
Dissertation zur Erlangung des Doktorgrades

der Fakultät für Chemie und Pharmazie

der Ludwig-Maximilians-Universität München

Development of computational

methods for the analysis of

proteomics and next generation

sequencing data

Pavel Sinitcyn

aus

Jaroslawl, Russland

2020

<





iii

Erklärung

Diese Dissertation wurde im Sinne von §7 der Promotionsordnung vom 28.

November 2011 von Herrn Dr. Jürgen Cox betreut und von Herrn Prof. Dr.

Thomas Carell von der Fakultät für Chemie und Pharmazie vertreten.

Eidesstattliche Versicherung
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Summary

If DNA is the cookbook of life, and RNA molecules are copies of single recipes, then

proteins are the ready-to-serve dishes. Studying protein’s expression, degradation,

localization, interaction, and modifications is therefore crucial to grasp any

biological process. Proteomics attempts to seize all protein aspects through a

systematic approach. Proteomics produces very complex data that demands the

creation of novel software to extract biological meaning. And with every new

proteomics-related method, new algorithms need to be simultaneously developed.

The MaxQuant and Perseus are open-access softwares that were developed to

make the processing and statistical analysis, respectively, of shotgun proteomics

data accessible for all.

This thesis presents the development of several new functionalities of

MaxQuant and Perseus. For instance, we developed a visualization tool for

mass spectrometry data in MaxQuant which is important for quality control of

chromatography and mass spectrometer performance. Furthermore, we made

MaxQuant available on Linux. It allows the software to run on high-performance

servers, including cloud computing, to drastically reduce the running time for

large scale projects. The biggest recent advance in MaxQuant development is

arguably the newly added option to analyze DIA mass spectrometry data that has

a high impact on clinical proteomics. We extended the well-established algorithms

developed for DDA to the analysis of DIA.

Perseus is user-friendly software to do statistical analysis of omics data,

including genomics and proteomics. In the past few years, we have developed

Perseus’s capability to compare gene expression at RNA and protein level

cooperatively to answer a variety of fundamental biological questions. For instance,

Perseus was successfully used to study how membrane proteins are folded on the

endoplasmic reticulum, how diverse the oral microbiome is, and how abundant is

alternative splicing on the proteomic level.

We also developed an algorithm to extract non-synonymous mutations from

genomics data and incorporate them into the proteomics search. This tool was

proved to be particularly useful to identify immuno-peptides that could potentially

help the immune system to detect cancerous cells. Further development of

this technique could potentially help to create personalized vaccines against the

patient’s cancer.



vi



Contents

Summary v

1 Introduction 1

1.1 Advances in Genomics . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Advances in Proteomics . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Soft ionization . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.3 Mass spectometer . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.4 Quantitative proteomics . . . . . . . . . . . . . . . . . . . . 13

1.2.5 Computational proteomics . . . . . . . . . . . . . . . . . . . 15

2 List of publications 45

2.1 Proteomics software development . . . . . . . . . . . . . . . . . . . 45

2.1.1 DIA proteomics in MaxQuant . . . . . . . . . . . . . . . . . 45

2.1.2 MaxQuant goes Linux . . . . . . . . . . . . . . . . . . . . . 77

2.1.3 Visualization of proteomics data in MaxQuant . . . . . . . . 79

2.1.4 The Perseus computational platform . . . . . . . . . . . . . 84

2.2 Multi-omics applications . . . . . . . . . . . . . . . . . . . . . . . . 95

2.2.1 Identification of neoepitopes . . . . . . . . . . . . . . . . . . 95

2.2.2 Proteomics of oral microbiome . . . . . . . . . . . . . . . . . 112

2.2.3 Proteomics of cotranslational folding . . . . . . . . . . . . . 126

2.2.4 Deep proteomic annotation of mutations and alternative

splicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

3 Discussion and Outlook 173

Acronyms 178

Bibliography 192

List of Figures 193

Acknowledgements 195

vii



viii CONTENTS



Chapter 1

Introduction

The last two decades were marked by impressive progress in the development of

new methods in gene expression analysis, especially in different omics technologies

such as mass spectrometry (MS)-based proteomics and deoxyribonucleic acid

(DNA) and ribonucleic acid (RNA) sequencing. Today, thousands of genomes

and transcriptomes are sequenced routinely, on a scale of a few days, and at a

reasonable price. It is a significant leap compared to the effort behind the Human

Genome Project from two decades ago[1]. Similarly, the proteomics technology

evolved from a qualitative sequencing of one isolated protein towards the robust

quantitative “shotgun proteomics” of complex protein samples with over 10000

proteins[2]. All this progress would not be possible without the corresponding

development of computational and statistical workflows[3]. Combining genomics,

transcriptomics, and proteomics approaches in one study can provide extensive

insight into molecular pathways. In recent years, many studies proved that the

concept is right. The first part of the introduction will include a review of

improvements in the genomics research field. Next, we will describe the recent

progress in proteomics and conclude with some examples of multi-omics studies.

1
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1.1 Advances in Genomics

DNA sequencing based on the selective incorporation of chain-terminating

dideoxynucleotides has revolutionized molecular biology[4]. Although this

technology has been successfully applied to numerous milestone projects, it

has limited throughput and scalability. At the same time, several ideas have

been proposed to overcome this limitation – starting from hybridization rate

measurement to DNA spots (DNA microarray) and pyrosequencing strategy

(454 technology), to sequencing method based on the reversible dye-terminators

(Solexa)[5, 6] - next-generation sequencing (NGS). The Illumina Company officially

announced a new sequencing machine HiSeq X. It is the first in the world to break

the thousand dollars per human genome barrier[7]. This considerable achievement

could lead to breakthroughs in personalized medicine.

Most of the mutations resulting in diseases are found in protein-coding

sequences[8]. Therefore, focusing on the 1% of the coding part of the human

genome would cost far less than whole genome sequencing (WGS). This idea leads

to the development of different target-enrichment strategies to increase the relative

concentration of exon subset (whole-exome sequencing (WES))[9], which makes

sequencing applicable to the clinic setting[10, 11].

The hybridization-based approach (DNA array) is often used as the cheapest

alternative to NGS method[12]. However, this technique has several inherent

limitations, which include its reliance upon our existing knowledge about genome

sequence, high background levels due to cross-hybridization and significant

sensitivity to hybridization conditions, and limited dynamic range[13].

Besides the finding of single nucleotide variants (SNVs) compared to the

reference genome or cancer specific mutations (somatic mutations), WGS and WES

technologies help to find chromosomal oberations[14]. Deletions and duplications

of chromosomal segments (copy number variants (CNVs)) are involved in many

development disorders[15] and cancer[16].

Although the WGS and WES technologies provide a significant amount of

information about biological samples, they neither can inform us about which

portion of the genome is effectively transcribed nor can they give any details on

the expression and regulation of each gene. In 2008, a few groups came to an idea

of using NGS to study transcriptome on a massive scale, which was not feasible

before[17–19]. The principle of this method is to convert all the mRNA present in a

cell to DNA fragments using reverse transcriptase. The generated DNA fragments

are then sequenced in a highly parallelized manner. This new method is called

RNA sequencing (RNA-Seq)[17]. Compare to other transcriptomics methods

(expression and tiling microarray, RT-PCR, and EST sequencing), RNA-Seq has
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Figure 1.1: Next Generation Sequencing applications. WGS and WES
allow detecting and localizing mutations, chromosomal aberrations as well as DNA
modifications. Combined with Chromatin-Immunoprecipitation (IP), NGS allows
to localize epigenetic marks, proteins bound to DNA, and to unravel chromatin
structure. NGS can also be used for RNA sequencing, once RNA has been
converted to DNA using reverse transcriptase. RNA-Seq is used to determine
the gene expression level and which isoforms are produced. It also can serve
to define the secondary structure of RNA and to identify post-transcriptional
RNA modifications. Moreover, RNA-Seq, as genome sequencing can identify
mutations, as long as these mutations reside in a transcribed gene. Finally, NGS is
commonly used together with ribosome profiling to determine translation kinetics
and localization. This method can also identify start codons.

exceptional advantages: it has a high throughput, low background noise, high

sensitivity to expression changes, single-base precision, and more[13]. Therefore,

RNA-Seq became the method of choice to understand genes transcriptional control

(see Figure 1.1)[20].

Genes tend to express many isoform simultaniously[21]. It has a large impact

on many processes in the cell, including cell differentiation[22]. From the very

beginning, it became clear that RNA-Seq data would allow making more detailed

isoform-specific quantification[17]. But to quantify the relative expression of

different isoforms within one gene, one needs to integrate information over many

aligned fragments and to add isoform annotations. Thanks to the fact that this

inference problem formulation is general, there are many approaches to solve
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Figure 1.2: Detection of Splicing Events. The present gene produced
5 different isoforms. Taking into consideration the short nature of RNA-Seq
fragments, it is impossible to distinguish between the first four isoforms. The
last isoform however could have specific fragments which bridge between the first
two exons. This example illustrates a general complexity of identificatifying and
quantifying every expressed isoform. Local event-based strategy allows us to
overcome this challenge and it is suitable for the short peptides from proteomics
and fragments from genomics.

it[23]. For example, Cufflink software is one of the most popular tools that try to

maximize likelihood abundances of isoforms[24].

However, due to the complexity of this problem in the general gene model and

considering a situation of constantly growing isoform annotation, a simplified idea

to focus on local splice events rather than on the whole isoform quantification

has become more prominent (see Figure 1.2)[25]. This analysis is purely based

on sequence fragments which are spanning between two exons (splice junctions).

From simplistic intron-centric approach[26] to the detection of splice events[27], all

these methods show to be robust and informative for a large-scale transcriptomics

projects[21, 28]. Efforts of large consortiums helped to qualitatively improve

reference isoform annotation and add a lot of newly discovered expressed genes[28,

29], such as long non-coding RNAs[30, 31].

In order to explore and quantify translation regulation, the ribosome

profiling (Ribo-Seq) method was developed[32]. Ribo-Seq involves similar
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sequencing library preparation to RNA-Seq, but unlike RNA-Seq, Ribo-Seq

targets only messenger RNA (mRNA) sequences protected by the ribosome during

translation[33]. On top of being a better approximation for the protein expression

rate compare to transcriptomics[32], Ribo-Seq allows us to study translation

kinetic characteristics of mRNAs[34], organelle specific translation[35–37] and it

also allows to enrich gene annotation with the newly detected open reading frames

(ORFs)(see Figure 1.1)[38].

All these new methods were found to be ground-breaking in many topics of

molecular biology. Microbiology is one of the fields which benefited the most from

it[39]. Most of the bacteria cannot be cultivated out of their environment. But

the new NGS methods allow studying these bacteria communities in a natural

state and on a single cell level[40, 41]. It helps to find out new antibiotics[42],

biotechnology methods[43] and to study healthy and pathological developments of

the human microbiome[44–47].
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1.2 Advances in Proteomics

The term proteomics expresses the ambition to obtain a global view of the

proteins world that would be comparable to genomics[48, 49]. The most widely

used method for protein MS-based analysis, is the “shotgun proteomics”. It

strategically bears an analogy to “shotgun genomics” as it reduces long biopolymer

to smaller pieces, separates them, sequences each of them independently, and

assembles these back to macromolecules. Despite this superficial similarity, there

are fundamental differences in the sequencing approaches employed by the two

technologies. Proteomics utilize methods based on the measurement of mass to

charge (m/z) ratios of individual peptides. Thence, MS analysis of mixed peptide

populations results in different peaks corresponding to different mass to charge

values. To obtain information on the peptide sequence, the parent ion is subjected

to an in-instrument fragmentation and measurement - tandem MS (MS/MS).

From a systems biology perspective, MS-based proteomics offers numerous

applications. Expression proteomics determines the relative or absolute amounts

of certain proteins in a sample[50, 51]. This is analogous to transcriptomic

or ribosome profiling data, except that proteomics automatically takes post-

translational regulation of gene expression[49]. Furthermore, with improving

instrumental speed and sensitivity it is now becoming possible to obtain sufficient

sequence coverage to analyze differential isoform regulation and provides a

comprehensive analysis of immune-peptidomes[52, 53].

Another important application of MS-based proteomics lies in the analysis of

the interaction of proteins with each other or with other biomolecules[54, 55].

Strong protein-protein interactions are essential for large complexes, but a large

number of weak interactions are like “glue” that holds the cellular network together

and provides the possibility of highly dynamic regulation[54, 56–58].

It is well known that protein post-translational modifications (PTMs) are

diverse, widespread, and responsible for signal transduction in a cell[59–61]. Today

MS methods enable unbiased PTM analysis with a single amino acid resolution for

the whole proteome and across multiple scales (see Figure 1.3)[62–64]. MS directly

measures the presence of a PTM by a defined corresponding shift in the mass of

the modified peptide. Thus far, shotgun proteomics was used for the detection

of phosphorylation[63], lysine acetylation[60], glycosylation[65], ubiquitylation[66],

and methylation[67].

All these advances would not have been possible without the tremendous

technological improvement of MS-based proteomics. Starting from standardization

and miniaturization of the sample preparation, the invention of soft-ionization

methods[68, 69], to continuing hardware[70, 71] and software development[72].
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Figure 1.3: Proteomics applications. Proteomics is widely used to determine
and compare proteins levels in several conditions. It is also one of the most popular
methods for the identification of protein-protein applications and is arguably the
best system-wide technique for the detection and localization of PTMs such as
phosphorylation, lysine acetylation, glycosylation, ubiquitylation or methylation.
Proteomics has also been successfully utilized for the characterization of immuno-
peptides displayed on the cell surface. Furthermore spatial proteomics has allowed
to pinpoint accurately protein localization[73]. Adapted from [74].
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1.2.1 Sample preparation

In the workflow of shotgun proteomics, all the proteins present in a sample are first

chopped into short peptides using a sequence-specific endoprotease[75]. In most

cases, trypsin, which cleaves C-terminal to arginine and lysine, is used as it ensures

that every peptide would have at least one positive charge. Also, a positive charge

on C-terminus improves the identification of suffix fragments on fragment scan

(MS2). Peptides are then separated by high performance liquid chromatography

(HPLC) and evaporated directly into the mass spectrometer. And finally, the

peptides are assembled in silico to full proteins, hence the name bottom-up: from

peptides to protein. The method is widely used as it provides excellent protein

identification and quantification from a complex mixture. This is because peptides

are much easier to handle for the liquid chromatography and the mass spectrometer

than intact proteins[2].

The top-down approach, however, skips the protein digestion part and attempts

to directly analyze intact proteins[76]. While this strategy has the advantages of

retaining information about the entire proteins, such as which modifications and

exons are found on the same molecule[77], the analysis of the protein mixture is

especially challenging. It is due to the complexity of chromatography separation

of large molecules and the fundamental limitation of the mass analysers[78]. As

a result, top-down proteomics does not reach the level of protein quantification

and coverage obtained with bottom-up proteomics. Nonetheless, this method is

commonly used for quality control of industrial protein production[79, 80] and

shows a lot of promising applications[81, 82].

Besides the classical application of proteomics to measure protein level, shotgun

proteomics is the single available option for the large-scale characterization of

protein-protein interactions (PPIs) and PTMs.

Immunoprecipitation (IP)-MS used to be a popular technique to characterize

stable protein-protein interaction[83]. However, the method requires a very

stringent protein purification, usually using a two-step purification procedure,

which means that weak, transient interactions were typically lost. The detection

of weak interactions demanded to use of other strategies such as the yeast

two-hybrid assay, very time-consuming[84]. The increase in MS sensitivity and

the rise of reliable label-free quantification allows developing a new strategy

for the identification of protein interactors that alleviate the need for stringent

protein purification and permit the detection of weak, transient interactors[54].

Moreover, this strategy turns protein contaminants into a key element for reliable

quantification across thousands of samples. In this method, called affinity

purification mass spectrometry, a single-step affinity enrichment of a tagged protein



1.2. ADVANCES IN PROTEOMICS 9

and its interactors is performed and followed by single-run, intensity-based label-

free quantitative liquid chromatography (LC)-MS/MS analysis[54, 56, 85].

The first step towards understanding the influence of PTMs is their

identification and quantifications on a global scale. Shotgun proteomics has proven

to be an ideal method for such tasks[2]. MS directly measures the presence of

a PTM by a defined corresponding shift in the mass of the modified peptide

and a location of the modification within a peptide is found by a corresponding

shift in the mass of fragments. So far, shotgun proteomics was used for the

detection of phosphorylation, lysine acetylation, glycosylation, ubiquitylation, and

methylation. However, the detection and quantification of these PTMs pose several

challenges, including the commonly low PTM occupancy. It is therefore often

necessary to first enriched peptides for a specific PTM before performing shotgun

proteomics to increase PTMs quantity and lower the sample complexity. For

the study of phosphorylation events, highly efficient methods to enrich phospho-

peptides to up to a 100 fold exist. Metal affinity chromatography, for instance,

using titanium dioxide is commonly used.

Today efforts in the sample preparation are focused on miniaturization and

increase a high-throughput[86, 87]. Thanks to the current achievements, many

proteomics dreams come true, such as single-cell proteomics[88–92] and large-scale

clinical proteomics studies[93–97].
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1.2.2 Soft ionization

Mass spectrometry is the workhorse of analytical chemistry[98–100]. Its usage is

widespread from the analysis of atomic composition with a micro-dalton resolution

to the measurement concentration of complex mixtures of molecules. Most

biological molecules are polymers and exist in a liquid phase. To analyze such

samples with mass spectrometry, one needs to transfer molecules to the gas phase

and charge them while preserving the polymer structure.

In 2002, the Nobel Prize in Chemistry was brought to John B. Fenn and

Koichi Tanaka “for the development of methods for identification and structural

analysis of biological macromolecules”. This nomination acknowledges how mass

spectrometry revolutionized the study of proteins and their functions.

The term “soft ionization” technique unites two methods for polymer

ionization while keeping the molecular structure intact - Matrix-assisted laser

desorption/ionization (MALDI), and electrospray ionization (ESI). For the

MALDI, the sample is mixed with a suitable matrix material and transferred

to a metal plate[69, 101]. Later a pulsed laser irradiates the sample, which helps

to evaporate and charge molecules. One of the most famous modern applications

of this technique is to analyze the spatial distribution of proteins on histological

specimens, so-called proteome imaging[102–104].

ESI ionization is a popular technique to produce ions using a high voltage

liquid sprayer[68, 105–107]. It is making a highly charged aerosol that efficiently

transfers polymers from a liquid to a gas phase while charging. The key advantage

of this technique is the ability to directly connect the HPLC in front of the liquid

sprayer. Like that, one can utilize a divide and conquer strategy by simplifying

the analysis to just a portion of ion species at a time, and not all at once, as it is

in the case of MALDI.
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1.2.3 Mass spectometer

Every mass spectrometer instrument consists of several building blocks: an ion

source, a mass analyzer, and an ion detector. In the case of shotgun proteomics,

where peptides should be charged and transferred to the gas phase with minimum

damage, the above described ESI and MALDI techniques well serve the role. There

is a wide variety of mass-analyzers and all of them have a special combination

of characteristics, which defines the field of usage[108]. However, in shotgun

proteomics, time-of-flight (TOF), quadrupole, and Orbitrap are among the most

frequently used mass analyzers.

In the TOF analyzer, all ions in a beam receive the same kinetic energy from

the accelerator towards the detector[109]. Ions with different masses will have a

different speed and, as a result, distinct time of coming to the ion detector. Light

ions are going to reach the detector earlier and have a shorter time of flight in

comparison to the heavier counterparts.

The quadrupole mass analyzer, as the name implies, consists of four parallel

cylindrical rods. By applying a high-frequency voltage, the mass analyzer can

filter all ions from a particular m/z window[110]. Even though the quadrupole

with a detector is a mass spectrometer by itself, the quadrupole is usually used as

a mass filter additionally to the main mass analyzer. In shotgun proteomics, the

quadrupole allows the selection of a specific peptide using a small m/z extraction

window in data-dependent acquisition (DDA) and a set of peptides from a long

m/z range in data-independent acquisition (DIA)[72]. For the development of the

quadrupole, Wolfgang Paul received the Nobel prize in physics in 1989.

The Orbitrap is a mass analyzer from the family of Orbital electrostatics traps

family[111] that is commonly used for proteomics[112]. The Orbitrap traps ions

in a volume between the central rod and an outer electrode[113]. An ion, moving

in this volume, will generate an axial frequency, which depends only on the m/z

ratio. Thus, multiple ions will generate a linear interference of signals, which

can be deconvoluted with Fourier Transformation to one pair of frequencies and

amplitudes for each ion[114]. Each frequency can be converted to an actual m/z

and each amplitude represents an intensity. Together intensity and m/z make up

the mass spectrometry spectra.

The ions injected into the Orbitrap should have a specific set of initial

parameters to have a stable orbit. It represented a significant challenge for the

practical usage of Orbitrap. However, further developments such as C-trap, to

elegantly overcome this issue (see Figure 1.4)[115].

The two separated outer electrodes of the Orbitrap serve as ion detectors.

The fact of having both a mass analyzer and a detector as one compact device
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Figure 1.4: Scheme of the Q Exactive HF instrument with Orbitrap.
After entering the instrument, the beam of molecules is captured and focused by
the S-lens. In the next segment, a flatpole bends the beam so that all uncharged
species are filtered out. In the peptide scan (MS1) mode, the ions pass through
an inactive quadrupole and accumulate in enough quantity in the C-trap. After
reaching the necessary amount of ions, C-trap injects them into the Orbitrap. In
the MS2 mode, the ions exit the flatpole and are filtered for a specific m/z range
in the quadrupole. The resulting subset of ions passes to the fragmentation cell
(for example, higher-energy collision dissociation cell) where they are subject to
the fragmentation. And finally, the produced fragments come to the C-trap and
later to the Orbitrap to generate MS2 spectra. Adapted from [117].

constitutes a distinct feature of the Orbitrap. It allows to miniaturize the benchtop

format of the instrument even further and get better performance[116–118]. Today,

commercially available mass-spectrometers with Orbitrap represent a state-of-the-

art in high-resolution mass spectrometry[119].

The recent decade is marked by the intensive development of additional ion

analyzers on an interface between the ion source and mass analyzer - Parallel

Accumulation Serial Fragmentation (PASEF)[120] and Field Asymmetric Ion

Mobility Spectrometry (FAIMS)[121]. The main purpose of these devices is

to reduce the sample complexity per measurement cycle by adding one more

dimension - ion mobility and compensatory voltage, respectively. These devices

proved to be useful in many proteomics applications[122–126].



1.2. ADVANCES IN PROTEOMICS 13

1.2.4 Quantitative proteomics

One of the main time bottlenecks in proteomics experiments is the measuring

time for each sample. This problem can be mitigated by reducing the length

of the HPLC gradient or by acquiring more mass-spectrometry instruments. An

alternative would be to mix several samples and analyze them at once. This

approach is called multiplexing. Furthermore, due to the high complexity of

sample preparation for proteomics, multiplexing serves not just as a way to reduce

measurement time, but even more importantly, as a way to alleviate the systematic

bias introduced by sample preparation and measurement[2, 72, 127].

Historically, stable isotope labeling by amino acids in cell culture (SILAC), as a

representation of peptide scan (MS1) labeling, was the first multiplexing technique.

This method was hugely popular since it was for a long time the best and single

available option for large-scale quantitative proteomic studies[127].

Two biological objects are fed either with a growth medium containing normal

amino acids (light) or with amino acids labeled with non-radioactive heavy isotopes

(heavy). Arginine and lysine amino acids are commonly used since they are

essential for most species and nicely combined with trypsin specificity. This insured

that all peptides have at least one differential amino acid. All light peptides from

one sample will be coeluted with their heavy counterparts from the other samples

and located on fixed mass differences relative to each other. This allows for a

direct and accurate comparison of peptide levels for each identified protein[128].

Even though SILAC can be easily used for cell culture and single-cell organisms,

its usage in higher organisms, including humans, poses ethical problems. Even

though few publications used SILAC on whole multicellular organisms[129, 130],

the usage in patients is out of the question. A variation of SILAC, called super-

SILAC, was therefore introduced to bypass these limitations[131]. The super-

SILAC technique utilizes cell lines labeled with heavy amino acids as a spike-in

standard for the accurate quantification of the unlabeled samples[131], thereby

enabling the quantification of tissues where heavy labels cannot be integrated. The

spike-in cells correspond to the heavy channel, while the tissue samples correspond

to the light one. Therefore, the choice of the cell line used as spike-in is dictated

by the origin of the studied tissue. Super-SILAC approach was successfully used

to quantify human tumor proteomes[132]. The concept of using a heavy spike-in

as a reference channel can greatly help to characterize changes in the proteomes of

model species[133, 134]. The same concept was also elegantly used to map protein

localization within a cell[73, 135].

Although SILAC is one of the most popular MS1 labeling techniques, several

other MS1 labelling techniques exist. In NeuCode, masses of incorporated amino
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acids differ by as little as several mDalton (Da)[136, 137] thanks to the different

combinatorial set of isotopes - isotopologues[138]. This multiplexing method can

be seen as a SILAC alternative with higher multiplexing capability but requires

high-resolution proteomics. Another technique is the dimethyl labeling where

peptides are chemically modified before mixing of two samples[139].

All MS1 labeling techniques suffer from the same disadvantages: they tend

to crowd the MS1 spectra that limit the sequencing depth and limit the number

of samples that can be analyzed at once. Hence, another type of multiplexing

technique aims to solve this problem by making peptides from different samples

indistinguishable on the MS1, but on the MS2 level. These methods are called

MS2 or isobaric labeling. tandem mass tag (TMT) is one of the most prominent

and scalable technologies available[140]. In TMT, peptides from up to 16 different

samples are chemically modified by 16 different tags that have the same mass but

a different distribution of isotopes within their atomic structure[141]. As a result,

the same peptide from different samples appears as a single peak in MS1. As

the peptide is fragmented before MS2 measurement, the labels are cleaved into

pieces of different masses (reporter ions). The relative abundances of the different

reporter ions in MS2 allows the accurate relative quantification for all samples at

once[142]. This fact is decisive in using TMT in the chemical proteomics[143, 144]

and in large proteomics projects[145, 146].

Reliable protein quantification without MS1- or MS2-labeling has been a long-

standing interest in the proteomics field[147]. But this objective was unrealistic

for a long time due to imperfections in sample preparation, limitations in the mass

spectrometers, and available software solutions. However, improvements in all of

these three aspects have opened new opportunities for label free quantification

(LFQ). Indeed, the standardization of sample preparation protocols increased the

reproducibility within and across different laboratories[86, 148, 149] while the

production of a new generation of mass spectrometers created feature-rich spectra

with a high-resolution[118, 126]. These two former aspects have permitted the

development of new computational approaches that take advantage of the large-

scale nature of the produced data[124, 147].
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1.2.5 Computational proteomics

The synergic advancement in proteomics sample preparation, mass spectrometry

hardware, and software, greatly improved protein identification and quantification,

which was mostly manual and inaccurate in the past. Today modern

sophisticated and mature algorithms dealing with millions of spectra from complex

proteomes[150–154]. Our in-house developed search engine Andromeda accounts

for the probability of observed matches between expected and measured fragment

masses by chance[155]. This search engine enables analysis of complex proteome

datasets in combination with MaxQuant, which provides a user-friendly interface

for pre-and post-processing of MS data[150].

This review covers two main areas of computational methods: the identification

and quantification of peptides, proteins, and PTMs, as well as the downstream

analysis for the biological interpretation of proteomics data[72].
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Abstract

Computational proteomics is the data science concerned with the identi-
fication and quantification of proteins from high-throughput data and the
biological interpretation of their concentration changes, posttranslational
modifications, interactions, and subcellular localizations. Today, these data
most often originate from mass spectrometry–based shotgun proteomics ex-
periments. In this review, we survey computational methods for the analysis
of such proteomics data, focusing on the explanation of the key concepts.
Starting with mass spectrometric feature detection, we then cover methods
for the identification of peptides. Subsequently, protein inference and the
control of false discovery rates are highly important topics covered. We then
discuss methods for the quantification of peptides and proteins. A section
on downstream data analysis covers exploratory statistics, network analy-
sis, machine learning, and multiomics data integration. Finally, we discuss
current developments and provide an outlook on what the near future of
computational proteomics might bear.
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INTRODUCTION

Proteins perform nearly all the work in a cell and are the key players in the structure, function, and
regulation of cells, tissues, and organs. Collectively they form the proteome (1), a highly dynamic
and diverse molecular omics space comprising interactions among proteins and other types of
biomolecules. The proteome can be studied comprehensively with mass spectrometry (MS)-based
technologies (2–4). Thousands of proteins and posttranslational modifications (PTMs) can be
studied quantitatively over a multitude of samples in complex experimental designs. Describing
all applications of proteomics is beyond the scope of this review, but among its applications are
diverse topics such as cancer immunotherapy (5) and the evolution of extinct species (6).

Computational MS-based proteomics can be roughly subdivided into two main areas: (a) the
identification and quantification of peptides, proteins, and PTMs and (b) downstream analysis,
aiming at the biological interpretation of the quantitative results obtained in area a. This review fol-
lows this subdivision. Computational proteomics is a highly multidisciplinary endeavor attracting
scientists from many fields and incorporates other disciplines like statistics, machine learning, effi-
cient scientific programming, and network and time series analysis. Furthermore, the integration
of proteomics data with other biological high-throughput data is increasingly gaining importance.

Peptide-based shotgun proteomics, also called bottom-up proteomics (7), needs to be dis-
tinguished from top-down proteomics (8–10), in which whole proteins are studied in the mass
spectrometer. Data analysis tools and approaches exist for top-down methods (11–13) in which
feature deconvolution plays an important part. In targeted proteomics (14–17) (Figure 1), a set
of key peptides from a target list, which is informative for a set of proteins or PTMs of interest,
is quantitatively monitored over many samples using dedicated software (18). Data-independent
acquisition (19), as exemplified by the SWATH-MS method, comes with its own computational
challenges for which solutions are provided in the literature (20–23). Imaging MS (24) is also a

400 800 1,200 1,600

m/z m/z m/z

0

40
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)

a  Data-dependent acquisition

400 800 1,200 1,600

c  Targeted

400 800 1,200 1,600

b  Data-independent acquisition

Figure 1
Main formats of mass spectrometry (MS)-based proteomics. Peptide-based bottom-up proteomics is most often done in the
data-dependent acquisition mode (a). MS2 (second-stage MS) scans are triggered depending on the MS1 (first-stage MS) data features
seen in real time. Typically, at a given retention time, the n most intense peptide features are selected for fragmentation, dynamically
excluding masses that have just been previously selected. In data-independent acquisition (b), a set of constant mass ranges, which do
not depend on the peptides being analyzed, is isolated for fragmentation. In targeted proteomics (c), a list of peptides is targeted based
on a list of mass and retention time ranges corresponding to peptides of interest, which are particularly informative of a set of proteins
or posttranslational modifications that are the focus of the investigation.
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Figure 2
Bottom-up shotgun proteomics workflow. (�) Proteins are extracted from a sample of interest. Enrichment of organelles or affinity
purification may be performed. Proteins are digested to peptides that are optionally enriched for modifications. (�) After HPLC
separation, peptides are ionized (181, 182) and (�) injected into a high-resolution mass spectrometer (e.g., 183, 184). MS1 spectra
containing peptide isotope patterns are recorded in a cycle with a timescale of about one second. (�) Peptide precursors are selected for
fragmentation and fragment (MS2) spectra are recorded. (�) Both MS1 and MS2 spectra are written to disk, typically resulting in several
gigabytes of data per LC-MS run, and then analyzed by computational proteomics software. Abbreviations: HPLC, high-performance
liquid chromatography; LC, liquid chromatography; MS, mass spectrometry; MS1, first-stage MS; MS2, second-stage MS.

fruitful area of research that will not be covered here. This review focuses on data-dependent
bottom-up or shotgun proteomics (Figure 2), which currently is the format most frequently used
in proteomics.

It is not the aim of this review to present an exhaustive list of all available software tools. Instead,
we focus on explaining concepts and key applications. In several places, we use the MaxQuant (25–
27) and Perseus (28) software as concrete examples for the implementation of certain concepts.
Alternative software platforms developed in academia (29–31) or offered by mass spectrometer
vendors can provide similar functionality. We propose that robustness, ease of use, parallelizability,
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and automation of all computational aspects are the key factors to consider in the selection of
software tools.

Proteomics research is supported by community tools such as repositories, databases, and an-
notation sources (32). There are public repositories for the storage and dissemination of MS-based
proteomics data (33–39), and submission of raw data is highly recommended for every proteomics
publication (34). Protein and peptide sequences are essential for the interpretation of proteomics
data. For this purpose, UniProt (universal protein resource) (40) is a comprehensive, high qual-
ity, and freely accessible resource of protein sequences and functional information. Since most
amino acid sequence identifications can be put into the context of coding nucleic acid sequences—
exceptions prove the rule (41)—genome-centric sequence repositories like Ensembl (42) are of
high importance as well. Data sharing and dissemination of publicly available proteomics data are
facilitated by dedicated software tools for the reanalysis of community data (43, 44).

This review consists of two main parts, the first dealing with the data analysis steps performed
on the spectral data itself, going up to the identification and quantification of peptides, proteins,
and PTMs. This part is organized in a problem-centric way, where in each subsection, a particular
challenge in the MS workflow is described. The second part is about the downstream data analysis.
Here, the sections are organized by methodologies rather than application areas, which is a more
approachable organization scheme, since the number of different applications is enormous, while
the methodologies overlap. The downstream analysis of proteomics data is still an art, and there is
not always only one correct way to arrive at biologically meaningful conclusions. Hence, we give
a comprehensive overview of the available methods that can be used along the way.

IDENTIFICATION AND QUANTIFICATION OF PEPTIDES, PROTEINS,
AND POSTTRANSLATIONAL MODIFICATIONS

Liquid Chromatography-Mass Spectrometry Features

Since the early days of MS, the detection of peaks in a mass spectrum, corresponding to molecular
features, played a central role (45). Nowadays, the mass resolution is sufficiently high in general
that the isotope pattern of peptides is resolvable (Figure 3a). On the molecular level, a single
peak corresponds to an isotopic species with fixed elemental composition and several nucleons.
In case of ultrahigh mass resolution, the isotopic fine structure of peptides in the low-mass range
can be resolved (46) (Figure 3a), resulting in increased information about the atomic constituents
of the peptide. While obtaining isotopic resolution is standard nowadays for peptides, the same
is still technically challenging for whole proteins in top-down proteomics. For instance, for each
charge state of an antibody, usually only an envelope is detected, while the isotopic peaks remain
unresolved.

In proteomics, the mass spectrometer is typically coupled on-line to additional continuous
separation dimensions like liquid chromatography (LC) (47) or ion mobility separation (48). MS
features can therefore be viewed as higher-dimensional objects. In case of LC-MS, peaks become
three-dimensional (3D) objects in the m/z–retention time–intensity space (Figure 3b). Using
ion mobility adds another dimension, turning features into 4D objects. Technically, due to its
dimensionality, the problem of MS feature detection is equivalent to general-purpose 2D image
feature detection or voxel assembly to 3D volume elements (49), respectively. However, since MS
data often have additional regularities that can be exploited, the problem is often simpler than
generic object recognition. Simplifying assumptions specific to mass spectrometer types should be
exploited to apply faster algorithms to the multidimensional feature detection problem. (Readers
are referred to the supplement of Reference 25.)
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Figure 3
MS1 feature–based computational tasks in a proteomics workflow. (a) Theoretical spectrum of an MS1 feature measured in three
different resolutions. The lowest resolution (1,000 FWHM) does not resolve the isotope pattern. The ultrahigh resolution (1,000,000)
reveals the natural isotopic fine structure. (b) A three-dimensional isotope pattern in m/z–retention time–intensity space. (c) Peptide
mass errors as a function of retention time and peptide m/z before and after nonlinear recalibration. Clearly, nonlinear systematic
errors were present and were then removed by recalibration. (d) Mass error distribution before and after recalibration. A large increase
in mass accuracy was achieved through nonlinear recalibration. (e) Retention time alignment curve between two LC-MS runs.
( f ) Matching between runs. Peptide identities are transferred between LC-MS runs from MS2-identified MS1 features to nonidentified
MS1 features in other similar LC-MS runs based on accurate mass and retention time. Abbreviations: FWHM, full width at half
maximum; LC, liquid chromatography; MS, mass spectrometry; MS1, first-stage MS; MS2, second-stage MS; ppm, parts per million.
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Once features corresponding to isotopic peaks are detected, they are assembled to isotope
patterns, effectively deisotoping the spectrum. Different models exist (50–52), one of them being
the Averagine model (50), which can be used to explore spectral properties, since nearly all peptides
with a given approximate molecular mass have a similar elemental composition. In the model, it is
assumed that a peptide is made up of the average number of the 20 amino acids according to their
natural occurrence. The model then predicts the mass differences between isotopic peaks in an
isotope pattern, as well as their relative heights. This approach is usually sufficient when dealing
with data with unresolved isotopic fine structure. When the isotopic fine structure is resolved,
one will have to employ the true atomic compositions of the peptide candidates to utilize this
information. In the approaches using higher-dimensional features, the exact coelution of isotopic
peaks can also be utilized to increase the specificity of assignment of isotope patterns. While in
most cases, the spectral information is not sufficient to determine the elemental composition,
one will obtain the charge state and a highly precise estimate of the monoisotopic mass from the
information contained in the higher-dimensional features.

One can find labeling n-plexes of isotope patterns in the MS1 (first-stage MS) data prior to
peptide identification, similar to how features are assembled to isotope patterns. This applies
to nonradioactive differential isotopic sample labeling techniques (53, 54) like SILAC (stable
isotope labeling by amino acids in cell culture) (55) or dimethyl labeling (56, 57). Analogous to the
deisotoping step, specific mass differences between the isotope patterns participating in a labeling
n-plex are expected. This is not the case for 15N labeling (58, 59) in which all nitrogen atoms are
completely exchanged with the stable heavy isotope. Isotope patterns belonging to an n-plex are
usually coeluting, depending on the type of labeling, which can be exploited in the assembly of
n-plexes.

While mass measurements from modern high-resolution mass spectrometers, in combination
with the aforementioned higher-dimensional feature detection, can achieve very-high-mass pre-
cision, this does not automatically translate into high-mass accuracies, due to the presence of
systematic measurement errors. In Figure 3c, the peptide mass error prior to mass recalibration is
displayed as functions of m/z and of retention time. Systematic errors are typically nonlinear and
depend on multiple variables. In addition to m/z and retention time, the mass error can depend on
signal intensity and ion mobility index, if applicable. Nonlinear recalibration on multidimensional
parameters is difficult when it must rely on only a few calibration points, as is usually the case
if dedicated spike-in molecules are used. Hence, it is typically better in complex samples to use
the peptides from the sample itself as calibration points for multivariate recalibration, which is
achieved in MaxQuant by a two-level peptide identification strategy (25, 60, 61). The mass ac-
curacy increases by large factors resulting from the applications of these nonlinear recalibration
curves obtained in this way (Figure 3d).

Similar to the mass accuracy, the consistency of the retention times of peptide features can
also be increased by recalibration. Due to often unavoidable irreproducibility in chromatography,
retention times are usually not comparable between LC-MS runs, thereby limiting identification-
transfer and quantification between runs. Nonlinear shifts by several minutes are common.
Hence, algorithmic approaches were developed to align retention times between multiple runs
(Figure 3e). Typically, these retention time corrections need to be nonlinear (62). In MaxQuant,
this is achieved with a sample similarity–derived guide tree, which avoids the need for singling out
one LC-MS run as the master run (63) that all the other runs are aligned to. Ion mobilities can
be aligned between LC-MS runs with similar methods as retention times.

Once masses, retention times, and ion mobilities are recalibrated, one can transfer iden-
tifications between related LC-MS runs from peptide features identified by fragmentation to
unidentified peptide features by having same mass, charge, retention time, and ion mobility (64)
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(Figure 3f ). Following this strategy, the quantification profiles across many samples become more
complete, which partially removes the stochastic behavior of the data-dependent acquisition in
bottom-up proteomics. Determining and controlling false discovery rates (FDRs) for these kind
of matching approaches is challenging and the subject of current research. However, if samples
are similar, error rates caused by matching are in acceptably low ranges.

Peptide Identification

Peptide identification tools analyze the fragmentation spectra obtained by the mass spectrometer
with the aim of determining the sequence of the peptide. In the most popular approach, database
search engines (65–69) utilize a target database of theoretical fragmentation for identification
(Figure 4a). The database is generated from all protein sequences that are known or thought to
be produced according to the instructions in the genome of an organism. The protein sequences
are digested in silico into peptides according to a cleavage rule mirroring the protease used in the
experiment (e.g., trypsin, which cleaves after the occurrence of lysine or arginine in the protein
sequence). For each of these in silico peptides, the list of expected fragment masses is calculated
based on the backbone bond breakages expected for the fragmentation technique used in the exper-
iment. For a given measured fragmentation spectrum, the search engine calculates a match score
against all theoretical fragmentation spectra within a specified peptide mass tolerance. The highest-
scoring peptide spectrum match (PSM) is taken as a candidate for the identity of the peptide.
Since the highest-scoring PSM might still be a false positive, most workflows control the FDR us-
ing a target–decoy approach (70) (Figure 4b). In this approach, fragmentation spectra are searched
not only against the target database, but also against a decoy database, which is designed to produce
false-positive PSMs. Comparing the score distributions of target and decoy PSMs, posterior error
probabilities can be calculated and FDRs can be controlled. One procedure to generate decoy
sequences is to reverse the target sequences, providing peptides that do not occur in nature.

Additional peptide features besides the search engine score, such as the length of the peptide and
the number of missed cleavages, help distinguish true identifications from false positives, leading
to more high-confidence identifications. In MaxQuant, the posterior error probability, which is
the probability of a PSM being wrongly identified, is conditional on the score and additional
peptide properties (25). Other tools such as PeptideProphet (71, 72) and Percolator (73) use linear
discriminant analysis or support vector machines (SVMs) with the same aim. Machine learning was
used to predict intensity patterns in fragmentation spectra in order to support database scoring
and further improve identification (74), but it failed to improve upon the state of the art. In
contrast, the application of deep learning to de novo peptide identification did yield improvements
(75).

De novo peptide sequencing (Figure 4a) is another technique for identifying peptides from
fragmentation spectra. The peptide is identified using only information from the input spectrum
and the characteristics of the fragmentation method. Mass differences between certain peak pairs
correspond to amino acid masses, which are interpreted as consecutive ions in one of the expected
fragment series, for example, y or b ions for collision-induced dissociation. If these mass differences
can be continued to a whole series from N- to C-termini, the peptide is identified without reference
to a sequence database. An incomplete de novo amino acid series is called a sequence tag and might
be completed on either of the termini with a sum of amino acid masses and PTMs. The many
existing tools for de novo peptide identification explore different algorithmic approaches, some
allowing for de novo sequencing errors and homology searches (76–79). An interesting approach
is a hybrid between database search and de novo sequencing (80); it requires only a little de novo
information and hence inherits high sensitivity from the database search approach.
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Figure 4 (Figure appears on preceding page)

Overview of peptide identification methods. (a) In the peptide database (DB) search engine approach, measured second-stage mass
spectrometry (MS2) spectra are scored against a list of theoretical spectra from an in silico digest of protein sequences. De novo peptide
identification allows reading the peptide sequence partially or completely out of the MS2 spectrum. (b) In the target–decoy approach,
true and decoy protein sequences are offered to estimate the false discovery rate (FDR). (c) Determining the localization probability for
a posttranslational modification on a peptide. (d ) Open search and dependent peptide search are methods for detecting modifications in
an unbiased way. Modifications still must be localized after open search. (e) Modifications found in a typical dependent peptide search.
Data from Reference 185 were used.

For a peptide that has been identified as having a certain sequence and carrying one or more
modifications, the positions of these modifications on the sequence might not be localizable
with complete certainty. Hence, a score needs to be calculated that quantifies for each poten-
tially modifiable amino acid in the peptide sequence the certainty of localization at a given locus
(Figure 4c). For instance, a peptide might contain several potentially phosphorylated serine, thre-
onine, and tyrosine residues, but from the peptide mass it is known that it is phosphorylated
only once. Then one needs to determine which of the sites are phosphorylated and use the spec-
tral evidence to derive each site’s probability that it is the one bearing the modification (81–85).
The most important spectral features for the calculation of localization probabilities are the site-
determining ions, which are fragments that are matched with one hypothetical localization but not
with the other. The exact way the localization score is calculated varies between different meth-
ods. In MaxQuant, the localization probability is calculated as a weighted average of exponential
Andromeda scores over all combinations of phosphorylation configurations (86).

The identification of modified amino acids, either as PTMs such as phosphorylation or as
modifications introduced during sample preparation, is usually done by adding these as variable
modifications into the database search. While this strategy is highly sensitive, all modifications have
to be specified beforehand. The number of modifications that can be specified is limited due to the
combinatorial explosion of modified peptides species, leading to a large increase in database size.
There are two approaches overcoming these limitations: open search (87) and dependent peptide
search (88) (Figure 4d ). The open search approach does not extend the sequence database but
instead widens the precursor mass tolerance window for the MS1 precursor peptide molecule
to, for example, ±500 Da, while keeping the fragment mass tolerance low (87). Therefore, a
modified peptide with a mass within the tolerance window can still be matched to the correct
unmodified database sequence despite ∼50% of fragment ions being shifted by the modification.
The high number of candidate matches makes the open search computationally demanding, but
recent approaches make use of fragment ion indexing to speed up the search significantly (89). The
dependent peptide search, also implemented in MaxQuant, is a generic approach to retrospectively
identify unassigned MS2 (second-stage MS) scans; it relies on the assumption that the sample
contains not only the modified dependent peptide, but also its unmodified base peptide counterpart
(88). Using any search algorithm will yield identifications, as well as unassigned MS2 spectra.
The search now queries all unassigned spectra against all identified spectra, while simultaneously
localizing the modification. The mass difference between the peptides is the putative mass of the
modification, which is used to generate a shifted ion series for each position in the peptide. The
highest-scoring match will therefore determine the sequence of the peptide, as well as the mass and
locus of the modification. Figure 4e shows the most frequent modifications found by dependent
peptide search in a typical data set.

There are a number of special topics in peptide identification, starting with dipeptides resulting
from cross-linked proteins (90, 91), which have the challenge of a vastly increased search space
due to pairing of peptides, for which several popular software packages are available (92–97).
In proteogenomics searches (98), peptides are identified based on customized protein sequence
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databases generated from genomic or transcriptomic information. Search spaces for proteoge-
nomics searches are typically larger than in conventional searches since they often involve three- or
six-frame translations of genomic sequences. Furthermore, these search spaces are heterogeneous,
since the sequence content ranges from clearly existing, manually validated protein sequences to
in silico–translated genomic regions without any prior evidence for their expression. Hence, extra
measures need to be taken in the identification process to account for this heterogeneity. Pro-
teomics of species without sequenced genome requires tools to integrate incomplete sequencing
data with homologous sequence data from closely related species (99).

Protein Inference and False Discovery Rate

Protein inference, that is, the assembly of peptides into a list of proteins, is a crucial step in a
computational proteomics workflow, since usually the peptides are only technical aids to study
proteins. (Readers are referred to Reference 100 for a review.) The relationship between peptides
and proteins is many-to-many, since upon digestion a protein gives rise to many peptides, but
a peptide can also originate from more than one protein. Furthermore, based on the identified
peptides, proteins that share common sequences might not be distinguishable from each other.
Hence, a redundancy grouping of protein sequences is necessary.

Peptides that are unique to a protein are more desirable than nonunique ones. On average,
longer peptides are more likely to be unique, and hence, more informative. As an order of mag-
nitude estimate, we calculate how often a random peptide of a given length would occur in the
human proteome, assuming it is randomly composed out of the 20 amino acids and has the same
size as the latest human UniProt release 2017_09, which contains 93,588 protein sequences com-
prising 37,118,756 amino acids in total. Peptides of length 5 should occur on average 12 times
in the proteome, meaning that their information content is nearly worthless. Peptides of length
6 should occur on average 0.6 times, making them only just potentially useful, but many of them
can still be expected to be nonunique. In this model, only peptides of length 7 or longer are on
average expected to be informative and useful. Although other factors like tryptic peptides and
paralog relationships between genes realistically should be considered, the conclusions hold true
of real data.

Many tools and algorithms for the protein assembly have been described in the literature. The
most frequently applied ones can be roughly subdivided into parsimonious and statistical models.
Parsimonious models (25, 101–104) apply Occam’s razor principle (105) to the protein inference
problem by finding a set of proteins that is as small as possible to explain the observed peptides.
Usually, fast greedy heuristics are used to find such a protein set. Statistical models (106, 107)
can assemble large amounts of weak peptide identifications to infer the existence of a protein.
However, for both types of models, it is worth considering a threshold on peptide identification
quality, for example, 1% FDR for PSMs. High-quality peptide identifications allow for solid
conclusions about the properties of the identified proteins, while weakly identified peptides can
compromise protein quantification accuracy. Ideally, the output of the protein inference step is a
list of protein groups. Each protein group contains a set of proteins that cannot be distinguished
from each other based on the observed peptides. Either the proteins in a protein group have equal
sets of identified peptides or the peptide set of one protein is a proper subset of that of another
protein, in which case, based on the peptide identifications, there is no evidence for the existence
of the latter protein, assuming that the former protein is in the sample.

The phenomenon of error expansion from peptide to protein identification in large data sets is
well known in the field (106, 108). Even if the FDR is thoroughly controlled at the PSM level, if
no additional measures are taken, the FDR on protein level can become arbitrarily large. Hence, it
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is highly important to use workflows that control FDR on the protein level (25, 106, 108, 109) to
limit the number of proteins falsely claimed to be present in the sample, particularly if the number
of identified proteins is a relevant outcome of the study.

Quantification

Proteomics becomes more powerful when done quantitatively, as compared to only browsing
through lists of identified proteins. Many responses to stimuli on the level of proteins are not
switching the expression of a protein on and off completely, but manifest themselves as changes in
cellular concentrations that might be small, yet important. Quantitative proteomics approaches
can be subdivided into absolute and relative quantification methods. In absolute quantification,
one wants to determine copy numbers or concentrations of proteins within a sample, while in
relative quantification, a quantitative ratio or relative change of protein concentrations between
samples is desired. Both absolute and relative quantification can be done either with the aid of
labels or label-free.

Figure 5 shows an overview of relative quantification methods. In label-free quantification,
the samples being compared are biochemically processed separately. The distinction between
metabolic and chemical labeling is not important from a computational perspective. Instead, the
main distinction is between MS1-level labeling, in which the peptide signals corresponding to
the multiple samples are compared and form multiplexed isotope patterns in the MS1 spectra,
and MS2-level or isobaric labeling, in which the multiplexed signals appear in the fragmentation
spectra. Hence, computational methods for relative quantification should be distinguished between
label-free, MS1-level labeling, and MS2-level labeling.

In label-free quantification, one faces particular challenges with normalization intensities be-
tween LC-MS runs and the compatibility of quantification with prefractionation. In MaxQuant,
the MaxLFQ algorithm (110) is implemented for relative label-free quantification. It uses signal
intensities of MS1 peptide features as input, optionally including the ones identified by matching
between runs, and produces as output relative protein abundance profiles over multiple samples.
MaxLFQ accounts for any peptide or protein prefractionation of the samples by applying a sophis-
ticated intensity normalization procedure to the feature intensities of each LC-MS run. A protein
intensity profile is constructed that best fits protein ratios determined in all pairwise comparisons
between samples. In each of these pairwise comparisons, only peptides that occur in both samples
are used, which makes the relative comparison very precise. Hence, MaxLFQ is more accurate
than merely summing up all peptide intensities belonging to a protein. By using a sample-similarity
network for the intensity normalization step, the algorithm scales well to large data sets and can
quantify hundreds of samples against each other.

Stable isotope labeling with sample multiplexing appearing on the level of MS1 spectra (55–
57, 111, 112) promises to be more accurate than label-free quantification since the coelution of
features in the same LC-MS run can be exploited. The ratio calculation can be performed along
the elution profile separately in each MS1 scan and separately for each isotopic peak. This results
in many estimates of the ratio, which can be summarized by taking the median. This robust ratio
estimate is less sensitive to contamination by other coeluting peptides. In this way, the ratios
between MS1-label channels are calculated in a more precise way, as compared to the label-free
approach, where feature intensities are calculated separately before their ratio is taken. During
MS1-label n-plex assembly, the isotope patterns of parts of the n-plex might be missing, leading
to an incomplete quantitative profile. Proper MS1 isotope patterns might be missing for peptides
arising from low-abundant proteins. In MaxQuant, the requantification algorithm tries to find
traces of these isotope patterns close to the noise level.
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Figure 5
Overview of relative quantification methods. Relative quantification of samples (colored squares) can be done in a label-free, metabolic, or
chemical labeling approach. For computational approaches, the distinction between MS1 labeling (b) and MS2 (isobaric) labeling (c) is
more crucial. In the label-free approach (a), the quantification is done for each peptide feature between extracted ion chromatograms in
different LC-MS runs. In MS1 label–based quantification (e.g., SILAC, dimethyl, NeuCode), multiple samples will appear as
differentially labeled isotope patterns in the MS1 spectra. For isobaric labeling (e.g., iTRAQ, TMT), the quantification signals appear
as reporter ions in the low-mass range of the MS2 spectra. Abbreviations: CTAP, cell type–specific labeling using amino acid
precursors; ICAT, isotope-coded affinity tags; iTRAQ, isobaric tags for relative and absolute quantification; LC, liquid
chromatography; MS, mass spectrometry, MS1, first-stage MS; MS2, second-stage MS; SILAC, stable isotope labeling with amino
acids in cell culture; TMT, tandem mass tags.

One can use one labeling channel as a common standard, as is done in Super-SILAC (113),
which allows quantifying unlabeled samples with the added accuracy of labeling by using ratios of
ratios to compare samples with each other. Computationally, these hybrid samples are analyzed
like MS1-labeled samples in the feature detection, but the downstream analysis proceeds nearly
as if they were label-free samples.

In isobaric labeling (114–116), peptides in different samples are labeled with different molecules
per sample that have the same mass but that eject different reporter ions upon fragmentation. The
biggest advantage of isobaric labeling is its multiplexing capacity. Up to 11 samples can be mea-
sured simultaneously with the currently available tandem mass tag reagents. The downside is
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that the presence of coeluting peptides in the isolation window for fragmentation leads to ratio
compression (117). To be precise, cofragmentation makes ratios wrong in arbitrary and individual
ways. However, since it is often a valid assumption that most of the proteins are not changing
between samples, the cofragmented peptides are likely to have 1:1 ratios, thus compressing the
ratios of changing proteins. There are several experimental strategies to reduce or remove the
cofragmentation problem, such as gas-phase purification (118), MultiNotch MS3 (119), and use
of complementary ions (120). There are several computational methods that reduce ratio com-
pression. Reporter ions of low intensity are prone to carry more noise and be more affected by
cofragmentation signals. Hence, peptides with higher reporter ion intensities should be given
higher weights when calculating protein intensities. Another approach is to calculate the fraction
of precursor signal divided by the total MS1 signal observed in the isolation window (121, 122),
which can be used for filtering peptides used for quantification. To some extent, this quantity can
also be used to correct for ratio compression (123).

Approximate measures of absolute protein abundances can be obtained with simple computa-
tional prescriptions like the iBAQ or Top3 methods (124, 125). The problem that peptides of a
protein have vastly different flyability (a term used to cover the relative efficiencies of ionization,
transfer, and detection), making them not directly comparable for quantification, is solved by av-
eraging over many peptides or selecting the most intense ones, which enriches for high flyability.
For eukaryotic cells, one can add an absolute scale to these readouts with the proteomic ruler
approach (126), which uses the signal of histones, assuming that it is proportional to the amount
of DNA in the sample.

The quantification of peptides and PTMs differs from protein quantification in that only
a single or few features can be used for quantification, while on the protein level, accuracy is
achieved by accumulating quantitative information over many peptides. Hence, the variability of
PTM quantification data and the number of missing values is usually higher than it is for proteins.
For combined PTM-enriched and proteome data, computational methods exist for calculating
occupancies (86, 127), which are the percentages of proteins modified at a given PTM site.

DOWNSTREAM DATA ANALYSIS

Exploratory Statistics

Once proteins have been identified and quantified over many samples, one obtains a matrix with
proteins (or protein groups) as rows, samples as columns, and protein abundances or abundance
ratios in the matrix cells. Usually, the interpretation of this quantitative protein or PTM data
and the translation into significant biological or biomedical findings are the most important and
labor-intensive parts of a study. The Perseus platform (28) was developed to support the domain
expert in this data exploration. It is workflow based, modular, and extensible through a plugin
infrastructure.

There are some preparatory steps preceding most analyses, such as normalization of intensities
or ratios, data filtering, and potentially missing-value imputation (Figure 6a). A common task in
discovery proteomics is to identify proteins of biological interest and distinguish them from the
rest of the proteome. Statistical models are popular tools for identifying differentially expressed
proteins. Clustering methods, such as hierarchical clustering, are often used for finding expression
patterns of groups of proteins and for their visualization in a heat map. Principal component
analysis (PCA) is an alternative method of visualizing the main effects in the data and the relatedness
between samples. It also provides information on proteins responsible for a separation of sample
groups through the so-called loadings.
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The statistical tests t-test and ANOVA (analysis of variance, which is the generalization of the
t-test to more than two groups) are the basic versions of a series of statistical models that test for
significant changes between sample groups (128, 129). In more complex experimental designs,
one might want to test for the effects of two factors simultaneously (e.g., gender and treatment),
in which case two-way ANOVA can be used. ANOVA can be generalized to any number n of
factors, resulting in n-way ANOVA. After retrieving a list of significant proteins from ANOVA,
a post hoc test can be applied to pinpoint the sample groups within the experimental design
that were changing. If samples are related and independency assumptions are violated, so-called

1

2

3A 3B

4A 4B 4C

Co
un

ts

Normalized protein ratioMatrix form

Pr
ot

ei
n 

gr
ou

ps

Component 1

Co
m

po
ne

nt
 2

Condition A

Class 1

Support vector

Class 2

Difference

–l
og

 p
 v

al
ue

0

Significant

1  Data upload 2 Preprocessing

4A  Hierarchical clustering 4B Annotation enrichment

a  Putative workflow for downstream proteomics analysis

b  Support vector machines 

Rank

En
ri

ch
m

en
t

sc
or

e

Data annotations

Component 1

Co
m

po
ne

nt
 2

Subcellular localization

Organelle cluster

Si
gn

al
-

to
-n

oi
se

Time

Ex
pr

es
si

on

Phase

4C Time series

3B Principal component

Samples

In
te

ns
it

y

c

3A Differential expression

Predictive protein signatures

Min Max

1  2  3  4  5  6
Sample

(Caption appears on following page)

220 Sinitcyn · Rudolph · Cox

A
nn

u.
 R

ev
. B

io
m

ed
. D

at
a 

Sc
i. 

20
18

.1
:2

07
-2

34
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

W
IB

64
17

 -
 M

ax
-P

la
nc

k-
G

es
el

ls
ch

af
t o

n 
11

/0
7/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



30 CHAPTER 1. INTRODUCTION

BD01CH10_Cox ARI 25 May 2018 9:23

Figure 6 (Figure appears on preceding page)

Downstream analysis overview. (a) Putative workflow for downstream proteomics analysis. After data upload (Step 1) and preprocessing
(Step 2), common analyses include differential expression (Step 3A), principal component analysis (Step 3B), hierarchical clustering (Step
4A), annotation enrichment (Step 4B) and time series analysis (Step 4C). Data preprocessing (Step 2) may involve several steps including
data normalization and visual inspection of distributions of protein quantification values in histograms. Differential expression analysis
(Step 3A) reveals those proteins that are significantly changing their concentrations between two or more conditions. Principal
component analysis (Step 3B) highlights main trends in the data such as a separation between cellular conditions, as shown in the
example. Hierarchical clustering (Step 4A) is often done in conjunction with heat map visualization of expression changes and reveals
characteristic patterns relating groups of samples to clusters of proteins. Results are often validated using annotation enrichment
analysis (Step 4B). Time series analysis (Step 4C) can distinguish between characteristic temporal patterns such as phases of peaking
protein concentrations in a periodic process, as shown in the example. Adapted from Reference 28. (b) Support vector machines are a
powerful machine learning tool for classification. From training data they learn decision rules that can distinguish between classes of
samples based on their protein expression profiles. The decision rule is indicated here by a separating line between the two classes.
Support vectors are those samples that contribute most to defining the separating line. Adapted from Reference 28. (c) Applications for
machine learning in proteomics include finding predictive protein signatures and predicting the subcellular localization of proteins.
The colored clusters represent proteins that are localized in same organelles. Data from Reference 147 were used.

repeated measures ANOVA is a valid method of data analysis. For all of the methods above,
it is crucial to control false positives due to multiple hypothesis testing, since many tests are
done simultaneously. If only a moderate p-value cutoff is applied to define significant proteins,
the number of false positives will be inflated (130). Benjamini-Hochberg FDR control (131) or
permutation-based FDR estimates (132) are efficient methods to deal with this problem.

When an interesting group of proteins has been identified, for instance, by statistical testing,
clustering, or PCA, enrichment analysis can be performed to find biological processes, complexes,
or pathways common to these proteins. Fisher’s exact test checks for contingency between group
membership and the property of interest. It clarifies what is common to the cluster-member pro-
teins and might indicate the functional role of the cluster. For this purpose, annotation sources like
gene ontology (133), pathway memberships (134), or curated protein complexes (135) are needed.

Biological processes under study often exhibit temporal changes, with proteins following an
expected pattern, for instance, as periodic changes in the cell cycle or circadian rhythm. Other
studies involve measuring a response to dose changes of stimuli. In these situations, methods can
be applied that detect concentration changes following a given model, such as periodic changes
with a given periodicity. For this case of periodic temporal changes, the analysis will assign an
amplitude of change and a peaking time to each protein (136).

Posttranslational Modifications

Quantitative PTM data can be represented as a matrix resembling proteome-expression data,
but with modified peptides or modification sites on the identified proteins as rows. Therefore,
PTM studies can be analyzed with methods similar to those used for protein expression. For
instance, after suitable normalization and filtering, hierarchical clustering or PCA can be applied to
determine dominant patterns of phosphorylation changes (86). As previously discussed, one needs
to be aware of the higher variance of PTM-level data compared to protein-level data. This requires
a higher number of replicates compared to protein-level data to achieve the same statistical power.

There are several public resources for obtaining PTM specific annotations. UniProt (40) pro-
vides comprehensive information on local protein properties at the PTM site or in its vicinity.
Specialized databases, such as PhosphoSitePlus (137), Signor (138), and Phospho.ELM (139),
cover mostly phosphorylation events. They include functional annotations, as well as kinase–
substrate interactions. This information can be used for enrichment analysis to gain information
about the processes involved in writing, reading, and erasing the studied PTMs. One can also
analyze PTMs in the context of signaling networks, as discussed below.
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Machine Learning

Machine learning has several applications in the downstream analysis of proteomics data
(Figure 6b,c). A very prominent one is the classification of patient-derived samples based on
their protein expression patterns (140–142). For artificial intelligence–based diagnosis, a super-
vised learning algorithm is first trained on samples derived from patient cohorts for which a
certain property is known, for instance, the cancer subtype. The trained algorithm is then used
to diagnose novel samples, that is, to predict the same property for samples where the property
is not known. The same supervised learning approach can be combined with feature selection
algorithms to derive predictive protein signatures. Each signature contains proteins that show a
distinct expression pattern and can be used for sample classification. Multivariate feature selection
methods can take the interdependence of proteins acting within networks into account and can
find patterns for which the discriminatory power is not apparent in the expression profiles of
single proteins. This makes machine learning–based feature selection a powerful alternative to
ANOVA-like methods to determine protein signatures, where a p-value is calculated for only one
protein at a time, independently from all the other proteins.

Machine learning approaches are most easily validated using cross-validation (143), which pro-
vides a measure of how well the prediction performance of a classification or regression model
will generalize to independent data not used for model training. Cross-validation helps avoid the
notorious problem of model overfitting and can be used to monitor prediction errors when ex-
tracting optimal protein sets from the output of feature selection algorithms. SVMs (144) often
perform particularly well in classification or regression of samples in omics spaces. This is not sur-
prising, since for most technologies, including proteomics, the number of features (biomolecules)
is typically much larger than the number of samples. SVMs were created to perform well in spaces
with exactly these properties. Deep learning (145, 146) is gaining traction in proteomics (75) and
will likely find more applications in the future.

Machine learning has also been successfully applied to the prediction of subcellular localization
with the dynamic organellar maps method (147, 148), which allows global mapping of protein
translocation events. First, one generates a database of marker proteins with known localization and
absolute copy number information and characteristic fractionation profiles. Then, using SVMs, a
model is built for the prediction of cellular localization. This method has dynamic capabilities to
capture translocation events upon a stimulation. This enables a widely applicable proteome-wide
analysis of cellular protein movements without requiring process-specific reagents.

Network Biology

MS-based proteomics provides researchers with diverse tools for the study of biological net-
works (149). Enrichment protocols interrogate the interaction partners of a bait protein and
provide the basis for the assembly of large-scale protein–protein interaction (PPI) networks
(Figure 7a). Affinity enrichment/purification coupled to LC-MS is routinely used to quan-
tify hundreds of physical interaction partners. Since relying only on identification of proteins
in the pull-down leads to many false positives, it is crucial to distinguish background binders
from significantly enriched bona fide interactors. Statistical tests, such as the two-sample t-test,
can identify true interactors but require a control to compare against. This control sample ei-
ther can be a dedicated experiment lacking the bait protein or can be assembled from other
orthogonal experiments within the same study (150, 151). Due to its quantitative nature, this
approach can probe not only steady-state interactions, but also dynamic rewiring upon stim-
ulation by internal or external stimuli. If intensity-based quantification is used, the missing
values problem for enriched samples can be overcome by imputation. Alternative methods
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Figure 7
Network analysis. (a) Protein–protein interaction networks can be constructed by applying statistical testing to a series of pull-down
experiments with different bait proteins. The resulting network of proteins with significant enrichment to any of the bait proteins can
be visualized in tools such as Cytoscape. Adapted from Reference 28. (b) Signaling pathway reconstructed from phosphoproteomics
data derived from MCF7 cells after epidermal growth factor stimulation (160). The pie charts in the network visualize the measured
phosphorylation changes on each of the proteins. Proteins with unknown phosphorylation states are colored gray.

relying on spectral counting directly accommodate for the absence or presence of a protein
in a sample (152). Both approaches have been used to construct large-scale PPI networks
(151, 153).

Cells often achieve signal transduction through PTMs, which are enzymatically written, read,
and erased. The interpretation of PTMs in the context of these signaling networks is therefore nat-
ural. PTM specific networks, such as kinase–substrate interactions, can be obtained from curated
databases, such as PhosphoSitePlus (137). To increase coverage, kinase–substrate relationships
can also be predicted by machine learning and PPI network analysis (154). Logic models obtained
from, for example, the Signor database (138) can provide a mechanistic interpretation of phos-
phoproteomic data, indicating active kinases, as well as functional phosphorylation sites. Several
computational methods predict kinase activities from kinase–substrate interactions and phospho-
proteomics data. For a recent review and benchmark, readers are referred to References 155 and
156. Kinase–substrate enrichment analysis (157) uses parametric tests to compare the changes of
the substrates of one kinase to all other substrates. Cluster evaluation (158) clusters phosphoryla-
tion sites based on time series data, from which enrichments of kinase–substrate annotations are
calculated. Inference of kinase activities from phosphoproteomics (159) uses machine learning to
estimate the strength of kinase–substrate interactions, as well as kinase activities. Phosphopro-
teomic dissection using networks (PHOTON) (160) is a method using general PPI networks for
interpreting phosphorylation data within their signaling context. PHOTON identifies proteins
that significantly contribute to signaling and uses these proteins to reconstruct the most plausible
signaling pathway from the PPI network (Figure 7b).

For general-purpose network analysis, Cytoscape (161) has emerged as the de facto standard.
Through its plugin infrastructure, it provides a wealth of analyses and visualizations, often in-
tegrating expression-omics technologies with interaction networks. Cytoscape reads networks
from various standard formats and can extend them with interactions and pathways from var-
ious databases. Tools such as BiNGO (162) can identify significantly enriched gene ontology
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terms in these networks. Large-scale networks can be clustered into modules, either by topology
(MCODE; see Reference 163) or by differential expression (jActiveModules; see Reference 164).
Alternatively, network reconstruction tools, such as ANAT (165), identify a subset of interactions
connecting, for example, differentially expressed proteins to their signaling stimulus.

Multiomics Data Analysis

Analyzing data from two omics technologies applied to the same samples becomes straightfor-
ward if there is a near one-to-one match between the biomolecules measured in each of the two
omics spaces. For instance, when comparing the proteome and the transcriptome, the one-to-one
correspondence between transcript and protein sequences holds true with only little deviations
due to, for example, translation errors and postprocessing of the protein sequence. Thus, the
molecular correspondence is sufficiently valid to conceptually work with matching rows between
the two omics matrices. The problem reduces to mapping transcript to protein identifiers and to
dealing with the different depth in distinguishable splice variants, for which algorithmic solutions
exist (28). A similar molecular correspondence can be applied to the genome–proteome spaces for
correlating local genomic properties such as DNA copy number (166) or loss of heterozygosity
to protein expression if proteins matching to the same gene model are grouped together. Also,
ribosomal profiling data (167) can be brought into molecular correspondence with proteomics
data.

Once a correspondence between omics spaces has been established, one can perform pointwise
comparisons, as is done in the scatterplots in Figure 8a, in which protein abundances, messenger
RNA levels, and ribosomal profiling data are compared. Individual outliers in each of these plots
may hint at interesting biology. However, it is difficult to assign significance to individual data
points. Hence, researchers developed 2D annotation enrichment (168; Figure 8b) to answer the
question, Which classes of gene products show concordant and which show discordant behavior
between the different levels of gene expression? While transcriptional regulation is a dominant
factor in expression control, there are many known examples of posttranscriptional regulation
like microRNA-controlled inhibition of transcripts (169) and directed protein degradation (170),
which are detectable by this method.

Further examples of simultaneous multivariate analysis in two matched omics spaces are joint
time series analysis, which is exemplified in Figure 8c for circadian transcriptomics, and pro-
teomics data (136). Here, it was possible to derive time lags between peaks in transcript and
protein abundances as a proxy for the time lag between transcription and translation for individual
cycling transcripts and their associated proteins. Additionally, joint transcriptomics–proteomics
PCA performed on the same data (Figure 8d ) indicates global similarities in transcript and protein
concentrations, but with a time delay.

When the input is time-resolved data for transcriptome and proteome, protein expression con-
trol analysis (PECA) (171, 172) computes the probability of regulation changes between adjacent
time intervals. PECA quantitatively dissects protein expression variation into the contributions of
mRNA and protein synthesis–degradation rate ratios.

Unlike in the previous examples, when combining proteomics with metabolomics, there is
not a one-to-one correspondence between molecules. In biochemical pathways, proteins are as-
sociated with reactions between metabolites as catalysts. The required mapping of biomolecules
is facilitated by the consensus human metabolic reconstruction Recon 2.2 (173), which has a
high potential for integrating and analyzing diverse data types. Recon 2.2 facilitates the integra-
tion of proteomics data with an updated curation of relationships between genes, proteins, and
reactions.
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DISCUSSION AND OUTLOOK

Computational proteomics has matured substantially and is keeping up well with the massive
amounts of data produced by modern mass spectrometers. Platforms for identification and quan-
tification of proteins can analyze the data in a reliable and automated way. Therefore, attention is
increasingly being shifted to the downstream part of the data analysis, in which the quantification
results are interpreted, hypotheses are tested, and novel biological and biomedical knowledge is
gained. We anticipate that future developments of computational proteomics tools will be partic-
ularly active in these areas, including network biology and cross-omics data analysis. In previous
work (28), we made the case for enabling the end users—the researchers from fundamental biol-
ogy, drug discovery, and medical sciences—to perform large parts of the data analysis themselves,
and this is increasingly happening.

Single-cell DNA and RNA sequencing (174) have shed new light onto the heterogeneity and
diversity of biological processes behind the cellular averages that are typically monitored in many
omics technologies. According to reports in the literature (175), single-cell proteomics is just
around the corner and will likely bear many new discoveries. Once it is scalable and sufficiently
deep in terms of proteome coverage, it might help define a highly resolved atlas of all cell types and
cell states in the human body (176). Certainly, novel computational tools will have to be developed
for the particular challenges of single-cell proteomics data, which will likely have unique challenges
in terms of normalization and handling of missing data.

There is still a large gap between the generation of large-scale proteomics data and the modeling
of signaling pathways and biochemical reactions. The curated knowledge of PTMs currently
available in public resources (134, 177) is still limited and needs to be expanded to support more
comprehensive analyses. New tools are emerging to reconstruct signaling pathways and translate
them into logic models (178). Hopefully, the path from large-scale time series data to kinetic
modeling (179, 180) will become more accessible for many interdisciplinary researchers, leading
to an improved mechanistic understanding of the biological processes under investigation based
on large-scale data.
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Chapter 2

List of publications

2.1 Proteomics software development

2.1.1 MaxDIA enables highly sensitive and accurate

library-based and library-free data-independent

acquisition proteomics

In DDA, a subset of peptide precursors is selected from MS1 for a subsequent

fragmentation and identification in MS2. Due to the selection of the topN most

abundant precursors, DDA technique is usually biased towards highly expressed

proteins. Therefore low abundant peptides are identified in a stochastic manner.

This fact complicates the analysis of thousands of samples because of the numerous

missing values. Alternatively, DIA is considered as a state-of-art proteomics

technique for large-scale clinical and fundamental studies, due to its robustness

and accuracy of protein quantification[153]. The classical DIA experiment requires

to first generate a spectral library of peptides using DDA method. The drawback

of this technique is that peptides, which are not represented in the library, will not

be identified.

MaxQuant is a well-known software for the processing of DDA shotgun

proteomics[3, 150]. This manuscript presents new features of MaxQuant, which

allows the analysis of DIA data. Those features include an iterative approach for

identifying library-to-DIA matches (bootstrap-DIA algorithm) and an accurate

false discovery rate estimator enhanced by machine-learning. Furthermore, the

MaxLFQ algorithm, that was originally applied to DDA[147], was extended to

DIA to normalize intensities of fragment matches. This improvement allows very

accurate protein quantification as prooved by multi-species mix experiments.

I contributed to this study by developing and testing MaxQuant-DIA. Also, I

implemented and tested the discovery mode DIA pipeline, which does not require

45
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to have a measured DDA library. Recent advances in the prediction of MS2

spectrum based on peptide sequence[156] allows constructing a library from in

silico prediction instead of DDA measurement. Thus, DIA experiment does not

depend on the depth of DDA library. From the user perspective, the discovery

mode reduces the design complexity of DIA.

Pavel Sinitcyn*, Hamid Hamzeiy*, Favio Salinas Soto*, Daniel Itzhak, Frank

McCarthy, Christoph Wichmann, Martin Steger, Uli Ohmayer, Ute Distler,

Stephanie Kaspar-Schoenefeld, Nikita Prianichnikov, Şule Yılmaz, Jan Daniel
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Humphrey and Jürgen Cox

MaxDIA enables highly sensitive and accurate library-based and library-free data-

independent acquisition proteomics

(2020) The manuscript is in under revision process at Nature Biotechnology journal

*these authors contributed equally to this work



2.1. PROTEOMICS SOFTWARE DEVELOPMENT 47

 

1 

 

MaxDIA enables highly sensitive and accurate library-based and library-free 

data-independent acquisition proteomics 

 

Pavel Sinitcyn1,#, Hamid Hamzeiy1,#, Favio Salinas Soto1,#, Daniel Itzhak2, Frank McCarthy2, Christoph 

Wichmann1, Martin Steger3, Uli Ohmayer3, Ute Distler4, Stephanie Kaspar-Schoenefeld5, Nikita 

Prianichnikov1, Şule Yılmaz1, Jan Daniel Rudolph1,6, Stefan Tenzer4, Yasset Perez-Riverol7, Nagarjuna 

Nagaraj5, Sean J. Humphrey8 and Jürgen Cox1,9,* 

 

1Computational Systems Biochemistry Research Group, Max-Planck Institute of Biochemistry, Am 

Klopferspitz 18, 82152 Martinsried, Germany. 

2Chan Zuckerberg Biohub, 499 Illinois St., San Francisco, CA 94158, USA. 

3Evotec München GmbH, Am Klopferspitz 19a, 82152 Martinsried, Germany. 

4Institute for Immunology, Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany. 

5Bruker Daltonik GmbH, Farenheitstr. 4, 28359 Bremen, Germany. 

6Bosch Center for Artificial Intelligence, Robert-Bosch-Campus 1, 71272 Renningen, Germany  

7European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL‐EBI), Wellcome Trust 

Genome Campus, Hinxton, Cambridge, CB10 1SD UK 

8School of Life and Environmental Sciences, Charles Perkins Centre, University of Sydney, John Hopkins 

Drive, Camperdown, NSW 2006, Australia. 

9Department of Biological and Medical Psychology, University of Bergen, Jonas Liesvei 91, 5009 Bergen, 

Norway. 

#These authors contributed equally to the publication. 

*Correspondence: cox@biochem.mpg.de  

 

 

  



48 CHAPTER 2. LIST OF PUBLICATIONS

 

2 

 

Abstract 

MaxDIA is a universal platform for analyzing data-independent acquisition proteomics data within the 

MaxQuant software environment. Using spectral libraries, MaxDIA achieves cutting-edge proteome coverage 

with significantly better coefficients of variation in protein quantification than other software. MaxDIA is 

equipped with accurate false discovery rate estimates on both library-to-DIA match and protein levels, also 

when using whole-proteome predicted spectral libraries. This is the foundation of discovery DIA – a 

framework for the hypothesis-free analysis of DIA samples without library and with reliable FDR control. 

MaxDIA performs three- or four-dimensional feature detection of fragment data and scoring of matches is 

augmented by machine learning on the features of an identification. MaxDIA’s novel bootstrap-DIA workflow 

performs multiple rounds of matching with increasing quality of recalibration and stringency of matching to 

the library. Combining MaxDIA with two new technologies, BoxCar acquisition and trapped ion mobility 

spectrometry, both lead to deep and accurate proteome quantification. 
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Data-independent acquisition (DIA) proteomics1 promises robust and accurate quantification of proteins over 

large-scale study designs and across heterogeneous laboratory conditions2. In all omics sciences, robust data 

analysis pipelines are as important as the data acquisition technology itself, and proteomics is no exception. 

MaxQuant3–6 is the most widely-used software for analyzing data-dependent acquisition (DDA) proteomics 

data, providing a vendor-neutral complete end-to-end solution for all common experimental designs. With 

version 2.0 described here, MaxQuant offers an equally complete DIA software infrastructure, termed 

MaxDIA. Such a unified framework over all mass spectrometry-based proteomics based on peptide 

quantification comes with several advantages over existing software7–10. DDA libraries and DIA samples can 

be processed in integrated, consistent ways. Algorithmic parts of the workflow that do not depend on the type 

of acquisition, like protein quantification algorithms, such as MaxLFQ11, protein redundancy grouping, or 

protein-level false discovery rate (FDR) can be applied to all data in exactly the same way, making DDA and 

DIA studies much more comparable. 

 

The classical approach to DIA data analysis utilizes a spectral library of peptides which are queried in the DIA 

samples and quantified in case of their presence. In this spectral library-based approach, the rate of false 

matches can in principle be controlled with techniques similar to those developed in DDA proteomics12. For 

instance, the target-decoy method13 has been adapted to DIA9. Additionally, several library-free approaches 

exist14 and spectral predictions have been successfully used for DIA data analysis15–20. However, effective 

control of false discovery rates, in particular on the level of identified proteins with these methods is still a 

critical aspect. Once this is achieved, DIA can additionally be employed in a discovery mode, without biases 

imposed by a library and with the certainty that the identified set of proteins contains at most a predefined 

percentage of false positives, e.g. 1%, as is standardly applied in DDA-based proteomics. Here we demonstrate 

that MaxDIA fulfills these criteria and can indeed be used in such a discovery DIA mode. 

 

Machine learning is an integral part of MaxDIA. We use the bidirectional recurrent neural network21 (BRNN) 

approach termed DeepMass:Prism15 to create in silico very precise libraries of MS/MS spectra for peptides 

digested from complete proteome sequence databases. BRNNs are also used for the dataset-specific prediction 

of liquid chromatography retention times. Furthermore, to score library DIA sample matches based on 

multivariate information derived from properties of the matches, we apply the gradient boosting method 

XGBoost22, which is highly superior to only using the matching score itself, and also compared to applying 

other machine learning approaches. 

 

High-quality three-dimensional (3D) or, in the presence of ion mobility data, 4D feature detection3,23 of the 

precursor data is one of the most important ingredients of MaxQuant for DDA data, leading to efficient noise 
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suppression. In MaxDIA, fragment ions are additionally detected as 3D/4D features. Besides noise removal, 

this ensures that data is not over-interpreted: The feature detection on fragment data allows to require that all 

signals belonging to a 3D/4D peak contribute as evidence only to one peptide identification, ensuring that 

signals at slightly different retention times or ion mobility values, but really belonging to the same feature, are 

not used as independent evidence for two similar peptides, e.g. differing by a modification or resulting from 

an amino acid polymorphism.  

 

In MaxDIA we support two new and promising technologies, both of which enable deep quantification of DIA 

samples. One is to combine DIA with high dynamic-range precursor data obtained by the BoxCar acquisition 

method24. The second is to utilize ion mobility as an extra data dimension on a timsTOF Pro instrument25–27 

for DIA. Both increase the quantified proteome in DIA samples substantially providing highly precise and 

linear quantification over the whole dynamic range. Furthermore, since the MaxLFQ algorithm has been 

designed to perform label-free quantification on pre-fractionated samples11, also MaxDIA has the capability 

to perform label-free quantification of pre-fractionated samples analyzed by DIA, which opens up applications 

of DIA requiring ultra-deep proteome quantification. Complete submissions to the PRoteomics 

IDEntifications28 (PRIDE) database using an adapted mzTab29 scheme can also be performed automatically 

using MaxDIA. 

RESULTS 

MaxDIA data analysis workflow 

MaxDIA is embedded into the MaxQuant software environment (Fig. 1) and shares with it the graphical user 

interface, computational infrastructure, and many algorithmic workflow components applicable to both. It is 

vendor-neutral, with direct support for the most common native vendor file formats for reading mass spectra, 

as well as the open mzML file format30. MaxDIA can be operated in a classical library-based approach or in 

discovery DIA mode. In the former, DIA datasets are interrogated within MaxQunat by spectral libraries 

generated with MaxQuant, while the latter does not require acquisition of a spectral library. In discovery DIA 

mode, spectral libraries are generated by DeepMass:Prism15, a bidirectional recurrent neural network that 

enables precise prediction of spectral intensities from peptide sequences. Decoy spectra are generated by 

reverting library sequences under the constraint of preserving the cleavage characteristics of the protease that 

was used in the experiment and ensuring that the decoy peptide masses, retention times and ion mobility values 

follow the same multivariate distribution as the target peptides. DIA samples and libraries are then analyzed 

in an end-to-end workflow for peptide and protein identification and quantification. MaxQuant’s three-

dimensional (3D) or four-dimensional (4D) feature detection3,23 (Fig. 2) and de-isotoping is performed on the 
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precursor data and on all LC-MS/MS or LC-IMS-MS/MS fragment data domains corresponding to precursor 

selection windows. Defining MS/MS features in a multi-dimensional way is particularly important for 

fragment data, since it avoids over-interpretation of identification results. This enables the requirement that 

every MS/MS feature is used at most once in peptide identification. Problems may arise if such precautions 

are not taken, since features will be double-counted for the identification of peptides that are similar to each 

other due to sequence homology or due to the presence or absence of a modification, but for which there is 

insufficient evidence for the existence of both peptide forms.    

 

Bootstrap-DIA 

Central to the workflow is bootstrap-DIA, which consists of multiple steps of matching the library spectra to 

DIA samples (Supplementary Fig. 1). These steps aim to bootstrap the DIA identification process based on 

the least possible prior knowledge. Bootstrap-DIA replaces and substantially extends the concept of the ‘first 

search-main search’ strategy31 as well as the ‘retention time alignment’ and ‘match between runs’ used in 

DDA MaxQuant. Increasingly more information is gained in each round, with this information utilized in 

subsequent rounds. For instance, in the first round of matching, no retention time constraint is used. Based on 

these matches, a linear model is fit between the library and sample retention times, which is used to align runs 

to one another, even when gradient lengths substantially differ. This linear correction can be applied to the 

data and in the second round of matching, retention times can be filtered based on a time window that is 

automatically adapted to the distribution of all retention time differences after linear alignment. This filtering 

removes sufficiently many false positive matches, so that from the third round of matching a nonlinear 

retention time recalibration function can be determined. Application of the nonlinear recalibration function 

allows to subsequently apply more stringent filtering. Similar multi-step recalibration and filtering steps are 

applied to precursor and fragment masses, as well as to collision cross sections, if applicable. Supplementary 

Fig. 2 shows how target decoy distributions are affected after each matching step with increasingly more 

stringent filers. The resulting nonlinear precursor and fragment m/z recalibrations depending on m/z and 

retention time are shown in Supplementary Figs. 3,4. 

 

A consequence of the bootstrap-DIA process is that precursor and fragment masses, retention times and ion 

mobility values are nonlinearly aligned between each DIA sample and library without the need for spike-in 

standards. A prerequisite for this is that the DDA runs in the datasets used for the library are well aligned to 

each other, since the precision of alignment between library and DIA samples is otherwise limited by the 

variability of retention times and collision cross sections within the library. Therefore, when processing 

libraries in MaxQuant, retention time and ion mobility alignments should be activated. A challenging attribute 

that can be learned from the data are nonlinear retention time mappings between library and samples. This 
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means that gradients between library and DIA runs do not need to be the same, and label-free quantification 

is possible even between DIA measurements with different gradients lengths. To evaluate the matching of 

different DIA gradient durations to a library we generated a DDA library consisting of 16 high pH-reversed 

phase fractions of a HeLa cell lysate measured with 25-minute gradients, and measured the same sample 

unfractionated with DIA using 30, 60, 90 and 120-minute gradients. Supplementary Fig. 5 shows retention 

time alignments between the library and DIA samples, and precise quantification between samples with 

different gradient lengths are shown in Supplementary Fig. 6. These capabilities greatly enhance the flexibility 

of MaxDIA, making the software applicable to analyzing a broader range of samples. 

 

Scoring of library-to-sample matches by machine learning 

To quantify the quality of match between a library spectrum and a DIA sample at a given retention time (and 

CCS value) we first find a precursor feature and all fragment features that match to the library spectrum with 

tolerances for m/z, retention time and CCS, dependent on the matching step in the bootstrap-DIA workflow. 

To measure the match quality, we then calculate a score which is the sum over all matching features of 

numbers between zero and one, each quantifying how far away from the apex the respective peak was hit 

(Supplementary Fig. 7). For a given library spectrum this score is maximized over retention time and ion 

mobility. It is then ensured, through a second round of scoring, that every feature in a DIA sample is used at 

most for one library spectrum match. 

 

This score then is enhanced through machine learning. To this end, we construct a feature space that in addition 

to the score contains various properties of the match (Supplementary Fig. 8), such as mass errors (in p.p.m.) 

for precursor and fragments compared to masses calculated from elemental compositions, retention time and 

ion mobility errors, and apex fractions. We employ a classification algorithm to separate target from decoy 

hits based on this feature space. We define the machine learning based match score as the assignment 

probability to the target class of the machine learning algorithm. This is not just the binary decision of the 

classifier, but a number expressing the affinity to the target spectra as opposed to the decoy spectra. To 

eliminate the risk of overfitting, we determine these machine learning scores in 5-fold cross validation, such 

that a match for which the machine learning score is calculated has not been used for training the model that 

is used for its prediction.  

 

We used several different classification algorithms and monitored their effect on the identification 

performance of MaxDIA. We compared the performances of XGBoost22, fully connected multi-hidden layer 

neural networks, random forests32 and AdaBoost (Supplementary Fig. 9) scanning for each algorithm suitable 

ranges of meta-parameters. We found that XGBoost performs best among the tested algorithms, in contrast to 
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Demichev et al.10 who found neural networks to perform favorably. This choice is also different from DDA 

where for similar purposes support vector machine based methods are used33. XGBoost provides information 

on the importance of features for classification (Supplementary Fig. 8). We found that in the library-based 

approach, the feature defining whether the precursor has an isotope pattern assigned or was only seen as a 

single peak is of greater importance than the raw score itself. Furthermore, retention time, precursor mass 

errors, number of modifications and missed cleavages were among the top 10 highest ranked features. Also 

among the top 10 is the ‘sample fragment overlap’ which quantifies if and to what extent the N- and C- 

terminal ion series are overlapping in the DIA sample, thereby placing restrictions on the precursor mass. 

 

Identification performance and quantification precision 

To evaluate the performance of MaxDIA we ran it, and Spectronaut 13 on a dataset comprising 27 technical 

replicate injections of peptides derived from the human HepG2 cell line measured in DIA as well as a DDA 

library created from 12 high pH-reversed phase fractions (see online Methods). Using default parameters in 

both software, including a 1% FDR on precursor and protein levels, we obtain 6,238 protein groups mapped 

to Entrez gene identifiers with MaxDIA, compared to 6,015 with Spectronaut with an overlap of 5,549 (Fig. 

3a). MaxDIA finds 20% more peptides than Spectronaut at 1% library-to-DIA matches FDR. The length 

distribution of identified peptides is very similar between the two analysis software (Fig. 3b).  

 

While DIA is believed to be better in terms of data completeness34,35 compared to DDA, we observe that this 

depends on the algorithmic details and that there is a tradeoff between data completeness and confidence of 

protein identification within a specific sample, as opposed to the whole dataset. After identifying peptides and 

proteins for the whole dataset, we apply a ‘transfer q-value’ cutoff to the identifications of matches in each 

sample. Setting it to 1, implies that no sample-specific restrictions are applied and that the peptide is quantified, 

whenever any evidence is found for its existence. A transfer q-value of 0.01 (equal to the global q-value of 

library-to-sample matches) results in stringent identification in every sample and hence, certainty about the 

actual sample-specific presence of peptides and proteins. We scanned through 7 values of the transfer q-value 

between 0.01 and 1 and monitored the number of proteins which have a certain number or less valid values in 

terms of LFQ intensities (Fig. 3c). As expected, for larger transfer q-values, the curves are flatter and higher 

in terms of total protein numbers. When using 1 for the ‘minimum ratio count’ parameter of the LFQ 

algorithm, most parts of all curves are above the line for the Spectronaut software. For ‘minimum ratio count’ 

= 2, which ensures higher accuracy of quantification, the array of curves is intersecting with the Spectronaut 

curve. After evaluating the accuracy of benchmark quantification results on several mass spectrometry 

platforms we decided to select 0.3 as the default value for the transfer q-value. Study-specific objectives 
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(completeness of quantification vs. certainty of identification in individual samples) may suggest deviations 

from this default value.        

 

The distribution of coefficients of variation (CVs) (Fig. 3d) indicates substantially higher quantification 

precision obtained with MaxLFQ (described below) in MaxDIA compared with Spectronaut, with median 

CVs of 0.072 and 0.109, respectively. Fig. 3e.f show typical log-log scatter plots of protein intensities between 

replicates displaying less outliers and higher Pearson correlation for MaxDIA. All pair-wise replicate Pearson 

correlations of logarithmic intensities are represented as a heat map in Fig. 3g for both programs, showing 

consistently higher correlations for MaxDIA (median 0.993) compared to Spectronaut (median 0.977). We 

find a good overall agreement between averaged Spectronaut intensities and MaxDIA iBAQ values (Fig. 3h) 

with a Pearson correlation of 0.87. We performed mRNA vs. protein copy number comparisons based on 

RPKM36 and iBAQ37 values, respectively, using MaxDIA and Spectronaut (Fig. 3i,j). Both comparisons show 

similar correlations between mRNA and protein levels, which are also compatible with correlations typically 

found in such studies38.     

 

Accuracy of FDR estimates and discovery DIA 

In order to evaluate the reliability of FDR estimates using MaxDIA’s target-decoy strategy, we used a pooled 

DDA library generated from mixed human and maize samples, with corresponding DIA runs comprising only 

human samples34. Hence, every match identified as being derived from the maize proteome is a known false 

positive identification (having discarded peptides that are shared between proteins of the two species). This 

enables calculation of an ‘external’ FDR which is calculated independently of the ‘internal’ FDR estimated 

by the decoy approach in MaxDIA. Fig. 4a compares internal and external FDRs on match, peptide and protein 

group levels. The curves for internal and external FDR are in very good agreement on all three levels. When 

comparing the numbers of identified matches, peptides and protein groups at 1% FDR, which is often taken 

as a default value in shotgun proteomics, the numbers differed only by 3.0%, 3.4% and 5.0%, respectively, 

between internally and externally controlled FDR. Hence our decoy-based FDR estimates are in good 

agreement with external FDR calculations. 

 

Given these results, we investigated how accurate the FDR estimates are for cases in which the library is 

dissimilar to the DIA sample. Hence, we assembled a library of in-silico predicted spectra based on 

DeepMass:Prism15 consisting of all tryptic peptides digested from all human UniProt39 sequences (Release 

2019_05 containing 20959 proteins) without missed cleavages. We additionally generated predicted retention 

times for each in-silico spectrum based on a bidirectional recurrent neural network used previously for the 

same purpose15. Using this library with the same DIA dataset as in Fig 4a, we generated the same curves for 
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internal and external FDRs as before (Fig. 4b).  Also here we observed good agreement between internal and 

external FDRs. In particular, at an FDR of 1% the number of identified protein groups differed only by 1.5%. 

We do however identify 39% more protein groups with the in-silico library compared to with the measured 

library. This highlights that MaxDIA does not require that spectral libraries are generated from matching 

samples in a project-specific manner, and yet FDRs are still reliably controlled. This enables the use of 

MaxDIA in a ‘discovery’ mode (discovery DIA), which is not biased by a library and completely hypothesis-

free in terms of which proteins can be found, by using in-silico predicted libraries for all protein sequences.  

 

We additionally repeated these analyses using the raw matching score instead of the machine learning-

improved score (Fig 4c,d). This revealed that the agreement of internal and external FDR does not depend on 

whether the XGBoost-based machine learning was used to adjust the scoring. However, the use of machine 

learning does substantially increase peptide (83% and 58% for library DIA and discovery DIA, respectively) 

and protein group identifications (28% and 18%, respectively).  

   

MaxLFQ adaptation for DIA 

A prime example of the re-use and continued development of algorithms from DDA MaxQuant to MaxDIA 

is the label-free quantification algorithm, MaxLFQ11. Here, quantification is based on first calculating all pair-

wise peptide ratios between samples, which are then summarized by the intensity profile that best fits all the 

pair-wise ratios. This procedure can be generalized to DIA by replacing a single ratio per peptide with multiple 

ratios derived from precursor intensities and from the most intense fragment peaks (Supplementary Fig. 10). 

This approach naturally implements hybrid quantification of precursor and fragment intensities.  

 

To benchmark quantification accuracy, we downloaded a four-species dataset with well-defined small ratios 

between replicate groups34. Ratios are expected to be 0%, 10%, 20% or 30%, depending on the species 

comprising: H. sapiens, C. elegans, S. cerevisiae and E. coli. We tested several combinations of precursor, 

fragment or mixed quantification and fragment intensities summed up or kept separately. We measured the 

variability as the inter-quartile range of ratios within each species, and summed these over the four species 

(Fig. 5a). We found that hybrid quantification between precursors and fragments with fragment intensities 

kept separate for individual ion types in LFQ resulted in the smallest quantification errors measured as the 

sum of the inter-quartile ranges of ratio distributions over the four species. The accuracy observed exceeded 

both MS1- and MS2-level quantification reported by Bruderer et al.34. A further question is how the filtering 

of fragments by their intensity improves quantification accuracy. To this end, we used only the top-N intense 

peaks for quantification while varying N (Supplementary Fig. 11a). We found that accuracy increases with 

the number of fragments used, indicating that no filtering of fragments by intensity is required. Similarly, we 
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investigated, if filtering to top-N most intense peptides per protein is beneficial (Supplementary Fig. 11b), 

finding that it is best to use all available peptides.  

 

Next, we analyzed a quantitative benchmark dataset obtained on SCIEX TripleTOF 6600 instrument, mixing 

proteomes from three species in defined ratios between replicate groups2 (Fig. 5b). Using the original library 

analyzed with MaxQuant and using default values for all parameters, we identify 4,627 protein groups and 

achieve linear quantification for all three species over the whole dynamic range. In discovery mode with a 

predicted library allowing for one missed tryptic cleavage, the number of identified protein groups raises by 

48% to 6,858 (Fig 5c) with on average improved quantification accuracy for the species with ratios as 

measured by inter-quartile ranges of species-specific ratio distributions. Importantly, H. sapiens which 

expresses a much larger number of proteins received the largest increase, identifying almost 2-fold more 

protein groups (4,012 vs. 2,127), while C. elegans and E. coli received proportionally fewer additional 

proteins. 

 

We next acquired a quantitative three-species benchmark dataset utilizing ion mobility on a Bruker timsTOF 

Pro instrument. Using the DDA library acquired on the same instrument type, we identify 10,352 protein 

groups. We again used MaxLFQ for DIA with hybrid quantification with separate intensities for each fragment 

ion (Fig. 5d), seeing excellent quantification over the whole dynamic range without nonlinearities. In 

discovery mode (Fig. 5e), the number of identified protein groups increases to 10,466 with higher 

quantification accuracy, again judged by the inter-quartile ranges of ratio distributions. Scanning through the 

transfer q-value, we found that quantification accuracy was best with a value near 0.3 (Supplementary Fig. 

12). 

 

BoxCar and fractionated DIA 

We recently implemented analysis of data acquired using the BoxCar acquisition method in MaxQuant in the 

DDA context24, whose primary goal is to achieve higher dynamic range for the precursor intensities. Since 

this should be beneficial for DIA as well, we implemented its generalization to combining high-dynamic range 

precursor measurements with DIA acquisition for the fragments. Furthermore, it is possible with MaxDIA to 

analyze and quantify DIA samples that have been pre-fractionated on peptide or protein levels. To showcase 

these features, we acquired both DDA libraries and DIA measurements from HEK cell lysate as single shots 

and as high-pH reversed phase peptide fractionated samples, which were pooled into eight fractions for MS 

analysis (see Online Methods). We analyzed all combinations of libraries and samples, and in addition we 

analyzed the DIA samples in discovery-DIA mode allowing for one missed trypsin cleavage (Fig. 6a). For the 

fractionated DIA samples we observe an increase in the number of identified protein groups concomitant with 
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the size of the library, with the most identifications in discovery mode. With single shot samples, the number 

of identified proteins saturates with library size, having slightly more identifications with the fractionated 

library. However, comparing identifications for the single shot DIA samples between fractionated library and 

discovery mode, we find that the results are very similar with 89% overlap of Entrez gene identifier mapped 

protein groups (Supplementary Fig. 13). This indicates that for both types of DIA samples it is not compulsory 

to produce a deep, fractionated library, but that comparable or even better results can be achieved in discovery 

DIA mode. Quantification with MaxLFQ between three replicates of fractionated DIA samples shows very 

good correlation with a median Pearson correlation of 0.993 (Fig. 6b).  

 

We then compared the results obtained with the three different library-creation approaches to RNA-seq data 

of HEK cells (see Online Methods). Fig. 6c compares the four sets of identifications based on gene identifiers. 

Out of the 9,503 genes covered by proteomics methods, 65% were found with all three library methods. 

Additional 25% were found with both, discovery mode and fractionated library, but not with the single shot 

library. 608 proteins were uniquely found with the discovery approach, compared to 251 with the deep 

fractionated library, suggesting preference for the discovery mode from the perspective of results, in addition 

to its economic advantages. In Fig. 6d, the results from Fig. 6c are displayed according to RPKM intervals of 

the RNA-seq data. The RNA-seq data shows a bimodal left shoulder that is typical of expression noise40, genes 

for which there is only limited proteomic evidence of translation. As expected, highly abundant proteins are 

recovered with all methods, while at low abundance, both the deep-fractionated library and discovery DIA 

approach add identifications. 

DISCUSSION 

Here we introduce MaxDIA, a complete end-to-end DIA workflow embedded into the MaxQuant environment 

with major new features and broad applicability to established and novel mass spectrometry technologies. We 

demonstrate the widespread and general utility of the software, including its use in analyzing BoxCar-DIA 

and ion mobility DIA data, demonstrating very high proteome quantification coverage. 

 

This framework lends itself to several extensions which are currently under development. In particular, while 

the analysis of posttranslational modifications (PTMs) is possible in principle by providing suitable libraries 

with spectra from modified peptides, proper localization of the modification on the peptide has to be carefully 

implemented as an additional process following peptide identification41. For these purposes, a PTM score 

guiding localization needs to be calculated directly from the DIA data and not from extracted spectra. 

Similarly, extensions to the identification of cross-linked peptides are straightforward42 and are planned for 

future releases of MaxDIA.   
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ONLINE METHODS 

HepG2 technical replicate data 

Cell culture and MS sample preparation. HepG2 were from ATCC and cultured in MEM and 10% FCS. Cells 

were washed twice with ice-cold PBS and harvested using freshly prepared SDC buffer (1% SDC, 10 mM 

TCEP, 40 mM CAA, 75 mM Tris-HCl at pH= 8.5). The SDC lysates were heated to 95°C for 10 min while 

shaking at 750 rpm in a Thermomixer (Eppendorf) and then sonicated for 10 min (10 x 30 sec on/off cycles) 

using a Bioruptor® Pico sonication device (Diagenode). Protein concentrations were determined using the 

660 nm assay (Thermo Fisher Scientific) and the proteins were digested with trypsin/Lys-C mix (Promega, 

V5071) overnight at 37°C with a 1:50 enzyme to protein ratio. The digestion was stopped by adding two 

volumes of 99% ethylacetate/1% TFA, followed by sonication for 1 min using an ultrasonic probe device 

(energy output ~40%). The samples were then desalted using in-house prepared, 200 µl two plug SDB-RPS 

StageTips43 (3M EMPORETM, 2241). SDB-RPS StageTips were conditioned with 60 µl isopropanol, 60 µl 

80% ACN/5% NH4OH and 100 µl 0.2% TFA. The SDC/ethylacetate mixture was directly loaded onto the 

tips followed by two washing steps of 200 µl 0.2% TFA each. Peptides were eluted with 80% ACN/5% 

NH4OH, speedvac dried and then resupended in 0.1% FA. After estimation of the concentration using a 

nanodropTM device (Thermo Fisher Scientific), the samples were adjusted to 0.4 µg/µl with 0.1% FA, of 

which 2 µl (800 ng) were injected into the mass spectrometer. 

 

LC-MS/MS measurements. Peptides were loaded on 40 cm reversed phase columns (75 µm inner diameter, 

packed in-house with ReproSil-Pur C18-AQ 1.9 µm resin [ReproSil-Pur®, Dr. Maisch GmbH]). The column 

temperature was maintained at 60°C using a column oven. An EASY-nLC 1200 system (ThermoFisher) was 

directly coupled online with the mass spectrometer (Q Exactive HF-X, ThermoFisher) via a nano-electrospray 

source, and peptides were separated with a binary buffer system of buffer A (0.1% formic acid (FA) plus 5% 

DMSO) and buffer B (80% acetonitrile plus 0.1% FA plus 5% DMSO), at a flow rate of 250 nl/min. The mass 

spectrometer was operated in positive polarity mode with a capillary temperature of 275°C. The samples were 

acquired with a DIA method established by Bruderer et al.34. Briefly, the method consisted of a MS1 scan 

(m/z= 300-1,650) with an AGC target of 3x10^6 and a maximum injection time of 60 ms (R= 120,000). DIA 

scans were acquired at R= 30,000, with an AGC target of 3x10^6, ‘auto’ for injection time and a default charge 

state of 4. The spectra were recorded in profile mode and the stepped collision energy was 10% at 25%.  

 

High pH reversed-phase fractionation. HepG2 cells were lysed as described in ‘Cell culture and MS sample 

preparation’. 150 µg of total protein was digested with a trypsin/Lys-C mix (Promega, V5071) overnight at 

37°C with a 1:50 enzyme to protein ratio. The digestion was stopped by adding two volumes of 99% 
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ethylacetate/1% TFA, followed by sonication for 1 min using an ultrasonic probe device (energy output 

~40%). The peptides were desalted using 30 mg (8B-S029-TAK) Strata-X-C cartridges (Phenomenex) as 

follows: a) conditioning with 1 ml of isopropanol; b) conditioning with 1 ml of 80% ACN/5% NH4OH; c) 

equilibration with 1 ml of 99% ethylacetate/1% TFA; d) loading of the sample; e) washing with 2 x 1 ml of 

99% ethylacetate/1% TFA; f) washing with 1 ml of 0.2% TFA; g) elution with 2 x 1 ml of 80% ACN/5% 

NH4OH. The eluates were snap-frozen in liquid nitrogen and lyophilized overnight. The lyophilized peptides 

were resuspended in 400 µl 0.1 % FA and fractionated using a 3x250 mm xBridge column (Waters) on an 

ÄKTA HPLC system (GE Healthcare). Fractionation was performed with a flow rate of 0.5 ml/min and with 

a constant flow of 10% 25 mM ammonium bicarbonate, pH 10. Peptides were separated using a linear gradient 

of ACN from 7% to 30% over 15 min, followed by a 5-min increase to 55% ACN and a subsequent ramping 

to 100% ACN. Fractions were collected at 50-sec intervals in 15 ml Falcon tubes to a total of 36 fractions and 

then pooled to obtain 12 fractions (A1-B1-C1, A2-B2-C2 etc.). All fractions were acidified by addition of FA 

to a final amount of 0.1% and then lyophilized. Peptides were subsequently resuspended in 100 µl 0.1% TFA 

and desalted using in-house prepared C18 STAGE tips43 as follows: a) equilibration with 100 µl isopropanol, 

b) Equilibration with 100 µl 0.1% TFA, c) loading of the sample, d) washing with 100 µl 0.1% formic acid 

(FA), e) elution with 30 µl of 80% Acetonitrile/0.1% FA. Peptides were speed-vac dried, resupended in 20 µl 

0.1% FA and the concentration estimated on a nanodropTM device (Thermo Fisher Scientific). The samples 

were then adjusted to 0.4 µg/µl with 0.1% FA, of which 2 µl (800 ng) were injected into the mass spectrometer. 

 

HeLa data with varying gradients 

High-pH reversed phase peptide fractionation. 6 µg of HeLa peptides were loaded onto a Waters BEH130 

C18 2.1 × 250 mm column in 90 µL of MS loading buffer at a flow rate of 0.5 mL/min using a Dionex Ultimate 

3000 HPLC, and column temperature was maintained at 50°C. After loading, a binary gradient of 10% buffer 

A (2% acetonitrile, 10 mM ammonium formate pH 9) to 40% buffer B (80% acetonitrile, 10 mM ammonium 

formate pH 9) was formed over 4.4 minutes, followed by a wash-out from 40–100% buffer B over 1 minute, 

after which the column was held at 100% buffer B for 10 minutes prior to re-equilibration. Fractions were 

collected over a period of 6.4 minutes from the first peptide elution, with fraction collection each 8 seconds 

and automatic concatenation into 16 fractions (200 µL fraction volume). Fractions were dried down in a 

vacuum concentrator (Eppendorf) and resuspended in MS loading buffer (0.3% TFA, 2% acetonitrile). 

 

MS analysis. Peptides were loaded onto a 40 cm column with a 75 µM inner diameter, packed in-house with 

1.9 µM C18 ReproSil particles (Dr. Maisch GmbH). Column temperature was maintained at 60°C with a 

column oven (Sonation GmbH). A Dionex U3000 RSLC nano HPLC system (Thermo Fisher Scientific) was 

interfaced with a Q Exactive HF X benchtop Orbitrap mass spectrometer (Thermo Fisher Scientific) using a 
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NanoSpray Flex ion source (Thermo Fisher Scientific). For all samples, peptides were separated with a binary 

buffer system of 0.1% (v/v) formic acid (buffer A) and 80% (v/v) acetonitrile/0.1% (v/v) formic acid (buffer 

B) and peptides eluted at a flow rate of 400 nl/min. Gradient ranges and durations were as follows: 5–40% 

buffer B over 30 minutes (DDA library); 3–19% buffer B over 10 minutes and 19–41% over 5 minutes (15 

min DIA gradient); 3–19% buffer B over 20 minutes and 19–41% over 10 minutes (30 min DIA gradient); 3–

19% buffer B over 40 minutes and 19–41% over 20 minutes (1 h DIA gradient); 3–19% buffer B over 60 

minutes and 19–41% over 30 minutes (1.5 h DIA gradient); 3–19% buffer B over 80 minutes and 19–41% 

over 40 minutes (2 h DIA gradient). For the DDA library, peptides were analysed with one full scan (350-

1,400 m/z, R=60,000 at 200 m/z) with a target of 3e6 ions, followed by up to 20 data-dependent MS/MS scans 

with HCD (target 1e5 ions, maximum IT 28 ms, isolation width 1.4 m/z, NCE 27%, intensity threshold 3.7e5), 

detected in the Orbitrap (R=15,000 at 200 m/z). Dynamic exclusion was enabled (15 s). For DIA 

measurements, peptides were analysed with one full scan (350-1,400 m/z, R=120,000 at 200 m/z) at a target 

of 3e6 ions, followed by 48 data-independent MS/MS scans spanning 350–975 m/z with HCD (target 3e6 

ions, maximum IT 22 ms, isolation width 14 m/z, NCE 25%), detected in the Orbitrap (R=15,000 at 200 m/z). 

 

Three species timsTOF Pro benchmark data 

Sample preparation. Human cervix carcinoma cell line HeLa was purchased from the German Resource 

Centre for Biological Material (Braunschweig, Germany). Cells were cultured in Iscove’s Modified Dulbecco 

Medium (PAN Biotech) supplemented with 10% (v/v) fetal calf serum (FCS; Thermo Fisher Scientific), 1% 

(v/v) glutamine (Carl Roth) and 1% (v/v) sodium pyruvate (Serva) at 37 °C in a 5% CO2 environment. A pure 

culture of the Saccharomyces cerevisiae bayanus, strain Lalvin EC-1118 was obtained from the Institut 

Oenologique de Champagne (Epernay, France). Yeast cells were grown in YPD media as described by 

Fonslow et al.44. Escherichia coli (TOP10) cells were purchased from Thermo Fisher Scientific and grown in 

LB liquid medium. After harvesting, cells were lysed adding a urea-based lysis buffer (7 M urea, 2 M thiourea, 

5 mM DTT, 2% (w/v) CHAPS). Lysis was promoted by sonication at 4°C for 15 min using a Bioruptor 

(Diagenode, Liège, Belgium). After cell lysis, protein amounts were determined using the Pierce 660 nm 

Protein Assay (Thermo Fisher Scientific) according to manufacturer’s protocol. Tryptic digestion applying a 

modified filter-aided sample preparation45 protocol was performed as described in detail before46. To generate 

the two hybrid proteome samples, tryptic peptides were combined in the following ratios as detailed 

previously2,46. Sample A was composed of 65% w/w human, 30% w/w yeast, and 5% w/w E. coli proteins. 

Sample B was composed of 65% w/w human, 15% w/w yeast, and 20% w/w E. coli proteins.  

 

LC MS analysis. Samples were analyzed by LC-MS on a trapped ion mobility spectrometry – quadrupole time 

of flight mass spectrometer (timsTOF Pro, Bruker Daltonics), which was coupled online to a nanoElute 
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nanoflow liquid chromatography system (Bruker Daltonics) via a CaptiveSpray nano-electrospray ion source. 

Peptides (corresponding to 200 ng) were separated on a reversed-phase C18 column (25 cm x 75 µm i.d., 1.6 

µm, IonOpticks, Australia). Mobile phase A was water containing 0.1% (v/v) formic acid, and mobile phase 

B acetonitrile containing 0.1% (v/v) formic acid. Peptides were separated running a gradient of 2–37% mobile 

phase B over 100 min at a constant flow rate of 400 nL/min. Column temperature was controlled at 50°C. MS 

analysis of eluting peptides was performed in diaPASEF mode. For diaPASEF, we adapted the instrument 

firmware to perform data-independent isolation of multiple precursor windows within a single TIMS 

separation (100 ms). We used a method with two windows in each 100 ms diaPASEF scan. Sixteen of these 

scans covered the diagonal scan line for doubly charged and triply charged peptides in the m/z – ion mobility 

plane with narrow 25 m/z precursor windows resulting in a total cycle time of 1.6 s.  

 

BoxCar DIA HEK data 

Cell Culture and MS Sample preparation. HEK293 cells were grown in DMEM supplemented with penicillin, 

streptomycin and 10% FCS. Cells were washed twice with ice-cold PBS, before scraping in PBS and 

centrifuged at 300 x g for 6 mins at 4°C. Supernatant was aspirated and the pellet lysed in 2.5 % SDS buffered 

with 50 mM Tris pH 8.1, and heated to 95C for 5 minutes, prior to probe sonication. The BCA assay was used 

to quantify the protein content of centrifuge-clarified lysates prior to precipitation with 5 volumes of acetone. 

Pellets were resuspended in 50 mM Tris pH 8.1 containing 8 M urea, reduced with 1 mM DTT and alkylated 

with 5 mM IAA prior to initiation of digestion overnight with LysC at an enzyme to protein ratio of 1:100. 

The digest mixture was diluted 4-fold, and trypsin was added at an enzyme to protein ratio of 1:100 for 6 

hours, followed by an additional aliquot of trypsin overnight. Digestion was stopped by acidification to 1% 

TFA, placed on ice for 5 minutes and centrifuged to remove insoluble material. Peptides were desalted with a 

mixed-mode SPE cartridges (Strata-XC, Phenomenex), activated with 100% methanol, conditioned with 80% 

Acetonitrile, 0.1% TFA and equilibrated with 0.2% TFA, which was followed by sample loading, washing 

with 99.9% isopropanol 0.1% TFA, washing twice with 0.2% TFA, and washing once with 0.1% formic acid, 

before elution with 60% acetonitrile 0.5% ammonium hydroxide. Eluate was flash frozen and dried by 

centrifugal evaporation. 

 

Offline peptide fractionation. Peptides were resuspended in buffer A (10 mM ammonium bicarbonate) and 

injected onto a 4.6 x 250 mm 3.5μm Zorbax 300 Extend-C18 column. Peptides were separated on a non-linear 

gradient exactly as described (Mertins et al., 2018, Nature protocols), using the following composition of 

buffer B (10 mM ammonium bicarbonate, 90 % acetonitrile). Peptide fractions were frozen at -80 °C before 

centrifugal evaporation. Peptides were resuspended in 1% TFA, and concatenated at by combining every 24th 

fraction for the library, or every 8th fraction for the fractionated BoxCar DIA runs, using fractions 13 – 90.  
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Concatenated or non-fractionated samples were desalted with SEP-PAK tC18 SPE cartridges (Waters), 

activated with 100 % methanol, conditioned with 80 % acetonitrile, 0.1% TFA, and equilibrated with 0.2 % 

TFA. Following sample loading, cartridges were wash with 0.5, 1, and 3 cartridge volumes of 0.2 % TFA, and 

eluted with 1 volume of 80% acetonitrile, 0.1 % TFA, then frozen before drying in a centrifugal evaporator. 

 

1ug of peptide were loaded onto an Aurora 25cm x 75µm ID, 1.6µm C18 column (Ionopticks) maintained at 

40°C. Peptides were separated with an EASY-nLC 1200 system at a flow rate of 300 nl/min using a binary 

buffer system of 0.1% formic acid (Buffer A) and 80% acetonitrile with 0.1% formic acid (Buffer B), in a 

two-step gradient from 3-27% B in 105 min and from 27-40 % B in 15 min. All scans were recorded in the 

Orbitrap of a Fusion Lumos instrument running Tune version 3.3, equipped with a nanoflex ESI source, 

operated at 1.6 kV, and the RF lens set to 30%. The scan sequence was initiated with MS1 scans from 350-

1650 m/z recorded at 120,000 resolution, with an AGC target of 250%, and maximum injection time of 246 

ms. The mass range was divided into 24 segments of variable width, with 3 BoxCar scans (multiplexed 

targeted SIM scan) isolating 8 segments per scan, comprising every third segment. The segments used were 

identical to those in the MS2 scans, retaining a 1 m/z overlap between boxes in adjacent scans. The normalized 

AGC target was 200% per segment, with a maximum injection time of 246 ms. BoxCar scans were also 

recorded at a resolution of 120,000. This was followed by 24 MS2 scans from 200 – 2000 m/z with windows 

as previously described (Bruderer et al., 2017 MCP). Fragmentation was induced with HCD using stepped 

collision energy of 22, 27, and 32% for the window center. Each MS2 scan was recorded at a resolution of 

30,000, and an AGC target of 1000 % with a maximum injection time of 60 ms. 

Data downloads 

In addition to the data measured for this publication, we downloaded the following publicly available datasets. 

The four-species mixture dataset34 containing H. sapiens, C. elegans. S. cerevisiae and E. coli with ratios of 

0%, 10%, 20% and 30%, respectively, between replicate groups was downloaded from ProteomeXchange 

(PXD005573). SCIEX TripleTOF 6600 three species benchmark data2 was obtained from ProteomeXchange 

(PXD002952).  The HepG2 RNA-seq data is part of the ENCODE dataset47 and was downloaded from SRA 

(SRP014320). The HEK RNA-seq data is part of the Cell Atlas dataset48 and was downloaded from SRA 

(SRP017465). 

 

Data analysis 

In all MaxQuant analyses for generating libraries and for analyzing DIA samples (MaxDIA) version 2.0.0 was 

used and for all parameters the default values were used unless stated otherwise. Searches were performed 
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with the following FASTA files from UniProt: UP000005640_9606 (H. sapiens), UP000007305_4577 (Z. 

mays), UP000002311_559292 (S. cerevisiae), UP000000625_83333 (E. coli), UP000001940 (C. elegans). 

Methionine oxidation and protein N-terminal acetylation were used as variable modifications in all searches, 

as is default in MaxQuant. 

 

Comparing number of proteins between datasets. Proteins are assembled into protein groups for identification 

to account for the redundancy of protein sequences with regards to the peptide evidence distinguishing them. 

This works in MaxDIA in exactly the same way as in the standard DDA usage of MaxQuant. These protein 

groups are dataset dependent and hence comparisons between two protein groups tables, for instance in Venn 

diagrams, or between a protein groups table and RNA-seq data are nontrivial. Here, we follow the route of 

mapping all protein identifiers in a protein group to Entrez gene identifiers49. In the vast majority of cases, 

protein groups map to single gene identifiers. For cases, in which they map to more than one, both gene 

identifiers are taken into the set. For counting protein group identifications, we always remove protein groups 

that are flagged as ‘reverse’ or ‘only identified by site’. For human datasets, we removed protein groups 

denoted as ‘potential contaminant’ only if they are of non-human origin and kept human proteins, which 

consist mostly of human keratins. For the dataset containing bovine plasma the proteins in the standard 

MaxQuant contaminant list of bovine origin were not removed. 

 

FDR curves. For estimating external FDR, we used a combination of human and maize libraries from 

reference34 or of human and maize predicted libraries in discovery mode on the human HepG2 DIA samples. 

For analyzing library-to-DIA-sample matches and peptide identifications in Fig. 4, we do not apply a protein 

level FDR and scan through the library-to-DIA-sample FDR. It is crucial to take this approach, in particular 

when comparing numbers of identifications with other software, since when applying protein-level FDR in 

MaxQuant, peptides which are not mapping to a protein identified at the specified protein FDR are discarded, 

unlike in most other software packages. For obtaining the protein-level FDR curves in Fig.4 we applied a 

library-to-DIA-sample match FDR of 1%. Peptides that are shared between human and maize proteins were 

discarded.   

 

RNA-seq data analysis. Raw reads were filtered using trimmomatic50 (version 0.36) using default parameters 

for paired-end data. Filtered reads were mapped to the human reference genome GRCh38 (Ensemble release 

100) using STAR51 aligner (version 2.5.3a). Further processing – sorting, converting from SAM to BAM 

format and indexing – was done using SAMtools52 (version 1.6). Gene expression quantification (RPKM) for 

protein-coding genes was performed in Perseus53 (version 1.6.14.0). 
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Spectronaut analysis. Raw MS data were processed using Spectronaut version 13.10.191212 using default 

settings, using a spectral library generated by searching using MaxQuant version 1.6.10.43. 

 

Software development, requirements, availability and usage  

MaxDIA has been developed in conjunction with MaxQuant in C#, runs on Windows and Linux operating 

systems and requires .NET Core 2.1. In addition, .NET Framework 4.7.2 has to be installed on Windows. The 

graphical user interface version is currently restricted to Windows. A platform-neutral command line version 

is available. MaxQuant is efficiently running in parallel on arbitrarily many CPUs on single-node platforms. 

Having 4Gb of memory per parallel running thread is recommended. Disk space should be at least twice the 

space that is used by the raw data. MaxQuant is freeware and the code is partially open and available at 

https://github.com/JurgenCox/compbio-base. MaxQuant including MaxDIA can be downloaded from 

https://www.maxquant.org/. MaxDIA is included in the standard MaxQuant release from version 2.0.0 

onward. (MaxQuant 2.0.0 is included in the PRIDE submission for the reviewers.) How to use MaxDIA in 

library or discovery mode is described in the accompanying Supplementary Notes document. It also contains 

a list of all user-definable parameters with a description of their meaning. 

 

PRIDE support 

We support complete submissions to the PRoteomics IDEntifications (PRIDE) database28 for the DIA 

identification results. We extended the mzTab format29 to cover DIA data sets. For this purpose, new 

controlled vocabulary terms were introduced along with additional external reference files. These external 

reference files contain DIA library matches with mass, intensity and annotation information in a spectral 

library format (msp-format). MaxQuant will generate a new output folder called ‘combined\msp’ into which 

these results are written. A user must provide this folder in addition to raw and mzTab files during submission 

to PRIDE. More details on a complete PRIDE submission are provided in the Supplementary Notes. This is 

the first instance of complete PRIDE submissions for DIA data sets. 

 

Data availability  

The MS proteomics data have been deposited to the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository with the dataset identifiers 

PXD022582 (DDA data, login/password for review: reviewer_pxd022582@ebi.ac.uk / oKBHzhLq) and 

PXD022589 (DIA data, containing also MaxQuant version 2.0.0, login/password for review: 

reviewer_pxd022589@ebi.ac.uk / yui5MuP8). 
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FIGURE LEGENDS 

Fig. 1: Overview of the MaxDIA workflow. MaxDIA can be operated in library and discovery mode.  Many 

concepts and algorithms, for instance for protein quantification, are re-used from the conventional MaxQuant 

workflow for DDA data and have been further developed for DIA. This results in an end-to-end DIA software 

that contains many established MaxQuant concepts, like label-free quantification with MaxLFQ or iBAQ 

quantification. 

 

Fig. 2: 3D/4D feature detection of precursors and fragments.  a, Visualization of precursor and fragments 

of a peptide measured on an Orbitrap. The raw data can be visualized together with the peak detection results 

as heat maps and 3D models for precursor and fragment data in the graphical user interface of MaxQuant. b, 

Two peptides with nearly equal mass, both with charge 2 and having very similar retention times are resolved 

by ion mobility on a timsTOF Pro mass spectrometer. A heat map visualizes intensities as a function of 

retention time and collision cross section for the precursor isotope patterns. The two respective MS/MS spectra 

of fragments assigned to the precursors are shown.   

 

Fig. 3: Performance evaluation. 27 technical replicates of HepG2 cell lysate were analyzed on an Orbitrap 

mass spectrometer (see online Methods). a, Number of identified protein groups with 1% FDR on protein and 

peptide level, and number of peptides at 1% library-to-DIA-sample FDR obtained with MaxDIA and 

Spectronaut. b, Histograms of peptide lengths identified with MaxDIA (blue) and in Spectronaut (red). c, 

Number of proteins with at most x out of 27 valid values for Spectronaut (red), MaxDIA with MaxLFQ 

minimum ratio count = 1 (blue, dashed) and = 2 (blue, solid). Multiple curves for the two MaxQuant seies of 

curves correspond to seven different choices for the transfer q-value (0.01, 0.02, 0.05, 0.1, 0.2 and 0.5). d, 

Histograms of coefficients of variation for analyses with default settings in MaxDIA (blue) and in Spectronaut 

(red). e, Log-log scatter plot of LFQ intensities between two representative replicates obtained with 

MaxQuant. The two replicates were chosen to have the median Pearson correlation of all pair-wise replicate 

comparisons. f, Same as in panel f for Spectronaut intensities. Similarly, the two replicates were chosen to 

represent the median Pearson correlation coefficient of all pair-wise comparisons. g, Heat map with all pair-

wise Pearson correlations between the 27 replicates for MaxDIA (upper triangle) and Spectronaut (lower 

traingle). The two values corresponding to the comparisons in panels e and f are marked with red squares. h, 

Log-log scatterplot of iBAQ protein intensities from MaxDIA against Spectronaut protein intsnsities. i, Log-

log scatterplot of MaxDIA iBAQ values averaged over the replicates against RPKM values from RNA-seq 

data. j, Same as panel i with protein intensities from Spectronaut.  
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Fig. 4: Internal and external FDR. a, Number of identifications (blue: matches, green: peptides, red: protein 

groups) as a function of estimated FDR. The FDR is once estimated with the ‘internal’ target-decoy method 

implemented in MaxQuant (solid lines) and once with the ‘external’ method using mixing maize and human 

samples for generating the library and using only human sample in the DIA runs (dashed lines). b, Same as in 

panel a but using in-silico predicted libraries generated using DeepMass:Prism15 c, Same as panel a but using 

the raw score instead of the machine learning-derived score. d, Same as panel b but using the raw score instead 

of the machine learning-derived score. 

 

Fig. 5: MaxLFQ for DIA. a, Stacked inter-quartile rages of protein ratio distributions in the small-ratio four-

species dataset from Bruderer et al.34 using different versions of MaxLFQ for DIA and compared to the results 

from this publication. b, Quantification of a three-species benchmark mixture measured on a SCIEX 

TripleTOF 6600 instrument mixing proteomes from three species in defined ratio2 with MaxLFQ for DIA. 

The accompanying DDA library was used. c, Same as b, but analyzed with MaxDIA in discovery mode. d, 

Quantification of a three-species benchmark mixture measured on a Bruker timsTOF Pro instrument mixing 

proteomes from three species in defined ratio using a DDA library. e, Same as d, but analyzed in discovery 

mode. 

 

Fig. 6: BoxCar and fractionated DIA. a, Schedule of libraries and DIA samples. Three different library 

approaches, single-shot, deep fractionated and discovery mode library were compared to single-shot deep 

fractionated DIA samples. b, MaxLFQ quantification between three replicates of fractionated BoxCar DIA 

samples analyzed in discovery DIA mode. All pair-wise Pearson correlations are above 0.99. c, Venn diagram-

like comparison represented as bar plot between RNA-seq data of HEK cells and three different library 

methods applied to the fractionated DIA samples. All data has been mapped to gene identifiers d, Histogram 

of protein identifications mapped to gene identifiers sorted into bins according to log2 RPKM values of the 

RNA-seq data. 
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2.1.2 MaxQuant goes Linux

MaxQuant has been successfully used to analyze proteomic data with a broad

distribution of experimental designs for more than a decade[3, 150]. The original

version of MaxQuant was restricted to Microsoft Windows Operation System,

which was also dictated by vendor-provided raw data access libraries. Taking into

account that Linux is the most common choice as a high-performance computing

environment, this restriction becomes problematic for large scale proteomics

projects. This manuscript represents a joint effort of our laboratory to restructure

the MaxQuant codebase and make it truly cross-platform[157].

I contributed to this manuscript by developing the codebase and conducting

benchmark runs to check the reproducibility of results and performance.

Pavel Sinitcyn, Shivani Tiwary, Jan Rudolph, Petra Gutenbrunner,

Christoph Wichmann, Şule Yılmaz, Hamid Hamzeiy, Favio Salinas, Jürgen Cox

MaxQuant goes Linux
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401

correspondence

MaxQuant goes Linux
To the Editor: We report a Linux version 
of MaxQuant1 (http://www.biochem.
mpg.de/5111795/maxquant), our popular 
software platform for the analysis of shotgun 
proteomics data.

One of our main intentions in developing 
MaxQuant was to ‘take the pain out of ’ 
quantifying large collections of protein 
profiles2. However, unlike, for instance, 
the Trans-Proteomic Pipeline3, the original 
version of MaxQuant could be run only on 
Microsoft Windows, and thus its use was 
restricted in high-performance computing 
environments, which very rarely use 
Windows as an operating system. When 
we began developing MaxQuant, Windows 
was the only operating system supported 
by vendor-provided raw data access 
libraries. Therefore, we wrote MaxQuant 
in the C# programming language on top 
of the Windows-only .NET framework. 
Windows support for cloud platforms is 
more expensive, and the operating system 
is harder to use and less scalable compared 
with Linux.

We recently carried out a major 
restructuring of the MaxQuant codebase, 
and we made it compatible with Mono 
(https://www.mono-project.com/), an 
alternative cross-platform implementation 
of the .NET framework. Furthermore, we 
now provide an entry point to MaxQuant 
from the command line without the 
need to start its graphical user interface, 
which allows execution from scripts 
or other processing tools. Meanwhile, 
Thermo Fisher Scientific has released 
its platform-independent and Mono-
compatible implementation of its raw data 
access library (http://planetorbitrap.com/
rawfilereader), and hopefully more vendors 
will follow soon. Together, this leads to a 
situation in which large-scale computing of 
proteomics data with MaxQuant becomes 
feasible on all common platforms.

When we parallelized the MaxQuant 
workflow over only a few central processing 
unit (CPU) cores, we hardly noticed 
a difference in performance between 
Linux and Windows (Fig. 1). However, 
in benchmarking of a highly parallelized 

MaxQuant run on 120 logical cores, we 
observed that the Linux version showed 
highly superior parallelization performance, 
with speed 64% faster than that observed 
under a Windows server operating system 
using identical hardware. MaxQuant uses 
operating system processes, rather than the 
intrinsic multi-threading mechanism of C#, 
to realize parallel execution, and it manages 
the load-balancing of an arbitrarily large set 
of raw data files over a specified number of 
processors by itself. We hypothesize that this 
allows Linux to optimize parallel execution 
to the high extent that we observed. A larger 
benchmark study is under way, in which 
we will investigate the dependence of the 
increased speed on hardware such  
as, for instance, the type of CPU and  
storage systems.

MaxQuant has already been adapted 
in several forms for cloud and high-
performance computing applications,  
as described, for instance, by  
Judson et al.4 and on the Chorus platform 

(https://chorusproject.org). We expect that 
the number of applications will increase 
with our Linux-compatible MaxQuant 
version. We envision that proteomics 
core facilities, for instance, will benefit 
from the combination of command-line 
access and Linux compatibility, which 
enables standardized high-throughput 
data analysis. The MaxQuant code base is 
identical for Windows and for Linux; thus 
there is only a single distributable running 
on both operating systems, which can be 
downloaded from http://www.maxquant.
org (version 1.6.1.0). MaxQuant is freeware, 
and contributions to new functionality 
are collaboration-based. The code of open 
source parts is available at https://github.
com/JurgenCox/compbio-base. ❐
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system. We used identical hardware in both 
cases: four Intel Xeon E7-4870 CPUs and 256 
GB of DDR3 RAM. The total running times are 
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of time needed to complete the relevant process 
in Linux as a percentage of the total time required 
for the same process in Windows.
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2.1.3 Visualization of LC-MS/MS proteomics data in

MaxQuant

Modern shotgun proteomics data are highly multidimensional and complex,

compare to NGS data. A typical mass-spectrometry experiment consists of a

minimum of three dimensions - retention time, mass-to-charge, and intensity.

Additionally, there are spectra of peptide fragments on MS2 that were acquired

from specific mass and time windows. Because of such complexity, it is often

crucial to verify the technical quality of chromatography, a mass analyzer, and

software performance by directly visualizing data.

Additionally, to the analysis of the raw data, MaxQuant allows visualizing raw

files as well as identification and quantification results from MaxQuant[158].

My contribution to this paper was to develop and test the visualization features

and to edit the manuscript.

Stefka Tyanova, Tikira Temu, Arthur Carlson, Pavel Sinitcyn, Matthias

Mann, Juergen Cox
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Modern software platforms enable the analysis of shotgun proteomics data in an automated
fashion resulting in high quality identification and quantification results. Additional under-
standing of the underlying data can be gained with the help of advanced visualization tools that
allow for easy navigation through large LC-MS/MS datasets potentially consisting of terabytes
of raw data. The updated MaxQuant version has a map navigation component that steers the
users through mass and retention time-dependent mass spectrometric signals. It can be used to
monitor a peptide feature used in label-free quantification over many LC-MS runs and visualize
it with advanced 3D graphic models. An expert annotation system aids the interpretation of the
MS/MS spectra used for the identification of these peptide features.

Keywords:

Bioinformatics / Mass spectrometry / LC-MS/MS / Visualization

MaxQuant is a widely used software platform for the anal-
ysis of shotgun proteomics data [1, 2]. From version 1.5 on,
MaxQuant has been distributed with a unified data explo-
ration component, termed the Viewer, which enables in-
tegrated visual inspection of the mass spectrometric raw
data together with results from the identification and quan-
tification pipeline. It provides navigation through arbitrar-
ily large datasets by efficient indexing of the underlying
data structures and on-demand loading of the required
raw data. MaxQuant, including the integrated Viewer de-
scribed here, is programmed in C# using the .NET frame-
work 4.5. MaxQuant uses the Windows Ribbon Framework
to achieve easy navigation and quick access to the graph-
ical user interface. It is freely available and can be down-
loaded from www.maxquant.org. MaxQuant can read raw
data in native vendor formats from Thermo Fisher Scien-
tific, Bruker Daltonics, and AB/Sciex as well as the open
mzML format. Concise information on “Getting started,”
including software requirements, trouble shooting, and
a test dataset, is available online (http://141.61.102.17/
maxquant_doku/doku.php?id=maxquant:viewer).

Correspondence: Dr. Juergen Cox, Max-Planck-Institute of Bio-
chemistry, Computational Systems Biochemistry, Am Klopfer-
spitz 18, 82152 Martinsried, Germany
E-mail: cox@biochem.mpg.de
Fax: +49-89-8578-2219

Figure 1A displays the fully redesigned graphical user in-
terface of MaxQuant. Organization of main components in
tabs allows for easy navigation in the main level control of
MaxQuant. Here, we are interested in the “Viewer” tab. Be-
low the tab selector is the command ribbon, which hosts
multiple buttons and other control elements acting on the
main visual components beneath it. The main display is sub-
divided into four parts. The upper left component is the map
view, which displays the mass spectrometric color-coded in-
tensities, typically at the MS1 level, in the m/z-retention time
plane. Peak boundaries are displayed in different coloring
schemes, which indicate the grouping of peaks into isotope
patterns or of isotope patterns into labeling pairs or triplets.
For instance, the peak shapes in Fig. 1A are colored accord-
ing to the isotope pattern to which they belong. The blue
indicator rectangle encloses a peptide whose 3D peak bound-
aries are shown in blue. There are eight isotopic peaks found
for this peptide in this label-free sample. The flat red rect-
angle indicates the region in the m/z-retention time plane
in which ions were collected for the fragmentation spec-
trum that was recorded in order to identify the peptide col-
ored in blue. By visual inspection one can conclude that no
major cofragmentation of other peptide species is expected
in this case. The proportion of cofragmented ions is also

Colour Online: See the article online to view Figs. 1 and 2 in colour.

C© 2015 The Authors. Proteomics Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com
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Figure 1. Overview of the MaxQuant Viewer tab. (A) Upon selection of a feature of interest from the evidence table, the MS intensities
of the feature (color coded by isotope pattern in blue) are displayed in the m/z-retention time map as indicated by the blue rectangle.
Underneath the map the MS mode of the feature view is shown. Various modes of the feature view are represented: (B) MS/MS of the
selected feature with advanced annotation enabled and display of the peptide sequence; (C) chromatogram with mass traces enabled;
(D) 3D view of the isotope peaks.

C© 2015 The Authors. Proteomics Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com
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Figure 2. Multi-map view. A view of the same feature in different experiments: three mass resolutions with three replicates for each
resolution are shown: (A) without retention time alignment and (B) with alignment.

automatically quantified in MaxQuant for every fragmenta-
tion event [3]. The map view can be applied as well to MS/MS
data that is continuous in time, as is produced, for instance,
during data independent acquisition. For “all ion fragmen-
tation” data [4] MaxQuant can determine 3D peaks as well,
which will be displayed in the Viewer in the same way as MS1
level peaks. The map view is fast and responsive because it
reads the minimal amount of data from the raw file that is
needed for determining the colors of the pixels in the specific
zoom level.

In the lower left corner is a subordinate tab document
that hosts several detailed displays relating to the content in
the current zoom window of the map display. In Fig. 1A
the MS spectrum display is visible, which shows the mass
spectrum at the horizontal cross-section as indicated by the
horizontal red line in the map view. The display can rapidly
be moved through consecutive scans with the help of the up-
down arrow keys or positioned on a specific retention time by
clicking on the left border of the map display. This is useful,
for instance, for inspecting the isotopic intensity distribution
at the maximum of the elution profile of a peptide.

Another display item is the annotated MS/MS spectrum
shown in Fig. 1B that identifies the peptide whose MS1 fea-
tures are displayed in Fig. 1A. Annotations can include only
the main series fragments plus water and ammonia losses, or
alternatively an extensive set of peak annotations generated by
an expert system [5], which includes internal fragments and a

more extensive set of potential neutral losses. The annotated
peptide sequence is displayed as well, indicating which main
series peaks are identified along the sequence.

The tab “Chromatogram” (Fig. 1C) shows either the time
dependence of the total ion current in the given retention
time zoom window or similarly multiple intensity profiles in
selected mass channels. For that purpose the m/z values are
selected in the lower border of the map view. They can also
be set automatically to all m/z values occurring in an isotope
pattern or in a label pair or triplet, which is particularly useful
for inspection of retention time shifts between different la-
beled versions of a peptide, which can be an issue of concern
for particular labeling techniques [6].

Figure 1D shows the 3D visualization of the m/z-retention
time area that is indicated by the blue rectangle in Fig. 1A.
The 3D rendering is done with the 3D graphics capabilities
of Windows Presentation Foundation, which is part of the
.NET Framework 4.5 and therefore readily available on ev-
ery windows computer. For comparison, other displays in
this part of the software include an isotope peak simulation
display where for a peptide molecule with known elemental
composition the intensity profile is calculated with a desired
resolution for the purpose of comparison to measured iso-
topic envelopes. Also the retention time calibration curves
resulting from the nonlinear retention time alignment algo-
rithm in MaxQuant can be displayed here at the current zoom
levels.

C© 2015 The Authors. Proteomics Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. www.proteomics-journal.com
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In the upper right area all MaxQuant output tables can
be browsed. The information content is the same as in the
tab-separated output tables that can be found in the folder
“combined\txt” in the processed MaxQuant project. These
tables contain all results regarding identification and quan-
tification of peptides and proteins where each table corre-
sponds to a different organization level of the data. The most
important of these tables are the protein groups, peptides,
modification-specific peptides, evidence, and MS/MS tables.
All these tables are interconnected among each other as well
as with the displays on the left side. For instance all MS/MS
spectra identifying a particular protein of interest can be se-
lected in the corresponding table. The annotated MS/MS
spectrum as well as the surroundings of the precursor in the
MS1 plane are continuously updated when selecting a row in
the MS/MS table. Publication-ready annotated MS/MS spec-
tra can be exported in vector graphics format for any subset
of spectra of interest by a single button click.

The lower right area of the main display contains the pro-
tein sequence view. For each protein group, sequences of all
members are displayed in which the identified peptides are
indicated and color-coded according to their uniqueness re-
garding their occurrence in the protein database. Additional
annotation tracks can be displayed along the sequence. As
a particularly interesting example, one can display here the
PTMs identified in the MaxQuant project in one track and
show in another the already known PTMs from a central
repository, such as PhosphoSitePlus [7] or MaxQB [8]. A mul-
titude of different sequence-specific annotations as derived
from UniProt [9] as well as the Pfam domain structure [10]
can be displayed as tracks.

Finally, a very useful feature is the multi-map view (Fig. 2).
Here one can monitor a selection region in the m/z-retention
time plane across many LC-MS runs. In Fig. 2A this can be
seen for a particular peak that is viewed over nine different
runs. These runs are triplicate groups of measurements of the
same biological sample at three different mass resolutions. It
is apparent that the retention time of the peak center varies
appreciably between the runs, and in the central panel the
peak of interest is not even present in the view area. The
main map as well as the small maps in the multi-map view
can also be displayed with the recalibrated retention time
as the vertical axis that is shown in Fig. 2B. Here, the peak
occurs at the same retention time in all nine samples. The
multi-map view can verify that a particular feature used by
the MaxLFQ algorithm for label-free quantification [11] is
well aligned across the LC-MS runs involved and that it fulfils
the criteria for the feature matching algorithm.

In summary, the Viewer component of MaxQuant has
been thoroughly updated and now fulfils the demands of
rich content visualization of high resolution proteomics data.

The authors have declared no conflict of interest.
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2.1.4 The Perseus computational platform for

comprehensive analysis of (prote)-omics data

One of the biggest challenges in proteomics is to extract biological meaning out

of peptide/protein/PTMs quantification. The Perseus platform provides a variety

of tools for data processing, statistical analysis, and visualization for omics data,

including proteomics and genomics data[159].

My contribution to this paper was to develop the ability to analyze genomics

data and to integrate it with other omics data.
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a main bottleneck in proteomics is the downstream 
biological analysis of highly multivariate quantitative 
protein abundance data generated using mass-
spectrometry-based analysis. We developed the perseus 
software platform (http://www.perseus-framework.
org) to support biological and biomedical researchers 
in interpreting protein quantification, interaction 
and post-translational modification data. perseus 
contains a comprehensive portfolio of statistical tools 
for high-dimensional omics data analysis covering 
normalization, pattern recognition, time-series 
analysis, cross-omics comparisons and multiple-
hypothesis testing. a machine learning module  
supports the classification and validation of patient 
groups for diagnosis and prognosis, and it also 
detects predictive protein signatures. central to 
perseus is a user-friendly, interactive workflow 
environment that provides complete documentation 
of computational methods used in a publication. 
all activities in perseus are realized as plugins, and 
users can extend the software by programming their 
own, which can be shared through a plugin store. We 
anticipate that perseus’s arsenal of algorithms and 
its intuitive usability will empower interdisciplinary 
analysis of complex large data sets. 

A decade ago, proteomics projects were labor intensive 
and cumbersome, and high-quality results required 
semimanual analysis of spectra for identification 
and quantification. Today, mass-spectrometry(MS)-
based shotgun proteomics is reaching a level of matu-
rity that makes it a powerful and broadly applicable 
technology for researchers in biology and biomedical  
sciences1,2. Consistent automatic processing of spectra 
and the identification of peptides, proteins and post-
translational modifications (PTMs) with the help of 
search engines3–7 and reliable workflows have become 

standard computational tasks for which satisfactory 
solutions exist for single studies as well as community-
wide data reanalysis8–10. Sophisticated computational 
proteomics platforms enable the quantification of pro-
teins and PTMs over many samples in a large variety of 
labeling or label-free formats11. Public repositories for 
the storage and dissemination of MS-based proteomics 
data exist in practical forms12,13. Complete proteome 
quantification is possible in yeast14 under many dif-
ferent conditions or stimuli with modest measurement 
effort15. Starting with a cohort of human samples, pro-
tein expression matrices with sample-wise ratios or 
relative abundances can be readily obtained for more 
than 10,000 proteins16–19.

These technological advances have shifted the bot-
tleneck to the biological interpretation of quantitative 
abundance and PTM data and to the translation of 
high-dimensional molecular data into relevant find-
ings within the domain of a particular biological or 
medical investigator. Many potentially important 
findings are not currently extracted from proteomics 
data simply because the computational methods and 
algorithms that would highlight them are not in the 
hands of the researcher with the necessary domain 
knowledge to appreciate the meaning of the findings. 
There are often barriers between informatics and bio-
logical researchers, which need to be bridged in order 
to translate omics technologies and data to valuable 
biological or medical discoveries.

Here, we address this void by creating a computa-
tional platform that fulfils two potentially conflict-
ing objectives: (1) all methods should be statistically 
sound, powerful and comprehensive; (2) the platform 
should be intuitive and easy to use for the domain 
expert in a biomedical discipline who is not a com-
putational expert. To reach these goals we developed 

the perseus computational platform for 
comprehensive analysis of (prote)omics data
Stefka Tyanova1, Tikira Temu1, Pavel Sinitcyn1, Arthur Carlson1, Marco Y Hein2,  
Tamar Geiger3, Matthias Mann4 & Jürgen Cox1

1Computational Systems Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany. 2Cellular and Molecular Pharmacology, 
University of California, San Francisco, San Francisco, California, USA. 3Human Molecular Genetics and Biochemistry, Sackler Faculty of 
Medicine, Tel Aviv University, Tel Aviv, Israel. 4Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, 
Germany. Correspondence should be addressed to J.C. (cox@biochem.mpg.de).
Received 28 JanuaRy; accepted 10 May; published online 27 June 2016; doi:10.1038/nMeth.3901

np
g

©
 2

01
6 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.
np

g
©

 2
01
6 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



86 CHAPTER 2. LIST OF PUBLICATIONS

perspective

732  |  VOL.13  NO.9  |  SEPTEMBER 2016  |  nature methods

the Perseus platform in close collaboration with biologists, with 
whom we analyzed projects involving multiple, diverse and 
distinct data types and experimental approaches. Experienced 
Perseus users can perform essentially all the computational tasks 
alone, even with little or no formal bioinformatic training. Users 
can also involve programmers and bioinformatics specialists to 
extend the functionality of Perseus with plugins that add to the 
Perseus workflow as custom activities. Here we describe the func-
tionalities available in version 1.5.5.0 of Perseus.

a comprehensive workflow-based data analysis platform
Downstream analysis of proteomic data is a multifaceted and 
demanding endeavor that integrates many aspects of bioinfor-
matics, statistics and machine learning. It is common practice 
for biological researchers to involve bioinformaticians to help 
with various analytical problems. Often these efforts result in 
multiple small scripts that are tedious to maintain and scale and 
that require the help of the original developer to be reused or 
stitched together. This approach is bound to turn downstream 
data analysis into a major bottleneck for scientific projects and 
discoveries. Furthermore, the results may be of questionable 
validity when there is no clear documentation and transpar-
ency about the methods and scripts employed. We thus set out 
to develop the Perseus platform as a holistic software platform 
that allows continuous expansion of scalable analytical tools, 
their smooth integration and reusability while providing the user 
with explicit documentation of the analysis steps and param-
eters. Details on the implementation and download of Perseus 
are provided in Box 1.

Perseus offers a wide variety of algorithmic activities that cover 
topics ranging from data normalization through exploratory 
multivariate data analysis to integration with other omics levels 
(Fig. 1). In what follows, we highlight several computational and 
statistical tools in Perseus. Many activities in Perseus produce 

interactive graphical output for the visualization of data analysis 
results, which scale easily to very large sets of input data and 
therefore allow for thorough inspection by the user even for large-
scale experiments with complex experimental designs and many 
measured variables. Any plot can be exported in a number of 
graphical formats and edited in standard vector graphics editors 
upon release of all clipping masks.

The central data type in Perseus is the ‘augmented data matrix’, 
which typically represents expression or abundance values of 
genes or proteins (rows) and biological samples or technical rep-
licates (columns). It is supplemented by additional data contain-
ers for annotation of the rows, columns and cells of the matrix 
(see Box 2). These annotation containers are automatically filled 
by Perseus with gene or protein information derived from the 
publicly available ontologies, pathways and annotation data-
bases. Sample annotations are used in many activities to define 
the study design, such as designating which samples are replicates 
or which belong to different treatments or time points in a time-
series analysis.

The main navigation tool is the workflow panel, which is com-
posed of matrices and activities and which controls the infor-
mation flow in a Perseus session (Supplementary Fig. 1). The 
interactive workflow allows the user to keep track of all steps in 
the analysis and to navigate through data matrices and visuali-
zation components. It facilitates revisiting intermediate steps in 
a complex computational workflow, branching off with alterna-
tive parameter settings or a different combination of activities 
and comparing results of alternative branches to each other. The 
matrix objects move through the workflow and are transformed 
and modified by activities. The workflow itself is a bipartite graph 
in which every matrix is connected via an activity to the next 
matrix. A matrix can have interactive local visualizations attached 
(e.g., plots, histograms and heat maps). Activities can be of a sim-
ple single-input structure or they can receive inputs from several 

 box 1  soFtWaRe iMpleMentation, doWnload and Maintenance 

Perseus is implemented in the C# programming language 
from the .NET Framework 4.5 and runs natively on Windows 
operating systems. Perseus can be downloaded for free from 
http://www.perseus-framework.org under acceptance of our 
freeware license agreement and user account registration. No 
installation is required, and the software can immediately be 
used upon download and decompression of the zipped folder. 
Detailed descriptions of the functions and their parameters 
are available in the online documentation of Perseus, which is 
linked to the download page and can also be directly accessed 
from within the software. Other sources of user support in-
clude the active Perseus Google group (https://groups.google.
com/forum/#!forum/perseus-list) with more than 1,400 users 
(May 2016), and the YouTube videos demonstrating the use of 
the software (https://www.youtube.com/c/MaxQuantChannel). 
Several complete analysis workflows are available on our Doku-
Wiki pages (http://www.coxdocs.org/doku.php?id=perseus:
user:use_cases:start) that contain step-by-step descriptions of 
three standard proteomics project types. Substantial changes 
are usually reflected in major yearly releases; however, we 

recommend updating the annotation files at shorter time 
intervals. Reproducible bugs in the latest available Perseus 
version can be reported via the YouTrack bug-tracking system 
(http://maxquant.myjetbrains.com/youtrack/).

Perseus has been codeveloped with MaxQuant11, which has 
become a comprehensive and widely accepted environment  
for the analysis of MS-based proteomics data and which  
contains further proteomics-specific data visualization tools70. 
As a result, integration between Perseus and MaxQuant is  
excellent, but these environments are independent and can  
be used together with any upstream data analysis tool. 
Most of the data structures and algorithms are programmed 
from scratch, and only a few external libraries are used. An 
advantage of this design choice is that it gives us full control 
over all implementation details and helps improve perform-
ance, which can be significantly faster than the performance 
achieved in other statistical programming environments71. 
Like MaxQuant, Perseus will be continuously maintained and 
developed with the support of long-term funding by the Max 
Planck Society for the Advancement of Science.
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matrices for the purpose of data integration when merging data 
from two or more different omics levels (see Box 3).

A session contains a workflow together with all intermediate 
results and parameter settings for all activities. Session files can be 
saved and reloaded and can also be shared with other researchers 
who can load them into their Perseus instance for collaborative 
data analysis. Furthermore, the workflow and the session serve 
as a complete account of the computational methods used in a 
project, representing an accurate and reproducible description of 
the data analysis for documentation or publication.

plugin architecture
Perseus is not a static and monolithic software tool; rather, it is 
based on a plugin architecture that can be extended by the users 
(Supplementary Fig. 2). Perseus and its plugins are written in the 
C# programming language and adhere to a standardized applica-
tion programming interface (API) that consists of a set of interfaces 
defining the minimum functionality that a plugin must implement. 
The five main interfaces in Perseus (data upload, export, process-
ing, analysis and multimatrix handling) form the foundation of 
the extensible plugin architecture (Supplementary Fig. 2). Plugins 
implementing these interfaces are visually distributed along the 
ribbon control menu of Perseus. The source code of many of the 
plugins is available from our GitHub repository (http://www.
github.com/JurgenCox/perseus-plugins). Using this source code 
as examples and the plugin architecture of Perseus, developers can 
easily expand the current functionalities by programming novel 
independent modules. The compiled Dynamic Link Library (DLL) 
then has to be placed into the main folder of the Perseus installa-
tion, which will completely integrate the DLLs, making them ready 
for use. A tutorial video on how to program plugins is available at 
http://www.youtube.com/watch?v=MhS4UM1CMwU.

The API allows any user to program activity plugins in their 
local development environment independent of the central 
Perseus code repository. We provide a core set of plugins contain-
ing more than 100 activities that are bundled with the standard 
Perseus download and that can also be reused in newly developed 
activities (Supplementary Table 1). For the majority of these  
plugins, the source code is provided via GitHub. Once users  
have programmed a new plugin, they can make it available 
through the Perseus plugin store (http://www.perseus-framework.
org/plugins). As an example, the ‘Proteomic ruler’ package com-
bines convenient functionality for the absolute quantification of  
protein copy numbers per cell from generic label-free shotgun 
proteomics data20.

application highlights
Expression proteomics. Many proteomics projects consist of 
measuring cells or tissues in two or more conditions, in a certain 
number of biological replicates per condition, for instance, using 
relative label-free quantification21 or a common labeled reference 
standard22 for enhancing quantification accuracy. These kinds of 
proteomics data have similarities to transcriptomics microarray 
data, and their analysis can benefit from the wealth of experience 
obtained in more than two decades of transcriptome data analysis 
by a large community. Perseus includes adaptations of some of 
these algorithms to proteomics workflows.

Before proteomics data can be used for the actual data analysis, 
they need to be normalized, filtered and potentially subjected to 
missing-value imputation, for which we provide a multitude of 
options in the standard set of Perseus activities (Supplementary 
Fig. 3). One common task is to determine which proteins are 
significantly changing between conditions. Perseus adapts a par-
ticularly robust method in the ‘two-sample tests’ and ‘multisample 
tests’ activities, which originate from microarray data analysis 
that includes a permutation-based false-discovery rate (FDR) and  
q-value estimation23. This enables reliable estimation of the per-
centage of proteins that are mistakenly indicated as changing.

Another frequent task is to find the main clusters of expression 
patterns in the data and the sets of proteins responsible for the 
formation of these patterns. We provide a hybrid hierarchical k-
means clustering algorithm that creates interactive heatmaps and 
scales to matrices with a large number of rows and/or columns in 
a short computing time. As an alternative to clustering, Perseus 
includes principal-component analysis (PCA) based on singular 
value decomposition24, a form that computationally performs well 
on high-dimensional data. PCA detects the main effects in the data 
and the proteins driving the separation of the proteomic states.

Once an interesting cluster of proteins has been identified, 
enrichment analysis25 of biological processes, complexes or path-
ways is done in a variety of ways, for instance, with the Fisher’s 
exact test checking for contingency between cluster membership  
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Figure 1 | The Perseus data analysis platform. The core data structure of  
Perseus is the data matrix, containing samples in columns and expression  
values (e.g., protein, mRNA) in its cells. Additional information such as  
GO terms, KEGG pathways and other database sources can be added for  
each row entry in the form of annotation columns. Perseus incorporates  
data cleansing and normalization and multiple methods for exploratory  
analysis such as histogram charts, intensity curves and scatterplots.  
Classical expression omics data analysis is supported by robust statistical  
tools including t-tests, PCA, correlation analysis and enrichment analysis.  
Beyond the standard methods, Perseus supports more complex tasks, such  
as supervised learning, for example Support Vector Machines (SVMs) and  
PTM data analysis.Furthermore, other types of omics data such as RNA  
seq data, as well as metadata from external databases such as KEGG and  
UniProt can easily be uploaded and analysed using the data integration  
modules. Min, minimum. Max, maximum. 
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and the property of interest. The FDR is controlled with the 
Benjamini–Hochberg method26. This method elucidates what 
the cluster-member proteins have in common, and it provides 
clues about the functional role of the cluster. Similar enrichment 

functionalities have been developed in the context of genomic 
technologies27, and Perseus adapts these enrichment analyses  
so that they are specifically tailored to the purpose of proteomics.  
In particular, the reference space for enrichments is always 

 box 2  auGMented data MatRix 

The central data format of Perseus is the data matrix, in which 
biological samples are represented as columns, and proteins or 
other molecular species are represented as rows. Perseus distin-
guishes several different types of columns. Upon reading new 
input data, the type of each column must be specified. In case 
the data comes from the MaxQuant environment11, the suit-
able type of most columns of the output tables is automatically 
detected via the column name. The main data are stored in the 
‘main columns’, which typically contain the protein expression 
values that are to be subjected to downstream normalization, 
transformation, etc., and Perseus automatically selects them for 
statistical tests and data visualization. Other numerical values 
that serve as annotations, such as sequence length, number of 
identified peptides or posterior error probabilities, are stored in 
‘numerical columns’. This data can also be explored by standard 
summary statistics and visualization tools, but no statistical 
tests (e.g., for differential expression) are applied to them. Non-
numerical information can be stored as ‘text’ or ‘categorical’ col-
umns. ‘Text’ is suitable for storing protein, RNA and gene names 
and identifiers, and these columns are available as data labels 
in plots. In data integration, this information is interpreted as 
identifiers to match rows of different matrices to each other or to 
an external data source. Categorical columns contain data of an 
enumerable type about each protein, which often signify mem-
bership in biological processes or ontologies. This column type is 
used in enrichment analysis. The column type ‘multi-numerical’ 
can contain multiple numerical values per entry. Most activities 
make a preselection of columns based on the designated type 
for a specific context, so it is most convenient that the column 
types are assigned correctly from the beginning. However, the 
data type can be changed retroactively if necessary.

Several functions in Perseus rely on additional supplementary 
data matrices that contain metainformation about the main data 
matrix (supplementary Fig. 5). Missing values are a common 
problem of large-scale data in general, as some statistical methods 
cannot handle missing information and therefore require ‘imputa-
tion’ before the analysis72,73. Perseus offers several imputation 
techniques, including a method drawing random values from a 
distribution meant to simulate expression below the detection 
limit (supplementary Fig. 3). Upon imputation, a Boolean back-
ground matrix is created (supplementary Fig. 5a), which keeps 
track of which value was measured and which was imputed.  
This allows visualization and filtering of imputed values during 
downstream analysis. Similarly, the user can generate a ‘qual-
ity matrix’, which will be stored in the background as well. The 
‘quality matrix’ contains one corresponding value to each entry in 
the main data matrix and can be used to filter the main matrix 
(supplementary Fig. 5b). For example, a ‘quality matrix’ can be 
generated from the number of peptides used in the quantifica-
tion of each protein in each sample. This can be useful to mask 
all cases where a given protein was quantified with less than 
two peptides in a given sample. The phosphorylation-site table is 
another example in which such filtering is desirable, as sites with 
occupancy errors larger than a fixed threshold can be filtered out 
using a ‘quality matrix’ containing the site-specific errors.

Data that characterizes the samples (i.e., information regard-
ing the experimental design) is added to Perseus via row an-
notations. The groupings used in analysis methods such as t-test 
statistics and machine learning approaches are set as categorical 
row annotations (or numerical ones in case of continuous data,  
such as the time point for time-series data) and are automati-
cally recognized by the software in all suitable procedures.

 box 3  data inteGRation 

One of the most laborious and error-prone steps in data  
analysis is the matching and integration of different data 
types. Through its multiprocessing interface, Perseus offers  
an easy way to combine matrices and to import information 
from external databases. Two matrices can be matched based 
on any identifier that is provided as a column in each of  
them, and the information to be transferred from one matrix 
to the other can be selected as well. Cases in which multiple 
entries from one matrix map to a single entry in the other  
are handled by the software in user-selectable ways; for 
instance, multiple numeric values from multiple rows in one 
matrix can be summarized to a single entry in the other 
matrix. Furthermore, different omics data sets can easily be 
mapped through the prebuilt genome lists that can be loaded 
with a single click.

Interpretation of genome-scale data often incorporates 
functional information such as pathways, cellular function 
and localization as well as structural information. In Perseus 
the user can upload a preprocessed set of annotations from 
UniProt74 and use these in filtering and enrichment analysis of 
the data. Furthermore, PTM-specific annotations such as those 
obtainable from PhosphoSitePlus33 and common kinase motifs 
can be automatically assigned by the software. Integration of 
user-defined curated annotations is supported in Perseus if 
certain simple file format requirements are met. The software 
can read customized annotations from tab-delimited text files, 
in which the first column contains the identifiers that will be 
used for matching the annotations to the main matrix, and the 
header row contains the names of all annotations to be added. 
All further columns contain the customized annotations.
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Figure 2 | Post-translational modifications.  
(a) Annotations from various resources  
including UniProt and PhosphoSitePlus (PSP)  
can be mapped onto each phosphorylation  
site via the protein identifier, the modified  
amino acid and its position. Multiple  
site-specific annotations from UniProt,  
including protein secondary (sec.) structure,  
information as to whether a site is known to be  
biologically important and domain information,   
can easily be imported into Perseus. Orange circle  
illustrates the integration of various databases into  
the PhosphoSite table. (b) Estimation of the number  
of novel phosphorylation sites detected in an  
experiment by Sharma et al.31 as compared to known  
sites stored in public repositories, using  
Perseus-based analysis. (c) A set of short  
sequences surrounding a modification site  
(location “0” in the diagram) can be used to  
generate a sequence logo and scale it by entropy  
in order to identify possible recognition motifs. (d) Comparison of the protein intensity distributions of matched total and phosphotyrosine (pTyr) 
proteomes showing that phosphotyrosines preferentially appear on more abundant proteins31.

appropriately chosen to be the subset of measured proteins. 
Furthermore, proteins that are indistinguishable based on the 
measured peptides are not double counted in enrichment tests 
because the occurrence of multiple alternative identifiers in 
enrichment tests is appropriately handled.

Post-translational modifications. Proteomics software typically 
generates a table for each PTM type of interest, indicating all 
positions on the identified proteins that are likely to be modified 
in at least one of the conditions of a study. In addition to scores 
reflecting the reliability of identification and the confidence in the 
localization of each site in the protein sequence28,29, quantitative 
information is crucial for understanding the functional role of 
the modification sites. Relative quantification in the form of site-
specific ratios or intensity-based quantification is usually required 
for the comparison of phosphorylation in different conditions or 
upon different stimuli. Furthermore, analysis of the proportion 
of modified to total peptides, i.e., site occupancies, is important 
for the elucidation of major regulatory phosphorylation events 
during key cellular processes30,31.

Reformatting tools are provided in Perseus that transform the 
site quantification into a matrix that resembles proteome-expres-
sion data, which retains information about multiple modification 
states of peptides. This matrix can then be analyzed with similar 
methods as introduced in the previous section for expression pro-
teomics, but with some special adaptations. For example, to place 
phosphorylation events in the context of cellular pathways and 
signaling events, enrichment analysis of Kyoto Encyclopedia of 
Genes and Genomes (KEGG) and Gene Ontology (GO)32 terms 
can be employed. Importantly, as proteins are often characterized 
by multiple phosphorylation sites, care should be taken to avoid 
overcounting of protein-derived annotation in PTM-site-based 
analysis (‘protein-relative enrichment’).

Integration of external resources is currently a tedious task 
that requires building access to the databases, parsing the data 
in the correct format and finally matching identifiers to the in-
house data. In Perseus, site-specific annotation, for instance, from 
PhosphoSitePlus33, or sequence-position-specific annotation 

from UniProt are integrated by using an easily operated activity 
designed for that purpose (Fig. 2). This information can be used 
to generate statistics on which sites in the study are already known 
from other publications or which are novel and to import experi-
mentally known kinase–substrate relationships into the matrix. 
Alternatively, kinase motifs are matched to the sequence window 
surrounding the phosphorylation site which, when combined 
with clustering and enrichment analysis, often leads to notewor-
thy conclusions about kinase activity patterns34. Reversible phos-
phorylation is regulated by multiple factors, including increased 
or decreased concentration of kinases and phosphatases, and the 
level of phosphorylation may appear to vary on account of changes 
in the abundance of the modified protein itself. Therefore, Perseus 
enables straightforward overlaying of modification site and pro-
tein abundance to determine the actual quantitative changes in 
phosphorylation on a certain site and their likely origin.

Interaction proteomics. Affinity-enrichment experiments fol-
lowed by MS for determining interaction partners can now be 
performed on a large scale involving more than a thousand bait 
proteins35,36. This works well with intensity-based relative label-
free quantification21, but SILAC- or TMT-based quantification can 
also be used. Typically, analysis of such data requires comparison 
of the quantities of individual proteins in specific samples with 
those in a control group (Fig. 3a). The control may derive from 
cells not expressing a tagged bait protein37 or cells in which the bait 
was knocked down38. Alternatively, all samples in which unrelated 
proteins served as bait can be used as negative controls, which we 
have shown to be the superior control in medium-scale39 and large-
scale data sets35. Perseus allows the streamlined calculation of large 
numbers of tests necessary to derive a list of statistically significant 
outliers specific to each bait, with permutation-based FDR con-
trol for each pair of sample and controls. The resulting network 
of interactions can automatically be formatted to be uploaded to 
external tools like Cytoscape40 for visualization (Fig. 3b).

For some experimental setups it is necessary to control the FDR 
globally instead of on the level of individual samples, for instance, 
when interactions are measured under different conditions  

a

Database intrinsic information

Sam
ple

 1

UniP
ro

tID

Seq
ue

nc
e

Site
 p

os
itio

n

Phosphosite table Databases

UniProt

...

PSP
Sec. structure

Domain

Phosphosite

0 1 2 3 4 5−5 −4 −3 −2 −1

Sharma et al.

Known

38,229
14,724

23,505

Novel
b c d

Protein intensity (log10)

C
ou

nt
s

7 8 9 10 11 12

Total proteome

pTyr proteins

np
g

©
 2

01
6 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.
np

g
©

 2
01
6 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



90 CHAPTER 2. LIST OF PUBLICATIONS

perspective

736  |  VOL.13  NO.9  |  SEPTEMBER 2016  |  nature methods

or over a time course41. To this end, Perseus offers a method to 
combine FDR-based cutoffs for multiple samples (Fig. 3c). This 
method is an advantage over methods such as ANOVA because it 
retains information about the enrichment of each protein in each 
condition (which is lost in ANOVA) while additionally offering 
global-level statistics.

Time-series analysis. Many biological processes are controlled by 
characteristic temporal changes in the concentrations of specific 
biomolecules. For instance, the cell cycle is accompanied by periodic 
changes in mRNA and protein expression42–44. Likewise, the circa-
dian cycle45 involves concerted changes in abundances of proteins, 
protein modifications, mRNAs and metabolites46. Perseus contains 
an FDR-controlled method for detecting expression behavior that 
is statistically significantly following a given temporal model such 
as expression with a given periodicity (Fig. 4). To derive the length 
of the cycle from the data, a Fourier-based periodicity analysis 
can be performed that determines the base frequency of periodic 
expression changes and also allows screening for other possible 
cycle lengths (e.g., harmonics of the base frequency). The analysis  
will assign an amplitude of change and a peaking time to each  
protein. A specialized annotation enrichment analysis designed for 
periodic expression changes can then determine which biological 
processes or pathways are switched on at which points along the 
time axis, detecting clusters of activity in the time dimension. Side-
by-side analysis of transcriptome and proteome reveals the time lag 
between transcription and translation46.

Cross-omics data analysis. Perseus has activities for compar-
ing proteomics data to other omics dimensions, such as mRNA  
levels as measured by RNA-seq47. An importer activity loads  

next-generation sequencing (NGS) short-read information, such 
as that obtained by the Illumina platform, into a Perseus session. 
Reads can be aligned by standard spliced-alignment workflows 
as, for example, those provided by the TopHat48 or STAR49 suites, 
and read-count-based quantification is generated upon upload 
to Perseus. Multiple reference-genome-aligned read files cor-
responding to data from multiple samples can be used simul-
taneously, and a Perseus matrix will be filled with read-count 
information for each gene. The reads can represent RNA-seq or 
ribosome-profiling data50, which are then converted to quanti-
tative expression profiles by, for instance, calculating reads per 
kilobase of transcript per million mapped reads (RPKM) val-
ues51. To investigate the relationship between transcription and 
translation, this matrix can then be matched to another matrix 
containing protein expression values such as iBAQ values, which 
are estimates of absolute protein abundances52,53. This enables 
correlation analysis between the two quantitative omics dimen-
sions (Supplementary Fig. 4), and for this purpose we routinely 
use the vast amounts of freely available NGS data ready for down-
load—for example, from the Ensembl54 (http://www.ensembl.org/
info/data/ftp), European Nucleotide Archive (ENA) (http://www.
ebi.ac.uk/ena) or Sequence Read Archive (SRA) (http://www.ncbi.
nlm.nih.gov/sra) databases—most of which are already aligned 
to the reference genome. Hence, the ‘NGS data upload’ plugin 
enables comprehensive analysis of multiple genomics experiments 
and comparison with proteomics data in a very short time.

To compare functional differences between any two omics 
types, we implemented the so called ‘2D annotation enrichment’ 
activity55 (Fig. 5), which identifies annotation terms whose mem-
bers show statistically significant outlier behavior in the two 
dimensions chosen. Genome-wide annotation for this purpose  
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can be membership of proteins in biochemical pathways, gene 
ontology terms, subcellular localization, protein domain content 
or membership in protein complexes. Processes can be simulta-
neously upregulated or downregulated in both dimensions, or 
they can lack correlation, such as regulation in one dimension 
without any corresponding change in the other. We have found 
2D enrichment analysis to be a powerful tool to probe regula-
tion of the respective pathways or biological processes including,  
but not limited to, information about the processes that are  
predominantly transcriptionally, post-transcriptionally or  
post-translationally regulated.

machine learning for detecting subtle biological 
associations and biomarker discovery
Patients can greatly benefit from a more accurate diagnosis and 
a subsequently more efficient personalized treatment. Perseus 
combines powerful machine learning and statistical methods for 
the classification of proteomics samples. For example, we have 

applied Perseus to study clinical classification of disease subtypes 
from proteomic data in lymphoma56, prostate cancer57 and breast 
cancer58 studies. In Perseus we provide an extensible classification 
and regression framework that does not rely on a single ‘favorite’ 
machine learning technique (Fig. 6). Instead, at every stage one 
algorithm can be exchanged for another and rated, making it 
possible for the nonspecialist to determine the machine learning 
method that is best suited for a particular type of data. In addition 
to the many algorithms for classification, regression and feature 
selection that are provided together with the standard Perseus 
release, including a support vector machine59 implementation, 
the machine learning framework is extensible, allowing the users 
to program their own implementations of algorithms. We provide 
stable APIs for classification and regression models as well as 
for feature-selection algorithms in the context of classification 
and regression. For example, we adapted the popular LIBSVM60 
implementation of a support vector machine as an open-source 
classification plugin.
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The machine learning framework of Perseus has a crossvalida-
tion structure for the purpose of measuring how the prediction  
performance of classification or regression will generalize to 
independent data that have not been used for model building, 
thereby avoiding notorious problems such as overfitting61. The 
crossvalidation tools allow robust determination of optimal 
parameter values in linear or nonlinear models used for pre-
diction. Furthermore, they help in extracting optimal protein  
sets from the output of a feature-selection algorithm that  
strike a balance between good prediction performance and  
simplicity. This machine-learning-based feature selection, 
combined with accurate monitoring of the prediction errors by 
crossvalidation, offers a complement to t-test-like approaches 
for determining discriminating protein subsets. It detects  
multivariate patterns in protein expression profiles, for which  
the discriminatory power might not be apparent in the expres-
sion profiles of single proteins. In this way we can retrieve the  
members of protein response networks that are invisible to uni-
variate feature-selection methods.

vision and future developments
Perseus integrates a large amount of bioinformatic expertise 
based on experience in the analysis of diverse types of large-scale  
proteomics data. The software offers an intuitive interface that 
enables researchers without formal computational skills to analyze  
their own data by guiding them through statistical procedures in 
a rigorous manner and equipping them with various tools for the 
extraction of maximum information and biological insights from 
the data. We have strived to lower the ‘activation barrier’ to the 
adoption of Perseus through the absence of installation proce-
dures, by making it completely freely available, by ensuring users’ 
ability to visualize every step with intuitive and interactive plots, 
and through the automatic generation of a complete record of each 
analysis step and the parameters used. We believe the latter feature 
is crucial for the scientific community, as it fosters transparency 
and reproducibility of the reported results. Moreover, the use of a 
common platform for analysis allows for unbiased comparison of 
results generated in different groups and enhances collaboration 
between scientists by simplifying the process of documentation 
and sharing of protocols.

Through continuous development and maintenance, our goal 
is to establish Perseus as a comprehensive analysis and visuali-
zation tool for systems biology research, similarly to what we 
have done previously with the MaxQuant software for the analy-
sis of mass spectrometric data11. As the experimental designs 

become more and more complex, the functionality of Perseus will  
be enriched accordingly, building upon its extensible archi-
tecture to offer more tools and to support future data types. In 
particular, a comprehensive toolset for the analysis of biological  
networks62–64 resulting from coexpression or interaction studies 
will soon be included.

For most of the development of activities in Perseus, we started 
with proteomics data in mind, as well as their comparison to other 
omics dimensions. However, we have found that many of the tech-
niques implemented in Perseus are applicable to other data types 
without major modifications, and Perseus has already become 
popular in our group for the analysis of nonproteomics data as 
well. In the future, metabolomics data with relative quantification 
profiles for a global set of metabolites over several samples, which 
are similar to label-free-quantification proteomics data, will be 
accommodated by Perseus with only slight adaptations, such as 
customization of the annotation of molecular species.

One major challenge and opportunity that will drive the future 
development of Perseus is the bridging of the current gap between 
large-scale proteomics data generation and modeling of signaling 
pathways and biochemical reactions. Modeling studies are still 
generally performed only on low-throughput data, such as west-
ern blots or fluorescence-activated cell sorting (FACS) data. Our 
goal will be to provide a more automated way to extract quantita-
tive information from large-scale data that can directly be used as 
input for available modeling platforms65–67. Providing automati-
cally meaningful and reliable connections to signaling pathways 
will also require more extensive knowledge of the behavior of 
PTM sites in biochemical and signaling pathways than what is 
currently available in public resources68,69.

Perseus has already been ‘battle tested’ in cutting-edge pro-
teomics research. We anticipate that it will allow researchers 
from many areas of life science, including fundamental biology, 
drug discovery and medical sciences, to increasingly participate 
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directly in sophisticated data analyses. Our hope is that this novel 
platform will contribute to better communication between disci-
plines and more effective application of computational tools.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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2.2 Multi-omics applications

2.2.1 Direct identification of clinically relevant

neoepitopes presented on native human melanoma

tissue by mass spectrometry

The Nobel Prize in Physiology or Medicine 2018 was awarded for ”the discovery

of cancer therapy by inhibition of negative immune regulation.”[160, 161] This

discovery opens a new area in cancer therapy, where the patient’s immune system

is used to fight its tumor.

Certain tumors accumulate a large amount of mutations[162]. Some of them

happen to be non-synonymous and potentially could be present on the surface of

cancerous cells as immunopeptides. As a result, some of these mutations can be

recognized by the immune system. Our group[53], as well as another group[163],

has tried to explore a possibility to directly identify such peptides from patient’s

tumors using advanced mass spectrometry analysis.

My contribution to this study was to develop a pipeline that identifies somatic

mutations from paired - tumor and peripheral blood mononuclear cell (PBMC) -

NGS data and then include them into peptide search database for their potential

proteomics identification.

Using this approach, we were able to find one to three peptides with somatic

mutations per patient[53]. Further immunological assessment of identified peptides

shows that this approach is promising for personalized immunotherapeutics.
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Although mutations may represent attractive targets for immunotherapy, direct identification

of mutated peptide ligands isolated from human leucocyte antigens (HLA) on the surface of

native tumour tissue has so far not been successful. Using advanced mass spectrometry

(MS) analysis, we survey the melanoma-associated immunopeptidome to a depth of 95,500

patient-presented peptides. We thereby discover a large spectrum of attractive target antigen

candidates including cancer testis antigens and phosphopeptides. Most importantly, we

identify peptide ligands presented on native tumour tissue samples harbouring somatic

mutations. Four of eleven mutated ligands prove to be immunogenic by neoantigen-specific

T-cell responses. Moreover, tumour-reactive T cells with specificity for selected neoantigens

identified by MS are detected in the patient’s tumour and peripheral blood. We conclude that

direct identification of mutated peptide ligands from primary tumour material by MS is

possible and yields true neoepitopes with high relevance for immunotherapeutic strategies in

cancer.
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C
ancer immunotherapy has demonstrated remarkable
efficacy in a large variety of neoplasms and is currently
revolutionizing the treatment of malignant diseases.

Immune checkpoint modulation, in particular, is emerging as a
highly effective therapeutic strategy in an increasing number of
cancer entities1,2. To further improve current immunotherapeutic
approaches, understanding the nature of immunological tumour
recognition is of utmost importance. This may be important
also for the identification of suitable biomarkers influencing
decisions regarding therapeutic sequences and combinations.
A number of tumour-associated antigens (TAA) have been
evaluated as target antigens in clinical investigations especially in
patients with melanoma. These include antigens derived from
differentiation antigens and cancer testis antigens3,4. However, so
far these approaches showed only limited efficacy. Adoptive
transfer of T cells transgenic for T-cell receptors (TCR)
specific for selected TAA seem to be a reasonable and effective
therapeutic development especially using affinity maturated TCR
or ones selected from a non-self environment5,6. However, severe
or even fatal side effects have been observed5–8. Response rates
observed following treatment with immune checkpoint inhibitors
have demonstrated that effective immune responses can be
induced in an autologous environment in a significant
proportion of melanoma patients9–11. Response rates correlate
to the mutational load of patients’ tumours as shown for
melanoma and lung cancer, demonstrating that neoantigens
comprising such mutations play a crucial role in anti-cancer
immunoreactivity12–14. Cancer genomics allows us to precisely
determine the landscape of tumour-specific mutations from
which such neoantigens may derive15. However, our knowledge
about defined and clinically relevant tumour-specific antigens
(TSA) presented by human leucocyte antigens (HLA) and
recognizable by T cells is still very limited. Most efforts to
define such antigens in humans and mice currently employ
exome and transcriptome analyses followed by in silico epitope
prediction and large-scale immunogenicity assays16–19. This
approach results in many predicted peptide ligands, only few of
which have proven to be immunogenic. Peptide ligands selected
for therapeutic targeting by prediction may therefore not be
clinically effective. Direct identification of neoantigens by
tumour-infiltrating T cells is highly laborious and time-
consuming20, and therefore less suitable for clinical translation.
There are few reports about the direct identification of
neoantigens by the analysis of the tumour ligandome using
mass spectrometry (MS) and subsequent matching with exome
and transcriptome data21–23. Importantly, this approach resulted
in the direct identification of therapeutically relevant TSA in
two murine models21,22. However, so far mutated peptide
ligands identified by MS were derived from analyses of
monoclonal cell lines only21–23, not representing the complex
heterogeneity of native tumours. Thereby, especially those
clonal mutations representing particular promising target
antigens for prolonged tumour rejection24 may be missed.
Direct identification of neoantigens from native tumour tissue
samples was so far impeded by limitations in sensitivity and
bioinformatics. However, translated to human patients, this
would represent a major advance for clinical translation of
neoantigen-directed immunotherapies.

We hereby report on the application of our recently
developed high sensitivity mass spectrometry workflow25 to
the analysis of 25 human native tumour specimens. We provide
an unprecedented depth of the tumour-derived ligandome
harbouring a broad spectrum of attractive tumour-associated
antigens. Most importantly, we discover tumour-specific
neoantigens in selected patients validated by the proof of potent
patients’ derived neoantigen-specific anti-tumour immune

responses. Thus, these data demonstrate that high sensitivity
MS is a powerful tool to identify neoantigens highly relevant
for the development and optimization of personalized
immunotherapies in patients with cancer.

Results
In-depth immunopeptidomics on native melanoma tissue
samples. Tumour tissue samples from 25 melanoma patients
(Supplementary Tables 1 and 2) were used for analysis of
biochemically purified HLA class I and II binding peptides. In
total, we performed 140 MS measurements of purified peptides by
LC–MS/MS analysis (Supplementary Data 1) using a state-of-the-
art mass spectrometer, followed by stringent bio(informatics)
analyses in the MaxQuant environment26. We identify 95,662
unique peptide sequences with a false discovery rate (FDR) of 1%
(Fig. 1a, Supplementary Data 2) and report in total 99,355 peptide
forms. We discover 78,605 peptides in the HLA class I peptidome
from 12,663 proteins and 15,009 in the HLA class II peptidome
from 2,832 proteins. In addition, 2,048 peptides from 746
proteins are detected in both classes I and II peptidome samples.
The large variability in the number of eluted peptides per patient
is in agreement with the amount of eluted HLA complexes.
We demonstrate this by showing significant positive correlation
between the number of identified peptides in HLA class I
peptidome and the amount of recovered beta-2 microglobulin
(B2M) in each tissue (Supplementary Fig. 1a and b). Eluted
peptides show the characteristic length distribution and the
MS-data itself assigns to proper anchor residues of defined HLA
allotypes as exemplarily shown for two patients in Fig. 1b,c using
the Gibbs clustering approach27. Many of the longer peptides
(up to 15 amino acids) identified among the eluted HLA class I
peptides still show the typical anchor motifs and are therefore
likely binders and not contaminants (Fig. 1b,c). Another common
approach used to assess purity and overall performance of elution
of HLA peptides is the estimation of the affinity of the eluted
peptides to the respective HLA molecules by predicting binding
affinities25,28. This analysis, however, depends very much on the
performance of the prediction programs. We predicted the
binding affinity of eluted HLA-I peptides from patients Mel15
and Mel16. Due to the difficulty in assignment of peptides with
multiple potential restrictions, we filtered the list of peptides to
include only 9-mer peptides that bind to only one defined HLA
allotype according to the minimum predicted affinity. Instead of
using the 500 nM threshold commonly used for peptide
binding prediction, we set the threshold for a binding as
rank o2% (standard settings in NetMHC4.0). Using our
dataset, we observed that a considerable amount of peptides
that was assigned as HLA-B3503 binders fit the binding motif
(Pro and Ala in the second position and Leu in the last position).
In contrast, the predicted affinities of these binders (rank o2%)
were extremely low, with median predicted affinity of 2,806 nM
(n¼ 581) (Fig. 1d,e). These results differ substantially from
analysis of HLA-I peptides assigned to HLA-B0702, an allotype
with a rather similar motif, for which we observed a median
predicted affinity of 17.7 nM of associated peptides (n¼ 1,191)
eluted from the tumour of patient Mel16.

Peptide ligands derived from tumour-associated antigens. The
depth of the ligandome analysis is demonstrated by the
identification of a large number of both known and novel
peptide ligands derived from described melanocyte-associated
differentiation and cancer testis antigens (Fig. 2; Supplementary
Data 3). We detected the highest number of TAA-derived peptide
ligands for the well-known melanoma-associated antigen PMEL
(gp100), (64 HLA I and 46 HLA II ligands) a few of which were
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detected in both classes I and II peptidome samples (Fig. 2a,b).
PMEL-derived peptide ligands were distributed over the entire
protein but showed hot spot sequences presented by a large
number of patients (Fig. 2b). We normalized for each patient the
number of peptides derived from three selected TAA (PMEL,
tyrosinase and PRAME) to the total amount of eluted peptides
from the respective patient and correlated peptide presentation to
RNA and protein expression of the defined TAA (Fig. 2c). These
analyses resulted in a statistically significant correlation in case of
PMEL (Fig. 2d–g). We observed again that, with respect to peptide
prediction, many eluted peptide ligands have predicted binding
scores of 4500 nM according to NetMHC. Yet, they are still
considered among the top 2% (ref. 29) (Supplementary Data 3).

Phosphorylated peptides are detected without enrichment. We
performed a database search by enabling phosphorylation as a
variable modification and although we did not specifically enrich
for them, we detected a substantial fraction of phospho-HLA
peptides within the eluted immunopeptidome. We filtered the list
of identified phospho-HLA peptides by restricting the delta score

to 415 and the localization probabilities to 40.75. After
applying such stringent filters, we identified 365 phospho-HLA-I
and 25 phospho-HLA-II peptides (Supplementary Data 4). About
a quarter of the phospho-HLA binding peptides are shared
among at least two patients and 6% of the phospho-HLA peptides
have been identified independently in four or more patients’
tumour samples (Fig. 3a). One third of the sites have not been
previously described in the PhosphoSitePlus database30 (Fig. 3b).
Additional relevant information with respect to these sites is
provided in Supplementary Data 4. We observed phosphorylation
in 78% of the peptides on Serine and in 19% of the peptides
on Threonine. The remaining 3% are on Tyrosine (Fig. 3c).
To independently check the accuracy of identification of the
phospho-HLA peptides, we synthesized 10 of them and all
produced identical MS-fragmentation patterns as compared with
the patient derived peptides (Supplementary Figs 2–11). To
determine the position of these phosphorylations, HLA-I peptides
were grouped according to their length, as presented in Fig. 3d.
Interestingly, independent of the broad spectrum of HLA
allotypes, the modification is most prominent on the fourth
position of 9–11 mer HLA-I peptides and on the fourth and sixth
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positions of 12 mer peptides (Fig. 3d). Moreover, we observed a
preferential usage of Arginine and Lysine on position 1 (Fig. 3e)
as previously reported for phospho-HLA peptides31,32. Of note, a
clear signature of proline-directed phosphorylation is apparent
in the sequence logos of the phospho-HLA binding peptides
(Fig. 3e) as was reported before32. These features therefore seem
to be rather HLA allotype-independent and make them
attractive to be tested as common target antigen candidates in a
broader patient population. Taken altogether, our direct
approach provides data about a large melanoma-associated
phosphopeptide ligandome potentially attractive for targeted
immunotherapies.

Direct identification of mutated peptide ligands by MS. To test
if our method provides the depth to identify peptide ligands
possibly comprising mutations, as well as validating them as
neoantigens (Fig. 4a), we first performed exome sequencing of the
DNA extracted from five patients’ tumours exemplarily selected
due to variable responses to immune checkpoint modulation.
Detailed information about patients and the course of disease is
provided in Supplementary Table 2 and Supplementary Fig. 12.
Stringent somatic single nucleotide variant (SNV) calling was
conducted to define each patient’s mutational load and to mimic
the state-of-the-art approach for neoepitope prediction (Fig. 4b
and Supplementary Data 5). Mutations previously known in
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selected tumour probes such as cKIT (P10721.1, L576P; Mel8)
and BRAF (P15056.1, V600E; Mel16) were detected by this
analysis (Supplementary Data 5). Of note, the mutational
load among the five patients differed substantially and neither
correlated with the number of identified mutated peptide ligands
(r¼ 0.65, 95% CI: � 053 to 0.98) nor with the response to
immune checkpoint modulation (r¼ � 0.03, 95% CI: � 0.89 to
0.88) (Fig. 4b, Supplementary Fig. 12 and Supplementary Data 5).
In parallel, we developed a new module in the MaxQuant

software that performs mutations calling from NGS data and
generates a customized personalized reference database
containing all protein isoforms where a detected SNV alters the
amino acid sequence. We then performed a non-stringent
mutation calling to avoid loss of SNV during database search.
This resulted in a high number of non-synonymous mutations in
all patients (415,000 per tumour sample). We searched the raw
MS data from the 5 selected patients against this database and, for
the first time, directly identified 11 peptide ligands harbouring
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mutations from primary human cancer tissues (Table 1,
Supplementary Data 6 and Supplementary Table 3). The mutated
peptide ligands have different intensity ranks in the patients’
specific tumour ligandomes, and most are within the second and
third quartiles of the intensity distribution (Fig. 4c-e). Eight
mutated peptide ligands have been identified in the tumour of
one single patient (Mel15), a tumour sample for which a large
peptidome has been discovered. For this patient, four tumour-
derived tissue sections have been processed in parallel for the
elution of peptides that afterwards were measured sequentially.
Most mutated peptide ligands from patient Mel15 were inde-
pendently identified in several MS measurements, supporting that
they are well detected and well presented in the tumour of this
patient. Specifically, SYTL4S363F, RBPMSP46L, SEC23AP52L,
MAPK3K9E689K and H3F3CT4I were identified in all four
tissue probes, while NCAPG2P333L and AKAP6M1482I were
detected in three and two probes, respectively. We synthesized
peptides for all HLA ligands representing mutations and found
their MS/MS spectra and elution times to be identical to the
endogenous ones (Supplementary Fig. 13–24 and Supplementary
Table 3). Of note, all of the somatic mutations of the 11 neoe-
pitopes were also detected by the stringent SNV calling. In some
cases, we detected the wildtype (wt) peptides, either in the same
sample, like wt SYTL4 in Mel15 and wt GABPA and wt SEPT2 in
Mel5, or in several other patients’ samples, for example GABPA
and SEPT2 (Table 1). This might indicate that they are located
within hot spots for HLA peptide biogenesis, and since the
peptides have been purified from a tissue that contains also

healthy cells to a variable degree, presentation of the wt peptides
is expected.

Comparison of identified mutated to predicted peptides.
Prediction of neoepitopes currently represents the standard
method to identify mutated peptide ligands potentially
representing suitable targets for immunotherapy. To investigate
the ranking of our peptides according to standard prediction
algorithms, we applied NetMHC (ref. 29) for identification of
potential HLA class I-predicted nonamer neoepitopes on all
non-synonymous mutations identified by exome sequencing in
the tumour probe of patient Mel15. A standard threshold of
o500 nM as predicted affinity was set. We then ranked the
predicted affinity and projected the ligandome-based identified
mutated peptides on the curve (Fig. 4f-h). Notably, none of the
identified mutated peptide ligands were within the top 10
candidates for the HLA allotypes HLA-A0301 (best candidate
AKAP6M1482I, rank 55) and HLA-B2705 (best candidate
SYTL4S363F, rank 18) (Fig. 4f-h) for which thorough database
information is available. In the case of HLA-B3503 (Fig. 4h),
prediction was again highly limited with only eight neoantigens
predicted to bind to this HLA allotype.

Characterization of autologous neoantigen-specific T cells. We
next asked if the MS-detected mutated peptide ligands represent
neoepitopes that can be recognized by the patient’s own T cells.
We selected patient Mel15 as for this patient diverse mutated

Table 1 | List of 11 mutated peptide ligands identified by MS-based immunopeptidomics from human melanoma tissues.

Gene
name

Sequence
(Position)

a.a Alt HLA allele predicted
affinity
nM;%rank;bindLevel

Chr position
ENSMBEL transcrip
ID

Patient FDR Reads
tumour
Ref:Alt

Reads
PBMCRef:Alt

Comments

SYTL4 GRIAFFLKY S363F HLA-B* 27:05 ChrX:100687163 Mel15 1% 29:9 51:1 WT HLAp GRIAFSLKY
(358-366) 18.43; 0.6; SB ENST00000263033 detected in Mel15

RBPMS RLFKGYEGSLIK P46L HLA-A* 03:01 Chr8:30474849 Mel15 1% 63:18 122:0 WT HLAp
(45-56) 29.2; 0.15; SB ENST00000517860 RPFKGYEGSL;

RPFKGYEGSLI;
RPFKGYEGSLIKL
detected in Mel8

SEC23A LPIQYEPVL P52L HLA-B* 35:03 Chr14:39095964 Mel15 1% 36:9 34:0
(52-60) 436.2; 0.01; SB ENST00000307712

H3F3C RIKQTARK T4I HLA-A* 03:01 Chr12:31792156 Mel15 5% 48:6 63:0
(3-10) 1614; 3.0; -- ENST00000340398

NCAPG2 KLILWRGLK P333L HLA-A* 03:01 Chr7:158680743 Mel15 1% 130:23 107:1
(332-340) 32.6; 0.15; SB ENST00000409339

AKAP6 KLKLPIIMK M1482I HLA-A* 03:01 Chr14:32822259 Mel15 1% 56:20 108:0
(1477-1485) 23.3; 0.1; SB ENST00000280979

MAP3K9 ASWVVPIDIK E689K HLA-A* 03:01 Chr14:70733760 Mel15 5% 24:6 41:0
(680-689) 400.9; 1.2; WB ENST00000555993

ABCC2 GRTGAGKSFL S1342F HLA-B* 27:05 Chr10:99845661 Mel15 5% 27:10 50:0
(1334-1343) 192.9; 0.7; WB ENST00000370449

NOP16 SPGPVKLEL P169L HLA-B* 07:02 Chr5:176384171 Mel8 5% 80:11 90:0
(161-169) 26.3; 0.12; SB ENST00000621444

GABPA ETSKQVTRW E161K HLA-A* 25:01 Chr21:25752162 Mel5 5% 17:22 87:0 WT HLAp
(158-166) 3231.1; 0.40; SB ENST00000354828 ETSEQVTRW detected

in Mel5 and Mel40
SEPT2 YIDERFERY Q125R HLA-A* 01:01 Chr2:241337414 Mel5 5% 107:77 148:0 WT HLAp YIDEQFERY

(121-129) 6.0; 0.01; SB ENST00000391973 detected in Mel3,
Mel5, Mel8, Mel12,
Mel16, Mel25, Mel26,
Mel38, Mel39 and
Mel40

Mutated amino acids within the peptides are indicated with bold letters.
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peptide ligands were identified and miscellaneous biomaterial
could be collected. The detailed clinical course including
biomaterial collection of the patient is shown in Fig. 5a. For the
investigation of recall responses, we stimulated unfractionated
PBMC derived from diverse venipunctures in the course of the
disease following application of Ipilimumab (Fig. 5a,b). Without
any further enrichment, we identified defined T-cell responses by
ELISpot as early as two days after stimulation of PBMC (Fig. 5c).
Notably, specific responses were repeatedly observed against
SYTL4S363F at that early time point (Fig. 5c). Prolonged peptide
stimulation of PBMC derived from diverse blood venipunctures
resulted in expansion of T cells with specificity for SYTL4S363F, as
well as NCAPG2P333L but not for other peptides (Fig. 5d).
Dynamic courses of specific responses observed against these two
peptides indicate a decline of specific T-cell responses over time.
The quality of T-cell responses against SYTL4S363F was superior
compared with NCAPG2P333L as shown by higher frequencies of
T cells with dual cytokine secretion (Fig. 5e,f). Of note, wt pep-
tides were not recognized (Fig. 5e,f). Specificity of defined T-cell
lines was further confirmed by multimer staining of
NCAPG2P333L–specific T cells (Fig. 5g). In case of T-cell line
PBMC-SYTL4-740, we were able to isolate a specific clone,
PBMC-SYTL4clone1, which recognized endogenously processed
mutated but not wt peptide after minigene transfer of respective
gene sequences of SYTL4 (Fig. 5h).

Two years after application of Ipilimumab, a remaining
single lung metastasis progressed and was removed at day 796
(Fig. 6a–d). Interestingly, this metastasis showed areas with vital
tumour cells with intensive PD-L1 expression while high T-cell
infiltration was apparent only in adjacent tumour areas
(Fig. 6c,d). PD-L1 may be predominantly responsible for T-cell
exclusion and tumour evasion in this case. The defined
SYTL4S363F mutation was detected on genomic DNA, as well as
reverse transcribed coding DNA (cDNA) level in this second
biopsy (Fig. 6e). Importantly, peripheral blood-derived T-cell
lines with specificity for SYTL4S363F from day 740 recognized
freshly removed tumour material (Fig. 6f). Moreover, ex vivo
expanded tumour-infiltrating T cells (TIL) exclusively recognized
SYTL4S363F but not other mutated peptide ligands (Fig. 6g).
SYTL4S363F-specific TIL-derived T-cell responses were
functionally sorted and cloned resulting in expansion and
further characterization of T-cell clone TIL-SYTL4clone1. Peptide
titration of SYTL4S363F revealed a functional avidity in the
nanomolar range but no reactivity against the wt peptide
(Fig. 6h). Specificity of TIL-SYTL4clone1 was further
confirmed by recognition of endogenously processed mutated
but not wt peptide as investigated by cytokine release and
cytotoxicity (Fig. 6i).

Validation of neoantigens in the matched allogenic setting. To
investigate if mutated peptide ligands may be immunogenic in
matched healthy donors, we stimulated naı̈ve T cells isolated from
different donors with mutated peptide ligands. We identified
additional reactivity against two peptides, AKAP6M1482I derived
from Mel15 and NOP16P169L derived from Mel8 (Fig. 7a). An
expanded T-cell line, HD1-AKAP6, with specificity for
AKAP6M1482I was further characterized. We observed specific
binding of respective multimer but not wt multimer (Fig. 7b). In
contrast, peptide titration experiments showed recognition of the
mutant but also wt peptide, the latter with reduced functional
avidity (Fig. 7c). Functional quality of T-cell responses against wt
and mutated peptides were additionally investigated in detail with
respect to heterogeneous cytokine release and cytotoxicity
(Fig. 7d,e). Therefore, target cells either pulsed with defined
peptides or transduced with minigenes were used. Of note,

cytokine responses against wt peptide were inferior when
compared with the mutated counterpart whereas the cytotoxic
responses were comparable (Fig. 7d,e).

Discussion
We hereby present for the first time integrative classes I and II
immunopeptidomes of native melanoma tissue samples resulting
in the identification of almost 100,000 peptide ligands naturally
presented on the tumour. With our methodology 495% of the
peptides fit the binding motifs of the different HLA-I allotypes25,
supporting the high yield and purity of the eluted peptides. Also,
among the long HLA-I peptides, many seem to fit well to the
distinct binding motifs as shown for Mel15 and Mel16. This is in
concord to other reports about long HLA-I binders33–35. We
hypothesize that identical peptides that have been detected in
both the class I and II peptidome may be related to common
cellular processing which need to be tested in future studies36,37.
The depth of the ligandome is highlighted by the large number of
both, known and novel peptide ligands derived from previously
described tumour and melanoma-associated antigens like PMEL,
tyrosinase, MELAN-A, NY-ESO-1 and several proteins of the
MAGE superfamily of cancer testis antigens. In case of PMEL,
from which we detected almost 100 different peptide sequences,
the magnitude of presentation, estimated by the number of
unique peptide ligands per peptidome sample correlated with
messenger RNA (mRNA) and protein expression. Alignment of
the PMEL derived HLA peptides on the PMEL protein sequence
revealed that several domains along the protein sequence are
sources of multiple class I and II peptides in several tumour
samples derived from diverse patients. We collectively name such
domains as ‘hot spots’. Other domains may not be as efficiently
accessible for the antigen processing and presentation machinery
and those were either not presented at all by any of the 25 studied
melanoma tumours, or their resulting peptides were below our
detection limit. Targeting of PMEL by peptide-based vaccination
showed only limited clinical success when compared with results
of checkpoint modulation4 and combination of anti-CTLA-4
treatment with PMEL vaccination did not enhance anti-tumour
activity9. We hypothesized that our large dataset might shed
light on the extent these peptides are presented in vivo.
Interestingly, the two nonameric peptides, P209 and P280, used
previously for vaccination were eluted only from tumour
probes of Mel27. In the case of P209, the nonamer peptide
sequence is indeed located in the most dominant hot spot for
presentation, although the sequence was, with exception of
Mel27, included in peptide ligands with a length 414 aa. In the
case of P280, the peptide sequence could be detected only in
Mel27. These data suggest other PMEL-derived peptides to be
potentially more promising for defined targeting in a larger
patient cohort.

Even without further enrichment, peptide ligands harbouring
posttranslational modifications as phosphorylation were detected.
This implies for the high recovery and sensitivity of our method
and importantly it avoids the requirement of reservation of
dedicated samples for enrichments of phospho-peptides and
additional laborious sample processing38. Nevertheless, such
peptides may contain cancer-specific phosphorylation patterns
and therefore potentially represent attractive targets for cancer
immunotherapy31,32. One third of identified phosphorylation
sites have not been reported in the PhosphoSitePlus database30.
We envision that direct immunopeptidomic analyses have the
potential to identify novel sites on protein sequences that may not
be compatible with trypsin digestion and therefore may be
undetected by shotgun phospho-proteomics39. 24% of the
phospho-HLA peptides have been identified in tumour samples
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derived from multiple patients. A clear signature of proline-
directed phosphorylation of the detected HLA peptides could be
observed and this is likely to be assigned to a defined kinase motif
associated to cell proliferation and tumorigenicity32,40. Thus, our
data point to a common oncogenic phospho-peptide signature
potentially attractive for multimodal targeting. Notably, our data
revealed a very conserved motif within detected phospho-HLA
peptides with preferred Arginine and Lysine in P1 and the
phosphorylation site in P4. This canonical motif has been
previously described for defined HLA allotypes and structural
data suggest that the conserved amino acid usage in P1 may
increase peptide binding of low affinity peptides whereas
phosphorylation in P4 may improve immunogenicity by direct
presentation of the phosphorylation site to the TCR or
conformational peptide changes31. Our data indicate that such
peptides are presented over a broad HLA repertoire making these
peptides attractive to be tested as more general target

antigens. Reactivity of patients’ derived autologous T cells with
specificity for these peptides might be limited due to negative
thymic depletion of reactive T cells. However, TCR derived from
the mismatched or xenogeneic repertoire may still represent
attractive therapeutic tools to target self-antigens with cancer-
specific expression in adults41.

In contrast to shared TAA, mutated peptide ligands can be
regarded as foreign antigens which have been previously
described to be well detectable by autologous T cells in diverse
disease settings16,17,19,20,42–44. Especially clonogenic ones have
been shown to be associated to a durable clinical benefit by
immune checkpoint inhibitors24. We hereby describe for the
first time the identification of mutated peptide ligands derived
from patients’ non-modified and non-cultivated native tumour
tissue samples using our discovery MS approach. Within this
proof of concept, with testing of five patients, we detected 11
mutated peptide ligands, 8 of them in one patient. This
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patient experienced prolonged clinical benefit following the
application of Ipilimumab, a checkpoint inhibitor involved in
the enhancement of primary and memory T-cell responses45.
Notably, response to treatment in melanoma has been associated
to the mutational load, suggesting that mutated peptide ligands
are the major source of target antigens13. Few mutated peptide
ligands have been previously identified by MS using murine or
human cell lines as raw material21–23. However, the direct
identification of neoantigens from non-modified native human
tumour tissue represents an important breakthrough for several
reasons. Tissue, unlike cell lines, is heterogeneous. Although more
challenging, mutated peptide ligands identified from this material
are likely among the most well presented peptides and hence the
best targets for immune interventions. In fact, most mutated
peptide ligands identified from Mel15 were independently
identified in several MS measurements of different tissue
probes, and their measured MS intensity indicates adequate
presentation similar to non-mutated self-antigens. MS-based
detection is by nature biased to detect the more abundant
peptides and hence will favour identification of clonogenic
mutated peptides. In contrast, mutations present only in
malignant subclones are likely to be under-represented in the
total peptidome and therefore below the detection limit of the
current MS-based discovery approach.

Most of the neoantigens we detected are predicted to bind with
high affinity to their respective HLA molecules, although they are
mostly not within the top 10 predicted ones. In case that amino

acid alterations are located in anchor positions, novel ligands may
be generated. However, in case that the alterations are not in
anchor positions there is a fair chance that also the wt peptides
will be detected by MS, especially if the peptides are expected to
bind with high affinity. Indeed, we detected the corresponding wt
peptides of mutated SYTL4 and GABPA in the peptidomes of
Mel15 and Mel5, respectively. Interestingly, we also detected
corresponding wt peptides, and also sequences that are shorter
or longer versions of the core neoantigen sequences in
HLA peptidome samples of other patients with alternative HLA
allotypes as e.g. for RPBMS. Multiple peptide sequences homing
to a certain location on the protein suggest that this might be
again a hot spot for presentation. Thus, mutations that are
included in hot spots may have preferred presentation in vivo,
although larger studies are needed to confirm this hypothesis.
However, if this hypothesis is correct, future large-scale
immunopeptidomics studies are expected to reveal such hot
spots in the human proteome, and consequently in-silico
algorithms should prioritize neoantigen candidates that are
included within them in order to shorten the target list.

The potential and promise of MS detection of neoantigens is in
fact highlighted by the hit rate of mutated peptide ligands with
obvious clinical relevance. In fact, two out of eight mutated
peptide ligands were detected by blood and TIL-derived
autologous T cells of patient Mel15. This indicates a
clear advantage compared with the usage of prediction software
tools to identify neoantigens16,19,24,44,46,47. Moreover, mutation-
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specific T-cell responses could be detected as early as two days
after peptide stimulation without prior enrichment as previously
published44,46. Mutation-specific T-cell lines recognized freshly
isolated tumour material further emphasizing clinical relevance of
these neoantigens. Of note, neoantigen-specific responses were
declining over time whereas a single remaining lung metastasis
started to progress. These data are highly intriguing and suggest
that mutation-specific T-cell responses might be investigated as
personalized surrogate biomarkers in future studies. Two other
mutated peptide ligands were recognized by matched allogeneic
T cells and we suggest that such matched allogeneic T cells may
be an attractive source to be used for adoptive T-cell or TCR
transfer as recently published and suggested43. Interestingly,
in-depth characterization of one defined T-cell population
demonstrated reactivity also against the wt peptide. The distinct
T-cell population was not detected by the wt multimer and
wt-peptide-specific cytokine release was clearly inferior if
compared with the mutated peptide. However, lysis of
minigene-transduced or peptide-pulsed target cells presenting
respective wt epitope reached high levels comparable to lysis of
targets presenting the mutated ligand. These data suggest
that differences in TCR avidity in response to mutated versus
wt peptide may follow similar rules compared with observed
differences in response to viral antigens48. Thus, multi-functional
characterization of neoantigen-specific T cells is important to
estimate risks of autoimmunity and neoantigen-specific matched
allogeneic T-cell populations or TCR need to be carefully selected
for adoptive transfer.

The time necessary for direct identification of mutated
peptide ligands by MS using native tissue probes can be
as short as three weeks, including whole exome sequencing
analysis. Therefore, this approach is highly suitable for the
development of personalized treatment approaches. In contrast,
the usage of cell lines as raw material for MS analysis requires
prolonged time for generation of a sufficient number of cells
and is not always successful. Similarly, the prediction approach
currently predominantly used for identification of presumable
neoantigens is highly time consuming and expensive as
subsequent large-scale immunogenicity testings are necessary
for neoantigen validation. Moreover, the prediction approach
harbours the risk for biased or limited results especially in case
of binders to rare HLA allotypes. Our data indicate that the
commonly used threshold for predicted affinity of 500 nM is by
far too low for some HLA allotypes. Moreover, our data may be
highly useful as to be a training dataset to further improve the
performance of such predictors and consequently to enable
more reliable in-silico identification of neoepitopes in the
future.

The issue of the sensitivity of this discovery MS-based
approach is currently the major limitation as indicated by the
limited number of identified neoantigens. More than that, we
could not detect neoantigens among the class II peptidome in this
study. The latter result was expected as class II molecules are
typically expressed on professional antigen presenting cells in the
tumour microenvironment, and often not directly on the
melanoma cells. Currently, unlike T-cell based assays, the MS
approach is not sensitive enough to detect the few copies of
neoantigens presented only on professional antigen presenting
cells that are in the tumour microenvironment. A more intensive
fractionation of the HLA peptides sample prior to the MS analysis
may increase the depth but will also significantly increase the
investment in MS measurement time. We envision that the new
generations of MS instruments, new computational algorithms
and more efficient procedures for sample preparations will
further improve the sensitivity and therefore this direct antigen
discovery approach.

The direct identification of clinically relevant antigens, both
shared and private, will foster our understanding of essential
characteristics of targets and their respective specific T cells
relevant for effective tumour rejection and protection. Defined
neoepitopes can be targeted by vaccination and respective T-cell
responses can be tracked and used as biomarkers. Neoepitopes
and defined common TAA not recognized by the patient’s T cells
may be attractive for alternative immunotherapeutic strategies
such as transfer of effector cells with defined specificity.

Methods
Primary human material and cell lines. Informed consent of all healthy and
diseased participants was obtained following requirements of the institutional
review board (Ethics Commission, Faculty of Medicine, TU München). All patients
included in the analysis were diagnosed for metastatic malignant melanoma and
treated at the Klinikum rechts der Isar, TU München. An overview about all
patients is given in Supplementary Table 1. More detailed information is provided
for patients Mel5, Mel8, Mel12, Mel15 and Mel16 who additionally donated blood
for isolation of PBMC and identification of mutated peptide ligands by matching
the immunopeptidome with exome sequencing data (Supplementary Fig. 12,
Supplementary Table 2 and Supplementary Data 5). Tumour tissue samples were
collected from patients, who underwent tumour resection at the Department of
Surgery, Klinikum rechts der Isar of the TU München. Immediately after resection
(within 30 min), tumour tissue was macroscopically dissected by an experienced
pathologist, snap frozen and stored in liquid nitrogen (� 196 �C) at the
MRI-TUM-Biobank (MTBIO) until usage. Additional tumour tissue was
formalin-fixed and paraffin-embedded (FFPE). Before molecular analysis, tumour
diagnosis was confirmed by a pathologist and tumour content was determined by
an HE stain taken from the sample going to be used. TIL derived from the tumour
tissue of patient Mel15 removed at day 796 after treatment with Ipilimumab were
expanded for 2–3 weeks by cultivation of minced tumour tissue pieces with irra-
diated feeder PBMC, 1,000 U ml� 1 IL-2 (PeproTech, London, UK) and
30 ng ml� 1 OKT3 (kindly provided by Elisabeth Kremmer). Change of medium
supplemented with 300 U ml� 1 IL-2 was performed twice a week. PBMC from
patients and healthy donors were isolated from whole blood by density-gradient
centrifugation (Ficoll/Hypaque, Biochrom, Berlin, Germany) immediately on
receipt. T cells were cultivated in T-cell medium, RPMI 1640 (Invitrogen, Carlsbad,
CA, USA) supplemented with Penicillin/Streptomycin (Pen/Strep) (PAA, Pasching,
Austria), 5% FCS, 5% human serum, 10 mM Hepes (Invitrogen) and Gentamycin
(Biochrom, Berlin, Germany), or serum-free AIM-V (Invitrogen) as indicated. Cell
lines used in this study: T2 (American Type Culture Collection (ATCC), Manassas,
VA), lymphoblastoid cell lines (LCL) LCL1 (IHW09005, HLA-A0301, B2705,
C0102) and LCL2 (IHW09216, HLA-A0201, A0301, B3502, B3801 (both kindly
provided by Steve Marsh). Morphology and constant growth behaviour of all cell
lines were controlled periodically and the absence of mycoplasma infection was
routinely confirmed by PCR (Venor GeM mycoplasma detection kit, Minerva
Biolabs). T2 were retrovirally transduced with the HLA restriction elements
HLA-A0301 (T2-A3), B0702 (T2-B7) or B2705 (T2-B27) as described before49.
All target cell lines were maintained in RPMI 1640 supplemented with Pen/Strep
and 10% FCS.

Purification of HLA peptides. For the preparation of the affinity columns,
panHLA-I and panHLA-II antibodies were purified from HB95 cells and HB145
cells (ATCC, Manassas, VA), respectively. We cross-linked the antibodies to
Protein-A Sepharose beads (Invitrogen, CA) with 20 mM dimethyl pimelimidate in
0.2 M sodium borate buffer pH9. Tumour amount that has been available for this
research varied significantly, from about 0.1 g to 4� 1 g in Mel15. For the
purification of HLA complexes, snap-frozen melanoma tissue samples were
homogenized for 10 s on ice using ULTRA-TURRAX (IKA, Staufen, Germany) in a
tube containing 5–10 ml of lysis buffer and incubated at 4 �C for 1 h. The lysis
buffer contained 0.25% sodium deoxycholate, 0.2 mM iodoacetamide, 1 mM
EDTA, 1:200 Protease Inhibitors Cocktail (Sigma-Aldrich, MO), 1 mM PMSF, 1%
octyl-b-D glucopyranoside (Sigma-Aldrich, MO) in PBS. The lysates were cleared
by 20 min centrifugation at 40,000g. Lysates were passed through a column
containing Protein-A Sepharose beads (Invitrogen, CA) to deplete the endogenous
antibodies. Subsequently, HLA-I molecules were immunoaffinity purified from
cleared lysate with the W6/32 antibody covalently bound to Protein-A Sepharose
beads (Invitrogen, Camarillo, CA). HLA-II molecules were then purified by
transferring the flow through onto similar affinity columns containing the HB-145
antibody. Affinity columns were washed first with 10 column volumes of 150 mM
NaCl, 20 mM Tris–HCl (buffer A), 10 column volumes of 400 mM NaCl, 20 mM
Tris–HCl, 10 volumes of buffer A again, and finally with seven column volumes of
20 mM Tris–HCl, pH 8.0. HLA molecules were eluted at room temperature by
adding 500ml of 0.1 N acetic acid, in total seven elutions for each sample25.

Eluted HLA peptides and the subunits of the HLA complexes were loaded on
Sep-Pak tC18 (Waters, MA) cartridges that were prewashed with 80% acetonitrile
(ACN) in 0.1% trifluoracetic acid (TFA) and with 0.1% TFA. The peptides were
separated from the much more hydrophobic HLA heavy chains and B2M on the
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C18 cartridges by eluting them with 30% CAN in 0.1% TFA. They were further
purified using a Silica C-18 column tips (Harvard Apparatus, Holliston MA) and
eluted again with 30% ACN in 0.1% TFA. The peptides were concentrated and the
volume was reduced to 15ml using vacuum centrifugation. Remaining
immunoaffinity purified HLA heavy chains and the B2M molecules were eluted
from the Sep-Pak tC18 cartridges with 80% ACN in 0.1%TFA. For western-blot
detection, 1% of each of those protein containing samples were used. Anti human
B2M antibody EP2978Y (1:5,000, Abcam, Cambridge, United Kingdom) was used
and was detected with donkey anti-rabbit IgG HRP conjugate secondary antibody
(1:5,000, Thermo Fisher Scientific) in a peroxidase assay using SuperSignal West
Pico Chemiluminescent substrate (Thermo Fisher Scientific).

LC–MS/MS analysis of HLA peptides. HLA peptides were separated by a
nanoflow HPLC (Proxeon Biosystems, Thermo Fisher Scientific, Odense) and
coupled on-line to a Q Exactive or the Q Exactive HF mass spectrometers (Thermo
Fisher Scientific, Bremen) with a nanoelectrospray ion source (Proxeon Biosys-
tems). We packed a 50 cm long, 75 mm inner diameter column with ReproSil-Pur
C18-AQ 1.9 mm resin (Dr. Maisch GmbH, Ammerbuch-Entringen, Germany) in
100% methanol. Peptides were eluted with a linear gradient of 2–30% buffer B
(80% ACN and 0.5% acetic acid) at a flow rate of 250 nl min� 1 over 90 min. Data
were acquired using a data-dependent ‘top 10’ method, which isolated them and
fragment them by higher energy collisional dissociation. We acquired full scan MS
spectra at a resolution of 70,000 at 200 m/z with a target value of 3e6 ions. The
most intense ions were sequentially isolated and accumulated to an AGC target
value of 1e5 with a maximum injection time of 120 ms. For measurement of HLA-I
peptides, in case of unassigned precursor ion charge states, or charge states of four
and above, no fragmentation was performed. In addition, we excluded the frag-
mentation charge state of one from measurement of HLA-II peptides. The peptide
match option was disabled. MS/MS resolution was 17,500 at 200 m/z. Fragmented
m/z values were dynamically excluded from further selection for 20 s.

Synthetic peptides. Synthetic peptides for spectra validation were synthesized
with the Fmoc solid phase method using the ResPepMicroScale instrument
(Intavis AG Bioanalytical instruments, Cologne, Germany).

Mass spectrometry data analysis of HLA peptides. We employed the
MaxQuant computational proteomics platform25,26 version 1.5.3.2. Andromeda, a
probabilistic search engine incorporated in the MaxQuant framework50, was used
to search the peak lists against the UniProt databases (Human 85,919 entries,
Sep 2014), and a file containing 247 frequently observed contaminants such as
human keratins, bovine serum proteins, and proteases. For identification of
mutated peptide ligands, customized references databases were used (see below).
N-terminal acetylation (42.010565 Da), methionine oxidation (15.994915 Da) and
phosphorylation (79.9663304 Da on serine, threonine and tyrosine) were set as
variable modifications. The second peptide identification option in Andromeda
was enabled. The enzyme specificity was set as unspecific. Andromeda reports the
posterior error probability and FDR, which were used for statistical evaluation.
A false discovery rate of 0.01 was required for peptides for the global ligandome
analysis and for the phospho-HLA peptides identification. We applied in addition a
less stringent threshold of 5% for the identification of mutated peptide ligands. No
protein false discovery rate nor permutation rules were set in MaxQuant in creating
the decoy database. The initial allowed mass deviation of the precursor ion was set
to 6 p.p.m. and the maximum fragment mass deviation was set to 20 p.p.m. We
enabled the ‘match between runs’ option, which allows matching of identifications
across different replicates that belongs the same patient, in a time window of
0.5 min and an initial alignment time window of 20 min. From the ‘peptide.txt’
output file produced by MaxQuant, hits to the reverse database and contaminants
were eliminated. The resulting list of peptides is provided in Supplementary Data 2.

Variant search using MaxQuant. For the analysis of peptides we used a newly
designed module of the MaxQuant software that enables the search for peptides
based on genomic variations. MaxQuant takes as input aligned reads from exome
data and calls variants as described below. The base search space results from
unspecific digestion of all protein sequences utilizing all peptides from length
8 to 25. Variants increase the peptide search space by either including or excluding
them on each peptide. In case several variants can be present on the same peptide
all combinations of the absence/presence patterns are taken into account. In
extreme cases of very many combinatorial possibilities for a peptide, these are cut
off at 100 contributing peptides. To account for different a priori probabilities of
different peptide classes the posterior error probability is calculated depending on
the type of the peptide. For instance, different classes of peptides that are treated
separately in the posterior error probability calculation are unmodified peptides
without variants, unmodified peptides resulting from a variant, phosphorylated
peptides without variants and phosphorylated peptides resulting from a variant.
A common PSM-FDR threshold is applied based on this peptide class dependent
posterior error probability.

DNA isolation from FFPE tissue. For isolation of genomic DNA (gDNA) from
FFPE tissue, paraffin sections (five 10 mm sections per tumour sample) were
de-paraffinized using xylene (2� 5 min) and cleared in absolute ethanol. Tumour
tissue was macro-dissected and DNA isolation was performed with DNeasy Blood
& Tissue Kit (Qiagen/Hilden, Germany) according to manufacturer’s instructions
with following modifications: (i) tissue lysis was performed for an extended period
of 60 h and (ii) Qiagen MinElute spin columns were used for a reduced elution
volume of 50mL.

Whole-exome sequencing and bioinformatics analysis. DNA fragmentation was
performed with Covaris S2/E220 ultrasonicator to yield a fragment size of B200 bp.
The SureSelectXT Human All Exon V5 (Agilent Technologies, Santa Clara, USA) kit
was used for library preparation. Sequencing (100 bp paired-end) was performed on
the Illumina HiSeq 2000 system. Mutation calling was performed according to a
promiscuous or stringent protocol. For promiscuous mutation calling, we excluded
positions with quality o13 (equivalent to 0.05 error probability) and used the
following thresholds: total read depth of the position should be 410 reads; number
of reads which support a variant should be greater than 5 reads and at the same time
the minimum variants frequency was set to 5 per cent.

Stringent variant calling was done with Mutect v1.1.7 (ref. 51) using default
settings. Mutations were considered as relevant if the frequency was greater or
equal 5% and the read depth was greater or equal 10. Raw read sequences were
filtered with Prinseq v0.20.4 (ref. 52). Nucleotides with a Phred Score below 20 at
30 or 50 end were clipped. Reads were then mapped to the GRCh38.p3
(http://www.ensembl.org/index.html) reference genome with BWA v0.7.12 (ref. 53)
using default settings. Duplicates were marked with Picardtools v1.129
(http://picard.sourceforge.net.) and kept for downstream analysis. Realignment and
base recalibration was done with GATK v3.3 (ref. 54). Annotation was done with
SNPeff Version 4.1g (ref. 55) based on the ENSEMBL GRCh38.78 genome. Only
transcripts with CCDS sequences were used for further analysis.

Semi-quantitative realtime PCR. Tumour tissue from melanoma patients was
micro-dissected and RNA extraction was performed according to the
manufacturer’s instructions using High Pure RNA Paraffin Kit (Roche Diagnostics/
Mannheim, Germany). As control, RNA from the Human Total RNA Master Panel
II (Clontech, Mountain View, USA), from human testis (Clontech) or human adult
skin (amsbio, Abingdon, U.K.) was used. cDNA was synthesized by the Superscript
II reverse transcriptase (Invitrogen) using random hexamer primers (Roche). qPCR
was conducted on a StepOnePlus system (Applied Biosystems) using the KAPA
Probe Fast Universal qPCR MasterMix (peqlab, Erlangen, Germany). Relative
quantification was calculated by the delta-delta Ct method56 using the geometric
mean of control genes (GAPDH, HMBS and HPRT1) for normalization. The
following primers and probes were used: PMEL: 50-ACCTATCCCTGAGCCTGA
AG-30 (forward primer (fwd)), 50-GCCCAGGGAACCTGTAATACT-30 (reverse
primer (rev)), 50-[6FAM]TGCCAGCTCAATCATGTCTACGGA[TAM]-30

(probe); Tyrosinase: 50-TGCACAGATGAGTACATGGGA-30 (fwd), 50-GGCTAC
AGACAATCTGCCAAG-30 (rev), 50-[6FAM]CTCAGCCCAGCATCATTCTT
CTCCT[TAM]-30 (probe); PRAME: 50-TATCGCCCAGTTCACCTCTC-30 (fwd),
50-ATCACGTGCCTGAGCAACT-30 (rev), 50-[6FAM]CAGTCTGCAGTGCCTGC
AGGC[TAM]-30 (probe); GAPDH: 50-TTCCAATATGATTCCACCCA-30 (fwd),
50-GATCTCGCTCCTGGAAGATG-30 (rev), 50-[6FAM]TTCCATGGCACCGTC
AAGGC[TAM]-30 (probe); HMBS: 50-ACGATCCCGAGACTCTGCTTC-30 (fwd),
50-GCACGGCTACTGGCACACT-30 (rev), 50-[6FAM]CCTGAGGCACCTGGA
AGGAGGCTG[TAM]-30 (probe); HPRT1: 50-CTGGCGTCGTGATTAGTGAT-30

(fwd), 50-CTCGAGCAAGACGTTCAGTC-30 (rev), 50-[6FAM]CATTATGCTG
AGGATTTGGAAAGGGTG[TAM]-30 (probe).

Immunohistochemistry. FFPE tumour samples were selected to construct a tissue
microarray using a Tissue Microarrayer (Beecher Instruments/Sun Praierie, USA)
with a core size of 0.6 mm. At least three tumour cores from tumour center and
tumour periphery were taken from areas previously marked by a pathologist.

Immunohistochemistry was performed on 2 mm sections using the following
antibodies: S-100 (polyclonal, dilution 1:600, DAKO, Hamburg, Germany),
HMB45 (clone HMB-45, dilution 1:200, Cell Marque, Rocklin, USA), MelanA
(clone A103, dilution 1:200, Cell Marque, Rocklin, USA), PRAME (polyclonal,
dilution 1:150, Sigma-Aldrich), Tyrosinase (clone T311, dilution 1:200, Santa Cruz,
Dallas, Texas). Immunohistochemistry on one representative slide of the
pulmonary metastasis was performed using the following antibodies: S-100
(Polyclonal, dilution 1:600, DAKO, Hamburg, Germany), CD3 (Clone MRQ 39,
dilution 1:500, Cell Marque, Rocklin, USA) and PD-L1 (Clone 28-8, dilution 1:500,
Abcam, Cambridge, United Kingdom). Stainings were run on an automated
immunostainer with an iVIEW DAB detection kit (Ventana Medical Systems,
Roche Diagnostics, Mannheim, Germany). Appropriate positive controls for each
antibody were run in parallel. In cases of marked staining heterogeneity, 2 mm
sections from FFPE tumour blocks were stained in addition to exclude scoring
inaccuracy due to tumour heterogeneity. Immunoreactivity was evaluated
regarding the percentage of positive tumour cells. Nuclear and cytoplasmic
staining was taken into account. A 4-tiered system was used for scoring: (0) absent,
(1) 40–25%, (2) 425–50%, (3) 450–75%, (4) 475–100%.
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Statistics. For the analysis of correlation of ligand identification and antigen
expression, the square root of the normalized number of PMEL HLA ligands was
calculated to deal with deviations from a normal distribution. Pearson correlation
was calculated and the respective p value was corrected for multiple testing.
A regression line is depicted for visual guidance on each panel.

HLA typing. HLA typing was done for selected patients on gDNA isolated from
PBMC by next generation sequencing (Zentrum für Humangenetik und
Laboratoriumsdiagnostik, Martinsried, Germany) or using the HLA miner tool57

for exome sequencing data when limited patient material was available.

Sanger sequencing of DNA and RNA from tumour samples of Mel15.
Snap-frozen tumour tissue obtained from the resection at day 792 was
homogenized by mechanical disruption. Genomic DNA was obtained using DNA
mini kit (Qiagen). RNA was extracted by passing sheared tissue additionally
through a QIAshredder Homogenizer (Qiagen) followed by isolation with RNeasy
mini kit (Qiagen). Reverse transcription was performed with Affinity Script
(Agilent) and oligo(dT) Primers. PCR was conducted with KOD Polymerase
(Merck Millipore) and Primers as described for minigene cloning (see below).
Products were purified after gel electrophoresis with Nucleospin Gel and PCR
Cleanup kit (Macherey-Nagel) and sequenced at MWG Eurofins (Ebersberg,
Germany).

Algorithms used for prediction of peptide ligands. Affinity to the corresponding
allotypes expressed in Mel15 was predicted for all eluted peptides identified in
Mel15 samples using NetMHC4.0 (ref. 29). To be more conservative regarding
assignment of peptides with multiple specificities, the list of peptides was filtered to
include only 9 mer peptides that bind to only one HLA allotype. The threshold for
binding was set to rank o2% to include weak binders (standard setting according
to ref. 58). This resulted in 1,065, 2,518, 1,499 and 581 peptides that fit HLA-
A0301, HLA-A6801, HLA-B2705 and HLA-B3505, respectively. Predicted affinities
to the HLA supertype representative allotypes were calculated for the TAA-derived
peptides using NetMHCcons59, and are provided in Supplementary Data 3.
Clustering of peptides into groups based on sequence similarities was performed
using the GibbsCluster-1.1 tool27 using default settings.

For prediction of affinity scores of mutated peptide ligands, protein transcript
sequences associated with non-synonymous mutations were downloaded from
ENSEMBL GRCh38.78. A 23-mer small peptide sequence was generated by adding
11 amino acids up and downstream of the altered position. If the mutation is
located less than 11 amino acids away from the 30 or 50 end, the peptide is shorter,
respectively. The peptide was then used as input for NetMHC4.0 (ref. 29) and
fragments comprising the mutation were used for further analysis. Ligands with a
predicted affinity of o500 nM were included in the graphical analysis.

Cloning and expression of minigenes. Oligonucleotide primers were designed to
amplify fragments of gene products ranging between 200 and 400 bp encompassing
the mutated base. Generally, forward primer additionally encoded a methionine
and the reverse primer contained a stop codon to allow expression of a mutated
and non-mutated version of the respective minigene for immunological assays.
gDNA isolated out of FFPE melanoma tissue was used as template for PCR
amplification of the minigene containing the defined mutation whereas PBMC
served for cloning of the wt minigene, except for the NCAPG2-derived mutated
and wt minigenes, which were cloned out of customized synthesized vector con-
structs (GenScript, Piscataway, USA). Following primer sequences were used for
cloning of all constructs: AKAP6_fwd 50- TAGCGGCCGCCACCATGGATGAG
GGGGAAAGCAT-30 , AKAP6_rev 50- TAGTCGACTTCTATATTGCCACTTTT
AT-30; NOP16_fwd 50- TAGCGGCCGCCACCATGTCCTCGATTCTTTGCA
G-30 , NOP16_rev 50- TAGTCGACAGAGCGGGGAGTGTGCACGT-30 (control
minigenes); SYTL4_fwd 50- TAGCGGCCGCCACCATGAGTACGATCGGCAGC
AT-30, SYTL4_rev 50- TAGTCGACCTTGGCTTCATCAGCATAGG-30 ;
NCAPG2_fwd 50- TAGCGGCCGCCACCATGTCTCCAGTGCATTCCAA-30 ,
NCAPG2_rev 50- TAGTCGACCATGAAGGTTTGGATCC-30 (control
minigenes). Cells were transduced with retroviral vectors coding for the respective
minigenes and the fluorescent dye dsRed Express II to allow sorting of transgenic
cells. Retroviral particles were generated as described previously60. Briefly,
retroviral vector plasmids coding for respective minigenes were co-transfected with
plasmids carrying retroviral genes for gag/pol derived from Moloney murine
leukaemia virus (pcDNA3.1-Mo-MLV) and env (pALF-10A1) into 293T cells using
TransIT (Mirus, Göttingen, Germany). After 48 h incubation, supernatants were
filtered (45 mm) and used for transduction of LCL1.

In-vitro stimulation of effector T cells. Recall antigen-experienced T-cell
responses were investigated by stimulation of PBMC from patients or healthy
donors as previously described61 with slight modifications. Briefly, 0.3–0.5 Mio
PBMC per well were cultivated in AIM-V for 24 h in the presence of IL-4 and
GM-GSF (PeproTech, London, UK). 1 mM Peptide (GenScript, Piscataway, USA),
0.5 ng ml� 1 IL-7 (Peprotech) and 20 mg ml� 1 Poly-I:C (Invitrogen) were added
after 24 h. Cells were then transferred to a previously coated IFN-g ELISpot plate

and cultured over night at 37 �C. Afterwards, cells were gently re-suspended and
re-cultivated in T-cell medium.

For stimulation of naive T cells with defined mutated peptide ligands, monocytes
of healthy donors were differentiated into dendritic cells (DC) by plate adherence and
incubation with IL-4 (20 ng ml� 1) and GM-CSF (100 ng ml� 1) (Peprotech) for 48 h.
Cells were further matured using TNF-a (10 ng ml� 1), IL-1b (10 ng ml� 1),
IFN-g (5,000 IU ml� 1), PGE2 (250 ng ml� 1) (Peprotech) and CL075 (1mg ml� 1)
(InvivoGen, San Diego, USA) for 24 h. Naı̈ve T cells from the DC donor were isolated
as described previously49. After pulsing of DC with 1mM peptide for 2 h in AIM-V
medium (Invitrogen), priming was started at an effector to target ratio of 10:1 in the
presence of IL-21 (30 ng ml� 1) (Peprotech). In each stimulation procedure, IL-7 and
IL-15 (5 ng ml� 1) (Peprotech) were added every two to three days.

Multimer staining and further enrichment of specific T cells. HLA multimers
were manufactured as previously described62. Multimer staining was performed
according to current recommendations and protocols of the CIMT
Immunoguiding Program (http://www.cimt.eu/workgroups/cip).

For a detailed investigation of T-cell responses against SYTL4 on the clonal level
(Figs 5h and 6h,i), expanded T-cell lines were functionally sorted by enrichment of
CD137 positive cells after overnight stimulation with irradiated peptide pulsed T2
cells, cloned by limiting dilution and screened for peptide-specific recognition.
Relevant clones (PBMC-SYTL4clone1, TIL-SYTL4clone1) were further expanded
using irradiated feeder, IL-2 and Okt-3 for assessment of minigene recognition and
peptide titration assays.

Functional T-cell analysis. Expanded T cells were co-incubated after 10–14 days
with peptide-pulsed (1 mM) target cells or cell lines transduced with different
minigene constructs. Respective target cells were pulsed with the mutated peptides,
the wt counterpart or irrelevant peptides with the same HLA restriction as ligands
of interest (designated as control peptides). Coincubation assays for detection of
cytokine secretion were performed in duplicates. ELISpot analysis was performed
with IFN-g-coating monoclonal antibody (1-D1K), IFN-g-capture-mAb
(7-B6-1-biotin) and Streptavidin-HRP (all Mabtech, Sweden) as recommended by
the manufacturer using 20,000 target cells and 20,000–40,000 effector cells per well
as indicated. Phorbol 12-myistate 13-acetate (PMA) (Sigma-Aldrich) and
Ionomycin (Merck, Germany) were used for a positive control. ELISpot plates were
read out on an ImmunoSpot S6 Ultra-V Analyzer using Immunospot software
5.4.0.1 (CTL-Europe, Bonn, Germany).

Co-culture experiments for assessment of IFN-g release were performed with an
effecter-to-target ratio of 1:1 using each 10,000 target and effector cells per well.
Peptide titration assays were performed at least twice showing comparable results
for each reactivity pattern. IFN-g release in cell culture supernatants of
coincubation assays was determined using the BD OptEIA Human IFN-g ELISA
Kit II (BD Biosciences, Franklin Lakes, USA). Intracellular cytokine staining was
performed with IC staining kit (eBioscience). 100,000 effector cells were
coincubated with 100,000 target cells. After one hour, 10 mg ml� 1 Brefeldin A
(Sigma-Aldrich) was added and cells were incubated for 4 more hours at 37 �C.
Cells were then stained with Ethidium-monoazide bromide (Invitrogen) for
life-dead discrimination and anti-CD8-APC (clone RPA-T8). After fixation and
permeabilization, intracellular cytokines were stained with anti-IFN-g-AF700
(clone B27), anti-TNF-a-V450 (clone Mab11) and anti-IL-2-BV510 (clone
5344,111) antibodies (all BD Biosciences).

Cytotoxic activity of specific T cells was analysed by coincubation of 50,000
effector cells with 50,000 target cells followed by using FACS-based quantification
of remaining target cells after 20 h. Therefore, cocultures of target and effector cells
were stained with 7-Aminoactinomycin D (7AAD) (Sigma-Aldrich) for dead cell
exclusion, anti-CD8-FITC (clone HIT8a) and anti-CD3-AF700 (clone UCHT1)
(all BD Biosciences). Target cells were identified according to their morphology in
the FSC/SSC and gated on 7-AAD� /CD8� /CD3� events. Absolute numbers of
cells per well were calculated with AccuCheck COUNTING BEADS (Invitrogen)
according to the manufacturer’s instructions. Lysis of minigene transduced or
peptide-pulsed LCL was then set in relation to untreated LCL cocultered with
respective effector cells using the following formula:

percentage of lysed LCL ¼ 1� absolute number of remaining LCL
mean of untreated LCL

� �
�100

ð1Þ

Cytotoxic experiments were performed in triplicates and depicted results are
representative for two independent experiments each. Measurements of all FACS-
based assays were performed on a LSR II flow cytometer (BD Biosciences) and
samples were analysed using FlowJo Software.

T-cell responses against freshly removed tumour material from patient Mel15
were analysed by using either small non-treated tumour pieces or digested tumour
tissue. Non-treated fresh material was prepared by mincing tumour tissue into
small pieces of 1 mm length and two tumour fragments were added to each well of
a 96-well plate. Tumour digestion was performed as described previously63 with
slight modifications. Briefly, teased tissue (o3 mm3) was incubated with tumour
digestion medium consisting of RPMI supplemented with DNase type I,
Hyaluronidase, Collagenase type IV (all Sigma-Aldrich), Pen/Strep and
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Gentamycin. Obtained tumour suspension was cocultured with 50,000 cells of
expanded T-cell lines or 100,000 cells of freshly isolated PBMC per well.

Data availability. The mass spectrometry proteomics data have been deposited to
the ProteomeXchange Consortium via the PRIDE partner repository64 with the
dataset identifier PXD004894. Whole exome sequencing data has been deposited at
the European Genome-phenome Archive (EGA), which is hosted by the EBI and
the CRG, under accession number EGAS00001002050. The authors declare that all
the other data supporting the finding of this study are available within the article
and its supplementary information files and from the corresponding author on
reasonable request.
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2.2.2 Ultra-deep and quantitative saliva proteome reveals

dynamics of the oral microbiome

The era of high-throughput genomics brought a considerable advance in the field of

microbiome research. Large scale projects as human microbiome project (HMP)

studied the collection of thousands of samples from a dozen body cavities and

thousands of patients[39]. Prior studies were focused on a limited set of bacteria

that could be cultivated outside of the body site. The new studies demonstrate

high variability of microbiome between people and conditions as well as broad

dynamics within a day.

The oral microbiome is considered the most dynamic biome in the human

body[164]. MALDI-TOF proteomics is widely used in clinical studies as a fast

detection method for highly abundant bacterial species[165]. However, this

approach has a limited dynamic range. In this article we compared in-lab

developed shotgun proteomics approach with state-of-art techniques to study the

oral microbiome, such as MALDI-TOF mass spectrometry and next-generation

sequencing data from HMP[166]. Our data shows a strong agreement between

all techniques. However, using the shotgun proteomics we were able to detect

bacteria within a large expression range (4 orders of magnitude of LFQ intensity).

An additional advantage of our approach is the ability to detect secreted human

proteins as well, that are not accessible by genomics methods.

I contributed to this study by developing a quantitative method for bacteria

identification. This method is generally applied to proteomics and genomics

data. In short, we placed a quantity of identified bacterial peptides as well as

NGS DNA fragments, on a taxonomic tree such that these peptides do not allow

discrimination of the branches below. Using this method, we were able to make

a PCA analysis of our proteomics results together with results from HMP and

observe a significant agreement.
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Ultra-deep and quantitative saliva
proteome reveals dynamics of the oral
microbiome
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Abstract

Background: The oral cavity is home to one of the most diverse microbial communities of the human body and a
major entry portal for pathogens. Its homeostasis is maintained by saliva, which fulfills key functions including
lubrication of food, pre-digestion, and bacterial defense. Consequently, disruptions in saliva secretion and changes
in the oral microbiome contribute to conditions such as tooth decay and respiratory tract infections. Here we set
out to quantitatively map the saliva proteome in great depth with a rapid and in-depth mass spectrometry-based
proteomics workflow.

Methods: We used recent improvements in mass spectrometry (MS)-based proteomics to develop a rapid
workflow for mapping the saliva proteome quantitatively and at great depth. Standard clinical cotton swabs were
used to collect saliva form eight healthy individuals at two different time points, allowing us to study inter-
individual differences and interday changes of the saliva proteome. To accurately identify microbial proteins, we
developed a method called “split by taxonomy id” that prevents peptides shared by humans and bacteria or
between different bacterial phyla to contribute to protein identification.

Results: Microgram protein amounts retrieved from cotton swabs resulted in more than 3700 quantified human
proteins in 100-min gradients or 5500 proteins after simple fractionation. Remarkably, our measurements also
quantified more than 2000 microbial proteins from 50 bacterial genera. Co-analysis of the proteomics results with
next-generation sequencing data from the Human Microbiome Project as well as a comparison to MALDI-TOF mass
spectrometry on microbial cultures revealed strong agreement. The oral microbiome differs between individuals
and changes drastically upon eating and tooth brushing.

Conclusion: Rapid shotgun and robust technology can now simultaneously characterize the human and
microbiome contributions to the proteome of a body fluid and is therefore a valuable complement to
genomic studies. This opens new frontiers for the study of host–pathogen interactions and clinical saliva
diagnostics.
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Background
Using saliva for the diagnosis of medical conditions would
be particularly attractive because it can be collected non-
invasively and economically [1], but the complexity of the
oral cavity and the multiple entities contributing to its
homeostasis make this challenging. In addition to the secre-
tions of oral grands, saliva contains cells shed from the
epithelium of the oral cavity and harbors the oral micro-
biome. Promising steps towards the establishment of saliva
protein biomarkers have already been undertaken [2, 3].
However, these studies either only considered around 100
proteins with antibody-based assays or employed relatively
low throughput mass spectrometry (MS)-based proteomics
with extensive fractionation, which generally precluded
quantification [4].
Further interest in saliva has recently been fueled by the

discovery that the oral microbiome and the gut microbiome
are the most diverse ones of the human body and that they
correlate well with each other [5]. There is now compelling
evidence for a link between the human microbiome and
conditions such as obesity, allergies, and even autoimmune
diseases like multiple sclerosis [6–8]. In addition, tooth
decay and other diseases of the oral cavity are known to be
caused by bacteria but turn out to be insufficiently
explained by one species alone [9, 10]. Therefore, first
metagenomics and then metaproteomics studies have
already aimed to relate bacterial composition to caries inci-
dence [10, 11]. However, reproducible identification and
consistent quantification of bacteria remain challenging.
Dynamic, quantitative studies would be of great help to un-
cover the functional connections between microbial com-
munities and the prevalent pathologies of the oral cavity.
During the past few years, our laboratory has focused

on simplifying and streamlining the proteomics work-
flow, with the aim of bringing the technology closer to
clinical applications. Here we set out to characterize the
saliva proteome at the greatest depth possible while still
minimizing steps that could compromise quantification.
We also developed a rapid single-run analysis workflow,
starting from standard clinical cotton swabs and deliver-
ing results in a few hours, while retaining a quantifica-
tion depth of thousands of proteins. This allowed us to
investigate changes in the saliva proteome upon perturb-
ation in a healthy cohort. We also analyzed inter-
individual differences in the saliva proteome and quanti-
tatively addressed the long-standing question of the
degree to which the plasma and saliva proteomes are
correlated. Finally, we asked if our in-depth workflow
can characterize the oral microbiome and its dynamics
and confirmed detected species by the established
method of culturing followed by Matrix-assisted laser
desorption/ionization time of flight mass spectrometry
(MALDI-TOF MS) as well as data from next-generation
sequencing projects.

Methods
Experimental design
We collected saliva at two different time points from
four female and four male, healthy, non-smoking indi-
viduals aged 24 to 40 years with Caucasian backgrounds.
All subjects were asymptomatic, did not take any drugs
or antiseptics, visited the dentist regularly, and showed
no signs of inflammation, bleeding, or infection as
judged by a medical student (N.G.). The study was
approved by the ethics committee of the Max Planck
Society and all donors provided their written informed
consent to participate in this study and to publish the
acquired results. The first collection was immediately
after waking, before eating, drinking, or tooth brushing.
The second collection took place at 10 a.m., at least
30 min after the donors had eaten breakfast and brushed
their teeth. In addition, we collected three samples
immediately after one another from the same donor,
processed them in parallel, and determined the reprodu-
cibility of our workflow. Because this showed very high
reproducibility (mean R2 = 0.92, Additional file 1: Figure
S3b), we did not perform technical replicates in this
study but decided to use our measurement time for the
analysis of several donors and proteome states.

Protein digestion and peptide purification
Following collection, the swabs were transferred to an
Eppendorf tube containing 200 μl of lysis buffer (1 % so-
dium dodecyl carbonate (v/v), 10 mM tris (2-carbox-
yethyl) phosphine, 40 mM 2-chloroacetamide, 100 mM
Tris buffer pH 8.5), thoroughly squeezed against the
inner wall of the Eppendorf tube, and removed. We re-
producibly recovered more than 100 μg of protein in this
way as estimated by the Bradford protein assay. Sample
preparation followed essentially the in-StageTip protocol
[12]. Briefly, a total of 20 μg of protein was digested by
adding 0.4 μg trypsin and LysC to our lysis buffer and incu-
bating for 60 min at 37 °C while shaking. Following this
short digestion, we acidified the peptides to a final concen-
tration of 1 % trifluoroacetic acid (TFA) and loaded them
on an SDB-RPS StageTip [13]. The filter was then washed
and peptides were finally eluted with 60 μl 80 % acetonitrile
(ACN) (v/v) and 1 % ammonium (v/v), dried in a SpeedVac
concentrator, and resuspended in A* buffer (2 % ACN (v/
v), 0.1 % TFA (v/v), pH 2) to a concentration of 1 g/l.

Single run and prefractionated liquid chromatography-MS
measurement
To obtain a deep saliva proteome, we used basic re-
versed phase chromatography to fractionate our eight
waking samples prior to liquid chromatography (LC)-
MS measurement. Approximately 15 μg of peptides were
separated in an 80-min gradient on a 20-cm, 75-μm
inner diameter column that was in-house packed with
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ReproSil-Pur C18 beads (Dr. Maisch GmbH, Germany).
Concatenated fractions [14, 15] were dried in the
SpeedVac concentrator and resuspended in A* buffer to a
concentration of 1 g/l. Both the fractionated and the single
run samples were subjected to a 100-min chromatography
gradient using an EASY-nLC 1000 ultra-high pressure
system (Thermo Fisher Scientific) and an in-house-made
40-cm column of the type described above. The chroma-
tography was on-line coupled to a Q Exactive HF mass
spectrometer (Thermo Fisher Scientific) by applying a spray
voltage of 2.2 kV. The MS scan resolution was set to
120,000 at m/z 200, the scan range to 300 to 1650 m/z, and
the maximum injection time to 55 ms. The 15 most intense
ions per MS scan were selected for higher-energy collisional
dissociation (HCD) fragmentation with an isolation width
of 1.5 m/z and were measured at a resolution of 30,000.
Dynamic exclusion was used with an exclusion time of 30 s.

Raw data processing of human proteins
The raw files were analyzed in MaxQuant [16] (version
1.5.3.15). We analyzed the single runs and the fraction-
ated samples together in order to exploit the match
between runs algorithm, which enables the identification
of peptides that were not selected for fragmentation in
one run by checking whether these peptides were se-
quenced in another run (the maximum time deviation
was 30 s of the recalibrated retention times) [17]. We
used the Andromeda search engine [18] to search the
detected features against the human reference proteome
from Uniprot (downloaded on 24 June 2015; 90.5 K
sequences, 3.2 million unique peptides of which 0.64
million were seven amino acids or more in length) and a
list of 247 potential contaminants [16]. Only tryptic pep-
tides that were at least seven amino acids in length with
up to two missed cleavages were considered. The initial
allowed mass tolerance was set to 4.5 ppm at the MS level
and 0.5 Da at the MS/MS level. We set N-acetylation of
proteins’ N-termini (42.010565 Da) and oxidation of me-
thionine (15.994915 Da) as variable modifications and car-
bamidomethylation of cysteine as a fixed modification
(57.021464 Da). A false discovery rate (FDR) of 1 % was
imposed for peptide-spectrum matches (PSMs) and pro-
tein identification using a target–decoy approach. Relative
quantification was performed using the default parameters
of the MaxLFQ algorithm [19] with the minimum ratio
count set to 1.

Data analysis of human proteins
The “proteinGroups.txt” file produced by MaxQuant
was further analyzed in Perseus (version 1.5.2.12). Pro-
teins from the reverse database, proteins only identified
by site, and contaminants were removed. We decided to
consider all keratin type I and II proteins contaminants
because we could not exclude the possibility that their

presence in our samples was due to skin desquamation.
Proteins were ranked according to the mean label-free
quantification (LFQ) intensities of the fractionated wak-
ing and the postprandial samples of all donors. We per-
formed one-dimensional (1D) annotation enrichment of
the resulting logarithmized LFQ distribution for Gene
Ontology (GO) terms and Uniprot keywords with a
Benjamini–Hochberg FDR cutoff of 2 % as described
[20]. For the comparison of plasma and saliva pro-
teomes, we used triplicate plasma proteomes of two of
our saliva donors measured with 45-min HPLC gradi-
ents [21]. These six raw files were processed together
with the single run saliva files from the two donors using
the MaxQuant settings from above. Principal component
analysis (PCA) was done on the logarithmized LFQ inten-
sities of all 16 single shot runs. The differences between
the waking and postprandial proteomes were analyzed by
filtering the list of quantified proteins for 100 % valid
values in all 16 single run analyses and performing a two
sided t-test on the logarithmized LFQ intensities with a
Benjamini–Hochberg FDR cutoff of 5 % and the s0 par-
ameter set to 0.1. We determined whether the significantly
upregulated proteins at waking were enriched for certain
Uniprot keywords compared with the entire proteome
using a Fisher exact test with 2 % permutation-based FDR.
The analogous analysis was performed for the significantly
upregulated postprandial proteins.

Raw data processing of human and bacterial proteins
For the analysis of human and bacterial proteins, we
downloaded the fasta files of all named species of the
human oral microbiome database [22] with more than
five protein sequences (downloaded 24 June 2015;
1118.9 K bacterial protein sequences in total). Together
with the human sequences the resulting database con-
tained 1209.4 K protein sequences which correspond to
58.6 million unique peptides after in silico digestion and
5.9 million peptides seven amino acids or more in
length, which we considered in our MaxQuant settings.
Search parameters were essentially identical to the raw
file processing of human proteins alone, except that we
applied the split by taxonomy feature on the phylum
level and only used unique peptides for quantification.
Due to the split by taxonomy on the phylum level, pep-
tides that are part of human and bacterial proteins or
peptides that occur in proteins from two different phyla
are neglected for protein identification. This, as well as
using only unique peptides rather than razor peptides
for quantification, guarantees that peptides shared by
different phyla are not attributed to the wrong organism.

Data analysis of the oral microbiome
For creating the taxonomic tree in Fig. 4, we determined
the number of peptides that uniquely belonged to one
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species of our database and wrote this number above the
respective edge of the genus. Peptides shared by certain
genera were added to the number of the lowest taxonomy
edge shared by these genera (Operating Taxonomy Unit).
For Fig. 4 we excluded all genera that did not have at
least one unique peptide. We extended the analysis
for streptococci down to the species level. Bacterial
genus abundance was estimated by adding the ten
peptides of highest intensity per genus in analogy to
the protein quantification in [23, 24]. Genera with less
than ten peptides were excluded from quantification.

Co-analysis with whole genome sequencing data from
the human microbiome project
To compare our data with results obtained from whole
genome sequencing (WGS), protein multifasta (PEP)
was downloaded from the Human Microbiome Project
(HMP) [25]. Fractionated and single run raw files were
analyzed with the MaxQuant settings described above
against the human reference proteome from Uniprot
and the fasta file from HMP (3.8 million protein se-
quences, 127.3 million unique peptides). From the gen-
omic side we downloaded 764 fastq files from the HMP
(release of 2012) and trimmed them using Trimmomatic
[26] (we removed adapter as well as leading and trailing
sequences with quality lower than 10 Phred quality score;
we also did not accept reads for further analysis with
lengths less than 36 nucleotides) and aligned using BWA
with default parameters [27]. A PCA of the reads per
genus of the WGS dataset together with the top ten
peptide intensities per genus across the median of all sam-
ples from MaxQuant was performed after Z-score scaling
within each sample (Fig. 5d). We combined the body sites
“saliva”, “tongue dorsum”, “attached keratinized gingiva”,
“palatine tonsils” and “throat” from the HMP for our def-
inition of mouth because these sites clustered tightly in a
PCA. Furthermore, we performed hierarchical clustering
(Euclidean distance coupled with Ward’s agglomeration
method was used) on the resulting dataset and visualized
the genus abundance per sample in a heatmap (using the
R package heatmap.2) (Additional file 1: Figure S1).

Microbiological processing of the samples
Together with the cotton swab collection after wak-
ing, all donors also collected whole saliva by passive
drooling into a sterile tube. Samples were processed
immediately after collection as follows. One Columbia
and one chocolate blood agar plate for the aerobic
and two Schaedler agar plates for the anaerobic culture
were plated out with 50 μl saliva each. Aerobic cultures
were incubated for 3 days at 37 °C and 5.8 % CO2. Anaer-
obic cultures were grown under anaerobic conditions at
37 °C for a minimum of 5 days. Plates were evaluated

visually and all morphologically different colonies were
subcultured for identification by MALDI-TOF MS.

Identification by MALDI-TOF MS
Samples were measured in duplicates according to the
standard protocol recommended by the manufacturer.
In brief, a thin layer of bacteria taken from a single col-
ony was smeared onto a polished steel target and over-
laid with 1 μl of matrix solution containing 10 mg/ml of
α-cyano-4-hydroxy-cinnamic acid in 50 % acetonitrile/
2.5 % TFA (α-HCCA portioned matrix, Bruker Daltonik
GmbH, Bremen, Germany). For measurements, a
Microflex LT benchtop instrument operated by flex-
Control 3.3 software (Bruker Daltonik GmbH, Germany)
was used. Spectra were acquired in the linear positive ion
mode at a laser frequency of 60 Hz within a mass range of
2 to 20 kDa. The acceleration voltage was 20 kV, the IS2
voltage was maintained at 18.6 kV, and the extraction
delay time was 200 ns. For data analysis, spectra were
matched with the Bruker Taxonomy database version
4.0.0.1.

Results and discussion
In-depth quantification of the saliva proteome
We obtained saliva from four male and four female healthy
individuals using sterile cotton swabs as is done in routine
clinical practice (Fig. 1, “Methods”). Donors were required
to abstain from eating and drinking for at least 30 min prior
to the collection to avoid food-based contamination or dilu-
tion effects. They were instructed to wipe the vestibule of
the oral cavity, followed by the teeth and the sublingual
compartment. Around 200 μg of total protein was recov-
ered from each swab, an ample amount for repeated meas-
urement using our recently developed in-StageTip
digestion procedure [12]. Following an immediate digestion
for one hour and purification, the resulting peptides were
separated into eight fractions with basic reversed-phase
chromatography [14, 15]. Each fraction as well as unfractio-
nated sample was measured with a 100-min LC gradient
on a Q Exactive HF mass spectrometer [28, 29]. Data were
analyzed using the MaxQuant environment [16, 19].
Across our eight donors we identified more than

54,000 sequence-unique peptides and more than 5500
proteins, both at a false discovery rate (FDR) of 1 %. A
total of 78 % of these proteins were detected in each
donor, 90 % in at least six of eight donors, and only
1.3 % were unique to single donors (Fig. 2a). Thus,
our sample collection protocol is robust and allows
comparison of thousands of saliva proteins across individ-
uals. For an individual donor, we identified a remarkable
5213 human proteins in the eight fractions—to our know-
ledge the deepest body fluid proteome recorded from an
individual to date (Additional file 1: Figure S2a). To inves-
tigate the reasons for this extensive coverage, we inspected

Grassl et al. Genome Medicine  (2016) 8:44 Page 4 of 13



2.2. MULTI-OMICS APPLICATIONS 117

the MS signal of the most abundant proteins. Unlike other
body fluids, the 15 most abundant proteins in saliva make
up only 32 % of the total proteome mass (Fig. 2b), whereas
in plasma and urine they already account for more than
90 % and 58 % of the total, respectively [30, 31].
The abundance ranked plot of the entire measured sal-

iva proteome spans a dynamic range of six orders of
magnitude of estimated absolute abundance (Fig. 2c). To
bioinformatically investigate the saliva proteome as a
function of abundance, we used 1D annotation enrich-
ment in the Perseus environment for GO terms and
Uniprot keywords [20]. “Antibacterial humoral response”
and “defense response to bacterium” scored in the upper
part of the abundance distribution (Fig. 2c). “Extracellu-
lar space” and “Extracellular exosome” were significant
near the median, indicating that proteins making up this
category are somewhat less abundant than most of the
functional saliva proteins. The terms in the lowest abun-
dance range included typical intracellular terms such as
“cytoplasm” and “mitochondrial translation”.
There is an ongoing debate as to the extend that easily

obtainable saliva could be used to measure plasma
biomarkers by proxy [32]. We measured the plasma pro-
teomes of two of our saliva donors in singe-run triplicate
measurements [21] and compared them with the single-
run saliva proteomes of the same donors. Due to the dy-
namic range challenges, fewer proteins were identified in
plasma but more than 50 % of these were also identified

in saliva. A scatter plot of the label-free quantification
(LFQ) intensities of the proteins [19] that were identified
in both body fluids reveals little correlation between
these values (R2 = 0.11; Fig. 2d). Over the two individuals
and all replicates, it was never higher than R2 = 0.20. We
also considered the possibility that particular saliva com-
ponents might show a higher correlation with the
plasma proteome and collected one saliva sample from
the opening of the duct of the parotid gland, one from
the opening of the sublingual and submandibular gland,
and one from gingiva. All these saliva proteomes re-
vealed R2 values below 0.1 (Additional file 1: Figure S3).
Thus, we conclude that the plasma and saliva proteomes
show little overall correlation and that saliva cannot dir-
ectly be used as a substitute for the determination of
plasma protein levels.
To make our saliva results available to the community

in a user-friendly format, we uploaded them to the
MaxQB database [33]. For each protein of interest, a
query will reveal whether it is present in our saliva
proteome, its abundance rank, estimated absolute abun-
dance, and other protein level information (Additional
file 1: Figure S2b). Additionally, peptide evidence leading
to protein identification as well as high-resolution
precursor–fragment relationships are available for
constructing targeted assays. The protein illustrated in
Additional file 1: Figure S2b is transcobalamin-1
(TCN1), which is known to be secreted by the salivary
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glands and to protect cobalamin or vitamin B12 against
acidity of the stomach. In addition, TCN1 functions as a
transport protein in the blood, carrying excess cobala-
min to the liver for storage. Cobalamin deficiency occurs
in 20 % of individuals over the age of 60 years [34] and
causes anemia, demyelinating disease, or both [35]. Due
to cobalamin’s clinical significance, the physiological
levels of TCN1 in blood have been characterized exten-
sively in dedicated studies [36, 37], whereas here its
levels are determined in the context of our system-wide
investigation of thousands of other saliva proteins.

A deep single-run workflow
The high proteome coverage achieved using fraction-
ation motivated us to determine how much of the saliva
proteome could be retrieved in a single-run or “single-
shot” experiment [17]. We used the same 100-min gradi-
ents as before and measured saliva proteomes from the
eight individuals mentioned above, each at two different

time points, once immediately after waking before tooth
brushing and once post-prandial after tooth brushing.
Remarkably, an average of 3835 proteins could be identi-
fied and almost all of them (94 %) were also quantifiable
(Additional file 1: Figure S4a). The results from three
swabs taken at nearly the same time and processed inde-
pendently but equally were highly similar with a mean
coefficient of determination R2 of 0.92 (Additional file 1:
Figure S4b). The difference between individuals was
somewhat higher, with an R2 of 0.89, indicating that bio-
logical differences between individuals can also be
captured by single-run measurements. Plotting the CVs
for saliva proteome variation between the individuals
showed that they did not primarily depend on protein
abundance (Additional file 1: Figure S4c). This suggests
that single-run analysis should be able to determine bio-
logical differences across a wide abundance range. As
the single-shot proteome still quantifies more than
3700 proteins, which include nearly all the functional
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categories described above, very rapid and medium
throughput characterization of saliva may be possible in
the clinic.

Dynamics of the saliva proteome in a cohort
The oral cavity is subject to a variety of conditions in
daily life. Despite several studies investigating, for in-
stance, changing cortisol levels [38], to our knowledge
intraday changes in the saliva proteome have not yet
been investigated in depth.
To uncover dynamic changes, we first performed a

principal component analysis (PCA) on all 16 single-run
proteomes. Component 1 of the PCA separated weakly
by sex (Additional file 1: Figure S5), whereas component
2 separated the two proteome states (waking versus
post-prandial after tooth brushing) and this difference was
even more pronounced when inspected on a person-by-
person basis (Fig. 3a). To determine the proteins respon-
sible for the PCA clustering, we filtered for 100 % valid
LFQ values and plotted significance (5 % FDR) versus fold
change (Fig. 3b). The proteins that were significantly
upregulated at waking were enriched in the keywords
“antibiotic” (p = 7.7 × 10−9, enrichment factor (ef) = 33)
and “antimicrobial” (p = 6.6 × 10−8, ef = 24). The proteins
with significantly higher abundance in the postprandial
state were enriched for the terms “thiol protease inhibitor”
and “secreted” (p = 3.3 × 10−5, ef = 42, and p = 8.7 × 10−9,

ef = 6, respectively). Serving as a positive control, levels of
alpha amylase (AMY1A), a protein that initiates the break-
down of complex oligosaccharides, were consistently
upregulated after the meal. Thus, the shifts in protein
abundance between our two measurement time points
demonstrate that MS-based proteomics can now robustly
capture biologically meaningful dynamic changes in body
fluid proteomes.

Identification of bacterial proteomes in human saliva
Due to the prominent role of the oral microbiome in
health and disease, we investigated whether we could de-
tect bacterial species in the deep saliva proteomes. For
this purpose, we downloaded the complete Uniprot pro-
tein sequences of all named oral bacterial species that
had been identified by 16S rRNA sequencing in a recent
study [22]. The resulting database was about 11 times
larger than the human one alone.
In metaproteomics it is not straightforward to assign

peptides to bacterial phyla because some amino acid se-
quences are part of proteins from different phyla. We
addressed this issue by applying the “split by taxonomy”
feature in MaxQuant, which avoids the formation of
protein groups between different phyla. Together with
the exclusive use of unique peptides for protein quantifi-
cation, this functionality prevents the same peptide from
contributing to the identification and quantification of

a b

Fig. 3 Intraday dynamics of the human saliva proteome. a PCA of the 16 saliva samples showing that component 2 separates samples based on
the collection time (w = waking and p = postprandial). b Differentially regulated proteins between w and p as determined by plotting the t-test
significance (5 % permutation-based FDR) versus the logarithmized fold change of LFQ intensity (volcano plot). Protein data points are labeled by
their gene names. The green gene names indicate genes with the Uniprot keyword “antibiotic” or “antimicrobial”, the purple gene names indicate
proteins with the Uniprot keyword “secreted”
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proteins in different phyla (“Methods”). Split by taxonomy
id is, therefore, relevant only for protein identification but
not for peptide identification or quantification. However,
bacteria in the oral cavity can have substantial sequence
identity (Additional file 1: Figure S6a, b) [39]. As closely
related bacteria share many sequences, one therefore
needs to find the most appropriate taxonomy rank for ap-
plying the split by taxonomy id. To address this question,
we placed identified bacterial peptides on a taxonomic
tree such that the number of shared peptides is noted on
each branch (Fig. 4). These shared peptides do not allow
discrimination of the branches below. Split by taxonomy
at a certain taxonomic rank prevents peptides shared at
the ranks above from contributing to the identification of
proteins. As in the case of human and microbial proteins
above, this prevents the misassignment of peptides to
phyla from which they do not necessarily originate. Pla-
cing the split at the phylum level turned out to be a good
compromise between use of peptides for identification
and quantification on the one hand and stringency
of identification of bacteria on the other hand
(Additional file 1: Figure S6) and we used this setting
for all following analyses.
The presence of bacteria in the oral cavity also raises

the question of whether proteins from them might con-
siderably impair the human protein quantification

presented above. To address this question we deter-
mined the nonredundant tryptic peptides that were
seven or more amino acids long in our human and our
oral bacteria database, which is the minimum length
considered in our analysis. Among these tryptic pep-
tides, the percentage of peptides with identical se-
quences between humans and bacteria was only 0.043 %
(Fig. 5a). Hence, the quantification bias of human pro-
teins due to bacteria is marginal. This analysis also indi-
cates that bacterial contamination of mammalian
proteome samples does not impair protein quantification
considerably as long as only peptides of seven amino
acids or more in length are considered.
Similarly, ingested proteins from food could, in

principle, be erroneously assigned to human or bacterial
proteins. To estimate the magnitude of these effects, we
performed an analogous analysis on bovine and wheat as
representative parts of a Western breakfast diet and
determined the number of sequence identical peptides
to humans and bacteria (Additional file 1: Figure S7).
Except for bovine and human the percentage of overlap-
ping peptide sequences is far below 1 %. Due to an over-
lap of 20.7 % among the considered human and bovine
peptides, our in silico analysis does not exclude the pos-
sibility of quantification bias. However, proteins that
substantially differ between waking and the postprandial
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state in Fig. 3 do not include proteins from human milk
or human muscle, as would be expected if these differ-
ences were due to a bovine diet.
Remarkably, a search of our deep saliva proteome data

sets using our standard, stringent search criteria (1 % FDR

at the peptide and protein levels) resulted in the identifica-
tion of 2234 different bacterial proteins. In total, we found
evidence for 50 different bacterial genera from nine
different phyla. This represents 50 % of the named
genera identified by next-generation sequencing with
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corresponding, annotated UniProt proteomes and
therefore present in our database. The proteomic
coverage of bacterial genera is remarkably high given
the restricted database and the modest measuring
time. The distribution of peptides specific for particu-
lar genera was highly unequal, ranging from only 1 to
1069 for the genus Streptococcus, for which Fig. 4
shows a detailed taxonomic tree down to the species
level. At least 12 different such Streptococcus species
were present in our deep saliva proteome. The most
abundant species was Streptococcus mitis, but we also
detected peptides unique to Streptococcus mutans, a
main contributor to dental caries formation.
Standard MALDI-TOF MS as now routinely used in

clinical microbiology found evidence of 14 different
genera in our saliva samples, with an average of six
genera per donor (“Methods”). In each case, shotgun
proteomics had also identified the genus in the same
sample without the need to cultivate the bacteria
prior to processing. A rough comparison with the
number of MS-identified peptides for genera identi-
fied by MALDI-TOF MS suggests that they were
generally the more abundant ones (Fig. 4). While the
goal in clinical microbiology is to identify the pres-
ence of one or a few pathogens responsible for an
infection, rather than a total inventory of the micro-
biome, it is nevertheless notable that unbiased and
relatively straightforward shotgun proteomics of saliva
identified these bacteria without intervening cultiva-
tion directly from a cotton swab. This identification
would presumably have been much easier still in the
case of a dominating pathogen.

The quantitative oral metaproteome
To further investigate the unexpectedly large number of
bacterial protein identifications, we plotted their cumu-
lative percentage as a function of abundance rank
(Additional file 1: Figure S8). Among the first 1000 pro-
teins only 5 % were bacterial proteins. This proportion
increased steadily until it reached 35 % for the total set
of about 6000 proteins. Expressed as the percentage of
bacterial proteins per 100 proteins, the chance to iden-
tify bacterial proteins reached more than 50 % towards
the limit of detection. This suggests that increasing the
depth of proteomic analysis would preferentially uncover
further bacterial proteins and that our coverage of the
oral metaproteome is far from saturation. As the
depth of our bacterial detection increases in the fu-
ture, it may also be possible to analyze bacterial path-
ways and how they change across different conditions
of the oral cavity.
The simultaneous detection of bacterial and human

proteomes in our samples allowed us to directly
compare them quantitatively (Fig. 5b). The most

abundant bacterial protein was F1WNZ3, the Moraxella
catarrhalis homolog of chaperone protein HscA, which
is involved in maturation of iron-sulfur-containing
proteins. Its abundance was only 100-fold lower than
the top human protein, alpha-amylase 1. Further highly
abundant proteins of the bacterial metaproteome in-
cluded proteins with household functions, such as
A0A096BHY1, which is a glyceraldehyde-3-phosphate
dehydrogenase, or E0Q9Q6, a subunit of DNA polymer-
ase III. Sequence alignment in Perseus showed that
many of the very abundant bacterial proteins were highly
conserved. Therefore, peptides from different species
likely contribute to their abundance.
The number of significantly identified human proteins

decreased to about 4000 in the combined search space
(Fig. 5b). Thus, almost a third of the overall protein
count of 6197 is due to the microbiome. The bacterial
proteins originated from four main phyla, with 300 to
800 uniquely assigned proteins, each of which spanned
the entire abundance range (Additional file 1: Figure S9).
In analogy to the top-three-peptide method commonly
used in label-free abundance estimation of proteins
[23, 24], we defined an approximate quantitative
measure of the abundance of a bacterial genus as the
summed MS intensity of the top ten most abundant
peptides across all samples. These data were available
for nearly all genera and, as in the protein case, com-
paring just the ten highest peptide intensities should
be a better measure than summing all peptides, which
would tend to overestimate abundance differences.
The top ten peptides were determined among all peptides
of a genus, not just unique peptides. This comes at
the disadvantage that peptides shared by two genera
could lead to an overestimation of the taxon’s abundance.
Considering only unique peptides would have put genera
with large sequence identity at a great disadvantage com-
pared with genera with relatively distinct peptide se-
quences. However, this shows that adequate quantification
of bacterial genera by their proteomes is challenging
and at the present coverage our quantitative readouts
should be considered as approximations rather than exact
quantifications.
We applied our bacterial quantification measure to

all detected genera and plotted the abundance of the
top 20 (Fig. 5c). As expected from quantification per-
formed by 16S RNA sequencing [40, 41], Streptococcus
was the most abundant genus. The top ten genera did
not show drastic differences in abundance (the inte-
grated MS peptide signal of the top ten peptides was
4.0 × 1010 for Streptococcus and 1.4 × 1010 for Lactococ-
cus). While we believe that the quantitative trends
between bacteria are correct, more accurate quantifi-
cation would require deeper sequence coverage of the
bacterial proteomes.
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The Human Microbiome Project (HMP) has generated
large datasets of human microbiomes using next-
generation sequencing [25]. We compared our quantita-
tive bacterial proteomes with the whole genome sequen-
cing data of the HMP in a PCA (Fig. 5d) and a heatmap of
genera against samples (Additional file 1: Figure S1). The
different body sites clustered separately in the genome
data, with our proteomic data strikingly co-localizing with
the oral microbiome. We did not expect such close co-
localization given that both datasets originate from differ-
ent samples and individuals. However, these results are in
agreement with previous findings showing that the
oral microbiome has relatively low diversity among
individuals (beta diversity) [25]. The human micro-
biome study had collected samples from different lo-
cations in the mouth, but these data cluster together
in the PCA, suggesting that the microbiome is similar
throughout the oral cavity.

Variation and dynamics of the metaproteome
Apart from estimating bacterial abundances, our data
allow a quantitative comparison of the same genus upon
perturbation or across individuals. Overall, individuals

varied little in their bacterial diversity in accordance with
the HMP [25]. A scatterplot of two typical donors
reveals that bacterial abundances are similar for many of
them, with a strong mean R2 of 0.82 (Fig. 6a shows a
typical scatter plot). However, there are also genera that
varied up to tenfold.
The cumulative abundances of the top eight bacterial

genera across all donors indicate differences in total bac-
terial mass of up to threefold (Fig. 6b). Variation in the
relative abundance of genera is much smaller (Fig. 6c)
and the same analysis at the level of the five most abun-
dant phyla showed similar variation.
When aggregating males and females separately, the

two groups exhibited very comparable bacterial abun-
dances that were highly correlated (R2 = 0.94; Fig. 6d).
Thus, proteomics indicates that sex differences in the
oral microbiome are minor. In contrast, bacterial abun-
dance changed drastically after eating breakfast and
tooth brushing. The high abundance bacterial genera
were reduced 2.5-fold on average, while the lower abun-
dant ones generally showed even stronger reduction
(Fig. 6e, f ). The Streptococcus genus, which contains
S. mutans, was reduced by almost threefold after
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tooth brushing (Fig. 6f ). It has been established that
the S. mutans species is not the only one involved in
cavity formation [42] and it would now be interesting
to study the effects of different oral hygiene regimes on
the oral bacterial community at the proteome level.
Our deep saliva proteomes also allow combined ana-

lysis of the human and bacterial proteome changes in
response to the same perturbations. For instance, at
waking, when bacterial abundance is high, the human
saliva proteome was primed towards bacterial defense
with substantial enrichment of proteins annotated with
the Uniprot keywords “antibiotic” and “anti-microbioal”.
Given the higher abundance of the microbiome at
waking, this likely reflects the body’s effort to limit
bacterial proliferation during the night when these popu-
lations are relatively undisturbed. This example illus-
trates the utility of the simultaneous detection of the
human and bacterial proteomes for the study of the
interplay of the host and microbiome.

Conclusions
Here we employed shotgun proteomics with a state of
the art workflow and identified more than 5500 proteins,
the largest number of human proteins in a body fluid to
date. Comparison with the plasma proteome established
that the quantitative protein levels do not correlate.
We showed that shotgun proteomics can now readily

determine 50 bacterial genera in saliva but the sequence
coverage of bacterial proteins and organisms suggests
that we have only scratched the surface of the oral
bacterial proteome. Quantitative comparison to next-
generation sequencing data from the HMP [25] revealed
excellent agreement, suggesting that proteomics could
provide a valuable complement to sequencing-based
measurements of the human microbiome. Furthermore,
proteomics appears uniquely positioned to study the
interplay of the human immune system with commen-
surate and pathogenic bacteria on the protein level.
With improving technology, our workflow might even
become attractive for clinical microbiology since bacteria
do not need to be grown and rapid bacterial resistance
testing could become possible by directly measuring pro-
teins that confer resistance to antibiotics. An important
task for the future is to better characterize and annotate
bacterial sequences in order to provide comprehensive,
non-redundant databases for bacterial proteomics.
In conclusion, the depth and relatively straightforward

nature of our workflow should make it a powerful new
tool in the detection of biomarkers of diseases of the
oral cavity as well as facilitate complementary studies of
the microbiome in different contexts. In particular, pro-
teomics appears uniquely positioned to study the inter-
play of the human immune system with commensurate
and pathogenic bacteria at the systems level. We hope

that such approaches will help to open new avenues in
clinical application and for microbiology in the future.
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2.2.3 The ER membrane protein complex interacts

cotranslationally to enable biogenesis of multipass

membrane proteins

Many ribosomes are engulfed on the surface of the endoplasmic reticulum (ER)

where they synthesize secreted and membrane proteins. The membrane proteins

need special processing to be properly oriented and inserted in the ER membrane.

Most ion channels cross the membrane multiple times and frequently have

functionally important charged amino acids in the middle of the transmembrane

domain. Due to their complexity, such proteins need additional chaperon help[167].

In this article, we demonstrated the importance of multisubunit ER membrane

complex (EMC) for biogenesis of a range of multipass transmembrane proteins,

with a particular enrichment for transporters[37, 168]. For this purpose, two

subunits of the EMC were depleted independently. In both cases, the same subset

of membrane proteins was degraded while their RNA level and translational rate

remain unchanged. This suggests that in the absence of the EMC chaperon, this

subset of proteins were not properly folded which resulted in their degradation.
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Abstract The endoplasmic reticulum (ER) supports biosynthesis of proteins with diverse

transmembrane domain (TMD) lengths and hydrophobicity. Features in transmembrane domains

such as charged residues in ion channels are often functionally important, but could pose a

challenge during cotranslational membrane insertion and folding. Our systematic proteomic

approaches in both yeast and human cells revealed that the ER membrane protein complex (EMC)

binds to and promotes the biogenesis of a range of multipass transmembrane proteins, with a

particular enrichment for transporters. Proximity-specific ribosome profiling demonstrates that the

EMC engages clients cotranslationally and immediately following clusters of TMDs enriched for

charged residues. The EMC can remain associated after completion of translation, which both

protects clients from premature degradation and allows recruitment of substrate-specific and

general chaperones. Thus, the EMC broadly enables the biogenesis of multipass transmembrane

proteins containing destabilizing features, thereby mitigating the trade-off between function and

stability.

DOI: https://doi.org/10.7554/eLife.37018.001

Introduction
As the primary site of transmembrane protein synthesis, insertion, and folding, the endoplasmic

reticulum (ER) must accommodate a diverse range of transmembrane proteins destined for locations

throughout the cell. Individual transmembrane domains (TMDs) of multipass proteins are cotransla-

tionally inserted into the lipid bilayer, and this step can often be energetically costly (Cymer et al.,

2015). Some features of diverse transmembrane proteins present a particular challenge for their

insertion into and stabilization within the ER membrane. First, the length of the TMD may not match
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the thickness of the lipid bilayer in the ER due to differences in membrane composition between the

ER and the protein’s final destination (Sharpe et al., 2010). Additionally, many TMDs contain fea-

tures that are destabilizing during membrane protein insertion and biosynthesis but are necessary

for function. Transporters, transmembrane ATPases, and solute carriers, for example, contain polar

and/or charged residues within membrane spanning domains that form aqueous channels within the

plane of the membrane (Tector and Hartl, 1999). Yet, during biogenesis, these charged helices

enter the lipid bilayer unshielded by the remainder of the protein.

Faced with these challenges, membrane protein folding is subject to failure both in normal and

disease settings. Misfolded membrane proteins underlie a host of diseases, including cystic fibrosis

(due to mutations in the cystic fibrosis conductance regulator – CFTR), Charcot-Marie-Tooth disease

(PMP22 and Connexin 32), diabetes insipidis (Aquaporin), retinitis pigmentosa (Rhodopsin), Nie-

mann-Pick disease (NPC1) (Gelsthorpe et al., 2008) and others. Disease-associated mutations often

cluster within transmembrane helices (Sanders and Myers, 2004) and are biased towards missense

mutations, resulting in the addition of polar or charged residues within transmembrane helices

(Partridge et al., 2002). The disease-associated CFTR mutations illustrate the challenges and oppor-

tunities associated with membrane protein biogenesis. Even in healthy cells under normal conditions,

less than 50% of newly synthesized CFTR folds properly and traffics out of the ER (Kopito, 1999).

Small molecule enhancers of folding have emerged as a promising therapeutic strategy for disease-

associated misfolded proteins. Indeed, the treatment for the most common form of cystic fibrosis

(CFTRDF508) employs a drug combination including a ‘folding corrector’ to allow increased ER exit

and transport to the cell surface and a ‘potentiator’ to increase chloride transport activity

(Boyle et al., 2014). Understanding the full complement of machinery used by the ER to ensure

membrane protein synthesis, folding and transport is a fundamental problem with clear biomedical

implications.

Although the ER has machinery for stabilizing, sensing and degrading misfolded proteins, how

proteins with destabilizing features within transmembrane helices are stabilized during and immedi-

ately following synthesis remains poorly understood. The ER membrane protein complex (EMC) has

emerged as an intriguing player in membrane protein biogenesis in the ER. The EMC was first

described in yeast as a complex of 6 co-purifying and conserved proteins (Emc1-6) with strongly cor-

related phenotypes in a double mutant genetic modifier map of the unfolded protein response

(Jonikas et al., 2009). The pattern of EMC genetic interactions strongly resembles the pattern of

other factors whose loss leads to the accumulation of misfolded membrane proteins, including the

overexpression of a misfolded membrane protein (Sec61-2), and these insights first suggested that

the EMC may be a TMD protein chaperone (Jonikas et al., 2009). The mammalian EMC orthologues

were subsequently identified in a mammalian physical interaction map of ER-associated degradation

(ERAD) components (Christianson et al., 2011). In vivo experiments have shown that loss of the

EMC compromises synthesis, stabilization and/or trafficking of specific multipass membrane proteins

in S. cerevisiae (a Yor1 mutant which mimicked a common disease allele of CFTR, and Mrh1)

(Louie et al., 2012; Bircham et al., 2011), D. melanogoster (rhodopsin) (Satoh et al., 2015), C. ele-

gans (acetylcholine receptors) (Richard et al., 2013) and mice (ABCA3) (Tang et al., 2017), and that

knockdown of an EMC component compromised biogenesis of mutant CFTR expressed in HeLa cells

(Louie et al., 2012). In addition, the EMC has been implicated in autophagy (Shen et al., 2016;

Li et al., 2013), lipid transfer and tethering between the ER and mitochondria (Lahiri et al., 2014),

and flavivirus replication (Zhang et al., 2016; Savidis et al., 2016; Marceau et al., 2016; Ma et al.,

2015; Krishnan et al., 2008). Finally, the EMC was recently shown to act as a posttranslational inser-

tase into the ER membrane for the sterol biosynthesis enzyme, squalene synthase (SQS/FDFT1) and

a subset of other tail-anchored (TA) proteins. These TA substrates have moderately hydrophobic

TMDs rendering them unable to interact with TRC40/Get3, the cytosolic receptor that delivers TA

proteins to the dominant ER insertase, GET1/2 (24).

Despite its clear importance, many questions regarding EMC function remain: Is the effect on

multipass transmembrane protein biogenesis direct or indirect (e.g. due to changes in lipid composi-

tion)? If direct, what is the EMC substrate range and does the EMC physically interact with clients?

Lastly, at which stage(s) does the EMC act: insertion into the membrane (Guna et al., 2018), co- or

post-translationally, during folding, or, finally, during ER export?

Here, we used systematic and unbiased in vivo approaches to identify client proteins and to

explore the principles of EMC action with minimal perturbations in both yeast and human cells. Our
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studies reveal three conserved principles of EMC function: (1) The EMC interacts with and stabilizes

a range of client proteins consisting, with a few exceptions, of multipass transmembrane proteins

biased towards transporters. (2) The EMC can initiate client interactions cotranslationally and stabil-

izes newly synthesized, client proteins after initial ER targeting to prevent premature degradation.

(3) The EMC can engage client proteins following clusters of TMDs, and client TMDs are enriched in

uncommon transmembrane amino acids (especially charged and bulky residues). Thus, the EMC ena-

bles the biogenesis and folding of a subset of multipass membrane proteins which present chal-

lenges for the canonical membrane protein synthesis and insertion machineries and thereby expands

the functional repertoire of the membrane protein proteome.

Results

The EMC physically interacts with multipass transmembrane proteins
transiting the ER and substrate-specific chaperones
We initially sought to define the range of proteins that interact with the EMC in the budding yeast

Saccharomyces cerevisiae. To evaluate EMC interaction partners, we endogenously tagged EMC3

with 3xFLAG epitope at its C-terminus. To maximize retention of interacting partners, we recovered

Emc3 using a one-step affinity purification in the presence of digitonin. Following SDS-PAGE analy-

sis, prominent bands were excised and analyzed by mass spectrometry to identify Emc3-interacting

proteins (Figure 1A). As expected, we identified roughly stoichiometric quantities of all core EMC

components (Emc1, Emc2, Emc4, Emc5 and Emc6) and the accessory proteins Sop4 and Emc10

(Jonikas et al., 2009). Although Sop4 is a near-stoichiometric interactor with the EMC, it shares only

a subset of the characteristic genetic interactions of other core components (Jonikas et al., 2009),

suggesting that, in contrast to the six core EMC components (Emc1-6), the full function of the EMC

complex does not depend on Sop4, and it may play a role distinct from the core complex. In addi-

tion to EMC components, Emc3 interacted with several large, multi-pass membrane proteins (Pma1,

Fks1, Spf1) and Ilm1, a poorly characterized ER-localized protein (Lockshon et al.,

2007) (Figure 1A).

To confirm that these interactions were specific to the EMC, we performed stable isotope label-

ing with amino acids in cell culture (SILAC) for Emc3-3xFLAG or N-terminally 3xFLAG tagged Orm1

yeast strains. The Orm complex is an unrelated ER resident complex that serves as a control for spe-

cific interactions with the EMC. This quantitative analysis verified interactions with all core (Emc1-6)

and accessory EMC components (Sop4 and Emc10), and demonstrated specific interactions between

the EMC, multipass membrane proteins (Spf1, Fks1, and Pma1) and Ilm1 (Figure 1B). We also

detected specific interaction with Erg9, the yeast homolog of a TA protein recently shown to be

inserted into the ER in an EMC-dependent manner (Guna et al., 2018). Therefore, this approach

detects both stable and transient interactions between the EMC and binding partners.

The EMC interacts with specialized membrane protein chaperones
In addition to interacting with putative client transmembrane proteins, our pulldown results implicate

the EMC as interacting with membrane protein substrate-specific chaperones, including Sop4 and

Gsf2 (Figure 1B). Sop4 was previously shown to be a specialized chaperone/transport factor

required for the biogenesis of the yeast plasma membrane ATPase (Pma1), (Luo et al., 2002), and

Gsf2 plays a role in the biogenesis and export of hexose transporter 1 (Hxt1) from the ER

(Sherwood and Carlson, 1999).

Several considerations suggested to us that the resident ER protein Ilm1 could also act as sub-

strate-specific chaperone for the cell wall synthesis enzyme, Fks1. ILM1 deletion results in enhanced

oleic acid sensitivity, likely due to a cell wall defect (Lockshon et al., 2007) and showed increased

sensitivity to caspofungin, similar to the deletion phenotype for FKS1 (Markovich et al., 2004). To

explore if Ilm1 functioned as an Fks1 chaperone, we generated yeast expressing Ilm1-3xFLAG and

performed pulldowns to identify Ilm1 interacting proteins. We observed a near stoichiometric inter-

action between Ilm1 and Fks1 (Figure 1C). Since mature Fks1 localizes to the plasma membrane and

Ilm1 is exclusively in the ER, this likely represents an interaction between Ilm1 and transiting, newly

synthesized Fks1. Other prominent bands were identified as components of the EMC (Emc1 and

Emc2), ER oxidoreductase 1 (Ero1) and general chaperone proteins (Ssa1, Ssb1 and Kar2). The near
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stoichiometric interaction between Ilm1 and Fks1 and interactions with chaperone proteins further

suggested a role for Ilm1 as a co-chaperone for Fks1.

As the catalytic subunit of the 1,3-beta-D-glucan synthase cell wall biosynthesis enzyme, FKS1

deletion results in hypersensitivity to compounds, such as calcofluor white, that affect cell wall

assembly (Ram et al., 1995). If Ilm1 acts as a co-chaperone for Fks1, we hypothesized that a Dilm1

strain would show a calcofluor white hypersensitive phenotype. Indeed, we found profound sensitiv-

ity with growth decreased at 3 mg/ml and completely inhibited at 6 mg/ml calcofluor white in the

Figure 1. Identifying EMC interaction partners in S. cerevisiae. (A) SDS-PAGE gel of Emc3-3xFLAG co-immunoprecipitated proteins. Proteins identified

from excised bands are indicated. (B) SILAC ratios for proteins identified by mass spectrometry for Emc3-3xFLAG (heavy) and ORM1-3xFLAG (light)

immunoprecipitations. The most Emc3-3xFLAG enriched proteins are shown. (C) SDS-PAGE gel of Ilm1-3xFLAG co-immunoprecipitated proteins.

Proteins identified from excised bands are indicated. (D) 10-fold serial dilutions of log phase cultures of the indicated strains were plated on YEPD,

YEPD containing calcofluor white at the indicated concentrations and incubated at 30˚C for 24 hr.

DOI: https://doi.org/10.7554/eLife.37018.002

Shurtleff et al. eLife 2018;7:e37018. DOI: https://doi.org/10.7554/eLife.37018 4 of 23

Research article Cell Biology



2.2. MULTI-OMICS APPLICATIONS 131

Dilm1 background (Figure 1D). We also noted increased sensitivity compared to wild type for

Demc2 at 6 mg/ml, further supporting a role for the EMC in maintaining cell wall integrity, possibly

by promoting the biosynthesis of Fks1.

EMC interacts with transmembrane protein clients independent of
substrate specific chaperones
We first hypothesized that the EMC might directly interact with client-specific membrane protein

chaperones, which act to bridge the EMC and multipass membrane protein clients. We tested this

hypothesis by performing quantitative mass spectrometry of Emc3-3xFlag interacting proteins in

wild type, Dsop4 or Dilm1 strains (Figure 2A). Rather than a decrease in the interaction between the

EMC and multipass proteins, as predicted by the bridging model, we observed a prominent increase

in EMC association with Fks1 and the functionally redundant paralog, Gsc2, in the Dilm1 background

as well as Elo2, Pma1 and Mrh1 in the Dsop4 background (Figure 2B). Interestingly, Mrh1 was previ-

ously shown to be dependent on the EMC for its biosynthesis and cell surface localization

(Bircham et al., 2011). Consistent with a role for Ilm1 and Sop4 as membrane protein-specific chap-

erones, we observed a decrease in general chaperone proteins (Ssa1, Ssb1, and Kar2) and an

increase in ribosomal proteins associated with EMC3-3xFLAG in strains missing these factors

(Figure 2B). Together, these pulldown experiments showed that the EMC interacts with multipass

membrane proteins transiting through the ER, membrane protein specific co-chaperones, general

chaperones, and the ribosome. The presence of client-specific co-chaperones (Ilm1 and Sop4)

enhances the interaction between the EMC and general chaperones and decreases the association

with both multipass transmembrane clients and the ribosome (Figure 2C). These observations

Figure 2. The EMC interacts with multipass client proteins independent of co-chaperones. (A) Schematic showing SILAC strategy for comparative

analysis of EMC3-3xFLAG interactions in wildtype (WT - light) and Dilm1 (heavy) and Dsop4 (heavy) cells. IP – immunoprecipitation, MS – mass

spectrometry. (B) Log2 SILAC ratios for all proteins identified in EMC3-FLAG expressing strains (top - Dsop4 and WT, bottom - Dilm1 and WT). Enriched

multipass proteins and strongly depleted proteins are indicated. (C) Schematic showing a summary of physical interactions based on pull downs

presented in Figures 1 and 2.

DOI: https://doi.org/10.7554/eLife.37018.003
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suggest that the EMC interacts directly with multipass transmembrane client proteins early during

their synthesis, insertion or folding independent of and possibly prior to chaperone engagement.

The EMC cotranslationally interacts with folding-challenged multipass
client proteins
The observed physical interaction between the EMC and Fks1 as well as the increased association of

the EMC with ribosomal proteins following chaperone deletion suggested that the EMC may interact

with client proteins cotranslationally. To explore this possibility, we performed proximity-specific

ribosome profiling (Jan et al., 2014) in yeast expressing a fusion protein of an EMC component with

biotin ligase (Emc5-BirA) and ribosomes incorporating an AviTag (the substrate of the biotin ligase).

Avi-Tagged ribosomes that contact the EMC are biotinylated upon pulse-labelling with biotin. Fol-

lowing streptavidin-based isolation of the biotinylated ribosomes, deep sequencing of the mRNA

fragments protected by affinity-purified ribosomes and comparison to the total pool of ribosomes

allows identification of messages translated in the proximity of the EMC (Figure 3A). In particular,

the ratio of pulldown-to-total footprint reads across a message provides a codon-resolution mea-

surement of when translating ribosomes are most accessible to Emc5-BirA.

The profile of this ratio across FKS1 and GSC2 revealed prominent increases in EMC-ribosome

proximity immediately following the translation of clusters of TMDs (Figure 3B). This enrichment pat-

tern was not observed in strains with two other ER-localized BirA fusions (BirA-Ubc6-TA and BirA-

Ssh1), suggesting that the EMC specifically interacts with these nascent chains shortly after synthesis

of TMD clusters by the ribosome. The positional enrichment pattern observed for FKS1 and GSC2

motivated a systematic search for other nascent chains cotranslationally engaged by the EMC. To do

this, we computed the ratio of total Emc5-BirA enrichment to total BirA-Ubc6-TA enrichment in a

sliding window of 101 codons across all genes We then ranked genes according to the highest

enrichment ratio attained anywhere in the gene. In addition to the most enriched genes (FKS1 and

GSC2), we identified 51 genes that reproducibly showed localized peaks of Emc5-specific enrich-

ment (defined as being in the top 10% of eligible genes in each of two biological replicates; see

Materials and methods) (Figure 3—figure supplement 1). This list of putative EMC client proteins

includes two genes for which the EMC was previously implicated in their biogenesis (PMA1 and

YOR1) (Louie et al., 2012; Luo et al., 2002). Emc5-BirA positional enrichment for client proteins typ-

ically was triggered following synthesis of a cluster of TMDs (Figure 3—source data 1). We also per-

formed the same analysis on data from a BirA fusion to Sec63, a component of the Sec translocon,

produced for an earlier study (Aviram et al., 2016). Intriguingly, patterns of enrichment for Sec63-

BirA mirrored some, but not all, of the localized Emc5-BirA peaks (Figure 3C).

To gain further insight into the timing of cotranslational engagement of the EMC with client

nascent chains, we compared the average enrichments around the first TMD for the various ER local-

ized BirAs (i.e. Emc5, Sec63, Ssh1, and Ubc6-TA). For this analysis, we focused on the set of EMC cli-

ents defined above and compared their enrichment to the full set of TMD containing proteins (see

TMD annotation in Materials and methods) (Figure 3D). Consistent with previous observations

(Jan et al., 2014), we observed that all of the ER-localized BirAs showed an initial enrichment ~60

codons after the first TMD which likely represents the recruitment of the translating message to the

ER by the signal recognition particle (SRP). With the exception of the EMC clients when monitored

by Emc5-BirA, this enrichment then levels off or decreases modestly (Figure 3D). By contrast, for

Emc5-BirA, the EMC clients, but not the full set of TMDs, showed a continued increase in enrichment

such that the maximum was achieved following synthesis of an additional ~100 amino acids. These

results further indicate that cotranslational EMC association with clients continues after initial target-

ing, and generally following synthesis of clusters of TMDs (Figure 3D and Figure 3—source data 1).

Since EMC-specific enrichment peaks followed TMD clusters, we analyzed the number and amino

acid composition of TMDs in the 51 putative client proteins. Strikingly, the full list of EMC clients

was strongly enriched for multipass proteins (Figure 4A) and EMC-interacting TMDs were enriched

for charged amino acids and depleted for hydrophobic amino acids, including aliphatic residues

common in TMDs (Figure 4B). Gene ontology term enrichment on the set of putative EMC clients

showed enrichment for terms related to transporters; indeed, a majority of clients are classified as

transporters (Figure 4C). Notably, integral membrane glycosyltransferases (which must overcome

the challenge of transferring hydrophilic sugars onto membrane-associated substrates), including

beta-glucan synthase genes (FSK1 and GSC2) defined a second class of putative EMC clients
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Figure 3. The EMC engages client proteins cotranslationally. (A) Schematic for strategy to examine the role of the EMC (Emc5-BirA) in cotranslational

interaction with clients using proximity-specific ribosome profiling. (B) Positional enrichment plots showing footprint reads across the full-length mRNAs

of the genes indicated for Emc5-BirA, BirA-Ubc6-TA and Ssh1-BirA expressing strains. Transmembrane domains (TMDs) are indicated in gray. (C) As in

(B), except comparing Emc5-BirA and Sec63-BirA expressing strains. (D) Mean enrichments of all TMD-containing genes and EMC clients (N = 51)

following start of first TMD for two independent replicates of Emc5-BirA, Sec63-BirA, BirA-Ssh1 and BirA-Ubc6-TA.

DOI: https://doi.org/10.7554/eLife.37018.004

The following source data and figure supplement are available for figure 3:

Source data 1. Positional enrichment plots across genes in the >90th percentile for Emc5-BirA/Ubc6-BirA 101 codon window enrichments.

DOI: https://doi.org/10.7554/eLife.37018.006

Figure supplement 1. Maximum 101-codon EMC/Ubc6 enrichment ratio windows from two independent Emc5-BirA replicates.

DOI: https://doi.org/10.7554/eLife.37018.005
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(Figure 4C). Together, these results suggest that the EMC cotranslationally engages certain multi-

pass membrane proteins and that these clients are enriched for biochemical features and functions

that pose a challenge to the general membrane protein biogenesis machinery of the ER.

Select multipass membrane proteins are EMC clients in mammalian cells
Having identified EMC clients and characterized their properties in yeast, we used an orthogonal

approach to identify potential EMC clients in mammalian cells. We reasoned that the EMC may play

a role in stabilizing select multipass membrane proteins during synthesis until substrate-specific and

general chaperones along with select binding partners, are recruited. This ensemble might then be

Figure 4. EMC clients are enriched for multipass membrane proteins with sub-optimal transmembrane helices. (A) Histogram showing the proportion

of proteins containing the given number of TMDs for all proteins that enter the secretory pathway (Uniprot annotations) and EMC clients. (B) Fraction of

amino acids with the given properties in TMDs from EMC client proteins compared to all secretory proteins. Proportion of EMC TMD amino acids/all

TMDs for each property is shown by a blue line. Blue boxes indicate 95% confidence ranges defined by 10,000 random sub-samplings of total TMDs

with a pool size equal to EMC TMDs (N = 51). (C) Top non-redundant over-represented GOMF terms calculated from PANTHER (FDR < 0.05;

redundant terms removed by REViGO). Inset: PANTHER protein classifications pie chart for all clients (N = 51).

DOI: https://doi.org/10.7554/eLife.37018.007
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required to achieve a structure competent for export or function in the ER. We therefore hypothe-

sized that depletion of the EMC in mammalian cells would result in destabilization and degradation

of clients, which could be quantified by global mass spectrometry. Accordingly, we used unbiased

quantitative SILAC proteomics to identify putative EMC clients on a proteome-wide scale. Using the

CRISPRi system (Qi et al., 2013; Gilbert et al., 2013), we generated two independent EMC-

depleted cell lines in which the expression of either EMC2 or EMC4 was strongly reduced. Whereas

EMC2 depletion affects the abundance of all detected members of the EMC complex, depletion of

EMC4 has no effect on other EMC members (Figure 5A). We thus infer that EMC2 but not EMC4 is

structurally integral to the formation of the EMC complex. However, based on the strong similarity

in the spectrum of genetic interactions in yeast, EMC2 and EMC4 deleted yeast strains, it is likely

that the function of the EMC depends on both EMC2 and EMC4 (9).

Proteomic changes in these two EMC-depleted cell lines were measured against a control cell

line expressing a non-targeting guide RNA (GAL4). Except for EMC components, almost all

observed changes were strongly correlated between the EMC2 and EMC4 knockdown cell lines

(Figure 5B). This supports the notion that depletion of EMC2 and concomitant depletion of the rest

of the complex has few additional effects relative to depletion of EMC4 alone, beyond affecting the

complex. The identified depleted proteins represent potential EMC client proteins that are destabi-

lized and degraded in the absence of the EMC. To confirm that these clients do not arise from a

decreased rate of synthesis, we performed ribosome profiling on EMC2-depleted and control cells,

and compared changes in the rate of protein synthesis to changes in steady state proteome abun-

dance (Figure 5C). This analysis revealed that the translation rate of the vast majority of potential cli-

ent proteins is unaffected (with the notable exception of ATP6V0A1, which is decreased at both the

translational and protein level), consistent with post-translational degradation. By contrast, proteins

that are upregulated at the protein level are also upregulated at the translational level, indicating

transcriptional and/or translational induction. As expected from EMC genetic interactions, 2D anno-

tation enrichment (Cox and Mann, 2012) shows that proteins upregulated at the translatome and

proteome-level are enriched for gene ontology terms related to the unfolded protein response (Fig-

ure 5—figure supplement 1) (Jonikas et al., 2009). By contrast, analysis of the proteins degraded

upon EMC-depletion reveals an enrichment for proteins that enter the secretory pathway

(Supplementary File 1). Moreover, of the 11 proteins decreased by 2-fold or more in both EMC2-

and EMC4-depleted cells, 10 have at least one transmembrane domain. Additionally, only 8 of the

37 total hits are soluble proteins with the majority of soluble proteins (5) being localized to the lyso-

some, and thus likely secondary to depletion of the multipass subunit of the V-ATPase (ATP6V0A1)

(Supplementary file 1). Confirming a role for the EMC in TA protein insertion (Guna et al.,

2012018), the levels of mammalian squalene synthase (FDFT1) and TREX1 (35) decreased upon

EMC depletion. However, similar to that seen in yeast, the cohort of putative EMC client proteins is

strongly enriched for multipass transmembrane proteins (Figure 5D) and, like the yeast clients, are

more likely to contain charged and aromatic residues distributed throughout the TMD (Figure 5E

and Figure 5—figure supplement 2). Further mirroring the yeast EMC client profile, GO terms asso-

ciated with the identified human clients were enriched for transporter related terms which consti-

tuted the largest class of proteins whose abundance decreased upon EMC depletion (Figure 5F).

Together, these data support a conserved role for the EMC in facilitating the biogenesis of multi-

pass membrane proteins with destabilizing membrane spanning sequences. Depletion of the EMC

renders some client proteins unable to attain normal expression levels.

Discussion
Our work establishes that the predominant function of the EMC is to ensure the biogenesis of a sub-

set of multipass membrane proteins. These studies are consistent with a model in which the EMC

cotranslationally interacts with nascent polypeptides. Following synthesis, the EMC stabilizes clients

and enables recruitment of substrate-specific and general chaperones to achieve a conformation

that is competent for function in the ER or for transport to the Golgi (Figure 6). In the absence of

the EMC, newly synthesized client proteins are likely extracted from the membrane for degradation

by the UPS (Figure 6).

Our studies reveal three principles of the EMC’s action. First, the EMC directly interacts with and

stabilizes a range of client proteins consisting primarily of multipass transmembrane proteins. Several
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Figure 5. The mammalian EMC stabilizes multipass transmembrane proteins. (A) SILAC quantification of EMC components, comparing their expression

level in cells with guide RNAs targeting EMC2 or EMC4 with those expressing non-targeting GAL4 guide RNA. PARK7 is shown as a control

(Wiśniewski and Mann, 2016). (B) Full proteome comparison scatter plot of protein abundance change in cells expressing EMC2 guide RNA against

abundance change in cells expressing EMC4 guide. Expression is relative to non-targeting GAL4 guide RNA. Proteins colored red are significantly

Figure 5 continued on next page
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observations support this conclusion. The EMC physically associates with multipass proteins in yeast

(Figure 1 A and B). Deletion of an EMC component and dedicated membrane protein chaperone

(SOP4) results in increased interaction with several multipass membrane proteins that transit the ER,

including a previously identified Sop4 substrate (Pma1) (Luo et al., 2002) and a membrane protein

Figure 5 continued

upregulated in both EMC2 and EMC4 cells. Proteins colored green are significantly downregulated in both EMC2 and EMC4 cells (Log2 >0.5). EMC

components are colored blue. (C) Comparison of translation change by ribosome profiling with proteome change. (D) Histogram showing the

proportion of proteins containing the given number of TMDs for all proteins that enter the secretory pathway (as defined in Uniprot) and EMC clients.

(E) Fraction of amino acids with the given properties in TMDs from EMC client proteins compared to all secretory proteins. Proportion of EMC TMD

amino acids/all TMDs for each property is shown by a blue line. Blue boxes indicate 95% confidence ranges defined by 10,000 random sub-samplings

of total TMDs with a pool size equal to EMC TMDs (N = 37). (F) Top non-redundant over-represented GOMF terms calculated from PANTHER

(FDR < 0.05; redundant terms removed by REViGO). Inset: Protein classifications pie chart for EMC client proteins (N = 37).

DOI: https://doi.org/10.7554/eLife.37018.008

The following figure supplements are available for figure 5:

Figure supplement 1. 2D annotation enrichment based on the protein ratios and ribosome profiling ratios of EMC knockdown versus control

knockdown cells.

DOI: https://doi.org/10.7554/eLife.37018.009

Figure supplement 2. Amino acid composition of transmembrane domains of EMC clients and background.

DOI: https://doi.org/10.7554/eLife.37018.010

Figure 6. Model for the role of the EMC in multipass transmembrane protein biogenesis. See text for details. Unstable transmembrane domains are

shown in orange. Note, while the EMC is depicted here as cooperating with the translocon following insertion, our data do not exclude the possibility

that the EMC acts as an insertase for some substrates.

DOI: https://doi.org/10.7554/eLife.37018.011
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previously shown to require the EMC to localize to the cell surface (Mrh1) (Bircham et al., 2011)

(Figure 2B). In addition, we show that the poorly characterized ER resident protein Ilm1 acts as a

substrate-specific chaperone for Fks1 (Figure 1 C and D), and ILM1 deletion results in increased

interactions between the EMC and Fks1 (Figure 2B). These yeast studies show that the EMC directly

interacts with multipass protein clients early in biosynthesis independent of, and likely prior to,

engagement by their dedicated chaperones. Multipass proteins are also selectively destabilized in

human cells depleted of the EMC by CRISPRi (Figure 5), further demonstrating that the biogenesis/

chaperoning of multipass membrane proteins is a conserved feature of EMC function.

Second, the EMC can begin to interact cotranslationally and subsequently stabilize newly synthe-

sized client proteins, likely preventing premature degradation by ERAD. Proximity-specific ribosome

profiling in yeast revealed that a common feature of the EMC is cotranslational engagement of mul-

tipass client proteins (Figure 3). The presence of full-length multipass membrane proteins in our

pulldown analyses in yeast (Figures 1 and 2) indicate that the EMC can engage clients cotranslation-

ally and remain bound after completion of protein synthesis for at least a subset of client proteins.

Although the EMC was recently shown to act as a TA protein insertase (Guna et al., 2018), our

results suggest that the EMC interacts with multipass proteins during synthesis and remains associ-

ated post-ER targeting (Figure 3D). In addition, all of the EMC clients identified in yeast are depen-

dent on SRP, a factor that cotranslationally delivers substrates to the ER surface, and are

cotranslationally targeted to the ER (Costa et al., 2018). Similarly, all of the mammalian multipass

protein EMC substrates were previously found to be cotranslationally targeted to the ER by proxim-

ity-specific ribosome profiling studies (Jan et al., 2014). These results, however, do not exclude the

possibility that the EMC acts to insert or facilitate flipping of individual helices of multipass mem-

banes proteins following initial targeting to the ER, or that the EMC acts during the initial insertion

for a subset of the newly identified client proteins. Overall, our results support a model in which the

EMC can engage client proteins cotranslationally, perhaps following insertion via the translocon into

the ER membrane, likely acting to stabilize folding intermediates and to forestall degradation.

Third, the EMC engages transporters and other client proteins enriched for sub-optimal residues

in transmembrane helices. Our proximity-specific ribosome profiling results indicate that the EMC

typically engages transporters and other membrane proteins enriched for charged residues in TMDs

(Figure 4 B and C) following synthesis of TMD clusters (Figure 3B). In addition, membrane proteins

that were destabilized in human cells were also enriched for transporters (Figure 5F), and human

EMC clients were enriched for charged and bulky residues in TMDs (Figure 5E). These observed fea-

tures of EMC clients are inter-related, multipass membrane proteins are more likely to have sub-opti-

mal helices and are enriched for transporter related functions. Indeed, many transporters contain

polar and charged residues within TMDs, which are necessary for solute delivery across the lipid

bilayer. While our studies in HeLa cells primarily identified solute carriers and transmembrane

ATPases as clients, the EMC was previously implicated in the biogenesis of cell-type specific multi-

meric channel proteins that also contain TMDs with charged residues (Richard et al., 2013). Thus,

we propose that the EMC promotes the biogenesis of a wide range of human multipass client pro-

teins by stabilizing transmembrane regions during biosynthesis and prior to completion of folding.

How does the EMC act both as a cotranslational TMD chaperone, following ER targeting, and as

a post-translational insertase for a subset of TA proteins (Guna et al., 2018)? We suggest that these

phenomena reflect a common biochemical property of the EMC: the ability to interact with trans-

membrane helices with low hydrophobicity. This property is consistent with the previously reported

role for the TMD of EMC1 in binding to and stabilizing a destabilized, ER membrane embedded

SV40 virion (Bagchi et al., 2016). Therefore, we propose that a unifying function of the EMC is to

accommodate and stabilize the wide diversity of membrane spanning sequences by directly interact-

ing with select membrane proteins with destabilizing features in TMDs. Interestingly, EMC3 may

share a common ancestry with the universally conserved YidC/Oxa1/Alb3 protein family in bacteria

and mitochondria (Anghel et al., 2017). YidC also plays a dual role in both the insertion of mem-

brane proteins (Samuelson et al., 2000) and the stabilization of membrane proteins inserted via the

translocon by direct interaction with SecYEG (Nagamori et al., 2004).

Beyond its role in engaging atypical TMDs, our studies point to a broader role for the EMC as a

nexus of TMD folding, which requires chaperone recruitment and protection from the ERAD machin-

ery. The EMC is a large protein complex with significant predicted mass integral to the membrane,

as well as soluble mass in the cytosol and lumen. It is counterintuitive that such mass is necessary to
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act solely as a transmembrane chaperone and insertase. For example, members of the YidC/Oxa1/

Alb3 membrane protein family in bacteria and mitochondria act as insertases and transmembrane

chaperones, but they function as smaller monomers without appended soluble domains

(Nagamori et al., 2004). Indeed, we find that in yeast the EMC also recruits substrate-specific chap-

erones including Ilm1, Sop4 and Gsf2, as well as general cytoplasmic and lumenal chaperones and

oxidoreductases. We propose that, in analogy to the recently described function of the Slp1-Emp65

complex for soluble lumenal ER proteins (Zhang et al., 2017), the EMC may also hold folding inter-

mediates in a privileged, ERAD-protected state until the recruitment of substrate-specific chaper-

ones and/or general chaperones to complete folding and allow ER export. Thus, the EMC may

compartmentalize multiple functions necessary for membrane protein biogenesis: transmembrane

stabilization, recruitment of folding factors and protection of folding intermediates from recognition

and degradation by the ER quality control machinery.

Materials and methods

Yeast strains and plasmids
Strains BY4741 (MATa his3D1 leu2D0 met15D0 ura3D0) and W303 (ade2-1 leu2-3 his3-11,15 trp1-1

ura3-1 can1-100) were used as wild-type parental strains. Genomic knockouts and knockins were

generated by one-step gene replacement as described (Rothstein, 1991). Generation of EMC3-3X-

FLAG (BY4741: EMC3-FLAG-NatR) was described previously (Jonikas et al., 2009). To generate

FLAG-tagged Ilm1p, the ILM1 coding sequence including the open reading frame and ~350 base

pairs of the 3’-UTR was amplified from genomic DNA extracted from BY4742 wild-type yeast. The

resulting PCR products were inserted into a plasmid immediately upstream of an in-frame fusion

with 3X-FLAG and the NATMX6 coding sequence. Next, a 3XFLAG epitope was introduced at the 3’

end of the ILM1 open reading frame in pILM1-UTR-NAT using a modified site-directed mutagenesis

protocol (Wang and Malcolm, 1999). For homologous recombination, the resulting ILM1-3XFLAG-

UTR-NAT sequence was amplified and transformed into BY4741. Positive clones were selected on

yeast extract-peptone-dextrose (YEPD) medium supplemented with nourseothricin and analyzed for

FLAG-tagged Ilm1p expression by immunoblotting with anti-FLAG antibodies (Santa Cruz

Biotechnology).

Immunoprecipitation from microsomes
Immunoprecipitations of Emc3-3xFLAG and Ilm1-3xFLAG were performed as described

previously (Denic and Weissman, 2007). Yeast were grown in 3L YEPD, harvested and resuspen-

dend in 2 ml lysis buffer (50 mM HEPES-KOH pH 6.8). Resuspended yeast pellets were frozen drop-

wise in liquid nitrogen and subsequently disrupted by bead beating. 15 ml lysis buffer was added to

the frozen yeast powder lysis was performed by 10 strokes in a Dounce homogenizer. The homoge-

nate was centrifuged at 1000Xg for 10 min at 4˚C. The supernatant was transferred to a new tube

and the centrifugation was repeated. The supernatant was then transferred to a 50.2 Ti ultracentri-

fuge tube (Beckman Coulter) and centrifuged at 22,000 RPM for 16 min at 4˚C. The microsome pel-

let was resuspended in 0.5 ml lysis buffer, flash frozen in liquid nitrogen and stored at �80˚C until

use.

Microsomes were solubilized in 15 ml immunoprecipitation buffer (100 mM HEPES-KOH pH 6.8,

300 mM KOAc, 4 mM MgOAc, 2 mM CaCl2, 30% glycerol) for 1 hr at 4˚C. Detergent extracted

microsomes were centrifuged for at 22,000 RPM for 16 min at 4˚C. 150 ml of anti-FLAG bead slurry

was added the supernatant and incubated for 2 hr at 4˚C. Beads were pelleted at 1,000Xg for 1 min

and washed 4 times in 10 ml wash buffer (immunoprecipitation buffer with 0.1% digitonin). Beads

were eluted with 150 ml of 2 mg/ml FLAG peptide in was buffer. Eluates were stored at �80˚C until

use.

In-gel tryptic digestion and mass spectrometry
Immunoprecipitation eluates were separated by SDS-PAGE and single bands were excised, or alter-

natively, gels were cut along the lanes in 11 to 13 pieces. Proteins were subjected to in-gel digestion

(University of California San Francisco Mass Spectrometry Facility protocol) with trypsin (porcine,

side-chain protected, Promega). The extracted digests were vacuum evaporated and resuspended
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in 0.1% formic acid in water. The digests were analyzed by capillary HPLC-tandem mass spectrome-

try. The separation was performed with a C18 PepMap 75 mm � 150 mm column (LC Packings, Sun-

nyvale, CA) used on either an Ultimate HPLC system linked with a FAMOS autosampler (LC

Packings, San Francisco, CA) or an Agilent 1100 series HPLC system equipped with an autosampler

(Agilent Technologies, Palo Alto, CA). The column effluent was directed to either a QSTAR-Pulsar or

QSTAR-Elite tandem mass spectrometer (Applied Biosystems/MDS Sciex, Toronto, Canada).

Throughout the chromatographic separation, a 1 s MS acquisition was followed by a 3 s CID acquisi-

tion for computer-selected precursor ions in information-dependent acquisition mode. The collision

energy was set according to the m/z value and charge state of the precursor ion.

Data was analyzed with Analyst QS 1.1 software (Applied Biosystems/MDS Sciex) and peak lists

were generated using the mascot.dll script (Mascot.dll 1.6b18, Applied Biosystems). Precursor mass

tolerance for grouping was set to 0.2 amu. MS centroiding parameters were 50% peak height and

0.02 amu merge distance. MS/MS centroiding parameters were 50% peak height and 0.05 amu

merge distance.

The peak lists were searched in in-house Protein Prospector version 5.3.0 (a public version is avail-

able on line). Peptides containing one miscleavage were allowed. The number of modifications was

limited to two per peptide. Carbamidomethylation modification of cysteine; acetylation of the N ter-

minus of the protein; oxidation of methionine; and formation of pyro-Glu from N-term Gln were

allowed as variable modifications. Mass tolerance for was 150 ppm for precursor and 0.2 Da for frag-

ment ions.

Proximity-Specific ribosome profiling
Proximity-based ribosome profiling was performed essentially as previously

described (McGlincy and Ingolia, 2017).

Strain construction
The endogenous copies of RPL10a were C-terminally tagged with an engineered HA-TEV-AviTag

sequence to allow for detection by western blot, biotinylation, and specific elution after streptavidin

pulldown via TEV protease cleavage. BirA fusion proteins EMC5 and SSH1 were endogenously

tagged at the C-terminus (EMC5) or N-terminus (SSH1), respectively with a BirA (biotin ligase), allow-

ing the specific biotinylation and streptavidin pull-down of ribosomes in close proximity to the EMC

specifically or to the ER. Generation of Sec63-Bir was previously described (Jan et al., 2014).

Media and growth conditions
Yeast were grown in biotin-free, synthetic defined media (1.7 g/L YNB-Biotin [Sunrise Science Prod-

ucts], 5 g/L Ammonium sulfate, 20 g/L dextrose, complete amino acids) supplemented with d-biotin

(Sigma) to a final concentration of 0.125 ng/mL, at 30˚C with vigorous shaking. Twenty milliliters of

an overnight culture was used to inoculate a 300 ml culture at an OD600 of 0.05–0.1, and biotin

induction was performed at mid-log phase with an OD600 of 0.5–0.6 as in (Jan et al., 2014).

Biotin induction and harvesting
Cyclohexamide (CHX) was added to media 2 min prior to the addition of biotin, at a final concentra-

tion of 100 mg/mL. To induce biotinylation, D-biotin was added to the media to a final concentration

of 10 nM and biotinylation was allowed to proceed for 2 min at 30˚C while shaking. After 2 min, cells

were harvested by filtration onto 0.45 mm pore size nitrocellulose filters (Whatman), scraped from

the membrane, and immediately submerged in liquid nitrogen.

For western-blot quantification, 1 mL aliquots were taken from uninduced cultures and placed

into pre-chilled, 1.5 mL siliconized microcentrifuge tubes. Samples were then spun at 20,000 x g at

4˚C for 30 s, the supernatant removed, and the pellet-containing tubes immediately placed in liquid

nitrogen. For levels of biotin induction quantification, a small patch of induced, filtered cells were

scraped from the nitrocellulose filters.
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Western blotting and biotinylation quantification
Lysates were prepared from pelleted induced and uninduced yeast by resuspending frozen pellets in

30–50 mL Laemmli buffer, followed by denaturation at 95˚C for 5 min, and clarification at room tem-

perature by spinning at 20,000 x g for 10 min.

Lysates were run on 4–12% Bis-tris gels in MOPS buffer, transferred to nitrocellulose membrane

using the BioRad Transfer system (BioRad) according to the manufacturer’s instructions, blocked

with Odyssey blocking buffer, and subsequently probed. The HA epitope tag was detected using a

mouse a high-affinity rat anti-HA antibody at a 1:1000 dilution (Roche 3F10). IR800 anti-rat (Rock-

land) secondary antibody was then used at 1:5000 dilution. Biotin was detected directly using Strep-

tavidin AlexaFluor 680 (Molecular Probes) at a 1:5000 dilution in TBS-T and a 10 min incubation

period after incubation in secondary antibody. All blots were visualized using the Licor (Odyssey)

system.

Percent biotinylation was quantified by probing for HA in a streptavidin shift assay, in which clari-

fied lysates were mixed with excess unlabeled streptavidin (Rockland) prior to electrophoresis and

immunoblotting. Biotinylated AviTags shift to a higher molecular weight than the corresponding,

non-biotinylated AviTags, and percent biotinylation was quantified from the fraction of total signal

that was shifted (Algire et al., 2002).

Yeast lysis, lysate desalting and monosome isolation
650 mL of polysome lysis buffer (20 mM Tris pH 8.0, 140 mM KCl, 1.5 mM MgCl2, 100 mg/mL CHX,

1% Triton X-100) was dripped into a 50 mL conical tube filled with and immersed in liquid nitrogen,

containing the harvested yeast strip/pellet from a mid-log phase 300 mL biotin-induced culture. The

frozen cell-buffer mixture was cryogenically pulverized for a minute in a freezer mill. Pulverized cells

were thawed and centrifuged for 2 min at 4˚C and 20,000 x g. The supernatant was immediately

loaded onto pre-chilled, 2 mL Zeba de-salt spin column previously equilibrated with polysome gradi-

ent buffer (20 mM Tris pH 8.0, 140 mM KCl, 5 mM MgCl2, 100 mg/mL CHX, 0.5 mM DTT) according

to the manufacturer’s instructions. Aliquots of this extract were flash-frozen in liquid nitrogen and

stored at �80˚C, typically yielding 0.5–1 mL of extract with A260 of 100–300. A 200–500 mL aliquot

of the above lysate was treated with 750 U RNaseI (Ambion) per 50 A260 units of lysate (or 15 U

RNaseI per 40 mg RNA, where 1 A260 unit corresponds to 40 mg RNA), and incubated for 1 hr at

room temperature on an overhead roller. Reactions were then quenched with 10 mL SUPERase-In

RNase inhibitor (Ambion) and stored on ice until loaded onto sucrose density gradients (10–50% w/

v) prepared with the polysome gradient buffer described above. Gradients were made in Sw-41

ultracentrifuge tubes (Seton Scientific) using a BioComp Gradient Master (BioComp Instruments)

according to the manufacturer’s instructions. Samples were spun for 3 hr at 4˚C and 35,000 rpm in

an Sw-41 rotor (Beckmann Coulter). Fractionation was performed on the Gradient Master using a

BioRad EM-1 Econo UV monitor to continually monitored A260 values. Monosome peaks were col-

lected, flash-frozen in liquid nitrogen, and stored at �80˚C. Typical yields were 2–3 mL of mono-

somes with A260 of 2–5.

Streptavidin pulldown of biotinylated ribosomes
Biotinylated ribosomes were isolated from the total monosome fraction using MyOne streptavidin

C1 magnetic DynaBeads (Invitrogen). The volume of beads used per pulldown was scaled based on

187 mL (1.87 mg) beads per 15 pmol of biotinylated ribosomes, as estimated from the manufac-

turer’s instructions. The pmol of biotinylated ribosomes in a given volume was calculated from (i) the

fraction of biotinylated ribosomes as estimated from a streptavidin shift assay and (ii) the total con-

centration of 80S ribosomes in the fraction (Jan et al., 2014). Prior to binding, beads were washed

twice with one volume (equal to the initial bead volume) of Buffer A (100 mM NaOH, 50 mM NaCl),

once with one volume of Buffer B (100 mM NaCl), and once with one volume of low-salt binding

Buffer C (20 mM Tris pH 8.0, 140 mM KCl, 5 mM MgCl2, 100 mg/mL CHX, 0.5 mM DTT, 0.1% Triton

X-100). Triton X-100 was added to monosome fractions containing 15 pmol of biotinylated ribo-

somes, to a final concentration of 0.01%. This solution was added to washed beads, mixed well, and

the pulldown was allowed to proceed on an overhead roller for 1 hr at 4˚C. The supernatant was

removed and the beads were washed three times with 1 mL high-salt wash Buffer D (20 mM Tris pH

8.0, 500 mM KCl, 5 mM MgCl2, 100 mg/mL CHX, 0.5 mM DTT, 0.1% Triton X-100), each for 20 min
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at 4˚C. After the third wash, beads were re-equilibrated in low-salt Buffer C by resuspension in 1 mL,

then transferred to a new tube and resuspended in a smaller volume (200 mL) of Buffer C in prepara-

tion for elution by TEV protease cleavage. Cleavage was performed by incubation on a nutator with

in-house TEV protease for 1 hr at room temperature. Three volumes of Trizol LS (Ambion) were

added to both the TEV eluate and a separate, matched input sample consisting of 10–20 pmol of

total monosomes.

Library generation
Ten-twenty pmol of monosomes in Trizol LS were extracted using 200 mL chloroform per 750 mL Tri-

zol LS. RNA was precipitated for at least 1 hr at �30˚C (or 30 mins at �80) using GlycoBlue (Invitro-

gen) and an equal volume of isopropanol, pelleted, resuspended in 11 mL (input) or 5 ul (pulldown)

10 mM Tris pH 7.0, and resolved on a 15% TBE-urea gel. Samples were denatured in 2X TBE-Urea

loading buffer at 80˚C for 2 min. Gel was run at 200V for 60 min and visualized after 5 min incubation

with SYBR Gold (Invitrogen). Oligoribonucleotide size standard in neighboring lanes was used to

excise roughly 28 nt ribosome footprints. Footprints were passively eluted on a tube nutator over-

night at 4˚C in 420 mL 0.3 M NaCl after crushing gel slices. After overnight RNA elution from gel,

ribosome footprints were then precipitated with GlycoBlue and 2.5 volumes ethanol, resuspended

directly in a dephosphorylation master mix containing 8 mL 1.25x T4 polynucleotide kinase (PNK)

buffer (New England Biolabs, NEB), and dephosphorylated with 2 mL PNK for 1 hr at 37˚C. This solu-

tion was used directly for ligation to 0.5 mg 3’ miRNA cloning linker 1 (Integrated DNA Technologies)

upon addition of 8 mL 50% PEG (NEB), 1 mL 10x truncated T4 RNA ligase 2 K227Q (rnl2) buffer

(NEB), and in-house rnl2 enzyme as in (Kopito, 1999) (or 3.5 ul 50% PEG, 0.5 ul mL 10x T4 RNA

ligase buffer, 0.5ul T4 RNA ligase rnl2, and 0.05 ul 1M DTT, and a sample-specific barcode linker as

in [McGlincy and Ingolia, 2017]). Ligation proceeded for 3 hr at 25˚C at which point RNA was pre-

cipitated for at least 1 hr at �30˚C, purified on a 10% TBE-urea gel, eluted, and precipitated as

above.

rRNA contaminants were removed from ligation products using antisense biotinylated oligos as

described (Brar et al., 2012). rRNA-depleted ligation products were then reverse-transcribed in a

16.7 mL reaction using SuperScript III (Invitrogen) for 30 min at 48˚C. RNA template was hydrolyzed

for 20 min at 98˚C after addition of 1/10 vol 1 M NaOH. Equi-molar HCl was added to quench the

reaction and cDNAs were precipitated at �30˚C for at least 1 hr and subsequently purified on a 10%

TBE-urea gel, eluted overnight, precipitated, and resuspended in 15 mL nuclease-free water.

cDNAs were circularized using CircLigase (Epicentre) in a 20 mL reaction for 1.5 hr at 60˚C accord-

ing to the manufacturer’s instructions. Circularized products were amplified by 8–16 cycles of PCR

using oNTI231 and any of several Illumina indexing primers (IDT) using Phusion polymerase (Finn-

zymes) in a 17 mL reaction. PCR amplicons were gel purified on 8% non-denaturing TBE gels, eluted,

precipitated, resuspended in 10 mL EB, and quantified using the Bioanalyzer High Sensitivity DNA

assay (Agilent Technologies). 2 nM dilutions were multiplexed as needed and sequenced via a sin-

gle-end run on an Illumina HiSeq sequencer.

Identification of co-translationally engaged regions
Sequencing reads were trimmed of adaptor sequences and aligned to yeast coding sequences as

previously described (Hussmann et al., 2015). To compute the efficiency with which ribosomes

translating a particular region of a coding sequence were labeled by a BirA fusion, for each codon

position in each coding sequence, for both pulldown and input samples, we calculated the sum of

ribosome profiling reads in a 50 codon window on either side (i.e. 101 total codons) of the position

normalized to the total number of mapped reads for the sample, then computed the enrichment

ratio of pulldown reads to input reads in the window. To quantify the extent to which a gene has any

region for which ribosomes translating that region are more efficiently labeled by Emc5-fused BirA

than a BirA fused with the tail-anchor from Ubc6 (BirA-Ubc6-TA), we computed the maximum value

of the ratio of (pulldown/total enrichment for Emc5-BirA) to (pulldown/total enrichment for BirA-

Ubc6-TA) for each position in the gene.

The following filters were applied to restrict the set of relevant genes:
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. Uniquely mappable: to exclude artifacts from genes that are too similar in sequence, genes
were required to have >80% of positions in the coding sequence uniquely mappable when
tested with synthetic 25 nt reads.

. Expression cutoff: to exclude noise from very lowly expressed genes, genes were required to
have higher than 0.02 reads per codon per million reads in the input (non-pulldown) ribosome
profiling for every BirA, and to have no 101 codon window in which there were 0 total reads in
any ribosome profiling sample.

. Localization: to exclude noise from genes that are not translated in the proximity of any BirA
at all, genes were required to have RPKM(pulldown)/RPKM(input)>1 for at least one BirA ribo-
some profiling sample pair.

Amongst genes passing these filters, we identified potential EMC clients as those genes whose

maximum positional enrichment ratio was in the top 10% of all genes in both biological replicates of

the Emc5-BirA ribosome profiling.

Transmembrane domain annotations
Annotated transmembrane domains were collected from two sources: domains predicted by

TMHMM in yeast were downloaded from SGD (date stamp on file: 8/23/2017), and domains anno-

tated in UniProt for yeast and human were extracted from Uniprot (Reviewed Swiss-Prot) databases

in xml format (file names uniprot-reviewed%3Ayes + taxonomy%3A4932.xml for yeast and uniprot-

reviewed%3Ayes + taxonomy%3A9606.xml for human). For yeast, the sets of domains from both

sources were merged, and when a TMHMM prediction overlapped with a domain in Uniprot, the

Uniprot domain was chosen. Domains in mitochondrially encoded genes, dubious ORFs, and pseu-

dogenes were excluded. Final sets of transmembrane domains considered are shown in

Supplementary file 2.

Amino acid composition of TMDs
To evaluate biochemical properties of TMDs in potential EMC clients, the set of all amino acids in all

TMDs of EMC clients was collected, and the fraction of such amino acids that were aliphatic, aro-

matic, charged, hydrophobic, or polar was calculated. The same calculations were carried out for all

annotated TMDs, and the ratio of fraction in TMDs in EMC clients to fraction in all TMDs was com-

puted for each property. To assess statistical significance, random subsets of the same number of

TMDs as in the total EMC client set were drawn from the set of all TMDs and the same ratio of frac-

tions was computed. This process was repeated for 10,000 random subsets and the fifth and 95th

percentile of the 10,000 ratios produced were recorded.

Targeted downregulation of gene expression by CRISPRi
CRISPRi HeLa cell lines were generated by transducing with pHR-SFFV-dCas9-BFP-KRAB (Addgene

ID: 46911) and sorting for BFP positive cells (Gilbert et al., 2013). EMC2 (GAGTACGCG

TCCGGGCCAA), EMC4 (GTCATTTCCGCCCTGGAAAT) and negative control Gal4-4 (GAACGAC

TAGTTAGGCGTGTA) protospacers were cloned into a lentiviral expression plasmid expressing

guides from a mouse-derived U6 promoter, BFP and puromycin (pU6-sgRNA EF1-Alpha-puro-T2A-

BFP; Addgene ID: 60955). HeLa CRISPRi cells were transduced with guide RNA expression plasmids,

selected in puromycin for 72 hr and either directly used for experiments or expanded for SILAC

labeling. HeLa cell lines were confirmed by STR analysis and tested as free from mycoplasma

contamination.

Mammalian ribosome profiling
Ribosome profiling was performed for HeLa-dCas9-KRAB cells, and HeLa-dCas9-KRAB cells express-

ing EMC2 or Gal4-4 control guide RNAs. Cells were cultured in 15 cm plates with Dulbecco modified

eagle medium (DMEM) with 10% fetal bovine serum (Gibco) until ~80% confluency. Cells were

treated with 100 ug/ml CHX for 2 min and then lysed using 500 ml per polysome lysis buffer (20 mM

Tris pH 7.5, 150 mM NaCl, 5 mM MgCl2, 1% Triton x-100, 1 mM DTT, 8% glycerol, 100 mg/ml CHX,

24 U/ml Turbo DNase) per plate using a rubber cell scraper to facilitate lysis. Lysate was centrifuged

for at 20,000 x g for 2 min at 4ºC and the remaining cleared polysome-containing lysate was flash

frozen by immersion in liquid nitrogen and stored at -80ºC until digestion. CaCl2 was added to
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polysome-containing lysate to a final concentration of 5 mM and 30 mg was digested to monosomes

using micrococcal nuclease (8 U/mg) for 1 hr at room temperature and the reaction was terminated

by the addition of EGTA (6.25 mM). Digested lysates were equilibrated to 500 ml with polysome gra-

dient buffer (20 mM Tris pH 7.5, 150 mM NaCl, 5 mM MgCl2, 1% Triton x-100, 1 mM DTT, 100 mg/

ml CHX) and loaded on top of a sucrose cushion (polysome buffer containing 1.65 M sucrose) and

ultracentrifuged in a TLA-110 rotor (Beckman Coulter) for 4 hours at 4ºC. The monosome-containing

pellet was resuspended in 700 ml Trizol (Life Technologies). Total RNA was extracted and libraries

were prepared as described for proximity-based ribosome profiling.

Quantitative SILAC mass spectrometry
Cell culture and harvesting
All cell culture reagents were obtained from Gibco unless otherwise stated. Cells were cultured for

at least seven doublings in SILAC DMEM supplemented with 10% Dialyzed FBS, 20 Units/mL Penici-

lin, 20 mg/ml Streptomycin, 1 mM Sodium Pyruvate, 10%, and 2 mM L-alanyl-L-glutamine dipeptide

and either; 42 mg/L 13C6,
15N4-L-Arginine HCl (Silantes) together with 73 mg/L 13C6,

15N2-L-Lysine

HCl (Silantes), or 42 mg/L Arginine HCl and 73 mg/L Lysine HCl with standard isotopic constituents

(Sigma). Cells were harvested by rinsing twice in ice-cold PBS excluding Calcium Chloride and Mag-

nesium Chloride. Cells from 1 � 10 cm dish were scraped in 1 ml of ice-cold PBS and transferred to

a 1.5 mL Eppendorf tube, for centrifugation at 300 x g at 4˚C. The PBS was aspirated and cells were

resuspended in lysis buffer (4% SDS, 100 mM DTT in 100 mM Tris-HCl, pH 7.6 at room temperature)

and heated to 95˚C for 5 min. Samples were sonicated for 15 � 30 s cycles using a Bioruptor to

reduce viscosity of the lysate. Protein concentrations were determined via tryptophan assay.

Filter-aided sample preparation (FASP)
Peptides were generated essentially as described (Zielinska et al., 2010). Protein lysate from Gal4

SILAC heavy-labelled cells and EMC2 or EMC4 SILAC light-labelled cells were mixed 1:1, and 100

mg of sample plus 250 mL Urea Buffer (8M urea, 100 mM Tris pH 8.5) was loaded onto Microcon 30

kDa MWCO centrifugal filters. Loaded filters were centrifuged at 10,000 x g at 18˚C for 20 min. Fil-

ters were centrifuged a further two times with 250 mL Urea Buffer. Samples were alkylated at room

temperature for 15 min by incubation with 50 mM Iodoacetamide in Urea Buffer. Samples were cen-

trifuged a further three times for 15 min each with 150 mL Urea Buffer, before two times centrifuga-

tion with 150 mL digestion buffer (40 mM NH4HCO3). Finally 2 mg trypsin (Sigma) or 6.25 mg GluC

(NEB) in 40 mL digestion buffer was added to the filters and incubated overnight at 37˚C. Peptides
were collected by centrifugation followed by a further two washes with elution buffer (1 mM CaCl2,

1 mM MnCl2, 500 mM NaCl in 20 mM TrisHCl, pH 7.3).

Peptide purification
Peptides were acidified with 1% (v/v) TFA, and assuming 50% recovery, 20 mg peptides were loaded

directly onto SDB-RPS stage tips. Stage tips were washed twice with 0.1% (v/v) TFA, and sequentially

eluted with 20 mL SDB-RPS1 (100 mM Ammonium formate, 40% (v/v) Acetonitrile, 0.5% (v/v) Formic

acid), followed by 20 mL SDB-RPS2 (150 mM Ammonium formate, 60% (v/v) Acetonitrile 0.5% (v/v)

Formic acid), then 30 mL SDB-RPS3 (1% (v/v) TFA, 80% Acetonitrile). Tryptic peptides were dried to

completion in a centrifugal vacuum concentrator (Concentrator 5301, Eppendorf), and volumes were

restored to 10 mL with buffer A* (0.1% (v/v) TFA, 2% (v/v) Acetonitrile).

Liquid chromatography coupled to tandem mass spectrometry
LC-MS/MS was performed exactly as described previously (Itzhak et al., 2016), with the exception

that the LC was coupled to a Q Exactive HF-X Hybrid Quadropole-Orbitrap mass spectrometer,

which boasts improved ion transfer (Kelstrup et al., 2018).

Processing of mass spectrometry .RAW files
Mass spectrometry .RAW files were processed in MaxQuant (Tyanova et al., 2016; Cox and Mann,

2008), version 1.5.5.2. RAW files were organized into two parameter groups to separate trypsin and

GluC digested peptides. For both groups, multiplicity for was set to two, with Lys8 and Arg10

selected as heavy labels, re-quantify was turned on, with matching enabled between adjacent
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peptide fractions with the same enzyme. The Fasta file Homo_sapiens.GRCh38.pep.all.fa was down-

loaded from Ensembl.
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and accessibility
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Schorr S, Zimmer-
mann R, Schwap-
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JS, Schuldiner M

2016 The SND proteins constitute an
alternative targeting route to the
endoplasmic reticulum

http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?
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Publicly available at
the NCBI Gene
Expression Omnibus
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Jan CH, Williams
CC, Weissman JS

2014 Principles of ER Co-Translational
Translocation Revealed by
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Publicly available at
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2.2.4 Deep proteomic annotation of mutations and

alternative splicing

There is a general scientific debate on the prevalence and impact of alternative

splicing on protein complexity[169, 170]. The detection and quantification of

alternative isoforms using proteomics would be key to unravel this mystery. One

of the ways would be to directly analyze intact proteins using top-down mass

spectrometry. However, it is technically not feasible to do on a system biology

level[77]. The RNA-Seq was successfully applied to numerous studies focused on

alternative splicing regulation at the mRNA level. Compared to RNA-Seq, the

standard shotgun proteomics experiment does not even get close to full sequence

coverage, thus limiting the detection and quantification of isoforms. One issue for

the detection of protein isoforms using bottom-up proteomics is the bias introduced

by trypsin cleavage[171].

In this manuscript, we explore the potential of bottom-up proteomics for

isoforms and mutations detection by cleaving proteins with various proteases, deep

fractionation, and various fragmentation methods. We applied this workflow to

six cell lines, which were initially used in the Encode project. Like that, we could

reuse the already generated deep NGS data. Also, we explore the feasibility of

detecting translated non-synonymous mutations and whether it would be possible

to reconstruct proteins de novo from detected peptides.

My contribution to this manuscript was the development of an algorithm for

the detection of alternative splicing and single amino acids polymorphisms. The

developed solution allowed us to detect around 500 splicing events where both

alternatives were present. We also found evidence for more than a thousand

expressed mutations per cell line, which were in an agreement with genomic

mutations.
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ABSTRACT (150/150 words) 

Mature proteomics methods now routinely enable detection of around 10,000 human proteins from a single 
sample. However, proteins are typically identified by peptide sequences representing a small fraction of all amino 
acids predicted from the genome. Deeper sequencing – detection of all amino acids – is necessary for discovery 
and quantitative comparison of all unique proteoforms. Here, we utilized six cell lines, six proteases, and three 
tandem mass spectrometry (MS/MS) fragmentation methods to collect 2,491 raw MS data files. From these data 
we identified 1,119,510 unique peptides from 17,717 protein groups with a median sequence coverage of 79.2%, 
confirming over eight million unique human amino acid residues. We compare our proteomics data with RNA-
seq results and demonstrate how such deep proteome coverage can enable detection of over 2,000 protein 
mutations and over 5,000 alternative splicing event junctions. Our dataset represents a valuable resource as the 
largest human proteome sequence coverage ever reported. 

 

INTRODUCTION  

Persistent developments in mass spectrometry (MS), especially the shotgun strategy, have propelled our ability 

to analyze proteins. Today near-complete proteomes of simple organisms can be detected following only one 

hour of analysis.[1-3] For more complex organisms, patient analysts can monitor over 10,000 proteins within a 

day.[3-6] Draft maps of the human proteome, assembled using copious data from various tissues and cell types, 

provide evidence for the translation of ~ 90% of known protein-coding genes.[7-9] Although the human genome 

contains around 20,000 protein-coding genes,[10, 11] it is estimated that alternative splicing events, where 

mRNA fragments are combined in different arrangements, can yield four to five-fold more unique transcripts.[12, 

13] Other alterations, including single nucleotide polymorphisms (SNPs), alternative transcription of start and 

stop sites, and post-translational modifications (PTM) further increase proteomic complexity.[14, 15] While 

evidence of some of these events can be obtained from genomic and transcriptomic data, it remains an open 

question of just how muchvariation exists at the protein level.   

A well-known limitation of the shotgun method is that the presence of an entire protein is determined using 

peptide proxies – sometimes only two or three. Thus, sequence coverage in a proteomics experiment is generally 

insufficient to fully characterize what Kelleher and Smith have termed proteoforms present within a sample.[14, 
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16] They persuasively advocate that the ability to precisely monitor these protein molecular forms will be essential 

to understanding biological systems. Even the current deepest proteomic datasets do not contain enough 

sequence data to globally identify the alterations named above.[3, 7-9, 17, 18] One approach to achieve 

proteoform-level detection is top-down MS, a strategy that measures intact protein mass prior to dissociation for 

sequence determination using tandem mass spectrometry (MS/MS). Ensuring no loss in resolution, the top-down 

strategy is intellectually appealing. Practical issues with high-mass proteins, sequence coverage, and detection 

of low abundance species, however, limit its impact.[19] Given the technical hurdles with top-down proteomics, 

we revisited the shotgun strategy.    

Shotgun proteomics generally relies on trypsin as the preferred enzyme used to catalyze hydrolysis of 

proteomes. Trypsin cleaves C-terminal to lysine and arginine and produces peptides of length and charge 

distributions most amenable to tandem MS (MS/MS). However, even with the assistance of extensive 

chromatographic separations, not all portions of the proteome are accessible from tryptic peptides; many of the 

peptides produced are either too short or too long to be detected using current LC-MS technology. As 

proteoforms can differ by a small number of amino acids, near-complete sequence coverage is crucial for 

distinguishing near-identical variants. The use of alternative enzymes in addition to trypsin during digestion can 

increase the amino acid coverage of individual proteins, phosphorylation sites, and whole proteomes[6, 20-22]. 

However, given the considerable increased effort it involves, this strategy has not become routine.  

We wondered whether digestion of human proteomes with several different proteases coupled with extensive 

LC fractionation and state-of-the-art MS could produce sufficient sequence depth to allow for global assessment 

of genomic variation and RNA editing at a proteome level. To test this idea, we cultured six unique human cell 

lines, harvested proteins from each, and digested them (separately) with six specific proteases. The resulting 

peptides were extensively fractionated offline and then analyzed on a tribrid Orbitrap mass spectrometer. 

Peptides derived from all enzymes were dissociated using a variety of fragmentation methods including beam-

type collisional activation (HCD),[23] ion trap collisional activation (CAD),[24] and electron transfer dissociation 

(ETD).[25]  Altogether we collected approximately ~20 million high resolution mass spectra and ~164 million 

MS/MS spectra within ~2,500 nLC-MS/MS experiments. The combination of data from all cell lines allowed for 

identification of 17,717 proteins with an overall median sequence coverage of 79.2%. Using these data, and 

comparing them to transcriptomic analysis, we offer a global view of mutations and alternative splicing at the 

protein level. Further, we have compiled these data into an online resource to enable the intuitive exploration of 

the on the deepest protein variant datasets to date. This resource is accessible at the web address https://deep-

sequencing.app. Using the deep and overlapping peptide sequence information generated, we demonstrate 

feasibility for de novo protein assembly.    

RESULTS 

Deep human proteome sequencing 
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In silico tryptic digestion of the ~20,200 reviewed, canonical proteins of the human proteome (Uniprot) predicts 

~2.4 million tryptic peptides of suitable size for MS detection (7–35 amino acids, up to one missed cleavage). 

These peptides comprise ~7.5 million amino acid residues – i.e., only ~65% of the proteome’s ~11.3 million total 

amino acid residues. Next, if we consider digestion of the same 20,000 proteins using the six enzymes in our 

study (LysC, LysN, AspN, chymotrypsin, GluC, and trypsin), two million peptides suitable for shotgun proteomics, 

representing 99% of the amino acids contained by the proteins, are generated. Note we have previously 

demonstrated the increase in sequence coverage of a yeast proteome following digestion with proteases in 

addition to 

trypsin.[21]   

To test the 

hypothesis 

that we can 

similarly 

increase 

coverage of 

the human 

proteome, 

we selected 

six diverse 

human cell lines: hES1, an embryonic stem cell line, HeLa S3, from cervical carcinoma, HepG2, from liver 

carcinoma, GM12878, a blood lymphoblastoid line, K562, from chronic myeloid leukemia, and HUVEC, from 

umbilical vein epithelial cells (Figure 1A). As part of the ENCODE project, these cell lines have a large amount 

of publicly available genomic and transcriptomic data. Aliquots of each cell line were separately digested with 

the six proteases named above. To maximize depth, peptides were heavily fractionated (24–80 fractions) and 

analyzed on either an Orbitrap Fusion (Thermo) or an Orbitrap Lumos (Thermo). All fractions were analyzed 

using nano flow LC-MS/MS. Dissociation for MS/MS was achieved using HCD, CAD, and ETD. The resulting 

2,491 raw files were simultaneously analyzed by database search to identify proteins and peptides using the 

Andromeda search engine inside MaxQuant14,15, and results were filtered to 1% protein-level FDR.   

Figure 1. Overview of Deep Proteomics Workflow. Six human cell lines were grown in parallel, their proteomes 

isolated, and then separate aliquots of each proteome were digested by one of six proteases in parallel. Peptides 
resulting from each digestion were fractionated by high-pH reversed phase chromatography, and then analyzed 
separately with nanoLC-MS/MS using HCD, ETD, and CAD. The resulting data was searched with MaxQuant against 
the human proteome database, and over 17,000 proteins were identified by peptides that produce a median coverage 
of over 80%. The high coverage achieved is illustrated on the sequence of hemoglobin subunit gamma-1 with color 
coding to illustrate the number of unique peptides that cover each position.  
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Figure 2 summarizes these data by cell line, depth of coverage, and gains provided by multiple-protease 

digestion. For each cell line, an average of 539,325 unique peptides, corresponding to ~16,000 proteins were 

identified (Figure 2A). The highest number of protein identifications was from the hES1 cell line (17,121), 

followed by HeLa S3 (16,399), GM12878 (16,344), HepG2 (16,328), HUVEC (16,158) and K562 (16,054). The 

trypsin dataset contributed (as expected) the largest number of unique peptides (396,782), followed by LysN 

(194,506), LysC (193,956), GluC (162,784), AspN (152,259) and chymotrypsin (114,152). Notably, within each 

cell line, data from each enzyme digestion alone identified over 10,000 protein groups. Across all cell lines, data 

from tryptic peptides contributed the largest number of identifications and unique sequences, totaling 17,631 

Figure 2. Overview of results from deep proteomics analysis. A. Number of proteins detected for each of the six 
cells lines and cumulative as a function of peptides from the various proteases. B. Median sequence coverage for the 
various cellular proteomes for combined and individual protease results. C. In total over eight million individual amino 
acids were sequenced in this experiment. D. Sequence coverage for each of the detected proteins for the tryptic 
peptide data (red) and combined (gray).  E. Theoretical sequence coverage achievable for various combinations of 

proteases (light gray boxes) and observed sequence coverage (dark gray).  
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proteins with 56.5% median sequence coverage. Data from LysC-generated peptides mapped to 17,006 protein 

groups with 37.9% median sequence coverage, followed by chymotrypsin-generated peptides that contributed 

data supporting 15,833 protein group identifications with 19.6% median sequence coverage. Data from LysN 

digestion contributed data supporting 16,686 protein group identifications with 32.6% sequence coverage, AspN 

contributed data supporting 16,479 protein group identifications with 27.2% median sequence coverage, and 

GluC contributed data supporting 16,318 protein group identifications with 29.0% median sequence coverage.   

Analysis of all data from all cell lines and protease digestions together identified 12,151,708 peptide spectrum 

matches (PSMs), 1,119,510 unique peptides, and 17,717 protein groups at a peptide and protein FDR of 1%. 

These proteins correspond to over 12,000 genes, comprising ~65% of predicted protein-coding genes. Of those, 

790 proteins were identified with 100% sequence coverage. The average number of unique peptides per protein 

was 97 (median = 65). Fifty-four proteins were identified from only one unique peptide; only 1,122 proteins, or 

6.3% of the total proteins, were identified by ten or fewer unique peptides. These 17,717 protein groups have a 

median sequence coverage of 79.2%. Median sequence coverage for the combined dataset and the 

contributions from subsets is shown in Figure 2B (see also Supplementary Table 3), and ranges from 49.7% 

(HUVEC; 16,158 proteins) to 63.9% (HeLa S3; 16,399 proteins). Remarkably, nearly half of all identified proteins 

were observed with 80–100% sequence coverage (Supplementary Figure 1). Only 936 proteins, or 5.3% of the 

total data, have sequence coverage below 25%.  

The addition of enzymes other than trypsin provided a slight increase in the total number of proteins identified 

but a large increase in the non-redundant amino acids detected. The 17,717 human proteins present in our 

dataset comprise 12,006,700 amino acid residues. In total, the unique peptides identified in the combined tryptic 

datasets from all cell lines detected approximately half of these amino acids (6,113,639; see Supplementary 

Table 4). The overlap between the amino acids detected from tryptic peptides and amino acids identified in 

peptides generated by all other enzymes is plotted in Figure 2C. Figure 2D illustrates the median sequence 

coverage achieved with various combinations of enzymes. In total, the addition of alternate enzymes to trypsin 

added 2,179,015 amino acids for a total of 8.2 million, or 69.1%, of the residues that make up the proteins we 

identified. Figure 2E illustrates how the various combinations of enzymes contributes to protein coverage 

distribution for all proteins. Noteworthy, is that all top performing enzyme combinations include trypsin. Our total 

human proteome coverage is the largest to date, with 2.12 million more residues (a 34.4% increase) over the 

6.17 million identified using exclusively tryptic peptides from the entire MassIVE data repository16.  

The impact of these additional amino acids on protein sequence coverage can be seen in Figure 2D. The 

sequence coverage of human proteins identified using trypsin is plotted in red, with sequence coverage obtained 

for each protein from the combination of all enzymatic datasets plotted in gray. On average, sequence coverage 

increased by 19% from digestion with six enzymes compared to digestion with trypsin alone. Among all protein 

identifications, 86 could not be identified using tryptic peptides alone. Four of these proteins –  CUGBP Elav-like 

family member 1 (F5H7M7), Protein transport protein Sec31A (U3KQR3), and predicted genes 

ENSP00000421703.1, ENSP00000468392.1 – saw increases from no coverage with data from trypsin to 100% 
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coverage with the addition of other data. Each of these proteins are relatively short, containing either zero or few 

suitable tryptic peptides and were thus not detected in the trypsin dataset (Supplementary Figure X?). 

Alternative proteases have previously been utilized to uncover novel portions of the proteome, including 

membrane proteins. These proteins – essential to many biological processes and representing important drug 

discovery targets (Wu and Yates 2003) – remain under-represented in proteomics datasets due to their 

hydrophobic nature. This is also true of our dataset. Gene ontology (GO) cellular component (CC) pathway 

enrichment analysis of the proteins with sequence coverage below 25% revealed that these low coverage 

proteins were primarily membrane proteins (Supplementary Figure 3B). Peptide sequences of these proteins 

may be lost due to limited solubility or a lack of appropriate cleavage sites for our proteases, which, with the 

exception of chymotrypsin, primarily target charged amino acids. To assess each enzyme’s ability to produce 

membrane-spanning peptides suitable for identification by shotgun proteomics, we mapped these peptide 

sequences to downloaded structural domain information from Uniprot. Structural domains include helix, turn, 

transmembrane, intramembrane, and strand. No significant enrichment was observed for helix, turn, and strand 

domains, with each enzyme covering on average >80% of amino acids comprising a specific domain. Significant 

differences were observed among each enzyme’s ability to access transmembrane-spanning sequences. 

Digestion with AspN, GluC, LysN, and LysC identified 86, 79, 186, and 293 transmembrane-spanning regions, 

respectively, with each permitting access to an average of 33% of the amino acids in these regions. Following 

tryptic digestion, 599 transmembrane-spanning regions were identified, with ~60% coverage. Digestion with 

chymotrypsin allowed the identification of 1,034 transmembrane-spanning regions, albeit at lower coverage than 

other enzymes due to chymotrypsin’s multiple cleavage sites. To further explore the behavior of peptides 

generated from transmembrane-spanning sequences, we calculated the enzyme-specific coverage of aligned 

membrane-spanning regions to either the N- or C-terminus (Figure 2X). These data demonstrate that because 

transmembrane regions are depleted for typical protease cleavage sites, peptides suitable for detection by 

shotgun proteomics are not being observed. This conclusion is further supported by the strong relative 

performance of chymotrypsin, which is atypical in cleaving at hydrophobic residues, as compared to the other 

proteases. The overlap of transmembrane regions is presented in Supplementary Figure X, highlighting the 

numerous transmembrane regions identified with use of chymotrypsin that were not present following digestion 

with the other enzymes in our study. 
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Majority of hypothetical SAPs are confirmed in the proteome 

Single amino acid polymorphisms (SAPs) are variations in the protein sequence resulting from single nucleotide 

polymorphisms (SNPs) in genomic sequences that in turn lead to a non-synonymous codon change. The HeLa 

S3 cell line used in this study contains ~4.5 million SNPs. Of these, ~30,000 occur in coding regions, 4,740 of 

which are non-synonymous (Landry et al. 2013). We wondered whether our deep sequencing data would afford 

us the ability to determine the extent that these SNPs are translated into SAPs. To that end, we searched for 

SAPs with a novel MaxQuant module which specializes in the identification of peptide evidence for the translation 

of genomic variations (see Methods). We found protein-level evidence for individual cell lines up to 2,304, or a 

total of ~3,000 SAPs. (Figure 3A, Supplementary Table 5). For all cell lines except HUVEC, there was high 

overlap between the mutations detected by transcriptomics and proteomics. Given HUVEC is the only primary 

cell line (i.e. obtained directly from host tissue) in the study, this low overlap is expected; transcriptomic and 

proteomic data were collected on cells from different donors [citations]. Therefore, we omitted HUVEC from 

further analysis. Figure 3A (new) shows that the majority of non-synonymous SNPs that appear in the transcript 

also appear at the protein level (median 73% over all studied cell lines). Further, the multi-enzyme data led on 

average to a doubling of identified SAPs compared to when only trypsin was applied as a protease. To our 

knowledge, these data represent the first global view of how SNPs are propagated into the proteome.  

These data contain 939 mutations mapping to at least one entry in the Online Mendelian Inheritance in Man 

Database (OMIM) (Hamosh 2002), a catalog of SNPs associated with disease. 607 of these mutations were 

identified, at least partially, using tryptic peptides, while over a third of the mutations (354) were identified 

exclusively using enzymes other than trypsin. Two examples of SNPs linked to cancer were identified on gene 

MSH3. rs26279, resulting from a G > A polymorphism and resulting in an A > T amino acid substitution, has 
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been linked to an increased cancer risk, particularly for colorectal and  breast cancer (Miao et al. 2015). Evidence 

of this SAP was present in the K562, GM12878, HepG2 and hES1 cell lines, with at least two unique ____ 

spanning the AA substitution.  rs184967, arising from an A > Q polymorphism and resulting in a G  > R amino 

acid substitution, has similarly been linked to increased cancer risk, particularly endometrial (Nat Genetics, 

1996)  and triple negative breast cancer (Lee et al. 2014). Peptides spanning this SAP were present in the K562, 

GM12878, HepG2, HeLaS3 and hES1 cell lines, with nine representative PSMs linked to one of the GM12878 

peptides. Crystal structure: highlight region where this is. Peptide/overlap of two peptides color-coded, point with 

arrow to mutated amino acid. Show mutation point, show where peptide is in structure; if space, show tandem 

mass spectra.  

Enrichment analysis.  On average, X additional SNPs were identified in transcript measurements; we 

wondered whether the genes bearing the SNPs that were not observed at the protein level had any 

functional enrichment. To answer this question, we performed enrichment analysis of the mutations 

that we found only on the transcriptomic level, which revealed many GO terms associated with 

membrane protein families (Supplemental Figure X). As discussed above, membrane proteins are 

notoriously challenging to detect using 

MS-based proteomics; while our 

multiple-protease data expands our 

ability to detect this protein class, 

coverage of them is lower (add 

number, Supplemental Figure Y).  

Figure 3C shows the mutations as a 

function of cell line and whether they are 

detected at the protein level. Enrichment 

in each cell line vs. enrichment in islands. 

Each cell line contains a distinct island of 

mutations that were confirmed by both 

RNA-seq and proteomics (Figure 3C). Both proteomics and transcriptomics found 191 proteins mutated in all 

cell lines. A functional term enrichment analysis of these shared proteins revealed a few groups of terms and 

proteins with no obvious relation (Supplemental Figure 5). No trend was found in protein domain enrichment 

analysis. From this result, we conclude that the majority of SNPs are translated to SAPs.    

Protein-level Evidence for Alternative Splicing  

Discuss current Figure 2E here.  Another potential utility of high proteome sequence coverage is the ability to 

detect the presence of proteoforms that arise from alternative splicing of transcripts. Note we define a splicing 

event as one that alters the ultimate protein coding region of the transcript. Genome annotation predicts 
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extensive alternative splicing (~52,000 events with two alternatives using GRCh38 ensemble annotation 94). 

Further, RNA-seq studies of transcripts have demonstrated that many of these putative events do occur at the 

transcript level (~17,119) (cite GTX paper ). Although many genes undergo alternative splicing, global evidence 

for the translation of these alternative sequences is lacking (Tress et al. 2017) + more).  Specifically, conventional 

shotgun proteomics relies on incomplete sequence coverage arising from tryptic digestion alone, which is 

insufficient to identify instances of alternative mRNA splicing on a global scale (Wang et al. 2018; Sheynkman 

et al. 2013).  

Given the deep sequence coverage afforded in this study, we sought to provide the first global assessment of 

proteome-wide alternative splicing. Figure 4A 

explains the rationale of our strategy and illustrates 

an example of heterogenous alternative splicing. 

Here we consider the gene for amyloid precursor 

protein and the known alternative splicing event that 

occurs at exon 8. In one form of the transcript, this 

exon is included, and in another, it is skipped. To 

distinguish the protein products of these processes, 

one must observe peptides spanning the junction 

between exons 7 and 9 (green and light blue region 

of Figure 4A) and the junctions between exons 7 and 

8 or between exons 8 and 9 (green and light blue or 

dark blue and light blue Figure 4A). In total, we 

detected 11 unique peptides spanning these 

junctions, confirming the presence of both 

proteoforms.  
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In addition to the exon skipping example described above, Table 1 depicts several known types of alternative 

splicing. Note the five examples shown in Table 1 represent a small portion of possible configurations but depict 

the most frequent and most known versions of splicing. First we analyzed the RNAseq data of all cell lines 

together and revealed approximately 1,266 splicing events with evidence for both alternatives. Next, we merged 

the mass spectrometry results from all cell lines and searched that comprehensive data to see how many splicing 

events could be detected. From this analysis we detected protein evidence for 485 of the 1,266 alternative 

splicing events where both proteoforms were present (Table 1, Supplementary Table 6). In other words, 

approximately 40% of the alternative splicing events detected from the transcript level are translated into 

proteins. Notably, proteins resulting from intron retention were the most rarely detected (i.e., only 3 of 20). This 

finding agrees with previous results that intron retention is accompanied by a decrease in protein abundance19. 

The other types of alternative splicing were found at a similar proportion as described by the coding sequence 

assembly (Table 1) both in total and across the individual cell lines.  
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Among the 485 proteoform pairs where both splicing alternatives were detected there was a significant 

enrichment in proteins with GO terms related to transcriptional and cell cycle control, including physical 

separation of cells during mitosis (Supplementary Figure 7). A recent paper exploring differential splicing in 

transcripts along the cell cycle from synchronized cells concluded that alternative splicing primarily occurred in 

cell cycle-related genes and was under control of a specific kinase20. Where we detect both paths of splice of 

events in these genes at transcript and protein level, our results confirm the relevance of this transcriptomic 

observation for producing different functional proteins (a relationship that subject to debate21–23). Our observation 

of both paths is most likely due to the heterogeneous cell cycles that occur in cell culture.  

We also detected unique peptides spanning at least one path for 4,077 splice events. To investigate the nature 

of the bias towards one alternative manifests across the 

transcriptome, the proteome, and cell lines. Figure 5 plots the 

path preference for each splicing event as a function of cell line 

and ome. Here we observe an overall agreement agreement in 

path preference in across transcript and proteome.  That said, 

there are cases where both transcripts are present an single 

protein is generated. This observation is intriguing and warrants 

further investigation as we cannot exclude the possibility that the 

one protein form is below our detection limit.  A second conclusion 

from these data is that, by in large, cell lines tend to select the 

same splicing paths.       

 

De novo proteoform assembly 

Protein inference is conceptually akin to reference transcriptome 

assembly in short-read next-generation sequencing (NGS), where 

a previously assembled proteome or genome database is required 

to map peptide sequences or nucleic acid reads, respectively. In 

proteomics, however, genome assemblies for proteome database 

generation are either not available or not high-quality for many 

organisms. Several tools are available to assemble NGS reads 

without a reference genome, such as SOAPdenovo-Trans24. But 

de novo assembly of nucleic acid sequences relies on the 

presence of randomly overlapping sequences, which is not true of 

proteomic datasets that use only a single enzyme for digestion 

(e.g. trypsin) that should not produce overlapping sequences.  



162 CHAPTER 2. LIST OF PUBLICATIONS

However, with the data from six different protease 

digestions described in this paper, we produce many 

sequences with partial overlap, which we 

hypothesized may enable de novo protein assembly. To test this hypothesis, we reverse translated all peptide 

identifications with a non-degenerate codon table and used SOAPdenovo-Trans to assemble proteins. An 

excellent example for the de novo assembly of proteasome subunit alpha type-6 (UniProtKB P60900) with full 

sequence coverage is shown in Supplementary Figure 8A. Overall, the de novo assembly produced 35,480 

scaffolds, of which 16,496 (~47%) correctly match to 9,695 protein groups. Median sequence coverage from the 

de novo assembly was 18% compared to 79.2% for the reference assembly (Supplementary Figure 8B, 8C). 

Assembled scaffolds have a range of 33 to 358 amino acids with a median length of 45 (Supplementary Figure 

8D), and an average of two scaffolds were mapped to each protein (Supplementary Figure 8E). Our results 

demonstrate the feasibility of de novo proteome assembly using overlapping peptides from multiple protease 

digestions of the proteome; application of more sophisticated proteomics-specific assembly methods may 

improve this result in the future25.  

DISCUSSION 

Here we used six human cell lines, six parallel protease digestions, and three MS/MS fragmentation methods to 

generate over 164 million tandem mass spectra from nearly 2,500 nLC-MS/MS analysis (Figure 1). Our analysis 

of the combined data identified over one million unique peptides from 17,717 protein sequences (Figure 2). The 

median protein sequence coverage was 79.2%, which represents 8.29 million unique amino acids. Use of 

proteases that produce sequences complementary to trypsin were especially helpful in detecting 2.18 million 

unique amino acids, increasing the average protein’s sequence coverage by 19%. Interestingly, the quantitative 

character of protein identifications shared between peptides unique to each digest group gave similar protein 

abundance levels as measured by iBAQ, even though different peptide sequences should have fundamentally 

different ionization efficiencies (Figure 3). The protein abundance proxy iBAQ was roughly correlated with the 

observed sequence coverage of each protein, and low sequence coverage proteins were enriched in GO terms 

related to membrane proteins.  

We demonstrate the value of this deep human proteome sequencing in several ways. We compare the protein 

sequences we found with transcriptomics results, where high transcript coverage is routine. In doing so we first 

find that relative protein quantities and transcript quantities can be used to segregate data from each cell type, 

and that proteomic data clusters with transcriptomic data by PCA. We next find that protein mutations detected 

by MS are very well correlated with those detected by RNA-seq, providing evidence that events where the wrong 

tRNA is incorporated are exceedingly rare. Further, we used our peptide identifications to detect protein-level 

evidence of alternative splicing events that were predicted from RNA-seq and find that the proportions of various 

splice events that translate into protein mirror the proportions detected from RNA-seq (with the exception of 

intron retention, which is never translated). Expression of these protein and transcript variants have been 

compiled into an online resource for exploration by the proteomics community at https://deep-sequencing.app. 

Figure 4A. Example of heterogenous alternative splicing 

detected in amyloid precursor protein. I), Scheme depicting the 

layout of amyloid precursor protein’s exons showing the inclusion 

or exclusion of exon 8 with the peptide sequences detected that 

provide evidence of each junction. II), Annotated tandem mass 

spectra for a peptide spanning the splice junction from exon 7 to 

exon 9. III), Annotated tandem mass spectra for a peptide 

spanning the splice junction from exon 7 to exon 8. 
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Finally, we show proof-of-concept results that such high protein sequence coverage generated from multiple 

overlapping peptide sequences can be used to assemble proteins de novo, which could be useful when genome 

sequence is unavailable or for detection of exotic novel transcript translation.  

Our massive dataset provides a unique resource for the analysis of six standard human cell lines and provides 

benchmarks for future studies of multi-protease, multi-dissociation studies of the human proteome. We expect 

this data and analysis to guide future studies seeking to understand the relationship between splicing and 

translation as well as tolerable mutations in the proteome.   
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ONLINE METHODS 

Cell culture and lysis. HeLa S3 cells (ATCC CCL-22; ATCC, Manassas, VA) were grown at 37°C with 5% 

CO2 in F-12K medium (ATCC) supplemented with 10% fetal bovine serum (FBS) and antibiotics. HUVEC cells 

(Lonza CC-2517; Lonza, Walkersville, MD) were grown at at 37°C with 5% CO2 in Endothelial Growth Media 

(EGM) supplemented with EGM Complete Media (Lonza) and antibiotics. HepG2 cells (ATCC HB-8065; 

ATCC) were grown at 37°C with 5% CO2 in Eagle’s Minimum Essential Medium (EMEM, ATCC) supplemented 

with 10% FBS and antibiotics. K562 cells (ATCC CCL-243; ATCC) were grown at 37°C with 5% CO2 in 

Iscove’s Modified Dulbecco’s Medium (IMDM, ATCC) supplemented with 10% FBS and antibiotics. GM12878 

cells (GM12878 K Order 104598; Coriell Institute for Medical Research, Camden, NJ) supplemented with 15% 

FBS and RPMI-1640 medium (Sigma Aldrich). Cells were harvested at >70% confluency through centrifugation 

at 300xg for 5 minutes at 4°C. The supernatant was removed, and cells were washed with phosphate-buffered 

saline (PBS) and centrifuged at 300xg for 5 minutes at 4°C. The resulting pellet was stored at -80°C. Cell 

pellets were resuspended in lysis buffer containing 8 M urea, 50 mM tris (pH 8), 5 mM CaCl2, 30 mM NaCl, 

and protease (Roche) and phosphatase (Roche) inhibitor tablets.  The pellet was lysed by four rounds of 

sonication at 4°C, alternating between 20 seconds on and 20 seconds off.  Lysate protein concentration was 

measured by BCA (Thermo Pierce). 

  

Digestion. Protein was reduced by addition of 5 mM dithiothreitol and incubated for 45 min at 55 °C. The 

mixture was cooled to room temperature, followed by alkylation of free thiols by addition of 15 mM 

iodoacetamide in the dark for 30 min. The alkylation reaction was quenched with 5 mM dithiothreitol. For tryptic 

digestion, a 1 mg protein aliquot was digested overnight with 20 µg trypsin (Promega, Madison, WI) at room 

temperature in 1 M urea. For LysC digestion, a 1 mg protein aliquot was digested overnight with 20 µg LysC 

(Wako, Richmond, VA) at room temperature in 4 M urea. For LysN digestion, a 1 mg protein aliquot was 

digested for four hours with 20 µg LysN (Thermo Pierce) at 37°C in 4 M urea. For GluC digestion, a 1 mg 

protein aliquot was digested overnight with 25 µg GluC (Roche Diagnostics, Indianapolis, IN) at room 

temperature in 0.5 M urea. For chymotrypsin digestion, a 1 mg protein aliquot was digested overnight with 12.5 

µg of chymotrypsin resuspended in 0.2% FA (Promega, Madison, WI) in 1 M urea. For digestion with AspN, a 

1 mg protein aliquot was incubated with 6 µg AspN (Roche Diagnostics, Indianapolis, IN) at room temperature 

overnight. Each digest was quenched by the addition of TFA and desalted on a 100 mg C18 Sep-Pak cartridge 

(Waters, Milford, MA). 

  

Fractionation. High-pH RP fractionation was performed either using a Surveyor LC quarternary pump or a 

Dionex UltiMate 3000. Fractionation was performed at a flow rate of 1.0 mL/min using a 5 µm column packed 

with C18 particles (250-mm by 4.6-mm, Phenomenex) on a Surveyor LC quarternary pump. Samples were 

resuspended in buffer A and separated using the following gradient: 0-2 min, 100% buffer A and separated by 

increasing buffer B over a 60-minute gradient at a flow rate of 0.8 mL/minute (buffer A: 20 mM ammonium 

formate, pH 10; buffer B: 20 mM ammonium formate, pH 10, in 80% ACN). Flow rate was increased to 1.5 

mL/minute during equilibration. Fractionation was performed at a flow rate of 0.45 mL/min using a 1.7 µm 
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column packed with BEH particles (50-mm by 1-mm, Waters) on a Dionex Ultimate 3000 pump (Thermo). 

Samples were resuspended in buffer A and separated by increasing buffer B over a 45-minute gradient at a 

flow rate of 0.45 mL/minute (buffer A: 20 mM ammonium bicarbonate; buffer B: 20 mM ammonium bicarbonate 

in 80% ACN). Trypsin digested H1-hESC cells were first fractionated via strong cation exchange fractionation. 

Peptides were dissolved in 400 μl of strong cation exchange buffer A (5 mM KH2PO4 and 30% acetonitrile; pH 

2.65) and injected onto a polysulfoethylaspartamide column (9.4 mm × 200 mm; PolyLC) attached to a 

Surveyor LC quarternary pump (Thermo Electron, West Chester, PA) operating at 3 ml/min. Fractions were 

collected every 2 min starting at 10 min into the following gradient: 0–2 min at 100% buffer A, 2–5 min at 0%–

15% buffer B (5 mM KH2PO4, 30% acetonitrile, and 350 mM KCl (pH 2.65)), and 5–35 min at 15%–100% 

buffer B. Buffer B was held at 100% for 10 min. Fractions were collected from 8-12 minutes, 12-14 minutes, 

14-16 minutes and 16-25 minutes. Each of these four SCX fractions was further fractionated by high-pH RP 

fractionation on a Surveyor LC quarternary pump, as described above. 

  

LC-MS/MS. Samples were resuspended in 0.2% formic acid (FA) and separated via reversed phase (RP) 

chromatography. Peptides were injected on to a RP column prepared in-house. Approximately 35 cm of 75 

μm-360 μm inner-outer diameter bare-fused silica capillary, each with a laser pulled electrospray tip, were 

packed with 1.7 μm diameter, 130 Å pore size, Bridged Ethylene Hybrid C18 particles (Waters). Columns were 

fitted on to either a nanoAcquity (Waters) or Dionex (Thermo) and heated to 60 °C using a home-built column 

heater. Mobile phase buffer A was composed of water and 0.2% formic acid. Mobile phase B was composed of 

70% ACN, 0.2% formic acid, and 5% DMSO. Each sample was separated over a 100-min gradient, including 

time for column re-equilibration. Flow rates were set at 300-350 µl/min. 

Peptide cations were converted to gas-phase ions by electrospray ionization and analyzed on a Thermo 

Orbitrap Fusion (Q-OT-qIT, Thermo) or a Thermo Orbitrap Lumos (Q-OT-qIT, Thermo). All fractions were 

analyzed using HCD. Precursor scans were performed from 300 to 1,500 m/z at either 60K or 120K resolution 

(at 400 m/z). A 5 x 105 ion count target was used on the Orbitrap Fusion, a 1 x 106 ion count target was used 

on the Orbitrap Lumos. Precursors selected for tandem MS were isolated at 0.7 Th with the quadrupole, 

fragmented by HCD with a normalized collision energy of 30, and analyzed using turbo scan in the ion trap. For 

some analyses, precursors above 500 m/z were fragmented by HCD using the described conditions, while 

precursors below 500 m/z were fragmented by CAD with a normalized collision energy of 30. The maximum 

injection time for MS2 analysis was normally set at either 25 or 35 ms, but was set higher for some analyses, 

with an ion count target of 104. Precursors with a charge state of 2-8 were sampled for MS2. Dynamic exclusion 

time was set at 15 seconds, with a 10-ppm tolerance around the selected precursor and its isotopes. 

Monoisotopic precursor selection was turned on. Analyses were performed in top speed mode with either 3 or 

5 second cycles. 

 

LysC, LysN, AspN, GluC and chymotrypsin fractions were analyzed using ETD. To maximize identifications, 

precursor scans were performed from 200 to 800 m/z at either 60K or 120K resolution (at 400 m/z). A 5 x 105 

ion count target was used on the Orbitrap Fusion, a 1 x 106 ion count target was used on the Orbitrap Lumos. 
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Precursors selected for tandem MS were isolated at 0.7 Th with the quadrupole. Precursors were fragmented 

by ETD using custom reaction times; +3: 40 ms, +4: 22 ms, +5: 14 ms, +6: 10 ms, +2: 70 ms. EThcD was 

performed on +2 precursors, at 25% supplemental activation collision energy. Precursor ions were selected for 

fragmentation based on charge state in the following order: +3, +4, +5, +6, +2. Fragment ions were analyzed in 

the ion trap. Dynamic exclusion time was set at 15 seconds, with a 10-ppm tolerance around the selected 

precursor and its isotopes. Monoisotopic precursor selection was turned on. Analyses were performed in top 

speed mode with either 3 or 5 second cycles. 

 

Fractionated peptides from chymotrypsin-catalyzed proteolysis were analyzed using CAD. Precursor scans 

were performed from 300 to 1,500 m/z at either 60K or 120K resolution (at 400 m/z). A 5 x 105 ion count target 

was used on the Orbitrap Fusion, a 1 x 106 ion count target was used on the Orbitrap Lumos. Precursors 

selected for tandem MS were isolated at 0.7 Th with the quadrupole, fragmented by CAD with a normalized 

collision energy of 30, and analyzed using turbo scan in the ion trap. The maximum injection time for MS2 

analysis was normally set at either 25 or 35 ms, but was set higher for some analyses, with an ion count target 

of 104. Precursors with a charge state of 2-8 were sampled for MS2. Dynamic exclusion time was set at 15 

seconds, with a 10-ppm tolerance around the selected precursor and its isotopes. Monoisotopic precursor 

selection was turned on. Analyses were performed in top speed mode with either 3 or 5 second cycles. 

  

Protein Identification. 

The raw MS data was searched with the MaxQuant software (version 1.5.7.5). Searches were performed against 

the following protein sequence databases: UniProt canonical (UP000005640_9606), Uniprot isoform 

(UP000005640_9606_additional), Ensembl canonical (GRCh38.pep.all), Ensembl isoform 

(GRCh38.pep.abinitio), and a three-frame translation of Ensembl ncRNA (GRCh38.ncrna). Searches use the 

default precursor mass tolerances (20 ppm first search and 4.5 ppm main search) and a product mass tolerance 

of 0.35 Da. The in silico digest was set to specific cleavage and a maximum of two missed cleavages. Parameters 

for each protease (LysC, LysN, chymotrypsin, AspN, GluC, and trypsin) were set in groups. The fixed 

modification specified were carbamidomethylation of cysteine residues and variable modifications were oxidation 

of methionine and acetylation of protein N-terminus. Peptides and proteins groups were both filtered to a 1% 

FDR. Protein groups were filtered for "Only identified by site", "Reverse", and "Contaminant". Gene locus 

information was mapped to majority protein IDs with HGNC IDs from UniProt and Ensembl BioMart. 

 

Protein coverage calculation. 

Sequence coverage for various subsets of runs was calculated with a custom C# application. For each row in 

the MaxQuant proteinGroups.txt output, all associated peptides were retrieved from peptides.txt. For each 

peptide, it was first determined if it was found in this subset of runs, using the experiment-based PSM count 

columns in peptides.txt. If so, the sequence was searched for all occurrences in the sequence of the first major 

protein of the protein group, ignoring enzyme specificity. A list of unique amino acid residues observed was 

maintained across all peptides, and at the end the number of residues in the list was divided by the total number 
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of residues in the major protein sequence. Whenever possible, sequence coverages obtained in this manner 

were compared with those computed by MaxQuant and included in proteinGroups.txt, and the agreement was 

excellent. The console C# code is located at 

https://github.com/cwenger/cwenger.github.io/tree/master/MaxQuantAnalyzer  

 

RNA-seq data and analysis. 

The paired RNA-seq data for HeLa S3/HUVEC/HepG2/K562/GM12878/hESC is a part of the ENCODE dataset 

and was downloaded from SRA (SRP014320). Raw reads were filtered using trimmomatic (version 0.36) using 

default parameters for paired-end data. Filtered reads were mapped to the human reference genome GRCh38 

(Ensemble release 91) using STAR aligner (version 2.5.3a). Further processing – sorting, converting from SAM 

to BAM format and indexing – was done using SAMtools (version 1.6). 

 

To compare proteomics and transcriptomics data (Figure 3B), raw reads per gene were counted in Perseus 

(version 1.6.14.0), and rows were logorithmised with pseudocount one and normalized by z-scoring for each 

experiment independently. iBAQ values from the standard proteomics search were summed up for each cell 

line (through fractions, fragmentation methods, and proteases), logorithmised, z-scored for each cell line 

independently, and imputed by replacing missing values from the normal distribution (width = 0.3, down shift 

=1.8) separated for each cell line. After joining the two tables, genes with both protemics and transcriptomics 

data were used for the PCA plot. Component 1 (accounting for 27.8% of the variance) was not used because it 

explains the difference between proteomics and transcriptomics data. 

Mutation analysis – Transcriptomics. 

Non-synonymous mutations were extracted from RNA-seq data of all studied cell lines using “Variation 

extraction” tool in MaxQuant (Tools/Variation extraction). This tool reports in a fasta file all non-synonymous 

mutations which pass a list of filters: total reads depth should more or equal than 10, a number of reads with 

mutations should be more or equal than 5, the frequency of reads with mutations to overall depth should be 

more or equal than 15%, the base quality, as well as the mapping quality, should be more or equal than 13, 

which automatically filters out multi-mapped reads. The “Variation extraction” tool generates amongst many 

output files, protein.fa file with all annotated “protein_coding” sequences as well as information about non-

synonymous mutations in a header of each sequence.      

Mutation analysis – Proteomics. 

To enable MaxQuant to use the specified mutations, one has to add the fasta file into the “Fasta files” tab 

(Global Parameters/Sequences/Fasta files) and change “Variation mode” parameter to “Read from fasta file”. 

In MaxQuant output `peptides.txt` file an additional columns, such as “Mutated” and “Mutation names” 

columns, will be created. “Mutated” column reports “No” if one peptide comes from the reference proteome 



168 CHAPTER 2. LIST OF PUBLICATIONS

(without mutations), “Yes” if peptide results from mutation inclusion and “Mixed” if one can find peptides in 

reference as well as mutated proteome. The “Mutation names” stands for a list of involved mutations. 

Splicing Analysis – Transcriptomics and Proteomics. 

The analysis of alternative splicing is based on the gene graph structure, where nodes represent the beginning 

and the end of exons, and edges correspond to exon-exon junctions as well as connections within an exon. 

Each splicing event in this graph is a local subgraph with multiple paths, however, all paths start from the same 

node and finish on the same downstream node. It is important to point out that one path can consist of several 

isoforms. The algorithm is adapted from article. In order to use the same approach for proteomics, protein 

coordinates of peptides were converted to genome locations, taking into account the intron-exon structure of 

genes. The modified version of the algorithm is available as a plugin for Perseus software. 

De novo proteome assembly.  

The peptide spectrum matches (PSM) were extracted from the evidence.txt file and filtered by “Potential 

contaminant” and “Reverse”. Each PSM was reverse translated into nucleotide sequence with a non-degenerate 

codon table and written into a FASTA file as input to SOAPdenovo. The SOAPdenovo config file parameters 

were set to default except for maximal read length to 150. SOAPdenovo-Trans-31mer was run with K-mer length 

23 (at least 8 amino acids) and minimum contig length 100 (at least 34 amino acids). Scaffolds from the assembly 

were matched back to the proteome sequences using brute force string matching.  

 

Data Availability. 

All raw mass spectrometry data files and MaxQuant output from the standard search are available at the 

PRIDE repository. Profiled protein and transcript variants are compiled in the following location. 

https://deep-sequencing.app 

 

 

Description of Supplementary Tables 

Supplementary Table 1 gives a summary of the peptide and protein group identifications contributed by various 

subsets of the data.  

Supplementary Table 2 gives a summary of the peptide and PSM counts contributed by various subsets of the 

data. 

Supplementary Table 3 gives the sequence coverage for all identified protein groups and various subsets of 

the data.  

Supplementary Table 4 gives a summary of the non-redundant amino acids detected by trypsin, other 

enzymes, or all proteases combined.  

Supplementary Table 5 gives a summary of all mutations detected in the proteomics and transcriptomics data.  
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Supplementary Table 6 gives a summary of all splicing events detected in the proteomics and transcriptomics 

data.   
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Chapter 3

Discussion and Outlook

The synergic advancement in proteomics sample preparation, mass spectrometry

hardware, and software, greatly improved protein identification and quantification,

which was mostly manual and inaccurate in the past[2, 172]. Today, sophisticated

algorithms are capable of dealing with millions of spectra from complex

proteomes[72]. Computational proteomics has matured substantially to keep

up with the massive amounts of data produced by modern mass spectrometers.

Platforms for the identification and quantification of proteins can analyze data in a

reliable and automated way. For example, our in-house search engine, Andromeda,

calculates the probability to observe matches between expected and measured

fragment masses by chance[155]. This search engine enables the analysis of

complex proteome datasets in combination with MaxQuant, which provides a user-

friendly interface for pre-and post-processing of MS data[150]. As a result of these

progresses, attention is increasingly being shifted to the downstream part of the

data analysis, in which the quantification results are interpreted, hypotheses are

tested, and novel biological and biomedical knowledge is gained[159, 173]. Despite

all these great advances, there are still key areas in computational proteomics that

need automation and the development of new software solutions to enable advances

in proteomics workflows and downstream biological applications.

In this thesis, we present key advances in developing novel software

solutions that open up new avenues in biological investigations ranging from

immunopeptidomics to analyzing microbiomes. For example -

� Adapting MaxQuant to new data acquisition type adapted to

clinical applications - MaxDIA

We adopted well-proven practices from DDA to DIA analysis, such as

sequential searches with gradually constricting parameters (Bootstrap-DIA),

hypersensitive feature detection approach that applied for finding features

in the new MS2 space, and MaxLFQ adaptation for DIA which takes the

173
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pair-wise ratios of fragment peaks too[147]. We also introduce major new

features and concepts, such as the usage of machine learning to enhance

the score of library-to-DIA matches and to create whole-proteome predicted

spectral libraries. The complete end-to-end DIA workflow embedded into the

MaxQuant environment allows for analysis of BoxCar-DIA and ion mobility

DIA data, demonstrating very high proteome quantification coverage. Future

extension of the MaxDIA algorithm could lead to a reliable workflow for

detecting PTMs with localization information from DIA data. Since DIA is

well known as a state-of-the-art proteomics technique in large scale clinical

studies, MaxDIA is going to be battle-tested on many applications.

� MaxQuant adjusted for scalable and automated processing on

Linux systems

We have generalized a code structure to meet the expectations of modern

proteomics, which is frequently dealing with thousands of samples with

complicated experimental structure[157]. Enabling MaxQuant to run on

general high computing infrastructures, such as large distributed Linux

servers or cloud computers, allow to easily scale any proteomics workflow.

� Update MaxQuant for easy data visualization - Viewer

We developed and thoroughly updated the Viewer component of MaxQuant

which now fulfills the demands for rich content visualization of high-

resolution proteomics data[158]. The updated MaxQuant version has a

map navigation component that steers the users through mass and retention

time-dependent mass spectrometric signals. It can be used to monitor a

peptide feature used in label-free quantification over many LC-MS runs

and visualize it with 3D graphic models. An expert annotation system

aids the interpretation of the MS/MS spectra used for the identification

of these peptide features[174]. The vector of new instrument developments

is pointing toward an increasing dimensionality of the generated data while

decreasing sample complexity per volume unit[123]. The future challenge in

the visualization of these data would be to find a way to represent it in a

user-friendly way.

� MaxQuant can now extract somatic cancer mutations thereby

enabling advanced neoantigen identification workflow

We have developed a workflow to extract genomic variants that are translated

to the protein sequencing and introduce them into the proteomic search

space[53]. Thus enabling a single amino acid variation to the reference

proteome. We successfully applied this algorithm to find cell line-specific
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mutations and cancer-specific antigens from actual patients. This opens

a wide range of future perspectives in personalized cancer treatment

and significant challenges[175]. Immunopeptides are famously complicated

targets for shotgun proteomics due to the length distribution which is biased

toward short values and due to the deficiency of positively charged amino

acids. The future improvements in the identification rate of such peptides

will likely require innovations in sample preparation and computational

proteomics[176]. Hopefully, it will help to bring proteomics closer to the

actual clinical applications.

� Perseus allows the analysis of microbiome composition, genes, and

isoform expression

We have developed user-friendly tools to analyse expression from NGS data

along with proteomics within a Perseus environment[159]. We applied the

newly developed algorithm to quantitatively analyze splicing, to detect

species composition of saliva microbiome[166] and to find out targets of

chaperons[37]. All these discoveries have been done on proteomics and

transcriptomics level in parallel. The current development of single-cell

technologies[177], including proteomics[88], already creates a demand for

novel computational tools that will have to be developed to deal with unique

challenges in terms of normalization and handling of missing data within and

across different omics[89].

In conclusion, this thesis work demonstrates the successful development of novel

algorithms in MaxQuant, Perseus, and multi-omics analysis as listed above. We

anticipate that future developments of computational proteomics tools will be

particularly active in machine learning[156, 178] and network biology fields[179].

We have continued on our philosophy to enable the end-users - the researchers

from fundamental biology, drug discovery[144], and medical sciences - to perform

large parts of the data analysis themselves, and this is further demonstrated in

our work with neoantigen workflows in Perseus and in developing MaxDIA[53].

Certainly, there is still a large gap between the generation of large-scale

proteomics data and the modeling of signaling pathways and biochemical

reactions[180]. New tools are emerging to reconstruct signaling pathways and

translate them into logic models. With the future development of these tools,

large-scale time-series data to kinetic modeling will become more democratically

accessible to interdisciplinary researchers, leading to an improved mechanistic

understanding of the biological processes. This hopefully will bring us closer to

the dream of a reliable in the silico model of a cell.



176 CHAPTER 3. DISCUSSION AND OUTLOOK



Acronyms

CNV copy number variant

Da Dalton

DDA data-dependent acquisition

DIA data-independent acquisition

DNA deoxyribonucleic acid

EMC ER membrane complex

ER endoplasmic reticulum

ESI electrospray ionization

FAIMS Field Asymmetric Ion Mobility Spectrometry

HMP human microbiome project

HPLC high performance liquid chromatography

IP Immunoprecipitation

LC liquid chromatography

LFQ label free quantification

m/z mass to charge

MALDI Matrix-assisted laser desorption/ionization

mRNA messenger RNA

MS mass spectrometry

MS/MS tandem MS

MS1 peptide scan

177
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MS2 fragment scan

NGS next-generation sequencing

ORF open reading frame

PASEF Parallel Accumulation Serial Fragmentation

PBMC peripheral blood mononuclear cell

PPI protein-protein interaction

PTM post-translational modification

Ribo-Seq ribosome profiling

RNA ribonucleic acid

RNA-Seq RNA sequencing

SILAC stable isotope labeling by amino acids in cell culture

SNV single nucleotide variant

TMT tandem mass tag

TOF time-of-flight

WES whole-exome sequencing

WGS whole genome sequencing
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[50] Schwanhüusser, B. et al. Global quantification of mammalian gene expression

control. Nature 473 (2011).
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