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Summary

A diverse set of both supervised and unsupervised methods such as hidden Markov

models, neural networks, support vector machines, Bayesian analysis, and clustering

algorithms have been applied over the last years to biological data analysis. There is

a strong dependency between the amino acid sequence of a protein and its biological

properties, and determining these properties such as localization, structure and func-

tion given a biological sequence, is one of the greatest challenges in computational bi-

ology. Since 2006, deep neural architectures have become popular. Deep learning was

successfully used in many domains such as speech and image recognition and natural

language processing tasks. Methods such as SVMs, random forests and neural net-

works with a single hidden layer require careful design of features so that patterns can

be learned by the algorithms. In contrast, deep neural networks have been shown to

outperform these conventional methods in some areas as they are capable of learning

intermediate representations, where each layer is an abstract representation based on

the abstractly represented features of the previous layer. Deep learning algorithms have

already shown some promising results in genomics and proteomics fields1,2.

Mass spectrometry-based proteomics experiments provide data that helps in accurately

identifying and quantifying proteins in biological samples of interest. In bottom-up

proteomics, peptide identification by fragmentation resulting in MS/MS spectra is the

fundamental approach. The fragmentation chemistry is still not understood completely

and could theoretically be solved using quantum chemistry. Alternatively, machine

learning based prediction can be applied. It has been used in the past to predict spec-

trum intensity with limitations such as models not being independent of variable length

of peptide sequences, and separate model creation for different fragment ions, charges

and fragmentation type. Feature space were designed using biophysical chemical prop-

erties of amino acids, and properties of mass spectrometry instruments.

The aim of this thesis, is to develop a regression model, which predicts fragment spec-

trum intensities taking peptide sequence as input and to provide proof of concepts of

benefits of the spectrum intensities in both data dependent and data independent ac-

quisition data analysis. Article 1, in collaboration with Verily life sciences we developed

two regression models to predict intensities. DeepMass:Prism, a bi-directional long short
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term memory (LSTM) model trained on 60 million peptide spectra from publicly acces-

sible datasets, which captures sequence features that contribute to peptide fragment-ion

abundance. wiNNer, a fully connected neural network model based on a sliding win-

dow approach, where the feature space is centered around the target bond for which

prediction is done. Both the models overcome the limitation of covering peptides of

variable lengths.

Results show that DeepMass:Prism can successfully predict MS/MS spectrum intensi-

ties nearly as accurate as technical reproducible intensities. wiNNer has slightly in-

ferior predictive performance but it is easily re-trainable on smaller training dataset

and is computationally inexpensive. The predicted spectrum as shown in article 1 can

benefit analysis of both, data-dependent acquisition and data-independent acquisition.

In data-dependent acquisition (DDA) approach spectra are identified using database

search engines by matching the experimental MS/MS spectra with the theoretical spec-

tra generated from the protein databases(e.g.Uniprot3). MS/MS spectra intensity infor-

mation could be of high relevance in correctly identifying the peptide sequence. How-

ever, it is not used by any search engines. In the article 1, predicted intensity was

integrated into the peptide score calculation in the Andromeda search engine and we

demonstrated an increase in the total number of peptide identifications as a function of

q-value.data-independent acquisition (DIA), which depends on sample specific spec-

tral libraries generated by DDA experiments to identify peptide, which makes it cost

and time effective. In the article 1, spectral libraries generated from DDA experiments

were replaced by in-silico spectral libraries using DeepMass:Prism showing highly cor-

related peptide abundance quantification.

The study in article 2 provides important insights into the evolutionary relationships

between H. antecessor and other hominin groups. The authors used enamel proteomes

to investigate hominin biology across the existence of the genus Homo. To validate the

enamel peptide spectrum matches, the wiNNer algorithm was used to predict MS/MS

spectrum intensity. For predictions, wiNNer was trained on randomly cleaved and

heavily modified peptides from the ancient samples. The results show that the wiNNer

model trained on heavily modified peptides provides a predictive performance simi-

lar to that of the wiNNer model trained on modern, trypsin-digested samples, assuring
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accurate sequence identification for the phylogenetically informative peptides (median

Pearson correlation coefficients of 0.76).

The PRoteomics IDEntifications (PRIDE)4 database is one of the world’s largest mass

spectrometry-based proteomics data repositories to deposit proteomics experimental

data. PRIDE supports data deposition, automatic and manual curation of related ex-

perimental metadata, to promote and facilitate the reuse of public proteomics datasets.

It also has the quality control pipelines and visualization components to enable the as-

sessment of the data quality. To support handling of the data Proteomics Standards

Initiative (PSI) created specific data standard formats such as mzTab, mzIdentML. In

article 3, the authors discuss recent developments and improvements in the PRIDE re-

sources and the tools they used. The thesis also covers the mzTab table generated in

MaxQuant5 for the complete submission in PRIDE repository.

The protein sequence features such as disorder regions6 and low complexity regions7

makes the protein structure unstable and causes aggregation of proteins. The proteins

form nuclear aggregates and can cause various neurodegenerative disorders such as

amyotrophic lateral sclerosis and Huntingtion’s disease. The authors in article 4 used

a combination of methods such as fluorescence imaging and proteomics to investigate

the aberrant proteins in the nucleus focusing specifically on the role of the nucleolus

and its phase-separated nature in protein quality control. The results showed that the

nuclear proteins where highly enriched in disordered as well as low complexity regions

causing in misfolding of the proteins.
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Chapter 1

Introduction

Rapid technology development of mass spectrometer instruments in conjunction with

advanced bioinformatics analysis capacities now allows in-depth analysis of proteomics

samples. Proteins are a functional entity in cells and are involved in the structure, func-

tion, and regulation of cells, tissues, and organs. The common workflows used in pro-

teomics are the shotgun (bottom-up) approach (shotgun)8 and top-down approach9–12.

The shotgun proteomics workflow begins with taking the sample of interest(e.g.protein

extracted from cells or tissues) and digesting the protein to get peptides. This is often

followed by peptide fractionation and enrichment, before the separation of peptides

by high performance liquid chromatography (HPLC). Ionized peptides are then passed

through a high-resolution mass spectrometer, peptide isotope patterns are recorded

from the full (MS1) spectra, peptide precursors are selected for fragmentation, and

fragment (MS2) spectra are recorded. Lastly, software like MaxQuant13, Mascot14, Se-

quest15, and X! Tandem16 are used to identify and quantify peptides, proteins, and

post-translational modifications17.

Later downstream statistical data analysis is performed, for example gene ontol-

ogy enrichment or network analysis to the results to get the gene ontology enrich-

ment or network analysis, to understand proteins and their function. Perseus, a user

friendly software can be used for the downstream statistical data analysis18. With the

large amounts of data generated by high throughput instruments, it is possible to use

machine-learning algorithms to reveal features and patterns from protein and peptide

sequences, to solve biological problems like protein folding and to understand the func-

tion of the proteins. Deep learning algorithms, with successful applications in speech

1
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recognition and image analysis, harbor great potential to understand and predict mass

spectrometry data. The following introduction section is divided into four subsections

a) mass spectrometry-based proteomics, b) advances in machine learning algorithms,

c) protein sequence features, and d) application of machine learning in proteomics spe-

cific to spectrum predictions.

1.1 Mass spectrometry-based proteomics

The complete set of proteins that are produced or modified by the organism is known

as the proteome. Proteomes are the protein complements of genomes, and they are

highly dynamic and interact with other proteins and biomolecules. After the successful

completion of the human genome project, we now know that there are more than 20,000

genes in human, which lies between chicken and grapes19. The number of genes does

not indicate the complexity of organisms. Moreover, the cells and tissues of a single or-

ganisms have the same set of genes yet completely different physiology and function-

ality. Regulation of these genes, their translation into proteins, and the modifications,

localization, and complex structure of the proteins, generate these physiological and

functional differences. post-translational modifications (PTMs)20 and splice variants21

increase the complexity of the proteome within individual cells22,23.

The large scale study of the proteome is defined as proteomics, a term coined by Marc

Willing in 1994. Proteomes are identified and quantified using mass spectrometry-

based technology. The mass spectrometer was developed to determine the mass of pro-

teins, but it needs an efficient ionization method, which was not available until decades

later. In the late 80s, two ionization methods electrospray ionization (ESI) and matrix-

assisted laser desorption/ionization (MALDI) were developed, capable of analyzing

proteins and later earning the Nobel prize24,25. One of the advantages of ESI compared

to MALDI is that proteins or peptides are ionized in the liquid phase. Hence, ESI can be

directly coupled to liquid chromatography and allows the analysis of complex protein

and peptide mixtures.

With the advancement of the MS-based method, we aim to study thousands of proteins

in a cell or tissue and their post-translational modifications using complex experimen-
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tal designs. These studies aim for the identification of more than 10,000 proteins in

a system26. Some other applications of proteomics are to understand biological func-

tion such as protein-protein interactions, substoichiometric protein modifications, and

cellular localization using isolation and enrichment strategies applied during sample

preparation. UniProt (universal protein resource)3 is a comprehensive, high quality,

and freely accessible resource of protein sequences and functional information, which

is helpful for the identification of proteins using MS-based methods. Peptide-based

shotgun proteomics (bottom-up approach) is the most commonly used method in pro-

tein identification and quantification, and the workflow is discussed in detail in the

following sub-sections (see Figure 1.1).

1.1.1 Sample preparation

In shotgun proteomics, protein is first extracted from the sample of interest (e.g. cell,

tissue, or plasma) using proteolytic digestion followed by cleaning the sample using

detergent, and followed by the enzymatic digestion of protein into peptides typically

using trypsin (see Figure 1.1). The major steps in the sample preparation are as follows.

Proteins are extracted from the biological material by mechanical disruption and/or de-

tergent based lysis. Depending on the experimental study, either all proteins are dena-

tured, or native states are preserved using physiological buffers with mild detergents.

For complete denaturation of proteins and to dissolve lipids, detergents like 4 % SDS or

triton are used. Sonication, bead-milling, rotor start, blending, and heating of the sam-

ple can also be performed together with lysis. Before enzymatic digestion, detergents

are removed from the samples. The detergents are not MS-compatible because they

co-elute with peptides and usually ionize well with electrospray, and thus can cause

misidentification. Acetone or ethanol precipitation of proteins or membrane-based

cleanup (FASP)28 can be employed if the protein amount is low. For a higher amount of

proteins, it is usually advisable to use MS-compatible detergents or chaotropic agents

for lysis.

After the proteins are cleaned, they are digested into peptides using proteases such as

trypsin, LysC, and chymotrypsin. Trypsin cleaves C-terminal to arginine and lysine (if

not followed by proline)29. In acidic conditions, the resulting peptides have at least two

positive charges, one at the N-terminus and the other at the side chain of the terminal
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Figure 1.1: Shotgun proteomics workflow begins with sample preparation, HPLC sep-

aration and ionization of peptides, ionized peptides injected into high resolution mass

spectrometer, MS1 spectra containing peptide isotope patterns are recorded, peptide

precursors are selected for fragmentation and fragments MS2 spectra are recorded. MS1

and MS2 spectra are then analyzed by computational proteomics software. Taken from

the review27.
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residue. The additional charges enable peptides to be distinguished from non-peptide

contaminants. The distribution of lysine and arginine in proteins generates on average

10 amino acid long peptides, which makes the length suitable for the high-resolution

analysis in the commonly used mass analyzer. The lysine specific enzyme LysC is also

widely used. It is active at 8M urea and has a higher efficiency than trypsin in cleav-

ing C-terminal to lysine30. Chymotrypsin cleaves C-terminal to aromatic residues and

GluC-D22 cleaves C-terminal to aspartate and glutamate. They are mostly used to in-

crease peptide coverage of proteins or to generate peptides with different properties.

Earlier, proteins were digested ’in-gel’ after separating them on an SDS polyacrylamide

gel. Currently, ’in-solution’ digestion is the method of choice, especially in combination

with HPLC.31,32

1.1.2 Chromatography

In-solution digestion of the complex proteome might yield 100,000 unique peptides33

and these peptides need to be separated efficiently. In chromatography systems, the

analytes (peptides) differentially interact with the stationary phase of strong cation ex-

change (SCX) or reversed-phase (RP) chromatography columns due to their different

physiochemical properties8. RP chromatography is based on the hydrophobic interac-

tion between peptides and the C18-silica of the column. By applying a pH gradient to

the mobile phase, all peptides are eluted from the column throughout a mass spectrom-

etry (MS) run. The resolving power of a chromatography34 method can be optimized

by changing the column length35. A longer column allows for more interaction be-

tween peptides and the stationary phase, which in turn increases the resolution. The

smaller inner diameter of the column and uniform particles as filling material helps in

increasing chromatography resolution as it reduces the number of flow paths (eddy dif-

fusion) and the negative effect of mass transfer. Increasing the gradient length increases

the resolution. Longer gradients can cause peak broadening and consequent reduction

of the ion current due to dilution. But it is improved with higher flow rates, which

causes higher backpressure and reduces ionization efficiency36. With the ultra-high

pressure(up to 100,000 bar) and column heating device, the chromatographic perfor-

mance has significantly improved.
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1.1.3 Mass spectrometer

The mass spectrometer has three central parts, the ion source, the mass analyzer and

the detector. The ion source and mass analyzer will be discussed briefly in the next

sections.

Ion Source

The ion source ionizes the particles, and these ionized particles then enter the vacuum

of the mass spectrometer. Until the 1980s, the study of proteins or peptides was in-

compatible with MS as they could not be transferred into the vacuum of the mass spec-

trometer without being destroyed. Introduction of two ionization methods, ESI and

MALDI solved the problem. The methods shared the 2002 Nobel prize in Chemistry.

MALDI24 creates ions by pulsing the sample loaded onto a solid matrix with a laser.

The laser pulse excites the matrix molecules, which leads to its desorption along with

ionized analyte molecules, and the mass is then measured in a time-of-flight(TOF) an-

alyzer. Differently to MALDI, electrospray disperses a stream of liquid into a charged

aerosol when high voltage is applied to the emitter25,37,38. The soft-ionization tech-

nique enables the analysis of intact proteins and peptides from solution, which makes

it attractive for liquid chromatography (LC)-MS analysis. ESI yields multiple charged

peptide ions with one charge per kDa. Therefore, even large masses are recorded in

narrower m/z range38.

Mass analyzer

There are different types of mass analyzers used in proteomics and they are described

briefly here. The mass analyzers can be broadly classified into two types, trap-based

analyzers and beam-based analyzers. Trap-based analyzers include 3D and 2D ion

traps (linear ion trap quadrupole, LTQ), Fourier transform ion cyclotrons resonance

(FT-ICR)39, and the Orbitrap analyzer40. The beam-based analyzers are made up of 2D

quadrupole41 and the time of flight (TOF) instruments that continuously scan incom-

ing ions. The performance of these analyzers can be described by parameters like mass

resolution, mass accuracy, scan speed and sensitivity.

Mass resolution: High mass resolution should be able to distinguish two peaks with sim-
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ilar m/z. Ion traps and quadrupoles have a low resolution (∼1000), TOF instruments

perform better (>10,000). However, the highest resolving power is provided by FT-ICR

and Orbitrap analyzers (>100,000). Orbitrap is the most preferred high-resolution ana-

lyzer.

The mass accuracy is the deviation between the theoretical mass and the experimentally

determined mass and is read as the mass error in parts per million or billion (ppm,

ppb). The mass accuracy depends on many parameters such as resolution and signal

to noise ratio. The mass error can be corrected using internal and external calibrations.

The dynamic range shows how well the mass analyzer detects low abundant ions to-

gether with very high abundant ions.

The scan speed indicates how fast the m/z range can be monitored and for many in-

struments, it is inversely correlated with the resolution. FT-ICR analyzers are usually

slowest, ion traps and Orbitraps are comparably faster, and quadrupoles and TOFs are

the fastest.

Sensitivity parameters show the detection limit of a mass analyzer. Standard ion traps

and linear ion traps have electron multipliers as detectors, which are capable of de-

tecting single ions and are thus highly sensitive. FT-ICR detectors usually require more

charges to distinguish a signal from noise. In the Orbitrap analyzer, single ion detection

is possible due to improved electronics and thermal stability42.

The Orbitrap analyzer was introduced in 2000 by Alexander Makarov43. It uses an

electrostatic field, which is used in quadrupoles, or 3D or 2D ion traps, around a cone

shaped electrode. The electrostatic field generates a quadro-logarithmic potential dis-

tribution and is composed of a quadrupole field, generated by the ion trap outer barrel-

like electrodes and the field of the spindle-like inner electrode. Over the years, Orbi-

trap performance has improved significantly because of the development of enhanced

Fourier transformation and by implementing a smaller, high-field Orbitrap analyzer.

The mass-to-charge ratio m/z of the injected ions is measured in the mass analyzer. The

transients of ions oscillating inside the trapping analyzer are recorded and transformed

into m/z values using Fourier analysis. The Orbitrap has many favorable characteris-
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tics for lower-mass peptide analytes, such as very high resolution and mass accuracy.

Many modern mass spectrometers, such as the Q-Exactive HF operate multiple mass

analyzers in tandem. Quadrupoles are used for the selection of ions within a specified
m/z range and traps are often utilized for the accumulation of ions prior to mass anal-

ysis. Finally, the ions reach the detector, which counts the number of ions observed at

each m/z value.

1.1.4 Ion Fragmentation

Tandem mass spectra16 generates many fragment ions and a detailed interpretation of

the most abundant peak is required for confident peptide assignment. Peptides are

fragmented in the MS and each amino acid (aa) residue has different ion fragmentation

capabilities. Mass spectrometric fragmentation, known as MS/MS or MS2, is used to

get information about the sequence of each peptide. Selected peptides of interest are

isolated within a desired m/z window, subjected to fragmentation and the fragments are

measured in a subsequent mass spectrum44,45. The peptide fragmentation is done by

Figure 1.2: The backbone bonds cleave into six different types of fragment ions. The

N-terminal fragment ions are a, b or c, while the C-terminal fragment ions x, y or z. The

subscript n and m is the number of amino acid residues. Adapted from46

inducing dissociation of the peptides by collision with an inert gas such as He or N2.

The kinetic energy is partially converted into internal energy, which breaks the chemical

bonds. The collision energy required for efficient fragmentation depends on the peptide

mass and charge state. This generates sequence-specific backbone fragments referred to

as ions. The most common fragmentation methods are collision-induced dissociation
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(CID) and Higher-energy collision dissociation (HCD)47, which fragment peptides at

the amide bond to a series of b- and y- ions, N- or C- terminus, respectively (see Figure

1.3). A full series of either b- or y-types ions in principle, allows the entire amino acid

Figure 1.3: Example of complete y-and b-ion series. The y-ions are numbered con-

secutively from the C-terminus, the b-ions are numbered consecutively from the N-

terminus. The difference between consecutive ions gives the masses of the correspond-

ing amino acids. Adapted from46

sequence to be read from a fragment ion spectrum48. Neutral losses of molecules such

as NH3 and H2O from fragments ions can complicate tandem mass spectra. The b-ions

are chemically less stable and often further fragmented, leading to a prominent y-ion

series in HCD. While ion trap CID fragmentation spectra are usually recorded at low

resolution and low mass accuracy49,50, HCD usually features high resolution and high

mass accuracy51. The backbone fragmentation are a,b,c for N-terminal and x,y,z for C-

terminal types, depending on the cleavage position on the peptide backbone52,53 (see

Figure 1.2). The activation of the peptide with an electron such as in Electron-capture

dissociation (ECD) and Electron-transfer dissociation (ETD), breaks the N-C bond and

generates c- and z- ions54,55. The advantage of ETD and ECD is to analyze intact pro-

teins and peptides carrying PTMs where one needs to avoid fragmentation of weak

bonds. The orthogonality of ETD/ECD compared to HCD/CID can be very useful to

increase the fragmentation. Peptide fragmentation is not clearly understood and the

mobile proton model is the most accepted framework to understand the dissociation

process.
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Figure 1.4: Data acquisition modes in bottom-up proteomics. (a) The most common

acquisition mode in bottom up proteomics is DDA, where at given retention time, top

n most intense peptide features are selected for fragmentation (b) In DIA set of con-

stant mass ranges are isolated for fragmentation. (c) A list of peptides is targeted for

fragmentation based on the peptides of interest. Taken from27.

1.1.5 Acquisition methods

There are three different types of acquisition mode 1. targeted acquisition, 2. Data

dependent acquisition and 3. Data independent acquisition (see Figure 1.4). The most

popular acquisition technology in shotgun proteomics is data dependent acquisition.

In targeted mode, the mass spectrometer is configured to target a predefined set of

masses, aiming for the highest possible quantitative accuracy and reproducibility. DDA

and DIA are discussed in the following sections.

Data dependent acquisition

Mass spectrometers can be operated in a number of different acquisition modes, which

determine the succession of MS1 and MS2 scans during a measurement run (see Fig-

ure 1.4). DDA relies on the observed peaks on the MS1-level to decide which ions will

be subsequently isolated, fragmented and sent for MS2 analysis. The goal of the MS2

analysis is to sequence peptides by measuring their fragment ion series. To this end,

fragmentation energies are optimized to induce a single peptide backbone breakage

that gives rise to a set of complementary fragment ions. Time constraints do not allow

for the exhaustive sequencing of peptides. Instead, a common strategy is that eluting
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peptides are measured in a survey scan (MS1 or full scan) followed by selection and

fragmentation of the top N most abundant peptides that were not fragmented before.

The survey scan usually covers a m/z range between 300 to 1650 Th at a resolution of

60,000. After each MS1, five to twenty of the most intense features with a charge state

higher than one are sequentially subjected to fragmentation, and the fragment masses

are recorded in separate MS2 spectra. The acquisition cycle in the Q Exactive is 1 sec-

ond, which consists of MS1 and 15 MS2 scans. To prevent re-sequencing of the same

peptide, precursors with the same mass are excluded from selection for 20 to 40 sec-

onds. If the sample is very complex, under sampling can occur, which gives rise to

missing value problem in DDA, where some peptides are sequenced in one but not in

identical samples. DDA performance is compromised when the sample becomes com-

plicated because of the semi stochastic selection of precursor ions which limits both

identification and quantification.

Data independent acquisition

With advances in instrumentation and software56, SWATH DIA has emerged as an al-

ternative to DDA for proteomics analysis. After acquiring the MS1 scan, the entire

mass range is segmented into overlapping windows. Subsequently, each mass window

is fragmented and a MS2 scan is obtained, regardless of the measured MS1 information.

DIA-UMPIRE57: In this acquisition method the mass spectrometer selects a precursor

range of about 10 to 25 m/z units and cycles through the mass range. Methods like

SWATH MS have advantages like all the precursors are sequenced but with reduced

dynamic range. The resulting MS2 are very complex for each isolation window and

elution time, so a peptide fragmentation library is required to identify the peptides.

DIA data interpretation is more complex but the SWATH MS quadrupole-TOF instru-

ments58 are fast enough to sample the mass range as the time window is smaller than

the average time for peptide elution. But the library generated for peptide identification

is from DDA methods and is time taking and cost effective. It overcomes the limitation

of missing values in DDA. DIA uses co-elution and co-fragmentation. DIA avoids the

detection and selection of individual precursor ions during LC-MS analysis and just

fragment everything in a window and it generates very complex spectra but you do

not lose any ions at any time59.
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1.2 Computational mass spectrometry

1.2.1 Peptide identification

Peptide sequences are identified from MS1 and MS2 fragmentation spectra using search

engines like Andromeda and Mascot. Most popular search engines use a database

search approach14–16,60,61, using protein databases from Uniprot3 or Ensemble62. The

protein sequences in the database are digested in silico into peptides following the cleav-

age rule of the proteases used in the experimental design (e.g. trypsin). For each in sil-

ico peptide, a list of expected fragment masses is generated based on the fragmentation

method used in the experiment (e.g. HCD, CID). For each experimental spectrum, the

search engine calculates the match score against all the theoretical MS2 spectra within

a specified peptide mass tolerance. The highest scoring peptide spectrum match (PSM)

is a candidate to identify the peptide. However, these highest scoring PSMs can still be

false positives, so it is necessary to control the false discovery rate (FDR) using a target-

decoy approach63. In this approach, experimental spectra are searched against the tar-

get database and also against the decoy database. The decoy database contains reversed

amino acid sequences of target sequences, which do not occur in nature. In reversed

sequence, the lysine and arginine (e.g. trypsin digestion) are swapped with the pre-

ceding amino acid to avoid the exact same mass for forward and reverse peptide while

preserving the context of each amino acid64. Spectra are then matched to this combined

target-decoy database, which is designed to produce false-positive PSMs. Comparing

score distribution of target and decoy PSMs, posterior error probabilities are calculated

and FDR is controlled5. Additional peptide features besides the search engine score,

such as length of the peptide and number of missed cleavages help in distinguishing

the true identification from false positives. Tools such as PeptideProphet65,66 and Per-

colator67 use linear discriminant analysis or support vector machines (SVM) to get the

correctly identified peptide. To further improve identification and support database

scoring, machine learning was used to predict spectra intensity68,69, but failed to im-

prove upon the state of the art. De novo peptide identification2 using deep learning

yielded improvements in identifications. De novo peptide sequencing is another ap-

proach to identify peptides from fragment spectra. There are many existing tools that

identify peptides using only information from input spectra and the characteristics of

the fragmentation method, some also use homology sequencing70,71.
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All identified peptides are then assembled into proteins. Proteins upon digestion

can have many peptides, whereas one peptide can originate from one or more proteins.

Proteins that are identified by unique peptides are assembled into individual proteins.

Proteins that are not discriminated by unique peptides are combined in protein groups.

Longer peptides are more likely to be unique and more informative. Peptides of length

7 or longer are expected to be informative and useful. The Parsimonious model72,73

applies Occam’s razor principle to the protein inference problem by finding a set of

proteins that is as small as possible to explain the observed peptides. Statistical mod-

els74 can assemble large amounts of weak peptide identifications27. Each protein group

contains a set of proteins that cannot be distinguished from each other based on the ob-

served peptides. Either the proteins in a protein group have equal sets of identified

peptides or the peptide set of one protein is a proper subset of that of another protein.

Assembled proteins are also FDR controlled based on ranked protein posterior error

probability (PEP), which we get from the product of respective peptides PEPs5,61. It

is important to limit the false positive proteins present in the sample, as it impacts the

biological outcome of the relevant study.

1.2.2 Quantification methods

In addition to protein identification, protein quantification makes proteomics the most

powerful tools in biological processes. In proteomics there are two level of quantita-

tive information. Relative quantification that measures the difference between same

protein in two or more samples. The absolute quantification determines the absolute

amount of proteins within a sample, by determining copy numbers or concentration

per cell75(see Figure 1.5). In relative quantification, quantitative ratio of protein con-

centration between the samples are calculated.stable isotope labeling by amino acids in

cell culture (SILAC), tandem mass tags (TMT) and isobaric tags for relative and abso-

lute quantification (iTRAQ) are some popular quantitative methods. The isotopic labels

are done in two ways: metabolic labeling and chemical labeling.In metabolic labeling,

the stable isotopes are introduced in living cell or organism through its metabolism.

Example of metabolic labeling are SILAC, CTAP, Neucode. In chemical labeling tech-

niques, the stable isotopes are added in chemical reaction during sample preparation.

SILAC76,77 is one of the most popular methods for quantitative proteomics that detects

differences in protein abundances among the samples. It uses non-radioactive isotope
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Figure 1.5: Label-free, metabolic, or chemical labeling approach for relative quantifi-

cation. (a) In label-free, the quantification is done for each peptide feature between

extracted ion chromatograms in different LC-MS runs. (b) SILAC, dimethyl, NeuCode

are MS1 based label quantification, where multiple samples will appear as differen-

tially labeled isotope patterns in the MS1 spectra. (c) iTRAQ, TMT are MS2 based label

quantification, where signal appear as reporter ions in the low-mass range of the MS2

spectra. Taken from27.
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labeling with heavy isotopes mostly 13C, 15N, which gives light control and a heavy

sample. Introduction of these isotopes does not change physico chemical properties of

peptides, but only their mass. Hence, they behave exactly as the natural counterparts

in the cell, during sample preparation and during HPLC separation. With difference in

mass, it is easily distinguished in MS measurement. After labeling step, samples can be

mixed and analyzed together in LC-MS/MS run. In isobaric labeling different samples

are labeled with different molecules per sample. The molecules have same mass but

eject different reporter ions upon fragmentation. The advantage of isobaric labeling is

its multiplexing capacity. Tandem mass tag78 can now multiplex up to 16 channels.

Label free quantification

Protein quantification without isotopic labels has several advantages. For example, it

is applicable to any sample and to materials that cannot be metabolically labeled like

clinical samples. There is no limit on number of samples for comparisons. Label free

method are the simplest approach. However, it requires a controlled workflow as ro-

bustness and accuracy of quantitative information is reduced. Earlier label-free quan-

tification methods were based on correlation of mass spectrometric signal of peptides

with the relative or absolute quantity79,80. Spectral counting the abundance of proteins

is estimated by the number of MS2 spectra recorded for each protein81. High mass

resolution, accuracy and high peptide identification rates are crucial for accurate quan-

tification in both isotope-label-based and label-free methods. More recently developed

label-free strategies make use of high resolution data and employ the MS1 ion intensi-

ties of all the identified peptides (extracted ion current or XIC) to extract quantitative

protein information. The MS1 intensity is directly proportional with the number of ions,

within the linear dynamic range of the instrument. The MaxLFQ82 algorithms calculate

ratios of normalized peptide intensity. MaxLFQ uses MS1 intensity, sometimes also in-

cludes intensities got from matching between the runs and outputs relative abundance

profiles over multiple sample.

1.3 Advances in machine learning algorithms

Machine learning has been successfully used in different research areas like structural

biology and proteomics. Proteomics projects usually have as input the amino acid se-
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quence of peptides or proteins and the algorithm learns the properties of the sequence

given the numerical feature matrix. First-generation neural networks date back to the

1960s, with the introduction of perceptron by Frank Rosenblatt in 1962. Selective fea-

tures were provided with weights and objects were recognized by learning through

those weights. However, one of perceptron’s biggest limitations is that it can only learn

linearly separable patterns. Second generation neural networks were using Back prop-

agation (BP), which became popular around 1985. BP error is used in combination

with an optimization method such as gradient descent. The training algorithm in-

volves an iterative procedure for minimization of an error function, with adjustment

to the weights being made in a sequence of steps. Unfortunately, BP based training of

deep neural networks, failed to optimize these weights and reduce error with many

hidden layers. BP gets very slow in networks with multiple hidden layers. Sometimes

BP can also get stuck in poor local optima when the batch mode or even stochastic gra-

dient descent BP algorithm is used. They were not optimal for deep networks. Later,

for a decade, there was a slight diversion from deep learning to shallow learning al-

gorithms. In the 1990s, Vapnik and his coworkers developed a very clever type of

perceptron called SVM83, but with the same limitations as perceptron, and it was used

only for labeled and linearly separable data. With the success of SVM and other ma-

chine learning methods, many researchers abandoned neural networks with multiple

adaptive hidden layers. Later shallow-structured architectures such as Gaussian mix-

ture models (GMMs), conditional random fields (CRFs), maximum entropy (MaxEnt)

models, SVM, logistic regression, kernel regression, and multilayer perceptrons (MLPs)

with a single hidden layer including extreme learning machines (ELMs), gained ex-

treme popularity in different research areas. With the advent of graphical processing

units (GPUs), the mathematical calculations became very fast. Self-driving cars using

deep learning algorithms are one of the future applications and it is already being used

by Tesla. AlphaGo84 a deep learning model, which defeated human, was one of the

first success stories and marked the beginning of an era where deep learning is being

used in all domains.

Deep learning is a field in the machine learning research community introduced by

Hinton et al, Bengio and Le Cunn around early 2000s. It models high-level abstrac-

tion in the data by using model architectures composed of multiple non-linear trans-

formations. Deep learning is motivated from the deep architecture of the human brain.
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The human brain organizes ideas and concepts hierarchically by first learning simpler

concepts and then composing them to represent complex ones. Likewise, deep learning

has multiple levels of abstraction and processing. Deep learning had immense success

in a number of traditional artificial neural network applications, such as image recog-

nition85 and speech recognition. In this chapter, classical machine learning is discussed

and its applications in biology. Later, detailed descriptions of recurrent neural networks

its adaption, and different types of models, are discussed and some of its applications

and how it has potential to be used for biological sequence data to predict mass spec-

trometry data. Deep learning automatically extracts features in each hidden layer thus

does not require manual feature extractions. To use a simple example, a deep neural

network tasked with interpreting shapes would learn to recognize simple edges in the

first layer and then add recognition of the more complex shapes composed of those

edges in subsequent layers. DeepBind86 and DeepSEA1 are examples of deep learning

used in biological datasets. DeepNovo2 is used for de novo peptide sequencing.

1.3.1 Classical machine learning algorithms

Usually data is collected and converted into machine readable numerical features, which

is a fixed length numerical matrix, and this is then used as an input for a model, which

can be used for supervised, unsupervised classification or regression problem. Super-

vised learning is when the training data is labeled with class, for e.g. the data that

corresponds to cancer and rest of the data that corresponds to healthy. This is known

as binary class classification and if there are more than two classes then it is a multi-

class classification. The best models for these types of classifications are SVMs, random

forest (RF), decision trees and neural networks. Unsupervised learning is done when

the training data are not labelled and the model tries to find a pattern in the dataset to

cluster the data into groups. Methods like hierarchical clustering, k-nearest neighbor,

k-means are example of unsupervised learning. Feature extraction and data normaliza-

tion are the crucial steps before training the model. Features are numerical information

that distinguish the classes and show patterns.

Support vector machines

SVMs87, since 1996 have become the most widely used classical machine learning algo-

rithm for linear and non-linear supervised learning classification. SVM is mostly used
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for binary classification and can be extended to multiclass classification. It can also do

regression analysis and here the algorithm is known as Support vector regressor88. To

classify simple linear data into two classes SVM uses a hyperplane to divide it in a high

dimensional space. The hyperplane is defined by a weight vectors w and an intercept b

shown in equation 1.1, where x denotes the sets of features.

D(x) = w.x + b (1.1)

As one can divide the group with many different hyperplanes, the task is to maxi-

mize the distance between the hyperplane and the nearest training data point known

as margin maximization and margin is equal to the 2/|w|. The features correspond-

ing to data points on the margins are known as support vectors, which are used in the

prediction of the unlabelled class. The parameter C, is to find the margin size which

controls how many points can be misclassified. The soft margin increases the classifier

generalizabilty. The size of soft margin are penalized by parameter C. Large value of

C, corresponding to large penalties for misclassifcation and resembles a hard margin

classifier and gamma measures the degree of misclassification. (see Figure 1.6).

minw,b,γ,ξ − γ + C
`

∑
i=1

ξi (1.2)

subject to yi(〈w, φ(xi)〉 − b) ≥ γ− ξi, ξi ≥ 0 (1.3)

i = 1, . . . , ` and ‖w‖2 = 1. (1.4)

For non linear data SVM uses kernel functions to map the original finite space to higher

dimension feature space by computing the inner products between the images of all

pairs of data in the feature space. Most used kernel functions are:

linear: K(xi, xj) = xT
i , xj (1.5)

sigmoid: K(xi, xj) = tanh(γxT
i , xj + r) (1.6)

radial basis: K(xi, xj) = exp(−γ|xi − xj|2), γ > 0 (1.7)

polynomial: K(xi, xj) = (γxT
i , xj + r)d, γ > 0 (1.8)

where γ is the slope, d is the degree of the polynomial and r is a constant. The kernel

trick is the x · y + ‖x‖2 ‖y‖2 which separates the feature in higher dimensional makes it

possible to create a hyperplane in non linear datasets (see Figure 1.7).
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Figure 1.6: Support vector machines and Random Forests. (a) SVM a supervised clas-

sification learning algorithm classifies different classes by maximizing the hyperplane.

Data points on the margin are called the support vectors. (b) RF have many decision

trees predicting a class that forms a random forest and the majority vote defines the

predicted class. Image source: Adapted from Wikipedia

Figure 1.7: Kernel trick. Adapted from Wikipedia
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To estimate the accuracy of prediction of the model cross-validation method is used.

Dataset on which the model is trained known as training dataset, and a unknown data

on which model is tested is known as validation or test dataset. Cross-validation is

used to test the model’s ability to predict new data that was not used in training the

model, this helps to solve the problems like overfitting or selection bias and to give

an insight on how the model will perform on an unknown dataset. One iteration of

cross-validation involves partitioning the data into two subset, training the model on

one subset (training set) and validating a model on another set (validation or test set).

To reduce variability, multiple iteration of cross-validation are performed randomly

selecting the percentage of data as two set, and the validation results averaged over

the multiple iterations to give an estimate of the model’s predictive performance.SVM

model can be created using scikit, a python library, or in R and weka. SVM is also

implemented in the Perseus software18 and for example it can be used to find biomark-

ers using proteomics datasets. It has been successfully used to predict the subtype of

breast cancer89 and also for the prediction of subcellular localization with the dynamic

organellar maps method90,91.

Random Forest

Random forest92 is one of the widely used supervised classification algorithm. They

are ensemble learning method and can be used for both classification and regression

models. Random forest contains large number of decision trees. It uses different fea-

tures to create decision tree and outputs the class label in classification study and mean

prediction of individual trees in regression study. Random forests was first proposed

by Ho in 1995. The method to build forest of uncorrelated trees in CART, along with

randomized node optimization and bagging was later described by Breiman92 . RF

uses bootstrap aggregating, or bagging. Given a training set X = X1, . . . , Xn with labels

Y = Y1, . . . , Yn bagging repeatedly samples a training set with a replacement and fits

tree to these samples. for b = 1, . . . , B

1. Xb, Yb are sampled with replacement, n training example for X, Y.

2. Train a tree fb on Xb, Yb
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The prediction for unknown samples are calculated by averaging the predictions from

the training set from individual regression trees on x
′
.

f̂ =
1
B

B

∑
b=1
− fb(x

′) (1.9)

or by taking majority votes in classification trees. The advantage of bootstrapping is

that it decreases the variance of the model without increasing the bias. For uncorrelated

trees, the prediction of a single tree is highly sensitive to noise but the average of many

trees is not. Training many trees on a single training set will give strongly correlated

trees or even same one many times. Bootstrapping gives uncorrelated trees by sampling

different training set at each iteration. The number of trees B is a parameter, which

needs to be tuned depending on size and nature of the training set. The optimum

number of trees can be found using cross validation or by out-of-bag-error. In out-of-

bag-error, mean prediction error on each training sample xi is calculated. In RF along

with bagging, random selection of subset of features are also included. If the features

are very strong predictor of target output these features will be selected in many B trees

which will result in making the trees correlated. The number of p features is also the

parameter that needs to be tuned depending on the training dataset. The Figure 1.6

shows the random forest as ensemble of decision trees. Random forest and decision

trees were used earlier to predict the MS/MS spectra intensities68,93.

1.3.2 Neural networks

Neural networks or artificial neural networks have been through various phases. First

mathematical model for neural network was developed in 1942 by McCulloch and

Pits94 then in 1949 pyscholoigist Hebb introduced first learning rule by memorizing

and adapting the weights. Rosenblatt in 1958 introduced perceptrons. 1969 Minsky

and Papert prove limitations of perceptron: one layer cannot represent even an XOR

function. Then there was 13 year hibernation period in field of artificial neural net-

works. The second wave of research started with self organizing maps described by

Kohonen in 1982. Since 1995, SVMstarted performing better than perceptrons and was

widely used in various field along with RFand hidden Markov model (HMM). Third

wave of neural network started from early 2000s and were named as deep learning as

it has more than one hidden layer, In 2006, Hinton published work on pretraining of
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multilayer neural network and Boltzmann machine. LeCun and Bengio developed con-

volutional neural networks. Recurrent neural network also improved and overcame all

the limitation of vanishing gradient phenomenon by introducing LSTM. This could be

possible because of the increased computational power and Graphical processing units

(GPU) and huge amount of dataset available.

In this thesis, we will discuss deep feedforward neural networks and recurrent neu-

ral networks. These algorithms showed promising results in article 1 and article 2.

Feed forward neural networks

Feed forward networks or multilayer perceptrons (MLPs) aim to approximate function

f ∗. Neural network are conceptualized based on biological neural networks. Map-

ping y = f (x; θ), where the feedforward network learns the value of the parameter θ

that gives best function approximation. In Feedforward models the information flow

through the function is being evaluated from input x, optimizing parameters and defin-

ing f , and finally getting the output y. There are no feedback connections where out-

put of models are fed back to itself and when it has feedback connection it is known

as recurrent neural networks, which is discussed in details in the next section. The

fully connected feedforward neural networks are directed acyclic graph. The functions

f (1), f (2), f (3)are connected in chain to form function f (x) = f (3)( f (2)( f (1)(x)))95. Each

input unit is connected to hidden layer and that is connected to the output layer, the

final layer of the network. The length of chain gives depth of the network and this is

called feed forward network as shown in figure 1.8. A loss function like mean squared

error is used calculate the difference between true and predicted value. The architec-

ture of neural network is the overall structure of the network: how many units it should

have and how these units should be connected. A network with even one hidden layer

is sufficient to fit the training set. A functional unit is also known as neuron because it is

based on human brain structure. In a hidden layer, the functional unit is called hidden

unit. It takes a vector as input and compute transformation z, and then applies element

wise non-linear function a(z). where z is:

z = WTx + b (1.10)

W is the weight matrix and b is the bias vector. They are the parameter associated with

hidden layer. Parameters W and b are randomly initialized. They can be initialized as
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Figure 1.8: Fully connected feed forward neural network. It contains input layer, hid-

den layer and output layer. Hidden layer consists of hidden units which has two

compartments, first computes the transformation z and then applies element wise non-

linear function a(z) and output of a(z) is passed to next layer as input and output of

last layer is the predicted y
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zero or as random numbers.

W l ∼ N (µ = 0, σ2 =
1

n[l−1]
) (1.11)

It states that weight matrix W in a particular layer l are randomly chosen from a normal

distribution with mean µ = 0 and variance σ2 = multiplicative inverse of the number

of neurons in layer l − 1. The bias b of all layers is initialized with 0.

a = σ(z) (1.12)

where, a is an activation function using e.g. Sigmoid function. The neural networks are

organized in groups of units called layers, with each layer being a function of the layer

that preceded it.

z[1] = (W [1]Tx + b[1])a[1] = σ(z[1]) (1.13)

and the second layer can be

z[2] = (W [2]Tx + b[2])a[2] = σ(z[2]) (1.14)

and so on. The output of the last layer here a[2] gives the predicted ŷ. Then the loss

function is calculated using mean squared error L(ŷ, y) to see how far the predicted ŷ

is from the true y.

Activation functions

The function f which determines the output of the neural networks is known as acti-

vation function. The function is attached to each neuron/hidden unit in the network,

and determines whether it should be activated (“fired”) or not, based on whether each

neuron’s input is relevant for the model’s prediction. The activation function outputs a

value in a range between 0 and 1 and between−1 and 1. User can choose different kind

of non linear functions such as Sigmoid, TanH / Hyperbolic Tangent, Rectified Linear

unit96. The sigmoid function is most widely used activation function. The output range

of Sigmoid is from 0 to 1 (see Figure 1.9). Logistic function is defined:

logistic(x) =
1

1 + exp−x (1.15)

For example, the rectified linear function f (x) = max(0, x) is not differentiable at x =

0. The gradient descent preforms well even if Relu doesn’t differentiate completely,
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Figure 1.9: Activation functions. Logisitic, tanh, relu are the most widely used non

linear activation functions in deep learning. Source wikipedia.

gradient descent performs well because we do not expect the function to reach the

point where the gradient is 0. The rectified linear unit function is defined as following

f (x) = x+ = max(0, x) (1.16)

f (x) = tanh(x) =
(ex − e−x)

(ex + e−x)
(1.17)

Optimizers

Gradient descent is a way to minimize an objective function J(θ) parameterized by a

model’s parameters θ ∈ Rd by updating the parameters in the opposite direction of the

gradient of the objective function ∇θ J(θ) w.r.t. to the parameters. The learning rate η

determines the size of the steps we take to reach a (local) minimum. In other words,

we follow the direction of the slope of the surface created by the objective function

downhill until we reach a valley (see Figure 1.10). The gradiet descent method has few

variables depending on the amount of data we take for the parameter optimization. In

Stochastic gradient descent (SGD) each training point pair xi, yi is taken separately for

the parameter updates.

θ = θ − η · ∇θ J(θ; x(i); y(i)) (1.18)

Batch gradient descent method computes the gradient of the cost function w.r.t. to the

parameters θ for the entire training dataset.

θ = θ − η · ∇θ J(θ) (1.19)
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Figure 1.10: Stochastic gradient descent method. Source: Wikipedia.

Because we need to run the whole dataset through the deep learning model to cal-

culate the gradients and perform just one update, batch gradient descent can be very

slow and is intractable for datasets that do not fit in memory. While batch gradient

descent converges to the minimum of the basin, where the parameters are placed in.

SGD fluctuation enables it to jump to new and potentially better local minima. But it

complicates convergence to the exact minimum, as SGD will keep overshooting. How-

ever, by slowly decreasing the learning rate, SGD can show same convergence as batch

gradient descent, almost certainly converging to a local or the global minimum for non-

convex and convex optimization respectively. Mini-batch gradient descent instead of

taking complete training dataset it takes mini-batch of n training examples to performs

an update.

θ = θ − η · ∇θ J(θ; x(i:i+n); y(i:i+n)) (1.20)

This method reduces the variance of the parameter updates that can lead to more sta-

ble convergence and can make use of highly optimized matrix optimizations. It is used

by all state-of-the-art deep learning algorithms. Adagrad97 is able to deal sparse gra-

dients and RMSprop98 is able to deal with non-stationary object and it smooths the

gradient. Adam optimizer99, is a very computationally efficient gradient based op-

timization method for stochastic objective functions. It works on large datasets with

high dimensional parameter spaces. It combines the advantages of AdaGrad and RM-

Sprop (root mean squared prop)98. Adaptive Moment Estimation (Adam) is a robust

and well-suited method for a wide range of non-convex optimization problems in the
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machine learning field. It computes adaptive learning rates for each parameter.

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g2
t

(1.21)

Dropout rate

Dropout100 provides a computationally inexpensive powerful method of regularizing

the models. It helps with over-fitting of model. The idea is to dropout (zero) randomly

sampled hidden units and input features during each iteration of optimization. Adding

dropout layer improved the ImageNet85 classification which won several competitions.

Alternatively, the procedure can be seen as averaging over many neural networks with

shared weights.

Size of a mini-batch

For large training sets, it is suggested to divide the training data into small mini-batches

of 10 to 100 cases before updating the weights. When the size of mini-batch changes

it is important that learning rate should not change. Divide the total gradient com-

puted on a mini-batch by the size of the mini-batch to avoid changes in the learning

rate, so that learning rates are assumed to multiply the average, per-case gradient com-

puted on a mini batch, not the total gradient for the mini batch. For training sets, first

randomize the order of the training example and then mini-batch of size 10 can be

used.Alternatively, the number of training cases should be divisible by mini-batch size.

Choosing appropriate values of hyper parameters for new model applications requires

heuristic learning ability. Ideal network architecture can be optimized by monitoring

the validation set error and Google Vizier101 provides one. Grid search is another way

to do hyper-parameter tuning. Imagenet85, an image classification model, that used a

plethora of image data that is present on the internet, it uses a fully connected feedfor-

ward network together with convolutions neural networks and it performs even better

than human in recognizing unknown images. Recurrent neural networks are used in

language processing and machine translation problems. Now, with the user friendly

API such as keras102, which uses Tensorflow103 as backend the implementation of feed-

forward network became much simpler for users of any field. This was also used article

1 to implement wiNNer model to predict spectrum intensity.
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Figure 1.11: Types of sequence model based on input and output. Source: Andrej

Karpathy blog.

1.3.3 Recurrent Neural Networks

Sequential data is kind of data where order matters like time series data or a sentence.

So it’s important to remember the past information for the prediction of correct out-

put. Biological data (DNA, RNA and protein sequences) are sequential too. Recurrent

neural networks allow operating over sequences of vectors: Sequences in the input, the

output, or in both (see Figure 1.12). Depending on the size of input and output the mod-

els can be of many types (see Figure 1.11). The one-to-one model takes fixed-size input

and fixed-size output (e.g.image classification). The one-to-many model takes fixed-

size input but the output is a sequence of variable length (e.g. image captioning takes

an image as input and outputs a sentence of words). The many-to-one model takes

variable-length input and outputs the one-dimensional result (e.g. sentiment analysis

where a given sentence is classified as a positive or negative sentiment). In the many-

to-many model, both input and output are of variable length (e.g. Machine Translation:

an RNN reads a sentence in English and then outputs a sentence in French). For bi-

ological sequence data, we need mostly many-to-one or many-to-many models (e.g.

MS/MS spectrum prediction uses many to many, retention time prediction uses many

to one model).

Recurrent models have a loop mechanism that is known as hidden state which is

representation of previous inputs (see Figure 1.12). In contrary to the feed-forward

networks that were discussed in the previous section, the input and output in recurrent

neural networks (RNN) are recurrent. They can keep the information from the previous

time points. The recurrent neural networks form a chain of repeating modules of a neu-
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Figure 1.12: Unrolled recurrent neural networks at different time points t. Source:

Adapted from colah’s blog.

ral network. In standard RNN, the repeating module will have a very simple structure,

with activation function such as a tanh layer. The limitation of RNN is vanishing gradi-

ent phenomenon. The vanishing gradient problem is when the gradient that is used to

calculate the updated weights is vanishingly small, effectively preventing the weights

from changing their value. Another problem is the exploding gradient that is an issue

when the weights within a neural network have increased dramatically in magnitude

in an unreasonable manner relative to their actual contribution to the model.

To overcome the limitations of vanishing gradient and to include long term depen-

dencies of data at time point t, special RNN were developed by Hochreiter & Schmid-

huber (1996)104 known as LSTM. The LSTM layer contains blocks, that are called mem-

ory blocks. These blocks contains more than one cells and three gates (input, output

and forget gate). The standard LSTM can be unidirectional where information is passed

only in one direction or it could be bidirectional where input can be from past to future

and reverse, which helps in capturing long term dependencies (see Figure 1.14). Similar

to RNN, LSTM also have chain like structure, but the repeating module has a different

structure. Instead of having a single neural network layer, there are three known as

gates that interacts with each other. The gates have the output value of 0 and 1 and

decide if the information is to be deleted or passed forward to the net gate.

The Forget gate ft in equation 1.22 decides if the information should be kept or

thrown away. The information from the previous hidden state ht−1 and current input

state xt is passed through forget gate, which outputs a number between 0 and 1 for each
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Figure 1.13: LSTM block containes four neural networks known as gates, forget gate,

input gate and output gate. Adapted from Hermann Ney slides.

number in the cell state Ct−1. If the value is closer to zero is lost and if it is closer to 1 is

kept.

Equations 1.23 and 1.24 decides which new information are going to be stored in

the cell state Ct. First, input gate that decides which values will be updated and then,

a tanh layer gives a vector, C̃, also known as net input that could be added to the state.

Using equation 1.25 Ct−1 is updated to Ct. Finally, the output is decided using the

output gate. We will put cell state through tanh layer to get values between -1 and 1

and multiply it by the output of the sigmoid gate, which will be new hidden state (see

figure 1.13). Varient of LSTM is gated recurrent unit (GRU) introduced by Cho, et al.

(2014)105. It combines the forget and input gates into a single “update gate”. It also

merges the cell state and hidden state. The resulting model is simpler than standard

LSTM models, and currently it is getting more popular.

forget gate: ft = σ(w f [ht−1, xt] + b f ) (1.22)

input gate: it = σ(wi[ht−1, xt] + bi) (1.23)

C̃ = tanh(wc[ht−1, xt] + bc) (1.24)

Ct = ft ∗ Ct−1 + it ∗ C̃t (1.25)

output gate: ot = σ(wo[ht−1, xt] + bo) (1.26)

ht = ot ∗ tanh(Ct) (1.27)

σ -> represents sigmoid function

wx -> weight for the respective gate(x) neurons
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Figure 1.14: Bi-directional LSTM layer. Source: colah’s blog.

ht−1 -> output of the previous lstm block(at timestamp t-1)

xt -> input at current timestamp

bx -> biases for the respective gates(x)

Ct -> cell state(memory) at timestamp(t).

C̃t -> represents candidate for cell state at timestamp(t) also known as net input

The LSTM architecture can be written using libraries such as Keras102, Tensorflow103,

PyTorch and CNTK. Machine learning is always being used in the field of proteomics

and protein sequence data analysis to find patterns, domains, biomarkers, and subcel-

lular localization. Now with LSTM, we show in article 1 that machine learning can learn

the complex relationship between peptide sequence and peak intensities from MS and

the predicted spectrum can now benefit in peptide identification.

1.4 Protein sequence features

Amino acids are the building block of proteins and they are arranged in the linear chain

joined together by peptide bond. The polypeptide chain is the primary structure of the

protein, which can be used to predict physicochemical, biological and functional prop-

erties of protein. So far, there are many sequence based predictor for various biological

studies such as to predict signal peptides106,transmembrane proteins107, disorder re-

gions6, low complexity regions7,108. These predictors keep on being updated based

on improvements in machine learning algorithms and dataset availability e.g. the first

version of signal peptide prediction used neural networks106, then used HMM109 and
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now it uses deep learning algorithm110. Protein and peptide sequences have also been

used in secondary structure prediction111 and to find domains and motifs (SMARTS112,

pfam113). Sequences can be used to learn patterns in two ways, one at the protein level

taking complete protein sequence and other way is to use sliding windows approach,

where a fixed size window slides over a few amino acid at a time. Using complete

protein sequences, we can study protein crystallization114. Most common application

of sliding windows approach is secondary structure predictions, signal peptides, trans-

membrane domain, and protein motifs prediction. The machine learning algorithms

takes the numerical, fixed size input. So, we need to extract numerical feature from the

protein and peptide sequences to give it as input to machine learning algorithm.

To create feature space from protein sequence, we can calculate frequency of each

amino acid, dipeptide (two amino acids), tripeptide (three amino acids) in the protein

sequence. The physico chemical properties (e.g. hydrophobic, hydrophilic, neutral

residues) of amino acid sequence and its frequency can also be used as feature. Pro-

tein sequences contains various functional and structural regions, which can also be

extracted as numerical features e.g. the number of disorder regions and the low com-

plexity regions to predict functional properties of protein. Tools like PSIPRED (avail-

able as web based tool and standalone tool) predicts helical, sheet and coil residues

in the protein sequence. These residues are used to calculate the frequency of helical,

sheet and coil residues, which define the sequence attribute of secondary structure of

the protein. Intrinsically unstructured/disordered regions are characterized by lack of

stable secondary or tertiary structure under physiological conditions and in the absence

of a binding partner/ligand. Disordered regions in proteins are predicted using DISO-

PRED6. DISOPRED predicts regions devoid of ordered regular secondary structure.

SVM is used as a predictor model that takes the protein profile generated by psiblast

as input. The important numerical features which can be used from these regions are

the frequency of disordered residues, the length of disordered regions, the number of

disordered regions, and the longest disordered region. The features were used in ar-

ticle 4 to find out if the proteins of interest were enriched in the disorder regions and

low complexity regions when compared to human proteome. The proteins that are rich

in disorder regions and low complexity regions tend to aggregate when going through

conformational stress. These aggregation cause neurodegenerative disorders such as

Alzheimer’s and Huntington’s disease. Amino acid sequences can be also represented
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as one-hot encoded vectors. One hot encoding is a binary representation, where one

aa is on and rest 19 are off. Another method of amino acid representations is an em-

bedding, where each aa is given a numerical value. These numerical representation of

aa can be directly fed into machine learning-based models. In article 1 and 2 we used

one-hot encoding for peptide sequence representation.

1.5 MS/MS spectrum prediction

Database search is the most common strategy used in tandem mass spectrum identifi-

cation. At a given retention time, the experimental spectra are matched to theoretical

spectra, where information like mass and charge is considered but not the peak inten-

sities. Peak intensity can be a piece of valuable information to correctly identify the

spectra yet they are not fully exploited by mass spectra search engines14–16,60,61.

It is not fully clear the physicochemical properties that effect the peptide fragmenta-

tion. Some of the factors, which effects the fragmentation are the following, precursor

charge state, mass analyzers, the ionization methods. Peptide fragmentation method

are very random because of the fluctuation in the ionization source and in the ion de-

tection. Same peptides in the same experiment may produce different fragment spectra

(known as technical replicates or baseline) and it varies more when different instru-

ment, experimental designs or PSM algorithms are used. Theoretically, the intensities

can be calculated from first principles by quantum chemistry. However, for molecules

as large as peptides, this is too computationally expensive. Simpler models, such as

the mobile proton hypothesis115, exist for qualitative considerations, but they are not

precise enough to be beneficial to the peptide identification process.

Intensities of fragment ion are varied based on residue on each side of target bond,

and the types of ion formed (b-ions, y-ions etc) can give different intensities. The peak

intensities cannot be quantified hence the database search engines don’t used this in-

formation. This makes it ideal case for the prediction of MS/MS spectra intensities

using machine learning algorithms. The goal of the prediction algorithm is to reach

the limit of technical reproducible of the fragmentation spectra. Machine learning in

proteomics is mostly used for preprocessing of the spectrum or post processing of the

peptide identification.

In last decades, lot of research is done to predict fragment intensities using ma-
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chine learning algorithms69,93,116,117. MassAnalyzer118,119(used a kinetic model of pep-

tide fragmentation), PeptideART116(used neural networks) and MS2PIP (used RF). The

input for these model were sequence features constructed manually. Feature space in-

cluded amino acid residues in binary representation and compositional features as real

values. The features that were used by most of the models are the amino acid com-

position of prefix and suffix aa residue of the target bond, length of both fragments,

the first and the second neighbors of target bond, the parent mass, the ion masses, the

N-terminal acetylation, gas-phase basicity, helicity, hydrophobicity, and the isoelectric

point. The models were restricted by peptide length. Separate models were created for

different charge and fragmentation methods(e.g. CID and HCD).

With the advancement of machine learning and deep learning algorithm it is now

possible to give numerical representation of peptide sequence as input and the algo-

rithm will learn the properties of fragmentation at each hidden layer. Bidirectional

LSTM models show improvement in various fields like sentiment analysis, language

translation, etc, and are proven to be the best algorithm choice to predict fragment

spectra intensities. Bi-LSTM read the input sequence in both directions because frag-

mentation could be effected by both N- and C- terminus residues120(see Figure 1.14).

These predicted spectra intensities can be used in both DDA and DIA analysis.

Andromeda search engine61 uses peak intensities only to give higher weights for

matches to the high-intensity peaks. However, the PSM score calculation does not ben-

efit from peak intensities. Peak intensities could be integrated in Andromeda scoring

function in the following way: the Andromeda score of a given PSM can be replaced

by a maximum of several attempts to score the same spectrum. One of these scores was

the original Andromeda score. We can then calculate the score on subsets of the ions

in theoretical spectra, always taking a certain number of top intensity peaks (by de-

fault it is top 3, 5, 7, 10 and 13 peaks) from the theoretical spectrum, which can include

intensities predicted by machine learning algorithm.

In DIA mode, spectral library from DDA experiment is used to get the correct pep-

tide identification and this can be both time and cost-effective. An in-silico generated

spectrum library in DIA experiment will make DIA experiments much cheaper and

faster and we can also overcome the problem of biased identification due to library

taken from DDA experiments.

In article 1, we aimed to develop two regression model to predict fragment in-
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tensities with Pearson correlation coefficient (PCC) close to experimental reproducible,

which we called as baseline. We trained bidirectional-LSTM algorithm using 160 mil-

lion PSM, collected from PRIDE repository4, on the GPU. This work was done in collab-

oration with Verily life Sciences. The model took 3 days to train and predicted intensi-

ties with PCC of 0.98 similar to baseline. As deep learning models are computationally

expensive and needs huge dataset to train, we developed a simpler model based on

sliding window approach which can be retrained easily with fewer data points when-

ever there are new datasets. We compared our model with the state-of-the-art predictor,

MS2PIP69 68 and both the models performed better than Ms2PIP as shown in article 1.

In article 1, we presented proof-of-concept application of predicted intensities in

both DDA and DIA acquisition mode. article 2, shows that wiNNer model can easily be

extended for new datasets. The predicted intensities were used to validate the ancient

peptide spectrum matches.
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Chapter 2

Manuscripts

2.1 High-quality MS/MS spectrum prediction

The state-of-the-art spectrum prediction methods discussed in the introduction section

had few limitations such as models are not independent of peptide length, charge, frag-

mentation methods and types of mass analyzers. They also got sub-optimal prediction

accuracy. To overcome these limitations we developed two regression models to predict

spectra intensities. The first one termed DeepMass:Prism, deep learning-based model

using bidirectional LSTM layer. Its predictive performance reaches the theoretical limit

set by the reproducibility of technical replicates. The second approach, termed wiNNer

(window-based neural network being easily retrainable), uses a sliding window-based

machine learning method. The latter model is slightly inferior in accuracy to Deep-

Mass:Prism. However, it is less computationally expensive to train, which makes ad

hoc model creation for a given dataset more feasible. Both models can accommodate

peptides of any length, unlike earlier approaches. In the deep learning approach, a sin-

gle model can also accommodate multiple fragmentation types.

I was involved in collecting the training dataset from the PRIDE repository. We ob-

tained 25 datasets from five different organisms(Homo sapiens, Mus musculus, Escherichia

coli, Saccharomyces cerevisiae, and Arabidopsis thaliana) that contained 4,264 mass spec-

trometry runs. We processed the data using MaxQuant v.1.5.8.7. We obtained 60 mil-

lion PSMs, 1.4 million unique sequence/charge state/fragmentation method/mass an-

alyzer combinations.

37
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I implemented the architecture of the wiNNer model, using Keras API with Tensor-

Flow as a backend. We used python code to extract a sliding window-based feature

matrix. The fixed length feature matrix was used as input to wiNNer architecture.

DeepMass:Prism was developed by Verily Life Sciences group. To test its result and

performance on CPU, I trained the model again and tested it. DeepMass:Prism pre-

dictor is accessible on google cloud and I was testing it continuously to make sure it

is easily accessible to the users. We analyzed published HeLa whole-cell lysate data,

obtained from Kelstrup et al121 to compare the identification of MS/MS spectra using

the conventional Andromeda scoring and the intensity-informed scoring. We predicted

intensities for all candidate PSMs using DeepMass:Prism, wiNNer, and MS2PIP.

Later, I was responsible to integrate both the regression models in the MaxQuant

environment. Both DeepMass:Prism and wiNNer used libraries written in python. To

deploy the models in MaxQuant, we needed a C# libraries to use the saved Deep-

Mass:Prism and wiNNer models for predictions. I used the TensorflowSharp library

in C# for this.

Tiwary, Shivani, Roie Levy, Petra Gutenbrunner, Favio Salinas Soto, Krishnan K. Pala-

niappan, Laura Deming, Marc Berndl, Arthur Brant, Peter Cimermancic, and Jürgen

Cox. High-quality ms/ms spectrum prediction for data-dependent and data-independent

acquisition data analysis. Nature Methods, 16(6):519–525, June 2019. ISSN 1548-7105.

URL https://doi.org/10.1038/s41592-019-0427-6
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Peptide identification by fragmentation is a fundamental part 
of bottom-up mass-spectrometry-based proteomics1,2. Peptide 
molecules are fragmented with the aid of one of several tech-

nologies, including collision-induced dissociation3 (CID), higher-
energy collisional dissociation4 (HCD) and electron transfer 
dissociation5,6, producing a pattern of fragments that is indicative 
of the amino acid sequence7. The frequency with which a peptide 
backbone bond breaks determines the relative signal intensities in a 
fragmentation spectrum. Theoretically, the intensities can be calcu-
lated from first principles by quantum chemistry. However, for mol-
ecules as large as peptides, this is too computationally expensive to 
be practical. Simpler models, such as the mobile proton hypothesis8, 
exist for qualitative considerations, but they are not precise enough 
to be beneficial to the peptide identification process. Hence, the 
intensity information contained in fragmentation spectra remains 
underused in many peptide identification strategies.

This problem is an ideal situation in which to employ machine 
learning. It can learn the relationship between sequence and frag-
ment abundances based on a large dataset of training examples, 
without explicit knowledge of the physical mechanisms behind it. 
Furthermore, the predictive models do not have to remain black 
boxes, but can be examined with specialized methods that identify 
features or combinations thereof that are most relevant for making a 
prediction. While fragment intensity prediction has been attempted 
before using a variety of methods9–12, they have had limited success. 
Here, we present a deep learning13 method whose accuracy is close 
to the theoretical limitation. Furthermore, we demonstrate its util-
ity by integrating it into data-dependent acquisition14 (DDA) and 
data-independent acquisition15 (DIA) computational proteomics 
workflows, and our results suggest that both can benefit from the 
improved spectrum prediction.

We developed two different regression strategies to model peak 
intensities. The first one, termed DeepMass:Prism, is a deep learning  

approach using a bidirectional recurrent neural network (RNN). 
Its predictive performance reaches the theoretical limit set by the 
reproducibility of technical replicates. The second approach, termed 
wiNNer (window-based neural network being easily retrainable), 
follows a classical sliding sequence window-based machine learn-
ing strategy. The latter model is less accurate than DeepMass:Prism. 
However, it has the advantage of being less computationally expen-
sive to train, which makes ad hoc model creation for a given dataset 
more feasible. For both strategies, a single model can accommodate 
peptides of any length, unlike in other approaches10. In the deep 
learning approach, a single model can also accommodate multiple 
fragmentation types, or other dataset-specific information such as 
the fragmentation energy.

Results
Bidirectional RNN for spectral prediction. The problem of accu-
rately predicting tandem mass spectra has long eluded conventional 
machine learning approaches for several reasons. First, because 
peptide sequences vary in length, they are incompatible with many 
algorithms that take fixed-length representation as an input. Second, 
different fragmentation and acquisition methods can be used to gen-
erate and acquire tandem mass spectra, each producing considerably 
different results. Moreover, precursor peptides are fragmented into 
different types of ions, where the abundance of any one ion type can 
be dependent on another. Training multiple models for each frag-
mentation method and ion type does not take advantage of such 
dependencies. Lastly, with large, publicly available mass spectrom-
etry repositories, training of conventional algorithms (for example, 
support vector machines) becomes difficult, but complex, nonlinear 
approaches of deep learning become viable. Taking all of this into 
consideration, we selected RNNs16. RNNs are a class of artificial neu-
ral networks that are designed to work with sequential information, 
can accept inputs at different levels (for example, amino acid, peptide  
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Peptide fragmentation spectra are routinely predicted in the interpretation of mass-spectrometry-based proteomics data. 
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with accuracy within the uncertainty of measurement. Moreover, analysis of our models reveals that peptide fragmentation 
depends on long-range interactions within a peptide sequence. We illustrate the utility of our models by applying them to the 
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fragment and machine type) and of different types (for example, 
amino acid identities or their physicochemical properties), can pre-
dict multiple values simultaneously and can support training on 
datasets with millions of entries (Methods and Fig. 1).

Predictive performance of the bidirectional RNN. The datasets 
that are used for measuring the predictive performance are described 
in detail in the Methods. In brief, 25 complete datasets containing 
more than 60 million tandem mass spectrometry (MS/MS) spectra 
were used for training, testing and validation (Supplementary Fig. 1 
and Supplementary Table 1). We first evaluated the performance of 
DeepMass:Prism against that of MS2PIP (ref. 10) using the Pearson 
correlation coefficient (PCC) between true and predicted intensi-
ties for each peptide. When we compared all peptides in our testing 
set, we found that the accuracy of our model was markedly bet-
ter than that of MS2PIP, with a PCC of 0.944 versus 0.871 (Fig. 2).  
We also calculated the PCC of repeatedly collected mass spectra of 
the same peptides to quantify technical variability in our dataset. 
Interestingly, our model’s PCC nearly approached the theoretical 
maximum imposed by this measurement reproducibility of 0.976 
(Fig. 2 and Supplementary Fig. 2).

DeepMass:Prism was highly accurate across CID and HCD frag-
mentation methods (median PCCs across all peptides in our testing 
dataset of 0.958 and 0.925, respectively; Supplementary Fig. 2) and 
for Fourier transform mass spectrometry and ion trap mass spec-
trometry mass analyzers (median PCCs of 0.924 and 0.949, respec-
tively). The model was also accurate for precursor ion charges from 
1 to 3 (median PCCs of 0.931, 0.952 and 0.901, respectively), with 
performance dropping at higher charges because of the lack of data. 
The length of the peptide only slightly affected the performance, 
with PCC for peptides with 5–10 amino acids being only marginally 
better than that for peptides with 30–35 residues (0.964 and 0.908, 
respectively). Similarly, the Andromeda score of a peptide-spec-
trum match (PSM) minimally affected the performance, with PCC 
for PSMs with a score of 200 being slightly lower than that for PSMs 
with a score of 700 (0.937 and 0.954, respectively). Finally, metadata 
features are crucial for accurate predictions; a model that does not 
take any metadata as inputs performs poorly (median PCC of 0.810; 
Supplementary Fig. 3).

Sliding-window-based prediction. Another way to construct a 
regression model that can be applied to peptides of variable sequence 
length is to use a sliding-window-based approach. Prediction of 
local protein properties on protein sequence windows has a long 
tradition and has been applied, for instance, to predict secondary 
structure, solvent accessibility and transmembrane regions17,18. The 
feature space is constructed from a sequence window centered on 
the backbone bond that is fragmented, extending k amino acids 
to the left and to the right from the backbone bond under consid-
eration (Fig. 3). Amino acids at the N and C termini, their corre-
sponding distance to the target bond and length of the peptide were 
also included in the feature space.

We applied three types of machine learning algorithms to this 
feature space: support vector machines19,20, random forests21 and 
a two-hidden-layer neural network. Of the three approaches, the 
neural network strategy wiNNer showed the best performance 
(Supplementary Fig. 4). Although wiNNer did not reach the pre-
diction accuracy of DeepMass:Prism (Fig. 2), it performed better 
than the best existing conventional machine learning method for 
all tested combinations of precursor charge and fragmentation type. 
And, similar to DeepMass:Prism, with wiNNer only one model was 
needed to cover peptides of various lengths. Overall, this approach 
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Fig. 1 | Bidirectional RNN architecture for the prediction of fragment 
intensities. The neural network contains two basic modules: an RNN 
encoder and a perceptron decoder. The encoder takes a one-hot-encoded 
peptide sequence as an input and outputs its fixed-length representation 
vector. The sequence representation vector is then combined with 
metadata features and input into the decoder. The decoder contains a 
set of fully connected layers that outputs intensities of different fragment 
ion types (for example, y and b ions) at each position in the input peptide 
sequence. FC, fully connected.
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Fig. 2 | Comparing the performance of fragment ion intensity predictions 
for the different machine learning strategies. The box plots show 
distributions of PCCs between actual and predicted y- and b-ion peak 
intensities for each peptide in our testing dataset. The box plots contain 
69,888, 69,888, 65,996 and 62,486 unique PSMs from the independent 
testing datasets for DeepMass:Prism, wiNNer, MS2PIP and technical 
variability, respectively. Each box extends from the lower to upper quartile 
values of the data, with a line at the median. The whiskers extend to 1.5 
multiples past the interquartile range between the low and high quartiles. 
Data points beyond these ranges are considered outliers and are plotted as 
diamonds.
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could be advantageous in situations where fast training is needed, 
such as when dataset-specific models are needed for the analysis of 
laboratory-specific proteomics data.

Interpretation of the DeepMass:Prism model. We first explored 
the agreement between the outputs of our RNN model and 
observed fragmentation efficiencies between different amino acid 
pairs22 (Supplementary Fig. 5). For a set of A-A-A-[X]-[Z]-A-A-
A-R peptides, where [X]-[Z] represents all possible combinations 
of amino acid residue pairs, we predicted the fragmentation effi-
ciencies between the [X]-[Z] residue pair (Supplementary Fig. 5). 
Similar to the previous findings, our model reported notably higher 
fragmentation efficiency between [X]-Pro residues (where [X] can 
be any other residues), for both y- and b-ion types. The model also 
correctly predicted less efficient fragmentation between [X]-[Z] 
residue pairs where [X] is a hydrophobic residue. Furthermore, the 
model also correctly identified an increased fragmentation effi-
ciency for b ions between His-[Z] pairs (Supplementary Fig. 5).

We next tested whether residues further up- or downstream  
from the site of fragmentation also contribute to the peak intensity 

assignment. Such long-range ‘interactions’ in peptide fragmentation 
have not been extensively studied, even though they can be observed 
in our dataset (Supplementary Fig. 6). For example, analysis of 63 
pairs of peptides with a single residue mismatch showed notable dif-
ferences in b-ion intensities 5–10 residues toward the C terminus 
from the mismatch site, while y-ion intensities showed less vari-
ability. Moreover, the fact that the window-based approaches that 
use small window sizes (Supplementary Fig. 7) performed poorly 
further supports the existence of these long-range interactions.

Based on these findings, we used our model to study long-range 
interactions. After randomly selecting 1,000 peptides from the 
independent testing set, we calculated the integrated gradients23 
over each position of the input peptide sequence and each ion type. 
Using these gradients, we attributed each peak’s predicted intensity 
to the summed influence of every amino acid residue in the precur-
sor fragment (Fig. 4); residues are able to positively or negatively 
influence any peak intensity. Finally, for each intensity predic-
tion, we termed the most influential residues ‘major attributions’ 
(Methods), which can have both signs.

We found abundant evidence of long-range interactions, that is, 
major attributions not adjacent to the site of cleavage (Fig. 4 and 
Supplementary Fig. 8). Specifically, within b ions, major positive 
attributions were abundant toward the N terminus from the target 
residue, up to 75% of the length of the precursor peptide. While 
major negative attributions were notably less common, we observed 
many negative attributions a similar distance toward the C termi-
nus from the target residue. We observed a different pattern in y 
ions: positive and negative attributions were more even on either 
side of the target residue. Nonetheless, while positive attributions 
were broadly spread about the length of the fragment, negative attri-
butions were more tightly concentrated at the cleavage site, with a 
smaller cluster near the C terminus (an analysis on a per-residue 
basis is described in the Methods section).

DIA spectrum matching to predicted spectra. An accurate pre-
diction of MS/MS peptide spectra is expected to benefit areas in 
which reference spectral libraries are utilized (and generated) for 
data analysis, as is the case for DIA and selected/multiple reaction 
monitoring24,25. The most common approach to analyze DIA data 
requires using a spectral library to determine the peptide identity. 
Although some library-free methods exist, such as DIA-Umpire26 
and DirectDIA, they are typically less sensitive than library-based 
methods. Accordingly, this necessitates performing a series of DDA 
experiments to build a sample-specific reference library. Given the 
stochastic nature of DDA, a single liquid chromatography–tandem 
mass spectrometry run is usually incomplete. Instead, replicate 
runs, and even sample fractionation, are typically required, further 
increasing experimental costs. Here, we tested whether in silico–
generated spectral libraries, created using DeepMass:Prism, could 
replace those that are produced experimentally.

To evaluate this strategy, we processed a pooled human plasma 
sample into peptides using the Biognosys Sample Preparation 
Pro Kit, producing four replicate samples. We collected DIA data 
in triplicate for each sample, as well as DDA data in duplicate for 
one sample. A sample-specific spectral library was generated from 
the DDA data with Proteome Discoverer (Methods), and the DIA 
data were processed using Spectronaut27. The spectral library con-
tained 7,441 peptides, of which 5,248 (71.0%) were identified and 
quantified on average (Fig. 5 and Supplementary Fig. 9). We then 
used DeepMass:Prism to generate an in silico spectral library for 
the same set of peptides and used it in another Spectronaut search. 
Specifically, the peak intensities for fragment ions for each of the 
7,441 peptides from the DDA library were replaced with values 
from DeepMass:Prism. However, retention time information was 
preserved from the DDA-generated spectral library. In an ideal sce-
nario, this approach would identify the same number of peptides 

P E P A

CID HCD

y ion

b ion

FC 
layer

Sliding
window

Input

Fig. 3 | Sliding-window-based regression model for prediction of fragment 
intensities. A symmetrical sliding window is placed around the target 
peptide bond for which the b- and y-ion intensity should be predicted (red 
boxes). Amino acids in the window are translated into 0/1 variables by 
one-hot encoding. Additional features, including the amino acids at the 
N and C termini, the distances of the bond to the termini and the peptide 
length, are added to the feature space. This process is repeated for each 
position in the input peptide sequences. A fully connected two-hidden-
layer neural network is then trained and outputs the logarithmic b- and 
y-ion intensities.
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as when using the experimental generated library, and we came 
close—we identified and quantified on average 5,181 peptides, only 
103 (1.9%) peptides fewer (Fig. 5), and with a high overlap (5,131 
peptides or 97.1%). We repeated the analysis with a model that also 
predicted peptide retention time information in silico, with similar 
results (Methods).

Interestingly, the 103 peptides unidentified by DeepMass:Prism 
typically had low-confidence Spectronaut scores, with 46 pep-
tides (45%) having q values worse than 10−3 in the DDA spectral 
library searches (Supplementary Fig. 9). Importantly, we observed 
highly correlated peptide abundance quantification in Spectronaut 
searches between the experimental library and the in silico library 
(PCC of 0.99; Supplementary Fig. 9c). As a control, we also gen-
erated a spectral library by predicting fragment intensities using 
MS2PIP (and preserving retention time information from the 
DDA data). We observed a much lower peptide identification rate 
compared with that for DDA libraries (on average, 3,976 or 75.8% 
peptides were identified; PCC of 0.96). Some of the difference 
between the numbers of peptides identified by MS2PIP- versus 
DeepMass:Prism-based libraries can be attributed to MS2PIP’s lack 
in predicting spectra for peptides with modifications. However, even 
after the removal of methionine oxidation, the DeepMass:Prism-
based library identified 4,661 peptides (17.2% more than MS2PIP).
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the output for an example peptide sequence, SKLDNTVAEIEGLEATIENLKR, is plotted in an attribution table, which correlates the relationship between 
a position along the peptide sequence with the observed fragment ions. At the top are the scaled predicted peak intensities of the fragment ions 
corresponding to cleavage of the target residue at that position. Each pixel (i, j) in a heat map corresponds to the influence of residue i on peak intensity j. 
Blue pixels correspond to positive influence, and red to negative; values across each column j are normalized by the maximum value in that column. Bottom: 
histogram plots illustrate the distribution of distance between peak intensity and major attributions. Major attributions are attribution values with absolute 
values greater than or equal to 0.7 (based on heat map pixels in the top panel). Directional distances are normalized by peptide length; positive distances 
indicate a residue influencing cleavage toward the C terminus. Similar plots, but with unnormalized distances, are shown in Supplementary Fig. 8.
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Application to DDA peptide search engine scores. Intensity infor-
mation in MS/MS spectra is highly informative and is expected 
to help in finding the correct PSM for a given MS/MS spectrum. 
Despite this, most search engines make no or little usage of the 
intensity information. For instance, the Andromeda search engine28 
uses peak intensities only to give higher weights for matches to the 
high-intensity peaks. However, it does not utilize expectations of 
peak intensities as they relate to sequence context when scoring 
PSMs. Here, we show that scoring PSMs can benefit from predicted 
fragment ion intensity information. We integrated intensity predic-
tions into the Andromeda scoring function in the following way: 
the Andromeda score of a given PSM was replaced by a maximum 
of several attempts to score the same spectrum. One of these scores 
was the original Andromeda score. We then calculated the score 
on subsets of the ions in theoretical spectra, always taking a cer-
tain number of top intensity peaks (by default we took the top 3, 5, 
7, 10 and 13 peaks) from the theoretical spectrum with intensities 
predicted by DeepMass:Prism. This strategy was similar to focusing 
on only the most intense transitions in the analysis of the selected 
reaction monitoring data. Naively, one may expect that reducing the 
number of theoretical peaks would reduce the number of matching 

fragments and hence reduce the score. Despite this, the Andromeda 
score of a match may still increase, even if the number of matches 
decreases, if the summed probability of finding this many or more 
matches by chance, given the number of provided theoretical frag-
ments, decreases28.

We compared the performances for a complex sample, in 
this case HeLa whole-cell lysate. Overall, we found that includ-
ing intensity predictions increased both the PSM and peptide 
identification rates. We then compared the relative performance 
among DeepMass:Prism, wiNNer and MS2PIP by varying the 
PSM-level false discovery rate (FDR) in MaxQuant, which corre-
sponds to scanning the q value (Fig. 5). Over the whole range of 
q values tested, there was a gain in PSM identifications when we 
used DeepMass:Prism and wiNNer, both of which outperformed 
MS2PIP (Fig. 6a). In particular, improvements through intensity 
prediction were the largest in the high-specificity range (that is, 
q value < 0.01) (Fig. 6b). Note that the improvements in MS/MS  
identification rates are on top of already high rates of ~50% for 
the conventional Andromeda search (Fig. 6c). In terms of gains 
in unique peptide sequences, DeepMass:Prism also outperformed 
wiNNer and MS2PIP (Fig. 6d). Finally, DeepMass:Prism also  
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outperformed wiNNer and MS2PIP in the number of identified 
protein groups (at 1% protein-level and PSM-level FDR), with 
a gain of 3.9% versus 2.3% and 2.1%, for wiNNer and MS2PIP, 
respectively (Fig. 5e).

Discussion
Through the use of machine learning, we demonstrate that MS/
MS spectrum prediction can be nearly as accurate as the limits of 
technical reproducibility. Importantly, this can be taken advantage 
of in both DDA and DIA computational workflows to improve pep-
tide identification rates and reduce the reliance on spectral librar-
ies. Further, the deep learning regression models described here are 
highly interpretable, capturing how sequence features, including 
the interactions across multiple amino acid residues, contribute to 
peptide fragment ion abundance and the mobile proton hypothesis. 
Additionally, although the conventional window-based machine 
learning approach we described has slightly inferior predictive per-
formance, it is less computationally intense to train. For both DDA 
and DIA application, integration of intensity prediction into the 
MaxQuant29,30 environment is currently ongoing.

So far, we have restricted the spectrum predictions to peptides 
that are not carrying modifications, except for methionine oxida-
tion. However, the generalization to PTMs is straightforward. The 
modified residues can be encoded as the 21st, 22nd and so on 
amino acids. Modification-specific neutral losses other than water 
and ammonia will need to be added for some modifications, as for 
instance serine and threonine phosphorylation. Non-tryptic pep-
tides can already be accommodated with the current model, and 
predictions can currently being made for them. However, since 
the training dataset was from shotgun proteomics data submitted 
to the PRIDE database31, it is biased toward tryptic peptides, and 
DeepMass:Prism performs better for these. As more data for non-
tryptic peptides and more machine types become available, we will 
update our models to improve predictions for all peptides.

While these models to predict peptide fragment intensities will 
benefit peptide search engines, we anticipate that their greatest 
impact will be through providing in silico–based spectral librar-
ies. For example, if an existing spectral library was generated 
using a fragmentation mode different from the data that needed 
to be analyzed, a new library could be generated in silico rather 
than experimentally. When it comes to the content of a spectral 
library, approaches are needed to construct a list of peptides based 
on previous knowledge. For example, if plasma samples are ana-
lyzed, proteins and peptides from the Plasma Proteome Database32 
could be used to construct the library. Another potential applica-
tion will be to supplement an existing experimental library with a 
small number of hypothesis-driven peptides, such as peptides that  
harbor genetic variants, tumor mutations or post-translational 
modifications, expanding the range of interesting scientific and 
clinical questions beyond measuring the levels of proteins in a  
sample. A further option for analyzing cellular or tissue proteomes 
will be to construct an in silico library for the entire proteome.  
Such a spectral library could be supported by both RNA-sequencing 
data and peptide observability predictions33,34. We continue to 
explore these strategies and envisage a time when predicted spectral 
libraries will become a necessary and beneficial tool for proteomics 
and proteogenomics.

online content
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summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
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Methods
Data. For evaluating the DeepMass:Prism model, we obtained 25 raw datasets 
from the PRIDE MS repository31. The data span five organisms (Homo sapiens, Mus 
musculus, Escherichia coli, Saccharomyces cerevisiae and Arabidopsis thaliana), and 
contain 4,624 liquid chromatography–mass spectrometry runs (Supplementary 
Table 1). The datasets were processed using MaxQuant v.1.5.8.7. The datasets 
comprise ~60 million MS/MS spectra in total (Supplementary Fig. 1),  
with 1.4 million unique sequence/charge state/fragmentation method/mass analyzer 
combinations. For each unique combination, a single representative MS/MS 
spectrum was used corresponding to the one with the best Andromeda score. Spectra 
with Andromeda scores below 100 were discarded. The unique combinations were 
randomly split into training, validation and testing sets with the ratio 90:5:5. The 
intensity values were normalized to a 0–10,000 range and were not log-transformed.

For evaluating the wiNNer model, we used the ProteomeTools dataset35 
(PXD004732). Different models were generated for CID + 2, CID + 3, HCD + 2 
and HCD + 3, and for each one peptide sequence features were split into training, 
validation and testing sets with the ratio 90:5:5. All models contain unique 
peptides, which were selected taking the maximum Andromeda score; if this score 
was under 100, the peptide was discarded. Intensity values were normalized to 0–1 
and then log-transformed using log2(1 + Intensity × 10,000).

Details of the RNN. Our model takes as an input a peptide amino acid sequence 
with its associated metadata, and returns intensities of different fragment ion types 
(that is, y and b ions with and without neutral losses) at each position along the 
input sequence (Fig. 1). The architecture of our neural network comprises two main 
modules: layers of recurrent cells (encoder) and layers of fully connected neurons 
(decoder). The encoder contains three bidirectional layers of long short-term 
memory36 (LSTM) cells and emits a fixed-length representation of the input peptide. 
The fixed-length representation is concatenated to corresponding metadata (that 
is, precursor peptide length, charge state, fragmentation method and mass analyzer 
type) and then input into the decoder. Finally, the decoder outputs intensities of 
different fragment ion types at each position of the input sequence. Bidirectional 
LSTM cells and regular perceptron units with the rectifier activation function37 
were used to build the RNN and fully connected modules, respectively. The neural 
network was implemented in Tensorflow v.1.7.0 (ref. 38). The learning and dropout 
rates, the number of layers, the number of hidden units in each module and the 
batch size hyper-parameters were optimized using Google Vizier39 and the validation 
dataset. The model was trained on GPUs using the Adam optimization method40. 
The best model contained 3 bidirectional LSTM layers with 384 hidden units in each 
layer, and 4 fully connected layers with 768 neurons in each layer. Examples for the 
best and worst five predictions of the model can be found in Supplementary Fig. 10. 
A tab-separated text file with all spectrum predictions for the tryptic peptides in the 
human proteome (charge = 2, HCD) can be downloaded from the PRIDE dataset 
PXD010382 (uniprot-filtered-reviewed-human-peptides-ftms-hcd-charge2.tsv).

Details of the sliding-window-based machine learning. For the conventional 
machine learning approach on sequence windows, we use as feature space the 
adjacent amino acids around the backbone bond for which the y- and b-ion 
intensities should be predicted. In addition, the amino acids directly on the peptide 
N and C termini, as well as the distance of the bond to the termini and the length 
of the peptides, are used. Each amino acid feature was converted to 21 binary 
features by one-hot encoding. The 21st state represents cases in which the sliding 
window extends over a terminus of the peptide. The intensities of a single peptide 
were normalized by the maximum over y and b ions, and intensities for missing 
peaks were set to zero. For each fragment series, each backbone segment between 
two adjacent amino acids corresponds to an instance for the machine learning 
algorithm. Distances and peptide lengths were normalized so that they ranged 
from zero to one. In the wiNNer method we trained separate regression models for 
each combination of precursor charge and fragmentation type, and report results 
for CID + 2, CID + 3, HCD + 2 and HCD + 3.

To evaluate the wiNNer model, we calculated the PCC between true and 
predicted peak intensities for each peptide in the testing dataset. We used Keras 
(https://keras.io) v.2.0.8, a high-level neural network application programming 
interface, to train a simple two-layer neural network model. TensorFlow v.1.3.0 
was used as backend in Keras. The architecture of the neural network includes two 
hidden layers. The model was trained for y and b ions in the same neural network 
model; hence there are two output units. The input layer contains 549 features 
for a window size of 24. We repeated this analysis for sequence window sizes of 4, 
8, 16 and 24 residues, the result of which is shown for CID + 2 in Supplementary 
Fig. 7. The PCC increases monotonically with window size for all combinations 
of precursor charge and fragmentation type. Hence, we selected a window size of 
24 for further analysis. Note that most peptides completely fit into the window 
since they are shorter than 24 residues. The number of hidden layers used for 
this window size is 312. Batch size, number of epochs, dropout and learning 
rate were optimized for all of the models separately. To test the window-based 
model, we used the independent test data taken from the 25 datasets, as shown 
in Supplementary Fig. 1. The PCCs of CID + 2, CID + 3, HCD + 2 and HCD + 3 
models were 0.898, 0.793, 0.882 and 0.762, respectively. All four wiNNer models 
performed better than MS2PIP, as shown in Supplementary Fig. 11.

In addition to the neural network model, we explored support vector regression 
(SVR) and random forests from scikit-learn (http://scikit-learn.org, v.0.19.1) as 
machine learning algorithms. Because of practical limitations in training set size, 
we had to train the SVR on batches of 100,000 instances, the outputs of which were 
averaged. A radial basis function kernel was used, for which the width parameter 
was tuned in cross-validation. Then we trained a random forest in which we could 
use all training instances in one model. As a further option, we put a random forest 
layer on top of the output of SVR. Among all of these options, the neural network 
approach showed the best performance. For the comparison of different machine 
learning approaches, CID + 2 was used with a sliding window size of 8, which 
reduced the computing power needed as compared with the optimal window size 
of 24. This is why performance is lower here on average compared with the final 
model. However, we believe that relevant conclusions can be drawn for relative 
comparisons between machine learning methods.

Benchmarking and comparison with known methodologies. Using the 
validation and testing datasets, we compared the performance of our models 
with that of MS2PIP, taking into account only singly charged y- and b-ion series. 
Although DeepMass:Prism is capable of predicting peak intensities of fragments 
with neutral losses of water and ammonia, we had to base the comparisons on 
y- and b-ion peak intensities owing to the limitations of the other predictor. The 
MS2PIP server (https://iomics.ugent.be/ms2pip) with default settings was used 
for all analyses. We also compared the performances of our models with the best 
possible theoretical performance. We determined this by calculating the technical 
variability between spectra in our validation and testing sets against their random 
replicate observation in the entire dataset.

Plasma sample processing. EDTA plasma samples collected from three healthy 
patients were pooled together and then clarified by centrifugation at 17,000g for 
10 min at 4 °C. Aliquots were prepared and stored at −80 °C. Immediately before 
processing, plasma aliquots were thawed at room temperature. Subsequently, four 
replicate samples were prepared following the Biognosys Sample Preparation Pro 
Kit. Each sample was transferred into a LoBind tube (Eppendorf), dried by vacuum 
centrifugation and then stored at −80 °C.

Mass spectrometry for plasma samples. Dried peptide samples were resuspended 
by the addition of 20 μl of 0.1% formic acid in water and water bath sonication 
for 10 min. Samples were subjected to centrifugation at 17,000g for 5 min at 4 °C. 
Subsequently, 18 μl was transferred into a new LoBind tube (Eppendorf) followed by 
the addition of 2 μl of 10x iRT (indexed retention time) solution (Biognosys). Liquid 
chromatography–tandem mass spectrometry experiments were performed using 
1-μl injections. Samples were subjected to reversed-phase chromatography with an 
Easy-nLC 1000 HPLC (Thermo Scientific) connected in-line with a Q Exactive Plus 
(Thermo Scientific) mass spectrometer. External mass calibration was performed 
before analysis. A binary solvent system consisting of buffer A (0.1% formic acid in 
water (v/v)) and buffer B (0.1% formic acid in 95% acetonitrile (v/v)) was employed. 
The mass spectrometer was outfitted with a nanospray ionization source (Thermo 
Nanoflex source). The liquid chromatography was performed using a PepMap100 
3-μm C18 (75 μm × 2 cm) trapping column followed by a PepMap RSLC 2-μm C18 
(75 μm × 25 cm) analytical column. For both DDA and DIA experiments, the same 
120-min biphasic method was used, consisting of a gradient from 4% to 25% buffer 
B for 105 min followed by 25% to 35% for 15 min, at a flow rate of 300 nl min−1.

DDA of plasma samples. Each full-scan mass spectra was recorded in positive 
ion mode over the m/z scan range of 375–1,700 in profile mode at a resolution 
of 70,000. The automatic gain control (AGC) target was 3 × 106 with a maximum 
injection time of 50 ms. The 12 most intense peaks were selected for HCD 
fragmentation. Tandem spectra were collected at a resolution of 17,500 with an 
AGC target of 1 × 105 and maximum injection time of 60 ms. Dynamic exclusion 
and charge state screening were enabled, rejecting ions with an unknown or +1 
charge state. An isolation window of 1.5 and normalized collision energy of 28 
were used when triggering a fragmentation event.

DIA of plasma samples. Two scan groups were employed. First, using the selected-
ion-monitoring scan group, we recorded a full-scan mass spectrum in positive 
ion mode over the m/z scan range of 400–1,200 in profile mode at a resolution 
of 70,000. The AGC target was 3 × 106 with a maximum injection time of 100 ms. 
Next, the DIA scan group was used to acquire 32 DIA segments of 15 Da each at a 
resolution of 35,000. The AGC target was 1 × 106 with a maximum injection time of 
120 ms. An isolation window of 20 and normalized collision energy of 28 were used 
when triggering a fragmentation event. A global inclusion list was used to define 
each DIA segment.

Mass spectrometric data analysis of plasma samples. DDA data were processed 
with Proteome Discoverer (v.2.1), using Mascot as search algorithm. Fixed 
modifications included cysteine carbamidomethylation, and variable modifications 
included methionine oxidation and N-terminal acetylation. The files were searched 
against the human UniProt proteome database (downloaded 17 February 2016). 
DIA data were processed with Spectronaut (v.11, Biognosys) using default settings.
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DeepMass:Prism model interpretation. To interpret our model, we applied 
the method of integrated gradients. Integrated gradients attributes the predicted 
output of a neural network to the set of input features (analogous to inspecting the 
product of the input features and coefficients in a linear model). For a given peptide 
sequence and precursor metadata, this method indicates the influence between 
each amino acid residue in the peptide sequence and the predicted intensity 
of each spectrum peak. Residues can either positively or negatively influence a 
peak’s predicted intensity. Essentially, this provides a square N×N attribution 
matrix denoting the influence of residue i on peak j, where N is the peptide length 
(Supplementary Fig. 5). The diagonal elements of this matrix represent the degree 
to which the peak intensity is influenced by the identity of the residue at the 
cleavage site, while off-diagonal elements denote long-range interactions, where 
a peak’s intensity is influenced by the identity of a distant residue. To focus on the 
influence of peptide identity, we held constant the precursor-level metadata and 
did not calculate gradients at the context. Specifically, for all peptides analyzed, we 
assumed a +2 charge state, fragmentation by HCD and Fourier transform mass 
spectrometry mass analyzer. The sum along a column of the attribution matrix 
equals the predicted intensity of the represented peak. Columns of this matrix were 
normalized by their maximum value such that the most positive attribution to 
peak intensity had value 1.0; other attributions were scored relative to this value. As 
peak values are non-negative, all columns have at least 1 element equal to 1.0, yet 
negative attributions can decrease below −1.0 in extreme cases.

To determine distances between interactions (Supplementary Fig. 6), we used 
an attribution threshold of ±0.7; any normalized value more extreme than this 
threshold was considered a major attribution. The directed distances between this 
major attribution and cleavage site were determined such that positive distances 
corresponded to instances where the attributed residue was situated downstream of 
bond cleavage (toward the C terminus). Finally, distances were normalized to the 
length of each particular peptide, such that a distance of ±1.0 corresponded to a 
full fragment ion length.

To determine the influence of specific amino acids on peptide fragmentation, 
we repeated the analysis on a per-residue basis (Supplementary Fig. 12). 
Specifically, for each amino acid, we calculated the distribution of distances of 
major attributions. Except in a few notable exceptions, amino acids did not greatly 
deviate from the general trend already described (Fig. 4). Nonetheless, we saw 
relevant clustering of per-residue profiles in the positive attribution of b ions. 
Broadly, we observed hydrophilic amino acids clustering distinctly from large 
hydrophobic amino acids. Proline is expected to show distinct behavior because 
of the well-known proline effect41. Indeed, it represents a notable outlier, and had 
substantially longer-reaching positive influence on predicted intensities up- and 
downstream (Supplementary Fig. 12, upper-right plot). Similarly, among negative 
attribution profiles, we identified two trends. First, branched-chain amino acids 
and proline had an influence relatively concentrated at the cleavage site, and 
second, they had a smoother distribution of influence downstream; asparagine was 
a notable outlier, with its strongest influence on peaks just upstream of it.

Evaluation of intensity prediction models in Andromeda scoring performance. 
We analyzed published HeLa whole-cell lysate data, obtained from Kelstrup et al.42 
(list of raw files: 20161213_NGHF_DBJ_SA_Exp3A_HeLa_1ug_60 min_15000_01.
raw, 20161213_NGHF_DBJ_SA_Exp3A_HeLa_1ug_60 min_15000_02.raw, 
20161213_NGHF_DBJ_SA_Exp3A_HeLa_1ug_60 min_15000_03.raw).

To compare the identification of MS/MS spectra using the conventional 
Andromeda scoring and the intensity-informed scoring, we predicted 
intensities for all candidate PSMs using DeepMass:Prism, wiNNer or MS2PIP. 
For the search configuration parameters, Trypsin/P was specified as enzyme, 
carbamidomethylation of cysteine was specified as a fixed modification and no 
variable modifications were selected. Protein FDR control was disabled to report 
results dependent on a q value on the PSM level. The examples in Supplementary 
Figs. 13 and 14 were taken from dataset PXD004732 in the PRIDE archive 
(ProteomeTools).

When comparing the Andromeda scores without and with using intensity 
prediction on a dataset consisting of synthetic peptides and, hence, with known 
ground truth35, we saw several examples for which the correct PSM was not the 
highest-scoring one for that MS/MS spectrum when the conventional Andromeda 
score was used but became the highest-scoring PSM when the intensity-informed 
Andromeda score was used (Supplementary Figs. 13 and 14). As illustrated in 
Supplementary Figs. 13 and 14, examples where the highest-scoring PSM changed 
after including intensity information included cases where two adjacent amino 
acids were swapped and cases where a completely new peptide sequence became 
the top-scoring PSM.

Retention time prediction. We constructed an RNN model with a bidirectional 
LSTM layer with 40 hidden units, followed by another LSTM layer with 20 hidden 
units. The last output in the output sequence was then fed into 2 dense layers, the 
first with 20 hidden neurons and hyperbolic tangent activation function, and the 
last with 1 neuron and linear activation function. The input to the model is a one-
hot-encoded sequence of amino acid residues, and the output is a predicted iRT 
value for the input peptide. We used the Adam optimizer and mean squared error 

as the loss function, and applied the dropout rate of 0.2 to each layer. The model 
was implemented using the Keras library and Tensorflow backend. The model was 
trained on data collected in-house from three different samples: human plasma, 
HeLa cell lysate and yeast cell lysate. The 69,680 peptide-charge pairs were split 
into training, validation and test set in a 75:20:5 ratio. It is worth noting that this 
model is not complete yet—it was built to assess the maximum possible peptide 
identification rate when a spectral library is completely generated in silico (that 
is, predicting both fragment ion intensities and retention times for each peptide 
sequence). As the model was trained using a limited number of samples that were 
subjected to liquid chromatography conditions identical to the DDA and DIA 
data obtained for plasma samples, we have not evaluated how well the model will 
generalize (that is, different liquid chromatography and column systems). It is 
even conceivable that the future model will have to be fine-tuned on each liquid 
chromatography–mass spectrometry setup independently.

To evaluate the full potential for generating spectral libraries completely by 
computation (that is, peptide fragment ion abundances and peptide retention time 
information are generated in silico), we predicted both precursor peptide retention 
times and MS/MS spectra. This combined model we termed DeepMass:Drip. 
It predicts iRT-calibrated retention times with high accuracy (R2 of 0.97 and a 
median error of 4.84 as compared with R2 of 0.88 and median error of 8.68 for 
SSRCalc43). To evaluate this method, we first generated a spectral library using 
DeepMass:Prism + Drip (that is, predicting fragment ion intensities and retention 
times for each of the 7,441 peptides from the DDA library). After performing 
Spectronaut searches, we quantified on average 4,957 peptides, 291 (5.5%) 
peptides fewer than the DDA library (Fig. 4). Here, too, peptides unidentified 
by DeepMass:Prism + Drip had low-confidence Spectronaut scores during the 
DDA library searches, with 118 (41%) peptides having q values worse than 10−3 
(Supplementary Fig. 9).

Statistics. In box plots, each box extends from the lower to upper quartile values 
of the data, with a line at the median. The whiskers extend to 1.5 multiples past the 
interquartile range between the low and high quartiles. Data points beyond these 
ranges are considered outliers and are plotted as individual data points. Numbers 
of data points used in each box plot are provided in the respective figure legends. 
The q values for PSM FDRs were estimated in MaxQuant with its standard target-
decoy search strategy.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The mass spectrometry proteomics data including summary tables have been 
deposited to the ProteomeXchange Consortium via the PRIDE partner repository 
with the dataset identifier PXD010382.

Code availability
We offer the trained DeepMass:Prism model for use via the Google Cloud ML 
platform (https://github.com/verilylifesciences/deepmass/tree/master/prism). 
To obtain the trained DeepMass:Prism model to run locally, please contact the 
corresponding authors. A user-friendly interface will be made available in the 
future MaxQuant releases.
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2.2 The dental proteome of Homo antecessor

In the article 1, we described that the sliding-window-based MS/MS spectrum inten-

sity prediction model wiNNer is easily retrainable and can be adapted for new datasets.

In this article, the authors collected dental enamel samples Homo antecessor from At-

apuerca (Spain) and Homo erectus from Dmanisi (Georgia) and used them for mass-

spectrometry based proteomics analysis. To validate the dental enamel peptide spec-

trum matches they used the wiNNer algorithm122. The results show that the wiNNer

model retrained for randomly cleaved and heavily modified peptides provides a pre-

dictive performance similar to that of the wiNNer model trained on modern, trypsin-

digested samples, assuring accurate sequence identification for the phylogenetically

informative peptides. The median PCC between true intensity and predicted intensity

was 0.76.

My contribution in this article was to retrain the wiNNer model for the prediction

of the phylogenetically informative peptide sequences in the ancient samples (Dmanisi

Homo erectus and Atapuerca Homo antecessor). The dataset acquired to train the model

was very small, making wiNNer an ideal method, as it performs better even with the

smaller datasets. Ancient samples (Dmanisi Homo erectus and Atapuerca Homo anteces-

sor) were divided into two groups, the groups that contains phylogenetically informa-

tive peptide sequences and the group that does not. I prepared the training dataset by

taking a subset of the phylogenetically non-informative peptides, and adding a previ-

ously published dataset of enamel proteomes from Dmanisi fauna to increase the size

of the training dataset. The dataset only has HCD fragmentation, so I build two models.

HCD+2 contains 5,555 unique modification-specific peptides, and HCD+3 contains 692

unique modification-specific peptides. For each unique modification-specific peptide,

I took the spectrum with the highest Andromeda score. Spectra with an Andromeda

score below 50 were discarded. The retained data for each model was split into 80:10:10

ratio for training, validation and test sets, respectively. Test data was kept for evaluat-

ing the wiNNer model by calculating the PCC between true and predicted intensities

for each peptide. The training data has non-tryptic peptides. The samples were pro-

cessed in MaxQuant with the following added variable modifications: Oxidation (M),

Deamidation (NQ), Gln->pyro-Glu, Glu->pyro-Glu, Oxidation (P), Carbamidomethyl

(C), Dioxidation(MW), Oxidation (W), His->GluOH (H), His->Asp (H), Arg Ornithine,

Phospho (STY) and Phospho (S). The peptide sequences containing these variable mod-
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ifications were taken as input for the model. Each amino acid residue and modified

amino acid residues were converted to a unique 38 binary feature by one hot encoding.

I trained two regression models, one for HCD+2 and one for HCD+3. The architecture

of wiNNer model was slightly modified to train the ancient PSMs. The architecture

of neural network includes 5 dense layers. The input layers contain 991 features for

a window size of 24. The hidden unit is reduced from 600, 400, 200 to 50 in subse-

quent dense layers, and the output layer contains 2 units for y- and b-ion peak in-

tensities. Hyper-parameters such as batch size, dropout, learning rate and number of

epochs were optimized separately for different models. Instead of Adagrad, Adam

optimizer was used for this model. The wiNNer model can be accessed on GitHub

https://github.com/cox-labs/wiNNer.git. The results show that the PCC between

true and predicted intensities for each peptide in test sets of HCD+2 and HCD+3 mod-

els were 0.85 and 0.81 respectively. These results are close to the wiNNer model for

unmodified sequences, where the PCC is 0.88 for HCD+2 and 0.76 for HCD+3. This

shows a perfect example that wiNNer can be easily retrained and can be used when-

ever there is new dataset available (for e.g. TMT modifications, different fragmentation

methods) or when training set is very small.
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The dental proteome of Homo antecessor

Frido Welker1,22 ✉, Jazmín Ramos-Madrigal1,22, Petra Gutenbrunner2,22, Meaghan Mackie1,3, 
Shivani Tiwary2, Rosa Rakownikow Jersie-Christensen3, Cristina Chiva4,5, Marc R. Dickinson6, 
Martin Kuhlwilm7, Marc de Manuel7, Pere Gelabert7, María Martinón-Torres8,9,  
Ann Margvelashvili10, Juan Luis Arsuaga11,12, Eudald Carbonell13,14, Tomas Marques-Bonet4,7,15,16, 
Kirsty Penkman6, Eduard Sabidó4,5, Jürgen Cox2, Jesper V. Olsen3, David Lordkipanidze10,17, 
Fernando Racimo18, Carles Lalueza-Fox7, José María Bermúdez de Castro8,9 ✉,  
Eske Willerslev18,19,20,21 ✉ & Enrico Cappellini1 ✉

The phylogenetic relationships between hominins of the Early Pleistocene epoch in 
Eurasia, such as Homo antecessor, and hominins that appear later in the fossil record 
during the Middle Pleistocene epoch, such as Homo sapiens, are highly debated1–5. For 
the oldest remains, the molecular study of these relationships is hindered by the 
degradation of ancient DNA. However, recent research has demonstrated that the 
analysis of ancient proteins can address this challenge6–8. Here we present the dental 
enamel proteomes of H. antecessor from Atapuerca (Spain)9,10 and Homo erectus from 
Dmanisi (Georgia)1, two key fossil assemblages that have a central role in models of 
Pleistocene hominin morphology, dispersal and divergence. We provide evidence 
that H. antecessor is a close sister lineage to subsequent Middle and Late Pleistocene 
hominins, including modern humans, Neanderthals and Denisovans. This placement 
implies that the modern-like face of H. antecessor—that is, similar to that of modern 
humans—may have a considerably deep ancestry in the genus Homo, and that the 
cranial morphology of Neanderthals represents a derived form. By recovering  
AMELY-specific peptide sequences, we also conclude that the H. antecessor molar 
fragment from Atapuerca that we analysed belonged to a male individual. Finally, 
these H. antecessor and H. erectus fossils preserve evidence of enamel proteome 
phosphorylation and proteolytic digestion that occurred in vivo during tooth 
formation. Our results provide important insights into the evolutionary relationships 
between H. antecessor and other hominin groups, and pave the way for future studies 
using enamel proteomes to investigate hominin biology across the existence of the 
genus Homo.

Since 1994, over 170 human fossil remains have been recovered from 
level TD6 of the Gran Dolina site of the Sierra de Atapuerca10 (Burgos, 
Spain) (Extended Data Fig. 1, Supplementary Information). These fos-
sils have been dated to the late Early Pleistocene epoch and exhibit a 
unique combination of cranial, mandibular and dental features9,11. To 
accommodate the variation observed in the human fossils from TD6, a 
new species of the genus Homo—H. antecessor—was proposed in 19979. 
The relationship of this species to earlier or later hominins in Eura-
sia—such as the H. erectus specimens from Dmanisi or Neanderthals, 
Denisovans and modern humans, respectively—have been the subject 
of considerable debate3,4,12,13. These issues remain unresolved owing to 

the fragmentary nature of hominin fossils at other sites, and the failure 
to recover ancient DNA in Eurasia that dates to the Early, and most of 
the Middle, Pleistocene epoch.

By contrast, recent developments in the extraction and tandem mass-
spectrometric analysis of ancient proteins have made it possible to 
retrieve phylogenetically informative protein sequences from Early 
Pleistocene contexts6,8. We therefore applied ancient protein analysis 
to a H. antecessor molar from sublevel TD6.2 of the Gran Dolina site of 
the Sierra de Atapuerca (specimen ATD6-92) (Extended Data Fig. 2a). 
This specimen, identified as an enamel fragment of a permanent lower 
left first or second molar, has been directly dated to 772–949 thousand 
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years ago (ka) using a combination of electron spin resonance and 
U-series dating11. In addition, we sampled dentine and enamel from 
an isolated H. erectus upper first molar (specimen D4163) (Extended 
Data Fig. 2b) from Dmanisi (Georgia) that has been dated to 1.77 mil-
lion years ago (Ma)1,14,15, as amino acid racemization analysis of this 
specimen indicated the presence of an endogenous protein component 
in the intracrystalline enamel fraction of the tooth (Extended Data 
Fig. 3, Supplementary Information). On both specimens, we performed 
digestion-free peptide extraction optimized for the recovery of short, 
degraded protein remains6. Nanoscale liquid chromatography–tandem 
mass spectrometry (nanoLC–MS/MS) acquisition was replicated in two 
independent proteomic laboratories (Extended Data Table 1), imple-
menting common precautions and analytical workflows to minimize 
protein contamination (Methods). We compared the proteomic data-
sets retrieved from the Pleistocene hominin tooth specimens with those 
generated from a positive control, a recent human premolar (Ø1952; 
which is from a male individual and is approximately three centuries 
old), as well as previously published Holocene teeth16 (Methods, Supple-
mentary Information). Finally, to validate our enamel peptide spectrum 
matches, we performed machine-learning-based MS/MS spectrum 
intensity prediction using the wiNNer algorithm17. The results show that 
the wiNNer model retrained for randomly cleaved and heavily modi-
fied peptides provides a predictive performance similar to that of the 
wiNNer model trained on modern, trypsin-digested samples, assuring 
accurate sequence identification for the phylogenetically informative 
peptides (median Pearson correlation coefficients of ≥0.76) (Methods, 
Supplementary Fig. 6, Supplementary Information).

Protein recovery from the Dmanisi dentine sample was limited to 
sporadic collagen type I fragments, and therefore in-depth analysis of 
this material was not further pursued. By contrast, we recovered ancient 
proteomes from both hominin enamel samples. We found that the 
composition of these proteomes is similar to that of the recent human 
specimen that we processed as a positive control, as well as to previ-
ously published proteomes from ancient enamel6,16,18,19 (Extended Data 
Table 2, Supplementary Table 6). The enamel-specific proteins include 
amelogenin (both AMELX and AMELY isoforms), enamelin (ENAM), 
ameloblastin (AMBN), amelotin (AMTN) and the enamel-specific pro-
tease matrix metalloproteinase 20 (MMP20). Serum albumin (ALB) 
and collagens (COL1α1, COL1α2 and COL17α1) are also present. For the 
enamel-specific proteins, the peptide sequences that we retrieved cover 
approximately the same protein regions in all of the specimens that we 
analysed (Extended Data Fig. 4). Although destructive, our sampling of 
Pleistocene hominin teeth resulted in higher protein sequence cover-
age than acid-etching of Holocene enamel surfaces16,20 (Supplemen-
tary Fig. 7). The AMTN-specific peptides largely derive from a single 
sequence region involved in hydroxyapatite precipitation through the 
presence of phosphorylated serines21. Finally, the observation of the 
AMELY-specific peptides (which is coded on the non-recombinant por-
tion of the Y chromosome) demonstrates that the H. antecessor molar 
that we studied belonged to a male individual16 (Extended Data Fig. 5).

Besides proteome composition and sequence coverage, several  
further lines of evidence independently support the endogenous origin 
of the hominin enamel proteomes. Unlike exogenous trypsin, keratins 
and other human-skin contaminants that we identified, the enamel 
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Fig. 1 | Phosphorylation of hominin enamel proteomes. a, Phosphorylation 
sequence motif analysis of H. antecessor specimen ATD6-92.  
b, Phosphorylation sequence motif analysis of H. erectus specimen D4163.  
c, Phosphorylation occupancy comparison, expressed as log2-transformed 
summed intensity ratio of modified and unmodified peptides, for amino acid 
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(ENAM)). SK339 denotes an archaeological specimen from a modern human, 
which is approximately three centuries old (see ‘Recent human control 
specimens’ in the Methods for details).
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proteins have high deamidation rates (Extended Data Fig. 6)—above 
the rate observed for the recent human specimens (Supplementary 
Fig. 8). Both Pleistocene hominins have average peptide lengths that are 
shorter than those observed for our recent human controls (Extended 
Data Fig. 6d). The average peptide length is shorter in the Dmanisi 
hominin, but longer in the younger Atapuerca hominin (Extended Data 
Fig. 6d). By contrast, we observe that the peptide lengths in enamel from 
the Dmanisi hominin are indistinguishable from those of the faunal 
remains from the same site. Together, our protein data are therefore 
consistent with theoretical and experimental6,22 expectations for sam-
ples of their relative age.

In addition to diagenetic modifications, we observe two kinds of 
in vivo modification in our recent and ancient enamel proteomes. First, 
we detect serine (S) phosphorylation within the S-X-E motif (Fig. 1a, b). 
This motif, as well as the S-X-phosphorylated S motif, is recognized by 
the FAM20C secreted kinase, which is active in the phosphorylation 
of extracellular proteins23,24. The presence of phosphoserine in fos-
sil enamel and its location in the S-X-E and/or S-X-phosphorylated S 
motifs has also previously been observed in other Pleistocene enamel 

proteomes6,25. Phosphorylation occupancy can be computed success-
fully for ancient and recent samples, and reveals differences in the ratios 
of phosphorylated peptides between samples (Fig. 1c, Supplementary 
Table 5). Second, the peptide populations that we retrieve primarily 
cover the ameloblastin, enamelin and amelogenin sequence regions, 
representing cleavage products deriving from in vivo activity of the pro-
teases MMP20 and—subsequently—kallikrein 4 (KLK4) (Extended Data 
Fig. 4, Methods). The peptide populations are also enriched in N and 
C termini that correspond to known MMP20 and KLK4 cleavage sites 
(Extended Data Fig. 7, Supplementary Fig. 9). FAM20C phosphorylation 
and MMP20 and KLK4 proteolysis are the two main processes that occur 
in vivo during enamel biomineralization. Our observation of products 
deriving from both processes opens up the possibility of studying in vivo 
processes of hominin tooth formation across the Pleistocene epoch.

Homo antecessor is known only from the Gran Dolina TD6 assemblage 
in Atapuerca9. Its relationship with other European Middle Pleistocene 
fossils is heavily debated3–5,26,27. It remains contentious as to whether 
H. antecessor represents the last common ancestor of H. sapiens, Nean-
derthals and Denisovans9, or whether it represents a sister lineage to 
the last common ancestor of these species28,29. We address this issue by 
conducting phylogenetic analyses on the basis of our ancient protein 
sequences from H. antecessor (ATD6-92), a panel of present-day great 
ape genomes and protein sequences translated from archaic hominin 
genomes (Methods).

We built several phylogenetic trees using maximum likelihood and 
Bayesian methods (Fig. 2a, Supplementary Figs. 13–16). In these trees, 
the H. antecessor sequence represents a sister taxon that is closely 
related to, but not part of, the group composed of Late Pleistocene 
hominins for which molecular data are available (Fig. 2a, Supplemen-
tary Figs. 13, 15, 16). The enamel protein sequences do not resolve the 
relationships between H. sapiens, Neanderthals and Denisovans owing 
to the low number of informative single amino acid polymorphisms. 
However, pairwise divergence of the amino acid sequences between 
H. antecessor and the clade containing H. sapiens, Neanderthals and 
the Denisovan is larger than the divergence between the members of 
this clade (Fig. 3b, Supplementary Fig. 12, Supplementary Informa-
tion). The concatenated gene tree may be subjected to incomplete 
lineage sorting, and we have too little sequence data to discard this 
possibility at the moment. However, if we use the concatenation of 
available gene trees as a best guess for the population tree, and assume 
that such a population tree is a good descriptor of the relationships 
among ancient hominins, then our results support the placement of  
H. antecessor as a closely related sister taxon of the last common ances-
tor of H. sapiens, Neanderthals and Denisovans. The phylogenetic 
position of H. antecessor agrees with a divergence of the H. sapiens 
and Neanderthal + Denisovan lineages between 550 and 765 ka30,31, as 
ATD6-92 has been dated to 772–949 ka11. This is further supported by 
recent reconsiderations of the morphology of H. antecessor in relation 
to Middle and Late Pleistocene hominins29.

Homo antecessor has tentatively been proposed as the last com-
mon ancestor of Neanderthals and modern humans9. The similarities 
observed between the modern-like mid-facial topography of H. anteces-
sor and H. sapiens—including a modern pattern of coronal orientation 
of the infraorbital surface, the sloping and directionality of this plane, 
as well as the anterior flexion of the maxillary surface and arching of the 
zygomatic-alveolar crest—were key in this proposal9,32. Additional stud-
ies of the face of ATD6-69 have confirmed that H. antecessor exhibits the 
oldest known modern-like face in the fossil record12,13. The phylogenetic 
placement of H. antecessor implies that this modern-like face—as rep-
resented by H. antecessor—must have a considerably deep ancestry in 
the genus Homo. Findings made between 2003 and 2005 have shown 
that the H. antecessor hypodigm includes some features that were previ-
ously considered Neanderthal autapomorphies28. Our results suggest 
that these features appeared in Early Pleistocene hominins, and were 
retained by Neanderthals and lost by modern humans.
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By contrast, the phylogenetic tree built with the H. erectus specimen 
from Dmanisi has only moderate resolution (Extended Data Fig. 8, Sup-
plementary Fig. 11), despite deeper shotgun protein sequencing for this 
specimen (Extended Data Table 1). This partly inconclusive result might 
be due to the shorter average peptide lengths compared to the Atapu-
erca H. antecessor specimen (Extended Data Fig. 6d, Methods) and an 
absence of uniquely segregating single amino acid polymorphisms 
(Supplementary Table 9). Although our H. erectus data from Dmanisi 
demonstrate that ancient hominin proteins can be reliably obtained 
from the Early Pleistocene epoch, they also highlight the current limits 
of ancient protein analysis when applied to the phylogenetic placement 
of Early Pleistocene hominin remains.

Our dataset provides a unique molecular resource of hominin 
biomolecular sequences from Early and Middle Pleistocene homi-
nins, and represents—to our knowledge—the oldest ancient hominin 
proteomes presented to date. Comparison of hominin and fauna 
proteomes from different skeletal tissues reveals that the dental 
enamel proteome outlasts dentine and bone proteome preservation 
(Fig. 3). Here the prolonged survival of hominin enamel proteomes 
is exploited to show that H. antecessor represents a hominin taxon 
closely related to the last common ancestor of H. sapiens, Neander-
thals and Denisovans. In addition, our datasets demonstrate that 
in vivo proteome modifications, such as serine phosphorylation, 
survive over time scales of hundreds of thousands of years. Current 
research therefore suggests that dental enamel, the hardest tissue in 
the mammalian skeleton, is the material of choice for the analysis of 
hominin evolution in deep time.
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54 CHAPTER 2. MANUSCRIPTS

Methods

No statistical methods were used to predetermine sample size. The 
experiments were not randomized and investigators were not blinded 
to allocation during experiments and outcome assessment.

Site location and specimen selection
Recent human control specimens. We analysed Ø1952, a human 
premolar recovered in an archaeological excavation in Copenhagen 
(Almindeligt Hospital Kirkegård, excavated in 1952, from kisse ‘2’). The 
tooth is approximately three centuries old, as the cemetery was in use 
from approximately ad 1600 to approximately ad 1800, and originates 
from a male individual. We also re-analysed previously published data16 
related to specimens that are dated to between approximately 5,700 
and 200 years ago; of these specimens, we took SK339 as a recent ex-
ample in our comparative figures (a male individual from Fewston (UK) 
dated to the nineteenth century ad).

Atapuerca. One fragmentary permanent lower left first or second mo-
lar (ATD6-92; field number and museum accession number at CENIEH) 
was used for ancient protein analysis (Extended Data Fig. 2a, Supple-
mentary Information). ATD6-92 originates from sublevel TD6.2 of the 
Gran Dolina cave site. Sublevel TD6.2 contains a large number of faunal 
remains, about 170 hominin fossils and about 830 archaeological arte-
facts. All hominin specimens from sublevel TD6.2, including ATD6-92, 
are attributed to H. antecessor9. ATD6-92 has recently been directly 
dated through electron spin resonance, laser-ablation inductively 
coupled plasma mass spectrometry U-series and bulk U-series dat-
ing11. Together with previous chronological research at the site, these 
analyses constrain the age of ATD6-92 to 772–949 thousand years old11.

Dmanisi. One fragmentary permanent upper first molar (D4163; field 
number and museum accession number at the Georgian National Mu-
seum) was used for ancient protein analysis (Extended Data Fig. 2b, 
Supplementary Information). D4163 derives from layer B1 in excavation 
block M6 (Dmanisi). Layer B1 at Dmanisi contains one of the richest 
palaeontological assemblages attributed to the Eurasian Early Pleisto-
cene epoch, including several hominin crania. Below, we refer to these 
specimens as H. erectus (Dmanisi). They represent the earliest hominin 
fossils outside Africa, and are dated to 1.77 Ma14. Faunal material from 
the site previously demonstrated ancient protein survival for most 
specimens, but a total absence of ancient DNA6 (Fig. 3).

Amino acid racemization
Chiral amino acid analysis was undertaken on one Pleistocene sample 
from the hominin tooth (D4163) to test the endogeneity of the enamel 
protein through its degradation patterns. The tooth chip was separated 
into the enamel and dentine portions, and each was powdered with an 
agate pestle and mortar. All samples were prepared using previously 
published procedures39, modified to be optimized for enamel, using a 
bleach time of 72 h to isolate the intracrystalline protein, demineraliza-
tion in HCl, KOH neutralization and formation of a biphasic solution 
through centrifugation40. Two subsamples were analysed from each 
portion: one fraction was directly demineralized and the free amino 
acids analysed, and the second was treated to release the peptide-bound 
amino acids, thus yielding the total hydrolysable amino acid fraction. 
Samples were analysed in duplicate by reversed-phase high-perfor-
mance liquid chromatography, with standards and blanks analysed 
alongside samples. During preparative hydrolysis, both asparagine 
(Asn) and glutamine (Gln) undergo rapid irreversible deamidation to 
aspartic acid (Asp) and glutamic acid (Glu), respectively41. It is therefore 
not possible to distinguish between the acidic amino acids and their 
derivatives, and they are reported together as Asx and Glx, respectively. 
Additional descriptions of the methods, as well as additional results, 
are given in the Supplementary Information.

Proteomic extraction and nanoLC–MS/MS
Protein extraction. Protein extraction was conducted on enamel sam-
ples (from the Atapuerca H. antecessor, Dmanisi H. erectus and Ø1952) 
and a dentine sample (Dmanisi), using one of three protocols. In brief, 
the first extraction method used HCl for demineralization, but included 
no subsequent reduction, alkylation or digestion. The second extrac-
tion method used a more standard approach, in which the pellet left 
from the demineralization in extraction one was reduced, alkylated 
and digested with LysC and trypsin. The third extraction method used 
TFA for demineralization, and had no subsequent reduction, alkylation 
or digestion. The first and third extraction approaches provided more 
extensive peptide recovery in ancient enamel proteomes6 compared 
to the second extraction approach42. Further details can be found in 
the Supplementary Information and a previous publication6. Ø1952 was 
processed using extraction methods one and three. No proteinase and 
phosphatase inhibitors were used during extraction, as we assumed 
that catalytically active enzymes were not present in our specimens 
and the high acidic conditions during our extraction would have ir-
reversibly denatured any proteases possibly present as contaminants 
in our reagents. Extended Data Table 1 provides a breakdown of the use 
of specific extraction methods, hominin samples and hominin tissues.

NanoLC–MS/MS analysis. Shotgun proteomic data were obtained 
on peptide extracts of both hominins at separate facilities at the Novo 
Nordisk Centre for Protein Research (University of Copenhagen) and 
the Proteomics Unit (Centre for Genomic Regulation, Barcelona Insti-
tute of Science and Technology). Full peptide elutions were injected, in 
some cases across replicate runs in both Copenhagen and Barcelona. 
In brief, samples processed in Copenhagen were suspended in 0.1% 
trifluoroacetic acid, 5% acetonitrile, and analysed on a Q-Exactive HF or 
HF-X mass spectrometer (Thermo Fisher Scientific) coupled to an EASY-
nLC 1200 (Thermo Fisher Scientific). The HF or HF-X mass spectrometer 
was operated in positive ion mode with a nanospray voltage of 2 kV and 
a source temperature of 275 °C. Data-dependent acquisition mode was 
used for all mass spectrometric measurements. Full mass spectrometry 
scans were done at a resolution of 120,000 with a mass range of m/z 
300–1,750 and 350–1,400 for the HF and HF-X mass spectrometers, 
respectively, with detection in the Orbitrap mass analyser. Fragment 
ion spectra were produced at a resolution of 60,000 via high-energy 
collision dissociation (HCD) at a normalized collision energy of 28% 
and acquired in the Orbitrap mass analyser. In addition, test runs for 
the Dmanisi sample were performed at a shorter gradient (Supplemen-
tary Information). In Barcelona, samples were dissolved in 0.1% formic 
acid and analysed on a LTQ-Orbitrap Fusion Lumos mass spectrometer 
(Thermo Fisher Scientific) coupled to an EASY-nLC 1000. The mass 
spectrometer was operated similarly to the parameters stated for the 
HF and HF-X mass spectrometers in Copenhagen, except the nanospray 
voltage was 2.4 kV and full mass spectrometry scans with 1 micro scan 
were used over a mass range of m/z 350–1,500. Further details of the 
LC–MS/MS analysis can be found in the Supplementary Information.

Proteomic data analysis
Protein sequence database construction. We constructed an initial 
Hominidae sequence database containing protein sequences of all 
major and minor enamel proteins derived from all extant great apes, 
a hylobatid (Nomascus leucogenys) and a macaque (Macaca mulatta). 
Additionally, we added protein sequences translated from extinct 
Late Pleistocene hominins30,43, and sequences from Gorilla beringei, 
Pongo pygmaeus and Pongo tapanuliensis44–46. For each protein, we 
reconstructed the protein sequence of ancestral nodes in the Homi-
nidae family through PhyloBot47 to minimize cross-species proteomic 
effects48, and added missing isoform variation on the basis of the iso-
forms present for each protein in the human proteome as given by 
UniProt (Supplementary Information). Furthermore, we downloaded 
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the entire human reference proteome from UniProt (4 September 2018) 
for a single separate search to allow matches to proteins previously not 
encountered in enamel proteomes. To each constructed database, we 
added a set of known or possible laboratory contaminants to allow for 
the identification of possible protein contaminants49.

Proteomic software, settings and false-discovery rate. Raw mass 
spectrometry data were searched for each specimen and tissue sep-
arately in either PEAKS50 (v.7.5) or MaxQuant51 (v.1.5.3.30). No fixed 
modifications were specified in any search. For PEAKS, variable post-
translational modifications were set to include proline hydroxylation, 
glutamine and asparagine deamidation, oxidation (M), phosphoryla-
tion (STY), carbamidomethylation (C) and pyroglutamic acid (from Q 
and E). For MaxQuant, the following variable post-translation modifi-
cations were additionally included: ornithine formation (R), oxidation 
(W), dioxidation (MW), histidine to aspartic acid (H>D), and histidine to 
hydroxyglutamate. Searches were conducted with unspecific digestion. 
For PEAKS, precursor mass tolerance was set to 10 ppm and fragment 
mass tolerance to 0.05 Da, and the false-discovery rate of peptide spec-
trum matches was set to equal ≤1.0%. For MaxQuant, default settings of 
20 ppm for the first search and 4.5 ppm for the final search were used, 
a fragment mass tolerance of 20 ppm, and peptide spectrum match 
(PSM) and protein false-discovery rate was set to 1.0%, with a minimum 
required Andromeda score of 40 for all peptides. Protein matches were 
accepted with a minimum of two unique peptide matches in either the 
PEAKS or MaxQuant search. Proteins that conform to these criteria are 
detailed in Extended Data Table 2. Example MS/MS spectra from the 
MaxQuant search and overlapping sites of phylogenetic interest (single 
amino acid polymorphisms) are included as Supplementary Data 1.

Data search iterations. For both the proteomes of Dmanisi and Ata-
puerca specimens, we conducted two separate initial searches. First, 
we conducted a search in PEAKS against the entire human proteome. 
Only standard enamel proteins were identified in these searches, al-
lowing us to continue with more specific searches. For the Dmanisi 
dentine sample, this first search resulted in a small number of peptides 
matching to collagen type I only. On the basis of the limited amount 
of sequence data, no further analysis of the Dmanisi dentine data was 
therefore conducted. Second, for the enamel data, we conducted a 
search in PEAKS and MaxQuant against the entire enamel proteome 
database of all extant and extinct Hominidae. This search was used to 
observe single amino acid polymorphisms outside the known sequence 
variation in PEAKS and MaxQuant through the de novo, error-tolerant 
and/or dependent peptide approaches implemented in each of these 
search engines. These initial searches indicate overall good protein 
preservation in both samples and the presence of peptide matches to 
Pan- and Homo-derived proteins only.

On the basis of these two initial searches, a novel protein sequence 
database was used that only includes sequences from the genus Pan, 
the genus Homo, their predicted ancestral sequences and novel pro-
tein sequences observed for both the Dmanisi or Atapuerca samples. 
Final searches and subsequent data analysis were conducted against 
this database using the above search and post-translational modifica-
tion settings. Positions supported by insufficient spectral data were 
replaced by ‘X’, in resulting peptide alignments before phylogenetic 
analysis.

Data analysis of Ø1952 and the previously published16 dataset was 
conducted only in MaxQuant against a database restricted to H. sapiens. 
All other search settings and database restrictions were similar between 
these two recent human controls and the ancient hominin proteomes.

Peptide sequence and single amino acid polymorphism validation. 
To validate the PSMs covering single amino acid polymorphisms of 
interest, we performed peptide spectrum intensity prediction and vali-
dation on our dataset using wiNNer17. Data from the ancient specimens 

(Dmanisi H. erectus and Atapuerca H. antecessor) were divided into a 
subset that contained phylogenetically informative peptide sequences 
and a larger subset that did not contained these peptides. A training 
dataset was prepared by taking a subset of the latter peptides, and 
adding a previously published dataset of enamel proteomes from 
Dmanisi fauna6. We built two models, one for HCD +2 spectra and one 
for HCD +3 spectra. We took into account the large number of variable 
modifications observed in our ancient enamel proteomes, and split the 
retained data for each model into subsets for training, validation and 
testing (80:10:10). We then obtained Pearson correlation coefficients 
for the predicted and true fragment intensities in the test dataset and 
the phylogenetically informative spectra. The architecture of wiNNer 
was built using Keras (version 2.0.8; https://keras.io) and Tensorflow 
(version 1.3.0). The wiNNer analysis indicated close correspondence 
between predicted and true fragment ion intensities (Pearson correla-
tion coefficient medians between 0.85 and 0.76 for different subsets 
of the data), indicating adequate peptide sequence identification for 
all our peptides, including phylogenetically informative positions and 
the variable post-translational modifications. The wiNNer model can 
be accessed on GitHub (https://github.com/cox-labs/wiNNer.git). Ad-
ditional methodological details of the wiNNer architecture are given 
in the Supplementary Information.

Protein damage analysis. Ancient proteins can be modified diageneti-
cally in a variety of ways compared to their modern counterparts. We 
quantify glutamine and asparagine deamidation following a previously 
publication42 for MaxQuant output, based on MS1 spectral intensities 
and protein-based bootstrapping (1,000 bootstraps). Further details 
can be found in the previous publication42. We observe that both glu-
tamines and asparagines are almost all deamidated to glutamic acid 
and aspartic acid, respectively (Extended Data Fig. 6a–c). In addition, 
peptide length distributions were obtained for datasets presented here 
and elsewhere6,8, demonstrating a shortening of average peptide length 
and overall peptide length distributions for older samples (Extended 
Data Fig. 6d).

Protein in vivo modification analysis. The existing literature on 
enamel and enamel proteome biomineralization describes three pro-
cesses that are key to the maturation of the enamel proteome: protein 
hydrolysis by MMP20 and KLK452–55, in vivo phosphorylation of serine 
residues6,8,23 and expression of different isoforms of AMELX, AMBN 
and AMTN52,55,56. We sought to explore the presence of both in vivo 
protein hydrolysis and serine phosphorylation modifications in our 
Pleistocene hominin proteomes.

For protein hydrolysis by MMP20 and KLK4, we made use of the Ata-
puerca digestion-free dataset and the described locations of AMBN, 
AMELX and AMELY, and ENAM cleavage by MMP20 and KLK452–55. We 
compared the experimentally observed cleavage sites to a random 
cleavage model of each protein separately and tested whether the cleav-
age sites are present in a larger portion of PSMs in the ancient sample. 
Here we can indeed show an increased presence of PSMs with termini 
at, or close to, known MMP20 and KLK4 cleavage locations (Extended 
Data Fig. 7). This corresponds with our observation that protein regions 
with continuous sequence coverage correspond to known proteolytic 
fragments after MMP20 and KLK4 activity (Extended Data Fig. 4).

Phosphorylation of serines (S), threonines (T) and tyrosines (Y) was 
assessed using Icelogo57 sequence motif analysis. This analysis was 
based on the MaxQuant results, from which only identified phospho-
rylation sites with a localization probability of ≥0.95 were selected. 
STY sites with no phosphorylation or localization probabilities ≤ 0.95 
were taken as the non-phosphorylated background, and a sequence 
motif window of 7 amino acids on either side of the STY was selected. 
Sequence motif analysis indicates a strong preference for the phospho-
rylation of S with a glutamic acid (E) on the +2 position (S-X-E motif) 
(Fig. 1a, b) in both hominin enamel proteomes. This substrate motif 
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and the S-X-phosphorylated S motif are recognized by the kinase 
FAM20C, which is known to be active in vivo on extracellular proteins 
involved in biomineralization23, and has previously been reported for 
ancient, non-hominin enamel proteomes as well6,8.

To compare phosphorylation occupancy between the Dmanisi and 
Atapuerca enamel proteomes, we performed a separate MaxQuant 
database search (Supplementary Information) and restricted our 
analyses to amino acid positions covered by phosphorylated and non-
phosphorylated peptides, observed in both hominins and quantified 
through label-free quantification.

Phylogenetic analysis
Comparison between the ancient protein sequences and modern 
reference proteins. We compared the reconstructed ancient protein 
sequences from the Dmanisi H. erectus and Atapuerca H. antecessor 
with protein sequences from great apes44,46, three Neanderthals31,43,58, 
a Denisovan59 and a panel of present-day humans, including 256 sam-
ples from the Simons Genome Diversity Panel33 and 41 high-coverage 
individuals from the 1000 Genomes Project34. Altogether, our reference 
data represent worldwide human and great ape variation (Supplemen-
tary Tables 7, 8). Additionally, we included protein sequences from 
macaque (M. mulatta) and gibbon (N. leucogenys) to root phylogenetic 
trees. The protein sequences were retrieved from the UniProt database 
or reconstructed from the reference whole-genome sequences as de-
scribed in Supplementary Methods.

The ancient and reference protein sequences were aligned using 
mafft60. We aligned the sequences of each protein separately and 
obtained an alignment for each of the ancient individuals indepen-
dently (Supplementary Table 9). The isobaric amino acids leucine (L) 
and isoleucine (I) cannot be distinguished with the experimental pro-
cedure used for this study. Therefore, we have to take the following 
precautions to avoid unintentional sequence differences. If either I or 
L was present at a specific amino acid position in the reference protein 
sequences, we replaced all corresponding amino acids in the ancient 
protein sequences with the amino acid that is present. Alternatively, 
if both amino acids are present in the reference protein sequence, 
we replace all I to L for all sequences. We used sequence information 
for seven proteins (ALB, AMBN, AMELX, AMELY, COL17α1, ENAM and 
MMP20) for the H. antecessor individual and six proteins for the H. erec-
tus individual (ALB, AMBN, AMELX, COL17α1, ENAM and MMP20) with a 
total of 22.08% and 22.14% non-missing sites, respectively (Supplemen-
tary Table 9). We were able to recover a unique single amino acid poly-
morphism for H. antecessor; however, for H. erectus no unique single 
amino acid polymorphism was detected (Supplementary Tables 9–11, 
Supplementary Figs. 10–12).

Phylogenetic reconstruction. We built phylogenetic trees using our 
protein sequence alignments following three approaches: a maximum 
likelihood approach using PhyML v.361, and two Bayesian approaches 
using mrBayes62 and BEAST63.

For the maximum likelihood approach, we built maximum likelihood 
trees for each protein independently and for a concatenated align-
ment consisting of all of the available protein sequences for each of the 
ancient samples (Supplementary Figs. 13, 14). We used PhyML v.3 and 
the parameters described in the Supplementary Information section 
2.3.5a to build and optimize the tree topologies, branch length and sub-
stitutions rates for each of the alignments. Support for each bipartition 
was obtained based on 100 non-parametric bootstrap replicates. We 
evaluated the effect of significant missingness in the ancient samples 
on the inferred topology. Finally, we looked at the effect of varying 
which of the subset of present-day human samples was included in the 
tree (Supplementary Information section 2.3.5b, c).

For the Bayesian approach using mrBayes, to assess the robustness 
of the maximum likelihood inference results, we performed Bayesian 
phylogenetic inference on the basis of the concatenated alignments 

using mrBayes 3.2 and the parameters described in Supplementary 
Information section 2.3.5d (Extended Data Fig. 8, Supplementary 
Fig. 16). Bayesian inference was performed using the CIPRES Science 
Gateway64.

For the Bayesian approach using BEAST, we used BEAST 2.5 to obtain 
a time calibrated tree for the seven proteins used for H. antecessor. For 
this analysis, we used concatenated alignments including the Nean-
derthals, the Denisovan, seven randomly chosen H. sapiens individu-
als and a single individual per great ape species. The alignment was 
partitioned by gene and a coalescent constant population model was 
used for the tree prior. The dates of the ancient samples included in 
the analysis (Vindija Neanderthal, 52 ka58; Altai Neanderthal, 112 ka31; 
Denisovan, 72 ka59 and H. antecessor, 860.5 ka11) were used as tip dates 
for calibration. For each partition, we used the Jones–Taylor–Thornton 
substitution model with four categories for the gamma parameter, for 
which we allowed the Markov chain Monte Carlo chain to sample the 
shape of the gamma distribution (with an exponentially distributed 
prior) and assigned independent clock models. Additionally, we set a 
prior for the divergence time of great apes to 23.85 ± 2.5 Ma (normally 
distributed)65, and rooted the tree using the macaque (M. mulatta). 
The overall topology of the tree was estimated for the seven partitions 
jointly. The convergence of the algorithm was assessed using Tracer 
v.1.7.066. Finally, we repeated this analysis with 100 alignments, each of 
them consisting of 7 present-day humans chosen randomly. Although 
the topology within the clade consisting of present-day humans, Nean-
derthals and Denisovan was not consistent across the replicates, 99 
of the replicates consistently place the H. antecessor sequence as an 
outgroup to this clade (Fig. 2a).

Further details on phylogenetic analysis and results can be found 
in the Supplementary Information. Example MS/MS spectra from 
the MaxQuant search and overlapping sites of phylogenetic interest  
(single amino acid polymorphisms) for both hominins are included 
as Supplementary Data 1.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Mass spectrometry proteomics data have been deposited in the Pro-
teomeXchange Consortium (http://proteomecentral.proteomex-
change.org) via the PRIDE partner repository with the dataset identifier 
PXD014342. Generated ancient protein consensus sequences used 
for phylogenetic analysis for H. antecessor (Atapuerca) and H. erectus 
(Dmanisi) hominins can be found in the Supplementary Data 2, which 
is formatted as a .fasta file. Full protein sequence alignments used 
during phylogenetic analysis can be accessed via Figshare (https://
doi.org/10.6084/m9.figshare.9927074). Amino acid racemization data 
are available online through the NOAA database. The wiNNer model 
can be accessed on GitHub (https://github.com/cox-labs/wiNNer.git).
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Extended Data Fig. 1 | Location and stratigraphy of the hominin fossils 
studied. a, Geographic location of Gran Dolina and Dmanisi. Base map was 
generated using public domain data from www.naturalearthdata.com.  
b, Summarized stratigraphic profile of Gran Dolina, including the location of 
hominin fossils in layers ‘Pep’ and ‘Jordi’ of sublevel TD6.2.
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Extended Data Fig. 2 | Hominin specimens studied. a, ATD6-92 in buccal view. The fragment represents a portion of a permanent lower left first or second molar. 
b, D4163 in occlusal view. The specimen is a fragmented right upper first molar. Scale bar differs between a and b.
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Extended Data Fig. 3 | Amino acid racemization of D4163. a, b, The extent of 
intracrystalline racemization in enamel for the free amino acid (FAA) (x axis) 
fraction and the total hydrolysable amino acids (THAA) ( y axis) fraction for 
aspartic acid plus asparagine (here denoted Asx) (a), and glutamic acid plus 
glutamine (here denoted Glx) (b), demonstrates endogenous amino acids 
breaking down within a closed system. The hominin value is displayed in 

relation to values for enamel samples from other fauna from Dmanisi6 (blue 
squares) and a range of previously obtained Pleistocene and Pliocene 
Proboscidea from the UK40 (grey diamonds). Fauna are shown for comparison, 
but different rates in their protein breakdown mean that they will show 
different extents of racemization. The x and y axis are on different scales.
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Extended Data Fig. 4 | Sequence coverage for five enamel-specific proteins 
across Pleistocene samples and recent human controls. For each protein, the 
bars span protein positions covered, with positions remapped to the human 
reference proteome. The top row indicates the position of a selection of known 
MMP20 and KLK4 cleavage products of the enamel-specific proteins AMELX55, 
AMBN52 and ENAM56. Several in vivo proteolytic degradation fragments of 
ENAM share the same N terminus, but have unknown C termini53. Dotted line for 

AMBN indicates a putative cleavage product based on known MMP20 (squares) 
and KLK4 (circles) in vivo cleavage positions. For AMTN, serines (S) at positions 
115 and 116 (indicated by asterisks) are conserved among vertebrates and 
involved in mineral-binding21. Additional cleavage products as well as MMP20 
and KLK4 cleavage sites are known in all enamel-specific proteins. SK33916 and 
Ø1952 are two recent human control samples (Methods). AA, amino acids; 
Steph., Stephanorhinus6; TRAP, tyrosine-rich amelogenin polypeptide.
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Extended Data Fig. 5 | Homo antecessor specimen ATD6-92 represents a 
male hominin. a, Mass spectrum of an AMELY-specific peptide from the recent 
human control Ø1952. b, Mass spectrum of the same AMELY-specific peptide 
from H. antecessor. c, Alignment of a selection of AMELY- and AMELX-specific 

peptide fragment ion series deriving from H. antecessor. The alignment 
stretches along human AMELX isoform 1, positions 37 to 52 only (Uniprot 
accession numbers Q99217 (AMELX), Q99218 (AMELY)). See Supplementary 
Fig. 5 for another example of an AMELY-specific MS2 spectrum.



2.2. THE DENTAL PROTEOME OF HOMO ANTECESSOR 63

Article

Extended Data Fig. 6 | Enamel proteome damage. a, b, Glutamine (Q) and 
asparagine (N) deamidation of enamel-specific proteins from H. antecessor 
(Atapuerca) (a), and H. erectus (Dmanisi) (b). Values are based on 1,000 
bootstrap replications of protein deamidation. c, Relationship between mean 
asparagine (N) and glutamine (Q) deamidation for all proteins in both the 
Atapuerca and Dmanisi hominin datasets. Error bars represent 95% confidence 
interval window of 1,000 bootstrap replications of protein deamidation. 
Dashed line is x = y. d, Peptide length distribution of H. antecessor (Atapuerca), 

H. erectus (Dmanisi), four previously published enamel proteomes6,8,16 and one 
additional human Medieval control sample (Ø1952). For a, b and d, the number 
of peptides (n) is given for each violin plot. The box plots within the violin plots 
define the range of the data (whiskers extend to 1.5× the interquartile range), 
outliers (black dots, beyond 1.5× the interquartile range), 25th and 75th 
percentiles (boxes), and medians (centre lines). P values of two-sided t-tests 
conducted between sample pairs are indicated. No independent replication of 
these experiments was performed.
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Extended Data Fig. 7 | Survival of in vivo MMP20 and KLK4 cleavage sites in 
the Atapuerca enamel proteome. a, Experimentally observed cleavage 
matrices for ameloblastin (AMBN), enamelin (ENAM) and amelogenin (AMELX 
and AMELY) (Methods). Fold differences are colour-coded by comparing 
observed PSM cleavage frequencies to a random cleavage matrix for each 
protein separately7. b, Fold differences for all observed cleavage pairs per 
protein. Red filled circles represent MMP20, KLK4 and signal peptide cleavage 
sites mentioned in the literature53–56. Red open circles indicate cleavage sites 

located up to two amino acid positions away from such sites. c, PSM coverage 
for each protein. The signal peptide (thick horizontal bar labelled ‘sig’), known 
MMP20 and KLK4 cleavage sites (vertical bars), and O- and N-linked 
glycosylation sites (asterisks) are also indicated. For AMELX, peptide positions 
for all three known isoforms were remapped to the coordinates of isoform 3, 
which represents the longest isoform (UniProt accession Q99217-3). The x and 
y axes differ between the three panels of c.
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Article

Extended Data Fig. 8 | Phylogenetic position of D4163 through Bayesian 
analysis. Nomascus leucogenys and M. mulatta were used as outgroups.
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Extended Data Table 1 | Extraction and mass spectrometry details of analyses conducted on both ancient hominin 
specimens

QE-HF, Q Exactive HF (or HF-X) hybrid quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific). Fusion Lumos, LTQ-Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific). 
*Extraction method 1: demineralization in HCl, with no subsequent proteolytic digestion. Extraction method 2: demineralization in HCl, reduction, alkylation and digestion with LysC and trypsin. 
Extraction method 3: demineralization in TFA, with no subsequent proteolytic digestion. See Supplementary Information for further details.
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2.3 Phasing-in quality control in the nucleus

The nuclear proteins are known to aggregate in neurodegenerative disorders such as

amyotrophic lateral sclerosis and Huntington’s disease. The protein quality control in

nucleus is not yet well understood. In this article, the authors studied the protein qual-

ity control in the nucleus by using a combination of methods such as fluorescence imag-

ing, proteomics, and biochemical analysis. Proteins enter the nucleus in a folded state,

so they do not need chaperons mediated de novo folding. The nuclear proteins are rich

in stress-sensitive and metastable proteins, so there should be an effective protein qual-

ity control mechanism in the nucleus. The authors showed in the article that metastable

nuclear protein, which misfolds upon heat stress, enters the liquid-like granular com-

ponent (GC) phase in the nucleolus. The GC phase is rich in negatively charged pro-

teins such as nucleophosmin (NPM1) and nucleolin, and it adopts a state of low mo-

bility. Storage of these misfolded proteins in the GC phase effectively prevented the

irreversible aggregation, allowing Hsp70-mediated extraction and refolding(or degra-

dation) upon recovery from stress. Disruption of the GC phase causes the formation of

stable protein aggregates. Prolonged stress results in a transition of the nucleolar ma-

trix from liquid-like to solid and prevents quality control. To identify the endogenous

proteins that enter the GC phase of the nucleolus upon stress, the authors performed

GFP-NPM1 pull-down experiments followed by quantitative proteomics. They iden-

tified ∼200 proteins that are associated with NPM1 specifically upon heat shock (HS)

that includes numerous proteins of the nucleoplasm and nucleolus as well as some cy-

tosolic proteins. Thus, the proteins that entered the GC phase constituted a thermally

sensitive subproteome. They confirmed that these proteins were enriched in disordered

and low complexity regions, hallmarks of metastable structure.

I contributed to the analysis in finding out the enrichment of disorder regions and

low complexity regions in the GFP-NPMI associated proteins(∼200) upon HS when

compared with human proteome. I obtained the human proteome from the Uniprot

database3. DISOPRED6, a machine learning-based tool (using SVM) was used to pre-

dict disorder regions in the protein. Disorder regions are the regions that lack a fixed or

ordered three-dimensional structure. They could be partially or fully unstructured and

could form random coils, molten globules, and large multidomain proteins connected

by flexible linkers. SEG program108 was used to mask the low complexity regions with

x in the protein sequence. I calculated the distribution of the longest disordered amino
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acid sequences and low complexity sequences, as well as the frequency of residues in

disordered regions and in low complexity regions, respectively. The result shows that

the proteins were enriched in disorder sequences and low complexity sequences, rep-

resenting the metastable structure when compared to the human proteome. Thus, au-

thors suggest that the nucleolus has chaperone-like properties and can promote nuclear

protein maintenance under HS.

F. Frottin, F. Schueder, Tiwary, S., R. Gupta, R. Körner, T. Schlichthaerle, J. Cox, R. Jung-

mann, F. U. Hartl, and M. S. Hipp. The nucleolus functions as a phase-separated pro-

tein quality control compartment. Science, 365(6451):342–347, 2019. ISSN 0036-8075.

doi: 10.1126/science.aaw9157. URL https://science.sciencemag.org/content/365/

6451/342
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RESEARCH ARTICLE SUMMARY
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QUALITY CONTROL

The nucleolus functions as a
phase-separated protein quality
control compartment
F. Frottin, F. Schueder, S. Tiwary, R. Gupta, R. Körner, T. Schlichthaerle, J. Cox,
R. Jungmann*, F. U. Hartl*, M. S. Hipp*

INTRODUCTION: Cells have evolved quality
control mechanisms that operate under nor-
mal growth conditions and during stress to
maintain protein homeostasis (proteostasis)
and prevent the formation of potentially toxic
aggregates. Research in recent decades has id-
entified complex quality control systems in the
cytoplasm that mediate protein folding, pre-
vent misfolding, and cooperate in protein de-
gradationwith the proteasome and autophagy
pathways. Compartment-specific proteostasis
networks and stress response pathways have
also been described for the endoplasmic reti-
culum and mitochondria. In contrast, relati-
vely little is known about protein quality control
in the nucleus.
Proteins enter the nucleus in a folded state,

so chaperone machinery specific for de novo
folding is not required. However, the nuclear

proteome is rich in stress-sensitive, metastable
proteins, which suggests that effective protein
quality control mechanisms are in place to en-
sure conformational maintenance. The nucleus
contains several non–membrane-bound sub-
compartments. The largest of these is the nu-
cleolus, the site of ribosome biogenesis. During
stress, Hsp70 and other molecular chaperones
accumulate in the nucleolus, presumably to
protect unassembled ribosomal proteins against
aggregation. The nucleolus consists of liquid-
like phases or domains that have differential
surface tension and do not intermix. The out-
ermost of these, the granular component (GC),
is rich in negatively charged proteins such as
nucleophosmin and nucleolin, which, com-
bined with RNA, can undergo phase separa-
tion into liquid droplets in vitro, as shown for
nucleophosmin.

RATIONALE:Nuclear protein aggregates have
been observed in various neurodegenerative
disorders such as amyotrophic lateral sclerosis
and Huntington’s disease, but protein quality
control in the nucleus is not well understood.
Here, we used a combination of fluorescence
imaging, biochemical analyses, and proteo-
mics to investigate the fate of stress-denatured
and aberrant proteins in the nucleus, focus-
ing specifically on the role of the nucleolus
and its phase-separated nature in protein qual-
ity control.

RESULTS:Upon heat stress, misfolded nuclear
proteins entered the liquid-like GC phase of
the nucleolus, where they associated with

proteins including nucleo-
phosmin and adopted a
state of low mobility. As a
consequence, a fraction
of nucleophosmin and
nucleolin also converted
to a less dynamic state.

Storage in the GC phase effectively prevented
the irreversible aggregation of misfolded
protein species, allowing their extraction and
refolding upon recovery from stress in aHsp70-
dependent manner. We identified ~200 differ-
ent proteins that reversibly partitioned upon
stress into the immobile substate of the GC,
entering either from the nucleoplasm or from
within the nucleolus. Disruption of the GC
phase resulted in the formation of stable ag-
gregates of stress-denatured proteins in the
nucleoplasm, which exerted toxic effects by
sequestering bystander proteins. Notably, the
capacity of the nucleolus to storemisfolded pro-
teins proved to be limited. Prolonged stress or
the uptake of aberrant proteins associated
with neurodegenerative diseases led to a tran-
sition of the GC phase from a liquid-like to a
solid state, with loss of reversibility and nu-
cleolar dysfunction.

CONCLUSION: The liquid-like GC phase of
the nucleolus functions as a non–membrane-
bound protein quality control compartment.
It is characterized by a remarkable chaperone-
like capacity to temporarily store misfolded
proteins, preventing their irreversible aggre-
gation and maintaining them as competent
for Hsp70-assisted refolding. Nucleoplasmic
proteins exit the nucleolus upon refolding,
and nucleolar proteins resume their functional
state. Our findings provide an example of how
the properties of a non–membrane-bound,
phase-separated compartment can be used in
protein quality control, a fundamental biological
function.▪
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Hsp70-dependent refolding 

Reversible storage
of misfolded proteins

Inserting misfolded proteins into the nucleolus prevents irreversible aggregation. Upon
cell stress, misfolded proteins enter the GC phase of the nucleolus to be stored in a state
competent for Hsp70-dependent refolding during recovery. Potentially toxic, irreversible
aggregates form when transfer into the nucleolus is prevented. A 3D-rendered high-resolution
image of the nucleolus is shown: GC, granular component (red); DFC, dense fibrillar
component (white); FC, fibrillar center (cyan).
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RESEARCH ARTICLE
◥

QUALITY CONTROL

The nucleolus functions as a
phase-separated protein quality
control compartment
F. Frottin1, F. Schueder2,3, S. Tiwary4, R. Gupta1*, R. Körner1, T. Schlichthaerle2,3,
J. Cox4, R. Jungmann2,3†, F. U. Hartl1,5†, M. S. Hipp1,5†

The nuclear proteome is rich in stress-sensitive proteins, which suggests that effective
protein quality control mechanisms are in place to ensure conformational maintenance.
We investigated the role of the nucleolus in this process. In mammalian tissue culture
cells under stress conditions, misfolded proteins entered the granular component
(GC) phase of the nucleolus. Transient associations with nucleolar proteins such as
NPM1 conferred low mobility to misfolded proteins within the liquid-like GC phase,
avoiding irreversible aggregation. Refolding and extraction of proteins from the
nucleolus during recovery from stress was Hsp70-dependent. The capacity of the
nucleolus to store misfolded proteins was limited, and prolonged stress led to a
transition of the nucleolar matrix from liquid-like to solid, with loss of reversibility and
dysfunction in quality control. Thus, we suggest that the nucleolus has chaperone-like
properties and can promote nuclear protein maintenance under stress.

C
ells have evolved complex quality control
mechanisms that operate under normal
growth conditions and during stress to
maintain protein homeostasis (proteostasis)
and prevent the formation of potentially

toxic aggregates (1–4). Subcellular compartments
are equipped with specialized stress response
pathways (5–7) and vary in stress vulnerability
(8–10). The nuclear proteome is enriched in pro-
teins containing intrinsically disordered or low-
complexity sequences (11, 12). These metastable
proteins do not populate a thermodynamically
stable folded state and tend to aggregate upon
conformational stress (13–15). Indeed, various
neurodegenerative disorders associated with pro-
tein aggregation, such as amyotrophic lateral
sclerosis (ALS) and Huntington’s disease, are
characterized by the presence of intranuclear in-
clusions (16–20).
The nucleus contains several non–membrane-

bound subcompartments (21). The largest of

these is the nucleolus, which consists of liquid-
like phases that do not intermix, giving rise to
distinct zones (Fig. 1A and fig. S1, A and B) (22).
Embedded in the outer granular component
(GC) phase is the fibrillar center (FC) for the
transcription of ribosomal RNA (RNA polymer-
ase I subunit RPA40 as marker). The FC is sur-
rounded by the dense fibrillar component (DFC),
which contains the ribonucleoprotein fibrillarin
(FBL) (Fig. 1A and fig. S1, A and B). The GC phase
is rich in negatively charged proteins such as
nucleophosmin (NPM1) and nucleolin (23). NPM1
contains extensive unstructured regions and un-
dergoes liquid-liquid phase separation in vitro
(24, 25). During stress, Hsp70 and other molec-
ular chaperones accumulate in the nucleolus,
presumably to protect unassembled ribosomal
proteins against aggregation (26–28). Stress-
induced transfer of a nuclear model protein to
the nucleolus has also been observed (29). Here,
we found that during stress, misfolded proteins
enter the liquid-like GC phase of the nucleolus,
where irreversible coaggregation of different
misfolded protein species is prevented, allowing
Hsp70-mediated extraction and refolding (or
degradation) upon recovery from stress. In con-
trast, disruption of the GC phase causes the for-
mation of stable protein aggregates. Prolonged
stress results in a transition of the nucleolarmatrix
from liquid-like to solid and prevents quality
control.

Transfer of misfolded protein to the
nucleolus upon stress

To investigate the fate of a nuclear protein as it
denatures during heat stress (HS), we generated

human embryonic kidney (HEK) 293T cells stably
expressing a fusion protein of the thermolabile
firefly luciferase and heat-stable green fluores-
cent protein (GFP) carrying an N-terminal nu-
clear localization signal (NLS-LG) (fig. S1C).
NLS-LG was diffusely distributed in the nucleus.
Upon incubation at 43°C (2 hours), a substantial
fraction of NLS-LG entered the nucleoli (Fig. 1B).
Superresolution imaging (fig. S1A) (30, 31) showed
that nucleolar NLS-LG localized to the NPM1-
containing GC phase (Fig. 1C and fig. S1D). Trans-
fer of NLS-LG to the nucleolus was prevented by
stabilizing luciferase with the substrate analog
2-phenylbenzothiazole (PBT) (Fig. 1B and fig.
S1E). Thus, unfolding was a prerequisite for
transfer to the nucleolus. Upon recovery from
HS, nucleolar NLS-LG redistributed to the nu-
cleoplasm (Fig. 1B), as shown by inhibiting syn-
thesis of new protein (fig. S1F). More than 60% of
NLS-LG was degraded during HS (fig. S1G). Not-
ably, the NLS-LG present after recovery showed
a higher specific luminescence activity than
during HS, indicative of refolding of misfolded
protein (fig. S1G).
Hsp70 transferred to nucleoli uponHS (27–29),

even when NLS-LG was stabilized (fig. S1E).
Thus, Hsp70 entered the nucleolus either in a
complexwith endogenous proteins or in free form.
Inhibition of the adenosine triphosphatase ac-
tivity of Hsp70 by the compound VER-155008
(32) prevented both Hsp70 and misfolded NLS-
LG from exiting the nucleolus during recovery
(fig. S2A). Thus, nucleolar Hsp70 is involved in
refolding and repartitioningNLS-LG (and presum-
ably othermetastable proteins) to thenucleoplasm.
Indeed, misfolded cytosolic carboxypeptidase
Y*-mCherry (CC*) (33) also accumulated in
nucleoli when its degradation was inhibited (fig.
S2B). Thus, the nucleolus serves as a storage
compartment for a subset of misfolded pro-
teins under proteotoxic stress conditions, preserv-
ing them in a state competent for refolding or
degradation.

Misfolded proteins in the nucleolus have
low mobility

We next analyzed the mobility of NLS-LG in the
GC phase of the nucleolus by recording fluores-
cence recovery after photobleaching (FRAP). To
compare the mobility of folded and misfolded
proteins within the nucleolus, we fused a nucleo-
lar targeting sequence (34) to NLS-LG, generat-
ing the protein No-LG (fig. S1C). A large fraction
of No-LG constitutively localized to the nucleolus
in the absence of stress and in the presence of the
luciferase stabilizer PBT (Fig. 1D and fig. S2, C
and D), thus behaving as a functional nucleolar
protein. No-LG in the nucleolus showed com-
plete FRAP (Fig. 1, D and E, and fig. S3A) and a
mobility similar to that of the liquid-like GFP-
NPM1 (Fig. 1F and fig. S3B) (22). HS resulted in a
more complete localization of No-LG to the nu-
cleolus, an increase in the nucleolar concentra-
tion of No-LG (by a factor of 1.37 ± 0.13, n = 3),
and a shift to amarkedly reducedmobility (Fig. 1,
D and E, and figs. S2, C and D, and S3A). In con-
trast, the presence of PBT during HS preserved
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Fig. 1. Misfolded proteins transiently accumulate in the GC phase of the
nucleolus during stress. (A) Schematic representation and 3D-rendered
DNA-PAINT (30, 31) superresolution image of a HeLa cell nucleolus under
normal growth conditions. Red, NPM1 (GC); white, FBL (DFC); cyan,
RPA40 (FC). See also fig. S1, A and B. (B) HEK293Tcells stably expressing
NLS-LG were treated with dimethyl sulfoxide (DMSO; mock) or PBT
before 2 hours of heat stress (+HS), followed by recovery for 2 hours
(+HS +Rec). Control cells were maintained at 37°C (–HS). Cells were
stained for endogenous NPM1 (red); nuclei are marked by dashed circles.
(C) Superresolution imaging of HEK293T cells expressing NLS-LG after
HS treatment, with staining for GFP, endogenous NPM1, FBL, and RPA40.
See fig. S1D for –HS control. (D) No-LG in the nucleolus without (–HS)
and with (+HS) heat stress in the presence or absence of PBT before
bleaching (Pre), immediately after bleaching (Bleach), and 2 s after bleaching.
(E to G) FRAP analysis of No-LG (E), GFP-NPM1 (F), and No-GFP (G).

No-LG experiments (E) show PBT treatment (open circles) or DMSO
(solid circles) as a control. GFP-NPM1 experiments (F) show cotransfection
of No-LS (open circles). For the –HS condition (green), cells were
maintained at 37°C during acquisition. For +HS experiments (red), cells
were incubated at 43°C for 1 hour before acquisition and maintained at
43°C during acquisition. For the No-LG recovery experiment [(E), right
graph, blue], cells were subjected to HS and allowed to recover for 1 hour
(+HS +Rec; solid circles), followed by FRAP. Hsp70 was inhibited with
VER-155008 before shifting cells to recovery (+HS +Rec +VER; open
circles) (32). Cycloheximide was present during recovery. The graphs
display corrected and normalized FRAP curves with double-exponential
fits. Curves represent means ± SD (n ≥ 4 biological repeats representing
at least 12 different cells). The first 150 s after photobleaching are shown.
Quantification of No-LG and GFP-NPM1 mobility is shown in fig. S3, A
and B, respectively. Scale bars, 1 mm [(A), (C), (D)], 10 mm (B).
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Fig. 2. GFP-NPM1 reversibly associates with endogenous proteins.
(A) Number of GFP-NPM1–associated proteins (see table S1). GFP-NPM1
was transiently expressed in SILAC-labeled HEK293T cells before exposure
to heat stress (+HS), followed by recovery (+HS +Rec) or recovery in the
presence of Hsp70 inhibitor (+HS +Rec +VER). Control cells remained
at 37°C (–HS). Anti-GFP immunoprecipitates from cell lysates were
analyzed by mass spectrometry. Proteins that were enriched by a factor
of ≥2 upon +HS over the –HS sample in at least three of four independent
experiments were defined as being associated with GFP-NPM1 (see
table S1). (B) Hsp70 inhibition prevents reversibility of GFP-NPM1
associations. Venn diagrams show distribution of GFP-NPM1–associated

proteins under the conditions analyzed in (A). (C) Bromodomain-
containing protein 2 (BRD2) reversibly accumulates in the nucleolus.
HEK293Tcells were treated as described above. Cells were immunostained
for endogenous NPM1 and BRD2. Nuclei are marked by dashed circles.
Representative images of three biological repeats are shown. Scale bar,
10 mm. (D) Partitioning of BRD2, NLS-LG, and Hsp70 between nucleoplasm
and nucleoli in HEK293T cells treated as described above. Proteins were
detected by immunostaining. Relative concentrations in nucleoplasm and
nucleolus were quantified by measuring relative fluorescence intensities
in 57 to 145 cells per condition across three biological repeats. **P ≤ 0.05,
***P ≤ 0.001 (two-sided t test).
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the high mobility of No-LG (Fig. 1, D and E, and
fig. S3A). Thus, unfolding changed the interaction
of luciferase with the GC phase. The larger hy-
drodynamic radius of unfolded luciferasemay also
contribute to the lower mobility. Consistently, the
mobility of nucleolar GFP (No-GFP) (figs. S1C
and S2C) remained unchanged upon heat stress
(Fig. 1G).
HS also induced the formation of an immobile

fraction of GFP-NPM1 (~30% of total) (Fig. 1F
and fig. S3B), which returned to normal mobility
upon recovery (fig. S3, B and C). Similar obser-
vations were made for nucleolin (GFP-NCL) (fig.
S3, B and C). This suggested an association with
unfolded (or misfolded) proteins that altered GC
mobility. In support of this notion, expression of
nucleolar luciferase (as a fusion with mScarlet;
No-LS) further increased the immobile fraction
of GFP-NPM1 upon HS (Fig. 1F and fig. S3B),
which suggests that the amount of immobile GC
protein correlated with the load of misfolded

protein. In contrast, folded No-LS in control
conditions had no effect on GFP-NPM1 mobil-
ity (Fig. 1F and fig. S3B). Indeed, endogenous
NPM1 associated (directly or indirectly) with
NLS-LG or No-LG upon HS by coimmunopre-
cipitation, but not in the absence of stress (fig.
S3D). Thus, the unfolding of luciferase enhanced
the association with the GC, consistent with a
fraction of liquid-likeNPM1 andnucleolin adopt-
ing a less dynamic state. Inhibiting Hsp70 ac-
tivity completely inhibited the stress-denatured
No-LG from recovery to normal mobility (Fig. 1E
and fig. S3, A and E). Because No-LG remained
localized to the nucleolus after refolding, this
finding suggested that refolding mediated by
Hsp70 was initiated in the nucleolus and was
coupled with the mobilization of luciferase. Thus,
upon proteotoxic stress, misfolded proteins
immersed into the nucleolus, where they as-
sociated with GC proteins, thereby convert-
ing part of the liquid-like GC phase to a state

of low mobility (Fig. 1F and fig. S3, B and C).
Mobility was reestablished during recovery in
an Hsp70-dependent manner, concomitant with
refolding.

Endogenous proteins reversibly enter
the nucleolus upon stress

To identify the endogenous proteins that enter the
GC phase of the nucleolus upon stress, we per-
formed GFP-NPM1 pull-down experiments fol-
lowed by quantitative proteomics. We identified
~200 proteins that associated with NPM1 spe-
cifically upon HS, including numerous proteins
of the nucleoplasm and nucleolus aswell as some
cytosolic proteins (Fig. 2A, fig. S4, A and B, and
table S1). Thus, the stress-protective GC phase is
accessible to proteins from both outside andwith-
in the nucleolus.
Nucleolin was also enriched in the NPM1 pull-

down, but not theDFCmarker fibrillarin (fig. S4C),
suggesting an enhanced association between
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Fig. 3. The nucleolar environment
prevents irreversible protein aggregation. (A)
HEK293T cells expressing NLS-LG
(green) were treated with actinomycin D
(Act D) where indicated, followed by
incubation with and without HS and recovery
as in Fig. 1B. Cells were immunostained for NPM1
(red); nuclei are marked by dashed circles. (B)
HEK293T cells expressing
NLS-LG were treated as in (A) and recovery
was monitored over 2 hours. Cells with
nuclear NLS-LG foci were counted during recov-
ery and expressed as percentage
of total. Data are means ± SD; 453
to 693 cells were counted per time point and per
condition across three biological repeats. *P ≤
0.05, ***P ≤ 0.001 (two-sided t test).
(C) HEK293T cells expressing NLS-LG were
subjected to FRAP analysis. Cells were treated
with Act D (open circles) before HS where
indicated. For –HS experiments (green), the
nucleoplasmic region was bleached,
where NLS-LG localizes at 37°C. For +HS
experiments (red), the nucleolus was bleached
(see schematic). Left: Normalized FRAP
curves with double-exponential fits. Curves
represent means ± SD (n ≥ 3 biological repeats).
Right: Mobile fraction from the
double-exponential fit. ***P ≤ 0.001
(two-sided t test). (D) Cells expressing
NLS-LG were subjected to Act D treatment where
indicated, followed by heat stress
(+HS) and stress with recovery (+HS +Rec), and
stained with AmyT. Nuclei are marked
by dashed circles. (E) Concentration of
NLS-LG in the nucleolus and in nucleoplasmic
aggregates (+Act D) upon heat stress.
***P ≤ 0.001 (Mann-Whitney test; 100 mea-
surements per condition across three biological
repeats). Scale bars, 10 mm.
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2.3. PHASING-IN QUALITY CONTROL IN THE NUCLEUS 73

NPM1 and nucleolin under heat stress, con-
sistent with their reduced mobility (Fig. 1F and
fig. S3, B and C). More than 400 proteins of the
nucleoplasmor nucleoluswere not enriched upon
HS (fig. S4, A and C, and table S1). Thus, the
proteins that entered the GC phase constituted
a thermally sensitive subproteome. Indeed, these
proteins were enriched in disordered and low-
complexity sequences (fig. S4D), hallmarks of
metastable structure. Their accumulation in the
GC phase was reversible, whereas inhibition of
Hsp70 preserved the association with NPM1 for
most proteins (Fig. 2, A and B, fig. S5A, and tables
S1 to S3). Additional proteins associated with
NPM1 upon Hsp70 inhibition during recovery
(Fig. 2, A and B, and tables S1 to S3).
We confirmed the reversible accumulation in

the nucleolus for the proteins CDK1 and BRD2,
which associated with NPM1 upon HS (Fig. 2, C
and D, figs. S4C and S5, B and C, and table S1).
A small but detectable fraction of total cellular
Hsp70 also coprecipitated with NPM1 upon HS
(fig. S5C), which suggests that associations with

both Hsp70 and misfolded protein may contrib-
ute to forming the low-mobility GC fraction (Fig.
1, E and F, and fig. S3, B and C).

Functional relevance of the nucleolus in
quality control

To explore the physiological importance of the
nucleolus as a quality control compartment, we
disrupted the nucleolar organization. Treating
cells with a low concentration of the RNA poly-
merase I inhibitor actinomycin D (Act D) caused
nucleolar disassembly and the release of NPM1
into the nucleoplasm (Fig. 3A) (35, 36). NPM1
lost its liquid-like properties, as judged by its fast
mobility (fig. S6A). NLS-LG was diffusely distrib-
uted in the nucleus of Act D–treated cells in the
absence of stress but formed aggregate foci upon
HS (Fig. 3A). These foci did not colocalize with
NPM1. They resolved only slowly and inefficient-
ly during recovery (Fig. 3, A and B) and seques-
tered Hsp70 for hours after the removal of stress
(fig. S6B). The terminally misfolded CC* also
formed persistent aggregates in Act D–treated

cells, when proteasome function was inhibited
(fig. S6, C and D). Thus, transport to the phase-
separated GC compartment of the nucleolus was
required tomaintainmisfolded proteins in a state
competent for refolding or degradation once pro-
teotoxic stress was relieved.
The NLS-LG in nucleoplasmic aggregates of

Act D–treated cells was less mobile than nucleo-
larNLS-LG (Fig. 3C).Moreover, the nucleoplasmic
foci were positive for amyloid (cross b structure)–
specific dyes, in contrast to NLS-LG in the nu-
cleolus (Fig. 3D and fig. S6E). Consistent with an
amyloid-like state, the concentration of NLS-LG
in nucleoplasmic foci was higher than in the nu-
cleolus by a factor of ~3 (Fig. 3E). When nucleoli
were disrupted, HS also caused endogenous pro-
teins to form amyloid-like foci (fig. S6, F and G).
Thus, entry of misfolded proteins into the nu-
cleolus prevented amyloid-like aggregation.
We next analyzed the effect of the nucleolar

environment on themodel protein b17. This small
b-sheet protein undergoes amyloidogenic aggre-
gation and forms fibrils in vitro (37). Targeting
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Fig. 4. Accumulation in the nucleolus reduces toxicity of amyloidogenic
protein and prevents coaggregation with misfolded luciferase.
(A) HEK293Tcells were transfected with NLS-b17 or b17-PYprior to super-
resolution imaging. Red, C-myc (b17); cyan, NPM1; white, RPA40. Zoomed
images of NLS-b17 in the nucleolus are shown at right. (B) Density of b17 in the
nucleolus (NLS-b17) and in nucleoplasmic aggregates (b17-PY) measured
by superresolution imaging. Data were normalized to the average density
of nucleolar NLS-b17. ***P ≤ 0.001 (Mann-Whitney test). At least 36 and
52 measurements were performed on one representative experiment out of

three biological repeats for NLS-b17 and b17-PY, respectively. (C) HEK293T
cells were transfected with the indicated constructs and MTTcell viability
assayswere performed 4 days after transfection. Datawere normalized to cells
transfected with empty vector. Data are means + SD (n ≥ 3). **P ≤ 0.01
(two-sided t test). (D) b17-PYor NLS-b17 were transfected into the NLS-LG–
expressing HEK293Tcell line; 24 hours after transfection, cells were subjected
to HS (+HS) and allowed to recover for 1 hour (+HS +Rec) before fixation.
Cyan, endogenousNPM1; red,c-myc (b17). Arrows showNLS-LG sequestration
into b17-PYaggregates. Scale bars, 1 mm (A), 10 mm (D).
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74 CHAPTER 2. MANUSCRIPTS

b17 to the nucleus (NLS-b17) results in its accu-
mulation in the nucleolus and a reduced toxicity
relative to cytosolic b17 aggregates (8). To deter-
mine whether the nucleolar environment was
responsible for this protective effect, we targeted
b17 to the nucleoplasm by expressing it with the
C-terminal nuclear localization signal PY (fig. S7A)
(38). b17-PY formed foci in the nucleoplasm,
whereasNLS-b17 accumulated in theGCphase of
the nucleolus (Fig. 4A). Note that the NLS appa-
rently functioned as a nucleolar targeting (or re-
tention) signal in the sequence context with b17,
but not in context with LG or GFP (Fig. 1B and
fig. S2C). The function of the two localization se-
quences was position-independent (fig. S7A). The
nucleoplasmic b17-PY aggregates were more con-
centrated than nucleolar NLS-b17 by a factor of 3
(Fig. 4B). b17-PY was more toxic than NLS-b17
(Fig. 4C), indicating that localization to the nu-
cleolus reduced toxicity (8). The PY sequence per
se did not confer toxicity (Fig. 4C and fig. S7B). As
expected, nucleolar b17 variants but not nucleo-
plasmic b17-PY associated with NPM1 (fig. S7C).
Moreover, NLS-b17-GFP was significantly more
mobile than b17-GFP-PY (fig. S7, D andE),whereas
disrupting the GC phase with Act D rendered
NLS-b17-GFP less mobile (fig. S7, D and E).
Amyloid-like aggregates exert their toxic effect in

part by coaggregating and sequestering essential,
metastable proteins (8, 39–41). Indeed, the nucle-
oplasmic b17-PY aggregates sequestered NLS-LG
uponHS, therebypreventingNLS-LG fromentering
the nucleolus (Fig. 4D). Nucleolar NLS-b17 had no
such effect and did not prevent repartitioning of
NLS-LG to the nucleoplasm upon recovery (Fig.
4D). Thus, the GC phase of the nucleolus has the
capacity to simultaneously store different proteins
and allow them to undergo selective renaturation.
Accumulation of misfolded proteins in the

nucleolus did not interfere with ribosome bio-
genesis, as nucleolar NLS-b17 did not interfere
with the assembly and export of yellow fluores-
cent protein (YFP)–tagged 40S ribosomal protein
S2 (RPS2-YFP) to the cytosol (fig. S7, F and G)
(42). In contrast, nucleoplasmic aggregates of
b17-PY caused coaggregation of RPS2-YFP and
nuclear retention (fig. S7, F and G).

Limitations of nucleolar quality control

To explore the capacity of the nucleolus for in-
corporating misfolded proteins, we exposed cells
to prolonged stress. We observed a significant
increase in nucleolar volume during the first
2 hours of HS (Fig. 5A), presumably reflecting
the influx ofmisfolded proteins. The nucleoli lost
their liquid droplet–like appearance and adopted
irregular shapes (fig. S8, A and B), suggestive of
a transition to a hardened state. Indeed, the
mobile fraction of GFP-NPM1 decreased mark-
edly during prolonged HS (Fig. 5B and fig. S8,
C and D). To further assess these changes, we
stainedNLS-LG–expressing cells with the amyloid-
specific dye AmyT and observed a distinct nu-
cleolar staining that developed over time (Fig. 5C).
The foci that formed during extended HS dis-
solved only slowly upon recovery (fig. S8E). Ap-
parently, prolonged stress exhausted the storage

Frottin et al., Science 365, 342–347 (2019) 26 July 2019 5 of 6

BA

0 1 2 3
HS (h)

N
uc

le
ol

ar
 v

ol
um

e 
(µ

m
3 )

C
Merge

NLS-
LS

PR-
GFP

No-
GFP

-HS

NLS-
LS Merge

D

E

HS

0 h

1 h

2 h

MergeAmyTNLS-LG

0 1 2 3
0

100

200

HS (h)

G
F

P
-N

P
M

1 
m

ob
ile

 fr
ac

tio
n

0.0

0.5

1.0 **

*
***

+HS
+Rec (1 h)

+HS

+HS
+Rec (2 h)4 h

Misfolding
upon stress Expansion

Prolonged
stress

Amyloid-like, arrested
Coaggregation of misfolded proteins

reversible

Nucleolus

Refolding
Degradation

Nucleoplasm

Glassy solid
irreversible

Hsp70 Recovery
from stress

NPM1

Fig. 5. The nucleolus changes phase properties during prolonged stress or accumulation of
dipeptide repeat protein. (A) HeLa cells were incubated at 43°C for the number of hours indicated
before staining for endogenous NPM1. The average nucleolar volume per nucleus is displayed as
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Cells were maintained at 37°C (–HS) or subjected to heat stress (+HS) and recovery (+HS +Rec).
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an expansion of the nucleolus. Mobility is reestablished upon recovery from stress in an Hsp70-
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longer dispersed but form aggregates with amyloid-like properties. Scale bars, 10 mm.
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2.3. PHASING-IN QUALITY CONTROL IN THE NUCLEUS 75

capacity of the nucleolus for misfolded pro-
teins, resulting in a transition to a solid, aggre-
gated state.
Expression of C9orf72 encoded dipeptide re-

peat proteins (DPRs) is a possible cause of fa-
milial ALS and frontotemporal dementia (FTD)
(43–45). These peptides cause nucleolar dys-
function by modulating the liquid-like proper-
ties of the nucleolus (19, 20). We expressed the
DPR-protein PR175-GFP along with nuclear luci-
ferase (NLS-LS). PR175-GFP incorporated efficient-
ly into the GC phase of the nucleolus (Fig. 5D)
(19, 20), resulting in reduced mobility of a frac-
tion of mScarlet-NPM1 (fig. S9A). NLS-LS entered
the nucleolus during HS and colocalized with
PR175-GFP but failed to repartition during recov-
ery (Fig. 5D), remaining arrested in the nucleolus
for hours (fig. S9B). In contrast, control cells ex-
pressing No-GFP allowed normal NLS-LS repart-
itioning (Fig. 5D and fig. S9B). Thus, nucleolar
DPR protein leads to a breakdown of nucleolar
quality control, which may contribute to the
cellular pathology in ALS and FTD.

Conclusions

The liquid-like GC phase of the nucleolus func-
tions as a non–membrane-bound protein quality
control compartment (Fig. 5E). It is character-
ized by a remarkable chaperone-like capacity to
prevent irreversible aggregation of misfolded pro-
teins, facilitating refolding during recovery from
stress. Misfolded proteins associate with nucleo-
lar proteins including NPM1, thereby converting
a fraction of the GC phase to a less dynamic state
(Fig. 5E). The association of misfolded proteins
with the GC phase is regulated by the chaperone
Hsp70, which is required for refolding (Fig. 5E).
Nucleoplasmic proteins exit the nucleolus upon
refolding, and nucleolar proteins resume their
functional state. However, the capacity of the
nucleolus to store misfolded proteins is limited,
and prolonged stress causes aberrant phase be-
havior associated with the danger of irreversible
aggregation (Fig. 5E). Moreover, disease-related

DPR proteins impair the ability of the nucleolus
to reversibly store misfolded proteins—a mecha-
nism that may contribute to neurodegenerative
pathology.
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2.4 Complete submission in PRIDE database

The PRoteomics IDEntifications (PRIDE) repository is one of the largest proteomics

data repositories worldwide. PRIDE data along with Ensembl, UniProt, and Expres-

sion Atlas are becoming very valuable resources in proteomics. The PRIDE database

https://www.ebi.ac.uk/pride/ was set up in 2004 at the European Bioinformatics In-

stitute (EMBL-EBI, Hinxton, Cambridge, UK) to enable public data deposition of mass

spectrometry proteomics data, providing access to the experimental data described

in scientific publications. In this article, the authors summarize the developments in

PRIDE resources and related tools. Proteomics data standard tab-delimited mzTab

format125, developed by the Proteomics Standards Initiative (PSI) was added to do

complete submission in the PRIDE repository. In complete submission along with

peptide/protein identifications, also the corresponding quantitative information, are

parsed and linked to the originating mass spectra. In Maxquant, mzTab output table

that is required for the complete submission was missing. Dr. Şule Yılmaz from Cox

Lab and I developed the mzTab output table in MaxQuant. The mzTab output table

contains metadata, protein, peptide, PSM, and small molecule sections in table based

format containing their basic information. We provide metadata, protein and PSM sec-

tion in mzTab output file. The peptide section, which is recommended for quantitative

information at peptide level will be implemented in the future. Users have to check the

mzTab box while running the MaxQuant software and use the table for the complete

submission to the PRIDE repository.
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ABSTRACT

The PRoteomics IDEntifications (PRIDE) database
(https://www.ebi.ac.uk/pride/) is the world’s largest
data repository of mass spectrometry-based pro-
teomics data, and is one of the founding members
of the global ProteomeXchange (PX) consortium. In
this manuscript, we summarize the developments in
PRIDE resources and related tools since the previous
update manuscript was published in Nucleic Acids
Research in 2016. In the last 3 years, public data
sharing through PRIDE (as part of PX) has definitely
become the norm in the field. In parallel, data re-use
of public proteomics data has increased enormously,
with multiple applications. We first describe the new
architecture of PRIDE Archive, the archival compo-
nent of PRIDE. PRIDE Archive and the related data
submission framework have been further developed
to support the increase in submitted data volumes
and additional data types. A new scalable and fault
tolerant storage backend, Application Programming
Interface and web interface have been implemented,
as a part of an ongoing process. Additionally, we em-
phasize the improved support for quantitative pro-
teomics data through the mzTab format. At last, we

outline key statistics on the current data contents
and volume of downloads, and how PRIDE data are
starting to be disseminated to added-value resources
including Ensembl, UniProt and Expression Atlas.

INTRODUCTION

High-throughput mass spectrometry (MS)-based pro-
teomics approaches have matured significantly in recent
years, becoming an increasingly used tool in biological re-
search, sometimes together with other ‘omics’ approaches
such as genomics and transcriptomics. Similarly, to what
happened in those fields, in the last 15 years several pub-
lic proteomics repositories and bioinformatics resources
have been developed to support proteomics researchers.
The PRoteomics IDEntifications (PRIDE) database (https:
//www.ebi.ac.uk/pride/) was set up in 2004 at the Euro-
pean Bioinformatics Institute (EMBL-EBI, Hinxton, Cam-
bridge, UK) to enable public data deposition of MS pro-
teomics data, providing access to the experimental data de-
scribed in scientific publications (1). Since then, PRIDE
(more concretely its archival component, PRIDE Archive)
has evolved in parallel with the field becoming the largest
proteomics data repository worldwide (2).

Although datasets coming from data-dependent acqui-
sition (DDA) proteomics approaches represent by far the
most abundant type of experiment, PRIDE Archive can

*To whom correspondence should be addressed. Tel: +44 0 1223 492513; Fax: 01223 484696; Email: yperez@ebi.ac.uk
Correspondence may also be addressed to Dr. Juan Antonio Vizcaı́no. Tel: +44 0 1223 492686; Fax: 01223 484696; Email: juan@ebi.ac.uk

C© The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article-abstract/47/D

1/D
442/5160986 by M

PI Biochem
istry user on 16 April 2020



78 CHAPTER 2. MANUSCRIPTS

Nucleic Acids Research, 2019, Vol. 47, Database issue D443

store datasets coming from all main proteomics data work-
flows (including Data Independent Acquisition (DIA),
MS imaging, and top down proteomics, among others).
The mandatory data types to be included in each sub-
mitted dataset are the raw files (output files from the
mass spectrometers) and the processed results (at least
peptide/protein identification results, quantification infor-
mation is optional). Therefore, each dataset in PRIDE
Archive can contain heterogeneous data types such as
peptide/protein identifications and quantification values,
the mass spectra (peak lists and raw data), the searched se-
quence databases or spectral libraries, programming scripts
and any other technical and/or biological metadata pro-
vided by the data submitters.

A key development led by PRIDE was the establish-
ment of the ProteomeXchange (PX) consortium of MS pro-
teomics resources (http://www.proteomexchange.org) (3),
with the overall aim of standardizing data submission and
dissemination of proteomics data worldwide. By Septem-
ber 2018, the following proteomics resources are also part
of PX: PeptideAtlas and PASSEL (PeptideAtlaS SRM
Experiment Library) (4,5), MassIVE (http://massive.ucsd.
edu/), jPOSTrepo (6), iProx (http://www.iprox.org/) and
Panorama Public (7).

PRIDE has four major aims: (i) support data deposi-
tion of proteomics experiments, and perform automatic and
manual curation of the related experimental metadata; (ii)
implement quality control pipelines and visualization com-
ponents to enable the assessment of the data quality (8);
(iii) promote and facilitate the re-use of public proteomics
data; and at last, (iv) disseminate high-quality proteomics
evidences to added-value resources, including Ensembl (9),
UniProt (10) and Expression Atlas (11).

In order to facilitate the deposition, visualization and
quality assessment of the data, the team has developed
over the years a complete framework of open-source soft-
ware, including stand-alone tools such as the PX Submis-
sion tool and PRIDE Inspector (12). In addition, the dif-
ferent PRIDE related data pipelines, REST web services
(13) and the web interfaces (2) have been continuously re-
fined. Furthermore, we have developed a number of open
source software libraries in Java, including jmzML, jmzI-
dentML, jmzReader, jmzTab, ms-data-core-api (14) and the
PIA (Protein Inference Algorithms) toolbox (15,16) (https:
//github.com/PRIDE-Utilities), to support handling (e.g.
read and writing) of the most popular proteomics data stan-
dard formats (e.g. mzML, mzIdentML, mzTab) developed
by the Proteomics Standards Initiative (PSI) (17). In addi-
tion to all the PX resources mentioned above, there are ad-
ditional proteomics databases and resources available pro-
viding protein expression information, most notably the
Global Proteome Machine Database (GPMDB) (18), the
CPTAC (Clinical Proteomic Tumor Analysis Consortium)
data portal (19) and ProteomicsDB (20).

In this manuscript, we will summarize the main PRIDE
related developments in the last three years, since the pre-
vious Nucleic Acids Research database update manuscript
was published (2). We will discuss PRIDE Archive in more
detail but will also provide updated information about the
PRIDE related tools and other ongoing activities.

CURRENT STATUS OF PRIDE ARCHIVE AND RE-
LATED TOOLS

Original submitted datasets by scientists are stored in
PRIDE Archive (http://www.ebi.ac.uk/pride/archive/). All
datasets remain private (password protected) by default and
are only made publicly available after the related manuscript
has been accepted, or when PRIDE is notified to do so
by the original submitter. Data in PRIDE Archive can be
searched and accessed in four different ways: (i) the web in-
terface, providing a general overview of each dataset; (ii) the
PRIDE Inspector tool (12), which can be used for down-
loading the submitted data files and to visualize spectrum,
peptide and protein information in open formats, including
several PSI standards; (iii) the Restful web service (https://
www.ebi.ac.uk/pride/ws/archive/) (21); and (iv) a file repos-
itory, where both the FTP and Aspera (https://asperasoft.
com/) file transfer protocols can be used to access the
files. In addition, all public datasets in PRIDE Archive are
available through OmicsDI (https://www.omicsdi.org/), an
EMBL-EBI resource which integrates public datasets com-
ing from different omics technologies (22). Figure 1 pro-
vides an overview of the PRIDE ecosystem, including the
most relevant tools, software libraries and the data dissem-
ination into other resources.

New PRIDE Archive infrastructure: scaling-up a resource for
present-day proteomics experiments

The number of datasets submitted to PRIDE has grown
very significantly in recent years, in parallel with the
size of the experiments, e.g. the number of samples,
biological/technical replicates and evidences––mass spec-
tra, Peptide Spectrum Matches (PSMs), peptides and pro-
teins. Two different factors, scalability and reliability (fault-
tolerance), have guided the development of the new PRIDE
Archive distributed architecture (Supplementary Note 1).
Every storage item (e.g. MongoDB, Solr Indexes) is now de-
ployed in two EMBL-EBI datacenters as shard distributed
clusters. This new architecture ensures that if one datacenter
is not accessible (due to e.g. technical maintenance), PRIDE
Archive is still accessible.

Data submission process: improved support for quantification
results

The data submission process has not substantially changed
because the overall PX submission guidelines have re-
mained stable (23). An updated web tutorial explaining the
process is available at http://www.ebi.ac.uk/training/online/
course/proteomexchange-submissions-pride. The main
addition is the support for the standardized tab-delimited
mzTab format (24) to perform ‘Complete’ submissions
(those where peptide/protein identifications and, thanks to
this ongoing development, also the corresponding quanti-
tative information, can be parsed by the repository, made
accessible in the database and linked to the originating
mass spectra). Therefore, support for mzTab has enabled
the deposition of quantitative data into PRIDE Archive
for the first time in a standard format that is supported
for ‘Complete’ submissions (Supplementary Note 2). By
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Figure 1. Overview of the PRIDE ecosystem, including the resources (PRIDE Archive and PRIDE Peptidome, in orange), tools (PRIDE Inspector and
PX Submission Tool, in red), software libraries (in black), web interface and API (in green) and the external resources where PRIDE data are disseminated
to (in purple).

October 2018, the Mascot (25) search engine (e.g. https:
//www.ebi.ac.uk/pride/archive/projects/PXD009079), the
OpenMS framework (26) (e.g. https://www.ebi.ac.uk/pride/
archive/projects/PXD010981) and MaxQuant (27) (e.g.
https://www.ebi.ac.uk/pride/archive/projects/PXD011194)
enable natively the export of quantitative results into
mzTab. In order to keep improving the support for quan-
tification data, we aim to promote the implementation of
mzTab in other popular software tools such as Proteome
Discoverer (ThermoFisher Scientific).

The mzIdentML format remains as the mainstream for-
mat for ‘Complete’ submissions and is increasingly sup-
ported by search engines and tools (14). In case mzTab
and/or mzIdentML are not yet supported by the user’s soft-
ware of choice, the alternative is to perform a ‘Partial’ sub-
mission, which is also the current alternative for data work-
flows such as DIA, top-down and MS imaging. In parallel
with the ongoing developments in PSI data standard for-
mats, all PRIDE-related software libraries (https://github.
com/PRIDE-Utilities) have been continuously developed,
making data handling and submission a much more robust
process. In this context, we will continue extending our li-
braries (ms-data-core-api and jmzIdentML) to support the
new features included in mzIdentML version 1.2 such as
MS/MS cross-linking and proteogenomics approaches.

The PX submission tool

The PX Submission tool (3) (available at https://github.com/
proteomexchange/px-submission-tool) is a stand-alone
tool used by most PRIDE submitters to perform data sub-
missions. Some of the recent refinements done in the tool
are: (i) the integration of the new OLS (Ontology Lookup
Service) Client and OLS Dialog libraries (28), supporting

the new version of the OLS, used to annotate datasets us-
ing controlled vocabulary terms; and (ii) the addition of a
direct feedback system for users to report how the data sub-
mission went.

PRIDE Inspector toolsuite: reviewing datasets before and af-
ter submission to PRIDE Archive

The PRIDE Inspector tool (12) (available at https://github.
com/PRIDE-Toolsuite/pride-inspector) was developed to
enable researchers to visualize and perform an initial qual-
ity assessment of the data both before and after data sub-
missions are performed, once the dataset becomes pub-
lic. PRIDE Inspector supports several different experimen-
tal open output files, ranging from mass spectra (mzML,
mzXML and the most popular peak lists formats such as
mgf, dta, ms2, pkl and apl), identification results (mzI-
dentML, mzTab), to quantification data (mzTab). Some re-
finements have been implemented in the tool and in the un-
derlying software libraries over these last years. The main
new feature added recently is the support for reviewers to
download private datasets using the much faster Aspera file
transfer protocol. This key functionality to facilitate the re-
view process is not available via the PRIDE Archive web
interface at present.

PRIDE web interface and restful API: retrieving public pro-
teomics data

The PRIDE web interface and Restful API (13) can be
used to retrieve and visualize the data corresponding to all
PRIDE datasets. The new PRIDE web interface (Figure
2) provides a powerful mechanism to search and/or filter
by several types of metadata information, such as sample
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Figure 2. Screenshots of the new PRIDE Archive web interface. (A) The project (dataset) page provides a general overview of every submitted dataset. (B)
The PRIDE Archive search page, where it is possible for users to query PRIDE Archive using keywords and additional properties such as species, tissues
and instruments, among others. (C) Real-time statistics (including number of submitted datasets per month, number of submitted datasets per instrument
type, etc.) are now provided.

details (e.g. species, tissue, cell type, etc.), instrumentation
(mass spectrometer), keywords and other provided annota-
tions (Supplementary Note 3). Using the API, it is possible
to programmatically query for and retrieve peptide and pro-
tein identifications, dataset and assay specific metadata, and
all the originally submitted files. Both components are cur-
rently under development and new functionalities are being
implemented such as suggestions for similar datasets, auto-
complete search capabilities and live data content statistics
(Figure 2).

PRIDE Peptidome: high-quality peptide evidence from
PRIDE Archive

The PSMs reported in PRIDE Archive are quality-filtered
using a spectrum clustering approach (29). All the identi-
fied spectra coming from the public experiments in PRIDE
Archive were clustered using the second iteration of the
PRIDE Cluster algorithm, called spectra-cluster (https://
github.com/spectra-cluster) (30). The results of the clus-
tering process are made available through the peptide
centric PRIDE Peptidome resource (formally known as
PRIDE Cluster, http://www.ebi.ac.uk/pride/cluster/), which
has a completely new web interface, in line with the
new PRIDE Archive one. The corresponding spectral li-
braries and spectral archives (containing only unidenti-

fied spectra) are made available at https://www.ebi.ac.uk/
pride/cluster/#/libraries and at https://www.ebi.ac.uk/pride/
cluster/#/results.

PRIDE ARCHIVE DATA CONTENT STATISTICS

By 1 September 2018, PRIDE Archive contained 10100
datasets (compared to 3336 datasets on September 2015),
of which roughly 19% are ‘Complete’ (1975 datasets), 72%
are ‘Partial’ (7295) and the remaining 9% (830) correspond
to old ‘legacy’ datasets submitted before the PX data work-
flow was implemented. Figure 3A shows the evolution in
the number of submitted datasets per month. By September
2018, an average of 274 datasets were submitted per month
during 2018, amounting to more than 2-fold when com-
pared with 3 years ago. The landmark dataset PXD010000
was submitted on 1 June 2018. These figures correspond to
all datasets including private ones (non-released, password
protected). By 1 September 2018, 56% (5719) of the datasets
were publicly available. Interestingly, the number of submit-
ted datasets generated using experimental approaches other
than DDA is growing (Figure 3B). By September 2018, the
number of datasets classified as DDA in PRIDE was 91%,
while 26% was classified as other types (Figure 3B). The
number of DIA and selected reaction monitoring (SRM)
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Figure 3. (A) Number of submitted datasets to PRIDE per month (from beginning of 2004 till September 2018). (B) Number of submitted datasets per
experimental approach per year (from 2014 till September 2018).

datasets are indeed the most abundant ones behind DDA
datasets.

The most represented species (including both public and
private datasets) are human (4335 datasets) and some of
the main model organisms, most notably mouse (1432),
Arabidopsis thaliana (375), Saccharomyces cerevisiae (341),
rat (300), Escherichia coli (247), cow (112), Drosophila
melanogaster (101), chicken (65), rice (70) and soybean (49).
Overall, datasets coming from more than 1840 different tax-
onomy identifiers are stored in PRIDE Archive (Figure 4).
These statistics represent in our view a fair reflection of the
current guidelines for mandatory data deposition developed
by many funding agencies and some scientific journals. At
the time of writing, the Wellcome Trust, BBSRC, MRC and
the NIH, among other funders, mandate or strongly en-
courage open access to research data including proteomics.
Additionally, two of the most prominent proteomics jour-
nals (Molecular and Cellular Proteomics and Journal of Pro-
teome Research) and journals from the Nature group now
mandate submission of at least the raw data supporting each
proteomics publication. Other journals already recommend
or strongly recommend data submission (e.g. Proteomics
(Wiley), Journal of Proteomics (Elsevier), PLOS journals,
etc.). The evolution in the percentage of research articles
supported by PRIDE datasets (in three different proteomics
journals: Molecular and Cellular Proteomics, Journal of Pro-
teome Research and Proteomics) is explained in Supplemen-

tary Note 4. At last, in this context, it is important to high-
light that the Human Proteome Project has developed for-
mal guidelines mandating data submission for all generated
datasets (31).

DATA RE-USE OF PUBLIC PRIDE DATASETS

Proteomics researchers are increasingly re-using public data
available in PRIDE (and other resources) for a broad range
of purposes. We came up with four categories of public pro-
teomics data re-use: (i) use, (ii) re-use, (iii) reprocess and (iv)
repurpose (32). A simple example of the direct use of data are
given by connecting information between proteomics data
resources and other resources such as UniProt and Ensembl
(10). In the case of re-use, public data are re-used in novel
experiments with the potential of generating new knowl-
edge. Data from a large number of independent datasets can
be analyzed or re-used in combination (a so-called meta-
analysis study), to extract new knowledge not accessible
from any individual dataset. In the case of reprocess, pub-
lic datasets are re-analyzed to provide an updated or inte-
grated view on the results, as protein sequence databases
and software tools evolve. At last, repurposing includes all
those cases where the data are considered in a context that
is different to that of the original experiment. Two popu-
lar applications are proteogenomics approaches (for human
and the main model organisms, e.g. (33,34)), and the discov-
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Figure 4. Number of submitted datasets to PRIDE Archive per taxonomy identifier.

ery of novel PTMs (Post-Translational Modifications). Re-
cent reviews in re-use of public proteomics data are available
(32,35).

To corroborate the increase in data re-use, Figure 5 shows
the increase in the volume of PRIDE data downloads per
year, reaching 296 TBs during 2017. In addition, using the
previously mentioned resource OmicsDI, it is now possible
to trace the number of re-analyses of PRIDE datasets per-
formed by PeptideAtlas and GPMDB and the number of di-
rect citations of PRIDE datasets in the literature (BioRxiv:
https://doi.org/10.1101/282517). By September 2018, 293
datasets had been re-analyzed and 381 dataset identifiers
had been cited directly in the literature.

PRIDE Proteogenomics: representing peptide sequences into
Ensembl using ‘TrackHubs’

The PRIDE and Ensembl teams have been working to-
gether to improve the integration of proteomics data in a
genome context. Peptide evidence from ‘complete’ public
datasets in PRIDE Archive are first quality-filtered (at a 1%
peptide false discovery rate) using a framework that uses
PIA (15). Reliable peptide sequences (including PTMs) are
mapped to the corresponding genomic coordinates from a
given Ensembl release using the PoGo tool (36). The re-
sulting data for each individual dataset is then combined
and made available through the Ensembl ‘TrackHub’ reg-
istry, using the popular BED format. In addition to in-
dividual datasets, PRIDE Cluster data (now re-named to
PRIDE Peptidome) is also made available as independent
’TrackHubs’. At the time of writing, 184 PRIDE pub-
lic datasets have been already made available in the En-
sembl ‘TrackHub’ registry (https://www.trackhubregistry.
org/): 163 human, 15 from Mus musculus, 4 from Rattus
norvegicus and 2 from Bos taurus. The ‘TrackHubs’ can

be searched in the ‘TrackHub’ registry by project identi-
fier, taxonomy and/or specific keywords available in the de-
scription of the corresponding PRIDE dataset. As a key
point, ‘TrackHubs’ can be loaded and visualized in the En-
sembl web interface together with other genomic features
(Figure 6). More than 4 million peptide sequences (1.2 mil-
lion of them containing PTMs) have been mapped to the
human genome (GRCh38). We are working in including
data coming from other model organisms. It is very im-
portant to highlight that the developed framework sup-
ports the other two major genome browsers: The UCSC
Genome Browser and IGV (Integrative Genomics Viewer).
All data can be downloaded from http://ftp.pride.ebi.ac.uk/
pride/data/proteogenomics/latest/archive/, for downstream
analysis.

Moving data into Expression Atlas: re-analysis of quantita-
tive datasets

At the time of writing, 15 quantitative proteomics datasets
have already been integrated into the Expression Atlas,
an EMBL-EBI added value database that provides in-
formation about gene and protein expression in different
species and contexts (11). All PRIDE integrated proteomics
datasets were manually curated and re-analyzed using a
MaxQuant based pipeline. By September 2018, five mouse
datasets (showcasing a complete proteome, e.g. https:
//www.ebi.ac.uk/gxa/experiments/E-PROT-16/Results), six
datasets coming from cancer cell lines (showcasing the inte-
gration between proteomics and transcriptomics data) and
four datasets coming from clinical tumor samples had al-
ready been integrated in Expression Atlas. From Expression
Atlas, in the near future, we plan that relevant quantitative
proteomics data will be disseminated into the Open Targets
platform (37).
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Figure 5. Data volume (in terabytes) downloaded from PRIDE Archive per year.

Figure 6. Screenshot of the Ensembl genome browser showing the visualization of peptide evidence as ‘TrackHubs’ coming from PRIDE Archive and
PRIDE Cluster (now PRIDE Peptidome). All peptides shown come from mouse data (GRCm38).

DISCUSSION AND FUTURE PLANS

Thanks, among other efforts, to the success of PRIDE (and
of the PX consortium as a whole), the proteomics commu-
nity is now widely embracing open data policies, an oppo-
site scenario to the situation just a few years ago. In parallel,
public proteomics data are being increasingly re-used, with
multiple applications. We next outline some of the main
working areas for PRIDE in the near future.

First of all, a key aspect is to improve the annotation of
the datasets. The current requirements were set up in 2011
(minor updates in 2013), during the establishment of PX,
reflecting the discussions at the time, involving many key
stakeholders in the field. The main priority was to make
data sharing popular. Once this has been achieved, it is now
the right time to ‘raise the bar’. At the time of writing, a
novel annotation system is under development (Supplemen-
tary Note 2). The aim is to improve the capture of the ex-

perimental design information and technical metadata (e.g.
search parameters and relevant information contained in
the raw files) (28,38). The improvement in annotation is also
required to facilitate further data re-use for third parties.
Another key aspect in making data re-use easier is to bring
the analysis tools closer to the data, as datasets keep increas-
ing in size.

We are already working in developing open and repro-
ducible data analysis pipelines of different flavours of pro-
teomics workflows (e.g. DDA, DIA, proteogenomics). The
main rationale is to make possible the use of that soft-
ware in cloud infrastructures (using the EMBL-EBI cloud
as the starting point), so that in the future the pipelines
can be used by the community in the cloud using software
container technologies (39,40). In addition, we aim to in-
creasingly perform internal data re-use (including data re-
processing) and disseminate high-quality proteomics data
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from PRIDE into the already mentioned added-value re-
sources (Ensembl, UniProt and Expression Atlas), among
others. At present, identified proteins in PRIDE ‘Complete’
datasets are cross-referenced in the corresponding UniProt
entries (e.g. https://www.uniprot.org/uniprot/Q12181) and
‘TrackHubs’ are published for some ‘Complete’ datasets in
Ensembl. We plan to enable a more detailed annotation
of UniProt and Ensembl entries using proteomics evidence
coming from PRIDE, focusing on PTMs, sequence variants
and quantitative expression information.

To support this, integration of re-analyzed datasets and
the corresponding results in the PRIDE Archive infras-
tructure needs to be properly supported. Another highly
relevant topic for the coming years is the management of
clinical proteomics data, and whether they should be con-
sidered as patient identifiable or not. This topic has re-
cently gained more relevance after the introduction of the
GDPR (General Data Protection Regulation) guidelines by
the European Union and we plan to discuss it further in
the context of the ELIXIR activities (https://www.elixir-
europe.org/). In this context, it is important to highlight
that in 2017, PRIDE was named an ELIXIR core data re-
source (https://www.elixir-europe.org/platforms/data/core-
data-resources), joining those biological databases consid-
ered to be essential for the scientific community, highlight-
ing the need to make them sustainable in the long term (41).

To finalize, we invite interested parties in PRIDE re-
lated developments to follow the PRIDE Twitter account
(@pride ebi). For regular announcements of all the new
publicly available datasets, users can follow the PX Twitter
account (@proteomexchange).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Chapter 3

Discussion and Outlook

Machine learning and deep learning methods are now emerging as an essential tool in

analyzing life science datasets (e.g. medical imaging, genomics, and proteomics). In

this thesis, we aimed to predict MS/MS spectra intensities given the peptide sequence.

We developed two regression models to predict MS/MS spectra: Deepmass:Prism and

wiNNer. With DeepMass:Prism, which is a bidirectional LSTM model, the predicted

intensities were as accurate as of the limits of technical reproducibility. Deep learning

methods are usually computationally expensive, time-consuming, and require huge

datasets as input. For these reasons, we needed a simpler machine learning algorithm,

which can be trained easily and efficiently with smaller datasets. A sliding window-

based method using conventional neural networks was developed named wiNNer. It

has slightly inferior predictive performance compared to DeepMass:Prism, but is com-

putationally inexpensive to train.

In the past deep learning models were known as black-boxes but now can be inter-

preted using tools like integrated gradient. The results in article 1 show how each amino

acid residue contributes to peptide fragment intensities. Predicted MS/MS spectra can

help DDA and DIA computational workflows to improve peptide identification rates

and be independent of spectral libraries. For both DDA and DIA applications, the inte-

gration of intensity prediction into the MaxQuant environment is currently in progress.

Both DeepMass:Prism and wiNNer were implemented using libraries (Keras and Ten-

sorflow) written in python. To deploy these models in the MaxQuant environment

(written in C#), it was necessary to use the machine learning libraries compatible with

C#. For this purpose, we tried several libraries such as KerasSharp, TensorflowSharp,
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Sharplearning, and CNTK. The predictive performance and training speed of wiNNer

implemented using Sharplearning is similar to the one implemented in python. Uni-

directional LSTM layer in CNTK currently works in C#. This can already be used for ex-

ample to predict retention time. In the future, the bidirectional LSTM layer implemen-

tation can also train the intensity prediction model in C#. Currently, we use the tab sep-

arated file generated from batch prediction mode of DeepMass:Prism to create the in sil-

ico spectral library. Online training of wiNNer in the MaxQuant, will make it possible to

take predicted intensities for each peptide of the current dataset within the MaxQuant

run and include it in Andromeda score calculation. MaxQuant software now provides a

MaxDIA platform to analyzeDIA proteomics data (manuscript is submitted). MaxDIA

achieves cutting-edge results with both spectral library and in silicopredicted spectral

libraries. In article 2, we showed that the wiNNer model trained on tryptic peptides can

be easily adapted for non-traditional proteomics datasets like paleoproteomics samples

that have specific characteristics, such as unknown post-translational modifications.

The successful applications show that mass spectrometric data analysis will benefit a

lot from the predicted spectra in the future.

Machine learning-based predictors such as DISOPRED, PSIPRED are constantly be-

ing updated using the latest algorithms and can be used to extract features that can

explain phenomena like protein aggregation in neurodegenerative disorders such as

Alzheimer’s and Huntington’s disease. PRIDE is one of the largest repositories for

mass spectrometry datasets and it is constantly improving its resources and tools. The

mzTab output format can also be adapted for both DDA and DIA data.

In conclusion, deep learning algorithms have immense potential in the future to

understand mass spectrometry, protein, and proteomics datasets.
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Acronyms

aa amino acid

BP Back propagation

CID collision-induced dissociation

DDA data-dependent acquisition

DIA data-independent acquisition

ECD electron-capture dissociation

ESI electrospray ionization

ETD electron-transfer dissociation

FDR false discovery rate

GC granular component

GPU Graphical processing units

GRU gated recurrent unit

HCD higher-energy collision dissociation

HMM hidden Markov model

HPLC high performance liquid chromatography

HS heat shock

LC liquid chromatography

LSTM long short term memory

MALDI matrix-assisted laser desorption/ionization

MS mass spectrometry

MS1 full scan

MS2 fragment scan
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PCC Pearson correlation coefficient

PEP posterior error probability

PSM peptide spectrum match

PTMs post-translational modifications

RF random forest

RNN recurrent neural networks

RP reversed-phase

SCX strong cation exchange

SGD Stochastic gradient descent

SILAC stable isotope labeling by amino acids in cell culture

SVM support vector machines
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