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Abbreviations 

ABI Ankle-brachial index  

AF Atrial fibrillation 

ANS Autonomic nervous system 

AVB Atrioventricular block 

BBB Bundle branch block 

BMI Body mass index 

CAC Coronary artery calcification 

CAD Coronary artery disease 

CIMT Carotid intima-media thickness 

CVD Cardiovascular disease 

ECG Electrocardiogram 

GIS Geographic information system 

HDL High-density lipoprotein 

HR Heart rate 

HOMA-IR Homeostasis model assessment of insulin resistance 

HOMA-B Homeostasis model assessment of β-cell function 

IQR Interquartile range 

IR Insulin resistance 

IS Insulin sensitivity 

LUR Land-use regression 

MI Myocardial infarction 

NAAQS National Ambient Air Quality Standards 

NO2 Nitrogen dioxide 

O3 Ozone 

OR Odds ratio 

PAD Peripheral artery disease 

PM10 Particulate matter with an aerodynamic diameter ≤ 10 µm 

PM2.5 Particulate matter with an aerodynamic diameter ≤ 2.5 µm 

PM2.5abs PM2.5 absorbance 

PMcoarse Particulate matter with an aerodynamic diameter > 2.5 µm 

and ≤ 10 µm 

PNC Particle number concentration 

QTc Heart-rate-corrected QT interval 

SES Socioeconomic status 

UFP Ultrafine particles 
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  III 

Summary 

Ambient air pollution has been identified as a major risk factor for cardiometabolic 

diseases. However, biological mechanisms underlying the health impacts of air 

pollution are still not fully understood. Epidemiological studies have shown that 

subclinical atherosclerosis, heart arrhythmia, and impaired insulin sensitivity (IS) 

are involved in the pathogenesis of cardiometabolic diseases. Investigating 

associations of air pollution with these pathophysiological responses in population-

based studies promotes understanding the mechanisms of air pollution-related 

health effects, and helps identify the susceptible individuals for targeted 

interventions.  

This thesis aimed to assess long-term effects of residential air pollution exposure on 

ankle-brachial index (ABI), an index for the detection of peripheral atherosclerosis 

(ABI≤0.9) and arterial stiffness (ABI>1.4), and biomarkers of IS in participants from 

the German KORA study. In addition, as part of the CATHGEN study in North 

Carolina, United States, we examined short-term effects of fine particulate matter 

(PM2.5) and ozone (O3) on cardiac electrical impulse conduction measured by PR, 

QRS, and QT intervals in electrocardiograms (ECG) among patients undergoing 

cardiac catheterization.  

Our study on ABI demonstrated that long-term exposure to particulate matter (PM) 

with an aerodynamic diameter less than 10 µm (PM10), PM2.5, and nitrogen dioxide 

(NO2) were associated with higher risks of both low and high ABI. Positive 

associations with the prevalence of high ABI were also observed for PM with an 

aerodynamic diameter between 2.5 µm and 10 µm (PMcoarse) and PM2.5 absorbance 

(a proxy of elemental carbon related to traffic exhaust). Using repeated 

measurements of biomarkers, we observed increases in homeostasis model 

assessment of insulin resistance (HOMA-IR), homeostasis model assessment of β-

cell function (HOMA-B), and fasting insulin associated with elevated PM, NO2, and 

O3, indicating the air pollution-related decrease in IS. Consistent with these results, 
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air pollution exposure was positively associated with the annual rate of change in 

HOMA-IR, HOMA-B, and fasting insulin. Our CATHGEN analyses suggested positive 

associations of PM2.5 and O3 with the PR interval at a lag of 3–4 days, and a 

lengthening of the QRS interval four days after exposure to O3. Both immediate (lag0) 

and delayed (lag3–lag4) effects of air pollution were found for the lengthening of 

heart rate-corrected QT interval. Generally, older adults and individuals who were 

physically inactive or of lower socioeconomic status were more susceptible to the 

air pollution effects. 

This thesis extends the literature on pathophysiological responses of the 

cardiometabolic system associated with exposure to ambient air pollution. 

Specifically, it showed that a higher risk of atherosclerosis and stiffness in peripheral 

arteries, a higher degree and faster progression of impaired IS, as well as delays in 

atrioventricular conduction, ventricular depolarization and repolarization were 

associated with air pollution exposure. These findings substantiate the biological 

mechanisms linking ambient air pollution to the development of cardiometabolic 

disease, and provide guidance for the targeted interventions to mitigate the adverse 

health effects of air pollution, especially in the susceptible populations.  
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Zusammenfassung 

Luftverschmutzung wurde als Risikofaktor für kardiometabolische Erkrankungen 

identifiziert. Die biologischen Mechanismen, die den gesundheitlichen 

Auswirkungen der Luftverschmutzung zugrunde liegen, sind jedoch noch nicht 

vollständig verstanden. Epidemiologische Studien haben gezeigt, dass subklinische 

Atherosklerose, Herzrhythmusstörungen und Störungen der Insulinsensitivität (IS) 

an der Pathogenese kardiometabolischer Erkrankungen beteiligt sind. Die 

Untersuchung der Zusammenhänge von Luftverschmutzung mit diesen 

subklinischen Phänotypen in bevölkerungsbezogenen Studien untermauert das 

Verständnis der Mechanismen luftverschmutzungsbedingter Gesundheitsschäden 

und hilft, anfällige Personen für gezielte Präventionsmaßnahmen zu identifizieren. 

Ziel dieser Arbeit war es, die langfristigen Auswirkungen der Belastung durch 

Außenluftschadstoffe in Wohngebieten bei Teilnehmern der deutschen KORA-

Studie zu untersuchen. Dabei wurden folgende Parameter betrachtet: Knöchel-

Brachial-Index (ABI), ein Index zum Nachweis von peripherer Atherosklerose (ABI 

≤0.9) und arterieller Steifheit (ABI>1.4), Biomarker für IS, gemessen anhand des 

HOMA-Index als Indikator für Insulinresistenz (HOMA-IR) und des 

Nüchterninsulins. Darüber hinaus untersuchten wir im Rahmen der CATHGEN-

Studie in North Carolina, USA, Kurzzeiteffekte von Feinstaub (PM2.5) und Ozon (O3) 

bei Patienten, die sich einer Herzkatheterisierung unterzogen hatten, auf die 

elektrische Herzimpulsleitung, gemessen durch PR-, QRS- und QT-Intervalle in 

Oberflächenelektrokardiogrammen (EKG). 

Unsere ABI-Studie hat zeigte, dass eine Langzeitbelastung mit Partikelmasse (PM) 

mit einem aerodynamischen Durchmesser von weniger als 10 µm (PM10), PM2.5 und 

Stickstoffdioxid (NO2) mit einem höheren Risiko für niedrige und hohe ABI Werte 

verbunden ist. Positive Assoziationen mit der Prävalenz eines hohen ABI wurden 

auch für PM mit einem aerodynamischen Durchmesser zwischen 2.5 µm und 10 µm 

(PMcoarse) und der PM2.5-Absorption (einem Proxy für elementaren Kohlenstoff in 

Bezug auf Verkehrsabgase) beobachtet.  
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Unter Verwendung wiederholter Messungen von Biomarkern beobachteten wir 

einen Anstieg der HOMA-IR und des Nüchterninsulins im Zusammenhang mit 

erhöhten PM-, NO2- und O3-Werten, was auf eine luftverschmutzungsbedingte 

Abnahme der IS hindeutet. In Übereinstimmung mit diesen Ergebnissen war die 

Exposition gegenüber Luftverschmutzung war positive mit der jährlichen 

Änderungsrate von HOMA-IR und Nüchterninsulin verbunden. Unsere CATHGEN-

Analysen deuteten auf positive Assoziationen von PM2.5 und O3 mit dem PR-Intervall 

mit einer Verzögerung von 3 bis 4 Tagen, und einer Verlängerung des QRS-Intervalls 

vier Tage nach O3-Exposition hin. Für die Verlängerung des 

herzfrequenzkorrigierten QT-Intervalls wurden sowohl unmittelbare (lag0) als 

auch verzögerte (lag3–lag4) Auswirkungen der Luftverschmutzung festgestellt. Im 

Allgemeinen waren ältere Erwachsene und Personen, die körperlich inaktiv waren 

oder einen niedrigeren sozioökonomischen Status hatten, anfälliger für die 

Auswirkungen der Luftverschmutzung. 

Diese Arbeit erweitert die Literatur zu pathophysiologischen Reaktionen des 

kardiometabolischen Systems, die mit der Exposition gegenüber 

Luftverschmutzung verbunden sind. Insbesondere zeigte sich ein höheres Risiko für 

Arteriosklerose und Steifheit in peripheren Arterien, ein höheres Ausmaß und ein 

schnelleres Fortschreiten von beeinträchtigte IS sowie Verzögerungen bei der 

atrioventrikulären Überleitung, der ventrikulären Depolarisation und der 

Repolarisation im Zusammenhang mit einer Exposition gegenüber 

Außenluftschadstoffen. Diese Ergebnisse untermauern die biologischen 

Mechanismen, die die Luftverschmutzung mit der Entwicklung von 

kardiometabolischen Erkrankungen in Verbindung bringen, und geben Hinweise für 

gezielte Maßnahmen zur Minderung der gesundheitlichen Auswirkungen von 

Luftverschmutzung, insbesondere auf besonders empfindliche 

Bevölkerungsgruppen. 
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1   Background 

1.1   Air pollution and cardiometabolic disease 

Cardiovascular disease (CVD) and type 2 diabetes are two leading causes of 

premature death and disability. The estimated number of deaths from CVD and type 

2 diabetes globally in 2017 were 17.8 million and 1.0 million, increasing by 21.1% 

and 43.0%, respectively, since 2007 (1). Ambient air pollution has been identified 

as a major contributor to the global burden of disease. Long-term exposure to 

ambient particulate matter with an aerodynamic diameter less than 2.5 µm (PM2.5) 

accounted for 4.2 million deaths worldwide in 2015, ranking fifth among all 

investigated risk factors, and accounted for 15.9% of mortality from ischemic heart 

disease and cerebrovascular disease (2,3). Furthermore, around 3.2 million incident 

diabetes cases and more than 0.2 million deaths from diabetes were attributable to 

ambient PM2.5 in 2016 (4). 

Epidemiological and experimental studies have proposed several biological 

mechanisms by which air pollution may affect the cardiometabolic system, which 

are summarized in Figure 1 (5-7). Inhaled fine particles deposit in pulmonary alveoli 

and lead to the formation of reactive oxygen species, resulting in local oxidative 

stress and inflammation. The release of pro-inflammatory mediators causes 

systemic inflammation, which can contribute to the development of endothelial 

dysfunction, atherosclerosis, and insulin resistance (IR). Another pathway involves 

air pollution-induced alteration in the autonomic nervous system (ANS) via 

stimulating the airway receptors. The imbalance of sympathetic and 

parasympathetic nervous system might affect the heart rhythm and blood pressure 

within a short timeframe. Ultrafine and soluble constituents of particulate matter 

(PM) can also directly translocate into the systemic circulation and cause pro-

inflammatory responses.
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Figure 1. Hypothesized biological mechanisms of air pollution-mediated 

cardiometabolic diseases. Adapted from “Expert position paper on air pollution and 

cardiovascular disease”. (Newby, D. E., et al. 2014, European Heart Journal, 36(2), 83-

93. Copyright [2014] by European Society of Cardiology).  

1.2   Pathophysiological responses of the cardiometabolic system 

Subclinical atherosclerosis, heart arrhythmia, and IR are suggested to be important 

pathophysiological responses linked to cardiometabolic events (8-10). Investigating 

associations between air pollution and these pathophysiological responses in 

population-based studies promotes the understanding of the biological mechanisms 

of air pollution-mediated cardiometabolic diseases beyond the cellular/molecular 

level. Besides, it helps identify the susceptible subpopulations in order to deliver 

targeted interventions before the clinical manifestation of diseases.  

1.2.1   Subclinical atherosclerosis and arterial stiffness 

Atherosclerosis is characterized by asymmetric thickening of the innermost layer of 

arteries due to the formation of plaques (8). Rupture of the plaques is a major cause 

of thrombosis precipitating ischemic CVD (11,12). Thus, subclinical atherosclerosis 

plays a key role in the risk assessment of CVD. A variety of non-invasive methods 
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have been offered for measuring atherosclerosis, among which the measurements 

of carotid intima-media thickness (CIMT), coronary artery calcification (CAC), and 

ankle-brachial index (ABI) are commonly used in epidemiological studies (13-15).  

ABI is the ratio of systolic blood pressure at the ankle to that at the brachial artery. 

An ABI lower than 0.9 indicates stenosis between the aorta and distal arteries of 

lower extremities. It is a widely used clinical tool for the diagnosis of peripheral 

artery disease (PAD) with high sensitivity and specificity (16). A low ABI is 

associated with higher risks of cardiovascular events and all-cause mortality, as well 

as greater functional impairment because of ischemic leg symptoms (13,17). In 

addition to subclinical atherosclerosis, abnormally high ABI is a marker of arterial 

stiffness, which results from calcification in the medial layer of the arterial wall 

(18,19). An ABI > 1.4 has been demonstrated to be an independent risk factor for 

CVD and mortality (13,20). 

Epidemiological studies have reported associations of long-term air pollution 

exposure with CIMT and CAC (21-27). However, the atherosclerotic effects of air 

pollution are heterogeneous across different vascular beds, and evidence of the 

effect on ABI is still limited and inconsistent (28,29). A study in the German Ruhr 

Area showed that living within 50 m of a major road was associated with a decrease 

in ABI and a higher prevalence of ABI < 0.9, while no or even reverse associations 

were observed elsewhere (30-32). Moreover, since most previous studies focused 

on low ABI, little is known about the long-term air pollution effect on abnormally 

high ABI, i.e. arterial stiffness of lower extremities. Despite the association between 

atherosclerosis and arterial stiffness, the air pollution effects on low and high ABI 

could be distinct (32,33). Therefore, examining the full spectrum of ABI in the same 

population can provide a better understanding of the association of air pollution 

with the structural and functional changes in arteries.  

1.2.2   Cardiac conduction disorders 

The cardiac conduction system initiates and conducts electrical impulses, 

subsequently stimulating the contraction of the atria and ventricles. The cardiac 
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electrical activity can be recorded by an electrocardiogram (ECG), which facilitates 

the diagnosis of conduction disorders. For instance, the electrocardiographic PR 

interval reflects the impulse conduction from the sinus node through the 

atrioventricular node and His-Purkinje system. A PR interval exceeding 200 

milliseconds indicates the presence of first-degree atrioventricular block (34). The 

QRS interval and heart rate-corrected QT interval (QTc) in the ECG are measures of 

ventricular depolarization and repolarization, respectively (35). Prolonged PR, QRS, 

and QTc have been associated with increased risks of cardiac and all-cause mortality 

(34,36-38). 

Air pollution effects on the cardiac conduction system could be mediated through 

ANS dysfunction and/or inflammation. Compared with the lifelong process of 

atherosclerosis, the electrical conduction responses can occur within hours to days 

(39-47). The U.S. Veterans Affairs Normative Aging Study reported increased QTc 

within 10 hours after exposure to traffic-related pollutants (black carbon, nitrogen 

dioxide [NO2], and carbon monoxide) (41). Similar results were observed in a panel 

study on healthy young adults in China, showing positive associations with exposure 

in the preceding 1–5 days (47). To date, short-term effects of air pollution on the PR 

and QRS intervals are still not well understood. Liao et al. (44) found prolonged PR 

duration associated with PM2.5 exposure at a lag of 1.5–2 hours. In randomized 

crossover studies, an increase in the QRS interval was observed among individuals 

without a prominent antioxidant gene (GSTM1) after controlled exposure to 

ultrafine particles (UFPs) in the chamber, while a decrease in QRS was associated 

with controlled exposure to ozone (O3) (46,48).  

Patients with preexisting CVD are potentially more susceptible to the adverse health 

effects of air pollution (49). Besides, medical conditions and the usage of certain 

medication might have an impact on cardiac rhythms such as prolonging cardiac 

repolarization (50). Therefore, it is of greater clinical significance to investigate 

short-term air pollution effects on the cardiac conduction system among patients 

who are at an elevated risk of cardiovascular events. 
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1.2.3   Insulin resistance 

Insulin is a hormone secreted by β-cells of pancreatic islets and acts as an important 

regulator in glucose homeostasis, via stimulating the uptake of glucose into 

metabolic tissues such as skeletal muscle and liver. IR may first lead to an increase 

in insulin secretion to compensate for reduced insulin signaling and to maintain 

normal glucose tolerance (51). The increased workload and stress result in a decline 

in β-cell function, promoting the progression to impaired glucose tolerance and 

impaired fasting glucose, which in turn contribute to the development of type 2 

diabetes (52). In a case-control study of postmenopausal women in the U.S., the 

diabetic risk was 3.40 (95%CI: 2.95–3.92) for an increment of 1.93 unit in 

homeostasis model assessment of IR (HOMA-IR), a surrogate measure for 

quantifying IR (53). Furthermore, IR is associated with a higher risk of CVD events 

in individuals with or without diabetes (54,55). 

Epidemiological studies have observed an association between pro-inflammatory 

biomarkers and IR independent of obesity, suggesting the potential role of 

subclinical inflammation in the pathogenesis of IR (56,57). Pro-inflammatory 

cytokines produced by adipocytes and immune cells activate Jun N-terminal kinase 

(JNK) and inhibitor of κB kinase β (IKKβ), which promote IR through pathways such 

as phosphorylation in insulin receptor substrate proteins and transcriptional 

activation of nuclear factor-κB (NF-κB) (58,59). An experimental study in humans 

found that the modulation of inflammatory and insulin signaling pathways preceded 

endotoxemia-induced IR (60). In accordance with aforementioned findings, anti-

inflammatory medication has been demonstrated to improve glucose homeostasis 

(61). 

Cumulative studies have examined long-term air pollution effects on IR and glucose 

homeostasis, aiming to elucidate a potential pathway linking air pollution to type 2 

diabetes (62-70). Nevertheless, evidence from previous studies is mixed. In a 

German study, Wolf et al. (65) observed substantial increases in HOMA-IR and 

fasting insulin associated with elevated PM and NO2, whereas only a slight increase 

in fasting glucose. Positive associations between air pollution and HOMA-IR were 
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also reported in adolescents of two German birth cohorts and in Mexican Americans 

who were at a greater risk of type 2 diabetes (64,66). However, in a large cross-

sectional study of 15,477 participants from 33 communities in northeastern China, 

exposure to various air pollutants (PM, NO2, sulfur dioxide, and O3) were 

consistently associated with increased fasting glucose, while associations with 

HOMA-IR and fasting insulin were merely found for NO2 (70). Given the conflicting 

evidence, further investigations on air pollution and IR are still needed, especially in 

a longitudinal setting, which additionally allows the assessment of air pollution 

effects on the progression of IR over time. 

1.3   Specific Aims 

The three main objectives of this thesis were to investigate: 

(1) Associations between long-term exposure to air pollution and abnormal 

ankle-brachial index. 

(2) Short-term effects of air pollution on the cardiac electrical conduction among 

patients undergoing cardiac catheterization.  

(3) Long-term effects of air pollution on the level and rate of change of insulin 

sensitivity over time. 

2   Contributing manuscripts 

This cumulative thesis comprises three manuscripts.  

The first manuscript, addressing specific aim (1), entitled “Long-term effects of air 

pollution on ankle-brachial index” (71) investigated the associations between long-

term exposure to air pollution and abnormal ABI. In this cross-sectional study, we 

analyzed data of 4,544 participants from two population-based surveys, and 

observed positive associations between annual air pollution concentrations and the 

prevalence of both low and high ABI. I was responsible for conceptualization, data 

analyses, and writing the manuscript. 

The second manuscript, addressing specific aim (2), entitled “Short-term effects of
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 fine particulate matter and ozone on the cardiac conduction system in patients 

undergoing cardiac catheterization” (72) presented the  short-term associations of 

PM2.5 and O3 with cardiac electrical conduction. Using ECGs recorded repeatedly on 

5,332 patients who underwent cardiac catheterization, we found delays in 

atrioventricular conduction, ventricular depolarization and repolarization 

associated with short-term air pollution exposure. I was responsible for data 

analyses and writing the manuscript. 

The third manuscript, addressing specific aim (3), entitled “Longitudinal 

associations between ambient air pollution and insulin sensitivity: results from the 

KORA cohort study” (73) reported the long-term effects of air pollution on IS-related 

biomarkers. This longitudinal study collected data of 3,297 participants from a 

baseline survey and its two follow-up examinations. In this study, air pollutant 

concentrations were positively associated with the level and the rate of change of 

HOMA-IR, homeostasis model assessment of β-cell function (HOMA-B), and fasting 

insulin. I was responsible for conceptualization, data analyses, and writing the 

manuscript. 

3   Methods 

3.1   Study population 

3.1.1   Cooperative Health Research in the Region of Augsburg (KORA) 

The assessment of long-term cardiometabolic effects of air pollution was based on 

data collected in the Cooperative Health Research in the Region of Augsburg (KORA) 

study. Within the framework of the KORA study, four cross-sectional health surveys 

(S1 to S4) were conducted at five-year intervals, and each of them consisted of a 

random sample selected independently in the city of Augsburg, Germany and the 

two adjacent rural counties, Augsburg and Aichach-Friedberg (74). An overview of 

the KORA study is presented in Figure 2. One follow-up examination of S3 (F3) and 

two follow-up examinations of S4 (F4 and FF4) were performed between 2004 and 

2014. Each baseline and follow-up examination comprised a self-administered 
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questionnaire, a personal interview, physical examinations, and a collection of 

various biological samples, gathering information on demographics, socioeconomic 

status, lifestyle, medical history, and physiological parameters.  

The study of long-term exposure to air pollution and abnormal ABI was a cross-

sectional study using data of altogether 4,544 participants from F3 (2004–2005) 

and F4 (2006–2008). The longitudinal study on IS analyzed 3,297 participants of the 

S4 survey, including baseline and follow-up observations from S4, F4, and FF4. 

 

 

 

 

 

 

 

Figure 2. Overview of the KORA study. The overview consists of the baseline 

surveys and follow-up examinations, but does not include the General Health 

Follow-up by telephone interview. 

3.1.2   Catheterization Genetics (CATHGEN) study  

The assessment of short-term effects of air pollution was based on data collected in 

the Catheterization Genetics (CATHGEN) Study. The CATHGEN study comprises 

9,334 patients undergoing cardiac catheterization for the diagnosis or treatment of 

coronary heart disease at Duke University Hospital in North Carolina, United States (NC, 

U.S.) between 2000 and 2010. Information on individual demographics, anthropometry, 

life-style factors, and medical history was obtained from medical records and a 

questionnaire administered at the time of catheterization. 
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3.2   Outcome measurement 

3.2.1   Ankle-brachial index 

A Doppler probe was employed to measure systolic blood pressure in the posterior 

tibial artery of each ankle and the brachial artery of the right arm (75). ABI was 

calculated for both left and right sides as the ratio of systolic blood pressure at the 

ankle to that at the right arm. Based on the presence of abnormal ABI, we classified 

the participants into three categories: (1) having normal ABI if 0.9 < ABI ≤ 1.4 in 

both legs; (2) having low ABI if ABI ≤ 0.9 in at least one leg; (3) having high ABI if 

ABI > 1.4 in one leg and 0.9 < ABI ≤ 1.4 in the contralateral leg, or ABI > 1.4 in both 

legs.  

3.2.2   Electrocardiogram 

12-lead ECGs were performed at the time of catheterization and in follow-up visits, 

and were analyzed by the Philips TraceMaster ECG system (Andover, MA, USA) to 

determine the PR, QRS, QT intervals and heart rate (HR). The HR-correction of the 

QT interval in the main analyses used the Bazett formula. The exclusion criteria 

were: (1) participants residing outside NC, U.S. at catheterization; (2) participants 

with bundle branch block (QRS > 120 millisecond [ms]); (3) ECGs with the diagnosis 

of atrial fibrillation, atrial flutter, multifocal atrial tachycardia, or paced rhythms; (4) 

ECGs with non-physiological parameter values (PR < 100 ms or > 400 ms, QRS < 50 

ms, QTc < 350 ms or > 600 ms, HR < 20 beats per minute [bpm] or > 180 bpm). 

3.2.3   Biomarkers of insulin sensitivity 

Blood concentrations of fasting insulin and fasting glucose were measured at 

baseline and two follow-ups between 1999 and 2014 (76-78). HOMA-IR was 

calculated as HOMA-IR = (fasting insulin [µIU/mL]) × (fasting glucose [mmol/L]) / 

22.5. HOMA-B was calculated as 20 × fasting insulin (µIU/mL) / (fasting glucose 

[mmol/L] – 3.5). A higher HOMA­IR indicates reduced insulin sensitivity, and a 

lower HOMA­B indicates decreased fasting insulin secretion. We excluded the 

observations (n = 348) on glucose-lowering medication (Anatomical Therapeutic
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Chemical code = A10) to ensure the steady state of fasting insulin and glucose 

concentrations during blood sample collection (79). 

3.3   Exposure assessment 

3.3.1   Annual average concentrations of air pollution in Augsburg (KORA 

study) 

Following the protocols of the European Study of Cohorts for Air Pollution Effects 

(ESCAPE), we monitored PM and NO2 at 20 and 40 sites, respectively, in the region 

of Augsburg and Munich (80,81). The measurements were conducted in three two-

week campaigns between October 2008 and July 2009, covering the cold, warm, and 

intermediate seasons. We built land-use regression (LUR) models incorporating 

annual average concentrations of pollutants at monitoring sites and corresponding 

geographic information as potential predictors. The fitted models were then applied 

to the home addresses of participants in our study of ABI to estimate individual long-

term exposure levels.  

A similar process was carried out with measurements in Augsburg and its two 

adjacent counties between March 2014 and April 2015. The new LUR modeling 

extended the previous one by developing LUR models for particle number 

concentrations (PNC, an indicator for UFPs]) and O3, as well as by including further 

predictor variables to refine and update the models for PM and NO2 (82). The 

estimated annual average concentrations were assigned to participants of the study 

on subclinical inflammation and IS.  

3.3.2   Daily air pollution concentrations and temperature in North Carolina 

(CATHGEN study)   

For the study period (2000–2012), daily average concentrations of PM2.5 and daily 

8-hour maximum concentrations of O3 in NC were predicted using neural network-

based hybrid models (83,84). Daily average air temperature in NC was estimated by 

a three-stage modeling approach (85). The modeling of air pollutants and 

temperature were all at a spatial resolution of 1 km. CATHGEN participants’ 
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residential addresses were geocoded and matched with air pollution and 

temperature data based on the spatial location and date. 

3.4   Statistical methods 

3.4.1   Long-term associations of air pollution with abnormal ABI 

Cross-sectional associations between long-term exposure to air pollution and 

abnormal ABI were assessed by a multinomial logistic regression model, with 

adjustment for age, sex, time trend, an indicator for study, years of education, 

neighborhood socioeconomic status, smoking status, and smoking pack-years. We 

also conducted quantile regression to explore the air pollution effects on different 

percentiles of the ABI distribution using the lower ABI value of the two sides as the 

outcome variable.  

3.4.2   Short-term associations of air pollution with cardiac electrical 

conduction 

We examined the effects of PM2.5 and O3 on cardiac electrical conduction at single-

day lags from lag0 (same day of ECGs) to lag4 (four days prior to ECGs), and at 

cumulative lag04 (5-day moving average) by generalized additive mixed model with 

random participant intercepts. In the model, we incorporated a penalized spline of 

time with four degrees of freedom per year and an indicator for season to control 

for the long-term and seasonal trend, as well as an indicator for day of the week. We 

further adjusted for air temperature using natural splines and individual 

characteristics at each measurement time point, including age, sex, race, area-level 

educational attainment, body mass index (BMI), smoking status, and the living area. 

For pollutant-outcome pairs showing delayed associations at lag4, we investigated 

the lagged effects up to 14 days using distributed-lag models. 

3.4.3   Long-term associations of air pollution with insulin sensitivity 

The longitudinal associations of air pollution with IS were examined in two stages. 

First, we applied mixed-effects models with random intercepts for participants to 

assess air pollution effects on the repeated measurements of biomarkers. Second, 

for each participant with a biomarker measured at two or three visits, we built a 
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linear regression model of biomarker levels regressed against the years since 

baseline. We took the slope coefficient of the regression model as the annual rate of 

change in this biomarker. We investigated associations between air pollutants and 

the annual rate of change in IS-related biomarkers by quantile regression models. 

In all studies, we explored the effect modification on associations between air 

pollution and biomarkers by demographics, socioeconomic status, and lifestyles.  

4   Results 

4.1   Long-term effects on abnormal ABI 

This analysis on ABI addresses the first specific aim of this thesis: To investigate 

associations between long-term exposure to air pollution and abnormal ABI.  

Long-term exposure to PM with an aerodynamic diameter less than 10 µm (PM10), 

PM2.5, and NO2 were associated with a higher prevalence of both low and high ABI. 

For an increment of an interquartile range (IQR, 7.6 µg/m3) in PM10, the odds ratios 

(ORs) of having low ABI and high ABI were 1.82 (95% confidence interval [CI]: 1.11, 

2.97) and 1.63 (1.07, 2.50), respectively. Positive associations with the prevalence 

of high ABI were also observed for PM with an aerodynamic diameter between 2.5 

µm and 10 µm (PMcoarse) and PM2.5 absorbance (PM2.5abs, as a proxy of elemental 

carbon levels related to traffic exhaust). In addition to the air pollutants, traffic 

exposure was assessed by traffic intensity on the nearest major road and traffic load 

within 100 m of the residence. Both traffic indicators were positively but non-

significantly associated with having abnormal ABI. The associations of PM and NO2 

with the prevalence of low ABI were stronger among hypertensive or physically 

inactive participants. 

In quantile regression, elevated air pollution concentrations were associated with a 

decrease in ABI values lower than 0.98 (i.e. the 5th and 10th percentiles), indicating 

an increased risk for low ABI. Among participants with ABI values higher than 1.28 

(i.e. the 90th and 95th percentiles), elevated air pollution concentrations were
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associated with an increase in ABI, which represents an increased risk for high ABI. 

The PM2.5-associated increase in ABI was already present at a comparatively low 

ABI value of 1.14.   

4.2   Short-term effects on cardiac electrical conduction 

This analysis on cardiac electrical conduction addresses the second specific aim of 

this thesis: To investigate short-term effects of air pollution on the cardiac electrical 

conduction among patients undergoing cardiac catheterization. 

We observed a lengthening of the PR interval 3–4 days after exposure to elevated 

PM2.5 and O3, as well as a lengthening of the QRS interval four days after exposure to 

elevated O3. An increment of 19.4 ppb (IQR) in O3 was associated with an increase 

in PR by 0.29% (0.05%, 0.53%) and in QRS by 0.21% (0.04%, 0.37%) at lag4. Both 

immediate (lag0) and delayed (lag3–lag4) effects of PM2.5 were found for the 

lengthening of QTc. For O3, the positive association with QTc was significant at lag0 

and lag1. HR was positively associated with PM2.5 and O3, with the strongest 

associations at lag1. In distributed-lag models, the effects of PM2.5 and O3 on PR and 

the effect of O3 on QRS peaked at lag4–lag5 and persisted until lag7. However, the 

effect of PM2.5 on QTc peaked at lag0 and then decreased, and no effect was observed 

beyond four days. Stronger associations between air pollution and QRS and QTc 

intervals were shown in patients with low educational attainment or obesity, or 

living in rural areas. 

4.3   Long-term effects on insulin sensitivity 

This analysis using repeatedly measured biomarkers of IS addresses the third 

specific aim of this thesis: To investigate long-term effects of air pollution on the 

level and the rate of change of IS over time. 

We observed increases in HOMA-IR, HOMA-B, and fasting insulin linearly associated 

with elevated PM, PM2.5abs, NO2, and to a lesser extent, O3. For instance, an increment 

of 1.4 µg/m3 (IQR) in PM2.5 was associated with an increase in HOMA-IR by 3.1% 

(0.9%, 5.3%), an increase in HOMA-B by 2.7% (0.6%, 4.7%), and an increase in 
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fasting insulin by 3.0% (1.0%, 5.0%). We did not find evidence of a long-term 

association between air pollution and fasting glucose. In addition, higher 

susceptibility to air pollution effects was observed in participants who were over 60 

years, male, not employed, or led a sedentary lifestyle.  

Consistent with the results of repeated measurements, air pollution exposure was 

positively associated with the annual rate of change in HOMA-IR, HOMA-B, and 

fasting insulin. For example, PM2.5abs was associated with the annual rate of change 

in HOMA-IR at the 10th to 70th percentiles of the distribution of rate values (i.e. 

annual rate of change in HOMA-IR ≤ 0.10 unit/year), and associated with the annual 

rate of change in HOMA-B at the 20th to 90th percentiles (i.e. annual rate of change 

in HOMA-B ≥ -5.34 unit/year). For an increment of 0.3×105 (IQR) in PM2.5abs, the 

median annual rate of change in HOMA-IR and HOMA-B increased by 0.010 (0.001, 

0.019) unit/year and 0.574 (0.185, 0.963) unit/year, respectively. The air pollution 

effects on the rate of change in biomarkers were stronger among older adults, males, 

and participants with prediabetes or diabetes. 

5   Discussion  

5.1   Air pollution and peripheral atherosclerosis and arterial 

stiffness 

In our study of air pollution and ABI, higher risks of peripheral atherosclerosis and 

arterial stiffness were associated with long-term exposure to PM and traffic-related 

air pollutants. These results were consistent with previous studies that reported 

positive associations of air pollution with the severity of atherosclerosis and 

stiffness in central arteries (27,86,87). The non-monotonic relationship between air 

pollution and ABI was evident in the quantile regression. The associations at two 

ends of the distribution of ABI indicated that participants who were prone to 

developing either atherosclerosis (low ABI) or stiffness (high ABI) were more 

susceptible to the adverse effects of air pollution.  
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So far, long-term air pollution effects on the full spectrum of ABI have not been fully 

investigated. Rivera et al. (32) performed a cross-sectional analysis using data from 

2,780 participants of the Spanish REGICOR cohort, and observed that elevated 

residential 10-year average NO2, traffic intensity, and traffic load were associated 

with a higher prevalence of ABI > 1.3, but not with ABI < 0.9. In addition to the 

variance in exposure and participant health status (e.g. lower exposure levels and 

higher prevalence of low ABI in KORA), the differences in effect estimation between 

REGICOR and KORA might be partly due to the definition of the outcome, as the 

associations between traffic indicators and high ABI were more comparable when 

the same definition was used. 

5.2   Air pollution and cardiac electrical conduction 

Our study of the short-term air pollution effects demonstrated that exposure to 

PM2.5 and O3 were associated with delays in atrioventricular conduction, ventricular 

depolarization and repolarization among patients undergoing cardiac 

catheterization, even when the exposure levels were below the current U.S. National 

Ambient Air Quality Standards (NAAQS). In spite of the relatively small effect 

estimates, air pollution exposure may add to the effects of preexisting factors that 

affect cardiac conduction (e.g. left ventricular hypertrophy, ischemia, certain 

medications, etc.), and drive the interval duration across critical thresholds.  

Using data from 106 adults without severe cardiac problems, the Air Pollution and 

Cardiac Risk and its Time Course (APACR) study found a PM2.5-associated 

lengthening of the PR and QTc intervals at a lag of 1.5–2 hours and 3–3.5 hours, 

respectively (44,88). However, the magnitude of the effects was weaker than that in 

our study, and no significant changes were observed in the QRS interval. Since the 

PM2.5 levels were comparable in these two studies, we hypothesized that the health 

status of participants and the time course of exposure could affect the air pollution 

effects on cardiac conduction. 
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5.3   Air pollution and insulin sensitivity 

Our longitudinal analyses of IS and glucose homeostasis showed the long-term effect 

of air pollution on reduced IS, but not on fasting glucose. This finding is supported 

by the theory that impaired IS could first lead to the compensatory insulin 

hypersecretion to maintain glucose homeostasis (51). Several cross-sectional 

studies have examined the association of long-term air pollution exposure with IS 

and the results are mixed. Similar to our findings, significant effects of PM and NO2 

on HOMA-IR were observed among adults and adolescents in Germany (65,89). 

However, in the 33 Communities Chinese Health Study (33 CCHS), an increase in 

glucose was associated with PM, NO2, and O3, whereas effects on HOMA-IR and 

fasting insulin were only significant for NO2 (90). Given the much higher 

concentrations of air pollution in the 33 CCHS, differences in exposure intensity and 

chemical composition could be one explanation for the inconsistent results. 

Furthermore, the positive associations of air pollution with the annual rate of 

change in HOMA-IR, HOMA-B, and fasting insulin suggested a faster deterioration of 

IS in relation with elevated air pollutant concentrations among participants with 

deteriorated IS over time (annual rate of change above zero). In the subgroup with 

improved IS over time, which might be due to lifestyle interventions, our results 

indicated that exposure to elevated air pollution could slow down the process of 

improvement. Our finding was consistent with a cohort study among overweight 

and obese Latino children living in Los Angeles, U.S., showing a faster decline in IS 

associated with long-term exposure to PM2.5 and NO2 (91). 

5.4   Biological mechanisms 

Systemic inflammation is a plausible mechanism underlying the associations 

between long-term air pollution exposure and physiological responses in the 

cardiometabolic system. Particles with soluble constituents and gases that deposit 

in the lung and translocate into the circulation can lead to an inflammatory response. 

Experimental studies have shown that inflammatory cells are involved in the 

formation of atherosclerotic plaques, and inflammatory mediators may promote 
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atheroma progression and reduce plaque stability (92,93). Inflammatory cytokines 

can also contribute to the development of IR by activating intracellular pathways 

such as IKKβ/NF-κB and JNK (58,59).  

With respect to the short-term effects on cardiac electrical conduction, we observed 

immediate associations on the concurrent day and delayed associations persisting 

until up to seven days after exposure, suggesting that both autonomic dysfunction 

and systemic inflammation could be potential mechanisms of air pollution effects on 

the cardiac conduction system. The process might involve the alterations in the 

autonomic tone that directly impact the innervation of cardiomyocytes, as well as 

the effects of inflammation on cardiomyocytes ion currents via cytokine- and 

sympathetic-induced modulation (94,95). 

5.5   Susceptible subpopulations 

Results of this thesis generally suggested stronger air pollution effects on the 

cardiometabolic system among participants who were older than 60 years, male, 

physically inactive, not employed, had comorbidities, had lower education, or were 

living in rural areas. With regard to cost-benefit considerations, potential 

interventions (e.g. air quality alerts) could be targeted to these susceptible 

subpopulations. In addition, the underlying health status also seems to play a role in 

the susceptibility. For instance, participants with ABI below 0.98 or above 1.28 were 

more susceptible to air pollution effects on the development and progression of 

atherosclerosis or arterial stiffness, respectively, and accounted for altogether 20% 

of the study population in KORA F3 and F4. It is noteworthy that greater risks were 

not only observed in individuals with more pronounced pathological changes, but 

also in still relatively healthy subpopulations, i.e. in the early stage of developing IR. 

This finding provides guidance on more targeted interventions to mitigate adverse 

health effects of air pollution. As shown in this thesis, prevention strategies for air 

pollution-associated atherosclerosis or arterial stiffness could be focused on 

individuals with either low or high ABI, whereas the prevention of air pollution 
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effects on type 2 diabetes should already start in participants in the early stage of IR, 

i.e. in a still relatively healthy period of life. 

6   Conclusions 

In conclusion, by assessing the associations of air pollution with ABI, ECG 

parameters, and IS-related biomarkers, this thesis demonstrates that long-term 

exposure to air pollution was associated with a higher prevalence of peripheral  

atherosclerosis and arterial stiffness, as well as decreased IS and more pronounced 

deterioration of IS over time. Furthermore, in a potentially susceptible study 

population, short-term air pollution exposure was associated with delays in 

atrioventricular conduction, ventricular depolarization and repolarization. This 

thesis extends the literature on biological mechanisms linking air pollution to the 

development of cardiometabolic disease, and provides guidance for the targeted 

interventions to mitigate the adverse health effects of air pollution. We acknowledge 

that the observational data in this thesis limited our ability to make causal 

inferences, and the estimated residential exposure without allowing for the mobility 

of participants might have resulted in non-differential exposure misclassification 

and biased the effects towards the null. Therefore, further studies are needed to 

confirm our findings and investigate the causal relationship between air pollution 

and pathophysiological responses of the cardiometabolic system. 
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A B S T R A C T

Background: Ankle-brachial index (ABI) has been linked to the risk of cardiovascular events. However, the as-
sociation between long-term exposure to air pollution and abnormal ABI has not been fully investigated.
Methods: This cross-sectional study involved 4544 participants from the KORA Study (2004–2008) in the region
of Augsburg, Germany. Participants' residential annual mean concentrations of particulate matter (PM) and
nitrogen dioxide (NO2) were predicted with land-use regression models, and the traffic information was col-
lected from geographic information systems. We applied multinomial logistic regression models to assess the
effects of air pollution on the prevalence of low and high ABI, and quantile regression models to explore the non-
monotonic relationship between air pollution and ABI. We also examined effect modification by individual
characteristics.
Results: Long-term exposure to PM with an aerodynamic diameter≤ 10 μm (PM10) and≤ 2.5 μm (PM2.5) was
significantly associated with a higher prevalence of low ABI, with the respective odds ratios (ORs) of 1.82
(95%CI: 1.11–2.97) and 1.59 (95%CI: 1.01–2.51) for a 5th to 95th percentile increment in pollutants. Positive
associations with the prevalence of high ABI were observed for PM (e.g., PM10: OR=1.63, 95%CI: 1.07–2.50)
and NO2 (OR=1.84, 95%CI: 1.15–2.94). Quantile regression analyses revealed similar non-monotonic results.
The effects of air pollution on having abnormal ABI were stronger in physically inactive, hypertensive, or non-
diabetic participants.
Conclusions: Long-term exposure to PM and NO2 was associated with a higher prevalence of both low and high
ABI, indicating the adverse effects of air pollution on atherosclerosis and arterial stiffness in the lower ex-
tremities.

1. Introduction

The ankle-brachial index (ABI) is the ratio of systolic blood pressure
at the ankle to that at the brachial artery. A low ABI indicates the
presence of atherosclerosis and is used clinically in the diagnosis of
peripheral artery disease (PAD) (Heald et al., 2006). A high ABI implies
the incompressibility of vessels due to arterial stiffness in the lower
extremities (Aboyans et al., 2012). Epidemiological studies have found
that both low and high ABI are associated with increased risk of car-
diovascular disease and mortality (Resnick et al., 2004; O'Hare et al.,
2006; Lamina et al., 2006; Ankle Brachial Index Collaboration, 2008).
In addition, individuals with low ABI show greater deterioration of
physical function (McDermott et al., 2004).

As a major underlying pathology of cardiovascular disease, the

prevalence and progression of atherosclerosis have been linked to air
pollution, mainly by using carotid intima-media thickness (CIMT),
coronary arterial or aortic calcification as indicators (Adar et al., 2013;
Kaufman et al., 2016; Kälsch et al., 2014). The atherosclerotic effects of
air pollution on different vascular beds are heterogeneous (Diez Roux
et al., 2008; Wang et al., 2016). So far, only a few studies investigated
the chronic effects of air pollution on low ABI, and yielded inconsistent
results. A study from Germany found that living within 50m of a main
road was associated with a higher prevalence of low ABI (Hoffmann
et al., 2009). However, the North-American Multi-Ethnic Study of
Atherosclerosis (MESA) reported lower prevalence of low ABI among
participants exposed to elevated particulate matter (PM) (Diez Roux
et al., 2008).

Despite the association between arterial stiffness and atherosclerosis
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(van Popele et al., 2001), the air pollution effects on low and high ABI
could be distinct. A study from Spain observed significantly positive
associations of residential nitrogen dioxide (NO2), traffic load, and
traffic intensity with the prevalence of high ABI, while no associations
with low ABI (Rivera et al., 2013). Arterial stiffness was found to be
associated with acute exposure to air pollution in observational and
experimental studies (Mehta et al., 2014; Schneider et al., 2008;
Lundback et al., 2009); yet evidence of the long-term effects of air
pollution is limited, especially on the stiffness in lower extremity ar-
teries (O'Neill et al., 2011; Lenters et al., 2010).

Given the different pathologies of atherosclerosis and arterial stiff-
ness, we hypothesized a non-monotonic relationship between air pol-
lution and ABI, in which long-term exposure to air pollution would
increase the prevalence of both low and high ABI. In the framework of
the KORA Cohort (Cooperative Health Research in the Region of
Augsburg), we conducted this cross-sectional study to test our hy-
pothesis for air pollution measures including PM with an aerodynamic
diameter≤ 10 μm (PM10), 2.5–10 μm (PMcoarse),≤ 2.5 μm (PM2.5),
PM2.5 absorbance (PM2.5abs) as a proxy of elemental carbon levels re-
lated to traffic exhaust, NO2, traffic intensity on the nearest major road,
and traffic load within 100m of the residence.

2. Methods

2.1. Study population

The data for this cross-sectional study were taken from KORA F3
(2004–2005) and F4 (2006–2008), which are population-based surveys
among registered German residents in Augsburg and its two adjacent
counties (Southern Germany) (Holle et al., 2005). The KORA Study was
approved by the ethics committee and all participants gave written
informed consent.

2.2. Outcome measurement

Systolic blood pressure was measured in supine position after
resting for at least 15min. The measurements were taken twice in the
posterior tibial artery of each ankle and the brachial artery of the right
arm using a Doppler probe for pulse detection. We inflated the cuff to
about 30mmHg above the usual systolic blood pressure of the partici-
pant and then deflated it by 2–3mmHg per second. The blood pressure
at which the Doppler probe redetected the pulse was recorded as the
systolic blood pressure of the limb. The order of measurements was
right arm, right leg and left leg, and repeated measurements were in the
same order. If the two values of one limb differed by> 10mmHg, a
third measurement was taken. We calculated the ABI of each side se-
parately as the ratio of average systolic blood pressure at the ankle to
that at the right arm. We defined participants having normal ABI as
participants with 0.9 < ABI≤ 1.4 in both legs. Participants with
ABI≤ 0.9 in one or both legs were defined as having low ABI; parti-
cipants with ABI > 1.4 in one leg and normal ABI in the contralateral
leg, or with ABI > 1.4 in both legs were defined as having high ABI
(Aboyans et al., 2012; Rooke et al., 2011; Allison et al., 2008). For
participants with ABI values only in one leg, the available ABI value
was classified into low (ABI≤ 0.9), normal (0.9 < ABI≤ 1.4) and
high (ABI > 1.4).

2.3. Exposure assessment

We estimated the annual average concentration of air pollutants
within the European Study of Cohorts for Air Pollutant Effects
(ESCAPE) based on standardized protocols (Eeftens et al., 2012; Beelen
et al., 2013). In brief, PM and nitrogen oxides were monitored at 20 and
40 sites, respectively, in the region of Augsburg and Munich. Three two-
week measurements were taken in different seasons between October
2008 and July 2009, and the monitored values were used to calculate

annual mean concentration for each site. Meanwhile, geographic vari-
ables from the geographic information system (GIS) were collected to
build land-use regression (LUR) models to estimate the individual
outdoor pollutant concentrations, including PM10, PMcoarse, PM2.5,
PM2.5abs and NO2 at each participant's home address. The model ex-
plained variance (R2) for the investigated pollutants ranged from 78%
(PM2.5) to 91% (PM2.5abs), and the leave-one-out cross validation R2

ranged from 62% (PM2.5) to 82% (PM2.5abs). Residential background
NO2 levels were predicted using a similar method except that the LUR
model was developed with only background monitoring data and GIS
predictors. Traffic intensity on the nearest major road (> 5000 ve-
hicles/day) and traffic load within 100m of the residence (sum of
traffic intensity multiplied by length of major roads in a 100m buffer),
were also analyzed in this study.

To control the effect of long-term road traffic noise, annual average
Day-Night Sound Level (dB(A) Leq) was estimated for each participant's
residential address using the model developed by ACCON GmbH
(Pitchika et al., 2017).

2.4. Potential confounding and mediating factors

Trained medical staff administered a standardized face-to-face in-
terview to collect information on sociodemographic characteristics
(age, sex, marital status, years of education, current occupation, and
income), lifestyle variables (smoking status, smoking pack years, al-
cohol consumption, and physical activity), self-reported medical history
(hypertension, diabetes, myocardial infarction, angina pectoris, and
stroke), and medication intake (antihypertensive drugs, antidiabetic
drugs, anticoagulants, antiplatelet drugs, and statins). In addition,
physical examinations and laboratory tests were conducted to obtain
anthropometric data (height, weight, waist and hip circumference),
systolic and diastolic blood pressure, blood lipid levels, and glomerular
filtration rate (Meisinger et al., 2002). We also assessed neighborhood
socioeconomic status (SES) by the percentage of households with low
income (< 1250 €) in (5 km)2 grid cells based on participants' home
addresses.

We defined smoking pack years as the number of packs of cigarettes
(20 cigarettes per pack) smoked per day multiplied by the number of
years the participant had smoked, which is an indicator of the lifelong
cumulative exposure to tobacco smoke. Body mass index (BMI) was
calculated as weight divided by height squared. Waist-hip ratio was
calculated as waist circumference divided by hip circumference. We
categorized physical activity based on the time spent on physical ex-
ercise and converted it into low level (no or almost no physical ex-
ercise), medium level (about one hour per week), and high level (more
than two hours per week). Hypertension was defined by blood pres-
sure≥ 140/90mmHg or taking antihypertensive medication in people
reporting a previous diagnosis of hypertension. Participants who re-
ported doctor-diagnosed diabetes or taking antidiabetic medication
were defined as having diabetes.

2.5. Statistical analysis

We applied multinomial logistic regression to investigate the asso-
ciation between air pollution and abnormal ABI. The minimum model
was adjusted for age, sex, time trend, and a dummy variable for study.
The time trend was modeled as a penalized spline of day of year with
three degrees of freedom. Other covariates were chosen by minimizing
Bayesian Information Criterion. The main model additionally adjusted
for years of education, neighborhood SES, smoking pack years, and
smoking status. The extended model further adjusted for diabetes and
hypertension. When analyzing the effects of traffic indicators, back-
ground NO2 level was additionally controlled for. Results are presented
as odds ratio (OR) of low ABI and high ABI with reference to normal
ABI for increments from 5th to 95th percentiles in exposure with a 95%
confidence interval (95%CI).
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We also conducted quantile regression to explore the non-mono-
tonic relationship between air pollution and ABI. The effects of air
pollution were examined on different percentiles of the ABI distribution
(using the lower ABI value of two sides) from the 5th to 95th quantiles
with a 5% increment. The confounders being adjusted for in the
quantile regression models were identical to those in the main multi-
nomial logistic regression model.

To examine modification effects of individual characteristics, we
incorporated an interaction term between the exposure and the po-
tential modifier into the main model. Potential effect modifiers in-
cluded age (≥60 years vs.< 60 years), sex (male vs. female), physical
activity (low vs. medium or high), overweight (BMI≥ 25 kg/m2 vs.<
25 kg/m2), hypertension (yes vs. no), and diabetes (yes vs. no).

2.6. Sensitivity analysis

We applied two-pollutant models for PM and NO2 by adding a
second exposure variable (air pollution or noise) with a Spearman's
correlation coefficient < 0.7. We also explored the interaction effects
between PM and NO2 by adding an interaction term of PM and di-
chotomized NO2 or vice versa, using the median concentration as the
cut-off value. To reduce exposure misclassification due to change of
residence, a subgroup of participants who had lived at the same address
for at least five years before the F3 or F4 survey were analyzed. Given
the different age structures in F3 and F4, we excluded participants in F3
who were below the minimum age of F4 (51 years) to guarantee a non-
differential age structure. Moreover, we tested if the associations were
sensitive to further adjustment for significant effect modifiers, which
were not included in models as confounders or mediators.

In addition, we assessed the impact of changing the definition of
having high ABI on the associations between air pollution and the
prevalence of abnormal ABI, considering the mixed definitions in pre-
vious studies (Ankle Brachial Index Collaboration, 2008; Rivera et al.,
2013; Allison et al., 2008; Hendriks et al., 2016). Thus, we applied an
upper cut-off point of either 1.3 or 1.4, in combination with an al-
teration in the ABI values using the lower ABI of two sides. We also used
the higher ABI of two sides in the quantile regression.

All analyses were conducted with R version 3.4.1 using the ‘mgcv’
and ‘quantreg’ packages. The significance level alpha was set at 0.05.

3. Results

3.1. Participant characteristics and exposure concentrations

Among altogether 4775 participants with ABI measurement, we
excluded 75 individuals because the residential information was not
available. Further 156 individuals were excluded due to incomplete
data on main covariates, leaving 4544 participants for analyses. The
main participant characteristics are summarized in Table 1. The pre-
valence of low and high ABI were 4.6% and 6.0%, respectively. There
were two participants with low ABI in one leg and high ABI in the
contralateral leg, who were classified as having low ABI based on our
criteria. Differences between ABI subgroups were significant for all
presented individual characteristics (p < 0.001). Participants with low
ABI were likely to be of lower socioeconomic status, have a higher
proportion of current or former smokers and more smoking pack years,
do less physical exercise, and have higher prevalence of hypertension
and diabetes. There were more male and overweight individuals in the
high ABI group, and participants with abnormal ABI were older than
the ones with normal ABI. Participants exposed to a higher level of air
pollution tended to be older, of lower neighborhood SES, have higher
prevalence of smokers and more smoking pack years, and have higher
prevalence of hypertension (Supplemental Table S1).

Annual mean levels of air pollution and noise are presented in
Table 2. Regulated air pollutants were well below the European Union
limits of 40 μg/m3 for PM10 and NO2, and 25 μg/m3 for PM2.5, but PM10

and PM2.5 exceeded the World Health Organization guidelines of 20 μg/
m3 and 10 μg/m3, respectively. The correlation between exposure
variables was weak or moderate (rs≤ 0.7), except for PMcoarse being
highly correlated with PM10, PM2.5abs, and NO2. The Spearman corre-
lation coefficients between air pollution and age, years of education,
neighborhood SES, and smoking pack years were all low, except for
NO2 and background NO2 with neighborhood SES (Supplemental Table
S2).

3.2. Air pollution and ABI

In our minimum models, PM and NO2 were positively associated
with having low ABI; the associations with having high ABI were po-
sitive, but only significant for PMcoarse (Table 3). After adjusting for
further confounders in the main model, we observed significant positive
associations with the prevalence of low ABI for PM10 and PM2.5, and a
borderline significant association for NO2. The prevalence of high ABI
was significantly associated with PM10, PMcoarse, PM2.5abs, and NO2, and
borderline significantly associated with PM2.5. The positive associations
with having low and high ABI were weak and non-significant for traffic
indicators. Further adjustment for diabetes and hypertension (extended
model) did not substantially affect the estimates of air pollution.

We further explored the covariates that drove the changes in air
pollution effects between the minimum and main models
(Supplemental Fig. S1). The effects of PM10, PMcoarse, PM2.5abs, and NO2

changed significantly after controlling for neighborhood SES, showing a
decrease on having low ABI, and an increase on having high ABI. The
further adjustment for smoking status and smoking pack years slightly
reduced the effects on having low ABI.

3.3. Quantile regression

The directions of associations with air pollution were generally
opposite for the low and the high ends of the ABI distribution (Fig. 1;
Supplemental Fig. S2). In specific, elevated air pollution was associated
with a decrease in ABI lower than 0.98 (i.e., the 5th and 10th percen-
tiles), which indicated an increased risk for having low ABI, and the
association was statistically significant for PM2.5abs. Among participants
with ABI larger than 1.28 (i.e., the 90th and 95th percentiles), elevated
air pollution was associated with an increase in ABI, representing an
increased risk for having high ABI. Furthermore, the positive associa-
tion between PM2.5 and ABI already occurred in individuals with
comparatively low ABI of around 1.14 (i.e., the 50th percentile).

3.4. Effect modification by individual characteristics

The effects of PM and NO2 on the prevalence of low ABI were
stronger among participants doing little or no physical activity, or
having hypertension. Non-diabetic participants were more susceptible
to the effects of PM and NO2 on the prevalence of high ABI (Fig. 2). No
significant or consistent patterns were observed for other potential ef-
fect modifiers (Supplemental Fig. S3).

3.5. Sensitivity analyses

The two-pollutant models showed in general robust results (Fig. 3).
For the prevalence of low ABI, we observed a slightly attenuated effect
of PM10 when adjusted for PM2.5 and vice versa, and attenuated effects
of PM2.5abs and NO2 when adjusted for PM10 and PM2.5. For the pre-
valence of high ABI, the effect of PM10 was decreased by the inclusion
of PM2.5abs and NO2, and the effect of PM2.5 were decreased when ad-
justed for the other PM metrics and NO2. Besides, we did not find sig-
nificant interaction between PM and NO2 (Supplemental Table S3).

The associations between air pollution and the prevalence of high
ABI were sensitive to the definition of high ABI (Supplemental Table
S4). Changing the upper cut-off value to 1.3 decreased the effects of PM
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and NO2, leaving only a borderline significant association for PMcoarse.
When defining high ABI with the lower ABI of two sides and a cut-off
value of 1.4, we observed attenuated effect estimates, except for the
increased point estimates of PM2.5abs and traffic indicators; similar
patterns were shown when we further changed the cut-off value to 1.3.
The associations between air pollution and the prevalence of low ABI
remained stable when changing the definition of high ABI.

Participants living for at least five years at the same residential
address showed slightly stronger associations for PM10 and having low
ABI, as well as for PMcoarse, PM2.5abs, and having high ABI
(Supplemental Table S5). Similar results were observed for participants
over 50 years old. Excluding participants with low ABI in one leg and
high ABI in the contralateral leg or further adjustment for physical
activity did not affect the results substantially. We could still see the
non-monotonic relationship between air pollution and ABI when using
the higher ABI of two sides in the quantile regression model
(Supplemental Fig. S4).

4. Discussion

In this cross-sectional study, the prevalence of low and high ABI
were positively associated with residential long-term exposure to PM
and NO2, but were not significantly associated with traffic intensity or
traffic load. The results were robust to further control for comorbidity.
The findings in quantile regression models also supported the non-

monotonic relationship between air pollution and ABI. We observed
stronger effects of PM and NO2 on the prevalence of low ABI in parti-
cipants doing little or no physical activities or having hypertension, and
stronger effects on high ABI in non-diabetic participants.

Our result of the association between PM and having low ABI re-
flected the effects of air pollution on peripheral atherosclerosis.
Previous studies also observed an increased prevalence of low ABI as-
sociated with living in proximity to main roads, but not with annual
average PM2.5, NO2, traffic intensity, or traffic load (Wang et al., 2016;
Hoffmann et al., 2009; Rivera et al., 2013). Our findings are supported
by the positive associations between air pollution and the prevalence
and progression of atherosclerosis in other vascular beds. For instance,
cross-sectional analyses in the German HNR Study reported significant
effects of PM2.5 on thoracic aortic calcification and CIMT (Kälsch et al.,
2014; Bauer et al., 2010). In the MESA Study, an increased level of
PM2.5 was associated with accelerated progression in CIMT (Adar et al.,
2013).

Several mechanisms contributing to the effect of air pollution on
atherosclerosis have been proposed and mainly involve systemic in-
flammation and oxidative stress. In animal experiments, Sun et al.
(2005) demonstrated that exposure to concentrated ambient PM2.5 ex-
acerbated plaque progression and affected vascular constriction func-
tion in high-fat chow ApoE−/−mice, with elevated vascular in-
flammation and protein nitration. Human studies have also shown that
air pollution is associated with increased serum biomarkers of

Table 1
Descriptive statistics of participant characteristics.

Mean ± SD/N (%)

All (n=4544) Low ABI (n=209) Normal ABI (n=4064) High ABI (n=271)

ABI 1.13 ± 0.15 0.76 ± 0.11 1.14 ± 0.09 1.41 ± 0.23
Age (years) 60.1 ± 11.8 67.9 ± 9.7 59.3 ± 11.8 66.3 ± 9.3
Sex (male) 2204 (48.5) 119 (56.9) 1874 (46.1) 211 (77.9)
BMI (kg/m2)a 28.0 ± 4.6 29.1 ± 5.1 27.8 ± 4.6 29.3 ± 4.4
Years of education 11.4 ± 2.6 10.4 ± 2.1 11.4 ± 2.6 11.4 ± 2.6
Percentage of households with low income in (5 km)2 grid cell (%) 27.9 ± 18.4 33.4 ± 17.5 27.7 ± 18.4 26.4 ± 18.2
Smoking pack years 11.5 ± 19.6 29.0 ± 29.5 10.8 ± 18.6 9.1 ± 19.2
Smoking status
Current smoker 748 (16.5) 61 (29.2) 680 (16.7) 7 (2.6)
Former smoker 1725 (38.0) 99 (47.4) 1502 (37.0) 124 (45.8)
Never smoker 2071 (45.6) 49 (23.4) 1882 (46.3) 140 (51.7)

Physical activity
Low 1532 (33.7) 117 (56.0) 1324 (32.6) 91 (33.6)
Medium 1977 (43.5) 63 (30.1) 1809 (44.5) 105 (38.7)
High 1035 (22.8) 29 (13.9) 931 (22.9) 75 (27.7)

Hypertension (yes) 2318 (51.0) 163 (78.0) 1997 (49.1) 158 (58.3)
Diabetes (yes) 397 (8.7) 60 (28.7) 293 (7.2) 44 (16.2)
Overweight (yes) 3312 (72.9) 161 (77.0) 2916 (71.8) 235 (86.7)

a Data on BMI were available for 4527 participants; N Low ABI= 206; N High ABI= 269.

Table 2
Descriptive statistics and Spearman correlation coefficients of exposure for the study population.

Mean (SD) 5%–95% Correlation coefficients

PM10 PMcoarse PM2.5 PM2.5abs NO2 Traffic
intensity

Traffic load Background NO2

PM10 (μg/m3) 20.3 (2.3) 16.5–24.1 –
PMcoarse (μg/m3) 6.2 (1.0) 4.9–8.2 0.75 –
PM2.5 (μg/m3) 13.5 (0.8) 12.4–15.2 0.43 0.30 –
PM2.5abs (10−5/m) 1.7 (0.2) 1.5–2.0 0.66 0.83 0.47 –
NO2 (μg/m3) 18.6 (3.7) 13.7–25.4 0.67 0.78 0.44 0.66 –
Traffic intensity on nearest road (vehicles/day) 1539

(3273)
500–7841 0.09 0.14 0.16 0.16 0.21 –

Traffic load of main roads in 100m buffer
(106 vehicles*m/day)

0.5 (1.2) 0–3.1 0.21 0.28 0.33 0.37 0.42 0.35 –

Background NO2 (μg/m3) 18.4 (3.4) 14.0–24.6 0.30 0.28 0.21 0.21 0.60 0.12 0.29 –
Noise (dB(A)) 54.6 (6.5) 44.7–67.1 0.28 0.36 0.38 0.45 0.41 0.40 0.49 0.29
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inflammation and oxidative stress, such as cytokines, C-reactive pro-
tein, and reactive oxygen species (Hajat et al., 2015; Risom et al., 2005;
Rückerl et al., 2014). These mediators can promote the formation of
foam cells and fibrous plaque in arteries by inducing endothelial dys-
function and leucocyte transmigration (Freitas Lima et al., 2015).

Our results showing significant effects of air pollution on the pre-
valence of high ABI indicated an association between air pollution and
arterial stiffness in the lower extremities. Arterial stiffness is due to
calcification in the medial layer of the arterial wall and is often seen in
patients with diabetes or end-stage renal disease (Al-Aly, 2007;

Schwaiger et al., 2006). It has been linked to acute exposure to PM2.5 in
the elderly and diabetic individuals (Mehta et al., 2014; Schneider
et al., 2008). In a double-blind experimental study, acute exposure to
diesel exhaust was also shown to have immediate effects on arterial
stiffness in healthy men (Lundback et al., 2009). However, the chronic
effect of air pollution on arterial stiffness is less prominent. In the
Atherosclerosis Risk in Young Adults Study, Lenters et al. (2010) re-
ported significant effects on arterial stiffness for long-term exposure to
NO2 and SO2, but not for PM2.5, black smoke, or traffic indicators.
Furthermore, the MESA Study found no association for particle

Table 3
ORs (95%CI) of having low and high ABI corresponding to an increase in exposure from the 5th to the 95th percentile.

Air pollution Minimum modela Main modelb Extended modelc

Low ABI PM10 2.27 (1.43, 3.61)⁎⁎ 1.82 (1.11, 2.97)⁎ 1.79 (1.09, 2.94)⁎

PMcoarse 1.89 (1.24, 2.90)⁎⁎ 1.39 (0.87, 2.22) 1.36 (0.85, 2.19)
PM2.5 1.80 (1.15, 2.81)⁎⁎ 1.59 (1.01, 2.51)⁎ 1.50 (0.94, 2.38)†

PM2.5abs 1.83 (1.20, 2.80)⁎⁎ 1.43 (0.91, 2.23) 1.41 (0.90, 2.22)
NO2 2.17 (1.44, 3.28)⁎⁎ 1.59 (0.94, 2.68)† 1.55 (0.91, 2.64)
Traffic intensity 1.15 (0.89, 1.50) 1.16 (0.88, 1.52) 1.15 (0.87, 1.51)
Traffic load 1.15 (0.82, 1.62) 1.14 (0.79, 1.62) 1.10 (0.77, 1.57)

High ABI PM10 1.44 (0.95, 2.17)† 1.63 (1.07, 2.50)⁎ 1.65 (1.08, 2.53)⁎

PMcoarse 1.54 (1.04, 2.29)⁎ 1.92 (1.26, 2.92)⁎⁎ 1.94 (1.27, 2.95)⁎⁎

PM2.5 1.39 (0.91, 2.10) 1.44 (0.94, 2.20)† 1.44 (0.94, 2.20)†

PM2.5abs 1.45 (0.98, 2.14)† 1.73 (1.14, 2.61)⁎⁎ 1.75 (1.16, 2.65)⁎⁎

NO2 1.21 (0.81, 1.79) 1.84 (1.15, 2.94)⁎ 1.87 (1.16, 3.01)⁎⁎

Traffic intensity 1.19 (0.92, 1.54) 1.20 (0.93, 1.55) 1.21 (0.94, 1.56)
Traffic load 1.07 (0.76, 1.50) 1.12 (0.79, 1.58) 1.12 (0.80, 1.58)

An increase from the 5th to the 95th percentile was 7.6 μg/m3 for PM10, 3.4 μg/m3 for PMcoarse, 2.8 μg/m3 for PM2.5, 5.2× 10−6/m for PM2.5abs, 11.7 μg/m3 for NO2,
7341 vehicles/day for traffic intensity on the nearest road, and 3.1×106 vehicles m/day for traffic load in a 100m buffer.

a The minimum model was adjusted for age, sex, day of year, and study.
b The main model was adjusted for age, sex, day of year, study, years of education, neighborhood SES, smoking status, and smoking pack years.
c Main model further adjusted for diabetes and hypertension.
† p-Value< 0.1.
⁎ p-Value< 0.05.
⁎⁎ p-Value<0.01.

Fig. 1. Absolute difference in ABI at the 5th to 95th percentiles associated with an increase from the 5th to the 95th percentile in PM10, PMcoarse, PM2.5, and PM2.5abs.
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exposure (O'Neill et al., 2011).
The measures used in previous studies indicated mostly central ar-

terial stiffness, whereas our study provided evidence of the chronic
effects of air pollution on stiffness in the artery of lower extremities.
Consistent with our results, the Girona Heart Register (REGICOR) Study
found an increased prevalence of high ABI associated with residential
10-year average NO2 (Rivera et al., 2013). However, the effects of
traffic intensity and traffic load were also significant in the REGICOR
Study while not in our study. One potential explanation might be the
difference in defining high ABI. We noticed that the effect estimates of
having high ABI changed substantially for most pollutants when using
different definitions of high ABI, reflecting the bias caused by the
outcome misclassification. Using the ABI values of both sides is a more
appropriate method in identifying high ABI, which could reduce the
risk of misclassification in participants with high ABI in one leg and
normal ABI in the contralateral leg. When we applied the same defi-
nition as in the REGICOR Study (categorizing the lower ABI with a cut-
off value of 1.3), more consistent results were found for traffic in-
dicators but not for NO2. The comparatively low contrast of NO2 in
Augsburg (5th to 95th percentile: 11.7 μg/m3 in Augsburg vs. 25 μg/m3

in Girona) may have contributed to limited statistical power to detect

significant effects.
Our study showed that physically inactive or hypertensive partici-

pants were at greater risk from effects of air pollution on athero-
sclerosis. Similar effect modification by hypertension was also reported
on the associations of air pollution with coronary artery calcification
and inflammatory markers (Kaufman et al., 2016; Dubowsky et al.,
2006). Although physically inactive lifestyle is associated with systemic
inflammation and subclinical atherosclerosis (Bertoni et al., 2008;
Hamer et al., 2012), there exists no clear evidence of the interaction
effect between physical activity and air pollution (Zhang et al., 2018;
Andersen et al., 2015). Thus, the effect modification by physical activity
should be interpreted with caution as it might be partly attributable to
differential misclassification of air pollution exposure. Regarding the
prevalence of high ABI, we observed stronger air pollution effects
among non-diabetic participants. This finding was not expected because
it has been shown that diabetes increases the susceptibility of air pol-
lution-induced impairment of vascular reactivity (O'Neill et al., 2005).
Further investigation is still needed to confirm this effect modification
in other populations and clarify the mechanisms.

The two-pollutant models revealed independent effects of PM10 and
PM2.5 on atherosclerosis, as well as independent effects of PMcoarse,

Fig. 2. Effect modification by physical activity, hypertension, and diabetes on the associations of air pollution with low ABI (left panel) and high ABI (right panel).
⁎p-Value for the interaction term<0.05.
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PM2.5abs, and NO2 on arterial stiffness in the lower extremities. Given
the strong correlation between PM2.5abs, NO2, and PMcoarse, we did not
build two-pollutant models for PM2.5abs and NO2 with co-adjustment for
PMcoarse. Therefore, the effects of PM2.5abs and NO2 could not be se-
parated from PMcoarse and vice versa. The positive associations of
PM2.5abs and NO2 with the prevalence of low ABI were attenuated to the

null by the inclusion of PM10 and PM2.5. This finding indicated that the
effects of PM2.5abs and NO2 on atherosclerosis could be substantially
explained by PM. The same pattern was also observed for PM10 and
PM2.5 with the prevalence of high ABI by PM2.5abs and NO2.

The effects of PMcoarse, PM2.5abs, and NO2, which are the more
spatially heterogeneously distributed pollutants, on ABI were

Fig. 3. ORs (95%CIs) of having low ABI (left panels) and high ABI (right panels) in single and two-pollutant models for PM and NO2.
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significantly affected by the inclusion of neighborhood SES. This
finding might be due to the moderate to strong correlation between air
pollution and the neighborhood SES indicator. Studies have shown that
individuals living in deprived areas tended to be exposed to higher
levels of air pollution and have poorer health outcomes (Havard et al.,
2009; Hajat et al., 2013; Diez Roux and Mair, 2010). Thus, it is ne-
cessary to account for the potential confounding effect of neighborhood
SES in analyses on air pollution and health. We did not find substantial
impact of neighborhood SES on the effect estimates of traffic indicators.
This could result from the further adjustment of background NO2,
which was strongly correlated with neighborhood SES.

The strengths of this study include the large sample size and a
comprehensive investigation of various air pollution indicators.
Repeated ABI measurements by trained nurses according to a highly
standardized protocol also enhanced the reliability of data. Besides,
concerning the distinct interpretations of low and high ABI, the mul-
tinomial logistic regression and quantile regression analyses allowed for
a better understanding of the nonlinear relationship between air pol-
lution and ABI.

One limitation of our study is the lack of data on ABI progression to
make causal inference. Future follow-up surveys might provide data to
fill this gap. Secondly, the exposure assessment in this study was based
on the LUR models using pollutant concentrations monitored in 2008
and 2009. This approach relied on the hypothesis that the spatial var-
iation stayed stable over time. Although previous studies supported this
assumption (Cesaroni et al., 2012; Eeftens et al., 2011), there could also
exist non-differential exposure misclassification that would bias the
effect estimates towards null. Furthermore, the limited contrast in ex-
posure across the study area may reduce the statistical power to detect
significant associations, and cause null findings for some pollutants.

5. Conclusions

In summary, long-term residential exposure to PM and NO2 was
associated with a higher prevalence of both low and high ABI. This
study provides evidence for the effects of air pollution on athero-
sclerosis and stiffness in lower extremity arteries.
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Abbreviations 

ABI = ankle-brachial index  

BMI = body mass index 

CI = confidence interval 

CIMT = carotid intima-media thickness 

GIS = geographic information system 

LUR = land use regression 

NO2 = nitrogen dioxide 

OR = odds ratio 

PAD = peripheral artery disease 

PM = particulate matter 

PM10 = particulate matter with an aerodynamic diameter ≤ 10 µm 

PMcoarse = particulate matter with an aerodynamic diameter > 2.5 µm and ≤ 10 µm 

PM2.5 = particulate matter with an aerodynamic diameter ≤ 2.5 µm 

SES = socioeconomic status
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Table S1 Descriptive statistics of participant characteristics by quartile of annual 

concentration of PM10. 

 Mean ± SD / N (%) 

p for trend  

 

Q1 (14.8–18.5 µg/m3) 

n = 1014 

Q2 (18.6–20.5 µg/m3) 

n = 1254 

Q3 (20.6–21.8 µg/m3)  

n = 1139 

Q4 (21.9–30.7 µg/m3) 

n = 1137 

ABI 1.15 ± 0.15 1.13 ± 0.14 1.14 ± 0.16 1.13 ± 0.16 0.04 

ABI categories     < 0.001 

   low 30 (3.0) 56 (4.5) 54 (4.7) 69 (6.1)  

   normal 926 (91.3) 1,138 (90.7) 1,008 (88.5) 992 (87.2)  

   high 58 (5.7) 60 (4.8) 77 (6.8) 76 (6.7)  

Age (years) 58.6 ± 12.5 60.0 ± 11.5 60.8 ± 11.4 60.6 ± 11.8 < 0.001 

Sex (male) 492 (48.5) 626 (49.9) 540 (47.4) 546 (48.0) 0.52 

BMI (kg/m2)a 28.0 ± 4.6 27.8 ± 4.6 27.9 ± 4.5 28.2 ± 4.8 0.32 

Years of education 11.3 ± 2.7 11.4 ± 2.6 11.3 ± 2.6 11.3 ± 2.4 0.77 

Percentage of households with low 

income in (5km)² grid cell (%) 

18.6 ± 16.6 29.0 ± 18 30.0 ± 17.8 32.8 ± 17.9 < 0.001 

Smoking pack years 9.9 ± 17.6 12.0 ± 19.5 11.3 ± 19.5 12.7 ± 21.5 0.006 

Smoking status     0.03 

   current smoker 151 (14.9) 224 (17.9) 183 (16.1) 190 (16.7)  

   former smoker 357 (35.2) 475 (37.9) 443 (38.9) 450 (39.6)  

   never smoker 506 (49.9) 555 (44.3) 513 (45.0) 497 (43.7)  

Physical activity     0.63 

   low 349 (34.4) 393 (31.3) 379 (33.3) 411 (36.1)  

   medium 459 (45.3) 549 (43.8) 500 (43.9) 469 (41.2)  

   high 206 (20.3) 312 (24.9) 260 (22.8) 257 (22.6)  

Hypertension (yes) 470 (46.4) 646 (51.5) 592 (52.0) 610 (53.6) 0.001 

Diabetes (yes) 79 (7.8) 112 (8.9) 95 (8.3) 111 (9.8) 0.17 

Overweight (yes) 743 (73.3) 900 (71.8) 831 (73.0) 838 (73.7) 0.64 

a Data on BMI were available for 4527 participants; N Low ABI = 206; N High ABI = 269. 
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Table S2 Spearman correlation coefficients between continuous confounders and air 

pollution. 

 PM10 PMcoarse PM2.5 PM2.5abs NO2 

Traffic 

intensity 

Traffic 

load 

Background 

NO2 

Age (years) 0.06 0.05 0.02 0.03 0.10 0.03 0.03 0.09 

Years of education 0.02 0.04 0.02 0.02 0.06 -0.05 -0.01 0.03 

Neighborhood SES 0.26 0.37 0.08 0.24 0.61 0.08 0.32 0.66 

Smoking pack years 0.05 0.07 0.05 0.06 0.10 0.00 0.08 0.12 

 

 

Table S3 ORs (95%CIs) of having low ABI and high ABI for PM and NO2 in models with an 

interaction term. 

  OR (95%CI) for PM a  OR (95%CI) for NO2 
b 

  NO2 < median NO2 ≥ median p-value c    PM < median PM ≥ median p-value c 

Low ABI         

 PM10 2.10 (0.84, 5.25) 1.81 (0.89, 3.68) 0.81  0.64 (0.20, 2.11) 1.60 (0.83, 3.06) 0.14 

 PM2.5 3.11 (1.14, 8.50) 1.29 (0.74, 2.26) 0.13  1.97 (0.74, 5.27) 1.24 (0.65, 2.35) 0.38 

 PM2.5abs 1.23 (0.41, 3.68) 1.45 (0.83, 2.53) 0.80  0.66 (0.21, 2.10) 1.57 (0.81, 3.01) 0.16 

         

High ABI         

 PM10 1.16 (0.59, 2.26) 2.13 (1.08, 4.21) 0.21  1.42 (0.54, 3.77) 1.52 (0.84, 2.74) 0.90 

 PM2.5 1.15 (0.49, 2.67) 1.53 (0.91, 2.59) 0.57  2.36 (1.02, 5.47) 1.63 (0.92, 2.89) 0.42 

 PM2.5abs 1.95 (0.83, 4.57) 1.56 (0.91, 2.69) 0.67  2.44 (0.94, 6.32) 1.22 (0.66, 2.26) 0.19 

   a NO2
 acted as the effect modifier; the interaction term was between PM and low/high levels of NO2. 

   b PM acted as the effect modifier; the interaction term was between NO2 and low/high levels of PM. 

    c p-Value for the interaction term between PM and NO2.
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Table S4 ORs (95%CIs) of having low and high ABI using different definitions of high ABI. 

  Using ABI of both sides  Using lower ABI 

  Cut-off value = 1.4a Cut-off value = 1.3b  Cut-off value = 1.4c Cut-off value = 1.3d 

Low ABI       

 PM10 1.82 (1.11, 2.97)* 1.79 (1.09, 2.94)*  1.76 (1.08, 2.88)* 1.76 (1.07, 2.87)* 

 PMcoarse 1.39 (0.87, 2.22) 1.39 (0.87, 2.22)  1.35 (0.84, 2.15) 1.36 (0.85, 2.18) 

 PM2.5 1.59 (1.01, 2.51)* 1.61 (1.02, 2.54)*  1.56 (0.99, 2.46)† 1.58 (1.00, 2.50)* 

 PM2.5abs 1.43 (0.91, 2.23) 1.42 (0.91, 2.22)  1.41 (0.90, 2.20) 1.42 (0.91, 2.22) 

 NO2 1.59 (0.94, 2.68)† 1.57 (0.93, 2.64)†  1.54 (0.91, 2.59) 1.55 (0.92, 2.62)† 

 Traffic intensity 1.16 (0.88, 1.52) 1.17 (0.89, 1.54)  1.15 (0.88, 1.51) 1.17 (0.89, 1.53) 

 Traffic load 1.14 (0.79, 1.62) 1.11 (0.78, 1.59)  1.14 (0.80, 1.63) 1.16 (0.81, 1.66) 

High ABI       

 PM10 1.63 (1.07, 2.50)* 1.14 (0.87, 1.49)  1.20 (0.64, 2.27) 1.05 (0.72, 1.53) 

 PMcoarse 1.92 (1.26, 2.92)** 1.29 (0.98, 1.70)†  1.75 (0.93, 3.30)† 1.43 (0.97, 2.09)† 

 PM2.5 1.44 (0.94, 2.20)† 1.20 (0.92, 1.58)  1.34 (0.71, 2.55) 1.29 (0.88, 1.89) 

 PM2.5abs 1.73 (1.14, 2.61)** 1.19 (0.91, 1.55)  2.20 (1.19, 4.07)* 1.54 (1.07, 2.23)* 

 NO2 1.84 (1.15, 2.94)* 1.19 (0.88, 1.63)  1.62 (0.80, 3.31) 1.37 (0.89, 2.10) 

 Traffic intensity 1.20 (0.93, 1.55) 1.14 (0.96, 1.36)  1.30 (0.89, 1.89) 1.26 (1.01, 1.58)* 

 Traffic load 1.12 (0.79, 1.58) 0.95 (0.75, 1.20)  1.54 (0.95, 2.50)† 1.40 (1.04, 1.87)* 

a Definition of high ABI: have ABI > 1.4 in both legs or ABI >1.4 in one leg and a normal ABI (0.9 < ABI ≤ 

1.4) in the other leg. Number of participants in each group: Nnormal = 4064; N Low ABI = 209; N High ABI = 271. 

b Definition of high ABI: have ABI > 1.3 in both legs or ABI > 1.3 in one leg and a normal ABI (0.9 < ABI ≤ 

1.3) in the other leg. Nnormal = 3530; N Low ABI = 209; N High ABI = 805. 

c Definition of high ABI: the lower ABI of both sides was higher than 1.4. Nnormal = 4222; N Low ABI = 209; N High 

ABI = 113. 

d Definition of high ABI: the lower ABI of both sides was higher than 1.3. Nnormal = 3982; N Low ABI = 209; N High 

ABI = 353. 

† p-Value < 0.1; * p-Value < 0.05; ** p-Value < 0.01. 
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Table S5 ORs (95%CIs) of having low and high ABI in subgroup analyses and the extended 

model with adjustment for effect modifiers. 

 

 

Live at the same 

address for ≥ 5 

years a 

Age > 50 years b 

Exclude participants 

with both low and 

high ABI c 

Main model + 

physical activity d 

Low ABI      

 PM10 1.98 (1.19, 3.29)** 2.10 (1.26, 3.48)** 1.82 (1.11, 2.99)* 1.78 (1.09, 2.92)* 

 PMcoarse 1.45 (0.90, 2.34) 1.44 (0.89, 2.34) 1.38 (0.86, 2.21) 1.35 (0.84, 2.17) 

 PM2.5 1.48 (0.92, 2.38) 1.64 (1.03, 2.62)* 1.55 (0.98, 2.46)† 1.58 (1.00, 2.50)† 

 PM2.5abs 1.48 (0.94, 2.34)† 1.47 (0.93, 2.32)† 1.43 (0.92, 2.24) 1.38 (0.88, 2.15) 

 NO2 1.62 (0.95, 2.78)† 1.68 (0.99, 2.87)† 1.57 (0.93, 2.66)† 1.55 (0.92, 2.62) 

 Traffic intensity 1.07 (0.80, 1.45) 1.14 (0.86, 1.51) 1.14 (0.87, 1.50) 1.15 (0.88, 1.51) 

 Traffic load 1.04 (0.71, 1.53) 1.15 (0.80, 1.66) 1.13 (0.79, 1.61) 1.11 (0.78, 1.59) 

High ABI      

 PM10 1.68 (1.08, 2.60)* 1.69 (1.09, 2.63)* 1.63 (1.06, 2.49)* 1.64 (1.07, 2.51)* 

 PMcoarse 2.03 (1.32, 3.14)** 2.10 (1.36, 3.23)** 1.92 (1.26, 2.92)** 1.95 (1.28, 2.97)** 

 PM2.5 1.47 (0.94, 2.29)† 1.47 (0.95, 2.29)† 1.45 (0.95, 2.21)† 1.45 (0.95, 2.22)† 

 PM2.5abs 1.94 (1.26, 2.97)** 1.90 (1.24, 2.91)** 1.72 (1.14, 2.60)** 1.76 (1.17, 2.66)** 

 NO2 1.82 (1.11, 2.97)* 1.94 (1.19, 3.15)** 1.84 (1.15, 2.94)* 1.85 (1.16, 2.97)* 

 Traffic intensity 1.22 (0.93, 1.59) 1.19 (0.91, 1.56) 1.20 (0.93, 1.55) 1.21 (0.93, 1.56) 

 Traffic load 1.11 (0.77, 1.60) 1.11 (0.77, 1.59) 1.12 (0.79, 1.58) 1.14 (0.80, 1.60) 

   a Analyzing a subgroup of participants who lived at the same address for at least five years. Number of 

participants in this subgroup N = 4099; N Low ABI = 197; N High ABI = 253. 

   b Analyzing a subgroup of participants with age over 50 years. N = 3556; N Low ABI = 199; N High ABI = 255. 

   c Excluding participants with low ABI in one leg and high ABI in the contralateral leg. N = 4542; N  Low ABI = 

207; N High ABI = 271. 

   d Main model further adjusted for physical activity.    

   † p-Value < 0.1; * p-Value < 0.05; ** p-Value < 0.01. 
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Fig. S1 ORs (95%CIs) of having low (upper panel) and high ABI (lower panel) for an 

increment in air pollution in different models. 

An increment was 7.6 µg/m3 for PM10, 3.4 µg/m3 for PMcoarse, 2.8 µg/m3 for PM2.5, 5.2×10-6/m for PM2.5abs, 11.7 

µg/m3 for NO2, 7,341 vehicles/day for traffic intensity on the nearest road, and 3.1×106 vehicles·m/day for 

traffic load in a 100 m buffer. 

a (1) The minimum model was adjusted for age, sex, the day of year, and study. (2) Model 2 was the minimum 

model with further adjustment for years of education. (3) Model 3 was model 2 with further adjustment for 

neighborhood SES. (4) The main model was model 3 with further adjustment for smoking status and smoking 

pack years. 
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Fig. S2 Absolute difference in ABI at the 5th to 95th percentiles associated with an increase 

from the 5th to the 95th percentile in NO2, traffic intensity, and traffic load.
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Fig. S3 Effect modification by age, sex, and overweight on the associations of air pollution 

with low ABI (left panels) and high ABI (right panels).
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Fig. S4 Absolute difference in higher ABI of two sides at the 5th to 95th percentiles 

associated with an increase from the 5th to the 95th percentile in air pollution. 
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Short-term effects of fine particulate matter
and ozone on the cardiac conduction
system in patients undergoing cardiac
catheterization
Siqi Zhang1* , Susanne Breitner1, Wayne E Cascio2, Robert B Devlin2, Lucas M Neas2, David Diaz-Sanchez2,
William E Kraus3, Joel Schwartz4, Elizabeth R Hauser3, Annette Peters1 and Alexandra Schneider1

Abstract

Background: Air pollution-induced changes in cardiac electrophysiological properties could be a pathway linking
air pollution and cardiovascular events. The evidence of air pollution effects on the cardiac conduction system is
incomplete yet. We investigated short-term effects of particulate matter ≤ 2.5 μm in aerodynamic diameter (PM2.5)
and ozone (O3) on cardiac electrical impulse propagation and repolarization as recorded in surface
electrocardiograms (ECG).

Methods: We analyzed repeated 12-lead ECG measurements performed on 5,332 patients between 2001 and 2012.
The participants came from the Duke CATHGEN Study who underwent cardiac catheterization and resided in North
Carolina, United States (NC, U.S.). Daily concentrations of PM2.5 and O3 at each participant’s home address were
predicted with a hybrid air quality exposure model. We used generalized additive mixed models to investigate the
associations of PM2.5 and O3 with the PR interval, QRS interval, heart rate-corrected QT interval (QTc), and heart rate
(HR). The temporal lag structures of the associations were examined using distributed-lag models.

Results: Elevated PM2.5 and O3 were associated with four-day lagged lengthening of the PR and QRS intervals, and
with one-day lagged increases in HR. We observed immediate effects on the lengthening of the QTc interval for
both PM2.5 and O3, as well as delayed effects for PM2.5 (lagged by 3 – 4 days). The associations of PM2.5 and O3

with the PR interval and the association of O3 with the QRS interval persisted until up to seven days after exposure.

Conclusions: In patients undergoing cardiac catheterization, short-term exposure to air pollution was associated
with increased HR and delays in atrioventricular conduction, ventricular depolarization and repolarization.

Keywords: Air pollution, Electrocardiogram, PR interval, QT interval, QRS interval

Background
The associations between ambient air pollution and
cardiovascular morbidity and mortality are well estab-
lished [1–3]. One potential pathway of the linkage might
be through the air pollution-induced changes in cardiac
electrophysiological properties. The cardiac conduction
system initiates and conducts electrical impulses as
recorded in the electrocardiogram (ECG). Cardiac

conduction abnormalities, such as first-degree atrioven-
tricular block (first-degree AVB) or prolonged
ventricular repolarization, are associated with increased
incidence and prevalence of atrial fibrillation (AF), total
mortality, and sudden cardiac death [4, 5].
The acute effects of air pollution on the cardiac

conduction system could be mediated by physiological
mechanisms including autonomic imbalance and
systemic inflammation, which trigger both immediate
and delayed responses over a period ranging from hours
to days [6, 7]. Epidemiological studies have reported
associations of a lengthening of the heart rate-corrected
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QT interval (QTc), a measure of ventricular repolariza-
tion, with particulate matter in the elderly and patients
having diabetes or preexisting ischemic heart disease [6,
8–11]. However, such associations were not observed in
a panel study of cardiac rehabilitation patients [7]. In
addition to the inconsistent results of particulate matter,
evidence of ambient ozone (O3) effects on the QTc
interval is still limited [12, 13], and the impacts of air
pollution on atrioventricular conduction and ventricular
depolarization have not been fully investigated [9, 14].
Hypothesizing that air pollution exposure would be

associated with cardiac conduction delay, we performed
this study to investigate the short-term effects of PM2.5

and O3 on the electrocardiographic intervals reflecting
impulse propagation and repolarization in high-risk
patients from a cardiovascular cohort.

Methods
Study population
The data used in this study were obtained from the
Catheterization Genetics (CATHGEN) Study, a cohort
of 9,334 patients who underwent cardiac catheterization
at Duke University Medical Center from 2001 through
2010. More details of the CATHGEN Study can be
found elsewhere [15].
Our analyses were restricted to 6,209 individuals who

had ECG measurements and resided in North Carolina,
United States (NC, U.S.) at catheterization. From the
CATHGEN database, we collected information on par-
ticipant demographic characteristics (age, sex, and race),
body mass index (BMI), smoking status, and the history
of myocardial infarction (MI). The Coronary Artery Dis-
ease Prognostic index (CAD index) was assessed during
the catheterization procedure. The CAD index is an in-
dicator of the severity of coronary artery disease (CAD)
based upon cardiovascular outcomes. A CAD index > 23
represents at least one ≥ 75% occlusion in one major
epicardial coronary artery [16]. Data on area-level educa-
tional attainment and urban/rural status were obtained
from the 2000 U.S. Census based on each patient’s home
address at catheterization. Area-level educational attain-
ment refers to the percentage of adults (≥ 25 years old)
in the block group with less than a high school educa-
tion; it was categorized into low (≥ 25%) and high (<
25%) levels.

ECG measurement
During the study period (2001–2012), 71,194 12-lead
ECGs were performed at the time of catheterization and
in follow-up examinations, and analyzed automatically
using the Philips TraceMaster ECG system (Andover,
MA). ECG parameters of interest were the PR interval
(ms), QRS interval (ms), QT interval (ms), and heart rate
(HR, beats/min). The PR interval is measured from the

beginning of the P wave to the beginning of the QRS
complex, reflecting the electrical impulse conduction
from the sinus node through the atrioventricular node
and His-Purkinje system. The QRS interval is the time
from the onset of the Q wave to the end of the S wave,
which represents ventricular depolarization. The QT
interval is defined as the duration from the beginning of
the Q wave to the end of the T wave. The QT interval is
dependent on HR; after HR-correction, the QTc interval
is a measure of ventricular repolarization. The QT cor-
rection for HR was performed using the Bazett formula
in our main analyses [17].
We first excluded 13,632 ECGs with the diagnosis of

atrial fibrillation, atrial flutter, multifocal atrial tachycar-
dia, or paced rhythms. For participants with multiple
ECGs on the same day or ECGs on consecutive days, we
only included the first of the day and the first on con-
secutive days to reduce the potential impact of interven-
ing medical treatment. To reduce bias caused by
artifacts, we excluded ECGs with non-physiological
parameter values in the following ranges: (1) PR interval
< 100 ms or > 400 ms, (2) QRS interval < 50 ms or >
170 ms, (3) QTc < 350 ms or > 600 ms, (4) HR < 20
beats per minute (bpm) or > 180 bpm. We further ex-
cluded participants with bundle branch block (BBB, QRS
interval > 120 ms), leaving 28,741 eligible ECGs on
5,376 participants.

Exposure assessment
Daily concentrations of PM2.5 (daily average in μg/m3)
and O3 (daily 8-h maximum in ppb) for NC were pre-
dicted at a 1 km × 1 km spatial grid resolution from
2000 to 2012. Predictions were made using a neural
network-based hybrid model, incorporating input vari-
ables such as chemical transport model outputs,
satellite-based aerosol optical depth data, absorbing
aerosol index, land-use terms, and meteorological vari-
ables. The ten-fold cross-validation indicated good
model performances with coefficients of determination
of 0.86 and 0.68 for PM2.5 and O3, respectively. Detailed
descriptions and predictive performance of the model
were reported elsewhere [18, 19].
Daily air temperature in NC was also predicted at a 1

km × 1 km grid resolution for the study period. The
modeling process involved satellite-derived daily surface
temperature, daily air temperature from NC weather sta-
tions, normalized difference vegetation index, and pre-
dictors of air temperature (percent of urban areas,
elevation, and distance to water body). A three-stage
modeling approach was used, allowing the prediction in
grid cells without weather monitors or grid cells/days
without data on satellite surface temperature [20].
The latitude and longitude of each participant’s resi-

dential address were geocoded by the Children’s
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Environmental Health Initiative in the Duke Nicholas
School of the Environment (https://cehi.rice.edu/). For
individuals who moved during the study period, we used
the address most closely linked with the date on which
the ECG was performed. The geocoded addresses were
matched with air pollution and temperature data based
on the spatial location and date. Daily air pollutant con-
centrations and air temperature on the same day and 1–
14 days prior to the ECG measurement were assigned to
each ECG.

Statistical analysis
Short-term effects of PM2.5 and O3 on ECG parame-
ters were investigated using generalized additive
mixed models with random intercepts for patients.
The ECG parameters were log-transformed in our
regression models to increase the conformity to a
normal distribution of residuals. To control for sys-
tematic variation over time, we included a penalized
spline for long-term time trend with four degrees of
freedom per year, and two categorical variables for
season (spring: March–May; summer: June–August;
autumn: September–November; winter: December–
February) and day of the week. Air temperature was
adjusted for by modeling low and high temperatures
separately [21]. For days with average temperature on
the previous four days (lag1–4) lower than the
median annual temperature, we introduced a natural
spline with two degrees of freedom for lag1–4
temperature. Similarly, for days with average
temperature on the current and previous day (lag0–1)
higher than the median annual temperature, we intro-
duced a natural spline for lag0–1 temperature with
three degrees of freedom. Besides, we controlled for
individual characteristics at each measurement time
point, including age (continuous), sex (male or fe-
male), race (European-Americans, African-Americans,
or others), area-level educational attainment (low or
high), BMI (continuous), smoking status (never
smoker, or current/former smoker), and living area
(rural or urban). The adjusted confounders were iden-
tical across models for the various air pollutants and
ECG parameters. We investigated the effects of air
pollution on the concurrent day (lag0), for single-day
lags from one to four days (lag0–lag4), and for a
multi-day lag of five days (lag04).
For pollutant-outcome pairs showing significant

delayed associations four days after exposure, we
examined lagged effects up to 14 days using
distributed-lag models [22]. We therefore built a
cross-basis matrix with a third degree polynomial func-
tion of lags, which was then incorporated into the gener-
alized additive mixed model adjusted for the same
confounders as in the main model.

To explore effect modification and identify the sub-
groups that might be more susceptible to the effects of
PM2.5 and O3, we incorporated interaction terms
between air pollution and individual characteristics in
the model. The examined potential modifiers included
sex, age (< 60 years vs. ≥ 60 years), area-level educational
attainment, obesity (BMI < 30 kg/m2 vs. ≥ 30 kg/m2),
smoking status, urban/rural status, CAD index (CAD
index ≤ 23 vs. > 23), and history of MI.
In sensitivity analyses, we excluded ECGs with

single-day (lag0–lag4) exposure levels of PM2.5 above 35
μg/m3 or O3 above 70 ppb to examine the effects of air
pollution below the current U.S. National Ambient Air
Quality Standards (NAAQS) [23]. As the electrophysio-
logical parameters are potentially dependent on the HR,
we further adjusted for the HR in models for the PR
interval, QRS interval, and the raw QT interval without
HR-correction. In addition, we used Fridericia formula
in QT correction [24], and investigated air pollution
effects on corrected JT interval (JTc), which was defined
by subtracting the QRS from QTc. The JTc interval is
also an indicator to measure the duration of ventricular
repolarization and is reported to reduce the impact of
wide QRS complex on the QTc interval [25]. To exam-
ine the influence of BBB on associations between air
pollution and ECG parameters, we performed analyses
using 33,117 eligible ECG measurements on 5,819 par-
ticipants regardless of the presence of BBB. We tested
the robustness of the results by building two-pollutant
models with PM2.5 and O3 of the same lag, restricting
the analyses to participants with two or more ECG mea-
surements, changing the degree of freedom for the trend
spline, excluding season as a categorical variable, and
applying generalized additive mixed models with linear
spatial correlation structure given that the dependency
between repeated ECG measurements might decrease
with increasing time interval. Furthermore, we added
long-term air pollution exposure (365-day moving aver-
age of air pollution of 0–364 days prior to each ECG
measurement) to our models and replaced the daily
mean concentration with the deviation between daily
mean and long-term average. In this way, we sought to
investigate the acute effect of temporal variation of
pollutants with the control for spatial variation. The
linearity of the exposure-response relationships was ex-
amined by including a spline for air pollution variables
in models.
The effect estimates are reported as percent changes

of the geometric mean (GM) of outcomes and 95%
confidence intervals (95% CI) corresponding to an inter-
quartile range (IQR) increase in PM2.5 and O3. We per-
formed the analyses with the software R (version 3.5.1),
using the ‘gamm4’, ‘mgcv’, and ‘dlnm’ packages. The
significance level was set at 0.05.
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Results
Participant characteristics and exposure concentrations
After further exclusion of 44 patients without complete
data on ECG parameters of interest, air pollution
concentrations, or main covariates, we analyzed a final
sample of 28,578 ECGs on 5,332 participants (See
Additional file 1: Figure S1). Among them, 4,009 partici-
pants had two or more eligible ECG recordings during
the study period. The mean age and BMI at enrollment
were 59.8 years and 30.1 kg/m2, respectively (Table 1).
60.7% of the participants were male, over half were never
smokers, and the majority were European-American
(72.3%). More individuals lived in rural areas and areas
with a high level of educational attainment. Compared to
excluded individuals, the participants included in our
main analyses tended to be younger and more likely to live
in urban areas, have a higher proportion of
African-Americans and a higher level of educational
attainment (See Additional file 1: Table S1).
Table 2 shows the descriptive statistics of ECG

parameters in all ECG recordings. The correlations
between ECG parameters were weak or negligible.
During the study period, the average concentrations
of PM2.5 and O3 in geocoded areas with participants
were 11.2 μg/m3 and 40.5 ppb, respectively (Table 3).
Most daily PM2.5 and O3 levels (99.9% for PM2.5 and
98.7% for O3) were below the current NAAQS (daily
average concentration of 35 μg/m3 for PM2.5 and
daily maximum 8-hour concentration of 70 ppb for
O3). PM2.5 and O3 were moderately correlated with a
Spearman correlation coefficient of 0.49.

Air pollution and ECG parameters
Increments in PM2.5 and O3 were significantly associated
with the lengthening of the PR interval lagged three or
four days, and with the concurrent as well as lagged
lengthening of the QTc interval (Table 4). Positive
associations with the QRS interval were significant for
O3 at lag4 and marginally significant for PM2.5 at lag1
and lag4. We also observed significant increases in the
HR associated with elevated PM2.5 and a marginally
significant increase for O3, with the strongest single-day
effects at lag1.
We used polynomial distributed-lag models for PR,

QRS, and QTc intervals as they showed delayed
responses to air pollution. Estimates of the
distributed-lag models indicated that the effects of PM2.5

and O3 on the PR interval and the effect of O3 on the
QRS interval persisted until seven days after exposure.
For the QTc interval, we did not find lagged effects of
PM2.5 beyond four days (Fig. 1).

Effect modification
We observed stronger effects of O3 on the QRS and QTc
intervals in patients living in rural areas, and stronger air
pollution effects on the QTc interval in patients with low
educational attainment or obesity. We did not find signifi-
cant or consistent effect modification by other examined
potential modifiers (See Additional file 1: Figure S2).

Sensitivity analyses
Analyses of exposure below the NAAQS showed slightly
attenuated associations between air pollution and ECG
parameters; the effects of air pollution on the PR
interval, QTc interval, and HR remained significant (See
Additional file 1: Table S2). Associations of air pollution
with the PR, QRS, and QT intervals were not sensitive
to the adjustment for HR (See Additional file 1: Figure
S3). We observed reduced effects of air pollution on the
QTc interval calculated using the Fridericia formula
compared to using the Bazett formula at lag0–lag2 (See
Additional file 1: Figure S4). However, the associations
between air pollution and ventricular repolarization were
generally consistent across different indicators. Including
participants with BBB reduced the air pollution effects
on the QRS and QTc intervals and did not significantly
affect the effects on the PR interval and HR (See
Additional file 1: Figure S5).
We did not observe substantial changes in effect esti-

mates in two-pollutant models, except for the attenuated
effect of PM2.5 on the PR interval at lag4 when adjusted
for O3 and vice versa (See Additional file 1: Figure S6).
The associations of PM2.5 and O3 with ECG parameters
were robust to excluding participants with only one
ECG measurements, changing the degree of freedom of
trend spline, excluding season, controlling for long-term

Table 1 Descriptive statistics of the study population at
baseline (n=5332)

Mean ± SD / N (%)

Age (years) 59.8 ± 11.7

BMI (kg/m2) 30.1 ± 7.2

Sex (male) 3237 (60.7)

Race

European-Americans 3854 (72.3)

African-Americans 1188 (22.3)

Others 290 (5.4)

Smoking (never smoker) 2753 (51.6)

Education (high) 3231 (60.6)

Area (rural) 2953 (55.4)

CAD-index > 23 (yes)a 2418 (50.4)

History of MI (yes) 1449 (27.2)

SD standard deviation, BMI body mass index, CAD coronary artery disease, MI
myocardial infarction
aData on CAD-index were available for 4801 participants
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exposure to air pollution, or applying spatial correlation
structure in mixed-effects models. The linear
exposure-response relationships between air pollution
and ECG parameters held true when air pollution vari-
ables were included in models as splines (results not
shown).

Discussion
In high-risk patients undergoing cardiac catheterization,
we observed associations of increments in PM2.5 and O3

with the lengthening of the PR, QRS, and QTc intervals
and increased HR. The effects of PM2.5 and O3 on the
PR interval and the effect of O3 on the QRS interval per-
sisted until up to one week in distributed lag models.
These findings supported our hypothesis that short-term
exposure to air pollution was associated with atrioven-
tricular and intraventricular conduction delay.
An increased PR interval could relate to parasympa-

thetic activation, sympathetic withdrawal, or the block of
inward calcium current through membrane channels. A
lengthening of the PR interval, even below the diagnostic
threshold for first-degree AVB (PR interval > 200 ms), is
associated with increased incidence of AF, pacemaker
implantation, and all-cause mortality [5]. Few prior stud-
ies investigated the effect of air pollution on the PR
interval. The Air Pollution and Cardiac Risk and its
Time Course (APACR) Study found a 0.09% increase in
the PR interval for each 10 μg/m3 increment in PM2.5

[14]. Since individuals with cardiovascular disease are
potentially more sensitive to air pollution effects, the
smaller effect estimate compared to our study (0.25%)
could be due to the healthier participants in the APACR
Study. The distinct lag times of associations (1.5–2

hours in the APACR Study and 3–4 days in our study)
might also partly explain the difference. In addition to
PM2.5, our study provided evidence for an association
between O3 and the PR interval, which to our knowledge
has not been reported previously.
The associations between air pollution and the QRS

interval in our study indicated the effects of air pollution

Table 2 Descriptive statistics and Spearman correlation coefficients of ECG parameters (n=28578)

Mean ± SD Min 25% Median 75% Max Correlation coefficients

Geometric Arithmetic PR QRS QTc

PR (ms) 170 ± 1 173 ± 31 100a 152 168 188 400a --

QRS (ms) 91 ± 1 91 ± 12 53 83 90 99 120a 0.18 --

QTc (ms) 434 ± 1 435 ± 33 350a 412 433 456 587 -0.02 0.24 --

HR (bpm) 73 ± 1 74 ± 17 31 62 72 85 160 -0.28 -0.09 0.32

SD standard deviation, Min minimum, 25% the 25th percentile, 75% the 75th percentile, Max maximum, QTc heart rate-corrected QT interval, HR heart rate, bpm
beats per minute
aThe minimum and maximum values were set by the exclusion criteria

Table 3 Descriptive statistics of air pollution and temperature in
geocoded areas with participants during the study period

Mean ± SD Min 25% Median 75% Max IQR

PM2.5 (μg/m
3) 11.2 ± 5.5 0.9 7.3 10.1 14.2 54.5 7.0

O3 (ppb) 40.5 ± 12.8 8.6 30.4 39.5 49.8 97.6 19.4

Air temperature (°C) 16.8 ± 8.1 -4.7 10.2 17.8 24.0 31.0 13.8

SD standard deviation, Min minimum, 25% the 25th percentile, 75% the 75th
percentile, Max maximum, IQR interquartile range, PM2.5 particulate matter ≤
2.5 μm in aerodynamic diameter, O3 ozone, ppb parts per billion

Table 4 Percent change (95% CI) of the geometric mean of
ECG parameters per interquartile range increase in pollutants

ECG
parameter

Lag
(day)

PM2.5 O3

% Change (95% CI) % Change (95% CI)

PR 0 -0.07 (-0.23, 0.08) -0.01 (-0.24, 0.23)

1 -0.07 (-0.23, 0.09) 0.03 (-0.21, 0.27)

2 -0.07 (-0.23, 0.09) -0.12 (-0.36, 0.12)

3 0.17 (0.01, 0.33)* 0.02 (-0.22, 0.26)

4 0.18 (0.03, 0.34)* 0.29 (0.05, 0.53)*

04 0.07 (-0.18, 0.32) 0.09 (-0.26, 0.43)

QRS 0 0.11 (0.00, 0.22) -0.04 (-0.21, 0.12)

1 0.03 (-0.08, 0.14) 0.00 (-0.17, 0.16)

2 0.01 (-0.10, 0.12) -0.05 (-0.22, 0.11)

3 0.04 (-0.07, 0.15) 0.04 (-0.13, 0.21)

4 0.11 (0.00, 0.21) 0.21 (0.04, 0.37)*

04 0.15 (-0.03, 0.32) 0.06 (-0.18, 0.30)

QTc 0 0.11 (0.02, 0.19)* 0.17 (0.04, 0.30)**

1 0.05 (-0.04, 0.14) 0.18 (0.04, 0.31)**

2 0.05 (-0.04, 0.14) 0.07 (-0.06, 0.21)

3 0.11 (0.03, 0.20)* 0.02 (-0.11, 0.15)

4 0.13 (0.05, 0.22)** 0.04 (-0.09, 0.17)

04 0.23 (0.09, 0.36)** 0.20 (0.01, 0.39)*

HR 0 0.22 (-0.05, 0.49) 0.23 (-0.17, 0.63)

1 0.47 (0.20, 0.75)** 0.40 (0.00, 0.81)

2 0.28 (0.01, 0.56)* 0.28 (-0.13, 0.69)

3 -0.11 (-0.38, 0.16) -0.21 (-0.62, 0.20)

4 0.04 (-0.23, 0.30) -0.12 (-0.53, 0.29)

04 0.44 (0.01, 0.86)* 0.24 (-0.34, 0.83)

CI confidence interval, ECG electrocardiogram, PM2.5 particulate matter ≤ 2.5
μm in aerodynamic diameter, O3 ozone; QTc heart rate-corrected QT interval,
HR heart rate
*p-Value <0.05; **p-Value <0.01
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on ventricular depolarization among individuals without
bundle branch block. An increase in the QRS interval is
an independent predictor of cardiovascular mortality
[26]. Yet, the evidence of air pollution effects on the
QRS interval is still limited. Consistent with our results,
a higher prevalence of prolonged QRS interval was
associated with long-term residential PM2.5 exposure in
the U.S. Multi-Ethnic Study of Atherosclerosis (MESA)
Cohort. Besides, in a controlled exposure study among
individuals with metabolic syndrome, the GSTM1 null
participants showed an increased QRS interval after
acute exposure to concentrated ambient ultrafine parti-
cles [27]. However, the QRS interval was not associated
with PM2.5 in the APACR Study [9], and an immediate
decrease of 5.8% (95%CI: -10.5, -1.0) in the QRS interval
after exposure to O3 was observed in a crossover study
among healthy volunteers [13]. The mechanism by
which air pollution might lead to a change in QRS
complex remains unclear and needs to be clarified by
further epidemiological and experimental studies. Some
theoretical explanations could be the impact of air
pollution on the inward sodium current and the extra-
cellular resistance.
Our findings of both concurrent and delayed effects of

air pollution on the lengthening of the QTc interval are
supported by previous studies [6, 8, 13]. The potential
pathway of the immediate associations could be the
direct impact of air pollution on the autonomic nervous
system, and the delayed effects are possibly mediated by
air pollution-induced inflammatory responses [6].

Ambient air pollutants trigger reactive oxygen species
production, which in turn induces pulmonary and
systemic inflammation. The concentrations of circulating
inflammatory biomarkers, such as C-reactive protein
(CRP), interleukin 6, and fibrinogen, are increased after
acute air pollution exposure [6, 28]. Further, inflamma-
tion is a modulator of cardiomyocyte ion currents in the
cardiac conduction system, through a pathway involving
cytokine- and sympathetic-induced modulation [29]. Ele-
vated levels of circulating inflammatory biomarkers
have been proven to be associated with QTc
prolongation [30–32].
The QTc interval calculated using the Bazett formula

has been reported to be inferior to using the Fridericia
formula in the prediction of mortality [33]. In our study,
the associations between air pollution and the QTc inter-
val calculated using the Fridericia formula were generally
comparable to using the Bazett formula. Similar results
were also found in the APACR Study [9]. In addition,
since the QT interval encompasses the duration of ven-
tricular depolarization as reflected by the QRS interval,
the air pollution-induced lengthening of the QTc inter-
val could be partly attributable to the effects on the QRS
interval. When subtracting the QRS from the QTc, we
still observed significant associations between air pollu-
tion and the JTc interval. The robust results provided
strong evidence for the air pollution effects on ventricu-
lar repolarization.
The 1–2 days lagged associations between air pollution

and HR suggested the effects of air pollution on the

Fig. 1 Percent change (95% CI) of the geometric mean of ECG parameters per interquartile range increase in PM2.5 and O3 in distributed-lag
models. CI confidence interval, ECG electrocardiogram, PM2.5 particulate matter ≤ 2.5 μm in aerodynamic diameter, O3 ozone QTc heart rate-corrected QT
interval, GM geometric mean, IQR interquartile range
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autonomic nervous system [8, 34–36]. These associa-
tions could be potentially affected by the use of medica-
tion. For example, stronger effects of air pollution on
HR and heart rate variability are observed among indi-
viduals not taking beta-blockers or calcium-channel
blockers [8, 34]. On the other hand, taking medication
indicates the presence of underlying clinical conditions,
which might increase individual’s susceptibility to air
pollution. Therefore, other studies reported
non-significant effect modification by medication or
even stronger effects in individuals taking
angiotensin-converting-enzyme inhibitor (ACE inhibitor)
[37, 38]. The interaction between medication usage and
clinical conditions potentially limits the interpretabil-
ity of the non-significant effect modification by CAD
in our study.
Although the effects of air pollution on the cardiac

conduction system were relatively small in this study, it
is still of public health significance because of its impli-
cations for the entire population. Using the World
Health Organization air quality guideline for 24-hour
mean of PM2.5 (25 μg/m3) as reference [39], exposure to
the maximum PM2.5 in this study (54.5 μg/m3) would
account for an increase of 2.4 ms in the QTc interval in
exposed individuals. Moreover, cardiac conduction is af-
fected by many other factors. For instance, preexisting
medical conditions (left ventricular hypertrophy, ische-
mia, etc.) and certain medications can prolong cardiac
repolarization [40]. Among patients with these condi-
tions, further exposure to air pollution may add to the
effects of other factors, and drive the QT interval across
a critical threshold.

Strengths and limitations
A major strength of this study is the large sample size of
the study population and the vast number of ECG re-
cordings for analyses, which to the best of our know-
ledge is the largest cohort for analyzing air pollution
effects on ECG parameters. The repeated measures
study design provided substantial statistical power and
enabled control for unmeasured individual-level con-
founders. Besides, we investigated the associations of
PM2.5 and O3 with ECG parameters that have rarely
been examined previously, such as the PR and QRS
intervals.
One limitation of the study is the heterogeneity of

time intervals caused by unscheduled follow-up visits. In
the analyses, we applied mixed-effects models, which
can reduce the impact of the unbalanced data structure.
Second, we used daily residential exposure assessment
instead of personal exposure. This may have resulted in
non-differential exposure misclassification and bias the
results towards the null [41]. Third, due to the unavail-
ability of data, we were not able to control for

medication intake, and the smoking status was roughly
divided into current/former smoker or never smoker,
which may have led to inaccuracy in assessing effect
modification by pre-existing morbidities and residual
confounding. Finally, our study was performed in
high-risk patients receiving cardiac catheterization; thus,
the results may not be generalizable to the general popu-
lation. However, it enabled us to assess the association
in a population subgroup at greater risk of cardiovascu-
lar events and potentially more susceptible to the
adverse effects of air pollution.

Conclusions
In summary, short-term exposure to PM2.5 and O3 was
associated with lengthening of the PR, QRS, and QTc in-
tervals, and increasd heart rate in patients with cardio-
vascular disease. These findings provide evidence for the
acute effects of air pollution on atrioventricular conduc-
tion and ventricular deporlarization and repolarization,
which could potentially mediate the associations of
air pollution with cardiac arrhythmias and cardiovas-
cular mortality.
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Table S1. Comparison of individual characteristics between participants included and excludes 

in main analyses. 

  Mean ± SD / N (%) 

p-value 
 

Included participants 

(n=5332) 

Excluded participants 

(n=1784) 

Age (years) 59.8 ± 11.7 62.8 ± 12.9 <0.001 

BMI (kg/m2) 30.1 ± 7.2 30.1 ± 7.5 0.90 

Sex (male) 3237 (60.7) 1131 (63.4) 0.05 

Race   < 0.001 

    European-Americans 3854 (72.3) 1369 (76.7)  

    African-Americans 1188 (22.3) 263 (14.7)  

    Others 290 (5.4) 152 (8.5)  

Smoking (never smoker) 2753 (51.6) 901 (50.5) 0.43 

Education (high) 3231 (60.6) 961 (53.9) < 0.001 

Area (rural) 2953 (55.4) 1199 (67.2) < 0.001 

CAD-index > 23 (yes)a 2418 (50.4) 816 (49.5) 0.56 

History of MI (yes) 1449 (27.2) 496 (27.8) 0.63 

SD: standard deviation; BMI: body mass index; CAD: coronary artery disease; MI: myocardial 

infarction. 

a Data on CAD-index were available for 5246 included participants and 1203 excluded 

participants. 
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Table S2. Percent change (95% CI) of the geometric mean of ECG parameters per interquartile 

range increase in PM2.5 and O3 below the NAAQS¶. 

ECG parameter Lag (day) PM2.5 O3 

PR 0 -0.10 (-0.29, 0.08) -0.01 (-0.29, 0.26) 

 1 -0.08 (-0.27, 0.10) 0.06 (-0.22, 0.34) 

 2 -0.02 (-0.20, 0.17) -0.02 (-0.29, 0.26) 

 3 0.18 (0.00, 0.37) * 0.09 (-0.18, 0.37) 

 4 0.08 (-0.10, 0.27) 0.29 (0.01, 0.56)* 

 04 0.03 (-0.26, 0.32) 0.18 (-0.23, 0.58) 
    

QRS 0 0.11 (-0.02, 0.24) -0.10 (-0.29, 0.09) 

 1 0.02 (-0.11, 0.15) -0.05 (-0.25, 0.14) 

 2 -0.02 (-0.15, 0.11) -0.09 (-0.28, 0.11) 

 3 0.02 (-0.11, 0.15) -0.02 (-0.21, 0.18) 

 4 0.09 (-0.03, 0.22) 0.13 (-0.06, 0.33) 

 04 0.11 (-0.09, 0.31) -0.05 (-0.34, 0.23) 
    

QTc 0 0.12 (0.02, 0.22) * 0.19 (0.04, 0.34)* 

 1 0.06 (-0.04, 0.16) 0.22 (0.07, 0.38)** 

 2 0.03 (-0.07, 0.13) 0.08 (-0.07, 0.23) 

 3 0.07 (-0.03, 0.17) -0.02 (-0.17, 0.13) 

 4 0.11 (0.01, 0.21) * -0.01 (-0.16, 0.14) 

 04 0.19 (0.03, 0.35) * 0.20 (-0.02, 0.42) 
    

HR 0 0.15 (-0.16, 0.46) 0.00 (-0.46, 0.46) 

 1 0.41 (0.10, 0.73) ** 0.28 (-0.19, 0.76) 

 2 0.16 (-0.15, 0.47) 0.12 (-0.35, 0.60) 

 3 -0.19 (-0.50, 0.11) -0.36 (-0.82, 0.11) 

 4 0.08 (-0.23, 0.39) -0.13 (-0.59, 0.34) 

 04 0.29 (-0.19, 0.78) -0.04 (-0.72, 0.65) 

CI: confidence interval; ECG: electrocardiogram; PM2.5: particulate matter ≤ 2.5 µm in 

aerodynamic diameter; O3: ozone; NAAQS: U.S. National Ambient Air Quality Standards; 

QTc: heart rate-corrected QT interval; HR: heart rate. 

¶ Number of ECGs with exposure below the NAAQS (35 µg/m3 for PM2.5 and 70 ppb for O3) 

were 26255 on 5205 participants. 

* p-Value <0.05; ** p-Value <0.01.
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Figure S1. Flow chart of the exclusion procedure. 

 

Participants without ECG measurement 

during the study period (2001-2012) 

N = 907 

Participants having ECG with the 

diagnosis of atrial fibrillation, atrial 

flutter, multifocal atrial tachycardia, or 

paced rhythms, or with non-

physiological parameter values 

N = 344  

Participants without complete data on 

investigated ECG parameters or 

covariates in the main model, or whose 

home addresses were not available for 

geocoding 

N = 44 

Participants with bundle branch block 

N = 489 

CATHGEN Cohort 

Participants residing in NC 

N = 7116 

Participants for analysis 

N=5332 
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Figure S2. Effect modification (percent change with 95% CI) by participant characteristics on the associations of 

air pollution with ECG parameters.  

* p-Value <0.05. 

CI: confidence interval; ECG: Electrocardiogram; PM2.5: particulate matter ≤ 2.5 µm in aerodynamic diameter; 

O3: ozone; GM: geometric mean; IQR: interquartile range; QTc: heart rate-corrected QT interval; HR: heart rate; 

CAD: coronary artery disease.
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Figure S3. Percent change (95% CI) of the geometric mean of the PR, QRS, and raw QT intervals 

per interquartile range increase in PM2.5 and O3 in models with adjustment for HR. 

CI: confidence interval; PM2.5: particulate matter ≤ 2.5 µm in aerodynamic diameter; O3: ozone; 

HR: heart rate; GM: geometric mean; IQR: interquartile range. 
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Figure S4. Comparison of the air pollution effects (percent change with 95% CI) on different 

ventricular repolarization indicators.  

CI: confidence interval; PM2.5: particulate matter ≤ 2.5 µm in aerodynamic diameter; O3: ozone; 

GM: geometric mean; IQR: interquartile range; QTc_Bazett: heart rate-corrected QT interval 

calculated using the Bazett formula; QTc_Fridericia: heart rate-corrected QT interval calculated 

using the Fridericia formula; JTc: corrected JT interval calculated by subtracting QRS from 

QTc_Bazett.
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Figure S5. Percent change (95% CI) of the geometric mean of ECG parameters per interquartile range increase 

in PM2.5 and O3 among participants with QRS ≤ 120 ms and participants with QRS in the full range (50 ms ≤ 

QRS ≤ 170 ms). 

CI: confidence interval; ECG: Electrocardiogram; PM2.5: particulate matter ≤ 2.5 µm in aerodynamic diameter; 

O3: ozone; HR: heart rate; GM: geometric mean; IQR: interquartile range. 
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Figure S6. Percent change (95% CI) of the geometric mean of ECG parameters per interquartile 

range increase in PM2.5 and O3 in sensitivity analyses.  

CI: confidence interval; ECG: Electrocardiogram; PM2.5: particulate matter ≤ 2.5 µm in 

aerodynamic diameter; O3: ozone; QTc: heart rate-corrected QT interval; HR: heart rate; GM: 

geometric mean; IQR: interquartile range.  
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The order of effect estimates in each panel: (1) Main single-pollutant model; (2) two-pollutant 

model; (3) restricted to participants with two or more ECG measurements; (4) degree of freedom 

of time trend = 3/year; (5) degree of freedom of time trend = 5/year; (6) regression models without 

adjustment for season; (7) regression model with adjustment for long-term exposure; (8) 

regression model using spatial correlation structure of ECGs. 
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Longitudinal associations between ambient air pollution 
and insulin sensitivity: results from the KORA cohort study
Siqi Zhang, Sarah Mwiberi, Regina Pickford, Susanne Breitner, Cornelia Huth, Wolfgang Koenig, Wolfgang Rathmann, Christian Herder, 
Michael Roden, Josef Cyrys, Annette Peters, Kathrin Wolf*, Alexandra Schneider*

Summary
Background Impaired insulin sensitivity could be an intermediate step that links exposure to air pollution to the 
development of type 2 diabetes. However, longitudinal associations of air pollution with insulin sensitivity remain 
unclear. Our study investigated the associations of long-term air pollution exposure with the degree and rate of change 
of insulin sensitivity.

Methods In this longitudinal study, we analysed data from the Cooperative Health Research in the Region of Augsburg 
(KORA) cohort from Augsburg, Germany, which recruited participants aged 25–74 years in the survey between 
1999 and 2001 (KORA S4), with two follow-up examinations in 2006–08 (KORA F4) and 2013–14 (KORA FF4). Serum 
concentrations of fasting insulin and glucose, and homoeostasis model assessment of insulin resistance (HOMA-IR, 
a surrogate measure of insulin sensitivity) and β-cell function (HOMA-B, a surrogate marker for fasting insulin 
secretion) were assessed at up to three visits between 1999 and 2014. Annual average air pollutant concentrations at 
the residence were estimated by land-use regression models. We examined the associations of air pollution with 
repeatedly assessed biomarker levels using mixed-effects models, and we assessed the associations with the annual 
rate of change in biomarkers using quantile regression models.

Findings Among 9620 observations from 4261 participants in the KORA cohort, we included 6008 (62·5%) observations 
from 3297 (77·4%) participants in our analyses. Per IQR increment in annual average air pollutant concentrations, 
HOMA-IR significantly increased by 2∙5% (95% CI 0∙3 to 4∙7) for coarse particulate matter, by 3∙1% (0∙9 to 5∙3) 
for PM2·5, by 3∙6% (1∙0 to 6∙3) for PM2·5absorbance, and by 3∙2% (0∙6 to 5∙8) for nitrogen dioxide, and borderline 
significantly increased by 2∙2% (–0∙1 to 4∙5) for ozone, whereas it did not significantly increase for the whole range 
of ultrafine particles. Similar positive associations in slightly smaller magnitude were observed for HOMA-B and 
fasting insulin levels. In addition, air pollutant concentrations were positively associated with the annual rate of 
change in HOMA-IR, HOMA-B, and fasting insulin. Neither the level nor the rate of change of fasting glucose were 
associated with air pollution exposure.

Interpretation Our study indicates that long-term air pollution exposure could contribute to the development of 
insulin resistance, which is one of the key factors in the pathogenesis of type 2 diabetes.

Funding German Federal Ministry of Education and Research.

Copyright © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 
license.

Introduction
Increasing prevalence of type 2 diabetes in the past 
decades has contributed to a rising global burden of 
mortality and disability.1 Besides traditional risk factors, 
such as being overweight and having sedentary life­
styles, cumulative evidence is pointing to an association 
between ambient air pollution and a higher risk for 
type 2 diabetes.2–5 It was estimated that in 2016, around 
3∙2 million incident diabetes cases and more than 
0∙2 million deaths from diabetes worldwide were 
attributable to exposure to PM2∙5.6

Although the association is established, the underlying 
mechanisms through which air pollution increases 
the risk for type 2 diabetes remain unclear. Insulin 
resis tance is a key factor in the pathogenesis of type 2 
diabetes.7 Recent studies have shown that long­term 

air pollution exposure was associated with decreased 
insulin sensitivity among the general population of adults 
and youth,8–10 patients with diabetes,11 and individ uals 
prone to type 2 diabetes,12–14 suggesting impaired insulin 
sensitivity could be an important intermediate step linking 
air pollution to the development of type 2 diabetes. 
Although most existing evidence is from cross­sectional 
studies, the longitudinal association between air pollution 
and insulin sensitivity has not been fully investigated.14,15

In addition, decreasing insulin sensitivity over time has 
been identified as a predictor of incident hyperglycaemia 
and type 2 diabetes, independent of baseline metabolic 
measures in prospective studies.16,17 However, the effects of 
air pollution on the change of insulin sensitivity over time 
have rarely been reported in population­based studies 
to date. A cohort study14 on Latino children who were 

http://crossmark.crossref.org/dialog/?doi=10.1016/S2542-5196(20)30275-8&domain=pdf
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overweight or obese showed that long­term exposure to 
elevated PM2∙5 and nitrogen dioxide (NO2) was associated 
with a faster decrease in insulin sensitivity during a mean 
follow­up of 3∙4 years (SD 3∙1). Such associations are yet 
to be assessed in the general adult population.

In this study, we examined longitudinal associations of 
air pollution with the repeatedly assessed homoeostasis 
model assessment of insulin resistance (HOMA­IR), as a 
surrogate marker of insulin sensitivity, and the homoeo­
stasis model assessment of β­cell function (HOMA­B), 
as a surrogate marker of fasting insulin secretion, as well 
as fasting insulin and glucose. We also investigated 
whether air pollution was associated with a change in 
those biomarkers over time, and we explored individual 
characteristics potentially related to the susceptibility to 
air pollution effects. We hypothesised that air pollution 
would be positively associated with the level and the rate of 
change of all investigated biomarkers, especially among 
more susceptible subgroups, such as older adults.

Methods
Study design and participants
In this longitudinal study, we analysed data from the 
Cooperative Health Research in the Region of Augsburg 

(KORA) cohort, which was done in the city of Augsburg, 
Germany, and two adjacent counties.18 Between 1999 
and 2001, 4261 participants aged 25–74 years with German 
citizenship were recruited in the fourth cross­sectional 
health survey of the KORA cohort (KORA S4), with 
examinations between Oct 25, 1999, and April 28, 2001. 
Two follow­up examinations were carried out: the first 
follow­up, KORA F4, consisted of 3080 participants with 
examinations between Oct 9, 2006, and May 31, 2008; and 
the second follow­up, KORA FF4, consisted of 2279 par­
ticipants with examinations between June 3, 2013, and 
Sept 27, 2014. Participants were invited to the KORA study 
centre, Augsburg, Germany, and completed a computer­
assisted personal interview, a self­administered question­
naire, and physical examinations at each visit. Individual 
characteristics relevant in the current study are defined in 
the appendix (p 2).

The KORA study was approved by the ethics com ­
mittee of the Bavarian Chamber of Physicians (Munich, 
Germany); all participants gave written informed consent.

Procedures and outcomes
Blood samples were drawn between 0700 h and 1100 h 
after fasting for at least 8 h for the measure ments of 

Research in context

Evidence before this study
We searched PubMed and Google Scholar for studies on air 
pollution and insulin sensitivity published before June 1, 2020, 
using a combination of search terms concerning air pollution 
(“air pollution” OR “air pollutant*” OR “particulate matter” OR 
“PM” OR “ultrafine particles” OR “PNC” OR “soot” OR “black 
carbon” OR “nitrogen dioxide” OR “NO2” OR “ozone” OR “O3”) 
and insulin sensitivity (“insulin resistance” OR “insulin 
sensitivity” OR “insulin” OR “glucose” OR “HOMA-IR”). Studies 
were selected if they were population-based cohort studies that 
could potentially assess longitudinal associations, if they 
assessed long-term air pollution exposure (exposure window 
≥1 year), and if they had insulin sensitivity or resistance as the 
outcome. We identified seven studies, and only one examined 
longitudinal associations of air pollution with both the level 
and the rate of change of insulin sensitivity-related biomarkers 
among Latino children who were overweight or obese. 
One study analysed repeated measurements of biomarkers and 
assessed the association of air pollution with only the degree of 
insulin sensitivity. The remaining five studies did cross-sectional 
analyses on data collected at a single examination in cohorts, 
including two studies of German children and adolescents, 
one on German adults, one on Mexican Americans at high risk 
for diabetes, and one on African-American and Latino youth in 
Los Angeles who were overweight or obese. A meta-analysis 
done in 2018, which included five of the aforementioned 
studies, reported cross-sectional associations of insulin 
sensitivity with particulate matter with an aerodynamic 
diameter of 10 µm and nitrogen dioxide, but not with PM2∙5. 

Overall, little is known about the longitudinal association 
between ambient air pollution and insulin sensitivity, especially 
in the general adult population.

Added value of this study
To the best of our knowledge, this is the first epidemiological 
study on the longitudinal association between ambient air 
pollution and insulin sensitivity in the general adult population. 
Our study found that long-term exposure to air pollution was 
positively associated with the level and the rate of change of 
the homoeostasis model assessment of insulin resistance and 
fasting insulin, suggesting associations of air pollution with 
impaired insulin sensitivity and a more pronounced 
deterioration (or less pronounced improvement) of insulin 
sensitivity over time. In addition, our study found similar 
changes for the homoeostasis model assessment of β-cell 
function, in line with a compensatory increase in insulin 
secretion. Participants who were older, male, unemployed, 
had prediabetes or diabetes, or were physically inactive were 
potentially more susceptible to the adverse air pollution effects 
on insulin sensitivity.

Implications of all the available evidence
Together with the evidence from previous studies, our study 
helps understand the mechanisms through which air pollution 
might be associated with the development of type 2 diabetes. 
Such findings imply an urgent need for air quality improvement 
to mitigate the adverse health effects of air pollution. In addition, 
reducing air pollution exposure could be considered as a 
prevention strategy for type 2 diabetes at the population level.

See Online for appendix
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fasting insulin and glucose concentrations. Blood 
samples were kept on ice after withdrawal and 
transported at 4°C to the laboratories for analysis (to 
the German Diabetes Center laboratory, Düsseldorf, in 
KORA S4, and to the central laboratory in Augsburg in 
KORA F4 and KORA FF4). Detailed information about 
the standard operating procedure, assays of serum 
concentrations of fasting insulin and glucose, and the 
comparability and calibration of diff erent assays is in 
the appendix (p 3). Fasting insulin and glucose in 
KORA S4 were only measured in participants older than 
54 years (n=1357). HOMA­IR was calculated as fasting 
insulin (µIU/mL) × fasting glucose (mmol/L) / 22∙5. 
HOMA­B was calculated as 20 × fasting insulin 
(µIU/mL) / (fasting glucose [mmol/L] – 3∙5). A higher 
HOMA­IR indicates reduced insulin sensitivity, and a 
lower HOMA­B indicates decreased fasting insulin 
secretion. For the validity of the assessment, we excluded 
observations by the timepoint of which glucose­lowering 
medication (Anatomical Therapeutic Chemical code 
A10) had been used.

Annual average concentrations of ultrafine particles 
(particles ≤100 nm in aerodynamic diameter, represented 
by particle number concentration [PNC]), particulate 
matter with an aerodynamic diameter of 2∙5–10 µm 
(PMcoarse), PM2∙5, PM2∙5 absorbance (PM2∙5abs, a proxy of 
elemental carbon related to traffic exhaust), NO2, and 
ozone (O3) were estimated using land­use regression 
(LUR) models. In brief, we carried out three 2­week 
measurements at 20 locations within the KORA study 
area between March 6, 2014, and April 7, 2015, covering 
the warm, cold, and intermediate seasons, and we 
calculated annual average air pollutant concentrations at 
those sites. We built LUR models by regressing the 
measured annual average concentrations in 2014–15 
against geographic information system­based spatial 
predictors, and we applied the fitted models to 
participants’ home addresses to determine residential 
exposure levels. The adjusted model­explained variance 
(R²) ranged from 0∙68 (PMcoarse) to 0∙94 (NO2), and the 
adjusted leave­one­out cross­validation R²s were between 
0∙55 (PMcoarse) and 0∙89 (NO2), indicating good model fit. 
Further information about this approach is given 
elsewhere.19 For participants who moved house during 
the study period, the updated residential addresses were 
used for exposure assignment; otherwise, the same 
exposure levels were assigned across different visits.

To control for potential confounding effects of road 
traffic noise and greenspace, we assigned annual average 
day–night sound level and normalised difference vegeta­
tion index (NDVI) in a 300 m buffer (as a surrogate 
for surrounding greenness) to participants’ residential 
addresses. Assessments of noise and NDVI are in the 
appendix (p 4).

The outcome variables were HOMA­IR, HOMA­B, 
fasting insulin, and fasting glucose. Participant obser­
vations were excluded from analysis if the residential 

address was unavailable, there was no data on fasting 
insulin and glucose, they were taking glucose­lowering 
medication, the blood sample was drawn after 1100 h, or 
there were missing values in the covariates of the main 
model.

Statistical analysis
We applied linear mixed­effects models with random 
intercepts for participants to examine associations of air 
pollution with repeatedly assessed HOMA­IR, HOMA­B, 
fasting insulin, and fasting glucose levels. All outcome 
values were natural log­transformed to increase the con­
formity to normal distributions of residuals. Covariates 
in models were selected a priori on the basis of the 
disjunctive cause criterion,20 the covariate being the cause 
of either the exposure or the outcome, or both, but not in 
the potential causal pathway linking exposure to the 
outcome. Minimum models were adjusted for age, sex, 
body­mass index (BMI), visits (KORA S4, KORA F4, or 
KORA FF4), and the yearly season of blood withdrawal. 
Main models additionally included educational attain­
ment, occupational status, smoking status and pack­years, 
alcohol consumption, and physical activity. Extended 
models were further controlled for waist–hip ratio, high­
density lipoprotein, and total cholesterol. To assess the 
potential confounding effect of residential road traffic 
noise and greenspace, we built a second extended model 
by adding noise and NDVI to the main model. Annual 
average air pollutant concentrations were included 
separately in each model as a linear term. Effect estimates 
are presented as percent changes with 95% CIs in the 
geometric mean of the repeatedly assessed biomarker 
per IQR increase in air pollutant concentrations. We 
examined the linearity of the exposure–response 
relationship using a penalised spline of the air pollutant 
with degrees of freedom chosen by generalised cross 
validation.

For participants with biomarkers measured at more 
than one visit, we calculated the annual rate of change in 
HOMA­IR, HOMA­B, fasting insulin, and fasting glucose 
as the slope coefficient of a linear regression of bio­
marker levels regressed against years since baseline 
(KORA S4 or KORA F4, whichever the first measurement 
occurred in). Because the rate values were not normally 
distributed and the log­transformation was not applicable 
to negative values, we assessed associations between air 
pollution and the annual rate of change in biomarkers 
(original scale) using quantile regression models, which 
do not make assumptions about the residual distribution 
and are more robust to outliers in the outcome. To 
reduce the selection bias introduced by the selection of 
individuals with more than one measurement, we first 
estimated the weight for the included participants using 
the inverse probability weighting approach.21 Specifically, 
we modelled the probability of being included in the rate 
of change analysis among all participants in KORA S4 via 
logistic regression, using individual characteristics in the 
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main mixed­effects model as predictors. The inverse of 
the predicted probability derived from the regression 
model was used as the weight in the quantile regression 
model, aiming to up­weight participants who were 
under­represented in the rate of change analysis. The 
quantile regression model was adjusted for baseline 
covariates including age, sex, BMI, educational attain­
ment, occupational status, smoking status and pack­
years, alcohol consumption, physical activity, and 

baseline levels of the investigated biomarker, as well as 
annual rates of change in BMI and smoking pack­years, 
and an indicator for the visits used in the calculation of 
the rate of change. Results are presented as absolute 
changes (with 95% CIs) in the annual rate of change at 
deciles of the distribution of rate values per IQR increase 
in air pollutant concentrations.

Effect modification was investigated by including an 
interaction term between the air pollutant and the 
potential effect modifier, which was assessed at each 
visit for the mixed­effects models and at the first visit for 
the quantile regression models. The examined modifiers 
included age (<60 years vs ≥60 years), sex (male vs 
female), educational attainment (high vs low), occupa­
tional status (employed vs not employed), smoking 
status (current vs former smoker or never), physical 
activity (low vs medium or high), obesity (BMI <30 kg/m² 
vs ≥30 kg/m²), and diabetes status (normal glucose 
tolerance vs prediabetes or diabetes).

In sensitivity analyses, we first built two­pollutant 
models by simultaneously including two pollutants 
that were not strongly correlated (r <0∙7). Second, we 
excluded observations with fasting insulin higher than 
the 90th percentile in KORA S4, to generate a similar 
distribution across the three visits. Third, we excluded 
participants who moved during the study period to 
reduce exposure misclassification. Fourth, we excluded 
observations without a documented time of blood 
withdrawal. Moreover, we did the following sensitivity 
analyses for only the repeated measurements (mixed­
effects model). We excluded outliers in outcomes 
defined as natural log­transformed values less than 
Q1 – 1∙5 × IQR or more than Q3 + 1∙5 × IQR (appendix 
p 11). Additionally, we adjusted for fasting insulin or 
fasting glucose in models of HOMA­IR and HOMA­B, 
and we used back­extrapolated annual average air 
pollutant concentra tions in the year of each visit 
instead of the LUR­estimated annual average in 2014–15, 
which further took into account the temporal variation 
in exposure. A detailed description of the back­extra­
polation approach is in the appendix (pp 4–5). For the 
annual rate of change analysis, we fitted models without 
control for the annual rate of change in BMI and 
smoking pack­years to examine the effect of time­
varying adjustment, and models with control for road 
traffic noise and NDVI.

All statistical analyses were done with R (version 3.6.2), 
and the significance level was set at two­sided p value of 
less than 0∙05.

Role of the funding source
The funder of the study had no role in study design, 
data collection, data analysis, or data interpretation, the 
writing of the report, or the decision to submit the paper 
for publication. All authors had full access to all the data 
in the study, and the corresponding author had final 
responsibility for the decision to submit for publication.

KORA S4 
examination 
(n=1312)*†

KORA F4 
examination 
(n=2704)†

KORA FF4 
examination 
(n=1992)†

HOMA-IR 3∙7 (5∙1); 
median 2∙5

2∙6 (2∙1); 
median 2∙0

2∙7 (2∙1); 
median 2∙1

HOMA-B 137∙8 (202∙9); 
median 99∙0

120∙0 (66∙4); 
median 104∙9

109∙6 (62∙1); 
median 95∙1

Fasting insulin, µIU/mL 14∙1 (19∙5); 
median 10∙1

10∙6 (7∙2); 
median 8∙7

10∙6 (6∙9); 
median 8∙9

Fasting glucose, mg/dL 102∙4 (17∙2); 
median 99∙0

95∙8 (14∙3); 
median 93∙0

98∙9 (14∙0); 
median 97∙0

Age, years 63∙9 (5∙5) 55∙2 (12∙9) 59∙6 (12∙3)

Sex

Female 635 (48%) 1407 (52%) 1041 (52%)

Male 677 (52%) 1297 (48%) 951 (48%)

Body-mass index (kg/m²) 28∙4 (4∙2) 27∙4 (4∙6) 27∙5 (4∙9)

Occupation (employed) 313 (24%) 1581 (58%) 1165 (58%)

Education (high) 1049 (80%) 2492 (92%) 1867 (94%)

Smoking pack-years 14∙2 (23∙1) 11∙9 (18∙8) 11∙4 (18∙0)

Smoking status

Current smoker 183 (14%) 505 (19%) 320 (16%)

Former smoker 493 (38%) 1037 (38%) 803 (40%)

Never 636 (48%) 1162 (43%) 869 (44%)

Alcohol consumption

No 338 (26%) 790 (29%) 526 (26%)

Moderate 702 (54%) 1430 (53%) 1093 (55%)

High 272 (21%) 484 (18%) 373 (19%)

Physical activity

Low 534 (41%) 830 (31%) 529 (27%)

Medium 540 (41%) 1191 (44%) 931 (47%)

High 238 (18%) 683 (25%) 532 (27%)

Diabetes status‡

Normal glucose tolerance 596 (46%) 1690 (64%) 1045 (54%)

Prediabetes 588 (45%) 812 (31%) 751 (39%) 

Diabetes 124 (9%) 156 (6%) 137 (7%)

Waist–hip ratio‡ 0∙90 (0∙08) 0∙88 (0∙09) 0∙90 (0∙09)

Cholesterol, mg/dL‡ 243∙3 (41∙8) 217∙1 (39∙4) 217∙9 (39∙2)

HDL, mg/dL‡ 58∙3 (16∙4) 56∙2 (14∙4) 66∙3 (18∙8)

Data are mean (SD) or n (%), unless otherwise indicated. KORA=Cooperative Health Research in the Region of 
Augsburg. S4=fourth cross-sectional health survey of the KORA cohort. F4=first follow-up examination of KORA S4. 
FF4=second follow-up examination of KORA S4. HOMA-IR=homeostasis model assessment of insulin 
resistance. HOMA-B=homeostasis model assessment of β-cell function. HDL=high-density lipoproteins. *Participants 
in KORA S4 were restricted to individuals older than 54 years. †Medians of some outcomes were reported due to their 
skewed distributions. ‡Diabetes status was missing for four (<0∙5%) participants in in KORA S4, 46 (2%) in KORA F4, 
and 59 (3%) in KORA FF4; waist–hip ratio was missing for one (<0∙5%) participant in KORA FF4; cholesterol was 
missing for one (<0∙5%) participant in KORA S4; and HDL was missing for two (<0∙5%) participants in KORA S4.

Table 1: Descriptive statistics of participant characteristics at each examination
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Results
Among 9620 observations from 4261 partici pants in the 
KORA cohort, we included 6008 (62·5%) observations 
from 3297 (77·4%) participants in our ana lyses. The 
exclusion process is detailed in the appendix (p 12). 
Altogether, 466 (14·1%) of 3297 participants com pleted all 
three examinations, 1776 (53·9%) completed two, and the 
remaining 1055 (32·0%) completed one examination, 
giving a total of 1312 participants in KORA S4, 2704 in 
KORA F4, and 1992 in KORA FF4. In general, the dis­
tributions of fasting insulin and glucose concentrations 
were similar across KORA S4, KORA F4, and KORA FF4 
among participants of the same age range, except that 
the 90th percentile of fasting insulin in KORA S4 was 
higher than that in KORA F4 and KORA FF4. In addition, 
these concentration dis tributions did not show substantial 
diurnal variations between 0700 h and 1100 h (appendix 
p 10).

Due to the age restriction in KORA S4 (fasting insulin 
and glucose were only measured in participants aged 
>54 years), only 1366 (32·1%) of 4261 participants con­
tributed data on HOMA­IR, HOMA­B, fasting insulin, 
and fasting glucose, and thus, KORA S4 participants 
were on average older and had higher mean concen­
trations of these biomarkers than KORA F4 and 
KORA FF4 participants (table 1). We observed moderate 
to strong positive correlations between these biomarkers, 
except for a weak negative correlation between HOMA­B 
and fasting glucose (appendix p 13). Compared with 
all KORA par ticipants, participants included in the 
analysis of repeated measurements had generally similar 
characteristics, whereas participants in the rate of 
change analysis had lower BMI and smoke exposure, and 
higher educational attainment, alcohol consumption, 
and physical activity at recruitment (appendix p 6).

The annual rate of change in HOMA­IR ranged 
from –6∙20 to 3∙96 units per year, with a median of 
0∙03 (IQR –0∙05 to 0∙12) units per year (appendix p 7). 
Participants with increasing HOMA­IR (n=1336) were 
more likely to have normal glucose tolerance and 
lower HOMA­IR, HOMA­B, fasting insulin, and fasting 
glucose at the first visit than were participants with 
unchanged (n=12) or decreasing (n=894) HOMA­IR over 
time; this pattern was reversed for the last visit (appendix 
p 8). Although BMI was similar between the two sub­
groups with increasing or unchanged and decreasing 
HOMA­IR at the first visit, it tended to be higher among 
participants with increasing HOMA­IR at the last visit.

Annual average concentrations of PM2∙5 and NO2 at 
participants’ residences were well below the EU air 
quality standards values of 25 µg/m³ for PM2·5 and 
40 µg/m³ for NO2, although the PM2∙5 level exceeded the 
WHO guideline value of 10 µg/m³ (table 2). Correlations 
between air pollutants were moderate to strong, except 
for weak correlations with O3 (appendix p 13).

Concerning repeated measurements of biomarkers, 
elevated PMcoarse, PM2∙5, PM2∙5abs, NO2, and, to a lesser 

extent, O3, were linearly associated with increases in 
HOMA­IR, HOMA­B, and fasting insulin (table 3). We 
did not find associations between air pollution and 
fasting glucose. The results were robust to the adjustment 
for additional covariates in the extended models; only 
PM2∙5abs and NO2 effects on HOMA­IR and fasting insulin 
slightly increased with further control for noise and 
NDVI (appendix p 14). Exposure–response relationships 
did not substantially deviate from linearity except for 
PNC with HOMA­IR, HOMA­B, and fasting insulin 
(appendix p 15). When restricting our analyses to the 
linear section of the relationship (PNC <12∙7 × 10³/cm³), 
we observed positive associations of PNC with HOMA­IR, 
HOMA­B, and fasting insulin.

Mean (SD) Range Median (IQR)

PNC, ×10³/cm³ 7∙3 (1∙8) 3∙2–15∙7 7∙3 (6∙2–8∙2)

PMcoarse, μg/m³ 5∙0 (1∙0) 2∙5–9∙2 5∙0 (4∙3–5∙7)

PM2∙5, μg/m³ 11∙8 (1∙0) 8∙3–14∙8 11∙9 (11∙1–12∙5)

PM2∙5abs, 10–⁵/m 1∙2 (0∙2) 0∙8–1∙9 1∙2 (1∙1–1∙4)

NO2, μg/m³ 14∙4 (4∙5) 6∙9–28∙2 14∙0 (10∙8–17∙9)

O3, μg/m³ 39∙0 (2∙4) 31∙3–46∙2 39∙0 (37∙2–40∙7)

Road traffic noise, dB 54∙8 (6∙6) 22∙3–75∙4 53∙9 (50∙6–58∙6)

NDVI 0∙1 (0∙1) 0∙0–0∙3 0∙1 (0∙0–0∙1)

Exposure levels were estimated at participants’ residences in KORA S4 in this 
descriptive analysis. For 19 participants whose residential information was missing 
in the KORA S4 survey, residential addresses in KORA F4 were used. 
NDVI=normalised difference vegetation index. NO2=nitrogen dioxide. O3=ozone. 
PMcoarse=particulate matter with an aerodynamic diameter of 2∙5–10 µm. 
PM2∙5abs=PM2∙5 absorbance. PNC=particle number concentration. KORA=Cooperative 
Health Research in the Region of Augsburg. S4=fourth cross-sectional health 
survey of the KORA cohort. F4=first follow-up examination of KORA S4. 

Table 2: Distribution of annual average air pollutant concentrations, 
road traffic noise, and NDVI at residences (n=3297)

HOMA-IR HOMA-B Fasting insulin Fasting glucose

PNC 0∙7 (–1∙0 to 2∙4) 0∙8 (–0∙8 to 2∙4) 0∙7 (–0∙8 to 2∙3) –0∙1 (–0∙4 to 0∙3)

PNC (linear)* 2∙1 (0∙2 to 4∙0) 2∙3 (0∙5 to 4∙1) 2∙1 (0∙4 to 3∙9) 0∙0 (–0∙5 to 0∙4)

PMcoarse 2∙5 (0∙3 to 4∙7) 2∙0 (–0∙1 to 4∙0) 2∙4 (0∙4 to 4∙4) 0∙1 (–0∙4 to 0∙6)

PM2∙5 3∙1 (0∙9 to 5∙3) 2∙7 (0∙6 to 4∙7) 3∙0 (1∙0 to 5∙0) 0∙1 (–0∙4 to 0∙6)

PM2∙5abs 3∙6 (1∙0 to 6∙3) 2∙7 (0∙2 to 5∙2) 3∙4 (1∙0 to 5∙9) 0∙2 (–0∙4 to 0∙8)

NO2 3∙2 (0∙6 to 5∙8) 2∙5 (0∙1 to 4∙9) 3∙1 (0∙7 to 5∙4) 0∙2 (–0∙4 to 0∙7)

O3 2∙2 (–0∙1 to 4∙5) 1∙0 (–1∙1 to 3∙2) 1∙9 (–0∙2 to 4∙0) 0∙3 (–0∙3 to 0∙8)

Mixed-effects models for repeated measurements of biomarkers were adjusted for age, sex, BMI, visits, season, 
educational attainment, occupational status, smoking status and pack-years, alcohol consumption, and physical activity. 
Outcome variables were natural log-transformed in analyses, and the effect estimates are presented as the percentage 
changes in the geometric mean of repeatedly assessed biomarkers. The geometric mean was 2∙2 for HOMA-IR, 102∙3 for 
HOMA-B, 9∙4 µIU/mL for fasting insulin, and 97∙3 mg/dL for fasting glucose. An IQR increase was 2∙0 × 10³/cm³ for PNC, 
1∙4 μg/m³ for PMcoarse, 1∙4 μg/m³ for PM2∙5, 0∙3 × 10–⁵/m for PM2∙5abs, 7∙1 μg/m³ for NO2, and 3∙5 μg/m³ for O3. 
HOMA-IR=homeostasis model assessment of insulin resistance. HOMA-B=homeostasis model assessment of β-cell 
function. PNC=particle number concentration. PMcoarse=particulate matter with an aerodynamic diameter of 2∙5–10 µm. 
PM2∙5abs=PM2∙5 absorbance. NO2=nitrogen dioxide. O3=ozone. *Exposure–response relationships between the whole range 
of PNC and repeated measurements of HOMA-IR, HOMA-B, and fasting insulin were not linear. We restricted the analyses 
to PNC <12∙7 × 10³/cm³ (cutoff values suggested by the exposure–response curve; n=5927) to assess the linear 
relationship. The association between PNC and fasting glucose was also investigated in the reduced PNC range.

Table 3: Percentage changes (95% CIs) in the repeated measurements (n=6008) of biomarkers per IQR 
increase in air pollutant concentrations
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The annual rate of change in HOMA­IR was positively 
associated with PNC, PM2∙5abs, and NO2 at the 10th to 
70th percentiles of the rate value distribution (ie, rate of 
change ≤0∙10 units per year), with PMcoarse at all deciles, 
with PM2∙5 at lower percentiles, and with O3 at higher 
percentiles (figure 1; appendix p 9). Positive associations at 
rate values above zero (ie, the 40th to 90th percentiles) 
indicate air pollution­related greater decline in insulin 
sensitivity over time, whereas positive associations at rate 

values below zero indicate that air pollution attenuated 
improvement in insulin sensitivity. Particles and NO2 were 
positively associated with the annual rate of change in 
HOMA­B and fasting insulin, with exceptions at the lowest 
or highest end, or both, for PM2∙5, PM2∙5abs, and NO2 (figure 2; 
appendix pp 9, 16). Associations of O3 with HOMA­B and 
fasting insulin were similar to those with HOMA­IR. No 
consistent associations were observed for the annual rate of 
change in fasting glucose (appendix pp 9, 17).

Figure 1: Absolute changes (95% CIs) in the annual rate of change in HOMA-IR at deciles of the distribution per IQR increase in air pollutant concentrations
Quantile regression models for the annual rate of change were adjusted for baseline levels of the investigated biomarker, age (baseline), sex, BMI (baseline), 
annual rate of change in BMI, educational attainment (baseline), occupational status (baseline), smoking status and pack-years (baseline), annual rate of change in 
smoking pack-years, physical activity (baseline), and an indicator for the visits used in the calculation of the rate of change. Area on the left side of the dashed line 
indicates increasing insulin sensitivity over years (annual rate of change below zero); area on the right side of the dashed line indicates decreasing insulin sensitivity 
over years (annual rate of change above zero). Values (ie, 0∙1–0∙9) above the error bars indicate deciles of the distribution of the annual rate of change. An IQR increase 
was 2∙0 × 10³/cm³ for PNC, 1∙4 μg/m³ for PMcoarse, 1∙4 μg/m³ for PM2∙5, 0∙3 × 10–⁵/m for PM2∙5abs, 7∙1 μg/m³ for NO2, and 3∙5 μg/m³ for O3. HOMA-IR=homeostasis model 
assessment of insulin resistance. PNC=particle number concentration. PMcoarse=particulate matter with an aerodynamic diameter of 2∙5–10 µm. PM2.5abs=PM2∙5 absorbance. 
NO2=nitrogen dioxide. O3=ozone.
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The associations of particles and NO2 with repeated 
measurements of HOMA­IR, HOMA­B, and fasting 
insulin were significantly stronger among participants 
who were older than 60 years, male, or not employed, 
and suggestively stronger among physically inactive 
individuals (appendix pp 18–19). Males also showed 
higher susceptibility to air pollution effects on fasting 
glucose. For the annual rate of change, we observed 
stronger associations of particles and NO2 with 

HOMA­IR, fasting insulin, and fasting glucose (rate 
values above zero) among older adults, and with 
HOMA­IR, HOMA­B, and fasting insulin among males 
and participants with prediabetes or diabetes (examples 
in the appendix pp 20–21). No effect modification was 
found for other potential modifiers (data not shown).

In terms of sensitivity analysis, the associations of 
particles and NO2 with repeated measurements of 
biomarkers were robust to additional adjustment for O3, 

Figure 2: Absolute changes (95% CIs) in the annual rate of change in HOMA-B at deciles of the distribution per IQR increase in air pollutant concentrations
Quantile regression models for the annual rate of change were adjusted for baseline levels of the investigated biomarker, age (baseline), sex, BMI (baseline), annual 
rate of change in BMI, educational attainment (baseline), occupational status (baseline), smoking status and pack-years (baseline), annual rate of change in smoking 
pack-years, physical activity (baseline), and an indicator for the visits used in the calculation of the rate of change. Area on the left side of the dashed line indicates 
decreasing insulin secretion over years (annual rate of change below zero); area on the right side of the dashed line indicates increasing insulin secretion over years 
(annual rate of change above zero). Values (ie, 0∙1–0∙9) above the error bars indicate deciles of the distribution of the annual rate of change. An IQR increase was 
2∙0 × 10³/cm³ for PNC, 1∙4 μg/m³ for PMcoarse, 1∙4 μg/m³ for PM2∙5, 0∙3 × 10–⁵/m for PM2∙5abs, 7∙1 μg/m³ for NO2, and 3∙5 μg/m³ for O3. HOMA-B=homeostasis model 
assessment of β-cell function. PNC=particle number concentration. PMcoarse=particulate matter with an aerodynamic diameter of 2∙5–10 µm. PM2.5abs=PM2∙5 absorbance. 
NO2=nitrogen dioxide. O3=ozone.
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and vice versa (appendix p 22). Adjustment for PM2∙5 
attenuated the effect estimates of other particles, and 
the effect estimates of PM2∙5 slightly decreased after 
including PMcoarse and PM2∙5abs. For the annual rate of 
change, the effect estimates of PM2∙5 were attenuated 
by adjustment for PNC, PMcoarse, and PM2∙5abs. The other 
associations remained stable in two­pollutant models 
(appendix pp 23–26).

Associations between air pollution and biomarkers 
were generally robust in sensitivity analyses (appendix 
pp 27, 29–32). However, air pollution effects on repeated 
measurements of HOMA­IR and HOMA­B substantially 
decreased when controlled for fasting insulin (appendix 
p 28). Additionally, further adjustment for road traffic 
noise and NDVI increased the effects of air pollution 
on the annual rate of change in HOMA­IR, fasting 
insulin, and fasting glucose. Excluding observations 
with fasting insulin in KORA S4 that were higher than 
the 90th percentile attenuated effects on the annual rate 
of change in fasting insulin at specific percentiles.

Discussion
In this longitudinal study with biomarkers measured up 
to three times, participants exposed to elevated particulate 
matter, NO2, and O3 had higher levels of HOMA­IR, 
HOMA­B, and fasting insulin. Moreover, we observed 
positive associations between air pollution and the 
annual rate of change in HOMA­IR, HOMA­B, and 
fasting insulin over time. No significant associations 
were found between air pollution and fasting glucose in 
the whole study population. Participants who were older 
than 60 years, male, not employed, physically inactive, 
or who had prediabetes or diabetes were potentially 
more susceptible to the effects of air pollution on the 
investigated biomarkers.

Insulin resistance is characterised by a lower response 
of tissues to insulin stimulation and is usually measured 
as impaired insulin­stimulated skeletal muscle glucose 
uptake and glycogen synthase activity.22 It has an important 
role in the development of type 2 diabetes and is also 
associated with higher incident cardiovascular disease.23 
Our finding of positive associations between air pollution 
and HOMA­IR and fasting insulin levels suggest an air 
pollution­related decrease in insulin sensitivity. Consistent 
findings were reported in our previous cross­sectional 
analyses10 on data from KORA F4, as well as among 
children and adolescents in two German birth cohorts8,9 
and a US childhood obesity study,12 and among Mexican­
American adults with higher risks of type 2 diabetes.13 
However, other long­term exposure studies did not find 
significant associations between air pollution and insulin 
sensitivity, including the Framingham Heart Study15 and 
the Meta­AIR study.24 The mixed results could be partly 
due to different population susceptibility. Studies have 
shown that children are more susceptible to adverse 
health effects of air pollution because of their higher 
minute ventila tion, higher levels of physical activity, and 

dynamic developmental physiology.25 Individuals with 
higher genetic risk of type 2 diabetes were also shown to 
be more susceptible to the effects of particulate matter 
on diabetes.26 Moreover, effects on insulin sensitivity could 
vary across different air pollutants; for example, stronger 
effects have been observed for traffic­related exposure 
metrics than for PM2∙5.15

In addition, we observed positive associations of air 
pollution with the annual rate of change in HOMA­IR 
and fasting insulin, suggesting a faster deterioration of 
insulin sensitivity related to air pollution exposure. In 
the subgroup with increasing insulin sensitivity over 
time (annual rate of change below zero), which might be 
attributable to beneficial lifestyle changes, weight loss, or 
both, such positive associations indicate that elevated 
air pollution exposure could slow down the process of 
improvement. So far, air pollution effects on the 
change in insulin sensitivity were assessed only among 
314 Latino children (8–15 years) in Los Angeles who were 
over weight or obese, showing that long­term exposure 
to PM2∙5 and NO2 was associated with an increased 
decline in insulin sensitivity.14 Our study replicated these 
findings among the general adult population, and further 
provided evidence for the heterogeneity of air pollutant 
effects across different degrees of change in insulin 
sensitivity.

Our study did not find associations between air 
pollution and fasting glucose, and the air pollution 
effects on HOMA­IR were attenuated only by further 
adjustment for fasting insulin. These findings indicate 
that the positive associations between air pollution and 
HOMA­IR are mainly driven by the air pollution­related 
increase in fasting insulin rather than fasting glucose. 
This conclusion is supported by the theory that impaired 
insulin sensitivity might first lead to an increase in 
insulin secretion to compensate for reduced insulin 
signalling and maintain normal glucose tolerance.27 
Therefore, our positive associations between air pollution 
and HOMA­B indicate increased fasting β­cell insulin 
secretion in response to impaired insulin sensitivity, 
rather than improved β­cell function.

Several mechanisms have been proposed whereby air 
pollution could potentially affect insulin sensitivity. For 
example, air pollution exposure has been shown to 
increase systemic levels of pro­inflammatory cytokines, 
such as tumour necrosis factor­α and interleukin­1. 
These cytokines could contribute to the development of 
insulin resistance by activating c­Jun N­terminal kinase, 
which inhibits insulin signalling through serine 
phosphorylation of insulin receptor substrate proteins.28 
In addition, PM2∙5 exposure was shown to induce 
pulmonary oxidative stress, thereby decreasing AKT 
and endothelial nitric oxide synthase phosphorylation, 
and impairing insulin signalling via the PI3­kinase–
AKT pathway.29,30 Moreover, air pollution­mediated over­
activity of the sympathetic nervous system could further 
exacerbate insulin resistance.31
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Our study identified subgroups with stronger responses 
to the effect of air pollution on insulin sensitivity. 
Such predisposition is determined by both intrinsic and 
external factors. The greater susceptibility of older adults 
has been frequently reported, which could be explained 
by declines in physiological processes (eg, reduced 
clearance of particulate matter) and a higher prevalence 
of pre­existing diseases that might confer increased risks 
for adverse health effects.32 The sex­related difference in 
the effects of air pollution is potentially associated with 
sex­specific biological, social, or behavioural traits that 
could affect the deposition rate of pollutants and expo sure 
patterns. Given the currently mixed evidence regarding 
effect modification by sex,33 further investigation is 
needed to elucidate possible mechanisms. Stronger 
associations in participants with prediabetes or diabetes 
could be related to their chronic inflammatory state,34 
which might enhance the inflammatory response to air 
pollution.26,35 Additionally, these participants might have 
a higher genetic risk of type 2 diabetes and thus be 
more susceptible to air pollution effects than individuals 
without diabetes.26 The interpretation of effect modifica­
tion should also consider the potential non­differential 
exposure misclassification, which has been proved to 
underestimate the effects of air pollution assessed at a 
residence. In our study, employed participants who 
commuted to their workplaces had a greater risk of 
exposure misclassification than participants who were 
not employed and were likely to spend more time around 
their residences, and thus smaller effect estimates were 
expected in employed individuals.

Our study used HOMA­IR rather than direct measures 
of insulin sensitivity, such as the glucose clamp technique 
and the minimal model assessment, in consideration of 
convenience and cost savings. Of note, HOMA­IR reflects 
fasting­state insulin sensitivity, whereas the dynamic 
tests reflect post­prandial insulin stimulated conditions. 
The limitations of HOMA­IR have been previously 
documented. For instance, Bergman and colleagues36 
reported that HOMA­IR did not measure the same 
genetic contribution to insulin resistance as is reflected 
in minimal model­based insulin sensitivity, but that 
it captured more in terms of environmental factors. 
Furthermore, differences related to ethnicity and sex 
have been found in the ability of HOMA­IR to predict 
insulin sensitivity.37 However, several studies have shown 
a strong correlation between HOMA­IR and insulin 
sensitivity as determined by the glucose clamp in various 
populations (r=–0∙82; p<0∙0001 in one study;38 r=–0∙71; 
p<0∙01 in another;39 and Rs=0∙88; p<0∙0001 in a third 
study40). HOMA­IR has also been recently validated 
against the hyperinsulinaemic clamp in a German cohort 
and both tests identified groups of diabetes clusters.41 
In sum, HOMA­IR has developed as a reliable and 
practical measure of insulin sensitivity in comparable 
cohorts. In addition, it should be noted that HOMA­B 
only assesses fasting insulin secretion, and data for 

dynamic measures of insulin secretion, such as the 
insulinogenic index, were not available in our study.

The KORA cohort is a well characterised study with a 
standardised and comprehensive collection of individual 
information, which enhanced the reliability of our 
results. The longitudinal study design with repeated 
measurements of biomarkers strengthened statistical 
power and reduced potential residual confounding from 
unmeasured factors. In addition, the design enabled 
examination of the change of insulin sensitivity over 
time, which provided a better understanding of the 
longitudinal air pollution effects on the development of 
type 2 diabetes. Furthermore, the residential air pollutant 
concentrations, which were estimated using well defined 
LUR models, captured the spatial variation in exposure 
and enabled us to draw conclusions from consistent 
patterns across various air pollutants, reducing the risk 
of chance findings. The finding of associations between 
PNC and insulin sensitivity provide evidence for the 
adverse long­term health effect of ultrafine particles, 
which has been understudied so far.

One limitation of our study is that the air pollutant 
concentrations were estimated using spatial models 
for 2014–15. Although we believe that these exposure 
estimates are valid for the historical spatial contrasts, 
because previous studies have shown that the spatial 
variation in exposure remained stable over time,42 we did 
not take into account the temporal variation in exposure. 
By applying back­extrapolated air pollution concentra­
tions, we assessed the potential effect of temporal 
variation, and the robust results validated our exposure 
assessment approach. Second, we assigned air pollution 
concentrations to residential addresses and did not allow 
for the mobility of participants. This non­differential 
exposure misclassification might have biased the effect 
estimates towards the null. Third, we did not adjust for 
time­varying covariates other than BMI and smoking 
pack­years in the rate of change analysis, which might 
have resulted in residual confounding. Additionally, 
there could also be residual confounding by unmeasured 
factors.

In conclusion, our study suggests that long­term 
exposure to elevated air pollution was associated with 
decreased insulin sensitivity and a more pronounced 
deterioration (or less pronounced improvement) of 
insulin sensitivity over time, with compensatory increased 
insulin secretion. These findings support one underlying 
mechanism of the effects of air pollution on the develop­
ment of type 2 diabetes in the general adult population. 
From a public health perspective, our study indicates that 
it would be beneficial to reduce air pollution exposure, in 
addition to making lifestyle interventions, to mitigate the 
health burden of type 2 diabetes.
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Text S1. Definitions of individual characteristics  

Body mass index (BMI) was calculated as weight divided by height squared. Occupational status was 

defined as employed if participants were employed, self-employed, or in training, and as 

unemployed/retired if participants were unemployed, homemakers, or retired. Educational attainment 

higher than secondary school was categorized as high, otherwise as low. Cumulative exposure to tobacco 

smoke (i.e. smoking pack-years) was assessed as the number of packs of cigarettes (20 cigarettes per pack) 

smoked per day multiplied by the years of smoking. Alcohol consumption was categorized into no (0 g/day), 

moderate (men 0∙1–39∙9 g/day and women 0∙1–19∙9 g/day), and high (men ≥ 40 g/day and women ≥ 20 

g/day) consumption.1 Physical activity was categorized based on the time spent on physical exercise into 

low (no or almost no physical exercise), medium (about one hour per week), and high (more than two hours 

per week) levels. Diabetes was defined as self-reported diabetes with confirmation by the respective 

physician or medical records and/or use of glucose-lowering medication (Anatomical Therapeutic 

Chemical code = A10), fasting glucose ≥ 126 mg/dl, or 2-h post glucose load glucose ≥ 200 mg/dl. 

Prediabetes included impaired glucose tolerance (defined as fasting glucose < 126 mg/dl and 2-h post 

glucose load 140 mg/dl ≤ glucose < 200 mg/dl) and impaired fasting glucose (defined as 110 mg/dl ≤ fasting 

glucose < 126 mg/dl). Normal glucose tolerance was defined as fasting glucose < 110 mg/dl and 2-h post 

glucose load glucose < 140 mg/dl.2 Seasons of blood withdrawal were defined as spring: March-May; 

summer: June–August; autumn: September–November; winter: December–February. 
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Text S2. Measurement of biomarkers 

Participants were asked to fast for at least 12 hours before the visits to the KORA study center, during 

which time no food or liquid were allowed for intake except for mineral water. Physical exertion and 

smoking were also to be avoided on the day before and the morning before blood sampling. After a rest for 

5–10 min, blood samples were collected in a sitting position.  

    Serum fasting insulin concentrations were measured by a microparticle enzyme immunoassay (Abbott, 

Wiesbaden, Germany) in S4, by an electrochemiluminescence immunoassay on a Cobas e602 instrument 

(Roche Diagnostics GmbH, Mannheim, Germany) in F4, and by a solid-phase enzyme-labeled 

chemiluminescent immunometric assay on an Immulite 2000 systems analyzer (Siemens) or by an 

electrochemiluminescence immunoassay on a Cobas e602 instrument (Roche) in FF4.3,4 Serum fasting 

glucose concentrations were assessed by a hexokinase method (Gluco-quant, Roche) in S4, by a hexokinase 

method on a Dimension RxL (GLU Flex, Dade Behring, Deerfield, IL, USA) in F4, and by an enzymatic, 

colorimetric method using the GLU assay on a Dimension Vista 1500 instrument (Siemens) or using the 

GLUC3 assay on a Cobas c702 instrument (Roche) in FF4.3,4  

The measurement instruments and assays of fasting insulin and glucose changed in KORA FF4 from 

Siemens to Roche halfway during the study. Calibration formulas were developed using 194 (122 for fasting 

glucose) FF4-samples measured with both methods during the time of the change. The Siemens fasting 

insulin results were calibrated to the Roche measurements using the following formula: Insulin_Roche = 

1∙307 µIU/mL + Insulin_Siemens × 1∙016. No calibration was needed for fasting glucose because the 

double measurements were very similar, so that the intercept and the slope of the Passing-Bablok regression 

used for calibration were estimated to be zero and one, respectively. The distribution of fasting insulin 

concentrations among participants of the same age range was consistent across KORA S4, F4, and FF4, 

except that the 90th percentile of fasting insulin in S4 was higher than that in F4 and FF4, which might be 

due to a higher proportion of undiagnosed or untreated diabetic participants in S4. Thus, to make the fasting 

insulin and corresponding HOMA-IR and HOMA-B levels more comparable across three examinations, 

we excluded the observations with fasting insulin levels higher than the 90th percentile in S4 in a sensitivity 

analysis. 
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Text S3. Exposure assessment 

Noise  
We calculated the annual average day-night sound level four meters above the ground using a model 

developed by ACCON GmbH (Greifenberg, Germany).5 This three-dimensional ground model considered 

all breaking edges, bridge constructions, and noise abatement walls at public roads, and took into account 

ground plan, occupancy, height, and reflection characters of around 87,000 buildings. Roads width, type, 

surface, traffic volume were used to describe roads in a network containing an overall length of 750 km in 

2009.  

NDVI (Normalized Difference Vegetation Index) 

NDVI was derived from Landsat 5 Thematic Mapper satellite images captured in June 2000 (S4), 2007 

(F4), and 2013 (FF4) at a spatial resolution of 30 m.6 NDVI is calculated based on the difference of surface 

reflectance in visible (0∙4–0∙7 µm) and near-infrared (0∙7–1∙1 µm) wavelengths. NDVI values range from 

-1 to 1. Values close to one indicate a high density of green vegetation and values close to zero indicate 

barren areas of rock or sand. Negative values refer to blue spaces (water). In our study, we set all negative 

values to zero. 

Back-extrapolated air pollutant concentrations 
In the city of Augsburg, daily monitoring of background air pollution by routine continuous monitoring 

sites has been in operation since 1984. A map of the monitoring sites is shown in the figure below.  

We generated the time series of daily pollutant concentrations covering the study period of KORA S4–

FF4. Using data from routine monitoring sites, we calculated the absolute differences in annual average 

concentrations between the period of each visit (01.01.2000–31.12.2000 for S4, 01.01.2007–31.12.2007 

for F4, and 01.07.2013–30.06.2014 for FF4) and the period of ULTRA III measurements (01.03.2014–

15.04.2015). To account for the difference in monitoring devices used at routine monitoring sites and in 

ULTRA III measurements, we calculated the ratio of average concentrations at the monitoring sites for the 

ULTRA III measurement period to average concentrations at the 20 measurement sites in ULTRA III, and 

calibrated the absolute difference by multiplying the absolute difference by the ratio. We then calculated 

for each study participant the back-extrapolated concentration at each visit by adding the calibrated absolute 

difference to the LUR-model-estimated ULTRA III annual average concentrations. The back-extrapolated 

air pollution concentrations reflected not only the spatial variation but also the temporal variation in 

exposure. 

The mixed-effects models using back-extrapolated exposure were additionally adjusted for the year of 

visit to control for the potential temporal trend in both exposure and outcomes. 
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Table S1. Comparison of individual characteristics in KORA S4 among all KORA participants and 

participants included in the repeated measurements and annual rate of change analyses. 

 
KORA (N = 4,261) 

Repeated measurements  

(N = 3,297) 
 Rate of change (N = 2,242) 

Mean ± SD / n (%) Mean ± SD / n (%) p-value*  Mean ± SD / n (%) p-value* 

Age (years) 49∙2 ± 13∙9 50∙3 ± 13∙7 <0∙001  49∙5 ± 13∙2 0∙34 

Sex (male) 2,090 (49) 1,590 (48) 0∙49  1,086 (48) 0∙66 

Body mass index (kg/m2) 27∙2 ± 4∙7 27∙2 ± 4∙5 0∙94  26∙8 ± 4∙3 0∙0091 

Occupation (employed) 2,584 (61) 1,943 (59) 0∙12  1,403 (63) 0∙15 

Education (high) 3,802 (89) 2,957 (90) 0∙71  2,051 (91) 0∙0085 

Smoking pack-years 12∙2 ± 19∙6 11∙6 ± 18∙7 0∙17  10∙2 ± 16∙9 <0∙001 

Smoking status   0∙022   <0∙001 

  Current smoker 1,118 (26) 776 (24)   467 (21)  

  Former smoker 1,393 (33) 1,103 (33)   762 (34)  

  Never smoker 1,745 (41) 1,418 (43)   1,013 (45)  

Alcohol consumption   0∙22   <0∙001 

  No 1,183 (28) 861 (26)   527 (24)  

  Moderate 2,200 (52) 1,762 (54)   1,264 (56)  

  High 860 (20) 669 (20)   448 (20)  

Physical activity   0∙48   0∙0013 

  Low 1,448 (34) 1,080 (33)   665 (30)  

  Medium 1,933 (46) 1,532 (47)   1,081 (48)  

  High 861 (20) 679 (20)   493 (22)  

*p-values indicate the significance of differences in characteristics among participants included in the 

repeated measurements and annual rate of change analyses compared with that among all KORA 

participants. p-values were derived from Kruskal-Wallis rank sum test for continuous variables and Chi-

square test of independence for categorical variables. 
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Table S2. Distribution of the annual rate of change in biomarkers. 

 Minimum Q10 Q20 Q30 Q40 Median Q60 Q70 Q80 Q90 Maximum 

HOMA-IR (unit/year) -6∙20 -0∙14 -0∙07 -0∙03 0∙00 0∙03 0∙06 0∙10 0∙15 0∙26 3∙96 

HOMA-B (unit/year) -245∙64 -8∙62 -5∙34 -3∙30 -1∙84 -0∙47 0∙72 1∙90 3∙68 6∙66 94∙52 

Fasting insulin (µIU/ml/year) -24∙34 -0∙59 -0∙32 -0∙16 -0∙03 0∙08 0∙19 0∙31 0∙50 0∙86 8∙14 

Fasting glucose (mg/dl/year) -6∙13 -0∙78 -0∙31 0∙00 0∙23 0∙47 0∙77 1∙07 1∙43 2∙06 26∙37 
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Table S3. Descriptive statistics of participant characteristics at the first and last visits stratified by 

the direction of annual rate of change in HOMA-IR. 

 

First visit  Last visit 

Increasing HOMA-IR 

(N = 1,336) 

Unchanged / Decreasing 

HOMA-IR (N = 906) 
p-value*  

Increasing HOMA-IR 

(N = 1,336) 

Unchanged / Decreasing 

HOMA-IR (N = 906) 
p-value* 

HOMA-IR 2∙2 ± 1∙4 3∙2 ± 4∙1 <0∙001  3∙4 ± 2∙5 2∙0 ± 1∙3 <0∙001 

HOMA-B 109∙2 ± 56∙5 148∙8 ± 207∙8 <0∙001  125∙5 ± 68∙9 93∙5 ± 54∙2 <0∙001 

Fasting insulin (µIU/ml) 9∙2 ± 5∙2 13∙2 ± 17∙2 <0∙001  13∙1 ± 8∙1 8∙3 ± 4∙8 <0∙001 

Fasting glucose (mg/dl) 94∙3 ± 9∙9 96∙2 ± 10∙4 <0∙001  102∙3 ± 18∙0 96∙2 ± 11∙4 <0∙001 

Age (years) 54∙2 ± 10∙4 53∙3 ± 10∙8 0∙052  62∙5 ± 12∙1 61∙2 ± 12∙2 0∙015 

Sex (male) 660 (49) 426 (47) 0∙29  665 (49) 426 (47) 0∙29 

Body mass index (kg/m2) 27∙1 ± 4∙2 27∙3 ± 4∙6 0∙45  28∙1 ± 4∙8 27∙3 ± 4∙7 <0∙001 

Occupation (employed) 803 (60) 579 (64) 0∙076  617 (46) 472 (52) 0∙0068 

Education (high) 1,223 (92) 828 (91) 0∙96  1,223 (92) 828 (91) 0∙96 

Smoking pack-years 11∙9 ± 19∙2 10∙0 ± 15∙8 0∙047  12∙5 ± 20∙0 10∙5 ± 17∙1 0∙038 

Smoking status   0∙17    0∙20 

  Current smoker 239 (18) 149 (16)   190 (14) 120 (13)  

  Former smoker 516 (39) 327 (36)   566 (42) 358 (40)  

  Never smoker 581 (43) 430 (48)   580 (44) 428 (47)  

Alcohol consumption   0∙46    0∙49 

  No 352 (27) 231 (25)   370 (28) 231 (25)  

  Moderate 726 (54) 515 (57)   716 (54) 505 (56)  

  High 258 (19) 160 (18)   250 (19) 170 (19)  

Physical activity   0∙55    0∙065 

  Low 386 (29) 280 (31)   418 (31) 242 (27)  

  Medium 627 (47) 407 (45)   587 (44) 422 (46)  

  High 323 (24) 219 (24)   331 (25) 242 (27)  

Diabetes status   0∙0028    <0∙001 

  Normal glucose tolerance 905 (69) 560 (62)   577 (44) 514 (59)  

  Prediabetes 383 (29) 320 (36)   577 (44) 316 (36)  

  Diabetes 33 (2) 16 (2)   149 (12) 45 (5)  

*p-values were derived from Kruskal-Wallis rank sum test for continuous variables and Chi-square test of 

independence for categorical variables. 
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Table S4. Absolute changes (95% CIs) in the annual rate of change of biomarkers at deciles of the distribution per IQR 

increase in air pollutant concentrations. 

 Percentile PNC PMcoarse PM2∙5 PM2∙5abs NO2 O3 

HOMA-IR 10th 0∙007 (0∙002, 0∙012) 0∙009 (0∙002, 0∙016) 0∙007 (0∙002, 0∙012) 0∙014 (0∙008, 0∙021) 0∙012 (0∙005, 0∙019) 0∙001 (-0∙007, 0∙008) 
 20th 0∙008 (0∙004, 0∙013) 0∙008 (0∙003, 0∙014) 0∙008 (0∙003, 0∙012) 0∙014 (0∙009, 0∙020) 0∙013 (0∙006, 0∙020) 0∙001 (-0∙005, 0∙007) 
 30th 0∙005 (0∙000, 0∙009) 0∙004 (-0∙003, 0∙011) 0∙001 (-0∙005, 0∙007) 0∙006 (-0∙001, 0∙013) 0∙005 (-0∙001, 0∙012) 0∙000 (-0∙007, 0∙007) 
 40th 0∙004 (0∙000, 0∙009) 0∙004 (-0∙003, 0∙011) 0∙001 (-0∙006, 0∙008) 0∙010 (0∙002, 0∙018) 0∙005 (-0∙003, 0∙013) 0∙002 (-0∙006, 0∙009) 
 50th 0∙005 (-0∙002, 0∙011) 0∙005 (-0∙003, 0∙013) 0∙006 (-0∙002, 0∙013) 0∙010 (0∙001, 0∙019) 0∙006 (-0∙003, 0∙015) 0∙000 (-0∙008, 0∙008) 
 60th 0∙009 (0∙003, 0∙014) 0∙008 (0∙000, 0∙016) 0∙009 (0∙001, 0∙017) 0∙010 (0∙000, 0∙020) 0∙009 (0∙000, 0∙018) 0∙001 (-0∙007, 0∙009) 
 70th 0∙009 (0∙003, 0∙015) 0∙011 (0∙003, 0∙018) 0∙004 (-0∙003, 0∙012) 0∙010 (0∙000, 0∙020) 0∙008 (-0∙002, 0∙018) 0∙007 (-0∙001, 0∙015) 
 80th 0∙005 (-0∙004, 0∙014) 0∙011 (-0∙001, 0∙023) 0∙000 (-0∙012, 0∙012) 0∙005 (-0∙009, 0∙018) 0∙000 (-0∙013, 0∙013) 0∙014 (0∙002, 0∙025) 
 90th 0∙000 (-0∙010, 0∙010) 0∙011 (-0∙003, 0∙026) -0∙015 (-0∙030, -0∙001) 0∙005 (-0∙009, 0∙018) -0∙004 (-0∙020, 0∙012) 0∙015 (-0∙004, 0∙033) 
        

HOMA-B 10th 0∙175 (-0∙072, 0∙421) 0∙199 (-0∙116, 0∙514) 0∙232 (-0∙025, 0∙488) -0∙041 (-0∙438, 0∙356) 0∙166 (-0∙193, 0∙525) 0∙053 (-0∙236, 0∙343) 

 20th 0∙207 (0∙000, 0∙414) 0∙216 (-0∙059, 0∙491) 0∙296 (0∙020, 0∙572) 0∙337 (0∙093, 0∙582) 0∙240 (-0∙078, 0∙558) -0∙017 (-0∙308, 0∙274) 

 30th 0∙210 (0∙048, 0∙372) 0∙292 (0∙041, 0∙544) 0∙389 (0∙152, 0∙626) 0∙298 (0∙020, 0∙576) 0∙337 (0∙057, 0∙618) 0∙161 (-0∙106, 0∙428) 

 40th 0∙140 (-0∙113, 0∙393) 0∙194 (-0∙113, 0∙501) 0∙224 (-0∙083, 0∙531) 0∙268 (-0∙107, 0∙643) 0∙285 (-0∙070, 0∙640) -0∙018 (-0∙332, 0∙295) 

 50th 0∙231 (-0∙020, 0∙482) 0∙424 (0∙107, 0∙740) 0∙435 (0∙100, 0∙770) 0∙574 (0∙185, 0∙963) 0∙528 (0∙161, 0∙894) 0∙121 (-0∙237, 0∙479) 

 60th 0∙287 (0∙009, 0∙564) 0∙451 (0∙100, 0∙801) 0∙237 (-0∙088, 0∙561) 0∙481 (0∙087, 0∙875) 0∙435 (0∙053, 0∙817) 0∙080 (-0∙278, 0∙437) 

 70th 0∙265 (0∙023, 0∙507) 0∙462 (0∙095, 0∙830) 0∙335 (0∙015, 0∙656) 0∙460 (0∙091, 0∙829) 0∙399 (-0∙015, 0∙813) 0∙113 (-0∙237, 0∙462) 

 80th 0∙464 (0∙176, 0∙751) 0∙745 (0∙450, 1∙041) 0∙303 (-0∙102, 0∙707) 0∙691 (0∙269, 1∙112) 0∙532 (0∙148, 0∙917) 0∙330 (0∙010, 0∙650) 

 90th 0∙544 (-0∙070, 1∙157) 0∙919 (0∙286, 1∙552) 0∙173 (-0∙418, 0∙764) 0∙500 (-0∙095, 1∙095) 0∙020 (-0∙732, 0∙773) 0∙506 (-0∙126, 1∙137) 
        

Fasting insulin 10th 0∙035 (0∙012, 0∙057) 0∙032 (0∙006, 0∙059) 0∙013 (-0∙014, 0∙039) 0∙042 (0∙009, 0∙074) 0∙041 (0∙008, 0∙073) -0∙004 (-0∙031, 0∙023) 
 20th 0∙037 (0∙019, 0∙055) 0∙036 (0∙011, 0∙060) 0∙036 (0∙012, 0∙060) 0∙057 (0∙027, 0∙088) 0∙049 (0∙020, 0∙077) 0∙000 (-0∙024, 0∙023) 
 30th 0∙030 (0∙014, 0∙046) 0∙031 (0∙014, 0∙048) 0∙023 (0∙002, 0∙043) 0∙038 (0∙012, 0∙063) 0∙042 (0∙016, 0∙067) -0∙003 (-0∙027, 0∙021) 
 40th 0∙030 (0∙008, 0∙053) 0∙030 (0∙000, 0∙060) 0∙031 (0∙001, 0∙060) 0∙048 (0∙012, 0∙084) 0∙041 (0∙007, 0∙075) 0∙017 (-0∙013, 0∙046) 
 50th 0∙025 (0∙004, 0∙045) 0∙034 (0∙002, 0∙065) 0∙031 (0∙001, 0∙061) 0∙055 (0∙019, 0∙091) 0∙040 (0∙003, 0∙077) 0∙004 (-0∙027, 0∙035) 
 60th 0∙042 (0∙018, 0∙065) 0∙051 (0∙019, 0∙083) 0∙032 (0∙004, 0∙060) 0∙055 (0∙019, 0∙090) 0∙055 (0∙023, 0∙087) 0∙018 (-0∙012, 0∙049) 
 70th 0∙021 (-0∙004, 0∙046) 0∙038 (0∙007, 0∙069) 0∙013 (-0∙019, 0∙045) 0∙030 (-0∙006, 0∙066) 0∙029 (-0∙007, 0∙064) 0∙028 (0∙000, 0∙056) 
 80th 0∙025 (-0∙008, 0∙058) 0∙038 (0∙001, 0∙075) 0∙011 (-0∙034, 0∙056) 0∙040 (-0∙012, 0∙091) 0∙021 (-0∙028, 0∙071) 0∙029 (-0∙012, 0∙071) 
 90th 0∙021 (-0∙011, 0∙052) 0∙067 (0∙009, 0∙125) -0∙038 (-0∙083, 0∙006) 0∙014 (-0∙045, 0∙074) 0∙014 (-0∙038, 0∙065) 0∙056 (0∙003, 0∙110) 
        

Fasting glucose 10th -0∙028 (-0∙092, 0∙035) -0∙020 (-0∙088, 0∙047) -0∙047 (-0∙116, 0∙023) -0∙001 (-0∙096, 0∙095) -0∙001 (-0∙090, 0∙087) 0∙045 (-0∙033, 0∙124) 
 20th 0∙022 (-0∙033, 0∙078) 0∙004 (-0∙071, 0∙079) 0∙005 (-0∙068, 0∙078) 0∙083 (-0∙008, 0∙174) 0∙049 (-0∙042, 0∙141) -0∙009 (-0∙084, 0∙067) 
 30th 0∙011 (-0∙040, 0∙063) 0∙001 (-0∙063, 0∙066) 0∙004 (-0∙060, 0∙067) 0∙051 (-0∙026, 0∙129) 0∙031 (-0∙041, 0∙103) -0∙042 (-0∙107, 0∙022) 
 40th -0∙001 (-0∙055, 0∙052) -0∙039 (-0∙095, 0∙017) -0∙001 (-0∙064, 0∙061) 0∙010 (-0∙069, 0∙088) -0∙021 (-0∙094, 0∙052) -0∙011 (-0∙066, 0∙045) 
 50th 0∙029 (-0∙025, 0∙082) -0∙020 (-0∙085, 0∙045) -0∙011 (-0∙078, 0∙057) 0∙042 (-0∙037, 0∙120) 0∙016 (-0∙056, 0∙089) 0∙002 (-0∙062, 0∙066) 
 60th 0∙025 (-0∙022, 0∙072) 0∙034 (-0∙020, 0∙087) -0∙053 (-0∙114, 0∙009) 0∙060 (-0∙007, 0∙127) 0∙049 (-0∙016, 0∙114) -0∙003 (-0∙064, 0∙059) 
 70th 0∙019 (-0∙038, 0∙076) 0∙012 (-0∙056, 0∙081) -0∙058 (-0∙130, 0∙015) 0∙033 (-0∙052, 0∙117) 0∙012 (-0∙068, 0∙092) 0∙007 (-0∙059, 0∙072) 
 80th 0∙020 (-0∙053, 0∙093) -0∙006 (-0∙095, 0∙083) -0∙029 (-0∙120, 0∙062) -0∙003 (-0∙121, 0∙115) -0∙019 (-0∙135, 0∙097) -0∙007 (-0∙112, 0∙098) 
 90th -0∙056 (-0∙136, 0∙024) -0∙048 (-0∙137, 0∙041) -0∙055 (-0∙168, 0∙058) -0∙056 (-0∙168, 0∙056) -0∙083 (-0∙185, 0∙019) -0∙093 (-0∙190, 0∙004) 

Quantile regression models for the annual rate of change were adjusted for baseline levels of the investigated biomarker, age 

(baseline), sex, BMI (baseline), annual rate of change in BMI, educational attainment (baseline), occupational status (baseline), 

smoking status (baseline), smoking pack-years (baseline), annual rate of change in smoking pack-years, physical activity (baseline), 

and an indicator for the visits used in the calculation of the rate of change. An IQR increase was 2∙0×103/cm3 for PNC, 1∙4 μg/m3 

for PMcoarse, 1∙4 μg/m3 for PM2∙5, 0∙3×10-5/m for PM2∙5abs, 7∙1 μg/m3 for NO2, and 3∙5 μg/m3 for O3. 
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Figure S1. Distribution of ln-transformed fasting insulin and fasting glucose stratified by the hour of 

blood withdrawal.  

Blood samples drawn during 7:00 AM–8:00 AM (hour=7): N=645; 8:00 AM–9:00 AM (hour=8): N=2,969; 

9:00 AM–10:00 AM (hour=9): N=2,122; 10:00 AM–11:00 AM (hour=10): N=238; without documented 

time (missing): N=34. 
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Figure S2. Boxplots of biomarker concentrations on the original and natural log (ln)-transformed 

scales.  
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Figure S3. Flow chart of the exclusion process. 

 

Participants in KORA S4 survey: NP=4,261 

Observations in KORA S4, F4, and FF4: NO=9,620 

Repeated measurements analyses: NP=3,297; NO=6,008 

Unavailable residential addresses  

(NP=6; NO=30) 

No data on fasting insulin and glucose 

(NP=740; NO=2,999) 

Taking glucose-lowering medication 

(NP=117; NO=348) 

Blood sample drawn after 11:00 AM 

(NP=0; NO=4) 

Missing values in covariates in the main 

model (NP=101; NO=231) 

Biomarkers measured at only one visit 

(NP=1,055) 

Annual rate of change analyses: NP=NO=2,242 
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Figure S4. Correlation between outcome, exposure, and covariate variables.  

Correlation coefficients in the figure were (1) Spearman's rank correlation coefficients for two continuous 

variables; (2) Kendall rank correlation coefficients for one continuous and one ordinal variable, or two 

ordinal variables; (3) Point-Biserial correlation coefficients for one dichotomous and one 

continuous/ordinal variable; (4) Cramer's V correlation coefficients for two categorical variables. 

BMI=body mass index; HDL= high-density lipoproteins; income=per capita income; HOMA-

IR=homeostasis model assessment of insulin resistance; HOMA-B=homeostasis model assessment of β-

cell function; NDVI=normalized difference vegetation index; NO2=nitrogen dioxide, O3=ozone; PMcoarse= 

particulate matter with an aerodynamic diameter between 2∙5 µm and 10 µm; PM2∙5=particulate matter with 

an aerodynamic diameter ≤ 2∙5 µm; PM2∙5abs=PM2∙5 absorbance; PNC=particle number concentration; 

WHR=waist-hip-ratio 
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Figure S5. Percent changes (95% CIs) in the repeated measurements of biomarkers per IQR increase 

in air pollutant concentrations in models with different adjustments of covariates.  

Minimum models were adjusted for age, sex, BMI, season, visits; main models were further adjusted for 

educational attainment, occupational status, smoking status, smoking pack-years, alcohol consumption, and 

physical activity; extended model-1 was further adjusted for waist-hip-ratio, high-density lipoprotein, and 

total cholesterol in addition to covariates in main models; extended model-2 were further adjusted for NDVI 

and noise in addition to covariates in main models. An IQR increase was 2∙0×103/cm3 for PNC, 1∙4 μg/m3 

for PMcoarse, 1∙4 μg/m3 for PM2∙5, 0∙3×10-5/m for PM2∙5abs, 7∙1 μg/m3 for NO2, and 3∙5 μg/m3 for O3. 
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Figure S6. Exposure-response relationships between PNC and HOMA-IR, HOMA-B, and fasting 

insulin. 

Panels on the left side show the exposure-response relationship for the whole range of PNC; panels on the 

right side show the exposure-response relationship for PNC < 12∙7×103/cm3.  
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Figure S7. Absolute changes (95% CIs) in the annual rate of change in fasting insulin at deciles of the 

distribution per IQR increase in air pollutant concentrations. 

Quantile regression models for the annual rate of change were adjusted for baseline levels of the 

investigated biomarker, age (baseline), sex, BMI (baseline), annual rate of change in BMI, educational 

attainment (baseline), occupational status (baseline), smoking status (baseline), smoking pack-years 

(baseline), annual rate of change in smoking pack-years, physical activity (baseline), and an indicator for 

the visits used in the calculation of the rate of change. Blue shaded area on the left side indicates decreasing 

insulin secretion over years (annual rate of change below zero); red shaded area on the right side indicates 

increasing insulin secretion over years (annual rate of change above zero). Values (i.e. 0∙1–0∙9) above the 

error bars indicate the deciles of the distribution of annual rate of change. An IQR increase was 2∙0×103/cm3 

for PNC, 1∙4 μg/m3 for PMcoarse, 1∙4 μg/m3 for PM2∙5, 0∙3×10-5/m for PM2∙5abs, 7∙1 μg/m3 for NO2, and 3∙5 

μg/m3 for O3. 
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Figure S8. Absolute changes (95% CIs) in the annual rate of change in fasting glucose at deciles of 

the distribution per IQR increase in air pollutant concentrations. 

Quantile regression models for the annual rate of change were adjusted for baseline levels of the 

investigated biomarker, age (baseline), sex, BMI (baseline), annual rate of change in BMI, educational 

attainment (baseline), occupational status (baseline), smoking status (baseline), smoking pack-years 

(baseline), annual rate of change in smoking pack-years, physical activity (baseline), and an indicator for 

the visits used in the calculation of the rate of change. Blue shaded area on the left side indicates decreasing 

fasting glucose concentrations over years (annual rate of change below zero); red shaded area on the right 

side indicates increasing fasting glucose concentrations over years (annual rate of change above zero). 

Values (i.e. 0∙1–0∙9) above the error bars indicate the deciles of the distribution of annual rate of change. 

An IQR increase was 2∙0×103/cm3 for PNC, 1∙4 μg/m3 for PMcoarse, 1∙4 μg/m3 for PM2∙5, 0∙3×10-5/m for 

PM2∙5abs, 7∙1 μg/m3 for NO2, and 3∙5 μg/m3 for O3. 
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Figure S9. Percent changes (95% CIs) in repeated measurements of biomarkers per IQR increase in 

air pollutant concentrations by a) age and b) sex. 

Panels on the left side show the effect modification by age (age < 60 years: number of observations (N) = 

3,019, age ≥ 60 years: N=2,989); panels on the right side show the effect modification by sex (female: 

N=3,083, male: N=2,925). Error bars in red indicate significant differences in effect estimates between 

subgroups (p-value for the interaction term < 0∙05). An IQR increase was 2∙0×103/cm3 for PNC, 1∙4 μg/m3 

for PMcoarse, 1∙4 μg/m3 for PM2∙5, 0∙3×10-5/m for PM2∙5abs, 7∙1 μg/m3 for NO2, and 3∙5 μg/m3 for O3. 
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Figure S10. Percent changes (95% CIs) in repeated measurements of biomarkers per IQR increase 

in air pollutant concentrations by a) occupational status and b) physical activity. 

Panels on the left side show effect modification by occupational status (employed: N=3,053, 

unemployed/retired: N=2,955); panels on the right side show the effect modification by physical activity 

(low level: N=1,893, medium/high level: N=4,115). Error bars in red indicate significant differences in 

effect estimates between subgroups (p-value for the interaction term < 0∙05). An IQR increase was 

2∙0×103/cm3 for PNC, 1∙4 μg/m3 for PMcoarse, 1∙4 μg/m3 for PM2∙5, 0∙3×10-5/m for PM2∙5abs, 7∙1 μg/m3 for 

NO2, and 3∙5 μg/m3 for O3. 
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Figure S11. Absolute changes (95% CIs) in the annual rate of change in biomarkers per IQR increase 

in air pollutant concentrations by a) age and b) diabetes status. 

Panels on the left side show the effect modification by age at baseline (age < 60 years: N=1,519, age ≥ 60 

years: N=723); panels on the right side show the effect modification by diabetes status at baseline (normal 

glucose tolerance: N=1,465, prediabetes/diabetes: N=752). Blue shaded area on the left side indicates 

annual rate of change below zero; red shaded area on the right side indicates annual rate of change above 

zero; unshaded area in the middle indicates stable biomarker levels over years. Error bars in red indicate 

significant differences in effect estimates between subgroups (p-value for the interaction term < 0∙05). An 

IQR increase was 2∙0×103/cm3 for PNC, 1∙4 μg/m3 for PMcoarse, 1∙4 μg/m3 for PM2∙5, 0∙3×10-5/m for PM2∙5abs, 

7∙1 μg/m3 for NO2, and 3∙5 μg/m3 for O3. 
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Figure S12. Absolute changes (95% CIs) in the annual rate of change in HOMA-IR and fasting insulin 

per IQR increase in air pollutant concentrations by sex. 

Blue shaded area on the left side indicates annual rate of change below zero; red shaded area on the right 

side indicates annual rate of change above zero; unshaded area in the middle indicates stable biomarker 

levels over years. Error bars in red indicate significant differences in effect estimates between subgroups 

(p-value for the interaction term < 0∙05). Numbers of females and males were 1,156 and 1,086, respectively. 

An IQR increase was 2∙0×103/cm3 for PNC, 1∙4 μg/m3 for PMcoarse, 1∙4 μg/m3 for PM2∙5, 0∙3×10-5/m for 

PM2∙5abs, 7∙1 μg/m3 for NO2, and 3∙5 μg/m3 for O3. 
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Figure S13. Percent changes (95% CIs) in repeated measurements of biomarkers per IQR increase 

in air pollutant concentrations in two-pollutant models. 

Error bars in blue represent the effect estimates in single-pollutant models. An IQR increase was 

2∙0×103/cm3 for PNC, 1∙4 μg/m3 for PMcoarse, 1∙4 μg/m3 for PM2∙5, 0∙3×10-5/m for PM2∙5abs, 7∙1 μg/m3 for 

NO2, and 3∙5 μg/m3 for O3. 
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Figure S14. Absolute changes (95% CIs) in the annual rate of change in HOMA-IR at different 

percentiles of the distribution per IQR increase in air pollutant concentrations in two-pollutant 

models. 

Blue shaded area on the left side indicates annual rate of change below zero; red shaded area on the right 

side indicates annual rate of change above zero; unshaded area in the middle indicates stable biomarker 

levels over years. Error bars in blue represent the effect estimates in single-pollutant models. An IQR 

increase was 2∙0×103/cm3 for PNC, 1∙4 μg/m3 for PMcoarse, 1∙4 μg/m3 for PM2∙5, 0∙3×10-5/m for PM2∙5abs, 7∙1 

μg/m3 for NO2, and 3∙5 μg/m3 for O3. 
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Figure S15. Absolute changes (95% CIs) in the annual rate of change in HOMA-B at different 

percentiles of the distribution per IQR increase in air pollutant concentrations in two-pollutant 

models. 

Blue shaded area on the left side indicates annual rate of change below zero; red shaded area on the right 

side indicates annual rate of change above zero. Error bars in blue represent the effect estimates in single-

pollutant models. An IQR increase was 2∙0×103/cm3 for PNC, 1∙4 μg/m3 for PMcoarse, 1∙4 μg/m3 for PM2∙5, 

0∙3×10-5/m for PM2∙5abs, 7∙1 μg/m3 for NO2, and 3∙5 μg/m3 for O3. 
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Figure S16. Absolute changes (95% CIs) in the annual rate of change in fasting insulin at different 

percentiles of the distribution per IQR increase in air pollutant concentrations in two-pollutant 

models. 

Blue shaded area on the left side indicates annual rate of change below zero; red shaded area on the right 

side indicates annual rate of change above zero. Error bars in blue represent the effect estimates in single-

pollutant models. An IQR increase was 2∙0×103/cm3 for PNC, 1∙4 μg/m3 for PMcoarse, 1∙4 μg/m3 for PM2∙5, 

0∙3×10-5/m for PM2∙5abs, 7∙1 μg/m3 for NO2, and 3∙5 μg/m3 for O3. 
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Figure S17. Absolute changes (95% CIs) in the annual rate of change in fasting glucose at different 

percentiles of the distribution per IQR increase in air pollutant concentrations in two-pollutant 

models. 

Blue shaded area on the left side indicates annual rate of change below zero; red shaded area on the right 

side indicates annual rate of change above zero. Error bars in blue represent the effect estimates in single-

pollutant models. An IQR increase was 2∙0×103/cm3 for PNC, 1∙4 μg/m3 for PMcoarse, 1∙4 μg/m3 for PM2∙5, 

0∙3×10-5/m for PM2∙5abs, 7∙1 μg/m3 for NO2, and 3∙5 μg/m3 for O3. 
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Figure S18. Percent changes (95% CIs) in repeated measurements of biomarkers per IQR increase 

in air pollutant concentrations in sensitivity analyses.  

Original: main ME model (number of observations remained in the analysis (N) = 6,008). Insulin ≤ P90 in 

S4: observations with fasting insulin concentrations ≤ the 90th percentile (21∙9 µIU/mL) in KORA S4 

(N=5,783). Non-movers: participants who did not move during S4 to FF4 (N=4,748). Exclude outliers: 

exclude outliers in outcome variables (N=5,911 for HOMA-IR, N=5,886 for HOMA-B, N=5,907 for insulin, 

N=5,829 for glucose). Blood sample 7:00-11:00: blood samples drawn between 7:00 AM and 11:00 AM 

(N=5,974). Back-extrapolated exposure: use back-extrapolated exposure data with further adjustment for 

the year of examinations (N=6,008).
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Figure S19. Percent changes (95% CIs) in repeated measurements of HOMA-IR and HOMA-B per 

IQR increase in air pollutant concentrations in models with further adjustment for fasting insulin or 

fasting glucose.  
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Figure S20. Absolute changes (95% CIs) in the annual rate of change in HOMA-IR per IQR increase 

in air pollutant concentrations in sensitivity analyses.  

Original: main quantile regression model (number of observations remained in the analysis (N) = 2,242). 

Insulin ≤ P90 in S4: participants with fasting insulin concentrations ≤ the 90th percentile (21∙9 µIU/ml) in 

KORA S4 (N=2,173). Non-movers: participants who did not move during S4 to FF4 (N=1,840). Blood 

sample 7:00-11:00: blood samples drawn between 7:00 AM and 11:00 AM (N=2,224). Baseline covariates: 

without adjustment for the annual rate of change in BMI and smoking pack-years (N=2,242). Adjust for 

noise and NDVI: with further adjustment for road traffic noise and NDVI in the main models (N=2,242). 

Blue shaded area on the left side indicates annual rate of change below zero; red shaded area on the right 

side indicates annual rate of change above zero; unshaded area in the middle indicates stable biomarker 

levels over years. An IQR increase was 2∙0×103/cm3 for PNC, 1∙4 μg/m3 for PMcoarse, 1∙4 μg/m3 for PM2∙5, 

0∙3×10-5/m for PM2∙5abs, 7∙1 μg/m3 for NO2, and 3∙5 μg/m3 for O3. 
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Figure S21. Absolute changes (95% CIs) in the annual rate of change in HOMA-B per IQR increase 

in air pollutant concentrations in sensitivity analyses.  

Original: main quantile regression model (number of observations remained in the analysis (N) = 2,242). 

Insulin ≤ P90 in S4: participants with fasting insulin concentrations ≤ the 90th percentile (21∙9 µIU/ml) in 

KORA S4 (N=2,173). Non-movers: participants who did not move during S4 to FF4 (N=1,840). Blood 

sample 7:00-11:00: blood samples drawn between 7:00 AM and 11:00 AM (N=2,224). Baseline covariates: 

without adjustment for the annual rate of change in BMI and smoking pack-years (N=2,242). Adjust for 

noise and NDVI: with further adjustment for road traffic noise and NDVI in the main models (N=2,242). 

Blue shaded area on the left side indicates annual rate of change below zero; red shaded area on the right 

side indicates annual rate of change above zero. An IQR increase was 2∙0×103/cm3 for PNC, 1∙4 μg/m3 for 

PMcoarse, 1∙4 μg/m3 for PM2∙5, 0∙3×10-5/m for PM2∙5abs, 7∙1 μg/m3 for NO2, and 3∙5 μg/m3 for O3. 
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Figure S22. Absolute changes (95% CIs) in the annual rate of change in fasting insulin per IQR 

increase in air pollutant concentrations in sensitivity analyses.  

Original: main quantile regression model (number of observations remained in the analysis (N) = 2,242). 

Insulin ≤ P90 in S4: participants with fasting insulin concentrations ≤ the 90th percentile (21∙9 µIU/ml) in 

KORA S4 (N=2,173). Non-movers: participants who did not move during S4 to FF4 (N=1,840). Blood 

sample 7:00-11:00: blood samples drawn between 7:00 AM and 11:00 AM (N=2,224). Baseline covariates: 

without adjustment for the annual rate of change in BMI and smoking pack-years (N=2,242). Adjust for 

noise and NDVI: with further adjustment for road traffic noise and NDVI in the main models (N=2,242). 

Blue shaded area on the left side indicates annual rate of change below zero; red shaded area on the right 

side indicates annual rate of change above zero. An IQR increase was 2∙0×103/cm3 for PNC, 1∙4 μg/m3 for 

PMcoarse, 1∙4 μg/m3 for PM2∙5, 0∙3×10-5/m for PM2∙5abs, 7∙1 μg/m3 for NO2, and 3∙5 μg/m3 for O3. 
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Figure S23. Absolute changes (95% CIs) in the annual rate of change in fasting glucose per IQR 

increase in air pollutant concentrations in sensitivity analyses.  

Original: main quantile regression model (number of observations remained in the analysis (N) = 2,242). 

Insulin ≤ P90 in S4: participants with fasting insulin concentrations ≤ the 90th percentile (21∙9 µIU/ml) in 

KORA S4 (N=2,173). Non-movers: participants who did not move during S4 to FF4 (N=1,840). Blood 

sample 7:00-11:00: blood samples drawn between 7:00 AM and 11:00 AM (N=2,224). Baseline covariates: 

without adjustment for the annual rate of change in BMI and smoking pack-years (N=2,242). Adjust for 

noise and NDVI: with further adjustment for road traffic noise and NDVI in the main models (N=2,242). 

Blue shaded area on the left side indicates annual rate of change below zero; red shaded area on the right 

side indicates annual rate of change above zero. An IQR increase was 2∙0×103/cm3 for PNC, 1∙4 μg/m3 for 

PMcoarse, 1∙4 μg/m3 for PM2∙5, 0∙3×10-5/m for PM2∙5abs, 7∙1 μg/m3 for NO2, and 3∙5 μg/m3 for O3. 
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