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Summary 

The fate of a developing T cell is dependent on the interaction of its T cell receptor 

(TCR) and the self-peptide MHC complex on thymic antigen presenting cells. According 

to the classical affinity/avidity model of thymocyte selection, the degree of auto-

reactivity determines if potentially harmful T cells are diverted into regulatory T cells 

(intermediate affinity/avidity) or clonally deleted (high affinity/avidity). Nevertheless, 

how central tolerance induction to a physiological self-antigen is set in the polyclonal 

repertoire is still poorly understood. 

In the presented thesis, we are focusing on the naturally-expressed tissue-restricted 

antigen myelin proteolipid protein 1 (PLP1), the main component of the myelin sheath, 

as it is discussed to be one of the putative target antigens in multiple sclerosis (MS) in 

humans. Upon PLP1 immunization, non-tolerant murine strains develop experimental 

autoimmune encephalomyelitis (EAE), a MS-like disease, whereas C57BL/6 mice are 

resistant to EAE and lack recall responses, due to the expression of PLP1 in thymic 

epithelial cells. Klein et al. previously showed that, upon immunization of PLP1-deficient 

C57BL/6 mice, CD4 T cells react to three epitopes within the PLP1 protein (PLP111-19, 

PLP1174-182 and PLP1240-248) [1]. To further investigate the mechanisms of central 

tolerance induction to PLP1, we generated two PLP1:I-Ab tetramers to follow the destiny 

of PLP111-19 and PLP1240-248-specific T cells in the polyclonal CD4 compartment. Initially, 

we identified regulatory T cell induction upon self-recognition as the dominant 

tolerance mechanism for both PLP111-19 and PLP1240-248-specific T cells. We then focused 

on endogenous PLP111-19-specific CD4 T cells and we detected differences between the 

T cell repertoires of PLP1-deficient and PLP1-sufficient C57BL/6 mice, with regard to 

abundance and Treg cell induction. Furthermore, we could describe in more detail to 

which extent TRA critical factors such as AIRE, mTECs and also DCs influence the 

tolerance processes and we collected evidence for T cell anergy induction as a third 

alternative pathway to tolerize PLP1 specific T cells in the thymus. 

Finally, single cell sequencing of tolerant and naïve PLP111-19-specific TCR repertoires 

uncovered TCR candidates that were deleted, whereas others underwent diversion into 

the Treg cell lineage upon antigen encounter. The characterization of selected TCRs in 

TCR transgenic mice partially favors the (affinity)/avidity model, although one PLP1-

specific TCR does not fit into the model and leaves space for an alternative 

interpretation of thymocyte selection rules.  



 9 

Zusammenfassung 

Das Schicksal einer heranreifenden T-Zelle hängt von der Interaktion des T-Zell-

Rezeptors (TZR) und den körpereigenen Peptid-MHC-Komplexen der Antigen 

präsentierenden Zellen im Thymus ab. Gemäß dem klassischen 

Affinitäts-/Aviditätsmodell der Thymozytenselektion bestimmt der Grad der 

Autoreaktivität, ob potentiell gesundheitsschädliche T-Zellen in regulatorische T-Zellen 

umgewandelt (gemäßigte Affinität/Avidität) oder durch das Einleiten der Apoptose 

(hohe Affinität/Avidität) aus dem System entfernt werden. In wieweit diese 

Mechanismen der zentralen Toleranzinduktion, ausgehend von einem physiologisch 

exprimierten körpereigenen Antigen, sich auf ein polyklonales T-Zellen-Repertoire 

auswirken wurde jedoch bis Dato nur unzureichend beschrieben.  

In der hier vorgestellten Arbeit konzentrieren wir uns daher auf das natürlich exprimierte 

und gewebespezifische Myelin-Proteolipid-Protein 1 (PLP1), welches als 

Hauptkomponente der Myelinscheide als eines der mutmaßlichen Zielantigene bei der 

humanen Multiplen Sklerose (MS) in Betracht gezogen wird. Interessanterweise, ruft die 

PLP1-Immunisierung von intoleranten Mauslinien eine MS-ähnliche Erkrankung, die 

sogenannte experimentelle autoimmune Enzephalomyelitis (EAE), hervor. C57BL/6 

Mäuse hingegen sind aufgrund der Expression von PLP1 in den thymischen 

Epithelzellen gegen EAE resistent und regieren nicht auf Stimulierungsversuche. Klein 

et al. konnte in PLP1-defizienten C57BL/6-Mäusen durch PLP1-Immunisierung zeigen, 

dass CD4 T Zellen gegen drei Epitope innerhalb des PLP1-Proteins reagieren (PLP111-19, 

PLP1174-182 und PLP1240-248) [1]. Die Konstruktion zweier PLP1:I-Ab-Tetramere ermöglichte 

uns die PLP1-abhängigen Mechanismen der zentralen Toleranzinduktion weiter zu 

untersuchen und das Schicksal von PLP111-19 und PLP1240-248–spezifischen T-Zellen im 

polyklonalen CD4 Kompartiment genauer zu definieren. So konnten wir zu Beginn die 

Induktion regulatorischer T-Zellen als dominanten Toleranzmechanismus in toleranten 

PLP111-19 und PLP1240-248–spezifischen T-Zell-Fraktionen beschreiben. Im weiteren 

Verlauf war es uns durch die Fokussierung auf endogene PLP111-19–spezifische CD4 

T-Zellen in Plp1KO und Plp1WT C57BL/6 Mäusen möglich Unterschiede in der Abundanz 

und der Fähigkeit regulatorische T-Zellen zu induzieren genauer darzustellen. Ferner 

konnten wir aufzeigen, in welchem Maße die für die Expression von gewebespezifische 

Autoantigenen kritischen Faktoren, wie AIRE, mTECs und DCs die Toleranzprozesse 

nachhaltig beeinflussen. Zudem sammelten wir Indizien für die Induktion von T-Zell 
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Anergie als dritten alternativen Mechanismus der Toleranzinduktion von PLP1-

spezfischen T-Zellen im Thymus. 

Abschließend wurde durch Sequenzierung von einzelnen CD4 T-Zellen des toleranten 

und naiven PLP111-19-spezifischen TZR-Repertoires Kandidaten entdeckt, welche infolge 

der spezifischen Antigenbegegnung eliminiert, während andere in regulatorische 

T-Zellen umgewandelt wurden. Die selektive Charakterisierung ausgewählter TZRs in 

TZR transgenen Mauslinien unterstützt zum Teil das (Affinitäts-)/Aviditätsmodell, obwohl 

ein PLP1-spezifischer TZR nicht der Definition des Modelles entspricht und dadurch 

Raum für eine alternative Interpretation des Modells ermöglicht.  
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1 Introduction 

1.1 Thymus 

The necessity of the thymus gland has long been a mystery to researchers and scientists. 

Although the ancient Greek philosophers already appreciated the thymus and 

described it as the source of vital force in human kind [2], it took until the 1960s for the 

bi-lobed gland to receive the attention it deserved. In 1961, Jacques Miller discovered 

that thymectomized newborn mice were profoundly lymphopenic and unable to mount 

effective immune responses against tumors, infections and allogenic skin grafts [3-6]. 

Interestingly, the immunecompetence of these mice could be restored by thymic 

transplantation and, moreover, when the thymus transplant came from a different donor 

strain, the recipients turned out to be immunologically tolerant to antigens of both the 

donor and the recipient strain. This led Jacques Miller to the hypothesis that the thymus 

supports the release of functional and self-tolerant lymphocytes into the periphery [5]. 

60 years later this theory is still accepted by scientists worldwide and the maturation of 

T lymphocytes (also known as T cells) in the thymus is generally appreciated as a 

fundamental process for the generation of an effective adaptive immune response. 

The initial patterning of the bi-lobed thymus gland starts with the gene expression onset 

of the transcription factor Foxn1 (Forkhead box N1) from the third pharyngeal pouch 

endoderm including the surrounding neural crest cells. FoxN1 is the key factor for 

thymic epithelial cell development and regulates the function, morphology and 

homeostasis of the thymus - but also the differentiation of keratinocytes and hair follicles 

- throughout life. FoxN1 deficiency causes severe thymic development defects, leading 

to an impaired T cell compartment [7], and the famous nude phenotype. To ensure a 

functional immune response even in newborns, the thymus formation starts around 

embryonic day 10 – 11 in mice and continues growing after birth till puberty [8, 9]. From 

this point on, the size of the thymus gradually decreases in a process known as thymic 

involution [10], leading to the transformation of the parenchyma into adipose tissue over 

time, which is discussed to play a role in age-related immunosenescence. Although the 

thymus changes greatly during life, its basic structure remains the same. Once the 

organogenesis is completed, the postnatal bi-lobed thymus – which is located behind 

the sternum and above the heart [11] – can morphologically be divided into lobules, 

each composed of an outer cortex and an inner medulla, where specialized epithelial 

cells can facilitate unique stages of T cell differentiation. The structure of the thymus 

reflects the tightly-regulated maturation route of developing T cells (otherwise known as 
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thymocytes) through this organ. Immature thymocytes start their migration from the 

inner cortex, subsequently move towards the outer cortex, and finally migrate back to 

conclude their differentiation journey in the medulla. The interplay of cortical and 

medullary thymic epithelial cells (cTECs and mTECs), various chemokines and 

checkpoints ultimately ensures the promotion and selection of CD4+ or CD8+ committed 

T cells, with a functional T cell receptor (TCR) able to recognize foreign antigens while 

remaining tolerant to self (reviewed in [12]).  

1.2 Maturation of αβ T cells in the thymus  

T cells derive, as all hematopoietic cell lineages, from hematopoietic stem cells in the 

bone marrow (BM). Initially, T cell precursors get attracted by CXC-chemokine ligand 12 

(CXCL12) and CC-chemokine ligand 25 (CCL25) expressing cTECs and enter the thymus 

via the bloodstream at the cortico-medullary junction (CMJ), while they are still multi-

potent (figure 2) [13, 14]. The subsequent maturation of the precursor T cell can be 

divided into three different stages based on the expression of the co-receptors CD4 and 

CD8, which facilitate the interactions with the major histocompatibility complex class II 

(MHCII) and MHCI, respectively: the double negative (DN), the double positive (DP) and 

the single positive (SP) stages. The DN stage can be further divided into four sub-stages 

(DN1 -> DN4) based on the expression of CD44 (an adhesion molecule) and CD25 

(Interleukin-2 receptor α-chain) [15]. 

1.2.1 DN Phases 

The undifferentiated cells that colonize the thymus possess the potential to give rise, 

next to the T cell lineage, to other specific cell lineages, such as macrophages, dendritic 

cells, granulocytes, natural killer cells and also B cells [16-20]. A first trend-setting step 

towards T cell development is initiated by the interaction of the Notch1 receptor with 

the corresponding Notch ligand Delta-like 4 (DLL4), expressed on the cortical 

epithelium, close to the CMJ (figure 2) [21]. This not only induces the expression of 

T cell specific factors but also blocks a possible development into the B cell lineage [17, 

22]. Furthermore, the Notch1:DLL4 interaction, in combination with the cytokines IL-7 

[23, 24] and Kit ligand (KitL) [25], favors a vigorous proliferation of the progenitor cells 

within the first 10 days [26, 27]. The Notch signaling persists in the following 

developmental stage, DN2, and leads to an up-regulation of CD25 (c-Kit+ CD44+ CD25+) 

[28] and the migration of the immature thymocytes into the inner cortex. At this stage 

the cells start to express the recombination activating genes (RAG) 1 and RAG2, two 



 13 

important recombinases for the T cell receptor (TCR) rearrangements [29]. At the late 

DN2 stage, in combination with the migration to the outer subcapsular zone, the 

decrease in c-Kit and CD44 expression and the up-regulation of the Bcl11b gene, the 

thymocytes lose the potential to differentiate into alternative cell fates besides the T cell 

lineage [30, 31]. This irreversible commitment marks the beginning of the DN3 (c-Kit- 

CD44- CD25+) phase and the entry into one of the critical checkpoints during T cell 

development, the ß-selection.  

The TCR is an assembled heterodimer of an α- and a ß- (polypeptide) chain (1-10 % of 

T cells express γδ-chains). During ß-selection, the exons of the variable (V), diversity (D) 

and joining (J) genes of the Tcrb locus undergo stochastic DNA rearrangement, a 

process called VDJ recombination (figure 1). Each of the three segments is composed of 

several separated exons, each of which encodes a complete gene by itself. A 

heterodimeric complex composed by RAG1 and RAG2 introduces a random double-

strand break next to one of the D and J segments, brings them together and imprecisely 

ligates the ends. Subsequently, also one of the V segments is inaccurately added to the 

DJ segment. This random recombination of the individual sub-segments and the 

variability at the joining sites, where individual nucleotides are deleted or added with 

the help of the terminal deoxynucleotidyl transferase (TdT), guarantees a tremendous 

variability of the antigen-binding domain within the ß-chain [32]. Simultaneously, the 

transcripts of Ptcra and the Cd3 genes increase and lead to the expression of the CD3 

signaling complex and the pre-TCR α-chain. The invariant pre-TCR α-chain forms a pre-

TCR with the expressed ß-chain. At this point, a lack of signaling downstream of the pre-

TCR results in programmed cell death and the digestion by F4/80 expressing thymic 

macrophages. Instead, the efficient formation of a pre-TCR complex results in survival 

and migration into the subcapsular zone. Of note, a safety mechanism of chromatin 

condensation, known as allelic exclusion, prevents VDJ rearrangements on the second 

TCR ß-chain allele. At the beginning of the DN4 or pre-DP stage (CD44- CD25- CD4low 

CD8low), a combination of pre-TCR and Notch signaling leads to another strong 

proliferation round, before CD4 and CD8 co-receptors are slightly up-regulated and the 

thymocytes differentiate into the DP stage. During the DP phase, the precursor T cells 

migrate back into the inner cortex, become unresponsive to cytokines and start the 

rearrangement of the V and J segment of the Tcrα locus on both alleles, until one of the 

α-chains is able to form a stable TCR with the ß-chain (reviewed in [33, 34]). The lack of 

allelic exclusion at this point causes around 10 % of mature T cells to express two 

α-chains on the cell surface [35]. 
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Figure 1: V(D)J recombination of TCR loci in developing thymocytes 

The V(D)J recombination is a random process that enables the generation of an immensely variable 

T cell receptor (TCR) repertoire, with the aim of recognizing all possible pathological antigens. (A) The 

TCR gene loci consist of many independent gene segments, which are stochastically rearranged and 

fused to generate each receptor. The upper row shows the DNA configuration, whereas the lower one 

represents the spliced mRNA. The TCR α-chain locus (left) consists of V (variable) and J (joining) 

segments, while the TCR ß-chain locus has an additional D (diversity) gene segment in between V and J. 

Both TCR loci also consist of constant regions (Cα or Cß), which encode the transmembrane domain and 

are fused to the V(D)J part during splicing. (B) The most variable region of the TCR is the 

complementarity-determining region (CDR) 3, as it lies exactly at the junction between the V(D)J 

segments and interacts directly with the antigen embedded in the MHC groove. Addition (N) and/or 

deletion of nucleotides at the V(D)J ends ensures additional diversity. The germ line encoded CDR1 and 

CDR2, instead, establish the interaction with the MHC itself. The figure was adapted from [36]. 

1.2.2 Positive and negative selection in the cortex  

It is estimated that the thymus cortex generates – out of 10 to 100 multipotent precursor 

cells – roughly 50 x 106 DP (CD4+ CD8+) T cells per day, therefore producing over time a 

tremendous amount of different αßTCR specificities able to recognize a virtually infinite 

number of self- and foreign-molecules presented by self-MHCs [37]. However, the 

random somatic recombination of the α- and ß-chain loci does not result only in useful 

TCR entities, but also in potentially non-functional or harmful receptors, which must be 

tested before the T cells’ maturation process is complete. In order to ensure functionality 

and self-tolerance, the following selection mechanisms depend on the strength of the 

interaction between the TCR and the peptides embedded in the self-MHCs. The 

resulting signaling cascade defines, in combination with various cytokines and co-

stimulatory factors, the fate of the immature thymocyte.  

TCR α-chain TCR β-chainA

B

Vβ Dβ1 Dβ2Jβ1 Jβ2 CβVα Jα Cα

CDR1 CDR2 CDR3

Vβ
Dβ

JβN N

CDR1 CDR2 CDR3

Vα JαN
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The ability of the TCRs to recognize self-MHC molecules is initially tested in the cortex. 

For this purpose, the cTECs use an exclusive set of enzymes to process intracellular 

proteins and present them on the respective MHCs: the protease cathepsin L (CTSL) and 

the thymus specific serine protease (TSSP) for presentation of peptides on MHCII and 

the thymoproteasome with the specialized subunit ß5t (Psmb11) for presentation on 

MHCI (figure 2) [38-40]. Unlike conventional antigen-presenting cells (APCs), cTECs 

show constitutively enhanced levels of macroautophagy, a degradative pathway, which 

allows them to load endogenous proteins on MHCII molecules [41]. The combination of 

these unique mechanisms supports the idea of a specialized library of peptides, 

embedded in the self-MHCs, for positive selection on cTECs. Indeed, thymocytes 

expressing functional TCRs, i.e. able to interact with the cTECs’ self-peptide MHCs (self-

pMHCs) within a defined low-affinity range of self-reactivity, undergo positive selection, 

meaning they are rescued from the default pathway of programmed cell death (also 

known as death by neglect) and they are allowed to proceed with development. 

However, up to 85% of thymocytes do not interact at all with self-pMHCs [42, 43] and 

die by neglect. A third fraction of DP thymocytes shows high affinity for self-pMHCs and 

is therefore removed from the repertoire in a process known as negative selection, in 

order to prevent self-tissue destruction and autoimmunity. As cTECs are relatively 

inefficient in initiating negative selection and rather specialized in inducing positive 

selection, it was suggested that rare cortical dendritic cells (DCs) - most likely CD11c+ 

CD8αlow SIRPα+ CD11b+ conventional DC2 (cDC2) - implement this process of deletion 

in the cortex [44, 45] (reviewed in [46, 47]). 

Pre-selected DP thymocytes are highly sensitive compared to SP or mature T cells [48], 

due to the up-regulation of molecules involved in the TCR signaling cascade (such as 

Themis, Tespa1, miR-181-a and Scn4b) [49-53]. They also express extremely low levels 

of TCR molecules on the surface, which will increase only as a consequence of successful 

positive selection. Besides the up-regulation of the TCR, positively selected thymocytes 

induce also CD3, CD5 and CD69 and initiate the SP differentiation program [54, 55]. 

According to our current knowledge, the differentiation into SP T cells follows the 

"kinetic signaling" model [56]. This model suggests that, regardless of the MHC 

restriction, the CD8 expression is down-regulated after positive selection into a CD4+ 

CD8low intermediate stage [57]. T cells that express TCRs able to establish a prolonged 

signaling with one of their counterpart MHCII molecules, expressed by cTECs, up-

regulate the transcription factor ThPOK and commit to the CD4 SP lineage [58]. Due to 

the down-regulated expression of CD8, MHCI-restricted T cells are only able to produce 
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a short or weak signal. However, they respond to the presence of six lineage-specific 

cytokines (IL-6, IL-7, IL-15, IFN-y, TSLP and TGF-ß) and can thus up-regulate the 

transcription factor Runx3d [59], reverse the expression of CD4 and irreversibly commit 

to the CD8 SP lineage (reviewed in [60]).  

 

Figure 2: Role of cTECs in T cell  development 

Functional diversity of cortical thymic epithelial cells (cTECs) promoting T cell maturation. (A) cTECs 

attract hematopoietic T cell precursors by releasing chemokines CXCL12 and CCL25 into the thymus. (B) 

Interaction between the Notch1 receptor on the thymocytes and DLL4 on cTECs initiates the 

commitment to the T cell lineage. (C) IL-7 and KitL released by cTECs promote the proliferation of DN 

T cells. (D) Positive selection guarantees the survival of DP T cells, whose TCR binds to self-pMHC with an 

appropriate affinity/avidity. Intracellular proteins are digested by the thymoproteasome and loaded on 

the MHCI of cTECs. Unlike conventional antigen-presenting cells, cTECs constitutively shuttle 

intracellular proteins to the MHCII loading compartments via macroautophagy, and generate self-

peptides thanks to the expression of the thymus-specific serine protease (TSSP) and cathepsin L (CTSL). 

(E) TCRs whose affinity to the self-pMHC is either excessive or absent undergo apoptosis. The figure was 

adapted from [61]. ER: endoplasmic reticulum 

 

Thymocytes assigned to their specific lineage induce the expression of the chemokine 

receptors CCR4 and CCR7. The corresponding ligands for the former (CCL17 and 

CCL22) are expressed by cDC2, whereas the ligand for the latter (CCL21Ser) is 
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produced by mTEClo (AIRE- CD80lo MHCIIlo). These expression patterns attract the SP 

T cells into the medulla [62-65]. 

1.2.3 Negative and agonist selection in the medulla: the final maturation 

steps 

To limit the emigration of mature self-reactive T cells into the periphery, in the medulla 

the positively selected and self-MHC-restricted thymocytes test their potential to interact 

with a broad range of self-antigens, which they may be confronted with in the periphery. 

The antigen repertoire is displayed on the respective MHCs expressed by APCs such as 

mTECs, BM-derived conventional and plasmacytoid dendritic cells (cDCs and pDCs) 

and, more recently discovered, also by B cells (reviewed in [46]). In the medulla, TCR 

stimulation through self-recognition instructs the alternative fates of clonal deletion 

(recessive tolerance) or clonal diversion (in the presence of IL-2 and TGF-ß) into 

suppressive forkhead box P3 (FoxP3)+ CD25+ regulatory T (Treg) cells (dominant 

tolerance) [66-71]. To which extent the individual APCs affect the selection outcome is 

still under debate. Experiments with mice lacking DCs [72], or lacking MHC molecules 

on hematopoietic APCs [73], or mice with diminished expression of MHCII on mTECs – 

the so-called C2TAkd mice [74] – attempted to define the roles of medullary APCs in 

self-tolerance induction. Regardless of the setup, an increase in CD4 SP T cells was 

monitored across the experiments, providing evidence for a significant role of the 

respective APCs in clonal deletion [72-74]. This perspective changed with a TCR high 

throughput analysis of conventional T (Tconv) cells and Treg cells from C2TAkd animals 

and from mice lacking MHCII on BM-derived APCs. In both experimental settings, Perry 

et al. identified a lack of Treg cell TCR specificities at single-cell level and their 

appearance in the Tconv cell repertoire, arguing for an important role of mTECs and BM 

APCs in clonal diversion next to clonal deletion [75]. Overall the influence of different 

medullary APCs on self-tolerance induction seems to be, at least partially, non-

redundant, as the self-peptidome presented by individual APCs is believed to be partly 

divergent (reviewed in, [46, 76]).  

In mature mTEChi (Aire+ MHCIIhi CD80hi), for example, it is possible to detect the mRNA 

of more than 19,000 different genes (reflecting about 90 % of the entire genome), which 

is so far the highest amount of transcribed genes ever measured in any cell type [77]. In 

addition, mTECs can use autophagosomal degradation to shuttle intracellular proteins 

to MHCII loading compartments, as well as extensive RNA editing and alternative-

splicing mechanisms to enlarge the complexity of self-antigens that are presented to 
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developing thymocytes (figure 3) [78, 79]. Extraordinary and unique in this respect is the 

intrinsic competence of promiscuous gene expression (PGE) of tissue-restricted antigens 

(TRAs), whose expression is usually strictly controlled and limited to specific tissues or 

cells outside the thymus [80]. The presence of TRAs within the thymus fosters a self-

tolerant thymocyte repertoire. A lack of individual TRAs, on the other hand, can cause 

organ-specific autoimmune reactions, as shown for the multiple sclerosis mouse model - 

experimental autoimmune encephalomyelitis (EAE) [1] - or diabetes and Graves 

diseases in humans [81, 82]. Interestingly, to generate a tolerant T cell repertoire it is 

sufficient that less than 3 % of mTEChi express specific TRAs – in a mosaic-like pattern – at 

a given time [83-85]. Recently, it was demonstrated in two independent experiments 

that neo-self-antigens expressed in this TRA-like pattern convert a significant fraction of 

polyclonal CD4+ T cells, specific for the respective neo-self-antigen, into Treg cells [86, 

87]. In contrast, the same antigen under the control of promoters for ubiquitously 

expressed genes resulted in a reduced number of tetramer-positive T cells and a lack of 

specific Treg cells [87].   

The transcription of around 2300 TRA genes (and around 1600 ubiquitous genes [63]) is 

regulated by the autoimmune regulator (AIRE) (figure 3), whose loss of function is linked 

to a breakdown in self-tolerance associated with multiple organ failure, lymphocytic 

infiltration and autoantibodies in mice [88-90] and humans [91, 92], a clinical condition 

known as APECED (autoimmune polyendocrinopathy, candidiasis and ectodermal 

dystrophy). It is now broadly accepted that Aire-expressing mTEChi (at least in part) are 

responsible for the organ-specific tolerization of immature thymocytes via clonal 

deletion and clonal diversion. The negative selection of autoreactive thymocytes was 

initially investigated in TCR transgenic (tg) mice expressing cognate neo-self-antigens, 

such as hen egg lysozyme (HEL) or ovalbumin (OVA), under the control of AIRE-

dependent organ-specific promoters. These studies revealed an AIRE-based reduction 

of the monoclonal TCR tg CD4 SP population [93-95]. More recently, AIRE-dependent 

intrathymic deletion of CD4 SP thymocytes was also confirmed in the TCR polyclonal 

repertoire. Using the tetramer technology, researchers detected in the absence of AIRE 

an increase of self-reactive CD4 SP thymocytes – specific either for the TRA 

interphotoreceptor retinoid-binding protein (IRBP) or the model antigen GFP expressed 

under the TRA insulin promoter [87, 96]. Combined, the above-mentioned experiments 

support the possibility that the transcription of AIRE-dependent TRAs in AIRE-expressing 

mTECs favors deletion of self-reactive thymocytes. On the other hand, the extent to 

which AIRE-dependent PGE in mTECs contributes to the development of regulatory 
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T cells is rather well described. Patients suffering from APECED provided first 

indications, whose symptoms were traced back to a mutation in the Aire gene leading to 

an ablation of regulatory T cells [97]. At the same time, Aschenbrenner et al. described 

that the clonal diversion - next to clonal deletion - of TCR tg CD4 SP thymocytes specific 

for the influenza hemagglutinin (HA) model antigen into Treg cells is dependent on AIRE 

expressing mTECs [98]. Furthermore, high throughput TCR analysis of AIRE-sufficient 

and -deficient mice revealed that some Treg cell populations are dependent on the 

expression of certain TRAs on mTECs, otherwise they enter the Tconv cell lineage [75, 99]. 

However, the expression of TRAs is not exclusively dependent on AIRE, as the presence 

of PGE in AIRE-deficient mice suggests [77, 88]. Only recently, another transcription 

factor, FEZF2, was described in mTECs to initiate the expression of TRAs (figure 3). 

Although both transcription factors are co-expressed by the same cell type, the majority 

of genes they are activating seem to be largely non-overlapping. Interestingly, FEZF2-

deficient mice (similarly to Aire knockout mice) suffer from multi-organ autoimmunity 

and display an altered T cell repertoire [100, 101]. Further investigations are still 

required to describe the exact tolerogenic functions of FEZF2-expressing mTECs. 
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Figure 3: Medullary thymic epithelia cells (mTECs) and their function in central tolerance 

Mature mTECs are capable of presenting the majority of self-antigens, even those that are restricted to 

specific tissues. This promiscuous gene expression (PGE) of tissue-restricted antigens (TRAs) is partly 

initiated and controlled by the transcription factors AIRE and FEZF2. To broaden the range of self-

antigens presented for central tolerance induction, mTECs exploit, among other mechanisms, alternative 

splicing. Similarly to cTECs, mTECs possess an enhanced ability to shuttle self-proteins to MHCII 

compartments via macroautophagy. SP thymocytes, whose TCR reacts too strongly with pMHC 

presented by mTECs, are either converted into suppressor Treg cells (A) or negatively selected (B). The 

secretion of XCL1 by mTECs attracts DCs in close proximity to mTECs, promoting TRA transfer and 

tolerance induction by DCs (C). The figure was adapted from [61]. 

 

During the transit of thymocytes through the medulla, a heterogeneous DC population, 

which constitutes around 0.5 % of the total cells in the thymus, also plays a crucial role in 

the induction of central tolerance [102]. The main hematopoietic APC fraction is the 

thymic resident conventional DC1 (cDC1) subset, which is distinguished from the 

aforementioned cDC2 population by the expression of CD11c, CD8α and the 

chemokine receptor XCR1 [103]. The heterogeneity is completed by the thymus 

immigrating CD11clow B220+ CCR9+ pDCs. The main difference between the DC 

populations is the nature of the presented antigens. For instance, attracted by the AIRE-

dependent expression of XCL1, the cDC1 localize close to mTEChi (figure 3). This 

condition enables the well documented transfer of mTEChi-derived antigens to cDC1 for 

cross-presentation [75, 104-107]. A different scenario applies to the extrathymically 

originated cDC2 and pDC populations, which acquire blood-derived self-antigens in the 

periphery and transfer them (cDC2 guided via CCR2 and pDCs via CCR9) back to the 

thymus [44, 108]. Although the contribution of the individual fractions to central 

tolerance induction is not yet clarified in detail, there are substantial indications of the 

influence of the whole DC population on the thymocytes. A lack of DCs in CD11c-

Cre:loxP-STOP-loxP-DTA or LTßR-deficient mice, indeed, leads to an increase of the 

thymic CD4 SP population, accompanied by CD4+ organ infiltrating lymphocytes in the 

periphery, most presumably due to the absence of negative selection of autoreactive 

entities [72, 109]. Other studies in the polyclonal TCR repertoire indicate that DCs 

induce suppressor Treg cells by presenting either AIRE-dependent or -independent 

(model)-antigens, taken up from mTECs [87, 96, 107]. Although some hallmarks of 

clonal deletion and clonal diversion have been clarified, further experiments are needed 

to better understand the complex interaction of the individual DC populations with their 

thymic environment.  
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This applies equally to the B cell population, which might either immigrate from the 

periphery or already reside in the thymic medulla. Despite their APC-characteristic up-

regulation of CD40, CD80, CD86 and MHCII, their influence on the alteration of the 

immature TCR repertoire is not described in detail [110]. However, recently an AIRE-

expressing B cell subpopulation within the medulla was reported to promote negative 

selection of self-reactive thymocytes by the presentation of a neo-self-antigen [111]. The 

extent to which B cells influence the diversion of self-reactive thymocytes into regulatory 

T cells has not (yet) been described. Nevertheless, initial experiments in which B cells 

were removed, thereby reducing the Treg cell fraction in the thymus, indicate a possible 

role in regulatory T cell generation [112].   

Regardless of the APCs with which the positively selected SP thymocytes interact during 

their path of development in the medulla, their maturation follows a certain expression 

profile of CD69 and MHCI [113]. The specific stages can be classified into three distinct 

populations: recently immigrated semi-mature CD69+ MHCI- SP thymocytes which are 

not able to proliferate convert into mature CD69+ MHCI+ cells and terminate in mature 

CD69- MHCI+ thymocytes ready to emigrate into the periphery. Of note, the up-

regulation of MHCI defines the state in which the thymocytes acquire the ability to 

proliferate. To finalize the emigration process into the periphery, the mature thymocytes 

follow a chemical sphingosine-1-phosphate (S1P) gradient. The expression of S1P lyase 

in the thymus ensures a low concentration of S1P within the thymic epithelium, resulting 

in an increasing gradient towards the S1P-rich blood or lymph. Concomitantly with the 

down-regulation of CD69, the S1P receptor (S1PR) gets up-regulated, eventually 

ensuring the emigration of the fully developed thymocytes in the periphery [114] 

(reviewed in [115]).  

1.3 Peripheral tolerance mechanisms  

Despite these strictly-regulated maturation steps in the thymus, some self-specific T cells 

are able to escape the positive and negative selection processes. The threat of 

peripheral Tconv cells triggering an autoimmune response is increased by the fact that 

not all TRAs are displayed in the thymus – at least not in the peripheral structure – for 

self-tolerance induction. This is due not only to the fact that some TRAs are not 

presented in the medulla, but also that mutations, post-translational modifications and 

the interaction of various proteins contribute to the appearance of neo-antigens in the 

periphery, to which the T cells were not able to establish tolerance during their 
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maturation [116, 117]. To overcome these circumstances, further peripheral tolerance 

strategies exist to avoid self-destructive immune responses (figure 4).  

For instance, rare antigens or those in immune privileged areas are partially ignored by 

the immune system and the activation of Tconv cells within these regions is kept to a 

minimum. Indeed, anatomical barriers (e.g. blood-brain barrier [118], blood-testis 

barrier [119], blood-retina barrier [120] or the placenta [121]) protect – at least in part – 

such antigens from a misdirected immune response.  

Nevertheless, DCs have the ability to capture self-antigens in the periphery and present 

them to potentially autoreactive T cells, although under steady state conditions they 

seem to have an IL-10 expressing tolerogenic phenotype (CD40low, CD80/86low and 

MHClow) to maintain different tolerance mechanisms, such as the induction of peripheral 

Treg cells (pTregs), T cell anergy or deletion [122-124].  

In the presence of the cognate antigen, TGF-ß together with IL-2 and retinoic acid (RA) 

instruct naïve CD4+ T cells aware of self to become CD25 and FoxP3 expressing pTreg 

cells in mice [125, 126]. This is enhanced by DCs expressing either BTLA [127], CD80/86 

[128], ICOS-L [129] or PD-L1/L2 [130] or secreting one of the anti-inflammatory 

cytokines such as IL-10 [131], IL-27 [132], IL-35 [133] or RA [134]. Peripheral-derived Treg 

cells coexist next to the thymus-derived Treg (tTreg) cells and it seems that they 

complement one another in controlling immune homeostasis and limiting unnecessary 

inflammations (reviewed in [135]). A change in the CD4+ Treg cell composition, for 

instance due to a loss of function in either FoxP3 or CD25, initiates severe autoimmunity 

observed in scurfy mice [67, 136, 137] and in immune dysregulation, 

polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome in humans [138, 139]. It 

appears that a large proportion of tTreg cells expresses Neuropilin-1 (Nrp1) [140, 141] 

and Helios [142] compared to pTreg cells. Besides, it seems that the first of three 

conserved non-coding DNA sequences at the FoxP3 locus, which displays specific 

chromatin marks to bind TGF-ß, Smad3 and the nuclear factor of activated T (NFAT) 

cells, is essential for peripheral but not for thymic FoxP3 expression [143]. There is also 

some evidence in favor of pTreg cells occurring more frequently at mucosal surfaces, due 

to the presence of the microbiota [144]. However, although these initial pieces of 

evidence suggest differences between the two populations, individual functions of the 

distinct subgroups have not been fully characterized yet. 
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Overall, CD4+ regulatory T cells developed a huge variety of mechanisms to preserve 

peripheral tolerance (figure 4). In order to suppress activated CD4+ Tconv cells, they are 

able to secrete inhibitory molecules, such as IL-10 [145], IL-35 [133] and TGF-ß [146], or 

inhibit their differentiation into effector or memory T cells by actively removing local IL-2 

[147]. They can also withdraw another energy source, ATP, within an autoimmune 

environment through the expression of CD39 and CD73. In a first step CD39 triggers the 

hydrolysis of ATP or ADP to AMP. CD73 subsequently dephosphorylates AMP into the 

immune suppressive adenosine molecule [148], which in turn stimulates the signaling 

cascade of the immune checkpoint A2aR on active CD4+ Tconv cells [149]. Furthermore, it 

was suggested that unintended immune responses against self are suppressed by 

contact-dependent suppression. Normally, for a successful immune response against 

foreign-antigens, CD4+ Tconv cells experience the first stimulus of activation by binding 

the pMHCII complex of an APC through their TCR in cooperation with the CD4 co-

receptor. To achieve successful activation, the TCR aggregates with the CD3γ/δ/ε/ζ 
subunits and in parallel an additional co-stimulatory immunological synapse is formed 

between the T cell’s CD28 co-receptor and the CD80 or CD86 (CD80/86) molecules on 

the APC [150]. By expressing CTLA-4 and LAG-3, Treg cells disrupt these connections 

and neutralize the activating effect. Indeed, due to their higher affinity, LAG-3 binds the 

pMHCII complex and CTLA-4 takes over the interaction with CD80/86 [151]. In addition, 

CTLA-4 has been shown to reduce the expression of CD80/86 on DCs [152] or promote 

the expression of the enzyme indoleamine 2,3-dioxygenase-1 (IDO1) in humans [153] 

(TGF-ß in mice [154]). IDO1 expressed by DCs removes tryptophan as energy source by 

metabolism, in addition the metabolites act as a positive feedback loop for Treg cell 

induction (reviewed in [155]). In turn, IL-10 and TGF-ß produced by regulatory T cells 

appear to promote the tolerogenic state of the DC population [156]. At the same time, 

activated self-reactive CD4+ T cells are suppressed by co-inhibitory signals initiated by 

the immune checkpoint receptors (e.g. A2aR [149], BTLA [157], CTLA-4 [158], LAG3 

[159], PD-1 [160], TIGIT [161], TIM-3 [162] or VISTA [163]) expressed on the T cell 

surface. The binding of the respective ligand increases, for instance, the T cell 

dependent production of the anti-inflammatory cytokines (such as IL-10 [149, 161, 164, 

165] or TGF-ß [149, 165, 166]), counteracting the activation or arresting the production 

of key pro-inflammatory cytokines (such as IFN-y [149, 163, 164, 167-169]) to prevent 

the onset of auto-proliferation and immunopathology. 

Next to the suppressive Treg cell lineage, T cells that come across self-pMHC molecules 

have also to possibility to convert to anergic CD4+ FR4+ CD73+ T cells (figure 4). This 
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status is initially favored by the chronic stimulation of the TCR and a lack of CD28 co-

stimulatory signals. In general, anergy is defined as the lack of response of Tconv cells to 

their cognate antigen, associated to a failure in IL-2 production. Remarkably, regulatory 

and anergic T cells overlap in the surface expression of FR4, CD73, CTLA-4, ICOS and 

PD-1. Therefore, it has recently been speculated that the functional arrest of the cells not 

only protects against unwanted autoimmune reactions but could also provide precursor 

cells for the pTreg cell lineage [170-172]. 
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Figure 4: Peripheral tolerance mechanisms 

Mechanisms that maintain immune homeostasis in the periphery involve mainly DCs and Treg cells. (A) 

DCs stimulate immune checkpoint receptors via ligand expression, e.g. PD-L1 to interact with PD-1. Treg 

cells in contrast prevent autoreactive T cells from binding the MHCII via LAG-3 (which has a higher 

affinity than the TCR) and CD80/CD86 via CTLA-4 (which has a higher affinity than CD28). (B) 

Deprivation of nutrients to prevent the activation and differentiation of autoreactive T cells include 

removal of Tryptophan (Trp) by DCs and IL-2/ATP by Treg cells. (C) In the absence of inflammation, DCs 

and Treg cells secrete anti-inflammatory cytokines, such as IL-10 and IL-35. Furthermore, stimulation of 

immune checkpoint inhibitors on self-reactive T cells induces a switch from pro-inflammatory (e.g. IFN-γ) 

to anti-inflammatory (e.g. IL-10 and TGF-ß) cytokine production. (D) Autoreactive T cells can undergo 

apoptosis, as a result of contact-dependent FasL:FasR interaction with DCs or following the cytolysis 

induced by Granzyme B released by Treg cells. (E) DCs can convert self-reactive T cells into regulatory 

and anergic T cells to maintain immune homeostasis. IDO1: Indolamine-2,3-Dioxygenase. 

The last opportunity to inhibit self-aware T cells in an autoimmune response is their 

deletion (figure 4). Through the expression of FasL, DCs are able to stimulate the death 

receptor Fas on the surface of self-reactive Tconv cells and thereby initiate a caspase chain 

reaction inside the cell, resulting in cell death [173]. Treg cells, on the other hand, initiate 

apoptosis by producing granzyme A and B in humans [174] and granzyme B in mice to 

lyse self-reactive T cells [175]. 

1.4 Signal strength-based models of thymocyte selection 

It is now widely accepted that the alternative fates of self-reactive T cells significantly 

depend on the intensity of the interaction between TCR and the expressed pMHC on the 

APC, in both the thymic and peripheral environment. However, in the thymus, due to the 

random TCR gene rearrangement in the early stages of thymocyte maturation, the 

thymocyte pool expresses an infinite number of different αßTCR specificities, which in 

theory are all capable of interacting with the same pMHC complex at a broad spectrum 

of intensity. Two models that are very often used to describe the decision-making 

process of alternative fates are the so-called affinity and avidity models (figure 5). The 

first model defines, for a given antigen concentration, affinity as the strength of an 

individual TCR:pMHC contact, whereas in the second one avidity is described by the 

total of all TCR:pMHC connections of a given thymocyte. In detail, this means that the 

affinity model suggests that, above a certain affinity threshold thymocytes are removed 

from the thymic T cell repertoire via deletion; otherwise the risk of a self-reactive 

response of these T cells is unpredictable. T cells with intermediate affinity, instead, are 

converted into Treg cells and those with lower affinity leave the thymus as Tconv cells. The 
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avidity model, on the other hand, must be extended to include the number of possible 

TCR:pMHC connections of an entire cell. Based on a reduced TCR density on the cell 

surface or a limited amount of self-antigen, a fraction of the thymocytes intended for 

deletion would shift to the Treg cell compartment. Similarly a part of the Treg cells would 

exit the thymus as Tconv cells. Finally, it is important to mention that the thymocytes in 

both models require a certain low self-awareness in the cortex to be positively selected 

(reviewed in [176]. 

 

Figure 5: Affinity and avidity-dependent models of thymocyte selection 

(A) According to the affinity model of thymocyte selection, for a given ratio of TCR:pMHC interactions 

the T cell fate is influenced by the affinity of the TCR. Thymocytes expressing TCRs with low affinity to the 

cognate self-pMHC escape central tolerance mechanisms and leave the thymus as Tconv cells; TCRs with 

intermediate affinity lead to Treg cell induction; high-affinity TCRs are removed from the mature 

repertoire through negative selection. (B) According to the avidity model of thymocyte selection, for a 

given TCR (and therefore for a given TCR affinity) the density of TCR:pMHC interactions is crucial in 

determining the T cell fate. At a low TCR:pMHC density, which could mean low levels of TCR per 

thymocyte or low expression of pMHC in the medulla, thymocytes are allowed to mature and exit the 

thymus as Tconv cells. Increasing the TCR:pMHC density would instead lead to Treg cell induction or, at the 

highest TCR:pMHC densities, to negative selection of the same TCR entity. The figure was adapted from 

[176]. 

The overall affinity/avidity model is based on the antigen-dependent deletion and Treg 

cell induction of monoclonal TCR thymocytes elucidated in TCR transgenic mice 

exposed to neo-self ligands [177-180]. Furthermore, early studies with immature 

thymocytes from fetal thymic organ culture (FTOC) - specific for a LCMV-peptide - 

indicated that an increase in agonist concentration induces the deletion of immature 

thymocytes in vitro [181]. Other FTOC experiments using NOD TCR tg mice extended 

this view and indicated that thymocytes destined for deletion can be partially converted 
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into agonist-induced Treg cells by reducing the antigen concentration [182]. Variable 

concentrations of model antigens in TCR transgenic mice confirmed these observations 

in vivo, where a decrease or a gradient in neo-self-antigens was obtained either through 

the expression under different promoters or by the reduction of the MHCII molecules in 

C2TAkd animals. In both cases a lowered antigen concentration favored the conversion 

of immature thymocytes to Treg cells and reduced the potential for deletion as observed 

at high antigen concentrations [74, 183]. Using a broad range of TCR transgenics with 

different affinities for an OVA-peptide, Lee et al. wanted to describe the range of self-

reactivity below the deletion threshold. Their findings suggest that a rise in self-

recognition results in an affinity-dependent linear increase of the thymic Treg cell 

generation [184].  

So far, the affinity model is mainly based on results of TCR transgenic model systems, 

which have the disadvantage of a limited and non-physiological T cell repertoire. The 

overexpression of specific TCR characteristics prevents the natural development by 

overloading the selection niches [185, 186]. In order to avoid these circumstances and 

to understand how alternative fates are determined by the expression of a natural 

antigen, first attempts in the polyclonal system have been made. The findings of Kieback 

et al. revealed that, after encountering the endogenous myelin oligodendrocyte 

glycoprotein (MOG), MOG-specific tTreg cells possess a higher affinity to the cognate 

antigen compared to Tconv cells [187]. Although these findings suggest affinity/avidity-

dependent Treg cell diversion of self-reactive thymocytes, many aspects remain to be 

clarified. It needs to be confirmed to what extent clonal deletion and clonal diversion on 

a single T cell level alters the TCR repertoire and how the characteristic properties of 

these TCRs are defined. 

1.5 The endogenously expressed model antigen myelin proteolipid 
protein 1  

In order to define specific TCR identities shaped by thymic selection mechanisms in a 

physiological setting, our preference was given to the naturally expressed model 

protein called myelin proteolipid protein 1 (PLP1). PLP1 is a hydrophobic integral 

transmembrane protein with four hydrophobic α-helices and highly conserved among 

mammals. The full-length form consists of 276 amino acids (aa) and co-exists with an 

alternatively spliced form, called DM20, lacking an intracellular loop including the 116 – 

150 aa. Both forms are encoded on the X-chromosome and form together with myelin 

basic protein (MBP) and MOG the main protein-components of the myelin layer, which is 
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built up by oligodendrocytes in the central nervous system (CNS) and by Schwann cells 

in the peripheral nervous system (PNS). Due to a multi-layered arrangement, the myelin 

membrane operates as an insulator and guarantees loss-free and fast signal 

transmission of the nerve axons (reviewed in [188]). 

PLP1 is a promising model protein, as it is an embedded membrane protein and a 

potential target of severe autoimmune demyelinating diseases such as multiple sclerosis 

(MS) [189]. It is suggested that autoreactive T cells infiltrate the CNS and attack myelin-

based antigens to trigger an immunopathological cascade, resulting in the destruction 

of the myelin layer [190]. Interestingly, in a number of mouse lines the disease model of 

MS, experimental autoimmune encephalomyelitis (EAE), is caused by the injection of 

PLP1. For instance, SJL/L mice show distinct MS-like disease symptoms and histological 

characteristics [191], whereas the C57BL/6 strain appears to be highly tolerant to PLP1 

injection, which confirms strong tolerance mechanisms for the latter [192]. We can now 

understand the circumstances that create such divergent susceptibilities thanks to the 

findings of Klein et al. In Plp1WTà Plp1KO thymus chimeras (C57BL/6 background), 

irradiated and reconstituted with bone marrow from Plp1KO mice, they revealed a 

reduction of peripheral T cell response upon PLP1 injection – arguing for the 

establishment of T cell tolerance via ectopically expressed PLP1 on radio resistant 

thymic epithelia cells. The specific immunogenic epitopes were subsequently defined 

more precisely in an in vitro re-stimulation assay (figure 6). Following PLP1 immunization 

in vivo, primed T cells from Plp1KO mice demonstrated a strong proliferation upon 

stimulation with the epitopes PLP111-19, PLP1174-182 and PLP1240-248, which was absent in 

cells from Plp1WT mice (except a weak response upon PLP1174-182 stimulation) [1, 193]. In 

comparison with the already identified SJL/L epitopes embedded in H-2s MHCs no 

overlap was detected, possibly due to the different haplotypes (C57BL/6 expresses 

H-2b) [191, 194, 195]. This might be the crucial difference. Since the shortened DM20 

variant is mainly expressed in the thymus, tolerance induction to one of the five epitopes 

of the SJL/L mouse is missing [196]. Consequently, autoreactive T cells develop and 

proliferate within recall experiments and in general the mice are more susceptible to 

EAE. However, due to the expression of all three immunodominant epitopes in the 

thymus of C57BL/6 mice, tolerance induction is very efficient towards PLP1 [1]. 

Therefore PLP1-deficient and -sufficient C57BL/6 mice represent the perfect model 

systems to describe central tolerance mechanism in the presence or absence of a 

naturally expressed antigen. 
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Figure 6: T cell  epitopes of PLP1 in C57BL/6 and SJL mouse strains 

After immunization with the entire PLP1 protein, T cells harvested from the draining lymph nodes of 

C57BL/6 Plp1KO (upper row), C57BL/6 Plp1WT (middle row) and SJL Plp1WT (lower row) were re-

stimulated in vitro with overlapping 24-mers spanning the PLP1 protein [1]. In the C57BL/6 strain (H-2b 

haplotype) three main T cell epitopes were identified (w), based on the proliferation of Plp1KO T cells. 

Further experiments narrowed down the effect of the 24-mers to the specific core epitopes PLP111-19, 

PLP1174-182 and PLP1240-248 [193]. The proliferation in the Plp1WT counterpart is barely visible. As opposed 

to the C57BL/6, the SJL strain (H-2s haplotype) showed, even on a Plp1WT background, an extensive 

proliferative response to one particular epitope (*), which is absent in the DM20, the thymic version of 

PLP1. This explains the EAE susceptibility of this strain. The panel at the bottom shows the overlap 

between the whole PLP1 protein, the DM20 thymic version of PLP1 and the T cell epitopes described for 

H-2b and H-2s haplotypes. The figure was adapted from [1].   
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2 Aim of the submitted thesis 

The recognition of self in the thymus leads to the diametrically opposite outcomes of 

deletion and Treg cell diversion. Based on the affinity/avidity models of thymocyte 

selection, these different outcomes rely on the strength of the TCR:pMHC complex 

interactions. So far this was mainly tested with TCR transgenics specific for neo-self-

antigens. Therefore, the question remains open as to how an endogenously expressed 

self-antigen shapes a polyclonal TCR repertoire. Using novel tetramers specific for two 

immunogenic epitopes of PLP1, we set out to determine whether central tolerance 

mechanisms are effective towards PLP1-specific T cells and, if so, how different epitopes 

of the same protein affect the fate of these self-reactive specificities. Consequently, we 

asked whether the decision between deletion and diversion depends on TRA critical 

factors such as AIRE, mTECs and DCs. Ultimately, we wanted to characterize the effect of 

central tolerance on the size of the respective alternative fates, at the level of individual 

TCRs, in order to test if the characteristic properties of specific TCRs fit into the 

affinity/avidity model. 

 

  



 31 

3. Materials & Methods 

3.1 Materials 

3.1.1 Chemicals,  Enzymes and Media  

Common chemicals were acquired from Roth, Merck and Sigma unless otherwise 

mentioned. Cell culture media and their supplements were obtained from Gibco™ and 

Biochroma AG. Oligonucleotides for mouse genotyping, TCR α-chain single cell 

sequencing and core epitope design during tetramer generation were purchased from 

IDT. Enzymes and related Kits were received from BioRad, Roche, Promega, Invitrogen 

and ThermoFisher. DNA and Plasmid purification kits were obtained from Qiagen.  

3.1.2 Cell  l ines and Bacteria 

Standard protocols were used to prepare LB (lysogeny broth) media, which contained 

0.1 μg/ml of either Ampicillin or Kanamycin. For selection plates 1 % (w/v) agar was 

added to the LB media. Stratagene provided the competent Escherichia Coli (E.coli) 
strains One Shot TOP10 for sequencing experiments and SoloPack Gold for plasmid 

transformation during cloning steps. 

Schneider Drosophila Cells for tetramer expression were cultivated in Schneider 

Drosophila Medium (SDM) containing 10 % Fetal Bovine Serum, 100 U/ml of Penicillin 

and Streptomycin and 20 μg/ml Gentamycin. While upscaling the cells were cultivated 

in Express Five Serum Free Medium (SFM) including 100 U/ml of Penicillin and 

Streptomycin and 20 μg/ml Gentamycin. HEK293T cells transfected with modified pTα 

cassette vectors encoding one of the four TCR α-chain genes (2.2.3.4 Transgenic Mice), 

were kept in DMEM (Iscove’s Modified Dulbecco’s Medium) including 8 % (v/v) heat-

inactivated FCS. Upon electroporation of A5 cells (derived from BALB/c TCR HAtg 6.5 

mice) in the presence of the pTα cassette vectors, cells were kept in DMEM including 

10 % (v/v) of heat-inactivated FCS. Thymocytes and primary T cells grew in IMDM 

(Iscove’s Modified Dulbecco’s Medium) including the supplements 25 mM HEPES, 8 % 

(v/v) heat-inactivated FCS, 4 mM L-Glutamine, 1 % (v/v) Non-Essential Amino Acids, 

1 mM Sodium Pyruvate, 50 μM ß-Mercaptoethanol, 100 U/ml Penicillin and 100 μg/ml 

Streptomycin. Cells were frozen in freezing medium containing 70 % cell medium, 20 % 

heat-inactivated FCS and 10 % Dimethyl Sulfoxide (DMSO). 
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3.1.3 Antibodies 

All listed antibodies used for flow cytometry, MACS enrichment/depletion were anti-

mouse. 

Specificity Conjugate Clone Supplier 

B220/CD45R Pe-Cy7 / BV421 RA3-6B2 BioLegend 

CCR6 APC / BV421 29-2L17 BioLegend 

CCR7 PerCP-Cy 5.5 4B12 BioLegend 

CD11b Pe-Cy7 / BV421 M1/70 BioLegend 

CD11c Pe-Cy7 / BV421 N418 BioLegend 

CD16/CD32 (=Fc block) 2.4G2 In house 

CD25 APC-Cy7 / Pe-Cy7 PC61 BioLegend 

CD4 BV510 RM4-5 BioLegend 

CD44 PB IM7 BioLegend 

CD45.1 BV421 A20 BioLegend 

CD45.2 Alexa-647 104 BioLegend 

CD5 Alexa-647 53-7.3 BioLegend 

CD62L APC-Cy7 MEL-14 BioLegend 

CD69 BV711 H1.2F3 BioLegend 

CD73 BV421 / BV605 TY/11.8 BioLegend 

CD8α  Per-CP (Cy 5.5) / FITC 53-6.7 BioLegend 

FoxP3 FITC / APC FJK-16s Invitrogen 

F4/80 Pe-Cy7 / BV421 BM8 BioLegend 

FR4 PerCP-Cy5.5 12A5 BioLegend 

H-2Kb BV786 AF6-88.5 BD Bioscience 

Vα3.2 FITC RR3-16 BioLegend 

TCR Vß2 FITC B20.6 BD Bioscience 

TCR Vß3 FITC KJ25 BD Bioscience 

TCR Vß5.1/5.2 FITC MR9-4 BD Bioscience 

TCR Vß6 FITC RR4-7 BD Bioscience 

TCR Vß8.3 FITC F23.1 BD Bioscience 

CD4 MicroBeads GK1.5 Miltenyi Biotec 

CD8a MicroBeads 53-6.7 Miltenyi Biotec 

CD19 MicroBeads 6D5 Miltenyi Biotec 
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3.1.4 PLP1 peptides 

Peptides analog to the previously identified immunogenic regions of PLP1 (red letters) 

[1, 193] were synthesized and purified by peptides&elephants or from BioTrend.  

 

PLP1-24 GLL ACC ARC LVG APF ASL VAT GLC 

PLP9-20 CLV GAP FAS LVA 

PLP237-248 HLF IAA FVG AAA  

3.1.5 Vectors  

3.1.5.1 Tetramer  

The production of MHCII tetramer was described before [197]. To express biotinylated 

MHCII monomer carrying the peptides PLP111-19 (Tet-1) or PLP1240-248 (Tet-3), vectors 

based on the pRMHa backbone [198], kindly provided by Marc Jenkins and his 

laboratory (University of Minneapolis), were used upon modifying the core peptide 

region. In summary, pRMHa plasmids included an ampicillin resistance and a 

metallothionein promoter controlling one of the MHCII chains (I-Ab alpha or I-Ab beta). 

A 4x amino acid glycine linker followed by the core epitope [1, 193] of the respective 

tetramer was encoded at the N-terminal of the I-Ab ß-chain and flanked by an XmaI and 

SpeI restriction site. Due to the weak binding affinity of the I-Ab chains, an acidic (I-Ab 

α-chain) and a basic (I-Ab ß-chain) leucin zipper motif were encoded at the C-terminal, 

following the I-Ab chain motifs to facilitate the heterodimerization [198]. In addition, a 

BirA biotinylation signal sequence (I-Ab α-chain) and a His6 purification tag (I-Ab ß-chain) 

were fused at the C-terminal of the zipper motifs [199]. In vitro biotinylation was 

completed by co-expression of a BirA protein ligase encoded on the p18BirA vector 

[200]. Growth of undesired microorganisms was prevented expressing a blasticidin 

resistance gene (pCo Blast) [201]. 

3.1.5.2 Transgenic mice  

To functionally express defined TCR α-chains of interest as a transgene in mice, gene 

blocks expressing the characteristic VJ regions (including introns) TCR-F, TCR-A, TCR-H 

and TCR-E (in detail 3.2.3.4 Transgenic Mice) were introduced between the XmaI/NotI 

restriction sites of the pTα cassette vectors previously described by Kouskoff et al. [202]. 
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3.1.6 Animals 

6 to 10-week-old mice on C57BL/6 background (purchased from Charles River) used in 

this study were bred and kept under specific pathogen free conditions in individually 

ventilated cages in the animal facilities of the Institute for Immunology, LMU Munich. All 

animal studies were performed in strict accordance to local law regulation. 

Plp1KO (gift from Klaus Nave from the Max-Planck-Institute for Experimental Medicine, 

Göttingen) [203], AireKO [204], ΔDC (nicely provided by David Voehringer) [72], 

FoxN1-cre [205], conditional PLP1 allele (Plp1fl - kindly given by Hauke Werner from the 

Max-Planck-Institute for Experimental Medicine, Göttingen) [206], FoxP3GFP reporter 

(referred to as DEREG) [207, 208], Rag1KO [209] and TcrαKO [210] mice have been 

described before. TCRß-Plp1tg/-::Tcrα +/-:: Deregtg/- (Fixed-ß) mice for single cell analysis 

were obtained by crossing the previously in our lab generated TCR-Plp1::Deregtg/- 

transgenic mice [193] with C57BL/6 TcrαKO Plp1WT or Plp1KO animals - resulting in TCRß-

Plp1tg/- mice harboring a Plp111-19-specific TCR ß-chain (Vß6) whereas the TCR α-chain 

remains polyclonal.    

Tcrαtg/- transgenic mouse lines TCR-F, TCR-A, TCR-H and TCR-E were generated via 

pronuclear injection of linearized pTα cassette vectors into C57BL/6 zygotes (described 

in 3.2.3.4 Transgenic mice) performed by Ronald Naumann at the Max-Planck-Institute 

of Molecular Cell Biology and Genetics Dresden. TCR α-chain transgenic mice were 

crossed with TCRß-Plp1tg/- animals to obtain mice expressing a transgenic TCR specific 

for PLP1.  

3.1.7 Oligonucleotides  

Oligonucleotides were purchased from IDT. For Tet-1 and Tet-3 tetramer generation 

overlapping primer pairs were constructed to resemble the core epitopes PLP111-19 or 

PLP1240-248 (chapter 3.2.3.2 Novel I-Ab tetramer expression and purification): 
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Primer Sequence 5’ –  3’ 

PLP1.4 long (9-20) 
sense 

CCG GGG ACC GAA GGC TGC CTG GTG GGC GCG CCG 
TTT GCG AGC CTG GTG GCG GGC GGC GGC GGC A 

PLP1.4 long (9-20) 
anti-sense 

CT AGT GCC GCC GCC GCC CGC CAC CAG GCT CG 
AAA CGG CGC GCC CAC CAG GCA GCC TTC GGT C 

PLP15.237_C 
sense 

CC GGG ACC GAG GGC CAC CTG TTC ATC GCC GCC 
TTC GTG GGC GCC GCC GGC TGC GGC GGC A 

PLP15.237_C   
anti-  sense 

CT AGT GCC GCC GCA GCC GGC GGC GCC CAC GAA 
GGC GGC GAT GAA CAG GTG GCC CTC GGT C 

Primer for polyclonal single cell TCR α-chain amplification and sequencing (specified in 

chapter 3.2.3.3 Single cell TCR α-chain sequencing): 

Primer Sequence 5’ –  3’ 

TRAC215r GGT GAA GCT TGT CTG GTT GCT C 

TRAC222r GAT ATC TTG GCA GGT GAA GCT TGT C 

TRAC254r ACT GGG GTA GGT GGC GTT G 

Anchor_fw ACA GCA GGT CAG TCA AGC AGT AGC AGC AGT TCA 
ATA AGC GGC CGC CAT GGA CCC CCC CCC CC 

TRAC6 GTC AAA GTC GGT GAA CAG GC 

Adaptor 1 ACA GCA GGT CAG TCA AGC AGT A 

TRAC13 GAG ACC GAG GAT CTT TTA ACT G 

Adaptor 2 AGC AGT AGC AGC AGT TCG ATA A 

TRAC 2nd nested CAG GTT CTG GGT TCT GGA TG 

M13 for GTA AAA CGA CGG CCA G 

M13 rev CAG GAA ACA GCT ATG AC 

Primers for mouse genotype identification (described in 3.2.3.1 Genotyping)  

Gene Primer Sequence 5’ –  3’ 

Aire 

B6-Aire wt fwd AAG CCG TCC AGG ATG CTA T 

B6-AIRE-KO int GTC ATG TTG ACG GAT CCA GGG TA 

B6-AIRE rev AGA CTA GGT GTT CCC TCC CAA CC 

CD11c-cre 
CD11c cre fwd CGA TGC AAC GAG TGA TGA GG 

CD11c cre rev GCA TTG CTG TCA CTT GGT CGT 

Dereg 
Dereg (P442) CCC AGG TTA CCA TGG AGA GA 

Dereg (P443) GAA CTT CAG GGT CAG CTT GC 
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DTA 
DTA fwd TAC ATC GCA TCT TGG CCA CG 

DTA rev CCG ACA ATA AAT ACG ACG CTG 

FoxN1-cre 
FoxN1 cre fwd GAC ATA GCC CTC AGT GTT CAG G 

FoxN1 cre rev CCC TAC ATT CAG GTT CAG 

PLP1 

PLP com fwd GAA AGG TTC CAT GGT CAA GG 

PLP wt rev CTG TTT TGC GGC TGA CTT TG 

PLP ko rev CTT GCC GAA TAT CAT GGT GG 

Rag1 

Rag1 com fwd CCG GAC AAG TTT TTC ATC GT 

Rag1 wt fwd GAGGTTCCGCTACGACTC T 

Rag1 ko fwd CCG GAC AAG TTT TTC ATC GT 

TCRα  
wt/ko 

TCRα fwd TGA CTC CCA AAT CAA TGT GC 

TCRα rev (wt) GGT GAG ATG ACC CAA AGC AG 

TCRα rev (ko) CCT ACC CGC TTC CAT TGC TCA 

TCRβ-PLP1 
(Vβ6) 

Vβ6 fwd CCC AGA GCC AAA GAA AGT C 

Vβ6 rev AGC CTG GTC CCT GAG CCG AA 

WT1* 

WT1CF2R CTT ACC AGG GCT TAC CAG CA 

WT1CF3R ATG TGG CTT CAA ACC CTC TG 

TRAJ12 rev 
third SacII 

TTC CGC GGC TCC AGC TTG TCC TTC ATT 
GCA GGG CCA TTT CCT GGA CCA T 

223** 
223no 37CF1F CCA GTG CTG GGG ATA CAC TT 

223KO37rev AAG GCC CAG GCT AAG AAG AG 
 

*WT1 primer set was used to identify the TCR-A, TCR-H and TCR-E transgenes  

**223 primers amplified the TCR-F transgene 

3.1.8 Commercial Kits 

CellTraceTM Violet Cell  Proliferation Kit Invitrogen 

Drosophila Expression System Kit Invitrogen 

Herculase II  Fusion Enzyme Agilent 

His-Bind® Purif ication Kit Novagene 

iScriptTM Select cDNA Synthesis Kit Bio-Rad 

PierceTM Monomeric Avidin ThermoFisher 

Terminale Deoxynucleotidyl Transferase Promega 

Zero BluntTM PCR cloning Kit Invitrogen 
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3.2 Methods 

3.2.1 Bioinformatic methods 

3.2.1.1 Sequences searches and alignments 

Protein and nucleotide sequences were searched in the NCBI database 

(https://www.ncbi.nlm.nih.gov/protein/ or https://www.ncbi.nlm.nih.gov/gene/). Cutting 

sites of enzymes and the design of oligonucleotides were performed using plasmid 

editor ApE, CLC Sequence Viewer7 or with NEBuilder. TCR a-chain sequences were 

accurately annotated via IMGT/V-Quest [211]. 

3.2.1.2 Statistical Analysis 

Statistical analysis was performed with Prism7. The specific statistical tests applied to 

each experiment are described in the figure legends.   

3.2.1.3 In silico peptide:I-Ab binding prediction 

The algorithm to predict the binding capability of immunogenic peptides into the I-Ab 

binding pocket was nicely provided by Marc Jenkins (University of Minneapolis) 

(unpublished).   

3.2.2 Immunization 

50 μl PBS based emulsion containing 50 μg peptide of interest (3.1.4 PLP1 peptides) 

and 50 % (v/v) Complete Freund Adjuvants (Difco) was injected into the footpad of 

6 - 10 week old mice 10 days before analysis.  
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3.2.3 Molecular Biology  

3.2.3.1 Genotyping 

Mouse tissue was obtained during clipping procedure (ear marks) and used for 

genotype determination. Tissue was digested in 50 μl digestion reaction at 55 °C for 5 h, 

followed by a heat inactivation step at 95°C for 5 min.  

Digestion Reaction 

Mouse tissue 

0.06 U Proteinase K 

0.5 % (v/v) Trition X-100 

1 % (v/v) Gitocher Buffer 

1 % ß-Mercapthoethanol 

sterile dH2O 

10x Gitocher Buffer 

670 mM Tris pH 8.8 

166 mM (NH4)2SO4 

65 mM MgCl2 

0.1 % Gelatin 

sterile dH2O 

 

Genotype analysis was performed in a PCR reaction mix as depicted: 

 

PCR reaction 

5 % (v/v) Digestion Reaction Mix 

250 nM Forward primer 

250 nM Reverse primer 

1 x PCR Reaction buffer 

1 U Taq DNA Polymerase 

sterile dH2O 

PCR Reaction buffer 

250 mM KCl 

50 mM Tris pH 8.3 

43 % (v/v) Glycerol 

7.5 mM MgCl2 

2.0 mM Cresol Red 

sterile dH2O 
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For the determination of the genes TCRß-Plp1 (Vß6), Tcrα and Aire program TD 54 x 30 

was used, whereas for CD11c-cre, Dereg, DTA, FoxN1 cre, Plp1, PLPfl, Rag1, WT1 and 

223 program TD 58 x 30. 

 

TD 54 x 30 program  TD 58 x 30 program 

94 °C 3 min   94 °C 3 min  

94 °C 45 sec 

2x 

 94 °C 45 sec 

2x 60 °C 45 sec  64 °C 45 sec 

72 °C 1 min  72 °C 1 min 

94 °C 45 sec 

2x 

 94 °C 45 sec 

2x 58 °C 45 sec  62 °C 45 sec 

72 °C 1 min  72 °C 1 min 

94 °C 45 sec 

2x 

 94 °C 45 sec 

2x 56 °C 45 sec  60 °C 45 sec 

72 °C 1 min  72 °C 1 min 

94 °C 45 sec 

30x 

 94 °C 45 sec 

30x 54 °C 45 sec  58 °C 45 sec 

72 °C 1 min  72 °C 1 min 

72 °C 5 min   72 °C 5 min  

4 °C ∞   4 °C ∞  

 

3.2.3.2 Novel I-Ab tetramer expression and purification 

Generation of I-Ab tetramers responding to the immunogenic region PLP111-19 (Tet-1) (in 

collaboration with Marc Jenkins) or PLP1240-248 (Tet-3) were obtained by tetramerized 

peptide:I-Ab biotinylated monomers expressed in Drosophila melanogaster S2 cells 

[197].  

In brief, using the Drosophila Expression System kit, Drosophila S2 cells were co-

transfected with modified pRMHA vectors encoding either the I-Ab α- or I-Ab β-chain and 

two plasmids containing a BirA ligase or a blasticidin resistance gene (3.1.5.1 Tetramer).  
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steri le dH2O up to 300 μl 

CaCl2 240 mM 

I-Ab alpha 9 μg 

I-Ab beta 9 μg 

p18 BirA 9 μg 

pCo Blast 1 μg 

 

Cells were allowed to recover in SFM medium for two days before starting the selection 

with the SFM medium containing blasticidin. After reaching a total cell number of 

2.5 x 108, cells were passaged to a 3 L spinner shaking flask for up-scaling to a final 

number of 5 x 106 cells/ml in 500 ml serum free SFM (including blasticidin 25 μg/ml), at 

28 °C and 125 rpm.  

The expression of biotinylated peptide:I-Ab monomer was induced by 0.8 mM copper 

sulfate and 2 mg/ml Biotin. Peptide:I-Ab heterodimers expressed and secreted into the 

culture supernatant were separated from free biotin nine days upon transfection with a 

His-Bind Purification Kit (Novagene) according to the manufacturers manual. Eluted 

fractions were passed over a Pierce Monomeric Avidin UltraLink column to separate 

unwelcome unspecific His-column bound proteins and biotinylated peptide:I-Ab 

according to the manufacture’s instruction. The biotinylated peptide:I-Ab was displaced 

and eluted with 12 ml elution buffer (2mM in PBS). Soluble and free biotin was 

separated within four washing steps using 5 ml PBS and an Amicon Ultra-15 column 

(Millipore) with a molecular weight cut-off of 30 kD. The final peptide:I-Ab monomer 

concentration was calculated after measuring the OD280 (Nanodrop) and using an 

extinction coefficient for BSA as reference.  

Peptide:I-Ab monomer was stored at -80 °C. Peptide:I-Ab tetramerization was achieved 

by adding streptavidin conjugated with APC or PE (Prozyme) in a 4.5:1 ratio for 30 min 

at room temperature in the dark. Final concentration of 1 μM was adjusted with PBS.  

Purity of protein fractions was checked via sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE). All fractions were loaded with 4x native Lam’s sample 

buffer (200 mM Tris HCl pH 6.8, 60 % Glycerol and 20 μg/ml Bromophenol Blue) and 

separated according to their size – SDS 15 % gel at 175 V for 60 min in running buffer. 

Proteins were either dyed with Coomassie or transferred in an exact replica of the gel on 

a nitrocellulose membrane during semi-dry western blot. Transfer was realized with 
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transfer buffer (running buffer + 8% MeOH) at max. 50 V and 160 mA for 2 h. Following 

the protein transfer, the membrane was incubated with selected antibodies and the 

SuperSignal® West Pico Chemiluminescent Substrate. Images were developed using a 

CEA RP NEW medical X-ray film.  

 

Running buffer 

400 mM Glycine 

500 mM Tris 

15 mM SDS 

sterile dH2O 

 

3.2.3.3 Single cell TCR α-chain sequencing  

The findings by Dössinger et al. (depicted in figure 7) describing the amplification of a 

TCR sequence from a sorted single cell, served as the basis for the single cell 

TCR α-chain sequencing within this thesis [212]. 
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Figure 7: Schematic overview of single cell  TCR α-chain sequencing 

(A) One CD4+ Tet-1+ T cell/well was index sorted into wells of a 96 well plate using FACSAria™ Fusion 

and a 100 µm nozzle. (B) Reverse transcription was performed with the iScript cDNA synthesis kit and the 

specific primers TRAC215r, TRAC22r and TRAC254r (binding C-region – gray). (C) Remaining 

oligonucleotides were digested by Exonuclase I before (D) dGTP tailing. (E) A unique anchor platform 

was added via multi guanine cytosine hydrogen bonds using the introduced 3’ - guanosin overhang. (F) 

Nested amplification steps were performed using either Adaptor I and TRAC13 (1st round) or Adaptor II 

and TRAC 2nd nested (2nd round). 

 

3.2.3.3.1	  Reverse	  Transcription	  

Synthesis of cDNA from single cell mRNA templates was realized in 96 well plates. One 

cell/well was sorted and stored at least over night at -80 °C to mechanically disrupt the 

cell walls. After thawing the plate, reverse transcription was performed using the iScript 

cDNA Synthesis Kit (figure 7 B). Samples were resuspended in 1x iScript buffer, 0.1 % 

Triton X-100, 1.25 μM each of Tcrα constant region reverse primers (TRAC215r, 

TRAC222r, and TRAC254r), 0.4 μl Enhancer, 0.2 μl iScript reverse transcriptase in a total 

of 4 μl/well. Reverse transcription was performed at 25 °C for 5 min, 42 °C for 30 min 

and an inactivation step at 85 °C for 5 min on a Life ECO cycler from BIOER. 

3.2.3.3.2	  Exonuclease	  I	  digest	  

Unwelcome single stranded oligonucleotides, which would affect the results of the 

oligo-dG tailing, were digested with Exonuclease I (figure 7 C). 1 μl of Exonuclease I 

digestion mix was added to the reverse transcription mix leading to a final concentration 

of 1 U/μl Exonuclease I and 1x reaction buffer. Digestion reaction was realized at 37 °C 

for 45 min, with a final inactivation step at 85 °C for 5 min. 

3.2.3.3.3	  Oligo-‐dG	  tailing	  	  

Addition of dGTPs to generate a unique binding sequence at the 3’ end of the variable 

Tcrα region was realized using the Terminal Deoxynucleotidyl Transferase Kit 

(figure 7 D). A tailing mix of 3.2 μl resulting in 0.73 U/μl Terminale Transferase, 2.0 mM 

dGTP and 1x Terminal transfer buffer was added. Tailing was performed at 37 °C for 

45 min followed by 75 °C for 10 min of inactivation.  
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3.2.3.3.4	  TCR	  α-‐chain	  amplification	  

Following anchor and nested PCR amplification steps were performed using the cycler 

protocol:  

94 °C 3 min  

94 °C 15 sec 
24x 60 °C 30 sec 

72 °C 45 sec 

72 °C 5 min  

4 °C ∞  

 

The dGTP labeled variable Tcrα gene region served as a binding platform for the anchor 

primer during the anchor PCR reaction (figure 7 E). The anchor PCR reaction mix was 

directly added to the oligo-dG tailing mix, for a final volume of 21 μl. Therefore, the 

Herculase II Fusion DNA Polymerase Kit from Agilent was used and resulted in a final 

concentration of 1x buffer, dNTP each 215 μM, 4 % DMSO, 0.25 μl Herculase 

polymerase and 540 mM of each primer Anchor for and TRAC6. 

For the first nested PCR amplification step 1 μl per well of the Anchor PCR amplification 

product was mixed with 20 μl nested PCR reaction mix I (leading to 1x buffer, dNTP 

each 190 μM, 4 % DMSO, 0.25 μl Herculase polymerase and 475 mM of each primer 

Adaptor I and TRAC13 and) in a new 96 well plate (Figure 7 F violet)  

The second nested PCR reaction was performed by mixing 20 μl nested PCR reaction 

mix II (resulting in 1x buffer, dNTP each 190 μM, 4 % DMSO, 0.25 μl Herculase 

polymerase and 475 mM of each primer Adaptor II and TRAC 2nd nested) and 1 μl per 

well of the first nested PCR amplification product again in a new 96 well plate (figure 7 F 

brown). 

The final DNA products generated during these steps were separated running a 1.5 % 

TAE agarose gel. Amplification products within a range of 200 – 650 bp were purified in 

10 μl H2O by using the QiAquick Gel Extraction Kit from Qiagen, according to the 

manufacturer’s protocol.   
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3.2.3.3.5	  Cloning,	  transformation	  and	  sequencing	  

10 – 100 ng purified PCR product (DNA template) was ligated into the pCR®-Blunt 

vector using the modified Zero Blunt PCR cloning protocol (Ligation mix: 10 – 100 ng 

DNA template, 8 ng pCR®-Blunt, 1X ExpressLink™ T4 DNA Ligase Buffer and 5 U/rct T4 

DNA Ligase). The plasmid with the gene of interest was transformed into TOP10 E.coli 
bacteria. After 30 min on ice and a heat shock at 42 °C for 45 sec the cells were mixed 

with 200 μl S.O.C. medium and kept on 37 °C for 1 h at 225 rpm to recover. Cell 

suspension was plated on LB-agar selection plates including Kanamycin and kept 

overnight at 37 °C. Two colonies per sorted cell were picked and used for plasmid 

preparation with the QIAprep Spin miniprep kit from Qiagen.   

Sanger sequencing on extracted plasmids was performed by eurofins using the 

sequencing primer M13 for. Sequenced data were analyzed and annotated using CLC 

sequence viewer 7, ApE, Vector NTI and IMGT/V-Quest [211].  

3.2.3.4 Generation of transgenic Mice 

The generation of four unique TCR α-chain transgenic mice, was achieved via pronuclear 

injection of modified and linearized pTα cassette vectors [202].  

3.2.3.4.1	  Modification	  of	  pTα	  cassettes	  	  

In brief, to generate TCR α-chain gene fragment expressing unique characteristics of 

either TCR-A, TCR-H or TCR-E (all sharing the same VJC-region and differ only by two 

amino acids in the CDR3 region), genomic DNA of a CD4+ Tet-1+ T cell encoding the 

TCR α-chain (TRAV6D-6*6*02 = V gene segment / TRAJ12*01 = J gene segment / 

constant gene segment), was subjected to Q5® Site-Directed Mutagenesis (New 

England Biolabs) experiments. The resulting gene block contained the following CDR3 

regions; ALGAPGGYKVV = TCR-A, ALGSTGGYKVV = TCR-H and ALGGPGGYKVV = 

TCR-E, discriminable due to the newly-introduced silent mutations (figure 8). 
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Figure 8: TCR-A, TCR-H and TCR-E gene fragment 

(A) The main gene fragments that characterize the TCR-A, TCR-H and TCR-E gene blocks. In red the 

cleaving site of the respective restriction enzymes (XmaI/NotI) providing overhangs for sticky end 

ligation into the pTα cassette. The V region (TRAV6D-6*01 in blue) and J region (TRAJ12*01 in orange) 

are flanked by additional nucleotides expressing the relevant binding sequences for the spliceosome 

complex. (B) Nucleotide sequences of the respective CDR3 regions, which only differ in the red-labeled 

nucleotides. In small letters the introduced silent mutations for quick discrimination. (C) The respective 

amino acid sequence of the three CDR3 regions, with differences highlighted in red and bold.  

To clone the TCR-F gene block, we took advantage of a pTα cassette of the previously 

published TCR-PLP1 tg animal [193]. Both constructs share at the N-terminus a fragment 

from the XmaI restriction site to the beginning of the CDR3 region. The part from the 

CDR3 onwards, was exchanged with three overlapping oligonucleotides encoding an 

AccI restriction site, the CDR3 region (AVSSNTNTGKLT) followed by the J segment 

TRAJ27*01+108 bp spliceosome binding sequence and N-terminal ending with a NotI 

cutting site. The AccI restriction site (located close to the CDR3 region C-terminal) was 

presence in both parts and therefore used for digestion and ligation (figure 9).  

 

Figure 9: TCR-F gene fragment 

(A) In red the restriction enzymes cleaving sites flanking the TRAV9N-3*01 (dark gray) and TRAJ27*01 

(light gray) regions including the respective spliceosome complex binding sequence in green. (B) 

Nucleotide and (C) amino acid sequences of the TCR-F CDR3 region.  
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Last, the pEMBL18 backbone was removed from all four pTα cassette vectors via SalI 

digestion. Linearized DNA was used for transfection, electroporation and pronuclear 

injection experiments.  

3.2.3.4.2	  Transfection	  of	  human	  embryonic	  kidney	  (HEK)	  293T	  cells	  	  

HEK293T cells were co-transfected with one of the modified pTα cassette vectors 

together with the pTß cassette vector encoding the Vß6 chain (Fixed-ß) via calcium 

phosphate co-precipitation. 1 x 106 HEK293T cells were seeded 24 h prior transfection. 

For each construct a mixture (450 μl H2O, 12.5 μg each cassette vector and 50 μl 2.5 mM 

CaCl2) formed precipitates in 5 min at 37 °C. In the next step 37 °C preheated HeBS was 

carefully added. Pre-seeded HEK293T cells were overlaid and gently mixed with the 

transfection mix and incubated for 8 h at 37 °C. Transfection mix was exchanged with 

fresh medium and kept over night (24 – 30 h post transfection) before assaying for TCR 

transgene expression. 

3.2.3.4.3	  Electroporation	  of	  A5	  cells	  

To test whether the pTα cassette vectors lead to the expression of a TCR α-chain able to 

form a functional TCR with the Vß6-chain encoded on the pTß cassette vector, A5 cells 

derived from BALB/c TCR HAtg 6.5 mice were electroporated with 25 μg of each 

cassette vector and 5 μg linearized NFAT-GFP vector including a puromycin resistance 

gene with 250 mV at RT. Following an incubation step for 10 min on ice, cells were kept 

over night in DMEM containing 10 % (v/v) of heat-inactivated FCS before being selected 

with 3 μg/ml puromycin. Resistant cells were subject of TCR expression and stimulation 

experiments. 

3.2.4 Flow Cytometry 

3.2.4.1 Tetramer staining and Tetramer based magnetic-activated cell sorting (MACS 
enrichment) 

Enrichment of rare tetramer (APC and PE labeled) specific CD4+ T cells was achieved by 

incubation with magnetic nanoparticles-coated antibodies against APC and PE and a 

strong magnetic field [197, 213]. In brief, for each mouse analyzed a single cell 

suspension of either thymus, spleen or lymph nodes (axillary / brachial / cervical / 

inguinal / mesenteric) was incubated for 1 h in the dark at 25 °C with 100 μl tetramer 

staining mixture (1x Fc block, 2 % (v/v) mouse serum, 2 % (v/v) rat serum in tetramer 

buffer) including 15 nM APC and PE-labeled Tet-1 or Tet-3 I-Ab tetramer, respectively. 
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After a washing step tetramer labeled cells were incubated with anti-PE and anti-APC 

MicroBeads (Miltenyi), each 25 μl in a total volume of 300 μl tetramer buffer, in the dark 

on ice for 30 min.  

Subsequently, cells binding to MicroBeads were positively selected using magnetized 

LS columns according to the manufacturer’s instruction. The bound fraction was usually 

re-suspended in 100 μl antibody mix. 

3.2.4.2 Surface and intracellular staining 

Standard protocols for staining 5 – 10 x 106 cells or total MACS enriched cells were 

performed at 4 °C for 30 min in 100 μl FACS or tetramer buffer. Intracellular FoxP3 

staining of mice lacking the expression of the FoxP3GFP reporter (Dereg) was achieved 

by fixation and permeabilization (Fix/Perm Kit - eBioscience™) according to the 

description of the manufacturers.  

Flow-cytometric analysis was implemented on FACSCanto II, LSRFortessa, while single 

cell sorts were performed on FACSAria Fusion sorter. Both instruments were purchased 

from BD and located in the Core Facility Flow Cytometry of the BioMedical Center. The 

software FACSDiva used acquisition, recording and sorting, while FloJo9 and 10 were 

used for analysis.  

 

Tetramer buffer 

2.0 % (v/v) fetal calf serum 

0.1 % (w/v) sodium azide 

2.0 mM EDTA 

sterile PBS 

FACS buffer 

2.0 % (v/v) fetal calf serum 

2.0 mM EDTA 

sterile PBS 

 

3.2.4.3 Calculation of cell numbers of the entire tetramer specific population  

To calculate the number of tetramer specific T cell population within one mouse, 5 μl of 

the bound fraction obtained from MACS enrichment were mixed with pre-diluted 

AccuCheck Counting Beads (life technologies). The number of counting beads was 



 48 

measured on a Casy Counter. The total amount of cells was enumerated by calculating 

the ratio of counting beads to the cells within 5 μl with the following formula: 

𝑡𝑜𝑡𝑎𝑙  𝑐𝑒𝑙𝑙𝑠  𝑠𝑎𝑚𝑝𝑙𝑒   =   
𝑐𝑒𝑙𝑙  𝑐𝑜𝑢𝑛𝑡
𝑏𝑒𝑎𝑑  𝑐𝑜𝑢𝑛𝑡

×   𝑏𝑒𝑎𝑑  𝑐𝑜𝑛𝑐.   ×   
𝑏𝑒𝑎𝑑  𝑣𝑜𝑙𝑢𝑚𝑒
𝑐𝑒𝑙𝑙  𝑣𝑜𝑙𝑢𝑚𝑒

  ×   𝑠𝑎𝑚𝑝𝑙𝑒  𝑣𝑜𝑙𝑢𝑚𝑒  

 

Afterwards the percentage of Tet+ T cells within the remaining bound sample fraction 
was multiplied with the total cells of 5 μl to obtain the total number of Tet+ T cells per 
sample.  

𝑡𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟  𝑇𝑒𝑡!  𝑐𝑒𝑙𝑙𝑠   =   𝑡𝑜𝑡𝑎𝑙  𝑐𝑒𝑙𝑙𝑠  𝑠𝑎𝑚𝑝𝑙𝑒  ×  𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒  𝑜𝑓  𝑇𝑒𝑡!𝑐𝑒𝑙𝑙  𝑖𝑛  𝑠𝑎𝑚𝑝𝑙𝑒 

 

3.2.5 Cell  culture 

3.2.5.1 Proliferation assay  

PLP1 dependent proliferation of TCR-F, TCR-A, TCR-H and TCR-E TCR transgenic T cells 

were monitored ex vivo during a Cell Trace Violet (CTV) Cell Proliferation assay in the 

presence of PLP11-24. 

5 x 106 peripheral T cells/ml from PLP1-deficient, TCR transgenic, Rag1KO mice were 

washed two times with 15 ml PBS and subsequently re-suspended and incubated in 1 ml 

37 °C warm PBS containing 3 μmol CTV for 5 min at 37 °C. Reaction was stopped 

adding 2 ml FCS. After washing the cells in PBS the pellet was re-suspended in 1 ml 

IMDM before 5 – 10 x 104 cells/well were seeded in 96 well plates and stimulated with 

50.000 – 80.00 BM-derived, LPS-matured and irradiated CD45.1+ DCs and a dilution 

series of PLP11-24 respectively. Cells were stimulated at 37 °C and 7 % CO2 for 4 days.  
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4 Results 

4.1 Generation of PLP1:I-Ab tetramers  

The aim of this work was to understand how tolerance to a prototypical tissue-restricted 

antigen shapes the CD4+ T cell repertoire; more specifically, how PLP1 drives clonal 

deletion and clonal diversion on a single-cell level. To track small cohorts of PLP1-

specific CD4+ T cells in a TCR polyclonal setting we generated I-Ab tetramers in 

collaboration with Marc Jenkins. 

As a prerequisite to synthesize two novel I-Ab tetramers containing the previously fine 

mapped PLP111-19 or PLP1240-248 peptides [1, 193], we ranked nonamers within the PLP1 

amino acid sequence according to their binding capability for the MHCII I-Ab binding 

pocket (max. score 146) with an algorithm designed by Marc Jenkins (unpublished). 

Among the top six binding peptides within the entire protein, we found the previously-

identified immunogenic core epitopes PLP111-19 (#1, score 124) and PLP1240-248 

(#6, score 71) (figure 10 A). Both were cloned together with a poly-glycine linker into the 

pRMHa vector encoding the I-Ab beta chain. Since the overlapping PLP1240-248 (#6, score 

71) and PLP1244-252 (#3, score 86) peptides were predicted to have similar binding 

affinities to MHCII, we incorporated a “disulphide trap” to force the binding of 

PLP1240-248 in the correct register. Therefore, the second glycine within the linker region 

C-terminal to the core epitope was exchanged with cysteine so that, together with a 

modified I-Ab alpha chain containing a cysteine at amino acid position 72, a disulphide 

bridge stabilized the core epitope PLP1240-248 within the MHCII binding pocket.  
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Figure 10: PLP111-19 and PLP1240-248 binding prediction and cloning strategy 

(A) In silico binding prediction of nonamers within the PLP1 protein and the peptide-binding groove of 

I-Ab. The table contains the top six predicted binders, including the position within the entire PLP1 

sequence and the respective amino acid sequence. Based on an algorithm provided by Marc Jenkins 

(not published) a higher score (max. 146) indicates a stronger binding to I-Ab MHCII. Cloning scheme of 

tetramers specific for the antigenic peptides (B) PLP111-19 and (C) PLP1240-248. The respective core 

epitopes (bold letters) are followed by a glycine linker region [in (C) the second glycine was exchanged 

to cysteine] and flanked by the unique restriction enzymes sequences. Capital letters represent the 

amino acid sequence and small letters the respective nucleotide sequence. 

In order to assess the binding specificity of the newly-generated tetramers within a CD4+ 

T cell population, we immunized C57BL/6 Plp1WT and Plp1KO (to which PLP1 represents 

a foreign antigen) mice either with PLP11-24 (peptide#1) or PLP1237-248 (peptide#3) 

peptides. Ten days post-immunization draining and non-draining LNs of two individual 

mice per group were pooled and pMHCII tetramer positive cells were MACS enriched. 

Flow-cytometry analysis was used to indentify CD44+ effector T cells and the specific 

binding of either PLP111-19:I-Ab tetramer (Tet-1) or PLP1240-248:I-Ab tetramer (Tet-3). Upon 

peptide#1 immunization, the proportions of Tet-1+ effector T cells were 15-fold higher in 

the draining LNs compared to the non-draining controls both in the Plp1KO and Plp1WT 

animals. Importantly, in the presence of potentially-tolerogenic PLP1, the fraction of 

Tet-1+ T cells was reduced (figure 11 A & B). All other controls immunized with 

peptide#3 were Tet-1 negative. Similar observations were made for the Tet-3 staining 

upon peptide#3 immunization: Tet-3+ effector T cells were 13-fold higher in the draining 

LNs of both Plp1KO and Plp1WT mice compared to the respective non-draining LNs, but 

the non-tolerant Plp1KO mice harboured a higher fraction of Tet-3+ T cells 
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(figure 11 C & D). Overall, the Tet+ fractions were less represented in Tet-3 compared to 

Tet-1 staining (figure 11). 

Unspecific staining of CD8+ T cells was not observed in any of the described setups 

(data not shown), underlining the specificity of Tet-1 and Tet-3 for CD4+ T cells. In 

conclusion, we were able to generate two different functional tetramers, which stain 

PLP1-specific TCRs on CD4+ T cells. 

 

Figure 11: Tetramer functionality upon respective peptide immunization 

Fraction of (A) Tet-1 and (C) Tet-3-positive CD44+ effector T cells in PLP1 non-tolerant animals and 

(B) Tet-1 and (D) Tet-3 in PLP1 tolerant animals. The fractions shown represent tetramer positive T cells 

within pooled (non-) draining LNs from two individual mice 10 days upon immunization with the 

respective peptide#1 or peptide#3. All dot plots are pre-gated on CD4+ CD8- CD11b- CD11c- B220- 

F4/80- cells. 
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4.2 PLP1-specific T cells within the polyclonal T cell repertoire 

We used the Tet-1 and Tet-3 reagents to identify PLP1-specific CD4+ T cells in the native 

(i.e. non-immunized) repertoire of PLP1-deficient and -sufficient mice. T cells pooled 

from lymph nodes and spleen of Plp1KO animals contained on average 14.0 Tet-1+ and 

4.4 Tet-3+ CD4+ T cells (figure 12 A & B). In tolerant Plp1WT mice the number of Tet-1+ 

and Tet-3+ T cells was not significantly altered. However, differences were detected in 

the expression pattern of regulatory T cell lineage markers. In the absence of tolerizing 

self-antigen, essentially all Tet-1- or Tet-3-specific cells were Tconv (CD25- Foxp3-), 

whereas in Plp1WT mice roughly 35 % of the Tet-1- or Tet-3-specific CD4+ T cells 

expressed CD25 and FoxP3 (figure 12 C & D). 

 

Figure 12: Abundance and phenotype of peripheral PLP1-specific CD4+ T cells in the 
polyclonal repertoire 

(A) Abundance of PLP111-19- or PLP1240-248-specific peripheral T cells in the presence and absence of 
PLP1. The calculated mean ± SEM represents CD4+ Tet-1+ or Tet-3+ cells/mouse in pooled LNs and 
spleen after enrichment of tetramer positive cells (n ≥ 6). All dot plots are pre-gated on CD4+ CD8- 
CD11b- CD11c- B220- F4/80-. (C) Phenotypical characterization of tetramer positive T cells. Dot plots 
show mean frequency ± SEM of CD25+ FoxP3+ peripheral T cells, quantified on the right (D). (A & C) 
show one representative flow-cytometry plot, while (B & C) represent the overall quantification for all the 
mice. Statistical significance was calculated using the unpaired two-tailed Student’s t-test with Welch’s 
correction for unequal variance.  
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The thymi of PLP1-sufficient animals comprised a similar number of Tet-1+ and Tet-3+ 

CD4 SP T cells compared to the PLP1-deficient mice (figure 13 A & B), and roughly 10 % 

of these cells expressed CD25 and FoxP3 (figure 13 C & D). Instead, in the absence of 

PLP1, none of the Tet-1+ or Tet-3+ thymocytes expressed the regulatory T cell lineage 

markers (figure 13 C & D), which was reminisced with our observations in the secondary 

lymphoid organs.  

 

Figure 13: Abundance and phenotype of PLP1-specific CD4 SP thymocytes in the 

polyclonal repertoire 

(A) Abundance of PLP111-19- or PLP1240-248-specific thymocytes in the presence and absence of PLP1. The 

calculated mean ± SEM represents CD4 SP Tet-1+ or Tet-3+ cells/thymi after enrichment of tetramer 

positive cells (n ≥ 7 mice). All dot plots are pre-gated on CD4+ CD8- CD11b- CD11c- B220- F4/80-. 

(C) Phenotypical characterization of tetramer positive thymocytes. Dot plots show mean frequency 

± SEM of CD25+ FoxP3+ thymocytes, quantified on the right (D). (A & C) show one representative flow-

cytometry plot, while (B & C) represent the overall quantification for all the mice. Statistical significance 

was calculated using the unpaired two-tailed Student’s test with Welch’s correction for unequal variance.  

The total number of PLP111-19- and PLP1240-248-specific CD4+ T cells was similar to 

previously published numbers of anti-foreign Tet+ T cells in naïve C57BL/6 mice, which 

ranged from less than 10 to around 300, depending on the antigen tested [197, 214, 

215]. Taken together, these data revealed that clonal diversion substantially contributes 

to tolerance among PLP1-reactive T cells. This supports the previously published 

findings of preferred Treg cell induction of polyclonal T cells specific for a neo-self-

antigen under the promoters of TRA [86, 87].  
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4.3 PLP1-specific T cells in a repertoire of reduced diversity  

To test if clonal deletion of PLP1-specific T cells happens at all, one would have to 

compare every Tet+ TCR within a non-tolerant naïve repertoire (Plp1KO) with the Tet+ 

repertoire in tolerant Plp1WT mice. However, due to the theoretical tremendous number 

of different TCRα/β-chain combinations (in the order of 1015) [216], which by far exceeds 

the number of T cells present in the body of a mouse (approx. 6 x 107) [217], we decided 

to reduce the diversity of the fully polyclonal TCR repertoire. To this purpose, we 

introduced a TCR ß-chain transgene (Vß6) derived from the previously described 

TCR-PLP1 mouse model and focused on Tet-1+ CD4+ T cells [193].  

To ensure that T cells only express one TCR α-chain and to facilitate the identification of 

FoxP3 expressing Treg cells, we crossed animals carrying the TCR ß-chain transgene with 

TcrαKO and FoxP3GFP reporter (Dereg) mice to obtain TCRß-PLP1tg/-::Tcrα+/-::Deregtg/- 

mice, in the following referred to as Fixed-ß mice.  

4.3.1 Characterization of Fixed-ß mice 

We took advantage of a TCR ß-chain transgene originating from a PLP1 specific αßTCR 

with the idea to bias the CD4+ T cells towards PLP1 recognition, while maintaining the 

TCR α-chain polyclonal. Indeed, previous experiments in the lab revealed that the 

expression of Vß6-chain is up to 3-fold more frequent among Plp1KO T cells after 

multiple rounds of in vitro PLP1 stimulation [218]. 

Compared to an un-manipulated C57BL/6 mouse, the Fixed-ß mice harbored three 

times more CD4 SP T cells. The fraction of CD4 SP T cells expressing CD25 and FoxP3 

was around 5 %, independent of PLP1 expression (figure 14 A & B - C57BL/6L Plp1KO 

not shown). More than 97 % of CD4+ T cells expressed the Vß6-chain transgene (figure 

14 C).  

Taken together, the Vß6-chain transgene was efficiently expressed by CD4 T cells, 

leading to an increased fraction of CD4+ T cells without altering the frequency of 

regulatory T cells. 
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Figure 14: Treg cell  induction in C57BL/6 and Fixed-ß mice 

(A) Thymic CD4/CD8 profiles of C57BL/6 and Fixed-ß::Plp1KO or Plp1WT animals. The calculated 

mean ± SEM represents the % of CD4 SP/thymus (n ≥ 3). (B) Phenotypical characterization of CD4 SP 

cells. Mean frequency ± SEM represents CD25+ FoxP3+ expressing thymocytes. (C) Expression of either 

the endogenous (C57BL/6) or the transgenic (Fixed-ß) TCR Vß6-chain among CD4 SP thymocytes, in 

parallel to the cumulative fraction of endogenous TCR Vß2/3/4/5.1/5.2 (mean frequency ± SEM).  

4.3.2 Treg phenotype of peripheral Tet-1+ T cells in PLP1-sufficient mice  

We next analyzed the Fixed-ß mice in the absence and presence of PLP1 in regard to 

abundance and phenotype of CD4+ Tet-1+ T cells. The Fixed-ß::Plp1WT animals 

displayed a significantly higher frequency of Tet-1+ T cells in secondary lymphoid organs 

(224 vs. 78 T cells/mouse) (figure 15 A). Importantly, a substantial fraction (57.7 %) of 

CD4+ Tet-1+ T cells in Fixed-ß::Plp1WT mice expressed CD25 and FoxP3, whereas in 

Fixed-ß::Plp1KO mice, only 5.8 % of CD4+ Tet-1+ expressed these Treg cell lineage 

markers (figure 15 B). 
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Figure 15: PLP1 specific regulatory T cell  in Fixed-ß::Plp1WT lymph nodes 

(A) Abundance of PLP111-19-specific peripheral T cells in Fixed-ß::Plp1WT and Fixed-ß::Plp1KO animals. 

The calculated mean ± SEM represents the absolute number of Tet-1+ cells/mouse in pooled LNs and 

spleen (n ≥ 11). On the left, representative dot plots are pre-gated on CD4+ CD8- CD11b-, CD11c-, B220- 

and F4/80- and show MACS-enriched tetramer positive cells. On the right, data points are representative 

of one mouse each. (B) Phenotypical characterization of tetramer positive CD4+ T cells. Mean 

frequency ± SEM represents CD25+ FoxP3+ peripheral T cells. Statistical significance was calculated 

using the unpaired two-tailed Student’s t-test with the Welch’s correction for unequal variance. 

In sum, although we detected an increase in PLP1-specific T cells of 4 to 10-fold 

compared to the polyclonal setting, these numbers were still in the described 

physiological range of naïve CD4+ T cells specific for anti-foreign antigens [197, 214, 

215]. Additionally, the Fixed-ß::Plp1WT mice mirrored with a robust Treg cell induction the 

results of the fully polyclonal repertoire. 

4.3.3 Anergic phenotype within the Tet-1+ T cell  population in the 

presence of tolerizing-antigen 

A substantial fraction of Tet-1+ T cells in Fixed-ß::Plp1WT animals were CD25 and FoxP3 

negative (figure 15 B & 16 A). We therefore asked whether these cells were truly naive 

or displayed phenotypic hallmarks of being tolerized by mechanisms other than Treg cell 

diversion, for instance anergy.   
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Indeed, in Fixed-ß::Plp1WT mice, around 60 % of CD4+ Tet-1+ CD25- FoxP3- T cells 

expressed the T cell anergy markers FR4 and CD73 [171], whereas in Fixed-ß::PLP1KO 

mice, only a minor fraction of CD4+ Tet-1+ CD25- FoxP3- T cells expressed FR4 and 

CD73 (figure 16 B). On these seemingly anergic T cells in Fixed-ß::Plp1WT animals, we 

also observed an increase in CD44 expression equal to the level of Fixed-ß::Plp1WT Treg 

cells (figure 16 C). The fraction of CD44+ cells was seven times higher within CD4+ Tet-1+ 

CD25- FoxP3- Fixed-ß::Plp1WT compared to CD4+ Tet-1+ CD25- FoxP3- Fixed-ß::Plp1KO 

T cells.  

Altogether, compared to Fixed-ß::Plp1KO mice peripheral tetramer positive cells in PLP1 

tolerant Fixed-ß animals are not reduced, but consist of either regulatory T cells or 

anergic lymphocytes.  
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Figure 16: Peripheral Tet-1+ CD4+ T cells display an activated and anergic phenotype in 

the presence of antigen  

(A) CD25 and FoxP3 expression on PLP111-19-specific peripheral T cells from Fixed-ß::Plp1WT or 

Fixed-ß::Plp1KO mice. (B) FR4 and CD73 or (C) CD44 staining and calculated mean of CD4+ CD25- 

FoxP3- Tet-1+ peripheral T cells of Fixed-ß::Plp1KO (green) and Fixed-ß::Plp1WT (blue) from at least 6 mice 

each, compared to either bulk C57BL/6L CD4+ CD25- FoxP3- T cells (gray in B) or to CD4+ Tet-1+ CD25+ 

FoxP3+ T cells from Fixed-ß::Plp1WT animals (red in C).  

4.3.4 Central tolerance clonally diverts and deletes self-reactive T cells 

We next characterized abundance and phenotype of CD4 SP Tet-1+ thymocytes. In 

Fixed-ß::Plp1KO mice, we identified on average 746 CD4 SP Tet-1+ T cells. None of these 

were CD25 and FoxP3 positive (figure 17). In contrast, CD4 SP Tet-1+ thymocytes of 

Fixed-ß::Plp1WT animals were significantly reduced (310 cells) and 11.1 % displayed the 

regulatory T cell lineage markers CD25 and FoxP3. 

It was recently demonstrated that in C57BL/6 mice under steady state conditions around 

30 % of the thymic Treg cells consist of immigrants from the periphery [219]. These lack 

the expression of CCR7 [220]. To define the quantity of re-immigrated regulatory T cells 

in Fixed-ß::Plp1WT animals, we assessed the CCR7 expression on CD4 SP CD25+ FoxP3+ 

T cells, revealing that more than 80 % of the cells expressed CCR 7 (figure 17 C). 
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Figure 17: Deletion and Treg cell  diversion of autoreactive CD4 SP Tet-1+ thymocytes in 

PLP1-sufficient mice 

(A) Abundance of Tet-1+ thymocytes in Fixed-ß::Plp1WT and Fixed-ß::Plp1KO mice. The calculated 

mean ± SEM represents Tet-1+ thymocytes/thymus after MACS-enrichment of tetramer positive cells 

(n ≥ 11). All dot plots are pre-gated on CD4+ CD8- CD11b-, CD11c-, B220- and F4/80-. (B) Phenotypical 

characterization of tetramer positive thymocytes. Mean frequency ± SEM represents CD25+ FoxP3+ 

thymocytes. (C) Expression level of CCR7 on regulatory T cells (CD4+ CD25+ FoxP3+) in Fixed-ß::Plp1WT 

thymi, as indication of non-recirculating Treg cells. Staining and calculated mean of pooled thymi 

(n = 6). Where indicated, p-values were calculated using the unpaired two-tailed Student’s t-test with 

Welch’s correction for unequal variance. 

These data are consistent with negative selection and diversion of autoreactive 

thymocytes occurring concomitantly. While the reduced number of CD4 SP T cells 

speaks for itself, the appearance of a high fraction of CCR7 expressing regulatory T cells 

strongly suggests the generation of those in the thymus.  

4.3.5 Mature autoreactive thymocytes express anergy markers 

It is conceivable that the expression of PLP1 in the thymus not only deletes and diverts 

self-reactive thymocytes, but also induces anergy of a fraction of cells. Therefore, we 

addressed at which maturation stage CD4 SP T cells get deleted and whether the 

surviving T cells show an anergic phenotype. Concerning deletion, we took advantage 

of the maturation-dependent CD69 and MHCI expression. In the medulla CD69+ MHCI- 

convert into CD4 SP CD69+ MHCI+ and, before emigration into the periphery, to CD69- 

MHCI+ [113].  

In the presence of tolerizing antigen, the Tet-1+ T cells accumulated in the earliest stage 

of development (CD69+ MHCI-) in a PLP1-independent manner (figure 18 B). Over the 

course of maturation, a small fraction of Tet-1+ PLP1 T cells acquired a (mature) 

regulatory T cell phenotype, whereas the most mature stage showed the strongest 

reduction in Tet-1+ T cells. This is consistent with the idea that PLP1 specific T cells 

undergo clonal diversion and clonal deletion before reaching the most mature stage 

(CD69- MHCI+) (figure 18 B). Moreover, a fraction of mature non-Treg cells expressed FR4 

and CD73, whereas this was not the case in Fixed-ß::Plp1KO mice (figure 18 C).  

In sum, the appearance of fully mature non-regulatory CD4 SP Tet-1+ FR4+ CD73+ T cells 

in the thymus suggests that the induction of anergy might be a third central tolerance 

mechanism within the medulla. 
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Figure 18: Mature CD4 SP thymocytes express the peripheral anergy markers FR4 and 

CD73 

(A) PLP111-19-specific thymocytes from Fixed-ß::Plp1WT or Fixed-ß::Plp1KO mice (phenotyped in 

figure 17 B. (B) CD69 and MHCI staining from pooled CD4 SP CD25- FoxP3- Tet-1+ thymocytes of 

Plp1KO (green), Plp1WT (blue) and CD4 SP Tet-1+ CD25+ FoxP3+ regulatory T cells of Plp1WT (red). 

(C) FR4 and CD73 staining of the most mature CD4 SP Tet-1+. All values calculated from at least 5 mice 

each. 
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and depend on AIRE 
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and diversion of CD4 SP thymocytes was entirely absent [193]. To understand to which 

extent central tolerance of PLP1-specific polyclonal T cells depends on PLP1 expression 

by TECs, we crossed the Fixed-ß::Plp1WT animals with FoxN1 cre and Plp1 floxed mice. 

This conditional knockout mouse model lacks PLP1 expression in TECs, and will in the 

following be referred to as Fixed-ß::Plp1ΔTEC. The CD4 SP compartment of these animals 

contained on average 518 Tet-1+ thymocytes and with a barely detectable fraction of 

CD25+ FoxP3+, resembling the phenotype of Fixed-ß::Plp1KO (figure 19 A & B vs. figure 

17). Remarkably, despite this apparent lack of thymic Treg cell induction, 60 % of the 

peripheral Tet-1+ T cells were composed of regulatory T cells, mirroring the peripheral 

regulatory T cell fraction of Fixed-ß::Plp1WT animals (figure 19 C & D vs. figure 15).  

Given the fact that the transcriptional regulator AIRE drives the expression of many TRA 

in mTECs, our lab had previously examined the effect of an inactive Aire gene on central 

tolerance mechanisms in TCR-PLP1 transgenic mice. In this study the lack of AIRE 

resulted in the loss of both clonal deletion and diversion of TCR transgenic cells [1, 193]. 

To evaluate the impact of the transcription factor AIRE on our Fixed-ß::Plp1WT, we bred 

them to animals carrying a defective Aire gene, in the following referred to as 

Fixed-ß::AireKO.  

The number and phenotype of CD4 SP Tet-1+ thymocytes in AIRE-deficient animals 

differ significantly from Fixed-ß::Plp1WT and resembled those of Fixed-ß::Plp1KO and 

Fixed-ß::Plp1ΔTEC mice, in regard to the scarcity of regulatory T cells (figure 19 A & B vs. 

figure 17). On the contrary, in peripheral lymphoid organs, the higher number of Tet-1+ 

CD25+ FoxP3+ T cells phenocopied the results from the Fixed-ß::Plp1ΔTEC and 

Fixed-ß::Plp1WT, diverging notably from PLP1-deficient animals (figure 19 C & D vs. 

figure 15). Taken together, the lack of PLP1 and AIRE expression in TECs leads to a 

breakdown of central tolerance mechanisms that normally apply to Tet-1+ thymocytes. 

Although we did not find indications for Treg cell induction in the thymus of 

Fixed-ß::Plp1ΔTEC or Fixed-ß::AireKO mice, the high fraction of peripheral regulatory 

T cells – reaching levels comparable to Fixed-ß::Plp1WT animals – speaks for a potential 

antigen source driving Treg cell diversion in the periphery.  
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Figure 19: Central tolerance of Tet-1+ T cells depends on PLP1 and AIRE expression by 

TECs 

Abundance of Tet-1+ T cells in Fixed-ß::Plp1ΔTEC and Fixed-ß::AireKO in the (A) thymus and (C) periphery. 

The calculated mean ± SEM represents Tet-1+ T cells/mouse after enrichment of tetramer positive cells 

(n ≥ 12). All dot plots are pre-gated on CD4+ CD8- CD11b-, CD11c-, B220- and F4/80-. Phenotypical 

characterization of regulatory T cells among tetramer positive T cells (B) in the thymus and (D) in the 

periphery. Mean frequency ± SEM represents CD25+ FoxP3+ thymocytes. Where indicated, p-values 

were calculated using the unpaired two-tailed Student’s test with the Welch’s correction for unequal 

variances. 
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4.3.7 CD11c expressing cells are responsible for peripheral Treg cell  

induction 

In order to find the APCs inducing PLP1-specific tolerance in the periphery of mice 

lacking PLP1 in the thymus, we took advantage of DC-deficient mice. Additionally, an 

inactive Aire gene was introduced to prevent thymus-derived regulatory T cells. The 

mouse model will be in the following referred to as Fixed-ß::ΔDC::AireKO.  

Compared to the tolerant Fixed-ß::Plp1WT animals, the ablation of DCs (Fixed-ß::ΔDC) 

did not significantly alter the Treg cell compartment, neither in the thymus nor in the 

periphery it seems that the generation of thymic regulatory T cells is independent of 

DCs (figure 20). In combination with an inactive Aire gene, the thymocytes in the 

Fixed-ß::ΔDC::AireKO animals escaped clonal diversion and contained exclusively Tet-1+ 

CD25- FoxP3- thymocytes. The fraction of regulatory T cells was very low also in the 

periphery, resembling the phenotype of Fixed-ß::Plp1KO mice. In Fixed-ß::ΔDC mice, 

thymic regulatory T cells are able to further migrate into the periphery and fill up the 

regulatory T cell niche to Fixed-ß::Plp1WT levels. On the contrary, the lack of AIRE in 

Fixed-ß::ΔDC::AireKO mice prevents the intra-thymic PLP1 encounter and, as a 

consequence, the generation of thymic-derived Treg cells. In the periphery, the absence 

of antigen-presenting DCs abolishes diversion of potential PLP1-reactive T cells. This is 

consistent with previously studies in our lab in which PLP1-specific T cells from TCR-

PLP1 tg mice failed to proliferate when injected into DC-deficient animals [221]. 
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Figure 20: Peripheral tolerance of Tet-1+ T cells depends on cd11c expressing cells 

CD25+ FoxP3+ expressing cells among Tet-1+ T cells in Fixed-ß::ΔDC::AireKO in the (A) thymus and (B) 

periphery (red = Fixed-ß::Plp1WT, brown = Fixed-ß::ΔDC, gray-blue = Fixed-ß::Plp1KO and turquoise 

= Fixed-ß::ΔDC::AireKO). Mean frequency ± SEM represents CD25+ FoxP3+ among Tet-1+ cells (n ≥ 3 

mice). All dot plots are pre-gated on CD4+ CD8- CD11b-, CD11c-, B220- and F4/80- Tet-1+. Significance 

was calculated using the unpaired two-tailed Student’s test and the Welch’s correction. 
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TCR-A (figure 21 F). In order to exclude multiple counts of proliferated T cells upon 

antigen encounter, only one mRNA nucleotide sequence per TCR α-chain and per 

mouse was considered.  

At this point it was impossible to estimate the amount of TCR sequences we would have 

to analyze to reach the saturation of the naïve repertoire. Therefore, we sequenced in 

parallel a second PLP111-19-specific and naive TCR repertoire of thymocytes originated 

from Fixed-ß::Plp1ΔTEC animals. As previously shown (figure 19 A & B), the absence of 

thymic PLP1 expression was accompanied by the lack of central tolerance among Tet-1+ 

cells. Interestingly, the 167 CD4 SP Tet-1+ thymocytes expressed the very same eight 

public TCRs found in Fixed-ß::Plp1KO thymi, confirming that they represented a robust 

naïve reference repertoire for PLP111-19-specific TCRs (figure 21 B).  

Focusing on how the encounter of thymic PLP1 shapes the Tet-1+ thymocyte repertoire, 

we analyzed 209 Tet-1+ CD25- FoxP3- cells from Fixed-ß::Plp1WT thymi. The sequencing 

revealed the same TCR candidates similarly distributed as in the non-tolerant repertoires 

(figure 21 C), with the exception of TCR-A, which was slightly more frequent. To 

determine whether regulatory T cell diversion occurs to the same TCRs, we analyzed in 

parallel 42 TCRs of Tet-1+ CD25+ FoxP3+ thymic regulatory T cells from Fixed-ß::PLP1WT 

thymi. The composition of the emerging repertoire shared the same expression pattern 

for TCR-B, TCR-G and TCR-H compared to the non-tolerant Tet-1+ CD25- FoxP3- 

repertoires. On the contrary, the frequency of TCR-F was very low and, more strikingly, 

TCR-C to TCR-E were entirely missing. The most prominent among Treg cells was 

receptor TCR-A, which was expressed on 70 % of Tet-1+ thymic regulatory T cells (figure 

21 C).  

To understand to which extent the presence of PLP1 alters the peripheral TCR 

composition of PLP111-19-specific lymphocytes, we evaluated the TCRs of CD4+ CD25- 

FoxP3- lymphocytes and of regulatory T cells from peripheral lymphoid organs of 

Fixed-ß::PLP1WTmice. Interestingly, in spite of displaying completely different T cell 

phenotypes, peripheral FoxP3- and FoxP3+ cells almost entirely overlapped in their TCR 

composition (figure 21 D). In comparison to the naïve Fixed-ß::PLP1KO reference 

repertoire, receptor A was again strongly overexpressed and took up two-thirds of the 

whole TCR populations in both FoxP3- and FoxP3+ repertoires. Among TCRs from the 

regulatory T cell repertoire, we found the receptor TCR-H in a higher frequency. 

Noteworthy, the receptors TCR-F and TCR-E, which were highly present in the non-

tolerant repertoire, were almost entirely missing in both peripheral Fixed-ß::Plp1WT 
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repertoires (figure 21 A vs. figure 21 D). Astonishing was also the fact that, despite the 

different fates, seven out of eight TCRs (except TCR-F) shared an identical TCR α-chain 

amino acid sequence and differed only in two amino acids in the CDR3α region 

(figure 21 E). 

In summary, our data showed that in comparison to the naive (Fixed-ß::Plp1KO or 

Fixed-ß::Plp1ΔTEC) repertoire, some TCRs in the periphery of Fixed-ß::Plp1WT mice were 

greatly reduced, consistent with the assumption that T cells expressing these receptors 

were clonally deleted (TCR-E and TCR-F). Other receptors (TCR-A and TCR-H), which 

were overexpressed in the regulatory T cell compartment, argue for Treg cell induction 

instead of deletion as a tolerance pathway. Finally, we noticed a striking similarity 

among the repertoires of peripheral CD25- FoxP3- T cells and both thymic and 

peripheral regulatory T cells in Fixed-ß::Plp1WT animals. 
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Figure 21: TCR α-chain sequencing of Tet-1+ T cells 

Frequency of (eight) TCR α-chain candidates among Tet-1+ CD4+ T cells after sequencing PLP1 tolerant 

and non-tolerant repertoires. Each color represents a different TCR α-chain amino acid sequence and 

centered numbers represent the total cells analyzed for the respective chart. All shown TCR α-chain 

sequences were expressed at a frequency > 1 %. (A) TCRs within the naïve repertoire of both thymus 

and periphery in Fixed-ß::Plp1KO animals. Results represent the sequencing of 111 individual mice. 

(B) TCRs within a second naïve thymus repertoire of Fixed-ß::Plp1ΔTEC animals. Results represent the 

sequencing of 47 individual mice. (C) TCRs within the tolerant repertoire of the thymus in 

Fixed-ß::Plp1WT animals. Results represent the sequencing of 114 individual mice. (D) TCRs within the 

tolerant repertoire of the periphery in Fixed-ß::Plp1WT animals. Results represent the sequencing of 132 

individual mice. (E) CDR3α region of all eight TCRs. The blue background highlights the difference 

among TRAV6 TRAJ12 expressing T cells within the entire TCR a-chain sequences (except TCR-F, which 

expresses TRAV9 TRAJ27). (F) Variety of 22 mRNA nucleotide sequences exemplified by TCR-A within 

PLP1-sufficient and -deficient repertoires. Each color represents a different mRNA sequences. Only one 

mRNA/organ was counted. All sequences were annotated using the IMGT/V-QUEST database.   

4.5 Characterization of selected PLP1-specific TCRs in transgenic 
mice 

Next, we aimed to confirm the cell-fate-specifying function of several representative 

TCRs through re-expression in TCR transgenic mice. For this purpose, we cloned four 

TCR α-chains of interest (TCR-A and TCR-H both common on CD25+ FoxP3+ expressing 

T cells, and TCR-E and TCR-F both strongly reduced in the tolerant repertoire) into a pTα 

cassette vector [202] and produced, via pronuclear injection into zygotes (performed by 

Ronald Naumann at the Max-Planck-Institute of Molecular Cell Biology and Genetics 

Dresden), four TCR α-chain transgenic mice. The respective TCR α-chain transgenic mice 

were crossed with Fixed-ß animals to generate TCR transgenic animals, referred to as 

TCR-F (gray), TCR-A (yellow), TCR-H (blue) and TCR-E (salmon). The animals were 

backcrossed on to a Rag1 knockout background to obtain a monoclonal T cell 

repertoire.  

First, we asked how central tolerance mechanisms affect the fate of our four selected 

TCRs in the presence and absence of PLP1 (figure 22). No deletion occurred to the 

CD4 SP TCR-F transgenic cells, but we observed an accumulation of PLP1-dependent 

regulatory T cells within the thymus. On the other hand, the thymocytes of the three 

remaining TCR transgenic mice were significantly reduced in Plp1WT mice, indication 

deletion at the most mature stage (CD69- MHCI+). Concomitantly, a significant number 

of PLP1-specific Treg cells were detected among surviving TCR-A and TCR-H CD4 SP 

thymocytes, whereas no Treg cell diversion was detected in TCR-E thymi. 



 69 

 

Figure 22: Central tolerance mechanisms in PLP1-specific TCR transgenic mice 

CD4 SP thymocytes characterization of TCR transgenic mice - TCR-F (gray), TCR-A (yellow), TCR-H 

(blue) and TCR-E (salmon) - in the presence and absence of PLP1. (A) Frequency of CD4 SP 

thymocytes. (B) Percentage of regulatory T cells among CD4 SP T cells. (C) CD69 and MHCI staining of 

CD4 SP CD25- FoxP3- thymocytes. All statistical significances were calculated using the unpaired two-

tailed Student’s t-test with the Welch’s correction for unequal variance. Data points are pre-gated on 

CD4+ Vß6+ CD8- and are representative of one mouse each (n ≥ 6). 
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We next analyzed the composition of the peripheral CD4+ TCR transgenic T cells 

(figure 23). Among those of TCR-F transgenic animals, we observed the highest 

frequency of regulatory T cells. The frequency of CD4+ T cells was indistinguishable 

between PLP1WT and PLP1KO animals suggesting that deletion does not operate as a 

tolerance mechanism in this setting. A significant PLP1-dependent decrease of CD4+ 

TCR transgenic T cells was detected in animals expressing the TCR-A, TCR-H and also 

TCR-E, although less intense for the latter. Furthermore, we could detect regulatory 

T cells within the surviving population of TCR-F, TCR-A and TCR-H transgenic animals. 

Noteworthy, besides deviation into regulatory T cells, a minor fraction of the remaining 

CD25- FoxP3- TCR transgenic T cells displayed an anergic phenotype in TCR-F, TCR-A 

and TCR-H transgenic mice, but not in TCR-E mice.   
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Figure 23: Peripheral TCR transgenic T cells display various cell  fates 

Characterization of peripheral CD4+ T cells from TCR transgenic mice - TCR-F (gray), TCR-A (yellow), 

TCR-H (blue) and TCR-E (salmon) - in the presence and absence of PLP1. (A) Frequency of CD4+ T cells. 

(B) Percentage of regulatory T cells among CD4+ T cells. (C) Expression of FR4 and CD73 anergy 

markers on CD4+ Vß6+ CD25- FoxP3- T cells. All statistical significances were calculated using the 

unpaired two-tailed Student’s t-test with the Welch’s correction for unequal variance. Data points are 

pre-gated on CD4+ Vß6+ CD8- and are representative of one mouse each (n ≥ 6). 

In summary, the results obtained from TCR transgenic mice reflect only some of the 

hallmarks described by the previous TCR sequencing experiments. Namely, the TCR-E 

transgenic CD4+ T cells were deleted, and those expressing the receptors TCR-H and 

TCR-A were converted into regulatory T cells. In addition to Treg cell induction, a large 

proportion of the CD4+ T cells were deleted upon PLP1 antigen encounter in TCR-H and 

TCR-A transgenic settings. Finally, in contrast to what we inferred from the repertoire 

inventories, T cells expressing the TCR-F were not deleted but instead displayed the 

strongest Treg cell induction of all four TCR transgenic animals.  
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The titration of anti-CD3 revealed an equal proliferative response of all four TCR 
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TCR-A, TCR-H and TCR-E (EC50 in the same order, data not shown) (figure 24 A). These 

data were in line with stimulation assays previously performed in our group on T cell 

hybridomas expressing the respective TCRs (data not shown). Both studies revealed the 

same hierarchy of dose-response curves upon stimulation of the four different TCRs with 

the cognate antigen.  

 

Figure 24: Ex vivo  dose-response curves for TCR transgenic thymocytes  

Ex vivo stimulation of CD4 SP thymocytes expressing one of the four transgenic TCRs (TCR-H (gray), 

TCR-A (yellow), TCR-H (blue) or TCR-E (salmon)) with (A) PLP11-24 or (B) anti-CD3. Untouched CD4 SP 

thymocytes were obtained after depletion with anti-CD8+ MACS MicroBeads and stimulated for three 

days in the presence of BM-DCs plus peptide or anti-CD3. Observed values were modeled into a best-fit 

curve using the nonlinear regression function of Prism 7. 
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5. Discussion 

Despite a growing body of evidence that self-recognition leads to alternative fates 

following an affinity/avidity-based model of thymocyte selection, we had to question this 

model, as it is mainly based on TCR transgenics specific for neo-self-antigens [177-180, 

184]. With the invaluable help of the I-Ab tetramer technology by Marc Jenkins [197, 

213], we set out to study the physiological central tolerance mechanisms that shape the 

CD4+ T cell repertoire specific for the naturally expressed antigen PLP1. 

5.1 Establishment of the tetramer technology  

Initially, we calculated and ranked in silico the potential binding strength of all PLP1 

epitopes (nonamers) for the MHCII binding groove, since a strong peptide:MHCII 

interaction promotes the formation of a functional tetramer. It appeared that, among the 

previously defined PLP1 immunogenic epitopes (see figure 6), those, which induce 

robust central tolerance of specific T cells in the thymus (PLP111-19 and PLP1240-248), are 

predicted to bind strongly to the MHCII groove (figure 10 A) [1, 193]. On the contrary, 

PLP1174-182 (results not shown) is predicted to bind with a very low strength. 

Retrospectively, this supports the hypothesis of Wang et al. that, due to the low binding 

strength of PLP1174-182 for the MHCII binding groove, the antigen might fail to be 

presented to the T cells during their development, resulting in incomplete or missing 

tolerance. Consequently, escaping PLP1174-182-specific T cells are able to react even in 

the seemingly “tolerant” Plp1WT system to the PLP1-antigen upon immunization and 

proliferate [1], or can even induce spontaneous EAE in TCR-PLP2 tg Rag1KO mice [193]. 

The amino acid positions 1, 4, 6 and 9 are considered critical for the stable binding of 

nonamers embedded in MHCII and thus successful tetramer production 

(figure 10 B & C). The respective amino acids "anchor" the peptide within the I-Ab MHCII 

groove, whereas those remaining protrude and interact with the TCR [222]. Nelson et al. 
showed that, by altering the anchor amino acids, one can obtain a higher stability of the 

nonamers within the groove without affecting the interaction to the TCR [223]. However, 

the in silico calculation and even the production of the most promising mimotopes 

proved unsuccessful for the epitope PLP1174-182 (data not shown). On the other hand, we 

designed and successfully produced the two tetramers including the PLP111-19 (Tet-1) 

and PLP1240-248 (Tet-3) nonamers, in accordance to the predicted strong peptide:MHCII 

interaction.  
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We next tested the functionality of Tet-1 and Tet-3 by immunizing Plp1KO and Plp1WT 

mice with either PLP11-24 (peptide#1) or PLP1237-248 (peptide#3) and by tracking the 

respective peptide-specific T cells, as previously described by Moon et al. [197, 213]. 

The presence of Tet+ CD4+ CD44+ effector T cells in the draining LNs of mice immunized 

with the respective peptide showed that both Tet-1 and Tet-3 are functional (figure 11).  

5.2 Polyclonal T cell repertoire reveals clonal diversion as major 

tolerance mechanism 

Before the advent of the tetramer technology, the number of endogenous T cells 

specific for a given antigen was calculated by extrapolation, for instance, by comparing 

the reaction of transferred TCR tg T cells with that of endogenous T cells upon antigen 

exposure [224, 225]. Later on, the lab of Marc Jenkins revolutionized the quantification 

of naturally occurring antigen-specific CD4+ T cells in non-immunized mice: they 

developed a protocol, which includes direct staining with pMHC tetramers followed by 

magnetic enrichment of tetramer-labeled T cells and allows the detection of as few as 

5 antigen-specific T cells per mouse [197, 213]. Employing this strategy, we have 

calculate the size of the naive and tolerant polyclonal CD4 T cell repertoires specific for 

two epitopes (PLP111-19 and PLP1240-248) of the naturally expressed protein PLP1 

(figures 12 A & 13 A). These are in line with the previously reported numbers of antigen-

specific T cells range from less than 10 to maximally around 300 per mouse in the 

peripheral lymphoid organs [197, 214, 215]. Interestingly, the tolerant repertoire did not 

reveal any quantitative evidence of clonal deletion. Instead, we found a solid fraction of 

regulatory T cells compared to the naïve repertoire, for both Tet-1 and Tet-3 (figures 

12 & 13). These findings support the idea of Legoux et al. that CD4 T cell tolerance 

mechanisms to TRAs might operate by Treg cell induction [86]. On the other hand, they 

are in contrast to the observed negative selection in the TCR-PLP1 tg system [193] and 

to the findings of Malhotra et al., who, in addition to a preferential Treg cell induction, 

identified moderate deletion of T cells specific for a model antigen under the control of 

TRA promoters [87].  

Enumeration of Tet+ cells may be a poor indicator of whether or not deletion may occur, 

because deletion might be masked by the simultaneous proliferation of cells with 

shared antigen specificity but possibly different TCRs. Therefore, based on our findings 

in the truly polyclonal setting, we cannot make a conclusive statement on whether 
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tolerance to PLP1 operates only via regulatory T cell induction or in parallel via deletion. 

This would require the identification of the fate of distinct TCRs.  

In order to follow the fate of individual TCR candidates, we needed to generate a 

database of all naïve and tolerant PLP1-specific TCRs. However, sequencing 

experiments performed on antigen-specific CD4+ T cells, found in similarly limited 

numbers as our PLP1-specific polyclonal cells, revealed that TCRs recognizing the same 

antigen had almost no overlap in their TCR sequence [214, 215]. This is easily 

interpretable, if we think that theoretically 1015 different TCR combinations can be 

generated [216], while each mouse has only about 6 x 107 T cells [217], which makes it 

almost impossible to find the same TCR clones in different mice. Keeping in mind this 

limitation, we decided to introduce the TCR ß-chain tg (originated from TCR-PLP1 

transgenic mouse) [193], with the aim of reducing the TCR diversity and possibly 

increasing the amount of PLP1-specific CD4+ T cells. The approach of reducing the TCR 

complexity by fixing the TCR ß-chain and sequencing the polyclonal TCR α-chain has 

been successfully applied in the characterization of thymic selection mechanisms 

previously [187, 226-229]. 

5.3 Tolerance mechanisms in a repertoire of reduced complexity  

From this point on we focused on Tet-1 (PLP111-19)-specific CD4 T cells only.  

It is impossible to predict in which structural conformation the TCRs bind to PLP1 

embedded in the I-Ab tetramer. Usually both TCR-chains bind the pMHCII via their CDR3 

loops and are therefore jointly responsible for antigen recognition and the following 

outcome [222]. However, we cannot guarantee that this is always the case. An preferred 

binding of the transgenic TCR ß-chain might cause an imbalanced distribution of the 

TCR:pMHCII interaction and an excessive skewing towards PLP1 recognition, resulting 

rather in a TCR transgenic system than in one with reduced TCR diversity. First of all, we 

ruled out this possibility by comparing the size of the naive and tolerant peripheral 

Tet-1+ populations in Fixed-ß animals (figure 15 A), which appeared to be within the 

aforementioned natural range of T cells specific for a single antigen in the polyclonal 

TCR repertoire [197, 214, 215]. Furthermore, the Fixed-ß mice reproduced the main 

tolerance hallmark observed in the fully polyclonal system, i. e. a significant fraction of 

Treg cells within the Plp1WT tolerant CD4 T cell repertoire in both the periphery and the 

thymus (figures 12 vs. 15 & figures 13 vs. 17).  
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Fixed-ß::Plp1WT mice displayed a decreased number of Tet-1-specific CD4 SP cells in the 

thymus as compared to Fixed-ß::Plp1KO mice (figure 17 A), which suggested that a 

fraction of PLP1 reactive T cells was negatively selected. This phenomenon might have 

been masked in the fully polyclonal repertoire owing to the small number of Tet+ cells 

(figure 13 A & B). In peripheral lymphoid organs of Fixed-ß mice, instead, we found 

more PLP1-specific T cells in the presence of PLP1, whereby the majority of them display 

the suppressive Treg cell phenotype (figure 15 B). Whether this population consists 

mainly of thymus-derived Treg cells or whether a certain proportion is peripherally 

induced is not clear. Indeed, although the access to neuronal antigens is at least in part 

regulated by the blood-brain barrier, naïve T cells from TCR-PLP1 tg Plp1KO mice do 

proliferate upon adoptive transfer into Plp1WT animals, which indicates draining of PLP1 

or PLP1-presenting cells in the lymphoid tissues [193]. Interestingly, PLP1-specific T cells 

circulate not only in mice, but also in healthy humans and therefore possess the 

potential to induce a spontaneous neuronal autoimmune reaction [230]. Regardless of 

their origin, it appears likely that PLP1-specific Treg cells (figures 12 & 15) fulfill an 

important function in T cell immune homeostasis by suppressing escaped PLP1-

autoreactive T cells, as suggested by experiments showing increased EAE susceptibility 

or increased activity of effector T cells after successful depletion of Treg cells [86, 231].  

Besides regulatory T cells, we identified a large fraction of anergic FoxP3- CD25- 

Tet-1-specific CD4 T cells within the lymphoid tissues of Fixed-ß::Plp1WT mice, providing 

evidence for a third tolerance mechanism (figure 16 B). The induction of CD4 T cell 

anergy has been described in the literature as a peripheral tolerance mechanism 

triggered by the chronic recognition of self-pMHCII in the absence of infection or 

inflammation in various mouse strains [171, 232]. In fact, next to the previously identified 

anergy markers FR4 and CD73, the tolerant T cells showed an increased expression of 

the activation marker CD44, indicating a persistent interaction with the cognate antigen 

within the lymphoid tissue (figure 16 C). This piece of evidence would support the 

notion that PLP1 is accessible in the lymphoid tissue and that T cell anergy is a 

peripheral tolerance mechanism for Tet-1-specific T cells. Recently, has been speculated 

that anergic T cells, at least in part, may be precursors of peripheral Treg cells [170, 171]. 

Since the majority of Treg cell are thymus-derived, we hypothesized that T cell anergy can 

be induced next to Treg cells also in the thymus as a third and previously undiscovered 

central tolerance mechanism.  
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In order to analyze thymocytes that already underwent central tolerance, we first had to 

identify the mature SP T cells in the thymus. To our surprise, after gating on CD4 SP 

Tet-1+ CD25- FoxP3- CD69- MHCI+ cells (figure 18 B), we discovered a distinct 

population expressing the alleged anergic markers FR4 and CD73 (figure 18 C). Anergy 

as a third central tolerance mechanism for T cells have not been described yet, but our 

results suggest that they might be converted already before entering the periphery. This 

could relativize the number of potentially self-reactive T cells escaping central tolerance, 

as they could migrate as “harmless” anergic cells into the periphery. Therefore, it is 

tempting to speculate that the in one particular model described 30% of CD4 T cells 

specific for a ubiquitously expressed antigen, which according to Moon et al. escape the 

central selection mechanisms [214], exhibit an anergic phenotype. It is especially 

exciting since it is precisely this population that does not respond upon immunization 

attempts [214]. To what extent or whether this depends on thymic and/or peripherally-

induced anergy remains to be addressed, as well as to what degree T cell anergy might 

be induced in the thymus by other TRAs or ubiquitous antigens. 

5.4 Tolerance-inducing factors in a repertoire with reduced diversity 

TRAs are usually expressed by mTEChi cells. The intrathymic expression pattern of PLP1 

is rather atypical whit its mRNA expression in cTECs, mTEChi, mTEClo and thymic DCs 

[80, 193].  

Our results show that both deletion and diversion of PLP1-specific thymocytes depend 

on the expression of PLP1 by TECs, as conditional deletion of PLP1 under the FoxN1 

promoter abolishes the manifestation of central tolerance phenotype (figure 19 A & B 

left). The same holds true when AIRE is knocked out, as the thymi of these mice look 

exactly like the Plp1KO thymi, which lack tolerance induction towards PLP1 (figure 19 A & 

B right). These results are consistent with the findings of Wang et al. using the TCR-PLP1 

tg system [193]. Given that AIRE, selectively expressed by mTECs, but not cTECs, it is 

likely that central tolerance is mediated by PLP1-expression in mTECs. Why mRNA 

expression in cTECs appears not to lead to tolerance remains to be investigated.  

At this point, we reasoned that mTEChi could be the most likely source of tolerizing 

antigen of central tolerance to PLP1, as the expression of PLP1 on TECs and the crucial 

role of AIRE in this process would point out. Nevertheless, AIRE does not only induce the 

expression of TRAs, but also influences tolerance through other mechanisms, such as 

adaptation of chemokine expression or antigen transfer to DCs (reviewed in [233]). For 
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this reason, we directly addressed the role of DCs by deleting CD11c expressing cells. 

We found that Fixed-ß mice lacking DCs are able to induce thymic Treg cells (figure 20 A) 

and display similar amounts of Tet-1+ thymocytes (data not shown). Unfortunately, due 

to the low amount of biological replicates and the need for fixation and intracellular 

FoxP3 staining, we cannot exclude the involvement of thymic DCs in deletion of PLP1-

specific thymocytes, as the quantification of Tet-1+ cells is not reliable for fixed samples.  

Our data from the lymphoid tissues of Fixed-ß animals suggest that DCs are capable of 

peripheral Treg cell induction. Indeed, when we eliminated thymic-derived PLP1-specific 

Treg cells by either deleting PLP1 in TECs or by knocking out Aire, we still observed a 

similar frequency of peripheral Treg cells as in the Plp1WT controls (figure 19 D vs. figure 

15). These peripheral Treg cells were absent in mice simultaneously lacking DCs and 

AIRE (Fixed-ß::ΔDC::AireKO mice), arguing that DCs are responsible for the peripheral 

Treg cell phenotype (figure 20 B). This is of particular interest as pTreg cells have so far 

only been observed at mucosal barriers such as the gut [234, 235], the lungs [236] and 

the placenta [237], so in association with the presentation of “foreign” (commensal-

derived) antigens, whereas thymus-derived Treg cells are believed to control immune 

homeostasis to self-antigens [238].  

Interestingly, Wang et al. did not report compensatory pTreg cell induction in the 

TCR-PLP1 transgenic system, whenever they abolished central tolerance to PLP1, but 

only a partial peripheral deletion of PLP1-specific CD4 T cells [193]. Vice versa, we did 

not observe any peripheral deletion, although it could have been masked by the 

proliferation of Treg cells. Overall, these apparent contradictions can be explained by the 

fact that monoclonal TCR repertoires, by focusing on a single TCR candidate, lose 

information on the fate of all other antigen-specific TCRs, whereas the bulk analysis of a 

polyclonal repertoire of a given specificity oversees what happens at the level of a single 

TCR clone. 

5.5 How central tolerance affects individual PLP1-specific T cell 

clones 

In order to understand if individual PLP1-specific TCRs undergo different fates upon 

antigen encounter in the thymus, we proceeded with single cell sequencing of the 

TCR α-chain in the Fixed-ß setting.  
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We initially sequenced a naive reference repertoire, to create a comprehensive 

database of all Tet-1+ TCRs. Of note, we identified the very same eight public 

TCR α-chains in the thymus and periphery of Fixed-ß::Plp1KO as well as in the thymus of 

Fixed::Plp1ΔTEC mice (figure 21 A & B). Since the relative distribution of these eight 

public TCR clones did not change when increasing the number of sequenced TCRs in 

both settings, we were confident that we reached saturation of our reference repertoire. 

After defining the naïve PLP1-specific reference TCRs, we sequenced the thymocytes of 

the tolerant Plp1WT animals, which consisted of both regulatory and non regulatory 

T cells. The majority of non regulatory PLP1-specific cells seem to be in an immature 

state (figure 18 B). Given the limited concentration of PLP1 in the medulla, it is likely that 

they have not encountered the PLP1 antigen yet. Consequently, it is reasonable to 

assume that the majority of our sequenced thymocytes were in a "naive" state. In light of 

this, we were not surprised to see an almost perfect overlap between the TCRs 

expressed by the non regulatory Fixed-ß::Plp1WT thymocytes and the truly naive 

reference TCRs (figure 21 C left pie chart vs. figure 21 A & B). 

We next focused on the TCRs of antigen-experienced T cells, which include those 

expressed by Treg thymocytes as well as by peripheral regulatory and non regulatory 

T cells in Fixed-ß::Plp1WT mice. The latter are indeed mainly anergic (figure 16 B). These 

three TCR repertoires strongly differed from all the previously described “naïve” TCR 

compartments and at the same time were almost identical to one another (figure 21 A & 

B & C & D). After we collected all the data, we needed to identify deleter and diverter 

TCRs, thus to define criteria for such identification. We defined as “deleter” a TCR that is 

present in the naïve reference compartment, but is lost or strongly reduced in the 

periphery of tolerant Plp1WT mice. A “diverter” is instead a TCR that is expressed by Treg 

cells.  

Applying these criteria, it seems that clonal diversion only affects some of the public TCR 

candidates. Besides the receptors TCR-B and TCR-H, which are expressed by roughly 

10 % of Treg cells each, it is TCR-A, which is present on the vast majority of Treg cells 

(figure 21 C & D). As for clonal deletion, the receptors TCR-E and TCR-F are totally 

absent or strongly reduced in their frequency in the tolerant repertoires compared to 

the naïve repertoires, thus classifying as deleter TCRs (figure 21 A & B & C & D).  

One could argue that our definition of deleter TCRs also include TCRs that are deleted 

by peripheral tolerance mechanisms. However, in case of preferential deletion of TCR-E 
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and TCR-F in the periphery, we would have expected to find them at a higher frequency 

in the non regulatory peripheral T cell fraction of Fixed-ß::Plp1WT, i.e. after thymic 

emigration but before the peripheral deletion actually happened. Since our sequencing 

data represent a snapshot of TCRs expressed by T cells of different “ages”.  

Concerning clonal diversion, we think that the majority of our diverter TCRs are 

converted in the thymus, as more than 80 % of CD4 SP FoxP3+ CD25+ T cells in 

Fixed-ß::Plp1WT thymi are non recirculating CCR7+ (figure 17 C). This hypothesis is 

supported by the fact that more than 70% of polyclonal peripheral Treg cells seem to 

have thymic origin [140, 142, 239].  

One last interesting aspect that deserves attention is the similarity in the TCR 

distribution between the Treg cells and the non regulatory – mostly anergic – T cells in the 

periphery of Plp1WT animals. This is reminiscent of the “buddy hypothesis”, which 

suggested that the release of every potential autoreactive T cell is kept in check by a 

regulatory buddy T cell of equal antigen specificity [239]. However, this theory does not 

take into account that the majority of the remaining non regulatory T cells have an 

anergic phenotype. Given the limited space and resources for Treg cell induction in the 

thymus (e. g. limited cytokine availability), the anergic cells could act as a backup for a 

possible renewal of Treg cells. Whether and to what extent anergic and regulatory T cells 

cooperate together as buddies to suppress escaped autoreactive T cells is an interesting 

aspect that has yet to be demonstrated.    

5.6 Characterization of selected TCR candidates 

In order to test whether the fate of our PLP1-specific TCRs is related to their 

affinity/avidity to PLP1, we selected the four most frequent among the eight TCRs 

reported in figure 21, two of which described as deleter (TCR-E & TCR-F) and two as 

diverter (TCR-A & TCR-H) TCRs. We then generated the respective TCR a-chain tg mice 

and bred them to the Fixed-ß, Plp1KO and Rag1KO animals, to obtain a TCR monoclonal 

systems. We isolated CD4 SP thymocytes from each of the four TCR tg Plp1KO animals 

and checked their proliferation ex vivo upon stimulation with DCs and titrated amounts 

of PLP11-24 (figure 24), as a readout of functional avidity. To our surprise and in 

contradiction with the classical affinity/avidity model (figure 5), we found that deleter 

TCRs have either the highest (TCR-F) or the lowest (TCR-E) functional avidity to PLP11-24, 

whereas diverter TCRs have an intermediate one, with TCR-A proliferating more than 

TCR-H.  
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Next, we wanted to verify in the monoclonal system if each TCR candidate recapitulates 

the cell fate identified by the sequencing experiments, upon PLP1 encounter in vivo. The 

comparison of the respective TCR tg CD4 T cell compartments between PLP1-deficient 

and -sufficient mice showed a positive correlation between the TCRs’ functional avidity 

and the frequency of Treg cells in both the thymus (figure 22 B) and the periphery (figure 

23 B).  

The effect was extreme for TCR-E, the receptor with the lowest functional avidity, which 

did not get diverted into the Treg cell lineage at all. On the contrary, we saw a 

significantly reduced number of CD4 T cells in the thymus (figure 22 A & C) and 

periphery (figure 23 A) of TCR-E tg mice, which is in agreement with the aforementioned 

sequencing data (figure 21) and the definition of a truly deleter TCR. This is of particular 

interest since clonal deletion of self-reactive T cells has always been associated with 

TCRs that possess high affinity/avidity to pMHCII and thus theoretically possess an 

enormous potential to trigger autoimmunity [240, 241]. In contrast, low affinity/avidity 

TCRs have been associated with incomplete central tolerance induction, resulting in an 

escape of the respective TCRs and a related autoimmune reaction [229, 242, 243]. Our 

TCR-E represents an exception to the broadly accepted affinity/avidity model, as it 

undergoes deletion in spite of relatively low functional avidity to PLP1. However, it is 

worth mentioning that pMHCII tetramers fail to bind TCRs on the lowest range of 

affinity/avidity [244], so in our analysis we lack the TCRs with truly low affinity/avidity to 

PLP1. To understand the necessity to remove TCR-E, it would be interesting to test if 

PLP1 immunization of TCR-E::Plp1WT mice, or the transfer of naïve TCR-E tg CD4 T cells 

into Plp1WT animals, induces EAE.  

Also very interesting are the data we obtained from the other TCR tg mice. The two 

diverter TCRs (TCR-A & TCR-H), for example, differ in their functional avidity to PLP1 

(figure 24), which correlated with their frequency in the Treg cell compartment of Fixed-ß 

mice (figure 21 C & D). It appears as if Treg cells with a high self-pMHCII recognition 

potential possess a selection advantage over "weaker" TCRs and thus outcompete them. 

One reason might be that Treg cells need to establish a high affinity/avidity interaction 

with self-pMHCII in order to properly suppress a possible autoimmune reaction. 

Alternatively, higher affinity/avidity to self-pMHCII might guarantee a faster access to 

resources for the diversion process. In case access to Treg cell niches is the limiting factor, 

it would be interesting to test whether an excess of TCR-A expressing thymocytes could 

hinder the ability of TCR-H to divert into Treg cells. Besides clonal diversion, we 
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simultaneously observed clonal deletion of the two “diverter” TCRs (figure 22 A & C & 

figure 23 A). Based on the previously discussed evidence for DC-dependent peripheral 

tolerance induction to PLP1 (paragraph 5.4), we cannot exclude that deletion of the 

TCR-A and TCR-H happens preferentially in the periphery (figure 23 A). However, the 

analysis of CD4 SP thymocytes of the respective TCR tg mice indicated that central 

tolerance is also acting through deletion. It was probably not possible to capture the 

concomitant diversion and deletion of TCR-A and TCR-H by sequencing the polyclonal 

PLP1-specific T cells, because the peripheral FoxP3- compartment, which we expected 

to be “naïve”, in fact expressed the same TCRs we found on Treg cells and displayed 

mainly an anergic phenotype (figure 21 D). For this reason, TCRs that are very prominent 

in the Treg cell compartment are also equally prominent in the FoxP3- peripheral 

compartment, to the point that deletion might not be visible. Similarly, in neo-antigen-

driven Treg TCR tg mice, it was observed that deletion occurs in addition to Treg cell 

induction [177, 178, 183, 245].  

Finally, the TCR-F tg mice – which express the TCR with the highest functional avidity to 

PLP1 – revealed the largest Treg cell fraction within the CD4+ T cells in both the thymus 

and the periphery, compared to the other three TCR tg (figure 22 B & figure 23 B). This 

finding is in contrast to the results from our sequencing experiments, which made us 

define TCR-F as a deleter TCR. However, as we know from the history of the 

affinity/avidity model, based on the study of TCR tg mice, thymocytes expressing a 

potential deleter TCR specific for a neo-antigen can be "converted" into Treg cells by 

reducing the concentration of the cognate antigen in the thymus [74, 183] (figure 25 A). 

The other way around, thymocytes expressing a potential diverter TCR of unknown 

specificity did not show any conversion in the monoclonal repertoire until the authors 

titrated down the amount of TCR tg T cells in bone marrow chimeras [185, 186] 

(figure 25 B). In both cases it seems there is a optimal TCR:pMHCII ratio for Treg cell 

induction. We reasoned that a similar shift in this ratio could have happened in our 

setting, where, compared to the low frequency of TCR-F in the Fixed-ß repertoire, we 

overloaded the thymus with TCR tg T cells of the same specificity, without altering the 

PLP1 expression (Figure 25 C). This resulted in TCR-F, previously described as deleter 

TCR, appearing as a diverter TCR. 
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Figure 25: Changing the TCR:pMHCII ratio uncovers a window for Treg cell  induction  

(A) In two independent TCR tg systems, reducing the amount of pMHCII on mTECs [74] or changing the 

pattern of thymic antigen expression through the use of different promoters [183] shifts the fate of the 

thymocytes from being deleted to diverted into Treg cells. (B) In BM-chimera experiments, titrating down 

the amount of thymocytes expressing a monoclonal TCR derived from a Treg cell clone revealed a 

threshold, below which conversion into Treg cells could take place [185, 186]. (C) The “deleter” TCR-F 

(gray) that we identified in the Fixed-ß repertoire (figure 21) became a “diverter” TCR when expressed in 

a monoclonal TCR tg system (figure 22 & figure 23), where the thymus was overloaded with T cells of the 

same specificity.  

It is possible that intraclonal competition might be the reason for the observed 

phenotype. In a TCR tg system all the thymocytes compete for interaction with the very 

same epitope of the cognate antigen, which, in case of PLP1 or other TRAs, is expressed 

at low levels. This may result in limited accessibility of PLP1, leading to decreased 

occupancy of the TCRs on the surface of each thymocyte, and/or shorter interaction 

times with APCs, deriving from the physical displacement by other TCR tg T cells. For 

instance, in a Fixed-ß setting similar to ours, Stadinski et al. recently demonstrated that 
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polyclonal thymocytes that engaged in TCR:self-pMHCII interactions with long dwell 

times underwent deletion, whereas those interacting with shorter dwell times were 

converted into Treg cells [246]. Furthermore, the competition happening in the thymus of 

a TCR tg mouse resembles in some way that of peripheral T cells competing during an 

anti-foreign response [247]. Since the latter was described to act also through the 

“sequestration” of pMHCII from the surface of APCs [248], we can speculate that the 

high-affinity TCR-F tg thymocytes might be directly responsible for reducing the amount 

of PLP1. All in all, the example of TCR-F reminds us once more of the caveats of the TCR 

tg systems. To test this, one could try to re-establish a physiological TCR:pMHCII by 

titrating down the amount of TCR tg cells in BM chimeras.  
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6. Conclusion 

Our findings in repertoire inventories support the affinity/avidity model of thymocyte 

selection. As a proxy of affinity it should be mentioned that the data shown here all refer 

to functional avidity. To what extent the actual affinity of an individual TCR:pMHCII 

interaction influences the T cells fate is beyond the scope of this thesis. Our proposed 

model is shown in figure 26, differing from the classical affinity/avidity model in that it 

shows a deletion window that spans a wider region than the Treg cell induction window. 

The T cell fate, which is exemplified by TCR-E (salmon), displayed the lowest functional 

avidity to PLP1 and yet was deleted in both the Fixed-ß and TCR tg settings. According 

to our data, the induction of Treg cells takes place in a window of higher TCR:pMHCII 

strength, which might concomitantly lead to deletion and the expression of the anergy 

markers FR4 and CD73. This is represented by TCR-H (blue) and TCR-A (yellow), whose 

functional avidity to PLP1 positively correlated to their respective frequency in the Treg 

cell compartment of Fixed-ß mice, as well as to the frequency of Treg cells in the TCR tg 

scenarios. Finally, we described the upper part of the deletion window at the higher end 

of TCR:pMHCII strength, demonstrated by TCR-F (gray).  

Our interpretation favors the idea that thymocytes bearing autoreactive TCRs with an 

optimal affinity/avidity to their cognate self-antigen are retained in the mature CD4 

T cell repertoire as Treg cells, whereas the ones expressing TCRs of too low or too high 

affinity/avidity to self-pMHCII are deleted because considered useless or dangerous, 

respectively. Deletion might also happen in parallel to Treg cell induction, probably when 

the Treg cell niches are saturated. Furthermore, the induction of anergy seems to be a 

third option of central tolerance induction, although we could only describe the 

phenotype, due to the extremely low amount of CD4+ Tet-1+ FoxP3- CD25- T cells in 

Fixed-ß::Plp1WT mice.  
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Figure 26: Our proposed model of thymocyte selection 

Thymocytes that survive positive selection and enter the medulla are subjected to the central tolerance 

checkpoint. The T cell fate is determined by the intensity of the TCR:pMHC interactions, which is 

influenced by both the TCR affinity for the cognate self-antigen and the avidity established by the total 

TCR:pMHC connections. When the signaling strength of TCR:pMHC is relatively low, thymocytes are 

allowed to mature and leave the thymus as Tconv cells. When the TCR:pMHC interact more strongly, the 

thymocytes are considered mildly autoreactive, but not enough to be converted into useful Treg cells, 

and are therefore deleted from the repertoire, as exemplified by TCR-E (salmon). When the TCR:pMHC 

establish even stronger connections, as in the case of TCR-H (blue) and even more of TCR-A (yellow), the 

thymocytes are in the perfect window of autoreactivity for the conversion into Treg cells. If enough Treg 

cells of a given specificity are generated, the redundant thymocytes might be deleted and/or turned into 

seemingly anergic cells that escape in the periphery. Finally, at the highest strength of TCR:pMHC 

interaction thymocytes are considered too dangerous and deleted from the repertoire, as shown for 

TCR-F (gray). Perturbing the ratio of TCR:pMHC can shift the T cell fate, as explained in figure 25, so for 

instance TCR-F can become a diverter TCR when the TCR:pMHC interactions are not fully established 

due to excessive intraclonal competition.  
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7.2 Abbreviations 

aa  amino acid 

Aire  autoimmune regulator  

APC  antigen-presenting cell 

APECED  autoimmune polyendocrinopathy, candidiasis and ectodermal dystrophy 

A(M/D/T)P  adenosin (mono/di/tri) phosphate 

BM  bone marrow 

CMJ  cortico-medullary junction 

CD  cluster of differentiation  

cDC/pDC  conventional/plasmacytoid dendritic cell 

CNS  central nerve system 

cTEC  cortical thymic epithelia cell 

CTSL  cathepsin L 

CTV  cell trace violet 

DN/DP double negative / double positive 

EAE  experimental autoimmune encephalomyelitis  

FoxP3  forkhead box P3 

FoxN1  forkhead box N1 

FR4 folate receptor 4 

GFP  green fluorocent protein 

HEL  hen egg lysozyme 

IDO1  indoleamine 2,3-dioxygenase-1 

IFN Interferon 

IL  interleukine  

IRBP  interphotoreceptor retinoid-binding protein 

KO  knockout 

MACS magnetic-activated cell sorting 

MBP  myelin basic protein 
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MHCI/II major histocompatibility complex class 1/2 

MOG  myelin oligodendrocyte glycoprotein 

mTEC  medular thymic epithelia cell 

NFAT  nuclear factor of activated T cells 

Nrp1  Neuropilin-1 

NOD non-obese diabetic  

PGE  promiscuous gene expression 

PLP1  proteolipid protein 1 

RAG  recombination activating gen 

S1P(R)  sphingosine-1-phosphate (receptor) 

SP  single positive 

TCR  T cell receptor 

Tg  transgenic 

TdT  terminal deoxynucleotidyl transferase 

TGF-ß  tumor growth factor ß 

TRA  tissue restricted antigen 

TSSP  thymus specific serine protease  

OVA  ovalbumin 

VDJ  variable diversity joining  

WT  wild type 

A2aR  Adenosine A2a receptor 

BTLA  B- and T-lymphocyte attenuator 

CTLA-4  cytotoxic T-lymphocyte-associated protein 4 

LAG3  lymphocyte activating 3 

PD-1  programmed cell death protein 1  

TIM-3  T-cell immunoglobulin mucin-3 

VISTA V-domain Ig suppressor of T cell activation 

 



 107 

7.3 Eidesstattliche Versicherung 



Promotionsbüro 
Medizinische Fakultät 

Eidesstattliche Versicherung Januar 2020

Eidesstattliche Versicherung 

Name, Vorname 

Ich erkläre hiermit an Eides statt,  

dass ich die vorliegende Dissertation mit dem Titel 

selbständig verfasst, mich außer der angegebenen keiner weiteren Hilfsmittel bedient und alle 
Erkenntnisse, die aus dem Schrifttum ganz oder annähernd übernommen sind, als solche kenntlich 
gemacht und nach ihrer Herkunft unter Bezeichnung der Fundstelle einzeln nachgewiesen habe.  

Ich erkläre des Weiteren, dass die hier vorgelegte Dissertation nicht in gleicher oder in ähnlicher 
Form bei einer anderen Stelle zur Erlangung eines akademischen Grades eingereicht wurde. 

Ort, Datum Unterschrift Doktorandin bzw. Doktorand 

Tobias
Typewritten Text
Tobias Johannes Haßler

Tobias
Typewritten Text


	Name Vorname: Tobias Johannes Haßler
	Titel der Dissertation: "How central tolerance shapes the polyclonal CD4 T cell repertoire specific for the central nervous system antigen myelin proteolipid protein 1"
	Ort Datum, Affidavit: München, 03.04.2021


