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Zusammenfassung

Dotierte antiferromagnetische Mott Isolatoren sind der Ausgangspunkt vieler exoti-
scher Phänomene stark wechselwirkender Elektronen, wie z.B. Hochtemperatursu-
praleitung oder Streifenphasen. Solche Systeme verletzen die Regeln konventionel-
ler Metalle bereits bei Raumtemperatur durch Pseudogap und Strange-Metal Verhal-
ten. Eine normale Fermiflüssigkeit entsteht lediglich bei starker Dotierung. Trotz jahr-
zehntelanger intensiver Forschung konnte bisher kein vollständiges Verständnis des
Verhaltens beim Übergang von schwacher zu starker Dotierung erlangt werden.

Diese Arbeit liefert eine neuartige Perspektive auf dotierte zweidimensionale Mott
Isolatoren durch Quantensimulation mit kalten Atomen in optischen Gittern bei Tem-
peraturen um die Austauschkopplungsenergie. Mehr als 70 000 Fotografien von do-
tierten Fermi-Hubbard Systemen wurden aufgenommen, in welchen Ort und Spin
jedes Teilchens durch aufwändige Mikroskopietechnik detektiert sind. Dabei konnte
die starke Kopplung zwischen antiferromagnetischen Korrelationen und der Deloka-
lisierung von Dotanden direkt beobachtet und charakterisiert werden. Die hier aus-
gewerteten Spin-Ladungs Korrelatoren ermöglichen mikroskopische Beobachtungen,
welche in traditionellen Festkörperexperimenten unzugänglich sind.

Eine direkte Abbildung magnetischer Polaronen wurde im Regime einzelner Do-
tanden erstellt. Die Wolke aus reduzierten magnetischen Korrelationen, welche Do-
tanden stets umgibt, konnte mittels eines Dreipunktkorrelators aufgedeckt werden.
Diese hat eine kompakte Größe von zwei Gitterplätzen im Durchmesser und ihre in-
nere Struktur enthält Spinkorrelationen mit umgekehrtem Vorzeichen im Vergleich
zum antiferromagnetischen Hintergrund. Die Mobilität der Dotanden war eine not-
wendige Voraussetzung für die Entstehung magnetischer Polaronen.

Des Weiteren zeigen wir die Auflösung eines Metalls aus magnetischen Polaronen
in eine normale Fermiflüssigkeit durch die Vermessung von Mehrpunktkorrelatoren
mit ansteigender Dotierung. Die Transformation äußert sich in allen betrachteten Ob-
servablen und schließt bei Dotierungen um 30 % ab. Am Übergang zwischen beiden
Regimen finden wir negative Spinkorrelationen in der Nähe von Dotandenpaaren,
welche eine Verbindung zu Prozessen bei niedrigerer Temperatur andeuten.

Die Entwicklung und Implementierung eines stabilen vertikalen zweifarbigen
Übergitters konnte die Leistungsfähigkeit unseres Simulators signifikant erwei-
tern. Effiziente Zweilagenmikroskopie erlaubt nun mehr als eine Verdopplung der
zweidimensionalen Systemgröße bei voller Spin- und Dichteauflösung.

Die präsentierte Übergittertechnologie ebnet den Weg für weitere Kühlmethoden.
Durch das Erreichen niedrigerer Temperaturen könnte in Zukunft der Zusammen-
hang zwischen magnetischen Polaronen und Hochtemperatursupraleitung erforscht
werden.
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Abstract

Doped antiferromagnetic Mott insulators lie at the heart of many exotic phenomena
of strongly-interacting electrons, such as high-Tc superconductivity or stripe phases.
These systems violate the rules of conventional metals already at room temperature
by pseudogap and strange-metal behavior. A normal Fermi liquid develops only at
strong doping. Despite decades of intense research, a complete understanding of the
transformation from weak to strong doping is lacking.

This thesis provides a novel perspective on doped two-dimensional Mott in-
sulators through quantum simulation, based on cold atoms in optical lattices at
temperatures around the superexchange energy. Over 70 000 photographs of doped
Fermi-Hubbard systems were taken, in which the location and spin of every particle
is resolved with advanced microscopy techniques. Thus, we directly observed the
intricate interplay between antiferromagnetic correlations and the delocalization
of dopants. The higher-order spin-charge correlators evaluated within this thesis
enable microscopic observations, which are inaccessible to traditional solid-state
experiments.

A direct real-space image of magnetic polarons is reported in the single dopant
regime. The magnetic dressing cloud surrounding individual dopants is revealed
with a three-point correlator. It features a compact size of about two sites in diam-
eter and its inner structure contains sign-reversed spin correlations compared to the
antiferromagnetic background. The mobility of dopants is demonstrated to be an es-
sential ingredient for polaron formation.

Moreover, we show how a metal of magnetic polarons dissolves into a conven-
tional Fermi liquid, by tracking the evolution of several multi-point correlations with
increasing doping. The transformation is signaled across all measured observables
and is completed at dopings around 30 %. At the crossover between both regimes,
we find negative spin correlations in the vicinity of pairs of dopants, which hint a
connection to the lower temperature physics.

We designed and implemented a highly-stable vertical bichromatic superlattice
to significantly improve the capabilities of our simulator. It enables efficient bilayer
microscopy and more than doubles the size of two-dimensional systems at full spin
and density resolution.

The developed superlattice technology paves the way for multiple further cooling
schemes. By reaching lower temperatures, the link between magnetic polarons and
high-Tc superconductivity could eventually be explored in the future.
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“When you change the way you look at things,
things you look at change."

— Max Planck



1

Introduction

Electronic systems are fundamental to modern technology because they govern
some of the most useful properties of a material [1]. For instance, electrons in
photo-voltaic cells convert solar energy from the sun [2], classical computers rely on
semi-conducting properties of electrons, superconducting electrons create magnetic
fields for medical surgery1 or Nobel-prize-winning Higgs boson discoveries2 [3, 4].
Despite their importance, computing the behavior of electrons in condensed-matter
systems quickly becomes intractable, since in many cases a quantum mechanical
treatment of interacting particles is required. Electronic properties of materials
are a cornerstone of technological progress, but many phenomena are still poorly
understood.

One of the greatest puzzles of electronic quantum matter are anomalous metallic
states, which can emerge from strong interactions between electrons. Such states are
found e.g. in heavy-fermion alloys [5], organic conductors [6] or doped ceramics [7].
Defining properties of these materials are unusual resistivities or magnetic suscepti-
bilities as well as excitations, which strongly deviate from the ones of normal metals,
such as copper. For the physics of normal metals, a theoretical framework exists,
which was developed by Lev Landau [8]. According to Landau, interacting electrons
can form a Fermi liquid (FL), which behaves just like non-interacting electrons with
renormalized properties [9]. The validity of such a description might be surprising,
given the ubiquitous and strong Coulomb interaction of electrons. But the concept
turned out to work extremely well for many systems. All metals with Fermi-liquid
behavior, such as copper, are termed normal. Their physics is universal and well un-
derstood. The violation of Fermi-liquid behavior is a hallmark of strongly-correlated
quantum materials [10]. Such anomalous (i.e. non-FL) metallic states pose many open
questions to their underlying microscopic processes.

In the copper-oxide ceramics, d-wave superconductivity emerges from an anoma-
lous strange-metal regime at unconventionally high temperatures up to 135 K at room
pressure3 [10, 13, 14]. Another anomalous phenomenon in copper oxides is the pseu-
dogap [15], which originates from doping holes into an otherwise antiferromagnetic
Mott insulating parent compound. Intriguingly, the strange metal can turn into a con-
ventional Fermi liquid by only slightly increasing the doping concentration [16–19].
The transformation between the anomalous and normal regime is among the greatest
mysteries in condensed matter physics [10, 20]. A prominent scenario linking all three
phenomena – pseudogap, strange metal, Fermi liquid – is the existence of a quantum

1such as nuclear magnetic resonance
2at the Large Hadron Collider
3conventional superconductivity at room temperature was realized at extreme pressures [11, 12]
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phase transition as a function of doping [21, 22]. But decades after the initial Nobel-
prize-winning discovery of these materials in 1986 by Bednorz and Müller [23], much
of their physics still defies a complete understanding.

Significant insights could be gained from countless experimental studies [10, 13,
14, 24], but fundamental challenges remain. The complex structure of real materi-
als complicates conclusions on whether phonons, band structure, or magnetic cou-
plings are the driving mechanism for an observation [25, 26]. Furthermore, observ-
ables such as higher-order correlations between spins and holes remain inaccessible
in traditional solid-state experiments, which are based on conventional two-point cor-
relations. The tunability of parameters in real materials is limited and every measure-
ment at different doping requires the production of a dedicated sample.

Numerical calculations of interacting electrons are very difficult on classical
computers, due to an exponentially growing Hilbert space with system size. While
progress has been made [27, 28], insights are often restricted to small systems or
parameter regimes and approximate numerical methods are limited by the fermion
sign problem [29, 30]. The computational power of classical computers seems to
approach an end of Moore’s law4. Current transistor sizes have reached 10 nm [31],
while the Van-der-Waals radius of silicon is ∼ 0.22 nm [32]. The miniaturization of
components therefore approaches an end, which is calling for a new era of quantum
computing.

Feynman envisioned that solving quantum problems ultimately requires quantum
technology [33]. The race for controlling quantum objects to perform computations
with them has dramatically gathered pace across the globe in the last years. Promis-
ing progress towards a quantum computer could recently be demonstrated [34, 35].
Nonetheless, general quantum computation of electronic systems will not be available
in the near future [36]. From the current perspective, specialized quantum technology
will be required to solve a particular quantum-many-body problem.

Ultracold atoms have emerged as specialized quantum simulators to study
strongly-correlated quantum matter [37, 38]. Neutral atoms in optical lattices can be
controlled to mimic the behavior of electrons in solid-state systems [39]. Defect-free
versions of the two-dimensional Fermi-Hubbard model can be implemented [40],
which is often believed to capture the essential physics of high-Tc materials like
the cuprates [41]. The demonstration of fermionic Mott insulators [42, 43] and the
detection of antiferromagnetic spin correlations [44, 45] constituted important steps
towards cold-atom based simulation of Fermi-Hubbard physics.

Recent breakthroughs in the manipulation and detection of quantum gases have

4Moore’s law is an empirical statement: the number of transistors on a chip doubles every two years
(and usually with it the computational speed).
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enabled powerful lattice simulators with single-particle resolution [46–48]. This quan-
tum gas microscopy technique could be extended to Fermi-Hubbard systems in 2015
[49–53], which paved the way for probing synthetic electronic systems at the single-
particle level. Based on thousands of snapshots of the collapsed many-body wave-
function classical two-point [54–56], as well as novel string [57], or spin-charge cor-
relators [58] can be measured. More conventional quantities, such as transport prop-
erties [59, 60], structure factors [61], susceptibilities [62–64], and angle-resolved pho-
toemission spectroscopy measurements [65–68] are also accessible in cold-atom ex-
periments. Even dynamical tracking of observables is possible in systems out-of-
equilibrium because the dynamics of particles is slower than experimental control
electronics [59, 60, 69, 70]. High tunability of interaction, hopping, and doping pa-
rameters qualify cold-atom systems as an ideal platform to probe strongly-correlated
fermions and their anomalous metallic states in unprecedented ways.

Major efforts are underway to perform cold-atom quantum simulation of anoma-
lous metallic states and d-wave superconductivity in doped two-dimensional Mott
insulators. To this end, reaching low enough temperatures is a major challenge. The
current state of the art are temperatures down to T = 0.25-0.4 t [60, 61, 71], where t
denotes the tunneling energy (Boltzmann constant is set to kB = 1). In this regime,
long-range antiferromagnetism has been observed [61] and how doping diminishes
average spin-spin correlations [54, 55, 61, 72]. These and further dynamical studies
of single-site [70] or long-wavelength [60] density modulations suggest an intricate
interplay between dopants and spin correlations already at currently accessible tem-
peratures, which might be linked to anomalous metallic properties.

This thesis reports experimental spin-charge correlations up to higher order in
doped two-dimensional Fermi-Hubbard systems. Measurements were performed on
the 6Li-based MPQ quantum simulator with full spin and density resolution. We re-
veal the magnetic dressing cloud of single dopants and thus confirm the microscopic
real-space picture of magnetic polarons. We study how a metal of magnetic polarons
dissolves into a Fermi liquid by continuously increasing the doping of Mott insulators.
All measured observables indicate a crossover from a polaronic metal to a conven-
tional metal, which completes around 30 % doping. The doping-induced evolution
of microscopic correlations is compared to several theoretical concepts for weakly-
doped Mott insulators. Spin-charge correlations show discrepancies to experimental
data in particular in the crossover regime. Finally, developments of the quantum sim-
ulator are described, which concern the implementation of a highly-stable bichromatic
superlattice. This technology opens the door to entropy engineering, which could en-
able exploration of essential aspects of the high-Tc puzzle at lower temperatures.
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Outline

This thesis is organized as follows:

Chapter 1 reviews some of the puzzles of doped Mott-insulating copper oxides
and discusses the connection to the field of ultracold neutral atoms in optical lattices.
Common simplifying theories for the weak doping regime are presented. The concept
of correlators as well as their visual representation and decomposition into connected
and disconnected parts are introduced.

Chapter 2 describes the experimental apparatus. A particular focus is provided
on engineering optical superlattices and the bilayer detection method. The scheme
for full spin- and density-resolution of a monolayer is explained and the readout of
strongly-interacting bilayer Fermi-Hubbard systems is presented.

Chapter 3 summarizes a study of weakly doped Mott insulators, in which images
of the dressing cloud of magnetic polarons were taken. Furthermore, the necessity
of dopant motion for magnetic polaron formation is shown, by demonstrating how
the confinement of a dopant to a single lattice site leads to a disappearance of the
magnetic dressing.

Chapter 4 contains information on how various correlators up to fourth order
evolve when Mott insulators are doped from polaronic metal to Fermi liquid. The
crossover is found to be located around doping of 30 %, where all studied observ-
ables undergo a significant change. The polaronic metal has an anomalous doping-
dependence of the spin susceptibility and the Fermi liquid exhibits incommensurate
spin fluctuations. The spin environment of pairs of dopants is investigated and signif-
icant correlations are discovered, which point to a connection to possible hole pairing
scenarios at colder temperatures.
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From real to synthetic electronic
systems
The copper-oxide materials and their properties pose some of the most challenging
questions in solid-state physics. Gaining insight into exotic phenomena emerging in
such strongly-correlated electronic systems is a key motivation for this thesis. This
chapter starts with a phenomenological introduction of copper oxides at intermediate
temperatures, comparing the Fermi liquid with pseudogap or strange metallic behav-
ior. Many different mechanisms determine the properties of cuprate superconductors,
but one of them stands out: a fierce battle between magnetic and kinetic processes.
The two-dimensional Fermi-Hubbard model describes such a competition and, there-
fore, serves as a basic approach to study strongly-correlated electrons. We present the
competition between antiferromagnetic correlations and dopant motion in this model,
which leads to the concept of magnetic polarons. Such polarons might be intimately
connected to anomalous metallic properties. Finally, cold-atom-based quantum sim-
ulation of the Fermi-Hubbard model is summarized and the novel correlator-based
analyses afforded by these machines are introduced.

1.1 Cuprates - phenomenology of anomalous metals

1.1.1 Mott insulators as parent compounds

One of the most heavily studied cuprates are compounds of the yttrium-barium-
copper-oxide (YBCO) family. A photograph of such a material is shown in Fig. 1.1a.
The internal structure of copper oxides can be approximated by weakly-coupled two-
dimensional (2d) layers [10, 13, 14]. In the most simple picture, electrons stay in a
single layer and hop or interact on a 2d square lattice [74], see Fig. 1.1b. The parent
compounds are brittle ceramics with excellent insulating properties, even though the
non-interacting band structure is only half filled (i.e. one particle per lattice site). Due
to the strong Coulomb repulsion of electrons on the same lattice site, charge transport
becomes strongly suppressed. This is called a Mott insulator [75]. Already around
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Figure 1.1: Copper oxides and their phase diagram. a, Photograph of grown YBCO
crystals, taken from [73]. The visual appearance is very dark and shiny. b, Cuprate
materials consist of weakly coupled 2d layers (here shown as stacked bilayers). In
the simplest approximation, electrons are confined within a single 2d layer. The ion
crystal in this monolayer can be approximated by a square lattice. c, A sketch of
the phase diagram for copper oxides as a function of temperature and hole doping,
reproduced from [10]. Just below room temperature, hole doping leads to a change
from an anomalous metal to a normal Fermi liquid (see arrow). The transformation
between the two metallic regimes was found to occur around 20 % doping in copper
oxides.

room temperature, most Mott insulators additionally develop long-range antiferro-
magnetism [76, 77].

1.1.2 Doping at intermediate temperatures

The most interesting phenomena of copper oxides are found as a function of hole dop-
ing δ and temperature T, see Fig. 1.1c. Doping of cuprates is performed by changing
the chemical composition of the material, which effectively removes (or adds) free
electrons from the 2d half-filled lattice. Resulting holes (or double occupations) in a
Mott insulator can move through the system and restore the ability to conduct heat or
electricity.

For hole dopings close to half filling, the resulting metallic states have anomalous
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properties already around and below room temperature. The initial antiferromagnetic
order is quickly destroyed in the presence of doping, but measurements suggest short-
range magnetic correlations play an important role up to dopings way beyond the
antiferromagnetic phase [78]. Only when hole doping is sufficiently large, the system
turns into a normal Fermi liquid. The transition from an anomalous to a normal metal
in copper oxides occurs around a specific doping across many observables [18, 19],
referred to as δ? ∼ 20 %.

1.1.3 The anomalous metal

For hole dopings between Mott insulator and Fermi liquid (FL), two phenomena
stand out. Pseudogap [15] and strange metal behavior occur in the anomalous regime.
How those two are related is not clear. The pseudogap phenomenon is often linked
to the concept of pre-formed pairs, which might form prior to superfluidity at colder
temperatures [79]. Strange metals have no sharp FL-quasiparticle excitations [16, 19]
(therefore sometimes referred to as incoherent metal) and a conductivity with un-
conventional temperature and frequency dependency. Such features are also found
across many other types of materials with strongly-interacting electrons [80]. For
many decades, measurements of the anomalous regime in copper oxides have been
performed. Even though the observed characteristics have no generally accepted ex-
planation, some of them have become the defining properties of the pseudogap or
strange metal phase. To gain an intuition for the peculiar effects seen in solid-state
measurements, Fig. 1.2 sketches some of the established findings. There are of course
many more observations, which can be found in references [10, 13, 14].

The Fermi surface is a surface in quasi-momentum space q, which separates occu-
pied from unoccupied states. It can be measured with angle-resolved photoemission
spectroscopy (ARPES). For a Fermi liquid of weakly-interacting electrons on a square
lattice, this surface is a square at half filling and a circular shape below half filling,
see Fig. 1.2a. Such a surface follows from the non-interacting band structure of the
underlying 2d lattice and is indeed observed for the Fermi liquid in cuprates [17]. For
the anomalous metal, the Fermi surface is cut into so-called Fermi arcs [15, 81], which
violate the FL concept of a closed surface formed by FL-type quasiparticles. The sup-
pression of weight occurs for momenta, where a pseudogap opens in the spectrum.
Nonetheless, quantum oscillation measurements suggest an actual Fermi surface does
exist [82–84]. Common speculation is that these arcs are actually pockets forming an
own Fermi surface growing with doping [85]. Why only the arc part of the pocket
should be seen in ARPES measurements remains unclear. A possible explanation for
the Fermi-arc phenomenon in terms of magnetic polarons and their internal structure
was recently presented in the strong-coupling limit [86].

The uniform spin susceptibility χs quantifies how much the system can be magnet-
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Figure 1.2: Properties of anomalous and normal metallic regimes in copper ox-
ides. Sketching the qualitative change of copper oxide behavior from anomalous
metal (AM) to normal metal (FL). a, The Fermi surface is cut into four arcs at weak
doping (reproduced from [10]), while the FL possesses a closed circular surface at
strong doping. The gray shading at weak doping indicates a speculated pocket sce-
nario, see text. b, The uniform spin susceptibility drops at low temperatures at weak
doping (reproduced from [87]), but is approximately constant with temperature in
the FL regime. c, The number of hole charge carriers in the lowest band is propor-
tional to δ at weak doping (reproduced from [18]), but increases as 1 + δ in the FL
regime. d, The in-plane resistivity scales linearly with temperature in the strange
metal (reproduced from [88]), but grows quadratically in the FL.

ically polarized, e.g. by an external magnetic field. In solid-state systems this quantity
can be obtained through Knight shift measurements with nuclear magnetic resonance
[87, 89, 90]. For non-interacting fermions, and thus for a weakly-interacting FL, the
susceptibility is independent of temperature [9], see Fig. 1.2b. For a Mott insulator, a
transition into an antiferromagnetic phase occurs as a function of temperature. Anti-
ferromagnetic correlations strongly suppress the susceptibility to an external field.
For the pseudogap regime, a similar suppression is observed. Below a finite tempera-
ture, the susceptibility strongly drops. Due to the proximity to the antiferromagnetic
Mott insulator, this might not be surprising. The puzzling part is that this suppression
is found also for hole dopings, where the long-range antiferromagnetic phase is absent
in hole-doped copper oxides. This might be an indicator that the interplay between
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antiferromagnetic correlations and doping persists up to much stronger dopings.

The hole charge carrier density hc measures how many holes exist in the lowest
occupied band, relative to the number of total possible spinless states in that band.
This quantity can be probed by quantum oscillations or through Hall measurements.
For a band insulator of non-interacting fermions, this carrier density is zero. For an
empty band, it is two (two spin states). In a half-filled non-interacting system, hc =
2 · 1/2 = 1. In terms of doping δ w.r.t. half filling, the carrier density grows like
hc = 1 + δ, see Fig. 1.2c. For a Mott insulator, the lower Mott band is fully occupied
without any holes. At weak doping in the anomalous metal, hc grows with doping like
hc = δ [18]. Around δ? ∼ 20 %, a rapid transformation from the Mott-like scaling δ to
the Fermi-liquid scaling 1 + δ sets in. Around this doping, Mott insulating processes
seem to fade and the original non-interacting band structure and bandwidth start to
be explored by the system.

The in-plane electrical resistivity ρ specifies how much the material resists to con-
duct current within the 2d plane when a voltage is applied. In the Fermi liquid,
electron-electron scattering increases with temperature and leads to a scaling ρ ∝ T2,
see Fig. 1.2d. The strange metal defies this dependence and scales linearly ρ ∝ T,
which is one of its defining properties [88, 91]. A second characteristic of normal met-
als is the Mott-Ioffe-Regel (MIR) limit, which states that the resistivity cannot grow
indefinitely and saturates at some temperature. Strange metals show a linear increase
as a function of temperature even beyond the MIR limit [80]. This is another indicator
of behavior, which is in strong contradiction to Fermi-liquid theory.

In conclusion, the anomalous metal seems strongly connected to the physics of the
parent Mott insulator and violates several paradigms of Fermi-liquid theory. At lower
temperatures, collective effects such as charge-density waves (stripes) can emerge
from the anomalous regime [92]. Most strikingly, superconductivity with d-wave
symmetry (d-SC) is found at weak and intermediate dopings [93, 94]. In the cuprates,
superconductivity at the highest temperatures emerges from the strange metal, which
points to a deep connection between the two. While an understanding of unconven-
tional superconductivity represents a major challenge itself, much less is known about
the anomalous metallic states at more elevated temperatures. The connection between
pseudogap or strange metals and conventional Fermi liquids is often perceived as one
of the biggest mysteries in solid-state physics [10].

Many ingredients, such as phonons [95], inter-layer couplings, magnetism, or or-
bital degrees of freedom can play a role for the emergence of exotic phenomena in
copper oxides. Nonetheless, two key processes are often believed to be responsible
for the anomalous metallic regime and high-Tc superconductivity [14, 30, 41]: anti-
ferromagnetic correlations of the Mott insulator and the motion of doped holes. The
most simple model for doped Mott insulators, which captures those two competing
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mechanisms, is the 2d Fermi-Hubbard model.

1.2 Fermi-Hubbard model

The competition between antiferromagnetism and hole motion in the doped copper
oxides is believed to be the most important mechanism for their rich phase diagram
[14, 30, 41]. The Fermi-Hubbard model is one of the most prominent theoretical mod-
els for this competition [96, 97]. It consists of spin-1/2 fermions on a 2d lattice, see
Fig. 1.3. Particles can hop to nearest-neighbor sites with amplitude t. Opposite spins
on the same lattice site repel each other with interaction energy U. The Hamiltonian
is given by

HFH = −t ∑
〈i, j〉,s=↑,↓

(ĉ†i,s ĉ j,s + h.c.) + U ∑
i

n̂i,↑n̂i,↓ . (1.1)

Here the operator ĉ†i,s (ĉi,s) creates (removes) a fermion of spin s at site i, n̂i,s is the
density operator at site i for particles with spin s, and 〈i, j〉 denotes nearest-neighbor
sites.

Despite the presence of only two ingredients, the 2d Fermi-Hubbard model poses
major challenges to its numerical or analytical computation. The Hilbert space grows
exponentially with system size and an exact solution cannot be obtained in polyno-
mial time [27]. In particular, in the most interesting weak and intermediate doping
regime, Quantum Monte Carlo (QMC) methods suffer from a sign problem [29], re-
quiring the development of alternative algorithms to reach more interesting regimes
[28, 98]. This struggle of classical computation motivates major efforts in cold atom
quantum simulation of the Hubbard model, which will be introduced in one of the fol-
lowing sections. The key processes and established numerical insights for this model
are summarized below.

1.2.1 Mott insulator

At half filling, Fermi-Hubbard systems turn into a Mott insulator when the interac-
tion U is larger than the free particle bandwidth W = 8t. In that case, every lattice
site is occupied by exactly one fermion. In a virtual process, where two fermions
with opposite spins briefly hop on top of each other and back, neighboring particles
can exchange their spin. This leads to an antiferromagnetic superexchange coupling
J = 4t2/U, see Fig. 1.3b. If the temperature is as low as this energy scale T ∼ J (the
Boltzmann constant is set to kB = 1), the Mott insulator builds up strong antiferro-
magnetic correlations. Undoped cuprates are antiferromagnets at room temperature
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Figure 1.3: The Fermi-Hubbard model. a, Spin-1/2 fermions on a 2d, which can
hop to nearest-neighbor sites with amplitude t. Opposite spins on the same lattice
site repel each other with interaction energy U. b, At half filling and strong in-
teractions, electron motion is blocked by the on-site repulsion and leads to a Mott
insulating state. A higher-order superexchange with amplitude J is still possible.
This mechanism allows opposite spins to exchange their place and causes antiferro-
magnetic spin couplings of nearest-neighbor lattice sites.

and estimates for their parameters are t ∼ 4500 K, U/t ∼ 12 and J ∼ 1500 K [14].
An important consequence of a theorem proven by Mermin and Wagner [99] is that
the strict dimensionality (2d) of the Hubbard model implies the absence of an anti-
ferromagnetic phase at finite temperature in an infinite system. Nonetheless, anti-
ferromagnetic correlations can still build up at finite temperature over scales much
larger than the size of a finite system. The transitions between different regimes in the
2d Hubbard model, therefore, behave not as phase transitions but as crossovers. For
copper oxides, a finite inter-layer coupling invalidates the Mermin-Wagner theorem
and leads to a phase transition at finite temperature. This subtlety does not play an
important role in this work.

Another manifestation of the superexchange process is the occurrence of doublon-
hole fluctuations. These are short-lived quantum fluctuations, which are directly
linked to the superexchange. A fermion hops on top of another fermion with opposite
spin but takes a finite amount of time to hop back. When a snapshot of the system
is taken, these fluctuations manifest as a hole and a double occupation (doublon) de-
tected next to each other. Such doublon-hole fluctuations are strongly suppressed for
increasing U/t. In the infinite U limit, the Fermi-Hubbard model, therefore, maps
onto a Heisenberg model of spins with antiferromagnetic spin couplings J [97]

HHeis = J ∑
〈i, j〉

Ŝi Ŝ j , (1.2)

where Ŝi is the spin operator at site i.

When analyzing the physics of doped Mott insulators, theorists often turn to the
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related t-J model [97]. It neglects the physics of doublon-hole fluctuations, by as-
suming a Heisenberg model in which holes can hop around with amplitude t. This
approximation significantly simplifies the numerics as compared to the bare Hubbard
model.

1.2.2 Kinetic vs magnetic energy

The Hubbard model is particle-hole symmetric, which means there is no difference be-
tween doublon or hole doping [100]. For now, dopants are considered to be holes. The
fierce competition between antiferromagnetically correlated spins in the Mott insula-
tor and the kinetic energy of doped holes is the key mechanism driving exotic regimes
in the 2d Fermi-Hubbard model. This can be illustrated by contemplating the ground
state of a single doped hole placed in an antiferromagnetic Mott insulator, see Fig. 1.4.
The background particles minimize their magnetic energy by maintaining strong an-
tiferromagnetic correlations. A doped hole on the other hand requires minimization
of its kinetic energy, which is only possible if the hole is allowed to delocalize. This
requires the hole to propagate through the system by the hopping process t. Already
the effect of a single hopping event of the hole is detrimental to the antiferromagnetic
correlations. The hole shuffles around the position of a spin and creates ferromagnet-
ically aligned domains, which cost significant magnetic energy. With every hopping,
the antiferromagnetic pattern is increasingly destroyed. The delocalization of the hole
competes with the magnetic background.

1.2.3 Magnetic polaron

The search for a solution to a single doped hole in a Mott insulator has challenged the-
orists for years and lead to a vast number of publications, all considering the single-
hole problem [101–107]. By now a thorough theoretical understanding of the expected
behavior has emerged. The doped hole is expected to form a magnetic polaron. A
constant bubble, also called dressing cloud, of reduced antiferromagnetic alignment
surrounds the hole at all times. The dressing cloud has a finite size, in which the hole
can move around. Both together form a quasiparticle, called the magnetic polaron.

The magnetic polaron has renormalized properties compared to the bare hole.
When a bare hole moves around, it can do so on a timescale 1/t. For the polaron to
move, the dressing cloud has to be dragged along through the system, which requires
the superexchange process to flip spins. Therefore the timescale for polaron motion
is expected to be of order 1/J. A strong indication for the existence of magnetic po-
larons in cuprates was therefore the observation that the single-particle bandwidth W
for excitations in parent compounds is strongly suppressed [24, 108]. Instead of the
non-interacting bandwidth W ∼ 8t, it was found W ∼ 2J. This is consistent with the
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Figure 1.4: Competition between magnetic and kinetic energy. a, The antiferro-
magnetic processes of the Mott insulator (energy J) compete with the delocalization
(energy t) of a hole (more generally: a dopant). b, When a hole hops in an antifer-
romagnetically aligned system, it creates ferromagnetic domains (shadings). With
every hopping event, the magnetic cost grows until the lowering of kinetic energy
through delocalization is not favorable anymore. For a single hole in an antiferro-
magnetic environment, a magnetic polaron is expected to form.

bandwidth of magnetic polarons in the t-J model [24].

The size of the dressing cloud scales only weakly with interaction strength U/t,
which effectively changes the ratio t/J. Based on semi-classical considerations [97],
the polaron size increases with stronger interactions like ∼ (t/J)1/4. An additional
property of the dressing cloud is its inner structure of correlations. Far away from
the hole, antiferromagnetic spin correlations remain unharmed. But close to the hole,
right in the epicenter of the dressing cloud, how do spin correlations behave? Na-
gaoka showed, in the infinite U/t limit the dressing cloud can become ferromagnetic
[109]. Since in this limit the polaron size also becomes infinite, this means the hole
turns the entire system ferromagnetic. The inner structure and size of the magnetic
dressing for finite U/t will be probed experimentally in chapter 3.

Directly imaging the magnetic dressing of holes remains elusive in solid-state ex-
periments. Fully resolved snapshots of cold-atom quantum simulators are an ideal
basis to search for such entities.

1.2.4 The fate of polarons

When two or more holes are doped into a Mott insulator, the physics becomes signifi-
cantly more complex. Already the problem of exactly two doped holes challenges the-
orists to date. Intuitively, it could be energetically beneficial to share the same dressing
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cloud to minimize the overall destruction of the antiferromagnetic background. This
effect could lead to an attractive interaction between polarons, which is mediated by
the antiferromagnetic background correlations. Such a scenario might favor bind-
ing of two holes, which are then glued together through their magnetic environment
[30, 110–112].

In conventional superconductors, a weak attraction between fermions is mediated
by phonons and superfluidity emerges simultaneously with the formation of Cooper
pairs, according to Bardeen-Cooper-Schrieffer (BCS) theory [113]. In the Hubbard
model, attraction of holes could be strong and Cooper pairs could form before super-
conductivity sets in, thus being closer to the Bose-Einstein-Condensate (BEC) limit of
superfluidity. Pre-formed pairs existing at temperatures well above Tc are often con-
sidered as a possible explanation for the pseudogap phenomenon [30]. Only once the
temperature reaches Tc, phase coherence is established between bound pairs. The BCS
(weakly bound pairs) and BEC (strongly bound pairs) limit as well as their crossover
is deeply connected to the high-Tc problem and is studied beyond the Hubbard model
[66, 114].

Recent numerical studies of two holes confirm the presence of a binding mecha-
nism in the t-J model even at elevated temperatures [112]. Nonetheless, a microscopic
observation of hole attraction or a detection of polaron interactions as a precursor is
lacking. The battle between antiferromagnetic correlations and hole motion is ex-
pected to dominate the physics up to a certain hole concentration. The phase diagram
of the 2d Fermi-Hubbard model is not fully known but is believed to feature similar
phenomena as found in copper oxides [115]. A conjectured phase diagram is shown
in Fig. 1.5. Magnetic polarons constitute the onset of an anomalous metallic regime,
which has clearly observable pseudogap features already at intermediate tempera-
tures T ∼ 0.2t [116–118]. A conventional Fermi liquid form once the system is dilute
enough, but the specific doping value δFL for this crossover and its microscopic details
are not well known. At much colder temperatures, many different collective phenom-
ena can emerge. Among superconductivity [119], charge-density wave (stripe) states
are very close in energy [120]. Which of these eventually forms the ground state is
an open debate, which is heavily influenced by next-nearest-neighbor hopping [121].
The temperature scale for such collective behavior appears to be T ∼ 0.02t [119].

There exist many proposed concepts for the poorly understood weak to inter-
mediate doping regime, which all try to capture and model different mechanisms
[7, 14, 41, 107, 122–124]. Some of the ones compared to the work in this thesis are
described in the next paragraph. The magnetic polaron concept is expected to break
down eventually with increasing doping. But how exactly do polarons dissolve? Are
interaction processes between polarons involved? At what doping does the break-
down happen and does it coincide with δFL? How do microscopic correlations evolve
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Figure 1.5: Anomalous and normal metals in Fermi-Hubbard systems. a, Con-
jectured phase diagram of the 2d Hubbard model as a function of temperature
and doping. It is more accurate to speak of crossovers than of phases, due to the
Mermin-Wagner theorem, see text. Close to zero temperature, various collective
effects, such as stripes or d-wave superconductivity can emerge. Between Mott
insulator and Fermi liquid anomalous metallic states are realized at intermediate
temperatures. b, Many open questions on the connection from Mott insulator to
Fermi liquid as a function of doping remain. This thesis reports on the evolution
of spin-charge correlations as a function of doping at temperatures around the su-
perexchange energy J.

and what happens to the dressing cloud of polarons? All these points are essential
questions towards understanding the crossover from anomalous metal to Fermi liq-
uid and are deeply linked to the high-Tc puzzle. Chapter 4 explores these questions
and furthermore finds a change across all measured observables around δFL ∼ 30 %.

1.2.5 Weak doping physics - possible concepts

An important part of the high-Tc puzzle is the quest for a simplifying effective de-
scription of weak-doping phenomena in Fermi-Hubbard systems. Two approaches
are presented below. Quantum simulation with cold atoms (as presented in one of
the next sections) offers an ideal testbed with novel observables for these and other
theoretical concepts.

Resonating valence bond

The ground state of the 2d Heisenberg model has a large overlap with a classical Néel
spin order [125], which is a perfect alternation between up and down spins. Ander-
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son introduced a spin liquid state as another possible ansatz to minimize the energy
cost of antiferromagnetic spin couplings [41]. This so-called resonating-valence-bond
(RVB) state is a superposition of spins forming spin-singlet pairs. The two spins of a
singlet can be nearest neighbor, or very far apart. While at half filling a Néel state is
more likely, doping might favor such a short-range correlated spin-liquid state [14].
In the RVB state, holes could move through the sea of singlets and shuffle individual
spins around without paying a magnetic energy cost. The formation of local singlets
could explain the spin susceptibility behavior in the pseudogap regime [14], but the
existence of such a spin liquid remains unclear. The spin liquid concept has proven
to be fertile ground and different variations RVB states exist [14]. In chapter 4, we
benchmark the microscopic correlations of two popular incarnations - uniform [126]
and π-flux [127]- with our experiment. The agreement is limited to two-point corre-
lations. In particular higher-order correlations of the experiment reveal discrepancies
with uniform and π-flux RVB correlations.

String

An effective model for magnetic polarons assumes that a polaron is a bound state
between two fractionalized entities, called spinon and holon [107, 128]. These two
partons are bound together by a string of reshuffled spins, hence the name string
model. While numerical calculations of the Fermi-Hubbard model with a single hole
can only diagnose the existence of the polaron, the string model casts the problem into
a simplified effective Hamiltonian [72, 107]. It can therefore make predictions even in
the presence of multiple holes, by assuming the formation of independent polarons.
Furthermore, the string model predicts a rich inner structure of the magnetic polaron,
with possible rotational and vibrational excitations akin to states found in high-energy
physics. The intuition behind the string picture can be understood with Fig. 1.4. When
a hole starts moving, it leaves behind a string of reshuffled spins, which connect the
hole to a spin excitation (spinon) it leaves behind at its initial position. The bound
object of hole (in this case holon) and spinon corresponds to the magnetic polaron.
The average string length (related to the polaron size) is determined by the antiferro-
magnetic correlation strength and the ratio of t/J. The hole can therefore not leave the
vicinity of the spinon, and the center of mass of both can only move once the spinon
moved (requiring spin flips at timescale 1/J). The holon surrounds the spinon like
an electron surrounds the proton in a hydrogen atom. In the reference frame of the
hole, spin correlations are therefore on average reduced in its vicinity in all directions
because in every realization the spinon and string are found in a different configura-
tion. In our benchmark (chapters 3 and 4), experimental spin-charge correlations and
the string model show decent qualitative similarities in the single-dopant regime, but
only limited agreement for dopings approaching δFL.
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1.3 Cold atoms - quantum simulation

Since the advent of laser cooling and Bose-Einstein condensation of neutral atoms in
the 1990s [129–131], generating degenerate cold-atomic Fermi gases at low temper-
atures down to T/TF ∼ 0.05 has become a reality [132]. Instead of electrons, the
fermions, in this case, are fermionic atoms, such as 40K or 6Li, with recent additions
to the portfolio being fermionic alkaline-earth [133] or erbium [134] atoms. The hy-
perfine states of neutral atoms can play the role of the spin of electrons. Based on
optical lattices and ultracold collisions, clean implementations of Fermi-Hubbard sys-
tems can be created from scratch within ∼ 20 s in such laboratories [40, 135, 136]. The
analogy to condensed matter systems is summarized in Fig. 1.6. Around 2010, ma-
jor advances in microscopy and imaging techniques of these atomic gases enabled
taking pictures of strongly-correlated bosonic systems with single-particle resolution
[46, 47]. These microscopy techniques could be extended to fermionic gases in 2015
[49–53]. These breakthroughs started an era, in which higher-order non-local real-
space correlations can directly be probed in quantum matter [57, 137–139]. An impor-
tant difference between electronic and cold-atomic systems is the energy scale. Lattice
spacings are much larger and dynamical timescales slower, allowing unprecedented
measurements with cold atomic systems, such as tracking the dynamical time evolu-
tion upon a quench [140, 141]. As a trade-off, the Fermi temperature TF is 1010 times
smaller than for electrons, requiring setups to reach some of the coldest temperatures
accessible on earth.

1.3.1 Optical lattice and ultracold collisions

The optical dipole force is an essential ingredient for manipulating cold atoms [135,
142]. An oscillating electric laser field of intensity I couples to the outer electron of
a neutral atom, described by a dipole coupling. When the oscillation frequency ωL
of the laser is off-resonance by a detuning ∆ from an electronic transition of the atom
at angular frequency ω0, an actual excitation of the electron is strongly suppressed.
Nonetheless, the absolute energy of the electronic transition is changed by the pres-
ence of off-resonant light, referred to as light shift. A spatially varying intensity of the
light I(r) therefore creates an optical potential V(r) for the atom, given by

V(r) =
3πc2

2ω3
0

Γ

∆
I (r) , (1.3)

where c is the speed of light and Γ the natural linewidth of the transition. When the
laser frequency ωL < ω (red detuned), the potential is attractive and for ωL > ω
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Figure 1.6: Real and synthetic electronic systems. The simplest approximation of
copper oxides is the 2d Fermi-Hubbard model. Material parameters for nearest-
neighbor hopping amplitude t and an effective screened on-site Coulomb repulsion
U can be estimated from experimental measurements. Finite next-nearest-neighbor
and diagonal hopping amplitudes exist in cuprates (relevant for some phenomena
[121]) but are neglected in the simplest version of the Hubbard model. Cold-atoms
can be used to implement fully tunable versions of Hubbard systems. Neutral atoms
(here 6Li) emulate the behavior of electrons.

(blue detuned) repulsive. The residual off-resonant scattering rate Γsc is given by

Γsc(r) =
3πc2

2h̄ω3
0

(
Γ

∆

)2

I(r). (1.4)

Both Eq. 1.3 and 1.4 are valid for two-level systems. In principle, atoms are much more
complex, giving rise to vector- or more general tensor-light shifts [143], allowing for
the generation of fictitious magnetic fields [144] and spin manipulation techniques
[145]. Such advanced schemes are mostly not applicable to 6Li, due to its small fine
structure splitting. For 6Li, laser light needs to be close to resonance to generate sig-
nificant vector light shifts, which leads to strong off-resonant heating. By interfering
two laser beams of wavelength λ, a spatial lattice can be created. The spacing a of this
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lattice depends on the angleα between both beams

a =
λ

2
1

sin(α/2)
. (1.5)

The second important ingredient to cold-atom quantum simulation are atom-atom
collisions. At temperatures below quantum degeneracy, most of the time only head-
on s-wave collisions are relevant [132, 135]. Thus, opposite spins interact via such
collisions, while same-spin fermions become non-interacting (s-wave collisions are
strongly suppressed). The interaction can effectively be described by a contact po-
tential with scattering length asc. The strength of this effective parameter is rooted
in the physics of inter-atomic bound states, details can be found e.g. in [132]. When
the binding energy is brought into resonance with the kinetic energy of both particles,
asc diverges. This phenomenon is called Feshbach resonance. Whenever the energy
of the underlying bound state can be tuned with an external parameter, the effective
interaction can be tuned. For 6Li, the scattering length can be readily tuned with a
magnetic bias field and Feshbach resonances around 800 G, see chapter 2.

Combining an optical lattice potential and opposite-spin collisions, the Hamilto-
nian for two opposite-spin particles with position and momenta (xi, pi) becomes [146]

H = ∑
i

(
V0 cos2

(πxi

a

)
+

p2
i

2m

)
+

4πh̄2asc

m
δ(x1 − x2). (1.6)

The optical lattice introduces a new energy scale, which is the recoil energy

ER =
h2

8ma2 . (1.7)

The potential depth of the lattice is typically measured in units of ER. When the lattice
is sufficiently deep V0 > 5 ER, Eq. 1.6 can be expressed in terms of Wannier functions,
which are states localized at individual lattice sites. In this tight-binding limit and
using the many-body notation with operators ĉ†i creating a fermion in a Wannier state
at site i., Eq. 1.6 turns into the Fermi-Hubbard Hamiltonian. The nearest-neighbor
tunneling amplitude and on-site interaction are then given by [146] (deep lattice limit
V0 � ER)

t
ER
' 4√

π

(
V0

ER

)3/4

exp

(
−2

√
V0

ER

)
(1.8)

and
U
ER
'
√

8π
asc

a

(
V0

ER

)3/4

. (1.9)
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The precise control of laser power, Feshbach resonances and total number of particles
allows cold-atom simulators to explore Fermi-Hubbard physics with full tunability
of hopping, interaction and doping. The dimensionality of atomic systems can fur-
thermore be varied by individual adjustment of laser power along the three spatial
dimensions. Different lattice geometries, such as honeycomb [147] or kagomé [148],
are accessible by generating different interference patterns. In particular, superlat-
tice structures can be engineered [149], which will be used as a powerful tool in the
following chapters.

1.3.2 Quantum gas microscopy

Since lattice spacings for cold atomic systems are on the scale of optical wavelengths,
very high numerical aperture (NA) objectives can be used to achieve optical resolu-
tion of individual lattice sites. To take a photograph of a lattice gas, atoms are pinned
with a very deep lattice at maximal available laser power. Atoms are exposed to
resonant light, which makes them start to scatter fluorescence photons. To keep the
atoms pinned during the fluorescence process, active cooling needs to be provided.
An efficient cooling scheme is Raman sideband cooling, as used in most fermionic
microscopes [49–51, 150]. The resulting single-site resolved snapshot measures the
occupation on each lattice site, see Fig. 1.7 for a fermionic Mott insulator. Taking
such a snapshot collapses the many-body wavefunction. Taking photos of many real-
izations therefore allows a complete and model-independent characterization of the
underlying quantum state.

There are two constraints of traditional quantum gas microscopy. The spin of a
fermion is not detected with the method mentioned above. Push-out schemes can
be implemented [54, 55], but then only information of a single spin species can be
revealed within the same shot. Furthermore, the density information in most exper-
iments is not accurate, due to light-assisted collisions. Double occupations are lost
during imaging and show up as holes, referred to as parity projection [46, 47]. This
renders doublons and holes indistinguishable in traditional quantum gas microscopy.
The lack of spin-resolution and parity projection are major obstacles when trying to
unravel the intricate interplay of spins and doped holes or doublons in the Fermi-
Hubbard model.

The MPQ machine overcomes both problems, i.e. parity projection [49] and spin
resolution [56, 71]. The technique currently used for spin resolution was developed
in this work and is presented in chapter 2. Measurements featured within this thesis
were therefore performed with full spin- and density-resolution, referred to as full
resolution.
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Figure 1.7: Quantum gas microscopy. a, Once the quantum state is prepared, tak-
ing a real-space snapshot of the system collapses the wavefunction onto the Fock
basis of the lattice sites. b, Using a high-resolution objective, single-site resolved
snapshots of thousands of realizations are taken. Each snapshot requires a new
preparation of the quantum system. c, Through advanced techniques, all local spin
and density observables can be measured in each shot. Based on such full resolu-
tion, multi-point correlations between spins and charges (density) can be studied in
the system.

1.4 Correlators

Analyzing correlations is a fundamental tool across many disciplines. When two
quantities are correlated, knowledge of one component allows the inference of the
most probable state of the other. This can be used in modern data science to build
predictive models. In quantum-many-body physics, correlations allow researchers
to explore the statistical connections and the inner structure of the underlying wave-
function, without having to note down the actual wavefunction [151–153]. A quan-
tum state can be fully characterized by its correlations [151]. In fact, linear-response
functions of a material are directly linked to microscopic two-point correlations in the
system through the fluctuation-dissipation theorem [9]. Correlators of particular im-
portance to the doped Fermi-Hubbard model are correlations between dopants (e.g.
holes) and spins. Such spin-charge correlations will be the main topic of chapters 3
and 4. This section introduces a visual representation of spin correlations and how
they can be normalized. The very important concept of connected and disconnected
parts is explained as well as the relation between two-point spin correlations and spin



24 1. From real to synthetic electronic systems

structure factor or susceptibility.

1.4.1 Correlators and normalization

N-point correlations are the expectation value of the product of N observables Ôi,
such as C = 〈Ô1...ÔN〉. One of the simplest and intuitive correlators is a spin-spin
correlator, which compares the mutual alignment of spins at two different positions

C(r1, r2) = η〈Ŝz
r1

Ŝz
r2
〉 . (1.10)

To be able to compare different correlations quantitatively, a correlator needs to be
normalized with an appropriate factor η.

In statistics, the Pearson Correlation Coefficient (PCC) [154] is commonly used to
quantify the linear correlation between two random variables A and B. The PCC
is given by C(A, B) = cov(A, B)/σ(A)σ(B). The bare covariance cov(A, B) is nor-
malized to the product of standard deviations σ(A)σ(B). The intuition behind this
normalization is simple: the strength of the combined fluctuation is compared to the
independent fluctuations of both variables. The PCC therefore takes values between
−1 and 1, which correspond to maximum possible negative or positive correlation. In
analogy to the PCC, the normalization η should be

ηPearson = 1/σ(Â)σ(B̂) = 1/(
√
〈Â2〉 − 〈Â〉2

√
〈B̂2〉 − 〈B̂〉2) . (1.11)

The PCC normalization is not always directly used for correlations in physics. For
spin-spin correlations, a common choice of normalization is ηHeis = 4. In the context
of a spin-1/2 Heisenberg model, this is equivalent to the PCC, since σ(Ŝz

i ) = 1/2.
But for the Hubbard model at finite interaction strength and in particular for doped
systems σ(Ŝz

i ) < 1/2, because empty or doubly-occupied sites contribute zero spin
(Ŝz

i = 0). If the Heisenberg normalization ηHeis were to be used for doped sys-
tems, the maximum possible strength of spin correlations would be Cmax < 1. Only
with ηPearson the maximum correlation strength is always Cmax = 1. Therefore, the
PCC normalization ensures that correlation values can be quantitatively compared
between different systems, because C = 1 universally means maximal possible corre-
lation.

For instance, consider a heavily doped system in which the spin of a lattice site Ŝz
i

fluctuates very little around zero (σ(Ŝz
i ) � 1/2) because a spinful particle only very

rarely occupies that site. Nonetheless, spinful particles in the strongly doped system
might still be maximally correlated. If e.g. spin fluctuations on two sites in such
a system are maximally negatively correlated, a correlator normalized with ηPearson
would measure the value −1. This is not the case with ηHeis = 4.



1.4 Correlators 25

Figure 1.8: Visualizing spin correla-
tions. a, The correlation of spins be-
tween two lattice sites r1 and r2 can be
visualized by a colored bond connect-
ing both sites. The color (here white)
will be used to indicate the sign and
strength of the measured correlation.
b, Spin correlations between all lattice
sites can be visualized in the bond pic-
ture. Here only NN correlations (d =
1) are shown.

Throughout this thesis the applied normalization - ηHeis or ηPearson - will be indi-
cated.

1.4.2 Visualization - bond picture

In a homogeneous translation-invariant system comprising Ω lattice sites, spin-spin
correlations at fixed distance d = r2 − r1 are the same everywhere in space. The
correlation can be represented with a single value, which is the average (assuming
periodic boundaries for simplicity)

C(d) = ∑
r1∈Ω

C(r1, r1 + d)/Ω . (1.12)

In inhomogeneous systems, or more importantly, in the reference frame of a
dopant or magnetic polaron, correlations at fixed d can vary in space, as will be
seen in chapter 3 and 4. It is therefore desirable to have a visual representation of
spin-spin correlations in real space. Our way of plotting correlations relies on the
bond picture, which was already invoked in previous numerical work [111]. As
shown in Fig. 1.8, the correlation strength between two sites is indicated by the color
of a bond connecting both sites. We also refer to this as the bond strength. The distance
between both sites is referred to as the bond length. Extending this concept to the
entire lattice allows a representation of correlations at fixed d in the system. For
d >

√
2 the visualization becomes increasingly difficult, due to the overlapping of

different bonds.
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1.4.3 Connected and disconnected parts

Strictly speaking, the bare object 〈Ô1...ÔN〉 does not measure the correlation directly
[155]. More accurately, 〈...〉 is called a moment. It is the cumulant, which contains the
information about correlation. The careful reader might already have noticed, the
PCC introduced above also defines a correlation through the covariance between two
observables, which in this case is the same as the cumulant. Therefore, a correlation
between N observables can formally be defined as

C(Ô1, ..., ÔN) = ηPearson〈(Ô1 − 〈Ô1〉)...(ÔN − 〈ÔN〉)〉 . (1.13)

A key difference between the bare moment 〈...〉 and this definition of correlation is
that the moment of order N can be nonzero, while there is zero correlation between the
observables. Such a situation can e.g. arise when the mean of individual observables
is nonzero, which can cause a finite moment of order N in the absence of a correlation.

However, in colloquial physics language (and also for the rest of this thesis), the
word correlation is often used in reference to bare moments, which are then called bare
correlations. As a consequence of this choice of language (to which we adhere in this
thesis), special care needs to be taken concerning the origin of a correlation under
investigation.

The bare correlation of order N can be decomposed into two parts: a combination
of correlations arising from lower-order moments, referred to as disconnected part,
and the actual correlation, also referred to as the connected part. In this context, cu-
mulant, connected part and Eq. 1.13 denote the same object. Throughout this thesis,
bare moments are therefore considered a correlation C and we use the concept of con-
nected and disconnected parts to distinguish between true correlation effects Cc of
order N and correlations arising from lower-order contributions Cd [151]

C = Cc + Cd . (1.14)

The concept of connected and disconnected part is best illustrated with an ex-
ample for the two-point spin correlator discussed before, see Eq. 1.10. Let us take a
fully magnetized spin system, such that 〈Ŝz

ri
〉 = 1/2 on every lattice site, see Fig. 1.9.

The bare spin-spin correlator (for the sake of simplicity we consider a constant nor-
malization η = 4) measures a maximum correlation value of +1 between lattice
sites. But this bare correlation is fully determined by the disconnected part, which
is Cd = η〈Ŝz

r1
〉〈Ŝz

r2
〉 = 1. The connected part, measuring the actual correlation of

order two, is given by

Cc = C− Cd = η〈Ŝz
r1

Ŝz
r2
〉 − η〈Ŝz

r1
〉〈Ŝz

r2
〉 . (1.15)
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Figure 1.9: Connected and disconnected parts. Bare correlations are always com-
posed out of disconnected contribution from lower-order terms and the connected
higher-order correlation. This concept is demonstrated with NN two-point spin cor-
relations for two states. A balanced spin mixture with antiferromagnetically aligned
spins has no disconnected contribution to spin correlations. In the (polarized) clas-
sical ferromagnet shown, all bare spin correlations originate from the presence of
finite magnetization.

In the scenario of a magnetized system, no actual two-point correlation between the
lattice sites exists and Cc = 0. For spin-balanced antiferromagnetic spin systems in-
vestigated in this thesis 〈Ŝz

ri
〉 = 0, which means the disconnected part for spin-spin

correlations is zero.

In particular, when investigating higher-order spin-charge correlators, it will be
important to distinguish the connected and disconnected contribution to the bare cor-
relation value.

1.4.4 Conditional correlations

Another type of correlations are correlations conditioned on a certain event. An ex-
ample is the spin correlation between two sites r1 and r2, conditioned on detecting a
hole at a third site r3. The probability of detecting a hole at r3 is given by 〈ĥr3〉, where
ĥr3 denotes the hole-density operator on that site. The conditional probability for A,
given B, can be expressed as P(A|B) = P(A∩ B)/P(B) [154]. Following this logic, the
spin-spin correlation in the presence of a hole can be expressed as

C(r1, r2)◦r3
= η〈Ŝz

r1
Ŝz

r2
ĥr3〉/〈ĥr3〉 . (1.16)
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Here, the expectation values 〈...〉 are taken with respect to all shots. This correlator is
an example of a three-point correlator. Based on real-space snapshots of the system,
an alternative algorithm to compute this correlation is by applying a post-selection on
the data. In this case, first the data is post-selected to snapshots with ĥr3 = 1. Then
C(r1, r2) is computed. Both routes are equivalent. Such conditional correlations will
play an important role in chapters 3 and 4.

1.4.5 Structure factor and susceptibility

The knowledge of two-point correlations in the system can be used to reconstruct
macroscopic quantities.

The static spin-structure factor S(q) is an observable, which measures the different
wavevectors q present in spin patterns emerging in the system [9]. S(q) corresponds
to the Fourier transform of two-point spin correlations

S(q) = ∑
ri∈Ω

∞
∑
d=0
〈Ŝz

ri
Ŝz

ri+d〉eiqd/Ω , (1.17)

where Ω denotes the number of lattice sites in the system. Here we consider a system
in the thermodynamic limit Ω → ∞, such that finite size effects can be neglected.
Strong antiferromagnetic correlations at half filling lead to a staggered spin pattern,
which has a wavevector qAFM = (π , π), where the lattice spacing set to one.

In solid-state systems, the spin-structure factor can be measured by neutron scat-
tering [156]. With a quantum gas microscope, this quantity can be directly computed
from fully-resolved snapshots. Other static structure factors, such as the ones for
charges or only holes, can be evaluated in a similar manner.

The uniform spin susceptibility χs was already mentioned in the first section of
this chapter as an observable detecting pseudogap features. It is a response function,
which measures how spins in the system respond to a weak homogeneous (q = 0)
magnetic field (linear-response regime). The fluctuation-dissipation theorem links the
susceptibility to two-point correlations in the equilibrium unperturbed system [9], i.e.
application of a magnetic field is not required,

χs(q = 0) = S(0) 1/T . (1.18)

This relation is in general only valid for q = 0. In solid-state systems, the spin suscep-
tibility can be determined through Knight-shift measurements with nuclear-magnetic
resonance [14]. For quantum gas microscopes, this quantity can be obtained from the
sum of all two-point spin correlations. As a consequence, S(0) cannot be determined
accurately when the correlation length approaches the system size, which is not the
case in this thesis.
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A bilayer quantum gas microscope
This chapter covers the experimental setup. Recent upgrades are described in detail,
which concern the engineering and implementation of a highly-stable bichromatic
superlattice in the vertical direction. Precise control over this superlattice enables
efficient bilayer microscopy. Two applications are demonstrated, the microscopy of
bilayer Fermi-Hubbard systems and full spin- and density-resolution for monolayer
systems. Results of the following publication are contained in this chapter:

• Robust bilayer charge pumping for spin- and density-resolved quantum gas
microscopy.
J. Koepsell, S. Hirthe, D. Bourgund, P. Sompet, J. Vijayan, G. Salomon, C. Gross
and I. Bloch. Physical Review Letters 125, 010403 (2020).

2.1 Experimental setup

The operation of this cold-atom experiment can be divided into three steps: prepara-
tion, simulation, detection. A full cycle through all three steps takes on the order of
∼ 20 s. Every new experimental snapshot requires the full procedure.

The preparation part concerns the production of a trapped 2d or 3d gas at the low-
est reachable temperature. Around 80 % of the cycle time of our machine is currently
dedicated to the production of such a gas, which is achieved by a combination of laser
and evaporative cooling.

The simulation step generally consists of loading the cold gas into a controlled
environment, which realizes a desired Hamiltonian for the system. In our case, atoms
are exposed to an optical lattice, which is adiabatically turned on and ramped to the
desired simulation parameters. In some experiments, the simulation part contains a
dynamic quench of the system and a variable time evolution.

Detection in this thesis involves three components. At first, the system is rapidly
frozen in the optical lattice, followed by a sequence to encode spin information into a
spatial degree of freedom. Then single-site resolved images are taken.

https://doi.org/10.1103/PhysRevLett.125.010403
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The main apparatus was constructed by the previous generation of students and
most details of the current setup can be found in their theses [157–159]. Nonethe-
less, this section covers recently implemented upgrades and reiterates experimental
aspects relevant to this thesis.

2.1.1 Preparation of ultracold 2d gases

Lithium

The fermions used in this experiment are 6Li atoms in their electronic ground state.
There are a few reasons, why lithium is currently among the most successful atomic
species for fermionic quantum simulation. There is the pragmatic fact that the cold-
est fermionic samples in terms of T/TF were so far reported with lithium [132]. The
limiting factors for lower temperatures are not fully understood and represent one
of the greatest challenges for quantum simulation. Furthermore, the light mass of
lithium (six atomic mass units) leads to higher energy scales than with other common
laser-cooled elements. This allows for faster experiments through rapid thermaliza-
tion times but also grants better protection against heating from technical noise at low
frequencies. Finally, the existence and benign properties (such as low losses and broad
lineshape) of Feshbach resonances for lithium make it an ideal choice for experiments
with tunable interactions.

Alkali atoms have a hydrogen-like electronic structure with one valence electron,
whose D1 and D2 transitions are well suited for laser cooling. As shown in Fig. 2.1,
these transitions are around λ = 671 nm for 6Li and have a natural linewidth of Γ =
2π · 5.87 MHz [160]. A magneto-optical trap (MOT) on the D2 transition produces
atomic samples at temperatures ∼ 300µK. Further laser cooling is achieved by an
ultraviolet (UV) MOT, operating on the 2S-3P transition at λ = 323 nm. The smaller
linewidth of 2π · 754 kHz of this transition [161] enables cooling to ∼ 60µK.

The ratio between fine-structure splitting ∆F ∼ 10 GHz and natural linewidth Γ of
the D1 or D2 transition is much smaller than for other alkali atoms. This means vector
light shifts, i.e. spin-dependent optical potentials, cannot be used for lithium with
high fidelity because off-resonant scattering is much higher than with other species.

Hyperfine states of lithium are used to realize pseudospin systems. Throughout
this thesis, the lowest states |1〉 and |2〉 (i.e. the two F = 1/2 states) are used to
represent spin-1/2 fermions. Feshbach resonances between atoms in the three lowest
hyperfine states are shown in Fig. 2.1b. By applying a magnetic offset field, the scatter-
ing length asc can be tuned to induce strong repulsive interactions. Repumping after
laser cooling ensures atomic samples with an equal number of both spin (hyperfine)
states, therefore realizing spin-balanced samples.
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Figure 2.1: Properties of lithium. a, Electronic level structure of fermionic 6Li.
Laser cooling is performed on the D1 and D2 transitions around λ = 671 nm and
on the narrower ultraviolet transition at λ = 323 nm. Illustration based on [157]. b,
6Li in a magnetic field. A Breit-Rabi calculation of the energy splitting of the lowest
hyperfine states is shown in the upper panel. The mutual scattering length between
the lowest three states changes in a magnetic field (due to a Feshbach resonance)
and is shown in the lower panel (based on data of [162]). Fermi-Hubbard systems
are typically realized at high magnetic fields around 650 G, while spin splitting for
detection is performed at low fields well below 30 G.

Glass cell

All final steps of the experimental sequence take place in a glass cell with maximal
optical access, as shown in Fig. 2.2. The full vacuum assembly, in which cooling and
manipulation of lithium atoms take place, can be found in [157]. Pre-cooled spin-
balanced atomic samples are transported into this glass cell, by trapping atoms in
the focus of a dipole trap and physically moving the focus of this trap into the cell.
The atoms are then handed over to a crossed dipole trap, which is projected from the
bottom through the microscope objective with numerical aperture (NA) of 0.5. The
cross trap uses laser light at λ = 1064 nm and vertically crosses the horizontal trans-
port beam to provide tight confinement in the xy-plane. In the next step, a strongly-
elliptical beam (light sheet) at λ = 780 nm strongly increases the vertical confinement.
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Figure 2.2: Preparation of individual atomic layers. a, At the final stage in the
experimental cycle, the atomic cloud is manipulated and detected in a glass cell
under ultra-high vacuum. The high-resolution objective (NA= 0.5) is used to take
single-site fluorescence images. A lens with a lower resolution is used for absorp-
tion imaging from the side. Two different vertical lattices, created by the interfer-
ence of red or green beams at angle α, can be used to confine atoms in a single
two-dimensional layer. b, Absorption images from the side, when atoms are loaded
into the large-scale (upper panel) or small-scale (lower panel) vertical lattice. By
transferring atoms into an elliptical dipole trap prior to lattice loading, all atoms
can be prepared in a single layer of the large-scale lattice.

This beam is tightly focused by a lens of focal length f = 40 mm from the side, which
enables a gaussian waist in the z-direction of 1.7µm. The light sheet squeezes the
vertical extension of the atomic gas to around 3µm.

Loading the vertical lattice

A quasi-2d gas is prepared in the next step. To this end, a vertical lattice with a long
spacing al

z = 6µm is turned on and adiabatically ramped to a depth of 100 El
R, where

Ei
R is the recoil energy of the respective lattice i. The lattice is created by interfering

two beams of λ = 1064 nm under an angle α = 10◦, as indicated in Fig. 2.2. Both
beams are transmitted through the walls of the glass cell at an angle of ∼ 27◦ in the
horizontal plane, which is not visible in Fig. 2.2. If the location of the light sheet falls
into a plane of the vertical lattice, atoms are successfully transferred into a single layer.
If the light sheet was not used before loading, multiple layers of the vertical lattice are
populated, see Fig. 2.2b.
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A second vertical lattice with a shorter spacing as
z = 3µm can be generated by in-

terfering two beams of λ = 532 nm also under an angleα = 10◦. In fact, the beams for
the short and long lattice are overlapped and guided by the same optics in a bichro-
matic setup. The two commensurable lattices, where 2 · as

z = al
z, form a superlattice,

which is described in detail in the next section. Once a single layer of the long lattice
is loaded, the atoms are transferred into the short lattice by adiabatically increasing
the short lattice depth to 50 Es

R and tuning one of its layers to coincide with the atomic
plane. The result is a quasi-2d gas, with a vertical trapping frequency of 12 kHz. The
radial xy trapping frequency at this point is set to a few hundred Hz by controlling
the strength of the cross trap.

Final evaporation

Evaporative cooling is the last preparation step. A strong magnetic gradient along the
y-direction tilts the potential experienced by the atoms and allows the hottest parti-
cles to escape. The magnetic offset field during the evaporation is 600 G and realizes
the Paschen-Back regime (decoupling of nuclear spin I and electronic angular mo-
mentum J). In this limit, both spin states experience an equal force from the magnetic
gradient in the same direction, which preserves the spin balance of the mixture. Once
a hot particle is ejected from the cloud, the system re-thermalizes at a colder temper-
ature than before. This re-thermalization process represents a limiting factor for the
cooling power of the evaporative process. With decreasing temperature, collisions be-
tween same-spin fermions are strongly suppressed and spin-polarized systems stop
thermalizing. Even in two-component fermionic mixtures, Pauli blocking leads to
a slower thermalization rate at quantum-degenerate temperatures [163]. Eventually,
constant heating rates, such as three-body losses or collisions with background parti-
cles, become larger than the cooling rate and place a lower bound on the achievable
temperatures.

It remains unclear, which aspect represents the limit to currently achievable
temperatures. The duration of the final evaporation used in this thesis was 5 s and
achieves temperatures around T/TF ∼ 0.1. It is puzzling that many related lithium-
based experiments in research groups end up at similar temperatures [54, 58, 60],
despite significantly different optical setups and evaporation sequences. A promising
route for reaching lower temperatures is sympathetic cooling with another, ideally
bosonic, species [164]. Unfortunately, the complexity of experiments with multiple
species increases significantly. The quest for colder samples is therefore more easily
tackled with other means, such as entropy redistribution [61, 165, 166].
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2.1.2 Lattices for simulation and detection

Physics lattice

Fermi-Hubbard systems are realized, by exposing the quasi-2d cold gas to an optical
lattice along the xy-direction. Such an in-plane lattice is created by interfering two
λ = 1064 nm beams for the x- and y-lattice respectively. The angle of interference
is chosen to obtain a lattice spacing of a = ax = ay = 1.15µm. All laser beams for
the xy-lattice are sent to the atoms from the bottom through the main microscope
objective. Projecting the lattice through such high NA optics has the advantage of a
very high positional stability of the laser beams on the atoms. On the other hand,
the high-resolution optics leads to corrugations of the optical potential on the atoms.
These defects most likely originate from defects on the optical elements (such as dust
or microscopic scratches on mirrors) before the objective and are imprinted onto the
optical potential by the high optical resolution. Careful cleaning of the optical path
keeps such defects at a minimum in this setup. Nonetheless, to fully mitigate such
problems in the potential landscape a new xy-lattice generation is currently being
designed.

In a typical procedure, the xy-lattice is turned on and linearly ramped to a final
depth of ∼ 7 Exy

R , such that the tight-binding limit is realized. The ramp duration is
usually chosen to be 100 ms. This time scale ensures the quantum system is adiabat-
ically transformed from a harmonically trapped gas to a Fermi-Hubbard system. In
reality, such a ramp can never be fully adiabatic, since energy gaps might open and
close within the many-body spectrum. Simultaneously to the lattice ramp, the mag-
netic offset field is linearly increased from 600 G to a final value of 650-700 G to real-
ize strong repulsive interactions. This corresponds to a typical final scattering length
of asc = 810-1660 a0, where a0 denotes the Bohr radius. Representative values for
achieved Fermi-Hubbard parameters are t/h ∼ 200 Hz, U/t = 8 and superexchange
J/h ∼ 100 Hz.

After the desired Fermi-Hubbard system is realized, the wavefunction is projected
onto the Fock basis of the lattice by non-adiabatically turning off the hopping. This
is achieved, by quenching the lattice depth to V ∼ 40 ER within less than a hopping
time (< 1 ms). To take single-particle resolved fluorescence images, atoms need to be
pinned by even higher lattice depths. Raman-sideband cooling requires the realiza-
tion of the Lamb-Dicke regime.

Pinning lattice

A unique feature of this experiment is the decoupling of simulation and detection.
There is an optical lattice for the physics and a dedicated lattice for pinning during
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Figure 2.3: Single-site resolved fluorescence imaging. a, To perform fluorescence
imaging, atoms are transferred from the physics lattice to the pinning lattice. The
pinning lattice has a much smaller spacing, which leads to an oversampling effect
and preserves the atomic position. In addition, parity projection can be avoided by
turning on strong repulsive interactions during the loading from physics to pinning
lattice. This forces double occupations on a physics lattice site to distribute into
different pinning lattice sites. Illustration taken from [157]. b, Sample fluorescence
image of a Mott insulator, obtained by Raman-sideband cooling. The pinning lat-
tice spacing is optically not resolved. In the center of the system, a few doublons
(sites with twice the signal) are visible, which demonstrates the absence of parity
projection.

detection. In this way, the pinning lattice parameters are tailored to the detection
process.

The pinning lattice (PL) consists of three retro-reflected lattices at λ = 1064 nm,
whose orientation is rotated compared to the physics lattice [49]. After the recently
implemented upgrade in 2019, each lattice reaches a power per beam of ∼ 30 W on
the atoms at a focused gaussian waist of w = 50µm. The generated lattice sites have
an on-site trap frequency up to 1.8-2 MHz. To obtain single-site resolved snapshots,
Raman-sideband cooling is applied to atoms in the PL to collect fluorescence photons
with the high-NA objective [49]. A sample image of a Mott insulator is shown in
Fig. 2.3b. The PL has a spacing of 0.532µm, which is significantly smaller than the
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physics lattice. Thus, the PL sites oversample the physics lattice sites, see Fig. 2.3.
By adiabatically loading the PL from the physics lattice in the presence of repulsive
interactions, parity projection can be avoided [49]. A double occupation consisting of
two spins on a physics lattice site is separated into two different PL sites. As shown
in Fig. 2.3, PL sites are optically unresolved, such that the two separated spins appear
as twice the fluorescence signal.

Since detection is performed in the PL, the physics lattice can potentially be opti-
mized for large and homogeneous systems. So far, the current physics lattice does not
particularly maximize homogeneity in this respect. The next subsection explores the
potential impact and limits of a physics-lattice optimization.

2.1.3 Limits of square optical lattices

The decoupling of simulation and detection has many advantages. It gives the physics
lattice much more freedom in terms of lattice structure, beam-shaping, and laser
source. In the following, the optimal design and general scalings of a square physics
lattice in terms of system size and homogeneity are explored. The maximum system
size is found to be independent of the choice of lattice spacing. With current commer-
cial laser sources, 2d Mott insulators with up to ∼ 106 atoms could be realized for
heavier elements and with up to ∼ 105 atoms for lithium.

The following derivations for homogeneity and system-size scalings will make
two assumptions:

• Fermi-Hubbard systems are realized at a physics-lattice depth of 9 ER.

• At maximum laser power, the physics lattice is always 40 ER deep (to allow for
a regime with frozen dynamics).

The homogeneity (or physical system size) of 2d Fermi-Hubbard systems in plain
square optical lattices is fundamentally limited by the radial harmonic confinementω,
which is caused by the gaussian-beam profile of the laser beams. The full Hamiltonian
contains the Fermi-Hubbard-part and the harmonic contribution as a function of the
radius R

Hho =
1
2

mω2R2. (2.1)

For the Mott-insulating regime, restrictions on system size caused by this trapping
potential are easy to understand. When the harmonic term at some radial distance
R becomes larger than the on-site repulsion U, it is energetically more favorable for
a particle to form a double occupation in the center. Therefore, Mott insulators can
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only extend over some maximum number of lattice sites N? because additional atoms
would fall into the center. In a doped system, the harmonic confinement competes
with the energy scale t and indirectly with J or smaller many-body energy gaps at
much lower temperatures. It is therefore highly desirable, to create optical lattices
with minimal harmonic confinement.

A useful quantity to estimate the homogeneity of a system is the ratio ρ between
the energy offset one lattice site away from the center R = a and the single-particle
bandwidth W = 8t. The smaller ρ, the flatter the optical potential. At U = 8t, the
maximum system size N? and ρ are related by

N? = π/ρ =
π16t

mω2a2 . (2.2)

Based on two assumptions, this equation can be expressed for any atomic species
in terms of maximum available laser power per beam P, the atomic mass m and the
real part α(λ) = Re(α̃) of the complex polarizability α̃. The first assumption con-
cerns the lattice depth, at which Fermi-Hubbard systems are realized. Fermi-Hubbard
systems need a sufficiently high lattice depth, which realizes the tight-binding limit.
Since the tight-binding limit is universal in units of the recoil energy, we choose to
consider Fermi-Hubbard systems at a fixed depth of V = 9 ER. Note that the recoil
energy ER = h2/8ma2 depends on the mass and chosen lattice spacing. The second
assumption states that the symmetric waist of lattice beams will always be adjusted,
such that at maximum power P a depth of 40 ER will be realized. Under these two
conditions, Eq. 2.2 can be transformed into (for a detailed derivation see appendix
A.1)

N?
9,40 = b ·α ·m · P , (2.3)

where b = (128(9)3/4e−6)/(45
√
πh2ε0c) is a constant, ε0 the vacuum permitivity and

c the speed of light. There are some important insights to Eq. 2.3, which are worth
spelling out.

Scaling with P

In 2d Fermi-Hubbard systems, the size N? scales linearly with laser power per beam
P and linearly with polarizability α. When engineering optical lattices, there is very
little freedom in the choice of laser wavelength and therefore in the control of α. The
best quality and highest power lasers are mostly available at 1064 nm. Azurlight Sys-
tems currently offers a 130 W fiber amplifier at this wavelength. As shown in Fig. 2.4a,
at this wavelength and power, Mott insulators with up to one million atoms could be
realized with heavy elements and on the order of 105 atoms with lithium. With this
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Figure 2.4: System-size scalings for 2d lattice simulators. a. The maximum Mott-
insulator size (U/t = 8) in square optical lattices as a function of available power
per beam for different fermionic species at a laser wavelength of 1064 nm and lattice
depth of 9 ER. This calculation assumes a separate lattice for detection, see text. b,
Off-resonant scattering rate from an optical lattice compared to the tunneling time
scale as a function of detuning from an atomic transition (two-level approximation).
The blue vertical line corresponds to the detuning of λ = 1064 nm from the main
D1 and D2 transitions of 6Li. The electronic ground-state polarizabilities at 1064 nm
(linear polarization) for fermionic (lithium, potassium, strontium, ytterbium) used
in these calculations are (270.8, 597.5, 237, 160) atomic units [167–171].

respect, current quantum gas microscope setups underperform by almost three orders
of magnitude because their simulation and detection lattices are identical. Under op-
timal conditions and dedicated engineering, extremely homogeneous systems could
be realized with a machine, where a separate physics and pinning lattice are used.

Scaling withα

If there was a way to choose the laser wavelength freely, Eq. 2.3 suggests using laser
light as resonant as possible with an electronic transition. In a two-level system, the
polarizability increases with smaller detuning ∆ according to

α = 2ε0c
3πc2Γ

2ω3
0∆

. (2.4)

A larger polarizability leads to higher efficiency in the conversion from laser power
to depth of the optical potential, which means larger beam waists can be used. The
price to pay is a higher off-resonant scattering rate Γsc ∝ I/∆2 of the atom from the
lattice light, c.f. Eq. 1.4. A useful quantity for this unwanted heating effect is the ratio
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between Γsc and the tunneling amplitude t at 9 ER. The smaller this ratio, the lower
the effective heating. As shown in Fig. 2.4b, in a 9 ER lattice the scattering rate scales
linearly withα and does not depend on the lattice spacing a, see appendix A.1. Since
a higher α means less intensity I is needed for 9 ER, the scattering rate scales like
∝ 1/∆ ∝ α at constant lattice depth. The heating rate for lithium atoms in a 1064 nm
lattice at 9 ER is five orders of magnitude smaller than the tunneling timescale. This
heating poses a fundamental limit on the lowest achievable temperature. This limit
can be traded for a higher or smaller achievable system size. In practice, high optical
powers are available at limited wavelengths, which only allows for a very discretized
choice ofα.

Scaling with a

The system size is independent of the choice of lattice spacing. When a larger lattice
spacing is chosen, the tunneling amplitude is smaller, but the waist of the beams can
be larger to reduce the harmonic confinement. Both effects cancel each other. The
lattice spacing therefore only sets the absolute energy scale of the Fermi-Hubbard
system, but not its size. In Fig. 2.5, the absolute tunneling amplitude and the corre-
sponding waist are shown as a function of the lattice spacing. The same relative ho-
mogeneity ρ can be achieved with small or large lattice spacings. There are, of course,
other considerations, which dictate the final choice of lattice spacing. Large spacings
simplify the optical resolution, but a pinning lattice might be limited to single-site
imaging within a fixed volume. A high absolute energy scale is furthermore desirable
to avoid heating from technical noise.

Scaling with m

Heavier atomic species lead to larger system sizes than lighter species (assuming the
same polarizability). This scaling originates from the smaller recoil energy for heavier
particles. Heavier elements yield a larger N?, but the price is a lower absolute hopping
amplitude.

This paragraph highlighted how the decoupling of detection and simulation
is a powerful feature, which enables very homogeneous systems in quantum gas
microscope setups. This technique still bears great potential and a new genera-
tion of physics lattices is underway to significantly improve the homogeneity of
Fermi-Hubbard systems on the MPQ machine. Imaging very large systems with
single-particle resolution is a separate topic, for which tailored detection cavities
might play an important role. But already a system homogeneity equivalent to
π/ρ = N? = 105 would dramatically improve the quality of the simulated system,
even if in the end only a smaller subsystem of e.g. 103 atoms is imaged with
single-site resolved detection.
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Figure 2.5: Scaling of tunneling amplitude in square optical lattices. a. Tunneling
amplitude in a square lattice of 9 ER depth as a function of lattice spacing for dif-
ferent fermionic species. The gray vertical line denotes the typical limit of optical
single-site resolution (∼ 0.5µm). The gray horizontal line marks an arbitrarily cho-
sen 5 Hz tunneling amplitude threshold. b, Gaussian-beam waist of 1064 nm lattice
beams, which optimizes the system size and satisfies a freezing condition (see text),
as a function of lattice spacing. Solid, dashed and dash-dotted lines correspond to
available laser powers of 1, 10 and 50 W.

2.2 Engineering optical superlattices

Two lattices along the same spatial direction with different, but commensurate, spac-
ings form a superlattice potential, see Fig. 2.6. This section highlights, how relative-
phase stability is of utmost importance for such lattices. A bichromatic in-vacuum
design of a vertical superlattice is presented, which achieves high relative-phase sta-
bility while maintaining full tunability.

Superlattices are interesting for multiple reasons. In this experiment, spacings of
the shorter and longer lattice are related by al = 2 · as. Such superlattices were pro-
posed as a route towards accessing colder temperatures of Fermi-Hubbard systems
through entropy engineering [172, 173]. Furthermore, the 1d superlattice with spin-
less particles realizes the paradigmatic Su-Schrieffer-Hegger (SSH) model with non-
trivial topological properties, which was initially introduced to explain the behavior
of polyacetylene [174]. Spinful versions of this model in the presence of interactions
and its extension to two dimensions represent exciting research avenues in the future.
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a b c

Figure 2.6: Superlattice potential. a, A superlattice is the combination of two dif-
ferent lattices with commensurable lattice spacings. Here, the long lattice (red) has
twice the spacing of the short one (green). The relative phaseϕr between the lattices
determines the pattern of the combined potential, which in the depicted case forms
an array of double wells with intra- and inter-double-well hopping amplitudes t1
and t2. b, A phase shift of one of the two lattices leads to a shift in ϕr. The ini-
tially symmetric double well is tilted by a detuning ∆. c, If both lattices experience a
phase shift with a fixed relationϕs/ϕl = 2,ϕr and therefore the superlattice pattern
is preserved.

2.2.1 Relative phase stability

The superlattice potential is given by

VSL = Vl cos2(πx/al +ϕl) + Vs cos2(πx/as +ϕs) (2.5)

and has four parameters in total. The long and short lattice depths Vl, Vs and phases
ϕl, ϕs. For this choice of definitions, the lattice phasesϕs, ϕl are related to the phase
difference of the interfering electromagnetic fields by ϕs = ϕE

s /2. The shape, i.e.
the topography of the potential, is controlled by the relative phase between the two
lattices

ϕr =ϕs − 2ϕl. (2.6)

Using x0 =ϕlal/π , the potential can be expressed as

VSL = Vl cos2(π(x− x0)/al) + Vs cos2(π(x− x0)/as +ϕr) (2.7)

The relative phase ϕr directly relates to the energy offset ∆ between neighboring
sites, see Fig. 2.6. For ϕr = 0 the potential resembles an array of double-well poten-
tials. As long as the phase relation of Eq. 2.6 stays constant, the superlattice shape is
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Figure 2.7: Double-well tunnelings and tilt. a, Wannier-function calculation of
intra- and inter-well tunneling amplitudes t1 and t2 for fixed depth of the short
lattice at Vs = 18 Es

R as a function of the long lattice depth Vl in a symmetric double-
well configuration. A deeper long lattice enhances intra-well tunneling and sup-
presses inter-well tunneling. b, Double-well tilt ∆ in units of intra-well tunneling as
a function of relative superlattice phase at fixed long-lattice depth of 100 El

R. Sym-
metric double wells are realized at ϕr = 0. Solid, dashed, dash-dotted lines corre-
spond to short lattice depths of 11, 15, 19 Es

R.

preserved. Ifϕr = const, the remaining total change in lattice phases merely leads to
a spatial translation of the fixed superlattice pattern, quantified by x0.

The intra- and inter-well tunneling amplitudes t1, t2 (see Fig. 2.6) are related to
the absolute depths of both lattices, their ratio and the relative phase. At zero large
lattice depth Vl = 0, the two tunneling amplitudes t1, t2 are equal. Upon increasing
the power of the large scale lattice in a symmetric double well ϕr = 0, t1 strongly
increases, while t2 decreases, see Fig. 2.7a. This effect enables an enhancement of t1 by
almost an order of magnitude and can be used to generate strongly-coupled wells or
bi-layer systems as discussed in the next sections. Note that this enhancement is partly
due to the long lattice pushing the two wells of the double well closer together. In the
limit Vl/Vs → ∞, only a single well exists and the double-well picture breaks down.
For a superlattice in double-well configuration at fixed lattice depths, the double-well
detuning ∆/t1 scales linearly with a change in the relative phase, see Fig. 2.7b. The
slope depends on the lattice depths and decreases for shallower short lattice depths
Vs.

Noise or spatial gradients ofϕr lead to a temporally or spatially varying phase δϕr
and, thus, to varying energy offsets ∆ between potential wells. There can be sources
of short-term noise on the time scale of the system dynamics and drifts of the experi-
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Figure 2.8: Sensitivity to relative phase noise. a. Wannier-function calculation of
the double-well detuning caused by a 1 mrad shift in relative phase away from the
symmetric case (ϕr = 0) in units of the intra-well tunneling as a function of the
long-lattice depth. For low depths, the double-well sensitivity initially increases.
For high depths, the intra-well tunneling enhancement dominates and stabilizes the
double well against relative phase fluctuations. b, Double-well detuning compared
to the inter-well tunneling as a function of long-lattice depth. The sensitivity of the
inter-well system continuously increases with higher lattice depths.

ment causing long-term noise. When phase-noise induced changes of tilts are on the
order of the hopping amplitude, the superlattice cannot be operated successfully. De-
pending on the application, the tilt from phase noise should, therefore, be compared
to t1 and/or t2.

The absolute amplitude of phase noise usually does not depend on the used lat-
tice depths, but originates from fluctuations of the environment. The conversion of
phase noise to fluctuating detunings ∆/t1 can be very different, depending on the ex-
act choice of lattice parameters. Therefore, it is worthwhile to investigate for which
settings a superlattice is the most susceptible to phase noise.

The double-well tilt induced by a 1 mrad phase change aroundϕr = 0 is shown in
Fig. 2.8. Different ratios and absolute depths of short and long lattice have a different
sensitivity. When starting with a short lattice and turning on the long lattice, the
intra-well and inter-well sensitivity to phase noise increases quickly. For the intra-
well system though, the enhancement of t1 scales much faster at some point than the
sensitivity of ∆ withϕr. As an effect, the sensitivity of the intra-well system decreases
for very high depths of the long lattice. A general property of the double-well system
is that a deeper short lattice always leads to a higher sensitivity for the intra- and
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inter-well system. The inter-well system sensitivity increases with increasing power
of either lattice. In several manipulation schemes (such as the ones used in this work),
the inter-well sensitivity is not relevant.

Requirements for phase stability δϕr vary between applications. Separating two
spins with a magnetic gradient to the left and right side of a double well requires
no coherent tunneling. As long as the strength of the magnetic gradient creates a tilt
much stronger than the tilt from phase fluctuations, spin splitting can be performed.
The spin-splitting sequence presented in this works is robust up to phase variations
of δϕr ∼ 300 mrad. For bilayer physics and charge pumping demonstrated in the
following sections, only the intra-well system is relevant. In that case, a phase stability
of δϕr . 25 mrad is sufficient to guarantee ∆/t1 < 1, see Fig. 2.7b. For a connection
from band insulator to Mott insulator [172] or for staggered systems the sequence
involves coherent inter-well tunneling. Therefore, to ensure ∆/t2 < 1 much better
phase stability on the order of a few mrad is required, see Fig. 2.8b. In this work,
a setup with δϕr ≤ 25 mrad is demonstrated. This is an upper bound and might
not be the actual limit of the implementation. Spatial inhomogeneities limited the
measurement resolution.

2.2.2 Bichromatic superlattices

Bichromatic superlattices grant passive protection of the relative phase from a fluc-
tuating environment. This is a direct consequence of the condition ϕs = 2ϕl. The
condition implies that if short and long lattice fluctuate at this ratio, the phaseϕr will
be preserved. In a bichromatic superlattice, the wavelengths for generating short and
long lattice differ by 2λs = λl. Changes in the environment alter the refractive index
by δn. The phase of a lattice is thus affected by δϕ ∼ δn/λ. The factor of two between
the wavelengths of the lattices therefore automatically ensures the phase stability con-
dition.

We consider the common choice λs = 532 nm and λl = 1064 nm. Both lattices
require the same interference angleα, since the factor of two in wavelength automat-
ically leads to a two times smaller spacing for the shorter wavelength. To optimize
stability, laser beams for both lattices can share the same optical path and elements. It
is therefore only necessary to generate a single bichromatic beam, which is then split
into two bichromatic beams. These two beams, representing two arms of an interfer-
ometer, are then directed and interfered at the position of the atoms. The only relevant
optical phase contributing to the absolute and relative phase depends on the path and
environment between the point of splitting and the position of the atoms.
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Figure 2.9: Relative-phase noise considerations (in air) for bichromatic setups. A
single bichromatic beam is split into two bichromatic beams, which are interfered
at the atom position to create a superlattice potential. The two bichromatic beams
form an interferometer with two arms of length L and L +∆L. Here we assume the
interferometer to be filled with air at room conditions (23 K, 1 bar, 50 % humidity).
a, Sensitivity of ϕr to local fluctuations in a single arm. b, Sensitivity of ϕr to a
change of the global environment affecting both arms. Refractive index changes
were calculated based on [175] and can be found in A.2.

Stability in air

The dispersive properties of a medium break the perfect stability of bichromatic su-
perlattices and introduce a residual sensitivity to the environment. Fluctuations like
turbulences, pressure waves, or thermal gradients in optical setups can therefore lead
to variations of the relative phase. However, compared to monochromatic superlat-
tices, the induced phase noise in air is strongly suppressed in bichromatic setups.

To analyze the impact of environmental fluctuations, let the length of the two inter-
ferometer arms be (L, L+∆L). The refractive indices for the short or long wavelength
in the ith arm are denoted by ns

i , nl
i. If the difference in refractive index between both

arms for short or long lattice is δns,l
12 = ns,l

1 − ns,l
2 respectively, then

ϕr/π = (δns
12 − δnl

12)L/λs + (ns
2 − nl

2)∆L/λs. (2.8)
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This expression can be used to demonstrate stability features of bichromatic super-
lattices. In the following, the medium is taken to be air to exemplify the behavior in
different situations, as summarized in Fig. 2.9.

For a balanced interferometer (∆L = 0), absolute (global) changes in the envi-
ronment affecting both arms equally (δn12 = 0) do not affect the relative phase, no
matter the medium. However, local changes in a single arm of the interferometer do
have an effect, see Fig. 2.9a. One example is small displacements δL through moving
elements, such as mirrors. At room conditions in air, ϕr changes by 24 mrad for a
change in optical path length in one arm of one millimeter. For small displacements
δL � 1 mm the impact on the relative phase is therefore small. If the temperature,
pressure, or humidity of air change in a small region of length 10 cm in one of the
arms, the relative phase is weakly affected. For a one Kelvin increase in temperature,
ϕr changes by 7.6 mrad in bichromatic setups, whereas in a monochromatic setup the
change is 271 mrad.

For an imbalanced interferometer (∆L 6= 0), the same stability conditions for local
fluctuations apply as in the balanced case. Furthermore, global changes also impact
the relative phase, as summarized in Fig. 2.9b. The path imbalance ∆L makes the
relative phase susceptible to global drifts in temperature, pressure or humidity, albeit
with small sensitivity. As an example, an imbalance of ∆L = 56 cm is considered.
This corresponds to the setting realized for the vertical in-vacuum superlattice, as de-
scribed in the upcoming section. A global temperature increase of one Kelvin leads to
δϕr of 42 mrad. This means, even in the presence of extreme global fluctuations of the
environment, a bichromatic in-air superlattice should enable a robust spin-splitting
sequence in this experimental setup (δϕr < 300 mrad).

The considered in-air scenarios demonstrate that under laboratory conditions in
a well-controlled environment, bichromatic superlattices are ideally suited to ensure
high stability of ϕr. In vacuum, the perfomance of bichromatic implementations in-
creases even further.

Handling bichromatic beams

To design bichromatic optical setups several complications need to be overcome.

Beam shaping of bichromatic beams is fundamentally limited by the behavior of
gaussian beams. To keep foci and divergence of both colors the same, the beam waists
of the long and short lattice beam need to fulfill the requirement wl =

√
2ws. This is

particularly important for optical paths L/zR ≥ 1, where zR is the Rayleigh range of
either color.

The dispersion of glasses used for lenses leads to chromatic shifts in beam shap-
ing. At low optical intensities, multi-component lenses can be used to construct achro-
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matic lenses, which mitigate this effect. Available achromatic lenses always contain
glasses with strong thermal lensing properties, most severe for short wavelengths
such as λ = 532 nm. In particular with green light and at the intensities required for
optical lattices, only fused silica should be used as a material. Therefore, no appropri-
ate achromatic lenses exist.

Precise polarization control of bichromatic beams at high optical intensities is not
straightforward, due to the lack of zero-order waveplates. Besides, every transmission
through a strongly dispersive element, such as fused silica used for lenses, windows,
or polarizing beamsplitters, represents a source of mutual misalignment between the
two colors. In particular, elements with wedged surfaces should be avoided, since
they introduce a relative angle between the two colors which is difficult to reliably
compensate afterward.

2.2.3 Delay line

On the one hand, superlattices should be built with an extremely stable phase ϕr.
On the other hand, there needs to be a knob to tune ϕr in an experiment, ideally
dynamically. Three approaches to enable controlled tuning ofϕr are considered, while
only the delay-line concept was eventually implemented in the experimental setup.

The first solution is to place a rotatable dispersive glass plate with planar surfaces
into one of the interferometer arms. Depending on the thickness of the plate, a rotation
leads to a shift ϕs 6= 2ϕl and as a trade-off introduces an additional spatial offset
between the two colors in this arm. We do not pursue this technique in this work
because the required physical movement limits the speed and precision of the phase
control. In principle, this technique is well suited for a coarse and slow adjustment of
ϕr and might be pursued in the new generation of xy-superlattices.

A second approach is to place an electro-optical modulator (EOM) in one of the in-
terferometer arms. The basic idea is to apply an electric voltage V to the EOM crystal
and to control the relative phase by changing the refractive index through the linear
electro-optic effect [176, 177]. This technique is not as straightforward as it sounds.
The applied voltage alters the refractive index of both colors by the same amount
δns = δnl ∝ V. But from Eq. 2.8, this will not affect ϕr. This can be remedied, by
using orthogonal polarizations for the two colors. The EOM can be engineered to
change the refractive index only along one polarization axis, which would then al-
low control ofϕr. But as pointed out in the previous section, polarization control for
bichromatic beams is complicated. Furthermore, typical EOM crystals do not with-
stand high optical intensities and can suffer from severe thermal lensing or optical
corrugations. In an initial design for the bichromatic superlattice presented in this
work, such an EOM-based control was tested. As documented in [178], the required
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high voltages V ∼ 0.1-1 kV were found to cause problematic instabilities in the used
potassium dideuterium phosphate crystal (custom EOM from Qubig), if applied for
durations longer than ∼ 100 ms.

The last approach, which is eventually implemented in this work, is based on a
heavily imbalanced interferometric setup. One arm propagates for an extra optical
path ∆L, referred to as the delay-line length. When the optical frequency ν of, for
example the green lattice, is changed by ∆ν, the underlying lattice acquires a different
phase ϕs and the spacing as changes. As long as ∆ν/ν � 10−5, the lattice spacing
mismatch with al induces a spatial gradient of the relative phase less than 1 mrad per
100 sites and can be neglected. The shift in relative phase caused by this frequency
shift, on the other hand, is sizable

∆ϕr = π · ∆ν · ∆L/c. (2.9)

A major advantage of this technique is the absence of physically movable elements
in the optical beam path and the high accuracy and speeds achievable in optical
frequency control. As a trade-off, ∆L introduces sensitivity to drifts and noise in
the global environment of the interferometric setup as described before and seen in
Eq. 2.8. Furthermore, a high dynamical tuning range of ∆ν to keep ∆L small is chal-
lenging to achieve.

2.2.4 A vertical superlattice

A bichromatic superlattice with a delay-line technique for controllingϕr was built into
the experimental setup in 2019. To achieve maximal phase stability, a dedicated in-
vacuum design was developed. Almost the entire interferometric path and its optics
are located in an evacuated aluminum chamber. Two Master students, M. Höse and D.
Bourgund, significantly contributed to engineering this lattice. Initial developments
of the laser system and exploration of techniques are documented in [178]. Details on
the final implementation and the design of the vacuum setup are described in [179].
The most important features are outlined below.

Laser source and frequency shifting

The laser system requires ∼ 8 W of a Mephisto MOPA system (Coherent) at 1064 nm.
As shown in Fig. 2.10, around 7 W are used for the long lattice. For the short lat-
tice ∼ 1 W are split off and sent through a frequency shifting module. This fully
fiber-coupled module uses two acousto-optical deflectors (Gooch&Housego, AOD
4225-2) with extremely large single-pass bandwidth of 130 MHz and center frequency
225 MHz in a double-pass configuration. The output frequency of this module, there-
fore, obtains a constant offset and can be tuned by > 400 MHz, which in combination
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Figure 2.10: Laser setup and phase control. a, Around 8 W of 1064 nm light are
used as an input for the bichromatic superlattice setup. 7 W are used for the long-
scale lattice. 1 W is sent to a frequency-shifting module, which enables tunability of
the frequency by up to 400 MHz. A fiber amplifier re-amplifies the power to 40 W. In
a SHG module, around 12 W of 532 nm light are generated. A bichromatic beam is
obtained by overlapping both colors on a dichroic mirror. The bichromatic beam is
coupled into an evacuated setup, where two bichromatic arms for the superlattice
are generated and launched onto the atoms. The path-length difference is ∆L =
56 cm. b, The 400 MHz shift afforded by the shifting module enables tuning of ϕr
in a range of 1.5 π .

with a ∆L = 56 cm delay line setup enables a tuning range of ∼ 1.5 π of the superlat-
tice phaseϕr. The remaining power of the light after the AOD setup is around 40 mW
at the fiber output and varies, depending on the frequency settings of the AODs.

The output of the frequency-shifting module seeds a fiber amplifier (Azurlight
Systems), which re-increases the power to 40 W. Fiber amplifiers have to remain
seeded at all times (during operation), which means the AODs inside must never stop
diffracting. This demands a frequency drive with always-on output at an appropriate
frequency, i.e. no micro shutdowns are allowed during frequency changes. Frequency
stability and linewidth of the RF drive have a direct impact on the relative phase
stability. Since the RF drives two AODs in double-pass configuration simultaneously,
the phase sensitivity with respect to the RF frequency is 2 · 2 · 12 mrad/MHz. This
slope of 48µrad/kHz means a stability and linewidth < 20 kHz of the RF drive is
required for an impact on δϕr by less than 1 mrad. The current implementation uses
a frequency generator from Stanford Research Systems (SG384) in external voltage
bias mode in the GHz range, which is mixed down to the 200 MHz scale with a fixed
frequency source from an Agilent E4432B.

More than 12 W of 532 nm light is generated from the 40 W at 1064 nm in a
single-pass second-harmonic generation (SHG) through a periodically-poled Mg-
doped stoichiometric LiTaO3 crystal (length=30mm, 1◦ angle, Oxide). Peak powers
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of > 14 W are possible with optimized beam waist and alignment, but long-term op-
eration showed 10-12 W is more reliably achieved. Neglecting the frequency-shifting
module, SHG ensures perfect commensurability λl = 2 · λs of the superlattice. The
SHG module also doubles the frequency shift of the AOD setup.

The red (1064 nm) and green (532 nm) light are separately fiber-coupled and in-
tensity stabilized. For the green light, a photonic crystal fiber (NKT, LMA-PM-15)
with 5m length is used, while the red light currently uses a fiber (Schäfter-Kirchhoff,
PMC-E-980) with an extra-large core. On the main experimental table, both colors are
overlapped to form a single bichromatic beam with a dichroic mirror.

Evacuated lattice setup

An aluminum chamber with a removable lid encloses the optical setup and most of
the optical path relevant for the bichromatic superlattice, see Fig. 2.11. The entire
chamber is continuously pumped by a membrane pump (Pfeiffer, MVP 020-3 AC) to
maintain a constant weak vacuum (< 1 mbar). The pump is connected to the cham-
ber via several meters of plastic tubes. No measurable effect of possible vibrations,
originating from the continuous pumping, on the phase stability was found. Without
pumping, the vacuum lifetime is on the order of a few days.

The single collimated bichromatic beam is coupled into the chamber through an
anti-reflective (AR) coated fused silica window. The beam is subsequently divided
into two bichromatic beams, using a non-polarizing 50 : 50 beamsplitter (NPBS). The
splitter consists of a fused silica substrate and a tailored narrow-band dielectric coat-
ing. Dual-band mirrors guide the bichromatic beams through the chamber with a
∆ = 56 cm delay line length for one arm. This length yields a dynamic tuning range
of ϕr by ∼ 1.5 π . A spatial offset between both colors within a bichromatic beam is
inevitably introduced by the transmission through dispersive material under an an-
gle. The strongest displacement of order ∼ 10µm is introduced by the experimental
glass cell, the beam splitter, and the output windows. To compensate for this effect,
AR-coated planar fused-silica substrates are placed in the beam paths under specific
angles.

Each arm is focused onto the atoms with an achromatic lens of focal length f =
400 mm (Thorlabs, AC254-400-B-YAG, custom V-coated). Beam sizes on these lenses
are kept large enough to keep thermal lensing to a minimum. The collimation of
each color before their combination was optimized, such that both foci are as close as
possible to the atomic position. The designed beam waists at the lattice position for
green and red are ∼ 90µm and ∼ 130µm, respectively. 50 mm after these achromatic
lenses, a f = 350 mm cylindrical lens in each arm prevents the waist in the horizontal
plane from focusing. This creates strongly elliptical bichromatic beams. The green
and red beams have horizontal waists of∼ 600µm and∼ 900µm, respectively, which
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Figure 2.11: In-vacuum implementation of a bichromatic superlattice. a, A bichro-
matic beam (In) enters a closed aluminum box (lid was removed for the photo). The
optics inside are under vacuum and realize beam splitting, shaping, and launching
onto the atoms (Out). The beam-path difference between both arms within the box
is 56 cm. b, A spectroscopic sequence measures the width of phases, for which a res-
onant transfer between two layers of the superlattice occurs in the weak-coupling
limit. The lorentzian linewidth (solid black) of 25(7)mrad represents a worst-case
value for the short-term stability, see text. c, The long-term phase stability of the
transfer resonance was tracked in time. Drifts on the order of 10 mrad are visible.

leads to a vanishing contribution to the harmonic confinement in the xy-plane.

After both lenses, two externally tunable mirrors per arm launch the bichromatic
beams onto the atoms. Mirrors with pico-motors (Newport, picomotor piezo optical
mount 8885) have a large tuning range, but suffer from hysteresis. Classical piezo
mirrors (Thorlabs, Polaris-K05P2) have a small tuning range, but can be used with
zero hysteresis. In the current implementation, the short arm is equipped with two
picos and the long arm with two piezos. The pico motor can be used for large steps
while scanning with the piezo mirror ensures the possibility to always come back to
the initial starting position.

A mutual opening angle between the bichromatic beams ofα = 10◦ creates a short
and long lattice spacing of as = 3µm and al = 6µm. Around 15 cm before reaching
the atoms, the beams exit the evacuated chamber and travel the same distance in free



52 2. A bilayer quantum gas microscope

space. The out-coupling windows are AR coated fused silica substrates, which are
glued with vacuum-compatible glue (TorrSeal) onto holes in the aluminum frame of
the chamber.

Characterization

We characterized the vertical bichromatic superlattice with the atomic system, see ap-
pendix A.3. Enhanced intra-well tunneling amplitudes of up to t1/h = 876(1)Hz
were measured in a Rabi-flopping sequence. Upper bounds for relative-phase fluc-
tuations in this setup were obtained with a spectroscopic sequence, as described in
appendix A.3. The (short-, long-) term δϕr was found to be better than or equal to
(25, 10)mrad, see Fig. 2.11b,c. Spatial potential inhomogeneities from other optical
traps and residual mutual misalignment of the short and long lattice limited the mea-
surement resolution for these upper bounds.

Stability of the absolute phase

In particular for vertical lattices, an additional requirement is long-term stability of
the absolute lattice phase. A stable absolute vertical position is necessary for high-
resolution microscopy of individual layers. In contrast to the relative superlattice
phaseϕr, the absolute phase is not passively protected and therefore sensitive to en-
vironmental changes of the imbalanced (∆L 6= 0) interferometric setup.

Peltier elements and temperature sensors are mounted on the outside of the evac-
uated chamber to actively stabilize the absolute temperature of the lattice setup with
a temperature controller. Furthermore, the absolute frequency of the Mephisto seed
light at 1064 nm drifts. The finite delay line causes a conversion of such frequency
fluctuations into changes of the absolute lattice phase (note that ϕr remains unaf-
fected). We use this effect to our advantage by biasing the temperature setpoint of the
Mephisto laser, which changes the absolute frequency of the light. This temperature
bias gives us a knob for slow feedback on the absolute lattice phase. We determine
the vertical position of layers every ∼ 3 minutes during operation with absorption
images from the side. This information is then used to feedback onto the temperature
of the Mephisto seed. These measures enable consistent data taking over several days
in a thermalized setup.

2.3 Charge pumping for bilayer microscopy

Microscopy of multilayer systems is extremely difficult if atoms are tightly spaced
compared to the imaging wavelength. When the fluorescence light of different dense
layers cannot be suppressed, their combined signal renders a reconstruction of the
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underlying occupations challenging. For this reason, quantum gas microscope exper-
iments are normally performed on monolayers.

Several approaches have tried to resolve multilayer-imaging difficulties, but a
high-fidelity and species-independent method for fermionic atoms is lacking. If scat-
terers are very dilute, the layer an atom is located in can be identified by the spatial
extent of the collected light [180–182]. If the atomic species permits the suppression of
fluorescence from individual layers during imaging, a potential solution was demon-
strated for bosonic rubidium in [141].

Here, we demonstrate a technique for species-independent, high-fidelity, and ro-
bust microscopy of bilayer systems. The vertical bichromatic superlattice is employed
to realize a charge pump, which increases the distance between two initially 3µm sep-
arated layers to 21µm. The large separation enables independent microscopy of each
layer. At a distance of 21µm, the out-of-focus layer contributes only a weak and ho-
mogeneous background, due to the shallow depth of field of our high-NA imaging
system.

2.3.1 Charge pump

Charge pumping can be intuitively understood with a single particle in a double well,
see Fig. 2.12a. The double well can be represented as a two-level system, whereby the
left (|L〉) and right well (|R〉) represent the two possible states. A double-well tilt ∆
creates an energy difference between both states. The intra-well tunneling tz = t1
corresponds to a Rabi coupling between the left and right state, which changes the
eigenstates of the system. In the resonant case ∆ = 0, the eigenstates |G〉 , |E〉 are
equal superpositions of the atom in the left and right well. In the far detuned limit
|∆/t1| � 1, |L〉 and |R〉 become the eigenstates. In analogy to a Landau-Zener transfer
in two-level systems, a passage from ∆/t1 � −1 to ∆/t1 � 1 transfers an atom
initialized in one well to the opposite well. The condition for a successful transfer
is adiabaticity with respect to t1. Therefore an atom initialized in the left/right well
experiences transport to the right/left upon the same modulation of parameters.

In an infinite array of double wells in a non-interacting many-body system, a pro-
cess similar to the adiabatic transfer in the single double well can take place. In certain
cases, this is referred to as topological charge pumping [183–185], which was initially
introduced by Thouless [186]. The two states |G〉, |E〉 of the two-level picture now
become the ground band G and excited band E, which have opposite Chern number
[184, 187]. These bands cause transport in opposite directions upon the same adia-
batic passage of the double-well tilt ∆. This is referred to as geometric pumping and
lies at the heart of topological charge pumping in adiabatically time-modulated su-
perlattices [183, 185, 188, 189]. As shown in Fig. 2.12b, an atom initialized in G can
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Figure 2.12: Bilayer charge pump. a, Energy level diagram in a single double well
with tunnel coupling tz as a function of the detuning ∆. Upon an adiabatic passage
of the detuning, a particle initialized in the left/right well undergoes transport to
the right/left well. b, In an infinite array of double wells, an adiabatic time-periodic
modulation of the superlattice parameters can be used to transport atoms initialized
in opposite wells into opposite directions. c, Absorption images from the side at
different pumping steps for a bilayer system. The two initially unresolved adjacent
layers separate by 6µm for every pumping step.

be transferred to a neighboring well by adiabatically changing the energy offset ∆ be-
tween the wells at a constant intra-well tunneling amplitude tz. For the same ramp,
an atom in E will be transported to a neighboring well in the opposite direction. Per-
forming j such adiabatic pumping steps can be used to separate two initially adjacent
layers (separated by as) by large distances as + jal. In Fig. 2.12c, charge pumping of a
bilayer system with up to three steps is shown with absorption images from the side.
The initially unresolved and adjacent layers increase their separation by one large
lattice spacing al after each step and become well resolved.

A single pumping step is not the same as a closed loop in parameter space. Thou-
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less charge pumping refers to an adiabatic and closed loop. The experimentally im-
plemented sequence differs from this strict definition and pump parameters were op-
timized for high-fidelity transport.

The sequence to separate a bilayer system with initial spacing of 3µm closely re-
sembles Fig. 2.12b. The current procedure contains three pumping steps and is per-
formed within less than 400 ms, during which the motion in the xy-plane is frozen
out (Vx,y = 43 Exy

R ). The dynamic tuning range ofϕr allows realization of two distin-
guishable symmetric double-well configurations at phases ϕ1 and ϕ2 = ϕ1 + π . To
initialize the first pumping step, short and long lattice depths are ramped to 49 Es

R and
100 El

R respectively. If the bilayer system was created atϕr 'ϕ1,ϕr is ramped within
5 ms fromϕ1 toϕ2 −θ/2, where θ = 0.15 π . Then the intra-well tunneling amplitude
tz is turned on, by ramping the short lattice down to 11 Es

R in 20 ms. The first pump
is performed by sweeping the phaseϕr within 3 ms by an amount θ across the sym-
metric configurationϕ2 to a final value ofϕr = ϕ2 +θ/2. During this phase sweep,
the transport of atoms to opposite adjacent layers occurs. Eventually, the short lattice
is ramped back to 49 Es

R and the next pump is performed at ϕ1. Every subsequent
pumping step is performed similarly at an alternating double-well configuration ϕ1
or ϕ2. These parameters were optimized for highest overall pump fidelity. Every
pumping step separates the two initial layers by an additional distance al = 6µm.
Three pumps are used to reach a separation of 21µm.

2.3.2 Bilayer imaging

A separation of 21µm between two layers enables individual single-site resolved mi-
croscopy of each layer in our setup.

To demonstrate bilayer imaging, a bilayer Mott insulator was prepared and im-
aged. To this end, atoms were prepared in a single layer of the long vertical lattice
and harmonically confined in the xy-direction. At fixed superlattice phaseϕr = 0 for
a balanced double well, the short lattice was ramped to a depth of Vs = 19 Es

R while at
the same time the xy-lattice was ramped to Vxy = 11 Exy

R . These lattice depths realize
a ratio between the tunneling amplitudes of tz/t = 1.3. The interaction strength was
set to U/t ' 50. The motion of atoms was then quenched rapidly, by ramping to
lattice depths Vs = 50 Es

R and Vxy ' 40 Exy
R .

After three charge pumps, two successive fluorescence images were taken in the
pinning lattice, as shown in Fig. 2.13. The imaging focus was adjusted from one layer
to the next between the two images, by using a piezo-driven closed-loop objective
scanner. In each image, the other layer contributes only a weak and homogeneous
background, since the distance from focus is large compared to the ∼ 3µm depth
of focus of the imaging system. The background in each of the two images is neg-
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Figure 2.13: Bilayer microscopy. a, The two layers of an initially coupled bilayer
Mott insulating system are separated by 21µm in three charge-pumping steps. b,
c, The large separation between both layers enables independent site-resolved mi-
croscopy of both layers in the pinning lattice by shifting the focus of the microscope
objective between two subsequent images. d, e, Histogram of the counts per lat-
tice site for each layer in a measurement run after deconvolution. Solid and dashed
black lines are gaussian fits to the peaks of single and zero occupation. Vertical
dashed gray lines denote the threshold for single and double occupation.

ligible, such that the previously used monolayer reconstruction algorithm [159] can
be applied. Holes and occupied sites can be distinguished with 99.4 % fidelity, see
Fig. 2.13d,e. The exposure per image was 2 s and is required to guarantee stable im-
age quality.

There are possible routes to reduce the required exposure time in future exper-
iments. Increasing the number of pumping steps and therefore a larger separation
between layers can significantly boost the contrast between in- and out-of-focus lay-
ers. More laser power in Raman-cooling beams could enable a higher fluorescence
rate. Finally, and probably most complicated, a second objective from the top would
allow simultaneous imaging of both layers. With NAs higher than the 0.5 used here,
a much more shallow depth of field would require less pumping steps.
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2.3.3 Pump fidelity

To characterize how well the charge-pumping process preserves the physical system,
several benchmarks were performed.

The probability η for a successful adiabatic transfer of an atom per pumping step
was measured. Atoms were initialized in a single layer and the average total number
of atoms in a target layer was tracked as a function of j pumping steps j ∈ [0, 3, 6, 9].
To avoid leaving the cooling region of the pinning lattice, the pump direction was
reversed after j = 3. As shown in Fig. 2.14, a fit of the data to the exponential η j

yields a high single-pump efficiency of η = 0.996(1).

The main limitations for η are the vertical harmonic confinement and vertical po-
tential corrugations, originating from the current xy-lattices. The spatially changing
potential landscape causes different conditions for both pumping directions with an
increasing number of pumping steps, such that the optimal pumping parameters for
opposite directions start to differ strongly. This is one of the reasons, why pumping is
currently restricted to j ≤ 3. Another reason for the limit to 21µm is the finite cooling
region available, which is set by the pinning lattices and their waists of 50µm.

The xy-motion of atoms is frozen out during the pumping procedure. To confirm
that the density and its fluctuations of the initial physical system are preserved, the
properties of a monolayer system with and without pumping were compared. The
excellent agreement found in appendix A.4 indicates the conservation of all relevant
observables. Furthermore, the strong antiferromagnetic correlations measured with
an extended method, as presented in one of the following sections, demonstrate the
high fidelity of the bilayer-imaging technique.
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Figure 2.15: Bilayer Fermi-Hubbard
systems. Fermions can hop between
neighboring sites between layers with
amplitude tz and within a layer with
amplitude t. The vertically-summed
occupations across both layers can be
represented as the occupation of a su-
per site. As shown in this snapshot,
the occupation of individual layers can
strongly fluctuate, while the super-site
occupation shows a suppressed fluctu-
ation. Such a reduction in super-site
fluctuations indicates insulating behav-
ior and is expected in the strong cou-
pling regime tz/t� 1.

2.4 Bilayer Fermi-Hubbard systems

High-Tc materials often consist of weakly-coupled bi- or even tri-layers. The critical
temperature was found to increase with an increasing number of layers and this lay-
ered structure is considered an important ingredient to explain several experimental
features [13, 190, 191]. Bilayer imaging enables exploration of the microscopic physics
of bilayer Fermi-Hubbard systems. This section gives a brief introduction to the pa-
rameter regimes accessible with the experimental setup. In addition to the bilayer
Mott insulator from the previous section, snapshots of a bilayer band insulator and
a dimer Mott insulator are presented. This demonstrates that also strong inter-layer
couplings tz/t � 1 can be realized to study the effect of layered structures on the
competition between magnetism and doping with fully tunable couplings in the fu-
ture.

The bilayer Fermi-Hubbard model is obtained by vertically coupling two 2d
Fermi-Hubbard systems with a nearest-neighbor hopping amplitude tz between
layers, see Fig. 2.15. This model is the most basic attempt to capture the physics of
layered materials and it could so far be studied numerically [192–199].

Most interestingly, weakly coupled doped Fermi-Hubbard layers tz < t might
have a factor ∼ 2 higher Tc, as compared to uncoupled layers [196, 198]. The bilayer
Fermi-Hubbard model and its two Fermi surfaces were also proposed as an approach
to interpolate the physics from cuprates to pnictides [200].
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At half filling and strong repulsive interactions, a Mott insulator emerges with
antiferromagnetic spin couplings between nearest-neighbor sites. In the Heisenberg
limit, the vertical tunneling amplitude tz drives a quantum phase transition from an-
tiferromagnetic long-range correlations at Jz/J < 2.53 to a disordered phase at Jz/J >
2.53 [201–203]. The critical tunnel-coupling therefore corresponds to tz/t ' 1.6. This
transition connects to a metal to band insulator transition at weak interactions, which
was numerically explored in [192, 199]. In the case of weak interactions and at strong
tunnel couplings tz > t, a dimerization process takes place, which turns a half-filled
system into an insulator. This dimerization phenomenon is relevant for oxide het-
erostructures [204] and is considered an important building block of 2d organic salts,
where the dimerization leads to the formation of effective 2d triangular lattice systems
[205, 206].

In the experiment, bilayer Fermi-Hubbard systems can be realized by creating a
vertical double-well potential with an enhanced intra-well coupling tz = t1 and sup-
pressed inter-well coupling t2 = 0. Particles can therefore only hop within and be-
tween exactly two layers.

2.4.1 Band insulator

A bilayer system can turn into an insulator at half filling without interactions. This
state emerges through dimerization when tz/t > 4 and is called a band insulator [192,
199]. Similar to other fermionic band insulators at unit filling, the driving mechanism
is the Pauli-exclusion principle.

In a non-interacting bilayer system, particles have a bandwidth W = 8t within a
single layer. When the tunnel coupling tz is sufficiently strong, two vertically nearest-
neighbor sites form a super site with two local orbital-like states. These orbital-like
states correspond to the symmetric and antisymmetric superposition of the upper and
lower layer, see Fig. 2.16a. The energy difference between the two states is 2tz. In the
extreme case of 2tz > 8t, the energy splitting of the two orbital states exceeds the
inter-layer bandwidth.

At half filling and in the limit 2tz > 8t, one two-dimensional band of width 8t is
completely full and the other band, separated by 2tz, completely empty. The bilayer
system, therefore, transforms into an insulating quasi-2d system. Each fermion is
fully dimerized between the two layers. The system can be thought of as a 2d lattice
of super sites, on which each particle occupies the lower orbital. Since there are two
spin states available, the band insulator has exactly two particles localized on a super
site.

An experimental snapshot of a band insulator is shown in Fig. 2.16b,c. The lattice
depths in this setting were Vx = Vy = 11 Exy

R , Vs = 12 Es
R and Vl = 105 El

R. The scat-
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Figure 2.16: Bilayer band insulator. a. At strong inter-layer coupling tz/t > 4 and
weak interactions, atoms hybridize between both layers. A single atom occupies the
sites of both layers at the same time and another same-spin atom cannot hop on any
of those sites because the energy cost 2tz > 8t = W is higher than the single-particle
bandwidth W in a 2d layer. b,c, Bilayer-resolved snapshot of a band-insulating
state. Individual layers show strong fluctuations in occupations. d, The sum layer
reveals a core of supersites with fixed occupation of two (two spin states), indicating
band-insulating behavior.

tering length was asc = 137 a0, such that 2tz = 1246 Hz, U = 320 Hz, 8t = 760 Hz.
The occupation in each layer fluctuates strongly, as if the system was in a metallic
state. But the super-site occupation reveals the strong correlation between both lay-
ers. Already the single snapshot features suppressed density fluctuations in its central
super-site core.

2.4.2 Dimer Mott insulator

In the presence of strong inter-layer coupling 2tz > 8t and strong interactions U > 8t,
dimerization and repulsion lead to the emergence of a quasi-2d Mott insulating state
at quarter filling. The resulting state is referred to as dimer Mott insulator [205, 206],
whose charge gap is determined by a combination of both mechanisms [207]. Similar
to the band-insulating state, the 2d system is comprised of super sites and particles
in the lower orbital on each site, see Fig. 2.17a. The strong repulsion prevents two
opposite spins to dimerize on the same super site.
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Figure 2.17: Dimer Mott insulator. a, At strong inter-layer coupling tz/t > 4 and
strong repulsive interactions U/t > 8, atoms hybridize between both layers, similar
to the bilayer band insulator. Hybridization prevents same-spin atoms to occupy the
same supersite, while the strong repulsion does not allow opposite-spin atoms on
the same supersite. c, d, Bilayer-resolved snapshot of such a dimer-Mott-insulating
state. Individual layers show strong fluctuations in occupations. d, The sum layer
reveals a core of supersites with fixed occupation of one, indicating insulating be-
havior.

A snapshot of a dimer Mott insulator is shown in Fig. 2.17b,c. The lattice depths
in this setting were Vx = Vy = 11 Exy

R , Vs = 12 Es
R and Vl = 105 El

R. The scattering
length was asc = 2000 a0, such that 2tz = 1246 Hz, U = 4692 Hz, 8t = 760 Hz. The
system features metallic fluctuations of occupations in the individual layers. How-
ever, in the combined super-site system the local suppression of fluctuations is visible,
see Fig. 2.17d. In the central core super sites have a fixed occupation of one.

Conclusion

The novel vertical superlattice setup and its application for bilayer microscopy extend
the realm of quantum simulation to layered structures. The presented states demon-
strate the access to tunable bilayer systems, which enables future studies of the quan-
tum phase transition at half filling [201] or the competition of magnetism and doping
in bilayer systems [196, 198].
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2.5 Spin and density resolution for a monolayer

Resolving the density and spin information (full resolution) in 2d cold-atomic Fermi-
Hubbard systems is highly desirable. Fully-resolved static [57, 58] and dynamic stud-
ies [69] of the spin-charge separation phenomenon in 1d demonstrate the unique ob-
servables and capabilities afforded by the access to complete information.

Traditional quantum gas microscopy lacks the ability of full resolution. Parity pro-
jection during imaging leads to indistinguishability of holes and doublons [46, 47].
The collected fluorescence light is independent of the spin and Raman-sideband cool-
ing methods for common atomic species do not preserve the hyperfine state. There-
fore, it is only possible to collect information on one spin component in a single snap-
shot by removing the other spin component before imaging. The removed spin then
appears as holes in the image [54, 55]. These circumstances severely limit observables
for doped 2d Fermi-Hubbard systems, in which the most important mechanism is the
interplay between holes and spins.

Some approaches to spin-resolved detection include the use of vector light shifts
[145] or dark states [208]. Unfortunately, such species-dependent tools are not avail-
able for some of the most common fermionic atoms, such as 6Li. As discussed in sec-
tion 2.1.1, the small electronic level splittings of lithium complicate state-dependent
optical manipulation schemes.

Here, we show how bilayer microscopy can be used to obtain full resolution of
a monolayer system. The idea of spin resolution based on multilayer readout was
demonstrated for bosonic rubidium before [141], but its fidelity relied on the ability to
suppress the fluorescence rate in individual layers during the imaging process. The
charge pump employed in our scheme overcomes this problem and realizes a species-
independent solution.

In contrast to our previous scheme for spin and density resolution [56], the bilayer
method can also be used for non-lattice 2d systems by using an ancillary detection lat-
tice. Furthermore, the new technique enables higher energy scales of the underlying
2d Hubbard system and more than doubles our system size at full resolution.

2.5.1 Spin splitting

Full resolution of a monolayer with two spin components is achieved, by first splitting
the spins into adjacent planes of a bilayer system with a magnetic gradient. Then
bilayer readout is performed and the single-site resolved information of both layers is
combined to reconstruct the state of the parent monolayer system.

In the experiment, full resolution is implemented for 2d Fermi-Hubbard systems,
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Figure 2.18: Spin and density resolution of a monolayer. a, The two different spin
states of a monolayer spin mixture (here a 2d Fermi-Hubbard system) are split into
different layers (red/blue) of a bilayer system with a vertical magnetic gradient.
Subsequently, charge pumping and bilayer readout is applied with single-site res-
olution. b,c, Snapshots of the two spin components of a single 2d Fermi-Hubbard
realization. d Reconstructed spin (upper panel) and density (lower panel) informa-
tion of the underlying 2d parent state.

see Fig. 2.18. First, the motion of atoms is frozen in a deep xy-lattice and the mono-
layer is prepared in a single layer of the long vertical lattice. Then a strong vertical
magnetic field gradient of 45 G/cm is applied to exert a force on the two spin states
in opposite directions. The magnetic offset field is kept below 13 G to maximize the
differential magnetic moments between the two lowest hyperfine states of 6Li, c.f.
Fig. 2.1b. The superlattice phase is set to the symmetric double-well configuration
ϕr = 0 and the short lattice is turned on adiabatically to 49 Es

R. This sequence realizes
a Stern-Gerlach type separation of the two spin components into two adjacent planes
of the bilayer optical lattice. In combination with three charge pumps and bilayer
microscopy, each spin state can be read out separately and the full spin and density
information of the parent system can be reconstructed. How the correct combination
of the two spin layers is ensured to recover the initial system is described in appendix
A.5.

To confirm accurate spin splitting into a bilayer system, the occupation imbalance
of the resulting two spin layers is measured for a broad range of different phasesϕr.
A strong magnetic gradient creates an opposite double-well tilt for each spin, which
upon adiabatic turn-on of the short lattice initializes spins in opposite wells. In a spin-
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Figure 2.19: Spin splitting. Num-
ber of atoms detected in the up-
per (red) or lower (blue) layer as
a function of the relative superlat-
tice phase used for spin splitting. A
strong magnetic gradient is present
during the adiabatic ramp-up of
the short lattice. Accurate splitting
for a balanced spin mixture is re-
alized across a width of phases ∼
300 mrad.

balanced system, splitting manifests itself as a balanced occupation in both layers for
a large range of superlattice phases during ramp-up of the short lattice. As long as the
spin-dependent tilt is stronger than the tilt from a phase ϕr 6= 0, spins will be sepa-
rated deterministically. Successful splitting of spins is achieved in the experiment for
a width of phases ∼ 300 mrad, as shown in Fig. 2.19. The spin detection is therefore
robust against superlattice phase changes by more than an order of magnitude more
than the upper bounds for phase noise and drifts in this setup.

To further benchmark the fidelity of the bilayer technique for full resolution, den-
sity observables of a Mott-insulating system can be compared between two different
detection methods. As analyzed in appendix A.4, the density and its fluctuations
measured with monolayer spin-unresolved imaging and with bilayer-based full reso-
lution are in excellent agreement.

2.5.2 Spin-spin correlations

A first more stringent test for the bilayer spin-resolution technique is the measure-
ment of spin correlations in a 2d Mott insulator. Antiferromagnetic correlations are
expected to arise in such a system when the temperature drops below the superex-
change energy J, c.f. chapter 1.

Mott insulating systems with about 90 atoms were realized at lattice depth of
6.9(1) Exy

R and interaction strength U/t = 9.3(4). Two point correlations (η = 4)
are computed from fully-resolved snapshots, c.f. chapter 1.4. As shown in Fig. 2.20,
strong antiferromagnetic correlations are found, whose sign alternates as a function
of the distance d between spins. The spin-structure factor S(q) features a peak at the
antiferromagnetic quasimomentum q = (π , π).

The detection of these intricate correlations furthermore underlines the fidelity of
the bilayer method. The next section discusses, how such spin correlations at half
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Figure 2.20: Spin correlations in 2d systems. a. Averaged spin correlations C(d)
versus distance d in 2d Fermi-Hubbard systems around half filling at U/t = 9.3(4),
obtained by spin- and density-resolved imaging. Sites with density n < 0.84 were
excluded from the analysis. The normalization η = 4 is used for correlations. b,
Sign-corrected spin correlations (−1)d2

C(d) versus distance d. Error bars, where
visible, denote one s.e.m. c, Spin-structure factor, exhibiting a strong peak at the
antiferromagnetic momentum (π , π). The figure is based on 150 experimental real-
izations.

filling can be used as a thermometer. Correlations in Fig. 2.20 are compatible with
temperatures down to T ∼ 0.8 J. This temperature is close to the lowest temperature
of T = 0.5 J [61] reported for ultracold 2d Fermi-Hubbard systems.

2.6 Thermometry

To determine the exact temperature at which atomic systems are realized within this
thesis, we compare spin correlations at half filling between experimental data and
data from numerical-linked-cluster-expansion (NLCE) calculations of [209]. Observ-
ables from NLCE data were obtained by resumming up to ninth order using Wynn’s
algorithm [210].

The temperature of Fermi-Hubbard systems presented in this work is quantified
in units of the hopping amplitude t or the superexchange J. The repulsive on-site
interaction U relates both energy scales through t = U/t · J/4. A different interac-
tion strength leads to a different ratio t/J. An important consequence is that at fixed
entropy a different U/t can e.g. lead to a different temperature in units of J.

The spin physics close to the Mott insulating regime crucially depends on the tem-
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Figure 2.21: Thermometry with NLCE calculations. a, On-site magnetic moment
in 2d Fermi-Hubbard systems at half filling as a function of interaction strength
at a temperature of T = 0.34 t. At these temperatures, the on-site magnetic mo-
ment is approximately independent of T. b, Nearest-neighbor spin correlation
(η = ηPearson) at half filling as a function of temperature for different interaction
strengths. All curves are based on NLCE data of [209], which was resummed up to
ninth order with Wynn’s algorithm [210].

perature in units of J instead of t. As shown with NLCE data in Fig. 2.21b, the nearest-
neighbor (d = 1) spin correlation (η = ηPearson) at half filling and for U/t > 8 scales
universally as a function of temperature in units of J. For different U/t, the temper-
ature in units of t can be very different, but as long as the temperature is the same in
units of J, spin correlations are similar. This universality towards the Heisenberg limit
is not surprising, but important to keep in mind, as temperatures are often reported
in units of t.

At half filling, an increasing interaction suppresses doublon-hole fluctuations and
drives the system into the Heisenberg limit. The on-site magnetic moment measures
how close the system is to the limit of localized spin-1/2 particles

〈m̂2
z〉 = 4〈Ŝz

i Ŝz
i 〉 = 4σ(Ŝz

i )
2 = ηHeis/ηPearson . (2.10)

As shown with NLCE data in Fig. 2.21a, an interaction strength of U/t = 8 marks the
point from which the system asymptotically approaches 〈m̂2

z〉 = 1 (Heisenberg limit)
with increasing interaction. The on-site magnetic moment is very sensitive around
U/t = 8 and can therefore act as a probe for the experimentally realized U/t, which
is otherwise inferred from our calibrated system parameters.

In particular for temperatures well below J or for doped systems, numerical cal-
culations are difficult to obtain and thermometry independent of such comparisons is
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required in the future. A promising approach is based on the fluctuation-dissipation
theorem. If the response function and fluctuations of an observable can be measured
for a system, the theorem allows the direct and comparison-free computation of the
temperature. As an example, the temperature can be extracted from knowledge of the
compressibility and all density correlations of the system [63, 64].
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Imaging magnetic polarons
A single dopant in a 2d antiferromagnetic Mott insulator causes a fierce competition
between kinetic and magnetic energy. As described in chapter 1, experimental and
theoretical investigations suggest the dopant forms a magnetic polaron. A textbook
feature of polarons is the bubble-like dressing cloud, which constantly surrounds the
original impurity (the dopant). In this chapter, a real space observation of such a
magnetic dressing cloud is presented. When the competition between kinetic and
magnetic energy is artificially suppressed by prohibiting delocalization of the dopant,
the dressing cloud is absent. Results of the following publication are contained in this
chapter (numerical calculations were performed by our theory collaborators):

• Imaging magnetic polarons in the doped Fermi-Hubbard model.
J. Koepsell, J. Vijayan, P. Sompet, F. Grusdt, T.A. Hilker, E. Demler, G. Salomon,
I. Bloch and C. Gross. Nature 572, 358-362 (2019).

3.1 Introduction

3.1.1 Polarons - dressed charge carriers

When a mobile charge carrier, such as an electron or hole, travels through a medium
and strongly interacts with its surrounding, it locally polarizes the medium and thus
forms a polaron [211–213], see Fig. 3.1. The polaron is a quasiparticle, which consists
of the initial charge carrier and a local cloud of excitations dressing the mobile particle.
There are different types of collective background modes, which can dress the charge
carrier. Examples are phonons, magnons, or spinons [213]. The properties of a particle
change, when it turns into a polaron quasiparticle1. The effective mass can be strongly
altered and even self-trapping can occur. Also, the mutual interaction between two
polarons is different from the bare interaction of electrons, which means under certain
conditions polarons can bind to form a bipolaron.

1Note the difference between polaron quasiparticles and the Fermi-liquid quasiparticles introduced
earlier. In a Fermi liquid, quasiparticles form through interactions between charge carriers. Polarons

https://doi.org/10.1038/s41586-019-1463-1
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Figure 3.1: Polarons. a, A polaron can emerge when a charge carrier travels through
a medium and strongly couples to its environment. A hallmark feature of a polaron
is its dressing cloud, which accompanies the charge carrier at all times. b, Depend-
ing on the medium and its collective excitations, different types of polarons exist.
c, Doped holes or doublons in Mott insulators can form magnetic polarons. In this
case, the dressing cloud consists of a local reduction of antiferromagnetic correla-
tions.

Polarons are ubiquitous in condensed-matter systems and their relevance goes far
beyond high-Tc ceramics [213], see Fig. 3.1. Historically, polarons were considered
in the context of electron-phonon coupling [211, 212]. Depending on the coupling,
there exist Fröhlich polarons [214] or Holstein polarons [215, 216] with large or small
dressing clouds. But the polaron concept can be applied to a large variety of different
media and couplings, giving rise to a rich zoo of polaron types, see Fig. 3.1. Jahn-Teller
polarons occur, when the mobile particle interacts with local rotational or vibrational
excitations [217, 218]. When electrons are placed on the 2d surface of liquid 4He,
they interact with ripplon excitations of the liquid surface and form ripplopolarons
[213, 219], which can experience self-trapping [220]. As discussed in chapter 1.2.3,
a dopant in a 2d antiferromagnetic Mott insulator strongly couples to the magnetic
environment and can form a magnetic polaron.

In strongly-correlated materials, the presence of polarons often results in the emer-
gence of exotic properties. A possible explanation for colossal magnetoresistance in
manganites is a magnetic-field induced breakup of immobile bipolarons into mobile
polarons [221–223]. Furthermore, at low temperatures, the polaronic metal in such

emerge from interactions of charge carriers with a background medium.
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Figure 3.2: Mobile and pinned dopant in 2d Fermi-Hubbard systems. When a
dopant (here doublon) is mobile and able to delocalize, it forms a magnetic polaron
and is constantly surrounded by a magnetic dressing cloud. In contrast, when the
dopant is pinned and unable to move, the competition between kinetic and mag-
netic energy is suppressed, which inhibits magnetic-polaron formation.

manganites exhibits pseudogap behavior [224], which is a phenomenon also found
close to the magnetic-polaron regime of doped cuprates [15]. In semiconductors,
the electron-phonon interaction can be particularly strong. Polarons in some organic
semiconductors become self-trapped and give rise to pure spin currents [225], which
is an important building block of spintronics. There are many open questions to these
exotic phenomena and how they are related to polarons or interacting multi-polaron
systems [24, 30, 111, 222].

Individual polarons are often probed with transport or spectroscopic methods.
However, a direct image of the dressing cloud and how the medium is transformed
by the charge carrier remains inaccessible in traditional solid-state experiments. This
chapter reports on a real-space image of the magnetic dressing cloud of individual
dopants in cold-atom 2d Fermi-Hubbard systems.

3.1.2 Magnetic polaron: dressing and undressing

The motion of a dopant in a 2d antiferromagnetic Mott insulator leads to a local dis-
tortion of magnetic correlations, as discussed in chapter 1.2.3. A single mobile dopant
forms a magnetic polaron [101–107] and is constantly surrounded by a dressing cloud
of altered spin correlations (spin bag [103]), see Fig. 3.2. It is the motion of the dopant,
which couples to the spin sector and creates a competition between kinetic and mag-
netic energy. This means the mobility of a dopant is expected to be an important



72 3. Imaging magnetic polarons

prerequisite for magnetic-polaron formation.

For an immobile dopant, the absence of its motion avoids coupling to the antifer-
romagnetic correlations in its vicinity, see Fig. 3.2. Consequently, no dressing cloud
is expected to form. In cuprates, this scenario of localized non-magnetic impurities
corresponds to doping with Zn [226]. Experiments and numerics indicate the absence
of polaronic effects, but instead suggest the possibility of enhanced antiferromagnetic
correlations through geometric effects [227, 228].

In the experiment, such a mobile and pinned setting was realized in the single
dopant regime to reveal the stark contrast between the two settings. Results presented
in the following sections demonstrate that dopant mobility is an essential ingredient
for magnetic-polaron formation.

3.2 Experimental setting

This section describes the two different experimental settings for which in total 42 671
spin- and density-resolved images were taken. These snapshots are the basis for the
analysis of mobile and pinned doublons and their magnetic environment in the next
section. Here, the characteristics of the experimental 2d Fermi-Hubbard system and
its background spin-spin correlations as well as the pinning procedure are described.

Dopants considered in this chapter are doublons. The harmonic confinement of
the optical lattice represents an anti-trapping potential for holes and a trapping po-
tential for doublons. Choosing doublons as dopants, therefore, has two advantages
for the following experiments. Doublons are trapped in the central and most homoge-
neous part of the lattice, where they can delocalize in a flat region. Furthermore, holes
created during the detection will not contaminate the signal of doublon dopants.

3.2.1 Mobile and pinned doublons

For measurements in this chapter, the bichromatic superlattice for bilayer readout
of chapter 2 was not yet implemented. Full spin- and density-resolution of Fermi-
Hubbard systems was achieved by the use of an in-plane monochromatic superlattice
[56]. This alternative method implements spin splitting by using a superlattice and a
magnetic gradient within the monolayer. The details of this detection scheme are not
relevant for the results in this chapter, which is why the reader is referred to [56] for
its description. A major drawback of this in-plane method is a longer lattice spacing
in the y-direction. This leads to lower energy scales and smaller system sizes when
compared to the bilayer method of chapter 2.

In this chapter, lattice spacings (ax, ay) in x- and y-direction are (1.15 , 2.3)µm. To
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Figure 3.3: Mobile doublons. a Density distribution (n) for the mobile doublon
setting. Only sites with density n ≥ 0.7 are shown. In the doped region (inner black
box), on average 1.95(1) doublons delocalize in an area of 5× 3 sites. b, Number of
snapshots with the respective number of doublons in the doped region (black box
of a).

obtain a symmetric implementation of the Hubbard model, different lattice depths of
(8.6 Ex

R, 3 Ey
R) in x- and y-direction are used to realize symmetric tunneling amplitudes

tx/h = ty/h ≈ 170 Hz. The scattering length was set to 2150 a0 to achieve an interac-
tion strength of U/t = 14(1) and a resulting ratio of tunneling and superexchange of
t/J = 3. The total duration for the adiabatic lattice ramp-up was 210 ms.

Doping was controlled by evaporation parameters, which determine the final
number of particles in the lattice. Above a specific number of atoms, the harmonic
confinement leads to the formation and delocalization of mobile double occupations
(doublons) in the center of the trap. For the given lattice parameters, a calibration
curve of the total number of atoms versus doping can be found in appendix B.1.

Mobile

The setting of individual mobile doublons was realized with on average 72 atoms in
the lattice. The resulting density ni in the system for all lattice sites i with ni > 0.7
is shown in Fig. 3.3a. Doublons can also occur in Mott insulators due to short-lived
quantum fluctuations. This process is suppressed with increasing U/t, but at our set-
tings a chance of ∼ 3 % per lattice site for such a fluctuation remains, see appendix
B.1 or c.f. Fig. 2.21. Doublon-hole fluctuations can be identified by the hole, which the
fluctuation leaves behind on a nearest-neighbor site, see appendix B.2. To distinguish
doped doublons from such fluctuations, we consider only doublons without a hole as
a direct nearest-neighbor. As shown in Fig. 3.3, on average 1.95(1) doped doublons
delocalize on the central 5× 3 sites. The full histogram of the number of mobile dou-
blons in all snapshots is shown in Fig. 3.3a. In the cases with more than one doublon,
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Figure 3.4: Pinned doublons. a. An attractive laser beam (tweezer) is focused by
the objective onto a single lattice site. b, Density distribution (n) for the pinned
doublon setting. Only sites with density n ≥ 0.7 are shown. c, The local density
on the target lattice site as a function of the tweezer-beam intensity. At optimized
settings, the density on the target site is 1.77(1).

dopants are anti-correlated at nearest-neighbor sites and uncorrelated otherwise in
our system, see Fig. B.2. This behavior is akin to free fermions and furthermore justi-
fies an independent treatment of detected doublons in the following analysis. For the
mobile setting 33 669 images were taken.

Pinned

Localized doublons were created with a tightly-focused attractive pinning beam,
which induces a strong dip in the optical potential when aimed at a single lattice
site, see Fig. 3.4a. To this end, a collimated red-detuned beam of λ = 702 nm was
overlapped with the optical path of the fluorescence light and focused through the
high-NA objective to a waist of about 0.5µm. The intensity of this beam was turned
on adiabatically at the same time the lattices were ramped up to create a double
occupation trapped on a single lattice site. The final intensity of the pinning beam
was optimized and saturates at an average occupation on the target lattice site of
1.77(1) with a doublon-density of 〈d̂〉 = 0.74, see Fig. 3.4. The residual densities on
that site for a hole, singlon and triplon were 〈ĥ〉 = 0.07, 〈ŝ〉 = 0.13, 〈t̂〉 = 0.05. In
particular the triplon occupation is an effect, which arises in these measurements
due to the long lattice in the y-direction and its smaller energy gaps. To ensure the
presence of only a single pinned doublon, systems of 55 particles were used to avoid
doublon doping in the central region. For the pinned setting 9 002 images were taken.

All further analysis was performed in a region of interest, which is given by all
lattice sites with a density n ≥ 0.7. These lattice sites are shown in Fig. 3.3, 3.4. Prior
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Figure 3.5: Two-point spin correlations. Average spin correlations in the system
with mobile doublons for a, NN bonds (d = 1) and b, diagonal bonds (d =

√
2).

Doping in the central region significantly alters correlations, as compared to the
undoped outer region.

to evaluating correlations in our two different systems, some snapshots were filtered
out and discarded from the evaluation for technical reasons, see appendix B.3.

3.2.2 Spin-spin correlations and temperature

A prerequisite for the observation of magnetic polarons is the existence of antiferro-
magnetic correlations between spins in the Mott insulator, which compete with the
delocalization of the doublon.

Spin correlations computed in this chapter use the normalization η = 4. In ad-
dition and exclusive to this chapter, correlations are evaluated on singly-occupied
sites. This means the correlation is only computed when a spin is located on each
site. Technically, this corresponds to a special normalization of spin correlations with
η = 4/〈ŝri ŝr j〉, where ŝr is the singlon-density operator on the two lattice sites ri and
r j. In the absence of singlon correlations (e.g. in the Mott regime) and at very high
U/t� 8, this simplifies to a renormalization by the density.

The spatial variation of two-point spin correlations can be visualized with the
bond representation of chapter 1.4.2. The color of a bond connecting two lattice sites
quantifies the strength of the spin correlation between those sites.

Correlations for bond lengths d = 1 and d =
√

2 are shown in Fig. 3.5 for the sys-
tem with mobile doublons in the center. As expected for the Mott insulating region,
nearest-neighbor spins are negatively correlated and diagonal spins are positively cor-
related. In the central region, where doublons delocalize, correlation strengths are
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strongly reduced. Diagonal bonds even reverse their sign to be negatively correlated
between sites of highest doping. This sign reversal of average diagonal two-point
correlations has also been observed in [54, 55, 72].

The temperature of the system can be estimated by comparing spin correlations
around half filling to NLCE calculations of [209], as mentioned in chapter 2.6. For this
set of measurements we find consistency with T/t = 0.45+3

−1, see appendix B.4.

The average reduction of spin correlations is expected when dopants are added
to the system. Mobile doublons hop in the center of the trap and form a delocalized
magnetic polaron. Therefore, every bond in the center is reduced on average. On
the other hand, when post-selecting on a doublon at a specific position the reduction
should always be found in the immediate vicinity of the doublon. Such spin-charge
(spin-density) correlations are presented in the following section.

3.3 Doublon-spin-spin correlations

Here, we use a three-point spin-charge correlator to study spin correlations in the ref-
erence frame of dopants. A dressing cloud surrounding mobile doublons is revealed
with a compact size of around two sites in diameter. For pinned doublons the mag-
netic dressing is strongly suppressed.

3.3.1 Probing with spin-charge correlators

The presence of delocalized doublons reduces the average antiferromagnetic corre-
lations everywhere in the doped system, as presented in the previous section. If a
doublon forms a magnetic polaron, a strong reduction of antiferromagnetic correla-
tions locally surrounds the dopant. Since the magnetic polaron itself is delocalized
in the system, the distorted correlations of the dressing cloud should appear in the
lattice at different positions for every image, depending on where the doublon is de-
tected. Therefore, spin correlations averaged over all snapshots are reduced because
in some cases a magnetic polaron was present in a specific region.

Based on fully spin- and density-resolved snapshots, spin correlations in the refer-
ence frame of a doublon can be studied. In each snapshot, the position of a doublon
was found and the correlation of spins computed as a function of distance from the
dopant. Such an analysis corresponds to evaluating the three-point spin-charge cor-
relator

C 
 r3

(r1, r2; r3) = η〈Ŝz
r1

Ŝz
r2
〉 
 r3

, (3.1)
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Figure 3.6: Visualizing spin-charge correlations in the bond picture. a, The back-
ground medium for magnetic polarons are antiferromagnetic spin correlations in a
Mott insulator. Their local strength can be visualized in the bond picture. Here NN
(d = 1) spin-spin correlations are visualized as white bonds. The measured correla-
tion strength will be represented by the bond color. b, The effect of a dopant on the
local antiferromagnetic background can be studied by measuring spin-spin correla-
tions in the reference frame of dopants. For a magnetic polaron, the dressing cloud
of reduced antiferromagnetic correlations is expected to decrease with increasing
bond distance r from the dopant.

which measures the spin correlation between two sites r1 and r2, conditioned on a
doublon at a third position r3. This correlator measures bare correlations, i.e. it con-
tains both the connected and disconnected part, c.f. chapter 1.4.3. For now, we are
interested in the bare spin environment of dopants, but an analysis of the connected
part will be performed as part of the following chapter. As mentioned in the previous
section, the used normalization for spin correlations is η = 4, evaluated on singly-
occupied sites only.

Eq. 3.1 can be rewritten in terms of the bond length d = r2 − r1 and the distance
between the bond and the dopant r = [(r1 + r2)/2]− r3

C 
 r3

(r, d; r3) = C 
 r3

(r1, r2; r3). (3.2)

For each experimental snapshot of the mobile setting, doublons are detected at differ-
ent positions r3. By averaging Eq. 3.2 over all doublons found at positions r3 within
the finite 5× 3 doped region (indicated in Fig. 3.3a), C 

 
(r, d) is obtained. This corre-

lator measures the average bond strength at bond length d as a function of distance
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r from a doublon. For the setting of immobile doublons, post-selection is performed
w.r.t. doublons on the pinned lattice site.

The visualization of C 
 
(r, d) with the bond representation is ideally suited to re-

veal the magnetic dressing cloud. In the previous section, correlation maps for fixed
bond length d were used to show the spatial dependence of correlations within the
lattice, c.f. Fig. 3.6a. Fig. 3.6b shows how C 

 
(r, d) can be plotted at fixed d = 1 as a

function of spatial distance r from the dopant at the origin. This bond representation
will be used for different d to visualize results in the following sections.

3.3.2 Revealing the dressing cloud

In order to decide which bond length d of the correlator C 
 
(r, d) to investigate first,

a simple argument can be considered. The four spins, which are the nearest neigh-
bor of a doublon, should be most affected by the motion and delocalization of the
dopant. Hence, the largest polaronic signal is expected for correlations between these
four neighboring spins of a detected doublon. These correlations are diagonal d =

√
2

and next-nearest neighbor (NNN) d = 2 bonds. The NN correlations d = 1 closest to
the doublon, by contrast, exhibit a larger minimal bond distance r and are less sen-
sitive to polaronic effects. Furthermore, there are eight NN bonds at closest distance
to the doublon, over which the polaronic signal will distribute. But there are only
four diagonal bonds and two NNN bonds at closest distance. Therefore, we start by
analyzing the correlator C 

 
(r, d) with diagonal bonds as a function of bond distance r

from doublons.

Diagonal bonds

The dressing cloud of mobile doublons as detected with diagonal bonds d =
√

2 is
shown in Fig. 3.7a. Spin correlations C 

 
(r,
√

2) are strongly affected in the vicinity
of the doublon (r ∼ 1), while being unharmed at larger distances (r � 1). This
observation confirms the picture of a magnetic polaron, which consists of a doublon
locally dressed by a spin disturbance. The dressing effect, therefore, already exists at
the elevated temperatures T = 0.45 t of the experiment. Diagonal bonds at closest
distance to the doublon even reverse the sign of their correlation from positive to
negative.

When the doublon is pinned to a single site, the spin disturbance almost disap-
pears completely, see Fig. 3.7b. This confirms the competition between kinetic and
magnetic energy as the key mechanism behind magnetic-polaron formation. Mag-
netic correlations around the trapped site are only moderately reduced compared to
the undoped background.
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Figure 3.7: Diagonal correlations. Evaluating the spin-charge correlator C(r, d) for
diagonal correlations d =

√
2. Correlations surrounding a, mobile and b, pinned

doublons. In the vicinity of mobile doublons, correlations reverse their sign from
positive to negative.

NN and NNN bonds

The presence or absence of a dressing cloud for mobile or pinned doublons can also
be investigated with NN (d = 1) or NNN (d = 2) bonds. As shown in Fig. 3.8, the two
different mobilities lead to very different results.

The strong negative correlation of NN bonds is reduced in the vicinity of the mo-
bile doublon. This ferromagnetic influence on NN bonds (i.e. making a bond more
positive) is an important signature effect of polarons, which only exists in the doping
regime of magnetic polarons, as outlined in the following chapter. For the pinned
doublon, there is no reduction, but a slight increase of NN correlations in the vicinity.
This enhancement effect originates from imperfections of the optical tweezer poten-
tial, which will be discussed in greater detail at a later stage.

Similar to the sign reversal of closest distance diagonal bonds, the NNN bond
across the mobile doublon (see Fig. 3.8c) exhibits a strong negative correlation, while
NNN bonds at half filling are positively correlated. Correlations directly across the
pinned doublon (see Fig. 3.8d) are not as strong as the background NNN correlations.
The pinned doublon effectively blocks a path on which the two sites can exchange
their spin, such that at finite temperature the correlation is weakened.
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Figure 3.8: Nearest- and next-nearest-neighbor correlations. Nearest-neighbor cor-
relations (d = 1) in the vicinity of a, mobile and b, pinned doublons. A reduction
of negative correlations is visible next to mobile doublons. Next-nearest-neighbor
correlations (d = 2) for c, mobile and d, pinned doublons. Spins are negatively
correlated across mobile doublons.

Sign flip

An interpretation of the sign reversal of diagonal and NNN correlations at closest
distance to the dopant is ambiguous. In the context of magnetic polarons, this feature
was observed in numerical calculations [111, 229] and has been interpreted as local
spin-charge separation and a building block of incommensurate magnetism in two
dimensions [229, 230]. In stripe phases found at much lower temperatures, several
dopants form a line (stripe) and mutually align their flipped correlations to create a
coherent parity flip for antiferromagnetic correlations across the stripe. On the other
hand, in chapter 4, negative diagonal correlations are also found next to dopants in
the weakly-interacting Fermi liquid, where polarons are absent. However, an impor-
tant difference between the polaron and Fermi-liquid regime must be emphasized.
Average diagonal spin correlations are positive in the magnetic polaron regime and
negative in the Fermi liquid. Therefore, a negative correlation close to a dopant only
represents a sign flip in the magnetic polaron regime.

An intuitive explanation for the sign flip can be found in the limit where the ori-
entation of spins is frozen (frozen-spin approximation), i.e. t/J � 1. A single hop
of a dopant exchanges NN bonds with diagonal bonds in its vicinity, see Fig. 3.9.
Since spins are not allowed to flip within this time scale, the detected diagonal corre-
lation bond next to the doublon is negative. At our finite temperatures, NN bonds are
strongly negative, while diagonal bonds are positive at intermediate strengths. There-
fore, doublon delocalization mixes strong negative bonds with much weaker positive
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Figure 3.9: Frozen-spin picture.
In the limit of t/J � 1, spins can-
not react to the dynamic motion
of a dopant. A single hop of a
dopant turns diagonal bonds into
nearest-neighbor bonds and vice
versa.

bonds, which on average results in a negative correlation close to the doublon.

Radial dependence and theory comparison

To enable a quantitative study and to extract the size of the dressing cloud, corre-
lations with the same absolute bond length d and bond distance r are averaged. In
Fig. 3.10 a,b,c the dependence of NN, diagonal, and NNN bonds on the bond distance
r is shown. Correlations quickly recover towards their undoped value with increasing
distance from the mobile doublon. The size of the dressing cloud therefore has a di-
ameter on the order of ∼ 2 lattice sites. Furthermore, the sign reversal of correlations
in the mobile case is absent for the pinned doublon.

At this point, a comparison to numerical calculations (provided by F. Grusdt and E.
Demler) can be performed, see Fig. 3.10 d,e,f. For the mobile scenario, we compare to
three-point correlations in the string-model for magnetic polarons at the experimental
temperature [231]. As introduced in chapter 1.2.5, this is a simplified model, which
describes the polaron as a bound state between a spinon and holon and is motivated
by the frozen-spin approximation (t/J � 1) [107]. Remarkably, similar amplitude
changes of correlations, and hence a similar polaron radius, is predicted by the string
model (and also the t-J model, as found in the supplementary information of [231]).
Furthermore, the sign changes of diagonal and NNN correlations in the vicinity of the
doublon are reproduced in this model. Some quantitative differences between exper-
imental and numerical data remain. However, this is expected owing to limitations
of the frozen-spin approximation (here t/J = 3) and experimental details, such as el-
evated temperatures, the harmonic confinement, and the occasional presence of more
than one dopant.

For the pinned doublon, we compare to exact diagonalization calculations of the
t-J model at the experimental temperature and with zero tunneling of the excess dou-
blon in a 4 × 4 system [231]. In agreement with experiment and numerics, closest-
distance diagonal and NNN spins are uncorrelated for the pinned scenario. As men-
tioned before, this can be explained by the fact that the doublon effectively blocks
a path linking the spins next to it. The missing link prevents the neighboring spins
from building up a correlation, given the finite temperature of the system. The lo-
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Figure 3.10: Spin correlations versus bond distance from doublons. Comparison
between experiment (a-c) and numerical calculations at the experimental tempera-
ture (d-f). The mobile setting (green) is compared to calculations of the string model
for magnetic polarons. The pinned setting (black) is compared to exact diagonaliza-
tion of a single doublon in the t-J model without hopping. Considered bond lengths
are NN (a, d), diagonal (b, e) and NNN (c, f). The strength of two-point correlations
in the undoped regime is indicated as a gray band at distance ∞, with a width
corresponding to two s.e.m. The finite size of the tweezer beam leads to a slight
enhancement of some NN and NNN correlations next to the pinned doublon (see
text). This effect is captured by exact diagonalization with 10% enhanced spin ex-
change on neighboring sites of the pinned doublon, indicated as a black band in the
theory panel.
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cal enhancement of NN bonds observed in the experiment close to the pinned site
originates from parasitic energy shifts exerted by the optical tweezer on lattice sites
in the immediate vicinity, see appendix B.5. Those energy shifts lead to a locally en-
hanced superexchange coupling J and can, therefore, cause stronger correlations. If
an increased superexchange up of to 10 % is taken into account in the exact diagonal-
ization calculations at finite temperature, the experimentally observed enhancement
is reproduced. Correlations across the pinned doublon and the shortest bond-distance
diagonal correlations are hardly affected by such a 10 % systematic enhancement of
the superexchange.

3.4 Conclusion

This chapter presented a real-space picture of the polaronic dressing cloud of sin-
gle dopants in a 2d Mott insulator. A three-point spin-charge correlator revealed a
compact polaron size of about two sites in diameter and an inner structure of sign-
reversed spin correlations. By confining the dopant to a single lattice site, the com-
petition between kinetic and magnetic energy could be lifted and the dressing cloud
disappeared. Therefore, the magnetic polaron can be understood as a result of this
competition.

Dynamic or spectroscopic measurements can be employed to study the effective
mass, quasiparticle weight, or formation time of magnetic polarons in cold-atomic
systems in the future. First indications of a suppressed timescale for delocalization
were found in dynamic experiments [70]. By implementing angle-resolved photoe-
mission spectroscopy techniques for cold atoms [65, 68, 232], the relation between
magnetic polarons and the pseudogap could be investigated. Furthermore, the ability
of quantum gas microscopes to spatially resolve the dressing cloud could be used to
study other polaron types, such as impurities immersed in bosonic [233] or fermionic
quantum gases [234, 235].

Another direction of research is the effect of dimensionality on magnetic polarons.
1d systems behave very differently than the 2d systems discussed within this thesis.
Spin-charge separation features an independent propagation of holons and spinons in
1d Fermi-Hubbard chains, as studied in [57, 58, 69]. In analogy to the 1d-2d crossover
studied in [58], a crossover from 2d to bilayer systems could be studied with the lay-
ered readout of chapter 2.

Since this chapter found essential features of the complex interplay between
magnetism and doping to be present already at experimental temperatures, intuitive
follow-up question in 2d are: What happens if more and more dopants are added?
Could potential polaron-polaron interactions be resolved and at which dopant
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concentration does the polaron picture break down? Is it possible to detect features
reminiscent of the lower-temperature physics? When and how does the system
evolve into a Fermi liquid at high dopings? These and other questions will be
addressed in the following chapter, which is based on the updated experimental
apparatus with larger and more homogeneous systems.



85

4 |

Two metals - polarons dissolving into
Fermi liquid
Magnetic polarons reside in 2d Mott insulators at weak dopings. At strong dopings,
the system forms a Fermi liquid with conventional quasiparticles. The transforma-
tion between these two metallic regimes is the subject of this chapter, which reveals
how microscopic correlations at temperatures around T = 0.4 t evolve as a function of
doping. The polaronic dressing cloud of dopants, as revealed in the previous chapter,
evolves into a fully negatively correlated environment in the Fermi liquid. Antiferro-
magnetic correlations surrounding pairs of holes peak at the crossover between both
regimes and might be a precursor of the lower temperature physics. Weak incommen-
surate magnetic fluctuations develop in the Fermi liquid. The transformation between
both regimes completes at a doping of around δFL ∼ 30 %. Results of the following
publication are contained in this chapter (numerical calculations were performed by
our theory collaborators):

• Microscopic evolution of doped Mott insulators from polaronic metal to
Fermi liquid.
J. Koepsell, D. Bourgund, P. Sompet, S. Hirthe, A. Bohrdt, Y. Wang, F. Grusdt, E.
Demler, G. Salomon, C. Gross and I. Bloch. pre-print, arXiv:2009.04440 (2020).

4.1 Introduction

This chapter combines all puzzle pieces introduced within this thesis to explore one of
the least understood crossovers of strongly-correlated electrons: the doping-induced
transformation of a 2d Mott insulator into a Fermi liquid. This section briefly summa-
rizes important aspects and introduces the connected part of spin-charge correlators,
which will be studied in this chapter.

https://arxiv.org/abs/2009.04440
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Figure 4.1: From polarons to Fermi liquid in doped Mott insulators. This chapter
probes doped Mott insulators along the indicated arrow in the conjectured phase
diagram of the 2d Fermi-Hubbard model (c.f. Fig. 1.5). Spin-spin as well as higher
order spin-charge correlators are studied. Some of the main results are summarized
by the insets.

4.1.1 From polaronic metal to Fermi liquid

Chapter 1 described how increasing doping of Mott-insulating materials at interme-
diate temperatures, such as cuprates, leads to at least two distinct metallic regimes.
Doping induces an anomalous metallic phase, which at some specific doping (for
cuprates ∼ 20 %) abruptly turns into a conventional Fermi liquid [18, 19]. Remark-
ably, it is this specific doping value at which the highest transition temperatures for
d-wave superconductivity occur [10]. The pseudogap and strange metal behavior
of the anomalous metallic regime violate the description of conventional metals and
pose major questions to their understanding.

The 2d Fermi-Hubbard systems studied in this thesis are closely related to the
physics of cuprates [14]. A similar transformation between an anomalous and a con-
ventional metal is expected to occur, which is driven by a competition between mag-
netic and kinetic energy. The paradigmatic transformation can be studied using novel
observables, such as higher-order spin-charge correlators. These correlators are ex-
perimentally accessible by the implemented bilayer technique, as demonstrated in
chapter 2, which enables spin- and density-resolved microscopy of 2d Fermi-Hubbard
systems.

Chapter 3 explored the weak doping limit and employed a three-point spin-charge
correlator to reveal the presence of a magnetic dressing cloud surrounding single dou-



4.1 Introduction 87

blons in Mott insulators. Close to the Mott-insulating regime, doping leads to a metal
of magnetic polarons.

Here, we study how the polaronic metal dissolves into a conventional Fermi liq-
uid by doping Mott insulators continuously through all doping regimes, see Fig. 4.1.
We track the evolution of two-point correlations and extract the uniform spin sus-
ceptibility and the spin structure factor. Three-point hole-spin-spin as well as four-
point hole-hole-spin-spin correlations are evaluated to study the interplay between
dopants and spins as a function of doping. All these observables undergo a signif-
icant change across a specific doping value of δFL ∼ 30 %. We perform a compari-
son to several numerical calculations such as exact diagonalization and mean-field-
inspired approaches. Furthermore, calculations of diverse theoretical concepts such
as the string model and RVB states are provided. Particularly in the crossover regime,
none of the presented weak-doping concepts describes the experimental data, calling
for more efficient frameworks.

Before diving into the experimental settings and analysis, it is helpful to recapit-
ulate some correlators introduced so far. A novel hole-hole-spin-spin correlator is
added to the portfolio and increases the maximum correlation order to four. There-
fore, it becomes important to analyze correlations in terms of their connected part,
which contains the new information of order N gained from an N-point correlator.

4.1.2 Connected spin-charge correlators

Bare multi-point correlations can arise from contributions of lower-order (discon-
nected) parts. Connected correlations contain the new information carried by a cor-
relator, as discussed in chapter 1.4. When analyzing correlations of different orders
it is useful to disentangle their mutual contributions. Therefore, this chapter entirely
focuses on connected correlators, which are summarized in Fig. 4.2.

In this chapter, we performed doping with holes, because we are interested in ob-
servables at varying doping and the harmonic confinement naturally leads to such
a hole-doping variation from the center to the edge of our system. We consider
balanced spin mixtures 〈Ŝz

ri
〉 = 0 and spin-spin correlations are normalized with

η = ηPearson = 1/(σ(Ŝz
1)σ(Ŝz

2)).

Spin-spin

In spin-balanced systems, connected and bare spin-spin correlations are identical (c.f.
Chapter 1.4)

Cc(r1, r2) = η(〈Ŝz
r1

Ŝz
r2
〉 − 〈Ŝz

r1
〉〈Ŝz

r2
〉). (4.1)
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Figure 4.2: Connected spin-charge correlators. Cartoon illustration of correlators
and their decomposition. This chapter focuses on connected correlations. Bare cor-
relations can be divided into disconnected and connected part. Their contributions
simplify in spin-balanced mixtures and can be understood intuitively as shown
here. The weighting factor γ for hole-hole-spin-spin correlations has been neglected
in this illustration.

Given a bond length d, the correlator can be averaged over sites within a spatial region
Ω for fixed d to yield

Cc(d) = ∑
r1∈Ω

Cc(r1, d)/Ω = ∑
r1∈Ω

Cc(r1, r2)/Ω. (4.2)

Hole-spin-spin

The three-point correlator introduced in the previous chapter measured two-point
spin correlations in the presence of a dopant at a third position r3. Now we consider
the same correlator, but with hole dopants instead of doublons. Chapter 3 focused
entirely on the bare strength C(r1, r2; r3)◦ of this correlator and compared its value to
spin-spin correlations Cc(r1, r2) without the dopant. This comparison was an indirect
measure of the connected correlation between the dopant and the spin background.
In this chapter, we look directly at the connected part of the three-point correlator,
which is given by

Cc
◦(r1, r2; r3) = C◦(r1, r2; r3)− Cc(r1, r2) . (4.3)
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As illustrated in Fig. 4.2, the connected part measures how the dopant changes corre-
lations locally w.r.t. to the two-point value.

Using the definition of bond distance r from the hole (c.f. chapter 3), the correlator
can be averaged over holes detected within a spatial region Ω for fixed (r, d) to obtain

Cc
◦(r, d) = ∑

r3∈Ω
Cc
◦(r, d; r3)/Ω = ∑

r3∈Ω
Cc
◦(r1, r2; r3)/Ω. (4.4)

A simple example can be considered to gain an intuition for the connected part of
this three-point correlator. In the case of a magnetic polaron, the connected part of the
closest-distance NN bond (r =

√
1.25, d = 1) will have a positive sign. The dopant

reduces the strong negative NN bond, which means it adds a positive connected cor-
relation on top of the strong negative two-point correlation. The connected part added
to the background two-point value yields the bare spin environment surrounding the
dopant.

Hole-hole-spin-spin

To search the magnetic environment of two holes for possible interaction effects, we
introduce a hole-hole-spin-spin correlator. It measures spin-spin correlations in the
presence of a hole at positions r3 and r4 each. The bare correlator contains many
lower-order contributions, which can all be understood intuitively, see Fig. 4.2. The
connected part measures how much the spin bond is affected by the presence of ex-
actly two holes

Cc
◦◦(r1, r2; r3, r4) = C◦◦(r1, r2; r3, r4)− Cc(r1, r2)−γ(Cc

◦(r1, r2; r3) + Cc
◦(r1, r2; r4)).

(4.5)
The weighting factor is given by γ = 〈ĥr3〉〈ĥr4〉/〈ĥr3 ĥr4〉. The bare strength C◦◦ =
η〈Ŝz

r1
Ŝz

r2
〉◦r3◦r4

of a spin-spin bond surrounding a pair of holes is composed out of the
background two-point correlation Cc, the impact Cc

◦ on the bond from a single hole at
r3, the impact Cc

◦ on the bond from a single hole at r4 and finally the two-hole impact
Cc
◦◦, which is the connected part of the four-point correlator.

The mutual distance of the two holes can be defined as l = r3 − r4 and the bond
distance r is measured w.r.t. the center of mass of r3 and r4. Using these definitions,
the correlator can be averaged over holes detected within a spatial region Ω for fixed
(l, r, d) to obtain

Cc
◦◦(l, r, d) =

Ω

∑
r4

Cc
◦◦(l, r, d; r4)/Ω =

Ω

∑
r4

Cc
◦◦(r1, r2; r3, r4)/Ω. (4.6)

The above expressions hold for perfectly balanced systems. For all experimental
points, the more general expression with imbalanced systems was evaluated to avoid
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biases from residual magnetizations. These full expressions can be found in appendix
C.3.

4.2 Experimental setting

To evaluate multi-point correlations in 2d Fermi-Hubbard systems at different dop-
ings, spin- and density-resolved snapshots were taken at different settings with the
updated apparatus. This section presents the experimental parameters for all datasets
and describes how the doping dependence of correlators is extracted from the natu-
rally varying spatial doping distribution within the system and the control of total
particle number in the trap. Furthermore, numerical calculations used for compar-
isons are summarized and an overview of their different expected validity regimes is
given.

4.2.1 Continuous doping control

In this chapter, doping was performed with holes. Fermi-Hubbard systems were
realized at strong interactions U/t ∼ 8 and the acquired experimental data can be
grouped into four different datasets [D1, D2, D3, D4]. Datasets [D1, D2] have a similar
chemical potential with a central Mott insulating region. One strongly doped dataset
[D3] with a much lower total number of particles was taken to cover a broader dop-
ing regime in the analysis. To investigate the temperature dependence of correlations,
dataset [D4] was taken for a system at 40 % higher temperature.

For all datasets, a 2d xy-lattice with spacings ax = ay = a = 1.15µm was used.
After the final evaporation and preparation of the quasi-2d atomic cloud, the lat-
tice was ramped from 0 Exy

R to around 6.5 Exy
R within 100 ms. The final scattering

length was set to asc = 810 a0. The four datasets [D1, D2, D3, D4] comprise a total
of [3224, 8667, 9440, 5588] realizations. The final x- and y-lattice depths for dataset
D1 were (6.9 Ex

R, 6.9 Ey
R). For datasets [D2, D3, D4] the xy-lattice spacings were

slightly different ax/ay = 1.02 and therefore final lattice depths were chosen to be
(6.5 Ex

R, 6.7 Ey
R) to yield symmetric tunneling amplitudes tx = ty = t. The short

spaced vertical lattice was 50 Es
R for [D1] and 44 Es

R for [D2, D3, D4]. We performed
a Wannier function calculation to estimate the absolute tunneling amplitude for set-
tings of datasets [D1] and [D2, D3, D4] to be t/h = 240(10)Hz and t/h = 260(10)Hz.
The mean particle numbers of the four datasets are [89.8(1), 91.3(1), 52.0(1), 90.8(1)].
For D4, atoms were held in the harmonic trap for 1.75 s before loading the xy-lattice
to produce systems at a higher temperature.

In a comparison of NN spin correlations at half filling to NLCE calculations of
[209], the four datasets are consistent with temperatures T/t of [0.43(3), 0.52(5),
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Figure 4.3: Doping control. a, Occupation of lattice sites in a single snapshot. The
harmonic confinement of our atoms naturally leads to an increasing hole doping
with increasing radial distance R from the center of the trap. b, Spatial doping dis-
tribution of two datasets with different total particle number. c, N-point correlators
locally extend over N lattice sites. Here N = 2 is shown. A single doping value is
assigned to each locally computed correlation value, according to the mean doping
δc of all its sites. d, Extracted doping dependence of NNN spin correlations d = 2
from two datasets with different total particle number is shown. The error bar in
doping corresponds to the bin size used for averaging local correlations.

0.52(5), 0.77(7)]. Interaction strengths U/t of the datasets are estimated to be [8.9(4),
7.4(8), 7.4(8), 7.4(8)]. Details of this parameter extraction can be found in appendix
C.1.

The harmonic confinement of our atoms leads to an automatically increasing hole
doping from the center to the edge of our systems, see Fig. 4.3. By averaging correla-
tions in different areas Ω of the system, the doping dependence of a correlator can be
mapped out. An example of the radially increasing hole doping is shown for datasets
[D2, D3] in Fig. 4.3.

N-point correlators (in this work N ∈ [2, 3, 4]) locally extend over N lattice sites, of
which not all share the same doping concentration, due to the spatial doping gradient
in the system. When we compute the local value of a correlator (i.e. for N specific
lattice sites), we label the calculated correlation value by the mean density of all its
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contributing N sites n = ∑ ni/N and therefore a doping δ = 1− n, see Fig. 4.3. We
then average all local correlations with an assigned doping within a bin of width δw
and centered around δc, such that δ ∈ [δc − δw/2, δc + δw/2]. In the analysis, we
display the averaged value at a doping δc with an error bar in doping of width δw.

We cross-check the validity of our method for extracting doping dependencies
from our experimental system. To this end, we compare the doping dependence ob-
tained for the same correlator between two datasets with very different total num-
ber of atoms, i.e. two datasets with a very different spatial doping distribution. In
Fig. 4.3b we consider the correlation of spins at distance d = 2 apart from each other.
A similar extracted quantitative and qualitative doping dependence is obtained from
the slightly and more heavily doped dataset. Furthermore, the extracted doping de-
pendence of other correlators presented in the following sections agrees between dif-
ferent datasets. This confirms the validity of our approach in our current parameter
regime and for our experimental temperatures, where short-range correlations dom-
inate. With more homogeneous systems obtained through potential shaping in the
future, correlators occupying a larger spatial area or a more precise doping resolution
will become accessible.

Error bars for all correlator-based observables were found by performing a
bootstrap and computing the standard deviation of the mean across the resampled
datasets.

4.2.2 Numerical calculations for comparison

There are three different questions, for which we provide answers by comparison to
numerical calculations [236]. How much do our quantum simulation results have in
common with exact computation at the largest accessible system size on a classical
computer? How do popular approximate concepts for the weak-doping regime com-
pare to the experiment at different dopings? Finally, we would like to identify the
doping regime at which the system is described by a Fermi liquid.

All numerical calculations are at finite temperature kBT = 0.4 t and were per-
formed by A. Bohrdt, Y. Wang, F. Grusdt, and E. Demler. The calculations can be
divided into three different categories, as shown in Fig. 4.4. Details of calculations
can be found in [236]. The most important aspects are summarized below.

Exact diagonalization of Fermi-Hubbard systems with 4× 4 sites was performed.
Many observables in such a small cluster suffer from strong finite-size effects. Rea-
sonable agreements with experiment are found for spin-charge correlators in the next
section. These calculations furthermore provide important insights on aspects of Hub-
bard physics, such as the impact of doublon-hole fluctuations.
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Figure 4.4: Comparison to theory. Experimental correlations are compared to nu-
merical calculations of different theoretical concepts, which can be divided into
three different categories. Exact diagonalization of finite size 4× 4 Fermi-Hubbard
systems, approximate concepts for weakly-doped Mott insulators and finally Fermi
liquid related concepts for strong doping. For a detailed description of the concepts
see text.

Correlations for three different weak-doping concepts were calculated at finite
temperature, see Fig. 4.4: two versions of RVB states, namely uniform and π-flux (c.f.
chapter 1), as well as the string model for independent magnetic polarons. Observ-
ables for these frameworks are computed from sampled real-space snapshots with the
same algorithm as for experimental data.

Many other simplifying concepts for the weak and intermediate doping regime ex-
ist, see chapter 1 and [123, 124]. Our work provides a benchmark for some of the most
common approaches. In the next section, we find limited overall agreement of the
experiment with all three approximate models in particular in the crossover regime
between polarons and Fermi liquid. The string model catches qualitative trends close
to the Mott insulator.

To identify the Fermi-liquid regime, we are looking for agreement with mean-
field inspired methods. In the simplest approach, we compare correlations of non-
interacting (free) fermions, which we obtain by sampling real-space snapshots from
a Fermi sea and computing observables with the same algorithm as for experimental
data. When comparing spin susceptibility or structure factors, the random-phase-
approximation (RPA) [237] provides a straightforward formalism to take small finite
interactions into account on a mean-field level. Within the RPA, interactions lead
to a renormalization, which diverges in the strong-coupling limit (e.g. at U/t = 8)
already at low densities. A more advanced method is the two-particle-self-consistent
(TPSC) approach [238, 239], which goes beyond classical mean-field theory because it
assumes different renormalizations for the spin and charge degree of freedom. TPSC
calculations describe the experimental spin susceptibility very well for dopings δ >
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δFL and quantitatively capture the incommensurate fluctuations at high dopings.

4.3 Evolution of correlations with doping

4.3.1 Spin-spin correlations - oscillatory behavior

We start by investigating how two-point spin correlations Cc(d) evolve in a Mott
insulator as a function of increasing hole doping. As shown in Fig. 4.5a, doping
quickly reduces the amplitude of antiferromagnetic correlations, as expected from
magnetic-polaron formation of mobile dopants. Furthermore, correlations weakly
oscillate as a function of doping. Spin correlations at different distances (such as
d =
√

2, 2,
√

5,
√

8) undergo a sign reversal at dopings δ = 20-40 %.

The uniform-RVB state features similar sign flips of correlations and compares
well also for larger dopings. π-flux and the string model behave similarly and show
agreement with our data for δ < 20 %, in line with observations of [72]. Predictions of
different weak-doping concepts for two-point correlations are very similar. This calls
for a comparison of higher-order spin-charge correlations, in order to find out which
concepts are favored.

Two-point spin correlations of ED calculations show strong finite-size effects,
which is why we do not compare them to experimental data at this point.

4.3.2 Spin structure factor - incommensurate fluctuations

Microscopic two-point correlations are related to different macroscopic quantities of
the system. As mentioned in Chapter 1, the static spin structure factor S(q) can be
computed by taking the Fourier transform

S(q) =
d=dc

∑
d=0

Cc(d)eiqd/η . (4.7)

Here, we introduced a cutoff distance dc. For our temperatures, the spin correlation
length is short enough to approximate the thermodynamic limit (infinitely large sys-
tem) of the structure factor with short distance correlations d ≤ dc. At a selected dop-
ing concentration, correlations with a maximal distance dc =

√
10 are taken into ac-

count. If all neglected distances d >
√

10 have vanishing correlation values, this struc-
ture factor estimates the thermodynamic limit. Since the correlation Cc(d) falls off
with increasing distance d at our temperatures, the contribution of distances d >

√
10

to the structure factor is indeed negligible compared to the much stronger shorter dis-
tances (at half filling Cc(d =

√
13) = −0.005(3)). For colder systems with long-range
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Figure 4.5: Magnetism from Mott insulator to Fermi liquid. a, Connected spin-
spin correlations as a function of doping for different spin distances (see insets).
Error bars denote one standard error of the mean (s.e.m) and for doping the bin
width for averaging. Solid (dotted) lines of numerical calculations indicated in the
legend correspond to spin distances of red (blue) data points. Shaded bands indi-
cate the statistical s.e.m. for all calculations where visible. b, Offset adjusted static
spin-structure factor S?(q) for increasing doping with arbitrary scales and c, trace
through unadjusted spin-structure factor S(q) at 50 % doping. The full width of
doping bins for b, c is 0.14. Solid pink represents a mean-field related TPSC calcu-
lation. d, Doping dependence of the uniform magnetic susceptibility. Solid, dashed
and dotted pink curves correspond to TPSC, RPA and free fermion calculations (see
legend). This figure is based on dataset D1 with 3 224 experimental realizations at
T = 0.43(3) t and U/t = 8.9(5).

correlations this cutoff loses its validity. We keep a high number of points in momen-
tum space, by padding distances up to d = 14 with a correlation value of zero, which
does not add nor affect any information encoded in our Fourier observables.

In addition to S(q), we compute a version of the structure factor for which a con-
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stant and broad offset in momentum space is removed. To this end, we exclude the
strong positive on-site term d = 0 from the Fourier transform and calculate

S?(q) =
d=dc

∑
d=1

Cc(d)eiqd , (4.8)

which furthermore differs from S(q) by the doping-dependent normalization η =
ηPearson used throughout this chapter.

Oscillating magnetism, as observed with spin-spin correlations above, manifests
itself as visible peaks in S(q), which shift from the antiferromagnetic wavevector
(π , π) towards (π , 0) when the hole concentration reaches 50 %. In Fig. 4.5b, the
evolution of S?(q) is shown for different dopings (the evolution of S(q) is shown
in appendix C.2). The shift of S(q) towards wavevectors incommensurate with the
lattice spacing in Fig. 4.5c is in excellent agreement with our TPSC calculations. We
consider such incommensurate spin fluctuations at large dopings a Fermi-liquid phe-
nomenon, which furthermore confirms Quantum-Monte-Carlo (QMC) calculations
of [240, 241]. We interpret this shift of peaks in the structure factor as a stretch of the
Fermi wavevector qF at large doping, which causes such incommensurate fluctua-
tions through interactions on a mean-field level. A possible connection to incommen-
surate spin-density wave phases (stripes) at weak doping and colder temperatures
[242] needs further exploration.

The density structure factor does not feature such incommensurate fluctuations in
the experimental data, see appendix C.2.

4.3.3 Spin susceptibility - anomalous hump

In Fig. 4.5d, we extract the doping dependence of the uniform spin susceptibility χs
from the structure factor via the fluctuation-dissipation relation χs(q = 0)T = S(0)
[9]. This relation holds in this form only for q = 0 and is a versatile tool, as mentioned
in earlier chapters. In the context of density correlations the relation was used in [62–
64]. The doping dependence is computed from dataset D1, which means all different
dopings are at the same temperature T as the system is in thermal equilibrium.

The experimental susceptibility in Fig. 4.5d initially indicates a hump with increas-
ing doping, i.e. it is not decreasing, but appears to be increasing. For stronger dopings
δ > 30 % the susceptibility continuously drops with increasing doping. We compare
this behavior to the three different Fermi-liquid type calculations (free, RPA, TPSC).
For free fermions, χs monotonously drops with doping. To avoid divergences of
the RPA calculation, the calculation is performed at a lower effective interaction of
U/t = 4. For strong dopings δ > 50 % RPA starts to overlap with experimental data.
The best agreement is found with our TPSC calculation, which quantitatively matches
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for most dopings except the crossover region around δ ∼ 20 %.

All three mean-field inspired approaches predict a monotonously decreasing sus-
ceptibility with doping. Our measurements suggest the susceptibility increases at first
before dropping after δ ∼ 20 %. Such a hump in the susceptibility is reminiscent of
the pseudogap phenomenon and not captured by our FL calculations. This anoma-
lous behavior is furthermore supported by QMC results [116] and indicates that the
metallic regime below δFL is of different nature than the conventional Fermi liquid
found at higher dopings.

4.3.4 Hole-spin-spin correlations - polaron breakdown

The previous section on two-point spin correlations found signatures of Fermi liquid
behavior developing at dopings δFL ∼ 30 %. Now we investigate what happens to
the magnetic dressing of dopants. To this end, we track how connected hole-spin-
spin correlations Cc

◦(r, d) evolve with increasing doping, as shown in Fig. 4.6.

Weak doping

At weak doping of 10 %, a hole perturbs all bonds in its vicinity with a sign oppo-
site to the antiferromagnetic background. This means, NN spins (d = 1) align more
ferromagnetically (parallel) and diagonal spins (d =

√
2) more antiferromagnetically

(anti-parallel) directly next to the hole, see Fig. 4.6a. Such behavior could already be
observed with individual doublon dopants in chapter 3. The effect of a magnetic po-
laron is to induce correlations, which oppose the antiferromagnetic background. The
strength of this polaronic effect can be measured versus bond distance r from the hole.
As shown in Fig. 4.6b, the radial dependence reconfirms a polaron size of two sites in
diameter.

Strong doping

In the Fermi-liquid regime at large doping δ = 50 %, the Pauli exclusion principle
is the most important mechanism at play, which prevents fermions with the same
spin to occupy sites in a small area [64]. This causes an enhanced antiferromagnetic
correlation of all bonds in the vicinity of a hole, see Fig. 4.6. Intuitively, one can think
of the hole as reducing the area available for two particles and therefore increasing the
effect of the Pauli exclusion principle. A striking difference to the magnetic polaron
regime is that the connected correlation of a hole with spin bonds does not oppose the
background correlations. For instance, at strong doping, two-point NN correlations
are negative and NN bonds also show a negative connected correlation with a single
hole.
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Figure 4.6: Connected hole-spin-spin correlations. a, Connected correlation (rep-
resented as bonds) of NN and diagonal bonds in the presence of a single hole (white
central dot) for different dopings. b, Connected correlations as a function of bond
distance r from the hole, where the sign of correlations with bond length d =

√
2

is flipped. Thus a positive correlation indicates a connected signal opposing the
two-point correlations at half filling. Error bars denote one s.e.m. and are smaller
than the point size. The full width of doping bins for a, b is 0.1. c, Doping depen-
dence of NN and diagonal bonds closest to the hole (see insets). Square (circular)
datapoints were extracted from a dataset D2 (D3) with 52.0(1) (91.3(1)) average
number of particles. Solid lines represent numerical calculations (see legend) and
shaded bands indicate (where visible) their statistical s.e.m. This figure is based on
18 107 experimental realizations at T = 0.52(5) t and U/t = 7.4(8).
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Polaron breakdown

To monitor the transformation from a metal of magnetic polarons to a Fermi liquid,
a useful indicator is to determine the doping at which connected hole-spin-spin cor-
relations stop to oppose the background spin-spin correlations. This specific doping
represents a turning point and we interpret this qualitative change as the breakdown
of the polaron picture. In Fig. 4.6c, the evolution of closest distance NN and diag-
onal bonds is shown. The connected correlation of NN bonds continuously evolves
from ferromagnetic (positive) to antiferromagnetic (negative) with increasing doping.
Since two-point NN correlations remain negative for all dopings (Fig. 4.5a), the point
at which these three-point correlations switch from ferromagnetic to antiferromag-
netic signals the breakdown of the polaron picture. In our measurements, this takes
place at dopings around 20 %. At a similar doping δ ∼ 30 %, connected diagonal
correlations are maximally antiferromagnetic.

Comparison to numerics

Correlations obtained with ED compare well with experimental data. The quantita-
tive agreement is surprising at first because two-point spin correlations in ED have
strong finite-size offsets. But these spin-charge correlations seem to avoid some of
those offsets through the connected composition of these correlations.

Weak-doping concepts (string, RVB) make very different predictions for Cc
◦. Only

the polaron model (string) reproduces the experimental ferromagnetic alignment of
the closest NN bond close to half filling, while RVB states show strong discrepancies
to experiment. Uniform RVB is a prime example of how a theoretical approach can
show excellent agreement with experiment in two-point correlations at low doping
(Fig. 4.5a), but reveal strong deviations at higher-order correlators. For δ > 50 %, uni-
form RVB and free fermions are very similar and capture experimental correlations,
which in this regime are therefore mainly driven by fermionic statistics.

QMC studies of Fermi-Hubbard systems found the bandwidth of quasiparticle
excitations evolves from polaronic (W ∼ 2J, where J is the superexchange) to Fermi
liquid (W ∼ 8t) at around 30 % doping [117]. Our measurements suggest polaronic
dressing persists up to δ ∼ 20 % and smoothly dissolves into Fermi-liquid correlations
around δFL ∼ 30 %.

Effects from doublon-hole fluctuations

Doublon-hole fluctuations contribute a significant amount of holes close to half fill-
ing at our interaction parameter U/t ∼ 8. The connected correlation signal coming
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Figure 4.7: Doublon-hole fluctuations and connected three-point correlations. a.
Experimental connected doublon-spin-spin correlations at density n ∈ [0.9, 1.0]. All
doublons are therefore part of a doublon-hole fluctuation. b, ED calculation of con-
nected doublon-spin-spin correlations at half filling. c, Ratio between doublons and
holes (red, scale as indicated by red arrow) as a function of doping. At half filling,
there are as many holes as doublons. Connected correlation of the closest distance
NN bond next to a hole (blue, scale as indicated by blue arrow) as a function of
doping.

from such holes, therefore, mixes with the ones from doped holes at weak dopings1.
By analyzing connected doublon-spin-spin correlations Cc

 
 

at half filling in experi-
ment and ED, we find such false dopants have an effect qualitatively similar to real
dopants. As shown in Fig. 4.7a,b, correlations in the vicinity of a doublon fluctua-
tion are weakened. This is expected because the doublon has a hole bound to it in its
immediate vicinity. This hole weakens the average correlations around the doublon.
The ratio of doublon-hole fluctuations to the total number of holes rapidly drops with
increasing doping. Fig. 4.7c shows the ferromagnetic connected correlation of NN
bonds with holes decreases much slower than the amount of doublon-hole fluctua-
tions. This reconfirms that the measured correlations Cc

◦(r, d) are dominated by actual
hole dopants.

1Note: In the previous chapter this issue was avoided because the interaction was stronger U/t =
14, the number of fluctuations, therefore, smaller, and doublons with holes as nearest-neighbor were
discarded in the analysis.
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Hole doping �

Figure 4.8: Hole-hole correlations.
Doping dependence of g(2) correla-
tions between nearest-neighbor holes.
Circular (square) data points corre-
spond to d = (0, 1) (d = (1, 0)).
Blue (red) points were extracted
from dataset D2 (D4) at temperature
0.52(5) t (0.77(7) t).

4.3.5 Two-hole effects - peak at the crossover

The previous section revealed that polaronic effects of doped holes dissolve around
20 % doping and a Fermi liquid forms around 30 % doping. In this section, we search
for two-hole effects and their role in the crossover region. When two polarons come
close, their dressing clouds overlap, which can lead to the breakdown of polarons
or induce effective interactions between them. This is often considered as a possible
mechanism for pseudogap behavior [10, 13, 110].

Hole-hole

The simplest observable to detect mutual hole interactions is a two-point hole-hole
correlator

g(2)hh = 〈ĥri ĥr j〉/〈ĥri〉〈ĥr j〉 − 1 . (4.9)

A negative correlation signals hole-hole repulsion, while a positive correlation indi-
cates attraction. Already relative changes of such correlations as a function of tem-
perature could give indications of possible interactions. At current temperatures of
cold-atom quantum simulators dopants are negatively correlated (repulsion) at short
distances and uncorrelated otherwise, see chapter 3 and [72]. In Fig. 4.8, the cor-
relation of nearest-neighbor holes is tracked as a function of increasing doping and
for two different temperatures. A negative signal persists throughout both doping
regimes and at our parameters colder temperatures lead to stronger negative correla-
tion.

Hole-hole-spin-spin

Even though mutual hole attraction is not resolved in our experiments, full resolution
allows us to study how the spin environment reacts if two holes come close to each
other. To perform such an analysis, we post-select on two holes at positions r3, r4
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and measure the correlation between two spins in their vicinity, i.e. we evaluate the
connected correlator Cc

◦◦(l, r, d) introduced at the beginning of this chapter (Fig. 4.2).
We focus on the case of NN (l = 1) and diagonal (l =

√
2) pairs of holes and consider

bond lengths d = 1,
√

2.

To achieve a sufficient signal-to-noise ratio in the experiment, we combine the two
pair configurations for NN (l = (1, 0), (0, 1)) and diagonal pairs (l = (1, 1), (1,−1))
by averaging all bonds with identical bond distance r from holes at fixed l. To spa-
tially visualize the result, we plot these averaged correlations around the (arbitrarily)
chosen configuration l = (1, 0) for NN holes and l = (1, 1) for diagonal holes, see
Fig. 4.9a. As a result of the symmetric averaging, bonds with identical distance r in
the figure share the same strength by definition.

A connected antiferromagnetic correlation exists at closest distance to NN as well
as diagonal pairs, see Fig. 4.9a,b. This negative correlation persists in and connects
both metallic regimes, albeit a different doping dependence for the two different hole
distances is found.

For NN holes (l = 1), the closest distance (r = 1) NN bond (d = 1) starts with
a negative correlation already at half filling and slowly fades to zero with increasing
doping. At strong doping δ > 30 %, the correlation starts to quantitatively agree with
the correlation in a Fermi-liquid (free fermions). At half filling, a negative correlation
originates from doublon-hole fluctuations, as described in a later paragraph below.
Upon increasing the temperature from T = 0.52(5) t to T = 0.77(7) t, the negative
correlation of this bond is only weakly affected.

For diagonal holes (l =
√

2), the closest distance (r = 0) diagonal bond (d =
√

2)
starts with a very weak correlation at half filling. With increasing doping, a negative
correlation builds up, develops a peak in the crossover region, and then fades to zero
in the strong doping regime. Doublon-hole fluctuations contribute a positive signal
close to half filling, as discussed in a paragraph below. The peak of correlations in
the crossover regime is also found in ED calculations. Similar to the case of NN holes
described above, Fermi-liquid (free fermion) correlations quantitatively agree with
experimental data for δ > 30 %. However, the negative correlation with diagonal
holes is much more affected by an increase in temperature.

Approximate weak-doping concepts (string, RVB) predict antiferromagnetic corre-
lations of closest distance bonds but show limited overall agreement to experimental
data.

Let us recapitulate what such a negative connected correlation means in terms of
the bare spin environment of two holes, c.f. Fig. 4.2. When two holes are detected
on a diagonal l =

√
2 at weak doping, the bare correlation of the diagonal bond in

between them will be strongly negative. This bare negative strength is the sum of
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Figure 4.9: Connected hole-hole-spin-spin correlations. a, Decomposition of C◦◦
into connected and disconnected part. b, Connected correlations of NN and diag-
onal bonds in the presence of two NN or diagonal holes. Two dopings are shown
with a full width averaging bin of 0.2. Same bond distances and symmetric spatial
hole orientations are averaged together (see text). c, Connected correlation of the
bond with closest distance to the NN or diagonal hole pair (see insets) as a function
of doping. Blue, red points correspond to experimental temperatures of 0.52(5) t,
0.77(7) t. Blue square, circular data points were extracted from datasets D3, D2 with
on average 52.0(1), 91.3(1) particles. Solid lines are numerical calculations as indi-
cated (see legend) and shaded bands their statistical standard error of the mean. d,
DMRG calculations (T = 0) for two holes in the 6-leg ladder t-J model, where bind-
ing occurs. This figure is based on 23 695 experimental realizations at U/t = 7.4(8).
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a strong positive two-point spin correlation, a negative polaronic contribution from
each hole separately, and finally the negative correlation with exactly two holes. All
contributions together result in a strong negative correlation. Loosely speaking, the
diagonal bond turns more negative in the presence of both holes, than it would need
to from the average influence of two independent polarons.

To discuss a possible connection of the negative correlation to lower temperature
physics, we consider two holes (δ ∼ 2 %) in the t-J model. In this model binding of
polarons (holes) occurs at relatively high temperatures [112]. We performed density-
matrix-renormalization-group (DMRG) calculations of this scenario at T = 0 for a 6-
leg ladder and show the connected spin environment in Fig. 4.9c for l = 1 and l =

√
2.

A striking effect of hole pairing is the emergence of a strong antiferromagnetic spin
bond at closest distance to the pair [111, 112]. Our experimental correlations feature
similar signatures, but there is no further indication of hole binding from hole-hole
correlations. Therefore, we conclude that qualitative features of the zero temperature
physics of two holes are already encoded in the finite temperature limit and a strong
interplay of spin and charge correlations already precedes hole pairing or formation
of other competing orders at colder temperatures.

Effects from doublon-hole fluctuations

Since holes belonging to doublon-hole fluctuations and doped holes are not distin-
guished in our analysis, such fluctuations contribute a significant part of the experi-
mental signal at half filling. We can independently determine connected correlations
arising from doublon-hole-fluctuation holes, by analyzing four-point correlations Cc

 
 
 
 

around half filling with doublons, instead of holes. All doublons in this regime orig-
inate from quantum fluctuations. In Fig. 4.10, we show these connected correlations
with experimental data and from ED at half filling.

Two aspects are relevant to our understanding of four-point correlations presented
in Fig. 4.9. For NN doublons, a closest distance antiferromagnetic correlation is visible
in the experiment and in ED. The connected correlation of the closest bond of diago-
nal doublon pairs is positive in ED and close to zero with experimental data. Residual
doublon dopants in the experiment might contaminate the signal in Fig. 4.10b with a
negative signal, which would lead to a cancellation of the positive signal from dou-
blon fluctuations.

4.4 Conclusion

This chapter harnessed the unique capability of our quantum simulator to study how
correlations between spins and charges evolve in a Mott insulator with increasing hole
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Figure 4.10: Doublon-hole fluctuations and connected four-point correlations. Ex-
perimental connected doublon-doublon-spin-spin correlations for a, NN doublons
and b, diagonal doublons, averaged in a region with density n ∈ [0.88, 1.02] at
U/t = 7.4(8). Doublons mainly originate from doublon-hole fluctuations. ED cal-
culations of these correlations with doublons at exactly half filling are shown in c
for NN doublons and d for diagonal ones.

doping at temperatures T ∼ 0.4 t. The fully spin- and density-resolved snapshots of
doped systems gave access to spin-charge correlations up to fourth order, which are
unavailable in traditional solid-state experiments. More conventional observables,
such a spin susceptibility and structure factor were computed from two-point corre-
lations in the system.

We confirmed two distinct metallic regimes, which are connected in a crossover
at doping around δFL ∼ 30 %. At weak doping, a metal with polaronic correlations
was found, while at strong doping the system turns into a normal Fermi liquid. The
transition between the two regimes manifests as a change in all studied system ob-
servables, of which the most important ones are summarized in table 4.1. How the
observed doping δFL for the crossover in our experiment can be related to solid-state
measurements is unclear, since details like band structure and the difference in ac-
cessed observables plays an important role.

In a benchmark of three effective weak-doping theories (string, π-flux, uniform
RVB), we find limited overall agreement with our system. In particular the crossover
regime (δ ≈ 10-30 %) calls for more efficient descriptions.

How the measured antiferromagnetic correlation next to pairs of holes is related
to effective hole-hole interactions and how collective phenomena at colder tempera-
tures connect to our reported correlations are to be investigated in future experiments.
Only modest improvements in colder temperatures might be required for an experi-
mental observation of pairing [112] or pseudogap behavior [209]. Cooling proposals
are available [173], which can readily be tested with this setup.

Spin-charge correlators can also be studied in cold atom systems out-of-
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Observable Doping Behavior
spin-spin 20-40 % Various distances

reverse sign
S(q) 50 % Visible incommensurate

fluctuations
χs 20-30 % Slope changes
hole-spin-spin 20 % correlation
(r =

√
1.25, d = 1) reverses sign

hole-spin-spin 20-40 % correlation
(r =

√
0.5,
√

2) maximally negative
hole-hole-spin-spin 30 % correlation
(l =

√
2, r = 0, d =

√
2) maximally negative

hole-hole-spin-spin > 30 % agreement with
free fermions (FL)

Table 4.1: Summary of key experimental results.

equilibrium [69, 70] and with slightly colder temperatures the portfolio of correlators
could be extended to fifth-order [243]. Such measurements could continue to
inspire our understanding of Fermi-Hubbard systems and their exotic many-body
phenomena in the future.
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Conclusion and outlook

This thesis reported on cold atom quantum simulation of doped antiferromagnetic
Mott insulators at temperatures around the superexchange energy. The full micro-
scopic information on the location and spin of every particle proved to be a powerful
asset of quantum gas microscopy. We harnessed the full potential of our spin- and
density-resolved machine to reveal the magnetic dressing cloud of single dopants in
the Mott insulating regime. This marked a first real-space observation of a magnetic
polaron. Furthermore, we could show how magnetic polarons dissolve at stronger
doping and found the formation of a Fermi liquid around 30 % doping. In the mag-
netic environment of pairs of dopants, we found an antiferromagnetic correlation,
which peaked at the crossover between the two metallic regimes. The Fermi liq-
uid itself exhibits incommensurate magnetic fluctuations, whose connection to spin-
density waves at lower doping and colder temperatures requires further exploration.
The spin-charge correlators evaluated within this work uncovered several deficiencies
of popular approximate weak-doping concepts close to the crossover between both
metals. Measurements within this thesis represent a valuable benchmark for future
effective theories of anomalous metallic phases in the context of high-Tc materials.

Optical superlattices were a key technology in this thesis for the manipulation and
detection of cold atomic systems. We described the engineering and design of highly-
stable bichromatic superlattices, of which an implementation for the vertical direc-
tion was built into the apparatus. This enabled robust charge pumping of layered
systems. Two applications demonstrated the capabilities of the underlying superlat-
tice design. High-fidelity microscopy of bilayer systems was realized, which paves
the way towards quantum simulation of layered materials. For monolayer systems,
bilayer microscopy allowed full spin and density resolution of more than two times
larger systems than before and access to higher energy scales.

The greatest challenge for cold-atom based quantum simulation of 2d Fermi-Hub-
bard systems is the quest for lower temperatures. Considering the ultimate reward,
i.e. the solution of one of the most paradigmatic models for strongly-correlated elec-
trons, every try seems worth the effort. In this respect, current experiments have built
up a dramatic suspense. The coldest temperatures of T = 0.25 t [61] realize long-range
antiferromagnetic correlations and quantum gas microscopes have already shed new
light on doped 2d Mott insulators in various ways [59, 60, 70, 72, 231, 236]. These and
other experimental setups are on the verge of probing pseudogap and strange metal
regimes. Not even a factor of two in lower temperatures might be required to detect
hallmark features of such exotic states [116–118]. One order of magnitude lower tem-
peratures could unleash the full power of cold-atom quantum simulators to explore
the regime of collective phenomena [119, 120]. Given these scenarios, there will be
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a strong impact of experiments per achieved temperature reduction in the years to
come.

Most excitingly, there are possible ways to lower the temperature in our existing
experimental setup. Most of these ideas revolve around the manipulation of atoms
with highly-stable superlattices. Two-component band insulators can be prepared
at ultra-low entropy, as demonstrated by [165]. The vertical superlattice could be
used to prepare such states with even lower effective temperature, by a much more
efficient entropy redistribution [173]. Next, a superlattice within the plane could be
used to adiabatically connect such a low-entropy band insulator to a low-entropy
Mott insulator [172].

A new generation of bichromatic superlattices for the xy-direction is currently
under construction. This will not only enable the aforementioned cooling schemes
but also allow for the realization of more exotic Hamiltonians, such as plaque-
ttes and mixed dimensional systems [244]. During the writing of this thesis, a
digital-micromirror device has been implemented into the setup. By now, tailored
site-resolved optical potentials can be used to engineer Fermi-Hubbard systems with
increased potential homogeneity and at almost arbitrary geometry.

I am certain, the future of this experimental setup is bright and many more sur-
prises and great discoveries are yet to come. The entire field of fermionic quantum gas
microscopy has delivered an amazing sprint of fantastic results over the last decade.
Many groups continue to push the limits of this technique. If the pace continues, I am
exhilarated to see how the community will transform our understanding of strongly-
correlated systems in the upcoming years.
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A.1 Derivations

System size N?

Here we derive Eq. 2.3, which measures the 2d system size N?
9,40 of a Mott insulator at

U/t = 8 in a square lattice at 9 ER, given the condition that at maximum laser power
per beam P the lattice has a depth of 40 ER. We start by restating the definition

N? =
π16t

mω2a2 =
π16 · 8

h2
t · ER

ω2 , (A.1)

where t is the nearest-neighbor tunneling amplitude, m the atomic mass,ω the radial
harmonic confinement and a the lattice spacing. Along with the asymptotic analytic
expression for the tunneling Eq. 1.8 and the definition of the recoil energy Eq. 1.7
we are going to use the following expressions (see also [176]) for the radial harmonic
confinement in red-detuned optical lattices ω, the lattice depth V and single-beam
peak intensity I

ω =
1
h̄

2
π

a
w

ER

√
2V/ER (A.2)

V =
1

2ε0c
α4I (A.3)

I =
2
π

P
w2 , (A.4)

where w is the gaussian beam waist, α the real part of the complex polarizability
α̃ and P the laser power per beam. The expression for the harmonic confinement
ω caused by red-detuned optical lattices was derived for a gaussian envelope I ∝
exp(−2r2/w2). Note the factor of 4 in the conversion from single-beam intensity to
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lattice depth V. The constructive interference of two beams leads to this enhancement
in depth.

We start by finding the gaussian beam waist, which leads to a V = 40 ER deep
lattice at full power P

w2 =
α

2ε0c
8

40π
P

ER
. (A.5)

Now we can use this information to compute the radial harmonic confinement caused
by the lattice at a depth of V = 9 ER. We neglect the contribution to ω from the ver-
tical lattice. Furthermore, we assume retro-reflected lattices. In this case, the x-lattice
causes a harmonic trapping along the y-direction ωy and the y-lattice a harmonic
trapping along the x-direction ωx. Since we assume both lattices have the same pa-
rameters, the radial harmonic confinement is given byω =ωx = ωy and therefore

ω2 =

(
1
h̄

2
π

a
1

ER
√

2 · 9
)2 (40π

8
2ε0c
α

ER

P

)
, (A.6)

which can be simplified to

ω2 =
1
h̄2

18 · 4 · 40
8 · π

a22ε0c
αP

E3
R =

1
h̄2

360
π

a22ε0c
αP

E3
R = 180π

2ε0c
mαP

E2
R . (A.7)

The tunneling amplitude in an optical lattice at V = 9 ER is given by

t =
4(9)3/4e−6
√
π

ER (A.8)

By plugging Eq. A.7 and A.8 into Eq. A.1, we therefore find

N?
9,40 =

π16 · 8
h2

4(9)3/4e−6
√
π

mαP
180π2ε0c

=
64(9)3/4e−6

45
√
πh2ε0c

mαP , (A.9)

which is the maximum system size at V = 9 ER for a typical Mott insulator U/t = 8,
when parameters are optimized, such that the lattice is exactly 40 ER deep at maxi-
mum laser power. This expression confirms Eq. 2.3 of the main text with a constant

b =
128(9)3/4e−6

45
√
πh2ε0c

. (A.10)

As mentioned, this scaling neglects the contribution from the vertical lattice. In
the MPQ-machine, the vertical bichromatic superlattice was engineered with ellipti-
cal beam shaping to ensure a minimal contribution to the radial trapping from this
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Temperature Pressure Humidity (n(1064 nm)−1)106 (n(532 nm)−1)106

23◦C 1 bar 50 % 262.563 266.629
24◦C 1 bar 50 % 261.645 265.699
23◦C 1.001 bar 50 % 262.826 266.897
23◦C 1 bar 60 % 262.460 266.530

Table A.1: Refractive index n in air for 1064 nm and 532 nm under different condi-
tions.

lattice. The derived equations assumed symmetric waists of the optical beams. Ellip-
tical beam shaping for xy-lattices could be used to push system sizes even more, by
focusing beams more tightly along the vertical z-direction to a waist wz and increasing
the beam size along the x- or y-direction to wx, wy. For retro-reflected square lattices
with the settings described above and w =

√
wxwz, the system size scales linearly

with the ellipticity wx/wz = wy/wz.

Scaling of Γsc

In the main text, we discussed how off-resonant scattering from the optical lattice
scales with lattice spacing and polarizability at a fixed lattice depth of V = 9 ER. We
assumed a two-level system (c.f. Eq. 1.4) and red-detuned optical lattices, such that

h̄Γsc

t
=

Γ

∆

V
t
=

9
√
π

4(9)3/4e−6

Γ

∆
. (A.11)

This equation shows, the relative off-resonant scattering is independent of the choice
of lattice spacing and scales only like 1/∆. The bare scattering rate increases by 1/∆2.

A.2 Refractive index data

Fig. 2.9 of the main manuscript is based on refractive-index data, which was calcu-
lated from the Edlén equation [175] and is summarized in table A.1. The slopes of
these refractive index changes are stated in Fig. 2.9 as an estimate for the sensitivity
ofϕr to fluctuations around typical room conditions (23◦ C, 1 bar, 50 % humidity).

A.3 Phase-stability characterization

This section verifies the tunneling amplitude and coherence properties between the
two layers of a bilayer system, which is realized with the vertical bichromatic super-
lattice.
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Figure A.1: Characterizing the superlattice. a, Imbalance of the average local den-
sities of two layers (nL1 − nL2) after quenching on inter-layer tunneling in a res-
onant double-well system. To avoid damping of the Rabi oscillation from a spa-
tially varying double-well tilt, we average over a region of three sites located in the
metallic wing of the cloud with an average density per site of 0.5. By fitting the
observed Rabi frequency (solid black), we extract the inter-layer tunneling strength
of tz/h = 876(1)Hz. b, Total number of atoms of a dilute cloud transferred in 2 ms
to an adjacent layer at very weak coupling tz/h ∼ 30 Hz as a function of the super-
lattice phase. The width of phases is extracted by a lorentzian fit (solid black) and
found to be 97(20)mrad FWHM, averaging over the entire system and 14 hours of
measurement time. c, Change in density (n− n0) of each site in the initial xy-lattice
system for transfer at two different superlattice phases of b as indicated by the gray
shadings.

To estimate the tunnel coupling tz, we measured Rabi oscillations of atoms in the
vertical double-well system. To this end, we prepared 2d Mott insulators in a very
deep xy-lattice of 26 Exy

R in a single layer without vertical tunnel coupling tz = 0.
Then a strong tunneling amplitude to an adjacent layer was quenched on. In a sep-
arate scan of the superlattice phase, we confirmed the quench realizes resonant Rabi
oscillations without a detuning between layer ∆ = 0. After a variable time duration,
all tunnel couplings were non-adiabatically switched off and bilayer readout was ap-
plied to detect the occupation in both layers with single-site resolution. In Fig. A.1a,
the oscillation of the average occupation of three sites in the metallic wing is shown
for a quench to Vs = 11 Es

R and Vl = 100 El
R. By fitting an exponentially decaying

sinusoidal function to the imbalance between the average density in layer one (nL1)
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and layer two (nL2), we extract a tunneling amplitude of tz/h = 876(1)Hz for those
lattice parameters. The error bar denotes the uncertainty of the fit.

To obtain precise values on the coherence properties of the bilayer system, i.e. on
the phase stability of the superlattice, we performed a dedicated set of spectroscopy
measurements. Similar to the setting for Rabi oscillations, initially a single layer with-
out vertical coupling tz = 0 was prepared. The 2d system in this case was a large
and dilute cloud at xy-lattice depth of 26 Exy

R . The vertical superlattice was set to
Vs = 25 Es

R and Vl = 100 El
R in a strongly-tilted double-well configuration. Then

the double-well system was quenched rapidly into resonance at variable superlattice
phase for a total duration of 2 or 6 ms. The amount of atoms transferred to the adjacent
layer is measured as a function of the phase. Since the vertical tunneling amplitude
for those parameters is tz/h ∼ 30 Hz, this sequence probes the limit of small pop-
ulation transfer between planes. The theoretical full-width-half-maximum (FWHM)
width (in terms ofϕr) for a 6 ms duration is 2 mrad. From the experimentally deter-
mined linewidth (i.e. phase width) for atom transfer, phase stability down to 2 mrad
can therefore be diagnosed in principle. As shown in Fig. A.1b for 2 ms transfer du-
ration, a system of 121 sites exhibits a FWHM of 97(20)mrad. This width is currently
limited by spatial inhomogeneities of the local double-well potential, caused by opti-
cal corrugations in the xy-lattice and residual misalignment of the superlattice. The
superlattice phase for resonant transfer between the two layers depends on the spa-
tial position in the xy-plane, see Fig. A.1c. When the atomic transfer is measured in a
region of 9 lattice sites for a transfer duration of 6 ms, the curve of main text Fig. 2.11b
is recovered, which has a FWHM of 25(7)mrad. This width, therefore, represents an
upper bound for the relative phase stability, even though the actual stability might
be better. Higher accuracy of such a phase stability measurement can be obtained
in the future, by using xy-lattices without optical corrugations and with improved
superlattice alignment.

A.4 Pump fidelity

Chapter 2 described charge pumping and bilayer readout for spin- and density-
resolved microscopy of 2d systems. In order to show that no particle motion occurs
during spin-splitting and pumping, we compared the 2d density and its fluctuations
between the spin-resolved bilayer method and standard single-layer microscopy.
For both detection methods, the same Mott insulating system at Vx = 11 Exy

R ,
Vy = 12 Exy

R and interaction U/t ∼ 35 was imaged. As shown in Fig. A.2, the
density and its normalized fluctuations are in good agreement for the two methods.
This furthermore demonstrates that spin splitting and charge pumping accurately
preserve observables of the parent 2d system.
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Figure A.2: Comparing pumped and un-pumped systems. Averaged radial a, den-
sity and b, fluctuation profiles of an identical Mott-insulating system, as measured
without (red) and with (blue) our spin-resolved technique. Error bars, where visi-
ble, denote one s.e.m. and are smaller than the point size otherwise.

A.5 Bilayer reconstruction

Bilayer readout produces two single-site resolved images per experimental realiza-
tion. These are images of two layers, which can belong to a bilayer system or repre-
sent spin information of a 2d system. To fully reconstruct the underlying state and
its site-resolved occupations and/or spins, two steps are performed. As described in
chapter 2, the first step consists of determining the single-site resolved occupations
in each image separately. For this task, the standard monolayer reconstruction algo-
rithm can be used, which uses a deconvolution with a point-spread function [159]. In
a second step, the xy-lattice sites of both images need to be paired, i.e. the sites which
were initially vertical nearest neighbors need to be identified. Typically, both images
have a fixed position on the camera and the mapping of xy-lattice sites in one image
to the sites of the other image is constant and needs to be found only once.

For measurements with bilayer readout of chapter 2 and dataset D1 of chapter 4,
the microscope objective was physically moved by 21µm between two consecutive
images. The vertical movement caused small displacements of the objective in the
transverse direction. This resulted in shot to shot fluctuations of the location (on the
camera) of the two images on the order of up to one lattice site. An initial guess for
the pairing of sites is provided, by matching the lattice site at the center of mass of
each image. To ensure a correct pairing of sites between both images for the spin-
resolution method, we compared 25 different pairing possibilities for each snapshot,
which are given by shifting one layer in x and/or y direction by ±2 lattice sites. Since
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Figure A.3: Correct combination of two spin layers for 2d spin resolution. The
correct pairing of xy-lattice sites of both spin layers can be diagnosed by the num-
ber of doublons resulting from a possible pairing configuration. a, Counting the
number of resulting doublons, if the two spin layers are recombined with one layer
shifted in x- or y-direction. The number of additional (excess) doublons is counted,
as compared to the most likely configuration (centered at x = y = 0). For each
snapshot, all 25 possible configurations for the reconstruction are considered. b,
Histogram of the number of possible pairing configurations as a function of excess
doublons in this setting for a dataset of 150 snapshots. The 150 most likely pairing
possibilities are indeed unique compared to all other possibilities.

our 2d systems have large Mott-insulating regions with unit occupation, we found the
right configuration was uniquely given by the lowest amount of reconstructed dou-
ble occupations. The pairing configuration with the minimum number of doublons is
referred to as the most likely configuration. As can be seen in Fig. A.3a, all 25 pairing
configurations around the most likely configuration would lead to significantly more
reconstructed doublons in a single experimental shot. The correct pairing therefore
uniquely minimizes the total amount of reconstructed double occupations. This al-
gorithm reliably reconstructs the spin and density of 2d systems with a large Mott
insulating region also for larger datasets, as shown in Fig. A.3b for 150 shots. In only
12.7 % of shots, the initial guess (center-of-mass matching) actually differed from the
final configuration.

Recently, the fluorescence imaging path has been rebuilt to avoid physical move-
ments of the objective between two consecutive images. Now, the fluorescence light
is split into two paths, which is imaged at different positions of the same camera.
By adjusting a lens position in one of the arms, this path can be controlled to have a
21µm displaced focus position. This way, two layers at two different foci can be im-
aged simultaneously, see Fig. A.4. The total exposure time for this bi-focus technique
shortens by the time, which was previously required for the physical translation of
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Figure A.4: Bi-focus microscopy in a single image. Spin-resolved snapshot of a
Mott insulator. The fluorescence light is equally split into two paths. The focus
of one path is 21µm displaced compared to the other path. This is achieved, by
adjusting the position of a lens in a telescope of the second path.

the objective (0.5-1s). The bi-focus method has no physically moving parts during
imaging and therefore does not require a matching algorithm for every snapshot.
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B.1 Doping calibration

We performed doping of our systems by controlling the total number of atoms in the
harmonically confined lattice. For measurements with mobile doublons, we realized
weak doublon doping in the center of the trap. Pinned doublons were created in an
otherwise undoped system. To find the correct atom number for each setting, we mea-
sured the number of double occupations per number of atoms (doublon fraction) in
our system as a function the average number of particles N, see Fig. B.1a. For low N,
the doublon fraction saturates below 4 %, which we attribute to quantum fluctuations
in the form of doublon-hole pairs. The background of doublon-hole fluctuations is
confirmed by discarding doublons with holes as NNs, obtaining the curve of doped
doublons versus N shown in Fig. B.1b. For low N, no doped doublons are present.
However, at higher atom numbers N ∼ 60-70 finite doping sets in. The mean N for
the mobile and pinned setting was 72 and 55.

B.2 Density correlations

The positive correlation of doublons with holes and the negative correlation of dou-
blons with doublons at short distances was mentioned in the main text. Here we
present those correlations in greater detail.

We computed the g(2)-correlation function between doublons (doublon-density
operator d̂r1) at position r1 and holes (hole-density operator ĥr2) at position r2 as a
function of their mutual distance r in the dataset with mobile doublons

g(2)dh (r1, r2) =
〈d̂r1 ĥr2〉
〈d̂r1〉〈ĥr2〉

− 1 . (B.1)

Correlations at different r are shown in Fig. B.2a. Strong doublon-hole bunching at
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Figure B.1: Doping calibration. a, Fraction of double occupations and b, total num-
ber of double occupations in the system as a function of number of atoms in the
system. The final number of particles was set by our evaporation parameters. Mea-
surements for pinned doublons were taken in an undoped system (orange bar). For
the mobile doublon, data was taken at weak doping (red bar). The width of the bars
indicates the standard deviation around the mean atom number for the pinned and
mobile dataset respectively.

NN distances exists, which originates from doublon-hole fluctuations. To distinguish
these quantum fluctuations from doped doublons, we excluded doublons with holes
as NNs from the analysis in the mobile setting.

In a similar analysis, we investigate correlations between doublons in the dataset
with mobile doublons. The correlator

g(2)dd (r1, r2) =
〈d̂r1 d̂r2〉
〈d̂r1〉〈d̂r2〉

− 1 (B.2)

is shown in Fig. B.2b for different doublon distances r. Doublons are negatively cor-
related at NN distances and quickly become uncorrelated within our measurement
precision. Such negative correlations are expected for free fermions. Therefore, we
do not resolve any interactions between dopants at our temperatures and can treat
doublons as independent dopants.

B.3 Data filtering

In a pre-processing step, some snapshots of the bare data were discarded. The
monochromatic superlattice used for spin-resolved measurements in chapter
3 showed much stronger relative-phase fluctuations than the current bichro-
matic vertical implementation. To filter out fluctuations in the spin detection
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Figure B.2: Density correlations. Correlations between a, doublons and holes, b,
doublons and doublons in the mobile doublon dataset as a function of their mutual
distance r.

and strongly-magnetized clouds, we only considered shots with a total spin of
|∑ Ŝz

i | = |Ŝz
tot| ≤ 3.5, which corresponds to a maximum allowed magnetization per

particle of |Ŝz
tot|/N ≈ 0.05. After this step, 68 % of shots remain. We performed

all further analyses in a region of interest (ROI), which is defined as all sites with
average density n ≥ 0.7.

Due to the larger lattice spacing in the y-direction, a relatively high scattering
length was required to reach the strongly-interacting regime. To filter out events of in-
elastic three-body collisions, we filtered on the total number of holes within the ROI,
as shown in Fig. B.3. This filter discarded all snapshots with more than 7 holes in the
ROI, which amounts to neglecting another 16 % of the data. The final histogram of the
number of atoms N and the total spin Sz

tot within the ROI after all processing steps is
shown in Fig. B.3b,c for the dataset with mobile doublons. The histogram in Fig. 3.3b
was also computed after all processing steps.

B.4 Thermometry

To estimate the temperature of the experimental system, comparison to NLCE calcu-
lations was performed for NN spin correlations C(d = 1) (with normalization η = 4)
at densities around half filling. We compared to calculations at U/t = 13, which is
the lower estimate of U for the experimental system. The lower the assumed U/t, the
higher will be the estimated temperature in units of t. This lower bound for U takes
into account a renormalization for low lattice depths [245] and therefore allows a very
conservative estimation of temperature. The experimental spin correlations as a func-
tion of density were obtained by averaging over sites with local densities between 0.9
and 1.1 in bins ranging from 0.02 to 0.04 to collect enough statistics. We find that
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Figure B.3: Histograms of the dataset for mobile doublons. Number of snapshots
with a certain a, number of atoms, b, total spin Sz

tot and c, total number of holes on
lattice sites with density greater than 0.7. Red bars in c indicate shots discarded by
the applied hole filter (see text).

our experimental correlations compare well with NLCE results at a temperature of
T/t ∈ [0.43, 0.46], see Fig. B.4. Considering the uncertainty in the exact interaction U,
we therefore estimate T/t = 0.45+3

−1.

B.5 Tweezer inhomogeneities

This section elaborates on the effect of tweezer imperfections on spin correlations in
the vicinity of the pinned dopant.

The intensity of the 702 nm tweezer light should radially fall off to 30 % at a dis-
tance of 600 nm from the maximum, given the point-spread function at a NA = 0.5.
The lattice spacings for measurements in chapter 3 were ax = 1.15µm and ay =
2.3µm. We know from an experimental determination of our point-spread function
that two asymmetric distorted side maxima with around 10 % intensity exist. Further-
more, imperfections in the compensation of chromatic focal shifts between our imag-
ing light at 671 nm and the tweezer light will lead to a spot size of the focused 702 nm
light at the target lattice site slightly larger than the theoretical minimum. Therefore,
finite energy shifts will be imparted on lattice sites, which are nearest neighbor to the
target site. We approximate the tweezer depth at the deepest point to be of order U.
Therefore we expect energy shifts up to 0.3 U on neighboring sites. The density of the
two sites, which are direct neighbors along the shorter-space x-direction, is 1.024(5)
and 1.059(5) and therefore slightly increased w.r.t. the surrounding sites at half fill-
ing. This confirms that these sites are indeed detuned by the presence of the tweezer
beam.

A detuning ∆ of the sites neighboring the target site leads to an altered spin ex-
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Figure B.4: Temperature estimation. Experimental nearest-neighbor spin correla-
tions as a function of density in the system with mobile doublons. The normaliza-
tion is η = 4. Upper (lower) values of the blue band correspond to correlations
extracted from NLCE calculations at T/t = 0.43 (0.46) and U/t = 13.

change of those sites with all of their NN sites. The effective spin exchange between
two lattice sites at a mutual detuning ∆ is given by J = 2t2[1/(U + ∆) + 1/(U − ∆)]
[246]. When performing exact diagonalization calculations in the t-J model for pinned
dopants, such an effect could be taken into account by increasing the spin exchange
coupling J by 10 % between the sites surrounding the pinned dopant. As discussed
in the main text, this adjustment captures the experimentally observed enhancement
of NN spin correlations in the vicinity of the trapped dopant.
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C.1 Thermometry

To estimate the temperature of all four datasets [D1,D2,D3,D4] of chapter 4, we start
by confirming the interaction strength for the experimental settings.

Given the calibration of our experimental parameters, a Wannier function calcu-
lation estimates the interaction strength to be U/t = 9.3 for D1 and U/t = 8.2 for
[D2,D3,D4]. As the on-site magnetic moment is very sensitive around U/t = 8, we
compare 〈m̂2

z〉 at half filling between experiment and NLCE calculations of [209]. The
single-particle detection fidelity p is slightly different across datasets and estimated
to be p = 97 % for D1 and p = 95 % for [D2,D3,D4] by comparing occupations in sub-
sequent images of the same realization. When correcting for this detection fidelity,
the experimental magnetic moment agrees with numerical data at an interaction of
U/t = 8.6 for D1 and U/t = 6.7 for [D2,D3,D4], see Fig. C.1a. We therefore combine
our calibration with the information from NLCE to assess the interaction strength to
be 8.9(4) for D1 and 7.4(8) for [D2,D3,D4].

To estimate the temperature of datasets, we compare NN spin correlations C(d =
1) (normalization η=4) at half filling to the NLCE data. Taking into account the detec-
tion fidelity for each dataset, we find our data is consistent with temperatures T/t of
[0.43(3), 0.52(5), 0.77(7)] for datasets [D1,D2,D4], see Fig. C.1b,c. Uncertainties for
the temperature are estimated by the best- and worst-case scenarios, given the statis-
tical errorbar of the spin correlation and the uncertainty in U/t. Dataset D3 does not
have a region at half filling, but it was taken in the same measurement run as D2 and
spin correlations between D2 and D3 agree at the same doping. Therefore, we infer
the temperature of those two datasets to be the same.
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Figure C.1: Recalibration of interaction strength and temperature estimation. a.
NLCE data (solid black) of on-site magnetic moment, resummed from [209], as a
function of interaction strength U/t at half filling for temperatures of T/t = 0.76
(lower line) and T/t = 0.40 (upper line). Dark (light) blue data points correspond
to datasets D1 (D2), which are plotted at a U/t of 8.6 (6.7), which is where numerical
and experimental data coincide. b, c, NLCE calculations (solid black) of C(d = 1)
(η = 4) at half filling versus temperature. Upper (lower) curves are at U/t of 7 (9)
in b, and at U/t of 6 (8) in c. Points in (dark blue, light blue, red) were extracted
from datasets (D1,D2,D4), for which we estimate a temperature of (0.43(3), 0.52(5),
0.77(7)). For experimental data a density filter of [0.96, 1.03] was used for dataset
D1 and [0.92, 0.97] for datasets D2, D3, D4.

C.2 Structure factors

Chapter 4 studied the static spin structure factor S(q) along with an offset-adjusted
version S?(q) and found incommensurate fluctuations, which became visible around
quarter filling. Here, we provide further information on S(q) and present the density
structure factor N(q).

The bare spin structure factor S(q) and its doping dependence is plotted in
Fig. C.2a. Similar to S?(q), incommensurate fluctuations are visible around quarter
filling, i.e. at δ = n = 0.5.

The density structure factor N(q) was computed in analogy to S(q). In this case,
density correlations 〈n̂ri n̂r+d〉 were Fourier transformed instead of spin correlations.
As shown in Fig. C.2b, there are no incommensurate fluctuations visible at any doping
in our measurements. The signal at wavevector (π , π) can be interpreted to originate
from negative correlations between fermions at short NN distances.
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Figure C.2: Spin and density structure factors. a Static spin structure factor S(q)
and b, static density structure factor N(q) at different hole dopings. Incommensu-
rate fluctuations are visible in S(q) at high doping. Such incommensurate behavior
is not detected in N(q). The total width of doping bins for averaging is 0.15. This
figure is based on dataset D1. Maximum values of colorscales vary between images,
which means colorscales between images are not comparable.

C.3 Connected correlator expressions

For all analyses of chapter 4, the most general expressions (〈Ŝz
r 〉 6= 0) for connected

correlators were evaluated with experimental data. These expressions are

Cc
3(r1, r2, r3) = 〈ĥ3 Ŝz

2 Ŝz
1〉 (C.1)
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2 Ŝz

1〉 − 〈Ŝz
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2〉〈ĥ3 Ŝz
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2〉 − 6〈ĥ4〉〈ĥ3〉〈Ŝz
2〉〈Ŝz

1〉,

and their post-selected normalized forms

Cc
◦ = Cc

3/(〈ĥ3〉σ(Ŝz
2)σ(Ŝz

1)), (C.3)

Cc
◦◦ = Cc

4/(〈ĥ4ĥ3〉σ(Ŝz
2)σ(Ŝz

1)), (C.4)

where we used an abbreviated subscript notation Ôi for the operator Ô at position ri.
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