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“What is a scientist after all? It is a curious man looking through a keyhole, the 

keyhole of nature, trying to know what’s going on” 

Jacques-Yves Cousteau 
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Abstract 

Biominerals of shells, bones and teeth are composits of minerals and organic tissue 

components precipitated by organisms. Accordingly, it is very important to understand 

(1) the relation between the soft and hard tissues in composite materials of living 

organisms, (2) the resulting micro- and nanostructure of the constituting biominerals (3) 

and the function of the minerals of the biomineralization epithelial cells in producing 

these materials. Brachiopod shells were selected to be the principal subject of this work 

as they are major geochemical archives for paleo-environmental reconstruction of sea 

water conditions.  

The shell of modern brachiopods is secreted by the outer mantle epithelium (OME) 

of the animal. Despite several decades of research, it is still unknown how the mineral is 

transported from OME cells to the site of mineralization. For brachiopod shells the 

biomineralization process was not yet described and often biomineralization of mollusc 

shells was used as a reference.  In order to understand mineral transport and shell 

secretion, we investigated the ultrastructure of OME cells and their spatial relation to 

the growing shell for the terebratulide brachiopod Magellania venosa (Chapters 2.1 and 

2.2). The animals were chemically fixed and high pressure frozen. We worked with high 

resolution panorama images formed of up to 350 TEM images. This ensured a general 

overview as well as a detailed description of the ultrastructure of the OME. We found 

and described the specific differences between (1) the OME ultrastructure at the 

commissure and that at central shell regions as well as (2) differences between areas in 

the central region where active secretion takes place and those areas where secretion is 

finished. The OME at the commissure consists of several cell layers, while at central 

shell regions it is single-layered. It is significantly thinner at the central shell region in 

comparison to the commissure. Especially at sites of actively forming calcite fibres, 

OME cells are only a few tens of nanometre thin. 

Where the mineral deposition takes place, the apical membrane of OME cells is in 

direct contact with the calcite of the forming fibre. At these sites the extracellular 

organic membrane at the proximal convex surface of the fibre is absent. When mineral 

secretion is finished the cells form an extracellular organic membrane which lines the 

proximal surface of fibres. The extracellular organic membrane is attached to the apical 

cell membrane via apical hemidesmosomes. Tonofilaments cross the cell, connect apical 

to basal hemidesmosomes, stabilize the contact between epithelium and fibres and keep 

the mantle attached to the shell. Furthermore, communication and cooperation of 

neighbouring OME cells could be proved in this work as individual fibres are secreted 

by several cooperating cells at the same time (Chapters 2.1 and 2.2).  

The extracellular space, the space between the epithelium and the growing fibres, is 

either absent or very narrow. Quantitative analysis demonstrated that there are no 

significant differences in the volume fraction of vesicles between secreting and non-

secreting regions of the OME. The latter and the extreme reduction in cell thickness at 

sites of mineral secretion suggest that for Magellania venosa shells mineral transport to 

the sites of mineralization does not occur by transport with organelles such as vesicles 

but via ion transport mechanisms through the cell membrane.  

For the central shell region the previously discussed data was complemented with 

atomic force microscopy (AFM) and electron backscatter diffraction (EBSD) 

measurements. In the central region of the shell the fibrous layer is secreted. The fibrous 
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layer of modern terebratulide brachiopod shells has an overall plywood-like 

organization with the basic mineral units, the calcite fibres, being assembled with a 

microstructure resembling an ‘anvil-type’ arrangement (Chapter 2.2). The observations 

on the TEM images and on etched sample surfaces under AFM lead us to develop a 

model for calcite fibre secretion and fibre shape formation for Magellania venosa is 

described as a dynamic process coordinated by outer mantle epithelium cells (OME). 

The secretion process consists of the following steps: (i) local detachment of epithelial 

cell membrane from the organic membrane of previously formed fibres, (ii) onset of 

secretion of calcite at these sites, (iii) organic membrane formation along the proximal, 

convex side of the forming fibre during achievement of the full width of the fibre, (iv) 

start of membrane secretion at the corners of fibres progressing towards the centre of the 

fibre, (v) attachment of the cells via apical hemidesmosomes to newly formed organic 

membrane, and (vi) suspension of calcite secretion at sites where the proximal, organic 

membrane of the calcite fibre is fully developed and the apical cell membrane is 

attached to the latter with apical hemidesmosomes. 

 Thecideide brachiopods are an anomalous group of invertebrates. Their position 

within the phylogeny of the Brachiopoda and the identification of their origin is still not 

fully resolved. Studies of morphological features such as shell structure and body size 

aimed to shed more light on thecideide evolution. However, none of these did provide a 

definitive answer, possibly because of their complex and diverse evolutionary track. In 

this thesis (Chapter 2.3) we attempt to trace thecideide shell evolution from a 

microstructure and texture point of view. We describe for this group of brachiopods the 

appearance and disappearance of a variety of calcite biocrystals that form the shells and 

trace these from Late Triassic to Recent times. The results and conclusions are based on 

EBSD measurements that form the basis of a phylogenetic tree. With this thesis we 

present a new phylogenetic hypothesis for the evolution of Thecideida. This is the first 

study that links microstructure and texture results gained from EBSD measurements 

with phylogenetic analysis and implications derived from phylogenetic evolution. 

  

BSD measurements demonstrated the presence of a large variety of mineral units 

within thecideide shells throughout the geological record. With geologic time there is a 

progressive loss of the fibrous layer in favour of highly disordered acicular and granular 

microstructures. This loss can be seen as a paedomorphic pattern in the complex mosaic 

of evolutionary changes characterizing thecideide brachiopods. The Upper Jurassic 

species has transitional forms.  The shells are composed of stacks of acicles on the 

external part of the shell. The fibrous layer is kept only in some regions next to the soft 

tissue of the animal. The regularity of biocrystal shape, mineral unit size, and the 

strength of calcite co-orientation decreases from the Late Triassic to Recent species. 

Even though, since the Upper Jurassic the thecideide shell microstructure shows the 

same type of mineral unit morphologies made of (i) nanometric to small granules, (ii) 

acicles, (iii) fibres, (iv) polygonal crystals, (v) large roundish crystals. I deduce from my 

studies that the change in microstructure and texture of thecideide brachiopods may be 

related to the ecological strategy to exploit distinct niches and life styles, in particular 

attachment to hard substrates. The clear and well defined microstructure of this 

brachiopod group is well distinguishable and can help to unravel the phylogenetic 

relationships between different taxa. 

Brachiopods are one of the very few marine organism groups which have a 

complete fossil record. First species appeared in early Cambrian. The end-Permian 

extinction erased the majority of Paleozoic brachiopod taxa and reset taxonomic, 



  3 

morphological, functional and ecological brachiopod diversity. A few groups survived 

end-Permian extinction, diversified and occupied new ecological niches. 

Representatives of these form today the extant orders of the Lingulida, Craniida, 

Rhynchonellida, and Terebratulida. The Thecideida appeared after the end-Permian 

crisis, in the Triassic.  

The geological record shows that brachiopods were and are able to adopt to many 

marine environments. Accordingly, a large diversity in body plans as well as 

morphological, structural and chemical features of their shell became developed. With 

this thesis I highlight structural features of the shells of selected terebratulide, 

rhynchonellide, thecideide and craniide taxa. Chapter 2.4 describes the difference in 

shell structure for brachiopods with different life-styles, highlights the distinctness 

between the structure of the primary shell layer of Terebratulida, Rhynchonellida and 

the shell structure of Thecideida. I detail the nanometer scale calcite organization of 

Rhynchonellide and Terebratulide fibers, describe some advantages of a hierarchical 

composite hard tissue, address possible determinants for primary, fibrous and columnar 

shell calcite of Terebratullida and discuss a possible usage of thecideide shell for 

paleoenvironment reconstruction. 
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https://www.baseline-earth.eu/research
https://www.baseline-earth.eu/research


  11 

   

Chapter 1. Introduction 

 

Organisms precipitate different minerals through biological mineralization and the 

products of these processes are called biominerals or biological hard tissue. The relation 

between the organics and the hard tissues (the biomineral) is of great importance for 

understanding the impact of vital effects on mineral chemistry and mineral morphology. 

Out of the 60 different minerals (Table 1.1) in the biosphere that can be produced by 

organisms (Lowenstam and Weiner, 1989), we focused our research on the most 

abundant one: calcium carbonate (Table 1.2). Biomineralization processes and 

biomineralized carbonate hard tissues are the subject of study of this Thesis. 

From all the marine organisms that form minerals (e.g. bivalves, gastropods, corals, 

echinoderms, coccolithophores) brachiopods play an important role, not only in the 

formation of sedimentary sequences, but also as element and isotope archives for ocean 

chemistry and paleo-environmental reconstruction.  

Brachiopods are bivalved lophophorates, which are sessile marine animals that 

mineralize low-Mg calcite (subphylum Rhynchonelliformea and Craniiformea) or Ca-

phosphate (subphylum Linguliformea) shells. Brachiopods exist since the Early 

Cambrian, diversified during the Ordovician and are still extant (Carlson, 2016, Harper 

et al. 2017). Even though these organisms mostly live in shallow marine waters their 

life style is highly diverse. By the end of the Ordovician, brachiopods had already 

populated a wide range of marine habitats, had diverse life-styles (from free-living to 

cemented), and developed different types of shell morphologies and microstructures 

(e.g. Lowenstam 1961, Veizer et al. 1986, Bates and Brand 1991, Grossman et al. 1996, 

Carpenter and Lohmann 1995, Peck et al. 1997, Williams 1997, Williams et al. 2000, 

Cusack et al. 2001, Samtleben et al. 2001, Peck 2007, Angiolini et al. 2009, Harper and 

Drachen 2010, Nielsen et al. 2013, Roark et al. 2015, Carlson 2016, Harper et al. 2017, 

Garbelli et al. 2017). 

Brachiopod shells consist of two valves connected to each other at the hinge. 

Unlike bivalve shells that commonly have a bilateral symmetry, with the hinge located 

in the sagittal plane, each brachiopod valve has a mirror plane, the median plane, which 

cuts through the valves (Fig. 1.1a-d). Morphologically and crystallographically, the two 

valves are not mirror images of each other, as it is the case for many bivalves (see Fig. 

1.1a-d and Schmahl et al. 2012). Even if at juvenile stages valves are thinner relative to 

adult ones, brachiopod valves have a quite constant thickness along their length. Shell 

growth does not occur exclusively at commissural margins, but also takes place along 

the inner surface of the shell (Rosenberg et al. 1988, Baumgarten 2013).  

The internal structures of brachiopods consist of the lophophore or feeding filter 

system separated from the body cavity (visceral area) by the anterior body wall (Fig. 

1.1e). Most of the organs (digestive gland, stomach, gonads, heart...) in the coelom or 

body cavity are situated on the posterior part, close to the hinge, while the lophophore 

occupies the major part of the cavity (Fig. 1.1e). The muscular system holds together 

the two valves and it is confined on the posterior region of the organism, close to the 

pedicle (Fig. 1.1e). The latter is present in all terebratulide and rhynchonellide 

brachiopods and it facilitates the attachment to a hard substrate.  
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The dorsal and ventral mantle epithelium/mantle lobe line the two valves internally 

(Fig. 1.1e) and are attached to the shell via tonofilaments. The mantle lobe can be 

divided into three different parts: the outer mantle epithelium (the epithelium in close 

contact to the shell), the middle layer consisting of connective tissue with varying 

content of collagen, and the inner mantle epithelium with the cilia. 

 

Table 1.1. Names and chemical compositions of biominerals produced by biologically 

controlled mineralization and biologically induced processes (Weiner and Dove, 2003). 

 

Name Formula 

Carbonates 

 Calcite CaCo3 

Mg-calcite (MgxCa1-x)CO3 

Aragonite CaCO3 

Vaterite CaCO3 

Monohydrocalcite CaCO3.H2O 

Protodolomite CaMg(CO3)2 

Hydrocerussite Pb3(CO3)2(OH)2 

Amorphous Calcium Carbonate (at least 5 forms) CaCO3.H2O or CaCO3 

Phosphates   

Octacalcium phosphate Ca8H2(PO4)6 

Brushite CaHPO4.2H2O 

Francolite Ca10(PO4)6F2 

Carbonated-hydroxylapatite (dahllite) Ca5(PO4,CO3)3(OH) 

Whitlockite Ca18H2(Mg,Fe)2
+2

(PO4)14 

Struvite Mg(NH4)(PO4).6H2O 

Vivianite Fe3
+2

(PO4)2.8H2O 

Amorphous Calcium Phosphate (at least 6 forms) variable 

Amorphous Calcium Pyrophosphate Ca2P2O7·2H2O 

Sulfates   

Gypsum CaSO4.2H2O 

Barite BaSO4 

Celestite SrSO4 

Jarosite KFe3
+3

(SO4)2(OH)6 

Sulfides   

Pyrite FeS2 

Hydrotroilite FeS.nH2O 

Sphalerite ZnS 

Wurtzite ZnS 

Galena PbS 

Greigite Fe3S4 

Mackinawite (Fe,Ni)9S8 

Amorphous Pyrrhotite Fe1-xS (x = 0-0.17) 

Acanthite Ag2S 
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Table 1.1. Continuation 2/2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* by the convention of Lowenstam and Weiner (1989) 

 

 

 

Arsenates   

Orpiment As2S3 

Hydrated Silica   

Amorphous Silica SiO2.nH2O 

Chlorides   

Atacamite Cu2Cl(OH)3 

Fluorides   

Fluorite CaF2 

Hieratite K2SiF6 

Metals   

Sulfur S 

Oxides   

Magnetite Fe3O4 

Amorphous Ilmenite F
+2

TiO3 

Amorphous Iron Oxide Fe2O3 

Amorphous Manganese Oxide MnO4 

Hydroxides and Hydrous Oxides   

Goethite  α-FeOOH 

Lepidocrocite  γ-FeOOH 

Ferrihydrite  5Fe2O3·9H2O 

Todorokite (Mn
+2

CaMg)Mn3
+4

O7·H20 

Birnessite Na4Mn14O27·9H2O 

Organic Crystals*   

Earlandite  Ca3(C6H5O2)2·4H2O 

Whewellite CaC2O4·H2O CaC2O4·H2O 

Weddelite  CaC2O4·(2+X)H2O (X<0.5) 

Glushinskite  MgC2O4·4H2O 

Manganese Oxalate (unnamed)  Mn2C2O4·2H2O 

Sodium urate  C5H3N4NaO3 

Uric Acid  C5H4N4O3 

Ca tartrate  C4H4CaO6 

Ca malate  C4H4CaO5 

Paraffin Hydrocarbon   

Guanine C5H3(NH2)N4O 
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Table 1.2. Calcium carbonate biominerals in some organisms, summarized from Mann (2001). 

 

Minerals Formula Organisms 

Calcite CaCO3 

Coccolithophores 

Foraminifera 

Trilobites 

Mollusks 

Crustaceans 

Brachiopod 

Birds 

Mammals 

Mg-calcite (Mg, Ca)CO3 
Octocorals 

Echinoderms 

Aragonite CaCO3 

Scleractinian corals 

Mollusks 

Gastropods 

Cephalopods 

Otolith 

Amorphous CaCO3
.
nH2O 

Crustacean 

Plants 

Vaterite CaCO3 
Gastropods 

Ascidians 
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Figure 1.1. (a-d) Comparison of the Rhynchonellata brachiopod Magellania venosa (a and b) 

and the Bivalve Venerupis decussate (c and d). The red dashed and diagonal red lines mark the 

mirror symmetry planes in both animals. For brachiopods, the mirror plane cuts the valves 

perpendicular to the plane defined by the valve commissures when they are closed and cross 

from the anterior to the posterior region through the pedicle (a and b). For most bivalves it is the 

opposite, the mirror plane is the same as the one defined by the commissures of the closed 

valves (a and d). (e) Scheme of a half section of an articulate terebratulide brachiopod (modified 

from Harper 2005 by Holmer; original drawn by Lisa Belhage, Geological Museum, 

Copenhagen). The dorsal and ventral valves as well as the anterior and posterior region are 

indicated.  Some of the main internal regions are marked in colour: the mantle epithelium 

(yellow), the lophophore (orange), body cavity (green), muscular system (red) and pedicle 

(blue). The draws were done by Eloy Manzanero Criado, freelance Palaeoartist. 
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There are five extant brachiopod orders: Lingulidae, Craniidae, Rhynchonellidae, 

Thecideidae and Terebratulidae. They are highly distinct differing in soft-tissue 

anatomy, shell morphology, shell chemistry and shell texture and microstructure. Some 

of the differences can be observed not only on the macrometer scale but also on the 

micro-, and nanometer scale. Due to the complexity of the characteristics given above, 

most studies described the mentioned hierarchical structure for only one species per 

study (e.g. Williams 1973, Schmahl 2004, Griesshaber et al. 2007, Cusack and Williams 

2007, Perez-Huerta et al. 2007, Goetz et al. 2009, Merkel et al. 2009, Schmahl et al. 

2012, Gaspard et al. 2016, Ye et al. 2018a).  

 

An important part of this dissertation refers to thecideid brachiopods, the last 

brachiopod order to appear in the fossil record (Carlson, 2016). Thecideide are a very 

special group among Brachiopoda. Their position and connections within the 

brachiopod phylogeny is still under debate as well as their origin (Williams 1973, 

Carlson 2016). They are small bodied animals and live cemented to hard substrates in 

cryptic habitats, a life-style and a living environment that contrasts significantly with 

most terebratulide and rhynchonellide extant brachiopods (Williams 1973, Carlson 

2016, Baumgarten et al. 2013, Ye et al. 2018a, 2018b). 
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1.1. Biomineralization processes  
 

“The term biomineralization or biological biomineralization defines those processes by which 

organisms form minerals” 

(Lowenstam and Weiner 1989) 

“Biomineralization links soft organic tissues, which are compositionally akin to the atmosphere 

and oceans, with the hard materials of the solid Earth. It provides organisms with skeletons and 

shells while they are alive, and when they die these are deposited as sediment in environments 

from river plains to the deep ocean floor. It is also these hard, resistant products of life which 

are mainly responsible for the Earth’s fossil record.” 

(Leadbeater and Riding 1986) 

“Biomineralization is by definition a multidisciplinary field that draws on researchers from 

biology, chemistry, geology, material science, and beyond.” 

(L.A. Estroff, 2008) 

Through cellular activity organisms convert ions in solution into solid minerals 

(Simkiss and Wilbur, 1989). The minerals that result from these processes are called 

biominerals, which form minerals when combined with an organic substance. The 

presence of the organic component is the main difference to the inorganic mineral 

equivalents. However, biominerals as well as inorganic minerals have often defined 

morphologies, crystallography, trace elements and isotopic composition. One specific 

characteristic of biocomposite materials is that they are highly controlled from nano- to 

macrometer scale levels, leading to hierarchical hybrid composite complex structures 

with multifunctional properties (Schmahl et al, 2012).  

In nature we find an extensive amount of examples of biominerals precipitated by 

plants, bacteria, molluscs, brachiopods… Also vertebrates mineralize biominerals, such 

as calcium phosphate to produce bones and teeth (Lowenstam and Weiner, 1989). 

Biominerals are often adapted to specific functional purposes. Therefore, these minerals 

play an important role in many organisms´ structures as they give them stability and 

mobility [e.g. calcium phosphate in vertebrates skeletons, calcium oxalate in plants 

(chlorophyte) (Lowenstam and Weiner, 1989) silicates in algae and diatoms], protection 

(e.g. calcium carbonate or calcium phosphate forming shells), tools for living (e.g. 

calcium phosphate of vertebrate teeth or calcium carbonate in fish otoliths, magnetite in 

magnetotactic bacteria) and many more. 

Porter (2011) and Cohen et al. (2011) place the first evidence of biomineral 

formation starting at about 750 Mya and Maloof et al. (2010) suggest that around 

630 Mya sponge organisms may have formed the first calcite skeletons. However, most 

animal lineages started to biomineralize at the end of the Precambrian and at the 

beginning of the Cambrian (541 Mya). From this moment on, that many phyla started to 

form a huge diversity of biomaterials (Knoll, 2003). Hence, understanding all aspects of 

biominerals is important in order to understand better the evolution of life. 

About one half of the known biogenic mineral species are silica, iron oxides, metal 

sulphides, sulphates and oxalate biominerals. Biominerals with calcium ion as a major 
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component comprise the other half of the known biogenic minerals (Lowenstam and 

Weiner 1989). This is as a consequence of organisms developing the ability to 

manipulate this ion started very early in the evolution of life. Calcium carbonate 

minerals are the most abundant biogenic minerals on the Earth in terms of: (1) 

quantities produced and (2) the widespread distribution among many different taxa in 

combination with proteins and organic polymers such as collagen and chitin 

(Lowenstam and Weiner 1989, Vinn, 2013). 

Biomineralization processes can be grouped into two different concepts depending 

on the degree of biological control (Lowenstam, 1981): “biologically induced” 

(Lowenstam 1981) and “organic matrix-mediated”, known as well as “biologically 

controlled” biological mineral formation (Mann 1983).  

Biologically induced mineralization takes place mainly when microbial metabolic 

processes interact with the surrounding environment (Fortin et al. 1997, Braissant et al. 

2007 and Decho, 2010).  This type of process occurs when the cell surface acts as a 

template for mineral nucleation and growth (Weiner and Dove 2003). Within this 

concept we can distinguish induced and influenced mineralization. Induced mineral 

formation occurs when the biochemical conditions that induce the mineral precipitation, 

are the product of microbial activities (Dupraz et al. 2009, Decho, 2010). Influenced 

mineral formation refers to the processes where the driving forces for precipitation 

come from the passive interaction between the extracellular polymers and the 

geochemistry of the environment (Dupraz et al. 2009, Decho, 2010). The degree of 

biological control of these systems is still under debate. During the last years many 

studies pointed out that induced or influenced biomineralization are not passive 

precipitation, showing that the bacteria (including their walls and extracellular 

polymeric substances) have a real influence in several aspects of the biomineral 

formation (e.g., Lian et al. 2006, Sánchez-Román et al. 2007, Tourney and Ngwenya, 

2009, Shirakawa et al. 2011, Ercole et al. 2012, Oppenheimer-Shaanan et al. 2016, Yin 

et al. 2020). The biologically induced mineralization is a common mineralization 

concept among the Monera, Fungi and Protista kingdoms (Lowenstam and Weiner 

1989) (Fig. 2).  

Biologically controlled mineralization was defined by Mann (1983) as a regulated 

process, based on genetic predetermination (Simkiss and Wilbur, 1989), that produces 

materials with specific biological structures and functions such as shells, bones, teeth. 

Due to the high biological control over mineral growth, the understanding of 

biologically controlled mineralization is of special interest for materials with 

engineering applications (Boskey, 1998, Sarikaya, 1999). This type of mineralization 

can be categorized as being either an extra-, inter-, or intracellular process (Lowenstam 

and Weiner 1989). Practically all these processes, regardless whether inside or outside 

of the cell, occur in an isolated or closed environment (Weiner and Dove 2003). The 

mineralization is biologically controlled when the process is organic matrixmediated 

and the nucleation, growth and morphology of the deposited mineral is directed by cells 

(Weiner and Dove 2003).  
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Figure 2. Scheme of biologically induced mineralization modified from Weiner and Dove 

(2003). 

Intercellular mineralization occurs when the isolated site of mineralization is the 

epidermis of the individual (Mann, 2001). It can be found in communities of single-

celled organisms and the processes take place until the mineral fills the intercellular 

spaces. It is the surface of a cell or organism that directs the polymorph and shape of the 

precipitated biomineral (Weiner and Dove 2003) (Fig 3).   

 

 

 

 

 

 

 

 

 

 

Figure 3. Scheme of biologically controlled intercellular mineralization modified after Weiner 

and Dove (2003). 

A
z-

 

OH
-

, C
z+

 
organic bioproduct 

nucleation into 

particulates  

epicellular nucleation 

secretion 

active pumping 

gradient diffusion 

A
z-
 

C
z+

 

A
z-
 

C
z+

 

C
z+

 
A

z-
 

active pumping 

gradient diffusion 

C
z

+
 

A
z-
 

mineral 

A
z-
 anion cation C

z+

 



 
 

20 
 

Intracellular mineralization occurs when specialized vesicles direct the nucleation 

of the biomineral within the cell (Weiner and Dove 2003). This is the case for 

echinoderms, coccoliths or some foraminifera and silica mineralizing algae (Fig 4). 

 

 

 

 

 

 

 

 

 

 

Figure 4. Schemes of biologically controlled intracellular mineralization based on Weiner and 

Dove (2003) and Weiner and Addadi (2011). 

 

Extracellular mineralization takes place when the cell secrets an extracellular 

organic matrix that us subsequently mineralized (Weiner and Dove 2003). The organic 

framework regulates and organizes functions for the biomineral formation (Weiner and 

Dove 2003). The transfer of mineral or ions to the extracellular matrix can be done by 

(1) active pumps of ions to the site of mineralization (Simks, 1986) or by (2) vesicles, 

filled with cations, which are exported through the cell membrane and take precursor 

compounds to the organic matrix (Weiner and Dove 2003) (Fig.5). 

For this study the process of extracellular mineralization is of major interest as it is 

the predominant biological hard tissue forming process for mollusk shells (Gregoire et 

al. 1955, Crenshaw 1980, Weiner and Traub 1980, 1984, Falini et al. 1996, Pereira-

Mouries et al. 2002, Weiss et al. 2002, Gotliv et al. 2003, Weiner and Addadi 2011). 

For brachiopod shells the biomineralization process was not yet described and often 

biomineralization of mollusk shells was used as a reference. Accordingly, the studies of 

this thesis aimed to understand, in one hand, how the mineralization in modern 

brachiopod shells takes place and, in the other hand, if there is any analogy with the 

biomineralization process of mollusc shells.  

The classical mechanisms of the extracellular mineralization process are still under 

discussion and every new study brings new light for understanding the complexity of 

this way of mineralizing shells (e.g. Roer 1980, Aizenberg et al. 1996, Greenaway et al. 

1995, Wheatly 1999, 2001, Ziegler et al. 2002, 2004, Politi et al. 2008, Gal et al. 2014, 

Weiner and Addadi et al. 2011, Simonet Roda et al. 2019). 
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Figure 5. Schemes of biologically controlled extracellular mineralization based on Weiner and 

Dove (2003) and Weiner and Addadi (2011). 

1.2. Brachiopod shells  

1.2.1. Shell secretion 

Williams and co-workers investigated shell formation for modern rhynchonellide -

Hemithiris psittacea , Notosaria nigricans, Waltonia inconspicua- and terebratulide -

Laquens californicus, Macandrevia cranium, Megerlia truncata, Terebratalia 

transversa, Terebratella inconspicua- (Williams 1953, 1966, 1968a, 1968b, 1973, 1997 

and Williams et al. 1997, 2000) brachiopods. The mantle epithelium of brachiopods is 

the one in charge of the secretion of the different shell layers, being the “biological 

filter” or guide between the sea water and the shell. The area where the mineralization 

of the shell takes place is called extracellular space.  

According to Williams, TEM and SEM observations show that secretory cells of 

the brachiopod epithelium are formed within a ‘generative zone’ of the mantle 

epithelium: the mantle groove that separates the inner and outer lobes of the mantle 

edge. Williams postulated that the epithelial cells of the mantle lobes act like ‘a 

conveyor belt’ (e.g. Williams 1966, 1973, Williams et al. 1997). This model relies on 

the notion that the generative zone of the mantle constantly produces new cells and, 

therefore, existing cells have to move away. Consequently, Williams suggested 

(Williams 1966, 1968, 1997) that mantle epithelial cells are capable of performing many 

secretory tasks and secrete all layers of a brachiopod shell: the periostracum, the 

extracellular matrix, the calcite of the primary layer, the calcite of the fibrous and that of 

the columnar shell layer (Williams et al. 1968b). The energy that is required for 
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physiological changes that epithelial cells must perform when switching between the 

different secretory tasks was not determined (Williams 1966, 1968).  

The fibrous and columnar shell layers of modern rhynchonellide and terebratulide 

brachiopods are hybrid composites where an extracellular biopolymer matrix is 

mineralized with calcite; both secreted by outer mantle epithelium (OME) cells. The 

organic components are formed within the cell or at the apical cell membrane, they 

cross through the cell membrane at the side of the shell, and they are released into the 

shell as networks of fibrils or as extracellular organic membranes (Simonet Roda et al. 

2019b). As mentioned above, the precursor of the mineralized shell can follow two 

possible routes of cellular transport: (1) Transport of mineral loaded vesicles that fuse 

with the apical cell membrane and deposit their content at the sites of mineralization; or 

(2) transport of ions that cross from the cell to the growing shell. Despite many decades 

of research, there is still no definitive evidence whether brachiopod shell mineralization 

occurs via one or another way. Nevertheless, there is general consensus that there is a 

tight cellular control for brachiopod hard tissue formation. 

1.2.2. Shell microstructures 

Through geological time brachiopods have developed different types of shell 

microstructures (Ye et al. 2020). For this dissertation we defined the term 

“microstructure” based on electron backscattered diffraction (EBSD) measurements. 

This technique allowed us to determine grain morphology, size, mode of co-

orientation/misorientation, co-orientation/misorientation strength and crystallite 

orientation based on physical measurements. The term ‘texture’ relates to the orientation 

of a crystal within a material while the term ‘microstructure’ is the sum of all grain 

sizes, grain morphologies, crystallite co- and misorientations in a given material 

(Simonet Roda et al. 2020a). 

The studies presented in this dissertation were done on modern and fossil 

specimens of brachiopod with calcitic shells. Form the five different extant orders four 

(Craniidae, Rhynchonellidae, Thecideidae and Terebratulidae) secrete calcitic shell and 

within them terebratulide and rhynchonellide brachiopods are the most abundant. 

Modern terebratulide and rhynchonellide brachiopod shells consist of up to four 

shell layers: the periostracum situated in the outermost part that is followed inward by 

up three mineralized layers: the primary, the fibrous and, in some species, the columnar 

layer (Figure 6). Each shell layer has a specific microstructure (e.g. Schmahl et al. 2004, 

Schmahl et al. 2008, Griesshaber et al. 2009, Goetz et al. 2009, Goetz et al. 2011, 

Schmahl et al. 2012, Gaspard and Nouet 2016, Ye et al. 2018, Simonet Roda 2020b) 

(Fig. 6).  

For the primary layer, EBSD measurements show that it consists of an array of 

interdigitating, irregularly shaped micrometre sized calcite units (Goetz et al. 2011). 

According to TEM results of Griesshaber et al. (2009) the non-punctate primary shell 

layer of modern brachiopods does not contain organic material. However, as some 

organics, e.g. chitin, do not become contrasted by conventional contrasting methods, 

some organic components might be present within the primary layer. Going inward, 

there is the fibrous shell layer consisting of arrays of calcite fibres. This layer comprises 

sub-layers where the stacks of fibres are differently oriented (Merkel et al. 2007, 

Schmahl et al. 2008, Griesshaber et al. 2009). In contrast to the primary layer, there are 
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biopolymers occluded within the fibrous shell layer of brachiopods. The organic 

components can be found inside the individual fibres forming a nanometer scale 

network of fibrils (Casella et al. 2018). In addition, thick organic membranes line each 

fibre at their proximal, convex surface (Simonet Roda et al. 2019b). The specific shape 

and way of packing of the fibres implicates their full encasing by organic substance 

(Simonet Roda et al. 2019b). In the innermost region of the shell we can find the tertiary 

or columnar layer. This layer is characterized by long, thick calcite prims. The upper 

part of the columnar layer, adjacent to the fibrous layer, is formed by a band of small 

columnar calcite crystals (1–5 μm). These crystals compete at growth when increasing 

their width as they grow towards the inner part of this layer, forming the large ‘‘pillars’’ 

(Goetz et al. 2009). In this layer the organic content is minor (Fig. 6). 

Thecideide shell microstructure is complicated and rare and “the full taxonomic 

potential of shell microstructures remains to be realized” (Baker, 2006, p. 1938). 

Nowadays we know that it consists of only one mineralized layer with a heterogranular 

microstructure (Simonet Roda et al. 2020a) also called “acicular primary layer” 

(Williams, 1997, Williams and Cusack 2007) (Fig. 6). The latter term may be confusing 

as it compares it to the common primary layer (the external one and the first to be 

secreted during brachiopod growth) of terebratulide and rhynchonellide brachiopods. 

 

Figure 6. Diagram, based on Williams (1997), Schmahl et al. (2012), and Simonet Roda et al. 

(2020), showing the different types of shell microstructures of modern terebratulide, 

rhynchonellide and thecideide brachiopods. 

The description and name of the thecideide shell microstructure was classically 

done under the frame of the primary shell layer. It was named as the “subclass” primary 
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acicular layer, pointing out the presence of acicular crystallites (Figure 6, Williams, 

1973 and 1997). Recent studies redefine the thecideide microstructures by comparing 

the shell of modern and fossil specimens with the common primary layer of 

terebratulides (Simonet Roda et al., 2020a and 2020b). These studies define the 

microstructure as a non-primary heterogranular microstructure where bigger crystals 

with different morphologies – acicular, poligonal, roundish and granular - are embedded 

in a matrix of nanocrytallites. The organic material within the shell is very abundant and 

follows the growth lines that are often perpendicular to the longitudinal axis of the 

acicular crystallites (Simonet Roda et al., 2020a).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Diagram from Williams (1973) showing a sectioned block of the shell of the 

thecideide genus Thecidellina x 640 magnification. In the scheme we can observe some of the 

characteristic features of the thecideide microstructure. The puncta in this genus has an average 

diameter of 25 μm. 

Theicideids show a particular evolution of their shell microstructure which involves 

the progressive loss of the secondary fibrous layer - which became restricted to isolated 

patches mainly on the brachiopods teeth - in favour of an “acicular” microstructure 

starting from the Jurassic-Cretaceous (e.g. Baker 2006, Williams and Carlson 2007, 

Simonet Roda et al. 2020a). Baker 2006 clarifies that the loss of the fibrous fabric as an 

evolutionary change occurred at different rates among the different Thecideid 

subfamilies. In the Lacazellinae and Thecideinae, the fibres are suppressed by the Late 

Jurassic but in the Thecidellininae they are persisting up to the Cretaceous (Baker 

2006). 
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1.2.3. Importance for the scientific realm and other science disciplines 

The interest of marine invertebrate shells is wide, comprising different scientific 

fields. For Earth scientist they are very useful tools for understanding the evolution of 

the water masses. The sea water conditions will be reflected to some extent in the 

calcitic shells of marine organisms as it is the environment where they live and grow. 

This makes them to be very important archives for reconstruction of paleo-

environments and climates as well as of ocean and sea water conditions (e.g. Rowell 

and Grant 1987, Carpenter and Lohmann 1995, Grossman et al. 1996, Veizer et al. 

1999, Brand et al. 2003, Parkinson et al. 2005). 

The combination of mineral and organic components gives them some advantages 

relative to inorganic materials, such as strength and flexibility (e.g. Griesshaber et al. 

2005, Schmahl et al. 2012). These properties make biominerals very interesting for 

medical and material sciences. Understanding the biomineralization processes and 

natural biomaterials leads to a better approach in mimicking the processes in laboratory 

to create similar materials. Within the last decades biominerals have been used as model 

systems for new synthetic biomimetic materials (e.g. Sarikaya,1994, and Sarikaya, 

2002, Mayer, 2005, Nindijasari et al. 2015, Greiner et al. 2018, Yin et al. 2019). The 

development of new biomimetic materials is of great importance for pharmaceutical and 

medical applications (e.g. Jackson et al. 1988, Saenz et al. 1999, Kamat et al. 2000, 

Queiroz et al. 2001, Srivastav 2011, Rezaie et al. 2015, Devi et al. 2017, Khan and Chen 

2019). 

 

“Consequently, biomineralization involves biologists, chemists, and geologists in 

interdisciplinary studies at one of the interfaces between Earth and life.” 

(Leadbeater and Riding 1986) 
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Chapter 2. Results and Discussion 

2.2. Terebratulide brachiopod shell biomineralization by 

mantle epithelial cells 
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2.1. Terebratulide brachiopod shell biomineralization by 

mantle epithelial cells 

Simonet Roda M.* (1), Ziegler A. (2), Griesshaber, E. (1), Yin X. (1), Rupp U. (2), Greiner M. 

(1), Henkel D. (3), Häussermann V. (4), Eisenhauer A. (3), Laudien J. (5), and Schmahl W. W. 

(1)
  

1 
Department of Earth and Environmental Sciences, LMU, 80333 München, Germany 

2 
Central Facility for Electron Microscopy, University of Ulm, 89069 Ulm, Germany 

3 
Marine Biogeochemistry/Marine Systems, GEOMAR Helmholtz Centre for Ocean Research, 24148 

Kiel, Germany  
4 

Pontificia Universidad Católica de Valparaíso, Facultad de Recursos Naturales, Escuela de Ciencias del 

Mar, Avda. Brasil 2950, Valparaíso, Chile and Huinay Scientific Field Station, Puerto Montt, Chile 
5 

Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 27568, Bremerhaven, 

Germany 

*Corresponding author: simonet@lrz.uni-muenchen.de 

 

Abstract 

To understand mineral transport pathways for shell secretion and to assess differences in 

cellular activity during mineralization, we imaged with TEM and FE-SEM ultrastructural 

characteristics of outer mantle epithelium (OME) cells. Imaging was carried out on Magellania 

venosa shells embedded/etched, chemically fixed/decalcified and high-pressure frozen/freeze-

substituted samples from the commissure, central shell portions and from puncta. Imaging 

results are complemented with morphometric evaluations of volume fractions of membrane-

bound organelles. 

At the commissure the OME consists of several layers of cells. These cells form oblique 

extensions that, in cross-section, are round below the primary layer and flat underneath fibres. 

At the commissure the OME is multi-cell layered, in central shell regions it is single-cell 

layered. When actively secreting shell carbonate extrapallial space is lacking, because OME 

cells are in direct contact with the calcite of the forming fibres. Upon termination of secretion, 

OME cells attach via apical hemidesmosomes to extracellular matrix membranes that line the 

proximal surface of fibres. At the commissure volume fractions for vesicles, mitochondria and 

lysosomes are higher relative to single-cell layered regions, whereas for endoplasmic-reticulum 

and Golgi apparatus there is no difference. 

FE-SEM, TEM imaging reveals the lack of extrapallial space between OME cells and 

developing fibres. In addition, there is no indication for an amorphous precursor within fibres 

when these are in active secretion mode. Accordingly, our results do not support transport of 

minerals by vesicles from cells to sites of mineralization, rather by transfer of carbonate ions via 

transport mechanisms associated with OME cell membranes. 

Keywords: transcellular ion transport, ultrastructure, amorphous calcium carbonate, 

ACC, isotope fractionation, marine invertebrates 
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2.1.1 Introduction  

Brachiopods are shell-forming sessile marine invertebrates that have existed from 

the Early Cambrian and are still extant (e.g. Lowenstam, 1961, Veizer et al., 1986, Peck 

et al. 1997, Samtleben et al., 2001, Carlson 2016, Cross et al. 2018). They mineralize 

low-Mg calcite or Ca-phosphate shells and populate a wide range of marine habitats 

(e.g. Bates and Brand, 1991; Grossman et al., 1996; Carpenter and Lohmann, 1995; 

Williams et al. 2000, Cusack et al. 2001; Peck 2007; Angiolini et al., 2009; Lee et al. 

2011; Roark et al., 2015; Garbelli et al., 2017; Temereva and Kuzmina 2017).  

Brachiopod shells consist of two valves that are connected to each other at the 

hinge. Unlike mollusc shells each brachiopod valve has a mirror plane, the median 

plane, that cuts through the valves. The two valves are not mirror images of each other. 

Brachiopod valves have a quite constant thickness along their length. As juvenile valves 

are thinner relative to adult ones, valve growth does not occur exclusively at 

commissural margins, it takes also place along inner shell surfaces (Rosenberg et al. 

1988, Baumgarten 2013). 

 Modern terebratulide and rhynchonellide brachiopod shells consist of up to four 

shell layers: the outermost periostracum that is followed inward by up to three 

mineralized layers: the primary, the fibrous and, where developed, the columnar layer. 

Each shell layer has a specific microstructure (e.g. Schmahl et al. 2004, Griesshaber et 

al. 2007, Schmahl et al. 2008, Griesshaber et al. 2009, Goetz et al. 2009, Goetz et al. 

2011, Schmahl et al. 2012, Gaspard and Nouet 2016, Ye et al. 2018a, 2018b, Simonet 

Roda et al. 2019). EBSD measurements show that the primary layer consists of an array 

of interdigitating, irregularly shaped micrometre sized calcite units (Goetz et al. 2011). 

Organic substance is not incorporated within the primary layer (Griesshaber et al. 2009). 

Arrays of calcite fibres form the proximal part of both brachiopod valves. EBSD results 

prove that the fibrous shell portion consists of sub-layers. The latter are formed of 

differently oriented stacks of parallel calcite fibres (Merkel et al. 2007, Schmahl et al. 

2008, Griesshaber et al. 2009). In contrast to the primary layer, in the fibrous shell layer 

biopolymers are incorporated and are developed as membranes or fibrils (Casella et al. 

2018a, Simonet Roda et al. 2019). A thin network of fibrils exists within each fibre 

(Casella et al. 2018a, 2018b), while organic membranes separate adjacent calcite fibres 

(Williams 1966, 1968a, 1968b, 1997). The membranes are secreted only onto the 

proximal, convex side of the fibres and are not fully encasing them (Simonet Roda et al. 

2019). The specific shape and mode of packing of the fibres implicates that they are 

enveloped by organic substance. 

The calcite fibres in modern brachiopods are single crystals (Schmahl et al., 2004, 

2008, 2012, Griesshaber et al. 2007, Goetz et al. 2009, Ye et al. 2018a, 2018b). Mild 

selective etching of these biocrystals produces nanoscale surface morphologies that do 

not reflect a simple inorganic rhombohedral calcite crystallography, but instead give the 

appearance of a nanoparticulate mesocrystalline structure consisting of globular units in 

the 50-100 nm size range (Cusack et al. 2008, Schmahl et al. 2008, 2012, Simonet Roda 

et al. 2019). For nacre tablets of the gastropod Phorcus turbinatus Macías-Sánchez et al. 

(2017) described as well a globular appearance of the mineral units. However, the 

authors demonstrated that granularity of the biomineral is not related to the secretion 

process, but is rather the consequence of the transformation from the precursor to the 

crystallized mineral. According to Macías-Sánchez et al. (2017) transformation to 

aragonitic nacre in Phorcus turbinatus takes place via an interface-coupled dissolution-
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reprecipitation mechanism, where, in the presence of water, the original structure of the 

amorphous mineral is reshaped by the regrowth of the newly-formed crystalline phase. 

This induces the globular appearance of the crystallized carbonate biomaterial.  

Modern rhynchonellide (Notosaria nigricans, Calloria inconspicua, Hemithiris 

psittacea) and terebratulide (Laquens californicus, Macandrevia cranium, Megerlia 

truncata, Terebratalia transversa, Terebratella inconspicua; Williams 1966, 1968a, 

1968b, 1997, Williams et al. 2000) brachiopod shell formation was investigated by 

Williams and co-workers. From TEM and SEM observations the authors deduced a 

model for shell secretion and proposed that secretory cells of brachiopods are formed 

within a ‘generative zone’ of the mantle epithelium: the mantle groove. The latter 

separates the inner and outer lobes of the mantle edge. Williams postulated (e.g. 

Williams 1966) that epithelial cells of the mantle lobes move like ‘conveyor belts’. This 

idea relies on the notion that the generative zone of the mantle epithelium constantly 

produces new cells, hence, existing cells need to make space and to move away. In 

agreement with the ‘conveyor belt’ idea, Williams postulated (Williams 1966, 1968a, 

1968b, 1997) that epithelial cells are capable of performing many secretory tasks and, 

hence, to secrete all layers of a brachiopod shell: the periostracum, the calcite of the 

primary layer, the extracellular matrix, the calcite of the fibrous layer and the calcite and 

extracellular matrix of the columnar shell layer. However, the impetus that is required 

for the physiological changes that brachiopod epithelial cells must undergo when 

switching between the many and very different secretory tasks is up to now not 

determined. 

The fibrous and columnar shell layers of modern rhynchonellide and terebratulide 

brachiopods is a hybrid composite where an extracellular biopolymer matrix is 

reinforced by calcite. Both material components are secreted by outer mantle epithelium 

(OME) cells. The organic component is formed within the cells: biopolymers are 

packed into organelles; these fuse with the apical OME cell membrane and release their 

content to the shell (e.g. Rothman and Wieland 1996, Bonifacino and Glick 2004). For 

the mineral component two routes of transport from the cell to the site of mineralization 

might be possible: (1) Transport of material as ions that cross through the cell to the 

sites of mineralization, or (2) transport of mineral loaded intracellular vesicles that fuse 

with apical cell membranes and deposit their content at sites of active shell secretion. 

Despite many decades of cell biological and biochemical research, up to now, there is 

no definitive evidence whether brachiopod shell mineralization occurs via mineral filled 

vesicles or by membrane-protein-aided ion transport. Nonetheless, there is general 

consensus that hard tissue formation occurs under tight cellular control.  

Accordingly, the focus of this study is the investigation of brachiopod shell 

mineralization, in particular, calcite fibre secretion in modern terebratulide brachiopod 

shells. We started our work with the hypothesis that brachiopod calcite is formed by 

aggregation of ACC nanoparticles, which are exocytosed by epithelial cells, attach to 

the developing fibre and crystallize in-situ. Therefore, we conducted an ultrastructural 

study of outer mantle epithelium (OME) cells that are in direct contact with the growing 

shell at: (i) the commissure, (ii) central valve sections, and (iii) at and within 

endopuncta. We describe and visualize ultrastructural differences of the OME at the 

above mentioned shell regions, substantiate these with quantitative morphometric data 

of organelle distribution patterns in epithelial cells and propose a conceptual model for 

mineral transport from OME cells to the sites of calcification. Our starting working 

hypothesis was not substantiated by our results. 
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In a broader perspective, we aim with this study for shelled organisms for an up to 

date understanding of material transport from epithelial cells to the sites of hard tissue 

formation. This is not only of major importance from a biomineralization perspective. 

As modern and fossil brachiopods are proxies for climate dynamics and environmental 

change, it is essential to assess and to evaluate physiological mechanisms that induce 

fractionation of shell forming isotopes and elements (e.g. Wefer and Berger 1991, Bates 

and Brand 1991, Auclair et al. 2003, Parkinson et al. 2005, Brand et al. 2011). As it has 

been shown for corals and coccolithophorides, fractionation might arise as a 

consequence of the mode of material transport to the sites of mineral formation, which 

is either by ion or by vesicular transport or is possibly a combination of both (e.g. Böhm 

et al. 2006, Langer et al. 2007, Mejia et al. 2018).   

2.1.2. Materials and methods 

Materials 

In this study we investigated the terebratulide brachiopod Magellania venosa. The 

animals were obtained from Comau Fjord, southern Chile. The brachiopods were taken 

from 21 meters depth, from waters with an average water temperature of 11 °C and 

30.3‰ salinity.  

Great care was taken that the investigated animals secreted shell material up to the 

very start of sample preparation. A stock of 150 to 200 brachiopods were transported 

live from Comau Fjord, Chile, to GEOMAR, Kiel, Germany, where they were kept in 

aquaria for three and a half years. In 2018 the brachiopods were transferred to aquaria at 

AWI in Bremerhaven, Germany, and are still living there today. The brachiopods that 

were selected for this study lived in the aquaria for more than 6 months prior to the start 

of sample preparation and had, thus, enough time to adjust to the new living conditions. 

Within the aquaria the brachiopods were monitored constantly with infrared cameras for 

observing them opening and closing their valves. Dead animals were discarded 

immediately. The aquaria were checked for dead animals twice a week.  

Brachiopods that we investigated in this study had their valves open. We regard this 

as a sign that they were constantly filtering, hence feeding and actively secreting shell 

material. Magellania venosa is a fast growing brachiopod. Shell secretion was also 

checked with the measurement of an increase in shell size, the latter was checked every 

three months. The brachiopods adopted well to their new living conditions as they 

spawned twice per year. Prior to transfer into the fixation solution or preparation for 

high-pressure freezing it was checked whether the investigated specimens were still 

alive by having them open and close their valves. Animals that were chemically fixed 

had a longitudinal axis length between 5 and 7 millimetres. Brachiopods that were used 

for high-pressure freezing had a longitudinal axis length of about 4-5 millimetres. 

According to Baumgarten et al. (2013), the Magellania venosa specimens of the size we 

used in our study are still juveniles and, thus, have a higher shell growth rate than 

adults. We investigated in this study eight Magellania venosa specimens. 

Methods 

Chemical fixation and decalcification 

For transmission and scanning electron microscopical imaging of the organic phase 

within the hard tissue and the ultrastructure of mantle epithelial cells we fixed 20 shell 
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pieces that were taken from central shell portions and from the commissure of both 

valves. All 20 shell pieces contained shell material and adjacent OME. We followed 

fixation procedures described in Karnovsky 1965 and Seidl and Ziegler 2012. In order 

to assure best fixation results of the soft tissue we checked the effect of two fixation 

solutions. The difference between the two fixation solutions was given by the used 

concentrations of paraformaldehyde and glutaraldehyde. Fixation solution A was 

prepared by mixing equal volumes of filtered seawater from the culture of Magellania 

venosa containing 2% paraformaldehyde and 2% glutaraldehyde with a solution of 0.35 

mol L
-1

 saccharose and 0.17 mol L
-1

 NaCl in 0.2 mol L
-1

 Na-cacodylate buffer (pH 7.7). 

Fixation solution B was prepared in the same way, however, with higher concentrations 

of paraformaldehyde (3.2%) and glutaraldehyde (4%) in the filtered seawater. The 

quality of soft tissue preservation was checked in TEM at 8000 times magnification. We 

did not find any difference in structure preservation, irrespective which solution was 

used. Ocassionally we found the OME ruptured or/and slightly detached from the shell. 

We attribute these features to mechanical impact at shell dissection. These samples were 

investigated (cut and imaged with FE-SEM and TEM) as well, but were not taken into 

account for the interpretation of our results. All 20 shell pieces (containing hard and soft 

tissue) were fixed for 17 hours at 4 °C.  

Of the 20 specimens, 8, taken from both valves, were decalcified for 14 days in a 

solution containing 0.25 mol L
-1

 HEPES, 0.05 mol L
-1

EDTA and 1% glutaraldehyde 

(Fabritius et al. 2005, Seidl and Ziegler 2012). The simultaneous decalcification and 

fixation ensures that the organic matrix emerges slowly, is exposed to the solution and 

is immediately fixed by aldehyde. Subsequent to decalcification the samples were 

washed three times with 0.1M Na-cacodylate buffer (7.7 pH) and postfixed in the same 

buffer for one hour containing 1% OsO4 and 0.9% K4Fe(CN)6·3H2O. After washing 

with bi-distilled water the samples were dehydrated in an ascending series of 

isopropanol solutions (30, 50, 70 and 90%) and were contrasted with 2% uranyl acetate 

(in 100 % ethanol for 30 minutes, washed 3 times for 30 minutes each in 100% 

isopropanol and two times for 5 minutes in propylenoxid).  

Finally all 20 shell pieces were embedded in EPON resin and were cut with an 

ultramicrotome  for imaging in TEM and FE-SEM as thin sections or as block-faces, 

respectively. 

High-pressure freezing and freeze-substitution 

High-pressure freezing enhances significantly the quality of morphological 

preservation of soft tissue samples for electron microscopical observation (Giddings 

2003). Magellania venosa not larger than 6 mm in length were dissected in the seawater 

of the culture. Pieces of shell with the mantle epithelium attached to the shell were cut 

from the commissure and the central shell portion of both valves. Samples were 

transferred to hexadecane and placed in aluminium planchets with an outer diameter of 

3 mm and a 200µm deep cavity, and covered with the flat side of another planchet. 

Samples were then high-pressure frozen with a Wohlwend HPF Compact 01 high-

pressure freezer within 30 ms at a pressure of 2.3 x 10
8
 Pa.  

Some of the high-pressure frozen samples were, in addition, subsequently freeze-

substituted. The substitution medium enhances further ultrastructural features of 

biological soft tissues (Walther and Ziegler 2002). The planchet sandwiches were 

opened and freeze-substituted overnight in 0.2% OsO4, 0.1% uranyl acetate and 5% 
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H2O in acetone from -90°C to 20°C following the protocol described in Walter and 

Ziegler, 2002. Finally, the samples were embedded in EPON resin and cut by using a 

diamond trimming knife (Diatome,) and a Reichert Ultracut ultra microtome. 

In a further procedure some of the high-pressure frozen, freeze-substituted and 

EPON embedded samples were decalcified for two weeks with 0.25 mol L
-1

 HEPES, 

0.05 mol L
-1

EDTA. The samples were then re-embedded in EPON. This procedure 

facilitated better thin sectioning for TEM imaging.  

In order to visualize simultaneously epithelial cells, organic matrices and shell 

mineral with FE-SEM we used chemically fixed but non-decalcified as well as high-

pressure frozen and freeze-substituted samples, all of them embedded in EPON resin. 

Samples were mounted on 3 mm thick cylindrical aluminium rods using super glue, 

were cut (Reichert Ultracut ultramicrotome) with glass and polished with diamond 

knifes (Diatome). Samples were then coated with 4 nm of carbon and imaged with a 

Hitachi S5200 FE-SEM. After imaging the carbon layer was removed, sample surfaces 

were re-polished, etched and fixed simultaneously for 40 seconds with a solution 

containing 0.1 M HEPES (pH = 9.0) and 2.5 % glutaraldehyde. Samples were then 

treated with 100 % isopropanol 3 times for 10 seconds each and critical point dried in a 

BAL-TEC CPD 030 devise. After coating with 4 nm carbon the dried samples were 

imaged again with a Hitachi S5200FE-SEM.  

Sample preparation for microstructure characterisation  

Electron Backscatter Diffraction (EBSD) measurements were done on even 

surfaces of high-pressure frozen and freeze-substituted samples, embedded in EPON 

resin. The used sample preparation for high-pressure freezing, freeze-substitution and 

embedding in EPON is described in the sections above. For the required even surfaces, 

samples were cut and polished with a diamond microtome knife and were subsequently 

coated with 4-6 nm of carbon. 

Transmission electron microscopy 

Ultrathin 60 nm thick sections were cut from chemically fixed and high-pressure 

frozen and freeze-substituted and decalcified samples using a diamond knife and an 

ultramicrotome. The sections were placed on carbon stabilized Formvar-coated copper 

hole grids and stained with 0.3% lead citrated. 

A Zeiss 912 TEM equipped with an Omega energy filter, a goniometer stage and a 

2k x 2k pixel camera was used to image the sections at 8000 times magnification and 

120 kV acceleration voltage using only elastically scattered electrons. To screen a large 

area of the outer mantle epithelium at high resolution, up to 60 panorama images were 

recorded at rectangular grids, each of these containing between 250 and 300 high-

quality individual images. These were then aligned using the TRS software and formed 

the composite panorama images. Up to 20 composite images were used for structural 

and numerical analysis.   

Field emission scanning electron microscopy 

Non-decalcified animals were chemically fixed as a whole (Fabritius and Ziegler 

2003, Fabritius et al., 2005) . Small pieces of the shell were embedded in EPON resin 

and knife polished with successively advancing the knife to the surface of the sample to 
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70, 40, 20, 10 and 5 nm, repeating each polishing step 15 times. Samples were mounted 

on aluminium holders using self-adhesive carbon pads and conductive glue and were 

coated with 4 nm of carbon using a BAF 300 BAL-TEC coating mashine. Samples were 

analysed with a Hitachi S5200 field emission scanning electron microscope (FE-SEM) 

using the converted backscattered electron signal to obtain so called composite rich 

images (Walther, 2008) with 20 µA emission current and 4kV acceleration voltage in 

analysis mode of the microscope. Secondary electrons from the sample were suppressed 

by 100% so that only the backscatter electron signal was used for imaging. 

 

Electron backscatter diffraction 

EBSD measurements were carried out on a Hitachi SU5000 field emission SEM, 

equipped with an Oxford EBSD detector. The SEM was operated at 15 to 20 kV and 

measurements were indexed with the CHANNEL 5 HKL software. In this study crystal 

orientation information is presented with band contrast measurement, colour-coded 

crystal orientation images and corresponding pole figures. EBSD band contrast 

represents the pattern quality of the EBSD-Kikuchi diffraction pattern, where a strong 

EBSD signal yields a bright image point when a crystal is scanned. An absent signal 

results from organic material or the presence of amorphous mineral. Co-orientation 

statistics are derived from pole figures obtained from EBSD scans. A measure of crystal 

co-orientation is given by the MUD value, a value defined as the multiple of uniform 

(random) distribution. Thus, high MUD values indicate a high crystal co-orientation, 

whereas low MUD values reflect a low to random co-orientation, respectively. For 

further information see Griesshaber et al. 2013, Griesshaber et al. 2017, Casella et al. 

2018a, 2018c. 

 

Morphometry 

In this study we aim for a comprehensive understanding of the ultrastructure of 

OME cells that are in close contact with the growing shell. We investigate the relation 

between OME cells and actively secreted calcite fibres. Accordingly, our intention was 

to image large portions of the OME with very high quality TEM and SEM images and 

perform a statistical evaluation of organelle distribution patterns for a large portion of 

the OME. To achieve the latter we recorded 60 TEM panorama images. Each panorama 

image covered both, shell calcite and OME cells and consisted of 250 and 300 

individual very high-quality TEM images. The individual TEM images were aligned to 

each other and formed the TEM panorama images. Of these 60 panorama images we 

selected 18 for numerical analysis. Of the 18 panorama images we selected 48 areas of 

interest, with each area of interest covering many OME cells depicted in very high 

resolution. The statistical evaluation was performed for two animals. We did not 

perform the statistical evaluation in 3D, as the intention was to cover large portions of 

the OME. A 3D statistical evaluation is carried out currently in a further study. OME 

volumes are selected on the basis of our imaging and statistical results obtained from 

the 2D statistical evaluation. 

Throughout this study we compare for the central shell region two types of outer 

mantle epithelia:  
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OME that is connected by hemidesmosomes within the apical OME cell membrane 

to the extracellular organic membrane lining at the proximal convex surface of the 

fibres. We use the abbreviation cr-a: central shell region with OME - attached.  

OME where both the extracellular organic membrane at the convex proximal side 

of the fibres as well as the apical hemidesmosomes are absent. In this case the apical 

cell-membrane delineates the compartment into which the cell secretes all components 

of the shell-forming mineral. We use the abbreviation cr-s: central shell region with 

OME - secreting. For further description see Simonet Roda et al. (2019). These two 

epithelia alternate at about the cross-sectional size scale for a calcite fibre, i.e. at about 

7-9 micrometres.  

We also examined the thin epithelium at the puncta (pt) and regard it as an 

epithelium that is not involved in mineral secretion. We consider the epithelium at and 

within the puncta as a reference the secreting epithelia.  

Furthermore, we compare the multi-cell layered OME underneath the calcite fibres 

at the inner commissure (abbreviation: com) with the single-cell layered OME below 

central shell regiona (abbreviation: cr-all).  

Volume fractions of various organelles were determined by counting randomly 

positioned points on predefined structures (classes) within test fields using the open 

source software JMicroVision Image analysis system (Roduit, 2008). Twelve different 

classes were defined as: cytoplasm, nucleus, mitochondria, lysosomes-endosomes, 

vesicles, Golgi apparatus, rough endoplasmic reticulum, smooth endoplasmic 

reticulum, glycogen, multivesicular bodies, others, and extracellular space. The number 

of random points was set either to 250 or 500 depending on the size of the test field. 

Test areas were defined using the implemented “area editor” so that regions outside of 

the epithelium were at a minimum. Evolution plots created by the software were used to 

evaluate if calculated volume fractions of organelles are representative.  

For each test field the length of the epithelium “EL (µm)” and the test field area “AT 

(µm
2
)” were determined and the percentages of the various classes “Ap (%)” in “AT” 

were measured. 

The absolute area “AO(i)” of each class i was calculated by 

AO(i) =AT*(Ap(i)/100) (µm
2
) 

The areas of the extracellular space and of the nucleus were excluded by calculating 

the area of the cytoplasm “AC” within the test field by  

AC = (∑  16
𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑖=1  AO(i)) - AO (nucleus) – AO (extracellular space) (µm

2
) 

The volume fraction of each class “VO(i)” of the cytoplasm without the nucleus 

equals the area fraction “A(i)” and was calculated by 

VO(i) = A(i) = (AO(i) /AC)*100 (%) 

From the area fraction “A(i)” of classes i, we calculated the absolute volume VA(i) 

of classes i per 10 µm
2
 epithelium area by  

VA (i) (µm
3
/µm

2
) = AO(i)/ EL*10 (µm

2
/ µm) 
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For measuring the area of cell membranes as well as for the outer membrane of the 

mitochondria we followed the method of Merz (1967). As the region of the OME near 

the shell rim (commissure) contains numerous long extensions it was not possible to 

distinguish the apical cell membrane from the basal one. Therefore, we distinguished a 

distal from a proximal cell membrane, with the latter most probably containing both 

apical and lateral membrane compartments. The Merz grid plugin for ImageJ/Fiji 

(Research Services Branch, National Institute of Mental Health, Bethesda, MD, USA) 

was used to superimpose an array of coherent semicircular lines to the images. The 

profile length ”Lp” of the cell membrane and the outer membrane of the mitochondria 

was determined by counting the intersections of the Merz grid lines with the membranes 

inside the test fields. Lp was calculated by: 

Lp = N d (µm) 

with “N” as the number of intersections between the grid lines and the membranes and 

“d” the diameter of the semicircles in each test field. 

Lp was normalized to 1µm epithelium length by  

L = Lp/EL 

with “EL” the epithelial length within the test field. 

The areas of the membranes “AM” per µm
2
 area of epithelium was calculated by  

AM = L x 1.273 (µm
2
)  (Merz, 1967). 

Statistical analysis 

GraphPad Prism software, version 6.00, for Mac (GraphPad Software, La Jolla 

California USA, www.graphpad.com) was used for statistical analysis and graphical 

representation. Mean values and standard deviations were calculated for the volume 

fractions VO(i), the absolute volume of each class normalized to 10µm
2
 of epithelium 

VA, and the membrane areas normalized to one square micrometer epithelium AM for the 

distal and proximal cell membrane, and the outer membrane of the mitochondria. One 

way ANOVA was used to test the significance of differences in the mean values for the 

volume fraction VO(i) and area per 10 µm epithelial length of classes AO(i). To account 

for multiple comparisons, Sidiak´s multiple comparisons tests were used to assign 

significant differences between the mean values for the mineral secreting central region 

(cr-s), the non-secreting attached areas (where the OME is attached to the organic 

membrane at the convex proximal side of the fibre) of the central shell region (cr-a) and 

the puncta (pt). T-tests were used to test for significant differences between the mean 

values of the pooled central regions.  

2.1.3. Results  

The shell   

The schematic presentation shown in Fig. 2.1.1 depicts the different layers of the 

shell of modern Magellania venosa as well as the topological relation of the mantle 

epithelium to the growing shell. The scheme is true to scale for an approximately 10 

mm large Magellania venosa. Fig. S2.1.1 indicates on cross-sections through the two 
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valves those shell portions that were investigated in this study: the commissure and the 

central shell region (Fig. S2.1.1B). 

The valves of Magellania venosa (Fig. S2.1.1A) consist of an outer organic layer, 

the periostracum, and two mineralized layers, the primary and the fibrous shell layers. 

The periostracum in Magellania venosa (Figs. 2.1.1, 2.1.2A) is a reticular structure that 

contains thin branching septae and large hollow spheres, the latter being similar to those 

observed in the periostracum of the bivalve Mytilus edulis (Wählisch et al. 2014). Along 

the proximal side of the periostracum, small spherical structures with a dense 

(osmiophilic) core fuse with one another. At its distal side the reticular structure of the 

periostracum is connected to a flat and thin sheet that carries numerous small rods (Fig. 

2.1.2A) and is interrupted by large pores (Fig. 2.1.2A). At its proximal side the 

periostracum of Magellania venosa is lined by a porous basal layer (red rectangles in 

Fig. 2.1.2A), hence, there is access from an outer medium to the puncta.  

 
 

Figure 2.1.1. Scheme showing the different layers of the shell of Magellania venosa and the 

topologic relation between the mantle epithelium and the shell. The scheme is true to scale for a 

10 mm large specimen. A) The shell of Magellania venosa consists of three layers, the 

periostracum, the mineralized primary layer and the mineralized fibrous (secondary) layer. The 

mantle epithelium is subdivided into two regions: the outer (OME) and inner mantle epithelium 
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(IME). B) Region of the commissure enlarged from A (red rectangle in A). Based on 

ultrastructural characteristics we can distinguish different portions of the OME: (i) the OME at 

the outer commissure below the primary layer, (ii) the OME at the outer commissure below the 

first row of fibres, (iii) the OME at the inner commissure below the fibres and (iv) the OME 

below central shell portions. Within the commissure the OME is multi-layered, while at the 

central shell region the OME consists of a single layer of cells. For an about 10 mm large M. 

venosa the transition from multi-layered to single-

from the tip of the commissure. The OME at the outermost portion of the commissure at the 

primary layer consists of cell extensions (blue star) only, while, still within the outer 

commissure but below the fibres, the OME consists of cell extensions and cells with a nucleus 

(yellow star).  

 

 

 

Figure 2.1.2. TEM micrographs showing ultrastructural features of the periostracum (A), and 

the fibrous shell layer (B to d) of Magellania venosa.  A) Periostracum of a chemically fixed 

and decalcified sample. Thin branching septae (bs) form a reticular structure interrupted by 

large hollow spheres (hs). In the proximal area, small osmiophilic spherical structures (ss) fuse 

with one another and with a basal layer of the periostracum. The basal layer contains small 

pores (red rectangles). Apically the periostracum has a thin flat sheet that carries numerous 

small rods at its distal side (black arrows) and is interrupted by large pores (yellow rectangles). 

B, C) Often two organic membranes overlap at fibre corners (for further information see Fig. 

S2.1.2). D) Tangential cut through an organic membrane between two fibres showing the 

porosity of these membranes. 

 

The primary shell layer (Fig. 2.1.1), is secreted at the outer commissure (Simonet 

Roda et al. 2019) and consists of micrometre sized, irregularly shaped, interdigitating 

calcite units (Goetz et al. 2011). In a 10 mm long Magellania venosa shell, secretion of 

fibres (Fig. 2.1.1) starts about 100 µm away from the outer commissure. The fibrous 

shell layer has a plywood structure as it comprises differently oriented stacks of 

parallel-assembled calcite fibres (this study and Goetz et al. 2009, Griesshaber et al. 
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2009, Schmahl et al. 2012). A brachiopod fibre has in cross section four sides: one 

convex proximal side and three concave sides, the latter located distally or laterally 

(Fig. S2.1.2A, Simonet Roda et al. 2019, Ye et al. 2018a, 2018b). Each fibre is lined by 

an organic membrane, however, only at its convex, proximal surface (Simonet Roda et 

al. 2019). TEM micrographs of high-pressure frozen and decalcified samples show 

occasionally branching of organic membranes at lateral fibre corners (Figs. 2.1.2B, 

2.1.2C, S2.1.2C to S2.1.2G). This takes place when a new membrane attaches to a pre-

existing membrane, resulting in double-plied membrane sections in many but not all 

cases. Since the membrane has only one open margin per double-plied membrane 

corner, an artefactual origin of the branching, e.g. by rupturing the membrane apart 

during sample preparation, can be excluded. In Magellania venosa the extracellular 

organic membrane is porous; porosity becomes well visible when the membrane is 

sectioned tangentially (Fig. 2.1.2D and Nindiyasari et al., 2015, Griesshaber et al. 

2017).  

The mantle epithelium  

The mantle epithelium in Magellania venosa (Fig. 2.1.1) consists of an outer 

(OME, Figs. 2.1.3 to 2.1.11) and an inner (IME, Figs. S2.1.3, S2.1.4) section. Based on 

ultrastructural differences we are able to distinguish between the outer mantle 

epithelium that is present at the commissure (mainly below the primary layer and the 

first few rows of fibres, Figs. 2.1.1, 2.1.4 to 2.1.7, S2.1.3 to S2.1.6) and the epithelium 

at central shell portions (here, only below the fibres, Figs. 2.1.1, 2.1.8 to 2.1.10, 

S2.1.7). Moreover, within the commissure, we differentiate between the OME at the 

outer commissure, an OME section where we cannot distinguish between OME cells 

and IME cells on the basis of their ultrastructural characteristics (Fig. 2.1.1A), and the 

OME at the inner commissure where the OME and IME are separated by a 

haemolymph space (Fig. 2.1.1A).  

At the commissure the OME is multi-layered, while below central shell portions it 

is single-layered (Fig. 2.1.1A). In an about 10 cm long Magellania venosa shell, the 

transition from multi-layered to single-layered OME is about 350 to 400 µm away from 

the tip of the shell (Fig. 2.1.1A). At the commissure and below the first row of fibres the 

thickness of the OME can exceed 30 µm (Fig. 2.1.1B). It is thicker than the mantle 

epithelium underneath the primary layer at the very tip of the commissure (Figs. 2.1.1A-

B). At the inner commissure, within the multi-layered OME portion, the thickness of the 

fibrous layer is about the same as that of the primary layer (white arrows in Fig. 

2.1.1A). This indicates that mineral deposition in this part of the commissure has similar 

rates for both the primary and the fibrous layers, respectively. When secretion of the 

fibres starts the thickness of the primary layer cannot be changed any more. With 

increasing distance x from the commissure (Fig. 2.1.1A), the thickness d of the fibrous 

layer increases, however, towards the central shell regions the corresponding thickness 

increment (Δd/Δx) decreases. This indicates that the rate in mineral deposition 

(biomineral formation per time increment) decreases from the commissure to central 

shell regions. In Magellania venosa the angle between the fibres and the OME is about 

10 degrees. 

The mantle epithelium at the commissure 

Figures 2.1.3 to 2.1.7 and figures S2.1.3 to S2.1.6 show ultrastructural features of 

the OME at the commissure. The periostracum and the primary shell layer are secreted 

at the outer commissure (Figs. 2.1.3, 2.1.4A-B). OME cells consist here of long cell 
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extensions and are devoid of cell bodies containing a nucleus (Figs. 2.1.1B, 2.1.3, 

2.1.4A). We distinguish between distal and proximal cell extensions (Fig. 2.1.4A). 

Distal extensions are close to the calcite of the primary layer, and are devoid of cell 

organelles such as endoplasmatic reticulum, Golgi apparatus or mitochondria, but 

contain numerous very dense spherical bodies with 300 to 400 nm in diameter (sb in 

Fig. 2.1.4A). Proximal extensions (Fig. 2.1.4A) are in the vicinity of the forming 

periostracum (Fig. 2.1.4B). Although the content of organelles of proximal extensions is 

similar to that of the distal ones, dense spherical bodies in the proximal extensions are 

more irregular in shape and density. Distal and proximal extensions are separated from 

each other by a layer of degraded cell extensions (dce in Fig. 2.1.4A, Fig. 2.1.3) that 

contain much cell debris. 

The periostracum is secreted at the proximal side of the mantle epithelium by 

proximal cell extensions (Figs. 2.1.3, 2.1.4A-B). It develops within a shallow pouch of 

the epithelium (outlined with a yellow dashed line in Fig. 2.1.4B) and is covered by a 

layer of irregularly distributed material, most likely consisting of mucous 

polysaccharides (blue star in Fig. 2.1.4B). Within the pouch at the beginning of the 

periostracum irregular and partly dense secretions can be observed (yellow star Fig.  

2.1.4B). Dense or osmiophilic material lies extracellularly between the tips of two 

extensions and the basal layer (red arrows in Fig. 2.1.4B) of the periostracum. 

 

Figure 2.1.3. FE-SEM panorama image (aligned sequence of micrographs) of an embedded 

and polished sample depicting the outer mantle epithelium (OME) at the outer commissure 

below the primary shell portion and the first rows of fibres. The contrast is reversed. The 

red arrow pointing to the left indicates OME portions that consist of cellular extensions only 

present at the outermost part of the commissure. Towards inner commissure regions (red arrow 

pointing to the right) the OME contains cellular extensions as well as cells having a nucleus (N). 

At inner commissure regions there is a high abundance of dense bodies (db) at the proximal side 

of the OME. Subimages of Figure 5 are shown in Figures 6A and 6C, respectively. Black 

arrows point to the presence of a mucus layer. 
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Cell extensions below the primary layer have their origin in cell bodies that contain 

a nucleus and are situated in the multi-cellular portion of the mantle epithelium (blue 

and yellow stars in figure 2.1.1B, right-hand upper part of Fig. 2.1.4C). This part of the 

multicellular region (the part of the OME at the outer commissure where cell extensions 

contain a nucleus) is close to the site where the secretion of fibres starts (Figs. 2.1.4C, 

Fig. 2.1.1). Due to the absence of a mantle cavity or an extracellular matrix a clear 

borderline between the OME and IME is not observable (Figs. S2.1.3, 2.1.4C). Close to 

the appearance of fibres the mantle epithelium forms a grove (Fig. 2.1.3). At the base of 

the latter setae are formed (Figs. 2.1.1, S2.1.3). From the tip of the commissure to the 

base of the mantle groove a 400 nm thick mucus layer covers the periostracum (black 

arrows in Figs. 2.1.3 and 2.1.4A and blur star in Fig. 2.1.4B). 

 

Figure 2.1.4. FE-SEM micrographs of embedded and polished samples depicting the outer 

mantle epithelium (OME) at the outer commissure. The contrast is reversed. A) Detail, marked 
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with an orange rectangle in Figure 5, consists of cell extensions, distal at the primary layer and 

proximal near the periostracum. Between these is a region formed of degraded cell extensions 

(dce). Small dense bodies (sb) are present at proximal and distal extension sites. B) Zoom into 

the region that is marked with a red rectangle in A, depicting the site of periostracum formation 

within a shallow pouch (outlined with a dashed yellow line in B). Dense extracellular material 

occurs between the periostracum and the OME. Red arrows in (B) point to the basal layer of the 

periostracum. Blue star in B: mucus material close to the forming periostracum; yellow star in 

B: irregular and partly dense secretions close to the forming periostracum. C) Multi-cellular 

mantle epithelium below fibres at the outer commissure. Due to ultrastructural differences we 

distinguish different regions within the epithelium: the apical zone (az) consists of thin cell 

extensions only; the inner zone (iz) consists of larger extensions; the proximal zone (pz) 

contains cells with a nucleus (N) and the distal proximal zone (dbz) contains many large dense 

bodies (db) in addition to cell bodies with a nucleus.  
 

The inner mantle epithelium (IME) begins proximal of the mantle groove (Figs. 

2.1.1, S2.1.3, S2.1.4). It consists of a single layer of cells that carry numerous microvilli 

like extensions and cilia at their apical side (Fig. S2.1.4). IME cells contain many large 

dense bodies and organelles of the lyso-endosomal pathway of varying sizes as well as 

endoplasmic reticulum and many mitochondria (Figs. S2.1.3, S2.1.4).  

The OME at the commissure underneath the first few fibres (Figs. 2.1.1B, 2.1.3, 

2.1.4C) is characterized by many cell extensions and by elongated cells containing a 

nucleus. This is in contrast to the OME at the very outer commissure, which consists of 

cell extensions only; OME cells here secrete solely the primary layer of the shell. The 

cell extensions below the fibres run obliquely towards the tip of the commissure and 

attach with their distal ends to the fibres (Fig. 2.1.5A and 2.1.6A). Within the 

commissure, but below the fibres (Fig. 2.1.6C), the mantle epithelium is zoned. We 

distinguish a distal zone, an inner zone, a proximal zone and a dense body zone (Figs. 

2.1.4C, 2.1.5A, 2.1.6A). Within the commissure, but where OME and IME are 

separated by hemolymph space, we also find a zonation; however, here the dense body 

zone and the mucus layer are lacking (Fig. 2.1.7A).  

The distal zone (dz, in Figs. 2.1.5A, 2.1.6A, 2.1.7A) consists of the outermost layer 

of cellular extensions. Cellular profiles are flat, are up to about 1000 nm thick and line 

the convex proximal side of the fibres (Figs. 2.1.5A-B, 2.1.6A-C, 2.1.7A). We often 

observe very thin cells at these cellular extensions (e.g. Figs. 2.1.5B, 2.1.6B-C, 2.1.7A). 

In most cases, more than one cellular profile occurs directly below a single calcite fibre 

(e.g. Fig. 2.1. 5B). Organelles in the distal zone are rare (Figs. 2.1.5A, 2.1.6A, 2.1.7A). 

OME cells are connected to organic membranes of the fibres via apical 

hemidesmosomes (Fig. 2.1.7B). These are abundant, are very small and can be seen best 

in obliquely cut sections as dense plaques (black arrows in Fig. 2.1.7B). In regions 

where an organic matrix is absent cell extensions are always covered with a thin surface 

coat (black arrows in Fig. 2.1.7C). Adherence junctions resembling adhesion belts 

connect apical cell extensions with each other (Fig. 2.1.7D). In high-pressure frozen and 

freeze-substituted shell and polished samples we see that OME cells are in very close 

contact with the calcite of the fibres (Fig. S2.1.5 and in more detail see Simonet Roda et 

al. 2019).  

Within the inner zone (Figs. 2.1.4C, 2.1.5A, 2.1.6A, 2.1.7A), cell extensions and 

the shape of most of the cell profiles are round in cross section (Figs. 2.1.5B, 2.1.6C) 

and their thickness increases from the the distal zone towards the proximal side of the 

inner zone (Figs. 2.1.5A, 2.1.6A, 2.1.7A). In the proximal part of the inner zone 
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lysosomes are the most common organelles, rough endoplasmic reticulum and vesicles 

are present but not as common, while mitochondria, multivesicular bodies and Golgi 

stacks are very rare. In most cases cell extensions are devoid of nuclei (Figs. 2.1.5A, 

2.1.6A, 2.1.7A). Widened intercellular spaces filled with electron dense material are 

common and occasionally contain extracellular vesicles (yellow circles in Fig. 2.1.7E).  

Within the proximal zone (Figs. 2.1.5A, 2.1.6A, 2.1.7A) we find cell bodies that 

contain a nucleus. Cells here are elongated in horizontal direction and have round 

profiles in cross section. In addition to nuclei, cells within the proximal zone are very 

rich in organelles, in particular mitochondria, long cisternae of rough endoplasmic 

reticulum, Golgi apparatus and organelles of the endo-lysosomal pathway including 

multivesicular bodies (Figs. 2.1.4C, 2.1.5-7). Smooth endoplasmic reticulum and 

glycogen are rare. The cells are connected to each other by gap junctions (Fig.  2.1.7, 

Fig. 2.1.10).  

The most proximal, dense body zone occurs only in the outer commissure and is 

formed of cells containing many large and spherical dense bodies (dense body zone, dbz 

in Figs. 2.1.4C, 2.1.5A, 2.1.6A). In the dense body zone the apical side of the cells faces 

seawater. Spherical dense bodies occur only between the end of the pouch where the 

periostracum is secreted and the base of the mantle groove just above the mucus layer. 

Near the base of the mantle groove the epithelium separates into the outer and the inner 

mantle epithelium. The dense body layer is continuous with the inner mantle 

epithelium. 
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Figure 2.1.5. TEM micrographs of a chemically fixed and demineralized sample depicting a 

perpendicular cut through fibres, cells and cellular extensions at the outer commissure. A) Four 

regions can be distinguished: The distal zone (dz), the region that is in contact with the fibres 

consists of small extensions; organelles are absent. Within the inner zone (iz) of the epithelium 

cellular extensions increase in size and contain organelles such as Golgi apparatus (Ga), 

mitochondria (m) and rough endoplasmic reticulum (rer). The proximal zone (pz) contains 

many cell bodies; organelles are abundant, especially nuclei and mitochondria. The most 

proximal zone (dbz) is characterized by the presence of dense bodies (db). Ly: lysosome; mb: 

multivesicular body. B) A cell extension is attached to a few fibres, e.g. for the cell outlined in 

red in to 5 fibres. The shape of the cell extension that is in direct contact to the growing fibre 

adapts to the profile of the fibre, while further below cell extension profiles are round (outlined 

in yellow in B). 
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Figure 2.1.6. TEM micrograph of chemically fixed and demineralized samples depicting fibres, 

cellular extensions and cells at the outer commissure. A) Calcite fibres are cut in longitudinal 

direction. Within the epithelium we distinguish four different regions: the distal zone (dz), the 

region that is in contact with the fibres consists mainly of small extensions; organelles are rare. 

Within the inner zone (iz) of the epithelium cellular extensions increase in size and contain 

organelles such as Golgi apparatus (Ga), mitochondria (m) and rough endoplasmic reticulum 

(rer). The proximal zone (pz) contains many cell bodies; organelles are abundant, especially 
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nuclei and mitochondria. In the most proximal zone (dbz) dense bodies (db) are abundant. B), 

C), D), E) TEM micrographs of chemically fixed OME samples taken from the outer 

commissure but below the first few fibres. B), D) Longitudinal, C), E) transversal cut. Next to 

the calcite of the fibres (B, C) we see cellular extensions only, while the epithelium portion 

further proximally (D, E) is abundant in organelles. Ga: Golgi apparatus; ly: lysosome; m: 

mitochondria; mb: multivesicular body; N: nucleus; rer:  rough endoplasmic reticulum. 

 

 

Figure 2.1.7. TEM micrographs of chemically fixed samples taken from the inner commissure 

of Magellania venosa. A) The OME is sectioned at an angle to the longitudinal axes of cell 

extensions. We can distinguish a distal zone (dz), an inner zone (iz) and a proximal zone (pz). 

Apical cell extensions are elongated and follow the curvature of the fibre. The distal zone 

consists of numerous small cellular extensions, is devoid of cells with a nucleus and other large 

organelles. Organelles like mitochondria (m), lysosomes (ly) and Golgy apparatus (Ga) appear 

in the inner zone; organelle content increases towards the proximal zone at the base of the 
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epithelium; here we find cells with a nucleus (N). B) Oblique cut through a most distal cell 

extension where apical hemidesmosomes appear as dark plaques (black arrows in B). C) 

Enlargement showing extracellular vesicles (iv, dashed yellow line) present in the most distal 

portion of the OME. Regions not attached to the organic membrane have a faint surface coat at 

their apical side (black arrows in C). D) Enlargement depicting an apical adherence junction 

resembling an adhesion belt (yellow dashed rectangle). E) Areas with electron dense 

extracellular material (yellow star) are abundant in distal portions of the OME. These regions 

contain extracellular vesicles (ev). F) Gap junctions between cells are indicated with black and 

yellow dashed rectangles. G) Basal hemidesmosomes (yellow dashed rectangle). 

 

The mantle epithelium at central shell regions  

In a 10 mm long Magellania venosa 

of the commissure, the OME changes from a multi-layered to a very thin single-layered 

epithelium (Fig. 2.1.1A). Cell thicknesses vary, even within a single cell (Figs. 2.1.8 A 

to E, S2.1.7). In thick cell portions, the OME is about 1-3 µm thick and organelles such 

as the nucleus, mitochondria, rough endoplasmic reticulum and glycogen are abundant. 

Neighbouring cells form extended interdigitations between each other (Fig. 2.1.9), 

resulting in an increase of the basal plasma membrane surface area. Many gap junctions 

between cells can be observed (Fig. 2.1.7F, Fig. 2.1.10A-C).  

However, cells at central shell regions can also be extremely thin, as thin as 20 nm 

(Figs. 2.1.8D-F). In these cases they are devoid of cell organelles (Figs. 2.1.8C-E, 

S2.1.7) and are mainly below shell portions where the organic membrane of the calcite 

fibres is not yet developed (Figs. 2.1.8C-D), thus at sites of active shell secretion. In 

addition, these thin cells at these sites are covered by a surface coat (Fig. 2.1.8E).  

Thick cells or cell portions are connected to the organic membrane that lines the 

proximal convex surface of fibres via hemidesmosomes present within the apical cell 

membrane. At the intracellular side the hemidesmosomes bind to tonofilaments (Figs. 

2.1.8C-D, F, S2.1.7), the latter consisting of a bundle of thin filaments (marked with a 

‘t’ in Fig. 2.1.10D). The tonofilaments bind at the basal side of the cells again to 

hemidesmosomes. In comparison with the commissure, hemidesmosomes below central 

shell portions are much thicker. In addition, in high-pressure frozen and freeze-

substitution samples we observe that at and near hemidesmosomes OME cells have 

often two basal plasma membranes (Figs. 2.1.10D-E).  

At sites where the organic membrane at the proximal, convex surface of a fibre is 

absent, OME cells do not contain any hemidesmosomes nor tonofilaments (Figs. 

2.1.8A-C, S2.1.7). At these sites calcite secretion is active and material is transported 

from OME cells to adjacent, newly forming fibres. There is a constant alternation 

between OME portions that are attached to the organic membrane of fibres and those 

OME regions where apical cell membranes are detached from fibres (e.g. red dotted line 

in Fig. 2.1.8A). Analysing an epithelial length of 189 µm we find that 14 regions with a 

total length of 98 µm are attached to the shell via hemidesmosomes and 10 regions, with 

a total length of 91 µm, are not. Thus, at a given time, about 50% of the OME is not 

secreting mineral; while the other ~50% of the OME is involved in fibre mineralization 

(this study and Simonet Roda et al. 2019).  

The mantle epithelium in endopuncta  
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The shell of Magellania venosa contains endopuncta (Figs. 2.1.11, S2.1.8); these 

cross the shell from the mantle epithelium to almost the periostracum and, hence, 

traverse both mineralized shell layers. Between the periostracum and an endopunctum 

the shell forms a sieve plate containing numerous channels radiating from the lumen of 

the punctum to the periostracum (Figs. 2.1.11A). TEM micrographs of decalcified and 

chemically fixed samples show that these channels are filled with organic material. The 

channels are continuous with a hyaline layer present at the distal portion of the 

punctum, between the sieve plate and numerous microvilli-like cellular extensions of 

distal punctum cells (Figs. 2.1.11B-C). The distal region of the punctum (Figs. 2.1.11A-

B), the punctum portion that is in the primary layer, is filled with cells rich in lipid 

droplets, mitochondria, lysosomes and multivesicular bodies. This indicates high 

metabolic activity in these regions of the punctum. Towards the median region of 

endopuncta (Fig. 2.1.11D), there is a change to a thin, about 1,5 µm thick, single layer 

of elongated cells; here neighbouring cells overlap with one another (Figs. 2.1.11E and 

S2.1.8). Cells within this part of endopuncta contain glycogen, lysosomes, rough 

endoplasmic reticulum, nuclei and mitochondria; vesicles are rare. At proximal 

endopuncta regions, the epithelium connects to OME cells (not shown). As the diameter 

of endopuncta does not decrease with time, cells that line their walls are not secreting 

mineral. Accordingly, we take morphological characteristics and organelle distribution 

patterns of OME cells as a reference for comparison with the mineralizing cells 

encountered at the commissure and the central shell regions. 
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Figure 2.1.8. Aligned arrays of TEM micrographs taken on chemically fixed and decalcified 

samples obtained from central shell portions. Fibres are sectioned transversally. Indicated with 

a red dotted line are those fibre portions that are not in the state of active secretion. Fibre 

secretion is finished with the formation of an organic lining along the proximal, convex surface 

of a fibre. Hence, at sites where the apical cell membrane is attached to the organic membrane 

lining a fibre portion (red dotted line) OME cells are not producing mineral. The connection 

between the apical cell membrane and the organic membrane that lines the proximal, convex 
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surface of a fibre occurs via apical hemidesmosomes (yellow arrows in C, D, F). Tonofilaments 

(C, D, F) within the cells connect apical hemidesmosomes to basal hemidesmosomes (red 

arrows in C, D, E, F), with the latter being attached to the basal lamina of the OME. Apical 

hemidesmosomes are small, while basal ones are large (e.g. F). At sites where fibre secretion is 

active there are neither tonofilaments nor apical hemidesmosomes within cells (A, B, C, D). We 

observe a thin coat on the surface of cells (black arrows in E). Actively secreting OME cells 

below fibres from the central shell region are very thin and highly elongated (white arrows in C, 

E, F). 

 

 

Figure 2.1.9. Topological relation of OME cells to fibres in central shell portions of Magellania 

venosa. A, B, C) TEM panorama micrographs of chemically fixed and decalcified samples 

depicting the ultrastructure of OME cells below transversally sectioned fibres. At sites of 

ongoing fibre formation the organic membrane along the proximal, convex surface of the fibre 

is not yet secreted. There is no one-by-one relationship between a fibre and a cell, generally at 

least two cells contribute to the secretion of the same fibre. 
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Figure 2.1.10. TEM micrographs recorded from high-pressure frozen OME samples taken from 

the central shell region. The tissue is freeze-substituted (A, B and D-F) or freeze fractured (C).  

A, B) Many gap junctions can be observed (black arrows and yellow rectangles in A and B). 

Large hemidesmosomes (red arrows in A, B, D, E) attach the basal membrane of the epithelium 

to the basal lamina and to tonofilaments (marked with a yellow t in D and E). C) Cryo-SEM 

image showing 5 gap junctions between two adjoining cells (yellow arrows in C). D) OME cells 

with two basal membranes (black arrows); rer, rough endoplasmatic reticulum; m, 

mitochondria.  

 

Patterns of organelle distribution in OME cells 

Results obtained from morphometric analyses are presented in Table 2.1.1 and 

2.1.2 and Figures 2.1.12 and S2.1.9. Tables 2.1.1 and 2.1.2 provide means and standard 

deviations for the volume fractions and the volume per 10 µm
2
 epithelium, respectively, 

for mitochondria, organelles of the endo-lysosomes pathway including multivesicular 

bodies, intracellular vesicles, Golgi apparatus, rough and smooth endoplasmic reticula 

and glycogen (Fig. S2.1.6). Values are given for: (i) the central shell region where the 

OME is attached to the organic membrane of the fibres, (ii) areas of the central region 

where the OME is not attached to the organic membrane of fibres and, as an additional 

control, (iii) the lateral walls of the median regions of the puncta, that do not secrete 

mineral, (iv) the two central regions pooled together, and (v) the multi-layered inner 

region of the OME near the commissure. The different stages of the endosomes and 

lysosomes including multi-vesicular bodies were pooled in the class “endo-lysosomes”. 

Dark and light vesicles that are not very close to a Golgi apparatus were assigned to the 

class “intracellular vesicles”. Golgi cisternae and those vesicles that are near the 

cisternae comprise the class “Golgi apparatus”. 
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Figure 2.1.11. FE-SEM (A) and TEM (B to E) micrographs of the periostracum, the primary 

shell layer and an endopunctum in the shell of Magellania venosa. A) FE-SEM image of a high-

pressure frozen, freeze-substituted but not decalcified shell portion taken on a polished surface 

showing the primary layer below the periostracum and organic tissue at the uppermost part of a 

punctum. Above the punctum the shell contains numerous channels radiating from the lumen of 

the punctum into the periostracum. Apically puncta are completely filled with OME cells. B), 

C) TEM micrographs of chemically fixed and decalcified samples depicting the uppermost 

portion of the primary layer above a punctum and the transition to the periostracum. There are 

channels through the calcite of the primary layer. These are extracellular organic tubes (ot) and 

are attached to an extracellular hyaline layer (hl) just above microvilli-like cellular extensions 

(mvs). Within punctum cells, most abundant are lipid droplets (ld), lysosomes (ly) and 

mitochondria (m). D) and E) TEM micrographs of chemically fixed and decalcified sample 

depicting the median portion of a punctum traversing a stack of fibres. The surface of the 
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punctum is lined by a very thin layer of single, but overlapping cells (E, see also Fig. A8). Most 

abundant are: lysosomes (ly), mitochondria (m), glycogen (gl), rough endoplasmatic reticulum 

(rer).  

 

 

Figure 2.1.12. Volume fraction of membrane-bound organelles. (A) mitochondria, endo-

lysosomes, intracellular vesicles, Golgi apparatus, and rough and smooth ER in different regions 

of the outer mantle epithelium: central shell region that can secrete mineral (cr s), central shell 

region not involved in secretion (cr a), punctum (pt), secreting and not secreting central shell 

portions (cr all), commissure (com). (B) Membrane area per 10 µm
2
 of the apical and proximal 

cell membrane and membrane area of the outer membrane of mitochondria for the central shell 

portion (secreting and not secreting: cr all) and the commissure (com). Results are plotted with 

the mean (indicated with horizontal red lines in the graphs) and the standard deviation (indicated 

with vertical lines in the graphs). Stars indicate significant differences of mean values for a 

given organelle between different outer mantle epithelium regions: *: P ≤ 0.05; **: P ≤ 0.01; ***: 

P ≤ 0.001; ****: P ≤ 0.0001. 

 

The comparison of the volume fractions of membrane bound organelles in different 

regions of the outer mantle epithelium (Fig. 2.1.12) reveals that the values for the 

investigated organelles between the two central shell regions (OME attached and OME 

not attached to the organic membrane of the fibre) are similar, except for the rough 

endoplasmic reticulum. The difference for the latter is statistically significant and is 1.9 

times higher in the OME region that is attached to the organic membrane of the fibre. In 

the lateral walls of puncta, values for the class endo-lysosomes are significantly higher 

in comparison to values found for the two central shell regions (OME attached and not 

attached to the organic membrane of the fibre). Volume fractions of mitochondria, 

endo-lysosomes and intracellular vesicles are significantly higher in the commissure 
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than in the central region, by factors of 2.0 (mitochondria), 2.4 (endo-lysosomes) and 

4.7 (intracellular vesicles), respectively.   

Since the rate of epithelial mineral transport should be considered across a unit of 

epithelium area we have normalized the absolute volume of organelles and glycogen to 

an epithelium area of 10 µm
2
 (Fig. S2.1.9). In the case of central shell regions the value 

for rough endoplasmatic reticulum for OME membranes that are attached to the organic 

membrane of the fibres is significantly higher than where OME membranes are not 

attached to fibres, as well as for the epithelium of the lateral walls of the puncta. For all 

organelles shown in Figure A9 the difference between the commissure and central 

region is significant; values are always higher in the commissure (Figs. S2.1.9). As the 

distribution of glycogen is concerned, it is abundant in many epithelial cells, except 

those present at the commissure (Table 2.1.1 and 2.1.2). In the central shell section, for 

OME portions that are not attached to the organic membrane of the fibres, the volume 

fraction for glycogen is higher than in cells that line the lateral walls of the puncta 

(Table 2.1.1).  

The comparison of the mean value of the distal cell membrane area per square µm 

of epithelium (Fig. 2.1.12) between the central shell region (1.3 ± 2 µm
2
) (mean ± SD), 

and the commissure, (1.5 ± 0.5 µm
2
), yields no significant difference within standard 

deviations. However, the proximal cell membrane area (36.5 ± 5.5 µm
2
) in the 

commissure is significantly higher than the membrane area (2.6 ± 1.3 µm
2
)
 
in the central 

shell region. The membrane area of mitochondria per square µm of epithelium of 5.7 ± 

1.9 µm
2
 in the commissure is significantly higher than the membrane area of 0.5 ± 0.2 

µm
2
 in the central shell region. 

 

Table 2.1.1. Mean values m and their standard deviations σ for the volume fraction of organelles 

(in %) in the different regions of the outer mantle epithelium. n is the number of test-fields used 

for the calculations. “central region all” contains the values of the test-fields of “central region 

secreting” and “central region attached”; er: endoplasmic reticulum . 

 

organelle volume 

fraction (VO) 

central region 

secreting 

central region 

attached 
puncta 

central region 

all 
commissure 

 m σ m σ m σ m σ m σ 

mitochondria 4.0 6.5 4.4 3.9 2.1 2.8 4.2 5.3 8.3 5.3 

endo-lysosomes 2.3 2.7 4.5 5.3 12.0 4.0 3.4 4.3 8.2 4.5 

vesicles 0.8 0.9 0.4 0.6 1.4 0.9 0.6 0.8 2.8 2.3 

Golgi apparatus 0.0 0.0 1.1 2.1 0.0 0.0 0.5 1.6 1 1.4 

rough er 3.7 1.6 2 1.8 3.1 1.5 2.9 1.9 2.7 1.2 

smooth er 0.7 1.1 0.5 0.8 0.3 0.6 0.6 1 0.4 0.5 

glycogen 1.2 1 0.8 0.9 0.3 0.6 1.0 1 0.0 0.0 

N 13 12 10 25 13 
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Table 2.1.2. Mean values m and their standard deviations σ for the volume of organelles (in 

µm
3
) per 10 µm

2
 epithelial area (VA) in the different regions of the outer mantle epithelium. 

Values are given with standard deviation. n is the number of test-fields used for the calculations. 

“central region all” contains the values of the test-fields of “central region secreting” and 

“central region attached”; er: endoplasmic reticulum.  

 

organelle volume 

per 10 µm
2
 

epithelial area 

(VA) 

central region 

secreting 

central region 

attached 
puncta 

central region 

all 
commissure 

 m σ m σ m σ m σ m σ 

mitochondria 0.5 1 0.6 0.7 0.2 0.2 0.6 0.8 8.9 4.9 

endo-lysosomes 0.3 0.3 0.8 1.2 1.0 0.6 0.6 0.9 9.4 5.8 

vesicles 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 3.4 3.0 

Golgi apparatus 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.5 1 

rough er 0.6 0.4 0.2 0.2 0.2 0.1 0.4 0.4 3 1.1 

smooth er 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.4 0.6 

glycogen 0.2 0.3 0.1 0.1 0.0 0.1 0.1 0.2 0.0 0.0 

N 13 12 10 25 13 

 

2.1.4. Discussion 

Cell proliferation and differentiation  

Williams (Williams1968a, 1968b) suggested that in Brachiopoda the generative 

zone of the mantle epithelium is located at the commissure, at the bottom of the mantle 

groove. As new cells are permanently produced within the generative zone, Williams 

postulated the “conveyor belt” model. This model is based on the notion that, due to 

permanent cell formation, cells need to move away from the mantle groove and develop 

anteriorly the OME and posteriorly the IME. As a consequence, OME cells have to 

undergo a sequence of proliferation events: the secretion of the mucous layer, that of the 

periostracum and of the mineralized shell layers. However, neither the idea of a 

proliferation zone located at the base of the mantle groove nor the conveyor belt model 

is based on firm observations or experiments.  

For gastropods and bivalves Kniprath (1975, 1978), using 
3
H-thymidine labelling, 

has shown that mitotic cell divisions occur at any site within the OME. The authors did 

not find an indication of growth centres within the OME. Accordingly, Kniprath 

concluded that epithelial cells of these molluscs do not change their function and stay in 

place for secretion of just one structural entity of the shell throughout their lives. In 

contrast, using a BrdU immunohistochemical method, Fang et al. (2008) observed for 

the bivalve Pinctada fucata that cell divisions were concentrated at a central region of 

the OME. This indicates, that, depending on the investigated metabolic system, there 

might be differences in cell proliferation patterns.  

For Magellania venosa we have not observed any stages of mitosis. This points to 

the fact that mitosis events might be rare in modern terebratulide brachiopods. It is also 

in agreement with the observed growth rate of 15 to 18 mm per year for juvenile 

Magellania venosa (Baumgarten, 2013) which corresponds, when assuming a mean cell 

length of 10 µm, to about 40-50 cell divisions per day along the median plane of the 

animal. However, as the mitotic process can be quite fast, observations of these in TEM 
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sections should be rare, and accordingly, sites of cell proliferation in M. venosa might 

so far be undetected. With regard to the conveyor belt mechanism postulated by 

Williams, it should be noted that in primary shell layer regions of M. venosa cell 

extensions become degraded between the distal ones that secrete the mineral and the 

proximal ones that secrete the periostracum. This might indicate cell re-differentiation 

during shell growth and the changing of cell function depending on the type of material 

they secrete.  

According to Williams, regions of the OME at the inner commissure become later 

part of the mantle epithelium at central shell portions. This implies, that the OME either 

re-organizes itself from a multi- to a single-layered epithelium or OME cells migrate 

relative to the calcite fibres towards the shell edge where they differentiate from central-

region type cells to commissure type cells. However, the statistically significant higher 

abundance of organelles of the endo-lysosomal pathway in the commissure in 

comparison to the abundance of organelles in OME cells at the central shell region and 

the presence of dense material between cells within the inner commissure strongly argue 

for a re-organization of OME cells and not for cell migration. Our results indicate that in 

Magellania venosa cell re-organisation takes place between the commissure and the 

central shell region, where the OME decreases in thickness and successively reduces the 

number of the long cellular extensions, eventually forming a single cell-layered 

epithelium devoid of cell extensions.  

In both shell regions, the outer commissure and the central shell portion, OME cells 

connect by hemidesmosomes apically to the organic membranes of the fibres and 

basally to a thin basal lamina of the OME. At the commissure, apical and basal 

hemidesmosomes are very small, while they are considerably larger at the central shell 

portion, particularly the basal hemidesmosomes. This difference can be explained by the 

presence of large tonofilaments in the mantle epithelium at the central shell portion 

connecting apical to basal hemidesmosomes. Apparently the tonofilaments together 

with the hemidesmosomes help to stabilize the position and the shape of epithelial cells 

that are in direct contact to the fibres. At the commissure tonofilaments cannot occur 

due to the large number of cellular extensions between the shell and the basal lamina of 

the OME. Most likely more than one of these large cellular extensions originate from a 

single cell. Due to its multi-layered structure and the large size of the epithelium, 

additional stabilization of the OME at the commissure appears to be unimportant. 

Cryo-preparation of OME cells revealed some additional aspects of OME 

ultrastructure. High-pressure frozen and freeze-substituted samples of the OME reveal 

that the tonofilaments are composed of thin fibrils (Fig. 2.1.10E). As the tonofilaments 

are connected to hemidesmosomes, these fibrils represent intermediate filaments that 

are known to sustain tensile forces particularly well (Kreplak and Fudge, 2007) Another 

unexpected feature is the presence of two plasma membranes at the basal side of OME 

cells located close to hemidesmosomes (Figs. 2.1.10D-F). This is a new finding for 

modern brachiopods, to our knowledge, such double cell membranes have up to now 

been reported only once in the hematophagous insect Rhodnius prolixu (Lane and 

Harrison, 1979).   

Calcite fibre secretion  

Simonet Roda et al. (2019) showed that in periodic alternation on the order of 7-9 

micrometers about 50 % of the OME is attached to the organic membranes that cover 

the proximal, convex surface of the calcite fibres. This part of epithelium is in very 
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close contact to the shell, leaving little (i.e. very few nanometers) or no room for an 

extrapallial space. At these sites, mineral deposition does not take place. It takes place 

when the cells have detached from the organic membrane that lines the basal surface of 

the fibres. At these regions, we find that more than one cell is located below the forming 

fibre Figs. 2.1.5 and 2.1.9. This observation contradicts claims of Williams (Williams 

1966, 1968b), who reported that a fibre is formed by one cell only (described for 

Notosaria nigricans and Hemithiris psittacea). Secretion of a fibre by more than one 

cell requires tight cooperation and coordination of neighbouring OME cells as these 

secrete the mineral and the organic membrane (Simonet Roda et al. 2019). The strong 

interdigitations of neighbouring cells (Fig. 2.1.9) and the very large number of gap 

junctions between adjacent epithelial cells (Figs. 2.1.10A- C) substantiates the need for 

cell communication and/or exchange of small metabolites.  

The tight attachment of apical OME cell membranes to forming fibres raises the 

question of the dimension of the extrapallial space, the space between the mineral 

secreting region of the cells and the forming fibre. An answer to this question is 

important as the width of the extrapallial space affects the mechanism that adds mineral 

to the growing shell. It is known for molluscs that the extrapallial space between the 

OME and the shell is only a few tens of nanometers (e.g. about 90 nm in the bivalve 

Neotrigonia, Checa et al. 2014, Nodipecten nodosus, Audino et al. 2015). Since mineral 

may dissolve during sample preparation, we investigated polished samples of resin 

embedded shells that have been high-pressure frozen and freeze-substituted (this study 

and Simonet Roda et al., 2019), where both, the mineral and the adjacent outer mantle 

epithelium are well preserved. These experiments show that that at the growing fibres at 

sites of mineral deposition the outer mantle epithelium is in direct contact with the 

calcite fibre, without any extrapallial space in between.  

Mineral transport  

Research over the last decades indicated that in shelled organisms hard tissue 

formation might occur via an amorphous precursor (e.g. Beniash et al. 1997, 1999, 

Weiss et al. 2002, Addadi et al. 2003, Weiner et al. 2003, Politi et al. 2004, 2008, Nassif 

et al. 2005, Nudelman et al. 2008, Jacob et al. 2011, Cartwright et al. 2012, DeVol et al. 

2015, Macías-Sánchez et al. 2017, Rousseau, 2018).  

In order to test if calcite deposition in Magellania venosa fibres takes place via 

amorphous calcium carbonate (ACC) we performed etching experiments on high-

pressure frozen, freeze-substituted and microtome polished surfaces, with shell mineral 

and the OME being preserved in a native state (Fig. S2.1.5). It is known that ACC has a 

ten times higher solubility than crystalline calcium carbonate and dissolves readily at 

pH values higher than 7.0 (Brečević and Nielsen, 1989). In previous studies, we have 

used this characteristic to distinguish between calcite and amorphous Ca-carbonate 

mineral phases (Seidl and Ziegler, 2012; Seidl et al., 2012). Etching of Magellania 

venosa shell samples at a pH of 9 with the mineral of the shell and the OME being in 

closest contact to each other showed no mineral dissolution between the forming fibre 

and the OME (Fig. S2.1.5). We find only between fibres a thin layer of mineral that 

dissolved (compare Fig. S2.1.5A-B). We did not find any evidence for the presence of 

an amorphous precursor at the growing front of fibres. This suggests that the mineral is 

deposited here directly as calcite rather than via a precursor amorphous phase (ACC). 

With the applied type of sample preparation crystallization of ACC at preparation can 

be excluded, since, after shock-freezing the sample remains free of liquid-state water as 
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well as during freeze-substitution, embedding and polishing. This is experimentally 

verified by our etching experiments, when comparing the micrograph recorded before 

etching (Fig. S2.1.5A) with that after etching at a pH of 9 (Fig. S2.1.5B). 

Corresponding to our conclusions that we inferred from etching experiments, high-

resolution, low-kV EBSD analysis also did not show any ACC between the fibres and 

the cells of the outer mantle epithelium (Fig. S2.1.10). The EBSD signal is a diffraction 

signal that originates from backscattering at lattice planes of crystallized material. 

Hence, when the electron beam hits lattice planes we obtain a Kikuchi pattern (EBSD 

signal), while in the case of an amorphous mineral or biopolymers there will be no 

diffraction at lattice planes and, hence, an EBSD signal will not be formed. We 

conducted high-resolution EBSD measurements with a step size of about 100 nm (Figs. 

S2.1.10B-C) on high-pressure frozen and freeze-substituted Magellania venosa fibres 

that are in direct contact to OME cells (Fig. S2.1.10A). We did not find any signs for 

the presence of an amorphous precursor in any fibres at 100 nm resolution. In contrast, 

as the EBSD measurement, notably the band contrast, in Fig. S2.1.10 shows, the 

mineral at the growing face of fibres directly next to OME cells is crystallized calcite.  

Ultrastructural results of the OME given in this study and the experiments reported 

by Simonet Roda et al. (2019) allow conclusions about the mechanism of mineral 

transport from OME cells to the forming fibres. As mentioned in the introduction, 

transport and deposition of calcium carbonate may occur either via vesicles and 

exocytosis to the site of mineral deposition (e.g Aizenberg et al. 1996, Politi et al. 2008, 

Weiner and Addadi 2011, Gal et al. 2014) or via ion transport across cell membranes 

(e.g. Greenaway et al., 1995; Roer, 1980; Wheatly, 1999, Wheatly et al., 2001; Ziegler 

et al., 2002, 2004) and through the cytoplasm; either with calcium binding proteins or 

intracellular compartments like the endoplasmic reticulum (e.g.; Ziegler, 2002, 

Hagedorn and Ziegler 2002; Hagedorn et al., 2003; Ahearn, 2004, Ziegler et al., 2005). 

The compart-mentalization is essential as it ensures that high toxic concentrations of 

ionized calcium in the cytosole are avoided. It was the nanogranular appearance of etch 

patterns of brachiopod biocalcite in the 50-100 nm size range (Cusack et al. 2008, 

Schmahl et al. 2008, Simonet Roda et al. 2019), which originally appeared to support 

the paradigm of biocalcite growth by successive attachment of 50-100 nm nanoparticles. 

As the fibres of modern Magellania venosa are single crystals, the particles - if they 

exist - need to be ACC which crystallizes homoepitaxially on a substrate crystal. 

Accordingly, we originally expected to find ACC-filled vesicles of 50-100 nm diameter, 

which form in the epithelial cells, are exocytosed to attach to the mineral. However, in 

our high-resolution TEM images there is no positive or direct indication for such a 

mechanism. Moreover, in the extremely thin epithelial cells of the central shell region 

(as thin as 20 nm) we did not find organelles or vesicles that would transport solid 

mineral from cells to the sites of mineralization.  

Nevertheless, we observed in OME cells at the commissure small vesicles between 

the outermost flat cell extensions and the fibrous shell layer. These could be interpreted 

as exosomes containing mineral and/or organic material that possibly contribute to the 

formation of the calcite fibres. Contradicting this interpretation is that we do not 

observe any multivesicular bodies containing exosomes within the OME cells, which 

are necessary for the secretion of exosomes into extracellular space. Hence, the above 

mentioned extracellular vesicles are most likely the result of degradation of the long cell 

extensions, and these are abundant at the commissure. Furthermore, we regard it very 
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unlikely that mechanisms for mineral transport are different between the commissure 

and the central shell region.  

The thin cellular extensions underneath sites of mineral secretion, their direct 

contact to the forming fibres and the absence of ACC at the growing face of the fibres 

argue strongly for a vesicle independent mechanism of mineral transport for both, the 

commissure and the central shell region. Hence, in accord to our findings we propose 

for modern Magellania venosa a transcellular transport of calcium and hydrogen 

carbonate ions across the OME and the direct formation of calcite at the growing fibre. 

For the central shell region, this hypothesis is well supported by the extremely thin 

epithelial cells at sites of mineral secretion. The thinning of these cells diminishes the 

need of maintaining high calcium gradients within the cytosol and reduces toxic effects 

on calcium dependent signalling, cytoskeleton stability, and the function of 

mitochondria. The results of our morphometric analysis support as well transport of ions 

to sites of shell secretion. OME cells at the commissure have an about twice as high 

volume fraction of mitochondria than those within the central shell region, what points 

to a higher energy consumption of the cells at the commissure. When we compare 

values of absolute mitochondria volume we find a 15 times higher value for the 

commissure than for the central region, and for the mitochondrial outer membrane area 

an 11 times higher value, respectively. This difference is significant. However, it should 

be kept in mind that additional functions, such as secretion of the periostracum, that of 

the mucous layer, degradation of cellular extensions and the possibly higher energy 

costs for higher proliferation rates, evoke as well an increased volume fraction of 

mitochondria. 

Hence, how is then mineral transported to the site of calcification in the modern 

brachiopod Magellania venosa ? On the basis of our findings and results reported in 

literature (Roer, 1980; Roer and Dillaman, 1984; Giraud-Guille, 1984; Cameron and 

Wood, 1985; Ziegler, 1997; Wheatly, 1999, Wheatly et al., 2001; Hagedorn and Ziegler 

2002; Hagedorn et al., 2003; Ziegler et al., 2004) we developed a conceptual model 

(Figure 13) for ionized calcium, carbonate and proton transport for the modern 

brachiopod Magellania venosa. Observations gained in this study that favour a plasma 

membrane aided ion transport mechanism for shell formation in Magellania venosa are: 

(i) the presence of very thin cell regions at sites of mineral secretion. These thin cells do 

not require a compartmentation of calcium in the cytoplasm of the cell; (ii) the absence 

of an amorphous carbonate phase in fibres that are in direct contact with OME cells, 

hence, fibres that are in active secretion; (iii) the absent or very narrow extrapallial 

space between the apical membrane of OME cells and the growing fibres, which leaves 

no space for mineral transport by vesicles; (iv) the lack of evidence for the presence of 

vesicles transporting ACC.  

The major steps of our model are (Figure 2.1.13): (1) Ionized calcium enters the 

cell passively through calcium channels along the steep inwardly directed 

electrochemical gradient; (2) From the cytoplasm calcium is transported across the 

apical cell membrane by a Ca
2+

-transport ATPase and an Na
+
/Ca

2+
-exchange 

mechanism. Carbonate ions are formed by cell metabolism or/and (3) enter the cell 

through a HCO3
-
/Cl

-
 exchange or a HCO3

-
/Na

+
 co-transport mechanism. (4) Hydrogen 

carbonate is transported by a HCO3
-
/Na

+
 co-transporter or/and a HCO3

-
/Cl

-
 exchanger 

across the apical cell membrane. (5) At the site of mineralization Ca
2+

 reacts with 

HCO3
-
 to CaCO3 releasing one H

+
.
 
To our knowledge there is no transporter which is 

able to transport protons against its electrochemical gradient from the outside of the cell 
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into the cytoplasm as indicated by the (X) in Figure 2.1.13. However, mineralization 

can only proceed if the proton is removed into the cytosol to maintain an alkaline pH at 

the site of mineralization (to reduce the solubility of CaCO3). Numerous studies on a 

range of different CaCO3 mineralizing organisms have shown the presence of carbonic 

anhydrases in the mineralized tissue and/or expression of the protein in the mineralizing 

epithelial cells (e.g. Cameron and Wood, 1985, Miyamoto et al. 1996, Yu et al. 2006, 

Tambutté et al. 2007, Marie et al. 2008, Moya et al. 2008, Ziegler 2008) including 

brachiopods (Isowa et al. 2015). Carbonic anhydrases catalyse the formation of H2O 

and CO2 from H
+
 and HCO3

-
 as well as the reverse reaction. H2O can pass back into the 

cell by aquaporin channels. The passage of the non-polar CO2 through the membrane is 

possible by passive diffusion (e.g. Misser et al. 2008), but there are also indications for 

the existence of CO2 channels (Endeward et al. 2017). Inside the cell the CO2 is 

transformed with water into H
+
 and HCO3

-
. The carbonic anhydrase process is indicated 

as (6) in Fig. 2.1.13. (7) The proton is transported from the cytoplasm to the 

haemolymph by a V-type H
+
-ATPase. (8) The inwardly directed sodium gradient is 

maintained by the 3Na
+
/2K

+
 transport-ATPase located in the basolateral cell membrane. 

 

Figure 2.1.13. Major steps of a conceptual model for calcite secretion in the modern brachiopod 

Magellania venosa. (1) Ionized calcium diffuses into the cell through channels along the 

inwardly directed electrochemical gradient, (2) Ca
2+

 is transported out of the cell, across the 

apical plasma membrane to the forming fibre, by a Ca
2+

-transport ATPase or/and a Na
+
/Ca

2+
-

exchange mechanism. Carbonate is formed by cell metabolism; but it also enters the cell as 

HCO3
- 
through a (3) HCO3

-
/Cl

-
 exchange or a HCO3

-
/Na

+
 co-transport mechanism. (4) HCO3 is 

transported across the apical cell membrane by a HCO3
-
/Na

+
 co-transport mechanism or/and a 

HCO3
-
/Cl

-
 exchanger (the latter not shown in the model). (5) At the site of mineralization Ca

2+
 

reacts with HCO3
-
 to form CaCO3 and releasing H

+
. (X) To our knowledge there are no proton 

transporters capable to bring protons from the outside to the inside of the cell against its 

electrochemical gradient. (6) Carbonic anhydrase catalyses the formation of H2O and CO2 from 

the proton and HCO3
-
; H2O enters the cell through aquaporin channels and CO2 diffuses back 

through the cell membrane into the cytoplasm. In the cytosole the carbonic anhydrase catalyses 

the reaction back to hydrogencarbonate and a proton. The HCO3
-
 is recycled and (8) the proton 

is transported into the hemolymph by a V-type H
+
-ATPase. (8) The inwardly directed sodium 

gradient is maintained by the 3Na
+
/2K

+
 transport-ATPase within the basolateral membrane. 
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Passage of ionized calcium through specific channels in the cell membrane or/and 

into intracellular stores plays a major role in cell signalling events and triggers many 

cell physiological processes (e.g. Grover and Khan 1992, Simkiss, 1996, Carafoli 2004, 

Berridge 2005, Clapham 2007). Transcellular calcium ion transport is intrinsic to many 

epithelial cells. Non-mineralising epithelial cells of vertebrate kidney (Kumar, 1995; 

Moor and Bonny, 2016), the gill and antennal gland epithelium of Crustacea (Flik et al., 

1994; Lucu, 1994; Neufeld and Cameron, 1993; Wheatly et al., 2007). Also for 

mineralizing epithelial cells, e.g. those that secrete the mineral in crustacean cuticle 

(Roer and Dillaman, 1984, Greenaway et al., 1995; Wheatly, 1999, Wheatly et al. 2001; 

Ziegler et al., 2004), in corals (e.g. Allemand et al. 2004, Böhm et al. 2006, Marshall et 

al. 2007, Tambutté et al 2011, Pretet et al. 2013, Fallini et al. 2015, Inoue et al. 2015, 

Gothmann et al. 2016, Mejía et al. 2018), coccolitophorides (e.g. Gusonne et al. 2006, 

Langer et al. 2007, McClelland et al. 2017, Hermoso et al., 2017, Yin et al. 2017, 

Toyofuku et al. 2017, Liu 2018) and foraminifera (e.g. Bentov et al. 2009, De Nooijer et 

al. 2014, Toyofuku et al 2017). To our opinion, it is well conceivable that transport of 

ionized Ca across cell membranes might take place as well at shell mineralization in 

shell secreting organisms. 

2.1.5. Conclusions 

The shell of modern brachiopods is secreted by the outer mantle epithelium (OME) 

of the animal. Despite several decades of research, it is still unknown how the mineral is 

transported from OME cells to the site of mineralization. In order to understand mineral 

transport and shell secretion, we investigated the ultrastructure of OME cells and their 

spatial relation to the growing shell. We deduce the following conclusions from our 

results: 

1. The ultrastructure of the OME at the commissure differs significantly from that at 

central shell regions. The OME at the commissure consists of several cell layers, 

while at central shell regions it is single-layered. 

2. At the commissure, cells form long, lateral extensions towards the shell.  These are 

thin, flat, and in direct contact with the calcite fibres, while proximally they are 

roundish in cross section.  

3. At central shell regions OME cells are considerably thinner in comparison to cells 

at the commissure. Especially at forming calcite fibres cells are only a few tens of 

nm thick. 

4. Mineral deposition takes only place at sites where the apical membrane of OME 

cells is in direct contact to the calcite of the fibre. Mineral secretion is terminated 

with the formation of an organic (likely proteinaceous) membrane which lines the 

proximal surface of fibres. At these sites, apical hemidesmosomes connect apical 

cell membranes to the organic lining of the fibres. Tonofilaments connect apical to 

basal hemidesmosomes. This stabilizes the contact of epithelium and fibres and 

keeps the mantle in place. 

5. Individual fibres are secreted by several cells at the same time. This requires 

communication and tight cooperation of neighbouring OME cells for the 

coordinated secretion of organic membrane and mineral, explaining the high 

abundance of gap junctions between cells.  

6. There is not any observation in the cell ultrastructure in our study that can be taken 

as evidence for a vesicular transport based mineralization process. On the contrary, 

the absent or very narrow (in the range of nanometers) space between the 

epithelium and the growing fibres, together with the absence of significant 
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differences in the volume fraction of vesicles between secreting and non-secreting 

regions of the OME, as well as the extreme reduction in cell thickness at sites of 

mineral secretion suggests, that in modern Magellania venosa (and likely in all 

Rhynchonellida and Terebratulida forming the fibrous microstructure) mineral 

transport to the sites of mineralization occurs via ion transport mechanisms through 

the cell membrane and not by transport of mineral by organelles such as vesicles. 
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Supplementary material 

 

Figure S2.1.1. The shell of the modern brachiopod Magellania venosa (A). B) SEM micrograph 

of a longitudinal section through the shell showing the two valves and shell portions that were 

investigated in this study: the commissure and the central shell region. 

 

 
 

Figure S2.1.2. FE-SEM and TEM micrographs of microtome polished high-pressure frozen 

freeze-substituted samples showing the shape of calcite fibres in cross-section (SEM image in 

A), organic membranes between the fibres (TEM image in B) and the occasional presence of 

double-plied membranes at fiber corners (TEM images in C to G). Membrane portions 

highlighted in red in Fig. S2B are shown enlarged in Figs. 2B and 2C. 
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Figure S2.1.3. FE-SEM micrograph of an embedded and polished sample showing the inner 

mantle epithelium (IME) at the base of the mantle groove with a protruding seta (black star). 

The contrast is reversed. The seta, secreted by the surrounding IME cells, was cut obliquely. 

IME cells have long microvilli-like extensions at their apical side and contain many dense 

bodies (db). Golgi apparatus: (Ga), mitochondria: (m), nucleus: (N).  
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Figure S2.1.4. TEM micrograph of the ultrastructure of the IME at the inner commissure. It 

consists of a single layer of cells; these carry microvilli like extensions and cilia. The cells 

contain many organelles: nuclei (N), mitochondria (m), lysosomes (ly), multivesicular bodies 

(mb), dense bodies (db). 

 

 

Figure S2.1.5. FE-SEM and TEM micrographs of calcite fibres and outer mantle epithelial cells 

at the commissure depicting the close contact of OME cells to the growing fibres. See also 

Simonet Roda et al. 2019. A) high-pressure frozen and freeze-substituted shell portion. B) high-

pressure frozen/ freeze-substituted and additionally etched shell piece of modern Magellania 

venosa. Etching was done at a pH of 9, for 40 seconds and with a 0.1 molar HEPES and 2,5% 

Glutaraldehyde solution and subsequent critical point drying. The sample shown in (A) was 

only polished, not etched neither critical point dried. Outer mantle epithelium cells are in very 

close contact to the calcite of the fibres (yellow stars in A). Etching removes soluble material 

between calcite fibres. However, no material is etched away between forming fibre and the 

subjacent epithelium (yellow stars in B). White arrows in B point to the presence of the organic 

membrane that covers the proximal surface of a fibre when fibre secretions is terminated.  
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Figure S2.1.6. TEM micrographs from outer mantle epithelium that lines the shell at the inner 

commissure (A-F, G) and at the central region (H). The images depict examples of organelles 

and glycogen that were subject to the morphometric analysis. A) Mitochondria (m) and rough 

endoplasmatic reticulum (rer). B-D) examples of lysosomes (ly in B and C) and a multivesicular 

body (mb in D) as combined in the class endo-lysosomes of the morphometric analysis; ev, 

extracellular vesicles and dashed black line in B. E, F) Intracellular vesicles (iv) are either filled 

with densely stained material (E) or appear light (F). G) an example of the Golgi apparatus with 

surrounding Golgi vesicles as combined to the class Golgi apparatus. H) Example of glycogen 

(gl).  
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Figure S2.1.7. TEM micrograph taken on chemically fixed and decalcified samples from 

central shell portions depicting the position of apical (black arrows) and proximal (blue 

arrows) OME cell membranes. Yellow arrows point to the organic membrane that is present at 

the proximal, convex surface of a fibre (yellow arrows). With the formation of this membrane 

secretion of mineral ceases at this site of the OME cells. OME cells are attached to the organic 

membrane lining the fibres via apical hemidesmosomes, the latter are connected via 

tonofilaments (t) to basal hemidesmosomes (red dots) and the basal lamina of OME cells. 

 

 
 

 

Figure S2.1.8. TEM micrograph of a chemically fixed and decalcified sample depicting the 

cavity within the median portion of a punctum. The surface of the punctum is lined by a very 

thin layer of single, but overlapping (A, B) cells. For further information see Fig. 11. 
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Figure S2.1.9. Volume of organelles (mitochondria, vesicles, rough endoplasmatic reticulum, 

endo-lysosomes, Golgi apparatus, smooth endoplasmatic reticulum) in the cells of 10 µm
2
 of the 

outer mantle epithelium for different OME regions: Results are plotted with the mean (indicated 

with horizontal red lines in the graphs) and the standard deviation (indicated with vertical lines 

in the graphs). Stars indicate significant differences of mean values for a given organelle 

between different outer mantle epithelium regions: *: P ≤ 0.05; **: P ≤ 0.01; ***: P ≤ 0.001; ****: 

P ≤ 0.0002.  
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Figure S2.1.10. BSE (A), SE (B) and EBSD band contrast (grey scale) and color-coded 

orientation images and corresponding pole figures (C) of a high-pressure frozen and freeze-

substituted shell section of Magellania venosa. Figure A demonstrates the closeness of the 

OME to the growing fibres. Figure B gives the shell and OME portion that was scanned with 

EBSD. Figure C shows with EBSD maps and corresponding pole figures the arrangement of 

calcite crystals in a transversely cut stack of fibres. The EBSD band contrast measurement 

image depicts the borders between adjacent fibres (light grey, note, for a better visualization, in 

this image the grey levels are reversed) within the shell. The orientation measurement (in color) 

shows that all fibres, also those in direct contact to the OME, consist of crystalline calcite only. 

The amorphous carbonate precursor would easily be detected with EBSD, as not crystallized 

material does not give a diffraction pattern, hence regions with ACC would not give any EBSD 

signals. The used step size for the measurement was 100 nm. The uniformity in color depicts the 

high degree of calcite c-axis co-orientation within the scanned shell portion (upper pole figure) 

as well as in individual fibres (the lower two pole figures). MUD values are an indication for 

crystal co-orientation strength. Each calcite fibre is a single crystal, the latter reflected by the 

high MUD value of individual fibres, 670, 691, respectively. The MUD value for an inorganic 

calcite crystal precipitated from solution scatters between 710 and 720 (see Nindiyasari et al. 

2015).   
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2.2. Calcite fibre formation in modern brachiopod shells 
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Abstract  

The fibrous layer of modern brachiopod shells forms a substantial part of the hard tissue. It 

consists of arrays of calcite fibres that are assembled into differently-oriented stacks. To 

understand calcite fibre formation and shape development, we investigated fibre morphology, 

internal structure and mineral deposition by AFM, FE-SEM, TEM imaging of embedded/etched, 

chemically fixed/decalcified and high-pressure frozen/freeze substituted samples.  

Calcite fibres are secreted by outer mantle epithelium (OME) cells. Biometric analysis of 

TEM micrographs indicates that about 50 % of these cells are attached via hemidesmosomes to 

an organic membrane present at the proximal, convex surface of a fibre. At these sites, mineral 

secretion is not active. Instead, ion transport from OME cells to developing fibres occurs at 

points of closest contact between OME cells and fibres, and only at sites where the membrane at 

the proximal fibre surface is not developed.  

Fibre formation requires the cooperation of several adjacent OME cells. It is a spatially and 

temporally changing process comprising of detachment of OME cells from the organic 

membrane, secretion of mineral at detachment sites, termination of secretion with formation of 

organic membrane, attachment of cells via hemidesmosomes to newly formed membrane, and 

suspension of secretion at attachment sites.   

Key words: modern brachiopod Magellania venosa, AFM, FE-SEM, TEM, outer mantle 

epithelium (OME) cells, fibre morphology, nanometric biocalcite crystallites (NBC) 
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2.2.1. Introduction  

Brachiopods are extant shell-forming, marine, sessile organisms abundant 

throughout the Phanerozoic, particularly during the Paleozoic when they dominated the 

marine benthic ecosystem. They are of interest to modern and paleo-environment 

research, as they cover most of the geological record and live in a wide range of marine 

habitats (e.g. Veizer et al., 1986; Bates and Brand, 1991; Grossman et al., 1991; 

Carpenter and Lohmann, 1995; Grossman et al. 1996; Richardson, 1997; Veizer et al., 

1999; Veizer et al., 2000; Logan, 2007; Angiolini et al., 2009; Nielsen et al., 2013; 

Roark et al., 2015; Veizer and Prokoph, 2015; Rollion-Bard et al. 2016; Garbelli, 2017; 

Henkes et al., 2018; Reddin et al. 2018; Stigall,2018). Their shells consist mainly of 

low-Mg calcite, which is assumed to crystallize in equilibrium with seawater with only 

small or negligible “vital effects”.  

Modern terebratulide and rhynchonellide brachiopod shells consist of up to three 

mineralized shell layers: the outer primary, the inner fibrous, and, where developed, an 

innermost columnar layer (Griesshaber et al. 2009; Goezt et al. 2009 and 2011; Schmahl 

et al., 2012).  In two-layered shells the fibrous layer forms an extensive part of the shell. 

The fibres are hundreds of micrometers long and mostly single-crystalline mineral units 

(Schmahl et al., 2004; Griesshaber et al., 2007). They have four surfaces: a proximal 

convex surface at their base, concave surfaces at their two lateral sides and a concave 

surface at their apical side. The shape of brachiopod fibres is unique and well developed 

in the Lower Cambrian, when the orders Protorthida, Orthida and Pentamerida of the 

class Rhynchonellata emerged with shells having fibrous microstructures (William et al. 

2000; Carlson, 2016). In recent brachiopods, the morphology and dimension of fibres 

are characteristic for a given brachiopod species and are evolutionarily adapted to the 

animal’s habitat (Ye et al., 2018a and 2018b).  

Brachiopod shells are also of interest to material science, as these are important 

prototypes for bioinspired light-weight and energy-efficient hybrid materials. In these 

materials, advantageous mechanical properties of one component not only compensate 

for adverse properties of other’s (e.g. Studart. 2012; Naleway et al., 2015; Niebel et al., 

2016), but additional gain is derived from the overall composite nature of the biological 

hard tissue (e.g. Richie, 2011). The mineral component provides high elastic modulus 

and high compressive strength, while its inferior tensile strength and brittleness is 

compensated by the high tensile strength and pliability of the organic matrix. The 

hierarchical nature of the composite hard tissue provides overall toughness and fracture 

toughness (Meyers et al., 2008; Dunlop and Fratzl, 2010; Barthelat and Mirkhalaf, 

2013; Wegst et al., 2014).  

Fibrous biological composites are an important class of materials (e.g. Studart. 

2012; Naleway et al., 2015; Niebel et al., 2016). Aragonite or calcite fibres are 

embedded in a pliant biopolymer matrix (e.g. Weiner et al. 1983; Levi-Kalisman et al., 

2001; Gaspard et al., 2008; Checa et al., 2009; Dunlop and Fratzl, 2010; Maier et al., 

2014; Nindiyasari et al., 2015; Wang et al., 2015; Checa et al., 2016; Griesshaber et al., 

2017), the latter being always cross-linked within the hard tissue (e.g. Studart. 2012; 

Naleway et al., 2015; Niebel et al., 2016). This enables the fibres to transmit high forces 

to each other via the matrix, while remaining immobile and stationary. Accordingly, in 

fibrous composite materials (man-made or biological) the matrix is always pliant and 

flexible. Biopolymer matrices are plasticized with water (Naleway et al., 2015; Niebel 
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et al., 2016), whereas, when the matrix is a mineral, the latter is always softer relative to 

the hardness of the constituting fibres (Goezt et al., 2014). 

In biological carbonate hard-tissue the fibres are not simple rods, as it is often the 

case in man-made fibrous composite materials. Instead, they have highly variable 

lengths and thicknesses, have elaborate morphologies (Ye et al., 2018a and 2018b) and 

are interleaved in three dimension (Studart, 2013; Studart and Erb, 2014). Most 

biological carbonate hard tissue is subject to compressive, bending and shearing forces. 

As fibres within a matrix cannot be reorganized once they endure these forces, they 

must be properly packed and oriented within the hard tissue from the onset of their 

formation. This is accomplished by the formation of stacks of parallel fibres, with the 

stacks twisted in a plywood-like arrangement. This ensures that all components of the 

composite are interleaved in three dimension and on all length scales (Weiner and 

Wagner, 1998; Schmahl et al., 2008; Schmahl et al., 2012; Pan, 2014; Studart and Erb, 

2014). 

Shell formation of brachiopods has been described based mostly on macroscopic 

morphological observations (Rudwick, 1959; Rudwick, 1970; McGhee, 1980; Williams 

et al., 2000). Williams and co-workers (Williams, 1953, 1966, 1968a, 1968b, 1968c and 

1997) investigated shell development of modern rhynchonellide and terebratulide 

brachiopods and postulated that the same mantle epithelium cell performs several 

secretory operations and is capable of secreting all shell layers. This concept is based on 

the notion that mantle epithelium cells migrate during the secretionary process. As new 

cells are supposed to be constantly produced in the mantle groove, previously formed 

cells have to move away from the generative zone in a “conveyor-belt” manner. Hence, 

according to Williams et al., an individual epithelial cell secretes the periostracum first, 

then the calcite of the primary layer, and subsequently and in sequence, the calcite of 

the fibrous layer together with the organic sheath, which surrounds the calcite of the 

fibre (Williams, 1968a, 1968b and 1968c). Furthermore, due to the presumed similarity 

in cross-section between a fibre and the outline of a cell, Williams assumed that each 

cell secreted only one fibre. 

Few investigations have looked at the construction of the fibre composite material 

of brachiopod shells by epithelial cells in any detail. Specifically, the mechanism that 

leads to fibre mineralization and generation of the specific morphology of a fibre is still 

unknown. In this study, we present the first model that describes fibre secretion as well 

as fibre shape formation for modern terebratulide brachiopods. We demonstrate for the 

terebratulide species Magellania venosa, (i) the very close spatial relationship of the 

outer mantle epithelium with the calcite fibres, (ii) the tight control of the outer mantle 

epithelium cells on fibre secretion, and, (iii) describe the sequence of processes that take 

place with brachiopod fibre formation. 

 

2.2.2. Materials and Methods 

Materials 

We investigated fibre shell formation of the modern brachiopod Magellania venosa 

from Comau Fjord in southern Chile. Brachiopods were taken at about 21 m depth from 

waters with an average temperature of 11°C and 30.3 ‰ salinity. Samples that were 

chemically fixed and decalcified had a longitudinal axis length between 5 and 7 mm; 
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shells that were fixed by high pressure freezing and subsequent freeze substitution had a 

longitudinal axis length of about 4-5 mm.  

Methods and sample preparation 

Chemical fixation and decalcification 

A total of 8 small samples of the shell with the mantle tissue attached were first 

dissected from central and commissure regions of both ventral and dorsal valves. We 

used two different fixation media. Fixation medium A was prepared by mixing equal 

volumes of filtered seawater from the culture of Magellania venosa containing 2% 

paraformaldehyde and 2% glutaraldehyde with a solution of 0.35 mol L
-1

 saccharose 

and 0.17 mol L
-1

 NaCl in 0.2 mol L
-1

 Na-cacodylate buffer (pH 7.7). Fixation medium B 

was prepared in the same way, however, with 3.2% paraformaldehyde and 4% 

glutaraldehyde in the filtered seawater. No differences in preservation of the structures 

was observed between the fixation procedures and media. After 17 hours in fixation 

solution at 4 °C, 8 samples, one from each region and valve of the animals, were 

decalcified for 14 days in a solution containing 0.25 mol L
-1

 HEPES, 0.05 mol L
-

1
EDTA and 1.0 v/v % glutaraldehyde stabilized at a pH of 8.0. All samples were 

washed three times with 0.1M Na-cacodylate buffer (7.7 pH) and postfixed in the same 

buffer containing 1% OsO4 and 0.9% K4Fe(CN)6·3H2O for one hour. After washing 

with bi-distilled water, the samples were dehydrated in an ascending series of 

isopropanol solutions (30, 50, 70 and 90%), and contrasted with 2% uranyl acetate (in 

100 % ethanol) for 30 minutes, washed 3 times for 30 minutes each in 100% 

isopropanol and two times for 5 minutes in propyleneoxide and subsequently embedded 

in EPON resin.  

High pressure freezing and freeze substitution 

M. venosa individuals no longer than 6 mm were dissected in culture seawater. 

With scalpels pieces of shell with the mantle epithelium attached were cut from the 

commissure and central region of dorsal and ventral valves. Samples were transferred to 

hexadecane and placed in aluminium planchets with an outer diameter of 3 mm and a 

200 µm deep cavity, and covered with the flat side of planchets. Samples were then high 

pressure frozen with a Wohlwend HPF Compact 01 high-pressure freezer (Engineering 

Office M. Wohlwend GmbH) within 30 ms at a pressure of 2.3 x 10
8
 Pa. The planchet 

sandwiches were then opened and freeze substituted overnight in 0.2% OsO4, 0.1% 

uranyl acetate and 5% H2O in acetone ranging from -90°C to 20°C (Walther and 

Ziegler, 2002). Samples were then embedded in EPON resin. Embedded samples were 

cut open using a diamond trimming knife (Diatome, Liechtenstein) and a Reichert 

Ultracut ultra microtome (Leica) to expose the mineralised shell.  

Transmission Electron Microscopy 

Ultra-thin 60 nm sections were cut from chemically-fixed and decalcified samples 

using a diamond knife and the ultra-microtome. The sections were placed on carbon 

stabilized Formvar-coated copper hole grids and stained with 0.3% lead citrate. A Zeiss 

912 TEM (Zeiss, Jena, Germany) equipped with an Omega energy filter, a goniometer 

stage and a 2k x 2k pixel camera (TRS, Moorenweis, Germany) was used to image the 

sections at 8000 times magnification with a 120 kV acceleration voltage using only 

elastically scattered electrons. To screen a large area of the outer mantle epithelium at 

high resolution up to 300 images were recorded at rectangular grids. The images were 

then aligned into large composite images using the TRS software. These composite 

images were used for structural and numerical analysis.   
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Sample preparation for AFM imaging  

For Atomic Force Microscopy (AFM) imaging shell pieces of modern Magellania 

venosa shells were cut in longitudinal section from the umbo to the commissure and 

embedded in epoxy resin. Embedded sample surfaces were polished in 5 sequential 

mechanical steps down to a grain size of 1 µm. For the final step, etch-polishing was 

applied for three hours with a colloidal alumina suspension in a vibratory polisher. 

Subsequently, the samples were washed in Milli-Q water in an ultrasonic bath and 

rinsed with 80% ethanol.  

Atomic Force Microscopy  

Samples were measured in contact mode with a JPK NanoWizard II AFM using 

silicon cantilevers. The measurements of height, lateral and vertical deflection traces 

were processed with the NanoWizard® IP image processing software and Gwyddion 

free and open source software. We used the “Gold” scale for colour. The height trace 

shows the surface height of the measured area while lateral and vertical deflection traces 

are the result of the interaction between the cantilever tip and the sample surface. With 

lateral deflection traces, we observed the different components within the shell (e.g., the 

organic membrane of the calcite fibres has a different interaction with the cantilever tip 

than the calcite of the fibres). We show all AFM results with vertical as well as lateral 

deflection trace measurements. 

Sample preparation for microstructure characterisation  

For Electron Backscatter Diffraction (EBSD) analyses 5 x 5 mm pieces were cut 

out of the shell and embedded in epoxy resin. The surface of the embedded samples was 

subjected to several sequential mechanical grinding and polishing steps down to a grain 

size of 1 μm. The final step consisted of polishing with colloidal alumina (particle size ~ 

0.06 μm) in a vibratory polisher. Finally, samples were coated with 4-6 nm of carbon.  

Electron backscatter diffraction 

EBSD measurements were carried out on a Hitachi SU5000 field emission SEM, 

equipped with an Oxford EBSD detector. The SEM was operated at 20 kV and 

measurements were indexed with the CHANNEL 5 HKL software. In this study 

information obtained from EBSD measurements is presented as band contrast 

measurement images. EBSD band contrast represents the signal strength of the EBSD-

Kikuchi diffraction pattern in each measurement point and is displayed as a grey-scale 

component of EBSD scanning maps. The strength of the EBSD signal is high when a 

crystal is detected (bright), whereas it is weak or absent when a polymer is scanned 

(dark/black).   

Field Emission Scanning Electron Microscopy 

Non-decalcified EPON resin embedded samples of high pressure frozen and freeze-

substituted shell as well as chemically fixed shells, were knife polished by successively 

advancing the knife for 70, 40, 20, 10 and 5 nm 15 times for each step (Fabritius et al., 

2005). Samples were then mounted on aluminium holders using self-adhesive carbon 

pads and conductive glue and coated with 4 nm of carbon using a BAF 300 (BAL-TEC, 

Balzers, Liechtenstein). Samples were analysed with a Hitachi S5200 field emission 

scanning electron microscope (FE-SEM). For chemically fixed samples we used the 

secondary electron signal at 4kV. To obtain material density contrast at high resolution 

for the high pressure frozen/freeze substituted samples, we used the converted 

backscattered electron signal to obtain so-called composite-rich images (Walther, 2008) 
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at 4kV acceleration voltage and 20 µA emission current in analysis mode of the 

microscope. To test if the fibrous layer contained highly soluble mineral phases (e.g., an 

amorphous precursor phase of calcite) we first removed the 4 nm carbon layer using a 

diamond knife. The sample was then etched and organic material fixed simultaneously 

for 40 seconds using a 0.1 M HEPES (pH = 9.0) and 2.5 % glutaraldehyde solution. 

Immediately after etching, the samples were dehydrated in 100% isopropanol 3 times 

for 10 seconds and were critical point dried in a BAL-TEC CPD 030 (Liechtenstein) 

device. The dried samples were coated with 3 nm platinum. Then, the same regions of 

the sample were imaged again in the Hitachi S5200 FE-SEM. 

Assessment of secreting and non-secreting OME portions 

For distinguishing between secreting and non-secreting portions of the outer mantle 

epithelium (OME) we used several large TEM composite images from chemically fixed 

samples recorded at central shell regions. We measured the length of the outer mantle 

epithelium that is attached to the shell by apical hemidesmosomes and where two 

membranes could be observed such as at the apical membrane of the epithelial cells and 

the organic membrane at the proximal side of fibres (non-secreting parts of the 

epithelium). The length of these regions was compared, in perpendicular and 

longitudinal sections, with the length of those epithelium portions where the membrane 

lines the proximal side of the fibres as well as where apical hemidesmosomes are absent 

(secreting parts of the epithelium). For measurements, we used the open source software 

JMicroVision. The epithelial lengths were measured in basal parts of the epithelium 

where the cells are in contact with the basal lamina.  

2.2.3. Results  

The scheme in Figure 2.2.1a was deduced from our FE-SEM and TEM observations 

and depicts the spatial relationship between the different shell layers of the modern 

brachiopod Magellania venosa and their topological relation to the outer and inner 

mantle epithelia (OME, IME). 

The shell of Magellania venosa (Dixon, 1789) consists of the periostracum, a 

purely organic layer, and two mineralized layers, the primary and the fibrous layer (Fig. 

2.2.1a). All three layers are secreted by the outer mantle epithelium (OME) cells of the 

animal. The primary shell layer, located between the periostracum and the fibrous shell 

portion (Figs. 2.2.1a-b, S2.2.1a, S2.2.2a) is secreted near the commissure and ceases to 

grow in thickness when the fibres (Fig. 2.2.1a) start to develop. Hence, growth of the 

shell extension occurs by secretion of the primary layer at the commissure, while 

growth in shell thickness takes mainly place with secretion of fibres some tens of 

micrometers away from the commissure (Fig. 2.2.1a). The fibres (Figs. 2.2.1b, 2.2.2, 

S2.2.1b, S2.2.2) in Magellania venosa have four sides: one convex side facing 

proximally, two concave sides facing laterally and one concave side facing distally. The 

fibres are separated from each other by an organic membrane (Figs. 2.2.3, S2.2.1a-b, 

S2.2.2f), but this membrane does not form a sheath around individual calcite fibre’s. 

Instead, the membrane lines only the proximal, convex surface of a fibre (Figs. 2.2.3, 

S2.2.1b, S2.2.2f). The specific shape and mode of packing of the fibres implicates the 

full encasing of the calcite of a fibre by an organic sheath. 

AFM images (Figs. 2.2.1b, 2.2.3a, S2.2.1a, S2.2.2d) visualize the transition from the 

primary to the fibrous shell layer. There is no distinct or sharp boundary between the 

primary layer calcite and the adjacent secondary-layer fibres but rather a smooth 
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transition (Figs. 2.2.3a, S2.2.1a, S2.2.2d). Mineral units that are next to or close to the 

primary layer portion of the shell do not show the characteristic blade-shaped 

morphology of a brachiopod fibre (white stars in Fig. S2.2.4b). Instead, they are rather 

irregular in shape and elongated in cross-section. They are, however, already lined 

along their proximal, convex side by an organic membrane (white arrows in Figs. 2.2.3a, 

S2.2.2d). Occasionally short segments of organic membrane might become visible 

within the transition zone between the primary and fibrous shell layers (white arrows in 

Fig. S2.2.4a-b). Some distance away from this transition region, fibre morphology 

becomes more regular and cross-sections of fibres increase in size (yellow stars in Fig. 

S2.2.4b). The calcite within fibres (Figs. 2.2.2, 2.2.3, S2.2.2, S2.2.3) consists of highly 

structured nanometric biocalcite crystallites (NBC) often aligned in curved rows, along 

growth lines, following the convex proximal surface of the fibre (white arrows in Fig. 

2.2.2a).  

Figure 2.2.4 shows FE-SEM micrographs of polished surfaces of chemically fixed 

(Fig. 2.2.4a) and high-pressure frozen and freeze-substituted (Fig. 2.2.4b-f) shell 

portions embedded in EPON resin. High pressure freezing followed by freeze-

substitution in acetone containing OsO4 and uranyl acetate ensures minimal shrinkage of 

the soft tissue and negligible dissolution of the calcite during preparation. We find that 

the outer mantle epithelium is always in close contact with the proximal, convex side of 

the fibres. On the basal side, mantle epithelium cells are connected to the basal lamina 

of the connective tissue and haemolymph by large hemidesmosomes (red dots in Fig. 

2.2.4a). In high pressure frozen and freeze-substituted samples, at sites of mineral 

secretion, apical cell membrane cannot be distinguished from basal surfaces of fibres 

(Fig. 2.2.4c and e). This indicates that in Magellania venosa extrapallial space between 

fibres and OME cells is either absent or only a few nanometers wide.  
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Figure 2.2.1. The different shell layers of the modern terebratulide brachiopod Magellania 

venosa. a, Schematic deduced from our FE-SEM and TEM results depicting the position of the 

periostracum, the two mineralized shell layers and the location of the mantle epithelium. The 

schematic shows the spatial relationship between the outer (OME) and inner (IME) mantle 

epithelium as well as the connective tissue in the growing shell. b, AFM vertical deflection 

image visualizing the structure of the outward primary and inward fibrous shell layer. The 

corresponding lateral deflection image is shown in Figure S2.2.2a; for additional information 

see Figure S2.2.1a. The fibres are sectioned transversely. Clearly visible is the transitional area 

between the primary and fibrous shell layers. 
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Figure 2.2.2. AFM vertical deflection images depicting the shape of longitudinally and 

transversely cut fibres as well as the internal structures of fibres of the modern brachiopod 

Magellania venosa. The corresponding lateral deflection images are shown in Figure S2.2.2. a) 

Nanometric biocalcite crystallites (NBC) constitute a fibre. These are often strung in rows 

(white arrows in a) following the convex shape of the proximal, convex basal part of a fibre and 

depict growth lines. White stars point to the organic membrane that lines the proximal, convex 

surface of fibres. b) One star indicates the apical, concave part of a fibre; two stars point to the 

proximal, convex portion of a fibre. 
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Figure 2.2.3. AFM vertical deflection images depicting the internal structure of primary and 

fibrous shell portions of Magellania venosa. Corresponding lateral deflection images are shown 

in Figure S2.2.2. a, Close-up of the primary layer and the first three rows of adjacent fibres 

visualizing the gradual changeover from primary to fibrous calcite shell layers. b, Biopolymer 

membrane tightly attached to the calcite of a fibre along its proximal, convex surface. The 

organic membrane (black stars) is between two adjacent fibres (red and white stars) and in each 

case the biopolymer lines the basal (proximal), convex portion of the fibre.  
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Figure 2.2.4. FE-SEM micrographs of polished surfaces of chemically fixed (a), high-pressure 

frozen and freeze-substituted (b to f) and etched (d, f) shell pieces of Magellania venosa. 

Samples in 4b, 4d and 4f were etched at a pH of 9, for 40 seconds with a 0.1 molar HEPES and 

2,5% glutaraldehyde solution and critical point dried. Samples in 4e and 4c were polished but 

not etched nor critical point dried. Micrographs were recorded using secondary electron (at 4kV; 

Fig. 2.2.4a) and converted backscattered electron (at 4 kV; Fig. 2.2.4d-f) signals, respectively. 

a-f. Outer mantle epithelium (OME) cells are always in very close contact to the calcite of the 

fibres. It is well visible that at some cell – calcite interfaces the biopolymer lining of the fibre is 

not developed (red arrows in c, e, d, f). These are the sites where fibre formation is still in 

progress. In contrast, at sites where the biopolymer membrane along the proximal, convex 

surface of a fibre is well observable (yellow arrows in b, d, f), fibre mineralization is complete. 

At their basal side, epithelial cells are connected to the connective tissue by basal 
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hemidesmosomes (red dots in a). Samples (c) and (d) are high-pressure frozen, freeze-

substituted, embedded in EPON resin and polished with a diamond knife; samples (d) and (f) 

are, in addition, etched for possible detection and visualization of amorphous calcium carbonate. 

G: Golgi apparatus, m: mitochondria, t: tonofilaments, v: vesicles.  

As Figures 2.2.4c and 2.2.4e visualize, in unetched samples, the organic membrane 

that lines the proximal, convex side of a fibre cannot be distinguished from the calcite 

of the fibre. However, when etched, the membrane becomes visible (yellow arrows in 

Fig. 2.2.4b, d and f). Hence, there is a close connection between the membrane that lines 

the calcite of the fibres, in that the organic membrane is an integral part of fibres. The 

close connection between fibre calcite and membrane lining is clearly visible in our 

AFM images (Fig. 2.2.3b; black and red stars at the basal, convex surface of a fibre). In 

unetched samples (Fig. 2.2.4c and e) the organic membrane is not visible in FE-SEM 

images as during freeze-substitution OsO4 and uranyl acetate have no access to them. In 

etched samples, the contact between the organic membrane lining is at the proximal, 

convex part of a fibre and the distal section of the adjacent fibre in low relief (Figs. 

2.2.3b, 2.2.4e and c, S2.2.2). This might be due to higher solubility of the mineral at 

distal fibre surfaces and can be explained by inhibition of calcite crystal growth at these 

sites. This leads to the formation of nanocrystalline calcite with higher solubility. 

In chemically-fixed samples with fibres still in formation, we observe irregular 

dissolution of the calcite at fibre margins (yellow arrows in Fig. 2.2.4a). However, in 

high pressure frozen and freeze-substituted samples these dissolution features are not 

present (Fig. 2.2.4c and e). Accordingly, etching of high pressure frozen and freeze-

substituted shell portions with an aqueous solution at a pH of 9 containing 0.1 molar 

HEPES and 2,5% glutaraldehyde does not result in dissolution of the mineral 

(amorphous or crystalline) of the developing fibres. Hence, the dissolution features that 

we observed in the chemically fixed samples (Fig. 2.2.4a) can be traced back to the 

effect of aqueous solutions that were used in the course of that preparation method, and 

they do not indicate a possible presence of an amorphous precursor, amorphous calcium 

carbonate (ACC), within the fibres. Furthermore, we do not find selective dissolution of 

the calcite between epithelial cells and at the sites of mineral secretion (red arrows in 

Fig. 2.2.4d and f). ACC readily dissolves at a pH of 9, this is a good indication that the 

calcite of fibres forms directly and most probably not via a disordered mineral phase, 

such as amorphous calcium carbonate.  

TEM imaging of chemically fixed and decalcified shell samples (Figs. 2.2.5 - 7) 

allows us to investigate the ultrastructure of OME cells, the organelle distribution within 

them, and the topological relation of OME cells to organic membrane that lines the 

proximal, convex surface of adjacent fibres.   
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Figure 2.2.5. TEM micrographs of chemically fixed and decalcified contact between epithelium 

and shell calcite in modern Magellania venosa. a, Mineral formation ceases with the secretion 

of an organic membrane covering the proximal, convex part of the fibre (black arrows). At these 

sites, we see two membranes: (i) the apical cell membrane of the attaching OME cell (red 

arrows), and (ii) the organic membrane lining the basal portion of the fibre (black arrows in b). 

b, Site of active fibre secretion, there is only one membrane present and visible, namely the 

apical membrane of the OME cell (red arrows in a and b), which is tightly attached to the calcite 

of the forming fibre. Neighbouring cells are connected to each other by belt desmosomes. Note 

the absence of tonofilaments in cells below those parts of the fibre that are actively secreting. 

rer: rough endoplasmatic reticulum, m: mitochondria. 

Apical membranes of OME cells are always present in the investigated samples, in 

contrast to membrane that lines the basal (proximal), convex surface of fibres. We find 

regions where the organic membrane lining at the basal (proximal) surface of the fibre is 

lacking (red arrows in Fig. 2.2.6a), is incomplete (Figs. 2.2.5 and 2.2.7), or is fully 

developed (black arrows in Fig. 2.2.6b). When membranes are present, apical cell and 

organic membranes, at the basal surface of the fibres, OME cells are attached to the 

organic membrane of the fibres via apical hemidesmosomes (green arrows in Fig. 

2.2.6b). At sites where the organic membrane at the proximal, convex surface of the 

fibre is lacking, OME cells do not contain any hemidesmosomes or tonofilaments (Figs. 

2.2.5b, 2.2.6a). At these sites, mineral transport from OME cells to adjacent fibres, thus 

active secretion, is a process still in progress. Analysing an epithelial length of 189 µm 

we find that 14 regions with a total length of 98 µm are attached to the shell via 

hemidesmosomes and 10 regions with a total length of 91 µm are not (Fig. S2.2.5-c). 
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Thus, at a given time, about 52 % of the OME is not secreting mineral and only a 

maximum of about 48 % of the OME is involved in fibre mineralization.  

 

Figure 2.2.6. TEM micrographs of chemically fixed and decalcified contact between epithelium 

and fibre calcite in modern Magellania venosa. Samples were taken from the central region of 

the shell. a, With ongoing mineralization, the membrane lining the proximal, convex part of the 

fibre is not yet developed (red arrows). b, Apical cell membrane attached to organic membranes 

of the fibres by apical hemidesmosomes (green arrows), the latter being connected to basal 

hemidesmosomes (orange arrows) via tonofilaments (tf). Cells below fibres in the process of 

active mineral secretion do not contain any tonofilaments. 
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Figure 2.2.7. TEM micrographs and deduced schematic showing the interlinkage of three cells 

below an almost fully secreted fibre. Well visible are tonofilaments within cells 2 and 3 (yellow 

and red arrows) that connect the apical cell membrane to the organic membrane at the proximal, 

convex side of the fibre by hemidesmosomes.  

In contrast to observations by Williams and co-workers (Williams, 1966, 1968a, 

1968b, 1968c, 1997 and Williams et al 2000), we do not find a one-by-one relationship 

between epithelial cells and fibres.  Instead, we often observe either one cell below two 

or more fibres or interdigitating epithelial cells below one fibre (Fig. 2.2.7). In regions 

where the organic membrane at the proximal, convex side of the fibre is not fully 

developed, cross sections through fibres reveal that secretion of the organic membrane 

starts at the two lateral corners of the fibre (Fig. 2.2.5a) and progresses from here until 

the proximal, convex surface of the fibre is fully covered with an organic lining. The 

formation of the basal membrane lining at the convex side of the fibre represents the 

terminal step in fibre secretion. It also separates the outer mantle epithelium cell from 

the compartment in which the fibre is mineralized. Where the fibre basal membrane is 

absent, the compartment in which calcite mineralization takes place is in direct contact 

with cell membranes, such that either by pumps or ion exchange mineral components 

can be transported into the compartment of calcite crystallization. 
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2.2.4. Discussion  

Fibre secretion and microstructure generation in Magellania venosa 

Elongated, cylindrical mineral units are structural elements in bivalve, gastropod 

and brachiopod shells and are either prismatic-columnar, foliated, fibrous or acicular in 

shape (e.g. Carter et al., 1990a, 1990b and 2012). Even though prismatic-columnar, 

foliated and acicular microstructures prevail, in some classes of the phyla Mollusca and 

Brachiopoda assemblies of fibres are of major importance to the overall structure of the 

hard tissue and may constitute entire shell layers. Fibrous microstructures prevail in the 

shell of Mytiloida and Cavolinioidea (Mollusca) and in Rhynchonellata and 

Terebratulida (Brachiopoda). In most cases fibres are made of calcite (with the 

exception of the shells of the marine cavolinioidean gastropods, where they are made of 

aragonite) and vary in shape and dimension depending on the taxa. 

Rudwick (1959 and 1970), Rosenberg (1988) and Rowel and Grant (1987) 

described shell architecture and growth in modern and fossil brachiopods. Williams and 

co-workers (Williams, 1953, 1966, 1968a, 1968b, 1968c and 1997; Williams et al., 

2000) investigated brachiopod shell mineralization and hypothesized from SEM and 

TEM observations that (i) the same cell of the outer mantle epithelium lobe is able to 

perform different secretory tasks and secretes sequencially all layers of the shell, (ii) 

based on similar cross-sections between fibre and outline of the cell, a fibre is formed 

by one cell only, and (iii) each fibre is entirely encased by an organic membrane.  

In our study, we did not observe any features to support these findings. Instead, we 

observed that near the commissure, the OME consists of many cell layers, while, further 

away towards central shell portions, OME cells form a single layer (for a detailed study 

see  Simonet-Roda et al., 2019). We did not find any similarities in cross-section 

dimensions between cells and fibres. Cross sections of OME cells varied and we 

observed roundish as well as elongated cross-sections of mantle epithelial cells 

(Simonet-Roda et al., 2019). Instead, we found that neighbouring cells, each of them 

attached to the same fibre cooperate in fibre secretion (Simonet-Roda et al., 2019) (Fig. 

2.2.7 this study and Simonet-Roda et al., 2019). We further observed that epithelial cells 

are only in contact with the proximal, convex side of the fibre and never in contact with 

their concave sides (not even in puncta). Thus, the membrane, that is formed in the final 

step of fibre secretion, is exclusively deposited onto the basal, convex surface of a fibre. 

It is the matrix membrane located between fibres, or the extracellular matrix within the 

shell (Figs. 2.2.5a, 2.2.6b, S2.2.1b, S2.2.2f, S2.2.3a). The interlocked packing of fibres 

with their concave-convex morphology leads to the perception that each fibre is 

sheathed by an individual membrane. In modern brachiopod shells, only one of the four 

surfaces of any individual fibre is lined by an organic membrane. 

Most biological as well as bioinspired structural materials are composites of soft 

and hard components. They consist of a soft polymer scaffold that is reinforced by hard 

minerals (in the case of biological hard tissue) or/and ceramics (in the case of 

biomimetic/bioinspired hard materials). Even though biological and biomimetic hard 

tissues share this basic material property, their mode of fabrication is quite distinct. 

Synthetic composites formed by freeze-casting have structures, architectures and even 

material properties that are to some extent comparable to those of biological composites 

(Deville et al., 2006; Corni et al., 2012; Wegst et al., 2015). However, a basic difference 

unique to biologic composites is that fabrication of synthetic composites occurs in at 
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least two steps. First, the scaffold is formed and, in a subsequent step, the scaffold is 

reinforced with another material (Deville et al., 2006; Wegst et al., 2015) (Figure 1 in 

Deville et al., 2006, Figure 5 in Wegst et al., 2015
 
). The generation of biological hard 

tissue follows a different pathway. It is a layer-by-layer formational process comprising 

the sequential deposition of mineral and, when and where needed, secretion of a 

biopolymer membrane, or vice versa. The latter are, for example, the polymer lining at 

the convex surface of a brachiopod fibre at termination of fibre formation (this study) or 

an interlamellar or surface membrane during molluscan nacre growth (Cartwright and 

Checa, 2007; Checa, 2018). 

When brachiopod fibre and nacreous tablet formation are compared, significant 

differences emerge in biopolymer/mineral deposition and, hence, microstructure 

generation. In the case of modern brachiopod fibres, during secretion, mantle epithelium 

cells are always in direct contact with the mineral (this study), whereas in molluscs the 

nacreous tablets are never in direct contact with epithelial cells. There is always an 

interlamellar (in bivalves) or surface (in gastropods) membrane between secreting 

mantle cells and the growing aragonite platelets (Checa, 2018
 
and references therein). In 

bivalve nacre, the aragonite is always deposited between a few (two or three), and in 

gastropod nacre even between many (a few tens) interlamellar membranes (Figures 7A, 

7B, 7F, 7G in Checa, 2018). When brachiopod fibres form, secretion of the biopolymer 

membrane covering the convex surface of the fibre is the last and terminal step in fibre 

growth. In contrast, when nacre forms, aragonite tablet formation is started with the 

consecutive self-assembly by liquid crystallization of interlamellar membranes. This 

leads to the formation of compartments that become successively infiltrated by 

aragonite and ultimately filled with nacreous tablets (e.g. Figures 7A, 7F, 7C in Checa, 

2018 and references therein). Accordingly, we find modern brachiopod shell and 

molluscan nacre development as two divergent microstructure generation processes 

(Fig. S2.2.7a and Checa, 2018). One is biologically controlled through direct cellular 

contact and activity with the mineral as it is the case for brachiopods, and physically 

controlled through the self-organization of extracellular matrix membranes as it is the 

case for molluscan nacre (this study, Fig. S2.2.7a and Checa, 2018).   

In summary, in many man-made biomimetic composites the eventually mineralized 

organic matrix is fully developed prior to mineral infiltration. Formation of molluscan 

nacre resembles to some extent the formation of biomimetic composites, as it occurs 

through progressive mineralization of a preformed biopolymer matrix. However, nacre 

growth is a dynamic process as the mineralization front advances with ongoing shell 

growth. During shell growth, extracellular matrix formation progresses steadily and is 

successively mineralized. Brachiopod fibre formation is a strictly layer-by-layer 

deposition process, where both, secretion of the mineral and the biopolymer is 

controlled and co-ordinated by mantle epithelial cells (Fig. S2.2.7a).  

Fibre shape generation in Magellania venosa 

Brachiopod fibrous layer microstructure, such as fibre morphology and their 

arrangement in stacks, is characteristic of modern terebratulide and rhynchonellide 

brachiopod shells (see the compilation of Ye et al., 2018a and 2018b). It differs from 

that in other biological hard tissues, for example, calcite fibres in Mytilus edulis shells 

(Fig. S2.2.6). In the latter, fibre shape is more cylindrical and the mode of interlocking is 

less regular (Fig. S2.2.6b, Griesshaber et al., 2013). The mode of assembly of fibres in 

modern brachiopod shells shows similarities to the “brick-wall” arrangement of 



 
 

88 
 

nacreous tablets in bivalve nacre (Fig. S2.2.7b). Hence, the staggered, “brick-wall”, 

organization of basic mineral units, irrespective of these being tablets or fibres, is 

obviously a type of microstructure that is of high value to many shelled organisms and 

was and is utilized in very different aquatic habitats. Furthermore, it was developed 

within the geologic record by many organisms of different phylae. Hence, basic mineral 

unit (fibre, tablet) morphology and mode of interlinkage is essential to the organism, as 

an adequately constructed shell guaranties protection of the soft tissue and, thus, 

survival of the organism in its chosen habitat (e.g. Wählisch et al., 2014).  

Observations on the unique morphology of brachiopod fibres led us to develop a 

model for fibre shape generation (Fig. 2.2.8) and fibre elongation (Fig. 2.2.9) for the 

shell of Magellania venosa. This model may be applicable to other modern and fossil 

terebratulide and rhynchonellide brachiopod species with a fibrous microstructure shell. 

Our model is based on the following observations: (i) only about 50% of the epithelium 

secretes mineral at any given time as the remaining part of the epithelium is tightly 

attached to the shell via hemidesmosomes and therefore cannot secrete any mineral. (ii) 

The extrapallial space either does not exist or is very narrow and indicates that mineral 

secretion is under tight cellular control. (iii) At large epithelial lengths, sites of mineral 

secretion alternate with sites that do not secrete any mineral. (iv) Only the convex part 

of any individual fibre is covered with an organic membrane. (v) Secretion of the 

organic lining of the proximal convex surface of the fibre proceeds from the sides to the 

central part. 

Fibre formation starts with the disintegration of apical hemidesmosomes and the 

detachment of a small region of the outer mantle epithelium from the organic membrane 

lining, a previously secreted and finished portion of a fibre (black arrows in Fig. 2.2.8, 

sketch 1). This induces mineral accretion at this site by the underlying cell or cells. In 

cross section, this detached region appears to be small at the beginning. However, it 

increases in size and thickness with progressive fibre growth (Fig. 2.2.8, sketch 1). Once 

the fibre has reached its full width, the underlining epithelial cells start with the 

secretion of the membrane that lines the basal surface of the fibre, and it starts at the 

corners of the growing fibre. With ongoing secretion, the proximal convex surface of 

the growing fibre is lined with a membrane until full coverage is achieved of the convex 

fibre surface (blue arrows in Fig. 2.2.8, sketch 2). Once the latter is completed, apical 

OME cell membrane attaches itself immediately via apical hemidesmosomes to organic 

membrane at the proximal side of the fibre (Fig. 2.2.8). Even though the sites between 

the epithelial cell membrane are still in direct contact with the calcite of the fibre and 

carry on with mineral secretion (Figs. 2.2.5a, 2.2.7, 2.2.8 sketch 2). The attachment of 

mantle epithelia to membrane portions at the proximal convex surface of the fibres is 

essential for stabilization of the whole secretion system. This is essential for fibres and 

sections that are still actively in the secretion process. Additional proof for the above 

described model of fibre growth was observed AFM images. The striation patterns 

observed on cross-sections of transversely and longitudinally cut fibres (white arrows in 

Fig. 2.2.2a) supports the incremental addition of mineral to the growing fibre by 

successively retreating OME cells. Mineral secretion ceases when the organic 

membrane forming at the two corners of a fibre merges (Figs. 2.2.5, 2.2.7, 2.2.8 sketch 

2), and the membrane lining fully covers the proximal, convex fibre surface. 

We did not observe a one-to-one relationship between epithelial cells and calcite 

fibres, hence, each epithelial cell may contribute to the formation of many fibres when 

the shell grows in thickness. Figure 2.2.9 shows a model for fibre elongation and depicts 
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a sequence of four moments in time (Fig. 2.2.9 sketches 1-4). The model emphasises 

how individual fibres are formed by many cells with each cell being engaged in the 

secretion of just a short segment of a fibre (e.g., Fig. S2.2.5). We depict three individual 

cells (A-C in Fig. 2.2.9) contributing from right to left to the elongation of three 

different fibres. In our model, individual epithelial cells do not move along the inner 

shell surface, nor does our model imply sliding of the cells as fibre grows across the 

shell. Instead, elongation of fibres is brought about by repeated changes in sites where 

(i) regions of a cell secrete the organic membrane at the proximal, convex surface of a 

fibre (blue lines in Fig. 2.2.9), (ii) stay attached to it and (iii) elongate the fibre by 

mineral secretion after detachment from the organic membrane.  

Hence, when the shell grows in thickness, each epithelial cell contributes to the 

formation of many fibres and cooperates with its neighbours. In the native state, cells 

assume a near hexagonal pattern, so that each cell has to cooperate with up to 5 

neighboring cells and, thus each cell is able to contribute to the formation of more than 

two fibres at a given time. Furthermore, each cell simultaneously can secrete calcium 

carbonate as well as biopolymers; hence, there are areas of a cell that secrete calcium 

carbonate, while other regions of the same cell produce organic material. The extent of 

these carbonate and biopolymer secreting regions changes with time during the 

secretion of brachiopod fibres. 

 

Figure 2.2.8. Schematic model illustrating calcite fibre shape formation for terebratulide and 

possibly rhynchonellide brachiopods. We see a stack of transversely cut fibres. Prior to fibre 
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secretion OME cell membranes are in close contact with the organic membrane lining present 

along the proximal surface of fibres. Detachment of epithelial cells from this membrane lining 

induces mineral secretion and starts fibre growth (black arrows in schematic 1). When fibres 

have reached their full width, OME cells start to secrete the organic membrane lining (blue 

arrows in schematic 2), and when finished, will completely line the basal convex part of the 

fibre (blue stars in schematic 2).  

 

Figure 2.2.9. Schematic model illustrating calcite fibre elongation for terebratulide and 

rhynchonellide brachiopods. A stack of longitudinally cut fibres is shown. Fibre growth occurs 

through the coordinated interaction of neighbouring cells (A to C). These are stationary and 

secrete both, the organic basal lining as well as the calcite of the fibre, and this in the required 

proportion necessary for the developing fibre (stages 1 to 4). Elongation of fibres takes place by 

repeated changes in the position of cells relative to fibres: (i) attached either to the organic 

membrane lining the convex surface of the fibre or (ii) to the calcite of the fibre. The organic 

membrane lining the fibre is indicated with blue lines. Due to the lack of a one-by-one 

relationship between epithelial cells and calcite fibres, as the shell grows in thickness, each 

epithelial cell contributes to the formation of more than one fibre and secretes both calcium 

carbonate and organic material at different portions. 
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2.2.5. Conclusions 

Our results show that fibre secretion and fibre shape formation in the modern brachiopod 

Magellania venosa is a dynamic process. It requires a sequence of actions induced and 

coordinated by outer mantle epithelium cells (OME) in close contact with the forming fibre.  

We reach the following conclusions for the development of calcite fibres in the shell of the 

modern brachiopod Magellania venosa: 

 

1. It is shown for the first time that extrapallial space between the fibres and the outer mantle 

epithelium is either non-existant or is extremely narrow and only a few nanometers wide. 

This indicates that fibre formation in Magellania venosa is under tight cellular contact and 

control.  

2. More than one cell may contribute to the formation of a fibre at the same time; hence, fibre 

secretion, growth and shape generation requires communication of adjacent cells. 

3. The extracellular organic membrane is secreted only onto the proximal, convex surface of a 

fibre. 

4. Fibres are not individually and fully sheathed by separate organic membranes.  

5. Secretion of calcite by epithelial cells occurs only at sites where the extracellular organic 

membrane at the proximal, convex surface of the fibre is absent, and fibres consist of 

nanometric biocalcite crystallites (NBC).  

6. Once the extracellular membrane at the base of fibres is secreted, cells of the outer mantle 

epithelium are attached to these by apical hemidesmosomes. This keeps the OME close to 

the shell and stabilizes those fibre regions that are still actively secreting. 

7. A brachiopod fibre is formed by a sequence of processes occurring at the apical OME cell 

membrane, by (i) local detachment of epithelial cell membrane from the organic membrane 

of previously formed fibres, (ii) onset of secretion of calcite at these sites, (iii) organic 

membrane formation along the proximal, convex side of the forming fibre during 

achievement of the full width of the fibre, (iv) start of membrane secretion at the corners of 

fibres progressing towards the centre of the fibre, (v) attachment of the cells via apical 

hemidesmosomes to newly formed organic membrane, and by (vi) suspension of calcite 

secretion at sites where the proximal, organic membrane of the fibre is fully developed and 

the apical cell membrane is attached to the latter with apical hemidesmosomes. 

8. The fibrous layer of terebratulide brachiopod shells is a fibre composite material that has an 

overall plywood-like organization with the basic mineral units, the fibres, being assembled 

in a microstructure resembling the ‘anvil-type’ arrangement of calcite fibres in bivalves as 

well as the ‘brick wall’ arrangement of aragonite tablets in bivalve nacre.   
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Supplementary material 

 

Figure S2.2.1. AFM lateral deflection images showing structural characteristics of the primary 

and the fibrous shell layers of the modern brachiopod Magellania venosa. Well visible is the 

smooth transition from the primary into the fibrous shell portion (a) as well as the organic 

membrane lining the proximal, convex surface of fibres (white arrows in a and b). 
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Figure S2.2.2. AFM lateral (a, b and d to f) and vertical (c) deflection images of the primary 

shell layer (a), the transition from the primary into the fibrous shell layer (a) and of stacks of 

fibres (a to f) within the fibrous shell layer. Corresponding vertical deflection images are shown 

in 1b, 2 and 3. The convex, proximal part of each fibre is always lined by an organic membrane 

(black star in a, b, d, e, f).  
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Figure S2.2.3. 3D representation of AFM height trace images of stacks of longitudinally cut 

calcite fibres. Well visible is the organic membrane lining at the proximal, convex part of a fibre 

(black stars in a, b), as well as the absence of any organic lining (membrane) along the apical 

portion of a fibre (white star in a, b). Instead, calcite fibres are not fully sheathed by an organic 

membrane, but are partially covered.  
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Figure S2.2.4. FE-SEM (a) and AFM lateral vertical deflection (b) images of primary and 

fibrous shell portions of Magellania venosa. The sample in (a) was microtome cut and polished, 

subsequently etched for 180 seconds at a pH of 6.5 and critical point dried. Both images depict 

the transition from the primary to the fibrous shell layer. We do not see a continuous membrane 

between the two shell layers; the transition from one layer into the other appears to be gradual. 

However, we see occasional inclusions of short sections of biopolymer membranes (white 

arrows in a and b) within the transitional zone from one shell layer to the other. White stars in 

(a) point to the proximal organic lining of the fibres. At the transition from the primary to the 

fibrous shell portion the shape of the fibres is not well developed (white stars in b). Mature 

fibres with their characteristic morphology and size appear a few rows away from the transition 

between the primary to the fibrous shell fabrics (yellow stars in b).  
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Figure S2.2.5. TEM micrographs of a chemically fixed shell sample from the ventral valve of 

Magellania venosa. a, b, c, Alternating shell portions where secretion is completed (indicated 

with red lines) with fibre portions that are in actively secreting (indicated with yellow lines). 

Mineral deposition ceases with secretion of the membrane lining at the proximal, convex side of 

the fibre. 
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Figure S2.2.6. Mode of fibre assembly into stacks in the shell of the terebratulide brachiopod 

Magellania venosa (a), and in the calcitic shell portion of the bivalve Mytilus edulis (b). The 

samples were microtome cut and polished, subsequently etched for 180 seconds and critical 

point dried. Due to the concave-convex morphology of the brachiopod fibre and their 

interlocked packing into stacks, a biopolymer membrane (white star in a) is always present 

between two calcite fibres (yellow star in a). This gives the impression that a fibre is surrounded 

by an organic sheath, however, this is not the case. b, Cross-section through a stack of calcite 

fibres in the calcitic shell layer of Mytilus edulis. Fibre morphology, regularity in shape and 

extent of encasing of the calcite with an organic sheath is significantly different from that in the 

modern brachiopod Magellania venosa.  
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Figure S2.2.7. Processes involved in the fabrication of mollusc nacreous and brachiopod fibrous 

microstructures. Scheme in (a) is modified after Figure 10 in Checa et al. 2018. a, Whereas the 

nacreous aragonite mineral assembly takes place in self-organized organic matrices and the 

mineral unit, and shell microstructure formation is mainly controlled by physical determinants 

(Checa et al. 2018). Brachiopod shell microstructure formation is mainly biologically controlled 

as fibre secretion occurs at direct cellular contact. b, EBSD band contrast measurement image 

and corresponding schematic visualizing the mode of mineral unit assembly and interlocking in 

bivalve aragonite (Mytilus edulis nacreous tablets) and brachiopod calcite (Magellania venosa 

calcite fibres). A “brick-wall” arrangement of mineral units  not only occurs in bivalve nacre, it 

is similar to the stacking mode of calcite fibres in the modern terebratulide brachiopod 

Magellania venosa. Yellow stars in (b) point to the basic mineral unit (tablet, fibre) that was 

chosen as a model unit for the schematics shown below the EBSD band contrast images.  
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2.3. The evolution of thecideide microstructures and textures: 

traced from Triassic to Holocene 
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Abstract 
Thecideide brachiopods are an anomalous group of invertebrates. In this study we discuss the 

evolution of thecideide brachiopods from the Triassic to the Holocene and base our results and 

conclusions on microstructure and texture measurements gained from electron backscatter 

diffraction (EBSD). In fossil and Recent thecideide shells, we observe the following mineral 

units: (i) nanometric to small granules, (ii) acicles, (iii) fibres, (iv) polygonal crystals, (v) large 

roundish crystals. We trace for thecideide shells the change of mineral unit characteristics such 

as morphology, size, orientation, arrangement and distribution pattern. Triassic thecideide shells 

contain extensive sections formed of fibres interspersed with large, roundish crystals. Upper 

Cretaceous to Pleistocene thecideide hard tissues consist of a matrix of minute to small grains 

reinforced by acicles and small polygonal crystals. Recent thecideide species form their shell of 

mineral units that show a wide range of shapes, sizes and arrangements. We find from Late 

Triassic to Recent a gradual decrease in mineral unit size, regularity of mineral unit morphology 

and orientation, as well as calcite co-orientation strength. While crystallite co-orientation 

strength is the highest for fibrous microstructures, it is strikingly low for taxa that form their 

shell out of nanogranular to acicular mineral units. Our results indicate that Upper Jurassic 

species represent transitional forms between ancient taxa with fibrous shells and Recent forms 

that construct their shells of acicles and granules. We attribute the observed changes in 

microstructure and texture to be an adaptation to a different habitat and life-style associated with 

cementation to hard substrates.  

 

Keywords: Brachiopoda, shell microstructure evolution, thecideides, calcite crystals, calcite 

fibre, EBSD  
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2.3.1. Introduction 

In this study, we describe and trace through time the evolution of shell 

microstructure and texture for a single order of rhynchonelliform brachiopods, the 

Thecideida. These brachiopods form a very outstanding group within the Phylum 

Brachiopoda as obvious connections to other rhynchonelliform orders are still equivocal 

(Dagys 1972; Williams 1973; Frisia 1990; Carlson 2016). Thecideide brachiopods are 

the last brachiopod order to appear in the fossil record (e.g. Carlson 2016). Extinct and 

extant thecideide species are small-bodied animals that, with the exception of very few 

cases (e.g. Backhaus 1959; Krawczyński, 2008), lived and live cemented to hard 

substrates in cryptic habitats. This life-style and living environment contrasts with that 

of most other extinct and extant Rhynchonelliformea but it is common in Craniiformea 

(Williams 1973; Carlson 2016; Baumgarten et al. 2013; Ye et al. 2018a, 2018b).  

Even though the literature is replete with studies locating the Thecideida in higher-

taxa classifications, their position within the phylogeny of the Brachiopoda as well as 

the identification of their origin are still unclear. To shed more light on thecideide 

evolution, previous studies concentrated on (i) shell size and macroscale morphological 

features (Elliott 1953; Rudwick 1970), (ii) shell structure characteristics (Williams 

1973), (iii) the combined interpretation of ontogenetic, morphological and shell 

structural properties (Baker 1990) and (iv) characteristics of body size (Carlson 1995, 

2007). However, even though well executed, none of these studies provided a definitive 

answer to either thecideide origin or to their phylogenetic relationships with other taxa, 

resulting most probably from their very complex and diverse evolutionary track. It is, 

for example, still unclear whether strophomenates, davidsonioids, spiriferides, 

terebratulides or other brachiopod taxa are the ancestors of the Thecideida (e.g. Pajaud 

1970; Grant 1972; Williams 1973; MacKinnon 1974; Baker 1990, 2006; Lüter 2005; 

Cohen 2007; Carlson 2016).  

The studies of Baker (2006) Williams & Carlson (2007) suggest that thecideide shell 

structures changed over time. This involved: (i.) the loss of fibres, (ii.) restriction of 

fibres to small and isolated patches in the shell, e.g. to the cardinalia, (iii.) replacement 

of fibres by arrangements of acicular mineral units. These changes occurred at different 

rates among the thecideide subfamilies; fibres were suppressed by the Late Jurassic in 

the Lacazellinae and Thecideinae, but persisted up until the Cretaceous in the 

Thecidellininae (Baker 2006).  

Williams and co-workers referred to the microstructure of thecideide brachiopods as 

‘Primary-Acicular-Shell-Layer-Type’ structure (Williams 1997), a microstructure that is 

developed in the outermost shell portions of all the other Rhynchonelliformea. 

According to Williams (1997) the primary shell layer calcite is of nanometric size, has a 

granular morphology and contrasts significantly in dimension and morphology to other 

mineral units such as fibres and columns (e.g. Williams 1997; Williams & Cusack 

2007). Microstructure and texture measurements carried out with high-resolution EBSD 

have shown that the primary shell layer of rhynchonelliform brachiopods (e.g. Goetz et 

al. 2011, and references therein) is neither nanocrystalline nor nanogranular, but 

consists of large (not nanogranular) interdigitating mesocrystals. These are tens of 

micrometre-sized dendritic calcite units that, due to their specific dendritic morphology, 

are interwoven in three dimensions (see Goetz et al. 2011, Figs. 4 and 5). In addition, 

primary shell layer mineral units of recent rhynchonelliform brachiopods are not 

encased by organic material, in contrast to the mineral units in the fibrous and columnar 
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layers (e.g. Griesshaber et al. 2009, Goetz et al. 2009, Goetz et al. 2011, Simonet Roda 

et al. 2019b). As described in this study and shown by Simonet Roda et al. (submitted), 

the microstructure and texture of the primary shell layer of the other rhynchonelliform 

brachiopods is distinct from the microstructure and texture that we find in recent 

thecideide brachiopod shells. Simonet Roda et al. (submitted) redefined the 

microstructure of recent thecideide brachiopod shells as a ‘NON-Primary-Layer-Type’ 

structure. Recent thecideides have heterogranular microstructures, where large crystals 

with different morphologies are embedded in a matrix of nano- to microcrystallites and 

organic substance (Simonet Roda et al. submitted).  

In this study, we describe the appearance and disappearance of a variety of crystal 

morphologies in fossil and recent thecideide species and trace shell structure evolution 

from a microstructural and textural point of view. We base our results on crystal 

orientation measurements and not only on SEM images of fractured or etched shell 

surfaces (e.g. Williams, 1973, 1997). By using electron-backscatter diffraction imaging 

(EBSD), we are able to give an overview of the different types of mineral units that 

form the shell of the investigated thecideide species, from the Triassic to Recent, and 

describe the changeover from one mineral unit type to another. In addition, we reveal 

the different textures of the investigated thecideide species, a study that, to the 

knowledge of the authors, has not been done yet.  

Accordingly, we present here biomineral unit type, size, morphology, orientation, 

and their distribution pattern within the shell, strength of calcite co-orientation within as 

well as between mineral units for species of both thecideide superfamilies, the 

Thecospiroidea and the Thecideoidea; for selected specimens of taxa of the families 

Thecospiridae, Bactryniidae, Thecidellinidae and Thecideidae. The Thecospiridae, 

Bactryniidae, Thecidellinidae originated in the Late Triassic, representatives of 

Thecideidae are present since the Early Jurassic. Thecospiridae and Bactryniidae 

became extinct in Late Triassic and Late Jurassic respectively, while species of the 

families Thecidellinidae and Thecideidae are still extant.  

2.3.2. Materials and Methods 

Materials  

In this study we show microstructure and texture results for 11 thecideide 

brachiopods (Table 2.3.1 and Table S2.3.1) that were chosen from a large set of 

samples. Each specimen represents a species and a distinct geological time interval 

between Late Triassic and present (Table 2.3.1 and Table S2.3.1). The illustrated 

specimens are housed in the collections of Ludwig Maximillian University, Munich 

(numbers prefixed E, LMU and UF) and Museo di Paleontologia, Dipartimento di 

Scienze della Terra, Università degli Studi, di Milano (numbers prefixed MPU) (see 

Fig. S2.3.1). For Thecidea papillata and Lacazella mediterranea we investigated an 

Upper Cretaceous and Paleocene as well as an Upper Eocene and Upper Oligocene 

specimen, respectively.  

The shells were cut along the symmetry plane, from the umbo to the anterior shell 

margin. Special care was taken in order to avoid the investigation of regions of poorly 

preserved or/and shell. Shell surfaces that were scanned with EBSD were checked, prior 

to EBSD measurements, for diagenetic alteration with five screening methods: light, 

laser confocal, cathodoluminescence, SEM microscopy and electron dispersive 
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spectroscopy (EDS). The last of these was used for the detection of Mn and Fe 

enrichments within the shells, as these might indicate diagenetically altered shell 

portions. EBSD measurements were carried out only on those surfaces that showed 

excellent preservation. With the exception of Neothecidella ulmensis, we performed 

three or four EBSD measurements on each fossil shell and 22 on the shell of the modern 

thecideide species Pajaudina atlantica. As Neothecidella ulmensis appears to be a 

transitional form between fibrous and acicular microstructures we investigated this 

species in great detail and measured six large EBSD scans, of which we show here four 

measurements. 

Table 2.3.1. Overview of the investigated thecideid species, their age and provenance. 

 

 

Methods 

For all analytical techniques performed in this study, the shells were embedded in 

epoxy resin and sample surfaces were polished with a sequence of five mechanical 

grinding and polishing steps. The last step was etch-polishing with colloidal aluminium 

in a vibratory polisher. For the measurements, all samples were coated with 4–6 nm of 

carbon. 

Families Species Age Location 

Thecospiridae 
Thecospira tenuistriata  Bittner, 

1890 

 

Late Triassic 

 

Alpe di Specie, Italy 

Thecospiridae 
Thecospira tyrolensis   (Loretz, 

1875) 
Late Triassic Alpe di Specie, Italy 

Bactryniidae 
Bactrynium bicarinatum 
Emmrich, 1855 

Late Triassic Eiberg, Austria 

Thecideidae 
Neothecidella ulmensis  
(Quenstedt, 1858) 

Late Jurassic (middle 

Oxfordian) 
Bałtów, Poland 

Thecideidae 
Thecidiopsis digitata (Sowerby, 

1823) 
Late Cretaceous 

Petersberg, 

Maastricht, 

Netherlands 

Thecideidae 
Thecidea papillata (Schlotheim, 

1813) 
Late Cretaceous 

Symphorien, Mons, 

Belgium 

Thecideidae 
Thecidea papillata (Schlotheim, 

1813) 
Paleocene 

Ciply, Mons, 

Belgium 

Thecideidae 
Lacazella mediterranea (Risso, 

1826) 
Late Eocene 

Dnipropetrovsk, 

Ukraine 

Thecideidae 
Lacazella mediterranea (Risso, 

1826) 
Late Oligocene 

Peyrere Aquitaine 

Basin, France 

Thecidellinidae Thecidellina sp.  Pleistocene Curaçao, Caribbean 

Thecideidae 
Pajaudina atlantica 

 Logan, 1988 
Recent 

Palma, Canary 

Islands, Spain 
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EBSD and EDS measurements and SE, BSE imaging were carried out on a Hitachi 

SU5000 FE-SEM, equipped with a Nordlys II EBSD detector and an Oxford 

Instruments 80 mm
2
 X-Max SDD energy dispersive spectrometer. EBSD measurements 

were carried out with a step size of 0.4 to 0.5 micrometres. Data acquisition and 

evaluation were achieved with the Oxford Instruments AZTec and CHANNEL 5 HKL 

software, respectively.  

Microstructures are presented with grey-scaled EBSD band contrast measurement 

and colour-coded EBSD orientation maps, respectively. The colouring code is indicated 

either in the figure or is stated in the relevant figure caption. Similar colours indicate 

similar, distinct colours highlight different crystallite orientations, respectively. Band 

contrast images depict the signal strength of each measurement point. High signal 

strengths correspond to light grey colours and indicate strong diffraction at the crystal 

lattice. Faint grey or dark colours are indicative of non-diffracting substances, e.g. 

polymers, or an overlap of minute crystallites that could not be indexed automatically 

with the EBSD software.  

The texture is presented with pole figures that give density distributions of the 

measured orientation data. For density distributions, we use the lowest possible setting 

for half width and cluster size: a half width of five and a cluster size of three degrees. 

The half width controls the extent of the spread of the poles over the surface of the 

project sphere; a cluster comprises data with the same orientation. Calcite co-orientation 

strength within as well as between mineral units is derived from density distributions of 

the measured EBSD data and is given with MUD values. The MUD (multiple of 

uniform (random) distribution) value is calculated with the Oxford Instruments 

CHANNEL 5 EBSD software. A high MUD indicates high crystal co-orientation, while 

low MUD values reflect a low to random crystallite or/and mineral unit co-orientation 

strength. For further information see Schwartz et al. (2000), Schmahl et al. (2004), 

Griesshaber et al. (2012) and Griesshaber et al. (2017). 

Microstructure determination is based on quantitative results measured with the 

EBSD detector. Therefore, grain morphology, size, orientation, mode of co-

orientation/misorientation, co-orientation/misorientation strengths are based 

onmeasurements and not on SEM images.The term ‘texture’ relates to the varieties of 

crystal orientations within a material and is illustrated with pole figures. The term 

‘microstructure’ refers to the sum of grains, their sizes, morphologies, modes of 

interlinkage, co- and misorientations and is highlighted with EBSD maps. 

For AFM imaging, shell pieces were cut in longitudinal section from the umbo to 

the commissure and embedded in epoxy resin. Embedded sample surfaces were 

polished in 5 sequential mechanical steps down to a grain size of 1 µm. For the final 

step, etch-polishing was applied for three hours with a colloidal alumina suspension in a 

vibratory polisher. Subsequently, the samples were washed in Milli-Q water in 

ultrasonic bath and subsequently rinsed with 80% ethanol.  

In order to expose the distribution of biopolymers and mineral units, shell pieces 

were glued onto aluminium rods. First, even sample surfaces were obtained by cutting 

and polishing the samples with glass and diamond knives in an ultramicrotome. 

Subsequently, sample surfaces were etched slightly and organic material was 

chemically fixed. Simultaneous etching of the calcite and fixation of organic substance 

was done by using a 0.1M HEPES (pH = 6.5) and 2.5 % glutaraldehyde solution that 
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was applied to the sample for 180 seconds. Etching and fixation was followed by 

dehydration in 100 % isopropanol three times and immediate critical point drying. The 

dried samples were coated for SEM imaging with 6 nm platinum. 

A phylogenetic tree was constructed for the Order Thecideida. For this purpose the 

software TreeSearch (Brazeau et al. 2019) was selected and the data matrix of Jaecks & 

Carlson (2001) was adopted. The latter was complemented with information on shell 

microstructure and texture from the taxa analysed for this study and the inclusion of 

Neothecidella ulmensis (Table S2.3.2). For the calculations, we applied implied 

weighting and chose a default value of 4 for concavity for the Thecideida.  

In the text we refer to the term ‘mineral unit’. Mineral units in biological structural 

materials are the biocrystals; in thecideide brachiopod shells biocrystals/mineral units 

are fibres, acicles granules, grains. In this study we use terms such as minute, small, 

large mineral units. A minute mineral unit is a sub- to very few micrometre-scale entity, 

small mineral units have 2D extensions of very few micrometres, large mineral units 

have 2D sizes of very few tens of micrometres. 

2.3.3. Results 

Figure 2.3.1 presents the stratigraphical range and the thecideide species that were 

investigated in this study. EBSD results are shown in Figs. 2.3.2-10, S2.3.1-16. 

 

Figure 2.3.1. Stratigraphical distribution of the thecideide species investigated in this study. 
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We observe five different biomineral units in the investigated shells. Based on 

morphology and size we can distinguish fibrous, granular, acicular, small-polygonal and 

large-rounded biocrystals. The shell of the Upper Triassic Bactrynium bicarinatum 

Emmrich, 1855 (Fig. 2.3.2A, S2.3.5) contains well-preserved stacks of fibres. Their 

morphology is very similar to the fibre shape that builds the secondary layer of fossil 

and extant rhynchonellide and terebratulide species (Crippa et al. 2016; Ye et al. 2018a, 

2018b; Griesshaber et al. 2007; Schmahl et al. 2012). However, the size of the fibres 

differs, such that in this thecideide species the fibres are larger in cross-sections relative 

to what is observed in recent rhynchonellides and terebratulides (Figs. 2.3.2, S2.3.1B, 

S2.3.7 cf. Ye et al. 2018a, 2018b).  

In addition, we found well-preserved stacks of fibres in the shell of the Upper 

Triassic thecideide brachiopod Thecospira tenuistriata Bittner, 1890 (Figs. 2.3.2B, 

S2.3.1, S2.3.6-7), depicting clearly the typical secondary layer morphology of fibres 

also seen in fossil and extant rhynchonellide and terebratulide brachiopod shells. 

However, close EBSD examination (Figs. S2.3.1B, S2.3.7) reveals that T. tenuistriata 

developed fibres with two sizes: thick fibres (left- and right hand side in Fig. S2.3.1B) 

and thin fibres (central portion of Fig. S2.3.1B). Cross-section morphologies of the 

large fibres are distorted, are rather polygonal and do not show a blade-shaped cross-

section of the smaller fibres (Fig. S2.3.1B). In addition to fibres, we located for both 

Upper Triassic species (B. bicarinatum and T. tenuistriata) another biomineral unit: 

polygonally shaped crystals, often with roundish morphologies; in most cases large in 

size (shown by yellow stars in Figs. 2.3.2A-B and S2.3.1).  

Calcite crystal co-orientation/misorientation is expressed with MUD values and is 

given for each EBSD measurement (Figs. 2.3.2-10). MUD values are multiples of 

uniform orientation, thus, an MUD of 1 indicates a random orientation of crystallites, an 

MUD of above 700 is indicative for perfect crystallite co-orientation, e.g. single crystals 

grown from solution (e.g. Greiner et al. 2018; Yin et al. 2019). For the shells of Recent 

terebratulide and rhynchonellide brachiopods we obtain MUD values that are larger 

than 60 (Casella et al. 2018); most values scatter between 80 and 100 (Griesshaber et al. 

2017). Calcite co-orientation strength for the shell of B. bicarinatum is increased, with 

an MUD value of 51. In the shell of T. tenuistriata crystal co-orientation strength is 

significantly lower, MUD values scatter between 22 (Fig. 2.3.2B) 14 and 18 (Fig. 

S2.3.1). 

The shell of the Upper Jurassic thecideide brachiopod Neothecidella ulmensis 

(Quenstedt, 1858) comprises both fibres and acicles (Figs. 2.3.3, S2.3.2-4, S2.3.8). Shell 

portions next to the soft tissue of the animal (innermost shell layers) consist of fibres 

aligned in parallel, while the outer shell is formed of acicles (Figs. 2.3.3, S2.3.3-4, 

S2.3.8). We conducted six large EBSD scans on shell cross-sections and observed these 

two microstructures in all cases and did not detect any polygonal biocrystals. MUD 

values for entire scans, comprising both fibres and acicles, are increased and scatter 

between 30 and 40 (Fig. 2.3.3). However, if calculated individually for the different 

microstructures, then calcite co-orientation strength is higher for the fibres (MUD: 65, 

Fig. S2.3.3, MUD: 42, Fig. S2.3.4), relative to that for the acicular shell part (MUD 

15/25, Fig. S2.3.3; MUD: 11, Fig. S2.3.4). Accordingly, calcite co-orientation strengths 

decrease with the generation of acicular microstructures, a feature already observable 

for the shell of the Upper Jurassic thecideide species N. ulmensis. 
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In summary, fibres occur in all investigated Triassic and Jurassic species. In 

addition to fibres, Triassic taxa contain also polygonal to roundish mineral units. 

However, these are not developed in the shells of Upper Jurassic species. In the latter, 

polygonal to roundish mineral units are replaced by acicles. Calcite co-orientation 

strength is increased for the shell of Triassic B. bicarinatum, it is low for Triassic T. 

tenuistriata, and is only slightly decreased relative to B. bicarinatum, for the Upper 

Jurassic N. ulmensis. 

 

Figure 2.3.2. EBSD band contrast images and associated pole figures depicting characteristics 

of the microstructure and texture of the Triassic thecideide brachiopods Bactrynium bicarinatum 

(A) (E100-18-17) and Thecospira tenuistriata (B) (MPU5784-4), respectively. Stacks of 

longitudinally and transversely cut fibres are well visible as well as the large roundish calcite 

units/biocrystals. Scale bars represent 20 and 50 µm in A and B respectively. 
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Acicular and granular microstructures dominate thecideide taxa from the Late 

Cretaceous to Holocene (Figs. 2.3.4-10, S2.3.9 to S2.3.16). Calcite co-orientation 

strengths are very low, MUD values are below 15; for the shell of Thecidiopsis digitata 

(Sowerby, 1823) the MUD value is as low as 3.5 (Fig. 2.3.4). Acicle sizes vary and 

scatter between micrometre and sub-micrometre sizes (e.g. Thecidea papillata 

(Schlotheim, 1813), Figs 2.3.5-6); the acicles are always embedded in a matrix of 

nanometric to micrometre-sized granules. In addition to acicles, polygonal crystals 

appear (Paleocene T. papillata (Schlotheim, 1813) Figure 2.3.6; Eocene and Oligocene 

L. mediterranea (Risso, 1826) Figures 2.3.7 and 2.3.8; Pleistocene Thecidellina sp. Fig. 

2.3.9, however, these are significantly smaller in size relative to those that we found in 

Triassic taxa (e.g. in the shell of B. bicarinatum (Fig. 2.3.2A)). As stated in the methods 

section, all samples were carefully checked with different screening methods for 

possible diagenetic overprint. Accordingly, we do not consider these polygonal crystals 

as a result of diagenetic alteration, but rather as an original feature of the microstructure 

of these thecideide species (Paleocene T. papillata; Eocene L. mediterranea; 

Pleistocene Thecidellina sp.). In contrast to Triassic and Jurassic thecideides, the shells 

of Cretaceous, Paleogene and Pleistocene thecideide taxa are formed by numerous 

mineral units with different sizes and shapes. These are assembled following very little 

to almost random structural order (Figs. 2.3.4-9, S2.3.9-13), and very low calcite 

crystallite and mineral unit co-orientation strength (MUD values 3.5, 15, 10, 8). In 

summary, following the Late Jurassic, a marked loss of fibrous calcite can be observed. 

If at all present in thecideide shells, fibres are limited to particular parts of the shell, e.g. 

to articulatory structures. 

In T. papillata (Late Cretaceous and Paleocene, Figs. 2.3.5-6, S2.3.10-11) and in 

the Oligocene L. mediterranea (Figs. 2.3.8, S2.3.12), we see an alternation in the 

orientation of stacks of more or less aligned acicles. This resembles, to some degree, the 

stack alternation of co-aligned fibres in Recent terebratulide and rhynchonellide 

brachiopod shells (Griesshaber et al. 2007, 2017, Ye et al. 2018a, 2018b; Ye et al. 

submitted). 
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Figure 2.3.3. EBSD band contrast images of two measurements at different shell parts and 

associated pole figures depicting characteristics of the microstructure and texture of the Jurassic 

thecideide brachiopod Neothecidella ulmensis (LMU-NU01). An additional measurement is 

given in Fig. S2.3.4. Note fibrous (often with amalgamated fibres) as well as acicular shell 

portions. The stack of fibres is cut longitudinally while the acicles are cut diagonally. Scale bars 

represent 20 µm. 
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Figure 2.3.4. EBSD band contrast image and associated pole figure visualizing the 

microstructure and texture of the Upper Cretaceous thecideide brachiopod Thecidiopsis digitata 

(LMU-TD01). Note the matrix of small to nanometre-sized calcite crystallites containing 

occluded small acicles and some small pseudo-polygonal crystals. The calcite that comprises the 

shell is poorly co-aligned, see the low MUD value of 3.5. Yellow stars indicate the location of 

punctae. Scale bar represents 20 µm.  

 

Figure 2.3.5. EBSD band contrast image and associated pole figure visualizing the 

microstructure and texture of the Cretaceous thecideide brachiopod Thecidea papillata (LMU-

TPLC01). The shell consists of acicles embedded in a matrix of small to nanometre-sized calcite 

granules and small polygonal crystals. Calcite co-orientation strength is very low (MUD value 

of 8). Note that endopunctae (some marked by stars) are not filled. Scale bar represents 100 µm. 
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Figure 2.3.6. EBSD band contrast image and associated pole figure visualizing the 

microstructure and texture of the Paleocene thecideide brachiopod Thecidea papillata (LMU-

TPP01). The shell consists of a matrix of nanogranules interspersed with little co-aligned acicles 

and some irregularly shaped, large calcite crystals (see yellow stars on the left-hand side of the 

image). Scale bar represents 100 µm. 

 

Figure 2.3.7. EBSD band contrast images and associated pole figures depicting the 

microstructure and texture of the Eocene thecideide brachiopod Lacazella mediterranea (LMU-

LME01). The microstructure of the shell is nanogranular interspersed with small polygonal 

calcite crystals (circled). Note very low co-orientation of calcite; MUD 10. Scale bar represents 

50 µm. 
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Figure 2.3.8. EBSD band contrast images and associated pole figure depicting the 

microstructure and texture of the Oligocene thecideide brachiopod Lacazella mediterranea 

(LMU-LMO01). The microstructure is acicular, the acicles are poorly co-oriented. Scale bar 

represents 100 µm. 

 

Figure 2.3.9. EBSD band contrast image and associated pole figure depicting the microstructure 

and texture of the Pleistocene thecideide brachiopod Thecidellina sp. (UF 325201). Large stacks 

of acicles form the shell, interspersed with patches consisting of mainly small polygonal calcite 

crystals (shown by yellow stars). As the pole figure and the slightly elevated MUD value of 35 

shows, co-orientation strength of calcite is slightly increased in the shell of this thecideide 

species. Scale bar represents 50 µm. 
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Figures 2.3.10-11, S2.3.14-16 display the microstructure and texture of the Recent 

thecideide brachiopod Pajaudina atlantica. Figure 2.3.10 presents microstructure and 

texture results, Figure 2.3.11 depicts internal features of the shell such as the shapes of 

mineral units and the occlusion of organic membranes. We observe a large variety of 

mineral unit sizes and shapes: nanometre/micrometre-sized acicles, granules, polygonal 

crystals; all more or less randomly oriented within the shell. There is a considerable 

amount of organic matter intercalated into the shell of P. atlantica, generally developed 

as membranes or thin films (Fig. 2.3.11). The distribution pattern of organic matter is 

also not structured, it is more or less randomly intercalated into the calcite, a 

characteristic that contrasts significantly to the distribution of organic matrices in 

fibrous and columnar shell layers of other Recent rhynchonelliform brachiopods. While 

in the latter organic membranes encase fibres and columns (e.g. Simonet Roda et al. 

2019a, 2019b), the mineral units of the primary shell layer are not sheathed by organic 

material. In Recent terebratulide and rhynchonellide brachiopod shells the primary layer 

consists of large, dendritic mesocrystals that interdigitate in 3D (Goetz et al. 2011).  

Clearly visible in P. atlantica is the large diversity in mineral unit size and 

morphology (Figs. 2.3.10, 2.3.11A-C), the interlinkage of mineral units (white stars in 

Fig. 2.3.11B) and the presence of organic membranes/organic films that are occluded 

within the shell (white arrows) in Figs. 2.3.11C-F). 
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Figure 2.3.10. EBSD band contrast image and associated pole figure depicting the 

microstructure and texture of the Recent thecideide brachiopod Pajaudina atlantica(LMU-

PA008, LMU-PA0010 and LMU-PA09 from top to bottom respectively) The shell of this 

brachiopod species includes all types of biocrystals: nanogranules, granules, acicles, small 

polygonal crystals and large polygonal crystals. Calcite co-orientation strength is low. Scale 

bars represent 20 µm for A and 50 µm for B and C. 
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Figure 2.3.11. Internal structural characteristics of the shell of the Recent thecideide brachiopod 

Pajaudina atlantica. Figs. 2.3.11-C show AFM images (LMU-PA010), Figs. 2.3.11D-E depict 

SEM images of polished and etched surfaces (LMU-PA011). The organic substance is 

chemically fixed. The presence of organic membranes/organic films occluded within the shell is 

pointed by white arrows. The white stars (1B) indicate the interlinkage of the mineral units. 

Scale bars represent 2.5 µm for A to C and 10 µm for D to F. 
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2.3.4. Discussion  

Change in microstructure and texture  

The aim of this study is to trace the evolution of thecideide microstructure and 

texture from the Triassic to Recent times (Figs. 2.3.12-14). The change in shell fabric 

involves the loss of fibres and large roundish crystals/mineral units and implies the 

introduction of acicles and granules. Thus, we see over time a change from large 

(micrometre-sized) biomineral units to small (sub-micrometre, nanometre-sized) 

biocrystals together with a reduction in microstructural order (see compilation of MUD 

values in Fig. 2.3.14). We observe a transition of thecideide shell fabric from co-aligned 

and well-assembled mineral units to almost unaligned biocrystals (Figs. 2.3.12, 2.3.14). 

The shells of Upper Triassic species consist of fibres and large roundish calcite crystals. 

The Upper Cretaceous to Pleistocene species built their shells of acicles, small sized 

granules and small polygonal to irregularly shaped biocrystals. However, despite a 

significant change in microstructure, Upper Cretaceous to Pleistocene species still retain 

some microstructural regularity within their shells. Nevertheless, this microstructural 

regularity is not present in the shell of the Recent thecideide species Pajaudina atlantica 

and Kakanuiella chathamensis Lüter, 2005. These taxa have highly disordered, almost 

random shell microstructures and form their shell of a large variety of mineral units that 

are of highly irregular shapes and sizes (Lüter 2005). Thus, disorder in microstructure, 

texture and mineral unit characteristic is typical of some thecideid brachiopods, 

especially those living in a specific environment and following specific life-styles. In 

summary, we find a decrease over time in: 1) biomineral shape regularity, 2) biomineral 

unit size and 3) strength of biomineral unit co-orientation. All these microstructural 

characteristics are the least ordered in the shell of the Recent species Pajaudina 

atlantica and Kakanuiella chathamensis, characteristics that contrast significantly to 

microstructure/texture patterns of most fossil and extant rhynchonellate brachiopods. In 

the latter, the fibrous layer comprises well-developed stacks of co-aligned calcite fibres 

and, when present in the shell, the columnar layer consists of large co-aligned calcite 

columns (Ye et al. 2018a, 2018b). In most of the Rhynchonellata, these characteristics 

of microstructural elements did not vary significantly from the Triassic to Recent (Ye et 

al. 2018a, 2018b). 
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Figure 2.3.12. Microstructure features of thecideide brachiopods characteristic for different 

geological intervals. Scale bars represent: 50 µm for the Late Triassic example, 20 µm for the 

Late Jurassic example and 40 µm for the Late Cretaceous – Recent example.  

The shell of the Upper Jurassic species Neothecidella ulmensis forms a special case 

as it consists of fibres as well as acicles and is formed exclusively of these two types of 

biocrystals. Both microstructures are present in the shell with a high crystal co-

orientation strength; especially the calcite of the fibrous shell layer (MUDs of 42 and 

65). Crystal co-orientation strength within the acicular shell portion of Neothecidella 

ulmensis is increased, MUD values are 25, 15 and 11, but not as high as in the fibrous 

shell layer. This finding does not support the inference of Jaecks & Carlson (2001) that 

the acicular microstructure is complementary to the fibres. Those taxa that have an 

acicular microstructure have a reduced fibrous layer, e. g. Neothecidella ulmensis. The 

Upper Jurassic Neothecidella ulmensis could be a possible link between those 

thecideides that fabricated their shells with fibres and large roundish crystals and those 

that formed their shells from small acicles and granules. In addition, Neothecidella 

ulmensis illustrates that up to Late Jurassic thecideides were able to secrete fibres, a 

capability that was lost in the Early Cretaceous (this study and Baker 2006). Indeed, the 

Lower Cretaceous Neothecidella parviserrata is described as having fibres limited to 

teeth or to tooth ridges only. Fibres in the dorsal valve of Neothecidella parviserrata are 

completely suppressed (Baker & Laurie 1978). The Neothecidella lineage appears to 

confirm the suggestion of Williams (1973) that fibres might become suppressed around 

the Jurassic-Cretaceous boundary. 

The shell microstructure of Recent thecideides was previously described as having 

a structure/microstructure similar to that of the primary layer of other rhynchonelliform 

taxa (Baker 2006; Williams & Cusack 2007). The present study indicates that this is not 

the case (also Simonet Roda et al. submitted). EBSD measurements indicate that the 

microstructure and texture of the primary shell layer of most Recent rhynchonelliform 

brachiopods is an assemblage of interdigitating dendrites, micrometre sized calcite 

mesocrystals (Goetz et al. 2011; Schmahl et al. 2012; Ye et al. 2018a, 2018b). Dendritic 
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mineral unit arrangements are easily detected with EBSD, even in 2D (Goetz et al. 

2011, Griesshaber et al. 2017), and are distinct from microstructures that are formed by 

any kind of stacked mineral unit assemblages. Furthermore, neither SEM nor TEM 

observations were able to detect any organic components within or surrounding mineral 

units of the primary layer (e.g. Griesshaber et al. 2009). These features contrast to 

structural characteristics of Recent thecideide shells, e.g. that of Pajaudina atlantica 

(Simonet Roda et al. submitted), where we do not find any dendritic mesocrystals, nor 

organic sheaths encasing the mineral units (Simonet Roda et al. submitted). However, 

we find organic membranes intercalated within Recent thecideide shells (Fig. 2.3.11).  

Even though the shell fabric of Recent thecideides differs significantly from the 

other extant Rhynchonelliformea, the occurrence of fibrous layers in Upper Triassic to 

Cretaceous species, the presence of endopunctae with perforated canopies in several 

genera, and the capacity to resorb shell (Baker 2006 and reference therein), makes the 

thecideide shell fabric more similar to that of the Rhynchonellata and less akin to the 

Strophomenata shell microstructures - even though the latter also have a complex shell 

fabric, that consists of laminae of aligned blades (Garbelli et al. 2014; Ye et al. 

submitted). Accordingly, as outlined above, we wish to emphasize with this study that, 

on the basis of shell fabric and microstructure, it is very difficult to envisage a link 

between thecideides and strophomenates, as was previously suggested by Williams 

(1973), Baker (2006) and Carlson (2016). 

An important feature of thecideide and terebratulide brachiopod shells is the 

occurrence of endopunctae. In longitudinal sections, these are canal-like structures that 

cross the shell in terebratulides from the innermost fibrous to the primary shell layer 

(Williams 1997). In thecideides, endopunctae are often suppressed (Baker & Laurie 

1978), however, if present, they cross the heterogranular microstructure from innermost 

to outermost shell regions. In the studied samples we see endopunctae only in the shells 

of the Cretaceous Thecidiopsis digitata and Thecidea papillata (Figs. 2.3.4-5). In living 

rhynchonelliform brachiopods the walls and the basal region of endopunctae are 

covered by living cells (Williams 1997, Simonet-Roda et al. 2019a, Fig. 2.3.11). With 

the degradation of organic material, endopunctae could become filled with diagenetic 

calcite, this might lead to misinterpretation and be seen as brachiopod shell calcite with 

specific crystal morphologies, sizes and orientation. In this study we investigated the 

shell material with great care for any diagenetic overprint, and therefore avoided the 

misinterpretation of secondary calcite within endopunctae. In addition, based on 

structural patterns and MUD values, EBSD measurements and the analysis of 

orientation data provide reliable indications for the identification of diagenetic calcite 

within shell material (Casella et al. 2018), which was not observed here. 

Phylogenetic implications 

We present here an updated phylogenetic hypothesis to illustrate the evolution of 

the thecideides (Fig. 2.3.13). This is not the main purpose of the paper, however it 

provides a template to map and interpret changes in shell fabric through time against the 

evolution of the group. For the construction of the tree the data matrix of Jaecks & 

Carlson (2001) was modified with the addition of information on the shell 

microstructure from the taxa analysed here and the inclusion of Neothecidella ulmensis 

(Table S2.3.2).  The tree was constructed by TreeSearch (Brazeau et al. 2019) using 

implied weighting, the default value of 4 for concavity and a number of characters in the 



 
 

120 
 

terebratulide outgroup that were coded as inapplicable. The search produced a single, 

unique tree (Fig. 2.3.13).  

The tree replicates some of the anomalous placements of taxa, indicated on a strict 

consensus tree based on a reweighted analysis with terebratulide outgroups (Fig. 5 in 

Jaecks and Carlson 2001). For example the positions 

of Bittnerella, Pamirotheca and Agerinella are similarly misaligned with respect to 

the Treatise classification of the superfamily (Baker 2006). These and other anomalies 

may be rectified by a more extensive study of shell fabrics across the entire group.  

Using the terebratulides as an outgroup, the basal taxon is Thecidella and not 

Eudesella as was the case in the original analysis of Jaecks & Carlson (2001). Eudesella 

is still, nevertheless nearby, in the lower part of the tree. This hypothesised phylogeny 

indicates that the Hungarithecidae and Thecospirellidae are ancestral to both 

Thecidellinidae and Thecideidae. There is no evidence, however, that the 

Hungarithecidae are ancestral to Thecidellinidae, and the Thecospirellidae are ancestral 

to Lacazellinae, as suggested by Baker & Logan (2011) on morphological evidence. 

However, in the upper part of the tree, the thecospirellid Bittnerella is linked to most 

taxa of the Lacazellinae. 

Jaecks & Carlson (2001) demonstrated that the reduction or loss of the fibrous 

microstructure in most of the Thecideidae is a derived feature. Taxa near the root of the 

tree have a continuous inner fibrous layer, whereas most derived taxa have fibrous 

layers that are reduced or absent, with the exception of Neothecidella ulmensis which 

maintains a continuous fibrous layer, as confirmed by our microstructural analysis. 

Another exception is the Upper Cretaceous Eolacazella longirostrea, which is rather 

low in the tree, but has a completely suppressed fibrous layer. 

The pattern is more complex in the Thecidellinidae, as Ancorellina and Stentorina, 

near the root of the tree, have a continuous fibrous layer. However, Rioultina and 

Eothecidellina are more derived and have a continuous fibrous lining. Accordingly, the 

reduction or loss of the fibrous layer probably occurred more than twice. 

This analysis does not support the suggestion of Baker & Logan (2011) that 

Thecidellinidae emerged as a sister group to the Thecideidae in the Late Triassic, as 

Thecidella appears as an outgroup, but the position of Moorellina, may be in agreement 

with the authors suggestion. Further phylogenetic analyses require detailed shell 

microstructure and texture data like those provided in this study, for more thecideide 

taxa, in order to unravel their phylogenetic relationships. Besides the appearance of 

acicular microstructure and the reduction/loss of the fibres, which according to Jaecks & 

Carlson (2001) are derived features, the different types of granular microstructures, the 

large roundish as well as the small polygonal crystals and the MUD values described 

here, should be further investigated, especially in the early stocks. This is the first study 

that links microstructure and texture results gained from EBSD measurements and data 

evaluation to phylogenetic analysis and their implications. 
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Figure 2.3.13. The phylogenetic tree is based on the characters and character states given by 

Jaecks & Carlson (2001) and was obtained with the addition of microstructure and texture 

results obtained in this study and the inclusion of the thecideide species Neothecidella ulmensis.  
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The the tree was constructed using TreeSearch (Brazeau et al. 2019), details are given in the 

text. 

Is the change in microstructure an expression of adaptation to a different life-style 

and living environment? 

Brachiopods dominated global marine benthic habitats until the end of the Permian, 

when the largest mass extinction of marine biota in the Earth's geological history 

affected the phylum severely. About 90% of the species went extinct and brachiopod 

evolution was completely reset (e.g. He et al. 2019). However, even though the causes 

that led to this biotic crisis are still debated, a main feature of the End-Permian event 

was the massive extinction among the Rhynchonelliformea, especially the clades that 

produced a laminar shell layer, the Strophomenata, and the selective survival of species 

secreting a shell consisting of fibres, the Rhynchonellata (Garbelli et al. 2017). The 

emergence of thecideides is not strictly related to the End-Permian extinction as they 

appeared about 20 million years after this event (e.g. Baker 2006). However, as benthic 

palaeocommunities were increasingly dominated by bivalves during the Triassic and 

Jurassic and, as free-living and pedicle–attached rhynchonellide and terebratulide 

brachiopods became less common (e.g. Clapham & Bottjer 2007; Liow et al. 2015), the 

emerging thecideides developed shell cementation to the substrate. Thecideides are 

found today and in the fossil record in cryptic habitats, caves or/and surfaces below rock 

overhangs and are associated, in contrast to most other fossil and extant 

rhynchonelliform brachiopods, cemented to hard substrates. Their growth is confined to 

small body sizes. It is well established that the composite nature and hierarchical 

component organization of structural biomaterials allows for the development of many 

hard tissue design concepts (e.g. Mayer 2005; Fratzl & Weinkamer 2007; Dunlop & 

Fratzl 2010). Accordingly, Recent carbonate biological structural materials exhibit a 

vast diversity of microstructure and texture patterns (e.g. Huber et al. 2015; Griesshaber 

et al. 2017; Casella et al. 2018; Checa 2018; Checa et al. 2018; Seidl et al. 2018; Checa 

et al. 2019), where both, almost unaligned as well as highly co-aligned crystal 

assemblies are utilized, if necessary. Thus, both, a high order as well as a high disorder 

in biomineral unit arrangement and crystallite orientation is advantageous in certain 

circumstances for the organism. Microstructure and texture patterns influence directly 

mechanical properties of structural materials. Different environments, e.g. high energy 

settings in shallow waters or substrates in quieter, deeper waters with higher water 

loads, require shells with different amounts of hardness, stiffness, toughness, tensile 

strengths and ductility. These characteristics are imparted by the mineral-biopolymer 

arrangement within the hard tissue and reflect directly conditions that are defined by a 

given habitat (Seidl et al. 2012; Huber et al. 2015; Griesshaber et al. 2017; Ye et al. 

2018a, 2018b; Seidl et al. 2018). 

Accordingly, we infer that the evolution of thecideide shell microstructures and 

textures, the change from fibres to acicles, the switch from large mineral units to small 

and granular biominerals, the transition from an ordered to a highly disordered 

microstructure and texture reflect their success in colonizing hard substrates by 

cementation and the occupation of niches not yet taken by bivalves or/and 

rhynchonellide and terebratulide brachiopods. Several observations support these 

hypotheses: (1) Taxa that had a similar life strategy in the Palaeozoic, cementation to 

hard substrates (e.g. some taxa of the Class Strophomenata), had a laminar and not a 

fibrous fabric (McGhee 1999; Williams et al. 2000; Ye et al. submitted). Fibrous 

assemblies appear to be less suitable for a cemented life-style; (2) the Craniiformea also 
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lived and live cemented to hard substrates and form shells with a distinct 

organocarbonate tabular laminar fabric (Williams 1997); (3) the granular-acicular fabric 

can possibly be secreted more easily and rapidly relative to the formation of fibres and 

columns; (4) secretion of small mineral units, acicles and granules, might make it easier 

to attach to uneven substrate surfaces. We can support the last suggestion based on the 

study of the microstructure of other shell-attached benthic organisms such as the Recent 

oyster Magallana gigas [formerly Crassostrea gigas (Thunberg, 1793)] which lives 

cemented to many types of substrates (MacDonald 2010). Our EBSD measurements 

show that for attachment, M. gigas secretes a shell layer of variable thickness, that 

consists of minute to small, irregularly sized, shaped and oriented calcite crystals (Figs. 

S2.3.17-18). Crystal co-orientation strength within the layer that attaches to the 

substrate is low; it is significantly less than the co-orientation strength of calcite in the 

adjacent foliated shell portion (Fig. S2.3.17). The many different orientations and the 

small size of those crystallites that touch the surface of the substrate makes it easier for 

the oyster to adjust to the surface roughnesses. 

Rudwick (1968) and Pajaud (1974) showed that the attachment scar on the ventral 

valve in some Triassic and Cretaceous thecideides became obsolete in larger specimens 

(as the ventral valve increased in convexity and the dorsal valve in concavity) and 

suggested that such individuals were secondarily free-lying in adult stages. In contrast, 

Recent thecideides are permanently cemented to substrate. The gradual shift from 

fibrous to acicular structures seems to coincide with an overall shift in the living 

strategy of thecideides towards a permanent attachment. For example, the Upper 

Triassic Bactrynium bicarinatum, also investigated in this study, is very common in 

offshore mudstones of the Eiberg Member of the Kössen Formation (Northern 

Calcareous Alps, Austria) where a free-lying life habit can be expected (see 

also Michalik 1976).  

In transitional forms (e.g. Neothecidella ulmensis) the fibrous layer is partly 

replaced by stacks of acicles. Acicles always form outer shell portions, while the arrays 

of fibres are always next to the soft tissue of the animal. The progressive loss of fibres 

in favour of a more disordered acicular and granular microstructures is a loss which is a 

derived feature according to Baker (2006). This can be considered as part of the 

complex mosaic of paedomorphic and peramorphic patterns of evolutionary changes 

observed for the thecideides (Carlson 2016).  

2.3.5. Conclusions  

EBSD measurements have demonstrated the large variety of mineral units that form 

thecideide shells from Late Triassic to Recent times. These range from fibres through 

acicles to granules which are irregularly shaped and sized calcite biocrystals. Thecideide 

biomineral units and their arrangements differ significantly from those of terebratulide 

and rhynchonellide species. Based on our analyses, we draw the following conclusions:  

1. The regularity of biocrystal shape, mineral unit size, and the strength of calcite 

co-orientation decreases from the Late Triassic to Recent species. 

2. The shell of Upper Jurassic species represent transitional forms and are 

composed of stacks of acicles on external shell portions and of a remnant of the 

fibrous layer next to the soft tissue of the animal. 

3. The change in microstructure and texture may be interpreted as an ecological 

strategy to exploit distinct habitats and life styles, in particular attachment to 
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hard substrates, as confirmed by a microstructural comparison with recent 

bivalves that live attached to rock substrates. 

4. The progressive loss of the fibrous layer in favour of highly disordered acicular 

and granular microstructures can be seen as a paedomorphic pattern in the 

complex mosaic of evolutionary changes characterizing thecideide brachiopods.  

5. Detailed shell microstructure and texture data gained from EBSD measurements 

are needed from more thecideid taxa in order to unravel their phylogenetic 

relationships. 

 

 

Figure 2.3.14. Summary of the investigated suite of thecideide brachiopods, their stratigraphical 

distribution and schematic illustrations of the main microstructure characteristics of their shells. 

See scale bars values in Figure 2.3.12. 

2.3.6. Data availability statement 

Additional data, that support the findings of this study, are available from the 

Supporting Information of this article and from the corresponding author upon 

reasonable request. 
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Supporting Information 

Table S2.3.1 Sample numbers for the illustrated material. 

Species Age 
Original 

location 
Number Repository 

Thecospira tenuistriata  
Bittner, 1890 

 

Late Triassic 

 

Alpe di 

Specie, Italy 

MPU5784-4 

MPU5804 

Museo di Paleontologia 

Dipartimento di 

Scienze della Terra 

Università degli Studi 

di Milano 

Thecospira tyrolensis   
(Loretz, 1875) 

Late Triassic 
Alpe di 

Specie, Italy 
MPU5484-4 

Museo di Paleontologia 

Dipartimento di 

Scienze della Terra 

Università degli Studi 

di Milano 

Bactrynium 

bicarinatum (Emmrich, 

1855) 

Late Triassic Elberg Austria E100-18-17 
Ludwig Maximilian 

University of Munich 

Neothecidella ulmensis  
(Quenstedt, 1858) 

Late Jurassic 

(middle 

Oxfordian) 

Bałtów, 

Poland 
LMU-NU01 

Ludwig Maximilian 

University of Munich 

Thecidiopsis digitata 

(Sowerby, 1823) 

Late 

Cretaceous 

Petersberg, 

Maastricht, 

Netherlands 

LMU-TD01 
Ludwig Maximilian 

University of Munich 

Thecidea papillata 

(Schlotheim, 1813) 

Late 

Cretaceous 

Symphorien, 

Mons, 

Belgium 

LMU-TPLC01 
Ludwig Maximilian 

University of Munich 

Thecidea papillata 

(Schlotheim, 1813) 
Paleocene 

Ciply near 

Mons, 

Belgium 

LMU-TPP01 
Ludwig Maximilian 

University of Munich 

Lacazella mediterranea 

(Risso, 1826) 
Late Eocene 

Dnipropetrovs

k, Ukraine 
LMU-LME01 

Ludwig Maximilian 

University of Munich 

Lacazella mediterranea 

(Risso, 1826) 

Late 

Oligocene 

Peyrere 

Aquitaine 

Basin, France 

LMU-LMO01 
Ludwig Maximilian 

University of Munich 

Thecidellina sp. Pleistocene 
Curaçao, 

Caribbean 

UF 325201 

 

Ludwig Maximilian 

University of Munich 

Pajaudina atlantica  

Logan, 1988 
Recent 

Palma, Canary 

Islands, Spain 

LMU-PA008 

Ludwig Maximilian 

University of Munich 

LMU-PA009 

LMU-PA010 

LMU-PA011 
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Table S2.3.2. The character matrix and taxa used for construction of the phylogenetic tree (see also Figure 13), based on the characters and character 

states described by Jaecks & Carlson (2001) with the addition of microstructure and texture results obtained in this study and the inclusion of the 

thecideide species Neothecidella ulmensis. Character numbers referring to microstructure and texture and character states are as follows:  

38. Dorsal valve, extent of fibrous layer. 0 = covers entire valve; 1 = partial coverage; 2 = partial coverage, limited to sockets and/ or cardinal process;                    

3 = absent.  

39. Ventral valve, extent of fibrous layer. 0 = covers entire valve; 1 = partial coverage; 2 = partial coverage, teeth only; 3 = absent. 

40. Dorsal valve granular calcite.  0 = absent; 1 = present.  

41. Ventral valve granular calcite. 0 = absent; 1 = present.  

42. Dorsal valve acicular calcite. 0 = absent; 1 = present.   

43. Ventral valve acicular calcite. 0 = absent; 1 = present. 

50. Secondary fabric type. 0 = non-fibrous; 1 = fibrous  
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Dielasma 1 0 2 ? ? 0 1 0 ? 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 ? 2 0 ? ? 

Backhausina schluteri 0 3 3 1 ? 0 0 3 0 3 2 2 1 1 1 2 0 2 ? 0 0 ? ? ? 1 3 2 2 1 2 

Agerinella 0 3 5 1 ? 0 0 3 1 0 0 ? 0 ? ? 2 ? ? ? ? ? ? ? ? 1 ? 2 ? 1 0 

Bactrynium bicarnatum 0 1 2 ? 1 0 0 ? ? ? ? 1 0 0 0 0 ? ? 1 ? ? 1 ? ? ? 1 4 2 ? 1 

Bifolium faringdonense 0 0 4 1 3 0 0 3 0 2 3 1 0 1 0 1 1 1 2 1 1 0 0 1 1 1 2 2 2 0 

Bitternella 0 3 ? 1 1 0 0 ? ? ? 3 0 0 1 1 1 1 1 ? ? ? ? ? ? 1 ? 2 ? 1 1 

Bosquetella campichei 0 0 0 2 1 0 0 0 ? 0 0 0 0 1 ? ? ? 1 ? 3 2 ? ? ? 1 1 2 0 2 0 

Danella recurvirostris 0 1 0 2 1 0 0 0 ? 2 3 1 0 ? ? 2 1 2 2 3 1 1 ? ? 1 2 2 1 1 2 

Davidsoniella sinuata 0 1 5 2 1 0 0 ? 1 2 3 2 0 0 0 1 2 1 2 2 ? 2 ? 1 0 2 2 0 1 0 

Eothecidellina imperfecta 0 3 4 1 2 0 0 ? 1 4 2 1 0 1 ? 1 1 1 1 ? ? 2 ? ? 1 3 2 0 1 0 

Eudesella mayensis 0 0 3 1 3 0 0 3 0 2 3 0 0 0 0 1 1 0 2 1 2 0 0 0 1 2 1 ? 1 0 

Glazewvskia 0 4 1 1 2 0 0 3 0 2 3 0 0 1 1 1 2 1 2 1 1 ? ? ? 1 1 2 ? 1 1 

Konstantia 0 3 3 ? ? 0 0 ? 0 0 0 ? 0 ? ? ? ? ? ? ? ? ? ? ? 1 ? 2 ? 1 1 

Lacazella 0 0 0 3 3 0 0 3 0 3 3 2 0 1 1 1 2 2 2 3 ? 0 0 2 1 4 2 2 1 2 

Mimikonstantia sculpta 0 3 3 1 2 0 0 ? 1 1 1 1 0 0 0 2 2 1 0 1 ? 4 ? 1 1 1 ? 0 1 0 

Moorellina granulosa 0 3 0 3 3 0 0 3 0 0 0 2 0 1 1 1 1 0 2 ? ? 0 0 1 1 4 2 ? 2 0 

Neothecidella ulmenensis 1 0 6 1 ? 0 0 1 1 3 1 1 0 1 1 1 ? 0 0 2 1 ? ? ? 1 1 1 1 1 0 

Neothecidella parviserrata 0 0 4 1 ? 0 0 1 0 2 2 2 0 ? ? 1 2 2 2 2 ? 0 0 ? 1 4 1 1 1 0 

Pachymoorellina dundriensis 0 1 1 3 3 0 0 2 0 4 3 2 0 1 1 0 1 1 1 3 2 1 ? 1 1 1 2 0 1 0 

Pajaudina atlantica 0 3 3 1 2 0 0 3 0 3 3 2 0 1 1 1 1 1 2 2 2 0 0 2 1 2 1 2 1 2 

Pamirotheca 0 1 2 2 1 0 0 ? ? ? 1 ? 0 1 1 ? ? 1 ? ? ? ? ? ? 1 ? ? 0 1 0 
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Parabifolium 0 0 4 1 ? 0 0 1 0 2 2 2 0 ? ? ? ? ? ? ? ? ? ? ? 1 4 2 ? 1 2 

Parathecidea hieroglyphica 0 3 3 2 1 0 0 3 0 2 3 2 0 1 1 2 1 1 2 3 2 0 0 0 1 3 2 2 1 1 

Praelacazella wetherelli 0 4 4 1 2 0 0 3 0 2 3 0 0 ? ? 2 1 2 2 2 2 0 0 2 1 3 2 2 1 2 

Rioultina ornata 0 3 0 2 1 0 0 3 0 2 2 2 0 1 1 2 1 1 ? 2 1 ? ? ? 1 1 ? 0 1 0 

Thecidea radiata 0 0 0 0 0 0 0 3 0 2 2 2 1 1 1 1 1 1 2 3 2 0 0 3 0 2 2 2 1 1 

Thecidella rustica 0 3 5 1 3 0 0 0 ? 0 0 0 0 1 ? 3 1 0 0 2 ? 2 ? 1 1 3 2 0 1 0 

Thecidellina congregata 0 0 1 3 3 0 0 3 0 2 2 1 0 1 ? 1 1 1 0 2 1 2 2 ? 1 1 2 2 1 0 

Thecidiopsis digitata 0 3 3 3 3 0 0 3 0 2 3 2 0 ? ? 1 1 1 2 3 2 0 0 3 1 3 2 2 1 1 

Thecospira haidingeri 0 3 3 2 1 ? 0 2 0 4 ? 1 0 1 ? 0 0 2 0 ? ? ? ? ? 1 3 ? 0 0 0 

Hungaritheca 0 0 2 1 ? 0 0 ? ? ? ? 0 1 1 1 ? ? 1 0 ? ? ? ? ? 1 1 2 ? 1 0 

Thecospirella 0 3 2 1 ? 0 0 ? ? ? 3 0 1 1 1 1 1 1 ? ? ? ? ? ? 1 ? 2 ? 1 0 

Vermiculothecidea vermicularis 0 3 0 2 1 0 0 3 0 2 3 2 0 ? ? ? 1 1 ? 1 2 ? ? ? 1 3 2 1 1 2 

Eolacazella longirostrea 0 3 0 2 ? 0 0 ? ? 2 ? 2 0 0 0 4 1 1 2 3 2 0 0 2 1 3 ? 0 1 2 

Stentorina sagittata 0 4 3 1 2 0 0 1 1 4 2 0 0 ? ? 2 2 2 1 2 ? ? ? ? 1 4 2 1 1 0 

Ancorellina 0 4 1 2 2 0 0 2 1 ? ? 0 0 2 0 2 0 2 0 ? ? ? ? ? 1 3 2 ? 1 ? 

 

 
Table S2.3.2 continued. The used matrix and taxa for construction of the phylogenetic tree (see also Figure 2.3.13). 

  31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 

Dielasma  ? ? ? ? 0 1 ? 0 0 0 0 0 0 0 0 2 0 ? 0 1 0 ? ? ? 

Backhausina schluteri  0 ? ? 3 0 0 1 ? ? ? ? ? ? 0 3 0 1 0 1 1 ? ? ? 1 

Agerinella  0 0 0 ? ? 1 ? ? ? ? ? ? ? 0 3 0 ? 0 1 1 ? ? ? ? 

Bactrynium bicarnatum  0 0 0 1 0 1 ? 0 0 0 0 0 0 0 4 0 1 0 1 1 2 0 ? 0 

Bifolium faringdonense  0 0 0 2 0 0 0 2 2 0 0 1 1 0 1 0 1 0 1 1 1 0 1 0 

Bitternella  0 0 0 1 ? 0 ? ? 2 0 0 ? ? 0 ? 0 1 0 1 1 ? ? ? ? 

Bosquetella campichei  0 0 0 1 0 0 0 2 0 0 1 1 0 0 1 0 1 0 1 1 1 ? ? 0 

Danella recurvirostris  2 0 0 3 0 0 1 ? ? ? ? ? ? 0 3 0 1 0 1 1 2 0 1 1 

Davidsoniella sinuata  0 0 0 2 0 1 0 0 0 0 0 0 0 0 4 0 1 0 1 1 2 0 5 0 

Eothecidellina imperfecta  0 0 0 2 0 0 0 2 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 0 

Eudesella mayensis  0 ? ? 0 1 0 0 0 0 0 0 0 0 0 4 0 0 0 1 1 1 ? 0 0 
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Glazewvskia  0 ? ? 3 0 0 ? ? ? ? ? ? ? 0 3 0 1 0 1 1 ? ? ? 0 

Konstantia  0 1 0 0 1 ? ? ? ? ? ? ? ? 0 1 0 1 0 1 1 1 0 0 ? 

Lacazella  2 0 0 3 0 0 1 2 2 1 1 1 1 0 3 0 1 0 1 0 2 1 1 0 

Mimikonstantia sculpta  0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 2 0 1 1 1 ? 0 0 

Moorellina granulosa  0 0 0 5 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 ? ? 0 

Neothecidella ulmenensis  0 0 0 1 0 0 0 0 2 0 0 1 1 0 3 0 1 0 1 1 2 0 5 ? 

Neothecidella parviserrata  0 0 0 1 0 0 0 2 2 0 0 1 1 0 3 0 1 0 1 1 2 0 5 ? 

Pachymoorellina dundriensis  0 0 0 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 

Pajaudina atlantica  2 0 0 3 0 1 1 2 2 1 1 1 1 0 3 0 1 0 1 1 2 1 3 ? 

Pamirotheca  0 0 0 ? ? 0 ? ? ? 0 0 ? ? 0 ? 0 1 0 1 1 ? ? ? 0 

Parabifolium  ? 0 0 3 0 0 ? ? ? ? ? ? ? 0 3 0 ? 0 1 1 ? ? ? 0 

Parathecidea hieroglyphica  0 ? ? 3 0 ? ? ? ? 0 ? ? ? 0 2 0 1 0 1 1 ? ? ? 0 

Praelacazella wetherelli  2 0 0 4 0 0 1 2 0 0 1 1 0 0 3 0 1 0 1 1 2 0 5 ? 

Rioultina ornata  0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 0 

Thecidea radiata  0 0 0 3 0 0 1 3 3 1 1 1 1 0 2 0 1 0 0 0 1 1 3 0 

Thecidella rustica  0 0 0 0 0 1 0 0 0 0 0 0 0 0 3 0 1 0 1 3 2 0 0 0 

Thecidellina congregata  0 0 0 1 0 0 0 2 2 1 1 1 1 0 1 0 1 0 1 1 0 0 1 0 

Thecidiopsis digitata  0 0 1 3 0 0 1 2 1 1 1 1 1 0 2 0 1 0 1 0 1 1 5 0 

Thecospira haidingeri  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 

Hungaritheca  0 0 0 ? ? ? ? ? ? ? ? ? ? 0 1 1 1 0 1 1 ? ? ? ? 

Thecospirella  0 ? ? 0 0 1 ? ? ? ? ? ? ? 0 0 1 1 0 1 1 ? ? ? ? 

Vermiculothecidea vermicularis  1 0 0 1 0 0 0 ? ? ? ? ? ? 0 3 0 1 0 1 1 ? ? ? 0 

Eolacazella longirostrea  ? ? ? 3 1 1 0 3 3 0 0 0 0 0 3 0 1 0 1 1 2 1 ? 0 

Stentorina sagittata  0 0 0 5 0 1 ? 0 0 0 0 ? ? 0 1 0 1 0 1 1 ? ? ? 0 

Ancorellina  0 0 0 0 0 0 ? 0 0 ? ? ? ? 0 2 0 1 0 1 1 ? ? ? 0 
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Figure S2.3.1. EBSD band contrast measurement image of the shell microstructure of the 

Triassic thecideide brachiopod Thecospira tenuistriata (MPU5804). The shell comprises small 

and large fibres and large rounded calcite units (yellow stars). Scale bars represent 100 µm. 
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Figures S2.3.2. BSE images of shell portions of the Jurassic thecideide brachiopod 

Neothecidella ulmensis (LMU-NU01). Two microstructures form the shell of this species: (i) 

acicles and (ii) fibres. Figures (A) and (B) show the distribution of the two microstructures in 

the dorsal (A) and ventral (B) valve, respectively. Acicular and fibrous shell portions are well 

distinguishable, see dashed yellow line. (D), (E) and (F) are detailed images of the contact 

between acicular and fibrous shell layers and the interdigitation of these. Scale bar represent 250 

µm for A and B, 50 µm for C, E and F and 20 µm for D. 

 



131 

 

 

Figure S2.3.3. Calcite orientation (shown colour-coded) and band-contrast measurement images 

(shown grey-scaled) in the Jurassic thecideide brachiopod Neothecidella ulmensis (LMU-

NU01) visualizing shell portions consisting of acicles (coloured) and of fibres (in grey), 

respectively. As the MUD values show co-orientation strength in the fibrous shell portion is 

higher (grey scaled), relative to acicular shell layers (coloured). Scale bars represent 20 µm. 
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Figure S2.3.4. A further EBSD scan made on the shell of Neothecidella ulmensis (LMU-NU01) 

depicting calcite orientation (in color), band contrast measurement (grey-scaled) images, pole 

figures and giving MUD values for the acicular and fibrous shell portions. Scale bar represents 

50 µm. The EBSD color code is given by the IPF triangle situated between the pole figures. 

 

Figure S2.3.5. Orientation pattern of calcite shown colour-coded and derived from EBSD 

measurements for the shell of the Triassic thecideide brachiopod B. bicarinatum (E100-18-17). 

The EBSD colour code is given by the IPF triangle shown in Fig. S2.3.4. Scale bars represent 

50 µm. 
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Figure S2.3.6. Orientation pattern of calcite shown colour-coded and derived from EBSD 

measurements for the shell of the Triassic thecideide brachiopod Thecospira tenuistriata 

(MPU5784-4). The MUD value for the array of fibres is 26; 31 for fibres and the large roundish 

calcite crystals and 394 for an individual large roundish calcite unit. The EBSD colour code is 

given by the IPF triangle shown in Fig. S2.3.4. Scale bars represent 50 µm. 

 

Figure S2.3.7. Orientation pattern of calcite shown colour-coded and derived from EBSD 

measurements for the shell of the Triassic thecideide brachiopod T. tenuistriata (MPU5804).  

The EBSD colour code is given by the IPF triangle shown in Fig. S2.3.4. Scale bars represent 

100 µm. 
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Figure S2.3.8. Orientation pattern of calcite shown colour-coded and derived from EBSD 

measurements for the shell of the Jurassic thecideide brachiopod N. ulmensis (LMU-NU01). 

The EBSD colour code is given by the IPF triangle shown in Fig. S2.3.4. Scale bars represent 

20 µm. 

 

 

Figure S2.3.9. Orientation pattern of calcite shown colour-coded and derived from EBSD 

measurements for the shell of the Cretaceous thecideide brachiopod T. digitata (LMU-TD01). 

The EBSD colour code is given by the IPF triangle shown in Fig. S2.3.4. Scale bar represents 

200 µm. 
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Figure S10. Orientation pattern of calcite shown colour-coded and derived from EBSD 

measurements for the shell of the Cretaceous thecideide brachiopod T. papillata (LMU-

TPLC01). The EBSD colour code is given by the IPF triangle shown in Fig. S2.3.4. Scale bar 

represents 100 µm. 

 

Figure S2.3.11. Orientation pattern of calcite shown colour-coded and derived from EBSD 

measurements for the shell of the Paleocene thecideide brachiopod T. papillata (LMU-TPP01). 

The EBSD colour code is given by the IPF triangle shown in Fig. S2.3.4. Scale bar represents 

100 µm. 
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Figure S2.3.12. Orientation pattern of calcite shown colour-coded and derived from EBSD 

measurements for the shell of the Eocene and Oligocene thecideide brachiopod L. mediterranea  

(LMU-LME01 and LMU-LMO01 respectively). The EBSD colour code is given by the IPF 

triangle shown in Fig. S2.3.4. Scale bars represent 50 μm for the Eocene sample and 100 µm for 

Oligocene one. 

 

 

Figure S2.3.13. Orientation pattern of calcite shown colour-coded and derived from EBSD 

measurements for the shell of the Pleistocene thecideide brachiopod Thecidellina sp. (UF 

325201). The EBSD colour code is given by the IPF triangle shown in Fig. S2.3.4. Scale bar 

represents 100 µm. 
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Figure S2.3.14. Orientation pattern of calcite shown colour-coded and derived from EBSD 

measurements for the shell of the Recent thecideide brachiopod P. atlantica (LMU-PA008). The 

EBSD colour code is given by the IPF triangle shown in Fig. S2.3.4. Scale bar represents 20 

µm. 

 

Figure S2.3.15. Orientation pattern of calcite shown colour-coded and derived from EBSD 

measurements for the shell of the Recent thecideide brachiopod P. atlantica (LMU-PA010). The 

EBSD colour code is given by the IPF triangle shown in Fig. S2.3.4. Scale bar represents 20 

µm. 
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Figure S2.3.16. Orientation pattern of calcite shown colour-coded and derived from EBSD 

measurements for the shell of the Recent thecideide brachiopod P. atlantica (LMU-PA009). The 

EBSD colour code is given by the IPF triangle shown in Fig. S2.3.4. Scale bar represents 50 

µm. 

 

 

Figure S2.3.17. BSE images depicting the attachment of the shell of the oyster Magallana gigas 

onto the substrate. Attachment is made by a thin mineralized layer (yellow star in all images) 

secreted by the animal. The thickness of the attachment layer varies, depending on the 

roughness of the substrate. Scale bars represent 1mm for A-B and 50 µm for C-E. 
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Figure S2.3.18. Orientation pattern of calcite shown with colour-coded EBSD maps and density 

distributions of associated pole figures for the attachment layer (A and C) and foliated calcite (B 

and D) of Magallana gigas shell. There is a significant difference in microstructure and texture: 

The strength of calcite co-orientation is low (MUD values 19, 21) within the attachment layer, 

while it is significantly higher (MUD values 38, 44) in the foliated calcite shell portion. Scale 

bars represent 10 µm for A-B and 20 µm for C-D. 
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2.4. Diversity of mineral and biopolymer assembly in modern 

terebratulide, rhynchonellide, thecideide and craniide 

brachiopod shells 
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Abstract 

 Biological hard tissues are a rich source of design concepts for the generation of advanced 

materials. They represent the most important library of information on the evolution of life and 

its environmental conditions. Biology constructs its structural material bottom-up. It is a 

fabrication principle that is intrinsic to tissues secreted by organisms. It emerged early in the 

geological record, with the start of biological mineralization. 

 

 The phylum Brachiopoda is one of the few marine animal groups that have a complete fossil 

record from early Cambrian to recent times. Throughout this entire time period Brachiopoda 

secreted phosphate and carbonate shells and populated many and highly diverse marine habitats. 

This required significant metabolic flexibility that is adaptation of soft and hard tissue to 

specific marine environments and living conditions.  

 

In this article we review main modes of mineral and biopolymer organization for recent, 

carbonate shell producing, brachiopods. We describe and juxtapose shell tissue characteristics 

for taxa of the orders Rhynchonellida, Terebratulida, Thecideida and Craniida. We highlight 

calcite and organic matrix assembly on nano-, micro- and macrometer scale based on results 

obtained with electron backscatter diffraction (EBSD), AFM (Atomic Force Microscopy), FE-

SEM (Field Emission Scanning Electron Microscopy) and STEM (Scanning Transmission 

Electron Microscopy). We show differences in composite hard tissue organization for taxa 

having different life styles, highlight, in particular, thecideide shell characteristics, visualize the 

nanostructure of and calcite assembly in rhynchonellide fibers and discuss for representatives of 

Rhynchonelliformea the feasibility to use the shells as archives for proxies for 

paleoenvironment reconstruction. 
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2.4.1. Introduction 

Brachiopods are a phylum of sessile marine organisms which secrete either 

phosphatic (Linguliformea) or calcareous (Craniiformea, Rhynchonelliiformea) shells. 

Brachiopods are one of the very few marine organism groups which have a complete 

fossil record (Carlson 2016, Harper et al. 2017). First species of both phosphate as well 

as carbonate shells producing orders appeared in early Cambrian, already at the very 

start of biological tissue formation. During the Ordovician, the phylum diversified 

significantly (e.g. Carlson 2016, Harper et al. 2017), what initiated that by the end of the 

Ordovician major differences were developed in life-styles and, with this, shell structure 

and morphology (e.g. Williams 1997, Harper and Drachen 2010, Harper et al. 2015, 

Harper et al. 2017). The end-Permian extinction erased the majority of Paleozoic 

brachiopod taxa and impacted severely taxonomic, morphological, functional and 

ecological brachiopod diversity (Carlson 2016). Some groups survived end-Permian 

extinction, diversified, occupied new ecological niches and form today the extant orders 

of the Lingulida, Craniida, Rhynchonellida, and Terebratulida. The Thecideida appeared 

after the end-Permian crisis, in the Triassic. Representatives of the five extant 

brachiopod orders populate today mainly shallow to moderately deep, rarely very deep, 

sea floor environments and live in a wide range of marine habitats (e.g. Williams 1973, 

Peck et al. 1997, Williams et al. 2000, Williams and Carlson 2007, Bittner 2000, Peck 

2001, Williams and Cusack 2007, Peck 2007, Peck and Harper 2010, Cross et al. 2015, 

Carlson 2016, Finnegan et al. 2016, Cross et al. 2016, Harper et al. 2017, Ye et al. 

2018a, 2018b, Cross et al. 2018, Ye et al. 2019). 

The geological record shows that brachiopods were and are able to adopt to many 

marine environments (see the references above). They live in open ocean as well as in 

sheltered, cryptic habitats, settle within as well as on sediment or/and rock surfaces. 

When living on the sea floor, brachiopods are either attached to it by a pedicle or lie free 

or are cemented with their ventral valve to the sediment/rock substrate. Representatives 

of the five extant brachiopod orders have different modes of larval development, differ 

significantly in soft-tissue anatomy, shell morphology, shell chemistry, shell 

microstructure, texture, amount, type and fabric of organic substance intercalated into 

the shell. Thus, we find today large diversity in brachiopod body plans as well as 

morphological, structural and chemical features of their shell. 

In this review we focus on modern calcite shelled brachiopods and detail shell 

structural characteristics. We do not summarize shell morphology or shell chemistry. 

The aim of this article is to give a comprehensive overview of microstructure, texture, 

biopolymer content and distribution for representatives of all four extant calcite shell 

producing brachiopod orders: the Terebratulida, Rhynchonellida, Thecideida and 

Craniida. We discuss in total 20 modern brachiopod taxa (Table S1): 2 rhynchonellide, 

one craniide, three thecideide and 14 terebratulide species. We base our review on 

measurements gained with electron backscatter diffraction (EBSD), AFM, STEM and 

FE-SEM imaging of fractured and etched shell cross-section surfaces. Studies of the last 

decades address modern brachiopod shell structure, microstructure, texture (e.g. 

Williams 1973, Williams 1997, Williams and Cusack 2007, Schmahl et al. 2004, 

Griesshaber et al. 2007, Cusack and Williams 2007, England et al. 2007, Perez-Huerta 

et al. 2007, Schmahl et al. 2008, Cusack et al. 2008, Goetz et al. 2009, Merkel et al. 

2007, Merkel et al. 2009, Goetz et al. 2011, Schmahl et al. 2012, Gaspard and Nouet 

2016, Ye et al. 2018a, 2018b). However, these rarely deal with the composite nature of 
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the shell and concentrate on either one or only very few, in general, rhynchonellide, 

terebratulide species. Especially shell microstructure, texture of the Thecideida and 

Craniida is little characterized. 

In this contribution we highlight the following: 

(i) Difference in microstructure and texture for representatives of the different 

calcite-shelled orders. 

(ii) Difference in shell microstructure and texture between species that attach by a 

pedicle and those that live cemented with a valve to the substrate/sediment, respectively. 

(iii) Difference in shell structure between thecideide species and the primary shell-

layer of rhynchonellide and terebratulide taxa. As thecideide shell microstructure and 

texture is up to now little investigated, we place specific attention to the shell structure 

of these brachiopods. 

(iv) The mode of organic substance intercalation into different shell layers of 

rhynchonellide and terebratulide as well as into the shell of thecideide and craniide 

species, respectively. 

(v) The nanometre scale structure of modern rhynchonellide, terebratulide fibers as 

reference for the assessment of overprint of fossil equivalents. It is known by now that 

for a reliable assessment of alteration it is necessary to investigate the nanometre scale 

crystallite assembly of the biogenic archive as well (Casella et al. 2018). 

Paleoenvironment reconstruction based on brachiopod archives relies strongly on the 

preservation state of the fiberous shell layer. Accordingly, we place major attention on 

the fibers and summarize the present knowledge of nanocrystalline calcite assembly in 

the fibrous layer of rhynchonellide and terebratulide shells. 

This review is divided into seven chapters:  

Subsequent to an introduction we show in chapter 1 the distinctness in shell calcite 

organization for representatives of Terebratulida, Rhynchonellida, Thecideida and 

Craniida.  

As second we describe characteristics of the biocrystals and subsequently, in 

chapter 3, the pattern of organic substance within the shells.  

In chapter 4 we discuss nanometre scale structural features of terebratulide and 

rhynchonellide shell fibers and highlight in particular (i) their hierarchical internal 

structuring and (ii) demonstrate that fibers incorporate a network of thin organic fibrils.  

The fifth chapter details for terebratulide, rhynchonellide, thecideide and craniide 

representatives patterns of calcite assembly in the shells and describes characteristics of 

the texure. We show that shells of modern, calcitic brachiopods are constructed of only 

five types of basic mineral units: dendrites, fibers, columns, platelets and polygonal 

biocrystals.  

Chapter 6 discusses modern thecideide shells in greater detail and describes 

differences/similarities in shell chemistry of thecideide and terebratulid species. 

We end our review with a concluding summary (chapter 7) where we address: (i) 

microstructural adaptation to environments, (i) the advantage of a hierarchical and 

composite hard tissue microstructure, (iii) determinants of microstructure and texture 
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fabrication, (iv) characteristics of thecideide shell microstructures and their applicability 

for paleoenvironment reconstruction.  

 

 

2.4.2. Materials, sample preparation and methods 

Materials 

We investigated the following modern brachiopod specimens (Table S1): Megerlia 

truncata (Linnaeus, 1767), (Terebratulida), Magellania venosa (Dixon, 1789) 

(Terebratulida), Terebratulina septentrionalis (Couthouy, 1838) (Terebratulida), 

Terebratalia transversa (Sowerby, 1846) (Terebratulida), Magellania flavescens 

(Lamarck, 1819) (Terebratulina), Terebratulina crossei  (Davidson, 1882) 

(Terebratulina), Terebratalia palustris (Linnaeus, 1767) (Terebratulina), Calloria 

inconspicua (Sowerby, 1846) (Terebratulida), Magasella sanguinea (Leach, 1814) 

(Terebratulida), Laqueus rubellus (Sowerby, 1870) (Terebratulida), Liothyrella uva 

(Broderip, 1833) (Terebratulida), Liothyrella neozelanica (Thomson 1918) 

(Terebratulida), Gryphus vitreus (Born, 1778) (Terebratulida), Magellania fragilis 

(Smith, 1907) (Terebratulida), Terebratulina retusa (Linnaeus, 1758) (Terebratulida), 

Notosaria nigricans (Soweby, 1846) (Rhynchonellida), Neorhynchia strebeli (Dall, 

1908) (Rhynchonellida), Kakanuiella chathamensis Lüter, 2005 (Thecideia), Pajaudina 

atlantica Logan, 1988 (Thecidea), Thecidellina blochmanni (Dall 1920) (Thecidea), 

Novocrania anomala (Müller, 1776) (Craniida).  

 

Methods and sample preparation 

For visualizing the distribution pattern of organic substance within the shells, we 

etched shell cross-sections. First even surfaces were obtained by cutting and polishing 

the samples with glass and diamond knives. The surfaces were then etched with a 0.1 M 

HEPES (pH=6.5) and 2.5% glutaraldehyde solution for 90 and 120 seconds. Etching 

was terminated by rinsing the samples three times in 100% isopropanol for 10 seconds 

each. Subsequently, samples were critical point dried, coated and imaged at 4kV with a 

Hitachi SU5000 FE-SEM. 

Electron backscatter diffraction (EBSD) 

Microstructure and texture characterization is based on Electron Backscatter 

Diffraction (EBSD) measurements. Shell samples were embedded in epoxy resin, 

subjected to several sequential mechanical grinding and polishing steps. The final step 

consisted of etch-polishing with colloidal alumina in a vibratory polisher. For EBSD 

measurements the samples were coated with 4-6 nm of carbon; measurements were 

carried out on a Hitachi SU5000 field emission SEM, equipped with an Oxford EBSD 

detector. The SEM was operated at 20 kV, Kikuchi patterns were indexed with the 

CHANNEL 5 HKL software. Information obtained from EBSD measurements is 

presented as band contrast measurement images and as colour-coded crystal orientation 

maps with corresponding pole figures; the latter giving either individual data points or, 

in the contoured version, the strength of the clustering of poles. When contouring, we 

use the lowest possible degree for half width and cluster size, a half width of five and a 

cluster size of three degrees, respectively. The half width controls the extent of the 



145 

 

spread of the poles over the surface of the project sphere. A cluster comprises data with 

the same orientation. 

EBSD band contrast gives the signal strength of the EBSD-Kikuchi diffraction 

pattern and is displayed as a grey-scale component in a map. The strength of the EBSD 

signal is high when a crystal is detected (bright in the map), whereas it is weak or absent 

when a polymer, such as organic matter, is scanned (dark/black in the map). Co-

orientation statistics are derived from pole figures and are given by the MUD (multiple 

of uniform (random) distribution) values. The MUD value measures texture sharpness 

in the scanned area; a high MUD value indicates high crystal co-orientation, while a low 

MUD value reflects a low co-orientation, i.e. high misorientation.  

Imaging with SEM 

For SEM imaging samples were coated with 4-6 nm of Pt/Pd, images were taken 

with a Hitachi SU5000 at 4kV and show secondary electron contasts. 

Imaging with AFM 

The sub-micrometre and nanostructure of brachiopod shell calcite was visualized 

with atomic force microscopy (AFM). Samples were measured in contact mode with a 

JPK NanoWizard II AFM using silicon cantilevers. The measurements of lateral and 

vertical deflection traces were processed with the NanoWizard® IP image processing 

software and Gwyddion free and open source software. We used the “Gold” scale for 

colour. The lateral and vertical deflection traces are the result of the interaction between 

the cantilever tip and the sample surface.  

 

Imaging with STEM 

Magellania venosa shell fibers were imaged with a STEM detector attached to a 

Hitachi SU5000 field emission SEM. 40 to 80 nm thin sections were cut of fresh shells 

using a Reichert Ultracut S and an Ultra-type diamond knife (Diatome). Sections were 

mounted on copper EM grids (Plano) and imaged with a HAADF Annular SEM STEM 

detector (Deben). 

Geochemical analyes - Oxygen isotope analysis by Ion Microprobe 

Oxygen isotope composition of two specimens of the modern brachiopod P. 

atlantica and one specimen of the modern brachiopod M. venosa was analysed by ion 

microprobe. We investigated primarily the ventral valves for both species. To assess the 

variability in oxygen isotope composition, transects through the shells were performed 

from outermost to innermost shell portions; 20 µm spots were shot with a step size 

between two spots of 50µm. Prior to analyses, the valves were cut from anterior to 

posterior shell regions into halves. One half was embedded into epoxy resin and 

polished with diamond paste down to 1µm. Measurements were carried out at CRPG 

(Centre de Recherches Pétrographiques et Géochimiques, Nancy, France) and followed 

closely the technique described by Rollion-Bard et al. (2007). A Cameca IMS 1280-

HR2 was used for measurements. Instrumental mass fractionation (IMF) was corrected 

for by normalizing the results gained on the samples with two in-house calcite reference 

materials, BRET (δ
18

O=-10.87‰ V-PDB, Rollion-Bard and Marin-Carbonne 2011) and 

CCciAg (δ
18

O=-11.61‰ V-PDB). IMF was also corrected for the effect Mg content 

with the correction of -0.3 x MgO %wt (Rollion-Bard and Marin-Carbonne 2011). The 
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internal 2σn 

replicates of the calcite in-house reference materials, was ±0.13 and 0.28‰, depending 

on the analytical session. The total error for each δ
18

O value takes into account the 

external reproducibility and the internal error. All δ
18

O values are reported in ‰ and are 

given relative to V-PDB (Vienna Pee Dee Belemnite) international standard. 

 

Geochemical analyes - Trace and minor element compositions by laser ablation 

coupled to an ICP-MS (Inductively Coupled Plasma Mass Spectrometry) 

The method described in Rollion-Bard et al. (2019) was applied for the 

measurements of trace and minor element compositions. An Analyte G2 Excimer laser 

ablation system (193 nm), coupled to a quadruple Agilent 7900 series (LA-Q-ICP-MS) 

was operated at a repetition rate of 5 Hz and an energy fluence of 3.7 mJ/cm
2
. Samples 

were analyzed using a laser spot of 40µm diameter. The isotopes 
7
Li, 

23
Na,

 24
Mg, 

25
Mg, 

27
Al, 

44
Ca, and 

88
Sr were monitored. Measurements of NIST glass standard 610 and 612 

were acquired before and after each run of 10 to 20 analyses, depending on the shell 

thickness. The overall precision (Relative Standard Deviation, RSD) of the element 

ratios, calculated adding the errors in quadrature, are based on repeated measurements 

of NIST 612 glass. RSD was 10% for Li/Ca in M. venosa, 20% for Li/Ca in P. atlantica 

and 2% for Na/Ca, 4% for Mg/Ca and 2% for Sr/Ca in both species.  

In this study we use for fibers, columns, acicles, granules also the terms mineral 

units or biocrystals. The outermost, mineralized, shell layer of terebratulide and 

rhynchonellide shell we call, in correspondence with the used terminology, primary or 

outer shell layer. For the secondary and tertiary shell layers we use the terms fibrous 

(secondary) and columnar (tertiary). It has been shown for three-layered modern 

brachiopods that fibrous layers alternate with columnar layers (Goetz et al. 2009); 

accordingly, a successive numbering of the two inner shell layers (secondary, tertiary) is 

not applicable. Even though, when we refer to the different shell layers, we use our 

terminology and give in parenthesis ‘secondary/tertiary’, the conventional brachiopod 

shell layer terminology. 

2.4.3. Diversity of microstructures 

EBSD band contrast measurement images highlight the distinctness and diversity of 

biocrystal shapes, sizes and microstructures that we find for modern rhynchonellide and 

terebratulide (Fig. 2.4.1) and thecideide (Fig. 2.4.2A) and craniide (Fig. 2.4.2B) shells.  

Depending on the species, modern rhynchonellide and terebratulide valves consist 

of four layers: an outer organic layer, the periostracum and, at most, three mineralized 

shell layers, the primary, fibrous (secondary) and columnar (tertiary) shell layers. Even 

though all three mineralized shell layers are distinct in microstructure (Fig. 2.4.1), the 

calcite in all layers has a systematic pattern of crystallographic preferred orientation, a 

well-ordered structure (this study and Schmahl et al. 2004, Griesshaber et al. 2007, 

Cusack et al. 2008, Goetz et al. 2009, Griesshaber et al. 2009, Ye et al. 2018a, 2018b).  

The degree of ordering of calcite mineral units is low, even close to almost random, 

in modern thecideide and craniide shells (chapter 5 and Simonet Roda et al. 2020). 

Modern theicideides form their shell of mineral units that have a multitude of sizes and 

shapes (Fig. 2.4.2A). These are assembled in the shell without any obvious 

arrangement. Modern craniides form most of their shell of mainly one type, small (2 to 
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-section) tablet-resembling mineral units (Fig. 

2.4.2B) and arrange these to stacks of thin (400 to 500 nm in cross-section), often 

curved, calcite layers. Being tablet-shaped, the mineral units in craniide shells are 

addressed as ‘semi-nacre’ structures (Williams and Wright 1970, England et al. 2007, 

Perez-Huerta et al. 2007). We will show in chapter 5 (Figs. 2.4.21, S2.4.19) that even 

though craniide shells are formed of tablets, the latter have nothing to do with the 

tablets and their arrangement to columnar and sheeted nacre that we find in modern and 

fossil mollusc shells.  

We show in this review that craniide shells have the weakest texture; the crystals 

are the least co-oriented. Calcite in thecideide shells has a slightly higher preferred 

orientation. The highest crystallographic preferred orientation is in the columnar shell 

layer of Terebratullida. Relative to the columns, slightly reduced in co-orientation 

strength, is the primary shell layer of Rhynchonellida and Terebratulida. The fibrous 

shell layer of Rhynchonellida and Terebratulida has always a lower preferred 

orientation, relative to that of the primary and the columnar shell layers, respectively. 
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Figure 2.4.1. EBSD band contrast measurement images depicting shell microstructure of L. 

neozelanica (A) and M. venosa (B). Note the significant difference between (i) the primary 

(yellow star in A and B) and the two other mineralized shell layers and, (ii), especially for the 

shell of L. neozelanica, in mineral unit (biocrystal) size and morphology. Note further the 

alternation of fibers (green star in A) and columns (orange star in A) within the innermost 

mineralized layer of the shell of L. neozelanica (see also Goetz et al. 2011, Ye et al. 2018a). Red 

dots in A and B indicate puncta. The change-over from columns to fibers is smooth; an organic 

membrane delineating fibrous and columnar shell layers is absent (red stars in A). 
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Figure 2.4.2. EBSD band contrast measurement images depicting shell microstructure of P. 

atlantica (A) and N. anomala (B). The shell of P. atlantica consists of a multitude of differently 

shaped and sized calcite crystals that comprise the shell without any obvious systematic 

assembly pattern. In contrast, calcite in N. anomala forms small tabular mineral units that form 

thin layers. The latter undulate often and assemble to stacks. 
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2.4.4. Diversity of biocrystal morphologies 

Figures 2.4.3-6 and supplementary information Figures S2.4.1-6 visualize 

morphological differnces of biocrystals that form rhynchonellide, terebratulide, 

thecideide and craniide shells. We show characteristics on micrometre, submicrometre 

scale levels. The primary shell layer of rhynchonellides, terebratulides (Figs. 2.4.3A-B, 

S2.4.1-3) consists of interdigitating mineral units. These are often larger-sized at the 

base of the primary layer, next to the fibers (yellow star in Figs. 2.4.3A, S2.4.4B) and 

decrease in size generally towards outer primary layer regions (Fig. 2.4.3A). However, 

we often observe that the outermost primary shell layer section is seamed by a row of 

large crystals (yellow arrows in Fig. S2.4.3). The very tip of the valves of 

Rhynchonellida and Terebratulida is also always formed of primary layer calcite (Fig. 

S2.4.3). 

The transition from the primary to the fibrous shell layer is smooth (Fig. S2.4.2B), 

an organic membrane that would delineate the two shell layers is absent. The primary 

shell layer of rhynchonellide and terebratulide brachiopod shells is not nanogranular, it 

does not consist of an assembly of nanogranules as described previously by Williams 

(Williams 1973). This shell layer has a very specific structure and is devoid of 

intercalations of organic material. Large fractal-like, irregularly shaped and differently 

oriented mineral units interdigitate in 3D and constitute the layer (Fig. 2.4.15C and 

Goetz et al. 2011). The specific mode of interlinkeage of the fractal-shaped mineral 

units creates the impression that this part of the shell is nanogranular.  

In all rhynchonellides and terrebratulides, the layer next to the primary shell layer is 

formed by an assembly of fibers (Figs. 2.4.3C-D, S2.4.1, S2.4.3-4) being within a well-

structured network of organic membranes, the extracellular biopolymer matrix. The 

membranes are about 100 to 120 nm thick (chapters 3 and 4). Individual fibers are not 

fully encased by organic substance, only one surface of the fiber is covered by an 

organic lining.  Within the fibrous shell layer the fibers form stacks consisting of, more 

or less, parallel arrays of fibers (Fig. 2.4.4A-B and Griesshaber et al. 2007, 2009, Goetz 

et al. 2011). The stacks change their orientation within the layer by a few tens of 

degrees; thus in 2D cuts we find diagonally, transversely and longitudinally cut fibers 

(Figs. S2.4.4B, S2.4.1). The arrangement pattern of the stacks is comparable to a 

twisted plywood structure. When cut in cross-section, the convex-concave morphology 

of the fibers and their staggered arrangement is a significant characteristic for 

terebratulide and rhynchonellide brachiopod shells (Fig. 2.4.3C and Simonet Roda et al. 

2019a, 2019b) and differs significantly from fibrous assemblies of other biological hard 

tissues, e.g. calcite fibers in Mytilus edulis shells. It has been shown by Ye et al. 2018a, 

2018b that fiber length, roundness and convexity of modern rhynchonellides and 

terebratulides can be related to ontogenetic developments and environmental conditions.  

Calcite fibers in brachiopod shell are curved (Fig. S2.4.4A), especially at punctae. 

The calcite in modern brachiopod fibers consists of 200 to 400 nm sized units that are 

further substructured (chapter 4). In cross-section the calcite within an individual fiber 

is arranged to thin, 80 to 100 nm sized, layers (Figs. 2.4.3D, S2.4.4C).  

When developed in the shell, the columnar shell layer is formed of large, prism-

shaped entities, so called columns (Figs. 2.4.3E, S2.4.5). The columns are delineated 

from each other by organic membranes, have often irregular morphologies (Fig. S2.4.5) 

and interdigitate slightly (yellow/magenta stars in Fig. S2.4.5). The transition between 
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the columns and the fibers is smooth, especially between columns and longitudinally cut 

fibers (Fig. S2.4.5). It is most remarkable that calcite crystallites within the columns 

have rhombohedral morphology (Fig. 2.4.3F), resembling the morphology of inorganic 

calcite precipitated from solution. Goetz et al. 2009 and Schmahl et al. 2012 describe 

brachiopod column growth in detail and find that columns form through a competitive 

growth process (Fig. S2.4.5B). Competitive growth is based on the fact that the calcite 

c-axis is the fastest direction of growth and that only those crystals that have their c-

axes parallel to the main growth direction of the shell extend in size. Crystals that have 

their c-axes inclined to the plane of nucleation are hindered in growth as they abut with 

their neighbors. 

  Modern craniide and thecideide species form their shell with entirely different 

structural patterns (Figs. 2.4.4-6, S2.4.6). The craniids (Figs. 2.4.4, 2.4.5C-F, S2.4.6) 

secrete sequences of 300 to 500 nm thin layers consisting of tabular calcite crystallites, 

when imaged with SEM (Figs. 2.4.5C, 2.4.6C-F) or scanned with EBSD (Fig. 2.4.4C) in 

cross-section. The layers are very often curved (Figs. S2.4.6C-D). Their curvature is 

easily obtained as the constituting platelet-shaped crystallites (Fig. 2.4.4C) do not 

interdigitate, are only slightly misoriented to each other, as required by the curvature of 

the layer. In surface view individual crystals vary significantly in size (Figs. 2.4.5D-F) 

and have a spiral aspect (Figs. 2.4.5D-F, S2.4.6G).  

Modern thecideides form their shell of a multitude of differently sized and shaped 

mineral units (Figs. 2.4.6, 2.4.5A-B) that assemble the shell without any obvious 

regularity or assembly pattern (Fig. 2.4.6). We observe occasionally that mineral units 

interlink (white stars in Fig. 2.4.6D), however, their interlinkeage is dissimilar to the 

interdigitation of dendrites of the primary shell layer. 
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Figure 2.4.3. SEM images taken on microtome knife polished and etched (A, B, E, F) as well as 

on fractured surfaces (C, D) of the different shell layers of Liothyrella uva (A, B), Notosaria 

nigricans (C, D) and Gryphus vitreus (E, F). (A, B) primary shell layer, (C, D) fibrous shell 

layer, (E, F) columnar shell layer. Note the difference in submicronscale structure for the 

different shell layers: (B) irregularly shaped units comprise the primary layer, (D) sequences of 

layers (red stars in D) with nanosized entities form the fibers, (F) calcite crystals with 

rhombohedral morphologies constitute the columns. 
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Figure 2.4.4. SEM images (A, B) and EBSD band contrast measurement image (C) depicting 

the shell structure of modern Novocrania anomala. Shell calcite consists of a sequence of thin, 

curved calcite layers (Figs. 2.4.4A-B), the latter comprising strings of platelet-shaped calcite 

crystallites (Fig. 2.4.4C). 
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Figure 2.4.5. SEM images taken on microtome knife polished and etched (A, B) and fractured 

surfaces (C to F) of the shell of the thecideide species K. chathamensis (A, B) and the shell of 

the craniide specimen N. anomala (D to F). The shell of K. chathamensis consists of an 

assembly of interdigitating calcite units (B); N. anomala shells are formed of stacks of more or 

less parallel calcite layers (C). In surface view individual crystals within the layers exhibit a 

spiral internal structure (D, E, F). 
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Figure 2.4.6. Vertical deflection AFM images depicting the mineral units that comprise the shell 

of thecideide P. atlantica. There is no regularity in crystal morphology, neither crystal size (A 

to D). Neighboring mineral units/crystals might interdigitate (see white stars in D). 
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.4.5. Distribution of organic substance within the shells 

The distribution pattern of organic substance is not only distinct for representatives 

of the four calcite shell-forming brachiopod orders, it varies also for the different shell 

layers of species of Terebratulida and Rhynchonellida. Figures 2.4.7-10 and 

supplementary information Figures S2.4.7-11 highlight the mode of distribution of 

organic biopolymers within the shells. 

The fibrous shell layer of the Terebratulida and Rhynchonellida as well as the shell 

of N. anomala, Craniida, contain much organic substance. In these genera the organic 

substance is developed as an extracellular biopolymer matrix (Figs. 2.4.7B, 2.4.8, 

2.4.9C-E, S2.4.7A, S2.4.8B-C) that delineates neighboring fibers in Terebratulida, 

Rhynchonellida and neighloring layers in Craniida.  

The primary shell layer of Terebratulida and Rhynchonellida is devoid of organic 

substance (Figs. 2.4.7A, S2.4.7A). The columnar shell layer occludes biopolymers, here 

as well developed as membranes and delineating neighboring columns (Figs. 2.4.9A, 

S2.4.8A-B), however, as the columns are generally large in size and not as thin and 

platy as the fibers, there is in total less organic substance occluded into the columnar 

layer when compared to the fibrous layer. In cross-section (Figs. 2.4.8A-B, S2.4.7B-D, 

2.4.9A-B) organic membranes vary in thickness between 50 and 150 nm and appear to 

be compact (Figs. 2.4.8A-B, 2.4.9A-B). However, in surface views (Figs. 2.4.8C-F, 

S2.4.8A) it becomes visible that they have a rather porous fabric. Organic membranes 

delineate also calcite layers in the shell of N. anomala (Figs. 2.4.9C-E, S2.4.8B-C). 

Membrane thickness in craniide shells is well below 100 nm, on average it varies 

between 20 to 40 nm. In the shell of terebratulides, rhynchonellides and craniides the 

distribution of organic substance is patterned as it is an extracellular matrix, whereas in 

modern thecideides there is no obvious regularity in the distribution of organic 

substance within the shells (Figs. 2.4.10, S2.4.9 to S2.4.11). Organic material in the 

latter is developed predominantly as a network of fibrils (e.g. Fig. 2.4.10B, E, F) and, to 

a lesser extent, as thin membranes (Figs. 2.4.10A-D). Their mode of occlusion into and 

distribution within the shell is random (Figs. white arrows in S2.4.9-11). 
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Figure 2.4.7. SEM images of microtome knife polished and etched surfaces of the primary and 

fibrous shell layer of T. transvera (A) and the fibrous layer of L. uva (B). The primary layer 

does not occlude organic substance (A). An extracellular matrix is present within the fibrous 

layer formed of an assembly of organic membranes (yellow star in A, B), separating 

neighboring calcite fibers (white star in A, B). 
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Figure 2.4.8. SEM images taken on microtome knife polished and etched shell cross-sections 

visualizing biopolymer membranes (white stars in A to D) between fibers (yellow stars in A to 

D) and their fabric (C to F). Fig. 2.4.7C is modified after Griesshaber et al. 2017. 
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Figure 2.4.9. SEM images taken on microtome knife polished and etched shell cross-sections 

depicting membranes between columns (A, B) and delineating sequences of calcite layers (C to 

E). White stars in A, B, C, E point to organic membranes within the shells; the yellow star in C 

draws attention to the calcite between two organic linings. 
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Figure 2.4.10. SEM images taken on microtome knife polished and etched shell cross-sections 

visualizing the distribution pattern of organic substance in the thecideide shell. Thecideides 

occlude much organic substance into shell calcite. This is developed as thin membranes (white 

star in A, B and figures A to D) and as networks of fibrils (E, F). Note that both membranes and 

fibrils are very irregularly distributed within shell calcite. 
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2.4.6. The nanometre and sub-micrometre scale organization of calcite 

and biopolymers within rhynchonellide and terebratulide fibers 

Understanding how diagenetic overprint influences microstructural archival data is 

of fundamental importance in palaeoecological and palaeoclimatological studies 

(Immenhauser et al. 2016). Of particular interest is the identification of a low degree of 

overprint. Severe overprint is easily recognized due to the more or less complete 

destruction of the hard tissue microstructure and texture and shell recrystallization (e.g. 

Figs. 10C, 11E in Casella et al. 2018). Previous studies have shown that identification 

of an altered nanostructure is of immense importance. Structural characteristics might 

be preserved on the micrometre scale, however, the nanostructure of the hard tissue can 

be completely reset by alteration (Fig. 2.4.4C in Casella et al. 2018). 

As the fibrous shell layer of rhynchonellide and terebratulide brachiopods is 

regarded to be appropriate archival material for environment reconstruction, we focused 

on the nano- and submicrometre scale characterization of the fibers (Figs. 2.4.11-14, 

S2.4.12-15). Modern brachiopod fibers are hierarchical composites where biopolymers 

and calcite are interlinked on at least four scale levels: (i) the individual fiber, (ii) calcite 

layers within a fiber, (iii) strings of calcite nanocrystals forming a calcite layer, (iv) the 

nanoparticulate calcite crystal. Simonet Roda et al. 2019a, 2019b investigated in great 

detail fiber secretion and fiber organization for the modern terebratulide Magellania 

venosa and showed that individual fibers are not fully sheathed by an organic 

membrane, as described previously. Only one surface of a fiber is covered by an organic 

membrane, the proximal surface of the fiber (white stars in Fig. 2.4.11C-D, and Simonet 

Roda et al. 2019a, 2019b). The specific mode of fiber organization in the shell layer 

creates the impression that an individual fiber is fully sheathed by organic substance. At 

fiber secretion mantle epithelial cells are in direct contact with the calcite of the forming 

fiber (Simonet Roda 2019b). Calcite nucleation for new fiber formation starts at the 

proximal surface of the proximal membrane of a previously secreted fiber (yellow 

arrows in Fig. 2.4.11A). Ongoing fiber growth is given by the successive accretion of 

thin calcite layers (Fig. S2.4.12) to previous layers within the fiber (see the striation of 

all fibers in Fig. 2.4.11A, sketch shown in Fig. 2.4.11B). Fiber growth is terminated 

with the secretion of a membrane (white star in Fig. 2.4.11C-E) along the proximal 

surface of the fiber. Modern rhynchonellide and terebratulid fiber calcite is not devoid 

of organic substance. As the AFM image in Figure 2.4.11F highlights, the calcite of a 

fiber occludes a very thin network of organic fibrils. These are placed between the thin 

calcite layers that constitute a fiber.  

When etched at a pH of 6.5 with an 0.1 M HEPES solution we observe for many 

terebratullide and rhynchonellide species a structural sub-division of fibers into a 

porous/spongy apical (white dots in Fig. 2.4.12A, C-G) and a dense proximal region 

(red dots in Fig. 2.4.12A, C-E, white arrows in Fig. 2.4.12B). Obviously material that 

etches easily (ACC or remains of specific biopolymers) is etched away; this material is 

predominantly concentrated at the apical region of the fiber. 

The calcite of the fibers consists of 200 to 400 nm sized calcite crystallites, that 

often show rhombohedral morphologies (Figs. 2.4.13A-B, S2.4.13, S2.4.14). These 

crystallites are further structured. STEM images of Figure 2.4.13D-F made on 60 to 80 

nm thin microtome cuts of shell calcite (Fig. 2.4.13C) visualize, that the fibers are 

nanostructured; see the patchiness within individual fibers. The calcite of a fiber 
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consists of 50 to 80 nm thin layers (yellow star and black arrows in Fig. 2.4.14A, yellow 

stars in Fig. 2.4.14B-C), that are formed of 40 to 60 nm sized calcite crystallites (yellow 

arrows in Fig. 2.4.14A-C). It is very important to note that SE images shown in Figure 

2.4.14A-B are taken on fractured and not on etched surfaces. Thus Fig. 2.4.14A depicts 

the nanometric particles that comprise the calcite of the fibers. Calcite crystalites of both 

the nanometric particles as well as of the thin layers that constitute the fibers is highly 

co-oriented (Fig. S8C in Simonet Roda et al. 2019b). Hence, the occluded organic 

network does not cause much or any misorientation between the crystallites in the fiber. 

Modern thecideides and rhynchonellides/terebratulides differ significantly in 

mineral unit morphology, presence of extracellular matrix and microstructure. Even 

though, as Figure S2.4.15 shows, the submicrometre scale structure of crystallites that 

constitute the mineral units is very similar for the species of the two taxa. 
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Figure 2.4.11. Transverse cut through calcite fibers of Notosaria nigricans (A) and Magellania 

venosa (C to F). (A): SEM image taken on a microtome polished and etched surface, (B): sketch 

depicting successive growth of the fibers by addition of descrete calcite layers, modified after 

Simonet Roda et al. 2019. See the striation within the fibers (Fig. 2.4.11A); this indicates the 

presence of calcite layers in individual fibers. Insert in (A): AFM image indicating the start of 

fiber calcite nucleation and growth; this image is shown in full size in Fig. 2.4.12D. Fig. 

2.4.11C-11D are lateral deflection AFM images depicting in high-resolution neighboring fibers, 

the calcite (green star) and the proximal, fiber growth terminating, membrane (white star) on the 

proximal surface of the fiber. Fig. 2.4.11C-D visualize that the apical surface of a fiber is not 

covered by an organic membrane, in contrast to its basal, proximal surface. (E): vertical 

deflection AFM image depicting the extracellular matrix within the fibrous shell layer, F: lateral 
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deflection AFM image demonstrating the presence of a thin organic network within the fibers 

(white arrows in F, figure modified after Casella et al. 2019). White stars in C, D, E point to 

organic membranes, green stars in C, D, E draw attention to the calcite.  

 

 
 

Figure 2.4.12. When etched at a pH of 6.5 with an 0.1 M HEPES solution the calcite within 

fibers exhibits a porous, spongy, apical (white dots in A, C, D, E, F, G, white arrows in B) and a 

dense, proximal (red dots in A, C, D, E) region. (A): lateral deflection AFM image; (B, D): 

vertical deflection AFM image; figures C, E, F, G: SEM images of microtome knife polished 

and etched surfaces. White stars in A, B, C, D, E, F point to the organic membrane at the 

proximal surface of the fiber. 



165 

 

. 

 
 

Figure 2.4.13. Submicrometre to nanometre scale structuring of calcite fibers visualized with 

SEM images of microtome polished and etched surfaces (A, B) and STEM imaging of 60 to 80 

nm thin sections (C) cut of the calcite of the fibers (D, E, F). The white star in A, B, D, E, F 

points to the organic membrane between adjacent fibers. Calcite fibers consist of 200-400 nm 

sized crystals (A, B); very striking, these often have rhombohedral morphologies (yellow 

arrows in A, B). The patchiness visualized with STEM imaging (D, E, F) indicates that the 

calcite of brachiopod fibers is structured further and consists of about 50 to 100 nm sized well 

aligned crystallites. Red stars in D, E, F indicate individual fibers. 
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Figure 2.4.14. The nanoscale structure of a cross-sectioned calcite fiber visualized with SEM 

images of fractured surfaces (A, B) and a vertical deflection AFM image (C). Well visible are 

the, in cross-section, 80 to 100 nm sized layers (black arrows in A, yellow stars in B, C) that 

form a fiber and the 50 to 100 nm sized crystallites that constitute a calcite layer (B and C, 

yellow arrows in A). It is important to note that the SEM images shown in A and B are taken on 

fractured and not on etched surfaces, thus the imaged surfaces are not modified by etching or 

other chemical means at sample preparation. 
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2.4.7. Modes of calcite assembly in modern brachiopod shells 

Shell calcite assembly patterns for representatives of the four extant calcite 

secreting brachiopod orders are given in Figs. 2.4.15-19, S2.4.16-19.  

Modern Rhynchonellida and Terebratulida produce three calcite material fabrics 

which have similar textures, however, distinct crystal morphologies (Figs. 2.4.15-17) 

and calcite co-orientation strength (Figs. 2.4.21 and 2.4.22). It has been demonstrated in 

previous studies (Goetz et al. 2011, Schmahl et al. 2012) and as shown in Figs. 2.4.15A-

C and 2.4.16A that the primary shell layer of modern Rhynchonellida and Terebratulida 

is not nanogranular. The primary shell layer is formed of an array of concave/convex 

calcite grains (yellow stars in Fig. 2.4.15A-B and Goetz et al. 2011) that have dendritic 

morphologies (Fig. 2.4.3B).  These interdigitate strongly (Fig. 2.4.15C) and generate 

recesses and protrusions of abutting crystals without any cavities in or between the 

dendrites. The interface topology of these mineral units ranges from a few tens of 

nanometres to a few tens of micrometres. This gives the nanoscale structure to the 

material fabric. The dendritic grains show a spread of crystallographic orientation of 

several degrees and can thus be referred to as being mesocrystals; individual 

mesocrystals have sizes in one dimension of 20 or even more micrometres (Fig. 

2.4.15C), thus are not nanometre sized grains. The preferred crystallographic orientation 

of the primary shell layer is very similar to that of the adjacent fibrous shell layer (Fig. 

2.4.16), even though these two layers are formed of biocrystals with very different 

crystal morphologies and grain boundary topologies. Neither with SEM nor TEM could 

we identify organic substance (membranes, network of fibrils) between the mesocrystals 

of the primary shell layer.  

The primary shell layer is developed in all modern rhynchonellide and terebratulide 

shells, accordingly, it is very important for the animal, irrespective of differences in 

environments the different brachiopods live in. The primary shell layer together with the 

periostracum is the protective cap of inner shell layers and of the soft tissue against 

external impact. The interlocked nature of the dendrites effects the high hardness 

(Vickers hardness) of the material that is about twice as hard as non-biological calcite 

(Griesshaber et al. 2007, Schmahl et al. 2008). Just for comparison, the hardness of the 

fibrous shell layer is significantly lower and is, more or less, that of calcite precipitated 

from solution (Tretsch 1950). Primary shell layer material with its specific structure 

forms also the tip of the two valves (Fig. S2.4.3A). 

The fibrous layer of modern rhynchonellide and terebratulide shells is fabricated to 

be pliant and tough. These properties are obtained with the composite nature of the 

fibers, their hierarchy and their specific mode of organization. Individual fibers are 

hierarchical mesocrystal composites and vary in length, 3D dimension and 3D fiber 

morphology (Ye et al. 2018a, 2018b). Fibers of all modern terebratulid and 

rhynchonellide shells have one concave, proximal, and three convex, apical, surfaces, 

respectively. The specific morphology of fibers allows their staggered arrangement and 

facilitates their interlocked packing (Figs. 2.4.1B, 2.4.3C). The internal organization of 

calcite within a fiber (Fig. 2.4.14) evokes their conchoidal mode of fracture. A further, 

unique, feature of brachiopod fibers is that they can bend and retain crystallographic 

orientation for calcite for the entire length of the fiber (Figs. 2.4.15D, S2.4.4A). Thus, 

even though the morphological orientation of the fiber changes, calcite lattice 

orientation remains coherent. Often morphological fiber axis and orientation of calcite 

c-axes that constitute the fibers are different. Neighboring fibers are generally co-
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oriented due to stacking formation (see similarity in color in Fig. 2.4.15D: mainly green 

colors on the left and mainly blue colors on the right hand side of the image, 

respectively). Even though, differing significantly in crystal morphology and 

microstructure relative to the primary shell layer, the fibrous shell layer as well has a 

strong axial fiber texture (compare EBSD maps and pole figures of the different shell 

layers in Figs. 2.4.15, S2.4.16).  

The columnar shell layer was investigated for Gryphus vitreus and Liothyrella 

neozelanica (Figs. 2.4.17, S2.4.16B, S2.4.17). Similar to the primary and the fibrous 

shell layer, the columnar shell layer has also a strong axial fiber texture (see the pole 

figures in Figs. 17, S16A, S17), although the morphology of the columns is distinct to 

that of the fibers and of the dendrites. Calcite within individual columns is very co-

oriented, it is almost single crystalline; MUD values scatter between 650 and 720 (Fig. 

2.4.17). However, even though very similar in microstructure and texture, we find one 

difference between the columnar layers of G. vitreus and that of L. neozelanica. In L. 

neozelanica shells there is always an alternation between columns and fibers, generally, 

longitudinally cut fibers (Fig. 2.4.17B, Griesshaber et al. 2009, Goetz et al. 2009. This 

is never observed for G. vitreus (Figs. 2.4.17A, S2.4.17). The ratio between the extent 

of the fibrous and the columnar shell layer can vary significantly for G. vitreus, even in 

the same specimen (Figs. S2.4.17A, S2.4.17B). Occasionally the fibrous layer might 

dominate the extent of the cross-section of the shell (Fig. S2.4.17B) with the columns 

being very little developed (Fig. S2.4.17B). The transition between fibers and columns 

is very smooth for both L. neozelanica (Fig. 2.4.17) as well as G. vitreus (Fig. 

S2.4.17B). The calcite of the columns nucleates topotactically (Fig. 2.4.17C) onto the 

membrane lining on the proximal surface of a fiber. 

The microstructure and texture of representatives of extant calcite shelled 

brachiopod orders that live cemented to substrate (Thecideida Figs. 2.4.18, S2.4.18; 

Craniida Fig. 2.4.19) is distinct to what we find for the Terebratulida and 

Rhynchonellida. Structural order is more or less absent for the shells of both taxa, 

especially for the shells of species of Craniida. There is, however, one difference 

between the shells of the two taxa. While modern Thecideida form their shells of 

crystals having a large diversity in shape and size, the Craniida build their shells of 

mainly one mineral unit type, thin calcite platelets (Fig. 2.4.19). These string and form 

thin layers; arrays of layers form the shell. However, neither in individual layers, nor for 

arrays of layers do we observe structural order.  

Williams and Wright (1970), England et al. (2007), Perez-Huerta et al. (2007) 

addressed the platelets in the shell of Craniida as ‘semi-nacre’. Even though tablet 

shaped, Novocrania anomala platelets have nothing to do with nacre tablets or/and 

nacreous microstructures of mollusc shells (Fig. S2.4.19). Neither the carbonate phase, 

nor the dimension of the platelets, nor crystal co-orientation strength, nor the 

microstructure nor the texture of craniide shells can be compared to the nacre of 

bivalves, gastropods, cephalopods (Fig. S2.4.19). Nacreous assemblies in molluscs are 

formed of aragonite, have sheeted or columnar microstructure, high aragonite co-

orientation strengths (e.g. MUD values of 185, 130, 102 compared to an MUD of 15 in 

N. anomala) and a strong fiber texture (Fig. S2.4.19 and Griesshaber et al. 2013, Casella 

et al. 2018, Peters et al. 2020). Even though formed of platelets, we do not find the latter 

characteristics for the shell of N. anomala. The use of platelets in craniide and mollusc 

shells should be rather regarded as biological convergence, such as for example the 

development of fibers for shell construction in brachiopod and bivalve shells. 
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Figure 2.4.15. The microstructure (EBSD maps) and texture (pole figures) of the primary and 

fibrous shell layer of terebratulid brachiopods. The primary shell layer of modern terebratulid 

and rhynchonellide brachiopods is not nanocrystalline, in contrast, it consists of large, several 

micrometre sized, units that are highly interdigitated in 3D (A, B, C). The primary shell layer 

has a fractal-like, dendritic, microstructure. (C) Three interveawed dendritic crystals with 

slightly diferent orientations; see the pole figure in (C). The fibrous shell layer consists of, more 

or less, parallel arrays of fibers. These arrays change often orientation; accordingly, in 2D views 

the fibers are then cut longitudinally or transversely (D). Brachiopod fibers can be curved 

(lefthand-side of figure 2.4.15D), often at punctae. The used color-code for A and E is given in 

Fig. S2.4.16, for B, C, D, F in Fig. S2.4.17. 
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Figure 2.4.16. EBSD band contrast and color-coded orientation measurement on a cross-section 

through the valve of Magasella sanguinea. (A) shown in color are dendritic crystals of the 

primary shell layer and their orientation; (B) shown in color orientation of adjacent fibers; (C) 

orientation of fibers close to inner shell margin. Pole figures in A, B, C give the texture of those 

shell portions that are highlighted in color. Note that there is no difference in calcite orientation 

between the primary and fibrous shell layers even though crystal morphologies (dendrites, 

fibers) comprising the two layers are very distinct. Note in (A) tens of micrometre large 

dendritic units that form the primary shell layer. The used color-code is given in Fig. S2.4.17. 
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Figure 2.4.17. Columnar shell layer microstructure (EBSD maps) and texture (pole figures) 

deduced from EBSD measurements. Gryphus vitreus (A, B) and Liothyrella neozelanica (C) 

have a columnar shell layer consisting of large irregularly shaped, prism-like units. The columns 

nucleate epitactically on the proximal membrane covering the basal surface of a fiber; white 

circle in (B). In L. neozelanica we find an alternation between columns and fibers (C), a feature 

that is not present in the shell of G. vitreus (A), see also Goetz et al. 2009, Ye et al. 2018a. For 

both taxa c- and a*-axes are highly co-oriented (see the pole figures and the very high MUD 

values); an axial texture prevails: all c-axes of a map point to predominantly one direction, 

while a-axes orientations scatter on a great circle. Numbers given in black in the columns are 

MUD values; MUD values are similar to those of single crystalline calcite grown from solution 

(Yin et al. 2019). The used color-codes are given in supplementary information figures S2.4.16 

and S2.4.17. For A and E the color code is in Fig. S2.4.16, for B, C, D, F and in Fig. S2.4.17, 

respectively. The used color-code for A and B is given in Fig. S2.4.17, C in Fig. S2.4.16. 
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Figure 2.4.18. Microstructure and texture of shell calcite of the thecideide brachiopod 

Pajaudina atlantica, deduced from EBSD measurements. It is well visible that modern 

thecideide shells consist of a multitude of irregularly shaped, sized and assembled calcite units 

(A, B, C). These have a very little co-orientation strength, thus, the shell has a weak texture (see 

pole figures). The color-code for A and C is given in Fig. S2.4.17, for B in Fig. S2.4.16. 
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Figure 2.4.19. Microstructure and texture of shell calcite of modern N. anomala deduced from 

EBSD measurements. Comparable to the texture of the modern thecideide brachiopod P. 

atlantica, the texture of N. anomala is also very weak, calcite crystallites are very little co-

oriented. However, crystallite/mineral unit morphology is not as diverse/random as it is the case 

for the shell of P. atlantica. The color-code for the figure is given in Fig. S2.4.16. 
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2.4.8. Characteristics of the textures 

This review is based on more than 100 EBSD measurements (Table 2.4.1); 

accordingly, we can attempt to deduce texture patterns for shell calcite of the 

investigated representatives of Terebratullida, Rhynchonelida, Thecideida and Craniida 

(Figs. 2.4.20-22).  

EBSD links the molecular with the macro scale (Figs. 2.4.20A); it connects the 

orientation of planes formed by a particular ion in the crystal (Fig. 2.4.20B) with the 

macro scale architecture of the skeleton (Fig. 2.4.20A, C). This holds for the layered 

shells of Terebratulida and Rhynchonellida where we find a sharp, axial texture, 

irrespective if an EBSD measurement scans over (i) different or (ii) just one layer in the 

shell. For the shells of Rhynchonellida and Terebratulida the texture of the valves is 

such that calcite c-axes are more or less perpendicular to the surface of the valves and 

rotate with their curvature (Fig. 2.4.20A and Schmahl et al. 2004). It is known by now 

that this is an intrinsic feature of carbonate shells (brachiopods, molluscs) and teeth. The 

valves have an uniaxial fiber texture, while the hinge shows a bimodal distribution 

pattern of calcite c-axes (Fig. 2.4.20C and Griesshaber et al. 2007). 

Is the texture of terebratulide species with three mineralized layers (L. neozelanica, 

G. vitreus) compared to each other (Fig. 2.4.21A-C), we find the following 

characteristics: (i) the columnar layer has the strongest calcite co-orientation strength, 

thus the strongest texture and is followed (ii) in calcite co-orientation strength by the 

primary shell layer; (iii) the fibrous shell has the weakest texture, the least co-

orientation strength of calcite crystallites, when compared to the columnar and to the 

primary shell layer, respectively. For both, G. vitreus and L. neozelanica we 

investigated six specimens each and show in Fig. 2.4.21 pole figures and MUD values 

for two specimens per taxon. We observed always that the calcite in the shell of G. 

vitreus has a stronger texture (for all shell layers a higher MUD value, Figs. 2.4.21A-C) 

when compared with the texture strength of L. neozelanica shells (lower MUD values 

for all shell layers, Figs. 2.4.21A-C). 

For the shells of Craniida and Thecideida texture strength decreases significantly 

(Figs. 2.4.21D-E); for both taxa we investigated several specimens but show per taxon 

two examples. The pole figures show that the thecideide shells have an axial texture as 

well, similar to terebratulide and rhynconellide taxa, however, calcite co-orientation 

strength is very low (see MUD values in Fig. 2.4.21D), thus the shell has a weak texture 

(compare pole figures and MUD values of Fig. 2.4.21A-D). The craniide species N. 

anomala forms its shell with the least textured calcite (Fig. 2.4.21E, see MUD values), 

even though, the calcite does not have a completely random distribution, there is still in 

the shell some overall pattern of calcite orientation. 
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Figure 2.4.20. Pattern of calcite c- and a*-axes orientation measured on a cross-section through 

the median plane of both valves of the terebratulide species Megerlia truncata. Calcite c-axes 

are parallel to the radius of the curvature of the shell, perpendicular to the shell surface (A and 

Schmahl et al. 2004) and rotate with the curvature of the shell vault (B and Griesshaber et al. 

2007). The valves have a sharp axial fiber texture, while at the hinge a bimodal distribution of c-

axes is present (B and Griesshaber et al. 2007).  
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Figure 2.4.21. Comparison between terebratulide, thecideide and craniide shell texture. MUD 

values give calcite co-orientation strengths; for definition see the methods section. At a half 

width of 5 and a cluster size of 3 an MUD of 1 indicates random crystal orientation, while an 

MUD above 700 indicates more or less single crystalinity. For G. vitreus and L. neozelanica we 

show the texture of two specimens, for the Tecideida and Craniida for three specimens each. We 

can deduce the following: (i) relative to the terebratulide species, calcite crystals in the shells of 

the thecideide and the craniide species are significantly less co-aligned, (ii) the least co-aligned 

is the calcite in craniid shells. (iii) There is a huge difference in calcite co-orientation strength 

between L. neozelanica and G. vitreus. (iv) For both species the fibrous layer has the least 

calcite co-orientation strength. (v) Calcite co-orientation is highest for the columnar layer, but 

(vi) it is also high for the primary shell layer. 
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Figure 2.4.22 compares texture strength of the primary and the fibrous shell layer 

for taxa that form their shell of only two mineralized layers. We observe that (i) for the 

same specimen calcite in the primary shell layer is always more co-oriented, has always 

the strongest texture, relative to the fibrous shell layer. (ii) texture strength differs for 

the different species, for both the primary and the fibrous shell layers. The largest 

difference one can observe for Calloria inconspicua (MUD 370 and 65) and Magasella 

sanguinea (MUD 47 and 27) (Fig. 2.4.22). Both species live in the same environment; 

Doubtful Sound, New Zealand. 

 

 

Figure 2.4.22. Comparison in crystal orientation strength between species with a primary and a 

fibrous shell layer. We see the following: (i) calcite co-orientation in the primary shell layer is 
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always increased, relative to the fibrous layer. (ii) There is a large difference in calcite co-

orientation strength for the different modern terebratulide and rhynchonellide taxa. 

2.4.9. Are thecideide shells reliable archives for present and past 

environment reconstruction ? 

Paleoclimate and paleoenvironment reconstructions are based on analysis of 

geochemical proxies performed on archives such as biogenic hard tissues and cements 

(e.g. Brand et al. 2011). Shells of Terebratulida and Rhynchonellida are one of the most 

used biogenic structural materials for paleoenvironment reconstruction as they cover 

almost the entire geologic record, are wide-spread in many and distinct marine habitats 

and, most of them, secrete low-Mg calcite shells (Al-Aasm and Veizer 1982, Veizer et 

al. 1999, Brand et al. 2003, Brand et al. 2011, Auclair et al. 2003, Parkinson et al. 2005, 

Von Allmen et al. 2010, Payne and Clapham 2012; Cross et al. 2015, Immenhauser et 

al. 2015, 2016, Garbelli et al., 2012, Garbelli et al. 2014, Ye et al. 2019).  

Thecideide brachiopods are the last brachiopod order to appear in the fossil record 

(e.g. Pajaud 1970, Grant 1972, Williams 1973, MacKinnon 1973, Baker 1990, Baker 

2006, Lüter 2005, Cohen 2007, Carlson 2016). In contrast to Rhynchonellida and 

Terebratulida, thecideides are small-bodied, thick-shelled animals that live in tropical 

and warm seas in cryptic habitats cemented to rocky substrates (e.g. Rudwick 1970, 

Baker 1990, Richardson 1997, Carlson 1995, 2007, Nebelsick et al. 2011, Simonet 

Roda et al. 2020). Williams and co-workers (Williams 1973, 1997, Baker 2006, 

Williams and Carlson 2007) addressed thecideide shell microstructure as being similar 

to the primary layer microstructure of Rhynchonellida and Terebratulida. Would this be 

the case, then, thecideide shells could not be considered to be reliable archives, as 

geochemical work demonstrated that the primary shell layer of rhynchonellide and 

terebratulide shells is not precipitated in equilibrium with ambient seawater (Carpenter 

and Lohmann 1991, Carpenter and Lohmann 1995, Parkinson et al. 2005, Brand et al. 

2011, Rollion-Bard et al. 2019). In this review we focus on this issue and complement 

our microstructural work (chapters 1 to 5) with geochemical analyses obtained on a 

terebratulide (M. venosa) and a thecideide (P. atlantica) species (Figs. S2.4.20-21 and 

Milner Garcia 2018). 

For terebratulide M. venosa, the δ
18

O signature of the primary shell layer is 

strongly depleted in 
18

O relative to the equilibrium field (Fig. S2.4.20B), a feature 

attributed to kinetic and physiological effects (Auclair et al. 2003). Towards inner shell 

surfaces δ
18

O values become heavier, at innermost shell sections, formed of fibers, δ
18

O 

values are close or within the equilibrium field (Fig. S2.4.20B). Water temperature at 

sampling location of M. venosa is 3.5°C and accounts for a δ
18

O variation of 1‰. 

Accordingly, the observed variation in δ
18

O for the fibrous layer of M. venosa is due to 

physiological and kinetic effects (see also discussions in Yamamoto et al. 2010, 

Yamamoto et al. 2013, Taganayaki et al. 2013, Bajnai et al. 2018, Brand et al. 2019, 

Rollion-Bard et al, 2019, Ye et al. 2019).  For thecideide P. atlantica, δ
18

O results 

diverge from what we find for M. venosa (Fig. S2.4.20A). Furthermore, we find for P. 

atlantica differences in δ
18

O between ventral and dorsal valves (Fig. S2.4.20A). In the 

ventral valve δ
18

O values fluctuate close to the field of equilibrium with seawater, while 

δ
18

O values of the dorsal valve scatter fully within the range of values that span the 

equilibrium field (Fig. S2.4.20A). Water temperature at sampling of P. atlantica was 

3.7 °C and accounts for a variability in δ
18

O of 58 to 77% of the overall shell δ
18

O 

value. The remaining can be attributed to kinetic effects. For transects through the 
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ventral valve we find that outer shell layers of P. atlantica are depleted in 
18

O relative to 

equilibrium values, while inner shell portions are secreted in equilibrium with ambient 

seawater (Fig. S2.4.20A). As the overall variability across the transect through the valve 

is not in agreement with the temperature range of 3.7°C, we can assume that kinetic 

effects affect mainly outer and to a lesser degree inner shell sections; a result that is in 

concert with δ
18

O measurements of Brand et al. 2003. Hence, inner shell calcite of P. 

atlantica incorporates oxygen isotopes, more or less, in equilibrium with ambient 

seawater. 

Mg concentration across shell transects of terebratulide M. venosa follows a 

characteristic trend: high Mg-contents in the primary shell layer that decrease in the 

fibrous layer, however, increase again at innermost shell surfaces (Fig. S2.4.21); a well-

known trend described already previously (e.g. Griesshaber et al. 2007, Romanin et al. 

2018, Rollion-Bard et al. 2019). Mg content in thecideide P. atlantica (Fig. S2.4.21) is 

also structured and in concentration distinct to what we observe for M. venosa shells: (i) 

the Mg/Ca ratio in P. atlantica is significantly higher relative to values that we find for 

M. venosa (Fig. S2.4.21), (ii) within the outer half of the shell (in cross-section) Mg/Ca 

ratios fluctuate between 50 to 90 mmol/mol, while Mg contents increases within the 

inner half of the shell and varies between 80 to 120 mmol/mol (Fig. S2.4.21).  

Sr distribution in M. venosa resembles that of magnesium (Fig. S2.4.21). As Sr/Ca 

values are negatively correlated with oxygen isotope compositions, an influence of 

precipitation rate is indicated (this study and Ullman et al, 2017; Romanin et al., 2018; 

Rollion-Bard et al, 2019). Indeed, kinetic effects tend to decrease the value of δ
18

O in 

carbanate (McConnaughey, 1989; Zeebe and Wolf-Gladrow, 2001; Beck et al, 2005; 

Rollion-Bard et al, 2011), while an increase in precipitation rate tends to rise the 

incorporation of Sr into the calcite lattice (Gabitov and Watson, 2006; DePaolo, 2011). 

In P. atlantica Sr is homogenous within the shell, Sr/Ca ratios scatter between 1.9 and 

2.1 mmol/mol across the cross-section through the shell (Fig. S2.4.21 and for other 

thecideides Lowenstam 1961; Delaney et al. 1989; Carpenter and Lohmann 1991; 

Carpenter and Lohmann 1993, Brand et al. 2003).  

Li distribution in the shell of M. venosa (Fig. S2.4.21) is comparable to that of Sr. 

The primary layer has the highest values and is followed by a drop in Li contents in the 

fibrous shell layer (this study and Rollion-Bard et al, 2019). In P. atlantica as well Li 

contents are higher in outer, relative to inner portions, however, the decrease in P. 

atlantica is significantly less marked, when compared to the trend in Li contents in M. 

venosa.  

Na concentration distribution in M. venosa cross-sections through the valve follows 

closely the trend of Li (Fig. S2.4.21). The primary shell layer is enriched in Na, relative 

to inner shell regions. Such a trend is observable for Na contents along cross-sections 

through P. atlantica valves as well (Fig. 2.4.21), however, significantly less 

pronounced. 

 

2.4.10. Concluding summary  

In chapters one to five we present: (i) the diversity of calcite crystal assembly 

solutions utilized for shell formation by representatives of extant calcite secreting 
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brachiopod orders and (ii) summarize the current knowledge on brachiopod shell 

structure, microstructure and texture.  

In this chapter we place our findings in a broader perspective and discuss the 

following: (i) adaptation of microstructure and texture to environments, (ii) advantage 

gained from a composite nature and hierarchical architecture, (iii) recognition of 

determinants of microstructure fabrication, (iv) illustration of the stand-alone 

microstructure of modern thecideides. 

 Microstructure, texture, life-style and environment 

Modern, calcite secreting brachiopods mineralize and grow continuously; valves 

grow in both, length and thickness (Williams 1966, Rosenberg et al. 1988, Baumgarten 

et al. 2014).  

The shells of all extant calcite secreting brachiopod species consist of two, 

differently sized valves. Size difference between valves is most pronounced for species 

of cementing taxa (Craniida, Thecideida), while for species of taxa living attached to 

substrate by a pedicle (Terebratullida, Rhynchonellida) the difference in ventral and 

dorsal valve dimensions is less marked. 

Thecideida and Craniida live in sheltered/cryptic habitats, in contrast to 

Terebratulida and Rhynchonellida, that live predominantly in open marine 

environments. Shells of cementing taxa are small (below 1.5 x 1.5 cm), especially the 

shells of the Thecideida. The latter form 2 to 3 mm thick shells with dimensions well 

below 1 x 1 cm. Shell size of not cementing taxa is significantly larger. For terebratulide 

and rhynchonellide adult animals shell sizes range from about 1 to about 10 cm. E. g. 

Magellania venosa has the highest growth performance recorded for a rynchonelliform 

brachiopod (Baumgarten et al. 2014), shell sizes reach easily 10 cm in length. 

Nonetheless, most modern terebratulide and rhynchonellide species secrete 1 to 3 mm 

thick shells in the size range of up to 5 to 6 cm in length. Thus shell size variation for 

taxa that live in open marine water and that are attached to substrate by a pedicle is 

large, in contrast to taxa that live in cryptic habitats and are cemented to substrate.  

As shown in Figures 2.4.15-18 and 2.4.21 there are major differences in shell 

microstructure and texture between taxa that live in cryptic habitats and taxa that live in 

open marine environments. Species that live cemented to substrate form their shell of 

little co-ordinated, almost untextured calcite (Figs. 2.4.21D-E), while those that attach 

to substrate by a pedicle secrete shells with well to even highly textured calcite (Fig. 

2.4.21A-C). The above described variation is the only adaptation to environmental 

conditions that we can deduce from our microstructure and texture data. Peck and 

Harper (2010) investigated size variations of Terebratulida and Rhynchonellida with 

latitude and depth. For Terebratulida the study could establish a relationship between 

shell size and environmental conditions (latitude and depth), while for Rhynchonellida 

trends between these characteristics were not observable.  

However, when focussing only on fibers, characteristic relationships emerge 

between structural features of the fibers and environmental and ontogenetic conditions 

for both Terebratulida as well as Rhynchonellida (Ye et al. 2018a, b). Ye et al. 

investigated for adult specimens of six modern brachiopod species living in three 

different habitats (Antarctica, the Pacific at New Zealand, Mediterranean Sea) fiber 

convexity, roundness and length and could establish the following: (i) lack of difference 
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in morphometric characteristics between fibers in ventral and dorsal valves. 

Accordingly, a specific brachiopod secretes only one type of fiber. (ii) connection 

between morphological characteristics of fibers and ontogenetic development and (iii) 

link between fiber morphometry and environmental conditions. The latter is present 

when the comparison is made between species of similar genus that live in water with 

similar salinity but different temperature and carbonate saturation state. Accordingly, 

modern terebratulide and rhynchonellide brachiopods respond to changes in temperature 

and carbonate saturation state but tolerate variations in salinity. 

Composite nature and hierarchical architecture 

Calcium and hydrogen carbonate is abundant in seawater and is readily available to 

marine organisms. However, the pure carbonate phases, calcite and aragonite, are 

useless as shell construction materials as they are very brittle and break easily. For 

obtaining a protective and functional hard tissue the biomineral has to be functionalized, 

already at the very start of its formation.  

Organisms employ a bottom-up construction process for fabrication of their hard 

tissues. As secreted by cells, the first-formed entities have to be small, even though the 

final product, the hard tissue, needs to be macro-sized. This is reached by utilizing 

hierarchical assembly principles (e.g. Dunlop and Fratzl 2010, Staudart 2012, Wegst et al. 

2014) and fabricating biomaterials with hierarchical architectures. E.g. for modern 

rhynchonellide and terebratulide fibrous shell layers we find at least 5 levels of 

hierarchy: nanometric calcite crystals (Fig. 2.4.14A), 50 to 100 nm sized calcite layers 

within fibers (Figs. 2.4.14B-C, 2.4.11A and S2.4.12), individual fibers (Figs. 2.4.11C, 

S2.4.4A), stacks of parallel fibers (Fig. S2.4.4) the fibrous layer of the shell layer (Fig. 

S2.4.1). The entire shell would then be the sixth level of hierarchy. 

For being protective and functional, the biomaterial has to be functionalized. This 

occurs, in general, with the formation of a composite hard tissue. Very many, but not all 

carbonate biological hard tissues (e.g. the primary shell layer of Rhynchonellida and 

Terebratulida) are composites of mineral and biopolymer components, and this, on all 

length scales of the hard tissue; from organic membrane bound and mineral/ion filled 

vesicles to the macro-scale level of the shell. The latter consists of layers formed of a 

mineral component that occludes an extracellular matrix (e.g. the fibrous and columnar 

shell layers of Rhynchonelliformea or the calcite layers within the shell of Craniida). 

The amount of organic substance occluded into the mineral depends on the specific 

requirement to the composite hard tissue. E. g. Lingula anatina burries itself quickly 

with its two valves into the sediment, thus it needs very flexible but resilient valves. 

Organic matter content of L. anatina valves varies between 30 to 32 wt. % (this study). 

In contrast, organic substance content of G. vitreus and L. neozelanica is between 2 to 3 

wt. % (this study).  

On rare occasions, it is not the composite nature that enhances the overall material 

properties of the hard tissue, it is the microstructure. We find this for the primary shell 

layer of rhynchonellide and terebratulid brachiopods. The strongly and tightly 

interdigitating dendrites form the specific material property characteristics of this layer, 

the nanoscale topology of grain boundaries, the jigsaw topology of the polycrystalline 

assembly. The specific microstructure gives the high microhardness of this shell layer, 

relative to that of the significantly softer adjacent fibrous layer (Griesshaber et al. 2007) 

and increases its abrasion resistivity.  
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When the biologically secreted mineral is functionalized with biopolymers the 

organic components become occluded into the mineral. The composite biocalcite is very 

different from the non-biologic counterpart, it can be bent, even strongly twisted, 

without breaking (Fig. S2.4.4A in this study, Griesshaber et al. 2005, Fig. 9H in Checa 

2018, and Checa et al. 2019). Accordingly, the biologic and the non-biologic calcite 

have very little in common: only the crystal structure and the gross chemical 

composition.  

An important feature that distinguishes biogenic and non-biogenic calcite is the 

absence of (104) cleavage and the increased hardness of the biocalcite, relative to its 

non-biogenic counterpart. When not, the result of a specific microstructure, increase in 

hardness is given by the composite nature of the biomaterial, the intercalation of organic 

substance into the biomineral (Merkel et al. 2009, Schmahl et al. 2012). The mineral 

component provides compressive and bending strength, hardness and abrasion 

resistance; the organic component contributes morphogenetic control, tensile strength, 

flexibility and ductility. The extracellular matrix is a dominant feature of the fibrous 

shell layer. It enables that this shell layer is deformation tolerant, as (i) it allows for 

dislodged fibers, (ii) it stops crack propagation and (iii) blunts cracks.  

The fibres in brachiopod shells are not simple rods. They are highly variable in 

roundness, convexity, lengths and thicknesses (Ye et al. 2018a, Ye et al. 2018b), have 

elaborate morphologies
 
and are interleaved in three dimension. Biological carbonate 

hard tissues are subject to compressive, bending and shearing forces. As fibres within an 

organic matrix cannot be reorganized once they endure these forces, they must be 

properly packed and oriented within the hard tissue from the very beging of their 

formation. This is accomplished by the formation of stacks of parallel fibres and the 

stacks being twisted in a plywood-like arrangement (Figs. S2.4.1, S2.4.4B). Stack 

formation is what we see for all investigated fibrous layers of modern brachiopods. 

Brachiopod fibers have very different morphologies to bivalve fibers, e.g. calcite fibers 

in Mytilus edulis shells (Fig. S6 in Simonet Roda et al. 2019b, Griessheber et al. 2013). 

Brachiopod fiber morphology is specific and unique (Fig. 2.4.7B and Simonet Roda et 

al 2019b). The one convex and the three concave sides allow for staggered arrangement 

and an interleaved packing in the stack (Figs. 2.4.3C, 2.4.7B, 2.4.11A-C, 2.4.12B, 

2.4.15F). The latter and the twisted plywood arrangement ensures that all components 

of the fibrous composite are interleaved in three dimension and on all length scales. 

Simonet Roda et al. 2019b noted that brachiopod fiber arrangements resemble tablet 

arrangements of sheeted nacreous aragonite in bivalve shells (Fig. S7 in Simonet Roda 

et al. 2019b). Accordingly, the staggered and twisted plywood architectures generate 

very successful shell microstructures, irrespective of these forming bivalve nacreous or 

brachiopod fibrous layers. Two-layered brachiopod shells consist of a stiff, hard and 

resilliant protective cap, the primary layer, constructed as a thin, surface sheet. Adjacent 

is a massive, ductile but tough layer, the fibrous layer consisting of a fiber composite 

material (e.g. Figs. 2.4.15F, S2.4.3A and Schmahl et al. 2012).  

Determinants of microstructure and texture 

EBSD measurements of the last two decades demonstrated that brachiopod shells of 

the four extant calcite secreting orders are formed of five types of biomineral units, of 

the following biocrystals: (i) dendrites, (ii) fibers, (iii) columns (Rhynchonellida, 

Terebratulida), (iv) predominantly platelets (Craniida), (v) polygonal crystals 

(Thecideida). Fibers and platelets are intimately associated with an extracellular 
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biopolymer matrix. Columnar layers of Terebratulida and polygonal crystals assemblies 

of Thecideida contain also organic matrices, however, the fabric of these is less regular, 

especially that of thecideide shells. The matrix of thecideide shells is formed of 

submicrometre sized polygonal calcite crystallites that are interfused with micrometre 

sized or even tens of micrometre sized crystals. Randomly distributed organic 

membranes and networks of organic fibrils strengthen the cohesion of the shell material 

(Figs. 2.4.18, S2.4.9, S2.4.11).  

A very interesting case is the columnar shell layer of Terebratulida that intercalate 

organic membranes, delineating neighboring columns; form, however, through a 

competitive growth process. Thus, what is the determinant that influences columnar 

layer microstructure formation? (i) the organic matrix? or (ii) crystal competition at 

growth? Checa 2018 describes determinants of microstructure formation in mollusc 

shells and demonstrates that microstructure fabrication can be influenced by (i) mainly 

physical, (ii) mainly chemical or (iii) by both physical as well as chemical determinants. 

The latter is the case for the columnar shell layer of modern Terebratullid brachiopod 

shells. The main determinant of column formation is growth competition, supported, 

however, by a membraneous organic matrix. 

Column- and prism-shaped biocrystals that form through crystal competition are 

the closest analogues to non-biologic carbonate (see the rhombohedral morphology of 

calcite crystals within a column in Fig. 2.4.3F and von Allmen et al. 2010). In addition 

to brachiopod columns, further prominent examples of biocarbonates formed through 

competitive growth are myostracal shell layers of bivalves (Crippa et al. 2020a, 2020b) 

and the shells of cephalopods (e.g. Argonauta argo: Stevens et al. 2017). The latter 

biomaterials consist of prisms comprising highly co-oriented aragonite or calcite 

crystals and very high MUD values for individual prisms (MUD > 700). High co-

orientation strength of crystallites and high MUD values are characteristics of non-

biological calcite and aragonite precipitated from solution (e.g. Yin et al. 2019). 

Castro-Claros et al. 2020 investigated for the bivalves Anomia ephippium and 

Ostrea stentina calcium transport to myostracal and non-myostracal shell layers.  The 

authors observe that at mineralization of the myostracum mantle cells are not in contact 

with the myostracal shell, while when the ostracum and hypostracum are mineralized, 

mantle cells are directly next to the latter shell layers. Castro-Claros et al. 2020 suggest 

for these two bivalves two modes of shell secretion: (i) Ca transport by vesicles at 

myostracal prism formation and (ii) mineralization in direct contact with mantle cells at 

ostracum, hypostracum formation. Thus, these organisms utilize different mineralization 

processes when they form their shell.  

The two modes of shell mineralization are mirrored by differences in carbonate 

microstructure. Myostral aragonite assembly resembles that of the non-biological 

mineral counterpart, while ostracum, hypostracum shell microstructures are highly 

sophisticated, hierarchical and very diverse. Simonet Roda et al. (2019a, 2019b) 

demonstrated that the primary shell layer of the terebratulide brachiopod Magellania 

venosa is secreted by cell extensions only, the latter devoid of nuclei. In contrast, the 

mineralization of fibers occurs through mantle epithelial cells with cells containing 

nuclei and other organelles. As shown in this review, the primary and the fibrous shell 

layers have highly distinct microstructures and biopolymer contents. The highly distinct 

microstructure of the columnar shell layer indicates that a further mode of 

mineralization is applied when the columnar shell layer is secreted: competitive growth. 
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The latter is not dependent on the morphology and microstructure characteristic 

controlling influence of an organic component. 

Modern thecideide shells: a stand-alone microstructure  

Modern terebratulide and rhynchonellide brachiopods form layered shells. 

Descriminants between the layers are the microstructures of the mineral and the fabric 

of the organic components. In the shell of these taxa the molecular arrangement of ions 

in the calcite is linked to the macroscopic morphology of the shell via the orientation 

pattern of calcite c- and a*-axes (Fig. 2.4.20A and Schmahl et al. 2004). Both calcite 

crystallites as well as the occluded organic components have well organized structures 

and fabrics.  

These characteristics we do not find for modern thecidede shells (this study and 

Goetz et al. 2009). The hierarchical architecture of terebratulide and rhynchonellide 

shell calcite (at least 6 levels of hierarchy) is not detectable for modern thecidede shells. 

The latter form composite shells, however, both the calcite and the organic components 

are present in the shell with very little ordered arrangements. 

A further distinction between modern thecideide and terebratulide/rhynchonellide 

shells is the distribution pattern of organic substance within the shell. With the 

exception of the primary shell layer, terebratulide and rhynchonellide fibrous and 

columnar calcite occludes an extracellular matrix that delineates the mineral units 

(fibres, columns) from each other. In addition, we know that the fibers intercalate a very 

low amount of organic substance in form of a network of fibrils (Figs. 2.4.11F). 

Accordingly, in terebratulide/rhynchonellide shells the distribution pattern of organic 

substance is also structured and hierarchical, a further feature that we do not observe for 

modern thecideide shells. In the latter, much organic substance is intercalated into the 

calcite (membranes, fibrils) however, without any structured distribution pattern, e.g. an 

extracellular matrix filled with mineral. The mineral component in modern thecideide 

shells consists of a groundmass of calcite nanocrystals into that irregularly shaped 

micrometre sized crystals are interspersed (Figs. 2.4.18, S2.4.18). The calcite crystals 

do not have a dendritic structure as it is the case for the primary shell layer of 

terebratulides and rhynchonellides; we also do not see such a strong interdigitation of 

neighboring crystals, as it is the case for the primary shell layer. The organic substance 

in thecideide shells serves rather as reinforcement not as a matrix (Figs. S2.4.9-11).  

Our study demonstrates that the microstructure and texture of modern thecideides is 

a stand-alone structure, specific to this brachiopod order. It is dissimilar to the 

microstructure and texture of the primary layer of modern rhynchonellide and 

terebratulide brachiopods. The primary shell layer of the latter brachiopod genera 

consists of interlocked dendrites, is devoid of organic substance (this study and 

Griesshaber et al. 2009, Goetz et al. 2011) and has a strong texture (Fig. 2.4.16A; high 

MUD values Fig. 2.4.22A), in contrast to all structural characteristics that we find for 

the hard tissues of modern Thecideida (Fig. 2.4.21D). 

Our geochemical results substantiate as well the distinctness between thecideide 

and terebratulide shells: (i.) P. atlantica (thecideide) secretes high-Mg calcite, M. 

venosa (terebratulide) forms its shell of low-Mg calcite, (ii) the range in Li, Na, Mg, Sr 

concentration is larger for M. venosa shells, in comparison to what we observe for P. 

atlantica valves. Even though, oxygen isotope results for inner ventral valve sections of 

P. atlantica (thecideide) fall within the δ
18

O equilibrium zone (Fig. S2.4.20 and Brand 
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et al. 2003). This result could be interpreted that parts of thecideide shells might be 

appropriate to be used as archives for environment reconstruction. However, the 

drawback is that thecideide shell fabric is not sub-structured into layers, sections, 

regions. Thus, the problem is, where in the thecideide shell do we base the distinction 

between outer and inner shell portions, between valve sections precipitated in 

equilibrium or in disequilibrium with ambient seawater. Even if this distinction could be 

made for thecideide shells, localization between different shell portions will vary for 

each specimen and in some cases might not be possible. In addition, due to their high-

Mg calcite shells, thecideides are more prone to diagenetic overprint, relative to low-Mg 

calcite shelled brachiopods. Thus, in contrast to terebratulides and rhynchonellides, their 

unstructured shell fabric does not allow for a distinction between (i) overprinted shells 

that lost their pristine microstructure due to diagenesis or simply (ii) the always present 

little organized shell fabric, which is an intrinsinc feature of representatives of modern 

thecideide taxa. 
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Supplementary Material 

Table S2.4.1. Investigated species, number of investigated specimens, sampling localities and 

number of EBSD scans per species. 
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Figure S2.4.1. The primary and fibrous shell layers of Notosatia nigricans. SEM image of a 

microtome knife polished and etched cross-section through the shell. Well visible is the lack of 

an organic matrix in the primary and its presence in the fibrous shell layer, respectively. Note 

the stacks of transeversely and longitudinally cut fibers. Well visible in most fibers is a striation, 

indicative of the mode of calcite secretion within the fibers: deposition of thin calcite layers in a 

fiber; see also Fig. 2.4.3D and Simonet Roda et al. 2019b.  
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Figure S2.4.2. The internal structure of the primary shell layer of terebratulid shells visualized 

with an SEM image of an etched surface (A) and AFM vertical deflection images (B, C). 
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Figure S2.4.3. EBSD band contrast measurement images through cross-sections of terebratulid 

brachiopod shells. Note: (i) for Calloria incinspicua the cut through differently oriented stacks 

of fibers and (ii) the string of large/larger crystallites (yellow arrows) that seam outermost 

primary layer surfaces. The very tip of the valves consists always of primary layer type material 

with its characteristic microstructure and texture. 
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Figure S2.4.4. The fibrous shell layer of M. truncata, N. nigricans and T. transversa. (A, C): 

SEM images of fractured surfaces. (B): EBSD band contrast measurement on a cross-section 

through the primary and the fibrous shell layer. Well visible are in (B): (i) the differently 

oriented stacks of, more or less, parallel fibers and (ii) a row of large, primary layer, crystals 

(yellow star in B) at the transition from the fibrous to the primary shell layer. (C): the staggered 

arrangement of fibers in a stack; the sequence of thin calcite layers within individual fibers. 

Insert in (A): note the bending of fibers (red stars). It is remarkable that at these instances the 

calcite lattice remains constant, even though the morphological axis of the fiber changes 

direction. 
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Figure S2.4.5. EBSD band contrast (grey) measurement images (A, B) of a cross-section 

through the shell of L. neozelanica. Figs. S2.4.5A, B show two different cuts through the shell 

for (i) a better visualization of column morphology and (ii) the change-over from the columnar 

to the fibrous microstructure. Columns have highly irregular morphologies and might 

interdigitate (e. g. the two columns marked with a yellow and magenta star). The cross-over 

from columns to fibers is smooth. As it is well visible in (B), columns form through competitive 

growth; see the first-formed small-sized columns (black arrow in (B)) that develop with 

increasing growth to large columnar units; for a more detailed description see Goetz et al. 2009, 

Schmahl et al. 2012. The color-code for A is given in Fig. S2.4.16. 
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Figure S2.4.6. Sequence of calcite layers (C, D, E, F) in the shell of N. anomala (A, B) depicted 

with SEM images of fractured surfaces. The layers are often curved (C) and have uniform sizes; 

cross-sections of individual layers are 400 to 500 nm (E, F). Calcite crystals in these show spiral 

growth (G). Shell portion shown in (B) is indicated with a yellow, dashed rectangle in (A). 
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Figure S2.4.7. SEM images of microtome knife polished and etched shell surfaces of L. uva and 

T. transversa. Well visible is the absence of biopolyme matrices in the primary (A) and their 

marked presence in the fibrous shell layer, respectively (A, B). 
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Figure S2.4.8. SEM images of microtome knife polished and etched shell surfaces of G. vitreus 

(A) and N. anomala (B). Biopolymer membranes (white star) between columns (yellow star) in 

the shell of G. vitreus. Sequences of calcite layers in N. anomala (B, C); note their bending (e.g. 

C). Neighboring layers are delineated by organic membranes (white arrows in B). Shell portion 

shown in (C) is indicated with a yellow, dashed rectangle in (B). 
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Figure S2.4.9. SEM images of microtome knife polished and etched shell surfaces of P. 

atlantica. Organic membranes are occluded within the shell (white arrows in A, B), however, 

their distribution is random. 
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Figure S2.4.10. SEM images of microtome knife polished and etched shell surfaces of P. 

atlantica visualizing the distribution of organic membranes and biopolymer fibrous networks 

within the shell. 
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Figure S2.4.11. SEM images of microtome knife polished and etched shell surfaces of P. 

atlantica depicting variously sized and shaped mineral units within the shell. Yellow stars in C, 

D, F point to larger crystals; the white star in D draws the attention to an aggregation of organic 

membranes occluded within the shell. 
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Figure S2.4.12. SEM images of microtome knife polished and etched surfaces of fibers in N. 

nigricans. Well visible is the layered structure of the fibers, the high co-alignement of 

individual layers within the fibers and the membrane at always the proximal surface of a fiber 

(white star in inserts in A, B). 
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Figure S2.4.13. The rhobohedral shape (yellow arrow) of biocrystals in M. venosa and T. 

transversa. SEM images of microtome knife polished and etched shell surfaces. White stars 

point to the occluded biopolymer membrane.  
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Figure S2.4.14. The rhobohedral shape (yellow arrow) of biocrystals in L. neozelanica. SEM 

images of microtome knife polished and etched shell surfaces. White stars point to the occluded 

biopolymer membrane.  
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Figure S2.4.15. Vertical deflection AFM images of terebratulid fibers (A) and thecideide 

mineral units/crystals (B). White stars in (A) point to the presence of a membrane that delineates 

neighboring fibers. Note the absence of biopolymer membranes between mineral units in the 

thecideide shell (B). Even though biocrystal morphologies, sizes and the shell microstructure of 

the two brachiopod taxa differ significantly, the submicrometer internal structure of the 

biocrystals that comprise the shells is comparable and constitute of 200 to 400 nm sized 

crystallites. 
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Figure S2.4.16. Microstructure and texture of primary, fibrous and columnar layers in M. 

venosa (A) and L. neozelanica (B). Both have an axial texture. The color-code for A is given in 

Fig. S2.4.17, for B in Fig. S2.4.16. 
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Figure S2.4.17. Microstructure and texture of primary, fibrous and columnar layers in G. vitreus 

(A). The texture is strongly axial. Depending on the position in the shell, the fibrous layer can 

be little developed (A). It can also form most of the shell (B). (A) modified after Ye et al. 

2018a. The color-code for A and B is given in the figure. 
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Figure S2.4.18. Microstructure and texture of the shell of the thecideide species P. atlantica. 

Well visible is the unstructured microstructure (EBSD maps) and the weak texture (the pole 

figures). The color-code for A and C is given in Fig. S2.4.17, for B in Fig. S2.4.16. 
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Figure S2.4.19. Comparison of microstructure and texture between bivalve, gastropod nacre and 

N. anomala shell microstructure and texture. A, B, C, D: EBSD band contrast images, E: EBSD 

calcite orientation map. N. anomala forms its shell of small tabular units, crystals (D). These are 

often compared to nacre tablets in bivalves and gastropods. Accordingly, the shell structure of 

N. anomala is addressed as a ‘semi-nacreous’ structure/microstructure (Engaland et al. 2007, 

Perez-Huerta et al. 2007). The comparison shown in the figure proofs that, even though made of 

tablet-shape resembling crystals, the structure of N. anomala shells has nothing to do with nacre 

when based on microstructure, texture, strength of preferred crystallographic orientation (see the 

difference in MUD value). The color-code for E is given in Fig. S2.4.16. 
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Figure S2.4.20. Oxygen isotope composition along cross-sections though the shell of P. 

atlantica and M. venosa. Error bars represent the standard deviation. The grey field in the 

figures indicates the region of δ
18

O where inorganic calcite precipitates in equilibrium with 

seawater. The calculation of the latter is based on the equation given by Watkins et al. (2013), 

for the localities where the brachiopods were sampled from. The relative distance along the 

shell cross-section is calculated such that 0% corresponds to outermost, 100% to innermost 

layers, respectively. For further information see Milner Garcia 2018. 
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Figure S2.4.21. Li/Ca, Na/Ca, Mg/Ca and Sr/Ca variations along shell cross-sections comprising 

outermost and innermost shell portions of the ventral valve of P. atlantica and M. venosa, 

respectively. The black line in the diagrams marks the equilibrium value (see also Okumura and 

Kitano 1986; Oomori 1987; Marriott et al 2004; Gabitov and Watson 2006). Error bars 

represent the standard deviation. The relative distance along the shell cross-section is calculated 

such that 0% corresponds to the outermost and 100% to the innermost part of the shell, 

respectively. The blue rectangle indicates the extent of the primary layer in M. venosa. Further 

information is given in Milner Garcia 2018. 

 

 



 
 

208 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



209 

 

Chapter 3. Concluding Summary and Outlook 

3.1. Concluding Summary 

The research done for this thesis covers three main topics: (1) biomineralization 

processes for calcite nucleation and fibre formation of the fibrous layer of modern 

terebratulide brachiopods, (2) a detailed study of the evolution of thecideide 

microstructure, and (3) a comparison and review of modern brachiopod shell micro and 

nanostructure. 

Chapter 2.1 – 2.2 summarizes the characterization of the mantle epithelium of 

Magellania venosa, a terebratulide brachiopod. We performed a highly detailed study of 

the different areas of the epithelium paying special attention to the outer mantle 

epithelium (OME), bas the latter is in closest contact to the shell. This biological 

approach was done using TEM imaging of chemically fixed and HPF-FS samples, FE-

SEM imaging, EBSD measurements and AFM imaging techniques.  

Chapter 2.1 covers in higher detail the whole mantle epithelium of Magellania 

venosa, outer and inner mantle epithelial cells, under the primary and fibrous layer and 

inside the punctae in the commissure and central shell regions. We performed a 

qualitative study describing the diverse structures, cell connections and organelles we 

observed. This was done using large TEM panorama images containing up to 350 

images of 8000 magnification. With these images we were able to have an overview of 

the general structure of the mantle epithelium and at the same time we could describe 

nanostructures. The goal was to have a better understanding of the possible 

biomineralization processes, mineral transport and shell secretion in brachiopod shells 

and the role of the outer mantle epithelium in contact to the shell. With this, the study 

pointed out the possible role of the OME organelles, the description of the extracellular 

space, the relations between the outer mantle epithelial cells and its spatial relation to 

the growing shell.  

The results show that the OME ultrastructure at the commissure differs 

significantly from that at central shell regions. While at central shell regions the OME is 

single cell layered, it consists of several cell layers at the commissure. Regarding the 

morphology of the cells at the commissure, in longitudinal sections, they form long, thin 

lateral extensions parallel to the shell. In cross section they are roundish and they 

become larger the closer they are to the connective tissue. At central shell regions, OME 

cells are considerably thinner in comparison to cells at the commissure. Especially 

longitudinal sections at forming calcite fibre cells can be only a few tens of nm thick. 

The organelle quantitative counting shows no statistical significance between 

commissure and the central shell regions when they are normalized to the same volume. 

Only the amount of mitochondria, endo-lysosomes and vesicles is significantly higher at 

the commissure. There is no evidence of any specific organelle related directly to shell 

secretion. 

 We observed that frequently more than one cell contributes to the formation of a 

calcite fibre at the same time in both commissure and central shell regions; therefore, 

fibre secretion, growth and shape generation requires communication of adjacent OME 

cells. In addition, the cells interdigitate with each other and there is a high abundance of 

gap junctions between cells, also supporting the necessary communication and tight 
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cooperation of neighbouring OME cells for the coordinated secretion of organic 

membrane and mineral. In addition, TEM and SEM images on chemically fixed and 

HPF-FS samples show that the extracellular space is either extremely narrow (few 

nanometres wide) or even non-existent under fibres that are under secretion. This 

indicates that fibre formation in Magellania venosa is under tight cellular control. 

Furthermore, the space is so small that no organelles can fit into it.  

All this new data lead us to support a mineral transport mechanism in 

young/juvenile Magellania venosa, where cells secrete calcium and hydrogen carbonate 

via ion transport mechanisms (Fig. 3.1) rather than mineral transport via organelles 

(such as vesicles). 

In chapter 2.2 the study focused on the OME under the fibrous layer in the central 

shell region of brachiopod shells and on fibre shape formation. The biological 

information was supported by the FE-SEM, EBSD and AFM results of the hard tissue. 

Fibre and extracellular organic matrix membranes secretion as well as fibre shape 

formation in the modern brachiopod Magellania venosa is a dynamic process induced 

and coordinated by the OME. We observed in AFM that the fibres are not individually 

and completely sheathed by separate organic membranes. The TEM results showed that 

the extracellular organic membrane is secreted by the OME only onto the proximal, 

convex surface of a fibre once the fibre is finished. In addition, we distinguished those 

areas where there is active secretion of the fibres and those where there is no secretion 

and the fibres are finished.  The secretion of calcite by epithelial cells occurs only at 

sites where the extracellular organic membrane at the proximal, convex surface of the 

fibre is absent. Once the extracellular membrane at the base of fibres is secreted, the 

outer mantle epithelium cells are attached to it by apical hemidesmosomes. This keeps 

the OME close to the shell and stabilizes those regions that are still in active secretion. 

Calcite secretion is suspended where the proximal organic membrane of the fibre is 

formed. The secretion continues in locations where OME cells reabsorbed the 

hemidesmosomes and detach from the extracellular membrane of a previously finished 

fibre. We developed a model that shows the brachiopod fibre formation as a cyclic 

sequence of processes occurring at the apical OME cell membrane. The model is shown 

in Figure 11 of chaper 2.2. and Figures 8 and 9 of chapter 2.1 of this thesis. 

By studying the relations of the individual fibres of the fibrous layer of 

rhynchonelliform brachiopod shells, we concluded that it has an overall plywood-like 

organization. The arrangement of the basic mineral units, the fibres, can be compared to 

an ‘anvil-type’ arrangement of calcite fibres. It also resembles the “brick wall’ 

arrangement of aragonite tablets in bivalve nacre, but rather than being simply 

rectangular “bricks”, the mineral units have the characteristic cross section generated by 

the simultaneous growth of parallel brachiopod fibres.  
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Figure 3.1. Conceptual model for calcite secretion in the shell of modern terebratulid 

brachiopods bases on Fig. 2.1.13. See detailed information in Chapter 2.1. 

The detailed description of the heterogranular microstructure of thecideide 

brachiopods, and its evolution from the late Triassic up to today, is described in the 

chapters 2.3 – 2.4.   

Chapter 2.3 covers the study of the shell microstructure of thecideide specimens 

from the Later Triassic, when they first appear, to present times, with the objective of 

understanding the appearance and evolution of the “heterogranular microstructure”. For 

this, we analyzed with FE-SEM imaging and EBSD the distribution of the crystal units 

and all their different morphologies and the general texture of the shells. The results 

show for Triassic and Jurassic specimens the presence of fibres but with the first 

appearance of large crystal units within the shell. Upper Jurassic species represent 

transitional forms composed by a combination of stacks of acicles on external shell 

portions and of a remnant of the fibrous layer next to the soft tissue of the animal. The 

presence of acicles crystals will prevail up to modern species.  The fibres disappear 

subsequently from the Cretaceous to modern times and the acicular, granular and 

polygonal crystals, embedded in a matrix of nanocrystallites, prevailed from the 

Cretaceous to modern times developing minor changes. In addition there is a decrease in 

the regularity of biocrystal shape, mineral unit size, and the strength of calcite co-

orientation, represented by theMUD values, from the Late Triassic to Recent species. 

The change in microstructure and texture was interpreted as an ecological strategy 

to exploit different niches, the attachment to hard substrates. 

The chapter 2.4 review the shell microstructures of the modern brachiopods with 

Ca-carbonated shell. The review contained a compilation of calcite and organic matrix 

assembly on nano-, micro- and macrometer scale for 14 brachiopod species. The 

conclusions are based on AFM, EBSD, STEM, and FE-SEM measurements and 

imaging of polished and etched samples where the organics were fixed.  

Chapter 2.4 showed the differences in composite hard tissue organization for taxa 

with different lifestyles, highlighting, thecideide shell characteristics. We compared the 

shell texture between species that live attach by a pedicle and those that live cemented 

with a valve to the substrate/sediment. For Thecideida, we contrasted their shell 

structure with the primary shell-layer of rhynchonellide and terebratulide taxa. 

Thecideide shell microstructure is defined as a stand-alone microstructure, specific for 
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this order and non comparable with the primary layer. This conclusion is also support 

with preliminary geochemical data.  An important part of this review chapter is the 

composite nature and hierarchical architecture of brachiopod shells (we discussed up to 

six levels of hierarchy for the entire shell) as well as the function of the shell as a 

biomaterial. 

We analyzed, for all four orders, the relation between each type of biocrystal 

(dendrites, fibers, columns, platelets, and, polygonal crystals) and the organic matrices 

within the shell.  It is ilustrated, in particular, the case of the columnar layer.  Column- 

and prism-shaped biocrystals form through crystal competition and are the closest 

analogs to non-biologic carbonate. We furthermore visualize the nanostructure of calcite 

assembly in rhynchonellide fibers and discussed, for representatives of 

Rhynchonelliformea, the feasibility to use the shells as archives for proxies for 

paleoenvironment reconstruction. In addition, we showed the nanometer scale structure 

of modern rhynchonellide and terebratulide fibers as a reference for the assessment of 

overprint of fossil equivalents.  

The review covers, shown by representatives of extant calcite secreting brachiopod 

orders, the diversity of calcite crystal assembly necessary for shell formation and 

summarizes the current knowledge on brachiopod shell structure, microstructure and, 

texture. 
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3.2. Outlook 

The different processes used for carbonate precipitation of biominerals are complex 

and many questions are unanswered. A biological approach investigating the mantle 

epithelium ultrastructure of brachiopods or that of other animals with a carbonate 

exoskeleton helps to understand some of these processes. Although we provide some 

answers, this dissertation has opened new research perspectives.  

1. A complete understanding of the relation between the outer mantle epithelium 

and the brachiopod shell.  

Understanding the Outer Mantle Epithelium (OME) and its relation with 

extrapallial space is essential to comprehend the calcium carbonate precipitation and the 

pathways for Ca
+
, HCO3

-
 and H

+
 transport. At the same time it gives information for 

understanding (1) morphologies of the individual calcite crystal units of the shell and 

(2) the distribution of the organics in the shell. Our research is a small part of the huge 

panorama of the biominerals and biomineralization processes. 

Investigation of the cell/mineral contact was not done for many organisms. The 

references are sometimes old and some interpretations are vague or are based on general 

hypotheses due to limitation of techniques that were available at that moment as well as 

the complicated sample preparation. Our work was done only for the primary and 

fibrous layer of the brachiopod shell and in 2D. Future work should be done on the 

columnar layer as well and in 3D. The analytical techniques should include FE-SEM, 

TEM imaging of FIB and HPF-FS samples. The sample preparation as well as the 

qualitative description we performed and its application for the interpretation of shell 

secretion may serve as a guide for understanding OME and shell secretion in other 

organisms. Presumably, differences in the OME below the different microstructures 

may be observed. The differences will lead to more precise defined coherent models of 

ion transport in brachiopod shells. It is possible that both types of material transfer, ion 

as well as vesicle transport, can be expected for the secretion of brachiopod shells, 

depending on the different microstructures. 

 

2. Investigating the dimension of extrapallial space in other invertebrate groups 

such as molluscs 

The extrapalleal space is the space between the mineralized shell and the outer 

mantle epithelium. The dimensions of the extrapallial space defines which pathways the 

Ca
+
 and HCO3

-
 ions can follow and defines the available space for biomineralization of 

the shell. In terms of sample preparation, the attachment of OME tonofilaments to the 

shell, allows hard and soft tissue to stay in contact. This condition makes brachiopods 

very useful animals to understand some biomineralization processes. This type of 

research becomes more complicated in other organisms such as molluscs, as here the 

mantle detaches easily from the shell.  In addition, we observe too that techniques such 

as High Pressure Frozen – Freeze Substituted and embedding with methacrylate are 

good allies to preserve areas where the tonofilaments are not attached to the hard tissue.   

Sample preparation is complicated and the current technical approach that one can 

use is limited. However, research in this direction can be applied to different 
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invertebrate groups, as bivalves or gastropods, may contribute to decipher (1) the way 

organics are organized during shell biomineralization and (2) detailed processes of 

biomineralization. 

3. Investigation of the biological function of the punctae  

Punctae are specific features of some brachiopod shells and their possible role in 

shell secretion or in the life of the animal is still under debate. They are complicated 

structures that form at the very commissure of the animal, in the outermost part of the 

OME. They cross the shell thickness connecting the mantle epithelium and the 

periostracum. We presented 2D qualitative and quantitative analysis of these structures 

in our work. Studies on the relation between the mantle and the periostracum, as well as 

3D analysis of the organelles, may be very useful to understand the role of punctae in 

brachiopod shells. The functions could be related with the repair of external damages on 

the shell or with the expulsion of dead cells or organelles through the periostracum (as 

many late stage lysosomes were observed at the upper part of punctae in this study). 

 

4. Distribution of organic matrices within the shell 

The weight percent of organics in the shell is very small but plays a very important 

role in the formation of the biological mineral units. Many studies were done on the 

different proteins within brachiopod shells as the protocols for protein identification are 

well known. In addition, during the last decade the physical distribution of the mayor 

organic matrices, along with nanometre-fibrils, is starting to be understood. At the same 

time it is known that not all the observed organics are proteins. Future work should be 

carried out distinguish the different biopolymers in the shell and the possible role and 

presence of chitin within brachiopod shells. 

5. Using EBSD as a tool to track microstructure evolution through the geological 

time. 

We see that EBSD is a useful technique to track microstructures through geological 

time. Using it, we can understand the formation and appearance of the individual 

crystallites and track textures and morphologies in structural materials through geologic 

time. Combining EBSD and isotopic and elemental analysis with the use of modern 

samples as references, we can understand the correlation between microstructures and 

water conditions. Studies in this direction may lead to interpret the results in terms of 

how animals print the changes on water conditions into their shell microstructures. This 

new perspective of approaching the shell microstructure can be applied to well-studied 

groups of animals such as bivalves and gastropods. Results in this direction will help to 

understand the effect that the seawater composition as well as the temperature have on 

the precipitation of biomineral crystallites. Mimicking some conditions with cultured 

animals and in laboratory can be another way of moving towards this field of research. 

The results can add information to interpret more accurately the geological record and 

extinctions.   
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6. Relation between the different microstructures or layers in the brachiopod shell. 

Modern brachiopod shells are composed by layers with different properties 

depending on their microstructures and their organic content. How the animal changes 

the type of microstructure at secretion and how the transitions between the different 

layers are, are questions that still remain to be understood. We know how the outer 

mantle epithelium is under the primary and the fibrous layer and we understand better 

the crystallographic transition between these two layers. For the biological studies, the 

main difficulty is reaching the right moment to prepare the sample so that the transition 

can be well observed.  The same problem appears for sample preparation for EBSD and 

FE-SEM. Our hypothesis is that, studying larvae as well as adult animals and applying 

high resolution techniques, new research in this direction will help to understand why 

the animals secrete “suddenly” a different concentration of calcium and organic material 

that originates in new crystal morphologies. The studies presented in this dissertation 

offered some ways to deal with this line of research and the approaches used can be 

applied not only to brachiopods but also to the hard tissue of other invertebrate groups. 

 

As it is summarized above, the study of the mantle epithelium, the microstructures, 

as well as its composition and the formation of their crystal units bring important light 

into the biomineralization processes for Ca
+
 and HCO3

-
 transport.    

This dissertation covers only a small range of questions with focus on brachiopods. 

The field of biominerals is wide and an infinite number of questions remain 

unanswered. The studies in this thesis bring some new ways and lights to approach 

biomineralization processes and to understand microstructures in and of brachiopods. 

The knowledge gained with this study is expected to be applicable to other organisms 

such as molluscs and gastropods, as well. 
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Appendices 

Appendix I. Material description  

Modern brachiopods 

Magellania venosa (Dixon, 1789) 

Class Rhynchonellata - Order Terebratulida - Family Terebratellidae  

Magellania venosa  is a benthic marine brachiopod which lives in a depth range of 

2 - 3010 meter (Foster, 1989). This species can be found in temperate water of the 

Southeast Pacific and Southwest Atlantic and they commonly live fixed to hard 

substrate, such as corals or rocks, with a pedicle (Häussermann and Försterra, 2009). 

The investigated samples were originally obtained from Comau Fjord, located in 

southern Chile, in collaboration with Huinay Scientific Field Station. Afterwards they 

were cultured at GEOMAR, Helmholtz Centre for Ocean Research, Kiel (Germany), in 

tanks where the original ocean water conditions of Comau Fjord were imitated (Fig. 

A1). The samples were taken at 21 meters depth, the water temperature was of 11 °C 

average and the salinity of 30.3 PSU.   

Our objective was to study for this species the hard and soft tissues as well as the 

relation of the latter. Especially for the soft tissues the preservation state of the 

individuals needed to be extremely high. The brachiopods were provided alive in water 

with the culturing conditions. The samples were kept alive for chemical preparation in 

order to preserve the ultrastructure as well as possible.  

We selected juvenile specimens for chemical fixation and high pressure freezing –

freeze substitution, as in these stages the growth rate is higher (Baumgarten et al., 

2013). For measuring the size of the individuals we took the length of their longitudinal 

axes. The samples were between 5 and 7 millimeters long for chemical fixation and 4-5 

millimeters for High Pressure Freezing preparation. The soft tissue was studied 

following the latter methods under TEM and SEM. The hard tissue was characterized 

with SEM and EBSD. 

Pajaudina atlantica (Logan, 1988) 

Class Rhynchonellata - Order Thecideida – Family Thecideidae  

Pajaudina atlantica is a benthic marine brachiopod which lives in a range of 5-

1000 meter water depth in subtropical environment (Logan, 1988). The species 

distribution covers the Eastern Central Atlantic. The individuals used for this work were 

sampled at the Canary Islands. They commonly live fixed to hard substrates and they 

grow cemented to the neighboring individuals. Their valves are very thick and compact 

in relation with their own shell proportions. 

The investigated specimens were sampled in Punta Malpique, Palma (Canary 

Islands) at 14 meters water depth. The water conditions were 22 °C and the salinity was 

36.3 PSU. The sampling and subsequent culturing and collection were done by Daniela 

Henkel and Hana Jurikova from GEOMAR, Helmholtz Centre for Ocean Research, 

Kiel, Germany (Fig. A2).  
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Figure A1. Photograph provided by Daniela Henkel (GEOMAR, Helmholtz Centre for Ocean 

Research, Kiel, Germany) of Magellania venosa in a culturing tank.  

For this species we were interested in the microstructure of the shell and the 

elemental and isotopic characterization. Samples of 3-4 mm length were characterized 

with SEM, EBSD and AFM. Trace element compositions were measured using laser 

ablation coupled to an ICP-MS (Inductively Coupled Plasma Mass Spectrometry). The 

sampes used for ICP-MS analysis measured in the longitudinal axes 16 mm.  

 

 

Figure A2. Photograph provide by Daniela Henkel (GEOMAR, Helmholtz Centre for Ocean 

Research, Kiel, Germany)  of Pajaudina atlantica in situ. 
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Others 

From the four different extant orders that secrete calcitic shell (Craniidae, 

Rhynchonellidae, Thecideidae and Terebratulidae). Some species were selected for 

Chapter 2.4. In these samples we performed FE-SEM, STEM, AFM and EBSD 

measurements. These samples are compiled in Figure S 2.4.1. 

Fossil brachiopods 

We worked with fossil thecideide brachiopods of different ages, from the Late 

Triassic to Pleistocene. The study was focused in their shell microstructures that were 

characterize with SEM and EBSD. In addition, we preformed some EDX and 

Catodoluminiscense measurements. 

The data was compare with the one obtained from modern thecideide representatives 

as Pajaudina atlantica or Kakanuella chatamensis. 

We selected up to two well preserve samples per species. Their name, age and 

sampling location can be found in the following table. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

244 
 

Table A1. Samples information and numbers for fossil thecideide. 

Species Age 
Original 

location 

Depository 

number 
Repository 

Thecospira tenuistriata  
Bittner, 1890 

 

Late Triassic 

 

Alpe di 

Specie, Italy 

MPU5784-4 

MPU5804 

Museo di Paleontologia 

Dipartimento di 

Scienze della Terra 

Università degli Studi 

di Milano 

Thecospira tyrolensis   
(Loretz, 1875) 

Late Triassic 
Alpe di 

Specie, Italy 
MPU5484-4 

Museo di Paleontologia 

Dipartimento di 

Scienze della Terra 

Università degli Studi 

di Milano 

Bactrynium bicarinatum 
(Emmrich, 1855) 

Late Triassic Elberg Austria E100-18-17 
Ludwig Maximilian 

University of Munich 

Neothecidella ulmensis  
(Quenstedt, 1858) 

Late Jurassic 

(middle 

Oxfordian) 

Bałtów, 

Poland 
LMU-NU01 

Ludwig Maximilian 

University of Munich 

Thecidiopsis digitata 

(Sowerby, 1823) 

Late 

Cretaceous 

Petersberg, 

Maastricht, 

Netherlands 

LMU-TD01 
Ludwig Maximilian 

University of Munich 

Thecidea papillata 

(Schlotheim, 1813) 

Late 

Cretaceous 

Symphorien, 

Mons, 

Belgium 

LMU-TPLC01 
Ludwig Maximilian 

University of Munich 

Thecidea papillata 

(Schlotheim, 1813) 
Paleocene 

Ciply near 

Mons, 

Belgium 

LMU-TPP01 
Ludwig Maximilian 

University of Munich 

Lacazella mediterranea 

(Risso, 1826) 
Late Eocene 

Dnipropetrovs

k, Ukraine 
LMU-LME01 

Ludwig Maximilian 

University of Munich 

Lacazella mediterranea 

(Risso, 1826) 

Late 

Oligocene 

Peyrere 

Aquitaine 

Basin, France 

LMU-LMO01 
Ludwig Maximilian 

University of Munich 

Thecidellina sp. Pleistocene 
Curaçao, 

Caribbean 

UF 325201 

 

Ludwig Maximilian 

University of Munich 

Pajaudina atlantica  

Logan, 1988 
Recent 

Palma, Canary 

Islands, Spain 

LMU-PA008 

Ludwig Maximilian 

University of Munich 

LMU-PA009 

LMU-PA010 

LMU-PA011 
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Appendix II. Applied Methods 

Transmission electron microscopy (TEM) 

A Zeiss 912 TEM (Zeiss, Jena, Germany) equipped with an Omega energy filter, a 

goniometer stage and a 2k x 2k pixel camera (TRS, Moorenweis, Germany) was used to 

image the sections at 8000 times magnification and 120 kV acceleration voltage using 

only elastically scattered electrons. To screen a large area of the outer mantle 

epithelium, at high resolution up to 300 images were recorded at rectangular grids. The 

images were then aligned into large composite images using the TRS software. These 

composite images were used for the structural and numerical analysis.   

High Pressure Freezing and Freeze Substitution (HPF-FS) 

In the high pressure freeze living animals or material are rapidly chilled to liquid 

nitrogen temperature while exposed simultaneously to 2100 bar pressure. The animals 

become frozen as ‘‘vitreous ice’’ ideally preventing the formation of any detectable ice 

crystals. This rapid freezing preserves the animal’s true shape of all cell organelles.  

This method gives improved views of intercellular junctions, including gap 

junctions, septate junctions and basal lamina. (http://45.63.20.54/EMmethods/HPF.htm) 

The method was not easy to apply to our samples as the shells are consisted of 

materials with very different properties (hard and soft tissues) that are in very close 

contact to each other. Small organelles and the contact between shell and the outer 

mantel epithelium were especially difficult to preserve using this method. The well 

preserved samples, showed very good preservation of the membranes and in addition, 

different junctions could be differentiated. 

Field emission scanning electron microscopy (FE-SEM) 

Samples were mounted on aluminum holders using self-adhesive carbon pads and 

conductive glue. Samples were then coated with 4 nm of carbon using a BAF 300 

(BAL-TEC, Balzers, Liechtenstein). Samples were analyzed with a Hitachi S5200 field 

emission scanning electron microscope (FE-SEM) using the converted backscattered 

electron signal to obtain so called composite rich images (Walther, 2008) using 20 µA 

emission current and 3kV acceleration voltage in analysis mode of the microscope.  

Electron backscatter diffraction (EBSD) 

Once the samples are highly polished, they are coated with 4– 6 nm of carbon for 

EBSD and EDX measurements and mapping. EBSD measurements were carried out on 

a Hitachi SU5000 field emission SEM, equipped with an Oxford EBSD detector. The 

SEM was operated at 15-20 kV and measurements were indexed with the CHANNEL 5 

HKL software (Schmidt and Olesen, 1989, Randle and Engler, 2000). The EBSD 

measurements are presented with colour-coded crystal orientation maps, with their 

corresponding pole figures, and with band contrast measurements. Band contrast data 

gives the signal strength of the EBSD–Kikuchi diffraction pattern and is displayed as a 

greyscale component of EBSD scanning maps. A high strength of the EBSD signal, 

when a crystal is detected, presents bright colours. In comparison, organic matter 

appears dark/black colours as it gives only poor or non-existing signal. The pole figures 
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give information about co-orientation statistics of the different points measured on the 

selected area. From the plotted points we obtain the Multiple of Uniform random 

Distribution or MUD value. This value is a measure of crystal co-orientation and can be 

translate into texture sharpness of the scanned area. The co-orientation in the shell is 

high when the MUD values are high whereas low MUD values indicate a low or 

arbitrary co-orientation. 

EBSD is an automated micro-diffraction method which provides space-resolved 

information on the phase state of the samples and crystallite orientation of the 

constituting mineral. EBSD band contrast images highlight the shell microstructures. 

Atomic Force Microscopy (AFM) 

Samples were measured in contact mode with a JPK NanoWizard II AFM using 

silicon cantilevers. The measurements of height, lateral and vertical deflection traces 

were processed with the NanoWizard® IP image processing software and Gwyddion 

free and open source software. We used the “Gold” scale for colouring the 

measurements. The height trace shows the surface height of the measured area, while 

lateral and vertical deflection traces are the result of the lateral and vertical interactions 

between the cantilever tip and the sample surface. With lateral deflection traces, the 

properties of the different materials can be observed in the shell. While bright/yellow 

areas match with the location of the organic membranes darker areas correspond to 

crystallite regions (calcite fibres). The AFM results were present with vertical and 

lateral deflection trace measurements. 

Morphometry 

For the morphometric analysis, we performed a point-counting of organelles with 

the free software Fiji and JMicroVision aiming to have a rough idea of the organelles 

distribution and their relation with the shell secretion processes. The analyses were done 

in 2D panorama images, compound of 120 to 300 images, of 8000 magnification each.  

Out of more than 150 sections and 60 panorama images we selected 18 panorama 

images and 48 areas within them. For the selection we took the preservation of the 

OME into account to avoid mechanical destruction or areas showing some biological 

stress and also considered a consistent statistical representation of the region each area 

they represent. For this, we compare the TEM data with the one obtained (1) via other 

methods (SEM, HPF-FS and lower magnification TEM images) and (2) gathered in 

previous studies (Williams, 1966, 1968a, 1968b and 1997). The statistics were made in 

2 different individuals 

For the quantitative analysis, we distinguished four different regions of the OME. 

In the central part, we compared OME that is not attached to the organic membrane of 

calcite fibres (cr-s, secreting OME of the central region) with those attached to the 

organic membranes with tonofilaments (cr-a, non-secreting OME of the central region). 

In addition, we quantified the thin epithelium at the middle region of the punctae (pt) as 

an additional reference of a non-mineral secreting area of the epithelium. Finally, we 

compared the multi-cell layered OME of the part of the commissure underneath calcite 

fibres (com) with the single-cell layered OME of the central region (cr-all).  
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The volume fraction of various organelles were determined by counting randomly 

positioned points on predefined structures (classes) within pre-defined test fields using 

the open source software JMicroVision Image analysis system (Roduit, 2008). The 

organelles were divided into 16 different classes: cytoplasm, tonofilaments, nucleus, 

mitochondria, lysosomes-endosomes (dark and white), vesicles (dark and white), Golgi 

apparatus, Golgi vesicles, rough endoplasmic reticulum (rER), smooth endoplasmic 

reticulum (sER),  multivesicular bodies, glycogen, others, and extracellular space (Figs. 

A3-A7).  

The number of random points was set either to 250 or 500 depending on the size of 

the test field. Test areas were defined using the implemented “area editor” so the 

regions outside the epithelium were at a minimum. Evolution plots created by the 

software (see fig.3) were used to evaluate the representativeness of the calculated 

volume fractions of organelles.  

For each test field the length of the epithelium “EL (µm)” and the testfield area “AT 

(µm
2
)” was determined and the percentages of the various classes “Ap (%) ” in “AT” 

were measured. 

The absolute area “AO” of each class was calculated by 

AO =AT*(Ap/100) (µm
2
) 

The areas of the extracellular space and the nucleus were excluded by calculating 

the area of the cytoplasm “AC” within the test field by  

AC = (Ʃ AO - A O (nucleus) – A O (extracellular space) (µm
2
) 

The volume fraction of each class “VO” of the cytoplasm without the nucleus 

equals the area fraction “A” and was calculated by 

VO = A= (A O /AC)*100 (%) 

From the area fraction “A” of classes, we calculated the absolute volume VA of 

classes per 10 µm
2
 epithelium area by  

VA (µm
3
/µm

2
) = AO/ EL*10 (µm

2
/ µm) 
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Figure A3. “Point Counting” in M. venosa outer epithelium at the region of the commissure. 

The areas were previously selected manually (in green) as well as the “List of classes”. The 

pointer (in yellow and black) jumps from one point to another automatically, once the point is 

classified inside one of the classes, creating a random/non-selective net. The “Evolution Plot of 

classes” shows when the percentages of the different classes get stable. 

 

Figure A4. Overview of the “Point Counting” option of JMicroVision program in a selected 

area of M. venosa outer epithelium at the commissure.  
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Figure A5. Detail of “Point Counting” in M. venosa outer epithelium at the region of the 

commissure.  

 

Figure A6. Detail of “Point Counting” in M. venosa outer epithelium at the central shell region.  
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Figure A7. Overview of “Point Counting” option in M. venosa outer epithelium at the central 

shell region.  

For calculating the area of the apical and basal plasma membranes as well as for the 

outer membrane of the mitochondria we followed the method of Merz (1967). The Merz 

grid plugin for ImageJ/Fiji (Research Services Branch, National Institute of Mental 

Health, Bethesda, MD, USA), was superimposed an array of coherent semicircular lines 

to the images (Figs. A8-A9). The profile length ”Lp” of the plasma membrane (apical 

and basal cell membrane) and the outer membrane of the mitochondria was determined 

by counting the  intersections of the Merz grid lines with the membranes inside the test 

fields. Lp was calculated by: 

Lp = Nd (µm) 

with “N” as the number of intersections between the grid lines and the membranes and 

“d” the diameter of the semicircles in each test field.   

Lp  was normalysed to 1µm epithelium length by  

L = Lp/EL with ”EL” the epithelial length within the test field. 

The areas of the membranes ”AM” per µm
2
 area of epithelium was calculated by  

AM = L x 1.273 (µm
2
)  (Merz, 1967) 

All calculations were done using Microsoft Excel for Mac version 15.33. 



251 

 

 

Figure A8. Overlap of the Merz grid on a TEM panorama image. In yellow the points of 

intersections between the grid and the apical membrane of the epithelium at the central shell 

region of M. venosa. 

  

Figure A9. Overlap of the Merz grid on a TEM panorama image. In yellow the points of 

intersections between the grid and the the basal membrane of the epithelium at the central shell 

region of M. venosa. 

Statistical analysis 

To facilitate the comparison of the TEM data obtained for the different regions of 

the OME and to see if it was representative, we performed some statistical analyses.   
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GraphPad Prism software version 6.00 for Mac (GraphPad Software, La Jolla 

California USA, www.graphpad.com) was used for the statistical analysis and graphical 

representation. Means and standard deviations were calculated for the volume fractions 

VO, the absolute volume of each class was normalized to 10µm
2
 of epithelium VA, and 

the membrane areas were normalized to one square micrometer epithelium AM for the 

apical and basal cell membrane, and the outer membrane of the mitochondria.  

One way ANOVA was used to test the significance of differences in the mean 

values for the volume fraction VO and area per 10 µm epithelial lengths of classes AO. 

To account for multiple comparisons, Sidiak´s multiple comparisons test were used to 

assign significant differences between the mean values for the mineral secreting central 

region (cr-s), the non-secreting attached areas of the central region (cr-a) and the middle 

region of the punctae (pt). T-tests were used to assign significant differences between 

the mean values of the pooled central regions and the commissure for VO, VA and AM.  

Some results were already published in Simonet Roda et al. 2019a; here it is added 

all the significant and non-significant statistical analysis obtained for the different 

organelles for the different shell regions. The raw data used for Graphs 1 to 5 is 

included in Appendix V. 

 

Graph A1. Membrane area per 10 µm
2
 of: apical and proximal cell membrane and membrane 

area of the outer membrane of mitochondria. Results were obtained for the central shell portion 

(secreting and not secreting: cr all) and the commissure (com). Results are plotted with the mean 

(indicated with horizontal red lines in the graphs) and the standard deviation (indicated with 

vertical blue lines in the graphs). Stars indicate significant differences of mean values for a 

given organelle between different outer mantle epithelium regions: ****: P ≤ 0.0001. 
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Graph A2. Volume fraction in percentage of membrane-bound organelles: mitochondria, 

endo-lysosomes, intracellular vesicles, Golgi apparatus, and rough and smooth endoplasmatic 

reticulum (ER) in different regions of the outer mantle epithelium. Central shell region that 

can secrete mineral is indicated as “cr s”, central shell region not involved in secretion as “cr 

a”, punctum as “pt”, secreting plus not secreting central shell portions as “cr all” and 

commissure as “com”. Stars indicate significant differences of mean values for a given 

organelle between different outer mantle epithelium regions: *: P ≤ 0.05; **: P ≤ 0.01; ***: P ≤ 

0.001; ****: P ≤ 0.0001. 
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Graph A3. Volume fraction, in percentage, for cytoplasm, glycogen and tonofilaments plus 

hemidesmosomes within the different regions of the outer mantle epithelium. Central shell 

region that can secrete mineral is indicated as “cr s”, central shell region not involved in 

secretion as “cr a”, punctum as “pt”, secreting plus not secreting central shell portions as “cr 

all” and commissure as “com”. 
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Graph A4. Volume of organelles (mitochondria, lyso- endosomes, vesicles, Golgi apparatus, 

rough endoplasmatic reticulum (rough ER), smooth endoplasmatic reticulum (smooth ER)) in 

the cells of 10 µm
2
 of the outer mantle epithelium for different OME regions: Results are 

plotted with the mean (indicated with horizontal red lines in the graphs) and the standard 

deviation (indicated with vertical lines in the graphs). Stars indicate the significant differences 

of mean values for a given organelle between different outer mantle epithelium regions: *: P ≤ 

0.05; **: P ≤ 0.01; ***: P ≤ 0.001; ****: P≤0.0002.    
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Graph A5. Volume of cytoplasm, glycogen, tonofilaments and basal hemidesmosomes in the 

cells of 10 µm
2
 of the outer mantle epithelium for different OME regions: Results are plotted 

with the mean (indicated with horizontal red lines in the graphs) and the standard deviation 

(indicated with vertical lines in the graphs). Stars indicate a significant difference of mean 

values for a given organelle between different outer mantle epithelium regions: *: P ≤ 0.05  
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Appendix III. Sample Preparation Procedures  

 

Chemical fixation and decalcification 

Aiming to preserve the epithelium as it is during secretion of the shell, the living 

samples were treated following a specific protocol for organic fixation, out of 8 

individuals. A total of 40 pieces of the shell with the mantle tissue attached were 

dissected from central and commissure regions of both the brachial (ventral) and 

pedincular (dorsal) valves. 

For the fixation we used Paraformaldehyde (PFA) and Glutaraldehyde (GA). While 

PFA penetrates faster the tissues, GA has a slower action but it lead to a better 

preservation of the ultrastructure. Both chemicals were diluted in a saline buffer (0.35 

mol L
-1

 saccharose and 0.17 mol L
-1

 NaCl in 0.2 mol L
-1

 Na-cacodylate buffer with a 

pH of 7.7) to imitate the water conditions where the animals lived. 

During the embedding process we used different chemicals as OsO4 and uranyl 

acetate to increase the contrast of the proteins and membranes. With this protocol the 

different organelles and the cell can be easily seen and distinguish under the TEM. 

Two different fixation media were used in two different animals to observe if the 

preservation improved by increasing the concentration of PFA and GA. The 

preservation was good in both cases and no differences could be observed. Fixation 

medium A was prepared by mixing equal volumes of filtered seawater from the culture 

of Magellania venosa containing 2% paraformaldehyde and 2% glutaraldehyde with a 

solution of 0.35 mol L
-1

 saccharose and 0.17 mol L
-1

 NaCl in 0.2 mol L
-1

 Na-cacodylate 

buffer (pH 7.7). Fixation medium B was prepared in the same way, however, with 3.2% 

paraformaldehyde and 4% glutaraldehyde in the filtered seawater. No differences in the 

preservation of the structure were observed between the fixation procedures. After 17 

hours in fixation solution at 4 °C, 8 samples, one from each region and valve of the 

animals, were decalcified for 14 days in a solution containing 0.25 mol L
-1

 HEPES as 

buffering agent, 0.05 mol L
-1

EDTA and 1% glutaraldehyde. All samples were washed 

three times with 0.1M Na-cacodylate buffer (7.7 pH) and postfixed in the same buffer 

containing 1% OsO4 and 0.9% K4Fe(CN)6·3H2O for one hour. K4Fe(CN)6·3H2O is used 

to change the redox of the reaction. After washing with bidest-distilled water the 

samples were dehydrated in an ascending series of isopropanol solutions (30, 50, 70 and 

90%), and contrasted with 2% uranyl acetate (in 100 % ethanol for 30 minutes, washed 

3 times for 30 minutes each in 100% isopropanol and two times for 5 minutes in 

propylenoxid and embedded in EPON resin. To avoid detachment of the OME from the 

edge of the commissure two M. venosa were chemically fixed in whole by injecting 

fixation solution A through the pedicle opening, samples were then kept in fixation 

solution. After several month, regions of the commissure were dissected off and 

postfixed and dehydrated in the same way as described above before embedding in 

EPON resin. Due to the prolonged fixation time part of the shell mineral had dissolved. 

High Pressure Freezing and Freeze Substitution 

M. venosa samples, no longer than 6 mm, were dissected in sea water of the culture. 

Shell pieces with the mantle epithelium attached were cut from the commissure and 

central region of both valves using scalpels. Samples were transferred to hexadecane 
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and placed in aluminium planchets with an outer diameter of 3 mm and a 200 µm deep 

cavity. The planchets were covered with the flat side of another planchet. Samples were 

then high pressure frozen with a Wohlwend HPF Compact 01 high-pressure freezer 

(Engineering Office M. Wohlwend GmbH) within 30 ms at a pressure of 2.3 x 10
8
 Pa. 

The planchet sandwiches were then opened and freeze substituted overnight in 0.2% 

OsO4, 0.1% uranyl acetate and 5% H2O in acetone from -90°C to 20°C (Walther and 

Ziegler, 2002). Samples were then embedded in EPON. Embedded samples were cut 

open using a diamond trimming knife (Diatome, Liechtenstein) and a Reichert Ultracut 

ultra microtome (Leica) to expose the mineralised shell. Part of these samples were then 

decalcified with EDTA as described above and re-embedded in Epon to facilitate thin 

sectioning for TEM analysis.  

For Transmission electron microscopy 

Ultrathin 60 nm thick sections were cut from chemically fixed and from high 

pressure frozen and freeze substituted decalcified samples using a diamond knife and 

the ultra-microtome. The sections were placed on carbon stabilized Formvar-coated 

copper hole grids and stained with 0.3% lead citrated. 

 

For Scanning Electron Microscopy 

For FE-SEM, EBSD and EDX analyses  

We worked with two different preparations methods: 

1. Embedding in epoxy resin and polishing of the surface by sequential of mechanical 

grinding. The polishing was performed with special grinding sheets with different 

grain sizes down to 1 µm. The last step is a process of etch-polishing with colloidal 

alumina (particle size ∼ 0.06 µm) in a vibratory polisher.  

2. Non-decalcified EPON embedded samples from animals that were chemically fixed 

as a whole, were polished by microtome following the protocol of Fabritius et al. 

2005. This protocol consists in successively advancing the knife for 70, 40, 20, 10 

and 5 nm 15 times for each step. 

For Atomic Force Microscopy 

For AFM imaging, shell pieces of modern Magellania venosa shells were cut in 

longitudinal section from the umbo to the commissure and embedded in epoxy resin. 

Embedded sample surfaces were polished in 5 sequential mechanical steps down to a 

grain size of 1 µm. For the final step, etch-polishing was applied for three hours with a 

colloidal alumina suspension in a vibratory polisher. Subsequently, the samples were 

washed in Milli-Q water in an ultrasonic bath and rinsed with 80% ethanol.  
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Appendix IV. Control tables for chemical experiments  

Magellania venosa - South Chile (Huinay)                  

1. Chemical fixation and decalcification May 2016 

Chemical fixation  

 

Fixation solution A   

Part 1  (2% PFA 2% GA)    in filtered seawater 

Part 2    (0.35M Saccharose  0.17M NaCl)   in                                                                   

Na- cacodylate buffer : Bidest = 1:1 

Na- cacodylate buffer  pH = 7.7  

Fixation solution B  

Part 1  (3.2% PFA 4% GA)    in filtered seawater 

Part 2 (0.35M Saccharose    0.17M NaCl) in                                                              

Na- cacodylate buffer : Bidest = 1:1  

   Na- cacodylate buffer  pH = 7.7    

Sample´s 

number 

Shell 

piece 

number 

valve 
Part of the 

valve 
Fixation Preparation Fixation Notes 

547 

1 dorsal Middle A Embedding 
18.05.16 

(DN*) 
 

2 dorsal Rim A Embedding 
18.05.16 

(DN*) 
 

3 dorsal Rim A Embedding 
18.05.16 

(DN*) 
* 

4 dorsal Middle A 
Decalcification* 

18.05.16 

(DN*) 
* 

Embedding 

5 dorsal Rim A 

Decalcification* 
18.05.16 

(DN*) 
* 

Embedding 

6 ventral Middle A Embedding 
18.05.16 

(DN*) 
 

7 ventral Rim A Embedding 
18.05.16 

(DN*) 
 

8 ventral Rim A Embedding 
18.05.16 

(DN*) 
 

9 ventral Middle A 
Decalcification* 

18.05.16 

(DN*) 
 

Embedding 

10 ventral Rim A Decalcification* 
18.05.16 
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Embedding (DN*) 

548 

1 dorsal Middle B Embedding 
18.05.16 

(DN*) 
 

2 dorsal Rim B Embedding 
18.05.16 

(DN*) 
* 

3 dorsal Rim B Embedding 
18.05.16 

(DN*) 
 

4 dorsal Middle B 
Decalcification* 

18.05.16 

(DN*) 
 

Embedding 

5 dorsal Rim B 
Decalcification* 

18.05.16 

(DN*) 
 

Embedding 

6 ventral Middle B Embedding 
18.05.16 

(DN*) 
 

7 ventral Rim B Embedding 
18.05.16 

(DN*) 
 

8 ventral Rim B Embedding 
18.05.16 

(DN*) 
 

9 ventral Middle B 
Decalcification* 

18.05.16 

(DN*) 
* 

Embedding 

10 ventral Rim B 

Decalcification* 
18.05.16 

(DN*) 
 

Embedding 

 

5 dorsal  B 
Critical point 

drying 

18.05.16 

(DN*) 
 

6 ventral  B 
Critical point 

drying 

18.05.16 

(DN*) 
 

 

 

 (*) indicates an orientation of the shell piece perpendicular to the commissure in the Epon for 

TEM sections. The other samples are orientated parallel to the commissure.   

 DN* is “during night”.  

 Decalcification*: The samples were in decalcification solution (0.25 M HEPES + 0.05 EDTA + 

1% GA) for 14 nights (19.05.2016 – 02.06.2016) in the refrigerator before embedded in EPON. 

 The animal 3 was used for critical point drying 

 

The shell piece number refers to the area in the shell where the piece was cut for each 

animal (shown in the scheme below). 
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2. High Pressure Freezing in May 2017 

(Samples in 200µm depth Aluminum holders) 

The samples are stored in liquid nitrogen at the Center for Electron Microscopy, 

University of Ulm (Germany). The “location of the samples” refers to storage and vial 

number were the samples were deposited.  

 
size of 

the 

animal 

location 

of the 

samples 

Sample 

number 

valve region preparation notes 

Animal 

1 
6 mm 

112-K9 

Vial E17 
1 Dorsal  Commissure   

112-K9 

E18 

2 

Dorsal central 

 
300µm 

depth 

Aluminum 

holder 

Possibly 

too thick 

3  

112-K9 

E19 
4 Ventral Commissure   

112-K9 

E20 

5 

Ventral 

Central part 

with 

commissure 

 Small 

6   

Animal 

2 

(The 

upper 

shell 

broke) 

 

 

 

6mm 

 

 

 

157-K3 

E21 

(2 

samples 

vial 19 

FS) 

7 

Ventral Commissure 

FS* 

(04.12.2017) 

Triangular 

shape 

8 
FS* 

(04.12.2017) 
 

9   

10   

85-K3 

E22 

11 

Ventral 
Central with 

commissure 

  

12   

Animal 
6mm 85-K3 13 Dorsal Commissure   

6 9 

7 8 10 

1 4 

2 3 5 
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3 E23 14   

85-K3 

E24 

15 

Dorsal 
Central with 

commissure 

  

16   

85-K3 

E25 

17 

Ventral Commissure 

  

18   

85-K3 

E26 

19 Ventral 
Central with 

commissure 

  

20 Ventral   

Animal 

4 
6mm 

157-K3 

E27 

21 

Dorsal Commissure 

  

22   

23   

157-K3 

E28 

24 

Dorsal 
Central with 

commissure 

  

25   

157-K3 

E29 

26 

Ventral Commissure 

  

27   

28  
Broken 

shell 

29   

112-K9 

E30 

(2 

samples 

vial 20 

FS) 

30 

Ventral central 

FS* 

(04.12.2017) 
 

31 
FS* 

(04.12.2017) 
 

32   

33   

Animal 

5 
5 mm 

 

157-K3 

E31 

34 

Dorsal Commissure 

  

35   

36   

11-K4 

E32 

37 

Dorsal 

Central   

38 
Central with 

commissure 
  

11-K4 

E33 

(2 

samples 

vial 21 

FS) 

39 

Ventral Commissure 

FS* 

(04.12.2017) 
 

40 
FS* 

(04.12.2017) 
 

41   

42   

11-K4 43 Ventral 
Central with 

commissure 

FS* 

(04.12.2017) 
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E34 

(2 

samples 

vial 22 

FS) 

44  
Triangular 

shape 

45 

Central 

FS* 

(04.12.2017) 
 

46   

 

FS* “Free substitute” 

Pajaudina atlantica - Palma de Mallorca (Spain) 

Chemical fixation in March 2016 

a) Fixation solution A      
 

Part 1 (2% PFA 2% GA)          in filtered seawater 

 

Part 2 (0.35M Saccharose 0.17M NaCl)  in Na- cacodylate buffer: Bidest (1:1) with 

a pH 7.6 

 

b) Fixation solution B  

 

Part 1  (3.2% PFA 4% GA) in filtered seawater 

    

Part 2 (0.35M Saccharose 0.17M NaCl)   Na- cacodylate buffer    pH 7.6 

 

 

Decalcification  

 

c) 02.03.2016 0.25 M HEPES + 0.05 EDTA  in the refrigerator 

d) 03.03.2016 0.25 M HEPES + 0.05 EDTA + 1% GA in the refrigerator 
 

Specimen 

number 

Sample 

specific 

number 

Valve Fixation Notes Preparation Sample Decalcification 

455 

1 Brachial A  Decalcification  03.03.16 

2 Pedicle B  

Epithelial 

embedding 

 

 

 

455-1 distal 

455-2 
proximal 

with eggs 

455-3 distal 

455-4 

proximal 

 

3 Brachial A  Decalcification  
02.03 + 
03.03.16 

4 Pedicle B  Decalcification  03.03.16 



 
 

264 
 

Epithelial 

embedding 
Discarded  

5 Pedicle B  
Epithelial 

embedding 
  

456 

1 Pedicle A Hinge 

Decalcification  03.03.16 

Epithelial 

embedding 

456-5 distal 

456-6 

proximal 

 

2 Pedicle A  
Epithelial 
embedding 

456-1 distal 

456-2 distal 

+ primal 

with eggs 

 

3 Brachial B  Decalcification  
02.03 + 
03.03.16 

4 Pedicle A  

Epithelial 

embedding 

456-3 distal 

456-4 

proximal  

LM image 
Proximal 

part 

5 Brachial B  Decalcification  03.03.16 

457 

 

 

457 

1 Pedicle A  
Critical point 

drying 
  

2 Pedicle B  

Epithelial 

embedding 
457-1 distal  

Epithelial 

Decalcification 

457-2 

proximal 
03.03.16 

3 Brachial A  
Critical point 
drying 

  

4 Brachial B  Decalcification  
02.03 + 
03.03.16 

458 

1 Brachial A 
Not 

good 

Critical point 

drying 
  

2 Pedicle B  

Epithelial 

embedding 

458-2 distal 

458-3 

proximal 

 

Epithelial 

Decalcification 

458-4 

proximal 
03.03.16 

3 Brachial A  Decalcification 458-1 03.03.16 

4 Pedicle B  
Critical point 

drying 
  

459 

1 Pedicle A Entire Decalcification  02.03 + 03.03.16 

2 Brachial B Entire Decalcification  02.03 + 03.03.16 
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Appendix V. Morphological analysis raw data 

Organelles counting 

Table A2. Data, in percentage, of the organelles at the areas of outer mantle were the scretiontakes place. The counting was done using JMicroVision (see 

Appendix II).  

Outer epithelium under 

secretion 

Sample 548-

10_J3M19   

Sample 548-

4_F2M3  

Sample 548-

10_J3M8   

Sample 547-

10_I2M15   

Sample 547-

10_I2M14 

 
1nt 2nt 3nt 1nt 2nt 1nt 2nt 3nt 1nt 2nt 3nt 1nt 

Epithelium length (µm) 9,772 
10,14

7 

11,22

6 
12,453 

15,22

3 
9,877 

11,31

3 

5,29

3 
7,055 9,69 

11,72

9 
16,367 

Area (µm) 12,884 11,8 
11,00

8 
3,478 3,974 14,673 

14,42

8 

7,08

4 
11,323 

16,13

3 

27,55

9 
17,043 

             

Citoplasma 78,4 78,8 77,6 76,8 39,2 80,8 78,4 73,2 82,8 76 77,2 85,2 

Tonofilamentes 2,4 1,2 4 6,4 5,6 0 1,6 1,2 0,8 4 1,2 0 

Nucleous 0 5,6 0 0 0 0 0 0 0 0 0 0 

Mitocondria 10,4 1,2 3,6 0 0 3,2 2 10,4 4,8 3,6 8,8 2 

Rough Endoplasmic Reticulum 1,2 5,2 0,4 1,6 0 4,4 2,4 2,8 0 2,4 1,2 0,8 

Golgi aparat 0 0 0 0 0 0 0 0 0 0 0 0 

Dark lysosomes like 0 2,8 6,4 0 0 1,6 6 4 0,4 0 3,2 0 

White lysosomes like 0 0 0,8 0 0 0 0 0 0 0 0,4 0 

Other 0,8 0,4 1,2 3,6 0,4 4 2,4 1,2 1,2 6 1,6 0,4 

White vesicles 0 0 0,8 2 0 0 0,4 2,4 0 0,4 0,4 0 

Dark vesicles 0 0,4 0,8 0 0 0 0 0 0 1,2 0 0 

Golgi vesicles 0 0 0 0 0 0 0 0 0 0 0 0 

Smooth Endoplasmic Reticulum 0 0 0 0 0 0,4 0,4 0 0,4 2,4 1,6 0 

Glycogen 1,2 0 0 2 0 0 0,4 0 1,6 0,8 0,4 2 

outer part 5,6 4,4 4,4 7,6 54,8 5,6 6 4,8 8 3,2 4 9,6 

TOTAL 100 100 100 100 100 100 100 100 100 100 100 100 
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Table A3. Data, in percentage, of the organelles at the areas of outer mantle were the secretion of the fibres is finished takes place. The counting was done 

using JMicroVision (see Appendix II). 

Outer epithelium under complete fibres Sample 548-4_F2M2 Sample 548-10_J3M19 Sample 548-4_F2M3 Sample 547-10_I2M15 Sample 547-10_I2M14 

3t 1a(t) 1c(t) 1b(t) 1t 2t 1t 2t 3t 1t 2t 1t 2t 

Epithelium length (µm) 5,923 9,927 7,101 9,733 15,983 7,607 4,147 8,989 11,866 3,408 2,989 3,499 2,512 

Area (µm) 5,273 11,119 6,028 10,087 33,374 14,47 6,821 6,189 11,745 9,055 9,504 12,025 5,136 

Citoplasma 53,15 53,2 58 55,6 60,56 67,33 61,2 68 56,8 69,65 69,5 86,5 71,5 

Tonofilamentes 9,45 6 10,8 16,8 6,37 11,95 7,2 10,4 5,6 10,45 4 3,5 9 

Nucleous 0 9,6 0 0 13,94 0 0 0 16,4 0 7 0 7,5 

Mitocondria 3,54 0 3,6 2,4 0,4 2,79 21,2 1,6 10,8 0 0 0 0 

Rough Endoplasmic Reticulum 2,36 3,2 2,8 0,8 5,98 3,98 2 4 2,4 4,48 2 3,5 4 

Golgi aparat 0 0 0 2,8 0 0 0 0 0 0 0 0 0 

Dark lysosomes like 12,2 0 0 0,4 5,58 9,96 1,6 2 0,8 6,97 13 0 0 

White lysosomes like 0 0 0 0 0 0 0 0 0 0 0 0,5 0 

Other 5,12 1,2 0 0 0 0 1,6 2 1,6 4,48 1 0,5 0 

White vesicles 0 0 0 0 0,8 0 0,4 1,2 0,4 0,5 0 0 0 

Dark vesicles 0 0 0 0 0,4 0 0 0,4 0 0,5 0 0 0 

Golgi vesicles 0 0 0 0 0 0 0 0 0 0 0 0 0 

Smooth Endoplasmic Reticulum 3,15 0 0,4 0 0 0 0 1,6 0 0,5 0 0 2 

Glycogen 2,36 1,2 1,6 0 0 0,4 2,4 0,8 0,4 0,5 0,5 3 1 

outer part 8,66 25,6 22,8 21,2 5,98 3,59 2,4 8 4,8 1,99 3 2,5 5 

TOTAL 99,99 100 100 100 100,01 100 100 100 100 100,02 100 100 100 
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Table A4. Data, in percentage, of the organelles at the areas of outer mantle attached to the puctae walls. The counting was done using JMicroVision (see 

Appendix II). 

 

 

Outer epithelium inside the Punctae Sample 547-10_I2M12 
   

Sample 547-10_I2M13 
  

Sample 548-10_J3M8 
  

 
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

Epithelium length (µm) 22,628 24,761 12,256 23,762 7,892 17,284 18,514 13,605 14,878 26,849 

Area (µm) 16,579 11,862 17,509 20,529 6,189 13,05 17,74 9,694 21,145 15,212 

           

Citoplasma 69,6 80,4 73,6 80,4 84 80 77,6 64 54,4 62,4 

Tonofilaments 0 0 0 0 0 0 0 0 0 0 

Nucleous 0 0 0 0 0 0 0 0 16 0 

Mitocondria 0 0 1,2 4,4 0,8 0,8 0 7,6 4 0 

Rough Endoplasmic Reticulum 2,8 4,4 0,8 4 1,6 2,4 6 2,8 1,6 2,4 

Golgi aparat 0 0 0 0 0 0 0 0 0 0 

Dark lysosomes like 11,6 11,2 18 6,8 6,4 8,4 9,6 16,4 11,2 12,4 

White lysosomes like 0 0 0 0 0 0 0 0 0 0 

Other 0,8 0 0,4 0 0 0 0 0 1,6 5,6 

White vesicles 0,8 0,8 2,4 0,8 1,6 0,4 2,4 0 0,8 1,2 

Dark vesicles 0 0 0,4 0 0 0 0 0 0,4 0,8 

Golgi vesicles 0 0 0 0 0 0 0 0 0 0 

Smooth Endoplasmic Reticulum 0 0 0 0 0,4 1,6 0 0 0,8 0 

Glycogen 4,4 2,8 3,2 1,2 4 2 1,6 4 2,8 2 

outer part 10 0,4 0 2,4 1,2 4,4 2,8 5,2 6,4 13,2 

           

 
100 100 100 100 100 100 100 100 100 100 
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Table A5. Data, in percentage, of the organelles at the areas of outer mantle in the commissure. The counting was done using JMicroVision (see Appendix II).  

Outer epithelium in 

commissure 
Mvenosa_547-

5_I5_M8    

Mvenosa_548-

5_E5M1_1 

Mvenosa_547-

5_I5_M12   

Mvenosa_547-

5_I5_M15 

Mvenosa_547-

5_I5_M13(169)  

 
A8 A7 A5 A3 B1 A13 A15 A17 A9 A22 A19 

Epithelium length (µm) 4,308 2,944 2,568 
3,43

9 
4,1 3,266 4,316 4,671 5,673 4,234 4,541 

Area (µm) 35,956 41,963 
37,74

6 

31,3

5 
19,733 58,979 

67,96

4 

74,82

2 
88,568 78,688 

68,47

5 

            

Citoplasma 60,4 61,2 75,2 55,2 75,2 71,6 66,8 73,2 71,6 55,2 62,8 

Tonofilamentes 0 0 0 0 0 0 0 0 0 0 0 

Nucleous 8,4 18,8 4,4 24 3,6 13,2 11,6 10,4 2,4 25,2 20,8 

Mitocondria 17,2 4 7,2 12,4 12,8 6 7,6 3,6 0 10,4 4,4 

Rough Endoplasmic Reticulum 5,2 1,6 2,4 2 1,2 1,6 2,4 3,2 1,6 0,8 2 

Golgi aparat 0 0,8 0,4 0 0 0 0 0,4 0 0 1,2 

Dark lysosomes like 5,2 4 2 0,4 0 3,2 0,8 4,8 13,6 0,8 5,2 

White lysosomes like 1,2 0,8 2 0 1,6 0 2,4 0,4 0 0 0,8 

Other 0 0 0 0 0 0 0 0 0 0 0 

White vesicles 0 0,8 0 0 0,8 0 0 0 0 0,4 0,4 

Dark vesicles 0,8 5,2 2 2,8 0,8 0,8 5,6 2,4 4,8 2 0,8 

Golgi vesicles 0 0,4 0,4 0 0 0 0 0 0 0 0,8 

Smooth Endoplasmic Reticulum 0 0,8 0 0 0,4 0 0 0 0,4 0,8 0 

Glycogen 0 0 0 0 0 0 0 0 0 0 0 

outer part 0,8 0,8 0,8 0,8 3,6 1,6 2,4 0,8 3,2 4,4 0,8 

            

Multivesicular body 0,8 0,8 3,2 2,4 0 2 0,4 0,8 2,4 0 0 

            

TOTAL 100 100 100 100 100 100 100 100 100 100 100 
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Table A6. Data of the apical and basal epithelial length obtained from in different TEM panorama images. Using Fiji software we counted the apical and basal 

intersections of the outer mantlel epithelium with a merz grid (see Appendix II).  

Image Apical Epith. Lenth (µm) Basal Epith. Lenth (µm) part of the shell apical Intersecctions basal Intersecctions x10nm merz grid constant in nm 

548-4_F2M2 35,343 34,962 central 70 69 6463,039 646,3039 

548-4_F2M3 54,588 52,67 central 90 96 6390,481 639,0481 

548-4_F4M4 55,266 52,128 central 95 124 6493,165 649,3165 

548-10_J3M8 42,572 41,036 central 66 135 7109,61 710,961 

548-10_J3M16 40,007 38,53 central 58 122 10792,181 1079,2181 

548-10_J3M19 57,291 55,717 central 115 220 7066,901 706,6901 

547-10_I2M14 74,753 72,567 central 118 399 8969,393 896,9393 

547-10_I2M15 43,873 42,537 central 61 166 9020,409 902,0409 

547-5_I5_M8 A1 7,697 9,52 rim 22 478 5900,208 590,0208 

547-5_I5_M8 A2 8,684 8,693 rim 32 460 5900,208 590,0208 

547-5_I5_M12 A3 6,923 6,529 rim 19 261 8331,622 833,1622 

547-5_I5_M12 A4 6,841 6,923 rim 9 235 8331,622 833,1622 

547-5_I5_M12 A5 6,816 6,781 rim 9 286 8331,622 833,1622 

547-5_I5_M13-

2_A6 
5,734 5,388 rim 10 315 7223,363 722,3363 

547-5_I5_M13-

2_A7 
5,418 5,276 rim 10 285 7223,363 722,3363 

547-5_I5_M13-

2_A8 
4,896 4,677 rim 13 296 7223,363 722,3363 

548-5_E5M5_A9 5,218 4,697 rim 9 306 5898,36 589,836 

548-5_E5M5_A10 7,557 7,5 rim 13 505 5898,36 589,836 

548-5_E5M5_A11 7,683 7,588 rim 15 507 5898,36 589,836 
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Table A7. Data of the apical and basal epithelial length obtained from in different TEM panorama images. Using Fiji software we counted the intersections of 

the apical and basal membrane and the mitochondria membrane with a merz grid to calculate there are and profile length (see Appendix II).  

 

 

 

 

 

 

 

 

Profile lenght (µm) 
  

Apical Memb Basal Mebrane Mitochondria 

1,280063181 1,275526832 1,261776564 

1,053607551 1,16477345 1,123848055 

1,116148581 1,544568102 1,456867622 

1,102213333 2,338915464 2,254527271 

1,564592441 3,417197202 3,291039273 

1,418536271 2,79038394 2,713721562 

1,415847356 4,931701472 4,787483856 

1,254176712 3,520200987 3,413005479 

1,686430765 29,62499395 36,64154117 

2,174189959 31,22162291 31,25398065 

2,286592778 33,30607049 31,41056395 

1,096105803 28,28154225 28,62054042 

1,100126144 35,14000726 34,95956414 

1,259742414 42,2301289 39,68188603 

1,333215762 39,01930354 37,99664922 

1,917968117 45,71553235 43,67065866 

1,017348409 38,42661614 34,58984592 

1,014670901 39,715624 39,41606193 

1,151573604 39,4104971 38,92318782 

Image name 

 

548-4_F2M2 

548-4_F2M3 

548-4_F4M4 

548-10_J3M8 

548-10_J3M16 

548-10_J3M19 

547-10_I2M14 

547-10_I2M15 

547-5_I5_M8 A1 

547-5_I5_M8 A2 

547-5_I5_M12 A3 

547-5_I5_M12 A4 

547-5_I5_M12 A5 

547-5_I5_M13-2_A6 

547-5_I5_M13-2_A7 

547-5_I5_M13-2_A8 

548-5_E5M5_A9 

548-5_E5M5_A10 

548-5_E5M5_A11 

part of the shell 

 

central 

central 

central 

central 

central 

central 

central 

central 

rim 

rim 

rim 

rim 

rim 

rim 

rim 

rim 

rim 

rim 

rim 

Area per (µm2) 
  

Apical Memb Basal Mebrane Mitochondria 

1,629520429 1,623745657 1,606241566 

1,341242413 1,482756602 1,430658573 

1,420857144 1,966235193 1,854592483 

1,403117573 2,977439386 2,870013217 

1,991726178 4,350092038 4,189492995 

1,805796673 3,552158756 3,454567548 

1,802373684 6,278055974 6,094466949 

1,596566955 4,481215857 4,344755975 

2,146826364 37,7126173 46,64468191 

2,767743817 39,74512597 39,78631737 

2,910832606 42,39862773 39,9856479 

1,395342688 36,00240328 36,43394795 

1,400460582 44,73322924 44,50352515 

1,603652093 53,75895409 50,51504092 

1,697183665 49,67157341 48,36973446 

2,441573413 58,19587268 55,59274847 

1,295084525 48,91708234 44,03287385 

1,291676057 50,55798935 50,17664684 

1,465953198 50,16956281 49,54921809 
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