, consider the definition of FINT, which is given by23

= ̲ ̅F P B P B( ) Tr( )p
MN

p M p N
INT
( ) ( ) ( )

(37)

= ̲ ̅μν νσ σλ λμP B P BF( )p
MN

p M p N
INT
( ) ( ) ( )

(38)

Inserting the definition for the occupied and virtual
pseudodensities, P(p) and P(p)17 and transforming B back into
the molecular orbital space yields

ε ε= + −B p p BF( ) exp( )exp( )p
MN ia

M
i a ia

N
INT
( )

(39)

Considering the definitions for κ and xκ finally leads to

= Φ̂κ κ κB p x BF( ) ( , )p
MN

M N
INT
( )

(40)

where

Φ̂ = −κ κp x x p( , ) exp( ) (41)

Comparison of eqs 35−40 with eqs 14−17 in ref 15 shows that
FINT is the representation of Q(u) in the imaginary time
domain. Therefore, the cosine transformation described by
Kresse and co-workers15 is equivalent to the double-Laplace
transformation in its integral formulation (eq 31), and we can
follow the procedure of ref 15 to obtain optimized weights and
roots for the transformation.
Additionally, the minimax grid for the imaginary frequency

domain will be utilized for the final frequency integration
replacing the Clenshaw−Curtis quadrature32 to obtain the RPA
correlation energy according to eq 28, which decreases the
number of necessary quadrature points from 60−100 to 10−20.
2.3. Memory Efficient Calculation of the FINT Matrix.

One of the major bottlenecks of the ω-CDD method is the
huge memory requirement of the complete 3-center integrals in
the AO basis. To find a strategy to reduce this memory
requirement, we consider the formation of the FINT matrix
according to23

= ̅F Z P Z( ) Tr( )p
MN M

p T p
N
p

INT
( ) ( ) ( ) ( )

(42)

where the pivoted Cholesky factorization of a given matrix A is
abbreviated by A = LLT and23

= ̲ ̲ = ̲ ̲Z B L P L LwithM
p M p p p p T( ) ( ) ( ) ( ) ( )

(43)

The Cholesky factor L(p) is a transformation matrix to a local
Cholesky basis,30,31 and therefore, transformation of the 3-

center integrals BM to this local basis reduces the dimensions of
each BM from Nbasis × Nbasis to Nbasis × Nocc while preserving all
sparsity of the original matrix.23 However, because ZM

(p) is
required for each Laplace point p, precontraction of each BM

with the Cholesky factors requires NauxNbasisNoccτ memory,
where τ is the number of Laplace points and, therefore, quickly
becomes unfeasible.
Reformulating the calculation of FINT using the idempotency

relation of the ground state density P

=P PSP (44)

with the 2-center overlap S and the extension to pseudodensity
matrices

̲ = ̲P PSP (45)

according to

= ̲ ̅F P B P B( ) Tr( )p
MN

p M p N
INT
( ) ( ) ( )

(46)

= ̲ ̅F P SPB P B PS( ) Tr( )p
MN

p M p N
INT
( ) ( ) ( )

(47)

= ̲ ̅F P SLL B P B LL S( ) Tr( )p
MN

p T M p N T
INT
( ) ( ) ( )

(48)

= ̲ ̅F L SP SLL B P B L( ) Tr( )p
MN

T p T M p N
INT
( ) ( ) ( )

(49)

= ̃ ̃ ̅ ̃ν νμ μ̲ ̲ ̲ ̲P B P BF( )p
MN j i

p
i
M p

j
N

INT
( ) ( ) ( )

(50)

allows to precontract each BM with the Cholesky factor L of the
occupied one-particle density P, which is not dependent on the
Laplace points. Again, the dimensions are reduced from Nbasis ×
Nbasis to Nbasis × Nocc while all sparsity of the original matrix is
preserved, which will be shown in section 4. In this way, the
required memory for saving the 3-center integrals is reduced by
a factor of N

N
basis

occ
(with the total memory requirement being

NauxNbasisNocc), which is highly beneficial, especially for large
basis sets. The final step for obtaining FINT is given by

= ̃ ̃μ μ̲ ̲B BF( )p
MN j

p M
j

N
INT
( ) ( ),

(51)

As the reformulation of FINT presented in this section makes
use of only the Cholesky decomposed ground state density
(CDGD) P, we will term the algorithm ω-CDGD-RPA.

2.4. Parallel Implementation. In the previous section, we
showed that the memory requirements of the 3-center integral
matrix can be decreased significantly by precontraction with the
Cholesky factor of the ground state density. However, for large
systems the 3-center integral matrix easily exceeds the available
memory on a single node even with reduced dimensions.
Therefore, our parallel implementation not only focuses on
reducing calculation times of RPA correlation energies but also
on a scalable decrease in memory requirements of the large 3-
center integral matrix per node. The implementation presented
here is a MPI/OpenMP hybrid parallelization of the ω-CDGD
method, where OpenMP is mainly used for linear algebra and is
therefore not discussed. The pseudocode of our implementa-
tion is shown in Figure 2.
The two most time-consuming steps in the ω-CDGD

algorithm are, first, the formation of FINT according to eq 51
and, second, evaluation of the 3-center integrals Bνσ

M . For
tackling all three of the bottlenecks mentioned above at once, a
parallelization with respect to auxiliary basis functions is
obvious. Therefore, each node calculates the 3-center integrals
of a specific batch of RI basis functions (AUX1...AUXn) and
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keeps this part in memory (if enough memory is available)
throughout the complete calculation. On each node, the 3-
center integrals in the atomic orbital space are additionally
evaluated in batches of RI basis functions, which are
transformed into the Cholesky space by contraction with the
Cholesky factor of the ground state density right after
evaluation to reduce memory requirements. For evaluating
the FINT matrix, the nodes are set up in a cyclic topology. Each
node calculates its specific diagonal block of the matrix
((FINT)M∈AUX1,N∈AUX1

) according to eq 51 and then sends a

copy of its batch of 3-center integrals (B̃μj
N∈AUX1) to the

neighboring node. In the next cycle, each node calculates the
next unique part of the FINT matrix ((FINT)M∈AUX1,N∈AUX2

) and
passes the batch (AUX2) on to the next neighbor. As FINT is

symmetric, there are −n n( 1)
2

unique nondiagonal parts of the

matrix, where n is the total number of computing nodes, which
is also the minimum number of send operations (see Figure 1).
Note, however, that the send operations are conducted in

parallel and the number of cycles = −( )N n
cycle

1
2

is of more

interest.
To prevent repetitive recalculation of B̃jμ

(p),M in eq 51 or
increasing the number of cycles by a factor of τ, a variable
number of these matrices are precomputed. For computational
efficiency, all τ matrices should be precomputed. However, to
reduce memory requirements, it would be best to precompute
only one of these matrices. In our implementation, the
complete available memory is exploited to precompute as
many of these matrices as possible. In the case of dense
matrices, the approximation of the required memory is trivial
because the memory requirements of all matrices are known
beforehand. To approximate the required memory in case of
sparse matrices, we use the fact that B̃jμ

(p),M becomes less sparse
when the value of the respective Laplace point p becomes

Figure 1. Schematic description of calculated unique blocks per node.
Only the gray boxes are calculated; the white boxes are not calculated
due to symmetry reasons.

Figure 2. Pseudocode for the parallel calculation of the RPA correlation energy.
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smaller. Therefore, we calculate B̃jμ
(p),M with the smallest value of

p and approximate the required memory by considering the
number of allocated blocks of all necessary matrices. Note that
we do not need to recalculate this matrix in the following
evaluation of FINT and, hence, this approximation does not
decrease the efficiency of our algorithm. The final frequency
integration (eq 28) is parallelized with respect to frequency
points, which necessitates having the complete FINT matrix on
all nodes because Q(u) has to be computed on the fly from all
FINT
(p) according to eq 31. For the complete matrix to be formed

on all nodes, the rotary scheme described above is again used.
This time, however, at least n − 1 cycles are necessary.
The parallel implementation described so far reduces the

memory requirements of the large 3-center matrix by a factor of
n
2
because two batches of B̃μj

N are necessary on every node. To

further reduce the required memory of the algorithm (if
necessary), we implemented an additional loop over batches of
atomic orbitals (AO1...AOc) on each node. Note that in this
case batching with respect to atomic orbitals is superior because
each batch (B̃j, μ∈AO1

(p),M∈AUX1) only needs to be combined with the

same AO batch of matrices (B̃μ∈AO1,j
N∈AUXn) and not with all other

AO batches because only the trace over atomic orbitals is
necessary in the calculation of FINT. The final result for the
unique part of FINT ((FINT)M∈AUX1,N∈AUXn

) is then obtained by
summing all results of the c AO batches.

3. COMPUTATIONAL DETAILS

The new ω-CDGD method as well as the ω-CDD23 and the
MO-RI-RPA13 methods were implemented in the
FermiONs++ program package.41,42 Kohn−Sham orbitals
used for the RPA energy calculations were obtained by
preceding DFT calculations employing the generalized gradient
approximation of Perdew, Burke, and Ernzerhof43,44 (PBE)
with def2-SVP, def2-TZVP, and def2-QZVP basis sets.45,46 The
RI approximation, which is only used for 4-center integrals in
the correlation part of the RPA energy, uses the corresponding
auxiliary basis sets47,48 with the attenuated Coulomb metric
with attenuation parameter ω = 0.1. For the Laplace expansion
in the AO implementations, 13−15 quadrature points were
used. In the case of the ω-CDD algorithm, pretabulated values
for the weights and roots of ref 49 are employed. Within the ω-
CDGD method, we implemented the sloppy Remez15 algorithm
to obtain optimized weights for the integrated double-Laplace
expansion to switch between the representation of Q in the
imaginary time domain to the representation in the imaginary
frequency domain. The MO-RI-RPA as well as the ω-CDD
methods use the Clenshaw−Curtis scheme13 with 60−100
quadrature points for the final frequency integration, whereas
the ω-CDGD algorithm utilizes a minimax grid15 with 13−15
frequency points.

For obtaining the minimax grids for the imaginary time and
frequency domain, a Remez algorithm as described by Kresse
and co-workers15 was implemented. As a starting guess for the
imaginary time domain, pretabulated values by Hackbusch and
co-workers49 are used. For obtaining a starting guess for the
weights and roots in the imaginary frequency domain, a least-
squares fit was performed utilizing the Levenberg−Marquardt
algorithm50 after the starting values were initialized randomly.
Total energies were obtained by adding the correlation

energy to the exact Hamiltonian expectation value calculated
from the PBE reference orbitals. Core orbitals were frozen in all
RPA calculations.
For accuracy benchmarks, the full S6651 test set of small-

molecule interaction energies and the L752 test set of
dispersion-dominated molecules of larger size were used.
Investigations on performance and scaling behavior were
conducted with a test set of linear n-alkanes and DNA
fragments of increasing size. For the efficiency of the parallel
implementation to be tested, the L7 test set was used again
because the contained molecules can be seen as a representative
selection of molecular sizes (15−112 atoms) for many
applications. As an illustrative example for the applicability of
our new method, the layer distance between two covalent
organic framework (COF) pores was calculated.

4. RESULTS AND DISCUSSION
4.1. Accuracy: S66 and L7 Test Sets. First, the accuracy

of the newly implemented ω-CDGD method is investigated
and compared to that of the ω-CDD method.23 Therefore, the
full S6651 test set of small-molecule interaction energies and the
L752 benchmark set of dispersion-dominated molecules of
larger size were calculated.
As reference serves our implementation of the canonical

MO-RI-RPA method described by Furche and co-workers13

using the Clenshaw−Curtis quadrature with optimization of the
scaling parameter and 60 quadrature points. For the Laplace
expansion in the two AO implementations, 15 quadrature
points were employed. Correspondingly, 15 quadrature points
were used for the final frequency integration in the ω-CDGD-
RI-RPA method, and the ω-CDD algorithm used the
Clenshaw−Curtis quadrature with settings equal to those of
the MO-RI-RPA calculations. Note that the ω-CDD method
yields better results for interaction energies when a fixed
integration interval of u ∈ [0;400] au is used.23 However, for
comparison reasons, the same settings for the frequency
integration were used as for the reference calculations. The
calculations of the full S66 test set were performed using the
def2-QZVP basis set, whereas for the L7 test set, the def2-
TZVP basis set was employed. All other settings remained
equal in all calculations to facilitate comparison.
Table 1 shows the mean absolute deviation (MAD) and the

maximum absolute deviation (MAX) of the calculated

Table 1. Mean Absolute Deviations (MAD) and Maximum Absolute Deviations (MAX) of the Calculated Absolute Energies
(Upper Part) as well as the Interaction Energies (Lower Part) Obtained with the ω-CDD and the New ω-CDGD Method from
the Reference MO-RI-RPA Calculations for the S66 (Left) and L7 (Right) Test Sets

S66 L7

MAD [H] MAX [H] MAD [H] MAX [H]

absolute energies ω-CDD 2 × 10−03 1 × 10−02 9 × 10−03 4 × 10−02

ω-CDGD 7 × 10−07 5 × 10−06 9 × 10−07 1 × 10−05

interaction energies ω-CDD 5 × 10−04 3 × 10−03 3 × 10−03 1 × 10−02

ω-CDGD 9 × 10−07 5 × 10−06 2 × 10−06 1 × 10−05
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correlated energies (upper part) as well as the interaction
energies (lower part) using the two AO implementations from
the MO reference calculations for both test sets. Starting with
the S66 test set, the ω-CDGD method shows a significantly
increased accuracy in absolute energies by 4 orders of
magnitude with respect to both deviation measures due to
the optimized integration schemes. Considering the interaction
energies, the gain in accuracy is less dramatic but still lies within
3 orders of magnitude for the mean absolute as well as the
maximum absolute deviation. Similar observations can be made
when considering the L7 test set. The observed accuracy in the
calculation of absolute energies is again increased significantly
using the new ω-CDGD method. For both measures of
deviation from the reference results, the occurring error is
decreased by at least 3 orders of magnitude. As for the S66 test
set, the difference in accuracy is smaller between the ω-CDD
and the ω-CDGD implementation when referring to
interaction energies. Still, the mean absolute as well as the
maximum absolute deviation from the reference are lowered by
3 orders of magnitude.
4.2. Performance and Scaling Behavior. Next, the

performance improvements and the scaling behavior of our new
method are investigated in comparison with the preceding
ω-CDD-RPA method. To do so, we calculated RPA correlation
energies of a set of linear n-alkanes and DNA fragments of
increasing size. The calculations on linear n-alkanes using the
ω-CDD algorithm were conducted with 13 quadrature points
for the Laplace expansion and 100 quadrature nodes for the
frequency integration on a fixed integration interval of u ∈
[0;300] au. The ω-CDGD method used 13 points for the
frequency integration as well as the integrated double-Laplace
expansion. For the calculations on the DNA fragments, we
employed 15 instead of 13 quadrature points for the Laplace
expansion as well as the minimax grid-based frequency
integration. All calculations employed the def2-SVP basis set
and were performed on an Intel Xeon E5-2667 processor using
16 threads.
4.2.1. Linear n-Alkanes. As a first test, we calculated a set of

linear n-alkanes of increasing length. The results are shown in
Table 2. Note that the calculations up to C80H162 were
performed with standard dense matrix algebra, whereas all
calculations of alkanes with larger size were conducted using
sparse matrix algebra.
Considering the timings shown in Table 2, it becomes

obvious that the newly implemented ω-CDGD method is
asymptotically 4-times faster than the ω-CDD method for
dense as well as sparse matrix algebra. This speed-up can be
explained by the fact that, in the case of the ω-CDGD method,
only the FINT matrix needs to be calculated, whereas in the ω-
CDD algorithm, all three expensive F matrices (F0, FINT, and
FD) need to be evaluated. As the formation of F0 is
independent of the Laplace points p, the time consumption is
almost negligible compared to those of the other two F
matrices. However, because the formation of FD is ∼3-times as
expensive as the formation of FINT (see ref 23), a speed-up of
approximately 4 is to be expected when only FINT is computed.
A linear plot of the wall times against the number of AO basis

functions is shown in Figure 3 (left). As can be seen, both
implementations show a linear increase in the wall times for
calculations using sparse matrix algebra (more than 1930 basis
functions). In addition, the dashed line in the graph shows the
wall times for the cubic-scaling frequency integration in the
ω-CDGD algorithm. The contribution to the total wall time is

very small even for the largest system under investigation (902
atoms) due to the small prefactor. On the right-hand side of
Figure 3, a log−log plot of the wall times against the number of
basis functions is shown. It shows that the scaling behavior for
small as well as large systems remains roughly the same in the
new implementation, however, with a significant decrease in the
prefactor compared to the original implementation. As already
stated above, an effective linear-scaling behavior can be
observed for systems having more than 1930 basis functions
in both algorithms.

4.2.2. DNA Fragments. To further investigate the perform-
ance improvements of our new method, we calculated RPA
correlation energies of DNA fragments of increasing size. All
calculations were performed using dense matrix algebra because
no performance improvements were observed for the fairly
moderate system sizes when sparse matrix algebra was applied.
The results are shown in Table 3 and visualized in Figure 4. As
for the set of linear n-alkanes, the ω-CDGD method is
asymptotically 4-times faster than the ω-CDD algorithm. Note
that the wall time for the ω-CDD-RPA calculation on the four
base pair DNA fragment (DNA4) was extrapolated because the
memory requirements of the large 3-center integral matrix
exceeded the available memory.
In conclusion, the ω-CDGD algorithm, which only makes

use of the FINT matrix calculated by just decomposing the
ground state density, preserves sparsity as well as the ω-CDD
method while at the same time reducing the memory
requirements by a factor of N

N
basis

occ
and the run-time prefactor

by a factor of 4.
4.3. Parallel Implementation. As described in section 2.4,

a parallelization of the ω-CDGD method was implemented to
further reduce the memory requirement of the algorithm and to
speed up the calculation of RPA correlation energies to open
the way for investigations of larger systems. In the following,
the parallel efficiency of the implementation, defined as the
observed speed-up divided by the number of nodes, is

Table 2. Wall Times for the Calculation of RI-RPA
Correlation Energies of Linear n-Alkanes with Increasing
Length Using the ω-CDD and ω-CDGD Methods with the
Last Column Giving the Speed-up of the Computation Time
Using the ω-CDGD Method Compared to the ω-CDD
Method

time [s]

molecule Nbasis ω-CDD ω-CDGD speed-up

dense C5H12 130 1 1 1.0
C10H22 250 5 2 2.5
C15H32 370 17 5 3.4
C20H42 490 43 12 3.6
C30H62 730 168 42 4.0
C40H82 970 459 111 4.1
C50H102 1210 978 232 4.2
C60H122 1450 1887 443 4.3
C70H142 1690 3221 763 4.2
C80H162 1930 5329 1241 4.3

sparse C90H182 2170 7111 1860 3.8
C100H202 2410 7914 2072 3.8
C120H242 2890 11348 3008 3.8
C160H322 3850 15351 3974 3.9
C200H402 4810 21444 5564 3.9
C300H602 7210 40239 10003 4.0
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investigated. To examine the changes in the parallel efficiency
by varying the number of computation nodes, correlated
energies of the complete L7 test set52 were calculated on 1, 5,
and 10 nodes using the def2-TZVP basis set on dual-core
processor Intel Xeon E5-2620 machines using 12 threads per
node. Note that these calculations do not only include the RPA
correlation energy but also the Hamiltonian expectation value
to give the total correlated energy of the system. The results are
shown in Table 4.

As can be seen, using 5 compute nodes results in a speed-up
in the cumulative calculation time of the complete L7 test set
by 4.9, which corresponds to a parallel efficiency of 98%. On 10
computing nodes, however, the parallel efficiency decreases to
87%. This can be explained by the increase in communication
over the network, which is particularly a problem for smaller
systems where the ratio between communication and
calculation time is large. However, because the calculation
times for the relatively small systems in the L7 test set are very
short even on only 1 node, the lower parallel efficiency for 10
nodes is less significant.
Focusing on larger systems, e.g., the circumcoronene

guanine-cytosine base pair complex (Table 5), which is the

system with the largest number of basis functions in the test set,
shows that even with 10 nodes a parallel efficiency of 96% is
observed. This means that, especially for large systems for
which the parallel efficiency matters most, significant speed-ups
are observed.

4.4. Illustrative Application. Efficient carbon capture and
storage as well as atmospheric water capture are important

Figure 3. Linear plot (left) and the respective log−log plot (right) of the wall times for calculating RI-RPA correlation energies of linear n-alkanes
using the ω-CDD (blue) and ω-CDGD (red) methods against the number of basis functions. Additionally, the wall time for the final frequency
integration in the ω-CDGD method is shown (red, dashed). The log−log plot further shows linear fits for the ω-CDD (blue line) and ω-CDGD
(red line) methods. For the linear fits, only data points are used, which were calculated using sparse matrix algebra.

Table 3. Wall Times for the Calculation of RI-RPA
Correlation Energies of DNA Fragments with Increasing
Size Using the ω-CDD and ω-CDGD Methods with the Last
Column Giving the Speed-up of the Computation Time
Using the ω-CDGD Method Compared to the ω-CDD
Methoda

time [s]

molecule Nbasis ω-CDD ω-CDGD speed-up

DNA1 625 126 35 3.6
DNA2 1332 2018 528 3.8
DNA4 2746 *32288 7755 4.2

aThe value marked with an asterisk (*) was extrapolated
conservatively.

Figure 4. Linear plot of the wall times for calculating RI-RPA
correlation energies of DNA fragments (DNA1, DNA2, and DNA4)
using the ω-CDD (blue) and ω-CDGD (red) methods against the
number of basis functions. The data point marked with an asterisk (*)
was extrapolated conservatively.

Table 4. Cumulative Wall Times, Speed-ups, and Parallel
Efficiencies for the Calculation of Correlated Energies of the
Complete L7 Test Set Using 1, 5, and 10 Nodes

number of nodes time [s] speed-up efficiency

1 33343
5 6824 4.9 0.98
10 3840 8.7 0.87

Table 5. Wall Times, Speed-ups, and Parallel Efficiencies for
Calculating the Correlated Energy of the Circumcoronene
Guanine-Cytosine Base Pair Complex (101 Atoms, 2431
Basis Functions, 5968 Auxiliary Basis Functions) from the
L7 Test Set Using 1−10 Computing Nodes

number of nodes time [s] speed-up efficiency

1 10074
2 4974 2.0 1.00
4 2582 3.9 0.98
6 1673 6.0 1.00
8 1280 7.9 0.99
10 1046 9.6 0.96
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societal challenges and necessitate the development of materials
with specific sorption properties. In 2015, Stegbauer et al.53

reported that COFs show very high CO2 and water uptake
capacities at low pressures, making them highly interesting for
environmental applications.
For understanding the absorption characteristics of COFs,

detailed structural analyses are indispensable. One of the
properties of intereset is the distance between two layers of the
COF. As the interlayer distance is strongly influenced by
dispersion interactions, a good description of these effects is
essential for obtaining reliable computational results. We
calculated total RPA energies of two azine-benzene-COF
(AB-COF, see Figure 5) pores with eclipsed stacking (384

atoms) and distances between the two pores ranging from 3.2
to 4.0 Å using our ω-CDGD algorithm. All calculations were
conducted using dense matrix algebra because no useful
sparsity could be expected due to the highly delocalized
electronic structure of the system. Note that the use of dense
linear algebra prevents linear-scaling behavior, which relies on
the sparsity of density matrices. The results are shown in Figure
6.
Although the preceding PBE calculations do not show a

minimum in the calculated range with both the def2-SVP as
well as the def2-TZVP basis sets, the RPA calculations clearly
improve upon the PBE results and show a minimum at ∼3.5 Å

using the def2-SVP basis set and a slightly right-shifted
minimum at 3.6 Å with the def2-TZVP basis set. Both results
for this model system are in good agreement with the
experimental value of Stegbauer et al.53 who reported an
interlayer distance of 3.44 Å. As expected, the DFT calculations
using the PBE functional are not sufficient to obtain reliable
results for the interlayer distance of the COF due to the missing
description of dispersion effects. However, with the method-
ology presented in this work, we are now able to correctly
describe noncovalent interactions without necessitating addi-
tional parameters.

5. CONCLUSION

The memory bottleneck of our first linear-scaling RPA
formulations has been overcome by a reformulation of the
FINT matrix, which only uses the Cholesky factors of the ground
state density. This new formulation preserves sparsity as well as
the previous Cholesky decomposition of the pseudodensities
method but reduces the memory requirements of the large 3-
center integral matrix by a factor of N

N
basis

occ
. This is essential to

further extend the applicability of this method to ever larger
systems. Additionally, we have presented a parallel implemen-
tation of our method, which is shown to be highly efficient and
also enables a further scalable decrease in memory require-
ments, opening the door for investigations of large molecules
even on small- to medium-sized computing clusters. While our
previous formulations required two different equations for the
calculation of Q(u), which necessitates evaluating three
different forms of F matrices, we have overcome this issue by
utilizing minimax grids for the imaginary time and frequency
domain as well as an optimized transform scheme to switch
between the two domains. To this end, we have shown that
FINT is the representation of Q(u) in the imaginary time
domain and that the integrated double-Laplace expansion is
equivalent to a Fourier transform of the frequency-dependent
noninteracting polarization propagator into the imaginary time
domain. Employing optimized weights and roots for this
transformation thus allows for using only the “INT”-
formulation (eq 31). This decreases the run-time prefactor of
our algorithm by a factor of 4 and at the same time increases
the accuracy of our method by up to 4 orders of magnitude.
Replacing the Clenshaw−Curtis scheme for the final frequency

Figure 5. Structure representation of one AB-COF pore.

Figure 6. Plot of the relative energies of the AB-COF pore dimer calculated with the ω-CDGD method using PBE reference orbitals (left) and the
PBE functional (right) employing the def2-SVP (blue) as well as the def2-TZVP (red) basis set against the interlayer distance. All data points were
referenced with respect to the lowest computed value. The total wall time for each RPA correlation energy calculation using the def2-TZVP basis set
is 130014 s on 10 computing nodes. The time for the communication between the nodes is 8307 s, which is approximately 6% of the total calculation
time.
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integration with a minimax quadrature decreases the number of
quadrature points from 60−100 to 10−20 without losing
accuracy. In conclusion, we have described an accurate linear-
scaling RPA theory that is efficiently parallelized, has a low
prefactor, is numerically very stable, and has low memory
requirements that can be further lowered by distribution over
multiple compute nodes. This enables calculations of large
molecular systems in a fraction of the time of former theories
on compute clusters typically available in local research groups.
As an illustrative application, we used our new method to
calculate the distance between two COF pores comprising 384
atoms and found the equilibrium distance to be in good
agreement with experimental results.
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(19) Kapuy, E.; Cseṕes, Z.; Kozmutza, C. Application of the Many-
Body Perturbation Theory by Using Localized Orbitals. Int. J.
Quantum Chem. 1983, 23, 981−990.
(20) Förner, W.; Ladik, J.; Otto, P.; Cízěk, J. Coupled-Cluster
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ABSTRACT: An efficient minimization of the random phase
approximation (RPA) energy with respect to the one-particle
density matrix in the atomic orbital space is presented. The problem
of imposing full self-consistency on functionals depending on the
potential itself is bypassed by approximating the RPA Hamiltonian
on the basis of the well-known Hartree−Fock Hamiltonian making
our self-consistent RPA method completely parameter-free. It is
shown that the new method not only outperforms post-Kohn−Sham
RPA in describing noncovalent interactions but also gives accurate
dipole moments demonstrating the high quality of the calculated
densities. Furthermore, the main drawback of atomic orbital based methods, in increasing the prefactor as compared to their
canonical counterparts, is overcome by introducing Cholesky decomposed projectors allowing the use of large basis sets.
Exploiting the locality of atomic and/or Cholesky orbitals enables us to present a self-consistent RPA method which shows
asymptotically quadratic scaling opening the door for calculations on large molecular systems.

1. INTRODUCTION

One of the most challenging tasks in quantum chemistry is the
calculation of the electronic correlation energy. The most
widely used pragmatic approach to tackle this problem is
density functional theory (DFT) due to its excellent cost-
performance ratio and good accuracies for certain types of
compounds and properties. However, since the pioneering
work of Kohn and Sham1 in 1965, hundreds of density
functionals have been developed which makes the selection of
a suitable functional for a specific problem challenging2 and
also limits its predictive power. Therefore, the development of
a broadly applicable and efficient correlation model is highly
desirable.
Within the Kohn−Sham (KS) framework the adiabatic-

connection fluctuation−dissipation theorem (ACFD)3,4 gives
an exact expression for the correlation energy. This expression
depends on the density−density response function of the
noninteracting (KS) system and on the response functions of
the system with scaled electron−electron interactions. The KS
response function is known exactly while the response
functions of the interacting system need to be calculated
approximately. The quantity to be approximated is the
frequency-dependent exchange-correlation kernel, and in the
most simple approximation it is neglected completely. This
approximation is called the direct random phase approximation
(dRPA) and is often denoted as RPA with the term “direct”
dropped. RPA was originally introduced by Bohm and Pines in
19535 and contains an ab initio description of dispersion
effects,6 is size consistent,7 does not depend on any empirical
parameters, and, additionally, is applicable to systems with

vanishing electronic gaps.7−9 However, in its original form,3,4

RPA correlation energy calculations scale as M( )6 with
system size M making them impractical for calculations on
systems of larger size. Much work has been put in the
development of efficient RPA algorithms in recent years10−18

allowing for RPA calculations on systems with more than 1000
atoms.14−18

RPA calculations are in most cases performed in a post-KS
fashion, which means that the RPA functional is evaluated
using orbitals and respective orbital energies stemming from a
self-consistent semilocal DFT calculation. This, however, leads
to nonvariational total energies and unrelaxed orbitals which
cause large density-driven errors.19,20

The optimized effective potential approach21−24 (OEP) to
evaluate the RPA functional self-consistently yields accurate
local exchange-correlation (XC) potentials and KS orbital
energies which showed to give good estimates for ionization
potentials and band gaps.22 However, the reported results for
bond energies and noncovalent interactions are less accurate
than their non-self-consistent counterparts.22 The generalized
optimized effective potential method developed by Yang and
co-workers,25 however, yields improved energetics compared
to standard RPA but the orbital energies do not have physical
meanings. Furche and co-workers26 very recently put forward a
variational generalized Kohn−Sham approach which combines
both improved energetics as well as accurate orbital energies.
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In this work we present a minimization of the RPA
correlation energy with respect to the one-particle density
matrix in the atomic orbital (AO) space. The presented
method shows a low-scaling behavior and not only leads to
improved energetics but also to accurate dipole moments
indicating the high quality of the calculated densities.

2. THEORY
2.1. Atomic Orbital Direct Random Phase Approx-

imation. In this work the following notation has been
adopted: μ, ν, λ, σ denote atomic orbitals (AOs); i, j, occupied
molecular orbitals (MOs); a, b, virtual MOs; i j,̲ ̲ , Cholesky
orbitals; M, N, auxiliary resolution-of-the-identity (RI)
functions. The number of basis functions is represented by
Nbasis, the number of auxiliary RI functions by Naux, and the
numbers of occupied and virtual molecular orbitals by Nocc and
Nvirt, respectively. For 2-, 3-, and 4-center integrals, the
Mulliken notation is employed. Furthermore, Einstein’s sum
convention27 is used and the spin index is dropped for
convenience.
Within the adiabatic connection formalism,28 the total

energy can be expressed as3,4

E E E E Eh KS J KS X KS cϕ ϕ ϕ= [{ }] + [{ }] + [{ }] + (1)

where Eh, EJ, and EX denote the one-electron, Coulomb, and
the exact exchange energy, respectively. Using the zero-
temperature fluctuation−dissipation theorem and the RPA29

together with the RI approximation,10−12 the correlation
energy Ec is given by

E i iX V X V
1

2
d Tr ln(1 ( ) ) ( )c

RPA

0
0 0∫π

ω ω ω= [ − + ]+∞

(2)

where V represents the Coulomb operator in the auxiliary basis

V M m P P r Q Q m N( ) ( )( )MN 12
1

12
1

12
1= | | | | | |− − −

(3)

with the RI metric m12 and the interelectronic distance r12. X0
denotes the noninteracting density−density response function
in the auxiliary basis in the zero-temperature case.30 For the
sake of efficiency, the response function is calculated in the
imaginary time domain

X i G i B G i B( ) ( ) ( )MN
M N

0, 0, 0,τ τ τ= −μν νλ λσ σμ (4)

and afterward transformed with a contracted double-Laplace15

or cosine13 transformation

i iX X( ) d cos( ) ( )0 0∫ω τ ωτ τ=
−∞

+∞
(5)

to obtain the respresentation in the imaginary frequency
domain. In eq 4, G0(iτ) denotes the one-particle Green’s
function in the imaginary time domain and is given by

i i i i iG G G( ) ( ) ( ) ( ) ( )0 0 0τ τ τ τ τ= Θ − ̲ + Θ ̅ (6)

i C CG ( ) exp( ( ) )i i i0 Fτ ε ε τ̲ = − −μ ν (7)

i C CG ( ) exp( ( ) )a a a0 Fτ ε ε τ̅ = − − −μ ν (8)

with the occupied (Cμi) and unoccupied (Cμa) MO coefficients
and the respective MO energies εi and εa. Θ(iτ) denotes the
Heaviside step function, and εF, the Fermi level. The three-
center integral matrix B is given by

B m M( )M
12μν= | |μν (9)

The most time-consuming step in AO-RI-RPA is the formation
of the response function in the imaginary time domain (eq 4).
To reduce the scaling with the basis set size, Luenser et al.16

introduced pivoted Cholesky-decomposition31−35 of density
and pseudodensity matrices which brings the scaling with basis
set size back to N N N( )aux

2
basis occ .

Very recently, the AO-RI-RPA algorithm was improved even
further by our group17 where we arrived at a formulation for
the calculation of the response function in the imaginary time
domain given by

X i i i

G i B G i B

L SG SLL B G B L( ) Tr( ( ) ( ) ) (10)

( ) ( ) (11)

MN
M N

j i i
M

j
N

0,
T

0
T

0

0, 0,

τ τ τ

τ τ

= ̲ − ̅
= ̲ − ̅ν νμ μ̲ ̲ ̲ ̲

with the two-center overlap S and the Cholesky factor L of the
occupied one-particle density P. Note that all quantities in eq
11 become sparse for large systems with nonvanishing band
gaps when a local metric is employed, and therefore, the
calculation scales linearly with the system size.

2.2. Minimization of the AO-RI-RPA Functional with
Respect to the Occupied One-Particle Density Matrix.
In order to calculate the gradient with respect to the occupied
one-particle density matrix P, we express the RPA functional in
terms of that quantity

E E E E E

E E

P P P P P

P P

RPA
h J X c

RPA

HF
c
RPA

[ ] = [ ] + [ ] + [ ] + [ ]
= [ ] + [ ] (12)

Note that the sum of the one-particle, the Coulomb, and the
exact exchange energy contributions is the well-known
Hartree−Fock (HF) energy. To obtain an RPA functional of
the one-particle density matrix, we express the one-particle
Green’s functions as

iG P H S P( ) exp( ( ) )0 Fτ τ ε̲ = − − (13)

iG P H S P( ) exp( ( ) )0
virt

F
virtτ τ ε̅ = − − − (14)

with the unoccupied/virtual one-particle density matrix Pvirt

and the Hamiltonian H. Differentiating the total RPA energy
with respect to the one-particle density matrix P results in the
RPA Hamiltonian

E E EP
P

P
P

P
P

H V

H

RPA HF
c
RPA

0
HF

c
RPA

0
RPA

∂ [ ]
∂ = ∂ [ ]

∂ + ∂ [ ]
∂ = +

= (15)

with the well-known Hartree−Fock Hamiltonian H0
HF and the

nonlocal RPA correlation potential Vc
RPA. As can be seen in the

definition of the one-particle Green’s functions, the RPA
functional depends on the potential itself and for complete
functional self-consistency the Hamiltonian in eqs 13 and 14
should be replaced by the RPA Hamiltonian. To bypass this
dilemma we follow the idea of Furche and co-workers26 and
construct an approximated RPA Hamiltonian which is forced
to yield the exact same density after diagonalization as the RPA
Hamiltonian. To achieve this, the approximated Hamiltonian is
built using the density obtained by diagonalizing the RPA
Hamiltonian and projecting out the occupied-virtual and
virtual-occupied parts according to

H SPHPS SP HP Svirt virt̃ = + (16)
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Inserting this Hamiltonian in eqs 13 and 14 yields the final
expressions for calculating the one-particle Green’s functions

iG P H S P( ) exp( ( ) )0 Fτ τ ε̲ = − ̃ − (17)

iG P H S P( ) exp( ( ) )0
virt

F
virtτ τ ε̅ = − − ̃ − (18)

To obtain the conceptually most correct result, the
approximated Hamiltonian should give an eigenvalue spectrum
which resembles the one of the RPA Hamiltonian as accurately
as possible. In section 4 we will compare and discuss different
choices of approximated Hamiltonians and investigate the
effect on the obtained results.
In the following, we will present the derivation of the

equations for the efficient calculation of the RPA correlation
potential in the atomic orbital space. The derivative of the RPA
correlation energy with respect to one density matrix element
is given by

V
E

i
i
i

i
PX

X
G

G
Tr

( )
( )
( )

( )
c,
RPA c

RPA

0

0

0

0

ω
ω
τ

τ= ∂
∂

∂
∂

∂
∂μν

μν

i

k
jjjjjj

y

{
zzzzzz (19)

with the trace implying integration over imaginary frequency
and imaginary time. Since the derivative of the RPA correlation
energy with respect to the one-particle Green’s function is the
correlation part of the RPA self-energy36 which also occurs in
the calculation of nuclear gradients37 and is obtained according
to

i B G i W i B( ) ( ) ( )M MN N
0, cτ τ τΣ = −μν μλ λσ σν (20)

withWc denoting the correlated screened Coulomb interaction
given by

i iW V X V( ) (1 ( ) ) 1c 0
1ω ω= [ − − ]−

(21)

i iW W( )
1

2
d cos( ) ( )c c∫τ

π
ω ωτ ω=

−∞
+∞

(22)

we can simplify eq 19 yielding

V i
i

P

i
i

P
i

i
P

G

G

G

Tr d ( )
( )

(23)

Tr d ( )
( )

( )

( )

(24)

c,
RPA 0

0

0

0

∫
∫

τ τ
τ

τ τ
τ

τ

τ

Σ

Σ Σ

= − ∂
∂

= ∂ ̲ −
∂ + −

∂ ̅
∂

μν
μν

μν

μν

−∞
+∞

+∞

i

k
jjjjjj

y

{
zzzzzz

i

k

jjjjjj
i

k
jjjjjj

y

{
zzzzzz
y

{

zzzzzz

The derivative of the one-particle Green’s function with
respect to the ground state density matrix P can be split into
three parts. The first part accounts for changes of the Green’s
functions while keeping the approximated Hamiltonian fixed.
The second part includes the changes in the projection of the
underlying Hamiltonian H and the last part arises from
changes in the density entering the underlying Hamiltonian. In
the following we will present the most important steps of the
derivation of the terms for negative imaginary time. The terms
for positive imaginary time can be obtained analogously.
The first part of the derivative of the one-particle Green’s

function in negative imaginary times with respect to one
density matrix element is given by

G i

P

P

P

P H S
P

P

H S P
( )

(exp ( ) )

exp ( )

0,

1
F

F

τ
τ ε

τ ε

∂ ̲ −
∂ = ∂

∂ {+ ̃ − }

+ + ̃ − ∂
∂

μν

λσ

μκ

λσ
κν

μκ κγ κγ
γν

λσ

i

k
jjjjj

y

{
zzzzz

l
moo
noo

|
}oo
~oo

(25)

To calculate the second term of eq 25 we employ the series
expansion of the matrix exponential38−40

i

k

G P H S P

P H S P

( ) exp( ( ) )

1
( ( ) )

k

k

0 F

0
F∑

τ τ ε

τ ε

̲ − = + ̃ −
= ! + ̃ −

=

∞

(26)

yielding

G i

P

P

P

P
k

H S
P

P

H S P

H S P

H S P

( )
(exp ( ) )

(( ) ) ( )

(( ) )

k l

k k
l

k l

0,

1
F

1 0

1

F F

F
1

∑ ∑

τ
τ ε

τ ε ε

ε

∂ ̲ −
∂ = ∂

∂ {+ ̃ − }

+ ! ̃ − ̃ − ∂
∂

̃ −

μν

λσ

μκ

λσ
κν

μκ κμ μ γ μ γ
γν

λσ

ν ν

=

∞

=

−
′ ′ ′

′

′
− −

i

k
jjjjj

y

{
zzzzz

(27)

With

P

P
δ δ

∂
∂ =μκ

λσ
μλ κσ

(28)

i
k

iY H S P P

H S P

( ) (( ) ) ( )

(( ) )

k l

k k
k l

l

1 0

1

F
1

F

∑ ∑τ τ ε τ

ε

Σ̲ − = ! ̃ −

̃ −
=

∞

=

−
− −

(29)

and inserting into

i
i

P
G

Tr d ( )
( )

0

0∫ τ τ
τΣ ∂ ̲ −

∂ μν

+∞i

k
jjjjjj

y

{
zzzzzz (30)

we finally get

i

i

V H S P

Y H S

d (exp ( ) ( )

( )( ))

c,1
RPA

0
F

F

∫ τ τ ε τ

τ ε

Σ̲ = {+ ̃ − }
+ ̲ − ̃ −

+∞

(31)

To calculate the derivative of the virtual density matrix Pvirt

occurring in the Green’s function for positive imaginary times,
we make use of the completeness relation38

PS P S1 virt= + (32)

to obtain

P

P

virt

δ δ
∂
∂ = −μκ

λσ
μλ κσ

(33)

Therefore, part one of the RPA correlation potential for
positive imaginary times is given by

i

i

V H S P

Y H S

d (exp ( ) ( )

( )( ))

c,1
RPA

0
F

virt

F

∫ τ τ ε τ

τ ε

Σ̅ = {− ̃ − } −
+ ̅ ̃ −

+∞

(34)

with
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i
k

iY H S P P

H S P

( )
( )

(( ) ) ( )

(( ) )

k l

k k
k l

l

1 0

1

F
virt 1 virt

F
virt

∑ ∑τ τ ε τ

ε

Σ̅ = −
! ̃ − −

̃ −
=

∞

=

−
− −

(35)

The second part of the Green’s function derivative focuses on
the change in the projection of the underlying Hamiltonian H
and is given by

G i

P
P S

P

P
H P S P

P S
P

P
H P S P

( )
exp

exp transpose

0,

2

virt
virt

τ
τ

τ

∂ ̲ −
∂ = + ∂

∂

+ + ∂
∂ +

μν

λσ
μκ κμ

μ ν

λσ
ν γ γ κ κ γ γν

μκ κμ
μ ν

λσ
ν γ γ κ κ γ γν

′
′ ′

′ ′ ′ ′ ′

′
′ ′
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i

k
jjjjj

y

{
zzzzz

l
moo
n
oo

i
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zzzzz
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}oo
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oo

l
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ooo
n
ooo

i

k
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{
zzzzzz

|
}
ooo
~
ooo

(36)

Since

PSP 0virt = (37)

the second term and also its transpose vanish. Using the series
expansion and inserting into eq 30 finally yields

i iV SPY SPH HPSY PSd ( ( ) ( ) )c,2
RPA

0

T∫ τ τ τ̲ = ̲ − + ̲ −+∞

(38)

Analogously, we obtain for positive imaginary times

i iV SP Y SP H HP SY

P S

d ( ( ) ( )

)

c,2
RPA

0

virt virt virt T

virt

∫ τ τ τ̅ = ̅ + ̅
+∞

(39)

The third and last part stems from changes in the density
entering the underlying Hamiltonian H and is given by

G i

P
P S P

H

P
P S P

P S P
H

P
P S P

( )
exp

exp

0,

3

virt virt

τ
τ

τ
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∂ = + ∂
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μκ κμ μ ν
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~
oo (40)

with

H

P
f( ) ( )XCν γ λσ ν γ λσ∂ = ′ ′| + ′ ′| |ν γ

λσ

′ ′
(41)

and f XC denoting the exchange-correlation kernel of the
underlying Hamiltonian. Again, the second term vanishes and
by employing the series expansion and inserting into eq 30 we
get

P Y i S P

f

V d ( ) ( )

( )

c,3
RPA

0

XC

∫ τ τ μν λσ

μν λσ

̲ = ̲ − [ |
+ | | ]

μκ κγ γκ κ ν

+∞
′ ′

(42)

For positive imaginary times, we obtain

P Y i S P

f

V d ( ) ( )

( )

c,3
RPA

0

virt virt

XC

∫ τ τ μν λσ

μν λσ

̅ = ̅ [ |
+ | | ]

μκ κγ γκ κ ν

+∞
′ ′

(43)

and the complete RPA correlation potential is then finally
given by

V V V V V V Vc
RPA

c,1
RPA

c,1
RPA

c,2
RPA

c,2
RPA

c,3
RPA

c,3
RPA= ̲ + ̅ + ̲ + ̅ + ̲ + ̅
(44)

2.3. Cholesky Decomposition of the Occupied One-
Particle Density. So far we presented the calculation of the
RPA correlation potential in the atomic orbital space. While it
is well-known that atomic orbital formulations show low- or
even linear-scaling behaviors due to the local nature of atomic
orbitals, a drawback is the significantly increased prefactor
compared to molecular orbital formulations. One way to
remedy the mentioned increased prefactor is to employ
pivoted Cholesky decomposition of positive-semidefinite
matrices.31−35 Particularly useful is the decomposition of
quantities corresponding to occupied orbitals such as the
occupied one-particle density matrix P since the rank of the
matrix can be lowered to at least Nocc. In the following
discussion we will abbreviate the pivoted Cholesky factoriza-
tion by A = LLT where L denotes the Cholesky factor of matrix
A with dimensions rows (A) × rank (A).
The most time-consuming step in our algorithm is the

contraction of the screened Coulomb interaction Wc with the
three-center integral matrix B occurring in the calculation of
the correlated self-energy (eq 20) and scales formally as

N N( )aux
2

basis
2 . In the second term of eq 24, the correlated RPA

self-energy for negative imaginary times occurs which is given
by

i B G i B W i( ) ( ) ( )M N NM
0, cτ τ τΣ − = − ̲ − −μν μλ λσ σν (45)

Since the one-particle Green’s function in the negative
imaginary time domain is invariant with respect to projection
onto the occupied space, we can reformulate the expression
according to

i B G i S P B W i

B G i S L L B W i

B G i B W i

( ) ( ) ( ) (46)

( ) ( ) (47)

( ) ( ) (48)

M N NM

M
i i

N NM

M
i i

N NM

0, c

0,
T

c

0, c

τ τ τ

τ τ

τ τ

Σ − = − ̲ − −
= − ̲ − −
= − ̲ − −

μν μλ λσ σγ γκ κν

μλ λσ σγ γ κ κν

μλ λ ν

̲ ̲

̲ ̲

which reduces the formal scaling of the contraction to
N N N( )aux

2
basis occ . For the first term in eq 24 the self-energy

in the positive imaginary time domain needs to be calculated
which can be expressed as

i B G i B W i( ) ( ) ( )M N NM
0, cτ τ τΣ = − ̅μν μλ λσ σν (49)

Here, the one-particle Green’s function for positive imaginary
times occurs for which the projection onto the occupied space
is not invariant and therefore prevents the application of the
scheme described above to reduce the scaling behavior.
Realizing, however, that for the minimization of the RPA
energy only the occupied-occupied, occupied-virtual, and
virtual-occupied part of the potential is necessary, we can
calculate

V V PSc,1
RPA

c,1
RPA̲ ̃ = ̲ (50)

instead of the complete matrix V c,1
RPA̲ . Therefore, only

i B G i W i B P S

B G i W i B L L S

B G i W i B S

PS( ) ( ) ( ) (51)

( ) ( ) (52)

( ) ( ) (53)

M MN N

M MN N
i i

M MN
i

N
i

0, c

0, c
T

0, c

τ τ τ

τ τ

τ τ

Σ = − ̅
= − ̅
= − ̅

μν μλ λσ σγ γκ κν

μλ λσ σγ γ κ κν

μλ λσ σ ν

̲ ̲

̲ ̲
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needs to be calculated which again scales as N N N( )aux
2

basis occ .

The necessary blocks of V c,1
RPA̲ can then be obtained by the

projections

V SPVc,1,oo
RPA

c,1
RPA̲ = ̲̃ (54)

V SP Vc,1,vo
RPA virt

c,1
RPA̲ = ̲̃ (55)

V V( )c,1,ov
RPA

c,1,vo
RPA T̲ = ̲ (56)

Note that in cases where virtual orbital energies are necessary,
e.g., for the calculation of band gaps, the occupied space we are
projecting onto can be extended by a variable number of
virtual orbitals while excluding them from the virtual space.
The resulting matrix Pproj is still positive semidefinite and can
be Cholesky decomposed. This of course increases the rank of
the resulting Cholesky factor by the number of the included
virtual orbitals.

3. COMPUTATIONAL DETAILS
The presented self-consistent RPA method was implemented
analytically and numerically in the FermiONs++ program
package developed in our group.41−43 To investigate the
dependence of the method on the chosen approximated
Hamiltonian, we use the PBE,44,45 PBE0,46 and HF functionals
to calculate the XC potential.
As atomic basis sets, the def2-SVP, def2-TZVP,47,48 cc-

pV5Z, aug-cc-pV5Z,49,50 and aug-cc-pV6Z51,52 basis sets are
employed. For the resolution-of-the-identity which is used for
four-center integrals in the calculation of the RPA correlation
potential, the corresponding auxiliary basis sets53,54 are used
with the standard Coulomb metric. For efficient calculations of
RPA correlation potentials of larger systems, the attenuated
Coulomb metric55−57 with attenuation parameter ω = 0.116 is
used along with sparse matrix algebra.
For integrations along imaginary time and frequency as well

as transformations between the two domains, we use optimized
minimax grids with in general 15 quadrature points.13,17

Kohn−Sham orbitals used for ω-CDGD-RPA calculations
were obtained by preceding DFT calculations using the PBE
functional.
The convergence criterion for all self-consistent calculations

is the root-mean-square of the [H, P]-commutator which
needs to fall below a threshold of 1.0 × 10−7 in general.

4. RESULTS AND DISCUSSION
4.1. Comparison with Numerical Potentials. In this

section we validate our implementation by comparison with
numerical results. As a first step we compare the RPA
correlation potentials obtained analytically as presented above
with the respective numerical potentials for three small
molecular systems. The numerical potentials were obtained
by performing density matrix based RPA correlation energy
calculations using density matrices with small perturbations
(1.0 × 10−8) in the respective density matrix elements and
applying the five-point stencil method. To further prove
correctness of our implementation, we performed full SCF
calculations using the numerically calculated potentials and
compare the resulting minimum total energies as well as orbital
energies of the highest occupied molecular orbital (HOMO)
and the lowest unoccupied molecular orbital (LUMO) with
the analytical results. All calculations in this section were
performed with the def2-SVP basis set.

Table 1 shows the mean absolute deviations (MAD) as well
as the maximum errors (MAX) of the analytical RPA

correlation potentials compared to the ones obtained numeri-
cally. As can be seen, the maximum error in the potential
matrix elements are on the order of 10−6 for methane and on
the order of 10−7 for the other two examples.
The comparison of the minimum energies as well as the

HOMO and LUMO energies are shown in Table 2. It shows
that the resulting minimum total energies as well as orbital
energies are in very good agreement for all three presented
systems.

4.2. Convergence with the Number of Included
Virtual Orbitals. As mentioned in section 2.3, for an efficient
calculation of the self-energy in the positive imaginary time
domain using Cholesky decomposition, we need to neglect the
virtual-virtual part of the contribution to the RPA correlation
potential stemming from changes in the Green’s functions
while keeping the projected Hamiltonian fixed. In this section
we show that this procedure does not introduce any errors in
the calculated minimum total energy as well as in the energy of
the HOMO.
In Table 3 we present total energies as well as HOMO and

LUMO energies calculated with an increasing number of
included virtual orbitals for two examplary systems using the
def2-TZVP basis set. The reference calculations were
performed without Cholesky decomposition. It shows that
the total energy as well as the HOMO energy are not affected
by the number of included virtual orbitals while the LUMO
energy of course is. However, as can be seen also, the LUMO
energy is calculated correctly when including only one virtual
orbital into the calculation.

4.3. Comparison with Post-KS RPA and Influence of
the Approximated Hamiltonian. After validating our
implementation, this section is intended to show the effect
of self-consistency compared to standard post-KS RPA as well
as to investigate the effect of the choice of the approximated
Hamiltonian. The PBE, PBE0, and HF Hamiltonians serve as a
basis for the approximated Hamiltonians. In the following, the
three different variants are abbreviated by scRPA[H̃PBE],
scRPA[H̃PBE0], and scRPA[H̃HF], respectively.

4.3.1. Eigenvalue Spectra of the Approximated Hamil-
tonians and the RPA Hamiltonian. This section is intended
to compare the eigenvalue spectra of the different approxi-

Table 1. Mean Absolute Deviations and Maximum Errors of
Analytical RPA Correlation Potential Matrices Compared to
Numerical Results

hydrogen water methane

MAD 3.8 × 10−8 2.3 × 10−8 4.0 × 10−7

MAX 1.5 × 10−7 3.5 × 10−7 2.6 × 10−6

Table 2. Differences in Hartree of the Minimum Total
Energies and the Energies of the HOMO and LUMO
Calculated Analytically and Numericallya

hydrogen water methane

ΔE 1.5 × 10−9 1.6 × 10−9 7.5 × 10−9

ΔεHOMO 1.0 × 10−7 <1.0 × 10−7 −1.0 × 10−7

ΔεLUMO −1.0 × 10−7 <1.0 × 10−7 3.0 × 10−7

aShown are always the analytical results minus the numerical results.
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mated Hamiltonians with the ones obtained from the RPA
Hamiltonian. Since the approximated Hamiltonians are
designed to give the same density after diagonalization as the
RPA Hamiltonian, investigating the eigenvalue spectra is
important to decide on which approximation gives the most
consistent results.
Therefore, we performed self-consistent RPA calculations

using the PBE, PBE0, and HF functionals to calculate the
exchange-correlation part of the approximated Hamiltonian for
44 different molecules and compare the difference of the
eigenvalue spectra of the RPA Hamiltonian with the ones
obtained with the respective approximated Hamiltonian. All
calculations in this section were performed with the cc-pV5Z
basis set. The results are shown in Table 4.

As can be seen, the eigenvalue spectra of the approximated
Hamiltonian based on PBE show in total a mean absolute
deviation of 0.42 H from the ones obtained from the RPA
Hamiltonian and therefore differ most. Including some exact
exchange in the calculation of the XC potential (PBE0)
improves the consistency with the RPA Hamiltonian (total
MAD of 0.32 H), however, only slightly. By far the best
agreement is achieved using the approximated Hamiltonian
based on HF where the total MAD for all 44 molecules reduces
to 0.01 H. This was to be expected since the RPA functional is
based on the HF functional which of course has an important
impact on the RPA Hamiltonian.
Therefore, in our opinion it is the most consistent choice to

use the HF Hamiltonian to approximate the RPA Hamiltonian
needed to construct the one-particle Green’s functions. In the
following, we will compare the performance of the three
different self-consistent RPA variants scRPA[H̃PBE], scRPA-
[H̃PBE0], and scRPA[H̃HF] in more detail.
4.3.2. S22 Test Set. As a first test, the S22 test set58 of small-

molecule interaction energies was calculated using our post-KS
ω-CDGD-RPA method17 as well as the self-consistent RPA
variants. All calculations were performed with the def2-TZVP
basis set. The results are shown in Table 5: The self-consistent
RPA method using an approximated Hamiltonian based on
PBE does not significantly improve upon the post-KS method.

The MAD of 0.76 kcal/mol remains unchanged, whereas the
maximum error is decreased from 2.85 to 2.60 kcal/mol. The
improvement of the self-consistent approach compared to the
post-KS method is more significant when PBE0 or HF
Hamiltonians are used as a basis for the approximation. While
scRPA[H̃PBE0] gives the smallest MAD (0.56 kcal/mol) of all
three methods, the maximum error is decreased most (1.46
kcal/mol) by the variant abbreviated as scRPA[H̃HF].

4.3.3. He2 and Be2 Potential Energy Curves. Second, the
dissociation of a helium dimer was calculated with the three
different scRPA variants as well as our most recent ω-CDGD-
RPA method. All calculations were performed with the aug-cc-
pV6Z basis set. The results are shown in Figure 1.
While the post-KS method (ω-CDGD-RPA) hardly

produces any binding, all three self-consistent variants improve
significantly upon the post-KS results and show proper binding
potential energy curves. The variant which uses the PBE
Hamiltonian as basis for the approximation gives the best
results, followed by scRPA[H̃PBE0] and scRPA[H̃HF]. As could

Table 3. Convergence of the Total Energy and the HOMO and LUMO Energy in Hartree with the Number of Included Virtual
Orbitals

water methane

no. virts E εHOMO εLUMO E εHOMO εLUMO

0 −76.474782 −0.427739 0.146769 −40.576788 −0.497835 0.163197
1 −76.474782 −0.427739 0.090904 −40.576788 −0.497835 0.107917
2 −76.474782 −0.427739 0.090904 −40.576788 −0.497835 0.107917
3 −76.474782 −0.427739 0.090904 −40.576788 −0.497835 0.107917
4 −76.474782 −0.427739 0.090904 −40.576788 −0.497835 0.107917
5 −76.474782 −0.427739 0.090904 −40.576788 −0.497835 0.107917
ref −76.474782 −0.427739 0.090904 −40.576788 −0.497835 0.107917

Table 4. Total Mean Absolute Deviations in Hartree of the
Eigenvalue Spectra of the Three Approximated
Hamiltonians from the Ones of the RPA Hamiltonian for 44
Moleculesa

scRPA[H̃PBE] scRPA[H̃PBE0] scRPA[H̃HF]

MAD 0.421245 0.323187 0.011351
aThe complete list of all calculated deviations is provided in the
Supporting Information.

Table 5. Mean Absolute Deviations and Maximum Errors
(kcal/mol) of the ω-CDGD and the Self-Consistent RPA
Method Using Three Different Approximated Hamiltonians
Compared to CCSD(T) Reference Values for the S22 Test
Seta

ω-CDGD scRPA[H̃PBE] scRPA[H̃PBE0] scRPA[H̃HF]

MAD 0.76 0.76 0.56 0.60
MAX 2.85 2.60 1.83 1.46

aAll calculations were performed with the def2-TZVP basis set.

Figure 1. Dissociation curve of a helium dimer calculated with the ω-
CDGD-RPA and self-consistent RPA method using three different
approximated Hamiltonians (aug-cc-pV6Z basis). An estimated full
CI, complete basis set dissociation curve serves as reference.59
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be assumed, the results of scRPA[H̃PBE0] lie between the
results of scRPA[H̃PBE] and scRPA[H̃HF].
To further test our self-consistent RPA method, the

challenging dissociation curve of a beryllium dimer was
calculated. All calculations were performed with the aug-cc-
pV5Z basis set. The results are shown in Figure 2.

Again, it becomes obvious that all self-consistent variants
improve upon the post-KS variant and remove the unphysical
bump occurring in the region between 2.7−5.0 Å in the
potential energy curve calculated with the ω-CDGD method.
As for the dissociation of the helium dimer, the variant
abbreviated by scRPA[H̃PBE] gives the best results followed by
the results of scRPA[H̃PBE0] which lie between the scRPA-
[H̃PBE] and scRPA[H̃HF] curve. Compared to the DMRG
results, which are in very good agreement with experimental
data,60 it shows that also the CCSD(T) method differs quite
significantly due to the missing description of static correlation
effects present at short bond distances.
As shown above, although giving the worst results, the

variant using the HF Hamiltonian to approximate the RPA
Hamiltonian is the most consistent one since the eigenvalue
spectra of the approximated Hamiltonian resemble the ones
obtained with the RPA Hamiltonian best. We assume that the
superior results of scRPA[H̃PBE] are due to a fortuitous error
compensation since the approximated Hamiltonian gives
electronic gaps which are too small leading to too large
polarizabilities which in turn deepen the minima of the
potential energy curves.
4.3.4. Dipole Moments. As shown in the sections before,

there is a significant dependence of the method on the choice
of the approximated Hamiltonian which is used to build the
Green’s functions. In this section we investigate the quality of
the densities obtained with the different variants by comparing
the respective calculated dipole moments with complete basis
set extrapolated CCSD(T) reference values for 44 molecules.
All calculations were performed with the cc-pV5Z basis set.
The results presented in Figure 3 again underline the

importance of the approximated Hamiltonian. The scRPA-
[H̃PBE] variant yields dipole moments with a MAD of 0.1650 D
compared to the reference CCSD(T) values which are
comparable to the ones obtained with the HF (0.1678 D)

and the PBE (0.1616 D) method. Replacing the PBE XC
potential with a PBE0 XC potential to approximate the RPA
Hamiltonian results in a significant improvement of the
calculated dipole moments and decreases the MAD to
0.1147 D. Utilizing the HF Hamiltonian as basis for the
approximation lowers the MAD even further to 0.0504 D. This
finding is very encouraging since the method is completely free
of any empirical parameters and also outperforms the PBE0
functional which gives dipole moments with a MAD of
0.0761 D compared to the CCSD(T) reference results.

4.4. Scaling Behavior. To test the scaling behavior of our
self-consistent RPA method we calculated minimum total
energies for a set of linear n-alkanes of increasing length using
the def2-SVP basis set. The number of gridpoints for the
imaginary time and frequency grid was set to 13 in all
calculations. Additionally, Cholesky decomposition as de-
scribed in section 2.3 without including any virtual orbitals
was applied. For the RI we use the local attenuated Coulomb
metric (ω = 0.1) along with sparse algebra. All calculations
were performed on one Intel Xeon Gold 6134 CPU machine
using 16 threads.
A linear (left) and a log−log (right) plot of the wall times of

one iteration against the number of basis functions is shown in
Figure 4. As can be seen, the self-consistent RPA method
shows asymptotically a quadratic-scaling behavior as compared
to the sixth-power scaling of conventional post-KS RPA. This
was to be expected since the most time-consuming step in the
calculation is the contraction of the sparse three-center integral
matrix B with the screened Coulomb interaction Wc, which
does not show any useful sparsity, and should scale
quadratically with the system size in the asymptotic limit.
In the following we briefly compare the computational effort

of the presented self-consistent RPA method with our post-KS
ω-CDGD-RPA method: the time-determining step of
calculating the self-energy presently scales quadratically in
the asymptotic limit which is to be contrasted to the linear-
scaling calculation of the noninteraction response function in
case of the ω-CDGD method. Therefore, the computational
cost of one iteration of our self-consistent RPA method is
comparable to the present cost of calculating RPA level
molecular gradients.37 The prefactor equals the number of SCF

Figure 2. Dissociation curve of a beryllium dimer calculated with ω-
CDGD-RPA and self-consistent RPA using three different approxi-
mated Hamiltonians (aug-cc-pV5Z basis). Core orbitals were frozen
in all ω-CDGD calculations. Additionally, complete basis set
extrapolated CCSD(T) and cc-pCVQZ-F12 DMRG values are
shown, where the DMRG values are in very good agreement with
experimental data.60

Figure 3. Mean absolute deviations of dipole moments in Debye for
44 molecules calculated with the HF, PBE, and PBE0, as well as the
three different scRPA variants compared to reference CCSD(T)/CBS
values.61 All calculations were performed with the cc-pV5Z basis set.
The complete list of all calculated dipole moments is provided in the
Supporting Information.
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cycles needed until convergence is reached, which in general is
on the same order as for standard PBE calculations (roughly 10
iterations).

5. CONCLUSION
The minimization of the RPA functional with respect to the
one-particle density matrix in the atomic orbital space was
derived and implemented analytically as well as numerically. It
was shown that the analytical results are in very good
agreement with results obtained numerically demonstrating
the correctness of our implementation. The problem of
imposing full self-consistency on functionals with explicit
dependence on the potential is bypassed by approximating the
RPA Hamiltonian using a semicanonical projection scheme.
Investigation of the eigenvalue spectra of the approximated
Hamiltonians shows that the approximation gives the
conceptually most consistent results when performed on the
basis of the HF Hamiltonian, which makes our self-consistent
RPA abbreviated as scRPA[H̃HF] a completely parameter-free
electronic structure method. The presented method not only
outperforms standard post-KS RPA in describing noncovalent
interactions but also gives accurate dipole moments under-
lining the high quality of the calculated densities. The
increased prefactor of AO formulations compared to their
canonical counterparts is overcome by introduction of
Cholesky decomposed projectors onto the occupied orbital
space enabling the use of large basis sets. Finally, exploiting the
local nature of atomic and/or Cholesky orbitals results in an
asymptotically quadratic-scaling algorithm opening the door
for self-consistent RPA calculations on systems with hundreds
of atoms.
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1 Eigenvalue Spectra of the Approximated Hamiltonians

and the RPA Hamiltonian

Table 1: Mean absolute deviations in Hartree of the eigenvalue spectra of the three approx-
imated Hamiltonians from the ones of the RPA Hamiltonian for 44 molecules.

molecule scRPA[H̃PBE] scRPA[H̃PBE0] scRPA[H̃HF]
BH2Cl 0.410626 0.314479 0.009522
BH2F 0.44629 0.34254 0.00965
BHCl2 0.450631 0.343705 0.014459
BHF2 0.517411 0.395838 0.014028
CH3Cl 0.428917 0.328835 0.008865
CH3F 0.463563 0.355809 0.008685
CH3OH 0.43177 0.332265 0.007307
ClCN 0.48826 0.372891 0.013544
ClF 0.578205 0.439101 0.023271
CO 0.495106 0.37877 0.012769
CS 0.442126 0.337223 0.014945
FCN 0.533763 0.407841 0.011937

H2O−H2O 0.45783 0.351073 0.009956
H2O−NH3 0.436086 0.335705 0.008134

H2O 0.457004 0.351073 0.009801
H2S−H2S 0.415645 0.318268 0.010752
H2S−HCl 0.436209 0.333374 0.012517
HCCF 0.483387 0.370564 0.009641

HCl−HCl 0.463429 0.353341 0.014874
HCl 0.461788 0.351914 0.015092
HCN 0.443651 0.340674 0.006957

HF−HF 0.539533 0.412479 0.014623
HF 0.537048 0.41037 0.014948

HOOH 0.497001 0.380374 0.01107
LiBH4 0.315028 0.243353 0.003591
LiCl 0.325303 0.247803 0.013301
LiCN 0.350942 0.269983 0.00714

2



Table 1 Continued.

molecule scRPA[H̃PBE] scRPA[H̃PBE0] scRPA[H̃HF]
LiF 0.374755 0.287507 0.015355
LiH 0.215769 0.168318 0.002967
LiOH 0.341812 0.264857 0.011317
N2H4 0.434003 0.334158 0.007403
NaCl 0.335281 0.254466 0.017267
NaCN 0.357377 0.274389 0.010052
NaF 0.373639 0.292038 0.019897
NaH 0.225461 0.179105 0.00859
NaLi 0.165358 0.130699 0.006611
NaOH 0.346033 0.269366 0.014772

NH3−BH3 0.392471 0.302738 0.005272
NH3−NH3 0.4179 0.322133 0.006786

NH3 0.417724 0.32184 0.006566
PH3 0.390945 0.299887 0.008593
SF2 0.583451 0.444077 0.023029

SiH3Cl 0.412585 0.315366 0.011744
SiH3F 0.443665 0.339619 0.011847
Mean 0.421245 0.323187 0.011351

3
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ABSTRACT: A formulation of range-separated random phase approx-
imation (RPA) based on our efficient ω-CDGD-RI-RPA [J. Chem.
Theory Comput. 2018, 14, 2505] method and a large scale benchmark
study are presented. By application to the GMTKN55 data set, we
obtain a comprehensive picture of the performance of range-separated
RPA in general main group thermochemistry, kinetics, and noncovalent
interactions. The results show that range-separated RPA performs stably
over the broad range of molecular chemistry included in the GMTKN55
set. It improves significantly over semilocal DFT but it is still less
accurate than modern dispersion corrected double-hybrid functionals.
Furthermore, range-separated RPA shows a faster basis set convergence compared to standard full-range RPA making it a promising
applicable approach with only one empirical parameter.

1. INTRODUCTION
The random phase approximation (RPA)1−6 has become an
increasingly popular post-Kohn−Sham (KS)7 approach. RPA
can be considered as a parameter-free density functional and it
stands on the fifth and highest rung of the Jacob’s ladder of
density-functional theory (DFT).8 RPA overcomes several
failures of semilocal density functionals, among which one of
the most important issues are the poorly described long-range
van der Waals interactions.9 This means that RPA gives more
accurate interaction and cohesion energies.10−14 Even though
the long-range part of the dispersion interactions is described
well, RPA gives a poor approximation for small interelectronic
distances.3,15−17

For this reason the idea of treating the short-range
interactions with semilocal DFT arose some time ago.16,18−20

Recently, a scheme that combines the long-range part of the
RPA correlation energy with the short-range part of a density
functional via the error function has been established.21−23

This range-separated RPA approach has been shown to
improve the RPA correlation energy in various cases. One
example is the improvement of dissociation curves for rare-gas
dimers and alkaline-earth dimers compared to full-range
RPA.22,23 It also has been shown that the range-separation
approach provides accurate interaction energies for a range of
noncovalent complexes.24,25 Furthermore, the range-separation
scheme improves atomization energies and barrier heights of
small test sets.26

Here, we present a range-separated RPA method which is
based on our efficient linear-scaling ω-CDGD-RI-RPA
method27−30 in the local atomic orbital space that uses a
Cholesky decomposed ground state density (CDGD) and
makes use of the resolution-of-the-identity (RI) with the

attenuated ω-Coulomb metric.31 The use of our efficient
ω-CDGD-RI-RPA algorithm within the range-separation
approach enables us to test range-separated RPA on a large
scale and to provide a comprehensive picture of the
performance of range-separated RPA. Hence, we compare
range-separated RPA to full-range RPA for the GMTKN55
data set.32 This large benchmark set comprises 1505 relative
energies based on 2462 single-point calculations on molecules
with up to 72 atoms and gives a broad overview of general
main group thermochemistry, kinetics, and noncovalent
interactions.

2. THEORY

Several schemes for range-separated RPA have been proposed
so far.22,23,23 The formalism of the range-separation scheme
used in this work is described by Toulouse et al. in detail in ref
23. Here, we give a brief overview and rather focus on the
description of the long-range formulation of our
ω-CDGD-RI-RPA method.28 In the subsequent description
μ, ν, λ, σ refer to atomic orbitals (AOs) i, j and a, b refer to
occupied and virtual molecular orbitals (MOs), respectively,
and i j,̲ ̲ refer to Cholesky orbitals. M, N, P, Q denote auxiliary
RI functions. Moreover, Einstein’s sum convention34 is used.
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2.1. Range Separation. The separation of the electron−
electron interaction into long-range (lr) and short-range (sr)
contributions can be achieved by dividing the electron−
electron operator vee into a long-range electron−electron
operator vee

lr and a short-range electron−electron operator vee
sr

using the error function and its complementary function as

v v v
r

r
r

r
erf( ) erfc( )

ee ee
lr

ee
sr 12

12

12

12

μ μ= + = +
(1)

where the adjustable range-separation parameter μ defines the
range of the separation.
Until now, multiple formulations of short-range PBE were

presented in the literature.35−37 In this work the range-
separated hybrid PBE functional (RSHPBE) of Goll et al.38 is
used, which utilizes the range-separation scheme in eq 1. A
detailed description of this functional is given in ref 38. Its
energy

E E E E ERSHPBE
H x

PBE,sr
x
HF,lr

c
PBE,sr= + + + (2)

is composed of the Hartree energy EH, the short-range
exchange Ex

PBE,sr, and correlation energy Ec
PBE,sr given by the

short-range PBE-like functional and the long-range exact
exchange energy Ex

HF,lr. ERSHPBE lacks long-range correlation
effects and thus can be corrected with the long-range part of
the RPA correlation energy Ec

RPA,lr in a post-KS calculation:

E E ERSHPBE lrRPA RSHPBE
c
RPA,lr= ++

(3)

2.2. Long-Range Formulation of the RPA Correlation
Energy. The standard full-range RPA total energy within the
adiabatic connection formalism39 is given by

E E ERPA HF
c
RPA= + (4)

where EHF is the Hartree−Fock energy evaluated non-self-
consistently on the reference orbitals and Ec

RPA is the RPA
correlation energy. Using the fluctuation−dissipation theorem
together with the RI approximation, the RPA correlation
energy can be expressed after coupling-strength integration
as4−6

E X V X V
1

2
d Tr ln(1 (i ) ) (i )c

RPA

0
0 0∫π

ω ω ω= [ − + ]+∞

(5)

where

V VC C( ) ( )MN MP PQ QN
1 1= ̃− −

(6)

represents the Coulomb operator in the auxiliary basis with

C M m N( )MN 12= | | (7)

V M v r N( ( ) )MN ee 12̃ = | | (8)

and the RI metric m12. In the presented method the attenuated
Coulomb metric

m
r

r
erfc( )

12
att 12

12

ω=
(9)

with ωatt = 0.1 a0
−1 is used, since it has been shown to

constitute a good trade-off between accuracy and locality for
fitting the full-range Coulomb operator.31 X0 denotes the
noninteracting density−density response function in the zero-
temperature case, also represented in the auxiliary basis. For

the sake of efficiency, X0 is calculated in the imaginary time
domain

X G B G B(i ) ( i ) (i )MN
M N

0, 0, 0,τ τ τ= −μν νλ λσ σμ (10)

where G0(iτ) is the one-particle Green’s function

G G G(i ) ( i ) (i ) (i ) (i )0 0 0τ τ τ τ τΘ Θ= − + ̅ (11)

G C C(i ) exp( ( ) )i i i0, Fτ ε ε τ̲ = − −μν μ ν

G C C(i ) exp( ( ) )a a a0, Fτ ε ε τ̅ = − − −μν μ ν

with the Heaviside step function Θ(iτ), the MO coefficients
Cμi and Cμa, as well as the MO energies εi and εa of the
occupied and unoccupied MOs, respectively, and the Fermi
level εF. The three-center integrals Bμν

M are given in Mulliken
notation by

B m M( )M
12μν= | |μν (12)

The response function of eq 10 is then transformed into the
imaginary frequency domain by a contracted double Laplace27

or, equivalently, cosine40 transform according to

X X(i ) d cos( ) (i )0 0∫ω τ ωτ τ=
−∞

+∞
(13)

to perform the final frequency integration.
The main drawback of pure AO formulations is the

unfavorable scaling with the size of the basis set compared
to MO formulations. To address this problem, pivoted
Cholesky decomposition41−43 can be applied to density-type
matrices28,31 in order to obtain local Cholesky vectors/orbitals
which can then be used to transform important quantities in
the time-determining steps. In the following, pivoted Cholesky
decomposition of a given matrix A is abbreviated by A = LLT.
Since the one-particle Green’s function in the negative

imaginary time domain is invariant with respect to projection
onto the occupied space, eq 10 can equivalently be expressed
as

X PSG SPB G B(i ) Tr( ( i ) (i ) )MN
M N

0, 0 0τ τ τ= − (14)

Cholesky decomposition of the ground state density matrix P
and cyclic permutation within the trace result in

X L SG SLL B G B L(i ) Tr( ( i ) (i ) )MN
T T M N

0, 0 0τ τ τ= − (15)

and allow the dimensions of the important quantities to be
reduced yielding

X G B G B(i ) ( i ) (i )MN j i i
M

j
N

0, 0, 0,τ τ τ= − ν νμ μ̲ ̲ ̲ ̲ (16)

where we defined

G GL S SL( i ) ( ) ( i )( )j i
T

j i0, 0,τ τ− = −μ μν ν̲ ̲ ̲ ̲ (17)

B BL( )i
M T

i
M=ν μ μν̲ ̲ (18)

The final and most expensive step in the calculation of the
response function is then given by

X B B(i ) (i )MN j
M

j
N

0, τ τ= μ μ̲ ̲ (19)

with

B G B G(i ) ( i ) (i )j
M

j i i
M

0, 0,τ τ τ= −μ ν νμ̲ ̲ ̲ ̲ (20)
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The evaluation of eq 19 formally scales as N N N( )aux
2

basis occ but
can be implemented in an asymptotically linear-scaling fashion
using sparse matrix algebra.
To account for the long-range part of the RPA correlation

energy only, as required by the presented range-separated
functional, the standard Coulomb operator in eq 8 is
substituted by the long-range electron−electron operator
defined in eq 1 to obtain

V M v r N( ( ) )MN
lr

ee
lr

12̃ = | | (21)

and hence

V VC C( ) ( )MN MP PQ QN
lr 1 lr 1= ̃− −

(22)

This long-range Coulomb operator in the auxiliary basis Vlr

is then used in the final expression for the long-range RPA
correlation energy according to

E X V X V
1

2
d Tr ln(1 (i ) )c

RPA,lr

0
0

lr
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In our standard full-range RPA algorithm, the trace of the
matrix logarithm is evaluated using Cholesky decomposition of
V in combination with the Mercator series for ln(1 + x)
according to
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where we absorbed the minus sign into the response function
and abbreviated the Cholesky decomposit ion of
1 + LTX0(iω)L by L′. In the presented range-separated RPA
algorithm, Cholesky decomposition of the long-range
Coulomb operator Vlr has turned out to be problematic in
some cases due to very small negative eigenvalues occurring as
a reason for numerical inaccuracies. Therefore, Cholesky
decomposition of Vlr is avoided by evaluating the trace of the
matrix logarithm according to

L

X V
V X V

Tr ln(1 (i ) )
Tr ln(1 ( ) (i )( ) )

(26)

2 ln (27)
n

nn

0
lr

lr 1/2
0

lr 1/2

∏

ω
ω

[ + ]
= [ + ]

=
i

k
jjjjjj

y

{
zzzzzz

where this time L stems from Cholesky-decomposing
V X V1 ( ) (i )( )lr 1/2

0
lr 1/2ω+ . Another alternative avoiding

Cholesky decomposition of Vlr is, of course, to simply evaluate
the matrix logarithm via diagonalization, which works in any
case but comes along with an increased computational cost.

3. COMPUTATIONAL DETAILS
All calculations were performed using the FermiONs++
program package.44−46 The self-consistent range-separated
hybrid DFT calculations were performed using the short-
range PBE functional of ref 38, which was implemented in a
development-version of libxc,47 and long-range exact exchange.
This approach is referred to as “RSHPBE” in the following.
The long-range RPA correlation correction to the RSHPBE
energy was calculated based on these RSHPBE reference

orbitals using the long-range formulation of the ω-CDGD-RI-
RPA method as described above. This range-separated RPA
approach is termed “RSHPBE+lrRPA”. For all range-separated
calculations a range-separation parameter of μ = 0.5 a0

−1 was
used (see also discussion below), unless stated otherwise. Full-
range RPA calculations performed on PBE48,49 reference
orbitals are simply named “RPA” in the following.
All calculations on the GMTKN55 were performed with the

Ahlrichs-type split-valence triple-ζ basis set def2-TZVP50 and
the corresponding auxiliary basis set.51 The basis set was
augmented by diffuse functions for the WATER27, G21EA,
AHB21, and IL16 subsets in the same way as for the original
calculations on the GMTKN5532 to ensure best possible
comparability to already existing results of other density
functionals. In the WATER27 test set, Dunning’s diffuse s and
p functions were applied to oxygen; diffuse s and p functions
were applied to non-hydrogen atoms and diffuse s functions to
hydrogen in the G21EA, AHB21, and IL16 sets.
Effective-core potentials50 were used to replace the core

electrons of heavy elements in the HEAVYSB11, HEAVY28,
and HAL59 subsets.
For all molecules in the singlet state, closed-shell calculations

were performed.

4. RESULTS AND DISCUSSION
4.1. Choice of the Basis Set. Several investigations on the

basis set dependence of RSHPBE+lrRPA indicated that within
the range-separated framework a smaller number of basis
functions is required for convergence of the RPA energy with
respect to the basis set size.22,23,26,52 This convergence
behavior is caused by the expected exponential convergence
of the long-range part of the RPA correlation energy53 and the
replacement of the relatively slowly converging short-range
part of the RPA correlation by faster converging PBE. As the
studies concerning basis set behavior of range-separated RPA
rely on a small number of molecular systems, we investigate
here the basis set convergence of range-separated RPA energies
compared to full-range RPA energies using a larger set of
molecules.
We compared RSHPBE+lrRPA to full-range RPA on the

BH76 (barrier heights), BH76RC (reaction energies), and S22
(noncovalent interactions) test sets for different basis sets
(detailed results can be found in the Supporting Information).
For full-range RPA a rather pronounced basis set dependence
can be observed (Figure 1) as the MAD decreases significantly
for each of the three subsets going from the triple- to
quadruple-ζ basis. The MADs for RSHPBE+lrRPA, in contrast,
vary at most in a range of 0.17 kcal/mol going from def2-
TZVP to the larger quadruple-ζ basis set and thus can be
considered as sufficiently converged with the def2-TZVP basis
set. Further, we want to note that the introduced error by
fitting the long-range Coulomb operator with the short-range
Coulomb metric is, like for fitting the full-range Coulomb
operator, orders of magnitude below the orbital basis set error
and the intrinsic error of RPA (see Table S2, Supporting
Information). Therefore, the dependence of the results on the
quality of the auxiliary basis is assumed to be similar to that of
standard RI-RPA which was investigated in ref 5.
Even though the results of full-range RPA are clearly not yet

converged with the triple-ζ basis sets, we compare both
methods using def2-TZVP as we want to have a fair
comparison for practical usage. This means using a basis set
that is affordable for many applications. For the performance of
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full-range RPA with larger basis sets we refer the interested
reader to already existing benchmarks.6,54−57

4.2. Choice of the Range-Separation Parameter. Prior
studies investigating the range-separation parameter μ in
range-separated methods revealed that its optimal value lies
around 0.5 a0

−1. These prior studies comprise the investigation
of the enthalpies of formation for a series of molecules with a
combination of srLDA and lrHF exchange58 and calculations
on atomization energy and barrier height data sets with range-
separated RPA.26

It is worth noting here that in the limit μ → ∞ the results of
RSHPBE+lrRPA do not converge to the results of conven-
tional full-range RPA based on PBE reference orbitals. In fact,
the lrRPAμ→∞ correlation energy formally corresponds to the
full-range formulation, but the RSHPBE (see eq 2) reference
orbitals converge to HF orbitals rather than PBE orbitals for
μ → ∞. This means that RSHPBE+lrRPAμ→∞ is equal to full-
range RPA using HF reference orbitals (RPA@HF, see Figure
2). In the limit of μ → 0 the lrRPA correlation energy
approaches 0. Thus, RSHPBE+lrRPAμ→0 approaches the
energy of the RSHPBE reference orbitals, which are identical
to those of full-range PBE in the case of μ → 0.
To investigate whether a range-separation parameter of

0.5 a0
−1 is indeed an appropriate choice for a broader range of

molecules and properties of molecular systems, we comple-
mented these studies by calculations on the BH76RC, BH76,
and S22 data sets with varying range-separation parameter in
RSHPBE+lrRPA. The results (Figure 2, detailed results can be
found in the Supporting Information) reveal that the optimal
value for μ slightly varies depending on the examined property
or system. While for the BH76 and S22 test sets the optimum

of μ lies at 0.5 a0
−1, it is shifted to a slightly higher value of

0.8 a0
−1 for the BH76RC test set. A shift of the optimal value of

the range-separation parameter to a larger value has also been
observed for calculations on reaction energies with a range-
separated RPA variant.59

Since the results show a quite distinct dependence of the
optimal range-separation parameter on the molecular system,
we decided to investigate the parameter for an even broader
range of molecular systems. We therefore created the set
“RAND2x55” which contains two randomly chosen items of
each subset of the GMTKN55. The detailed list of contained
relative energies can be found in the Supporting Information
(Table S1). The absolute values of the relative energies |ΔE|
contained in this test set vary significantly as these describe
completely different chemical properties. Items with larger
|ΔE| are expected to give a larger absolute deviation, which in
turn leads to a larger change between different μ values. In
order to consider each item of the RAND2x55 in the same way
for obtaining an optimal range-separation parameter, the
absolute deviations of every item are weighted using the
weighting factors of weighting scheme 1 of ref 32 for the
respective subset. The weighted MADs of the RAND2x55
subset show that there is a broad minimum around
μ = 0.45 a0

−1 (see Figure 3) with a deviation of maximally
0.1 kcal/mol in the MADs over the range μ = 0.4 a0

−1 to
μ = 0.55 a0

−1. On average, RSHPBE+lrRPA seems to be quite
robust with respect to the choice of μ, reassuring us that the

Figure 1. Basis set dependence of the mean absolute deviation
(MAD) in kcal/mol for the BH76, BH76RC, and S22 data sets of
range-separated RSHPBE+lrRPA (red) and full-range RPA (blue).

Figure 2. Mean absolute deviation (MAD) for the BH76, BH76RC,
and S22 data sets as a function of the range-separation parameter μ
for range-separated RSHPBE+lrRPA calculations using the def2-
TZVP basis set. In the limit of μ → ∞ RSHPBE+lrRPA converges to
standard RPA evaluated on HF reference orbitals (RPA@HF) and for
μ → 0 it corresponds to PBE.
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choice of μ = 0.5 a0
−1 in previous studies23,25,26,58 is reasonable.

For this reason a range-separation parameter of 0.5 a0
−1 was

used in the following.
4.3. Results of the GMTKN55 Data Set. The subsets

included in the GMTKN55 data set can be grouped into five
categories. The first category “basic + small” targets basic
properties and reaction energies for small systems. The subsets
of the second category “iso + large” comprise reaction energies
for large systems and isomerizations. In the third category
“barrier”, barrier height test sets are united. The last two
subcategories “intermol. NCIs” and “intramol. NCIs” focus on
inter- and intramolecular noncovalent interactions, respec-
tively.
As shown in Table 1, RSHPBE+lrRPA yields a weighted

mean absolute deviation according to weighting scheme 1 of

ref 32 (WTMAD-1) of 3.86 kcal/mol for the total GMTKN55
data set. With this result RSHPBE+lrRPA is among the 15%
best density functionals tested in ref 32 using the def2-QZVP
basis set (see Figure 4) and can be ranked in between the
average hybrid and average double-hybrid density functional
(see Table 1). It has to be further stressed that the compared
(MP2-based) double-hybrid functionals are, due to the
inclusion of exchange terms, computationally more expensive
than the here presented RPA methods.
The results grouped by category (see Table 2 and Figure 5)

show that RSHPBE+lrRPA is not as good as the average
double-hybrid density functional for “basic + small” and
“barriers” but is significantly better for NCIs. However, the
deficiencies of double-hybrid density functionals in describing
noncovalent interactions can be compensated by the inclusion
of the empirical “D3” dispersion correction of Grimme.60,61

RSHPBE+lrRPA gives a slightly better result than full-range
RPA (WTMAD-1 of 3.86 kcal/mol vs 4.72 kcal/mol) for the
complete GMTKN55 test set. Furthermore, RSHPBE+lrRPA

performs more stably over all categories. The WTMAD-1 of
RSHPBE+lrRPA is for all categories about the same and does
not show as high fluctuations as the full-range variant. In both
cases, range-separated and full-range, the RPA correlation
energy on average improves the results of the respective
Kohn−Sham reference calculations, RSHPBE and PBE.
The improvement of the RPA approaches over the

respective Kohn−Sham reference is most prominent for the
categories concerning noncovalent interactions. Within the
subsets of “intermol. NCIs” and “intramol. NCIs” the
improvement is most obvious for the IDISP subset which
targets intermolecular dispersion interactions (see Table 3).
This is not surprising, as RSHPBE and PBE do not account for
any dispersion interactions. Moreover, the remarkably high
MAD of RSHPBE+lrRPA for the WATER27 (hydrogen
bonds) subset has to be noted. Apparently, this test set is
quite sensitive to the basis set size as all tested methods have a
significant deviation in the MAD between the def2-TZVP and
def2-QZVP results (see Table 3, values in brackets). This
means that for this test set the results of all studied methods,
including the references RSHPBE and PBE, are not sufficiently

Figure 3. Weighted mean absolute deviation (MAD) for the
RAND2×55 data set as a function of the range-separation parameter
μ for range-separated RSHPBE+lrRPA calculations using the def2-
TZVP basis set.

Table 1. Comparison of the WTMAD-1 for the GMTKN55
obtained by RSHPBE+lrRPA and Full-Range RPA to
Density Functionals Grouped by the Rank of the Jacob's
Ladder

RSHPBE+lrRPA 3.86a

RPA 4.72a

GGA 10.70b

meta-GGA 7.31b

hybrid 6.56b

double-hybrid 3.60b

adef-TZVP basis set, this work. bdef2-QZVP basis set and no
empirical dispersion correction. Average value taken from ref 32.

Figure 4. Histogram showing the WTMAD-1 distribution for all
tested density functionals without empirical dispersion correction
(def2-QZVP) in ref 32 on the total GMTKN55 test set. The red and
blue lines illustrate where RSHPBE+lrRPA and full-range RPA def2-
TZVP are placed among the density functionals according to the
WTMAD-1.

Table 2. WTMAD-1 Values in kcal/mol for the GMTKN55
Test Set and Its Categoriesa

average
double-hybrid

RSHPBE PBE
RSHPBE
+lrRPA RPA

no
D3 D3

GMTKN55 8.33 8.17 3.86 4.72 3.60 2.05
basic + small 4.92 5.56 3.48 5.41 2.21 1.87
iso. + large 4.97 7.38 3.76 3.10 3.40 2.50
barriers 5.72 7.64 3.56 2.63 1.43 1.59
intermol.
NCIs

13.87 10.41 4.27 6.54 5.90 2.02

intramlo.
NCIs

13.13 11.64 4.40 4.16 5.17 2.39

all NCIs 13.55 10.94 4.33 5.52 5.59 2.18
aAll calculations were performed using the def2-TZVP basis set.
Values for the average double-hybrid functional with and without
Grimme’s D3 dispersion correction60,61 were obtained using the def2-
QZVP basis set and are taken from ref 32.
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converged with respect to the basis set size at triple-ζ level and
are thus not reliable.
For all noncovalent interactions (all NCIs, Table 2),

RSHPBE+lrRPA has a slightly lower WTMAD-1 compared
to full-range RPA. This is in line with the observation of Zhu et
al.25 that range-separated RPA improves interaction energies of
weakly interacting intermolecular complexes. Also, several
studies suggest17,25,52,62 that a range-separated RPA approach
improves interaction energies in rare-gas dimers which we can
confirm by the results of the RG18 subset (Table 3).
For reaction barrier heights, varying results for RSHPBE

+lrRPA were obtained. In fact, RSHPBE+lrRPA has a slightly
lower MAD in some reaction barrier height subsets but has
also a remarkably higher MAD for the two subsets, PX13 and
WCPT18, containing reaction barriers of proton-transfer and
-exchange reactions, where water−water interactions, which
are also present in the WATER27 test set, play a crucial role.
This suggests that the results of PX13 and WCPT18 might also
be not sufficiently converged with respect to the basis set size
at the triple-ζ level. This is one of the reasons why we have not
observed a significant improvement in the description of
reaction barrier heights for RSHPBE+lrRPA over full-range
RPA, contradicting the finding of Mussard et al.26 Another
reason might be the larger test volume investigated in our
present work.
For the category “iso. + large”, a slightly inferior perform-

ance of RSHPBE+lrRPA compared to the full-range variant is
observed (3.76 kcal/mol vs 3.10 kcal/mol). In this category,
the MADs for the MB16-43 (decomposition of artificial
molecules) and DARC (Diels−Alder reaction energies)
subsets stand out in particular (Table 3). For the DARC test
set the difference in the MADs between RSHPBE+lrRPA and
full-range RPA is remarkable. It should be noted that the errors
for this rather specialized test set are mainly systematic as all
relative energies contained in this test set describe one single
property: the relative stability of a C−C σ bond vs a C−C π
bond. The low MAD of full-range RPA arises from a fortuitous
error cancellation for this very specific type of reactions. PBE
significantly underestimates the relative stability of C−C σ
bonds (signed error +6.12 kcal/mol), and the addition of the

full-range RPA correlation compensates this deficiency nearly
exactly (signed error +0.48 kcal/mol). In contrast, RSHPBE
already overestimates the relative strength of C−C σ bonds
(signed error −1.27 kcal/mol), so that the addition of the
long-range RPA correlation results in an even stronger
comparative overbinding of σ bonds (signed error −6.79
kcal/mol). However, this error is not unusually large compared
to other functionals. The average MAD for all double-hybrid
functionals tested in ref 32 without empirical dispersion
correction is 4.62 kcal/mol. We also tested the influence of the
basis set on this specific test set employing the def2-QZVP
basis set instead. The differences in the MADs of RSHPBE
+lrRPA and full-range RPA, however, were found to be smaller
than 1 kcal/mol, i.e., this test set is not dominated by basis set
incompleteness errors.
For the MB16-43 test set large MADs are not unusual due to

the large average of absolute energy differences E|Δ | of
414.73 kcal/mol. The result of RSHPBE+lrRPA for this test set
is as good as the average result of all double-hybrid functionals
tested in ref 32 with 22.91 kcal/mol (without empirical
dispersion correction). The MAD of full-range RPA, however,
is exceptionally large displaying the deficiency of standard full-
range RPA to describe the strength of covalent bonds which is
well-known concerning atomization energies.54,63−65

RSHPBE+lrPBE seems to have an improved performance in
basic properties as compared to full-range RPA (“basic +
small”, Table 2 and Figure 5). This difference in the
WTMAD-1s arises from the stable performance of RSHPBE
+lrRPA compared to the varying results of standard RPA.
Here, especially the noticeable high MADs of the W4-11
(atomization energies), SIE4x4 (self-interaction-error related
problems), and ALKBDE10 (dissociation energies of group-1
and -2 diatomics) subsets stand out. The obtained results for
the atomization energies subset W4-11 are in line with those of
Mussard et al.,26 who also observed that range-separated RPA
gives more precise atomization energies than the full-range
variant. It has to be noted that the large MADs of full-range
RPA for atomization energies and dissociation energies arise
from the systematical underbinding of standard full-range RPA
caused by deficiencies in the description of short-range
correlation.54,63,65 The poor performance of standard RPA
for the self-interaction-error related problems is also not
surprising as it is a well-known deficiency of direct RPA.
However, the range-separation approach somewhat alleviates
this problem, as indicated by the significantly better perform-
ance of RSHPBE+lrRPA in the SIE4x4 test set, confirming the
findings of previous work on range-separated RPA.33,66 In this
context, range-separated RPA may also be regarded as a cost-
effective alternative to beyond RPA methods.29,67−72

5. CONCLUSION

In this work we presented a range-separated RPA method,
RSHPBE+lrRPA, based on our efficient linear-scaling
ω-CDGD-RI-RPA algorithm.28 Investigations on the basis set
dependence revealed that energies obtained by this range-
separated method converge faster with respect to the basis set
size than full-range RPA energies. For most systems,
RSHPBE+lrRPA yields reliable results with the def2-TZVP
basis set. The weaker basis set dependence compared to full-
range RPA and the fact that the presented RSHPBE+lrRPA
method is exactly as efficient as the underlying ω-CDGD-RI-
RPA algorithm opens up the possibility for efficiently applying

Figure 5. Graphical representation of the WTMAD-1 values for the
GMTKN55 test set and its categories. The def2-TZVP basis set was
used for RSHPBE+lrRPA and full-range RPA (this work). The
average WTMAD-1s for all tested double-hybrid functionals in ref 32
with (avg. double-hybrid D3) and without (avg. double-hybrid)
Grimme’s D3 dispersion correction60,61 were obtained using the def2-
QZVP basis set and are taken from ref 32.
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Table 3. Detailed List of the Mean Absolute Deviation in kcal/mol for All Subsets of the GMTKN55 Data Basea

set description RSHPBE PBE RSHPBE+lrRPA RPA

Basic Properties and Reaction Energies for Small Systems
W4-11b total atomization energies 15.34 14.69 6.94 27.06
G21EA adiabatic electron affinities 6.43 2.80 3.66 3.39
G21IP adiabatic ionization potentials 5.09 3.91 4.29 3.41
DIPCS10 double-ionization potentials of closed-shell systems 6.15 4.59 2.94 6.32
PA26 adiabatic proton affinities (incl. of amino acids) 2.53 1.92 1.29 3.88
SIE4x4 self-interaction-error related problems 4.64 23.73 8.63 22.19
ALKBDE10 dissociation energies in group-1 and -2 diatomics 6.19 4.93 4.83 25.00
YBDE18 bond-dissociation energies in ylides 6.99 5.68 2.56 5.28
AL2x6 dimerization energies of AlXx compounds 6.27 4.04 1.79 2.82
HEAVYSB11 dissociation energies in heavy-element compounds 12.53 4.34 4.97 6.66
NBPRC oligomerizations and H2 fragmentation of NH3/BH3 systems 2.62 2.77 1.95 2.53
ALK8 dissociation and other reactions of alkaline compounds 7.09 3.05 3.69 7.79
RC21 fragmentations and rearrangements in radical cations 2.71 6.03 4.09 2.79
G2RC reaction energies of selected G2/97 systems 5.48 7.50 5.67 7.04
BH76RC reaction energies of the BH76 set 2.38 3.98 2.87 4.51
FH51 reaction energies in various (in-) organic systems 3.27 4.03 3.31 3.40
TAUT15 relative energies in tautomers 1.18 1.91 0.90 1.19
DC13 13 difficult cases for DFT methods 12.76 10.00 8.49 10.47

Reaction Energies for Large Systems and Isomerization Reactions
MB16-43 decomposition energies of artificial molecules 49.92 24.24 21.72 60.96
DARC reaction energies of Diels−Alder reactions 1.61 6.39 6.79 0.92
RSE43 radical-stabilization energies 0.46 3.16 0.53 0.48
BSR36 bond-separation reaction of satured hydrocarbons 8.43 8.15 0.90 1.88
CDIE20 double-bond isomerization energies in cyclic systems 1.00 1.90 0.69 0.46
ISO34 isomerization energies of small and medium-sized organic molecules 1.70 1.95 1.51 1.43
ISOL24 isomerization energies of large organic molecules 4.74 6.71 3.79 2.01
C60ISO relative energies between C60 isomers 23.05 10.48 7.55 7.71
PArel relative energies in protonated isomers 1.05 1.76 1.05 0.97

Reaction Barrier Heights
BH76 barrier heights of hydrogen transfer, heavy atom transfer, nucleophilic substitution,

unimolecular, and association reactions
3.17 9.82 1.67 2.84

BHPERI barrier heights of pericyclic reactions 10.74 4.18 1.85 0.73
BHDIV10 diverse reaction barrier heights 5.10 8.24 1.39 1.89
INV24 inversion/racemization barrier heights 3.39 2.95 2.11 1.21
BHROT27 barrier heights for rotation around single bonds 0.90 0.54 0.70 0.75
PX13 proton-exchange barriers in H2O, NH3, and HF clusters 5.07 13.16 7.67 2.36
WCPT18 proton-transfer barriers in uncatalyzed and water-catalyzed reactions 3.59 9.66 3.19 1.68

Intermolecular Noncovalent Interactions
RG18 interaction energies in rare-gas complexes 0.51 0.36 0.14 0.41
ADIM6 interaction energies of n-alkane dimers 4.54 3.37 1.24 0.30
S22 binding energies of noncovalently bound dimers 3.01 2.31 0.62 0.71
S66 binding energies of noncovalently bound dimers 2.57 1.94 0.72 0.42
HEAVY28 noncovalent interaction energies between heavy element hydrides 1.30 0.49 0.45 0.65
WATER27 binding energies in (H2O)n, H

+(H2O)n, and OH−(H2O)n 2.27
(5.08)

9.06
(2.84)

11.64 (5.70) 0.89
(3.86)

CARBH12 hydrogen-bonded complexes between carbene analogues and H2O, NH3, or HCl 0.63 1.45 0.59 2.07
PNICO23 interaction energies in pnicogen-containing dimers 1.77 0.86 0.53 1.43
HAL59 binding energies in halogenated dimers (incl. halogen bonds) 1.94 1.36 0.37 1.62
AHB21 interaction energies in anion-neutral dimers 1.22 1.10 1.52 1.33
CHB6 interaction energies in cation-neutral dimers 1.76 1.34 1.68 0.87
IL16 interaction energies in anion−cation dimers 4.29 1.77 0.66 0.95

Intramolecular Dispersion Interactions
IDISP intramolecular disperison interaction 10.72 10.62 2.81 2.63
ICONF relative energies in conformers of inorganic systems 0.79 0.41 0.43 0.46
ACONF Relative energies of alkane conformers 0.92 0.58 0.19 0.06
AMINO20x4 Relative energies in amino acid conformers 0.62 0.47 0.27 0.35
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range-separated RPA onto relevant systems with several
hundred atoms, as illustrated for the ω-CDGD-RI-RPA
method in ref 28 where the largest system comprised 902
atoms.
Investigations on the range-separation parameter μ revealed

a shallow minimum between 0.4 a0
−1 and 0.55 a0

−1, which is in
good agreement with previous findings of μ = 0.5 a0

−1 to be
optimal.21,23,25,26,38,62

To give a comprehensive picture of the performance of
RSHPBE+lrRPA we compared this method to standard RPA
on the GMTKN55 data set32 and placed it among previously
tested density functionals. The results for GMTKN55 show
that RSHPBE+lrRPA yields stable results for a broad range of
thermochemical and kinetic properties as well as noncovalent
interactions. Although the overall performance of RSHPBE
+lrRPA is comparable to that of full-range RPA, it shows less
variance in the WTMAD-1s of the subcategories. It was found
that the range-separation approach especially gives better
results compared to those of the full-range variant for
atomization energies (W4-11), problems that are prone to
the self-interaction-error (SIE4x4), and systems containing
group-1 and -2 elements (ALKBDE10, ALK8).
Overall, the results of RSHPBE+lrRPA are promising

considering that only one empirical parameter was employed.
In the future, the method could further be improved by
including exchange into the response function, e.g., along the
lines of the second order screened exchange (SOSEX) RPA
method.29,67,68,72 Alternatively, more empirical approaches
could be explored in a similar fashion as done by Mardirossian
and Head-Gordon,73 i.e., employing more empirical semilocal
exchange-correlation functionals (e.g., B9774), more compli-
cated range-separation schemes, or adding empirical dispersion
interaction corrections.
Due to the lower computational cost compared to standard

MP2 and the stable results of range-separated RPA over a
broad range of chemical problems, this avenue is in our
opinion worth considering for future developments.
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density-functional theory with random phase approximation applied
to noncovalent intermolecular interactions. J. Chem. Phys. 2010, 132,
244108.
(26) Mussard, B.; Reinhardt, P.; Ángyań, J. G.; Toulouse, J. Spin-
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(58) Gerber, I. C.; Ángyań, J. G. Hybrid functional with separated
range. Chem. Phys. Lett. 2005, 415, 100−105.
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Construction and Application of a New Dual-Hybrid Random Phase
Approximation. J. Chem. Theory Comput. 2015, 11, 4615−4626.
(67) Freeman, D. L. Coupled-cluster expansion applied to the
electron gas: Inclusion of ring and exchange effects. Phys. Rev. B 1977,
15, 5512−5521.
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Table S1: Detailed list of the RAND2x55 test set. For each item its number in the original
subset (#) is given. The system names correspond to the geometry files of the corresponding
test set. The reference values are given in kcal/mol. In the last column, the weighting factor
of the corresponding test set in the WTMAD-1 scheme is given.

subset # systems stoichiometry ref. w1

W4-11 8 sih si h -1 1 1 73.921 0.1

W4-11 90 hocl h o cl -1 1 1 1 166.229 0.1

G21EA 20 EA_20n EA_20 1 -1 9.5 1

G21EA 2 EA_o EA_o- 1 -1 33.7 1

G21IP 36 IP_80 48 1 -1 261.153 0.1

G21IP 22 IP_65 IP_n65 1 -1 234.107 0.1

DIPCS10 2 c2h6 c2h6_2+ -1 1 667.1 0.1

DIPCS10 7 h2s h2s_2+ -1 1 733 0.1

PA26 15 ch3cooh ch3coohp 1 -1 190.9 0.1

PA26 10 h2s h2sp 1 -1 174.3 0.1

SIE4x4 5 he he+ he2+_1.0 1 1 -1 56.9 1

SIE4x4 8 he he+ he2+_1.75 1 1 -1 19.1 1

ALKBDE10 2 beo be o -1 1 1 106.6 0.1

ALKBDE10 7 lio li o -1 1 1 82.5 0.1

YBDE18 6 me2s-ch2 me2s ch2 -1 1 1 51.74 1

YBDE18 16 ph3-ch2 ph3 ch2 -1 1 1 60.11 1

AL2x6 4 al2me4 alme2 -1 2 38.4 1

AL2x6 3 al2cl6 alcl3 -1 2 32.5 1

HEAVYSB11 11 br br2 2 -1 53.17 1

HEAVYSB11 4 sh h2s2 2 -1 67.85 1

NBPRC 7 BH3PH3 BH3 PH3 1 -1 -1 -25.2 1

NBPRC 5 nh2-bh2 bz h2 -3 1 3 -48.9 1
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ALK8 6 li5_ch li4_c li_h -1 1 1 66.28 1

ALK8 2 na8 na2 -1 4 53.15 1

RC21 5 3e 3p1 3p2 -1 1 1 57.93 1

RC21 13 6e 6p1 ethylene -1 1 1 21.21 1

G2RC 10 58 59 57 60 -1 -1 1 1 -27.15 1

G2RC 6 128 13 126 22 -1 -1 1 1 -10.7 1

BH76RC 29 C2H6 NH2 C2H5 NH3 -1 -1 1 1 -6.52 1

BH76RC 13 hnc hcn -1 1 -15.06 1

FH51 13 2-pentyne H2 trans-2-pentene -1 -1 1 -44.82 1

FH51 4 C4H9SO2H H2O2 C4H9SO3H H2O -1 -1 1 1 -82.55 1

TAUT15 9 6a 6b -1 1 -0.17 10

TAUT15 10 6a 6c -1 1 -0.87 10

DC13 12 o3 c2h4 o3_c2h4_add -1 -1 1 -58.7 1

DC13 2 c20cage c20bowl -1 1 -7.7 1

MB16-43 13 13 H2 CH4 N2 O2 MgH2 S2 -2 -5 4 4 2 2 2 19.8751 0.1

MB16-43 32 32 H2 LiH BH3 N2 F2 AlH3 SiH4 S2 -2 -11 2 6 1 2 2 2 1 685.5818 0.1

DARC 6 ethine chdiene P6 -1 -1 1 -49 1

DARC 3 ethene cpdiene P3 -1 -1 1 -29.9 1

RSE43 42 E44 P1 E1 P44 -1 -1 1 1 -6.7 1

RSE43 13 E15 P1 E1 P15 -1 -1 1 1 -6.4 1

BSR36 26 c2h6 r11 ch4 11 -1 -12 8.93 1

BSR36 21 c2h6 r6 ch4 7 -1 -7 9.78 1

CDIE20 6 R28 P26 -1 1 4 10

CDIE20 20 R60 P60 -1 1 8.6 10

ISO34 20 E20 P20 -1 1 18.12 1

ISO34 24 E24 P24 -1 1 12.26 1
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ISOL24 24 i24e i24p -1 1 15.4 1

ISOL24 9 i9e i9p -1 1 21.09 1

C60ISO 8 1 9 -1 1 143.96 0.1

C60ISO 7 1 8 -1 1 142.18 0.1

PArel 19 c2cl43 c2cl42 -1 1 2.47 10

PArel 12 sugar0 sugar3 -1 1 3.21 10

BH76 75 C5H8 RKT22 -1 1 39.7 1

BH76 63 h H2S RKT16 -1 -1 1 3.9 1

BHPERI 15 13r_5 13_c2h4 13ts_5a -1 -1 1 6.5 1

BHPERI 26 09r 00r 09ts -1 -1 1 31.3 1

BHDIV10 1 ed1 ts1 -1 1 25.65 1

BHDIV10 5 ed5 ts5 -1 1 15.94 1

INV24 3 SO2 SO2_TS -1 1 60.6 1

INV24 12 Dibenzocycloheptene Dibenzocycloheptene_TS -1 1 10.3 1

BHROT27 24 ethylthiourea_180 ethylthiourea_TS1 -1 1 10.36 10

BHROT27 22 butadiene_strans butadiene_TS -1 1 6.3 10

PX13 6 h2o_4 h2o_4_ts -1 1 26.6 1

PX13 9 hf_2 hf_2_ts -1 1 42.3 1

WCPT18 8 reac8 ts8 -1 1 28.97 1

WCPT18 7 reac7 ts7 -1 1 32 1

RG18 15 c2h6Ne ne c2h6 -1 1 1 0.24 10

RG18 17 bzNe ne bz -1 1 1 0.4 10

ADIM6 5 AM6 AD6 2 -1 4.6 10

ADIM6 6 AM7 AD7 2 -1 5.55 10

S22 10 10 10a 10b -1 1 1 1.448 10

S22 7 7 07a 07b -1 1 1 16.66 10
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S66 2 02A 02B 2 1 1 -1 5.59 10

S66 53 53A 53B 53 1 1 -1 4.36 10

HEAVY28 21 sbh3_nh3 sbh3 nh3 -1 1 1 2.84 10

HEAVY28 11 pbh4_hcl pbh4 hcl -1 1 1 0.75 10

WATER27 20 OHmH2O OHm H2O -1 1 1 26.687 0.1

WATER27 3 H2O4 H2O -1 4 27.353 0.1

CARBH12 1 1O 1O_A 1O_B -1 1 1 5.37 10

CARBH12 10 2CL 2CL_A 2CL_B -1 1 1 10.483 10

PNICO23 5 5 5a 5b -1 1 1 2.86 10

PNICO23 1 1 1a p1b -1 1 1 1.43 10

HAL59 32 BrBr_FCCH BrBr FCCH -1 1 1 0.74 10

HAL59 38 BrBr_OCH2 BrBr OCH2 -1 1 1 4.41 10

AHB21 15 15 15A 15B 1 -1 -1 -8.62 1

AHB21 5 5 5A 5B 1 -1 -1 -15.61 1

CHB6 6 27 27A 27B 1 -1 -1 -19.9 1

CHB6 3 24 24A 24B 1 -1 -1 -17.83 1

IL16 1 008 008A 008B 1 -1 -1 -100.41 0.1

IL16 7 187 187A 187B 1 -1 -1 -114 0.1

IDISP 1 antdimer ant 1 -2 -9.15 1

IDISP 4 undecan1 undecan2 1 -1 9.1 1

ICONF 3 N4H6_1 N4H6_2 -1 1 0.13 10

ICONF 4 N4H6_1 N4H6_3 -1 1 2.33 10

ACONF 8 H_ttt H_gtg -1 1 1.178 10

ACONF 11 H_ttt H_g+x-t+ -1 1 2.632 10

AMINO20x4 59 PRO_xae PRO_xaf -1 1 4.187 10

AMINO20x4 66 THR_xaq THR_xag -1 1 3.08 10
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PCONF 15 SER_ab SER_aR -1 1 1.47 10

PCONF 7 99 412 -1 1 2.18 10

MCONF 51 1 52 -1 1 8.75 10

MCONF 41 1 42 -1 1 6.39 10

SCONF 8 C1 C9 -1 1 6.19 10

SCONF 1 C1 C2 -1 1 0.86 10

UPU23 2 2p u1b -1 1 2.97 10

UPU23 17 2p 7p -1 1 3.9 10

BUT14DIOL 45 B1 B46 -1 1 3.18 10

BUT14DIOL 21 B1 B22 -1 1 2.74 10
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Table S2: Comparison of the WTMAD-1 (kcal/mol) for the RAND2x55 test set using the
attenuated Coulomb metric (ω = 0.1) and the standard Coulomb metric to fit the long-range
Coulomb operator in the auxiliary basis for two different range-separation values.

µ ω-Coulomb Coulomb ∆

0.45 4.00618 4.00590 -2.74E-04
0.5 4.04240 4.04217 -2.37E-04
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ABSTRACT
Based on our recently published range-separated random phase approximation (RPA) functional [Kreppel et al., “Range-separated density-
functional theory in combination with the random phase approximation: An accuracy benchmark,” J. Chem. Theory Comput. 16, 2985–2994
(2020)], we introduce self-consistent minimization with respect to the one-particle density matrix. In contrast to the range-separated RPA
methods presented so far, the new method includes a long-range nonlocal RPA correlation potential in the orbital optimization process,
making it a full-featured variational generalized Kohn–Sham (GKS) method. The new method not only improves upon all other tested RPA
schemes including the standard post-GKS range-separated RPA for the investigated test cases covering general main group thermochemistry,
kinetics, and noncovalent interactions but also significantly outperforms the popular G0W0 method in estimating the ionization potentials
and fundamental gaps considered in this work using the eigenvalue spectra obtained from the GKS Hamiltonian.
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I. INTRODUCTION

Density functional theory (DFT) is among the most popu-
lar approaches for electronic structure calculations in the fields of
solid state physics, computational chemistry, and materials science.
However, standard density functionals show several shortcomings.
For example, the unphysical Coulomb self-interaction is typically
only incompletely corrected by approximate exchange–correlation
(xc) functionals.1–10 This spurious self-interaction results in a wrong
asymptotic decay of the xc-potential,2,11,12 which, in turn, results
in a poor description of molecular properties such as ionization
potentials.13 Another well-known problem of standard density func-
tionals is the missing description of long-range dispersion effects
due to their nonlocal nature.14 Furthermore, it should be men-
tioned that since the pioneering work of Kohn and Sham15 in 1965,
hundreds of density functionals have been developed, which makes
the selection of a suitable functional for a specific problem chal-
lenging16 and additionally limits its predictive power. Therefore,

the development of a more broadly applicable method is highly
desirable.

Electronic structure methods based on the random phase
approximation (RPA) have become increasingly popular in the
last decade, providing a promising route toward a qualitative
and quantitative improvement of standard density functional the-
ory.17–48 RPA methods contain an ab initio description of disper-
sion interactions,49,50 do not depend on any empirical parameters,
and are applicable to vanishing electronic gap systems.22,51,52 The
random phase approximation belongs to the family of adiabatic-
connection fluctuation-dissipation (ACFD) methods53,54 that calcu-
late the correlation energy using density–density response functions.
The quantity to be approximated within these approaches is the
frequency-dependent exchange–correlation kernel. The direct ran-
dom phase approximation is the most simple approximation one
can think of in this regard as it neglects the frequency-dependent
exchange–correlation kernel entirely. It is hence often considered as
the Hartree approximation for time-dependent density functional
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theory (TDDFT).24,55 As a consequence, same-spin electron–hole
pairs do not experience Pauli repulsion, making the direct RPA
correlation hole too negative, which, in turn, results in an overcor-
relation of electrons at short interelectronic distances.17,24,56–58 Fur-
thermore, RPA methods show slow convergence with respect to the
size of the basis set19,59 arising due to the explicit description of the
correlation hole near the electron–electron cusp,60 which requires a
lot of one-electron basis functions with high angular momentum.
As is common practice in the literature, we will, in the follow-
ing, drop the “direct” term and use the terms direct RPA and RPA
synonymously.

Since DFT describes short-range electron–electron interaction
well without the need for large basis sets, the idea of combining DFT
and ab initio approaches arose some time ago.61–63 The combina-
tion of short-range DFT with long-range RPA methods is especially
attractive in this regard. Not only do RPA methods describe long-
range correlation exceptionally well,50 but they are also perfectly
compatible with the (nonlocal) exact exchange that corrects the spu-
rious Coulomb self-interaction of standardDFT and leads to the cor-
rect asymptotic −1/r decay of the exchange-potential. This should be
contrasted with standard global hybrids that decay as −ax/r12, where
ax is the fraction of exact exchange that leads to an underestimation
of ionization potentials.64,65

In the last few years, a lot of work has gone into range-separated
approaches based on the RPA by the Paris–Nancy group59,66–73 and
Scuseria and co-workers.74–79 It was shown that the range-separated
approaches show faster convergence with the basis set while at the
same time improving the accuracy of intermolecular interactions,
atomization energies, and barrier heights compared to their full-
range versions. Very recently, our group contributed to this promis-
ing field with a detailed benchmark of an efficient range-separated
RPA method in the atomic/Cholesky orbital space.41 It was shown
that range-separated RPA performs more stably over the broad
range of molecular chemistry included in the GMTKN55 dataset80
than standard full-range RPA, and the finding that range-separation
leads to faster convergence with respect to the size of the basis set
was confirmed.

So far, range-separated RPA was performed almost exclu-
sively in a post-generalized-Kohn–Sham (GKS) fashion where the
orbitals are obtained by solving the GKS equations81 including a
short-range density functional combined with long-range (non-
local) exact exchange. In these approaches, the long-range cor-
relation part is completely omitted within the orbital optimiza-
tion process. It was shown, however, that the reference orbitals
and orbital energies have a strong impact on the performance
of RPA.51,76,82–84 Therefore, it might be advisable to include a
long-range correlation potential compatible with the long-range
exact exchange. Heβelmann and Ángyán85 recently presented a
range-separated self-consistent RPA method based on the opti-
mized effective potential (OEP) approach,82,86–102 yielding a com-
pletely local potential as required by a real Kohn–Sham (KS)
method.

In this work, we present a method that self-consistently min-
imizes the total energy of our range-separated RPA functional41
with respect to the one-particle density matrix in the atomic orbital
(AO) space. This leads to a variational generalized Kohn–Sham
method that includes a nonlocal long-range xc-potential consisting
of the exact exchange and the RPA correlation potential and hence

accounts for all parts of the potential in the orbital optimization
process (full-featured).

II. THEORY
A. Range-separated atomic orbital random phase
approximation

In this section, we briefly review the theory underlying the
range-separated atomic orbital (AO) resolution-of-the-identity (RI)
RPA method presented recently by our group.41 For a detailed
description of range-separated RPA, the reader is referred to the
paper of Toulouse et al.69

In the following, �, ν, λ, σ denote atomic orbitals, i, j denote
occupied molecular orbitals (MOs), a, b denote virtual MOs, i, j
denote Cholesky orbitals, and M, N denote auxiliary resolution-of-
the-identity functions. Nbasis denotes the number of basis functions,
Naux denotes the number of auxiliary RI functions, and Nocc and
Nvirt denote the numbers of occupied and virtual molecular orbitals,
respectively. Integrals are expressed in the Mulliken notation. Fur-
thermore, Einstein’s sum convention103 is used and the spin index is
dropped for convenience.

Our range-separated RPA method is based on the range-
separated hybrid PBE (RSHPBE) functional of Goll et al.,104 which
calculates the energy according to

ERSHPBE = EH + EPBE,sr
c + EPBE,sr

x + EHF,lr
x (1)

with the Hartree energy EH, the short-range PBE-like exchange
EPBE,sr
x and correlation energy EPBE,sr

c , and the long-range exact
Hartree–Fock (HF) exchange energy EHF,lr

x . The separation of the
electron–electron interaction is achieved by partitioning the stan-
dard electron–electron interaction operator vee = 1/r12 into a short-
range vsr

ee part and a long-range vlr
ee part using the error function and

its complement61,62,105

vee = vsr
ee + vlr

ee = erfc(�r12)
r12

+
erf(�r12)

r12
(2)

with the range-separation parameter � and the interelectronic dis-
tance r12.

The RSHPBE functional, which is minimized in a standard gen-
eralized Kohn–Sham scheme, does not contain long-range correla-
tion and is thus in a second step corrected by a post-GKS long-range
RPA correlation energy calculation using the RSHPBE orbitals and
orbital energies. The long-range RI-RPA energy is given by

ERPA,lr
c = 1

2π �
+∞

0
dωTr�ln�1 −X0(iω)Vlr� +X0Vlr�, (3)

whereVlr represents the long-range electron–electron interaction in
the auxiliary basis

V lr
MN = �C−1�MPṼ

lr
PQ�C−1�QN , (4)

CMN = (M�m12�N), (5)

Ṽ lr
MN = �M�vlr

ee�N�, (6)
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and m12 is the RI-metric. In the present method, the attenuated
Coulomb metric

m12 = erfc(ωattr12)
r12

(7)

with ωatt = 0.1 a−10 is used since it has been shown to constitute a
good trade-off between accuracy and locality for fitting the full-range
electron-electron interaction operator.48 X0 denotes the noninter-
acting density–density response function in the zero-temperature
case and is calculated in the imaginary time domain according to

X0,MN(iτ) = G0,�ν(−iτ)BM
νλG0,λσ(iτ)BN

σ�, (8)

where G0(iτ) is the one-particle Green’s function in the imaginary
time domain,

G0(iτ) = Θ(−iτ)G0(iτ) +Θ(iτ)G0(iτ), (9)

G0(iτ) = C�iCνi exp(−(εi − εF)τ), (10)

G0(iτ) = −C�aCνa exp(−(εa − εF)τ) (11)

with the occupied (C�i) and unoccupied (C�a) MO coefficients and
the respective MO energies εi and εa. Θ(iτ) denotes the Heavi-
side step function, and εF denotes the Fermi level. The three-center
integral matrix B is given by

BM
�ν = (�ν�m12�M). (12)

The response function of Eq. (8) is then transformed into the
imaginary frequency domain by a contracted double-Laplace47 or
equivalently cosine106 transform according to

X0(iω) = � +∞
−∞ dτ cos(ωτ)X0(iτ) (13)

to perform the final frequency integration given in Eq. (3).

B. Extending the RSHPBE functional by a long-range
nonlocal random phase approximation correlation
potential

In Sec. II A, we reviewed our recently published range-
separated AO-RI-RPA method. As mentioned earlier, this scheme
lacks long-range correlation within the self-consistent optimiza-
tion of the orbitals and orbital energies. In this section, we remedy
this problem by extending the RSHPBE functional by a long-range
nonlocal RPA correlation potential.

The long-range RPA correlation potential is obtained by differ-
entiation of the long-range RPA correlation energy with respect to
the one-particle density-matrix P,

VRPA,lr
c = @ERPA,lr

c [P]
@P

. (14)

To perform this differentiation, we first need to express the long-
range RPA correlation energy in terms of the one-particle density

matrix. This is easily achieved by expressing the one-particle Green’s
functions according to

G0(iτ) = P exp(−τ(H − εFS)P), (15)

G0(iτ) = −Pvirt exp(−τ(H − εFS)Pvirt) (16)

with the two-center overlap matrix S, the unoccupied/virtual one-
particle density matrix Pvirt, and the total Hamiltonian H. The
total Hamiltonian of the present range-separated GKS method is
given by

H = h + J +VPBE,sr
xc +VHF,lr

x +VRPA,lr
c = HRSHPBE +VRPA,lr

c , (17)

where h denotes the core-Hamiltonian, J denotes the Coulomb
potential, VPBE,sr

xc denotes the short-range PBE-like exchange–
correlation potential, VHF,lr

x denotes the long-range exact (HF)
exchange potential, and VRPA,lr

c denotes the long-range nonlocal
RPA correlation potential.

As can be seen in Eqs. (15) and (16), the Green’s functions
depend on the total Hamiltonian and hence on the long-range RPA
correlation potential itself, making a straightforward differentia-
tion impossible. This dilemma can be bypassed by a semicanoni-
cal projection as described by Furche and co-workers.30 We there-
fore construct an intermediate Hamiltonian H̃ by first calculating
HRSHPBE using the density obtained by diagonalizing the total Hamil-
tonian and in a second step removing the occupied-virtual and
virtual-occupied parts by projection according to

H̃ = SPHRSHPBEPS + SPvirtHRSHPBEPvirtS (18)

to ensure that both the total and the intermediate Hamiltonian yield
the same density. Having two different Hamiltonians, H and H̃,
of course means that there is an inconsistency in the GKS poten-
tial defining the exchange–correlation energy of the functional and
the derivative thereof resulting in two different GKS systems. With-
out semicanonical projection, the two systems would in general
differ in the potential and the respective density. Therefore, sem-
icanonical projection is a straightforward approach to impose the
weaker condition of requiring the two GKS systems to only yield
the same density instead of being identical and hence a step toward
full self-consistency. In order to keep the difference between the
potentials of the two GKS systems as small as possible, we use
the RSHPBE Hamiltonian as a basis of the intermediate Hamilto-
nian, which differs from the total Hamiltonian only by the long-
range RPA correlation potential. That omitting the RPA correla-
tion potential in the construction of the intermediate Hamiltonian
is a reasonable choice was already shown in previous work of our
group.42

In the following, we will give the working equations for the cal-
culation of the long-range RPA correlation potential in the atomic
orbital space.

The derivative of the long-range RPA correlation energy with
respect to one element of the density matrix P is given by

VRPA,lr
c,�ν = Tr� @ERPA,lr

c

@X0(iω) @X0(iω)
@G0(iτ) @G0(iτ)

@P�ν
� (19)
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with the trace implying integration over imaginary frequency and
imaginary time. The change in the long-range RPA correlation
energy due to the variation of the one-particle Green’s function
is described by the long-range correlation part of the RPA self-
energy107 denoted by Σlr

c . Therefore, we can rewrite Eq. (19) as

VRPA
c,�ν = Tr�� +∞

−∞ dτΣlr
c (−iτ)@G0(iτ)

@P�ν
�, (20)

with

Σlr
c,�ν(iτ) = −BM

�λG0,λσ(iτ)W lr,MN
c (iτ)BN

σν (21)

and Wlr
c denoting the long-range correlated screened Coulomb

interaction given by

Wlr
c (iω) = Vlr��1 −X0(iω)Vlr�−1 − 1�, (22)

Wlr
c (iτ) = 1

2π �
+∞
−∞ dω cos(ωτ)Wlr

c (iω). (23)

The derivative of the one-particle Green’s function with respect
to the ground state density matrix P can be split into three parts. The
first part accounts for changes in the Green’s function while keeping
the intermediate Hamiltonian fixed and is given by

VRPA,lr
c,1 = � +∞

0
dτ�exp�+τ�H̃ − εFS�P�Σlr

c (iτ)+Y(−iτ)�H̃ − εFS��
+ � +∞

0
dτ�exp�−τ�H̃ − εFS�Pvirt�Σlr

c (−iτ)
+ Y(iτ)�H̃ − εFS��, (24)

with

Y(−iτ) = ∞�
k=1

k−1�
l=0

τk

k!
��H̃ − εFS�P�k−1−lΣlr

c (iτ)P��H̃ − εFS�P�l (25)

Y(iτ) = ∞�
k=1

k−1�
l=0
(−τ)k
k!
��H̃ − εFS�Pvirt�k−1−l

×Σlr
c (−iτ)Pvirt��H̃ − εFS�Pvirt�l. (26)

The second part includes the changes in the projection of the
HamiltonianHRSHPBE according to

VRPA,lr
c,2 = � +∞

0
dτ�SPY(−iτ)SPHRSHPBE +HRSHPBEPSYT(−iτ)PS�

+ � +∞
0

dτ�SPvirtY(iτ)SPvirtHRSHPBE

+ HRSHPBEPvirtSYT(iτ)PvirtS�. (27)

The third and last part arises from changes in the density entering
HRSHPBE and is given by

VRPA,lr
c,3 = � +∞

0
dτP�κYκγ(−iτ)Sγκ′Pκ′ν[(�ν�λσ) + (�ν�fxc�λσ)]

+� +∞
0

dτPvirt
�κ Yκγ(iτ)Sγκ′Pvirt

κ′ν [(�ν�λσ) + (�ν�fxc�λσ)],
(28)

with f xc denoting the exchange–correlation kernel of HRSHPBE. The
complete RPA correlation potential is then finally given by

VRPA,lr
c = VRPA,lr

c,1 +VRPA,lr
c,2 +VRPA,lr

c,3 . (29)

III. COMPUTATIONAL DETAILS
The present range-separated self-consistent RPA method was

implemented in the FermiONs++ program package developed
in our group.108–110 As mentioned above, we use the projec-
tion of the RSHPBE104 Hamiltonian (HRSHPBE) of the standard
GKS scheme in the post-SCF version as intermediate Hamil-
tonian. This approach is referred to as range-separated self-
consistent RPA (rsscRPA) in the following. In Sec. IV, we will
compare the method with the range-separated PBE-like func-
tional of Goll et al.104 (RSHPBE); our standard post-GKS range-
separated RPA presented in Ref. 41 and abbreviated as “RSHPBE
+ lrRPA;” the PBE functional;111,112 our ω-CDGD RPA method
(RPA) based on PBE orbitals;43 and our self-consistent RPA42

(scRPA) using the projection of the HF-Hamiltonian as the inter-
mediate Hamiltonian.

All range-separated methods employed in this work use a fixed
range-separation parameter of � = 0.5 a−10 . We used this value not
only because it is a common and validated choice41,59,63,66–70,113–115
but also because it is physically reasonable. The average distance
of valence electrons in molecular systems is around 1 a.u.–2 a.u.63
Since the inverse of the range-separation parameter approximately
gives the distance where the range-separation is made, this would
lead to values for � between 0.5 a−10 and 1.0 a−10 . There are also ways
to determine the range-separation parameter non-empirically.116–119
In this context, it is interesting to note that Brémond et al.118
determined a value of 0.45 a−10 for their RSX-PBE method, which
is in good agreement with the empirically determined value of
� = 0.5 a−10 .

As atomic basis sets, the def2-TZVP, def2-TZVPP,120,121 and
aug-cc-pVQZ122,123 basis sets are employed. For the
resolution-of-the-identity that is used for 4-center integrals in
the calculation of the RPA correlation energy/potential, the cor-
responding auxiliary basis sets124–126 are used with the atten-
uated Coulomb metric127–129 with an attenuation parameter
ωatt = 0.1 a−10 .48

For integrations along imaginary time and frequency
as well as transformations between the two domains,
we use optimized minimax grids with, in general, 15 quadrature
points.43,106
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IV. RESULTS AND DISCUSSION
A. General main group thermochemistry, kinetics,
and noncovalent interactions

In this section, we assess the performance of the present range-
separated self-consistent RPA method for general main group ther-
mochemistry, kinetics, as well as noncovalent interactions and com-
pare it to several other RPA schemes. To do so, we picked three test
sets of each category in the large GMTKN55 database targeting basic
properties and reaction energies for small systems (basic + small),
reaction energies for large systems and isomerization reactions (iso.
+ large), reaction barrier heights (barriers), intermolecular noncova-
lent interactions (intermol. NCIs), and intramolecular noncovalent
interactions (intramol. NCIs), respectively. The def2-TZVP basis set
was employed for all calculations in this section since larger basis
sets are hardly usable for practical applications. A summary of the
results is given in Tables I and II. The detailed results can be found
in the supplementary material.

We start our discussion with the results of the full-range meth-
ods shown in Table I. As can be seen, standard RPA, with a total
weighted mean absolute deviation according to weighting scheme
1 of Ref. 80 (WTMAD-1) of 4.10 kcal/mol, on average signifi-
cantly improves upon the reference PBE calculations (WTMAD-1
of 9.58 kcal/mol). The largest improvement can be observed for
noncovalent interactions, which is, of course, not surprising since
it is well known that PBE lacks a correct description of disper-
sion interactions. Self-consistently minimizing the total RPA energy
with respect to the one-particle density-matrix (scRPA) decreases
the WTMAD-1 value for the investigated subset of the GMTKN55
database further to 3.46 kcal/mol. Considering the results for dif-
ferent categories shows that scRPA while on average improving
upon post-KS RPA for the test cases included in the categories basic
+ small, iso. + large, and all NCIs has significant deficiencies in
the calculation of barrier heights compared to standard post-KS
RPA. An explanation for this observation might be that the inter-
mediate Hamiltonian based on Hartree–Fock is not suitable for the
description of the transition states. This assumption is supported by
the fact that an evaluation of the barrier heights with the scRPA
orbitals (RPA@scRPA) gives much better results. Note the differ-
ence between the two approaches scRPA and RPA@scRPA: In the
first approach, the response function and therefore also the correla-
tion energy are evaluated with orbitals and their respective energies

TABLE I. WTMAD-1 values for the full-range methods in kcal/mol for a subset of the
GMTKN55 database grouped by categories. The def2-TZVP basis set was used for all
calculations. A detailed list of the results can be found in the supplementary material.

PBE RPA@PBE scRPA RPA@scRPA

Basic + small 3.71 4.67 2.96 2.83
Iso. + large 9.70 2.64 1.77 4.03
Barriers 5.12 1.28 3.47 1.93
Intermol. NCIs 22.53 9.30 6.35 14.11
Intramol. NCIs 6.84 2.61 2.75 3.14
All NCIs 14.69 5.96 4.55 8.63
Total 9.58 4.10 3.46 5.21

TABLE II. WTMAD-1 values of the range-separated methods in kcal/mol for a subset
of the GMTKN55 database grouped by categories. The def2-TZVP basis set was used
for all calculations. A detailed list of the results can be found in the supplementary
material.

RSHPBE rsRPA@
RSHPBE + lrRPA rsscRPA rsscRPA

Basic + small 5.54 2.93 2.72 2.36
Iso. + large 6.71 3.10 3.10 3.06
Barriers 6.41 1.78 1.74 1.52
Intermol. NCIs 25.80 8.50 8.26 6.42
Intramol. NCIs 9.27 3.00 2.89 2.31
All NCIs 17.54 5.75 5.58 4.36
Total 10.75 3.86 3.74 3.13

stemming from the intermediate Hamiltonian, whereas in the sec-
ond approach, the orbitals and orbital energies of a converged self-
consistent RPA calculation are employed. Interestingly, the second
approach gives much worse results in almost all other cases, yielding
a total WTMAD-1 of 5.21 kcal/mol, which is even worse than RPA
on PBE orbitals. Notably, the poor performance on intermolecular
interactions stands out in this respect. In order to understand this
observation, we plotted the signed errors of different approaches for
the calculation of interaction energies of n-alkane dimers included
in the ADIM6 test set in Fig. 1. To ease the following discussion,
we make use of a notation for hybrid RPA methods similar to
that employed in Ref. 37. The theoretical scheme that evaluates the
Hartree–Fock energy with orbitals obtained from a self-consistent
approach SC1 and adds the RPA correlation energy evaluated with
orbitals/orbital energies obtained from a self-consistent approach
SC2 is denoted as HF@SC1 + cRPA@SC2. The standard RPA@PBE
approach, e.g., would in this notation be referred to as HF@PBE +
cRPA@PBE. As can be seen in Fig. 1, standard RPA@PBE (Fig. 1,
blue) performs very well on this specific test set, however, show-
ing the typical underestimation of the dimer stability (underbind-
ing). Ren et al.37 found that this underbinding can be corrected by
replacing HF@PBE with HF@HF, which amounts, to a large extent,
to the single excitation correction.37 This can also be observed for
the ADIM6 test set (Fig. 1, brown), however, in this case, system-
atically overcorrecting it. A similar behavior can be observed when
replacing cRPA@PBE in the standard RPA with cRPA@scRPA (vio-
let). Hence, it can be said that evaluating the HF energy with HF
orbitals as well as evaluating the RPA correlation energy with scRPA
orbitals/orbital energies increases the stability of the dimer com-
pared to the monomers. When we now use the scheme HF@HF
+ cRPA@scRPA, a strong overcorrection can be observed, just as
expected. In contrast, evaluating the RPA correlation energy with
HF orbitals/orbital energies seems to decrease the stability of the
dimer compared to the monomers, as can be seen by comparing
RPA@HF, or in the other notation HF@HF + cRPA@HF (Fig. 1,
red), with HF@HF + cRPA@PBE, demonstrating the significant
dependence of the RPA functional on the reference potential. These
findings can now be used to explain the behavior observed for the
two self-consistent RPA approaches: RPA@scRPA is similar to the
approach HF@HF + cRPA@scRPA and overcorrects in the HF as
well as the cRPA part. The self-consistent RPA approach that uses
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FIG. 1. Signed errors in kcal/mol for the
ADIM6 test set using different methods.

the orbitals and orbital energies of the intermediate Hamiltonian
(based on the HFHamiltonian) shown in orange, however, increases
the stability of the dimer in the HF part and decreases it in the cRPA
part.

We now turn to the results of the range-separated methods
presented in Table II. First of all, we note that, as expected, the
addition of long-range RPA correlation to the RSHPBE energies sig-
nificantly improves the performance in all cases and reduces the
total WTMAD-1 from 10.75 kcal/mol for RSHPBE to 3.86 kcal/mol
for RSHPBE + lrRPA. Note that the long-range RPA correlation
energy in this case is evaluated using RSHPBE reference orbitals (see
Sec. II A). Self-consistently minimizing the RSHPBE + lrRPA energy
with respect to the one-particle density-matrix (rsscRPA) decreases
the total WTMAD-1 to 3.74 kcal/mol although the effect on the
single categories is sometimes small. Using the orbitals and orbital
energies obtained by a converged rsscRPA calculation instead of the
ones obtained by the intermediate Hamiltonian (rsRPA@rsscRPA)
has a stronger impact and yields a total WTMAD-1 of 3.13 kcal/mol,
which is the lowest value of all tested methods and can be seen as a
first indication of the high quality of the underlying potential.

At this point, we want to add some words considering the com-
putational effort of the self-consistent RPA methods compared to
their post-SCF counterparts: The time-determining step in our post-
SCF RPA implementations used in this work is the calculation of
the noninteracting response function that shows asymptotically lin-
ear scaling43 with the molecular size. This is to be contrasted to the
asymptotically quadratic-scaling42 calculation of the self-energy in
the two self-consistent versions. In the case of the self-consistent
versions, there is further an additional factor stemming from the
number of SCF cycles needed until convergence is reached, which, in
general, is on the same order as for standard PBE calculations. Note
also that range-separation in both the self-consistent and the post-
SCF variant does not have a significant impact on the computational
efficiency.

B. Ionization potentials and band gaps
For a sound density functional, the negative of the highest

occupied molecular orbital (HOMO) eigenvalue has to equal the

ionization potential in finite electron systems4,11,130 and can hence
be used as a test of the underlying exchange–correlation potential.
Therefore, we compared the negatives of the HOMO eigenvalues
obtained with several methods with experimental values for the
GW27131 test set. A summary of the results is given in Table III;
detailed values can be found in the supplementary material. As
mentioned above, the exchange–correlation functionals of standard
density functional approximations such as PBE only partly correct
for the unphysical Coulomb self-interaction, leading to a wrong
asymptotic decay of the exchange–correlation potential. This spu-
rious behavior is reflected in the poor quality of the HOMO energies
as estimates of the ionization potentials with aMAD of 3.88 eV using
the PBE functional. Within the RSHPBE functional, the asymp-
totic region of the potential is described by the exact (HF) exchange
potential that shows the correct asymptotic decay. This results in a
significant improvement of the HOMO energies, yielding a MAD
of 0.45 eV. Inclusion of the long-range RPA correlation poten-
tial in the rsscRPA method improves the calculated HOMO ener-
gies further and reduces the MAD to 0.26 eV. The new rsscRPA
method also improves upon scRPA (MAD of 0.36 eV), demon-
strating the benefits of range-separation in the electron–electron
interaction. It should also be mentioned at this point that both
self-consistent RPA methods significantly outperform the popular
G0W0 method (MAD of 0.59 eV) in approximating the ionization
potentials considered in this work, which again gives rise to the

TABLE III. Mean absolute deviations as well as maximum errors in eV of the calcu-
lated ionization potentials compared to experimental values for the GW27131 test set.
The ionization potentials for RSHPBE, rsscRPA, PBE, and scRPA were calculated
as negatives of the HOMO energies. All calculations were performed with the def2-
TZVPP basis set. PBE, G0W0, and experimental values were taken from Ref. 131.
Values for systems containing heavy elements such as Cs2, Au2, and Au4 were
excluded due to technical reasons.

RSHPBE rsscRPA PBE scRPA G0W0

MAD 0.45 0.26 3.88 0.36 0.59
MAX 1.04 0.86 6.73 0.84 1.26
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assumption that the potentials obtained by thesemethods are of high
quality.

As a further test, gaps obtained as differences between the low-
est unoccupied molecular orbital (LUMO) and the HOMO were
calculated using the RSHPBE, rsscRPA, and the scRPA methods
and compared to CCSD(T) total energy differences. The results
are shown in Table IV. Again, both self-consistent RPA methods
perform very well, significantly outperforming RSHPBE as well as
G0W0. Also in this case, separation of the electron–electron inter-
action shows to be beneficial, decreasing the MAD from 0.29 eV
(scRPA) to 0.27 eV (rsscRPA).

C. H2 dissociation curve
It is well known that RPA captures static correlation to some

extent and that this feature is connected to the spurious self-
correlation inherent in RPA.10,57 For example, RPA dissociates the
H2 molecule correctly in the sense that an infinitely stretched H2
molecule has the same energy as two separate hydrogen atoms. How-
ever, this comes at the cost of an unphysical bump in the dissociation
curve. Furthermore, the description of the hydrogen atom itself is
wrong, yielding a non-zero correlation energy. The one-electron
self-correlation within RPA can, for example, be removed from the
energy by the second-order screened exchange (SOSEX) approxima-
tion.44,132,133 Unfortunately, this leads to a larger static correlation
error, underlining the connection between static correlation and
self-correlation within RPA. We calculated the dissociation curve
of the H2 molecule, which can be considered as the standard test
for the description of static correlation of a functional, to investigate
the performance of the self-consistent RPAmethods discussed in the
present work. The results are shown in Figs. 2 and 3.

First of all, note the difference between the RPA@PBE (Fig. 2,
right, blue) and the RPA-SOSEX@PBE (Fig. 2, right, black) curve.
As can be seen, RPA-SOSEX describes the region around the mini-
mum well but fails to capture static correlation effects at long bond
lengths. In contrast, RPA shows a curve that is shifted to too nega-
tive values on the absolute scale but shows a better agreement with

TABLE IV. HOMO–LUMO gaps in eV and mean absolute deviations from refer-
ence CCSD(T) values30 (total energy differences). RSHPBE, rsscRPA, and scRPA
calculations were performed with the def2-TZVPP basis set; CCSD(T) and G0W0 cal-
culations were performed with the aug-cc-pVTZ basis set. The CCSD(T) and G0W0
values were taken from Ref. 30.

RSHPBE rsscRPA scRPA G0W0 CCSD(T)

Li2 5.36 4.90 4.62 4.43 4.76
Na2 4.81 4.43 4.18 4.35 4.48
LiH 8.40 8.15 7.80 6.92 7.67
CH3NO2 11.97 11.03 10.84 9.82 11.41
MAD 0.55 0.27 0.29 0.70 . . .

the full configuration-interaction (FCI) curve on the scale relative
to two separate hydrogen atoms (Fig. 3). As mentioned above, this
behavior can be explained by the self-correlation within RPA, lead-
ing to a too deep correlation hole and a wrong description of the
hydrogen atom itself. Note also the unphysical bump in the dis-
sociation curve obtained with RPA@PBE. Considering the curve
obtained with RSHPBE + lrRPA (Fig. 2, left, blue) it becomes obvi-
ous that the results are similar to those of RPA-SOSEX. The region
around the minimum is described well; however, important cor-
relation effects are missed in the long bond length regime. It is
another appealing feature of range-separated RPA approaches that
they are able to counteract the self-correlation problem within RPA,
which is, of course, pronounced at short interelectronic distances.
Therefore, range-separated RPAmethods can be considered as cost-
efficient alternatives to beyond-RPA methods including some kind
of exchange. It should bementioned, however, that range-separation
is not able to remove the unphysical bump in the dissociation
curve, although it is much less pronounced than in the full-range
RPA.

We now turn to the self-consistent RPA approaches dis-
cussed in the present work. Self-consistently minimizing the total

FIG. 2. Dissociation curve of the H2 molecule calculated with different methods. All RPA calculations were performed with the aug-cc-pVQZ basis set. As reference serves a
FCI/def2-TZVP dissociation curve.
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FIG. 3. Dissociation curve of the H2 molecule relative to two separate hydrogen atoms calculated with different methods. All RPA calculations were performed with the
aug-cc-pVQZ basis set. As reference serves a FCI/def2-TZVP dissociation curve.

range-separated RPA energy (Fig. 2, left, red) hardly changes any-
thing compared to the post-GKS variant. If orbitals and orbital
energies of a converged rsscRPA calculation are used to evalu-
ate the total range-separated RPA energy (Fig. 2, left, brown),
however, it becomes obvious that the small unphysical bump is
removed. This behavior is even more pronounced in the full-range
scRPA approach (Fig. 2, right, red and brown). Another interesting
observation is that RPA@scRPA shows a very similar dissociation
curve compared to RPA-SOSEX@PBE, which becomes especially
apparent on the relative scale in Fig. 3. The shift to more nega-
tive values on the absolute scale can again be explained by self-
correlation, which is, of course, still present in the self-consistent
version. As a final remark, we want to stress again the significant
dependence of RPA on the reference or to be more specific on the
orbital energies, which can be seen in the huge difference between
RPA@PBE (Fig. 2, right, blue) and RPA@scRPA (Fig. 2, right,
brown).

V. CONCLUSION
In this work, we presented the self-consistent minimization

of our recently published range-separated RPA method (RSHPBE
+ lrRPA)41 with respect to the one-particle density matrix in the
atomic orbital space. The method extends the RSHPBE functional
of Goll et al.104 by a long-range nonlocal RPA correlation poten-
tial in the orbital optimization process, making it a full-featured
variational generalized Kohn–Shammethod. The problem of impos-
ing self-consistency on the long-range RPA correlation functional,
which depends on the total Hamiltonian and hence on its own
derivative, was bypassed by semicanonical projection30 of the RSH-
PBE Hamiltonian. The performance of the new method, termed
rsscRPA, on general main group thermochemistry, kinetics, and
noncovalent interactions was investigated using a subset of the large
GMTKN55 database.80 The overall performance of rsscRPA on this
subset shows to be superior to that of the standard post-GKS vari-
ant although the improvement is sometimes small. The method that

evaluates the RSHPBE + lrRPA functional using rsscRPA orbitals
and orbital energies, termed rsRPA@rsscRPA, outperforms all other
tested methods in this work including PBE, RSHPBE, RPA, RSH-
PBE + lrRPA, and full-range self-consistent RPA, suggesting high
quality of the orbitals, the orbital energies, and hence the underly-
ing potential of rsscRPA. To further test the new method, ioniza-
tion potentials and fundamental gaps calculated from the eigenvalue
spectra of the GKS Hamiltonian were investigated. The method
shows to give accurate results for the systems under investigation,
significantly outperforming the popular G0W0 method, which again
implies high quality of the underlying potential. Finally, the behavior
of the new method upon bond dissociation was investigated using
the example of the H2 molecule. It showed that the performance
is very similar to that of the post-GKS range-separated RPA. How-
ever, the unphysical bump well known from the standard full-range
RPA, which can also be observed in the range-separated variant, is
removed.

SUPPLEMENTARY MATERIAL
Complete lists of the mean absolute deviations for a subset of

the GMTKN55 database and the calculated ionization potentials of
the GW27 test set are given in the supplementary material.

ACKNOWLEDGMENTS
The authors thank H. Laqua (LMU Munich) for helpful dis-

cussions. Financial support was provided by the Excellence Clus-
ter EXC2111-390814868, Munich Center for Quantum Science and
Technology (MCQST) by the Deutsche Forschungsgemeinschaft
(DFG). C.O. (Max Planck Fellow) acknowledges the financial sup-
port of MPI-FKF, Stuttgart.

DATA AVAILABILITY
The data that support the findings of this study are available

within the article and its supplementary material.

J. Chem. Phys. 153, 244118 (2020); doi: 10.1063/5.0031310 153, 244118-8

© Author(s) 2020



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

REFERENCES
1J. P. Perdew, “Orbital functional for exchange and correlation: Self-interaction
correction to the local density approximation,” Chem. Phys. Lett. 64, 127–130
(1979).
2J. P. Perdew and A. Zunger, “Self-interaction correction to density-functional
approximations for many-electron systems,” Phys. Rev. B 23, 5048–5079
(1981).
3L. A. Cole and J. P. Perdew, “Calculated electron affinities of the elements,” Phys.
Rev. A 25, 1265–1271 (1982).
4C. Toher, A. Filippetti, S. Sanvito, and K. Burke, “Self-interaction errors in
density-functional calculations of electronic transport,” Phys. Rev. Lett. 95,
146402 (2005).
5A. J. Cohen, P. Mori-Sánchez, and W. Yang, “Insights into current limitations of
density functional theory,” Science 321, 792–794 (2008).
6Y. Zhang and W. Yang, “A challenge for density functionals: Self-interaction
error increases for systems with a noninteger number of electrons,” J. Chem. Phys.
109, 2604 (1998).
7A. J. Cohen, P. Mori-Sánchez, and W. Yang, “Challenges for density functional
theory,” Chem. Rev. 112, 289–320 (2012).
8P. Mori-Sánchez, A. J. Cohen, and W. Yang, “Localization and delocalization
errors in density functional theory and implications for band-gap prediction,”
Phys. Rev. Lett. 100, 146401 (2008).
9P. Mori-Sánchez, A. J. Cohen, and W. Yang, “Many-electron self-interaction
error in approximate density functionals,” J. Chem. Phys. 125, 201102
(2006).
10T. M. Henderson and G. E. Scuseria, “The connection between self-interaction
and static correlation: A random phase approximation perspective,” Mol. Phys.
108, 2511–2517 (2010).
11C.-O. Almbladh and U. Von Barth, “Exact results for the charge and spin den-
sities, exchange-correlation potentials, and density-functional eigenvalues,” Phys.
Rev. B 31, 3231–3244 (1985).
12R. Van Leeuwen and E. J. Baerends, “Exchange-correlation potential with
correct asymptotic behavior,” Phys. Rev. A 49, 2421–2431 (1994).
13S. A. C.McDowell, R. D. Amos, andN. C. Handy, “Molecular polarisabilities—A
comparison of density functional theory with standard ab initiomethods,” Chem.
Phys. Lett. 235, 1–4 (1995).
14J. Pérez-Jordá and A. D. Becke, “A density-functional study of van der Waals
forces: Rare gas diatomics,” Chem. Phys. Lett. 233, 134–137 (1995).
15W. Kohn and L. J. Sham, “Self-consistent equations including exchange and
correlation effects,” Phys. Rev. 140, A1133–A1138 (1965).
16N. Mardirossian and M. Head-Gordon, “Thirty years of density functional the-
ory in computational chemistry: An overview and extensive assessment of 200
density functionals,” Mol. Phys. 115, 2315–2372 (2017).
17S. Kurth and J. P. Perdew, “Density-functional correction of random-phase-
approximation correlation with results for jellium surface energies,” Phys. Rev.
B 59, 10461–10468 (1999).
18J. F. Dobson and J. Wang, “Successful test of a seamless van der waals density
functional,” Phys. Rev. Lett. 82, 2123–2126 (1999).
19F. Furche, “Molecular tests of the randomphase approximation to the exchange-
correlation energy functional,” Phys. Rev. B 64, 195120 (2001).
20M. Fuchs and X. Gonze, “Accurate density functionals: Approaches using the
adiabatic-connection fluctuation-dissipation theorem,” Phys. Rev. B 65, 235109
(2002).
21Y. M. Niquet, M. Fuchs, and X. Gonze, “Exchange-correlation potentials in the
adiabatic connection fluctuation-dissipation framework,” Phys. Rev. A 68, 032507
(2003).
22M. Fuchs, Y.-M. Niquet, X. Gonze, and K. Burke, “Describing static correlation
in bond dissociation by Kohn-Sham density functional theory,” J. Chem. Phys.
122, 094116 (2005).
23F. Furche and T. Van Voorhis, “Fluctuation-dissipation theorem density-
functional theory,” J. Chem. Phys. 122, 164106 (2005).
24G. P. Chen, V. K. Voora, M. M. Agee, S. G. Balasubramani, and F. Furche,
“Random-phase approximation methods,” Annu. Rev. Phys. Chem. 68, 421–445
(2017).

25H. Eshuis and F. Furche, “Basis set convergence of molecular correlation energy
differences within the random phase approximation,” J. Chem. Phys. 136, 084105
(2012).
26H. Eshuis, J. E. Bates, and F. Furche, “Electron correlation methods based on the
random phase approximation,” Theor. Chem. Acc. 131, 1084 (2012).
27H. Eshuis, J. Yarkony, and F. Furche, “Fast computation of molecular random
phase approximation correlation energies using resolution of the identity and
imaginary frequency integration,” J. Chem. Phys. 132, 234114 (2010).
28J. E. Bates and F. Furche, “Communication: Random phase approximation
renormalized many-body perturbation theory,” J. Chem. Phys. 139, 171103
(2013).
29F. Furche, “Developing the random phase approximation into a practical post-
Kohn-Sham correlation model,” J. Chem. Phys. 129, 114105 (2008).
30V. K. Voora, S. G. Balasubramani, and F. Furche, “Variational generalized
Kohn-Sham approach combining the random-phase-approximation and Green’s-
function methods,” Phys. Rev. A 99, 012518 (2019).
31A. M. Burow, J. E. Bates, F. Furche, and H. Eshuis, “Analytical first-order
molecular properties and forces within the adiabatic connection random phase
approximation,” J. Chem. Theory Comput. 10, 180–194 (2014).
32H. Eshuis and F. Furche, “A parameter-free density functional that works for
noncovalent interactions,” J. Phys. Chem. Lett. 2, 983–989 (2011).
33A. Heßelmann and A. Görling, “Random phase approximation correla-
tion energies with exact Kohn-Sham exchange,” Mol. Phys. 108, 359–372
(2010).
34A. Heßelmann and A. Görling, “Correct description of the bond dissocia-
tion limit without breaking spin symmetry by a random-phase-approximation
correlation functional,” Phys. Rev. Lett. 106, 093001 (2011).
35A. Heßelmann and A. Görling, “Random-phase approximation correlation
methods for molecules and solids,” Mol. Phys. 109, 2473–2500 (2011).
36J. Paier, X. Ren, P. Rinke, G. E. Scuseria, A. Grüneis, G. Kresse, andM. Scheffler,
“Assessment of correlation energies based on the random-phase approximation,”
New J. Phys. 14, 043002 (2012).
37X. Ren, A. Tkatchenko, P. Rinke, and M. Scheffler, “Beyond the random-
phase approximation for the electron correlation energy: The importance of single
excitations,” Phys. Rev. Lett. 106, 153003 (2011).
38P. Bleiziffer, A. Heßelmann, and A. Görling, “Resolution of identity approach
for the Kohn-Sham correlation energy within the exact-exchange random-phase
approximation,” J. Chem. Phys. 136, 134102 (2012).
39X. Ren, P. Rinke, C. Joas, and M. Scheffler, “Random-phase approximation and
its applications in computational chemistry and materials science,” J. Mater. Sci.
47, 7447–7471 (2012).
40G. E. Scuseria, T. M. Henderson, and D. C. Sorensen, “The ground state cor-
relation energy of the random phase approximation from a ring coupled cluster
doubles approach,” J. Chem. Phys. 129, 231101 (2008).
41A. Kreppel, D. Graf, H. Laqua, and C. Ochsenfeld, “Range-separated density-
functional theory in combination with the random phase approximation: An
accuracy benchmark,” J. Chem. Theory Comput. 16, 2985–2994 (2020).
42D. Graf, M. Beuerle, and C. Ochsenfeld, “Low-scaling self-consistent minimiza-
tion of a density matrix based random phase approximation method in the atomic
orbital space,” J. Chem. Theory Comput. 15, 4468–4477 (2019).
43D. Graf, M. Beuerle, H. F. Schurkus, A. Luenser, G. Savasci, and C. Ochsenfeld,
“Accurate and efficient parallel implementation of an effective linear-scaling direct
random phase approximation method,” J. Chem. Theory Comput. 14, 2505–2515
(2018).
44M. Beuerle, D. Graf, H. F. Schurkus, and C. Ochsenfeld, “Efficient calculation
of beyond RPA correlation energies in the dielectric matrix formalism,” J. Chem.
Phys. 148, 204104 (2018).
45M. Beuerle and C. Ochsenfeld, “Short-range second order screened exchange
correction to RPA correlation energies,” J. Chem. Phys. 147, 204107
(2017).
46M. Beuerle and C. Ochsenfeld, “Low-scaling analytical gradients for the direct
random phase approximation using an atomic orbital formalism,” J. Chem. Phys.
149, 244111 (2018).
47H. F. Schurkus and C. Ochsenfeld, “Communication: An effective linear-
scaling atomic-orbital reformulation of the random-phase approximation using

J. Chem. Phys. 153, 244118 (2020); doi: 10.1063/5.0031310 153, 244118-9

© Author(s) 2020



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

a contracted double-Laplace transformation,” J. Chem. Phys. 144, 031101
(2016).
48A. Luenser, H. F. Schurkus, and C. Ochsenfeld, “Vanishing-overhead linear-
scaling random phase approximation by Cholesky decomposition and an attenu-
ated Coulomb-metric,” J. Chem. Theory Comput. 13, 1647–1655 (2017).
49J. F. Dobson, Time-Dependent Density Functional Theory (Springer, Berlin,
2006).
50J. P. Perdew, “Local density and gradient-corrected functionals for short-
range correlation: Antiparallel-spin and non-RPA contributions,” Int. J. Quantum
Chem. 48, 93–100 (1993).
51J. Harl and G. Kresse, “Cohesive energy curves for noble gas solids calculated
by adiabatic connection fluctuation-dissipation theory,” Phys. Rev. B 77, 045136
(2008).
52G. Kresse and J. Harl, “Accurate bulk properties from approximate many-body
techniques,” Phys. Rev. Lett. 103, 056401 (2009).
53D. C. Langreth and J. P. Perdew, “The exchange-correlation energy of a metallic
surface,” Solid State Commun. 17, 1425–1429 (1975).
54D. C. Langreth and J. P. Perdew, “Exchange-correlation energy of a metallic
surface: Wave-vector analysis,” Phys. Rev. B 15, 2884–2901 (1977).
55J. F. Dobson, “Dispersion (van derWaals) forces and TDDFT,” in Fundamentals
of Time-Dependent Density Functionl Theory, edited by M. Marques, N. Maitra,
F. Nogueira, E. Gross, and A. Rubio (Springer-Verlag, Berlin, 2012).
56K. S. Singwi, M. P. Tosi, R. H. Land, and A. Sjölander, “Electron correlations at
metallic densities,” Phys. Rev. 176, 589–599 (1968).
57P. Mori-Sánchez, A. J. Cohen, and W. Yang, “Failure of the random-phase-
approximation correlation energy,” Phys. Rev. A 85, 042507 (2012).
58Z. Yan, J. P. Perdew, and S. Kurth, “Density functional for short-range cor-
relation: Accuracy of the random-phase approximation for isoelectronic energy
changes,” Phys. Rev. B 61, 16430–16439 (2000).
59J. Toulouse, I. C. Gerber, G. Jansen, A. Savin, and J. G. Ángyán, “Adiabatic-
connection fluctuation-dissipation density-functional theory based on range sep-
aration,” Phys. Rev. Lett. 102, 096404 (2009).
60T. Kato, “On the eigenfunctions of many-particle systems in quantum
mechanics,” Commun. Pure Appl. Math. 10, 151–177 (1957).
61A. Savin, in Recent Developments of Modern Density Functional Theory, edited
by J. M. Seminaria (Elsevier, Amsterdam, 1996), pp. 327–357.
62J. Toulouse, F. Colonna, and A. Savin, “Long-range–short-range separation of
the electron-electron interaction in density-functional theory,” Phys. Rev. A 70,
062505 (2004).
63I. C. Gerber and J. G. Ángyán, “Hybrid functional with separated range,” Chem.
Phys. Lett. 415, 100–105 (2005).
64J. L. Bao, Y. Wang, X. He, L. Gagliardi, and D. G. Truhlar, “Multiconfiguration
pair-density functional theory is free from delocalization error,” J. Phys. Chem.
Lett. 8, 5616–5620 (2017).
65N. Colonna, N. L. Nguyen, A. Ferretti, and N. Marzari, “Koopmans-compliant
functionals and potentials and their application to the GW100 test set,” J. Chem.
Theory Comput. 15, 1905–1914 (2019).
66J. Toulouse, W. Zhu, A. Savin, G. Jansen, and J. G. Ángyán, “Closed-shell
ring coupled cluster doubles theory with range separation applied on weak
intermolecular interactions,” J. Chem. Phys. 135, 084119 (2011).
67B. Mussard, P. Reinhardt, J. G. Ángyán, and J. Toulouse, “Spin-unrestricted
random-phase approximation with range separation: Benchmark on atomization
energies and reaction barrier heights,” J. Chem. Phys. 142, 154123 (2015).
68W. Zhu, J. Toulouse, A. Savin, and J. G. Ángyán, “Range-separated density-
functional theory with random phase approximation applied to noncovalent
intermolecular interactions,” J. Chem. Phys. 132, 244108 (2010).
69J. Toulouse, W. Zhu, J. G. Ángyán, and A. Savin, “Range-separated density-
functional theory with the random-phase approximation: Detailed formalism and
illustrative applications,” Phys. Rev. A 82, 032502 (2010).
70J. G. Ángyán, R.-F. Liu, J. Toulouse, and G. Jansen, “Correlation energy expres-
sions from the adiabatic-connection fluctuation–dissipation theorem approach,”
J. Chem. Theory Comput. 7, 3116–3130 (2011).
71E. Chermak, B. Mussard, J. G. Ángyán, and P. Reinhardt, “Short range DFT
combined with long-range local RPA within a range-separated hybrid DFT
framework,” Chem. Phys. Lett. 550, 162–169 (2012).

72B. Mussard, P. G. Szalay, and J. G. Ángyán, “Analytical energy gradients in
range-separated hybrid density functional theory with random phase approxima-
tion,” J. Chem. Theory Comput. 10, 1968–1979 (2014).
73C. Kalai, B. Mussard, and J. Toulouse, “Range-separated double-hybrid density-
functional theory with coupled-cluster and random-phase approximations,”
J. Chem. Phys. 151, 074102 (2019).
74B. G. Janesko, T. M. Henderson, and G. E. Scuseria, “Long-range-corrected
hybrids including random phase approximation correlation,” J. Chem. Phys. 130,
081105 (2009).
75B. G. Janesko, T. M. Henderson, and G. E. Scuseria, “Long-range-corrected
hybrid density functionals including random phase approximation correla-
tion: Application to noncovalent interactions,” J. Chem. Phys. 131, 034110
(2009).
76B. G. Janesko and G. E. Scuseria, “The role of the reference state in long-
range random phase approximation correlation,” J. Chem. Phys. 131, 154106
(2009).
77J. Paier, B. G. Janesko, T. M. Henderson, G. E. Scuseria, A. Grüneis, and
G. Kresse, “Hybrid functionals including random phase approximation cor-
relation and second-order screened exchange,” J. Chem. Phys. 132, 094103
(2010).
78R. M. Irelan, T. M. Henderson, and G. E. Scuseria, “Long-range-corrected
hybrids using a range-separated Perdew-Burke-Ernzerhof functional and random
phase approximation correlation,” J. Chem. Phys. 135, 094105 (2011).
79A. J. Garza, I. W. Bulik, A. G. S. Alencar, J. Sun, J. P. Perdew, and G. E. Scuse-
ria, “Combinations of coupled cluster, density functionals, and the random phase
approximation for describing static and dynamic correlation, and van der Waals
interactions,” Mol. Phys. 114, 997–1018 (2016).
80L. Goerigk, A. Hansen, C. Bauer, S. Ehrlich, A. Najibi, and S. Grimme, “A look at
the density functional theory zoo with the advanced GMTKN55 database for gen-
eral main group thermochemistry, kinetics and noncovalent interactions,” Phys.
Chem. Chem. Phys. 19, 32184–32215 (2017).
81A. Seidl, A. Görling, P. Vogl, J. A. Majewski, and M. Levy, “Generalized
Kohn-Sham schemes and the band-gap problem,” Phys. Rev. B 53, 3764–3774
(1996).
82P. Bleiziffer, A. Heßelmann, and A. Görling, “Efficient self-consistent treatment
of electron correlation within the random phase approximation,” J. Chem. Phys.
139, 084113 (2013).
83A. Thierbach, D. Schmidtel, and A. Görling, “Robust and accurate hybrid
random-phase-approximation methods,” J. Chem. Phys. 151, 144117 (2019).
84M.Modrzejewski, S. Yourdkhani, and J. Klimeš, “Random phase approximation
applied to many-body noncovalent systems,” J. Chem. Theory Comput. 16, 427–
442 (2020).
85A. Heßelmann and J. Ángyán, “Assessment of a range-separated orbital-
optimised random-phase approximation electron correlation method,” Theor.
Chem. Acc. 137, 155 (2018).
86A. Görling, “Orbital- and state-dependent functionals in density-functional
theory,” J. Chem. Phys. 123, 062203 (2005).
87R. T. Sharp andG. K. Horton, “A variational approach to the unipotential many-
electron problem,” Phys. Rev. 90, 317 (1953).
88J. D. Talman and W. F. Shadwick, “Optimized effective atomic central poten-
tial,” Phys. Rev. A 14, 36–40 (1976).
89M. Städele, J. A. Majewski, P. Vogl, and A. Görling, “Exact Kohn-Sham
exchange potential in semiconductors,” Phys. Rev. Lett. 79, 2089–2092 (1997).
90A. Görling, “NewKSmethod formolecules based on an exchange charge density
generating the exact local KS exchange potential,” Phys. Rev. Lett. 83, 5459–5462
(1999).
91S. Ivanov, S. Hirata, and R. J. Bartlett, “Exact exchange treatment for
molecules in finite-basis-set Kohn-Sham theory,” Phys. Rev. Lett. 83, 5455–5458
(1999).
92M. Städele, M. Moukara, J. A. Majewski, P. Vogl, and A. Görling, “Exact
exchange Kohn-Sham formalism applied to semiconductors,” Phys. Rev. B 59,
10031–10043 (1999).
93S. Hirata, S. Ivanov, I. Grabowski, R. J. Bartlett, K. Burke, and J. D. Talman,
“Can optimized effective potentials be determined uniquely?,” J. Chem. Phys. 115,
1635–1649 (2001).

J. Chem. Phys. 153, 244118 (2020); doi: 10.1063/5.0031310 153, 244118-10

© Author(s) 2020



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

94S. Kümmel and J. P. Perdew, “Simple iterative construction of the optimized
effective potential for orbital functionals, including exact exchange,” Phys. Rev.
Lett. 90, 043004 (2003).
95W. Yang and Q. Wu, “Direct method for optimized effective potentials in
density-functional theory,” Phys. Rev. Lett. 89, 143002 (2002).
96Q. Wu and W. Yang, “Algebraic equation and iterative optimization for the
optimized effective potential in density functional theory,” J. Theor. Comput.
Chem. 02, 627–638 (2003).
97A. Heßelmann and A. Görling, “Comparison between optimized effective
potential and Kohn–Sham methods,” Chem. Phys. Lett. 455, 110–119 (2008).
98A. Görling, A. Heßelmann,M. Jones, andM. Levy, “Relation between exchange-
only optimized potential and Kohn-Shammethods with finite basis sets, and effect
of linearly dependent products of orbital basis functions,” J. Chem. Phys. 128,
104104 (2008).
99P. Verma and R. J. Bartlett, “Increasing the applicability of density functional
theory. II. Correlation potentials from the random phase approximation and
beyond,” J. Chem. Phys. 136, 044105 (2012).
100N. L. Nguyen, N. Colonna, and S. de Gironcoli, “Ab initio self-consistent total-
energy calculations within the EXX/RPA formalism,” Phys. Rev. B 90, 045138
(2014).
101M. Hellgren, F. Caruso, D. R. Rohr, X. Ren, A. Rubio, M. Scheffler, and
P. Rinke, “Static correlation and electron localization in molecular dimers from
the self-consistent RPA and GW approximation,” Phys. Rev. B 91, 165110 (2015).
102A. Görling, “Hierarchies of methods towards the exact Kohn-Sham correlation
energy based on the adiabatic-connection fluctuation-dissipation theorem,” Phys.
Rev. B 99, 235120 (2019).
103A. Einstein, “Die grundlage der allgemeinen relativitätstheorie,” Ann. Phys.
354, 769–822 (1916).
104E. Goll, H.-J. Werner, H. Stoll, T. Leininger, P. Gori-Giorgi, and A. Savin,
“A short-range gradient-corrected spin density functional in combination with
long-range coupled-cluster methods: Application to alkali-metal rare-gas dimers,”
Chem. Phys. 329, 276–282 (2006).
105T. Leininger, H. Stoll, H.-J.Werner, and A. Savin, “Combining long-range con-
figuration interaction with short-range density functional,” Chem. Phys. Lett. 275,
151–160 (1997).
106M. Kaltak, J. Klimeš, and G. Kresse, “Low scaling algorithms for the random
phase approximation: Imaginary time and Laplace transformations,” J. Chem.
Theory Comput. 10, 2498–2507 (2014).
107M. Hellgren and U. von Barth, “Correlation potential in density functional
theory at the GWA level: Spherical atoms,” Phys. Rev. B 76, 075107 (2007).
108J. Kussmann and C. Ochsenfeld, “Pre-selective screening for matrix ele-
ments in linear-scaling exact exchange calculations,” J. Chem. Phys. 138, 134114
(2013).
109J. Kussmann and C. Ochsenfeld, “Preselective screening for linear-scaling exact
exchange-gradient calculations for graphics processing units and general strong-
scaling massively parallel calculations,” J. Chem. Theory Comput. 11, 918–922
(2015).
110J. Kussmann and C. Ochsenfeld, “Hybrid CPU/GPU integral engine for strong-
scaling ab initiomethods,” J. Chem. Theory Comput. 13, 3153–3159 (2017).
111J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approxima-
tion made simple [Phys. Rev. Lett. 77, 3865 (1996)],” Phys. Rev. Lett. 78, 1396
(1997).
112J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approxima-
tion made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).
113J. G. Ángyán, I. C. Gerber, A. Savin, and J. Toulouse, “van der Waals forces in
density functional theory: Perturbational long-range electron-interaction correc-
tions,” Phys. Rev. A 72, 012510 (2005).

114B. Mussard and J. Toulouse, “Fractional-charge and fractional-spin errors
in range-separated density-functional theory,” Mol. Phys. 115, 161–173
(2017).
115O. Franck, B. Mussard, E. Luppi, and J. Toulouse, “Basis convergence of range-
separated density-functional theory,” J. Chem. Phys. 142, 074107 (2015).
116R. Baer, E. Livshits, and U. Salzner, “Tuned range-separated hybrids in density
functional theory,” Annu. Rev. Phys. Chem. 61, 85–109 (2010).
117A. Karolewski, L. Kronik, and S. Kümmel, “Using optimally tuned range sepa-
rated hybrid functionals in ground-state calculations: Consequences and caveats,”
J. Chem. Phys. 138, 204115 (2013).
118É. Brémond, Á. J. Pérez-Jiménez, J. C. Sancho-García, and C. Adamo, “Range-
separated hybrid density functionals made simple,” J. Chem. Phys. 150, 201102
(2019).
119Z. Lin and T. Van Voorhis, “Triplet tuning: A novel family of non-empirical
exchange-correlation functionals,” J. Chem. Theory Comput. 15, 1226–1241
(2019).
120F. Weigend, F. Furche, and R. Ahlrichs, “Gaussian basis sets of quadru-
ple zeta valence quality for atoms H–Kr,” J. Chem. Phys. 119, 12753–12762
(2003).
121F. Weigend and R. Ahlrichs, “Balanced basis sets of split valence, triple zeta
valence and quadruple zeta valence quality for H to Rn: Design and assessment of
accuracy,” Phys. Chem. Chem. Phys. 7, 3297 (2005).
122T. H. Dunning, “Gaussian basis sets for use in correlated molecular calcu-
lations. I. The atoms boron through neon and hydrogen,” J. Chem. Phys. 90,
1007–1023 (1989).
123R. A. Kendall, T. H. Dunning, and R. J. Harrison, “Electron affinities of the first-
row atoms revisited. Systematic basis sets and wave functions,” J. Chem. Phys. 96,
6796–6806 (1992).
124F. Weigend, M. Häser, H. Patzelt, R. Ahlrichs, and “ RI-MP2, “Optimized aux-
iliary basis sets and demonstration of efficiency,” Chem. Phys. Lett. 294, 143–152
(1998).
125F. Weigend, A. Köhn, and C. Hättig, “Efficient use of the correlation consis-
tent basis sets in resolution of the identity MP2 calculations,” J. Chem. Phys. 116,
3175–3183 (2002).
126C. Hättig, “Optimization of auxiliary basis sets for RI-MP2 and RI-CC2 calcu-
lations: Core–valence and quintuple-ζ basis sets for H to Ar and QZVPP basis sets
for Li to Kr,” Phys. Chem. Chem. Phys. 7, 59–66 (2005).
127Y. Jung, A. Sodt, P. M. W. Gill, and M. Head-Gordon, “Auxiliary basis
expansions for large-scale electronic structure calculations,” Proc. Natl. Acad. Sci.
U. S. A. 102, 6692–6697 (2005).
128Y. Jung, Y. Shao, andM.Head-Gordon, “Fast evaluation of scaled opposite spin
second-order Møller–Plesset correlation energies using auxiliary basis expansions
and exploiting sparsity,” J. Comput. Chem. 28, 1953–1964 (2007).
129S. Reine, E. Tellgren, A. Krapp, T. Kjærgaard, T. Helgaker, B. Jansik, S. Høst,
and P. Salek, “Variational and robust density fitting of four-center two-electron
integrals in local metrics,” J. Chem. Phys. 129, 104101 (2008).
130M. Levy, J. P. Perdew, and V. Sahni, “Exact differential equation for the density
and ionization energy of a many-particle system,” Phys. Rev. A 30, 2745–2748
(1984).
131M. J. van Setten, F. Weigend, and F. Evers, “The GW-method for quantum
chemistry applications: Theory and implementation,” J. Chem. Theory Comput.
9, 232–246 (2013).
132D. L. Freeman, “Coupled-cluster expansion applied to the electron gas: Inclu-
sion of ring and exchange effects,” Phys. Rev. B 15, 5512–5521 (1977).
133A. Grüneis, M. Marsman, J. Harl, L. Schimka, and G. Kresse, “Making the ran-
dom phase approximation to electronic correlation accurate,” J. Chem. Phys. 131,
154115 (2009).

J. Chem. Phys. 153, 244118 (2020); doi: 10.1063/5.0031310 153, 244118-11

© Author(s) 2020



102



Supporting Information: A Range-Separated Generalized Kohn-Sham Method

Including a Long-Range Nonlocal Random Phase Approximation Correlation Potential

Daniel Graf1 and Christian Ochsenfeld1

Chair of Theoretical Chemistry, Department of Chemistry,

University of Munich (LMU), D-81377 Munich, Germany

(Dated: 29 September 2020)

1



I. GENERAL MAIN GROUP THERMOCHEMISTRY, KINETICS, AND

NONCOVALENT INTERACTIONS

2



T
A
B
L
E

I.
M
ea
n

ab
so
lu
te

d
ev
ia
ti
on

s
in

kc
al
/m

ol
fo
r
a
su
b
se
t
of

th
e
G
M
T
K
N
55

1
d
at
ab

as
e.

T
h
e
d
ef
2-
T
Z
V
P

b
as
is

se
t
w
as

u
se
d

fo
r
al
l

ca
lc
u
la
ti
on

s.

S
et

R
S
H
P
B
E

P
B
E

R
S
H
P
B
E
+
lr
R
P
A

rs
sc
R
P
A

rs
R
P
A
@
rs
sc
R
P
A

R
P
A
@
P
B
E

sc
R
P
A

R
P
A
@
sc
R
P
A

b
a
si
c
+

sm
a
ll

A
L
2X

6
6.
27

4.
04

1.
79

1.
43

1.
04

2.
82

1.
64

1.
05

A
L
K
8

7.
0
9

3.
05

3.
69

3.
40

2.
65

7.
79

5.
61

4.
70

F
H
51

3.
27

4
.0
3

3.
31

3.
33

3.
39

3.
40

1.
63

2.
73

is
o
.
+

la
rg

e

B
S
R
36

8
.4
3

8.
15

0.
90

0.
69

0.
60

1.
88

1.
21

5.
14

C
D
IE

2
0

1.
00

1.
9
0

0.
69

0.
71

0.
71

0.
46

0.
30

0.
54

IS
O
34

1.
70

1.
9
5

1.
51

1.
50

1.
50

1.
43

1.
06

1.
52

b
a
rr
ie
rs

B
H
P
E
R
I

1
0.
74

4.
1
8

1.
85

1.
80

1.
32

0.
73

4.
32

2.
81

B
H
D
IV

10
5.
1
0

8.
24

1.
39

1.
31

1.
18

1.
89

3.
43

1.
15

IN
V
24

3.
39

2.
9
5

2.
11

2.
10

2.
06

1.
21

2.
65

1.
83

in
te
rm

o
l.

N
C
Is

A
D
IM

6
4.
54

3.
37

1.
24

1.
15

0.
57

0.
30

0.
93

1.
80

S
6
6

2.
57

1.
94

0.
72

0.
70

0.
58

0.
42

0.
42

1.
86

C
A
R
B
H
12

0.
63

1.
45

0.
59

0.
63

0.
78

2.
07

0.
55

0.
58

in
tr
a
m
o
l.

N
C
Is

ID
IS
P

10
.7
2

10
.6
2

2.
81

2.
67

1.
90

2.
63

2.
17

6.
80

IC
O
N
F

0.
79

0
.4
1

0.
43

0.
42

0.
40

0.
46

0.
28

0.
19

A
C
O
N
F

0.
92

0.
58

0.
19

0.
18

0.
10

0.
06

0.
33

0.
07

3



II. IONIZATION POTENTIALS
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TABLE II. Ionization potentials in eV for the GW272 test set. The values for RSHPBE, rsscRPA,

PBE, as well as scRPA were calculated as negatives of the HOMO energies. All calculations were

performed with the def2-TZVPP basis set. PBE, G0W0, and experimental values were taken from

Ref. 2. Values for systems containing heavy elements like Cs2, Au2, and Au4 were excluded due to

technical reasons.

molecule RSHPBE rsscRPA PBE scRPA G0W0 Exp

H2 15.42 15.34 10.245 15.66 15.73 15.42

Li2 5.07 4.90 3.213 4.67 4.91 5.11

Na2 4.74 4.61 3.125 4.39 4.74 4.89

F2 15.15 14.84 8.97 15.65 14.44 15.70

N2 15.90 15.52 10.197 15.48 14.51 15.58

BF 11.09 10.84 6.795 10.42 10.50 11.00

LiH 8.21 8.05 4.363 7.69 6.64 7.90

CO2 13.97 13.62 9.02 13.41 12.79 13.78

H2O 12.58 12.37 7.019 12.58 11.76 12.62

NH3 11.06 10.80 6.017 10.72 10.10 10.85

SiH4 12.93 12.60 8.472 12.49 12.23 12.30

SF4 13.06 12.58 8.094 12.44 11.79 12.30

Methane 14.35 14.07 9.441 14.09 13.84 13.60

Ethane 12.81 12.44 8.127 12.51 12.27 12.00

Propane 12.22 11.79 7.665 11.85 11.60 11.51

Butane 12.13 11.63 7.579 11.44 11.16 11.09

Isobutane 12.10 11.60 7.599 11.53 11.19 11.13

Ethylene 10.83 10.52 6.775 9.95 10.22 10.68

Acetone 10.41 9.91 5.586 9.84 8.58 9.70

Acrolein 10.81 10.34 5.956 10.07 8.91 10.11

Benzene 9.80 9.34 6.394 8.67 8.65 9.24

Naphthalene 8.63 8.14 5.497 7.52 7.49 8.09

Antracene 7.76 7.25 4.964 6.65 6.65 7.40

Naphthacene 7.23 6.71 4.648 6.13 6.12 6.97
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3.5 Efficient calculation of beyond RPA correlation
energies in the dielectric matrix formalism
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Abstract

We present efficient methods to calculate beyond random phase approximation
(RPA) correlation energies for molecular systems with up to 500 atoms. To reduce
the computational cost, we employ the resolution-of-the-identity and a double-Laplace
transform of the non-interacting polarization propagator in conjunction with an atomic
orbital formalism. Further improvements are achieved using integral screening and
the introduction of Cholesky decomposed densities. Our methods are applicable to
the dielectric matrix formalism of RPA including second-order screened exchange
(RPA-SOSEX), the RPA electron-hole time-dependent Hartree-Fock (RPA-eh-TDHF)
approximation, and RPA renormalized perturbation theory using an approximate
exchange kernel (RPA-AXK). We give an application of our methodology by presenting
RPA-SOSEX benchmark results for the L7 test set of large, dispersion dominated
molecules, yielding a mean absolute error below 1 kcal/mol. The present work enables
calculating beyond RPA correlation energies for significantly larger molecules than
possible to date, thereby extending the applicability of these methods to a wider range
of chemical systems.
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We present efficient methods to calculate beyond random phase approximation (RPA) correlation ener-
gies for molecular systems with up to 500 atoms. To reduce the computational cost, we employ the
resolution-of-the-identity and a double-Laplace transform of the non-interacting polarization propaga-
tor in conjunction with an atomic orbital formalism. Further improvements are achieved using integral
screening and the introduction of Cholesky decomposed densities. Our methods are applicable to the
dielectric matrix formalism of RPA including second-order screened exchange (RPA-SOSEX), the
RPA electron-hole time-dependent Hartree-Fock (RPA-eh-TDHF) approximation, and RPA renormal-
ized perturbation theory using an approximate exchange kernel (RPA-AXK). We give an application
of our methodology by presenting RPA-SOSEX benchmark results for the L7 test set of large, disper-
sion dominated molecules, yielding a mean absolute error below 1 kcal/mol. The present work enables
calculating beyond RPA correlation energies for significantly larger molecules than possible to date,
thereby extending the applicability of these methods to a wider range of chemical systems. Published
by AIP Publishing. https://doi.org/10.1063/1.5025938

I. INTRODUCTION

Correlation energies obtained from the direct random
phase approximation (dRPA) have proven to be a valuable
post-Kohn-Sham (KS) correction (for an overview over recent
developments, see, e.g., Refs. 1–3). While the original formu-
lations for calculating dRPA correlation energies for molecules
showed an O(N 6) asymptotic scaling behavior,4 where N
denotes the molecular size, restricting the application to
small molecules, several reformulations have been introduced
recently for reducing the scaling behavior and allowing for cal-
culating larger systems, some with more than 1000 atoms.5–8

To reduce the computational cost, these methods employ, e.g.,
the resolution-of-the-identity (RI) technique,9 tensor hyper
contraction (THC),10–13 local,5 atomic,6 and Cholesky orbital7

formulations, and integral transforms of the non-interacting
polarization propagator,6–8,14,15 the latter being a central quan-
tity in the calculation of dRPA correlation energies. For some
methods, this brought the asymptotic scaling behavior down to
linear,5–8 enabling calculations for large systems of chemical
interest.

While dRPA calculations provide significant improve-
ments over conventional density functional theory (DFT) cal-
culations for properties such as dispersion interactions,16,17

dRPA delivers unsatisfactory results for non-isogyric pro-
cesses such as atomization energies.4,18–20 These failures
can be traced back to the self-interaction error present in
dRPA energies.21 To circumvent these problems, approaches

a)christian.ochsenfeld@uni-muenchen.de

beyond the direct random phase approximation have been
proposed that include exchange effects and higher order
correlations.

In general, RPA-type methods can be derived from two
frameworks, namely, those that resemble simplified coupled
cluster doubles equations22 or those derived from the adiabatic
connection fluctuation dissipation theorem (ACFDT).4,23–25

Here we focus on approaches derived from the latter frame-
work. In the ACFDT, the direct random phase approxima-
tion represents the simplest approach to obtain an approxi-
mate interacting polarization propagator required for the cal-
culation of ACFDT correlation energies. To further include
exchange effects, several approaches have been suggested:
Among those, a second-order screened exchange (RPA-
SOSEX) type approach26,27 replaces the Hartree kernel in
the ACFDT formula with an antisymmetrised Hartree ker-
nel.28,29 The RPA electron-hole time-dependent Hartree-Fock
(RPA-eh-TDHF) approximation uses an interacting polariza-
tion propagator obtained from a simplified time-dependent
Hartree-Fock kernel.29,30 RPA renormalized perturbation the-
ory uses a low-order approximation to the approximate
eh-TDHF polarization propagator as the leading correction
to dRPA (this approach is denoted as RPA-AXK).18 Further-
more, methods have been proposed using the exact-exchange
kernel from time-dependent density functional theory,31 also
including a power series approximation to the correlation
kernel.32 Applications of these methods have been ham-
pered so far by their steep computational scaling of up to
O(N 6) in their canonical formulation. Using the RI-technique,
O(N 5)-scaling ACFDT-based formulations have been pro-
posed,29,30,33 which is however still too expensive to tackle

0021-9606/2018/148(20)/204104/11/$30.00 148, 204104-1 Published by AIP Publishing.
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large molecular systems. Further performance benefits have
been obtained using a plane wave formulation in conjunc-
tion with a Gram-Schmidt orthogonalization scheme.34 It
is worthwhile to note that more efficient RPA with exchange
methods have been proposed not only in the ACFDT but also
the CCD framework.35,36

Here we present a framework that allows for a low
scaling calculation of different RPA with exchange meth-
ods. In particular, we show that our methods are applicable
for RPA-SOSEX, RPA-eh-TDHF, and RPA-AXK. We employ
methods recently introduced by us in the context of low-
and linear-scaling dRPA and MP2 methods,6–8,37 namely,
an RI-decomposition using a local metric in conjunction
with an atomic orbital (AO) or Cholesky basis formulation
using the integrated double-Laplace transform of the non-
interacting polarization propagator,6 which is equivalent to
a Fourier transform of the non-interacting polarization prop-
agator into the imaginary frequency domain.14 In this way,
RPA with exchange energies for significantly larger molecular
systems become accessible.

II. THEORY

In the following, we present a derivation of the work-
ing equations for this manuscript. For detailed information on
the different RPA with exchange methods and their deriva-
tions, we refer the reader to the original publications.18,29,30

We use the Mulliken notation for two, three, and four center
Coulomb integrals and enumerate quantities related to occu-
pied orbitals as i, j, . . . and those related to virtual orbitals
as a, b, . . ..

The dRPA correlation energy in the ACFDT using real-
valued spin orbitals after coupling strength integration is given
as23,24,29

EdRPA
c =

1
2

⌅ 1
�1

d!
2⇡

Tr
(
log (1 �⇧0(i!)V) +⇧0(i!)V

)
, (1)

with⇧0(i!) being the non-interacting polarization propagator
at imaginary frequency i!,

⇧0(i!)ia,jb =
�2"ia

"2
ia + !2

�i,j�a,b, (2)

and Via,jb = (ia|jb) being the Hartree kernel. Here "ia = "a "i
are particle-hole excitation energies, where "i, "j, . . . denote
the occupied orbital energies and "a, "b, . . . denote the virtual
orbital energies. Turning to the three beyond RPA methods
used in this work, the canonical formulation for the SOSEX
correction is given by29

ESOSEX
c = �1

2

⌅ 1
�1

d!
2⇡

Tr
(
log (1 �⇧0(i!)V)V�1K

+⇧0(i!)K
)
, (3)

the RPA-AXK correction is given by18

EAXK
c =

1
2

⌅ 1
�1

d!
2⇡

Tr
(
log (1 �⇧0(i!)V)V�1K

+ (1 �⇧0(i!)V)�1⇧0(i!)K
)
, (4)

and the correlation energy expression for RPA-eh-TDHF is
given by29,30

ERPA-eh-TDHF
c =

1
2

⌅ 1
�1

d!
2⇡

Tr
(
log (1 �⇧0(i!)W)W�1V

+⇧0(i!)V
)
. (5)

Here Kia,jb = (ib|ja) represents an approximate exchange kernel
and W = V K. It is worth to note that the SOSEX and
AXK corrections have to be added to the dRPA correlation
energy, while the formula for RPA-eh-TDHF delivers the entire
correlation energy.

A. Resolution-of-the-identity formulations

The resolution-of-the-identity approximation is often
used in quantum chemistry to decompose the four-index two-
electron repulsion integral (ERI) tensor into two three-center
tensors,7,9,38–40

(ia| jb) ⇡
X

P,Q

(ia|m12 |P)CPQ(Q|m12 | jb)

=
X

P,Q,R

(ia|m12 |P)C1/2
PR C1/2

RQ (Q|m12 | jb) =
X

R

BR
iaBR

jb,

(6)
where (ia|m12|P) are the three-center integrals and the RI
matrix

CPQ =
X

R,S

(P |m12 |R)�1(R|S)(S |m12 |Q)�1, (7)

with the respective metric m12 employed for the RI-
decomposition. Here P, Q, R, . . . denote the auxiliary basis
functions.

Inserting the RI-approximation to decompose V leads to
the following RI-dRPA expression introduced by Furche and
co-workers:9

ERI-dRPA
c =

1
2

⌅ 1
�1

d!
2⇡

Tr
(
log (1 �Q(i!)) + Q(i!)

)
, (8)

where Q(i!) is a NAux ⇥ NAux matrix, with NAux being the
size of the auxiliary space. Q(i!) is defined as

QPQ(i!) =
X

i,a

BP
ia⇧0(i!)ia,iaBQ

ia. (9)

Similar considerations allow decomposing both V and K
with the RI-approximation for the beyond RPA expressions
to obtain

ERI-SOSEX
c = �1

2

⌅ 1
�1

d!
2⇡

Tr
(
log (1 �Q(i!))Q�1(i!)

⇥Y(i!)Q�1(i!) + Y(i!)Q�1(i!)
)
, (10)

ERI-AXK
c =

1
2

⌅ 1
�1

d!
2⇡

Tr
(
log (1 �Q(i!))Q�1(i!)Y(i!)

⇥Q�1(i!) + (1 �Q(i!))�1Y(i!)Q�1(i!)
)
, (11)

ERI-RPA-eh-TDHF
c =

1
2

⌅ 1
�1

d!
2⇡

Tr
(
log (1�Q(i!) + Y(i!)Q�1(i!))

⇥ (Q(i!)�Y(i!)Q�1(i!))�1Q(i!)+Q(i!)
)
.

(12)

The Q(i!) matrix is the same as the one appearing in the
dRPA energy expression [Eq. (8)] and Y(i!) is given as
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YPQ(i!) =
X

i,a,j,b

BP
ia⇧0(i!)ia,iaKia,jb⇧0(i!)jb,jbBQ

jb. (13)

For the derivation of the RI-expression for RPA-SOSEX, see
Ref. 29; for RPA-eh-TDHF, see Ref. 30; and for RPA-AXK,18

see the Appendix.

B. Atomic orbital formulation

While in Refs. 6–8, efficient methods to calculate Q(i!)
have been presented, the naive calculation of Y(i!) scales
at least as O(N 2

occN 2
virtNAux), where Nocc and Nvirt denote

the dimensions of the occupied and virtual space, respec-
tively. Although this is more efficient than the canonical
O(N 3

occN 3
virt) formulation for the beyond RPA methods, this

scaling is still prohibitively steep for large molecules. To
obtain an efficient method for calculating Y(i!), we use a
double-Laplace transform of the non-interacting polarization
propagator,6,14

⇧0(i!)ia,ia =
�2"ia

"2
ia + !2

= �2
⌅ 1

0
d⌧ cos (!⌧)e�"ia⌧

= �2
X

⌧

w⌧ cos (!⌧)e�"ia⌧ , (14)

with roots ⌧ and weights w⌧ , which allows calculating Y(i!)
in an atomic orbital (AO) formulation analogous to the AO
formulation of Q(i!) first shown in Ref. 6,

YPQ(i!) =
X

µ,⌫,�,�

X

µ0,⌫0,�0,�0

X

⌧,⌧0
4w⌧w⌧0 cos (!⌧) cos (!⌧0)

⇥ P⌧
µµ0B

P
µ⌫P

⌧

⌫⌫0(µ
0�0 |� 0⌫0)P⌧0

��0B
Q
��P

⌧0
��0 ,

(15)
with P⌧ , P

⌧
representing the occupied and virtual pseudoden-

sities, defined as

P⌧
µµ0 =

X

i

Cµie"i⌧Cµ0i (16)

and
P
⌧

µµ0 =
X

a

Cµae�"a⌧Cµ0a, (17)

where C is the matrix of molecular orbital coefficients. We
denote the AO basis functions as µ, µ0, ⌫, ⌫0, . . ..

The key idea of AO-based methods is a reformulation in
a local Gaussian basis to obtain sparse quantities, which allow
for an efficient calculation. Therefore, we also move the RI
matrix C out of the B tensor6 to obtain

YPQ(i!) =
X

R,S

C1/2
PR ỸRS(i!)C1/2

SQ , (18)

ỸPQ(i!) =
X

µ,⌫,�,�

X

µ0,⌫0,�0,�0

X

⌧,⌧0
4w⌧w⌧0 cos (!⌧) cos (!⌧0)

⇥P⌧
µµ0B̃

P
µ⌫P

⌧

⌫⌫0(µ
0�0 |� 0⌫0)P⌧0

��0B̃
Q
��P

⌧0
��0 , (19)

where B̃P
µ⌫ = (µ⌫ |m12 |P) represent solely the three-center inte-

grals. Now if one uses a local RI metric, such as the overlap6

or attenuated Coulomb metric,7,41–43 the number of elements
of the three-center tensor B̃ will grow only linearly with the
system size, allowing for an efficient calculation of Ỹ(i!).

Here we want to note that the contraction of Ỹ(i!) with the
RI-matrix and other operations on the NAux ⇥ NAux matrices
Q(i!) and Y(i!) (matrix multiplications and eigendecomposi-
tions) have a very low prefactor and will therefore only become
dominant for exceedingly large molecules,6 which means
that the calculation of Ỹ(i!) determines the effective scaling
behavior.

The AO formulation of Ỹ(i!) allows for an efficient
integral-direct calculation. Therefore, we first carry out the
double-Laplace transform to rewrite Ỹ(i!) as

ỸPQ(i!) =
X

µ0,⌫0,�0,�0
M̃P

µ0⌫0(i!)Kµ0⌫0,�0�0M̃
Q
�0�0(i!), (20)

with

M̃P
µ0⌫0(i!) =

X

µ,⌫

X

⌧

�2w⌧ cos (!⌧)P⌧
µµ0B̃

P
µ⌫P

⌧

⌫⌫0 . (21)

Since the occupied and unoccupied pseudodensities are sparse
quantities, the number of elements of the three-index quan-
tity M̃(i!) also grows only linearly with system size and is
efficiently calculated using sparse algebra. Now Ỹ(i!) can
be calculated in a linear scaling fashion by an integral-direct
contraction of the AO ERI’s with one of the M̃(i!) ten-
sors followed by a matrix product over the remaining AO
indices,

KQ
µ0⌫0(i!) =

X

�0,�0
Kµ0⌫0,�0�0M̃

Q
�0�0(i!), (22)

ỸPQ(i!) =
X

µ0,⌫0
M̃P

µ0⌫0(i!)KQ
µ0⌫0(i!). (23)

Linear scaling is achieved by the realization that the local-
ity of the M̃(i!) tensor and the locality of AO basis func-
tion pairs within the ERI tensor renders only a linear
number of ERIs significant. These are then contracted with
M̃(i!) by a LinK type scheme.44,45 To identify the sig-
nificant ERIs, we use Schwarz estimates Qµ⌫ = (µ⌫|µ⌫)1/2

weighted with the corresponding M̃max
µ0⌫0 (i!) element, where

max denotes the maximum absolute value over all auxiliary
indices, and discard insignificant integrals according to a fixed
threshold #,

|M̃P
µ0⌫0(i!)(µ0�0 |� 0⌫0)|  |M̃max

µ0⌫0 (i!)|Qµ0�0Q�0⌫0 < #. (24)

The remaining significant integrals are contracted with a con-
stant number of M̃P

µ0⌫0(i!) elements, determined by the block
sparse algebra implementation. In practice, we perform the
contraction in Eq. (22) for batches of auxiliary indices to store
all necessary quantities in computer memory and to allow for
fine grained screening. Per default, we set up the batching
scheme by performing the contraction for all auxiliary indices
belonging to one atom, where max then refers to the batch
maximum. We note that the idea of an integral-direct compu-
tation of K along with an RI-decomposed Hartree kernel was
first mentioned in the supplementary information of Ref. 18.
Through the use of a local RI-metric in conjunction with a
transformed non-interacting polarization propagator and the
use of the LinK scheme, we arrive at an efficient scheme to
calculate beyond RPA correlation energies, which we will refer
to as AO-LinK in Sec. IV.
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C. Cholesky decomposed density (CDD) RI formulation

The method presented above will scale efficiently for
large molecules due to the sparsity of AO quantitites. An
issue with AO-based methods is, however, their steep com-
putational scaling with respect to the basis set size NBas
due to the redundancy present in typical AO basis sets, as
compared to canonical methods. A solution to this problem
has been to exploit the rank deficiency of AO quantities by
using pivoted Cholesky decomposition (CD).7,37,46–50 Pivoted
Cholesky decomposition allows decomposing a positive semi-
definite matrix into a product of a lower and upper triangular
matrix,

A = LLT . (25)

The Cholesky factors L have the same number of rows as the
original matrix A and rank(A) columns. Since the rank of the
occupied one-particle density matrix Pocc equals the number of
occupied orbitals, CD allows for huge computational savings
when large basis sets are employed. The rank of the virtual
one particle density matrix Pvirt equals the number of virtual
orbitals. Since especially for large basis sets Nvirt is of sim-
ilar size as NBas, the computational benefits of decomposing
Pvirt are not as high. Furthermore, decomposing Pvirt has been
found to interfere negatively with matrix sparsity,7 which is
why we omit the decomposition of Pvirt in this work. For a
more detailed description of pivoted CD in the context of one
particle density matrices, see, e.g., Ref. 7. While the rank dis-
cussion also applies to occupied and virtual pseudodensities
(where the rank is sometimes even lower than Nocc and Nvirt,
respectively), we found it to be more efficient to introduce
Cholesky decomposed densities (CDDs) into the calculation
of Ỹ(i!), by decomposing the one-particle density matrix
Pocc = LLT in conjunction with the following equality for
occupied pseudodensities:

P⌧ = P⌧SPocc, (26)

where S is the AO overlap matrix. Thus, we can rewrite Eq. (20)
by also inserting the RI for the remaining ERI as

ỸPQ(i!) =
X

i,j,⌫0,�0

X

R

M̃P
i⌫0(i!)B̃R

i�0B
R
j⌫0M̃

Q
j�0(i!). (27)

Here i, j denote the Cholesky vectors of Pocc, B̃R
i�0

=
P

µ0 LT
iµ0B̃

R
µ0�0 , B = CB̃, and

M̃P
i⌫0(i!) =

X

⌧

�2w⌧ cos (!⌧)(LT SP⌧B̃PP
⌧
)i⌫0 . (28)

Note that we used an asymmetric RI in Eq. (27). In this
way, it is possible to significantly reduce the cost of forming
Ỹ(i!) since the number of significant elements of B̃ scales
linearly with system size as opposed to B and B, when a
local RI metric is employed. To optimally exploit the local-
ity of the quantities in Eq. (27), the order of summation is
crucial. Optimizing the order of summation, subject to for-
mal O(N 3) memory requirements and lowest formal scaling
behavior, in conjunction with efficient usage of matrix spar-
sity, we arrive at the sequence shown in the pseudocode in

Algorithm 1. Pseudocode to optimally exploit sparsity in the formation of
Ỹ(i!) using the CDD-RI formulation.

1: function Calculate Ỹ(i!)
2: for R do
3: XRQ

ij (i!) =
P

�0 B̃R
i�0M̃

Q
j�0 (i!)

4: KQ
i⌫0 (i!)+ =

P
j B

R
j⌫0X

RQ
ij (i!)

5: end for
6: ỸPQ(i!) =

P
i,⌫0 M̃P

i⌫0 (i!)KQ
i⌫0 (i!)

7: end function

Algorithm 1. Obviously sparse algebra routines are required
for efficiency.

We will refer to these methods as CDD-RI in Sec. IV.

D. Schwarz screened CDD-RI formulation

Memory layouts and caching of modern computers advo-
cate for rather large block dimensions in the blocked sparse
algebra routines which need to be traded off against the gran-
ularity at which the sparsity in the AO-CDD quantities can be
captured. This means that with the most efficient large block
sizes, an algorithm exploiting only block sparsity will trans-
late into significant computational savings only for rather large
molecules. Since the formal scaling behavior of the method in
Sec. II C is O(N 2

AuxN 2
occNBas), this would result in a noticeable

prefactor. Screening of individual integrals allows circumvent-
ing this problem, and the derivation of the necessary integral
estimates is given in the following. The method in this section
is currently only applicable to the RPA-SOSEX and RPA-AXK
correction and not to RPA-eh-TDHF. We show the derivation
here explicitly for RPA-SOSEX.

Using the rotatory invariance of the trace and defining

W(i!) = Q�1(i!) log (1 �Q(i!))Q�1(i!) + Q�1(i!). (29)

Equation (10) can be rewritten as

ERI-SOSEX
c = �1

2

⌅ 1
�1

d!
2⇡

Tr
(
W(i!)Y

)
. (30)

Insertion of Eqs. (18) and (27) then yields

ERI-SOSEX
c =

1
2

⌅ 1
�1

d!
2⇡

Tr
(X

P,Q

MP
i,⌫0(i!)MP

j,�0(i!)BQ
i,�0B

Q
j,⌫0

)
,

(31)
with the definition

M(i!) = (�W(i!))1/2C1/2M̃(i!) . (32)

Note that we have absorbed the minus sign into the matrix root
since W(i!) is negative definite and this therefore allows for
a real-valued, symmetric decomposition.

While Eq. (31) is our final RI-formulation, it is insightful
to stress that whereas

X

Q

BQ
i,�0B

Q
j,⌫0 = Ki⌫0,j�0 (33)

is the RI-decomposition of the exchange-type electron repul-
sion integral, we introduce the RI-decomposition of the
coupling-strength averaged screened Coulomb interaction
W (i!),
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�
X

P

MP
i,⌫0(i!)MP

j,�0(i!) = (i⌫0(i!)|W (i!)| j�0(i!)). (34)

This can be easily seen by following the treatment of Secs. II B
and II C again, starting from an alternative resummation of Eq.
(3) given in Ref. 20,

ESOSEX
c = �1

2

⌅ 1
�1

d!
2⇡

Tr
(
(ia|W (i!)| jb)(ib| ja)

⇥⇧0(i!)ia,ia⇧0(i!)jb,jb

)
, (35)

which results in

ESOSEX
c = �1

2

⌅ 1
�1

d!
2⇡

Tr
(
(i⌫0(i!)|W (i!)| j�0(i!))(i�0 | j⌫0)

)
.

(36)
Here we note that not only the coupling-strength averaged
screened Coulomb interaction but also the charge distribu-
tions

�
i⌫0(i!)| are frequency dependent. An RI-decomposition

of the screened Coulomb interaction has been introduced in
Ref. 51 and was applied to RPA-SOSEX using a numeri-
cal coupling-strength integration in Ref. 20. The approach
presented in our work, Eqs. (31) and (29), can in con-
trast be evaluated directly from the already integrated Q(i!)
and B.

Equation (31) bears close resemblance to the exchange-
type term of RI-CDD MP2, where an efficient evaluation
technique has been proposed.37 Due to the exchange type cou-
pling of the local charge distributions, one can select a linear
number of Coulomb ERIs [Eq. (33)] and coupling-strength
averaged screened Coulomb ERIs [Eq. (34)], which contribute
significantly to the final energy. These integrals are then calcu-
lated using the RI and directly summed up for the final energy
according to Eq. (31).

To find this linear number of significant integrals, one
needs to find efficient integral estimates to reduce the num-
ber of integrals that explicitly need to be evaluated. While in
Ref. 37, QQR-type integral estimates were used, we presently
use simple Schwarz estimates since the exchange coupling
ensures linear scaling of the number of integrals with respect
to the system size,

|(i�0 | j⌫0)|  (i�0 |i�0)1/2(j⌫0 | j⌫0)1/2 = Qi�0Qj⌫0 , (37)

|(i⌫0(i!)|W (i!)| j�0(i!))|  (�(i⌫0(i!)|W (i!)|i⌫0(i!)))1/2

⇥ (�(j�0(i!)|W (i!)| j�0(i!)))1/2

=: Qi⌫0(i!)Qj�0(i!), (38)

and hence

|(i⌫0(i!)|W (i!)| j�0(i!))(i�0 | j⌫0)|
 Qi⌫0(i!)Qj�0(i!)Qi�0Qj⌫0 . (39)

This method not only allows for fine grained use of sparsity
but also reduces the formal scaling by a factor of NAux/NBas,
compared to the method in Sec. II C, to O(NAuxN 2

occN 2
Bas).

While all three-index quantities in Eq. (31) contain the
matrix square root of the RI-matrix, C1/2, and therefore lin-
ear scaling of the number of significant elements in the
B and M(i!) tensors is lost, it is still advisable to use

a local metric, such as the overlap or attenuated Coulomb met-
ric. This allows using sparsity in the formation of B and M(i!),
by first forming B̃ and M̃(i!) and then performing the contrac-
tion with the respective RI matrix. In the asymptotic limit, this
should show quadratic scaling behavior since the local metric
ensures a constant number of AO/Cholesky-indices for each
auxiliary basis index.

For RPA-AXK, the only difference is that the W(i!)
matrix is given as

W(i!) = Q�1(i!) log (1 �Q(i!))Q�1(i!)

+ Q�1(i!)(1 �Q(i!))�1 (40)

and we will refer to these methods as QQ-CDD-RI in
Sec. IV.

III. COMPUTATIONAL DETAILS

We have implemented all methods including the canon-
ical formulation and the canonical RI formulation in the
FermiONs++52,53 program package developed in our group.
For the canonical RI formulation, we follow the idea given
in the supplementary material of Ref. 29 which shows a
O(N 3

AuxN 2
occ) scaling behavior and makes optimal use of effi-

cient linear algebra libraries. For the canonical RI formulation,
we use the Coulomb RI-metric. Unless noted otherwise, we
employ the attenuated Coulomb metric with ! = 0.1 for all
low scaling algorithms, as has been shown to be optimal for
dRPA calculations.7

For the grids of the numerical frequency integration and
the double-Laplace transform, we employ the minimax grids
presented in Ref. 14. The rationale behind the fitting pro-
cedure given in Ref. 14 is easily extendable to the beyond
RPA methods treated here. For RPA-SOSEX and RPA-eh-
TDHF, the second-order approximation corresponds to the
MP2 energy,29 as compared to the direct (opposite spin) MP2
energy for dRPA. Since this only affects the integral tensors
but leaves the integrand unchanged, the exact same procedure
as for dRPA can be used. As discussed in the supplementary
information of Ref. 18, RPA-SOSEX and RPA-AXK recover
the same second-order contribution, which is why the grids are
also suited for RPA-AXK.

We employ 15 grid points for the time and frequency grid
in the general case. Where the integration interval is suffi-
ciently small for 15 grid points not to yield any more accuracy
in our double precision implementation, less grid points are
automatically employed.

As a sparse algebra format, we use the blocked com-
pressed sparse row (BCSR) format optimized for quantum
chemical methods.54,55 We employ a block size of 50 elements
and a sparsity threshold of 10 7 unless noted otherwise. For
the canonical algorithms, we of course always employ dense
algebra. For the remaining algorithms, we will mention this
explicitly in Sec. IV. The integral threshold # for the AO-LinK
formulation was set to 10 10. The screening threshold for the
QQ-CDD-RI method was set to 10 9. The Schwarz estimates
used for the QQ-CDD-RI formulation are calculated using the
RI as in Ref. 37.
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The exact procedure for pivoted CD of density matrices is
detailed in, e.g., Refs. 7 and 37. For the generation of the pseu-
dodensities, we employ a Fermi shift to enhance numerical
stability as detailed in Ref. 56.

The evaluation of the RI-RPA-eh-TDHF correlation
energy using Eq. (12) with given Q(i!) and Y(i!) poses some
numerical challenges due to the need to explicitly calculate
Q 1(i!), as Q(i!) can turn out to be numerically close to a
singular matrix. Therefore, we follow the idea presented in
Ref. 40 and project all quantities on the space spanned by the
eigenvectors of Q(i!), corresponding to non-zero eigenvalues
(in this case absolute values larger than 10 14). Furthermore,
the argument in the logarithm is non-symmetric and therefore
complex eigenvectors are possible. A numerically more stable
version of Eq. (12) is work in progress.

All calculations use reference KS orbitals obtained from
DFT calculations with the Perdew-Burke-Ernzerhof (PBE)
functional.57 We employ def2-SVP, def2-TZVP, and def2-
QZVP basis sets58,59 along with their corresponding RI basis
sets.60,61 Total energies are obtained by adding correlation
energies to the Hartree-Fock energy evaluated with the KS-
orbitals. All calculations employ the frozen core approxima-
tion.

IV. RESULTS AND DISCUSSION

Since the purpose of this work is to show the efficient yet
accurate calculation of Y(i!), we present our results exem-
plarily using RPA-SOSEX correlation energies. We will start
with showing the accuracy of our methods using the S22 test
set,62 before demonstrating the efficiency of our methods. We
finish with an illustrative large scale application, by present-
ing RPA-SOSEX results for the L7 test set of large, dispersion
dominated molecules.63

A. Convergence of the frequency quadrature
and the double-Laplace transform

The convergence of the frequency quadrature and the
double-Laplace transform has been shown nicely for dRPA
correlation energies in a plane wave implementation.14 Here
we want to show briefly that minimax grids also allow for
well-converged results for beyond RPA correlation energies
with less than 20 grid points. Therefore, we calculated the
RPA-SOSEX correlation energies for the methane monomer
and dimer of the S22 test set62 using the def2-TZVP and
def2-QZVP basis sets, along with the corresponding RI
basis set. As a reference, we use canonical RI-RPA-SOSEX
results obtained with Clenshaw-Curtis quadrature with the
RPA adjusted parameter optimization,9 which has been shown
to also work for closed-shell RPA-SOSEX.29 For the refer-
ence calculations, we employ 500 grid points, which ensures
well-converged results.

Table I shows that the minimax grids allow converging
the absolute correlation energies to below 10 10 hartree with
respect to the numerical frequency integration. When addi-
tionally using the corresponding grids for the double-Laplace
transform of the non-interacting polarization propagator, the
minimax grids allow converging the total energies to 10 10

hartree as well (Table II). Beyond 13 grid points, the interaction

TABLE I. Convergence of the numerical frequency integration using mini-
max grids referenced against a well converged Clenshaw-Curtis quadrature
with 500 grid points. All results are RI-RPA-SOSEX correlation energies of
the methane monomer/dimer from the S22 test set.62 The interaction energy
is denoted as �E.

def2-TZVP

No. pts. Monomer (hartree) Dimer (hartree) �E (kcal/mol)

10 0.201 615 930 3 0.404 493 209 8 0.304 712
13 0.201 615 931 6 0.404 493 214 3 0.304 713
15 0.201 615 931 6 0.404 493 214 4 0.304 713
18 0.201 615 931 6 0.404 493 214 4 0.304 713
500 0.201 615 931 6 0.404 493 214 4 0.304 713

def2-QZVP

No. pts. Monomer (hartree) Dimer (hartree) �E (kcal/mol)

10 0.226 027 242 2 0.453 494 471 6 0.377 841
13 0.226 027 338 4 0.453 494 608 6 0.377 806
15 0.226 027 339 7 0.453 494 612 4 0.377 807
18 0.226 027 339 9 0.453 494 613 0 0.377 807
500 0.226 027 339 9 0.453 494 613 0 0.377 807

energy fluctuates in the range of 10 6 kcal/mol, which is
well beyond the accuracy of the methods under inspection.
Based on these results, we have chosen 15 grid points in Secs.
IV B–IV D.

B. Calculations on the S22 test set

To further examine the accuracy of all our presented
methods, we have performed calculations on the entire S22
test set.62 We have performed calculations using def2-SVP,
def2-TZVP, and def2-QZVP basis sets along with their

TABLE II. Convergence of the numerical frequency integration and double-
Laplace transform of the non-interacting polarization propagator using min-
imax grids referenced against a well converged Clenshaw-Curtis quadrature
with 500 grid points. The reference results are RI-RPA-SOSEX correla-
tion energies, while the convergence is tested using CDD-RI-RPA-SOSEX
(Coulomb metric) correlation energies. All correlation energies are calcu-
lated for the methane monomer/dimer from the S22 test set.62 The interaction
energy is denoted as �E.

def2-TZVP

No. pts. Monomer (hartree) Dimer (hartree) �E (kcal/mol)

10 0.201 615 914 1 0.404 493 171 7 0.304 708
13 0.201 615 931 3 0.404 493 213 8 0.304 713
15 0.201 615 931 6 0.404 493 214 4 0.304 713
18 0.201 615 931 6 0.404 493 214 4 0.304 713
500 0.201 615 931 6 0.404 493 214 4 0.304 713

def2-QZVP

No. pts. Monomer (hartree) Dimer (hartree) �E (kcal/mol)

10 0.226 028 705 4 0.453 497 574 2 0.377 951
13 0.226 027 299 6 0.453 494 532 3 0.377 806
15 0.226 027 332 9 0.453 494 596 5 0.377 799
18 0.226 027 339 6 0.453 494 612 4 0.377 807
500 0.226 027 339 9 0.453 494 613 0 0.377 807
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corresponding RI-basis sets. As a reference, we have per-
formed calculations using both the canonical implementa-
tion and the RI-canonical implementation using the Coulomb
metric.

The error introduced through the use of the RI within
the S22 test set as compared to the canonical implementa-
tion is 0.014 and 0.009 kcal/mol in the mean absolute error
(MAE) for the def2-SVP and def2-TZVP basis set, respec-
tively, and is therefore negligible (Fig. 1). For the def2-QZVP
results, we therefore employ the canonical RI implementa-
tion as a reference for our newly developed methods since the
computational cost and memory requirements for the canon-
ical implementation for the def2-QZVP basis set become
unfeasible.

To examine the impact of the different approximations
made here, we perform calculations using separately the
numerical double-Laplace transform with the Coulomb RI-
metric and calculations using the numerical double-Laplace
transform with the attenuated Coulomb metric also employing
sparse algebra. The results for the def2-SVP and def2-TZVP
basis sets are shown in Fig. 1. The results for the def2-QZVP
basis are shown in Fig. 2.

For all basis sets employed here, the error introduced
through the double-Laplace transform is barely noticeable, as
can be seen from the error bars for the CDD-RI and QQ-CDD-
RI calculations, as compared to the plain RI error. The error
introduced by changing from the Coulomb to the attenuated
Coulomb metric shows a maximum of 0.004 kcal/mol for the

FIG. 1. Bar chart showing the mean absolute error of the RPA-SOSEX inter-
action energies of the S22 test set as compared to the canonical implementation
using def2-SVP and def2-TZVP basis sets along with the corresponding RI-
basis set. As RI-metric the Coulomb metric is employed unless the suffix
0.1 is appended, which implies use of the attenuated Coulomb metric with
! = 0.1.

FIG. 2. Bar chart showing the mean absolute error of the RPA-SOSEX
interaction energies of the S22 test set as compared to the RI-canonical
implementation using the def2-QZVP basis set along with the correspond-
ing RI-basis set. As RI-metric the Coulomb metric is employed unless the
suffix 0.1 is appended, which implies use of the attenuated Coulomb metric
with ! = 0.1. For the QQ-CDD-RI, CDD-RI and CDD-RI-0.1 results we have
employed dense algebra, while the QQ-CDD-RI-0.1 results were produced
using sparse-algebra.

def2-SVP basis in the MAE as compared to the RI-canonical
value and is therefore also negligible. For the QQ-CDD-RI
formulation, the maximum deviation in the MAE as compared
to the RI-canonical implementation is 0.004 kcal/mol, show-
ing that the Schwarz screening does not introduce a relevant
error. The maximum error caused by Schwarz screening and
the use of the attenuated Coulomb metric combined is 0.005
kcal/mol for the def2-QZVP basis set. The use of sparse alge-
bra with the thresholds given in Sec. III in conjunction with
the def2-QZVP basis for the CDD-RI formulation leads to
significantly higher errors for some individual systems and a
total MAE of 0.3 kcal/mol. Employing dense algebra with the
attenuated Coulomb metric as shown in Fig. 2 produces again
a negligible deviation, as compared to the RI-canonical imple-
mentation. This problem is related to the atomic blocking used
in BCSR, which would require larger block sizes and a tighter
sparsity threshold for large basis sets.

For the AO-LinK method with the chosen thresholds, the
deviation in the MAE shows a maximum of 0.020 kcal/mol
(0.024 kcal/mol with the attenuated Coulomb metric) for the
def2-SVP basis set. This additional error as compared to
the CDD-RI variants could stem from the integral screening
employed in the integral-direct computation. We omitted the
computation of S22 interaction energies with the method for-
mulated in a pure AO basis for the def2-QZVP basis set due to
too high computational cost. The problem here stems from the
aforementioned bad scaling of pure AO methods with respect
to the basis set size due to the redundancy present in pure AO
basis sets. This already shows one advantage of the two low
scaling methods, which employ CDD to avoid this problem and
show similar formal scaling as the RI-canonical implementa-
tion, while still being efficient for large molecular systems, as
will be shown in Secs. IV C and IV D.

To put the above errors into perspective, the MAE of the
canonical implementation using def2-SVP and def2-TZVP
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basis sets is 0.85 kcal/mol and 0.35 kcal/mol, respectively,
and 0.27 kcal/mol for the def2-QZVP basis using the RI-
canonical implementation (all values referenced against the
S22A revised results of Ref. 64). This shows that the
errors introduced through our approximations are at least
one order of magnitude smaller than the method error cal-
culated with the reference implementation and therefore
insignificant.

The mean absolute percentage error of 7.0% for the largest
def2-QZVP basis set as compared to the S22A revised refer-
ence results64 is in good agreement with the values of 9.5%
and 10.5% reported for a plane wave34 and numerical atomic
orbital implementation20 of RPA-SOSEX, respectively.

C. E�ciency and asymptotic scaling behavior

To show the efficiency and the low asymptotic scaling
behavior of our presented methods for large systems with
a nonvanishing HOMO-LUMO gap, we performed RPA-
SOSEX correlation energy calculations for linear alkanes up
to C160H322. As has been discussed, e.g., in Ref. 6, these
systems serve as good and practical systems to determine
the asymptotic scaling of a quantum chemical method. We
have performed all calculations using the def2-SVP basis with
the corresponding RI basis set. We compare the scaling of
our method to the RI-canonical implementation. The calcu-
lations were performed using 12 threads on dual-processor
Intel Xeon CPU E5-2620 machines with 64 GB of mem-
ory. All timings shown in this section correspond to the wall
time needed to perform the beyond RPA correction. The time
required for the calculation of Q(i!) is excluded since we
want to focus on the efficient calculation of the beyond RPA
energy and Q(i!) is part of the dRPA calculation. For the
performance of the linear-scaling dRPA implementation, see
Refs. 7 and 8. As a rough estimate about the comparative cost
to form Q(i!) vs. the cost to form Y(i!), we consider the
calculation of C160H322 for which the calculation of Q(i!) is
presently faster by a factor of about 70. This can be explained
with the fact that the formal scaling of the linear scaling
CDD-RI-dRPA algorithm with respect to the molecular size
is smaller by one power, leading to a significantly smaller
prefactor.

To calibrate the sparsity settings, i.e., thresholds and block
sizes for our sparse algebra routines, we compare the results
for C40H82 against the RI-canonical implementation. Using

FIG. 3. Timings for the calculations on a set of linear alkanes using the
def2-SVP basis set with the corresponding RI basis set. The AO-LinK, CDD-
RI, and QQ-CDD-RI methods employ the attenuated Coulomb metric with
! = 0.1 along with sparse algebra. The point labelled with an asterisk was
estimated conservatively based on the timing for a subset of the frequency
points.

the thresholds and block sizes listed in Sec. III, this leads to an
error of 57 and 42 µhartree for C40H82 in the absolute RPA-
SOSEX correlation energy for the CDD-RI and QQ-CDD-
RI formulation, respectively. For the AO-LinK method with
the chosen thresholds, the deviation is 2.9 mhartree. While
this deviation is significantly higher, one has to keep in mind
that in this method the integral tensor corresponding to K is
computed without the RI approximation, which means that
the canonical RI calculation contains the additional RI error
introduced through the RI decomposition of K.

The wall times shown in Fig. 3 for RPA-SOSEX cal-
culations on a series of alkanes from C10H22 to C160H322
exemplify that all our presented methods significantly outper-
form the RI-canonical implementation for large, electronically
sparse systems in terms of computational efficiency: The AO-
LinK method shows a crossover to the RI-canonical method at
C60H122, the CDD-RI method at C40H82, and the QQ-CDD-RI
method already at C20H42. Extrapolating the wall-time for the
RI-canonical method for the largest system (C160H322) assum-
ing an O(N 5) scaling behavior, the speed-up obtained with the
AO-LinK method is 42⇥, with the CDD-RI method is 61⇥, and
with the QQ-CDD-RI method is 183⇥.

TABLE III. Wall times and observed computational complexities for a set of linear alkanes using the def2-SVP
basis set along with the corresponding RI basis set for the different methods presented and the RI canonical
implementation. The computational complexities were calculated using the preceding calculation in the table. The
number labelled with an asterisk was estimated conservatively based on the timing for a subset of the frequency
points.

AO-LinK CDD-RI QQ-CDD-RI RI-canonical

Atoms Time (h) Scaling Time (h) Scaling Time (h) Scaling Time (h) Scaling

62 12.8 1.7 0.6 0.9
122 65.6 2.4 14.9 3.2 4.1 2.8 22.9 4.8
242 184.7 1.5 81.4 2.5 18.0 2.1 644.7⇤ 4.9
362 362.4 1.7 183.4 2.0 50.6 2.6
482 488.6 1.0 338.6 2.1 112.8 2.8
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The observed computational scaling behavior of our meth-
ods is examined in more detail in Table III. The RI-canonical
implementation shows an O(N 5) scaling behavior as expected.
For the AO-LinK method, the observed scaling behavior in the
limit of sparse molecules is linear; for the CDD-RI method,
quadratic; and for the QQ-CDD-RI method, sub-cubic. To
show that for the QQ-CDD-RI formulation we indeed only cal-
culate a linear number of significant integrals, we have counted
the number of calculated integrals during each of the calcula-
tions on the linear alkanes. The result is shown in Fig. 4. As
can be seen clearly, the number of integrals shows early on
perfect linear scaling.

D. Large scale calculations

In this section, we show that the methods based on
CDDs also outperform the canonical-RI variant for larger than
double-⇣ basis sets. Furthermore, we apply the QQ-CDD-RI
method to present RPA-SOSEX results for the L7 test set of
large, dispersion dominated molecules63 with up to triple-⇣
basis sets.

First, to study the performance of our methods for larger
basis sets, we have performed RPA-SOSEX correlation energy
calculations on linear alkanes up to C80H162 with the canon-
ical RI implementation and the CDD-RI and QQ-CDD-RI
variant using the def2-TZVP basis set. All calculations were
performed using 16 threads on a dual-processor Intel Xeon
CPU E5-2667 machine. The results presented in Fig. 5 show
that both the CDD-RI and the QQ-CDD-RI variant outper-
form the canonical implementation for large systems. The
crossover to the canonical implementation occurs at C60H122
with the CDD-RI method and at C40H82 with the QQ-CDD-RI
method. Furthermore, to show that the QQ-CDD-RI method is
beneficial also for quadruple-⇣ basis sets, we have performed
a RPA-SOSEX correlation energy calculation on the C40H82
molecule with the def2-QZVP basis set and the correspond-
ing RI-basis set. Here the calculation of the RPA-SOSEX
correlation energy takes 104 h for the QQ-CDD-RI method,
while the calculation using the RI-canonical implementation
requires 408 h (extrapolated from 8 of the 15 frequency points).

FIG. 4. Number of integrals calculated with the QQ-CDD-RI method for a
set of linear alkanes using the def2-SVP basis set with the corresponding RI
basis set. The attenuated Coulomb metric was employed with ! = 0.1 along
with sparse algebra.

FIG. 5. Timings for the calculations on a set of linear alkanes using the
def2-TZVP basis set with the corresponding RI basis set. The CDD-RI, and
QQ-CDD-RI methods employ the attenuated Coulomb metric with ! = 0.1
along with sparse algebra. Points labelled with an asterisk were estimated
conservatively based on the timings for a subset of the frequency points.

This speed-up of a factor of 3.9 still compares well against
the speed-ups obtained with triple-⇣ (speed-up: 4.5) and
double-⇣ (speed-up: 5.6) basis sets obtained with the same
method. These results show that also for larger than double-⇣
basis sets significant speed-ups over the canonical implemen-
tation can be obtained with the CDD-RI and QQ-CDD-RI
methods, supported by the dimensionality reduction of the AO
basis set via Cholesky decomposition.

Finally, we present RPA-SOSEX benchmark results for
the L7 test set63 with def2-SVP and def2-TZVP basis sets
along with their corresponding RI-basis sets. The results
shown in Table IV exemplify two important aspects: The first
aspect is that our QQ-CDD-RI variant can also treat large
molecular systems without excessive sparsity in the electronic
structure such as the circumcoronene· · ·guanine-cytosine base
pair complex. The second aspect is that including exchange
effects yields a significant accuracy gain over plain dRPA for
the L7 test set, which can be seen when comparing the results
to dRPA results presented in Ref. 7 obtained with the same
basis set. The RPA-SOSEX results with double-⇣ basis set
already improve upon dRPA results with a triple-⇣ basis set.
The triple-⇣ RPA-SOSEX results show a MAE to the reference
results63 of less than 1 kcal/mol, which is the desired chemical
accuracy.

TABLE IV. Benchmark results showing the root mean squared deviation
(RMSD), mean absolute and mean signed error (MAE and MSE) for the
L7 test set63 of large, dispersion dominated systems as compared to the
reference results. The CDD-dRPA values were taken from Ref. 7. The RPA-
SOSEX values were calculated using the QQ-CDD-RI approach described in
this work with the attenuated Coulomb metric (! = 0.1) along with sparse
algebra.

RMSD MAE MSE

dRPA (def2-TZVP)7 2.90 2.45 2.08
RPA-SOSEX (def2-SVP) 2.44 1.94 0.13
RPA-SOSEX (def2-TZVP) 1.19 0.81 0.11
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V. CONCLUSION

We have introduced three methods that enable efficient
beyond RPA calculations for large molecular systems up to
500 atoms, while the accuracy is under full numerical con-
trol. These developments significantly extend the applicabil-
ity of beyond RPA methods by reducing the computational
cost compared to the canonical formulation with and without
RI. Next to the beyond RPA variants mentioned in the main
text, our methods are obviously also applicable to the short-
range RPA-SOSEX variant recently introduced by us.65 For
the present range of system sizes, we recommend the QQ-
CDD-RI method for general use; since even though it shows
the worst asymptotic scaling behavior of the newly presented
methods, it is most efficient for a wide range of molecular sizes
and shows very good scaling behavior with respect to basis set
size. Furthermore, we have shown that the methods employing
CDDs also allow for significant computational savings when
larger than double-⇣ basis sets are used, which ensures the
applicability of these methods, since RPA correlation energies
require rather large basis sets to obtain converged results.66

To this end, range separated variants of RPA correlation ener-
gies67–72 would be a valuable addition to our approach. These
schemes reduce the basis set dependence significantly so
that double-⇣ results were shown to be sufficiently accurate
already.73

ACKNOWLEDGMENTS

The authors thank Dr. A. Luenser (LMU Munich) for
helpful discussions. Financial support was provided by the
Excellence Cluster EXC114 (CIPSM) and the SFB749 by
the Deutsche Forschungsgemeinschaft (DFG). C.O. acknowl-
edges, in addition, financial support as a Max-Planck Fellow
at the MPI-FKF Stuttgart.

APPENDIX: DERIVATION FOR RI-RPA-AXK

To derive the RI-expression for RPA-AXK, we expand
the logarithm and the inverse of (1 ⇧0(i!)V) appearing in
Eq. (4) as a series

Tr
(
log (1 �⇧0(i!)V)V�1K

)
= Tr

(
�
1X

n=1

(⇧0(i!)V)nV�1K
n

)
,

(A1)

Tr
(
(1 �⇧0(i!)V)�1⇧0(i!)K

)
= Tr

( 1X
n=1

(⇧0(i!)V)n�1⇧0(i!)K
)
. (A2)

For n = 1, the terms of the two series cancel. Inserting the RI
for V and K, one can introduce the definitions of Q(i!) and
Y(i!) [see Eqs. (9) and (13)] using the cyclic invariance of the
trace,

Tr
(
log (1 �⇧0(i!)V)V�1K + (1 �⇧0(i!)V)�1⇧0(i!)K

)
= Tr

(
�
1X

n=2

Q(i!)(n�2)Y(i!)
n

+
1X

n=2

Q(i!)(n�2)Y(i!)
)
.

(A3)

This can be brought to the closed form of Eq. (11), where again
the first term of each sum cancels.
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26A. Grüneis, M. Marsman, J. Harl, L. Schimka, and G. Kresse, J. Chem.

Phys. 131, 154115 (2009).
27D. L. Freeman, Phys. Rev. B 15, 5512 (1977).
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73B. Mussard, P. Reinhardt, J. G. Ángyán, and J. Toulouse, J. Chem. Phys.

142, 154123 (2015).



122



Publications

3.6 Efficient Reduced-Scaling Second-Order
Møller–Plesset Perturbation Theory with
Cholesky-Decomposed Densities and an
Attenuated Coulomb Metric

M. Glasbrenner, D. Graf, C. Ochsenfeld
J. Chem. Theory Comput. 16, 6856 (2020).

Abstract

We present a novel, highly efficient method for the computation of second-order
Møller–Plesset perturbation theory (MP2) correlation energies, which uses the resolution
of the identity (RI) approximation and local molecular orbitals obtained from a Cholesky
decomposition of pseudodensity matrices (CDD), as in the RI-CDD-MP2 method
developed previously in our group [Maurer, S. A.; Clin, L.; Ochsenfeld, C. J. Chem.
Phys. 2014, 140, 224112]. In addition, we introduce an attenuated Coulomb metric
and subsequently redesign the RI-CDD-MP2 method in order to exploit the resulting
sparsity in the three-center integrals. Coulomb and exchange energy contributions are
computed separately using specialized algorithms. A simple, yet effective integral
screening protocol based on Schwarz estimates is used for the MP2 exchange energy.
The Coulomb energy computation and the preceding transformations of the three-center
integrals are accelerated using a modified version of the natural blocking approach
[Jung, Y.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2006, 8, 2831–2840].
Effective subquadratic scaling for a wide range of molecule sizes is demonstrated in
test calculations in conjunction with a low prefactor. The method is shown to enable
cost-efficient MP2 calculations on large molecular systems with several thousand basis
functions.
Reprinted with permission from:

M. Glasbrenner, D. Graf, C. Ochsenfeld
"Efficient Reduced-Scaling Second-Order Møller–Plesset Perturbation Theory with

Cholesky-Decomposed Densities and an Attenuated Coulomb Metric"
J. Chem. Theory Comput. 16, 6856 (2020).

Copyright 2020 American Chemical Society.
https://pubs.acs.org/doi/pdf/10.1021/acs.jctc.0c00600

123

https://pubs.acs.org/doi/pdf/10.1021/acs.jctc.0c00600


124



Efficient Reduced-Scaling Second-Order Møller−Plesset
Perturbation Theory with Cholesky-Decomposed Densities and an
Attenuated Coulomb Metric
Michael Glasbrenner, Daniel Graf, and Christian Ochsenfeld*

Cite This: J. Chem. Theory Comput. 2020, 16, 6856−6868 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: We present a novel, highly efficient method for the
computation of second-order Møller−Plesset perturbation theory
(MP2) correlation energies, which uses the resolution of the identity
(RI) approximation and local molecular orbitals obtained from a
Cholesky decomposition of pseudodensity matrices (CDD), as in the
RI-CDD-MP2 method developed previously in our group [Maurer, S.
A.; Clin, L.; Ochsenfeld, C. J. Chem. Phys. 2014, 140, 224112]. In
addition, we introduce an attenuated Coulomb metric and subsequently
redesign the RI-CDD-MP2 method in order to exploit the resulting
sparsity in the three-center integrals. Coulomb and exchange energy
contributions are computed separately using specialized algorithms. A
simple, yet effective integral screening protocol based on Schwarz
estimates is used for the MP2 exchange energy. The Coulomb energy
computation and the preceding transformations of the three-center integrals are accelerated using a modified version of the natural
blocking approach [Jung, Y.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2006, 8, 2831−2840]. Effective subquadratic scaling for a
wide range of molecule sizes is demonstrated in test calculations in conjunction with a low prefactor. The method is shown to enable
cost-efficient MP2 calculations on large molecular systems with several thousand basis functions.

1. INTRODUCTION

The accurate and efficient computation of electron correlation
energies is one of the central challenges in ab initio electronic
structure theory. Proper treatment of electron correlation is
essential for a quantitative description of many chemical
phenomena including dispersion, which is highly important in
inter- and intramolecular interactions of many molecular
systems. One of the most cost-efficient and commonly used
wave function-based methods for computing correlation
energies is second-order Møller−Plesset perturbation theory
(MP2).1 MP2 is significantly more accurate than
Hartree−Fock, and because of its comparatively low N5

scaling, it is computationally cheaper than other wave function
methods such as Coupled Cluster (see, e.g., ref 2), which scale
conventionally at least as N6. Due to this good compromise
between accuracy and computational cost, MP2 is one of the
most widely used quantum chemistry methods.
In recent years, several variants of MP2 theory have been

proposed. Empirical scaling of the same-spin and opposite-spin
contributions to the MP2 energy in the spin-component-scaled
MP2 (SCS-MP2)3 has been shown to further increase the
accuracy for energetics and molecular properties. The related
scaled-opposite spin MP2 model (SOS-MP2)4 leads to very
efficient methods, since it allows to avoid the computationally
challenging exchange contributions to the MP2 energy.

Furthermore, MP2 has also been combined with density
functional theory (DFT)5 in the context of double-hybrid
functionals.6 These functionals contain an MP2-like term and
have been shown to provide excellent accuracy for many
applications.6−8

Due to the widespread use of MP2 and its related methods,
the development of efficient MP2 algorithms, which allow one
to treat large molecules, is an important endeavor. The
unfavorable fifth-order scaling of canonical MP2 severely limits
its applicability to larger systems. Over the last decades, much
work has been devoted to the development of more efficient
MP2 methods with reduced scaling and prefactor (see, e.g., refs
9−39).
Many efficient MP2 methods employ decompositions of the

electron repulsion integral (ERI) tensor. The most commonly
used decomposition is the resolution of the identity (RI)
approximation,40 which decomposes the fourth-order ERI
tensor into third- and second-order tensors using a set of
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auxiliary basis functions. Although RI-MP2 has the same
scaling as canonical MP2 with four-center integrals, the
prefactor and the storage requirements are significantly
reduced. Apart from RI, also Cholesky decomposition of the
ERI tensor21,30 and the pseudospectral approximation12 have
been applied to MP2. More recently, tensor hypercontraction
has been introduced by Martıńez and co-workers,31,41 which
allows one to reduce the formal scaling of MP2 to quartic.
In order to tackle the steep scaling of MP2 algorithms for

larger systems, one can also exploit the locality of electron
correlation. Pulay and Saebø pioneered the field of local
correlation methods and introduced localized molecular
orbitals (MOs) and the concept of correlation domains into
MP2 theory.9,10 Many local MP2 methods have been proposed
since then,13,14,16−20,22,35 including the divide-expand-consol-
idate (DEC) ansatz,29,36 which employs iterative optimization
of the orbital spaces. Recently, Neese and co-workers have
employed local pair natural orbitals for MP2 and other
correlation methods using the domain-based local pair natural
orbital approach.34,42,43

Another path to reduced-scaling MP2 algorithms starts from
a Laplace transformation of the orbital energy denominator
appearing in canonical MP2, which was introduced by Almlöf
and Has̈er.11,44,45 Later, an atomic-orbital-based reformulation
of Laplace-transformed MP2 (AO-MP2) was developed.11,15

In combination with integral screening approaches, the scaling
of AO-MP2 can be reduced to be asymptotically line-
ar.23,26,27,32 However, the prefactor of AO-MP2 is high,
especially for large basis sets, leading to a late crossover with
canonical MP2.
The efficiency of the AO-MP2 method is improved in the

RI-CDD-MP2 method28,33 by introducing the RI approxima-
tion and using local orbitals obtained from a Cholesky
decomposition of the pseudodensity matrices (CDD). Both
modifications lead to a significantly reduced prefactor
compared to AO-MP2 and make RI-CDD-MP2 applicable to
large molecules also with high-quality basis sets. RI-CDD-MP2
in its standard formulation scales asymptotically cubic.33

Maurer et al.33 also presented a second formulation, which
employs the local density fitting approach from Werner et al.22

and scales asymptotically linear. However, the prefactor of
linear-scaling RI-CDD-MP2 is high, and speed-ups compared
to the cubic scaling RI-CDD-MP2 formulation are only
observed for very large systems.33

In this work, we aim to improve the RI-CDD-MP2 method
by replacing the Coulomb metric used for the RI with an
attenuated Coulomb metric.46 Furthermore, we redesigned the
RI-CDD-MP2 algorithm in order to optimally exploit the
additional sparsity in the three-center integrals. In particular,
we compute the Coulomb and exchange contributions to the
MP2 energy separately using specialized algorithms for each
contribution. For the exchange term, we present an efficient
screening approach based on Schwarz estimates,47 which is
able to capture the exponential decay behavior of this
contribution. The Coulomb contribution and the trans-
formations of the three-center integrals from the AO basis to
the basis of Cholesky-pseudo-MOs are accelerated with the
natural blocking approach from Jung et al.24,25 We also employ
several upper bounds for the three-center integrals in order to
reduce the number of elements in the naturally blocked
integral tensors at an early stage during the transformations. In
addition, an efficient transformation sequence for the three-
center integrals is proposed, which involves an initial

transformation of the AO-three-center integrals with the
Cholesky factor of the ground state density followed by a
transformation from occupied Cholesky-MOs to occupied
Cholesky-pseudo-MOs for every Laplace point. For the
efficient computation of three-center integrals in the atomic
orbital basis, a distance including screening based on the
integral partition bounds from Thompson and Ochsenfeld48 is
used.
The new MP2 method is shown to scale subquadratically for

sufficiently large and sparse systems and displays a small
prefactor. Significant speed-ups compared to the RI-CDD-
MP2 method are obtained for molecular systems of various
sizes. The asymptotic scaling of the method is cubic; however,
the cubic scaling steps have a small prefactor and are irrelevant
for all molecules used in the present study, of which the largest
system is a DNA strand with 16 AT base pairs, 1052 atoms,
11 230 basis functions, and 37 248 auxiliary functions. The new
method therefore enables efficient MP2 and double-hybrid
DFT calculations on large molecular systems.

2. THEORY
2.1. Review of AO-MP2 and RI-CDD-MP2. The MP2

energy of a closed-shell molecule can be obtained from the
following expression:

∑= − | [ | − | ]
ϵ + ϵ − ϵ − ϵE

ia jb ia jb ib ja( ) 2( ) ( )

ijab a b i j
MP2

(1)

The indices ijk... denote occupied MOs, and abc... denote
virtual MOs. ϵ values are the orbital energies. The
denominator from eq 1 can be decoupled using a Laplace
transformation.44 In general, the Laplace transformation allows
one to replace the fraction

x
1 by an integral of an exponential

function:

∫ ∑ ω= − ≈ −
α

α α

∞
x

xt t xt
1

exp( ) d exp( )
0 (2)

The integral from eq 2 can be approximated by numerical
integration using quadrature points tα and quadrature weights
ωα. In the case of the MP2 orbital energy denominator, only 5
to 8 Laplace points are usually sufficient to obtain errors on the
order of a few μHartree.44 The major benefit of applying the
Laplace transformation to the MP2 energy denominator is the
possibility to factorize the resulting exponential into product
form:

∑ ∑ω= − |

× [ | − | ]
α

α
− ϵ − ϵ + ϵ + ϵα α α αE e e e e ia jb

ia jb ib ja

( )

2( ) ( )

ijab

t t t t
MP2

a b i j

(3)

Inserting the expansion of the MOs as a linear combination of
atomic orbitals (LCAO) and subsequently summing over MO
indices gives the energy expression of AO-MP2:11

∑ ∑ ∑ μν λσ

μ ν λ σ μ σ λ ν

= − ̲ ̅ ̲ ̅ |

× [ ′ ′| ′ ′ − ′ ′| ′ ′ ]
α μνλσ μ ν λ σ

μμ
α

νν
α

λλ
α

σσ
α

′ ′ ′ ′
′ ′ ′ ′E P P P P ( )

2( ) ( )

MP2
AO ( ) ( ) ( ) ( )

(4)

where ̲ αP( ) and ̅ αP( ) denote the occupied and virtual
pseudodensities, respectively. The pseudodensity matrices are
defined as follows:

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c00600
J. Chem. Theory Comput. 2020, 16, 6856−6868

6857



∑ω̲ =μμ
α

α μ μ′
+ϵ ′αP C e C

i
i

t
i

( ) i4

(5)

∑ω̅ =νν
α

α ν ν′
−ϵ ′αP C e C

a
a

t
a

( ) a4

(6)

In the CDD-MP2 method,28 the pseudodensity matrices are
subjected to a Cholesky decomposition with complete
pivoting:49

∑̲ = ̲ ̲μμ
α

μ
α

μ
α

′ ̲ ′ ̲P L L
i

i i
( ) ( ) ( )

(7)

∑̅ = ̅ ̅νν
α

ν
α

ν
α

′ ̅ ′ ̅P L L
a

a a
( ) ( ) ( )

(8)

The obtained Cholesky factors are the expansion coefficients of

occupied and virtual Cholesky-pseudo-MOs ϕ α
̲i

( ) and ϕ α
̅a

( ),
respectively:

∑ϕ χ= ̲α

μ
μ
α

μ̲ ̲Lr r( ) ( )i i
( ) ( )

(9)

∑ϕ χ= ̅α

ν
ν

α
ν̅ ̅Lr r( ) ( )a a

( ) ( )

(10)

Inserting the Cholesky factors into eq 4 gives the energy
expression for CDD-MP2:33

∑ ∑= − ̲ ̅| ̲ ̅ [ ̲ ̅ | ̲ ̅ − ̲ ̅ | ̲ ̅ ]
α

α α αE i a j b i a j b i b j a( ) 2( ) ( )
ijab

MP2
CDD ( ) ( ) ( )

(11)

where

∑ μν λσ̲ ̅ | ̲ ̅ = ̲ ̅ ̲ ̅ |α

μνλσ
μ
α

ν
α

λ
α

σ
α̲ ̅ ̲ ̅i a j b L L L L( ) ( )i a j b

( ) ( ) ( ) ( ) ( )

(12)

In the RI-CDD-MP2 method,33 the ERIs are in addition
approximated by RI:40

∑̲ ̅| ̲ ̅ ≈ ̲ ̅ | [ ] | ̲ ̅α α α−i a j b i a P Q j bV( ) ( ) ( )
PQ

PQ
( ) ( ) 1 ( )

(13)

∬ χ χ=V
r

r r r r( )
1

( ) d dPQ P Q1
12

2 1 2
(14)

where the indices PQ... denote auxiliary basis functions.
2.2. Calculation and Transformation of Three-Center

Integrals. In the new method presented in this work, RI with
an erfc-attenuated Coulomb metric25,46,50 is used for
approximating the ERIs:

∂ ∂∑μν λσ μν λσ| ≈ ̃P C Q( ) ( ) ( )
PQ

PQ
(15)

∂ ∬μν χ χ
ω

χ= μ νP
r

r
r r r r r( ) ( ) ( )

erfc( )
( ) d dP1 1

12

12
2 1 2

(16)

∑̃ = [ ̃ ] [ ̃ ]− −C VV VPQ
RS

PR RS SQ
1 1

(17)

∬ χ
ω

χ̃ =V
r

r
r r r r( )

erfc( )
( ) d dPR P R1

12

12
2 1 2

(18)

The erfc metric depends on the attenuation parameter ω and
interpolates between the Coulomb metric and the overlap
metric depending on the choice of ω. It was shown that the

attenuated Coulomb metric with a value of 0.1 for ω provides
comparable accuracy as the Coulomb metric without
sacrificing useful sparsity in the three-center integrals.51 Due
to the central role of the local metric, we will in the following
denote the new MP2 method as ω-RI-CDD-MP2. We want to
stress that ω should not be viewed as an empirical parameter
but as a threshold, because lowering ω allows one to
systematically reduce the deviations from the Coulomb metric;
an exact agreement with the Coulomb metric is obtained for ω
equal to zero.
The computation of the three-center integrals from eq 16

would scale quadratically, if only the sparsity of μν-shell pairs is
exploited. Due to the attenuation with the complementary
error function, these integrals decay quickly with increasing
bra-ket separation. We exploit this distance decay by using the
rigorous distance-including screening based on integral
partition bounds (IPB) from Thompson and Ochsenfeld;48

by default, our implementation employs the approximate
bound aIPB and neglects integrals below a threshold ϑ3c. With
aIPB screening, only an asymptotically linear-scaling number of
three-center integrals in the AO basis needs to be computed.
The three-center integrals in the atomic orbital basis need to

be transformed to the basis of Cholesky-pseudo-MOs for each
Laplace point. This could be done by applying the trans-
formations shown in eqs 19 and 20:

∂ ∂∑ν μν̲ = ̲α

μ
μ
α ̲i P L P( ) ( )i

( ) ( )

(19)

∂ ∂∑ ν̲ ̅ = ̅ ̲α

ν
ν

α α
̅i a P L i P( ) ( )a

( ) ( ) ( )

(20)

A more efficient way to obtain the transformed integrals
involves the Cholesky factors of the ground state density
matrix P:

∑=μν μ νP L L
i

i i
(21)

Using L, the transformation from eq 19 can be replaced by a
succession of two transformations:

∂ ∂∑ν μν=
μ

μi P L P( ) ( )i
(22)

∂ ∂∑ν ν̲ =α α̲i P T i P( ) ( )
i

i i
( ) ( )

(23)

The matrix T(α) employed in eq 23 transforms the occupied
Cholesky-MOs to occupied Cholesky-pseudo-MOs. It can be
derived by considering the following identity for the

pseudodensity matrix ̲ αP( ):52

̲ = ̲ = ̲α α αP P SP PSP SP( ) ( ) ( ) (24)

Equation 24 is closely related to the well-known idempotency
condition for the density matrix:53

= =P PSP PSPSP (25)

After inserting the Cholesky factors of the occupied density
matrix and the occupied pseudodensity matrix into eq 24, one
can identify the sought transformation matrix as the product
̲ αL SLT( ) :

´ ≠ÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖ ´ ≠ÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖ̲ = ̲ ̲ =α α α α α

α α

P L L L L SL L SL LT T T T

T T

( ) ( ) ( ) ( ) ( )

T( ) ( ) (26)
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Thus, the elements of T(α) are given by

= ̲α α̲ ̲T L SL( )i i
T

i i
( ) ( )

(27)

The advantage of the presented transformation sequence is
that eq 23 requires only a sum over occupied MOs instead of a
sum over AOs as in eq 19. Due to the smaller number of
occupied MOs, eq 23 is thus less computationally costly to
evaluate, especially for extended basis sets. The additional
transformation shown in eq 22 is also less expensive than the
transformation in eq 19, because it has to be carried out only
once and not for every Laplace point.
In order to reduce the scaling of the integral transformations,

we employ the natural blocking approach from Jung et al.,24,25

which provides a sparse data format for the three-center
integrals. In general, a third-order tensor is often represented as
a one-dimensional array of matrices; we will in the following
denote these matrices as “slices” of the tensor. The index that
labels the one-dimensional matrix array will be called the “slow
index”. One way to exploit sparsity in a third-order tensor
would be to use a block-sparse data format for each slice. In
contrast, in the natural blocking approach, entire rows and
columns of the slices are deleted if they contain only
insignificant values below a given threshold.24,25 This is
illustrated in Figure 1. The threshold used for deleting rows
and columns will be called the “natural blocking threshold”
ϑNB. Following Jung et al.,25 we employ a separate threshold

ϑNB
iaP for the fully transformed ∂̲ ̅ αi a P( )( ) integrals. The

advantage of natural blocking is that each slice remains a
single, relatively large matrix after deleting rows and columns;
in a block-sparse approach, in contrast, the slice is divided up
into a large number of small blocks. As the relative efficiency of
common matrix multiplications implementations is in general
higher for larger matrices, a smaller computational overhead in
multiplications involving the slices can be obtained with
natural blocking. In order to efficiently exploit sparsity in the
natural blocking format, it is important that the third-order
tensor has a suitable sparsity pattern. In particular, for each
value of the slow index, only (1) rows and columns should be
significant. For the three-center integrals with a local RI metric,
this is fulfilled for both the atomic orbital basis and a basis of
localized MOs, because all three indices couple only over short
distances. In cases where the slices still have significant sparsity
after row and column deletion, one might consider to also use
a block-sparse matrix format for these slices; however, we have
not exploited this so far.

As a specific example for the application of natural blocking,
consider the (P⋮μν) integrals. If the integrals are ordered such
that P is the slow index, each value of P is associated with an
NAO × NAO slice, where NAO denotes the number of AOs. In a
large molecule, the (P⋮μν) integrals will only have significant
values, if both χμ and χν are spatially close to χP. Therefore,
many elements of the μν slice will be insignificant; in
particular, many rows and columns will contain only negligible
elements. By deleting these, the size of the slice can be reduced
to NAO(P) × NAO(P), where NAO(P) is the number of significant
AOs for the given P. For bookkeeping purposes, it is important
to store the indices of all significant rows (and columns) for a
particular P in a list {μ}P. More precisely, the list {μ}P can be
build according to

∂μ μ μν{ } ≡ { | | | > ϑ }
ν

Pmax ( )P NB (28)

One situation, in which this list is needed, is the following
transformation:

∂ ∂∑ν μν=
μ

μP i L P( ) ( )i
(29)

This transformation is carried out with matrix multiplications
of the μν slices with the coefficient matrix L. Before the
multiplication of one particular μν slice with the matrix L can
be performed, all columns in L, whose index μ is not in the list
{μ}P, need to be deleted. This reduces the size of L to Nocc ×
NAO(P). Due to the reduction of the dimensions of the involved
matrices, the multiplication can be accelerated significantly.
This illustrates how computational savings can be realized with
natural blocking.
In an analogous manner to {μ}P, several other lists of

significant orbital combinations are constructed and used
during the integral transformations. An overview of them is
shown in Table 1. The information about the significance of
orbital pairs can also be used to create “inverted” lists; the list

{ ̲} α
̅i a

( ), e.g., can be obtained by “inversion” of { ̅} α̲a i
( ).

Furthermore, the letters used in our notation are interchange-
able as long as they refer to the same type of orbital; the list

{ ̅} α̲a i
( ), e.g., is the same as { ̅} α̲b i

( ).
In contrast to Jung et al.,24,25 we also employ several

rigorous upper bounds for the three-center integrals. Using
these, we can exploit sparsity at an earlier stage during the
sequence of integral transformation. We also build sparse lists
based on the integral bounds, for which we will use a slightly

different notation with square brackets such as [ ̅] α̲a i
( ). For

Figure 1. Illustration of the natural blocking format. A third-order tensor is stored as an array of matrices (top row). Red cells correspond to
significant entries, while green cells correspond to insignificant entries. When natural blocking is applied, all columns and rows containing only
insignificant entries are deleted (bottom row).
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computing the upper bounds, the matrices M and N defined in
eqs 30 and 31 are needed:

∂μν= | |μνM Pmax ( )
P (30)

∂μν= | |μ
ν

N Pmax ( )P (31)

The entries of M and N are accumulated during the
computation of the three-center integrals in the AO basis.
Using these matrices, upper bounds for the transformed
integrals can be obtained by multiplication with the absolute
value of the MO or pseudo-MO coefficients. One example is
shown in eq 32:

∂ ∑ν| | ≤ = | |
μ

μ μi P N L N( ) iP i P
(32)

The values NiP of the transformed N matrix can then be used
to construct the list [i]P:

[ ] ≡ { | > ϑ }i i NP iP NB (33)

All employed lists based on upper bounds are shown in Table
2.

With the sparse lists from Tables 1 and 2, the integral
transformations can be carried out with a linear-scaling
computational effort. The full algorithm for the trans-
formations is shown in Figure 2. During the transformations,
the integrals are ordered such that the auxiliary index P is the
slow index. This allows one to perform all transformations as
multiplications of the slices and the coefficient matrices L, T(α),
and L̅(α). After the transformations, the integrals are reordered
such that ̲i becomes the slow index; this ordering is more
convenient for the computation of the energy.

2.3. Computation of the MP2 Coulomb Energy. In
contrast to the implementation of RI-CDD-MP2 of Maurer et
al.,33 our new implementation treats the Coulomb and
exchange contributions to the MP2 energy separately using
specialized algorithms. As we will show, this is particularly
beneficial in combination with a local RI metric. A separate
treatment of Coulomb and exchange contributions has already
been proposed in related work by Beuerle et al.54 for low-
scaling beyond-RPA methods and by Helmich-Paris et al.55 for
relativistic RI-CDD-MP2; in both works, also, a local RI metric
was employed.
For the Coulomb contribution

∑ ∑ ∑= = − ̲ ̅| ̲ ̅ ̲ ̅ | ̲ ̅
α

α

α

α αE E i a j b i a j b2 ( ) ( )
ijab

MP2
C

MP2
C,( ) ( ) ( )

(34)

a matrix Z(α) is computed by contracting three-center integrals
over the pseudo-MO indices:

∂ ∂∑= ̲ ̅ ̲ ̅α α αZ i a P i a Q( ) ( )PQ
ia

( ) ( ) ( )

(35)

Next, Z(α) is multiplied with the matrix C̃ defined in eq 17:

∑= ̃α αD Z CPQ
R

PR RQ
( ) ( )

(36)

From D(α), the contribution of the current Laplace point α to
the MP2 Coulomb energy can be computed via the following
equation:

∑= −α α αE D D2
PQ

PQ QPMP2
C,( ) ( ) ( )

(37)

The contraction in eq 35 has the highest formal scaling (N4),
which is nevertheless lower than the formal scaling of the MP2

Table 1. Overview of All Employed Lists of Significant
Orbital Combinations, Which Are Used for Natural
Blockinga

list of orbital pairs integral tensor

{a}̅i ̲
(α) ( ̲ ̅i a⋮P)(α)

{i}P (P⋮iν)
{ν}P (P⋮μν)
{i}̲P

(α) (P⋮ia)̅(α)

{a}̅P
(α) (P⋮ia)̅(α)

aThe lists are generated by inspecting entries of the corresponding
integral tensors shown in the right column in analogy to eq 28. The
indices of the integral tensors are sorted such that the leftmost index is
the “slow index”.

Table 2. Lists of Significant Orbital Pairs, Which Are
Generated by Using Upper Bounds for the Three-Center
Integrals

list of orbital pairs upper bound

[i]P
∂∑ ν= | | ≥ | |

μ
μ μN L N i P( )iP i P

[i]̲P
(α) ∂∑ ν= | ̲ | ≥ | ̲ |

μ
μ
α

μ
α̲ ̲N L N i P( )i P i P

( ) ( )

[a]̅P
(α) ∂∑ ν= | ̅ | ≥ | ̅ |

μ
μ
α

μ
α

̅ ̅N L N a P( )a P a P
( ) ( )

[a]̅i ̲
(α) ∂∑= | ̲ | | ̅ | ≥ | ̲ ̅ |

μν
μ
α

μν ν
α α̲ ̅ ̲ ̅M L M L i a P( )i a i a

( ) ( ) ( )

Figure 2. Algorithm for the transformation of the three-center
integrals. The leftmost index in the three-center integrals is the “slow
index”.
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exchange (N5). The use of natural blocking allows one to
exploit both the sparsity of the ̲ ̅i a -charge densities and the
sparsity resulting from the local metric as shown in the
algorithm in Figure 3. Thus, eq 35 can be evaluated with

asymptotically linear scaling. Note that the presented algorithm
would be suboptimal in combination with a Coulomb metric as
used in the original RI-CDD-MP2 method, because the
asymptotic scaling of eq 35 would be cubic with a relatively
large prefactor.
The matrix multiplication in eq 36 scales cubically with small

prefactor; note that the scaling could be reduced to quadratic
by exploiting the sparsity of Z(α). Since D(α) is a dense matrix,
eq 37 is a low-prefactor quadratic scaling step.
2.4. Computation of the MP2 Exchange Energy. The

algorithm used to evaluate the exchange contribution to the ω-
RI-CDD-MP2 energy is shown in Figure 4. In this algorithm,
the exchange energy contributions from individual ij pairs are
computed according to

∑= ̲ ̅| ̲ ̅ ̲ ̅ | ̲ ̅α α α̲ ̲E i a j b i b j a( ) ( )i j

ab
MP2
X,( ), ( ) ( )

(38)

and summed up to obtain the total exchange energy EMP2
X :

∑ ∑ ∑= =
α

α

α

α ̲ ̲E E E
ij

i j
MP2
X

MP2
X,( )

MP2
X,( ),

(39)

For each ij pair, only a subset of virtual pseudo-MOs is
included in the sum of eq 38. The significant virtual pseudo-
MOs are selected by Schwarz screening. The Schwarz upper
bound for an individual four-center integral is given by

| ̲ ̅ | ̲ ̅ | ≤α α α
̲ ̅ ̲ ̅i a j b Q Q( ) i a j b

( ) ( ) ( )
(40)

where the Schwarz factors are defined as follows:

= ̲ ̅| ̲ ̅α α
̲ ̅Q i a i a( )i a

( ) ( )
(41)

The Schwarz factors are computed on the fly during the
algorithm for the MP2 exchange (see Figure 4) using the RI
approximation:

∂ ∂∑≈ ̲ ̅ ̃ ̲ ̅α α α
̲ ̅Q i a P C Q i a( ) ( )i a

PQ
PQ

( ) ( ) ( )

(42)

The Schwarz estimates for the integral products appearing in
the MP2 exchange are given by

| ̲ ̅ | ̲ ̅ ̲ ̅ | ̲ ̅ | ≤α α α α α α
̲ ̅ ̲ ̅ ̲ ̅ ̲ ̅i a j b i b j a Q Q Q Q( ) ( ) i a j b i b j a

( ) ( ) ( ) ( ) ( ) ( )
(43)

Due to the structure of the MP2 exchange, the right-hand side
of eq 43 not only provides a rigorous upper bound to the
exchange energy contribution but also captures correctly its
exponential decay behavior. We therefore use the product of
Schwarz factors from eq 43 to screen virtual pseudo-MOs for a
given ij pair and to neglect integrals below a threshold denoted
as ϑschwarz. With this screening, only an asymptotically linear-
scaling number of four-center integrals needs to be computed.

For a given ij pair, only the virtual pseudo-MOs in { ̅} α
̲a j

( ) are

considered in the screening. In order to further reduce the
screening overhead, significant ij pairs are selected in a
prescreening procedure, which is also based on Schwarz
estimates. The exchange energy contribution from an ij pair
given by eq 38 can be rigorously bound by the expression on
the right-hand side of the following equation:

∑| | ≤α α α α α̲ ̲
̲ ̅ ̲ ̅ ̲ ̅ ̲ ̅E Q Q Q Qi j

ab
i a j b i b j aMP2

X,( ), ( ) ( ) ( ) ( )

(44)

This upper bound does in general not provide an accurate
quantitative estimate of the ij pair energy, because all
contributions on the right-hand side of eq 44 are positive in
contrast to the right-hand side of eq 38, where positive and
negative contributions to the sum can cancel. Nevertheless, it is
useful as a qualitative measure for the importance of an ij pair.

Figure 3. Algorithm for the computation of the Coulomb
contribution to the ω-RI-CDD-MP2 energy.

Figure 4. Algorithm for the computation of the exchange energy
contribution.
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The expression from eq 44 can be implemented very efficiently
by first performing a matrix multiplication of the matrix of
Schwarz integrals with its transpose:

∑=α α α̲ ̲
∈{ }

̲ ̅ ̅ ̲
α

A Q Qi j
a a

i a a j
( ) ( ) ( )

i
( ) (45)

Then, the squares of the entries of A(α) can be used to screen ij
pairs:

| | ≤α α̲ ̲ ̲ ̲E Ai j
i jMP2

X,( ), ( )2

(46)

An ij pair is neglected, if the right-hand side of eq 46 is smaller
than a threshold denoted as ϑij.
For all ijab combinations that are significant according to the

presented screening approach, four-center integrals are built in
two steps. In the first step, a third-order tensor B̃(α) is
computed by transforming the auxiliary index of the three-
center integrals with the matrix C̃ defined in eq 17:

∂∑̃ = ̲ ̅ ̃α α̲ ̅B i a P C( )i a
Q

P
PQ

( ) ( )

(47)

In the second step, the B̃(α) tensor is contracted with three-
center integrals over the auxiliary index:

∂∑̲ ̅| ̲ ̅ = ̃ ̲ ̅α α α̲ ̅i a j b B Q j b( ) ( )
Q

i a
Q( ) ( ) ( )

(48)

Even though the number of four-center integrals that needs to
be formed scales linearly, both steps from eqs 47 and 48 would
scale quadratically, if implemented naıv̈ely. The reason for this
is the quadratic scaling number of significant elements in the
B̃(α) tensor. This can be explained from eq 47, where the
indices i and P are coupled only over short distances due to the
erfc metric; i and Q, in contrast, couple over large distances,
because the matrix C̃ is densely populated. It turns out,
however, that the index Q in eqs 47 and 48 can be restricted to
a subset of the space of auxiliary functions. In order to realize
this, consider the MP2 exchange energy expression with the RI
plugged in:

∂ ∂ ∂

∂

= ∑ ∑ ̲ ̅ ̃ ̲ ̅ ̲ ̅ ̃
̲ ̅

α α α α

α

E i a P C Q j b i b R C

S j a

( ) ( ) ( )

( )

iajb PQRS PQ RSMP2
X,( ) ( ) ( ) ( )

( )

(49)

The coupling of i to both a ̅ and b̅ decays exponentially because
of the appearing ̲ ̅i a - and ̲ ̅i b -charge densities. a ̅ and b̅ also

appear next to the index j on the ket-side of the four-center
integrals, where they are coupled to Q and S by the short-
ranged erfc-function. By combining these couplings, one can
restrict the space of auxiliary functions χQ and χS that need to

be included for a given i. For a particular i, a list α̲Q( ) i
( ) is

constructed from the union of auxiliary function indices Q in

all lists { } α
̅Q a

( ) for all a ̅ in { ̅} α̲a i
( ). For readers familiar with the

sparse-map formalism of Pinski et al.,34 it shall be mentioned
that this would correspond to a “chaining operation” of the

lists { ̅} α̲a i
( ) and { } α

̅Q a
( ). With these restrictions for the index Q,

eqs 47 and 48 can be evaluated with an asymptotically linear-
scaling computational effort.

3. COMPUTATIONAL DETAILS

The described method was implemented in a development
version of the quantum chemistry program FermiONs++.56−58

Unless stated explicitly, the def2-SVP basis set59 was used in
combination with the corresponding auxiliary basis set.60 Shell
pairs with an overlap of less than 10−12 are omitted from the
calculation. An integral screening threshold of 10−10 is used
during the SCF. The DIIS method61 is employed for
accelerating SCF convergence. The SCF energy is converged
to 10−7 and the norm of the commutator (FPS−SPF), where F
is the Fock matrix and S is the overlap matrix, to 10−6. Unless
mentioned explicitly, five Laplace quadrature points are used.
The Laplace points are determined using a minimax algorithm
as described in ref 62; the number of integration points is
reduced automatically in our implementation if the fitting
interval is small, and no improved accuracy can be obtained
with more integration points. In the calculation of pseudoden-
sity matrices, Fermi-shifting as proposed by Ayala and Scuseria
is applied.15 The pseudodensity matrices are orthogonalized
prior to the pivoted Cholesky decomposition as described in
ref 51; afterward, the orthogonalization is reverted. The frozen-
core approximation is employed in all calculations. For
comparison, calculations are carried out with the RI-CDD-
MP2 method33 in the standard formulation, which scales
cubically in the asymptotic limit, and with the implementation
of canonical RI-MP2 in FermiONs++. All timings were
performed using 20 threads on dual-processor Intel Xeon
CPU E5-2630 v4 @ 2.20 GHz machines with 256 GB RAM
and a solid-state drive (SSD) with a capacity of 1.7 TB.

Table 3. Mean Absolute Deviations (MAD), Maximum Absolute Deviations (MAX), and Root Mean Square Deviation
(RMSD) Compared to Canonical RI-MP2 in ω-RI-CDD-MP2 Calculations on the L7 Test Set64 with Different Values for the
Attenuation Parameter ωa

Δabs Δint

ω MAD RMSD MAX MAD RMDS MAX

0.50 1.48 × 10−0 1.83 × 10−0 3.83 × 10−0 4.70 × 10−1 6.59 × 10−1 1.18 × 10−0

0.20 2.70 × 10−1 3.52 × 10−1 8.19 × 10−1 1.57 × 10−1 2.18 × 10−1 3.77 × 10−1

0.10 4.06 × 10−2 5.73 × 10−2 1.49 × 10−1 3.77 × 10−2 5.09 × 10−2 8.39 × 10−2

0.05 4.95 × 10−3 7.47 × 10−3 2.04 × 10−2 5.73 × 10−3 7.56 × 10−3 1.22 × 10−2

0.01 3.54 × 10−5 4.95 × 10−5 1.41 × 10−4 4.49 × 10−5 4.82 × 10−5 7.61 × 10−5

0.00 9.23 × 10−7 1.53 × 10−6 4.52 × 10−6 1.89 × 10−6 2.79 × 10−6 5.36 × 10−6

aFor the octadecane monomers and dimer, 7 Laplace points were used; 10 Laplace points were used for all other systems. All screening and natural
blocking thresholds were set to zero. Δabs denotes the error in absolute energies of monomers and dimers; equivalent monomers were only
considered once. Δint denotes the error in interaction energies. All values are given in kcal/mol. The remaining errors for ω = 0.00 arise from the
Laplace transformation.
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4. RESULTS

4.1. Accuracy of the Introduced Approximations.
Among the used approximations, we first consider the Laplace
transformation of the MP2 denominator. This approximation
has been used extensively, and numerous benchmarks on its
accuracy exist;11,15,44,45,62,63 in most cases, 5−8 Laplace points
are sufficient in order to reach μHartree accuracy. As the
Laplace transformation for MP2 is a well-established
approximation, we did not analyze it further.
Next, we focus on the error introduced by the erfc-

attenuated Coulomb metric. The accuracy of this approx-
imation has been studied in detail for SOS-MP2,25 direct
RPA,51 and full MP2 on small molecules.46 In order to analyze
the influence of the local metric on the accuracy of full MP2
including exchange on larger systems, we compare calculations
with ω-RI-CDD-MP2 to canonical RI-MP2 with the standard
Coulomb metric. The calculations were performed on the L7
test set,64 and the results are shown in Table 3. When ω
approaches zero, the deviations from the values computed with
the Coulomb metric quickly decrease for both absolute
energies and interaction energies. For ω = 0.1, mean absolute
deviations well below 0.1 kcal/mol are obtained. This is in line
with the findings reported by Luenser et al.,51 who showed that
a value of 0.1 enables highly accurate direct RPA calculations.
We thus set ω to 0.1 in all ω-RI-CDD-MP2 calculations shown
in the following.
The remaining parameters were determined by carrying out

benchmark calculations on a set of 11 molecules from the
integral screening test set from ref 65. The used molecules all
have between 40 and 146 atoms; the average number of atoms
amounts to 98. Only the parameter of interest was varied in
these calculations, while the others were set to zero, in order to
isolate the effect of each parameter. Correlation energies
computed with ω-RI-CDD-MP2 without integral screening
and without natural blocking are used as references, which
excludes the Laplace transformation and the RI as potential
sources of error. The influence of the employed integral
screening thresholds on the accuracy is analyzed in Tables 4
and 5. For each screening, the accuracy can be improved
systematically by lowering the threshold. Suitable values for
accurate calculations on large molecules were determined to be
10−6 for the aIPB threshold, 10−9 for the Schwarz screening
threshold, and 10−6 for the ij prescreening threshold,
respectively, as they lead to mean errors below 0.1 kcal/mol.
In Table 6, the errors introduced by natural blocking are

displayed. Thresholds of ϑNB = 10−6 and ϑNB
iaP = 5.0 × 10−6 are

sufficient to obtain mean errors below 0.1 kcal/mol and are
thus employed in all calculations with def2-SVP basis shown in
the following. The same set of values has also been used by
Jung et al.25 For ϑNB, a significant decrease in accuracy can be

observed in Table 6 upon increasing the threshold from 10−6

to 10−5; a similar effect occurs for ϑ3c in Table 4. This is caused
by relatively large errors for graphite96 and CNT80, which are
both systems with strongly delocalized electronic structure and
a high degree of symmetry. Due to the symmetry, a large
number of integrals with nearly identical values are neglected if
the thresholds are raised above a certain value. One thus has to
apply care in choosing thresholds for systems of this kind.
The influence of the integral screening and natural blocking

thresholds on the accuracy was also studied on the S22 test
set,66 and the corresponding data is shown in the Supporting
Information. Due to the small size of the molecules in the S22
test set, only a few contributions are neglected by integral
screening or natural blocking and the obtained errors are
therefore significantly smaller than the errors obtained with the
employed test set containing large molecules.
The combined influence of the determined thresholds is

analyzed in Table 7. A mean error of 0.103 kcal/mol compared
to canonical RI-MP2 is obtained, which indicates that the
employed set of thresholds is suitable to obtain chemically
accurate results also for larger molecular systems. Therefore,
we use this particular set of thresholds for the timings with the
def2-SVP basis set shown in Section 4.2. In Table 7, also, the
errors obtained with RI-CDD-MP2 using the recommended
thresholds from ref 33 are shown. The mean error obtained
with RI-CDD-MP2 is more than twice as large. Thus, we
conclude that the use of these settings in the timings shown in
Section 4.2 does not introduce a biased advantage for ω-RI-
CDD-MP2 in the comparison with RI-CDD-MP2. In Table 8,
calculations with a set of suitable thresholds are shown that
allow highly accurate computations with a def2-TZVP basis
set.

4.2. Scaling Behavior and Efficiency. Timings on linear
n-alkanes are shown in Figure 5 and Table 9. The wall time
required for the ω-RI-CDD-MP2 calculations is smaller than

Table 4. Benchmark Calculations for the aIPB Screening Threshold (ϑ3c) and the Schwarz Screening Threshold (ϑschwarz)
a

ϑ3c ϑschwarz

value MAD RMSD MAX value MAD RMSD MAX

10−5 3.58 × 10−1 1.16 × 10−0 3.85 × 10−0 10−8 1.08 × 10−0 1.51 × 10−0 3.28 × 10−0

10−6 1.18 × 10−4 1.99 × 10−4 4.73 × 10−4 10−9 8.62 × 10−2 1.09 × 10−1 2.51 × 10−1

10−7 1.18 × 10−5 2.43 × 10−5 7.29 × 10−5 10−10 6.68 × 10−3 7.86 × 10−3 1.61 × 10−2

10−8 1.36 × 10−6 2.42 × 10−6 6.58 × 10−6 10−11 5.29 × 10−4 6.06 × 10−4 1.01 × 10−3

aMean absolute deviations (MAD), maximum absolute deviations (MAX), and root mean square deviation (RMSD) on the test set from Table 7
are shown. The reference energies were computed using ω-RI-CDD-MP2 without integral screening and natural blocking. 7 Laplace points are
used for [S8]5; 8 Laplace points were used in all other calculations. All values are given in kcal/mol.

Table 5. Benchmark Calculations for the Threshold for
Prescreening ij pairs (ϑij)a

ϑij

value MAD RMSD MAX

10−4 1.27 × 10−0 1.33 × 10−0 2.08 × 10−0

10−5 1.00 × 10−1 1.08 × 10−1 1.68 × 10−1

10−6 1.07 × 10−2 1.13 × 10−2 1.75 × 10−2

10−7 8.79 × 10−4 9.46 × 10−4 1.53 × 10−3

aMean absolute deviations (MAD), maximum absolute deviations
(MAX), and root mean square deviation (RMSD) on the test set from
Table 7 are shown. The reference energies were computed using ω-
RI-CDD-MP2 without integral screening and natural blocking. 7
Laplace points are used for [S8]5; 8 Laplace points are used in all
other calculations. All values are given in kcal/mol.
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the wall time used for the RI-CDD-MP2 reference in all of
these calculations, and the relative differences rise significantly
for increasing chain lengths. This suggests that ω-RI-CDD-
MP2 has both a lower prefactor and reduced effective scaling
compared to RI-CDD-MP2. For comparison, timings with
canonical RI-MP2 are shown. For the smallest alkanes, ω-RI-
CDD-MP2 is slower than RI-MP2 because of the screening
overhead and the required loop over Laplace points. Due to
the lower scaling of ω-RI-CDD-MP2, the situation is reversed
for large alkanes; the crossover occurs between 40 and 60
carbon atoms. The largest calculation was done on C300H602
with 7210 basis functions and required a compute time of
2400 s, which illustrates that the ω-RI-CDD-MP2 method
exploits the available sparsity in an efficient manner. The
scaling is analyzed in detail in Table 9. As shown, the effective
scaling steadily decreases for alkanes with up to 200 carbon
atoms, where the minimal scaling of 1.37 is reached. This
shows that the scaling of the time-dominating steps has been
reduced to be linear. Between a chain length of 200 and 300
carbon atoms, the effective scaling increases slightly to 1.56.
This can be explained by the remaining asymptotically cubic
and quadratic scaling steps. For some of these steps, the scaling
could be reduced further; the computation of the pseudoden-
sity matrices according to eqs 5 and 6, e.g., could be made to

Table 6. Benchmark Calculations for the Natural Blocking Thresholds ϑNB and ϑNB
iaPa

ϑNB ϑNB
iaP

value MAD RMSD MAX value MAD RMSD MAX

1.0 × 10−5 4.51 × 10−1 1.09 × 10−0 3.54 × 10−0 1.0 × 10−5 7.69 × 10−1 2.12 × 10−0 6.99 × 10−0

1.0 × 10−6 4.99 × 10−4 1.02 × 10−3 3.28 × 10−3 5.0 × 10−6 4.08 × 10−2 9.55 × 10−2 3.10 × 10−1

1.0 × 10−7 4.18 × 10−6 1.00 × 10−5 3.26 × 10−5 1.0 × 10−6 2.08 × 10−4 2.86 × 10−4 6.50 × 10−4

1.0 × 10−7 5.70 × 10−6 1.11 × 10−5 3.02 × 10−5

aMean absolute deviations (MAD) and maximum absolute deviations (MAX) on the test set from Table 7 are shown. The reference energies were
computed using ω-RI-CDD-MP2 without integral screening and natural blocking. 7 Laplace points are used for [S8]5; 8 Laplace points are used in
all other calculations. All values are given in kcal/mol.

Table 7. Errors Compared to Canonical RI-MP2 with a
Coulomb Metric in ω-RI-CDD-MP2 Calculations
(Δω‑RI‑CDD) and RI-CDD-MP2 Calculations (ΔRI‑CDD)

a

molecule Δω‑RI‑CDD ΔRI‑CDD

amylose4 1.69 × 10−2 9.89 × 10−2

angiotensin 9.08 × 10−2 2.39 × 10−1

β-carotene 1.85 × 10−2 5.69 × 10−2

CNT80 1.04 × 10−1 3.56 × 10−1

diamond102 9.89 × 10−2 1.30 × 10−1

DNA2 1.15 × 10−1 2.20 × 10−1

graphite96 2.56 × 10−1 2.36 × 10−1

LiF72 7.64 × 10−2 1.28 × 10−1

polyethyne64 1.01 × 10−1 5.22 × 10−2

polyyne64 1.25 × 10−1 5.20 × 10−2

[S8]5 1.33 × 10−1 9.70 × 10−1

MAD 1.03 × 10−1 2.31 × 10−1

MRD [%] 0.0019 0.0051
aAll calculations employ a def2-SVP basis set. For ω-RI-CDD-MP2,
the following thresholds are used: ϑ3c = 10−6, ϑschwarz = 10−9, ϑij =
10−6, ϑNB = 10−6, and ϑNB

iaP = 5 × 10−6. For RI-CDD-MP2, a QQR
screening threshold of 10−9 and a block-sparse linear algebra
threshold of 10−6 are used. 7 Laplace points are used for [S8]5; 8
Laplace points are used in all other calculations. All values are given in
kcal/mol. MAD and MRD denote mean absolute and mean relative
deviation, respectively. The MRD values are given in percent of the
total RI-MP2 correlation energy.

Table 8. Errors Compared to Canonical RI-MP2 with a
Coulomb Metric in ω-RI-CDD-MP2 Calculations
(Δω‑RI‑CDD) and RI-CDD-MP2 Calculations (ΔRI‑CDD)

a

molecule Δω‑RI‑CDD ΔRI‑CDD

amylose4 1.87 × 10−2 2.22 × 10−2

angiotensin 6.90 × 10−2 7.08 × 10−2

β-carotene 2.75 × 10−2 2.07 × 10−2

CNT80 1.76 × 10−1 7.53 × 10−2

diamond102 3.91 × 10−2 3.55 × 10−2

DNA2 6.87 × 10−2 7.84 × 10−2

graphite96 1.32 × 10−1 4.58 × 10−2

LiF72 3.20 × 10−2 5.01 × 10−3

polyethyne64 2.22 × 10−2 1.71 × 10−2

polyyne64 1.55 × 10−1 2.78 × 10−2

[S8]5 1.09 × 10−2 4.36 × 10−1

MAD 6.83 × 10−2 7.58 × 10−2

MRD [%] 0.00098 0.00143
aThe def2-TZVP basis set was used in all calculations. For ω-RI-
CDD-MP2, the following thresholds are used: ϑ3c = 10−7, ϑschwarz =
10−10, ϑij = 10−6, ϑNB = 10−7, and ϑNB

iaP = 10−6. For RI-CDD-MP2, a
QQR screening threshold of 10−10 and a block-sparse linear algebra
threshold of 10−8 are used. 7 Laplace points are used for [S8]5; 8
Laplace points are used in all other calculations. All values are given in
kcal/mol. MAD and MRD denote mean absolute and mean relative
deviation, respectively. The MRD values are given in percent of the
total RI-MP2 correlation energy.

Figure 5. Timings on linear n-alkanes with up to 300 carbon atoms.
The ω-RI-CDD-MP2 method (red) is compared to RI-CDD-MP2
(blue) and canonical RI-MP2 (green). In all calculations, the def2-
SVP basis set is employed in combination with the thresholds from
Table 7. The inset shows the timings for the alkanes with up to 60
carbon atoms.
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be linear scaling by expressing the pseudodensities in terms of
matrix exponentials67 and using sparse linear algebra in their
computation. Other steps such as the inversion of the matrix of
two-center integrals in eq 18 or the matrix multiplications from
eq 17 are intrinsically cubic scaling. Nevertheless, all steps with
a scaling > M( ) have a low prefactor and only become
relevant for extremely large systems.
In Figure 6, the number of computed three- and four-center

integrals is shown for the largest considered alkanes. The
number of significant integrals that need to be computed scales
close to linearly, which illustrates the effectiveness of the
employed integral screening. Also, the number of significant ij
pairs in the exchange contribution and the number of elements
in the lists ̲Q( ) i show near linear scaling. The fact that the
number of untransformed and transformed three-center
integrals scales linearly allows one to also reduce the RAM
and disk space requirements and the I/O overhead to linear.
Figure 7 shows calculations for linear n-alkanes with the

def2-TZVP basis set. As for the def2-SVP basis set, significant
speed-ups compared to RI-CDD-MP2 are observed with the
new method. The effective scaling between the largest systems
with 100 and 160 carbon atoms amounts to 1.46. This
demonstrates that the ω-RI-CDD-MP2 method scales
favorably with a small prefactor also for high-quality basis sets.
In order to illustrate the applicability of the new method to

realistic systems such as large biomolecules, we also performed
calculations on DNA strands. The corresponding timings are
shown in Figure 8 and Table 10. Also for the DNA strands,
significant speed-ups compared to RI-CDD-MP2 are obtained
with the new ω-RI-CDD-MP2 method. The crossover between
canonical RI-MP2 and ω-RI-CDD-MP2 occurs between AT2
and AT4. The largest ω-RI-CDD-MP2 calculation was

performed on a DNA strand with 16 base pairs, 1052 atoms,
11 230 basis functions, and 37 248 auxiliary functions and
required a computation time of 35.6 h on a single node (for
the specifications, see Computational Details). This demon-
strates that the ω-RI-CDD-MP2 method allows for efficient
MP2 calculations for large biomolecular systems. Table 10 also
shows how much individual steps contribute to the total wall
time. For most systems, the computation of the exchange
energy is the rate-limiting step, but also, the transformations of
the three-center integrals require a significant fraction of the
overall compute time. Note that the separate treatment of
Coulomb and exchange contributions in the ω-RI-CDD-MP2
method allows for even more efficient SOS-MP2 calculations
by simply omitting the exchange contributions. On the basis of
the timings from Table 10, one can expect a ω-SOS-RI-CDD-
MP2 method to be faster by roughly a factor of 2. The effective
scaling for the DNA strands is also shown in Table 10. The
effective scaling decreases for the larger DNA strands and
reaches a value of 1.90 between AT8 and AT16. This
demonstrates that subquadratic scaling can be achieved also
for realistic systems.

Table 9. Total Wall Times in Seconds and Scaling in
Calculations for Linear n-Alkanes with the def2-SVP Basis
Set and 5 Laplace Pointsa

#carbon atoms #basisf. wall time scaling

10 250 7
20 490 33 2.32
40 970 121 1.90
60 1450 230 1.59
100 2410 494 1.50
200 4810 1277 1.37
300 7210 2400 1.56

aThe scaling exponents are computed relative to the calculation on
the previous system.

Figure 6. Left: Numbers of computed three-center and four-center integrals for linear alkanes with 100 to 300 carbon atoms. Right: The number of
significant ij pairs from the ij prescreening and the number of elements in the lists ̲Q( ) i are shown. All values refer to the first Laplace point only.

Figure 7. Timings on linear n-alkanes with up to 160 carbon atoms.
The def2-TZVP basis set in combination with the thresholds from
Table 8 was used in all calculations. The ω-RI-CDD-MP2 method
(red) is compared to RI-CDD-MP2 (blue) and canonical RI-MP2
(green). The inset shows the timings for the alkanes with up to 40
carbon atoms.
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5. CONCLUSION
We presented a new method for the efficient computation of
MP2 energies denoted as ω-RI-CDD-MP2. Local MOs
obtained from a Cholesky decomposition of density and
pseudodensity matrices and an erfc-attenuated Coulomb
metric used for the RI approximation provide a high degree
of sparsity in the occurring intermediates. This sparsity is
exploited with efficient integral screening techniques and a
sparse linear algebra approach called natural blocking. It was
demonstrated in test calculations that the errors introduced by
the used approximations can be systematically decreased by
tightening the corresponding thresholds. Timings on alkane
chains and DNA strands were performed with thresholds that
allow one to obtain chemically accurate correlation energies
also for large molecular systems. It was shown that the method
displays effective subquadratic scaling behavior in conjunction
with a small prefactor for sufficiently large and extended
molecules. For both alkanes and DNA strands, significant

speed-ups compared to the RI-CDD-MP2 method are
observed. The largest considered DNA system with 1052
atoms, 11 230 basis functions, and 37 248 auxiliary functions
required a computation time of 35.6 h on a single node, which
illustrates the potential of the method for applications to large
biomolecular systems.
Further improvements might be possible by using iterative

orbital localization techniques in order to increase the locality
of Cholesky-MOs and Cholesky-pseudo-MOs. The applic-
ability of the method might be extended by developing
efficient parallelization schemes or by adapting the method to
GPUs. The basis set error could be reduced by combining the
method with explicitly correlated F12 approaches. Since the
method relies only on integral screening and sparse linear
algebra and not on any kind of domain approximation or
fragmentation, no problems with discontinuities in the
potential energy surfaces are to be expected, which makes
the accurate and reliable computation of gradients possible. In
future work, the development of analytical derivatives would
therefore be desirable in order to allow for accurate and
efficient computations of properties of large molecules.
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In Tab. 1, the results of benchmark calculations on the S22 test set are shown. Note that two different
references are used. All calculations with ω-RI-CDD-MP2 employ RI with an attenuated Coulomb metric
and an ω-value of 0.1 and furthermore employ a Laplace-transformation. The reference denoted as ω-RI-
CDD-MP2exact also contains these two sources of error, but no additional approximations. The deviations
from ω-RI-CDD-MP2exact thus show how large the errors due to integral screening and natural blocking
are.

For all integral screening and natural blocking thresholds considered in Tab. 1, fast convergence
towards the ω-RI-CDD-MP2exact reference is observed if the thresholds are lowered. The deviations
from canonical RI-MP2, which are also shown in Tab. 1, are significantly larger and converge to a
constant value upon lowering the thresholds. The remaining deviations are mostly caused by the use of
an attenuated Coulomb metric instead of a standard Coulomb metric for the RI.
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Table 1: Benchmark calculations on all monomers and dimers from the S22 test set for all ϑ-thresholds.
Mean absolute viations (MAD) and maximum absolute deviations (MAX) are shown. The errors are
computed either relative to canonical RI-MP2 or to ω-RI-CDD-MP2exact, which refers to the ω-RI-
CDD-MP2 method with Laplace transformation and attenuated Coulomb metric (ω = 0.1) as the only
approximations. 7 Laplace-points are used for [S8]5; 8 Laplace-points in all other calculations. The
def2-SVP basis set is employed in all calculations. All values are given in kcal/mol.

Error vs. ω-RI-CDD-MP2exact Error vs. RI-MP2

threshold value MAD MAX MAD MAX

ϑ3c 10−5 1.17× 10−5 5.22× 10−5 1.01× 10−2 2.59× 10−2

10−6 1.10× 10−6 6.84× 10−6 1.01× 10−2 2.58× 10−2

10−7 1.06× 10−7 6.28× 10−7 1.01× 10−2 2.58× 10−2

10−8 2.66× 10−8 4.39× 10−7 1.01× 10−2 2.58× 10−2

ϑschwarz 10−8 8.64× 10−3 7.22× 10−2 1.14× 10−2 5.54× 10−2

10−9 5.58× 10−4 5.00× 10−3 9.61× 10−3 2.57× 10−2

10−10 3.51× 10−5 3.58× 10−4 1.00× 10−2 2.58× 10−2

10−11 2.38× 10−6 2.09× 10−5 1.01× 10−2 2.58× 10−2

ϑij 10−4 7.75× 10−2 3.14× 10−1 6.78× 10−2 2.98× 10−1

10−5 7.46× 10−3 3.08× 10−2 6.14× 10−3 1.99× 10−2

10−6 6.16× 10−4 2.75× 10−3 9.54× 10−3 2.53× 10−2

10−7 6.03× 10−5 2.92× 10−4 1.00× 10−2 2.58× 10−2

ϑNB 10−4 4.68× 10−2 5.75× 10−1 4.70× 10−2 5.66× 10−1

10−5 1.21× 10−5 3.30× 10−4 1.00× 10−2 2.58× 10−2

10−6 8.56× 10−8 1.82× 10−6 1.01× 10−2 2.58× 10−2

10−7 3.04× 10−8 6.90× 10−7 1.01× 10−2 2.58× 10−2

ϑiaP
NB 10−4 1.54× 10−2 5.72× 10−1 2.06× 10−2 5.63× 10−1

10−5 8.37× 10−6 2.88× 10−4 1.01× 10−2 2.58× 10−2

10−6 4.56× 10−8 1.07× 10−6 1.01× 10−2 2.58× 10−2

10−7 3.14× 10−8 4.39× 10−7 1.01× 10−2 2.58× 10−2
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4
Conclusion

In this thesis, several contributions to the field of accurate and efficient electronic-
structure methods— especially the increasingly popular and important ACFDTmethods
— were presented. The six most important bottlenecks of the promising random phase
approximation, being the high computational cost, the high memory requirements, the
missing variational optimization of the energy, the negative impact of a poor reference,
the slow convergence with the basis-set size, and the self-correlation problem, were
addressed subject to the constraint to obtain low- and linear-scaling electronic-structure
methods.

By utilizing optimized integral and transformation schemes, the computational cost
of the already efficient AO-RI-RPA method[50,51] was reduced further by a factor of
four, while at the same time increasing its accuracy compared to canonical MO-RI-RPA
by orders of magnitude. Additionally, a multi-node parallel algorithm was developed,
which not only allows to evaluate RPA correlation energies in a fraction of the time of
former theories, but also leads to a scalable decrease of the memory requirements by
distributing them over multiple nodes. To decrease the memory requirements further, a
new and elegant way of introducing local Cholesky orbitals was presented, enabling
the transformation of the large third-order integral tensor at an early stage and thus
decreasing the memory requirements by a factor of Nbasis/Nocc on a single compute node.

Furthermore, an efficient self-consistent minimization of the total RPA energy with
respect to the one-particle density matrix in the atomic-orbital space was presented,
which scales only with the second power of the system size. The method makes the
total RPA energy stationary with respect to changes in the orbitals/density matrix and
in addition eliminates the problems arising due to poor reference orbitals and orbital
energies.
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Besides that, a linear-scaling range-separated RPA method was put forward. Due to
the high efficiency of the method, a detailed benchmark of range-separated RPA became
possible. It was confirmed that range-separated RPA indeed shows faster convergence
with the size of the basis set and reduces the well-known self-correlation error, since the
critical short-range part of the electron-electron interaction is described by semi-local
density functional theory. Additionally, it was demonstrated that the performance of
range-separated RPA is more balanced over a broad range of chemical problems than
that of standard post-KS RPA, making range-separated RPA an interesting candidate
for future developments.
Moreover, a RPA-based generalized Kohn–Sham method was developed, which

combines the above-mentioned advantages including local atomic/Cholesky orbitals,
range-separation, and self-consistency. The method was shown to perform better than
standard post-KS RPA, self-consistent RPA, and range-separated RPA on general main
group thermochemistry, kinetics, and noncovalent interactions and even outperforms
the popular G0W0 method in calculating ionization potentials and fundamental gaps.
Range-separation is one possible way to counteract the self-correlation inherent

in the RPA correlation functional. However, a more rigorous way is to include the
missing exchange-effects causing these problems. In the present work also contributions
in this direction were made by combining the developments on standard RPA with
newly developed integral estimates for screening purposes to put forward a low- and
linear-scaling framework for RPA with exchange methods.

Finally, the tools to develop low-scaling RPA with exchange methods were transferred
to MP2 and complemented with efficient linear-algebra routines, yielding a highly
efficient and subquadratic-scaling MP2 method.

Overall, the field of electronic-structure theory was extended by several new methods
and various broadly applicable tools to devise approaches, managing the difficult
task of pairing accuracy with efficiency. In this way, the present work contributed to
reaching one of the major goals in quantum chemistry: developing highly accurate and
universally applicable electronic-structure methods with a tractable computational cost.
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