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Chapter I  Challenges for the pharmaceutical development of 

   protein co-formulations 

I.1 Introduction 

Protein therapeutics have steadily gained importance for the targeted pharmacotherapy of 

severe diseases in the last decades. Until 2019, 79 therapeutic monoclonal antibodies (mAbs), 

which represent one of the most dominant subclasses of protein drugs, have been approved by 

the U.S. Food and Drug Administration (FDA).1 One reason for the advent of protein drugs is 

their high specificity against a single therapeutic target,2 that enables high therapeutic efficacy 

and safety. The specific targeting of a single antigen has proven to be a successful therapeutic 

concept and the combination of multiple antibodies in one drug product to target multiple 

antigens by one medication has gained increasing interest in the last years.  

For small molecule drugs, fixed-dose combinations of drugs have been long established 

and offer at least five possible strategies to improve pharmacotherapy: First, the clinical 

efficacy can be improved by synergistic pharmacodynamic interactions, for example the 

fixed-dose combinations of fluticasone and salmeterol for the treatment of asthma. Second, 

pharmacokinetic interactions can be triggered to improve clinical efficacy, for example in the 

treatment of human immunodeficiency virus (HIV) infections, where anti-retroviral drugs 

such as lopinavir and ritonavir are combined. Third, side effects of single drugs can be 

reduced, for example by combination of ethinylestradiol and levonorgestrel in oral 

contraceptive pills. Fourth, chemotherapeutic resistances in antibiotic treatments can be 

overcome as in fixed-dose combinations of sulbactam and ampicillin. Finally, it is even 

possible to improve the drug delivery to the target, which is clinically applied in the treatment 

of Parkinson’s disease. Fixed-dose combinations of levodopa and benserazid are used to 

reduce the peripheral decarboxylation of levodopa in order to provide the specific transport of 

levodopa across the blood-brain-barrier. Overall, fixed-dose combinations of small molecule 

drugs are frequently applied in the treatment of a wide range of severe diseases such as HIV 

infections, hypertension, diabetes or cancer.  

Despite the high number of available fixed-dose co-formulations containing small 

molecule drugs, and despite the clinical use of binary mixtures of fast-releasing insulins and 

sustained-releasing neutral protamine hagedorn (NPH) insulins,3–5 only a small number of 

fixed-dose combinations of different protein drugs has gained access to the market: In 2015, 

the FDA approved Ryzodeg®, the first co-formulation of two different protein drugs (Insulin 

degludec + insulin aspart). With Xultophy® (insulin degludec + liraglutide) and Soliqua® 
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(insulin glargine + lixisenatide), two additional protein co-formulations were approved by the 

FDA in 2016. Finally, in 2020 the first mAb co-formulations Phesgo® (trastuzumab + 

pertuzumab) and Inmazeb® (atoltivimab + maftivimab + odesivimab) were approved by the 

FDA – 13 years after antibody cocktails were described as the next-generation 

biopharmaceuticals due to their potential to recruit pharmacological effects in combination.6 

This is already indicative for the clinical, regulatory, analytical and technological challenges 

that can arise during the development of protein co-formulations, which have been previously 

reviewed,7,8 and which will be presented in this chapter. First, the medical benefits of protein 

co-formulations will be discussed together with the respective clinical and regulatory 

challenges. Second, the analytical and technological challenges to produce fixed-dose-

combinations of protein therapeutics will be presented. Finally, the objectives of this thesis 

will be derived from the analytical and technological challenges of protein co-formulations. 

I.2 Clinical and regulatory challenges 

Like fixed-dose combinations of small molecule drugs, protein co-formulations can offer 

multiple possibilities to improve pharmacotherapy in different indications, such as the 

synergistic activation of multiple pharmacologic pathways in oncology. A wide range of 

therapeutic mAbs is available in clinical oncology, and several clinical studies evaluated the 

synergistic clinical effects of combined administrations of mAbs based on the targeting of 

multiple signal transduction pathways to impede the activation of alternative growth signal 

pathways.9,10 Some of these mAb combinations improved the clinical therapy significantly, 

such as pertuzumab plus trastuzumab against HER2-positive metastatic breast cancer,11 

nivolumab plus ipilimumab as first-line therapy against advanced renal cell carcinoma,12 and 

atezolizumab plus bevacizumab against hepatocellular carcinoma.13  

Synergistic pharmacological effects of protein combinations have not only been 

demonstrated in oncology, but also in clinical trials for the treatment of infections. For 

example, a phase 1 study has been conducted to assess the safety profile of a co-formulated 

cocktail of three human mAbs, where each mAb targets a different epitope of the viral 

glycoprotein of the Ebola virus.14 In addition, the use of antibody cocktails has been studied to 

achieve a synergistic drug effect for the treatment of COVID-19 through the targeting of 

different viral epitopes and avoidance of the mutational escape of SARS-CoV2.15,16 The FDA 

even issued an emergency authorization in 2020 for a combined administration of casirivimab 

and imdevimab for the treatment of mild to moderate COVID-19.17 
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Moreover, the use of protein combinations in pharmacotherapy is not only limited to mAb 

combinations. First, combinations of mAbs and cytokines improved the clinical outcome in 

the targeted indications, such as bevacizumab plus interferon alpha-2a against metastatic renal 

cell carcinoma,18,19 or natalizumab plus interferon beta-1a against multiple sclerosis.20 

Second, combinations of cytokines were successfully used to improve pharmacotherapy, such 

as interferon alpha-2b and interferon gamma against different types of cancer like non-

melanoma skin cancer or glioblastoma,21–23 or erythropoietin (EPO) plus granulocyte-colony 

stimulating factor (G-CSF) against the myelodysplastic syndrome.24 Also combinations of 

enzymes such as dornase alfa and recombinant tissue plasminogen activator (r-tPa) showed an 

synergistic effect on the treatment of pleural infections, whereas the single components did 

not improve the clinical outcome.25 Finally, combinations of hormone derivates such as 

insulin degludec and liraglutide improved efficacy, safety and tolerability of the therapy 

compared to the application of the single components.26 

Despite the high number of reports on the successful application of combination therapies 

in pharmacotherapy, only a small number of co-formulations of protein drugs were approved 

until 2020 (See I.1). In addition to the synergistic pharmacologic effects, protein co-

formulations could also facilitate pharmacotherapy in both the clinical and ambulant 

environment by a reduced number of intravenous infusions or (subcutaneous) injections for 

the administration of both drugs. This would reduce the workload for healthcare professionals 

in the clinics and improve patient compliance in ambulant pharmacotherapy. The discrepancy 

between the steadily increasing interest for drug combinations in pharmacotherapy and the 

low number of available protein co-formulations can partially be explained with the clinical 

and regulatory requirements.   

First, some protein combinations failed to improve the clinical outcome despite an 

anticipated synergistic pharmacological effect, such as bevacizumab plus cetuximab against 

metastatic colorectal cancer,27 or aflibercept plus rinucumab against neovascular age-related 

macular degeneration.28 Anticipated synergetic pharmacological effects that have been 

reported in pre-clinical studies are not necessarily confirmed in clinical studies on the efficacy 

and safety of the fixed-dose combination, for example due to exceeding side effects compared 

to the monotherapy. This potential risk for the clincial failure of the drug combination has to 

be balanced against the potential benefit of the fixed-dose combination. A critical evaluation 

on the anticipated efficacy and safety of the combination is required before the co-formulation 

development is initiated to avoid expensive project failures in drug product development.  
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Second, compatible pharmacokinetic profiles of the individual drugs are required for a 

fixed-dose combination. Different dosing intervals may exclude each other and impede a co-

formulation of both drugs. For example, a co-formulation of bevacizumab plus interferon α-

2a  against metastatic renal cell carcinoma is not feasible because bevacizumab is 

administered every two weeks, while interferon α-2a is administered three times per week.18 

Furthermore, fixed-dose combinations of biologics are not a rationale development option if 

the drugs have to be titrated individually to achieve the desired clinical effect. A fixed-dose 

combination has to offer a reasonable dosing ratio which is applicable to a high number of 

patients without decreasing the clinical efficacy and safety compared to a flexible co-

administration of the single drug products. This can require additional pharmacokinetic 

studies and also inherits the risk that the fixed-dose combination is only beneficial for a small 

number of patients at the given drug-ratio. The identification of a dosing ratio that fits to a 

large patient population can become challenging based on the differences in the 

pharmacokinetic profile of the individual drugs. Although it has been stated that the fixed-

dosing could be a viable option in oncology due to the wide therapeutic windows and flat 

dose-response curves of the used mAbs,29 many biologicals still require a flexible dosing 

scheme based on body weight or body volume. Further, the co-formulated drugs have to 

maintain their individual pharmacokinetic profile in the mixture to obtain the desired clinical 

effect. For example, the mixing of two different insulin analogues in the same syringe in order 

to reduce the number of injections altered the pharmacokinetic parameters of the individual 

components.30,31 In some cases, changes in the pharmacokinetic profiles can be prevented by a 

rationale co-formulation, such as the combination of insulin degludec and insulin aspart. The 

individual pharmacokinetic profiles were preserved by high concentrations of zinc to avoid 

the formation of mixed hexamers of the individual drugs.32,33 In other cases, small changes of 

pharmacokinetic parameters, such as the reduced maximal plasma concentration of liraglutide 

in combination with insulin degludec,34 do not necessarily compromise the clinical effect and 

can be accepted for the targeted indication. In any case, the pharmacokinetic profile of the co-

formulated drugs has to be compared to the individual components and critically evaluated.   

Third, pharmacoeconomic reasons can impede the development of protein co-formulations. 

While multiple rationale fixed-dose combinations of small molecule drugs have been 

established for decades, the clinical value of some combinations has been critically assessed 

with regard to the additional costs compared to the single drug products.35,36 Therefore, co-

formulations of expensive biological drugs have to present a clear clinical benefit to justify 

both the development costs for the company and the targeted market price for the clinics. 
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Even if co-administrations of biologicals such as atezolizumab and bevacizumab improve the 

clinical outcome,37 the additional clinical benefit has to be evaluated against the medication 

costs compared to alternative reference medications.38 Still, a co-formulation of two active 

biologic drugs can reduce the costs for the clinical treatment compared to the concurrent 

administration of the single drug products and also reduce the costs for logistics and 

distribution of the medication.39 For example, the FDA approved a co-formulation of 

pertuzumab and trastuzumab based on the non-inferior safety and efficacy of the 

subcutaneously administered fixed-dose combination compared to the separate intravenous 

administration of pertuzumab and trastuzumab.40 The ambulant subcutaneous administration 

presents a clear benefit for patients and healthcare professionals that cannot be provided by 

the individual drug products. Moreover, the emerging market of biosimilars will certainly 

decrease the purchasing costs for biological drugs in the future,41 and the ongoing discussion 

on the similarity between originator drugs and biosimilars impedes the change from the 

originator drugs to biosimilars in ongoing clinical treatments.42 Therefore, the clinical trend 

towards the administration of drug combinations becomes interesting for the lifecycle 

management (LCM) of approved biological drugs. Clinical data on the efficacy and safety on 

the use of the respective drugs in combination therapy provide strong arguments to initiate a 

therapy with these drugs compared to competitor products which cannot provide such data. 

Subsequently, the development of a protein co-formulation for an originator drug with a 

second drug can become a viable strategy to provide such combination therapies and secure 

market shares that were established with the originator drug. Although the pharmaceutical 

development of such protein co-formulations can become challenging (See I.3 and I.4), the 

analytical and technological knowledge on the originator drug(s) can accelerate the 

development and approval of the protein co-formulation compared to competitor companies. 

The available pre-clinical and clinical data on the stability, efficacy and safety of the 

originator drug(s) can set the basis for further tailor-made studies to approve the co-

formulation.  

Finally, there is no singular regulatory strategy for the successful approval due to the 

variety of subtypes of fixed-dose combinations: A binary fixed-dose combination can consist 

of (a) two already approved drugs, (b) one already approved drug and one new chemical 

entity, (c) two new entities.7 As pointed out by Kwon et al. the regulatory requirements for 

approval of fixed-dose combinations are flexible and can include data about the justification 

for the drug combination, benefit-to-risk ratios, individual contribution of the single drugs to a 

combined effect and clinical experience with the drug combination.43 Several guidelines on 
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the development of fixed-dose combinations were published by the World Health 

Organization (WHO) and the regulatory authorities.39,44,45 These guidelines describe the 

regulatory requirements for a fixed-dose combination such as the scientific discussion on its 

advantages, the identification of a patient population in need for this combination and the 

required non-clinical characterization of the combination compared to the single drugs. Short-

term clinical studies to prove the significant therapeutic benefit of the combination compared 

to the single drugs can also be required. The type and quantity of data which is required to 

convince the regulatory authorities depends on the given drug combination, and it is important 

to closely shape and communicate the targeted approval strategy with the regulators. While 

some combinations of previously approved small molecule drugs such as Contrave® 

(naltrexon-HCl and bupropion-HCl) required additional clinical phase 3 trials,46 other drug 

products such as Juvisync® (sitagliptin and simvastatin) were approved based on the analysis 

of the clinical data of the single drug products.43 Overall, the available pre-clinical and 

clinical data on the individual protein drug products determines the need for additionally 

required studies to prove the preservation of the individual quality, efficacy and safety of the 

individual (protein) drugs in the co-formulation.  

I.3 Analytical challenges 

I.3.1 General considerations for the analysis of protein co-formulations 

The European Pharmacopoeia (Ph. Eur.) demands an extensive drug product 

characterization already for single mAb drug products in terms of identity, content uniformity 

and purity testing.47 The required analytical methods become even more complex for protein 

co-formulations due to the possible interference of the protein signals in chromatographic, 

spectroscopic and activity assays based on the individual protein properties. General 

considerations on the analytical challenges in the development of protein co-formulations are 

presented in the following: 

 First, the physicochemical properties of the proteins can be very similar and complicate 

the individual qualitative and quantitative analysis, especially if both drugs are humanized 

mAbs, where differences in the amino acid composition are mostly limited to the 

complementary-determining regions (CDRs). For example, chromatographic methods are 

frequently applied for the purification and analytical characterization of therapeutic proteins, 

based on different affinities of the individual compounds in a given mixture to the stationary 

phase. The affinities of two co-formulated protein drugs can become very similar based on the 

little differences in physical, chemical and conformational properties due to highly similar 
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amino acid compositions. A recently published study evaluated multiple analytical methods 

such as high performance size exclusion chromatography (HP-SEC), reversed phase high 

performance liquid chromatography (RP-HPLC), imaged capillary isoelectric focusing 

(iCIEF), weak cation exchange chromatography (WCX) and hydrophobic interaction 

chromatography (HIC) for their ability to achieve a baseline separation for a mixture of three 

mAbs.48 Feasible separations were achieved only with WCX and HIC. However, Sharma et 

al. were able to develop several stability-indicating methods (HP-SEC, RP-HPLC and WCX) 

with feasible separation, linearity, precision and accuracy for both mAbs in a given co-

formulation.49 The optimal chromatographic conditions for the separation of a given protein 

mixture depend on the individual physical and chemical properties. The development of 

stability-indicating chromatographic methods that provide sufficient selectivity and sensitivity 

for both proteins and the respective degradation products is required for the pharmaceutical 

development of protein co-formulations. Acceptance limits for impurities have to be defined 

for drug product release according to the guidelines ICH Q6B and ICH Q5C, and co-elution 

of protein impurities such as aggregates can easily exceed reporting thresholds. Thus, it is 

crucial to define critical quality attributes for the stability of the co-formulation that are based 

on an intensive in vitro protein characterization of the individual proteins. The gained 

knowledge on stability-limiting properties of the single proteins accelerates the development 

of feasible analytical methods that can assess the stability of both proteins in the co-

formulation.      

However, not only mixtures of proteins with similar physical and chemical properties can 

become challenging for the development of chromatographic methods. Also proteins with 

very different physical and chemical properties can cause challenges for the analytical 

characterization, such as co-formulations of different cytokines. If the two proteins 

excessively differ in terms of solubility, size or hydrophobicity, it can become challenging to 

separate these proteins with a single chromatographic method that is (among other factors) 

defined by a mobile phase with a given pH and salt concentration and a limited working range 

of the applied column. The analysis of the hydrophilic cytokine EPO and hydrophobic 

cytokine G-CSF by a single RP-HPLC method will be presented in Chapter II of this thesis.50  

Further, excessively different protein concentrations can become problematic, for example 

if a high concentrated mAb is co-formulated with a low concentrated cytokine. The detector 

settings have to be properly adjusted to work above the detection limit of the low 

concentration drug without exceeding the detector limit by the strong signal of the higher 

concentrated drug. Excessively different mixing ratios can also cause difficulties to detect 
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both proteins in the protein mixture in several analytical assays because the analytical signal 

of the low concentrated protein in a 1:10 mixture can become negligible due to the excessive 

signal of the second protein.51  

Moreover, even if an analytical method can be optimized to selectively study each protein 

in the mixture, it is important to compare the analytical results of the co-formulation to the 

respective single protein formulations. Changes in analytical parameters such as the 

chromatographic retention time or peak area for a given drug alone and in mixture can already 

indicate protein cross-interactions, that could potentially limit the stability of the co-

formulation (See I.4). In this respect, it is important to control the protein concentrations in 

the single and co-formulations to avoid the generation of analytical artefacts due to 

differences in the respective protein concentrations.  

Several analytical challenges will be described in the following for a selection of methods 

that can be applied to study the protein stability in co-formulations. The development of a 

stable protein co-formulation requires analytical tools to characterize the conformational, 

colloidal, and chemical stability as well as the functionality of all proteins in the given co-

formulation. Based on their clinical relevance and domination on the biopharmaceutical drug 

product landscape, the co-formulation research has a strong focus on combinations of mAbs, 

and many available reports on analytical characterization of protein co-formulations are 

focused on mAb mixtures.    

I.3.2 Structural analysis and conformational stability of proteins in co-formulations 

The conformational stability of the native folded state of a protein is defined by a balance 

between the stabilizing electrostatic attraction, hydrophobic interactions, van der Waals forces 

and hydrogen bonds on the one hand, and the destabilizing unfavorable entropy and 

electrostatic repulsion on the other hand.52 The conformational stability depends on 

formulation parameters like pH and ionic strength. Osmolytes such as sugars or amino acids 

can modulate the entropic stability of the folded protein state by increasing the difference 

between the free energies of the folded state and the unfolded state.53,54 The conformational 

stability can be directly linked to the colloidal stability because the partially unfolded 

intermediates are more aggregation-prone,55,56 and the Lumry-Eyring-models were developed 

to describe non-native protein aggregation based on reversible conformational changes.57–59  

The conformational stability of a protein in a defined formulation can be studied by 

thermal or chemical denaturation to induce protein unfolding at a certain temperature or 

concentration of denaturant and monitor changes in the protein conformation. For example, 

calorimetric methods such as differential scanning calorimetry (DSC) and spectroscopic 
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methods such as fluorescence spectroscopy and circular dichroism (CD) are well established 

tools to characterize the structure and conformational stability of a protein.60–62 However, the 

analysis of the conformational stabilities of multiple proteins in a mixture can become 

challenging due to the broad signals of the individual unfolding transitions. Moreover, single-

domain proteins may show only one sharp single unfolding transition, while multi-domain 

proteins could show multiple unfolding events that might easily overlap and complicate the 

qualitative and quantitative analysis of the unfolding events depending on the mixing ratio of 

the proteins. For example, a high-intensity unfolding transition of a first protein can overlap 

with a low-intensity unfolding transition of the second protein, which impedes the 

conformational analysis of the second protein in the mixture. Nevertheless, several studies are 

available that applied these methods to study the conformational stability of proteins in 

mixtures, in general by a comparison of the co-formulation signals to the calculated sum of 

the single protein signals.   

First, DSC has been established as one of the most important methods to study 

conformational stability of proteins.63 The sample is heated against a reference and the 

difference in heat capacity is plotted against the steadily increasing temperature. Endothermic 

events in the sample such as unfolding will increase the difference in heat capacity compared 

to the reference and cause a peak signal, which can be used to derive thermodynamic 

parameters such as the unfolding enthalpy.64 DSC has already been applied to study the 

unfolding and aggregation of proteins in mixtures based on these endothermic unfolding 

events and subsequent exothermic aggregation events in protein mixtures compared to the 

respective single protein solutions.65,66  It has been stated that the detected unfolding enthalpy 

of the protein mixture equals the sum of the unfolding enthalpies of the individual proteins.66 

Therefore, the comparison of the DSC spectrum of the protein mixture with the sum of the 

single protein DSC spectra revealed either stabilizing or destabilizing protein interactions for 

different protein mixtures.65 A similar approach was also applied to a co-formulation of nine 

mAbs, where the DSC spectrum of the mixture was compared to the sum of the DSC spectra 

of the single mAbs. The absence of significant changes in the co-formulation spectrum 

indicated independent unfolding of the mAbs in the mixture.67  

Second, both the intrinsic and extrinsic fluorescence can be applied to study changes in the 

protein conformation. The intrinsic fluorescence spectra of proteins are composed from the 

fluorescence signals of tryptophan, tyrosine and phenylalanine residues. The fluorescence of 

tryptophan depends on the polarity of its local environment, which is very useful to collect 

information about structural changes of the proteins such as unfolding. However, structural 



Challenges for the pharmaceutical development of protein co-formulations 
 

10 
 

changes in regions where no tryptophan residues are located can be missed by intrinsic 

fluorescence spectroscopy. Although the wavelength of maximum tryptophan fluorescence 

and the respective quantum yield are highly sensitive to structural changes,68 it appears 

challenging to assign the changes in the total fluorescence signal to structural changes in the 

individual proteins in protein mixtures. The fluorescence peaks are broad and different 

proteins show in general only little differences in the respective peak positions or peak shapes. 

Further, fluorescence emission spectra are in principle additive,69 but possible inner filter 

effects due to the increased protein concentration in the binary mixture can disturb the 

comparison of the single protein spectra to the spectrum of the mixture to detect structural 

changes of the individual proteins in the mixture. If only one of the proteins in the mixture 

contains tryptophan residues, it is possible to selectively measure the fluorescence signal of 

the respective protein and investigate the effect of the second protein on this signal, but this is 

rather the exception than the rule.  

The extrinsic fluorescence, which is based on covalently or non-covalently attached dyes, 

is an alternative approach to study changes in the conformation. For example, the non-

covalent adsorption of chemical reporter dyes such as 8-anilinonaphthalene-1-sulfonic acid 

(ANS) or SYPRO Orange to hydrophobic patches on protein-surfaces can monitor the 

unfolding of proteins.70,71 The unfolding shifts hydrophobic amino acids from the core of the 

native protein to the surface, which increases the number of binding spots for the chemical 

dye and subsequently the respective fluorescence intensity and lifetime. The described 

chemical reporter dyes can be selectively excited and cause a specific fluorescence signal that 

depends on the accessible hydrophobic surfaces in the solution. Thus, these reporter dyes can 

be applied to study changes in accessible hydrophobic surfaces in the mixture. However, the 

reporter dye signals are usually not protein-specific and a comparative analysis of the single 

protein formulations should be performed to assign the position and intensity of a given 

unfolding transition to the respective protein in the mixture.  

Circular dichroism (CD) describes the differences in the absorption of left- and right-

circularly polarized light by chiral molecules. The respective absorption of light by intrinsic 

asymmetric peptide-bonds and amino acid residues is modified by the local chemical 

environment. Thus, CD spectroscopy detects changes in the proteins secondary structure by 

Far-UV CD at wavelengths of 180 to 240 nm and changes in the proteins tertiary structure by 

Near-UV CD at wavelengths of 260 – 320 nm.72 Both Far- and Near-UV CD can be applied 

to study the conformational stability of the individual proteins in protein mixtures. In Chapter 

II, CD spectroscopy will be applied to study the conformational stability of the protein 
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mixture in different formulation conditions compared to the single protein formulations,50 and 

the Near-UV CD spectrum of the co-formulation will be predicted based on the single protein 

spectra. Therefore, CD spectroscopy can detect changes in the protein conformation in protein 

mixtures and even assign these changes to the respective protein, if the Near-UV CD spectra 

of the individual proteins differ sufficiently from each other.   

Finally, nuclear magnetic resonance (NMR) spectroscopy has been successfully applied to 

study the protein structure in solution,73,74 and the high resolution of multidimensional 

approaches like 2D-NMR provide information on the high order structure of proteins, their 

structural flexibility and dynamics.75–78 Recently published studies successfully applied NMR 

spectroscopy to study the individual protein conformations in protein co-formulations by 19F 

NMR.79,80 The covalent labeling of the selected protein allowed the specific structural 

characterization of this protein in a protein mixture without interference of the non-labeled 

proteins. Moreover, the application of different 19F-labels on two mAbs allowed the 

investigation of protein interaction and aggregation for both mAbs in the mixture.81 However, 

the technical requirements and the elaborative data interpretation impedes the application of 

NMR spectroscopy to screen the conformational stability of protein mixtures in a wide range 

of promising formulation conditions.    

I.3.3 Analysis of chemical stability in protein co-formulations 

The chemical stability of protein drugs is limited by chemical changes of the composing 

amino acids such as oxidation, deamidation, hydrolysis, and isomerization.82 The chemical 

degradation pathways have been well described in literature and the resulting chemical 

changes can also impact the conformational and colloidal stability of the given protein 

drug.82–84 The selected analytical methods to assess the chemical stability in protein co-

formulations have to reliably identify and quantify chemical changes of the individual 

proteins in the mixtures.  

The most common analytical method to detect chemical changes such as oxidation of 

methionine residues in proteins is RP-HPLC, which separates the components of a given 

mixture based on the differences in hydrophobicity. The fast mass transfer in RP-HPLC 

systems results in sharp peaks (in contrast to HP-SEC),85 which is beneficial to achieve a 

feasible selectivity in protein co-formulations. Thus, RP-HPLC is a valuable method for the 

quantification of individual compounds of a protein mixture such as EPO plus HSA,86 or 

mixtures of mAbs.49 For example, Perez-Robles et al. presented a simultaneous identification 

and quantification of up to four different co-formulated mAbs by RP-HPLC-MS.87 The 

coupling of RP-HPLC to MS is a well-established analytical technique to detect chemical 
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changes in proteins and identify specific amino acids that are susceptible to oxidation. It is 

also possible to compare protein oxidation in single and co-formulations by RP-HPLC-MS to 

test for qualitative or quantitative changes in the oxidation of oxidation-prone residues like 

methionine.88 Further, RP-HPLC-MS is an alternative option for the characterization of 

charge variants in mAb mixtures if ion exchange chromatography (IEX) is not applicable. For 

example, Cao et al. developed a peptide mapping method to identify and quantify CDR 

deamidation of one specific mAb in a given protein co-formulation.89 The sensitivity was 

sufficient to allow the quantification of site-specific deamidation of a first low concentrated 

mAb in presence of a second high concentrated mAb.  

Although RP-HPLC is a well-established analytical tool to separate components of a 

mixture based on their hydrophobicity, the combination of acidic pH values, high 

concentrations of organic solvents and elevated temperatures usually causes protein 

denaturation. In contrast, hydrophobic interaction chromatography (HIC) is able to separate 

proteins based on their hydrophobicity under non-denaturing conditions at neutral pH values 

and ambient temperature.90 Hydrophobic interactions of the proteins to the column are 

triggered by high salt concentrations in the elution buffer and the applied gradient reduces the 

salt concentration until the proteins elute from the column. HIC methods were already 

successfully applied for protein co-formulations to either quantify the individual mAbs,48 or to 

assess the individual stability profile of each mAb in forced degradation studies.88   

In addition, ion exchange chromatography (IEX) is also a valuable chromatographic 

method for the analysis of chemical degradation in protein co-formulations, especially 

deamidation. Proteins are separated by IEX based on differences in the respective charge-

distribution on the protein surface and subsequent differences in interaction with the charged 

stationary phase. Several studies successfully separated mixtures of mAbs by both strong 

cation exchange (SCX) or weak cation exchange (WCX) chromatography.88,91,92 The pH 

gradient ion exchange chromatography allows the separation of mAb mixtures based on the 

different IEP values of the individual mAbs,93 and the good selectivity for the separation of 

mAbs can be sufficient to enable charge variant characterization for the single 

compounds.88,89 However, these IEX methods rely on sufficiently different IEPs of the mAbs 

to achieve a feasible selectivity.  

Further, capillary isoelectric focusing (cIEF) is an alternative method to IEX to separate 

protein mixtures based on their IEPs and has been applied to detect chemical changes in the 

individual proteins in co-formulations.88 cIEF is commonly applied in proteomics research 

due to the very high resolution power and has been reported to baseline separate components 
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with a difference in their respective IEP of only 0.01.94 Although it has been technically 

challenging to connect cIEF to MS based on the applied gel agents and voltages that interfere 

with electro-spray ionisation,95 cIEF-MS is nowadays a powerful method for the high 

resolution analysis of charge variants in proteins.  

I.3.4 Analysis of protein interactions and colloidal stability in protein co-formulations 

Protein interactions have a significant impact on the colloidal stability of proteins in drug 

products. Different mechanisms have been described to explain protein aggregation,82 but the 

aggregation pathways include in general excessive attractive interactions between the native 

or altered protein monomers that cause protein association.96,97 The DLVO (Derjaguin-

Landau-Verwey-Overbeek) theory is often applied to describe the balance between attractive 

interactions due to van der Waals forces and electrostatic repulsive forces due to surface 

charges, although the simplified hard-sphere model with symmetrically distributed surface 

charges does not necessarily apply to proteins.98 Still, the analysis of non-specific attractive 

and repulsive protein interactions in different formulation conditions can guide the rational 

development of a protein formulation to achieve a high colloidal stability of the protein drug. 

The strength of these interactions can range from strong long-range electrostatic interactions 

mediated by opposite surface charges to weak short-range hydrophobic and electrostatic 

dipole interactions that are mediated by van der Waals forces. While the attractive long-range 

interactions between native protein monomers or (partially) unfolded intermediates favor 

protein aggregation across a wide range of protein concentrations, the attractive short-range 

interactions become relevant at high protein concentrations.99 The type and strength of the 

protein interactions that can arise in protein formulations can be detected by multiple 

analytical methods. Based on these results, formulation parameters such as pH and ionic 

strength can be adjusted to maximize the colloidal stability of the protein by increased 

repulsive protein interactions or reduced attractive protein interactions. 

The presence of different protein drugs in co-formulations increases the complexity of 

protein interactions even further. For example, attractive cross-interactions between different 

protein drugs could cause the formation of heterogeneous protein aggregates that are not 

detected in the single drug products. It is generally challenging to predict the specificity of 

protein-interactions in co-formulations,100 and the risk for cross-interactions has to be 

evaluated during drug product development. The detection of these cross-interactions can 

become challenging because many analytical methods to study protein interactions are 

optimized for strong and specific physiological or pharmacological interactions between a 

receptor and a ligand, where equilibrium dissociation constants (KD) in the nano-molar range 
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are detected.101 Viable tools for the analysis of protein interactions in co-formulations have to 

detect the non-specific interactions that are not linked to a biological function, if possible 

without immobilization or labeling which may affect the protein interaction. Several reviews 

have been published on the analysis of protein interactions.102 A selection of interesting 

analytical methods for the detection of protein interactions in co-formulations is presented in 

the following. 

First, light scattering based techniques such as static light scattering (SLS) and dynamic 

light scattering (DLS) have been successfully applied to quantify the attractive or repulsive 

protein interactions in protein formulations.103 The osmotic second virial coefficient B22 is an 

important parameter to quantify attractive and repulsive interactions in protein formulations 

and can be calculated based on SLS measurements according to the Debye equation:104 

Kc

Rθ
 = 

1

M�

 + 2B22c 

Kc is the optical constant derived from the applied laser wavelength and the differential 

refractive index increment dn/dc, Rθ is the excess Rayleigh ratio derived from the measured 

differences in both light scattering intensities and refractive indices of the protein solution and 

the pure solvent, Mw is the weight average molecular weight and c is the protein 

concentration. The interaction parameter B22 has been originally applied to optimize 

conditions for protein crystallization,105 but the selection of formulation parameters to achieve 

highly positive B22 values, which are indicative for repulsive protein interactions, is also a 

viable formulation strategy to improve the colloidal stability of protein drugs.55 In addition to 

SLS, several orthogonal methods have been described to determine the interaction parameter 

B22, such as self-interaction chromatography, membrane osmometry, or sedimentation 

velocity.106–108 Based on the studies on self-interaction chromatography, several studies also 

applied cross-interaction-chromatography to characterize cross-interactions between different 

proteins by determination of the cross-interaction coefficient B23 for several mixtures, such as 

BSA and lysozyme,109,110 α-chymotrypsinogen and lysozyme,110 binary mixtures of lysozyme, 

ovalbumin, and α-amylase,111 and binary mixtures of lysozyme, catalase, lactoferrin and 

concanavalin.112  

The affinities, stoichiometries and kinetics of protein cross-interactions in co-formulations 

can be further elucidated by static light scattering methods such as composition gradient 

multiple angle laser light scattering (CG-MALS). CG-MALS has been used to study hetero-

associations between different proteins and to identify the respective complex-
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stoichiometries.103,113 In CG-MALS, the single protein solutions are injected into a mixing 

chamber at opposite gradients. A wide range of different compositions can be screened in the 

mixing chamber for specific ratios of both proteins. Based on the measured light scattering at 

a given mixing ratio, the affinity and stoichiometry of the formed protein complexes can be 

calculated. It is even possible to simultaneously study self- and hetero-associations between 

different proteins by CG-MALS,113 without labeling or immobilization. However, CG-MALS 

is usually applied to study high affinity interactions with affinity constants in the nanomolar 

range.103 Future studies have to show that appropriate interaction models can be derived from 

the light scattering signals to elucidate non-specific low-affinity cross-interactions in protein 

co-formulations. 

The described methods to determine B22 can become quite elaborative, which limits their 

use to screen multiple protein formulation conditions in short time.108 Further, the high 

amounts of protein that are necessary for column immobilization or light scattering 

experiments impede the application of these methods for the analysis of protein cross-

interactions in early drug product development. In contrast, DLS can be applied to determine 

the diffusion interaction parameter kD, which is linked to the second virial coefficient B22 and 

has been established as an interaction parameter to detect and quantify non-specific protein 

interactions caused by hydrophobic or electrostatic forces in protein formulations.108 DLS 

measurements can be performed in multiwell plates in very short time and with low protein 

consumption to determine kD.114 kD can be derived from the DLS measurements of the 

translational diffusion coefficient Dt at different protein concentrations c with D0 being the 

mutual diffusion coefficient at infinite dilution:115,116 

Dt = D0 (1 + kDc) 

The comparison of kD values of the single protein formulations and the binary mixture of both 

proteins can reveal additionally arising attractive or repulsive cross-interactions in the co-

formulations.100,117  

In addition to kD measurements, DLS in multiwell plates can identify formulation 

conditions that reduce attractive protein interactions and improve the colloidal stability of the 

proteins based on changes of their hydrodynamic radius (Rh). A large number of different 

formulation conditions can be rapidly screened with minimal sample size and protein 

consumption to identify the most promising formulation conditions for a given protein.118 For 

example, a thermal ramp can be applied to heat the samples and perform DLS measurements 

in short time intervals to identify the aggregation onset temperatures (Ton) in the tested 
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formulations. Higher Ton values are indicative for an increased thermal and colloidal stability 

of the protein in the respective formulation. The value of these methods for the development 

of protein co-formulations and the analysis of protein cross-interactions will be discussed in 

the following chapters of this thesis. 

Like CG-MALS, composition gradient dynamic light scattering (CG-DLS) can also be 

applied to study cross-interactions without labeling or immobilization of the proteins directly 

in solution. For example, interactions between α-chymotrypsin and bovine pancreatic trypsin 

inhibitor were detected by a shift in the z-average due to formation of a complex with higher 

hydrodynamic radius compared to the single proteins.119 The shift in z-average increased with 

the amount of complex that is formed due to the cross-interaction. The titration of one protein 

against the other and the correlation of the resulting z-average against the relative 

concentration of one protein led to a maximum value of the z-average, determining the 

highest degree of complexation. However, the described interactions between α-chymotrypsin 

and bovine pancreatic trypsin inhibitor are interactions of high specificity and affinity. It is 

questionable if unspecific protein cross-interactions with low affinity that can arise in co-

formulations can be reliably detected by CG-DLS.  

Small angle X-ray light scattering (SAXS) detects the scattering patterns of focused X-rays 

by proteins in solution. These scattering patterns can be interpreted as a combination of the 

scattering by the protein monomers and the scattering of a complex that is formed due to 

protein interactions. Given the scattering pattern of the single components, the formation of 

complexes and the respective dissociation constant KD can be calculated.120 The potential use 

of SAXS measurements for the analysis of protein interactions was also presented in a study 

by Ryberg et al.: A combination of SAXS measurements, molecular dynamics (MD) 

simulations and DLS measurements was successfully applied to identify the binding sites and 

amino acid residues that constitute the protein cross-interaction between albumin and insulin 

determir.121 

In addition to the presented light scattering based methods, spectroscopic and 

spectrometric methods such as fluorescence spectroscopy, CD spectroscopy, mass 

spectrometry or surface plasmon resonance (SPR) spectroscopy can also be applied to study 

protein cross-interactions in co-formulations.    

The fluorescence spectrum of a protein can change upon interaction with another protein, if 

the local environment of a tryptophan residue is involved. One potential approach to screen 

interactions in solution without labeling is the comparison of the measured fluorescence 

spectrum of the protein mixture with the calculated sum of the individual protein spectra. 
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Protein interactions in co-formulations can be indicated by differences between the measured 

fluorescence spectrum of the mixture and the calculated sum of the single protein spectra. For 

example, one protein can be titrated with a second protein and the arising differences between 

the measured fluorescence signal of the binary mixtures and the calculated sum of the single 

protein signals can be plotted against the concentration of the titrant to determine the 

dissociation constant KD.122 However, the fluorescence spectra become more complex with 

increasing numbers of tryptophan residues in the protein and the presented approach is only 

feasible for proteins that contain only one single tryptophan residue that is quenched by 

changes in the local environment due to the protein-interaction. As the fluorescence emission 

of a protein is a result of the combined fluorescent amino acid residues, the sensitivity of 

intrinsic fluorescence to detect protein interactions decreases significantly if only a small 

fraction of these residues is involved in the interaction. This effect becomes even more 

pronounced for weak protein interactions with high KD values in the mM range, where a high 

amount of protein monomers is detected in comparison to the protein complex. Further, the 

high sensitivity of fluorescence measurements towards changes in temperature, pH and salt 

concentration can easily cause changes in the fluorescence spectra that could exceed changes 

caused by the protein interactions. Thus, it is important to carefully control the experimental 

conditions and protein concentrations in order to compare the spectrum of the mixture to the 

theoretical sum of the single protein spectra.   

Although these are very restrictive requirements for the application of intrinsic 

fluorescence to detect protein interactions, the presented approach can also be performed with 

extrinsic fluorescence experiments. For example, extrinsic fluorescent dyes that are sensitive 

to changes in the accessible hydrophobic surface can be applied to detect protein interactions 

based on the dissociation of the formed protein complexes.123 Moreover, it is possible to 

attach different fluorophores to the proteins to study protein cross-interactions by Förster 

resonance energy transfer (FRET). The energy transfer between a donor fluorophore and an 

acceptor fluorophore causes an increased fluorescence emission of the acceptor which can be 

detected by fluorescence lifetime imaging microscopy (FLIM).124,125 Although the chemical 

changes caused by the attachment of a fluorescent label could alter the binding affinity of the 

proteins,124 FRET experiments have been successfully applied to elucidate intracellular 

protein interactions,125 and could in principle be also applied for protein cross-interactions in 

co-formulations.  

Furthermore, fluorescence anisotropy titration, which measures the partially polarized 

emission of a fluorophore after excitation with polarized light,126 can be applied to titrate a 
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labeled protein with increasing amounts of a second protein to study protein interactions and 

determine the dissociation constant KD.127 Fluorescence anisotropy increases when the 

rotational speed of the fluorophore decreases. Thus, protein interactions can be detected 

during the titration experiment by the increased apparent molecular size of the fluorophore, 

which decreases the rotational speed in solution and increases fluorescence anisotropy.  

Additionally, microscale thermophoresis (MST) is another fluorescence-based method to 

detect protein interactions and tracks the fluorescence signal of a protein during heating with 

an infrared laser.128 The fluorescence signal decreases over time due to the thermophoresis of 

the protein out of the detection area. Protein interactions can change the drop in the 

fluorescence signal during thermophoresis because the increased hydrodynamic radius of the 

protein complex results in a reduced diffusion speed along the thermal gradient. Thus, the 

titration of the labeled protein with a protein ligand can be used to correlate the changes in 

fluorescence to the respective ligand concentration and calculate the dissociation constant 

KD.129 

Alternatively, CD spectroscopy can detect protein interactions by changes in the respective 

secondary or tertiary structures of the proteins. Protein interactions can cause changes in the 

measured ellipticity that are directly proportional to the amount of complexation.130 

Therefore, it is possible to determine the dissociation constant KD, if one protein is titrated 

against the other. Protein interactions have also been detected by differences of the measured 

CD spectrum of the protein mixture compared to the sum of the single protein spectra.131 The 

deconvolution of the protein signal can be performed for mixtures with a mixing ratio of 

1:1,50 but excessive ratios inherit the risk that the low concentrated protein signal becomes 

negligible and structural changes of this protein cannot be reliably detected. Thus, it is 

necessary to compare the single protein spectra to the spectrum of the mixture and evaluate 

the applicable range of mixing ratios.     

Moreover, the changes of the solvent-accessible surface due to protein  interactions can be 

studied by hydrogen deuterium exchange mass spectrometry (HDX-MS).132,133 After 

incubation of the co-formulation in the targeted formulation buffer to reach the equilibrium of 

the complex formation, the solution is diluted into a D2O solution where solvent accessible 

amides become deuterated.133,134 The deuteration is stopped after a defined time period, and 

the subsequent pepsin digestion and analysis by LC-MS allows the localization of binding 

sites based on the reduced solvent-accessible surface area.135 However, weak interactions that 

are only mediated by the side chains of the protein with no impact on the amide backbone are 

likely to be missed.135 Further, the interpretation of the obtained results can become both 
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elaborative and challenging for mAb mixtures due to the required additional comparison of 

the mixture to the single protein formulations and the high degree of primary sequence 

similarity between different mAbs. 

Another established orthogonal analytical method to study protein interactions is SPR 

spectroscopy. In SPR spectroscopy, one protein is immobilized on a chip surface, the second 

protein is rinsed across this functionalized chip and binding events are detected by changes of 

the refractive index of the chip surface.136,137 A common procedure to immobilize proteins is 

the use of gold microchips that are coated with carboxymethylated dextran.137 The carboxy-

methyl groups are activated by addition of N-hydroxysuccinimide to form reactive 

succinimide esters that react with amine groups of the protein. Excessive succinimide esters 

are subsequently quenched with ethanolamine, which results in a hydrophilic chip surface 

with the immobilized protein. Alternative protein immobilization techniques include 

streptavidin-biotin or S-Au binding chemistry.138 SPR spectroscopy can be applied to 

determine dissociation constants and kinetic parameters of the interaction. Advantages of SPR 

spectroscopy include the analysis in the targeted formulation buffer, low protein consumption 

and high throughput. However, the immobilization can mask interactions due to the 

anisotropic distribution of surface charge and hydrophobicity of mAbs. Still, SPR 

spectroscopy has already been frequently applied to screen protein interactions between 

different proteins and was also already applied to analyze cross-interactions in co-formulated 

mAbs.88,138 

Similar to SPR spectroscopy, biolayer interferometry (BLI) can also be applied to study 

protein cross-interactions, such as antigen-antibody binding in epitope mapping 

experinents.139 The analytical setup is quite similar to SPR measurements and includes the 

immobilization of one protein on a sensor surface. The interaction with a second protein is 

triggered by incubation of the functionalized chip surface in a solution of the second 

protein.140 The label-free rapid BLI measurements enable a fast screening of protein 

interactions in different conditions at minimal protein consumption compared to self-

interaction chromatography, kD measurements or viscosity measurements.141,142  

In addition to the already presented methods, the thermal analysis offers further valuable 

approaches to study protein interactions in co-formulations.  

Isothermal titration calorimetry (ITC) can characterize protein interactions in mixtures 

qualitatively and quantitatively,143 because any binding event between proteins is associated 

with a more or less pronounced change of enthalpy (∆H) and change of entropy (∆S). In order 

to study cross-interactions between different proteins, one protein solution is placed in the 
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calorimetric cell while aliquots of the second protein solution are injected at different time 

points. The generated heat due to the binding event is detected for each time point and the 

resulting titration curve is evaluated to determine the dissociation constant KD, ΔH and the 

stoichiometry of the protein interaction. KD and ∆H can then be used to calculate ∆G and ∆S 

using the following equation, where R is the gas constant and T is the absolute temperature.143 

 
∆G = ∆H - T∆S = - RT lnKD 

ITC is able to detect a wide range of strong and weak interactions with KD values from the 

nM to the mM range.144 The label-free detection of interactions directly in the formulation 

without immobilization is very useful for the analysis of protein mixtures and ITC has been 

already applied to show the absence of cross-interactions between co-formulated mAbs.88 

However, ITC measurements are also sensitive to structural changes of the proteins, and 

complementary techniques such as CD spectroscopy should be applied to detect structural 

changes that cause heat effects by changed binding of water molecules.145 Moreover, the self-

interaction of the single proteins can disturb the measurements of cross-interactions, for 

example if the concentrated titrator protein solution contains homo-protein complexes that 

dissociate upon dilution in the measurement cell.143 However, these analytical artefacts can be 

detected by appropriate control experiments.  

Furthermore, DSC has been frequently applied to study protein ligand interactions such as 

protein-lipid interactions based on the effect of the ligand on transition temperatures, peak 

shapes or derived thermodynamic parameters.146,147 These approaches cannot be directly used 

for protein co-formulations because both proteins will show thermal transitions that may 

overlap each other and impede a quantitative detection of the individual transitions. 

Nevertheless, DSC methods were also applied to study protein interactions in mixtures by 

comparison of the enthalpy changes of the mixture to the sum of the enthalpy changes in the 

respective single protein formulations,65 as already described in I.3.2. It appears that the DSC 

spectrum of a binary mixture of non-interacting proteins can be predicted by the sum of the 

individual DSC spectra,66 and protein interactions can conversely be detected by deviations of 

this mathematical correlation.65 The DSC analysis of multiple co-formulations that contained 

up to nine mAbs indicated that the mAbs unfolded independently and no stability 

compromising cross-interactions were observed compared to the single protein 

formulations.67   

Next, analytical ultracentrifugation (AUC) is an orthogonal method to study protein 

interactions in mixtures,148 and has already been applied to study protein self- and cross-
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interactions of a fluorescent labeled mAb. The labeled tracer mAb-1 was combined with non-

labeled mAb-1 or mAb-2 in concentrations of up to 20 mg/mL to study differences in the 

sedimentation velocity of mAb-1 caused by either self- or cross-interactions.149 AUC was also 

applied to study cross-interactions between unlabeled mAbs,88 but only at  low concentrations 

of up to 2 mg/mL, and the positive control that consisted of mAb-1 and an anti-mAb1 

antibody showed only a small shift for the highly specific antibody-antigen interaction. Thus, 

it is possible that unspecific cross-interactions between the co-formulated mAbs were missed 

in this analytical setup.  

Finally, the risk for protein interactions in co-formulations also depends on the applied 

concentrations. If the equilibrium constant KD for a defined protein interaction is very high, 

the clinically required drug concentrations in the co-formulation may not be sufficiently high 

to cause a cross-interaction between the protein drugs. However, many mAbs are formulated 

at high protein concentrations > 100 g/L.150 At such high protein concentrations, short-ranged 

hydrophobic interactions become relevant and can even outweigh long-ranged electrostatic 

interactions.99 It has been proposed that cross-interactions in protein mixtures at high 

concentrations can be detected by deviations of the measured viscosity of the protein mixture 

from the calculated viscosity that is predicted by the extended Mooney equation:151,152 

    ln η��	 =
∑[�]��

��∑��/��
∗ 

In this equation, ηrel represents the ratio of the viscosity of the solution to that of the solvent. 

ηrel is given by the intrinsic viscosity ηi of each protein i and the respective protein mass 

concentration wi. ��
∗ represents the respective protein concentration at which the solution does 

not longer flow.153 For binary mixtures of structurally similar proteins such as mAbs, the 

Arrhenius mixture model can be applied as well to predict the viscosity of the mixtures based 

on the viscosities of the single protein solutions.117,151 Deviations from this mathematical 

relationship can indicate additionally arising cross-interactions in the binary mixture 

compared to the individual protein self-interactions. For example, Woldeyes et al. detected 

attractive cross-interactions in a binary mixture of different mAbs by viscosity 

measurements,117 where the measured viscosity of the binary mixture exceeded the prediction 

of the Arrhenius mixture model.  

In summary, a wide range of different methods is available to study protein interactions in 

co-formulations. The selection of the appropriate analytical methods is based on the 

physicochemical properties of the proteins, the targeted protein concentration in the co-

formulation, the expected dissociation constant KD and the availability of the proteins of 
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interest both in quantity and purity. The differentiation between protein self-interactions and 

cross-interactions requires the analysis of control samples, where the single protein 

formulations have the same precise concentration as in the co-formulation. However, for 

binary mixtures of similar proteins such as mAbs it is challenging to differentiate between 

specific cross-interactions between different mAb entities and altered self-interactions of the 

respective mAb entities in presence of a second protein. Analytical methods such as cross-

interaction chromatography can identify specific cross-interactions in an artificial 

environment,110 but not directly in the targeted formulation conditions. ITC can be applied to 

compare self-interactions to specific cross-interactions by titration of a given mAb with itself 

and can also provide information on structural changes caused by the cross-interaction, when 

additional CD-measurements are performed. Overall, it is important to apply multiple 

methods for an in-depth characterization of protein cross-interactions in co-formulations and 

their impact on protein stability. In some cases, specific cross-interactions can also be 

detected indirectly by their effect on the colloidal stability or functionality of both co-

formulated proteins compared to the single formulations.  

I.3.5 Analysis of protein aggregates in co-formulations 

Protein aggregation is one of the risk factors that limit the stability of therapeutic 

proteins,154 and is caused by excessive attractive interactions of the native protein monomers 

or (partially) unfolded intermediates. It is important to limit protein aggregation in the 

formulation. Aggregation can reduce both efficacy and safety of the drug product by reduced 

concentrations of active protein monomers and protein aggregates can cause immunogenic 

reactions.155 Thus, appropriate analytical methods are required to quantify soluble protein 

aggregates and subvisible protein particles.  

First, HP-SEC is frequently applied for the analysis of protein drugs to investigate soluble 

aggregate formation.156 Although it can be possible to separate protein mixtures, the low 

differences in diffusion speed of proteins limit the separation efficacy.157 Especially mAbs 

show very similar molecular weights and hydrodynamic radii and usually it is not possible to 

achieve a sufficient selectivity for the different mAb monomers by HP-SEC alone based on 

the similar diffusion speed and mass transfer, which causes broad peak signals.157 

Nevertheless, HP-SEC represents a valuable stability-indicating method for protein co-

formulations which was applied in several stress studies for co-formulated mAbs to analyze 

aggregate formation or protein fragmentation.49,88,91 An interesting approach to study the 

protein aggregation in mixtures was presented by Weisbjerg et al..158 The serial-coupling of 

ion exchange chromatography (IEX) to HP-SEC allowed the separation of BSA and different 
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mAbs based on their respective isoelectric point (IEP): The IEX column captured BSA, while 

the mAbs and their aggregates were not captured and moved directly to the SEC column. 

After elution of the mAb and the respective aggregates, increasing salt concentrations caused 

the elution of BSA. Although this is a very interesting analytical setup, this approach is 

limited by the required differences in the respective IEPs of the proteins and the respective 

aggregates. Co-aggregation of proteins could potentially form mixed aggregates with a 

different surface charge pattern compared to the single proteins or pure aggregates.   

HP-SEC is a gold standard for the analysis of soluble aggregates in protein formulations, 

but it is not applicable to screen multiple formulation conditions in early formulation 

development because of the low sample throughput. Light scattering based techniques such as 

dynamic light scattering (DLS) are orthogonal analytical methods to assess the colloidal 

stability of proteins in solution directly in the respective formulations.159 In DLS 

measurements the Stokes-Einstein-Equation is applied to calculate the hydrodynamic radius 

of particles based on the intensity fluctuation rate of laser light scattered by particles or 

macromolecules. The smaller the particles are, the faster the amount of scattered light will 

change because smaller molecules have a higher diffusion speed compared to larger particles. 

In most cases, the resolution of DLS may not be sufficient to differentiate the monomers of 

two different proteins and only limited quantitative information can be derived from the 

obtained size distributions,160 but the high sensitivity towards larger particles is useful to 

detect even trace amounts of protein aggregates.161  

Further, the characterization of aggregates in protein mixtures remains challenging because 

it is often unclear if and to which extent co-aggregation of the individual proteins can occur in 

a given co-formulation. Cross-interactions between the different protein monomers may cause 

formation of co-aggregates with different properties compared to pure aggregates of the single 

proteins in terms of size, shape, charge, or immunogenicity. Thus, it is important to detect 

protein co-aggregation by an extensive analytical characterization of the formed aggregates in 

the mixture. Several studies have been published on the co-aggregation of proteins, for 

example for mixtures of ovalbumin and lysozyme,163 or ovotransferrin and lysozyme,164 

where HP-SEC was applied to identify co-aggregation in forced-degradation studies. Gadgil 

et al. presented a coupled size exclusion chromatography and mass spectrometry (SEC-MS) 

method for the identification of aggregates in protein mixtures,165 which indicated the absence 

of protein co-aggregation in the given mixture of BSA, cytochrome c and β-lactoglobulin. 

Another approach is the collection of HP-SEC fractions and the detection of the proteins in 

these fractions by an enzyme-linked immunosorbent assay (ELISA).166 Using this approach, 
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soluble aggregates that are detected by HP-SEC could be fractionated and the collected 

fractions could be analyzed by a protein specific and highly sensitive ELISA to prove the 

presence or absence of a protein in a certain aggregate fraction. Similarly, aggregates obtained 

from forced degradation studies on a mixture of two mAbs were collected by HP-SEC and 

analyzed by SPR spectroscopy:88 In this study, an anti-mAb-1 antibody was immobilized on a 

sensor chip that subsequently allowed the binding of aggregates that contained mAb-1. In a 

second step, the chip was flushed with anti-mAb-2 to detect the additional binding of anti-

mAb-2 to the already bound aggregates. Further, a recently published patent application 

presents an approach for the quantification of hetero-dimers in mAb co-formulations by 

immunoprecipitation and subsequent liquid chromatography-assisted mass spectrometry.167 In 

some cases, the co-aggregation may cause the formation of morphologically distinct 

structures compared to the pure protein aggregates,168 that can be detected by transmission 

electron microscopy. Emerging techniques for the characterization of subvisible particles such 

as flow imaging microscopy could also be valuable tools to identify cross-aggregation by 

alterations of the particle morphology in the co-formulation compared to the single protein 

formulations.  

I.3.6 Functional analysis of proteins in co-formulations 

The development of a protein drug product has to ensure that the protein activity is 

maintained throughout the targeted shelf-life. A feasible formulation has to stabilize the 

protein against different stresses that can be encountered during manufacturing and storage, 

which can reduce protein activity.169 While several specific activity assays are established for 

therapeutic enzymes,170,171 the activity assays for mAbs and cytokines are often performed as 

in vitro binding assays to the targeted antigen based on analytical techniques such as ELISA, 

BLI or SPR spectroscopy. However, besides these in vitro binding assays, the specific 

pharmacological effects of these proteins can also be monitored by elaborative cell-based 

assays, such as complement-dependent cytotoxicity (CDC) assays and antibody-dependent 

cytotoxicity (ADCC) assays for mAbs, or cell proliferation assays for cytokines.169,172–175  

Specific activity assays are also important tools to detect synergistic pharmacological 

effects of the combination. Therapeutic proteins can be rationally combined in co-

formulations based on their complementary binding to different epitopes of the same antigen. 

For example, pathogenic viruses offer various epitopes that can be targeted in parallel by co-

formulated mAbs, and the complementary binding to different epitopes reduces the risk for 

the generation of escaping-mutants.15,67,176 This complementary binding of two mAbs to a 

specific antigen can be detected by ELISA methods, where the binding is compared between 
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single and co-formulations: After immobilization of the antigen of interest, the ELISA plate 

can be incubated in a first step with the unlabeled mAb-1 and in a second step with the 

biotinylated mAb-2, and the additional binding of mAb-2 to the antigen can be subsequently 

quantified by streptavidin-coupled horse radish peroxidase.176 Further, in silico approaches 

have been applied to screen and predict the synergistic or cooperative interaction of different 

protein drugs with the same receptor molecule to increase the clinical efficacy. MD 

simulations presented by Fuentes et al. indicated a co-localization and cooperative binding of 

trastuzumab and pertuzumab to the HER2 receptor.177 However, the in silico models must be 

confirmed by experimental data. While the co-localization of pertuzumab and trastuzumab 

and the formation of a ternary complex was confirmed by BLI, cryo-EM and HP-SEC 

measurements,178,179 no synergistic binding was detected by any of the applied experimental 

methods. 

The high specificity of the ELISA based techniques can in principle be used to perform 

identity testing and quantification of a specific mAb in a co-formulation,49 where a specific 

protein quantification cannot be easily performed by UV spectrometry due to the unspecific 

UV absorption of all protein entities in the mixture. However, comparative studies on the co-

formulations and the respective single formulations are required to prove that the applied 

activity assays provide sufficient selectivity for the respective proteins in the mixture to avoid 

any interference between the proteins in co-formulations.  

Moreover, it has been reported that the antigen-binding activity of a mAb can be reduced 

in the presence of HSA due to electrostatic cross-interactions between the mAb and HSA that 

were detected by BLI and CG-MALS measurements.180 Thus, the impact of unspecific protein 

interactions in protein co-formulations on the respective protein activity has be evaluated to 

optimize the formulation conditions accordingly, for example by adjusting the ionic strength 

of the solution to screen unspecific electrostatic cross-interactions. 

I.4 Formulation challenges 

Combinations of different proteins such as mAbs, cytokines, hormones, or enzymes have 

been tested in clinical studies, but the pharmaceutical development of protein co-formulations 

remains still challenging because it has to consider the individual stability profiles of the 

respective proteins. The specific formulation requirements of the proteins can excessively 

differ from each other and impede the development of a stable co-formulation product. 

Protein drugs require specific conditions to maintain stability such as an appropriate pH value, 

ionic strength and excipient composition, where the drug degradation is limited as much as 
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possible. Instabilities such as unfolding, aggregation or oxidation can occur if the optimal 

formulation conditions are not met. Healthcare professionals often hesitate to perform an 

intravenous co-administration of drugs through a combined dilution in normal saline because 

of effects on drug stability that can already be caused by dilution of the stabilizing 

excipients,181,182 and elaborative studies are performed to ensure that a co-administration of 

protein drugs does not negatively impact the individual in-use-stability.183 This underlines the 

need for stable co-formulation products with proven stability over the targeted shelf life.  

In some cases, the optimal formulation conditions that offer appropriate stability for both 

proteins over an acceptable shelf life would contradict each other.50,184 For example, well 

known excipients such as sucrose and arginine can stabilize mAb-1 but destabilize mAb-2 by 

different drug-excipient interactions.185 Several pharmaceutical concepts have been developed 

to overcome incompatibilities of small molecule drugs by physical separation of the drugs, for 

example bilayered tablets or co-extrudates.186,187 In principle, dual chamber cartridges can be 

applied to physically separate biologics, and they have been already used for a fixed-dose 

combination of vaccines.188 However, dual chamber cartridges are an expensive dosage form 

because two independent drug formulations have to be developed and manufactured in 

parallel. Thus, this approach is only reasonable as a back-up if no feasible stability can be 

obtained for the co-formulated proteins in a real mixture. Moreover, short-time stability of 

both proteins in the mixture has still to be confirmed to allow a combined administration 

when the cartridge has been activated. An alternative approach to combine incompatible 

biological drugs in a single drug product is spray freeze-drying, where a solution is sprayed 

through a nozzle into a dying chamber,189 where the droplets are dried to obtain a powder. 

Each protein could be dried by spray freeze-drying at the individual formulation and process 

conditions and the produced powders could be mixed and filled into vials to prepare different 

dosing ratios of a co-formulated drug product. Like dual chamber cartridges, this approach 

represents a back-up solution for incompatible drugs, because the drying process has to be 

optimized for each protein solution, and aseptic filling of powders is both elaborative and 

expensive. Further, the combined reconstitution and application still requires data on the in-

use stability of the protein mixture in solution.      

Thus, it is desirable to develop protein co-formulations as real protein mixtures. As 

discussed in I.3, appropriate methods are required to analyze the protein drugs and to assign 

impurities to the individual proteins in the respective quantity to meet the requirements for 

identification and qualification of impurities according to the ICH guidelines Q6B and Q5C. 

Related substances in impurity testing are usually detected and quantified by chromatographic 
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methods and the required stability indicating methods have to provide feasible retention times, 

selectivity and sensitivity for the proteins and the degradation products. This can become 

challenging due to high similarities in size, solubility, charge, hydrophobicity and 

detectability of the individual entities.  

Based on the available stability data of the individual proteins, an extensive formulation 

screen can be conducted to identify the available working space, where both proteins would 

show feasible stability profiles. In some cases, the proteins cannot be stabilized in the same 

formulation conditions because of their excessively different stability profiles. Pharmaceutical 

strategies to overcome this divergence depend on the individual drug properties. For example, 

an amphiphilic polymer was used to solubilize insulin glargine at neutral pH to enable a co-

formulation with insulin lispro.184 Further, insulin aspart and insulin degludec were 

successfully co-formulated by addition of high zinc concentrations to avoid the formation of 

mixed hexamers and thereby preserve the individual pharmacokinetic profile of both 

proteins.32  

In the course of the described formulation screen, it is important to analyze reference 

formulations of the individual proteins in the same formulation conditions and protein 

concentrations as the co-formulation. Cross-interactions between the proteins in the mixture 

can then be detected based on changes in stability-indicating parameters such as the 

aggregation onset temperature (Tagg), turbidity, or monomer recovery as detected by HP-

SEC.50,163 As discussed in I.3.4 the arising non-specific interactions in a given formulation 

depend on the surface charge, hydrophobicity and concentration of the individual proteins. 

The impact of these anticipated possible cross-interactions on the development of protein co-

formulations will be discussed in the following.  

Excessive attractive cross-interactions can promote more protein aggregation in  mixtures 

compared to the single protein formulations and can lead to the formation of heterogeneous 

cross-aggregates.164,168 These heterogeneous aggregates can show a different morphology 

compared to the individual homogenous protein aggregates and the possible formation of 

additional epitopes could change the immunogenicity compared to the individual drug 

products.190 To the best of the author’s knowledge, no published data is available on the 

possible impact of heterogeneous protein aggregates on the immunogenicity of co-

formulations. Nevertheless, these heterogeneous aggregates have to be considered as 

impurities according to the ICH guidelines Q6B and Q5C and have to be limited to ensure 

patient safety. Therefore, it is important to screen the relevant pH range at low and high ionic 
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strength conditions to select a pH where stability-compromising long-range electrostatic 

cross-interactions between the co-formulated proteins can be identified and avoided.7  

While long-range electrostatic forces can affect protein stability already at low protein 

concentrations, the short-range interactions become relevant at high protein concentrations. 

The co-formulation of multiple mAbs in a single subcutaneous injection device can improve 

the ambulant pharmacotherapy and patient compliance, but the limited volume that can be 

administered subcutaneously requires high protein concentrations to achieve the necessary 

drug load in a single injection.191 Thus, most mAb co-formulations will likely have elevated 

viscosities compared to the single mAb formulations based on the higher total protein 

concentrations. Moreover, the viscosity can further increase due to possible direct cross-

interactions,117 or due to promoted self-interactions by molecular crowding effects caused by 

the second protein.192 The protein interactions that can lead to a high viscosity of a given 

formulation can only be partially predicted by measurements at low concentrations,149,193–195 

and these predictions become even more complex for protein mixtures. Thus, the viscosities 

of the co-formulation and the respective single protein formulations should be measured to 

ensure an acceptable viscosity of about 15- 20 cP.196 It is interesting to note that the total 

volume that can be administered subcutaneously with a single injection can be increased to > 

3 mL by co-formulation with hyaluronidase,197–199 which allows the formulation of proteins at 

lower  protein concentrations to avoid excessive viscosities. 

Moreover, cross-interactions in protein co-formulations can also change with the folding 

states of the individual proteins, because cross-interactions and cross-aggregations may occur 

between (a) the native monomers of both proteins, (b) native protein 1 and (partially) 

unfolded intermediates of protein 2, or (c) (partially) unfolded intermediates of both 

proteins.163,164 The aggregation pathway for a given protein mixture has to be characterized to 

identify the rate-limiting step for protein cross-aggregation and optimize the formulation 

conditions accordingly. 

Despite the theoretical risk, several publications reported the absence of stability-

compromising cross-interactions in protein co-formulations,67,88,200 and several patents on the 

stabilization of mAb co-formulations were filed.91,201,202 Furthermore, it is also possible that 

protective protein cross-interactions would arise in protein co-formulations. It has been shown 

in several studies that sensitive proteins such as cytokines or enzymes can be stabilized by 

protein excipients, such as albumin.203–205 Several stabilizing mechanisms such as preferential 

exclusion, preferential hydration and reduction of dehydration-induced denaturation during 

lyophilization, and saturation of interfaces have been discussed in these studies. HSA is the 
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most common protein excipient that can be used to stabilize a protein drug.203 HSA can 

reduce the interfacial stress and act as a scavenger for reactive oxygen species,206 but has also 

been used in concentrations of at least 10 g/L for the stabilization of highly concentrated mAb 

formulations higher than 140 g/L, which resulted in reduction of both viscosity and particle 

formation compared to the single mAb formulations.207 It has also been reported that HSA can 

decrease the liquid-liquid phase separation (LLPS) temperatures of mAbs by attractive cross-

interactions that reduce the self-interactions and subsequently the required temperature for 

LLPS of the mAbs.208 These stabilizing effects are not limited to protein excipients, but can 

be also provided by active pharmaceutical ingredients (APIs). It has been reported that the 

degradation kinetics for a given mAb were reduced upon co-formulation with an excess of the 

respective Fab. Several possible mechanisms were postulated to explain this stabilization,51 

such as the molecular crowding induced by the excess of Fab, the molecular screening of 

aggregation-prone regions of the mAb by the Fab and the direct cross-interactions between 

mAb and Fab that limited mAb self-interactions. The presented approach to study the impact 

of macromolecular crowding effects on the individual protein degradation by addition of 

model crowding agents such as Ficoll70 can be useful to differentiate between electrostatic or 

hydrophobic cross-interaction between the proteins and promoted self-interactions of one 

protein in presence of the second protein due to molecular crowding effects.192  

Finally, multiple dosage strengths or different dosing ratios can be required to achieve the 

best clinical effect with a protein co-formulation. The stability testing should include all 

relevant mixing ratios because different mixing ratios can also affect cross-interactions and 

thus the stability profiles of the proteins. It has been shown that proteins can be stabilized by 

addition of an excess of a second protein.51,205 A first protein could stabilize a second protein 

at a mixing ratio of 10:1 due to screening of aggregation-prone monomers of the second 

protein. At a mixing ratio of 1:10, the stabilizing effect can be lower due to the increased 

concentration of the more aggregation-prone second protein. Thus, it is important to carefully 

evaluate the effects of protein cross-interactions at different ratios. On the other hand, high 

differences in the mixing ratio can complicate the purity testing for a given co-formulation. 

Low concentrations of impurities of the high concentrated protein that are detected during 

stability testing and that cannot be reliably identified as impurities of this high concentrated 

protein have to be assigned to the low concentrated protein in the mixture based on the worst 

case scenario.39 Moreover, it has been reported for fixed-dose combinations of small 

molecules that the presence of a second drug can accelerate impurity formation of another 
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drug by chemical interactions.209 This applies as well to protein co-formulations and it is 

possible that a given protein accelerates degradation of a second protein in the mixture.    

I.5 Aim of the thesis 

Based on the presented challenges that can arise in drug product development of protein 

co-formulations, multiple clinically established protein drugs will be co-formulated to study 

the arising protein interactions, their impact on the individual protein stability and the effect 

of important formulation parameters such as pH and ionic strength on these interactions.  The 

aim of this thesis is to identify feasible analytical approaches and formulation strategies to 

characterize and stabilize co-formulations of different therapeutic proteins. 

In Chapter II, two cytokines (EPO and G-CSF) will be co-formulated in a feasibility study 

to identify formulation conditions that provide sufficient protein stability for two model 

protein drugs with considerably different physicochemical properties. Stability-indicating 

methods will be developed to study the individual protein stability alone and in co-

formulations and accelerated stability studies will be conducted to assess the possibility to 

stabilize proteins with contradicting stability profiles within a real mixture. 

In Chapter III, biophysical methods will be applied to understand how the formulation 

conditions affect the stability and cross-interactions between EPO and G-CSF. High-

throughput methods such as DLS will be applied to test their ability to detect changes of the 

individual protein aggregation in the co-formulations depending on the respective formulation 

conditions. These methods could represent powerful tools to screen a wide range of different 

co-formulation conditions and their impact on protein cross-interactions in a short timescale 

and with low protein consumption. The feasibility of these methods for the detection of 

protein cross-interactions in co-formulations will be investigated. 

In Chapter IV, multiple clinically established mAbs will be analyzed by several 

computational tools to identify six mAbs that differ in net charge, charge distribution and 

CDR composition. A biophysical characterization of all possible binary mixtures of these 

mAbs will be conducted to compare the colloidal and conformational stability of the proteins 

alone and in combination in a wide range of formulation conditions. This experimental data 

will be used to identify mAb properties and formulation parameters that promote protein 

cross-interactions in mAb co-formulations.  

In Chapter V, trastuzumab and rituximab will be used as model proteins for a more 

detailed analysis of the protein stability of mAbs in co-formulations. Different ratios of both 

proteins will be analyzed to differentiate between self- and cross-interactions. Stability-
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indicating methods for co-formulations of both mAbs will be developed and forced 

degradation studies will be conducted to show how the stability of trastuzumab and rituximab 

is affected in the presence of different amounts of the second mAb. 

In Chapter VI, the in-use stabilities of DNase and r-tPa will be studied after dilution in 

standard saline solution. The subsequent application of both enzymes is an established clinical 

procedure for the treatment of pleural infections. A concurrent administration of both drugs 

would facilitate the clinical treatment, but the compatibility and in-use-stabilities of both 

enzymes upon concurrent administration remains unclear. Therefore, the individual drug 

products will be mixed in standard saline solution according to the targeted concurrent 

administration and the in vitro stabilities of both drugs will be compared to the single drug 

products. Analytical techniques will be developed to investigate if the degradation of DNase 

or r-tPa is affected in the presence of the second protein.  

Finally, Chapter VII provides a summary of the presented results on the development, 

characterization and stability of protein co-formulations in the context of the current state of 

the art and an outlook on the future work on protein co-formulations.  
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Chapter II  Rational development of a stable co-formulation 
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Parts of this chapter are published as:  

Krieg, D.; Svilenov, H.; Gitter, J. H.; Winter, G. Overcoming challenges in co-formulation of proteins with 

contradicting stability profiles - EPO plus G-CSF. Eur. J. Pharm. Sci. 2020, 141, 105073. 

https://doi.org/10.1016/j.ejps.2019.105073 

II.1 Introduction 

There is a steadily increasing interest in the development of stable co-formulations of two 

or more therapeutic proteins that can be combined in one primary package and simultaneously 

administered to patients.1 Such co-formulations can offer various benefits related to increased 

therapeutic efficacy, fewer side effects, lower number of injections, reduced costs and 

potential for intellectual property protection.1 Currently, most approved protein co-

formulations consist of one therapeutic protein, like a monoclonal antibody or a cytokine, and 

a second proteinaceous excipient, which aids the drug administration or acts as an excipient 

stabilizing the therapeutic protein. For example, some formulations of the monoclonal 

antibody trastuzumab include hyaluronidase to increase the maximum amount of drug 

solution that can be applied subcutaneously.2 Another example is the addition of human 

serum albumin (HSA) to stabilize cytokines like EPO (Erythropoietin), interferon alpha-2a 

and interferon beta-1b.3,4 Using a second protein as an excipient is a formulation approach 

that has been used for decades. However, the combination of two therapeutic proteins in one 

dosage form has only recently gained more popularity in the industry with several prominent 

examples of co-formulations being tested or approved for market use. This includes fixed-

dose-combinations of trastuzumab and pertuzumab,5 co-formulations of anti-PD-L1- and 

CTLA4-antibodies,6 and several marketed co-formulations of basal insulins with GLP-1 

receptor agonists.7 The approach to combine therapeutic proteins in one primary container is 

interesting but it raises several questions about the compatibility and stability of the combined 

proteins. Moreover, the comprehensive characterization of protein co-formulations/mixtures 

is usually related to significant analytical challenges.8 The analytical setup has to take 

different degradation pathways of each therapeutic protein into account. Understanding the 

origin of different degradation products can be complicated due to an insufficient separation 

between the two proteins with many chromatographic or spectroscopic methods. Here, we 

investigate a pair of two therapeutic model proteins, EPO and G-CSF (Granulocyte-Colony 

Stimulating Factor), which are interesting for co-formulation development from both clinical 
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and physicochemical perspective. Several clinical trials already investigated the clinical 

benefit of a combined EPO and G-CSF therapy of the myelodysplastic syndrome.9–11 Further 

clinical tests used this combination to improve stem cell mobilization,12 treatment of chronic 

stroke,13 or prevention of necrotizing enterocolitis in preterm neonates.14  

However, these two cytokines differ a lot in their structure and stability: EPO consists of 

165 amino acids and is a glycoprotein with approximately 40% of the molecular weight (30.4 

kDa) being carbohydrate.15 Several studies indicate the highest stability for this glycoprotein 

at physiological pH around 7.0 and reduced conformational stability at acidic pH.16–18 G-CSF 

is licensed as a drug in multiple subtypes: Filgrastim is the non-glycosylated form of G-CSF 

with an additional N-terminal methionine group, which is expressed in E.coli, lenograstim is 

the glycosylated form and expressed in CHO-cells, and pegfilgrastim is the PEGylated 

filgrastim.19 For our studies, filgrastim was used, a hydrophobic cytokine with maximum 

stability at pH 4.0 and low stability and fast aggregation at physiological pH.20–22 Due to these 

properties, obtaining a stable co-formulation of both proteins in one solution appears 

challenging, if not impossible.  

In this work, we share our experience and present a comprehensive study on the co-

formulation of two therapeutic proteins. We first applied thermal unfolding experiments to 

understand the effect of pH on the stability of both proteins alone or in co-formulation. We 

thereby identified promising starting solution conditions and applied short-term stress studies 

to investigate the stability of selected liquid co-formulations. Poor stability of the proteins in 

the liquid state led to the development of lyophilized co-formulations. Eventually, we 

achieved a stable reconstituted co-formulation by applying an elegant approach in which we 

dissolve the freeze-dried proteins with a buffer having pH different from the one used for the 

initial formulations before lyophilization. We studied the colloidal, chemical and 

conformational stability of the most promising protein co-formulation for up 12 months in 

comparison to the respective single protein formulations. Alongside the formulation 

development, we developed and applied feasible analytical methods for the characterization 

of EPO and G-CSF in co-formulations. 
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II.2 Materials and Methods  

II.2.1 Materials 

The bulk solution of EPO contained 2.0 g/L protein, the bulk solution of G-CSF 

(filgrastim) 4.0 g/L protein. Both bulk solutions were provided in this concentration from the 

manufacturer. The protein concentration was measured spectrophotometrically using an 

Agilent 8453 UV spectrophotometer (Agilent Technologies Deutschland GmbH, Böblingen, 

Germany) and an extinction coefficient at 280 nm of 1.24 (mg/mL)-1cm-1 for EPO and 0.86 

(mg/mL)-1cm-1 for G-CSF respectively. HEPES was obtained from VWR International GmbH 

(Darmstadt, Germany) and HP-β-CD from Wacker Chemie AG (Burghausen, Germany). All 

other chemicals were obtained from Sigma-Aldrich Chemie GmbH (Steinheim, Germany). 

All solutions were prepared with ultrapure water from a Sartorius arium® pro system 

(Sartorius Corporate Administration GmbH, Göttingen, Germany).  

II.2.2 Preparation of co-formulations 

For formulations #1-26, the single proteins were dialysed from the bulk solutions into 100x 

excess of the respective buffer at the given pH (see Tables 2, 3 & 4) for 24 hours at 2-8 °C 

using a Spectra/Por® dialysis membrane (cutoff 6-8 kDa, Spectrum Laboratories, Rancho 

Dominguez, CA, USA). The dialysis buffer was exchanged once after 8 hours. After dialysis, 

stock solutions of each excipient were prepared in the same buffer and mixed with dialysed 

protein solutions and dialysis buffer to obtain co-formulations with a concentration 0.5 g/L for 

each protein. pH was adjusted using a MP 220 pH meter (Mettler-Toledo GmbH, Gießen, 

Germany) to the targeted pH and formulations were filtered using a 0.2 µm cellulose acetate 

membrane filter (Whatman, FP 30/0.2 CA-S, GE Healthcare, Buckinghamshire, UK) into 2R 

Type I glass vials, closed with rubber stoppers and crimped.  

For formulations #27-30, all excipients except the surfactant were added already to the 

dialysis buffer, and surfactant was added after dialysis as a stock solution in the respective 

buffer system. 

II.2.3 Lyophilization 

Three lyophilization cycles were used: Cycle 1, Cycle 2 (optimized) and Cycle 3 (final 

cycle). References to the respective cycle are given in the text. The freeze-drying runs were 

performed either on a FTS Lyostar 3 (SP Scientific, Stone Ridge, USA) or on a Martin Christ 

Epsilon 2-6D (Martin Christ, Osterode am Harz, Germany). Both pilot-scale freeze-dryers are 

equipped with a comparative pressure measurement system containing of a Pirani pressure 

gauge and a capacitive manometer. 
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Cycle 1 was performed as follows: Shelf temperature was decreased from 20°C to -50 °C 

with a ramp rate of 1 °C/min and equilibration for 150 minutes. Then a vacuum of 0.05 mbar 

was used and shelf temperature was increased to -20 °C using a ramp rate of 1 °C/min. This 

temperature was held for 32 hours and then increased to 25 °C using a ramp rate of 1 °C/min. 

This temperature was held for 6 hours.  

Cycle 2 was performed as follows: Shelf temperature was decreased from 20°C to -50 °C 

with a ramp rate of 1 °C/min and equilibration for 240 minutes. A vacuum of 0.08 mbar was 

used and shelf temperature was increased to -23 °C using a ramp rate of 1 °C/min. This 

temperature was held for 23 hours and then increased to 25 °C using a ramp rate of 1 °C/min. 

This temperature was held for 6 hours. 

Cycle 3 was performed as follows: Shelf temperature was decreased from 20°C to -50 °C 

with a ramp rate of 1 °C/min and equilibration for 150 minutes. An annealing step was 

included by heating to -20 °C with a ramp rate of 1 °C/min and equilibration for 240 minutes. 

The shelf was cooled again to a temperature of -50 °C with a ramp rate of 1 °C/min and 

equilibration for 180 minutes. A vacuum of 0.08 mbar was used and shelf temperature was 

increased to 25 °C using a ramp rate of 1 °C/min. This temperature was held for 14 hours to 

allow for primary and secondary drying.  

For all cycles, venting was performed with nitrogen at 800 mbar with subsequent vial 

closing.   

II.2.4 High-throughput Fluorimetric Analysis of Thermal Protein Unfolding with 

nanoDSF 

nanoDSF was used to study the thermal unfolding and aggregation of the single proteins 

and the co-formulations as a function of pH. Eight different pH-values were tested after 

preparing single and co-formulations of EPO and G-CSF in 10 mM sodium citrate phosphate 

buffer pH 3.0, 4.0, 5.0, 6.0, 7.0, 7.5 and 8.0 with a concentration of 0.5 g/L per protein. The 

formulations were filled into standard glass capillaries (NanoTemper Technologies, Munich, 

Germany) and placed in the Prometheus® NT.48 (NanoTemper Technologies, Munich, 

Germany). A temperature ramp of 1 °C/min was applied from 20 to 95 °C. All measurements 

were performed in triplicates. The fluorescence intensity ratio (F350/F330) was plotted 

against the temperature and the apparent protein melting temperature (Tmapp) was derived 

from the maximum of the first derivative of each measurement using the PR.ThermControl 

V2.1 software (NanoTemper Technologies, Munich, Germany). In addition, the aggregation 

onset temperature (Тagg) from the increase in the signal from the aggregation detection optics 

was determined using the same software. 
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II.2.5 Circular dichroism (CD) 

Near-UV circular dichroic spectra were collected at 25 ⁰C with a Jasco J-810 

spectropolarimeter (JASCO Deutschland GmbH, Pfungstadt, Germany). 10 accumulations of 

each sample were taken at a speed of 20 nm/min, and measurements were performed in 

triplicates. The spectrum of the respective buffer was subtracted for each sample and 

smoothing of the single spectra was performed using the Savitzky-Golay algorithm with 7 

smoothing points.23 The specific ellipticity was calculated and used for comparison of the 

spectra. Quartz cuvettes with 10 mm wavelength path were used. 

To further elucidate the thermal unfolding of EPO and G-CSF at pH 4.0 and pH 7.0, a 

thermal ramp of 1 °C/min was applied from 20 °C – 85 °C and Far-UV absorption at 220 nm 

was plotted against temperature for single and co-formulations. Single and co-formulations 

contained 50 µg/mL per protein in 10 mM sodium citrate phosphate buffer. The raw data 

points are shown in Figs II.1C and II.1D and the data was fitted to a two-state unfolding 

model using the CDpal software.24 The respective fits are visualized as lines in Figs II.1C and 

II.1D.  

II.2.6 Flow Imaging Microscopy  

Flow Imaging Microscopy was used to study the formation of insoluble aggregates 

(subvisible particles) in the single and co-formulations with a FlowCam 8100 (Fluid Imaging 

Technologies, Inc., Scarborough, ME, USA). A 10x magnification cell was used. 160 µL 

were injected with a flow rate of 0.15 mL/min. Images were taken with an auto image frame 

rate of 28 frames/second, a sampling time of 60 seconds and particle identification was 

performed with distance to the nearest neighbor set to 3 µm, and particle segmentation 

thresholds set to 13 and 10 for the dark and light pixels respectively. The particle size was 

measured as the equivalent spherical diameter (ESD). For measurements and evaluation, the 

VisualSpreadsheet® 4.7.6 software was used.  

II.2.7 High-Performance Size Exclusion Chromatography (HP-SEC) 

High-Performance Size Exclusion Chromatography was performed on either an Agilent 

1100 (Agilent Technologies, Palo Alto, USA) equipped with a Dawn Heleos II detector 

(Wyatt Technologies Europe GmbH, Dernbach, Germany) for the HP-SEC-MALS 

measurements (Multiangle Light Scattering) or a Waters 2695 separation module (Waters 

GmbH, Eschborn, Germany) for the stability studies. 15 µg of EPO & G-CSF were injected 

on a Superose 12 10/300 GL column (GE Healthcare Life Sciences, Tokyo, Japan) after 

centrifugation at 10 000 x g for 10 min and the elution of the protein was detected by UV 
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spectrometry at 280 nm. 100 mM sodium phosphate pH 7.0 with 0.05 % NaN3 was used as 

mobile phase. Monomer recovery was calculated by integration of the peak area and relative 

comparison of this peak area before and after lyophilization/storage. A sample chromatogram 

is provided in Figure II.6. 

II.2.8 Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC) 

A Dionex Ultimate 3000 system (Thermo Fisher, Dreieich, Germany) was used for the 

reversed-phase high-performance liquid chromatography. 20 µL were injected on a BioBasic 

C18, 250 x 2.1, 5 µm column (Thermo Fisher, Dreieich, Germany) after centrifugation at       

10 000 x g for 10 min. Detection was performed by UV spectrometry at 280 nm and 

flurorescence spectrometry with emission at 330 nm after excitation at 280 nm. To achieve 

feasible separation of both proteins and chemical altered entities, the given gradient scheme in 

Fig. II.6B was applied. Equilibration of the system at 20 % B was necessary to prevent elution 

of EPO with the void volume. Eluent A consisted of 10 % (w/v) acetonitrile and 0.1 % (w/v) 

trifluoracetic acid in ultrapure water. Eluent B consisted of 0.1 % (w/v) trifluoracetic acid in 

acetonitrile. The flow rate was 0.2 mL/min. The column oven temperature was set to 37 ⁰C.  

II.2.9 Differential Scanning Calorimetry (DSC) 

Differential Scanning Calorimetric Analysis was performed on a DSC 214 Polyma 

(Netzsch-Gerätebau GmbH, Selb, Germany). 5 to 10 mg of each sample was weighted into 

aluminum crucibles in a nitrogen-purged glove box. A temperature ramp of 10 °C/min was 

applied from 10 to 200 °C. The Proteus® Analysis 7.10 software was used for data analysis. 

The measurements were performed in triplicates.   

II.2.10 Gas adsorption (BET) 

Gas adsorption according to the BET theory (Brunauer Emmet Teller) was applied to 

measure the specific surface area (SSA) of lyophilized single and co-formulations. The 

measurements were performed on a Quantachrome Autosorb 1 (3P Instruments, Odelzhausen, 

Germany). 50 mg of each lyophilization cake were crushed, put into a sample tube and 

degassed for at least 2 h at ambient temperature using the degassing function of the Autosorb-

1. The Krypton sorption at 77 K was measured at 11 data points over a relative pressure p/p0 

ranging from 0.05 to 0.3. The Multipoint BET data evaluation function of the Autosorb 1 

software v1.55 was used for data analysis. The measurements were performed in triplicates.  
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II.2.11 Karl Fischer Titration 

The residual moisture of the lyophilization cakes was determined by Karl Fischer titration 

using an Aqua 40.00 titrator equipped with a headspace module (Analytik Jena AG, Jena, 

Germany). The lyophilization cakes were pulverized in a glove box (< 10 % relative 

humidity) and 15 – 30 mg of each sample were used for analysis. The oven temperature was 

set to 100 °C. The measurements were performed in triplicates.     

II.2.12 X-ray Powder Diffraction (XRD) 

Crystallinity of sucrose and mannitol was measured using a XRD 3000 TT diffractometer 

(GE Sensing & Inspection Technologies GmbH, Ahrensburg, Germany). A copper anode at 

40 kV and 30 mA was used to generate CuKα radiation (λ= 0.15417 nm). The lyophilization 

cakes were pulverized and the powder was placed on a copper sample holder. Powder 

diffraction was measured ranging from 5° to 45° 2-θ in 0.05° measurement intervals at a hold 

time of 2 seconds for each measurement angle.  

II.3 Results and Discussion 

II.3.1 Screen for optimal pH  

EPO and G-CSF differ greatly in the pH of their marketed formulations. EPO is usually 

formulated at physiological pH, while G-CSF is formulated at pH 4.0. A first step to obtain a 

stable co-formulation of both proteins in one solution is to determine an optimal pH for this 

combination. We used nanoDSF to study the behavior of both proteins in single and co-

formulations of pH-values ranging from pH 3.0 to 8.0 (See Fig. S.II.1 in the supplementary 

data). A low concentration of 10 mM sodium citrate/phosphate buffer was used because G-

CSF is known to aggregate in solutions with high ionic strength.25 No clear fluorescence 

transition of EPO was detected with nanoDSF, therefore we focused on the transition of G-

CSF in single and co-formulations. As shown in Fig. II.1A, the apparent melting temperature 

(Tmapp) of G-CSF is highest at pH 3.0, decreases with increasing pH up to pH 6.0 and rises 

again at pH 7.0 to 8.0. Since the Tagg values of G-CSF decrease with increasing concentration 

in DSF,26 heat-induced protein aggregation at concentrations of 0.5 g/L may affect the melting 

transitions.27 Therefore, the measurements characterize the behavior of G-CSF for the targeted 

formulation concentration, but deviate from already published melting transitions, which were 

measured in lower concentrations and different composition.28 If aggregation occurs around 

the melting temperature of the protein in the intended concentration, this will shift the 

apparent melting temperature to lower values which will indicate lower stability and thus the 
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interpretation that a lower Tmapp is related to lower stability will still be correct.29 The Tagg 

values of G-CSF are significantly decreased in co-formulation with EPO at pH-values below 

6.0 and above pH 7.0 compared to the single protein formulation (See Fig. II.1B). Based on 

preliminary measurements, we assume that the decreased Tagg values for the co-formulation 

may be caused by attractive electrostatic interactions, since EPO and G-CSF show opposite 

zeta potentials at pH 4.0 (-6.8 ± 1.5 mV for EPO and 22.4 ± 0.3 mV for G-CSF, see Chapter 

III). The electrostatic attraction may accelerate aggregation. This may also explain why the 

co-formulation exhibits aggregation at pH 3.0 while the G-CSF single formulation does not 

and moreover, why the aggregation is facilitated at pH-values < 6.0.  

We also compared the thermal unfolding of both proteins in single and co-formulations at 

pH 4.0 and pH 7.0 using CD-spectroscopy (See Figs. II.1C and II.1D). It has already been 

shown for G-CSF alone, that the transition determined by ellipticity change at 220 nm is 

higher at pH 4.0 compared to pH 7.0.30,31 We show here that the presence of EPO has a 

slightly destabilizing effect on the thermal stability of G-CSF at pH 4.0, as indicated by a 

decreased apparent melting temperature. EPO does not show any transition at pH 4.0 in 

contrast to pH 7.0, which indicates a loss of structure already at room temperature at pH 4.0 

for EPO, which was already shown in the literature.16 At pH 7.0, CD-spectroscopy is not able 

to resolve the transitions of the two proteins as observed in the respective single formulations 

but gives only one transition for the co-formulation. Still, the measured melting transition of 

the co-formulation fit resembles the calculated mean of the single formulation fits (data not 

shown), which does not indicate any destabilizing effect on the melting events by the presence 

of the second protein at pH 7.0. The transitions in secondary structure confirm the nanoDSF 

results with the higher melting temperature for G-CSF at pH 4.0 compared to pH 7.0 (70.6 °C 

for pH 4.0 and 63.0 °C for pH 7.0) and the lower melting temperatures in co-formulations 

(66.3 °C for pH 4.0 and 59.2 °C for pH 7.0). The used concentrations for CD-measurements 

(0.05 mg/mL per protein) are lower than the ones in targeted formulations (0.5 mg/mL per 

protein). Therefore, it is not possible to directly compare the melting transitions given by 

nanoDSF and CD measurements, as the melting transitions by nanoDSF may be affected by 

concentration-dependent protein aggregation. In fact, nanoDSF provides the apparent melting 

of the proteins in the targeted co-formulation concentration which is still indicative for the 

protein stability.29 In total, there is no indication for severe destabilization of G-CSF in the co-

formulation at physiological pH. In fact, the co-formulation tends to reduce the aggregation of 

G-CSF at physiological pH compared to the single formulation as no light scattering was 
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observed in the co-formulations at pH > 7.0 in the nanoDSF measurements (See Fig. II.1B). 

Hence, we performed a first formulation screen at physiological pH.   

 

 

II.3.2 Liquid co-formulations pH 7.5 

Based on the results of the pH-screen, we identified a pH-range from 7.0-7.5 to be the most 

feasible starting point for liquid co-formulations, as no aggregation was detected in thermal 

unfolding experiments in co-formulations (See Fig. II.1B). In a first excipient screen, 12 

formulations were prepared and stored at 40 °C for 1 week (See Table II.1A). It was 

anticipated that the formulation of G-CSF at this pH requires low ionic strength because it has 

been shown previously that elevated salt concentrations destabilize protein structure and 

facilitate aggregation of G-CSF.21,25 Sugars, sugar alcohols, surfactants, cyclodextrins and 

Figure II.1. Results of thermal unfolding for single and co-formulations. (A) Tmapp values and (B) Tagg values 

for G-CSF in single and co-formulations determined with nanoDSF. For EPO, no Tmapp values could be 

determined and no aggregation occurred in single formulations of EPO. Asterisks indicate that no 

aggregation was detected. (C) Transition in ellipticity at 220 nm against temperature for (C) pH 4.0 and (D) 

pH 7.0, measured by CD-spectroscopy.      
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amino acids were tested for potential stabilization of both proteins. Polysorbate 20 was 

selected as a surfactant because of its common use in protein formulation and reduced risk for 

autoxidation compared to polysorbate 80, which may be beneficial for the formulation of G-

CSF at pH 7.5.22,32  

 

A  1st excipient screen for liquid co-formulations pH 7.5 

 

B 2nd excipient screen for liquid co-formulations pH 7.5 

C  excipient screen for lyophilized co-formulations pH 7.5 

D  excipient screen for lyophilized co-formulations pH 4.0 

Table II.1. Co-formulation compositions (A) liquid co-formulations pH 7.5, stored at 40°C for 1 week. (B) liquid 

co-formulations pH 7.5 stored at 25 °C for 8 weeks. (C) lyophilized co-formulations pH 7.5 stored at 40 °C for 6 

weeks. (D) lyophilized co-formulations pH 4.0 after lyophilization. Formulation #26 was stored at 25 °C for 4 

weeks. 
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The results of this first excipient screen are shown in Fig. II.2. In general, no formulation 

was able to stabilize both proteins in the given conditions. However, first information about 

potential stabilizing effects was collected. Trehalose significantly increased monomer 

recovery of G-CSF, while no difference in monomer recovery of EPO and subvisible particle 

count could be observed. This effect was leveled by the addition of polysorbate 20. It has 

already been shown that elevated concentrations of polysorbate 20 can accelerate the 

oxidation of methionine residues in G-CSF, although less than polysorbate 80.22 However, the 

results also indicate that addition of a surfactant is necessary to prevent protein aggregation 

because the number of subvisible particles increased significantly in absence of polysorbate 

20. The addition of methionine did not prevent oxidation, which indicates the severe 

sensitivity of G-CSF towards chemical degradation at pH 7.5 (data not shown). The nanoDSF 

only detects heat-induced conformational changes and aggregation but does not take into 

Figure II.2. Results of RP-HPLC and Flow Imaging Microscopy for prepared liquid co-formulations at pH 7.5. 

(A, B) formulations stored at 40 °C for 1 week. (C, D) formulations stored at 25 °C for 8 weeks. See Table II.1 

for formulation compositions. 
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account chemical degradation. Still, the surfactant-free formulation #3 indicated that a co-

formulation may be possible at this pH if the concentration of polysorbate 20 is set high 

enough to prevent particle formation but low enough to prevent G-CSF degradation. 

Therefore, a second formulation screen was performed at pH 7.5, where the concentration of 

polysorbate 20 was reduced to 0.01 % (w/v), which is still above the CMC (Critical Micelle 

Concentration, ~0.007 % w/v).33 The formulations are shown in Table II.1B and the 

respective results in Figs. II.2C and II.2D. The storage temperature was reduced to 25 °C to 

allow better differentiation between the different excipients and to prevent overstressing. 

Methionine was added to each formulation to reduce oxidation as far as possible, and HEPES 

was selected because it improved the stability of G-CSF at physiological pH in previous 

studies.34,35 Trehalose was selected because of its performance in the first excipient screen and 

proline was selected because previous studies indicate unspecific mechanisms for protein 

refolding, which may reduce the formation of unstable conformational intermediates of G-

CSF at pH 7.5.36,37  

No formulation was able to sufficiently stabilize both proteins upon storage at 25 °C for 8 

weeks. However, HEPES increased monomer recovery and decreased counts of subvisible 

particles compared to histidine and Tris. Both trehalose and proline slightly increased the 

monomer recovery of G-CSF, but concurrently increased particle formation. Flow-Imaging 

analysis also revealed the formation of large protein fibers > 25 µm in each formulation, 

probably caused by an insufficient amount of surfactant. Based on these results, we concluded 

that the surfactant concentration cannot be reduced further without causing the formation of 

protein fibers and that the chemical stability of G-CSF at pH 7.5 is insufficient to obtain stable 

liquid co-formulations. Hence, lyophilization was tested as a tool to enable co-formulation of 

both proteins at pH 7.5 in the solid state.        

II.3.3 Lyophilized co-formulations pH 7.5 

The compositions of the lyophilized co-formulations are shown in Table II.1C. Cycle I 

(See II.2.3.) was used for this formulation screen. Four combinations of HEPES, methionine, 

sugar/sugar alcohol and polysorbate 20 were tested. The formulations were stored at 40 °C for 

6 weeks. 

The results are shown in Figs. II.3A and II.3B. Protein recovery was significantly 

improved for G-CSF, but no formulation was able to stabilize both proteins to achieve > 95 % 

monomer recovery after reconstitution. No significant difference in subvisible particle 

formation was observed between the co-formulations. Further excipients (arginine 

hydrochloride, proline, phenylalanine and combinations) were tested, but had no positive 
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effect on monomer recovery (data not shown). Still, fiber formation of G-CSF was not 

inhibited by any formulation. Therefore, we concluded that it is not possible to stabilize both 

proteins at pH 7.5 because of the high sensitivity of G-CSF during freezing and lyophilization 

in this condition. Although the EPO structure is perturbed at pH 4.0,16,17,38 we hypothesized 

that a co-formulation of both proteins at pH 4.0 might be possible, assuming that the 

unfolding of EPO is reversible and aggregation can be suppressed. The short-time exposure of 

EPO to pH 4.0 in the liquid state during dialysis and processing may not necessarily induce 

significant aggregation. Upon reconstitution with a reconstitution medium with sufficient 

buffering capacity, a pH-shift from pH 4.0 to pH 7.0 may refold EPO without affecting the 

stability of G-CSF negatively. Using this approach, it would only be necessary to stabilize G-

CSF at pH 7.0 for a short time after reconstitution. So, the next step was the development of a 

lyophilized co-formulation at pH 4.0.       

 

 

 Figure II.3. Results of RP-HPLC and Flow Imaging Microscopy for prepared lyophilized co-formulations. (A, 

B) formulations pH 7.5 stored at 40 °C for 6 weeks using Cycle I. (C, D) formulations pH 4.0 after lyophilization 

using Cycle II. Asteriks indicate that recovery for formulation #26 is given after storage at 25 °C for 4 weeks. See 

Table II.1 for formulation compositions.  
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II.3.4 Lyophilized co-formulations pH 4.0 

Based on previous results, five formulations were prepared with lyophilization cycle II 

(See Table II.1D).  

The results are presented in Figs. II.3C and II.3D. The monomer recovery in RP-HPLC 

was > 95 % for both proteins in all formulations. Hence, we concluded that independent of 

further excipients and surfactant concentration, G-CSF can be stabilized in lyophilized co-

formulations at pH 4.0. Subvisible particle analysis showed increased particle formation, 

which may be related to electrostatic attraction between the differently charged proteins at pH 

4.0. Formulation #26 with 0.01 % polysorbate 20 showed the lowest subvisible particle 

numbers and was therefore stored at 25 °C for 4 weeks. The monomer recover was still high 

after storage, but elevated subvisible particle numbers indicated that higher surfactant 

concentrations may be necessary for sufficient stabilization of both proteins at pH 4.0. 

Therefore, further optimization of formulation, composition, lyophilization cycle and 

reconstitution medium was performed.  

II.3.5 Lyophilized co-formulations pH 4.0 with optimized reconstitution medium 

In the next step, four co-formulations were prepared using a rather aggressive 

lyophilization cycle with an additional annealing step to ensure complete crystallization of the 

bulking agent mannitol (Cycle III, see Table II.2). As mentioned in II.2.2, all excipients 

except the surfactant were already added to the dialysis buffer, and a surfactant was added 

after dialysis from a stock solution in the respective buffer system. WFI (water for injection) 

was used as a reference reconstitution medium and compared to 3 reconstitution media: 20 

mM sodium phosphate pH 7.0, 100 mM HEPES pH 7.0 and 100 mM arginine phosphate pH 

7.0. After reconstitution, the samples for CD spectroscopy were directly analyzed, while the 

vials for analysis by RP-HPLC, HP-SEC and Flow Imaging Microscopy were stored at 25 °C 

for 1 hour before analysis.  

As shown in Fig. II.4, the monomer recovery in RP-HPLC and HP-SEC was > 95 % for all 

formulations after lyophilization. Hence, we concluded that it is possible to stabilize EPO in a 

lyophilized co-formulation at pH 4.0 without inducing protein aggregation. The reconstitution 

medium had no significant impact on the monomer recovery. Subvisible particle formation 

was low after reconstitution with WFI or 20 mM sodium phosphate pH 7.0, while 

reconstitution with HEPES and particularly arginine buffers promoted particle formation. No 

fiber formation of G-CSF was detected for any formulation. Based on these results, it can be 

shown that G-CSF is stable in reconstituted solutions at pH 7.0 for at least one hour and the 

pH-shift does not trigger degradation. Also, the unfolding of EPO is reversible by an 
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appropriate reconstitution medium, because the almost complete loss of tertiary structure as 

monitored by Near-UV CD spectroscopy can be reversed by the pH shift upon reconstitution 

with any reconstitution buffer, but not with WFI (data not shown for these formulations, see 

II.3.6. for refolding in final co-formulation). The secondary structure of G-CSF is not 

negatively affected and the regained structure of EPO upon reconstitution with 20 mM 

sodium phosphate pH 7.0 can also be observed in co-formulations.  

 

 

 

 

II.3.6 Final co-formulation of EPO and G-CSF 

Based on these results a stability study was set up to investigate the stability of the 

prepared co-formulations at different temperatures up to 12 months. The final co-formulation 

consisted of 2 mM sodium citrate, 4 % mannitol, 1 % sucrose, 20 mM methionine and 0.1 % 

polysorbate 20, pH 4.0. 50 mM sodium phosphate pH 7.0 was selected as a reconstitution 

buffer. Single formulations of both proteins were prepared as a comparison.  

As shown in Fig. II.5, Near-UV CD spectroscopy confirmed the refolding of EPO in single 

and co-formulations upon reconstitution with 50 mM sodium phosphate pH 7.0. The buffer 

capacity was still not high enough to reach pH 7.0 but a comparison to the reference indicated 

refolding of the formerly unfolded EPO. In addition, we were able to show that the co-

formulation spectrum could be calculated from the respective single protein spectra. The 

 Excipient screen for buffered reconstitution medium 

 
Table II.2. Lyophilized co-formulations at pH 4.0 with optimized reconstitution volume. 

Figure II.4. Results of HP-SEC (A), RP-HPLC (B) and Flow Imaging Microscopy (C) for prepared 

lyophilized co-formulations pH 4.0 with optimized reconstitution volume. See Table II.2 for formulation 

compositions. 
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predicted co-formulation spectrum was in line with the calculation and indicated refolding of 

EPO in the co-formulation.     

 

 

The results for the stability study of the final co-formulation are presented in Figs. II.7 and 

II.8. No differences between the single and co-formulations were observed in HP-SEC, RP-

HPLC, Flow Imaging Microscopy and Near-UV CD spectroscopy before and after 

lyophilization, and after storage at 4 °C for 12 months (See Figs. II.5 and II.7). For both 

proteins, monomer recovery was > 95 % in HP-SEC and RP-HPLC in the single and co-

formulations. After storage at 25 °C for up to 6 months, the co-formulation showed 

comparable monomer and protein recovery compared to the single formulation of EPO and 

significantly higher monomer recovery in HP-SEC and protein recovery in RP-HPLC 

compared to the single formulation of G-CSF. After storage at 25 °C or 40 °C for 3 months, 

no difference was detected for EPO in single and co-formulations, while G-CSF showed 

significantly higher monomer and protein recovery as well as significantly reduced particle 

Figure II.5. Results of Near-UV CD spectroscopy for the final co-formulation before (A) and after 

lyophilization (B). The reference formulation (C, D) consisted of 10 mM HEPES, 4 % mannitol, 1 % 

sucrose, 20 mM methionine, 0.1 % polysorbate 20, pH 7.0.  
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counts in the co-formulation (See Figs. II.6 and II.7). Figs. II.6C and II.6D illustrate the 

stabilizing effect of EPO on G-CSF monomer recovery in HP-SEC and protein recovery in 

RP-HPLC in the co-formulation compared to the single formulation. It is further interesting to 

note that after storage at 25 °C or 40 °C, the reconstituted single formulation of G-CSF 

appeared cloudy, while the reconstituted co-formulation remained clear (See Fig. II.8B). 

 

 

Although it was already reported that proteins can act as excipients for hydrophobic 

protein drugs,39 it was surprising that G-CSF was stabilized by the presence of low 

concentrations of EPO. It is further interesting to note that directly after lyophilization, no 

difference in protein stability was detected between single and co-formulations of G-CSF by 

Figure II.6. (A) Example HP-SEC-MALS chromatogram for the separation of the single proteins in co-

formulations. The identities of the protein peaks were confirmed by molar mass measurements via MALS. 

For SEC-MALS measurements, 50 µg of each protein were injected to achieve an acceptable signal-to-noise 

ratio for molecular weight determination. (B) Example RP-HPLC chromatogram for a co-formulation of EPO 

and G-CSF. The applied gradient for RP-HPLC is plotted on the second axis and also given in numbers. (C) 

Example HP-SEC chromatograms from the stability study of the final co-formulation (green) in comparison 

to the single formulations (red and yellow). (D) Example RP-HPLC chromatograms from the stability study 

of the final co-formulation (green) in comparison to the single formulations (red and yellow). 
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any of the applied methods (See Fig. II.7). The differences in the stability of G-CSF in single 

and co-formulations arose during storage of the lyophilization cake. It is tempting to discuss 

several possible mechanisms for the stabilization of G-CSF:  

First, the presence of EPO could cause a steric hindrance for the aggregation-prone 

residues of G-CSF and statistically reduce contact events of these residues. However, this 

explanation is only reasonable if G-CSF does not co-aggregate with EPO in the co-

formulation. Until now, it is unclear, if the subvisible particles of the co-formulation consist 

of pure G-CSF or both proteins. The recovery rates of G-CSF in HP-SEC and RP-HPLC were 

increased by the presence of EPO, while the presence of G-CSF only had little effect on the 

recovery rates of EPO. This is a slight indication that the presence of EPO reduces particle 

formation of G-CSF rather than causing co-aggregation and formation of mixed protein 

particles. However, additional experiments are required to demonstrate the presence or 

absence of mixed aggregates in the co-formulation.  

Second, an electrostatic attraction of both proteins towards each other can be expected 

based on the different zeta potentials and the low ionic strength of the formulation, as 

discussed in section II.3.1. As the colloidal stability of native G-CSF is high at low pH and 

low ionic strength,21 it is likely that the protein aggregation rate in the given formulation is 

limited by the conformational stability of G-CSF. G-CSF easily aggregates at interfaces,40 

most likely due to surface-induced unfolding and subsequent aggregation of partially unfolded 

intermediates.41 The electrostatic attraction towards EPO could reduce detrimental 

interactions of G-CSF with interfaces. Subsequently this would reduce the number of partially 

unfolded, aggregation-prone species of G-CSF, without triggering the co-aggregation together 

with EPO based on the specificity of the aggregation-prone regions of the single proteins. The 

reduced interface-mediated unfolding could also explain the improved chemical stability of 

G-CSF in co-formulation, although the impact of protein conformation on oxidation of 

methionine residues in proteins remains poorly understood.42–45 A characterization of the 

protein conformations in the solid state by solid state HDX-MS could be a valuable approach 

to study conformational changes of G-CSF in single and co-formulation in the lyophilized 

cake during storage.46 
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Figure II.7. Results of HP-SEC (A, B), RP-HPLC (C, D), Flow Imaging Microscopy (E) and Near-UV CD 

spectroscopy (F) for the conducted stability study of the final co-formulation.  
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Finally, the heavily glycosylated EPO could also provide an additional amorphous matrix 

in the lyophilization cake and provide hydrophilic groups (e.g. the sialic acids), that form 

additional hydrogen bonds and subsequently stabilize the native folding state of G-CSF. This 

explanation is supported by the results of the solid state analysis. The additional endothermic 

event at about 150 °C in DSC as well as the additional peaks in XRD that arose after storage 

at 25 °C for 12 months indicate the presence of crystalline sucrose (See Fig. II.9).47 The 

lyophilization cakes exhibited macroscopic cake shrinkage at elevated storage temperature, 

but not upon storage at 2-8 °C (See Fig. II.8), and these cake contractions can indicate cake  

 

 

collapse,48 which is further indicated by the reduced specific surface areas (SSA) measured by 

gas adsorption (See Fig. II.8). Both cake shrinkage and reduced SSA could be directly caused 

by sucrose crystallization. If sucrose crystallizes at elevated temperatures during storage, the 

stabilization of G-CSF by water replacement is compromised.49 It has already been discussed 

Figure II.8. Results of Gas adsorption and Karl Fischer titration for single and co-formulations after 

lyophilization and after storage at 25 °C for 12 months (A). Freshly reconstituted solutions of EPO (left), G-

CSF (middle) and the co-formulation (right) after storage at 25 °C for 6 months (B). Lyophilization cakes for 

EPO (left), G-CSF (middle) and the co-formulation (right) after storage at 25 °C for 12 months (C). 

Lyophilization cakes for EPO (left), G-CSF (middle) and the co-formulation (right) after storage at 4 °C for 12 

months (D).   
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that several proteins can stabilize enzymes by water replacement during freeze-drying,50 

although not as effective as disaccharides due to steric hindrance. Thus, the heavily 

glycosylated EPO could stabilize G-CSF by water replacement in this specific formulation, 

where sucrose crystallizes during storage at elevated temperatures due to increased monomer 

mobility. Besides crystallization, also hydrolysis of sucrose into its components glucose and 

fructose during storage at elevated temperatures can be anticipated. Before lyophilization, the 

used formulation has a pH value of 4.0, and the water content of the lyophilization cakes is 

about 0.5 – 1 % (See Fig. II.8). It has previously been studied that amorphous sucrose gets 

easily hydrolyzed in the solid state by citric acid at elevated temperatures even in low levels 

of residual moisture.51 Thus, it can be anticipated that G-CSF remains stable in single 

formulations upon storage at 2-8 °C because sucrose does not crystallize or degrade into 

glucose and fructose. However, no data for the solid state analysis at 2-8 °C is available.   

Figure II.9. Results of DSC analysis for the single and co-formulations after lyophilization (A) and after storage 

at 25 °C for 12 months (B). Results of XRD analysis for the single and co-formulation after lyophilization (C) 

and after storage at 25 °C for 12 months (D). The dashed green lines reflect characteristic diffraction peaks for 

sucrose (D), and the dotted grey lines reflect the peaks for δ-Mannitol (D), both taken from Horn et al.52    
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II.4 Conclusion 

In this study, we present a systematic approach to stabilize two physicochemically very 

different protein drugs in one formulation. It is shown that the most stable formulation 

conditions of the single proteins would exclude each other due to the high sensitivity of the 

single proteins towards certain solution conditions. However, the knowledge and exploitation 

of the individual stability profiles still allows the co-formulation of such different proteins as 

EPO and G-CSF. The screen for an optimal pH-value via nanoDSF and CD-spectroscopy led 

to the liquid formulation at pH 7.5, where oxidation and aggregation of G-CSF could not be 

inhibited. Lyophilization at pH 7.5 improved monomer recovery of both proteins but was not 

able to maintain > 95 % monomer and protein recovery for both proteins after reconstitution. 

Lyophilization of formulations with pH 4.0 increased the stability of both proteins but led to 

unfolding of EPO. Although EPO is unfolded at pH 4.0, the co-formulation provides 

sufficient stabilization of the respective proteins at pH 4.0 in the solid state during storage, 

while the subsequent pH-shift upon reconstitution with medium having pH 7.0 allows 

refolding of EPO without inducing aggregation or oxidation at pH 7.0 in the liquid state. 

Although only little work has been published about the impact of the reconstitution medium 

on protein stability,53,54 it turned out that selection of the reconstitution medium is the key to 

enable a stable co-formulation of EPO and G-CSF. We further demonstrate that a protein drug 

can be stabilized in the solid state through co-formulation with a second protein drug. 

However, the impact of this co-formulation approach on biological activity and toxicity of 

both proteins has not yet been studied. Future work should focus on the development of in 

vivo assays which will allow the testing for toxicity and biological activity of proteins in co-

formulations. 
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II.6 Supplementary data to Chapter II 

 

A                     B 

C D  

E  F  

        

Figure S.II.1. Thermal unfolding by nanoDSF (A, C, E) and nanoDSF backscattering (B, D, F) for EPO (A, B), 

G-CSF (C, D) and the co-formulations (E, F). The measurements were performed in triplicates and the 

respective mean values are shown.   
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Chapter III  Studies on pH- and salt-dependent protein 

                  aggregation of EPO and G-CSF in binary mixtures 
 

III.1 Introduction 

As already described in Chapter I, protein co-formulations gain increasing interest for the 

treatment of various diseases. However, the stabilization of multiple proteins in one solution 

can become challenging, because the optimal formulation conditions for the individual protein 

drugs can be very different.1 A co-formulation might often require conditions that are 

suboptimal for the individual proteins, but satisfactory to achieve sufficient stability of both 

drugs simultaneously. That is why the degradation in co-formulations might be more 

pronounced compared to the individual most stable formulations of each protein. In co-

formulations, protein aggregation can be caused by self-association or hetero-association of 

the inherited proteins. Thus, the development of stable protein co-formulation drug products 

has to evaluate the risk for arising stability-compromising cross-interactions between the 

different proteins.   

Many analytical techniques that are established to study protein interactions are optimized 

for highly specific protein interactions with high affinities, such as interactions between mAbs 

and antigens or between receptors and specific ligands. These protein interactions provide 

information about physiological or pathological protein functions and signaling pathways 

based on the formation of biologically active protein complexes, but they are very different 

compared to the unspecific protein interactions that may arise in protein co-formulations. The 

therapeutic proteins that are to be combined in one dosage form are in general not expected to 

form specific dimeric complexes with defined complex structure and lifetime.2  

However, the unspecific protein interactions based on long-range or short-range 

electrostatic forces can impact protein stability in vitro both in low and high concentrated 

protein solutions.3  

Based on the results of Chapter II, EPO and G-CSF were selected as model proteins to 

characterize protein interactions that may arise in co-formulations. High-throughput screening 

tools that are applied in early formulation development were used to characterize these 

interactions without labeling or immobilization directly in solution at low volume and with 

low protein consumption. Single and co-formulations of EPO and G-CSF in either 5 mM 

sodium acetate or 5 mM sodium phosphate were prepared and the thermal aggregation 

patterns of these formulations were studied by nanoDSF backscattering and DLS. Increasing 

amounts of NaCl were added to further characterize the effect of the electrostatic interactions 
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on protein aggregation in single and co-formulations. The presented data indicates that 

stability-compromising heterogeneous interactions between different proteins can be indicated 

by decreased aggregation onset temperatures. The applied high-throughput methods are able 

to detect these interactions in early formulation development and can identify beneficial 

formulation conditions that either reduce attractive protein interactions or increase repulsive 

protein cross-interactions. We further confirmed the predicted detrimental cross-interactions 

by accelerated degradation studies.   

III.2 Materials and Methods   

III.2.1 Materials 

As stated in Chapter II, the bulk solution of EPO contained 2.0 g/L protein, the bulk 

solution of G-CSF (filgrastim) 4.0 g/L protein. Both bulk solutions were provided in this 

concentration from the manufacturer. The protein concentration was measured 

spectrophotometrically using an Agilent 8453 UV spectrophotometer (Agilent Technologies 

Deutschland GmbH, Böblingen, Germany) and extinction coefficients at 280 nm of 1.24 

(mg/mL)-1cm-1 for EPO and 0.86 (mg/mL)-1cm-1 for G-CSF. Human serum albumin (HSA), 

lysozyme and all chemicals were obtained from Sigma-Aldrich Chemie GmbH (Steinheim, 

Germany). All solutions were prepared with ultrapure water from a Sartorius arium® pro 

system (Sartorius Corporate Administration GmbH, Göttingen, Germany).  

III.2.2 Preparation of protein formulations 

EPO and G-CSF were dialyzed from the bulk solutions into 100x excess of the either 5 

mM sodium acetate pH 4.0 or 5 mM sodium phosphate pH 7.0 for 24 hours at 2-8 °C using a 

Spectra/Por® dialysis membrane (cutoff 6-8 kDa, Spectrum Laboratories, Rancho Dominguez, 

CA, USA). The dialysis buffer was exchanged once after 8 hours. The dialyzed protein 

solutions were either diluted with buffer to obtain single protein formulations at concentration 

of 0.5 to 1.0 g/L or mixed to obtain co-formulations with a concentration 0.5 g/L for each 

protein. HSA and lysozyme were directly dissolved in either 5 mM sodium acetate pH 4.0 or 

5 mM sodium phosphate pH 7.0 and diluted to the targeted concentration of 0.5 g/L to 1 g/L 

in the single formulations and 0.5 g/L per protein in the co-formulations. 1 M NaCl stock 

solutions in the respective buffer were spiked into the formulations to achieve concentrations 

of 0, 20, 50, 100 and 200 mM NaCl in single and co-formulations. The pH was subsequently 

adjusted with a MP 220 pH meter (Mettler-Toledo GmbH, Gießen, Germany) to the targeted 

pH and formulations were filtered using a 0.2 µm cellulose acetate membrane filter 

(Whatman, FP 30/0.2 CA-S, GE Healthcare, Buckinghamshire, UK). 
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III.2.3 Analysis of thermal Protein aggregation with nanoDSF backscattering 

nanoDSF was used to study the aggregation of the single proteins and the co-formulations 

as a function of NaCl concentration at both pH 4.0 and pH 7.0. The protein concentration was 

set to 0.5 g/L or 1 g/L per protein. The formulations were filled into standard glass capillaries 

(NanoTemper Technologies, Munich, Germany) and placed in the Prometheus® NT.48 

(NanoTemper Technologies, Munich, Germany). A temperature ramp of 1 °C/min was 

applied from 20 to 95 °C. All measurements were performed in triplicates. The aggregation 

onset temperature (Тagg) from the increase in the signal from the aggregation detection optics 

was determined using the PR.ThermControl V2.1 software (NanoTemper Technologies, 

Munich, Germany). 

III.2.4 Dynamic Light Scattering 

The measurements were performed as follows:4 The protein solutions were filled in a 1536 

well plate (Aurora Microplates, Whitefish, USA). The plate was centrifuged at 2000 rpm for 2 

min using a Heraeus Megafuge 40 centrifuge equipped with an M-20 well plate rotor (Thermo 

Fisher Scientific, Wilmington, USA). Silicon oil was added to seal each well. The plate was 

centrifuged again at 2200 rpm for 2 min and placed in a DynaPro DLS plate reader III (Wyatt 

Technology, Santa Barbara, USA). The aggregation of the proteins during heating was studied 

using a temperature ramp of 0.1 °C/min from 25 to 80 °C. Each measurement contained 3 

acquisitions with an acquisition time of 3 s. The autocorrelation function of each 

measurement was analysed using cumulant analysis with the Dynamics V7.8 software (Wyatt 

Technology, Santa Barbara, USA). The apparent protein hydrodynamic radius from DLS (Rh) 

was calculated using the translational diffusion coefficient Dt and the Stokes-Einstein 

equation. The aggregation onset temperature (Ton) from the increase in the Rh from DLS was 

determined using the onset fit in the Dynamics V7.8 software.  

To determinate the interaction parameter kD, ten different protein concentrations from 0.5 

to 5 g/L were prepared for EPO and G-CSF and the binary mixture in 5 mM sodium acetate 

pH 4.0 and NaCl concentrations of 0, 20 or 100 mM NaCl. The ratio of the proteins in the 

mixtures was set to 1:1 (m/m). The DLS measurements were performed at 25 °C and each 

measurement contained 10 acquisitions with an acquisition time of 5 s. All DLS 

measurements were performed in triplicates. The obtained data was analyzed with the 

Dynamics V7.8 software (Wyatt Technology, Santa Barbara, USA). The translational 

diffusion coefficient Dt was calculated from the autocorrelation functions using cumulant 

analysis and kD was determined by linear regression of Dt against the respective concentration 

based on the following equation:5,6  
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  Dt = D0 (1 + kDc) 

where D0 is the mutual diffusion coefficient at infinite dilution and c is the protein 

concentration. 

III.2.5 Zeta potential measurements  

The zeta potential was measured by electrophoretic light scattering on a Zetasizer Nano ZS 

(Malvern Panalytical Ltd, Malvern, UK). The Zetasizer Software V7.03 was used for data 

analysis. The protein concentration was set to 0.5 g/L per protein and the measurements were 

performed in 5 mM sodium acetate or 5 mM sodium phosphate.  

III.2.6 High-Performance Size Exclusion Chromatography (HP-SEC) 

HP-SEC was performed on either a Dionex Ultimate 3000 system (Thermo Fisher, 

Dreieich, Germany) or Waters 2695 separation module (Waters GmbH, Eschborn, Germany). 

15 µg of EPO and G-CSF were injected on a Superose 12 10/300 GL column (GE Healthcare 

Life Sciences, Tokyo, Japan) after centrifugation at 10 000 x g for 10 min and the elution of 

the protein was detected by UV spectrometry at 280 nm. 100 mM sodium phosphate pH 7.0 

and 0.05% NaN3 were used as mobile phase. The monomer recovery was calculated by 

integration of the peak area and relative comparison of this peak area before and after 

degradation. 

III.3 Results & Discussion 

III.3.1 Comparative analysis of protein aggregation of G-CSF in single and co-

formulations by nanoDSF backscattering 

Based on the results presented in Chapter II, the pH screen by nanoDSF indicated a pH 

dependent effect of EPO on the Tagg of G-CSF.1 The zeta potential of both proteins indicated 

opposite charges for EPO and G-CSF at pH 4.0 (- 6.8 ± 1.5 mV for EPO and 22.4 ± 0.3 mV 

for G-CSF) and similar charges at pH 7.0 (- 25.7 ± 2.9 mV for EPO and - 23.7 ± 1.4 mV for 

G-CSF). Apparently, the electrostatic attraction due to the opposite charges of both proteins at 

pH 4.0 accelerated protein aggregation, which as indicated by the decreased Tagg. The impact 

of these electrostatic protein interactions on the thermally induced protein aggregation was 

further characterized in single and co-formulations at 5 mM sodium acetate pH 4.0 and 5 mM 

sodium phosphate pH 7.0 and increasing concentrations of NaCl by nanoDSF backscattering 

(See Fig. III.1).  

No protein aggregation was detected by nanoDSF for EPO at pH 4.0. This was likely 

caused by the limited sensitivity of the nanoDSF backscattering technique towards small 
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aggregates, because the aggregation of EPO was well detected by DLS (See Fig. III.4). The 

Tagg of the co-formulation was decreased compared to the single formulation of G-CSF for all 

NaCl concentrations at pH 4.0. While the Tagg of the G-CSF single formulation at pH 4.0 

steadily decreased with increasing NaCl concentrations, the Tagg of the co-formulation 

increased up to a NaCl concentration of 50 mM and decreased at higher NaCl concentrations. 

The observed behavior of G-CSF is well described in literature and can be explained by the 

screening of electrostatic repulsive forces at pH 4.0 with increasing NaCl concentrations.7 In 

the co-formulation, it can be assumed that additionally arising electrostatic attractive forces 

between the negatively charged EPO and the positively charged G-CSF accelerated protein 

aggregation and reduced the observed Tagg, as well as increased the excess scattering of the 

co-formulation compared to G-CSF alone (See Fig. III.1D). By addition of increasing 

amounts of NaCl, the strength of the attractive electrostatic cross-interaction between the two 

proteins was reduced until the attractive forces were screened and the co-formulation reflected 

the aggregation behavior of G-CSF which is determined by the remaining electrostatic 

repulsive forces. In other words, the electrostatic repulsive self-interactions of G-CSF were 

observed in parallel to the electrostatic attractive cross-interactions between EPO and G-CSF. 

The lower zeta potential of EPO compared to G-CSF indicated that lower concentrations of 

NaCl were necessary to screen the electrostatic cross-interactions between EPO and G-CSF 

compared to the stronger electrostatic self-interactions of G-CSF. Thus, it can be assumed that 

NaCl stabilizes the co-formulation in concentrations up to 50 mM by the screening of 

electrostatic attractive cross-interactions and in higher concentrations destabilizes the co-

formulation by the screening of remaining electrostatic repulsive self-interactions.   

At pH 7.0, a different aggregation behavior was observed for the proteins in single and co-

formulation. For EPO alone, no excess scattering was detected by nanoDSF backscattering 

(See Fig. III.1F). G-CSF aggregated at all NaCl concentrations and the Tagg decreased as the 

concentration of NaCl increased (See Fig. III.1E). The colloidal stability of G-CSF at pH 7.0 

is determined by a combination of repulsive long-range electrostatic forces based on the 

proteins net charge and attractive short-range dipole-dipole-self-interactions based on 

asymmetric surface charge distributions.7 Based on the DLVO theory,8 the repulsive long-

range electrostatic forces impede protein aggregation at low ionic strength because the 

repulsion of the charged surfaces increases the distance between aggregation-prone 

monomers. As the NaCl concentration increased, the repulsive forces were steadily screened 

and the distance between the protein monomers was reduced, which favored short-range 

dipole-dipole interactions and subsequently protein aggregation.  
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For the protein co-formulation, no aggregation was detected by nanoDSF backscattering at 

NaCl concentrations up to 20 mM NaCl (See Fig. III.1E), and the Tagg of the co-formulation 

was higher compared to G-CSF alone at NaCl concentrations ≥ 50 mM, although the total 

protein concentration in the co-formulation was higher (1 g/L) compared to the single 

formulation of G-CSF (0.5 g/L). A possible explanation for this observation is steric 

hindrance: The presence of EPO in the co-formulation probably reduced the possible contacts 

of aggregation-prone monomer residues of G-CSF per time. The surface of the heavily 

glycosylated EPO did not offer complementary surfaces towards G-CSF and the self-

interaction of G-CSF was sterically reduced in the co-formulation, which resulted in an 

increased Tagg and a reduced excess scattering (See Fig. III.1H). Thus, we can assume that the 

cross-interactions between EPO and G-CSF at pH 7.0 are weaker compared to the respective 

self-interactions. This hypothesis is supported by the reduced aggregation in the co-

formulation despite the higher total protein concentration. If the cross-interactions were 

stronger compared to the self-interactions, a lower Tagg would have been detected in the 

higher concentrated protein co-formulation.    
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Figure III.1. nanoDSF backscattering results for single and co-formulations of EPO and G-CSF in 5 mM sodium acetate pH 4.0 (A, B, C, D) or 5 mM sodium phosphate pH 

7.0 (E, F, G, H), and 0, 20, 50, 100 and 200 mM NaCl. The protein concentration was set to 0.5 g/L in the single formulations and 0.5 g/L per protein in the co-formulations. 

The Asterisks indicate that no aggregation was detected by the nanoDSF backscattering. The Aggregation Onset Temperatures (Tagg) for pH 4.0 (A) and pH 7.0 (E) are 

derived from the excess scattering at pH 4.0 for EPO (B), G-CSF (C), and the co-formulation (D) and at pH 7.0 for EPO (F), G-CSF (G), and the co-formulation (H).  



Chapter III 

77 
 

A second pair of proteins was tested to confirm that the obtained results were indicative for 

electrostatic cross-interactions between oppositely charged proteins. The electrostatic 

interaction of HSA and lysozyme is well characterized in literature.9–11 Single and co-

formulations of HSA and lysozyme in 5 mM sodium acetate pH 4.0 and 5 mM sodium 

phosphate pH 7.0 were prepared, increasing amounts of NaCl were added and the 

formulations were analyzed by nanoDSF backscattering. The isoelectric points of HSA and 

lysozyme are 4.7 and 11.0 respectively.12,13 Based on these values, both proteins carry a net 

positive charge at pH 4.0 and no attractive electrostatic cross-interactions are expected. At pH 

7.0, the net charge of HSA is negative, while lysozyme is positively charged. The nanoDSF 

backscattering results confirmed these assumptions. At pH 4.0, no aggregation was detected 

for the single and co-formulations (See Figs. III.2A-D). At pH 7.0, the co-formulation 

aggregated at elevated temperatures, while no aggregation was detected for the single protein 

formulations (See Figs. III.2E-H). Further, the Tagg of the co-formulation at pH 7.0 correlated 

with the NaCl concentration in the respective formulation, which indicated that attractive 

electrostatic interactions were screened by increasing NaCl concentrations. Based on these 

results we show that the nanoDSF backscattering detects electrostatic cross-interactions 

between proteins in given formulation conditions and also quantifies the impact of these 

electrostatic cross-interactions on the colloidal stability of the co-formulation.  

For the co-formulation of EPO and G-CSF at pH 4.0 and the co-formulation of HSA and 

lysozyme at pH 7.0, where the proteins carried opposite net charges, the arising attractive 

electrostatic cross-interactions compromised the colloidal stability of a co-formulation (See 

Figs. III.1D and III.2H). The absence of these attractive electrostatic forces leveled the 

stability-compromising potential of the co-formulation of HSA and lysozyme at pH 4.0, and 

the co-formulation appeared non-inferior in terms of colloidal stability despite the higher 

protein concentration (See Fig. III.2D). Finally, the arising repulsive electrostatic cross-

interaction increased the colloidal stability of the co-formulation of EPO and G-CSF at pH 7.0 

compared to the single formulation of G-CSF (See Fig. III.1H).  
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Figure III.2. nanoDSF backscattering results for single and co-formulations of HSA and lysozyme in 5 mM sodium acetate pH 4.0 (A, B, C, D) or 5 mM sodium phosphate 

pH 7.0 (E, F, G, H), and 0, 20, 50, 100 and 200 mM NaCl. The protein concentration was set to 0.5 g/L in the single formulations and 0.5 g/L per protein in the co-

formulations. The Asterisks indicate that no aggregation was detected by the nanoDSF backscattering. The Aggregation Onset Temperatures (Tagg) for pH 4.0 (A) and pH 7.0 

(E) are derived from the excess scattering at pH 4.0 for HSA (B), lysozyme (C), and the co-formulation (D) and at pH 7.0 for HSA (F), lysozyme (G), and the co-formulation 

(H).  
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In order to further characterize the impact of the observed cross-interactions in the co-

formulation on the colloidal stability compared to the respective self-interactions, protein co-

formulations of G-CSF with either EPO, HSA or lysozyme were prepared with a protein 

concentration of 0.5 g/L per protein. These co-formulations were compared to the single 

protein formulations with protein concentrations of 0.5 g/L and 1 g/L (See Fig. III.3). Using 

this experimental setup, it could be determined if the arising protein cross-interactions were 

more attractive or less attractive than the respective protein self-interactions.  

 

 

For the co-formulations of EPO and G-CSF at pH 4.0 and NaCl concentrations up to 50 

mM, the Tagg of the co-formulation was lower than the Tagg of the equally concentrated single 

formulation of G-CSF (See Fig. III.3A). This indicated that the attractive electrostatic cross-

interactions were stronger than the self-interactions of G-CSF. At concentrations of 100 mM 

NaCl, the Tagg values of the single formulation of G-CSF and the co-formulation were 

comparable, and at concentrations of 200 mM NaCl, the Tagg of the co-formulation was higher 

than the Tagg of the single formulation of G-CSF. This indicated that the strength of the 

attractive electrostatic cross-interactions decreased with increasing NaCl concentrations, until 

the cross-interactions were less attractive compared to the self-interactions of G-CSF.  

The co-formulation of HSA and G-CSF showed a different behavior compared to the co-

formulation of EPO and G-CSF. The co-formulations showed decreased Tagg values at all 

NaCl concentrations compared to the equally concentrated single formulations of G-CSF (See 

Fig. III.3B). G-CSF has previously been formulated with HSA to prevent surface adsorption, 

and the reduced surface adsorption of G-CSF in presence of HSA was anticipated to be a 

Figure III.3. nanoDSF backscattering results for single and co-formulations of EPO + G-CSF (A), HSA + G-

CSF (B), and lysozyme + G-CSF (C) in 5 mM sodium acetate pH 4.0. The Asterisks indicate that no 

aggregation was detected by nanoDSF backscattering. The total protein concentration of the co-formulations 

was set to 1.0 g/L and the protein concentration of the single formulations was either set to 0.5 g/L (solid lines) 

or to 1.0 g/L (dashed lines). 
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consequence of either a direct binding of HSA to G-CSF or a preferential binding of HSA to 

surfaces.14 Direct binding of HSA to a hydrophobic cytokine has previously been detected by 

fluorescence spectroscopy,15 and the results obtained by nanoDSF backscattering also 

indicated an attractive cross-interaction between HSA and G-CSF that was stronger than the 

self-interaction of G-CSF (See Fig. III.3B), based on the lower Tagg of the co-formulation. The 

lower Tagg values of the co-formulations at all NaCl concentrations and the net positive 

surface charge at pH 4.0 of both proteins indicated charge-independent attractive cross-

interactions between HSA and G-CSF. Attractive cross-interactions between HSA and several 

proteins were already described and assigned to hydrophobicity, van der Waals forces or 

formation of hydrogen bonds.16 The reduced Tagg values were also likely caused by charge-

independent attractive cross-interactions. Although these attractive cross-interactions 

apparently reduce the colloidal stability of the protein mixture, they do not necessarily 

compromise the overall long-term stability of the proteins in the co-formulation. More critical 

degradation pathways such as the surface-induced unfolding and subsequent aggregation of 

G-CSF can be reduced by a decreased number of free monomers of G-CSF that are 

susceptible to surface-induced aggregation, which results in a net stabilization of G-CSF in 

presence of HSA.14 

The co-formulation of lysozyme and G-CSF represents a protein combination where 

increased Tagg values were detected for the co-formulations at all NaCl concentrations 

compared to the equally concentrated single formulations of G-CSF (See Fig. III.3C). This 

indicated that no stability compromising cross-interactions occurred in the co-formulation, 

because the protein interactions between lysozyme and G-CSF were weaker compared to the 

self-interactions of G-CSF. It is also possible that there were no cross-interactions at all 

between lysozyme and G-CSF and the increased Tagg values in the co-formulations were a 

consequence of hindered self-interactions of G-CSF by steric hindrance.  

III.3.2 Comparative analysis of protein aggregation of EPO and G-CSF in single and co-

formulations by DLS 

As the nanoDSF backscattering technique is not sensitive enough to detect small protein 

aggregates,4 DLS has been applied as complementary technique to study the initial protein 

aggregation starting from the monomeric state based on the changes of the hydrodynamic 

radius (Rh) during heating in single and co-formulations. Single and co-formulations of EPO 

and G-CSF were prepared in both 5 mM sodium acetate pH 4.0 and 5 mM sodium phosphate 

pH 7.0 at different concentrations of NaCl. The thermally induced aggregation of the 

formulations was analyzed by DLS (See Fig. III.4). Although the resolution is not sufficient to 
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allow a separation of the respective monomer signals in co-formulation, it is possible to study 

changes in the thermal aggregation pattern of the proteins in co-formulations starting from the 

monomeric state. The results are shown in Fig. III.4. 

At pH 4.0, protein aggregation was detected during heating for both EPO and G-CSF in 

single formulations based on the increased Rh compared to the respective protein monomers 

(See Figs. III.4B and III.4C). The Ton decreased with increasing NaCl concentration for both 

proteins, which confirmed the nanoDSF backscattering results. The aggregation pattern of the 

single formulations of EPO and G-CSF at pH 4.0 reflected the decreased colloidal stability of 

both proteins with increasing NaCl concentrations (See Figs. III.4B and III.4C). The co-

formulation pattern differed from the single formulations and was neither an intermediate 

pattern nor a sum of the single protein aggregation patterns (See Fig. III.4D). The Ton of the 

co-formulation was shifted to lower temperatures and the aggregation was accelerated 

compared to both proteins for the 0 mM NaCl condition. While G-CSF appeared monomeric 

at 50 °C and EPO reached a Rh of about 5 nm, the co-formulation already reached a Rh of 

about 15 nm in 5 mM sodium acetate pH 4.0. Further, the addition of up to 50 mM NaCl did 

not decrease the Ton (See Fig. III.4C), in contrast to the steady shift of Ton towards lower 

temperatures for the single formulations. The Ton values of the co-formulation at 0 and 20 mM 

NaCl were likely additionally decreased by attractive electrostatic cross-interactions in the 

mixture at low ionic strength conditions. At 0 mM NaCl, these interactions were strong 

enough to reduce the Ton below the Ton of EPO alone. As the attractive electrostatic 

interactions were screened at 50 mM NaCl, the co-formulation followed the trend of the 

single proteins.  

At pH 7.0, no aggregation was detected by DLS for the single formulations of EPO (See 

Fig. III.4A), which confirmed the nanoDSF results. The high colloidal stability of EPO at 

neutral pH was previously reported and assigned to limited structural changes and formation 

of micelle-like structures due to the bulky glycosyl residues, which limited protein 

association.17 The single formulation of G-CSF showed a lower colloidal stability at pH 7.0 

compared to pH 4.0 based on the Ton values, which confirms the results of previous studies.7 

Interestingly, the addition of NaCl had no effect on Ton but accelerated aggregation growth in 

the single formulation of G-CSF at pH 7.0 (See Fig. III.4G). 



Studies on pH- and salt-dependent protein aggregation of EPO and G-CSF in binary mixtures 

82 
 

Figure III.4. DLS results for single and co-formulations of EPO and G-CSF in 5 mM sodium acetate pH 4.0 (A, B, C, D) or 5 mM sodium phosphate pH 7.0 (E, F, G, H), 

and 0, 20, 50, 100 and 200 mM NaCl. The graphical inserts (B, C, D) show the aggregation on a scale from 0 to 20 nm Rh (10x magnification). The Asterisks indicate that no 

aggregation was detected by the DLS plate reader. The protein concentration was set to 0.5 g/L in the single formulations and 0.5 g/L per protein in the co-formulations. The 

Aggregation Onset Temperatures (Ton) for pH 4.0 (A) and pH 7.0 (E) are derived from the hydrodynamic radius (Rh) at pH 4.0 for EPO (B), G-CSF (C), and the co-

formulation (D) and at pH 7.0 for EPO (F), G-CSF (G), and the co-formulation (H).  
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The co-formulation of EPO and G-CSF at pH 7.0 exhibited a different protein aggregation 

compared to the single protein formulations (See Fig. III.4H). While aggregation of G-CSF 

alone was unlimited, the co-formulation aggregation growth stopped at a certain Rh size that 

increased with increasing NaCl concentration. Given a zeta potential of -25.7 ± 2.9 mV for 

EPO and -23.7 ± 1.4 mV for G-CSF at pH 7.0, it can be assumed that the electrostatic 

repulsion at pH 7.0 impeded aggregate growth. These repulsive electrostatic forces were 

screened with increasing concentrations of NaCl, and the size of the formed aggregates 

increased accordingly. However, even at high ionic strength conditions of 200 mM NaCl, the 

aggregation in the binary mixture stopped at a certain size compared to the single protein 

formulation of G-CSF. Based on the DLS data alone, we can neither prove the presence of 

pure homogenous aggregates of each protein next to each other, nor the formation of hetero-

aggregates due to cross-interactions, and it remains unclear, why the protein aggregation 

growth in the co-formulation stopped at a certain size at pH 7.0. As discussed already for the 

nanoDSF results (See III.3.1), it can be assumed that the aggregation of G-CSF followed the 

same pathway as in the single formulation based on the asymmetric charge distribution of G-

CSF,7 and the heavily glycosylated EPO did not offer complementary surfaces for protein 

association, which resulted in a steric hindrance of G-CSF aggregation. The increasing NaCl 

concentrations reduced the colloidal stability G-CSF due to the screening of repulsive protein 

interactions, which led to larger aggregate sizes in co-formulations with higher NaCl 

concentrations. Further experiments have to be conducted to investigate the protein 

aggregation in this co-formulation, because the presented data indicates that protein 

aggregation in co-formulations can differ substantially from the aggregation in the respective 

single protein formulations, and the underlying mechanisms have to be further studied.    

III.3.3 Comparative analysis of protein interactions of EPO and G-CSF in single and co-

formulations by the apparent diffusion interaction parameter (Apparent kD) 

Until now, the protein cross-interactions between EPO and G-CSF have been studied by 

thermally induced protein aggregation in the single and co-formulations. Based on the 

nanoDSF backscattering and DLS data, both pH-dependent and NaCl-dependent changes in 

the protein aggregation were detected in the co-formulation. At pH 4.0, additional 

electrostatic cross-interactions between EPO and G-CSF were indicated, and DLS 

measurements were applied at ambient temperature to confirm these results. 

The diffusion interaction parameter kD is an established tool to characterize protein 

interactions at ambient temperature. Based on attractive or repulsive protein interactions 

between monomers, the diffusion coefficient of the protein will increase or decrease 
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respectively because the interactions affect the diffusion in a given medium. kD measurements 

are typically applied for a single protein, but were recently also applied for protein 

mixtures.4,18 Based on the very different nature of EPO and G-CSF compared to mixtures of 

mAbs, such as different Rh and D0 values, it is important to point out that we consider this 

artificial, apparent kD value of the co-formulation to deliver information on relative changes of 

attractive and repulsive forces compared to the single formulation, but not to represent a 

typical kD value as for single proteins or mixtures of rather uniform mAbs.  

 

 

The results are shown in Fig. III.5. Repulsive protein interactions were detected for G-CSF 

at 0 mM NaCl, which are screened at concentrations of 20 mM. At 100 mM NaCl, attractive 

protein interactions were detected. For G-CSF at 0 mM NaCl, the correlation of concentration 

and diffusion coefficient was not linear for the whole concentration range. This was most 

likely caused by the detection limit of the DLS PlateReader. The already very small 

hydrodynamic radius of G-CSF of about 1 nm and the additional reduction of the apparent 

hydrodynamic radius due to repulsive interactions caused the continuous detection of Rh 

values of about 1 nm at G-CSF concentrations higher than 3 g/L and subsequent calculation of 

a respective diffusion coefficient (See Fig. III.5A). Further, it has been previously reported 

that electrostatic migration at low ionic strength can interfere with the concentration-

dependency of the hydrodynamic radius obtained by DLS and cause non-linearity,19 which 

also explains the observed behavior of G-CSF.  

For EPO, equally attractive protein interactions were detected at all NaCl concentrations. 

Interestingly, the measured diffusion coefficients of the co-formulation did not represent an 

arithmetic mean of the single proteins, but very similar values compared to the single 

Figure III.5. Apparent kD values for EPO (red), G-CSF (yellow) and EPO + G-CSF (green) in 5 mM sodium 

acetate pH 4.0 and 0 mM NaCl (A), 20 mM NaCl (B) or 100 mM NaCl (C). The Diffusion Coefficients were 

plotted against protein concentration and the apparent kD value was calculated by linear regression.   
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formulation of EPO. This can partly be explained by the larger hydrodynamic radius of EPO 

(about 3 nm) compared to G-CSF (about 1 nm), which favors the EPO signal detected by DLS 

in the mixture. At 0 and 20 mM NaCl, the apparent kD values of the co-formulation were more 

negative compared to the single formulation of EPO, while at 100 mM NaCl, no difference 

could be detected between the single formulation of EPO and the co-formulation. However, it 

is questionable if the differences between the single formulation of EPO and the co-

formulation at 0 and 20 mM NaCl reliably indicate protein cross-interactions, especially as 

the differences in the measured diffusion coefficient only arise at higher protein 

concentrations. For protein co-formulations up to 1 g/L, the DLS measurements at ambient 

temperature did not indicate a significantly reduced diffusion coefficient and thus no 

additionally arising cross-interactions in the co-formulation. Based on the presented DLS and 

nanoDSF measurements at steadily increasing temperatures, the protein cross-interactions 

seemed to arise at elevated temperatures, which could indicate that (partially) unfolded 

intermediates of at least one protein are involved. With increasing flexibility of the protein 

chains at increased temperatures, cross-interactions of partially unfolded protein intermediates 

could arise in the co-formulation. This could be further investigated with kD measurements at 

elevated temperatures,20 to quantify the cross-attraction between the unfolded intermediates of 

different proteins.   

III.3.4 Forced degradation studies by HP-SEC 

Until now, the presented results have indicated a compromised colloidal stability for co-

formulations of EPO and G-CSF at pH 4.0 and low ionic strength conditions (See Fig. III.1). 

Nevertheless, a stabilized co-formulation of EPO and G-CSF at pH 4.0 and low ionic strength 

prior to lyophilization was presented in Chapter II. In order to study the impact of electrostatic 

cross-interactions on the colloidal stability of this particular co-formulation compared to the 

single formulations, increasing concentrations of NaCl were added to single and co-

formulation and the thermally induced protein aggregation was measured by nanoDSF 

backscattering. Further, the prepared single and co-formulations were stressed at 40 °C and 

300 rpm for 10 h and the monomer recovery was determined by HP-SEC. The nanoDSF 

backscattering measurements confirmed the previously obtained results (See Fig. III.6A). For 

EPO alone, no aggregation was detected, while G-CSF alone and the co-formulation showed 

the same trends as in 5 mM sodium acetate pH 4.0 (See Fig. III.1). Interestingly, the monomer 

recoveries in HP-SEC of both EPO and G-CSF were significantly higher in single protein 

formulations compared to the co-formulations for all NaCl concentrations (See Fig. III.6B and 

III.6C). Further, the monomer recoveries for both proteins in co-formulation reflected the 



 Studies on pH- and salt-dependent protein aggregation of EPO and G-CSF in binary mixtures   
 

86 
 

prediction by nanoDSF backscattering and showed additionally decreased values at 0 mM 

NaCl, which indicated that the electrostatic cross-interactions between EPO and G-CSF 

accelerated protein aggregation at low ionic strength conditions. At all NaCl concentrations 

the monomer recovery was significantly reduced and the formation of soluble aggregates 

significantly increased in the co-formulation. 

 

 

Thus, the accelerated protein aggregation in the co-formulation cannot be explained by the 

anticipated electrostatic cross-interactions at low ionic strength conditions alone. As discussed 

in the previous section, at least partly thermally induced unfolding of both proteins with 

subsequent exposure of hydrophobic patches may have formed and accelerated cross-

interactions between the unfolded states of both proteins. These hydrophobic interactions 

were then favored in high ionic strength conditions, which could explain the decreased 

monomer recoveries of both proteins with increasing NaCl concentration in the co-

formulation.  

 

Figure III.6. Aggregation Onset Temperatures (Tagg) for G-CSF in single and co-formulation (2 mM sodium 

citrate, 5 % mannitol, 1 % sucrose, 20 mM methionine and 0.1 % polysorbate 20) and addition of 0, 20, 50, 100 

and 200 mM NaCl (A, yellow line for G-CSF; green line for EPO + G-CSF). For EPO, no aggregation was 

detected by nanoDSF backscattering. Monomer recoveries in HP-SEC for EPO (B) and G-CSF (C) in single 

and co-formulations. Example HP-SEC chromatograms of the stressed formulations of EPO (D), G-CSF (E) 

and EPO + G-CSF (F) to illustrate the results in (B) and (C). The formulations were stressed in a thermocycler 

for 10 h at 40 °C and 300 rpm. 
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In order to characterize the cross-interactions between the two proteins further and exclude 

that the differences in the monomer recoveries were only caused by the higher total protein 

concentration in the co-formulation, the total protein concentrations were fixed to 1 g/L in the 

next step for single and co-formulations. Co-formulations with different ratios of EPO and G-

CSF were stressed and analyzed by HP-SEC. Both proteins showed the highest monomer 

recoveries in the respective single formulations (See Fig. III.7). The presence of the second 

protein led to decreased protein recoveries for both proteins in all tested mixing ratios 

compared to the single protein formulations. While the monomer recovery of G-CSF 

continuously decreased with increasing relative EPO concentrations, the monomer recovery 

of EPO decreased at low relative G-CSF concentrations, reached a minimum at a mixing ratio 

of 1:1 and increased at higher relative G-CSF concentrations. Further, small amounts of G-

CSF (EPO:G-CSF ratio of 10:1) significantly reduced the monomer recovery of EPO and 

increased the formation of soluble aggregates, while small amounts of EPO (EPO:G-CSF 

ratio of 1:10) had a less severe effect on the monomer recovery of G-CSF. Thus, the impact of 

the electrostatic cross-interactions between EPO and G-CSF at pH 4.0 on the protein stability 

depends on the mixing ratio of both proteins. 

 

 

Based on these results, the prediction by nanoDSF can be confirmed that EPO cross-

interacts with G-CSF at pH 4.0, and these cross-interactions reduce the colloidal stability of 

the protein mixture compared to the single protein formulations. While G-CSF showed no 

monomer loss in the single formulation, increasing amounts of EPO reduced the monomer 

recovery of G-CSF (See Fig. III.7A). Further, the formation of soluble aggregates was 

increased in certain co-formulations of EPO and G-CSF compared to the single formulation of 

Figure III.7. Monomer recoveries in HP-SEC for EPO and G-CSF in co-formulations of different ratios (w/w) 

for EPO and G-CSF (A). The co-formulations consisted of 2 mM sodium citrate, 4 % mannitol, 1 % sucrose, 20 

mM methionine and 0.1 % polysorbate 20. The total protein concentration was set to 1 g/L for all ratios of EPO 

and G-CSF. HP-SEC chromatograms of native co-formulations (B). HP-SEC chromatograms for stressed co-

formulations (C). The formulations were stressed in a thermocycler for 10 h at 40 °C and 300 rpm. 
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EPO with an equal total protein concentration of 1 g/L (See Fig. III.7C). Thus, the cross-

interactions between EPO and G-CSF depend on a specific protein ratio, and certain protein 

ratios cause stronger cross-interactions compared to the respective self-interactions.     

III.4 Conclusion 

In this chapter, the protein aggregation of the two model proteins EPO and G-CSF was 

studied by high-throughput screening methods and HP-SEC. The impact of a second protein 

on the thermally induced protein aggregation at different pH values and NaCl concentrations 

was characterized. Based on the differences in the respective colloidal and conformational 

stability of both proteins, conditions were identified that (a) accelerate protein aggregation 

based on attractive cross-interactions between the two proteins, or (b) reduce protein 

aggregation based on repulsive cross-interactions and steric hindrance. The impact of the co-

formulation on the individual protein stability was closely linked to the respective stability 

profile of the individual proteins and most likely also included contributions of partially 

unfolded intermediates and glycosylation.   

For a given co-formulation, the stability compromising heterogeneous protein interactions 

can be identified by high-throughput methods as DLS and nanoDSF. The methods provide 

insight into changes of the individual protein aggregation pathways in the co-formulations and 

can support the protein development scientist to identify detrimental protein interactions in 

co-formulations early on. Formulation conditions that may not be critical for the single 

proteins, but favor stability-compromising cross-aggregations in the protein mixture, can be 

rapidly identified at low protein consumption and in low volume without the application of 

elaborative immobilization or labeling techniques. Further, it is possible to characterize these 

cross-interactions further by the addition of increasing amounts of NaCl to identify 

formulation conditions that either reduce attractive long-range electrostatic interactions 

between different proteins or favor repulsive long-range electrostatic interactions that can 

reduce aggregation in protein mixtures.  

Based on the obtained results in nanoDSF backscattering, DLS and HP-SEC it can be 

assumed that the protein cross-interactions at pH 4.0 caused the formation of mixed protein 

aggregates of EPO and G-CSF. In both nanoDSF backscattering and DLS measurements, the 

thermal aggregation pattern at pH 4.0 in low concentrations of NaCl differs compared to the 

single formulations, and the HP-SEC results indicate concentration- and ratio-dependent 

cross-interactions between the proteins. However, there is no final proof for the formation of 

mixed protein aggregates, and additional studies are required to elucidate the aggregation 
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pathways in these protein mixtures. The fractionation, up-concentration and subsequent 

analysis of the soluble aggregates by preparative RP-HPLC, which is able to separate both 

proteins as presented in Chapter II, could be helpful to distinguish between pure or mixed 

aggregates. The attachment of different fluorescent labels to each protein before aggregation 

may be also helpful, although these labels may change the aggregation behavior compared to 

the non-labeled proteins. Alternative approaches could also include the determination of 

second virial cross-coefficients,21 for instance by self-interaction chromatography,22 which 

has also been successfully applied to screen cross-interactions between bovine serum albumin 

(BSA) and lysozyme.23 

Although the anticipated cross-interactions reduced the colloidal stability of the protein 

mixture compared to the single protein formulations in liquid formulations, an increased 

colloidal and chemical stability was presented for the lyophilized co-formulation of EPO and 

G-CSF in Chapter II. These apparently opposing observations can be explained by different 

behaviors of both proteins in the liquid and the solid state. As discussed in Chapter II, the 

presence of EPO could reduce the surface-induced unfolding and aggregation of G-CSF. 

Therefore, the cross-interactions between EPO and G-CSF that reduce the colloidal stability 

in the liquid state can result in a net stabilization of G-CSF in the solid state, because more 

critical degradation pathways are prevented. 

In summary, we evaluated nanoDSF and DLS for their ability to identify stability-

compromising heterogeneous protein interactions in co-formulations and showed that these 

interactions can be detected by shifts of the Tagg or Ton values and changes in the respective 

aggregation traces of the protein mixture compared to the single protein formulations. Both 

nanoDSF and DLS proved to be value tools in protein co-formulation development to rapidly 

screen detrimental interactions of proteins in different formulation conditions and accelerate 

the rational development of protein co-formulations.   
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Chapter IV  Biophysical characterization of binary therapeutic 

        monoclonal antibody mixtures 
 

This chapter is published as:  
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antibody mixtures. Mol. Pharm. 2020, 17 (8), 2971–2986. https://doi.org/10.1021/acs.molpharmaceut.0c00370 

 

IV.1 Introduction 

Fixed-dose combinations and co-formulations of monoclonal antibodies (mAbs) are 

becoming increasingly popular for the development of new medicines. Such formulations can 

be used to achieve better therapeutic efficacy due to synergistic pharmacological effects 

between the two molecules. Co-formulations of mAbs could also improve patient compliance 

by reducing the number of injections in the course of medication. Furthermore, combining 

therapeutic proteins can generate value for the pharmaceutical industry by creating new 

opportunities for intellectual property rights. 

Despite the many advantages that co-formulations of mAbs could offer, there are only few 

published studies that focus on the analytical characterization and stabilization of therapeutic 

antibody mixtures.1–6 The physicochemical behavior of these proteins in co-formulations 

remains poorly understood. For example, it is unclear when detrimental cross-interactions 

between two different antibodies in a binary mixture can negatively affect the overall physical 

stability of the protein solution. Some published studies indicate elevated protein interactions 

in certain combinations,5 while others show the absence of cross-interactions between 

different mAbs.4  

In the context of the bigger picture, it is important to know when mAbs with different 

physicochemical features can be combined in solution without a risk of unfavorable cross-

interactions. This information will aid the rational development of drug products containing 

two or more therapeutic antibodies.  

The different properties of mAbs typically arise from differences in the amino acid 

residues in the variable domains and more specifically, in the complementarity-determining 

regions (CDRs) that exhibit the highest variability. Therefore, it is crucial to study how mAbs 

with different charge, hydrophobicity and amino acid residues in the CDR loops behave in 

binary mixtures. Such studies can be based on computational and biophysical characterization 

methods that are indicative for antibody physical stability and developability potential.7–11 
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The use of high-throughput methods that provide information about the protein 

conformational and colloidal stability is particularly useful at this stage. 

Here, we present a study with six therapeutic monoclonal antibodies (trastuzumab, 

adalimumab, rituximab, bevacizumab, omalizumab and infliximab) and their binary mixtures. 

The model mAbs differ in key features like isoelectric points, net charge, charge distribution, 

and amino acid residues in the CDRs to represent different co-formulation scenarios. We 

applied several established biophysical methods to study the conformational and colloidal 

stability of the six mAbs alone or in binary mixtures. The mAbs and their binary mixtures 

were analyzed at pH 5.0 and 7.4, with or without 250 mM NaCl, to investigate a wide range 

of different solution conditions that are relevant for therapeutic protein co-formulations. The 

measured biophysical parameters are shared as a comprehensive dataset that can aid 

researchers during the development of co-formulations with therapeutic antibodies. 

Remarkably, we show that the six mAbs from the IgG1 class with different features can be 

combined in binary mixtures at different pH and NaCl concentration without detrimental 

effects on important biophysical parameters that are indicative for the conformational and 

colloidal protein stability. 

IV.2 Materials and Methods   

IV.2.1 Materials  

Trastuzumab (Herceptin®), adalimumab (Humira®), rituximab (Mabthera®), bevacizumab 

(Avastin®), omalizumab (Xolair®) and infliximab (Remicade®) were used as model proteins 

in this study. Sodium dihydrogen phosphate was purchased from Grüssing GmbH. Disodium 

hydrogen phosphate was purchased from VWR Chemicals. Acetic acid and sodium acetate 

were purchased from Sigma Aldrich. NaCl was purchased from Bernd Kraft GmbH. All 

formulations were prepared with ultrapure water from a Sartorius arium® pro system 

(Sartorius Corporate Administration GmbH, Göttingen, Germany). 

IV.2.2 In silico comparison of mAb properties and selection of model proteins 

Six marketed monoclonal antibodies were selected as model proteins based on the 

isoelectric points of the antibodies,12,13  and the calculated isoelectric points of the respective 

heavy chain variable domain (VH) and light chain variable domain (VL) of each antibody (See 

Table 1). The primary sequences for the VH and VL domains were taken from Jain et al.,7 and 

the isoelectric points of these domains were calculated using the Protein-Sol webserver.14  

The primary sequences of the six mAbs were aligned and compared with Protein BLAST.15 

The used primary sequences are provided in the supplementary data. Since the homology 
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between the Fc fragments of the different mAbs is between 99 and 100% (Table S.IV.1), 

further computational work is performed only on the Fab fragments of each antibody which 

exhibit higher differences (See Tables S.IV.2 and S.IV.3). 

The hydrophobicity and charged surface area of the respective Fab fragments at pH 5.0 and 

7.4 were calculated based on the respective PDB entries for trastuzumab (4HKZ), 

adalimumab (4NYL), rituximab (2OSL), bevacizumab (1BJ1), omalizumab (2XA8), and 

infliximab (4G3Y). Missing residues in the PDB files were inserted by using the respective 

original structure as a template to build a comparative model with the full sequence in the 

SWISS-MODEL server.16 The Fab PDB files were processed using H++ to calculate the total 

charge at pH 5.0 and 7.4 and to adjust the protonation state of each ionizable amino acid at the 

respective pH at a salinity of 10 mM.17 The electrostatic surface of the Fab was displayed 

with UCSF Chimera v1.14 using Coulomb surface coloring with the default parameters and 

the hydrophobic surface was displayed with the hydrophobicity surface preset.18 The results 

for the Coulomb and hydrophobicity surfaces of each Fab can be found in the supplementary 

data (See Fig S.IV.1).  

The hydrophobicity and relative positively and negatively charged areas of the solvent-

accessible surface area were calculated as follows: The default atom selection macro 

hydrophobic, acidic and basic of the VMD 1.9.4 software were applied consecutively for each 

Fab region. The basic macro was adjusted to select arginine, lysine and protonated histidine 

residues (HIP). The built-in measure sasa command was used to calculate the solvent-

accessible surface area (SASA) of the full protein and each selection.19 Furthermore, the H++-

processed Fab PDB files were analyzed by the AggresScan3D webserver.20  

We also compared the CDR sequences of the mAbs, because these regions represent the 

main differences between the single mAbs and certain CDR compositions may correlate to 

increased (cross-)interaction propensity of the mAbs.21,22 It has been shown earlier, that net 

positive charges in the six CDRs may be connected to low antibody specificity and an 

increased risk of non-specific interactions,8 which could also be critical in the context of 

developing co-formulations. The six CDR regions of each mAb were identified using the 

Paratome webserver,23 and are shown in Table IV.1. The CDR regions were then analyzed by 

counting the number of hydrophobic residues (A, F, I, L, M, V, W, Y), the number of positive 

charges for histidine (+0.1), lysine (+1) arginine (+1) and the number of negative charges for 

aspartate (-1) and glutamate (-1), following the approach used by Rabia et al..8  
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IV.2.3 Preparation of mAb formulations 

The antibodies were purified from the marketed formulations by strong cation exchange 

chromatography using a Superose HiTrap SP column (GE Healthcare LifeScience, USA), an 

ÄKTA protein purification system and a linear salt gradient. Subsequently, the proteins were 

extensively dialyzed into 10 mM sodium acetate pH 5.0 or 10 mM sodium phosphate pH 7.4. 

The mAbs were then concentrated using Vivaspin 20 5 MWCO PES centrifugal concentrators 

(Sartorius Lab Instruments, Goettingen, Germany). Subsequently, the concentration was 

measured with a Nanodrop 2000 (Thermo Fisher Scientific, USA) using the respective 

extinction coefficients at 280 nm. These solutions were sterile filtered with 0.2 µm filters in a 

laminar flow hood. 

Binary mixtures that include all possible combinations of the six model mAbs were 

prepared. The ratio between two mAbs in a binary mixture was always 1:1 (m/m). We studied 

the behavior of the single mAbs and the combinations in four different conditions: 10 mM 

sodium acetate pH 5.0 with or without 250 mM NaCl, and 10 mM sodium phosphate pH 7.4 

with or without 250 mM NaCl. For the addition of NaCl, a 500 mM NaCl stock solution was 

spiked into the dialyzed protein solutions. 

The 10 mM sodium acetate pH 5.0 was selected to display long-range electrostatic 

interactions of the mAbs at low ionic strength, while 10 mM sodium phosphate pH 7.4 was 

used to study the behavior of the mAb combinations at physiological pH. Both buffer systems 

are commonly applied in various marketed mAb formulations, and represent the borders of a 

pH-range that is relevant for the development of stable mAb formulations.24 The addition of 

250 mM NaCl was used to screen the long-range electrostatic interactions and investigate 

mostly the hydrophobic interactions between the mAbs at pH 5 and 7.4.25 The binary mixtures 

contained 0.5 g/L of each mAb which accounts to a total protein concentration of 1 g/L. The 

solutions containing only one mAb had a protein concentration of 0.5 and 1 g/L.  

Binary mixtures at high protein concentrations were prepared for trastuzumab, rituximab 

and omalizumab and contained 25 g/L per protein and compared to the single proteins 

formulations that contained 50 g/L. Binary mixtures of trastuzumab and rituximab that 

contained 50 g/L per protein were also prepared and compared to single protein formulations 

that contained 100 g/L.       
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IV.2.4 High-throughput fluorimetric analysis of thermal protein unfolding with 

nanoDSF 

Protein solutions were filled into standard nanoDSF capillaries. The capillaries were sealed 

and placed in a Prometheus NT.48 (NanoTemper Technologies, Munich, Germany). A 

temperature ramp of 1 °C/min was applied from 20 to 100 °C. The intrinsic protein 

fluorescence intensity at 330 and 350 nm after excitation at 280 nm was measured for single 

formulations (0.5 and 1 g/L) and binary mixtures (0.5 g/L of each mAb). The inflection points 

of the first and second thermal unfolding transitions (IP1 and IP2), detected by the change in 

the fluorescence intensity ratio (FI350nm/FI330nm), were derived from the maximum of the 

first derivative of each measurement using the ThermControl software V2.1 (NanoTemper 

Technologies, Munich, Germany). Protein aggregation during heating was also monitored 

using the backscattering detector of the device. The aggregation onset temperature (Tagg) was 

determined from the increase in the scattering using the same software. The signal for 

scattered light was also normalized and the excess in scattering was plotted against the 

temperature for comparisons between different samples. Each measurement was performed in 

triplicates. 

IV.2.5 Dynamic light scattering 

The protein solutions were filled in a 1536 well plate (Aurora Microplates, Whitefish, 

USA). The plate was centrifuged at 2000 rpm for 2 min using a Heraeus Megafuge 40 

centrifuge equipped with an M-20 well plate rotor (Thermo Fisher Scientific, Wilmington, 

USA). Silicon oil was added to seal each well. The plate was centrifuged again at 2200 rpm 

for 2 min and placed in a DynaPro DLS plate reader III (Wyatt Technology, Santa Barbara, 

USA). The aggregation of the proteins during heating was studied using a temperature ramp 

of 0.1 °C/min from 25 to 85 °C. Each measurement contained 3 acquisitions with an 

acquisition time of 3 s. The autocorrelation function of each measurement was analysed using 

cumulant analysis with the Dynamics V7.8 software (Wyatt Technology, Santa Barbara, 

USA). The apparent protein hydrodynamic radius from DLS (Rh) was calculated using the 

translational diffusion coefficient Dt and the Stokes-Einstein equation. The aggregation onset 

temperature (Ton) from the increase in the Rh from DLS was determined using the onset fit in 

the Dynamics V7.8 software.  

To determinate the interaction parameter kD, ten different protein concentrations from 0.5 

to 9 g/L were prepared for each monoclonal antibody and the binary mixtures. The ratio of 

monoclonal antibodies in the mixtures was set to 1:1 (m/m). The DLS measurements were 

performed at 25 °C and each measurement contained 10 acquisitions with an acquisition time 
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of 5 s. All DLS measurements were performed in triplicates. The obtained data was analyzed 

with the Dynamics V7.8 software (Wyatt Technology, Santa Barbara, USA). The translational 

diffusion coefficient Dt was calculated from the autocorrelation functions using cumulant 

analysis and kD was determined by linear regression of Dt against the respective concentration 

based on the following equation:26,27  

  Dt = D0 (1 + kDc) 

where D0 is the mutual diffusion coefficient at infinite dilution and c is the protein 

concentration. 

IV.3 Results 

IV.3.1 Results overview 

The obtained results are structured in several sections and figures. First, we present the in 

silico analysis of the mAbs and show their difference in sequence composition, charge and 

hydrophobicity (See Fig. IV.1, Tables IV.1 and IV.2). The following sections present the 

experimental data: The aggregation onset temperatures from DLS (See Fig. IV.2), the 

temperature of the first inflection point measured with nanoDSF (See Fig. IV.3), the 

aggregation onset temperatures measured with the backscattering detector of the Prometheus 

NT.48 (See Fig. IV.4) and interaction parameters (See Fig. IV.5). The mean values and 

standard deviations are provided at the end in Tables IV.4 and IV.5 for measurements at pH 

5.0 and 7.4 respectively. Three binary mixtures (trastuzumab + rituximab, trastuzumab + 

omalizumab and rituximab + omalizumab) were also tested at elevated protein concentrations 

in the same conditions (See Table IV.6). The full dataset is provided in the supplementary 

data. 

IV.3.2 In silico comparison of the model mAbs 

We compared the selected mAbs and the respective Fab regions in terms of charge and 

hydrophobicity to identify structural elements that may correlate with increased cross-

interaction propensity. We focused mainly on the analysis of the Fab regions (See Fig. 

IV.1A), especially of the CDR domains, as the BLAST alignment of the primary sequences 

shows a very high similarity (99-100%) between the Fc regions (See Table S.IV.1). This is 

not surprising because all six model mAbs belong to the IgG1 subclass.28  

The mAbs differ in their pI and the calculated pI of the respective VH and VL domains (See 

Table IV.1). The calculated net charge (See Fig. IV.1C) of the Fab fragments at both pH 5.0 

and 7.4 also differs between the mAbs. At pH 5.0, the Fabs of trastuzumab, adalimumab, 
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rituximab and bevacizumab exhibit higher positive net charges than the infliximab Fab and 

omalizumab Fab (See Fig. IV.1C). At pH 7.4, all Fab regions show decreased net charges 

compared to pH 5.0, but to a different extent. The calculated net charges of the bevacizumab 

Fab and omalizumab Fab decreased more compared to the Fab regions of trastuzumab, 

adalimumab and rituximab, while the infliximab Fab carries almost no net charge at pH 7.4 

(See Fig. IV.1C). As all Fab regions show positive or close to neutral net charges in the H++ 

calculations, strong attractive long-range electrostatic Fab-Fab interactions between different 

mAbs are not expected at pH 5.0 or 7.4. Therefore, the binary mixtures of the mAbs in our 

dataset will present a different case compared to protein pairs with opposite net charges (like 

BSA and lysozyme in a certain pH range).  

All these calculations provide first insights into the properties of the mAbs but do not 

reflect potential asymmetric charge distributions, which may favor electrostatic self- or cross-

interaction despite the similar net charge of the molecule.22 Thus, we compared the 3D 

structures of the Fab regions and displayed surface charge and hydrophobicity for both pH 5.0 

and 7.4, based on the respective H++ calculations (See Figs. IV.1B and S.IV.1). The Fab 

fragments show differences in their surface charge distributions, although the absolute values 

for positively and negatively charged surface areas show small differences between the six 

Fab fragments at both pH 5.0 and 7.4 (See Figs. IV.1D and IV.1E). 

No large difference in the Fab hydrophobic surface area is predicted by the calculations 

and likewise displayed by the 3D structures (See Figs. IV.1F, IV.1G and S.IV.1). The 

maximum score from AggreScan 3D is lowest for trastuzumab and adalimumab, and highest 

for bevacizumab (See Fig. IV.1H). The average AggreScan 3D score also indicates small 

differences between the Fab regions (See Fig. IV.1I). 

The CDR loops are solvent exposed and contain high levels of charged and hydrophobic 

residues that promote antigen-binding, but could also favor non-specific protein-protein 

interactions.29 Hence, the CDR sequences of all studied mAbs were analyzed in terms of 

hydrophobicity and charge at pH 5.0 and 7.4 to identify sequences that may promote cross-

interactions (See Table IV.1). While the number of hydrophobic residues in the CDRs is 

similar for all studied mAbs, there are differences in the net CDR charge (See Table IV.1).  

In general, the selected mAbs exhibit differences in the magnitude of the net charge, 

charge distributions and CDR compositions. Thus, the 15 binary mixtures of these six model 

mAbs represent a range of possible scenarios that could lead to detrimental protein 

interactions in mAb co-formulations. However, all selected antibodies are approved and 

clinically established drugs with acceptable physicochemical properties. No early stage 
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development drugs with unfavorable biophysical properties were included in this study. Such 

problematic molecules are interesting to study, but from a practical point of view will have a 

lower chance to pass all criteria on the way to market approval, even when formulated 

without the presence of a second protein. Although all mAbs in this study are marketed 

products, it is interesting to note that some of them have different issues in assays used for 

developability assessment. The results of 12 different biophysical assays performed by Jain et 

al. for the selected monoclonal antibodies are summarized in Table IV.3 and reflect the 

covered range of biophysical properties.7 The selected drugs represent various scenarios for 

co-formulation of therapeutic mAbs.   

 

 
Figure IV.1. In silico analysis of the Fab regions. (A) exemplary orientation and surface display of trastuzumab 

Fab using UCSF Chimera v1.14 (B) exemplary Coulomb surface coloring of trastuzumab Fab (the other images 

can be found in Fig S1), (C) calculated surface net charge of the six Fab regions, (D) positive and (E) negative 

surface area of the respective Fabs, (F) exemplary visual presentation of the surface hydrophobicity of 

trastuzumab Fab (the other images can be found in Fig S.IV.1), (G) calculated hydrophobic surface area of each 

Fab, (H) total and (I) average score from AggreScan 3D for the Fabs of each model mAb. 
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Table IV.1. Key features of the selected model mAbs: pI of the entire mAb,12,13 calculated pIs of the respective VH and VL domains, composition of the CDR loops and 

calculated CDR charges.8 

antibody Isoelectric points CDR sequence (residues) CDR charge at pH 5.0 CDR charge at pH 7.4 

pI  pI VH pI VL VL CDR1 VL CDR2 VL CDR3 VH CDR1 VH CDR2 VH CDR3 hydrophobic 
residues 

positive negative net charge positive negative net charge 

trastuzumab 9.10 9.06 9.55 QDVNTAVA 
(27-34) 

LLIYSASFLYS 
(46-56) 

QQHYTTPP 
(89-96) 

FNIKDTYIH 
(27-35) 

WVARIYPTNGYTRY 
(47-60) 

RWGGDGFYAMDY 
(98-109) 

30 4.2 4 0.2 4.2 4 0.2 

adalimumab 8.90 5.22 10.66 QGIRNYLA 
(27-34) 

LLIYAASTLQS 
(46-56) 

QRYNRAPY 
(89-96) 

FTFDDYAMH 
(27-35) 

WVSAITWNSGHIDY 
(47-60) 

KVSYLSTASSLDY 
(98-110) 

32 4.2 3 1.2 4.2 4 0.2 

rituximab 9.40 9.50 9.84 SSVSYIH 
(27-33) 

PWIYATSNLAS 
(45-55) 

QQWTSNPP 
(88-95) 

YTFTSYNMH 
(27-35) 

WIGAIYPGNGDTSY 
(47-60) 

RSTYYGGDWYFNV 
(98-110) 

26 1.2 2 -0.8 1.2 2 -0.8 

bevacizumab 8.30 7.80 7.73 QDISNYLN 
(27-34) 

VLIYFTSSLHS 
(46-56) 

QQYSTVPW 
(89-96) 

YTFTNYGMN 
(27-35) 

WVGWINTYTGEPTY 
(47-60) 

KYPHYYGSSHWYFDV 
(98-112) 

29 1.3 3 -1.7 1 3 -2 

omalizumab 6.80 9.12 4.65 QSVDYDGDSYMN 
(27-38) 

LLIYAASYLES 
(50-60) 

QQSHEDPY 
(93-100) 

YSITSGYSWN 
(27-36) 

WVASITYDGSTNYNP 
(48-62) 

ARGSHYFGHWHFAV 
(97-110) 

29 1.4 7 -5.6 1.3 7 -5.7 

infliximab 7.30 6.40 5.65 QFVGSSIH 
(27-34) 

LLIKYASESMS 
(46-56) 

QQSHSWPF 
(89-96) 

FIFSNHWMN 
(27-35) 

WVAEIRSKSINSATHY 
(47-62) 

RNYYGSTYDY 
(100-109) 

27 4.4 3 1.4 4.2 3 1.2 
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Table IV.2. Numerical results from the in silico analysis of the Fab regions  

 

Fab region 
calculated net charge positive surface area [%] negative surface area [%] hydrophobic surface [%] total score value 

Aggrescan3D 2.0 
average score value 
Aggrescan3D 2.0 

pH 5.0 pH 7.4 pH 5.0 pH 7.4 pH 5.0 pH 7.4 pH 5.0 pH 7.4 pH 5.0 pH 7.4 pH 5.0 pH 7.4 

trastuzumab 9 6 20.78 20.43 12.49 12.48 17.69 17.68 -325.79 -325.79 -0.775 -0.775 

adalimumab 9 6 21.49 20.63 12.84 13.12 18.83 18.77 -335.34 -326.92 -0.806 -0.784 

rituximab 11 8 18.52 18.05 9.63 9.62 19.65 19.65 -308.69 -308.05 -0.735 -0.735 

bevacizumab 9 3 19.56 18.23 12.33 12.34 19.15 19.19 -300.23 -301.12 -0.706 -0.706 

omalizumab 5 3 19.57 19.02 13.36 13.33 17.62 17.61 -304.57 -304.57 -0.723 -0.723 

infliximab 5 0 19.34 18.29 13.92 14.12 19.11 19.11 -307.55 -306.80 -0.737 -0.734 
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Table IV.3. Results of the selected monoclonal antibodies in the 12 biophysical assays performed by Jain et al..7 The Asteriks mark values that exceed the thresholds proposed by 

Jain et al. that indicate unfavorable biophysical properties.    

 

mAb 
HEK 
Titer 

(mg/L) 

Fab Tm 
by DSF 

(°C) 

SGAC-SINS 
AS100 

((NH4)2SO4 
mM) 

HIC 
Retention 

Time 
(Min) 

SMAC 
Retention 

Time 
(Min) 

Slope for 
Accelerated 

Stability 

Poly-
Specificity 

Reagent (PSR) 
SMP Score (0-

1) 

Affinity-Capture Self-
Interaction 

Nanoparticle 
Spectroscopy (AC-
SINS) ∆λmax (nm) 

Average 

CIC 
Retention 

Time 
(Min) 

CSI-BLI 
Delta 

Response 
(nm) 

ELISA BVP 
ELISA 

 
trastuzumab 159.5 78.5 800.0 9.7 8.8 0.04 0.00 2.0 8.8 -0.02 1.06 1.34 
 
adalimumab 134.9 71.0 900.0 8.8 8.7 0.05 0.00 1.1 8.9 -0.01 1.08 1.49 
 
rituximab 164.1 69.0 700.0 10.8 9.1 0.03 0.38 * 2.1 10.1 * -0.01 1.19 2.93 
  
bevacizumab 50.0 63.5 700.0 11.8 * 11.1 0.22 * 0.00 0.8 9.8 -0.02 1.29 2.78 
 
omalizumab 150.4 77.5 800.0 9.5 8.7 0.05 0.00 -0.4 8.5 -0.02 1.12 1.17 
 
infliximab 6.6 64.5 0.0 * 10.4 8.9 0.18 * 0.00 29.6 * 9.0 0.05 * 1.04 1.37 
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IV.3.3 Aggregation during heating determined with DLS  

We used DLS to measure the increase in Rh for the single mAbs and their binary mixtures 

(See Fig. IV.2A). The Ton values differed greatly between the six model mAbs (See Figs. 

IV.2B and IV.2C). Except for infliximab, all studied mAbs showed highest Ton values in 10 

mM sodium acetate pH 5.0. In most cases, the Ton values were lower at pH 7.4 compared to 

pH 5.0, which could be explained by decreased electrostatic repulsion at pH 7.4, where the 

solution pH is closer to the isoelectric points of the proteins. The addition of 250 mM NaCl at 

pH 5.0 significantly reduced the Ton of all mAbs, while at pH 7.4, only minor effects from the 

NaCl could be observed. The drop of the Ton value upon addition of salt at pH 5.0 was caused 

by reduced electrostatic repulsion, and thus facilitated aggregation.25 For infliximab, an 

increased hydrodynamic radius was detected at pH 7.4 compared to pH 5.0 (See Figs. S.IV.2 

and S.IV.3), which indicated the presence of oligomers in the sample. Published data shows 

that infliximab exhibits weak reversible self-association in solution.30 These weakly 

associated aggregates probably disintegrated after moderate heating (See Fig. S.IV.3). 

Despite the individual behavior of the single mAbs, almost all binary mixtures exhibited an 

equal or slightly higher Ton-value compared to the least stable equally concentrated single 

mAb of the respective mixture (See Figs. IV.2D, IV.2E, IV.2F and IV.2G). This was true for 

all four tested solution conditions. Very slightly decreased Ton values could only be detected 

for the binary mixture of trastuzumab plus omalizumab in 10 mM sodium phosphate pH 7.4 

with 250 mM NaCl and rituximab plus infliximab in 10 mM sodium phosphate pH 7.4 with 

250 mM NaCl (See Fig. IV.2G). These were minor differences in the onset temperatures, and 

we should note that the DLS aggregation curves of the binary mixtures showed very similar 

shapes like the aggregation curves of the single proteins (See Figs. S.IV.2 and S.IV.3). In 

general, the Ton of the less stable mAb was not negatively affected by the presence of a second 

mAb. The traces of the binary mixtures followed the trend of the least stable antibody or gave 

intermediate traces, but did not show compromised stability profiles compared to the least 

stable antibody of the respective mixture (See Figs. S.IV.2 and S.IV.3). This was true for 

combinations with similar Ton-values of the single mAbs, e.g. trastuzumab plus omalizumab 

in 10 mM sodium acetate pH 5.0 with 250 mM NaCl (See Fig. S.IV.2), but also for 

combinations with very different Ton-values of the single mAbs, e.g. trastuzumab plus 

infliximab in 10 mM sodium acetate pH 5.0. This data indicates that there are no unfavorable 

effects on the colloidal stability of the proteins in this dataset, arising from the addition of a 

second mAb. 
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Figure IV.2. Aggregation onset temperature from DLS (Ton). (A) Example dataset for trastuzumab (1 g/L), 

rituximab (1 g/L) and the binary combination of trastuzumab and rituximab (0.5 g/L of each antibody). Radar 

diagrams for the Ton-values of the single mAbs (1 g/L) at pH 5.0 (B) and pH 7.4 (C). (D, E, F, G) Ton-values for 

all 15 binary mixtures compared to the respective single mAbs. “mAb1” refers to the first protein in the code 

“mAb1+mAb2”, e.g. in tra+ada mAb1 is trastuzumab and mAb2 is adalimumab. 

 

IV.3.4 Thermal unfolding with nanoDSF 

The thermal unfolding of the single proteins and the binary mixtures was studied with 

nanoDSF (Fig. IV.3A). The inflection points of the first thermal unfolding at lower 

temperature (IP1) and the second thermal unfolding at higher temperature (IP2) were derived 

from the curves as explained in the Methods section. The IPs from nanoDSF are surrogate 

parameters for the apparent protein melting temperatures. The transition at lower temperature 
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usually reflects the unfolding of the CH2 domains, while the transition at higher temperature 

typically corresponds to the unfolding of the Fabs and the CH3 domains, as described earlier.31  

The IP1 values of the six mAbs differed, indicating that these proteins have different 

conformational stability (See Figs. IV.3B and IV.3C). In general, the IP1 values were higher 

at pH 7.4 compared to pH 5.0. This can be linked to a decreased energetic state of the folded 

state at pH 7.4.32 At pH 5.0, the additional charges can destabilize the native state compared 

to pH 7.4 and thus reduce the conformational stability. The addition of 250 mM NaCl reduced 

the IP1 values at pH 5.0, while at pH 7.4 the addition of salt had only minor effects on the 

transitions (See Figs. IV.3B and IV.3C). The IP2 values of the six mAbs are above 76 °C 

which indicates high conformational stability of the Fab/CH3 domains in all four tested 

solution conditions (See Tables IV.3 and IV.4). This high intrinsic conformational stability is 

expected for marketed mAbs.7  

In general, the binary mAb mixtures showed IP1 and IP2 values that were not lower 

compared to the less stable mAb in the mixture (See Figs. IV.3D, IV.3E, IV.3F and IV.3G, 

Tables IV.3 and IV.4). Noteworthy, the traces of the binary mixtures showed intermediate 

results compared to the single mAbs, but not always an arithmetic mean (See Figs S.IV.4 and 

S.IV.5). This can be a result of the different contribution of aromatic amino residues from the 

two mAbs to the intrinsic protein fluorescence of the binary mixture. 
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Figure IV.3. Thermal protein unfolding studied with nanoDSF. (A) Example dataset for trastuzumab (1 g/L), 

rituximab (1 g/L) and the binary combination of trastuzumab and rituximab (0.5 g/L of each antibody). Radar 

diagrams for the IP1 values of the single mAbs (1 g/L) at pH 5.0 (B) and pH 7.4 (C). (D, E, F, G) IP1 values for 

all 15 binary mixtures compared to the respective single mAbs. “mAb1” refers to the first protein in the code 

“mAb1+mAb2”, e.g. in tra+ada mAb1 is trastuzumab and mAb2 is adalimumab. 

 

IV.3.5 Aggregation during heating determined with nanoDSF backscattering 

We evaluated the aggregation during heating of the single mAbs and their binary mixtures 

from the change in the backscattering signal obtained from nanoDSF (Fig. IV.4A). This 

information is complementary to the DLS data presented in IV.3.3. However, there are some 

essential differences between the two approaches. Detecting aggregation onset temperature 

with DLS provides information about the formation of small soluble aggregates in the 

solution, but as the aggregates grow and the sample becomes more heterogeneous, the DLS 
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data becomes less meaningful. On the contrary, the backscattering detector from nanoDSF 

detects only aggregates above a certain size, but the data is still informative when very large 

aggregates form in the sample or when precipitation occurs.33,34  

The Tagg values differed between the six model mAbs (See Fig. IV.4B and IV.4C). 

Interestingly, no aggregation was detected by nanoDSF backscattering in 10 mM sodium 

acetate pH 5.0 for any sample (See Figs. IV.4B, IV.4C and S.IV.6). This can be explained by 

the strong electrostatic repulsion in this condition which inhibits the aggregate growth and 

therefore the aggregates do not reach a size that is detectable by the backscattering detector 

used in nanoDSF.35  

Remarkably, the backscattering signal from the binary mixtures allowed us to see the 

underlying aggregation profiles of the individual mAbs for multiple binary mixtures at pH 5.0 

with 250 mM NaCl and at pH 7.4 with or without 250 mM NaCl (See Figs. IV.4A, S.IV.6 and 

S.IV.7). The aggregation pattern detected by nanoDSF backscattering often showed a 2-step 

transition, which reflected the aggregation pattern of the respective single mAbs (See Figs. 

IV.4A, S.IV.6 and S.IV.7). The aggregation onsets in the binary mixtures occured at the same 

temperature as in the single formulations and the excess scattering of the binary mixture 

resembled the sum of the excess scattering signals of the individual mAbs with the same 

concentration (See Fig. S.IV.6 and S.IV.7). Like the previously measured biophysical 

parameters, the Tagg of the binary mixtures was not lower than the Tagg of the least stable mAb 

(See Figs. IV.4E, IV.4F and IV.4G). This was true for all 15 combinations in all tested 

conditions and indicates that no stability compromising interactions occured between these 

antibodies.  
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Figure IV.4. Aggregation during heating detected from the nanoDSF backscattering signal. (A) Example dataset 

for trastuzumab (1 g/L), rituximab (1 g/L) and the binary combination of trastuzumab and rituximab (0.5 g/L of 

each antibody). Radar diagrams for the Tagg values of the single mAbs (1 g/L) at pH 5.0 (B) and pH 7.4 (C). (D) 

No aggregation was detected by nanoDSF backscattering for any mAb and any binary mixture in 10 mM sodium 

acetate pH 5.0 (E, F, G). Tagg values for all 15 binary mixtures compared to the respective single mAbs. “mAb1” 

refers to the first protein in the code “mAb1+mAb2”, e.g. in tra+ada mAb1 is trastuzumab and mAb2 is 

adalimumab.  
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IV.3.6 Analysis of the diffusion interaction parameter (kD) 

We used DLS to measure the protein concentration dependence of Dt and to determine the 

kD of the individual mAbs and their binary mixtures (See Fig. IV.5A). The individual proteins 

exhibited different kD values depending on the solution conditions (See Figs. IV.5B and 

IV.5C). At pH 5.0 without NaCl, positive kD values were detected for all six mAbs. The kD 

values became negative upon addition of 250 mM NaCl to the 10 mM sodium acetate pH 5.0 

buffer. At pH 7.4 the kD values were also negative independent of the addition of 250 mM 

NaCl. The higher kD values at pH 5.0 without NaCl indicated stronger repulsive electrostatic 

protein interactions compared to the other three conditions.25 This concurs well with the high 

Ton, Tagg values and the small aggregate sizes that were observed during heating of the 

individual mAbs in 10 mM sodium acetate pH 5.0. No kD values were determined for 

omalizumab in 10 mM sodium phosphate pH 7.4 and infliximab in 10 mM sodium phosphate 

(with or without NaCl) because the protein concentration dependence of Dt was not linear 

(See Fig. S.IV.9). This was most likely caused by protein oligomerization due to strong self-

association, resulting from long-range electrostatic protein self-interactions. This is further 

supported by the observation that the addition of 250 mM NaCl to the 10 mM sodium 

phosphate pH 7.4 reduced the oligomerization of omalizumab and allowed the calculation of a 

negative kD value (See Fig. S.IV.9). In the case of infliximab, we also observed non-linear 

decrease in Dt as protein concentration is increased (See Fig. S.IV.9). This can be explained 

with the almost neutral net charge of infliximab at pH 7.4, which is indicated by its isoelectric 

point of 7.3 and the low calculated net charge of the Fab. This indicates that hydrophobic 

interactions are probably the dominant factor towards oligomerization of infliximab at pH 7.4 

and supports previous reports, where dimerization of infliximab was assigned to hydrogen 

bonding and hydrophobic interactions.30  

The DLS data shows that the binary mAb mixtures did not exhibit more negative kD values 

compared to the least stable mAb in the mixture (See Figs. IV.5D, IV.5E, IV.5F and IV.5G). 

In most cases, the measured Dt in the binary mixture was an intermediate value of the Dt 

values of the single mAbs at the same concentration (See Figs. S.IV.8 and S.IV.9). The 

combinations rituximab plus omalizumab in 10 mM sodium acetate pH 5.0 with 250 mM 

NaCl, adalimumab plus bevacizumab in 10 mM sodium phosphate pH 7.4 and trastuzumab 

plus omalizumab in 10 mM sodium phosphate pH 7.4 with 250 mM NaCl showed slightly 

more negative values compared to the single mAbs (See Tables IV.3 and IV.4). This could be 

an indication for additional attractive interactions in the mixture. However, these differences 
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were very small and occured only for mixtures of mAbs with very similar kD values. Thus, 

these differences are not expected to have an impact on the physical stability of the proteins.  

IV.3.7 Results for high protein concentrations 

Until now, we performed the characterization on the model mAbs and their binary 

mixtures at relative low concentrations (< 10 g/L protein). Weak protein (cross-)interactions 

can be dependent on the protein concentration. Thus, binary mixtures of selected antibodies 

were also prepared at high protein concentrations up to 100 g/L and their conformational and 

colloidal stability was studied by nanoDSF, nanoDSF backscattering and DLS. Based on the 

in silico analysis of the Fab regions (See Fig. IV.1), trastuzumab, rituximab and omalizumab 

were selected. While trastuzumab and rituximab show similar isoelectric points, but opposite 

CDR-charges at pH 5.0 and pH 7.4, trastuzumab and omalizumab exhibit different isoelectric 

points and opposite CDR-charges at pH 5.0 and pH 7.4 (See Table IV.1). Rituximab and 

omalizumab show different isoelectric points and negative CDR charge at pH 5.0 and pH 7.4.      

The results are given in Table IV.6 and the complete dataset is presented in the 

supplementary data (See Figs. S.IV.10, S.IV.11, S.IV.12, and S.IV.13). In general, the results 

for high protein concentrations confirm the results for low protein concentrations. All binary 

mixtures at high protein concentrations exhibited an equal or slightly higher Ton value 

compared to the least stable equally concentrated single mAb of the respective mixture in all 

tested conditions. Furthermore, no stability-compromising aggregation pattern was detected 

for the binary mixture of rituximab and omalizumab in 10 mM sodium phosphate pH 7.4 at 50 

g/L (See Fig. S.IV.12K), although the binary mixture exhibits an increased apparent 

hydrodynamic radius at ambient temperature, which may be assigned to weak cross-

interactions between mAb-1 and mAb-2. This indicates that even in the presence of weak 

cross-interactions, the colloidal stability of binary mAb mixtures is not compromised 

compared to the single mAb formulations. Further, even if there is cross-interaction between 

these two mAbs at higher concentration, this cross-interaction can be screened by formulation 

optimization, as the increased hydrodynamic radius was not observed in the remaining 

conditions. 



Chapter IV 

111 
 

 

Figure IV.5. Diffusion interaction parameter kD assessed with DLS. (A) Example dataset for trastuzumab, 

rituximab and the binary combination of trastuzumab and rituximab in 10 mM sodium acetate pH 5.0. Radar 

diagrams for the kD values of the single mAbs at pH 5.0 (B) and pH 7.4 (C) without or with 250 mM NaCl. (D, 

E, F, G) kD values for all 15 binary mixtures (green) compared to the respective single mAbs (red and yellow). 

“mAb1” refers to the first protein in the code “mAb1+mAb2”, e.g. in tra+ada mAb1 is trastuzumab and mAb2 is 

adalimumab. The asterisks indicate that no kD-value was obtained because the protein concentration dependence 

of Dt was not linear in this condition. 
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Table IV.4. Summary for the biophysical parameters of the single mAbs and their binary mixtures (0.5 + 0.5 g/L) in 10 mM sodium acetate pH 5.0 with or without 250 mM 

NaCl. All measurements were performed in triplicates. The mean values with standard deviation are shown in the table.   

 10 mM sodium acetate pH 5.0 

 + 0 mM NaCl + 250 mM NaCl 

 IP1 [°C] IP2 [°C] Tagg [°C] Ton [°C] kD [mL/g] IP1 [°C] IP2 [°C] Tagg [°C] Ton [°C] kD [mL/g] 
trastuzumab 1 g/L 69.10 ± 0.17 81.33 ± 0.06 n.a. 75.79 ± 0.25 49.47 ± 3.78 64.13 ± 0.15 79.33 ± 0.15 78.63 ± 0.06 63.59 ± 0.43 -5.77 ± 0.28 

trastuzumab 0.5 g/L 68.83 ± 0.21 81.40 ± 0.00 n.a. 76.19 ± 0.61 64.13 ± 0.15 77.43 ± 0.45 79.10 ± 0.10 64.98 ± 0.43 
+ adalimumab 71.03 ± 0.06 81.57 ± 0.15 n.a. 69.01 ± 0.17 52.00 ± 0.61 64.20 ± 0.17 78.57 ± 0.15 70.80 ± 0.00 62.63 ± 0.14   -5.84 ± 0.38 

+ rituximab 69.00 ± 0.17 81.87 ± 0.06 n.a. 69.67 ± 0.23 56.20 ± 0.40 63.47 ± 0.15 79.50 ± 0.10 73.30 ± 0.00 55.88 ± 0.29   -7.96 ± 1.02 
+ bevacizumab 70.67 ± 0.12 81.37 ± 0.15 n.a. 67.95 ± 0.37 43.43 ± 1.82 66.20 ± 0.10 79.37 ± 0.06 69.27 ± 0.06 61.45 ± 0.10   -7.98 ± 0.66 
+ omalizumab 68.77 ± 0.12 81.10 ± 0.20 n.a. 72.64 ± 0.27 23.83 ± 0.80 63.83 ± 0.06 78.83 ± 0.23 79.03 ± 0.06 64.09 ± 0.24   -7.52 ± 0.31 
+ infliximab 66.17 ± 0.25 81.53 ± 0.15 n.a. 56.75 ± 0.10 46.27 ± 1.78 62.63 ± 0.12 79.77 ± 0.15 63.93 ± 0.12 50.14 ± 0.14 -22.07 ± 0.12 

adalimumab 1 g/L 71.33 ± 0.12 82.97 ± 0.38 n.a. 68.95 ± 0.08 52.50 ± 1.61 68.20 ± 0.17 80.57 ± 0.40 69.43 ± 0.06 61.77 ± 0.12   -8.00 ± 0.61 
adalimumab 0.5 g/L 71.36 ± 0.15 83.20 ± 0.17 n.a. 70.16 ± 0.09 67-96 ± 0.30 80.26 ± 0.15 70.36 ± 0.12 62.28 ± 0.13 

+ rituximab 70.23 ± 0.06 82.77 ± 0.12 n.a. 68.40 ± 0.42 57.57 ± 3.44 63.77 ± 0.12 80.23 ± 0.15 70.27 ± 0.12 55.99 ± 0.07   -8.13 ± 0.98 
+ bevacizumab 70.97 ± 0.15 82.37 ± 0.21 n.a. 67.78 ± 0.35 46.73 ± 1.03 67.03 ± 0.06 80.87 ± 0.15 68.80 ± 0.10 61.02 ± 0.07 -10.13 ± 0.67 
+ omalizumab 71.20 ± 0.10 82.07 ± 0.12 n.a. 70.54 ± 0.15 23.67 ± 0.40 64.40 ± 0.36 80.03 ± 0.29 70.53 ± 0.12 62.88 ± 0.26   -9.78 ± 0.68 
+ infliximab 66.47 ± 0.06 83.07 ± 0.21 n.a. 56.71 ± 0.12 43.33 ± 0.51 63.03 ± 0.06 80.67 ± 0.15 63.90 ± 0.26 50.23 ± 0.13 -20.97 ± 0.80 

rituximab 1 g/L 68.57 ± 0.15 83.03 ± 0.29 n.a. 68.64 ± 0.35 65.10 ± 0.89 63.43 ± 0.12 80.30 ± 0.17 72.00 ± 0.00 53.27 ± 0.16   -9.85 ± 0.55 
rituximab 0.5 g/L 68.50 ± 0.15  83.46 ± 0.15 n.a. 68.14 ± 0.26 63.23 ± 0.11 80.03 ± 0.15 72.8 ± 0.00 54.47 ± 0.08 
+ bevacizumab 69.90 ± 0.00 82.70 ± 0.17 n.a. 67.40 ± 0.33 51.70 ± 2.21 64.37 ± 0.12 81.03 ± 0.21 69.13 ± 0.12 56.17 ± 0.21 -10.55 ± 0.74 
+ omalizumab 68.73 ± 0.15 82.20 ± 0.17 n.a. 69.91 ± 0.05 30.23 ± 0.40 63.40 ± 0.00 79.23 ± 0.15 73.20 ± 0.00 56.67 ± 0.10 -11.07 ± 0.65 
+ infliximab 65.57 ± 0.06 83.00 ± 0.10 n.a. 56.66 ± 0.28 52.70 ± 1.60 61.50 ± 0.20 81.17 ± 0.15 62.63 ± 0.15 49.67 ± 0.12 -22.77 ± 0.68 

bevacizumab 1 g/L 70.67 ± 0.12 81.87 ± 0.12 n.a. 66.28 ± 0.08 42.73 ± 0.72 66.23 ± 0.06 80.77 ± 0.06 67.87 ± 0.06 59.86 ± 0.44 -11.77 ± 0.67 
bevacizumab 0.5 g/L 70.66 ± 0.11 82.16 ± 0.12  n.a. 68.03 ± 0.07 66.16 ± 0.05 80.06 ± 0.06 68.86 ± 0.05 60.26 ± 0.45 

+ omalizumab 70.90 ± 0.10 81.57 ± 0.21 n.a. 68.63 ± 0.03 21.87 ± 1.56 66.73 ± 0.12 80.00 ± 0.17 78.87 ± 0.25 61.76 ± 0.26   -9.78 ± 0.68 
+ infliximab 66.90 ± 0.17 82.60 ± 0.26 n.a. 56.77 ± 0.18 38.97 ± 0.38 63.67 ± 0.31 80.17 ± 0.15 64.10 ± 0.10 50.03 ± 0.23 -27.03 ± 5.02 

omalizumab 1 g/L 68.33 ± 0.06 80.50 ± 0.17 n.a. 72.24 ± 0.16 3.41 ± 0.81 63.53 ± 0.21 77.27 ± 0.15 79.37 ± 0.06 64.04 ± 0.22   -9.94 ± 0.49 
omalizumab 0.5 g/L 68.43 ± 0.15 80.46 ± 0.25 n.a. 72.84 ± 0.10 63.36 ± 0.31 76.96 ± 0.23 80.96 ± 0.05 65.16 ± 0.04 

+ infliximab 66.10 ± 0.17 81.33 ± 0.12 n.a. 56.69 ± 0.07 20.80 ± 0.87 62.60 ± 0.00 80.53 ± 0.25 64.13 ± 0.06 49.83 ± 0.08 -23.83 ± 0.06 
infliximab 1 g/L 64.60 ± 0.00 82.43 ± 0.25 n.a. 56.02 ± 0.26 36.43 ± 1.05 61.17 ± 0.15 80.07 ± 0.15 62.87 ± 0.12 48.78 ± 0.21 -41.13 ± 0.87 

infliximab 0.5 g/L 64.50 ± 0.00 82.46 ± 0.15 n.a. 56.62 ± 0.24 60.5 ± 0.17 80.43 ± 0.31 63.36 ± 0.15 49.13 ± 0.12 
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Table IV.5. Summary for the biophysical parameters of the single mAbs and their binary mixtures (0.5 + 0.5 g/L) in 10 mM sodium phosphate pH 7.4 with or without 250 mM 

NaCl. All measurements were performed in triplicates. The mean values with standard deviation are shown in the table.   

 10 mM sodium phosphate pH 7.4 

 + 0 mM NaCl + 250 mM NaCl 

 IP1 [°C] IP2 [°C] Tagg [°C] Ton [°C] kD [mL/g] IP1 [°C] IP2 [°C] Tagg [°C] Ton [°C] kD [mL/g] 

trastuzumab 1 g/L 72.20 ± 0.00 80.53 ± 0.06 78.93 ± 0.06 69.51 ± 0.58 -9.25 ± 1.09 70.97 ± 0.06 80.17 ± 0.06 79.70 ± 0.00 69.59 ± 0.82   -5.83 ± 0.48 
trastuzumab 0.5 g/L 72.23 ± 0.06 80.43 ± 0.12 78.96 ± 0.06 70.50 ± 0.22 70.90 ± 0.00 79.67 ± 0.11 79.90 ± 0.00 71.34 ± 0.38 
+ adalimumab 71.53 ± 0.06 81.37 ± 0.06 71.40 ± 0.00 65.98 ± 0.29 -13.57 ± 0.57 70.93 ± 0.06 80.50 ± 0.00 72.77 ± 0.15 67.92 ± 0.05   -8.71 ± 0.99 
+ rituximab 71.23 ± 0.15 81.37 ± 0.06 73.63 ± 0.06 59.21 ± 0.12 -11.73 ± 1.17 70.13 ± 0.12 80.73 ± 0.06 74.77 ± 0.23 58.69 ± 0.30   -9.65 ± 0.60 
+ bevacizumab 70.83 ± 0.06 81.47 ± 0.06 70.30 ± 0.00 62.96 ± 0.19 -12.00 ± 0.30 69.77 ± 0.15 80.43 ± 0.15 71.13 ± 0.15 63.18 ± 0.12   -9.99 ± 1.04 
+ omalizumab 72.07 ± 0.12 80.27 ± 0.06 78.77 ± 0.12 68.18 ± 0.31 -16.73 ± 0.76 70.67 ± 0.15 80.23 ± 0.06 80.07 ± 0.23 67.42 ± 0.31   -7.65 ± 0.43 
+ infliximab 68.17 ± 0.12 81.17 ± 0.12 62.53 ± 0.15 54.51 ± 0.11 n.a. 68.57 ± 0.15 80.27 ± 0.12 69.33 ± 0.35 57.99 ± 0.22 - n.a. 
adalimumab 1 g/L 71.10 ± 0.10 83.17 ± 0.21 70.57 ± 0.06 65.55 ± 0.32 -15.40 ± 1.00 70.73 ± 0.06 82.70 ± 0.20 71.63 ± 0.06 66.95 ± 0.04   -9.62 ± 0.36 
adalimumab 0.5 g/L 71.03 ± 0.06 83.40 ± 0.00 71.16 ± 0.06 66.18 ± 0.28 70.66 ± 0.11 82.33 ± 0.55 72.56 ± 0.12 67.71 ± 0.21  
+ rituximab 70.57 ± 0.06 83.00 ± 0.20 70.47 ± 0.21 59.02 ± 0.23 -16.87 ± 1.29 69.97 ± 0.06 82.23 ± 0.12 72.27 ± 0.12 59.19 ± 0.30 -10.05 ± 1.44 
+ bevacizumab 70.57 ± 0.12 82.73 ± 0.15 69.60 ± 0.10 62.98 ± 0.14 -13.67 ± 0.32 69.90 ± 0.17 82.37 ± 0.21 70.90 ± 0.26 63.47 ± 0.26 -12.40 ± 1.73 
+ omalizumab 71.47 ± 0.12 82.47 ± 0.21 70.90 ± 0.00 66.06 ± 0.11 -19.37 ± 0.06 71.00 ± 0.20 81.67 ± 0.12 72.47 ± 0.25 66.76 ± 0.19   -7.37 ± 0.21 
+ infliximab 68.07 ± 0.06 82.70 ± 0.20 62.63 ± 0.21 54.42 ± 0.21 n.a. 69.13 ± 0.23 82.70 ± 0.17 69.17 ± 0.75 57.78 ± 0.42 n.a. 
rituximab 1 g/L 69.80 ± 0.00 83.43 ± 0.06 72.63 ± 0.06 57.88 ± 0.10 -15.40 ± 0.46 69.03 ± 0.12 82.67 ± 0.25 73.67 ± 0.15 57.19 ± 0.15 -11.40 ± 0.61 
rituximab 0.5 g/L 69.46 ± 0.15 83.40 ± 0.17 73.10 ± 0.00 58.69 ± 0.17 68.70 ± 0.00 82.76 ± 0.21 74.60 ± 0.10 57.89 ± 0.45 
+ bevacizumab 70.03 ± 0.12 82.70 ± 0.00 69.30 ± 0.00 58.85 ± 0.47 -15.07 ± 0.35 69.17 ± 0.15 81.67 ± 0.15 70.40 ± 0.46 58.83 ± 0.10 -10.32 ± 1.12 
+ omalizumab 70.93 ± 0.12 82.70 ± 0.20 72.63 ± 0.12 59.58 ± 0.27 -19.13 ± 1.23 69.90 ± 0.00 81.47 ± 0.06 74.83 ± 0.06 58.65 ± 0.14   -9.24 ± 0.28 
+ infliximab 67.93 ± 0.06 82.57 ± 0.29 60.43 ± 0.32 53.89 ± 0.02 n.a. 67.47 ± 0.06 82.17 ± 0.06 68.50 ± 0.17 56.28 ± 0.12 n.a. 
bevacizumab 1 g/L 70.17 ± 0.15 82.93 ± 0.06 69.33 ± 0.15 62.20 ± 0.15 -15.33 ± 0.38 69.27 ± 0.06 81.70 ± 0.17 69.90 ± 0.10 62.40 ± 0.04 -15.93 ± 1.32 
bevacizumab 0.5 g/L 70.5 ± 0.00 83.13 ± 0.15 69.96 ± 0.06 62.29 ± 0.45 69.50 ± 0.00 81.66 ± 0.15 70.03 ± 0.15 62.64 ± 0.22 
+ omalizumab 70.73 ± 0.06 82.60 ± 0.36 70.10 ± 0.17 63.66 ± 0.32 -15.53 ± 1.19 69.73 ± 0.06 81.10 ± 0.00 70.00 ± 0.17 63.69 ± 0.13 -10.73 ± 0.06 
+ infliximab 69.20 ± 0.00 82.40 ± 010 62.63 ± 0.12 54.07 ± 0.09 n.a. 68.73 ± 0.06 81.27 ± 0.15 68.23 ± 0.06 58.11 ± 0.41 n.a. 
omalizumab 1 g/L 72.17 ± 0.15 80.17 ± 0.38 78.80 ± 0.17 65.62 ± 0.49 n.a. 70.43 ± 0.12 80.17 ± 0.15 80.83 ± 0.06 68.27 ± 0.31  - 6.89 ± 0.18 
omalizumab 0.5 g/L 72.20 ± 0.17 79.53 ± 0.50 79.93 ± 0.57 68.73 ± 0.50 70.66 ± 0.15 79.13 ± 0.41 82.00 ± 0.10 67.95 ± 0.28 
+ infliximab 67.63 ± 0.06 82.03 ±0.06 62.47 ± 0.06 54.64 ± 0.18 n.a. 68.07 ± 0.06 81.17 ± 0.12 69.47 ± 0.25 58.19 ± 0.09 n.a. 
infliximab 1 g/L 66.67 ± 0.12 82.10 ± 0.10 60.50 ± 0.30 53.25 ± 0.04 n.a. 67.03 ± 0.06 81.90 ± 0.26 67.43 ± 0.23 56.59 ± 0.12 n.a. 
infliximab 0.5 g/L 66.40 ± 0.30 82.20 ± 0.10 62.56 ± 0.12 54.68 ± 0.19 66.56 ± 0.06 81.56 ± 0.11 67.73 ± 0.23 57.78 ± 0.10 
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Table IV.6. Summary for the biophysical parameters of the single mAbs and their binary mixtures at high protein concentrations. All measurements were performed in 

triplicates. The mean values with standard deviation are shown in the table.   

 10 mM sodium acetate pH 5.0 

 + 0 mM NaCl + 250 mM NaCl 

 IP1 [°C] IP2 [°C] Tagg [°C] Ton [°C] IP1 [°C] IP2 [°C] Tagg [°C] Ton [°C] 

trastuzumab 100 g/L 68.17 ± 0.06 81.57 ± 0.06 77.57 ± 0.21 67.14 ± 0.10 65.83 ± 0.06 81.90 ± 0.00 64.57 ± 0.35 61.75 ± 0.10 
rituximab 100 g/L 66.13 ± 0.06 82.87 ± 0.06 70.73 ± 0.12 58.24 ± 0.05 63.57 ± 0.06 82.60 ± 0.10 55.97 ± 0.32 51.59 ± 0.25 
trastuzumab 50 g/L + rituximab 50 g/L 67.47 ± 0.06 81.93 ± 0.06 72.57 ± 0.21 62.67 ± 0.10 64.63 ± 0.06 80.77 ± 0.06 59.23 ± 0.25 53.51 ± 0.17 
trastuzumab 50 g/L 68.43 ± 0.06 81.37 ± 0.06 77.87 ± 0.31 66.21 ± 0.12 65.20 ± 0.00 81.80 ± 0.00 63.60 ± 0.36 61.22 ± 0.12 
rituximab 50 g/L 65.77 ± 0.06 82.67 ± 0.06 70.47 ± 0.42 61.19 ± 0.29 61.47 ± 0.25 82.37 ± 0.06 57.07 ± 0.42 50.81 ± 0.25 
omalizumab 50 g/L 68.13 ± 0.06 81.10 ± 0.00 76.37 ± 0.21 68.53 ± 0.21 64.80 ± 0.00 82.93 ± 0.06 64.17 ± 0.32 60.66 ± 0.20 
trastuzumab 25 g/L + rituximab 25 g/L 67.60 ± 0.10 81.80 ± 0.00 70.53 ± 0.15 64.32 ± 0.20 63.60 ± 0.10 80.70 ± 0.00 58.73 ± 0.45 52.47 ± 0.11 
trastuzumab 25 g/L + omalizumab 25 g/L 68.27 ± 0.06 81.30 ± 0.00 77.00 ± 0.17 68.24 ± 0.37 65.03 ± 0.06 81.77 ± 0.06 64.67 ± 0.31 61.12 ± 0.17 
rituximab 25 g/L + omalizumab 25 g/L 67.30 ± 0.10 82.27 ± 0.15 70.80 ± 0.17 63.99 ± 0.27 63.47 ± 0.21 82.00 ± 0.10 59.23 ± 0.32 52.44 ± 0.32 
 10 mM sodium phosphate pH 7.4 

 + 0 mM NaCl + 250 mM NaCl 

IP1 [°C] IP2 [°C] Tagg [°C] Ton [°C] IP1 [°C] IP2 [°C] Tagg [°C] Ton [°C] 
trastuzumab 100 g/L 71.30 ± 0.14 81.80 ± 0.00 68.00 ± 0.30 66.80 ± 0.05 70.77 ± 0.06 82.33 ± 0.12 70.47 ± 0.45 67.65 ± 0.14 
rituximab 100 g/L 68.77 ± 0.06 83.43 ± 0.06 57.60 ± 0.20 54.28 ± 0.10 68.03 ± 0.06 83.30 ± 0.00 57.53 ± 0.06 53.59 ± 0.18 
trastuzumab 50 g/L + rituximab 50 g/L 69.67 ± 0.06 81.43 ± 0.06 59.43 ± 0.12 55.74 ± 0.03 68.97 ± 0.06 81.03 ± 0.06 58.70 ± 0.30 54.99 ± 0.12 
trastuzumab 50 g/L 71.57 ± 0.06 81.40 ± 0.10 69.00 ± 0.20 66.38 ± 0.15 70.83 ± 0.06 82.03 ± 0.06 70.70 ± 0.50 67.96 ± 0.25 
rituximab 50 g/L 68.73 ± 0.06 83.10 ± 0.10 57.23 ± 0.21 53.60 ± 0.25 68.20 ± 0.17 83.13 ± 0.23 57.00 ± 0.10 53.57 ± 0.08 
omalizumab 50 g/L 71.40 ± 0.10 82.53 ± 0.06 70.20 ± 0.30 67.62 ± 0.14 70.50 ± 0.00 82.87 ± 0.06 70.33 ± 0.31 67.67 ± 0.13 
trastuzumab 25 g/L + rituximab 25 g/L 70.07 ± 0.12 81.47 ± 0.21 59.07 ± 0.35 54.80 ± 0.10 69.07 ± 0.06 81.07 ± 0.06 58.27 ± 0.15 55.18 ± 0.09 
trastuzumab 25 g/L + omalizumab 25 g/L 71.33 ± 0.06 80.83 ± 0.21 70.40 ± 0.17 67.30 ± 0.24 70.63 ± 0.12 82.37 ± 0.06 70.60 ± 0.36 67.61 ± 0.14 
rituximab 25 g/L + omalizumab 25 g/L 70.63 ± 0.06 82.93 ± 0.06 60.70 ± 0.17 55.88 ± 0.17 68.83 ± 0.06 82.17 ± 0.12 60.07 ± 0.15 55.31 0.25 
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IV.4 Discussion 

In this work, we performed a biophysical characterization on 15 binary mixtures of six 

mAbs from the IgG1 subclass with different physicochemical features. Remarkably, no 

detrimental mAb cross-interaction was observed in any of the 15 binary mixtures in the four 

tested conditions (pH 5.0 and 7.4, with or without 250 mM NaCl). The biophysical 

parameters for the binary combinations were not inferior in the sense of indicating 

compromised physical stability compared to the least stable mAb in the respective mixture. 

Non-specific protein cross-interactions in solution are possible and were previously reported 

for several model protein pairs, e.g. for ovalbumin and lysozyme,36,37 for lysozyme and 

chymotrypsinogen,38 for insulin and several proteins like BSA or lysozyme,39 or for some 

mAb mixtures.5 If such cross-interactions affect protein stability negatively, this creates 

challenges for the development of co-formulations of therapeutic proteins. However, the 

presented results confirm previous findings that stability-compromising cross-interactions 

between different monoclonal antibodies might be less prevalent in co-formulations of 

mAbs.4,40,41 

We used six mAbs from the IgG1 subclass in the presented dataset. Although having 

different physicochemical features, these six mAbs still share a lot of similarities (such as 

high homology in the Fc region, magnitude of the net charge, etc.) and are well-behaved 

molecules that are stable enough to become marketed drugs. These similarities could explain 

our findings and the lack of deleterious effects on the biophysical parameters of the proteins 

in binary mixtures. Thus, it is questionable if these findings reflect the behavior of biophysical 

unfavorable mAbs that may arise in early development, in binary mixtures. On the opposite, 

our study indicates that the combination of two mAbs from the IgG1 subclass in co-

formulation might be more straightforward than expected, provided that both of the molecules 

exhibit drug-like features. 

In this study, the Ton and Tagg values indicate that antibody combinations show similar or 

slightly better colloidal stability during heating compared to the least stable single mAb. An 

equal or higher Ton and Tagg value can be detected in almost all binary mixtures compared to 

the less stable equally concentrated single mAb, e.g. rituximab plus omalizumab in 10 mM 

sodium phosphate pH 7.4, while the unfolding and aggregation patterns of the single mAbs 

remain unchanged in the mixtures (based on nanoDSF data). For certain combinations like 

rituximab plus omalizumab in 10 mM sodium acetate pH 5.0 with 250 mM NaCl, the 

combination even shows a slightly higher Ton value compared to the less stable mAb at 0.5 
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g/L. When comparing the 95% confidence intervals of the mean values, we can confirm that 

this increase in Ton is significant (data not shown). This observation is interesting and opens 

the question about the reasons behind the unaffected or slightly increased Ton and Tagg of the 

less stable mAb in the binary mixture. A possible explanation is that the non-specific cross-

interactions in the 15 binary mAb mixtures in our dataset are weaker or almost absent 

compared to the self-interactions. Further support of this hypothesis can be found in the kD 

values of the binary mixtures, which are not more negative than the kD values of the 

individual mAbs. Previously published work with combinations of three other mAbs from the 

IgG1 class also did not indicate cross-interactions between the molecules in solution.40 

Furthermore, a recent study on a co-formulation of one IgG1 and one IgG2 antibody did not 

find cross-interactions between the proteins as well.4  

Another aspect to consider in the context of co-formulation development is what type of 

aggregates are formed in the binary protein mixtures. If the mAbs aggregate by forming 

homo-oligomers this will explain why the nanoDSF backscattering profiles of the binary 

mixtures (0.5 g/L of each mAb) closely resemble the sum of backscattering profiles of the 

individual mAbs with concentration 0.5 g/L (See Figs. S.IV.6 and S.IV.7). Although the DLS 

and nanoDSF measurements detect the aggregate formation, they do not give information 

about the composition of the aggregates. In follow up work, complementary methods must be 

applied to study the morphology and composition of the aggregates formed by the individual 

mAbs and in the binary mixtures. This information will improve our understanding of the 

degradation mechanisms in co-formulations of mAbs. Preliminary results in our group 

indicate that the mAbs follow their own degradation pathway in binary mixtures. The binary 

mixture of trastuzumab and rituximab in 10 mM sodium acetate pH 5.0 contains mAbs with 

different aggregation onset temperatures (See Figs. S.IV.2 and S.IV.6). If this specific binary 

mixture and the respective single formulations of trastuzumab and rituximab are incubated at 

temperatures above the aggregation temperature of the least stable mAb rituximab, the protein 

unfolding trace detected by nanoDSF changes with incubation time for rituximab, while the 

unfolding trace of trastuzumab remains unchanged (See Fig. S.IV.14). The binary mixture 

reflects the transition change of rituximab and the signal converges towards the unfolding 

trace of trastuzumab. This indicates that rituximab degrades in the binary mixture in the same 

manner as in the single formulation, while trastuzumab remains stable. Still, additional 

experiments have to be performed in the future to further elucidate the degradation pathways 

in mAb mixtures.  
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The slightly increased Ton and Tagg values in some binary mixtures could be explained by 

hindered contacts between the aggregating monomers in the presence of a second mAb. 

Therefore, it is tempting to speculate that some mAb co-formulations could even provide a 

slightly better physical stability by unspecific shielding of the aggregation-prone regions (only 

if there is no detrimental cross-interaction between the two mAbs). Such a scenario is not 

unlikely as other molecules like albumin are used as excipients that improve the physical 

stability of some proteins.13 

Noteworthy, the backscattering profiles and intrinsic fluorescence of the binary mAb 

mixtures resemble closely the profiles of the individual mAbs. This indicates that there are 

also no harmful cross-interactions between the unfolded state of the less stable mAb and the 

native or unfolded state of the mAb that aggregates at a higher temperature. In this respect, 

protein self-association can be characterized as specific recognition events of complementary 

surfaces that cannot be easily provided in the same fashion by a second protein.6 These 

specific interactions were already described for the co-aggregation of ovalbumin and native 

lysozyme, where the unfolded ovalbumin offers specific binding regions for the cross-

interaction with native lysozyme,37 and were also assigned to a high degree of geometric 

complementarity for the model proteins α-chymotrypsinogen and lysozyme.38  Unfortunately 

and to best of our knowledge, there is no straightforward and reliable computational tool to 

check for potential complementary surfaces between two different proteins that can lead to 

native or non-native hetero aggregation and thus stability problems in co-formulations. Such a 

tool would be very valuable in the context of the current work. 

As no damaging effects on the measured biophysical parameters occur in any of the 15 

binary mixtures independent of protein net charge, charge distribution, composition of the 

CDR regions and formulation conditions, we cannot identify critical factors that could predict 

unfavorable cross-interactions in mAb co-formulations. On the contrary, it appears that well-

behaved marketed mAbs from the IgG1 subclass could be combined in solution in a 

straightforward way even when they exhibit different features in their variable domains. This 

picture might change if more problematic mAb molecules that exhibit asymmetric charge 

distributions, high hydrophobicity or low conformational stability are tested.5 In respect to 

this, defining groups of IgGs with certain structural features and biophysical properties that 

allow straightforward co-formulation development will be particularly interesting in the 

future. 
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IV.5 Conclusion 

We present a study with six marketed mAbs from the IgG1 subclass and their 15 binary 

mixtures. The proteins differ in their net charge, charge distribution, CDR composition and 

biophysical parameters. Thus, they represent a wide range for combinations of two mAbs. We 

assessed several biophysical parameters (Ton, IP1, IP2, Tagg and kD) that are indicative for 

conformational and colloidal protein stability. Remarkably, in this large dataset no detrimental 

effects on the stability of the mAbs were evident from any of the assessed biophysical 

parameters in four solution conditions (pH 5.0 and 7.4, with or without 250 mM NaCl). Our 

findings suggest that the co-formulation of well-behaved mAbs from the IgG1 subclass 

should be possible in a straightforward way. In future, we hope to see more studies on co-

formulation of mAbs with more diverse physicochemical properties that will help us to define 

rules and rationalize the co-formulation development of antibodies that exhibit synergistic 

therapeutic effects. 
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IV.7.1 Primary sequences used in this work 

 

A.1 trastuzumab  

A.1.1 mAb 

>Anti-HER2 Light chain (1 and 2) 

DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKLLIYSASFLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYC

QQHYTTPPTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYS

LSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 

>Anti-HER2 Heavy chain (1 and 2) 

EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKGLEWVARIYPTNGYTRYADSVKGRFTISADTSKNTAYLQMNS

LRAEDTAVYYCSRWGGDGFYAMDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSG

VHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMIS

RTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISK

AKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS

CSVMHEALHNHYTQKSLSLSPGK 

A.1.2 Fab region 

>4HKZ:A|PDBID|CHAIN|SEQUENCE 

DIQMTQSPSSLSASVGDRVTITCRASQDVNTAVAWYQQKPGKAPKLLIYSASFLYSGVPSRFSGSRSGTDFTLTISSLQPEDFATYYC

QQHYTTPPTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYS

LSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGE 

>4HKZ:B|PDBID|CHAIN|SEQUENCE 

EVQLVESGGGLVQPGGSLRLSCAASGFNIKDTYIHWVRQAPGKGLEWVARIYPTNGYTRYADSVKGRFTISADTSKNTAYLQMNS

LRAEDTAVYYCSRWGGDGFYAMDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSG

VHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPK 

A.1.3 Fc region 

>Anti-HER2  

SCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVS

VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENN

YKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 
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A.2. adalimumab  

A.2.1 mAb 

> Adalimumab Light chain: 

DIQMTQSPSSLSASVGDRVTITCRASQGIRNYLAWYQQKPGKAPKLLIYAASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDVATYYC

QRYNRAPYTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYS

LSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 

> Adalimumab Heavy chain: 

EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQAPGKGLEWVSAITWNSGHIDYADSVEGRFTISRDNAKNSLYLQMN

SLRAEDTAVYYCAKVSYLSTASSLDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSG

VHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMIS

RTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISK

AKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS

CSVMHEALHNHYTQKSLSLSPGK 

A.2.2. Fab region 

>4NYL:L|PDBID|CHAIN|SEQUENCE 

DIQMTQSPSSLSASVGDRVTITCRASQGIRNYLAWYQQKPGKAPKLLIYAASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDVATYYC

QRYNRAPYTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYS

LSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 

>4NYL:H|PDBID|CHAIN|SEQUENCE 

EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQAPGKGLEWVSAITWNSGHIDYADSVEGRFTISRDNAKNSLYLQMN

SLRAEDTAVYYCAKVSYLSTASSLDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSG

VHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCHHHHHH 

A.2.3 Fc region 

> Adalimumab: 

DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVL

TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYK

TTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 
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A.3. rituximab  

A.3.1 mAb 

>Rituximab light chain chimeric 

QIVLSQSPAILSASPGEKVTMTCRASSSVSYIHWFQQKPGSSPKPWIYATSNLASGVPVRFSGSGSGTSYSLTISRVEAEDAATYYCQ

QWTSNPPTFGGGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLS

STLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 

>Rituximab heavy chain chimeric 

QVQLQQPGAELVKPGASVKMSCKASGYTFTSYNMHWVKQTPGRGLEWIGAIYPGNGDTSYNQKFKGKATLTADKSSSTAYMQLS

SLTSEDSAVYYCARSTYYGGDWYFNVWGAGTTVTVSAASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTS

GVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKAEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMI

SRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTIS

KAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF

SCSVMHEALHNHYTQKSLSLSPGK 

A.3.2 Fab region 

>2OSL:L|PDBID|CHAIN|SEQUENCE 

QIVLSQSPAILSASPGEKVTMTCRASSSVSYIHWFQQKPGSSPKPWIYATSNLASGVPVRFSGSGSGTSYSLTISRVEAEDAATYYCQ

QWTSNPPTFGGGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLS

STLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 

>2OSL:H|PDBID|CHAIN|SEQUENCE 

QVQLQQPGAELVKPGASVKMSCKASGYTFTSYNMHWVKQTPGRGLEWIGAIYPGNGDTSYNQKFKGKATLTADKSSSTAYMQLS

SLTSEDSAVYYCARSTYYGGDWYFNVWGAGTTVTVSAASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTS

GVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSC 

A.3.3 Fc region 

>Rituximab 

DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVL

TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYK

TTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 
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A.4. bevacizumab 

A.4.1 mAb 

>"Bevacizumab light chain" 

DIQMTQSPSSLSASVGDRVTITCSASQDISNYLNWYQQKPGKAPKVLIYFTSSLHSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQ

QYSTVPWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSL

SSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 

>"Bevacizumab heavy chain" 

EVQLVESGGGLVQPGGSLRLSCAASGYTFTNYGMNWVRQAPGKGLEWVGWINTYTGEPTYAADFKRRFTFSLDTSKSTAYLQMN

SLRAEDTAVYYCAKYPHYYGSSHWYFDVWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGAL

TSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTL

MISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKT

ISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGN

VFSCSVMHEALHNHYTQKSLSLSPGK 

A.4.2 Fab region 

>1BJ1:L|PDBID|CHAIN|SEQUENCE 

DIQMTQSPSSLSASVGDRVTITCSASQDISNYLNWYQQKPGKAPKVLIYFTSSLHSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQ

QYSTVPWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSL

SSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 

>1BJ1:H|PDBID|CHAIN|SEQUENCE 

EVQLVESGGGLVQPGGSLRLSCAASGYTFTNYGMNWVRQAPGKGLEWVGWINTYTGEPTYAADFKRRFTFSLDTSKSTAYLQMN

SLRAEDTAVYYCAKYPHYYGSSHWYFDVWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGAL

TSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHT 

A.4.3 Fc region 

>"Bevacizumab 

CPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREE 

QYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSREEMTKNQVSLTCLVK

GFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPG

K 
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A.5 omalizumab 

A.5.1 mAb 

>Omalizumab light chain 

DIQLTQSPSSLSASVGDRVTITCRASQSVDYDGDSYMNWYQQKPGKAPKLLIYAASYLESGVPSRFSGSGSGTDFTLTISSLQPEDFA

TYYCQQSHEDPYTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKD

STYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNR 

>Omalizumab heavy chain 

EVQLVESGGGLVQPGGSLRLSCAVSGYSITSGYSWNWIRQAPGKGLEWVASITYDGSTNYADSVKGRFTISRDDSKNTFYLQMNSL

RAEDTAVYYCARGSHYFGHWHFAVWGQGTLVTVSSGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFP

AVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKAEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEV

TCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQP

REPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMH

EALHNHYTQKSLSLSPGK 

A.5.2 Fab region 

>2XA8:L|PDBID|CHAIN|SEQUENCE 

DIQLTQSPSSLSASVGDRVTITCRASQSVDYDGDSYMNWYQQKPGKAPKLLIYAASYLESGVPSRFSGSGSGTDFTLTISSLQPEDFA

TYYCQQSHEDPYTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKD

STYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 

>2XA8:H|PDBID|CHAIN|SEQUENCE 

EVQLVESGGGLVQPGGSLRLSCAVSGYSITSGYSWNWIRQAPGKGLEWVASITYDGSTNYNPSVKGRITISRDDSKNTFYLQMNSL

RAEDTAVYYCARGSHYFGHWHFAVWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGV

HTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKV 

A.5.3 Fc region 

>Omalizumab 

AEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY

RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQ

PENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 
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A.6 infliximab 

A.6.1 mAb 

> Infliximab light chain: 

DILLTQSPAILSVSPGERVSFSCRASQFVGSSIHWYQQRTNGSPRLLIKYASESMSGIPSRFSGSGSGTDFTLSINTVESEDIADYYCQQ

SHSWPFTFGSGTNLEVKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSS

TLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 

> Infliximab Heavy chain: 

EVKLEESGGGLVQPGGSMKLSCVASGFIFSNHWMNWVRQSPEKGLEWVAEIRSKSINSATHYAESVKGRFTISRDDSKSAVYLQM

TDLRTEDTGVYYCSRNYYGSTYDYWGQGTTLTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGV

HTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISR

TPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKA

KGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSC

SVMHEALHNHYTQKSLSLSPGK 

A.6.2 Fab region 

>4G3Y:L|PDBID|CHAIN|SEQUENCE 

DILLTQSPAILSVSPGERVSFSCRASQFVGSSIHWYQQRTNGSPRLLIKYASESMSGIPSRFSGSGSGTDFTLSINTVESEDIADYYCQQ

SHSWPFTFGSGTNLEVKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSS

TLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 

>4G3Y:H|PDBID|CHAIN|SEQUENCE 

EVKLEESGGGLVQPGGSMKLSCVASGFIFSNHWMNWVRQSPEKGLEWVAEIRSKSINSATHYAESVKGRFTISRDDSKSAVYLQM

TDLRTEDTGVYYCSRNYYGSTYDYWGQGTTLTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGV

HTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKT 

A.6.3 Fc region 

> Infliximab: 

HTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL

HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTP

PVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK 
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IV.7.2 Sequence identity in % from BLAST alignment   

 

Table S.IV.1. Fc region Identity Primary Sequence [%] 

mAb trastuzumab adalimumab rituximab bevacizumab omalizumab infliximab 

trastuzumab       

adalilumab 99      

rituximab 99 100     

bevacizumab 100 99 99    

omalizumab 99 100 100 99   

infliximab 99 100 100 99 100  

Table S.IV.2. Fab Light Chain Identity Primary Sequence [%] 

mAb trastuzumab adalimumab rituximab bevacizumab omalizumab infliximab 

trastuzumab       

adalilumab 92      

rituximab 81 81     

bevacizumab 92 93 81    

omalizumab 91 91 82 91   

infliximab 88 78 80 77 79  

Table S.IV.3. Fd region Identity Primary Sequence [%] 

mAb trastuzumab adalimumab rituximab bevacizumab omalizumab infliximab 

trastuzumab       

adalilumab 85      

rituximab 73 71     

bevacizumab 83 82 75    

omalizumab 84 82 73 85   

infliximab 80 79 70 78 78  
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IV.7.3 Surface charge and hydrophobicity of Fab regions  

 

Figure S.IV.1. Surface charge and hydrophobicity for the Fab regions at pH 5.0 and 7.4. For the surface charges, 

positive charges are marked in blue and negative charges are marked in red. For the surface hydrophobicity, 

hydrophilic surface areas are colored in blue and hydrophobic surface areas are colored in orange.  
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IV.7.4 DLS data for the Aggregation Onset Temperature (Ton) 

 

 

Figure S.IV.2. DLS data for Aggregation Onset Temperature (Ton) of all binary mixtures (0.5 g/L per antibody, 

green) and the respective single mAbs (1 g/L, red and yellow). In the left bottom section: in 10 mM sodium 

acetate pH 5.0. In the top right section: in 10 mM sodium acetate + 250 mM NaCl pH 5.0.  
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Figure S.IV.3. DLS data for Aggregation Onset Temperature (Ton) of all binary mixtures (0.5 g/L per antibody, 

green) and the respective single mAbs (1 g/L, red and yellow). In the left bottom section: in 10 mM sodium 

phosphate pH 7.4. In the top right section: in 10 mM sodium phosphate + 250 mM NaCl pH 7.4.  
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IV.7.5 Thermal Unfolding Traces for Inflection Points of Thermal Unfolding Transitions (IP1 and IP2) 

 

Figure S.IV.4. nanoDSF data for the Inflection 

Points of Thermal Unfolding (IP1 and IP2) of all 

binary mixtures (0.5 g/L per antibody, green) and 

the respective single mAbs (1 g/L, red and 

yellow). The reference lines mark the respective 

Ton-values. In the left bottom section: in 10 mM 

sodium acetate pH 5.0. In the top right section: in 

10 mM sodium acetate + 250 mM NaCl pH 5.0.  
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Figure S.IV.5. nanoDSF data for the Inflection 

Points of Thermal Unfolding (IP1 and IP2) of all 

binary mixtures (0.5 g/L per antibody, green) and 

the respective single mAbs (1 g/L, red and 

yellow). The reference lines mark the respective 

Ton-values. In the left bottom section: in 10 mM 

sodium phosphate pH 7.4. In the top right section: 

in 10 mM sodium phosphate + 250 mM NaCl pH 

7.4.  
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IV.7.6 nanoDSF Backscattering Data for Aggregation Onset Temperature (Tagg)  

            

Figure S.IV.6. nanoDSF backscattering data for 

the Aggregation Onset Temperature (Tagg) of all 

binary mixtures (0.5 g/L per antibody, green) 

and the respective single mAbs (1 g/L, red and 

yellow). In the left bottom section: in 10 mM 

sodium acetate pH 5.0. In the top right section: 

in 10 mM sodium acetate + 250 mM NaCl pH 

5.0.  
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Figure S.IV.7. nanoDSF backscattering data for 

the Aggregation Onset Temperature (Tagg) of all 

binary mixtures (0.5 g/L per antibody, green) and 

the respective single mAbs (1 g/L, red and yellow). 

In the left bottom section: in 10 mM sodium 

phosphate pH 7.4. In the top right section: in 10 

mM sodium phosphate + 250 mM NaCl pH 7.4.  
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IV.7.7 DLS data for Diffusion Interaction Parameter (kD) 

 

Figure S.IV.8. DLS data for Diffusion 

Interaction Parameter (kD) of all binary mixtures 

(0.5 g/L per antibody, green) and the respective 

single mAbs (1 g/L, red and yellow). In the left 

bottom section: in 10 mM sodium acetate pH 

5.0. In the top right section: in 10 mM sodium 

acetate + 250 mM NaCl pH 5.0.  
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Figure S.IV.9. DLS data for Diffusion 

Interaction Parameter (kD) of all binary mixtures 

(0.5 g/L per antibody, green) and the respective 

single mAbs (1 g/L, red and yellow). In the left 

bottom section: in 10 mM sodium phosphate pH 

7.4. In the top right section: in 10 mM sodium 

phosphate + 250 mM NaCl pH 7.4.  
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IV.7.8 Results for high protein concentrations 

Figure S.IV.10. nanoDSF data for the Inflection Points of Thermal Unfolding (A, B, C, D), nanoDSF 

backscattering data for the Aggregation Onset Temperature (E, F, G, H), and the DLS data for Aggregation 

Onset Temperature (I, J, K, L) of trastuzumab at 50 g/L (red), rituximab at 50 g/L (yellow) and the binary 

mixture at 25 g/L of each mAb (green).  
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Figure S.IV.11. nanoDSF data for the Inflection Points of Thermal Unfolding (A, B, C, D), nanoDSF 

backscattering data for the Aggregation Onset Temperature (E, F, G, H), and the DLS data for Aggregation 

Onset Temperature (I, J, K, L) of trastuzumab at 50 g/L (red), omalizumab at 50 g/L (yellow) and the binary 

mixture at 25 g/L of each mAb (green).  
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Figure S.IV.12. nanoDSF data for the Inflection Points of Thermal Unfolding (A, B, C, D), nanoDSF 

backscattering data for the Aggregation Onset Temperature (E, F, G, H), and the DLS data for Aggregation 

Onset Temperature (I, J, K, L) of rituximab at 50 g/L (red), omalizumab at 50 g/L (yellow) and the binary 

mixture at 25 g/L of each mAb (green).  
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Figure S.IV.13. nanoDSF data for the Inflection Points of Thermal Unfolding (A, B, C, D), nanoDSF 

backscattering data for the Aggregation Onset Temperature (E, F, G, H), and the DLS data for Aggregation 

Onset Temperature (I, J, K, L) of trastuzumab at 100 g/L (red), rituximab at 100 g/L (yellow) and the binary 

mixture at 50 g/L of each mAb (green).  
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IV.7.9 Analysis of stressed mAb solutions 

 

Figure S.IV.14. nanoDSF data for the Thermal Unfolding of trastuzumab at 0.5 g/L (red), rituximab at 0.5 g/L 

(yellow) and the binary mixture at 0.5 g/L of each mAb (green) in 10 mM sodium acetate pH 5.0. (A) unfolding 

of unstressed solutions, (B) unfolding of previously stressed solutions (incubation at 70 °C for 30 min), (C) 

unfolding of previously stressed solutions (incubation at 70 °C for 60 min). 
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Chapter V  Further studies on binary mAb mixtures of  

   trastuzumab and rituxumab 

V.1 Introduction 

The presented biophysical characterization in Chapter IV indicated that no stability-

compromising protein cross-interactions arose in binary mixtures of various clinically 

established monoclonal antibodies.1 Although the applied high-throughput methods such as 

nanoDSF and DLS provide valuable results to predict the stability of the individual proteins in 

binary mixtures at low protein consumption, these predictions should be confirmed for at least 

one pair of mAbs by additional studies. Based on their availability and the previously 

described differences in the respective aggregation behavior (See Chapter IV), trastuzumab 

and rituximab were selected as model proteins to study the aggregation behavior of co-

formulated monoclonal antibodies at different protein ratios by DLS and nanoDSF. The 

previously indicated higher colloidal stability of trastuzumab in DLS and nanoDSF 

backscattering measurements allowed us to study the effect of a second mAb on the 

aggregation of a less stable mAb in more detail. Further, chromatographic methods were 

applied in forced degradation studies to assess the degradation of the individual mAbs in the 

binary mixtures, and viscosity measurements were performed to detect possible attractive 

cross-interactions between trastuzumab and rituximab in different formulation conditions at 

high protein concentrations. The presented results provide additional evidence for the 

compatibility of mAbs in binary mixtures and the non-inferior stability of such co-

formulations compared to the respective single formulations.  

V.2 Materials and Methods 

V.2.1 Materials 

Trastuzumab (Herceptin®) and rituximab (Mabthera®) were used as model proteins. 

Sodium dihydrogen phosphate was purchased from Grüssing GmbH. Disodium hydrogen 

phosphate was purchased from VWR Chemicals. Acetic acid, sodium acetate, Trizma® base, 

imidazole, piperazine and sodium azide were purchased from Sigma Aldrich. NaCl was 

purchased from Bernd Kraft GmbH. Protein formulations and mobile phases for HPLC 

analysis were prepared with ultrapure water from a Sartorius arium® pro system (Sartorius 

Corporate Administration GmbH, Göttingen, Germany). 
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V.2.2 Preparation of protein formulations and binary mixtures 

The dialysis of the monoclonal antibodies and the preparation of the protein formulations 

was described in detail in Chapter IV.1 For the forced degradation studies, 0.5 mL of each 

formulation were filled into microcentrifuge tubes and stressed in a heating block at 70 °C for 

30 or 60 min. The microcentrifuge tubes were sealed with parafilm to avoid evaporation and 

were centrifuged at 10 000 x g for 10 min before analysis.    

 

V.2.3 DLS and nanoDSF backscattering 

The applied methods and parameters were already described in detail in Chapter IV. Single 

formulations of rituximab were prepared at 5 different protein concentrations ranging from 

0.1 g/L to 0.5 g/L. In parallel, binary mixtures of trastuzumab and rituximab were prepared 

with the same rituximab concentration and a trastuzumab concentration that was necessary to 

achieve a total protein concentration of 1 g/L in the binary mixture. The 5 single formulations 

of rituximab (0.1 g/L – 0.5 g/L) and the 5 binary mixtures (1 g/L) with different mixing ratios 

of trastuzumab and rituximab were analyzed by DLS and nanoDSF backscattering as 

described in Chapter IV. All measurements were performed in triplicates.  

V.2.4 High performance size exclusion chromatography (HP-SEC) 

High performance size exclusion chromatography was performed on a Waters 2695 

separation module (Waters GmbH, Eschborn, Germany). 20 µL of sample solution were 

injected on a Superdex 200 Increase 10/300 GL column (GE Healthcare Bio-Sciences, 

Uppsala, Sweden) after centrifugation at 10 000 x g for 10 min and the elution of the mAbs 

was detected by UV absorption at a wavelength of 280 nm. The mobile phase consisted of 

100 mM sodium phosphate pH 7.0, 200 mM NaCl and 0.05 % NaN3. The flow rate was set to 

1.0 mL/min. Monomer recovery was calculated by integration of the peak area and relative 

comparison of this peak area before and after degradation. Baseline separation was not 

achieved for trastuzumab and rituximab, thus the monomeric mAbs co-eluted and the total 

peak area was analyzed in the binary mixture (See Fig. V.3D). All measurements were 

performed in triplicates.   

V.2.5 Weak cation exchange high performance chromatography (WCX-HPLC) 

Weak cation exchange high performance chromatography was performed on a Dionex 

Ultimate 3000 system (Thermo Fisher Scientific, Dreieich, Germany). 20 µL of sample 

solution were injected on a ProPac-WCX 10 column (Thermo Fisher Scientific, Dreieich, 

Germany) after centrifugation at 10 000 x g for 10 min and the elution of the mAbs was 
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detected by UV absorption at a wavelength of 280 nm. To achieve a feasible separation of 

both mAbs based on their isoelectric points (See Fig. V.4D), a pH gradient method was 

applied that was described by Farnan et al.2 Eluent A consisted of 10 mM Tris, 10 mM 

imidazole, 10 mM piperazine and 10 mM NaCl pH 6.0, while Eluent B consisted 10 mM Tris, 

10 mM imidazole, 10 mM piperazine and 10 mM NaCl pH 9.5. The flow rate was 1.0 mL/min 

and following five step gradient was applied: (1) from 0 to 5 min: 40 % B; (2) from 5 to 35 

min: 40 to 100 % B; (3) from 35 to 44 min: 100 % B; (4) from 44 to 45 min: 100 to 40 % B; 

and (5) from 45 to 50 min: 40 % B. All measurements were performed in triplicates.    

V.2.6 Viscosity measurements 

Viscosity measurements were performed for binary mixtures of trastuzumab and rituximab 

with 50 g/L per mAb (which results in a total protein concentration of 100 g/L) and the 

obtained apparent viscosities were compared to the apparent viscosities of single formulations 

of trastuzumab and rituximab with a protein concentration of 100 g/L. A m-VROC 

viscosimeter (RheoSense Inc., San Ramon, CA, USA) equipped with an A05 chip was used 

for analysis. The protein formulations were filled into 500 µL hamilton syringes and the 

viscosities were determined at an applied flow rate of 500 µL/min for 10 seconds. For the 

protein formulations in 10 mM sodium phosphate pH 7.4, the measurement time was 

increased to 30 seconds due to longer equilibrium times. The measurements were performed 

in triplicates at a constant temperature of 25 °C.  

V.3 Results and Discussion 

V.3.1 DLS and nanoDSF 

Fig. V.1 provides a short summary of the DLS, nanoDSF and nanoDSF backscattering data 

for single formulations and binary mixtures of trastuzumab and rituximab that were already 

presented in Chapter IV (See Table IV.4 for the numerical results): 

First, the aggregation onset temperature by DLS Ton of the binary mixture was slightly 

higher compared to rituximab alone, and the aggregation trace was intermediate compared to 

the single formulations of trastuzumab and rituximab alone in both 10 mM sodium acetate pH 

5.0 and 10 mM sodium acetate pH 5.0 with 250 mM NaCl (See Figs. V.1A and V.1D).  

Second, in 10 mM sodium acetate pH 5.0, no aggregation was detected for the single 

formulations and the binary mixture (See Fig. V.1B). In 10 mM sodium acetate pH 5.0 with 

250 mM NaCl, the aggregation onsets in the binary mixture occurred at the same temperature 

as in the single formulations and the excess scattering of the binary mixture resembled the 
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sum of the excess scattering signals of the individual mAbs with the same concentration (See 

Fig. V.1E).  

Finally, the numerical inflection points of the binary mixtures were the same compared to 

rituximab alone, and the unfolding traces were intermediate compared to the single 

formulations of trastuzumab and rituximab in both 10 mM sodium acetate pH 5.0 without or 

with 250 mM NaCl (See Figs. V.1C and V.1F).  

 

 

 

Based on the different Ton and Tagg values of trastuzumab and rituximab in 10 mM sodium 

acetate pH 5.0 with 250 mM NaCl, single formulations of the less stable mAb rituximab were 

prepared in 10 mM sodium acetate pH 5.0 with 250 mM NaCl at 5 different protein 

concentrations ranging from 0.1 g/L to 0.5 g/L. In parallel, binary mixtures of trastuzumab 

and rituximab were prepared with a rituximab concentration ranging from 0.1 g/L to 0.5 g/L 

and a trastuzumab concentration that was necessary to achieve a total protein concentration of 

1 g/L in the binary mixture. The 5 single formulations of rituximab (0.1 g/L – 0.5 g/L) and the 

Figure V.1. DLS, nanoDSF and nanoDSF backscattering results for single formulations of trastuzumab (red) 

and rituximab (yellow) and also the binary mixture (green). Aggregation during heating detected by DLS in 

10 mM sodium acetate pH 5.0 (A), and 10 mM sodium acetate pH 5.0 with 250 mM NaCl (D). Aggregation 

during heating detected by nanoDSF backscattering in 10 mM sodium acetate pH 5.0 (B), and in 10 mM 

sodium acetate pH 5.0 with 250 mM NaCl (E). Thermal Unfolding detected by nanoDSF in 10 mM sodium 

acetate pH 5.0 (C), and in 10 mM sodium acetate pH 5.0 with 250 mM NaCl (F).     
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5 binary mixtures (total protein concentration: 1 g/L) with different mixing ratios of 

trastuzumab and rituximab were analyzed by DLS and nanoDSF backscattering (See Fig. 

V.2).  

The Ton values detected by DLS decreased with increasing rituximab concentration for the 

single formulations and binary mixtures (See Figs. V.2A, V.2B and V.2C). All binary 

mixtures showed higher Ton values and lower slopes of the thermal aggregation trace 

compared to the single formulations of rituximab, despite the higher total protein 

concentration of the binary mixture. As the dynamic light scattering provides a cumulative 

signal of all components and not a specific signal of the individual mAbs, it can be assumed 

that both mAbs followed their individual aggregation pathway in the binary mixture in the 

same way as they did in the single formulation. The presence of the second, still monomeric 

protein trastuzumab shifted the apparent hydrodynamic radius in the binary mixture to lower 

values, until a temperature was reached where trastuzumab started to aggregate as well.  

 

 

Figure V.2. DLS and nanoDSF backscattering results in 10 mM sodium acetate pH 5.0 with 250 mM NaCl. Ton 

values from DLS (A) and Tagg values from nanoDSF backscattering (D) for single formulations of rituximab (red) 

and binary mixtures of rituximab and trastuzumab (green). For the binary mixtures in (A) and (D), the respective 

concentration of trastuzumab is given by the top x-axis. Aggregation during heating detected by DLS for single 

formulations of rituximab (B), and for binary mixtures of rituximab and trastuzumab (C). The grey lines in (B) and 

(C) mark a threshold of 8 nm at 65 °C for easier comparison. Aggregation during heating detected by nanoDSF 

backscattering for single formulations of rituximab (E), and for binary mixtures of rituximab and trastuzumab (F). 
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Similar to the DLS measurement, the Tagg values decreased with increasing rituximab 

concentrations for the single formulations and binary mixtures (See Figs. V.2D, V.2E and 

V.2F). All binary mixtures showed similar or higher Tagg values compared to the single 

formulations of rituximab, despite the higher total protein concentration of the binary mixture. 

The excess scattering of the rituximab single formulations was limited after a single 

aggregation step, while the presence of trastuzumab in the binary mixture caused a second 

aggregation step until a plateau of excess scattering was reached (See Fig. V.2F). 

Interestingly, the relative intensity in excess scattering of both aggregation steps in the binary 

mixture corresponds to the respective individual protein ratio. At a protein ratio of 

trastuzumab and rituximab of 1:1 (w/w), where the protein concentration is 0.5 g/L for both 

mAbs, the intensity in excess scattering was the same for both aggregation steps, and the 

intensity of the first aggregation step in the binary mixture was the same as the intensity of the 

excess scattering for rituximab alone at a concentration of 0.5 g/L. Increasing amounts of 

trastuzumab in the binary mixture reduced the intensity of the first aggregation step and 

increased the intensity of the second aggregation step (See Fig. V.2F). Thus, it appeared that 

both mAbs aggregated in the binary mixture in the same way as they did in the respective 

single formulations, and the presence of the second proteins did not cause additional protein 

aggregation.   

V.3.2 Forced degradation studies by HP-SEC and WCX-HPLC 

Forced degradation studies on binary mixtures of trastuzumab and rituximab and the 

respective single formulations were performed based on the results obtained by nanoDSF and 

DLS measurements (See Fig. V.1). The use of WCX-HPLC impeded the investigation of the 

protein degradation in 10 mM sodium acetate pH 5.0 with 250 mM NaCl due to loss of 

column retention by exceeding salt concentrations in the sample and subsequent elution of the 

proteins in the void peak. Dilution of the samples in mobile phase A would in principle allow 

the analysis of these samples, but also lead to lower UV detector signals of potential 

degradation products. Thus, forced degradation studies were performed in 10 mM sodium 

acetate pH 5.0 using HP-SEC and WCX-HPLC. Based on the previous DLS results (See Fig. 

V.1A), rituximab started to aggregate at approximately 70 °C while trastuzumab remained 

monomeric until approximately 76 °C and the binary mixture of both mAbs showed an 

intermediate aggregation behavior. Thus, single formulations of trastuzumab and rituximab in 

concentrations of either 0.5 g/L or 1.0 g/L of the respective mAb and the binary mixture with 

a concentration of 0.5 g/L of each mAb were prepared, incubated at 70 °C for up to 60 min 

and subsequently analyzed by HP-SEC and WCX-HPLC. With this experimental setup, we 
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aimed to cause protein aggregation in rituximab and the binary mixture, but not in the single 

formulations of trastuzumab. Using this approach, it was possible to determine if (a) the 

binary mixture reflected the unchanged aggregation of rituximab or (b) mixed aggregation 

products of both mAbs were formed in the binary mixture.  

Fig. V.3 shows the results of HP-SEC analysis. No baseline separation was achieved for 

trastuzumab and rituximab in the binary mixture. However, linearity for both mAbs in the 

respective single formulations as well as additivity of the monomer peak areas of the single 

mAbs in the binary mixture was shown (See Figs. V.3B and V.3D). The monomer peak area 

of the binary mixture that contained 0.5 g/L of each mAb equaled the sum of the single mAb 

formulations that contained 0.5 g/L of the respective mAb. Interestingly, this additivity of 

peak areas was not only shown for the native samples, but also for the stressed samples after 

incubation at 70 °C for up to 60 min (See Figs. V.3E and V.3F). This indicated that the 

monomer recovery in the binary mixture was the same for both mAbs as in the respective 

single formulations. While trastuzumab most likely remained monomeric and contributed 

equally to the total monomeric peak area in the binary mixtures, rituximab degraded in the 

same way in the binary mixture as in the single formulation. However, the insufficient 

resolution of size exclusion chromatography impedes the separation and direct quantification 

of the individually formed aggregates and the presented assumptions are based on the limited 

significance of a comparison of the single formulations and the binary mixture. Nevertheless, 

the total protein concentration in the binary mixture was higher (0.5 g/L trastuzumab + 0.5 

g/L rituximab), but the soluble aggregate formation in the binary mixture was the same 

compared to the rituximab single formulation with a protein concentration of 0.5 g/L (See Fig. 

V.3C). Thus, the presence of trastuzumab in the binary mixture did not increase soluble 

aggregate formation. It can be assumed that rituximab aggregated in the same manner as in 

the single formulation and the fraction of soluble aggregates in the binary mixture represented 

aggregates of pure rituximab. Therefore, it can also be assumed that the initial aggregation 

observed in the DLS measurements for the binary mixture reflected the aggregation of 

rituximab alone (See Fig. V.1A). However, additional analytical methods such as the specific 

detection of one labeled mAb or multidimensional chromatography are required to quantify 

the individual mAbs in the monomer peak fraction and in the soluble aggregate fraction to 

confirm this hypothesis. 

 

 

 



Further studies on binary mAb mixtures of trastuzumab and rituximab 
 

150 
 

 

 

Fig. V.4 shows the results of WCX-HPLC analysis. Using the pH-gradient method, a 

baseline separation was achieved for trastuzumab and rituximab in the binary mixture (See 

Fig. V.4D), and linearity for the quantification of both mAbs in the binary mixture was shown 

(See Fig. V.4C). The protein recovery of trastuzumab in the binary mixture was the same as in 

the single formulation (See Fig. V.4A). Thus, no destabilization of trastuzumab in the binary 

mixture was observed. For rituximab, the protein recovery was higher in the binary mixture 

compared to the single formulation with a concentration of 0.5 g/L after incubation at 70 °C 

for 30 min and the same after incubation at 70 °C for 60 min (See Fig. V.4B). The presence of 

trastuzumab appeared to provide a limited stabilization against the chemical degradation of 

rituximab. The stability of both mAbs was not compromised in the binary mixture and these 

results further support the assumption that both mAbs followed the same degradation pathway 

in the binary mixture compared to the respective single formulations as no critical changes in 

the chromatograms were detected in the binary mixture compared to the single formulations.       

Figure V.3. Results of HP-SEC for the forced degradation of binary mixtures of trastuzumab and rituximab compared to 

the respective single formulations. Monomer recovery for trastuzumab (red), rituximab (yellow) and the binary mixture 

of trastuzumab and rituximab (green) (A). Linearity for trastuzumab (red) and rituximab (yellow) (B). Comparison of 

soluble aggregate formation of rituximab in single formulations (yellow) and in binary mixtures with trastuzumab 

(green) (C). HP-SEC-chromatograms of native trastuzumab (red), rituximab (yellow) and the binary mixture (green) (D). 

HP-SEC-chromatograms of trastuzumab (red), rituximab (yellow) and the binary mixture (green) after incubation at 70 

°C for 30 min (E) and 60 min (F).  
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V.3.3 Viscosity measurements 

Finally, viscosity measurements were performed to detect additional attractive protein 

interactions in the binary mixtures of trastuzumab and rituximab. As discussed in Chapter IV, 

weak protein interactions can impact the behavior of highly concentrated protein 

formulations. Attractive protein self-interactions can arise in high protein concentrations (e.g. 

100 g/L) and cause high viscosities of these protein formulations based on higher-order 

network formation.3 Further, it was previously shown that binary mixtures of mAbs do not 

necessarily represent intermediate values of the single mAb formulations, but can exceed the 

single viscosities by additional arising cross-interactions in the binary mixture.4 Thus, we 

compared the viscosity of the binary mixtures of trastuzumab and rituximab to the respective 

single protein formulations to detect protein cross-interactions that arise in the binary 

mixtures in protein concentrations up to 100 g/L in 10 mM sodium acetate pH 5.0 with and 

without 250 mM NaCl, and in 10 mM sodium phosphate pH 7.4 with and without 250 mM 

NaCl (See Fig. V.5).                                                                                                                                                                                                

Figure V.4. Results of WCX-HPLC for the forced degradation of binary mixtures of trastuzumab and rituximab 

compared to the respective single formulations. Protein recovery for trastuzumab in single formulation (red) and the 

binary mixture (green) (A). Protein recovery for rituximab in single formulation (red) and the binary mixture (green) 

(B). Linearity for trastuzumab (red) and rituximab (yellow) (C). WCX-chromatograms of native trastuzumab (red), 

rituximab (yellow) and the binary mixture (green) (D). WCX-chromatograms of tratuzumab (red), rituximab (yellow) 

and the binary mixture (green) after incubation at 70 °C for 30 min (E) and 60 min (F). The dotted grey lines (D, E and 

F) illustrate the applied gradient method. 
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The binary mixtures of trastuzumab and rituximab showed intermediate apparent 

viscosities compared to the equally concentrated single protein formulations in all formulation 

conditions (See Fig. V.5). There was no evidence for additionally arising protein interactions 

in the binary mixtures of trastuzumab and rituximab in total protein concentrations up to 100 

g/L.  

 

 

V.4 Conclusion 

Supplementary experiments were performed on binary mixtures of trastuzumab and 

rituximab and the respective single formulations to confirm the predicted absence of stability-

compromising cross-interactions between the individual proteins that was presented in 

Chapter IV. Based on the presented results by DLS, nanoDSF backscattering and forced 

degradation studies at high temperatures, where the loss of the monomeric mAbs was 

investigated by HP-SEC and WCX-HPLC, it appears that the individual mAbs behave the 

same in binary mixtures compared to the respective single formulations. No evidence for 

Figure V.5. Apparent viscosity of single formulations of trastuzumab (red), rituximab 

(yellow) and the binary mixture (green) in 10 mM sodium acetate pH 5.0 (A), 10 mM 

sodium acetate pH 5.0 with 250 mM NaCl (B), 10 mM sodium phosphate pH 7.4 (C) and 

10 mM sodium phosphate pH 7.4 with 250 mM NaCl (D).  
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stability-compromising cross-interactions, co-aggregation or accelerated degradation of the 

mAbs was detected in any formulation condition by any of the applied methods.   

Therefore, the presented results support the previously reported results of Chapter IV and 

confirm that co-formulations of well-behaved mAbs can be possible in a straight-forward 

way.1 However, the presented dataset is limited to one pair of clinically established, well-

characterized and biophysically well behaving mAbs. The presented approach to study the 

behavior of the single mAbs in a given binary mixture in different formulation conditions and 

different ratios by a set of orthogonal analytical methods has to be applied to a higher number 

of mAbs with different biophysical behavior to identify drug properties and formulation 

parameters that are critical for the development of stable mAb co-formulations. 
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Chapter VI Short-time and in-use stability of binary mixtures 

   of DNase and r-tPa 

VI.1 Introduction 

Pleural infection is a severe clinical condition with high morbidity and mortality.1 20 % of 

patients require surgery and another 20 % of patients die within the first year of diagnosis.2 

The concurrent intrapleural application of DNase and r-tPa has improved the non-surgical 

treatment,3 while the application of the single drugs has no significant effect on the clinical 

outcome.4 The mechanisms of this synergistic pharmacological effect remains poorly 

understood,2 and both in-use stability of both drugs during co-administration and storage 

stability of co-formulations have not been characterized yet. Physicians hesitate to combine 

DNase and r-tPa in one syringe, and it is clinical practice to use two separate syringes for 

administration of both drugs with subsequent flushing with saline after application of each 

drug.5 A combined administration of both drugs in one syringe could simplify the complex 

clinical dosing procedure, reduce work-load for the clinical professionals and improve patient 

welfare. To evaluate the feasibility a co-administration of DNase and r-tPa, we studied the 

physicochemical stability and in vitro activity of both drugs upon dilution of the single protein 

formulations and the combined dilution in 0.9 % NaCl.  

It has already been reported that the dilution of protein formulations in 0.9 % NaCl can 

compromise the protein stability in single drug products because of the excessive dilution of 

stabilizing excipients,6,7 which is also relevant for both r-tPa and DNase: First, the dilution of 

r-tPa in 0.9 % NaCl is clinically established for intravenous infusions, but it is critical to avoid 

excessive dilution based on the low solubility of the drug and sufficient concentration of the 

solubilizer arginine.8,9 Second, DNase is typically applied as a nebulizer assisted inhalation 

without further dilution. DNase requires calcium for structural stability and activity,10 and is 

thus formulated in 1 mM CaCl2 and 154 mM NaCl in the marketed formulation 

(Pulmozyme®). It has been shown that the in vitro activity decreased upon removal of calcium 

after treatment with EDTA over time,11,12 but right after the initial treatment, the enzymatic 

activity still remained 90 % compared to the non-treated sample.11  

Besides the problems that arise due to dilution of the single proteins, the quality and safety 

of the drugs could be compromised upon co-administration by incompatibilities that arise 

either from the drugs themselves or the excipients of the respective drug product 

formulations.  

Incompatibilities of  injectable drugs are a commonly known risk for small molecule drug 

combinations and can for example cause precipitation based on different mechanisms like 
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charge-mediated interactions or pH-shifts.13 For the combination of DNase and r-tPa, a drug 

incompatibility may arise based on the serine protease function of r-tPa. Despite r-tPa being 

known for high substrate specificity towards plasminogen based on a specific single peptide 

bond (Arg560-Val561),14 r-tPa cleaves several small chemical entities or synthetic peptides that 

mimic the Arg-Val peptide bond.15–17 Further it has been reported that DNase is a substrate 

for the non-specific serin protease trypsin,10 and based on its primary sequence, DNase 

presents four different Arg-Val peptide bonds,10 that could form a potential substrate of r-tPa.  

Further, the excipients of the marketed formulations of DNase and r-tPa appear incompatible, 

because DNase is formulated with calcium in the marketed drug product (Pulmozyme®), 

while all available marketed r-tPa products contain phosphate (See Table VI.1). A concurrent 

dilution of both drug products in 0.9 % might cause the formation of poorly soluble calcium 

phosphate (0.02 g/L in water at 20 °C)18, which could result in decreased DNase activity or 

particle formation.    

 

  Table VI.1. Excipients in marketed r-tPa drug products based on the prescibing informations for professionals.  

Drug Drug product  Excipients 

Alteplase Actilyse®/Activase® 
L-Arginine 
Phosphoric Acid  
Polysorbate 80  
Sterile Water for Injection 

 

Reteplase 

Rapilysin® 
L-Arginine  
Phosphoric Acid  
Polysorbate 80  
Sterile Water for Injection 

Retavase® 
Dipotassium Hydrogen Phosphate  
Phosphoric Acid   
Polysorbate 80   
Sucrose   
Tranexamic Acid 
Sterile Water for Injection   

Tenecteplase Metalyse® 
L-Arginine 
Phosphoric Acid 
Polysorbat 20 
Sterile Water for Injection 
Gentamicin (trace amounts based on the production process) 

 

Here, we present a short time stability study of DNase and r-tPa upon dilution in 0.9 % 

NaCl. We compared dilutions of the single formulations and a combined dilution of both 

protein formulations and applied several established analytical techniques to study the 

individual protein stability alone and in the binary mixture. We used in vitro activity assays 

for both enzymes to test for altered in vitro activity in the combined dilution, Near-UV CD 

spectroscopy to detect changes in the respective tertiary structures, and RP-HPLC to examine 
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chemical degradation. Further we applied HP-SEC to monitor soluble protein aggregate 

formation and Flow Imaging Microscopy to quantify particle formation.  

The presented results indicate that the drugs themselves do not compromise their 

individual stability. However, the respective excipients impede the co-administration of both 

drugs together in one syringe, because the available marketed r-tPa formulations contain 

phosphate, which compromises the in vitro activity of DNase. 

VI.2 Material and Methods 

VI.2.1 Materials 

Dornase alfa (Pulmozyme®, DNase) was kindly provided from Genentech (San Francisco, 

USA), and is formulated in 154 mM NaCl + 1 mM CaCl2. r-tPa (BM 06.022) was kindly 

provided from Roche Diagnostics GmbH, Mannheim, Germany), and is formulated in 500 

mM arginine + 250 mM phosphoric acid + 0.1 % polysorbate 80 pH 7.2. The liquid stock 

formulation of BM 06.022 was stored at - 80 °C, freshly thawed and filtered before use 

(Whatman® Anotop® 10 syringe filters, 0.02 µm). Ultrapure water was produced with a 

Sartorius arium® pro system. All used chemicals were of analytical grade and purchased from 

either VWR International (Darmstadt, Germany) or Sigma Aldrich (Steinheim, Germany).  

VI.2.2 Preparation of protein formulations 

The applied dosing scheme for the concurrent application of DNase and r-tPa states a 

dilution of 5 mg DNase and 10 mg r-tPa in 50 mL saline solution each.5,19 We tested the in 

vitro stability of both drugs upon concurrent application in one syringe and prepared the 

formulations by dilution of the formulations alone or in combination in 50 mL 0.9 % NaCl. 

Thus, the concentration of DNase was set to 0.1 g/L, which was confirmed 

spectrophotometrically using a Nanodrop 2000 (Thermo Fisher Scientific, USA) and the 

respective extinction coefficient at 280 nm of 1.57 (mg/mL)-1cm-1.20 The concentration of the 

used recombinant tPa variant BM 06.022 (r-tPa) was set to 0.2 g/L using an extinction 

coefficient of 1.69 (mg/mL)-1cm-1.21 The formulations were analyzed after dilution into 0.9 % 

NaCl and after storage at 37 °C for 2 h to evaluate the in-use stability of both proteins. 

VI.2.3 DNase activity assay 

DNase activity was measured using the BioVision fluorometric activity assay kit 

(BioVision Inc., Milpitas, USA). The enzyme activity is quantified upon cleavage of a ~ 30 

bp DNA probe and subsequent formation of a fluorescent DNA product, as the probe contains 

a fluorescent dye attached to the 5’ end and a fluorescent quencher attached to the 3’ end.22  
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The formation rate of this reaction product can be monitored fluorometrically using an 

excitation wavelength of 651 nm and an emission wavelength of 681 nm. Briefly, 50 µl of 

sample solution were pipetted in triplicates into a 96 well NBS flat bottom microplate 

(Corning Inc., Corning, USA) and mixed with 50 µL of the freshly prepared reaction mix that 

contained 25 µM DNA probe. Emission at 681 nm was recorded every 30 seconds for 90 

minutes. The reaction rate was quantified using a standard curve that was recorded in the 

same measurement run. The enzymatic activity calculated from the slope of the reaction curve 

and is expressed in µU/mL, where 1 U is defined as the activity that cleaves 1 pmol DNA per 

min.        

VI.2.4 r-tPa activity assay 

The amidolytic activity of r-tPa was measured using the synthetic tripeptide Chromogenix 

S-2288 (Diapharma Group, Inc, West Chester, USA) based on the proposed microplate 

method.23 Briefly, the Chromogenix substrate was reconstituted with 8.65 mL water for 

injection to achieve a S-2288 concentration of 5 mmol/L. Samples were diluted to obtain a r-

tPa concentration of 10 µg/mL. 100 µL of reaction buffer (0.1 M Tris + 0.1 M NaCl pH 8.4) 

and 100 µL of sample solution were mixed in triplicates in a 96 well flat bottom microplate 

(Greiner Bio-One GmbH, Frickenhausen, Germany) and incubated at 37 °C for 5 min. The S-

2288 solution was incubated as well and after addition of 100 µL substrate solution, UV 

absorption at 405 nm was measured every 30 seconds for 270 seconds. Thus, the formation 

rate of p-Nitroaniline upon hydrolysis of S-2288 is quantified by UV-spectrometry at 405 nm, 

using a molar extinction coefficient of 9600 L/mol. A tPa standard (Technoclone Herstellung 

von Diagnostika und Arzneimitteln GmbH, Vienna, Austria) was tested to evaluate the 

activity of BM 06.022. The enzymatic activity is calculated from the slope of the reaction 

curve and expressed in µkat/L, where 1 µkat/L is defined as the activity that converts 1 mol of 

substrate per min.24       

VI.2.5 Near-UV CD spectroscopy 

As already described in Chapter II, Near-UV CD spectra were collected at 25 ⁰C with a 

Jasco J-810 spectropolarimeter (JASCO Deutschland GmbH, Pfungstadt, Germany). 5 

accumulations of each sample were taken at a speed of 20 nm/min and measurements were 

performed in triplicates. The spectrum of the respective buffer was subtracted for each sample 

and smoothing of the single spectra was performed using the Savitzky-Golay algorithm with 7 

smoothing points.25 Quartz cuvettes with 10 mm wavelength path were used. 
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VI.2.6 Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC) 

A Dionex Ultimate 3000 system (Thermo Fisher, Dreieich, Germany) was used for the 

reversed-phase high-performance liquid chromatography. 1 µg of DNase and 2 µg of r-tPa 

were injected on a BioBasic C18, 250 x 2.1, 5 µm column (Thermo Fisher, Dreieich, 

Germany) after centrifugation at 10 000 x g for 10 min. Detection was performed by UV 

spectrometry at 280 nm. To achieve a feasible separation of both proteins and chemical 

altered entities, the given gradient scheme in Fig. VI.4 was applied. Eluent A consisted of 10 

% (w/v) acetonitrile and 0.1 % (w/v) trifluoracetic acid in ultrapure water. Eluent B consisted 

of 0.1 % (w/v) trifluoracetic acid in acetonitrile. The flow rate was 0.2 mL/min. The column 

oven temperature was set to 37 ⁰C.  

VI.2.7 High-Performance Size Exclusion Chromatography (HP-SEC) 

High-Performance Size Exclusion Chromatography was performed on a Waters 2695 

separation module (Waters GmbH, Eschborn, Germany). 5 µg of DNase and 10 µg of r-tPa 

were injected on a Superdex 200 Increase 10/300 GL column (GE Healthcare Bio-Sciences, 

Uppsala, Sweden) after centrifugation at 10 000 x g for 10 min and the elution of the protein 

was detected by UV spectrometry at 280 nm. The mobile phase consisted of 50 mM sodium 

phosphate pH 6.8, 200 mM arginine hydrochloride and 0.05 % NaN3. The flow rate was set to 

0.5 mL/min. Monomer recovery was calculated by integration of the peak area and relative 

comparison of this peak area before and after storage. Baseline separation was not achieved 

for DNase and r-tPa, thus the peak areas were quantified by perpendicular drop integration.   

VI.2.8 Flow Imaging Microscopy  

As already described in Chapter II, Flow Imaging Microscopy was used to study the 

formation of insoluble aggregates (subvisible particles) in the single and co-formulations with 

a FlowCam 8100 (Fluid Imaging Technologies, Inc., Scarborough, ME, USA). A 10x 

magnification cell was used. 160 µL were injected with a flow rate of 0.15 mL/min. Images 

were taken with an auto image frame rate of 28 frames/second, a sampling time of 60 seconds 

and particle identification was performed with distance to the nearest neighbor set to 3 µm, 

and particle segmentation thresholds set to 13 and 10 for the dark and light pixels 

respectively. The particle size was measured as the equivalent spherical diameter (ESD). For 

measurements and evaluation, the VisualSpreadsheet® 4.7.6 software was used.  
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VI.3 Results & Discussion 

VI.3.1 DNase activity assay 

The combined dilution of the DNase and r-tPa formulations in 0.9 % NaCl significantly 

reduced the in vitro activity of DNase compared to the dilution of DNase alone (See Fig. 

VI.1A). The drop of activity was directly observed after dilution and remained the same after 

storage at 37 °C for 2 h (See Fig. VI.1B). Thus, the explanation for reduced activity by 

enzymatic cleavage of DNase seemed unlikely. It was more likely that phosphate reduced the 

concentration of calcium in solution directly after mixing, which explained the immediate loss 

of activity. Consequently, we prepared a placebo formulation of r-tPa that consisted of 500 

mM arginine + 250 mM phosphoric acid pH 7.2 + 0.1 % polysorbate 80 and tested the 

activity of DNase after combined dilution in 0.9 % NaCl. Further, we prepared sodium 

phosphate and arginine hydrochloride solutions at pH 7.2 and diluted them together with 

DNase in 0.9 % NaCl to achieve the same molar concentrations of phosphate and arginine as 

in the dilutions, where the placebo formulation of r-tPa was used. The combination of DNase 

with the placebo formulation of r-tPa reduced the DNase activity to the same extent as the 

protein formulation (See Fig. VI.1C). Sodium phosphate also decreased the DNase activity, 

while arginine hydrochloride increased the activity. We can conclude that the activity 

compromising effect is caused by the incompatibility of the used excipients and further 

proved this by excessive dialysis of r-tPa into 0.9 % NaCl and subsequent dilution together 

with DNase in 0.9 % NaCl. The dialyzed r-tPa did neither compromise the DNase activity 

directly after dilution, nor after storage at 37 °C for 2 h (See Figs. VI.1D and VI.1E), while 

the enzymatic r-tPa activity was preserved after dialysis (See Fig. VI.2D).  

Based on these results, the altered activity of DNase impedes the co-administration of 

DNase and r-tPa. However, there is residual activity of DNase in the mixture. Most likely, this 

is caused by the strong interaction of DNase to calcium, which has been reported earlier. At 

least one calcium remains strongly bound to DNase after extensive dialysis or treatment with 

EDTA.10,12 The given phosphate concentration in the combined dilution of the DNase and r-

tPa formulations in 0.9 % NaCl is not sufficiently high to remove calcium completely. Still, it 

remains unclear if the residual activity of DNase is sufficient to achieve the targeted clinical 

effect.  

It is further interesting to note that arginine increased the in vitro activity of DNase. The 

mechanism of this possible interaction remains unclear. However, it has been previously 

reported that the reaction velocity of the DNase reaction is pH-dependent and reaches a 

maximum in the pH range 7 - 7.5, based on the methyl green assay.20 Thus, the observed 
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increase in activity upon addition of arginine hydrochloride is expected to be caused by the 

measured pH-shift from pH 6.5 in dilutions of DNase in 0.9 % NaCl to pH 7.1 in combined 

dilutions of DNase and arginine hydrochloride in 0.9 % NaCl. However, this has to be 

confirmed in further investigations.  

 

 

 

VI.3.2 r-tPa activity assay 

The amidolytic activity of r-tPa was not compromised upon dilution in 0.9 % NaCl 

together with DNase and was preserved after storage at 37 °C for 2 h (See Figs. VI.2A and 

VI.2B). Samples were also stored at 70 °C for 2 h to prove that the assay is able to monitor 

changes in the enzymatic activity (See Fig. VI.2C). Further, r-tPa was excessively dialyzed 

into 0.9 % NaCl as discussed in section VI.3.1 and tested for preserved amidolytic activity. 

The dialyzed r-tPa showed an elevated amidolytic activity (See Fig. VI.2D), which confirmed 

previous results by Hovest et al., where arginine decreased the enzymatic cleavage of the 

Figure VI.1. In vitro DNase activity of Pulmozyme® alone and in combination with r-tPa upon dilution in 0.9 % 

NaCl after mixing (A) and after storage at 37 °C for 2 h (B). DNase activity of Pulmozyme® alone and in 

combination with the placebo formulation of r-tPa, 50 mM sodium phosphate pH 7.2 or 70 mM arginine 

hydrochloride pH 7.2 upon dilution in 0.9% NaCl (C). DNase activity of Pulmozyme® alone and in combination 

with dialyzed r-tPa upon dilution in 0.9 % NaCl after mixing (D) and after storage at 37 °C for 2 h (E). Standard 

curve for the correlation of fluorescence signal and formation of free DNA (F).      
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chromogenic substrate.26 We further proved this by dilution of the r-tPa formulation in the 

formulation buffer, which exhibited an even higher drop of activity compared to the dilution 

in 0.9 % NaCl, based on the high concentration of arginine (See Fig. VI.2D). Finally, we also 

compared the activity of the used r-tPa variant BM 06.022 to a marketed tPa standard, which 

was also formulated in 500 mM arginine (See Fig. VI.2D). The results confirm that the used r-

tPa has the same amidolytic activity as tPa.21 

The amidolytic activity assay indicates that DNase and r-tPa are compatible drugs. 

However, it is important to point out that the amidolytic activity and fibrinolytic activity do 

not necessarily correlate,23 and orthogonal activity assays like the assessment of clot lysis 

time should be applied to confirm these results.27  

 

 

                   Figure VI.2. Amidolytic activity of BM 06.022 alone and in combination with DNase upon dilution in 

0.9 % NaCl after mixing (A), after storage at 37 °C for 2 h (B) and after storage at 70 °C for 2 h (C). r-tPa 

activity of BM 06.022 after dialysis into 0.9 % NaCl, after dilution in 0.9 % NaCl, after dilution in the 

formulation buffer, and tPa activity of the tPa standard after dilution in the formulation buffer (D).       
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VI.3.3 Near-UV CD spectroscopy 

Near-UV CD spectroscopy was applied to test for structural stability of both DNase and r-

tPa upon dilution in 0.9 % NaCl alone and in combination. The obtained Near-UV CD spectra 

indicated native tertiary structures of DNase and r-tPa directly after dilution in 0.9 % NaCl 

and after storage at 37 °C for 2 h (See Figs. VI.3A and VI.3B).9,12 We can confirm that the 

tertiary structure of DNase was not affected by the absence of calcium, which was already 

reported by Chen et al.11 Further, the Near-UV CD spectrum of the drug combination can be 

calculated by the arithmetic mean of the respective specific ellipticities.28 The arithmetic 

mean of the single protein signals is equivalent to the measured Near-UV CD spectrum of the 

combination (See Fig. VI.3A). Thus, it is possible to predict the spectrum of the combination 

based on the mixing ratios of both proteins. Samples were also stored at 70 °C for 2 h to prove 

the ability of Near-UV CD spectroscopy to monitor changes in tertiary structure of the 

proteins alone and in mixtures (See Fig. VI.3D).  

No structural changes were detected by Near-UV CD spectroscopy for DNase and r-tPa 

alone and in combined dilutions in 0.9 % NaCl, thus no enzymatic cleavage DNase by r-tPa 

was detected.  
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VI.3.4 Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC) 

A RP-HPLC method was developed to evaluate the chemical stability of DNase and r-tPa 

alone and in combination after dilution in 0.9 % NaCl. An example chromatogram is given in 

Fig. VI.4B and illustrates the separation of both proteins. Linearity for both proteins alone and 

in combination was shown (See Figs. VI.4C and VI.4D). The ability to monitor chemical 

degradation of both proteins was evaluated by analysis of samples that were stressed at 70 °C 

for 2 h (See Figs. VI.4E and VI.4F). The protein recovery after storage at 37 °C for 2 h was > 

95 % for both single dilutions and the combined dilution, and no formation of chemical 

degradation products was detected by RP-HPLC. Interestingly, protein recovery was inferior 

                

Figure VI.3. Near-UV CD spectra for DNase, r-tPa and the combination upon dilution in 0.9 % NaCl after 

mixing (A), after storage at 37 °C for 2 h (B), and after storage at 70 °C for 2 h (D). The calculation of the 

specific ellipticity is not appropriate for the samples that were stored at 70 °C based on insufficient protein 

concentration. Thus, the raw CD signal is presented for the samples after mixing (C) and after storage at 

70°C for 2 h (D). 
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in the combination compared to the single dilutions upon storage at 70 °C for 2 h, which 

indicates that the combination is less stable compared to the single formulations (See Fig. 

VI.4F). However, the proteins do not face that severe stress in the context of co-

administration.   

VI.3.5 High-Performance Size Exclusion Chromatography (HP-SEC) 

A HP-SEC method was developed to study protein aggregation of DNase and r-tPa alone 

and in combination after dilution in 0.9 % NaCl. An example chromatogram is given in Fig. 

VI.5B and illustrates the separation of both proteins. Linearity for both proteins alone and in 

combination was shown (See Figs. VI.5C and VI.5D). Linearity was the same in single 

formulations and combinations, despite the increased axial intercept in the combination based 

on the applied integration method and insufficient baseline separation. The ability to monitor 

protein aggregation of both proteins was evaluated by analysis of samples that were stressed 

at 70 °C for 2 h (See Figs. VI.5E and VI.5F). While DNase formed soluble aggregates that 

were well detected by HP-SEC, no soluble aggregates were detected for r-tPa, although the 

monomer peak intensity decreased. Most likely, this was caused by excessive protein 

aggregation of r-tPa that led to precipitation and formation of subvisible particles that did not 

appear in HP-SEC. The monomer recovery after storage at 37 °C for 2 h was > 95 % for both 

separate dilutions and the combined dilution. The monomer recovery was inferior for r-tPa in 

the combination compared to the single dilution upon storage at 70 °C for 2 h, which 

confirmed the results of RP-HPLC and also indicated that the combination was less stable 

compared to the single formulations when extensive stress was applied (See Fig. VI.5F). For 

DNase, the peak intensity of the soluble aggregates was decreased in the combination, which 

indicated a shift towards insoluble particle formation.  
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Figure VI.4. Protein recovery in RP-HPLC for DNase, r-tPa and the combination upon dilution in 0.9 % 

NaCl after storage at 37 °C for 2 h (A). Separation of both proteins alone and in combination by RP-

HPLC (B). Linearity in RP-HPLC for DNase (C) and r-tPa (D) alone and in combination. 

Chromatograms for DNase and r-tPa alone and in combination after mixing (E) and after storage at 70 °C 

for 2 h (F).  
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Figure VI.5. Monomer recovery in HP-SEC for DNase, r-tPa and the combination upon dilution in 0.9 % 

NaCl after storage at 37 °C for 2 h (A). Separation of both proteins alone and in combination by HP-SEC 

(B). Linearity in HP-SEC for DNase (C) and r-tPa (D) alone and in combination. Chromatograms for DNase 

and r-tPa alone and in combination after mixing (E) and after storage at 70 °C for 2 h (F).  
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VI.3.6 Flow Imaging Microscopy  

Subvisible particle formation upon dilution of the single formulations of DNase and r-tPa 

and the combined dilution of both formulations in 0.9 % NaCl was studied by Flow Imaging 

Microscopy. Immediately after dilution subvisible particles, which also included large protein 

fibers, were detected in formulations that contained r-tPa (See Fig. VI.6A). This was 

surprising, because preliminary solubility experiments by HP-SEC and UV-spectrometry did 

not indicate any loss of soluble protein after dilution of the stock solution in 0.9 % NaCl 

compared to equal dilutions in the formulation buffer. After storage at 37 °C for 2 h, the 

particle count did not increase further (See Fig. VI.6B). Most likely, the precipitation of r-tPa 

was caused by excessive dilution of the solubilizing excipients arginine and polysorbate 80, 

although the dilution is in accordance with the patient information of Actilyse®, that limits the 

dilution of r-tPa to 0.2 g/L to avoid precipitation,29 and it has been previously suggested that 

r-tPa remains both physically and chemically stable in saline solution at a concentration of 0.2 

g/L.30 However, precipitation of r-tPa upon dilution to concentrations lower than 0.5 g/L has 

also been reported. 31 While Semba et al. presented preserved bioactivity of r-tPa in the clot 

lysis assay upon dilution to 0.01 g/L in saline solution for up to 24 hours,32 the protein 

recovery measured by ELISA was reduced to less than 50 % immediately after dilution, 

which was assigned to adsorption, but may also be consequence of precipitation. Further, the 

non-glycosylated r-tPa variant BM 06.022 showed a very low water solubility of 0.07 g/L in 

previous studies,9 that could be increased to only 0.66 g/L by addition of 1 M NaCl. Still, the 

results presented by Tischer et al. indicated that 154 mM NaCl (which equals 0.9 % NaCl) 

increased the solubility of BM 06.022 sufficiently to reach the targeted concentration of 0.2 

g/L upon dilution of the stock formulation in 0.9 % NaCl, especially as an arginine 

concentration of > 30 mM was still achieved in the dilution of the stock formulation.9     

Although the subvisible particle formation was severe in dilutions of r-tPa, it is interesting 

to note that the measured r-tPa activity and the peak areas in the applied HPLC-methods 

remained the same in dilutions of the r-tPa stock formulation in either 0.9 % NaCl or the 

formulation buffer. Thus, the dilution in 0.9 % NaCl did neither alter the amidolytic activity, 

nor the recovery in HP-SEC and RP-HPLC, nor the tertiary structure in Near-UV CD 

spectroscopy. In the context of the treatment of pleural infection and administration into the 

pleural space, the detected particle formation might not be as critical as for intravenous 

injections. However, even if this excessive particle formation cannot be tolerated to ensure 

patient safety, in-line filtration during drug administration or addition of surfactants like 

polysorbate to the diluting agent offer viable strategies to reduce the particle formation.6,7,33 
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No significant loss of protein content or soluble r-tPa is indicated by the activity assay, UV-

spectrometry or HPLC-methods. Thus, the particle formation can be assigned to a small 

fraction of protein and the removal of small protein fraction that is responsible for particle 

formation by inline filtration is not expected to significantly impact efficacy or safety of the 

therapy.       

The combined dilution of DNase and r-tPa in 0.9 % NaCl did not cause additional particle 

formation compared to the dilution of r-tPa alone (See Fig. VI.6A). Thus, no precipitation of 

calcium phosphate in the mixture was evident. Placebo formulations of DNase and r-tPa were 

prepared and diluted accordingly in 0.9 % NaCl to confirm these results. Again, no subvisible 

particle formation based on calcium phosphate precipitation is detected by Flow Imaging 

Microscopy after dilution and after storage at 37 °C for 2 h (See Figs. VI.6C and VI.6D).  

 

 

Figure VI.6. Subvisible particle formation in Flow Imaging Microscopy for DNase, r-tPa and the 

combination upon dilution in 0.9 % NaCl after mixing (A) and after storage at 37 °C for 2 h (B). Subvisible 

particle formation in placebo formulations upon dilution in 0.9 % NaCl after mixing (A) and after storage at 

37 °C for 2 h. Transparent fiber formation in r-tPa dilutions is illustrated by two pictures of representative 

particles detected in Flow Imaging Microscopy (A). 
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VI.4 Conclusion 

We evaluated the compatibility to DNase and r-tPa for concurrent administration upon 

combined dilution of the respective protein formulations in 0.9 % NaCl. Although both drugs 

seem to be compatible for co-administration based on the presented in vitro results, the 

formulations of the respective drug products are incompatible. A significant reduction of the 

in vitro DNase activity upon addition of phosphate impedes a co-administration of the 

respective drug products. To the best of our knowledge, all available r-tPa drug products on 

the market contain phosphate (See Table VI.1). Thus, we suggest that concurrent 

administration of DNase and r-tPa drug products is performed according to Kheir et al.,5 

where different syringes and subsequent saline flushs are used. However, as the drug product 

incompatibility is only caused by the excipients, a co-formulation of both drugs could still 

allow concurrent administration. The presented methods and stability data can guide the 

rational development of a co-formulation of DNase and r-tPa. The most promising approaches 

for co-formulation are (1) co-lyophilization of both enzymes in arginine hydrochloride or (2) 

the use of other buffer systems than phosphate. The commonly known TAPS formulation 

contains tranexamic acid and polysorbate 80 as solubility enhancers (see Table VI.1), and the 

phosphate buffer could be replaced by tartrate or maleate, as already proposed by Kohnert et 

al.34 

However, future work has to elucidate the synergistic pharmacological effect of both drugs on 

a molecular level to enable a rational development of a co-formulation. Up to date, the lack of 

understanding of the combined pharmacodynamics, optimal dosing scheme and possible 

interactions of both drugs with inflammatory cells,2 bacteria or body fluids impedes the 

development of a feasible co-formulation of both drugs. Further, the observed severe particle 

formation of r-tPa has to be significantly reduced to provide a drug product with high safety 

and quality. Most likely, the particle formation is a result of poorly selected formulation 

conditions, which can be solved in future study by appropriate excipient selection and co-

formulation development.  
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Chapter VII  Summary of the thesis 

Protein co-formulations represent valuable additional tools for the treatment of severe 

diseases, if the clinical efficacy, safety and pharmacokinetic compatibility of the individual 

drugs can be shown and additional benefits such as improved clinical outcome, higher patient 

compliance or reduced costs can be provided by the fixed-dose combinations. However, the 

stabilization of protein co-formulations can be hindered by general analytical challenges, 

contradicting stability profiles, potential cross-interactions, and the incompatibility of 

excipients that may be essential to maintain the individual protein stability.  

 

In Chapter I, an extensive overview on the clinical, regulatory, analytical and formulation 

challenges and opportunities for developing protein co-formulations was provided. 

In Chapter II, EPO and G-CSF were co-formulated to identify formulation conditions that 

provide sufficient protein stability for two model protein drugs with considerably different 

physicochemical properties. Stability-indicating methods were developed to study the 

individual protein stability in co-formulations and accelerated stability studies were conducted 

for a wide range of liquid and lyophilized formulations. We developed a stable lyophilized co-

formulation for EPO and G-CSF and showed the stability for both proteins in this co-

formulation after storage at 4 °C for up to 12 months. The successful formulation strategy 

involved a pH-shift upon reconstitution of the lyophilized product that enabled the 

stabilization of both drugs in one single formulation. Moreover, this case study showed that a 

first protein drug can be stabilized in the solid state by co-formulation with a second protein 

drug. Although the optimal formulation conditions for the individual proteins cannot be 

provided by the co-formulation, intermediate formulation conditions were identified to 

achieve a sufficient stability for both proteins over the targeted shelf life.   

Based on the results of Chapter II, we characterized the protein cross-interactions between 

EPO and G-CSF in different formulation conditions in more detail in Chapter III. The results 

indicate that the applied methods such as DLS and nanoDSF can detect changes of the 

individual protein aggregation in the co-formulations depending on the respective formulation 

conditions. We identified these methods as valuable tools for early formulation development, 

because detrimental cross-interactions can be rapidly identified with very low protein 

consumption. Further, the presented results indicate that protein co-formulations can offer 

both stabilizing and destabilizing effects on the individual proteins. The stability-

compromising interactions were linked to the net surface charge of the individual proteins. 
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Long-range electrostatic attractive interactions between the oppositely charged proteins were 

detected at low pH values which favored aggregation, while long-range electrostatic repulsive 

cross-interactions at neutral pH values reduced aggregation. Thus, the cross-interactions can 

be limited by a rationale selection of the formulation parameters that avoid opposite surface 

charges of the proteins. Thus, it was demonstrated how changes in pH and ionic strength can 

affect the protein aggregation pathway in co-formulations. The results support and explain 

some of the findings during the accelerated stability studies in Chapter II. In addition, the 

presented analytical approach can be applied to the pre-clinical characterization of other 

protein co-formulations. 

In Chapter IV, six clinically established mAbs that differ in net charge, charge distribution 

and CDR composition were selected and a biophysical characterization of all possible binary 

mixtures of these mAbs was performed. We compared the colloidal and conformational 

stability of the proteins alone and in combination in a wide range of formulation conditions. 

In contrast to the electrostatic cross-interactions between EPO and G-CSF that were detected 

in Chapter III and which promoted protein aggregation in specific formulation conditions, no 

stability-compromising cross-interactions between different mAbs were detected in a wide 

range of relevant formulation conditions. The excess scattering of the binary mixture 

resembled the sum of the excess scattering signals of the individual mAbs with the same 

concentration, which indicated that the individual mAbs followed the same individual 

aggregation pattern in the mixture as in the respective single formulations. Unfortunately, we 

cannot provide a framework or guideline on different mAb properties that could support 

formulation scientists to identify mAb properties that may be critical for protein co-

formulation. The presented results indicate that mAbs which exhibit sufficient drug-like 

properties to enter the clinics can be co-formulated in a straight-forward manner as no 

stability-compromising cross-interactions must be expected. However, the presented dataset is 

limited to six clinically established, well-characterized and biophysically well behaving 

mAbs. The presented approach has to be applied to a higher number of proteins with different 

colloidal, conformational and chemical stabilities to identify drug properties and formulation 

parameters that are critical for the development of stable mAb co-formulations.  

In Chapter V, trastuzumab and rituximab were selected as model proteins for a more 

detailed analysis of the protein stability in mAb co-formulations. Different ratios of both 

proteins in co-formulations were analyzed by DLS and nanoDSF to differentiate between self- 

and cross-interactions of the mAbs. The absence of critical protein cross-interactions between 

the mAbs was further confirmed by viscosity measurements and forced degradation studies by 
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HP-SEC and WCX-HPLC. The results confirm that the individual mAbs behave similarly in 

binary mixtures compared to the respective single formulations, and the stability of both 

mAbs was not negatively affected in the presence of different amounts of the second mAb. 

The findings in this chapter can aid the analytical development for antibody co-formulations, 

but the absence of stability-compromising cross-interactions in mAb co-formulations cannot 

be generalized and additional investigations have to be performed on a larger set of different 

mAb co-formulations.  

In Chapter VI, the in-use stability of DNase and r-tPa was studied after dilution in standard 

saline solution. The subsequent application of both enzymes is an established clinical 

procedure for the treatment of pleural infections. However, the compatibility of both enzymes 

and in-use stability upon concurrent administration to facilitate the clinical treatment 

remained unclear. Analytical techniques were developed to investigate if the degradation of 

DNase or r-tPa is affected by the presence of the second protein. The presented results on the 

colloidal, chemical, and conformational stabilities and activities of both proteins after 

combined dilution in saline or after dialysis into saline indicated that the proteins are 

compatible. However, the incompatibility of the excipients impedes a concurrent 

administration because the lowered concentration of Ca2+ ions in the mixture caused a 

reduced in vitro activity of DNase. This chapter demonstrates a case where a co-formulation 

can be created at the patient bedside, but the necessary in-use protein stability should be 

demonstrated. The co-formulation of protein drugs can require the substitution of excipients 

that have been selected for the stabilization of the single proteins and require a re-formulation 

from scratch to meet the targeted stability requirements for both proteins.     

 

In summary, this thesis provides an analysis on the rational development of protein co-

formulations, the arising protein cross-interactions, the potential impact of these interactions 

on the individual protein stabilities and how the stability-compromising interactions that may 

arise during formulation development can be limited by a rational selection of feasible 

formulation conditions. The results confirm recently published studies on the stability of 

protein co-formulations and indicate that different protein entities in a co-formulation are not 

susceptible to stability-compromising cross-interactions as long as long-range electrostatic 

forces are avoided by a rationale selection of pH and ionic strength. It appears that especially 

mAbs with drug-like properties can be co-formulated in a straight-forward manner. Critical 

cross-interactions in mAb co-formulations are likely limited to mAbs with unfavorable 

physicochemical properties, which are not likely to become drugs. Future studies have to 
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confirm these results for a larger set of different mAb co-formulations to identify general 

protein properties that are critical for the development of protein co-formulations. Finally, it 

was also demonstrated that even proteins with significantly different physicochemical 

properties can be stabilized in a tailor-made co-formulation which overcomes the initially 

observed incompatibility. Although these results are highly specific for the tested proteins, 

they present successful pharmaceutical strategies which can support formulation scientists to 

stabilize challenging protein co-formulations.  
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