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Zusammenfassung

Dreidimensionale numerische Simulationen mit ausreichender vertikaler Auflösung zur In-
tensivierung tropischer Wirbelstürme haben gezeigt, dass sich eine Schicht mit starker
Einströmung direkt unter der Ausströmregion in der oberen Troposphäre sowie in einigen
Fällen eine flachere Schicht mit schwächerem Einströmen über der Ausströmregion entwick-
elt. Hier stelle ich eine Erklärung für solche Inflow-Jet Muster vor und verwende dazu das
prototypische Problem der Intensivierung tropischer Zyklonen, das die Entwicklung eines
Wirbels auf einer f-Ebene in einer Umgebung im Ruhezustand betrachtet, in der von einem
anfänglich symmetrischen, feuchten, wolkenfreien Wirbel über einem warmen Ozean aus-
gegangen wird. Ich führe die Einströmschicht auf eine subgradiente Radialkraft zurück, die
jenseits eines bestimmten Radius durch einen Großteil der oberen Troposphäre existiert.
Einige Auswirkungen der Einströmregion auf die Sturmstruktur werden diskutiert. Eine
alternative Erklärung, die sich auf die klassische achsensymmetrische Gleichgewichtstheorie
beruft, erweist sich als problematisch.

Die Konsequenzen der Regularisierung der Sawyer-Eliassen-Gleichung zur Berechnung
der Stromfunktion für die achsensymmetrische Sekundärzirkulation eines tropischen Wirbel-
sturms werden erforscht. Die Regularisierung ist ein Ad-hoc-Verfahren, bei dem die Ko-
effizienten der Gleichung in geeigneter Weise modifiziert werden, um negative Werte der
Diskriminante durch kleine positive Werte zu ersetzen und so sicherzustellen, dass die
Gleichung global elliptisch ist. Die Konsequenzen des Verfahrens können in Bezug auf
das analoge Verhalten einer gedehnten Membran unter einer bestimmten Kraftverteilung
verstanden werden.

Verschiedene Regularisierungsverfahren werden bewertet, indem die azimutal gemit-
telte radiale Strömung aus einer dreidimensionalen numerischen Simulation eines tropis-
chen Wirbelsturms mit derjenigen aus einer achsensymmetrischen Bilanzberechnung der
Sawyer-Eliassen-Gleichung verglichen wird, erzwungen durch diabatische - und Reibung-
sterme, die aus der Simulation diagnostiziert wurden. Der Vergleich zeigt, dass die größte
Herausforderung für die Regularisierung in Regionen der Trägheitsinstabilität auftritt, ins-
besondere wenn sich der diagnostizierte Antrieb mit solchen Regionen überschneidet. In
dem gezeigten Beispiel ist die diagnostizierte balancierte Strömung empfindlich auf das
jeweilige Regularisierungsverfahren und keines der untersuchten Verfahren lieferte eine
Strömung, die strukturell und quantitativ nahe an der aus der numerischen Lösung er-
haltenen Strömung im und nahe dem Regularisierungsbereich lag.

Die Strömung in Bereichen großer vertikaler Scherung, die im unteren Teil der Gren-
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zschicht häufig vorkommen, ist weniger empfindlich gegenüber dem Regularisierungsver-
fahren. Nichtsdestotrotz gibt es vergleichsweise große Unterschiede zwischen der Ein-
strömung in niedriger Höhe in der azimutal gemittelten numerischen Lösung und der
achsensymmetrischen Gleichgewichtslösung. Diese Differenzen können auf das intrinsis-
che Fehlen eines Gleichgewichts in der Grenzschicht zurückgeführt werden. Dieser Befund,
zusammen mit den Problemen, die mit der Regularisierung verbunden sind, ist eine weit-
ere Bestätigung dafür, dass die Gleichgewichtsdynamik die Strömung in der Grenzschicht
nicht adäquat erfassen kann, im Gegensatz zu jüngsten Behauptungen.

Zwei Methoden zur Lösung der Sawyer-Eliassen-Gleichung für die entsprechende bal-
ancierte Sekundärzirkulation einer numerisch simulierten, hochaufgelösten tropischen Zyk-
lone werden verglichen. In idealisierten Berechnungen für einen symmetrisch stabilen
Wirbel konvergieren beide Methoden (sukzessive Überrelaxation und Multi-Grid) und die
Lösungen sind weitgehend ähnlich. In typischeren Fällen, in denen der Wirbel Regio-
nen mit inertialer oder symmetrischer Instabilität aufweist, ist es notwendig, die Daten
aus der numerischen Simulation zu vergröbern, um die balancierte Sekundärzirkulation
zu bestimmen. Eine konvergente Lösung kann mit der Multi-Grid-Methode für einen
feineren Gitterabstand als mit der Methode der sukzessiven Überrelaxation erzielt wer-
den. Die Multi-Grid-Methode konvergiert jedoch nicht, wenn der vertikale Gitterabstand
ähnlich dem der numerischen Simulation ist. Die Ergebnisse beider Methoden bestätigen
die Unfähigkeit der Gleichgewichtsformulierung, die starke Einströmung und die daraus
resultierende tangentiale Windverstärkung in der Reibungsgrenzschicht während einer Pe-
riode schneller Intensivierung zu erfassen.

Die balancierte Sekundärzirkulation kann eine solche Einströmschicht aufweisen. Es ist
jedoch Vorsicht geboten, wenn man diese Einströmschicht auf eine dynamisch balancierte
Antwort zurückführt, die durch die Verteilung der diabatischen Erwärmung und des tan-
gentialen Impulses angetrieben wird. Diese Studie legt nahe, dass es sich wahrscheinlich
um ein Artefakt der Ad-hoc-Regularisierungsmethode handelt, die notwendig ist, um die
Sawyer-Eliassen-Gleichung in Regionen mit inertialer und/oder symmetrischer Instabilität
global elliptisch zu halten.

Lagrange’sche Trajektorien von Luftpaketen, die von der Einströmschicht ausgehen, die
sich unterhalb der Ausströmschicht in der oberen Troposphäre entwickelt, zeigen, dass etwa
die Hälfte dieser Trajektorien in der Ausströmregion selbst endet. Die andere Hälfte sinkt
langsam in die mittlere bis obere Troposphäre, unterhalb der Ausflussschicht ab und driftet
infolge einer relativ schwachen Umwälzzirkulation in diesem Bereich langsam nach außen.
Die Berechnungen zeigen, dass die pseudoäquivalente potentielle Temperatur entlang der
Trajektorien der Luftpakete nicht annähernd erhalten bleibt, was darauf hindeutet, dass
die turbulente Diffusion von Wärme und Feuchte entlang der Trajektorien in der mittleren
und oberen Troposphäre beträchtlich ist.



Abstract

Three-dimensional numerical simulations of tropical-cyclone intensification with sufficient
vertical resolution have shown the development of a layer of strong inflow just beneath
the upper-tropospheric outflow layer as well as, in some cases, a shallower layer of weaker
inflow above the outflow layer. Here I provide an explanation for such inflow jets in the
context of the prototype problem for tropical-cyclone intensification, which considers the
evolution of a vortex on an f -plane in a quiescent environment, starting from an initially-
symmetric, moist, cloud-free vortex over a warm ocean. I attribute the inflow layers to
a subgradient radial force that exists through much of the upper troposphere beyond a
certain radius. Some effects of the inflow layers on the storm structure are discussed. An
alternative explanation that invokes classical axisymmetric balance theory is found to be
problematic.

The consequences of regularizing the Sawyer-Eliassen equation to calculate the stream-
function for the axisymmetric secondary circulation of a tropical cyclone are explored.
Regularization is an ad hoc procedure in which the coefficients of the equation are suitably
modified to replace negative values of the discriminant by small positive values, thereby
ensuring that the equation is globally elliptic. The consequences of the procedure may
be understood in terms of the analog behaviour of a stretched membrane subject to a
particular force distribution.

Several regularization procedures are assessed by comparing the azimuthally-averaged
radial flow from a three-dimensional numerical simulation of a tropical cyclone with that
from an axisymmetric balance calculation of the Sawyer-Eliassen equation, forced by dia-
batic and frictional terms diagnosed from the simulation. The comparison shows that the
largest challenge for regularization occurs in regions of inertial instability, especially when
the diagnosed forcing overlaps with such regions. In the example shown, the diagnosed
balanced flow is sensitive to the particular regularization procedure and none of the proce-
dures examined gave a flow that was structurally and quantitatively close to that obtained
from the numerical solution in and near the region of regularization.

The flow in regions of large vertical shear that are common in the lower part of the
boundary layer is less sensitive to the regularization procedure. Nevertheless, there are
comparatively large differences between the low-level inflow in the azimuthally-averaged
numerical solution and the axisymmetric balance solution. These differences can be at-
tributed to the intrinsic lack of balance in the boundary layer. This finding, together with
the issues associated with regularization, is further confirmation that balance dynamics is
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unable to adequately capture the flow in the boundary layer, contrary to recent claims.
Two methods for solving the Sawyer-Eliassen equation for the corresponding balanced

secondary circulation of a numerically-simulated, high-resolution tropical cyclone vortex
are compared. In idealized calculations for a symmetrically stable vortex, both methods
(successive over-relaxation and multi-grid) converge and the solutions are broadly similar.
In more typical cases, where the vortex has regions of inertial or symmetric instability, it
is necessary to coarsen the data from the numerical simulation to determine the balanced
secondary circulation. A convergent solution can be obtained with the multi-grid method
for a finer grid spacing than with the successive over-relaxation method. However, the
multi-grid method fails to converge when the vertical grid spacing is similar to that of
the numerical simulation. Results using both methods confirm the inability of the balance
formulation in capturing the strong inflow and resulting tangential wind spin up in the
frictional boundary layer during a period of rapid intensification.

The balanced secondary circulation may show such an inflow layer. However, caution
is called for in attributing this inflow layer to a balanced flow response driven by the
distribution of diabatic heating and tangential momentum forcing. This study suggests
that it is likely an artifact of the ad hoc regularization procedure that is necessary to
keep the Sawyer-Eliassen equation globally elliptic in regions of inertial and/or symmetric
instability.

Lagrangian air parcel trajectories emanating from the inflow layer that develops be-
neath the upper-tropospheric outflow layer show that about a half of these trajectories end
up in the outflow layer, itself. The other half slowly subside to the mid- to upper tropo-
sphere, below the outflow layer, and drift slowly outwards as a result of a relatively weak
overturning circulation in that region. Calculations show that pseudo-equivalent potential
temperature is not approximately conserved along the air parcel trajectories indicating
that the turbulent diffusion of heat and moisture along the trajectories is appreciable in
the middle and upper troposphere.



Chapter 1

Introduction

1.1 Overview of tropical cyclones

The tropical cyclone is a warm cored, non-frontal synoptic, rapidly counterclockwise (clock-
wise in the southern hemisphere) rotating system which forms over the warm tropical
oceans from where it draws energy to develop. The tropical cyclone has a low-pressure
centre and clouds spiraling towards the “eyewall” surrounding the “eye”, the central part
of the cyclone where the weather is normally calm and free of clouds. The size of a tropical
cyclone, usually characterized by the radial extent of gale force winds near the surface, is
typically around 100 to 250 km, but can reach 500 km. When a tropical cyclone makes
landfall, the related heavy rainfall, strong winds and storm surge may inflict serious damage
to coastal communities. A better understanding of tropical cyclones is crucial for improved
prediction and to reduce their impact on human life and property.

Figure 1.1: High-resolution satellite image of Typhoon Vongfong which was making land-
fall in the Philippines on May 14 2020. From NASA (National Aeronautics and Space
Administration) : https://earthobservatory.nasa.gov/images/146719
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Figure 1.1 shows a satellite image of Typhoon Vongfong as it made landfall in the
Philippines. Its cloud structure including the eye, the eyewall, and spiral rainbands is
clearly visible. The eye region of the mature tropical cyclone is a roughly circular area and
free of deep clouds, typically 15 to 30 km in radius. Surrounding the eye, there is a cloud
wall of deep convection, termed the eyewall. The dense eyewall is the most dangerous part
with the most severe weather and the maximum wind near the surface. The peripheral
part of a tropical cyclone is one or several deep convective cloud bands, these cloud bands
spiral to the central eyewall. In some cases, there may be a single spiral band, which is
called the principal band (Willoughby (1988)). For some intense tropical cyclones, when
the eyewall contracts and becomes sufficiently small, deep convection in the outer rainband
can become organized to form a second eyewall. The newborn outer eyewall inhibits the
supply of moisture and angular momentum to the inner eyewall, eventually leads to the
demise of the inner eyewall. This process is called eyewall replacement. Figure 1.2 shows
an outer and inner eyewall of Typhoon Amber (1997) during an eyewall replacement cycle.

Figure 1.2: A satellite photo of Typhoon Amber (1997) exhibiting an outer and inner
eyewall, while undergoing an eyewall replacement cycle. From Cooperative Institute for
Meteorological Satellite Studies/Space Science and Engineering Center, University of Wis-
consin–Madison.

Based on the maximum sustained surface wind speed at the standard meteorological 10
m level, tropical cyclones can be ranked on different intensity scales. For Atlantic, Eastern
and Central Pacific, The National Hurricane Center (NHC) stipulates, if the 1-minute
maximum sustained wind speed of tropical cyclone is less than 17 m s−1, the cyclone is
called a tropical depression. When the maximum wind speed is between 18 m s−1 and 32
m s−1, the cyclone is termed a tropical storm. Once the wind speed is faster than 33 m s−1,
the cyclone is called a hurricane and classified on the Saffir-Simpson hurricane wind scale
as shown in Table. 1.1. The Joint Typhoon Warning Center (JTWC) applies a similar
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standard for the tropical cyclone intensity scale in Western Pacific area, but uses typhoon
instead of hurricane, and super typhoon refers to the cyclone which has a wind speed over
67 m s−1.

Category Max. Wind Speed (ms−1) Max. Wind Speed (mph)

5 ≥ 70 ≥ 157
4 58–70 130–156
3 50–58 111–129
2 43–49 96–110
1 33–42 74–95

Table 1.1: Saffir-Simpson hurricane wind scale.

For the Western Pacific, the Japan Meteorological Agency (JMA) officially monitor
and forewarn tropical cyclones that occur within the Northern Hemisphere between 100oE
and 180oE. Unlike JTWC, the JMA uses a 10 minute sustained wind at the 10 m level
as the criterion to rank the tropical cyclone intensity scale as recommended by the World
Meteorological Organization (WMO). The wind speed following this standard is smaller
than that in the JTWC case. The lowest classification of tropical cyclones is a tropical
depression, while the 10 minutes sustained winds speed is less than 17 m s−1. When the
wind speed is between 18–24 m s−1, the cyclone is classified as a tropical storm. Once the
system continues to intensify further, it is classified as a severe tropical storm, with a wind
speed between 25–32 m s−1. Typhoon is the highest classification when the wind speed
is greater than 33 m s−1. Specially, a typhoon with a maximum sustained surface winds
greater than or equal to 66 m s−1, is referred to as a super typhoon.

1.2 The primary and secondary circulation

The mature tropical cyclone vortex can be approximately conceptualized as a primary
(tangential) circulation with a secondary (overturning) circulation superposed (Ooyama
1982). The primary circulation is a horizontal quasi-symmetric cyclonic circulation around
the cyclone centre. A scale analysis by Willoughby (1990) shows that the azimuthally av-
eraged tangential circulation of tropical cyclones is in roughly gradient wind balance (out-
ward pointing centrifugal and Coriolis forces are counterbalanced by the inwards pointing
pressure gradient force) and hydrostatic balance (a balance between the vertical pressure
gradient and the gravitational force) when frictional effects can be neglected (e.g. in the
free atmosphere, above the frictional boundary layer).

The secondary circulation is typically inwards in the lower troposphere and outwards
in the upper troposphere, with a strong updraft in the eyewall. The secondary circulation
is driven primarily by buoyancy forces associated with latent heat release in deep cumulus
convection in the central convection zone of the vortex. Assuming a tropical cyclone is in
strict gradient wind balance and hydrostatic, one can derive an equation relating to this
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kind of compound balance and we refer to this as thermal wind balance. Then one can
derive a seconder order partial differential equation in the radius-height plane, so-called the
Sawyer-Eliassen equation for the transverse circulation for the meridional streamfunction,
ψ. In the anelastic approximation, the density is assumed to be a function of height only
and acoustic waves are filtered out of the equations. With this approximation, the radial
velocity component, u and the vertical velocity component, w can diagnosed in terms of
a streamfunction for the overturning circulation. The derivation of the Sawyer-Eliassen
equation will be presented in Section 4. This equation governs the overturning circulation
that is required to keep the vortex in a state of persistent thermal wind balance as the
tangential momentum forcing and thermodynamic heat forcing tries to drive the vortex
out of balance.

Figure 1.3: Schematic diagram illustrating the primary circulation and the secondary cir-
culation of a tropical cyclone.

As is shown in Figure 1.3, when the primary and secondary circulations are combined,
air parcels are spiralling inwards, upwards and outwards. The rising branch of the sec-
ondary circulation near the centre is warmer than the subsiding branch, which occurs
at large radial distances (more than 500 km), so the combined spiralling circulation is
energetically direct.

Previous work has suggested that the solution of the Sawyer-Eliassen is sufficient to
describe the secondary circulation in an intensifying tropical cyclone, including in the
vortex boundary layer (Heng et al. 2017). However, this assertion has been rebutted by
Montgomery and Smith (2018), who noted that Heng et al. did not solve a strictly balance
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vortex model and inadvertently ignored the requirement that the basic state vortex remain
in a state of strict thermal wind balance during the vortex evolution.

Heng et al. (2018) attempted to rebut the critique of Montgomery and Smith (2018) by
solving the Sawyer-Eliassen equation for a single numerical simulation, but again employed
basic state vorticies that are not in strict thermal wind balance. Recent work of Mont-
gomery and Persing (2020) has affirmed prior findings of Bui et al. (2009) and Abarca and
Montgomery (2014) that the strict Sawyer-Eliassen balance model fails to represent the
strong inflow in the boundary layer needed to generate the intensifying tangential winds.

Recent research shows that the secondary circulation has a more detailed structure,
with a strong supergradient outward jet above the boundary layer and upper tropospheric
inflow layers sandwiching the upper troposphere outflow layer.

1.3 Upper radial flow structure

The outflow layer of tropical cyclones is where upper tropospheric air moves radially out-
ward anticyclonically from the centre of a tropical cyclone. Anthes (1974) argued that
outflow in tropical cyclones can remove anticyclonic angular momentum from the cyclone
at larger radii (more than 500 km) and removes high-entropy air from the cyclone centre.
Typically, the outflow layer is asymmetric with one or two anticyclonic outflow jets. Lim-
ited by the few vertical layers in the early numerical models and few cases of observational
experiments with enough altitude, research on the outflow layer has progressed slowly in
the last 40 years.

The last few years have seen the possible importance of the outflow layer in tropical
cyclone behaviour brought to the fore (e.g. Rappin et al. 2011; Emanuel 2012; Komaromi
and Doyle 2017; Doyle et al. 2017; Tao et al. 2019). Rappin et al. (2011) claimed to
have “demonstrated that weak inertial stability in the outflow layer minimizes an energy
sink of the tropical cyclone secondary circulation and leads to more rapid intensification
to the maximum potential intensity”. However, in many simulations of tropical cyclone
behaviour, including the one to be described here, the outflow becomes primarily a region
of inertial instability (e.g. Smith et al. 2018a) so that, as shown here in sections 5.1 and
6.3, ideas based on balance arguments are questionable.

Emanuel (2012) hypothesized that tropical cyclone intensification is controlled by small-
scale turbulent mixing in the upper tropospheric outflow and offered an analytical theory
in which a parameterization of this mixing process is the sole positive term in an equation
for the tendency of the maximum tangential wind (his Eq. (16)). Nevertheless, the physics
of the intensification process, i.e., how in reality this mixing would lead to the required
inward movement of the surfaces of absolute angular momentum at low levels for spin up,
remains to be articulated (Montgomery et al. 2019; Montgomery and Smith 2019).

The presumed importance of the outflow layer in the intensification process motivated
a recent field experiment conducted in the Atlantic and Eastern Pacific sectors, called the
Tropical Cyclone Intensity (TCI) experiment (Doyle et al. 2017). The main motivation for
this experiment appears to rest on the overarching hypothesis that “this upper-tropospheric
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layer is a critical one, as changes in the TC (tropical cyclone) outflow can directly cause
changes in the TC secondary circulation” (Doyle et al. 2017, p2113). “The overarching
goal of the TCI programme is to improve the prediction of TC intensity change, especially
rapid intensification (RI) and rapid decay (RD), as well as TC structural changes that
are hypothesized to occur through synergistic interaction with outflow” (Doyle et al. 2017,
p2114).

The researchers of the TCI programme listed several key science goals to address as
part of their programme. Two of them stand out as particularly important (Doyle et al.
2017, p2114):

• to understand the coupling of tropical cyclone outflow with inner-core convection and
its implications for intensity change;

• to interpret observations of the fine-scale horizontal and vertical structure of the
outflow layer and inner-core regions of the tropical cyclone.

Most notably, there was no mention of the possible existence and role of upper-tropospheric
inflow layers that are found to develop in numerous numerical model simulations of tropical
cyclone intensification where the vertical resolution is sufficient (e.g. Rotunno and Emanuel
1987, Figure 5c; Hausman et al. 2006, Figures. 4b and 8b; Bui et al. 2009, Figure 6a; Bu
et al. 2014, Figure 4a,b, Figure 9a,b, Figure 12, Figure 16; Persing et al. 2013, Figures
15a, 17a, 18a; Ohno and Satoh 2015, Figure 2b; Smith et al. 2014b, Figure 2c; Fovell et al.
2016, Figures 11-21; Kieu et al. 2016, Figures 2b, 4; Heng et al. 2017, Figure 4c; Chen et al.
2018, Figure 14a,c; Smith et al. 2018b, Figure 2b,d). Most of these papers relate to the
evolution of a tropical-cyclone-like vortex in the prototype problem for tropical cyclone
intensification, which considers the evolution of a vortex on an f -plane in a quiescent
environment, starting from an initially symmetric, moist, cloud free vortex over a warm
ocean. Some of the studies show inflow layers above and below the outflow layer, while
others focus on the layer above the outflow layer in the lower stratosphere. However, to
my knowledge, the reasons for the occurrence of the inflow layers and their significance
in cyclone behaviour has received little attention. Indeed, they are not considered when
treating the tropical cyclone as type of thermodynamic Carnot heat engine (e.g. Emanuel
1986, 1988, 1991, 2018 and refs.).

Only recently have detailed observations of the tropical cyclone outflow layer become
available, largely as a result of the use of unmanned aircraft drones to release dropwind-
sondes into storms from the lower stratosphere (e.g. Braun et al. 2016). While the main
purpose of such measurements was to document the outflow layer itself, the data offer the
opportunity to detect any layers of inflow in the vicinity of the outflow layer. A com-
prehensive study of such dropsonde data was presented by Komaromi and Doyle (2017)
and Duran and Molinari (2018). These analyses, together with one of Hurricane Edouard
(2013) by Smith et al. (2019), do point to the existence of a layer of enhanced inflow above
and/or below the outflow in nature. The possible importance of these inflow layers and
their role in storm behaviour would seem to merit further study.
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Traditionally, it has been difficult to obtain detailed measurements of the upper tropo-
sphere flow in tropical cyclones as this region tends to be above the ceiling of conventional
jet aircraft. The situation changed with the recent deployment of the NASA Global Hawk
to survey storms. The Global Hawk is an autonomous aircraft drone that can overfly
storms and release dropsondes into them from the lower stratosphere. One such study of
cyclone structure based on such soundings is that by Komaromi and Doyle (2017). These
authors show radius-height cross sections of radial wind for two composite data sets ob-
tained from dropsondes into six non-developing or developing storms: their Figure 8a and
8c, respectively. Both these composites show layers of inflow above and below the upper
tropospheric outflow layer, but a little surprisingly, the inflow layer beneath the outflow
layer is stronger in the case of the non-developing storms.

In their Figure 10, Komaromi and Doyle (2017) show individual radius-height cross
sections of radial wind for four storms in their data set and in their Figure 11 they show
vertical cross sections of radial flow averaged from 100-500 km radius. Again, these data
show layers of inflow above and below the upper tropospheric outflow layer.

Another observational study is that by Smith et al. (2019), which presented vertical
cross sections of wind and thermodynamic fields obtained in Atlantic Hurricane Edouard
(2014), one of the storms investigated also by Komaromi and Doyle. Figure 1c of Smith
et al. shows a radius-height cross-section of mean radial flow constructed from the drop-
sonde data obtained over an 18 h period on September 16-17. This cross section shows
that, above a height of 10 km, there are significant layers of inflow straddling the upper
tropospheric outflow layer .

Duran and Molinari (2018) described an observational analysis of the upper troposphere
and lower stratosphere of rapidly- intensifying Hurricane Patricia (2015) in which they
showed two vertical cross sections of the storm-relative radial and tangential velocities
in the lower stratosphere based on dropsonde data (their Figure 10). They stated that
the radial cross sections corroborate the existence of a lower stratospheric inflow layer
connected to descent in the eye.

Overall, the observational findings are not surprising in view of the propensity of nu-
merical models to show the development of upper-tropospheric inflow layers, even though
in reality, such inflow layers may be significantly influenced by the effects of environmental
vertical wind shear that is normally present in real cases.

1.4 Structure of the thesis

A brief description of the model used in this study (Cloud Model Version 1 - CM1) and
the configuration of the simulations carried out are described in Chapter 2. The behaviour
of the vortex evolution and structure features are discussed in Chapter 3. Chapter 4
reviews the traditional axisymmetric balance theory and its limitation. Chapter 5 examines
issues with an interpretation of the inflow layers on the basis of traditional axisymmetric
balance theory and shows that an explanation for the inflow layers in terms of axisymmetric
balance dynamics is problematic. A comparison of balance calculations by two different
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methods suggests that the balanced solution structure is likely an artifact of the ad hoc
regularization procedure that is necessary to keep the Sawyer-Eliassen equation globally
elliptic in regions of inertial and/or symmetric instability. Chapter 6 provides a new
framework for examining the outflow and inflow layer dynamics in tropical cyclone vortices
based on Newton’s second law. Diagnostics of the normalized agradient force, a measure of
the degree of imbalance in the numerical simulation, and azimuth-height structures are also
shown in this chapter. Chapter 7 shows the trajectories originating in the inflow layers. A
summary and conclusions are given in Chapter 8.



Chapter 2

The numerical model and simulation
configuration

2.1 The Cloud Model version 1 (CM1)

The Cloud Model version 1 (CM1) used for this study is a three-dimensional, non-hydrostatic,
non-linear, time-dependent numerical model for idealized studies of atmospheric phenom-
ena. It has been developed primarily by George Bryan at The Pennsylvania State Univer-
sity (2000-2002) and at the National Center for Atmospheric Research (NCAR). CM1 is
designed primarily for idealized research, especially for relatively small-scale processes and
deep precipitating convection such as thunderstorms and cyclones.

The governing equations of CM1 conserve total mass and total energy. Because CM1
calculates the total mass during a model integration and uses equations with additional
energy terms (e.g., terms associated with the heat content of hydrometeors and dissipative
heating which are neglected by other models), it has a mass/energy error that is several
orders of magnitude smaller than other numerical models (e.g., the Pennsylvania State
University/National Center for Atmospheric Research mesoscale model (MM5), the Ad-
vanced Regional Prediction System (ARPS), the Regional Atmospheric Modeling System
(RAMS), the Weather Research and Forecasting (WRF) Model). A particular advantage
of CM1 is that it can be used to carry out large domain simulations in high resolution with
a comparatively little memory overhead. For this reason, the model can be applied to very
large problems (i.e., domains of order 109 grid points). Further, CM1 can use different
equation sets for different applications, such as the user can choose three different solvers
(depending on application and desired accuracy) to integrate the compressible equations,
even be used with the anelastic equations or incompressible equations. Therefore CM1 is
very efficient for a broad range of problems that span many scales. Details can be found
in Bryan and Fritsch (2002) and Bryan and Rotunno (2009b).

Based on few limited comparative tests on single-processor machines (more information
can be obtained from the CM1 website1), CM1 is roughly 2 times faster and uses roughly

1https://www2.mmm.ucar.edu/people/bryan/cm1/

https://www2.mmm.ucar.edu/people/bryan/cm1/
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half as much Random Access Memory (RAM) as the Advanced Research WRF. Also, CM1
is roughly 1.5–2 times faster than ARPS (when using the same time step), and uses 75%
of the Random Access Memory (RAM) required by ARPS.

2.1.1 The governing equations of CM1

Here, for a variable α, α(x, y, z, t) = α0(z) + α′(x, y, z, t), the subscript 0 denotes the base
state which is invariant in time and is a function of z only, and the superscript prime
denotes the perturbation from the base state.

CM1’s governing equations include prognostic equations for u, v, w, qv, ql, qi, θ
′ and π′,

where, u is velocity in the x direction; v is velocity in the y direction; w is velocity in
the z direction. qv is the water vapor mixing ratio; ql is the mixing ratio of liquid water;
qi is the mixing ratio of solid water (ice), π = (p/p00)

Rd/Cp is the Exner function which
presents a non-dimensional pressure, p is pressure, p00 is a standard reference pressure. Rd

is the specific gas constant for dry air, and Cp is the specific gas constant for dry air at
constant pressure. θ is the potential temperature. The base state is further assumed to be
in hydrostatic balance,

dπ0
dz

= − g

Cpθρ0
, (2.1)

where, g is the acceleration due to gravity, θρ is density potential temperature,

θρ = θ
1 + qv/ε

1 + qv + ql + qi
, (2.2)

where, ε is the ratio of Rd to Rv, Rv is the specific gas constant for water vapor.
The governing equations for velocity (u, v, w) are

∂u

∂t
+ Cpθρ

∂π′

∂x
= ADV (u) + fv + Tu +Du +Nu (2.3)

∂v

∂t
+ Cpθρ

∂π′

∂y
= ADV (v)− fu+ Tv +Dv +Nv (2.4)

∂w

∂t
+ Cpθρ

∂π′

∂z
= ADV (w) + b + Tw +Dw +Nw (2.5)

where, ADV(α) is the advection operator in CM1 which defined as

ADV (α) = −u∂α
∂x
− v∂α

∂y
− w∂α

∂z

=
1

ρ0
[−∂(ρ0uα)

∂x
− ∂(ρ0vα)

∂y
− ∂(ρ0wα)

∂z

+ α(
∂(ρ0u)

∂x
+
∂(ρ0v)

∂y
+
∂(ρ0w)

∂z
)], (2.6)

and b is the buoyancy,

b = g
θρ − θρ0
θρ0

, (2.7)



2.1 The Cloud Model version 1 (CM1) 11

and ρ is density, f is the Coriolis parameter, the T terms represent tendencies from tur-
bulence, the D terms represent optional tendencies from other diffusive processes and N
terms represent Newtonian relaxation (i.e., Rayleigh damping).

The governing equations for the moisture are

∂qv
∂t

= ADV (qv) + Tqv +Dqv − q̇cond − q̇dep (2.8)

∂ql
∂t

= ADV (ql) + Tql +Dql + q̇cond − q̇frz +
1

ρ

∂(ρVlql)

∂z
(2.9)

∂qi
∂t

= ADV (qi) + Tqi +Dqi + q̇dep + q̇frz +
1

ρ

∂(ρViqi)

∂z
(2.10)

where The q̇ terms represent phase changes between these three components, The last
term on the right hand sides of Eq.(2.9) and Eq.(2.10) represents the effect of hydrometeor
fallout by a terminal fall velocity (V , which is assumed to be positive-definite).

The governing equations for θ′ and π′ are

∂θ′

∂t
= ADV (θ)−Θ1θ(

∂u

∂x
+
∂v

∂y
+
∂w

∂z
) + Θ2(Lv q̇cond + Lsq̇dep + Lf q̇frz)

+ Θ3(q̇cond + q̇dep) + Tθ +Dθ +Nθ + Θ2ε+ Q̇θ +WT , (2.11)

∂π′

∂t
= ADV (π)− Π1π(

∂u

∂x
+
∂v

∂y
+
∂w

∂z
) + Π2(Lv q̇cond + Lsq̇dep + Lf q̇frz)

+ Π3(q̇cond + q̇dep) + Π4(Tθ +Dθ +Nθ + Θ2ε+ Q̇θ +WT ) + Π5(Tqv +Dqv), (2.12)

where Q̇θ represents external tendencies to internal energy, primarily radiative heating/cooling.
WT represents the cooling/warming effect from hydrometeors that fall relative to air, Θ2ε
is associated with dissipative heating, which is the increase in internal energy that occurs
when kinetic energy is dissipated. The values of variables Θ and Π depend on whether
the equation set mathematically conserves mass and energy in moist environments. The
quantities Lv, Ls and Lf are the specific latent heats for vaporization, water substance and
fusion respectively.

2.1.2 Numerics

CM1 uses terrain-following coordinates, following Gal-Chen and Somerville (1975). The
nominal heights of the coordinate surfaces are given by

σ =
zt(z − zs)
zt − zs

, (2.13)

where zs(x, y) is the terrain elevation, and zt is the constant height of the model top.
CM1 uses the framework of the Arakawa-C grid (Arakawa and Lamb 1977), all momentum
points are staggered in the middle grid point with one half a grid spacing from the scalars
points grid (Figure 2.1).
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Figure 2.1: Cartoon showing the three-dimensional Arakawa-C grid. S denotes scalars (e.g.,
θ, π), dot is the scalars point in the middle of the cube. u is velocity in the x direction; v
is velocity in the y direction; w is velocity in the z direction. ∆x is the grid spacing in x
direction

2.2 Simulation configuration

The calculations presented here are carried out using the CM1 (cm1r19.8). The horizontal
domain is 2940 km × 2940 km in size with 960 grid points in each direction. A horizontal
grid spacing of 1 km is used in a central region 600 km × 600 km of the domain. Outside
this region, the grid spacing is stretched uniformly from 1 km to 12 km. There are 78
vertical levels from 0 km to 25 km. The vertical grid spacing is 100 m in the first 1 km
and 500 m from 16 km to 25 km. Between 1 km and 16 km, the vertical grid spacing is
stretched smoothly from 100 m to 500 m.

The initial condition is a prescribed, warm-cored, axisymmetric vortex in thermal wind
balance in an otherwise quiescent environment. The vortex has a maximum tangential
wind speed of 15 m s−1 at the surface at a radius of 100 km. The tangential wind decreases
sinusoidally with height to zero at 20 km and is set to zero above this altitude. The
corresponding balanced pressure, density and temperature fields are obtained using the
method of Smith (2006).

The physical parameterization schemes include the Morrison double-moment micro-
physics scheme (Bryan and Morrison 2012), a simple planetary boundary layer parame-
terization (Bryan and Rotunno 2009a) and, because of the comparatively short duration
of the integrations, no radiation scheme. A newtonian relaxation to the temperature field
is used with a time scale of 10 days instead of the 12 h default value (see footnote 1 of
Montgomery et al. 2020). Rayleigh damping layers with an e-folding time scale of 5 mins
are implemented to suppress the reflection of internal gravity waves. These layers are above
20 km height and within 100 km of the open-radiative lateral boundaries. The Coriolis
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parameter f is set to a constant value of 0.5 × 10−4 s−1, corresponding with a latitude
of approximately 20oN. The sea surface temperature is taken to be constant and equal
to 27oC. The Dunion moist tropical sounding (Dunion 2011) is used to characterize the
background thermodynamic state. As in Persing et al. (2013), the horizontal and verti-
cal mixing lengths are set as 700 m and 50 m, respectively, and are assumed constant in
both space and time. These values are close to those recommended by Bryan (2012) in
order to produce realistic hurricane structure. Montgomery et al. (2019) provide detailed
justification for these selected parameter values.

2.3 Determination of the vortex centre

The determination of the minimum wind, which is used as the centre location for carrying
out an azimuthal average, is as follows. First, the wind field at the surface is smoothed by
applying a 1-2-1 filter in the zonal and meridional direction 60 times. Then, the minimum
wind speed and its location are determined in the smoothed wind field in a 60 km × 60 km
box centred on the domain centre. For horizontal cross sections, the minimum wind used
to define the centre is calculated in the same way, but at each particular height separately.

At an early stage of the study, I examined an alternative possibility to define the vortex
centre as the location of minimum pressure in a similarly smoothed pressure field. Most
of the time, the location of minimum pressure and minimum wind speed are close to each
other below the outflow layer, but in the upper troposphere, the minimum pressure centre
sometimes has a larger displacement: for example, in the mature phase, the horizontal
displacement of the minimum pressure between 14 km and the surface is a little more
than 1 km, but there is no displacement when centre location is based on the minimum
wind speed. At earlier stages of development, the horizontal displacement of the minimum
pressure between 14 km and the surface is 50 km while for minimum wind centre, it is only
13 km. For this reason, the minimum wind centre is preferred here.
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Chapter 3

Experiment overview

A numerical experiment is carried out with the configuration described in Chapter 2. Model
output data are stored every 15 min during the simulation for a total period of 120 hrs.
For certain time periods (41-43 h, 59-61 h, 73-75 h), data output at 1 min intervals to
facilitate accurate tendency calculations.

Section 3.1 shows the evolution of the tropical cyclone in the simulation. The azimuthally-
averaged vertical structures are shown in Section 3.2. A discussion of the effects of the
inflow layers on storm evolution is in Section 3.3. Section 3.4 shows the horizontal structure
of upper outflow and inflow layers. A summary is provided in Section 3.5.

3.1 Vortex evolution

Figure 3.1(a) shows the time evolution of the maximum azimuthally-averaged1 tangential
wind speed, V max, and maximum total wind speed, V Tmax, in the simulation. The
determination of centre location for the azimuthal average is described in Chapter 2. The
green line in Figure 3.1(a) shows the threshold slope for rapid intensification (RI), which
is defined as a rate of at least 15 m s−1/day. With this definition, the vortex enters an RI
stage at about 30 h, a stage that lasts until about 65 h. Thereafter, the vortex enters a
quasi-steady mature phase until about 90 h. The vortex intensifies again during 90 h to
about 110 h, then enters a quasi-steady phase as the simulation is terminated at 120 h.
The mature intensity measured by V max is about 75 m s−1. As in many previous studies
(e.g. Nguyen et al. 2008), V Tmax is typically between 5 and 10 m s−1 larger than V max,
a reflection of localized deep convection that first begins to form at about 5 h.

The time evolution of the maximum azimuthally-averaged radial wind speed in different
vertical layers is shown in Figure 3.1(b). The maximum radial inflow in the boundary layer

1The azimuthal average of a quantity α is defined by

ᾱ =
1

2π

∫ 2π

0

αdλ,

where λ is the azimuthal angle.
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(a)

(b)

Figure 3.1: Time evolution of: (a) the maximum azimuthally-averaged tangential wind
speed (V max, blue) and maximum total wind speed (V Tmax, red); (b) the magnitude of
the maximum azimuthally-averaged radial wind speed in different layers: boundary layer
inflow (Umin, green), upper tropospheric outflow (UmaxU , blue), boundary layer outflow
(UmaxL, pink), inflow beneath the upper-level outflow (UminL, red), inflow above the
upper-level outflow (UminU , light blue). The green line in panel (a) indicates a slope
corresponding to the normal definition of RI (15 m s−1 per day). Vertical dashed lines
indicate the times which are discussed in the text. The precise search layers for radial
velocity extrema are: Umin, UmaxL, 0-3 km; UminL, 8-13 km; UmaxU , 10-16 km;
UminU , 13-18 km.

(here, refering to the boundary layer as the layer adjacent to the surface, typically 1 km
deep, where the radial inflow exceeds 2 m s−1.), Umin, has a similar behaviour to V max.
It increases steadily from about 30 h, reaches a maximum magnitude at the beginning of
the mature stage and subsequently levels off. Typically, Umin is less than 40% of V max.
Umin increases from about 90 h to about 110 h, then levels off again.

The maximum outflow just above the top of the boundary layer inflow layer, UmaxL,
begins to increase in a time-mean sense after about 45 h and levels off during the mature
stage, but it has much larger fluctuations than the maximum inflow beneath the upper-level
outflow, UminL, beyond 54 h.

The maximum in the upper-layer outflow, UmaxU , has a peak near 25 h, followed by a
decline to 37 h, just after the start of RI. This peak is associated with an early episode of
some individual deep convection cells. Subsequently, UmaxU increases rapidly throughout
the RI phase, but levels off in a time-mean sense after about 65 h. Nevertheless, like
UmaxL, it fluctuates markedly after about 48 h.

The maximum inflow immediately below the upper-layer outflow strengthens in a time-
mean sense from about 58 h, reaches a peak at about 82 h, after which it declines a little.
Moreover, like UmaxL and UmaxU , it exhibits significant fluctuations.



3.2 Azimuthally-averaged vertical structure 17

The maximum inflow immediately above the main upper-level outflow layer, UminU ,
increases slightly from near the start of the RI period, but remains less than about 2.5
m s−1. Its behaviour does not appear to have a strong connection with other metrics of
vortex development.

3.2 Azimuthally-averaged vertical structure

The left columns of Figure 3.2 show the azimuthally- and one-hour time-averaged tan-
gential velocity, v̄, at selected times with the corresponding surfaces of absolute angular
momentum, M̄ = rv̄ + 1

2
fr2, superimposed. Here f is the Coriolis parameter and r is

the radius. Panel (a) is for 42 h, a few hours after the RI period commences, panel (c) is
for 60 h, a few hours before the quasi-steady period is reached, and panel (e) is for 74 h,
which is in the middle of the quasi-steady period. The right columns of Figure 3.2 show
the corresponding similarly averaged radial velocity, ū, with selected contours of vertical
velocity superimposed.

The tangential velocity fields have similar characteristics to those described in many
previous studies, the maximum occurring at a low altitude near the top of a shallow layer
of strong inflow adjacent to the sea surface and well within a radius of 50 km. At radii
larger than about 75 km at 42 and 60 h, the maximum tangential wind occurs in the low
to middle troposphere, at least to about 250 km radius, a feature evidenced most clearly
by the location of the inward-pointing nose of the M̄ -surfaces in this region. At 74 h, the
middle tropospheric maximum extends only to about 160 km radius.

Invoking the classical paradigm for tropical cyclone intensification that is based on
the approximate material conservation of absolute angular momentum above the frictional
boundary layer (Montgomery and Smith 2014, 2017), this maximum must be associated
with a relatively strong time-mean inflow at this level. A notable feature of the M̄ -surfaces
at all times shown is their quasi-horizontal orientation in the vicinity of the upper tropo-
spheric outflow with a propensity to fold over in this region. At large radii in the region of
outflow, typically larger than 200 km at the later times, the tangential flow becomes anticy-
clonic, a well known feature that, again, is a consequence of the approximate conservation
of absolute angular momentum in the outflow.

The radius of maximum tangential wind generally increases with height in the low to
middle troposphere as shown by the yellow line in Figures 3.2(a,c,e), although at 74 h
(panel (e)), there is a sharp decrease in radius marking a second wind maximum in the
eyewall updraught complex. This maximum is an indication of a quasi-stationary centrifu-
gal wave generated by the recoil of the shallow outflow just above where the boundary
layer terminates (see e.g. Montgomery and Smith 2017, Stern et al. 2020).

The right panels of Figure 3.2 show the evolution of the radial flow between 42 h and 74
h. The prime focus here is on the development of the upper-level outflow and the layers of
inflow above and below it. At 42 h, the outflow layer extends over a depth of about 11-15
km near its source, just inside a radius of 40 km, and it tapers slightly with increasing
radius. The maximum velocity in the outflow layer at this stage is about 9.6 m s−1. There
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Radius-height cross sections of one-hour time-averaged and azimuthally-
averaged fields from the numerical model simulation at 42 h (upper panels), 60 h (middle
panels) and 74 h (lower panels): (a,c,e) tangential velocity component, v̄ and surfaces of
absolute angular momentum, M̄ ; (b,d,f) radial velocity component, ū, and vertical velocity
component, w̄. Contour interval for v̄: 5 m s−1; for M : 0.5× 106 m2 s−1; for 2 m s−1 when
ū > 0, 1 m s−1 when ū < 0. For w̄ three green contours are shown: +0.25 m s−1(solid
light), +1.0 m s−1(solid dark) and -0.02 m s−1(dashed). The quantities v̄ and ū are shaded
with values indicated on the colour bar. Red solid contours indicate positive values, blue
dashed contours indicate negative values. Contours of M̄ are black, those for w̄ are green.
The yellow curve indicates the radius of maximum tangential wind at each height.

is a shallow layer of inflow at most radii below the outflow with two local maxima, one
with a speed of 1.6 m s−1 at a radius just inside that of maximum outflow and another



3.3 Effects of the inflow layers on storm evolution 19

slightly weaker one near a radius of 200 km.
By 60 h, the lower inflow layer between 9 and 11 km has strengthened and now extends

to the outer radius shown (300 km), with a maximum speed of 4.8 m s−1, while a shallower,
but weaker layer of inflow has developed just above the outflow layer between 15 and 17
km. In addition, there are weaker layers of inflow, one between about 8 and 10 km and the
other between 17 and 19 km, but these would appear to be transient features as they are
not prominent at 74 h. At 60 h, the mean eyewall updraught, delineated by the 0.25 m
s−1 contour of mean vertical velocity has strengthened since 42 h. By 74 h, strengthening
of the upper-level outflow and the inflow layers sandwiching it are evident (panel (f)) as
well as a broadening of the mean eyewall updraught complex.

The green dashed contours in the right panels of Figure 3.2 enclose areas of mean
subsidence with sinking rates larger than 0.02 m s−1. At 42 h, these areas are generally
small and patchy, but at later times they become more coherent. At 60 h and 74 h
there is a shallow area of enhanced subsidence just above and beyond where the eyewall
terminates, suggesting that the eyewall updraught overshoots its equilibrium level. There
are large areas of enhanced subsidence also in the low to mid troposphere, outside the
eyewall updraught complex, inside a radius between about 150-200 km, and on the inner
edge of this complex.

At 60 h, there is a region of enhanced subsidence beyond 200 km radius which overlaps
with part of the outflow layer and all of the inflow layer below it. There is another region
of subsidence between 50 and 75 km radius where this inflow layer terminates adjacent to
the eyewall updraught complex.

At 74 h, a large area of enhanced subsidence has developed below the outflow layer
between about 80 km and 210 km. This region overlaps with the inflow layer just below
the outflow. At this time there is an inflow maximum also within the eyewall complex,
itself, which is connected to a narrow region of subsidence separating two areas of eyewall
updraught. Animations of the fields indicate that this deep finger of subsidence and the
inflow maximum to which it is connected are transient features, which by 76 h have dis-
appeared (not shown). I show later in section 3.4 that the flow in the upper troposphere,
including the eyewall region, has a marked azimuthal wavenumber-one asymmetry at these
times.

Having documented the existence and evolving structure of upper-level inflow layers,
the natural question that emerges is what their impact is on the storm structure? I address
this question in the next section.

3.3 Effects of the inflow layers on storm evolution

Animations of vertical cross sections at 15 minute intervals shows a progressive inward
movement of the M̄ -surfaces with maximum displacement in the inflow layer just above
the outflow layer. At lower altitudes, the animations show a pronounced folding of in-
dividual M̄ -surfaces to produce transient ‘z-like’ patterns with an outward-pointing nose
at large radius in the outflow layer and an inward pointing nose that is sometimes in the
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outflow layer and at other times in the inflow layer below it. These upper-level features
are exemplified in the left column of Figure 3.2 and are to be expected as the M̄ surfaces
are initially closer to the vertical than to the horizontal and M̄ is approximately materi-
ally conserved in the upper troposphere, at least beyond the eyewall updraught. These
M̄ -surfaces are strongly distorted by the vertical gradient of mean radial flow.

(a) (b)

Figure 3.3: Radius-time cross sections of azimuthally-averaged pseudo-equivalent potential
temperature, θ̄e, absolute angular momentum, M̄ , and vertical velocity w̄ at (a) 16 km,
and (b) 11 km. Contour interval for θ̄e is 2.5 K; for M̄ , 0.5 × 106 m2 s−1. Shown also is
the M̄ with the value 1.75× 106 m2 s−1. Contours of w̄ (in green) has the value 0.25 m s−1

and indicates the approximate location of the eyewall updraught. Contours of θ̄e in red
with shading indicated on the colour bar. Contours of M̄ are black.

Figure 3.3 shows radius-time cross sections of M̄ -contours at altitudes of 16 km and
11 km, together with similar contours of azimuthally-averaged pseudo-equivalent potential
temperature, θ̄e. Also shown at 11 km is the contour of vertical velocity with a magnitude
of 0.25 m s−1 to show the approximate location of the eyewall updraught complex at this
level. Beyond this updraught complex, the quantities M̄ and θ̄e should be approximately
materially conserved by the mean radial flow. The pseudo-equivalent potential temperature
was calculated using Eq.43 in Bolton (1980):

θ̄e = T

(
p00
p

)0.2854(1−0.28q)

exp

[
q(1 + 0.81q)

(
3376

Tl
− 2.54

)]
, (3.1)

where T is the temperature, p is the pressure, p00 is the reference pressure, Tl is the
condensation temperature and q is the water vapor mixing ratio.

At 16 km altitude, which is within the inflow layer above the outflow layer and slightly
above the eyewall updraught complex, an inward migration of the M̄ -surfaces is clearly
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evident, at least within a radius of 180 km. This inward migration implies a spin up of
the mean tangential wind at this level. There is an inward migration of the M̄ -surfaces
at 11 km altitude also, but in the inner region, within the eyewall updraught, the inward
migration can be attributed in part to the upward advection of tangential momentum.
There is an event in Figure 3.3(b) where an M̄ -surface appears to form at a finite radius
and subsequently move inwards (e.g. at 49 h at a radius of about 100 km). This occurrence
is associated with the passage of the inward and downward moving tip of a folding M̄ -
surface through the level in question. After about 60 h as the inflow below the outflow
layer strengthens, at radii larger than 100 km, the migration occurs in oscillatory pulses
with a period of a few hours. Whatever the circumstance, the inward migrating M̄ -surface
implies a spin up of the mean tangential wind within this inflow layer.

Like the M̄ -surfaces, the θ̄e-surfaces are approximately materially conserved in three
dimensions, but these surfaces are nearly horizontal at the initial time. they are subse-
quently distorted in a different way. At 16 km altitude (panel (a)), θ̄e shows little change
with the contour interval chosen until just after 60 h, except for a slight reduction at most
radii (between 35 and 55 h) and small positive pulses inside a radius of 50 km. The latter
reflects the effect of convective updraughts that occasionally reach this level during the
earlier period of evolution. Beyond 60 h, the eyewall convective complex begins to persist
at this altitude as reflected in the increase of θ̄e values most prominently within about 60
km radius. As there is radial inflow at this level (see e.g. the right panels of Figure 3.2),
this region of elevated θ̄e values remains radially confined.

The situation is similar at 11 km altitude (panel (b)), where the increase in θ̄e values
occurs a little earlier at about 40 h, but as at 16 km, the increase remains radially confined
by the inflow. The presence of a weak negative radial gradient of θ̄e at this level is indicated
by the red contour (θ̄e = 347.5 K) between 40 km and 100 km radius and beyond about 45
h. Note that the fluctuations in the radial location of this contour are closely correlated
with those of M̄ indicating that beyond the eyewall updraught complex, both θ̄e and M̄
are approximately conserved in radial displacements at 11 km.

Animations of vertical cross sections of θ̄e and M̄ show that the surfaces of these
quantities have significantly different structure during much of the intensification phase,
but with some tendency for the surfaces to become more parallel in the eyewall updraught
region during the later stages of intensification (after about 72 h) and into the mature
stage (not shown). A particularly striking feature of these surfaces during this later stage
is the way in which advection by the radial inflow beneath the outflow layer leads to a
more vertically erect eyewall and effectively reinforcing the eyewall θ̄e front in the upper
troposphere.

The vertically coherent eyewall front is evident in Figure 3.4, which shows vertical cross
sections of θ̄e at 42 h, 60 h and 74 h with the M̄ -surfaces and selected contours of radial and
vertical velocity superimposed. The distribution of θ̄e shows the classical structure. The
principal features are: the mid-tropospheric minimum beyond a radius of about 100 km,
increasing in prominence with radius; the tendency for the isopleths of θ̄e to become close
to vertical in the eyewall updraught complex; and the tendency for these isopleths to slope
outwards and become close to horizontal in the upper tropospheric outflow layer. There
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(a)

(b) (c)

Figure 3.4: Radius-height cross sections of pseudo-equivalent potential temperature, θ̄e,
and absolute angular momentum, M̄ at (a) 42 h, (b) 60 h and (c) 74 h. Superimposed
on each panel are two contours of the radial velocity component ū and one contour of the
vertical velocity component, w̄. All fields are azimuthally-averaged and time-averaged for
one hour. Contour interval for θ̄e is 5 K; for M̄ , 0.5× 106 m2 s−1, with the M̄ -surfaces in
black and the θ̄e-surfaces in red with shading indicated on the colour bar. Shown also is
the M̄ with the value 1.75 × 106 m2 s−1. The contours of ū are green solid contours as 1
m s−1 and dashed contours as -1 m s−1 and the thick blue contour of w̄ has the value 0.25
m s−1 to indicate the approximate location of the eyewall updraught.

is an approximate congruence between the θ̄e and M̄ surfaces in the eyewall updraught
complex above about 5 km and in the upper troposphere where the air ascending in the
eyewall flows outwards.

Throughout much of the troposphere, θ̄e has a negative radial gradient. This is, in
part, a reflection of the structure in the boundary layer. Although this description broadly
captures the basic reason for the interior θ̄e structure, the inner-core region underneath
the eyewall complex (radius < 25 km) exhibits a somewhat more intricate structure. Here
there is a local region of enhanced radial gradient in which the eye appears to act as a
source of high θ̄e air (Figure 3.4). This air rises into the eyewall updraught, effectively
feeding the updraught with enhanced θ̄e. The finger of enhanced θ̄e is clearly evident at 60
h and becomes markedly more pronounced at 74 h. This low-level θ̄e structure has been
observed and analyzed elsewhere by Zhang et al. (2001) with a similar interpretation.

The role of nonlinear boundary layer dynamics in creating this corner structure is
certainly an interesting and important topic, but lies outside the scope of the current
study.

Returning to the upper-level structure of θ̄e, and recalling the approximate material
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conservation of this quantity, a prominent feature to note is the development between 60
h and 74 h of subsidence of lower-stratospheric air into the upper part of the eye with
the strongest subsidence occurring in a finger along the inside edge of the eyewall (Figure
3.4(b) and (c)). Another prominent feature is the broadening of the eyewall updraught
complex during this period, which is related, at least in part, to the (transient) splitting
of the updraught at 74 h.

The effect of the upper-layer inflow on the θ̄e field is harder to discern from a comparison
of panels (a), (b) and (c) of Figure 3.4 than it is in the animations. This is due to the
broadening of the eyewall updraught complex during this period, a broadening that is
evident also in the θ̄e pattern in Figure 3.3(b), and the fact that θ̄e values in the updraught
have increased. However, as suggested by the inward movement of the θ̄e surfaces beyond
the eyewall updraught complex in Figure 3.3(b), the convergent inflow must play a role in
tightening the radial gradient of θ̄e in the upper troposphere on the outside of the eyewall.

3.4 Horizontal structure of outflow and inflow layers

Figure 3.5–3.8 shows horizontal cross sections of the radial velocity component u (red/blue)
along with horizontal wind vectors and vertical velocity w (yellow) at different levels at
selected times. The vortex centre at each level, indicated by the hurricane symbol, is
calculated in the same way as described in the appendix.

(a) (b)

Figure 3.5: Horizontal cross sections of the instantaneous radial velocity component, u
(shaded values), horizontal wind vectors and vertical velocity, w (yellow contours), at 42
h. Left columns for a height of 11 km, right columns for a height of 14 km. Radial velocity
shaded as indicated on the colour bar in m s−1. The maximum reference wind vector is 30
m s−1 shown on lower right corner. Two contours of w: solid yellow contour with black
border, 0.5 m s−1, dashed yellow contour with black border, -0.5 m s−1. The vortex centre,
indicated by the hurricane symbol, is defined as the location of minimum wind speed at
each particular level.
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Figure 3.5(a) shows cross section at a height of approximately 11 km (actually 11.16
km) that is generally within the upper-level inflow layer beneath the outflow layer, while
Figure 3.5(b) show the fields at a height of approximately 14 km (actually 14.29 km),
which is within the outflow layer, itself. Early on in the intensification stage, at 42 h,
there is outflow in all sectors beyond a radius of about 40 km at 14 km height (panel (b)),
with mostly inflow inside this radius. The inflow is seen to occur on the inside edges of
deep convective cores, which lie predominantly outside a radius of 30-40 km. The situation
at 11 km is rather different (panel (a)), with mostly inflow in the northern half of the
domain and mostly outflow in the southern half (here refering to the y-direction as north,
even though in the problem as formulated on an f -plane, there is no preferred direction).
Clearly the inflow layer at this altitude and time is quite asymmetric.

(a) (b)

Figure 3.6: Horizontal cross sections of the instantaneous radial velocity component, u
(shaded values), horizontal wind vectors and vertical velocity, w (yellow contours), at 60
h. Left columns for a height of 11 km, right columns for a height of 14 km. Radial velocity
shaded as indicated on the colour bar in m s−1. The maximum reference wind vector is 30
m s−1 shown on lower right corner. Two contours of w: solid yellow contour with black
border, 0.5 m s−1, dashed yellow contour with black border, -0.5 m s−1. The vortex centre,
indicated by the hurricane symbol, is defined as the location of minimum wind speed at
each particular level.

At 60 h, towards the end of the intensification stage, the outflow at 14 km has strength-
ened and is to a first approximation symmetric with outflow at all azimuths about the
centre (Figure 3.6(b)). The inflow at 11 km ((Figure 3.6(a))) has strengthened also, but is
seen to retain a significant degree of asymmetry, being most extensive in the northeastern
sector and least extensive in the southwestern sector. Broadly, the inflow lies outside an
annulus of outflow coinciding with the eyewall updraught at this altitude. Noteworthy is
the fact that the region of inflow with a magnitude exceeding 5 m s−1 contains elongated
bands of both enhanced ascent and descent that are presumably some form of wave motions
(inertia-buoyancy waves and/or vortex Rossby waves).
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(a) (b)

Figure 3.7: Horizontal cross sections of the instantaneous radial velocity component, u
(shaded values), horizontal wind vectors and vertical velocity, w (yellow contours), at 74
h. Left columns for a height of 11 km, right columns for a height of 14 km. Radial velocity
shaded as indicated on the colour bar in m s−1. The maximum reference wind vector is 30
m s−1 shown on lower right corner. Two contours of w: solid yellow contour with black
border, 0.5 m s−1, dashed yellow contour with black border, -0.5 m s−1. The vortex centre,
indicated by the hurricane symbol, is defined as the location of minimum wind speed at
each particular level.

At 74 h (Figure 3.7), during the quasi-steady mature stage, the outflow at 14 km exceeds
20 m s−1 beyond a radius of 50-100 km that depends on azimuth with weak inflow within
20 km in a region to the south of the centre. At 11 km, however, the pattern of inflow
and outflow remains asymmetric with an inward counterclockwise spiralling band of inflow
extending from about 120 km east-southeast of the vortex centre to about 50 km east of
the centre, where it terminates. At radii inside this band is an inward counterclockwise
spiralling band of outflow that extends from approximately southwest of the vortex centre
to the north of the centre.

The pattern of azimuthal-mean radial and vertical motion at 74 h in Figure 3.2(f) shows
a deep, radially-confined downdraught that apparently splits the eyewall updraught. The
upper portion of this downdraught corresponds to an upper-level inflow maximum at a
radius of about 30 km and an altitude between 9 and 10 km. I investigate the degree of
symmetry of this feature in Figure 3.8, which shows similar horizontal cross sections to
those in Figures 3.7, but at altitudes of 6.1 km and 9.9 km. Like the higher altitudes at
this time, the pattern of inflow and outflow at both levels exhibits a marked asymmetry.

At 9.9 km altitude (Figure 3.8(b)), the pattern has a prominent azimuthal wavenumber-
one component, with spiral regions of inflow and outflow, much like the pattern at 11 km
in Figure 3.7(a) and the orientation of the spiral pattern is much the same. The main
difference is the localized region of strong inflow in the east to southeast sector at 9.9 km,
at radii between about 15 and 35 km, which would account for the local maximum of
inflow seen in Figure 3.2(f). On the broad scale, it is apparent that most of the strongly
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(a) (b)

Figure 3.8: Horizontal cross sections of the instantaneous radial velocity component, u
(shaded values), horizontal wind vectors and vertical velocity, w (yellow contours), at
heights of (a) 6.1 km and (b) 9.9 km, both at 74 h. Radial velocity shaded as indicated
on the colour bar in m s−1. The maximum reference wind vector is 30 m s−1 shown on
lower right corner. Two contours of w: solid yellow contour with black border, 0.5 m s−1,
dashed yellow contour with black border, -0.5 m s−1. The vortex centre, indicated by the
hurricane symbol, is defined as the location of minimum wind speed at each particular
level.

inflowing air is descending. At 6.1 km altitude (Figure 3.8(a)), the localized region of inflow
is smaller in area and rotated slightly counterclockwise. At both altitudes, only part of the
region of localized inflow coincides with a region of subsidence.

3.5 Summary

Three-dimensional numerical simulations of tropical cyclone intensification with moder-
ately high vertical resolution have been used to analyze the development of a layer of
strong inflow beneath the upper tropospheric outflow layer as well as, in some cases, a
shallower layer of weaker inflow above the outflow layer. The calculations pertain to the
prototype problem for tropical-cyclone intensification, which considers the evolution of a
vortex on an f -plane in a quiescent environment starting from an initially-symmetric,
moist, cloud-free vortex over a warm ocean.

The inflow layers adjacent to the upper-level outflow were shown to have a role in
modifying the vortex structure in the upper troposphere. The inflow layer above the
outflow layer leads to a spin up of the tangential winds there, thereby extending the
cyclonic circulation of the hurricane vertically. In addition, the inflow acts to resist the
radial spread of air with high pseudo-equivalent potential temperature at this level. The
inflow layer below the outflow layer leads also to a spin up of the cyclonic tangential winds
in the inflow layer and would appear to contribute to an increase of the radial gradient of
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pseudo-equivalent potential temperature at the outer edge of the eyewall. The inflow layers
adjacent to the upper-level outflow were shown to be more asymmetric than the outflow
layer, itself, having a low azimuthal wavenumber flow asymmetry.
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Chapter 4

Balance theory

A scale analysis of the equations of motion for an axisymmetric rapidly-rotating tropical
cyclone-like vortex shows that, to a first approximation, over much of the troposphere,
the tangential wind field and temperature field are in gradient wind balance and hydro-
static balance, i.e. thermal wind balance (Willoughby 1979). Regions where thermal wind
balance does not hold include the frictional boundary layer and the upper tropospheric out-
flow layer. Assuming that thermal wind balance holds everywhere enables one to derive an
equation for the streamfunction of the overturning circulation driven by diabatic heating
and near-surface friction, processes that, in the absence of such a circulation, would drive
the vortex away from thermal wind balance. This streamfunction equation is generally
referred to as the Sawyer-Eliassen equation and has a variety of forms.

The Sawyer-Eliassen equation is a key equation in the formulation of a prognostic ax-
isymmetric balance theory for tropical cyclone evolution (Sundqvist 1970a,b; Schubert and
Alworth 1982; Möller and Smith 1994; Smith et al. 2018a; Smith and Wang 2018) and
it has formed a basis for many diagnostic studies of tropical cyclone structure. In the
latter studies, the Sawyer-Eliassen equation is solved diagnostically for the secondary cir-
culation in the presence of a prescribed forcing mechanism (or mechanisms), possibly with
an examination of the instantaneous tangential wind tendency accompanying the calcu-
lated overturning circulation (e.g. Smith 1981; Shapiro and Willoughby 1982; Schubert
and Hack 1982; Hack and Schubert 1986; Rozoff et al. 2008; Bui et al. 2009; Pendergrass
and Willoughby 2009; Wang and Wang 2013; Abarca and Montgomery 2014; Smith et al.
2014a; Ohno and Satoh 2015; Heng and Wang 2016; Heng et al. 2017; Montgomery and
Persing 2020).

The solution of the Sawyer-Eliassen equation requires that the equation be globally
elliptic, a condition that is usually satisfied by the choice of the vortex in idealized diag-
nostic studies, but is frequently not satisfied when the axisymmetric vortex structure is
determined as an azimuthal average from the numerical model output of a tropical cy-
clone simulation. When this happens, the solution can be carried only by adjusting the
coefficients in the Sawyer-Eliassen equation in the unstable regions to keep the equation
elliptic globally. In essence, regularization, as this method is called, is an ad hoc procedure
and various methods have been used. One method was devised by Möller and Shapiro
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(2002) in a case study of Hurricane Opal (1995) and modifications thereof were used by
Bui et al. (2009); Smith et al. (2014a, 2018a) and Smith and Wang (2018). An alternative
method was suggested by Wirth and Dunkerton (2006), who effectively flattened out the
M -surfaces in regions where the flow becomes inertially unstable, i.e. where ∂M/∂r < 0.
Despite the fact that the flattening out was accomplished using a scheme that globally
conserves angular momentum, it makes the Sawyer-Eliassen equation parabolic in these
regions, but not elliptic as required by the code they used to solve the equation1. But
Some authors referenced above have not checked whether their Sawyer-Eliassen equation
is globally elliptic (e.g. Sundqvist 1970a,b; Ohno and Satoh 2015) raising questions about
the convergence of their solution.

The purpose of this chapter is to develop a framework for exploring and understanding
some of the local and global consequences of regularization and to investigate improved
ways to carry out the regularization. In doing so, we highlight some fundamental limita-
tions of regularization. The mathematical background of balance theory will be described
in section 4.1. In section 4.2 and section 4.3, a membrane analogy and a more realistic con-
figuration vis-á-vis the atmosphere have been used to understand the behaviour of elliptic
second-order partial differential equations. Section 4.4 shows how regularization schemes
have been designed in such problems and in section 4.5 related tests in an idealized three-
dimensional numerical simulation are analyzed. Then a similar discussion of regularization
in regions of large vertical shear are discussed in section 4.6. Finally, A discussion is given
in Section 4.7.

4.1 The Sawyer-Eliassen equation

For an axisymmetric vortex with approximate gradient wind and hydrostatic balance in
cylindrical height coordinates (r, z) where r is the radius and z is the height,

∂p̄

∂r
= ρ̄(fv̄ +

v̄2

r
), (4.1)

and
∂p̄

∂z
= −ρ̄g, (4.2)

where p̄ is the pressure, ρ̄ is the density, f is the Coriolis forces, v̄ is the tangential velocity
component, g is the acceleration due to gravity.

Eliminating p̄ by taking the derivative of Eq.(4.1) with respect to z and taking the
derivative of Eq.(4.2) with respect to r, the thermal wind equation could be obtained as:

g
∂ ln ρ̄

∂r
+ (fv̄ +

v̄2

r
)
∂ ln ρ̄

∂z
= −(

2v̄

r
+ f)

∂v̄

∂z
(4.3)

1The solution code is described in the appendix of Wirth (1995), who states that “The resulting finite-
difference equation is solved with the help of a multigrid algorithm (routine D03EDF) from the NAG
Fortran library, which readily returns the desired solution so long as the equation is elliptic everywhere in
the domain”.
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Defining

C = fv̄ +
v̄2

r
, (4.4)

which denotes the sum of centrifugal and Coriolis forces per unit mass, Eq.(4.3) may be
written as

g
∂ ln ρ̄

∂r
+ C

∂ ln ρ̄

∂z
= −∂C

∂z
(4.5)

Here, the density is related to pressure and potential temperature θ̄ by

ρ̄ = p̄00π
1
κ
−1/(Rdθ̄) (4.6)

where, p̄00 is a standard reference pressure, π = (p̄/p̄00)
κ is the Exner function, κ = Rd/Cp,

Rd is the specific gas constant for dry air, and Cp is the specific gas constant for dry air at
constant pressure.

Now, taking logarithms on both sides, and defining χ = 1/θ̄,

ln ρ̄ = κ ln p̄00 + (1− κ) ln p̄− ln θ̄ = constant+ (1− κ) ln p̄+ lnχ (4.7)

so that,
dρ̄

ρ̄
=
dχ

χ
+ (1− κ)

dp̄

p̄
(4.8)

then, Eq.(4.5) may be reformulated as

g
∂ lnχ

∂r
+ C

∂ lnχ

∂z
= −∂C

∂z
(4.9)

The azimuthal momentum equation and thermodynamic equation may be written in
the following form,

∂v̄

∂t
+ ū(f + ζ) + w̄

∂v̄

∂z
= −V̇ (4.10)

and
∂χ

∂t
+ ū

∂χ

∂r
+ w̄

∂χ

∂z
= −χ2θ̇ (4.11)

where, ū is the radial velocity component, w̄ is the vertical velocity component. ζ =
(1/r)∂(rv̄)/∂r is the vertical component of relative vorticity. θ̇ = dθ̄/dt is the material
derivative of the diabatic heating rate and −V̇ is the tangential momentum sink.

Taking time derivative of Eq.(4.9) and substitution of the time derivatives from Eq.(4.10)
and Eq.(4.11) gives

∂

∂r

[
−g∂χ

∂z
w̄ +

∂

∂z
(χC)ū

]
+

∂

∂z

[
−
(
χξ(ζ + f) + C

∂χ

∂r

)
ū− ∂

∂z
(χC)w̄

]
=

g
∂

∂r

(
χ2θ̇
)

+
∂

∂z

(
Cχ2θ̇

)
+

∂

∂z

(
χξV̇

)
(4.12)
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where ξ = f + 2v̄/r is twice the local absolute angular velocity.
The radial and vertical velocity components, ū and w̄, may be obtained using the

formulae: ū = −(1/ρ̄r)(∂ψ/∂z) and w̄ = (1/ρ̄r)(∂ψ/∂r), respectively, which ensure that
the continuity equation is satisfied. Then, the most general form of the Sawyer-Eliassen
equation in cylindrical coordinates (r, z) may be written as

∂

∂r

[
−g∂χ

∂z

1

ρ̄r

∂ψ

∂r
− ∂

∂z
(χC)

1

ρ̄r

∂ψ

∂z

]
+

∂

∂z

[(
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∂χ

∂r

)
1

ρ̄r

∂ψ

∂z
− ∂

∂z
(χC)
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ρ̄r

∂ψ

∂r

]
=

g
∂

∂r

(
χ2θ̇
)

+
∂

∂z

(
Cχ2θ̇

)
+

∂

∂z

(
χξV̇

)
(4.13)

The left-side of Equation (4.13) may be written in the form

Ā
∂2ψ

∂r2
+ 2B̄

∂2ψ

∂r∂z
+ C̄

∂2ψ

∂z2
... , (4.14)

where Ā = γN2, B̄ = −γB, C̄ = γI2g , γ = χ/(ρ̄r), N2 is the static stability, I2g is the
generalized inertial stability, and B is the baroclinicity. The last three quantities are given
by the expressions:

N2 = − g
χ

∂χ

∂z
, I2g = I2 +

C

χ

∂χ

∂r
, B =

1

χ

∂

∂z
(Cχ), (4.15)

where I2 = ξζa = ξ(ζ + f) is the inertial stability squared.
The discriminant of the Sawyer-Eliassen equation, ∆, is given by

∆ = γ2
[
N2I2g −B2

]
= (ĀC̄ − B̄2). (4.16)

The equation is locally elliptic if ∆ > 0, locally hyperbolic if ∆ < 0 and locally parabolic
if ∆ = 0. It can be shown that ∆ is proportional to the potential vorticity, PV : i.e.

ξPV =
1

ρ̄gχ3
∆. (4.17)

so that regions where the Sawyer-Eliassen equation is hyperbolic correspond with regions
of negative PV , equivalent to the flow being symmetrically unstable. Regions where ∆ < 0
are where the flow is inertially unstable (I2g < 0), statically unstable (N2 < 0) or where
the baroclinicity, a measure of the vertical shear, is sufficiently large (B̄2 > ĀC̄).

In general, for tropical-cyclone-scale vortices, the coefficients of the highest derivatives
in the Sawyer-Eliassen equation are functions of r and z and numerical methods are called
for to obtain solutions. Moreover, the complex nature of the coefficients makes it difficult
to determine the consequences of any regularization method. For that reason it is helpful to
step back and investigate an analogous problem with a simpler partial differential equation.
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Notable, for a three dimensional diagnosis, one should use the azimuthal averaged
tangential wind field and its corresponding balanced distribution of pressure, density and
temperature (which are obtained using the unapproximated method of Smith (2006)) to
get the strictly balance solution. Montgomery and Smith (2018) and Montgomery and
Persing (2020) discussed details about the limitations of using unbalanced fields.

4.2 The membrane analogy

Figure 4.1: Cartoon showing the displacement of a stretched square membrane due to a
point force (top left) or a point force dipole (bottom right) at the centre.

One of the simplest physical problems for understanding the behaviour of elliptic
second-order partial differential equations is the equilibrium displacement of a stretched
membrane subject to a distribution of forces normal to the membrane. Two examples,
those of a point force and point force dipole are sketched in Figure 4.1.

In a rectangular coordinate system (x, y), the membrane displacement Z(x, y) satisfies
the Poisson equation:

∂2Z

∂x2
+
∂2Z

∂y2
= −F (x, y), (4.18)

where F (x, y) is the imposed force. Here, positive F corresponds to an upward force
acting on the membrane. In the case of a square domain (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) with zero
displacement along the boundary and a point force at the centre [F (x, y) = δ(x− 1

2
)δ(y− 1

2
)],

one can use one’s intuition to see that the solution for the membrane displacement has to
be a maximum at the point of forcing with closed contours that are near circular in the
vicinity of the forcing and approach a square with smoothed corners near the boundaries.
This intuition is confirmed by the numerical solution for a concentrated forcing2 shown
in Figure 4.2(a). This and other solutions that follow are obtained using the same over-
relaxation procedure described by Bui et al. (2009).

For a membrane with the property that it deforms more easily in the x-direction than
in the y-direction, the membrane displacement satisfies an equation of the type

∂2Z

∂x2
+ µ2∂

2Z

∂y2
= −F (x, y), (4.19)

2The forcing is given by the analytic formula F (x, y) = 105 exp [−σ2], where σ = 1
2

√
x2 + y2/10−2.
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where µ is a constant smaller than unity. In the case where µ = 0.1, the solution with the
forcing function in Figure 4.2(a) is shown in Figure 4.2(b). In this case, the maximum dis-
placement amplitude has increased and the membrane displacement has become confined
in the y-direction, barely feeling the boundaries in that direction. Note that a transforma-
tion of the y-coordinate in Eq. (4.19) to Y = y/µ would lead to the same equation as Eq.
(4.18), but with Y replacing y and in (x, Y ) space the solution would be similar to that
in Figure 4.2(a), but the domain would be larger in the Y -direction. It follows that the
solution of Eq. (4.19) is simply a stretched version of Eq. (4.18) in the y-direction if µ > 1
and a shrunken version of Eq. (4.18) if µ < 1. The solution in Figure 4.2(c) has a similar
but weaker shrunken version than Figure 4.2(b), this feature suggests the magnitude of
how much µ departure from 1 can control the degree of deformation, the less difference,
the less deformation.

(a) (b) (c)

Figure 4.2: Numerical solution of (a) Eq. (4.18), (b) Eq. (4.19) with µ = 0.1 and (c) Eq.
(4.19) with µ = 0.5 for the membrane displacement, Z(x, y) (red contours and shading)
subject to a concentrated force F (x, y) at the centre (blue contour with the value 104).
Red contours from 0 to 4 in steps of 0.5, from 4 to 20 in steps of 4 and from 20 to 160 in
steps of 20. Shading as shown in the colour bar.

These solutions may be used to understand the consequences of regularization, which
would be equivalent to solving Eq. (4.18) over much of the domain, but solving Eq. (4.19)
over a limited region with some small value of µ. I shall refer to this region as the “region
of regularization” and take it to be a square that includes or excludes the small region of
forcing shown in Figure 4.2(a).

Figure 4.3(a) shows the solution when the region of regularization is confined to the
dot-dashed square shown. In that region the displacement contours are flattened as in
Figure 4.2(b), but as the boundaries are approached the solution is similar to that in
Figure 4.2(a). Nevertheless, the amplitude of the maximum displacement is larger than in
Figure 4.2(a) as it is in Figure 4.2(b). The effect of flattening of the displacement contours
is seen in the difference field shown in Figure 4.3(b).

When the region of regularization is situated away from and to the left of the forcing
(Figure 4.4(a)), the maximum displacement is still larger than in Figure 4.2(a), and in
fact, the displacement is larger everywhere with the maximum difference located inside the
region of regularization (Figure 4.4(b)). When the region of regularization is to the right
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(a) (b)

Figure 4.3: Numerical solution of Eq. (4.19) for the membrane displacement, Z(x, y)
(left panels, red contours and shading) subject to a concentrated upward force F (x, y)
at the centre (blue contour with the value 104). In each case, µ = 0.1 inside the dot-
dashed square and µ = 1.0 outside this square. The right panels show the difference in
displacement, dZ(x, y) (contours and shading) between the particular solution and that
shown in Figure 4.2(a). Contour intervals for panels (a): red contours from 0 to 4 in steps
of 0.5 and from 4 to 20 in steps of 4. For panels (b): from -1 to 1 in steps of 0.5, from -10
to 10 in steps of 1. Shading as shown in the colour bar.

of the forcing, one may expect a similar pattern of displacement, but with the enhanced
values to the right instead of the left of the forcing.

When the region of regularization is situated away from and below the forcing (Figure
4.4(c)), the maximum displacement is smaller than in Figure 4.2(a) and the displacement
contours are again flattened out inside the region of regularization. The effect in this
location is to reduce the amplitude of the displacement everywhere (Figure 4.4(d)), the
maximum difference between the control case being on the border of the domain of reg-
ularization closest to the location of forcing. When the region of regularization is above
the forcing, one may expect a similar pattern of displacement, but mirror imaged in the
x-axis.

When the region of regularization is located on the diagonal to the right of and above
the forcing (Figure 4.5a), the flattening of the contours there leads to a dipole pattern of
deviation displacement from the control calculation (Figure 4.5b) with a negative deviation
in the upper portion of the regularization region and a positive deviation in the lower half,
the maximum being located on the lower boundary of the that region.
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(a) (b)

(c) (d)

Figure 4.4: Caption as in Figure 4.3, but with the region with µ = 0.1 moved to the left
of the forcing (a, b) and above the forcing (c, d).

(a) (b)

Figure 4.5: Caption as in Figure 4.3, but with the region with µ = 0.1 moved along the
diagonal to the right of and above the forcing.
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4.3 A more realistic configuration vis-á-vis the atmo-

sphere

In the atmosphere, diabatic heating appears in the Sawyer-Eliassen equation as a dipole
of forcing oriented principally in the radial direction. Moreover, a domain that has a large
aspect ratio (length to depth) and is open at its lateral boundary is more appropriate in
the atmospheric context. Assuming a two-dimensional flow configuration in rectangular
coordinates (x, z), the Sawyer-Eliassen equation for a resting atmosphere would have the
form

∂2ψ

∂x2
+ µ2∂

2ψ

∂z2
= −F (x, z), (4.20)

where again −F represents the structure of the forcing terms in Eq. (4.13). This equation
has the same form as Eq. (4.19).

The dipole forcing corresponding to that produced by an idealized line of diabatic
heating from deep convection would look something like that in Figure 4.6(a), the dipole
being related primarily to the radial gradient of the heating (see Eq. (4.13)). The forcing
is located relatively close to the z-axis which is chosen to be a closed boundary (ψ = 0)
analogous in rectangular geometry to the axis of rotation of an axisymmetric vortex in
cylindrical coordinates. The solution for the streamfunction induced by this forcing for3

µ = 0.1 is shown in Figure 4.6(b), assuming that the right boundary of the domain is open
and that ∂ψ/∂x = 0 along it. The upper and lower boundaries are taken to be closed
with ψ = 0 there. The pattern of “lateral velocity”, u = −∂ψ/∂z, corresponding with the
streamfunction is shown in Figure 4.6(c). As expected, and in analogy to the situation in
axisymmetric geometry (e.g. Shapiro and Willoughby 1982), the streamfunction shows two
cells of circulation with ascent along the axis of the forcing and within the forcing region,
itself, and descent elsewhere. Beyond the forcing there is inflow in the lower troposphere
and outflow in the upper troposphere and this inflow and outflow pattern extends to the
right boundary. Decreasing the value of µ would increase the lateral scale of the outer
circulation cell, leading to a larger flow through the right boundary and less recirculation
within the domain (not shown).

Figure 4.6(d) shows the analogous solution when the coefficient µ in Eq. (4.20) is
reduced to a constant value 0.01 in the rectangle in the “upper troposphere” shown. This
configuration is analogous to the procedure of regularizing the Sawyer-Eliassen equation
in regions in the upper troposphere where the flow becomes inertially unstable, equivalent
in Eq. (4.20) to µ2 becoming locally negative. As described in Möller and Shapiro (2002),
regularization involves effectively setting µ2 equal to some small positive value in such
a region. From the understanding gained in section 4.2, I know that regularization in
the rectangular region shown in Figure 4.6(d) will have the effect of flattening out the
streamlines in the rectangle. Moreover, the effect is global, but diminishes in magnitude
with increasing distance from the region of regularization. As can be seen in the figure,
this is precisely what happens.

3In the atmosphere in middle latitudes, a more typical value for µ would be 10−4.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4.6: (a) Idealized dipole forcing distribution −F (x, z) used to solve Eq. (4.20) with
µ = 0.1 for the streamfunction ψ(x, z) (contours and shading) shown in (b). (c) lateral
velocity component, u = −∂ψ/∂z obtained from ψ(x, z) in (b). (d) the solution for ψ(x, z)
when the value of µ is reduced to 0.01 in the rectangular region included by a dot-dash
pattern; (e) the corresponding pattern of u = −∂ψ/∂z; (f) the difference in u, du, between
(d) and (b). (g) and (h) are similar to (e) and (f) when the region of µ = 0.01 is displaced
to the right; (i) and (j) are similar to (e) and (f) when the region of µ = 0.1 is displaced
to the left so that it partially overlaps with the region of forcing. Contour intervals for
panel(a): from ±50 to ±400 in steps of 50. For (b), (d), (g), (i): from -18 to 18 in steps of
2; for (c), (e), (h), (j): from -100 to 100 in steps of 10. For panel(f): from -5 to 25 in steps
of 5. Shading as shown in the colour bar.
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Figure 4.6(e) shows the lateral velocity component, u = −∂ψ/∂z, derived from the
streamfunction shown in Figure 4.6(d)4. The effect of “regularization” is to destroy the
symmetry of the inflow and outflow regions beyond the forcing, leading to stronger outflow
in the upper troposphere, albeit concentrated in a shallower layer than the inflow. The
difference between the pattern of inflow and outflow between the regularized solution in
Figure 4.6(e) and the unregularized solution in Figure 4.6(c) is shown in Figure 4.6(f).
Significantly, the outflow is strengthened throughout much of the upper troposphere, not
only in the region of regularization, with the maximum increase near the lower boundary
of the region of regularization. Elsewhere, the radial flow is decreased, i.e. the inflow has
increased, but the maximum decrease occurs a little below the region of regularization.

Figure 4.6(g)-(j) show similar fields to those in Figure 4.6(d)-(e), but where the region
of regularization is moved radially outwards (panels (g), (h)) or inwards (panels (i), (j)).
When the region of regularization is moved outwards, the radial flow is able to rise higher
before the flattening occurs (compare panel (g) with panel (d)), but when the region is
moved inwards with the inner boundary at the axis of forcing, the flattening occurs almost
immediately as the flow exits the updraught produced by the forcing (compare panel (i)
with panel (d)), The consequences for the radial flow are shown in panels (h) and (j),
respectively. In the former case, the outflow layer extends over a deeper layer than in
panel (e), but the outflow is weaker, whereas, in the latter case, the radial flow is more
confined in the vertical, but much stronger than in panel (e).

As will be discussed in section 4.5, the structural changes brought about by regulariza-
tion shown in Figures 4.6 provide an understanding of possible consequences of regulariza-
tion in solving the Sawyer-Eliassen equation, itself.

4.4 Methods of regularization

The main purpose of regularization in solving the Sawyer-Eliassen equation is to remove
any regions of symmetric instability (∆ < 0). This removal can be achieved by replacing the
corresponding negative coefficients (N2 or I2g ) with small positive values and/or by suitably
decreasing the coefficient B. Alternatively, the removal can be achieved by sufficiently
increasing the magnitude of the inertial stability, static stability, or both (a procedure
adopted by Möller and Shapiro 2002).

Any such scheme is necessarily ad hoc and different authors have used different methods
in detail. For example, Bui et al. (2009); Smith et al. (2018a) and Smith and Wang (2018),
calculate the minimum value of I2g in the region where ∆ < 0, say I2g min, then remove
the negative values of I2g by adding |1.001I2g min|. Further, at points where N2 < 0, which
typically do not coincide with those where I2g < 0, N2 is set equal to 10−8 s−2. Finally, if ∆
is still less than or equal to zero, which, when |I2g | is made small and positive is frequently
the case, B̄2 is replaced with 1

2
ĀC̄ at the grid point in question.

4Since the focus of this section is in changes of pattern, I have refrained from ascribing actual units to
quantities in Eq. (4.20).
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Heng and Wang (2016) do essentially the same as Bui et al. (2009), setting ζa = 1×10−6

s−1 at points where I2g < 0, but they do not say what they do if ∆ remains negative. In
contrast, Heng et al. (2017) set ζa = 0.01f at points where ζa < 0.01f and if there are
remaining points where ∆ < 0, they progressively reduce the term B̄ by a factor 0.8 until
∆ > 0.

A different procedure is adopted by Möller and Shapiro (2002). In regions where ∆ < 0
they increased the value of ζ (and thereby ζa) so that, effectively5, ∆ has some small
positive threshold value. No other quantities appearing in the Sawyer-Eliassen equation
coefficients are altered so that, in particular, the new value of ζ is not consistent with the
local structure of v̄. Of course, this is a property of the other schemes as well. Apparently,
in the vortex examined by Möller and Shapiro, regions of negative ∆ were due largely to
the occurrence of inertial stability, I2g < 0.

The hope in all these studies has been that, whatever procedure is used, regularization
will lead to a useful balance solution, at least in regions remote from those where regular-
ization is needed, but there are some subtle differences between the procedures that have
consequences for the diagnosed structure of the balance solution.

As noted above, the Möller and Shapiro procedure differs from the others in that,
at points where ∆ < 0, I2g is increased in magnitude, even if the point with ∆ < 0 is a
consequence of large vertical shear and not necessarily because the flow is inertially unstable
(I2g < 0). In contrast, in the other schemes, points with inertial instability are removed
first by setting I2g to be a small positive number, typically smaller in magnitude than
its original magnitude. The analysis in section 4.2 points to a different local response to
forcing depending on which regularization procedure is adopted and therefore to a different
structure of the balance solution in and near the region where ∆ < 0.

4.5 An idealized 3D numerical simulation of a tropical

cyclone

The next step is to apply the insights gained above to assess the applicability of balance
theory in analyzing the secondary circulation of an idealized three-dimensional numerical
simulation of tropical cyclone evolution on an f -plane. The simulation is similar to the
one described by Kilroy et al. (2016), but uses the CM1 model (Bryan and Fritsch 2002)
with a horizontal grid spacing of 1 km and a vertical grid spacing of 100 m. These data
were kindly provided by Dr. Gerard Kilroy.

Figure 4.7(a) shows the azimuthally-averaged and 3 h time-averaged radial and tan-
gential velocity components from the foregoing simulation at 32 h. At this time the vortex
was undergoing a period of rapid intensification. The main features of the simulation are
similar to those described in many previous studies (see Montgomery and Smith 2017 and
references). In particular, there is a shallow layer of strong inflow near the surface and one

5Actually, they use the potential vorticity rather than ∆, but these quantities are proportional to one
another
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: (a),(b) Radius-height cross-sections of selected three hour time-averaged and
azimuthally-averaged fields from the numerical model simulation at 32 h: (a) tangential
velocity component v̄ (red contours and shaded, Unit: m s−1), radial velocity component
ū (blue dashed contours for negative values and black solid contours for positive values,
Unit: m s−1) and vertical velocity component w̄ (yellow contour with a value 0.25 m s−1);
(b) Forcing term for the Sawyer-Eliassen equation (the right-hand-side of Eq. (4.13)),
(contours and shading, contour values every 0.8 units from ±0.2 units to ±5 units: 1 unit
= 1× 10−11K m−1 s−1). Shown also are the zero contours of the discriminant (black solid
line or dotted yellow contours: the latter enclose regions of inertial instability). (c), (d), (e)
and (f) show fields of the ratio I2g /N2 in the Sawyer-Eliassen equation (red contours and
shaded) and the radial velocity component ū (blue dashed contours for negative values and
solid black contours for positive values, Unit: m s−1) and vertical velocity component w̄
(yellow contour with a value 0.25 m s−1) from the solution of this equation using the three
regularization schemes: (c) Scheme A, (d) Scheme B, (e) Scheme C, (f) Scheme C with
the forcing set to zero inside the upper-level region of non-positive discriminant. Contour
intervals: for v̄, every 5 m s−1 from 0 to 30 m s−1; for ū, every 0.5 m s−1 from ±0.5 to ±2
m s−1 and every 2 m s−1 from ±2 to ±20 m s−1. For I2g/N

2, every 0.2 units from 0.2 to 1
units, 1 unit = 1× 10−3. Shading as shown in the colour bar.
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of strong outflow centred at about 12 km. There is a shallow region of marked outflow just
above the boundary layer, where the inflow terminates and ascends into the developing
eyewall updraught. This updraught is indicated by the contour of vertical velocity equal
to 0.25 m s−1. There is a region of weaker inflow in the lower troposphere, with a shallow
layer of weak inflow just below the main outflow layer. The maximum tangential wind
speed occurs at a height 600 m and radius of 38 km, within the layer of strong inflow.

The mean tangential wind field in Figure 4.7(a) is used to obtain balanced density and
potential temperature fields using the method described by Smith (2006). In turn, these
fields are used to evaluate the coefficients on the left-hand-side of the Sawyer-Eliassen
equation. The forcing terms on the right-hand-side of the Sawyer-Eliassen equation arising
from diabatic heating and friction are diagnosed also from the time- and azimuthally-
averaged model output. The structure of the combined forcing is shown in Figure 4.7(b).
The main region of positive forcing is near the inner edge of the main region of ascent,
the region within the yellow contour in Figure 4.7(a). At larger radii, mostly beyond a
radius of 28 km and inside a radius of about 90 km, there are narrow strips of negative
forcing, punctuated by even narrower strips of positive forcing. There is a shallow region
of negative forcing below a height of about 1.5 km and inside a radius of 50 km. This
feature is associated with the inner-core boundary layer.

Figure 4.7(b) shows also the regions where the discriminant of the Sawyer-Eliassen
equation, ∆, is negative. The main area of negative ∆ is located in the mid to upper
troposphere between radii of approximately 70 km to 180 km, much of it overlapping with
the main outflow layer. This region, together with a much smaller region near the outer
boundary between about 9 and 10 km in height, is associated with the generalized inertial
stability, I2g , being negative. A shallow finger of negative ∆ located just above 2 km height
and extending to nearly 30 km in radius is associated with static instability N2 < 0 and a
shallow (less than 400 m deep) surface based layer of negative ∆ is associated with large
vertical shear where B̄2 > ĀC̄. All of these regions require regularization in order to solve
the Sawyer-Eliassen equation.

Because the region of static instability is so small, the flow therein appears to be little
influenced by the regularization. For this reason I do not examine other methods to regu-
larize the Sawyer-Eliassen equation in such regions. More details about the regularization
of the equation in regions where B̄2 > ĀC̄ are discussed in Section 4.6.

4.5.1 Two regularization schemes

Figures 4.7(c) and 4.7(d) show the balanced radial flow obtained by solving the Sawyer-
Eliassen equation with the forcing terms shown in Figure 4.7(b) using two regularization
schemes. They show also fields of the ratio I2g /N2, which is the same as the ratio C̄/Ā
in Eq. (4.14) and is analogous to the quantity µ2 in Eq. (4.20). In the scheme in Figure
4.7(c), which I refer to as Scheme A, regions of negative I2g (r, z) are removed by adding
|1.001I2g min|. In Figure 4.7(d), a new procedure is adopted in which negative values of
I2g (r, z) are removed by adding the local value |1.001I2g (r, z)|. This procedure, which I
refer to as Scheme B, has the advantage of avoiding artificially sharp gradients of I2g at
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the boundary of the region where ∆ < 0. Even so, the reduction in the magnitude of I2g
generally requires a reduction in the magnitude of B to keep ∆ > 0. In this section, B̄2

is replaced with 0.99ĀC̄ at each grid point where ∆ remains negative after modifying I2g .
Other possibilities are explored in section 4.6.

While both schemes capture the broad features of the secondary overturning circulation,
the flow structure in the upper troposphere shows considerable differences, principally in
the region of regularization and regions adjacent to it. As shown in Section 4.2, a small
inertial stability as in the modified scheme provides for an enhanced response of the radial
velocity component to the forcing, while the larger inertial stability in the original scheme
acts to inhibit the radial flow. Figure 4.6(f) provides a clue to understanding this behaviour.
It shows that there is enhanced radial outflow flow just inside the region of reduced inertial
instability and enhanced radial inflow or reduced outflow below that region. Conversely, if
the inertial stability in the region of regularization is increased in magnitude beyond that
of the surrounding values, there is enhanced radial inflow or reduced outflow above the
boundary of regularization (not shown).

The new regularization scheme appears to reproduce the flow structure in the numerical
model somewhat better than the original scheme, although the layer of inflow just below
the main outflow layer is much too strong. The maximum outflow in the upper troposphere
in the balance solution is 20.2 m s−1 compared with 11.2 m s−1 in the numerical model,
while the maximum upper-level inflow is 10.7 m s−1 compared with only 1.8 m s−1 in
the numerical model. Thus, even with the new procedure for replacing negative values of
I2g (r, z), the regularized balance solution does a relatively poor job in capturing the outflow
and inflow strengths in the numerical model.

4.5.2 The Möller and Shapiro scheme

An alternative regularization scheme, which I refer to as Scheme C, is to set C̄ = B̄2/0.99Ā,
whereupon it is not necessary to change B̄. This scheme was suggested by Möller and
Shapiro (2002). The results of this scheme are shown in Figure 4.7(e). While the radial
flow structure in this figure is closer to that in Figure 4.7(d) than that in Figure 4.7(c),
it is no improvement in relation to the numerical solution in Figure 4.7(a). In this case,
the maximum outflow in the upper troposphere is 20.2 m s−1, the same as before, but the
maximum upper-level inflow is slightly larger, 11.2 m s−1 instead of 10.7 m s−1, making
the agreement with the numerical solution slightly worse.

4.5.3 The issue of forcing overlapping with regions in which ∆ < 0

As indicated in Figure 4.7(b), there is considerable overlap between the total forcing dis-
tribution due to heating and friction and the primary region where the flow is inertially
unstable. Figure 4.3(a) shows that this is a situation where the response to the forcing is
particularly large in amplitude. This finding may explain why the magnitude of upper-
tropospheric inflow and outflow shown in Figure 4.7(e) is overestimated. To examine this
possibility, I show in Figure 4.7(f) the solution to the Sawyer-Eliassen equation analogous
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to that in Figure 4.7(e), but with the forcing function set equal to zero in the upper level
region of non-positive discriminant. While the maximum outflow and maximum inflow
are indeed reduced in comparison with those in Figure 4.7(e), the second layer of outflow
centred at a level of about 8 km has strengthened considerably and this layer is not even
present in the numerical calculation in Figure 4.7(a). This feature is presumably a result
of the artificially large vertical gradient of the forcing on the boundary of the main reg-
ularization region, which is introduced by setting the forcing abruptly to zero inside the
region of regularization.

The inability of the Sawyer-Eliassen calculation to capture quantitatively the upper-
level structure seen in the numerical calculation could be the fact that the flow in the
numerical model is nowhere near axisymmetric at 32 h (not shown). An alternative, but
not necessarily mutually exclusive explanation would be that the inability is simply a
consequence of regularizing the Sawyer-Eliassen equation. Based on the understanding
gained in Section 4.3, this would seem to be the most likely scenario, since the flow in
the lower half of the troposphere is somewhat better captured by the balance calculation,
except in a shallow layer near the surface. The flow in the near-surface layer, which is one
that overlaps also with negative discriminant of the Sawyer-Eliassen equation is examined
in the next section.

Despite the large differences in the structure of inflow and outflow in the middle and
upper troposphere in Figure 4.7(c)-(e) as a result of the different regularization schemes,
there is little difference in the lower troposphere and there are only small differences in
Figure 4.7(f), in which the forcing is suppressed in the region requiring regularization. I
conclude that the boundary layer inflow is at most weakly influenced by the regularization
of regions of inertial instability in the upper troposphere. This is counter to the claim by
Heng et al. (2017) that “... the boundary layer inflow in the balanced response is very
sensitive to the adjustment to inertial stability in the upper troposphere ...”. A more
detailed examination of boundary layer structure is shown in the next section.

4.6 Regularization in regions of large vertical shear

4.6.1 Exploitation of the membrane analogy

The effect of vertical shear enters the Sawyer-Eliassen equation through the second-order
mixed derivative term. In the membrane analogy, one would add the β∂2Z/∂x∂y term to
the left-hand-side of Eq. (4.21),

∂2Z

∂x2
+ β

∂2Z

∂x∂y
+
∂2Z

∂y2
= −F (x, y), (4.21)

Figure 4.8 shows solutions of Eq. (4.21) with different values β. In comparision with
the solution in Figure 4.2(a), which is for the case β = 0, the displacements in Figures
4.8(a) and (b) are stretched along the diagonal from low left to up right. The larger the
coefficient β, the larger the degree of stretching. Figure 4.8(c) shows the solution when
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β = 1.9 in the dot-dashed square and β = 0.5 outside the square. In that square the
displacement has a larger degree of stretching, but as the boundaries are approached the
solution is similar to that in Figure 4.8(b). Figure 4.8(d) shows the case for β = −1. In
this case the stretching is rotated from up left to low right.

(a) (b)

(c) (d)

Figure 4.8: Numerical solution of Eq. (4.21) for the membrane displacement, Z(x, y) (red
contours and shading) subject to a concentrated force F (x, y) at the centre (blue contour
with the value 104), where (a) β = 1, (b) β = 0.5, (c) β = 1.9 inside the dot-dashed square
with β = 0.5 everywhere else and (d) β = −1. Red contours from 0 to 4 in steps of 0.5,
from 4 to 20 in steps of 4 and from 20 to 160 in steps of 20. Shading as shown in the colour
bar.

4.6.2 A more realistic configuration

In regions of large vertical shear, ∆ may become negative on account of B̄2 exceeding ĀC̄.
Typically, such regions occur in a shallow surface-based layer within the friction layer,
itself. As explained in section 4.4, one method for removing the negative discriminant is
to set B̄2 = 1

2
ĀC̄ or, perhaps preferably B̄2 = 0.99ĀC̄ to make ∆ positive, but closer to

zero.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.9: (a) Idealized forcing distribution −F (x, z) used to solve Eq. (4.20) with µ = 0.1
for the streamfunction ψ(x, z) (contours and shading) shown in (b). (c) lateral velocity
component, u = −∂ψ/∂z obtained from ψ(x, z) in (b). (d) the solution for ψ(x, z) when
the value of B̄ is set to −

√
0.99µ in the rectangular region included by a dot-dash pattern;

(e) the corresponding pattern of u = −∂ψ/∂z; (f) the difference in u, du, between (e) and
(c). (g) and (h) are similar to (e) and (f) when the region of B = −

√
0.99µ is smaller and

to the right. Contour intervals for panel(a): from -40 to -10 in steps of 10. For (b), (d):
from 5 to 15 in steps of 5 and from 15 to 45 in steps of 15; For (c), (e),(g): from -100 up
to 100 in steps of 20 and from -500 to 500 in steps of 100. For (f): from -20 to 20 in steps
of 5 and from -100 to 100 in steps of 20. Shading as shown in the colour bar.
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The consequences of redefining B̄ are illustrated in three idealized calculations shown in
Figure 4.9. These calculations involve solutions of Eq. (4.20) with µ2 = 0.01, as in Figure
4.6, and with an idealized surface-based layer of forcing, −F (x, z) shown in Figure 4.9(a).
This forcing distribution is analogous to that involving the vertical gradient of V̇ in Eq.
(4.13). Figure 4.9(b) shows the streamfunction ψ(x, z) induced by the forcing distribution
shown in panel (a).

Figure 4.9(c) shows the radial velocity derived from the streamfunction shown in panel
(b), highlighting the fact that there is inflow in the region of forcing and outflow above it,
but because of the implied strong vertical stability in the value chosen for µ, the maximum
outflow occurs at low levels, just above the layer of forcing.

Figure 4.9(d) shows the streamfunction for a similar calculation to that in panel (b),
but when a term 2B̄∂2ψ/∂x∂z is added to the left-hand-side of Eq. (4.19) in a layer that
has half the depth of the layer of forcing. The constant B̄ is chosen to be equivalent to
setting B̄2 = 0.99ĀC̄ in the Sawyer-Eliassen equation in cases where the vertical shear is
large and would otherwise make the discriminant ∆ negative. Moreover, when taking the
square root, the sign of B̄ should be preserved as it was before regularization.

Comparison of Figure 4.9(d) with Figure 4.9(b) shows that the effect on the stream-
function from the inclusion of the term involving B̄ in Eq. (4.19) is minimal, producing a
slight clockwise rotation of the streamlines in the region of nonzero B̄. Such rotation was
explained in the classic paper by Shapiro and Willoughby (1982): see especially Figure
1 and related discussion. The effect is mainly discernible in the slight elevation of the
streamlines in the inner region (x < 5) and in the slight depression of the streamlines in
the outer region (x > 5).

Figure 4.9(e) shows the lateral component of flow in this case, which should be compared
with Figure 4.9(c). In essence, the “regularization” has reduced both the surface-based
inflow and the outflow above it on the inner side of the forcing and has enhanced both
the inflow and outflow on the outer side of the forcing. These effects are highlighted in
panel (f), which shows the difference between the lateral flow in panels (e) and (c). A
comparison of Figures 4.9(g) and 4.9(h) indicate that the “inflow” on the right side of the
regularization region has been strengthened, which is the situation in the simulation as
discussed in the next subsection.

4.6.3 Comparison between the numerical simulation and the bal-
ance calculation at low levels

Figure 4.10 shows similar fields to those in Figure 4.7, but focusing on the low-level flow
structure in the numerical model simulation and in the calculation of the balanced response
to the total forcing due to heating and friction. Figure 4.10(a) shows the flow structure of
Figure 4.7(a) in the lowest 3 km, while Figure 4.10(b) shows the structure of the forcing
(Figure 4.7(b)) in this region together with the regions where the Sawyer-Eliassen equation
requires regularization. The region where large vertical shear leads to a need for regular-
ization is rather shallow, less than 400 m deep, extending from a radius near 30 km. Based
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: (a),(b) Radius-height cross-sections of three hour time-averaged and
azimuthally-averaged fields from the numerical model simulation at 32 h from surface
to 3 km: (a) tangential velocity component v̄ (black contours, Unit: m s−1), radial ve-
locity component ū (blue dashed contours for negative values and red solid contours for
positive values, Unit: m s−1) and vertical velocity component w̄ (yellow contour with a
value 0.25 m s−1); (b) Forcing term (the right-hand-side of Eq. (4.13)) derived from the
model (contours and shading, contour values every 0.8 units from ±0.2 units to ±5 units.
1 unit = 1× 10−11K m−1 s−1). Shown also are the zero contours of the discriminant (black
solid line). (c), (d), (e) and (f) show tangential velocity component v̄ (black contours,
Unit: m s−1), the radial velocity component ū (blue dashed contours for negative values
and solid black contours for positive values, Unit: m s−1) and vertical velocity component
w̄ (yellow contour with a value 0.25 m s−1) from the solution of this equation using the
four regularization schemes; (c) Scheme B, (d) Scheme D, (e) Scheme A, (f) Scheme C.
Contour intervals are: for v̄, every 5 m s−1 from 0 to 30 m s−1; for ū: every 0.2 m s−1 from
±0.2 to ±1 m s−1 and every 1 m s−1 from ±1 to ±10 m s−1. Shading as shown in the
colour bar.
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on the idealized calculations in Figure 4.9, the effect of the regularization required in this
layer would be expected to be minimal and unlikely to account for the difference in low-
level structure between the numerical solution in Figure 4.10(a) and the balance solution
shown in Figure 4.10(c). (The latter figure shows just the lower 3 km of Figure 4.7(d)).

While the maximum inflow in the numerical solution is 11 m s−1, that in the balance
calculation is just about 8.3 m s−1. Moreover, the radial location of the maximum inflow
occurs at a much smaller radius (41 km) compared with the radius in the balance calculation
(174 km). One possible reason is that the inflow inside the regularization area to the right
side of the momentum forcing maximum has been enhanced, as in Figure 4.9(e). However,
the analysis of the previous subsection suggests that this effect would not be large enough
to explain the large difference between Figure 4.10(c) and Figure 4.10(a).

Figure 4.10(d) shows a similar regularization scheme to scheme A, but in regions of
large baroclinicity, B̄2 is replaced with 0.5ĀC̄. I refer to this as Scheme D. This is the
scheme used by Bui et al. (2009); Smith et al. (2018a) and Smith and Wang (2018). There
are only small differences from the fields shown in panel (c) and these are confined to the
vicinity of the regularization region. From this result it would appear that the flow in
regions of large vertical shear that are common in the lower part of the boundary layer is
less sensitive to the regularization procedure than that in regions of inertial instability.

In support of the conclusion at the end of subsection 4.5.3 that the boundary layer
inflow is at most weakly influenced by the regularization of regions of inertial instability
in the upper troposphere, Figure 4.10(e) and (f) show just the lower 3 km of Figure 4.7(c)
and (e). The boundary layer structures in Figure 4.7(c), (d) and (e) are almost identical
and they even have the same magnitude of maximum inflow (8.3 m s−1) at the same radius
(174 km).

Clearly, the balance solution poorly captures the boundary layer inflow in the numerical
calculation, a finding consistent with the study of Bui et al. (2009) and the more recent
calculations of Montgomery and Persing (2020). The finding is clearly at odds with one
of Heng et al. (2017) who claim that “balanced dynamics can well capture the secondary
circulation in the full-physics model simulation even in the inner-core region in the bound-
ary layer”, but is supported by a scaling analysis of the boundary layer equations, which
shows that the unbalanced (nonlinear) terms are important in the inner-core region of a
tropical cyclone (Vogl and Smith 2009). It is supported also by the finding of Vogl and
Smith (2009) that even a linear (but unbalanced) approximation to the boundary layer
equations is a poor representation of the inner-core boundary layer of a tropical cyclone.

4.7 Discussion

A framework has been developed for exploring the consequences of regularizing the Sawyer-
Eliassen equation to diagnose the streamfunction for the axisymmetric secondary circula-
tion of a tropical cyclone subject to a given distribution of diabatic forcing and tangential
frictional stress. Regularization amounts to adjusting the coefficients of the equation in
regions where the discriminant is negative to ensure that the equation is globally elliptic.
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The possible consequences of regularization have been explored using the analog behaviour
of a stretched membrane subject to a particular force distribution.

Regularization is required in three regions: (1) regions where the flow is inertially un-
stable; (2) regions where it is statically unstable; and (3) regions where the baroclinicity
is large. Regions of large baroclinicity are typically ones of large vertical shear. In nu-
merical models of tropical cyclones, regions of azimuthally-averaged inertial instability are
generally the most extensive, while regions of static instability are typically small in areal
extent. Regions where the azimuthally-averaged baroclinicity is large are typically con-
fined to the lower part of the frictional boundary layer, where the vertical shear is large.
However, setting the inertial stability to be small and positive in regions of inertial in-
stability generally requires the baroclinicity to be reduced in magnitude as well to keep
the discriminant of the Sawyer-Eliassen equation positive. Possible improvements in the
procedure for regularizing in cases (1) and (3) were suggested.

A comparison of the azimuthally-averaged radial flow from a three-dimensional numer-
ical simulation of a tropical cyclone with those from an axisymmetric balance calculation
of the Sawyer-Eliassen equation forced by diabatic and frictional terms from the numerical
simulation was presented. Important findings from this comparison are:

(1) The largest uncertainty in the integrity of the balance solutions results from the
regularization in regions of inertial instability, especially when the diagnosed forcing
overlaps with such regions. In the example shown, where there is some overlap of
this type, the diagnosed balanced flow is sensitive to the particular procedure for
regularization and none of the schemes produced a flow that was structurally and
quantitatively close to that obtained from the numerical solution.

(2) Regularization in regions of large vertical shear that typically occur in the lower part
of the boundary layer is less problematic, even though such regions are ones in which
there is forcing. The reason is that a modification of the coefficient B in the Sawyer-
Eliassen equation leads to a rotation of the streamfunction response, but the degree
of rotation is constrained by the proximity of the lower boundary.

(3) On account of (2), the large difference found between the low-level inflow in the
azimuthally-averaged numerical solution and that in the axisymmetric balance solu-
tion is further indication that balance dynamics is unable to adequately capture the
flow in the boundary layer, contrary to recent claims.

While balance ideas have played a central role in the development of a theoretical frame-
work for understanding tropical cyclone dynamics, the application of such ideas to diagnose
the results of numerical simulations almost always requires that the Sawyer-Eliassen equa-
tion be regularized. Regularization is intrinsically an ad hoc procedure and some methods
may be better than others. Exploitation of the membrane analogy as outlined herein would
seem to offer a useful framework for assessing the integrity of such procedures and their
possible limitations. The analysis suggests, however, that regularization introduces uncer-
tainties in the integrity of balance solutions to a degree that much caution is called for in
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the use of such solutions for “explaining” tropical cyclone structure, especially within and
near the regions which have been regularized.
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Chapter 5

Balance explanation for upper
inflows and its issues

Long ago, Willoughby (1979) presented a scale analysis of the equations of motion for a
tropical cyclone and showed that, with the exception of the frictional boundary layer and
possibly parts of the upper-level outflow, the flow in a tropical cyclone is in approximate
gradient wind balance and hydrostatic balance. With these balance assumptions one can
then develop a prognostic theory for axisymmetric tropical cyclone evolution (e.g. Ooyama
1969; Sundqvist 1970a,b; Emanuel 1989; Schubert and Alworth 1982; Möller and Smith
1994; Smith et al. 2018a; Smith and Wang 2018).

In a subsequent paper, drawing on a previous result of Eliassen (1951), Shapiro and
Willoughby (1982) noted that the response of the secondary circulation to a positive point
source of tangential momentum is radially-outwards through the source, following a nearly
horizontal isentropic surface, and radially-inwards above and below the source (see their
Figure 1). A cyclonic source of azimuthal-mean tangential momentum had been thought
of as a mechanism for enhancing the upper-level outflow in a tropical cyclone (Challa and
Pfeffer 1980 and refs; Molinari and Vollaro 1990 and refs; Montgomery and Farrell 1993),
which would act as a catalyst for inducing the intensification process. The origin of such a
source was attributed to “eddy forcing” resulting from flow asymmetries and/or potential
vorticity anomalies in the upper-level outflow region. It follows that the radially-inward
flow above and below such a tangential momentum source might provide an alternative
explanation for the existence of upper-tropospheric inflow layers as studied here. Such a
possibility needs exploring. Based on the discussion in the last chapter, the explanation of
a balance theory view seems to be problematic.

On the other hand, Most previous solutions of the Sawyer-Eliassen equation have been
obtained using the successive over-relaxation (SOR) method with a coarsened resolution
including those in the aforementioned papers. Recent work by Montgomery and Persing
(2020) raises a new question of whether axisymmetric balance dynamics is robustly mean-
ingful in high resolution simulations of tropical cyclone intensification. By robustly mean-
ingful we mean that a solution actually exists. A particular problem is that, as shown by
Smith et al. (2018a), the evolution of a vortex in a balanced formulation develops regions
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of inertial instability in which the Sawyer-Eliassen equation becomes hyperbolic. In an
attempt to overcome this problem, it is necessary to modify the coefficients of the Sawyer-
Eliassen equation as regularization, which has been discussed in the last Chapter. Even
if a mathematical solution of the regularized Sawyer-Eliassen equation could be shown to
exist, an extensive region of regularization may be a reason for the SOR method to fail,
unless the resolution of the model data in the Sawyer-Eliassen equation are coarsened.

As a first step in verifying the robustness of their findings, this chapter used an indepen-
dent multi-grid solution method for solving the Sawyer-Eliassen equation. The purpose of
this work is threefold: (1) explore whether balance theory can offer an explanation for up-
per tropospheric inflow jets; (2) to explore the sensitivity of the solutions to the particular
method used; and (3) to assess the robustness of conclusions based on the SOR method.
A specific question addressed is whether a convergence solution of the Sawyer-Eliassen
equation for a high-resolution simulation can be obtained using a multi-grid method when
the straightforward SOR method fails.

The main idea of a balance theory explanation for upper tropospheric inflow jets is
presented in Section 5.1. I describe the calculation configuration and review briefly the
SOR method and the more sophisticated multi-grid method in Section 5.2. The results of
various sensitivity calculations are presented in Section 5.3. The conclusions are presented
in Section 5.4.

5.1 On a balance theory explanation for upper tropo-

spheric inflow jets

The foregoing ideas are illustrated in Figure 5.1, which shows in panel (b) the balanced
response to the hypothetical lens of tangential momentum forcing, −V̇ (r, z), in panel (a).
The calculation assumes a tangential wind structure with a maximum of 50 m s−1 at a
radius of 25 km at the surface. The tangential wind decreases sinusoidally with height to an
altitude of 20 km and is zero above 20 km. The structure is indicated by the solid contours
in panel (a). The corresponding balanced distribution of pressure and temperature are
obtained using the unapproximated method of Smith (2006), assuming a latitude of 20oN
and the Dunion moist tropical sounding (Dunion 2011) at some large radius. The Sawyer-
Eliassen equation solved for the streamfunction of the secondary circulation is the most
general form detailed in Chapter 4.

As in the case of a point source of tangential momentum, the secondary circulation
forced by −V̇ (r, z) in Figure 5.1(a) comprises a layer of outflow through the source and
two layers of inflow sandwiching this outflow. The difference in vertical extent and strength
between the upper and lower inflow layers is presumably related, in part, to the differences
in inertial stability, I2 = ξζa, and static stability, N2 = − g

χ
∂χ
∂z

, within or in the vicinity of
these layers.

Figures 5.2(a) and 5.2(b) show the separate diagnosed contributions from generalized
(including eddy terms implicitly) diabatic heating and tangential momentum forcing from
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(a) (b)

Figure 5.1: Axisymmetric balanced solution of an idealized tropical-cyclone-like vortex
to a prescribed tangential momentum forcing in the upper troposphere. (a) contours of
tangential velocity (contour interval 5 m s−1) and upper-level tangential momentum source,
−V̇ (r, z) (shaded, contour interval 0.5 m s−1 per hour) and (b) radial velocity component of
the axisymmetric balanced secondary circulation induced by this forcing (contour interval
m s−1). Shading values indicated on color bar.

60 h, a few hours before the quasi-steady period is reached. The principal feature of the
diabatic heating is a tower of heating inside a radius of about 50 km with two radial tongues
of heating centred at heights of about 13 and 15 km. There are narrow regions of cooling
along the inner eyewall, a shallow finger of cooling just near the tropopause, and some
isolated patches of cooling outside the eyewall. The main regions of momentum forcing
are in the boundary layer and in the developing eyewall. These panels show also regions of
negative I2, in which the flow is inertially unstable, and regions of negative discriminant
of the Sawyer-Eliassen equation (see e.g. [Eq. (4.16)] in Chapter 4.).

Figures 5.2(c) and 5.2(d) show the balanced secondary circulation associated with the
respective heating and momentum forcing in Figures 5.2(a) and 5.2(b), while Figure 5.2(e)
shows the total balanced secondary circulation solution at 60 h and Figure 5.2(f) shows
that in the simulation at the same time. Notably, the secondary circulation associated
with the diabatic heating dominates that associated with the momentum forcing (compare
panels (c) and (d)) and, in particular, accounts for much of the upper-level inflow above
and below the outflow layer (compare panels (c) and (e)) in the balance solution.

Comparison of the balanced secondary circulation with the azimuthally-averaged cir-
culation in the simulation indicates that the mean height of the outflow is too low (12
km compared with 14 km) and the outflow is split at larger radii in the balance solu-
tion. There are strong discrepancies also in the strength and radial extent of the inflow
layer. For example, the inflow below the outflow layer is approximately twice as strong in
the balance solution and the inflow layer above the outflow layer is barely evident. The
boundary layer inflow in the balance solution is significantly weaker than in the simula-
tion (maximum inflow 8.3 m s−1 compared with 24.5 m s−1), but is much deeper in the
inner region, supporting findings of Montgomery and Persing (2020). However, in order to
obtain a convergent solution for the balanced secondary circulation, I needed to coarsen
the interpolated simulation data to 2 km in the radial direction and 500 m in the vertical
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: For comparison, (a, b) show the generalized diabatic heating (K per hour) and
generalized tangential momentum forcing (m s−1 per hour) from the numerical simulation
at 60 h. (c) and (d) show the corresponding balanced secondary circulation associated
the separate heat forcing (a) and momentum forcing (b). (e) shows the total balanced
secondary circulation solution at 60 h and (f) shows that in the simulation at the same
time. All fields in (a, b, f) are azimuthally-averaged and time-averaged for one hour.
Contour interval for diabatic heating and momentum forcing is 0.5 m s−1 per hour (red
contours positive, blue contours negative), for 2 m s−1 when ū > 0, 1 m s−1 when ū < 0.
For w̄ only two contours are shown: 0.25 m s−1 and -0.02 m s−1. Shading values indicated
on colour bar. In panel(a, b), the green contour is that of zero inertial stability, while the
black contour is that of zero discriminant.

direction. The computational domain consists of a cylindrical region 200 km in radius and
20 km in height. Amongst other things, this coarsening shrinks the region in which the
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discriminant of the Sawyer-Eliassen equation is negative (discussed in next section) and
suggests a fundamental limitation of balance dynamics for highly-resolved tropical-cyclone-
like flows. This point is underscored by our cursory application of the balance inversion
at other times. Additional experience suggests that a coarsened solution is typically pos-
sible at 60 h and before. At later times, however, the regions of negative discriminant
become too extensive in the outflow layer and even regularization is inadequate to achieve
a convergent solution.

In summary, the balance secondary circulation broadly reproduces the main features of
the simulated circulation and seems to indicate that the balanced inflow below the upper-
level outflow layer arises from the spatial gradients of the diabatic heating rate. In terms
of the balance model, the inflow is just that required to keep the main vortex in thermal
wind balance in the presence of heat forcing. In other words, this inflow is the response
needed to keep the vortex in balance.

That this overturning circulation broadly captures the main feature of the simulated
flow is, in fact, a consequence of imposing the vertical mass flux associated with the diabatic
heating rate. For this flow regime, the vertical velocity is largely obtained by balancing the
adiabatic cooling with the diabatic heating and hence the vertical velocity is essentially
proportional to the diabatic heating rate. Given the rapidly-rotating environment of the
hurricane and the strongly nonlinear forcing associated with the frictional boundary, there
is no reason to expect the detailed features of the simulation to match those of the balance
calculation.

The inability of the balance calculation to capture the secondary circulation in the
simulation quantitatively is not surprising and consistent with the fact that, as shown in
the next section, there are large regions in the upper troposphere where the gradient wind
balance approximation is nowhere near satisfied. The same can be said about the low-
level inflow layer in the inner core region where the maximum tangential winds are being
generated.

Furthermore, there are large regions in the upper troposphere where the discriminant of
the Sawyer-Eliassen equation for the secondary circulation is negative (the regions enclosed
by black curves in Figures 5.2(a) and 5.2(b)). In that case, to obtain a strictly balanced
solution, one can only invert the Sawyer-Eliassen equation by modifying (or regularizing)
the coefficients in such a way that the equation is rendered elliptic. However, the issues
of regularization described in Chapter 4 has shown that the secondary circulation within
and near these upper-level unstable regions is particularly sensitive to the way in which
the regularization is carried out, especially where the forcing overlaps with these regions.
This sensitivity casts doubt on the reliability of any inferences based on balance ideas. It
is worth noting that the main region where the two fields in Figures 5.2(e) and 5.2(f) show
a significant departure is precisely where the discriminant of the Sawyer-Eliassen equation
is negative.

In light of these considerations, it would appear that a more fundamental framework for
understanding the secondary circulation and the implied tangential wind tendency associ-
ated with it is needed. Returning to Newton’s second law of motion is the recommended
path for improved understanding. In this framework, balance is not an imposed constraint
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on the flow dynamics.

5.2 Sensitivity calculations and methods

5.2.1 Calculation overview

In order to further verify the conjecture of the applicability of the balance solution in the
previous section, four sets of calculations are carried out to compare the balanced solutions
for the streamfunction of the secondary circulation of tropical-cyclone-like flows obtained
using the SOR and multigrid solution methods.

(a)

Figure 5.3: The idealized tropical-cyclone-like vortex to a prescribed diabatic heating rate
in Calc-A. Shown are contours of tangential velocity (black thick contour interval 5 m s−1)
and prescribed diabatic heating, θ̇(r, z) (shaded, contour interval 5 K per hour).

The first set of calculations, referred to as Calc-A, relate to the balanced streamfunction
of an idealized tropical-cyclone-like vortex defined by a specified tangential wind profile,
v(r, z), forced by a specified distribution of diabatic heating rate θ̇(r, z), where

v(r, z) = Vm(
r

rm
)exp[

1

b
(1− (

r

rm
)b)] cos(

πz

2zd
), (5.1)

with b = 0.45, Vm = 60 m s−1, rm = 30 km, zd =18 km, and

θ̇(r, z) = Θ̇ cos(
1

2
π
δr

rw
) cos(

1

2
π
δz

zw
) (|r − rc| < rw)

= 0 elsewhere, (5.2)

with δr = r − rc, δz = z − zc, rc = 30 km, zc = 8 km, rw = 20 km and zw = 8 km. In
these formulae: Vm is the maximum tangential wind speed, which occurs at the surface at
radius rm; rc and zc are the radius and height of the maximum diabatic heating; Θ̇ = 70
K h −1 is the maximum amplitude of the heating rate, rw and zw is the width and half
height of the heating function. The tangential wind decreases sinusoidally with height to
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an altitude of zd =18 km and is set to zero above 18 km. There is no momentum forcing
in these particular calculations. The prescribed structure of tangential wind and diabatic
heating is shown in Figure 5.3.

The set of calculations, Calc-B, relate to the balanced secondary circulation at 60 h of
the simulation. The tangential wind field is azimuthally-averaged and time-averaged for one
hour using 1 minute output data and the corresponding balanced pressure and temperature
distribution are obtained by using the unapproximated method of Smith (2006), assuming
a latitude of 20oN and the Dunion moist tropical sounding (Dunion 2011) at some large
radius. The original horizontal grid spacing is 1 km from the model output and there are
78 vertical levels from 0 km to 25 km. The vertical grid spacing is 100 m in the first 1 km
and 500 m from16 km to 25 km. Between 1 km and 16 km, the vertical grid spacing is
uniformly stretched.

The set of calculations, Calc-C, relate to the balanced secondary circulation of the
vortex structure at 60 h. but with the prescribed diabatic heating rate in Calc-A, while
the set of calculations Calc-D relate to the balanced secondary circulation of the vortex
structure in Calc-A, but with the diabatic heating and momentum forcing at 60 h. The
full set of calculations is summarized in Table 5.1.

Calculation vortex forcing

Calc-A ideal ideal
Calc-B model model
Calc-C model ideal
Calc-D ideal model

Table 5.1: Summary of all calculations

Each set of calculations is performed with the SOR and multi-grid method with different
radial and/or vertical resolution. To meet the special requirements of the multi-grid method
in relation to the number of grid points, the computational domain of each case consists
of a cylindrical region 256 km in radius and 19.2 km in height.

Table 5.2 shows the number of non-elliptic points in Calc-B and Calc-C. It is clear that,
the number of non-elliptic grid points increases with decreasing grid spacing. Figure 5.4
shows that the negative discriminant area is broader at the finest resolution (panel (b)) than
at the coarsest resolution (panel (a)), especially in the upper-troposphere. Furthermore,
the regions of static and symmetric instability are somewhat more extensive in the upper-
troposphere. It is foreseeable that the increase in negative discriminant area in the case of
higher resolution might lead to additional difficulty in solving the Sawyer-Eliassen equation.

5.2.2 Successive Over-Relaxation (SOR) method

On the discrete (r, z) mesh of points, the solver iterates for ψ by linearly marching through
the grid mesh and minimizing the residual R defined by

R = Āδrrψ + 2B̄δrzψ + C̄δzzψ + D̄δrψ + Ēδzψ − Θ̇. (5.3)
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Non-elliptic dz = 600 m dz = 300 m dz = 150 m

dr = 2 km 558 1273 2517
dr = 1km 1119 2559 5064

Table 5.2: Number of non elliptic points in Calc-B and Calc-C for different radial and
vertical grid spacings, dr and dz, respectively.

(a) (b)

Figure 5.4: Sign of the coefficients Ā, C̄ and the discriminant D = (ĀC̄ − B̄2) in the
Sawyer-Eliassen equation (Eq. 4.14) for Calc-B and Calc-C with (a) dr = 2 km, dz = 600
m and (b) dr = 1 km, dz = 150 m.. The quantities Ā and C̄ are proportional to the static
stability and inertial stability, respectively, while the quantity B̄ characterizes, in part, the
strength of the vertical shear of the gradient wind. Ā (zero lines as green), B̄ (zero lines
as black) and D (shaded, blue for negative, red for positive).

Here, the operator δ represents a discrete partial derivative in the direction of the subscript,
with second-order derivatives having subscripts. The streamfunction at iteration step k+1
is obtained from that at step k by successive over-relaxation:

ψk+1 = ψk +
ωRk

2

[
Ā

(∆r)2
+

C̄

(∆z)2

]−1
(5.4)

where Ā, B̄, C̄ and Θ̇ are defined in Eq. 4.14,

D̄ =
∂Ā

∂r
+
∂B̄

∂z
, (5.5)

Ē =
∂B̄

∂r
+
∂C̄

∂z
, (5.6)

and ω = 1.8 is the empirically chosen over-relaxation parameter (generally between 1.0 and
2.0). The iteration is deemed to have converged if the maximum difference in ψ between
two iteration steps is less than 10−8 times the maximum magnitude of the solution at all
interior (r, z) grid points. This criterion follows the suggestion of Adams 1991 in his multi-
grid method. Other technical details of the method can be found in Press et al. (1992)
page 866–870.
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5.2.3 Multi-grid (MG) method

The multi-grid method is an iteration method that has become quite popular and versatile
for solving linear elliptic partial differential equations and even some nonlinear problems
(Adams 1991). Although the method is not an over-relaxation method in the traditional
sense, the method takes advantage of the fact that the residual error damps more quickly
on small scales than larger scales of the grid mesh. The difference in error attenuation
between the small and large scales allows one to cycle between small-scale and large scale
grids in order to accelerate the convergence rate of the solution. Specifically, the fine grid is
used to eliminate the high-frequency oscillation error; the elimination of the low-frequency
oscillation error is accomplished by the coarser grids and the coarse-grid solution is then
projected back onto the fine grid and the cycle is repeated and so on until the residual
decreases to a given error criterion. Because the convergence speed of the low-frequency
oscillation error in the coarse grid is faster than on the original grid, the multi-grid method
is generally much faster than other classical, one-scale, iteration methods, such as SOR,
Gauss-Siedel or Jacobi iteration. The computational efficiency of the multi-grid method is
generally very high because the method scales in proportion to the number of grid points
of the mesh. An excellent tutorial on multi-grid methods and their relation to the classical
one-scale iteration methods is provided by Briggs et al. 2000.

For the continuous elliptic partial differential equation,

l(x) = AX = f (5.7)

Assume G(0) < ... < G(s) < ...G(st) = G is an ascending chain of subgrids terminating in
grid G and

A(s)X(s) = F (s) (5.8)

denote the discretization of Eq. 5.7 on G(s) for each s = 0, 1, ...st. Where G(s − 1) is a
subset of G(s) which includes boundaries, and A is the coefficient matrix. Now we define
a prolongation operator I(s− 1, s) for transferring grid values from a coarser grid G(s− 1)
to a fine grid G(s) and a restriction operator I(s, s− 1) for transferring grid values from a
fine grid G(s) to a coarser grid G(s− 1).

The steps of multigrid solver in this study followed:

• 1. Perform relaxation sweeps on

A(s)X(s) = f(s) (5.9)

• 2. Compute the residual

R(s) = F (s)− A(s)X(s) (5.10)

• 3. Restrict the residual to G(s− 1)

f(s− 1) = I(s, s− 1)R(s) (5.11)
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• 4. Solve

A(s− 1)E(s− 1) = f(s− 1) (5.12)

• 5. Prolong the correction E(s− 1) to G(s) and add to X(s)

X(s) = X(s) + I(s− 1, s)E(s− 1) (5.13)

• 6. Perform more relaxation sweeps on the new

A(s)X(s) = F (s) (5.14)

On step “Solve”, all steps 1-6 can be used for the correction term on G(s− 1).

• 7. Prolong X(s) to G(s+ 1)

X(s+ 1) = I(s, s+ 1)X(s) (5.15)

Repeating all these steps for s = 0, 1, ..., st − 1 lifts the approximation to the finest grid
level. Once the fine grid G(st) is reached, steps 1-6 can be repeated with s = st until the
desired accuracy is achieved. In this study, for keeping robustness, the W-Cycle is used.

In the implementation of the multi-grid method method herein, the same convergence
criterion is employed as for the SOR method discussed above.

5.3 Results

5.3.1 Calculation set Calc-A

This set of twelve calculations Calc-A comprise six using the SOR method and six using
the multi-grid method with a combination of dr = 1 km or 2 km and dz = 150 m, 300 m,
or 600 m. Figures 5.5 and 5.6 show radial and vertical velocity components structure for a
selection of these calculations. The 1 km radial grid spacing corresponds to the spacing in
the model simulation used to generate the data for Calc-B. The panels in the left column
show the solutions using the multi-grid method and the right columns show those using
the SOR method. From these figures, it is seen that the flow in all panels is essentially the
same, confirming the integrity of both solution methods.

The maximum inflow occurs near the surface while the maximum outflow occurs at a
height of about 15 km. The strongest ascent occurs in the region of maximum heating, a
feature to be expected from the study of Shapiro and Willoughby (1982) and Smith et al.
(2018a). As shown in Table 5.3, the maximum inflow for each of the 12 cases differs by
no more than 0.2 m s−1 and the maximum outflow differs by no more than 0.1 m s−1. In
essence, for this idealized case, the multi-grid and SOR methods give essentially the same
results, irrespective of grid spacing.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Axisymmetric balanced solutions for the radial (ū) and vertical (w̄) components
of the secondary circulation in a subset of Calc-A. The calculations differ in the method
of solution (left columns SOR, right columns multigrid) and the radial and vertical grid
spacing (dr, dz): (a) and (b) dr = 2 km, dz = 600 m; (c) and (d) dr = 1 km, dz = 600 m;
(e) and (f) dr = 2 km, dz = 300 m. Contour interval for ū: 2 m s−1 when ū > 0, 1 m s−1

when ū < 0. Positive contours solid, negative contours dashed. Shading values indicated
on color bar. Green thick contours are shown for w̄: 0.25 m s−1 (Only positive values are
shown).

5.3.2 Calculation set Calc-B

We turn now to examine in more depth the solutions for the balanced secondary circulation
in the high-resolution tropical cyclone simulation presented by Chapter 3 forced by the
azimuthally averaged diabatic heating and tangential momentum forcing (including the
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Axisymmetric balanced solutions for the radial (ū) and vertical (w̄) components
of the secondary circulation in a subset of Calc-A. The calculations differ in the method
of solution (left columns SOR, right columns multigrid) and the radial and vertical grid
spacing (dr, dz): (a) and (b) dr = 1 km, dz = 300 m; (c) and (d) dr = 2 km, dz = 150 m;
(e) and (f) dr = 1 km, dz = 150 m. Contour interval for ū: 2 m s−1 when ū > 0, 1 m s−1

when ū < 0. Positive contours solid, negative contours dashed. Shading values indicated
on color bar. Green thick contours are shown for w̄: 0.25 m s−1 (Only positive values are
shown).

eddy terms) diagnosed from the simulation at 60 h. These forcing distributions are shown in
Figures 5.2. Table 5.4 shows that, as the resolution increases, convergence solutions become
harder to obtain. Figure 5.7 compares solutions for the balanced secondary circulation with
different grid resolutions with that obtained from the azimuthally averaged output from
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Calc-A method outflow inflow

dr = 2 km, dz = 600 m SOR | MG 17.6 | 17.6 m/s -6.4 | -6.4 m/s
dr = 1 km, dz = 600 m SOR | MG 17.6 | 17.6 m/s -6.5 | -6.4 m/s
dr = 2 km, dz = 300 m SOR | MG 17.4 | 17.4 m/s -6.4 | -6.4 m/s
dr = 1 km, dz = 300 m SOR | MG 17.5 | 17.5 m/s -6.5 | -6.4 m/s
dr = 2 km, dz = 150 m SOR | MG 17.4 | 17.4 m/s -6.4 | -6.4 m/s
dr = 1 km, dz = 150 m SOR | MG 17.4 | 17.4 m/s -6.5 | -6.4 m/s

Table 5.3: Maximum values of inflow and outflow for each case in Calc-A.

the simulation, itself, at 60 h. Figure 5.7(a) shows the azimuthally-averaged circulation
in the simulation while Figure 5.7(b) shows the corresponding balanced solution obtained
using the SOR method with a radial grid spacing of 2 km and vertical grid spacing of 600
m This choice of grid configuration is coarser than that used for the simulated vortex for
reasons discussed at the beginning of this Chapter.

As noted in Section 5.2, the mean height of the balanced outflow is too low (12 km
compared with 14 km) and the outflow is split at larger radii in the balanced solution.
There are strong discrepancies also in the strength and radial extent of the inflow layers.
For example, the inflow below the outflow layer is approximately twice as strong in the
balanced solution and the inflow layer above the outflow layer is barely evident. The
maximum radial velocity in the upper level outflow in the balance solution is 23.3 m s−1

compared with 20.3 m s−1 in the simulation. The boundary layer inflow in the balance
solution is significantly weaker than in the simulation (maximum inflow 7.5 m s−1 compared
with 24.5 m s−1, a factor of three discrepancy), but is much deeper in the inner region as
found by Montgomery and Persing (2020).

Figure 5.7(c) shows the balance solution using the multi-grid method with the same grid
configuration as in Figure 5.7(b). Comparing Figures 5.7(b) and 5.7(c) it is seen that the
multi-grid solution is almost the same as that obtained with SOR. Indeed, the maximum
upper-level outflow and inflow have comparable values (Table 5.5), but the outflow and
inflow weaken slightly faster with radius with the multi-grid method. Again, the boundary
layer inflow in the balance solution is much weaker than in the numerical simulation,
reflecting the fact that the balance assumption in the boundary layer is poor.

When the vertical grid spacing is halved, the SOR method failed to converge, but a
convergent solution is still possible using the multi-grid method (Figure 5.7(d)). However,
this solution is significantly different in detail from that with the coarser vertical resolution
in Figure 5.7(c). The outflow layer has a stronger maximum and has a more obvious two-
layer structure at large radii. The upper inflow is stronger also and extends to a larger
radius, even exceeding the strength of that in the numerical simulation. Although the
maximum boundary layer inflow is larger also, its strength is still greatly underestimated
relative to that of the simulation. When the vertical grid spacing is halved again to 150
m, neither solution methods converge (Table 5.4).

When the radial grid spacing is reduced to 1 km, the same as in the numerical simulation
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(a)

(b) (c)

(d) (e)

Figure 5.7: Axisymmetric balanced solutions for the radial (ū) and vertical (w̄) components
of the secondary circulation at 60 h in the numerical simulation (panel (a)) and in a subset
of axisymmetric balanced solutions for Calc-B. The fields in panels (a) are azimuthally-
averaged and time-averaged for one hour using 1 min output. (b) SOR and (c) multi-grid
with dr = 2 km, dz = 600 m. (e) multi-grid with dr = 2 km, dz = 300 m; (f) multi-grid
with dr = 1 km, dz = 600 m. Contour interval for 2 m s−1 when ū > 0, 1 m s−1 when
ū < 0. Positive contours solid, negative contours dashed. Shading values indicated on
color bar. Only two thick contours are shown for w̄. For w̄ > 0, 0.25 m s−1 (green, solid);
for w̄ < 0, -0.02 m s−1 (green, dashed). Shading values indicated on colour bar.

(Figure 5.7(e)), a convergent solution is possible only using the multi-grid method and only
then using the coarsest vertical grid spacing of 600 m. The solution in this case is virtually
indistinguishable from that in Figure 5.7(c). These findings support that of Chapter 4,
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Section 5.1 and Montgomery and Persing (2020) indicating that the balance solution has
intrinsic limitations in diagnosing the secondary circulation of the numerical simulation.

Calc-B SOR MG

dr = 2 km, dz = 600 m solvable solvable
dr = 2 km, dz = 300 m unsolvable solvable
dr = 2 km, dz = 150 m unsolvable unsolvable
dr = 1 km, dz = 600 m unsolvable solvable
dr = 1 km, dz = 300 m unsolvable unsolvable
dr = 1 km, dz = 150 m unsolvable unsolvable

Table 5.4: Summary of SOR and multi-grid performance for Calc-B.

Table. 5.5 shows maximum values of inflows and outflow for each case in Calc-B. Al-
though the extreme values of the outflow jets seem to be comparable at a coarser resolution,
as the resolution increases, the difference increases rapidly, even doubled. For upper inflow
jets, its intensity at higher resolution is even tripled compared to the simulation. And
boundary inflows also have no comparability.

Calc-B outflow upper-inflow inflow

Simulation 20.3 m/s -4.9 m/s -24.5 m/s
SOR, 2 km, 600 m 23.3 m/s -10.2 m/s -7.5 m/s
MG, 2 km, 600 m 22.8 m/s -9.7 m/s -7.5 m/s
MG, 2 km, 300 m 38.9 m/s -14.8 m/s -9.2 m/s
MG, 1 km, 600 m 22.8 m/s -9.7 m/s -7.5 m/s

Table 5.5: Maximum values of inflow and outflow for each case in Calc-B.

Table 5.6 shows the root mean square error between the radial velocity in the model
simulation and that in two of the balance solutions in Calc-B. The root mean square error
(RMSE) is defined as

RMSE =

√√√√ 1

n

n∑
i=0

(ei)2, (5.16)

where n is the number of sample points, ei is the difference between the model simulation
and balance solution. The two balance solutions are those obtained using the SOR method
and multi-grid method with a radial grid spacing of 2 km and a vertical grid spacing of
600 m shown in Figures 5.7(b) and 5.7(c). In each calculation there are 3333 grid points,
470 inside the regularization region and 2863 outside. For the SOR calculation, the RMSE
is 3.1 m s−1 over the whole domain, 6.3 m s−1 inside the regularization region and 2.1 m
s−1 outside the regularization region. Since the mean radial velocity over the domain in
the simulation is only 0.7 m s−1, the agreement between the balance calculation and the
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simulation is rather poor. The RMSEs for the multi-grid calculation are only marginally
better than those for the SOR calculation, showing again that the balance calculation is
rather poor for diagnosing the secondary circulation of the numerical simulation, especially
in the region of regularization.

Calc-B/600m-2km SOR MG

Whole domain 3.1 m/s 3.0 m/s
Inside regularization region 6.3 m/s 6.0 m/s

Outside regularization region 2.1 m/s 2.1 m/s

Table 5.6: Point-by-point Root Mean Square Error between the radial velocity in the
numerical simulation at 60 hours and that in two balance calculations of the set Calc-B,
those shown in Figures 5.7(b) and 5.7(c).

5.3.3 Calculation set Calc-C

In an effort to pinpoint the reasons for the failure of the SOR and multi-grid methods to
converge for lower grid spacings in calculation set Calc-B, we turn first to a set of calcu-
lations with the same vortex structure in Calc-B, but with the idealized forcing used in
Calc-A. The tangential wind structure and prescribed diabatic heating rate used in Calc-C
are shown in Figure 5.8(a). As in Calc-B, there are regions where the discriminant of the
Sawyer-Eliassen equation is negative (Figure 5.4) and the equation requires regularization.
Even though the diabatic heating rate in these calculations has a regular shape, the sec-
ondary circulation has more structure than in Figures 5.5 and Figures 5.6 with an inflow
layer beneath the upper-level outflow. And the maximum values of inflows and outflow for
each case are shown in Table 5.7

The two solutions with the same grid spacing are similar with two local maxima in
the upper-level outflow (Figure 5.8(b,c)). However, the multi-grid solution with the same
radial grid spacing, but a vertical grid spacing of 300 m has three local maxima within the
outflow layer and a much stronger upper level inflow (Figure 5.8(d)). As in Calc-B and
as detailed in Table 5.7, the SOR method does not converge with a 300 m vertical grid
spacing and neither solution method converges with a 150 m vertical grid spacing.

When the radial grid spacing is reduced to 1 km, it is only possible to obtain a solution
with the multi-grid method and only then with a vertical grid spacing of 600 m. This
solution, which is shown in Figure 5.8(e), is virtually the same as the solution with a 2 km
radial grid spacing in Figure 5.8(b).

These results suggest that the solution is less sensitive to changes in the radial resolution
than to changes in the vertical resolution, at least where a convergent solution is possible.
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(a)

(b) (c)

(d) (e)

Figure 5.8: Axisymmetric balanced solutions for the radial (ū) and vertical (w̄) components
of the secondary circulation in a subset of Calc-C. For comparison, panel (a) shows the
tangential wind from the numerical simulation at 60 h and a prescribed diabatic heating
rate (K per hour). (b) SOR method, dr = 2 km, dz = 600 m. Panels (c)-(e) use the
multi-grid method with (c) dr = 2 km, dz = 600 m; (d) dr = 2 km, dz = 300 m; (e)
dr = 1 km, dz = 600 m. Contour interval for ū: 2 m s−1 when ū > 0, 1 m s−1 when ū < 0.
Positive contours solid, negative contours dashed. Shading values indicated on color bar.
Green thick contours are shown for w̄: 0.25 m s−1 (Only positive values are shown).

5.3.4 Calculation set Calc-D

The final set of calculations, Calc-D, uses the full diabatic heating and momentum forcing
(including that from the eddies) from the numerical simulation, as in Calc-B, but incor-
porate the idealized vortex structure in Calc-A. The unique feature is that this vortex is
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Calc-C SOR MG

dr=2km, dz=600m solvable solvable
dr=2km, dz=300m unsolvable solvable
dr=2km, dz=150m unsolvable unsolvable
dr=1km, dz=600m unsolvable solvable
dr=1km, dz=300m unsolvable unsolvable
dr=1km, dz=150m unsolvable unsolvable

Table 5.7: Summary of SOR and multi-grid performance for Calc-C.

Calc-C outflow upper-inflow inflow

SOR, 2 km, 600 m 42.8 m/s -12.4 m/s -10.3 m/s
MG, 2 km, 600 m 42.4 m/s -12.2 m/s -10.3 m/s
MG, 2 km, 300 m 53.6 m/s -18.2 m/s -11.5 m/s
MG, 1 km, 600 m 42.5 m/s -12.1 m/s -10.3 m/s

Table 5.8: Maximum values of inflows and outflow for each case in Calc-C.

everywhere symmetrically stable and the Sawyer-Eliassen equation does not require reg-
ularization. The balanced secondary circulation for this set of calculations is shown in
Figures 5.9, 5.10 and 5.11.

The four calculations with 600 m vertical grid spacing and either 1 or 2 km radial grid
spacing in Figure 5.9 show similar structures with a hint of a second outflow maximum
above the main outflow layer. The second outflow maximum is presumably related to the
fine structure of the diabatic heating rate.

With a vertical grid spacing of 300 m, the second outflow feature becomes more marked
using both solution methods (Figure 5.10), while in the finest resolution solutions (Figure
5.11(c) and (d)), the second outflow structure is even more pronounced. Again, the radial
resolution change shows less sensitive as mentioned in the last subsection.

Notably, there is no concentrated inflow layer below the main outflow layer as in Calc-B
and Calc-C. This result indicates that the upper-level inflow layer in Calc-B and Calc-C
is mainly a consequence of the need to regularize the coefficients of the Sawyer-Eliassen
equation in regions of symmetric instability. The implications of this finding are discussed
in the next section.

As shown in Table 5.9, when the resolutions increase, flow extrema increase marginally.
For the case of the same resolution, both two solution methods give essentially the same
results. Most importantly, without the need to regularize the Sawyer-Eliassen equation, a
convergent solution can be obtained using both solution methods.
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(a) (b)

(c) (d)

Figure 5.9: Axisymmetric balanced solutions for the radial (ū) and vertical (w̄) components
of the secondary circulation in a subset of Calc-D (idealized vortex, generalized diabatic
heating (K per hour) and generalized tangential momentum forcing (m s−1 per hour). The
calculations differ in the method of solution (left columns SOR, right columns multigrid)
and the radial and vertical grid spacing (dr, dz): (a) and (b) dr = 2 km, dz = 600 m; (c)
and (d) dr = 1 km, dz = 600 m. Contour interval for ū: 2 m s−1 when ū > 0, 1 m s−1

when ū < 0. Positive contours solid, negative contours dashed. Shading values indicated
on color bar. Green thick contours are shown for w̄: 0.25 m s−1 (Only positive values are
shown).

Calc-D method outflow inflow

dr = 2 km, dz = 600 m SOR | MG 8.8 | 8.8 m/s -5.1 | -5.1 m/s
dr = 1 km, dz = 600 m SOR | MG 8.9 | 8.9 m/s -5.2 | -5.2 m/s
dr = 2 km, dz = 300 m SOR | MG 9.3 | 9.3 m/s -5.5 | -5.5 m/s
dr = 1 km, dz = 300 m SOR | MG 9.4 | 9.3 m/s -5.6 | -5.5 m/s
dr = 2 km, dz = 150 m SOR | MG 9.4 | 9.4 m/s -5.8 | -5.8 m/s
dr = 1 km, dz = 150 m SOR | MG 9.5 | 9.5 m/s -5.9 | -5.9 m/s

Table 5.9: Maximum values of upper-level inflow and outflow for each case in Calc-D.
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(a) (b)

(c) (d)

Figure 5.10: Axisymmetric balanced solutions for the radial (ū) and vertical (w̄) com-
ponents of the secondary circulation in a subset of Calc-D (idealized vortex, generalized
diabatic heating (K per hour) and generalized tangential momentum forcing (m s−1 per
hour). The calculations differ in the method of solution (left columns SOR, right columns
multigrid) and the radial and vertical grid spacing (dr, dz): (a) and (b) dr = 2 km, dz = 300
m; (c) and (d) dr = 1 km, dz = 300 m. Contour interval for ū: 2 m s−1 when ū > 0,
1 m s−1 when ū < 0. Positive contours solid, negative contours dashed. Shading values
indicated on color bar. Green thick contours are shown for w̄: 0.25 m s−1 (Only positive
values are shown).

5.3.5 Summary of the calculations

Taken together, the four sets of calculations described above indicate that the ability to
obtain a convergent solution of the Sawyer-Eliassen equation for the balanced secondary
circulation of a high-resolution simulated tropical cyclone is severely compromised by the
presence of regions where the azimuthal flow is inertially and/or symmetrically unstable.
Such regions are predominantly found in the upper troposphere (see Figure 5.4). By
severely compromised, we mean that it is no longer possible to obtain a convergent solution
at a resolution commensurate with that of the simulation. In these situations, it is possible
to obtain a convergent solution only by coarsening the grid, which serves to shrink the
region of instability. With this coarsening, the solutions obtained by the SOR and multi-
grid methods are essentially the same, but in the calculations carried out here, the multi-
grid method is capable of obtaining a convergent solution with a smaller radial and/or
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(a) (b)

(e) (f)

Figure 5.11: Axisymmetric balanced solutions for the radial (ū) and vertical (w̄) com-
ponents of the secondary circulation in a subset of Calc-D (idealized vortex, generalized
diabatic heating (K per hour) and generalized tangential momentum forcing (m s−1 per
hour). The calculations differ in the method of solution (left columns SOR, right columns
multigrid) and the radial and vertical grid spacing (dr, dz): (a) and (b) dr = 2 km, dz = 150
m; (c) and (d) dr = 1 km, dz = 150 m. Contour interval for ū: 2 m s−1 when ū > 0,
1 m s−1 when ū < 0. Positive contours solid, negative contours dashed. Shading values
indicated on color bar. Green thick contours are shown for w̄: 0.25 m s−1 (Only positive
values are shown).

vertical grid spacing than the SOR method, before it too fails to converge.

Comparison between the two sets of calculations Calc-C and Calc-D suggest that the
inflow layer just beneath the upper-level outflow layer in any balance solution is a con-
sequence of the regularization that is required in Calc-C, but not in Calc-D. Because
regularization is an ad hoc procedure, this result calls for caution in attributing such in-
flow layers to a balanced flow response driven by the distribution of diabatic heating and
tangential momentum forcing.

The subset of calculations Calc-B that converge affirm prior work of Bui et al. (2009),
Abarca and Montgomery (2014) and Montgomery and Persing (2020) in that the boundary
layer inflow in the strict axisymmetric Sawyer-Eliassen balance model is far too weak
(by a factor of about 3) compared to the simulated inflow in the inner-core region of
the vortex. It follows that the Sawyer-Eliassen balance model is unable to represent the
nonlinear boundary layer spin up mechanism that is essential for properly capturing the



74 5. Balance explanation for upper inflows and its issues

intensification of the maximum tangential wind of an intensifying tropical cyclone when
realistic sub grid scale diffusivities are employed consistent with current observational
knowledge. These results are further evidence to refute the claim by Heng et al. 2017, Heng
et al. 2018 that the balance dynamics is sufficient to capture the secondary circulation of
an intensifying tropical cyclone, including the boundary layer.

5.4 Discussion

In this chapter, I investigated a potential balance explanation of upper tropospheric inflow
jets. The result shows the explanation for the inflow layers in terms of axisymmetric bal-
ance dynamics is problematic. I have compared two solution methods, the SOR-method
and a multi-grid method, to solve the Sawyer-Eliassen equation for the balanced secondary
circulation of a tropical cyclone vortex to a particular forcing distribution of diabatic heat-
ing and tangential momentum forcing. These solutions affirm prior findings concerning
the need to coarsen the data from high-resolution numerical simulations in the presence
of inertial or symmetric instability when applied to determine the corresponding balanced
secondary circulation. They show also that the multi-grid method is able to obtain a con-
vergent solution with a finer grid spacing than the SOR method, although it too fails when
the grid spacing is too small. When both methods converge and the vortex is symmetrically
stable, the solutions are broadly similar.

All results suggest that the inflow layer just beneath the upper-level outflow layer in a
balance flow solution of the Sawyer-Eliassen equation corresponding to a typical tropical
cyclone simulation is a consequence of the need to regularize this equation in regions of
inertial and/or symmetric instability. Because regularization is an ad hoc procedure, this
inference calls for caution in attributing such inflow layers to a balanced flow response
driven by the distribution of diabatic heating and tangential momentum forcing. Thus,
an explanation of the upper-level inflow layers that are found in numerical simulations of
tropical cyclones needs to be based on more fundamental considerations than assuming
global thermal wind balance.



Chapter 6

Explanations for upper inflows

At an early stage of my study, a possible explanation for the inflow layers seemed to be
an extension of the result of Shapiro and Willoughby (1982) that, if the tangential flow
is in thermal wind balance, the response of the secondary circulation to a point source of
positive tangential momentum is an outward flow through the source and a compensating
inward flow above and below it. Such an explanation is explored in Chapter 4, where it is
shown to be problematic.

As far as I am aware, a satisfactory explanation for these layers and their possible
significance for the storm, itself, has not been provided. Zhang and Chen (2012) and
Chen and Zhang (2013) drew attention to the inflow layer above the upper-tropospheric
outflow layer, attributing this layer to the detrainment of deep “convective bursts” in the
developing eyewall region. However, these studies fell short of investigating the forces
responsible for the inflow layer (an appraisal of these papers was provided by Smith and
Montgomery 2015).

Referring to the results of Bu et al. (2014) and Fovell et al. (2016), Duran and Molinari
(2019) inferred that cloud-top cooling modifies the circulation near the cloud top, driving a
weak inflow above the cooling maximum and outflow below, along with subsidence within
the region of cooling. However, this is at best a partial explanation because a change in
radial flow requires a net force field in the radial direction, the origin and nature of which
were not discussed.

A recent analysis of the mean and eddy contributions to tropical cyclone spin up in
an idealized, high-resolution, numerical simulation of tropical cyclone intensification by
Montgomery et al. (2020) pointed to an alternative explanation for the upper tropospheric
inflow layers. They suggested that these layers are primarily a result of a negative agradient
force field that develops in the upper troposphere, apparently as a response to the outflow
itself. As their study was focussed largely on the vortex spin up at low levels and in
the eyewall, the vertical resolution of the model was largest in the boundary layer. The
present Chapter focusses on the evolution and three-dimensional structure of the upper
tropospheric inflow layers using a modified version of the model used by Montgomery
et al. (described in Chapter 2) with increased vertical resolution in the upper troposphere
and reduced vertical resolution at low levels. In addition, because it concentrates on the



76 6. Explanations for upper inflows

upper troposphere, the new simulation includes a representation of cloud microphysics,
unlike that of Montgomery et al..

The radial velocity tendency equation is presented in section 6.1. Section 6.2 shows the
radial velocity tendency analysis and offers an explanation of upper inflow layers, while
Section 6.3 shows diagnostics of normalized agradient force, a measure of the degree of
imbalance in the numerical simulation. Section 6.4 shows the azimuth-height structure.
The conclusions are presented in section 6.5.

6.1 The radial velocity tendency equation

As a starting point to understanding the origin of the layers of inflow sandwiching the
upper-level outflow, I carry out an analysis of the azimuthally-averaged radial momentum
equation in the cylindrical coordinate system (r, λ, z), which can be written as the following
form:
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∂ū
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where, for any quantity α, α′ = α − ᾱ denotes a departure from the azimuthal mean, or
eddy component, t is the time, u, v, w are the radial, tangential and vertical components
of velocity. ρ is the density, p is the pressure, f is the Coriolis parameter, ζ is the vertical
component of relative vorticity, and the stress tensors τrr, τλλ and τrz, generalized to
account for anisotropic eddy momentum diffusivities for the subgrid scale motions can be
calculated from:

τrr = 2Km,h

(
∂u

∂r

)
, (6.2)

τλλ = 2Km,h

(
1

r

∂v

∂λ
+
u

r

)
, (6.3)

τrz = Km,v

(
∂w

∂r
+
∂u

∂z

)
. (6.4)

See e.g., Landau and Lifshitz (1966, p51). Here Km,h and Km,v are the horizontal and
vertical diffusivities of horizontal momentum.
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To facilitate interpretation, here choosing this pseudo-Lagrangian form in which the
left-hand-side represents the material acceleration in the radial direction following the
horizontal wind. The reason for this choice is to provide a layer-wise perspective of the
inflow and outflow layers. The individual terms on this side represent: the local tendency
of the mean radial velocity, the mean radial advection of radial momentum per unit mass,
Umr, and the mean horizontal advection of eddy radial momentum per unit mass, Ueh.
The terms on the right-hand-side of the equation are in order: Umv is minus the mean
vertical advection of mean radial momentum per unit mass and Uev is minus the eddy
vertical advection of eddy radial momentum per unit mass; Umagf and Ueagf are the mean
and eddy agradient force per unit mass, respectively; Udh is the mean horizontal diffusive
tendency of radial momentum while Udv is the vertical diffusive tendency.

6.2 Radial velocity tendency analysis

Figure 6.1 shows radius-height cross sections of the mean radial advection of radial momen-
tum per unit mass, Umr (left column), and the mean horizontal advection of eddy radial
momentum per unit mass, Ueh (right column), in the azimuthally-averaged and one-hour
time-averaged radial momentum equation centred at 42 h, 60 h and 74 h. In all Umr fields,
there is a shallow layer of negative values beyond a radius of about 25–35 km and a layer
of positive values within such radius at the surface. For all left panels, the boundary layer
inflow accelerates inwards and then decelerates to the centre. Shallow sloping layers of
alternating positive and negative values of Umr are above the boundary layer inflow. These
layers are generally confined within a radius of about 40 km and a height of about 4 km.
The lowermost layer of positive values coincides with the radii where the inflow is decel-
erated sharply before ascending into the eyewall. This structure becomes more obvious as
the tropical cyclone strength increases by time.

In the upper troposphere, the radial flow accelerates outwards as the air exits the
eyewall. At 42 h (Figure 6.1(a)), the outward acceleration region occurs in a small area at
about 12 km to 15 km in height and 20 km to 60 km in radii. Beyond approximately 60 km
radius, the mean acceleration in the upper troposphere is inwards so that outward flowing
air is being decelerated. At 60 h (Figure 6.1(c)), the outward acceleration area extends to
about 80 km while also down to the middle troposphere. The inward acceleration region is
much stronger than at 42 h, and appears next to the bottom right direction of the outward
acceleration region. A similar, but stronger structure is found at 74 h (Figure 6.1(e)),
because of the complex structure in the root of the upper inflow layer, more detailed
alternating positive and negative values distribution is shown.

The right column of Figure 6.1 shows the mean horizontal advection of eddy radial
momentum per unit mass, Ueh. In general, Ueh is positive inside the eyewall and negative
outside. Particularly at 74 h (Figure 6.1(f)), an extra negative range is sandwiched between
the positive ranges from 1 km to 10 km in height.

Figure 6.2 shows radius-height cross sections of minus the mean vertical advection of
mean radial momentum per unit mass, Umv (left column) and minus the eddy vertical
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(a) (b)

(c) (d)

(e) (f)

Figure 6.1: Radius-height cross sections of the main terms in the azimuthally-averaged
radial momentum equation (Equation 6.1) with two contours of the azimuthally-averaged
radial velocity component, ū, superimposed: (a), (c), (e) the mean radial advection of
radial momentum per unit mass, Umr; (b), (d), (f) the mean horizontal advection of eddy
radial momentum per unit mass, Ueh; at 42 h (top row), 60 h (middle row) and 74 h
(bottom row) . All fields are time-averaged for one hour. Contour interval for terms in the
momentum equation, 2 m s−1 h−1 for values from 0 to ±10 m s−1 h−1 and 10 m s−1 h−1

for values higher in magnitude (red solid contours for positive values, blue dashed contours
for negative value, shading as on colour bar in m s−1 h−1). Contours of ū: solid yellow
contour with black border for 1 m s−1 , dashed yellow contour with black border for -1 m
s−1.

advection of eddy radial momentum per unit mass, Uev (right column) in the azimuthally-
averaged and one-hour time-averaged radial momentum equation centred at 42 h, 60 h
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(a) (b)

(c) (d)

(e) (f)

Figure 6.2: Radius-height cross sections of the main terms in the azimuthally-averaged
radial momentum equation (Equation 6.1) with two contours of the azimuthally-averaged
radial velocity component, ū, superimposed: (a), (c), (e) minus the mean vertical advec-
tion of mean radial momentum per unit mass, Umv; (b), (d), (f) minus the eddy vertical
advection of eddy radial momentum per unit mass, Uev; at 42 h (top row), 60 h (middle
row) and 74 h (bottom row) . All fields are time-averaged for one hour. Contour interval
for terms in the momentum equation, 2 m s−1 h−1 for values from 0 to ±10 m s−1 h−1 and
10 m s−1 h−1 for values higher in magnitude (red solid contours for positive values, blue
dashed contours for negative value, shading as on colour bar in m s−1 h−1). Contours of
ū: solid yellow contour with black border for 1 m s−1 , dashed yellow contour with black
border for -1 m s−1.

and 74 h. The radius-height structure of Umv in the left column of Figure 6.2 shows a
series of layers in which Umv has an alternating sign. At 42 h (Figure 6.2 (a)), there are
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two relatively strong negative value regions at the base of the boundary layer inflow and
the base of the upper-tropospheric outflow. In the lowest layer, Umv < 0, indicating a
contribution to an increase of the radial inflow by the vertical advection of inward radial
momentum from near the surface. The negative Umv which above 8 km represents the
upward transport of mean inward radial momentum from the inflow layer just below the
mean outflow layer.

At 60 h and 74 h (Figure 6.2 (c) and (e)), due to the development of eyewall updraft, the
upward advection of both inward and outward radial momentum become more significantly.
The enhancement of the original negative Umv regions, which already existed at 42 h,
shows a stronger upward transport of inward radial momentum. In the sloping layer above
the boundary layer, Umv > 0, reflecting the mean vertical transport of positive radial
momentum associated with the strong outflow of air just above the boundary layer. The
layer of negative Umv between about 4 and 8 km height is associated with the upward
transport of mean radial inflow in the eyewall updraught from the lower troposphere. The
layered pattern of Umv above about 8 km is consistent also with the layered pattern of
inflow and outflow in the upper troposphere together with that of vertical velocity. The
downward transport of inward radial momentum from the inflow layer just above the mean
outflow layer contributes to the layer of negative tendency at about 15 km. The additional
positive and negative Umv regions at about 7 km to 10 km at 74 h (Figure 6.2 (e)) are
associated with a relative strong local outflow.

Figure 6.2 (b) (d) and (e) show minus the eddy vertical advection of eddy vertical
momentum per unit mass, Uev. The structure of Uev exhibits a series of layers just like
Umv in which Uev has an alternating sign. In the lower troposphere, the Uev field broadly
reinforces that of Umv. In the upper troposphere, there is a degree of cancellation between
Umv and Uev, which implies that the eddies are acting to transport radial momentum
against the mean gradient in this layer, i.e. they are counter-gradient. These features
are consistent with the upper-level pattern of the vertical eddy momentum flux shown in
Persing et al. (2013; Figure 15(e)) and contribute to a strengthening of the primary outflow
layer, itself, as well as the inflow layer below the outflow layer.

Figure 6.3 shows radius-height cross sections of the mean and eddy agradient force
per unit mass, Umagf and Ueagf respectively, in the azimuthally-averaged and one-hour
time-averaged radial momentum equation centred at 42 h (top), 60 h (middle) and 74 h
(bottom). The fields are overlain with the azimuthally- and time-averaged radial velocity.
Panel (a), (c) and (e) show the mean agradient force field, Umagf , which characterizes the
degree of gradient wind imbalance, at 42 h 60 h and 74 h, respectively. Prominent features
of this field at these times include:

• a shallow layer of strong subgradient force (Umagf < 0) beyond a radius of 20 km
near the surface. This layer corresponds with the frictional boundary layer in which
the negative force imbalance drives a strong, surface-based inflow (Figure 3.1);

• a deeper region of supergradient force (Umagf > 0) immediately inside this radius
and extending above the shallow subgradient force region. This force serves to de-
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(c) (d)

(e) (f)

Figure 6.3: Radius-height cross sections of the main terms in the azimuthally-averaged
radial momentum equation (Equation 6.1) with two contours of the azimuthally-averaged
radial velocity component, ū, superimposed: (a), (c), (e) the mean agradient force per
unit mass, Umagf ; (b), (d), (f) the eddy agradient force per unit mass, Ueagf ; at 42 h (top
row), 60 h (middle row) and 74 h (bottom row) . All fields are time-averaged for one hour.
Contour interval for terms in the momentum equation, 2 m s−1 h−1 for values from 0 to
±10 m s−1 h−1 and 10 m s−1 h−1 for values higher in magnitude (red solid contours for
positive values, blue dashed contours for negative value, shading as on colour bar in m s−1

h−1). Contours of ū: solid yellow contour with black border for 1 m s−1 , dashed yellow
contour with black border for -1 m s−1.

celerate the boundary layer inflow and accelerate outflow just above the inflow layer
as the air ascends into the eyewall;
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• a region of subgradient force through the lower troposphere extending to the outer
radius. This force accelerates air inwards towards the eyewall and accounts for the
spin up of the tangential winds above the boundary layer outside the developing
eyewall (radii > 50 km).

• at 60 h (Figure 6.3 (c)) and 74 h (Figure 6.3 (e)), there is a tower of supergradient
force within the outward-sloping eyewall updraught from about 2 km to 15 km in
height. In this region, air with high tangential momentum generated in the boundary-
layer inflow is lofted into the eyewall updraught. This lofting is sufficiently strong
that the sum of the centrifugal and Coriolis forces exceed the inward radial pressure
gradient force per unit mass as air parcels ascend. In turn, the outward force drive
these air parcels outwards as they ascend. At 42 h (Figure 6.3 (a)), this structure
has not yet become established.

.
From about 13 km to 15 km, the region of strong positive Umagf extends to a radius

of about 75 km at 42 h, 100 km at 60 h and 125 km at 74 h. This force is the main
outward force accelerating the upper-level outflow. As air parcels move outwards in this
region while approximately conserving their absolute angular momentum, their tangential
velocity diminishes. Eventually, the inward-directed pressure gradient force present at
this level finally gains the upper hand and the sign of Umagf reverses. This sign change
of Umagf is to be expected since mass continuity requires the outflowing air parcels to
decelerate as the flow spreads out. Invoking Newton’s second law of motion, the only
way that air parcels can decelerate radially is if they experience a negative radial force.
Recall that in fluid flows, the pressure force is determined as part of the solution and is
constrained globally by the boundary conditions on the flow as well as the need to satisfy
mass continuity and Newton’s second law of motion.

An equivalent way to think about the outflow layer is to consider it as an expanding jet
of air emanating from a radial momentum source where the eyewall convection terminates
(Ooyama 1987). The outward expansion is resisted by an induced radially-inward pressure
gradient force (recall that the centrifugal force is always positive and the Coriolis force in
the radial direction is positive as long as the tangential flow remains cyclonic). Because the
induced pressure field extends beyond just the outflow layer itself, one can expect a flow
response laterally beyond the outflow layer as well. In confirmation of this idea, Figure
6.3 (c) shows that Umagf is mostly inward beyond a radius of 100 km (beyond 75 km in
panel (a) and beyond 125 km in panel (e)), not only in the outflow layer, itself, but over
a significant depth above and below it, especially below. Where this inward force persists,
it will act to accelerate air parcels inwards.

The foregoing interpretation appears to be different from that proposed by Komaromi
and Doyle (2017) to explain this inflow above the outflow layer, which they believe “to be
associated with a “reverse” secondary circulation pattern, associated with dry-adiabatic
descent above the eye in the lower stratosphere”. It is unclear whether the “belief” rests
on balance ideas, whether it invokes an unbalanced argument in which descent in the eye
“sucks air inwards” above the tropopause, or whether it is pure speculation.
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From a balance dynamics perspective, the proffered explanation seems unlikely because
the subsiding air on the inside of the eyewall updraught would be explained as a result of
the diabatic heating in the eyewall itself (Schubert et al. 2007). The balance response to
this heating would be limited by the local Rossby scale, which for a fully developed tropical
cyclone vortex in the eyewall is on the order of 60 km (Shapiro and Montgomery 1993).
Therefore, the idea of the upper-level inflow, which extends beyond 300 km at the later
times shown, being a balanced consequence of the diabatic heating in the upper eyewall
cloud seems implausible to me.

From a more general perspective not limited to balance, since the pressure field is
connected globally by the requirement that the mass continuity equation is globally satisfied
and since the vortex is a tightly coupled system through the pressure field, it is clear
that if air is being funneled towards the eye just above the tropopause it must either
ascend or decend in the central region. The high static stability in the stratosphere would
overwhelmingly favour descent into the eye and, from an unapproximated, unbalanced
perspective, according to Newton’s second law, the pressure field would have to adjust to
drive this descent, even though the flow adjustment may take place as a nearly balanced
response. In this view, whether one argues that the eye “sucks air inwards” or that the
flow in the upper inflow layer is driven by the inward agradient force may be a matter of
semantics.

In developing the foregoing interpretation for the emergence and persistence of the
upper-level inflow layers that straddle the main outflow layer, we have noted that the
solution for the upper troposphere region is highly variable in both time and azimuth.
This behaviour is a result of inertia gravity waves that are generated by transient deep
convection. Consequently, the persistence of this underlying forcing structure tends to be
obscured in individual snapshots of the flow and only becomes evident after time averaging
on the scale of an hour or two. The effects of inertia-gravity wave fluctuations in the outflow
upper level outflow and inflow layers as well as the outflow just above where the inflowing
boundary layer inflow terminates are evident as fluctuations in the radial wind component
in Figure 3.1.

The right colmun of Figure 6.3 shows the eddy agradient force field, Ueagf , which
indicates that the asymmetric part of the tangential flow is not in gradient wind balance.
This eddy term contributes to a positive radial acceleration throughout the troposphere
within 100 km radius (about 75 km at 74 h), where it represents an additional centrifuge
effect to that of the mean term Umagf . In particular, Ueagf shows strong positive values
near the surface at radii between approximately 10 and 20 km near where the surface inflow
terminates, reinforcing the deceleration of the boundary layer inflow. The relatively large
values of Ueagf near the axis should not be taken too seriously and are presumably due to
numerical inaccuracy arising from the appreciable numerical discretization error and centre
location error.

Figures 6.4 shows the sub-grid-scale diffusive tendencies of radial momentum, Udh and
Udz, in the azimuthally-averaged and one-hour time-averaged radial momentum equation
centred at 42 h (top), 60 h (middle) and 74 h (bottom). At 42 h, values of both terms are
small. At 60 h and 74 h, the horizontal diffusion of radial momentum (Udh) is relatively
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4: Radius-height cross sections of the main terms in the azimuthally-averaged
radial momentum equation (Equation 6.1) with two contours of the azimuthally-averaged
radial velocity component, ū, superimposed: (a), (c), (e) the mean radial diffusive ten-
dency of radial momentum, Udh; (b), (d), (f) the mean vertical diffusive tendency of radial
momentum, Udv; at 42 h (top row), 60 h (middle row) and 74 h (bottom row) . All fields
are time-averaged for one hour. Contour interval for terms in the momentum equation,
2 m s−1 h−1 for values from 0 to ±10 m s−1 h−1 and 10 m s−1 h−1 for values higher in
magnitude (red solid contours for positive values, blue dashed contours for negative value,
shading as on colour bar in m s−1 h−1). Contours of ū: solid yellow contour with black
border for 1 m s−1 , dashed yellow contour with black border for -1 m s−1.

small except in the region where the radial flow terminates and turns up into the eyewall
and the inner part of the eye wall from about 6 km to 12 km height. The vertical diffusion
of radial momentum (Udh) shows a very shallow layer of strong positive tendency beyond a
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radius of about 20 km, which is a manifestation of surface friction slowing down the inflow.
Above this layer lies a somewhat thicker layer of negative tendency, which is associated
with the vertical diffusion of inward radial momentum through the inflow layer. This
diffusion becomes particularly strong near where the boundary layer inflow terminates.

The essence of the radial momentum budget is encapsulated in Figure 6.5. These
show the sum of the time-averaged and azimuthally- averaged tendencies on each side of
Equation 6.1 at 42 h, 60 h and 74 h. Panels (a) (c) and (e) shows the time-averaged
pseudo-Lagrangian radial acceleration, while panels (b) (d) and (f) show the correspond-
ing time-averaged net radial force leading to this acceleration. At all three times, there
is generally good agreement between the pseudo-radial acceleration and the net forcing
terms, especially in the upper troposphere. These comparisons provide confidence in the
integrity of the calculations. In the lower troposphere, there are a few local discrepancies in
detail between the acceleration and forcing terms. These are presumably associated with
interpolation errors and the like (see Montgomery et al. 2020, section 4.2.1).

6.3 Diagnosis of imbalance

Since the magnitude of Umagf is a measure of the degree of force imbalance in the radial
direction, the fields shown in Figure 6.6 provide a context to assess the accuracy of the
balance theory of tropical cyclones, in general, and thereby its applicability to explaining
the upper-tropospheric inflow jets in particular.

In his review paper on the tropical cyclone inner core, Willoughby (1988) wrote “Al-
though the wind may be supergradient where the boundary-layer inflow decelerates under
the eyewall, the role of the imbalance in the secondary circulation has been exaggerated.
(p186)” More recently, Heng et al. (2017) claimed that: “balanced dynamics can well
capture the secondary circulation in the full-physics model simulation even in the inner-
core region in the boundary layer”. These claims were called into question long ago by
the analysis of a three-dimensional numerical simulation of Hurricane Andrew (1992) by
Zhang et al. (2001), which showed significant imbalances in the boundary layer, just above
it, and through much of the eyewall1.

The simulation by Zhang et al. (2001) had a relatively coarse 6 km horizontal grid
spacing by modern standards, compared with the 1 km used in the present simulations,
and it was performed for a particular storm. In comparison, the idealized calculation
presented here is carried out in a quiescent environment. For these reasons it is of interest
to examine the extent to which Zhang et al.’s findings are generic. As a contribution
to the debate on the accuracy of the balance approximation, as is shown in Figure 6.6
radius-height cross sections of Umagf normalized by the local radial pressure gradient and
expressed as a percentage: Umagf/[(1/ρ̄)(∂p̄/∂r)].

At all times shown (42 h, 60 h and 74 h), much of the upper troposphere shows signifi-
cant force imbalance (magnitude of normalized Umagf approaching 100% supergradient at
the top of the eyewall and exceeding 50% subgradient in much of outer region of outflow).

1These claims have been refuted more recently also by Montgomery and Persing (2020).
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(a) (b)

(c) (d)

(e) (f)

Figure 6.5: Radius-height cross sections of the main terms in the azimuthally-averaged
radial momentum equation (Equation 6.1) with two contours of the azimuthally-averaged
radial velocity component, ū, superimposed: (a), (c), (e) left-hand-side of Equation 6.1;
(b), (d), (f) right-hand-side of Equation 6.1 at 42 h (top row), 60 h (middle row) and 74 h
(bottom row) . All fields are time-averaged for one hour. Contour interval for terms in the
momentum equation, 2 m s−1 h−1 for values from 0 to ±10 m s−1 h−1 and 10 m s−1 h−1

for values higher in magnitude (red solid contours for positive values, blue dashed contours
for negative value, shading as on colour bar in m s−1 h−1). Contours of ū: solid yellow
contour with black border for 1 m s−1 , dashed yellow contour with black border for -1 m
s−1.

At 60 h and 74 h, in the outer part of the frictional boundary layer (beyond about 25
km radius), the force imbalance is as much as 30% subgradient. At smaller radii and low
levels near the base of the eyewall, the normalized imbalance exceeds 40% supergradient.
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(a)

(b) (c)

Figure 6.6: Radius-height cross sections of Umagf normalized by the by radial pressure
gradient force with two contours of the azimuthal mean radial velocity component, ū,
superimposed. Normalized Umagf shaded, solid red contours for positive values, blue
dashed contours for negative values, contour interval 10 % from -100 % to 100 %, shading
as colour bar in %. All fields are azimuthally-averaged and time-averaged for one hour.
Contours of u: solid yellow contour with black border for 1 m s−1 , dashed yellow contour
with black border for -1 m s−1. Shading values on colour bar.

In contrast, much of the low to mid troposphere is balanced to within 10%, especially at
42 h and 60 h. These findings are broadly in line with those of Zhang et al., see Fig. 6d
and related discussion, but they do highlight also a significant degree of relative imbalance
characterized by significant values of normalized Umagf in the upper tropospheric outflow
layer2. One difference is that Zhang et al. did not find inflow layers, perhaps because
the vertical resolution of their simulation was insufficient, or because of the presence of
significant vertical wind shear.

6.4 Azimuth-height structure

Nevertheless, because the explanation given in section 6.2 is presented from an axisymmet-
ric viewpoint, it is appropriate to consider its applicability in light of the low azimuthal
wavenumber asymmetric structure of the inflow layers shown in Figures 3.7 and 3.8. Since

2These results are consistent also with the degree of relative axisymmetric imbalance shown in Schecter
(2019, Fig. 1b).
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the principal asymmetry of the upper tropospheric flow is azimuthal wavenumber one, and
since the argument presented for the existence of the inflow jets invokes a vertical extension
of the pressure field above and below the outflow layer, one might argue that the forcing
of the inflow layers would apply equally to a sector of the upper-tropospheric flow region.
To examine this possibility, as is shown in the left column of Figure 6.7 azimuth-height
cross sections of the mean radial motion in an annular region between radii 50 km to 100
km at 42 h, 60 h and 74 h. At both these times, the mean upper-tropospheric outflow is
more axisymmetric than the mean inflow just below it.

At 42 h, the inflow layer below the outflow layer is concentrated mostly in the sector
going counterclockwise from approximately 30 deg. to the north of east (Figure 6.7 (a)) to
the west (180 deg.) with a maximum value 70 deg. to the north of east. At 60 h, the inflow
layer below the outflow layer is concentrated mostly in the sector going counterclockwise
from approximately south (270 deg. in Figure 6.7 (c)) to the northwest (135 deg.) with
a maximum value 25 deg. to the north of east and a minimum in the southwest (225
deg.). At 74 h (Figure 6.7 (e)), the outflow layer has thickened and developed two local
maxima while the inflow has become more azimuthally confined and the maximum inflow
has rotated counterclockwise to about 15 deg. east of north. At both times, the outflow
is seen to be still ascending, while at 74 h, much of the lower inflow layer overlaps with a
region of subsidence. These features may be seen from the two contours of vertical velocity
in Figure 6.7 (e) with a magnitude of 0.25 m s−1, the contour with the negative value being
dashed.

If the argument is correct that the forcing of the upper inflow layers applies equally to a
sector, then, subject to the caveat at the end of this paragraph, the sector with maximum
inflow should correspond approximately with the sector with maximum outflow. At all
three times in Figure 6.7, the azimuth of maximum inflow below the outflow is close to
that of maximum outflow, the separation distance being about 20 deg. at 42 h and 60 h,
being less than 10 deg. at 74 h. At 74 h, the same is true of the maximum inflow above
the outflow, but at 60 h, the situation is less clear. At this time there are three sectors of
enhanced inflow above the outflow and the strongest inflow maximum (near 180 deg.) lies
far from that of the outflow maximum. Even so, there is a local inflow maximum at about
340 deg., within 20 deg. of the outflow maximum. At 42 h, there is no obvious inflows
above the outflow yet.

Further support for the role of the agradient force in producing the inflow layers is
obtained by examination of the azimuthal variation of the agradient force field as a function
of height. As is shown in the right column of Figure 6.7, the regions of maximum upper-
level inflow coincide on average with regions of maximum inward agradient forcing at these
levels.

Overall, the foregoing findings point to the robustness of the argument that the inward
agradient force is producing the upper-level inflow layers. Even though the occurrence of
inflow above and below the outflow layer does not occur at all values of azimuth, the inter-
pretation for the presence of inflow is based on the existence of an inward agradient force
that either decelerates outflow or accelerates inflow. Thus, one does not necessarily expect
a one-to-one correspondence everywhere between inward acceleration and inflow. Another
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Figure 6.7: Azimuth-height cross sections of (a, c, e) the one hour time-averaged radial
velocity component, < u >, and vertical velocity, < w >, (b, d, f) the one hour time-
averaged agradient force, both averaged over an annulus from r = 50 km to 100 km, at
42 h (top), 60 h (middle) and 74 h (bottom). Contour interval for < u >: 2 m s−1, red
solid contours for positive values, blue dashed contours for negative values, shading values
on colour bar. Contours for < w >: black and yellow solid contour 0.25 m s−1, black and
yellow dashed contour -0.25 m s−1. Black star symbols denote locations of maximum inflow
and outflow in the upper troposphere, the blue star in panel (a) is a local maximum inflow.
The “east” direction corresponds with 0 deg. and azimuth is measured counterclockwise.

complication is the possibility that during vortex evolution, there may be occasional bouts
of moderately deep convection that detrain in particular sectors at a lower level than the
outflow layer, itself.
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Clearly, the asymmetric structure of the upper-tropospheric outflow and inflow layers
is complex, in part, because of the significant internal variability forced by deep convection
as well as the inertia-buoyancy waves, vortex Rossby waves and possibly other instabilities
excited by this convection (e.g., Anthes 1972; Flatau and Stevens 1993; Chen et al. 2003;
Reasor and Montgomery 2015) and it would be simplistic to expect that an argument based
on symmetric reasoning would be correct in all details. However, the interpretations given
above are plausible.

6.5 Discussion

The analyses presented endorse a previous idea of Ooyama (1987) to view the outflow layer
as an expanding jet of air emanating from a radial mass and momentum source where the
eyewall convection terminates. They suggest also a new way to think about the inflow
layers above and below the outflow layer. From an azimuthally-averaged perspective, I
showed that the outflow, itself, is driven near its source primarily by a positive agradient
force in which the centrifugal and Coriolis force in the radial direction is partly opposed by
the radially-inward pressure gradient force. As air parcels move outwards, approximately
conserving their absolute angular momentum, the tangential velocity diminishes as does
the sum of the centrifugal and Coriolis forces. Well beyond the source, the inward-directed
radial pressure gradient force begins to dominate and leads to a deceleration of the outflow.
The inward pressure gradient force extends vertically above and below the outflow layer,
itself, and leads to a flow response on either side of the outflow layer, where it accelerates
air parcels inwards. There is a significant degree of imbalance in the upper troposphere.

The inflow layers adjacent to the upper-level outflow were shown to be more asymmetric
than the outflow layer, itself, having a low azimuthal wavenumber flow asymmetry. Nev-
ertheless, the region of maximum inflow above and below the outflow layer tends to align
with that of maximum outflow, which, in a first approximation, supports the foregoing
interpretation of the inflow layers based on axisymmetric reasoning.

In summary, this work outlines a new framework for examining the outflow and infow
layer dynamics in tropical cyclone vortices. Further work on the asymmetric aspects of
these layers, as well as an understanding of their modification in more complex environ-
ments would be of meteorological and fluid dynamical interest.



Chapter 7

Trajectories

Two unanswered questions about the inflow layer beneath the outflow layer are: where does
this air go and what is the impact on the thermodynamics of the upper tropospheric? In
this chapter I will address these questions by carrying out a series of trajectory calculations
and calculating the variation of pseudo-equivalent potential temperature, θe along these
trajectories.

The chapter is organized as follows. Section 7.1 describes the method for calculating the
trajectories and model output used. Section 7.2 presents the main results the trajectory
calculations, showing a series of sample trajectories (Section 7.2.1) and the statistics of
many trajectories (Section 7.2.2). Section 7.2.1 examines also the variation of pseudo-
equivalent potential temperature along trajectories. Section 7.3 presents a brief discussion
of the relationship of the results to those of a recent study. The discussion is presented in
Section 7.4.

7.1 Method for calculating trajectories

The trajectories are calculated using output data from the model simulation in Chapter 2.
For the present calculations, the output data are interpolated to a new fine grid in a region
800 km square in the horizontal and 20 km in the vertical using bicubic splines. This new
grid has a horizontal grid spacing of 1 km and a vertical grid spacing of 100 m.

The main set of trajectory calculations start at 60 h of model integration. These
calculations are for air parcels located every 2 km, from 60 km radius to 130 km radius
and every 5 degrees in azimuth at the maximum inflow height of 11 km, which is within
the upper inflow layer beneath the outflow layer (see Figure 3.2(d)). In total, there are
2592 trajectories. Here, 60 km is chosen as it is the radius where the azimuthally-averaged
vertical velocity is zero and therefore beyond the eyewall updraught. The 130 km radius
is chosen to encompass the extent of relatively strong inflow, being where the azimuthally-
averaged radial inflow velocity falls below 2 m s−1 in magnitude. The details of other sets
of trajectories will be described where they are discussed.
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The computation of trajectories uses the formula:

~rtn+1 = ~rtn +
1

2
(~Vtn+1 + ~Vtn)∆t, (7.1)

where, ~rtn is the three dimensional position vector of an air parcel at time tn, ~Vtn is the
three dimensional velocity vector at the location of the parcel at this time and ∆t is time
step, here 15 min. A tri-linear interpolation is used to determine ~Vtn when the air parcel
does not lie on a model grid point. If an air parcel moves beyond a radius of 400 km from
the vortex centre or above 20 km in height, the calculation for that air parcel is terminated.

7.2 Results

7.2.1 Sample trajectories

Figure 7.1 shows two sets of eight trajectories, each starting along a radial line from 60
km radius to 130 km radius with a spacing of 10 km and having a duration of 24 h. The
left column of Figure 7.1 shows trajectories of air parcels with initial positions along a
radial line located in the quadrant with a relatively strong inflow component (see Figure
3.6). The three panels (a), (c) and (e) of Figure 7.1 provide different perspectives of the
trajectories. There are two main groups of trajectory in this set.

(1) the air parcels starting at 70, 80 and 110 km radius spiral cyclonically inwards before
entering the eyewall updraught. They ascend in the updraught and move rapidly
outwards in the outflow layer, taking less than 12 h to move more than 250 km in
radius from the vortex centre.

(2) the air parcels starting at 90, 100, 120 and 130 km radius spiral cyclonically inwards
before subsiding beyond the eyewall updraught to a layer between about 8 km and
9 km, where the radial flow is relatively weak. Subsequently, they move slowly
outwards. Even after 24 h, these air parcels remain within a radius of 250 km from
the vortex centre.

Unlike these two types above, the air parcel initialized at 60 km first descends like those
in group (2), but it doesn’t descend as far, remaining above 10 km height. Its subsequent
motion is erratic in both the horizontal and vertical, at one point rising to 12 km altitude.
After about 18 h, this air parcel enters the eyewall updraught, ascending rapidly before
entering the outflow and moving outwards like the air parcels in group (1).

The right column of Figure 7.1 shows trajectories with initial positions along a radial line
located in the quadrant with a relative weak inflow component (see Figure 3.6). Again, the
three panels (b), (d) and (f) of Figure 7.1 provide different perspectives of the trajectories.
As in the previous set of trajectories, the behaviour in this case is not systematic in radius.
The air parcels starting at 70, 90 km and further move outwards at first, but turn inwards
later. Of these, the parcels starting at 70, 90 and 100 km spiral cyclonically downwards
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Figure 7.1: Two sets of eight 24 h trajectories, each starting along a radial line in the inflow
layer below the upper-tropospheric outflow layer at an altitude of 11 km. Trajectories in
the left column lie in the quadrant with a relatively strong inflow, while those in the
right column lie in a quadrant where the inflow is relatively weak. (a), (b) show a three-
dimensional view; (c), (d) show a horizontal plan view; (e), (f) shows a vertical plan view
in the radius-height plane. Initial locations are marked by black circles. Time evolution
indicated in the colour bar.

and outwards, ending up after 24 h in the middle layer. In contrast, the parcels starting at
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Figure 7.2: Variation of pseudo-equivalent potential temperature, θe, along the 16 trajec-
tories in Figure. 7.1 (thin curves) as a function of height, z, and colour coded as a function
of time (indicated on the colour bar). Thick curves show for reference the azimuthally-
averaged profiles of θe at 60 km radius at 60 h (blue) and 84 h (red). Dashed curves show
similar reference profiles at 130 km radius.

110 km and beyond spiral upwards in the eyewall updraught and are carried outwards in
the outflow layer. The remaining air parcels starting at 60 and 80 km both spiral inwards
and downwards at first, but their subsequent tracks differ. The parcel starting at 60 km
slowly spirals outwards to the middle layer, while that starting at 80 km enters a strong
updraught and ends up in the outflow layer. As in the previous set of trajectories, the air
parcels which end up in the outflow layer take less than 12 h to move more than 250 km in
radius from the vortex centre, while those that descend to the middle layer remain within
a radius of 150 km after 24 h.

At this point it is worth noting that, although the data used for the foregoing trajectory
calculations has a relatively high spatial resolution, it was not possible to store the three
dimensional model data more frequently than every 15 minutes. The limitation appears
to be most serious in short segments of trajectories where air parcels ascend rapidly in the
eyewall updraught. In general, it is not likely to have a significant impact on my findings.
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It is clear from the foregoing analysis that, as a result of even low azimuthal wavenumber
variations in vortex structure, there is a complex “stirring” taking place within the middle
and upper levels of the vortex as a result of the inflow layers. In the absence of turbulent
diffusion, this stirring would contribute to a rich structure in the pattern of approximately
materially-conserved quantities such as the pseudo-equivalent potential temperature, θe.
In reality, of course, such a structure might be considerably modified by diffusion. The
effects of stirring and diffusion in a simple barotropic vortex flow are discussed by Meunier
and Villermaux (2003).

To investigate the effects of the turbulent diffusion of heat and moisture on the θe
distribution, I show in Figure. 7.2 the values of θe along the tracks of the 16 air parcels
investigated in Figure 7.1. Shown also are the vertical profiles of azimuthally-averaged
values of θe at 60 km and 130 km radius, the extremes of the initial air parcel locations, at
the initial time (60 h) and final time (84 h) of the trajectory calculations. The profiles at
84 h are shown merely to judge the temporal variation of the profiles, but, of course, air
parcels do not, in general, remain in the annulus between 60 km and 130 km radius. If θe
were approximately materially-conserved, the values of θe along parcel trajectories would
appear as approximately vertical lines in the figure. The fact that this is not the case and
that the values lie mostly within the range of values of the azimuthally-averaged profiles
between 60 km and 130 km radius at 60 h (the thick solid lines in the figure) is strong
evidence that turbulent diffusion of heat and moisture along trajectories is appreciable
in the middle and upper troposphere, Despite the fact that this result is dependent on
the fidelity of the representation of turbulent diffusion in the CM1 model, it would be
reasonable to surmise that the same would be true in the real atmosphere.

The implications of the existence of upper-level inflow layers and the inferred strong
upper-tropospheric mixing for the thermodynamic Carnot model of tropical cyclones (see
Section 1.3) have yet to be determined.

7.2.2 Statistics of trajectories

The results of the previous section highlight the complexity of trajectories, even when the
starting positions are uniformly spaced along a horizontal radial line within the inflow layer.
There must be a stochastic element responsible for this complexity because, for example,
the rapid ascent of air parcels to the outflow layer takes place in strong and localized deep
convective cores, which, themselves, have a stochastic element. Because of this stochastic
element, it is appropriate to analyse the statistics of a large number of air parcels starting
in the inflow layer. To this end, I examine the distribution of end locations after 24 h of
all 2592 trajectories calculated in Section 7.1.

Figure 7.3(a) shows a histogram of the heights of the foregoing end locations. Height
ranges are divided into 100 bins with the same width and the number of end trajectories in
each bin is divided by the number of trajectories (2592) to give a fractional number density
distribution. The solid red curve in this figure represents the cumulative distribution
function. The end trajectories are confined mainly to two layers, one coinciding with the
upper outflow layer and the other in the mid to upper troposphere somewhat below the
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Figure 7.3: Histograms of end locations of all 2592 trajectories initialized in the inflow
layer at 11 km height at 60 h as described in the text. (a, c) show the height distribution
of end locations, (b, d) show the radial distribution of end locations inside a radius of 400
km. Upper panels for 24 h trajectories, lower panels for 60 h trajectories. Bin number is
100 for each panel. Number density is expressed as a proportion of the total number of
trajectories. The red curves show the cumulative number density fraction.

outflow layer. The distribution in the outflow layer is relatively sharp with the peak number
density at an altitude of about 13.5 km. The distribution in the mid to upper troposphere is
rather broader and a maximum number density at about 8.5 km. The cumulative number
density fraction curve shows that air parcels subsiding from the upper inflow layer do not
descend below about 5 km. Thus, they do not reach the frictional boundary layer.

Figure 7.3(b) shows a similar histogram to that in panel (a), but for the end radii of
trajectories after 24 h. There is a peak of number density at about 150 km where most
trajectories end up at this radius. All trajectories end up beyond a radius of 50 km and
the distribution has a considerable radial spread with a peak near 150 km radius and a
long tail with low number density beyond about 180 km radius. About 33 % of trajectories
move out beyond a radius of 400 km, which accounts for the reduction of the maximum
cumulative number density fraction in the histogram. It turns out that trajectories which
descend to the middle layer end within 270 km of the axis and all those that end beyond
this radius ascend to the outflow layer. I have verified this finding by plotting the histogram
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for only air parcels that descend and only air parcels that ascend (not shown).
Figures 7.3(c) and 7.3(d) show similar histograms to those in panels (a) and (b), but

for trajectories of 60 h duration. The major features of the histogram in panel (c) are
essentially the same as those in panel (a). The trajectory end locations shows two separate
bell-shaped distributions, a broader one with smaller peak value centred near an altitude
of 8.5 km and a more peaked one with much larger amplitude near an altitude of 13.8
km. Even the magnitude and spread of these distributions are similar. The intersection
of the cumulative number density curve with the reference line at 11 km altitude is 0.5 in
both panels, indicating that, at both end times, about half of the trajectories ascend into
the outflow and the other half subside. The small differences between the distributions in
panels (a) and (c) provide confidence in the robustness of the distributions.

(a)

(b)

Figure 7.4: A set of 24, 24 h trajectories starting at a height of 8.5 km at a height of 8.5
km. (a) a horizontal plan view; (b)a vertical plan view in the radius-height plane. Initial
locations are marked by black circles. Time evolution indicated in the colour bar.

The histogram in Figure 7.3(d) shows the radius of the end of trajectories at 60 h,
which should be compared with the situation at 24 h in Figures 7.3(b). Three features
stand out: (1) the peak in the distribution has moved outwards in radius from about 140
km to near 200 km; (2) there are fewer end trajectories beyond about 240 km; and (3) the
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maximum cumulative number density has reduced further to about 53 %. The reason for
both (2) and (3) is that the end trajectories at larger radii at 24 h are mostly in the upper
level outflow and by 60 h, these have moved out of the 400 km domain and are no longer
counted. The outward shift in the distribution of end radii is because these trajectories lie
in a region of the mid- to upper troposphere where there is a slow outward drift.

If a significant fraction of air parcels in the inflow layer beneath the outflow descend
and move slowly outwards at levels mostly between 6 band 10 km, the question is raised
where air parcels originally (at 60 h) move to. To answer this question I calculate an
additional set of 24 air parcel trajectories to those described in Section 7.1. The air parcels
are located initially along radial lines at a height of 8.5 km at 60 h. The lines are are every
45 degrees and the air parcels are located at 60, 100 and 140 km radius along these lines.
The trajectories, which have a duration of 24 h, are shown in Figure 7.4. Figure 7.4(a)
shows a horizontal perspectives of the trajectories and Figure 7.4(b) shows a radius-height
perspective.

The majority of these air parcels spiral slowly cyclonically outwards while slowly sub-
siding. They remain within a radius of 200 km from the vortex centre and above 6 km,
even after 24 h. Evidently the overturning circulation in the mid- to upper troposphere
below the inflow layer and outside the eyewall is relatively weak. Only two air parcels,
both initially at 60 km radius, show a different behaviour. They enter a strong updraught
area beyond the eyewall in the first 3 h and are are carried into the upper inflow layer at
a radius of about 110 km. Then, they spiral cyclonically inwards. One of these air parcels
subsequently ascends in the eyewall updraught and moves rapidly outwards in the outflow
layer while the other subsides to about 8 km height.
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Figure 7.5: Histograms of the height of end locations of (a) all 4032 trajectories initialized
in the inflow layer at 12 km height at 74 h described in the text; (b) all 4032 trajectories
initialized in the inflow layer at 11 km height at 74 h described in the text. 12 h trajectories
are shown. Bin number is 100 for each panel. Number density is expressed as a proportion
of the total number of trajectories. The red curves show the cumulative number density
fraction.

In order to judge the representativeness of the above results, histograms of the statistics
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of two sets of trajectories calculations at 74 h are shown in Figure 7.5. Figure 7.5(a) shows
a histogram of the height of end locations of all 4032 trajectories initialized in the inflow
layer at 74 h after 12 h. Those trajectories are calculated for air parcels located every 2
km from 90 km radius to 190 km radius and every 5 degrees in azimuth at a height of of
12 km in the upper inflow layer. Here, 90 km is chosen as it is the radius where, again, the
azimuthally-averaged vertical velocity is zero and therefore beyond the eyewall updraught
(see Figure 3.2(f)). As in Figures 7.3(a) and 7.3(c), the distribution of trajectory end
heights has two peaks, one in the upper outflow layer and the other in the mid to upper
troposphere. The cumulative number density curve at 12 km shows that about 53 %
trajectories subside while 47 % trajectories ascend into the outflow, comparable with the
proportions in Figure 7.3.

Figure 7.5(b) shows a histogram of the end heights of a second set of 1512 trajectories
initialized again in the inflow layer, but at a height of 11 km at 74 h (cf. Figure 3.2(f)).
These trajectories are calculated for air parcels located every 2 km from 80 km radius to
120 km radius and every 5 degrees in azimuth in the bottom of the upper inflow layer of a
height and again end after 12 h. Once more, 80 km is chosen as it is the radius where the
azimuthally-averaged vertical velocity is zero. The 120 km radius is chosen to encompass
the extent of relatively strong inflow, being where the azimuthally-averaged radial inflow
velocity falls below 2 m s−1 in magnitude (see Figure 3.2(f)). It is seen that about 76 %
of these trajectories subside into the mid to upper troposphere and only 24 % ascend in
the eyewall to the outflow layer, presumably because of increased upper level subsidence
at later times as seen in see Figure 3.2(f).

7.3 Relationship to other studies

A much earlier study of trajectories in hurricanes is that of Cram et al. (2007), who
investigated transport and mixing characteristics of a large sample of air parcels within a
high-resolution (2-km horizontal grid spacing) numerical simulation of Hurricane Bonnie
(1998). The main focus of their paper was on the eye, eyewall, and near environment
during the mature stage of this vertically sheared hurricane, but a few back trajectories
were calculated also. These backwards trajectories show that one-fifth of the mass in the
eyewall at a height of 5 km has an origin in the mid- to upper-level environment. In
their Figure 16c, Cram et al. show some trajectories at upper levels outside the eyewall
updraught that descend along a slanted path to middle levels, similar to the air parcels in
Group (2) described in Section 7.2.1.

A more recent paper is that by Cohen and Paldor (2020) entitled “Lagrangian trajec-
tories at (sic) the outflow layer of tropical cyclones”. Whereas my trajectory calculations
are based on a three-dimensional numerical simulation and focus on trajectories that start
within the inflow layer below the outflow layer, Cohen and Paldor consider only trajecto-
ries in the outflow layer within an axi-symmetric configuration. Moreover, they prescribe
the pressure gradient in this layer. In general, one cannot do this, of course, because the
pressure gradient has to produce accelerations and hence velocities that satisfy mass con-
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tinuity. For example, in an incompressible (or anelastic) fluid flow, the pressure field is
determined diagnostically at any instant of time by a Poisson-type equation by the velocity
field in such a way that suitable boundary conditions are satisfied on the flow domain and
mass continuity is ensured. For a field of air parcels moving in a prescribed pressure field,
the mass continuity constraint must, in general, be forfeited. On these grounds, I have
reservations about the results of the Cohen and Paldor study.

7.4 Discussion

Data from an idealized and relatively high resolution three-dimensional numerical simu-
lation have been used to investigate the trajectories of air parcels starting in the upper
tropospheric inflow layer just beneath the outflow layer. I showed that about half of the
inflowing air parcels enter the eyewall updraught where they ascend and are rapidly carried
outwards in the outflow layer, itself. The remaining air parcels subside and drift slowly
outwards in the mid- to upper troposphere where there is a weak overturning circulation.

A histogram of the distribution of 24 h and 60 h end locations of trajectories shows
two peaks in the height, a sharp peak centred at 13.5 km within the upper level outflow
and a broader peak centred at 8.5 km below the inflow layer. The air parcels subsiding
from the inflow layer do not descend below about 5 km. The small differences between the
distributions for 24 h trajectories and 60 h trajectories are an indication of the robustness
of these features.

Calculations of pseudo-equivalent potential temperature along the air parcel trajectories
indicate that this quantity is not materially-conserved, even approximately, indicating that
the turbulent diffusion of heat and moisture along the trajectories is appreciable in the
middle and upper troposphere. Of course, an extension of this result to the real atmosphere
relies on the fidelity of the representation of turbulent diffusion in the CM1 model used for
the simulation. Nevertheless, the strong diffusion of heat and moisture would mitigate the
impact of the inflow layers on the thermodynamics of the upper troposphere compared with
the situation if pseudo-equivalent potential temperature were approximately materially
conserved. The implications of this strong diffusion and of the existence of the inflow
layers, themselves, for the thermodynamical Carnot heat engine model for a mature tropical
cyclone have yet to be determined.

While the data available for the foregoing trajectory calculations has a relatively high
spatial resolution, storage issues restricted the temporal availability of data to 15-minute
intervals. The limitation appeared most serious in short segments of those trajectories
where air parcels ascend rapidly in the eyewall updraught and is unlikely to have a major
impact on my findings.



Chapter 8

Conclusions

Three-dimensional numerical simulations of tropical cyclone intensification with moder-
ately high vertical resolution have been used to analyze the development of a layer of
strong inflow beneath the upper tropospheric outflow layer as well as, in some cases, a
shallower layer of weaker inflow above the outflow layer. The calculations pertain to the
prototype problem for tropical-cyclone intensification, which considers the evolution of a
vortex on an f-plane in a quiescent environment starting from an initially-symmetric, moist,
cloud-free vortex over a warm ocean.

In Chapter 3, the inflow layers adjacent to the upper-level outflow were shown to have
a role in modifying the vortex structure in the upper troposphere. The inflow layer above
the outflow layer leads to a spin up of the tangential winds there, thereby extending the
cyclonic circulation of the hurricane vertically. In addition, the inflow acts to resist the
radial spread of air with high equivalent potential temperature at this level. The inflow
layer below the outflow layer leads also to a spin up of the cyclonic tangential winds
in the inflow layer and would appear to contribute to an increase of the radial gradient
of equivalent potential temperature at the outer edge of the eyewall. The inflow layers
adjacent to the upper-level outflow were shown to be more asymmetric than the outflow
layer, itself, having a low azimuthal wavenumber flow asymmetry.

Chapter 4 developed a framework for exploring the consequences of regularizing the
Sawyer-Eliassen equation to diagnose the streamfunction for the axisymmetric secondary
circulation of a tropical cyclone subject to a given distribution of diabatic forcing and
tangential frictional stress. Regularization amounts to adjusting the coefficients of the
equation in regions where the discriminant is negative to ensure that the equation is globally
elliptic. The possible consequences of regularization have been explored using the analog
behaviour of a stretched membrane subject to a particular force distribution.

Regularization is required in three regions: (1) regions where the flow is inertially un-
stable; (2) regions where it is statically unstable; and (3) regions where the baroclinicity
is large. Regions of large baroclinicity are typically ones of large vertical shear. In nu-
merical models of tropical cyclones, regions of azimuthally-averaged inertial instability are
generally the most extensive, while regions of static instability are typically small in areal
extent. Regions where the azimuthally-averaged baroclinicity is large are typically con-
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fined to the lower part of the frictional boundary layer, where the vertical shear is large.
However, setting the inertial stability to be small and positive in regions of inertial in-
stability generally requires the baroclinicity to be reduced in magnitude as well to keep
the discriminant of the Sawyer-Eliassen equation positive. Possible improvements in the
procedure for regularizing in cases (1) and (3) were suggested.

A comparison of the azimuthally-averaged radial flow from a three-dimensional numer-
ical simulation of a tropical cyclone with those from an axisymmetric balance calculation
of the Sawyer-Eliassen equation forced by diabatic and frictional terms from the numerical
simulation was presented. Important findings from this comparison are:

(1) The largest uncertainty in the integrity of the balance solutions results from the
regularization in regions of inertial instability, especially when the diagnosed forcing
overlaps with such regions. In the example shown, where there is some overlap of
this type, the diagnosed balanced flow is sensitive to the particular procedure for
regularization and none of the schemes produced a flow that was structurally and
quantitatively close to that obtained from the numerical solution.

(2) Regularization in regions of large vertical shear that typically occur in the lower part
of the boundary layer is less problematic, even though such regions are ones in which
there is forcing. The reason is that a modification of the coefficient B in the Sawyer-
Eliassen equation leads to a rotation of the streamfunction response, but the degree
of rotation is constrained by the proximity of the lower boundary.

(3) On account of (2), the large difference found between the low-level inflow in the
azimuthally-averaged numerical solution and that in the axisymmetric balance solu-
tion is further indication that balance dynamics is unable to adequately capture the
flow in the boundary layer, contrary to recent claims.

While balance ideas have played a central role in the development of a theoretical frame-
work for understanding tropical cyclone dynamics, the application of such ideas to diagnose
the results of numerical simulations almost always requires that the Sawyer-Eliassen equa-
tion be regularized. Regularization is intrinsically an ad hoc procedure and some methods
may be better than others. Exploitation of the membrane analogy as outlined herein would
seem to offer a useful framework for assessing the integrity of such procedures and their
possible limitations. The analysis suggests, however, that regularization introduces uncer-
tainties in the integrity of balance solutions to a degree that much caution is called for in
the use of such solutions for “explaining” tropical cyclone structure, especially within and
near the regions which have been regularized.

In Chapter 5, I investigated a potential balance explanation for upper tropospheric in-
flow jets. The explanation for the inflow layers in terms of axisymmetric balance dynamics
is shown to be problematic. I have compared two solution methods, the SOR-method and
a multi-grid method, to solve the Sawyer-Eliassen equation for the balanced secondary
circulation of a tropical cyclone vortex to a particular forcing distribution of diabatic heat-
ing and tangential momentum forcing. These solutions affirm prior findings concerning
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the need to coarsen the data from high-resolution numerical simulations in the presence
of inertial or symmetric instability when applied to determine the corresponding balanced
secondary circulation. They show also that the multi-grid method is able to obtain a con-
vergent solution with a finer grid spacing than the SOR method, although it too fails when
the grid spacing is too small. When both methods converge and the vortex is symmetrically
stable, the solutions are broadly similar.

The inflow layer just beneath the upper-level outflow layer in a balance flow solution
of the Sawyer-Eliassen equation corresponding to a typical tropical cyclone simulation is a
consequence of the need to regularize this equation in regions of inertial and/or symmetric
instability. Because regularization is an ad hoc procedure, this inference calls for caution
in attributing such inflow layers to a balanced flow response driven by the distribution of
diabatic heating and tangential momentum forcing. Thus, an explanation of the upper-
level inflow layers that are found in numerical simulations of tropical cyclones needs to be
based on more fundamental considerations than assuming global thermal wind balance.

The analyses in Chapter 6 endorse a previous idea of Ooyama (1987) to view the out-
flow layer as an expanding jet of air emanating from a radial mass and momentum source
where the eyewall convection terminates. They suggest also a new way to think about
the inflow layers above and below the outflow layer. From an azimuthally-averaged per-
spective, I showed that the outflow, itself, is driven near its source primarily by a positive
agradient force in which the sum of the centrifugal and Coriolis force in the radial direc-
tion is partly opposed by the radially-inward pressure gradient force. As air parcels move
outwards, approximately conserving their absolute angular momentum, the tangential ve-
locity diminishes as does the sum of the centrifugal and Coriolis forces. Well beyond the
source, the inward-directed radial pressure gradient force begins to dominate and leads to
a deceleration of the outflow. The inward pressure gradient force extends vertically above
and below the outflow layer, itself, and leads to a flow response on either side of the outflow
layer, where it accelerates air parcels inwards. There is a significant degree of imbalance
in the upper troposphere.

The inflow layers adjacent to the upper-level outflow were shown to be more asymmetric
than the outflow layer, itself, having a low azimuthal wavenumber flow asymmetry. Nev-
ertheless, the region of maximum inflow above and below the outflow layer tends to align
with that of maximum outflow, which, to a first approximation, supports the foregoing
interpretation of the inflow layers based on axisymmetric reasoning.

In summary, this part of the work outlines a new framework for examining the outflow
and inflow layer dynamics in tropical cyclone vortices. Further work on the asymmetric
aspects of these layers, as well as an understanding of their modification in more complex
environments would be of meteorological and fluid dynamical interest.

Chapter 7 investigated the trajectories of air parcels starting in the upper tropospheric
inflow layer just beneath the outflow layer. I showed that about half of the inflowing air
parcels enter the eyewall updraught where they ascend and are rapidly carried outwards
in the outflow layer, itself. The remaining air parcels subside and drift slowly outwards in
the mid- to upper troposphere where there is a weak overturning circulation.

A histogram of the distribution of 24 h and 60 h end locations of trajectories shows
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two peaks in the height, a sharp peak centred at 13.5 km within the upper level outflow
and a broader peak centred at 8.5 km below the inflow layer. The air parcels subsiding
from the inflow layer do not descend below about 5 km. The small differences between the
distributions for 24 h trajectories and 60 h trajectories are an indication of the robustness
of these features.

Calculations of pseudo-equivalent potential temperature along the air parcel trajectories
indicate that this quantity is not materially-conserved, even approximately, indicating that
the turbulent diffusion of heat and moisture along the trajectories is appreciable in the
middle and upper troposphere. Of course, an extension of this result to the real atmosphere
relies on the fidelity of the representation of turbulent diffusion in the CM1 model used for
the simulation. Nevertheless, the strong diffusion of heat and moisture would mitigate the
impact of the inflow layers on the thermodynamics of the upper troposphere compared with
the situation if pseudo-equivalent potential temperature were approximately materially
conserved. The implications of this strong diffusion and of the existence of the inflow
layers, themselves, for the thermodynamical Carnot heat engine model for a mature tropical
cyclone have yet to be determined.

While the data available for the foregoing trajectory calculations has a relatively high
spatial resolution, storage issues restricted the temporal availability of data to 15-minute
intervals. The limitation appeared most serious in short segments of those trajectories
where air parcels ascend rapidly in the eyewall updraught and is unlikely to have a major
impact on my findings.
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List of acronyms

ARPS Advanced Regional Prediction System
CM1 Cloud Model 1 (of George Bryan)
JMA Japan Meteorological Agency
JTWC Joint Typhoon Warning Center
MG Multi-Grid
MM5 Pennsylvania State University/

National Center for Atmospheric Research mesoscale model
NASA National Aeronautics and Space Administration
NCAR National Center for Atmospheric Research
NHC National Hurricane Center
RAMS Regional Atmospheric Modeling System
RMSE Root Mean Square Error
SOR Successive Over-Relaxation
WMO World Meteorological Organization
WRF Weather Research and Forecasting model
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List of symbols

The principal symbols are listed in this chapter. Extended symbols formed by adding bars,
brackets, primes or upper and lower indices are not generally listed here, but explained in
the text where they appear.

b Buoyancy
B Baroclinicity
C Sum of centrifugal and Coriolis forces per unit mass
Cp Specific gas constant for dry air at constant pressure
Du, Dv, Tw Optional diffusive tendencies for velocity components (u, v, w)
Ds Optional diffusive tendency, while s represents model scalars (θ, qv, ql, qi)
ei Difference between the model simulation and balance solution
f Coriolis parameter
g Acceleration due to gravity
Ig Generalized inertial stability
I2 Inertial stability squared
Km,h Horizontal diffusivities of horizontal momentum
Km,v Vertical diffusivities of horizontal momentum
Lv Latent heat of freezing
Ls Latent heat of sublimation
Lf Latent heat of freezing
M Absolute angular momentum
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n Number of points
N Static stability
Nu, Nv, Nw Newtonian relaxation for velocity components (u, v, w)
Ns Newtonian relaxation, while s represents model scalars (θ, qv, ql, qi)
p Pressure
p00 Standard reference pressure
PV Potential vorticity
qv Water vapor mixing ratio
ql Mixing ratio of liquid water
qi Mixing ratio of solid water (ice)
q̇cond, q̇dep, q̇frz Phase changes between liquid water, solid water (ice) and water vapor

Q̇θ External tendencies to internal energy, primarily radiative heating/cooling
r Radius
~r Three dimensional position vector
Rd Specific gas constant for dry air
Rv Specific gas constant for water vapor
t Time
T Temperature
Tl Condensation temperature
Tu, Tv, Tw Turbulence tendencies for velocity components (u, v, w)
Ts Turbulence tendency, while s represents model scalars (θ, qv, ql, qi)
u Velocity in the x direction or radial velocity component
v Velocity in the y direction or tangential velocity component
Vl Terminal fall velocity of liquid water
Vi Terminal fall velocity of solid water (ice)

V̇ Tangential momentum source
~V Three dimensional velocity vector
w Velocity in the z direction
WT Cooling/warming effect from hydrometeors
x Horizontal coordinate, eastward distance
y Horizontal coordinate, northward distance
z Vertical coordinate, upward distance
zs Terrain elevation
zt Constant height of the model top
ε Ratio of Rd to Rv

ζ Vertical component of relative vorticity
ζa Vertical component of absolute vorticity
θ Potential temperature
θe Pseudo-equivalent potential temperature
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θρ Density potential temperature

θ̇ Material derivative of the diabatic heating rate
Θi Coefficients of θ′ equation, for i = 1, 2, 3
κ Ratio of Rd to Cp
λ Azimuthal angle
ξ Twice the local absolute angular velocity
π Non-dimensional pressure
Πi Coefficients of π′ equation, for i = 1, 2, 3, 4, 5
ρ Density
σ Terrain-following vertical coordinate
τi,j Stress tensors, for i, j = r, z
χ Inverse of θ
ψ Meridional streamfunction
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momentum processes to tropical cyclone intensification. Quart. Journ. Roy. Meteor. Soc.,
146, 3101–3117.

Montgomery, M. T., and J. Persing, 2020: Does balance dynamics well capture the sec-
ondary circulation and spin-up of a simulated tropical cyclone? J. Atmos. Sci., 78,
75–95.

Montgomery, M. T., J. Persing, and R. K. Smith, 2019: On the hypothesized outflow
control of tropical cyclone intensification. Quart. Journ. Roy. Meteor. Soc., 145, 1309–
1322,.

Montgomery, M. T., and R. K. Smith, 2014: Paradigms for tropical cyclone intensification.
Aust. Met. Ocean. Soc. Journl., 64, 37–66.

Montgomery, M. T., and R. K. Smith, 2017: Recent developments in the fluid dynamics
of tropical cyclones. Annu. Rev. Fluid Mech., 49, 541–574.

Montgomery, M. T., and R. K. Smith, 2018: Comments on: “Revisiting the balanced and
unbalanced aspects of tropical cyclone intensification”. J. Atmos. Sci., 75, 2491–2496.



BIBLIOGRAPHY 115

Montgomery, M. T., and R. K. Smith, 2019: Toward understanding the dynamics of spin
up in Emanuel’s tropical cyclone model. J. Atmos. Sci., 76, 3089–3093.

Nguyen, V. S., R. K. Smith, and M. T. Montgomery, 2008: Tropical-cyclone intensification
and predictability in three dimensions. Quart. Journ. Roy. Meteor. Soc., 134, 563–582.

Ohno, T., and M. Satoh, 2015: On the warm core of a tropical cyclone formed near the
tropopause. J. Atmos. Sci., 72, 551–571.

Ooyama, K. V., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos.
Sci., 26, 3–40.

Ooyama, K. V., 1982: Conceptual evolution of the theory and modeling of the tropical
cyclone. J. Meteor. Soc. Japan, 60, 369–380.

Ooyama, K. V., 1987: Numerical experiments of steady and transient jets with simple
model of the hurricane outflow layer. Preprint, 17th Conf. on Hurricanes and Tropical
Meteorology, Miami, Florida, Amer. Meteor. Soc., 17, 318–320.

Pendergrass, A. G., and H. E. Willoughby, 2009: Diabatically induced secondary flows in
tropical cyclones. Part I. Quasi-steady forcing. Mon. Wea. Rev., 137, 3–40.

Persing, J., M. T. Montgomery, J. McWilliams, and R. K. Smith, 2013: Asymmetric and
axisymmetric dynamics of tropical cyclones. Atmos. Chem. Phys., 13, 12 299–12 341.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992: Numerical
Recipes in C: The art of scientific computing. Cambridge University Press, Cambridge,
England, ISBN-13:978-1107404083, 994pp.

Rappin, E. D., M. C. Morgan, and G. J. Tripoli, 2011: The impact of outflow environment
on tropical cyclone intensification and structure. J. Atmos. Sci., 68, 177–194.

Reasor, P. D., and M. T. Montgomery, 2015: Evaluation of a heuristic model for tropical
cyclone resilience. J. Atmos. Sci., 72, 1765–1782.

Rotunno, R., and K. A. Emanuel, 1987: An air-sea interaction theory for tropical cyclones.
Part II :Evolutionary study using a nonhydrostatic axisymmetric numerical model. J.
Atmos. Sci., 44, 542–561.

Rozoff, C. M., W. H. Schubert, and J. P. Kossin, 2008: Some dynamical aspects of tropical
cyclone concentric eyewalls. Quart. Journ. Roy. Meteor. Soc., 135, 583–593.

Schecter, D. A., 2019: On the instabilities of tropical cyclones generated by cloud resolving
models. Tellus A, 70, 1–30.

Schubert, W. H., and B. T. Alworth, 1982: Evolution of potential vorticity in tropical
cyclones. Quart. Journ. Roy. Meteor. Soc., 39, 1687–1697.



116 BIBLIOGRAPHY

Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development.
J. Atmos. Sci., 39, 1687–1697.

Schubert, W. H., C. J. Slocum, J. L. Vigh, B. D. McNoldy, and J. P. Kossin, 2007: On the
distribution of subsidence in the hurricane eye. Quart. Journ. Roy. Meteor. Soc., 133,
1–20.

Shapiro, L. J., and M. T. Montgomery, 1993: A three-dimensional balance theory for
rapidly-rotating vortices. J. Atmos. Sci., 50, 3322–3335.

Shapiro, L. J., and H. Willoughby, 1982: The response of balanced hurricanes to local
sources of heat and momentum. J. Atmos. Sci., 39, 378–394.

Smith, R. K., 1981: The cyclostrophic adjustment of vortices with application to tropical
cyclone modification. J. Atmos. Sci., 38, 2020–2030.

Smith, R. K., 2006: Accurate determination of a balanced axisymmetric vortex. Tellus A,
58, 98–103.

Smith, R. K., G. Kilroy, and M. T. Montgomery, 2014a: Why do model tropical cyclones
intensify more rapidly at low latitudes? J. Atmos. Sci., 140, 1783–1804.

Smith, R. K., and M. T. Montgomery, 2015: Towards clarity on understanding tropical
cyclone intensification. J. Atmos. Sci., 72, 3020–3031.

Smith, R. K., M. T. Montgomery, and S. A. Braun, 2019: Azimuthally averaged structure
of Hurricane Edouard (2014) just after peak intensity. Quart. Journ. Roy. Meteor. Soc.,
145, 211–216.

Smith, R. K., M. T. Montgomery, and H. Bui, 2018a: Axisymmetric balance dynamics of
tropical cyclone intensification and its breakdown revisited. J. Atmos. Sci., 75, 3169–
3189.

Smith, R. K., M. T. Montgomery, and G. Kilroy, 2018b: The generation of kinetic energy
in tropical cyclones revisited. Quart. Journ. Roy. Meteor. Soc., 144, 2481–2490.

Smith, R. K., M. T. Montgomery, and J. Persing, 2014b: On steady-state tropical cyclones.
Quart. Journ. Roy. Meteor. Soc., 140, 2638–2649.

Smith, R. K., and S. Wang, 2018: Axisymmetric balance dynamics of tropical cyclone
intensification: Diabatic heating versus surface friction. Quart. Journ. Roy. Meteor.
Soc., 144, 2350–2357.

Stern, D. P., J. D. Kepert, G. Bryan, and J. Doyle, 2020: Understanding atypical mid-level
wind speed maxima in hurricane eyewalls. J. Atmos. Sci., 77, early view online.

Sundqvist, H., 1970a: Numerical simulation of the development of tropical cyclones with
a ten-level model. Part I. Tellus, 4, 359–390.



BIBLIOGRAPHY 117

Sundqvist, H., 1970b: Numerical simulation of the development of tropical cyclones with
a ten-level model. Part II. Tellus, 5, 505–510.

Tao, D., K. A. Emanuel, F. Zhang, R. Rotunno, M. M. Bell, and R. G. Nystrom, 2019:
Evaluation of the assumptions in the steady-state tropical cyclone self-stratified outflow
using three-dimensional convection-allowing simulations. J. Atmos. Sci., 76, 2995–3009.

Vogl, S., and R. K. Smith, 2009: Limitations of a linear model for the hurricane boundary
layer. Quart. Journ. Roy. Meteor. Soc., 135, 839–850.

Wang, Y., and H. Wang, 2013: The inner-core size increase of Typhoon Megi (2010) during
its rapid intensification phase. Trop. Cyclone Res. Rev., 2, 65–80.

Willoughby, H. E., 1979: Forced secondary circulations in hurricanes. J. Geophys. Res.,
84, 3173–3183.

Willoughby, H. E., 1988: The dynamics of the tropical cyclone core. Aust. Meteor. Mag.,
36, 183–191.

Willoughby, H. E., 1990: Temporal changes of the primary circulation in tropical cyclones.
J. Atmos. Sci., 47, 242–264.

Wirth, V., 1995: Diabatic heating in an axisymmetric cut-off cyclone and related
stratosphere-troposphere exchange. Quart. Journ. Roy. Meteor. Soc., 121, 127–147.

Wirth, V., and T. J. Dunkerton, 2006: A unified perspective on the dynamics of axisym-
metric hurricanes and monsoons. J. Atmos. Sci., 63, 2529–2547.

Zhang, D.-L., and H. Chen, 2012: Importance of the upper-level warm core in
the rapid intensification of a tropical cyclone. Geophys. Res. Lett., 39, L02 806,
doi:10.1029/2011GL050 578.

Zhang, D.-L., Y. Liu, and M. K. Yau, 2001: A multi-scale numerical study of Hurricane
Andrew (1992). Part IV: Unbalanced flows. Mon. Wea. Rev., 61, 92–107.



118



Acknowledgments

I want to express the depth of my gratitude to Prof. Roger Smith, I am so lucky to have
had you as my supervisor. Your support with a wealth of knowledge is the base of the
thesis. Thanks for teaching me how to think, it will affect my research career forever.

Thanks to Prof. Michael Montgomery for exciting discussions and insightful comments. I
would like to use “adventure” to describe this experience.

Thank you to my colleague and friend Dr. Gerard Kilroy, you help me a lot not only in
work, but also in daily life.

Thanks to Dr. Christian Keil for his help with some translations to German.

I love you, Xinlu Dai, your understanding and encouragement are the bones of my life and
study.

This work has been generously supported by the China Scholarship Council (CSC201708510100).



120



Curriculum Vitae

Shanghong Wang
Faculty of Physics, Ludwig–Maximilians–University
Theresienstr. 37, 80333 Munich

Nationality: Chinese
Date of Birth: Jan.03. 1992
Contact: shanghong.wang@physik.uni-muenchen.de

Education

10/2017 – Now Ph. D. student at the University of Munich (LMU),
Faculty of Physics, Prof. Dr. Roger K. Smith.
Thesis title: Upper-tropospheric Inflow Layers in Tropical Cyclones

09/2014 – 06/2017 M. S. Atmospheric Science,
Chengdu University of Information Technology, China,

09/2010 – 06/2014 B. S. Atmospheric Science,
Chengdu University of Information Technology, China

Publications

• Upper-tropospheric inflow layers in tropical cyclones. Quart. J. Roy. Meteor.
Soc., 146: 3466–3487., 2020, S. Wang, R. K. SMITH and M. T. Montgomery.
https://doi.org/10.1002/qj.3856

• Consequences of regularizing the Sawyer-Eliassen equation in balance models for



122

tropical cyclone behaviour., Quart. J. Roy. Meteor. Soc., 145, 3766–3779., 2019, S.
Wang and R. K. SMITH. https://doi.org/10.1002/qj.3656

• Axisymmetric balance dynamics of tropical cyclone intensification: Diabatic heating
versus surface friction., Quart. J. Roy. Meteor. Soc., 144, 2350-2357., 2018, R. K.
SMITH, and S. Wang. https://doi.org/10.1002/qj.3389

• Solutions of the Eliassen balance equation for inertially and/or symmetrically stable
and unstable vortices. Quart. J. Roy. Meteor. Soc., S. Wang, M. T. MONT-
GOMERY, and R. K. Smith, Revised

• Upper level trajectories in the prototype problem for tropical cyclone intensification.
Quart. J. Roy. Meteor. Soc., S. Wang, and R. K. SMITH, Revised


	Zusammenfassung
	Abstract
	Introduction
	Overview of tropical cyclones
	The primary and secondary circulation
	Upper radial flow structure
	Structure of the thesis

	The numerical model and simulation configuration
	The Cloud Model version 1 (CM1)
	The governing equations of CM1
	Numerics

	Simulation configuration
	Determination of the vortex centre

	Experiment overview
	Vortex evolution
	Azimuthally-averaged vertical structure
	Effects of the inflow layers on storm evolution
	Horizontal structure of outflow and inflow layers
	Summary

	Balance theory
	The Sawyer-Eliassen equation
	The membrane analogy
	A more realistic configuration vis-á-vis the atmosphere
	Methods of regularization
	An idealized 3D numerical simulation of a tropical cyclone
	Two regularization schemes
	The MoellerShapiro2002 scheme
	The issue of forcing overlapping with regions in which < 0

	Regularization in regions of large vertical shear
	Exploitation of the membrane analogy
	A more realistic configuration
	Comparison between the numerical simulation and the balance calculation at low levels

	Discussion

	Balance explanation for upper inflows and its issues
	On a balance theory explanation for upper tropospheric inflow jets
	Sensitivity calculations and methods
	Calculation overview
	Successive Over-Relaxation (SOR) method
	Multi-grid (MG) method

	Results
	Calculation set Calc-A
	Calculation set Calc-B
	Calculation set Calc-C
	Calculation set Calc-D
	Summary of the calculations

	Discussion

	Explanations for upper inflows
	The radial velocity tendency equation
	Radial velocity tendency analysis
	Diagnosis of imbalance
	Azimuth-height structure
	Discussion

	Trajectories
	Method for calculating trajectories
	Results
	Sample trajectories
	Statistics of trajectories

	Relationship to other studies
	Discussion

	Conclusions
	List of acronyms
	List of symbols
	Bibliographie
	Acknowledgments
	Curriculum Vitae

