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1. Summary

1 Summary

Cerebral small vessel disease (SVD) is a major cause of stroke and disability. This is espe-

cially true for hereditary forms featuring more severe phenotypes. CARASIL is an early

onset familial SVD caused by homozygous mutations in the gene encoding the protease

HTRA1. In addition, heterozygous HTRA1 mutations have recently been shown to cause

milder SVD. HTRA1 plays a crucial role in transforming growth factor-β (TGF-β) signal-

ing, which, in turn, regulates cell differentiation, including that of vascular smooth muscle

cell(s). However, the molecular and cellular mechanisms that promote HTRA1-related

SVD are largely unknown.

In the present study, I used skin fibroblasts from patients bearing homo- or heterozy-

gous HTRA1 mutations and performed mRNA and protein analysis, as well as contraction

assays. I evidenced that HTRA1 loss-of-function correlates with decreased TGF-β signal-

ing activity in heterozygous cells. Moreover, I established that heterozygous patient cells

display a downregulation of contractile proteins, a reduced contractile activity and an up-

regulation of phagocytosis-associated markers, suggesting a disease-related cell phenotype

switch from contractile to phagocytic. Accordingly, immunoblot and in situ immunohis-

tochemistry both confirmed a reduced contractile marker expression in cerebral vessels of

HTRA1-/- mice. I identified the transcriptional regulator Klf4 as a putative orchestrator of

disease-related cell phenotypic switching and demonstrated that treatment with recombi-

nant TGF-β is sufficient to restore TGF-β signaling and contractile cell function ex vivo.

Together, my data provide new insights in the pathomechanisms underlying HTRA1-

related SVD.
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2. Zusammenfassung

2 Zusammenfassung

Zerebrale Mikroangiopathien sind bedeutende Ursachen von Schlaganfällen und anderer

krankheitsbedingter Lebensqualitätseinbußen. Dies gilt besonders für vererbte Formen, wel-

che überwiegend durch stärker ausgeprägte Krankheitssymptome auffallen. CARASIL ist

eine hereditäre zerebrale Mikroangiopathie mit früher Erstmanifestation und wird durch

homozygote Mutationen in dem für die Protease HTRA1 codierenden Gen hervorgerufen.

In jüngerer Vergangenheit wurden zudem heterozygote Mutationen in HTRA1 als Ursa-

che von zerebralen Mikroangiopathien schwächeren Phänotyps identifiziert. HTRA1 ist ein

wichtiger Bestandteil des TGF-β-Signalweges, der die Differenzierung verschiedener Zell-

typen einschließlich glatter Gefäßmuskelzellen reguliert. Die molekularen und zellulären

Mechanismen, welche an der Manifestation HTRA1-assoziierter zerebraler Mikroangiopa-

thien beteiligt sind, sind weitestgehend unbekannt.

In der vorliegenden Arbeit führte ich an kultivierten Fibroblasten von Patienten mit

homo- bzw. heterozygoten HTRA1 -Mutationen mRNA- und Proteinanalysen sowie Kon-

traktionsassays durch. Ich konnte zeigen, dass ein Funktionsverlust von HTRA1 mit einer

verminderten TGF-β-Signalaktivität in heterozygoten Zellen einhergeht. Zudem beobachte-

te ich in diesen Zellen einen Verlust kontraktiler Marker, eine herabgesetzte Kontraktilität,

sowie eine vermehrte Expression phagozytoseassoziierter Marker. In der Zusammenschau

legen meine Beobachtungen somit eine krankhafte Umdifferenzierung von einem kontrakti-

len hin zu einem phagozytischen Zellphänotyp nahe. Analog hierzu konnte ich mittels Wes-

tern Blot und in situ-Immunhistochemie eine reduzierte Expression kontraktiler Marker in

zerebralen Blutgefäßen HTRA1-defizienter Mäuse nachweisen. Des Weiteren identifizierte

3



2. Zusammenfassung

ich den Transkriptionsfaktor Klf4 als mögliches Regulationselement besagter krankhaften

Veränderung des Zellphänotyps und zeigte, dass mittels Behandlung mit rekombinantem

TGF-β eine suffiziente Wiederherstellung der TGF-β-Signalkaskade sowie der kontraktilen

Zellfunktion ex vivo erreicht werden kann.

Zusammenfassend gesagt zeigen die Ergebnisse der vorliegenden Arbeit neue Erkennt-

nisse über die Pathomechanismen, welche der HTRA1-assoziierten zerebralen Mikroangio-

pathie zugrunde liegen, auf.

4



3. Introduction

3 Introduction

3.1 Cerebral Small Vessel Disease (SVD)

3.1.1 Definition and Epidemiology of SVD

Cerebral small vessel disease (SVD) is characterized by a typical pattern of clinical, neu-

roimaging and neuropathological findings (Wardlaw et al., 2013) resulting from damage to

perforating small arteries and arterioles, which reach from either the subarachnoid circula-

tion or the large basal cerebral arteries into the white matter of the brain (Pantoni, 2010)

(Figure 3.1).

SVD is responsible for most cases of hemorrhagic stroke (the most catastrophic type of

stroke) and a quarter of ischemic strokes. Consequently, it is a significant cause of disability

and death among adults. In addition, SVD is the most frequent cause of vascular cognitive

impairment (VCI) and its more severe and advanced stage, vascular dementia (VaD).

Either alone or in combination with neurodegenerative pathologies such as Alzheimer’s

disease (AD), SVD contributes to at least 40 % of dementia cases.

The prevalence of SVD greatly increases with age. Therefore clinical or neuroradiological

findings correlated to the disease (see Section 3.1.3) can be observed in approximately 80 %

of 65-year-olds and almost all 90-year old individuals (Haffner et al., 2016). Advanced

age, hypertension and diabetes are the predominant contributors to SVD (Thompson and

Hakim, 2009), while minor risk factors include smoking and male sex (Mok and Kim, 2015).

Genetic predisposition is another acknowledged contributor to sporadic SVD (Dichgans,

2007).

5



3. Introduction

Figure 3.1.: Perforating cerebral arteries and arterioles

Illustration of the macro- (left) and microanatomy (right) of perforating cerebral arte-

ries. While VSMC are found in arteries and arterioles, capillaries are covered by pericytes,

instead. Figure from Wardlaw et al. (2013).

Despite a considerable health burden and a growing academic interest, little is known

about the pathogenesis, effective prevention and treatment of SVD.

3.1.2 Clinical Features of SVD

Most non-SVD-related strokes are easily recognized due to acute and severe symptoms

such as hemiparesis, aphasia or life-threatening circulatory dysfunction. In contrast, SVD-

related subcortical infarcts often result in fewer and less noticeable symptoms or even

remain clinically silent (Wardlaw et al., 2013).

SVD-related strokes display a favorable early outcome as compared to other stroke types

(Jackson and Sudlow, 2005). However, their long-term impact on the daily living functions

of patients is considerable, and may, as the disease progresses, almost entirely deprive them

6



3. Introduction

of autonomy (Pantoni, 2010; Mok and Kim, 2015). Indeed, common SVD manifestations

include motor and executive slowing (Craggs et al., 2014), dysarthria, urinary incontinence

and mood changes up to severe clinical depression as well as progressive dementia.

3.1.3 Neuroimaging in SVD

It is challenging to visualize small vessels in vivo (Wardlaw et al., 2001). Hence, SVD is

typically defined by the presence of characteristic lesions detected by magnetic resonance

imaging (MRI) or computed tomography (CT) (Haffner et al., 2016). A hallmark finding

are so-called lacunar infarcts (Figure 3.2a), which result from occlusion of perforating

small arteries (as depicted in Figure 3.1). Therefore, they are seldom found in the cortex,

but much rather in the white and deep gray matter (Rincon and Wright, 2014). Lacunar

infarcts have a diameter of up to 20 mm (Wardlaw et al., 2009) and may take one of three

possible courses of development. First, some lacunar infarcts result in the formation of

lacunes (Figure 3.2b), which are trabeculated cavities filled with cerebrospinal fluid (CSF).

Second, lesions may gradually dissipate in MRI, making it difficult to meaningfully estimate

true lacunar infarct burden in a patient (Potter et al., 2010). A third possible outcome is

the formation of white matter hyperintensities (WMH) (Figure 3.2c), which are broadly

assumed to result from chronic cerebral hypoperfusion (Duering et al., 2013). Further

typical neuroimaging findings in SVD include visible perivascular spaces as well as cerebral

microbleeds (CMBs) (Staals et al., 2014; Potter et al., 2013).

3.1.4 Histopathology of SVD

From a histopathological point of view, SVD is characterized by a panel of changes to

the composition - and ultimately the function - of the vessel wall of small arteries and

arterioles. Combined, these changes result in a stenosis and/or loss of elasticity of small

vessels, impeding vascular autoregulation and blood flow. Thus, characteristic brain areas

supplied by penetrating end-arteries develop typical lesions (see Section 3.1.3) as a result

of acute or chronic oxygen and nutrient deprivation (Craggs et al., 2014).

7



3. Introduction

a b c

Figure 3.2.: Neuroimaging findings in SVD

(a) Acute lacunar infarct (diffusion-weighted MRI). (b) CSF-filled cavity formed by a

lacunar infarct (fluid-attenuated inversion recovery (FLAIR) MRI). (c) WMH (seen as

hyperintense areas; FLAIR MRI). Figures from Wardlaw et al. (2013).

One very widespread and prominent histopathological finding in SVD is a progressive

hyalinization and fibrosis of vessels with accumulation of ECM components such as fi-

bronectin and collagens (Craggs et al. (2014); see Figure 3.3a-f). This is accompanied by a

marked thickening of the tunica intima, while the tunica media is more prone to degenera-

tion or fibrinoid necrosis, potentially resulting in a splitting of the vessel wall referred to as

double barrel appearance (Pantoni, 2010). A loss of VSMC in the media is also frequently

reported (Pantoni, 2010; Thompson and Hakim, 2009). It should be noted, however, that

this mostly relies on the analysis of VSMC-specific contraction markers such as α-SMA

(see Figure 3.3g-i), rather than medial cell quantification.

While many commonly observed pathological features are shared between sporadic and

hereditary SVD, some inherited disorders may present with additional, unique histological

findings (Table 3.1).
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3. Introduction

Control Sporadic SVD CADASIL

a b c

d e f

g h i

Figure 3.3.: Histopathological hallmarks of SVD

(a)-(c) H&E staining showing sclerosis, i.e. luminal narrowing and thickening of the vessel

wall in sporadic SVD as well as in CADASIL. (d)-(f) Staining for collagen IV, an extra-

cellular matrix (ECM) component. Increased deposition of collagen IV indicates fibrosis.

(g)-(i) α-smooth muscle actin (α-SMA) staining showing a loss of contractile cells or con-

tractile protein in sporadic and hereditary SVD. Scale bar in (i) represents 70 µm in (c),

100 µm in (i), and 150 µm in all other figures. Figures from Craggs et al. (2014).
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3.1.5 Hereditary SVD

Besides sporadic SVD, some monogenic forms, including CADASIL, the most common

form of inherited SVD, exist. Representative examples are provided in Table 3.1. These

inherited disorders are rather rare, but provide useful models for the identification of basic

SVD mechanisms.

Indeed, although the pathomechanisms underlying distinct monogenic SVDs obviously

differ, there is increasing evidence for convergent pathways:

(i) Recent work has identified alterations of the cerebrovascular matrisome, i.e. the en-

tirety of proteins either constitutive or associated with the extracellular matrix, in

cerebral autosomal-dominant/-recessive arteriopathies with subcortical infarcts and

leukoencephalopathy (CADASIL/CARASIL) and COL4A1/-2 -related SVD (Joutel

and Faraci, 2014; Zellner et al., 2018)

(ii) The expression and/or location of TGF-β signaling pathway components was reported

to be altered in both CADASIL and CARASIL (Monet-Leprêtre et al., 2013; Kast

et al., 2014; Beaufort et al., 2014)

(iii) The CARASIL-relevant protein HTRA1 was found to accumulate in CADASIL brain

vessels (Monet-Leprêtre et al., 2013; Zellner et al., 2018)

In addition, features initially described in familial SVD cases have also been identified

in the more frequent sporadic forms. A remarkable example is provided by the work of

Duering et al., reporting that lesions within neuronal circuits typically associated with SVD

contribute to progressive vascular cognitive impairment, not only in CADASIL (Duering

et al., 2011), but also in sporadic SVD (Duering et al., 2014).
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CADASIL CARASIL RVCL Anderson-Fabry

disease (AFD)

COL4A1/-2 -related

SVD

Causative gene(s) NOTCH3A HTRA1F TREX1J GLAM COL4A1 ; COL4A2

Mode of inheritance autosomal

dominantB
autosomal

recessiveF
autosomal

dominantJ
X-linkedJ autosomal

dominantO

OMIM1 catalog

number of pheno-

type(s)

125310 600142 192315 301500 607595; 611773;

614483; 614519

Clinical features

Cognitive impair-

ment/dementia

yesC yes yes rare no

Mood distur-

bances/depression

yesD no yes no yes

Migraine yes (with aura)C no yes no yes

Other seizures alopecia,

spondylosisG
retinopathy, Ray-

naud’s phenomenon

angiokeratoma,

renal and cardiac

involvementN

kidney defects,

developmental

delay, infantile

hemiparesisO

Radiological findings

White matter hyper-

intensities

yes yes yes yes yesK

Subcortical infarcts yes yes yes rare yes

Other brain atrophy subcortical pseudo-

tumorsK
large infarcts (e.g.

by cardioembolism)

periventricular

cysts, deep intrace-

rebral hemorrhage,

retinal pathologiesK
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Vascular patho-

logy

deposits of granular

osmiophilic material

(GOM) in the vessel

wall, thickening of

the intimaA

pathological dilation

of vessels, thickening

and splitting of the

intima

obliteration of

capillaries, micro-

aneurysmsL

accumulation

of unprocessed

glycosphingolipidsM

interruption and

thickening of base-

ment membrane

in small and large

vessels alikeO

Pathomechanism proposed: extracel-

lular aggregation of

the extracellular do-

main of the Notch3

receptor, patho-

logical recruitment

of ECM compo-

nents within these

aggregatesE

HTRA1 loss of

functionF, accu-

mulation of ECM-

related HTRA1

substratesQ, reduced

TGF-β signalingP

mislocalization of

truncated TREX1J
loss of function of

the lysosomal en-

zyme α-galactosidase

AM

fragile and damaged

vascular basement

membranes caused

by dysfunctional

type IV collagen

α1/α2 chainL

Table 3.1.: Features of selected hereditary SVDs. References: A: Joutel et al. (1996); B: Chabriat et al. (2009); C: Dichgans (2002);

D: Vahedi et al. (2004); E: Monet-Leprêtre et al. (2013); F: Hara et al. (2009); G: Fukutake (2011); J: Richards et al.

(2007); K: Tan and Markus (2015); L: Ringelstein et al. (2010); M: Zarate and Hopkin (2008); N: Mehta et al. (2004);

O: Lanfranconi and Markus (2010); P: Beaufort et al. (2014); Q: Zellner et al. (2018)

1Online Mendelian Inheritance in Man (OMIM, http://www.omim.org/), online catalog of genetic disorders maintained by the Johns Hopkins

University (Baltimore, USA)
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3.2 The HTRA1 Protease: an Emergent Player in Familial SVD

3.2.1 CARASIL

3.2.1.1 Clinical and Histopathological Manifestations of CARASIL

CARASIL is a rare, recessively inherited form of SVD with typical disease onset occurring

at 20 to 30 years of age. It was first described by Maeda et al. (1976) as a ”Familial

unusual encephalopathy of Binswanger’s type without hypertension” in a small number of

Japanese families. More recently, patients have been identified throughout mainland Asia

(China, India, Pakistan) as well as across Europe (e.g., Spain, Romania, Portugal, France)

(Menezes Cordeiro et al., 2015; Chen et al., 2013; Diwan et al., 2012).

CARASIL shares many clinical and pathological features with other SVDs. Specifically,

it is characterized by early-onset WMHs (Figure 3.4a), lacunar infarcts and progressive

dementia (Fukutake, 2011). In addition, patients often suffer from extraneurological symp-

toms such as vertebral disc herniation, spondylosis deformans (Figure 3.4b) and alopecia

(Figure 3.4c).

On a histopathological level, CARASIL is characterized by vascular degeneration selec-

tively affecting the small cerebral arteries. Patient arterioles display a pathological dilation

(Oide et al., 2008), accompanied by a thickening of the intima (the general architecture of

a vessel is depicted in Figure 3.6), a thinning of the media with accumulation of hyaline

material and splitting of the internal elastic lamina. Moreover, immunohistochemistry re-

vealed a drastic loss of the smooth muscle cell marker α-SMA (Figure 3.4d). This reduction

has been predominantly attributed to VSMC loss (Arima et al., 2003; Oide et al., 2008),

however it might reflect an altered VSMC phenotype (see Section 3.3), as proposed by

Ikawati et al. (2018) and evaluated over the course of my doctoral thesis (see Section 3.4

and Chapter 5).
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a b c

d e

Figure 3.4.: Hallmarks of CARASIL

(a) Diffuse leukoencephalopathy with WMH (FLAIR MRI). (b) Lumbar spondylosis (MRI).

(c) Alopecia. (d) and (e) Weigert and α-SMA (dark red) double staining in leptomeningeal

arteries from a control individual (left) and a CARASIL patient (right). Scale bars indicate

500 µm. Figure (a) from Fukutake (2011), (b) reproduced with permission from Hara et al.

(2009) (Copyright Massachusetts Medical Society), (c) Menezes Cordeiro et al. (2015), (d)

Oide et al. (2008).
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3.2.1.2 Molecular Pathomechanisms in CARASIL

In 2009, a genome-wide linkage analysis in CARASIL families led to the identification of

HTRA1 (high temperature requirement A1) as causative gene for the disorder (Hara et al.,

2009).

HTRA1 is a ubiquitously expressed, secreted serine protease involved in cell signaling,

differentiation and survival. Although CARASIL provides the strongest evidence for a

causative role of HTRA1 in human disease, the protein HTRA1 has been shown to be

aberrantly expressed in an increasing number of disorders (as reviewed in Clausen et al.

(2011)):

(i) Single nucleotide polymorphisms (SNPs) in the HTRA1 promoter region are associ-

ated with a predisposition for age-related macular degeneration

(ii) HTRA1 is overexpressed in and suspected to contribute to e.g., arthritis and preeclamp-

sia

(iii) HTRA1 is repressed during malignant transformation and acquisition of chemoresis-

tance

In mid-2017, a total of 16 different pathogenic HTRA1 mutations had been identified in

CARASIL cases. These include one intronic mutation affecting messenger RNA (mRNA)

splicing (Menezes Cordeiro et al., 2015) and various missense or nonsense mutations, tar-

geting all HTRA1 exons (Roeben et al., 2016). The majority of mutations was investigated

and found to impair HTRA1 expression and/or protease activity. This suggests that lack

of processing of HTRA1 substrates is a crucial pathomechanism in CARASIL.

HTRA1 targets a number of substrates including ECM proteins and growth factors.

Particularly, my host laboratory recently identified the TGF-β binding partner latent

TGF-β binding protein (LTBP)-1 as a novel substrate of HTRA1, and proposed that

HTRA1-dependent cleavage of LTBP-1 facilitates TGF-β signaling (see Section 3.2.1.3 and

Figure 3.5). Accordingly, a strong reduction of TGF-β signaling was observed in fibrob-
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lasts and brain tissue from HTRA1-/- mice as well as in skin fibroblasts from one CARASIL

patient (Beaufort et al., 2014).

TGF-β is further introduced in the next sections, as I examined the status of TGF-β

signaling in CARASIL (see Section 3.4 and Chapter 5) over the course of my thesis.

3.2.1.3 TGF-β Signalopathy in CARASIL and Other Vascular Disorders

TGF-β and TGF-β signaling

The transforming growth factor-β isoforms (TGF-β1, -2 and -3) form a protein superfa-

mily together with growth differentiation factors and bone morphogenic proteins (BMPs)

(Gaarenstroom and Hill, 2014). TGF-β is co-expressed and co-secreted as a covalent com-

plex together with its binding partner LTBP-1. Upon secretion, LTBP-1 anchors the

inactive complex to ECM components such as fibrillins and fibronectin (Hynes, 2009).

TGF-β activation involves its proteolytic processing or a conformational change induced

by interactions between cell membrane receptors of the integrin superfamily and the ECM.

As previously stated, my host laboratory recently evidenced a role of HTRA1 in TGF-β ac-

tivation, involving the cleavage of LTBP-1 and the release of the LTBP-1/TGF-β complex

from the ECM (Beaufort et al., 2014) (see Section 3.2.1.2 and Figure 3.5).

At the surface of the target cell, active TGF-β binds to TGF-β-receptor 1 (TGFBR1),

resulting in the recruitment of TGFBR2, and ultimately in the phosphorylation of these

serine/threonine-specific receptor kinases (Vizan et al., 2013). The activated receptor com-

plex then phosphorylates intracellular mediators from the mothers against decapentaplegic

homolog (Smad) protein family (Schnaper et al., 2002). The so-called receptor-regulated

SMADs (R-SMADs) 2 and 3 associate with the only member of the common-mediator

SMAD (co-SMAD) subfamily, Smad4, and translocate into the nucleus (Massagué, 2012).

There, Smad complexes interact either with DNA-binding transcription factors or di-

rectly bind to SMAD-binding elements (SBEs), promoting the transcription of target genes

(Mullen et al., 2011) (Figure 3.5). These include connective tissue growth factor (CTGF)

and plasminogen activator inhibitor-1 (PAI-1), which are widely used as surrogate mar-
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kers for TGF-β signaling activity (Massagué, 2012; Dennler et al., 1998). Furthermore,

many proteins either directly involved in cell contraction (e.g., α-SMA, SM-MHC, SM22,

calponin) or associated with the contractile VSMC phenotype (e.g., myocardin, integrins)

are regulated by TGF-β (Rensen et al., 2007; Assinder et al., 2009; Miano, 2015) (see

Section 3.3).

TGF-β signalopathy in vascular disorders

TGF-β signaling is proposed to be strongly reduced under HTRA1-deficient conditions and

in CARASIL (Beaufort et al., 2014). More generally, TGF-β is well-known to be involved

in a variety of vascular disorders. For instance, mutations in either Smad, TGF-β, TGFBR

or the LTBP-1 binding partner fibrillin are well-established as a cause for Marfan’s and

Loeys-Dietz syndrome (MacCarrick et al., 2014).

TGF-β expression and/or activity is also deregulated in and suspected to contribute

to vascular diseases including atherosclerosis (Pardali, 2012) and CADASIL (see Sec-

tion 3.1.5). In good agreement with those observations, animal models either deficient

for or overexpressing TGF-β pathway components display a severe vascular phenotype

(Ishtiaq Ahmed et al., 2014).

3.2.2 HTRA1 -related Late-onset SVD

CARASIL patients all bear homo- or compound heterozygous mutations. Although de-

tailed clinical examination of heterozygous parents of CARASIL patients had revealed

that some exhibit mild SVD manifestations (Bianchi et al., 2014), HTRA1 mutations have

been considered to be strictly recessive until recently. Indeed, in 2015, as I had started

my experimental work, Verdura et al. (2015) identified heterozygous HTRA1 mutations

as a major cause of autosomal dominant SVD, using whole exome sequencing in a family

with autosomal dominant SVD and subsequent genotyping of 201 unrelated probands with

familial dominant SVD. This was further confirmed in an independent patient sample

(Nozaki et al., 2016) as well as in single cases (Bayrakli et al., 2014; Bougea et al., 2017).
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mature

TGF-β

mature

TGF-β

Smad 2/3

P

Smad 2/3

P

mature

TGF-β

Smad 4

Smad 4

Cofactors

SBE

Figure 3.5.: HTRA1 facilitates TGF-β signaling

HTRA1 cleaves LTBP-1 and releases the LTBP-1-TGF-β-complex from the ECM. Subse-

quently, mature TGF-β binds to the TGFBR1 which then forms a complex with TGFBR2

to phosphorylate and release either Smad2 or -3. Next, the R-SMAD conjugates with

Smad4 and migrates into the nucleus, where it associates with one or more transcriptional

co-factors at the SMAD-binding element (SBE) to initiate the expression of target genes.
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The amino acid residues targeted by heterozygous HTRA1 mutations partly overlap with

those involved in CARASIL and most mutations disrupt HTRA1 protease activity. While

all patients display WMHs, their clinical features range from cognitive decline to stroke

and largely differ from those observed in CARASIL cases by a much later symptom onset

(50 - 70 years of age) and by the absence of extraneurological symptoms.

Notably, the distinguishing features between CARASIL-related ”recessive” mutations

and ”dominant” mutations as well as the mechanisms underlying the pathogenicity of the

heterozygous mutations are unclear. These mechanisms might involve e.g., haploinsuffi-

ciency or dominant-negative effects (Verdura et al., 2015; Uemura et al., 2019).
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3.3 Vascular Smooth Muscle Cell (VSMC) Phenotypic Switching

3.3.1 Location of VSMC

Based on their diameter and architecture, cerebral vessels are commonly classified as ar-

teries (with diameters > 100 µm), arterioles (with diameters ranging between 100 - 10 µm)

and capillaries (with diameters of 10 - 5 µm) (Bentov and Reed, 2015).

Figure 3.6.: Composition and layers of the arterial wall

Section of an artery. See also Figure 3.1 for illustrations of arterioles and capillaries. Figure

from Blausen.com staff at Wikimedia Commons.

Arteries and arterioles are subjected to high blood pressure. Their vascular wall is

organized in three layers (as illustrated in Figure 3.6). The innermost of these, the tunica

intima, consists of the internal elastic lamina and endothelial cells. Adjacent to it, the

tunica media harbors the vast majority of VSMC and varying amounts of elastic tissue,

depending on the size of the artery. The outermost layer, the so-called tunica adventitia, is

separated from the tunica media by the external elastic lamina and contains collagen-rich

connective tissue and fibroblasts (Kohn et al., 2015).

20

Blausen.com


3. Introduction

In contrast, capillaries are subjected to lower blood pressure. They are devoid of elastic

laminae as well as VSMC, and their endothelium is covered by a single layer of pericytes

(Bentov and Reed, 2015).

3.3.2 Anatomy and Function of VSMC

VSMC are fusiform cells located mainly in the tunica media of arteries, arterioles, veins

and venules. In contrast to skeletal muscle cells, they are mononuclear.

Mature VSMC display a so-called contractile phenotype. They express a panel of pro-

teins including α-SMA, smooth muscle protein 22-α / transgelin (SM22), calponin and

smooth muscle myosin heavy chain / myosin-11x (SM-MHC) that is directly involved in

cell contraction and/or in cell-cell or cell-ECM interaction, such as integrins and cadherins

(Table 3.2) (Iyemere et al., 2006). The contractile cell phenotype is further characterized

by a low proliferation rate and minimal migratory activity.

VSMC are major regulators of the vascular tone and diameter and thus ultimately of

blood pressure, flow and distribution (Gomez and Owens, 2012).

3.3.3 VSMC Plasticity in Health and Disease

3.3.3.1 Physiological VSMC plasticity

Contrary to many other cell types, mature VSMC conserve a high degree of plasticity

(Owens et al., 2004). For instance, in response to vascular injury, VSMC downregulate the

expression of contractile proteins, increase their proliferation and migration rates and/or

up-regulate the expression of ECM components such as type I collagen and fibronectin

(Rensen et al., 2007) to acquire a so-called proliferative and/or synthetic phenotype (Fig-

ure 3.7; Table 3.2). This process is commonly referred to as phenotypic switching and is a

major contributor to wound healing.
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Contractile

Phenotype

Synthetic/Proliferative 

Phenotype
injury

healing

TGF-ß, retinoic acid, IGF-1, etc.

pathogenic

stimuli/condition

pathogenic

remodeling

contractile proteins
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Figure 3.7.: Regulation of VSMC phenotypic switching

While being an important repair and healing mechanism, VSMC phenotypic switching has

been shown to be inducible by stimuli such as atherosclerosis or genetic conditions, resulting

in pathogenic remodelling. As depicted here, the best-described phenotypes for VSMC

are the contractile (left) and synthetic/proliferative phenotype with increased migratory

activity (right). Physiologically, contractile VSMC switching is counterbalanced by signal

transducers such as TGF-β, retinoids, and insulin-like growth factor (IGF)-1.
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3.3.3.2 Pathological VSMC Phenotypic Switching

While providing a powerful tool for the vasculature to react adequately to adverse environ-

mental settings, the high degree of VSMC plasticity also provides the basis for undesirable

changes of cell phenotype (Figure 3.7). Triggers for such changes include pathogenic pre-

conditions such as inflammation, chronic disease, inherited disorders, or combinations of

the three. The resulting VSMC phenotypic switching may then lead to further acceleration

of the causative disease (Owens et al., 2004).

While ”phenotypic switching” was originally described as a dichotomous transition be-

tween contractile and proliferative/migratory cell specialization, its understanding has

meanwhile transitioned from de-differentiation to a broader spectrum of changes that may

gradually develop. Notably, VSMC have been increasingly shown to express markers typi-

cally associated with other cell types and functions such as phagocytic and osteogenic cells

(see Table 3.2).

Contractile Proliferative/Synthetic Phagocytic Calcifying

α-SMA type I collagen galectin-3 Runx2

calponin fibronectin CD68 Osterix

SM22 Msx2

SM-MHC

α1/β1 integrin

N-/T-cadherin

Reference(s) Rensen et al. (2007) Rensen et al. (2007) Rosenfeld (2015) Iyemere et al. (2006)

Table 3.2.: Markers associated with various VSMC phenotypes

Due to its high incidence and extensive health burden, atherosclerosis is the condition

where VSMC phenotypic switching has been studied to the greatest extent. As expected,

contractile markers such as α-SMA, SM22 and SM-MHC have been shown to be strongly

reduced in VSMC within atherosclerotic environments (Gomez et al., 2013). Strikingly,
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in addition, markers typically associated with macrophages such as galectin-32 and CD68

were found to be markedly up-regulated (Feil et al., 2014; Shankman et al., 2015). Such

expression of phagocytosis-related markers in VSMC was shown to be inducible upon

loading of cultured VSMC with cholesterol to simulate the milieu of an atherosclerotic

lesion, which not only resulted in α-SMA, SM22 and calponin-1 downregulation, but also

in significantly increased expression of galectin-3 and CD68 as well as increased phagocytic

activity (Rong et al., 2003; Vengrenyuk et al., 2015; Shankman et al., 2015).

VSMC phenotypic switching has been implicated in a number of genetic conditions. For

example, altered expression of contractile markers and resulting contractile dysfunction of

VSMCs has been observed in Marfan’s as well as in Loeys-Dietz syndrome (LDS; OMIM:

609192 and others), the most characteristic symptom of both being aortic aneurysms

(Milewicz et al., 2008). In hereditary SVD, loss of contractile markers has been repeatedly

reported as well. Specifically, as shown in Figures 3.3i and 3.4e, there is a pronounced loss

of the VSMC hallmark protein α-SMA in patient brain vasculature. Yet, a lack of studies

further examining VSMC phenotypic switching in hereditary SVD persists, leading us to

the initiation of my thesis work.

3.3.4 Regulation of VSMC Phenotype

3.3.4.1 Physical and Biochemical Factors Affecting VSMC Phenotype

VSMC phenotype is controlled by a rather complex and tightly regulated transcriptional

program. Under both physiological and pathological circumstances, this program can be

influenced by a variety of environmental factors (Figure 3.7), including:

(i) physical parameters such as shear stress, stretch or mechanical trauma as well as the

structure and compliance of the vessel (Rensen et al., 2007)

(ii) interactions with ECM components (e.g. type I/IV collagens) and surrounding cells,

both involving adhesion receptors (particularly integrins) (Owens et al., 2004)

2galectin-3 is sometimes also referred to as Mac-2
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(iii) a variety of growth factors and their downstream signaling including angiotensin II,

IGF-1, TGF-β (see Section 3.2.1.3), Wnt, platelet-derived growth factor (PDGF) and

retinoic acid (RA) (Owens et al., 2004; Wang et al., 2015)

(iv) other biochemical agents such as lipids, nitric oxide (NO) and reactive oxygen species

(ROS)

SRF

CArG box

SRF

Myocardin

Contractile marker

gene expression

SRF

CArG box

SRF

ELK-1

Contractile marker

gene repression

Myocardin

Figure 3.8.: Mechanisms regulating SRF-mediated transcriptional activity

While myocardin promotes serum response factor (SRF)-mediated transcription of CArG-

box-containing genes important for VSMC contractile differentiation, Elk-1 may interrupt

transcriptional activity via occupation of the myocardin-SRF binding site.

3.3.4.2 Transcriptional Regulation of VSMC Phenotype

The vast majority of contractile phenotype markers such as α-SMA, SM22, SM-MHC,

and calponin-1 contain highly conserved regulatory elements within their promoter re-

gions. The three major representatives of such motifs are TGF-β control elements (TCEs),

SMAD-binding elements (SBEs) (see Section 3.2.1.3), and serum response elements (SREs),

the latter being characterized by the presence of so-called CArG boxes (McDonald et al.,

2006). CArG boxes are cis-elements with a length of 10 base pairs (bp) with the sequence
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CC-A/T-GG where ”A/T” represents a 6-bp block that is rich in either adenine or thymine

or both (Miano, 2003; McDonald et al., 2006). These boxes serve as binding sites for vari-

ous transcription factors, thus playing a crucial role in the expression of proteins involved

in contraction. Often, the promoter regions presented above are located in close proximity

to one another. For instance, binding of a transcriptional repressor to a TCE may inhibit

transcription from a nearby SRE (Zheng et al., 2010).

Activators of the contractile differentiation program

The CArG box-binding transcription factor SRF is a major contributor to cell differentia-

tion, including that of VSMC. SRF is ubiquitously expressed in a rather stable fashion.

Myocardin is an important co-factor of SRF (Figure 3.8). Its expression is largely re-

stricted to cardiac and vascular smooth muscle tissue (Owens et al., 2004), allowing the

SRF/myocardin complex to control gene expression in a cell-specific manner. Myocardin,

which is induced by various mediators including TGF-β, is required for VSMC contractile

gene expression (Kurpinski et al., 2010). Indeed, low myocardin expression was not only

found to correlate with, but also to induce a loss of the contractile phenotype in cells

and/or tissues (Miano, 2015). Conversely, overexpression of myocardin induces phenotypic

switching towards a contractile phenotype (Long et al., 2008).

Two additional myocardin co-factors (myocardin-like protein (MKL) 1 and 2) have been

described3 (Wang et al., 2002). Like myocardin, their expression is inducible (e.g., by

TGF-β) and their down-regulation reduces the expression of contractile proteins, while

their overexpression activates the contractile differentiation program (Cen et al., 2004).

Repressors of the contractile differentiation program

The so-called ternary complex factors (TCFs) constitute a group of three transcription

factors (Elk-1, -3, and -4) that belong to the ETS-domain containing protein superfamily.

TCFs are known to repress cell differentiation and promote cell proliferation in a man-

3Other commonly used names for these proteins include megakaryoblastic leukemia proteins 1 and 2 as

well as myocardin-related transcription factor (MRTF)-A and -B
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ner antagonistic to that of myocardin and the MKLs (Buchwalter et al., 2004; Wang

et al., 2004). While the mechanisms of action of the TCFs are not yet fully under-

stood, they include competition of Elk-1 with myocardin and MKLs for a common SRF

docking site (Wang et al. (2004); Zhou et al. (2005); Figure 3.8) and initiation of a syn-

thetic/proliferative differentiation program.

A further class of transcriptional modulators of VSMC differentiation is the Krueppel-

like factor (Klf) family of zinc-finger-containing transcription factors. Among the 17 Klfs

found in humans, Klf4 (also known as gut-enriched Krueppel-like factor (GKLF)) and -5

have attracted most attention in a vascular context (Mcconnell and Yang, 2010). Klfs

are expressed at very low levels in the normal vessel wall but are markedly induced by

e.g., vascular injury (Diakiw et al., 2013; Liu et al., 2003; Yoshida et al., 2008). Klfs

repress the VSMC contractile differentiation program, and have been proposed to promote

atherosclerosis-related phagocytic VSMC differentiation, a feature recently established for

Klf4 (Shankman et al., 2015; Rosenfeld, 2015).

Several mechanisms have been shown to mediate Klf action. Indeed, Klf4 may inhibit

SRF binding to the CArG box (Zheng et al., 2010) and antagonize the SRF/myocardin

axis. Similarly, Klf5 was found to disrupt the SRF-myocardin transcriptional complex

(Zhang et al., 2015). In addition, Klf4 may not only inhibit TGF-β via binding to TCEs

(Liu et al., 2003), but also by competing with Smad3 for SBE interaction (Hu et al., 2007).

Alternatively, Klf4 may associate with Elk-1 and histone deacetylase (HDAC)2, resulting

in the binding of the complex to G/C-rich repressor elements within contractile VSMC gene

promoter regions (Salmon et al. (2012); see Figure 3.9).
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Figure 3.9.: Klf4 suppresses contractile marker transcription

Klf4 may aggregate with phosphorylated Elk-1 and HDAC2, resulting in suppression of

contractile marker genes through several mechanisms of action. These include competition

for SRF binding sites with myocardin, direct occupation of TCEs within VSMC gene pro-

moter regions as well as indirect blockade of the CArG box within SREs through chromatin

compaction.
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3.4 Aim of the Thesis

TGF-β signaling plays a major role in the regulation of contractile cell differentiation.

Based on the analysis of HTRA1-/- mouse brain tissue and cells and of skin fibroblasts

from one CARASIL patient, my host laboratory linked the hereditary cerebral small vessel

disease CARASIL to a drastic reduction of TGF-β signaling (Beaufort et al., 2014). Notably

and although heterozygous HTRA1 mutations have recently been identified as a cause of

late-onset SVD (Verdura et al., 2015; Nozaki et al., 2016), the status of TGF-β signaling

in this condition has not been examined yet.

On a different note, a reduction of VSMC contractile markers such as α-SMA has been

observed in cerebral vessels of CARASIL and CADASIL patients (Oide et al., 2008). While

this finding was attributed to cell loss, it might rather reflect cell phenotypic switching, a

process well-described in wound healing and atherosclerosis, that has attracted considerable

attention as an emerging pathomechanism in vascular diseases.

Based on these observations, it was hypothesized that in CARASIL (or late-onset HTRA1-

related SVD), reduced TGF-β signaling activity might result in VSMC phenotypic switch-

ing towards a less contractile state, a process likely to contribute to vascular dysfunction.

Therefore, the aims of my project were:

(i) To evaluate the impact of heterozygous HTRA1 mutations on TGF-β signaling;

(ii) To characterize the phenotype of cells bearing hetero- or homozygous HTRA1 muta-

tions both regarding contractile protein expression and cell function;

(iii) To explore strategies to restore the cell phenotype.

HTRA1-related SVDs are rare disorders and access to patient material is challenging. I

thus selected human primary skin fibroblasts available in the laboratory as a model for
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my investigations. Notably, skin fibroblasts express a large panel of contraction markers

overlapping with those expressed by VSMC and are able to contract.

Additionally, to allow for in situ analysis of cerebral blood vessels, I extended my inves-

tigations to HTRA1+/+ or -/- mice.
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4 Material and Methods

4.1 Cell-based Experiments

4.1.1 Human Skin Fibroblasts

Primary cultures of human skin fibroblasts from healthy control individuals (n = 6) were

kindly provided by the Department of Dermatology of the Ludwig-Maximilians-University

(LMU) Munich, E. Tournier-Lasserve (Lariboisière Hospital / Paris Diderot University)

and D. Werring and H. Houlden (University College London Hospital). Skin fibroblasts

from homo- and heterozygous HTRA1 mutation carriers (see Table 4.1) were kindly pro-

vided by E. Tournier-Lasserve, D. Werring and H. Houlden, and A. Federico (Department

of Medicine, Surgery and Neurosciences, University of Siena). The use of these primary

cultures has been approved by the ethics committee of the LMU.

4.1.2 Cell Culture Conditions

Skin fibroblast cultures were grown in Dulbecco’s modified Eagle’s medium (DMEM) / Glu-

taMAX containing 10 % (v/v) fetal calf serum (FCS), 100 µg/mL streptomycin and 100 U/mL

penicillin (all from Invitrogen, Carlsbad, USA). Cultures were maintained in the pres-

ence of 5 % CO2 at 37°C in a humidified chamber (Binder 9040-0038; Binder, Tuttlin-

gen, GER) and were manipulated in a sterile vertical laminar flow hood (Herasafe KS;

Thermo Fisher Scientific, Waltham, USA). Absence of Mycoplasma was ensured by en-

zymatic activity assay using the MycoAlert Plus detection kit (Lonza, Basel, SUI). For
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Culture referred

to as

Zygosity Mutation(s) Reference

Het1 heterozygous c.973-1 G>A / p.Y325-L335delA Verdura et al. (2015)

Het2 heterozygous c.497G>T / p.R166LB Verdura et al. (2015)

Het3 heterozygous c.497G>T / p.R166LB Verdura et al. (2015)

Het4 heterozygous c.126delG / p.E42fsC Bianchi et al. (2014)

Het5 heterozygous c.961G>A / p.A321TB Bianchi et al. (2014)

Pat1 homozygous c.517G>A / p.A173TB Khaleeli et al. (2015)

Pat2 compound heterozygous c.126delG / p.E42fsC Bianchi et al. (2014)

c.961G>A / p.A321TB

Pat3 compound heterozygous c.497G>A / p.R166HB E.Tournier-Lasserve

c.830delA / G276fsC (unpublished)

Table 4.1.: Characteristics of patient skin fibroblast cultures used for this project. A: In-

tronic mutation predicted to affect splicing and resulting in skipping of exon 5.

This exon contains the catalytic serine. B: Missense mutation targeting HTRA1

protease domain and disrupting its enzymatic activity. C: Deletion resulting in

a premature interruption of the reading frame. The resulting mutant HTRA1

protein lacks one or more catalytic residues.
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passaging, cells were washed with phosphate-buffered saline (PBS), detached with 0.25 %

(w/v) trypsin/ethylenediaminetetraacetic acid (EDTA), then seeded (dilution 1 : 3 to

1 : 10) in a new flask containing fresh medium. For all experiments described below,

fibroblasts were used at a comparable passage number.

4.1.3 Preparation of Cell Extracts

Unstimulated cells Skin fibroblasts were grown in T75 flasks until a high cell density

was achieved. Following a brief rinse with PBS, cells were maintained in 10 mL serum-free

DMEM for 72 hours.

TGF-β stimulation High-density cultures of fibroblasts in P6 wells were rinsed with

PBS and kept for 72 hours in 1 mL serum-free culture medium with 0.5 or 5 ng/mL mature

recombinant human TGF-β (R&D Systems, Minneapolis, USA). For the cell contraction

assay (see Section 4.1.4), one volume of serum-free medium containing 10 ng/mL TGF-β was

added immediately after gelation. For the viability assay (see Section 4.1.5), one volume

of serum-free medium containing 10 ng/mL TGF-β was added to the cell suspension.

Cell lysis All following steps were performed at 4 °C.

For protein analysis, cells were rinsed with PBS, then exposed for 30 minutes to a buffer

composed of 10 mM Tris, 100 mM NaCl, 2 mM EDTA, 50 mM NaF, 20 mM Na4P2O7, 2 mM

Na3VO4, 0.5 % (v/v) sodium deoxycholate, 1.5 % (w/v) sodium dodecyl sulfate (SDS),

1 % (v/v) Triton X-100 and 10 % (v/v) glycerol, pH 7.6 with cocktails of phosphatase and

protease inhibitors (Roche, Basel, SUI). 100-200 µL were used to lyse the content of P6 wells

and 500 µL were used for T75 flasks. Subsequently, debris was removed by centrifugation

of the lysates at 11,000 g for 15 minutes.

For mRNA isolation, cells were briefly rinsed with PBS, followed by addition of Buffer

RLT (Qiagen, Venlo, NED) with 1 % (v/v) β-mercaptoethanol (500 µL per T75 flask). For

homogenization, the QIAshredder kit (Qiagen) was used according to the manufacturer’s

instructions.
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4.1.4 Cell Contraction Assay

104 skin fibroblasts were added with 1.5 mg/mL collagen type I (BD Biosciences, Franklin

Lakes, USA) in a total volume of 200 µL FCS-free DMEM and were cast in a 48-well plate.

A cell-free gel was prepared as negative control. After a 5-minute gelation at 37 °C, one

volume of complete culture medium was added and gels were detached from the wells using

a sterile needle. Plates were maintained at 5 % CO2 and 37°C for the indicated time period

and then scanned using a Perfection 1640SU flatbed scanner (Epson, Tokyo, JPN). The

percentage of the well surface area occupied by gel was determined using the ImageJ (Fiji)

software.

4.1.5 Cell Viability Assay

The MTT assay (kit from Sigma-Aldrich, St. Louis, USA) was used to evaluate mito-

chondrial activity as a surrogate marker of cell viability by detecting the conversion of

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to the purple-colored

formazan. In parallel to the contraction assay (Section 4.1.4), 5000 cells were seeded in

96-well plates. At each time point of gel contraction assessment, cells were washed with

PBS and exposed to 50 µL of MTT (diluted in serum-free medium to 5 mg/mL) for two hours

at 37°C. 50 µL of dimethyl sulfoxide (DMSO) were added and plates were shaken 5 minutes

at room temperature (RT) to solve formazan crystals. The optical density (OD) at 560 nm

was measured using a Multiskan photometer (Thermo Labsystems) and the corresponding

Ascent Software for Multiskan (v2.6; Thermo Labsystems).

4.2 Mouse-based Experiments

4.2.1 Mouse Strains

HTRA1-/- mice, generated by gene trapping (strain HTRA1GT(OST394864)Lex; Taconic, Hud-

son, USA) were crossed with C57BL/6 mice (HTRA1+/+; Charles River, Wilmington, MA,
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USA). Animals were kept at the Institute facility under standard conditions and had access

to food (ssniff and LASvendi, both Soest, GER) and water ad libitum. Animal care and

breeding as well as tissue harvest were performed in accordance to the German Animal

Welfare Law and in compliance with the Government of Upper Bavaria.

4.2.2 Genotyping

Genotyping was performed before and after animal sacrifice using ear and tail biop-

sies, respectively. DNA was extracted by incubation of 1-mm-long tissue pieces with

100 µL of 50 mM NaOH for 30 minutes at 97° C. Afterwards, 30 µL of 1 M tris(hydroxy-

methyl)aminomethane (Tris)-HCl, pH 7 were added for neutralization. For polymerase

chain reaction (PCR), each sample contained Taq Buffer (75 mM Tris-HCl, 20 mM ammo-

nium sulfate, 0.01 % (v/v) Tween 20), 3.25 mM MgCl2, 0.2 mM deoxynucleoside triphos-

phates (dNTPs), 0.2 mM forward and reverse primers (see below), 2.5 U Taq polymerase

and 3 µL tissue lysate in a final volume of 50 µL double-distilled water (ddH2O). Taq Buffer

and polymerase were purchased from Thermo Fisher Scientific. A DNA-free control was in-

cluded. The primers used were a forward (5’-AGGGTCTCAAGTATCCAGGTTG-3’) and

a reverse (5’-CCAGAAATAAGACTCGGACTCA-3’) primer targeting the wild type (WT)

HTRA1 locus and a reverse primer (5’-ATAAACCCTCTTGCAGTTGCATC-3’) detecting

the long terminal repeat (LTR) of the gene trapping cassette found in HTRA1-/- and +/-

mice. A representative example is depicted in Figure A.1, Appendix.

Following a 10-minute initiation step at 95° C, the PCR consisted of 30 cycles, each

composed of a 2-minute denaturation period at 95° C, a 1-minute annealing step at 67° C

and 30 seconds at 72° C for elongation. After the last cycle, a 10-minute final elongation

step at 72° C concluded the run.

PCR amplicons were analyzed using a QiAxcel capillary electrophoresis system with the

corresponding QIAxcel DNA Screening Gel Cartridge (both Qiagen).
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4.2.3 Brain Harvest

Mice underwent general anaesthesia by intraperitoneal injection of 150 mg/kg Ketamine and

10 mg/kg Xylazine in NaCl 0.9 % (w/v). An incision was made into the liver and, using a

needle inserted into the left ventricle of the heart, animals were perfused with 20 mL of

PBS.

A neck-to-nose skin incision was made to expose the skull. Scissors were first introduced

into the foramen magnum to apply lateral cuts into the cranium and next placed into the

frontal fontanelle, twisted by 90° and spread to force open the skull. Subsequently, the

brain was extracted, immediately frozen on dry ice and stored at -80° C for later use.

4.2.4 Brain Tissue Lysis

All following steps were performed at 4 °C. Brain tissue was placed in a 2 mL Eppendorf

tube and added with 10 µL/mg of buffer containing 50 mM Tris-HCl, 150 mM NaCl, pH 7.4

and cocktails of protease and phosphatase inhibitors at the dilution recommended by the

manufacturer (Roche). Metal beads with a diameter of 5 mm (Qiagen) were added and

tissue was homogenized at 50 Hz for 3 minutes in a TissueLyser LT bead mill (Qiagen).

1 % (v/v) NP40 and 0.5 % (w/v) SDS were added to the homogenate for 5 minutes and

samples were centrifuged at 11,000 g for 30 minutes to remove debris.

4.3 Western Blot (WB)

4.3.1 Protein Concentration Measurement

Total protein concentration was measured via bicinchoninic acid (BCA) assay using the

Pierce BCA assay kit (Thermo Fisher Scientific). Samples and bovine serum albumin

(BSA) standards in the range of 0.125 to 2 mg/mL were prepared in duplicate. Following a

15-minute incubation period at 37° C, colorimetric analysis at 560 nm was conducted in a

Multiskan photometer (specifications see Section 4.1.5).
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Substance Composition

concentration gel acrylamide 4 % (acrylamide stock: 30 % (w/v) acrylamide and 0.8 % (w/v) N,N’-

Methylenebisacrylamide; National Diagnostics, Atlanta, USA), Tris-base 25 mM,

SDS 0.08 % (w/v), pH 6.8

migration gel acrylamide 7.5 – 12.5 %, Tris-base 375 mM, SDS 0.08 % (w/v), pH 8.8

Laemmli buffer Tris-base 75 mM, glycerol 6 % (v/v), SDS 1.2 % (w/v), DTT 100 mM, bromophenol

blue 0.006 % (w/v), pH 6.8

running buffer Tris-base 25 mM, glycine 192 mM, SDS 0.1 % (w/v), ddH2O

transfer buffer Tris-base 25 mM, glycine 192 mM, methanol 20 % (v/v), ddH2O

TBS-T Tris-base 10 mM, NaCl 150 mM, Tween 20 0.5 % (v/v) , ddH2O, pH 8

Table 4.2.: Composition (final concentration) of gels, buffers and solutions used for Western

blot.

4.3.2 SDS-PAGE

The composition of the gels and buffers is detailed in Table 4.2. Polyacrylamide gels were

prepared in a casting system from Bio-Rad Laboratories (Hercules, USA). Polymerization

was induced by addition of tetramethylethylenediamine (TEMED) and ammonium persul-

fate. Proteins (2-10 µg per lane for cell extracts and 25-50 µg for tissue lysates) were added

with Laemmli buffer and heated for 5 minutes at 95° C. Precision Plus Protein All Blue

Standard (Bio-Rad Laboratories) was included in each run. SDS-PAGE was performed

in a Mini-Protean Tetra Cell apparatus (Bio-Rad Laboratories) filled with running buffer

(see Table 4.2) at 150 V for 60 to 90 minutes.

4.3.3 Immunoblot

Proteins were transferred from the gel onto an Immobilon-P polyvinylidene fluoride (PVDF)

membrane (Merck Millipore, Billerica, USA) in a Mini-Protean Tetra Cell wet transfer

system (Bio-Rad) filled with transfer buffer (see Table 4.2) at 100 V for 45 minutes. After-

wards, membranes were blocked in 4 % (w/v) skim milk powder in TBS-T (see Table 4.2)
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for 30 minutes at RT to prevent non-specific antibody binding.

Subsequently, membranes were incubated over night at 4 °C with the primary antibody

diluted in blocking solution as stated in Table 4.3. Following three 10-minute washes in

TBS-T, the membranes were incubated with a horseradish peroxidase (HRP)-coupled sec-

ondary antibody for at least one hour at RT, followed by washings as described above. Al-

ternatively, for mouse brain lysate analysis using mouse primary antibodies, HRP-coupled

protein A (dilution 1 : 5000; Sigma-Aldrich) was used to avoid detection of tissue-derived

immunoglobulins.

For signal detection, Immobilon Western Chemiluminescent HRP Substrate (Merck Mil-

lipore) was dispersed across the membrane which was then inserted into the detection

chamber of a Fusion FX7 (with Fusion user interface v15.18; both Vilber Lourmat, Marne-

la-Vallée, FRA). Signal quantification was performed using the ImageJ (Fiji) software.

Signal obtained from β-actin or tubulin immunoblot was used as a normalizer.

4.4 Immunohistochemistry (IHC)

4.4.1 Section Preparation and Staining

10-µm mouse brain sections were prepared with a CM 1950 cryostat (Leica Microsys-

tems, Wetzlar, GER) and stored at -80° C. To fix tissue, sections were incubated with

4 % (w/v) paraformaldehyde (PFA) for 20 minutes at RT and then permeabilized with

0.1 % (v/v) Triton X-100 in PBS for 20 minutes at RT; each of these steps followed by a

short dip in PBS. Blocking of non-specific antibody binding sites was achieved through

a subsequent 30-minute incubation step with 5 % (w/v) BSA in PBS. The anti-calponin

antibody (diluted in PBS with 0.2 % (w/v) BSA; see Table 4.4) was applied over night

at 4° C. After three 5-minute washings in PBS, the sections were incubated for one hour

at RT in PBS/BSA with the fluorophore-coupled secondary antibody (corresponding to

anti-calponin primary antibody), Cy3-conjugated α-SMA antibody (see Table 4.4), and

4’,6-diamidino-2-phenylindole (DAPI; 1.25 µg/mL; Invitrogen). As control, either the anti-
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Target antigen Predicted

molecular

mass (kDa)

Host Dilution Manufacturer

Primary antibodies

α-SMA 42 mouse 1 : 1 000 Sigma-Aldrich

β-actin 42 rabbit 1 : 500 Sigma-Aldrich

calponin-1 34 rabbit 1 : 1 000 Merck Millipore, Billerica, USA

connexin 43 43 rabbit 1 : 5 000 Abcam, Cambridge, UK

CTGF 38 goat 1 : 2 000 Santa Cruz Biotechnology, Texas, USA

fibronectin 250 mouse 1 : 2 000 Sigma-Aldrich

fibronectin 250 rabbit 1 : 5 000 Sigma-Aldrich

integrin β-1 138 rabbit 1 : 500 Santa Cruz Biotechnology

myocardin 105 mouse 1 : 1 000 R&D Systems, Minneapolis, USA

PDGFR-β 190 goat 1 : 1 000 R&D Systems

phospho-Smad2/3 55 – 60 rabbit 1 : 1 000 Cell Signaling Technologies, Danvers, USA

SM22 22 goat 1 : 1 000 Abcam

Smad2 60 goat 1 : 1 000 Santa Cruz Biotechnology

SM-MHC 220 mouse 1 : 1 000 Merck Millipore

tubulin 50 mouse 1 : 1 000 Sigma-Aldrich

HRP-coupled secondary antibodies

rabbit immunoglobulin goat 1 : 10 000 Dako

goat immunoglobulin rabbit 1 : 10 000 Dako

mouse immunoglobulin goat 1 : 10 000 Dako

Table 4.3.: Western blot antibodies. A test run was conducted with each antibody to ensure

detection of a single band at the expected molecular mass. A representative

example is depicted in Figure A.2, Appendix.
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calponin or the Cy3-anti-α-SMA antibodies were omitted. After another three washing

cycles in PBS, sections were mounted with glass coverslips using Fluoromount Aqueous

Mounting Medium (Sigma-Aldrich).

Target Host Fluorophore Dilution Manufacturer

calponin-1 rabbit none 1 : 200 Merck Millipore

α-SMA rabbit Cy3 1 : 200 Sigma-Aldrich

rabbit immunoglobulin goat Alexa Fluor 488 1 : 100 Invitrogen

Table 4.4.: Antibodies used for immunohistochemistry. A test run was conducted to ensure

strong and specific vessel labeling, as depicted Figure A.3, Appendix.

4.4.2 Image Acquisition, Signal Quantification and Data Processing

Image acquisition was performed on an Axiovert 200M inverted microscope or an Axio

Imager.M2 upright microscope via the AxioVs40 user interface (v4.8.2.0; all Zeiss, Oberko-

chen, GER). Both microscopes were using a mercury arc lamp as illumination source.

Images from both calponin- and α-SMA-positive vessels with a diameter of either below

20 µm or above 40 µm were taken at 100× magnification in the channels corresponding to

the three fluorophores used. The exposure time was kept constant within each group of

samples to be compared.

Signals were quantified using the ImageJ (Fiji) software. Selections excluding lumen were

drawn around the vessels to create a region of interest. The mean pixel intensity in each

channel was measured. For calponin and α-SMA signals, background staining measured in

an adjacent vessel-free region was subtracted. To correct for variance in cell density, values

were normalized to the DAPI signal obtained from the same area.
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4.5 Reverse-Transcriptase Quantitative PCR (RT-qPCR)

4.5.1 Sample Preparation

RNA extraction was performed using the RNeasy Mini Kit (Qiagen), which utilizes RNA

binding to a silica membrane, according to the manufacturer’s instructions, including a

15-minute incubation step with 80 µL DNase I (0.39 U/µL) at RT (RNase-free DNase Set,

Qiagen). RNA was quantified using a NanoDrop ND-1000 spectrophotometer (Thermo

Fisher Scientific). Reverse transcription to cDNA was conducted on 250 ng RNA using

2.86 µM oligo(dT)15 primers and the Omniscript RT Kit (Qiagen) according to the in-

structions provided by the supplier.

4.5.2 Primer Design and Quality Control

Primers were designed using either the Universal Probe Library Probe Finder web appli-

cation (v2.50; Roche Diagnostics), the RTPrimerDB1 or selected from literature sources.

Non-intron-spanning primer pairs were excluded to avoid amplification of contaminant

genomic DNA and the specificity of each primer pair was evaluated in silico using the

Primer-BLAST 2 online application. An overview of primer sequences used in this project

is given in Table 4.5.

4.5.3 qPCR Cycling Conditions

RT-qPCR was conducted in non-transparent white 384-well plates sealed with adhesive foil.

Each well contained forward and reverse primers at a final concentration of 200 nM each,

6 µL of Brilliant II SYBR Green MasterMix (Agilent Technologies, Santa Clara, USA),

3.52 µL of DNAse-free water and 2 µL of cDNA, diluted 1 : 20 (v/v) in DNAse-free water.

1http://medgen.ugent.be/rtprimerdb/index.php; University of Ghent, Gent, BEL

2https://www.ncbi.nlm.nih.gov/tools/primer-blast/; National Center for Biotechnology Informa-

tion, Bethesda, USA
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Gene Corresponding protein Primer sequence

ACTA2 α-SMA F: 5’-TCAATGTCCCAGCCATGTAT-3’

R: 5’-CAGCACGATGCCAGTTGT-3’

ACTB β-actin F: 5’-AGAGCTACGAGCTGCCTGAC-3’

R: 5’-CGTGGATGCCACAGGACT-3’

CD36 CD36 (thrombospondin receptor) F: 5’-CCTCCTTGGCCTGATAGAAA-3’

R: 5’-GTTTGTGCTTGAGCCAGGTT-3’

CD68 CD68 F: 5’-GTCCACCTCGACCTGCTCT-3’

R: 5’-CACTGGGGCAGGAGAAACT-3’

CNN1 calponin 1 F: 5’-GCTGTCAGCCGAGGTTAAGA-3’

R: 5’-CCCTCGATCCACTCTCTCAG-3’

COL1A1 collagen type I, α 1 subunit F: 5’-GGGATTCCCTGGACCTAAAG-3’

R: 5’-GGAACACCTCGCTCTCCA-3’

ELK1 ELK-1 F: 5’-GAAGAATCACACCCTTGGAA-3’

R: 5’-GACAAAGGAATGGCTTCTCA-3’

ELK3 ELK-3 (SRF accessory protein 2) F: 5’-AGCAGAGCCCTGCGATACTA-3’

R: 5’-TCTCCGGGAAAGAGACAAACT-3’

ELK4 ELK-4 (SRF accessory protein 1) F: 5’-CTCGAGTTTCCAGCGTGAG-3’

R: 5’-CAGGGTGATAGCACTGTCCAT-3’

KLF4 Klf4 F: 5’-CCCAATTACCCATCCTTCCT-3’

R: 5’-ACGATCGTCTTCCCCTCTTT-3’

KLF5 Klf5 F: 5’-AAACGACGCATCCACTACTGC-3’

R: 5’-TTGTATGGCTTTTCACCAGTGTG-3’

LGALS3 galectin-3 F: 5’-CTTCTGGACAGCCAAGTGC-3’

R: 5’-AAAGGCAGGTTATAAGGCACAA-3’

MKL1 (total) MKL 1 total (both long and short

mRNA isoforms)

F: 5’-CTCCAGGCCAAGCAGCTG-3’

R: 5’-CCTTCAGGCTGGACTCAAC-3’

MKL2 MKL 2 F: 5’-AAAACTTACCCCCTCTGAACG-3’

R: 5’-CTCTCGTCCTCCTTTGTTGC-3’

SRF serum response factor (SRF) F: 5’-AGCACAGACCTCACGCAGA-3’

R: 5’-GTTGTGGGCACGGATGAC-3’

Table 4.5.: Primers used for RT-qPCR analysis. None of these primers bear any 5’- or

3’-terminal modifications. A test run was conducted with each set of primers

to ensure sufficient abundance of the target mRNA and selective amplification

based on the amplification curves and melting profiles, respectively. A repre-

sentative example is depicted in Figure A.4, Appendix.
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Samples were prepared either in duplicate or triplicate. As negative controls, a cDNA-free

well (no template control; NTC) and a well loaded with non-reverse transcribed mRNA

(no reverse transcriptase; NRT) were included.

Following a 10-minute activation plateau at 95° C each qPCR consisted of 40 cycles of

denaturation for 30 s at 95° C, and primer hybridization and DNA synthesis for 1 minute at

60° C with a cooling rate of 2.5° C/s and a heating rate of 4.8° C/s. Runs were performed on a

Roche LightCycler 480 II operated using the corresponding LightCycler 480 user software

(v1.5.1; both Roche Diagnostics).

4.5.4 Data Analysis

Data were analyzed with the 2−∆∆CT method as described by Schmittgen and Livak (2008)

using ACTB3 mRNA for normalization.

4.6 Statistics

Statistical analysis was performed using the Mann-Whitney U test. A probability value

≤ 0.05 was considered significant.

3ACTB encodes the β-actin protein.
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5 Results

5.1 Pathogenic HTRA1 Mutations Reduce TGF-β Signaling in Human Skin

Fibroblasts

Beaufort et al. (2014) reported a strong decrease of phosphorylated Smad2/3 in the brain

of HTRA1-/- mice (for the role of phosphorylated Smads in TGF-β signaling, see Sec-

tion 3.2.1.3), as well as in primary skin fibroblasts of a CARASIL patient. These observa-

tions link HTRA1 deficiency to a reduced TGF-β signaling activity.

To further investigate the link between HTRA1 and TGF-β signaling activity, I used

skin fibroblasts of healthy controls as well as of homo- and heterozygous HTRA1 mutation

carriers (Section 4.1.1).

In a pilot experiment, I analyzed fibroblast lysates of one control individual and one

homozygous mutation carrier by immunoblot using β-actin and tubulin as loading controls

(Figure 5.1a). In line with the findings of Beaufort et al. (2014), phospho-Smad2/3 levels

are strongly reduced in patient cells (Figure 5.1b, upper panel). To distinguish between

reduced expression and reduced phosphorylation of the Smads, I also analyzed total Smad2

(Figure 5.1b, middle panel). No loss of Smad2 is detected in CARASIL patient cells, indi-

cating hypophosphorylation. I subsequently investigated the expression of CTGF, another

well-established surrogate marker of TGF-β signaling activity (Figure 5.1b, lower panel).

In good congruence with Smad2 phosphorylation pattern, a strongly reduced CTGF ex-

pression is found in CARASIL patient cells, confirming reduced TGF-β signaling activity.

To extend these observations to a larger sample of patient-derived skin fibroblasts in-
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Figure 5.1.: TGF-β signaling activity in skin fibroblasts of a CARASIL patient

Skin fibroblast lysates of one healthy control individual (Ctrl.) and one homozygous HTRA1

mutation carrier (Pat.) were analyzed by immunoblot using antibodies directed against

(a) β-actin (upper panel) and tubulin (lower panel) used as loading controls as well as

(b) phospho-Smad2/3 (upper panel), total Smad2 (middle panel) and CTGF (lower panel).

Based on their molecular mass, the upper and lower bands detected by the phospho-

Smad2/3 antibody correspond to phospho-Smad 2 and -3, respectively.

cluding cells from heterozygous mutation carriers, I performed immunoblot analysis of the

aforementioned proteins on 13 different lysates derived from 5 control, 5 heterozygous and

3 homozygous skin fibroblast cultures. The characteristics of the corresponding patients are

provided in Section 4.1.1. For statistical analysis, a fourth group was taken into account,

comprising the data of all mutation carriers (pooled homo- and heterozygous patients).

In both homo- and heterozygous mutation carrier cells, the abundance of phospho-Smad2

is reduced, albeit not significantly (Figure 5.2a), while total Smad2 levels are unchanged

(Figure 5.2b). This indicates Smad2 hypophosphorylation, as reflected by the phospho-

/total Smad2 ratios (Figure 5.2c). Of note, Smad hypophosphorylation is as pronounced

in hetero- as in homozygous patient cells. Similar to Smad2 phosphorylation, CTGF is

drastically reduced in HTRA1 mutation carrier cells, however, significance is only reached

in heterozygous carriers.
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Figure 5.2.: TGF-β signaling in a larger sample of human skin fibroblasts

Human skin fibroblast lysates were analyzed by immunoblot using antibodies against

(a) phospho-Smad2/3, (b) total Smad2, and (d) CTGF. Tubulin was used for normal-

ization. (c) A phospho-/total Smad2/3 ratio was calculated. n = 5 healthy control individ-

uals, n = 5 heterozygous patients, n = 3 homozygous patients and n = 8 pooled samples

of heterozygous and homozygous patients. Mean values obtained from control cells were

set to 1. Results are displayed as mean + standard error of the mean (SEM). ∗ p ≤ 0.05

(Mann-Whitney U test).
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Altogether these findings point to a considerable impairment of TGF-β signaling in cells

carrying pathogenic HTRA1 mutations.

5.2 Pathogenic HTRA1 Mutations Impair the Contractile Phenotype of Hu-

man Skin Fibroblasts

TGF-β plays a fundamental role in cell differentiation including the acquisition of a contrac-

tile phenotype (Section 3.2.1.3). Hence, I set out to investigate the contractile phenotype

of the fibroblast cultures described in the previous section.

I first analyzed the expression of key contractile phenotype markers by immunoblot

and/or RT-qPCR. These include α-SMA, an early marker of contractile differentiation,

as well as calponin-1 and SM22, both intermediate differentiation markers. I also inves-

tigated the expression of integrin β1, an adhesion receptor involved in various processes,

including contraction. Protein levels of α-SMA, SM22 and integrin β1 were significantly

lower in heterozygous patients, while their reduction in homozygous patients did not reach

significance (Figure 5.3a-d). Protein and mRNA levels of calponin-1 were decreased in all

groups, albeit not significantly. These data are in agreement with TGF-β signaling activity

results.

To confirm a functional deficit, I next assessed cell contractility. For this, fibroblasts were

cast in a gel made of type I collagen, followed by gel contraction measurements (a typical

example is depicted in Figure 5.4a) at different time points. As depicted in Figure 5.4b,

control cells efficiently contract the gel over time, while this ability is lost in patient cells.

In parallel, the metabolic activity of cells seeded in independent wells was measured via

MTT assay to account for differences in viable cell number (Figure 5.4c). Systematic

analysis of control, hetero- and homozygous mutation carrier fibroblasts revealed that

cells from heterozygous patients display a reduced contractility / metabolic activity ratio

(Figure 5.4d).

Together, contractile protein expression profiles and functional contraction assays both

link heterozygous pathogenic HTRA1 mutations to a loss of contractile phenotype in pri-
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Figure 5.3.: Contractile marker expression in human skin fibroblasts

Human skin fibroblast lysates were analyzed by immunoblot using antibodies against

(a) α-SMA, (b) SM22, (c, left panel) calponin-1 or (d) integrin β1. Signal intensity was

quantified using tubulin for normalization. (c, right panel) Calponin-1 mRNA in fibroblast

extracts was quantified by RT-qPCR, using β-actin for normalization (n = 5 healthy con-

trol individuals, n = 5 heterozygous patients, n = 3 homozygous patients, n = 8 pooled

samples of heterozygous and homozygous patients). Mean values of control cells were set

to 1. Results are displayed as mean + SEM. ∗ p ≤ 0.05 (Mann-Whitney U test).
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mary skin fibroblasts.

5.3 Pathogenic HTRA1 Mutations Promote Cell Phagocytic Phenotype in

Human Skin Fibroblasts

As described in Section 3.3.3.1, loss of contractile phenotype is classically associated with

a gain of synthetic phenotype. To evaluate this possibility, I quantified the expression of

synthetic phenotype markers including the ECM proteins type I collagen (Figure 5.5a)

and fibronectin (Figure 5.5b), as well as that of the cell-cell adhesion receptor connexin 43

(Figure 5.5c) by immunoblot or RT-qPCR. None of these markers appear to be affected

by HTRA1 mutations, thereby excluding cell switching towards a synthetic phenotype.

Recently, the loss of VSMC contractile phenotype in atherosclerotic lesions was reported

to be paired with a gain of a phagocytic phenotype, observed in the form of galectin-3 and

CD68 upregulation. Similarly, I found significantly elevated mRNA levels of both markers

in cells from heterozygous patients (Figure 5.6a and b). Additionally, CD36, a hallmark

macrophage phagocytosis-related receptor is moderately, but not significantly, upregulated

(Figure 5.6c).

Together, these observations indicate that loss of the contractile phenotype in heterozy-

gous HTRA1 mutation carrier cells comes along with an upregulation of markers associated

with phagocytosis. Whether this expression profile correlates with an increased phagocytic

capacity, remains to be determined.

5.4 Pathogenic HTRA1 Mutations Affect the Transcriptional Differentiation

Program in Human Skin Fibroblasts

To further understand the mechanisms that mediate cell reprogramming in HTRA1 muta-

tion carrier cells, I analyzed transcriptional pathways involved in cell differentiation (see

Section 3.3.4.2), focusing on those affected by TGF-β.

SRF levels, measured by RT-qPCR, are elevated in heterozygous, but not in homozygous
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Figure 5.4.: Assessment of contractility in human skin fibroblasts

a-c Contractility assay of one healthy control and one patient cell culture. (a) Picture and

(b) quantification of fibroblast-induced contraction of type I collagen gel, which manifests

as a progressive reduction of gel surface. (c) MTT metabolic activity assay (arbitrary

units). (d) Contraction scores – taking into account contraction and viability – determined

at 72 h (n = 5 healthy control individuals, n = 5 heterozygous patients, n = 3 homozygous

patients, n = 8 pooled samples of heterozygous and homozygous patients). Mean values of

controls were set to 1. Results are displayed as mean + SEM. ∗ p ≤ 0.05 (Mann-Whitney

U test).
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Figure 5.5.: Expression of synthetic phenotype markers in HTRA1 mutation carrier

fibroblasts

(a) Collagen I mRNA was quantified by RT-qPCR and β-actin was used for normaliza-

tion. Human skin fibroblast lysates were analyzed by immunoblot using antibodies against

fibronectin (b) and connexin 43 (c). Here, tubulin was used for normalization following

signal quantification (n = 5 healthy control individuals, n = 5 heterozygous patients, n = 3

homozygous patients, n = 8 pooled samples of heterozygous and homozygous patients).

Mean values of controls were set to 1. Results are displayed as mean + SEM. ∗ p ≤ 0.05

(Mann-Whitney U test).
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Figure 5.6.: Expression of phagocytic phenotype markers in human skin fibroblasts

RT-qPCR was used to quantify mRNA levels of (a) galectin-3, (b) CD68, and (c) CD36 in

human skin fibroblast extracts. β-actin was used for normalization (n = 5 healthy control

individuals, n = 5 heterozygous patients, n = 3 homozygous patients, n = 8 pooled samples

of heterozygous and homozygous patients). Mean values of controls were set to 1. Results

are displayed as mean + SEM. ∗ p ≤ 0.05 (Mann-Whitney U test).
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patient cells (Figure 5.7a).

The expression of the SRF partner myocardin, a known activator of the contractile

phenotype, displays minimal, if any reduction (Figure 5.7b). mRNA levels of the myocardin

cofactor MKL 1 are largely unchanged (Figure 5.7c). Similar to SRF, MKL 2 mRNA is

increased in heterozygous mutation carriers exclusively, although just short of significance

(Figure 5.7d).

Members of the ternary complex factor (TCF) family, which are potent antagonists

of the SRF-myocardin axis, were also analyzed. Among these, Elk-1 and -3 expression is

upregulated by a factor of 2-3 exclusively in heterozygous mutation carrier cells (Figure 5.8a

and b). In contrast, Elk-4 levels remain unaffected across groups (Figure 5.8c).

These data are compatible with an impairment of the SRF-myocardin axis in heterozy-

gous cells. The homozygous group, however, and in contrast to most other markers exam-

ined, did not display any distinguishable trend regarding TCF expression. Here, the recent

observation that Krueppel-like factors (Klfs) not only repress the contractile phenotype,

but also induce phagocytic marker expression motivated us to consider these factors as

promising candidates.

RT-qPCR analysis shows a 2.6- to 3.3-fold elevation of Klf4 expression spread across

both hetero- and homozygous patient cells, although significance is only observed in het-

erozygous cells (Figure 5.9a). In contrast, Klf5 expression is reduced in both cell types.

Notably and in addition to being significant, Klf4 upregulation appears well-correlated

to the reduction of TGF-β signaling and to the loss of contractile markers.

Together, these data suggest that Klf4 upregulation might mediate reprogramming of

heterozygous patient cells from a contractile towards a phagocytic phenotype as a conse-

quence of impaired TGF-β signaling.
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Figure 5.7.: Expression of members of the SRF-myocardin axis in HTRA1 mutation

carrier fibroblasts

(a) SRF, (c) MKL 1, and (d) MKL 2 mRNA was quantified by RT-qPCR using β-actin

for normalization. Human skin fibroblast lysates were analyzed by immunoblot using an-

tibodies against myocardin (b). Here, tubulin was used for normalization (n = 5 healthy

control individuals, n = 5 heterozygous patients, n = 3 homozygous patients, n = 8 pooled

samples of heterozygous and homozygous patients). Mean values of controls were set to 1.

Results are displayed as mean + SEM. ∗ p ≤ 0.05 (Mann-Whitney U test).
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Figure 5.8.: Expression of TCFs in HTRA1 mutation carrier fibroblasts

RT-qPCR was used to quantify mRNA levels of (a) Elk-1, (b) Elk-3, and (c) Elk-4 in fibro-

blast extracts. β-actin was used for normalization (n = 5 healthy control individuals, n = 5

heterozygous patients, n = 3 homozygous patients, n = 8 pooled samples of heterozygous

and homozygous patients). Mean values of controls were set to 1. Results are displayed as

mean + SEM. ∗ p ≤ 0.05 (Mann-Whitney U test).
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Figure 5.9.: Expression of Klfs in HTRA1 mutation carrier fibroblasts

RT-qPCR was used to quantify mRNA levels of (a) Klf4, and (b) Klf5 in human skin

fibroblasts. β-actin was used for normalization (n = 5 healthy control individuals, n = 5

heterozygous patients, n = 3 homozygous patients, n = 8 pooled samples of heterozygous

and homozygous patients). Mean values of controls were set to 1. Results are displayed as

mean + SEM. ∗ p ≤ 0.05 (Mann-Whitney U test).
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5.5 HTRA1 -Deficiency Reduces the Expression of Contractile Phenotype Mar-

kers in Mouse Cerebrovasculature

To confirm these findings in vivo, I made use of HTRA1-/- mice (Section 4.2.1). These ani-

mals display no striking phenotype beside a reduced TGF-β signaling activity, as reported

in brains of 2-12-month old animals (Beaufort et al., 2014).

First, I performed immunoblot analysis of contractile phenotype marker expression in

full brain lysates (for specifications see Section 4.2.4) of 2-24-month old HTRA1+/+ and

HTRA1-/- mice. HTRA1-/- animals display an average decrease of calponin-1 expression

by 28 %, ranging from 20 % in young animals (2-3 months) to 32 % in older animals (12-

24 months, Figure 5.10a). In contrast, α-SMA, SM22 and SM-MHC show no clear reduction

in HTRA1-/- animals (Figure 5.10b-d).

Subsequently, mouse brain sections were subjected to immunohistochemical analysis

using anti-calponin-1 and anti-α-SMA antibodies. Vessels positive for both markers were

selected and sorted by size. Vessels with a diameter below 20 µm were classified as ”small”

vessels, while those with a diameter over 40 µm were grouped as ”large” vessels. Analysis

of 2- and 7.5-month old mice revealed no impact of HTRA1 deficiency (not illustrated).

In contrast, in 12-month old animals, a clear reduction of both calponin-1 and α-SMA

levels is detected in small vessels of HTRA1-/- animals (Figure 5.11). In larger vessels

(including meningeal ones), loss of contractile protein is not significant. Notably, this

apparent correlation of vessel diameter to loss of contractile markers suggests that other

methods such as immunoblot, where vessel size is not considered, likely underestimate the

impact of of HTRA1 deficiency on cell phenotype.

Together, these data indicate a loss of contractile proteins that appears to be restricted

to small vessels in HTRA1 -deficient animals of advanced age.
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Figure 5.10.: Expression of contractile phenotype markers in full brain lysate of

HTRA1+/+ and -/- mice

Mouse full brain lysates were analyzed by immunoblot using antibodies against (a) calponin-

1, (b) α-SMA, (c) SM22, and (d) SM-MHC. β-actin was used for normalization (n =

11 HTRA1+/+ mice and n = 11 HTRA1-/- mice) Mean values of HTRA1+/+ animals were

set to 1. Results are displayed as mean + SEM. ∗ p ≤ 0.05 (Mann-Whitney U test).
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Figure 5.11.: Immunohistochemical analysis of contractile phenotype markers in

mouse cerebrovasculature

Mouse brain sections underwent immunohistochemical analysis using primary antibodies

against calponin-1 (top row) and α-SMA (bottom row). Following secondary antibody ap-

plication and signal intensity quantification, DAPI was used for normalization. 14-17 vessels

per group from n = 4 HTRA1+/+ mice and n = 4 HTRA1-/- mice aged 12-14 months. Hor-

izontal bars indicate mean values. Mean values of HTRA1+/+ were set to 1. ∗ p ≤ 0.05;

n.s. p > 0.05 (Mann-Whitney U test). Scale bar in the example images for each group,

vessel size and antibody indicates 20 µm.
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5.6 TGF-β-Mediated Rescue of Contractile Cell Function

In a proof-of-principle assay to rescue contractile cell function, I exposed skin fibroblasts

to recombinant TGF-β.

As expected, treatment of control cells results in a dose-dependent increase of the con-

tractile phenotype markers calponin-1, α-SMA and SM22 (Figure 5.12a). Furthermore, the

ECM protein fibronectin, a known target of TGF-β signaling, is upregulated as well (Fig-

ure 5.12b), whereas PDGF receptor β (PDGFR-β), the expression of which is not known

to be affected by TGF-β signaling, remains unchanged (Figure 5.12c).

Importantly, homo- and heterozygous patient cells are also responsive to TGF-β treat-

ment, resulting in an upregulation of contractile and ECM markers (Figure 5.12a and b).

Moreover, in a pilot experiment including one healthy control and one homozygous

patient cell culture, I could evidence that TGF-β stimulation increases the contractility of

both control and patient cells (Figure 5.12d).

Together, these observations suggest that it is possible to restore the contractile proper-

ties of HTRA1 mutation carrier fibroblasts by treatment with TGF-β.
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Figure 5.12.: TGF-β treatment restores phenotype and function of cultured human

skin fibroblasts

(a-c) Immunoblot analysis of human skin fibroblasts after stimulation with recombinant

TGF-β (r-TGF-β). Antibodies used were directed against calponin-1 (a, left panel), α-SMA

(a, middle panel), SM22 (a, right panel), fibronectin (b), and PDGFR-β (c). Tubulin was

used for normalization and unstimulated samples were set to 1 (n = 5 healthy control

individuals, n = 7 pooled samples of heterozygous and homozygous patients). Results are

displayed as mean + SEM. (d) Contraction of type I collagen gel by one healthy control

and one patient skin fibroblast culture, with and without TGF-β treatment.
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6 Discussion

Using a unique collection of primary fibroblasts from patients bearing HTRA1 mutations,

I have assembled data shedding new light on the pathomechanisms underlying HTRA1 -

related SVD (see Figure 6.1).

First, I established that loss of HTRA1 function correlates with a decrease in TGF-β

signaling (see Section 5.1).

Second, I evidenced phenotypic switching in patient cells (see Sections 5.2 and 5.3). This

includes a loss of contractile proteins, a reduction of the cell contractile function, and an

upregulation of phagocytosis-associated markers. Importantly, a reduction of contraction

markers was confirmed in the brains of HTRA1-deficient mice (see Section 5.5).

Third, I analyzed various transcriptional pathways highlighting Klf4 as a putative or-

chestrator of TGF-β signaling-related patient cell reprogramming (see Section 5.4).

Fourth, my analysis of hetero- as well as homozygous patient cell cultures indicated

pathological alterations in both cell types. This observation is in good accordance with

the recent identification of heterozygous HTRA1 mutations in familial SVD sample groups

(Verdura et al., 2015; Nozaki et al., 2016).

Fifth, I provide proof of principle for the rescue of TGF-β signaling and contractility

in patient cells, e.g. via TGF-β treatment, an observation with therapeutic potential (see

Section 5.6).
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TGFß

HTRA1

Klf4Phagocytic 

proteins

Contractile 

proteins
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Contractile phenotype

Figure 6.1.: Overview of the proposed pathomechanism in HTRA1 -related SVD

Under normal circumstances, HTRA1 facilitates TGF-β signaling, ultimately resulting in

the expression of proteins needed for contractile cell differentiation. Upon HTRA1 loss-

of-function, a lack of TGF-β signaling fails to counterbalance repression of the contractile

transcription program through Klf4. Hence, phagocytic protein expression stimulated by

Klf4 produces a phagocytic cell phenotype. For a detailed description of HTRA1-mediated

release of TGF-β and subsequent signal transduction as well as transcription, see Figures 3.5

and 3.8.
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6.1 TGF-β Signaling

Over the course of my experimental work, I demonstrated a downregulation of TGF-β

signaling in patient skin fibroblasts (see Section 5.1), thereby extending the observations

of Beaufort et al. (2014). While these findings stand in good congruence with the loss of

contractile markers and function I also observed in patient cells, they conflict with earlier

descriptions made by Hara et al. (2009). Based on immunohistochemical analysis of patient

brain, these authors proposed a role for HTRA1 as a repressor of TGF-β and suspected

elevated levels of TGF-β as well as its downstream targets to contribute to the disease.

However, these conclusions were drawn from a very limited number of samples. Further-

more, the tissue used for analysis was obtained by autopsy, where ischemia-associated

fibrosis and therefore excess TGF-β signaling would be expected as a consequence of the

advanced stage of the disease rather than a cause.

Dysregulation of the TGF-β signaling pathway is an emerging common denominator

for a broad variety of vascular disorders (see also Section 3.2.1.3) including several SVDs

other than HTRA1 -related SVD. For instance, incontinentia pigmenti (OMIM: 308300),

a genodermatosis causing – among other pathologies – cerebral arteriopathy with vascu-

lar occlusions in newborns, is caused by mutations in the gene encoding IκB kinase γ

(IKKγ/NEMO), a close interaction partner of TGF-β (de Groof, 2008; Smahi et al., 2000;

Kim et al., 2014). Further examples include CADASIL, where an accumulation of LTBP-1

and TGF-β was observed within the vessel walls of patients (Kast et al., 2014). However,

in these and many other diseases with potential involvement of TGF-β, it often remains to

be examined whether and to which degree TGF-β signaling is up- or downregulated and

which impact on its downstream targets ensues.

Upon close examination, it appears that diseases with a pathological upregulation of

TGF-β seem to outweigh those with a loss of TGF-β signaling activity. This imbalance is

further amplified when considering that disruption of the TGFBR may lead to net increase

in signaling activity, due to the complex regulatory mechanisms involved. However, those

regulatory mechanisms may at the same time account for some seemingly paradoxical path-
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omechanisms. Consequently, antagonistic defects could result in comparable pathogenic

remodeling as observed for cardiac and other developmental defects (Ishtiaq Ahmed et al.,

2014).

6.2 Phenotypic Switching

My data link the lack of functional HTRA1 to an aberrant cell phenotype and function,

including a loss of contractility and a gain of phagocytosis-related markers. This observa-

tion led us to propose that – likewise to a number of other vascular disorders – phenotypic

alterations of contractile cells might not only be a hallmark of HTRA1 -related SVD, but a

crucial pathomechanism as well, as has also been proposed by Ikawati et al. (2018), albeit

in a different tissue (i.e., aorta) and with a different phenotypic outcome (i.e., synthetic

shift).

TGF-β signaling is known to maintain cells in a highly differentiated, contractile state.

It is thus tempting to speculate that the disruption of TGF-β signaling in HTRA1 -deficient

cells might be causative for the aforementioned aberrant cell phenotype. However, among

others, PDGF and Wnt signaling are involved in contractile cell differentiation as well

(Owens et al., 2004; Wang et al., 2015). Future work should thus aim at analyzing these

and other signaling pathways to evaluate the diversity and specificity of the mechanisms

involved in phenotypic switching in HTRA1 -related SVDs.

Since loss of contractile markers and aberrant TGF-β expression have both been reported

in cerebral arteries from CADASIL cases as well, indicators of phenotypic switching in this

condition could be a worthwhile target for future research. Notably, in addition to skin

biopsies from CADASIL patients (which are routinely acquired for diagnostic purposes),

patient brain tissue from autopsy cases, as well as several mouse models are available,

facilitating further investigation.
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6.2.1 Contraction Markers and Contractile Function

I have identified a loss of various contractile markers (e.g. α-SMA, SM22 and calponin-1)

in HTRA1 mutation carrier cells and in the cerebrovasculature of HTRA1-/- mice. Hence, I

demonstrated a reduced cell contractility ex vivo. Similar observances have been made in

various other vascular disorders and pathogenic environments such as dyslipidemia, sub-

arachnoid hemorrhage, and the hereditary SVD CADASIL (Sunaga et al., 2016; Ohkuma

et al., 2003; Zhang et al., 2012) as well as, more recently, in aortic VSMCs of HTRA1-/-

mice (Ikawati et al., 2018).

The precise functional shortcomings of cerebral VSMC and their contribution to cognitive

decline in cerebrovascular disease are still not fully understood. One key mechanism is

arguably defective neurovascular coupling, i.e. the regulation of blood flow and therefore

neuronal metabolism through modulation of vascular tone in response to stimuli such as

CO2 and NO. Observations of impaired neurovascular coupling have, for example, been

made in the vicinity of prior subarachnoid hemorrhage (Balbi et al., 2017).

Last, the de-differentiated state of VSMC due to impaired TGF-β signaling may be fur-

ther augmented through ensuing disruption of feedback mechanisms. α-SMA, for instance,

has been shown to contribute to the maintenance of the contractile VSMC phenotype

through suppression of the GTPase Rac (Chen et al., 2016).

6.2.2 Phagocytosis-Associated Markers

I evidenced an upregulation of phagocytosis-related markers in patient cells. Phenotypic

switching from a contractile to a synthetic phenotype has been well described in an array

of vascular disorders and was recently suggested to occur in CARASIL (see Section 3.3.3.1

and Ikawati et al. (2018)). Conversely, modulation towards a phagocytic phenotype is a

rather novel concept. Consequently, whether switching towards a phagocytic phenotype

also takes place in vivo, will need to evaluated using e.g., HTRA1-/- and HTRA1+/- mouse

tissue.

One of the questions arising from my observations is whether phagocytosis-associated
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marker expression in HTRA1 mutation carrier cells results in an actual gain of phagocytic

function. Furthermore, if phagocytic activity is truly increased, it would be of interest

to identify the substrates involved. Here, phagocytosis assays using latex beads with

Fluorescein-based labelling might help shed some light on these mechanisms. Finally, it is

also of interest to identify which, if any at all, antigens are presented on the contractile

cell surface as a result of pathological phagocytic activity, should it take place.

6.2.3 Klf4

Based on my analysis of transcriptional pathways known to regulate contractile cells dif-

ferentiation, I propose that Klf4 is a critical orchestrator of patient cell reprogramming.

Despite the fact that the precise interaction and regulation of Klf4 and TGF-β is not yet

entirely understood, a number of connections have been made. For instance, in an on-

cological context, studies have shown excessive TGF-β signaling upon loss of Klf4, thus

suggesting a feedback mechanism between the two (Yao et al., 2016; Sun et al., 2017).

Moreover, as mentioned in Section 3.2.1.3, Marfan’s syndrome and HTRA1 -related SVDs

share the common denominator of TGF-β signaling pathway dysregulation. Specifically in

Marfan’s syndrome, there is a pathological over-activation of TGF-β signaling in aortic

VSMC leading to a pathological cell phenotype. This phenotypic switch is reversed upon

overexpression of Klf4 (Dale et al., 2017), providing further evidence for a regulatory

feedback mechanism relevant for vascular cell differentiation.

Lastly, cerebral cavernous malformations (CCMs) represent another cerebrovascular

pathology where highly elevated Klf4 levels play a crucial role in disease pathogenesis,

ultimately leading to clinical manifestations such as cerebral vessel malformations and

markedly increased risk of intracerebral hemorrhage (Zhou et al., 2016). TGF-β sig-

naling dysregulation is also implicated as a contributor of CCMs through promotion of

epithelial–mesenchymal transition (EMT) (Cuttano et al., 2016).

Altogether, there is ample evidence to demonstrate interaction between TGF-β and

Klf4. Furthermore, both have been identified to be decisive factors in the pathogenesis of
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a number of vascular disorders. In the context of HTRA1 -related SVDs, further research

should be undertaken to identify the degree and mechanism(s) through which Klf4, TGF-β

and shared signaling pathways contribute to disease development and progression.

6.3 Homozygous and Heterozygous HTRA1 Mutations

CARASIL has been described as a strictly recessive disorder. However, over the course

of this thesis I have consistently identified various pathological alterations in heterozygous

HTRA1 mutation carrier cells. My data thus suggest that HTRA1 heterozygosity might

be pathogenic. In good agreement, several studies have reported heterozygous HTRA1

mutations in up to 5 % of patients suffering from familial SVD of unknown etiology (Verdura

et al., 2015; Nozaki et al., 2016). These findings will further motivate screening efforts for

HTRA1 mutations in patients with SVD, lead to the identification of further cases, and

thus stimulate interest in the pathobiological role of HTRA1.

In homozygous carrier cells, the majority of results showed a clear trend, but did not

reach significance. This might be due to small sample size (3 homozygous cultures) and

ongoing collection of additional patient cell cultures will help clarifying this point. Featu-

ring a later age of onset and a lack of extraneurological symptoms, heterozygous patients

display a milder phenotype than CARASIL cases. This suggests haploinsufficiency, i.e., a

clinical phenotype based solely on the lack of functional protein from the defective allele,

resulting in a lower total amount of intact gene product.

Alternatively, HTRA1 mutations might display dominant-negative behavior. Indeed,

HTRA1 assembles as a trimer to form a mature and proteolytically active complex (Clausen

et al., 2011). In a heterozygous situation, mutant HTRA1 might thus neutralize up to two

units of wild type HTRA1 within heterotrimers (see Figure 6.2). This possibility is sup-

ported by recent in vitro findings (Uemura et al., 2019; Nozaki et al., 2015). This type of

pathomechanism has been extensively investigated for other SVD-related mutations tar-

geting the multimeric protein type IV collagen (Gould et al. (2005), see Section 3.1.5).

Analysis of the molecular (e.g., TGF-β signaling) and functional (e.g., vascular tone) phe-
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notype in mouse models either deficient for HTRA1 or bearing a pathogenic mutation could

shed further light on this issue, when comparing homo- and heterozygous animals.

WT allele mutant allele

WT

HTRA1

mutant

HTRA1

multimerization

proteolytically active reduced activity

Figure 6.2.: Model for a dominant-negative effect of mutant HTRA1

Following transcription and translation, WT and mutant HTRA1, as found in a heterozy-

gous mutation carrier, trimerize. The presence of mutant HTRA1 within the resulting

heterotrimers might be sufficient to alter the global activity of the complex, resulting in a

dominant-negative effect.

Remarkably, both the loss of contractile phenotype (as described in Section 5.2) and the

switch towards a phagocytic expression pattern (see Section 5.3) observed on a molecular

and/or functional level were generally more pronounced in heterozygous than in homozy-

gous mutation carriers, clearly contrasting the clinical phenotype. One factor that may
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have contributed to these findings is the small sample size of this study, especially regarding

homozygous patients. Moreover, among the CARASIL patients, one individual (Pat3; see

Table 4.1) presented a relatively late onset of clinical symptoms. Correspondingly, the ex-

pression pattern and contractile function observed for cultured fibroblasts of this individual

was consistently less aberrant than that of the other two CARASIL patient samples.

6.4 Rescue Strategies

As an attempt to rescue cell phenotype I stimulated patient fibroblasts with recombinant

TGF-β, resulting in upregulation of contraction marker expression and an improved cell

contractility (see Section 5.6). While there is evidence to suggest that TGF-β may for

instance suppress expression of galectin-3 (Tian et al., 2016), impact of this treatment

on other markers including phagocytosis-associated markers and Klf4 in contractile cells

remains to be investigated.

Successful TGF-β-induced rescue indicates that pathogenic phenotypic switching as ob-

served in patient cells is not irreversible, hence providing the groundwork for the exploration

of potential treatment strategies. However, not only is TGF-β a major contributing factor

in fibrosis, mostly through upregulation of ECM production (Rockey et al., 2015), but

it also plays a decisive role in various malignant diseases, where it for instance promotes

EMT (Ikushima and Miyazono, 2010).

Thus, the exploration of alternative, more selective targets is of high interest. These

might include components of the contractile apparatus. Yet again, known stimulators of

contractile protein expression are mostly limited to growth factors, many of them associated

with negative side effects comparable to those of TGF-β.

Modulation of so-called micro RNAs (miRNAs) might represent another promising strat-

egy. miRNAs, which were first described in the early 2000s, are nucleotide sequences with

a length of approximately 22 nucleotides. miRNAs regulate biological processes through

the cleavage or transcriptional repression of mRNAs (see Figure 6.3). They are involved in

numerous pathophysiological processes, and are emerging as valuable drug targets, inclu-
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pre-miRNA mature miRNA

mRNA degradation

inhibition of translation

Figure 6.3.: miRNA-mediated regulation of cell phenotype

In the nucleus, RNA polymerase II transcribes primary (pri-)miRNA which is subse-

quently processed into pre-miRNA and transferred into the cytoplasm. There, process-

ing through enzymatic cleavage yields mature, biologically active miRNA that may af-

fect protein expression either through mRNA degradation or transcritptional repression

(Kang and Hata, 2012). Elements of this Figure produced by Philippe Hupé and shared on

commons.wikimedia.org
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ding in the modulation of VSMC phenotype (Bartel, 2004). Notably, several miRNAs have

been shown to specifically promote either the synthetic/proliferative (e.g. miRNAs 24; 31;

208 and 221) or the contractile VSMC phenotype (e.g. miRNAs 10a; 21; 143 and 145 as

depicted in Figure 6.4) (Kang and Hata, 2012). Moreover, in the context of atheroscle-

rosis in metabolic syndrome, treatment with miRNA 145 applied via an adenoviral vector

successfully restored the contractile VSMC phenotype (Hutcheson et al., 2013).

SRF

CArG box

SRF

Myocardin Myocardin

Contractile marker 

gene expression

miRNA145

Klf4

Figure 6.4.: miRNA 145 promotes the contractile expression program

The expression of miRNA 145, one of the best-described miRNAs involved in the mainte-

nance of the contractile VSMC phenotype, is promoted by the SRF-myocardin transcrip-

tional complex. One of its key mechanisms of action is the inhibition of Klf4, thus lifting

Klf4-mediated suppression of the contractile gene expression program. For a more detailed

illustration of Klf4-mediated inhibition of the SRF-myocardin complex, see Figure 3.9. Fig-

ure modelled after an illustration by Joshi et al. (2012).

Therefore, targeting these miRNAs might represent a suitable approach to rescue con-

tractility, while leaving ECM deposition unaffected.

73





A. Appendix: Methods

A Appendix: Methods

Background information on genotyping (Figure A.1), immunoblot (Figure A.2), immuno-

histochemistry (Figure A.3) and RT-qPCR (Figure A.4) experiments as elaborated in

Chapter 4 is provided on the following pages.
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Figure A.1.: Genotyping of HTRA1+/+, +/- and -/- mice

(a) Structure of the mouse HTRA1 gene before and after gene trapping (WT and mutant

allele, respectively). Arrows indicate the position of the genotyping primers. (b) Genotyping

as performed with DNA from HTRA1+/+, +/- and -/- animals. A DNA-free sample was

included as control. Amplification of the WT allele produces a 434-bp fragment, while

amplification of the mutant allele yields a 281-bp PCR product.

76



A. Appendix: Methods

kDa

50
37

25

75

a

kDa

50
37

25

75

b

kDa

100
150
250

c

Figure A.2.: Antibody testing for immunoblot

Example featuring mouse full brain lysates analyzed by immunoblot using primary an-

tibodies against (a) α-SMA (expected molecular mass 42 kDa), (b) calponin-1 (expected

molecular mass 34 kDa), and (c) PDGFR-β (expected molecular mass 190 kDa).

a b

Figure A.3.: Antibody testing for immunohistochemistry

(a) Mouse brain sections were analyzed by immunohistochemistry using an anti-calponin

antibody followed by detection with fluorophore-coupled anti-rabbit immunoglobulin anti-

body (green). In (b), the primary antibody was omitted. Nuclei were stained with DAPI

(blue). Vessels with a diameter of approximately 50 µm are present in both sections (ar-

rows). Scale bars represent 200 µm.

77



A. Appendix: Methods

Amplification Curves

Cyc les
403530252015105

F
lu

o
re

sc
en

ce
 (

46
5-

51
0)

12,930

11,930

10,930

9,930

8,930

7,930

6,930

5,930

4,930

3,930

2,930

1,930

0,930

-0,070

a

Melting Peaks

Temperature (°C)
90858075706560

-(
d

/d
T

) 
F

lu
o

re
sc

en
ce

 (
46

5-
51

0)

2,653

2,403

2,153

1,903

1,653

1,403

1,153

0,903

0,653

0,403

0,153

-0,097

b

Figure A.4.: Primer testing for RT-qPCR

Human skin fibroblasts were analyzed for calponin (CNN1) expression by RT-qPCR. Red:

cDNA (n = 2 samples; in duplicate); green: water control; blue: non-reverse transcribed

control. (a) Amplification curves, showing CT values of about 27 (CT values > 35 indicate

very low cDNA abundance). (b) Melting profiles, showing a sharp, single peak. Double

peaks are commonly observed in water controls and correspond to primer dimers.
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