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Abstract 

For the first part of this thesis the addition of various organozinc reagents to [1.1.1]propellane 

was investigated. This was first achieved using allylic organozinc halides (Scheme A). The 

additions proceeded with an extraordinarily high stereoselectivity, as only the products 

resulting from an allylic rearrangement were observed. The resulting zincated BCPs were 

successfully trapped using Negishi-type cross-couplings, thiolations, cobalt-catalyzed 

electrophilic aminations, as well as copper-mediated allylations and acylations. The protocol 

showed a good tolerance of functional groups, such as esters and nitriles, due to the 

relatively low reactivity of the organozinc halides. 

 

Scheme A. Summary of the addition of allylic organozinc halides to [1.1.1]propellane. 

 

The methodology was extended to various zinc enolates, prepared from ketones, esters and 

nitriles through the deprotonation with LDA, followed by a transmetalation with ZnCl2 

(Scheme B). Once again the resulting zincated BCPs were submitted to different electrophilic 

trapping reactions, such as protonations, copper-catalyzed allylations, palladium-catalyzed 

Negishi-type cross-couplings, acylations and cyanations. The protocol was also used to 

synthesize a BCP-bioisoster of the synthetic opioid pethidine. 



VIII 

 

Scheme B. Summary of the addition of zinc enolates to [1.1.1]propellane. 

 

The high regioselectivity of the reaction was rationalized using DFT calculations, which 

showed that the allylic rearrangement proceeds via a cyclic transition state involving ZnBr2, 

LiCl, the allylic zinc halide and [1.1.1]propellane. 

  



IX 

The topic of the second part of this thesis was the metalation of various nitrogen containing 

heterocycles using TMP bases. This was first achieved in the case of 1,3,4-oxadiazole using 

the base TMP2Zn∙2LiCl (Scheme C). The resulting zincated 1,3,4-oxadiazole was reacted in 

a series of Negishi-type cross-couplings with electron-deficient, electron-rich and heterocyclic 

iodides. The mono substituted 1,3,4-oxadiazoles were then metalated a second time using 

TMP2Zn∙2MgCl2∙2LiCl, followed by a series of copper-catalyzed electrophilic aminations 

using hydroxylamino benzoates. 

 

Scheme C. Summary of the functionalization of 1,3,4-oxadiazole. 

 

N-propyl and N-benzyl 1,2,4-triazole were investigated as a second heterocyclic system 

(Scheme D). In this case the first metalation was achieved using TMPMgCl∙LiCl or 

TMPZnCl∙LiCl. The metalated 1,2,4-triazoles were subsequently submitted to a variety of 

electrophilic trapping reactions, including copper-catalyzed allylations and acylations, as well 

as Negishi-type cross-couplings and copper-catalyzed electrophilic aminations. A second 

metalation was performed on two different substrates using the same TMP bases. 



X 

 

Scheme D. Summary of the functionalization of 1,2,4-triazoles. 

 

Finally, the functionalization of 1H-imidazo[1,2-b]pyrazole was explored (Scheme E). The 

free NH-group of the heterocycle was protected with a SEM-group. The first functionalization 

was achieved via a selective bromination in the 7-position using NBS, followed by a bromine-

magnesium exchange and different electrophilic trapping reactions. A second selective 

metalation in the 3-position was performed using TMPMgCl∙LiCl. The metalated 

intermediates could once again be reacted with a variety of electrophiles. The third 

metalation with (TMP)2Zn∙MgCl2∙2LiCl went selectively in the 2-position and allowed the 

synthesis of a multitude of acylation and cross-coupling products. 
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Scheme E. Summary of the functionalization of 1H-imidazo[1,2-b]pyrazole. 

 

The treatment of 2,3,7-trifunctionalized 1H-imidazo[1,2-b]pyrazoles with 

(TMP)2Zn∙MgCl2∙2LiCl let to the formation of a series of novel 1H,1'H,5H,5'H-6,6'-biimidazo-

[1,2-b]pyrazolylidenes, which exhibited fluorescence in solution under UV-light (Scheme F). 
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Scheme F. Summary of the synthesis of novel 1H,1'H,5H,5'H-6,6'-biimidazo[1,2-b]-

pyrazolylidenes. 

 



 

 

 

 

 

 

 

 

Part I: Highly Regioselective Addition of 

Organozinc Reagents to [1.1.1]Propellane 
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1 Introduction 

1.1 Properties of [1.1.1]Propellane 

The term propellane was first introduced in 1966 by Ginsburg et. al. to describe tricyclic 

hydrocarbons, which share a common carbon-carbon single bond.1 The established 

shortened nomenclature defines them as [k.l.m]propellanes, where k, l and m indicate the 

size of the three bridges (k ≥ l ≥ m). Based on the size of the rings forming the propellane the 

hybridization of the bridgehead carbons changes significantly, thus influencing the reactivity 

of the central bond. Propellanes with large rings (k + l + m > 8) usually behave similar to 

common hydrocarbons, while small-ring propellanes (k + l + m ≤ 8) exhibit a unique reactivity 

that is typically attributed to their highly strained nature.2 This unique reactivity is especially 

prevalent in the smallest member of the propellane family, [1.1.1]propellane and will be 

discussed in the following sections. 

 

1.1.1 Synthesis of [1.1.1]Propellane 

[1.1.1]Propellane was first synthesized by Wiberg et. al. in 1982 through the reaction of 

1,3-dibromobicyclo[1.1.1]pentane with butyllithium.3 Subsequently, Szeimies et. al. develop-

ped a more convenient way to access [1.1.1]propellane,4 which is still being used to this day 

with only minor modifications. For this synthesis 3-chloro-2-(chloromethyl)prop-1-ene is first 

converted to 1,1-dibromo-2,2-bis(chloromethyl)cyclopropane via a cyclopropanation with 

dibromocarbene. Then two subsequent bromine-lithium exchanges with methyllithium lead to 

two intramolecular ring closures and thus form [1.1.1]propellane (Scheme 1).5 The tricyclic 

compound is surprisingly stable even at room temperature and can be stored in ethereal 

solution below 0 °C for months without significant amounts of decomposition or 

polymerization.6 

                                                
1 J. Altman, E. Babad, J. Itzchaki, D. Ginsburg, Tetrahedron 1966, Suppl. 8, 279-304. 
2 A.-D. Schlüter, H. Bothe, J.-M. Gosau, Makromol. Chem. 1991, 192, 2497-2519. 
3 K. B. Wiberg, F. H. Walker, J. Am. Chem. Soc. 1982, 104, 5239-5240. 
4 a) K. Semmler, G. Szeimies, J. Belzner, J. Am. Chem. Soc. 1985, 107, 6410-6411; b) J. 
Belzner, U. Bunz, K. Semmler, G. Szeimies, K. Opitz, A.-D. Schlüter, Chem. Ber. 1989, 122, 
397-398. 
5 K. R. Mondanaro, W. P. Daily, Org. Synth. 1998, 75, 98-101. 
6 K. B. Wiberg, S. T. Waddell, J. Am. Chem. Soc. 1990, 112, 2194-2216. 



3 
 

 

Scheme 1. Synthesis of [1.1.1]propellane according to Szeimies.4,5 

 

1.1.2 Nature of the Central Carbon-Carbon Bond 

A consequence of the bonding situation in [1.1.1]propellane is that the bridgehead carbons 

deviate strongly from the tetrahedral coordination typically found in sp3-hybridized systems, 

as the central bond is inverted. The exact nature of this central bond has been extensively 

studied and debated over the years.  

On one hand there is evidence pointing at a strong bonding interaction between the 

bridgehead carbons: From the enthalpy change during the conversion of 

bicyclo[1.1.1]pentane into [1.1.1]propellane plus two hydrogen atoms Wiberg et. al. 

calculated the strength of the central bond to be between approximately 65 kcal∙mol−1 by 

assuming a C-H bond dissociation energy of 104 kcal∙mol−1 (Scheme 2).3 In addition, a 

diradical triplet state of [1.1.1]propellane was calculated to lie 79 kcal∙mol−1 higher than the 

singlet state.7 The exceptionally short distance between the bridgehead carbons of only 

1.6 Å, as determined by low-temperature X-ray diffraction8 and gas-phase electron 

diffraction9 also hints at a strong bonding interaction alongside the central bond. 

 

Scheme 2. Calculation of the strength of the central bond in [1.1.1]propellane as performed 

by Wiberg.3 

 

On the other hand some observations seem to contradict the existence of the central bond: It 

was discovered that the electron density at the bond critical point of the bridge bond is 

                                                
7 a) J. E. Jackson, L. C. Allen, J. Am. Chem. Soc. 1984, 106, 591-599; b) D. Feller, E. R. 
Davidson, J. Am. Chem. Soc. 1987, 109, 4133-4139. 
8 P. Seiler, Helv. Chim. Acta 1990, 73, 1574-1585. 
9 L. Hedberg, K. Hedberg, J. Am. Chem. Soc. 1985, 107, 7257-7260. 
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depleted, as indicated by a positive Laplacian ∇2ρ(r) of the electron density ρ(r).10 The 

Laplacian is the sum of all unmixed partial derivatives in the Cartesian coordinates xi and 

thus corresponds to the trace of the Hessian matrix (equation 1): 

∇2= ∑
𝜕2

𝜕𝑥𝑖
2

𝑛

𝑖=1

 (1) 

The bond critical point refers to a maximum, minimum or saddle point of the charge density 

along the binding path between two atoms.11 A positive Laplacian of the electron density at 

the bond critical point is typically associated with ionic bonds. As the central bond is formed 

between two identical atoms with identical electronegativity one would however expect it to 

be of covalent nature.12 In addition, [1.1.1]propellane also displays a negative total overlap 

population, which according to Mulliken points at an anti-bonding interaction.13 Molecular 

orbital calculations resulted in a closed-shell singlet state with the HOMO being a bonding 

molecular orbital connecting the bridgehead atoms, and the LUMO being its anti-bonding 

counterpart.14 However, the HOMO has an overall destabilizing character, as evidenced by 

the fact that it gets stabilized when the central bond is stretched.7a,14 In addition, the removal 

of electron density from the HOMO, either through ionization to the radical cation or through 

halogen bonding, results in a shortening of the bridge bond.7b,15 

 

1.1.3 The Central Bond in [1.1.1]Propellane as a Charge-Shift Bond 

A possible explanation for the seemingly contradicting properties of the central bond in 

[1.1.1]propellane was proposed by Shaik et. al. who classified it as a “charge-shift bond”:16 In 

modern valence bond (VB) theory the VB wave function Ψ(VB) of a bond A-X is seen as a 

combination of a covalent form Φcov (A∙-∙X), which is stabilized via spin pairing, and two ionic 

forms Φion(A+X−) and Φ’ion(A−X+), which are stabilized via electrostatic interactions 

(equation 2): 

                                                
10 M. Messerschmidt, S. Scheins, L. Grubert, M. Plätzel, G. Szeimies, C. Paulmann, P. 
Luger, Angew. Chem. Int. Ed. 2005, 44, 3925-3928. 
11 K. B. Wiberg, R. F. W. Bader, C. D. H. Lau, J. Am. Chem. Soc. 1987, 109, 985-1001. 
12 Y. Yang, J. Phys. Chem. A 2012, 116, 10150-10159. 
13 M. D. Newton, J. M. Schulman, J. Am. Chem. Soc. 1972, 94, 773-778. 
14 W. D. Stohrer, R. Hoffmann, J. Am. Chem. Soc. 1972, 94, 779-786. 
15 a) E. Honegger, H. Huber, E. Heilbronner, W. P. Dailey, K. B. Wiberg, J. Am. Chem. Soc. 
1985, 107, 7172-7174; b) J. Joy, E. Akhil, E. D. Jemmis, Phys. Chem. Chem. Phys. 2018, 
20, 25792-25798. 
16 a) S. Shaik, D. Danovich, B. Silvi, D. L. Lauvergnat, P. C. Hiberty, Chem. Eur. J. 2005, 11, 
6358-6371; b) S. Shaik, D. Danovich, W. Wu, P. C. Hiberty, Nat. Chem. 2009, 1, 443-449. 
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Ψ(VB) = c1Φcov + c2Φion + c3Φ’ion (2) 

In conventional covalent or ionic bonds only one of these three terms constitutes the majority 

of the bonding energy. Even in polar-covalent bonds the bonding energy is typically mostly 

attributed to Φcov with one of the ionic terms being of secondary importance. However, in 

some cases, for example in the F2 and HF molecules, this simplified description is not able to 

correctly describe the bonding situation, as there is a significant amount of covalent-ionic 

mixing. This mixing leads to a resonance energy stabilization, the “charge-shift resonance 

energy” (REcs), which is defined as the energy difference between the ground state and the 

major VB structure (either covalent or ionic). Bonds in which the REcs contributes to more 

than 50% of the overall bonding energy are considered charge-shift bonds.16 Shaik et. al. 

calculated Φcov to be the predominant component of the central bond in [1.1.1]propellane with 

a weight of 62%. The two ionic components each have a weight of 19%. However, the 

calculated energy of the covalent VB structure of [1.1.1]propellane at the experimentally 

determined bridgehead bond length of 1.6 Å was +11 kcal∙mol−1, while the ground state lies 

at −61 kcal∙mol−1. Thus, the bridgehead bond in [1.1.1]propellane exhibits an exceptionally 

large REcs of 72 kcal∙mol−1 and can be classified as a charge-shift bond. In addition, the 

covalent VB structure was found to be repulsive with its energy decreasing when the 

bridgehead bond is stretched from 1.6 to 1.8 Å. Only when accounting for REcs the calculated 

ground state correctly predicts the energetic minimum at the equilibrium distance of 1.6 Å 

(Figure 1). Such a discrepancy between the covalent dissociation curve and the ground state 

dissociation curve is also typical for charge-shift bonds.17 

                                                
17 W. Wu, J. Gu, J. Song, S. Shaik, P. C. Hiberty, Angew. Chem. Int. Ed. 2009, 48, 1407-
1410. 
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Figure 1. Dissociation curves for the ground state, covalent VB structure and the nonbonding 

state of [1.1.1]propellane as calculated by Shaik at the BOVB level.17 

 

1.2 From [1.1.1]Propellane to Bicyclo[1.1.1]pentanes 

A consequence of the unique bonding situation in [1.1.1]propellane is its “omniphilic” 

reactivity towards cations, anions as well as radicals.18 While the reactions with cationic 

reagents typically result in a mostly unselective cage fragmentation,19 the reactions with 

anions20 and radicals21 result in the formation of bicyclo[1.1.1]pentanes (BCPs). This includes 

                                                
18 A. J. Sterling, A. B. Dürr, R. C. Smith, E. A. Anderson, F. Duarte, Chem. Sci. 2020, 11, 
4895-4903. 
19 a) K. B. Wiberg, W. P. Dailey, F. H. Walker, S. T. Waddell, L. S. Crocker, M. D. Newton, 
J. Am. Chem. Soc. 1985, 107, 7247-7257; b) D. Lasányi, G. L. Tolnai, Org. Lett. 2019, 21, 
10057-10062; c) S. Yu, A. Noble, R. B. Bedford, V. K. Aggarwal, J. Am. Chem. Soc. 2019, 
141, 20325-20334. 
20 a) R. Gianatassio, J. M. Lopchuk, J. Wang, C.-M. Pan, L. R. Malins, L. Prieto, T. A. Brandt, 
M. R. Collins, G. M. Gallego, N. W. Sach, J. E. Spangler, H. Zhu, J. Zhu, P. S. Baran, 
Science 2016, 351, 241-246; b) J. M. Lopchuk, K. Fjelbye, Y. Kawamata, L. R. Malins, C.-M. 
Pan, R. Gianatassio, J. Wang, L. Prieto, J. Bradow, T. A. Brandt, M. R. Collins, J. Elleraas, J. 
Ewanicki, W. Farrell, O. O. Fadeyi, G. M. Gallego, J. J. Mousseau, R. Oliver, N. W. Sach, J. 
K. Smith, J. E. Spangler, H. Zhu, J. Zhu, P. S. Baran, J. Am. Chem. Soc. 2017, 139, 3209-
3226; c) J. M. E. Hughes, D. A. Scarlata, A. C.-Y. Chen, J. D. Burch, J. L. Gleason, Org. Lett. 
2019, 21, 6800-6804; for the addition of organometallics see section 1.3. 



7 
 

the anionic strain-release aminations by Baran20a,b and Gleason,20c as well as the 

triethylborane catalyzed radical additions by Anderson21e (Scheme 3). 

 

Scheme 3. Strain-release amination20b and triethylboran catalyzed radical addition to 

[1.1.1]propellane.21e 

 

The bicyclo[1.1.1]pentane moiety has sparked a lot of interest in recent years as a bioisoster 

in pharmaceutical compounds. As the dihedral angle between the two substituents in a BCP 

derivative is 180° they have been explored as bioisosteres for both para-phenyl22 as well as 

                                                                                                                                                   
21 a) K. B. Wiberg, S. T. Waddell, K. Laidig, Tetrahedron Lett. 1986, 27, 1553-1556; b) K. B. 
Wiberg, S. T. Waddell, J. Am. Chem. Soc. 1990, 112, 2194-2216; c) J. Kanazawa, K. Maeda, 
M. Uchiyama, J. Am. Chem. Soc. 2017, 139, 17791-17794; d) R. M. Bär, S. Kirschner, M. 
Nieger, S. Bräse, Chem. Eur. J. 2018, 24, 1373-1382; e) D. F. J. Caputo, C. Arroniz, A. B. 
Dürr, J. J. Mousseau, A. F. Stepan, S. J. Mansfield, E. A. Anderson, Chem. Sci. 2018, 9, 
5295-5300; f) M. L. J. Wong, J. J. Mousseau, S. J. Mansfield, E. A. Anderson, Org. Lett. 
2019, 21, 2408-2411; g) J. Nugent, C. Arroniz, B. R. Shire, A. J. Sterling, H. D. Pickford, M. 
L. J. Wong, S. J. Mansfield, D. F. J. Caputo, B. Owen, J. J. Mousseau, F. Duarte, E. A. 
Anderson, ACS Catal. 2019, 9, 9568-9574; h) S. K. Rout, G. Marghem, J. Lan, T. Leyssens, 
O. Riant, Chem Commun. 2019, 55, 14976-14979; i) J. Nugent, B. R. Shire, D. F. J. Caputo, 
H. D. Pickford, F. Nightingale, I. T. T. Houlsby, J. J. Mousseau, E. A. Anderson, Angew. 
Chem. Int. Ed. 2020, 59, 11866-11870; j) J. H. Kim, A. Ruffoni, Y. S. S. Al-Faiyz, N. S. 
Sheikh, D. Leonori, Angew. Chem. Int. Ed. 2020, 59, 8225-8231. 
22 a) A. F. Stepan, C. Subramanyam, I. V. Efremov, J. K. Dutra, T. J. O’Sullivan, K. J. DiRico, 
W. S. McDonald, A. Won, P. H. Dorff, C. E. Nolan, S. L. Becker, L. R. Pustilnik, D. R. Riddel, 
G. W. Kauffman, B. L. Kormos, L. Zhang, Y. Lu, S. H. Capetta, M. E. Green, K. Karki, E. 
Sibley, K. P. Atchinson, A. J. Hallgreen, C. E. Oborski, A. E. Robshaw, B. Sneed, C. J. 
O’Donnell, J. Med. Chem. 2012, 55, 3414-3424; b) Y. P. Auberson, C. Brocklehurst, M. 
Furegati, T. C. Fessard, G. Koch, A. Decker, L. La Vecchia, E. Briard, ChemMedChem 2017, 
12, 590-598; c) Y. L. Goh, Y. T. Cui, V. Pendharkar, V. A. Adsool, ACS Med. Chem. Lett. 
2017, 8, 516-520. 
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alkyne23 moieties (Scheme 4), for example in resveratol (para-phenyl)22c or tazarotene 

(alkyne).23 When substituting the para-phenyl unit with a bicyclo[1.1.1]pentane a significant 

improvement of some physicochemical properties over multiple different examples was 

observed. This included a decrease in undesired nonspecific binding (NSB) as well as an 

increased water solubility.22b In addition, BCPs have been used as potential bioisosteres for 

terminal tert-butyl groups,24 as well as rigid-linear linkers in rods, liquid crystals, molecular 

rotors and polymers.25 

 

Scheme 4. Bicyclo[1.1.1]pentanes as bioisosteres of para-phenyl22c and alkyne23 moieties. 

 

1.3 Addition of Organometallic Compounds to [1.1.1]Propellane 

The first successful addition of organometallic reagents to [1.1.1]propellane was described in 

1998 by S. Guffler in his Ph.D. thesis under the guidance of G. Szeimies.26 His work included 

the addition of several aryl and alky Grignard reagents to [1.1.1]propellane, a reactivity that 

was further developed by de Meijere,27 Knochel,23 Aggarwal28 and Cossy.29 The main 

                                                
23 I. S. Makarov, C. E. Brocklehurst, K. Karaghiosoff, G. Koch, P. Knochel, Angew. Chem. Int. 
Ed. 2017, 56, 12774-12777. 
24 a) M. R. Barbachyn, D. K. Hutchinson, D. S. Toops, R. J. Reid, G. E. Zurenko, B. H. Yagi, 
R. D. Schaadt, J. W. Allison, Bioorg. Med. Chem. Lett. 1993, 3, 671-676; b) M. V. Westphal, 
B. T. Wolfstädter, J.-M. Plancher, J. Gatfield, E. M. Carreira, ChemMedChem 2015, 10, 461-
469. 
25 a) A. M. Dilmaç, E. Spuling, A. de Meijere, S. Bräse, Angew. Chem. Int. Ed. 2017, 56, 
5684-5718; b) G. M. Locke, S. S. R. Bernhard, M. O. Senge, Chem. Eur. J. 2019, 25, 4590-
4647. 
26 S. Guffler, Wege zu 1,3-disubstituierten Bicyclo[1.1.1]pentanen: synthetische und mecha-
nistische Aspekte, Ph.D. thesis, Humboldt-Universität Berlin, 1998. 
27 M. Messner, S. I. Kozhushkov, A. de Meijere, Eur. J. Org. Chem. 2000, 1137-1155. 
28 a) S. Yu, C. Jing, A. Noble, V. K. Aggarwal, Angew. Chem. Int. Ed. 2020, 59, 3917-3921; 
b) S. Yu, C. Jing, A. Noble, V. K. Aggarwal, Org. Lett. 2020, 22, 5650-5655. 
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advantage of this methodology is the formation of BCP-Grignards, which can be further 

functionalized to access a multitude of different BCP derivatives. The range of reported 

follow-up reactions includes nickel- and palladium-catalyzed cross couplings,23,27 three-

component couplings with organoboronic esters,28a iridium-catalyzed asymmetric allylic 

substitutions,28b copper-catalyzed alkylations,29 and the reaction with ethyl chloroformate23 

(Scheme 5). 

 

Scheme 5. Addition of Grignard reagents to [1.1.1]propellane followed by different 

functionalizations.23,26-29 

 

In addition, some reactions of [1.1.1]propellane with organo-alkali reagents have been 

reported: Aggarwal et. al. achieved a successful addition of secondary and tertiary 

alkyllithium reagents, whereas primary alkyllithiums were unreactive at −78 °C and let to 

polymerization at elevated temperatures.28a Walsh et. al. developed a synthetic route towards 

BCP benzylamines by adding 2-azaallyllithiums to [1.1.1]propellane, followed by an acidic 

work-up (Scheme 6a).30 The same group also reported the addition of sodium 2-aryl-1,3-

                                                                                                                                                   
29 C. Andersen, V. Ferey, M. Daumas, P. Bernardelli, A. Guérinot, J. Cossy, Org. Lett. 2020, 
22, 6021-6025. 
30 R. A. Shelp, P. J. Walsh, Angew. Chem. Int. Ed. 2018, 57, 15857-15861. 



10 
 

dithiyl anions, leading to BCP dithianes, which could easily be transformed into either BCP 

ketones or gem-difluoro BCPs31 (Scheme 6b). 

 

Scheme 6. Addition of 2-azaallyllithiums30 and sodium 2-aryl-1,3-dithiyl anions31 to 

[1.1.1]propellane. 

 

1.4 Organozinc Reagents 

Organozinc reagents were among the first synthesized organometallic reagents, with 

E. Frankland reporting the formation of ethyl zinc iodide and diethylzinc starting from ethyl 

iodide and granulated zinc in 1849.32 

Due to the significantly higher electronegativity of zinc (1.65 calculated according to the 

Pauling scale) compared to lithium (0.98) or magnesium (1.31),33 the carbon-metal bond in 

organozinc reagents is less polarized, which results in a lower reactivity (Figure 2). This 

leads to an increased functional group tolerance, allowing for clean reactions in the presence 

of moieties that would be attacked by organomagnesium or organolithium reagents, such as 

                                                
31 N. Trongsiriwat, Y. Pu, Y. Nieves-Quinones, R. A. Shelp, M. C. Kozlowski, P. J. Walsh, 
Angew. Chem. Int. Ed. 2019, 58, 13416-13420. 
32 E. Frankland, Liebigs Ann. Chem. 1849, 71, 171-213. 
33 a) L. Pauling, J. Am. Chem. Soc. 1932, 54, 3570-3582; b) A. L. Allred, J. Inorg. Nucl. 
Chem. 1961, 17, 215-221. 



11 
 

carbonyl compounds or nitriles.34 This functional group tolerance is even observed in the 

case of allylic organozinc reagents, which are significantly more reactive than alkylic, 

aromatic or even benzylic organozinc reagents, due to the higher ionic character of the allylic 

carbon-zinc bond.35 

 

Figure 2. Comparison of the electronegativities of lithium, magnesium and zinc according to 

Pauling.33 

 

There are three main ways to synthesize organozinc reagents.36 The most common strategy 

is the oxidative insertion of elemental zinc into organic halides.37 These reactions are 

especially successful if activated zinc is utilized, which can be generated through the 

reduction of zinc chloride with lithium naphthalenide (Rieke-zinc).38 Another way to improve 

                                                
34 a) R. Dieter, Tetrahedron 1999, 55, 4177-4236; b) T. Harada in The Chemistry of 
Organozinc Compounds (Ed.: I. M. Zvi Rappoport), John Wiley & Sons, Ltd, Chichester, UK, 
2007, pp. 685-711; c) P. Knochel, H. Leuser, L.-Z. Cong, S. Perrone, F. F. Kneisel in 
Handbook of Functionalized Organometallics (Ed. P. Knochel), John Wiley & Sons, Ltd, New 
York, United States, 2008, pp. 251-346. 
35 a) G. Courtois, A. Al-Arnaout, L. Miginiac, Tetrahedron Lett. 1985, 26, 1027-1030; b) P. 
Knochel, R. Singer, Chem. Rev. 1993, 93, 2117-2188; c) M. Nakamura, A. Hirai, M. Sogi, E. 
Nakamura, J. Am. Chem. Soc. 1998, 120, 5846-5847; d) I. Marek, G. Sklute, Chem. 
Commun. 2007, 1683-1691; e) H. Ren, G. Dunet, P. Mayer, P. Knochel, J. Am. Chem. Soc. 
2007, 129, 5376-5377; f) M. Ellwart, P. Knochel, Angew. Chem. Int. Ed. 2015, 54, 10662-
10665; g) Y. Dembélé, C. Belaud, P. Hitchcock, J. Villiéras, Tetrahedron Asymmetry 1992, 3, 
351-354; h) V. Nyzam, C. Belaud, F. Zammattio, J. Villiéras, Tetrahedron Asymmetry 1996, 
7, 1835-1843; i) C. Sämann, P. Knochel, Synthesis 2013, 45, 1870-1876. 
36 D. Haas, J. M. Hammann, R. Greiner, P. Knochel, ACS Catal. 2016, 6, 1540-1552. 
37 G. Dagousset, C. Francois, T. Leon, R. Blanc, E. Sansiaume-Dagousset, P. Knochel, 
Synthesis 2014, 46, 3133-3171. 
38 a) R. D. Rieke, R. T.-J. Li, T. P. Burns, S. T. Uhm, J. Org. Chem. 1981, 46, 4323-4324; 
b) L. Zhu, R. M. Wehmeyer, R. D. Rieke, J. Org. Chem. 1991, 56, 1445-1453; c) R. D. Rieke, 
M. V. Hanson, J. D. Brown, Q. J. Niu, J. Org. Chem. 1996, 61, 2726-2730; d) R. D. Rieke, 
Science 1989, 246, 1260-1264. 
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the insertion of elemental zinc into organic halides is the addition of lithium chloride to the 

reaction mixture (Scheme 7).39 

 

Scheme 7. Synthesis of organozinc reagents via oxidative insertion.39 

 

A further well-established way towards organozinc reagents is the transmetalation of lithium 

or magnesium organometallics with different zincII salts. This reactivity stems from the higher 

electronegativity of zinc compared to the other metals. Thus, the resulting organozinc 

reagent and the formed metal salt are thermodynamically more stable than the starting 

materials (Scheme 8).40 

 

Scheme 8. Synthesis of organozinc reagents via transmetalation.40 

 

                                                
39 a) A. Krasovskiy, V. Malakov, A. Gavryushin, P. Knochel, Angew. Chem. Int. Ed. 2006, 45, 
6040-6044; b) N. Boudet, S. Sae, P. Sinha, C.-Y. Liu, A. Krasovskiy, P. Knochel, J. Am. 
Chem. Soc. 2007, 129, 12358-12359. 
40 a) R. F. W. Jackson in Organozinc Reagents – A Practical Approach (Eds.: P. Knochel, P. 
Jones), Oxford University Press, Oxford, UK, 1999, pp. 37-56; b) S. Lemaire, I. N. Houpis, T. 
Xiao, J. Li, E. Digard, C. Gozlan, R. Liu, A. Gavryushin, C. Diène, Y. Wang, V. Farina, P. 
Knochel, Org. Lett. 2012, 14, 1480-1483. 
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Finally, the directed metalation of unsaturated, aromatic and heterocyclic molecules using 

various zinc TMP bases (TMP = 2,2,6,6-tetramethylpiperidyl) gives access to the corres-

ponding zinc reagents (Scheme 9).41 

 

Scheme 9. Synthesis of organozinc reagent via directed metalation.41 

 

  

                                                
41 a) T. Bresser, P. Knochel, Angew. Chem. Int. Ed. 2011, 50, 1914-1917; b) A. Unsinn, M. J. 
Ford, P. Knochel, Org. Lett. 2013, 15, 1128-1131; the different TMP bases are discussed in 
greater detail the introduction of Part II of this thesis. 
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2 Objective 

Unlike organomagnesium or organolithium reagents, an addition of organozinc halides to 

[1.1.1]propellane has not yet been reported. Indeed, preliminary experiments showed that 

alkyl-, aryl- and benzylzinc halides were not able to react with [1.1.1]propellane even under 

harsh conditions (100 °C, up to 60 h). Since allylic zinc halides display an enhanced 

reactivity due to a more polar carbon-zinc bond,35 it was envisioned that they could add to 

[1.1.1]propellane, allowing the formation of zincated BCPs (Scheme 10a). Subsequent 

trapping with various electrophiles (EY) would then provide double functionalized BCPs. A 

similar reactivity would be expected for zinc enolates generated from ketones and esters,42 

leading to a different class of zincated BCPs, which could also be trapped with various 

electrophiles (Scheme 10b). The objective was to optimize conditions for these additions. 

Another goal was to utilize this new protocol to synthesize a BCP-bioisostere of the synthetic 

opioid pethidine, which could then be compared to the original drug. Finally, this 

unprecedented reactivity should be rationalized via density-functional theory calculations. 

 

Scheme 10. Addition of allylic zinc halides and ketone and ester zinc enolates to 

[1.1.1]propellane, followed by trapping with electrophiles (EY). 

  

                                                
42 a) J. Dekker, A. Schouten, P. H. M. Budzelaar, J. Boersma, G. J. M. van der Kerk, 
J. Organomet. Chem. 1987, 320, 1-12; b) G. K. Jarugumilli, C. Zhu, S. P. Cook, Eur. J. Org. 
Chem. 2012, 1712-1715; c) A. Baba, M. Yasuda, Y. Nishimoto in Comprehensive Organic 
Synthesis II, Vol. 2 (Eds.: P. Knochel, G. A. Molander), Elsevier, Amsterdam, 2014, pp. 523-
542. 
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3 Results and Discussion 

3.1 Optimization of Reaction Conditions 

Reaction conditions for the addition to [1.1.1]propellane (1) were optimized using allylzinc 

bromide complexed with lithium chloride (2a). Under the conditions, that had been optimized 

for the addition of arylmagnesium halides to [1.1.1]propellane23 (1, 2.0 equiv of 

organometallic species, 50 °C, 65 h or 100 °C, 3 h, Table 1, entries 1 and 2), the desired 

functionalized BCP 4a was obtained in 95-96% yield after a copper mediated acylation with 

benzoyl chloride. This indicates that the intermediary zincated BCP of type 3 is very stable 

even at high temperatures. Further reaction temperature variation showed that the addition 

was completed after only 2 hours at 25 °C (entries 3 and 4). In comparison, the reaction of 

alkyl- and arylmagnesium halides with [1.1.1]propellane (1) requires 3-7 days at 25 °C, 

resulting in moderate yields.26-29 A reduction of the amount of zinc reagent to 1.5 equivalents 

lowered the yield to 71% (entry 5).  

 

Table 1. Screening of reaction conditions for the addition of allyl zinc bromide complexed 

with lithium chloride (2a) to [1.1.1]propellane (1) followed by copper-catalyzed acylation. 

 

entry equivalents of 2a reaction conditions yield [%][a] 

1 2.0 50 °C, 65 h   96[b] 

2 2.0 100 °C, 3 h 95 

3 2.0 25 °C, 1 h 88 

4 2.0 25 °C, 2 h   96[b] 

5 1.5 25 °C, 2 h   71[c] 

[a] GC-yields using undecane as an internal standard. [b] Isolated yield of analytically pure product. [c] No yield 

improvement was observed after an additional hour of reaction time. 

 

Interestingly, when switching to cinnamylzinc bromide complexed with lithium chloride (2b), 

only the regioisomer 4b was obtained in 93% yield (Scheme 11). The structure of this 

product was confirmed via X-ray analysis and indicates an allylic rearrangement of the 
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organozinc species 2b during the reaction. The other regioisomer 4b’ with the phenyl group 

attached to the terminal position of the allylic system was not observed.43 

 

 

Scheme 11. Addition of cinnamyl zinc bromide complexed with lithium chloride (2b) to 

[1.1.1]propellane (1) and X-ray structure of the resulting product 4b. 

 

3.2 Addition of Allylic Organozinc Halides to [1.1.1]Propellane 

With the optimized procedure in hand, a variety of BCP-derivatives were prepared using 

allylzinc bromide (4a, 4c-4g, Scheme 12), cinnamylzinc bromide (4b, 4h, 4i) and cyclohex-2-

en-1-ylzinc bromide (4j), as well as allylic zinc reagents derived from terpenoids,35f,44 such as 

prenol (4k), geraniol (4l) and ()-myrtenol (4m, 4n), in 70-97% yield. In addition, allylic zinc 

                                                
43 A test reaction with prenylmagnesium chloride showed that the reaction of allylic 
magnesium halides with [1.1.1]propellane (1) is also much quicker than the reaction of alkyl 
or aryl magnesium halides and was completed within 2 h at room temperature. The exclusive 
formation of the regioisomer that results from an allylic rearrangement was observed. This 
suggests that the reactions of allylic zinc and magnesium reagents with [1.1.1]propellane 
proceed via the same mechanism. 
44 a) G. Courtois, A. Al-Arnaout, L. Miginiac, Tetrahedron Lett. 1985, 26, 1027-1030; b) P. 
Knochel, R. Singer, Chem. Rev. 1993, 93, 2117-2188; c) M. Nakamura, A. Hirai, M. Sogi, E. 
Nakamura, J. Am. Chem. Soc. 1998, 120, 5846-5847; d) I. Marek, G. Sklute, Chem. 
Commun. 2007, 1683-1691; e) H. Ren, G. Dunet, P. Mayer, P. Knochel, J. Am. Chem. Soc. 
2007, 129, 5376-5377. 
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reagents bearing functional groups such as an ester or a nitrile35 reacted smoothly, leading to 

the corresponding functionalized BCPs 4o-4q in 55-65% yield. In all cases, only a single 

regioisomer of the product was observed. The intermediate zincated BCPs of type 3 were 

successfully trapped using Negishi-type cross-couplings45 with electron-rich (4c, 4m), 

electron-deficient (4d, 4q) and heterocyclic (4e, 4o) halides in 59-97% yield,46 as well as 

thiolations with S-aryl (4f) and S-alkyl sulfonothioates (4i)47 in 90-95% yield. A cobalt-

catalyzed electrophilic amination with N,N-diallyl-O-benzoylhydroxylamine48 provided the 

aminated BCP 4g in 91% yield. Finally, the zincated BCPs of type 3 underwent copper-

mediated allylations and acylations using various allylic halides and acid chlorides,49 leading 

to the functionalized BCPs 4a, 4b, 4h, 4j, 4k, 4l, 4n and 4p in 55-97% yield. 

                                                
45 A. O. King, N. Okukado, E.-I. Negishi, J. Chem. Soc. Chem. Commun. 1977, 19, 683-684. 
46 Without CuCN2LiCl as a cocatalyst the yields of the cross-coupling were approximately 

50% lower. CuI was a significantly less effective cocatalyst than CuCN2LiCl. 
47 K. Fujiki, N. Tanifuji, Y. Sasaki, T. Yokoyama, Synthesis 2002, 3, 343-348. 
48 a) Y.-H. Chen, S. Graßl, P. Knochel, Angew. Chem. Int. Ed. 2018, 57, 1108-1111; b) S. 
Graßl, Y.-H. Chen, C. Hamze, C. P. Tüllmann, P. Knochel, Org. Lett. 2019, 212, 494-497. 
49 M. C. P. Yeh, P. Knochel, Tetrahedron Lett. 1988, 29, 2395-2396. 
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Scheme 12. Addition of allylic zinc halides of type 2 to [1.1.1]propellane (1) yielding the 

functionalized BCPs 4a-4q. 
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When employing the allenic zinc reagent 2i, which is in equilibrium with the propargylic zinc 

reagent 2j,50 a separable mixture of the allenic product 4r (50% yield) and the propargylic 

product 4s (45% yield) was obtained after a copper-mediated acylation with benzoyl chloride 

(2.5 equiv, Scheme 13). This leads to the assumption, that both of the isomeric zinc reagents 

2i and 2j react with [1.1.1]propellane (1) with similar reaction rates. 

 

Scheme 13. Addition of an equilibrium mixture of the allenic zinc reagent 2i and the 

propargylic zinc reagent 2j to [1.1.1]propellane (1) yielding the functionalized BCPs 4r and 

4s. 

 

3.3 Addition of Zinc Enolates to [1.1.1]Propellane 

In order to generate zinc enolates ketones of type 5 were treated with an equimolar amount 

of LDA (6) at 78 °C, followed by the same amount of ZnCl2. The resulting zinc enolates 

added smoothly to [1.1.1]propellane (1, 0.5-2 h, 0 °C, Scheme 14). However, the newly 

generated zincated BCPs were mostly protonated before they could be trapped with 

electrophiles, probably due to the competitive deprotonation of the acidic protons in 

-position to the carbonyl group. This problem was solved by using 2 equivalents of LDA for 

1 equivalent of the ketone, followed by transmetalation with ZnCl2 (2.3 equiv), presumably 

                                                
50 a) J. A. Marshall, B. W. Gung, M. L. Grachan in Modern Allene Chemistry, Vol. 1 (Eds.: N. 
Krause, A. S. K. Hashmi), Wiley-VCH, Weinheim, 2004, pp. 493-592; b) J. A. Marshall in The 
Chemistry of Organozinc Compounds Vol. 1 (Eds.: Z. Rappoprt, I. Marek), John Wiley & 
Sons, Inc., Hoboken, 2006, pp.:421-455; c) D. R. Fandrick, J. Saha, K. R. Fandrick, S. 
Sanyal, J. Ogikubo, H. Lee, F. Roschangar, J. J. Song, C. H. Senanayake, Org. Lett. 2011, 
13, 5616-5619. 
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leading to mixed zinc enolates coordinated with NiPr2 (7). The zincated BCPs of type 8 that 

resulted from the addition of these amidozinc enolates to [1.1.1]-propellane (1, 0.5-2 h, 0 °C, 

Scheme 14) were apparently much less prone to protonation compared to the standard 

zincated BCPs.51 Alternatively, the additional amide might also deprotonate the ketone 

products, thus removing the acidic protons. Possible trapping reactions included protonation 

(9a, 9g), copper-catalyzed allylations (9b, 9f, 9h, 9i), a palladium-catalyzed Negishi-type 

cross-coupling (9c),45 an acylation (9d) and a cyanation performed with tosyl cyanide (9e). 

The overall yield of the sequence including enolate addition and electrophilic trapping was 

46-88%. In the case of cyclohexyl acetone and dihydro--ionone a regioselective enolate 

formation was achieved and only the products 9f and 9g, in which the BCP unit is attached to 

the terminal methyl groups, were obtained in 67-71% yield. Moreover, the sterically hindered 

isobutyrophenone was added to 1, leading to the BCP-derivative 9h in 86% yield. The 

reaction with cyclohex-2-en-1-one led to the formation of the expected cyclohexenone 

derivative 9i in 75% yield. 

                                                
51 The enhanced stability of the zincated BCPs towards protonation in the presence of 
additional amide is reminiscent to the effect observed for organozinc pivalates. For reference 
see: a) C. I. Stathakis, S. Bernhardt, V. Quint, P. Knochel, Angew. Chem. Int. Ed. 2012, 51, 
9428-9432; b) A. Hernán-Gómez, E. Herd, E. Hevia, A. R. Kennedy, P. Knochel, K. 
Koszinowski, S. M. Manolikakes, R. E. Mulvey, C. Schnegelsberg, Angew. Chem. Int. Ed. 
2014, 53, 2706-2710; c) S. M. Manolikakes, M. Ellwart, C. I. Stathakis, P. Knochel, Chem. 
Eur. J. 2014, 20, 12289-12297; d) Y.-H. Chen, M. Ellwart, V. Malakhov, P. Knochel, 
Synthesis 2017, 49, 3215-3223. 
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Scheme 14. Addition of zinc enolates of type 7 to [1.1.1]propellane (1) yielding the 

functionalized BCPs 9a-9i after electrophile trapping. 

 

When using esters (10a-10c, 2.0 equiv) as starting materials, only a slight excess of LDA (6, 

2.1 equiv) was necessary to achieve good overall yields (Scheme 15). The zinc enolates of 

type 11, obtained after transmetalation with ZnCl2 (2.5 equiv), added to [1.1.1]propellane (1, 

1.0 equiv) within 2.5 h at 25 °C. The resulting zincated BCPs of type 12 were subsequently 

submitted to a copper-catalyzed allylation with allyl bromide (2.5 equiv). Thus, ethyl 

propionate was converted to the BCP 13a in 75% yield. When using ethyl hept-6-enoate as a 
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starting material, the expected BCP 13b was isolated in 95% yield without any traces of 

radical ring-closure side-products. The reaction was also compatible with the benzylic ester 

ethyl 2-(4-bromophenyl)acetate, leading to the BCP 13c in 94% yield. 

 

Scheme 15. Addition of zinc enolates of type 11 to [1.1.1]propellane (1) yielding the 

functionalized BCPs 13a-13c. 

 

Finally, the -deprotonation of nitriles (14a-14c, 2.0 equiv) with LDA (6, 2.1 equiv) followed 

by a transmetalation with ZnCl2 (2.5 equiv) led to the formation of nitrile-stabilized carbanions 

of type 15,52 which added to [1.1.1]propellane (1) within 1-6 h at 25 °C. The resulting 

zincated BCPs of type 16 were then submitted to a copper-catalyzed allylation with allyl 

bromide (2.5 equiv, Scheme 16). This protocol was used to prepare BCP-derivatives of 

cyclohexanecarbonitrile (17a) and 2-phenylpropanenitrile (17b) in 51-96% yield. When using 

1-cyanocyclohexene as a starting material, the BCP 17c was isolated in 96% yield. This can 

                                                
52 a) S. Arseniyadis, K. S. Kyler, D. S. Watt in Organic Reactions, Vol. 31, (Eds.: W. G. 
Dauben), John Wiley & Sons, Inc., Hoboken, 1984, pp.: 1-344; b) X. Yang, F. F. Fleming, 
Acc. Chem. Res. 2017, 50, 2556-2568. 
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be explained due to a rearrangement after the initial deprotonation in the allylic position, 

resulting in the formation of the most stabilized anion.53 

 

Scheme 16. Addition of zincated nitriles of type 15 and their addition to [1.1.1]propellane (1) 

yielding the functionalized BCPs 17a-17c. 

 

3.4 Synthesis of BCP-Pethidine 

With the optimized procedure the synthesis of the BCP-analogue of the synthetic opioid 

pethidine54 was carried out (18, Scheme 17). The deprotonation of commercially available 

ethyl 1-methylpiperidine-4-carboxylate (19, 2.0 equiv) with LDA (6, 2.1 equiv) proceeded 

smoothly within 30 min at 78 °C in THF. After the addition of ZnCl2 (2.5 equiv) the resulting 

zinc enolate was reacted with [1.1.1]propellane (1, 1.0 equiv) at 0 °C for 2 h. The generated 

zincated BCP was trapped through the addition of a saturated aqueous solution of NH4Cl. 

The crude mixture was purified using column chromatography, affording the pethidine 

analogue 20 in 95% yield on a 1.5 mmol scale in a single step. The structure of the isolated 

product was confirmed by X-ray analysis. 

                                                
53 X. Yang, D. Nath, J. Morse, C- Ogle, E. Yurtoglu, R. Altundas, F. Fleming, J. Org. Chem. 
2016, 81, 4098-4102. 
54 L. E. Mather, P. J. Meffin, Clin. Pharmacokinet. 1978, 3, 352-368. 
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Scheme 17. Synthesis and X-ray structure of BCP-pethidine 20. 

 

The impact of the substitution of the terminal phenyl group with a BCP unit was evaluated by 

measuring some physicochemical properties of the BCP-pethidine 20. The bioisoster was 

slightly more basic than the original drug 18, with the pKa of the conjugated acid increasing 

from 8.8 to 9.0. The lipophilicity was estimated by measuring the 1-octanol/water partition 

coefficient (logP) and the distribution coefficient at pH 7.4 (logD7.4) and comparing them to 

the literature values of pethidine (18).55 The measured logP (2.9) and logD7.4 (1.3) were very 

close to the reported values for pethidine (respectively 2.7 and 1.4). This indicates that the 

lipophilicity of the bioisoster 20 is similar to that of pethidine. Contrastingly, the substitution of 

an internal para-phenyl group with a BCP unit resulted in a significant decrease of the 

lipophilicity for a number of different drug candidates.22b Overall, in this case the substitution 

of the terminal phenyl group seems to have a relatively small impact on the physicochemical 

properties of the compound. 

                                                
55 a) L. Z. Benet, F. Broccatelli, T. I. Oprea, AAPS J. 2011, 13, 519-547; b) L. Xu, L. Li, J. 
Huang, S. Yu, J. Wang, N. Li, J. Pharm. Biomed. Anal. 2015, 102, 409-416. 
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3.5 NMR Studies 

To study the influence of lithium and zinc salts on [1.1.1]propellane (a) a series of 13C-NMR-

spectra was measured (Figure 3). All of the NMR samples were prepared in a mixture of THF 

and Et2O (1:1) with a sealed capillary tube filled with deuterated benzene (d) as NMR-

standard for shimming. All samples contained traces of bromobenzene (c) and dibutyl ether 

(b), which result from the preparation and distillation of the [1.1.1]propellane.56 

 

Figure 3. 13C-NMR spectra of [1.1.1]propellane solutions containing lithium and zinc salts (a 

= [1.1.1]propellane, b = Bu2O, c = PhBr, d = C6D6, e = 1,3,5-trimethoxybenzene). 

 

As a reference a sample of [1.1.1]propellane with the NMR-standard 1,3,5-trimethoxy-

benzene (e) was measured, showing the two expected signals of [1.1.1]propellane (a) at 1.0 

and 74.0 ppm. The addition of 2 equivalents of LiCl had no effect on the [1.1.1]propellane. 

However, the addition of 2 equivalents of ZnCl2 let to a complete decomposition of the 

                                                
56 See the experimental part of this thesis for a detailed procedure. 
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[1.1.1]propellane within 1 minute at room temperature as evidenced by the disappearance of 

the initial signals. A multitude of new signals between 35-55 ppm, 100-110 ppm and 130-

160 ppm hints at the formation of a complex mixture of different products. A decomposition of 

[1.1.1]propellane in the presence of Lewis acidic transition-metal ions has been reported by 

Wiberg in the case of AgBF4 and [Rh(CO)2Cl]2, leading to mixtures of different oligomers.6 

Interestingly, no decomposition was observed when the ZnCl2 was premixed with 

4 equivalents of LiCl in THF. This observation can be explained by assuming the formation of 

a zincate (Li+ZnCl3), which significantly reduces the Lewis acidity of the zinc. In addition, this 

leads to the conclusion that the complexes present in the solutions of allylic zinc halides (with 

or without complexated LiCl) are not Lewis acidic enough to cause the decomposition of 

[1.1.1]propellane, thus allowing the formation of the respective ring-opening products in high 

yields. 

 

3.6 DOSY Spectroscopy 

In order to explore the aggregation state of the allylic zinc reagents a DOSY (Diffusion-

Ordered NMR Spectroscopy) experiment was performed (Figure 4).57 Therefore, a solution of 

allylzinc bromide coordinated with lithium chloride in THF was prepared according to the 

procedure detailed in the experimental part of this thesis. The solvent was removed under 

high vacuum using a cooling trap and a small amount of the resulting solid was transferred to 

an NMR-tube under argon. In addition, 2,2,3,3,-tetramethylbutane (TMB), anthracene and 

tetrakis(trimethylsilyl)silane (0.06 mmol each) were added as internal standards. The solids 

were dissolved in 0.5 mL of THF-d8 and the sample was submitted to the DOSY-experiment 

(measured on a Bruker AV400TR with a 5 mm PABBO BB/19F-1H/19F/D Z-GRD 

Z863001/0025 probe at 400.13 MHz using TopSpin by Bruker Biospin, Karlsruhe; pulse 

sequence: ledbpgp2s, 32 scans; transformation was performed in MestreNova 12.0 using 

Peak Heights Fit). 

                                                
57 D. Li, I. Keresztes, R. Hopson, P. G. Williard, Acc. Chem. Res. 2009, 42, 270-280. 
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Figure 4. DOSY-NMR of allylzinc bromide coordinated with lithium chloride in THF-d8. 

 

The DOSY-spectrum showed a multitude of different signals (a-e) corresponding to the allylic 

protons between 4.5 and 6.0 ppm. The diffusion coefficients D of these signals ranged from 

6.43*106 to 4.51*106 cm2/s. The signals of the internal standards were used to determine a 

calibration curve (Figure 5). 
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Figure 5. Internal calibration curve of the DOSY-spectrum of allylzinc bromide coordinated 

with lithium chloride. 

 

The multitude of allylic signals leads to the conclusion, that the solution contains various 

clusters of allylzinc bromide in different aggregation states. The molecular weights of these 

clusters were estimated with the help of the internal calibration curve (Table 2). 

 

Table 2. Diffusion parameters and calculated molecular weights for the different clusters 

present in allylzinc bromide coordinated with lithium chloride. 

Compound D [cm2/s] 
log 

[D/cm2s1] 
MW [g/mol] 

log 

[MWcalc/gmol1] 
MWcalc [g/mol] 

THF-d7 1,83E05 4,737549 79,1 1,88 75 

TMB 1,30E05 4,886056 114,2 2,15 141 

Anthracene 1,23E05 4,9100949 178,2 2,19 156 

Si(SiMe3)4 8,43E06 5,0741724 320,8 2,50 313 

a 6,43E06 5,1917890 - 2,71 516±124 

b 5,82E06 5,2350770 - 2,79 620±149 

c 5,60E06 5,2518120 - 2,82 665±160 

d 5,08E06 5,2941363 - 2,90 796±191 

e 4,51E06 5,3458235 - 3,00 992±238 

 

When applying the internal calibration to the diffusion parameters of the standards, the 

calculated molecular weights deviate from the actual values by 3% (Si(SiMe3)4) to 24% 

(TMB). By assuming similar margins of error for the allylic organozinc clusters, the molecular 
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weights of the clusters a-e were estimated to range from 392 to 1230 g/mol. These molecular 

weights are significantly higher than the molecular weight of a monomer of allylzinc bromide 

coordinated by one equivalent of LiCl and THF-d8 (309 g/mol). Therefore, the DOSY 

experiments confirm the existence of oligomeric aggregates. A dimeric cluster of the formula 

(allylZnBr)2(LiCl)2(THF-d8)2 possesses a molecular weight of 618 g/mol, which is in good 

accordance with the value obtained for the signal b (620±149 g/mol). When substituting one 

of the allylzinc bromides by ZnBr2, the resulting cluster (allylZnBr)(ZnBr2)(LiCl)2(THF-d8)2 

weights 657 g/mol, which is close to the molecular weight determined for the signal c 

(665±160 g/mol). The signals d and e most likely correspond to more highly aggregated 

clusters. 

 

3.7 Density Functional Theory Calculations 

In order to rationalize the exquisite regioselectivity observed in transformations with 

unsymmetrically substituted allylic zinc species, theoretical calculations have been performed 

for the reaction of propellane (1) with prenylzinc bromide complexed with lithium chloride 

(2d), whose sole reaction product is the BCP 4k (Scheme 12). Following effectively the same 

protocol used in earlier studies of organozinc reagents,58 free energies in THF solution have 

been calculated at the SMD(THF)/B2PLYP/def2-TZVPP level of theory. Calculations start 

from the cubic cluster 21 assembled from 2 equivalents of LiCl, ZnBr2,59 and prenylzinc 

bromide (2d). Complexation of propellane to one of the zinc centres in 21 displaces one of 

the cluster bromide atoms and generates the adduct 22 in a mildly exergonic first step. 

Formation of the adduct 22 is accompanied by a minor degree of charge transfer from the 

propellane unit to the cluster 21 by 0.11 e, but leads to practically no change of the 

propellane structure itself.60 Backside attack of the prenyl side chain at the bound propellane 

unit through the transition state 23 then carries the system over to the product side, whose 

ultimate end point is the cubic cluster 24 located 42.7 kJ mol1 lower than the separate 

reactants. That the barrier for this reaction amounts to only 52 kJ mol1 demonstrates the 

intrinsic flexibility of the salt cluster that thus acts as a template for the reacting 

organozinc/propellane units. As can readily be seen from the 3D presentation of the 

transition state 23 in Figure 6, formation of the C-Zn bond is almost complete at 

                                                
58 M. Ellwart, I. S. Makarov, F. Achrainer, H. Zipse, P. Knochel, Angew. Chem. Int. Ed. 2016, 
44, 10502-10506. 
59 Small amounts of ZnBr2 are present in the allylic zinc reagents as a result of partial 
homocoupling during the zinc insertion. 
60 An extensive discussion of the bonding situation and charge distribution in selected 
intermediates can be found in the appendix of this thesis. 
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r(C-Zn) = 205 pm, while formation of the C-C bond between the propellane and prenyl units 

is still underway with r(C-C) = 203 pm. From the almost perfect alignment of both reacting 

bonds along the propellane axis it is also apparent, that the cluster template exerts practically 

no external strain onto the reacting fragments. The overall reaction cycle is completed by salt 

metathesis of the product cluster 24 with one equivalent of the prenylzinc reagent 2d, 

yielding the starting cluster 21 and the product organozinc species 3d (Scheme 18). This 

reaction is almost thermoneutral at G298 = 2.5 kJ mol1. 

 
Figure 6. Calculated geometries of [1.1.1]propellane coordinated to a cubic cluster 

containing prenylzinc bromide (22) and the transition state 23. 

 

 



 
 

 

Scheme 18. Calculated mechanism for the reaction of a cubic cluster containing prenylzinc bromide (21) with [1.1.1]propellane (1) 

(SMD(THF)/B2PLYP-D3/def2TZVPP//B3LYP-D3/def2SVP).

3
1
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The activation of propellane (1) by other cluster designs or through other activation modes 

has also been studied, but all of these variations are energetically less favourable than the 

reaction pathway shown in Scheme 18. This includes the reaction with a cluster containing 

the regioisomeric form of prenylzinc bromide, in which the zinc is located at the tertiary 

carbon atom. For this cluster the calculated reaction barrier was 43.6 kJ mol1 higher than the 

one detailed in Scheme 18. Therefore, the high regioselectivity can be attributed to a kinetic 

selectivity. A reaction pathway starting with the coordination of [1.1.1]propellane to lithium 

instead of zinc resulted in a reaction barrier that was 82.5 kJ mol1 higher than the one 

detailed in Scheme 18. 
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4 Summary 

For the first part of this thesis the addition of various organozinc reagents to [1.1.1]propellane 

was investigated. This was first achieved using allylic organozinc halides (Scheme 19). The 

additions proceeded with an extraordinarily high stereoselectivity, as only the products 

resulting from an allylic rearrangement were observed. The resulting zincated BCPs were 

successfully trapped using Negishi-type cross-couplings, thiolations, cobalt-catalyzed 

electrophilic aminations, as well as copper-mediated allylations and acylations. The protocol 

showed a good tolerance of functional groups, such as esters and nitriles, due to the 

relatively low reactivity of the organozinc halides. 

 

Scheme 19. Summary of the addition of allylic organozinc halides to [1.1.1]propellane. 

 

The methodology was extended to various zinc enolates, prepared from ketones, esters and 

nitriles through the deprotonation with LDA, followed by a transmetalation with ZnCl2 

(Scheme 20). Once again the resulting zincated BCPs were submitted to different 

electrophilic trapping reactions, such as protonations, copper-catalyzed allylations, 

palladium-catalyzed Negishi-type cross-couplings, acylations and cyanations. The protocol 

was also used to synthesize a BCP-bioisoster of the synthetic opioid pethidine. 
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Scheme 20. Summary of the addition of zinc enolates to [1.1.1]propellane. 

 

The high regioselectivity of the reaction was rationalized using DFT calculations, which 

showed that the allylic rearrangement proceeds via a cyclic transition state involving ZnBr2, 

LiCl, the allylic zinc halide and [1.1.1]propellane. 
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1 Introduction 

1.1 Nitrogen Containing Heterocycles 

Nitrogen containing heterocycles are extremely common in both medicinal as well as 

agricultural chemistry with 59% of all unique small-molecule drugs that were approved by the 

U.S. FDA (Food and Drug Administration) in 2014 containing at least one nitrogen 

heterocycle. Among them five- and six-membered rings are by far the most prevalent, with 

39% and 59% respectively.61 The abundance of nitrogen heterocycles in pharmaceutical 

compounds results from their often favourable influence on molecular properties such as 

lipophilicity, polarity, metabolic stability and toxicity.62 Thus, the development of new 

methodologies to access large libraries of substituted nitrogen containing heterocycles for 

pharmaceutical trials is of great interest. In this work the main focus was placed on the 

aromatic five-membered 1,3,4-oxadiazole and 1,2,4-triazole as well as on the fused 

heterocycle 1H-imidazo[1,2-b]pyrazole. 

 

1.2 Selective Metalation of Heterocycles using 2,2,6,6-Tetramethylpiperidyl 

(TMP) Bases 

Selective metalations are an attractive way to generate a large variety of functionalized 

heterocycles, as the resulting metalated heterocycles can be reacted with many different 

electrophiles. This methodology takes advantage of the generally low pka-values of protons 

in aromatic heterocycles (typically between 38 and 24).63 Historically, metalations were 

mostly conducted using strong lithium-reagents like nBuLi.64 However, their high 

nucleophilicity can lead to undesired side-reactions and thus significantly reduces the scope 

of possible substrates. A solution to this problem was achieved with the introduction of the 

less nucleophilic sterically hindered lithium amide bases like LDA and TMPLi.65 Due to their 

high reactivity the resulting lithiated heterocycles are usually only stable at low temperatures 

and tend to react with many important functional groups such as esters and nitriles even 

under mild conditions. Therefore, a variety of different magnesium and zinc TMP bases have 

                                                
61 E. Vitaku, D. T. Smith, J. T. Njardarson, J. Med. Chem. 2014, 57, 10257-10274. 
62 R. D. Taylor, M. MacCoss, A. D. G. Lawson, J. Med. Chem. 2014, 57, 5845-5859. 
63 M. Balkenhohl, H. Jangra, I. S. Makarov, S.-M. Yang, H. Zipse, P. Knochel, Angew. Chem. 
Int. Ed. 2020, 59, 14992-14999. 
64 H. Gilman, R. L. Bebb, J. Am. Chem. Soc. 1939, 61, 109-112. 
65 a) V. Snieckus, Chem. Rev. 1990, 90, 879-933; b) M. Schlosser, Angew. Chem. Int. Ed. 
2005, 44, 376-393. 



37 
  

been developed by Knochel et. al. over the last years.66-69 These bases can be used at 

significantly higher temperature compared to the lithium amide bases, while tolerating many 

functional groups. In order to avoid the aggregation of the TMP bases, which leads to poor 

solubility and a low protophilicity, most of them contain a stoichiometric amount of LiCl. The 

most prominent example is TMPMgCl∙LiCl, which was prepared by reacting TMPH with 

iPrMgCl∙LiCl and can be stored at room temperature under inert gas for multiple months 

without a significant drop in reactivity.66 For less activated substrates the bis-base 

(TMP)2Mg∙2LiCl has been developed.67 Both bases enable magnesiations of various 

heterocycles with excellent regio- and chemoselectivity at convenient temperatures 

(Scheme 21).66-69 

 

Scheme 21. Regio- and chemoselective functionalizations of heterocycles using 

TMPMgCl∙LiCl or (TMP)2Mg∙2LiCl. 

 

The use of milder zinc bases, such as TMPZnCl∙LiCl68 or (TMP)2Zn∙2MgCl2∙2LiCl,69 allows 

the functionalization of even more sensitive substrates and tolerates even aldehydes or nitro 

groups (Scheme 22). 

                                                
66 a) A. Krasovskiy, V. Krasovskaya, P. Knochel, Angew. Chem. Int. Ed. 2006, 45, 2958-
2961; b) N. Boudet, J. R. Lachs, P. Knochel, Org. Lett. 2007, 9, 5525-5528; c) M. Mosrin, P. 
Knochel, Org. Lett. 2008, 10, 2497-2500. 
67 G. C. Clososki, C. J. Rohbogner, P. Knochel, Angew. Chem. Int. Ed. 2007, 46, 7681-7684. 
68 a) M. Mosrin, P. Knochel, Org. Lett. 2009, 11, 1837-1840; b) L. Klier, T. Bresser, T. A. 
Nigst, K. Karaghiosoff, P. Knochel, J. Am. Chem. Soc. 2012, 134, 13584-13587. 
69 a) S. H. Wunderlich, P. Knochel, Angew. Chem. Int. Ed. 2007, 46, 7685-7688; b) Z. Dong, 
G. C. Clososki, S. H. Wunderlich, A. Unsinn, J. Li, P. Knochel, Chem. Eur. J. 2009, 15, 457-
468. 
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Scheme 22. Regio- and chemoselective functionalizations of heterocycles using 

TMPZnCl∙LiCl or (TMP)2Zn∙2MgCl2∙2LiCl. 

 

1.3 1,3,4-Oxadiazole 

Over the last decades the 1,3,4-oxadiazole scaffold gained a lot of attention in 

pharmaceutical research, as it was found to improve the physicochemical and 

pharmacokinetic properties of drugs. This includes an improved metabolic stability and water 

solubility. In addition, it is a good acceptor for hydrogen bonding and thus able to efficiently 

interact with many different receptors.70 Of particular interest is the application of 

1,3,4-oxadiazoles as bioisosteres of amides and esters: The heterocyclic core maintains the 

receptor binding profile of the carbonyl derivatives, while offering a higher lipophilicity, which 

helps in transmembrane diffusion (Scheme 23a). The spectrum of biological activities 

exhibited by 1,3,4-oxadiazole derivatives is very diverse and includes antibacterial, 

antimalarial, anti-inflammatory, antidepressive, anticancer, antiviral, antifungal and analgesic 

effects.70 Among them are raltegravir, which is used in the treatment of HIV,71 and the 

experimental anticancer drug zibotentan (Scheme 23b).72 

                                                
70 a) H. Khalilullah, M. J. Ahsan, M. Hedaitullah, S. Kahn, B. Ahmed, Mini-Rev. Med. Chem. 
2012, 12, 789-801; b) S. Bajaj, V. Asati, J. Singh, P. P. Roy, Eur. J. Med. Chem. 2015, 97, 
124-141; c) A. Hoshi, T. Sakamoto, J. Takayama, M. Xuan, M. Okazaki, T. L. Hartman, R. W. 
Buckheit Jr., C. Pannecouque, M. Cushman, Bioorg. Med. Chem. 2016, 24, 3006-3022; d) T. 
Glomb, K. Szymankiewicz, P. Świątek; Molecules 2018, 26, 3361-3376. 
71 V. Summa, A. Petrocchi, F. Bonelli, B. Crescenzi, M. Donghi, M. Ferrara, F. Fiore, C. 
Gardelli, O. G. Paz, D. J. Hazuda, P. Jones, O. Kinzel, R. Laufer, E. Monteagudo, E. 
Muraglia, E. Nizi, F. Orvieto, P. Pace, G. Pescatore, R. Scarpelli, K. Stillmock, M. V. Witmer, 
M. V.; M. Rowley, J. Med. Chem. 2008, 51, 5843-5855. 
72 C. D. Morris, A. Rose, J. Curwen, A. M. Hughes, D. J. Wilson, D. J. Webb, Br. J. Cancer 
2005, 92, 2148-2152. 
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Scheme 23. 1,3,4-Oxadiazoles as bioisosteres of esters and amides and their application in 

drugs. 

 

In addition, aromatic substituted 1,3,4-oxadiazoles have been widely used as electron-

transporting/hole-blocking materials or emitting layers in electroluminescent diodes and non-

linear optic materials as they provide high photoluminescence quantum yields and excellent 

thermal and chemical stabilities.73 

1,3,4-Oxadiazoles are mainly synthesized via two different pathways: the cyclodehydration of 

diacylhydrazines (Scheme 24a) and the oxidation of arylhydrazones (Scheme 24b).74 The 

synthesis of unsubstituted 1,3,4-oxadiazole is challenging and only in 2012 Aitken was able 

to develop a reliable method to access the parent heterocycle in acceptable yield via the 

cyclodehydration of N,N’-diformylhydrazine (Scheme 24c).75 

                                                
73 a) G. Hughes, M. R. Bryce, J. Mater. Chem. 2005, 15, 94-107; b) J. Han, J. Mater. Chem. 
C 2013, 1, 7779-7797. 
74 Ž. Jakopin, M. Sollner Dolenc, Curr. Org. Chem. 2008, 15, 850-898. 
75 K. M. Aitken, R. A. Aitken, Arkivoc 2012, 5, 75-79. 
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Scheme 24. Synthesis of 1,3,4-oxadiazoles. 

 

1.4 1,2,4-Triazole 

1,2,4-Triazoles have been known for a long time, with the first reports dating back to the late 

19th century.76 The unsubstituted parent heterocycle exists in two tautomeric forms, with the 

hydrogen connected to the nitrogen in the 1- and 4-position respectively. Microwave, NMR 

and ab initio quantum mechanics studies showed that the 1H tautomer is significantly more 

stable and therefore predominates in both the gas phase as well as in solution.77 

The 1,2,4-triazole core exhibits some interesting properties for pharmaceutical and 

agricultural applications. It can act as both a hydrogen bond acceptor and donor and thus 

can significantly increase the solubility of compounds in polar solvents.78 Other favourable 

properties include a moderate dipole character and good stability towards chemical and 

metabolic degradation.79 1,2,4-Triazole derivatives have been used as linkers and 

bioisosteres of amides, esters, carboxylic acids and olefinic double bonds. Their activities 

include antimicrobial, anti-inflammatory, antitubercular, antianxiety, anticancer and antiviral 

                                                
76 a) J. A. Bladin, Ber. Dtsch. Chem. Ges. 1885, 18, 1544-1551; b) J. A. Bladin, Ber. Dtsch. 
Chem. Ges. 1886, 19, 2598-2604. 
77 a) K. T. Potts, Chem. Rev. 1961, 61, 87-127; b) J. R. Cox, S. Woodcock, I. H. Hillier, M. A. 
Vincent, J. Phys. Chem. 1990, 94, 5499-5501. 
78 R. Kaur, A. R. Dwivedi, B. Kumar, V. Kumar, Anticancer Agents Med. Chem. 2016, 16, 
465-489. 
79 S. Zhang, Z. Xu, C. Gao, Q.-C. Ren, L. Chang, Z.-S. Lv, L.-S. Feng, Eur. J. Med. Chem. 
2017, 138, 501-513. 
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effects.80 Examples include maraviroc, which is used in the treatment of HIV,81 the iron 

chelator deferasirox82 and alprazolam, which is used in the medication of anxiety disorders83 

(Figure 7).  

 

Figure 7. Commercial drugs containing a 1,2,4-triazole core. 

 

1.5 1H-Imidazo[1,2-b]pyrazole 

The synthesis of a 1H-imidazo[1,2-b]pyrazole derivative was first reported in 1973 by Elguero 

et. al..84 Since then 1H-imidazo[1,2-b]pyrazoles have attracted the attention of medicinal 

chemist due to their antimicrobial,85 anti-inflammatory86 and anticancer activities87 (Figure 8). 

                                                
80 a) R. Kharb, P. C. Sharma, M. S. Yar, J. Enzyme Inhib. Med. Chem. 2011, 26, 1-21; b) M. 
S. Malik, S. A. Ahmed, I. I. Althagafi, M. A. Ansari, A. Kamal, RSC Med. Chem. 2020, 11, 
327-348. 
81 P. Dorr, M. Westby, S. Dobbs, P. Griffin, B. Irvine, M. Macartney, J. Mori, G. Rickett, C. 
Smith-Burchnell, C. Napier, R. Webster, D. Armour, D. Price, B. Stammen, A. Wood, M. 
Perros, Antimicrob. Agents Chemother. 2005, 49, 4721-4732. 
82 U. Heinz, K. Hegetschweiler, P. Acklin, B. Faller, R. Lattmann, H. P. Schnebli, Angew. 
Chem. Int. Ed. 1999, 38, 2568-2570. 
83 J. B. Hester Jr., A. D. Rudzik, B. V. Kamdar, J. Med. Chem. 1971, 14, 1078-1081. 
84 J. Elguero, R. Jacquier, S. Mignonac-Mondon, J. Heterocycl. Chem. 1973, 10, 411-412. 
85 a) A. O. Abdelhamid, E. K. A. Abdelall, Y. H. Zaki, J. Heterocycl. Chem. 2010, 47, 477-482; 
b) M. V. Murlykina, M. N. Kornet, S. M. Desenko, S. V. Shishkina, O. V. Shishkin, A. A. 
Brazhko, V. I. Musatov, E. V. Van der Eycken, V. A. Chebanov, Beilstein J. Org. Chem. 
2017, 13, 1050-1063. 
86 A. H. Shridhar, G. Banuprakash, J. H. Hoskeri, Y. T. Vijaykumar, Int. Res. J. Pharm. 2017, 
8, 25-33. 
87 a) A. T. Baviskar, C. Madaan, R. Preet, P. Mohapatra, V. Jain, A. Agarwal, S. K. Guchhait, 
C. N. Kundu, U. C. Banerjee, P. V. Bharatam, J. Med. Chem. 2011, 54, 5013-5030; b) S. 
Grosse, V. Mathieu, C. Pillard, S. Massip, M. Marchivie, C. Jarry, P. Bernard, R. Kiss, G. 
Guillaumet, Eur. J. Med. Chem. 2014, 84, 718-730; c) A. Demjén, R. Alföldi, A. Angyal, M. 
Gyuris, L. Hackler Jr., G. J. Szebeni, J. Wölfling, L. G. Puskás, I. Kanizsai, Arch. Pharm. 
Chem. Life Sci. 2018, 351, 1-21. 
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Figure 8. Examples of 1H-imidazo[1,2-b]pyrazoles with biological activities. 

 

In 1994 Vanotti et. al. reported a convenient synthesis of 1H-imidazo[1,2-b]pyrazole.88 In a 

later publication, they improved their strategy to allow the synthesis of up to 70 g of the 

heterocycle in a single batch. The first step of this route is the formation of ethyl 5-amino-1-

(2,2-diethoxyethyl)-1H-pyrazole-4-carboxylate through the reaction between (2,2-diethoxy-

ethyl)hydrazine and ethyl 2-cyano-3-ethoxyacrylate. This is followed by a saponification with 

sodium hydroxide. The resulting 5-amino-1-(2,2-diethoxyethyl)-1H-pyrazole-4-carboxylic acid 

is refluxed with 20% H2SO4 in ethanol, leading to the deprotection of the aldehyde, which 

then cyclizes onto the amine. The acidic reaction conditions also lead to a complete 

decarboxylation to generate the parent heterocycle (Scheme 25).89 The general strategy of 

forming 1H-imidazo[1,2-b]pyrazoles by annulating the imidazole ring onto a preformed 

pyrazole scaffold is also used in the vast majority of all reported syntheses of substituted 

variations of this heterocycle.90 

                                                
88 E. Vanotti, F. Fiorentini, M. Villa, J. Heterocycl. Chem. 1994, 31, 737-743. 
89 P. Seneci, M. Nicola, M. Inglesi, E. Vanotti, G. Resnati, Synth. Commun. 1999, 29, 311-
341. 
90 a) R. E. Khidre, B. F. Abdel-Wahab, O. Y. Alothman, J. Chem. 2014, 1-15; b) J. Khalafy, A. 
P. Marjani, F. Salami, Tetrahedron Lett. 2014, 55, 6671-6674; c) N. N. Kolos, B. V. Kibkalo, 
L. L. Zamigaylo, I. V. Omel’chenko, O. V. Shishkin, Russ. Chem. Bull. Int. Ed. 2015, 64, 864-
871. 
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Scheme 25. Synthesis of 1H-imidazo[1,2-b]pyrazole according to Vanotti.89 
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2 Objective 

Due to its highly sensitive nature no metalations of unsubstituted 1,3,4-oxadiazole have been 

reported previous to this work. In the case of N-substituted 1,2,4-triazoles only the metalation 

with the very reactive and unselective base BuLi was known from literature.91 As the 

sterically hindered TMP bases have been successfully employed in the selective 

functionalization of a range of different heterocyclic substrates, they might also be able to 

achieve a full functionalization of the 1,3,4-oxadiazole (Scheme 26a) and 1,2,4-triazole 

scaffolds (Scheme 26b). The goal of this work was to find suitable conditions for the selective 

metalations of the different heterocycles, followed by reactions with various electrophiles with 

special emphasis on palladium-catalyzed Negishi-type cross-coupling reactions45 and 

copper-catalyzed electrophilic aminations using hydroxylamino benzoates.48 

 

Scheme 26. Stepwise functionalization of 1,3,4-oxadiazole and N-substituted 1,2,4-triazoles 

using TMP bases. 

 

As the 1H-imidazo[1,2-b]pyrazole scaffold is not as easily accessible as other heterocycles 

its functionalization has not yet been explored thoroughly. All of the reported syntheses of 

functionalized 1H-imidazo[1,2-b]pyrazoles install the substituents in a precursor of the 

heterocycle before the final cyclization.90 Therefore, it is very expensive and time consuming 

to synthesize a large library of these compounds. A selective bromination, followed by a 

bromine-magnesium exchange and a series of selective metalations using TMP bases might 

                                                
91 a) R. G. Micetich, P. Spevak, T. W. Hall, B. K. Bains, Heterocycles 1985, 23, 1645-1649; 
b) S. Ohta, I. Kawasaki, A. Fukuno, M. Yamashita, T. Tada, T. Kawabata, Chem. Pharma. 
Bull. 1993, 41, 1226-1231. 
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however give access to a large variety of different substitution patterns starting from the 

N-SEM-protected heterocycle without the need to synthesize multiple different precursors 

(Scheme 27). 

 

Scheme 27. Stepwise functionalization of N-SEM-protected 1H-imidazo[1,2-b]pyrazole. 
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3 Results and Discussion 

3.1 Selective Functionalization of 1,3,4-Oxadiazole 

Preliminary studies have shown that in the case of 1,3,4-oxadiazole (25), the freshly 

prepared base TMP2Zn∙2LiCl (26)92 provided the best results, leading to a complete 

conversion after 5 min at 25 °C.93 The resulting zincated 1,3,4-oxadiazole 27 was 

subsequently submitted to Negishi-type cross-coupling (Scheme 28).45 A mixture of Pd(dba)2 

(3%) and XantPhos94 (3%) provided excellent results with a variety of electron-deficient aryl 

iodides at 25 °C, producing the desired cross-coupling products 28a-28e, 28h and 28i in 

73-98% yield. When employing electron-rich aryl iodides, Pd(PPh3)4 (7.5%) was the best 

catalyst and afforded the heterocycles 28f and 28g in 63-90% yield (50 °C, 2 h). Due to the 

relatively low reactivity of the intermediate organozinc species 27 various functional groups 

were tolerated, including an ester (28b), a chloride (28c), a nitrile (28d), an amine (28g) and 

a nitro group (28h). In addition, heterocyclic iodides, such as 6-iodoquinoline and 

2-iodothiophene, have been successfully coupled, providing the heterocycles 28j and 28k in 

92% yield. 

                                                
92 The base was prepared according to the procedure detailed in the experimental part of this 
thesis and used within 3 hours. A longer storage of the base reduced the yields significantly. 
93 For a detailed summary of the optimization see the experimental part of this thesis. 
94 M. Kranenburg, Y. E. M. van der Burgt, P. C. J. Kamer, P. W. N. M. van Leeuwen, 
Organometallics 1995, 14, 3081-3089. 



47 
  

 

Scheme 28. Zincation of 1,3,4-oxadiazole (25) using TMP2Zn2LiCl (26) followed by Negishi 

coupling leading to mono-substituted 1,3,4-oxadiazoles of type 28. 

 

With the mono-substituted 1,3,4-oxadiazoles of type 28 in hand, a second metalation using 

the freshly prepared base TMP2Zn∙2MgCl2∙2LiCl (29) was performed, resulting in a complete 

zincation within 20 min at 25 °C (Scheme 29). The zincated heterocycles 30 were then 

aminated at 25 °C using hydroxylamino benzoates48 in the presence of 15% Cu(OTf)2, 

providing a variety of aminated 1,3,4-oxadiazoles of type 31 in 54-98% yield. This sequence 

proceeded well with both electron-rich (31b, 31f, 31i, 31j) as well as electron-deficient (31c, 

31d, 31h) 1,3,4-oxadiazoles. The scope of hydroxylamino benzoates was also explored, 

including reagents derived from morpholine, diallyl amine, azepane and piperazine, leading 

to the products 31a-31g in 70-98% yield. In addition, a variety of amines bearing functional 

groups such as an ester (31h), a protected ketone (31i-31j) or an amide (31k) could be 

prepared in 79-94% yield. 
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Scheme 29. Zincation of mono-substituted 1,3,4-oxadiazoles of type 28 using 

TMP2Zn2MgCl22LiCl (29) followed by electrophilic amination leading to aminated 

1,3,4-oxadiazoles of type 31. 

 

3.2 Selective Functionalization of 1,2,4-Triazoles 

In the case of N-propyl and N-benzyl 1,2,4-triazoles (32a, 32b) a complete magnesiation was 

achieved within 30 min at 0 °C using TMPMgCl∙LiCl (33) (Scheme 30). The resulting 

magnesiated triazoles of type 34 were trapped with a variety of electrophiles such as iodine, 
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allylic bromides, benzaldehyde and benzoyl chloride, providing the 5-substituted-

1,2,4-triazoles 35a-35h in 79-95% yield. In addition, a metalation with TMPZnCl∙LiCl (36) 

under the same conditions enabled Pd-catalyzed Negishi-type cross-couplings with both 

electron-rich (35i-35j) as well as electron-deficient aryl halides (35k) in 78-94% yield. Finally, 

zincation followed by copper-catalyzed electrophilic amination with hydroxylamino benzoates 

derived from morpholine, nipecotic acid and sertraline95 led to the 5-aminated-1,2,4-triazoles 

35l, 35m and 35n in 70-95% yield. 

 

Scheme 30. Metalation of N-substituted 1,2,4-triazoles of type 32 using TMPMgCl2LiCl (33) 

followed by electrophile trapping leading to functionalized 1,2,4-triazoles of type 35. 

                                                
95 B. K. Koe, A. Weissmann, W. M. Welch, R. G. Browne, Psychopharmacol. Bull. 1983, 19, 
687-691. 
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Two approaches have been developed to prepare fully functionalized 1,2,4-triazoles of type 

37: On one hand a double magnesiation of N-propyl 1,2,4-triazole (32a) was achieved by 

using an excess of TMPMgCl∙LiCl (7, 4.0 equiv, 0 °C, 30 min). Subsequent trapping with 

cyclohexyl bromide provided the double allylated triazole 37a in 73% yield. In addition, 

transmetalation to zinc followed by a Negishi-type cross-coupling with 4-iodoanisole led to 

the formation of the double arylated triazole 37b in 52% yield (Scheme 31a). On the other 

hand, a second metalation of 5-substituted 1,2,4-triazoles of type 35 could be achieved using 

TMPMgCl∙LiCl (33, 2.0 equiv, 0 °C, 30 min) or TMPZnCl∙LiCl (36, 1.2 equiv, 0 °C, 30 min). 

This procedure was used to allylate the 3-amino triazole 35l as well as to aminate the 

3-anisyl triazole 35i, giving access to the fully functionalized triazoles 37c and 37d in 80% 

and 87% yield (Scheme 31b). 

 

Scheme 31. Double functionalization of N-propyl 1,2,4-triazole (32a) leading to fully 

functionalized 1,2,4-triazoles of type 37. 
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Using the N-2-iodobenzyl protected 1,2,4-triazole 32c a copper catalyzed cyclization was 

performed after a zincation with TMPZnCl∙LiCl (36, 1.5 equiv, 0 °C, 30 min, Scheme 32). The 

cyclization was completed after 18 h at 40 °C and afforded 5H-[1,2,4]triazole[5,1-a]-

isoindole96 (38) in 94% yield. 

 

Scheme 32. Copper-catalyzed cyclization of a zincated 1,2,4-triazole. 

 

3.3 Functionalization of 1H-Imidazo[1,2-b]pyrazole 

As the NH-proton represents the most acidic position in 1H-imidazo[1,2-b]pyrazole (39), it 

was necessary to install a protection group on the nitrogen before attempting any 

metalations. The SEM group has previously used to protect imidazoles, pyrazoles and 

1,2,4-triazoles during a series of metalations as it is generally easy to introduce, stable to a 

wide variety of conditions and can be removed using conditions that tolerate other functional 

groups.97 The protection was achieved by first deprotonating 1H-imidazo[1,2-b]pyrazole (39) 

with 1.5 equivalents of sodium hydride in DMF, followed by the addition of 1.5 equivalents of 

SEMCl at 0 °C. After 100 minutes the reaction was worked up and purified via column 

chromatography to yield the SEM-protected 1H-imidazo[1,2-b]pyrazole 40 in 57% yield 

(Scheme 33). 

 

Scheme 33. SEM-protection of 1H-imidazo[1,2-b]pyrazole (39). 

 

                                                
96 N. Barbero, R. SanMartin, E. Domínguez, Org. Biomol. Chem. 2010, 8, 841-645. 
97 a) J. P. Whitten, D. P. Matthews, J. R. McCarthy, J. Org. Chem. 1986, 51, 1891-1894; 
b) N. Fugina, W. Holzer, M. Wasicky, Heterocycles 1992, 34, 303-314; c) C. Despotopoulou, 
L. Klier, P. Knochel, Org. Lett. 2009, 11, 3326-3329. 
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The first functionalization of the SEM-protected 1H-imidazo[1,2-b]pyrazole 40 was achieved 

via a bromination with N-bromosuccinimide in acetonitrile (Scheme 34). The reaction was 

extremely quick, with full conversion after only 10 minutes in acetonitrile. This can be 

attributed to the highly electron-rich nature of the system. It was also important to use exactly 

1.0 equivalents of N-bromosuccinimide, as even a slight excess led to the formation of a 

double brominated side-product. The reaction was also highly regioselective and only a 

single product (41), with the bromine in the 7-position, was isolated. This selectivity is in 

accordance with the behaviour of pyrazoles, where electrophilic aromatic halogenations 

favour the 4-position.98 The product had to be protected from light and heat during the work-

up and purification to avoid decomposition. It could however be stored at −30 °C for a month 

without any signs of decomposition. 

 

Scheme 34. Selective bromination of the SEM-protected 1H-imidazo[1,2-b]pyrazole 40 in the 

7-position. 

 

In order to access a wide range of different functionalizations in the 7-position, the 

brominated 1H-imidazo[1,2-b]pyrazole 41 was treated with iPrMgCl∙LiCl (42, 2.1 equiv, 0 °C 

to 25 °C, 1 h) in THF. The resulting magnesiated 1H-imidazo[1,2-b]pyrazole was successfully 

reacted with a variety of electrophiles (Scheme 35), including S-methyl sulfonothioate 

(43a),47 tosyl cyanide (43b) and TESCl (43c) in 76-96% yield. The addition of CuCN∙2LiCl 

allowed an allylation (43d) in 94% yield and the formation of the ethyl ester 43e with ethyl 

cyanoformate in 50% yield. Additional reactions included an acylation catalyzed by 

Pd(PPh3)4 (43f) in 60% yield and a range of Kumada-type cross-couplings with electron-

deficient (43g, 43h) and electron-rich (43i) iodides catalyzed by PEPPSI-iPr99 in 68-88% 

yield. 

                                                
98 a) M. McLaughlin, K. Marcantonio, C.-Y. Chen, I. W. Davies, J. Org. Chem. 2008, 73, 
4309-4312; b) R. Goikhman, T. L. Jacques, D. Sames, J. Am. Chem. Soc. 2009, 131, 3042-
3048. 
99 M. G. Organ, M. Abdel-Hadi, S. Avola, N. Hadei, J. Nasielski, C. J. O`Brien, C. Valente, 
Chem. Eur. J. 2007, 13, 150-157. 
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Scheme 35. Selective functionalization of the 1H-imidazo[1,2-b]pyrazole 41 via bromine-

magnesium exchange leading to 7-functionalized 1H-imidazo[1,2-b]pyrazoles of type 43. 

 

In order to explore the further functionalization of the 1H-imidazo[1,2-b]pyrazole scaffold the 

substrate 43b with a nitrile in the 7-position was chosen as a starting material, as it could be 

synthesized in excellent yields even at a scale of more than 1 gram. Initially, conditions for a 

second bromination using N-bromosuccinimide in acetonitrile were explored (Scheme 36). 

This time the bromination was significantly slower and 2.0 equivalents of NBS were 

necessary to achieve a full conversion after 80 minutes at 25 °C. The bromination was highly 

selective, as only a single product 44 was isolated in 70% yield. The structure of 44 was 
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explored via 2D-NMR spectroscopy, which showed that the bromine was introduced in the 

3-position. 

 

Scheme 36. Selective bromination of the 1H-imidazo[1,2-b]pyrazole 43b using NBS. 

 

As the second bromination was significantly slower than the first one and required a large 

excess of NBS, the use of TMPMgCl∙LiCl (33, 1.5 equiv, −20 °C, 2 h) to achieve the second 

functionalization without needing to handle a sensitive bromide was explored instead 

(Scheme 37). The TMP base resulted in a selective magnesiation in the 3-position. The 

metalated 1H-imidazo[1,2-b] pyrazole was successfully reacted with a variety of electrophiles 

in 57-89% yield (45a-45j). This included a copper-catalyzed allylation (45a) in 65% yield, a 

thiolation with S-phenyl sulfonothioate (45b)47 in 69% yield and the reaction with ethyl 

cyanoformate (45c) in 65% yield. A transmetalation with ZnCl2 allowed a series of Negishi-

type cross-couplings45 in 57-89% yield (45d-45j). When electron-rich iodides where 

employed (45d, 45e), a mixture of Pd(OAc)2 (5%) and SPhos100 (10%) yielded the best 

results. For electron-deficient halides (45f-45i) the NHC catalyst PEPPSI-iPr (2%) performed 

significantly better. By increasing the reaction temperature from 40 °C to 60 °C, it was even 

possible to conduct the cross-coupling with a less reactive bromide instead of an iodide (45i). 

The use of the more active catalyst PEPPSI-iPent101 (3%) at 60 °C allowed the reaction with 

a highly functionalized iodide containing an α,β-unsaturated amide and an amine in 57% 

yield (45j). 

                                                
100 T. E. Barder, S. D. Walker, J. R. Martinelli, S. L. Buchwald, J. Am. Chem. Soc. 2005, 127, 
4685-4696. 
101 M. G. Organ, S. Çalimsiz, M. Sayah, K. H. Hoi, A. L. Lough, Angew. Cmem. Int. Ed. 2009, 
48, 2383-2387. 
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Scheme 37. Selective metalation of the 1H-imidazo[1,2-b]pyrazoles 43b using 

TMPMgCl∙LiCl (33) followed by electrophile trapping leading to 3-substituted 1H-imidazo-

[1,2-b]pyrazoles of type 45. 

 

The third functionalization was optimized using ethyl 7-cyano-1-((2-(trimethylsilyl)ethoxy)-

methyl)-1H-imidazo[1,2-b]pyrazole-3-carboxylate (45c) as a substrate (Scheme 38). An initial 

screening showed, that the bis-base (TMP)2Zn∙MgCl2∙2LiCl (46, 0.65 equiv), prepared from 

TMPLi through the addition of half an equivalent each of a freshly prepared MgCl2 and ZnCl2 
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solution in THF, yielded the best results. The metalation targeted selectively the 2-position 

and was completed after 30 minutes at 0 °C. The zincated 1H-imidazo[1,2-b]pyrazole was 

reacted in a copper-catalyzed allylation, yielding 72% of the corresponding product 47a. In 

addition, a series of copper-catalyzed acylations with aromatic (47b, 47c), aliphatic (47d) and 

heteroaromatic (47e) acyl chlorides was conducted in 61-81% yield. Finally, a range of 

Negishi-type cross-couplings catalyzed by Pd(PPh3)4 (5%) gave access to the products 47f-

47j in 50-69% yield. The scope of possible substrates included electron-deficient (47f, 47g), 

electron-rich (47h, 47i) and heterocyclic (47j) iodides. The low reactivity of the intermediate 

zinc species allowed the use of electrophiles containing sensitive functional groups, such as 

an ester (47f) or a nitro group (47c), without significant amounts of undesired side-products. 
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Scheme 38. Selective metalation of the 1H-imidazo[1,2-b]pyrazoles 45c using 

(TMP)2Zn∙MgCl2∙2LiCl (46) followed by electrophile trapping leading to 2-substituted 

1H-imidazo[1,2-b]pyrazoles of type 47. 

 

When attempting the final functionalization of a series of 2,3,7-trifunctionalized 1H-imidazo-

[1,2-b]pyrazoles of type 47 using (TMP)2Zn∙MgCl2∙2LiCl (46, 0.65 equiv), the starting 

materials were fully consumed within 30-150 minutes at 0 °C, without the addition of any 

electrophile (Scheme 39). TLC analysis of hydrolysed aliquots showed the formation of a 

single highly polar new spot in all cases. The new products of type 48 were purified via 

column chromatography on Florisil® and analysed via ESI mass spectrometry and NMR 
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spectroscopy. The data hinted at the presence of a previously unknown 1H,1'H,5H,5'H-6,6'-

biimidazo[1,2-b]pyrazolylidene core. The formation of this unusual new class of products can 

be explained through the attack of a zincated 1H-imidazo[1,2-b]pyrazole molecule on the 

6-position of a second 1H-imidazo[1,2-b]pyrazole unit. A second deprotonation then leads to 

the formation of the central double bond.102 A final aqueous work-up leads to the formation of 

the products 48a-48e in 67-96% yield. The reaction was successfully performed with 

1H-imidazo[1,2-b]pyrazoles containing aryl substituents with electron withdrawing (48a, 48b) 

and electron donating (48c) groups in the 2-position. Other substituents included a 3-thienyl 

(48d) and a benzoyl group (48e). 

 

Scheme 39. Treatment of 2,3,7-trifunctionalized 1H-imidazo [1,2-b]pyrazoles of type 47 with 

(TMP)2Zn∙MgCl2∙2LiCl (46) leading to 1H,1'H,5H,5'H-6,6'-biimidazo[1,2-b]pyrazolylidenes of 

type 48. 

 

Most of these novel 1H,1'H,5H,5'H-6,6'-biimidazo[1,2-b]pyrazolylidenes of type 48 exhibited 

fluorescence in solution when irradiated by UV-light (366 nm, Figure 9). The colour of the 

emitted light correlated with the structure of the substituents in the 2-positions: The electron 

                                                
102 The exact configuration of the central double bond remains to be determined. NMR-
spectroscopy confirms the presence of only a single conformer. 
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donating substituents in 48c and 48d led to the emission of blue light. The inductively 

electron withdrawing CF3-groups in 48b resulted in a green light, while the inductive and 

mesomeric electron withdrawal of the esters in 48a led to the emission of orange light. A 

solution of the compound 48e with benzoyl substituents in the 2-positions did not exhibit any 

fluorescence under the 366 nm UV-lamp. However, it showed a very intense yellow colour, 

hinting at a strong absorption in the blue range of visible light. 

 

Figure 9. Fluorescence of 1H,1'H,5H,5'H-6,6'-biimidazo[1,2-b]pyrazolylidenes of type 48 in 

acetone under UV-light (366 nm). 
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4 Summary 

The topic of the second part of this thesis was the metalation of various nitrogen containing 

heterocycles using TMP bases. This was first achieved in the case of 1,3,4-oxadiazole using 

the base TMP2Zn∙2LiCl (Scheme 40). The resulting zincated 1,3,4-oxadiazole was reacted in 

a series of Negishi-type cross-couplings with electron-deficient, electron-rich and heterocyclic 

iodides. The mono substituted 1,3,4-oxadiazoles were then metalated a second time using 

TMP2Zn∙2MgCl2∙2LiCl, followed by a series of copper-catalyzed electrophilic aminations 

using hydroxylamino benzoates. 

 

Scheme 40. Summary of the functionalization of 1,3,4-oxadiazole. 

 

N-propyl and N-benzyl 1,2,4-triazole were investigated as a second heterocyclic system 

(Scheme 41). In this case the first metalation was achieved using TMPMgCl∙LiCl or 

TMPZnCl∙LiCl. The metalated 1,2,4-triazoles were subsequently submitted to a variety of 

electrophilic trapping reactions, including copper-catalyzed allylations and acylations, as well 

as Negishi-type cross-couplings and copper-catalyzed electrophilic aminations. A second 

metalation was performed on two different substrates using the same TMP bases. 
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Scheme 41. Summary of the functionalization of 1,2,4-triazoles. 

 

Finally, the functionalization of 1H-imidazo[1,2-b]pyrazole was explored (Scheme 42). The 

free NH-group of the heterocycle was protected with a SEM-group. The first functionalization 

was achieved via a selective bromination in the 7-position using NBS, followed by a bromine-

magnesium exchange and different electrophilic trapping reactions. A second selective 

metalation in the 3-position was performed using TMPMgCl∙LiCl. The metalated 

intermediates could once again be reacted with a variety of electrophiles. The third 

metalation with (TMP)2Zn∙MgCl2∙2LiCl went selectively in the 2-position and allowed the 

synthesis of a multitude of acylation and cross-coupling products. 
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Scheme 42. Summary of the functionalization of 1H-imidazo[1,2-b]pyrazole. 

 

The treatment of 2,3,7-trifunctionalized 1H-imidazo[1,2-b]pyrazoles with 

(TMP)2Zn∙MgCl2∙2LiCl let to the formation of a series of novel 1H,1'H,5H,5'H-6,6'-biimidazo-

[1,2-b]pyrazolylidenes, which exhibited fluorescence in solution under UV-light (Scheme 43). 
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Scheme 43. Summary of the synthesis of novel 1H,1'H,5H,5'H-6,6'-biimidazo[1,2-b]-

pyrazolylidenes.



 
  

  



 
  

 

 

 

 

 

 

 

 

 

Part III: Experimental Section 
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1 General Considerations 

Unless otherwise stated all reactions were carried out under an argon atmosphere in flame-

dried glassware. Syringes which were used to transfer anhydrous solvents or reagents were 

purged with argon prior to use. Reactions at high temperatures containing volatile 

compounds were conducted in BIOTAGE microwave vials sealed with the appropriate caps 

(up to 3 mL total volume) or Ace pressure vials. Yields refer to isolated yields of compounds 

estimated to be >95% pure as determined by 1H-NMR (25 °C) and capillary GC. All reagents 

were obtained from commercial sources and used without further purification unless 

otherwise stated. Reaction mixtures were cooled using an acetone / dry ice bath and heated 

using an oil bath on a magnetic stirrer. The suspension formed during the work-up of 

reactions containing CuCN∙2LiCl was dissolved by adding appropriate amounts of 

concentrated aqueous ammonia solution. 

 

1.1 Solvents 

CH2Cl2 was predried over CaCl2 and distilled from CaH2 under nitrogen atmosphere. 

Et2O was predried over CaCl2 and passed through activated aluminium oxide (solvent 

purification system SPS-400-2 from Innovative Technologies Inc.) 

THF was continuously refluxed and freshly distilled from sodium benzophenone ketyl under 

nitrogen and stored over molecular sieves. 

All other solvents were purchased from chemical suppliers (Merck, Acros Organics) and 

used without further purification. 

Solvents for reaction workups and column chromatography were distilled prior to use. 

 

1.2 Reagents 

nBuLi and PhLi solutions in hexane or dibutyl ether were purchased from Albemarle or 

Merck and the concentration was determined by titration against N-benzylbenzamide in THF 

at 40 °C or 0 °C respectively.103 

                                                
103 A. F. Burchat, J. M. Chong, N. Nielsen, J. Organomet. Chem. 1997, 542, 281-283. 
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TMPH was purchased from Albemarle (Frankfurt, Germany), freshly distilled over CaH2 and 

stored under argon. 

Diisopropylamine was purchased from Acros Organics, freshly distilled over CaH2 and 

stored under argon. 

CuCN∙2LiCl solution (1.00 M in THF) was prepared by drying CuCN (8.96 g, 100 mmol, 

1.00 equiv) and LiCl (8.48 g, 200 mmol, 2.00 equiv) in a Schlenk-flask under vacuum for 5 h 

at 150 °C. After cooling to 25 °C, dry THF (100 mL) was added and the resulting mixture was 

stirred until the salts were dissolved. 

ZnCl2 solution (1.00 M in THF) was prepared by drying ZnCl2 (27.3 g, 200 mmol) in a 

Schlenk-flask under vacuum for 5 h at 150 °C. After cooling to 25 °C, dry THF (200 mL) was 

added and the resulting mixture was stirred until the salts were dissolved. 

iPrMgCl∙LiCl in THF was prepared by flame drying magnesium turnings (24 g, 1.0 mol, 

2.0 equiv) and anhydrous LiCl (25 g, 0.60 mol, 1.2 equiv) in a Schlenk-flask under vacuum at 

450 °C. After the addition of anhydrous THF (500 mL), iPrCl (39 g, 0.50 mol, 1.0 equiv) was 

added dropwise at 25 °C using a dropping funnel until the reaction started. Then the reaction 

mixture was cooled to 0 °C and the addition was continued overnight while allowing the flask 

to warm up to 25 °C. The remaining solids were filtered off and the iPrMgCl∙LiCl solution was 

titrated against iodine. 

TMPH was purchased from Albemarle (Frankfurt, Germany), freshly distilled over CaH2 and 

stored under argon. 

 

1.3 Chromatography 

Flash column chromatography was performed using silica gel 60 (40-63 μm, 230-400 

mesh ASTM), alumina 90 active acidic (63-200 μm, 70-230 mesh ASTM), or Florisil® PR 

grade (149-250 μm, 60-100 mesh) from Merck. The activity of the alumina was set to grade 

III by adding 4.5% distilled water and stirring at 40 °C for 2 h. 

Thin layer chromatography (TLC) was performed using aluminium plates covered with 

SiO2 (Merck 60, F–254). Spots were visualized by UV light irradiation and/or by staining of 

the TLC plate with one of the reagents below, followed by heating with a heat gun if 

necessary. 

• KMnO4 (0.3 g), K2CO3 (20 g) and KOH (0.3 g) in water (300 mL). 



68 
 

• Ce(SO4)2 (5.0 g), (NH4)6Mo7O24•4H2O (25 g) and conc. H2SO4 (50 mL) in water 

(450 mL). 

• Neat iodine absorbed on silica gel (no heating required). 

• Vanillin (15 g) and conc. H2SO4 (2.5 mL) in EtOH (250 mL). 

• p-Anisaldehyde (3.7 mL), conc. H2SO4 (5 mL) and acetic acid (1.5 mL) in EtOH 

(135 mL). 

Preparative HPLC purification was performed on an Agilent Technologies 1260 Infinity 

HPLC-System, consisting of two prep-pumps (acetonitrile/water, no additives), a MWD-

detector (210 nm wavelength, 40 nm bandwidth, ref-wavelength 400 nm, ref-bandwidth 100 

nm) and a fraction collector. Three different columns were used: 1) Kinetix EVO C18 5 μm 

column (length: 150 mm, diameter: 10 mm), 2) Kinetix EVO C18 5 μm column (length: 150 

mm, diameter: 21.2 mm) and 3) Waters XBridge Prep C8 5 μm column (length: 150 mm, 

diameter: 30 mm). 

 

1.4 Analytical Data 

NMR spectra were recorded on Bruker ARX 200, AC 300, WH 400 or AMX 600 instruments. 

Chemical shifts are reported as δ-values in ppm relative to the deuterated solvent peak: 

CDCl3 (δH: 7.26; δC: 77.16), DMSO-d6 (δH: 2.50; δC: 39.52), C6D6 (δH: 7.16; δC: 128.06) 

Acetone-d6 (δH: 2.05; δC: 206.26 / 29.84). For the observation of the observed signal 

multiplicities, the following abbreviations and combinations thereof were used: s (singlet), d 

(doublet), t (triplet), q (quartet) and m (multiplet). If not otherwise noted, the coupling 

constants given are either H-H or H-F coupling constants for proton signals and C-F coupling 

constants for carbon signals. In the cases where a steric centre is located next to a 

bicyclopentane core, the protons of the methylene groups in the BCP unit are diastereotopic 

and show the splitting pattern expected for the resulting [AB]3-system.  

Melting points are uncorrected and were measured on a Büchi B.540 apparatus.  

Infrared spectra were recorded from 4000-400 cm−1 on a Perkin Elmer Spectrum BX-59343 

instrument. For detection a Smiths Detection DuraSampl IR II Diamond ATR sensor was 

used. The main absorption peaks are reported in cm−1. 

Gas chromatographical analysis (GC) was performed with instruments of the type Hewlett-

Packard 6890 or 5890 Series II, using a column of the type HP 5 (Hewlett-Packard, 5% 

phenylmethylpolysiloxane; length: 10 m, diameter: 0.25 mm, film thickness 0.25 μm). The 

detection was accomplished using a flame ionization detector. Mass spectra (MS) and high 
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resolution mass spectra (HRMS) were recorded on a Finnigan MAT 95Q or Finnigan MAT 90 

instrument for electron impact ionization (EI). For the combination of gas chromatography 

with mass spectroscopic detection, a GC–MS of the type Hewlett-Packard 6890/MSD 5793 

networking was used (column: HP 5–MS, Hewlett–Packard; 5% phenylmethylpolysiloxane; 

length: 15 m, diameter: 0.25 mm, film thickness: 0.25 μm).  

Single crystals of compounds suitable for X-ray diffraction were obtained by slow 

evaporation of either EtOAc or CDCl3 solutions. The crystals were introduced into 

perfluorinated oil and a suitable single crystal was carefully mounted on the top of a thin 

glass wire. Data collection was performed with an Oxford Xcalibur 3 diffractometer equipped 

with a Spellman generator (50 kV, 40 mA) and a Kappa CCD detector, operating with Mo-Kα 

radiation (λ = 0.71071 Ǻ).  

Data collection was performed with the CrysAlis CCD software;104 CrysAlis RED software105 

was used for data reduction. Absorption correction using the SCALE3 ABSPACK multiscan 

method106 was applied. The structures were solved with SHELXS-97,107 refined with 

SHELXL-97108 and finally checked using PLATON.109 Details for data collection and structure 

refinement are summarized in the tables at the end of this document. 

The 1-octanol/water partitioning coefficient (logP) was determined using a miniaturized 

Shake-Flask equilibrium method. Prior to start the experiment the two phases were pre-

saturated, so “water-saturated 1-octanol” and “1-octanol-saturated water” were used. The 

samples were initially dissolved in DMSO as a 10 mM stock concentration. The samples and 

an internal standard were dispensed in a 1ml deepwell plate and DMSO is evaporated prior 

to be dissolved in 1-octanol at a target concentration of 150 µM by shaking at 1000 rpm for 

8 hours. The pH 7.4 buffer was added with a phase ratio K of 1 (where K = Vwater/Voctanol) and 

then the samples were shaken 4 hours on a shaker at 1000 rpm. The deepwell plate was 

centrifuged at 3000rpm prior to phase separation. A x10 dilution for the aqueous phase and a 

                                                
104 CrysAlis CCD, Oxford Diffraction Ltd., Version 1.171.27p5 beta (release 01-04-2005 
CrysAlis171.NET) (compiled Apr 1 2005, 17:53:34). 
105 CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.27p5 beta (release 01-04-2005 
CrysAlis171.NET) (compiled Apr 1 2005, 17:53:34). 
106 SCALE3 ABSPACK – An Oxford Diffraction Program (1.0.4, gui:1.0.3) (C), Oxford 
Diffraction, Ltd., 2005. 
107 G. M. Sheldrick (1997) SHELXS-97: Program for Crystal Structure Solution, University of 
Göttingen, Germany. 
108 G. M. Sheldrick (1997) SHELXS-97: Program for the Refinement of Crystal Structures, 
University of Göttingen, Germany. 
109 A. L. Spek (1999) PLATON: A Multipurpose Crystallographic Tool, Utrecht University, 
Utrecht, the Netherlands. 
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x1000 dilution for the octanol phase are prepared and quantified by LC-HRMS against an 

internal standard (Dexamethasone) with a known logD = 1.9 with the following equation 3:110 

𝑙𝑜𝑔𝐷 = log 

(

 
 

𝐴𝑛𝑎𝑙𝑦𝑡𝑒 𝑝𝑒𝑎𝑘 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑜𝑐𝑡𝑎𝑛𝑜𝑙 ∗ 1000
𝐼𝑆 𝑝𝑒𝑎𝑘 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑜𝑐𝑡𝑎𝑛𝑜𝑙

0.794⁄
⁄

𝐴𝑛𝑎𝑙𝑦𝑡𝑒 𝑝𝑒𝑎𝑘 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑎𝑞𝑢𝑒𝑜𝑢𝑠 ∗ 10
𝐼𝑆 𝑝𝑒𝑎𝑘 𝑎𝑟𝑒𝑎 𝑖𝑛 𝑎𝑞𝑢𝑒𝑜𝑢𝑠⁄

)

 
 

 

 

(3) 

 

Column used: Zorbax_SB_AQ 50 x 2.1 mm 1.8 µm – Column oven temperature = 50 °C 

Mobile phase: A= 100% water UHPLC grade + 0.08% formic acid. B = 100% ACN + 0.08% 

Formic acid. Flow rate = 0.5 ml/min. Gradient mode: starting at 95% A up to 95% B in 

0.5 min and kept constant during 1min before to restore initial conditions within 0.1 min. 

Vinj = 5 µl. Full MS acquisition mode – Full scan 130 to 1800 m/z and resolution = 35’000. 

[M+H]+ ion chromatogram was extracted for each compounds. 

Potentiometric ionization constants were determined on the commercial SiriusT3 

instruments (Pion-inc.com) as described by Takács-Novák et. al. 1997. Briefly, 0.3 to 1 mM of 

test solutions were titrated from pH 2 to 12 for bases or 12 to 2 for acids. Titrations were 

conducted at 25 °C and in 0.15 M ionic strength. Aqueous titrations were performed in 

triplicate in 0.15 M KCl, while sparingly soluble test compounds were titrated in 10-60 %wt 

methanol, 1,4-dioxane, or dimethyl sulfoxide co-solvent. A minimum of three titrations in 

varying amounts of cosolvent were performed for extrapolation to the aqueous pKa. For each 

titration, initial estimates of pKa values were obtained from Bjerrum difference plots (number 

of bound protons versus pH) and then were refined by a weighted non-linear least-squares 

procedure (Avdeef 1992, 1993) available in the instrument software. Experimental variability 

was determined from 389 duplicate measurements from different days and experimentalists, 

with a standard deviation of 0.28. 

  

                                                
110 Y. W. Low, F. Blasco, P. Vachaspati, Eur. J. Pharm. Sci. 2016, 92, 110-116. 
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2 Experimental Section Part I: Highly Regio-

selective Addition of Organozinc Reagents to 

[1.1.1]Propellane 

2.1 Preparation of Starting Materials 

The following reagents were prepared according to literature procedures: 1,1-dibromo-2,2-

bis(chloromethyl)cyclopropane,111 N,N-diallyl-O-benzoylhydroxylamine,48 S-phenyl benzene-

sulfonothioate , S-methyl benzenesulfonothioate,112 ethyl 2-(bromomethyl)acrylate,113 ethyl 6-

chlorocyclohex-1-ene-1-carboxylate114, (1R)-myrtenyl bromide115 and 5-bromocyclopent-1-

enecarbonitrile.116 

 

Preparation of the solution of [1.1.1]propellane (1) in diethyl ether 

 

In a dry Schlenk-flask 1,1-dibromo-2,2-bis(chloromethyl)cyclopropane (5.9 g, 20 mmol, 

1.0 equiv) was dissolved in Et2O (20 mL) and cooled to 45 °C. Phenyllithium (1.8 M in 

dibutyl ether, 22 mL, 40 mmol, 2.0 equiv) was added dropwise over 15 min using a syringe 

pump. The resulting mixture was stirred for 5 min at 45 °C and 2 h at 0 °C. Then an argon 

flushed distillation head connected to a collector Schlenk-tube immersed into an acetone/ dry 

ice bath (T = 78 °C) was attached and the distillation was started at 200 mbar. The reaction 

flask was removed from the ice bath and the pressure was gradually lowered to 45 mbar. 

After approximately 30 min the distillation was stopped and the system was filled with argon. 

An aliquot (0.1 mL) of the solution was analysed by NMR spectroscopy with 

1,3,5-trimethoxybenzene (16.8 mg, 0.10 mmol) as a standard to determine the concentration. 

                                                
111 K. R. Mondanaro, W. P. Dailey, Org. Synth. 1998, 75, 98-101. 
112 K. Fujiki, N. Tanufuji, Y. Sasaki, T. Yokoyama, Synthesis 2002, 3, 343-348. 
113 J. Caillé, M. Pantin, F. Boeda, M. S. M. Pearson-Long, P. Bertus, Synthesis 2019, 51, 
1329-1341. 
114 Z. Peng, T. D. Blümke, P. Mayer, P. Knochel, Angew. Chem. Int. Ed. 2010, 49, 8516-
8519. 
115 R. K. de Richter, M. Bonato, M. Follet, J.-M. Kamenka, J. Org. Chem. 1990, 55, 2855-
2860 
116 G. L. Lackner, K. W. Quasdorf, G. Pratsch, L. E. Overman, J. Org. Chem. 2015, 80, 6012-
6024. 
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The average concentration of the [1.1.1]propellane solution was 0.5-0.7 M. The solution was 

stored at 25 °C under argon. 

 

General procedure for the preparation of allylic organozinc reagents of type 2 in THF 

A Schlenk-flask was loaded with zinc dust (2.0 equiv) and lithium chloride (1.2 equiv) and 

flame dried with a heat gun under vacuum at 450 °C. Once the flask was cooled down it was 

filled with argon and THF (1 mL/mmol halide). The zinc was activated by adding a drop of 

1,2-dibromoethane and heating until a slight gas evolution started. Then the reaction mixture 

was cooled to 0 °C and the respective organohalide (1.0 equiv) was added dropwise. The 

reaction mixture was stirred over night while slowly warming up to room temperature. The 

remaining zinc dust was removed using a syringe filter and the concentration was 

determined via titration against iodine.117 

 

2.2 Typical Procedures 

TP1: Typical procedure for the reaction of allylic organozinc reagents of type 2 with 

[1.1.1]propellane (1) followed by electrophile addition 

 

A BIOTAGE Microwave vial under argon was loaded with the allylic organozinc reagent in 

THF (0.40 mmol, 2.0 equiv), followed by [1.1.1]propellane in diethyl ether (0.20 mmol, 

1.0 equiv). The vial was sealed and stirred at the respective temperature (25 °C / 50 °C / 

100 °C) for the indicated amount of time. Then the reaction mixture was cooled down to room 

temperature and the electrophile was added. The reaction was stirred until GCMS analysis 

showed full conversion. Afterwards a saturated aqueous solution of NH4Cl (1 mL) was added 

and the reaction mixture was extracted with EtOAc (3 times), washed with brine, dried over 

MgSO4 and concentrated in vacuo. The crude product was purified via silica gel column 

chromatography using an appropriate mixture of i-hexane and EtOAc as eluent. 

                                                
117 A. Krasovskiy, P. Knochel, Synthesis 2006, 890-891. 
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TP2: Typical procedure for the reaction of zinc enolates of type 7 with 

[1.1.1]propellane (1) followed by electrophile addition 

 

Diisopropylamine (63 mg, 0.62 mmol, 3.1 equiv) was dissolved in THF (0.6 mL) and BuLi 

(2.55 M in hexane, 0.24 mL, 0.62 mmol, 3.1 equiv) was added dropwise at 0 °C. The mixture 

was stirred for 5 min and cooled to 78 °C. Then the ketone (0.30 mmol, 1.5 equiv) was 

added. After 30 min a solution of ZnCl2 in THF (1.0 M, 0.70 mL, 0.70 mmol, 3.5 equiv) was 

added and the mixture was stirred at 0 °C for 5 min before adding [1.1.1]propellane in diethyl 

ether (0.20 mmol, 1.0 equiv). After stirring at 0 °C or 25 °C for the indicated time the 

electrophile was added and the mixture was stirred until GCMS analysis showed full 

conversion. Then a saturated aqueous solution of NH4Cl (1 mL) was added and the reaction 

mixture was extracted with EtOAc (3 times), washed with brine, dried over MgSO4 and 

concentrated in vacuo. The crude product was purified via silica gel column chromatography 

using an appropriate mixture of i-hexane and EtOAc as eluent. 

 

TP3: Typical procedure for the reaction of zinc ester enolates of type 11 with 

[1.1.1]propellane (1) followed by electrophile addition 

 

Diisopropylamine (43 mg, 0.42 mmol, 2.1 equiv) was dissolved in THF (0.5 mL) and BuLi 

(2.55 M in hexane, 0.16 mL, 0.42 mmol, 2.1 equiv) was added dropwise at 0 °C. The mixture 

was stirred for 5 min and cooled to 78 °C. Then the ester (0.40 mmol, 2.0 equiv) was 

added. After 30 min a solution of ZnCl2 in THF (1.0 M, 0.50 mL, 0.50 mmol, 2.5 equiv) was 

added and the mixture was stirred at 0 °C for 5 min before adding [1.1.1]propellane in diethyl 

ether (0.20 mmol, 1.0 equiv). After stirring at 0 °C for 3 h the electrophile was added and the 

mixture was stirred until GCMS analysis showed full conversion. Then a saturated aqueous 

solution of NH4Cl (1 mL) was added and the reaction mixture was extracted with EtOAc 

(3 times), washed with brine, dried over MgSO4 and concentrated in vacuo. The crude 
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product was purified via silica gel column chromatography using an appropriate mixture of 

i-hexane and EtOAc as eluent. 

 

TP4: Typical procedure for the reaction of nitrile-stabilized zinc enolates of type 15 

with [1.1.1]propellane (1) followed by copper-catalyzed allylation 

 

Diisopropylamine (43 mg, 0.42 mmol, 2.1 equiv) was dissolved in THF (0.5 mL) and BuLi 

(2.55 M in hexane, 0.16 mL, 0.42 mmol, 2.1 equiv) was added dropwise at 0 °C. The mixture 

was stirred for 5 min and cooled to 78 °C. Then the nitrile (0.40 mmol, 2.0 equiv) was 

added. After 30 min a solution of ZnCl2 in THF (1.0 M, 0.50 mL, 0.50 mmol, 2.5 equiv) was 

added and the mixture was stirred at 0 °C for 5 min before adding [1.1.1]propellane in diethyl 

ether (0.20 mmol, 1.0 equiv). After stirring at 25 °C for the indicated time CuCN2LiCl in THF 

(1.0 M, 0.04 mL, 0.04 mmol, 20%) and allyl bromide (61 mg, 0.50 mmol, 2.5 equiv) were 

added and the mixture was stirred for 20 min at 25 °C. Then a saturated aqueous solution of 

NH4Cl (1 mL) was added and the reaction mixture was extracted with EtOAc (3 times), 

washed with brine, dried over MgSO4 and concentrated in vacuo. The crude product was 

purified via silica gel column chromatography using an appropriate mixture of i-hexane and 

EtOAc as eluent. 

 

2.3 Products 

(3-Allylbicyclo[1.1.1]pentan-1-yl)(phenyl)methanone (4a) 

 

(3-Allylbicyclo[1.1.1]pentan-1-yl)(phenyl)methanone was prepared according to TP1 using 

allylzinc bromide coordinated with lithium chloride (0.90 M, 0.44 mL, 0.40 mmol, 2.0 equiv). 

The reaction was stirred at 25 °C for 2 h before adding CuCN2LiCl in THF (1.0 M, 0.20 mL, 

0.20 mmol, 1.0 equiv) and benzoyl chloride (70 mg, 0.50 mmol, 2.5 equiv). The resulting 
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mixture was stirred at 25 °C for 4 h. Workup according to TP1 and purification via column 

chromatography (iHex / EtOAc = 49 / 1) afforded the desired compound 4a (41 mg, 

0.19 mmol, 96%) as a colorless liquid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.5, 1.2 Hz, 2 H), 7.53 (tt, J = 7.5, 1.2 Hz, 1 H), 7.43 (t, 

J = 7.5 Hz, 2 H), 5.82 – 5.68 (m, 1 H), 5.10 – 5.00 (m, 2 H), 2.30 (dt, J = 7.2, 1.2 Hz, 2 H), 

2.15 (s, 6 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 197.9, 136.8, 134.7, 132.9, 129.0, 128.5, 116.7, 53.4, 

45.0, 39.8, 36.5. 

MS (70 eV, EI) m/z (%): 212 (1) [M]+, 197 (11), 171 (23), 153 (11), 143 (10), 141 (11), 

128 (19), 105 (100), 91 (20), 79 (13), 77 (43). 

IR (ATR) ~ (cm-1): 3074, 2974, 2910, 2874, 1719, 1662, 1641, 1598, 1579, 1510, 1447, 

1340, 1302, 1289, 1267, 1204, 1176, 1086, 1070, 1025, 992, 912, 867, 759, 712, 692, 675. 

HRMS (EI) calculated for C15H15O+: 211.1117, found 212.1118 [MH]+. 

 

Phenyl(3-(1-phenylallyl)bicyclo[1.1.1]pentan-1-yl)methanone (4b) 

 

Phenyl(3-(1-phenylallyl)bicyclo[1.1.1]pentan-1-yl)methanone was prepared according to TP1 

using cinnamylzinc bromide coordinated with lithium chloride (0.53 M, 0.75 mL, 0.40 mmol, 

2.0 equiv). The reaction was stirred at 50 °C for 7 h before adding CuCN2LiCl in THF (1.0 M, 

0.20 mL, 0.20 mmol, 1.0 equiv) and benzoyl chloride (70 mg, 0.50 mmol, 2.5 equiv). The 

resulting mixture was stirred at 25 °C for 3 h. Workup according to TP1 and purification via 

column chromatography (iHex / EtOAc = 99 / 1) afforded the desired compound 4b (54 mg, 

0.19 mmol, 93%) as colorless crystals. The structure was confirmed via single crystal X-ray 

diffraction studies. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.96 (d, J = 7.1 Hz, 2 H), 7.53 (tt, J = 7.5, 2.0 Hz, 1 H), 

7.42 (t, J = 7.7 Hz, 2 H), 7.34 (t, J = 7.4 Hz, 2 H), 7.28 – 7.22 (m, 1 H), 7.18 (d, J = 6.8 Hz, 

2 H), 6.12 (ddd, J = 17.0, 10.3, 8.4 Hz, 1 H), 5.21 – 5.07 (m, 2 H), 3.50 (d, J = 8.4 Hz, 1 H), 

2.15 (A part of an [AB]3-system, 3 H), 2.09 (B part of an [AB]3-system, 3 H). 
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13C-NMR (CDCl3, 101 MHz, ppm): δ = 197.9, 141.3, 137.6, 136.7, 132.9, 129.0, 128.6, 

128.5, 128.0, 126.6, 116.6, 52.3, 51.7, 45.0, 43.5. 

MS (70 eV, EI) m/z (%): 287 (3) [MH]+, 183 (14), 171 (20), 168 (17), 167 (23), 165 (12), 155 

(20), 153 (30), 152 (12), 143 (15), 141 (38), 129 (14), 128 (55), 117 (33), 115 (61), 105 (100), 

91 (22), 77 (38). 

IR (ATR) ~ (cm-1): 2978, 1661, 1636, 1595, 1577, 1488, 1447, 1331, 1277, 1203, 1175, 

1069, 1022, 998, 931, 877, 839, 784, 759, 730, 699, 676. 

HRMS (EI) calculated for C21H19O+: 287.1430, found 287.1432 [MH]+. 

mp: 86.8 – 88.4 °C. 

 

1-Allyl-3-(4-methoxyphenyl)bicyclo[1.1.1]pentane (4c) 

 

1-Allyl-3-(4-methoxyphenyl)bicyclo[1.1.1]pentane was prepared according to TP1 using 

allylzinc bromide coordinated with lithium chloride (0.90 M, 0.44 mL, 0.40 mmol, 2.0 equiv). 

The reaction was stirred at 50 °C for 3 h before adding 4-iodoanisole (117 mg, 0.50 mmol, 

2.5 equiv), PdCl2(dppf)CH2Cl2 (8.2 mg, 0.010 mmol, 5%) and CuCN2LiCl in THF (1.0 M, 

0.020 mL, 0.020 mmol, 10%). The resulting mixture was stirred at 45 °C for 3 h. Workup 

according to TP1 and purification via column chromatography (iHex / EtOAc = 99 / 1) and 

HPLC afforded the desired compound 4c (39 mg, 0.18 mmol, 92%) as a colorless liquid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.14 (d, J = 8.6 Hz, 2 H), 6.84 (d, J = 8.6 Hz, 2 H), 

5.79 (ddt, J = 17.3, 10.1, 7.2 Hz, 1 H), 5.09 – 4.97 (m, 2 H), 3.79 (s, 3 H), 2.30 (dt, J = 7.3, 

1.2 Hz, 2 H), 1.88 (s, 6 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 158.3, 135.8, 134.0, 127.2, 115.9, 113.6, 55.4, 52.2, 

41.9, 37.8, 36.9. 

MS (70 eV, EI) m/z (%): 214 (18) [M]+, 199 (42), 186 (97), 185 (34), 184 (33), 173 (43), 

171 (66), 159 (20), 158 (99), 155 (29), 148 (64), 145 (18), 144 (17), 141 (30), 133 (100), 

129 (21), 128 (37), 121 (55), 118 (22), 115 (42), 105 (15), 103 (21), 91 (30), 89 (16), 79 (17), 

77 (18). 
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IR (ATR) ~ (cm-1): 2956, 2903, 2865, 2834, 1641, 1610, 1578, 1519, 1503, 1463, 1441, 

1413, 1353, 1294, 1263, 1243, 1172, 1132, 1098, 1037, 991, 908, 832, 801, 791, 666. 

HRMS (EI) calculated for C15H18O+: 214.1352, found 214.1350 [M]+. 

 

Ethyl 4-(3-allylbicyclo[1.1.1]pentan-1-yl)benzoate (4d) 

 

Ethyl 4-(3-allylbicyclo[1.1.1]pentan-1-yl)benzoate was prepared according to TP1 using 

allylzinc bromide coordinated with lithium chloride (0.90 M, 0.44 mL, 0.40 mmol, 2.0 equiv). 

The reaction was stirred at 50 °C for 3 h before adding 4-iodobenzoate (138 mg, 0.50 mmol, 

2.5 equiv), PdCl2(dppf)CH2Cl2 (8.2 mg, 0.010 mmol, 5%) and CuCN2LiCl in THF (1.0 M, 

0.020 mL, 0.020 mmol, 10%). The resulting mixture was stirred at 45 °C for 19 h. Workup 

according to TP1 and purification via column chromatography (iHex / EtOAc = 99 / 1) and 

HPLC afforded the desired compound 4d (50 mg, 0.19 mmol, 97%) as a colorless liquid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.96 (d, J = 8.3 Hz, 2 H), 7.25 (d, J = 8.3 Hz, 2 H), 

5.77 (ddt, J = 17.3, 10.2, 7.2 Hz, 1 H), 5.12 – 4.96 (m, 2 H), 4.36 (q, J = 7.1 Hz, 2 H), 2.31 

(dt, J = 7.2, 1.2 Hz, 2 H), 1.93 (s, 6 H), 1.38 (t, J = 7.1 Hz, 3 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 166.8, 146.6, 135.4, 129.6, 128.5, 126.2, 116.2, 60.9, 

52.2, 42.3, 38.2, 36.7, 14.5. 

MS (70 eV, EI) m/z (%): 256 (1) [M]+, 228 (20), 211 (11), 200 (13), 183 (16), 169 (10), 

168 (15), 167 (16), 165 (10), 156 (12), 155 (100), 154 (15), 153 (31), 152 (11), 145 (23), 

143 (30), 142 (20), 141 (94), 129 (27), 128 (60), 117 (11), 115 (52), 91 (24), 77 (11). 

IR (ATR) ~ (cm-1): 2964, 2906, 2868, 1713, 1641, 1610, 1445, 1407, 1367, 1307, 1266, 

1174, 1156, 1104, 1093, 1020, 991, 907, 857, 780, 755, 700. 

HRMS (EI) calculated for C17H20O2
+: 256.1458, found 256.1457 [M]+. 
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2-(3-Allylbicyclo[1.1.1]pentan-1-yl)pyridine (4e) 

 

2-(3-Allylbicyclo[1.1.1]pentan-1-yl)pyridine was prepared according to TP1 using allylzinc 

bromide coordinated with lithium chloride (0.90 M, 0.44 mL, 0.40 mmol, 2.0 equiv). The 

reaction was stirred at 25 °C for 2 h before adding 2-bromopyridine (79 mg, 0.50 mmol, 

2.5 equiv), PdCl2(dppf)CH2Cl2 (8.2 mg, 0.010 mmol, 5%) and CuCN2LiCl in THF (1.0 M, 

0.020 mL, 0.020 mmol, 10%). The resulting mixture was stirred at 45 °C for 19 h. Workup 

according to TP1 and purification via column chromatography (iHex / EtOAc = 19 / 1) and 

HPLC afforded the desired compound 4e (26 mg, 0.14 mmol, 70%) as a colorless liquid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 8.54 (ddd, J = 4.9, 1.8, 0.9 Hz, 1 H), 7.60 (td, J = 7.7, 

1.8 Hz, 1 H), 7.17 (dt, J = 7.8, 1.1 Hz, 1 H), 7.11 (ddd, J = 7.6, 4.9, 1.2 Hz, 1 H), 5.78 (ddt, 

J = 17.2, 10.2, 7.2 Hz, 1 H), 5.10 – 4.98 (m, 2 H), 2.32 (dt, J = 7.2, 1.3 Hz, 2 H), 2.00 (s, 7 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 160.1, 149.3, 136.4, 135.4, 121.5, 120.8, 116.2, 51.9, 

43.1, 38.3, 36.7. 

MS (70 eV, EI) m/z (%): 184 (22) [MH]+, 170 (16), 168 (15), 158 (10), 156 (15), 154 (10), 

145 (10), 144 (100), 143 (32), 142 (15), 130 (13), 117 (17). 

IR (ATR) ~ (cm-1): 3076, 2967, 2907, 2869, 1641, 1589, 1567, 1514, 1474, 1432, 1362, 

1289, 1265, 1169, 1050, 992, 912, 788, 753, 698. 

HRMS (EI) calculated for C13H14N+: 184.1121, found 184.1119 [MH]+. 

 

(3-Allylbicyclo[1.1.1]pentan-1-yl)(phenyl)sulfane (4f) 

 

(3-Allylbicyclo[1.1.1]pentan-1-yl)(phenyl)sulfane was prepared according to TP1 using 

allylzinc bromide coordinated with lithium chloride (0.90 M, 0.44 mL, 0.40 mmol, 2.0 equiv). 

The reaction was stirred at 50 °C for 3 h before adding S-phenyl benzenesulfonothioate 

(125 mg, 0.50 mmol, 2.5 equiv). The resulting mixture was stirred at 25 °C for 4 h. Workup 

according to TP1 and purification via column chromatography (iHex) afforded the desired 

compound 4f (41 mg, 0.19 mmol, 95%) as a colorless liquid. 
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1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.39 – 7.32 (m, 2 H), 7.25 – 7.16 (m, 3 H), 5.65 – 5.49 

(m, 1 H), 4.96 – 4.78 (m, 2 H), 2.15 (d, J = 7.2 Hz, 2 H), 1.71 (s, 6 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 135.0, 134.3, 133.6, 128.8, 127.5, 116.4, 54.1, 42.4, 

40.3, 36.5. 

MS (70 eV, EI) m/z (%): 216 (10) [M]+, 188 (22), 173 (22), 147 (16), 142 (11), 141 (11), 

135 (31), 134 (14), 123 (11), 111 (10), 110 (21), 109 (16), 107 (35), 105 (27), 91 (100), 

79 (87), 77 (16), 10 (65). 

IR (ATR) ~ (cm-1): 3075, 2975, 2907, 2870, 1640, 1583, 1473, 1438, 1272, 1188, 1131, 

1091, 1066, 1024, 1011, 991, 912, 891, 741, 690. 

HRMS (EI) calculated for C14H16S+: 216.0967, found 216.0966 [M]+. 

 

N,N,3-Triallylbicyclo[1.1.1]pentan-1-amine (4g) 

 

N,N,3-Triallylbicyclo[1.1.1]pentan-1-amine was prepared according to TP1 using allylzinc 

bromide coordinated with lithium chloride (0.90 M, 0.44 mL, 0.40 mmol, 2.0 equiv). The 

reaction was stirred at 50 °C for 3 h before adding CoCl2 (0.78 mg, 0.0060 mmol, 3%.) and 

N,N-diallyl-O-benzoylhydroxylamine (109 mg, 0.50 mmol, 2.5 equiv). The resulting mixture 

was stirred at 45 °C for 17 h. Workup according to TP1 and purification via column 

chromatography (iHex / EtOAc = 9 / 1) afforded the desired compound 4g (37 mg, 

0.18 mmol, 91%) as a colorless liquid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 5.85 (ddt, J = 16.8, 10.1, 6.5 Hz, 2 H), 5.70 (ddt, 

J = 17.2, 10.1, 7.1 Hz, 1 H), 5.18 – 5.04 (m, 4 H), 5.04 – 4.92 (m, 2 H), 3.15 (dt, J = 6.5, 

1.4 Hz, 4 H), 2.26 (dt, J = 7.1, 1.3 Hz, 2 H), 1.65 (s, 6 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 136.5, 135.9, 117.0, 115.8, 57.8, 53.0, 50.1, 35.6, 

34.9. 

MS (70 eV, EI) m/z (%): 202 (46) [MH]+, 188 (43), 174 (57), 172 (10), 163 (11), 162 (93), 

160 (62), 157 (10), 148 (23), 147 (16), 146 (53), 136 (22), 134 (55), 132 (54), 122 (36), 

121 (21), 120 (100), 118 (31), 106 (31), 105 (25), 94 (32), 93 (26), 91 (75), 81 (21), 80 (28), 

79 (84), 77 (42), 67 (21), 41 (71). 
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IR (ATR) ~ (cm-1): 3075, 2961, 2923, 2867, 1858, 1783, 1722, 1641, 1446, 1418, 1379, 

1277, 1237, 1113, 1047, 993, 913, 807, 712. 

HRMS (EI) calculated for C14H20N+: 202.1590, found 202.1590 [MH]+. 

 

Ethyl 2-((3-(1-phenylallyl)bicyclo[1.1.1]pentan-1-yl)methyl)acrylate (4h) 

 

Ethyl 2-((3-(1-phenylallyl)bicyclo[1.1.1]pentan-1-yl)methyl)acrylate was prepared according to 

TP1 using cinnamylzinc bromide coordinated with lithium chloride (0.53 M, 0.75 mL, 

0.40 mmol, 2.0 equiv). The reaction was stirred at 50 °C for 7 h before adding CuCN2LiCl in 

THF (1.0 M, 0.040 mL, 0.040 mmol, 20%) and ethyl 2-(bromomethyl)acrylate (97 mg, 

0.50 mmol, 2.5 equiv). The resulting mixture was stirred at 25 °C for 16 h. Workup according 

to TP1 and purification via column chromatography (iHex / EtOAc = 99 / 1) and HPLC 

afforded the desired compound 4h (54 mg, 0.19 mmol, 93%) as a colorless liquid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.28 (t, J = 7.3 Hz, 2 H), 7.19 (tt, J = 7.3, 2.1 Hz, 1 H), 

7.12 (d, J = 6.7 Hz, 2 H), 6.12 (d, J = 1.7 Hz, 1 H), 6.05 (ddd, J = 17.0, 10.3, 8.3 Hz, 1 H), 

5.42 (dt, J = 1.8, 1.0 Hz, 1 H), 5.11 – 4.97 (m, 2 H), 4.17 (q, J = 7.1 Hz, 2 H), 3.38 (d, J = 

8.3 Hz, 1 H), 2.48 (d, J = 0.9 Hz, 2 H), 1.46 (A part of an [AB]3-system, 3 H), 1.41 (B part of 

an [AB]3-system, 3 H), 1.28 (t, J = 7.1 Hz, 3 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 167.3, 142.2, 138.6, 138.5, 128.3, 128.0, 126.1, 

125.8, 115.6, 60.7, 52.0, 49.2, 42.5, 39.5, 34.9, 14.3. 

MS (70 eV, EI) m/z (%): 223 (5) [MCO2Et]+, 207 (19), 193 (14), 192 (11), 184 (11), 

183 (79), 181 (25), 179 (22), 178 (16), 168 (38), 167 (40), 166 (15), 165 (33), 155 (56), 

154 (10), 153 (26), 142 (19), 141 (86), 133 (35), 131 (23), 129 (42), 128 (59), 117 (65), 

116 (10), 115 (100), 107 (11), 105 (97), 103 (13), 91 (83), 79 (30), 77 (15). 

IR (ATR) ~ (cm-1): 2964, 2905, 2867, 1715, 1631, 1601, 1493, 1445, 1368, 1308, 1251, 

1234, 1155, 111, 1094, 1027, 943, 914, 859, 821, 755, 699. 

HRMS (EI) calculated for C19H21O2
+: 281.1536, found 281.1533 [MCH3]+. 
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Methyl(3-(1-phenylallyl)bicyclo[1.1.1]pentan-1-yl)sulfane (4i) 

 

Methyl(3-(1-phenylallyl)bicyclo[1.1.1]pentan-1-yl)sulfane was prepared according to TP1 

using cinnamylzinc bromide coordinated with lithium chloride (0.53 M, 0.75 mL, 0.40 mmol, 

2.0 equiv). The reaction was stirred at 50 °C for 7 h before adding S-methyl benzene-

sulfonothioate (94 mg, 0.50 mmol, 2.5 equiv). The resulting mixture was stirred at 25 °C for 

16 h. Workup according to TP1 and purification via column chromatography (iHex / EtOAc = 

99 / 1) afforded the desired compound 4i (41 mg, 0.18 mmol, 90%) as a colorless liquid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.31 (t, J = 7.3 Hz, 2 H), 7.22 (tt, J = 7.3, 2.1 Hz, 1 H), 

7.14 (d, J = 6.8 Hz, 2 H), 6.06 (ddd, J = 17.0, 10.2, 8.3 Hz, 1 H), 5.17 – 5.02 (m, 2 H), 

3.47 (d, J = 8.4 Hz, 1 H), 2.03 (s, 3 H), 1.77 (A part of an [AB]3-system, 3 H), 1.72 (B part of 

an [AB]3-system, 3 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 141.6, 137.9, 128.4, 127.9, 126.4, 116.3, 51.8, 51.6, 

43.6, 41.8, 13.7. 

MS (70 eV, EI) m/z (%): 215 (17), 202 (30), 187 (12), 183 (21), 181 (24), 168 (18), 167 (89), 

166 (17), 165 (28), 156 (12), 155 (100), 154 819), 153 (33), 152 (19), 142 (11), 141 (95), 

129 (15), 128 (30), 117 (12), 115 (59), 91 (37). 

IR (ATR) ~ (cm-1): 3027, 2975, 2906, 2870, 1637, 1601, 1492, 1451, 1317, 1259, 1195, 

1131, 1070, 1030, 990, 960, 915, 895, 840, 754, 715, 698, 660. 

HRMS (EI) calculated for C15H17S+: 229.1045, found 229.1043 [MH]+. 

 

1-(3-(Cyclohex-2-en-1-yl)bicyclo[1.1.1]pentan-1-yl)propan-1-one (4j) 

 

1-(3-(Cyclohex-2-en-1-yl)bicyclo[1.1.1]pentan-1-yl)propan-1-one was prepared according to 

TP1 using cyclohex-2-en-1-ylzinc bromide coordinated with lithium chloride (0.34 M, 1.18 mL, 

0.40 mmol, 2.0 equiv). The reaction was stirred at 50 °C for 6 h before adding CuCN2LiCl in 

THF (1.0 M, 0.20 mL, 0.20 mmol, 1.0 equiv) and propionyl chloride (46 mg, 0.50 mmol, 

2.5 equiv). The resulting mixture was stirred at 25 °C for 1 h. Workup according to TP1 and 
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purification via column chromatography (iHex / EtOAc = 49 / 1) and HPLC afforded the 

desired compound 4j (38 mg, 0.19 mmol, 94%) as a colorless liquid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 5.73 (dtd, J = 10.0, 3.7, 2.6 Hz, 1 H), 5.54 – 5.46 (m, 

1 H), 2.46 (q, J = 7.3 Hz, 2 H), 2.22 – 2.13 (m, 1 H), 1.98 – 1.91 (m, 2 H), 1.89 – 1.80 (([AB]3-

system, 6 H), 1.71 – 1.64 (m, 2 H), 1.55 – 1.44 (m, 1 H), 1.31 – 1.20 (m, 1 H), 1.02 (t, J = 

7.3 Hz, 3 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 209.7, 128.4, 127.5, 49.6, 43.9, 42.4, 36.1, 32.0, 25.5, 

25.1, 21.3, 7.5. 

MS (70 eV, EI) m/z (%): 203 (2) [MH]+, 189 (12), 176 (41), 175 (45), 161 (65), 143 (33), 

133 (18), 117 (51), 105 (76), 91 (100), 77 (94). 

IR (ATR) ~ (cm-1): 3349, 2977, 2913, 2876, 1694, 1653, 1509, 1449, 1408, 1361, 1268, 

1170, 1020, 957, 890, 823, 733, 702. 

HRMS (EI) calculated for C14H19O+: 203.1430, found 203.1431 [MH]+. 

 

(3-(2-Methylbut-3-en-2-yl)bicyclo[1.1.1]pentan-1-yl)(phenyl)methanone (4k) 

 

(3-(2-Methylbut-3-en-2-yl)bicyclo[1.1.1]pentan-1-yl)(phenyl)methanone was prepared 

according to TP1 using prenylzinc bromide coordinated with lithium chloride (0.61 M, 

0.66 mL, 0.40 mmol, 2.0 equiv). The reaction was stirred at 50 °C for 17 h before adding 

CuCN2LiCl in THF (1.0 M, 0.20 mL, 0.20 mmol, 1.0 equiv) and benzoyl chloride (70 mg, 

0.50 mmol, 2.5 equiv). The resulting mixture was stirred at 25 °C for 1 h. Workup according 

to TP1 and purification via column chromatography (iHex / EtOAc = 99 / 1) and HPLC 

afforded the desired compound 4k (47 mg, 0.19 mmol, 97%) as a colorless liquid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 8.02 – 7.94 (m, 2 H), 7.54 (tt, J = 7.4, 1.3 Hz, 1 H), 

7.44 (t, J = 7.6 Hz, 2 H), 5.81 (dd, J = 17.3, 10.9 Hz, 1 H), 5.03 – 4.93 (m, 2 H), 2.07 (s, 6 H), 

1.00 (s, 6 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 198.5, 144.6, 136.8, 132.9, 129.0, 128.5, 111.8, 50.2, 

47.3, 42.7, 36.0, 22.9. 
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MS (70 eV, EI) m/z (%): 225 (14) [MCH3]+, 171 (41), 153 (12), 143 (15), 128 (22), 

105 (100), 93 (10), 91 (18), 77 (41). 

IR (ATR) ~ (cm-1): 2965, 2910, 2874, 1663, 1638, 1598, 1579, 1509, 1461, 1448, 1414, 

1377, 1360, 1331, 1280, 1205, 1177, 1134, 1055, 1025, 1001, 913, 872, 820, 765, 694, 676. 

HRMS (EI) calculated for C17H19O+: 239.1430, found 239.1428 [MH]+. 

 

(3-(3,7-Dimethylocta-1,6-dien-3-yl)bicyclo[1.1.1]pentan-1-yl)(phenyl)methanone (4l) 

 

(3-(3,7-Dimethylocta-1,6-dien-3-yl)bicyclo[1.1.1]pentan-1-yl)(phenyl)methanone was prepa-

red according to TP1 using geranylzinc bromide coordinated with lithium chloride (0.40 M, 5.0 

mL, 2.0 mmol, 2.0 equiv) and [1.1.1]propellane dissolved in diethyl ether (0.43 M, 2.3 mL, 1.0 

mmol, 1.0 equiv). The reaction was stirred at 50 °C for 6 h before adding CuCN2LiCl in THF 

(1.0 M, 1.0 mL, 1.0 mmol, 1.0 equiv) and benzoyl chloride (353 mg, 2.5 mmol, 2.5 equiv). The 

resulting mixture was stirred at 25 °C for 17 h. Workup according to TP1 and purification via 

column chromatography (iHex / EtOAc = 49 / 1) and HPLC afforded the desired compound 4l 

(216 mg, 0.70 mmol, 70%) as a colorless liquid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.99 (d, J = 7.0 Hz, 2 H), 7.54 (tt, J = 7.5, 2.0 Hz, 1 H), 

7.43 (t, J = 7.6 Hz, 2 H), 5.67 (dd, J = 17.5, 10.8 Hz, 1 H), 5.16 – 5.04 (m, 2 H), 4.96 (dd, 

J = 17.5, 1.4 Hz, 1 H), 2.08 ([AB]3-system, 6 H), 1.94 – 1.78 (m, 2 H), 1.69 (d, J = 1.5 Hz, 

3 H), 1.59 (d, J = 1.4 Hz, 3 H), 1.41 – 1.24 (m, 2 H), 0.98 (s, 3 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 198.5, 142.9, 136.8, 132.9, 131.5, 129.0, 128.5, 

124.9, 113.5, 50.3, 47.5, 43.0, 39.2, 36.9, 25.9, 23.1, 17.8, 17.7. 

MS (70 eV, EI) m/z (%): 211 (7), 171 (10), 128 (10), 119 (12), 105 (100), 93 (9), 91 (19), 

77 (30). 

IR (ATR) ~ (cm-1): 2970, 2913, 2874, 1664, 1598, 1579, 1508, 1448, 1412, 1373, 1205, 

1176, 1143, 1025, 1001, 912, 873, 843, 765, 694, 676. 

HRMS (EI) calculated for C22H27O+: 307.2056, found 307.2054 [MH]+. 
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(1R,3R,5R)-3-(3-(4-Methoxyphenyl)bicyclo[1.1.1]pentan-1-yl)-6,6-dimethyl-2-methylene-

bicyclo[3.1.1]heptane (4m) 

 

(1R,3R,5R)-3-(3-(4-Methoxyphenyl)bicyclo[1.1.1]pentan-1-yl)-6,6-dimethyl-2-methylenebicy-

clo[3.1.1]heptane was prepared according to TP1 using myrtenylzinc bromide coordinated 

with lithium chloride (0.43 M, 0.93 mL, 0.40 mmol, 2.0 equiv). The reaction was stirred at 

50 °C for 8 h before adding 4-iodoanisole (117 mg, 0.50 mmol, 2.5 equiv), 

PdCl2(dppf)CH2Cl2 (8.2 mg, 0.010 mmol, 5%) and CuCN2LiCl in THF (1.0 M, 0.020 mL, 

0.020 mmol, 10%). The resulting mixture was stirred at 45 °C for 15 h. Workup according to 

TP1 and purification via column chromatography (iHex / EtOAc = 99 / 1) and HPLC afforded 

the desired compound 4m (46 mg, 0.15 mmol, 75%) as colorless crystals. The structure was 

confirmed via single crystal X-ray diffraction studies. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.17 (d, J = 8.6 Hz, 2 H), 6.85 (d, J = 8.6 Hz, 2 H), 

4.71 (dt, J = 22.0, 1.9 Hz, 2 H), 3.80 (s, 3 H), 2.72 – 2.66 (m, 1 H), 2.42 (t, J = 5.4 Hz, 1 H), 

2.33 – 2.24 (m, 1 H), 2.05 – 1.95 (m, 2 H), 1.90 (s, 6 H), 1.78 (dt, J = 14.2, 3.5 Hz, 1 H), 1.26 

(s, 3 H), 1.19 (d, J = 9.9 Hz, 1 H), 0.77 (s, 3 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 158.2, 152.1, 134.1, 127.2, 113.6, 109.0, 55.4, 52.1, 

51.1, 43.5, 41.7, 40.5, 40.4, 36.2, 27.6, 27.4, 26.0, 21.7. 

MS (70 eV, EI) m/z (%): 308 (2) [M]+, 265 (12), 237 (18), 223 (13), 211 (11), 209 (12), 

197 (11), 185 (12), 173 (26), 171 (12), 165 (12), 159 (11), 158 (24), 157 (71), 148 (15), 

147 (13), 145 (13), 143 (20), 142 (36), 141 (13), 135 (54), 134 (10), 133 (40), 131 (41), 

130 (10), 129 (100), 128 (18), 121 (86), 117 (20), 115 (32), 105 (19), 91 (33), 79 (11), 

77 (10). 

IR (ATR) ~ (cm-1): 2948, 1918, 2865, 1636, 1608, 1578, 1519, 1501, 1455, 1380, 1366, 

1345, 1293, 1259, 1244, 1175, 1159, 1132, 1098, 1034, 934, 878, 857, 835, 822, 791, 697. 

HRMS (EI) calculated for C22H28O+: 308.2135, found 308.2136 [MH]+. 

mp: 99.7 – 100.9 °C. 
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Ethyl 2-((3-((1R,3R,5R)-6,6-dimethyl-2-methylenebicyclo[3.1.1]heptan-3-yl)bicyclo-

[1.1.1]pentan-1-yl)methyl)acrylate (4n) 

 

Ethyl 2-((3-((1R,3R,5R)-6,6-dimethyl-2-methylenebicyclo[3.1.1]heptan-3-yl)bicyclo[1.1.1]pen-

tan-1-yl)methyl)acrylate was prepared according to TP1 using myrtenylzinc bromide 

coordinated with lithium chloride (0.43 M, 0.93 mL, 0.40 mmol, 2.0 equiv). The reaction was 

stirred at 50 °C for 8 h before adding CuCN2LiCl in THF (1.0 M, 0.040 mL, 0.040 mmol, 

20%) and ethyl 2-(bromomethyl)acrylate (97 mg, 0.50 mmol, 2.5 equiv). The resulting 

mixture was stirred at 25 °C for 2 h. Workup according to TP1 and purification via column 

chromatography (iHex / EtOAc = 99 / 1) and HPLC afforded the desired compound 4n 

(60 mg, 0.19 mmol, 95%) as a colorless liquid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 6.13 (d, J = 1.7 Hz, 1 H), 5.47 – 5.44 (m, 1 H), 4.65 (t, 

J = 1.9 Hz, 1 H), 4.57 (t, J = 1.9 Hz, 1 H), 4.19 (q, J = 7.1 Hz, 2 H), 2.58 – 2.52 (m, 1 H), 2.51 

(d, J = 0.9 Hz, 2 H), 2.33 (t, J = 5.4 Hz, 1 H), 2.20 (dtd, J = 9.9, 5.9, 2.1 Hz, 1 H), 1.94 – 1.85 

(m, 2 H), 1.65 (ddd, J = 14.1, 4.0, 2.8 Hz, 1 H), 1.47 (s, 6 H), 1.29 (t, J = 7.1 Hz, 3 H), 1.21 

(s, 3 H), 1.09 (d, J = 9.8 Hz, 1 H), 0.70 (s, 3 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 167.5, 152.2, 138.8, 125.7, 108.8, 60.7, 52.9, 52.1, 

49.3, 44.5, 40.4, 39.1, 36.3, 35.0, 27.5, 27.3, 26.0, 21.7, 14.4. 

MS (70 eV, EI) m/z (%): 225 (13), 207 (32), 197 (62), 185 (12), 183 (19), 182 (11), 181 (14), 

171 (32), 169 (54), 167 (13), 161 (20), 159 (59), 157 (72), 156 (24), 155 (79), 145 (71), 

143 (71), 142 (27), 141 (57), 133 (27), 131 (77), 130 (11), 129 (86), 128 (42), 119 (50), 

117 (100), 115 (38), 107 (15), 105 (85), 93 (25), 91 (84), 79 (30), 77 (18). 

IR (ATR) ~ (cm-1): 2959, 2906, 2865, 1717, 1663, 1534, 1455, 1383, 1367, 1300, 1255, 

1236, 1174, 1154, 1097, 1027, 940, 881, 856, 820, 729, 696. 

HRMS (EI) calculated for C21H30O2
+: 299.2006, found 299.2004 [MCH3]+. 
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Ethyl 6-(3-(quinolin-2-yl)bicyclo[1.1.1]pentan-1-yl)cyclohex-1-ene-1-carboxylate (4o) 

 

Ethyl 6-(3-(quinolin-2-yl)bicyclo[1.1.1]pentan-1-yl)cyclohex-1-ene-1-carboxylate was prepa-

red according to TP1 using (2-(ethoxycarbonyl)cyclohex-2-en-1-yl)zinc chloride coordinated 

with lithium chloride (0.74 M, 0.54 mL, 0.40 mmol, 2.0 equiv). The reaction was stirred at 

50 °C for 15 h before adding 2-bromoquinoline (104 mg, 0.50 mmol, 2.5 equiv), 

PdCl2(dppf)CH2Cl2 (8.2 mg, 0.010 mmol, 5%) and CuCN2LiCl in THF (1.0 M, 0.020 mL, 

0.020 mmol, 10%). The resulting mixture was stirred at 45 °C for 7 h. Workup according to 

TP1 and purification via column chromatography (iHex / EtOAc = 9 / 1) and HPLC afforded 

the desired compound 4o (45 mg, 0.13 mmol, 65%) as a colorless liquid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 8.07 (t, J = 8.8 Hz, 2 H), 7.75 (dd, J = 8.1, 1.5 Hz, 

1 H), 7.66 (ddd, J = 8.4, 6.9, 1.5 Hz, 1 H), 7.47 (ddd, J = 8.0, 6.8, 1.2 Hz, 1 H), 7.32 (d, 

J = 8.4 Hz, 1 H), 7.01 (t, J = 3.9 Hz, 1 H), 4.28 – 4.12 (m, 2 H), 2.99 – 2.88 (m, 1 H), 2.30 – 

2.03 (m, 8 H), 1.95 – 1.86 (m, 1 H), 1.74 – 1.53 (m, 3 H), 1.31 (t, J = 7.1 Hz, 3 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 168.3, 160.4, 147.9, 140.1, 136.3, 131.7, 129.5, 

129.2, 127.6, 127.0, 126.0, 119.2, 60.4, 52.2, 42.4, 42.2, 33.2, 25.7, 25.1, 18.0, 14.4. 

MS (70 eV, EI) m/z (%): 347 (1) [M]+, 274 (5), 195 (14), 194 (100), 193 (8), 192 (8), 180 (8), 

167 (10). 

IR (ATR) ~ (cm-1): 2967, 2905, 2868, 1707, 1643, 1618, 1599, 1559, 1514, 1501, 1446, 

1425, 1373, 1345, 1328, 1296, 1253, 1235, 1181, 1139, 1114, 1091, 1061, 1049, 1017, 941, 

929, 913, 875, 837, 802, 786, 749, 735, 702, 675. 

HRMS (EI) calculated for C23H25NO2
+: 347.1880, found 347.1879 [M]+. 

 

5-(3-(Cyclohex-2-en-1-yl)bicyclo[1.1.1]pentan-1-yl)cyclopent-1-ene-1-carbonitrile (4p) 

 

5-(3-(Cyclohex-2-en-1-yl)bicyclo[1.1.1]pentan-1-yl)cyclopent-1-ene-1-carbonitrile was prepa-

red according to TP1 using (2-cyanocyclopent-2-en-1-yl)zinc bromide coordinated with 
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lithium chloride (0.54 M, 0.74 mL, 0.40 mmol, 2.0 equiv). The reaction was stirred at 25 °C for 

17 h before adding CuCN2LiCl in THF (1.0 M, 0.040 mL, 0.040 mmol, 20%) and 

3-bromocyclohex-1-ene (81 mg, 0.50 mmol, 2.5 equiv). The resulting mixture was stirred at 

25 °C for 1 h. Workup according to TP1 and purification via column chromatography (iHex / 

EtOAc = 49 / 1) and HPLC afforded the desired compound 4p (26 mg, 0.11 mmol, 55%) as a 

colorless liquid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 6.65 (td, J = 2.7, 1.7 Hz, 1 H), 5.75 – 5.67 (m, 1 H), 

5.52 (dq, J = 10.1, 2.3 Hz, 1 H), 3.02 – 2.94 (m, 1 H), 2.49 – 2.41 (m, 2 H), 2.20 – 2.12 (m, 

1 H), 2.06 – 1.98 (m, 1 H), 1.97 – 1.91 (m, 2 H), 1.81 – 1.74 (m, 1 H), 1.61 – 1.49 (m, 8 H), 

1.31 – 1.20 (m, 2 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 149.6, 128.3, 127.9, 117.5, 117.0, 48.3, 47.1, 42.9, 

40.8, 36.4, 32.9, 26.7, 25.7, 25.2, 21.4. 

MS (70 eV, EI) m/z (%): 238 (19) [MH]+, 224 (10), 210 (11), 196 (16), 182 (16), 170 (10), 

168 (12), 156 (15), 147 (21), 131 (11), 130 (16), 129 13), 119 (29), 117 (16), 116 (13), 

115 (16), 107 (32), 105 (86), 93 (18), 92 (15), 91 (100), 81 (12), 79 (99), 78 (11), 77 (22), 65 

(12). 

IR (ATR) ~ (cm-1): 3425, 2957, 2924, 2865, 2216, 1727, 1653, 1612, 1446, 1433, 1409, 

1304, 1257, 1227, 1171, 1142, 1020, 950, 895, 869, 822, 740, 721, 668. 

HRMS (EI) calculated for C17H20N+: 238.1590, found 238.1590 [MH]+. 

 

5-(3-(4-Methoxyphenyl)bicyclo[1.1.1]pentan-1-yl)cyclopent-1-ene-1-carbonitrile (4q) 

 

5-(3-(4-Methoxyphenyl)bicyclo[1.1.1]pentan-1-yl)cyclopent-1-ene-1-carbonitrile was prepared 

according to TP1 using (2-cyanocyclopent-2-en-1-yl)zinc bromide coordinated with lithium 

chloride (0.54 M, 0.74 mL, 0.40 mmol, 2.0 equiv). The reaction was stirred at 25 °C for 17 h 

before adding 4-iodobenzoate (138 mg, 0.50 mmol, 2.5 equiv), PdCl2(dppf)CH2Cl2 (8.2 mg, 

0.010 mmol, 5%) and CuCN2LiCl in THF (1.0 M, 0.020 mL, 0.020 mmol, 10%). The resulting 

mixture was stirred at 45 °C for 5 h. Workup according to TP1 and purification via column 

chromatography (iHex / EtOAc = 19 / 1) afforded the desired compound 4q (36 mg, 

0.12 mmol, 59%) as a colorless solid. 
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1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.97 (d, J = 8.3 Hz, 2 H), 7.26 (d, J = 8.3 Hz, 2 H), 

6.71 (q, J = 2.6 Hz, 1 H), 4.36 (q, J = 7.1 Hz, 2 H), 3.13 – 3.05 (m, 1 H), 2.56 – 2.47 (m, 2 H), 

2.15 – 1.97 (m, 7 H), 1.89 – 1.79 (m, 1 H), 1.38 (t, J = 7.1 Hz, 3 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 166.7, 150.0, 145.8, 129.6, 128.7, 126.2, 117.3, 

116.5, 61.0, 51.0, 47.9, 42.1, 40.5, 32.9, 26.6, 14.5. 

MS (70 eV, EI) m/z (%): 307 (1) [M]+, 281 (27), 262 (17), 261 (36), 253 (13), 246 (18), 

234 (47), 233 (19), 232 (10), 225 (16), 219 (11), 218 (15), 215 (23), 208 (13), 207 (100), 206 

(13), 191 (18), 177 (32), 169 (17), 162 (34), 145 (55), 143 (55), 142 (19), 141 (36), 131 (10), 

129 (18), 128 (47), 117 (11), 115 (40), 91 (18). 

IR (ATR) ~ (cm-1): 2968, 2945, 2906, 2868, 2214, 1714, 1608, 1467, 1451, 1428, 1407, 

1367, 1307, 1294, 1268, 1212, 1176, 1146, 1130, 1104, 1092, 1045, 1017, 978, 944, 923, 

904, 875, 860, 850, 815, 800, 761, 719, 700. 

HRMS (EI) calculated for C20H21NO2
+: 307.1567, found 307.1568 [M]+. 

mp: 84.1 – 85.9 °C. 

 

Phenyl(3-(1-(triisopropylsilyl)propa-1,2-dien-1-yl)bicyclo[1.1.1]pentan-1-yl)methanone 

(4r) and Phenyl(3-(3-(triisopropylsilyl)prop-2-yn-1-yl)bicyclo[1.1.1]pentan-1-yl)metha-

none (4s) 

         

Phenyl(3-(1-(triisopropylsilyl)propa-1,2-dien-1-yl)bicyclo[1.1.1]pentan-1-yl)methanone and 

phenyl(3-(3-(triisopropylsilyl)prop-2-yn-1-yl)bicyclo[1.1.1]pentan-1-yl)methanone were prepa-

red according to TP1 using (3-(triisopropylsilyl)prop-2-yn-1-yl)zinc bromide coordinated with 

lithium chloride (0.24 M, 1.67 mL, 0.40 mmol, 2.0 equiv). The reaction was stirred at 50 °C for 

19 h before adding CuCN2LiCl in THF (1.0 M, 0.20 mL, 0.20 mmol, 1.0 equiv) and benzoyl 

chloride (70 mg, 0.50 mmol, 2.5 equiv). The resulting mixture was stirred at 25 °C for 1 h. 

Workup according to TP1 and purification via column chromatography (iHex / EtOAc = 99 / 1) 

and HPLC afforded phenyl(3-(1-(triisopropylsilyl)propa-1,2-dien-1-yl)bicyclo-[1.1.1]pentan-1-

yl)methanone 4r (37 mg, 0.10 mmol, 50%) as a colorless solid and phenyl(3-(3-

(triisopropylsilyl)-prop-2-yn-1-yl)bicyclo[1.1.1]pentan-1-yl)methanone 4s (33 mg, 0.09 mmol, 

45%) as a colorless liquid. 
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Phenyl(3-(1-(triisopropylsilyl)propa-1,2-dien-1-yl)bicyclo[1.1.1]pentan-1-yl)methanone 

(4r): 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 8.02 – 7.95 (m, 2 H), 7.54 (tt, J = 7.3, 1.3 Hz, 1 H), 

7.44 (t, J = 7.6 Hz, 2 H), 4.44 (s, 2 H), 2.35 (s, 6 H), 1.28 – 1.15 (m, 3 H), 1.13 – 1.04 (m, 

18 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 212.7, 198.1, 136.8, 133.0, 129.0, 128.6, 91.1, 69.5, 

56.3, 44.6, 39.8, 18.8, 12.0. 

MS (70 eV, EI) m/z (%): 324 (17), 323 (82) [MC3H7]+, 281 (16), 253 (12), 225 (21), 

209 (11), 208 (10), 207 (70), 193 (31), 191 (15), 179 (15), 178 (100), 165 (21), 152 (14), 

131 (19), 115 (11), 105 (11), 103 (55), 77 (12), 75 (87), 73 (16), 61 (14), 59 (10). 

IR (ATR) ~ (cm-1): 2955, 2940, 2863, 2176, 1922, 1665, 1598, 1578, 1505, 1460, 1446, 

1381, 1364, 1332, 1312, 1268, 1209, 1176, 1070, 1018, 990, 941, 920, 882, 839, 822, 805, 

766, 699, 674. 

HRMS (EI) calculated for C24H33OSi+: 365.2295, found 365.2298 [MH]+. 

mp: 77.7 – 79.2 °C. 

Phenyl(3-(3-(triisopropylsilyl)prop-2-yn-1-yl)bicyclo[1.1.1]pentan-1-yl)methanone (4s): 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 8.02 – 7.95 (m, 2 H), 7.55 (tt, J = 7.4, 1.2 Hz, 1 H), 

7.44 (t, J = 7.6 Hz, 2 H), 2.54 (s, 2 H), 2.24 (s, 6 H), 1.11 – 1.02 (m, 21 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 197.7, 136.7, 133.0, 129.0, 128.6, 104.8, 82.1, 53.5, 

44.3, 38.4, 23.7, 18.8, 11.4. 

MS (70 eV, EI) m/z (%): 324 (23), 323 (100) [MC3H7]+, 295 (29), 281 (11), 233 (12), 

207 (20), 193 (44), 191 (17), 179 (16), 178 (79), 165 (24), 153 (10), 152 (11), 145 (10), 

129 (13), 128 (13), 115 (17), 105 (30), 91 (13), 77 (17), 75 (36), 61 (11). 

IR (ATR) ~ (cm-1): 2941, 2864, 2172, 1728, 1666, 1598, 1580, 1511, 1462, 1448, 1419, 

1382, 1338, 1297, 1266, 1205, 1176, 1086, 1070, 1027, 1011, 994, 926, 881, 760, 694, 675, 

659. 

HRMS (EI) calculated for C24H34OSi+: 366.2373, found 366.2380 [M]+. 
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2-(Bicyclo[1.1.1]pentan-1-yl)cyclohexan-1-one (9a) 

 

2-(Bicyclo[1.1.1]pentan-1-yl)cyclohexan-1-one was prepared according to TP2 using 

cyclopentanone (29 mg, 0.30 mmol, 1.5 equiv). The reaction was stirred at 0 °C for 30 min 

before adding a saturated aqueous solution of NH4Cl (1 mL). The resulting mixture was 

stirred at 25 °C for 10 min. Workup according to TP2 and purification via column 

chromatography (iHex / EtOAc = 49 / 1) afforded the desired compound 9a (29 mg, 

0.17 mmol, 87%) as a colorless liquid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 2.48 (s, 1 H), 2.36 (dd, J = 8.4, 5.8 Hz, 1 H), 2.27 (dd, 

J = 7.3, 5.8 Hz, 2 H), 1.97 – 1.72 (m, 10 H), 1.66 – 1.56 (m, 2 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 212.3, 51.6, 50.2, 45.0, 42.2, 30.3, 28.0, 27.3, 23.6. 

MS (70 eV, EI) m/z (%): 163 (3) [MH]+, 149 (42), 135 (43), 131 (13), 121 (11), 117 (10), 107 

(15), 105 (54), 95 (17), 93 (89), 92 (22), 91 (80), 81 (12), 79 (100), 77 (42), 67 (32). 

IR (ATR) ~ (cm-1): 2958, 2939, 2865, 2175, 2006, 1921, 1708, 1665, 1598, 1578, 1447, 

1365, 1333, 1265, 1196, 1125, 1070, 1018, 990, 941, 883, 837, 805, 766, 699, 674. 

HRMS (EI) calculated for C11H15O+: 163.1117, found 163.1116 [MH]+. 

 

2-(3-Allylbicyclo[1.1.1]pentan-1-yl)cyclohexan-1-one (9b) 

 

2-(3-Allylbicyclo[1.1.1]pentan-1-yl)cyclohexan-1-one was prepared according to TP2 using 

cyclopentanone (29 mg, 0.30 mmol, 1.5 equiv). The reaction was stirred at 0 °C for 30 min 

before adding CuCN2LiCl in THF (1.0 M, 0.040 mL, 0.040 mmol, 20%) and allyl bromide 

(85 mg, 0.70 mmol, 3.5 equiv). The resulting mixture was stirred at 25 °C for 2 h. Workup 

according to TP2 and purification via column chromatography (iHex / EtOAc = 49 / 1) 

afforded the desired compound 9b (36 mg, 0.18 mmol, 88%) as a colorless liquid. 
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1H-NMR (CDCl3, 400 MHz, ppm): δ = 5.70 (ddt, J = 16.7, 10.4, 7.2 Hz, 1 H), 5.01 – 4.93 (m, 

2 H), 2.38 (dd, J = 8.7, 5.8 Hz, 1 H), 2.27 (dd, J = 7.1, 6.0 Hz, 2 H), 2.20 (dt, J = 7.1, 1.3 Hz, 

2 H), 1.97 – 1.70 (m, 4 H), 1.64 – 1.53 (m, 8 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 212.3, 135.8, 115.8, 51.0, 50.0, 42.2, 40.0, 39.1, 36.9, 

30.5, 27.4, 23.7. 

MS (70 eV, EI) m/z (%): 189 (11) [MCH3]+, 164 (12), 163 (100), 145 (13), 143 (13), 135 

(13), 133 (10), 129 (12), 119 (21), 117 (18), 107 (24), 106 (11), 105 (52), 93 (20), 91 (86), 

79 (44), 77 (21), 67 (10). 

IR (ATR) ~ (cm-1): 2937, 2866, 1705, 1640, 1447, 1425, 1370, 1316, 1255, 1218, 1146, 

1124, 1066, 991, 946, 910, 652. 

HRMS (EI) calculated for C14H19O+: 203.1430, found 203.1429 [MH]+. 

 

2-(3-(4-Methoxyphenyl)bicyclo[1.1.1]pentan-1-yl)cyclohexan-1-one (9c) 

 

2-(3-(4-Methoxyphenyl)bicyclo[1.1.1]pentan-1-yl)cyclohexan-1-one was prepared according 

to TP2 using cyclopentanone (29 mg, 0.30 mmol, 1.5 equiv). The reaction was stirred at 0 °C 

for 30 min before adding 4-iodoanisole (164 mg, 0.70 mmol, 3.5 equiv), PdCl2(dppf)CH2Cl2 

(8.2 mg, 0.010 mmol, 5%) and CuCN2LiCl in THF (1.0 M, 0.020 mL, 0.020 mmol, 10%). The 

resulting mixture was stirred at 40 °C for 3 h. Workup according to TP2 and purification via 

column chromatography (iHex / EtOAc = 19 / 1) afforded the desired compound 9c (42 mg, 

0.16 mmol, 78%) as a colorless solid. The structure was confirmed via single crystal X-ray 

diffraction studies. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.14 (d, J = 8.7 Hz, 2 H), 6.83 (d, J = 8.8 Hz, 2 H), 

3.78 (s, 3 H), 2.49 (dd, J = 9.2, 5.6 Hz, 1 H), 2.32 (dd, J = 7.4, 5.7 Hz, 2 H), 2.06 – 1.58 (m, 

12 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 212.2, 158.3, 133.6, 127.2, 113.6, 55.4, 51.9, 50.7, 

42.4, 41.8, 38.5, 30.6, 27.4, 24.0. 
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MS (70 eV, EI) m/z (%): 270 (1) [M]+, 256 (19), 255 (100), 199 (8), 173 (51), 172 (18), 

171 (10), 163 (8), 158 (39), 141 (7), 133 (9), 128 (7), 115 (7). 

IR (ATR) ~ (cm-1): 2934, 2867, 1704, 1608, 1576, 1518, 1503, 1460, 1442, 1373, 1343, 

1315, 1292, 1266, 1243, 1211, 1185, 1172, 1163, 1148, 1133, 1123, 1067, 1034, 953, 923, 

905, 889, 862, 846, 829, 791, 783, 720, 702, 659. 

HRMS (EI) calculated for C18H22O2
+: 270.1614, found 270.1617 [M]+. 

mp: 120.0 – 121.8 °C. 

 

2-(3-Benzoylbicyclo[1.1.1]pentan-1-yl)cyclohexan-1-one (9d) 

 

2-(3-Benzoylbicyclo[1.1.1]pentan-1-yl)cyclohexan-1-one was prepared according to TP2 

using cyclopentanone (29 mg, 0.30 mmol, 1.5 equiv). The reaction was stirred at 0 °C for 

30 min before adding CuCN2LiCl in THF (1.0 M, 0.020 mL, 0.020 mmol, 10%) and benzoyl 

chloride (141 mg, 1.0 mmol, 5.0 equiv). The resulting mixture was stirred at 25 °C for 1 h. 

Workup according to TP2 and purification via column chromatography (iHex / EtOAc = 9 / 1) 

and HPLC afforded the desired compound 9d (30 mg, 0.15 mmol, 73%) as a colorless solid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 8.04 – 7.98 (m, 2 H), 7.54 (tt, J = 7.3, 1.2 Hz, 1 H), 

7.44 (t, J = 7.5 Hz, 2 H), 2.46 (dd, J = 10.9, 5.6 Hz, 1 H), 2.36 – 2.25 (m, 8 H), 2.11 – 1.96 

(m, 2 H), 1.91 – 1.83 (m, 1 H), 1.78 – 1.62 (m, 2 H), 1.59 – 1.47 (m, 1 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 211.7, 197.7, 136.6, 133.0, 129.1, 128.5, 53.0, 50.3, 

45.0, 42.5, 40.2, 30.6, 27.5, 24.4. 

MS (70 eV, EI) m/z (%): 198 (19) [MC4H6O]+, 179 (12), 171 (17), 163 (15), 123 (47), 

105 (100), 91 (19), 77 (37). 

IR (ATR) ~ (cm-1): 2981, 2928, 2875, 1706, 1659, 1595, 1578, 1509, 1446, 1374, 1333, 

1313, 1284, 1203, 1171, 1123, 1106, 1071, 1041, 1018, 967, 931, 875, 848, 815, 766, 712, 

699, 679. 

HRMS (EI) calculated for C18H20O2
+: 268.1458, found 268.1460 [M]+. 
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mp: 82.2 – 83.9 °C. 

 

3-(2-Oxocyclohexyl)bicyclo[1.1.1]pentane-1-carbonitrile (9e) 

 

3-(2-Oxocyclohexyl)bicyclo[1.1.1]pentane-1-carbonitrile was prepared according to TP2 

using cyclopentanone (29 mg, 0.30 mmol, 1.5 equiv). The reaction was stirred at 0 °C for 

30 min before adding CuCN2LiCl in THF (1.0 M, 070 mL, 0.70 mmol, 3.5 equiv) and tosyl 

cyanide (145 mg, 0.80 mmol, 4.0 equiv). The resulting mixture was stirred at 25 °C for 18 h. 

Workup according to TP2 and purification via column chromatography (iHex / EtOAc = 

85 / 15) afforded the desired compound 9e (17 mg, 0.09 mmol, 46%) as a colorless solid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 2.37 (dd, J = 11.9, 5.5 Hz, 1 H), 2.23 (s, 8 H), 2.07 – 

1.93 (m, 2 H), 1.91 – 1.78 (m, 1 H), 1.68 – 1.54 (m, 2 H), 1.44 – 1.31 (m, 1 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 210.7, 117.9, 53.6, 49.6, 43.9, 42.4, 30.6, 27.4, 24.5, 

24.4. 

MS (70 eV, EI) m/z (%): 174 (10) [MCH3]+, 161 (10), 160 (100), 146 (21), 145 (11), 144 

(100), 133 (13), 132 (24), 130 (69), 118 (31), 117 (36), 116 (20), 115 (10), 105 (15), 104 (40), 

93 (13), 91 (46), 79 (38), 78 (11), 77 (27), 67 (17). 

IR (ATR) ~ (cm-1): 2936, 2861, 2228, 1706, 1446, 1430, 1377, 1338, 1303, 1272, 1256, 

1225, 1211, 1145, 1124, 1105, 1081, 1068, 1041, 1009, 963, 931, 914, 892, 847, 793, 771, 

705, 660. 

HRMS (EI) calculated for C12H14NO+: 188.1070, found 188.1069 [MH]+. 

mp: 45.8 – 47.6 °C. 
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1-(3-Allylbicyclo[1.1.1]pentan-1-yl)-3-cyclohexylpropan-2-one (9f) 

 

1-(3-Allylbicyclo[1.1.1]pentan-1-yl)-3-cyclohexylpropan-2-one was prepared according to TP2 

using cyclohexyl acetone (42 mg, 0.30 mmol, 1.5 equiv). The reaction was stirred at 0 °C for 

2 h before adding CuCN2LiCl in THF (1.0 M, 0.040 mL, 0.040 mmol, 20%) and allyl bromide 

(85 mg, 0.70 mmol, 3.5 equiv). The resulting mixture was stirred at 25 °C for 2 h. Workup 

according to TP2 and purification via column chromatography (iHex / EtOAc = 99 / 1) 

afforded the desired compound 9f (35 mg, 0.14 mmol, 71%) as a colorless liquid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 5.76 – 5.62 (m, 1 H), 5.02 – 4.93 (m, 2 H), 2.53 (s, 

2 H), 2.24 (d, J = 6.8 Hz, 2 H), 2.19 (d, J = 7.2 Hz, 2 H), 1.86 – 1.75 (m, 1 H), 1.71 – 1.61 (m, 

5 H), 1.59 (s, 6 H), 1.29 – 1.21 (m, 2 H), 1.18 – 1.09 (m, 1 H), 0.96 – 0.83 (m, 2 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 209.5, 135.6, 115.9, 51.4, 51.4, 46.3, 39.7, 36.8, 36.5, 

33.7, 33.4, 26.4, 26.3. 

MS (70 eV, EI) m/z (%): 205 (0.5) [MC3H5]+, 125 (20), 98 (7), 97 (100), 91 (7), 79 (7), 

69 (12), 55 (29). 

IR (ATR) ~ (cm-1): 3076, 2921, 2852, 1711, 1640, 1611, 1447, 1404, 1354, 1293, 1255, 

1206, 1148, 1047, 991, 965, 909, 803, 708. 

HRMS (EI) calculated for C16H23O+: 231.1743, found 231.1740 [MCH3]+. 

 

1-(Bicyclo[1.1.1]pentan-1-yl)-4-(2,6,6-trimethylcyclohex-1-en-1-yl)butan-2-one (9g) 

 

1-(Bicyclo[1.1.1]pentan-1-yl)-4-(2,6,6-trimethylcyclohex-1-en-1-yl)butan-2-one was prepared 

according to TP2 using dihydro--ionone (58 mg, 0.30 mmol, 1.5 equiv). The reaction was 

stirred at 0 °C for 2 h before adding a saturated aqueous solution of NH4Cl (1 mL). The 

resulting mixture was stirred at 25 °C for 10 min. Workup according to TP2 and purification 

via column chromatography (iHex / EtOAc = 99 / 1) afforded the desired compound 9g 

(35 mg, 0.14 mmol, 67%) as a colorless liquid. 
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1H-NMR (CDCl3, 400 MHz, ppm): δ = 2.54 (s, 2 H), 2.50 – 2.41 (m, 3 H), 2.27 – 2.19 (m, 

2 H), 1.89 (t, J = 6.2 Hz, 2 H), 1.78 (s, 6 H), 1.60 – 1.51 (m, 5 H), 1.44 – 1.36 (m, 2 H), 0.97 

(s, 6 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 209.5, 136.1, 127.8, 51.6, 46.5, 44.4, 41.4, 39.8, 35.2, 

32.9, 28.6, 28.5, 22.1, 19.9, 19.6. 

MS (70 eV, EI) m/z (%): 260 (8) [M]+, 245 (12), 242 (18), 227 (11), 179 (13), 163 (15), 

161 (35), 145 (12), 137 (29), 136 (52), 135 (16), 123 (38), 122 (14), 121 (100), 109 (14), 104 

(10), 95 (25), 67 (14). 

IR (ATR) ~ (cm-1): 2962, 2926, 2906, 2868, 1711, 1472, 1457, 1407, 1360, 1279, 1256, 

1195, 1147, 1116, 1083, 1066, 1041, 1020, 970, 953, 873. 

HRMS (EI) calculated for C18H28O+: 260.2135, found 260.2131 [M]+. 

 

2-(3-Allylbicyclo[1.1.1]pentan-1-yl)-2-methyl-1-phenylpropan-1-one (9h) 

 

2-(3-Allylbicyclo[1.1.1]pentan-1-yl)-2-methyl-1-phenylpropan-1-one was prepared according 

to TP2 using isobutyrophenone (44 mg, 0.30 mmol, 1.5 equiv). The reaction was stirred at 

0 °C for 2 h before adding CuCN2LiCl in THF (1.0 M, 0.040 mL, 0.040 mmol, 20%) and allyl 

bromide (85 mg, 0.70 mmol, 3.5 equiv). The resulting mixture was stirred at 25 °C for 2 h. 

Workup according to TP2 and purification via column chromatography (iHex / EtOAc = 49 / 1) 

afforded the desired compound 9h (44 mg, 0.17 mmol, 86%) as a colorless liquid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.62 – 7.56 (m, 2 H), 7.45 – 7.41 (m, 1 H), 7.40 – 7.34 

(m, 2 H), 5.68 (ddt, J = 16.4, 10.9, 7.2 Hz, 1 H), 5.02 – 4.92 (m, 2 H), 2.19 (dt, J = 7.3, 

1.3 Hz, 2 H), 1.53 (s, 6 H), 1.27 (s, 6 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 208.1, 140.3, 135.5, 130.7, 127.9, 127.7, 115.8, 48.2, 

47.8, 45.6, 37.1, 36.6, 23.4. 

MS (70 eV, EI) m/z (%): 253 (1) [MH]+, 239 (3), 148 (3), 147 (4), 119 (6), 107 (5), 106 (8), 

105 (100), 93 (5), 91 (12), 79 (5), 77 (28). 
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IR (ATR) ~ (cm-1): 3075, 2963, 2906, 1921, 1668, 1641, 1597, 1578, 1467, 1445, 1385, 

1362, 1331, 1258, 1209, 1168, 1126, 1077, 1018, 991, 967, 909, 883, 806, 795, 767, 739, 

698, 676. 

HRMS (EI) calculated for C18H21O+: 253.1587, found 253.1590 [MH]+. 

 

6-(3-Allylbicyclo[1.1.1]pentan-1-yl)cyclohex-2-en-1-one (9i) 

 

6-(3-Allylbicyclo[1.1.1]pentan-1-yl)cyclohex-2-en-1-one was prepared according to TP2 using 

cyclohex-2-en-1-one (29 mg, 0.30 mmol, 1.5 equiv). The reaction was stirred at 0 °C for 

30 min before adding CuCN2LiCl in THF (1.0 M, 0.040 mL, 0.040 mmol, 20%) and allyl 

bromide (85 mg, 0.70 mmol, 3.5 equiv). The resulting mixture was stirred at 0 °C for 30 min. 

Workup according to TP2 and purification via column chromatography (iHex / EtOAc = 19 / 1) 

afforded the desired compound 9i (30 mg, 0.15 mmol, 75%) as a colorless liquid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 6.89 (dt, J = 10.1, 4.0 Hz, 1 H), 5.93 (dt, J = 10.1, 

2.1 Hz, 1 H), 5.69 (ddt, J = 16.5, 10.5, 7.2 Hz, 1 H), 5.01 – 4.91 (m, 2 H), 2.48 – 2.35 (m, 

2 H), 2.32 – 2.22 (m, 1 H), 2.19 (d, J = 7.2 Hz, 2 H), 2.05 (ddt, J = 13.0, 7.6, 5.3 Hz, 1 H), 

1.87 (td, J = 13.3, 5.9 Hz, 1 H), 1.65 – 1.55 ([AB]3-system, 6 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 200.0, 149.6, 135.7, 130.0, 115.8, 50.3, 47.2, 40.3, 

38.8, 36.8, 25.7, 24.3. 

MS (70 eV, EI) m/z (%): 187 (8) [MCH3]+, 161 (57), 159 (16), 143 (15), 131 (14), 128 (15), 

119 (37), 117 (25), 115 (13), 105 (33), 96 (13), 95 (17), 93 (24), 91 (100), 79 (22), 77 (23). 

IR (ATR) ~ (cm-1): 3075, 2961, 2904, 1673, 1640, 1620, 1448, 1428, 1411, 1386, 1352, 

1307, 1286, 1252, 1170, 1118, 1019, 991, 946, 909, 835, 763, 713, 686. 

HRMS (EI) calculated for C14H17O+: 201.1274, found 201.1272 [MH]+. 
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Ethyl 2-(3-allylbicyclo[1.1.1]pentan-1-yl)propanoate (11a) 

 

Ethyl 2-(3-allylbicyclo[1.1.1]pentan-1-yl)propanoate was prepared according to TP3 using 

ethyl propionate (41 mg, 0.40 mmol, 2.0 equiv). After stirring at 0 °C for 3 h, CuCN2LiCl in 

THF (1.0 M, 0.040 mL, 0.040 mmol, 20%) and allyl bromide (61 mg, 0.50 mmol, 2.5 equiv) 

were added. Workup according to TP3 and purification via column chromatography 

(iHex / EtOAc = 49 / 1) afforded the desired compound 11a (31 mg, 0.15 mmol, 75%) as a 

colorless liquid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 5.77 – 5.62 (m, 1 H), 5.02 – 4.93 (m, 2 H), 4.19 – 4.03 

(m, 2 H), 2.54 (q, J = 7.0 Hz, 1 H), 2.20 (dt, J = 7.2, 1.3 Hz, 2 H), 1.51 (s, 6 H), 1.24 (t, 

J = 7.1 Hz, 3 H), 1.05 (d, J = 7.0 Hz, 3 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 174.6, 135.7, 115.9, 60.2, 49.1, 41.15, 41.1, 37.9, 

36.8, 14.6, 13.5. 

MS (70 eV, EI) m/z (%): 167 (8) [MC3H5]+, 139 (73), 135 (17), 133 (11), 119 (50), 107 (77), 

106 (10), 105 (53), 93 (52), 91 (100), 79 (60), 77 (26), 44 (18). 

IR (ATR) ~ (cm-1): 2962, 2907, 2869, 1733, 1641, 1456, 1409, 1374, 1336,1289, 1255, 

1227, 1183, 1148, 1096, 1053, 1019, 1009, 911, 859, 822, 791, 708, 668. 

HRMS (EI) calculated for C10H15O2
+: 167.1067, found 167.1066 [MC3H5]+. 

 

Ethyl 2-(3-allylbicyclo[1.1.1]pentan-1-yl)hept-6-enoate (11b) 

 

Ethyl 2-(3-allylbicyclo[1.1.1]pentan-1-yl)hept-6-enoate was prepared according to TP3 using 

ethyl hept-6-enoate (156 mg, 1.0 mmol, 2.0 equiv) and [1.1.1]propellane in diethyl ether 

(0.50 mmol, 1.0 equiv). After stirring at 0 °C for 3 h, CuCN2LiCl in THF (1.0 M, 0.10 mL, 

0.10 mmol, 20%) and allyl bromide (151 mg, 1.3 mmol, 2.5 equiv) were added. Workup 
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according to TP3 and purification via column chromatography (iHex / EtOAc = 99 / 1) and 

HPLC afforded the desired compound 11b (125 mg, 0.48 mmol, 95%) as a colorless liquid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 5.85 – 5.62 (m, 2 H), 5.03 – 4.90 (m, 4 H), 4.12 (qd, 

J = 7.1, 3.8 Hz, 2 H), 2.47 – 2.39 (m, 1 H), 2.20 (dt, J = 7.2, 1.3 Hz, 2 H), 2.08 – 1.99 (m, 

2 H), 1.63 – 1.58 (m, 1 H), 1.53 (A part of an [AB]3-system, 3 H), 1.49 (B part of an [AB]3-

system, 3 H), 1.42 – 1.29 (m, 3 H), 1.25 (t, J = 7.1 Hz, 3 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 174.0, 138.7, 135.7, 115.9, 114.7, 60.1, 49.5, 47.4, 

40.6, 38.1, 36.8, 33.8, 28.5, 27.2, 14.6. 

MS (70 eV, EI) m/z (%): 221 (2) [MC3H5]+, 193 (10), 165 (10), 147 (57), 145 (18), 137 (61), 

133 (24), 131 (32), 125 (16), 121 (10), 119 (61), 117 (23), 107 (61), 93 (34), 91 (100), 

81 (15), 79 (67), 77 (23), 67 (13). 

IR (ATR) ~ (cm-1): 3077, 2963, 2905, 2868, 1732, 1641, 1444, 1370, 1344, 1254, 1174, 

1124, 1027, 991, 909, 805. 

HRMS (EI) calculated for C14H21O2
+: 221.1536, found 221.1535 [MC3H5]+. 

 

Ethyl 2-(3-allylbicyclo[1.1.1]pentan-1-yl)-2-(4-bromophenyl)acetate (11c) 

 

Ethyl 2-(3-allylbicyclo[1.1.1]pentan-1-yl)-2-(4-bromophenyl)acetate was prepared according 

to TP3 using ethyl 2-(4-bromophenyl)acetate (97 mg, 1.0 mmol, 2.0 equiv). After stirring at 

0 °C for 3 h, CuCN2LiCl in THF (1.0 M, 0.10 mL, 0.10 mmol, 20%) and allyl bromide 

(151 mg, 1.3 mmol, 2.5 equiv) were added. Workup according to TP3 and purification via 

column chromatography (iHex / EtOAc = 49 / 1) afforded the desired compound 11c (66 mg, 

0.19 mmol, 94%) as a colorless liquid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.42 (d, J = 8.4 Hz, 2 H), 7.17 (d, J = 8.5 Hz, 2 H), 

5.73 – 5.57 (m, 1 H), 5.00 – 4.90 (m, 2 H), 4.22 – 4.05 (m, 2 H), 3.68 (s, 1 H), 2.18 (dt, 

J = 7.2, 1.3 Hz, 2 H), 1.52 (s, 6 H), 1.24 (t, J = 7.1 Hz, 3 H). 
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13C-NMR (CDCl3, 101 MHz, ppm): δ = 171.7, 136.0, 135.4, 131.4, 130.4, 121.2, 116.0, 60.8, 

53.0, 49.7, 41.0, 39.3, 36.7, 14.4. 

MS (70 eV, EI) m/z (%): 307 (6) [MC3H5]+, 281 (41), 279 (41), 215 (13), 214 (13), 196 (58), 

195 (20), 182 (14), 181 (100), 180 (19), 179 (27), 172 (13), 171 (43), 169 (43), 168 (25), 

167 (47), 166 (32), 165 (45), 155 (32), 154 (63), 153 (72), 152 (28), 151 (78), 141 (25), 

135 (15), 134 (16), 129 (21), 128 (47), 116 (16), 115 (50), 107 (29), 105 (22), 91 (34), 

89 (20), 79 (33), 77 (18). 

IR (ATR) ~ (cm-1): 3075, 2965, 2905, 2868, 1732, 1640, 1488, 1464, 1445, 1408, 1367, 

1336, 1302, 1248, 1197, 1156, 1121, 1073, 1011, 991, 911, 880, 835, 757, 737, 712, 683. 

HRMS (EI) calculated for C18H21BrO2
+: 348.0719, found 348.0700 [M]+. 

 

1-(3-Allylbicyclo[1.1.1]pentan-1-yl)cyclohexane-1-carbonitrile (17a) 

 

1-(3-Allylbicyclo[1.1.1]pentan-1-yl)cyclohexane-1-carbonitrile was prepared according TP4 

using cyclohexanecarbonitrile (44 mg, 0.40 mmol, 2.0 equiv). The reaction mixture was 

stirred 6 h at 25 °C. Trapping and workup according to TP4 and purification via column 

chromatography (iHex / EtOAc = 49 / 1) afforded the desired compound 17a (22 mg, 

0.10 mmol, 51%) as a colorless solid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 5.70 (ddt, J = 16.4, 11.0, 7.2 Hz, 1 H), 5.05 – 4.93 (m, 

2 H), 2.25 (dt, J = 7.2, 1.3 Hz, 2 H), 1.87 – 1.69 (m, 5 H), 1.56 (s, 8 H), 1.21 – 1.06 (m, 3 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 135.2, 122.4, 116.3, 47.1, 43.8, 39.7, 37.3, 36.5, 32.0, 

25.3, 23.1. 

MS (70 eV, EI) m/z (%): 214 (6) [MH]+, 186 (13), 172 (18), 160 (19), 158 (13), 146 (29), 

144 (21), 132 (14), 131 (11), 130 (11), 118 (11), 117 (13), 107 (40), 105 (33), 93 (12), 92 

(14), 91 (67), 81 (14), 79 (100), 77 (16), 67 (15). 

IR (ATR) ~ (cm-1): 3076, 2963, 2933, 2907, 2861, 2227, 1641, 1447, 1286, 1265, 1249, 

1213, 1179, 1136, 991, 937, 910, 870, 811, 713. 

HRMS (EI) calculated for C15H20N+: 214.1590, found 214.1588 [MH]+. 
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mp: 33.5 – 35.3 °C. 

 

2-(3-Allylbicyclo[1.1.1]pentan-1-yl)-2-phenylpropanenitrile (17b) 

 

2-(3-Allylbicyclo[1.1.1]pentan-1-yl)-2-phenylpropanenitrile was prepared according TP4 using 

-methylbenzyl cyanide (52 mg, 0.40 mmol, 2.0 equiv). The reaction mixture was stirred 3 h 

at 25 °C. Trapping and workup according to TP4 and purification via column chromatography 

(iHex / EtOAc = 49 / 1) afforded the desired compound 17b (46 mg, 0.19 mmol, 96%) as a 

colorless liquid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.39 – 7.27 (m, 5 H), 5.72 – 5.58 (m, 1 H), 5.02 – 4.92 

(m, 2 H), 2.21 (dt, J = 7.2, 1.3 Hz, 2 H), 1.70 (s, 3 H), 1.51 (s, 6 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 137.7, 134.9, 128.6, 127.8, 126.0, 122.3, 116.4, 47.6, 

45.1, 43.3, 37.7, 36.4, 21.9. 

MS (70 eV, EI) m/z (%): 236 (5) [MH]+, 222 (6), 194 (6), 181 (10), 180 (11), 167 (9), 

154 (12), 153 (10), 141 (12), 131 (51), 130 (34), 129 (22), 128 (21), 127 (11), 116 (14), 115 

(21), 107 (51), 105 (26), 104 (16), 103 (53), 102 (10), 92 (11), 91 (79), 79 (100), 78 (18), 77 

(63), 67 (15), 65 (22), 53 (14), 51 (22). 

IR (ATR) ~ (cm-1): 2970, 2909, 2872, 2235, 1641, 1601, 1493, 1446, 1378, 1325, 1247, 

1174, 1134, 1076, 1026, 992, 913, 801, 744, 697, 657. 

HRMS (EI) calculated for C17H18N+: 236.1434, found 236.1433 [MH]+. 
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1-(3-Allylbicyclo[1.1.1]pentan-1-yl)cyclohex-2-ene-1-carbonitrile (17c) 

 

1-(3-Allylbicyclo[1.1.1]pentan-1-yl)cyclohex-2-ene-1-carbonitrile was prepared according TP4 

using 1-cyanocyclohexene (43 mg, 0.40 mmol, 2.0 equiv). The reaction mixture was stirred 

2 h at 25 °C. Trapping and workup according to TP4 and purification via column 

chromatography (iHex / EtOAc = 49 / 1) afforded the desired compound 17c (41 mg, 

0.19 mmol, 96%) as a colorless liquid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 5.92 (ddd, J = 9.9, 4.6, 2.9 Hz, 1 H), 5.76 – 5.63 (m, 

1 H), 5.52 – 5.46 (m, 1 H), 5.04 – 4.96 (m, 2 H), 2.25 (dt, J = 7.2, 1.3 Hz, 2 H), 2.13 – 2.03 

(m, 1 H), 2.02 – 1.91 (m, 2 H), 1.82 – 1.73 (m, 2 H), 1.64 – 1.55 ([AB]3-system, 6 H), 1.55 – 

1.48 (m, 1 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 134.9, 131.8, 123.4, 121.8, 116.3, 47.3, 42.9, 38.1, 

38.0, 36.4, 29.7, 24.4, 19.2. 

MS (70 eV, EI) m/z (%): 212 (4) [MH]+, 184 (9), 170 (16), 156 (23), 145 (16), 144 (15), 

143 (15), 142 (11), 131 (12), 130 (30), 129 (29), 128 (16), 117 (24), 116 (15), 115 (22), 

107 (21), 105 (32), 103 (12), 92 (10), 91 (81), 80 (10), 79 (100), 77 (36), 65 (11). 

IR (ATR) ~ (cm-1): 3028, 2966, 2908, 2870, 2230, 1641, 1446, 1432, 1257, 1230, 1194, 

1144, 1019, 992, 912, 884, 845, 730, 695, 668. 

HRMS (EI) calculated for C15H18N+: 212.1434, found 212.1433 [MH]+. 

 

Ethyl 4-(bicyclo[1.1.1]pentan-1-yl)-1-methylpiperidine-4-carboxylate (20) 

 

Diisopropylamine (320 mg, 3.2 mmol, 2.1 equiv) was dissolved in THF (3.5 mL) and BuLi 

(2.3 M in hexane, 1.4 mL, 3.2 mmol, 2.1 equiv) was added dropwise at 0 °C. The mixture was 

stirred for 5 min and cooled to 78 °C. Then ethyl 1-methylpiperidine-4-carboxylate (510 mg, 

3.0 mmol, 2.0 equiv) was added dropwise. After 30 min a solution of ZnCl2 in THF (1.0 M, 

3.8 mL, 3.8 mmol, 2.5 equiv) was added and the mixture was stirred at 0 °C for 5 min before 
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adding the [1.1.1]propellane in diethyl ether (0.53 M, 2.8 mL, 1.5 mmol, 1.0 equiv). After 

stirring at 0 °C for 2 h a saturated aqueous solution of NH4Cl (5 mL) was added. The reaction 

mixture was stirred for another 10 min at 25 °C, extracted with EtOAc (3 times), washed with 

brine, dried over MgSO4 and concentrated in vacuo. Purification via column chromatography 

(alumina, grade III, iHex / NEt3 = 19 / 1) afforded the desired compound 20 (340 mg, 

1.4 mmol, 95%) as colorless crystals. The structure was confirmed via single crystal X-ray 

diffraction studies. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 4.16 (q, J = 7.1 Hz, 2 H), 2.75 (d, J = 11.8 Hz, 2 H), 

2.44 (s, 1 H), 2.22 (s, 3 H), 2.06 (d, J = 13.5 Hz, 2 H), 1.84 (t, J = 12.2 Hz, 2 H), 1.62 (s, 6 H), 

1.45 (td, J = 13.2, 3.8 Hz, 2 H), 1.26 (t, J = 7.1 Hz, 3 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 173.8, 60.3, 53.6, 49.3, 47.9, 46.4, 46.1, 30.1, 25.3, 

14.7. 

MS (70 eV, EI) m/z (%): 237 (28) [M]+, 236 (21), 222 (11), 208 (42), 192 (19), 168 (26), 

165 (12), 164 (100), 162 (42), 148 (13), 140 (20), 136 (24), 122 (14), 120 (11), 105 (10), 

96 (22), 94 (27), 91 (19), 79 (13), 71 (14), 70 (35), 42 (15). 

IR (ATR) ~ (cm-1): 2964, 2935, 2908, 2872, 2840, 2739, 1723, 1467, 1441, 1427, 1378, 

1365, 1315, 1290, 1229, 1208, 1199, 1183, 1155, 1142, 1094, 1058, 1024, 1004, 966, 949, 

891, 863, 852, 789, 762, 701. 

HRMS (EI) calculated for C14H23NO2
+: 237.1723, found 237.1725 [M]+. 

mp: 27.4 – 29.5 °C. 
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3 Experimental Section Part II: Selective 

Metalation of Nitrogen Containing Heterocycles 

Using 2,2,6,6-Tetramethylpiperidyl Bases 

3.1 Preparation of Starting Materials 

1,3,4-Oxadiazole (25) 

 

1,3,4-Oxadiazole was prepared according to a literature procedure.75 Polyphosphoric acid 

(108 g) was heated to 100 °C before adding P2O5 (12 g, 42 mmol, 0.31 equiv). After stirring 

for 15 min N,N’-diformylhydrazine (12 g, 136 mmol, 1.0 equiv) was added, the resulting 

mixture was stirred at 100 °C for 4 h and then poured on ice (100 g). Neutralization with solid 

NaHCO3, extraction with DCM, drying over MgSO4 and evaporation of the solvents in vacuo 

yielded 1,3,4-oxadiazole 25 (2.5 g, 36 mmol, 26%) as a colorless liquid. The product was 

protected from light and stored at 5 °C. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 8.51 (s, 2 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 152.9. 

 

N-Substituted 1H-1,2,4-triazoles (32) 

N-Substituted 1H-1,2,3-triazoles were prepared according to a literature procedure.118 A dry 

and argon-flushed 250mL round-bottom flask equipped with a magnetic stirrer and a septum 

was charged with 1H-1,2,4-triazole (6.91 g, 100 mmol), the respective bromide (105 mmol) 

and THF (100 mL). After cooling to 4 °C 1,8-diazabicyclo(5.4.0)undec-7-ene (17.9 ml, 18.3 g, 

120 mmol) was added to the solution. The mixture was stirred for 18 h at room temperature, 

quenched with water (100 mL) and extracted with DCM (3 × 80 mL). The combined organic 

phases were washed with brine (80 mL) and dried over MgSO4. Evaporation of the solvents 

in vacuo and purification via column chromatography on silica gel or vacuum distillation 

afforded the desired N-substituted 1H-1,2,3-triazole 32. 

                                                
118 A. R. Katritzky, W. Kuzmierkiewiecz, J. V. Greenhill, Rec. Trav. Chim. Pays Bas 1991, 
110, 369-373. 



104 
 

1-Propyl-1H-1,2,4-triazole (32a) 

 

1-Propyl-1H-1,2,4-triazole was prepared using 1-bromopropane (9.6 ml, 13 g, 110 mmol). 

Purification via column chromatography (silica gel, ihexane / EtOAc = 1:1) yielded the title 

compound 32a (6.8 g, 61 mmol, 56%) as a colorless liquid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 8.01 (s, 1 H), 7.88 (s, 1 H), 4.12 – 4.03 (m, 2 H), 1.93 

– 1.79 (m, 2 H), 0.92 – 0.82 (m, 3 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 151.8, 142.9, 51.5, 23.3, 11.1. 

 

1-Benzyl-1H-1,2,4-triazole (32b) 

 

1-Benzyl-1H-1,2,4-triazole was prepared using benzyl bromide (18.0 g, 105 mmol). 

Purification via column chromatography (silica gel, ihexane / EtOAc = 1:1) yielded the title 

compound 32b (7.98 g, 50.1 mmol, 48%) as a colorless solid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 8.06 (s, 1 H), 7.98 (s, 1 H), 7.46 – 7.30 (m, 3 H), 7.30 

– 7.23 (m, 2 H), 5.35 (s, 2 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 152.3, 143.2, 134.6, 129.1, 128.7, 128.1, 53.6. 

 

1-(2-Iodobenzyl)-1H-1,2,4-triazole (32c) 

 

1-(2-Iodobenzyl)-1H-1,2,4-triazole was prepared using 2-iodobenzyl bromide (9.57 mL, 

12.9 g, 105 mmol). Purification via vacuum distillation (2 mbar, 111-114 °C) yielded the title 

compound 32c (5.98 g, 53.8 mmol, 54%) as a colorless oil. 
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1H-NMR (CDCl3, 400 MHz, ppm): δ = 8.18 (s, 1 H), 8.01 (s, 1 H), 7.90 (dd, J = 8.0, 1.3 Hz, 

1 H), 7.37 (td, J = 7.6, 1.3 Hz, 1 H), 7.13 (dd, J = 7.7, 1.7 Hz, 1 H), 7.07 (td, J = 7.7, 1.6 Hz, 

1 H), 5.43 (s, 2 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 152.33, 143.76, 139.91, 137.10, 130.40, 129.80, 

129.00, 98.74, 57.96. 

 

1H-Imidazo[1,2-b]pyrazole (39) 

 

1H-Imidazo[1,2-b]pyrazole was synthesized using a slightly modified literature procedure89: A 

solution of N2H4H2O (77 mL, 500 mmol) in absolute ethanol (250 mL) was heated to reflux 

before adding bromoacetaldehyde diethyl acetal (121 mL, 2.5 mol) dropwise over 45 min. 

The resulting solution was refluxed for an additional 3 h and the solvents were removed in 

vacuo. The residue was taken up in aqueous NaOH (35%, 60 mL) and a saturated aqueous 

solution of NaCl (50 mL) and the mixture was extracted with toluene (2x250 mL). 

The resulting solution of (2,2-diethoxyethyl)hydrazine in toluene was treated with ethyl 

2-cyano-3-ethoxyacrylate (85 g, 500 mmol) under argon atmosphere and stirred at 25 °C 

over night. Then the reaction mixture was heated for 3.5 h while distilling of an azeotrope of 

toluene, ethanol and water at around 73 °C. The remaining toluene was removed in vacuo 

and the residue containing ethyl 5-amino-1-(2,2-diethoxyethyl)-1H-pyrazole-4-carboxylate 

was treated with NaOH (4 M, 1 L) and heated to 110 °C for 2 h. The mixture was cooled 

down, extracted with DCM (2x200mL) and the organic phase was washed with brine 

(50 mL). The combined aqueous phases were cooled to 0 °C and treated with HCl (6 M) until 

pH 4.5. The resulting solid was filtered off, washed with cold water and dried to obtain pure 

5-amino-1-(2,2-diethoxyethyl)-1H-pyrazole-4-carboxylic acid (97 g, 400 mmol, 80% over 

3 steps) as a colorless solid. 

The 5-amino-1-(2,2-diethoxyethyl)-1H-pyrazole-4-carboxylic acid was dissolved in absolute 

ethanol (100 mL) and H2SO4 (20%, 700 mL) and heated to 75 °C for 75 min. After cooling to 

25 °C the mixture was poured on crushed ice (1 L) and slowly treated with solid NaHCO3 

until pH 9. The formed solid was filtered off and washed with cold water. The aqueous phase 

was extracted with EtOAc (3x500 mL), the combined organic phase was dried over MgSO4 

and evaporated. The resulting solid was combined with the solid from the filtration and 
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purified via flash column chromatography (silica gel, EtOAc/MeOH = 49:1) to yield 

1H-imidazo[1,2-b]pyrazole (39, 25 g, 240 mmol, 60%) as a slightly yellow solid. 

1H-NMR (DMSO-d6, 400 MHz, ppm): δ = δ 10.96 (brs, 1 H), 7.48 (dd, J = 2.1, 0.7 Hz, 1 H), 

7.44 (dd, J = 2.1, 1.3 Hz, 1 H), 7.13 (dd, J = 2.1, 1.3 Hz, 1 H), 5.61 (dd, J = 2.2, 0.7 Hz, 1 H). 

13C-NMR (DMSO-d6, 101 MHz, ppm): δ = 141.9, 141.0, 117.9, 107.3, 78.3. 

MS (70 eV, EI) m/z (%): 107 (100) [M]+, 106 (17), 80 (27), 79 (15), 44 (21). 

IR (ATR) ~ (cm-1): 3157, 3132, 3051, 3005, 2741, 2691, 1594, 1463, 1441, 1393, 1348, 

1282, 1171, 1097, 1074, 1045, 957, 914, 867, 831, 789, 763, 697, 677. 

HRMS (EI) calculated for C5H5N3
+: 107.0478, found 107.0478 [M]+. 

mp: 149.5 – 151.2 °C. 

 

1-((2-(Trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole (40) 

 

To a solution of 1H-imidazo[1,2-b]pyrazole (2.1 g, 20 mmol, 1.0 equiv) in DMF (40 mL) was 

slowly added sodium hydride (0.71 g, 30 mmol, 1.5 equiv) at 0 °C. The resulting mixture was 

stirred at 0 °C for 1 h before adding SEMCl (5.3 mL, 30 mmol, 1.5 equiv). The reaction was 

warmed to 25 °C and stirred for 2 h before slowly adding a concentrated aqueous solution of 

NH4Cl (20 mL). The reaction mixture was extracted with EtOAc (3x30 mL), washed with brine 

(3x30 mL), dried over MgSO4 and concentrated in vacuo. Purification via column 

chromatography (silica gel, iHex/EtOAc = 2:1 to pure EtOAc) yielded 

1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole (40, 2.7 g, 11 mmol, 57%) as a 

slightly yellow liquid alongside unreacted 1H-imidazo[1,2-b]pyrazole (39, 0.47 g, 4.4 mmol, 

22%). 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.65 – 7.60 (m, 1 H), 7.33 (d, J = 1.9 Hz, 1 H), 6.83 – 

6.80 (m, 1 H), 5.75 (d, J = 1.8 Hz, 1 H), 5.22 (s, 2 H), 3.52 (t, J = 8.2 Hz, 2 H), 0.90 (t, J = 

8.2 Hz, 2 H), 0.04 (s, 9 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 144.5, 143.7, 120.6, 110.4, 80.6, 78.3, 68.1, 19.1, 0.0. 

MS (70 eV, EI) m/z (%): 237 (16) [M]+, 179 (70), 151 (10), 121 (33), 120 (56), 103 (11), 93 

(16), 73 (100). 
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IR (ATR) ~ (cm-1): 3131, 2952, 2892, 1589, 1547, 1463, 1412, 1379, 1315, 1282, 1247, 

1229, 1210, 1193, 1178, 1070, 1032, 973, 936, 917, 856, 831, 758, 690. 

HRMS (EI) calculated for C11H19N3OSi+: 237.1292, found 237.1291 [M]+. 

 

7-Bromo-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole (41) 

 

To a solution of 1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole (1.7 g, 

5.0 mmol, 1.0 equiv) in MeCN (20 mL) was added N-bromosuccinimide (1.3 g, 5.0 mmol, 

1.0 equiv) and the resulting mixture was stirred at 25 °C for 10 min. The solvent was 

removed in vacuo at 30 °C and the crude product was directly purified via column 

chromatography (silica gel, iHex/EtOAc = 4:1) to yield 7-bromo-1-((2-

(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole (41, 1.9 g, 6.0 mmol, 86%) as a 

colorless liquid. The compound was stored in the dark as a solid at 30 °C to prevent 

decomposition. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.55 (s, 1 H), 7.34 – 7.31 (m, 1 H), 6.86 (s, 1 H), 5.41 

(s, 2 H), 3.60 (t, J = 8.2 Hz, 2 H), 0.91 (t, J = 8.2 Hz, 2 H), 0.03 (s, 9 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 143.2, 138.3, 120.1, 109.7, 75.5, 66.7, 64.8, 17.9, 

1.3. 

MS (70 eV, EI) m/z (%): 317 (13), 315 (13) [M]+, 259 (53), 257 (53), 200 (31), 198 (33), 178 

(25), 151 (13), 119 (33), 73 (100). 

IR (ATR) ~ (cm-1): 3133, 2952, 2895, 1736, 1606, 1551, 1463, 1412, 1378, 1324, 1294, 

1276, 1247, 1210, 1194, 1177, 1153, 1081, 1069, 1027, 1003, 972, 916, 857, 833, 758, 689. 

HRMS (EI) calculated for C11H18BrN3OSi+: 315.0397, found 315.0397 [M]+. 

 

(TMP)2Zn∙2LiCl (26) 

TMPH (1.7 mL, 10 mmol, 1.0 equiv) was dissolved in THF (10 mL) and cooled to −40 °C 

before adding a solution of BuLi in hexanes (2.3 M, 4.4 mL, 10 mL, 1.0 equiv). The resulting 

mixture was stirred at 0 °C for 30 min, a solution of ZnCl2 in THF (1.0 M, 5.0 mL, 5.0 mmol, 
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0.50 equiv) was added, the reaction was protected from light using aluminium foil and stirred 

at 25 °C for 1-2 h. The formed solids were removed using a syringe filter and the base was 

titrated against benzoic acid using 4-(phenylazo)-diphenylamine as an indicator. 

 

(TMP)2Zn∙2MgCl2∙2LiCl (29) 

Freshly titrated TMPMgCl∙LiCl (10 mmol, 1.0 equiv) was added dropwise to a solution of 

ZnCl2 in THF (1.0 M, 5.3 mL, 5.3 mmol, 0.53 equiv). The resulting mixture was protected from 

light using aluminium foil and stirred at 25 °C for 2 h before titrating the base against benzoic 

acid using 4-(phenylazo)-diphenylamine as an indicator. 

 

TMPMgCl∙LiCl (33) 

TMPH (14.8 g, 105 mmol, 1.05 equiv) was slowly added to a solution of iPrMgCl∙LiCl in dry 

THF (1.05 M, 95 mL, 1.0 equiv). The resulting mixture was stirred under argon at 25 °C for 

3 days before titrating the base against benzoic acid using 4-(phenylazo)-diphenylamine as 

an indicator. 

 

TMPZnCl∙LiCl (36) 

TMPH (1.7 mL, 10 mmol, 1.0 equiv) was dissolved in THF (10 mL) and cooled to −40 °C 

before adding a solution of BuLi in hexanes (2.3 M, 4.4 mL, 10 mL, 1.0 equiv). The resulting 

mixture was stirred at 0 °C for 30 min, a solution of ZnCl2 in THF (1.0 M, 10 mL, 10 mmol, 

1.0 equiv) was added, the reaction was stirred at 25 °C for 1-2 h before titrating the base 

against benzoic acid using 4-(phenylazo)-diphenylamine as an indicator. 

 

(TMP)2Zn∙MgCl2∙2LiCl (46) 

Magnesium shavings (182 mg, 7.5 mmol) were placed in a Schlenk-flask under vacuum and 

dried with a heat gun at 650 °C for 5 min. After the flask was cooled down it was filled with 

argon and THF (15 mL). 1,2-Dichloroethane (0.59 mL, 7.5 mmol) was added dropwise over 

20 min, leading to gas evolution. The reaction was stirred for at least 1 h, leading to the 

formation of a 0.50 M solution of MgCl2 in THF. In a second Schlenk-flask TMPH (1.9 mL, 

11 mmol, 1.0 equiv) was dissolved in THF (11 mL) and cooled to 40 °C. Then freshly 

titrated BuLi (1.40 M in hexane, 7.86 mL, 11 mmol, 1.0 equiv) was added and the resulting 
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solution was stirred for 30 min. Then the freshly prepared MgCl2 solution (0.50 M in THF, 

11 mL, 5.5 mmol, 0.50 equiv) and ZnCl2 solution (1.0 M in THF, 5.5 mL, 5.5 mmol, 

0.50 equiv) were added. The resulting mixture was brought to room temperature, protected 

from light with aluminium foil and stirred for at least 1 h before titration against benzoic acid 

using 4-(phenylazo)-diphenylamine as an indicator. The base was stored in a closed 

Schlenk-flask covered with aluminium foil at room temperature for up to one week without a 

significant change in reactivity. 

 

3.2 Typical Procedures 

TP5: Metalation of 1,3,4-oxadiazole (25) with (TMP)2Zn∙2LiCl (26) followed by cross-

coupling 

1,3,4-Oxadiazole (25, 137 mg, 0.30 mmol, 1.0 equiv) was dissolved in THF (0.90 mL) and 

freshly prepared (TMP)2Zn∙2LiCl (26, 0.24 M, 0.68 mL, 0.17 mmol, 0.55 equiv) was added 

dropwise. The resulting suspension was stirred at 25 °C for 5 min before adding Pd(dba)2 

(14 mg, 0.0060 mmol, 3%), XantPhos (3.5 mg, 0.0060 mmol, 3%) and the respective aryl 

iodide (0.20 mmol, 0.67 equiv). After stirring for 2 h a saturated aqueous solution of NH4Cl 

(1 mL) was added. Extraction with EtOAc, drying over MgSO4, evaporation of the solvents in 

vacuo and purification via silica gel column chromatography yielded the desired mono-

substituted 1,3,4-oxadiazole 28. 

 

TP6: Metalation of mono-substituted 1,3,4-oxadiazoles of type 28 with 

(TMP)2Zn∙MgCl2∙2LiCl (29) followed by copper catalysed electrophilic amination 

Mono-substituted 1,3,4-oxadiazole of type (28, 0.50 mmol, 1.0 equiv) was dissolved in THF 

(1.0 mL) and freshly prepared (TMP)2Zn∙MgCl2∙2LiCl (29, 0.34 M, 0.81 mL, 0.28 mmol, 

0.55 equiv) was added dropwise. After stirring at 25 °C for 20 min the mixture was added to a 

solution of the respective hydroxyamino benzoate (0.35 mmol, 0.70 equiv) and copper(II) 

triflate (27 mg, 0.075 mmol, 15%) in THF (1 mL) and stirred for additional 2 h at 25 °C. Then 

a saturated aqueous solution of NH4Cl (1 mL) was added,. Extraction with EtOAc, drying 

over MgSO4, evaporation of the solvents in vacuo and purification via silica gel column 

chromatography yielded the desired functionalized 1,3,4-oxadiazole 31. 
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TP7: Metalation of N-substituted 1H-1,2,4-triazoles (32) with TMPMgCl∙LiCl (33) 

followed by electrophilic trapping 

N-Substituted 1H-1,2,4-triazole (32, 0.50 mmol, 1.0 equiv) was dissolved in THF (1.5 mL) 

and cooled to 0 °C. TMPMgCl∙LiCl solution (33, 0.60 mmol, 1.2 equiv) was slowly added to 

the vigorously stirred solution. After 30 min the respective electrophile (0.60 mmol, 1.2 equiv) 

was added and the ice bath was removed. After stirring for 30 min the mixture was quenched 

with sat. aq. NH4Cl solution (15 mL), extracted with DCM (3×15 mL) and dried over 

anhydrous MgSO4. The crude product 35 was purified by flash column chromatography. 

 

TP8: Metalation of N-substituted 1H-1,2,4-triazoles (32) with TMPZnCl∙LiCl (36) 

followed by cross-coupling 

N-Substituted 1H-1,2,4-triazole (32, 0.50 mmol, 1.0 equiv) was dissolved in THF (1.5 mL) 

and cooled to 0 °C. TMPZnCl∙LiCl solution (36, 0.65 mmol, 1.3 equiv) was slowly added to 

the stirred solution. A dry, argon flushed Schlenk-flask equipped with a magnetic stirring bar 

and a septum was charged with the respective aromatic bromide or iodide (0.6 mmol, 

1.2 equiv), Pd(OAc)2 (5.6 mg, 0.025 mmol, 5%), SPhos (20.5 mg, 0.050 mmol, 10%) and 

THF (1.0 mL). After 30 min the metalated species was slowly added to the vigorously stirred 

solution. The reaction mixture was stirred at 40 °C for 18 h, quenched with sat. aq. NH4Cl 

solution (15 mL), extracted with DCM (3×15 mL) and dried over anhydrous MgSO4. The 

crude product 35 was purified by flash column chromatography. 

 

TP9: Metalation of N-substituted 1H-1,2,4-triazoles (32) with TMPZnCl∙LiCl (36) 

followed by copper-catalyzed electrophilic amination  

N-Substituted 1H-1,2,4-triazole (32, 0.50 mmol, 1.0 equiv) was dissolved in THF (1.5 mL) 

and cooled to 0 °C. TMPZnCl∙LiCl solution (36, 1 mmol, 2.0 equiv) was slowly added to the 

stirred solution. A dry, argon flushed Schlenk-flask equipped with a magnetic stirring bar and 

a septum was charged with amine benzoate (0.6 mmol, 1.2 equiv), copper (II) triflate (36 mg, 

0.1 mmol, 20%) and THF (2.0 mL). After 30 min the metalated species was slowly added to 

the vigorously stirred solution. After 2 h the mixture was quenched with sat. aq. NH4Cl 

solution (15 mL), extracted with DCM (3×15 mL) and dried over anhydrous MgSO4. The 

crude product 35 was purified by flash column chromatography. 
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TP10: Double functionalization of N-substituted 1H-1,2,4-triazoles (32) with 

TMPMgCl∙LiCl (33) 

N-Substituted 1H-1,2,4-triazole (32, 0.50 mmol, 1.0 equiv) was dissolved in THF (1.5 mL) 

and cooled down to 0 °C. TMPMgCl∙LiCl solution (33, 2.0 mmol, 4.0 equiv) was slowly added 

to the vigorously stirred solution. After 30 min the respective electrophile (2.2 mmol, 

4.1 equiv) was added and the ice bath was removed. After 30 min the mixture was quenched 

with sat. aq. NH4Cl solution (15 mL), extracted with DCM (3×15 mL) and dried over 

anhydrous MgSO4. The crude product 37 was purified by flash column chromatography. 

 

TP11: Bromine-magnesium exchange of 7-bromo-1-((2-(trimethylsilyl)ethoxy)methyl)-

1H-imidazo[1,2-b]pyrazole (41) followed by electrophile trapping 

To a solution of 7-bromo-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole (41, 

1.0 equiv) in THF (0.5 M) was added iPrMgClLiCl (42, 2.1 equiv) dropwise at 0 °C. The 

reaction mixture was warmed up to 25 °C and stirred for 1 h before adding the respective 

electrophile. After stirring for the indicated time a saturated aqueous solution of NH4Cl was 

added. The reaction was extracted with EtOAc (3x), washed with brine, dried over MgSO4, 

concentrated in vacuo and purified via silica gel column chromatography to yield the desired 

7-substituted 1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole of type 43. 

 

TP12: Metalation of 1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole-7-

carbonitrile (43b) with TMPMgCl∙LiCl (33) followed by electrophile trapping 

To a solution of 1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole-7-carbonitrile 

(43b, 1.0 equiv) in THF (0.5 M) was added a solution of TMPMgClLiCl (33, typically 0.95-

1.05 M in THF, 1.5 equiv) dropwise at 20 °C. The mixture was stirred at 20 °C for 2 h 

before adding the respective electrophile. After stirring for the indicated time a saturated 

aqueous solution of NH4Cl was added. The reaction was extracted with EtOAc (3x), washed 

with brine, dried over MgSO4, concentrated in vacuo and purified via silica gel column 

chromatography to yield the desired 3-substituted 1-((2-(trimethylsilyl)ethoxy)methyl)-1H-

imidazo[1,2-b]pyrazole-7-carbonitrile of type 43. 
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TP13: Metalation of ethyl 7-cyano-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo-

[1,2-b]pyrazole-3-carboxylate (45c) with (TMP)2Zn∙MgCl2∙2LiCl (46) followed by 

electrophile trapping 

To a solution of 7-cyano-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole-3-

carboxylate (45c, 1.0 equiv) in THF (0.20 mL) was added a solution of (TMP)2Zn∙MgCl2∙2LiCl 

(46, typically 0.14-0.16 M in THF, 0.65 equiv for allylations and acylations, 0.55 equiv for 

cross-couplings) dropwise at 0 °C. The mixture was stirred at 0 °C for 30 min before adding 

the respective electrophile. After stirring for the indicated time a saturated aqueous solution 

of NH4Cl was added. The reaction was extracted with EtOAc (3x), washed with brine, dried 

over MgSO4, concentrated in vacuo and purified via silica gel column chromatography to 

yield the desired 2-substituted ethyl 7-cyano-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-

imidazo[1,2-b]pyrazole-3-carboxylate of type 47. 

 

TP14: Dimerization of 2-functionalized ethyl 7-cyano-1-((2-(trimethylsilyl)-

ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole-3-carboxylates of type 47 with 

(TMP)2Zn∙MgCl2∙2LiCl (46) 

To a solution of the respective 7-cyano-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]-

pyrazole-3-carboxylate of type 47 (1.0 equiv) in THF (0.5 M) was added a solution of 

(TMP)2Zn∙MgCl2∙LiCl (46, typically 0.14-0.16 M in THF, 0.65 equiv) dropwise at 0 °C. The 

mixture was stirred at 0 °C for the indicated time before adding a saturated aqueous solution 

of NH4Cl. The reaction was extracted with EtOAc (3x), washed with brine, dried over MgSO4, 

concentrated in vacuo and purified via column chromatography on Florisil® (iHex/EtOAc = 

4:1, then iHex/ EtOAc = 1:1, then EtOAc, then EtOAc/MeOH = 10:1) to yield the desired 

1H,1'H,5H,5'H-6,6'-biimidazo[1,2-b]pyrazolylidene of type 48. 

 

3.3 Optimization of the Conditions for the Metalation of 1,3,4-Oxadiazole 

The conditions for the metalation of 1,3,4-oxadiazole were screened via GC chromatography 

after a copper-catalyzed allylation with 3-bromocyclohexene (Scheme 44). Magnesium bases 

yielded only traces of the desired product. A significant improvement was achieved by 

switching to zinc bases, with the bis-base (TMP)2Zn∙2LiCl giving the best results. The yields 

were significantly higher if the solid formed during the preparation of the base was filtered off 

before the use. The optimal amount of base was determined to be 0.55 equivalents, which 

resulted in an isolated yield of the product of 63% after only 5 minutes of metalation time. 



113 
 

 

Scheme 44. Optimization of the conditions for the metalation of 1,3,4-oxadiazole. 
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3.4 Products 

2-Phenyl-1,3,4-oxadiazole (28a) 

 

2-Phenyl-1,3,4-oxadiazole was prepared according to TP5 using phenyl iodide (41 mg, 

0.20 mmol). Purification via column chromatography (silica gel, ihexane / EtOAc = 4:1) 

yielded the title compound 28a (25 mg, 0.17 mmol, 86%) as colorless crystals. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 8.48 (s, 1 H), 8.12 – 8.02 (m, 2 H), 7.60 – 7.46 (m, 

3 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 164.8, 152.7, 132.0, 129.1, 127.1, 123.5. 

MS (70 eV, EI) m/z (%): 146 (100) [M]+, 105 (42), 91 (11), 90 (32), 89 (19), 77 (16). 

IR (ATR) ~ (cm-1): 3231, 3131, 1706, 1663, 1609, 1589, 1555, 1514, 1481, 1449, 1340, 

1288, 1234, 1179, 1105, 1077, 1063, 1025, 1002, 955, 944, 927, 849, 777, 709, 687. 

HRMS (EI) calculated for C8H6N2O+: 146.0475, found 146.0475 [M]+. 

mp: 33.8 – 35.1 °C. 

 

Ethyl 4-(1,3,4-oxadiazol-2-yl)benzoate (28b) 

 

Ethyl 4-(1,3,4-oxadiazol-2-yl)benzoate was prepared according to TP5 using ethyl 

4-iodobenzoate (55 mg, 0.20 mmol). Purification via column chromatography (silica gel, 

ihexane / EtOAc = 3:1) yielded the title compound 28b (43 mg, 0.197 mmol, 98%) as a 

colorless solid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 8.53 (s, 1 H), 8.21 – 8.13 (m, 4 H), 4.41 (q, J = 7.1 Hz, 

2 H), 1.42 (t, J = 7.1 Hz, 3 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 165.6, 164.1, 153.0, 133.5, 130.3, 127.1, 127.0, 61.6, 

14.3. 
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MS (70 eV, EI) m/z (%): 218 (7) [M]+, 190 (64), 174 (10), 173 100), 149 (14), 145 (14), 

118 (8), 90 (8). 

IR (ATR) ~ (cm-1): 3124, 1701, 1553, 1477, 1414, 1370, 1310, 1277, 1178, 1131, 1105, 

1069, 1013, 955, 874, 847, 779, 714. 

HRMS (EI) calculated for C11H11N2O3
+: 218.0686, found 218.0688 [M]+. 

mp: 93.8 – 95.5 °C. 

 

2-(4-Chlorophenyl)-1,3,4-oxadiazole (28c) 

 

2-(4-Chlorophenyl)-1,3,4-oxadiazole was prepared according to TP5 using 1-chloro-4-

iodobenzene (48 mg, 0.20 mmol). Purification via column chromatography (silica gel, 

ihexane / EtOAc = 4:1) yielded the title compound 28c (31 mg, 0.17 mmol, 86%) as a slightly 

brown solid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 8.48 (s, 1 H), 8.02 (d, J = 8.6 Hz, 2 H), 7.50 (d, 

J = 8.6 Hz, 2 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 164.0, 152.7, 138.4, 129.6, 128.4, 121.9. 

MS (70 eV, EI) m/z (%): 182 (35), 181 (13), 180 (100) [M]+, 141 (24), 139 (95), 137 (20), 125 

(17), 124 (20), 111 (22), 89 (29), 85 (14), 75 (21), 71 (19), 69 (10), 57 (21), 43 (17). 

IR (ATR) ~ (cm-1): 3148, 2921, 1983, 1716, 1605, 1583, 1549, 1513, 1480, 1406, 1332, 

1278, 1215, 1172, 1114, 1091, 1062, 1009, 971, 959, 951, 941, 859, 830, 741, 730, 693. 

HRMS (EI) calculated for C8H5ClN2O+: 180.0085, found 180.0081 [M]+. 

mp: 132.7 – 134.6 °C. 
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4-(1,3,4-Oxadiazol-2-yl)benzonitrile (28d) 

 

4-(1,3,4-Oxadiazol-2-yl)benzonitrile was prepared according to TP5 using 4-iodobenzonitrile 

(46 mg, 0.20 mmol). Purification via column chromatography (silica gel, ihexane / EtOAc = 

6:4) yielded the title compound 28d (25 mg, 0.15 mmol, 73%) as a colorless solid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 8.50 (s, 1 H), 8.15 (d, J = 8.7 Hz, 2 H), 7.77 (d, 

J = 8.7 Hz, 2 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 163.3, 153.3, 133.0, 127.6, 127.3, 117.8, 115.6. 

MS (70 eV, EI) m/z (%): 171 (69) [M]+, 130 (57), 128 (16), 116 (37), 115 (100), 114 (36), 

91 (11), 88 (13), 76 (17), 75 (20), 62 (10). 

IR (ATR) ~ (cm-1): 3154, 2922, 2228, 1581, 1551, 1501, 1489, 1405, 1282, 1225, 1091, 

1068, 1015, 956, 867, 839, 736, 698. 

HRMS (EI) calculated for C9H5N3O+: 171.0427, found 171.0425 [M]+. 

mp: 145.6 – 147.7 °C. 

 

2-(4-(Trifluoromethyl)phenyl)-1,3,4-oxadiazole (28e) 

 

2-(4-(trifluoromethyl)phenyl)-1,3,4-oxadiazole was prepared according to TP5 using 1-iodo-4-

(trifluoromethyl)benzene (55 mg, 0.20 mmol). Purification via column chromatography (silica 

gel, ihexane / EtOAc = 4:1) yielded the title compound 28e (35 mg, 0.16 mmol, 82%) as a 

colorless solid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 8.54 (s, 1 H), 8.22 (d, J = 7.7 Hz, 2 H), 7.79 (d, 

J = 8.4 Hz, 2 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 163.7, 153.1, 133.7 (q, J = 33.0 Hz), 127.5, 126.7, 

126,2 (q, J = 3.8 Hz), 123.5 (q, J = 273.1 Hz). 
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MS (70 eV, EI) m/z (%): 214 (100) [M]+, 195 (13), 173 (69), 167 (10), 158 (71), 145 (38), 138 

(9). 

IR (ATR) ~ (cm-1): 3153, 2923, 1562, 1516, 1414, 1319, 1224, 1186, 1157, 1111, 1071, 

1056, 1010, 947, 867, 847, 748, 705. 

HRMS (EI) calculated for C9H5F3N2O+: 214.0348, found 214.0348 [M]+. 

mp: 114.1 – 115.9 °C. 

 

2-(4-Methoxyphenyl)-1,3,4-oxadiazole (28f) 

 

2-(4-Methoxyphenyl)-1,3,4-oxadiazole was prepared according to TP5 using 1-iodo-4-

methoxybenzene (47 mg, 0.20 mmol). The cross-coupling was conducted at 50 °C using 

Pd(PPh3)4 (17 mg, 0.015 mmol, 7.5%) as a catalyst. Purification via column chromatography 

(silica gel, ihexane / EtOAc = 6:4) yielded the title compound 14f (32 mg, 0.18 mmol, 90%) 

as a colorless solid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 8.41 (s, 1 H), 8.01 (d, J = 8.9 Hz, 2 H), 7.01 (d, 

J = 8.9 Hz, 2 H), 3.88 (s, 3 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 164.7, 162.5, 152.2, 128.9, 116.0, 114.5, 55.5. 

MS (70 eV, EI) m/z (%): 176 (100) [M]+, 136 (8), 135 (95), 91 (6), 77 (7). 

IR (ATR) ~ (cm-1): 3126, 2922, 2851, 1718, 1612, 1587, 1559, 1517, 1494, 1456, 1438, 

1422, 1302, 1257, 1179, 1122, 1110, 1097, 1066, 1017, 973, 959, 939, 860, 832, 818, 797, 

738, 702. 

HRMS (EI) calculated for C9H8N2O2
+: 176.0580, found 176.0580 [M]+. 

mp: 64.6 – 66.2 °C. 
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N,N-Dimethyl-4-(1,3,4-oxadiazol-2-yl)aniline (28g) 

 

N,N-Dimethyl-4-(1,3,4-oxadiazol-2-yl)aniline was prepared according to TP5 using 4-iodo-

N,N-dimethylaniline (49 mg, 0.20 mmol). The cross-coupling was conducted at 50 °C using 

Pd(PPh3)4 (17 mg, 0.015 mmol, 7.5%) as a catalyst. Purification via column chromatography 

(silica gel, ihexane / EtOAc = 7:3) yielded the title compound 28g (24 mg, 0.13 mmol, 63%) 

as a colorless solid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 8.35 (s, 1 H), 7.91 (d, J = 9.0 Hz, 2 H), 6.74 (d, 

J = 9.0 Hz, 2 H), 3.05 (s, 6 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 165.5, 152.5, 151.7, 128.6, 111.7, 110.6, 40.2. 

MS (70 eV, EI) m/z (%): 189 (100) [M]+, 188 (60), 161 (7), 148 (30), 145 (13), 132 (13), 

118 (7). 

IR (ATR) ~ (cm-1):  

HRMS (EI) calculated for C10H11N3O+: 189.0897, found 189.0896 [M]+. 

mp: 134.2 – 136.1 °C. 

 

2-(3-Nitrophenyl)-1,3,4-oxadiazole (28h) 

 

2-(3-Nitrophenyl)-1,3,4-oxadiazole was prepared according to TP5 using 1-iodo-3-

nitrobenzene (50 mg, 0.20 mmol). Purification via column chromatography (silica gel, 

ihexane / EtOAc = 6:4) yielded the title compound 28h (37 mg, 0.19 mmol, 97%) as a 

colorless solid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 8.91 (t, J = 2.0 Hz, 1 H), 8.58 (s, 1 H), 8.45 (ddd, 

J = 7.8, 1.6, 1.0 Hz, 1 H), 8.42 (ddd, J = 8.3, 2.3, 1.1 Hz, 1 H), 7.76 (t, J = 8.0 Hz, 1 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 163.0, 153.3, 148.6, 132.7, 130.6, 126.5, 125.1, 

122.1. 
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MS (70 eV, EI) m/z (%): 191 (86) [M]+, 150 (49), 145 (15), 118 (21), 117 (14), 104 (13), 

90 (77), 89 (100), 88 (14), 87 (18), 86 (16), 76 (42), 75 (39), 74 (26), 63 (47), 62 (19), 

50 (12), 46 (12). 

IR (ATR) ~ (cm-1): 3160, 3092, 2923, 2853, 1620, 1591, 1556, 1530, 1508, 1475, 1352, 

1253, 1238, 1166, 1122, 1104, 1061, 1001, 976, 963, 953, 906, 883, 871, 856, 812, 753, 

739, 711, 668. 

HRMS (EI) calculated for C8H5N3O3
+: 191.0325, found 191.0324 [M]+. 

mp: 127.6 – 129.3 °C. 

 

2-(2-Fluorophenyl)-1,3,4-oxadiazole (28i) 

 

2-(2-Fluorophenyl)-1,3,4-oxadiazole was prepared according to TP5 using 1-fluoro-2-

iodobenzene (44 mg, 0.20 mmol). Purification via column chromatography (silica gel, 

ihexane / EtOAc = 4:1) yielded the title compound 28i (29 mg, 0.18 mmol, 88%) as a slightly 

brown liquid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 8.54 (s, 1 H), 8.08 (ddd, J = 7.9, 7.1, 1.8 Hz, 1 H), 7.59 

– 7.51 (m, 1 H), 7.31 (td, J = 7.6, 1.1 Hz, 1 H), 7.26 (ddd, J = 10.5, 8.3, 1.1 Hz, 1 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 161.7 (d, J = 4.9 Hz), 160.1 (d, J = 258.6 Hz), 153.0 

(d, J = 1.2 Hz), 133.9 (d, J = 8.5 Hz), 129.9, 124.8 (d, J = 3.8 Hz), 117.1 (d, J = 20.8 Hz), 

112.0 (d, J = 11.7 Hz). 

MS (70 eV, EI) m/z (%): 164 (100) [M]+, 123 (36), 109 (20), 108 (57), 107 (24). 

IR (ATR) ~ (cm-1): 3117, 1621, 1591, 1550, 1515, 1492, 1472, 1442, 1405, 1346, 1272, 

1262, 1223, 1159, 1102, 1069, 1053, 1027, 955, 856, 820, 765, 740, 700, 663. 

HRMS (EI) calculated for C8H5FN2O+: 164.0380, found 164.0379 [M]+. 
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2-(Quinolin-6-yl)-1,3,4-oxadiazole (28j) 

 

2-(Quinolin-6-yl)-1,3,4-oxadiazole was prepared according to TP5 using 6-iodoquinoline 

(51 mg, 0.20 mmol). Purification via column chromatography (silica gel, EtOAc) yielded the 

title compound 28j (36 mg, 0.19 mmol, 92%) as a slightly yellow solid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 9.01 (dd, J = 4.3, 1.7 Hz, 1 H), 8.57 (d, J = 1.9 Hz, 

1 H), 8.55 (s, 1 H), 8.37 (dd, J = 8.8, 1.9 Hz, 1 H), 8.28 (d, J = 8.4 Hz, 1 H), 8.23 (d, 

J = 8.9 Hz, 1 H), 7.50 (dd, J = 8.3, 4.2 Hz, 1 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 164.5, 153.1, 152.5, 149.4, 137.0, 130.9, 128.0, 

127.7, 127.1, 122.4, 121.6. 

MS (70 eV, EI) m/z (%): 197 (98) [M]+, 157 (10), 156 (100), 141 (10), 140 (12), 128 (27). 

IR (ATR) ~ (cm-1): 3351, 3080, 2923, 2852, 1628, 1578, 1549, 1509, 1495, 1438, 1367, 

1331, 1310, 1249, 1187, 1127, 1089, 1059, 1037, 977, 958, 939, 911, 889, 850, 834, 798, 

768, 723. 

HRMS (EI) calculated for C11H7N3O+: 197.0584, found 197.0582 [M]+. 

mp: 119.1 – 121.5 °C. 

 

2-(Thiophen-2-yl)-1,3,4-oxadiazole (28k) 

 

2-(Thiophen-2-yl)-1,3,4-oxadiazole was prepared according to TP5 using 2-iodothiophene 

(42 mg, 0.20 mmol). Purification via column chromatography (silica gel, ihexane / EtOAc = 

4:1) yielded the title compound 28k (28 mg, 0.18 mmol, 92%) as a slightly brown liquid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 8.40 (s, 1 H), 7.79 (dd, J = 3.8, 1.2 Hz, 1 H), 7.57 (dd, 

J = 5.0, 1.2 Hz, 1 H), 7.18 (dd, J = 5.0, 3.7 Hz, 1 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 161.0, 152.0, 130.6, 130.3, 128.3, 124.7. 

MS (70 eV, EI) m/z (%): 152 (100) [M]+, 110 (49), 96 (22), 70 (6). 
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IR (ATR) ~ (cm-1): 3228, 3106, 3000, 1703, 1652, 1593, 1578, 1520, 1490, 1419, 1372, 

1355, 1297, 1233, 1214, 1096, 1061, 1010, 953; 919, 851, 720. 

HRMS (EI) calculated for C6H4N2OS+: 152.0039, found 152.0038 [M]+. 

 

4-(5-Phenyl-1,3,4-oxadiazol-2-yl)morpholine (31a) 

 

4-(5-Phenyl-1,3,4-oxadiazol-2-yl)morpholine was prepared according to TP6 using 2-phenyl-

1,3,4-oxadiazole 28a (73 mg, 0.50 mmol) and morpholino benzoate (73 mg, 0.35 mmol). 

Purification via column chromatography (silica gel, ihexane / EtOAc = 3:1) yielded the title 

compound 31a (79 mg, 0.34 mmol, 98%) as a colorless oil. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.88 – 7.78 (m, 2 H), 7.38 (dq, J = 6.6, 2.8, 1.8 Hz, 

3 H), 3.82 – 3.73 (m, 4 H), 3.53 (dd, J = 5.8, 3.9 Hz, 4 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 164.0, 159.6, 130.7, 128.9, 125.9, 124.4, 66.0, 46.2. 

MS (70 eV, EI) m/z (%): 231 (80) [M]+, 207 (25), 135 (100), 70 (6). 

IR (ATR) ~ (cm-1): 2398, 2377, 1798, 1721, 1355, 1348, 1250, 688. 

HRMS (EI) calculated for C12H13N3O2 +: 231.1008, found 231.1003 [M]+. 

 

N,N-Dimethyl-4-(5-morpholino-1,3,4-oxadiazol-2-yl)aniline (31b) 

 

N,N-Dimethyl-4-(5-morpholino-1,3,4-oxadiazol-2-yl)aniline was prepared according to TP6 

using N,N-dimethyl-4-(1,3,4-oxadiazol-2-yl)aniline 28g (95 mg, 0.50 mmol) and morpholino 

benzoate (73 mg, 0.35 mmol). Purification via column chromatography (silica gel, ihexane / 

EtOAc = 3:1) yielded the title compound 31b (71 mg, 0.26 mmol, 74%) as a colorless oil. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.83 – 7.63 (m, 2 H), 6.78 – 6.62 (m, 2 H), 3.88 – 3.72 

(m, 4 H), 3.66 – 3.48 (m, 4 H), 3.01 (s, 6 H). 
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13C-NMR (CDCl3, 101 MHz, ppm): δ = 163.6, 160.5, 151.8, 127.3, 111.7, 66.1, 46.4, 40.2. 

MS (70 eV, EI) m/z (%): 274 (86) [M]+, 207 (35), 135 (100), 120 (12). 

IR (ATR) ~ (cm-1): 2972, 2917, 2893, 2857, 1605, 1572, 1510, 1452, 1445, 1432, 1364, 

1272, 1258, 1228, 1192, 1170, 1117, 1071, 1062, 951, 945, 909, 820, 761, 725, 704. 

HRMS (EI) calculated for C14H18N4O2
+: 274.1430, found 274.1438 [M]+. 

 

4-(5-(4-Chlorophenyl)-1,3,4-oxadiazol-2-yl)morpholine (31c) 

 

4-(5-(4-Chlorophenyl)-1,3,4-oxadiazol-2-yl)morpholine was prepared according to TP6 using 

2-(4-chlorophenyl)-1,3,4-oxadiazole 28c (90 mg, 0.50 mmol) and morpholino benzoate 

(73 mg, 0.35 mmol). Purification via column chromatography (silica gel, ihexane / EtOAc = 

3:1) yielded the title compound 31c (74 mg, 0.28 mmol, 80%) as a colorless oil. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.86 – 7.71 (m, 2 H), 7.45 – 7.31 (m, 2 H), 3.84 – 3.70 

(m, 4 H), 3.65 – 3.48 (m, 4 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 164.2, 158.9, 136.8, 129.4, 127.2, 123.0, 66.1, 46.3. 

MS (70 eV, EI) m/z (%): 265 (78) [M]+, 207 (29), 135 (100), 70 (9). 

IR (ATR) ~ (cm-1): 2922, 1706, 1637, 1618, 1614, 1603, 1577, 1485, 1440, 1434, 1421, 

1396, 1390, 1359, 1273, 1258, 1221, 1120, 1114, 1092, 1060, 1012, 912, 837, 732. 

HRMS (EI) calculated for C12H12ClN3O2
+: 265.0618, found 265.0615 [M]+. 

 

4-(5-(4-(Trifluoromethyl)phenyl)-1,3,4-oxadiazol-2-yl)morpholine (31d) 

 

4-(5-(4-(Trifluoromethyl)phenyl)-1,3,4-oxadiazol-2-yl)morpholine was prepared according to 

TP6 using 2-(4-(trifluoromethyl)phenyl)-1,3,4-oxadiazole 28e (107 mg, 0.50 mmol) and 

morpholino benzoate (73 mg, 0.35 mmol). Purification via column chromatography (silica gel, 
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ihexane / EtOAc = 3:1) yielded the title compound 31d (73 mg, 0.25 mmol, 70%) as a 

colorless oil. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 8.01 (d, J = 8.1 Hz, 2 H), 7.70 (d, J = 8.3 Hz, 2 H), 

3.84 (dd, J = 6.0, 3.8 Hz, 4 H), 3.61 (dd, J = 5.8, 3.9 Hz, 4 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 164.3, 158.4, 132.2 (d, J = 32.8 Hz), 127.6, 126.0, 

126.0 (d, J = 3.9 Hz, 2C), 123.7 (d, J = 272.4 Hz), 65.9, 46.2. 

MS (70 eV, EI) m/z (%): 299 (43) [M]+, 242 (65), 173 (100), 145 (79), 114 (45). 

IR (ATR) ~ (cm-1): 2921, 2860, 1711, 1693, 1613, 1584, 1563, 1452, 1425, 1323, 1274, 

1258, 1167, 1113, 1070, 1025, 1016, 913, 847, 730, 714, 685. 

HRMS (EI) calculated for C13H12F3N3O2
+: 299.0882, found 299.0874 [M]+. 

 

N,N-Diallyl-5-phenyl-1,3,4-oxadiazol-2-amine (31e) 

 

N,N-Diallyl-5-phenyl-1,3,4-oxadiazol-2-amine was prepared according to TP6 using 

2-phenyl-1,3,4-oxadiazole 28a (73 mg, 0.50 mmol) and N,N-diallyl-O-benzoylhydroxylamine 

(76 mg, 0.35 mmol). Purification via column chromatography (silica gel, ihexane / EtOAc = 

3:1) yielded the title compound 31e (78 mg, 0.32 mmol, 92%) as a colorless oil. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.89 (dt, J = 5.9, 3.6 Hz, 2 H), 7.48 – 7.38 (m, 3 H), 

5.87 (ddt, J = 17.2, 10.1, 6.0 Hz, 2 H), 5.33 – 5.20 (m, 4 H), 4.09 (dt, J = 6.0, 1.5 Hz, 4 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 164.0, 159.1, 132.2, 130.4, 128.8, 125.7, 124.7, 

118.5, 50.6. 

MS (70 eV, EI) m/z (%): 241 (6) [M]+, 200 (16), 174 (29), 105 (82), 77 (100). 

IR (ATR) ~ (cm-1): 2920, 2359, 1712, 1643, 1613, 1604, 1583, 1556, 1491, 1449, 1418, 

1355, 1281, 1255, 1221, 1179, 1113, 1057, 1024, 1004, 991, 964, 925, 888, 769, 728, 689, 

683, 668. 

HRMS (EI) calculated for C14H15N3O+: 241.1215, found 241.1213 [M]+. 
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2-(Azepan-1-yl)-5-(4-methoxyphenyl)-1,3,4-oxadiazole (31f) 

 

2-(Azepan-1-yl)-5-(4-methoxyphenyl)-1,3,4-oxadiazole was prepared according to TP6 using 

2-(4-methoxyphenyl)-1,3,4-oxadiazole 28f (88 mg, 0.50 mmol) and azepan-1-yl benzoate 

(77 mg, 0.35 mmol). Purification via column chromatography (silica gel, ihexane / EtOAc = 

3:1) yielded the title compound 31f (75 mg, 0.27 mmol, 78%) as a colorless oil. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.84 (d, J = 8.3 Hz, 2 H), 6.95 (d, J = 8.2 Hz, 2 H), 

3.85 (s, 3 H), 3.74 – 3.55 (m, 3 H), 1.80 (d, J = 25.9 Hz, 5 H), 1.62 (p, J = 2.6 Hz, 4 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 161.1, 127.3, 117.6, 114.2, 55.4, 48.4, 28.2, 27.6. 

MS (70 eV, EI) m/z (%): 273 (20) [M]+, 175 (100), 133 (19), 98 (6). 

IR (ATR) ~ (cm-1): 2928, 2856, 1710, 1624, 1607, 1583, 1562, 1502, 1463, 1443, 1425, 

1378, 1360, 1301, 1280, 1252, 1219, 1172, 1113, 1103, 1059, 1025, 996, 884, 836, 812, 

798, 735, 721, 683. 

HRMS (EI) calculated for C15H19N3O2
+: 273.1477, found 273.1480 [M]+. 

 

2-Phenyl-5-(4-(pyrimidin-2-yl)piperazin-1-yl)-1,3,4-oxadiazole (31g) 

 

2-Phenyl-5-(4-(pyrimidin-2-yl)piperazin-1-yl)-1,3,4-oxadiazole was prepared according to TP6 

using 2-phenyl-1,3,4-oxadiazole 28a (73 mg, 0.50 mmol) and 4-(pyrimidin-2-yl)piperazin-1-yl 

benzoate (100 mg, 0.35 mmol). Purification via column chromatography (silica gel, ihexane / 

EtOAc = 3:1) yielded the title compound 31g (101 mg, 0.33 mmol, 94%) as a colorless oil. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 8.30 (d, J = 4.7 Hz, 2 H), 7.94 – 7.85 (m, 2 H), 7.46 – 

7.36 (m, 3 H), 6.52 (t, J = 4.7 Hz, 1 H), 4.02 – 3.89 (m, 4 H), 3.67 – 3.55 (m, 4 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 164.1, 161.5, 159.5, 157.8, 130.6, 128.9, 125.8, 

124.4, 110.6, 46.0, 42.8. 

MS (70 eV, EI) m/z (%): 308 (21) [M]+, 146 (39), 134 (100), 122 (75). 
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IR (ATR) ~ (cm-1): 2359, 2342, 2338, 1738, 1733, 1708, 1605, 1580, 1552, 1464, 1456, 

1446, 1436, 1419, 1354, 1247, 1219, 949, 725, 694, 684, 668. 

HRMS (EI) calculated for C16H16N6O+: 308.1386, found 308.1379 [M]+. 

 

Ethyl 1-(5-(4-chlorophenyl)-1,3,4-oxadiazol-2-yl)piperidine-3-carboxylate (31h) 

 

Ethyl 1-(5-(4-chlorophenyl)-1,3,4-oxadiazol-2-yl)piperidine-3-carboxylate was prepared 

according to TP6 using 2-(4-chlorophenyl)-1,3,4-oxadiazole 28c (90 mg, 0.50 mmol) and 

ethyl 1-(benzoyloxy)-piperidine-3-carboxylate (97 mg, 0.35 mmol). Purification via column 

chromatography (silica gel, ihexane / EtOAc = 3:1) yielded the title compound 31h (110 mg, 

0.33 mmol, 94%) as a colorless oil. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.83 (d, J = 8.6 Hz, 2 H), 7.45 – 7.36 (m, 2 H), 4.20 – 

4.08 (m, 3 H), 3.91 (dt, J = 12.8, 4.0 Hz, 1 H), 3.36 (dd, J = 13.1, 10.0 Hz, 1 H), 3.18 (ddd, 

J = 13.5, 10.5, 3.3 Hz, 1 H), 2.64 (ddd, J = 10.1, 6.1, 4.0 Hz, 1 H), 2.18 – 2.07 (m, 1 H), 1.90 

– 1.78 (m, 1 H), 1.78 – 1.59 (m, 2 H), 1.25 (t, J = 7.1 Hz, 3 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 172.8, 164.1, 158.5, 136.6, 129.3, 127.1, 123.1, 61.0, 

48.0, 46.6, 40.7, 26.8, 23.6, 14.3. 

MS (70 eV, EI) m/z (%): 335 (9) [M]+, 262 (100), 137 (22). 

IR (ATR) ~ (cm-1): 2937, 2359, 2334, 1726, 1615, 1600, 1576, 1552, 1485, 1465, 1450, 

1396, 1382, 1301, 1265, 1183, 1135, 1092, 1058, 1028, 1013, 928, 908, 857, 833, 727, 681, 

668. 

HRMS (EI) calculated for C16H18ClN3O3
+: 335.1037, found 335.1032 [M]+. 
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8-(5-(4-Methoxyphenyl)-1,3,4-oxadiazol-2-yl)-1,4-dioxa-8-azaspiro[4.5]decane (31i) 

 

8-(5-(4-Methoxyphenyl)-1,3,4-oxadiazol-2-yl)-1,4-dioxa-8-azaspiro[4.5]decane was prepared 

according to TP6 using 2-(4-methoxyphenyl)-1,3,4-oxadiazole 28f (88 mg, 0.50 mmol) and 

1,4-dioxa-8-azaspiro[4.5]decan-8-yl benzoate (92 mg, 0.35 mmol). Purification via column 

chromatography (silica gel, ihexane / EtOAc = 3:1) yielded the title compound 31i (94 mg, 

0.30 mmol, 85%) as a colorless oil. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.83 (s, 2 H), 7.00 – 6.82 (m, 2 H), 3.96 (s, 4 H), 3.80 

(s, 3 H), 3.72 (s, 4 H), 1.80 (s, 4 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 161.4, 127.5, 114.3, 106.3, 64.5, 55.4, 44.6, 34.1. 

MS (70 eV, EI) m/z (%): 317 (100) [M]+, 203 (15), 135 (66), 57 (27). 

IR (ATR) ~ (cm-1): 2963, 2877, 1708, 1625, 1621, 1608, 1582, 1562, 1503, 1464, 1443, 

1425, 1403, 1365, 1306, 1256, 1174, 1148, 1114, 1080, 1025, 945, 925, 837, 719. 

HRMS (EI) calculated for C16H19N3O4
+: 317.1376, found 317.1371 [M]+. 

 

4-(5-(1,4-Dioxa-8-azaspiro[4.5]decan-8-yl)-1,3,4-oxadiazol-2-yl)-N,N-dimethylaniline 

(31j) 

 

4-(5-(1,4-Dioxa-8-azaspiro[4.5]decan-8-yl)-1,3,4-oxadiazol-2-yl)-N,N-dimethylaniline was pre-

pared according to TP6 using N,N-dimethyl-4-(1,3,4-oxadiazol-2-yl)aniline 28g (95 mg, 

0.50 mmol) and 1,4-dioxa-8-azaspiro[4.5]decan-8-yl benzoate (92 mg, 0.35 mmol). 

Purification via column chromatography (silica gel, ihexane / EtOAc = 3:1) yielded the title 

compound 31j (91 mg, 0.28 mmol, 79%) as a colorless oil. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.80 – 7.62 (m, 2 H), 6.73 – 6.58 (m, 2 H), 3.96 (s, 

4 H), 3.73 – 3.57 (m, 4 H), 2.98 (s, 6 H), 1.93 – 1.72 (m, 4 H). 
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13C-NMR (CDCl3, 101 MHz, ppm): δ = 163.4, 160.1, 151.6, 127.1, 111.9, 111.6, 106.5, 64.5, 

44.8, 40.1, 34.1. 

MS (70 eV, EI) m/z (%): 330 (100) [M]+, 216 (11), 96 (22), 57 (6). 

IR (ATR) ~ (cm-1): 2958, 2929, 2884, 1603, 1571, 1555, 1509, 1466, 1445, 1432, 1363, 

1282, 1262, 1230, 1191, 1170, 1147, 1111, 1079, 1034, 1022, 944, 924, 886, 820, 737. 

HRMS (EI) calculated for C17H22N4O3
+: 330.1692, found 330.1695 [M]+. 

 

N-(1-(5-Phenyl-1,3,4-oxadiazol-2-yl)piperidin-3-yl)cyclopropanecarboxamide (31k) 

 

N-(1-(5-Phenyl-1,3,4-oxadiazol-2-yl)piperidin-3-yl)cyclopropanecarboxamide was prepared 

according to TP6 using 2-phenyl-1,3,4-oxadiazole 28a (73 mg, 0.50 mmol) and 

3-(cyclopropanecarboxamido)piperidin-1-yl benzoate (101 mg, 0.35 mmol). Purification via 

column chromatography (silica gel, ihexane / EtOAc = 3:1) yielded the title compound 31k 

(86 mg, 0.28 mmol, 79%) as a colorless oil. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.94 – 7.80 (m, 2 H), 7.42 (d, J = 6.5 Hz, 3 H), 6.52 (d, 

J = 7.4 Hz, 1 H), 4.19 – 4.08 (m, 1 H), 3.86 – 3.73 (m, 1 H), 3.62 – 3.43 (m, 3 H), 1.96 – 1.81 

(m, 2 H), 1.73 (dd, J = 10.6, 6.7 Hz, 2 H), 1.41 (tt, J = 8.1, 4.5 Hz, 1 H), 0.98 – 0.59 (m, 4 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 173.5, 171.3, 130.9, 129.0, 126.0, 124.2, 50.9, 46.7, 

44.8, 29.1, 21.8, 14.7, 7.4, 7.4. 

MS (70 eV, EI) m/z (%): 312 (1) [M]+, 227 (100), 145 (45), 77 (43). 

IR (ATR) ~ (cm-1): 2929, 2856, 2356, 2334, 1642, 1626, 1585, 1557, 1450, 1270, 1247, 

1031, 930, 772, 729, 690. 

HRMS (EI) calculated for C17H20N4O2
+: 312.1586, found 312.1583 [M]+. 
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5-Iodo-1-propyl-1H-1,2,4-triazole (35a) 

 

5-Iodo-1-propyl-1H-1,2,4-triazole was prepared according to TP7 using iodine (152 mg, 

0.60 mmol). Purification via column chromatography (silica gel, ihexane / EtOAc = 4:1 + 5% 

triethylamine) yielded the title compound 35a (96 mg, 0.41 mmol, 81%) as an orange oil. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.94 (s, 1 H), 4.19 – 4.11 (m, 5 H), 1.90 (h, J = 7.4 Hz, 

2 H), 0.95 (t, J = 7.4 Hz, 3 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 154.5, 99.7, 52.5, 23.3, 11.1. 

MS (70 eV, EI) m/z (%): [M]+ 237 (1) [M]+, 209 (25), 208 (12), 196 (27), 195 (100), 168 (16), 

110 (68), 55 (18). 

IR (ATR) ~ (cm-1): 3448, 3114, 2966, 2935, 2877, 2626, 2362, 1740, 1636, 1470, 1416, 

1385, 1346, 1315, 1266, 1206, 1168, 1116, 1088, 1022, 966, 899, 875, 801, 747, 683. 

HRMS (EI) calculated for C5H8IN3
+: 236.9757, found 236.9758 [M]+. 

 

5-Allyl-1-propyl-1H-1,2,4-triazole (35b) 

 

5-Allyl-1-propyl-1H-1,2,4-triazole was prepared according to TP7. After the metalation a 

solution of CuCN·2LiCl (0.04 mL, 0.04 mmol, 20%, 1.0 M in THF) and allyl bromide (0.07 mL, 

0.60 mmol) were added. Purification via column chromatography (silica gel, ihexane / EtOAc 

= 4:1 + 5% triethylamine) yielded the title compound 35b (63 mg, 0.42 mmol, 83%) as a pale 

yellow solid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.83 (s, 1 H), 5.96 (ddt, J = 16.6, 10.1, 6.3 Hz, 1 H), 

5.23 – 5.10 (m, 2 H), 4.05 – 3.98 (m, 2 H), 3.56 (d, J = 6.3 Hz, 2 H), 1.87 (h, J = 7.4 Hz, 2 H), 

0.92 (t, J = 7.4 Hz, 3 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 153.0, 150.4, 131.9, 118.3, 50.0, 30.6, 23.3, 11.2. 
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MS (70 eV, EI) m/z (%): 151 (17) [M]+, 150 (100), 136 (14), 123 (40), 122 (79), 110 (34), 108 

(80), 84 (26), 83 (16), 81 (11), 68 (11). 

IR (ATR) ~ (cm-1): 3426, 3084, 2968, 2936, 2878, 2361, 1740, 1642, 1511, 1483, 1427, 

1401, 1348, 1275, 1185, 1152, 1090, 1047, 994, 920, 877, 811, 748, 688, 678. 

HRMS (EI) calculated for C8H13N3
+: 151.1104, found 151.1101 [M]+. 

 

5-(Cyclohex-2-en-1-yl)-1-propyl-1H-1,2,4-triazole (35c) 

 

5-(Cyclohex-2-en-1-yl)-1-propyl-1H-1,2,4-triazole was prepared according to TP7. After the 

metalation a solution of CuCN·2LiCl (0.04 mL, 0.04 mmol, 20%, 1.0 M in THF) and 

3-bromocyclohexene (0.05 mL, 0.60 mmol) were added. Purification via column 

chromatography (silica gel, ihexane / EtOAc = 4:1 + 5% triethylamine) yielded the title 

compound 35c (84 mg, 0.44 mmol, 88%) as a pale yellow solid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.81 (s, 1 H), 6.01 – 5.91 (m, 1 H), 5.64 (dd, J = 10.0, 

2.2 Hz, 1 H), 4.12 – 3.99 (m, 2 H), 3.70 – 3.62 (m, 1 H), 2.25 – 1.97 (m, 3 H), 1.96 – 1.76 (m, 

4 H), 1.72 – 1.59 (m, 1 H), 0.95 (t, J = 7.4 Hz, 3 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 158.0, 150.3, 130.2, 125.4, 49.9, 33.3, 28.5, 24.6, 

23.6, 21.1, 11.3. 

MS (70 eV, EI) m/z (%): 192 (4) [M]+, 191 (7), 190 (17), 176 (32), 163 (25), 162 (100), 150 

(15), 148 (41), 134 (28), 120 (61), 108 (13), 96 (13). 

IR (ATR) ~ (cm-1): 3433, 3027, 2935, 2877, 2361, 1653, 1506, 1470, 1398, 1348, 1273, 

1217, 1188, 1133, 1052, 1040, 992, 932, 898, 882, 842, 807, 772, 744, 720, 671. 

HRMS (EI) calculated for C11H17N3
+: 191.1417, found 191.1415 [M]+. 

 



130 
 

5-(Cyclohex-2-en-1-yl)-1-benzyl-1H-1,2,4-triazole (35d) 

 

5-(Cyclohex-2-en-1-yl)-1-benzyl-1H-1,2,4-triazole was prepared according to TP7. After the 

metalation a solution of CuCN·2LiCl (0.04 mL, 0.04 mmol, 20%, 1.0 M in THF) and 

3-bromocyclohexene (0.05 mL, 0.60 mmol) were added. Purification via column 

chromatography (silica gel, ihexane / EtOAc = 4:1 + 5% triethylamine) yielded the title 

compound 35d (96 mg, 0.40 mmol, 80%) as a pale yellow solid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.88 (s, 1 H), 7.43 – 7.29 (m, 3 H), 7.20 – 7.15 (m, 

2 H), 5.95 (ddt, J = 10.0, 4.2, 2.8 Hz, 1 H), 5.61 – 5.55 (m, 1 H), 5.37 (s, 2 H), 3.67 (ddp, J = 

8.5, 5.7, 2.8 Hz, 1 H), 2.22 – 2.00 (m, 2 H), 1.95 – 1.80 (m, 2 H), 1.80 – 1.70 (m, 1 H), 1.67 – 

1.54 (m, 1 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 158.5, 150.7, 135.7, 130.0, 128.9, 128.2, 127.1, 

125.2, 52.0, 33.4, 28.2, 24.5, 20.9. 

MS (70 eV, EI) m/z (%): 239 (19) [M]+, 238 (43), 210 (58), 207 (38), 172 (10), 148 (25), 133 

(13), 120 (25), 106 (18), 91 (100). 

IR (ATR) ~ (cm-1): 3031, 2937, 1710, 1676, 1497, 1455, 1397, 1360, 1274, 1222, 1188, 

1136, 1089, 1030, 991, 884, 803, 770, 719, 694, 670. 

HRMS (EI) calculated for C15H17N3
: 239.1422, found 239.1421 [M]. 

 

Phenyl(1-propyl-1H-1,2,4-triazol-5-yl)methanol (35e) 

 

Phenyl(1-propyl-1H-1,2,4-triazol-5-yl)methanol was prepared according to TP7 using 

benzaldehyde (0.06 mL, 0.60 mmol) as electrophile. Purification via column chromatography 

(silica gel, ihexane / EtOAc = 1:1 + 5% triethylamine) yielded the title compound 35e 

(103 mg, 0.48 mmol, 95%) as a colorless oil.  
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1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.82 (s, 1 H), 7.40 – 7.28 (m, 5 H), 6.02 (s, 1 H), 3.94 

– 3.88 (m, 2 H), 1.62 (h, J = 7.4 Hz, 2 H), 0.78 – 0.71 (m, 3 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 156.1, 149.5, 139.5, 129.0, 128.7, 126.6, 68.6, 50.6, 

22.8, 11.0. 

MS (70 eV, EI) m/z (%): 217 (60) [M]+, 216 (12), 184 (13), 175 (17), 174 (40), 170 (100), 158 

(41), 143 (48), 140 (18), 118 (26), 116 (14), 110 (20), 105 (28), 98 (26), 77 (14). 

IR (ATR) ~ (cm-1): 3202, 2967, 2936, 2877, 1652, 1603, 1492, 1451, 1385, 1321, 1281, 

1228, 1184, 1155, 1086, 1058, 1027, 984, 900, 877, 849, 800, 749, 718, 697, 674. 

HRMS (EI) calculated for C12H15N3O +: 217.1210, found 217.1208 [M]+. 

 

Phenyl(1-benzyl-1H-1,2,4-triazol-5-yl)methanol (35f) 

 

Phenyl(1-benzyl-1H-1,2,4-triazol-5-yl)methanol was prepared according to TP7 using 

benzaldehyde (0.06 mL, 0.60 mmol) as electrophile. Purification via column chromatography 

(silica gel, ihexane / EtOAc = 2:1 + 5% triethylamine) yielded the title compound 35f (121 mg, 

0.46 mmol, 91%) as a colorless solid.  

1H-NMR (CDCl3, 400 MHz, ppm): δ = δ 7.88 (s, 1 H), 7.37 – 7.28 (m, 5 H), 7.29 – 7.23 (m, 

2 H), 7.05 – 6.98 (m, 2 H), 6.00 (s, 2 H), 5.27 (d, J = 15.2 Hz, 1 H), 5.10 (d, J = 15.2 Hz, 1 H), 

2.89 (br. s, 1 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 156.2, 149.4, 139.0, 134.6, 129.1, 128.9, 128.8, 

128.5, 127.8, 126.8, 68.7, 52.9. 

MS (70 eV, EI) m/z (%): 265 (6) [M]+, 247 (37), 246 (16), 186 (19), 174 (100), 170 (15), 167 

(13), 158 (28), 131 (14), 117 (17), 105 (36), 104 (27), 96 (13), 91 (67), 77 (21). 

IR (ATR) ~ (cm-1): 3064, 2862, 2361, 1602, 1494, 1453, 1436, 1399, 1358, 1334, 1303, 

1280, 1264, 1178, 1099,1071, 1052, 1028, 989, 954, 899, 853, 779, 735, 714, 699, 690. 

HRMS (EI) calculated for C16H15N3O+: 265.1210, found 265.1212 [M]+. 
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Phenyl(1-propyl-1H-1,2,4-triazol-5-yl)methanone (35g) 

 

Phenyl(1-propyl-1H-1,2,4-triazol-5-yl)methanone was prepared according to TP7 using 

benzoyl chloride (0.07 mg, 0.60 mmol) as electrophile. Purification via column 

chromatography (silica gel, ihexane + 5% triethylamine) yielded the title compound 35g 

(95 mg, 0.44 mmol, 88%) as a colorless oil.  

1H-NMR (CDCl3, 400 MHz, ppm): δ = 8.33 – 8.27 (m, 2 H), 8.03 (s, 1 H), 7.69 – 7.61 (m, 

1 H), 7.57 – 7.48 (m, 2 H), 4.59 – 4.53 (m, 2 H), 1.96 (h, J = 7.4 Hz, 2 H), 0.97 (t, J = 7.4 Hz, 

3 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 183.7, 150.1, 149.1, 136.1, 134.2, 131.0, 128.7, 52.9, 

23.8, 11.1. 

MS (70 eV, EI) m/z (%): 215 (16) [M]+, 214 (57), 187 (11), 186 (100), 108 (15), 105 (35), 77 

(16). 

IR (ATR) ~ (cm-1): 2968, 2878, 1659, 1598, 1579, 1495, 1449, 1431, 1375, 1266, 1212, 

1178, 1144, 1063, 1002, 977, 912, 807, 737, 680. 

HRMS (EI) calculated for C12H13N3O+: 215.1053, found 215.1051 [M]+. 

 

(1-Benzyl-1H-1,2,4-triazol-5-yl)(phenyl)methanone (35h) 

 

(1-Benzyl-1H-1,2,4-triazol-5-yl)(phenyl)methanone was prepared according to TP7 using 

benzaldehyde (0.06 mL, 0.60 mmol) as electrophile. Purification via column chromatography 

(silica gel, ihexane / EtOAc = 2:1 + 5% triethylamine) yielded the title compound 35h 

(104 mg, 0.40 mmol, 79%) as a colorless solid.  

1H-NMR (CDCl3, 400 MHz, ppm): δ = 8.26 – 8.20 (m, 2 H), 7.99 (s, 1 H), 7.60 – 7.53 (m, 

1 H), 7.47 – 7.41 (m, 2 H), 7.34 – 7.20 (m, 5 H), 5.74 (s, 2 H). 
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13C-NMR (CDCl3, 101 MHz, ppm): δ = 183.4, 150.4, 148.9, 135.8, 135.5, 134.1, 131.0, 

128.8, 128.5, 128.3, 128.2, 54.5. 

MS (70 eV, EI) m/z (%): 264 (13), 263 (79) [M]+, 262 (29), 236 (15), 235 (36), 186 (10), 

160 (12), 158 (52), 157 (37), 133 (18), 131 (100), 116 (13), 105 (75), 104 (66), 91 (23), 

77 (44). 

IR (ATR) ~ (cm-1): 3064, 1659, 1597, 1578, 1495, 1484, 1448, 1426, 1372, 1319, 1266, 

1175, 1098, 1072, 1029, 1002, 976, 911, 807, 785, 717, 681. 

HRMS (EI) calculated for C16H13N3O+: 263.1053, found 263.1055 [M]+.  

 

5-(4-Methoxyphenyl)-1-propyl-1H-1,2,4-triazole (35i) 

 

5-(4-Methoxyphenyl)-1-propyl-1H-1,2,4-triazole was prepared according to TP8 using 

4-bromoanisole (112 mg, 0.6 mmol). Purification via column chromatography (silica gel, 

ihexane / EtOAc = 4:1 + 5% triethylamine) yielded the title compound 35i (99 mg, 0.46 mmol, 

91%) as an orange oil.  

1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.95 (s, 1 H), 7.59 – 7.54 (m, 2 H), 7.05 – 7.00 (m, 

2 H), 4.20 – 4.13 (m, 2 H), 3.87 (s, 3 H), 1.92 (h, J = 7.4 Hz, 2 H), 0.90 (t, J = 7.4 Hz, 3 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 161.1, 154.5, 150.5, 130.4, 120.3, 114.5, 55.6, 50.9, 

23.5, 11.2. 

MS (70 eV, EI) m/z (%): 217 (32) [M]+, 188 (63), 175 (100), 160 (25), 134 (90), 133 (13), 132 

(10). 

IR (ATR) ~ (cm-1): 3426, 2965, 2936, 2877, 2839, 2361, 2049, 1740, 1613, 1579, 1541, 

1486, 1461, 1440, 1384, 1297, 1277, 1250, 1177, 1163, 1111, 1085, 1031, 1017, 1003, 973, 

900, 880, 836, 798, 748, 713, 669. 

HRMS (EI) calculated for C12H15N3O +: 217.1210, found 217.1209 [M]+. 
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5-(4-Methoxyphenyl)-1-benzyl-1H-1,2,4-triazole (35j) 

 

5-(4-Methoxyphenyl)-1-benzyl-1H-1,2,4-triazole was prepared according to TP8 using 

4-iodoanisole (140 mg, 0.6 mmol). Purification via column chromatography (silica gel, 

ihexane / EtOAc = 4:1 + 5% triethylamine) yielded the title compound 35j (103 mg, 

0.39 mmol, 78%) as an colorless solid.  

1H-NMR (CDCl3, 400 MHz, ppm): δ = 8.00 (s, 1 H), 7.52 (d, J = 8.8 Hz, 2 H), 7.41 – 7.28 (m, 

3 H), 7.16 (d, J = 6.6 Hz, 2 H), 6.96 (d, J = 8.8 Hz, 2 H), 5.42 (s, 2 H), 3.85 (s, 3 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 161.2, 155.3, 151.3, 136.1, 130.3, 129.1, 128.2, 

127.0, 120.3, 114.4, 55.5, 52.8. 

MS (70 eV, EI) m/z (%): 265 (100) [M]+, 264 (26), 132 (15), 131 (12), 119 (11), 91 (55). 

IR (ATR) ~ (cm-1): 3032, 2938, 2837, 1612, 1578, 1541, 1486, 1462, 1439, 1381, 1298, 

1276, 1252, 1176, 1124, 1112, 1077, 1037, 1020, 1005, 973, 883, 836, 779, 748, 726, 694, 

668. 

HRMS (EI) calculated for C16H15N3O +: 265.1210, found 265.1210 [M]+.  

 

4-(1-Benzyl-1H-1,2,4-triazol-5-yl)benzonitrile (35k) 

 

4-(1-Benzyl-1H-1,2,4-triazol-5-yl)benzonitrile was prepared according to TP8 using 

4-iodobenzonitrile (137 mg, 0.6 mmol). Purification via column chromatography (silica gel, 

ihexane / EtOAc = 4:1 + 5% triethylamine) yielded the title compound 35k (100 mg, 

0.47 mmol, 94%) as a colorless solid.  

1H-NMR (CDCl3, 400 MHz, ppm): δ = 8.00 (s, 1 H), 7.84 – 7.80 (m, 2 H), 7.79 – 7.75 (m, 

2 H), 4.23 – 4.15 (m, 2 H), 1.94 (h, J = 7.4 Hz, 2 H), 0.90 (t, J = 7.4 Hz, 3 H). 
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13C-NMR (CDCl3, 101 MHz, ppm): δ = 152.9, 151.2, 132.8, 132.5, 129.6, 118.1, 114.1, 51.3, 

23.5, 11.1. 

MS (70 eV, EI) m/z (%): 212 (11) [M]+, 211 (26), 184 (17), 183 (70), 170 (100), 143 (34), 129 

(40). 

IR (ATR) ~ (cm-1): 2968, 2879, 2231, 1614, 1485, 1462, 1406, 1385, 1283, 1283, 1241, 

1197, 1182, 1164, 1111, 1010, 974, 901, 845, 804, 782, 747, 713, 700. 

HRMS (EI) calculated for C12H12N4
 +: 212.1056, found 212.1055 [M]+. 

 

4-(1-Propyl-1H-1,2,4-triazol-5-yl)morpholine (35l) 

 

4-(1-Propyl-1H-1,2,4-triazol-5-yl)morpholine was prepared according to TP9 using 

morpholino benzoate (124 mg, 0.6 mmol). Purification via column chromatography (silica gel, 

ihexane / EtOAc = 2:1 + 5% triethylamine) yielded the title compound 35l (71 mg, 0.36 mmol, 

72%) as a pale yellow oil.  

1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.67 (s, 1 H), 3.94 – 3.89 (m, 2 H), 3.86 – 3.82 (m, 

4 H), 3.17 – 3.12 (m, 4 H), 1.90 (h, J = 7.4 Hz, 2 H), 0.93 (t, J = 7.4 Hz, 3 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 158.4, 149.2, 66.6, 51.0, 49.4, 22.6, 11.3. 

MS (70 eV, EI) m/z (%): 196 (6) [M]+, 167 (28), 139 (100), 123 (19), 97 (34). 

IR (ATR) ~ (cm-1): 3434, 2966, 2855, 2362, 1636, 1523, 1492, 1451, 1412, 1371, 1331, 

1304, 1272, 1262, 1200, 1175, 1146, 1115, 1072, 1036, 975, 947, 928, 876, 846, 805, 752, 

661. 

HRMS (EI) calculated for C9H16N4O+: 196.1319, found 196.1316 [M]+. 
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Ethyl 1-(1-benzyl-1H-1,2,4-triazol-5-yl)piperidine-3-carboxylate (35m) 

 

Ethyl 1-(1-benzyl-1H-1,2,4-triazol-5-yl)piperidine-3-carboxylate was prepared according to 

TP9 using ethyl 1-(benzoyloxy)piperidine-3-carboxylate (166 mg, 0.6 mmol). Purification via 

column chromatography (silica gel, ihexane / EtOAc = 2:1 + 5% triethylamine) yielded the 

title compound 35m (94 mg, 0.35 mmol, 70%) as a colorless solid.  

1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.63 (s, 1 H), 7.30 – 7.21 (m, 3 H), 7.19 – 7.14 (m, 

2 H), 5.15 (d, J = 2.3 Hz, 2 H), 4.14 – 3.90 (m, 2 H), 3.30 (ddt, J = 12.2, 3.8, 1.3 Hz, 1 H), 

3.15 – 3.03 (m, 2 H), 2.87 (ddd, J = 12.2, 9.4, 3.0 Hz, 1 H), 2.66 – 2.53 (m, 1 H), 1.97 – 1.75 

(m, 1 H), 1.76 – 1.67 (m, 2 H), 1.15 (t, J = 7.1 Hz, 4 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 173.1, 159.1, 149.6, 135.8, 128.8, 127.9, 127.3, 60.7, 

52.7, 51.3, 51.1, 41.0, 26.2, 23.9, 14.2. 

MS (70 eV, EI) m/z (%): 314 (11) [M]+, 313 (55), 269 (15), 241 (86), 237 (26), 207 (29), 177 

(19), 156 (16), 149 (17), 91 (100).  

IR (ATR) ~ (cm-1): 2940, 2855, 1985, 1726, 1636, 1526, 1488, 1454, 1381, 1309, 1273, 

1181, 1128, 1096, 1030, 963, 939, 859, 727, 696, 658. 

HRMS (EI) calculated for C17H22N4O2
: 314.1743, found 314.1746 [M]. 

 

1-Benzyl-N-((1S,4S)-4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydronaphthalen-1-yl)-N-

methyl-1H-1,2,4-triazol-5-amine (35n) 

 

1-Benzyl-N-((1S,4S)-4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydronaphthalen-1-yl)-N-methyl-1H-

1,2,4-triazol-5-amine was prepared according to TP9 using O-benzoyl-N-((1S,4S)-4-(3,4-

dichlorophenyl)-1,2,3,4-tetrahydronaphthalen-1-yl)-N-methylhydroxylamine (256 mg, 
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0.6 mmol). Purification via column chromatography (silica gel, ihexane / EtOAc = 2:1 + 5% 

triethylamine) yielded the title compound 35n (220 mg, 0.48 mmol, 95%) as a colorless solid.  

1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.63 (s, 1 H), 7.35 – 7.15 (m, 5 H), 7.15 – 7.04 (m, 

4 H), 6.99 (d, J = 2.1 Hz, 1 H), 6.84 (dd, J = 7.0, 2.0 Hz, 1 H), 6.71 (dd, J = 8.3, 2.1 Hz, 1 H), 

5.33 – 5.15 (m, 2 H), 4.72 (dd, J = 10.4, 5.8 Hz, 1 H), 4.03 (dd, J = 5.8, 3.1 Hz, 1 H), 2.64 (s, 

3 H), 2.08 – 1.53 (m, 4 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 159.3, 149.3, 147.1, 138.3, 136.3, 132.3, 130.8, 

130.7, 130.1, 130.1, 128.9, 128.0, 128.0, 127.6, 127.5, 127.4, 126.6, 60.5, 52.2, 43.1, 33.6, 

29.9, 20.4. 

MS (70 eV, EI) m/z (%): 464 (27) [M]+, 462 (42), 447 (22), 277 (36), 275 (58), 188 (56), 187 

(33), 160 (61), 158 (100), 129 (60), 91 (94).  

IR (ATR) ~ (cm-1): 2938, 1540, 1488, 1466, 1453, 1417, 1395, 1356, 1317, 1279, 1204, 

1131, 1080, 1029, 986, 964, 920, 878, 849, 817, 791, 768, 727, 704, 694, 678, 665. 

HRMS (EI) calculated for C26H24Cl2N4
+: 462.1373, found 462.1372 [M]+. 

 

3,5-Di(cyclohex-2-en-1-yl)-1-propyl-1H-1,2,4-triazole (37a) 

 

3,5-Di(cyclohex-2-en-1-yl)-1-propyl-1H-1,2,4-triazole was prepared according to TP10. After 

the metalation a solution of CuCN·2LiCl (0.04 mL, 0.04 mmol, 20%, 1.0 M in THF) and 

3-bromocyclohexene (0.25 mL, 2.2 mmol)) were added. Purification via column 

chromatography (silica gel, ihexane / EtOAc = 9:1 + 5% triethylamine) yielded the title 

compound 37a (99 mg, 0.37 mmol, 73%) as an orange oil. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 5.96 – 5.80 (m, 3 H), 5.67 – 5.60 (m, 1 H), 4.05 – 3.89 

(m, 2 H), 3.69 – 3.49 (m, 2 H), 2.22 – 1.95 (m, 6 H), 1.93 – 1.71 (m, 6 H), 1.68 – 1.56 (m, 

2 H), 0.91 (t, J = 7.4 Hz, 3 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 165.9, 157.9, 129.7, 128.4, 127.8, 125.8, 49.6, 35.7, 

33.8, 29.0, 28.6, 24.9, 24.5, 23.7, 21.5, 21.2, 11.1. 
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MS (70 eV, EI) m/z (%): 271 (100) [M]+, 270 (78), 256 (45), 242 (66), 230 (11), 228 (53), 216 

(12), 214 (36), 205 (29), 200 (42), 190 (12), 188 (17), 176 (14), 163 (16), 148 (11), 81 (13), 

79 (14). 

IR (ATR) ~ (cm-1): 3026, 2933, 2875, 2836, 2362, 1652, 1497, 1447, 1435, 1361, 1326, 

1297, 1258, 1239, 1218, 1190, 1155, 1134, 1063, 1044, 991, 932, 893, 850, 809, 722, 679. 

HRMS (EI) calculated for C17H25N3
: 271.2048, found 271.2047 [M]. 

 

3,5-Bis(4-methoxyphenyl)-1-propyl-1H-1,2,4-triazole (37b) 

 

3,5-Bis(4-methoxyphenyl)-1-propyl-1H-1,2,4-triazole was prepared according to TP10. After 

the metalation a solution of ZnCl2 (2.0 mL, 2.0 mmol, 1.0 M in THF), Pd(OAc)2 (5.6 mg, 

0.025 mmol, 5%), SPhos (20.5 mg, 0.05 mmol, 10%) and 4-iodoanisole (515 mg, 2.2 mmol) 

were added. Purification via column chromatography (silica gel, ihexane / EtOAc = 4:1 + 5% 

triethylamine) yielded the title compound 37b (84 mg, 0.26 mmol, 52%) as an orange oil. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 8.12 – 8.04 (m, 2 H), 7.63 – 7.56 (m, 2 H), 7.06 – 6.99 

(m, 2 H), 6.98 – 6.93 (m, 2 H), 4.19 – 4.11 (m, 2 H), 3.88 (s, 3 H), 3.85 (s, 3 H), 1.95 (h, J = 

7.4 Hz, 2 H), 0.92 (t, J = 7.4 Hz, 3 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 161.1, 161.0, 160.5, 155.5, 130.4, 127.9, 124.2, 

121.0, 114.4, 114.0, 55.6, 55.4, 50.9, 23.7, 11.2. 

MS (70 eV, EI) m/z (%): 323 (100) [M]+, 295 (11), 294 (67), 282 (13), 281 (77), 267 (11), 207 

(16), 161 (21), 134 (45), 133 (76). 

IR (ATR) ~ (cm-1): 2963, 2936, 2837, 2361, 1739, 1612, 1532, 1465, 1441, 1349, 1294, 

1245, 1169, 1134, 1107, 1029, 981, 902, 836, 797, 764, 736, 692. 

HRMS (EI) calculated for C19H21N3O +: 323.1628, found 323.1627 [M]+. 

 



139 
 

4-(3-(Cyclohex-2-en-1-yl)-1-propyl-1H-1,2,4-triazol-5-yl)morpholine (37c) 

 

4-(1-Propyl-1H-1,2,4-triazol-5-yl)morpholino (35l, 86 mg, 0.44 mmol, 1.0 equiv) was 

dissolved in THF (1.5 mL) and cooled to 0 °C. TMPMgCl∙LiCl solution (33, 0.88 mmol, 

2.0 equiv) was slowly added to the vigorously stirred solution. After 30 min a solution of 

CuCN·2LiCl (0.04 mL, 0.04 mmol, 20%, 1.0 M in THF) and 3-bromocyclohexene (0.05 mL, 

0.60 mmol) were added. After stirring for 30 min the mixture was quenched with sat. aq. 

NH4Cl solution (15 mL), extracted with DCM (3×15 mL) and dried over anhydrous MgSO4. 

Purification via column chromatography (silica gel, ihexane / EtOAc = 4:1 + 5% triethylamine) 

yielded the title compound 37c (97 mg, 0.35 mmol, 80%) as a colorless oil. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 5.86 – 5.75 (m, 2 H), 3.85 – 3.79 (m, 2 H), 3.79 – 3.73 

(m, 4 H), 3.42 (ddd, J = 8.7, 5.7, 3.0 Hz, 1 H), 3.10 – 3.03 (m, 4 H), 2.11 – 1.94 (m, 3 H), 1.87 

– 1.66 (m, 4 H), 1.62 – 1.50 (m, 1 H), 0.86 (t, J = 7.4 Hz, 3 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 164.5, 158.5, 128.4, 127.6, 66.6, 50.9, 49.0, 36.0, 

28.7, 24.9, 22.7, 21.2, 11.1. 

MS (70 eV, EI) m/z (%): 276 (60) [M]+, 275 (19), 247 (37), 233 (20), 220 (13), 219 (100), 210 

(19), 205 (14), 203 (11), 189 (10), 177 (31), 167 (10). 

IR (ATR) ~ (cm-1): 2935, 2858, 1713, 1530, 1497, 1453, 1372, 1261, 1219, 1117, 1072, 

1029, 984, 964, 945, 921, 881, 849, 792, 727, 678. 

HRMS (EI) calculated for C15H24N4O+: 276.1945, found 276.1946 [M]+. 

 

4-(5-(4-methoxyphenyl)-1-propyl-1H-1,2,4-triazol-3-yl)morpholine (37d) 

 

5-(4-Methoxyphenyl)-1-propyl-1H-1,2,4-triazole (35i, 95 mg, 0.44 mmol, 1.0 equiv) was 

dissolved in THF (1.5 mL) and cooled to 0 °C. TMPZnCl∙LiCl solution (36, 0.53 mmol, 

1.2 equiv) was slowly added to the vigorously stirred solution. A dry, argon flushed Schlenk-
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flask equipped with a magnetic stirring bar and a septum was charged with morpholino 

benzoate (109 mg, 0.53 mmol, 1.2 equiv), copper (II) triflate (36 mg, 0.1 mmol, 20%) and 

THF (2.0 mL). After 30 min the metalated species was slowly added to the vigorously stirred 

solution. After 2 h the mixture was quenched with sat. aq. NH4Cl solution (15 mL), extracted 

with DCM (3×15 mL) and dried over anhydrous MgSO4. Purification via column 

chromatography (silica gel, ihexane / EtOAc = 4:1 + 5% triethylamine) yielded the title 

compound 37d (115 mg, 0.38 mmol, 87%) as a colorless oil. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.54 – 7.47 (m, 2 H), 7.02 – 6.95 (m, 2 H), 4.01 – 3.92 

(m, 2 H), 3.85 (s, 3 H), 3.84 – 3.79 (m, 4 H), 3.48 – 3.41 (m, 4 H), 1.86 (h, J = 7.4 Hz, 2 H), 

0.87 (t, J = 7.4 Hz, 3 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 161.0, 153.8, 142.3, 138.1, 130.4, 114.4, 66.7, 55.5, 

50.5, 47.2, 23.4, 11.2. 

MS (70 eV, EI) m/z (%): 303 (14) [M]+, 302 (93), 287 (24), 271 (26), 271 (17), 246 (11), 245 

(100), 244 (29), 243 (16), 229 (10), 215 (32), 203 (31), 202 (27), 188 (12), 134 (36). 

IR (ATR) ~ (cm-1): 3442, 2964, 2838, 2361, 1614, 1579, 1547, 1527, 1482, 1452, 1411, 

1379, 1357, 1331, 1304, 1273, 1250, 1174, 1115, 1073, 1032, 1002, 926, 902, 835, 797, 

765, 733, 661. 

HRMS (EI) calculated for C16H22N4O2
 +: 302.1737, found 302.1736 [M]+. 

 

5H-[1,2,4]Triazolo[5,1-a]isoindole (38) 

 

A dry, argon flushed Schlenk-flask equipped with a magnetic stirring bar and a septum was 

charged with 1-(2-Iodobenzyl)-1H-1,2,4-triazole (32c, 143 mg, 0.5 mmol, 1.0 equiv) and THF 

(1.5 mL). The mixture was cooled down to 0 °C and a solution of TMPZnCl∙LiCl (36, 

0.75 mmol, 1.5 equiv) was slowly added. After 30 min a solution of CuCN·2LiCl (0.10 mL, 

0.10 mmol, 20%, 1.0 M in THF) was added. The mixture was heated to 40 °C for 18 h. The 

reaction mixture was quenched with sat. aq. NH4Cl solution (15 mL), extracted with DCM 

(3×15 mL) and dried over anhydrous MgSO4. After filtration and evaporation, the crude 

product was purified by flash column chromatography (silica gel, ihexane / EtOAc = 4:1 + 5% 

triethylamine) to obtain 5H-[1,2,4]triazolo[5,1-a]isoindole 38 (0.147g, 0.47 mmol, 94%) as a 

pale yellow solid.  
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1H-NMR (CDCl3, 400 MHz, ppm): δ = 8.11 (s, 1 H), 7.98 – 7.91 (m, 1 H), 7.59 – 7.46 (m, 

3 H), 5.10 (s, 2 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 160.2, 155.8, 142.2, 129.7, 129.1, 127.1, 124.1, 

121.9, 50.4. 

MS (70 eV, EI) m/z (%): 157 (100) [M]+, 130 (16), 129 (14), 103 (25), 102 (11). 

IR (ATR) ~ (cm-1): 3088, 2954, 1722, 1539, 1506, 1447, 1403, 1317, 1274, 1248, 1215, 

1191, 1175, 1136, 1101, 1011, 969, 941, 918, 895, 883, 816, 769, 730, 699, 689, 679, 655. 

HRMS (EI) calculated for C9H7N3
+: 157.0634, found 157.0632 [M]+. 

 

7-(Methylthio)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole (43a) 

 

7-(Methylthio)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole was synthesized 

according to TP11 on a 0.88 mmol scale using S-methyl benzenesulfonothioate (412 mg, 

2.2 mmol, 2.5 equiv) as electrophile (30 min, 25 °C). Purification via column chromatography 

(silica gel, iHex/EtOAc = 2:1) yielded the title compound 43a (206 mg, 0.73 mmol, 83%) as a 

colorless solid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 7.60 (d, J = 1.1 Hz, 1 H), 7.27 (d, J = 2.3 Hz, 1 H), 

6.83 (t, J = 2.3, 1.1 Hz, 1 H), 5.50 (s, 2 H), 3.57 (t, J = 8.1 Hz, 2 H), 2.23 (s, 2 H), 0.89 (t, J = 

8.3 Hz, 2 H), 0.06 (s, 9 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 148.7, 141.3, 119.6, 109.5, 84.9, 75.4, 66.5, 22.7, 

17.9, 1.4. 

MS (70 eV, EI) m/z (%): 283 (27) [M]+, 225 (14), 210 (19), 166 (21), 111 (9), 73 (100). 

IR (ATR) ~ (cm-1): 3156, 3111, 3055, 2951, 2917, 1588, 1539, 1466, 1442, 1416, 1317, 

1288, 1273, 1248, 1218, 1172, 1151, 1096, 1069, 1009, 971, 930, 857, 834, 766, 728, 718, 

706, 683. 

HRMS (EI) calculated for C12H21N3OSSi+: 283.1169, found 283.1164 [M]+. 

mp: 63.6 – 65.0 °C. 
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1-((2-(Trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole-7-carbonitrile (43b) 

 

1-((2-(Trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole-7-carbonitrile was synthesized 

according to TP11 on a 5.0 mmol scale using tosyl cyanide (2.2 g, 11 mmol, 2.2 equiv) as 

electrophile (1 h, 25 °C). The white solid that was formed during the reaction was filtered off 

through a pad of Celite before the work-up. Purification via column chromatography (silica 

gel, iHex/EtOAc = 2:1 + 5% Net3) yielded the title compound 43b (1.31 g, 4.79 mmol, 96%) 

as a slightly yellow solid. 

1H-NMR (C6D6, 400 MHz, ppm): δ = 7.56 (d, J = 1.1 Hz, 1 H), 6.62 (d, J = 2.3 Hz, 1 H), 5.86 

(dd, J = 2.2, 1.2 Hz, 1 H), 4.62 (s, 2 H), 3.42 (t, J = 8.1 Hz, 2 H), 0.79 (t, J = 8.1 Hz, 2 H), 

0.08 (s, 9 H).  

13C-NMR (C6D6, 101 MHz, ppm): δ = 146.3, 141.7, 120.0, 114.3, 109.9, 76.1, 67.7, 67.3, 

17.7, 1.4. 

MS (70 eV, EI) m/z (%): 262 (24) [M]+, 219 (14), 204 (100), 189 (30), 145 (14), 73 (65). 

IR (ATR) ~ (cm-1): 3150, 3102, 3055, 2953, 2920, 2896, 2869, 2216, 1611, 1543, 1491, 

1478, 1454, 1399, 1381, 1335, 1309, 1289, 1260, 1245, 1225, 1196, 1179, 1123, 1085, 

1068, 1035, 1018, 972, 916, 875, 843, 832, 779, 742, 721, 709, 690, 663. 

HRMS (EI) calculated for C12H18N4OSi+: 262.1244, found 262.1245 [M]+. 

mp: 79.0 – 79.6 °C. 

 

7-(Triethylsilyl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole (43c) 

 

7-(Triethylsilyl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole was synthesi-

zed according to TP11 on a 0.20 mmol scale using TESCl (75 mg, 0.50 mmol, 2.5 equiv) as 

electrophile (2 h, 25 °C). Purification via column chromatography (silica gel, iHex/EtOAc = 

4:1) yielded the title compound 43c (53 mg, 0.15 mmol, 76%) as a colorless liquid. 
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1H-NMR (C6D6, 400 MHz, ppm): δ = 7.92 (s, 1 H), 6.99 (d, J = 2.3 Hz, 1 H), 6.03 – 6.01 (m, 

1 H), 4.74 (s, 2 H), 3.23 (t, J = 8.0 Hz, 2 H), 1.04 (t, J = 7.8 Hz, 9 H), 0.87 (q, J = 7.7 Hz, 

6 H), 0.79 (t, J = 8.1 Hz, 2 H), 0.09 (s, 9 H). 

13C-NMR (C6D6, 101 MHz, ppm): δ = 150.4, 145.8, 119.6, 108.4, 82.4, 77.0, 65.9, 17.7, 7.9, 

5.1, 1.4. 

MS (70 eV, EI) m/z (%): 351 (16) [M]+, 292 (14), 264 (52), 250 (14), 236 (12), 234 (38), 220 

(24), 208 (28), 192 (16), 178 (14), 165 (21), 164 (11), 150 (20), 73 (100).  

IR (ATR) ~ (cm-1): 3132, 2952, 2874, 1565, 1543, 1458, 1413, 1376, 1321, 1248, 1158, 

1075, 1041, 1003, 971, 916, 833, 691. 

HRMS (EI) calculated for C17H33N3OSi2+: 351.2157, found 351.2156 [M]+. 

 

7-Allyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole (43d) 

 

7-Allyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole was synthesized 

according to TP11 on a 1.69 mmol scale using allyl bromide (0.37 mL, 4.23 mmol, 2.5 equiv) 

and CuCN2LiCl (1.0 M in THF, 0.34 mL, 0.34 mmol, 0.20 equiv) as electrophile (30 min, 

25 °C.). Purification via column chromatography (silica gel, iHex/EtOAc = 3:7) yielded the title 

compound 43d (438 mg, 1.58 mmol, 94%) as a colorless liquid. 

1H-NMR (C6D6, 400 MHz, ppm): δ = 7.67 (s, 1 H), 6.93 (d, J = 2.3 Hz, 1 H), 6.03 – 5.93 (m, 

2 H), 5.09 – 4.95 (m, 2 H), 4.65 (s, 2 H), 3.37 – 3.31 (m, 2 H), 3.23 (t, J = 7.8 Hz, 2 H), 0.74 

(t, J = 7.8 Hz, 2 H), 0.11 (s, 9 H). 

13C-NMR (C6D6, 101 MHz, ppm): δ = 143.8, 139.9, 139.4, 119.4, 114.6, 108.5, 92.6, 76.4, 

65.8, 28.4, 17.7, 1.4. 

MS (70 eV, EI) m/z (%): 277 (38) [M]+, 219 (27), 218 (36), 204 (21), 192 (34), 191 (14), 160 

(42), 133 (22), 119 (14), 73 (100). 

IR (ATR) ~ (cm-1): 3130, 2952, 2894, 1638, 1609, 1544, 1490, 1413, 1379, 1322, 1247, 

1216, 1169, 1074, 994, 914, 832, 758, 688. 
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HRMS (EI) calculated for C14H23N3OSi+: 277.1605, found 277.1603 [M]+. 

 

Ethyl 1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole-7-carboxylate 

(43e) 

 

Ethyl 1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole-7-carboxylate was syn-

thesized according to TP11 on a 0.20 mmol scale using ethyl cyanoformate (0.05 mL, 

0.5 mmol, 2.5 equiv) and CuCN2LiCl (1.0 M in THF, 0.20 mL, 0.20 mmol, 1.0 equiv) as 

electrophile (2 h, 25 °C). Purification via column chromatography (silica gel, iHex/EtOAc = 

4:1) yielded the title compound 43e (31 mg, 0.10 mmol, 50%) as a colorless liquid. 

1H-NMR (CDCl3, 400 MHz, ppm): δ = 8.02 (d, J = 1.1 Hz, 1 H), 7.37 (d, J = 2.2 Hz, 1 H), 

6.95 (t, J = 2.2, 1.1 Hz, 1 H), 5.82 (s, 2 H), 4.28 (q, J = 7.1 Hz, 2 H), 3.56 (t, J = 8.2 Hz, 2 H), 

1.35 (t, J = 7.1 Hz, 3 H), 0.88 (t, J = 8.2 Hz, 2 H), 0.07 (s, 9 H). 

13C-NMR (CDCl3, 101 MHz, ppm): δ = 163.2, 146.2, 140.8, 120.2, 110.1, 91.9, 76.8, 66.4, 

59.9, 17.9, 14.7, 1.4. 

MS (70 eV, EI) m/z (%): 309 (9) [M]+, 279 (10), 251 (37), 250 (42), 238 (11), 236 (34), 223 

(13), 208 (49), 206 (14), 192 (25), 182 (13), 164 (35), 148 (29), 134 (18), 133 (100), 73 (49). 

IR (ATR) ~ (cm-1): 3132, 2953, 2898, 1687, 1597, 1548, 1488, 1394, 1375, 1344, 1292, 

1269, 1248, 1204, 1194, 1174, 1085, 1056, 971, 916, 856, 833, 768, 731, 691. 

HRMS (EI) calculated for C14H23N3O3Si+: 309.1503, found 309.1502 [M]+. 
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Phenyl(1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazol-7-yl)methanone 

(43f) 

 

Phenyl(1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazol-7-yl)methanone was 

synthesized according to TP11 on a 0.2 mmol scale using benzoyl chloride (0.035 mL, 

0.50 mmol, 2.5 equiv) as electrophile and Pd(PPh3)4 (11.6 mg, 0.01 mmol, 5%) as catalyst 

(2 h, 25 °C). Purification via column chromatography (silica gel, iHex/EtOAc = 7:3) yielded 

the title compound 43f (41 mg, 0.12 mmol, 60%) as a colorless liquid. 

1H-NMR (C6D6, 400 MHz, ppm): δ = 8.04 – 8.00 (m, 1 H), 7.94 (dd, J = 7.9, 1.6 Hz, 2 H), 

7.21 – 7.10 (m, 3 H), 6.85 (d, J = 2.0 Hz, 1 H), 6.24 (dd, J = 2.1, 1.2 Hz, 1 H), 5.83 (s, 2 H), 

3.65 (t, J = 8.0 Hz, 2 H), 0.89 (t, J = 8.0 Hz, 2 H), 0.09 (s, 9 H). 

13C-NMR (C6D6, 101 MHz, ppm): δ = 186.6, 148.0, 142.0, 140.8, 131.2, 129.1, 128.5, 120.6, 

109.8, 102.6, 77.3, 66.2, 17.9, 1.4. 

MS (70 eV, EI) m/z (%): 341 (12) [M]+, 298 (13), 283 (10), 282 (100), 269 (10), 268 (83), 255 

(25), 241 (11), 240 (54), 224 (11), 206 (14), 73 (19). 

IR (ATR) ~ (cm-1): 3128, 3066, 2952, 2892, 1614, 1599, 1568, 1481, 1418, 1365, 1324, 

1293, 1269, 1248, 1217, 1195, 1176, 1124, 1068, 1028, 1013, 982, 936, 916, 899, 857, 831, 

795, 760, 736, 694, 663. 

HRMS (EI) calculated for C18H23N3O2Si+: 341.1554, found 341.1549 [M]+. 
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Ethyl 4-(1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazol-7-yl)benzoate 

(43g) 

 

Ethyl 4-(1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazol-7-yl)benzoate was 

synthesized according to TP11 on a 0.2 mmol scale using ethyl 4-iodobenzoate (166 mg, 

0.60 mmol, 3.0 equiv) as electrophile and PEPPSI-iPr (2.7 mg, 0.004 mmol, 2%) as catalyst 

(4 h, 40 °C). Purification via column chromatography (silica gel, iHex/EtOAc = 2:1) yielded 

the title compound 43g (63 mg, 0.16 mmol, 82%) as a slightly yellow oil. 

1H-NMR (C6D6, 400 MHz, ppm): δ = 8.27 (d, J = 8.4 Hz, 2 H), 7.89 (d, J = 1.1 Hz, 1 H), 7.56 

(d, J = 8.4 Hz, 2 H), 6.91 (d, J = 2.3 Hz, 1 H), 6.00 (dd, J = 2.1, 1.1 Hz, 1 H), 4.65 (s, 2 H), 

4.18 (q, J = 7.1 Hz, 2 H), 3.14 (t, J = 7.9 Hz, 2 H), 1.07 (t, J = 7.1 Hz, 3 H), 0.65 (t, J = 

7.9 Hz, 2 H), 0.16 (s, 9 H). 

13C-NMR (C6D6, 101 MHz, ppm): δ = 166.3, 143.2, 138.7, 138.4, 130.7, 127.7, 127.0, 120.8, 

108.7, 99.1, 76.1, 66.2, 60.7, 17.7, 14.4, 1.5. 

MS (70 eV, EI) m/z (%): 385 (13) [M]+, 327 (43), 268 (12), 210 (12), 209 (100), 195 (13), 194 

(17), 181 (42), 154 (13), 73 (53). 

IR (ATR) ~ (cm-1): 3134, 2981, 2951, 2915, 1699, 1608, 1563, 1548, 1520, 1474, 1414, 

1368, 1347, 1309, 1270, 1249, 1220, 1181, 1149, 1121, 1099, 1066, 1042, 1024, 1013, 993, 

983, 935, 834, 772, 743, 715, 695. 

HRMS (EI) calculated for C20H28N3O3Si+: 385.1816, found 385.1815 [M]+. 
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7-(4-(Trifluoromethyl)phenyl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]-

pyrazole (43h) 

 

7-(4-(Trifluoromethyl)phenyl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole 

was synthesized according to TP11 on a 0.2 mmol scale using 1-iodo-4-(trifluoromethyl)-

benzene (163 mg, 0.60 mmol, 3.0 equiv) as electrophile and PEPPSI-iPr (2.7 mg, 

0.004 mmol, 2%) as catalyst (2 h, 40 °C). Purification via column chromatography (silica gel, 

iHex/EtOAc = 1:1) yielded the title compound 43h (67 mg, 0.18 mmol, 88%) as a slightly 

yellow solid. 

1H-NMR (C6D6, 400 MHz, ppm): δ = 7.85 (s, 1 H), 7.51 – 7.39 (m, 4 H), 6.89 (d, J = 2.3 Hz, 

1 H), 5.95 (s, 1 H), 4.58 (s, 2 H), 3.10 (t, J = 7.9 Hz, 2 H), 0.64 (t, J = 7.9 Hz, 2 H), 0.16 (s, 

9 H). 

13C-NMR (C6D6, 101 MHz, ppm): δ = 143.1, 138.3, 137.8, 127.4, 127.2 (q, J = 32.4 Hz), 

126.0 (q, J = 3.9 Hz), 125.6 (q, J = 271.9 Hz) 120.7, 108.7, 98.4, 76.0, 66.2, 17.6, 1.5. 

MS (70 eV, EI) m/z (%): 381 (20) [M]+, 323 (56), 264 (47), 231 (36), 230 (38), 204 (12), 196 

(11), 195 (15), 194 (22), 181 (17), 73 (100). 

IR (ATR) ~ (cm-1): 3178, 3114, 3069, 2952, 2892, 1614, 1592, 1553, 1523, 1481, 1464, 

1416, 1367, 1325, 1298, 1260, 1249, 1223, 1193, 1174, 1162, 1150, 1105, 1061, 1031, 

1012, 982, 937, 897, 859, 850, 831, 760, 745, 736, 671, 694, 686, 671, 666. 

HRMS (EI) calculated for C18H22F3N3OSi+: 381.1479, found 381.1477 [M]+. 

mp: 65.5 – 66.4 °C. 
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4-(4-(1-((2-(Trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazol-7-yl)phenyl)-

morpholine (43i) 

 

4-(4-(1-((2-(Trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazol-7-yl)phenyl)morpholino 

was synthesized according to TP11 on a 0.2 mmol scale using 4-(4-iodophenyl)morpholine 

(174 mg, 0.60 mmol, 3.0 equiv) as electrophile and PEPPSI-iPr (2.7 mg, 0.004 mmol, 2%) as 

catalyst (2 h, 40 °C). Purification via column chromatography (silica gel, iHex/EtOAc = 1:1) 

yielded the title compound 43i (54 mg, 0.14 mmol, 68%) as a slightly yellow solid. 

1H-NMR (C6D6, 400 MHz, ppm): δ = 8.02 (d, J = 1.0 Hz, 1 H), 7.53 (d, J = 8.7 Hz, 2 H), 6.97 

(d, J = 2.3 Hz, 1 H), 6.78 (d, J = 8.7 Hz, 2 H), 6.04 – 5.99 (m, 1 H), 4.78 (s, 2 H), 3.59 (t, J = 

4.8 Hz, 4 H), 3.19 (t, J = 7.9 Hz, 2 H), 2.80 (t, J = 4.7 Hz, 4 H), 0.70 (t, J = 7.9 Hz, 2 H), 0.14 

(s, 9 H). 

13C-NMR (C6D6, 101 MHz, ppm): δ = 149.9, 142.9, 138.5, 129.0, 125.5, 120.2, 116.5, 108.8, 

99.1, 75.8, 67.0, 66.1, 49.7, 17.8, 1.4. 

MS (70 eV, EI) m/z (%): 398 (17) [M]+, 340 (11), 299 (12), 281 (36), 267 (19), 265 (12), 240 

(13), 225 (60), 209 (31), 208 (14), 207 (100), 194 (15), 191 (23), 181 (15), 155 (14), 75 (28), 

73 (46), 44 (23). 

IR (ATR) ~ (cm-1): 3105, 2813, 1653, 1591, 1558, 1521, 1506, 1484, 1447, 1376, 1363, 

1340, 1312, 1259, 1250, 1242, 1232, 1220, 1183, 1118, 1069, 1048, 991, 927, 853, 844, 

828, 763, 739, 722, 702, 655. 

HRMS (EI) calculated for C21H30N4O2SI+: 398.2133, found 398.2134 [M]+. 

mp: 149.7 – 150.9 °C. 
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3-Bromo-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole-7-carbonitrile 

(44) 

 

1-((2-(Trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole-7-carbonitrile (135 mg, 

0.50 mmol, 1.0 equiv) was dissolved in MeCN (3.5 mL) and treated with N-bromosuccinimide 

(178 mg, 1.0 mmol, 2.0 equiv). After stirring for 80 min at 25 °C the solvent was removed in 

vacuo and the residue was directly purified via column chromatography (silica gel, 

iHex/EtOAc = 4:1 + 5% Net3) to yield the title compound 44 (79 mg, 0.35 mmol, 70%) as a 

colorless solid. 

1H-NMR (C6D6, 400 MHz, ppm): δ = 7.46 (d, J = 1.2 Hz, 1 H), 5.74 (d, J = 1.2 Hz, 1 H), 4.52 

(s, 2 H), 3.38 (t, J = 8.0 Hz, 2 H), 0.79 (t, J = 8.0 Hz, 2 H), 0.07 (s, 9 H). 

13C-NMR (C6D6, 101 MHz, ppm): δ = 146.4, 141.4, 119.6, 113.8, 94.7, 76.3, 69.2, 67.5, 17.7, 

1.4. 

MS (70 eV, EI) m/z (%): 340 (0.2) [M]+, 284 (72), 282 (71), 225 (10), 223 (10), 218 (32), 176 

(35), 144 (13), 73 (100). 

IR (ATR) ~ (cm-1): 3132, 2952, 2922, 2897, 2211, 1607, 1544, 1485, 1456, 1418, 1380, 

1362, 1336, 1304, 1288, 1251, 1190, 1172, 1124, 1104, 1089, 1058, 1036, 1026, 979, 938, 

916, 903, 874, 856, 833, 789, 752, 733, 722, 697, 664. 

HRMS (EI) calculated for C12H17BrN4OSi+: 340.0350, found 340.0349 [M]+. 

mp: 117.5 – 118.9 °C. 
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3-Allyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole-7-carbonitrile 

(45a) 

 

3-Allyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole-7-carbonitrile was syn-

thesized according to TP12 on a 0.2 mmol scale using allyl bromide (0.04 mL, 0.44 mmol, 

2.2 equiv) and CuCN2LiCl (1.0 M in THF, 0.04 mL, 0.04 mmol, 0.20 equiv) as electrophile 

(5 min, 25 °C). Purification via column chromatography (silica gel, iHex/EtOAc = 4:1 + 5% 

NEt3) yielded the title compound 45a (39 mg, 0.13 mmol, 65%) as a colorless liquid. 

1H-NMR (C6D6, 400 MHz, ppm): δ = 7.55 (d, J = 1.1 Hz, 1 H), 5.77 (d, J = 1.1 Hz, 1 H), 5.71 

(ddt, J = 16.8, 10.0, 6.7 Hz, 1 H), 5.02 – 4.93 (m, 2 H), 4.69 (s, 2 H), 3.50 (t, J = 8.0 Hz, 2 H), 

3.19 – 3.13 (m, 2 H), 0.83 (t, J = 8.1 Hz, 2 H), 0.06 (s, 9 H). 

13C-NMR (C6D6, 101 MHz, ppm): δ = 146.0, 141.6, 132.2, 122.4, 118.0, 116.4, 114.5, 76.0, 

67.9, 67.3, 27.7, 17.8, 1.4.  

MS (70 eV, EI) m/z (%): 302 (2) [M]+, 259 (13), 245 (11), 244 (100), 243 (95), 229 (11), 217 

(12), 185 (25), 73 (66). 

IR (ATR) ~ (cm-1): 3121, 2952, 2894, 2215, 1613, 1600, 1488, 1457, 1419, 1379, 1335, 

1302, 1248, 1221, 1183, 1104, 1080, 1031, 992, 970, 916, 856, 833, 748, 693, 667. 

HRMS (EI) calculated for C15H22N4OSi+: 302.1557, found 302.1558 [M]+. 

 

3-(Phenylthio)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole-7-carbo-

nitrile (45b) 

 

3-(Phenylthio)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole-7-carbonitrile 

was synthesized according to TP12 on a 0.2 mmol scale using S-methyl 
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benzenesulfonothioate (75 mg, 0.30 mmol, 1.5 equiv) as electrophile (2 h, 25 °C). 

Purification via column chromatography (silica gel, iHex/EtOAc = 4:1 + 5% NEt3) and HPLC 

yielded the title compound 45b (51 mg, 0.14 mmol, 69%) as a colorless solid. 

1H-NMR (C6D6, 400 MHz, ppm): δ = 7.46 (d, J = 1.0 Hz, 1 H), 7.37 – 7.31 (m, 2 H), 6.96 – 

6.89 (m, 2 H), 6.88 – 6.82 (m, 1 H), 6.24 (d, J = 1.1 Hz, 1 H), 4.59 (s, 2 H), 3.41 (t, J = 

8.0 Hz, 2 H), 0.79 (t, J = 8.1 Hz, 2 H), 0.09 (s, 9 H). 

13C-NMR (C6D6, 101 MHz, ppm): δ = 146.2, 142.0, 134.3, 129.7, 129.5, 127.8, 127.7, 126.0, 

113.8, 76.4, 69.4, 67.5, 17.8, 1.4. 

MS (70 eV, EI) m/z (%): 370 (8) [M]+, 313 (19), 312 (86), 285 (13), 253 (15), 121 (11), 73 

(100). 

IR (ATR) ~ (cm-1): 3128, 3058, 2949, 2893, 2862, 2221, 1603, 1583, 1538, 1474, 1454, 

1440, 1398, 1377, 1334, 1296, 1281, 1242, 1196, 1180, 1169, 1136, 1085, 1022, 997, 977, 

922, 909, 857, 835, 781, 755, 735, 715, 695, 686, 670. 

HRMS (EI) calculated for C18H22N4OSSi+: 370.1278, found 370 1276 [M]+. 

mp: 74.0 – 75.5 °C. 

 

Ethyl 7-cyano-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole-3-carbo-

xylate (45c) 

 

Ethyl 7-cyano-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole-3-carboxylate 

was synthesized according to TP12 on a 0.2 mmol scale using ethyl cyanoformate (30 mg, 

0.30 mmol, 1.5 equiv) as electrophile (2 h, 25 °C). Purification via column chromatography 

(silica gel, iHex/EtOAc = 2:1 + 5% NEt3) yielded the title compound 45c (35 mg, 0.11 mmol, 

53%) as a colorless solid. 

1H-NMR (C6D6, 400 MHz, ppm): δ = 7.56 (d, J = 1.3 Hz, 1 H), 6.89 (d, J = 1.2 Hz, 1 H), 4.60 

(s, 2 H), 4.12 (q, J = 7.1 Hz, 2 H), 3.39 (t, J = 8.0 Hz, 2 H), 1.05 (t, J = 7.1 Hz, 3 H), 0.80 (t, 

J = 8.0 Hz, 2 H), 0.07 (s, 9 H). 
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13C-NMR (C6D6, 101 MHz, ppm): δ = 158.0, 146.6, 142.1, 126.9, 116.6, 113.6, 76.7, 69.0, 

67.7, 61.3, 17.8, 14.3, 1.4. 

MS (70 eV, EI) m/z (%): 334 (4) [M]+, 291 (11), 277 (12), 276 (57), 204 (10), 158 (7), 74 (8), 

73 (100). 

IR (ATR) ~ (cm-1): 3158, 3112, 2953, 2895, 2219, 1704, 1603, 1581, 1471, 1451, 1398, 

1370, 1249, 1318, 1258, 1249, 1192, 1094, 1036, 948, 933, 918, 856, 833, 768, 749, 710, 

684. 

HRMS (EI) calculated for C15H22N4O3SSi+: 334.1456, found 334.1456 [M]+. 

mp: 105.2 – 107.7 °C. 

 

3-(4-Morpholinophenyl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole-

7-carbonitrile (45d) 

 

3-(4-Morpholinophenyl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole-7-car-

bonitrile was synthesized according to TP12 on a 0.2 mmol scale. After the metalation a 

ZnCl2 solution (1.0 M in THF, 0.30 mL, 0.30 mmol, 1.5 equiv) was added before adding 

4-(4-iodophenyl)morpholine (46 mg, 0.16 mmol, 0.8 equiv) as electrophile and Pd(OAc)2 

(2.2 mg, 0.01 mmol, 5%) in combination with SPhos (8.2 mg, 0.02 mmol, 10%) as catalyst 

(2 h, 40 °C). Purification via column chromatography (silica gel, iHex/EtOAc = 2:1 + 5% NEt3) 

and HPLC yielded the title compound 45d (67 mg, 0.14 mmol, 89%) as a colorless solid. 

1H-NMR (C6D6, 400 MHz, ppm): δ = 8.02 (d, J = 8.8 Hz, 2 H), 7.72 – 7.58 (m, 1 H), 6.71 (d, 

J = 8.8 Hz, 2 H), 6.44 – 6.37 (m, 1 H), 4.82 (s, 2 H), 3.61 – 3.42 (m, 6 H), 2.79 – 2.66 (m, 

4 H), 0.87 (t, J = 8.0 Hz, 2 H), 0.05 (s, 9 H). 

13C-NMR (C6D6, 101 MHz, ppm): δ = 151.5, 146.1, 142.1, 126.5, 124.6, 118.5, 115.4, 114.5, 

114.3, 76.2, 67.8, 67.4, 66.7, 48.6, 17.8, 1.4. 



153 
 

MS (70 eV, EI) m/z (%): 423 (19) [M]+, 366 (23), 365 (100), 311 (6), 307 (7), 306 (14), 234 

(5), 73 (33). 

IR (ATR) ~ (cm-1): 3118, 2951, 2922, 2895, 2857, 2210, 1606, 1557, 1512, 1485, 1458, 

1449, 1428, 1379, 1336, 1316, 1306, 1263, 1248, 1229, 1221, 1192, 1120, 1099, 1072, 

1055, 1029, 1003, 975, 933, 921, 902, 858, 826, 815, 770, 753, 743, 712, 682, 665. 

HRMS (EI) calculated for C22H29N5O2Si:423.2091, found 423.2090 [M]. 

mp: 118.9 – 120.1 °C. 

 

3-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo-

[1,2-b]pyrazole-7-carbonitrile (45e) 

 

3-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]-

pyrazole-7-carbonitrile was synthesized according to TP12 on a 0.2 mmol scale. After the 

metalation a ZnCl2 solution (1.0 M in THF, 0.30 mL, 0.30 mmol, 1.5 equiv) was added before 

adding 6-iodo-2,3-dihydrobenzo[b][1,4]dioxine (42 mg, 0.16 mmol, 0.8 equiv) as electrophile 

and Pd(OAc)2 (2.2 mg, 0.01 mmol, 5%) in combination with SPhos (8.2 mg, 0.02 mmol, 10%) 

as catalyst (2 h, 40 °C). Purification via column chromatography (silica gel, iHex/EtOAc = 2:1 

+ 5% NEt3) yielded the title compound 45e (42 mg, 0.11 mmol, 66%) as a colorless solid. 

1H-NMR (C6D6, 400 MHz, ppm): δ = 7.91 (d, J = 2.1 Hz, 1 H), 7.57 (d, J = 1.2 Hz, 1 H), 7.53 

(dd, J = 8.5, 2.2 Hz, 1 H), 6.99 (d, J = 8.5 Hz, 1 H), 6.22 (d, J = 1.3 Hz, 1 H), 4.73 (s, 2 H), 

3.55 – 3.47 (m, 6 H), 0.86 (t, J = 8.0 Hz, 2 H), 0.06 (s, 9 H). 

13C-NMR (C6D6, 101 MHz, ppm): δ = 146.0, 144.4, 142.0, 124.0, 121.1, 119.0, 118.1, 115.0, 

114.8, 114.4, 76.1, 67.8, 67.3, 64.3, 64.2, 17.8, 1.4. 

MS (70 eV, EI) m/z (%): 396 (10) [M]+, 340 (5), 339 (20), 338 (100), 284 (14), 279 (15), 265 

(5), 73 (56). 
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IR (ATR) ~ (cm-1): 2950, 2358, 2340, 2217, 1613, 1593, 1579, 1558, 1539, 1506, 1490, 

1468, 1456, 1436, 1424, 1395, 1381, 1333, 1324, 1287, 1262, 1248, 1241, 1223, 1191, 

1179, 1134, 1109, 1081, 1068, 1054, 1044, 1032, 945, 923, 890, 879, 866, 831, 772, 762, 

750, 726, 701, 676, 668, 660. 

HRMS (EI) calculated for C20H24N4O3Si+: 396.1612, found 396.1608 [M]+. 

mp: 147.2 – 148.5 °C. 

 

Ethyl 4-(7-cyano-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazol-3-yl)-

benzoate (45f) 

 

Ethyl 4-(7-cyano-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazol-3-yl)benzoate 

was synthesized according to TP12 on a 0.2 mmol scale. After the metalation a ZnCl2 

solution (1.0 M in THF, 0.30 mL, 0.30 mmol, 1.5 equiv) was added before adding ethyl 4-iodo 

benzoate (44 mg, 0.16 mmol, 0.8 equiv) as electrophile and PEPPSI-iPr (2.7 mg, 

0.004 mmol, 2%) as catalyst (2 h, 40 °C). Purification via column chromatography (silica gel, 

iHex/EtOAc = 4:1 + 5% NEt3) yielded the title compound 45f (55 mg, 0.13 mmol, 84%) as a 

colorless solid. 

1H-NMR (C6D6, 400 MHz, ppm): δ = 8.23 (d, J = 8.6 Hz, 2 H), 7.97 (d, J = 8.6 Hz, 2 H), 7.54 

(d, J = 1.1 Hz, 1 H), 6.25 (d, J = 1.1 Hz, 1 H), 4.73 (s, 2 H), 4.15 (q, J = 7.1 Hz, 2 H), 3.54 (t, 

J = 8.1 Hz, 2 H), 1.04 (t, J = 7.1 Hz, 3 H), 0.89 (t, J = 8.1 Hz, 2 H), 0.04 (s, 9 H). 

13C-NMR (C6D6, 101 MHz, ppm): δ = 165.8, 146.2, 142.2, 131.5, 130.43, 130.39, 124.9, 

123.2, 117.3, 114.1, 76.3, 68.2, 67.6, 61.1, 17.9, 14.3, 1.4. 

MS (70 eV, EI) m/z (%): 367 (8) [MC3H8]+, 353 (20), 352 (100), 298 (13), 293 (12), 281 

(11), 234 (20), 225 (14), 207 (29), 75 (11), 73 (63). 
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IR (ATR) ~ (cm-1): 3124, 2958, 2219, 1700, 1606, 1590, 1558, 1488, 1456, 1368, 1338, 

1326, 1289, 1275, 1248, 1195, 1177, 1109, 1089, 1066, 1049, 1035, 1019, 941, 919, 862, 

837, 790, 768, 741, 725, 707, 697, 660. 

HRMS (EI) calculated for C18H19N4O3Si+: 367.1221, found 367.1221 [MC3H8]+.  

mp: 136.0 – 137.6 °C. 

 

3-(Thiophen-2-yl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole-7-car-

bonitrile (45g) 

 

3-(Thiophen-2-yl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole-7-carbonitri-

le was synthesized according to TP12 on a 0.2 mmol scale. After the metalation a ZnCl2 

solution (1.0 M in THF, 0.30 mL, 0.30 mmol, 1.5 equiv) was added before adding 

2-iodotiophene (34 mg, 0.16 mmol, 0.8 equiv) as electrophile and PEPPSI-iPr (2.7 mg, 

0.004 mmol, 2%) as catalyst (2 h, 60 °C). Purification via column chromatography (silica gel, 

iHex/EtOAc = 4:1 + 5% NEt3) yielded the title compound 45g (41 mg, 0.12 mmol, 74%) as a 

colorless oil. 

1H-NMR (C6D6, 400 MHz, ppm): δ = 7.93 (dd, J = 3.5, 1.3 Hz, 1 H), 7.56 (d, J = 1.3 Hz, 1 H), 

6.77 – 6.70 (m, 2 H), 6.21 (d, J = 1.2 Hz, 1 H), 4.63 (s, 2 H), 3.47 (t, J = 8.0 Hz, 2 H), 0.84 (t, 

J = 8.0 Hz, 2 H), 0.06 (s, 9 H). 

13C-NMR (C6D6, 101 MHz, ppm): δ = 146.3, 141.5, 126.2, 124.8, 119.8, 115.0, 114.1, 76.1, 

68.3, 67.4, 17.8, 1.4. 

MS (70 eV, EI) m/z (%): 344 (1) [M]+, 287 (12), 286 (100), 259 (12), 232 (28), 227 (22), 213 

(10), 207 (24), 159 (11), 73 (29). 

IR (ATR) ~ (cm-1): 3107, 2951, 2897, 2215, 1605, 1510, 1484, 1418, 1379, 1335, 1307, 

1247, 1220, 1185, 1081, 1046, 1014, 939, 915, 856, 833, 738, 722, 692, 661. 

HRMS (EI) calculated for C16H20N4OSSi+: 344.1122, found 344.1121 [M]+. 
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3-(Pyridin-3-yl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole-7-carbo-

nitrile (45h) 

 

3-(Pyridin-3-yl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole-7-carbonitrile 

was synthesized according to TP12 on a 0.2 mmol scale. After the metalation a ZnCl2 

solution (1.0 M in THF, 0.30 mL, 0.30 mmol, 1.5 equiv) was added before adding 

3-iodopyridine (33 mg, 0.16 mmol, 0.8 equiv) as electrophile and PEPPSI-iPr (2.7 mg, 

0.004 mmol, 2%) as catalyst (2 h, 40 °C). Purification via column chromatography (silica gel, 

iHex/EtOAc = 1:1 + 5% NEt3) yielded the title compound 45h (45 mg, 0.13 mmol, 83%) as a 

colorless solid. 

1H-NMR (C6D6, 400 MHz, ppm): δ = 9.03 (d, J = 1.8 Hz, 1 H), 8.41 (dd, J = 4.8, 1.5 Hz, 1 H), 

8.35 (dt, J = 8.0, 1.9 Hz, 1 H), 7.55 (d, J = 1.0 Hz, 1 H), 6.78 (dd, J = 7.8, 5.0 Hz, 1 H), 6.27 

(d, J = 1.0 Hz, 1 H), 4.74 (s, 2 H), 3.53 (t, J = 8.1 Hz, 2 H), 0.88 (t, J = 8.1 Hz, 2 H), 0.04 (s, 

9 H). 

13C-NMR (C6D6, 101 MHz, ppm): δ = 149.3, 146.5, 146.3, 142.0, 131.9, 123.8, 123.5, 121.1, 

116.5, 114.1, 76.3, 68.3, 67.6, 17.9, 1.4. 

MS (70 eV, EI) m/z (%): 339 ( 0.3) [M]+, 296 (9), 282 (14), 281 (100), 254 (10), 227 (10), 222 

(15), 208 (9), 73 (46). 

IR (ATR) ~ (cm-1): 3048, 2951, 2925, 1619, 1568, 1558, 1490, 1456, 1413, 1394, 1380, 

1340, 1262, 1249, 1210, 1178, 1130, 1108, 1088, 1072, 1025, 938, 928, 905, 862, 832, 810, 

768, 759, 748, 719, 708, 687. 

HRMS (EI) calculated for C17H21N5OSi+: 339.1510, found 339.1511 [M]+. 

mp: 92.5 – 93.9 °C. 
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3-(5-Cyano-2-fluorophenyl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyra-

zole-7-carbonitrile (45i) 

 

3-(5-Cyano-2-fluorophenyl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole-7-

carbonitrile was synthesized according to TP12 on a 0.2 mmol scale. After the metalation a 

ZnCl2 solution (1.0 M in THF, 0.30 mL, 0.30 mmol, 1.5 equiv) was added before adding 

3-bromo-4-fluorobenzonitrile (32 mg, 0.16 mmol, 0.8 equiv) as electrophile and PEPPSI-iPr 

(2.7 mg, 0.004 mmol, 2%) as catalyst (17 h, 60 °C). Purification via column chromatography 

(silica gel, iHex/EtOAc = 4:1 + 5% NEt3) yielded the title compound 45i (50 mg, 0.13 mmol, 

82%) as a colorless solid. 

1H-NMR (C6D6, 400 MHz, ppm): δ = 9.15 (dd, J = 7.1, 2.1 Hz, 1 H), 7.53 (d, J = 1.3 Hz, 1 H), 

6.89 (dd, J = 3.2, 1.3 Hz, 1 H), 6.71 (ddd, J = 8.6, 4.8, 2.1 Hz, 1 H), 6.38 (dd, J = 11.2, 

8.6 Hz, 1 H), 4.72 (s, 2 H), 3.52 (t, J = 8.1 Hz, 2 H), 0.88 (t, J = 8.1 Hz, 2 H), 0.04 (s, 9 H). 

13C-NMR (C6D6, 101 MHz, ppm): δ = 160.1 (d, J = 258.1 Hz), 146.1, 141.4, 132.7, 131.3, 

121.2 (d, J = 17.3 Hz), 117.9, 117.6 (d, J = 13.2 Hz), 116.5 (d, J = 23.3 Hz), 116.0 (d, J = 

2.9 Hz), 113.7, 109.8 (d, J = 3.5 Hz), 76.5, 68.6, 67.7, 17.9, 1.4. 

MS (70 eV, EI) m/z (%): 381 (3) [M]+, 338 (10), 325 (5), 324 (17), 323 (86), 264 (9), 250 (5), 

73 (100). 

IR (ATR) ~ (cm-1): 3132, 3067, 2952, 2228, 2215, 1604, 1576, 1505, 1489, 1456, 1394, 

1340, 1323, 1297, 1245, 1229, 1187, 1167, 1124, 1109, 1080, 1052, 1038, 1027, 935, 911, 

894, 861, 824, 754, 728, 714, 697, 669. 

HRMS (EI) calculated for C19H20FN5OSi: 381.1421, found 381.13422 [M]. 

mp: 144.0 – 144.0 °C. 
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3-(4-(5-Morpholino-6-oxo-3,6-dihydropyridin-1(2H)-yl)phenyl)-1-((2-(trimethylsilyl)-

ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole-7-carbonitrile (45j) 

 

3-(4-(5-Morpholino-6-oxo-3,6-dihydropyridin-1(2H)-yl)phenyl)-1-((2-(trimethylsilyl)ethoxy)me-

thyl)-1H-imidazo[1,2-b]pyrazole-7-carbonitrile was synthesized according to TP12 on a 

0.2 mmol scale. After the metalation a ZnCl2 solution (1.0 M in THF, 0.30 mL, 0.30 mmol, 

1.5 equiv) was added before adding 1-(4-iodophenyl)-3-morpholino-5,6-dihydropyridin-2(1H)-

one (62 mg, 0.16 mmol, 0.8 equiv) as electrophile and PEPPSI-iPent (4.8 mg, 0.006 mmol, 

3%) as catalyst (2 h, 60 °C). Purification via column chromatography (silica gel, iHex/EtOAc 

= 4:6 + 5% NEt3) yielded the title compound 45j (47 mg, 0.09 mmol, 57%) as a colorless 

solid. 

1H-NMR (CD2Cl2, 400 MHz, ppm): δ = 8.06 (d, J = 8.6 Hz, 2 H), 7.98 (s, 1 H), 7.44 (d, J = 

8.6 Hz, 2 H), 7.29 (s, 1 H), 5.68 (t, J = 4.7 Hz, 1 H), 5.48 (s, 2 H), 3.83 – 3.73 (m, 6 H), 3.68 

(t, J = 8.3 Hz, 2 H), 2.87 (t, J = 4.4 Hz, 4 H), 2.50 (q, J = 6.5 Hz, 2 H), 0.98 (t, J = 8.3 Hz, 

2 H), 0.01 (s, 9 H). 

13C-NMR (CD2Cl2, 101 MHz, ppm): δ = 161.8, 146.7, 144.2, 143.6, 142.3, 126.0, 125.8, 

124.9, 124.2, 116.6, 115.3, 114.6, 77.3, 67.9, 67.2, 51.0, 49.2, 23.9, 18.2, 1.3, 1.3. 

MS (70 eV, EI) m/z (%): 518 (15) [M]+, 461 (25), 460 (81), 443 (16), 442 (41), 402 (10), 401 

(25), 73 (100), 44 (20). 

IR (ATR) ~ (cm-1): 3117, 2952, 2928, 2846, 2823, 2208, 1652, 1605, 1512, 1486, 1472, 

1452, 1418, 1378, 1349, 1338, 1327, 1310, 1261, 1250, 1217, 1208, 1192, 1111, 1048, 

1025, 975, 948, 930, 921, 902, 857, 831, 795, 780, 750, 712, 682. 

HRMS (EI) calculated for C27H34N6O3Si+: 518.2456, found 518.2457 [M]+. 

mp: 232.7 – 234.4 °C. 
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Ethyl 2-allyl-7-cyano-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole-3-

carboxylate (47a) 

 

Ethyl 2-allyl-7-cyano-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole-3-carbo-

xylate was synthesized according to TP13 on a 0.2 mmol scale using allyl bromide (0.03 mL, 

0.33 mmol, 1.7 equiv) and CuCN2LiCl (1 M in THF, 0.04 mL, 0.04 mmol, 0.20 equiv) as 

electrophile (20 min, 25 °C). Purification via column chromatography (silica gel, iHex/EtOAc = 

9:1 + 5% NEt3) yielded the title compound 47a (54 mg, 0.14 mmol, 72%) as a colorless solid. 

1H-NMR (C6D6, 400 MHz, ppm): δ = 7.56 (s, 1 H), 4.95 – 4.88 (m, 2 H), 4.84 (s, 2 H), 4.15 

(q, J = 7.1 Hz, 2 H), 3.63 (d, J = 6.2 Hz, 2 H), 3.55 (t, J = 8.2 Hz, 2 H), 1.07 (t, J = 7.1 Hz, 

3 H), 0.86 (t, J = 8.2 Hz, 2 H), 0.05 (s, 9 H). 

13C-NMR (C6D6, 101 MHz, ppm): δ = 159.1, 145.7, 141.5, 139.7, 132.8, 117.7, 114.0, 113.5, 

73.8, 68.5, 67.7, 61.2, 28.3, 17.9, 14.3, 1.4. 

MS (70 eV, EI) m/z (%): 374 (1) [M]+, 317 (11), 316 (70), 281 (21), 270 (37), 254 (11), 253 

(10), 243 (10), 209 (14), 208 (13), 207 (100), 198 (21), 197 (15), 191 (18), 170 (20), 169 (11), 

143 (22), 75 (14), 73 (70), 44 (15). 

IR (ATR) ~ (cm-1): 2924, 2218, 1716, 1642, 1601, 1565, 1479, 1467, 1446, 1407, 1375, 

1351, 1317, 1275, 1265, 1248, 1183, 1139, 1108, 1088, 1066, 1046, 1019, 991, 940, 922, 

883, 859, 835, 807, 769, 701, 672. 

HRMS (EI) calculated for C18H26N4O3Si+: 374.1769, found 374.1769 [M]+. 

mp: 51.5 – 53.7 °C. 
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Ethyl 2-benzoyl-7-cyano-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyra-

zole-3-carboxylate (47b) 

 

Ethyl 2-benzoyl-7-cyano-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyrazole-3-

carboxylate was synthesized according to TP13 on a 0.2 mmol scale using benzoyl chloride 

(42 mg, 0.30 mmol, 1.5 equiv) and CuCN2LiCl (1 M in THF, 0.10 mL, 0.10 mmol, 0.50 equiv) 

as electrophile (1 h, 25 °C). Purification via column chromatography (silica gel, iHex/EtOAc = 

9:1 + 5% NEt3) yielded the title compound 47b (55 mg, 0.13 mmol, 63%) as a colorless solid. 

1H-NMR (C6D6, 400 MHz, ppm): δ = 7.64 (d, J = 7.2 Hz, 2 H), 7.60 (s, 1 H), 7.05 (t, J = 

7.4 Hz, 1 H), 6.95 (t, J = 7.6 Hz, 2 H), 5.06 (s, 2 H), 3.74 (q, J = 7.1 Hz, 2 H), 3.34 (t, J = 

8.2 Hz, 2 H), 0.59 (dt, J = 11.5, 7.7 Hz, 5 H), 0.18 (s, 9 H). 

13C-NMR (C6D6, 101 MHz, ppm): δ = 185.4, 157.1, 147.6, 142.2, 137.3, 134.3, 133.7, 129.7, 

128.9, 115.9, 113.3, 74.8, 69.3, 67.6, 61.5, 17.6, 13.5, 1.5. 

MS (70 eV, EI) m/z (%): 438 (2) [M]+, 395 (11), 381 (18), 380 (65), 366 (21), 365 (75), 293 

(14), 262 (23), 105 (22), 91 (15), 77 (13), 73 (100). 

IR (ATR) ~ (cm-1): 2945, 2220, 1731, 1666, 1614, 1597, 1562, 1556, 1482, 1461, 1448, 

1375, 1349, 1320, 1278, 1242, 1234, 1191, 1174, 1146, 1113, 1094, 1024, 962, 941, 920, 

861, 838, 760, 709, 688, 676. 

HRMS (EI) calculated for C22H26N4O4Si+: 438.1718, found 438.1718 [M]+. 

mp: 127.6 – 128.5 °C. 
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Ethyl 7-cyano-2-(4-nitrobenzoyl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]-

pyrazole-3-carboxylate (47c) 

 

Ethyl 7-cyano-2-(4-nitrobenzoyl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyra-

zole-3-carboxylate was synthesized according to TP13 on a 0.2 mmol scale using 

4-nitrobenzoyl chloride (56 mg, 0.30 mmol, 1.5 equiv) and CuCN2LiCl (1 M in THF, 0.10 mL, 

0.10 mmol, 0.50 equiv) as electrophile (2 h, 25 °C). Purification via column chromatography 

(silica gel, iHex/EtOAc = 4:1 + 5% NEt3) yielded the title compound 47c (59 mg, 0.12 mmol, 

61%) as a yellow solid. 

1H-NMR (C6D6, 400 MHz, ppm): δ = 7.71 (d, J = 8.8 Hz, 2 H), 7.55 (s, 1 H), 7.39 (d, J = 

8.8 Hz, 2 H), 5.05 (s, 2 H), 3.77 (q, J = 7.1 Hz, 2 H), 3.36 (t, J = 8.2 Hz, 2 H), 0.75 – 0.57 (m, 

5 H), 0.17 (s, 9 H). 

13C-NMR (C6D6, 101 MHz, ppm): δ = 184.3, 157.2, 150.9, 147.9, 142.4, 141.0, 132.6, 130.2, 

123.9, 116.6, 113.0, 74.6, 69.3, 67.8, 62.0, 17.6, 13.7, 1.6. 

MS (70 eV, EI) m/z (%): 483 (0.3) [M]+, 426 (12), 425 (43), 410 (20), 307 (8), 103 (7), 74 (7), 

73 (100). 

IR (ATR) ~ (cm-1): 3108, 2951, 2226, 1727, 1690, 1664, 1605, 1562, 1551, 1524, 1475, 

1409, 1369, 1344, 1312, 1276, 1245, 1231, 1179, 1137, 1110, 1020, 967, 942, 911, 853, 

835, 803, 789, 760, 753, 735, 702, 665. 

HRMS (EI) calculated for C22H25N5O6Si+: 483.1569, found 483.1561 [M]+. 

mp: 164.9 – 166.3 °C. 
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Ethyl 7-cyano-2-(cyclopropanecarbonyl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imid-

azo[1,2-b]pyrazole-3-carboxylate (47d) 

 

Ethyl 7-cyano-2-(cyclopropanecarbonyl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo-

[1,2-b]pyrazole-3-carboxylate was synthesized according to TP13 on a 0.2 mmol scale using 

cyclopropanecarbonyl chloride (31 mg, 0.30 mmol, 1.5 equiv) and CuCN2LiCl (1 M in THF, 

0.10 mL, 0.10 mmol, 0.50 equiv) as electrophile (1 h, 25 °C). Purification via column 

chromatography (silica gel, iHex/EtOAc = 4:1 + 5% NEt3) yielded the title compound 47d (65 

mg, 0.16 mmol, 81%) as a colorless solid. 

1H-NMR (C6D6, 400 MHz, ppm): δ = 7.55 (s, 1 H), 5.13 (s, 2 H), 4.09 (q, J = 7.1 Hz, 2 H), 

3.49 (t, J = 8.1 Hz, 2 H), 2.20 (tt, J = 7.9, 4.5 Hz, 1 H), 1.33 – 1.26 (m, 2 H), 1.02 (t, J = 

7.1 Hz, 3 H), 0.83 (t, J = 8.1 Hz, 2 H), 0.72 (dd, J = 7.6, 3.6 Hz, 2 H), 0.08 (s, 9 H). 

13C-NMR (C6D6, 101 MHz, ppm): δ = 194.4, 158.0, 147.7, 142.0, 135.4, 116.2, 113.3, 74.8, 

69.1, 67.7, 62.0, 24.1, 17.9, 14.4, 14.1, 1.4. 

MS (70 eV, EI) m/z (%): 402 (1) [M], 345 (10), 344 (35), 330 (11), 329 (45), 283 (18), 73 

(100). 

IR (ATR) ~ (cm-1): 2952, 2226, 1724, 1686, 1674, 1612, 1556, 1481, 1441, 1405, 1377, 

1359, 1346, 1315, 1305, 1276, 1263, 1247, 1196, 1184, 1166, 1111, 1086, 1057, 1039, 

1017, 1002, 945, 921, 897, 860, 834, 792, 772, 759, 723, 697, 682, 666. 

HRMS (EI) calculated for C19H26N4O4Si: 402.1723, found 402.1724 [M]. 

mp: 85.2 – 86.4 °C. 
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Ethyl 2-(6-chloronicotinoyl)-7-cyano-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo-

[1,2-b]pyrazole-3-carboxylate (47e) 

 

Ethyl 2-(6-chloronicotinoyl)-7-cyano-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]py-

razole-3-carboxylate was synthesized according to TP13 on a 0.2 mmol scale using 

6-chloronicotinoyl chloride (53 mg, 0.30 mmol, 1.5 equiv) and CuCN2LiCl (1 M in THF, 

0.10 mL, 0.10 mmol, 0.50 equiv) as electrophile (2 h, 25 °C). Purification via column 

chromatography (silica gel, iHex/EtOAc = 9:1 + 5% NEt3) yielded the title compound 47e 

(67 mg, 0.14 mmol, 71%) as a colorless solid. 

1H-NMR (C6D6, 400 MHz, ppm): δ = 7.59 (s, 1 H), 7.55 (dd, J = 3.0, 1.2 Hz, 2 H), 7.21 (dd, 

J = 5.0, 1.2 Hz, 1 H), 6.83 (dd, J = 5.0, 3.0 Hz, 1 H), 4.68 (s, 2 H), 4.07 (q, J = 7.1 Hz, 2 H), 

3.68 – 3.60 (m, 2 H), 0.98 (t, J = 7.1 Hz, 3 H), 0.88 – 0.82 (m, 2 H), 0.03 (s, 9 H). 

13C-NMR (C6D6, 101 MHz, ppm): δ = 158.3, 146.1, 141.7, 135.5, 130.2, 130.1, 125.9, 125.4, 

114.0, 113.4, 74.2, 68.8, 68.1, 61.1, 18.2, 14.2, 1.4. 

MS (70 eV, EI) m/z (%): 473 (2) [M]+, 417 (18), 416 (12), 415 (45), 400 (22), 297 (10), 73 

(100). 

IR (ATR) ~ (cm-1): 2952, 2220, 1731, 1676, 1607, 1583, 1563, 1478, 1412, 1363, 1311, 

1291, 1275, 1245, 1186, 1134, 1093, 1068, 1021, 980, 963, 935, 923, 860, 836, 820, 783, 

765, 741, 707, 692. 

HRMS (EI) calculated for C21H24ClN5O4Si+: 473.1281, found 473.1281 [M]+. 

mp: 137.5 – 139.2 °C. 
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Ethyl 7-cyano-2-(4-(ethoxycarbonyl)phenyl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-

imidazo[1,2-b]pyrazole-3-carboxylate (47f) 

 

Ethyl 7-cyano-2-(4-(ethoxycarbonyl)phenyl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo-

[1,2-b]pyrazole-3-carboxylate was synthesized according to TP13 on a 0.2 mmol scale using 

ethyl 4-iodo benzoate (44 mg, 0.16 mmol, 0.8 equiv) as electrophile and Pd(PPh3)4 (6.9 mg, 

0.006 mmol, 3%) as catalyst (90 min, 40 °C). Purification via column chromatography (silica 

gel, iHex/EtOAc = 7:1 + 5% NEt3) yielded the title compound 47f (51 mg, 0.11 mmol, 66%) 

as a slightly yellow solid. 

1H-NMR (C6D6, 400 MHz, ppm): δ = 8.17 (d, J = 8.5 Hz, 2 H), 7.64 (s, 1 H), 7.37 (d, J = 

8.5 Hz, 2 H), 4.66 (s, 2 H), 4.12 (q, J = 7.1 Hz, 2 H), 4.01 (q, J = 7.1 Hz, 2 H), 3.63 – 3.49 (m, 

3 H), 1.03 (t, J = 7.1 Hz, 3 H), 0.91 (t, J = 7.1 Hz, 3 H), 0.88 – 0.80 (m, 2 H), 0.05 (s, 9 H). 

13C-NMR (C6D6, 101 MHz, ppm): δ = 165.5, 158.0, 146.3, 141.9, 139.2, 132.7, 131.7, 130.6, 

129.5, 113.9, 113.7, 74.2, 69.0, 68.0, 61.3, 61.2, 18.2, 14.2, 14.1, 1.4. 

MS (70 eV, EI) m/z (%): 424 (3) [MC4H10]+, 281 (22), 225 (60), 209 (30), 208 (13), 207 

(100), 191 (25), 73 (11). 

IR (ATR) ~ (cm-1): 3097, 2952, 2223, 1709, 1602, 1574, 1503, 1479, 1443, 1392, 1376, 

1314, 1274, 1250, 1195, 1171, 1088, 1019, 938, 914, 883, 857, 835, 763, 743, 717, 695, 

666. 

HRMS (EI) calculated for C24H30N4O5Si+: 482.1980, found 482.1975 [M]+. 

mp: 110.4 – 111.5 °C. 
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Ethyl 7-cyano-2-(4-(trifluoromethyl)phenyl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-

imidazo[1,2-b]pyrazole-3-carboxylate (47g) 

 

Ethyl 7-cyano-2-(4-(trifluoromethyl)phenyl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo-

[1,2-b]pyrazole-3-carboxylate was synthesized according to TP13 on a 0.2 mmol scale using 

1-iodo-4-(trifluoromethyl)benzene (44 mg, 0.16 mmol, 0.8 equiv) as electrophile and 

Pd(PPh3)4 (6.9 mg, 0.006 mmol, 3%) as catalyst (90 min, 40 °C). Purification via column 

chromatography (silica gel, iHex/EtOAc = 7:1 + 5% NEt3) yielded the title compound 47g (53 

mg, 0.11 mmol, 69%) as a slightly yellow solid. 

1H-NMR (C6D6, 400 MHz, ppm): δ = 7.61 (s, 1 H), 7.37 (d, J = 8.2 Hz, 2 H), 7.28 (d, J = 

8.2 Hz, 2 H), 4.58 (s, 2 H), 4.00 (q, J = 7.1 Hz, 2 H), 3.62 – 3.54 (m, 2 H), 0.91 (t, J = 7.1 Hz, 

3 H), 0.88 – 0.82 (m, 2 H), 0.04 (s, 9 H). 

13C-NMR (C6D6, 101 MHz, ppm): δ = 158.0, 146.4, 141.9, 138.5, 132.2 (q, J = 32.7 Hz), 

132.2, 130.0, 125.8 (q, J = 272.7 Hz), 125.2 (q, J = 3.6 Hz), 113.8, 113.8, 74.2, 69.0, 68.2, 

61.3, 18.2, 14.0, 1.5. 

MS (70 eV, EI) m/z (%): 478 (0.2) [M]+, 435 (21), 421 (22), 420 (96), 349 (12), 348 (72), 328 

(18), 320 (12), 315 (14), 302 (26), 287 (12), 275 811), 256 (33), 172 (10), 73 (100). 

IR (ATR) ~ (cm-1): 2954, 2221, 1720, 1606, 1572, 1513, 1478, 1443, 1409, 1378, 1354, 

1321, 1274, 1249, 1167, 1127, 1101, 1068, 1018, 942, 915, 834, 765, 722, 692, 671. 

HRMS (EI) calculated for C22H25F3N4O3Si+: 478.1643, found 478.1643 [M]+. 

mp: 96.8 – 98.5 °C. 
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Ethyl 7-cyano-2-(4-methoxyphenyl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo-

[1,2-b]pyrazole-3-carboxylate (47h) 

 

Ethyl 7-cyano-2-(4-methoxyphenyl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]-

pyrazole-3-carboxylate was synthesized according to TP13 on a 0.2 mmol scale using 

1-iodo-4-methoxybenzene (37 mg, 0.16 mmol, 0.8 equiv) as electrophile and Pd(PPh3)4 

(6.9 mg, 0.006 mmol, 3%) as catalyst (80 min, 40 °C). Purification via column 

chromatography (silica gel, iHex/EtOAc = 4:1 + 5% NEt3) and HPLC yielded the title 

compound 47h (37 mg, 0.08 mmol, 53%) as a colorless solid. 

1H-NMR (C6D6, 400 MHz, ppm): δ = 7.65 (s, 1 H), 7.37 (d, J = 8.8 Hz, 2 H), 6.78 (d, J = 

8.8 Hz, 2 H), 4.73 (s, 2 H), 4.07 (q, J = 7.1 Hz, 2 H), 3.63 (t, J = 8.3 Hz, 2 H), 3.25 (s, 3 H), 

0.98 (t, J = 7.1 Hz, 3 H), 0.87 (t, J = 8.3 Hz, 2 H), 0.03 (s, 9 H). 

13C-NMR (C6D6, 101 MHz, ppm): δ = 161.6, 158.4, 146.0, 141.7, 140.7, 133.2, 118.3, 114.1, 

113.9, 113.2, 74.1, 69.0, 67.9, 61.0, 54.9, 18.2, 14.2, 1.4. 

MS (70 eV, EI) m/z (%): 440 (2) [M]+, 397 (15), 383 (22), 382 (100), 311 (10), 310 (60), 282 

(31), 277 (11), 264 (31), 256 (13), 236 (11), 209 (10), 183 (20), 73 (34). 

IR (ATR) ~ (cm-1): 2980, 2930, 2220, 1720, 1604, 1582, 1568, 1510, 1477, 1462, 1438, 

1412, 1376, 1344, 1314, 1296, 1265, 1256, 1248, 1180, 1171, 1119, 1088, 1056, 1036, 

1024, 1014, 1008, 944, 933, 916, 874, 858, 838, 790, 768, 758, 728, 701, 686, 676. 

HRMS (EI) calculated for C22H28N4O4Si+: 440.1874, found 440.1876 [M]+. 

mp: 100.7 – 101.8 °C. 
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Ethyl 7-cyano-2-(3,4,5-trimethoxyphenyl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imid-

azo[1,2-b]pyrazole-3-carboxylate (47i) 

 

Ethyl 7-cyano-2-(3,4,5-trimethoxyphenyl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo-

[1,2-b]pyrazole-3-carboxylate was synthesized according to TP13 on a 0.3 mmol scale using 

5-iodo-1,2,3-trimethoxybenzene (71 mg, 0.24 mmol, 0.8 equiv) as electrophile and Pd(PPh3)4 

(17 mg, 0.015 mmol, 5%) as catalyst (4 h, 40 °C). Purification via column chromatography 

(silica gel, iHex/EtOAc = 6:1 + 5% NEt3) yielded the title compound 47i (60 mg, 0.12 mmol, 

50%) as a slightly yellow solid. 

1H-NMR (C6D6, 400 MHz, ppm): δ = 7.68 (s, 1 H), 6.74 (s, 2 H), 4.82 (s, 2 H), 4.09 (q, J = 

7.1 Hz, 2 H), 3.83 (s, 3 H), 3.65 (t, J = 8.4 Hz, 2 H), 3.54 (s, 6 H), 0.98 (t, J = 7.1 Hz, 3 H), 

0.88 (t, J = 8.4 Hz, 2 H), 0.03 (s, 9 H). 

13C-NMR (C6D6, 101 MHz, ppm): δ = 158.4, 153.7, 146.2, 141.6, 141.1, 140.7, 121.0, 114.1, 

113.2, 109.6, 74.4, 69.0, 68.0, 61.0, 60.6, 56.1, 18.4, 14.2, 1.4. 

MS (70 eV, EI) m/z (%): 500 (5) [M]+, 443 (27), 442 (100), 418 (10), 427 (42), 381 (10), 370 

(20), 355 (13), 342 (13), 324 (15), 243 (10), 73 (32). 

IR (ATR) ~ (cm-1): 3094, 2946, 2836, 2214, 1719, 1612, 1591, 1560, 1509, 1493, 1467, 

1456, 1421, 1395, 1382, 1366, 1358, 1353, 1317, 1281, 1249, 1228, 1181, 1165, 1128, 

1098, 1067, 1033, 990, 945, 931, 859, 834, 791, 772, 758, 748, 724, 711, 691. 

HRMS (EI) calculated for C24H32N4O6Si+: 500.2086, found 500.2087 [M]+. 

mp: 153.8 – 155.3 °C. 
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Ethyl 7-cyano-2-(thiophen-3-yl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]-

pyrazole-3-carboxylate (47j) 

 

Ethyl 7-cyano-2-(thiophen-3-yl)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-imidazo[1,2-b]pyra-

zole-3-carboxylate was synthesized according to TP13 on a 0.30 mmol scale using 

3-iodothiophene (34 mg, 0.16 mmol, 0.8 equiv) as electrophile and Pd(PPh3)4 (17 mg, 

0.015 mmol, 5%) as catalyst (4 h, 40 °C). Purification via column chromatography (silica gel, 

iHex/EtOAc = 7:1 + 5% NEt3) yielded the title compound 47j (54 mg, 0.13 mmol, 54%) as a 

colorless solid. 

1H-NMR (C6D6, 400 MHz, ppm): δ = 7.59 (s, 1 H), 7.55 (dd, J = 3.0, 1.2 Hz, 1 H), 7.21 (dd, 

J = 5.0, 1.2 Hz, 1 H), 6.83 (dd, J = 5.0, 3.0 Hz, 1 H), 4.68 (s, 2 H), 4.07 (q, J = 7.1 Hz, 2 H), 

3.67 – 3.61 (m, 2 H), 0.98 (t, J = 7.1 Hz, 3 H), 0.88 – 0.82 (m, 2 H), 0.03 (s, 9 H). 

13C-NMR (C6D6, 101 MHz, ppm): δ = 158.3, 146.1, 141.7, 135.5, 130.2, 130.1, 125.9, 125.4, 

114.0, 113.4, 74.2, 68.8, 68.1, 61.1, 18.2, 14.2, 1.4. 

MS (70 eV, EI) m/z (%): 416 (1) [M]+, 373 (12), 359 (19), 358 (100), 286 (68), 258 (38), 253 

(17), 240 (43), 232 (13), 225 (10), 212 (12), 207 (10), 159 (16), 73 (74). 

IR (ATR) ~ (cm-1): 3097, 2945, 2218, 1713, 1606, 1582, 1519, 1501, 1476, 1443, 1416, 

1373, 1337, 1310, 1267, 1243, 1220, 1189, 1166, 1088, 1060, 1018, 942, 912, 837, 810, 

764, 721, 711, 689, 660. 

HRMS (EI) calculated for C19H24N4O3SSi+: 416.1333, found 416.1334 [M]+. 

mp: 100.1 – 102.8 °C. 
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Diethyl (E)-7,7'-dicyano-2,2'-bis(4-(ethoxycarbonyl)phenyl)-1,1'-bis((2-(trimethylsilyl)-

ethoxy)methyl)-1H,1'H,5H,5'H-[6,6'-biimidazo[1,2-b]pyrazolylidene]-3,3'-dicarboxylate 

(48a) 

 

Diethyl (E)-7,7'-dicyano-2,2'-bis(4-(ethoxycarbonyl)phenyl)-1,1'-bis((2-(trimethylsilyl)ethoxy)-

methyl)-1H,1'H,5H,5'H-[6,6'-biimidazo[1,2-b]pyrazolylidene]-3,3'-dicarboxylate was synthe-

sized according to TP14 on a 0.087 mmol scale. The reaction was completed within 40 min 

and yielded the title compound 48a (32 mg, 0.033 mmol, 76%) as a yellow solid. 

1H-NMR (acetone-d6, 400 MHz, ppm): δ = 8.08 (d, J = 8.4 Hz, 4 H), 7.64 (d, J = 8.4 Hz, 

4 H), 5.19 (s, 4 H), 4.38 (q, J = 7.1 Hz, 4 H), 4.11 (q, J = 7.1 Hz, 4 H), 3.49 (t, J = 8.2 Hz, 

4 H), 1.39 (t, J = 7.1 Hz, 6 H), 1.05 (t, J = 7.1 Hz, 6 H), 0.85 (t, J = 8.2 Hz, 4 H), 0.03 (s, 

18 H). 

13C-NMR (acetone-d6, 101 MHz, ppm): δ = 166.4, 165.0, 153.1, 136.2, 135.1, 132.1, 131.2, 

129.4, 128.2, 125.2, 73.0, 65.7, 61.6, 61.0, 24.6, 18.4, 14.6, 14.2, 1.3. 

IR (ATR) ~ (cm-1): 2953, 2186, 2143, 1714, 1694, 1612, 1575, 1519, 1466, 1403, 1378, 

1366, 1270, 1248, 1180, 1101, 1079, 1025, 963, 939, 916, 859, 834, 774, 759, 724, 706, 

667. 

HRMS (ESI) calculated for C48H59N8O10Si2: 963.3898, found 963.38977 [MH]. 

mp: 84.0 – 93.0 °C. 
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Diethyl (E)-7,7'-dicyano-2,2'-bis(4-(trifluoromethyl)phenyl)-1,1'-bis((2-(trimethylsilyl)-

ethoxy)methyl)-1H,1'H,5H,5'H-[6,6'-biimidazo[1,2-b]pyrazolylidene]-3,3'-dicarboxylate 

(48b) 

 

Diethyl (E)-7,7'-dicyano-2,2'-bis(4-(trifluoromethyl)phenyl)-1,1'-bis((2-(trimethylsilyl)ethoxy)-

methyl)-1H,1'H,5H,5'H-[6,6'-biimidazo[1,2-b]pyrazolylidene]-3,3'-dicarboxylate was synthe-

sized according to TP14 on a 0.096 mmol scale. The reaction was completed within 30 min 

and yielded the title compound 48b (30 mg, 0.032 mmol, 67%) as a slightly orange solid. 

1H-NMR (acetone-d6, 400 MHz, ppm): δ = 7.89 (q, J = 8.4 Hz, 8 H), 5.30 (s, 4 H), 4.14 (q, 

J = 7.1 Hz, 4 H), 3.57 – 3.44 (m, 4 H), 1.07 (t, J = 7.1 Hz, 6 H), 0.93 – 0.80 (m, 4 H), −0.03 

(s, 18 H). 

13C-NMR (acetone-d6, 101 MHz, ppm): δ = 159.7, 152.0, 136.5, 133.0, 132.0 (q, 

J = 32.4 Hz) 131.7, 126.0 (q, J = 3.8 Hz), 125.1 (q, J = 271.7 Hz), 120.6, 119.7, 73.6, 66.5, 

61.9, 28.2, 18.3, 14.1, 1.3. 

IR (ATR) ~ (cm-1): 3050, 2954, 2897, 2746, 2213, 2171, 2149, 1725, 1614, 1599, 1518, 

1465, 1431, 1408, 1371, 1323, 1298, 1262, 1250, 1228, 1214, 1203, 1184, 1163, 1126, 

1108, 1082, 1067, 1026, 1013, 947, 924, 854, 835, 774, 758, 743, 711, 697, 674. 

HRMS (ESI) calculated for C44H49F6N8O6Si2: 955.3223, found 955.3220 [MH]. 

mp: 134.1 – 135.4 °C. 
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Diethyl (E)-7,7'-dicyano-2,2'-bis(3,4,5-trimethoxyphenyl)-1,1'-bis((2-(trimethylsilyl)-

ethoxy)methyl)-1H,1'H,5H,5'H-[6,6'-biimidazo[1,2-b]pyrazolylidene]-3,3'-dicarboxylate 

(48c) 

 

Diethyl (E)-7,7'-dicyano-2,2'-bis(3,4,5-trimethoxyphenyl)-1,1'-bis((2-(trimethylsilyl)ethoxy)-

methyl)-1H,1'H,5H,5'H-[6,6'-biimidazo[1,2-b]pyrazolylidene]-3,3'-dicarboxylate was synthe-

sized according to TP14 on a 0.148 mmol scale. The reaction was completed within 40 min 

and yielded the title compound 48c (71 mg, 0.071 mmol, 96%) as a slightly yellow solid. 

1H-NMR (acetone-d6, 400 MHz, ppm): δ = 6.80 (s, 4 H), 5.20 (s, 4 H), 4.13 (q, J = 7.1 Hz, 

4 H), 3.85 (s, 12 H), 3.78 (s, 6 H), 3.59 – 3.47 (m, 4 H), 1.09 (t, J = 7.1 Hz, 6 H), 0.92 – 0.84 

(m, 4 H), 0.02 (s, 18 H). 

13C-NMR (acetone-d6, 101 MHz, ppm): δ = 165.4, 153.7, 152.2, 139.5, 137.7, 127.3, 125.4, 

125.3, 109.5, 72.9, 65.6, 60.8, 60.6, 56.5, 24.4, 18.6, 14.3, 1.3. 

IR (ATR) ~ (cm-1): 2951, 2184, 2140, 1687, 1605, 1584, 1520, 1500, 1464, 1411, 1379, 

1364, 1341, 1319, 1245, 1189, 1124, 1077, 1028, 1003, 938, 834, 788, 769, 726, 693. 

HRMS (ESI) calculated for C48H63N8O12Si2: 999.4109, found 999.41095 [MH]. 

mp: 68.5 – 70.0 °C. 
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Diethyl (E)-7,7'-dicyano-2,2'-di(thiophen-3-yl)-1,1'-bis((2-(trimethylsilyl)ethoxy)methyl)-

1H,1'H,5H,5'H-[6,6'-biimidazo[1,2-b]pyrazolylidene]-3,3'-dicarboxylate (48d) 

 

Diethyl (E)-7,7'-dicyano-2,2'-di(thiophen-3-yl)-1,1'-bis((2-(trimethylsilyl)ethoxy)methyl)-

1H,1'H,5H,5'H-[6,6'-biimidazo[1,2-b]pyrazolylidene]-3,3'-dicarboxylate was synthesized 

according to TP14 on a 0.115 mmol scale. The reaction was completed within 150 min at 

25 °C and yielded the title compound 48d (41 mg, 0.049 mmol, 86%) as a yellow solid. 

1H-NMR (acetone-d6, 400 MHz, ppm): δ = 7.67 (dd, J = 3.0, 1.1 Hz, 2 H), 7.54 (dd, J = 5.0, 

3.0 Hz, 2 H), 7.28 (dd, J = 5.0, 1.1 Hz, 2 H), 5.21 (s, 4 H), 4.14 (q, J = 7.1 Hz, 4 H), 3.54 (t, 

J = 8.1 Hz, 4 H), 1.12 (t, J = 7.1 Hz, 6 H), 0.89 (t, J = 8.1 Hz, 4 H), 0.01 (s, 18 H). 

13C-NMR (acetone-d6, 101 MHz, ppm): δ = 165.3, 152.4, 132.6, 132.6, 131.1, 129.9, 127.9, 

127.7, 125.4, 72.8, 65.7, 60.9, 24.5, 18.4, 14.2, 1.3. 

IR (ATR) ~ (cm-1): 2953, 2184, 2142, 1683, 1629, 1521, 1396, 1377, 1341, 1262, 1248, 

1189, 1077, 1027, 964, 939, 916, 857, 833, 809, 785, 756, 722, 692, 668. 

HRMS (ESI) calculated for C38H48N8NaO6S2Si2+: 855.2569, found 855.25681 [M+Na]+. 

mp: 95.5 – 98.2 °C. 
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Diethyl (E)-2,2'-dibenzoyl-7,7'-dicyano-1,1'-bis((2-(trimethylsilyl)ethoxy)methyl)-

1H,1'H,5H,5'H-[6,6'-biimidazo[1,2-b]pyrazolylidene]-3,3'-dicarboxylate (48e) 

 

Diethyl (E)-2,2'-dibenzoyl-7,7'-dicyano-1,1'-bis((2-(trimethylsilyl)ethoxy)methyl)-

1H,1'H,5H,5'H-[6,6'-biimidazo[1,2-b]pyrazolylidene]-3,3'-dicarboxylate was synthesized 

according to TP14 on a 0.185 mmol scale. The reaction was completed within 40 min and 

yielded the title compound 48e (68 mg, 0.078 mmol, 84%) as a yellow solid. 

1H-NMR (acetone-d6, 400 MHz, ppm): δ = 7.80 (d, J = 7.0 Hz, 4 H), 7.62 (t, J = 7.4 Hz, 2 H), 

7.50 (t, J = 7.6 Hz, 4 H), 5.64 (s, 4 H), 3.75 (q, J = 7.1 Hz, 4 H), 3.54 – 3.43 (m, 4 H), 0.77 – 

0.67 (m, 10 H), 0.10 (s, 18 H). 

13C-NMR (acetone-d6, 101 MHz, ppm): δ = 186.1, 163.4, 154.7, 139.8, 135.6, 132.6, 129.8, 

129.0, 128.3, 123.6, 72.5, 65.2, 60.3, 25.0, 17.4, 12.7, 2.2. 

IR (ATR) ~ (cm-1): 2950, 2359, 2194, 2150, 1703, 1638, 1599, 1581, 1543, 1518, 1494, 

1473, 1449, 1423, 1402, 1363, 1354, 1340, 1307, 1277, 1262, 1249, 1218, 1205, 1179, 

1143, 1082, 1063, 1033, 998, 956, 936, 919, 861, 848, 835, 812, 790, 761, 733, 724, 695, 

683. 

HRMS (ESI) calculated for C44H51N8O8Si2: 875.3374, found 875.33763 [MH]. 

mp: 249.8 – 250.9 °C. 
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1 Single Crystal X-Ray Diffraction Studies 

Phenyl(3-(1-phenylallyl)bicyclo[1.1.1]pentan-1-yl)methanone (4b) 

Table 3. Details for X-ray data collection and structure refinement for compound 4b. 

 4b 

Empirical formula C21H20O 

Formula mass 288.37 

T[K] 143(2) 

Crystal size [mm] 0.40 × 0.10 × 0.10 

Crystal description colorless rod 

Crystal system monoclinic 

Space group P21/n 

a [Ǻ] 10.7427(6) 

b [Ǻ] 10.4700(4) 

c [Ǻ] 14.4147(7) 

α [°] 90.0 

β [°] 93.099(5) 

γ [°] 90.0 

V [Ǻ3] 1618.94(14) 

Z 4 

ρcalcd. [g cm-3] 1.183 

μ [mm-1] 0.071 

F(000) 616 

Θ range [°] 4.27 – 25.24 

Index ranges -13 ≤ h ≤ 12 

 -12 ≤ k ≤ 10 

 -16 ≤ l ≤ 17 

Reflns. collected 11265 

Reflns. obsd. 2144 

Reflns. unique 3050 

(Rint = 0.0438) 

R1, wR2 (2σ data) 0.0725, 0.1831 

R1, wR2 (all data) 0.1006, 0.2079 

GOOF on F2 1.030 

Peak/hole [e Ǻ-3] 0.776 / -0.251 
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Figure 10. Molecular structure of compound 4b in the crystal. DIAMOND119 representation; 

thermal ellipsoids are drawn at 50 % probability level. 

 

(1R,3R,5R)-3-(3-(4-Methoxyphenyl)bicyclo[1.1.1]pentan-1-yl)-6,6-dimethyl-2-methylene-

bicyclo[3.1.1]heptane (4m) 

Table 4. Details for X-ray data collection and structure refinement for compound 4m. 

 4m 

Empirical formula C22H28O 

Formula mass 308.44 

T[K] 143(2) 

Crystal size [mm] 0.40 × 0.15 × 0.02 

Crystal description colorless platelet 

Crystal system monoclinic 

Space group P21 

a [Ǻ] 8.0515(6) 

b [Ǻ] 6.4231(5) 

c [Ǻ] 17.0787(16) 

α [°] 90.0 

β [°] 92.434(8) 

γ [°] 90.0 

                                                
119 DIAMOND, Crystal Impact GbR, Version 3.2i. 
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V [Ǻ3] 882.44(13) 

Z 2 

ρcalcd. [g cm-3] 1.161 

μ [mm-1] 0.069 

F(000) 336 

Θ range [°] 4.20 – 25.24 

Index ranges -8 ≤ h ≤ 10 

 -7 ≤ k ≤ 8 

 -21 ≤ l ≤ 21 

Reflns. collected 5879 

Reflns. obsd. 2613 

Reflns. unique 3357 

(Rint = 0.0380) 

R1, wR2 (2σ data) 0.0530, 0.0876 

R1, wR2 (all data) 0.0788, 0.0995 

GOOF on F2 1.054 

Peak/hole [e Ǻ-3] 0.215 / -0.178 

 

 

Figure 11. Molecular structure of compound 4m in the crystal. DIAMOND119 representation; 

thermal ellipsoids are drawn at 50 % probability level. 

 



179 
 

2-(3-(4-Methoxyphenyl)bicyclo[1.1.1]pentan-1-yl)cyclohexan-1-one (9c) 

Table 5. Details for X-ray data collection and structure refinement for compound 9c. 

 9c 

Empirical formula C18H22O2 

Formula mass 270.35 

T[K] 143(2) 

Crystal size [mm] 0.40 × 0.35 × 0.25 

Crystal description colorless block 

Crystal system monoclinic 

Space group P21/c 

a [Ǻ] 12.8464(4) 

b [Ǻ] 7.7678(3) 

c [Ǻ] 15.0626(4) 

α [°] 90.0 

β [°] 99.686(3) 

γ [°] 90.0 

V [Ǻ3] 1481.64(8) 

Z 4 

ρcalcd. [g cm-3] 1.212 

μ [mm-1] 0.077 

F(000) 584 

Θ range [°] 3.41 – 25.24 

Index ranges -16 ≤ h ≤ 16 

 -9 ≤ k ≤ 9 

 -18 ≤ l ≤ 18 

Reflns. collected 20402 

Reflns. obsd. 2429 

Reflns. unique 2863 

(Rint = 0.0292) 

R1, wR2 (2σ data) 0.0767, 0.2031 

R1, wR2 (all data) 0.0863, 0.2142 

GOOF on F2 1.027 

Peak/hole [e Ǻ-3] 0.733 / -0.280 
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Figure 12. Molecular structure of compound 9c in the crystal. DIAMOND119 representation; 

thermal ellipsoids are drawn at 50 % probability level. 

 

Ethyl 4-(bicyclo[1.1.1]pentan-1-yl)-1-methylpiperidine-4-carboxylate (20) 

Table 6. Details for X-ray data collection and structure refinement for compound 20. 

 20 

Empirical formula C14H23NO2 

Formula mass 237.33 

T[K] 123(2) 

Crystal size [mm] 0.40 × 0.40 × 0.35 

Crystal description colorless block 

Crystal system monoclinic 

Space group P21/c 

a [Ǻ] 15.4834(7) 

b [Ǻ] 5.9795(3) 

c [Ǻ] 14.7917(7) 

α [°] 90.0 

β [°] 97.994(4) 

γ [°] 90.0 

V [Ǻ3] 1356.15(11) 

Z 4 

ρcalcd. [g cm-3] 1.162 

μ [mm-1] 0.077 

F(000) 520 

Θ range [°] 2.66 – 25.24 

Index ranges -22 ≤ h ≤ 22 
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 -8 ≤ k ≤ 8 

 -21 ≤ l ≤ 21 

Reflns. collected 26420 

Reflns. obsd. 3121 

Reflns. unique 4124 

(Rint = 0.0472) 

R1, wR2 (2σ data) 0.0452, 0.1104 

R1, wR2 (all data) 0.0658, 0.1242 

GOOF on F2 1.026 

Peak/hole [e Ǻ-3] 0.377 / -0.198 

 

 

Figure 13. Molecular structure of compound 20 in the crystal. DIAMOND119 representation; 

thermal ellipsoids are drawn at 50 % probability level. 
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2 Details of the Computational Calculations 

Geometry optimizations have been performed using the B3LYP hybrid functional120 

complemented by the D3 dispersion correction.121 The def2SVP all electron basis set122 has 

been used for all elements. Thermal corrections to enthalpies at 298.15 K have been 

calculated at the same level using the rigid rotor/harmonic oscillator model. The abbreviation 

"qh" has been added where entropies and free energies at 298.15 K (S298 and G298) have 

been calculated using the quasi-harmonic approximation with a cutoff value of 100 cm-1. 

Single point energies have subsequently been calculated with the double-hybrid B2PLYP-D3 

functional121,123 in combination with the def2-TZVPP basis set,122 and combined with thermal 

corrections obtained at B3LYP-D3/def2SVP level in order to calculate enthalpies at 298.15 K. 

Solvent effects in tetrahydrofuran (THF) have been evaluated through single point 

calculations with the SMD continuum solvation model124 at the B3LYP-D3/def2SVP level 

using gas phase geometries. Free energies in solution have been corrected to a reference 

state of 1 mol/l at 298.15 K through addition of RTln(24.46) = +7.925 kJ/mol (= 0.0030185 

Hartree) to the gas phase (1 atm) free energies. All calculations have been performed with 

Gaussian 09.125 The value for R = 8.31451 J K-1 mol-1. Natural Bond Orbital (NBO) analysis 

was performed using NBO 6.0.126 

                                                
120 a) A. D. Becke J. Chem. Phys.1993, 98, 5648-5652. b) C. Lee, W. Yang, R. G. Parr, 
Phys. Rev. B 1988, 37, 785-789. 
121 a) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104; b) S. 
Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465. 
122 F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305. 
123 S. Grimme, J. Chem. Phys. 2006, 124, 34108. 
124 A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396. 
125 Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, 
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. 
Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. 
Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. 
Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. 
Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. 
Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, 
M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. 
Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. 
W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. 
Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. 
Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. 
126 NBO 6.0. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. 
Bohmann, C. M. Morales, C. R. Landis, F. Weinhold (Theoretical Chemistry Institute, 
University of Wisconsin, Madison, WI, 2013); http://nbo6.chem.wisc.edu/. 
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Scheme 45. Reaction mechanism for the addition of propellane (1) to the prenylzinc reagent 

2d via the cubic cluster 21. 
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Figure 14. Calculated geometries of selected intermediates shown in Figure 12 (B3LYP-

D3/def2SVP). 

 

Table 7. Total energies and enthalpies for the systems shown in Scheme 45 (in kJ/mol). 

system 

H298 
SMD(THF)/ 
B2PLYP-D3/ 
def2TZVPP// 

[kJ/mol] 

G298(qh,1M) 
SMD(THF)/ 
B2PLYP-D3/ 
def2TZVPP// 

[kJ/mol] 

1+21 0.0 0.0 

1+52 +27.9 +28.4 

22a -47.3 -3.1 

22b -68.8 -25.5 

23 -0.1 +52.0 

49 -35.0 +19.6 

24 -96.6 -42.7 

53 -20.9 +25.1 

54 +44.6 +95.6 

55 -107.6 -56.5 
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Table 8. Total energies and enthalpies for the systems shown in Scheme 45 (in kJ/mol). 

system 

H298 
SMD(THF)/ 
B2PLYP-D3/ 
def2TZVPP// 

[kJ/mol] 

G298(qh,1M) 
SMD(THF)/ 
B2PLYP-D3/ 
def2TZVPP// 

[kJ/mol] 

Eq. 52 > 21 -27.9 -28.4 

50 + 51 > 2 x 21 -6.9 -4.4 

Step 1: 

1 + 21 > 22a 
-47.3 -3.1 

Step 2: 

22a > 23 
+47.2 +55.1 

Step 3: 

23 > 49 
-34.9 -32.4 

Step 4: 

49 > 24 
-61.6 -62.3 

Step 5: 

24 + 2d > 

21 + 3d 

-2.5 -2.5 

sum of steps 

(1 + 2d > 3d) 
-99.1 -45.2 

Step 1’: 

1 + 52 > 53 
-48.8 -3.3 

Step 2’: 

53 > 54 
+65.5 +70.5 

Step 3’ + 4’: 

54 > 55 
-152.1 -152.1 
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Table 9. Total energies and enthalpies for the systems shown in Scheme 45 (in Hartree). 

system 
Etot 

B3LYP-D3/ 
def2SVP 

H298 
B3LYP-D3/ 
def2SVP 

G298 
B3LYP-D3/ 
def2SVP 

<S2> 
B3LYP-

D3/ 
def2SVP 

G298(qh) 
B3LYP-D3/ 
def2SVP 

Etot 
B2PLYP-D3/ 
def2TZVPP// 
B3LYP-D3/ 
def2SVP 

<S2> 
B2PLYP-D3/ 
def2TZVPP// 
B3LYP-D3/ 
def2SVP 

1        

kn13_005 -193.87237324 -193.774506 -193.803999 0.00 -193.803999 -193.9042284 0.00 

kn13_002 -193.87235922 -193.774498 -193.805682 0.00 -193.805682 -193.9042207 0.00 

        

21        

ks01_085 −12411.5110482 −12411.352496 −12411.432143 0.00 −12411.427599 −12411.0653400 0.00 

ks01_084 −12411.5104746 −12411.351721 −12411.431056 0.00 −12411.426373 −12411.0641721 0.00 

ks01_086 −12411.5094574 −12411.351089 −12411.432633 0.00 −12411.426892 −12411.0649448 0.00 

ks01_006 −12411.5090628 −12411.350600 −12411.432506 0.00 −12411.426177 −12411.0654693 0.00 

ks01_002 −12411.5089516 −12411.350515 −12411.432601 0.00 −12411.426285 −12411.0649217 0.00 

ks01_005 −12411.5086638 −12411.350324 −12411.431980 0.00 −12411.426091  0.00 

        

22a        

ks01_024 
(from 

ks01_023) 
−12605.4152459 −12605.156649 −12605.251456 0.00 −12605.243086 −12604.998245 0.00 

ks01_023 −12605.4151470 −12605.156301 −12605.249776 0.00 −12605.242495 −12604.9975198 0.00 

ks01_090 −12605.4148468 −12605.156225 −12605.249669 0.00 −12605.242501  0.00 

ks01_034 
(from 

ks01_021) 
−12605.4140028 −12605.155483 −12605.249663 0.00 −12605.242096 −12604.996697 0.00 

ks01_021 −12605.4137674 −12605.155215 −12605.248320 0.00 −12605.241204 −12604.9959609 0.00 

ks01_036 
(from 

ks01_013) 
−12605.4137559 −12605.155175 −12605.249919 0.00 −12605.241970  0.00 

ks01_091 −12605.4135722 −12605.154924 −12605.250584 0.00   0.00 

ks01_037 
(from 

ks01_020) 
−12605.4135522 −12605.154932 −12605.251021 0.00 −12605.242016  0.00 

ks01_035 
(from 

ks01_019) 
−12605.4133826 −12605.154734 −12605.249638 0.00 −12605.241274  0.00 

ks01_019 −12605.4132439 −12605.154567 −12605.248122 0.00 −12605.240648  0.00 

ks01_013 −12605.4131086 −12605.154491 −12605.248727 0.00 −12605.240952  0.00 

ks01_020 −12605.4130679 −12605.154399 −12605.249756 0.00 −12605.241095  0.00 

ks01_027 
(from 

ks01_022) 
−12605.4126888 −12605.154128 −12605.249455 0.00 −12605.240981  0.00 

ks01_022 −12605.4119964 −12605.153462 −12605.248601 0.00 −12605.240038  0.00 

        

22b        

ks01_026 −12605.4188114 −12605.160220 −12605.253088 0.00 −12605.246978 −12605.0022938 0.00 

ks01_040 −12605.4186432 −12605.160117 −12605.253158 0.00 −12605.246883 −12605.0025190 0.00 

ks01_042 −12605.4098360 −12605.151405 −12605.245772 0.00 −12605.238174  0.00 

ks01_041 −12605.4098354 −12605.151404 −12605.245781 0.00 −12605.238174  0.00 
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23        

ks01_050 −12605.3825283 −12605.124945 −12605.216249 0.00 −12605.208368 −12604.9667026 0.00 

        

49        

ks01_051 −12605.4032362 −12605.142944 −12605.231908 0.00 −12605.225409 −12604.9869363 0.00 

        

24        

ks01_014 −12605.4371295 −12605.177082 −12605.268961 0.00 −12605.259814 −12605.0211343 0.00 

ks01_011 −12605.4371134 −12605.177034 −12605.268950 0.00 −12605.259735 −12605.0211232 0.00 

ks01_012 −12605.4370486 −12605.177082 −12605.269143 0.00 −12605.259890  0.00 

ks01_010 −12605.4370146 −12605.176998 −12605.268294 0.00 −12605.259761  0.00 

ks01_038 
(from 

ks01_010) 
−12605.4367909 −12605.176699 −12605.267519 0.00 −12605.259407  0.00 

ks01_015 −12605.4336522 −12605.173626 −12605.265466 0.00 −12605.256550  0.00 

        

2d        

kn13_009 -5016.6575135 -5016.514420 -5016.572439 0.00 -5016.569117 -5016.4976610 0.00 

kn13_008 -5016.6573729 -5016.514302 -5016.572214 0.00 -5016.569054 -5016.4980160 0.00 

kn13_004 -5016.6573728 -5016.514302 -5016.572214 - - - - 

kn13_001 -5016.6567449 -5016.513644 -5016.572378 0.00 -5016.568774 -5016.4975508 0.00 

        

3d        

kn13_013 -5210.5856109 -5210.340783 -5210.408077 0.00 -5210.403184 -5210.4549339 0.00 

kn13_011 -5210.5855788 -5210.341796 -5210.406118 0.00 -5210.402634 -5210.4549318 0.00 

        

50        

ks02_042 -10033.3929298 -10033.104189 -10033.194703 0.00 -10033.189135 -10033.0573258 0.00 

ks02_038 -10033.3927713 -10033.104375 -10033.196645 0.00 -10033.190157 -10033.0571647 0.00 

ks02_039 -10033.3922736 -10033.103966 -10033.196127 0.00   0.00 

ks02_003 -10033.3921815 -10033.103941 -10033.198071 0.00 -10033.189771 -10033.0560727 0.00 

ks02_037 -10033.3908662 -10033.102662 -10033.195757 0.00 -10033.188428  0.00 

ks02_040 -10033.3906193 -10033.102392 -10033.196595 0.00   0.00 

ks02_041 -10033.3894988 -10033.101210 -10033.195488 0.00   0.00 

        

51        

ks01_108 -14789.6266544 -14789.598119 -14789.666955 0.00 -14789.663493 -14789.0735976 0.00 

        

52        

ks01_083 -12411.5003651 -12411.341884 -12411.424430 0.00 -12411.416821 -12411.5285638 0.00 

ks01_097 -12411.5002209 -12411.341705 -12411.423409 0.00 -12411.416611 -12411.5283789 0.00 
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53        

ks01_110 
(from 

ks01_024) 
−12605.4058751 −12605.147206 −12605.240677 0.00 −12605.232991 −12604.988232 0.00 

        

54        

ks01_111 
(from 

ks01_050) 
−12605.3733249 −12605.115643 −12605.208393 0.00 −12605.199519 −12604.95576 0.00 

        

55        

ks01_112 -12605.4421728 -12605.182058 -12605.275534 0.00 -12605.265748 -12605.023727 0.00 

ks01_113 -12605.4422142 -12605.182165 -12605.276281 0.00 -12605.266013 -12605.023752 0.00 

ks01_114 -12605.4421319 -12605.182082 -12605.275692 0.00   0.00 

 

Table 10. Total energies and enthalpies for the systems shown in Scheme 45 (in Hartree). 

system 
Etot 

B3LYP-D3/ 
def2SVP 

H298 
B3LYP-D3/ 
def2SVP 

G298(qh) 
B3LYP-D3/ 

def2SVP (qh) 

Etot 
B2PLYP-D3/ 
def2TZVPP// 
B3LYP-D3/ 
def2SVP 

Etot 
SMD(THF)/ 
B3LYP-D3/ 
def2SVP 

G298(qh,1M) 
SMD(THF)/ 
B2PLYP-D3/ 
def2TZVPP// 
B3LYP-D3/ 
def2SVP 

 

1       

kn13_005 -193.87237324 -193.774506 -193.803999 -193.9042284 -193.88523394 -193.8456964 

kn13_002 -193.87235922 -193.774498 -193.805682 -193.9042207 -193.88523469 -193.8474005 

       

21       

ks01_085 −12411.5110482 −12411.352496 −12411.427599 −12411.0653400 −12411.5408086 -12411.0086327 

ks01_084 −12411.5104746 −12411.351721 −12411.426373 −12411.0641721 −12411.5412006 -12411.0077780 

ks01_086 −12411.5094574 −12411.351089 −12411.426892 −12411.0649448 −12411.5373398 -12411.0072433 

ks01_006 −12411.5090628 −12411.350600 −12411.426177 −12411.0654693 −12411.5368335 -12411.0073357 

ks01_002 −12411.5089516 −12411.350515 −12411.426285 −12411.0649217 −12411.5367619 -12411.0070469 

ks01_005 −12411.5086638 −12411.350324 −12411.426091  −12411.5363737  

       

22a       

ks01_024 
(from 

ks01_023) 
−12605.4152459 −12605.156649 −12605.243086 −12604.998245 −12605.4493860 

-12604.8572067 

 

ks01_023 −12605.4151470 −12605.156301 −12605.242495 −12604.9975198 −12605.4480332 -12604.8547355 

ks01_090 −12605.4148468 −12605.156225 −12605.242501 −12604.9980338 −12605.4492291 -12604.8570518 

ks01_034 
(from 

ks01_021) 
−12605.4140028 −12605.155483 −12605.242096 −12604.996697 −12605.4483264 

-12604.8560953 

 

ks01_021 −12605.4137674 −12605.155215 −12605.241204 −12604.9959609 −12605.4473458 -12604.8539574 

ks01_036 
(from 

ks01_013) 
−12605.4137559 −12605.155175 −12605.241970  −12605.4476853  

ks01_037 
(from 

ks01_020) 
−12605.4135522 −12605.154932 −12605.242016  −12605.4473518  
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ks01_035 
(from 

ks01_019) 
−12605.4133826 −12605.154734 −12605.241274  −12605.4483837  

ks01_019 −12605.4132439 −12605.154567 −12605.240648  −12605.4475184  

ks01_013 −12605.4131086 −12605.154491 −12605.240952  −12605.4465225  

ks01_020 −12605.4130679 −12605.154399 −12605.241095  −12605.4465365  

ks01_027 
(from 

ks01_022) 
−12605.4126888 −12605.154128 −12605.240981  −12605.4470863  

ks01_022 −12605.4119964 −12605.153462 −12605.240038  −12605.4459708  

       

22b       

ks01_026 −12605.4188114 −12605.160220 −12605.246978 −12605.0022938 −12605.4571148 -12604.8657453 

ks01_040 −12605.4186432 −12605.160117 −12605.246883 −12605.002519 −12605.4565069 -12604.8656040 

ks01_042 −12605.4098360 −12605.151405 −12605.238174  −12605.4472447  

ks01_041 −12605.4098354 −12605.151404 −12605.238174  −12605.4472396  

       

23       

ks01_050 −12605.3825283 −12605.124945 −12605.208368 −12604.9667026 −12605.429241 -12604.8362365 

       

49       

ks01_051 −12605.4032362 −12605.142944 −12605.225409 −12604.9869363 −12605.4457196 -12604.8485740 

       

24       

ks01_014 −12605.4371295 −12605.177082 −12605.259814 −12605.0211343 −12605.4686426 -12604.8723134 

ks01_011 −12605.4371134 −12605.177034 −12605.259735 −12605.0211232 −12605.4685560 -12604.8721689 

ks01_012 −12605.4370486 −12605.177082 −12605.259890  −12605.4680948  

ks01_010 −12605.4370146 −12605.176998 −12605.259761  −12605.4681572  

ks01_038 
(from 

ks01_010) 
−12605.4367909 −12605.176699 −12605.259407  −12605.4682164  

ks01_015 −12605.4336522 −12605.173626 −12605.256550  −12605.4646365  

       

2d       

kn13_009 -5016.6575135 -5016.514420 -5016.569117 -5016.4976610 -5016.6817050 -5016.4304375 

kn13_008 -5016.6573729 -5016.514302 -5016.569054 -5016.4980160 -5016.6821803 -5016.4314860 

kn13_001 -5016.6567449 -5016.513644 -5016.568774 -5016.4975508 -5016.6810878 -5016.4309043 

       

3d       

kn13_013 -5210.5856109 -5210.340783 -5210.403184 -5210.4549339 -5210.6122602 -5210.2961378 

kn13_011 -5210.5855788 -5210.341796 -5210.402634 -5210.4549318 -5210.6121604 -5210.2955501 

       

50       

ks02_042 -10033.3929298 -10033.104189 -10033.189135 -10033.0571647 -10033.4190869 -10032.8765085 

ks02_038 -10033.3927713 -10033.104375 -10033.190157 -10033.0571647 -10033.4186489 -10032.8774095 

ks02_039 -10033.3922736 -10033.103966     

ks02_003 -10033.3921815 -10033.103941 -10033.189771 -10033.0560727 -10033.4172632 -10032.8757254 
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ks02_037 -10033.3908662 -10033.102662 -10033.188428    

ks02_040 -10033.3906193 -10033.102392     

ks02_041 -10033.3894988 -10033.101210     

       

51       

ks01_108 -14789.6266544 -14789.598119 -14789.663493 -14789.0735976 -14789.6574140 -14789.1381773 

       

52       

ks01_083 -12411.5003651 -12411.341884 -12411.416821 -12411.0561902 -12411.5285638 -12410.9978263 

ks01_097 -12411.5002209 -12411.341705 -12411.416611 -12411.0559051 -12411.5283789 -12410.9974347 

       

53       

ks01_110 
(from 

ks01_024) 
−12605.4058751 −12605.147206 −12605.232991 −12604.988232 −12605.4400322 -12604.8464865 

       

54       

ks01_111 
(from 

ks01_050) 
−12605.3733249 −12605.115643 −12605.199519 −12604.95576 −12605.4140140 -12604.8196247 

       

55       

ks01_113 -12605.4422142 -12605.182165 -12605.266013 -12605.023752 -12605.4752537 -12604.7967423 

ks01_112 -12605.4421728 -12605.182058 -12605.265748 -12605.023727 -12605.4751313 -12604.7965707 

ks01_114 -12605.4421319 -12605.182082     

 



 
 

 

Scheme 46. Comparison of the Enthalpies and Free Energies of the reactions of the two regioisomeric clusters 21 and 52 

(SMD(THF)/B2PLYP-D3/def2TZVPP//B3LYP-D3/def2SVP). 
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Scheme 47. Reaction mechanism for the addition of propellane (1) to the prenylzinc reagent 

2d via the cubic cluster 50. 

 

Table 11. Total energies and enthalpies for the systems shown in Scheme 47 (in kJ/mol). 

system 

H298 
SMD(THF)/ 
B2PLYP-D3/ 
def2TZVPP// 

[kJ/mol] 

G298(qh,1M) 
SMD(THF)/ 
B2PLYP-D3/ 
def2TZVPP// 

[kJ/mol] 

1+50 0.0 0.0 

56 -58.4 -11.3 

57 +16.0 +71.6 

58 -14.9 +44.1 
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Table 12. Total energies and enthalpies for the systems shown in Scheme 47 (in kJ/mol). 

system 

H298 
SMD(THF)/ 
B2PLYP-D3/ 
def2TZVPP// 

[kJ/mol] 

G298(qh,1M) 
SMD(THF)/ 
B2PLYP-D3/ 
def2TZVPP// 

[kJ/mol] 

Step 1: 

1 + 50 > 56 
-58.4 -11.3 

Step 2: 

56 > 57 
+74.4 +82.9 

Step 3: 

57 > 58 
-30.9 -27.5 

58 + 59 > 21 + 
60 

-103.5 -107.7 

21 + 2d > 
61 + 50 

+11.4 +10.5 

sum of steps (1 
+ 59 + 2d > 60 + 

61) 
-106.9 -53.1 

 

Table 13. Total energies and enthalpies for the systems shown in Scheme 47 (in Hartree). 

system 
Etot 

B3LYP-D3/ 
def2SVP 

H298 
B3LYP-D3/ 
def2SVP 

G298 
B3LYP-D3/ 
def2SVP 

<S2> 
B3LYP-

D3/ 
def2SVP 

G298(qh) 
B3LYP-D3/ 
def2SVP 

Etot 
B2PLYP-D3/ 
def2TZVPP// 
B3LYP-D3/ 
def2SVP 

<S2> 
B2PLYP-D3/ 
def2TZVPP// 
B3LYP-D3/ 
def2SVP 

1        

kn13_005 -193.87237324 -193.774506 -193.803999 0.00 -193.803999 -193.9042284 0.00 

kn13_002 -193.87235922 -193.774498 -193.805682 0.00 -193.805682 -193.9042207 0.00 

        

50        

ks02_042 -10033.3929298 -10033.104189 -10033.194703 0.00 -10033.189135 -10033.0573258 0.00 

ks02_038 -10033.3927713 -10033.104375 -10033.196645 0.00 -10033.190157 -10033.0571647 0.00 

ks02_039 -10033.3922736 -10033.103966 -10033.196127 0.00   0.00 

ks02_003 -10033.3921815 -10033.103941 -10033.198071 0.00 -10033.189771 -10033.0560727 0.00 

ks02_037 -10033.3908662 -10033.102662 -10033.195757 0.00 -10033.188428  0.00 

ks02_040 -10033.3906193 -10033.102392 -10033.196595 0.00   0.00 

ks02_041 -10033.3894988 -10033.101210 -10033.195488 0.00   0.00 

        

56        

ks02_012 -10227.3052237 -10226.916679 -10227.021301 0.00 -10227.012715 -10226.9960038 0.00 

ks02_010 -10227.2984725 -10226.910081 -10227.014552 0.00 -10227.006872 -10226.9905268 0.00 

ks02_001 -10227.2978486 -10226.909531 -10227.013319 0.00 -10227.005947 -10226.9896733 0.00 

ks02_009 -10227.2975953 -10226.909347 -10227.013587 0.00   0.00 

ks02_014 -10227.2975313 -10226.909173 -10227.012846 0.00   0.00 

ks02_013 -10227.2968184 -10226.908633 -10227.013779 0.00   0.00 
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ks02_011 -10227.2956843 -10226.907444 -10227.014436 0.00   0.00 

ks02_015 -10227.2917191 -10226.903294 -10227.008026 0.00   0.00 

ks02_016 -10227.2902996 -10226.901975 -10227.008498 0.00   0.00 

        

57        

ks02_018 -10227.2626470 -10227.875338 -10227.975248 0.00 -10226.967933 -10226.9542079 0.00 

ks02_008 -10227.2612208 -10226.873876 -10226.974168 0.00 -10226.966646 -10226.9529420 0.00 

        

58        

ks02_033 -10227.2808404 -10226.891156 -10226.989474 0.00 -10226.982642 -10226.9713185 0.00 

        

59        

ks02_044 -4548.92915993 -4548.792373 -4548.841518 0.00 -4548.839792 -4548.7779531 0.00 

        

60        

ks02_035 -2364.73274204 -2364.364799 -2364.436727 0.00 -2364.430222 -2364.7183248 0.00 

        

21        

ks01_085 −12411.5110482 −12411.352496 −12411.432143 0.00 −12411.427599 −12411.0653400 0.00 

ks01_084 −12411.5104746 −12411.351721 −12411.431056 0.00 −12411.426373 −12411.0641721 0.00 

ks01_086 −12411.5094574 −12411.351089 −12411.432633 0.00 −12411.426892 −12411.0649448 0.00 

ks01_006 −12411.5090628 −12411.350600 −12411.432506 0.00 −12411.426177 −12411.0654693 0.00 

ks01_002 −12411.5089516 −12411.350515 −12411.432601 0.00 −12411.426285 −12411.0649217 0.00 

ks01_005 −12411.5086638 −12411.350324 −12411.431980 0.00 −12411.426091  0.00 

        

2d        

kn13_009 -5016.6575135 -5016.514420 -5016.572439 0.00 -5016.569117 -5016.4976610 0.00 

kn13_008 -5016.6573729 -5016.514302 -5016.572214 0.00 -5016.569054 -5016.4980160 0.00 

kn13_004 -5016.6573728 -5016.514302 -5016.572214 - - - - 

kn13_001 -5016.6567449 -5016.513644 -5016.572378 0.00 -5016.568774 -5016.4975508 0.00 

        

61        

ks02_030 -7394.77658141 -7394.763260 -7394.808503 0.00 -7394.807686 -7394.5089863 0.00 

 

Table 14. Total energies and enthalpies for the systems shown in Scheme 47 (in Hartree). 

system 
Etot 

B3LYP-D3/ 
def2SVP 

H298 
B3LYP-D3/ 
def2SVP 

G298(qh) 
B3LYP-D3/ 

def2SVP (qh) 

Etot 
B2PLYP-D3/ 
def2TZVPP// 
B3LYP-D3/ 
def2SVP 

Etot 
SMD(THF)/ 
B3LYP-D3/ 
def2SVP 

G298(qh,1M) 
SMD(THF)/ 

B2PLYP-D3/ 
def2TZVPP// 
B3LYP-D3/ 
def2SVP 

1       

kn13_005 -193.87237324 -193.774506 -193.803999 -193.9042284 -193.88523394 -193.8456964 

kn13_002 -193.87235922 -193.774498 -193.805682 -193.9042207 -193.88523469 -193.8474005 
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50       

ks02_042 -10033.3929298 -10033.104189 -10033.189135 -10033.0571647 -10033.4190869 -10032.8765085 

ks02_038 -10033.3927713 -10033.104375 -10033.190157 -10033.0571647 -10033.4186489 -10032.8774095 

ks02_039 -10033.3922736 -10033.103966     

ks02_003 -10033.3921815 -10033.103941 -10033.189771 -10033.0560727 -10033.4172632 -10032.8757254 

ks02_037 -10033.3908662 -10033.102662 -10033.188428    

ks02_040 -10033.3906193 -10033.102392     

ks02_041 -10033.3894988 -10033.101210     

       

56       

ks02_012 -10227.3052237 -10226.916679 -10227.012715 -10226.9960038 -10227.3338794 -10226.7291323 

ks02_010 -10227.2984725 -10226.910081 -10227.006872 -10226.9905268 -10227.3305239 -10226.7279592 

ks02_001 -10227.2978486 -10226.909531 -10227.005947 -10226.9896733 -10227.3311231 -10226.7280277 

ks02_009 -10227.2975953 -10226.909347     

ks02_014 -10227.2975313 -10226.909173     

ks02_013 -10227.2968184 -10226.908633     

ks02_011 -10227.2956843 -10226.907444     

ks02_015 -10227.2917191 -10226.903294     

ks02_016 -10227.2902996 -10226.901975     

       

57       

ks02_008 -10227.2612208 -10226.873876 -10226.966646 -10226.9529420 -10227.3034165 -10226.6975444 

ks02_018 -10227.2626470 -10227.875338 -10226.967933 -10226.9542079 -10227.3024963 -10226.6963247 

       

58       

ks02_033 -10227.2808404 -10226.891156 -10226.982642 -10226.9713185 -10227.3187442 -10226.7080054 

       

59       

ks02_044 -4548.92915993 -4548.792373 -4548.839792 -4548.7779531 -4548.94937872 -4548.7057855 

       

60       

ks02_035 -2364.73274204 -2364.364799 -2364.430222 -2364.7183248 -2364.76613737 -2364.4461816 

       

21       

ks01_085 −12411.5110482 −12411.352496 −12411.427599 −12411.0653400 −12411.5408086 -12411.0086327 

ks01_084 −12411.5104746 −12411.351721 −12411.426373 −12411.0641721 −12411.5412006 -12411.0077780 

ks01_086 −12411.5094574 −12411.351089 −12411.426892 −12411.0649448 −12411.5373398 -12411.0072433 

ks01_006 −12411.5090628 −12411.350600 −12411.426177 −12411.0654693 −12411.5368335 -12411.0073357 

ks01_002 −12411.5089516 −12411.350515 −12411.426285 −12411.0649217 −12411.5367619 -12411.0070469 

ks01_005 −12411.5086638 −12411.350324 −12411.426091  −12411.5363737  

       

2d       

kn13_009 -5016.6575135 -5016.514420 -5016.569117 -5016.4976610 -5016.6817050 -5016.4304375 

kn13_008 -5016.6573729 -5016.514302 -5016.569054 -5016.4980160 -5016.6821803 -5016.4314860 

kn13_001 -5016.6567449 -5016.513644 -5016.568774 -5016.4975508 -5016.6810878 -5016.4309043 
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61       

ks02_030 -7394.77658141 -7394.763260 -7394.807686 -7394.5089863 -7394.79822615 -7394.5587171 

 



 
 

 

Scheme 48. Enthalpies and Free Energies for the reaction with the symmetric cluster 50 (SMD(THF)/B2PLYP-

D3/def2TZVPP//B3LYP-D3/def2SVP). 
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Scheme 49. Coordination of [1.1.1]propellane on a lithium atom in cluster 21, leading 

towards the transition state 62. 

 

Table 15. Reaction energies for the systems shown in Scheme 49 (in Hartree) and 

comparison to the system shown in Scheme 49. 

system 

H298 
SMD(THF)/ 
B2PLYP-D3/ 
def2TZVPP// 

[kJ/mol] 

G298(qh,1M) 
SMD(THF)/ 
B2PLYP-D3/ 
def2TZVPP// 

[kJ/mol] 

Step 1: 

1 + 21 > 61 
-44.8 -2.0 

Step 2: 

61 > 62 
+81.8 +137.6 

Scheme 45:   

Step 1: 

1 + 21 > 22a 
-47.3 -3.1 

Step 2: 

22a > 23 
+47.2 +55.1 

 

Table 16. Total energies and enthalpies for the systems shown in Scheme 49 (in Hartree). 

system 
Etot 

B3LYP-D3/ 
def2SVP 

H298 
B3LYP-D3/ 
def2SVP 

G298 
B3LYP-D3/ 
def2SVP 

<S2> 
B3LYP-

D3/ 
def2SVP 

G298(qh) 
B3LYP-D3/ 
def2SVP 

Etot 
B2PLYP-D3/ 
def2TZVPP// 
B3LYP-D3/ 
def2SVP 

<S2> 
B2PLYP-D3/ 
def2TZVPP// 
B3LYP-D3/ 
def2SVP 

1        

kn13_005 -193.87237324 -193.774506 -193.803999 0.00 -193.803999 -193.9042284 0.00 

kn13_002 -193.87235922 -193.774498 -193.805682 0.00 -193.805682 -193.9042207 0.00 

        

21        

ks01_085 −12411.5110482 −12411.352496 −12411.432143 0.00 −12411.427599 −12411.0653400 0.00 

ks01_084 −12411.5104746 −12411.351721 −12411.431056 0.00 −12411.426373 −12411.0641721 0.00 

ks01_086 −12411.5094574 −12411.351089 −12411.432633 0.00 −12411.426892 −12411.0649448 0.00 

ks01_006 −12411.5090628 −12411.350600 −12411.432506 0.00 −12411.426177 −12411.0654693 0.00 
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ks01_002 −12411.5089516 −12411.350515 −12411.432601 0.00 −12411.426285 −12411.0649217 0.00 

ks01_005 −12411.5086638 −12411.350324 −12411.431980 0.00 −12411.426091  0.00 

        

61        

ks03_002 -12605.4166014 -12605.157925 -12605.252647 0.00 -12605.244888 -12605.4474671 0.00 

        

62        

ks03_011 -12605.3709199 -12605.114046 -12605.201209 0.00 -12605.196046 -12604.9528455 0.00 

 

Table 17. Total energies and enthalpies for the systems shown in Scheme 49 (in Hartree). 

system 
Etot 

B3LYP-D3/ 
def2SVP 

H298 
B3LYP-D3/ 
def2SVP 

G298(qh) 
B3LYP-D3/ 

def2SVP (qh) 

Etot 
B2PLYP-D3/ 
def2TZVPP// 
B3LYP-D3/ 
def2SVP 

Etot 
SMD(THF)/ 
B3LYP-D3/ 
def2SVP 

G298(qh,1M) 
SMD(THF)/ 

B2PLYP-D3/ 
def2TZVPP// 
B3LYP-D3/ 
def2SVP 

1       

kn13_005 -193.87237324 -193.774506 -193.803999 -193.9042284 -193.88523394 -193.8456964 

kn13_002 -193.87235922 -193.774498 -193.805682 -193.9042207 -193.88523469 -193.8474005 

       

21       

ks01_085 −12411.5110482 −12411.352496 −12411.427599 −12411.0653400 −12411.5408086 -12411.0086327 

ks01_084 −12411.5104746 −12411.351721 −12411.426373 −12411.0641721 −12411.5412006 -12411.0077780 

ks01_086 −12411.5094574 −12411.351089 −12411.426892 −12411.0649448 −12411.5373398 -12411.0072433 

ks01_006 −12411.5090628 −12411.350600 −12411.426177 −12411.0654693 −12411.5368335 -12411.0073357 

ks01_002 −12411.5089516 −12411.350515 −12411.426285 −12411.0649217 −12411.5367619 -12411.0070469 

ks01_005 −12411.5086638 −12411.350324 −12411.426091  −12411.5363737  

       

61       

ks03_002 -12605.4166014 -12605.157925 -12605.244888 -12605.0006701 -12605.4474671 -12604,8568039 

       

62       

ks03_011 -12605.3709199 -12605.114046 -12605.196046 -12604.9528455 -12605.3995730 -12604,8036062 
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Table 18. Wiberg Bond Index (WBI) and distances for reaction centers. 

Structure 

WBI of 
central C-C 

bond 
(B3LYP-
D3/def2-

SVP) 

WBI of 
central C-C 

bond 
(B3LYP-
D3/def2-
TZVP) 

WBI of C-
M-bond 
(B3LYP-
D3/def2-

SVP) 

WBI of C-M-
bond 

(B3LYP-
D3/def2-
TZVP) 

distance 
between 

bridgehead 
carbons 
(B3LYP-

D3/def2-SVP) 
[pm] 

1 0.7691 0.7906 - - 156.3 

22a 0.6557 0.6638 0.1291 0.1489 154.2 

23 0.3393 0.3216 0.2194 0.2452 171.9 

24 0.0579 0.0509 0.4775 0.5092 189.7 

61 0.7260 0.7395 0.0374 0.0639 154.8 

 

The coordination of [1.1.1]propellane (1) to zinc (22a) results in a reduction of the bonding 

order of the central bond indicated by a decrease of the Wiberg Bond Index (WBI). However, 

at the same time the length of the bond decreases by 2 pm. This is in accordance with the 

results of Jemmis,15b who observed similar results when investigating complexes of 

[1.1.1]propellane with electron-accepting halogen-bond donors. Overall, the removal of 

electron density from the mostly non-bonding HOMO seems to increase the strength of the 

central bond. 

As expected, the WBI of the central bond decreases significantly when moving to the 

transition state 23. In the product cluster 24 there is almost no bonding interaction between 

the bridgehead carbons. The WBI of the carbon-zinc bond in the intermediate 22a is 

approximately 4 times smaller than the one of the carbon-zinc bond in the product cluster 24. 

Similar trends were observed for the coordination of [1.1.1]propellane to lithium (61), albeit 

on a significantly smaller scale. 

The NBO presentation of the central bond in [1.1.1]propellane includes two partially occupied 

lone pairs at the bridgehead carbon atoms. A strong donor-acceptor interaction between the 

lone pair of one of the bridgehead carbons and a vacant orbital of the neighbouring zinc in 

intermediate 22a was confirmed by the NBO analysis: 
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113. (1.60735) LP ( 1) C 25            s( 53.79%)p 0.86( 46.12%)d 0.00( 0.08%)f 0.00( 0.01%) 

141. (0.50812) LV ( 1)Zn  7            s( 99.67%)p 0.00( 0.17%)d 0.00( 0.16%)f 0.00( 0.00%) 

144. (0.74142) LV ( 1) C 26            s( 9.16%)p 9.87( 90.35%)d 0.05( 0.47%)f 0.00( 0.02%) 

 

SECOND ORDER PERTURBATION THEORY ANALYSIS OF FOCK MATRIX IN NBO 

BASIS 

     Threshold for printing:   0.50 kcal/mol 

                                                                                    E(2)       E(NL)-E(L)          F(L,NL) 

      Donor (L) NBO              Acceptor (NL) NBO      kcal/mol        a.u.                   a.u. 

 ====================================================================== 

      113. LP ( 1) C 25           141. LV ( 1)Zn  7           68.37          0.30                  0.129 

 

Table 19. Calculated length of the central bond in [1.1.1]propellane using different basis sets. 

method 
 B3LYP-D3/def2-

SVP 
B3LYP-D3/def2-

TZVPP 
B3LYP-D3/def2-

QZVPP 

experimental 

value9 

length of the 
central C-C bond 

in 1 [pm] 
156.3 156.7 156.6 159.4 

 

The Natural Population Analysis (NPA) was employed to examine the charge distribution in 

selected intermediates (Table 20). 

Table 20. Charges of fragments in [1.1.1]propellane in selected intermediates as determined 

by Natural Population Analysis. 

Intermediate 

charge of the 
bridgehead 

carbon next to 
zinc [a.u.] 

charge of the 
bridgehead 

carbon opposite 
to zinc [a.u.] 

charge of the bridge CH2-
groups (hydrogens 

summed into carbons) 
[a.u.] 

total charge of 
the cage 

[a.u.] 

1 0.023 0.023 +0.015 0 

22a 0.322 +0.086 +0.120/+0.119/+0.105 +0.108 

23 0.390 +0.019 +0.054/+0.067/+0.015 0.233 
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The coordination of [1.1.1]propellane to the metal cluster in intermediate 22a results in a 

localization of electron density at the bridgehead carbon adjacent to the zinc. This is 

compensated by a slight positive charge on the opposite bridgehead carbon and all of the 

CH2-units, resulting in a total charge for the propellane unit of +0.108 e. In the transition state 

23 the negative charge on the bridgehead carbon next to zinc is even larger. The remaining 

cage still holds a positive charge. This is in contrast to previously reported reactions of 

anions with [1.1.1]propellane, where the delocalization of additional electron density onto the 

bridge carbons and the resulting electronic repulsion was found to be responsible for the 

relatively high activation barriers.18 
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