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1 ZUSAMMENFASSUNG 

Gegenwärtige Forschung im Bereich der Traumabiomechanik beschäftigt sich u. a. mit der 

Beschreibung kritischer Belastungen des oberflächlichen Weichgewebes sowie mit der daraus 

resultierenden Definition physikalischer Grenzwerte für die Entstehung von sogenannten 

Bagatellverletzungen, wie subkutanen Hämatomen. Um in Zukunft im Rahmen von 

Fallkörperversuchen mit Freiwilligen Toleranzgrenzen des Weichgewebes zu untersuchen 

und hierbei einen kausalen Zusammenhang zwischen mechanischer Belastung und induzierter 

Verletzung herstellen zu können, ist ein zuverlässiger Verletzungsnachweis unmittelbar nach 

dem experimentellen Trauma erforderlich. Da subkutane Hämatome oftmals mit dem Auge 

nicht erkennbar sind und herkömmliche diagnostische Methoden für ihre Detektion nicht 

ausreichen, wird ein neuer innovativer Ansatz benötigt. Die molekulare Analyse der cfDNA 

stellt in diesem Zusammenhang eine potentielle Nachweismethode dar, da sich nach 

schwerem Trauma im Blut erhöhte Konzentrationen der extrazellulären Nukleinsäure 

einstellen. Nichtsdestotrotz weist der damit assoziierte Forschungsstand Lücken auf, weshalb 

zunächst bestimmte Voraussetzungen für eine Anwendung der cfDNA als Biomarker für 

Bagatellverletzungen geprüft werden müssen. Zielsetzung der vorliegenden Dissertation war 

es daher, eine Grundlage für den molekularen Nachweis von diskreten 

Weichgewebeverletzungen durch cfDNA zu etablieren. 

Da bisherige Studien erhöhte cfDNA-Level in Schwerverletzten auf Basis von 

Vergleichswerten mit denen einer gesunden Kontrollgruppe ermittelten, sollte im Rahmen des 

ersten Teilprojektes zunächst festgestellt werden, inwiefern es überhaupt möglich ist, vor und 

nach schwerem Trauma intraindividuell Konzentrationsänderungen nachzuweisen. Dafür 

wurde ein Studiendesign entwickelt, welches es erlaubt, cfDNA im Rahmen eines unter 

relativ einheitlichen Bedingungen induzierten schweren Traumas zu untersuchen und dabei 

die Konzentration zu bestimmten Zeitpunkten vor und nach Verletzungseintritt zu messen. 

Das cfDNA-Level wurde hierfür in zehn Patienten, welche eine Knie- oder 

Hüftendoprothetik-Operation erhielten, quantitativ durch qPCR am Tag vor der Operation, 

direkt nach dem Eingriff (Tag 0) sowie am Tag darauf (Tag 1) bestimmt. Obwohl deutliche 

interindividuelle Unterschiede im präoperativen Basiswert festgestellt wurden, konnte in allen 

Patienten nach der Operation eine Konzentrationszunahme beobachtet werden. Das cfDNA-

Level war an beiden postoperativen Tagen signifikant erhöht (Wilcoxon-Vorzeichen-Rang-

Test, p = 0,002), wobei an Tag 0 ein maximaler Anstieg auf das 19-fache des Ausgangswertes 

verzeichnet wurde. Auf Basis dieser Ergebnisse wurde vertieftes Wissen über die 
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Größenordnung von individuellen Konzentrationsanstiegen nach schwerem Trauma erlangt, 

wodurch ein möglicher Anhaltspunkt für zukünftige Studien mit Fokus auf diskretem Trauma 

geschaffen wurde. 

Zielsetzung des zweiten Teilprojektes war es, die intraindividuelle biologische Variabilität der 

cfDNA über die Zeit durch qPCR zu analysieren und in Folge den natürlichen 

Schwankungsbereich des Biomarkers zu definieren, um anhand dessen 

Konzentrationsanstiege aufgrund eines diskreten Traumas von natürlichen Fluktuationen 

abgrenzen zu können. Des Weiteren sollte die natürliche cfDNA-Varianz mit der der klinisch 

etablierten Marker CK und AST verglichen werden. Hierfür wurde eine Freiwilligenstudie 

mit 14 weiblichen Teilnehmern, welche zwischen 20 und 30 Jahre alt waren, durchgeführt, 

wodurch interindividuelle Einflüsse aufgrund von demographischen Faktoren begrenzt waren. 

Den Probanden wurde innerhalb von 75 Minuten zu bestimmten Zeitpunkten Blut über eine 

Venenverweilkanüle abgenommen. In einem vorangegangenen Nebenprojekt wurde ad hoc 

der präanalytische Einfluss der Blutentnahme über eine liegende Kanüle ermittelt, weshalb 

diesbezüglich ein optimiertes Protokoll angewandt werden konnte. Die Ergebnisse der 

Hauptstudie zeigen eine größere Schwankungsbreite des cfDNA-Levels verglichen mit dem 

der CK und AST. Der Interdezilbereich ihrer relativen Änderung zum direkt nach der 

Venenpunktion ermittelten 0min-Wert reicht von 0,5 bis 1,4, wobei ein maximaler Anstieg 

auf das 1,6-fache bei 10min beobachtet wurde. Kein Zusammenhang konnte zwischen dem 

cfDNA-Level und individuellen Faktoren wie z. B. Puls oder Blutdruck ermittelt werden. 

Die vorliegende Dissertation präsentiert eine umfassende Analyse der individuellen cfDNA-

Variabilität über die Zeit sowohl im Kontext eines schweren Traumas als auch in gesunden 

Freiwilligen in Ruhe. Einheitliche Versuchsbedingungen sowie standardisierte Verfahren 

hinsichtlich präanalytischer und analytischer Arbeitsmethoden waren dabei die Basis 

detaillierter Ergebnisse. Die Arbeit stellt somit die Grundlage einer zukünftigen Anwendung 

der cfDNA für den Nachweis von Bagatellverletzungen in experimentellen 

Belastungsversuchen mit Freiwilligen dar. Ob sich dabei ein Konzentrationsanstieg aufgrund 

des experimentellen Traumas von der natürlichen Schwankung abgrenzen lässt und folglich 

die cfDNA als Biomarker für die Detektion diskreter Weichgewebeverletzungen verwendet 

werden kann, kann nun in Folgestudien überprüft werden. 
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2 ABSTRACT 

One aim in forensic biomechanical research is the description of mechanical tolerances of 

superficial soft tissues and the resulting identification of load limits for the development of 

minor injuries such as subcutaneous hematomas. To analyse tolerance limits of soft tissues, 

biomechanical experiments with volunteers exposed to low-severity impacts can be applied. 

However, in order to establish a causal relation between mechanical loadings and induced 

minor soft tissue injuries during these experiments, a reliable proof of potentially occurred 

tissue disruptions is required directly after the experiment. Since subcutaneous hematomas 

often remain apparently invisible and conventional diagnostic methods proved to be 

insufficient for their detection, a new innovative approach is needed. In this context, the 

molecular analysis of cfDNA represents a potential minor injury detection method, as 

increased concentrations of extracellular nucleic acids have been demonstrated in the blood 

plasma of severely injured persons. Nevertheless, there are gaps in the state of research on 

cfDNA, wherefore certain requirements for its application as biomarker for minor injuries 

must first be examined. The aim of the here presented PhD thesis was therefore to establish a 

basis for the molecular detection of minor soft tissue injuries by cfDNA. 

Since previously published cfDNA elevations of severely injured patients refer to comparative 

values with those of a healthy control group neglecting thereby individual variances in the 

basic level, the aim of the initial study was thus to examine intra-individual concentration 

increases before and after severe trauma. A study design was developed which offers the 

biomarker analysis at defined points before and after a severe penetrating trauma, wherefore 

cfDNA concentrations were determined quantitatively by qPCR in ten patients obtaining knee 

or hip endoprosthetic surgery. Blood drawings were performed the day prior to surgery, 

directly afterwards (day 0) as well as the day after the orthopaedic intervention (day 1). 

Although significant inter-individual differences were observed for the preoperative basic 

level, an increase in concentration was detected in all patients on day 0 and day 1. The 

elevation was significant for both postoperative days (Wilcoxon sign rank test, p = 0.002), 

whereby a maximum fold change of 19 was remarked on day 0. Based on these results, an in-

depth knowledge about the magnitude of individual concentration increases after severe 

trauma was gained, providing thus a reference for future studies focusing also on minor 

trauma. 
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The aim of the second project was to analyse the intra-individual biological variability of 

cfDNA over time using qPCR by means of which concentration increases due to minor 

trauma should be distinguished from natural fluctuations in future studies. The variability of 

cfDNA should be moreover compared with those of the clinically established markers CK and 

AST. For this purpose, a volunteer study was conducted with 14 female participants aged 

between 20 and 30 years to limit potential inter-individual influences by demographic factors. 

Serial blood drawings were performed within 75 minutes via an indwelling venous cannula. 

In a preceding side project, the pre-analytical influence of blood collection with the help of a 

permanent catheter was determined ad hoc, wherefore an optimized protocol could be applied 

in the main study. Results demonstrated a greater variation of the cfDNA level compared to 

CK and AST. The interdecile range of cfDNA-changes, evaluated in relation to the 0min 

value directly after the venipuncture, was from 0.5 to 1.4 with a maximum fold change of 1.6 

measured at 10 min. No correlation was found between the cfDNA level and individual 

factors such as pulse or blood pressure. 

This work presents a comprehensive analysis of the individual cfDNA variability over time 

both in the context of severe trauma and in healthy volunteers at rest. Controlled experiment 

conditions as well as standardized preanalytical and analytical procedures built the framework 

for the detailed results. The work thus provides the basis for a future application of cfDNA for 

the detection of minor injuries in experimental impact testing with volunteers. Whether a 

concentration increase due to an induced low-severity trauma can finally be distinguished 

from the natural fluctuation, and thus the cfDNA can be used as a biomarker for the diagnosis 

of minor soft tissue injury, can now be examined in follow-up studies. 

  



 

8 | S e i t e  

 

3 EINLEITUNG 

3.1 INHALT UND ZIEL DER ARBEIT 

Die Verletzungs- oder Traumabiomechanik, stellt einen Forschungsschwerpunkt dar, welcher 

die Verletzungsentstehung durch mechanische Einwirkung fokussiert. Im Rahmen dieses 

interdisziplinären Fachbereichs beschäftigen sich Experten unter anderem aus der Mechanik, 

Biologie, Ergonomie und Medizin mit der Betrachtung und Analyse von verschiedenen 

Verletzungsmechanismen, kritischen Belastungen des menschlichen Körpers sowie mit 

Verletzungsmustern auf makroskopischer und zellulärer Ebene. 

An der LMU München ist die Abteilung für Biomechanik und Unfallforschung am Institut für 

Rechtsmedizin angesiedelt. Die wissenschaftliche Forschung der Arbeitsgruppe beschäftigt 

sich u. a. mit dem Materialverhalten anatomischer Strukturen unter mechanischer Belastung, 

wie Zug, Druck oder Torsion. Das daraus resultierende Ziel ist die Ableitung und Definition 

von Grenzwerten für den Verletzungseintritt in unterschiedlichen Lastfällen. Die Kenntnis der 

Toleranzgrenzen stellt dabei die Grundlage für die Herleitung von Verletzungsgeschehen dar, 

wobei es sich im rechtsmedizinischen Bereich vor allem um die Rekonstruktion von 

Straßenverkehrsunfällen und Gewaltdelikten handelt. 

Um Grenzwerte für den Verletzungseintritt quantitativ beschreiben zu können, ist es 

unerlässlich, verletztes Gewebe zu detektieren und zuverlässig von intakten Strukturen 

abzugrenzen. Während diese Anforderung beispielsweise in Post-mortem-

Belastungsversuchen zur Ermittlung von Frakturkräften sowohl durch die Möglichkeit der 

augenscheinlichen wie auch der röntgenstrahlenbasierten Untersuchung des Knochens (oder 

Knochenpräparates) umfassend erfüllt ist, stellt die Detektion oberflächlicher, diskreter 

Weichgewebeverletzungen in vivo eine Herausforderung an die Wissenschaft dar. 

Insbesondere bei Fallkörperversuchen an Probanden, bei denen ein leichtes Trauma 

experimentell erzeugt wird, ist der Nachweis kleiner Gefäßrupturen unmittelbar nach 

Verletzungseintritt problematisch, da die Bildung eines subkutanen Hämatoms als Folge der 

Blutleckage mit der Zeit erfolgt und somit seine augenscheinliche Sichtbarkeit verzögert sein 

kann.  
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Die blutbasierte molekulare Analyse des Biomarkers „zellfreie zirkulierende DNA“ (cfDNA) 

könnte potenziell eine Nachweismöglichkeit diskreter Weichgewebeverletzungen darstellen. 

Bevor jedoch die diagnostische Eigenschaft der cfDNA in diesem Kontext ermittelt werden 

kann, muss zunächst überprüft werden, ob sie gewisse Voraussetzungen für die Detektion von 

Bagatellverletzungen unmittelbar nach Trauma erfüllt. Dabei muss zunächst die 

Nachweisbarkeit von intraindividuellen Konzentrationsänderungen im Rahmen eines 

schweren Traumas gegeben sein (1). Weiterführend sollte die cfDNA eine geringe 

biologische Varianz aufweisen, damit auch minimale Konzentrationsänderungen aufgrund 

eines leichten Traumas von denen einer natürlichen Schwankung abgegrenzt werden können 

(2). Die vorliegende Dissertation hat somit das Ziel, anhand prospektiv erhobener Daten 

eine Grundlage für den molekularen Nachweis von diskreten Weichgewebeverletzungen 

durch cfDNA zu etablieren. Die Promotion basiert dabei auf zwei Fachartikeln, welche im 

Rahmen eines peer-review Verfahrens im International Journal of Legal Medicine 

veröffentlicht wurden: 

(1) Zielsetzung des ersten Teilprojektes war es, erstmals intraindividuelle cfDNA-

Konzentrationsänderungen vor und nach schwerem Trauma nachzuweisen. Hierfür sollte 

in Kooperation mit dem Orthopäden Dr. med. Arnd Steinbrück ein Studien-Setup 

entwickelt werden, das es ermöglicht, cfDNA im Rahmen eines definierten schweren 

Traumas zu untersuchen und dabei individuelle Konzentrationsänderungen in einer Person 

vor und nach Verletzungseintritt zu messen. Auf Basis dessen sollte Erkenntnis über die 

Größenordnung von Konzentrationsanstiegen nach schwerem Trauma unter möglichst 

einheitlichen und definierten Verletzungsbedingungen sowie unter Anwendung einer 

standardisierten Methodik erlangt werden. Die Studienergebnisse wurden im Jahr 2019 

unter dem Titel „Quantitative analysis of individual cell-free DNA concentration before 

and after penetrating trauma” veröffentlicht. 

(2) Das Ziel des zweiten Teilprojektes, welches unter dem Titel „Biological variability of 

cell-free DNA in healthy females at rest within a short time course“ im Jahr 2020 

publiziert wurde, war es, die biologische Variabilität der cfDNA über eine kurze 

Zeitspanne im Ruhezustand von Gesunden zu ermitteln. Hierfür wurde ein 

Blutentnahmeprotokoll angewandt, welches bereits vorab von Brodbeck et al. hinsichtlich 

des präanalytischen Einflusses der Blutabnahme mittels Venenverweilkanüle auf die 

Konzentration der cfDNA optimiert wurde [1]. Es sollte der natürliche 

Schwankungsbereich des Biomarkers definiert werden, um in zukünftigen Studien 
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Konzentrationsanstiege aufgrund einer Bagatellverletzung von normalen Fluktuationen 

abgrenzen zu können. Ergänzend sollte der potentielle Einfluss individueller Faktoren, 

wie z. B des Blutdrucks oder der Angst vor der Venenpunktion, auf die zellfreie 

zirkulierende DNA untersucht werden. Die natürliche cfDNA-Variabilität sollte 

abschließend mit der der klinisch etablierten Biomarker Kreatinkinase und Aspartat-

Aminotransferase verglichen werden, wobei die zugrundeliegenden Analysen in 

Kooperation mit Prof. Dr. med. Stefan Holdenrieder am Deutschen Herzzentrum 

München durchgeführt wurden. 
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3.2 BAGATELLVERLETZUNGEN DER HAUT: HÄMATOME 

Bei einem Hämatom oder Bluterguss handelt es sich um eine extravaskuläre 

Blutansammlung, welche als bläulich-violette, druckempfindliche Stelle auf der 

Hautoberfläche wahrgenommen und daher umgangssprachlich als „Blauer Fleck“ bezeichnet 

wird.  

Grundsätzlich können Hämatome fast überall im Körper auftreten, weshalb sie ihrer Lage 

entsprechend bezeichnet werden (z. B. subkutanes, subperiostales oder retroperitoneales 

Hämatom). Im Rahmen der vorliegenden Arbeit stehen oberflächliche Blutergüsse im Bereich 

der Kutis im Fokus (siehe Abbildung 1), die zu den sogenannten „Bagatellverletzungen“ 

zählen, da sie als wenig schwerwiegend gelten und in der Regel keine medizinische 

Behandlung erfordern [2]. 

Der zugrundeliegende Verletzungsmechanismus 

ist im Allgemeinen eine stumpfe, häufig in 

orthogonaler Richtung zur Haut einwirkende 

Kraft, wie etwa durch einen Schlag, Sturz, Stoß 

oder Tritt [3]. Im Gegensatz zum scharfen 

Trauma wird bei stumpfer Gewalt die 

auftretende Kraft über eine größere Fläche 

verteilt. Trotz Deformation der 

Körperoberfläche bleibt die Haut intakt, weshalb 

Hämatome auch bei den „geschlossenen“ Verletzungen eingeordnet werden. Intern können 

jedoch Druck-, Zug- und/oder Scherkräfte auftreten, in deren Folge es zur Ruptur kleinerer 

Gefäße und einer damit einhergehenden Blutleckage in das umliegende Gewebe kommen 

kann [4].  

Neben traumatisch bedingten Blutergüssen sind auch spontan auftretende Hämatome bekannt, 

welche beispielsweise als Nebenwirkung gerinnungshemmender Arzneimittel oder bei 

Erkrankungen wie Leukämie oder Hämophilie auftreten können [4, 5]. Des Weiteren kann 

auch durch mechanische Venenpunktion im Rahmen von Injektionen, Infusionen oder 

Blutentnahmen ein Hämatom entstehen. 

Je nach Lage des entstandenen Blutergusses können im Bereich der Haut intrakutane und 

subkutane Hämatome unterschieden werden, wobei sich die umgangssprachliche 

Bezeichnung „Blauer Fleck“ auf letztere bezieht. Infolge einer Verletzung der Venen, 

Abbildung 1 Subkutanes Hämatom erzeugt 

durch experimentelles stumpfes Trauma 
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Venolen oder kleinen Arterien im Unterhautfettgewebe erscheinen subkutane Hämatome an 

der Körperoberfläche bläulich und unscharf abgegrenzt. Kapilläre Blutungen sind dahingegen 

nur unter dem Mikroskop erkennbar [6]. Obwohl der Bluterguss ursprünglich in der Subkutis, 

also über den tiefen Muskelfaszien, entsteht, kann er sich in Richtung der Epidermis 

ausdehnen. Daher werden blaue Flecken oftmals erst nach 24 bis 48 Stunden sichtbar [7]. 

Subkutane Hämatome können sich aber auch in die oberflächlichen Muskelschichten 

ausweiten, weshalb selbst eine großflächige Blutung äußerlich unsichtbar bleiben oder als 

schmerzhafte Schwellung ohne Farbveränderung beobachtet werden kann [8]. Des Weiteren 

ist es ebenfalls möglich, dass der blaue Fleck an einer vom Anprall entfernt liegenden Stelle 

sichtbar wird. Zum einen können Faszien oder anderen kompakte Gewebestränge die 

Blutausdehnung umleiten, zum anderen können sich Hämatome unter dem Einfluss der 

Schwerkraft bewegen. So kann beispielsweise ein Bluterguss im Bereich der Stirn nach 

wenigen Stunden als „Veilchen“ sichtbar werden, ohne dass dem Auge direkt Gewalt 

zugefügt wurde [6]. 

3.2.1 Einflussfaktoren der Hämatom-Entstehung  

Die Entstehung eines Hämatoms sowie sein Ausprägungsgrad sind abhängig von 

verschiedenen ineinandergreifenden Parametern, die zum einen externer Natur sind, zum 

anderen auf individuelle Faktoren der betroffenen Person zurückgeführt werden können. 

Das Hämatom-Volumen ist dabei zunächst in gewissem Maß abhängig von der auf den 

Körper einwirkenden Kraft, wobei Richtung und Intensität die vektorielle Größe definieren. 

Des Weiteren können Geometrie und Beschaffenheit des auftreffenden Gegenstandes sowie 

die Bekleidung des Opfers den Verletzungsgrad beeinflussen [2–4].  

Bei der Frage, ob intraindividuell ein Hämatom entsteht, ist vor allem der Anprallort sowie 

die damit verbundene Beschaffenheit der betroffenen Körperpartie entscheidend. Zunächst ist 

die Wahrscheinlichkeit einer Blutleckage erhöht, wenn Gewebe mit einer hohen Gefäßdichte 

und somit guten Durchblutung der Gewalteinwirkung ausgesetzt ist [2, 6]. Knöcherne 

Strukturen können dabei als Widerlager fungieren [6]. Des Weiteren ist die Hämatom-

Entstehung in lockerem Bindegewebe wahrscheinlicher als in kompaktem Stützgewebe, 

welches der Blutausbreitung Widerstand entgegensetzt (z. B. Haut über der Augenbraue 

versus Fußsohle) [2, 5, 6].  

Interindividuell sind Lebensalter, Geschlecht sowie Körpermaße der betroffenen Person von 

Relevanz: Frauen sowie übergewichtige Personen entwickeln schneller blaue Flecken, was 
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auf einen höheren Anteil an subkutanem Fett zurückgeführt werden kann. Außerdem kann 

sowohl bei alten als auch bei jungen Menschen eine verstärkte Disposition zu Hämatomen 

beobachtet werden. Während bei letzteren eine zarte Haut und somit das Fehlen von 

widerstandsfähigem Gewebe ursächlich ist, kann es mit zunehmendem Alter zu fragilen 

Gefäßen kommen [6, 9]. Im Zusammenhang mit einer Bindegewebsschwäche oder 

beeinträchtigten Blutgerinnung können außerdem schon bei geringer Krafteinwirkung 

exzessive Blutungen auftreten [2, 5]. Als weitere Einflussfaktoren seien außerdem der 

Muskeltonus im Bereich der Anprallstelle [10], die Körpertemperatur, der Blutdruck sowie 

bereits vorhandene Verletzungen genannt [7]. 

Abschließend lässt sich zusammenfassen, dass die dargelegten Parameter einen gewissen 

Einfluss auf die Hämatom-Entstehung haben und somit auch die Größe des Blutergusses nicht 

zwingend mit der Trauma-Schwere korreliert. Insgesamt existieren sehr wenig weiterführende 

Daten dazu, welche Kraft unter bestimmten Gegebenheiten aufgebracht werden muss, damit 

ein Hämatom (bestimmter Größe) entsteht. 

3.2.2 Die Bedeutung von Hämatomen für Forensik und Industrie 

Im Gegensatz zu schweren Verletzungen begründet sich die Bedeutung von 

Bagatellverletzungen weniger durch folgenschwere oder lebensbedrohliche Auswirkungen, 

sondern viel mehr durch ihr häufiges Auftreten, ihre Beweiskraft in medizinisch-rechtlichen 

Belangen, oder hinsichtlich den steigenden Anforderungen im Bereich der Arbeitssicherheit: 

Im forensischen Kontext haben Hämatome gutachterlich-rekonstruktive Relevanz, weshalb 

ihre Dokumentation und Beurteilung zur gängigen Praxis bei gerichtlichen Sektionen und 

körperlichen Untersuchungen im Rahmen der klinischen Rechtsmedizin gehört [8]. Das 

Auftreten von blauen Flecken insbesondere an den Extremitäten, zum Beispiel in Form von 

Griffspuren, stellt ein frühes physisches Anzeichen für häusliche Gewalt und 

Kindesmisshandlung dar [11, 12]. Im Zusammenhang mit Straftaten oder Verkehrsunfällen 

können Hämatome ein wichtiges Indiz für die Rekonstruktion des Tat- bzw. Unfallhergangs 

liefern [2, 5]. Rechtsmediziner werden vor diesem Hintergrund bei Gericht häufig dazu 

befragt, wie groß die Krafteinwirkung gewesen sein muss, damit eine bestimmte Verletzung 

entsteht. Die Einschätzung erfolgt dabei oftmals anhand der Kategorien „mild“, „moderat“ 

und „schwer“. Dieser Einteilung fehlen jedoch meist empirische Grundlagen, weshalb 

umfassende Untersuchungen der Verletzungsentstehung benötigt werden, um fundierte 

Aussagen vor Gericht liefern zu können [13]. 
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Diskrete Weichgewebeverletzungen sind jedoch nicht nur im forensischen Bereich von 

Bedeutung, sondern haben auch im industriellen Bereich äußerste Relevanz. In 

Industriearbeitsplätzen kollaborieren Menschen und Roboter zunehmend zeitgleich und ohne 

räumliche Trennung, wobei es zum physischen Kontakt zwischen Arbeiter und Roboter 

kommen kann. Neben dem Einsatz in der Industrie setzt sich eine Automatisierung auch im 

privaten Umfeld immer mehr durch und Pflegeroboter sind dabei nur ein Beispiel für enge 

Mensch-Maschine-Kooperationen. Die Einhaltung biomechanischer Belastungsgrenzen im 

Kontaktfall stellt somit eine neue Herausforderung für die Entwicklung von 

Sicherheitsnormen und Richtlinien dar. Aktuelle Forschung in diesem Bereich beschäftigt 

sich dabei nicht nur mit dem gesteigerten Risiko schwerer und lebensbedrohlicher 

Verletzungen, sondern auch zunehmend mit der Vermeidung von Bagatellverletzungen. Die 

ISO/TS 15066, welche eine Richtlinie zur Risikobewertung von kollaborativen 

Roboteranlagen darstellt, legt in diesem Kontext den Verletzungseintritt als Toleranzgrenze 

für den Fall eines Mensch-Roboter Kontaktes fest [14]. 

Digitale Menschmodelle stellen hierbei einen vielversprechenden Ansatz zur Untersuchung 

sicherheitsrelevanter Parameter dar. Simulationen mit computerbasierten Menschmodellen 

(siehe Abbildung 2) bieten die Möglichkeit, 

Unfallhergänge nachzustellen und zu visualisieren 

sowie eine Vorhersage über potenziell entstehende 

Verletzungen zu treffen. Um mit derartigen 

Simulationen belastbare Ergebnisse zu erhalten, 

sind jedoch Materialmodelle nötig, die die 

Eigenschaften von Humangewebe realistisch 

abbilden. Um dies zu garantieren, müssen die 

Simulationsergebnisse zunächst mit fundierten 

experimentellen Daten verglichen und somit 

validiert werden. Bisher existieren jedoch nur wenige In-vivo-Studien, welche geringfügige 

mechanische Einwirkungen auf den menschlichen Körper quantitativ beschreiben [15]. Somit 

ist die Validierungsgrundlage für eine Risikovorhersage hinsichtlich der Entstehung von 

Bagatellverletzungen bislang unzureichend. 

 

Abbildung 2 Exemplarisches 

Menschmodell GHBMC M50 v.1.6 aus 

unterschiedlichen Perspektiven 
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3.2.3 Herausforderungen bei der Analyse der Hämatom-Entstehung 

Problemstellung bei der systematischen Hämatom-Erzeugung 

Um die Umstände für das Entstehen von diskreten Weichgewebeverletzungen systematisch zu 

untersuchen und numerisch abzubilden, ergibt sich die Notwendigkeit, Hämatome unter 

definierten Bedingungen im Experiment zu erzeugen. Bei bereits vorhandenen blauen 

Flecken, welche akzidentiell durch ein reales Trauma entstanden sind, ist es meist unmöglich, 

die kausalen Umstände für deren Auftreten explizit zu beschreiben. Da es sich bei einer 

Blutleckage um eine physiologische Reaktion handelt, ist es außerdem nicht möglich, diese 

post-mortem zu erzeugen [16].  

Aus diesem Grund fokussierten sich wenige Studien auf die experimentelle Hämatom-

Erzeugung in Hausschweinen in vivo [12, 17, 18]. Mechanische Belastungsversuche an dem 

Paarhufer sind in diesem Zusammenhang jedoch nur bedingt aussagekräftig, da sein 

Unterhautfettgewebe, verglichen mit der humanen Subkutis, deutlich dicker und kompakter 

ist [19]. Außerdem erfordern gesetzliche Vorgaben im Kontext mit Tierversuchen oftmals die 

Anästhesie während des Eingriffs sowie die anschließende Euthanasie. Randeberg et al. 

untersuchten 2007 die Auswirkung von Paintball-Schüssen auf Hausschweine. Sie 

schlussfolgerten, dass die Narkose neben dem Muskeltonus auch die Hautdurchblutung und 

somit die physiologische Reaktion auf das Trauma beeinflusst. Des Weiteren konnte aufgrund 

der Euthanasie der Tiere eine potentiell zeitlich verzögerte Hämatom-Entwicklung nicht 

beobachtet werden [12]. 

Für eine Analyse von Toleranzgrenzen des Weichgewebes müssen konsequenterweise 

Bagatellverletzungen experimentell in Freiwilligen erzeugt werden. Um hierfür ein ethisch 

vertretbares Studienkonzept zu entwickeln, ist ein Versuchsaufbau erforderlich, der einen so 

definierten Energieeintrag ermöglicht, dass infolge ein subkutanes Hämatom entsteht, eine 

schwerwiegende Verletzung jedoch ausgeschlossen werden kann. 

Fallkörperversuche, bei denen ein zylindrischer Impaktor aus variabler Höhe auf die obere 

Extremität von Probanden fallengelassen wird, stellen einen solchen Versuchsaufbau dar. Wie 

es in Brodbeck et al. beschrieben wurde [20], erlaubt diese Art von Experiment das 

kontrollierte Aufbringen einer dynamischen Kompressionsbelastung, wodurch punktgenaue 

Traumata unterschiedlicher Schwere auf das darunterliegende Gewebe ausgeübt werden. Mit 

Hilfe eines Sensors kann die Beschleunigung des Fallkörpers beim Kontakt mit dem Gewebe 

erfasst und somit die einwirkende Kraft berechnet werden. Auf diese Weise können 

Belastungsgrenzen des Weichgewebes unter dem Einfluss physikalischer und individueller 
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Faktoren systematisch untersucht werden. Der zuverlässige Nachweis der potenziell erzeugten 

Verletzung ist dabei die grundlegende Voraussetzung für ein erfolgreiches Experiment. Die 

unmittelbare Detektion der diskreten Weichgewebeverletzung stellt jedoch eine weitere 

Herausforderung an die Wissenschaft dar. 

Problemstellung beim Nachweis von Bagatellverletzungen 

Da kleine subkutane Hämatome direkt nach Trauma oftmals mit dem Auge nicht erkennbar 

sind (vgl. Absatz 3.2, S.12), ergibt sich die Notwendigkeit einer Methode für den Nachweis 

von Bagatellverletzungen. Diese muss einerseits eine hohe Sensitivität aufweisen und 

andererseits wenig invasiv sein, damit diese ohne ethisch-rechtliche Bedenken an gesunden 

Freiwilligen angewandt werden kann. Des Weiteren sollte das Nachweisverfahren im 

Organisations- und Kostenrahmen von Freiwilligenversuchen in hoher Zahl und kurzer 

Abfolge durchführbar sein, weshalb generell die Anwendung von komplexen bildgebenden 

Verfahren aus der klinischen Diagnostik (z. B. Magnetresonanztomographie) 

unverhältnismäßig erscheint.  

Eine kostengünstige, nicht invasive Nachweismethodik stellt in diesem Zusammenhang 

beispielsweise die Untersuchung mit Ultraschall dar. Abhängig vom Erythrozytenanteil und 

Organisationsgrad können Hämatome verschiedene Echomuster im Sonogramm erzeugen 

[21]. Somit ist diese Methode zwar grundsätzlich geeignet um Hämatome zu lokalisieren, der 

Nachweis von kleinen subkutanen Blutergüssen stellt sich jedoch als herausfordernd dar. In 

einer Studie von Helm et al. konnten von 22 augenscheinlich sichtbaren Hämatomen 

letztendlich nur zwölf durch Sonographie detektiert werden [22]. 

Bei körperlichen Untersuchungen im Bereich der klinischen Rechtsmedizin werden 

Verletzungen, welche im Zusammenhang mit Gewaltdelikten stehen, zur Dokumentation 

fotografiert. Um dabei deren Sichtbarkeit zu verbessern, wurde die Anwendung von Licht 

unterschiedlicher Wellenlängen in mehreren wissenschaftlichen Studien getestet. Lombardi et 

al. untersuchten Hämatome u. a. mit UV-Licht, wobei sie zeigten, dass sichtbare blaue 

Flecken unter dem Einsatz alternativer Lichtquellen besser darstellbar sind als unter 

normalem Tageslicht. Sie postulierten jedoch auch, dass diese Methode für einen 

zuverlässigen Nachweis von nicht-sichtbaren Hämatomen wenig spezifisch ist [11]. Rowan et 

al. testeten 2010 die Anwendung von infrarotlicht-gestützter Fotografie für die Detektion von 

verblassten Hämatomen. Bei neun von zehn Probanden konnte jedoch mit dieser Methode 

kein Nachweis eines blauen Flecks erbracht werden [23]. 
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Zusammenfassend lässt sich folglich postulieren, dass die Detektion der Bagatellverletzung 

eine Herausforderung darstellt, welche mit den herkömmlichen klinischen bzw. 

rechtsmedizinischen Methoden kaum zu bewältigen ist. Demnach wird ein neues, innovatives 

Verfahren für einen zuverlässigen und unmittelbaren Nachweis einer diskreten 

Weichgewebeverletzung benötigt. 

Im klinischen Bereich werden seit einigen Jahren spezifische Biomarker im Blut oder Urin 

von Patienten analysiert, die es ermöglichen, bestimmte Erkrankungen minimalinvasiv 

nachzuweisen. Seit der Entdeckung von freien Nukleinsäuren im Blutplasma durch Mandel 

und Métais im Jahr 1948 hat die zellfreie zirkulierende DNA einen besonderen Stellenwert 

unter den Biomarkern erlangt. Verschiedene Studien beschreiben ihre erfolgreiche 

Anwendung in der Tumordiagnostik oder in Pränatal-Screenings.  Die zellfreie zirkulierende 

DNA hat aber auch in Bezug auf Traumata wissenschaftliches Interesse gefunden, da 

unmittelbar nach einer schweren Verletzung erhöhte Werte im Blut des Patienten 

nachgewiesen werden können. Demnach ist es durchaus vorstellbar, dass die blutbasierte 

Analyse des Biomarkers einen innovativen Ansatz zur Detektion von Bagatellverletzungen 

nach experimentellem Trauma in Probanden darstellen könnte. 
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3.3 ZELLFREIE ZIRKULIERENDE DNA ALS TRAUMA-BIOMARKER 

Bei der zellfreien zirkulierenden DNA (engl. cfDNA = circulating cell-free DNA) handelt es 

sich um eine doppelsträngige, extrazelluläre Nukleinsäure, die sich nicht nur im Blut, sondern 

auch in weiteren Körperflüssigkeiten, wie Speichel, Schweiß, Liquor oder Urin, befindet. Sie 

ist stark fragmentiert, wobei die kurzen DNA-Stücke frei und ungebunden auftreten können, 

assoziiert mit weiteren Molekülen oder eingeschlossen in extrazelluläre Vesikel.  

Während im Blutplasma von Gesunden ein gewisser Basislevel der cfDNA vorhanden ist, 

steigt dieser nach Trauma sowie infolge verschiedener Erkrankungen rapide an. Je nach ihrer 

ursprünglichen Lage in der Zelle handelt es sich dabei entweder um genomische oder um 

mitochondriale DNA, welche aus der Zelle freigesetzt wurde und infolgedessen in die 

Blutbahn gelangte. Obwohl die mitochondriale DNA ebenfalls Relevanz als Trauma-

Biomarker aufweist (vgl. zum Beispiel [24]), war die genomische DNA in einem Großteil der 

derzeit vorliegenden Literatur Gegenstand der Forschung und steht daher auch im Fokus 

dieser Dissertation. 

In den nachfolgenden Kapiteln wird zunächst die Biologie der zellfreien DNA thematisiert, 

wobei Freisetzung, Funktion und Abbau sowie ihr Basislevel unter dem Einfluss individueller 

Faktoren fokussiert werden. Anschließend werden ihre Anwendungsmöglichkeiten als 

Biomarker beschrieben, wobei der aktuelle Stand der Forschung im Trauma-Bereich näher 

beleuchtet wird. Im letzten Kapitel stehen Limitationen und Wissenslücken der gegenwärtigen 

cfDNA-Forschung im Fokus. 

3.3.1 Freisetzung, Funktion und Abbau 

Die Mechanismen der DNA-Freisetzung in den Blutkreislauf sowie die dafür 

zugrundeliegenden Stimuli sind bis heute noch nicht vollständig verstanden [25]. Im 

Wesentlichen wird die passive Freisetzung durch Zelltod sowie eine aktive Sekretion aus 

vitalen Zellen diskutiert, wobei je nachdem das Fragmentlängenprofil der cfDNA variieren 

kann. 

Unter physiologischen Bedingungen geht man bisher davon aus, dass freie DNA 

hauptsächlich aufgrund von Apoptose hämatopoetischer Zelllinien in die Blutbahn gelangt 

[26, 27]. Verschiedene Studien demonstrierten mit Hilfe von Elektrophorese oder 

Sequenzierung, dass ein Großteil der DNA-Fragmente in Gesunden ein für den apoptotischen 

Zelltod typisches Längenmuster von ~ 180 Basenpaaren (bp) oder eines Vielfachen davon 



 

19 | S e i t e  

 

aufweist [28, 29]. Diese Eigenschaft kann auf die charakteristische Spaltung von Chromatin 

in nukleosomale Einheiten (Mono- oder Oligonukleosomen) während der Apoptose 

zurückgeführt werden [30]. 

Bei erhöhten Plasma-Konzentrationen wird dahingegen angenommen, dass die DNA-

Freisetzung weitere bzw. zusätzliche Ursachen hat. Rasche Konzentrationsanstiege, wie sie 

beispielsweise nach einer Verletzung auftreten, lassen sich nicht mit den lang andauernden 

apoptotischen Prozessen vereinbaren [31]. Im Zusammenhang mit Traumata wird eine 

Freisetzung durch nekrotischen Zelltod vermutet, welcher aufgrund der exogenen 

mechanischen Zellschädigung eintritt [25, 32]. Verglichen mit der apoptotischen Freisetzung 

können infolge des nekrotischen Zelltods längere DNA-Fragmente von mehreren 10.000 bp 

nachgewiesen werden [30]. 

Neben Apoptose und Nekrose wird des Weiteren eine aktive DNA-Freisetzung durch lebende 

Leukozyten in Form von sogenannten „Neutrophil Extracellular Traps“ (NETs) diskutiert, 

wobei der Mechanismus selbst als „vitale NETose“ bezeichnet wird. NETs sind Netzwerke 

aus langkettigen DNA-Strängen assoziiert mit Proteinen, die antibakterielle Eigenschaften 

besitzen (z. B. neutrophile Elastase, Myeloperoxidase) [33]. Die vitale NETose kann 

innerhalb von Minuten erfolgen und stellt somit eine schnelle und effektive Immunantwort 

zur Abwehr von pathogenen Mikroorganismen dar [34]. Inwiefern die NETose auch bei 

Trauma Bedeutung hat, wurde kürzlich von Jackson Chornenki et al. untersucht, indem sie, 

neben zellfreier DNA, zusätzlich Marker für Nekrose, Apoptose und NETose in Trauma- und 

Sepsis-Patienten analysierten. Ein signifikanter Unterschied zwischen den Patientengruppen 

zeigte sich nur bei dem NETose-Marker, wobei höhere Konzentrationen in Sepsis-Patienten 

nachgewiesen wurden. Demzufolge schlussfolgerten die Autoren, dass eine DNA-Sekretion 

durch NETose zwar im Zusammenhang mit Sepsis Relevanz hat, jedoch bei Trauma die 

Freisetzung von DNA durch verletzte, nekrotische Zellen wahrscheinlicher ist [32]. 

Nichtsdestotrotz ist es auf Basis der derzeitigen Datenlage wahrscheinlich, dass die cfDNA 

aufgrund einer Kombination verschiedener Mechanismen in die Zirkulation gelangt, welche 

wiederum von individuellen sowie pathophysiologischen Faktoren abhängt [25, 32].  

Die Halbwertszeit der cfDNA im Blutplasma wird auf wenige Minuten [35, 36] bis ungefähr 

zwei Stunden geschätzt [37, 38]. Die Abbaugeschwindigkeit hängt dabei u. a. von der 

Komplexierung der DNA mit weiteren Molekülen ab, welche die freie Nukleinsäure vor 

enzymatischem Verdau schützen. Die fragmentierten DNA-Stücke werden in Folge durch 

Phagozytose neutrophiler Granulozyten aus der Blutbahn eliminiert und über die Leber und 
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Nieren ausgeschieden [38–40]. Neben einer vermehrten DNA-Freisetzung kann eine 

verminderte Eliminierung aus der Zirkulation ebenfalls ursächlich für anhaltend erhöhte 

Konzentrationen sein. Letzteres kann beispielsweise aufgrund einer eingeschränkten 

Organfunktion infolge eines Traumas eintreten [31, 41]. 

Bezüglich der Funktion der zellfreien DNA ist es bis heute noch nicht vollständig geklärt, ob 

die extrazelluläre Nukleinsäure biologische Effekte hat und welche diese im Detail sind. Es 

manifestiert sich jedoch zunehmend die Auffassung, dass sie eine aktive Rolle in 

verschiedenen physiologischen und pathologischen Zuständen spielt und daher nicht nur als 

„Abfall-Molekül“ angesehen werden kann. Beispielsweise wird die cfDNA von Immunzellen 

als „Danger associated molecular pattern“ (DAMP) wahrgenommen, wodurch infolge einer 

Gewebeverletzung Entzündungsreaktionen ausgelöst werden können [33]. Außerdem kann sie 

unter Umständen die Blutgerinnung fördern und regulatorische Effekte auf die Fibrinolyse 

ausüben [42]. 

3.3.2 Basislevel  

Im Blut von gesunden Personen kann die cfDNA in geringen Mengen nachgewiesen werden, 

wobei die meisten Studien Konzentrationswerte zwischen einem und fünfzig Nanogramm pro 

Milliliter Blutplasma rapportieren [28, 43–46]. 

Individuelle Faktoren können das cfDNA-Basislevel sowohl kurz- als auch langfristig 

beeinflussen, wobei aufgrund des derzeitigen Forschungsstands unter anderem der Einfluss 

demographischer Parameter nicht ausgeschlossen werden kann: 

Jylhävä et al. zeigten in diesem Zusammenhang, dass neunzigjährige Frauen ein wesentlich 

höheres cfDNA-Level haben, als Frauen mittleren Alters [47]. In einer kürzlich 

veröffentlichten Studie demonstrierten Meddeb et al. zudem signifikant höhere 

Konzentrationen in Männern und in Personen älter als 47 Jahre [46]. Nishimoto et al. stellten 

weiterführend höhere Werte in Übergewichtigen fest, wobei sie eine positive Relation 

zwischen der Plasma-DNA-Konzentration und dem viszeralen Fettanteil nachweisen konnten 

[48]. Nichtsdestotrotz wurden in diesem Kontext auch dem entgegenstehende Studienresultate 

veröffentlicht, welche vor allem den Einfluss der Faktoren Alter, Geschlecht und Gewicht auf 

die cfDNA entkräften [36, 49]. 
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Intra-individuell kann potenziell die Nahrungsaufnahme sowie körperliche Betätigung 

kurzzeitig Einfluss nehmen [50], weshalb sich eine gewisse Varianz über den Tagesverlauf 

zeigt. Es wird angenommen, dass sich maximale Konzentrationen zur Mittagszeit einstellen, 

gefolgt von einem Absinken in den Nachmittagsstunden [51, 52]. Keinen Effekt auf die 

zellfreie DNA scheint hingegen der weibliche Menstruationszyklus zu haben [53]. 

3.3.3 Änderungen des Basislevels als Diagnostikmöglichkeit 

Unter bestimmten pathologischen Zuständen kann im Blutplasma ein unmittelbarer Anstieg 

der cfDNA-Konzentration auf ein Vielfaches des Basiswertes beobachtet werden. Aufgrund 

dieser Eigenschaft erlangte die zellfreie DNA nicht nur Bedeutung im Bereich der Trauma-

Forschung, sondern auch als sogenannte „Liquid Biopsy“ für den Nachweis von: 

 verschiedenen Krebsarten, u. a. Darm-, Brust-, Lungen-, Prostatakrebs [54] 

 Kollagenosen, wie Systemischer Lupus erythematodes [55], oder das Sjögren-

Syndrom [56] 

 Störungen des Stoffwechselsystems, wie Diabetes mellitus [57] 

 chronisch-entzündliche Erkrankungen, wie Pankreatitis [58], rheumatoide Arthritis 

[59] 

 Erkrankungen des Herzkreislaufsystems, z. B. Herzinfarkt [60], Schlaganfall [61] 

oder thrombotische Mikroangiopathie [62] 

 psychische und neurodegenerative Erkrankungen, wie Schizophrenie [63] oder 

Morbus Alzheimer [64] 

Die zellfreie DNA steht jedoch nicht nur aufgrund ihres Diagnose-Potenzials im 

Studienfokus, sondern auch hinsichtlich der Beurteilung von Krankheits- oder 

Therapieverläufen (z. B. cfDNA-Level vor und nach Tumorresektion, Koronarintervention 

oder Medikamentengabe [65–67]). Der Biomarker wird hierfür nicht nur quantitativ auf seine 

Konzentration hin untersucht, sondern auch qualitativ hinsichtlich der DNA-Sequenz, 

DNA-Integrität sowie epigenetischer Modifikationen. Während sich die Anwendung für die 

meisten Krankheiten noch in der Forschung befindet, ist die zellfreie DNA als blutbasiertes 

Screening-Tool für die Darmkrebsfrüherkennung seit einigen Jahren im Rahmen des 

„Septin9-Methylierungstests“ klinisch zugelassen [68]. 

Nichtsdestoweniger können auch in nicht-pathologischen Zuständen deutliche Änderungen 

des Basislevels verzeichnet werden. So haben beispielsweise schwangere Frauen ein erhöhtes 

Plasma-DNA-Level. Da die fetale cfDNA plazentagängig ist, reichert sich diese über den 
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Schwangerschaftsverlauf im Blut der Mutter an, wobei sie dort ab der siebten Woche 

nachweisbar ist [69]. Diese Eigenschaft ermöglicht eine minimalinvasive 

Diagnosemöglichkeit von fetalen Genommutationen, verglichen mit den herkömmlichen 

Methoden, wie Amniozentese oder Chorionzottenbiopsie [70]. Daher erfährt das „Non-

invasive Prenatale Testing“ (NIPT) durch zellfreie DNA weltweit zunehmend an Nachfrage. 

Seit 2012 sind in Deutschland NIPT-Tests kommerziell erhältlich und werden voraussichtlich 

ab Herbst 2020 von den Krankenkassen finanziert [71, 72]. 

Des Weiteren wurden Konzentrationsanstiege unmittelbar nach Belastungssport, wie nach 

Kraft- oder Ausdauertraining, nachgewiesen [43, 44, 73], wodurch eine Anwendung der 

cfDNA als Belastungsmarker zum Monitoring von Trainingseffekten postuliert wird [73]. 

Neben physischem Stress wurde vor Kurzem auch psychosozialer Stress als Auslöser für 

cfDNA-Anstiege identifiziert [74]. 

3.3.4 Die Bedeutung von cfDNA in Verletzungsgeschehen - Stand der Forschung 

Dennis Lo und weitere Wissenschaftler aus Hongkong waren die Vorreiter in der cfDNA-

Analyse im Zusammenhang mit Verletzungen, wobei sie die Hypothese aufstellten, dass 

Zellen aufgrund einer traumatischen Schädigung ihre DNA in die Blutbahn freisetzen [75]. 

In der im Jahr 2000 veröffentlichten Pilotstudie konnten sie erstmals signifikant erhöhte 

Plasma-DNA-Konzentrationen in Schwerverletzten, verglichen mit einer gesunden 

Kontrollgruppe, nachweisen. Basierend auf Einzelmessungen unmittelbar nach stumpfem 

Trauma, postulierten Lo et al. einen direkten Zusammenhang zwischen der cfDNA-

Konzentration und der Verletzungsschwere, bewertet anhand des Injury Severity Scores (ISS) 

oder der Abbreviated Injury Scale (AIS). Lediglich zum AIS-Schweregrad der Extremitäten 

konnte kein Bezug hergestellt werden. Des Weiteren wurde in dieser Studie von einer 

positiven Korrelation zwischen dem posttraumatischen cfDNA-Level und einem konsekutiv 

auftretenden Lungenversagen sowie dem Todeseintritt berichtet [75]. 

Auf Basis dieser Pilotstudie wurde die Bedeutung der zellfreien DNA mehrfach hinsichtlich 

der Risikostratifizierung posttraumatischer Komplikationen sowie als Prognoseparameter für 

die Überlebenswahrscheinlichkeit im Rahmen verschiedener Verletzungsmechanismen, wie 

stumpfem [76–78], scharfem [24, 78, 79] oder thermischem [80–82] Trauma, untersucht. Als 

explizite Beispiele seien an dieser Stelle Kopfverletzungen aufgrund von Schädelhirn-

Traumata [83–85], Rückenmarksverletzungen durch stumpfes Trauma [77] sowie 

penetrierende Verletzungen durch orthopädische Operation [24, 66] genannt. Obwohl bislang 
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noch kein systematischer Vergleich der Verletzungsmechanismen vorliegt, deuten die 

Ergebnisse von Ren et al. ein höheres cfDNA-Level nach scharfem Trauma an, verglichen mit 

stumpfer Krafteinwirkung [78]. 

Im Zuge der Beurteilung der prognostischen Eigenschaften der cfDNA rückten mehrwöchige 

Messreihen zur Analyse des posttraumatischen Verlaufs in den Studienfokus. Dabei wurden, 

unabhängig von der Verletzungsart, maximale Konzentrationswerte direkt nach dem 

Unfallgeschehen verzeichnet. Der Analysezeitpunkt „unmittelbar nach Trauma“ bezieht sich 

dabei in den meisten Studien auf eine Blutabnahme im Rahmen der Krankenhausaufnahme 

(siehe zum Beispiel [86]). Zwei Veröffentlichungen berichten dahingegen von einer 

zusätzlichen Probenentnahme am Unfallort [41, 49], wodurch der Nachweis einer erhöhten 

Konzentration bereits 14 Minuten nach Trauma erbracht werden konnte [41]. 

Bis heute vertritt der wissenschaftliche Konsens die Vermutung eines direkten 

Zusammenhangs zwischen dem posttraumatischen cfDNA-Level und der individuellen 

Verletzungsschwere [31, 41, 49, 75, 76, 83]. In Lam et al. wurde beispielsweise von einer 

dreimal höheren Konzentration in Patienten nach massivem Trauma (ISS > 25) berichtet, 

verglichen mit weniger schwer Verletzten. Im Vergleich mit einer gesunden Kontrollgruppe 

war die Konzentration sogar 200-fach erhöht [49]. 

Dem initialen Maximalwert direkt nach Trauma folgt in der Regel eine 

Konzentrationsabnahme, die in Leichtverletzten innerhalb von wenigen Stunden 

Referenzwerte erreicht [31]. Nach schwerem Trauma wird in verschiedenen Publikationen ein 

Zusammenhang zwischen der Biomarker-Kinetik und der Prognose des Patienten postuliert: 

Macher et al. berichteten in diesem Zusammenhang beispielsweise von der Eigenschaft der 

cfDNA, die Überlebenswahrscheinlichkeit vorherzusagen. Je nach Ausmaß der 

Konzentrationsabnahme in den ersten 24 Stunden nach Trauma könne demnach ein tödlicher 

Ausgang vorhergesagt werden. Des Weiteren kann in Anlehnung an Lam et al. das cfDNA-

Niveau in Patienten, welche im posttraumatischen Verlauf Komplikationen entwickeln (z. B. 

multiples Organversagen) bis zu mehreren Wochen erhöht bleiben [31]. Bei Auftreten einer 

Sepsis wird in Margraf et al. sogar von einem sekundären Konzentrationsanstieg mehrere 

Tage nach Trauma berichtet [86].  

Vor diesem Hintergrund wurde die Korrelation der Plasma-DNA-Konzentration mit 

intensivmedizinischen Prognose-Scores (z. B. SOFA, APACHE, GCS [83, 84, 87]) sowie mit 

klinisch relevanten Biomarkern für beispielsweise Skelettmuskelschäden [24, 77], 

Endothelverletzungen [41] oder systemische Entzündungsreaktionen [49, 76] analysiert. 
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Dabei sind in der Literatur oftmals widersprüchliche Ergebnisse präsentiert, weshalb die 

prognostische Aussagekraft der zellfreien DNA im Trauma-Kontext derzeit noch umstritten 

ist (siehe dazu [32]). 

3.3.5 Limitierungen der aktuellen cfDNA-Forschung 

Ein häufig diskutierter Schwachpunkt der Forschung mit Fokus auf zellfreie DNA stellt das 

Fehlen von standardisierten Vorgehensweisen dar. Vor allem die Präanalytik kann enormen 

Einfluss auf das cfDNA-Level haben, da schon die Probengewinnung und -aufbereitung von 

Relevanz für die anschließende Quantifizierung ist. Beispielsweise kann es durch zeitliche 

Verzögerung zwischen Blutentnahme und Plasmaaufbereitung zur Ex-vivo-Hämolyse von 

Leukozyten und somit zu einer Verunreinigung der Probe durch genomische DNA kommen. 

Aus dem gleichen Grund muss absolut zellfreies Plasma durch mehrmaliges Zentrifugieren 

gewonnen werden [88]. Unterschiede in der präanalytischen, aber auch analytischen 

Vorgehensweise führten in der Vergangenheit dazu, dass stark abweichende Basiswerte in der 

Literatur publiziert sind, welche teilweise von wenigen Nanogramm bis mehreren hundert 

Nanogramm pro Milliliter Blutplasma reichen (vgl. [46, 89]). Des Weiteren erschweren 

unterschiedliche Einheiten publizierter Konzentrationen, wie Nanogramm pro Milliliter oder 

Genomeinheiten pro Liter, zusätzlich die Vergleichbarkeit absoluter Werte [90].  

Der Einfluss der Präanalytik auf die anschließende Quantifizierung sowie auf die qualitative 

Untersuchung der Fragmentlänge ist in den letzten Jahren immerhin zunehmend ins 

Bewusstsein gerückt. Verschiedene Publikationen schlagen einheitliche Richtlinien 

hinsichtlich der einzelnen Schritte zur Probengewinnung und -verarbeitung vor, wobei unter 

anderen folgende präanalytische Variablen untersucht wurden [88, 91, 92]: 

 die zu untersuchende Matrix (z. B. Serum, Plasma), 

 Blutentnahmeröhrchen sowie Anti-Koagulantien,  

 der Zeitraum zwischen Blutentnahme und Zentrifugation 

 Bedingungen der Zentrifugation für die Plasmaaufbereitung 

 Probenlagerungsbedingungen 

 sowie die DNA-Extraktionsmethode  

Dagegen hat man dem Effekt der Blutentnahme selbst auf die Konzentration der cfDNA noch 

keine Beachtung geschenkt. Vor dem Hintergrund, dass die Venenpunktion eine 

Gewebeverletzung der Haut und Gefäßwand verursacht, kann angenommen werden, dass 

aufgrund dessen die cfDNA-Konzentration in geringem Umfang ansteigt. Im Hinblick auf 
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zukünftige Untersuchungen des Biomarkers im Bereich der Trauma-Forschung ist die 

Berücksichtigung der präanalytischen Einflüsse insbesondere von Bedeutung, um Basiswerte 

sowie Abweichungen von diesen korrekt zu bestimmen und um somit den Verletzungsgrad 

einschätzen zu können. 

Nichtsdestoweniger spielt neben der methodischen Variabilität auch die biologische Varianz 

der zellfreien DNA in diesem Zusammenhang eine übergeordnete Rolle, wobei jedoch die 

Datenlage diesbezüglich unzureichend ist. Nach dem Bekanntwerden der potenziellen 

diagnostischen und prognostischen Eigenschaft der cfDNA fokussierte sich die Forschung auf 

die Untersuchung verschiedener Anwendungsmöglichkeiten für einen zielgerichteten Einsatz 

im klinischen Bereich. Die systematische Analyse ihrer inter- und intraindividuellen Varianz 

blieb dabei im Hintergrund, weshalb bis heute insbesondere die natürliche Schwankung der 

cfDNA wenig untersucht ist. Nach dem derzeitigen Wissensstand wurden nur zwei Studien 

veröffentlicht, die die zirkadiane Rhythmik der freien Nukleinsäure untersuchten [51, 52]. 

Weiterführend existieren keine Daten, welche die Variabilität in kurzen Zeitspannen 

berücksichtigen.  

Allerdings ist die Kenntnis der Basiswerte und der damit assoziierten Schwankungen für die 

stichhaltige Beurteilung von Konzentrationsanstiegen durchaus von Bedeutung. Ohne genaue 

Kenntnis der natürlichen Varianz kann keine Aussage darüber getroffen werden, ob es sich 

um einen tatsächlichen Konzentrationsanstieg oder nur um eine Fluktuation handelt, was 

insbesondere bei kleinen Änderungen des cfDNA-Levels Relevanz haben kann. 

Im Bereich der Trauma-Forschung wurden jedoch ohnehin kaum individuelle Anstiege 

fokussiert. In einem Großteil der Studien wurden Posttrauma-Werte in Schwerverletzten 

ermittelt, welche wiederum mit denen einer gesunden Kontrollgruppe verglichen wurden [24, 

31, 49, 75, 78]. Vor diesem Hintergrund wurden demzufolge weder intra- noch 

interindividuelle Schwankungen des Basislevels berücksichtigt, und systematische 

Untersuchungen der Konzentrationsänderung vor und unmittelbar nach Trauma innerhalb 

einer Person fehlen. 
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4 PUBLIZIERTE ERGEBNISSE 

4.1 EIGENER BEITRAG AN VERÖFFENTLICHUNGEN 

Im Hinblick auf veröffentlichte Ergebnisse umfasste der von mir geleistete Beitrag die 

Mitentwicklung des Gesamt-Studienkonzeptes, das selbstständige Verfassen der einzelnen 

Studienprotokolle sowie die selbstständige inhaltliche Gestaltung der Anträge zum Einholen 

der Ethikvoten (17-146; 18-208). Des Weiteren fungierte ich als erster und hauptsächlicher 

Ansprechpartner für Studienteilnehmer, Kooperationspartner, alle beteiligten Co.-Autoren 

sowie Editoren. 

Der von mir durchgeführte labortechnische Anteil an dem Teilprojekt „Quantitative analysis 

of individual cell-free DNA concentration before and after penetrating trauma” beinhaltete 

das Probenmanagement und die Aufbereitung des Blutplasmas vor Ort sowie die DNA-

Präparation und Probenvorbereitung für die anschließende automatisierte qPCR.  

Für das Teilprojekt „Biological variability of cell-free DNA in healthy females at rest within a 

short time course“ umfasste mein Beitrag das Einwerben der Fördermittel beim Verein zur 

Förderung von Wissenschaft und Forschung an der Medizinischen Fakultät der LMU 

München e.V., die Verwaltung des zugehörigen Drittmittelkontos sowie die Planung und 

Organisation der Freiwilligenversuche hinsichtlich Probandenrekrutierung, 

Terminvereinbarung und Aufklärung. Des Weiteren beinhaltete der von mir geleistete Anteil 

die Durchführung der Versuche einschließlich Probandenbefragung, anthropometrischer 

Vermessung und Betreuung während der Blutentnahmen sowie das Probenmanagement, die 

Aufbereitung der Plasmaproben, die DNA-Präparation und die Probenvorbereitung für die 

automatisierte qPCR. 

Im Rahmen beider Teilprojekte wurde die Datenerfassung und -evaluierung inklusive 

graphischer Aufbereitung und statistischer Auswertung selbstständig von mir vorgenommen. 

Des Weiteren habe ich beide Manuskripte verfasst, Änderungsvorschläge der Co.-Autoren 

und Reviewer eingearbeitet und war in Folge für die Abwicklung der Einreich- und Review-

Prozesse zuständig. 
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4.2 ORIGINALMANUSKRIPTE 

4.2.1 Veröffentlichung I 

Quantitative analysis of individual cell-free DNA concentration before and after 

penetrating trauma.  

Brodbeck K, Kern S, Schick S, Steinbrück A, Schwerer M, Bayer B, Anslinger K, Peldschus 

S 

Int J Legal Med 2018; 133 (2): 385-393.  

doi.org/10.1007/s00414-018-1945-y 

  

https://doi.org/10.1007/s00414-018-1945-y
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4.2.2 Veröffentlichung II 

Biological variability of cell-free DNA in healthy females at rest within a short time 

course.  

Brodbeck K, Schick S, Bayer B, Anslinger K, Krüger K, Mayer Z, Holdenrieder S,          

Peldschus S  

Int J Legal Med 2020; 134 (3): 911-919.  

doi.org/10.1007/s00414-019-02240-9 

  

https://doi.org/10.1007/s00414-019-02240-9
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4.3 DISKUSSION DER ERGEBNISSE 

Die vorliegende Dissertation präsentiert eine umfassende Analyse von individuellen cfDNA-

Änderungen und die Qualifikation der Vorgehensweise für zukünftige Versuchsreihen zur 

Entstehung oberflächlicher Verletzungen geringer Schwere. Beide Studien, welche im Fokus 

dieser Arbeit stehen, vereint der gemeinsame Nenner eines definierten Versuchsablaufs mit 

möglichst einheitlichen Bedingungen für Patienten und Probanden, um individuelle 

Konzentrationsänderungen zu analysieren. Des Weiteren wurde die cfDNA in beiden 

Projekten unter Anwendung der gleichen (prä-)analytischen Verfahren quantifiziert. Dadurch 

konnten Informationen über die Größenordnung von cfDNA-Änderungen in zwei 

verschiedenen Setups gewonnen werden, welche nun zueinander in Relation gesetzt werden 

können.  

„Quantitative analysis of individual cell-free DNA concentration before and after penetrating 

trauma“ repräsentiert ein Projektkonzept, in welchem erstmalig zu bestimmten Zeitpunkten 

vor und direkt nach schwerem Trauma individuelle Konzentrationsänderungen analysiert 

wurden. Der Fokus auf eine induzierte Verletzung durch orthopädische Operation eröffnet 

dabei die Möglichkeit, ein relativ definiertes Trauma zu untersuchen, wodurch im Hinblick 

auf bisherige Trauma-Studien eine verbesserte Vergleichbarkeit interindividueller Anstiege 

gegeben ist.  

Nichtsdestotrotz kann ohne Kenntnis der Basisfluktuation keine Aussage darüber getroffen 

werden, ob es sich um tatsächliche cfDNA-Anstiege aufgrund des Traumas handelt, oder ob 

diese Konzentrationsänderungen in den Bereich der natürlichen Schwankung fallen. Deshalb 

wurde in „Biological variability of cell-free DNA in healthy females at rest within a short 

time course“ die natürliche Varianz der zellfreien DNA in weiblichen Probanden ermittelt, 

wobei die intraindividuellen cfDNA-Änderungen ebenfalls im Rahmen eines kontrollierten 

Versuchssettings unter einheitlichen Studienbedingungen für die Probanden (z.B. liegende 

Ruheposition während der kompletten Versuchsdurchführung) erhoben wurden. Es wurde 

eine homogene Studienpopulation gewählt, da auf Basis der derzeitigen Datenlage nicht 

ausgeschlossen werden kann, dass demographische Faktoren einen Einfluss auf die cfDNA 

haben (vgl. zum Beispiel [46]). Im Zusammenhang mit dem angestrebten innovativen 

Nachweis von Bagatellverletzungen durch cfDNA werden in Zukunft ebenfalls weibliche 

Freiwillige präferiert rekrutiert, da Frauen leichter Hämatome entwickeln. Für eine 

umfassende Analyse von interindividuellen Varianzen werden jedoch weitere Studien 

benötigt. 
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Die vorgelegten Resultate verdeutlichen initial die Relevanz, tatsächliche relative Anstiege 

aufgrund eines Traumas durch Kenntnis des individuellen Basislevels zu beurteilen und 

weniger erhöhte absolute Konzentrationen zu bewerten. Die präoperativ gemessenen cfDNA-

Werte schwankten nämlich deutlich zwischen den Orthopädie-Patienten. Dies führte in Folge 

dazu, dass beispielsweise in einem der Patienten direkt nach der Operation der dritthöchste 

absolute Wert nachgewiesen wurde, dieser jedoch nur der sechstgrößten relativen Änderung 

entsprach. 

Das postoperative Level war sowohl direkt nach dem Eingriff (Tag0) als auch am Tag darauf 

(Tag1) signifikant erhöht. Der maximale Anstieg wurde direkt nach der Operation verzeichnet 

und betrug das 19-fache des Basislevels. An Tag1 wurde eine maximale Erhöhung auf das 

4,7-fache festgestellt. Auf dieser Grundlage werden vorherige Studien untermauert, welche 

maximale cfDNA-Konzentrationen direkt nach Trauma postulierten [41, 49, 86]. Des 

Weiteren stehen die anhaltenden Konzentrationserhöhungen an Tag1 ebenfalls mit früheren 

Publikationen in Einklang: Szpechcinski et al. zeigten in diesem Zusammenhang, dass das 

Plasma-DNA-Level auch noch am siebten Tag nach Operation erhöht sein kann [66]. Die 

Ergebnisse demonstrieren somit die Schwierigkeit, den Basiswert einer Person im 

Nachhinein, also nach einem abgeklungenen Trauma bzw. nach einer geheilten Verletzung, 

zu erfassen. 

Betrachtet man die cfDNA-Änderungen des ersten Teilprojektes auf individueller Ebene im 

Detail, so konnte in allen Patienten an Tag0 eine Zunahme der cfDNA beobachtet werden, 

wobei in neun von zehn Studienteilnehmern das Level mindestens verdoppelt war. In einem 

Patienten wurde jedoch nur das 1,8-Fache des Ausgangswertes festgestellt. Obwohl in dieser 

Studie kein Bezug zwischen dem cfDNA-Level und der Verletzungsschwere durch den 

Eingriff hergestellt werden konnte (Knie- versus Hüft-OP), liegt es in Anlehnung an frühere 

Studien (vgl. [41, 49, 76]) dennoch nahe, dass bei einer Bagatellverletzung noch geringere 

Anstiege zu verzeichnen sind.  

Insbesondere bei einer leichten Konzentrationsänderung ist die Zuordnung dieser zu einer 

natürlichen Basiswertschwankung oder zu einem tatsächlichen Anstieg aufgrund des Traumas 

entscheidend. Die Ergebnisse der nachfolgenden Studie zeigen in diesem Zusammenhang eine 

recht geringe Schwankungsbreite der cfDNA im Ruhezustand, wobei die relativen 

Änderungen einen Interdezilbereich von 0,5 bis 1,4 umfassten. Unter Berücksichtigung der 

angewandten (prä-) analytischen Verfahren sowie der untersuchten weiblichen 



 

31 | S e i t e  

 

Studienpopulation kann dieser Schwankungsbereich als Basisfluktuation betrachtet werden. 

Nichtsdestotrotz muss im Einzelfall auch mit einem Konzentrationsanstieg bis auf das 1,6-

fache im Rahmen einer natürlichen Variation gerechnet werden. Obwohl auch männliche 

Patienten im ersten Teilprojekt untersucht wurden, geht die Autorin dennoch davon aus, dass 

die verzeichneten Konzentrationsanstiege direkt nach der Operation auf den Eingriff 

zurückzuführen sind und nicht auf eine Basiswertschwankung.  

Die größte Schwankung in Relation zum 0min-Wert wurde in der zweiten Studie am Anfang 

der Zeitreihe bei 10min beobachtet. Hummel et al. zeigten, dass physische wie auch 

psychosoziale Belastungen eine erhöhte cfDNA-Freisetzung verursachen können [74]. Da die 

Venenpunktion aufgrund des penetrierenden Traumas und des damit verbundenen Schmerzes 

einen gewissen Stressfaktor darstellt, erscheint es denkbar, dass die erhöhte Konzentration zu 

diesem Zeitpunkt durch die Positionierung der Venenverweilkanüle verursacht wurde. Diese 

Tatsache sollte bei der Planung des Trauma-Zeitpunktes in Fallkörperversuchen zur 

experimentellen Erzeugung von subkutanen Hämatomen und dem angestrebten 

Verletzungsnachweis durch cfDNA berücksichtigt werden. Der Zeitpunkt sollte folglich so 

gewählt werden, dass sich potentielle Konzentrationsanstiege aufgrund des stumpfen Traumas 

nicht mit denen überschneiden, welche ggf. durch die Venenpunktion verursacht werden.  

Nichtsdestotrotz war die beobachtete biologische Variabilität der cfDNA letztlich zu gering, 

um sie zuverlässig von der analytischen Varianz zu unterscheiden. Es konnte somit nicht 

festgestellt werden, ob sich das cfDNA-Level zu den verschiedenen Zeitpunkten tatsächlich in 

Form einer natürlichen Schwankung ändert, oder ob es sich um Messungenauigkeiten handelt. 

Die ermittelte Schwankungsbreite über 75 Minuten (CV von 21 %) ist jedoch ähnlich dem 

Wert, welcher von Tranberg Madsen et al. rapportiert wurde (CV von 25 %), indem sie die 

intraindividuelle Variabilität über den Tag im Abstand von drei Stunden analysierten [52]. 

Die natürliche Varianz der Enzyme CK und AST war ebenfalls sehr gering, wobei der 

gesamte Schwankungsbereich nur relative Änderungen von 0,7 bis 1,1 für die Kreatinkinase 

und von 0,6 bis 1,2 für die Aspartat-Aminotransferase umfasste. Die Resultate der CK decken 

sich mit den Ergebnissen von Gutenbrunner, der die zirkadiane Fluktuation des Enzyms in 

Freiwilligen untersuchte und dabei im Ruhezustand fast keine Änderungen feststellen konnte 

[93]. Darüber hinaus könnte der hoch standardisierte Quantifizierungsprozess der CK und 

AST, ohne vorherige Extraktion aus Blutplasma, ein weiterer Grund für die geringe 

Schwankungsbreite der Enzyme sein. 
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Durch die umfassende Analyse individueller Konzentrationsänderungen im Rahmen der 

vorgelegten Studien wurde die Zielsetzung der Dissertation erreicht und eine Datengrundlage 

für den molekularen Nachweis von Bagatellverletzungen durch cfDNA geschaffen. Es konnte 

gezeigt werden, dass der Nachweis eines Konzentrationsanstiegs in einer Person vor und nach 

Verletzungseintritt mit den angewandten Methoden erbracht werden kann, wobei sich das 

maximale Level unmittelbar nach Verletzungseintritt einstellt. Die Größenordnung der 

Konzentrationsanstiege nach schwerem Trauma dient als möglicher Anhaltspunkt für 

zukünftige Studien. Konzentrationsänderungen aufgrund der natürlichen Schwankung sind 

recht gering und fallen unter Berücksichtigung der verwendeten Verfahren in den Bereich der 

analytischen Varianz. Da gezeigt werden konnte, dass im Einzelfall auch nach schwerem 

Trauma nur geringe Konzentrationsanstiege möglich sind, bleibt es zu klären, ob sich eine 

Änderung der cfDNA aufgrund eines experimentellen diskreten Traumas von der 

biologischen und analytischen Variabilität abgrenzen lässt. Dies kann auf Basis der 

dargelegten Grundlagen nun in Folgestudien überprüft werden. 
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