
Field-Resolved Infrared Spectroscopy

From Fundamentals towards Medical
Applications

Marinus Huber

München 2020





Field-Resolved Infrared Spectroscopy

From Fundamentals towards Medical
Applications

Marinus Huber

Dissertation
an der Fakultät für Physik

der Ludwig–Maximilians–Universität
München

vorgelegt von
Marinus Huber
aus Bad Aibling

München, den 21.09.2020



Erstgutachter: Prof. Dr. Ferenc Krausz
Zweitgutachter: Prof. Dr. Jürgen Popp
Tag der mündlichen Prüfung: 27. November 2020



Zusammenfassung

Die Infrarotspektroskopie ist ein mächtiges und vielseitiges Werkzeug zur Untersuchung (or-
ganischer) Proben. Mittels einer einzigen berührungslosen Messung lassen sich umfangreiche
Informationen über die molekulare Zusammensetzung einer Probe gewinnen. Diese Tatsache
hat dazu geführt, dass die Infrarotspektroskopie für eine Vielzahl von biologischen, chemischen
und medizinischen Anwendungen eingesetzt wird, unter anderem für die (Atem-)Gasanalyse,
die Quanti�zierung von klinischen Parametern in Blutproben, die Detektion von Sprengsto�en
und für die Identi�zierung von Mikroorganismen.

Ein besonders praxisrelevantes Anwendungsfeld der Infrarotspektroskopie ist die Analyse
des molekularen Fingerabdrucks von menschlichem Blutserum/-plasma zur Krebsfrüherken-
nung. Obwohl bereits vielversprechende Ergebnisse bei verschiedenen Krebsarten unter Ver-
wendung konventioneller Fourier-Transform-Infrarotspektroskopie (kurz FTIR-Spektroskopie)
erzielt worden sind, muss die E�zienz der Krebserkennung noch deutlich gesteigert wer-
den, um einen breiten Einsatz in der klinischen Praxis zu ermöglichen. Eine der Hauptlimi-
tierungen dieser und vieler anderer Anwendungen der Infrarotspektroskopie ist die begrenzte
molekulare Emp�ndlichkeit und Spezi�zität konventioneller Infrarotspektroskopie aufgrund
der verfügbaren Lichtquellen und Infrarotdetektoren. Als Folge können nur hochkonzentri-
erte Bestandteile einer (Blut-)Probe mittels eines molekularen Fingerabdrucks erfasst werden,
was wiederum die E�zienz der Krebserkennung potenziell einschränkt. Die vorliegende
Dissertation befasst sich mit der Entwicklung, Untersuchung und Anwendung einer neuarti-
gen, spektroskopischen Methodik – der feldaufgelösten Infrarotspektroskopie (�eld-resolved
spectroscopy, kurz FRS) – und zeigt in Theorie und Experiment das Potenzial der FRS zur
Überwindung der oben genannten Einschränkungen auf.

Im ersten Teil der Arbeit werden technische, experimentelle, konzeptionelle und theo-
retische Aspekte der feldaufgelösten Metrologie präsentiert und im Detail diskutiert. Die
Fähigkeit, elektrische Felder von impulsiv angeregten Molekülschwingungen mittels elektro-
optischer Abtastung direkt zu messen, erö�net bisher unerschlossene Möglichkeiten für die Auf-
nahme von Fingerabdrücken komplexer nativer molekularer Ensembles. Vibrationsangeregte
Moleküle emittieren ein kohärentes elektrisches Feld im Nachklang einer ultrakurzen Infrarot-
Laseranregung, welches spezi�sch für die molekulare Zusammensetzung der Probe ist. Es wird
gezeigt, dass solche feldaufgelösten molekulare Fingerabdrücke (electric-�eld-resolved molecu-
lar �ngerprints, kurz EMFs) mittels einer auf Emp�ndlichkeit optimierten elektro-optischen
Abtastung direkt bis hinunter zu Feldstärken gemessen werden kann, die 107-mal schwächer
als die der Anregung sind. Zudem erlaubt die sowohl zeit- als auch feldaufgelöste Messung
eine Abgrenzung vom durch die Anregung erzeugten und eigentlichen molekularen Signal.
Letzteres kann somit praktisch ohne den um Größenordnungen stärkeren Hintergrund des An-
regungspulses aufgenommen werden. Damit ist es erstmals möglich, auch schwächste Signale
zu erfassen, die bei Anregung von in Flüssigkeiten (wie z.B. Blutserum) gelösten Molekülen
im sub-µg/ml-Bereich entstehen. Dies entspricht einer Emp�ndlichkeitssteigerung gegenüber
kommerziellen FTIR-Spektrometern um mehr als den Faktor 40.

Darüber hinaus wird theoretisch und experimentell gezeigt, dass sich FRS insbesondere
für die Untersuchung von stark absorbierenden Proben eignet. Dies lässt sich zu einen auf
den Intensitätsdynamikbereich von mehr als 10 Größenordnungen und zum anderen auf die
direkte Messung des elektrischen Feldes zurückführen. Letzteres impliziert, dass das Messsignal
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linear mit der Feldstärke skaliert. Im Gegensatz zu einer Intensitätsskalierung, wie sie bei
herkömmlicher Infrarotspektroskopie vorliegt, kann durch Feldstärkenskalierung eine erhöhte
molekulare Emp�ndlichkeit über einen signi�kant vergrößerten Bereich von Probendicken
realisiert werden. Dadurch war es zum ersten Mal möglich, intakte lebendige Systeme mit
Dicken in der Größenordnung von 0,1 Millimetern zu durchleuchten, was eine breitbandige
infrarotspektroskopische Untersuchung von menschlichen Zellen und P�anzenblättern erlaubt.
FRS verspricht eine verbesserte molekulare Emp�ndlichkeit für die Untersuchung komplexer,
realer biologischer und medizinischer Fragestellungen.

Der zweite Teil der Dissertation befasst sich mit der ersten praxisnahen Anwendung der
FRS zur Krankheitsdiagnostik in der Onkologie mittels Flüssigkeitsbiopsie.

In einem ersten, vorbereitenden Schritt wurden hierfür unter Verwendung herkömmlicher
FTIR Spektroskopie die Arbeitsabläufe zur Messung von �üssigen Serums- und Plasmaproben
im Hinblick auf die Reproduzierbarkeit optimiert und die biologische Variabilität über die Zeit
von molekularen Infrarot-Fingerabdrücken von gesunden, nicht-symptomatischen Probanden
untersucht. Die erfassten Infrarot-Fingerabdrücke erwiesen sich über klinisch relevante Zeit-
skalen als hochstabil und lieferten eine Vielzahl von personenspezi�schen spektralen Markern,
mit denen individuelle molekulare Phänotypen erkannt und über die Zeit verfolgt werden kön-
nen. Dieses bisher unbekannte Maß an zeitlicher Stabilität und Spezi�zität von blutbasierten
spektralen Infrarot-Fingerabdrücken bildet die Grundlage für ihre künftige Anwendung zur
Gesundheits- und Krankheitsüberwachung.

Im darau�olgenden Abschnitt der Arbeit wird über die Ergebnisse einer ersten klinischen
Machbarkeitsstudie berichtet, bei welcher die EMFs von �üssigem Blutserum von mehr als
dreihundert Individuen mittels FRS erfasst worden sind. Algorithmen des maschinellen Lernens
ermöglichten die Isolierung von Infrarotsignaturen, die aufschlussreich für die Unterscheidung
von Proben von Patienten mit nicht-metastasierten Brust-, Prostata- und Lungenkarzinomen
und von sorgfältig auf diese abgestimmten Kontrollpersonen sind. Die Detektionse�zienz
im Bereich von 0,63-0,84 (Fläche unter der ROC-Kurve) übersteigt systematisch die E�zienz
der FTIR-Spektroskopie, wenn sie auf dieselben Proben angewendet wird. Dies ist ein erster
experimenteller Hinweis darauf, dass sich die verbesserte molekulare Emp�ndlichkeit der
FRS direkt in einer höheren E�zienz bei der Erkennung von Krankheitsbildern niederschlägt.
Die vorliegenden Daten belegen, dass die kohärenten elektrischen Felder, die von impulsiv
angeregten Biomolekülen im Blut ausgehen, robust und zuverlässig als informative EMFs
erfasst werden können. Abgesehen davon, dass sie zur Krebserkennung beitragen, dürften sie
ganz allgemein neue Möglichkeiten für die künftige Phänotypisierung von Bio�uiden erö�nen.

Aufgrund der bereits erzielten Ergebnisse und des Potentials die Emp�ndlichkeit der näch-
sten Generation von FRS um mehr als zwei Größenordnungen zu erhöhen, verspricht FRS
sowohl existierende Anwendungen wie die Analyse von molekularen Fingerabdrücken von Blut
zur Krankheitsdiagnostik weiter zu verbessern, als auch komplett neue Anwendungsbereiche
in der Untersuchung von intakten biologischen Systemen zu erschließen.



Abstract

Infrared spectroscopy is a powerful and versatile tool for the investigation of (organic) specimen.
With a single non-invasive measurement, extensive information about the molecular composi-
tion of a sample can be obtained. This fact has prompted infrared spectroscopy to be employed
for a wide range of biological, chemical and medical applications, including (respiratory) gas
analysis, quanti�cation of clinical parameters in blood samples, detection of explosives, and
identi�cation of microorganisms.

A particularly relevant practical application of infrared spectroscopy is the analysis of
infrared molecular �ngerprints of human blood serum/plasma for early cancer detection.
Although promising results have already been reported for various types of cancer entities
using conventional Fourier-transform infrared (FTIR) spectroscopy, the e�ciency of cancer
detection still needs to be signi�cantly improved in order to enable broad application in
clinical practice. One of the main challenges for this particular and many other applications
of infrared spectroscopy is the limited molecular sensitivity and speci�city of conventional
infrared spectroscopy due to the restrictions imposed by the available light sources and infrared
detectors. As a result, only highly concentrated components of a (blood) sample can be detected
by molecular �ngerprinting, which in turn potentially limits the e�ciency of cancer detection.
The present dissertation addresses the development, investigation, and application of a novel
spectroscopic method – �eld-resolved spectroscopy (FRS) – and demonstrates in theory and
experiment the potential of FRS to overcome the above-mentioned limitations.

In the �rst part of the thesis technical, experimental, conceptual, and theoretical aspects of
�eld-resolved metrology are presented and discussed in detail. The ability to directly measure
electric �elds of impulsively-excited molecular vibrations by means of electro-optic sampling
(EOS) opens up hitherto untapped potential for the �ngerprinting of complex native molecular
ensembles. Vibrationally-excited molecules emit a coherent electric �eld in the wake of an
ultrashort infrared laser excitation, which is speci�c for the molecular composition of a sample.
It is demonstrated that such electric-�eld-resolved molecular �ngerprints (EMFs) can be measured
directly down to �eld strengths 107-times weaker than the excitation by employing electro-
optic sampling optimised for sensitivity. In addition, a measurement, which is both time- and
�eld-resolved, enables separation between the impulsive excitation and the coherent molecular
response. The latter can thus be recorded practically without the background of the orders-of-
magnitude stronger excitation pulse. As a result, it is now possible to detect even the faintest
signals that are generated when molecules solved in liquids (such as blood serum) in the
sub-µg/ml range are excited. This corresponds to a sensitivity increase of more than a factor 40
compared to commercial FTIR spectrometers.

Furthermore, it is shown theoretically and experimentally that FRS is particularly suitable
for the measurement of highly absorbent samples. This can be attributed to an intensity
dynamic range of more than 10 orders of magnitude as well as to the ability to directly measure
the electric �eld. The latter implies that the measurement signal scales linearly with the �eld
strength. In contrast to intensity-scaling, which is a typical feature of conventional infrared
spectroscopy, �eld-scaling enables to achieve increased molecular sensitivity over a signi�cantly
extended range of sample thicknesses. This made it possible for the �rst time to transilluminate
intact living systems with thicknesses in the order of 0.1 millimetres, enabling broadband
infrared spectroscopic examination of human cells and intact plant leaves. FRS promises
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improved molecular sensitivity for the investigations of complex, real-world biological and
medical problems.

The second part of the dissertation is devoted to the �rst practical application of FRS for
disease detection in cancer diagnostics using liquid biopsies.

In a �rst, preparatory step, the work�ows for the measurement of human liquid serum
and plasma samples were optimised with regard to reproducibility using conventional FTIR
spectroscopy. Furthermore, the biological variability of molecular infrared �ngerprints of
healthy, non-symptomatic subjects was investigated over time. The recorded infrared �nger-
prints proved to be highly stable over clinically relevant time scales and provided a variety of
person-speci�c spectral markers that can be used to identify individual molecular phenotypes
and track them over time. This previously unknown temporal stability and speci�city of
individual biochemical �ngerprints forms the basis for future applications in health and disease
monitoring.

The subsequent section of the thesis reports on the results of a �rst clinical proof-of-
principle study in which EMFs of liquid blood sera of more than three hundred individuals were
recorded with FRS. Machine learning algorithms enabled isolation of infrared signatures that
are instructive for distinguishing samples of patients with therapy-naïve non-metastatic breast,
prostate, and lung carcinoma from those of carefully-matched control individuals. Detection
e�ciencies in the range of 0.63-0.84 (area under the receiver operating characteristic curve)
systematically exceeds the e�ciency of FTIR spectroscopy when applied to the same samples.
This is a �rst experimental indication that the improved molecular sensitivity of FRS directly
translates into higher e�ciency in the detection of disease patterns. The reported data builds
evidence that the coherent electric �elds emanating from impulsively-excited biomolecules
in blood can be robustly and reliably captured as informative EMFs. Beyond contributing to
the detection of cancer, they are likely to provide, more generally, a new framework for future
phenotyping of bio�uids.

Based on the achieved results and the potential to increase the sensitivity of the next
generation of �eld-resolved spectrometers by more than two orders of magnitude, FRS holds the
promise to further improve existing applications, such as the analysis of molecular �ngerprints
of human blood for disease diagnosis, as well as pave the way for entirely new areas of
applications in the investigation of intact biological systems.



List of included Publications

1. M. Huber, W. Schweinberger, F. Stutzki, J. Limpert, I. Pupeza, and O. Pronin, “Active
intensity noise suppression for a broadband mid-infrared laser source”, Optics Express 25,
22499-22509 (2017) 10.1364/OE.25.022499. — included as section 2.1

2. I. Pupeza, M.Huber, M. Trubetskov, W. Schweinberger, S. Hussain, C. Hofer, K. Fritsch, M.
Poetzlberger, L. Vamos, E. Fill, T. Amotchkina, K. Kepesidis, A. Apolonski, N. Karpowicz,
V. Pervak, O. Pronin, F. Fleischmann, A. Azzeer, M. Žigman and F. Krausz, “Field-resolved
infrared spectroscopy of biological systems”, Nature 557, 52-59 (2020) 10.1038/s41586-019-
1850-7. — included as section 2.2

3. M. Huber, M. Trubetskov, S. Hussain, W. Schweinberger, C. Hofer and I. Pupeza, “Opti-
mum sample thickness for trace analyte detection with �eld-resolved infrared spectroscopy”,
Analytical Chemistry 91, 7508-7514 (2020) 10.1021/acs.analchem.9b05744. — included as
section 2.3

4. M. Huber, K. Kepesidis, L. Voronina, M. Božić, M. Trubetskov, N. Harbeck, F. Krausz and
M. Žigman, “Stability of person-speci�c blood-based infrared molecular �ngerprints opens up
prospects for health monitoring”, Nature Communications 12, 1511 (2021) 10.1038/s41467-
021-21668-5. — included as section 3.1

https://doi.org/10.1364/OE.25.022499
https://doi.org/10.1038/s41586-019-1850-7
https://doi.org/10.1038/s41586-019-1850-7
https://doi.org/10.1021/acs.analchem.9b05744
https://doi.org/10.1038/s41467-021-21668-5
https://doi.org/10.1038/s41467-021-21668-5




Contents

Zusammenfassung v

Abstract vii

List of Publications ix

1 Introduction and Motivation 1
1.1 The power of infrared spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Pushing the limits of infrared spectroscopy . . . . . . . . . . . . . . . . . . . . 5
1.3 Application of infrared spectroscopy to bio�uid analysis and disease detection 8

1.3.1 Quantitative analysis of bio�uids . . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Functionalized infrared sensors and chips . . . . . . . . . . . . . . . . 9
1.3.3 Infrared �ngerprinting . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Research goals and structure of the thesis . . . . . . . . . . . . . . . . . . . . . 15

2 Field-Resolved Spectroscopy 17
2.1 � Active intensity noise suppression for a broadband mid-infrared laser source 17
2.2 � Field-resolved infrared spectroscopy of biological systems . . . . . . . . . . 30
2.3 � Optimum sample thickness for trace analyte detection with �eld-resolved

infrared spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3 Infrared Fingerprinting for Blood Pro�ling 87
3.1 � Stability of person-speci�c blood-based infrared molecular �ngerprints . . . 87
3.2 � Electric-�eld molecular �ngerprinting to probe human disease . . . . . . . . 108

4 Conclusions and Outlook 135
4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.2 Future of �eld-resolved spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 139
4.3 Future of electric-�eld-resolved �ngerprinting . . . . . . . . . . . . . . . . . . 142

References 145

Danksagung 155





Chapter1
Introduction and Motivation

1.1 The power of infrared spectroscopy

A beautiful property of light-matter interaction is that it allows virtually any material to
be studied by means of a non-contact measurement. Based on the speci�c response of the
photons to the sample under scrutiny, insights into biological, chemical, electrical, mechanical
or, more generally, material properties can be gained. Thereby the frequencies of the applied
electromagnetic radiation determine what kind of information can be gained. For example, the
strength of the interaction of X-rays with matter depends mainly on the elemental composition
of the material, but not so much on the chemical properties, since the photon energy is
much higher than the chemical binding energies [1]. Consequently, X-ray spectra contain
information about the di�erent elements within a sample. When moving to the visible range,
photon energies get smaller, and electronic transition in the outer orbitals of single atoms and
complex molecules can be e�ciently excited [1]. Well-known application examples of visible
spectroscopy are the identi�cation of chemical elements in atmospheres (e.g. Fraunhofer lines
[2]) or the investigation of the photosynthetic electron transport chain [3].

However, linear absorption spectroscopy in the visible range only gives partial insight into
the chemical functionality of a sample. To access this information, one has to probe the chemical
bonds holding molecules together. In a simpli�ed picture, these bonds can be considered as
springs between vibrating atoms. In a quantum mechanical picture, the vibrational modes can be
associated with di�erent energy levels. The energy between transitions of di�erent vibrational
states typically ranges between 0.4 eV and 0.04 eV, which corresponds to electromagnetic
frequencies in the (mid-)infrared spectral range. Whenever the vibrational movement induces
a change in the dipole moment of the molecule, it can be directly excited and probed using
infrared radiation [4]. Vibrational modes of molecules can also be measured by visible light via
the Raman e�ect [4]. Depending on the type of sample, the measurement conditions, and the
questions under investigation, either infrared or Raman spectroscopy o�ers distinct advantages
in the respective situation. A detailed and critical comparison of the two techniques would go
beyond the scope of this introduction. For further reading, the interested reader is referred to
the relevant literature [5–8].

To understand what kind of information can be obtained by vibrational infrared spec-
troscopy, it is instructive to examine the simplistic picture of two vibrating atoms connected by
a spring in more detail (Fig. 1.1 a). The spring constant : is determined by the strength of the
chemical bond. Considering the reduced mass<4 5 5 (1/<4 5 5 = 1/<� + 1/<�) of both atoms, a
classical equation for the movement, expressed as relative distance G between the atoms, can
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be written down as:
<4 5 5 ¥G + :G = 0 (1.1)

In a quantum mechanical description, the energy of the corresponding eigenstates �= is given
by

�= = (= +
1
2 )

ℎ

2c

√
:

<4 5 5

, (1.2)

where ℎ denotes the Planck constant. For a transition from the ground to the �rst excited state
due to light absorption, a photon energy �?ℎ with an optical frequency a of

�?ℎ = ℎa =
1
2
ℎ

2c

√
:

<4 5 5

(1.3)

is required (Fig. 1.1 b).
By analysing this relationship, we can derive basic properties of absorption bands associated

with certain vibrational modes. Increasing the mass shifts the absorption frequency to lower
frequencies, while a larger ‘spring constant’ – e.g. by replacing a single with double bond
– results in a higher absorption frequency. Each combination of spring constant and mass
will result in a di�erent eigenfrequency. This simple model example showcases why infrared
spectroscopy allows to extract rich chemical information. In actual physical systems, even more
factors contribute to the information content of infrared spectra. A molecule with N atoms
has 3N degrees of freedom including translation, rotation, and vibration. Taking into account
translational and rotational motion as well as symmetries, the number of vibrational modes is
3N–5 for linear and 3N–6 for nonlinear molecules [4]. These vibrational modes may also be
coupled to rotational energy states, resulting in a multitude of characteristic infrared absorption
lines. In addition, each molecular vibration is either damped or dephases according to their
speci�c chemical (e.g. water vs. organic solvents) or physical (e.g. temperature) environment.
A detailed explanation and (theoretical) description of this is out of scope for this introduction
and has already been extensively covered by others [4, 9, 10].

The aim here is to highlight the fact, that the chemical information about a molecule
(strength and type of chemical bonds, mass of atoms that make up the molecules, information
about the chemical and physical environment) is encoded in the associated infrared spectra
(strength, width, shape, number, and position of the absorption lines). In fact, the information
content is so rich, that basically any larger molecule (and even di�erent conformations thereof)
has a unique absorption spectrum in the infrared (Figure 1.1 c and d shows a few examples
of characteristic infrared spectra for molecules in liquid and gas phase) [4]. Therefore, a
carefully performed infrared measurement can reveal qualitative, quantitative, and/or structural
information about a sample. In addition, changes in this information can be easily tracked over
time, for example to follow protein folding in response to a rise in temperature [4, 9].

For more complex (especially organic) sample compositions, e.g. biological �uids or living
cells, the identi�cation and quanti�cation of all constituents eventually becomes impossible due
to overlapping spectral bands. However, it has been shown in numerous applications, that the
acquired spectra of such samples still deliver highly speci�c information – a so called infrared
�ngerprint – about the overall chemical makeup, which can be utilized to characterize and
classify given samples or sample sets [4, 9, 11]. For example, infrared �ngerprints have been
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Figure 1.1: a) In a simpli�ed quantum mechanical picture, a molecular vibration can be described as
two atoms connected by a mechanical spring. The corresponding quadratic potential has discrete energy
levels. If an infrared photon has an energy equal to the energy di�erence between the �rst and ground state,
the molecular vibration can be excited and the photon is absorbed. a) The absorption spectrum belonging
to this model consists of a sharp line at the absorption frequency. c, d) In reality, molecules have several
chemical bonds that enable a multitude of vibrational, translational, and rotational movements. Therefore,
the corresponding infrared spectra can have a large number of absorption lines. In a liquid environment,
the vibrational motions dephase rapidly due to collisions and therefore the molecules have a rather broad
absorption spectrum. c) Shows some examples of this. In contrast, fewer collisions occur in the gas phase,
causing the corresponding absorption lines of the gases to be quite narrow, as shown in d). In general, any
larger molecule (may it be in the gas phase or liquid phase) o�ers an unique absorption spectrum in the
infrared that can be e.g. used for molecular identi�cation.
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used to identify strains of bacteria [12] or cell (pheno-)types [13, 14]. It has also been shown
that the analysis of infrared �ngerprints of tissue sections or bio�uids – such as blood serum –
can assist cancer detection [11, 15–18]. Typically, the identi�cation or classi�cation is assisted
using machine learning algorithms [11]. Such algorithms are being trained – using �ngerprints
from samples with known states (e.g. healthy vs. cancerous tissue) – to pick up signatures in
the infrared �ngerprint that are characteristic for speci�c sample types correlating with certain
physiological states (for more details see also section 1.3).

The aim of this short introductions was to explain the basic idea of the physical principles
underlying vibrational infrared spectroscopy and to emphasize why it is a powerful tool for
the study, investigation, and characterization of (organic) matter. It can be applied to any type
of sample, less and more complex, to living or non-living materials, while providing label-free
access to the chemical composition and therefore to the functional makeup of a system as such
– regardless of whether the matter of investigation is in hydrated, solid or gas state. As Peter
Gri�ths once put it so very aptly: “The number of applications for which a careful measurement
of the infrared spectrum will yield important qualitative, quantitative, and/or kinetic information
is limited only by the imagination of the user” [4].
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1.2 Pushing the limits of infrared spectroscopy

One of the major goals in the development of any spectroscopy technique is to increase the
sensitivity to the shot noise limit, which is set by the quantum nature of light. Whether
the �eld-resolved metrology, which is the subject of this thesis, can reach this limit remains
to be investigated. However, before discussing the latter in detail, a short overview of the
history of infrared spectroscopy is given. Interestingly, in retrospect, it seems that the inherent
pursuit of higher sensitivity has already come to a halt several times as the potential for
further improvements seemed exhausted. But now, as it has been the case before, after years of
stagnation, new technical developments have initiated the process of a further evolutionary
leap.

The �rst commercial infrared spectrometer was released in 1913 and eventually infrared
spectroscopy became widespread with the Perkin-Elmer 21, a commercial double-beam spec-
trometer introduced in 1950 [19]. Back then, infrared spectroscopy was mainly used for chemical
analysis and structural determination of molecules. However, with the advent of techniques
such as two-dimensional nuclear magnetic resonance spectroscopy, X-ray di�raction, and mass
spectrometry, the structure of complex molecules is nowadays mostly studied using these
methods [4]. In 1973, this fact has led Herbert Laitinen, who was the editor of Analytical
Chemistry at the time, to make an analogy between the development of an analytical method
and Shakespeare’s concept of the ‘seven ages of man’ [20]. A development that spans from
the recognition of a physical principle and its experimental validation for measurements in a
research environment to the implementation into practical use and gradual commercialization,
until it is eventually well recognized and established in a wide scope of applications. But
inevitably it will one day reach its ‘seventh age’, in which “other methods of greater speed,
economy, convenience, sensitivity, selectivity, etc. surpass the method under consideration” [20].
Laitinen indicated that infrared spectroscopy had reached this stage of development, which
can be interpreted to mean that he did not consider infrared spectroscopy to be a relevant
competitive technique in the future unless fundamental technical or theoretical developments
will cause one of the earlier stages to resurge.

Retrospectively, the conclusion that infrared spectroscopy had already reached its �nal age
would be incorrect, especially when considering that the �rst commercial Fourier-transform
infrared (FTIR) spectrometer was introduced in 1969. Gri�ths commented in his book that
instead of being in his seventh and �nal age, infrared spectroscopy was actually in its what he
calls ‘second childhood’, which might be de�ned as the rejuvenation of the analytical method
[21]. The FTIR technology has enabled improvements in many technical aspects, such as
greatly increased sensitivity, spectral coverage, reproducibility, and resolution while at the
same time increasing the measurement speed. In addition, the FTIR devices became cheaper,
smaller, and more user-friendly. Combined with the development of new sampling techniques
(e.g. attenuated total re�ection, multi-pass-cells, micro-spectroscopy) di�erent sample types
could now be easily investigated. This enabled the study of new research questions and has
led to many applications in the �elds of chemistry, biochemistry, biomedicine, environmental
monitoring, and many others. Due to all these aspects, FTIR spectrometry became so dominant
that many scientists now consider it equivalent to infrared spectroscopy. At present, nearly
�fty years later, FTIR spectrometry is still considered to be the gold standard of infrared
spectroscopy.
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However, there have not been any substantial technical advances in commercially available
FTIR spectrometers within the last twenty years. The initially rapid leaps in the area of improved
sensitivity and other technical aspects enabled by the introduction of FTIR technology slowed
down once the (fundamental) limits of what can be achieved with thermal sources and liquid-
nitrogen cooled detectors were approached [4, 22]. Most likely, this was also the reason why
Gri�ths wrote, that infrared spectroscopy “passed from its second childhood into its �fth age”
[4], in which the major steps of development are completed and “applications are enlarged to
an ever-widening scope of areas” [20].

Although it is indeed a fact that FTIR spectrometers are still widely used, even Gri�ths could
probably not have foreseen how upcoming new laser-based light sources and new light detection
schemes would have the capacity to start another evolutionary step of infrared spectroscopy
towards higher sensitivity and its applicability to an even wider range of applications.

Fundamentally, the achievable sensitivity of a spectroscopic method is limited by the shot
noise of the employed light source. The single-sided linear spectral density B@ of the relative
quantum power noise is given by

B@ =

√
2ℎ2
%_

= 1.9 · 10−8�I−0.5
√

1 mW
%

√
1064 nm

_
, (1.4)

where ℎ is the Planck constant, 2 the vacuum speed of light, % is the optical power incident
on the detector (assuming a detector quantum e�ciency of 1), and _ the wavelength of the
radiation [23]. In practice however, current state-of-the-art FTIR spectrometers do not operate
even close to shot noise limit and are usually dominated by the detector noise [4]. Since
liquid-nitrogen cooled photodetectors already operate close to the limit set by the thermal
background [22], the �rst step towards higher sensitivity is to overcome detector noise and
increase the employed light power in a spectroscopic scheme.

Apart from synchrotron sources (which will not be discussed here due to their limited
availability, cost, and space requirements), the �rst competitive alternative to thermal-based
sources became quantum cascade lasers (QCLs). Introduced in 1994 [24], they have been
becoming cheaper, more compact, user-friendly, and therefore more widely applied [25–29].
Commercially available QCLs are now able to cover the entire mid-infrared (MIR) range
(when multiple QCLs are combined) and deliver watt-scale powers. In parallel, coherent
supercontinuum and broadband femtosecond sources in the mid-infrared have been developed,
which now exceed the brilliance of thermal sources by orders of magnitude [30–33].

With these new MIR sources signi�cant progress in infrared spectroscopy has been achieved.
The properties of laser light allow to take advantage of advanced spectroscopic schemes.
Multipass-con�gurations and enhancement cavities can now be realized more e�ciently due
to the spatial coherence of lasers [34, 35]. In gas spectroscopy, this allows to signi�cantly
increase the e�ective interaction length with the molecules of interest, and therefore enables
higher detection sensitivities. By combining two coherent frequency-combs, broadband dual-
comb spectroscopy can achieve orders-of-magnitude higher spectral resolution at signi�cantly
reduced acquisition times as compared to conventional FTIR spectroscopy [27, 36–38]. At the
same time, the increased MIR powers of laser-based sources allow to better tolerate losses due
to absorption and scattering [39]. This enables increased sensitivity in micro-spectroscopy or
transmission spectroscopy of strongly absorbing or scattering samples by either increasing the
e�ective pathlength or by increasing the number of photons reaching the detector.
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Despite these advances, the increased power of MIR sources could not be fully exploited so
far [28, 40, 41]. Firstly, a common issue of sensitive MIR photodetectors is their limited intensity
dynamic range. Commercially available detectors saturate in the mW-range, limiting the
useable MIR power for spectroscopy [22, 37]. Frequency up-conversion detectors [42, 43] with
high quantum-e�ciency can circumvent this problem to some extent, as orders-of-magnitude
more sensitive photoreceivers with larger intensity dynamic ranges are available for visible
and near-infrared light. Secondly, even assuming the availability of perfect detectors, most
spectrometers would not operate at the shot noise limit, but would be heavily dominated by
technical excess noise, such as relative intensity noise or interferometer instabilities. Therefore,
many spectroscopic schemes either suppress or circumvent noise by various approaches, such
as balanced detection, active stabilization or fast data acquisitions [35, 37, 44–46].

Later in this work, it is discussed in detail and demonstrated how �eld-resolved spectroscopy
(FRS) of few-cycle infrared-laser-excited molecular vibrations is able to address both of the
above-mentioned issues simultaneously. Sub-cycle nonlinear gating enables isolation of the
molecular response from the orders-of-magnitude stronger excitation. By this, sensitivity
limitations imposed by source noise and detector dynamic range can be avoided. As a result, FRS
o�ers – already in its �rst implementation – a limit of detection of 200 ng ml−1 dimethylsulfone
solved in water, outperforming state-of-the-art FTIR in sensitivity by a factor of 40 [40]. Still,
there is substantial room for further improvement. Considering the same light source as used
in the experiments mentioned above, a limit of detection of 0.4 ng ml−1 dimethylsulfone solved
in water would be possible under shot-noise-limited detection with perfect detectors [37, 40].

Considering these recent advancements as well as the potential for further improvements,
it is di�cult to agree with Gri�ths that infrared spectroscopy now is in its ‘�fth age’. Rather, I
would argue that infrared spectroscopy is (once again) in its ‘second childhood’. Only when
broadband infrared spectroscopy can be routinely operated at the limits set by the quantum
nature of light – with average powers close to the damage threshold of the samples – could
infrared spectroscopy have reached a �nal ‘age’ at which it can no longer be surpassed - at least
according to our current understanding of the matter. The future will show whether FRS will
be the technology able to achieve this ultimate goal within the �eld of infrared spectroscopy.
But regardless of whether it will mark the �nal step of development, we can already state now
that FRS will de�nitely move the �eld of infrared spectroscopy forward and thereby broaden
the prospects for novel applications.
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1.3 Application of infrared spectroscopy to bio�uid anal-
ysis and disease detection

Due to its ability to obtain rich information about all types of molecules present within a
complex sample in a rapid and label-free manner, infrared spectroscopy has always been and
still is predestined for chemical, biological, and medical applications. Over the last decades
all kinds of biological samples – breath [47], (human) tissue sections [15], plant leaves [48],
cells [13, 14], cow’s milk [49], saliva [50], blood serum [51], blood plasma [52], full blood [53],
etc. – have been studied using di�erent measurement modalities [11, 25, 54–56] – including
attenuated-total-re�ection, transmission, re�ection, micro-spectroscopy, waveguide sensors
and micro�uidic chips – in order to investigate chemically, biologically, and medically relevant
questions related to label-free sample identi�cation [11, 13] as well as (cell) phenotyping [13],
identi�cation and quanti�cation of selected molecules [52, 54, 57], disease and cancer detection
[11, 15, 50, 51]. A complete comprehensive overview over all these di�erent topics is beyond
the scope of this thesis. The interested reader is kindly referred to the original works already
cited as well as to dedicated books on these topics [4, 7–9].

The focus of this section of the introduction lies on the analysis of bio�uids with infrared
spectroscopy for biomedical applications, highlighting the potential advantages for disease
and cancer detection. Towards that end, I will review three main approaches – (1) quantitative
analysis, use of (2) functionalized sensors, and (3) �ngerprinting approaches – and discuss their
respective advantages and disadvantages for di�erent applications.

1.3.1 Quantitative analysis of bio�uids

A variety of analytical methods are routinely used to identify and quantify selected components
of liquid samples. Among these approaches, optical methods stand out in particular, as they
allow quantitative analytical measurements without direct contact or manipulation of the
sample under investigation, e.g. by using additional reagents such as chemical labels. The
basic concept of quantitative infrared spectroscopy is based on the fact that virtually every
molecule exhibits a unique absorption spectrum in the infrared range, which can be used not
only for identi�cation but also for quanti�cation of this speci�c molecule, as the absorption
scales linearly with the molecular concentration (in the limit of linear spectroscopy) [4].

For complex organic bio�uids, consisting of many thousand di�erent molecular species at
(often vastly) di�ering abundancies, the infrared molecular signal is a linear superposition of the
individual molecular signals weighted according to their concentrations. Considering that these
individual molecular signals range over several orders of magnitude, and that absorption spectra
in the liquid or solid phase have rather broad absorption features with overlapping bands,
concentration retrieval in complex substances constitutes a challenging problem. Therefore,
molecular identi�cation and quanti�cation is assisted by so called ‘infrared chemometrics’
using advanced (machine learning) algorithms to extract, identify,and quantify features in the
infrared �ngerprints that belong to speci�c analytes. To date, parallel molecular quanti�cation
based on infrared spectroscopy has been restricted to about 10 analytes, all with concentration
levels well above 10 µg mL−1 in bio�uids [29, 57–59]. However, it is still unclear whether the
spectroscopic sensitivity, the broad absorption features, or other factors (e.g. sample preparation
and measurement modalities) are currently the main limitations of this speci�c approach [59].
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In the context of clinical diagnostics, quantitative infrared spectroscopy has signi�cant
application potential. A large number of blood parameters (e.g. erythrocytes, leukocytes,
thrombocytes, haemoglobin, haematocrit, total protein content, glucose concentration) are
routinely measured whenever a blood sample is drawn, either when healthy individuals undergo
a medical check-up or to support the diagnosis of a disease if patients already show symptoms. If
a speci�c disease is suspected, a targeted quanti�cation of selected indicative marker molecules
is performed (e.g. prostate speci�c antigen for prostate cancer). It is now understood that
a single molecular marker, although highly correlative with the onset of certain diseases, is
not su�cient to provide reliable diagnostic e�ciency and thus multiple molecules need to be
quantitatively evaluated from one and the same sample. Established enzymatic and antibody-
based methods or modern omics approaches have the capability to probe and quantify an
ever-wider range of molecules, but the immense number of relevant biomarking molecules in
such blood-based tests causes the costs of these methods to grow prohibitively [60].

Due to its relatively cost-e�ective and compact instrumentation, infrared spectroscopy has
distinct advantages when it comes to point-of-care capability, speed of evaluation and economic
viability. In addition, the methodology for quantifying selected molecules, once established,
can readily be combined with infrared �ngerprinting applications, e.g. for disease detection
(see section 1.3.3). This would mean great synergy e�ects, as quantitative clinical parameters
could be obtained additionally and free of charge from the same spectra that were used for
disease diagnosis based on the infrared �ngerprints.

1.3.2 Functionalized infrared sensors and chips

A major challenge of (quantitative) infrared spectroscopy of complex bio�uids is both its
selectivity and sensitivity of molecular detection. As discussed in the previous section, direct
sampling is usually limited to the identi�cation and quanti�cation of the most abundant
molecules. In order to enhance selectivity and sensitivity, two concepts are mainly followed,
namely molecular pre-concentration and the use of molecule-speci�c binding sites [25, 54, 55,
61]. Both approaches are often combined and realized on a sensor chip, to which the light is
coupled in transmission, or via waveguides or via attenuated total re�ection.

For example, Nabers et al. developed an attenuated total re�ection infrared sensor with
binding sites for the amyloid-beta peptide [62–64]. Here, the functionalized interface ful�ls
two tasks. On the one hand, it enables isolation of the target peptide from the complex �uid
(blood serum and cerebrospinal �uid in this case). On the other hand, the peptide concentration
is locally highly increased, thus facilitating optical detection. Furthermore, these authors have
also shown that the measured infrared spectrum can be associated with a conformational
change of amyloid-beta peptides. First results from a clinical study show that these changes
can be correlated with the likelihood of developing Alzheimer’s and may thus be used as a
promising biomarking approach for early diagnostics [64].

The example above showcases how the sensitivity and speci�city of infrared spectroscopic
analysis can be increased. However, such a ‘targeted’ approach is only applicable if the target
molecule has already been identi�ed, which is not always the case. At the same time, in any
approach that only focuses on the detection of a selected molecule, relevant information from
other constituents may remain undetected. This can be disadvantageous for certain research
questions or applications, since often only the interaction pattern of di�erent molecules within
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complex networks are crucially informative and the right conclusions can be often drawn only
when multi-molecular analyses are available. For a more extensive overview over di�erent
types of MIR sensors and their application, the interested reader is referred to dedicated reviews
on these topics [25, 54, 55, 61].

1.3.3 Infrared �ngerprinting

Quantitative analysis of bio�uids and functionalized sensors target the identi�cation and
quanti�cation of either (pre-)selected or known molecules, and therefore require a priori
information about molecules relevant for a speci�c biological or medical question. By this,
a wealth of information – inherently provided by infrared molecular spectroscopy – may be
neglected or missed. Infrared spectroscopy is sensitive to all molecular species. Thus, an
absorption spectrum, in principle, contains information about the entire molecular landscape
of a biological sample. The advantage of infrared molecular �ngerprinting is that no a priori
information about relevant molecules is required, rendering an extensive search and testing of
potential candidates obsolete.

Instead of relying on the analysis of a few selected analytes, the concept of infrared molecular
�ngerprinting is to identify and relate speci�c patterns within the infrared spectra of biological
samples to characteristic molecular compositions or phenotypes. Thereby, the observed pattern
may originate from a combination of changes of many di�erent molecules – something that
might be missed when only speci�c pre-selected sets of analytes are investigated. If an infrared
�ngerprint is speci�c enough for a molecular composition, i.e. it is unambiguously correlated
with a certain phenotype while being non-sensitive to other conditions, infrared �ngerprinting
can contribute to the detection of a given physiology. These concepts and approaches can be
applied to any (biological) material, such as bio�uids, tissues, or cells, and for phenotyping and
sample type classi�cation [4, 7, 8, 11, 13, 65]. In the following, I will elaborate on the application
of infrared �ngerprinting of bioliquids for disease detection, discuss in more detail how to
decode infrared molecular infrared �ngerprint information, and examine the advantages and
disadvantages of this particular approach.

The incentive of molecular �ngerprinting of bio�uids relies on the fact that a multitude of
human phenotypes, including diseases, are re�ected in the molecular composition of bio�uids,
such as blood serum and plasma, urine, saliva, etc. In addition, bio�uids can be sampled easily
and repeatedly. In general, medical diagnostics would greatly bene�t from liquid biopsies as
they are minimally invasive as well as time- and cost-e�ective compared to tissue biopsy-driven
diagnostics.

So far, most liquid biopsies predominantly rely on the analysis of few pre-selected analytes
and biomarkers. Although the emergence of highly sensitive and molecule-speci�c methods
in the �elds of proteomics [60, 66, 67], metabolomics [68, 69], and genomics [70–72] has led
to the discovery of thousands of di�erent biomarker candidates, only a few of them could
be veri�ed and made it to the clinics. Over the last few decades, there has been a paradigm
change. Instead of relying on a single molecular marker, recent research increasingly focuses
on the combination of di�erent makers, and the investigation of changes of molecular patterns
in order to detect physiologies speci�c to a disease. However, the combination of analytical
approaches, with each targeting a speci�c family of molecules (e.g. proteins), is still a major
challenge as it requires complex and target-speci�c sample preparation as well as elaborate
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ways combining di�erent datasets [73–76].
Infrared �ngerprinting addresses these issues by capturing the entire molecular �nger-

print information in a single time- and cost-e�ective measurement enabling phenotyping
‘in a snapshot’. Numerous studies have already shown the potential of blood-based infrared
spectroscopic molecular �ngerprinting for disease detection [17, 18, 51, 77, 78]. In the following
three subsections the work�ow, challenges, and steps towards a clinical translation of infrared
spectroscopy are outlined.

Considerations on the work�ow and application of bio�uid infrared spectroscopy

The basic principle of infrared �ngerprinting was established two decades ago [79–85] and
has been re�ned over time. The typical work�ow of bio�uid infrared spectroscopy along with
several application examples is reviewed in detail in several publications [17, 86–90] and can
be summarized in the following steps and considerations:

1. Study design and sample collection. This includes considerations such as: Which
medical question is to be investigated? Are proper case and control groups available
to avoid bias? How homogeneous is a phenotype or condition and should relevant
subgroups (e.g. di�erent types of breast cancer) be considered accordingly? How many
samples should be included in the envisioned study for the results to have su�cient
statistical power? Which bio�uid (e.g. serum, plasma) would be the most promising to
sample and detect a given condition? Can standardized sample collection and long-term
storage be ensured?

2. Sample preparation. The collected liquid samples are usually stored in a deep-freezer.
Prior to any measurement they have to be thawed and can then be either measured
in the dried or liquid state. Most infrared �ngerprinting studies were performed with
dried samples, as liquid water is a strong infrared absorber and therefore makes the
infrared measurement more challenging. However, the drying process su�ers from the so-
called ‘co�ee-ring e�ect’ [87, 90] making the obtained infrared spectra less reproducible.
For both cases (dried and liquid) standardized sample preparation routines need to be
established in order to minimize possible pre-analytical errors.

3. Sample holder and spectral acquisition. The measurement can either take place in
transmission geometry or using an ATR cell. In any case, an automated sample delivery
unit is preferable to increase measurement reproducibility and speed.

4. Spectral pre-processing and outlier removal. Infrared spectra are often a�ected by
instrument drifts over time and/or changes in the environmental conditions. As discussed
in detail by Trevisan et al. [89], spectral pre-processing can for one reduce some of these
e�ects and for the other facilitate e�cient extraction of biologically relevant information
from the infrared �ngerprints. Usually, this step also involves an outlier detection (often
automatic) in order to remove faulty measurements.

5. Data analysis and classi�cation. The goal here is to �nd spectral features that are
linked to medically relevant questions. In general, this can be done applying unsupervised
methods (e.g. principal component analysis, clustering analysis) or supervised methods
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(e.g. support vector machine, random forest analysis, arti�cial neural networks) [11,
89]. The supervised methods are often called machine-learning algorithms. The general
strategy here is that part of the dataset is used to train the algorithm to �nd features
connected to the disease. Afterwards the trained algorithm is tested on the remaining
test dataset.

6. Classi�er for diagnostics. As a �nal step, the accuracy, speci�city and sensitivity of
the methods is evaluated.

Using these steps as a basic recipe, infrared �ngerprinting of bio�uids has been applied to various
cancer entities (e.g. prostate, lung, breast, ovarian, brain) and other diseases (e.g. Alzheimer’s,
scrapie, malaria) [17, 18, 51, 77, 78, 86–88]. Although some studies show promising classi�cation
accuracies, e.g. 93.2 % sensitivity and 92.8 % speci�city for the detection of brain cancer using
ATR-FTIR sampling [51], none of them have been successfully transferred to clinical use so far,
as di�culties arise from several aspects, which are discussed below.

Methodological and practical challenges in applying infrared �ngerprinting

There are several methodological and practical challenges that arise when applying infrared
�ngerprinting.

1. Limited sensitivity and speci�city of infrared �ngerprinting is one of the largest
drawbacks so far. Current FTIR spectrometers have detection limits typically well above
10 µg mL−1. This renders various common biomarkers, e.g. prostate speci�c antigen
(at a mean concentration level of 100 ng mL−1), impossible to detect [91]. Furthermore,
broad spectral features result in overlapping spectra from di�erent molecules, making
it challenging to distinguish between the individual molecules. Therefore, an approach
that manages to increase speci�city and sensitivity without losing the ability to measure
all signals simultaneously would be of great practical relevance.

2. Biological variability of infrared �ngerprints, neither of any larger random population,
nor of healthy individuals have been studied systematically. However, only with exact
knowledge of the latter, one can assess whether an observed pattern is indeed abnormal,
or if it still lies within the normal range for an individual.

3. Limited insight into the (molecular) origin (see also section 1.3.1) of the observed
patterns that are relevant for classi�cation of any speci�c disease makes infrared molec-
ular �ngerprinting susceptible to false positive �ndings due to confounding factors or
non-disease speci�c signals (4.) and experimental bias (5.) [91].

4. Confounding factors or non-disease speci�c signals. For example, by combining
proteomics and infrared spectroscopy, the Naumann group discovered that the infrared
�ngerprint pattern related to the presence of bovine spongiform encephalopathy (or mad
cow disease) could be attributed to a change of the albumin to globulin ratio [84, 85].
The latter is known to correlate with many di�erent diseases and disease prognosis due
to a non-speci�c immune response [91]. Since both albumin and globulin are generally
abundant in blood serum, and therefore contribute to a large extent to the infrared signal,
this has to be considered before claiming to have identi�ed any disease-speci�c markers.
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Other confounding factors might arise due to poor study design. Especially non-balanced
control and case groups (e.g. young controls and old cases) might lead to falsely assessing
the actual classi�cation performance. Thus, it is instrumental to demonstrate that a given
infrared �ngerprint pattern unambiguously correlates with the onset of a given condition,
while not being in positive correlation with other real-life conditions.

5. Experimental bias. Any signal that is predominantly present in the spectra of one
group (e.g. control individuals) might be taken up by the machine learning algorithm,
even though it does not originate from the disease itself. In a critical commentary [91],
Max Diem discusses a study, which sought to discriminate between serum samples from
healthy individuals and cancer patients. He notes, that the most relevant p-values in the t-
test observed for the experiment roughly follow the overall vibrational spectrum of water
vapour, suggesting that an algorithm could possibly pick up an experimental artefact,
possibly due to changes in the water vapour content in the room during the measurements
of the di�erent samples and sample sets. For small-scale studies, experimental bias can be
largely countered by randomization in order to avoid batch e�ects [92]. For large-scale
studies additional standardization (6.) is required.

6. Standardization is a prerequisite for any large-scale study as it minimizes the potential
for experimental bias by standardization of work�ow, sample handling, and measure-
ments. In addition, several algorithms can be applied to the spectral data in order to
minimize instrument related bias and drifts [93].

Clinical translation as a challenge

The clinical translation presents a challenge in and of itself. It is demanding in terms of
both time and cost, and in addition, it necessitates close collaboration with professionals of
di�erent backgrounds and integration of di�erent clinical and research institutions. In a series
of publications [16, 17, 87, 94–96], Matthew Baker and co-workers address the challenges and
outline necessary steps towards a successful clinical translation:

1. Small-scale pilot study. Frequently, many studies do not progress from the pilot phase
due to methodological �aws (see above), a lack of funding or the unavailability of su�cient
clinical samples. Once leaving the pilot phase, the acquired results need to be con�rmed
in independent large-scale cohort studies (clinical validity).

2. Investigation and demonstration of the envisioned clinical decision-making set-
ting. Depending on the acquired sensitivity and speci�city as well as the costs of the
envisioned medical test, it has to be determined in which clinical setting the new tech-
nique can be used with the most bene�t (in terms of economic viability and clinical utility).
For example, it might be bene�cial to use a new test in conjunction with established
diagnostic procedures to increase their e�ciency or cost e�ectiveness, while others might
be especially useful in a screening context. Gray et al. explored two clinical scenarios
for the use of a FTIR-based blood serum test for brain cancer [97]. They concluded that
whenever their test is applied to potentially avoid an expensive computed tomography
scan or magnetic resonance imaging, it would not only reduce the overall costs, but also
have the potential to deliver improvements in health outcomes.
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3. Commercial considerations such as intellectual property rights, lack of funding, and
competing techniques and approaches. They often represent barriers for proof-of-concept
studies and are therefore crucial for a successful clinical translation [17].

A routine use of infrared bio�uid analysis in a clinical context can only be established, if all
these challenges are met adequately.

This thesis reports on the application of FRS, a novel technology of infrared spectroscopy,
for cancer detection in liquid serum to increase the sensitivity and speci�city of infrared
�ngerprints. Pursuing a new approach, however, also means that we were mainly confronted
with methodological and practical challenges. In the following chapters I will report on how
we addressed them.
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1.4 Research goals and structure of the thesis
The investigated research goals and results presented in this cumulative thesis were driven by
two overriding scienti�c questions:

1. Can fs-laser technology, o�ering broadband few-cycle infrared pulses, and the
�eld-resolved detection thereofwith electro-optic sampling (i.e. �eld-resolved spec-
troscopy), provide the means to improve sensitivity limits as compared to other
emerging and established mid-infrared spectroscopy techniques?

2. Can this newly developed �eld-resolved spectroscopy be successfully applied to the
analysis of human serum in order to detect diseases such as cancer? Underlying
questions include whether (i) electric-�eldmolecular �ngerprints can be obtained
reliably and robustly, and whether (ii) the increased sensitivity of �eld-resolved
infrared spectroscopy (as compared to conventional Fourier-transform infrared
spectroscopy) translates to higher e�ciency in cancer detection.

Chapter 2 of this thesis addresses the �rst question. It focuses on the description of technical
advances and theoretical aspects of �eld-resolved infrared spectroscopy.

As a �rst preparatory step I investigated and optimised the intensity noise properties of
the broadband femtosecond mid-infrared source that later was employed in the �eld-resolved
spectrometer. Excess relative intensity noise (RIN) constitutes one of the major limitations of
most spectroscopic methods involving lasers. Therefore, the idea was to reduce the RIN of the
employed source prior to any spectroscopic experiments. The results were summarized and
published as an article in Optics Express [45], which is included in the corresponding section
2.1 below.

The subsequent section reports on the most fundamental and essential aspects and �ndings
of FRS. First, conceptual advantages of �eld-resolved spectrocopy as compared to frequency-
resolved spectroscopies are discussed. We demonstrate that these conceptual advantages can be
used and employed to increase the sensitivity of FRS over FTIR by a factor of 40. Furthermore,
we report how this advantage in sensitivity enables spectroscopy of strongly absorbing samples
like living cells and plant tissues. These results have been published as an article in Nature [40],
which is included in section 2.2.

The last section of chapter 2 elaborates on the bene�ts of FRS for the measurement of
strongly absorbing samples. Fundamental advantages of techniques whose signal-to-noise
ratio (SNR) scales linearly with the electric �eld (e.g. FRS) over those whose SNR scales
linearly with radiation intensity (e.g. conventional FTIR spectroscopy) are discussed in theory
and demonstrated experimentally. This bene�cial scaling behaviour leads to an optimum
interaction length with samples for SNR-maximized measurements that is twice the value
usually considered to be optimum for FTIR devices. These results were published as an article
in Analytical Chemistry [39], which is included in section 2.3.

Chapter 3 of this thesis addresses the application of infrared spectroscopy to the �ngerprinting
of human blood serum and plasma to facilitate disease detection.

In a preparatory work, I assess the (temporal) stability of infrared molecular �ngerprints
obtained from human serum and plasma samples from 31 healthy individuals who have provided
up to 13 blood samples each over a period of 6 months. In addition, the measurement error as
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well as the uncertainties due to sample handling and collection were investigated. This study
was intended to serve as a framework for future studies in the �eld. The results are instructive
to relate a potential disease related signal to the natural biological variability and the analytical
errors. Furthermore, this study revealed that infrared molecular �ngerprints contain highly
individual-speci�c information. The results were summarized as an article and are currently
under review by Nature Communications [98]. The submitted version is included in section 3.1.

Finally, we applied �eld-resolved spectroscopy to the analysis of over 300 individuals in a
clinical study involving lung, breast, and prostate cancer patients. Applying machine learning
algorithms, we �nd that all cancer entities can be detected with an area under the receiver
operating characteristic curve of 0.63-0.84. We also �nd that the detection e�ciencies of �eld-
resolved spectroscopy are systematically higher than those obtained with conventional infrared
spectroscopy, suggesting that the increased sensitivity of the method directly translates into a
better detection e�ciency. The results can be found in section 3.2.

At the end of the thesis, I summarise the main �ndings throughout the work in order to put them
into a larger context. I discuss how the �eld-resolved metrology might further evolve and how
this might open up new avenues for an even larger variety of applications. Speci�cally, I discuss
the impact of these potential further developments on the future of infrared �ngerprinting.



Chapter2
Field-Resolved Spectroscopy

2.1 Active intensity noise suppression for a broadband
mid-infrared laser source

Preface: Precision absorption spectroscopy relies on resolving minuscule intensity changes
upon transmission of (laser) light through a sample. In the most simplistic implementation,
linear spectroscopy employs a monochromatic source that is transmitted through a sample and
measured with a photodetector. According to Beer’s law, the sample attenuates the light beam
by a certain value G . The resulting change in light intensity (1 − 1/G) can only be detected if
the relative intensity �uctuation of the light source is less than x throughout the measurement
time. Although a large number of measurement concepts have been developed in order to
circumvent the negative in�uence of intensity noise on the spectroscopic measurement (as it
is also the case for �eld-resolved-spectroscopy, see section 2.2), it is always bene�cial to start
with a source that o�ers less intensity noise intrinsically [23, 35, 44, 99]. This motivated us to
investigate intensity noise suppression schemes for the femtosecond mid-infrared (MIR) laser
source that later was employed in the �eld-resolved spectrometer. We implemented an active
intensity stabilization with an electronic feedback loop and an acoustic-optic modulator acting
as a fast intensity modulator. With this system a relative intensity noise (RIN) suppression of
the MIR pulse train of up to a factor of 20 was achieved in the band between 1 Hz and 100 kHz,
resulting in a total integrated RIN of 0.07 % [45].
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Abstract: Excess relative intensity noise (RIN) constitutes one of the major limitations of 
most spectroscopic methods involving lasers. Here, we present an active RIN suppression 
scheme for a coherent mid-infrared (MIR) light source (8.4-11 µm), based on intra-pulse 
difference frequency generation (DFG). Three different stabilization concepts that rely on 
modulating the intensity of the driving near-infrared (NIR) pulse train with an acousto-optic 
modulator are investigated and compared. By using the wings of the NIR spectrum to 
generate the error signal, a RIN suppression of the MIR pulse train of up to a factor of 20 was 
achieved in the band between 1 Hz and 100 kHz, resulting in a total integrated RIN of 0.07%. 
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1. Introduction 

The intensity noise of the laser source represents a significant limitation on any high-
precision optical measurement. While some spectroscopic measurements, such as those that 
employ balanced detection, rely on passive intensity noise suppression [1,2] or mitigate the 
influence of excess relative intensity noise (RIN) by using modulation techniques (several of 
which are reviewed in Ref [2].), other applications require active stabilization of the laser 
source itself. For instance, in gravitational wave detectors a complex active stabilization 
scheme is implemented which allows to suppress radiation pressure fluctuations on the 
mirrors that originate from laser intensity noise [3,4]. A stable laser source is also vital for 
driving nonlinear (optical) processes [1]. The radiation emitted by these sources (usually in 
the visible or near-infrared [5,6]) can be converted via nonlinear processes to achieve broad 
spectral coverage ranging from the extreme ultraviolet [7] to the mid- and far infrared [8]. 
The unique combination of high brightness with unparalleled spatial and temporal coherence 
makes mode-locked, MHz-repetition-rate lasers indispensable for high-precision metrology in 
these spectral regions. 

Particularly in the mid-infrared (MIR) region, such sources are of great interest for 
vibrational spectroscopy. This technique allows organic compounds in gases or liquids to be 
identified in a label-free manner by their unique molecular fingerprints, and finds a large 
variety of applications in biology, chemistry, medicine and environmental monitoring. 
Fourier transform infrared (FTIR) spectrometers based on thermal sources (“globar”) remain 
the instrument of choice in the field [9]. However, even though thermal sources only exhibit 
low intensity noise, the performance of these devices is usually limited by detector noise 
rather than by photon shot noise, owing to the weak light intensity of thermal sources. 

Laser-based MIR sources could in principle overcome this problem thanks to their high 
brightness; however, one of the major limitations of these sources is their (low-frequency) 
RIN, which usually lies orders of magnitude above the power-equivalent shot-noise limit. In 
order to reduce this excess noise contribution, most MIR spectroscopic techniques (like FTIR 
spectroscopy) employ fast scanning (or other modulation techniques) to effectively transfer 
the measured spectrum into a radio frequency region with lower noise levels. With 
mechanical delay stages, scan speeds of 10 mm/s can easily be obtained, shifting the noise 
contribution for spectral components at 1000 cm−1 to noise frequencies around 2 kHz [10]. 
However, with laser sources, noise in the kHz frequency range is normally dominated by 
strong excess noise, and therefore further reduction of RIN is highly desirable. 

In this work, we present an active intensity noise suppression system for a coherent source 
of broadband MIR radiation generated by a 19-fs near-infrared (NIR) pulse train via intra-
pulse difference-frequency-generation (DFG), which is based on an acousto-optic-modulator 
(AOM). Three different stabilization concepts are investigated and compared. As direct 
stabilization of the generated MIR can be very challenging owing to the lack of sufficiently 
sensitive broadband detectors and/or active broadband optical elements in the MIR spectral 
range, all investigated stabilization concepts aim at stabilizing the driving source itself. In 
addition, the error signal for the feedback loop is generated with a pick-off from the driving 
NIR source. This circumvents the need for rather impractical and less sensitive liquid-
nitrogen-cooled mercury cadmium telluride (MCT) photodetectors for the MIR radiation. 
Combined with MIR detection schemes that rely on frequency up-conversion, such as EOS 
[8,11], this could lead to highly sensitive MIR spectroscopy without the requirement to use 
MIR detectors which require liquid nitrogen cooling. 

We demonstrate that the implementation of this stabilization system results in the 
suppression of RIN of the generated MIR by up to a factor of 20 (in the band between 1 Hz 
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and 20 kHz). The concept presented here can significantly broaden the application of laser-
based mid-infrared sources in spectroscopy. 

2. Experimental setup 

The experimental setup is shown in Fig. 1(a). The output of an Yb:YAG Kerr-lens mode-
locked thin-disc oscillator [12] (100 MHz, 260 fs, up to 70 W) is spectrally broadened in a 
photonic crystal fiber (PCF) and temporally compressed by chirped mirrors [5]. The resulting 
19-fs pulses (measured with frequency-resolved optical gating) are focused into a 1-mm thick 
LiGaS2 (LGS) crystal to create, via intra-pulse difference frequency generation (DFG), 
broadband ultrashort MIR pules with a central wavelength of 10 µm and an average power of 
5 mW [8]. The pulse duration of 65 fs was determined via electro-optical sampling [8] and 
the MIR spectrum was measured with a FITR spectrometer (Lasnix, L-FTS). To achieve 
optimum intensity stability, the nonlinear broadening in the PCF and the DFG process are 
driven at lower average powers here than in Ref [8]. 

 

Fig. 1. a) Schematic of the free-running laser setup. The NIR pulses from the oscillator are 
spectrally broadened in a nonlinear fiber and temporally compressed by chirped mirrors (CM). 
The resulting 19-fs pulse train is focused into a LiGaS2 crystal to generate MIR radiation via 
intra-pulse difference frequency generation. Fluctuations in the power of the free-running NIR 
or MIR radiation were measured with photodiodes (PD) at different positions in the setup, and 
the noise spectrum was recorded with a fast Fourier transform analyzer. b) Optical spectrum of 
the broadened NIR light. The patterned area indicates the portion of the spectrum that was used 
for generation of the feedback signal in stabilization concepts Ib and IIIb. c) Optical MIR 
spectrum measured with a FTIR. 

The strategies for intensity stabilization of the MIR pulses described here rely on the use 
of an AOM as an active optical element to control the transmitted power. In the free-running 
state, 98% of the intensity is transmitted through the AOM (the 0th-order beam), while 2% is 
diffracted to higher orders and discarded. The error signal for the DC-coupled feedback loop 
is generated by diverting a fraction of the main NIR beam and detecting it with a 2-mm 
diameter InGaAs amplified photodiode (Thorlabs, PDA20CS). 

The signal generated with the in-loop photodiode is then fed into a PI2D controller 
(Vescent Photonics, D2-125) which regulates the RF power of the AOM driver (Intraaction, 
ME-1104) and therefore provides active feedback on the transmitted laser intensity. The 
internal voltage reference of the D2-125 is used to define the lock point. The two integrators 
in the PI2D loop are set to 200 kHz and 2 MHz, respectively. The differential value and the 
gain (up to a maximum value of 32 dB) of the loop are then adjusted to attain the best 
possible noise suppression. 

We implemented and compared three concepts for intensity stabilization of the MIR 
pulses, which differ in the placement of the AOM and the in-loop photodiode within the 
optical setup (see Fig. 2): 
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Concept I: The AOM is placed after the fiber, where generation of the error signal occurs, 
either without any spectral filtering (Concept Ia) or after passage through a 1100 nm ( ± 
10 nm) bandpass filter (Concept Ib) - Fig. 2(a) 

Concept II: The AOM is placed ahead of the fiber and generation of the error signal also 
occurs in front of the fiber - Fig. 2(b) 

Concept III: The AOM is placed ahead of the fiber, while generation of the error signal takes 
place downstream of the fiber, either without any spectral filtering (Concept IIIa) or after 
passage through a 1100 nm ( ± 10 nm) bandpass filter (Concept IIIb) - Fig. 2(c) 

 

Fig. 2. Schematic of the three stabilization concepts: a) Concept I, b) Concept II, c) Concept 
III. 

For concepts I and III, a fraction of the main beam was diverted via two subsequent 92/8 
beam splitters, and an 1100-nm bandpass filter (Thorlabs, FB1100-10) was optionally placed 
before the photodiode to select only a part of the broadened spectrum for generation of the 
feedback signal (see Fig. 1(b)). In concept II, the error signal was generated based on the 
portion of the main beam transmitted through one of the highly reflective dielectric mirrors. 

In all cases, additional neutral-density filters were employed to attenuate the laser beam 
used for generation of the feedback signal to an average power of about 1 mW. The spot size 
on the detector area (500 μm) was carefully aligned with the center of the diodes to minimize 
cross-coupling due to beam-pointing fluctuations [4,13]. Note that, in principle, one could 
also generate the error signal for the stabilization of the MIR intensity by directly measuring 
the MIR fluctuations with a mercury cadmium telluride (MCT) detector. However, this would 
require liquid nitrogen cooling, reduce the versatility of the approach and compromise long-
term usage. 

The independent (out-of-loop) MIR signal was recorded by focusing the beam onto a 
liquid-nitrogen-cooled MCT detector (Kolmar Technologies, KMPV11-0.25-J1/DC50). The 

voltage noise spectrum (in [ 0.5/V Hz ] up to 100 kHz) was recorded with a fast Fourier 
transform (FFT) spectrum analyzer (Stanford Research, SR780) and normalized by the DC 

voltage signal to obtain the relative intensity noise spectrum 
RINS  [in 0.51/ Hz  ]. The 

integrated root-mean-square (rms) RIN value for a given bandwidth was obtained by: 
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The NIR out-of-loop signal was recorded using the same photodiode and pick-off optics as 
for generation of the in-loop signal. The noise suppression results for the NIR beam are 
discussed in more detail in the Appendix. The whole setup was encased in a housing to 
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minimize air fluctuations. Additionally, all photodiodes were placed in an additional housing 
to minimize the influence of scattered light on the noise suppression. 

3. Results 

First, the RIN spectra of the oscillator, the nonlinearly broadened NIR pulse train, the red 
edge of the broadened NIR pulses (at 1100 nm ± 10 nm) and the MIR radiation were 
measured without active stabilization (see Fig. 3). The integrated RIN (rms, from 1Hz to 100 
kHz) of the oscillator (black curve) is 0.1% and the noise spectrum shows the typical 1/f 
behavior. Nonlinear broadening does not change the RIN when the entire optical spectrum of 
the broadened NIR pulses is considered (blue curve, Fig. 3). However, the RIN of the edge of 
the broadened spectrum (at 1100 nm ± 10 nm, violet curve, Fig. 3) is increased by a factor of 
~11 over the measured RF spectrum. Approximately the same increase in noise was observed 
when the RIN of the blue edge of the NIR spectrum was measured (with a 950-nm shortpass 
filter, data not shown). The fact that the noise within one region of the broadened spectrum is 
amplified relative to the total input fluctuations is well-known, and has been reported and 
investigated by several groups [14,15]. In contrast, the fluctuations of the entire broadened 
NIR spectrum (i.e. integrated over all wavelengths) are approximately proportional to the 
input fluctuations (if no losses occur, the output power of the fiber is equal to the input 
power). The overall MIR noise spectrum (red, Fig. 3) is very similar to the noise at the edge 
of the spectrum. This can be attributed to the fact that, in this DFG scheme, the outer portions 
of the NIR spectrum are mixed. 

 

Fig. 3. Relative intensity noise and integrated noise (integration starts at 100 kHz) of the free-
running system for the oscillator (black), the broadened NIR (blue), the red portion of the 
broadened NIR spectrum (pink) and the MIR light (red). The measurement noise floors of the 
InGaAs and MCT detectors are both well below the relative intensity noise of the measured 
radiation. 

The extents of noise suppression of the MIR achieved by the three aforementioned 
stabilization concepts are shown in Figs. 4 and 5, respectively. 
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Implementation of stabilization concept I (AOM in front of the fiber and generation of the 
error signal in front of the fiber) reduces the MIR noise by up to a factor of 3 for frequencies 
below 50 kHz, while the integrated noise (rms, 1 to 100 kHz) was reduced from 1.2% to 0.5% 
(see Fig. 4(b)). 

In concept II, the error signal generated downstream of the fiber was fed back to an AOM 
placed after the fiber. This signal was either obtained from the full optical NIR spectrum or 
produced after passage through an additional bandpass filter at 1100 nm, but no suppression 
of the MIR noise was observed in either of these cases (see Fig. 4(a)). In contrast, use of the 
same configuration to derive the error signal for NIR results in strong suppression of the RIN 
(see Appendix, Fig. 6(b)). 

 

Fig. 4. MIR noise suppression by stabilization concepts I and II. No MIR noise reduction was 
achieved with stabilization concept I (a) while moderate suppression (by a factor of ~3) was 
obtained with stabilization concept II (b). A sketch of the stabilization concept employed is 
shown above each graph. 

For stabilization concept III an error signal derived after the nonlinear broadening was fed 
back to the AOM in front of the fiber. As in concept I, the error signal was either generated 
from the full spectrum or from the red edge of the broadened spectrum. Application of the 
first approach suppressed the intensity noise by up to a factor of 5, whereas the second option 
led to noise reduction by up to a factor of 20 relative to the RIN of the free-running MIR for 
frequencies below 20 kHz. The corresponding integrated noise level (rms, 1 Hz to 100 kHz) 
was 0.3% or 0.07%, respectively (see Fig. 5(a)). Similar noise suppression is achieved when 
the blue edge of the spectrum is used to generate the error signal (data not shown). 

In summary, stabilization concept IIIb (AOM placed in front of the fiber and generation of 
the error signal placed after the fiber with the edge of the optical spectrum) achieves the 
strongest suppression of MIR noise. Using this setup, the long-term stability of the MIR was 
tested. Figure 5(c)) shows a normalized time trace of the MCT signal recorded, with and 
without active feedback, by an FFT analyzer over a period of 500s (this measurement is equal 
to a frequency noise bandwidth of 2 mHz to 2 Hz). The measured power fluctuations during 
this period are below 0.05% rms. Stabilization on longer time scales is limited by thermal 
drifts within the system. 
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Fig. 5. a) MIR noise suppression by stabilization concept III. b) Sketch of the experimental 
layout for stabilization concept III. c) Normalized intensity fluctuations of the stabilized 
(concept IIIb) MIR beam (orange) recorded over 500s with an FFT analyzer. The rms of the 
intensity fluctuations of the stabilized beam is less than 0.05%. 

4. Discussion 

The three stabilization concepts investigated here yielded very different degrees of MIR noise 
suppression. While concepts II and III resulted in noise reduction by factors of up to 10 and 
20, respectively, no suppression of MIR noise was observed for stabilization concept I. 

This outcome can be explained by variations in the magnitude of nonlinear broadening in 
the photonic crystal fiber, which results in corresponding differences in the amplification of 
noise in the broadened spectrum [14]. Moreover, the noise levels in the blue and red edges of 
the spectrum may be uncorrelated to some extent. An increase in input energy into the 
nonlinear fiber due to intensity fluctuations may thus lead to a higher power spectral density 
(PSD) in one part of the spectrum and to a lower PSD in another. If the AOM is placed 
downstream of the broadening fiber, the stabilization can act either on the noise contained in 
the entire optical spectrum or only on the fraction associated with the selected part of it (e.g. 
the red edge). Hence, this stabilization scheme does not permit one to simultaneously stabilize 
separate regions of the optical spectrum, which might fluctuate independently. However, 
simultaneous stabilization of different parts of the optical spectrum is precisely what is 
required to stabilize the output of an intra-pulse DFG scheme, as it is the mixing of the blue 
and red edges of the spectrum that leads to MIR generation. 

Stabilization concept II suppresses the noise of the NIR pulse train before it enters the 
nonlinear fiber. Clearly, a reduction in RIN at the input of the fiber results in a reduction of 
noise in the broadened spectrum, and therefore suppresses MIR noise. However, as the error 
signal is generated upstream of the fiber, this scheme cannot compensate for nonlinear noise 
amplification within the fiber. 

In stabilization concept III, on the other hand, the error signal is generated downstream of 
the fiber and fed back to the AOM, which acts prior to the fiber. First, we tried to stabilize the 
system using an error signal based on the full broadened optical spectrum. The RIN of the 
fiber output is very close to the RIN of the input beam, as can be seen in Fig. 3 (black vs. 
blue). Therefore, the MIR noise reduction is similar to that provided by concept II, in which 
the error signal was generated in front of the fiber. When only the edge of the broadened 
spectrum is used, the nonlinear error signal obtained is very sensitive to power fluctuations at 
the input of the fiber, and is also affected by nonlinear noise amplification during spectral 
broadening within the fiber. Stabilization of this signal leads to a reduction in the total noise, 
but also to a reduction in the nonlinear noise amplification during the spectral broadening. 
This in turn results in an overall noise reduction, which is associated with stronger 
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correlations between the intensity fluctuations in the different parts of the optical spectrum. 
As a result, the strongest suppression of the generated MIR intensity fluctuations – down to a 
RIN of ≈6 * 10−7 kHz-0.5 at 10 kHz – is achieved. 

This is still a factor of 20 worse than the shot noise limit attainable for the feedback 
system, and this discrepancy is exacerbated at lower frequencies. The reason for this is that 
only the intensity fluctuations common to the measured error signal and the actual MIR signal 
can be canceled out [1]. Any uncorrelated noise signal which exclusively couples into either 
the in-loop or the out-of-loop signal will degrade the noise suppression performance. The 
system used here is most likely prone to such uncorrelated noise sources, as two 
nonlinearities (nonlinear broadening and DFG) are utilized to create the MIR radiation, while 
the active optical element and the photodiode for the generation of the error signal are 
working within the NIR wavelength region. Furthermore, due to the broadband nature of the 
NIR and MIR light, uncorrelated noise in different parts of the optical spectrum will degrade 
the overall efficiency of noise suppression. 

Some additional noise sources were also identified and minimized. Any spatial 
dependence of the laser noise in combination with beam-pointing fluctuations can couple to 
the measured laser intensity due to the non-uniform response of the photodiodes [4]. As the 
beam pointing and the spatial response will differ for each photodiode, this will lead to 
uncorrelated noise that cannot be further suppressed. This noise source becomes dominant at 
low frequencies, due to the typical timescale of air fluctuations. In order to minimize this 
cross-coupling, the complete laser setup was enclosed in a housing to reduce the air 
fluctuations. In its absence of this precaution, the out-of-loop noise suppression was 
significantly degraded. Encasing the setup in a pressure-tight housing with clean air or in a 
vacuum enclosure might improve the noise suppression performance further. 

The noise spectrum shows spikes at multiple values of 50 Hz, which indicates coupling of 
the power supply into the feedback loop or photodiode signals. In principle, these noise 
contributions can be suppressed by driving the electronics with batteries or stable DC sources. 
There is also a strong noise contribution at 4 Hz, which can probably be attributed to the 
water cooling of the laser system. Further potential noise sources include uncorrelated 
temperature fluctuations of both photodiodes, low-frequency noise and bias voltage 
fluctuations in the photodiodes, mechanical vibrations of the optics, electronic grounding 
noise, or polarization fluctuations [1,4,13]. 

As shown in Fig. 5, stabilization concept IIIb also helps to improve the long-term power 
stability of the MIR light generated. However, this works only over moderate time scales (10 
min) before drifts in the average MIR power set in. Such drifts cannot be stabilized solely 
with the error signal derived from the NIR, as other effects that are independent of the NIR 
power also contribute. Even if the power of the NIR beam is perfectly stable, the MIR power 
generated might still vary slightly, as beam pointing drifts will alter the targeted position on 
the DFG crystal or temperature-dependent MIR generation conditions. 

5. Conclusion 

We have investigated and compared three different approaches to active intensity stabilization 
of a broadband MIR source driven by high-average-power femtosecond NIR pulses. The 
strongest MIR noise suppression – up to a factor of 20 – was attained when stabilizing to the 
red edge of the broadened NIR spectrum. We demonstrated a RIN of the MIR intensity of 
0.05% rms over a time period of 10 min (this is equal to a frequency noise bandwidth of 2 
mHz to 2 Hz). A minimal RIN value of 6 * 10−7 Hz-0.5 was obtained at 10 kHz. 

MIR spectroscopic techniques, like FTIR or direct absorption spectroscopy, would 
directly benefit from the proposed noise suppression system, as the interfering noise 
frequencies are usually located at kHz frequencies and below. Additionally, the error signal 
for the feedback is derived from the driving NIR beam, so that no liquid-nitrogen-cooled 
MCT detectors are necessary. This factor, together with the reduced intensity noise and MIR 
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detection schemes that rely on frequency-up-conversion [8,16,17], should facilitate the 
realization of highly sensitive MIR spectroscopy that does not require any MIR detectors. 

The stabilization schemes presented here can be easily adapted for other laser-driven light 
and electron sources which suffer from intensity noise and cannot easily be stabilized due to 
the lack of active optical elements or adequate detectors. 

6. Appendix 

6.1. Calculation of the shot noise limit of the stabilization scheme 

Quantum or shot noise is a fundamental noise limit imposed by the photon nature of light. 
The relative shot noise power of a light source at a central wavelength λ  and an average 
power of P  can be calculated with 

 
2

q
hcs

Pλ
=  (2) 

where h is the Planck constant and c  is the speed of light in the vacuum. For a given 
feedback system, the relative shot noise of the light impinging on the in-loop (with power ILP  

and central wavelength λIL) and out-of-loop (with power POOL and central wavelength OOLλ ) 

photodetectors contribute to the attainable shot noise limit tots  of the stabilization system 

[13]: 
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For the system presented here, the error signal was generated with a 0.7-mW NIR beam (at ≈1 
µm) and the MIR beam (at ≈10 µm) had an average power of 0.07 mW. This gives a relative 
shot noise limit for the stabilization system of 3 * 10−8 Hz-0.5 

6.2. Active intensity noise suppression of the near-infrared pulse train 

The stabilization system for the MIR light can also be used to stabilize the intensity noise of 
the driving NIR light. The levels of RIN for the free-running NIR beam and the red edge of 
the broadened NIR spectrum are depicted in Fig. 6(a). The degrees of noise suppression 
attained by the different stabilization concepts are show in Fig. 6(b)-6(d) and values of the 
integrated noise and the noise reduction at 5 kHz are given in Table 1. 

Table 1. NIR noise suppression 

Stabilization concept Noise reduction at 5 kHz 
Integrated RIN (from 1Hz 
to 100 kHz) 

Free running - 0.1 
1 30 0.021 
2a 29 0.006 

2b 1.7 0.04 

3a 15 0.007 
3b 0.08 1.3 

 
In general, better noise suppression can be achieved for NIR than for MIR (up to a factor 

30 instead of 20 and an integrated RIN of 0.006% instead of 0.07%). This is not surprising, as 
the error signal is derived from the very beam that is subjected to stabilization, and therefore 
one non-linearity less is involved. However, stabilization concept IIIb, which worked best on 
the MIR, yields only a small noise suppression of about a factor 2 for the NIR. Indeed, 
stabilization concept Ib actually worsens the RIN of the broadened NIR by a factor of 11. 
This effect is due to the broadband nature of the NIR radiation. Concepts Ib and IIIb both use 
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the red edge of the broadened spectra to generate the error signal. As discussed above, the 
intensity noise within the edges of the broadened spectra is nonlinearly linked to input 
intensity fluctuations, whereas the fluctuations of the fully broadened NIR are approximately 
proportional to the input fluctuations (if no losses occur, the output power of the fiber equals 
the input power) and therefore there may be no linear correlation between the intensity 
fluctuations of the full NIR beam and those of red part of the spectrum. Additionally, the RIN 
of the red part of the spectrum is augmented due to the fiber broadening (see Fig. 6(a), black 
vs gray curve). This part of the spectrum is used to generate the error signal in concept Ib. 
With active feedback, the AOM compensates for those fluctuations; however, as there is no 
correlation between the red part of the spectrum and the full spectrum, it introduces additional 
noise in the rest of the spectrum, as it acts on the full NIR beam. Concept IIIb also uses the 
red part of the spectrum. In contrast to concept Ib, the AOM is placed in front of the nonlinear 
fiber and therefore actively controls the input power to the fiber to stabilize the power in the 
red part of the broadened output spectrum. This also leads to suppression of intensity 
fluctuations of the integrated spectrum (see Fig. 6(d), cyan curve). 

In summary, it can be concluded that the choice of a stabilization concept depends on the 
desired application, as they will differ in their performance. If the goal is to stabilize the NIR 
output energy of a nonlinear fiber, the suppression works best if the full optical spectrum of 
the broadened NIR beam is used for generation of the error signal. However, this does not 
necessarily stabilize the intensity fluctuations at the edges of the optical spectrum and, as 
shown in the main text (see Fig 4(a)), it might not improve the stability of a DFG output. 

 

Fig. 6. a) Relative intensity noise and integrated noise (integration starts at 100 kHz) of the free 
running system for the oscillator (black) and the broadened NIR (gray). b)-d) NIR noise 
suppression for the different stabilization concepts. Strong NIR noise suppression is only 
obtained when stabilizing to the full (spectrally integrated) NIR signal. 

If the goal is to stabilize the intensity fluctuations within different parts of the optical 
spectrum and therefore stabilize the spectral broadening itself, the suppression works best if 
one uses the edge of the broadened NIR to generate the error signal. This approach does not 
markedly suppress the RIN of the full NIR beam (see Fig. 6(d), cyan curve), but it does lead 
to a major improvement in the stability of the MIR generated via intra-pulse DFG (see Fig 
4(a)). 
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6.3. Relative intensity noise of the free-running broadened NIR and MIR pulse train 
for frequencies up to 1 MHz 

To measure the RIN spectrum of the free-running NIR or MIR beam up to 1 MHz, we used 
the same photodiodes as before. The noise spectrum was obtained via FFT of the photodiode 
signal measured with a MHz-Lock-In amplifier (Zürich Instruments, UHFLI) and is displayed 
in Fig. 7. The RIN of the NIR light approaches the shot noise limit around 200 kHz before the 
measurement is limited by the detector noise floor. 

 

Fig. 7. Relative intensity noise spectrum free-running broadened NIR and MIR pulse train. 
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30 Field-resolved infrared spectroscopy of biological systems

2.2 Field-resolved infrared spectroscopy of
biological systems

Preface: When I joined the research group of Prof. Krausz in the summer of 2015 and started to
work intensively on what we now call �eld-resolved spectroscopy (FRS), we only had a vague idea
about the conceptional advantages of FRS. The basic concept that electro-optic sampling (EOS)
of impulsively-exited molecular vibrations with femtosecond mid-infrared pulses would allow
for a ‘background-free’ measurement of the molecular response has already been the subject of
intensive discussions within our group. Back then, we called it ‘zero-background-advantage’
as we expected that the molecular signal would be measured against a zero signal, which is in
contrast to conventional absorption spectroscopy where a relative change of transmission is
recorded.

Over the years, we obtained a more detailed understanding of the physics underlying FRS.
It turned out that there is indeed something similar to a ‘zero-background-advantage’, however
it turned out to be slightly di�erent from what we originally anticipated. We realized that there
is still an optical background from the near-infrared (NIR) gate pulse used in the EOS. Luckily,
this NIR background proved to not be detrimental to the measurement of the MIR signals. In
addition, a ‘zero-MIR-background’ can only be obtained under speci�c requirements, which
will be discussed in more detail in the subsequent article and in section 4.2. Therefore, the
measurement condition we are currently able to reach can rather be referred to as ‘MIR-reduced
background’. However, this already provides distinct measurement advantages as compared
to frequency-resolved spectroscopies. Firstly, it enables to drastically reduce the negative
in�uence of intensity �uctuations (and other noise sources), and secondly, it circumvents
limitations imposed by the dynamic range of the detector.

The recognition of these conceptual advantages combined with a deep understanding of
electro-optic sampling – the key technique to FRS – enabled us to systematically improve the
underlying technology. We took measures to compress the MIR pulse temporally in order to
access the molecular response more directly [100]. We adjusted the power, shape, and size
of the MIR and NIR pulses in the EOS crystal to maximize the detection sensitivity [101].
To reduce the background generated by water vapour, we placed the MIR beam path under
vacuum. We optimized the interaction length with the liquid samples (see also section 2.3) to
maximize the measurement signal-to-noise ratio [39]. To increase the measurement accuracy
we further added active intensity stabilization and tracked the length of the interferometer
[45, 102]. And to �nally be in a position to adequately analyse this ‘new type’ of spectroscopic
data, we developed several new numerical tools that facilitate a deeper understanding of the
acquired �ngerprint data [103].

All these theoretical considerations and technological developments have led to the devel-
opment of a device that currently o�ers orders-of-magnitude higher sensitivity as compared to
state-of-the-art Fourier-transform infrared (FTIR) spectroscopy. We were able to demonstrate a
40-times lower limit of detection for dimethylsulfone solved in water when applying FRS. A
similar detection limit could be shown for blood serum, which is extremely relevant for infrared
�ngerprinting of bio�uids (see also chapter 3). In addition, we demonstrated an intensity
dynamic range of more than 10 orders of magnitude, outperforming conventional FTIR by �ve
orders of magnitude. This puts us in the unique position to probe highly absorbent biological
samples, such as living cells and plant tissues.
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Considering all this, we believe that the presented results can signi�cantly advance the
�eld of infrared spectroscopy and that FRS will provide the basis for establishing a variety of
new applications. This view was also shared by a wider audience and the respective �ndings
were published in Nature [40].
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Field-resolved infrared spectroscopy of 
biological systems

Ioachim Pupeza1,2,5*, Marinus Huber1,2,5, Michael Trubetskov2, Wolfgang Schweinberger1,3, 
Syed A. Hussain1,2, Christina Hofer1,2, Kilian Fritsch1, Markus Poetzlberger2, Lenard Vamos2, 
Ernst Fill1, Tatiana Amotchkina1, Kosmas V. Kepesidis1, Alexander Apolonski1,  
Nicholas Karpowicz2, Vladimir Pervak1,2, Oleg Pronin1,2, Frank Fleischmann2,4,  
Abdallah Azzeer3, Mihaela Žigman1,2,4 & Ferenc Krausz1,2,4*

The proper functioning of living systems and physiological phenotypes depends on 
molecular composition. Yet simultaneous quantitative detection of a wide variety of 
molecules remains a challenge1–8. Here we show how broadband optical coherence 
opens up opportunities for fingerprinting complex molecular ensembles in their 
natural environment. Vibrationally excited molecules emit a coherent electric field 
following few-cycle infrared laser excitation9–12, and this field is specific to the sample’s 
molecular composition. Employing electro-optic sampling10,12–15, we directly measure 
this global molecular fingerprint down to field strengths 107 times weaker than that of 
the excitation. This enables transillumination of intact living systems with thicknesses 
of the order of 0.1 millimetres, permitting broadband infrared spectroscopic probing 
of human cells and plant leaves. In a proof-of-concept analysis of human blood serum, 
temporal isolation of the infrared electric-field fingerprint from its excitation along 
with its sampling with attosecond timing precision results in detection sensitivity of 
submicrograms per millilitre of blood serum and a detectable dynamic range of 
molecular concentration exceeding 105. This technique promises improved molecular 
sensitivity and molecular coverage for probing complex, real-world biological and 
medical settings.

The molecular composition of living organisms is a sensitive  
indicator of their physiological states. Even apparently simple physi-
ological transitions are often connected to highly multivariate concur-
rent molecular changes. Therefore, the capability to simultaneously 
observe changes in concentrations of a variety of molecules embedded 
in complex organic consortia is likely to be instrumental in advancing 
biology and medical diagnostics systems.

Many biologically relevant changes occur at concentration levels 
that are often not detectable in system-wide molecular milieus owing 
to the vast dynamic range of molecular concentrations1. Simultaneous 
quantitative probing of multiple molecules within a complex con-
sortium relies on either biochemical separation of certain types of 
molecules or depletion of highly abundant ones16. Such approaches 
are time-consuming or expensive or suffer from poor reproducibility, 
impeding robust, high-throughput implementations. Here we harness 
broadband optical coherence to address this challenge directly.

Optical spectroscopy of biological samples interrogates the chemi-
cal substructures of intact molecules (molecular fragments17) rather 
than molecules as a whole18,19 by detecting their resonant vibrational 
response to infrared or Raman excitation. Occurrence of the same 
or similar fragments in different biomolecules and rapid dephasing 
results in overlapping temporal and spectral responses and hampers 

the identification of individual molecules2–4 in complex samples. How-
ever, the detected superposition of the responses of all fragments is 
characteristic of molecular composition, representing what may be 
referred to as the global molecular fingerprint (GMF) of the sample.

Higher excitation power increases the GMF signal, making smaller 
changes in the sample’s molecular composition detectable. In spec-
troscopies that capture time-integrated fields11,20–23—that is, frequency-
resolved spectroscopy—the GMF signal hits the detector along with the 
(much stronger) excitation transmitted through the sample. This has 
far-reaching implications. First, in the limit of strong excitation, the 
weakest molecular signal detectable tends to be limited by the technical 
noise of the excitation source22,24. Second, and more fundamentally, 
even in the absence of technical noise, saturation of the detector (ele-
ments) places a limit on the sensitivity11,22,24. These limitations are sche-
matically illustrated in Fig. 1a, see ‘Frequency-resolved spectroscopy’.

In this work, we show how time-resolved sampling of the electric-
field emitted by impulsively excited molecular vibrations allows us to 
overcome these limitations by isolating the retarded molecular signal 
from any excitation background. We term the technique field-resolved 
spectroscopy (FRS). Sensitive sampling of the isolated molecular signal 
generated by a powerful, ultrashort-pulsed infrared source enables 
broadband transmission spectroscopy of biological systems in their 
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natural, aqueous environment (see ‘Field-resolved spectroscopy’  
in Fig. 1a).

Field-resolved molecular spectroscopy
Fourier-transform infrared (FTIR) spectrometers employing ther-
mal radiation sources20 are the gold standard for broadband vibra-
tional spectroscopy2–4,7,8,19,24–33. In liquid samples, they have detected 

concentration levels down to several micrograms per millilitre3,25,27,30,33,34. 
This limitation has so far been overcome only by sample drying33 or  
targeted detection with functionalized optical biosensors34,35.

Recently, tunable quantum cascade lasers23,24,27,36,37 and femtosecond 
laser sources15,38–40 have dramatically enhanced the excitation bril-
liance. For the reasons sketched in Fig. 1a and explained in the Methods, 
frequency-resolved spectroscopies have not been able to fully capital-
ize on this to achieve improved sensitivity and specificity in molecular 
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Fig. 1 | Infrared FRS. a, Schematic comparison of spectroscopic techniques. 
Infrared light (white bar length indicates source power) with intensity noise 
(technical noise, red hatching) is transmitted through a sample, acquiring GMF 
information (cyan shading). For frequency-resolved spectroscopy, the GMF 
signal is detected ‘on top’ of the excitation signal transmitted through the 
sample. As a consequence, (1) the GMF signal needs to surpass the excitation 
noise (surviving balanced detection) and (2) enhancing the GMF signal by 
increasing the excitation power is limited by the detector’s dynamic range. For 
FRS, following a few-cycle excitation, sub-optical-cycle nonlinear gating 
isolates ultrabrief fractions of the GMF from any infrared background, 
avoiding both requirement (1) and limit (2); see Methods. b, Infrared electric 
field as reconstructed from the measured electro-optic sampling (EOS) trace 
using an 85-µm-thick GaSe EOS crystal (Supplementary Information section I) 
after transmission through a solution of 10 mg ml−1 DMSO2 in water.  

The reconstructed electric field strongly resembles the EOS signal, owing to 
the broadband instrument response function. The resonant sample response 
is temporally well separated from the non-resonant response (incorporating 
the excitation) and exhibits ‘beating’ of several oscillation frequencies.  
c, Fourier transform of the EOS trace shown in b, truncated at 1.5 ps to exclude 
spectral modulations caused by the echo in the EOS crystal. The solid red line 
shows the spectral intensity, revealing absorption dips associated with 
vibrational modes of DMSO2 molecules; the black dashed line shows the 
spectral phase; the cyan line shows the spectral intensity of the signal in the 
time window 380–1,500 fs, showing time-filtered GMF information. d, Spectral 
detection sensitivity above the detection noise floor (3-ps time window, 25-s 
measurement time, transmission through cuvette filled with water). The solid 
and dashed lines are the bandwidth-optimized versus quantum-efficiency-
maximized EOS (Supplementary Information section I), respectively.
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detection24,27. Here, we show how FRS of few-cycle infrared-laser-excited 
molecular vibrations enables us to take advantage of the temporal 
structure and power of laser-driven few-cycle infrared sources.

The experimental setup is described in the Methods and in Supple-
mentary Information section I (see also Extended Data Figs. 3, 4). In 
short, waveform-stable, few-cycle mid-infrared (MIR) pulses abruptly 
excite molecular vibrations by resonant absorption. The sample-
specific electric field (previously referred to as GMF) emitted in the 
wake of the excitation pulse (Supplementary Video 1 and Methods) is 
detected via EOS10,13–15 (Fig. 1b, c). The thickness of the electro-optic 
crystal controls a trade-off between the bandwidth and the sensitivity 
of detection (Fig. 1d).

The nonlinear frequency conversion underlying EOS sequentially 
isolates ultrabrief fractions of the GMF from any infrared background—
including the excitation pulse transmitted through the sample, and the 
thermal background (see Fig. 1a and Methods). Drawing on preliminary 
experiments41,42, here we report a direct measurement of MIR molecular 
electric fields emanating from biological samples.

Detection of time-gated molecular signals
In any scheme measuring time-integrated fields, the minimum detect-
able absorbance, MDAFD, defining the minimum detectable depth of 
the dips in the red line in Fig. 1c, is given by (Supplementary Informa-
tion section II):

σMDA ≈ (1)FD

where σ represents the relative fluctuations of the measured signal in 
the considered spectral element. Here, σ incorporates contributions 
from excitation and detection noise, as well as from the limited detec-
tor dynamic range22.

µ

Fig. 2 | Background quantification for detection of resonant molecular 
responses. a, The red line is the time-resolved magnitude of the EOS signal 
(revealing field oscillations) related to the detection noise floor (signal-to-
noise ratio), for a reference measurement of pure water (quantum-efficiency-
maximized detection setting, 37-s effective measurement time). Following the 
excitation, the molecular signal from residual atmospheric background in the 
beam path is observed. The cyan line is the numerical difference of two 
independent reference measurements. The recorded traces were frequency-

filtered by a 20th-order super-Gaussian filter suppressing any noise outside the 
spectral window 900–1,450 cm−1. The grey dotted line is the 190-fs (full-
intensity-width-at-half-maximum duration) ideal Gaussian pulse, for 
comparison. b, Frequency-domain definition of DRE and tB. The magnitudes of 
the Fourier transforms of the traces in a are shown for different numerical high-
pass time filter values. Setting the filter at tB (the beginning of the background-
free time-domain measurement, rightmost panel) yields an electric-field peak 
dynamic range of DRE = 1.5 × 106 around 1,140 cm−1.

Fig. 3 | Limit of detection of DMSO2 molecules dissolved in water. a, Results 
of the concentration retrieval (see Supplementary Information section IV) with 
quantum-efficiency-optimized FRS (red data points) and FTIR (blue data 
points). The dots indicate the mean values obtained from at least five 
measurements per concentration and the error bars show the absolute 
standard deviation. b, Relative standard deviation for the retrieved values. 
LOD, limit of detection. The coloured shading indicates the range of 
concentrations exceeding the LOD of each instrument.
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In FRS, temporal isolation of (wave-cycle-scale) fractions of the GMF 
renders the weakest detectable molecular response largely immune 
against the noise of excitation intensity, as is apparent from the cyan line 
in Fig. 1c. This is indicated by the expression for the MDA obtained by time-
domain modelling of the molecular system with an isolated Lorentzian 
oscillator of dephasing time TL (Supplementary Information section II):











t
T

MDA =
2

DR
exp (2)

E
FRS

B

L

Here, the dynamic range DRE is defined as the ratio of the spectral ampli-
tude of the electric field of the overall signal reaching the detector at 
the centre frequency of the Lorentzian oscillator to that of the weakest 

signal detectable after passage through a temporal filter opening at tB. 
The parameter tB is defined as the instant when the temporal window 
for an infrared-background-free measurement begins.

This is the case when the numerical difference between two subse-
quent measurements (in this case, of liquid water) reaches the detec-
tion noise floor (Fig. 2a). In our proof-of-principle measurement with 
the quantum-efficiency-maximized FRS setting, this occurs at about 
tB = 1,500 fs, yielding a value of DRE in excess of 106 for absorptions 
with centre frequencies between 1,080 cm−1 and 1,190 cm−1 (for a 7-ps 
time window and 37-s effective measurement time, see right panel of 
Fig. 2b). For a dephasing time of the order of a picosecond, typical for 
an aqueous environment9, equation (2) predicts a minimum detectable 
absorbance of the order of 10−6.
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Fig. 4 | GMFs of human blood serum and their reproducibility. a, Magnitude of the EOS signals, recorded with quantum-efficiency-optimized FRS (see key). The 
insets show linear-scale representations of the signals depicted in the main panel in two different time windows. b, c, Relative (b) and absolute (c) root-mean-
square (RMS) of oscillation amplitude and zero crossings of five hundred measurements of the GMF of a serum sample (without sample exchange) (see 
Supplementary Information section V).
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For experimental verification, we investigated methylsulfonylmeth-
ane (DMSO2) dissolved in deionized water. FRS was benchmarked 
against a state-of-the-art FTIR spectrometer equipped with a thermal 
infrared source (MIRA Analyzer, Micro Biolytics; see Supplementary 
Information section III). With both instruments, at least five aliquots 
of concentrations ranging from 1 mg ml−1 to 100 ng ml−1 were measured 
over a duration of T = 45 s each, with a spectral resolution of 4 cm−1 
(realized in FRS by setting the duration of the temporal window of 
measurement equal to 8.3 ps). Reference measurements of solvent only 
(deionized water) were performed in alternating order. The concen-
tration values retrieved from the measured data (see Supplementary 
Information section IV) are summarized in Fig. 3. The limit of detec-
tion is defined as the concentration retrieved with a relative standard  
deviation of 100%. Our study yields an FRS limit of detection of 
200 ng ml−1, by a factor of 40 lower than that obtained with the FTIR 
spectrometer (8 µg ml−1). This is in agreement with the prediction of 
equation (2); see Supplementary Information section IV and Extended 
Data Fig. 7. We estimate a limit of detection of approximately 7 µg ml−1 
for Fourier-transform spectroscopy (FTS)22 performed with our coher-
ent infrared source and state-of-the-art infrared photodetectors 
(see Methods).

The exponential dependence of the detection limit on tB in equa-
tion (2) emphasizes how FRS is fundamentally different from any fre-
quency-domain spectroscopy, where tB is irrelevant (see also Methods). 
To investigate this dependence—and thereby this hitherto unexplored 
advantage—we repeated the DMSO2 dilution series measurement with 
shorter, sub-60-fs infrared excitation pulses (Supplementary Informa-
tion section I) and the bandwidth-optimized detection setting of the 
FRS instrument (Fig. 1d, continuous line). This combination substan-
tially improved the opening time for background-free detection to 
tB = 450 fs (Supplementary Information section IV). The improvement 
came at the expense of a factor-of-ten reduction of DRE (Fig. 1d). This 
reduction would, in its own right, result in a factor-of-ten increase of 
the minimum detectable concentration, according to equation (2). 
By contrast, we observe an increase from 200 ng ml−1 to 450 ng ml−1 
only, mainly due to shortening tB from 1.5 ps to 0.45 ps (Supplementary 

Information section IV). This corroborates the predicted sensitivity 
of MDAFRS to tB.

A more powerful broadband few-cycle infrared source40 will improve 
DRE while preserving the full bandwidth along with the reduced tB. This 
holds promise for a detection limit below 50-ng ml−1 in combination 
with super-octave spectral coverage.

Attosecond-timed molecular signals
For the investigation of complex molecular consortia, the sensitiv-
ity and specificity of FRS-based molecular fingerprinting depends  
critically on the temporal coherence of the GMF signal and its reproduc-
ibility over extended measurement time. In gas-phase samples, vibra-
tional dephasing occurs on the nanosecond scale and the required long 
acquisition delays are advantageously realized with two asynchronous 
femtosecond oscillators12,21,43,44, harnessing optical frequency-comb 
techniques45,46. By contrast, in the liquid phase the coherent molecular 
signal survives only for several picoseconds9. To efficiently use meas-
urement time and ensure attosecond delay precision, we implemented 
waveform sampling with a mechanical delay line equipped with inter-
ferometric delay tracking47. Figure 4a shows the field-resolved GMF of 
a human blood serum sample, as representative of a cell-free bioliquid 
routinely used in biomedical profiling. The insets in Fig. 4a, b show 
the differential GMF of the biomolecular ensemble in the sample, as a 
result of subtracting the signal obtained from pure water from the one 
of the sample. This ‘pure’ biomolecular signal decays by a few orders 
of magnitude within 5 ps (compare the left and right panels in Fig. 4b), 
revealing a dephasing time of collective biomolecular vibrations in 
human blood serum far below 1 ps.

Five hundred consecutive measurements of the same serum sam-
ple yield a relative root-mean-square deviation of the field oscilla-
tion amplitude from its mean value of around 0.2% and an absolute 
root-mean-square of the zero crossings of the infrared GMF field in 
the range of 20 as, within the first two picoseconds following the exci-
tation (Fig. 4c, d). It is this reproducibility that enables suppression 
of the electric field background by up to three orders of magnitude 
via comparison with a reference field (Figs. 2a and 4a), opening the 
window for background-free measurement less than 2 ps after the 
excitation pulse peak, even in a highly complex sample such as blood 
serum (Fig. 4a, magenta line).

Sensitivity and specificity of FRS
In real-world applications2–4,26,27, molecular fingerprinting of complex 
biofluids will need to probe miniscule changes in the sample’s chemical 
composition, often caused by low-abundance molecules. The method’s 
utility for biological or medical applications will be greatly dependent 
on the smallest changes in molecular concentration that can cause a 
detectable distortion of the field-resolved GMF. To assess this concen-
tration level, we added controlled amounts of DMSO2 to the serum 
sample fingerprinted in Fig. 4a. The results of a principal component 
analysis of the infrared fingerprints of these samples, measured with 
our FRS and FTIR devices (Supplementary Information section VI and 
Extended Data Fig. 8) are shown in Fig. 5a. The plots show the mean and 
the spread of the data classes of repeated measurements of samples 
with different concentrations of the added molecule, along the first 
principal component. FRS appears to clearly separate the sample con-
taining additional DMSO2 molecules at a concentration of 500 ng ml−1 
from the reference sample. Moreover, the error bars suggest that FRS 
is capable of detecting changes in molecular concentration down to  
the 200 ng ml−1 level in human blood serum, an improvement of  
nearly an order of magnitude compared to state-of-the-art FTIR  
spectrometry.

Hence, the smallest changes currently detectable are more than 
five orders of magnitude below the concentration of the most highly 

Fig. 5 | Sensitivity and specificity of FRS of complex fluids performed with 
bandwidth-optimized sampling. a, Principal component analysis results 
(separation along the 1st principal component) for a human blood serum 
sample containing an added aqueous solution of decreasing DMSO2 
concentration, and fingerprinted with FRS using quantum-efficiency-
optimized detection (left panel) and with FTIR (right panel). The plots show the 
mean and relative standard deviation of the values of the 1st principal 
component for data classes obtained by repeated measurements of samples 
with nominally identical added DMSO2 concentration. b, Principal component 
analysis results for a mixture of two sugars dissolved in water with constant 
total concentration and varying relative concentration (see text), and 
fingerprinted with FRS using bandwidth-optimized detection (left panel) and 
with FTIR (right panel).
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abundant molecules of blood serum, albumin1. This implies a detect-
able concentration dynamic range in excess of 105.

Although the relative intensity noise of the excitation does not affect 
the FRS limit of molecular detection with a spectrally isolated feature, 
the lowest detectable concentration of the same molecule in a complex 
environment is limited by the relative intensity noise of the overall GMF 

signal. This, in turn, is likely to be dominated by the noise of the excitation 
source. As an important consequence, the current FRS concentration 
dynamic range of 105 offers substantial room for further improvement 
by suppressing the noise of the GMF signal. An efficient measure to this 
end may be ‘freezing’ the excitation source noise by scanning faster 
than the characteristic time of low-frequency intensity fluctuations22,48.
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Fig. 6 | FRS of strongly absorbing living systems. a, The blue-outlined (left) 
panel is an optical microscope image of cultured human THP-1 cells. The green-
outlined panel (right) shows the top and lateral views of a leaf from Salix caprea. 
The measurement of the intact hydrated leaf was performed 5 min after 
collection, within the marked area. b, The upper panel shows GMF of THP-1 cells 
in suspension, contained in a 100-µm-thick cuvette (blue line) referenced by 
numerical subtraction to the signal of the suspension medium (phosphate-
buffered saline, PBS; grey line). The lower panel shows the molecular response 
obtained after transmission through a 120-µm-thick leaf of Salix caprea (green 

line) with air reference (grey line). c, Absorption (top panel) and phase (lower 
panel) spectra of five measurements of human THP-1 cells (blue lines) along 
with the amplitude and phase of temporally-filtered GMFs (magenta lines). 
Absorption and phase spectra of the plant leaf are shown in a. The standard 
deviations of multiple measurements in c and d are indicated by the shaded 
areas (see Supplementary Information section VII for data processing). We 
note that the error corridor of the measurement in d is smaller than the line 
thickness and therefore not visible. The grey dotted lines in c and d indicate 
prominent absorption peaks.
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To test the specificity of the measured fingerprints, that is, the sensi-

tivity to small changes in relative concentrations, we prepared aqueous 
solutions of two different sugar molecules of constant total concentra-
tion and varying relative concentrations (Supplementary Information 
section VI). The total concentration of 100 µg ml−1 was chosen to be 
well above the limit of detection of both instruments. To challenge the 
method, we used two molecules, maltose and melibiose, which have 
very similar absorption characteristics (Supplementary Information 
Section VI and Extended Data Fig. 9). The data in Fig. 5b reveal that FRS 
outperforms FTIR spectrometry in sensing not only small absolute 
changes but is also sensitive to relative changes in concentration of 
molecules of a complex ensemble.

Probing of intact biological systems
Non-invasive, quantitative probing of intact biological systems would 
benefit a diversity of biological, biomedical, pharmaceutical and eco-
logical applications. To circumvent sensitivity limitations caused by the 
strong absorption of infrared radiation in liquid water, so far the majority 
of studies of biological matter have drawn on sample preparations7,8,28,29 
that substantially alter the state of the sample (such as drying, fixation, 
slicing, chemical extraction, homogenization and so on). Direct inter-
rogation of intact living systems with infrared spectroscopy has been 
limited to interaction lengths of the order of 10 µm (or less), either in 
attenuated-total-reflection geometry28 or by using extremely thin micro-
fluidic cuvettes31,32. Both implementations prevent the majority of living 
cells from being studied in vivo (for example, human cells are on average 
larger than 10 µm in diameter). More recently, quantum-cascade lasers 
have enabled infrared transmission measurements of living systems with 
path lengths of several tens of micrometres, albeit with restrictions on 
the bandwidth and with modest signal-to-noise ratios36,37.

The unparalleled dynamic range of FRS implemented with a powerful 
few-cycle infrared source enables these restrictions to be overcome. 
Here we present the feasibility of infrared fingerprinting of living 
human cells (THP-1 leukaemic-monocyte-like cell line) cultured and 
measured directly in suspension (Fig. 6a, left panel) by transillumina-
tion of a 0.1-mm-thick flow-through cuvette (see also Supplementary 
Information section VII). In spite of the order-of-magnitude increase in 
interaction length as compared to previous broadband measurements 
of cells from the same cell line49, the differential signal originating from 
the molecules of the cells (blue line in Fig. 6b) is acquired with a high 
signal-to-noise ratio (Supplementary Information section VII). The 
corresponding absorption and phase spectra are depicted in Fig. 6c 
(blue lines), with the former reflecting well the spectral signatures 
featured by THP-1 cells when squeezed into a 7-µm-thick cuvette49. Tem-
poral gating of the molecular signal (magenta lines in Fig. 6c) uncovers 
the splitting of the absorption lines at approximately 1,080 cm−1 and 
1,230 cm−1, along with relevant phase oscillations—features that are not 
apparent in the time-integrated spectra (blue lines). This underlines 
the power of isolating the molecular signal from an (inherently) noisy 
excitation, offered by FRS.

We have further tested the ability of FRS to acquire transmission 
spectra of strongly absorbing samples by transilluminating intact 
plant leaves from the goat willow (Salix caprea), a common deciduous 
tree, with a thickness of approximately 120 µm (Fig. 6a, right panel). 
The spectra in Fig. 6d feature clearly discernible absorption bands at 
1,050 cm−1, 1,078 cm−1 and 1,103 cm−1, corresponding to the C–O stretch-
ing motion characteristic of carbohydrates7,50 widespread in cell walls 
and cellular compartments of plant leaves. The spectrally resolved 
attenuation ranges from 5 to 8 orders of magnitude, which is orders 
of magnitude higher than previously demonstrated in a broadband 
infrared transmission measurement. In addition, it shows the instru-
ment’s ability to resolve absorption over several orders of magnitude 
in strength without the need to adjust the light power reaching the 
detector24.

Conclusions and outlook
We have measured infrared-electric-field molecular fingerprints of 
organic molecules in aqueous solution and in human blood sera. In both 
settings, the limit of detecting changes in concentration of individual 
molecules lies in the range of hundreds of nanograms per millilitre 
for less than one minute of data acquisition time. The amplitude of 
the coherent emission carrying the GMF of human blood serum was 
observed to decay by a few orders of magnitude within a few picosec-
onds. The reproducibility of electric-field oscillations was found to be 
in the range of tens of attoseconds over a temporal span exceeding six 
picoseconds following the excitation.

These findings emphasize the performance of FRS of impulsively 
excited molecular vibrations for GMF of complex biofluids and uncover 
potential for its further improvement. First, the extremely fast (much 
less than a picosecond) decay of vibrational coherence in human blood 
serum suggests an exponential improvement of the detection limit with 
further steepening of the temporal decay of the excitation transmitted 
through the sample. Second, the coherence of the recorded molecular 
signal over spans of several picoseconds along with reduced source-
noise-induced GMF noise, by rapid scanning48, for example, will increase 
the detectable range of concentrations in biofluids. The capability of 
simultaneous probing of multi-molecular changes over a dynamic range 
of detectable concentration changes in excess of 105 holds promise for 
applications in the life sciences and medical diagnostics.

Last, broadband infrared fingerprinting of physiologically relevant 
living human cells is now feasible in transmission, opening the door 
for combining infrared fingerprinting with standard flow cytometry. 
The unparalleled dynamic range of FRS implemented with powerful 
few-cycle light promises a new regime of transmission-mode vibra-
tional spectroscopy and spectro-microscopy of intact living systems: 
individual biological cells, bulk-cell and tissue cultures, organs such 
as plant leaves—all settings in which excessive water absorption has so 
far constituted a major obstacle.
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Methods

Nonlinear time-domain gating in FRS
Here, we elucidate the qualitative differences between FRS and tradi-
tional, frequency-resolved spectroscopy. For the latter, we choose FTS 
as the perhaps most advanced form of frequency-resolved infrared 
spectroscopy, in particular in the dual-frequency-comb implementa-
tion11,21,22. Furthermore, the interferograms obtained by FTS performed 
either with ultrashort pulses11,21,22 or with broadband, incoherent light51 
resemble the electric field emerging from a sample after resonant exci-
tation with a few-cycle infrared pulse, which FRS samples with sub-
optical-cycle resolution by means of nonlinear optics (see Fig. 1b). To 
understand the important performance differences between the two 
techniques, it is essential to recognize the conceptual differences in the 
acquisition of these time-domain signals. First, using simple formalisms 
for the signals acquired in FTS and FRS, we reveal two major advan-
tages introduced by the time-domain, nonlinear-conversion-based 
gating of the sampled electric field in FRS over FTS: the robustness 
of detection sensitivity against technical noise of the MIR excitation 
transmitted through the sample, and the mitigation or circumvention of 
the detector-dynamic-range limitation of sensitivity inherent to FTS22. 
Then, we evaluate the performance of FTS achievable with our coherent 
infrared source and state-of-the-art infrared detection (both described 
in Supplementary Information section I), employing a well established 
frequency-domain formalism22. Contrasting the results with those 
of FRS presented in this work, we observe detection sensitivities  
higher by more than a factor of 30 for FRS of impulsively excited 
molecular signals decaying with a time constant on the order of 1 ps, 
as is typical for liquid-phase samples—owing to the above-mentioned 
advantages.

Extended Data Fig. 1a illustrates the working principle of FTS. Here, 
we consider an ultrashort-pulsed MIR excitation source. Its broad-
band pulses are sent along two arms of an interferometer, one of which 
contains the sample and one of which acts as a ‘local oscillator’ for 
homodyne (or heterodyne) detection. The field transmitted through 
the sample is the convolution of the sample response with the incident 
excitation field22 Eex(t). It can be written as the sum of (1) a non-resonant 
response representing an attenuated (and temporally altered) version 
of Eex(t), which for simplicity we approximate here as aEex(t), with a 
scalar a < 1, and (2) the response EGMF(t) of the resonantly excited mol-
ecules (a more rigorous treatment of the sample response is given in 
Supplementary Information section II). The field RLO(t−τ) in the local 
oscillator arm is a copy of Eex(t), delayed by a variable time τ. FRS imple-
mented with EOS (Extended Data Fig. 1b) employs a near-infrared (NIR) 
gate pulse Eg(t−τ) fulfilling two functions52 (see also Supplementary 
Information section I). First, this pulse ‘carves out’ an ultrashort por-
tion of the sample response, for instance via a second-order nonlinear 
upconversion process. Second, it acts as a local oscillator in the homo-
dyne/heterodyne detection of this upconverted signal.

In both schemes, at each delay τ, the superposition of the sample 
response (time-gated and upconverted in the case of FRS) and local 
oscillator fields is sent to (usually two) t-integrating intensity detec-
tors placed at each of the sum and difference ports of the beam com-
biner. In the wake of the excitation, where the strength of aEex(t) can 
be neglected against that of EGMF(t), the resulting signals recorded by 
the two respective detectors read:

∫ ∫
∫
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E t E t τ t
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where χEg(t − τ)EGMF(t) is a qualitative expression for the time-gated, 
upconverted sample response in FRS, neglecting effects such as phase 
matching or depletion/saturation. The first two right-hand-side terms 
of equation (1a, b) represent a background (direct-current baseline) 
around which the third term, containing the spectroscopic informa-
tion, oscillates. A major difference stems from the first background 
term in the two equations and immediately becomes apparent after 
two approximations. In equation (1a), this term can be approximated 
by ∫ aE t t[ ( )] dex

2 , which is typically orders of magnitude larger than the 
(time-integrated) GMF signal. In equation (1b), owing to temporal 
gating, the first right-hand-side term is orders of magnitude  
smaller than the other two terms (see Extended Data Fig. 1c), and can 
be neglected. With these two approximations, equation  (1a,  b) 
becomes:

∫ ∫ ∫I τ aE t t E t τ t E t E t τ t( ) ∝ [ ( )] d + ( − )d ± 2 ( ) ( − )d (2a)FTS,1,2 ex
2

LO
2
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2

The fact that in FTS the time-integrated excitation transmitted 
through the sample always impinges on the detector(s), whereas in 
FRS this background term is negligible in the wake of an impulsive 
excitation, illustrated by equation (2a, b), has two far-reaching implica-
tions, described as follows.

Robustness of FRS against excitation noise. Although for both 
schemes the contribution of the local-oscillator term to the back-
ground can be readily reduced to the shot-noise/detector-noise level, 
for example, via lock-in detection (see Supplementary Information 
section I), in FTS the minimum detectable molecular signal is directly 
affected by the technical noise of the MIR excitation, whose contribu-
tion to the recorded signal is constant along the entire delay range. 
This requires its suppression by sophisticated fast scanning methods22 
and/or balancing techniques53,54. In spite of all these efforts, photon 
quantum-noise-limited sensitivity54 has not been experimentally dem-
onstrated for broadband measurements for wavenumbers shorter 
than 2,000 cm−1, to the best of our knowledge. In FRS, by contrast, 
excitation-background-free detection of the molecular signal in the 
wake of an impulsive excitation implies a sensitivity that is ultimately 
limited by the quantum noise of the NIR gating field but largely immune 
to the noise of the MIR excitation.

Circumvention or mitigation of detector-dynamic-range-induced 
sensitivity limitation. In FTS, the usable input power is restricted 
by the excitation, transmitted through the sample, saturating the 
detector(s); see the first right-hand-side term of equation (2a). This 
implies a severe detector-dynamic-range-induced sensitivity limit11,22 
that can only be circumvented/mitigated by techniques such as spec-
tral multiplexing22 or building the difference between a sample and 
a reference response to the same excitation interferometrically, be-
fore detection55,56. This adds substantial complexity to any detection 
scheme and has not been widely used so far. In FRS, for a fixed local-
oscillator power (set to be below the detector saturation level), the 
signal-to-noise ratio can readily be increased by increasing the exci-
tation field, which linearly increases the sought-for molecular signal 
EGMF(t) in the third right-hand-side term in equation (2b). Because the 
excitation signal transmitted through the sample is eliminated by the 
femtosecond temporal gate, the molecular signal can, in principle, be 
increased up to levels at which aEex(t) vastly exceeds the saturation 
level of any available detector.

Sensitivity estimation of FTS implemented with our infrared source
Here, we calculate the expected sensitivity for an FTS implementa-
tion employing our infrared radiation source and state-of-the-art MIR 
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detectors. Because of the delay-independent contribution of excitation 
noise to the recorded signal (see above), time-domain filtering of the 
recorded signal does not have such a dramatic effect as in FRS, and well 
established frequency-domain models for FTS lend themselves for a 
sensitivity estimation. Here we use the model of Newbury et al.22 who 
derived an expression for the frequency-domain signal-to-noise ratio in 
dependence of detector noise, shot noise, excess laser relative intensity 
noise (RIN) and detector dynamic range. Although the formula was 
derived for dual-comb spectroscopy, it can be readily applied to FTS 
with (slow) mechanical scan, with our experimental parameters (see 
Supplementary Information section I, Extended Data Fig. 5 and sum-
mary in Extended Data Table 1). In addition, we assume no limitations 
due to digitization, no sequential or parallel multiplexed acquisition 
and a duty cycle of 1. The power level in both the signal and the local 
oscillator arms was set to 0.45 mW, limited by detector saturation and 
well within the range of our source.

For direct comparison with our FRS results, we consider the absorp-
tion of DMSO2 solved in water, spectrally centred at 1,139 cm−1 (see 
Extended Data Fig. 6 and parameters in Extended Data Table 1). Accord-
ing to equation (4) of ref. 22, for these parameters we obtain a limit of 
detection of 7 µg ml−1 of DMSO2 dissolved in water for FTS, which is a 
factor of 35 above what is demonstrated here with FRS.

Experimental setup
The instrument (see also Supplementary Information section I for a 
detailed description) is based on a Kerr-lens mode-locked thin-disk 
Yb:YAG oscillator57 emitting a 28-MHz repetition-rate train of 220-fs 
pulses, spectrally centred at 1,030 nm. After temporal compression via 
nonlinear spectral broadening based on multi-pass self-phase modu-
lation in bulk fused silica followed by chirped-mirror compressors58, 
the resulting NIR pulses are 16 fs long, with an average power of 60 W. 
These pulses drive intrapulse difference-frequency generation (opti-
cal rectification) in a 1-mm-thick LiGaS2 crystal. The emerging MIR 
radiation with an average power of the order of 100 mW is spectrally 
tunable with a coverage of nearly one octave around a central frequency 
of 1,200 cm−1. After the crystal, the NIR pulse is recycled and used for 
gating in the EOS detection of the MIR waveforms. Balanced detection 
in EOS is optimized close to the NIR shot-noise limit, with an imping-
ing NIR power on the GaSe EOS crystal of 420 mW. In order to reduce 
phase artefacts introduced by variations of the mutual delay between 
the MIR sampled wave and the NIR sampling pulse, we track this delay 
interferometrically, with an additional continuous-wave laser47. In this 
manner, data can be recorded with few-nanometre delay precision and 
a temporal duty cycle close to 100% during forward as well as backward 
scans. Starting with the last NIR pulse compression stage, all the beams 
are enclosed in vacuum chambers at a background pressure in the 
1-mbar range. Further measures of stabilization include an acousto-
optical-modulator-based active noise eater59 and lock-in detection 
employing mechanical chopping of the MIR beam.

Dynamic range of FRS
The 500-µm-thick GaSe electro-optic crystal constitutes a trade-off 
between a high quantum efficiency and broad bandwidth (Fig. 1d). In 
addition, it avoids internal reflections within the measurement time 
window. This quantum-efficiency-optimized apparatus resulted in 
a linearity of the instrument response over more than seven orders 
of magnitude of electric-field strength and, moreover, the intensity 
dynamic range scales linearly with measurement time (Extended Data 
Fig. 2). Thus, sampling of the oscillating electric field rather than its 
cycle-averaged intensity60 results in an unprecedented linear-response 
intensity dynamic range of >1014, vastly exceeding that of infrared spec-
troscopy so far, to our knowledge2. This enables transillumination of 
aqueous samples of several tens of micrometres in thickness while 
maintaining a high signal-to-noise ratio.

Measurement principle and the nature of the signal
FRS molecular fingerprinting relies on the generation of ultrashort 
infrared pulses with identically repeating electric-field waveforms (in 
our setup, 28 million such pulses per second). These pulses are transmit-
ted through the sample under investigation, and the waveforms emerg-
ing from this interaction are recorded with EOS (see Supplementary 
Information section I). The spatial distribution of microscopic electric 
charges (that is, electrons and nuclei) in organic molecules is (1) inhomo-
geneous and (2) characteristic of the molecular species. Because of (1), 
when the electric field of the above-mentioned infrared pulses interacts 
with the molecules, it induces microscopic spatial charge separations 
(due to the existence of electric dipole moments). These charge sepa-
rations evolve in time, driven by the oscillating electric field. Because 
of (2), these microscopic charge oscillations occur with characteristic 
magnitudes and frequencies—albeit having a fixed mutual timing, set by 
the common excitation field. In particular, resonant vibrations oscillate 
long after the excitation by the few-cycle infrared waveform, emanat-
ing a GMF. This resonant response is the coherent superposition of 
the fields of all sample-specific oscillations, thus containing most of 
the sample-specific information. Importantly, at the centre frequency 
of any such oscillation, the emission of light as a consequence of the 
resonant excitation by a light field occurs with opposing phase to the 
latter9. Consequently, the coherent superposition of the GMF and the 
excitation transmitted through the sample results in a destructive inter-
ference at these frequencies, leading to the typical ‘absorption dips’ 
observed in frequency-domain spectroscopy; see Fig. 1c.

Data availability
The data that support the findings of this study are available from the 
corresponding author upon reasonable request.
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Extended Data Fig. 1 | Comparison of FTS with FRS. a, Schematic of FTS.  
b, Schematic of FRS. c, Portions of the background signal contributed by the 
sample response to the FTS (blue, first right-hand-side term of equation (1a)) 
and to the FRS (red, first right-hand-side term of equation (1b)) signals at a fixed 

delay (τ = 1,500 fs). For illustration purposes, the nonlinear upconversion 
efficiency was set to 1 and the ‘carved out’ effective window time length to 50 fs 
(without loss of generality). Example parameters: 190-fs Gaussian excitation 
pulse and 1,139-cm−1 DMSO2 absorption (see Extended Data Table 1).
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Extended Data Fig. 2 | Detection dynamic range and linearity of the 
instrument response. a, Infrared excitation pulse (normalized to maximum), 
recorded with attenuating optical density (OD) filters instead of the cuvette in 
the beam path, for increasing attenuation and measurement time T. A 1,200-fs 
scan range and T = 16 s and T = 1,600 s were considered. Small variations of the 
pulse shape for different attenuations are attributed to slight dispersion 
variations among the OD filters. The attenuation-independent pulse shape 

confirms the instrument linearity over the entire parameter range considered. 
b, c, Spectral intensity (normalized to the maximum of the attenuation-free 
measurement) and phase of the signals in a, respectively. The detection noise 
floors in b were obtained by blocking the MIR signal and evaluating the mean of 
the (white) noise in the considered spectral range, and confirm the linear 
decrease of the noise floor with T. For the data in c, for all time-domain 
waveforms a super-Gaussian filter (width 700 fs, order 20) was applied.
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Extended Data Fig. 3 | Experimental setup. See subsection ‘High-power 
femtosecond oscillator and generation of waveform-stable MIR Pulses’ in 
Supplementary Information section I for details. a, HWP, half-wave plate; QWP, 
quarter-wave plate; IDFG, intra-pulse difference frequency generation; IDT, 
interferometric delay tracking; Ge, germanium beam combiner. All steering 
mirrors for the MIR beam were gold-coated. In the bandwidth-optimized 
instrument setting, four custom dispersive mirrors were added to the MIR 

beam path (see text). The pulse was temporally compressed with customized 
dispersive optics. Pulse compression. EOS traces of the excitation pulse 
transmitted through water in the bandwidth-optimized instrument setting, 
with (blue) and without (red) four dispersive mirrors in the MIR beam path.  
c, As in b but on a logarithmic scale, visualizing the improved roll-off of the 
signal achieved with the dispersive optics.
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Extended Data Fig. 4 | Contributions to quantum efficiency in electro-optic 
sampling. a, Frequency-resolved measurement of the noise of the balanced 
detection (black), and calculated shot noise (red). The dashed line indicates the 
lock-in frequency, and its peak stems from the chopper. b, Comparison of MIR 

power depletion after EOS crystal for the two different crystal thicknesses. The 
oscillations originate from interferences of the MIR pulse incident to the EOS 
crystal and MIR radiation generated therein (these oscillations do not affect 
the performance of EOS detection).
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Extended Data Fig. 5 | Measurement of noise contributions for the 
estimation of the performance of FTS with our femtosecond-laser-based 
source, our mechanical scan, and state-of-the-art infrared detection. a, The 
setup mimics a FTS setup in the Mach–Zehnder configuration, with balanced 
lock-in detection. For lock-in frequency modulation, a mechanical chopper is 
placed in the ‘sample arm’. The two arms are recombined with a 50:50 beam 
splitter. The two outputs are detected with two independent MIR detectors 
(see text for details). The power impinging on each detector was limited to 
450 mW, corresponding to a detector output voltage of 20 V. The relative 
intensity noise (RIN) spectrum of the source is recorded with an FFT-Analyzer 
in the range 0.1–100 kHz (before balanced detection). Balanced lock-in 

detection is performed with a lock-in amplifier with differential input. The 
beam block was used in the measurements shown in c. b, RIN spectrum of the 
free-running (red curve) and intensity-stabilized (blue curve) MIR beam 
(before the interferometer). The integrated RIN of the stabilized source from 1 
Hz and 100 kHz is as low as 0.04%. c, Demodulated (after lock-in detection with 
a time constant of 1.6 ms and 4th-order filter) time-domain trace of detector 
noise (grey), local-oscillator signal with sample arm blocked (turquoise) and of 
the combination of both interferometer arms impinging on the balanced 
detection (blue). The inset shows a 1-second section of the signals, for a 
detailed comparison of the local-oscillator noise and the detector noise.
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Extended Data Fig. 6 | Simulations of time-domain decay of a molecular 
Lorentzian oscillator. a, Fit of a Lorentzian oscillator to the 1,139 cm−1 
absorption of (low-concentration) DMSO2. Black line, intensity transmission 
through pure, molecular DMSO2, determined by referencing the transmission 
spectrum of a 1 mg ml−1 solution to that of water, measured via FTIR, and 
normalizing to a 1-µm path. Green line, least-squares fit (1,080–1,190 cm−1) of a 
Lorentzian oscillator to the 1,139 cm−1 absorption, yielding a full width at half 
depth of 13.47 cm−1 and an absorption coefficient α = 11.96 cm−1. The numerical 
example shows the instantaneous and resonant parts of the electric field as 
described by equations (1) to (4) in Supplementary Information section II. The 
initial pulse is a Gaussian pulse with an intensity envelope (full width at half 
maximum) of 190 fs. The Lorentzian absorption band has a peak of α2z with 
α2 = 0.0024 cm−1, corresponding to a 200 ng ml−1 solution of DMSO2 in water, 
and a width δυ = 13.47 cm−1. These values were obtained from fitting a 

Lorentzian absorber to the 1,139 cm−1 band of the transmission spectrum of a 
1 mg ml−1 solution obtained with FTIR and linear extrapolation to a 
concentration 5,000 times lower. b, Time-domain representation of the 
normalized envelope functions of the electric fields described (see key). A 
value of tB = 1.5 ps is chosen. The green vertical bars indicate the boundaries of 
the band-pass-filtered resonant response shown in green: 1.5 ps and 4 ps. c, 
Magnitudes of the Fourier transforms of the envelopes shown in a, normalized 
to C. At the absorption maximum, the discrepancy between the resonant 
response as in Supplementary Information section 2 and its approximation as 
in Supplementary Information section 3 is 1%, justifying this convenient 
approximation. The error introduced by band-pass filtering the resonant 
response between 1.5 ps and 4 ps compared to the high-pass time-filtered 
signal is 4%.
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Extended Data Fig. 7 | Spectral intensity of the Fourier-transformed 
temporal fingerprints of DMSO2. Spectral intensity is shown for different 
concentrations, after high-pass-time-filtering at tB = 1,500 fs and subtraction of 
pure water reference, normalized to the spectral intensity of the reference 
pulse. Green dashed lines, modelled Lorentzian oscillator with the parameters 
derived from the fit in Extended Data Fig. 6. This model agrees excellently with 
the measured fingerprints, and confirms the minimum detectable absorbance 
predicted by equation (2) as well as the linear response of the instrument.
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Extended Data Fig. 8 | Principal component analysis. a–d, Comparison of the 
loading vectors for the first principal component for the FTIR data (a) and the 
FRS data (b) from the serum spiking experiment, with the pre-processed GMF 
data (see text) of the FTIR (c) and FRS (d) measurements of a 1 mg ml−1 DMSO2 
solution. We note that the FRS spectra are complex, so the real and imaginary 
parts were considered separately (and stitched to single vectors). e, Figure of 
merit (FOM) (colour scale in arbitrary units; see Supplementary Information 
section VI) quantifying the separation of classes according to the first principal 
component (the lower the FOM, the better the separation), evaluated for a large 

range of the beginning time tB and time window length Δt. The cross indicates 
parameters yielding optimum separation. f–i, Comparison of the loading 
vectors for the first principal component for the FTIR data (f) and the FRS data 
(g) from the sugar mixture experiment, with the pre-processed GMF data of the 
FTIR (h) and FRS (i). For the latter, the difference of the spectra of the 50/50 
mixture and the pure maltose solution is shown. The real and imaginary parts 
were considered separately. j, FOM quantifying the separation of classes 
according to the first principal component, in analogy to e.
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Extended Data Fig. 9 | Absorption spectra of 10 mg ml−1 aqueous solutions of maltose and melibiose, measured by FRS and FTIR. The difference in total 
absorption is due to the differing cuvette thickness. a, FRS; b, FTIR. OD, optical density.
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Extended Data Table 1 | Parameters for numerical estimation of the sensitivity of FTS implemented with our infrared source
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I. Experimental Setup 

High-power femtosecond oscillator and generation of waveform-stable MIR Pulses 

A detailed sketch of the setup is shown in Extended Data Fig. 3. An initial near-infrared (NIR) 28-MHz-

repetition-rate train of 220-fs (intensity envelope full width at half maximum, FWHM) pulses spectrally 

centred at a wavelength of 1030 nm (9709 cm-1) and with an average power exceeding 100 W is provided 

by a Kerr-lens modelocked thin-disk Yb:YAG oscillator1. At a peak power of 14 MW, these pulses are sent 

to three nonlinear spectral broadening and compression stages, based on self-phase modulation in bulk 

media (fused silica) inside of Herriott-type multi-pass cells, followed by chirped-mirror compressors. The 

dispersive mirrors of the multi-pass cells were designed to compensate for the material dispersion of the 

broadening medium, targeting a constant pulse duration and peak power during all passes. Upon each 

pass, a moderate nonlinear phase-shift (0.5 rad for each of the first two stages and 0.6 rad for the third 

stage) is accumulated. 

The pulse durations after the three compression stages (measured via second-harmonic frequency-

resolved optical gating, FROG) were 84 fs, 43 fs and 16 fs, respectively, at Fourier-transform limits of 80 fs, 

40 fs and 15 fs, respectively1. The 16-fs output pulses spectrally cover 920 to 1180 nm (10870 cm-1 to 8475 

cm-1, at -20 dB level), with an average power of 60 W.  

For intrapulse difference-frequency generation (IDFG), the NIR pulse train is focused down to 330-µm 

(1/e2-intensity diameter), corresponding to a peak intensity of 180 GW/cm2, onto a LiGaS2 (LGS) crystal (1-

mm thick, anti-reflection-coated for the NIR beam on the front surface). The polarisation of the incident 

NIR pulse train and the orientation of the LGS crystal were arranged for type-I phase-matched IDFG2. The 

emerging p-polarised mid-infrared (MIR) radiation was spectrally tuneable with a coverage of nearly one 

octave around a central frequency of 1200 cm-1 (see Fig. 1d). After the crystal, the incident NIR and the 

generated MIR beams were separated with a custom-designed dichroic mirror, with an average 

transmittance of > 80 % in the bandwidth between 5 and 12 µm (2000 cm-1 and 833 cm-1) and a total 

reflection of > 99 % for the NIR pulses. The MIR beam was chopped at a frequency of 7.5 kHz for lock-in-

amplified detection, and focused down to a spot diameter of 420 µm (with a Rayleigh length of 17 mm), 

for transmission through the liquid cuvette. At the cuvette, a MIR average power of 50 mW was 

measured. 

The liquid cuvette (Micro Biolytics GmbH) consisted of two parallel 2-mm ZnSe windows, enclosing a 34-

µm-long propagation path through the sample liquid. Filling of the cuvette was performed with a fully 

automated microfluidic delivery unit.  

After reflection off the dichroic mirror, NIR pulses were recycled and used to sample the MIR waveforms 

electro-optically. Their polarisation was filtered with a wire-grid polariser and the pulses were temporally 

recompressed with dispersive mirrors down to 16 fs. The average power of the sampling beam was 
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adjusted (see below) via reflection off two transmitting optics and fine adjustment was implemented via 

transmission through a 100-nm-thin Si3N4 pellicle. A variable delay between the MIR waveform and the 

sampling pulses was achieved with a mechanical stage (PI-Micos, L-511). In order to determine the mutual 

delay change during a measurement scan, the beam of a frequency-controlled distributed-feedback laser 

diode at 1550 nm was co-propagated along the MIR and NIR paths, after being split at the dichroic mirror.  

Interferometric delay tracking3 was achieved by modulating the frequency of the laser and by 

demodulating the resulting interference signal at two different frequencies that can be phase shifted with 

respect to each other to construct a quadrature signal. In contrast to a simple interference signal, this 

allows for a constant position sensitivity and for a directionality of the measurement. The implemented 

system was based on a commercial interferometer (Smaract PICOSCALE). All data was taken with a 

common clock. Synchronisation of the electro-optic sampling (EOS) and delay data information was 

realised by recording forward and backward scans and shifting the entire data sets by a constant time 

value such that the forward and backward traces become congruent.  

Starting with the last NIR pulse compression stage, all the beams were enclosed in vacuum chambers. A 

background pressure of a few mbar was maintained over all measurements (except for the dynamic range 

evaluation and the measurements of living systems). The vacuum level was limited by the air-tightness of 

the custom-made liquid cuvette. 

In the bandwidth-optimised detection setting of the FRS instrument (see next section), custom dispersive 

optics were employed to temporally compress the (non-resonant) response of pure water, together with 

the dispersion of the MIR pulse upon propagation through the ZnSe windows of the liquid cuvette (with a 

total thickness of 4 mm). Specifically, 4 identical multilayer mirrors (not shown in Extended Data Figure 3) 

were placed under small angles of incidence (~7 degrees). The customised optics enable the 

compensation of relative phase delays of up to ~400 fs over the almost-octave-spanning range between 

6.5 and 11.5 µm, leading to a reduction of FWHM pulse duration from 78 fs to 56 fs (Extended Data Fig. 

3b) and – essential for the sensitivity of FRS – to a significantly steeper roll-off of the measured non-

resonant response of liquid water (Extended Data Fig. 3c). The layer materials for these mirrors were Ge 

and YbF3, affording a significantly broader bandwidth than previous dispersive multilayer optics in this 

spectral range4. A detailed description will be given in a future publication. 

Electro-optic sampling 

The MIR and NIR beams were spatially recombined with a germanium plate: the MIR beam was 

transmitted at Brewster’s angle and the NIR sampling beam was reflected off the surface (see Extended 

Data Fig. 3). Both beams were focused to the electro-optic sampling (EOS) crystal. We used a 85-µm and a 

500-µm-thick GaSe crystal, placed at 52° and 55°, respectively (cf. spectra in Fig. 1d). The thinner crystal 

Field-resolved infrared spectroscopy of biological systems 55



3 
 

was used for EOS providing a waveform close to the generated electric field (Fig. 1b) and the thicker 

crystal for quantum-efficiency-optimised detection. 

The dispersion of the beam splitter (1-mm ZnSe substrate), liquid cuvette walls (4 mm of ZnSe) and the 

GaSe EOS crystal was balanced by choosing a suitable thickness of the germanium NIR-MIR beam 

combiner (5 mm) under the constraints of geometrical feasibility. This resulted in an intensity-envelope 

FWHM duration of the instantaneous response of the liquid cuvette with water of 56 fs and 190 fs for the 

85-µm and 500-µm thick EOS crystal, respectively 

EOS can be understood as a two-step process5,6 (see also Extended Data Fig. 1b): first, the two 

participating fields are mixed in a second-order (χ(2)) nonlinear process (here, we phase-matched sum-

frequency generation, SFG). In a second step, the resulting SFG photons are detected in a balanced, 

heterodyne detection scheme, using the unconverted NIR beam as a local oscillator. Assuming that the 

detection noise is dominated by the shot noise of the local oscillator, the power of the sampling pulse 

train 𝑃𝑃𝑠𝑠 should be maximised because the signal-to-noise ratio (SNR) increases with �𝑃𝑃𝑠𝑠 according to the 

contribution of the increasingly efficient SFG6. An upper limit to this scaling is set by undesired 

nonlinearities in the EOS crystal, eventually culminating in damage. The focus diameter of the MIR beam 

achieved with a 50-mm-focal-length off-axis parabolic mirror was 80 µm (averaged over the entire 

spectrum). The spot size of the NIR beam was adjusted to the same value with a two-lens telescope 

before the beam combiner. The sampling pulse power was adjusted to ~85 % of the crystal damage 

threshold. This resulted in an average power of the sampling pulses of 430 mW. 

A short-pass filter at 912 nm was used6 for enhancing the SNR of the EOS. A half-wave plate and a quarter-

wave plate were used for optimising the balancing on the difference photodiode, for which the beam was 

split with a Wollaston prism. The signal was detected with a self-built balanced detector, consisting of two 

photodiodes (first sensor, series 7, chip PC10-7), followed by a low-noise current amplifier (femto DLPCA-

200). The diodes were reverse-biased with 15 V and the amplification was set as high as possible without 

saturating the lock-in amplifier (integration time 186 µs with 6th order filtering at a mechanical chopping 

frequency of 7.5 kHz). The resulting noise floor was a factor of 1.6 above the shot noise level of the NIR 

beam, see Extended Data Fig. 4a. Assuming a DC signal due to averaging over several pulses, the 

theoretical value for the single-sided linear spectral density 𝑠𝑠q of the relative quantum power noise was 

calculated according to7: 

𝑠𝑠q = 1.9 × 10−8Hz−
1
2 × �1mW

𝑃𝑃
× �1064nm

λ
,                                                                                     (SI. 1) 

where 𝑃𝑃 is the optical power incident on the detector, λ the wavelength of the radiation, and a detector 

quantum efficiency of 1 is assumed. 
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The NIR pulse duration, power, focus size on the EOS crystal and the crystal thickness were all optimised 

for maximum quantum efficiency, in order to upconvert and detect as many MIR photons as possible. The 

detection of the MIR waveform is confined to the temporal window determined by the propagation of the 

sampling pulse through the EOS crystal. This results in a temporal gating both of the nonlinear interaction 

and of the MIR background (both from the MIR excitation and thermal background noise). 

To estimate the efficiency of MIR photon detection, we first measured the MIR power transmitted 

through the EOS crystal, while scanning over the EOS signal. Extended Data Fig. 4b shows the comparison 

of the MIR depletion for the two different crystal thicknesses used in this paper. For the 500-µm crystal, 

the maximum MIR depletion corresponds to a relative change in photon number (or MIR power) of 2.27 

%. Considering that the interaction window for the delay corresponding to maximum depletion is 

approximately 88 % of the MIR pulse duration, the quantum efficiency is effectively 2.6 %.  

As we were using a short-pass filter in the EOS configuration, we determined the number of transmitted 

SFG photons by measuring the SFG spectrum with and without the filter and by calculating the spectrally 

integrated power transmission through the short-pass filter, to be roughly 60 %. Furthermore, the 

percentage of detected photons is reduced by the spatial overlap of near-infrared (NIR) and SFG (95 %) 

and the factor above shot noise in intensity (1.6²). The resulting 0.6 % of detected MIR photons matches 

the value determined from dividing the EOS intensity dynamic range (normalised to one second 

measurement time) by the average mid-infrared photon number in the interaction window. 

The electric field was reconstructed from the EOS trace using a calculated frequency-domain instrument 

response function8 (IRF). The EOS signal was calculated5 as the superposition of the sum frequency, 

generated in the EOS crystal and the remaining NIR, serving as a local oscillator. The SFG was calculated 

with a 1D model for the nonlinear generation, using the first-order propagation equation8,9: 

𝜕𝜕𝐸𝐸𝜔𝜔(𝑧𝑧)
𝜕𝜕𝑧𝑧

= −𝑖𝑖𝑘𝑘𝜔𝜔𝐸𝐸𝜔𝜔(𝑧𝑧) −
𝑖𝑖𝑖𝑖

2𝑛𝑛(𝑖𝑖)𝜖𝜖0𝑐𝑐
𝑃𝑃𝜔𝜔𝑁𝑁𝑁𝑁(𝑧𝑧).                                                                                          (SI. 2) 

Here, 𝐸𝐸𝜔𝜔 is the electric field for the frequency component 𝑖𝑖, evolving spatially in 𝑧𝑧 direction, 𝑘𝑘𝜔𝜔 is the 

wave vector, 𝑛𝑛(𝑖𝑖) the frequency dependent refractive index and 𝑃𝑃𝜔𝜔𝑁𝑁𝑁𝑁 the second-order nonlinear 

polarisation. The MIR pulse employed (generic transform-limited super-Gaussian spectrum, covering the 

experimental spectral width) was assumed to propagate on the extraordinary crystal axis and the NIR 

pulse (with an intensity envelope as measured with FROG) on the ordinary one, leading to type II phase 

matching, with the 52-µm long crystal rotated at 52°. The frequency-domain IRF was then calculated as 

the ratio of the Fourier transforms of the EOS trace and the MIR input field.  

In the bandwidth-optimised implementation, the “echo” of the excitation, appearing ~1.6 ps after the 

maximum of the main pulse as a consequence of an internal reflection inside the thin EOS crystal limits 

the time window of sensitive GMF detection. However, this is not a fundamental limitation, and several 
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potential solutions might provide a workaround in the near future. The potentially more favourable 

bandwidth-versus-quantum-efficiency trade-off with ultrashort 2-µm sampling pulses10 promising to allow 

for a thicker sampling crystal, impedance-matched reduction of the echo11, and geometrical separation of 

the echo (e.g,., wedged crystal) are potential solutions. 

For a quantitative interpretation of EOS traces, knowledge of the IRF is necessary. While a complete 

reconstruction of the electric field, as illustrated in Fig. 1b requires precise, quantitative knowledge of the 

latter, for the quantitative interpretation of linear (i.e., χ(1)) interactions directly from the measured EOS 

traces, only the linearity of the instrument response function is necessary, not its precise knowledge. In 

the case of a linear light-matter interaction, which can be fully described in the frequency domain by 

multiplication of the input electric field 𝐸𝐸0(𝑖𝑖) by a sample response function 𝐻𝐻𝑠𝑠(𝑖𝑖), a linear IRF 𝐻𝐻𝑖𝑖(𝑖𝑖) 

results in the (time-domain) measurement of the complex function 𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠(𝑖𝑖) = 𝐸𝐸0(𝑖𝑖)𝐻𝐻𝑠𝑠(𝑖𝑖)𝐻𝐻𝑖𝑖(𝑖𝑖). 

Rearranging the rhs of this expression to [𝐸𝐸0(𝑖𝑖)𝐻𝐻𝑖𝑖(𝑖𝑖)]𝐻𝐻𝑠𝑠(𝑖𝑖) and noting that a reference measurement 

without sample in place leads to a trace corresponding to 𝐸𝐸𝐸𝐸𝐸𝐸0(𝑖𝑖) = 𝐸𝐸0(𝑖𝑖)𝐻𝐻𝑖𝑖(𝑖𝑖). Thus, the sample 

measurement can be described by 𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠(𝑖𝑖) = 𝐸𝐸𝐸𝐸𝐸𝐸0(𝑖𝑖)𝐻𝐻𝑠𝑠(𝑖𝑖), and therefore describes the linear 

response of the sample to an excitation field equal to 𝐸𝐸𝐸𝐸𝐸𝐸0(𝑖𝑖).  

Relative intensity noise of the MIR beam 

In order to assess the contribution of technical noise to the SNR of FTS (See Methods), we evaluated the 

RIN under typical measurement conditions using a setup akin to FTS (see Extended Data Fig. 5a). The MIR 

beam of our laser system was split in a Mach-Zehnder configuration into two arms, one acting as the LO 

and the other as the sample arm. The sample arm was mechanically chopped at 10 kHz. The two arms 

were re-combined with a 50:50 beam splitter for balanced detection with two state-of-the-art MCT 

detectors (InfraRed Associates; MCT-13-1.00). For optimum noise performance, we took additional 

technical measures, namely active intensity stabilization of the MIR beam12 and lock-in detection to 

minimize the contribution of low-frequency RIN. 

The RIN spectra of our free-running MIR source and with active intensity stabilization, measured at 

0.45 mW with one of the MCT detectors are plotted in Extended Data Fig. 5b. The measurement reveals a 

relative standard deviation of 0.04 % integrated in the band from 1 Hz to 100 kHz.  

Next, we applied balanced detection in the MIR. To this end, we split the MIR output of our coherent 

source with a 50:50 beam splitter and used a polariser for the fine adjustment of the power. The output of 

the two detectors was then recorded with a two-channel lock-in amplifier with internal subtraction. For 

frequencies above 10 kHz, the RIN of the LO can be supressed by more than a factor of 500 compared to 

the free-running laser, down to a white noise floor with at 6 × 10−8𝐻𝐻𝑧𝑧−0.5. Together with lock-in 

detection, this enables measurement of the homodyne/heterodyne signal (i.e., sample beam) with very 
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small noise contribution from the LO (Extended Data Fig. 5c, turquoise line), i.e. comparable to the 

detector-noise level (Extended Data Fig. 5c, grey line). 

However, the total noise within the trace drastically increases when also the noise contributions of the 

sample beam are considered (see Extended Fig. 5c, blue line). The noise-filtering properties of the lock-in 

detection act on the LO only, but not on the signal. Therefore, low-frequency noise contributions from the 

sample beam affect the recorded trace. For a 10-s measurement (typical time-scale for a scan in our 

system), we observe a ~26 times higher time-domain root-mean-square value in comparison to the LO 

noise. In FRS, nonlinear time-domain gating would avoid these noise contributions (see Extended Data Fig. 

1).  

At a total power of 0.450 mW impinging on each detector, in our experiment the power in the signal arm 

was 17 times smaller than that in the LO due to limitations of the lock-in electronics. Accounting for this, 

we estimate a RIN of the sample beam of 17 × 26 × 6 × 10−8 Hz-0.5 = 2.7 × 10−5 Hz-0.5.  

 

II. Derivation of Equations (1) and (2) 

Derivation of Equation (1) 

In traditional frequency-domain spectroscopies, molecular absorption is measured as the frequency-

resolved intensity attenuation of the source. Thus, for each spectral element of the instrument (for a given 

spectral resolution), the weakest detectable molecular signal is limited by the intensity variation from 

measurement to measurement.  The main causes of these variations are intensity and shot noise of the 

source, and detector noise. Assuming a statistical behaviour of the measurement-to-measurement 

variations, for a given spectral element these can be quantitatively described by their relative standard 

deviation 𝜎𝜎. Thus, for a mean reference intensity 𝐼𝐼0, an absorption leading to an intensity smaller than 

𝐼𝐼0(1− 𝜎𝜎) can be regarded as detectable, while a weaker absorption would lead to an intensity within the 

error bar of the measurement of 𝐼𝐼0.  

Beer’s absorption law for an absorption coefficient 𝛼𝛼 and a propagation length 𝑧𝑧 reads: 

𝐼𝐼𝑠𝑠 = 𝐼𝐼0𝑒𝑒−𝛼𝛼𝛼𝛼,                                                                                                                                                         (SII. 1) 

where 𝐼𝐼𝑠𝑠 is the intensity of the spectral element, with the sample in the beam path. Thus, for the 

absorption to be detectable, the following inequality needs to hold: 

𝑒𝑒−𝛼𝛼𝛼𝛼 ≤ 1 − 𝜎𝜎 ⇔  𝛼𝛼𝛼𝛼 ≥ ln �
1

1 − 𝜎𝜎
� .                                                                                                             (SII. 2) 
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For small values of 𝜎𝜎, the rhs of this inequality can be approximated by the linear terms of the Taylor 

expansions for 1/𝛼𝛼 and ln(𝛼𝛼) yielding: ln � 1
1−𝜎𝜎

� ≈ ln(1 + 𝜎𝜎) ≈𝜎𝜎. In conclusion, the minimum detectable 

absorbance (MDA) is 𝜎𝜎, see Eq. (1). 

 

Derivation of Equation (2) 

The propagation of an ultrashort IR pulse through a molecular sample in the electronic ground state, 

exhibiting both resonant and non-resonant absorption can be modelled semiclassically by solving the 

wave equation with an adequate polarization response of the sample13. In the following, we consider the 

linear interaction of an ultrashort excitation pulse with an initial electric field amplitude envelope 

𝐸𝐸0(𝑡𝑡) = 𝐸𝐸(𝑧𝑧 = 0, 𝑡𝑡) propagating along the spatial coordinate 𝑧𝑧 through a medium with a constant 

absorption coefficient 𝛼𝛼1describing the nonresonant (instantaneous) part of the interaction with the field, 

and a resonant vibrational absorption. We describe the latter13 as a homogeneously broadened, 

Lorentzian-shaped absorption band having a peak absorption 𝛼𝛼2 and an effective dephasing time 𝑇𝑇2. 

Homogeneous broadening is a pertinent assumption due to the large number of molecules involved in the 

experiments considered here, and due to the comparatively long integration time per measurement point. 

Furthermore, the Lorentzian model describing the temporal evolution of a two-level system is in 

accordance with the linearity of all measurements presented in this paper. 

We first consider the case in which this band is centred at the carrier frequency of the excitation pulse and 

later discuss the generalization to an arbitrary central frequency. Thus, the intensity of the initial pulse at 

its central wavelength is attenuated by exp[(𝛼𝛼1+𝛼𝛼2)𝑧𝑧], and 𝑇𝑇2 can be estimated from the full-with-at-

half-depth value 𝛿𝛿𝛿𝛿 of the power spectral density (PSD) absorption line (given in wavenumbers, cm-1) in 

the frequency domain (FD), cf. Extended Data Fig. 6a, according to 𝛿𝛿𝛿𝛿 = (𝜋𝜋𝑐𝑐𝑇𝑇2)−1, where 𝑐𝑐 is the speed of 

light (see Eq. (88) in Laubereau and Kaiser13). Furthermore, we assume that the duration of the excitation 

pulse is smaller than the dephasing time 𝑇𝑇2. Under these conditions, the electric field envelope in the time 

domain (TD) as a function of 𝑧𝑧 and 𝑡𝑡 is described by (Eq. (90) in Laubereau and Kaiser13): 

𝐸𝐸(𝑧𝑧, 𝑡𝑡) = 𝐸𝐸0(𝑡𝑡) e−
1
2𝛼𝛼1𝛼𝛼 − 𝜀𝜀 ∙ exp �−

1
2
𝛼𝛼1𝑧𝑧 −

𝑡𝑡 − 𝑡𝑡𝑚𝑚𝑚𝑚𝛼𝛼

𝑇𝑇2
� ∙
𝐽𝐽1��2𝜀𝜀(𝑡𝑡 − 𝑡𝑡𝑚𝑚𝑚𝑚𝛼𝛼)�
�2𝜀𝜀(𝑡𝑡 − 𝑡𝑡𝑚𝑚𝑚𝑚𝛼𝛼)

�𝐸𝐸0(𝑡𝑡′)𝑑𝑑𝑡𝑡′
𝑡𝑡

−∞

,          (SII. 3) 

where 𝑡𝑡𝑚𝑚𝑚𝑚𝛼𝛼 denotes the time instant of the maximum of 𝐸𝐸0(𝑡𝑡), 𝐽𝐽1 denotes the first-order Bessel function 

and 𝜀𝜀 = 𝛼𝛼2𝛼𝛼
𝑇𝑇2

.Under the assumption of a weak resonant absorption, i.e., 𝛼𝛼2𝑧𝑧 ≪ 1, the term 𝐽𝐽1��2𝜀𝜀(𝑡𝑡−𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚)�
�2𝜀𝜀(𝑡𝑡−𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚)

 

can be approximated by 1
2
. With the notation 𝐸𝐸𝑖𝑖𝑖𝑖𝑠𝑠𝑡𝑡(𝑧𝑧, 𝑡𝑡) = 𝐸𝐸0(𝑡𝑡) exp �−1

2
𝛼𝛼1𝑧𝑧�, Eq. (SII.3) becomes: 

𝐸𝐸(𝑧𝑧, 𝑡𝑡) ≈ 𝐸𝐸𝑖𝑖𝑖𝑖𝑠𝑠𝑡𝑡(𝑧𝑧, 𝑡𝑡) −
1
2
𝛼𝛼2𝑧𝑧
𝑇𝑇2

exp �−
𝑡𝑡 − 𝑡𝑡𝑚𝑚𝑚𝑚𝛼𝛼

𝑇𝑇2
� ∙ � 𝐸𝐸𝑖𝑖𝑖𝑖𝑠𝑠𝑡𝑡(𝑧𝑧, 𝑡𝑡′)𝑑𝑑𝑡𝑡′

𝑡𝑡

−∞

.                                                    (SII. 4) 
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The first term on the rhs of Eq. (SII.4), 𝐸𝐸𝑖𝑖𝑖𝑖𝑠𝑠𝑡𝑡(𝑧𝑧, 𝑡𝑡), corresponds to the instantaneous (non-resonant) 

sample response. Due to the short duration of the exciting pulse, the envelope of this term decays very 

fast in time (see example in Extended Data Fig. 6b). The second term describes the macroscopic 

(ensemble-integrated) electric field emitted by the coherent oscillations of the resonantly excited 

molecular dipoles, modelled by the Lorentz oscillator. The strength of these oscillations (dubbed “dark 

waves” by Lanin et al.14) is proportional to the number of emitters (∝ 𝛼𝛼2𝑧𝑧) and decays exponentially with 

the effective dephasing time 𝑇𝑇2. The phase of this field is opposite to that of the instantaneous response, 

which is reflected in the opposite sign with respect to 𝐸𝐸𝑖𝑖𝑖𝑖𝑠𝑠𝑡𝑡(𝑧𝑧, 𝑡𝑡) and which leads to the appearance of a 

Lorentzian “absorption dip” in the FD representation of the total field after traversing the sample13. 

Extended Data Fig. 6c shows the magnitudes of the Fourier transforms of the two individual terms of the 

rhs of Eq. (SII.4). Note that the central frequency here is 0 since the electric field envelope is considered 

(rather than the full, oscillating, electric field). 

With the condition 𝛼𝛼2𝑧𝑧 ≪ 1, a second approximation can be readily performed, namely that on the time 

scale of the excitation pulse, the field is not attenuated by the resonant absorption14. In analogy to Eq. (8) 

in Lanin et al.14, Eq. (SII.4) becomes: 

𝐸𝐸(𝑧𝑧, 𝑡𝑡) ≈ 𝐸𝐸𝑖𝑖𝑖𝑖𝑠𝑠𝑡𝑡(𝑧𝑧, 𝑡𝑡) −
1
2
𝛼𝛼2𝑧𝑧
𝑇𝑇2

Θ(𝑡𝑡 − 𝑡𝑡𝑚𝑚𝑚𝑚𝛼𝛼)exp �−
𝑡𝑡 − 𝑡𝑡𝑚𝑚𝑚𝑚𝛼𝛼

𝑇𝑇2
� ∙ � 𝐸𝐸𝑖𝑖𝑖𝑖𝑠𝑠𝑡𝑡(𝑧𝑧, 𝑡𝑡′)𝑑𝑑𝑡𝑡′

∞

−∞

,                            (SII. 5) 

where Θ(𝑡𝑡) denotes the Heaviside step function. The approximation in (SII.5) improves for shorter initial 

pulse duration and longer 𝑇𝑇2. The example given in Extended Data Fig. 6 illustrates that this approximation 

is very good for the regime in this paper. Thus, the second term of the rhs of Eq. (SII.5) is a good 

approximation for the field emitted by the resonantly excited polarization, corresponding to a Lorentzian 

emission line with a spectral maximum (absolute value of the electric field envelope) of   1
2
𝛼𝛼2𝑧𝑧𝑧𝑧  with  

𝑧𝑧 = ∫ 𝐸𝐸𝑖𝑖𝑖𝑖𝑠𝑠𝑡𝑡(𝑧𝑧, 𝑡𝑡′)𝑑𝑑𝑡𝑡′∞
−∞ . 

A (small) portion of the resonant sample response overlaps in time with the instantaneous response. To 

minimize the contribution of the latter to the recorded signal, and capture mostly the resonant response 

in a background-free manner, a high-pass time filter beginning at the time 𝑡𝑡𝐵𝐵 can be applied to the electric 

field envelope expressed by (SII.5). Assuming that the contribution of 𝐸𝐸𝑖𝑖𝑖𝑖𝑠𝑠𝑡𝑡(𝑧𝑧, 𝑡𝑡) is negligible after 𝑡𝑡𝐵𝐵, we 

obtain the following expression for the time-filtered resonant response: 

Θ(𝑡𝑡 − 𝑡𝑡𝐵𝐵)𝐸𝐸(𝑧𝑧, 𝑡𝑡) ≈ −
1
2
𝛼𝛼2𝑧𝑧
𝑇𝑇2

Θ(𝑡𝑡 − 𝑡𝑡𝐵𝐵)exp �−
𝑡𝑡 − 𝑡𝑡𝐵𝐵
𝑇𝑇2

� exp �−
𝑡𝑡𝐵𝐵
𝑇𝑇2
� ∙ 𝑧𝑧.                                                 (SII. 6) 

In analogy to the second term in (SII.5), this expression is a good approximation for a Lorentzian emission 

line, whose field is delayed by the time 𝑡𝑡𝐵𝐵 and whose maximum spectral amplitude is attenuated by the 

factor exp �− 𝑡𝑡𝐵𝐵
𝑇𝑇2
�, see Extended Data Fig. 6c.  
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At the central frequency (𝑖𝑖 = 0 Hz, corresponding to 0 cm-1), the magnitude of the Fourier transform of 

𝐸𝐸𝑖𝑖𝑖𝑖𝑠𝑠𝑡𝑡(𝑧𝑧, 𝑡𝑡) is: ∫ 𝐸𝐸𝑖𝑖𝑖𝑖𝑠𝑠𝑡𝑡(𝑧𝑧, 𝑡𝑡)exp(−𝑖𝑖𝑖𝑖𝑡𝑡)𝑑𝑑𝑡𝑡∞
−∞ =  ∫ 𝐸𝐸𝑖𝑖𝑖𝑖𝑠𝑠𝑡𝑡(𝑧𝑧, 𝑡𝑡)𝑑𝑑𝑡𝑡 = 𝑧𝑧∞

−∞ . In conclusion, the magnitude ratio of 

the field envelopes corresponding to the resonant and the high-pass time-filtered instantaneous 

responses amounts to  1
2
𝛼𝛼2𝑧𝑧 exp �− 𝑡𝑡𝐵𝐵

𝑇𝑇2
�. 

The observable in FRS is the oscillating electric field (rather than its envelope). The electric field can be 

obtained by multiplying the envelope 𝐸𝐸(𝑧𝑧, 𝑡𝑡) by an oscillating function cos(𝑖𝑖0𝑡𝑡) at the carrier angular 

frequency 𝑖𝑖0 (here, we omit the carrier-envelope phase for simplicity). According to basic Fourier 

transform laws, this results in a two-sided FD spectrum, consisting of two copies of the spectrum of 

𝐸𝐸(𝑧𝑧, 𝑡𝑡), shifted to the wavenumbers corresponding to −𝑖𝑖0 and 𝑖𝑖0, respectively, each with a magnitude 

decreased by 1
2
. Since this reduction of magnitude applies for both the resonant and instantaneous parts 

of the response, their magnitude ratio remains the same. 

Assuming a noise (background signal) level 𝑁𝑁, the MDA for FRS at the frequency 𝑖𝑖0 can be defined as the 

value 𝛼𝛼2𝑧𝑧, at which the high-pass time-filtered signal emitted upon resonant excitation equals this level 

(𝐸𝐸/𝑁𝑁 = 1). Normalizing this equality by the magnitude of the instantaneous field, we obtain: 

1
2
𝛼𝛼2𝑧𝑧 exp �−

𝑡𝑡𝐵𝐵
𝑇𝑇2
� =  

1
𝐷𝐷𝐷𝐷𝐸𝐸

,                                                                                                                               (SII. 7) 

where 𝐷𝐷𝐷𝐷𝐸𝐸 denotes the magnitude ratio of the instantaneous field to the background in the FD at the 

carrier frequency 𝑖𝑖0 and can therefore be interpreted as the dynamic range of the measurement at this 

frequency. Eq. (2) immediately follows from (SII.7) (note that in Eq. (2) the dephasing time 𝑇𝑇2 is denoted 𝑇𝑇𝑁𝑁). 

The parallel between Eq. (SII.3) and Beer’s law is noteworthy and readily justifies the extension of the 

MDA criterion in Eq. (2) to all optical frequencies within the spectrum of the initial pulse. Considering in 

the FD the instantaneous response as a reference, the magnitude of the envelope of its electric field 

|ℰ𝑖𝑖𝑖𝑖𝑠𝑠𝑡𝑡(𝑧𝑧,𝑖𝑖)| at 𝑖𝑖 = 0 is attenuated by exp �−1
2
𝛼𝛼2𝑧𝑧�. For 𝛼𝛼2𝑧𝑧 ≪ 1 the exponential function is well 

approximated by the first-order term in its Taylor expansion and we obtain: 

|ℰ(𝑧𝑧, 0)| ≈  |ℰ𝑖𝑖𝑖𝑖𝑠𝑠𝑡𝑡(𝑧𝑧, 0)| �1 −
1
2
𝛼𝛼2𝑧𝑧� .                                                                                                          (SII. 8) 

With |ℰ𝑖𝑖𝑖𝑖𝑠𝑠𝑡𝑡(𝑧𝑧, 0)| = 𝑧𝑧, the second term on the rhs of Eq. (SII.8) corresponds to the maximum of the 

Lorentzian emission peak obtained by Fourier transforming the rhs of Eq. (SII.3). Spectrally shifting the 

same Lorentzian absorber in the FD to a different frequency 𝑖𝑖 ≠ 0 results in the TD in a Lorentzian 

exponential decay whose amplitude is scaled to |ℰ𝑖𝑖𝑖𝑖𝑠𝑠𝑡𝑡(𝑧𝑧,𝑖𝑖)| and with a phase shift given by the 

frequency shift in the FD which does not affect the MDA criterion derived here. In analogy to (SII.6), high-

pass time-filtering this signal starting at 𝑡𝑡𝐵𝐵 results in a further attenuation by exp �− 𝑡𝑡𝐵𝐵
𝑇𝑇2
�. In conclusion, 

equations (SII.7) and (1) can be extended to all frequencies 𝑖𝑖 by extending the definition of 𝐷𝐷𝐷𝐷𝐸𝐸 as the 
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magnitude ratio of the measured field of the instantaneous response (i.e. 1
2

|ℰ𝑖𝑖𝑖𝑖𝑠𝑠𝑡𝑡(𝑧𝑧,𝑖𝑖)|) to the 𝑖𝑖-

dependent background level. 

 

III. Benchmarking with Fourier-transform infrared (FTIR) spectrometry 

The FTIR spectrometer-based instrument (in the following, briefly “FTIR”) used for all benchmarking 

measurements reported in this paper was a commercial, research-grade device (MIRA Analyzer, Micro 

Biolytics GmbH). The thermal source sends milliwatt-level broadband radiation to the 8-µm-thick liquid 

cuvette. The cuvette is filled by an automated microfluidic system. The cuvette thickness was chosen by 

the manufacturer for high sensitivity with the FTIR device. For the Sterling-motor-cooled detector with an 

area of 7.85 × 10-3 cm2, the manufacturer provided a peak detectivity D* = 45.59 × 109 cm √Hz W⁄  at the 

wavelength of 10.49 µm, a frequency of 10 kHz, and a bias voltage of -25mV.  

To compare the performance of our FTIR device with the state of the art reported in literature, we 

evaluated the RMS (root-mean-square) noise of the 100 % lines of water in the spectral region between 

1600 and 1700 cm−1, in analogy to the measurement reported in Schwaighofer et al.15 performed with the 

high-end Bruker Vertex 80v device employing a liquid-nitrogen-cooled MIR. The latter device yielded an 

RMS noise of 2.75 × 10-5 (evaluated as the RMS of the nominally 0 absorbance across the above-

mentioned 100-cm-1 spectral window) at a spectral resolution of 2 cm-1 and a measurement time of 53 s, 

without exchange of the water sample in the 8-µm-thick cuvette. With our FTIR device and comparable 

parameters (spectral resolution: 4 cm-1, measurement time: 45 s, 8-µm-thick cuvette), a similar value of 

2.8 × 10-5 was obtained, albeit with exchanging the water sample in the cuvette between the reference 

and sample measurement. Thus, the differences between the performances of the two high-end FTIRs are 

minor. 

The spectral coverage of the FTIR instrument is broader than that of the FRS instrument, and all of the 

FTIR measurements reported in this paper were performed with the full spectral coverage of the FTIR. To 

exclude an unfair comparison between the performance of FRS and that of FTIR due to this discrepancy in 

bandwidth (in particular a decrease in sensitivity due to the broader bandwidth for the FTIR), we 

compared the noise RMS of the 0-absorption line with and without a 7.3-µm long-pass filter (Edmund 

Optics). The detector-limited spectrum of the FTIR reaches up to 12 µm, such that with the long-pass filter 

the spectral coverage of the two instruments was very similar. Because our FTIR is a sealed commercial 

product (customised for liquid-phase measurements), the insertion of the long-pass filter in our 

instrument was not feasible. Instead, this comparison measurement was performed by the device 

manufacturer with an identical device. With parameters optimised for each setting, a decrease of the 

RMS-SNR of the 0-absorption line to 75% was observed with the long-pass filter in the beam (in the 

spectral range from 1020 to 1220 cm-1). Thus, while a slight improvement is indeed detectable, the 
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expected sensitivity improvement in this bandwidth-filtered case is marginal (e.g., a limit of detection of 6 

µg/ml instead of 8 µg/ml is expected for DMSO2 solved in water). 

An identical microfluidic system, including the cuvette was adapted for the FRS measurements. For FRS, 

we used a thicker liquid layer (i.e., larger distance between the cuvette walls), as allowed by the higher 

dynamic range of our instrument. 

  

IV. Sample preparation, retrieval of concentrations and experimental validation of Eq. (2) 

For this experiment, we prepared a dilution series of methylsulfonylmethane solved in pure water 

(Millipore, Check System). First, we prepared 50 ml of 10 mg/ml DMSO2 in water, serving as a stock 

solution for the preparation of the dilution series. Next, the stock solution was watered down in several 

steps to obtain concentrations of 1000, 30, 10, 3, 1, 0.7, 0.5, 0.3, 0.1 µg/ml. Each concentration was 

prepared in a large volume (~10 ml) and with a maximal dilution factor of 10, in order to minimize errors 

in the obtained concentrations due to sample handling.  

For each prepared concentration, more than 5 aliquots were measured under identical conditions with 

FRS and FTIR. Concentrations above 10 µg/ml were measured 5 times and smaller concentrations were 

measured more than 10 times to obtain sufficient statistics. The nominal spectral resolution of both 

measurements was 4 cm-1 and the duration of each measurement was set to 45 s, over which several 

individual scans were averaged, for both instruments. 

The FTIR spectrometer (described in Supplementary Section III) is a fully automated, commercial product. 

The raw output data consists in absorbance spectra (for the pre-defined spectral resolution and 

measurement time). With the absorbance spectrum measured at a calibration concentration well above 

the instrument noise floor (1 mg/ml), for each individual measurement we extracted the solution 

concentration via a 1-parameter least-squares fit using Beer’s law, fitting the spectrum with the unknown 

concentration to the spectrum with the calibration concentration of 1 mg/ml.  

The raw time-domain data recorded with the FRS instrument were truncated to the temporal window 

between 1.5 and 4 ps (referenced to the pulse envelope maximum). To isolate the response of the molecular 

signal of interest, all sample measurements were referenced to pure water measurements by subtracting the 

time-domain trace of a reference measurement from the time-domain trace of the sample measurement. Like 

in the case of the FTIR data processing, a calibration measurement at a concentration of 1 mg/ml was 

performed, and used for retrieving the concentrations of the individual samples via 1-parameter fits. To this 

end, the bandpass-filtered time-domain data were Fourier-transformed and the wavenumber range 950 – 

1350 cm-1 was considered. As opposed to a fit of the raw time-domain data, the latter operation excludes 

noise/measurement errors outside this spectral window containing molecular signal.  
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Due to the relatively low calibration concentration, the resonant response of the DMSO2 molecules to the 

impulsive excitation is in very good approximation linear in concentration (cf. derivation in Supplementary 

Section II). For the bandwidth-optimised setting, the narrowband fit (capturing mainly the absorption at 

1139 cm-1) was performed in the wavenumber range 1080 – 1200 cm-1, and the broadband fit in the range 

950 – 1500 cm-1. 

By performing statistics on the retrieved concentrations, we obtained the mean and standard deviation 

values for the retrieved concentrations for each set of samples with nominally identical DMSO2 

concentration. The results are plotted in Fig. 3.  

It is noteworthy that the modelled resonant response at 1139 cm-1, using only the width and strength of 

the absorption line (as determined from an FTIR measurement at a calibration concentration), and linearly 

scaled to the nominal concentrations of the samples measured with FRS, is in excellent agreement with 

the measured response of the latter, as can be seen in Extended Data Fig. 7. In addition, the modelled 

response for a 200-ng/ml solution yields a maximum spectral intensity which coincides with the measured 

noise floor, demonstrating the consistency between the LOD determination by the statistics of the 

concentration retrieval (Fig. 3) and that given by Eq. (2). 

Using the sub-60-fs infrared excitation pulses (Supplementary Information Section I) and the bandwidth-

optimised detection setting of the FRS instrument (Fig. 1d, continuous line) yields an experimentally 

determined value of 𝑡𝑡𝐵𝐵 = 450 fs at the expense of a factor-of-ten reduction of 𝐷𝐷𝐷𝐷𝐸𝐸 (Fig. 1d). The lowered 

𝐷𝐷𝐷𝐷𝐸𝐸 would, in its own right, result in an increase of the minimum detectable concentration by the same 

factor, according to Eq. (2). This is toned down to a factor of three by shortening 𝑡𝑡𝐵𝐵 from 1.5 ps to 0.45 ps, 

predicting 600 ng/ml as the new limit of detection. This value is in excellent agreement with the 

experimentally determined value when considering the single oscillator centred at 1139 cm-1 for 

concentration retrieval, corroborating the sensitivity of 𝑀𝑀𝐷𝐷𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹 to 𝑡𝑡𝐵𝐵. In reality, the broadband excitation 

brings more than one vibrational mode into oscillation (see also temporal “beating” in Fig. 1b as well as the 

multiple “absorption dips” in Fig. 1c), resulting in a further decrease of the limit of detection to 450 ng/ml.   

 

V. Statistics of the waveform stability of human blood serum 

The statistics shown in Fig. 4c, d were obtained by evaluating 500 individual scans of the same blood 

serum sample (each scan taking 4.5 s). The individual EOS traces were aligned in time using a one-

parameter (time shift) optimisation. Furthermore, a one-parameter amplitude correction of all traces to 

the maximum amplitude of the first measurement was performed, allowing for a compensation of minor, 

slow drifts of the laser intensity with time. Subsequently, the traces were frequency-filtered by a 20th-

order super-Gaussian filter suppressing any noise outside the spectral window 900 – 1450 cm-1. 
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For each trace, in steps of a few field oscillations, a sinus curve of ~1.5 oscillations was fitted with respect 

to 4 parameters: amplitude, amplitude offset, frequency and phase. The relative amplitude noise and the 

absolute timing jitter of the zero crossings, shown in Fig. 4c and d, respectively, were obtained by 

evaluating the statistics of the amplitude and phase fit parameters, respectively. Because the oscillating 

EOS trace exhibits regions of strong deviation from a sinus function (e.g., due to the temporal evolution of 

the GMF), we excluded fits with relative errors larger than 3 %. This resulted in the grey dots in Fig 4c, d. 

The black, continuous lines indicate a trend, calculated by interpolating the grey points with an 82-point 

LOWESS filter (OriginPro 2017). 

 

VI. Sample preparation and data processing for complex samples – human blood serum spiked 

with aqueous DMSO2 solutions, and mixtures of maltose and melibiose solved in water 

 

Spiked serum 

Spiked serum samples were prepared using pooled human serum (BioWest, Nuaillé, France). For each 

prepared concentration, 900 µl of serum was mixed with 100 µl of DMSO2 in pure water. Subsequently, 

1000, 100, 50, 10, 5 and 0 µg/ml of DMSO2 solution were used to obtain spiked sera samples with 100, 10, 

5, 1, 0.5, 0 µg/ml DMSO2 concentrations, respectively. In order to avoid systematic effects in the sample 

preparation that might lead to a separation in the subsequent principal component analysis, each 

concentration of spiked serum was prepared 5 times independently. Concentrations below 10 µg/ml were 

measured at least 8 times. For FTIR measurements 0.5 µg/ml was excluded, as the previous experiment 

showed that this is below the limit of detection of our FTIR. 

While the measurement time (45 s) and the spectral resolution (4 cm-1) were set equal for both 

instruments, due to the different nature of the two measurement devices, the output data which we 

further used for principal component analysis (PCA), were of different nature. To minimize the effect of 

pure data processing on the difference in the classification performance with the two instruments (cf. Fig. 

5) we chose similar data processing parameters for both instruments wherever possible. In the following, 

the data processing steps for both instruments are described.  

The absorbance spectra were measured with FTIR in the spectral range 930 – 3050 cm-1. In order to reduce 

the influence of a fluctuating baseline (which is a well-known problem in FTIR data processing16), and to 

sharpen essential spectral features, we performed standard FTIR data processing steps of smoothing with a 

Savitzky–Golay filter (with the width of 15 data points) and calculated the 2nd derivative of the absorption 

spectra. After vector normalization, the spectra were truncated to the spectral range from 1000 to 1400 cm-

1, where essential spectral features of the DMSO2 are located. After this pre-processing, the obtained vectors 
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were analysed with PCA. We emphasize that among a multitude of pre-processing routines, these above-

listed pre-processing steps led to the best separation performance with PCA. 

The FRS apparatus presented in this paper delivers raw data recorded as described in Supplementary 

Information Section I. In analogy to the FRS data processing described in the previous section, first, all 

spiked serum sample measurements were referenced to pure water samples (measured in alternating 

order to the sample measurements) by subtraction of time-domain data. Subsequently, for the 

compatibility with FTIR data processing, the data in a temporal window in the wake of the pulse were 

Fourier-transformed. The Savitzky–Golay filter was applied to the real and imaginary part of the complex 

vectors independently and the 2nd derivative of the spectra was calculated. After vector normalization the 

spectra were truncated to the spectral range from 1000 to 1300 cm-1. PCA was applied to the complex-

valued result of the Fourier-transformed time-domain data. 

In all our measurements whose results were evaluated with PCA, the nominal variation among different 

classes of samples can be parametrised by one parameter. Thus, for simplicity, for the PCA results reported 

in the main text, we considered the first principal component only, for both instruments, which is expected 

to describe the maximum separation of differing classes. This expectation is confirmed by the similarity of 

the first loading vector to the pre-processed data for each instrument (Extended Data Figure 8a-d). 

For the more complex samples (here, both spiked serum and a mixture of sugars solved in water), the 

choice of the time values for the beginning and end of the temporal window considered for processing 

GMFs is not obvious, and an optimum choice might depend on the specific experiment. For the case of the 

FRS data obtained from the measurements of the spiked serum samples, we therefore varied these two 

important free parameters over broad ranges (beginning time 𝑡𝑡𝐵𝐵 from -0.5 ps to 2 ps with respect to the 

envelope maximum of the time-domain signal, and time window length ∆𝑡𝑡 from 0.05 ps to 4.5 ps with 

respect to the beginning time 𝑡𝑡𝐵𝐵) and evaluated a figure of merit (FOM) for the quality of separation of 

classes (defined by the spiking concentration). The FOM evaluates the average spread (root mean square) 

of classes normalised to the maximum distance of the centroids of the 0 µg/mL class and 10 µg/mL class, 

with respect to the first principal component.  

The result is shown in Extended Data Figure 8e. The regions of good separation are located in both cases 

at positive 𝑡𝑡𝐵𝐵 values, confirming that noise of the excitation affects the separation performance. 

 

Aqueous solution of maltose and melibiose 

For this experiment, two sugars, maltose (D-Maltose; Serva Electrophoresis GmbH) and melibiose (D-(+)-

Melibiose; Sigma-Aldrich) were mixed in pure water at a constant total concentration of 100 µg/ml and at 

varying relative concentrations, using the procedure described in Section IV. The two sugars were chosen 

to exhibit similar spectral fingerprints, see Extended Data Figure 9.  
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In order to capture absorption features in a wavenumber band as broad as possible, this measurement 

was performed with the bandwidth-optimised setting of our instrument, covering the spectral range 

between 900 cm-1 and 1524 cm-1 at -20-dB intensity, cf. Fig. 1d. With this setting, the intensity dynamic 

range of detection was roughly 100 times lower than with the previous setting. Furthermore, the recorded 

EOS traces exhibit a strong signal from the internal reflection of the thinner EOS at 1.6 ps after the 

excitation pulse, see Fig. 1b.  

With the same data processing as for the previous experiment, the loading vectors for PCA and result of 

the separation FOM are shown in Extended Data Fig. 8f-i and j, respectively. We considered concentration 

ratios of 50/50, 55/45, 60/40, 70/30, and 100/0. Like in the case of the spiked serum, for both instruments 

the first principal component resembles the processed spectral data representing the single-parameter 

nominal variation among the classes. As in the previous experiments, regions of good PCA separation are 

located at positive 𝑡𝑡𝐵𝐵 values. In addition, both FOM maps indicate a sharp upper bound of the corridor of 

good separation at 𝑡𝑡𝐵𝐵 + ∆𝑡𝑡 = 1.5 ps, which is the temporal value for the beginning of the strong internal 

reflection. This observation confirms the detrimental effect of excitation noise on the performance of FRS 

and justifies future efforts addressing both the suppression of multiple reflections, and of further 

temporal compression of the excitation. 

For the PCA results shown in Fig. 5, for both instruments the same nominal concentrations were used in 

both experiments, except for not including serum spiked with 0.5 µg/ml DMSO2 in the FTIR measurement 

due to this concentration being below the LOD of the instrument. In Fig. 5, the mean values and standard 

deviations of the 1st principal component value are shown. 

 

VII. Measurements of living human cells and plant leaves  

THP-1 human leukemic cells (ATCC® TIB-202™) were cultured under standard culture conditions in RPMI 

1640 Complete medium (EMD Millipore Corp.) supplemented with 10% fetal calf serum (FCS; EMD 

Millipore Corp.). Prior to measurements cells were washed twice with phosphate buffered saline (PBS; 

Sigma), resuspended and measured in PBS, prepared at a density of about 10 × 106 cells/ml. 

Resuspended cells were kept at 37 °C until measurement.  

Measurements were performed with a 100-µm thick flow-through measurement cell (cuvette) consisting 

of two 5-mm anti-reflection-coated germanium windows (Spectral Systems, LLC). The cell suspension was 

injected using a 1-ml manual syringe. The interrogation volume was around 25 nanoliters, thus probing on 

average 250 cells per measurement. As reference, PBS only (without cells) was measured. The flow-

through measurement cell and adjacent tubing were cleaned between measurements, using deionized 

water. The total integration time per measurement was 48 seconds with a nominal spectral resolution of 8 
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cm-1. The five measurements, shown in Fig. 6c, were prepared from 4 independent tissue culture flasks, 

and each measurement was repeated 5 times. 

On average, the power spectral density (i.e., intensity) of the GMF signal of the living human cells, 

obtained by subtracting the FRS signal of a PBS only (reference) measurement from a cell-based sample 

measurement (THP-1 human cells resuspended in PBS ) lies 7 orders of magnitude (averaged in the range 

between 900 and 1500 cm-1) above the detection noise floor. This illustrates the capability of FRS to 

investigate strongly absorbing samples in transmission, without a significant reduction of the signal-to-

noise ratio due to either the low level of the transmitted power, or to detector noise. 

The absorbance and phase spectra in Fig. 6c were calculated after removing the multiple reflection 

artefact located at 1500 fs via truncation of the raw time domain traces at 1400 fs. The time-filtered 

spectra were obtained by subtracting the THP-1 cell measurement from the respective reference PBS 

measurement using a temporal filter opening at 325 fs and closing at 1400 fs, before applying the Fourier 

transform. All resulting THP-1 spectra were rescaled by normalizing their respective area under the curve 

to their average value. The standard deviation of the THP-1 measurements shown in Fig. 6c  was 

calculated after rescaling. The obtained spectra are well reproducible for different experiments, 

performed on THP-1 cells cultured and measured on different days.  

The measurement uncertainty was defined as the root-mean-square noise of the baseline between 1000 

and 1480 cm-1 and was evaluated from multiple PBS measurements that were referenced to PBS 

(including sample exchange). The average signal-to-noise ratio (SNR) is obtained by dividing the maximum 

absorbance/power spectral density by the measurement noise. We evaluated an average SNR of 61 for 

the absorbance spectra and an SNR of 102 for the time-filtered spectra. Note that these values include 

significant signal variations due to sample exchange.  

Transmission measurements of leaves from Salix caprea, a common tree plant, were performed 

immediately after collection. The leaves were mounted in a free-standing geometry using a leaf clip. The 

total measurement time was 1.5 min with a spectral resolution of 8 cm-1. The absorbance and phase 

spectra were calculated after removing the multiple reflection artifacts located at 1500 fs via truncation of 

the raw time domain traces at 1400 fs. Although only the spectra of one leaf at one position are shown in 

Fig. 6d, we were able to obtain very similar spectra from different positions on the leaf and from different 

leaves of the same tree, as well as those of leaves from the same tree measured on other days.  After the 

optical measurement, the leaf was sliced and its thickness was measured using an optical microscope, 

shown in Fig. 6a.  
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2.3 Optimumsample thickness for trace analyte detection
with �eld-resolved infrared spectroscopy

Preface: Field-resolved spectroscopy gives direct access to the electric �eld. This implies that
the measurement signal scales linearly with the electric �eld strength. This simple fact has
important consequences for the measurement of strongly attenuating samples – a common
challenge in infrared spectroscopy as water is a strong absorber and present in many systems.

For any spectroscopic measurement it is desirable to record the molecular signal with
the highest possible signal-to-noise ratio (SNR). A general approach to obtaining a stronger
molecular signal is to increase the interaction length with the analyte under test. However,
this brings about an attenuation of the light intensity and, in the case of long path lengths,
ultimately a reduction in the (relative) measurement SNR. It is therefore desirable to optimize
the interaction length with the sample under this boundary condition.

For most of the established infrared spectroscopies, the measurement SNR scales linearly
with the light intensity. Consequently, if the sample attenuates the light intensity by for
example two orders of magnitude, the SNR is also reduced by the same amount. Therefore,
any recommendations for the optimum or suggested sample thickness have been based on this
assumption so far [104, 105]. In contrast to that the SNR in FRS scales linearly with the electric
�eld. Considering the same example as above, i.e. if the sample attenuates the light intensity
by two orders of magnitude, the SNR is reduced by only one order of magnitude.

Based on these considerations, we theoretically evaluated the limit of detection (LOD) of
a given analyte in dependence of the light attenuation. We show that for �eld-scaling – in
comparison to intensity-scaling – a lower LOD can be achieved for a much wider range of
interaction lengths. This e�ectively increases the useable range of path lengths in applications.
In addition, we �nd that the theoretical optimum sample thickness in FRS [39] is twice the
length considered optimal for FTIR measurements [104, 105]. We believe these features of FRS
will be advantageous for existing applications of infrared spectroscopy, but will also broaden
the potential �eld of applications due to the relaxed sample thickness requirements.
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ABSTRACT: The strong absorption of liquid water in the
infrared (IR) molecular fingerprint region constitutes a challenge
for applications of vibrational spectroscopy in chemistry, biology,
and medicine. While high-power IR laser sources enable the
penetration of ever thicker aqueous samples, thereby mitigating the
detrimental effects of strong attenuation on detection sensitivity, a
basic advantage of heterodyne-measurement-based methods has
to the best of our knowledgenot been harnessed in broadband
IR measurements to date. Here, employing field-resolved spec-
troscopy (FRS), we demonstrate in theory and experiment
fundamental advantages of techniques whose signal-to-noise ratio
(SNR) scales linearly with the electric field over those whose SNR
scales linearly with radiation intensity, including conventional
Fourier-transform infrared (FTIR) and direct absorption spectroscopy. Field-scaling brings about two major improvements. First, it
squares the measurement dynamic range. Second, we show that the optimum interaction length with samples for SNR-maximized
measurements is twice the value usually considered to be optimum for FTIR devices. In order to take full advantage of these
properties, the measurement must not be significantly affected by technical noise, such as intensity fluctuations, which are common
for high-power sources. Recently, it has been shown that subcycle, nonlinear gating of the molecular fingerprint signal renders FRS
robust against intensity noise. Here, we quantitatively demonstrate this advantage of FRS for thick aqueous samples. We report sub-
μg/mL detection sensitivities for transmission path lengths up to 80 μm and a limit of detection in the lower μg/mL range for
transmission paths as long as 200 μm.

Molecular vibrational spectroscopies, such as Raman and
infrared (IR) spectroscopies, are versatile tools for

delivering chemical and molecular information on complex
samples in a fast, reliable, and label-free manner.1 Every
molecule exhibits a unique spectrum of vibrational eigen-
states,2 leading to highly specific signals when a molecular
ensemble (for instance biofluids or tissue) is subjected to
spectroscopic interrogation. This “spectral fingerprint” con-
tains a wealth of information about the molecular composition,
structure, and conformation.1,2 This underlies numerous
applications in biology and medicine, such as comprehending
protein dynamics and folding,3 identifying cell phenotypes,4

quantifying blood-based clinical parameters,5 and detecting
cancerous states in tissues6 and biofluids.7,8

Typically, the study of biological systems is preferably
performed in their natural aqueous environment. While Raman
spectroscopy is well suited for transmission measurements
thereof, it suffers from weak signals.1 Broadband IR spectros-
copy, on the other hand, profits from large interaction cross
sections, potentially affording a unique combination of
detection sensitivity and molecular coverage.1 However, the
strong absorbance of (liquid) water in this spectral range has

severely limited the applicability of IR vibrational spectroscopy
(and microscopy) in transmission geometry so far. In fact, in
table-top Fourier-transform IR (FTIR) spectrometry setups,
the most commonly employed technology, the transmission
path length needs to be limited to <10 μm due to the modest
brightness of the source and the lack of high-sensitivity mid-
infrared (MIR) detectors.3,9 This implies severe practical
complications and limitations.
First, when studying living cells or (complex) biofluids,

sophisticated cell holders and/or microfluidic systems have to
be utilized, with small flow cross sections, complicating sample
handling and increasing the danger of clogging.10 Second,
strong water absorption prevents the investigation of thick
samples in transmission, such as large biological cells, cell
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complexes (e.g., 3D cell cultures), and (aqueous) tissue. To
circumvent the strong water absorption, attenuated total
reflection techniques11 are often applied, albeit at the cost of
even smaller penetration depths. Alternatively, the sample can
be dried, which excludes the study of live organisms and
strongly alters the sample.12

In order to work with larger path lengths and to mitigate the
loss in signal-to-noise ratio (SNR) due to strong water
absorption, it is necessary to use high-brightness sources like
synchrotrons or quantum cascade lasers (QCL). By utilizing
their increased MIR power, determination of glucose, lactate,
and triglycerides in blood serum with path lengths above 100
μm (1030−1230 cm−1)5 and spectroscopy of proteins in
aqueous solution in the Amide I and II region with path
lengths as large as 32 μm13 have been demonstrated. However,
power scaling is limited, because the strong water absorption
eventually results in heating of the samples. Therefore, a
further increase of the path length and/or sensitivity is not
readily achievable when the remaining transmitted intensity is
directly measured with (noisy) MIR photodetectors.
In this work, we demonstrate in theory and experiment the

potential of field-resolved infrared spectroscopy (FRS)14 to
overcome these long-standing limitations. FRS relies on the
excitation of resonant molecular vibrations with waveform-
stable, broadband MIR pulses and electric-field-resolved
detection of the emerging fingerprint waveforms. This brings
about two major advantages. First, the measurement signal
scales linearly with the electric field and, therefore, it decreases
with the square root of intensity attenuation. This effectively
squares the measurement intensity dynamic range, which is
usually limited by the detector dynamic range.15−17 Second,
temporal isolation of the resonant molecular signal from the
impulsive excitation renders FRS robust against fluctuations of
the latter.14

Together, these properties result in linear scaling of the
measurement SNR with the electric field. In the following, we
refer to this scaling behavior as f ield-scaling in order to
distinguish it from intensity-scaling techniques whose SNR
scales linearly with the light intensity reaching the detector
(e.g., conventional FTIR spectrometry). Although field-scaling
is not unique to FRS, with other methods, the presence of the
time-integrated sample signal (containing all noise contribu-
tion from the source) on the detector(s) makes it much more
challenging to achieve this regime, especially in conjunction
with high-power MIR sources. When applicable, field-scaling of
the SNR brings about fundamental advantages for measure-
ments of strongly absorbing samples.
For each SNR-scaling regime, we derive scaling laws for the

limit of detection (LOD) of a given analyte in a matrix material
(e.g., liquid water) having the absorption coefficient αM and
considering the total interaction length x. We show that for
field-scalingin comparison to intensity-scalinga lower
LOD can be obtained for a significantly wider range of
interaction lengths, which effectively increases the useable
range of path lengths in applications (Figure 1). We find that
the theoretical optimum sample thickness is twice the length
considered optimum for FTIR measurements.18,19 Finally, we
experimentally validate this formula, demonstrating that field-
scaling and intensity-noise robust detection can be achieved in
practice.

■ SCALING LAWS AND OPTIMUM ITERACTION
LENGTH

For a spectroscopic measurement, the optimum path length
depends on the SNR-scaling with intensity I. Typically, a
distinction into one of the three following scaling-regimes is
possible:2,20

(1) Square-root-scaling ( ∼ ISNR )
(2) Linear scaling (SNR ∼ I)
(3) Constant (SNR ∼ const)

The majority of MIR spectroscopies operate either in the
second or the third regime. For a given setup, the “operating
regime” often depends on the average signal power reaching
the detector.20 Usually, a system is intensity−noise limited at
high optical powers and, for decreasing power, eventually
becomes detector−noise limited. This has to be considered
when choosing the interaction length. By contrast, FRS has
been demonstrated to afford field-scaling operation for a range
of powers extending from a few hundred photons per second
to tens of milliwatts14 and, potentially, to Watt-level average
powers.21

For all scaling regimes, derivations of the optimum sample
thickness can be found in the Supporting Information. In the
following, we focus on the discussion of scaling laws for FRS
(i.e., field-scaling). Subsequently, we discuss to what extent
these apply to other spectroscopic techniques and how they
compare to those of conventional FTIR spectroscopy.
For any spectroscopic measurement, it is desirable to record

the molecular signal with the highest possible SNR. A general
approach to gaining a stronger signal is to increase the
interaction length with the analyte under test. However, this
brings about an attenuation of the light intensity due to
interaction with the matrix containing the analyte and, for large
path lengths, eventually decreases the (relative) measurement
SNR. This is particularly severe for aqueous solutions, as the
strong IR absorption of water is, unlike the molecules dissolved
in it, mostly of little spectroscopic interest. Therefore, it is
desirable to optimize the interaction length with the sample
under this condition.
According to Beer’s absoprtion law, the light intensity I (at a

certain frequency) after passing through a medium with
absorption coefficient α and propagation length x is given by I
= I0 e

−αx, where I0 denotes the intensity before the medium.
For the case of a field-scaling time-domain measurement, we

Figure 1. Theoretical limit of detection (LOD) of a given analyte
embedded within a matrix substance for field- and intensity-scaling
techniques. The theoretical LOD values were calculated assuming a
spectrometry device for both approaches offering the same SNR for a
non-attenuated beam. For weak attenuations by the matrix, the LOD
of field-scaling and intensity-scaling techniques are comparable. For
strong attenuations, field-scaling is advantageous.
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have previously derived a simple formula for the minimum
value of (αx)min detectable for a particular absorption line of a
molecule:14

i
k
jjjjj

y
{
zzzzzα =x

t
T

( )
2

DR
expmin

E

B

L (1)

Here, the electric-field dynamic range DRE is defined as the
ratio of the spectral amplitude of the electric field to the
detection noise for a given instrument setting (total measure-
ment time, etc.); TL denotes the dephasing time of the
considered absorption line. For a Lorentzian-shaped absorp-
tion with a spectral width υ, the decay time is TL = (πcv)−1,
with c being the speed of light. The parameter tB is defined as
the instant when the temporal window for an infrared-
background-free measurement begins.14

Now, let αM denote the absorption of water (or any other
matrix substance) and αA, the absorption of analyte molecules.
By increasing the interaction length x, the MIR beam is mainly
attenuated due to water absorption according to Beer’s law.
The electric field dynamic range for a certain optical frequency

v scales as ν = × − α ν( )DR ( ) DR exp x
E E

0 ( )
2

M with DRE
0 being

the dynamic range for the measurement of the unattenuated
radiation. Equation 1 now writes:
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The minimum for αA is reached for (see the Supporting
Information):

α= =x x 2F
opt M (3)

According to eq 3, the optimum interaction length is
independent of the system’s dynamic range and source
intensity noise. Therefore, for any FRS system, the choice of
an optimum liquid cuvette will depend not on the particular
specifications of the system but on only the absorption
coefficient αM of the matrix substance at the desired
wavelength.
For broadband spectroscopy, the choice of interaction

length becomes more complicated as αM might vary within the
spectral range of interest. This is for instance the case for
aqueous samples, for which MIR spectroscopy is most
informative between 1000 and 3000 cm−1. Due to the strong
water absorption band at 1640 cm−1 (HOH bending
vibration), the optimum interaction length for FRS is 7.4
μm, while at 2630 cm−1, it is 178 μm (Figure 2). In order to
maintain good measurement performance over the entire
spectral range, we suggest choosing a path length of ∼25 μm.
This keeps the expected LOD within 33% of the optimum
value at all wavenumbers (see the Supporting Information).
It is noteworthy that similar scaling laws apply to any

spectroscopic method whose SNR scales linearly with the field
strength. For example, Withayachumnankul et al.22 obtained a
similar expression for the optimum path length in THz time-
domain spectroscopy.23 However, their derivation assumes
that multiplicative noise (i.e., relative intensity noise) from the
source is negligible, without discussing under what circum-
stances this condition is met.
Similar considerations can be applied to asymmetric FTIR

spectrometers where the sample is placed in one arm of the
interferometer.20 However, due to limited dynamic range and

poor noise performance of the available MIR detectors as well
as due to source intensity noise, the favorable scaling behavior
with intensity attenuation may either not be reached at all or
only within a smaller range.
The discussed scaling laws and optimum interaction lengths

are in sharp contrast to spectroscopic methods whose SNR is
linearly proportional to the light intensity, as is the case for
conventional (i.e., symmetric) FTIR spectrometers.2 For the
comparison of the two scaling regimes, in the following, we
consider field- and intensity-scaling devices (e.g., a symmetric
and an asymmetric FTIR) with the same performance in terms
of minimum detectable absorption difference for non-
attenuated beams.
For weak attenuation (i.e., short path length and/or weakly

absorbing matrix), the LOD is comparable (Figures 1 and 2b).
For strong attenuation by the matrix (i.e., long path length
and/or strongly absorbing matrix), field-scaling is clearly
advantageous. This becomes particularly important for samples
with nonuniform thickness (e.g., biological tissue or living
cells) or varying total absorption and/or water content. In
addition, the field-scaling device inherently reaches a twice as
low LOD at an optimum path length that is twice the one of
the intensity-scaling devices (Figure 2a and the Supporting
Information).

Figure 2. (a) Optimum sample thickness for measurements in
aqueous media in dependence of the wavenumber for field-scaling
(blue) and intensity-scaling (red) techniques. The absorption
coefficient of water (top panel) determines the path length for
optimum sensitivity. (b) Theoretical limit of detection (LOD) of a
given analyte dissolved in water in dependence of the thickness of the
measurement cuvette at the different wavenumbers.
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In principle, SNR-scaling with field strength can also be
obtained with direct absorption spectroscopy (DAS) in the
MIR range. However, in practice, for DAS, this is only
applicable when MIR shot-noise-limited performance can be
reached over the entire measurement dynamic range. This is
technologically very challenging due to typically orders of
magnitude stronger source intensity noise. Additionally, shot-
noise-limited performance can only be achieved for high MIR
powers, as the noise-equivalent shot-noise power has to
overcome the noise of the MIR photodetectors. When
Brandstetter et al.5 investigated the path length with maximum
measurement SNR for a QCL-based DAS setup, they found it
to be 140 μm, determined by the intensity noise of the source.
In general, when a spectroscopic system is intensity-noise
limited, the full potential of the light source (set by photon
shot noise) cannot be exploited and the SNR-maximized path
length in experiment will be longer than the optimum value in
a detection-limited setting (see the Supporting Information).

■ EXPERIMENTAL SETUP
In the remainder of the paper, we verify these theoretical
considerations experimentally, employing the mid-infrared
field-resolving spectrometer described in detail in our previous
work14 (see Figure 3). In short, a Kerr-lens mode-locked

Yb:YAG thin-disc oscillator emits a 28 MHz repetition-rate
train of 220 fs pulses spectrally centered at 1030 nm, with an
average power of 100 W. The near-infrared (NIR) pulses are
spectrally broadened in three nonlinear multipass bulk-
transmission stages24 and temporally compressed to 16 fs.25

Few-cycle mid-infrared pulses, spectrally covering the 910−
1530 cm−1 range at −20 dB spectral intensity with an average
power of 50 mW, are obtained via intrapulse difference
frequency generation (IPDFG) in a LiGaS2 crystal. After the

IPDFG stage, the NIR pulses are separated from the MIR
beam via a custom-designed dichroic mirror, recompressed to
16 fs, and optically delayed with respect to the MIR transients
via a mechanical stage. After passing through a chopper wheel
modulating the signal at 10 kHz for lock-in detection, the MIR
radiation traverses a liquid cuvette for transmission measure-
ments. Custom multilayer optics were used to compensate for
the dispersion of the MIR pulse upon propagation through the
ZnSe windows of the liquid cuvette and temporally com-
pressed the MIR pulse to 59 fs (intensity envelope full width at
half-maximum).26

The MIR and NIR beams are temporally and spatially
recombined at a germanium plate and sent to an electro-optic
sampling detection system14,27,28 that allows for recording the
MIR waveform. To increase measurement stability, the entire
MIR beam path was put under vacuum conditions and an
active intensity noise stabilization29 as well as interferometric
delay tracking30 of the interferometer were implemented.

■ RESULTS
The power spectrum (Figure 3b) was obtained via Fourier
transforming the recorded time trace (Figure 4a). After passing
through liquid cuvettes with path lengths of 7, 34, and 50 μm,
we obtained peak intensity dynamic range values of 5 × 1010, 2
× 1010, and 0.5 × 1010 for a total measurement time of 20 s
with a spectral resolution of 10 cm−1, respectively. The wide
intensity dynamic range renders the instrument advantageous
for measurements of strongly absorbing (aqueous) samples.
This is also illustrated in Figure 3b, showing the calculated
power spectral density of the spectrum after transmission
through 100, 200, and 300 μm of water.
In addition to the instrument’s ability to detect electric fields

with high sensitivity, the time-domain nature of FRS renders
the detection of molecular emission robust against fluctuations
of the excitation. This advantage is described in detail in our
previous work14 and will be illustrated here for the example of
dimethyl sulfone (DMSO2), a test molecule used for the
measurements presented in this work. The spectral absorption
and phase information on DMSO2 can be obtained from the
corresponding reference and sample measurements (Figure
4a,b). However, this procedure becomes unstable for small
absorptions due to signal fluctuations in the range of the
excitation, affecting the (complex) Fourier-transformed spec-
tra.
Measuring the time-domain response to an ultrashort MIR

excitation pulse allows for the temporal separation of the
sample response of the molecules under investigation and
theorders of magnitude strongerexcitation energy remain-
ing after transmission through the sample. Consequently, the
noise power carried by the excitation can be temporally
separated from the molecular signal. For substances in aqueous
environments, the resonant molecular response usually spans
over a few picoseconds. In the case of DMSO2, the dephasing
time of the absorption line at 1139 cm−1 is ∼0.8 ps, which is
significantly longer than the full-width at half-maximum of 59
fs of the excitation pulse (Figure 4a). Already 500 fs after the
pulse, the signal from the reference pulse drops to ∼0.5% of
the peak value. Within this strongly reduced background, a
significantly weaker signal of the excited molecules can be
detected, as the detrimental influence of the excitation
fluctuations is strongly reduced.
This becomes apparent when extracting the resonant

molecular response by subtracting a reference from a sample

Figure 3. (a) Layout of the field-resolved spectrometer. For this
experiment, measurement cuvettes with 7, 34, and 50 μm path lengths
were used. (b) Intensity dynamic range of the FRS spectrometer after
passing through water layers of 7, 34, and 50 μm thicknesses,
measured over 20 s, with a spectral resolution of 10 cm−1. The gray
dashed lines show the expected dynamic range after transmission
through 100, 200, and 300 μm of water, respectively.
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measurement (Figure 4c). During the excitation, source
intenstiy fluctuations hinder the clean subtraction, i.e.,
referencing, of two strong signals, leading to noise in the
signal of interest in this time window. After a few hundred
femtoseconds, the excitation pulse has decayed either below
the detection noise floor or it has become weak enough to be
subtracted (or referenced out). Note that a signal of the
excited matrix molecules might be spanning over several
picoseconds and therefore potentially masking the molecular
signal of the analyte. However, vibrations of liquid water
dephase within tens of femtoseconds and therefore do not
affect the detection of the resonant analyte response in the
wake of the excitation. In practice, this means that after a
certain time tB, the detection of the molecular signal is only
limited by the detection noise and not by any technical noise
of the driving laser or of the interferometer.14

In our case, the window for background-free access to
resonant analyte response opens up approximately 500 fs after
the peak of the excitation pulse. Fourier-transforming the time-
filtered molecular signal delivers a sample-specific “resonant
fingerprint”, i.e., a power and a phase spectrum (Figure 4d).
Even though its appearance differs from that of conventional
spectra, the main spectral features are contained and can be
used for quantitative identification of the analyte.
In order to validate eq 2, we evaluated the LOD for DMSO2

dissolved in water in a dilution series, using liquid cuvettes with
thicknesses of 7 (commonly used in FTIR spectrometers), 34,
and 50 μm. To retrieve the concentration of DMSO2 for each

sample, a calibration measurement at a concentration of 1 mg/
mL was performed for each thickness and used for 1-parameter
fits yielding the concentrations of the individual samples.14

For a spectral resolution of 4 cm−1 (corresponding to an 8.3
ps time window) and a total effective measurement time of 90
s per injected sample (45 s each for reference and sample
measurement), we experimentally obtained LOD values of 1.6,
0.6, and 0.7 μg/mL for increasing cuvette thickness,
respectively (Figure 5). The theoretical LOD curve was
calculated using the absorption coefficient of DMSO2 of 12.92
cm−1 for 1 mg/mL at 1139 cm−1, a decay time TL of 770 fs, the
absorption coefficient of water of 537 cm−1,31 and a field

Figure 4. FRS measurement of a solution of DMSO2 in water. (a) EOS traces of a reference and a test sample (liquid cuvette filled with pure water
and one with a 1 mg/mL solution of DMSO2 in water, respectively). The difference between the two traces is miniscule (cannot be discerned by
eye). (b) Amplitude and phase spectra obtained via Fourier transform (FT) of the traces in (a), permitting the calculation of conventional
absorption and phase spectra of the analyte DMSO2 in its aqueous environment. For comparison, an absorption spectrum of the same solution,
measured with a commercial FTIR spectrometer device, is shown. (c) Time-domain molecular response of DMSO2 was obtained via numerical
subtraction of the sample from the reference trace, as shown in (a). Due to fluctuations in the excitation remaining after transmission through the
sample (induced by intensity and phase noise of the source, by interferometer fluctuations etc.), the reconstruction of the molecular response is
noisy in time windows with large EOS signalin particular during the excitation pulse centered around 0 fs. After several hundred femtoseconds,
this detrimental influence of source noise on the subtraction result becomes negligible because of the rapid decay of the excitation pulse. This opens
up the window for background-free measurements of the molecular signal. (d) Similar to the conventional spectra shown in (b), one can obtain
analyte-specific amplitude and phase spectra of the time-filtered sample response via FT of the truncated time-domain difference trace.

Figure 5. Theoretical vs experimental limits of detection (LOD) for
DMSO2 dissolved in water in dependence of the thickness of the
measurement cuvette.
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dynamic range DRE
0 of the non-attenuated beam of 3.0 × 105.

This theoretical curve is in very good agreement with the
experimentally obtained values for the LOD.

■ CONCLUSION AND OUTLOOK
We have demonstrated that broadband field-resolved MIR
spectroscopy can offer an intensity dynamic range in excess of
1010 over more than 460 cm−1 (without measurement cuvette)
for a measurement time of less than 1 min, rendering it
applicable for the investigation of strongly absorbing
(aqueous) samples. The ability of FRS to measure the
temporally retarded sample response separated from the
nonresonant response (i.e., excitation remaining after trans-
mission through the sample) grants access to theorders of
magnitude smallermolecular signal in a background-reduced
manner, rendering the measurement SNR virtually independ-
ent from excitation fluctuations. This enables detection
sensitivities in the sub-microgram/milliliter range for mole-
cules solved in water. Furthermore, the signal strength and
SNR scale linearly with the electric field of the excitation
source. Based on these properties, we theoretically derived and
experimentally confirmed that in FRS the optimum interaction
length with a sample, xopt = 2/αM, only depends on the
absorption coefficient αM of the matrix substance.
For many biological samples, the matrix substance is water,

therefore, we further analyzed this case and evaluated the
measurement performance in dependence of wavelength and
thickness. We found that sub-microgram/milliliter detection
sensitivities can be maintained for samples as thick as 80 μm
and that, even for 0.2 mm thick samples, LOD values in the
range of 10 μg/mL are feasible, which is the level achieved by
state-of-the-art research-grade FTIR instruments,14 albeit
under the stringent condition of sub-10 μm sample thickness.
In the fingerprint region from 1000 to 3000 cm−1, the
measurement performance can be kept within 33% of the peak
performance at all wavenumbers by choosing a sample
thickness around 25 μm. Rapid advances of femtosecond
technology hold promise for the extension of FRS to the
coverage of the entire molecular fingerprint region in the near
future.32,33 At the same time, further improvement of the
sensitivity of electro-optic sampling will push the limit of
detection to the low nanogram/milliliter range or below.34

Compared to conventional (i.e., symmetric) FTIR spec-
trometers, the scaling laws of FRS for the sensitivity in
dependence of the sample thickness and total absorption are
highly advantageous. The relaxed requirements to the sample
thickness enable a more flexible design of liquid cuvettes and
microfluidic chips for MIR spectroscopic applications. In
addition, the increased SNR for the measurement of thick
aqueous samples will be beneficial for MIR transmission
spectroscopy and spectroscopy−microscopy of biological
samples, such as living cells, bulk cells, and tissue cultures as
well as biological tissues, in their natural (hydrated) state.
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S2 

S1 Signal-to-noise scaling and limit of detection in dependence of the path length 

In the following, we derive scaling laws for the signal-to-noise-ratio (SNR) and the limit of detection (LOD) of an analyte 

in dependence of the interaction length for different classes of spectroscopic techniques. Thereby, we classify the latter ac cord-

ing to their SNR-scaling with the excitation intensity 𝐼. For most methods, a distinction in one of the three following regimes 

is possible:1,2 

 

(1) Square-root-scaling (𝑺𝑵𝑹 ~ √𝑰): This applies for techniques whose signal scales with the electric field and for which 

the dominating noise source is intensity-independent, e.g., for field-resolved spectroscopy3. This scaling also applies to 

linear techniques that achieve photon-shot-noise-limited detection (shot noise scales proportionally to  √𝐼).4 However, 

while shot-noise-limited spectroscopy has been demonstrated in the visible and near-infrared spectral ranges, it has not 

– to the best of our knowledge – been demonstrated in the mid-infrared range, mainly due to the lack of sensitive MIR 

detectors and low-noise high-brilliance infrared sources. 

(2) Linear scaling (𝑺𝑵𝑹 ~ 𝑰): Applies for techniques whose signal scales with intensity and for which the dominating 

noise source is intensity-independent (e.g., detector noise). This usually is the case for commercial Fourier-transform-

infrared (FTIR) spectrometers employing thermal sources.1 

(3) Constant (𝑺𝑵𝑹 ~ 𝒄𝒐𝒏𝒔𝒕. ): Applies when relative-intensity noise (RIN) is the dominating noise source. This is usually 

the case for high-power laser sources. 

 

For the derivations of the scaling laws, we consider the case in which an analyte with absorption coefficient 𝛼𝐴 is embedded 

in a matrix substance with absorption coefficient   𝛼𝑀 . For many applications, this matrix substance is water and 𝛼𝐴 ≪ 𝛼𝑀  can 

be assumed. The minimum detectable absorption (𝛼𝐴𝑥)𝑚𝑖𝑛 at a given frequency is inversely proportional to the SNR: 2 

 
(𝛼𝐴𝑥)𝑚𝑖𝑛  ~  

1

𝑆𝑁𝑅
 

 

(S.1) 

The discussion is structured as follows. Section S1.1 and S1.2 contains all derivations for (1) field-scaling and (2) intensity-

scaling, respectively. In section S1.3 we compare how those two regimes compare for a weakly and strongly absorbing matrix. 

In the last section, we discuss how relative intensity noise affects the optimum interaction length.  

S1.1 Field-scaling (e.g., FRS) 

For field-scaling spectroscopic techniques the measurement SNR scales proportional ly to the electric field strength 

(𝑆𝑁𝑅𝐹  ~ 𝐸  ~ √𝐼 ). According to eq. (S.1) the minimum absorption sensitivity (𝛼𝐴𝑥)F,min  now reads: 

 (𝛼𝐴𝑥)F,min =
𝑐∗

𝐸
, (S.2) 

where 𝑐 ∗ is an instrument and method dependent constant. Note that the field dynamic range 𝐷𝑅𝐸  in eq. (1) is proportional to 

𝐸  and all other terms on the r.h.s. of eq. (1) account for the constant 𝑐∗ in time-gated FRS. For other instruments 𝑐 ∗ might be 

different. 

After passing through a distance 𝑥 of the matrix substance the electric field strength is decreased according to Beer’s law  

 𝐸 = 𝐸0 × exp (−
𝛼𝑀 𝑥

2
). The subscript “0” denotes the non-attenuated beam. The LOD can now be written as: 

 

 𝛼𝐴 =
𝑐∗

𝑥𝐸0𝑒
−𝛼𝑀 𝑥

2

 (S.3) 

The minimum of 𝛼𝐴 is reached when the function 

 𝑔(𝑥) =  
𝑒

𝛼𝑀 𝑥
2

𝑥
 (S.4) 

reaches a minimum. To find this value we compute the first derivative and set it to 0: 

 𝑒
𝛼𝑀𝑥

2 (−
1

𝑥 2
+

1

𝑥
∙

𝛼𝑀

2
) = 0 (S.5) 

The optimum sample thickness 𝑥𝑜𝑝𝑡,𝐹  is reached for: 

 𝑥𝑜𝑝𝑡,𝐹 = 2/𝛼𝑀 (S.6) 

 

Note that the absence of any instrument-specific noise terms (e.g. detector noise) in this expression reflects the scaling of the 

SNR with the field. Next, we investigate by which factor 𝑓  the LOD changes for the case when 𝑥 ≠ 𝑥𝑜𝑝𝑡,𝐹 : 
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 𝑓 (𝑥) =
𝛼𝐴(𝑥)

𝛼𝐴(𝑥𝑜𝑝𝑡,𝐹 )
=

𝑥

𝑥𝑜𝑝𝑡,𝐹

exp (1 −
𝑥

𝑥𝑜𝑝𝑡,𝐹

) (S.7) 

Using this expression, we can calculate the lower and upper limit for the thickness 𝑥 for which the LOD increases by a maxi-

mum factor 𝑓 : 

 𝑥𝑓,± = −𝑥𝑜𝑝𝑡,𝐹 𝑊 0
−1

(−
𝑓

𝑒
), (S.8) 

where 𝑊 0

−1

 denotes the Lambert W function.  

For broadband measurements, one faces the problem that an optimum interaction length 𝑥𝑜𝑝𝑡,𝐹  cannot be chosen for all 

wavelengths simultaneously, as 𝛼𝑀  also changes over the spectrum. To maintain best measurement performance over the entire 

spectral range, we apply the condition that the deviation from the optimum LOD for the smallest and highest absorption coef-

ficient of water is the same: 

 𝑓
𝛼𝑀,𝑚𝑖𝑛

= 𝑓
𝛼𝑀,𝑚𝑎𝑥

 (S.9) 

This yields the optimum interaction length 𝑥𝐵,𝐹  for broadband measurements: 

 
𝑥𝐵,𝐹 = 2

ln (
𝛼𝑀,𝑚𝑎𝑥

𝛼𝑀,𝑚𝑖𝑛

⁄ )

𝛼𝑀,𝑚𝑎𝑥 − 𝛼𝑀,𝑚𝑖𝑛

 
(S.10) 

In the case of water, the minimum and maximum absorption coefficient is 1640 cm-1 and 2630 cm-1 within the fingerprint 

region (1000 cm-1 and 3000 cm-1). Correspondingly, a good compromise for the interaction length is to choose a thickness of 

24.5 µm. This results in a maximum increase of the LOD by a factor of 3 within the entire range.  

S1.2 Intensity-scaling 

For intensity-scaling spectroscopic techniques the measurement SNR scales proportionaly to the light intensity 

(𝑆𝑁𝑅𝐼  ~ 𝐼  ). According to eq. (S.1) the minimum absorption sensitivity (𝛼𝐴𝑥)min,I now reads: 

 (𝛼𝐴𝑥)min,I =
𝑐 ∗∗

𝐼
, (S.11) 

where 𝑐 ∗∗ is an instrument and method dependent constant. For conventional FTIR spectrometers equipped with a black-body 

source, 𝑐 ∗∗ typically depends on the employed detector properties, optical etendue, optical efficiency, spectral resolution and 

acquisition time.1 According to Beer’s law, 𝐼 = 𝐼0 × exp(−𝛼𝑀𝑥) is the intensity after passing through a thickness of 𝑥 of the 

matrix substance. Inserting this scaling into eq. (S.11)  yields 

 𝛼𝐴 =
𝑐∗∗

𝑥𝐼0𝑒 −α𝑀𝑥
 (S.12) 

and reaches its minimum for  

 𝑥𝑜𝑝𝑡,𝐼 = 1 𝛼𝑀⁄  (S.13) 

In analogy to the derivations in section S1.1, we can derive formulas for the optimum interaction length 𝑥𝐵,𝐼 for broadband 

measurements as well as for the upper and lower thickness limit 𝑥𝑓,±  in order to reach an LOD below a given value, that is 

increased by a factor 𝑓  with respect to the optimum value: 

 𝑓 =
𝑥

𝑥𝑜𝑝𝑡,𝐼

exp (1 −
𝑥

𝑥𝑜𝑝𝑡,𝐼

) (S.14) 

 

 𝑥𝑓,± = −𝑥𝑜𝑝𝑡,𝐼 𝑊 0
−1

(−
𝑓

𝑒
) (S.15) 

 

 
𝑥𝐵,𝐼 =

ln (
𝛼𝑀,𝑚𝑎𝑥

𝛼𝑀,𝑚𝑖𝑛

⁄ )

𝛼𝑀,𝑚𝑎𝑥 − 𝛼𝑀,𝑚𝑖𝑛

 
(S.16) 
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S1.3 Direct comparison of field- and intensity-scaling 

The main difference in the experimental setup between a symmetric (intensity-scaling) and asymmetric (field-scaling) FTIR 

is, that in the former the sample is placed outside the interferometer and for the latter in one of the interferomet er arms. There-

fore, in many cases, an asymmetric FTIR can easily be converted into a symmetric one and vice-versa. Often, the symmetric 

layout is preferred, as it is considered to be more user-friendly.5 In addition, they have basically the same performance in terms 

of minimum detectable absorption difference for un-attenuated beams or very weak absorption (Fig. 1). Therefore, for the 

investigation of weakly absorbing substances, such as gases, the symmetric and asymmetric FTIR perform similarly. This 

changes dramatically when the analyte is contained within a strongly absorbing matrix such as liquid water. For this case, field-

scaling is clearly advantageous (Fig. 1). 

Furthermore, a better LOD can be achieved with field-scaling devices. For the derivation, we assume a field- and an inten-

sity-scaling spectrometer, respectively, with the same performance in terms of minimum detectable absorption difference for 

un-attenuated beams: 

 (𝛼𝐴𝑥)𝐹,𝑚𝑖𝑛 = (𝛼𝐴𝑥)𝐼,𝑚𝑖𝑛  (S.17) 

 

 

 
𝑐∗

𝐸0

=
𝑐∗∗

𝐼0

 (S.18) 

 

 

Next, we compare the smallest detectable molecular absorption coefficient 𝛼𝐴,𝐹  and 𝛼𝐴,𝐼  for optimum interaction length in both 

cases. 

 

𝛼𝐴,𝐹(𝑥𝑜𝑝𝑡,𝐹 ) =
𝑐 ∗

𝑥𝑜𝑝𝑡,𝐹𝐸0𝑒
−𝛼𝑀𝑥𝑜𝑝𝑡,𝐹

2

 

𝛼𝐴,𝐹(𝑥𝑜𝑝𝑡,𝐹 ) =
1

𝑥𝑜𝑝𝑡,𝐹𝑒 −1

𝑐 ∗

𝐸0

 

𝛼𝐴,𝐹(𝑥𝑜𝑝𝑡,𝐹 ) =
1

𝑥𝑜𝑝𝑡,𝐹𝑒 −1

𝑐 ∗∗

𝐼0

 

𝛼𝐴,𝐹(𝑥𝑜𝑝𝑡,𝐹 ) =
1

2

𝑐∗

𝑥𝑜𝑝𝑡,𝐼 𝐼0𝑒 −𝛼𝑀 𝑥𝑜𝑝𝑡,𝐼

=
1

2
𝛼𝐴,𝐼 (𝑥𝑜𝑝𝑡,𝐼 ) 

(S.19) 

 

Thus, the LOD of field-scaling techniques is two times smaller than for intensity-scaling. 

 

S1.4 Relative-intensity noise dominated measurements 
 

Here, we consider a measurement situation in which a linear system is dominated by RIN at high powers/intensities and 

becomes detector-noise limited when the beam gets attenuated. In this case, the SNR can be expressed as:2 

  

 
𝑆𝑁𝑅 ~  

𝐼

√(𝑅𝐼𝑁 × 𝐼)2 + 𝑛𝐷
2

, 

 

(S.20) 

where 𝑛𝐷  denotes the detector noise and 𝑅𝐼𝑁 × 𝐼 describes the fluctuations caused by intensity noise. In analogy to the deri-

vation in Section S1.1, the LOD reads: 

 𝛼𝐴 =
𝑐∗∗∗

𝑥
(

𝐼0𝑒 −α𝑀𝑥

√(𝑅𝐼𝑁 × 𝐼0𝑒 −α𝑀𝑥 )2 + 𝑛𝐷
2

)

−1

 (S.21) 

This expression reaches its minimum for: 

 
𝑥𝑜𝑝𝑡,𝑅𝐼𝑁 =

𝑊 (
2

𝑒 2 (
𝐼0

𝑛𝐷
𝑅𝐼𝑁)

2

) + 2

2𝛼𝑀

, 
(S.22) 

with 𝑊 denoting the Lambert W function.  
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Finally, we consider the following (numerical) example. We have a system with a RIN of 10−4 and a (relative) detector 

noise level of 𝑛𝐷 = 10−6𝐼0 (both for a given measurement time, spectral resolution etc.). This yields a RIN-optimized path 

length that is approximately 4 times larger as compared to the (preferable) detection-noise limited case. At the same time, only 

10 times larger LOD can be reached. 
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Chapter3
Infrared Fingerprinting for Blood Profiling

3.1 Stability of person-speci�c blood-based infrared
molecular �ngerprints

Preface: A prerequisite for any medical diagnosis is a well-de�ned state of health and disease.
In many cases a medical diagnosis relies on one or multiple parameters (markers) that are
not binary but can take on any value (e.g. fasting glucose concentration). For such cases
it is common practice to study the variation of these markers in both a control and disease
population and de�ne normal and abnormal ranges that correspond to the healthy or abnormal
state, respectively [106, 107]. Thereby, the distribution of these markers arises from the natural
biological variability between individuals.

The recording of an infrared molecular �ngerprint of blood serum represents a simultaneous
assessment of a multitude of blood-based markers. Although it has been demonstrated in many
proof-of-principle studies that infrared �ngerprints contain disease related information, which
can successfully be used for diagnostics, no systematic investigation of the biological variation
of infrared �ngerprints had been conducted when we started our own endeavour to apply
electric-�eld-resolved �ngerprinting to disease detection. Therefore, we set up a study to
investigate biological variability of infrared molecular �ngerprints between healthy subjects
and within individuals over time. In the same study we also investigated and quanti�ed
analytical and sample handling errors. The idea was that both aspects, the knowledge about
biological variability and analytical errors arising from sample handling and blood drawing,
will help to de�ne normal and abnormal ranges for infrared spectral signatures for any future
disease detection application. When we performed the study, the �eld-resolved spectrometer
was not available for high-throughput measurements yet. Therefore, the results were only
obtained with Fourier-transform infrared spectroscopy. Nevertheless, the results of this study
represent a valuable foundation for electric-�eld-resolved �ngerprinting of human bio�uids, as
biological variabilities should be independent of the measurement technique.

A surprising result for us was the fact that the obtained molecular infrared �ngerprints of
individuals proved to be very stable over clinically relevant time scales and could be used to
e�ciently track a person over time. This previously unknown temporal stability motivated
us to apply blood-based spectral infrared �ngerprinting measurements for health and disease
monitoring in longitudinal settings. Although these results are not part of the work presented in
this thesis, they triggered new clinical studies that are currently underway to further investigate
the applicability of infrared �ngerprinting to blood-based �ngerprinting for monitoring of
human health.
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Stability of person-specific blood-based infrared
molecular fingerprints opens up prospects for
health monitoring
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Nadia Harbeck3, Ferenc Krausz1,2,4 & Mihaela Žigman 1,2,4✉

Health state transitions are reflected in characteristic changes in the molecular composition

of biofluids. Detecting these changes in parallel, across a broad spectrum of molecular

species, could contribute to the detection of abnormal physiologies. Fingerprinting of biofluids

by infrared vibrational spectroscopy offers that capacity. Whether its potential for health

monitoring can indeed be exploited critically depends on how stable infrared molecular

fingerprints (IMFs) of individuals prove to be over time. Here we report a proof-of-concept

study that addresses this question. Using Fourier-transform infrared spectroscopy, we have

fingerprinted blood serum and plasma samples from 31 healthy, non-symptomatic individuals,

who were sampled up to 13 times over a period of 7 weeks and again after 6 months. The

measurements were performed directly on liquid serum and plasma samples, yielding a time-

and cost-effective workflow and a high degree of reproducibility. The resulting IMFs were

found to be highly stable over clinically relevant time scales. Single measurements yielded a

multiplicity of person-specific spectral markers, allowing individual molecular phenotypes to

be detected and followed over time. This previously unknown temporal stability of individual

biochemical fingerprints forms the basis for future applications of blood-based infrared

spectral fingerprinting as a multiomics-based mode of health monitoring.
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Probing of systemic human biofluids such as blood serum
and plasma offers a potential means of monitoring the
health status of individuals1,2. Molecular fingerprinting of

blood-based biopsies via infrared vibrational spectroscopy3–6

constitutes one possible way of realizing this potential. However,
whether or not infrared molecular fingerprints (IMFs) are suffi-
ciently stable over time to allow for health monitoring has not yet
been assessed, nor have standard ranges for IMFs of healthy
populations been determined. Human blood composition is
influenced not only by a multitude of physiological states, but also
by genotypic variation, lifestyle, age, environmental factors,
nutritional status, drug consumption, and even metabolites pro-
duced by the symbiotic microflora7–10. Hence, any liquid-biopsy-
based approach to health state monitoring must take natural
biological variability, and the reference ranges for parameters that
are sensitive to the physiological state of the organism, into
account2,8–10. These parameters can be either individual analytes
or specific features in a spectral fingerprint. The aim of this study
is to evaluate the stability of IMFs and their spectral markers over
time and provide a general understanding of the range of blood-
based biological variability across molecular species, which is a
vital prerequisite for any future application of molecular finger-
printing in health monitoring or disease detection.

Analytical “omics” approaches for molecular profiling, such as
mass spectrometry (MS), nuclear magnetic resonance (NMR)
spectroscopy, or DNA/RNA-sequencing methods, have led to the
discovery of numerous blood-based biomarkers as candidates for
disease detection and treatment monitoring1,11–18. Although
sensitive and specific, most of these techniques focus on a single
molecular group in a given context: i.e., they measure either
proteins12, or small molecule metabolites13, or lipids14, or
DNA15, or RNA16. However, probing of different molecular
classes in parallel (“multiomics”) may better capture patterns of
characteristic molecular changes and thus allow one to define
significant pathophysiological transitions1,17,18. Infrared vibra-
tional spectroscopy3–6 probes vibrations of the structural back-
bones of all molecular species in a sample. The frequencies of
those vibrations depend on the atomic composition, structure,
and strength of the chemical bonds in the molecules. Thus,
infrared spectroscopy has the inherent advantage of being sen-
sitive to all functional groups in organic samples5,6. Unfortu-
nately, spectral overlap of molecular responses and limited
sensitivity of commercially available infrared spectrometers
allows vibrational spectroscopy to quantify only the most abun-
dant substances of highly complex bioliquids so far19,20. However,
new spectroscopic schemes allow to overcome current limitations
in sensitivity and have the potential to significantly increase the
range of detectable molecular concentrations21,22.

When applied to liquid biopsies, vibrational spectroscopy
provides an IMF, which is potentially specific for a molecular
blood phenotype and can therefore serve as a marker for an
individual’s state of health. Fourier-transform infrared (FTIR)
spectroscopy has demonstrated the potential of spectral finger-
prints for disease diagnostics (e.g., Alzheimer’s disease23–25,
prostate26, lung27, breast28, liver29, and brain cancers30) as well as
for tracing the evolution of metabolic changes under exercise-
induced conditions in athletes (sports medicine)31–33. FTIR
spectroscopy of biofluids also has been used for disease mon-
itoring in animal models34,35 and blood biopsies from
patients36,37. However, to the best of our knowledge, no attempts
have yet been made to assess the stability of IMFs of a healthy,
non-symptomatic human population over time. Thus, the inevi-
table biological variability of human biopsies relevant to any
health monitoring approach remains unexplored.

This study addresses questions that are fundamental for the
applicability of infrared fingerprinting in health monitoring: First,

we test whether infrared spectral fingerprints can be reproducibly
and directly obtained from bulk liquid blood serum and plasma
samples, and we determine the range of natural biological var-
iation of IMFs from individual volunteers over time (within-
person variation). Second, we quantitatively relate the variation of
the IMFs over time for any given individual to the degree of
variability between different individuals (between-person varia-
tion) and to operational variabilities inherent to clinical practice.
We address these questions in a prototypical human clinical study
cohort, quantify the analytical measurement error, and relate this
to the variation between four different clinical centers (inter-
clinical variability). Our study provides evidence for the existence
of detectable person-specific IMFs of liquid-phase human blood
samples. This lays the foundations for IMF as a promising dis-
criminative and non-invasive method for health monitoring in
the future.

Results
To assess whether infrared vibrational spectra obtained from
human blood in the liquid phase have properties that permit its
use for health monitoring, we systematically quantify the within-
person and the between-person variabilities of IMFs and relate
these to the analytical and the clinical error. To this end, we
analyzed prospectively collected samples of blood serum and
blood plasma from 31 healthy, non-symptomatic human indivi-
duals. A detailed breakdown of the study participants is given in
Supplementary Table 1. Blood was drawn from each individual in
the cohort on 13 different days over a period of 7 weeks (once
every 3–4 days), and once or twice after 6 months (Fig. 1a and
Supplementary Table 2). In addition, the influence of measure-
ment variability as well as blood collection and sample-handling
processes were characterized. This combined error was evaluated
in a separate study by comparing blood samples obtained at four
different clinics from five individuals within <4 h. Well-defined
standardized protocols for blood drawing, sample processing, and
sample storage, applicable to routine medical practice were used
throughout the study. This allowed us to evaluate variability
caused by variations in blood drawing and sample processing, as
well as short-term changes in blood composition38. The chosen
study design represents a typical prospective longitudinal clinical
study setting for health monitoring.

Infrared molecular fingerprints of liquid blood plasma and
serum. We measured the infrared absorption spectra of blood
serum and plasma samples with an automated FTIR device.
Serum and plasma were transilluminated as native liquids in a
thin flow-through cuvette (~8 µm path length) to mitigate the
effects of strong absorption by water (see also Supplementary
Figure 1). A measurement of a single sample took <5 min. In
comparison with measurements of dried serum/plasma, this
approach avoids major sample preparation steps and artefacts
(e.g., the coffee-ring effect4,39) and preserves the native secondary
protein structure, altogether increasing the reproducibility of the
measurements as previously shown40. With this approach, we can
record IMFs in a time- and cost-effective manner, with minimal
sample preparation. The IMFs obtained covered the spectral
range between 950 and 3000 cm−1, which includes absorption
bands characteristic for proteins (amide I/II, predominantly
at 1548 cm−1 and 1654 cm−1), carbohydrates (mainly between
1000 and 1200 cm−1), and lipids (1741 cm−1, 2854 cm−1, and
2929 cm−1) (Fig. 1b).

There was an overall resemblance between the infrared spectra
obtained from all study participants (Fig. 1b). The IMFs of blood
plasma and serum are similar in overall shape, featuring the same
characteristic absorption bands. This is not surprising, since
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plasma and serum share the vast majority of their molecular
components. We find that the major difference between serum
and plasma spectra is attributable to the ethylenediaminetetraa-
cetic acid, which is added during plasma preparation and whose
spectral features were readily recognizable (Supplementary
Figure 2).

Spectrally resolved variability of IMFs. First, we determined the
impact of natural biological variation on the acquired IMFs. To
assess this variation quantitatively, we evaluated the magnitude of
the time-dependent change (day-to-day and month-to-month) in
the IMF of every single individuum in our study cohort (within-
person variability) and the spread among individuals within the
same population (between-person variability). Second, we com-
pared them with variations arising from (minor) differences in
blood collection and sample-handling processes (inter-clinical
error) and to the evaluated error of the spectroscopic
measurement.

Unprocessed infrared absorption spectra and their standard
deviation owing to the variabilities caused by the above-
mentioned effects show a similar dependence on wavenumber
(Fig. 2a). This suggests that the variation of IMFs is dominated by
differences in the total amount of molecules in the samples (e.g.,
owing to disparities in details of collection, handling, and
processing) rather than by changes in their relative molecular
composition. These uncertainties can be substantially reduced by
additional spectral pre-processing, in particular by normalization
of the measured IR spectra41 (see Methods for details). When
applied, this step reduces the relative inter-clinical variability and
the relative measurement error to <1% and 0.1%, respectively, in
most spectral ranges (Fig. 2b). Overall, the reproducibility of the
measurements achieved here is better than what was previously
shown with liquid or dried serum or plasma40,42. We, therefore,
use pre-processed spectra for all further analyses.

Removing variations in overall biomolecular content brings to
light the fact that within-person variation of molecular composi-
tion is much smaller than its spread across the cohort of healthy,
non-symptomatic individuals, and that the inter-clinical variation
is significantly lower than any of these biological variabilities in
most of the spectral regions. We found only a few spectral regions
in which the inter-clinical variability and within-person varia-
bility are comparable (Fig. 2b), and should thus be considered
carefully when included further for analysis. Although the inter-
clinical variability may be further reduced by improved protocols
for sample collection, the spectral variability is already on a level,

which allows characterization of the change of a person’s
molecular IR fingerprint over time.

Comparison of biological variability in blood serum and
plasma. To evaluate whether blood serum or blood plasma might
be better suited for IMF-based clinical diagnostics, we compared
the magnitude of biological variability in the two bioliquids after
pre-processing their measured infrared absorption spectra.
Spectrally resolved variability was averaged over the whole
spectrum and the within-person variability for each person was
evaluated individually. Although levels of between-person and
inter-clinical variability were approximately the same for serum
and plasma, the within-person variability of plasma was, on
average, 24% higher than for serum samples (with a statistical
significance of p= 2.7 × 10−4) (Fig. 2c). This shows that IMFs of
plasma samples captures more of the variations in molecular
composition over time than IMFs of serum samples do.
Depending on whether this additional biological information is
desired for the envisioned monitoring or diagnostic application,
the use of one or the other medium may be preferable.

Within-person and between-person variability of spectral
markers. Measuring the dependence of the precise abundance of
a single analyte on physiological conditions in humans (e.g., given
protein in states A, B, C) is known to be notoriously challenging.
It is even more difficult to quantify concurrent changes in the
abundance of many different substances belonging to distinct
molecular classes (e.g., lipids and proteins) in a single experiment.
Owing to its cross-molecular coverage, broadband infrared
spectroscopy is able to make a valuable contribution here. Rela-
tive concentration changes of different molecular classes, in
comparison with each other, can be estimated from the relative
change in the ratio of the intensity of absorption bands, which are
dominated by specific molecular classes and can therefore be
assigned to them23,34,35,37,43–53. Table 1 shows a selection of peak
ratios (together with their respective assignments) previously
proposed as markers for physiological states, disease diagnostics,
and monitoring.

We analyzed the within- and between-person variability of
these ratios and evaluated their Index of Individuality (II), which
is defined as the ratio of the average within-person variability SW
and between-person variability SB9,10:

II ¼ SW=SB ð1Þ
When a molecular marker has an II < 0.6, it is considered to be

1000 1500 2000 2500 3000

0

5

10

15

20

Ab
so

rb
an

c e
 (m

O
D

/μ
m

)

Wavenumber (cm-1)

ν(C-O)
νs(PO2

-)
ν(COH)

ν a
s(P

O
2- )

Am
id

e 
III

ν s
( C

O
O

- )

δ a
s(C

H
3)

ν s
( C

H
2) ν a

s(C
H

2)
ν s

(C
H

3)

A m
id

e 
II A m

i d
e 

I

 Serum
 Plasma

ν a
s(C

H
3)

ν s
(C

= O
)

b

In
di

vi
du

al
s

Be
tw

ee
n-

pe
rs

on
 v

ar
ia

bi
lit

y

Within-person variability

After 6 
months

Over 7 weeks

a

Fig. 1 Study setup and overview. a Experimental setup used for profiling of FTIR blood serum and plasma drawn from 31 healthy, non-symptomatic
volunteers at up to 15 consecutive time points over the course of >6 months (see also Supplementary Table 2 for detailed information about the sampling
time points). Same individuals are indicated as different shades of the same colors. b Unprocessed infrared absorption spectra of liquid blood sera (yellow)
and plasma samples (red) measured from all individuals enrolled in the study. Inset: Close-up showing 636 individual traces of 318 measurements of blood
sera and plasma each. Absorption peaks are associated with major molecular vibrations: ν stretching, δ bending, s symmetric, and as asymmetric vibrations.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21668-5 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1511 | https://doi.org/10.1038/s41467-021-21668-5 | www.nature.com/naturecommunications 3

Stability of person-speci�c blood-based infrared molecular �ngerprints 91



specific to an individual9 and can in principle be used to track the
physiological state of an individual. In the context of disease
detection, a low II also implies that the level of a marker may be
within the normal range for one person, while the same values
might be abnormal for another individual. In case–control
scenarios, this may lead to deviations being erroneously identified
as anomalies, which underlines the importance of quantitatively
evaluating both the within- and between-person variability9,10.

As a case example, the ratio of the intensity of the amide I main
peak to that of its shoulder (I1635/I1654—Fig. 3a) contains
information about the relative amounts of alpha-helix and beta-
sheet structures34,45,54. This parameter was used in classical case-
control studies44,45 as well as for longitudinal disease
monitoring34,35. We found its within-person variation to be up
to five times smaller than the variation between subjects, as
reflected in its low II of 0.23 and 0.27 for serum and plasma,
respectively. The high degree of individuality of this ratio suggests
that it may be most helpful in health monitoring, as IMFs are to
be referenced to those previously acquired from the same
individual.

Generally, we find that intensity ratios of plasma and serum
spectra behave in a similar fashion over time, which emphasizes
the fact that serum and plasma share the vast majority of their

molecular components and therefore provide similar information.
We found that most of the peak ratios are rather stable over time,
whereas for some individuals (e.g., I1635/I1654 of the subject BD,
Fig. 3b, d) we observed a significant change over time. This shows
on the one hand that these spectral markers can be measured
reliably and stably over time, but also that changes of these
markers over time (potentially due to a disease) can be detected.
In general, many peak ratios are found to have a rather low Index
of Individuality (Table 1), which makes their biological variability
comparable to commonly measured clinical variables55. This
connects IMFs to other analytical approaches and highlights its
value as a source of highly specific and individual molecular
information.

Identification of person-specific IMFs in the liquid phase of
human blood. Several spectral features of the IMFs are found to
exhibit a low Index of Individuality, which renders them highly
person-specific. This raises the intriguing question whether IMFs
permit identification of individual molecular phenotypes, despite
the inevitable background of biological variability. Although
NMR and mass-spectroscopic fingerprints of human urine56,
saliva57, blood serum58, and plasma59 were found to possess this
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Table 1 Selected IR peak ratios with their assignments to respective physiological conditions.

Serum Plasma

Peak ratio Value ± S2B II Value ± S2B II Assignment/applications

I1635/I1654 0:756 ±0:012 0.23 0:771±0:012 0.27 Ratio of β-sheet to α-helix secondary structures;34,35,45,49 proposed marker for
colitis;35 determination of albumin-to-globulin ratio;44 indicator of lymphoma and
melanoma in a mouse model45

I1546/I1655 0:635±0:003 0.61 0:638 ±0:003 1.2 Amide I to amide II ratio;37,46,49,51 alternation of secondary structure;46,51

formation of protein fibrils46

I1655/(I1655+I1548) 0:610±0:001 0.63 0:608 ±0:001 1.2 Ratio of α-helix structure to total proteins47

I1684/(I1655+I1548) 0:213 ±0:002 0.48 0:218±0:002 0.69 Ratio of antiparallel β-sheet structure to total proteins47

I1515/(I1655+I1548) 0:174±0:002 0.27 0:175±0:002 0.34 Ratio of tyrosine-rich proteins to total proteins47

I2959/I2931 0:993±0:020 0.52 1:005±0:019 0.50 νas(CH3)-to-νas(CH2) ratio; length of lipid chains;51 correlates with gastric
cancer51

(I2855+I2927)/
(I2962+I2871)

0:952 ±0:023 0.55 0:942 ±0:021 0.52 Elongation of fatty acids;34,46 correlates with breast cancer progression34

(I2851+I2927)/
(I1655+I1548)

0:178±0:007 0.48 0:179±0:007 0.46 Lipid-to-protein ratio47

I1239/(I2851+I2927) 0:424±0:013 0.54 0:422 ±0:011 0.52 Ratio of phospholipids to total lipids47

I1741/I1640 0:029 ±0:003 0.59 0:029 ±0:002 0.57 Lipid-to-protein ratio;52 correlation with apoptotic cells52

I1740/I1400 0:118±0:012 0.59 0:107±0:009 0.59 Lipid-to-protein ratio;37,52 correlation with tumor progression in tissues52

I2852/I1400 0:500±0:018 0.54 0:454±0:014 0.56 Lipid-to-protein ratio37

I1450/I1539 0:287 ±0:003 0.30 0:297 ±0:003 0.34 Lipid-to-protein ratio23

I1240/I1517 0:408±0:004 0.51 0:407 ±0:004 0.57 Degree of phosphorylation of tyrosine46

I1045/I1545 0:109±0:003 0.41 0:109±0:003 0.48 Phosphate-to-carbohydrate ratio23

I1080/I1550 0:145±0:004 0.40 0:143 ±0:004 0.44 Phosphate-to-amide II ratio37,49,51

I1060/I1230 0:705±0:013 0.43 0:697 ±0:012 0.55 νs(PO�
2 )-to-νas(PO

�
2 ) ratio

23

I1170/I1080 0:905 ±0:017 0.50 0:918 ±0:016 0.54 Relative content of nucleic acids; distinguishes sera of lung cancer patients from
those of healthy individuals49

I1030/I1080 0:626 ±0:006 0.81 0:636 ±0:005 1.01 Glycogen/phosphate ratio; indicator of metabolic turnover in cells43,48,53

I1080/I1243 0:726 ±0:014 0.46 0:717±0:013 0.56 νs(PO�
2 )-to-νas(PO

�
2 ) ratio

49

I1587/(I1655+I1548) 0:145±0:002 0.45 0:178±0:002 0.56 Ratio of free amino acids to proteins47
I1156/I1171 0:894 ±0:007 0.45 0:898 ±0:006 0.49 Change of carbohydrate moieties in plasma globulins; correlates with Alzheimer’s

disease50

I1243/I1314 0:856 ±0:013 0.41 0:802 ±0:013 0.56 Reflects changes in protein and nucleic acid levels51

I1453/I1400 0:801±0:006 0.43 0:737±0:007 0.61 δasðCH3Þ-to-δsðCH3Þ ratio51

S2B between-person variability, II index of Individuality, ν stretching, δ bending, s symmetric, as asymmetric vibrations.
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capability, analogous evidence for infrared fingerprints of human
biofluids is lacking. To assess the existence of highly personalized
IMFs, we examined the IMFs from participants who all provided
blood samples at least eight times within the first 7 weeks of the
sampling period in more detail (Supplementary Table 2). Using a
descriptive investigation—with principal component analysis
(PCA) of all 293 IMFs (for serum and plasma each) of the 27
individuals—we found that the infrared spectra of certain subjects
can be readily distinguished, whereas others overlap significantly
(Fig. 4c). The separation can be improved when higher principal
components (PCs) are included in the analysis; however, perfect
separation of all cases was not attained. Although PCs depict the
maximum variance, these are not necessarily the “directions” in
multi-dimensional space of IMF spectral amplitudes that max-
imize the inter-group separation56.

Applying a random-forest machine-learning algorithm60

(similar results can be also obtained with k-nearest neighbors61

and XGBoost62, Supplementary Figure 3 and Methods), we
performed predictive analysis to derive classification models. The
data for the first N blood samples (for N= 1… 8) per individual
were used for training, and these classifiers were then tested on
the data obtained from the following blood draw, N+ 1 (Fig. 4a).
The accuracy of the prediction is shown in Fig. 4c. If the classifier
were predicting randomly, the accuracy would be 3.7%, as data
from 27 participants were used in the training step. We show that
training the algorithm with data from seven blood draws each,
results in a prediction accuracy of >96%. Figure 4d, e shows the

result of a prediction-error analysis of a random-forest-based
classification model for all individuals when seven blood draws
per participant were used for training and one for testing, and
when the data were subjected to eightfold cross-validation
(repeated eight times with different combinations of training/
test sets).

We observe that the vast majority of predictions lie on the
diagonal of the confusion matrix (Fig. 4d, e), which demonstrates
that the classifier is highly accurate, independently of the selection
of the training set. This suggests the existence of highly person-
specific IMFs that reflect the molecular phenotypes of individual
donors, which are highly stable and reproducible over several
independent blood draws (at least over 6 weeks). Investigation of
the features that primarily contribute to successful classification
revealed that the peaks that exhibit high-levels of between-person
variation (e.g., 1747 cm−1, 2854 cm−1, 2929 cm−1—mostly lipid
absorption) most extensively contributed to the uniqueness of a
person-specific IR fingerprints (Supplementary Figure 4).

In addition, we tested the possibility of deriving a multiclass
classification model based on the intensity ratios (Table 1), again
by using the random forests algorithm. We found that the average
accuracy of the classifiers was 85% for serum and 75% for plasma.
The full list of results—for both training and test sets—is
provided in Supplementary Table 4. This outcome implies that
intensity ratios capture a large fraction—but not all—of the
relevant information contained in the spectra, thus highlighting
the need for broadband infrared coverage. Notably, intensity
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ratios ranked as highly important by this independent classifier
coincide with those having a low Index of Individuality
(Supplementary Table 3). It should also be noted that a fraction
of these intensity ratios can be categorized as redundant, as many
of them are highly correlated with others and thus provide no
significant information gains (Supplementary Tables 5 and 6)—in
contrast to the PCs which are by definition uncorrelated.

Testing the long-term stability of infrared fingerprints. Finally,
we investigated the stability of IMFs on medically relevant
timescales. Here, the prediction accuracy of sera and plasma
sampled 6 months after the initial training sampling period was
evaluated. Most of the individuals were still classified correctly.
The number of misclassifications increased after 6 months,
reducing the identification accuracy to ~80% (Fig. 4f, g). Con-
sidering the fact that part of the misclassification may have been
caused by changes in the overall physiological states (e.g., lifestyle,
new drug intake) of some of the subjects, which have not been
investigated for this study, the overall chemical composition of
human blood is remarkably stable even over a half a year. This
finding emphasizes the method’s suitability for health
monitoring.

Discussion
This proof-of-concept study demonstrates that (1) IMFs are
robustly and directly measurable in liquid blood samples in a
time- and cost-effective manner, (2) a single vibrational spec-
troscopic measurement provides access to multiple person-
specific markers, and (3) infrared molecular phenotypes can be
captured and monitored over time. Taken together, these findings
suggest the possible applicability of blood-based infrared spectral
fingerprinting for clinical health monitoring.

Routine blood profiling often focuses on the detection of
defined analytes (e.g., molecule- or gene-based). However,
broadband vibrational spectroscopy has the capacity to capture
signals from all classes of biomolecular species. Thus, changes in
any types of biomolecules, metabolic reaction products, or
enzyme activities in human blood (e.g., elicited by a transition in
health status) may lead to a change in the molecular phenotype of
blood that may be reflected in the individual’s IMFs. If so, regular,
repeated sampling should enable any “abnormal” deviation in a
molecular phenotype to be effectively detected by comparisons
with previously recorded IMFs obtained from the same subject
(self-referencing). In addition, any infrared measurement could
represent a useful extension to current blood-based analytics, and
could be followed up by well-established analytical approaches for
deeper understanding. However, for the role proposed for IMFs
in heath monitoring here, it is not necessary to understand the
molecular origins of changes in IMFs, as long the characteristic
deviation is specific and significant enough relative to its natural
biological variability.

Although FTIR technology has been employed for case–control
studies using dried serum and plasma samples23–30, its applic-
ability for human health monitoring has not been previously
evaluated. Here, we applied FTIR to native liquid samples in a
longitudinal study setting, and followed healthy, non-
symptomatic individuals in order to quantitatively evaluate var-
iations in the IMFs over time. We have shown that well-defined
blood collection and processing workflows yield IMFs with a high
degree of reproducibility, which allows cross-comparability across
different clinical sites. Importantly, we find that the relative
variations detected in IMFs are comparable to the variability of
molecular concentrations measured with conventional analytical
methods63. Furthermore, we demonstrate that many infrared
spectral markers exhibit Indices of Individuality lower than 0.6,

placing them within the range of variability typically found for
blood analytes routinely used in diagnostic medical laboratory
facilities55. This demonstrates the ability of infrared fingerprint-
ing to obtain highly person-specific information. More generally,
our findings lay the foundation for a robust assessment of the
existence of disease-specific infrared spectral features for health
monitoring and disease detection.

Sampling individuals repeatedly over time, as we did here, can
greatly enhance the capacity of infrared phenotypes to identify
relevant information by eliminating the influence of day-to-day,
within-person biological variability. In addition, any molecular
phenotype may be more accurately detected in the context of
longitudinal studies with self-referencing2. Such an approach will
also eliminate the major source of “biological noise”, namely
between-person variability. This might be especially useful for
diseases with the highest mortality rates (e.g., cancer, cardiovas-
cular conditions), which often develop over the course of years or
even decades, and where self-referencing based on IMFs could be
particularly valuable. However, the answer to the question whe-
ther particular infrared spectral changes can be definitively linked
to the onset or progression of a given disease is beyond the scope
of the current work. For this purpose, sufficiently large cohort
strata combined with clinical information are needed.

The data reported here show that the infrared molecular
phenotype of an individual can be effectively followed over time.
This is an essential prerequisite for future health monitoring and
detection of medical phenotypes by infrared broadband vibra-
tional spectroscopy, circumventing the need for any a priori
knowledge about the molecular identity or causal origin of
deviations from the normal physiological range.

Methods
Enrollment of study participants and blood sampling. The study was reviewed
and approved by “Ethikkommission bei der LMU München” (EK 20170820—Nr.:
17-532), and was conducted according to Good Clinical Practice (ICH-GCP), the
principles of the Declaration of Helsinki, and all applicable legislations and reg-
ulations. Informed consent was obtained from all participants prior to blood
collection.

Prior to the study, a statistical power calculation was performed to determine
the sample size required to assess the mean and variance of the IMFs within a
certain bound on accuracy, assuming a normal distribution. For the determination
of the mean value of IMFs over all individuals at each wavenumber, a bound on
accuracy of 0.025 mOD/µm with 95% confidence was set, resulting in a required
minimum sample size of 26 individuals. The actual precision for the estimation of
the mean is much higher than the stated limit, as several measurements per person
were made and used for the analysis of the mean. For the estimation of the
variabilities (between-person and within-person variability) we assumed that 26
persons donated 10 times. Thus, corresponding variabilities can be estimated
within 35% of their true values and this can be achieved with a 95% confidence. To
account for possible drop-outs over the course of the study, >30 individuals (31
individuals in total) were recruited.

Before each blood withdrawal, the participants were questioned about their
health status and previous meals. Thirty-one adults were recruited for the
longitudinal study and fasting blood samples were collected at the same site
throughout the study. Within the first 7 weeks of the study, blood was sampled
every 3–4 days. After 6 months, each participant again gave their blood two more
times. Thus, each participant provided up to 15 samples over a period of
>6 months (see also Supplementary Table 2). Ages of the participants ranged from
20 to 71 years with a mean of 39.6 years (±14.0 years, STD). 54.5% of the
participants were female. None of the participants had any overt symptoms or
severe diseases. Some of the participants were overweight, had allergies, food
intolerances, or hypertension, which are all typical for a cross-section of the
population at large (see Supplementary Table 1 for detailed information on
subjects).

To evaluate the inter-clinical variability, five individuals volunteered to take part
in an additional separate experiment. They gave blood at four different clinical sites
within 4 h. No food was consumed during this time or within 6 h prior to the first
sampling time.

Standard operating procedures for serum and plasma sample collection,
preparation, and storage. Blood samples were collected, processed, and stored
using defined standard operating procedures. Fasting blood was obtained between
9 am and 2 pm using Safety-Multifly needles of 21 G (Sarstedt), and transferred to
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4.9-ml serum and 4.9-ml plasma Monovettes (Sarstedt). Special care was taken to
make the different blood collections as comparable as possible. This meant that the
same type of cannula was always used, the tubes were always filled to the
recommended maximum filling level, serum was always collected first, and then
plasma. For the blood clotting process to take place, the tubes were stored upright
for at least 20 min and then centrifuged at 2,000 g for 10 min at 20 °C. The
supernatant was carefully aliquoted and frozen at −80 °C within 3 h after
collection.

After all, samples were collected, the aliquots used for the actual FTIR
measurement were prepared. One tube out of each of the smaller tube-sets was
thawed and again centrifuged for 10 min at 2000 g. The supernatant was distributed
into the measurement tubes (50 µl per tube) to be refrozen at −80 °C. All the FTIR
measurements were performed upon two freeze–thaw cycles within the same
measurement campaign.

To measure experimental errors during the experiment, quality-control (QC)
samples from pooled human serum (BioWest, Nuaillé, France) were used64.

FTIR measurements. The samples were measured in random order to reduce
systematic effects. The spectroscopic measurements were performed in liquid phase
with an automated FTIR device (MIRA-Analyzer, micro-biolytics GmbH) with a
flow-through transmission cuvette (CaF2 with ~8 µm path length). The spectra
were acquired with a resolution of 4 cm−1 in a spectral range between 950 cm−1

and 3050 cm−1. Note, that in comparison with measurements of dried serum,
strong water absorption hinders the recording of the spectra over the entire mid-
infrared range spanning from 400 cm−1 to 4000 cm−1 (see Supplementary
Figure 1). After sample exchange, a water reference spectrum was measured to
reconstruct the IR absorption spectra. After every five samples, a QC measurement
was performed. Each measurement sequence usually contained up to 40 samples
resulting in measurement times of up to 3 h. Experiments on QC showed that the
change in IMFs of serum and plasma is negligible for the time span of a regular
measurement sequence.

Pre-processing of infrared absorption spectra. All spectra were grouped
according to the respective measurement day. The measured QC spectra of the
different measurement days were compared with identifying small instrument
drifts, and all the other spectra were corrected accordingly. “Negative” absorption,
which occurs if the hydrated sample contains less water than the reference (pure
water), was corrected for65. It is known from measurements of dried serum or
plasma, that there is no significant absorption in the wavenumber region
1850–2300 cm−1, resulting in a flat absorption baseline. We used this fact as a
criterion for adding to each spectrum a water absorption spectrum taken from
literature66 to account for the missing water in the sample measurement and
minimize the average slope in this region in order to obtain a flat baseline (Sup-
plementary Figure 1). The same wavenumber region was subsequently utilized to
compensate for baseline drifts, and all spectra were truncated to 1000–3000 cm−1.
Finally, all spectra were normalized as vectors, using Euclidean (or L2) norm. To
avoid y axis scale change caused by Euclidean normalization, we computed average
differences between maximum and minimum values of all spectra before nor-
malization and then rescaled all normalized spectra to restore this averaged dif-
ference. This allowed us to preserve the average swing of the spectra and to
correctly compare the variabilities of the pre-processed spectra.

Evaluation of between- and within-person variability. To obtain the within-
person variability, we calculated the standard deviation of the participants’ spectra
over time and used all individual standard deviations to calculate the mean of the
within-person variability. Between-person variability was obtained by averaging all
spectra of a given individual and then calculating the standard deviation of these
averaged spectra from different individuals. The inter-clinical variability was cal-
culated in a similar manner from blood samples collected at different clinical sites
and with standard deviations averaged to obtain the mean inter-clinical variation.
The analytical error was estimated by repeatedly measuring quality-control serum
samples and calculating the reproducibility of the obtained infrared spectra.

Machine-learning analysis and classification. After all samples and subject-
related data were collected, the two following criteria led to the decision of the
subset of 27 individuals to be considered in the machine-learning analysis:

1. Include at least 26 individuals (see also sample size calculation).
2. Include as many donations per individual as possible.

To meet both the above-listed criteria, we included only participants who have
provided blood samples at least eight times within the first 7 weeks of the sampling
period for the analysis of person-specific IMFs.

To reduce the dimension of data sets and explain the variance with a small
number of linearly uncorrelated variables—PCs—we used PCA. When a significant
fraction of the total variance is captured by the first two PCs, the separation
between different classes can be conveniently represented by 2D scatter plots. As
PCA is unsupervised, it is often used as the first analysis applied to a new data set41.

For the derivation of classification models, we used Scikit-Learn67 (v. 0.20.3), an
open-source machine-learning framework in Python (v.3.6.8). We trained various

models based on three algorithms: Random forests60, k-Nearest-Neighbors61, and
XGBoost62. The purpose of classification is to predict and test the identity of
individuals using multiclass classification models. It turned out that a random-
forest-based model (an ensemble of 3160 decision trees) provided the highest
accuracy. The prediction accuracy is defined as the proportion of individuals who
are correctly classified according to the model applied. Information on the optimal
values of model parameters can be found in the SI (caption of Supplementary
Figure 3). The search for the optimal hyperparameters was performed using grid-
search. Performance evaluation was carried out using cross-validation and its
visualization using the notion of the confusion matrix.

Owing to the high dimensionality of the spectral data, and the high degree of
correlation among the original features, the machine-learning algorithms were not
applied directly to original data but rather to features extracted from them. The
following approaches to feature extraction were used:

a. dimensionality reduction using PCA (described above). Thereby, the PCs
transformation was fit on the training set only and used to transform both
training and test set. The minimum number of PCs required to preserve
99.9% of the explained variance was kept.

b. manual extraction of spectral-intensity ratios.

In addition, we have evaluated the relative importance of each feature by
measuring how much the tree nodes that use a particular feature reduce the average
impurity (Gini impurity68) across all trees in the ensemble. This quantity is known
as the Gini importance69,70. Gini importance is a way to measure the relative
importance of each feature (in this case, wavenumbers) with a model build using
the random-forest algorithm. Intuitively, it measures how much the tree nodes,
across all trees of a random forest, reduce class impurity on average. By average, it
is meant a weighted average, where each node’s weight is equal to the number of
training examples that are associated with it.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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1

Stability of person-specific blood-based infrared molecular fingerprints opens up prospects for 

health monitoring

SUPPLEMENTARY INFORMATION 

Supplementary Table 1: Breakdown of the cohort of study participants. Apart from the listed comorbidities, 
none of the participants had a known disease or showed any symptoms of any disease. 

ID Sex Age BMI Smoking Status Comorbidities

AA female 28 n/a n/a 

AB female 54 23.1 non-smoker 

AC male 29 n/a n/a 

AD female 54 21.2 active-smoker 

AE female 55 22.4 active-smoker high blood pressure 

AF female 24 26.6 non-smoker allergies 

AG female 23 n/a n/a 

AH female 31 18.4 non-smoker 

AI female 45 22.4 non-smoker allergies 

AJ female 39 n/a non-smoker 

AK female 24 n/a n/a 

AL male 55 21.8 non-smoker 

AM male 20 20.6 non-smoker allergies 

AN female 42 20.2 non-smoker 

AO male 46 23.4 non-smoker 

AP female 28 22.8 non-smoker 

AQ male 39 25.7 non-smoker 

AR male 28 22.2 non-smoker 

AT male 32 n/a non-smoker 

AU male 58 28.6 non-smoker 

AV female 26 19.5 non-smoker fibroma 

AW male 61 n/a non-smoker 

AX male 32 25 non-smoker 

AY male 56 24.1 active-smoker psoriasis 

AZ male 32 n/a non-smoker 

BB female 27 n/a n/a 

BC male 70 n/a non-smoker 

BD female 19 18.2 non-smoker 

BE female 38 38.8 non-smoker 

BF male 53 31.8 ex-smoker 

BG male 27 n/a non-smoker 
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Supplementary Table 2: Overview of the sampling time of all collected blood samples. Since one serum and 
one plasma sample was collected per individual at a time, the absolute number of samples is 636. Depending 
on the number of blood samples per individual, the corresponding data were used for different types of 
evaluation. All data were taken into account when calculating the between- and within person variability of the 
infrared fingerprints and its associated spectral markers. Only data from individuals with more than 7 blood 
draws within the first 7 weeks were included in the training and test of the classification models for the 
identification of individuals (green shaded entries). The test of the long-term stability of infrared fingerprints 
was only performed on data from individuals that donated again 6 months after the first sampling period (dark 
green shaded areas).

ID Day(s) in the course of the study 
Total number of 

blood draws 

1 7 9 14 17 21 24 28 31 35 38 42 45 233 238 
Day 
1-45 

Day 
233-238 

AA x x x x x x x x x 9 0 

AB x x x x x x x x x x x x 10 2 

AC x x x x x x x x x 9 0 

AD x x x x x x x x x x 8 2 

AE x x x x x x x x x x x x 10 2 

AF x x x x x x x x x x x x 11 1 

AG x x x x 4 0 

AH x x x x x x x x x x x x x 11 2 

AI x x x x x x x x x x x 10 1 

AJ x x x x x x x x x x 10 0 

AK x x x x x x x x x 9 0 

AL x x x x x x x x x x 9 1 

AM x x x x x x x x x x x x 10 2 

AN x x x x x x x x x x x 9 2 

AO x x x x x x x x x x x x 10 2 

AP x x x x x x x x x x x 9 2 

AQ x x x x x x x x x x 9 1 

AR x x x x x x x x 6 2 

AT x x x x x x x x x x x x 12 0 

AU x x x x x x x x x x x 9 2 

AV x x x x x x x x x x x x 10 2 

AW x x x x x x x x x 9 0 

AX x x x x x x x x x x 9 1 

AY x x x x x x x x x x x x 10 2 

AZ x x x x x x x x x x x 11 0 

BB x x x x x x x x 8 0 

BC x x x x x x x x x x 10 0 

BD x x x x x x x x x x x x x 11 2 

BE x x x x x x x x x x x x 11 1 

BF x x x x x x x 6 1 

BG x x x x x x 6 0 

318 
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Supplementary Figure 1: Acquisition and pre-processing of infrared spectra of liquid samples. a: Spectral 
intensity of the infrared light source after passing through the empty measurement cuvette (black line) and when 
it is filled with water (blue line). The strong absorption of liquid water (turquoise line) and the limited transmission 
of the window material (CaF2 – not shown) limits the useable spectral window for spectroscopy (green double-
arrow). Any incomplete filling or drying of the sample would be detectable by a strong change of the spectra in 
comparison to the water reference (blue line). b: Spectral intensity of the infrared light source when the cuvette 
is filled with water (blue line) and with blood serum (red line). Please note that the power spectra shown in a and 
b are for demonstration purposes only, and had to be performed with a different measurement cuvette 
(AquaSpec™, Bruker) and a different spectrometer (Vertex 70, Bruker) for technical reasons. This setup is similar 
to the experimental setup (MIRA-Analyzer, microbiolytics GmbH) used throughout the measurements presented 
in this work and provides qualitatively the same results (c and d). c: The resulting absorption spectra of quality 
control serum. Negative absorption is caused by the fact that the number of water molecules in the measurement 
volume is lower in the serum sample than in pure water, and therefore at some wavenumbers, less light is 
absorbed by the sample than in the reference. This measurement artefact can be compensated by adding a 
known water absorption spectrum1 (c – turquoise line) until (d) a flat baseline in the range of 1850-2300 
wavenumbers is reached.  
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Supplementary Figure 2: Difference between the average serum and plasma infrared (IR) spectrum compared 
to the absorption IR spectrum of EDTA-Ca2+ dissolved in water. 
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Supplementary Figure 3: Learning curves of prediction models generated using different algorithms (random 

forests, gradient boosted trees (XGBoost) and k-nearest neighbours) based on infrared molecular fingerprints 

(IMFs) of (a) blood serum and (b) plasma. Note that the accuracy of person identification increases when data of 

more blood draws are included for training and drops to slightly below 80% (shaded area) when applied to IMFs 

sampled 6 months later, resembling the difference between the shorter- and longer-term biological variability. 

The selected classification models for these plots are obtained by tuning the algorithms’ hyperparameters to the 

following sets of values: 

• Random Forest: n_estimators=3160, others at default values of Scikit-Learn (v. 0.20.3) [see 

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html for 

more information] 

• XGBoost: n_estimators=100, others at default values of XGBoost (v. 0.80) [see

https://xgboost.readthedocs.io/en/latest/parameter.html for more information] 

• K-NN: n_neighbors=1, others at default values of Scikit-Learn (v. 0.20.3) [see https://scikit-

learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.K

NeighborsClassifier for more information] 
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Supplementary Figure 4: Gini importance (mean decrease in Gini impurity) of infrared spectral features (grey 

line) extracted by application of random forest algorithm used for Fig. 4d compared to the between-person 

variability (red line) of (a) serum and (b) plasma IMFs. 
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Supplementary Table 4: Summary of the classification accuracy using different sets of infrared spectral 
features. 

Train set 

(8-fold cross-validation) 
Test Set 

Plasma intensity ratios 75 % 56 % 

Serum intensity ratios 85 % 61 % 

Plasma (full spectra)  89 % 77 % 

Serum (full spectra)  95 % 78 % 

Supplementary Table 3: Gini importance (mean decrease in Gini impurity) of infrared intensity 
ratios – extracted by application of random forest algorithm – when the classification of individuals 
is based on intensity ratios instead of entire full infrared fingerprint spectra. Note that ratios with 
low Index of Individuality (��) correlate with high Gini importance. Gini importance provides a 
means of measuring the relevance of each spectral feature with regard to the classification. It can 
be interpreted as a relative (and not absolute) measure of the importance of each feature and thus 
its values can be interpreted as high or low only relative to each other. Green-shaded cells 
correspond to larger numbers, while the red-shaded cells correspond to low numbers. 

0

Serum Plasma

Peak ratio: Value ± ��
� ��

Gini 
Importance 

Value ± ��
� ��

Gini 
Importance

I1635/I1654 0.756 ± 0.012 0.231 0.086 0.771 ± 0.012 0.274 0.082

I1546/I1655 0.635 ± 0.003 0.613 0.034 0.638 ± 0.003 1.231 0.018

I1655/(I1655+I1548) 0.610 ± 0.001 0.625 0.033 0.608 ± 0.001 1.232 0.018

I1684/(I1655+I1548) 0.213 ± 0.002 0.481 0.038 0.218 ± 0.002 0.687 0.031

I1515/(I1655+I1548) 0.174 ± 0.002 0.268 0.071 0.175 ± 0.002 0.339 0.068

I2959/I2931 0.993 ± 0.020 0.521 0.025 1.005 ± 0.019 0.496 0.029

(I2855+I2927)/
(I2962+I2871)

0.952 ± 0.023 0.547 0.026 0.942 ± 0.021 0.518 0.030

(I2851+I2927)/
(I1655+I1548)

0.178 ± 0.007 0.484 0.026 0.179 ± 0.007 0.459 0.034

I1239/(I2851+I2927) 0.424 ± 0.013 0.542 0.025 0.422 ± 0.011 0.521 0.035

I1741/I1640 0.029 ± 0.003 0.592 0.030 0.029 ± 0.002 0.573 0.034

I1740/I1400 0.118 ± 0.012 0.589 0.027 0.107 ± 0.009 0.590 0.033

I2852/I1400 0.500 ± 0.018 0.539 0.025 0.454 ± 0.014 0.564 0.027

I1450/I1539 0.287 ± 0.003 0.301 0.059 0.297 ± 0.003 0.343 0.060

I1240/I1517 0.408 ± 0.004 0.512 0.028 0.407 ± 0.004 0.571 0.030

I1045/I1545 0.109 ± 0.003 0.405 0.042 0.109 ± 0.003 0.475 0.038

I1080/I1550 0.145 ± 0.004 0.397 0.047 0.143 ± 0.004 0.444 0.050

I1060/I1230 0.705 ± 0.013 0.430 0.052 0.697 ± 0.012 0.548 0.040

I1170/I1080 0.905 ± 0.017 0.504 0.044 0.918 ± 0.016 0.542 0.050

I1030/I1080 0.626 ± 0.006 0.806 0.044 0.636 ± 0.005 1.014 0.040

I1080/I1243 0.726 ± 0.014 0.457 0.045 0.717 ± 0.013 0.563 0.040

I1587/(I1655+I1548) 0.145 ± 0.002 0.452 0.046 0.178 ± 0.002 0.563 0.053

I1156/I1171 0.894 ± 0.007 0.450 0.053 0.898 ± 0.006 0.490 0.059

I1243/I1314 0.856 ± 0.013 0.410 0.050 0.802 ± 0.013 0.561 0.039

I1453/I1400 0.801 ± 0.006 0.434 0.043 0.737 ± 0.007 0.614 0.061
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Supplementary Table 5: Correlation matrix of intensity ratios taken from normalised infrared spectra of 
serum samples. Green-shaded cell correspond to larger numbers, while the red-shaded cells correspond 
to low numbers. 
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1635/1654 1.00 0.43 -0.42 0.87 0.94 -0.36 0.35 0.44 -0.06 0.23 0.30 0.28 0.86 0.49 0.70 0.65 0.27 -0.51 0.05 0.27 0.85 0.80 0.75 0.766 

1546/1655 0.43 1.00 -1.00 0.02 0.67 -0.04 0.04 0.10 0.09 0.02 0.04 0.01 0.19 -0.13 0.10 0.05 -0.04 -0.15 -0.17 -0.08 0.13 0.34 0.72 0.455 

1655/(1655+1548) -0.42 -1.00 1.00 -0.01 -0.66 0.06 -0.06 -0.12 -0.06 -0.04 -0.06 -0.04 -0.21 0.11 -0.12 -0.08 0.01 0.17 0.20 0.04 -0.13 -0.33 -0.74 -0.47 

1684/(1655+1548) 0.87 0.02 -0.01 1.00 0.73 -0.26 0.25 0.32 0.01 0.17 0.23 0.18 0.76 0.48 0.63 0.57 0.21 -0.40 0.27 0.20 0.88 0.73 0.38 0.519 

1515/(1655+1548) 0.94 0.67 -0.66 0.73 1.00 -0.25 0.24 0.33 0.04 0.14 0.20 0.17 0.74 0.29 0.60 0.53 0.21 -0.46 0.06 0.19 0.74 0.80 0.82 0.735 

2959/2931 -0.36 -0.04 0.06 -0.26 -0.25 1.00 -1.00 -0.98 0.93 -0.96 -0.96 -0.98 -0.69 -0.88 -0.52 -0.62 -0.29 0.06 0.35 -0.40 -0.32 -0.26 -0.54 -0.71 

(2855+2927)/(2962+2871) 0.35 0.04 -0.06 0.25 0.24 -1.00 1.00 0.98 -0.93 0.97 0.97 0.97 0.67 0.87 0.50 0.59 0.26 -0.03 -0.36 0.37 0.31 0.25 0.53 0.693 

(2851+2927)/(1655+1548) 0.44 0.10 -0.12 0.32 0.33 -0.98 0.98 1.00 -0.92 0.94 0.95 0.98 0.74 0.89 0.57 0.67 0.33 -0.14 -0.39 0.43 0.38 0.27 0.59 0.754 

1239/(2851+2927) -0.06 0.09 -0.06 0.01 0.04 0.93 -0.93 -0.92 1.00 -0.93 -0.92 -0.97 -0.46 -0.75 -0.32 -0.45 -0.24 -0.07 0.45 -0.36 -0.08 0.05 -0.32 -0.51 

1741/1640 0.23 0.02 -0.04 0.17 0.14 -0.96 0.97 0.94 -0.93 1.00 1.00 0.96 0.54 0.81 0.33 0.44 0.10 0.16 -0.39 0.22 0.18 0.10 0.46 0.621 

1740/1400 0.30 0.04 -0.06 0.23 0.20 -0.96 0.97 0.95 -0.92 1.00 1.00 0.96 0.59 0.83 0.37 0.48 0.11 0.12 -0.39 0.23 0.24 0.15 0.50 0.669 

2852/1400 0.28 0.01 -0.04 0.18 0.17 -0.98 0.97 0.98 -0.97 0.96 0.96 1.00 0.63 0.85 0.46 0.59 0.29 -0.05 -0.45 0.41 0.24 0.12 0.50 0.681 

1450/1539 0.86 0.19 -0.21 0.76 0.74 -0.69 0.67 0.74 -0.46 0.54 0.59 0.63 1.00 0.78 0.83 0.83 0.46 -0.50 -0.05 0.50 0.83 0.69 0.71 0.866 

1240/1517 0.49 -0.13 0.11 0.48 0.29 -0.88 0.87 0.89 -0.75 0.81 0.83 0.85 0.78 1.00 0.66 0.75 0.38 -0.27 -0.28 0.48 0.47 0.31 0.46 0.646 

1045/1545 0.70 0.10 -0.12 0.63 0.60 -0.52 0.50 0.57 -0.32 0.33 0.37 0.46 0.83 0.66 1.00 0.96 0.83 -0.79 0.14 0.82 0.75 0.72 0.52 0.629 

1080/1550 0.65 0.05 -0.08 0.57 0.53 -0.62 0.59 0.67 -0.45 0.44 0.48 0.59 0.83 0.75 0.96 1.00 0.84 -0.79 -0.10 0.88 0.66 0.61 0.54 0.653 

1060/1230 0.27 -0.04 0.01 0.21 0.21 -0.29 0.26 0.33 -0.24 0.10 0.11 0.29 0.46 0.38 0.83 0.84 1.00 -0.86 0.03 0.98 0.38 0.40 0.22 0.279 

1170/1080 -0.51 -0.15 0.17 -0.40 -0.46 0.06 -0.03 -0.14 -0.07 0.16 0.12 -0.05 -0.50 -0.27 -0.79 -0.79 -0.86 1.00 -0.01 -0.83 -0.50 -0.52 -0.32 -0.29 

1030/1080 0.05 -0.17 0.20 0.27 0.06 0.35 -0.36 -0.39 0.45 -0.39 -0.39 -0.45 -0.05 -0.28 0.14 -0.10 0.03 -0.01 1.00 -0.11 0.25 0.37 -0.29 -0.25 

1080/1243 0.27 -0.08 0.04 0.20 0.19 -0.40 0.37 0.43 -0.36 0.22 0.23 0.41 0.50 0.48 0.82 0.88 0.98 -0.83 -0.11 1.00 0.36 0.36 0.25 0.342 

1587/(1655+1548) 0.85 0.13 -0.13 0.88 0.74 -0.32 0.31 0.38 -0.08 0.18 0.24 0.24 0.83 0.47 0.75 0.66 0.38 -0.50 0.25 0.36 1.00 0.77 0.46 0.604 

1156/1171 0.80 0.34 -0.33 0.73 0.80 -0.26 0.25 0.27 0.05 0.10 0.15 0.12 0.69 0.31 0.72 0.61 0.40 -0.52 0.37 0.36 0.77 1.00 0.57 0.545 

1243/1314 0.75 0.72 -0.74 0.38 0.82 -0.54 0.53 0.59 -0.32 0.46 0.50 0.50 0.71 0.46 0.52 0.54 0.22 -0.32 -0.29 0.25 0.46 0.57 1.00 0.904 

1453/1400 0.77 0.46 -0.47 0.52 0.74 -0.71 0.69 0.75 -0.51 0.62 0.67 0.68 0.87 0.65 0.63 0.65 0.28 -0.29 -0.25 0.34 0.60 0.55 0.90 1 
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Supplementary Table 6: Correlation matrix of intensity ratios taken from normalised infrared spectra of 
plasma samples. Green-shaded cell correspond to larger numbers, while the red-shaded cells correspond 
to low numbers. 
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1635/1654 1.00 0.41 -0.42 0.79 0.93 -0.38 0.37 0.47 -0.05 0.25 0.32 0.27 0.85 0.46 0.66 0.63 0.25 -0.51 -0.01 0.25 0.60 0.81 0.69 0.522 

1546/1655 0.41 1.00 -1.00 -0.15 0.62 -0.10 0.10 0.16 0.01 0.07 0.07 0.04 0.18 -0.19 0.06 0.07 0.04 -0.18 -0.29 0.03 0.03 0.37 0.69 0.362 

1655/(1655+1548) -0.42 -1.00 1.00 0.16 -0.62 0.13 -0.12 -0.18 0.02 -0.09 -0.09 -0.06 -0.20 0.17 -0.08 -0.09 -0.06 0.20 0.31 -0.06 -0.05 -0.37 -0.70 
-

0.359 

1684/(1655+1548) 0.79 -0.15 0.16 1.00 0.65 -0.20 0.20 0.27 0.09 0.13 0.21 0.16 0.68 0.47 0.58 0.51 0.13 -0.36 0.28 0.11 0.53 0.63 0.26 0.355 

1515/(1655+1548) 0.93 0.62 -0.62 0.65 1.00 -0.27 0.26 0.36 0.05 0.16 0.23 0.21 0.70 0.25 0.58 0.53 0.24 -0.51 -0.02 0.21 0.38 0.80 0.81 0.638 

2959/2931 -0.38 -0.10 0.13 -0.20 -0.27 1.00 -1.00 -0.98 0.92 -0.96 -0.96 -0.94 -0.69 -0.84 -0.55 -0.63 -0.34 0.16 0.36 -0.45 -0.31 -0.31 -0.51 
-

0.416 

(2855+2927)/(2962+2871) 0.37 0.10 -0.12 0.20 0.26 -1.00 1.00 0.98 -0.92 0.96 0.96 0.93 0.67 0.84 0.53 0.61 0.31 -0.13 -0.36 0.42 0.31 0.30 0.49 0.396 

(2851+2927)/(1655+1548) 0.47 0.16 -0.18 0.27 0.36 -0.98 0.98 1.00 -0.90 0.94 0.94 0.94 0.75 0.85 0.59 0.68 0.37 -0.23 -0.38 0.47 0.35 0.33 0.56 0.465 

1239/(2851+2927) -0.05 0.01 0.02 0.09 0.05 0.92 -0.92 -0.90 1.00 -0.93 -0.89 -0.90 -0.45 -0.70 -0.32 -0.44 -0.28 -0.01 0.43 -0.39 -0.18 0.01 -0.26 
-

0.211 

1741/1640 0.25 0.07 -0.09 0.13 0.16 -0.96 0.96 0.94 -0.93 1.00 0.99 0.93 0.55 0.79 0.38 0.47 0.18 0.05 -0.37 0.28 0.19 0.15 0.42 0.374 

1740/1400 0.32 0.07 -0.09 0.21 0.23 -0.96 0.96 0.94 -0.89 0.99 1.00 0.95 0.59 0.82 0.43 0.52 0.20 0.00 -0.36 0.29 0.16 0.19 0.49 0.476 

2852/1400 0.27 0.04 -0.06 0.16 0.21 -0.94 0.93 0.94 -0.90 0.93 0.95 1.00 0.57 0.82 0.51 0.61 0.36 -0.17 -0.40 0.45 0.05 0.14 0.53 0.58 

1450/1539 0.85 0.18 -0.20 0.68 0.70 -0.69 0.67 0.75 -0.45 0.55 0.59 0.57 1.00 0.73 0.80 0.80 0.45 -0.52 -0.09 0.50 0.73 0.72 0.60 0.463 

1240/1517 0.46 -0.19 0.17 0.47 0.25 -0.84 0.84 0.85 -0.70 0.79 0.82 0.82 0.73 1.00 0.65 0.72 0.37 -0.32 -0.25 0.45 0.38 0.29 0.37 0.373 

1045/1545 0.66 0.06 -0.08 0.58 0.58 -0.55 0.53 0.59 -0.32 0.38 0.43 0.51 0.80 0.65 1.00 0.96 0.83 -0.82 0.13 0.81 0.49 0.72 0.54 0.522 

1080/1550 0.63 0.07 -0.09 0.51 0.53 -0.63 0.61 0.68 -0.44 0.47 0.52 0.61 0.80 0.72 0.96 1.00 0.84 -0.83 -0.11 0.87 0.46 0.64 0.57 0.533 

1060/1230 0.25 0.04 -0.06 0.13 0.24 -0.34 0.31 0.37 -0.28 0.18 0.20 0.36 0.45 0.37 0.83 0.84 1.00 -0.86 0.01 0.98 0.25 0.44 0.35 0.341 

1170/1080 -0.51 -0.18 0.20 -0.36 -0.51 0.16 -0.13 -0.23 -0.01 0.05 0.00 -0.17 -0.52 -0.32 -0.82 -0.83 -0.86 1.00 0.04 -0.84 -0.32 -0.58 -0.45 
-

0.399 

1030/1080 -0.01 -0.29 0.31 0.28 -0.02 0.36 -0.36 -0.38 0.43 -0.37 -0.36 -0.40 -0.09 -0.25 0.13 -0.11 0.01 0.04 1.00 -0.13 0.08 0.26 -0.30 -0.16 

1080/1243 0.25 0.03 -0.06 0.11 0.21 -0.45 0.42 0.47 -0.39 0.28 0.29 0.45 0.50 0.45 0.81 0.87 0.98 -0.84 -0.13 1.00 0.30 0.42 0.35 0.318 

1587/(1655+1548) 0.60 0.03 -0.05 0.53 0.38 -0.31 0.31 0.35 -0.18 0.19 0.16 0.05 0.73 0.38 0.49 0.46 0.25 -0.32 0.08 0.30 1.00 0.57 0.04 
-

0.206 

1156/1171 0.81 0.37 -0.37 0.63 0.80 -0.31 0.30 0.33 0.01 0.15 0.19 0.14 0.72 0.29 0.72 0.64 0.44 -0.58 0.26 0.42 0.57 1.00 0.57 0.394 

1243/1314 0.69 0.69 -0.70 0.26 0.81 -0.51 0.49 0.56 -0.26 0.42 0.49 0.53 0.60 0.37 0.54 0.57 0.35 -0.45 -0.30 0.35 0.04 0.57 1.00 0.849 

1453/1400 0.52 0.36 -0.36 0.36 0.64 -0.42 0.40 0.47 -0.21 0.37 0.48 0.58 0.46 0.37 0.52 0.53 0.34 -0.40 -0.16 0.32 -0.21 0.39 0.85 1 

Supplementary References 
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3.2 Electric-�eld molecular �ngerprinting to probe
human disease

Preface: The following work represents the �rst application of electric-�eld-resolved molecular
�ngerprinting to a real-world-problem, which is cancer detection in human blood sera. For
our group and myself, taking this step from basic science to a biomedical application was a
huge endeavour. The majority of our team never worked on any biomedical or clinical research
questions before. This meant that we had to learn the basic and advanced practices and concepts
of such research.

These included aspects of study design, sample collection, and establishing clinical collab-
orations. Although our group has had no experience in the �eld of serum diagnostics based
on infrared spectroscopy, we were able to establish a new collaboration network with several
clinical partners. Together, we developed standard operating procedures for the management
of clinical information and the collection, handling, and storage of blood samples. This way,
we collected over 3000 human serum samples from cancer patients as well as with samples
from healthy individuals and benign controls over the last three years.

The measurements of the collected samples with the �eld-resolved spectrometer itself
brought along further new challenges. It has already been a leap forward when we demonstrated
that �eld-resolved spectroscopy (FRS) beats Fourier-transform infrared (FTIR) spectroscopy in
terms of sensitivity. However, the ability to repeatedly perform reproducible, high-precision
measurements on biological samples presented us with yet another additional degree of com-
plexity, which we had to manage with a �rst-generation laboratory device. Most importantly,
the instrument had to perform reliably over extended periods of time. A particularly great
challenge was to capture the �ngerprints in a way they could be compared with each other.
This required omitting physical errors and batch e�ects as well as devising ways to properly
process acquired data. Not only did we have to maintain precise control over the instrument
parameters at all times, but we also had to develop appropriate data pre-processing routines
for standardization of the datasets.

In addition, we had to ensure that sample handling and measurement procedures were
controlled as much as possible to prevent them from having a major impact on the acquired
infrared �ngerprints. In order to obtain high-throughput capabilities, the human blood serum
samples had to be delivered automatically and reproducibly. At the same time, the schedule of
the individual team members who took part in the measurements had to be matched to the
work�ows of both sample preparation and warm-up phase of the laser in order to achieve the
highest possible measurement e�ciency.

Lastly, we learned a series of pitfalls when applying machine learning algorithms for
analysis of highly complex infrared �ngerprints to detect cancer. A machine learning algorithm
can pick up almost any data feature that is contained in a speci�c dataset used for training.
And such a feature is not necessarily linked or correlated with the actual medical condition.
For example, the control group may consist only of women and the case group only of men. In
this case, the algorithm may learn to distinguish between men and women. Therefore, when
designing our study cohorts to perform relevant comparisons, we had to properly balance for
age and gender. In addition, we had to keep in mind that any bias from sample collection or
sample handling might be taken up by the algorithm. Therefore, we standardized as many of
our operating procedures as possible and randomized the order of measurements to minimize
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any potential bias.
But eventually, all our hard work has borne fruit. We successfully applied FRS to the

analysis of over 300 individuals’ samples in a clinical study involving lung, breast, and prostate
cancer patients along with matched control individuals. Applying machine learning algorithms,
we obtained detection e�ciencies for all cancer entities in the range of 0.63-0.84 (area under
the receiver operating characteristic curve). We also found that FRS detection e�ciencies are
higher than those obtained with conventional FTIR spectroscopy, suggesting that the increased
sensitivity of the FRS method directly translates into better detection e�ciency. Currently,
we are planning further measurements to validate these �ndings with larger cohorts and to
publish the results in a peer-reviewed journal. The following section reports on the initial
study, representing a �rst version of the planned manuscript.
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A multitude of medical phenotypes are mirrored in human biofluids1–4. Robust, sensitive 

and parallel detection of molecules across different species carries the potential to 

improve current clinical diagnostics4–6. Here we present the first biomedical application 

of field-resolved laser spectroscopy (FRS)7 as a new cross-molecular analytical method 

for electric-field molecular blood profiling with time-efficient workflows enabling high-

throughput applications. In a proof-of-concept clinical study, we applied first-generation 

FRS to probe bulk liquid human blood sera from more than three hundred individuals, 

capturing rapidly oscillating infrared electric fields emitted simultaneously from all 

molecular species in the wake of an ultra-brief excitation. Machine learning algorithms 

enabled isolation of infrared signatures instructive for distinguishing therapy-naïve non-

metastatic breast, prostate, and lung carcinoma from those of carefully-matched control 

individuals. Detection efficiencies in the range of 0.63-0.84 (area under the ROC curve, 

AUC) systematically exceed those obtained with Fourier-transform infrared spectroscopy 

applied to the same samples. The reported data build evidence that the coherent electric 

fields emanating from impulsively excited biomolecules in blood can be captured as 

informative “electric-field-resolved molecular fingerprints” (EMFs). Beyond 

contributing to the detection of cancer, they are likely to provide, more generally, a new 

framework for future phenotyping of biofluids.  

 

The way human cells, organs and bodies function is governed by the molecular composition of 

their contents. Multiple human phenotypes, as well as aberrations such as disease, are reflected 

by the molecular composition of biofluids, like circulating blood, and its cell-free phase - serum 

and plasma, respectively1–4. Although there is an enormous medical need for complementing 

current tissue biopsy-driven diagnostics with time- and cost-efficient non-invasive approaches, 

the challenge for modern omics-technologies still lies in achieving reproducible and robust 

multi-molecular detection and interpretation4,8,9. Highly sensitive and specific analytical 

approaches in the fields of proteomics9–11, metabolomics12,13, and genomics14–16 have led to the 

discovery of numerous biomarker candidates. However, current omics-based identification of 

new candidates is limited by the set of molecular species and changes thereof that can be probed 

with a reasonably manageable analytical setup, ideally within a single measurement.  

There is an orthogonal approach - molecular fingerprinting. Here, phenotype detection is 

based on the patterns of changes within the entire molecular landscape2,17. If that very pattern 

is specific enough to a state, it may contribute to the detection of a given physiology/phenotype. 

Differences in patterns of e.g. peptides and metabolites reflected in the spectra obtained with 

mass spectrometry (MS)18 and nuclear magnetic resonance (NMR)19 spectroscopy have shown 
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potential for disease detection. The combination of different omics approaches, with each 

targeting a specific molecular species, like proteins, metabolites etc., briefly multi-omics4,5, 

holds promise to improve diagnostics capabilities. However, this still requires complex and 

target-specific sample preparation as well as elaborate ways combining different data sets4–6,8. 

Broadband vibrational spectroscopy20 addresses these issues by measuring the entire molecular 

landscape in a single cross-molecular fingerprint. Numerous studies have shown the potential 

of blood-based infrared spectroscopic molecular fingerprinting for disease detection21–24. Their 

limited sensitivity, however, restricted molecular fingerprinting to highly abundant components 

so far25. We recently demonstrated that field-resolved spectroscopy (FRS) is able to overcome 

this limitation7.  

Here we report the first biomedical application of electric-field-resolved fingerprinting, a 

novel concept based on time-resolved measurement of the coherent electric fields emanating 

from vibrating molecules impulsively-excited by ultrashort infrared pulses7. We demonstrate 

that phenotypic snapshots of liquid blood serum can be robustly acquired from the resulting 

infrared electric-field molecular fingerprint (EMF). We find that infrared EMFs from sera 

enable efficient detection of lung cancer. Moreover, even in its very first implementation, FRS 

substantially improved the detection efficiency of breast and prostate cancer as compared to 

conventional Fourier-transform infrared (FTIR) spectroscopy, which had matured over 

decades.  

 

Infrared electric-field molecular fingerprinting of human blood serum 

Infrared vibrational spectroscopy interrogates the vibrational response of molecular bonds to 

optical excitation. It accesses the frequency, phase, and strength of the vibrational modes, which 

are specific to the molecule(s) under scrutiny and may hence allow their identification and 

quantification26. For complex human bioliquids, infrared electric fields emitted by thousands 

of different types of molecules add up coherently to form the sample’s overall EMF. It delivers 

a pattern that reflects the sample’s molecular landscape across all species. The larger the 

detection dynamic range, the larger the number of molecules contributing to the measured EMF 

and thus, the greater the depth of analysis. This may result in a more specific and sensitive 

detection of abnormal physiologies. 

In conventional infrared absorption (e.g. FTIR) spectroscopy, the molecular fingerprints are 

measured by capturing time-integrated signals. Thus, weak signals of low abundant molecules 

may be buried in the noise of the detector and/or excitation, restricting the analysis to highly 

abundant molecules7,25. By contrast, FRS relies on the sudden, impulsive excitation of 

molecular vibrations and direct sampling of the infrared electric field emanating from the 

sample7,27. Because the coherent molecular response survives the ultra-brief excitation, FRS 

can isolate the EMF and measure it directly in a temporal window that can be free from any 

excitation and hence also from its noise. By this, sensitivity limitations imposed by source noise 

and detector dynamic range can be avoided. As a result, FRS has – already in its first 

implementation – outperformed state-of-the-art FTIR in sensitivity, with a detectable molecular 

concentration range in complex biofluids from >50 mg/ml to several hundred ng/ml7. 

In the current study, we tested the new technology for medically relevant blood profiling in 

a prototypical clinical setting, assessing the usefulness of EMFs as a source of complementary 

information for cancer diagnostics. We evaluated the efficiency of electric-field fingerprinting 

of bulk liquid blood sera to distinguish non-metastatic (TNM stage II and III), therapy-naïve, 

lung, prostate and breast cancer patients (case cohorts) from age-, gender and smoking-status-

matched individuals with benign conditions of the same organ (organ-specific control cohorts) 

as well as matched non-symptomatic healthy references (healthy control cohorts), see Fig. 1a 

and Extended Data Table 1. Blood samples were drawn and processed according to well-

defined standard operating procedures (see Methods) to minimize pre-analytical error (Fig.1 b). 
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An automated sample delivery system was applied for high-throughput electric-field 

fingerprinting of 329 liquid sera (Fig. 1c). The samples were excited by broadband (940-1515 

cm-1 at -20 dB intensity) mid-infrared laser pulses with a duration of 90 fs (full width at intensity 

half maximum) (Fig. 2a, top panel), and the molecular response was recorded with electro-optic 

sampling7. The acquired EMFs were used to train a machine-learning algorithm for binary 

classifications of the samples (Fig. 1d, e) into case and control groups.  

In what follows, we discuss the characteristic properties and analyses of EMFs using the 

lung cancer cohort as an example. The same tools and procedures have also been applied to the 

two other cancer entities. 

 

 

Fig. 1 | Electric-field molecular fingerprinting workflow and clinical study design.                     

a, Designing balanced, matched cohorts of three cancer entities (lung, prostate, and breast 

carcinoma) at therapy naïve, non-metastatic stage and organ-specific control individuals for 

case-control studies. b, Blood samples from all individuals were drawn and sera prepared 

according to well-defined standard operating procedures. c, Field-resolved spectroscopy of 

liquid bulk blood sera were used to obtain d, electric-field molecular fingerprints (EMFs). e, 

Machine learning models were built on training data sets and evaluated on test data sets to 

separately evaluate the efficiency of classification for each of the three cancer entities. 
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Electric-field molecular fingerprints 

EMFs of serum samples were obtained from 56 lung cancer patients and 96 control subjects by 

subtracting the recorded signal from a water reference from that of the samples (Fig. 2a). To 

capture the benefits of FRS, it is instructive to analyse the EMFs in different time windows: 

one coinciding with the excitation and others opening later. 

During the time span of the excitation pulse, no substantial differences between case and 

control group could be discerned (Fig. 2b). The same phenomenon was observed in the spectral 

domain (Fig. 2c, upper panel), as reflected by non-significant p-values for case-control 

separation higher than 10-2 (Fig 2c, lower panel). Possible small differences in the EMFs that 

might result from variations of the molecular composition tend to be masked by intensity 

fluctuations of the strong excitation. Although Fourier-transformation of the entire electric field 

trace emitted by the sample preserves the molecular information, it also transfers the excitation 

noise to the spectral domain. This reflects an unfavourable measurement condition, 

characteristic of time-integrating spectroscopic techniques.       

In contrast, FRS can circumvent this noise contribution, by allowing isolated analysis of the 

EMFs in a temporal window opening sufficiently late (at ��������) after the impulsive 

excitation (see Methods). Should there be any differences between the EMFs of case and control 

individuals, they offer the best chance to be observed after the (noisy) excitation disappeared 

and the molecular signal prevails. Figure 2b’ indeed reveals significant differences between 

900 fs and 1200 fs after the excitation pulse. A Fourier analysis of the EMFs temporally filtered 

with �������� = 200 � and �������� = 900 � elucidate spectral domains in which the 

spectral components of the EMFs from the case and control samples were robustly 

distinguishable with p-values of <10��� (Fig. 2c’ and c’’, lower panel), eight orders of 

magnitude below those of Fig. 2c. 

In conventional vibrational spectroscopy, distinct peaks in the acquired absorbance spectra 

can be assigned to chemical bonds and functional groups26,28. However, the number of possible 

assignments is limited by the spectral coverage and the width of the absorption peaks. Time-

resolved spectra may provide much richer information. For small values of ��������, the 

resulting time-filtered spectra and associated p-values yield fairly broad features (Fig. 2c), 

while for later times the features become narrower with their central frequency shifting (Fig. 

2c’ and c’’). This is because vibrations associated with broad absorption peaks decay faster than 

those with narrow absorption peaks29. Consequently, with the temporal window opening later, 

vibrational modes with long-lived coherence characterized by narrow-band signatures prevail. 

EMFs may thus give direct access to a larger variety of spectral features, potentially serving as 

spectral markers associated with a particular condition (e.g. lung cancer). Further investigation 

of the unique information content of these time-resolved spectral markers is required to gain 

improved insight into the molecular origin of differences between case and control fingerprints.  
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Fig. 2 | Electric-field fingerprints of human blood sera. a, Infrared electric field emanating 

from serum samples of control subjects (blue lines) and non-small-cell lung cancer patients 

(red lines), upon being excited by a few-cycle mid-infrared laser pulse (grey line). EMFs of 

serum samples were obtained by subtracting the recorded signal from a water reference from 

that of the samples.  b, b’, Close-ups of case and control traces for selected time windows. c, 

c’, c’’ (upper traces), Power spectra of the EMFs upon transmission through a high-pass-time-

filter with �������� = −500 �, 200 � and 900 �, respectively. The two-tailed p-value of the 

Student’s t-test between controls and lung cancer cases are depicted in the lower panels.  

Lung cancer detection 

We implemented binary classification between (lung) cancer and controls by applying a support 

vector machine (SVM)30 algorithm to the EMFs. The data was split into train and test sets, 

employing a 10-times repeated 10-fold cross validation. For assessing the efficiency of cancer 

detection, we evaluated the resulting area under the curve (AUC) of the respective receiver 

operating characteristic (ROC) curves for the test sets. 

As discussed above, quality and information content of the recorded EMFs for case-control 

separation strongly depend on the selected time interval. Although a complex, optimized 

algorithm should be able to pick up all defining features without pre-processing (e.g. temporal 
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filtering) of the measured EMFs, this applies only if enough data for training are available31. 

Due to the limited size of our data set, we chose to perform a numerical search for identifying 

the optimum time window prior to classification (see Methods and Supplementary Information 

Section 2). This was found to span from 1050 fs to 1550 fs after the excitation, yielding an 

AUC of 0.84. In Fig. 3a, we depict the corresponding ROC curve (black line). To access 

whether our model overfits the training set, we compare the model's performance on both the 

train (red ROC curve) and test set (black ROC curve). The fact that the two ROC curves are 

nearly identical, implies that the derived model is not sensitive to small fluctuations in the 

training set and is therefore reliable. 

Further analysis shows that the classification efficiency depends on the tumour size: models 

trained on T4 non-small-cell lung cancer (NSCLC) patients with larger tumours yielded an 

AUC about 15% higher than models trained on T3 patients with smaller tumours (Fig. 3b). This 

suggests that the information retrieved from the measured differences between case and control 

EMFs may be dominated by tumour-related signals. A larger tumour load may itself give rise 

to more extensive molecular changes, or larger tumours could have imposed a higher systemic 

response, or a combination of both may be leading to higher efficiency of detecting larger 

tumours.  

 
 Fig. 3 | Lung cancer detection efficiency. a, ROC curve for the binary classification of 

infrared electric-field molecular fingerprints with SVM models (for a time window spanning 

from 1050 fs to 1550 fs after the excitation) of blood sera from 56 therapy naïve, non-metastatic 

non-small cell lung cancer (NSCLC) versus 96 reference individuals (either non-symptomatic 

healthy, COPD or lung hamartoma individuals). b, Classification efficiency (AUC, grey bars 

depict standard deviation) is higher in patients bearing tumours with larger diameter. T2, T3 

and T4 are corresponding to 3-5 cm, 5-7 cm or > 7 cm tumour diameter, respectively. The 

prospective cohort did not encompass any patients with T1 tumours to be evaluated. 

To identify spectral regions of EMFs most relevant for NSCLC detection, we analysed the 

Fourier-transformed data of the optimized time window (see also Supplementary Information 

Section 3). We trained Random Forest32,33 models and evaluated the resulting Gini importance 

across the spectral range used for differentiating between the groups. We found five spectral 

regions of high Gini importance, marking the frequency components of the EMFs, which most 

significantly contributed to the classification of NSCLC (Fig. 4 left panels, Supplementary 

Information Section 3). 

Lung cancer is often accompanied by chronic obstructive pulmonary disease (COPD). Thus, 

we tested whether electric-field fingerprinting, as a modality, could possibly identify any 

NSCLC-specific signatures, independently of COPD. Towards that end, we separated 

individuals from the above analysis into sub-cohorts with subjects negative (Fig. 4b, b’) and 

positive (Fig. 4c, c’) for COPD. Although NSCLC detection was less efficient in the presence 
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of COPD, with an AUC value dropping to 0.77 (Fig. 4c), we found three of the five spectral 

regions previously identified as dominant in NSCLC classification to remain instructive for 

classifying COPD-positive NSCLC cases vs. COPD-positive age- and gender-matched control 

individuals. The specificity of these three regions for the presence of NSCLC in the organism 

is further corroborated by the fact that they do not contribute to the classification of COPD 

versus non-symptomatic, healthy individuals (Fig. 4d).  

 
Fig. 4 | Isolation of NSCLC infrared electric-field fingerprint regions. (a, b, c, d) Comparison 

of the Gini importance across spectral fingerprints for binary classification related to different 

conditions. The shaded areas depict five regions of high Gini importance relevant for the 

classification of non-small-cell lung cancer (a). Three of the five regions (red shaded areas) 

are also observed when only consider COPD-negative or COPD-positive cohorts (b, c), but do 

not contribute to the classification of COPD-negative controls vs. COPD-positive controls (d). 

(a’, b’, c’, d’) ROC curves depicting the classification performance of linear SVM-based 

models. The plots show the mean and standard deviation of the distribution of ROC curves 

resulting from a repeated randomized procedure (10 times) of a 10-fold cross-validation. The 

mean AUC values and the corresponding standard deviation are shown in the inset. 
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Reproducibility of electric-field fingerprinting 

To test the robustness and technical reproducibility of electric-field fingerprinting, we prepared 

a second (replicate) aliquot of a randomly-selected subset of the lung cancer cohort consisting 

of 56 samples (26 cases, 30 controls) to serve as a hold-out test set. This fully-independent set 

was measured 16 months after the first measurement campaign (Supplementary Information 

Section 4). An SVM-based model was trained on the EFMs of the remaining 96 samples (30 

cases, 65 controls) from the first measurement set. Thereby, a numerical standardization 

procedure was applied to all EMFs to account for changes in the instrument setting. The trained 

model yielded a classification efficiency (AUC) of 0.83 (Extended Data Fig. 3), comparable to 

that obtained by a data set acquired in one and the same measurement campaign. This not only 

provides an additional confirmation of the reliability of the derived models, but also further 

delivers evidence for the feasibility of combining measurements obtained at different times in 

different measurement campaigns with differing instrumentation. These are essential 

prerequisites for large-scale studies – involving several measurement sites over several years – 

as well as for the real-world setting of using a previously-trained model for classification of 

independent samples at later times.  

Capacity to detect different cancer entities  

To evaluate whether FRS has any capability of detecting cancer entities other than lung 

carcinoma, we performed analyses of blood sera from patients with prostate and breast cancer 

along with separate age- and gender-matched, organ-specific controls for each cancer entity.  

Classification models trained on therapy-naïve, non-metastatic breast and prostate cancer 

(and matched controls) yielded AUCs of 0.63 and 0.70, respectively (Table 1). Overall, we 

found that lung, breast, and prostate cancer leave their dominant marks in different time 

windows and different regions of the time-filtered EMF spectra (Supplementary Information 

Section 4). This indicates that primary cancer entities of different origin tend to induce differing 

changes in the EMFs of blood sera. 

To benchmark our approach against conventional infrared spectroscopy, we analysed the 

same sample set with a state-of-the-art FTIR spectrometer (Methods and Supplementary 

Information Section 5). For comparing the electric-field fingerprinting classification 

performance with that of FTIR-based fingerprinting, we confined FTIR spectroscopy to the 

same spectral region covered by our FRS instrument, resulting only in a small difference in 

FTIR-based classification efficiency (Supplementary Information Section 6). By this approach, 

we found that FRS yields higher AUC values for all three cancer entities. Whilst progress in 

lung cancer detection remains within statistical uncertainty, advances are evident for prostate 

and breast cancer, none of which can be detected by FTIR (Table 1). This is a first experimental 

indication that the improved molecular sensitivity of EMFs directly translates into higher 

efficiency in distinguishing medical phenotypes.  

Table 1 | Cancer detection accuracy, in terms of area under the curve (AUC), of different cancer entities 

by FRS vs. FTIR fingerprinting. The results are based on EMFs from optimized time windows  

(Supplementary Information Section 4). The classification was performed using linear SVM based 

models but similar results can be obtained using Logistic Regression. 

Cancer cohort 

(# cases / # controls) 

Lung Cancer 

(56 / 96) 

Prostate Cancer 

(41 / 79) 

Breast Cancer 

(42 / 41) 

Electric-field-resolved fingerprinting 0.84 0.70 0.63 

FTIR fingerprinting 0.83 0.55 0.55 
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Conclusions and outlook  

Here, we show that electric-field-resolved molecular fingerprints (EMFs) harbour information 

instructive to identify human pathophysiological phenotypes. Analysing the non-cellular 

fraction of blood (serum) in a prototypical clinical study, EMFs allow to detect therapy-naïve 

and non-metastatic cancer types, a notoriously difficult medical problem34.  

Our data put forward electric-field-resolved spectroscopy as a new molecular fingerprinting 

approach, where information of organismal states - systemic phenotypes - can be comparatively 

derived from oscillating infrared electric fields emitted after an ultra-brief laser pulse. The 

technique permits capturing a snapshot of the ensemble of chemical bonds, covering all types 

of biomolecules in the highly complex blood serum sample. In addition, our approach obviates 

the necessity to detect different types of analytes with several separate instruments or separate 

pre-analytical steps that all can potentially introduce analytical error. These makes electric-

field-resolved fingerprinting inherently suited for robust high-throughput applications. 

Additionally, we have shown that EMF-based classification is still feasible for samples that 

were measured more than one year after the data for training of the classifier were recorded. 

Both aspects (high-throughput and cross-comparability over time) are pre-requisites for the 

application in a medical setting. 

A major advantage of EMFs is that they reflect changes in the “multi-omic landscapes” of 

bioliquids. Such changes are potentially based on the heterogeneity of cancer growth35–37 that 

might project into bioliquids, and that can be collectively captured by electric-field-resolved 

fingerprinting. Despite the fact that vibrational spectroscopy, in general, provides to some 

extent the possibility to relate spectral differences to changes in concentration of individual 

molecules, this is inherently not the aim of this study. Towards that end, further molecular 

analyses (e.g. infrared chemometrics25, complementary proteomics or metabolomics) will be 

necessary to understand the molecular nature underpinning the EMFs. Instead, this approach 

focuses on evaluating whether EMFs detected are robust and specific to a given disease.  

Although we have made a first step towards identifying patterns of EMFs specific to 

different cancer entities, we need to acknowledge that their reproducibility is yet to be verified 

in future large-scale clinical studies with independent validation data sets. For assessing the 

generalizability of EMFs on a population scale, it will be further instructive to address the effect 

of a variety of cofounding factors contributing to EMFs, and to test populations from multiple 

medical centres and additional relevant control groups.  

Other analytical approaches are being predominantly molecule- and gene-centric. While 

they provide quantitative information on molecules of known identity, this is at the expense of 

complex analytical workflows. Although their integration into multi-omics analyses are 

progressing, the complexity of combining and analysing different datasets remains 

challenging4,38,39. And even though other multi-analyte, omics and multi-omics techniques for 

blood-based cancer detection have already yielded high detection accuracies2,3,40–44, our study 

reveals a simple, time- and cost-effective, label-free approach that, already in its first 

biomedical implementation, shows promising efficiencies for detection of common non-

metastatic malignancies providing possible grounds. 

The future of electric-field molecular fingerprinting holds promise for further improving 

sensitivity and specificity. Technical advances towards increasing the capacity to probe 

additional functional groups by extending spectral coverage45–47, and towards enhancing 

detection sensitivity to capture low-abundant molecules are both under way. The general 

paradigm of the reported approach could well be extended as a complementary tool for systemic 

phenotyping of cancer and potentially also other human physiologies. 
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Methods and Materials 

Clinical study participants  

We performed a multicentric, prospective study on three cancer entities (lung cancer, breast cancer 

and prostate cancer), including subjects with corresponding benign conditions as well as healthy 

volunteers. Participants provided informed written consent for the study under research study 

protocol # 17-182 approved by the Ethics Committee of the Ludwig-Maximillian-University 

(LMU) of Munich. Our study complies with all relevant ethical regulations and informed 

consent was obtained from all participants. The following clinical centres were involved in 

subject recruitment and sample collections of the prospective clinical study: Department of 

Internal Medicine V for Pneumology, Urology Clinic, Department of Obstetrics and 

Gynaecology, Breast Cancer and Comprehensive Cancer Centre Munich (CCLMU), all 

affiliated with the LMU. The Asklepios clinic (Gauting), and the Comprehensive Pneumology 

Centre (CPC) Munich were further study sites in Germany.  

Analyses focus only on subjects with clinically confirmed carcinoma of lung, prostate or 

breast at the TNM stage II, and III48, with no metastases, prior to any cancer-related therapy, 

and without any other cancer occurrence. Healthy controls were non-symptomatic individuals, 

without any history of cancer, not suffering from any cancer-related disease nor being under 

any medical treatment. 

Lung cancer cases were compared to matched individuals from the following groups: 

Chronic obstructive pulmonary disease (COPD), pulmonary hamartoma or healthy individuals 

matched for gender, age and smoking status. As a reference condition for the prostate cancer 

age-, gender- and smoking-status-matched either benign prostate hyperplasia (BPH) patients or 

healthy, non-symptomatic individuals were chosen. For breast cancer age-, gender, and 

smoking-status-matched healthy, non-symptomatic subjects were compared. Full breakdown 

of all participants is listed in Extended Data Table 1. 

Blood sample collection and preparation 

Blood samples were collected, processed and stored using previously defined standard 

operating procedures: Blood draws were all performed using Safety-Multifly needles of 21G 

(Sarstedt) into 4.9 ml serum, centrifuged at 2.000 g for 10 minutes at 20 °C, aliquoted and 

frozen at -80°C within 3 hours from the time of sampling. All samples were thawed, further 

aliquoted for measurement and re-frozen at -80°C to ensure a constant number of freeze-thaw 

cycles before analysis. Before any measurement, serum aliquots were thawed at room 

temperature, shaken for 20 s, and spun down again. Measurements of liquid sera were 

performed using an automated sample delivery system for high-throughput electric-field 

fingerprinting. Samples were measured in a random order to avoid systematic effects during 

data evaluation. To measure and track experimental errors (Supplementary Information Section 

7) during the measurement campaign49, quality control (QC) samples from pooled human serum 

(BioWest, Nuaillé, France) were measured after each 5 samples. One measurement sequence 

contained up to 40 samples resulting in measurement time of up to 3 h.  

Electric-field fingerprinting measurements 

The electric-field-resolved molecular fingerprint (EMF) measurements were performed with a 

spectrometer described in detail in our previous work.7 Automated liquid sample handling and 

cleaning of the measurement cuvette was implemented with the same commercially-available 

autosampler (micro-biolytics GmBH) as in the FTIR measurements (see also below). Each 

serum sample measurement was preceded by a reference measurement on blank water and 

followed by automatic cleaning of the cuvette to avoid any residue or takeover. Each electric-
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field trace – obtained either from reference or sample measurement – was recorded within an 

8.3-ps time window (corresponding to a spectral resolution of 4 cm-1) over a total measurement 

time of 45 s. Including the time required for sample exchange and cleaning of the cuvette, the 

total measurement time for one single serum sample took approximately 4 minutes. 

Preprocessing of EMFs 

In order to compensate for drifts of the time axis and pulse intensity between different 

measurements, we first performed time adjustments of pulse positions, setting the peak of the 

excitation to time 0 fs. Next, the energy of all excitation pulses was normalised to one. Then 

we minimized the discrepancy between different pulses by varying a time offset parameter. The 

time-domain EMFs were acquired by subtracting the reference (i.e. water) from the 

corresponding sample measurement. Time-filtered data was obtained by setting the recorded 

time-traces to 0 before �������� and after ����. If ���� is not stated, the endpoint of the recorded 

time-trace was considered. For the analysis in the frequency domain we performed Fourier 

transform of the data using fast Fourier transform algorithm.  

Standardization of EMFs 

For comparison between measurements taken at different times or different instrument 

configuration, we applied a numerical standardization procedure to the EMFs. First, a reliable 

and uniform subset of reference measurements was selected, and averaged reference pulse was 

obtained. It is considered as a standardized reference pulse. Second, all datasets were converted 

to the frequency domain using fast Fourier transform algorithm. Third, for each of the reference 

spectra a transformation converting its spectrum to the spectrum of the standardized reference 

pulse was obtained and applied for also for the sample measurement corresponding to this 

reference. This procedure converts all reference spectra to the standardized reference pulse 

spectrum, and all samples spectra to spectra excited by the same excitation. Last, with the help 

of the inverse Fourier transform standardized sample and reference pulses were represented in 

time domain. 

FTIR measurements and data pre-processing 

The spectroscopic measurements were performed with an automated FTIR device (MIRA-

Analyzer, micro-biolytics GmbH) with a flow-through transmission cuvette (CaF2 with 8 µm 

path length). The spectra were acquired with a resolution of 4 cm-1 and an averaging time of 45 

s to ensure a fair comparison with the EMF measurements. After sample exchange a water 

reference spectrum was measured to reconstruct the infrared absorption spectra. For the pre-

processing of FTIR fingerprints we tested different recommendations from prior works24,50. In 

our case, normalization of all spectra (using either L1 or L2 norm) yielded highest classification 

performance. Currently, the spectral coverage of our FRS device (940-1515 cm-1) is much less 

than that of a state-of-the-art FTIR spectrometer. Thus, for the comparison between FTIR and 

FRS, all spectra were truncated to 940-1515 cm-1. 

Classification models 

The data analysis was performed using Scikit-Learn (v. 0.20.3), in Python (v.3.6.8). We trained 

classification models based on three algorithms: logistic regression, linear SVM and random 

forests. We evaluated the performance with a repeated (10-times) stratified 10-fold cross 

validation and its visualization using the notion of the receiver operating characteristic (ROC) 

curve. As an overall metric for model performance, we use the area under the ROC curve 

(AUC).  
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Time-domain optimization of the classification models 

To identify the most informative parts of the time traces, we numerically slide filters of different 

sizes across the entire length of the time traces and evaluate the performance (AUC) of the 

SVM classification (Supplementary Information Section 2). As a criterion for the optimization 

we defined a measure for the amount of overfitting given by the difference between the average 

AUC values for the train and test sets (in cross validation). A classification was considered 

reliable if and only if the amount of overfitting did not exceed the standard deviation of the 

distribution of AUC values for a given time window. From all time windows for which this 

requirement was satisfied, we eventually selected the one yielding the highest AUC. 

 

Gini importance and feature selection 

Using random forests classification models with 10k decision trees we evaluated the Gini 

importance32,33 of each feature. This enabled us to identify informative regions along the 

spectra, by ranking the features in terms of their relevance to a particular binary-classification 

problem. In addition, using the spectral features associated with the local maxima of the Gini 

importance as a base, we performed feature selection by recursively scoring all features using 

SVM models (see Supplementary Information Section 3). This allowed us to isolate the 

minimal number of spectral markers that yield optimal classification. 

 

Model evaluation using cross validation 

For the evaluation of the performance of machine-learning models and for assessing the levels 

of overfitting, all models considered in this work were tested on hold-out test sets, which were 

not used for model building. Due to limited size of the data sets considered, no single train-test 

splits were used but instead multiple splits under k-fold cross validation. The reasoning behind 

this choice is that in cases of limited data sets, single train-test splits lead to very small test sets 

that lead to high variance in the estimated performance. This problem can be overcome by 

simulating the effect of a larger test set using repeated k-fold cross validation51. 
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Section 2: Methods for optimizing EMF-based classification   

In order to identify regions of the time traces informative for disease detection, we trained 

classification models using linear SVM on different time windows of differing sizes and locations, 

spanning the entire time window incorporating the EMF signal. The results presented here refer to 

lung cancer but the procedures described remain the same when analysing the EMFs for the other 

cancer entities. We then evaluate the average AUC using 10 times repeated 10-fold cross validation 

(Extended Data Fig. 1 a) and the amount of overfitting (Extended Data Fig. 1 b), given by the difference 

between the resulting average AUC of the train and test set.  

As displayed by the yellow stripe in the left bottom corner of Extended Data Fig. 1b, there is strong 

overfitting as long the excitation pulse has large overlap with the sampling window. This is a 

consequence of the fact that reading out the molecular signal in this temporal domain is plagued by 

substantial noise carried by the excitation pulse, as discussed in the main text. Sliding a temporal 

window of 495-fs duration across the entire EMF measured reveals the same behaviour, as shown on 

the lower panel of Extended Data Fig. 1 c. The overfitting initially decreases for increasing delay of the 

sliding window due to a decrease of noise with decreasing excitation signal. The temporary increases 

at delays around 500-700 fs and 1500-1700 fs coincide with increased background noise due to post 

pulses (caused by spurious reflections) depicted by the grey line in Extended Data Fig. 1c. A sampling 

time window starting at �������� = 1050 fs yields highest classification performance that corresponds 

to an AUC of 0.84 (Fig. 3b). Towards later times, the coherent molecular signal decays and results in 

an increase of overfitting and decrease of classification performance. 

Section 3: EMF spectral markers for non-small-cell lung cancer detection  

To identify spectral regions of EMFs most relevant for NSCLC detection, we analysed the Fourier-

transformed data of the optimized time-window (1050 - 1550 fs for the lung cancer cohort). We 

derived the binary-classification-based Gini importance in the frequency domain using a Random 

Forest classification model with 10k estimators (Extended Data Fig. 2 a). We identified the frequencies 

that are associated with all local maxima of the Gini importance and used them as potential candidates 

of informative features. To find the optimal set of these feature (the most informative combination), 

we performed feature selection with a method called recursive-feature elimination using an SVM for 

repeated classification. This selection procedure results in a set of 4 features, located at 1054, 1145, 

1236, and 1288 cm-1, depicted by dashed lines in Extended Fig. 2a. Using these four features for 

classification, an AUC of 0.84 (Extended Data Fig. 2 b) was achieved. This is identical to the value 

acquired by direct classification in the time domain for the same (optimized) time window with all the 

information contained in it. Hence, the four spectral markers identified capture the majority of cancer-

specific signals contributing to classification.  

As discussed in the main part of the paper, vibrations associated with broad absorption peaks decay 

faster in time than those with narrow absorption peaks. Therefore, analysing time-filtered spectra may 

give direct access to a different set of spectral features in dependence of the chosen time-window. 

Analysing the Gini importance for displaced time-intervals we found that the peaks appeared at 

different wavenumbers (Extended Data Fig 2 c) - potentially giving access to disease-related molecular 

information from different origin. However, the unique information content of these spectral markers 

needs further investigation in order to trace them back to their molecular origin and fully utilize the 

potential they possibly offer for further improving classification.  
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Extended Data Fig. 1 | Time-domain optimization. a, Colour plot depicting the dependence of the 

classification performance (AUC) on the selection of the sampling time window. The y axis corresponds 

to the initial time while the x axis to the length of the sampling time window. The colour indicates the 

AUC value b, Colour plot depicting the amount of overfitting as function of the initial time and the 

length of the sampling time window. The black cross indicates the time window yielding the highest 

AUC of 0.84. c, AUC and the overfitting condition respectively for a sliding time window of 500 fs.  

  

Electric-�eld molecular �ngerprinting to probe human disease 129



 

 

 

 

 

 
Extended Data Fig. 2 | Spectral feature extraction and classification in the frequency domain. a, Gini 

importance for the optimized time window for the detection of lung cancer. Dashed lines indicate the 

four spectral features that result in the optimal classification. b, ROC displaying the classification 

performance of an SVM model, based on the four optimal spectral features. c, Gini importance for five 

different sampling time windows. 
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Section 4: Reproducibility of measurements and classification over time  

To evaluate the stability and technical reproducibility of our measurements, procedures and whole 

approach over time, we measured a second aliquot, replicate of randomly selected subset of the non-

small-cell lung cancer cohort (26 cases, 30 controls) that had been initially measured one and a half 

year after the first measurement campaign. As these data were not integrated into initial analyses, 

they lend themselves for the purposes of a “true” hold-out test set. To this end, we use the fingerprints 

of the remaining 96 samples (30 cases, 65 controls) recorded in the first measurement campaign for 

training our NSCLC classification algorithm. The classifier trained this way is then used to analyse the 

fingerprints of the hold-out test sets, recorded in the first and the second measurement campaign. 

The resulting ROC curves, plotted in blue and red, respectively, are shown in Extended Data Fig. 3. 

Their AUC values of 0.85 and 0.83 are equivalent within the confidence intervals of the evaluations.  

We would like to emphasize, that for the second round of measurements we purposely changed 

key parts of the FRS instrument, including dispersion compensation in the infrared pulse compressor 

and parameters of the nonlinear crystal used for electro-optic sampling of the infrared pulses 

transmitted through the samples. Therefore, the second set of measurements can be considered as to 

be acquired by a different instrument. In order to be able to merge and compare the two datasets, we 

newly devised a standardization procedure and applied it to all EMFs (see Methods).  

The comparability of (A) the AUCs from the classifications with a hold-out test set (Extended Data 

Fig. 3) with that obtained a 10-times repeated 10-fold cross validation (Fig. 3) and (B) with each other 

from the first and the second measurement campaign has several important implications. (A) provides 

yet another confirmation of the reliability of the derived models. (B) demonstrates the possibility to 

combine measurements obtained with different versions of FRS instruments at different times. Both 

points are a prerequisite for large-scale studies over years involving several measurement sites. 

 

Extended Data Fig. 3 | Reproducibility of classification over time. ROC curve showing the classification 

performance of linear SVM-based models on a randomly-selected hold-out test set of 56 samples (26 

cases, 30 controls), as measured in the first measurement campaign (orange curve) and one and a half 

year later in the second measurement campaign (blue curve). The resulting AUC values are 0.85 and 

0.83 respectively. The train set consists only of measurements from the original campaign. 
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Section 5: EMF spectral markers for all three cancer entities  

Optimal sampling time window for EMF-based detection of each cancer entity was identified as 

explained in the Methods and described in more detail in the Supplementary Section 2. We found that 

lung, breast and prostate cancer leave their strongest marks on the EMF of blood sera in different 

temporal portions of EMF traces, requiring the selection of differing sampling time windows for 

maximizing the detection efficiency of the different cancer entities. These three different sampling 

time windows are as follows: breast cancer analysis: 435 - 680 fs, lung cancer analysis: 1050-1550 fs, 

prostate cancer analysis: 3280-3775 fs. The Gini importance of frequency components contributing to 

the classification has been once again evaluated in the same way as for Fig. 4 and Extended Data Fig. 

2, this time for the above three sampling time windows, respectively. The results are summarized in 

Extended Data Fig. 4 a-c.  

In addition, we compared the Gini importance for a common sampling time window of 1050-1550 

fs. The obtained patterns (Extended Data Fig 4 c-d) differ significantly even under these unified 

conditions of analysis. These findings suggest that primary cancer entities of different origin induce 

significantly differing changes in the overall molecular landscape of blood sera. Its reflection in EMF 

holds promise for not only detecting but also classifying different cancer entities via electric-field 

molecular fingerprinting.   

 
Extended Data Fig. 4 | Gini importance for each studied cancer entity in the Fourier domain. a, b, c 

Breast, prostate and lung cancer derived from time-filtered spectra with the respective optimum time 

window indicated in the figure panels. c, d, e Gini importance of breast, prostate and lung cancer for 

time-filtered spectra between 1050 fs and 1550 fs.    
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Section 6: Classification efficiency for FRS and FTIR 

To cross-compare the efficiency of detecting different cancer entities, as well as to directly evaluate 

and benchmark FRS against FTIR, here we list all ROC curves related to the AUC values mentioned in 

the main part of the paper. In the Extended Data Fig. 5, each panel depicts the two ROC curves for a 

case-control cohort (binary classification) for both FRS (blue line) and FTIR data (red line). In all cases, 

classification was performed using linear SVM and the ROC curves were evaluated using 10 time 

repeated 10-fold cross validation. It needs to be noted that similar results can be obtained also using 

logistic-regression models. 

 

 
Extended Data Fig. 5 | List of ROC curves for all cohorts. a lung cancer, b prostate cancer c breast 

cancer. 

Section 7: Influence of spectral coverage on FTIR data  

In order to be able to compare the classification efficiency when using the FRS data to these of FTIR, 

we have reduced the spectral range from 930 – 3050 cm-1 to 940 – 1515 cm-1, which is the range of the 

FRS. In the Extended Data Table 3, we report the results for the FTIR evaluation using linear SVM for 

the full range i.e. 930 – 3050 cm-1 and present the resulting AUCs for 10x10-fold cross validation. 

Extended Data Table 3 | FTIR  

Cancer cohort AUC (930 – 3050 cm-1) AUC (940 – 1515 cm-1) 

Lung cancer 0.84 0.83 

Prostate cancer 0.61 0.55 

Breast cancer 0.5 0.55 

Section 8: Measurement error vs. biological variability 

We evaluated the reproducibility of infrared electric-field fingerprints obtained with FRS and infrared 

fingerprints acquired with FTIR, quantified their associated measurement errors and set both these 

into relation with the natural biological variability between healthy individuals. The measurement 

uncertainty was obtained by calculating the standard deviation of the repeated quality control 

measurements, either in the time-domain (Extended Data Fig. 6 a, b, grey lines) or in the frequency-

domain (Extended Data Fig. 6 c, d, grey line). This was compared to the variability of infrared 

fingerprints of healthy control individuals (Extended Data Fig. 6, red lines). The relative error, defined 

as the ratio of the standard deviation of quality control measurements in relation to that of 

measurements from samples of healthy control individuals, is depicted in the right panels of Extended 

Data Fig. 6 as blue lines.  

Time-domain analysis revealed, that during the time span of the excitation, the measured biological 

variability is dominated by the measurement error (Extended Data Fig. 6 a). For later times, the 

excitation noise is avoided, and the measurements error dropped well below the biological variability 
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(Extended Data Fig. 6 b). Spectral analysis of a sampling time window spanning from 900 fs – 1400 fs 

confirmed this finding (Extended Data Fig. 6 c). We obtained an average relative error of ~20 % within 

a wavenumber range from 940-1515 cm-1. Analysis of infrared fingerprints obtained with FTIR, yield an 

average relative error of ~37 %.  

 

Extended Data Fig. 6 | Measurement reproducibility of time-domain traces (a, b) and time-filtered 

(between 900 – 1400 fs) spectra (c) obtained with FRS, as well as the reproducibility of infrared spectra 

obtained with FTIR (d). All evaluation was performed after pre-processing. The panels on the left depict 

the average time-trace or spectra of quality control measurements and healthy controls, respectively. 

The panels on the middle column show the evaluated standard deviation of these measurements and 

the panel on the right shows the relative error, defined as the ratio of the variability of quality control 

measurements and healthy controls. 
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Chapter4
Conclusions and Outlook

4.1 Summary

In section 1.4 of this thesis, I formulated two main research questions, the �rst of which
is whether "fs-laser technology, o�ering broadband few-cycle infrared pulses, and the
�eld-resolved detection thereof with electro-optic sampling (i.e. �eld-resolved spec-
troscopy), provide the means to improve sensitivity limits as compared to other emerg-
ing and established mid-infrared spectroscopy techniques".

In chapter 2 we addressed this question and demonstrated that an improvement in sensitivity
is indeed possible. Our �rst-generation �eld-resolved spectrometer already o�ers more than
an order-of-magnitude better detection sensitivity than what is possible with state-of-the-art
Fourier-transform infrared (FTIR) spectrometers. In addition, the intensity dynamic range is
more than 1010 for a measurement time of less than one minute, which is orders of magnitude
higher than what is achieved with current FTIR spectrometers or quantum cascade lasers
(QCL) based spectrometers. This previously unattained dynamic range was achieved by an
electro-optic sampling (EOS) setup optimized for sensitivity [101] and by the fact that the
measurement signal in �eld-resolved spectroscopy (FRS) scales linearly with the �eld, which
e�ectively squares the dynamic range of the photodetector [108–110]. Besides, as discussed
in detail in section 2.3, �eld-scaling of the measurement signal-to-noise ratio (SNR) is highly
advantageous for the measurement of strongly absorbing samples, since the SNR decreases
more slowly with an attenuation as it is the case for intensity-scaling. As a result, we were able
to show high-quality measurements of intact living cells in water and direct measurements of
living plant tissue for the �rst time.

The increased performance we demonstrated was made possible by a combination of tech-
nological developments and a conceptually new approach to linear (absorption) spectroscopy.
The technological basis for this progress were broadband high-power fs-laser sources in the
mid-infrared (MIR), which have been developed by our group [30]. Only with su�cient power
it is possible to exceed detector noise, which limits the sensitivity of most FTIRs, and enter a
regime where shot-noise-limited spectroscopy would be possible in principal [37].

In order to be able to bene�t from the increased power of the laser source, we had to
look at linear absorption spectroscopy from a di�erent perspective. Instead of measuring the
‘missing’ part of the spectrum after interaction with the sample – a common approach in
conventional absorption spectroscopy – we have studied the absorption process of impulsively-
excited molecules in their natural time scale. Under the condition that the temporal duration
of excitation is smaller than the lifetime of the coherent oscillations of the excited molecules,
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a temporal separation between excitation and molecular response becomes possible. The
molecular response, which under ideal conditions would be free from any background, can
now be isolated from the excitation employing non-linear gating.

This allows the molecular information to be recorded under improved measurement condi-
tions. Since the excitation pulse, which is orders of magnitude stronger than the molecular
response, no longer reaches the detector, saturation of the latter can be avoided. That way, the
full power of the excitation can be utilized. Furthermore, the molecular signal no longer needs
to be detected against the background of a noisy excitation, which in turn drastically reduces
the negative in�uence of source noise on the measurement. This approach simultaneously
avoids two main obstacles (source noise and limited dynamic range of the photodetector) to
further increase the sensitivity of detection. Another advantage of FRS is that it is power
scalable. As a result, an increased source power can be converted directly into an improved
detection sensitivity.

Furthermore, �eld-resolved spectroscopy can measure the electric �eld directly with ex-
traordinary precision and therefore has access to the fundamental variable in the description of
many systems. This in turn can facilitate the interpretation of measurement results in complex
experiments. Due to all these advantages, but also due to possibilities of further technical
development in the near future (see next section), we are convinced that �eld-resolved spec-
troscopy will establish itself in the �eld of mid-infrared spectroscopy and will improve existing
applications as well as enable new applications, especially in the �eld of precision spectroscopy
and in the investigation of highly absorbent samples.

For the second research question it was asked whether "this newly developed �eld-resolved
spectroscopy [can] be successfully applied to the analysis of human serum in order
to detect diseases such as cancer". An important sub-question is whether "(i) electric-
�eld molecular �ngerprints can be obtained reliably and robustly", and whether "(ii)
the increased sensitivity of �eld-resolved infrared spectroscopy [...] translates to higher
e�ciency in cancer detection".

The answers to this particular set of questions are multi-faceted. For the sake of clarity and
structure I will attempt to answer them step by step, starting with the �rst sub-question.

The measurements presented in section 3.2 were split into two measurement campaigns,
which took place two years apart. In total more than 300 electric-�eld-resolved �ngerprints
were obtained and included into the analysis. Our evaluations revealed that data taken during
the �rst measurement campaign can be directly compared to the data taken during the second
one. In addition, we have demonstrated that a machine learning algorithm trained on the �rst
set of measurements, can successfully perform binary classi�cation between cases and controls
from the second set of measurements. This demonstrates that our instrument as well as the
developed pre-processing algorithm are operating precisely enough to obtain electric-�eld
molecular �ngerprints of human sera reliably and robustly.

Additionally, with the study presented in section 3.1, we have shown that by applying well-
de�ned standard operating procedures for sample collection and handling, the analytical error
in the measurements of infrared �ngerprints can be kept signi�cantly smaller than the natural
biological variability of the latter. Furthermore, our results suggest that infrared �ngerprints of
individuals can be reliably acquired over time and potentially used to follow the health state of
a person. Although these results were not obtained with FRS but FTIR, there is no reason for
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us to believe that these �ndings are not transferable and to deduce that electric-�eld-resolved
�ngerprinting may be as well suited for health or possibly even treatment monitoring.

With regard to the second sub-question whether "the increased sensitivity of �eld-
resolved infrared spectroscopy (as compared to conventional Fourier-transform in-
frared spectroscopy) translates to higher e�ciency in cancer detection", �rst conclusions
can be summarized as follows:

We obtained a higher binary classi�cation e�ciency for FRS than for FTIR for each of the
three cancer entities investigated. However, in the case of lung cancer, the advantage of FRS
was only slight and within the range of statistical uncertainty. For breast and prostate cancer,
the improvements of classi�cation were more signi�cant. This is a �rst experimental indication
that the improved molecular sensitivity of FRS is directly re�ected in higher e�ciency in the
detection of medical phenotypes. However, it should be noted that these results were obtained
with only a small cohort and should thus be con�rmed in a larger cohort with more cases and
controls. Furthermore, an additional validation should be performed on a leave-out test set
that was only collected after the machine learning model was established.

During my doctoral studies, I realized, that the answer to the per se simple question whether
"�eld-resolved spectroscopy [can] be successfully applied [...] to detect diseases such as
cancer" depends strongly on how the question is formulated exactly, how it is framed and who
asks it with which research or application interest in mind.

In this work we found that when machine learning is applied to the measured �ngerprints,
detection e�ciencies for lung, breast, and prostate cancer in the range of 0.63-0.84 (area under
the receiver operating characteristic curve) can be obtained. If we simply ask, whether we can
detect cancer with certainty, the question would have to be answered negatively. Especially as
it has to be considered that in the case of an indeterminate feasibility of detection, it is possible
that molecular �ngerprinting could actually measure an e�ect that is not clearly attributable to
the presence of a tumour, although it correlates with it to a certain degree.

However, when it comes to assessing the applicability and success of the approach in actual
clinical practice, the far more relevant formulation of the initial question is, whether (additional)
analysis with FRS provides diagnostic advantages over established methods in a speci�c clinical
setting. For example, the widely applied chest X-ray scan for lung cancer detection currently
has a sensitivity and speci�city of 78 % and 97 %, respectively [111]. For comparison, our �rst
clinical study performed with FRS yielded a lower sensitivity and speci�city of 67 % and 88 %,
respectively (see section 3.2. It could therefore be concluded that FRS (at least at is current
stage of development) is not clinically relevant.

However, in contrast to X-ray analysis (which involves a high radiation exposure), liquid
biopsies are minimally invasive and inexpensive. In addition, blood samples are taken in suspi-
cious cases anyway and therefore no additional blood sampling is required for an (additional)
analysis with FRS. With regard to these facts, FRS (with the current detection e�ciency) could
already be considered as a relevant complementary tool for future clinical diagnostics today.
Moreover, it still o�ers great potential for further improvement, given that the technology – in
contrast to e.g. X-ray diagnostics – is still in its infancy.

However, several details still need to be investigated in further studies in order to be able to
prove the possible applicability of our approach to a speci�c clinical setting. For one thing, the
results obtained must be veri�ed in a study re�ecting a realistic clinical setting with a larger
number of participants. For another, the cost, reliability, and user-friendliness of the method
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must be examined in relation to the medical bene�t. Although current proof-of-concept results
provide strong foundation and promising prospects, all these and other questions have yet to
be answered before a broad clinical application of FRS for cancer diagnostics can be considered.

Nevertheless, the results obtained so far are already promising. With an automated mea-
surement with a duration of less than 5 minutes per sample, we were able to achieve high
detection e�ciencies comparable to conventional methods. Considering that electric-�eld
molecular �ngerprinting holds promise for further improvements in speci�city by increasing
the capacity to probe additional functional groups through extended spectral coverage and by
enhancing detection sensitivity to capture low-abundant molecules, a further improvement
of the phenotype detection e�ciency can be expected. Furthermore, the general paradigm of
electric-�eld molecular �ngerprinting could potentially be extended as a complementary tool
for systemic phenotyping of other relevant human physiologies.
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4.2 Future of �eld-resolved spectroscopy
Although the �rst-generation FRS spectrometer has already achieved signi�cant increases
in sensitivity and speci�city, a number of points with great potential for further substantial
improvements in FRS technology can already be identi�ed:

1. Increasing the conversion e�ciency of electro-optic sampling. Only photons that
are converted from the MIR to the near-infrared (NIR) can be detected and thus only
those can contribute to the measured signal. Consequently, a high conversion e�ciency
is essential in order to realise the full potential of a MIR source. Furthermore, source-
shot-noise-limited performance can only be achieved if all MIR photons are detected.
This makes EOS with a sensitivity close to the single-photon level a prerequisite to push
FRS to its fundamental limits.

2. Increasing both power and spectral coverage of the employed MIR source. A
more intense excitation leads to a stronger molecular response, rendering the latter easier
to detect. In principle, the source power can be increased until the damage threshold of
the sample is reached. The broader the spectral coverage, the more types of chemical
bonds can be probed simultaneously. This implies that a greater variety of molecular
species can be investigated, but it also makes it easier to distinguish between the spectral
signatures of di�erent molecules (i.e. increased speci�city).

3. Minimization of theMIR background of the excitation and ofmolecular signals
that are of no spectroscopic interest (e.g. water vapour). This allows the informa-
tive molecular signal to be detected more directly and with less interferences.

4. Minimize the residual �uctuations of the excitation to reduce the �uctuations
in themolecular response. This is essential, if a weak molecular signal is to be detected
against the background of a strong one, since the stronger signal’s �uctuations could
mask the weaker signal. This is the case, for example, when low abundant constituents
are to be measured in the presence of highly abundant constituents, as it is typically the
case in blood serum or plasma.

5. Recording of an excitation-independent molecular signal. A problem that occurs
when only the molecular response is recorded, is that this response depends not only on
the molecular composition of the sample, but also on the excitation itself. Consequently,
results from one measurement campaign might not be directly comparable to those of
another, making large-scale studies challenging. A common approach to avoid this is
calculating the transfer function of the sample. However, this requires a recording of
the entire time trace including the noisy excitation, which may reduce the spectroscopic
quality of the transfer function to a degree worse than that of the time-�ltered molecular
response. Therefore, either methods for noise reduction (4.) or sophisticated data
processing for standardization of the molecular response are required.

6. Reduce the complexity, costs, and footprint of the device. These are prerequisites
for making the FRS technology available to a wider public and further applications.
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For most of these aspects, approaches for implementation are already emerging.
Many of the upcoming improvements will be largely based on shifting the central wave-

length of the laser used for MIR generation and electro-optic sampling from 1 µm to 2 µm.
The conversion of 2-µm light to MIR wavelengths and vice versa is more e�cient than using
1-µm light due to the improved phase matching conditions of the available non-linear crystals.
This makes few-cycle 2-µm pulses excellent drivers for e�cient and broadband mid-infrared
generation (2.). First implementations demonstrated watt-scale power levels with a spectrum
covering almost the entire MIR �ngerprint range [112, 113].

Apart from the fact that FRS would be sensitive to a larger number of molecules, an increased
spectral coverage also implies that shorter pulse durations are supported. Thus, the impulsive
excitation can be compressed to an even shorter time window. If this is combined with measures
to reduce the molecular background from water vapour (e.g. by improving the vacuum), the
actual molecular signal can be detected over a longer time window without any disturbing MIR
background (3.).

At the same time, 2-µm gate pulses can improve the detection e�ciency by more than
one order of magnitude (1.). The 1-µm system that was used for the results presented in this
thesis achieved a conversion e�ciency from the MIR to the NIR of 1 % in the narrowband and
quantum-e�ciency-optimised setting. First results with a 2-µm EOS show that conversion
e�ciencies of 25 % over an extended spectral coverage can be obtained [114].

Additionally, in order for FRS to be widely and routinely used in applications, more prac-
tical considerations, such as user-friendliness as well as cost and space requirements of the
spectrometer, have to be considered (6.). This is another area in which the 2-µm technology
based on Cr:ZnS/ZnSe oscillators o�ers great potential. First of all, Cr:ZnS/ZnSe crystals have
a broad emission spectrum enabling few-cycle-pulses at watt-levels directly from the oscillator
[115]. In addition, Cr:ZnS/ZnSe crystals can be e�ectively pumped using small semi-conductor
diodes [116]. This enables a very compact oscillator design. Finally, the required optical compo-
nents are relatively inexpensive compared to other available 2-µm based system. Due to these
properties, Cr:ZnS/ZnSe is already referred to as the "Ti:Sapphire of the mid-infrared" [116].

Current diode-pumped mode-locked Cr:ZnS/ZnSe oscillators achieve power levels up to
1 W and pulse durations of 45 fs [116]. This is not yet su�cient for the e�cient generation
and sampling of MIR pulses. Consequently, an ampli�er and additional pulse compression are
still required. Nevertheless, both footprint and complexity can already be reduced signi�cantly
as compared to the �rst-generation FRS spectrometer based on Yb:Yag thin-disc oscillators.
If the development of Cr:ZnS/ZnSe is progressing as fast as it has been the case for the Ti:Sa
technology, we can hope for signi�cant improvements in terms of user-friendliness, cost, and
space requirements in the very near future.

Another important aspect that still has a lot of potential for signi�cant improvements is
the way the sampling of the time domain signal is realized. In the current implementation
the gate pulse with respect to the MIR pulse train is delayed by a mechanical stage. This has
two disadvantages. Firstly, spectral acquisition takes milliseconds to seconds. As a result,
fast events cannot be recorded. Secondly, most noise sources are more intense on slow time
scales. These noise sources can be avoided, if the spectral acquisition is su�ciently fast (4.). In
addition, a reference and sample trace could be measured quasi-instantaneously and therefore
simultaneously. This would allow the sample transfer function to be obtained without additional
noise, potentially providing a completely device-independent measurement result (5.).
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Therefore, FRS would highly bene�t from the implantation of established fast scan ap-
proaches such as dual-comb spectroscopy [36], asynchronous optical sampling [117], or fast
mechanical delay lines [118]. Apart from the ability to make real-time measurements and the
reduction of noise, a two-oscillator scan would allow the recording of very long-time traces
(1 over the repetition rate of the oscillator to be precise), which is necessary to record the
absorption lines of gases without artefacts.

But possible improvements concerning hardware are not the only areas where there is
potential for signi�cant advances. Specialized data processing for FTIR spectra has matured
over decades. It is therefore not unlikely that new specialized data processing approaches will
also have to be developed for the electric-�eld traces before their information content can be
completely extracted (see also next section). In addition, approaches for the standardization of
electric-�eld-resolved molecular �ngerprints (EMFs) are necessary to enable the comparability
of results between di�erent devices and measurement campaigns (5.). Although �rst steps in
this direction have already been investigated in this thesis (see section 3.2), further development
of this standardization is certainly necessary.

When combining the above-mentioned improvements, novel applications of FRS can be
envisioned. For example, in response to our Nature publication, Andreas Barth published a
commentary article in which he suggested that with a further increase in sensitivity it would
be possible to study individual molecules in liquids [119]. Apart from this, fast-scan approaches
will permit the recording of electric-�eld molecular �ngerprints on microsecond-timescales.
This creates the basis for new applications studying irreversible events, such as non-reversible
chemical reactions. Another promising approach is combining FRS with �ow-cytometry in
order to enable label-free classi�cation of millions of cells within mere minutes. Furthermore,
the nonlinear gating, which is employed in FRS, can be used not only in time but also in space.
In THz time-domain spectroscopy it has already been demonstrated that EOS enables resolving
structures that are below the conventional di�raction limit [120]. Bringing this concept to the
MIR could pave the way towards label-free super-resolution spectro-microscopy of biological
materials.

These ideas and suggestions only scratch the surface of what might be possible to achieve
with this new technology and approach. Gri�th’s notion, that "the number of applications [. . . ]
is limited only by the imagination of the user" [4] rings truer than ever.
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4.3 Future of electric-�eld-resolved �ngerprinting

In this thesis, I outlined the �rst application of electric-�eld-resolved �ngerprinting: The
analysis of human serum for cancer detection. But before discussing future developments in
this direction in more detail, I would like to point out the fact that the potential of electric-�eld-
resolved �ngerprinting is by no means limited to this speci�c application. Quite the contrary.
As it has been the case for conventional infrared �ngerprinting with FTIR spectrometers, the
basic concepts and principles that we developed for the analysis of serum samples for cancer
detection can be transferred to investigate a wide range of di�erent biological specimen as
well as further bio-medical questions. As a consequence, it is to be expected that not only
disease detection, but also any other future application of electric-�eld-resolved �ngerprinting
will bene�t from the anticipated technological advances of the underlying technology (see
also section 4.2). The same holds true for advances in data handling, processing, and a deeper
understanding of the obtained �ngerprints.

Increasing the sensitivity of FRS means that the same experiment can be performed within
a shorter measurement time and/or that weak molecular signals can be recorded more robustly,
which facilitates the detection of low abundant molecular species in complex substances such as
serum. This is important since many of the biomarkers already used in disease detection [121]
are routinely found in blood serum at concentration levels well below our current detection
limit. An increased spectral coverage allows additional information to be obtained. The more
chemical bonds of di�erent molecules are excited, the more clearly their characteristic signals
can be distinguished from other molecular species. Thus, an increased instrument sensitivity
and spectral coverage theoretically enables detection of a wider range of molecules in blood
serum. This means that more molecules can contribute to the measured �ngerprint, which in
turn increases the probability that they contain cancer-related information and could therefore
contribute to a better e�ciency of cancer detection.

An important point here is the question of how this disease-relevant information can be
extracted as completely as possible from the measured EMF. Data evaluation schemes and
algorithms, adapted and optimized for FRS, could signi�cantly increase the information yield.
Our experiments have already shown that by time-�ltering of the EMFs and including the
phase information of the electric �eld, an improved molecular sensitivity and an increased
e�ciency of cancer detection can be achieved compared to the mere inclusion of intensity
information. However, conventional absorption spectroscopy data evaluation principles do
not facilitate that. This leads to another question regarding the information content of the
EMFs: Does the direct measurement of the electric �eld emitted by the molecular vibrations
allow access to information that is qualitatively di�erent from the information encoded in
infrared �ngerprints of conventional infrared absorption spectroscopy? And if so, how can
this information be extracted and used, for example, to increase the speci�city of molecular
detection?

Besides obtaining a deeper understanding of the nature of EMFs, extracting relevant in-
formation from EMFs and pushing the limits of the FRS technology itself, one also has to
bear in mind the challenges that arise when applying the approach to a real-world setting. In
the context of electric-�eld-resolved �ngerprinting for disease detection, this means that the
approach does not only have to work in a lab environment, but the technology has to robustly
function at the clinics. Many of these challenges also apply to FTIR �ngerprinting and have
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already been discussed in section 1.3.3.
One of the major remaining challenges for the application of electric-�eld molecular �nger-

printing is that EMFs have to become instrument- and user-independent and therefore only
contain sample-related information. This is a prerequisite for large-scale applications, as mea-
surements of these will be taken on di�erent days, by di�erent users with di�erent instruments.
We have done a �rst step in this direction by applying standardization procedures to the pulses
(see section 3.2 for details). So far, this method could only be tested on EMFS obtained with
a single FRS device, and no comparison could be made between EMFs obtained with other
instruments. It is to be expected that a combination of further instrument development (e.g.
reduction of measurement noise) on the one hand, and advanced standardization on the other
hand, will be needed to isolate the pure molecular signal, which will thus be independent of
both measurement instrument and user.

Even if all the developments described above could be achieved, the capacity of electric-�eld-
resolved �ngerprinting to pick up disease-speci�c signals from serum samples may ultimately
still not be sensitive and speci�c enough to enable disease detection in a clinical setting. It might
turn out that due to overlap of broad absorption features from various molecules, only the
information of highly abundant molecules can be e�ectively assessed. As a consequence, FRS
might only be able to contribute to disease detection in a way that is insu�cient for translation
into clinical diagnostics.

In this case, a promising route would be to enhance the speci�city by chemical (pre-
)fractionation in order to decode information from a wider range of molecules. Instead of
analysing the whole sample in one single measurement, the sample can be split into several
(chemical) fractions. This approach facilitates the detection of individual constituents as the
individual fractions are of lower molecular complexity. This concept has been very successfully
pursued by the proteomics community using mass spectrometry. Often, before the samples
are measured by actual mass spectrometry, liquid chromatography is applied to split up the
di�erent chemical components. These are then measured fraction by fraction with a time delay.
In this way more than 5000 di�erent proteins of a serum or plasma sample can be identi�ed
[122].

In comparison to mass spectrometry, which usually focuses on the analysis of a selected type
of molecules (e.g. proteins), FRS has the advantage that it could potentially pick up molecule-
speci�c signals from all molecular species. In addition, FRS is sensitive to conformational
changes of proteins, which are known to be indicative of e.g. Alzheimer’s disease. Consequently,
if liquid chromatography is successfully combined with FRS technology, not only a wide range
of proteins (including their conformational changes), but also carbohydrates, lipids, and other
blood constituents could potentially be analysed in a single measurement. The fact that liquid
chromatography can be combined with infrared spectroscopy has already been shown by �rst
proof-of-principle experiments with FTIR and QCL spectrometers [123, 124]. However, these
applications have so far su�ered from strong water absorption and limited sensitivity. Here,
FRS could provide a promising new avenue to be followed given its increased sensitivity and
speci�city.

I would like to end this thesis with a vision. As mentioned in the previous section, it might
be possible to achieve single-molecule-sensitivity in liquids by su�cient advancements in
the sensitivity of FRS. When combining this assumption with the idea of a very advanced,
high-throughput chemical pre-separation, FRS could potentially be able to identify and quantify
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every single type of molecule contained in a (liquid) sample. Decoding the composition of
complex biological samples down to every individual molecule of di�erent chemical makeup
would not only facilitate cancer detection, it would also give an unparalleled understanding
of biological processes, which could be utilized in a variety of applications that are not yet
foreseeable.
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