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Abstract

During the course of their lives, people continuously gather information and use this

knowledge when making predictions, deriving at a decision, or, generally speaking, when

they reason and interact with their environment. Most machine learning models still lack

the ability to leverage explicit, factual background information which could be a great

benefit for any of those tasks. In this thesis, we propose that knowledge graphs might

be the basis for both representing factual knowledge and integrating it into prediction

and decision making. Over the last decades, they have become a widely used resource

to structure factual knowledge in a machine-readable format. The nodes in the graph

correspond to entities of the real-world. Typed edges between pairs of nodes indicate

their relationships and encode factual statements.

Modern, large-scale knowledge graphs store massive amounts of information, often

up to many billions of facts. However, most knowledge graphs suffer from an inherent

incompleteness in the sense that they do not include all true facts in the scope of the

actual entities and relations. Moreover, knowledge graphs may also contain triples that

correspond to false facts. Thus, two canonical machine learning tasks are concerned with

first, automatic knowledge curation and refinement with the goal to infer missing facts

based on observed triples, second, to classify the truth value of facts. The first part of this

thesis is concerned with path-based reasoning on knowledge graphs for fact classification.

In contrast to pure embedding-based techniques, path-based reasoning methods attempt

to construct predictive paths on knowledge graphs, which serve as explicit features for pre-

diction tasks. We employ reinforcement learning for goal-directed path extraction in two

different settings. First, we develop the idea of debate dynamics, where the fact-checking

task in a knowledge graph is framed as a debate game between two competing agents.

The arguments of the debate correspond to paths on the knowledge graph. In contrast

to existing path-based methods that only mine supportive features for the truthfulness of
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a fact, the goal of the debate setup is to examine a query fact from two different angles.

This is realized by training the agents to extract two sets of opposing arguments that

provide evidence for the fact being true or the fact being false, respectively. Hence, the

agents can be regarded as sparse, adversarial, and interpretable feature generators. Our

method allows for interactive reasoning on knowledge graphs where the users can raise

additional arguments or evaluate the debate taking common sense reasoning and external

information into account. We show via experiments on popular benchmark datasets and

a user study that our method outperforms several baseline methods while being more

interpretable.

Second, we consider the visual question answering task, which is concerned with an-

swering free form questions about an image. Our approach is based on deriving a graphical

description of a scene where the nodes correspond to the detected objects and typed edges

indicate spatial and semantic relationships between the objects. This representation is

called a scene graph and its formalism resembles the knowledge graph framework that we

adopt in this thesis. Given the scene graph of an image, we propose a novel reasoning

module where an agent navigates over the graph until a conclusive reasoning path is ob-

tained that allows to answer the question. We investigate the performance of our scene

graph reasoning module on a challenging visual question answering dataset based on man-

ually curated scene graphs. We find that our method reaches human-like performance,

which is currently the upper bound for visual questions answering datasets.

Knowledge graphs are not only mere containers of facts. They can convey knowledge

and act as a backbone in various artificial intelligence applications. Modern represen-

tation learning techniques condense structural information of entities and relations in

low-dimensional vector spaces. Based on these embeddings, relational information can

be ingested by other machine learning modules that perform various downstream tasks.

Similarly, many artificial intelligence tasks can be phrased as a link prediction problem in

a knowledge graph. The second part of this thesis makes use of this idea and tackles the

real-world task of recommending components for industrial control systems. Concretely,

we formulate the recommendation task as a link prediction problem in a knowledge graph

that combines two data sources: technical information about available components and

historical configuration data. In this context, we develop two novel recommendation en-

gines employing a tensor factorization and an autoencoder coupled with a tensor factor-

ization, respectively. Based on a real-world, industrial dataset, we find that our methods
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significantly outperform several baseline methods, while satisfying important real-world

demands. These requirements include the ability to compute recommendations efficiently

in real-time in a partially inductive setting and the ability to cope with the cold start

problem.
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Zusammenfassung

Im Laufe ihres Lebens sammeln Menschen stetig Informationen über ihre Umwelt und

beziehen diese Information mit ein, wenn sie Vorhersagen machen, Entscheidungen tr-

effen oder, allgemein gesprochen, über ihre Umwelt Schlüsse ziehen und mit ihr inter-

agieren. Die meisten Modelle des maschinellen Lernens können nicht auf explizite, fak-

tische Hintergrundinformationen zurückgreifen. In dieser Arbeit schlagen wir Wissens-

graphen als Grundlage für die Repräsentation von faktischen Wissen und dessen Integra-

tion in Vorhersage- und Entscheidungsmodelle vor. In den letzten Jahrzehnten haben sie

sich zu einem weit verbreiteten Werkzeug entwickelt, um Wissen in einem maschinenles-

baren Format zu strukturieren. Die Knoten im Graphen entsprechen dabei Entitäten der

realen Welt. Die typisierten Kanten zwischen Knotenpaaren geben ihre Beziehungen an

und entsprechen faktischen Aussagen.

Moderne, groß angelegte Wissensgraphen speichern riesige Mengen an Informatio-

nen, oftmals bis zu vielen Milliarden Fakten. Trotzdem sind viele Wissensgraphen un-

vollständig. Damit ist gemeint, dass wahre Fakten, die durch die vorliegenden Entitäten

und Relationen ausgedrückt werden können, nicht im Wissensgraphen enthalten sind.

Außerdem sind oft auch falsche Fakten in Wissengsraphen kodiert. Gängige Aufgaben

des maschinellen Lernens beschäftigen sich daher mit der Vorhersage von neuen Kan-

ten sowie mit der Klassifikation von Fakten. Der erste Teil dieser Arbeit befasst sich mit

pfadbasierten Methoden auf Wissensgraphen zur Klassifikation des Wahrheitsgehaltes von

Fakten. Im Gegensatz zu Techniken, die nur auf Repräsentationslernen basieren, zielen

pfadbasierte Methoden darauf ab, prädiktive Pfade auf Wissensgraphen zu konstruieren,

die als strukturierte Erklärung für Vorhersageaufgaben dienen. Wir setzen bestärkendes

Lernen für die zielgerichtete Pfadextraktion ein. Unser Forschungsbeitrag liegt hierbei in

zwei Bereichen. Zum einem entwickeln wir die Idee der Debattendynamik, bei der die

Aufgabe der Faktenklassifikation als Debattierspiel zwischen zwei konkurrierenden Agen-
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ten formuliert wird. Dabei entsprechen die Argumente Pfaden im Wissensgraphen. Die

meisten pfadbasierten Methoden zielen darauf ab, lediglich Merkmale zu extrahieren, die

den Wahrheitsgehalt eines Faktes unterstützen. Das Ziel des Debattendynamik besteht

hingegen darin, einen Fakt aus zwei unterschiedlichen Blickwinkeln zu untersuchen. Wir

realisieren dies dadurch, dass wir zwei konkurrierende Agenten trainieren, Argumente

jeweils für und gegen die Validität eines Faktes zu extrahieren. In dem Sinne fungieren

die Argumente als adverseriale und interpretierbare Merkmale für die Vorhersage des

Wahrheitswertes eines Faktes. Die resultierende Methode erlaubt die Entwicklung von

interaktiven Anwendungen, in denen der Benutzer zusätzliche Argumente einbringen

kann oder das Ergebnis einer Debatte mithilfe von Kontextinformationen eigenständig

evaluieren kann. Wir zeigen auf der Basis von Experimenten mit verschiedenen Bench-

markdatensätzen sowie einer Benutzerumfrage, dass unsere Methode bessere Ergebnisse

als existierende Methoden erzielt und darüber hinaus interpretierbare Erklärungen liefert.

Des Weiteren betrachten wir die Aufgabe der automatischen Beantwortung von Fragen

mit visuellem Bezug. Dabei sind die Fragen in natürlicher Sprache formuliert und beziehen

sich auf den Inhalt eines Bildes. Unser Ansatz basiert darauf, eine Netzwerkdarstellung

der dargestellten Szene herzuleiten, in der die Knoten den Objekten entsprechen und

die typisierten Kanten räumliche und semantische Beziehungen zwischen diesen Objek-

ten angeben. Diese Darstellung wird als Szenengraph bezeichnet und ähnelt dem For-

malismus für Wissensgraphen, den wir in dieser Arbeit verwenden. Basierend auf dem

Szenengraph entwickeln wir ein neuartiges Argumentationsmodul, bei dem ein Agent über

dem Graphen navigiert, bis ein schlüssiger Argumentationspfad extrahiert wird, der die

Beantwortung der Frage ermöglicht. Wir zeigen mithilfe von manuell erstellten Szenen-

graphen auf einem anspruchsvollen Datensatz, dass unsere Methode in etwa menschliches

Leistungsniveau erreicht, welches aktuell eine obere Schranke für das Leistungsvermögen

maschineller Lernmethoden darstellt.

Wissensgraphen sind nicht nur als Container von Fakten. Sie können das Wissen auf-

bereiten, vermitteln und fungieren dadurch als Rückgrat in verschiedenen Anwendungen

der künstlichen Intelligenz. Insbesondere ermöglichen moderne Methoden des Repräsen-

tationslernens die Verdichtung von strukturellen Informationen über Entitäten und Re-

lationen in niedrigdimensionalen Vektorräumen. Diese Einbettungen ermöglichen, rela-

tionale Informationen in andere maschinelle Lernmodule miteinfließen zu lassen. Außer-

dem können viele Aufgaben der künstlichen Intelligenz als Kantenvorhersageproblem in
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Wissensgraphen formuliert werden. Im zweiten Teil der vorliegenden Arbeit nutzen wir

diese Idee und befassen uns mit der Aufgabe, Komponenten für industrielle Steuerungssys-

teme zu empfehlen. Dabei formulieren wir die Generierung von Empfehlungen als Kan-

tenvorhersageproblem in einem Wissensgraphen, welcher zwei Datenquellen kombiniert:

technische Informationen über verfügbare Komponenten und historische Konfigurations-

daten. In diesem Zusammenhang entwickeln wir zwei neuartige Empfehlungssysteme auf

der Basis jeweils einer Tensorfaktorisierung und eines Autoencoder gekoppelt mit einer

Tensorfaktorisierung. Wir vergleichen die Ergebnisse mit existierend Methoden auf der

Basis eines industriellen Datensatzes. Unsere experimentellen Ergebnisse zeigen, dass un-

seren Methoden signifikant bessere Resultate als bereits existierende Empfehlungssysteme

erzielen. Außerdem analysieren wir unsere Methoden in Bezug auf ihre Anwendbarkeit

in der Praxis und zeigen, dass unsere Methoden mit dem Kaltstartproblem umgehen und

unter partiell induktiven Bedingungen effizient Empfehlungen berechnen können.
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Chapter 1

Introduction

1.1 Motivation

Our society produces massive amounts of data that describe complex systems consisting

of various interacting components. Such data often exhibit rich structures and interde-

pendencies that cannot be captured by features aligned on a regular grid (e.g., structured

in a design matrix) that do not consider the relations between the systems’ components.

For instance, every day billions of people interact on social media, interconnected sen-

sors collect data that allows to monitor and optimize the operation of electrical grids, or

magnetic resonance imaging techniques can trace the activity of neural circuits formed by

neurons and synapses. Graphs provide an intuitive and concise abstraction to model dis-

crete, complex systems. Thereby the components of the system are represented by nodes,

their interactions as edges. Depending on the studied phenomenon, the interactions be-

tween nodes can result in diverse patterns that differ in topology and scale. This irregular,

inherently non-Euclidean nature imposes a challenge for machine learning methods since

basic algebraic operations that are the foundation of most machine learning techniques

cannot be directly applied to graph-structured data. Thus, canonical learning task such as

link prediction, graph or node classification, and graph generation, that often correspond

to highly relevant real-world tasks such as computing recommendations or synthesizing

chemical molecules require specialized methods that operate on graph-structures.

This thesis is mainly concerned with machine learning on graphs that store struc-

tured representations of knowledge about the world via collections of factual statements.

Such graphs are often referred to as a knowledge graphs (KGs). The goal of a KG is

1



CHAPTER 1. INTRODUCTION

to accumulate and convey knowledge in a machine-readable format. Thereby, nodes rep-

resent entities of the real world and edges that come with different labels indicate the

relations between them. Originating from the Semantic Web [5] and the Linked Open

Data vision [4], KGs often integrate data from numerous sources resulting in diverse

structures and granularities of knowledge. Thereby, the absence of a fixed schema allows

the knowledge to evolve in a flexible manner [28]. Even though modern, large-scale KGs

contain a massive amount of facts, they still suffer from an inherent incompleteness in

the sense that true facts are not contained the KG. In addition, KGs may also contain

false facts. Employing a graph-structured abstraction of knowledge enables the usage of a

range of graph reasoning techniques that aim to infer new knowledge or detect false facts.

Early research on KGs was geared towards advancing the logical reasoning capabilities

of KGs. These approaches are based on handcrafted or automatically mined rules and

come with the advantage that reasoning is relatively accurate, explicit, and, therefore,

explainable. However, due to scalability issues of logical reasoning approaches and driven

by the success of machine learning methods on graphs and other data modalities, many

of the dominant approaches in KG reasoning follow the representation learning paradigm.

Like word embeddings that capture semantic meanings of words in natural language, KG

embeddings are vector space representations that preserve semantic structures of entities

and relations and allow the efficient execution of downstream tasks. Compared to logi-

cal reasoning methods, learning techniques on KGs often come with fewer requirements

on the modeling side, thus, alleviating the knowledge acquisition bottleneck. This leads

to a reduced formalism, which is sufficient to solve many practical learning tasks. As

a consequence, knowledge graphs are now not only containers of facts. They also act

as the backbone for many machine learning applications. In particular, KG embeddings

allow relational knowledge to enhance different learning tasks such as named entity disam-

biguation in natural language processing [21] or visual relation detection [3] in computer

vision.

This thesis investigates machine learning on KGs in different settings. For example,

we develop a novel method for the KG completion task (i.e., deriving missing facts) on

generic, cross-domain KGs. This setting is typically used to benchmark KG reasoning

techniques. In addition, we also consider real-world industrial tasks where the underlying

KG focuses on a specific domain. The vision of the Industry 4.0 enables KGs to be applied

to manufacturing processes as a practical tool to organize data from all stages of the

2



CHAPTER 1. INTRODUCTION

production pipeline. We study KGs in a setting where complex engineering equipment

consists of multiple sub-systems. By storing existing system configurations in a KG

and computing corresponding embeddings, we demonstrate how one can leverage the

underlying relational structure and adjust learning technologies to build recommender

systems that meet crucial real-world demands such as efficiency requirements or the ability

to overcome the cold start problem. Finally, we also work in a setting where the graph

structure is not readily available but needs to be extracted from the raw data. Concretely,

we consider images and derive semantic and spatial relationships among the objects in the

depicted scene leading to scene graph representations [29]. These scene graphs resemble

KGs in the sense that the relations between the detected objects are encoded via typed

edges. Given this graph representation of an image, advances in KG reasoning and deep

graph learning are combined to tackle a challenging computer vision task.

1.2 Contributions of this Thesis

The research focus of this thesis is threefold: In the first part we address the black-

box problem that is inherent to most embedding-based KG reasoning methods. More

specifically, when using KG embedding for inferring new triples or fact-checking, it usually

remains hidden from the user what contributed to the prediction of a model. Using a

transparent method may lead to more trustworthiness, allows to keep humans in the

loop, and facilitates debugging especially in a situations where the data is biased or has

some other flaws. As a remedy to the non-transparent nature of KG embedding methods,

we propose the idea of debate dynamics for reasoning on KGs to tackle the black box

problem. Concretely, we develop the novel method R2D2 for triple classification (basically,

fact-checking) on KGs. The goal is to train two opposing reinforcement learning agents

that engage in a debate game. Thereby both agents extract arguments – paths in the

knowledge graph – that serve as evidence for and against the truthfulness of the fact.

We empirically find that R2D2 achieves state-of-the-art performance with respect to the

triple classification accuracy while being more interpretable than existing embedding-

based methods.

The second part considers the visual question answering task (VQA), which is con-

cerned with answering image-related free-form questions. Given an image and a free-form

question, the task is to find the correct answer based on the presented scene. Heuristically

3



CHAPTER 1. INTRODUCTION

speaking, successful VQA systems are required to possess the faculty of sight (processing

the image), the faculty of hearing (processing the question), and the faculty of reason

(derive the correct answer). Therefore, VQA is often described as an AI-complete task

and the performance of state-of-the-art methods still falls short of humans on challenging

VQA datasets. Many existing VQA approaches are agnostic towards the explicit rela-

tional structure of the objects in the presented scene. They rely solely on processing

regional features of the image via complex neural network architectures. We propose a

novel reasoning module that constructs explicit reasoning chains on a derived network

representation of the depicted scene. As a testament to the reasoning and language-

understanding capabilities, we show that our method achieves human-like performance

based on manually curated scene graphs.

Finally, the last part of this thesis is application-driven and deals with automation sys-

tems as an example of complex industrial equipment. In this context, we leverage an exist-

ing tensor factorization technique to develop the novel recommendation system RESCOM

that incorporates both historical user behavior and technical information merged in KG.

We demonstrate that RESCOM can handle real-world requirements such as computing

recommendations in linear time. Moreover, in contrast to most other embedding-based

methods, RESCOM can operate in a partially inductive setting where embeddings for

new equipment can be computed in real-time without retraining the model. Our exper-

imental findings show that incorporating technical context information allows to tackle

the cold start problem. At the time of writing, RESCOM is employed in one of the ma-

jor engineering configurators at Siemens AG with around 60,000 active users and around

170,000 configured automation solutions corresponding to a potential revenue of more than

132Me per month. In the same context, we propose the recommender engine NECTR

as an extension to RESCOM. NECTR consists of a tensor factorization model coupled

with a graph autoencoder. While the tensor factorization encodes the items’ technical

information, the neural network captures the non-linear interactions among configured

items. Thereby NECTR is more expressive than RESCOM, since it is able to capture

higher-order interactions among the configured items that typically arise in the context of

complex equipment where the functionality results from the interplay of its components.

We show experimentally that this leads to significant performance gains with respect to

standard performance measures such as the mean rank, the mean reciprocal rank, or

Hits@K for K = 1, 3, 5, 10. NECTR is scheduled to substitute RESCOM as a recom-
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mender system in the aforementioned engineering configurator in the upcoming release

version.

1.3 Overview

The remainder of this thesis is organized as follows. Chapter 2 contains background

information on KGs and graph learning. That chapter is not meant to be a survey.

Its purpose is rather to introduce important concepts and lay the foundations for the

techniques that are used in the remainder of this thesis. Concretely, we detail the notations

used in this work in Section 2.1. In Section 2.2 we review KGs and canonical machine

learning tasks on KGs. We proceed with a short introduction to representation learning

on graphs in Section 2.3. In Section 2.4 we review path-based reasoning methods on KGs

that bridge the gap between rule-based and embedding methods on KGs. The remaining

chapters contain our published works: Chapter 3 contains our publication on debate

dynamics for explainable KG reasoning [26]. In Chapter 4 we present our publication on

a novel method for scene graph reasoning [25]. Chapter 5 and 6 contain our published

work on recommender systems for industrial automation solutions [23, 24]. We conclude

in Chapter 7 and sketch directions for future works.
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Chapter 2

Background

2.1 Notation

Before proceeding, we first define the mathematical notation that we use throughout this

thesis.

Sets are either indicated by their canonical symbols (e.g., N denotes the set of natural

numbers) or by calligraphic letters (e.g., the vertex set of a graph is given by V , the

edge set by E). Scalars (x ∈ R) and elements of sets (e.g., v ∈ V) are given by lower

case letters. In the context of this thesis, unless it is clear from the context or stated

otherwise, sets are assumed to be finite and indexed (i.e., for any set X , there exists

a function I : X → N, that maps each element of X to an index). Column vectors

are indicated by bold lower case letters (x ∈ Rn), and matrices by upper case letters

(X ∈ Rn1×n2). Further, Xi,: ∈ Rn2 and X:,j ∈ Rn1 denote the i-th row and j-th column

of X, respectively. Moreover, Xᵀ denotes the transpose of X. To ease the notation, we

identify elements of a set with their indices (i.e., {x1, x2, . . . , xn} ∼= {1, 2, . . . , n}). That

means if X is a matrix that contains embeddings for all vertices in a graph in its rows and

v corresponds to the i-th node (i.e., I(v) = i), then we use Xv,: or Xi, : interchangeably to

denote the embedding for vi. If there is no ambiguity, we denote with v the vector space

embedding of v. Furthermore, diag(x) ∈ Rn×n turns x ∈ Rn into the diagonal matrix

with the entries of x on the main diagonal. We denote with 1i ∈ Rn the one-hot vector

that has zero entries everywhere except for a one at the i-th position.

For the purpose of this thesis a tensor is a high-dimensional generalization of a matrix

that is used to represent collections of multi-relational, pairwise interactions. Third-order
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tensors are given by bold upper case letters (X ∈ Rn1×n2×n3). Slices of a third-order tensor

(i.e., two-dimensional sections obtained by fixing one index) are denoted by Xi,:,: ∈ Rn2×n3 ,

X:,j,: ∈ Rn1×n3 , and X:,:,k ∈ Rn1×n2 , respectively.

Moreover, ‖·‖p : Rn → R≥0 denotes the p-norm given by ‖x‖p = (
∑n

i=1 |xi|p)
1
p . In

particular, ‖·‖2 denotes the Euclidean norm. The Frobenius norm ‖·‖F : Rn1×n2 → R≥0

is given by ‖X‖F =
√∑n1

i=1

∑n2

j=1X
2
i,j.

Let X ,Y , and Z denote generic sets and consider the functions f : X → Y and

g : Y → Z. Then the function f ◦ g : X → Z denotes the composition of f and g

(i.e., f ◦ g (x) = f(g(x)),∀x ∈ X ). In addition, f ⊗ g denotes the mapping given by

f ⊗ g (x, y) = (f(x), g(y)) for all x ∈ X and y ∈ Y .
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Figure 2.1: Excerpt of the graph neighborhood of Leonhard Euler in Wikidata [51].

2.2 Knowledge Graphs

The idea to store and convey knowledge in a graphical format holds a long tradition

in artificial intelligence research. Richens [41] proposed a machine-readable semantic

network in the 1950s where a graph serves as an auxiliary, intermediate concept language

for machine translation. The idea was first to construct a graph representation of the

sentence in the source language, where nodes correspond to the entities in the sentence

and the edges to their relations. Then, based on this graph, the sentence in the target

language can be built. The term knowledge graph itself was later introduced in the 1970s

to describe communication flow in systems analysis [44, 28]. However, only after the

presentation of the Google Knowledge Graph in 2012 [45], when Gooogle announced an

initiative to store and semantically annotate a significant amount of human knowledge

in a graphical database, the term KG has gained tremendous attention. The goal of the

Google Knowledge Graph was to build a structured model of the world that can enrich

the results of Google’s search engine and dialogue systems in smart assistants such as

8
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Google Home [17].

After Google’s announcement, numerous companies and researchers referred to the

Google Knowledge Graph despite the absence of official documentation. The modern

usage of the phrase KG is often coupled with the vision of the Semantic Web [5] and Linked

Open Data [4], which inspired the compilation of large scale, cross-domain knowledge

bases that were rebranded as KGs. However, up to this day, there is still no precise,

widely accepted definition of the term. While many authors stress the necessity of a formal

ontology and well-defined semantics, other authors refer to any graph-based knowledge

representation as a KG (see [40] for a discussion of the term). We adopt a pragmatic and

inclusive definition popular in the machine learning community (see [30, 9]). In particular,

for our purpose, a KG stores factual information as a list of triples. This leads to the

following definition that we use throughout this thesis.

Definition 1 (Knowledge Graph).

Let E and R denote the set of entities and the set of binary relations defined on E,

respectively. Thereby, an entity in E may correspond to an instances or a class (i.e., a

group of instances). A KG is given by KG ⊂ E ×R×E, hence, a collection of facts stored

as triples of the form (s, p, o) – where s denotes the subject entity, p the predicate relation,

and o the object entity.

As specified in the definition above, a list of triples has a natural multi-relational,

directed graph representation: The entities correspond to nodes and directed edges rep-

resent the relations. The direction of an edge indicates the position of the entities in a

triple. Concretely, the subject entity becomes the source node and the object entity the

target node. The edge type is given by the predicate relation between the source and the

target node. This data model is sometimes also referred to as a heterogeneous information

network. A small KG is shown in Figure 2.1. For example, consider the entities Leonhard

Euler, Basel ∈ E and the relation place of birth ∈ R. The triple (Leonhard Euler, place

of birth, Basel) corresponds to the fact that Leonhard Euler was born in Basel. Many

real-world KGs come with a set of edge constraints specified in an ontology. For instance,

a constraint in an ontology could state that a link of type place of birth must connect a

being with a location.

To indicate whether triples are true or false, we consider the characteristic function

φ : E ×R×E → {0, 1}, where the function value 1 indicates that the triple is true; 0 that
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the triple is false. For any relation p ∈ R we denote with p−1 the corresponding inverse

relation (i.e., φ(s, p, o) = 1⇔ φ(o, p−1, s) = 1). For example, the triple (Mathematics, has

part, Graph Theory) is equivalent to (Graph Theory, is part of, Mathematics) because the

relations has part and is part of are mutually inverse. Moreover, for all (s, p, o) ∈ KG,

we assume φ(s, p, o) = 1. That means a KG is interpreted as a collection of true facts.

However, there exist different interpretations of the absence of triples. For example,

the closed world assumption (CWA) implies that triples which are not contained in KG
are interpreted as false facts. Alternatively, as specified by the Resource Description

Framework (RDF) [38], under the open world assumption (OWA) it is assumed that

non-observed facts are interpreted as unknown. Another perspective that is frequently

adopted in machine learning approaches is the local closed-world assumption. Thereby,

a KG is assumed to be only locally complete in the sense that (s, p, o) /∈ KG is assumed

to be false if and only if there exists an entity õ ∈ E such that (s, p, õ) ∈ KG. Otherwise,

the triple is interpreted as unknown.

Existing large scale KGs are constructed and maintained in different ways. For exam-

ple, facts in DBpedia [2] are mostly automatically extracted from structured content from

Wikipedia; NELL [11] is constructed by agents that automatically scrape and process un-

structured data from more than 500 million websites. Other KGs such as Wikidata [51]

and Freebase [6] are mainly community-built and curated by the crowd. No matter what

method is used to build and maintain a KG, in practice, most KGs suffer from incom-

plete coverage in the sense that true triples in the scope of the KG (i.e., facts that can

be expressed by the given set of entities and relations) are not included. Moreover, KGs

often exhibit incomplete correctness in the sense that triples are contained in the KG that

correspond to false facts. Therefore, canonical machine learning methods are concerned

with automatic knowledge curation and refinement with the goal to infer missing facts

based on observed connectivity patterns (KG completion or link prediction) or predict

the truth value of triples (triple classification). While the formulations of these two tasks

can differ in the literature, we consider the following definitions throughout this thesis.

Definition 2 (Triple Classification and KG completion).

Triple classification is concerned with predicting the truth value φ(s, p, o) for (s, p, o) ∈
E × R × E. The task of KG completion is to rank entities e ∈ E or relations r ∈ R by

their likelihood to form true triple given either a subject-predicate-pair (s, p) ∈ E × R, a

predicate-object-pair (p, o) ∈ R× E, or a subject-object-pair (s, o) ∈ E × E.
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Hence, according to our definition, predicting the truth value of the triple (Leonhard

Euler, country of citizenship, Old Swiss Confederacy) ∈ E ×R×E is a triple classification

task. Given the input pair (Leonhard Euler, country of citizenship) ∈ E × R, ranking

the entities Old Swiss Confederacy, Russian Empire and Kingdom of Prussia (i.e., the

nationalities that Euler held over his lifetime) high among all possible entities is a KG

completion task. Next to curating and extending existing KGs, plenty of AI tasks such

as question answering [36] or visual relation detection [3] can be framed as KG comple-

tion or triple classification. In Chapter 5, we consider a real-world setting where the

recommendation task can be formulated as predicting links in a KG setting.
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2.3 Representation Learning on Graphs

In this section, we first discuss representation learning on homogeneous graphs that con-

tain only one type of nodes and edges. Thereby, we focus on the problem of finding

embeddings for individual nodes. As a preparation for the following chapters, we review

matrix factorization techniques, graph autoencoders, and graph neural networks. These

techniques play an essential role in all of our published work. Then we proceed with

a review of popular embedding methods for KGs. This second part focuses on tensor

factorization methods for knowledge graphs, which are the foundation of our work on

recommender systems in Chapter 5 and 6.

2.3.1 Homogeneous Graphs

Consider the task of learning embeddings for nodes in a graph G = (V , E), where V =

{v1, v2, . . . , v|V|} denotes the vertex set and E the edge set. A graph is said to be directed

if every edge comes with an orientation in the sense that it connects a source node to

a target. In that case, E consists of ordered pairs of vertices (v, w) ∈ V2, where v

denotes the source and w the target node. In the absence of such an orientation, the

edge set is given by a collection of two-sets {v, w} ⊂ V . In that case, the graph is called

undirected. To ease the notation and not having to distinguish between edges with and

without orientation, we assume that graphs in this section are directed. While there are

learning methods that are only applicable to undirected graphs, this assumption is not

restrictive because the methods that are considered in this section can operate on both

types of graphs. The presented formulas translate to an undirected setting by using the

fact that undirected graphs can be regarded as directed graphs with (v, w) ∈ E if and only

if (w, v) ∈ E . A ∈ {0, 1}|V|×|V| denotes the adjacency matrix where Ai,j = 1 if (vi, vj) ∈ E
and 0 otherwise. For the moment, we assume that the graph does not come with any

auxiliary features such as node attributes. The problem of embedding the nodes in G can

be defined as follows.

Definition 3 (Node Embeddings).

Given a graph G = (V , E), the problem of learning node embeddings is concerned with

finding a mapping that associates each node v ∈ V with its vector representation v ∈ Rd

where d� |V|.
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During training, the embedding mapping is tuned such that the embedding map con-

denses the relevant information about the graph structures surrounding the nodes to

conduct downstream tasks such as link prediction, node classification, or node clustering.

Following [20], we analyze the problem of computing node embeddings in a task-agnostic

encoder-decoder framework. From this perspective, a node embedding model is composed

of two mappings: The first mapping is called the encoder. It is an embedding mapping

according to Definition 3. The goal is to encode structural properties of nodes in the

embedding space. Subsequently, the embedding is passed to the decoder, which is trained

to unfold relevant information from the embedding space. This leads to the following

definition.

Definition 4 (Encoder, Decoder, and Node Embedding Model).

An encoder is an embedding mapping

Enc : V → Rd . (2.1)

A decoder takes as input the embedding of two nodes and maps it to a real-valued output

Dec : Rd × Rd → R . (2.2)

The mapping Dec ◦ (Enc⊗ Enc) is called a node embedding model.

Typically, the goal is to tune the trainable parameters of an embedding model such

that it approximates some node proximity measure. Concretely, that means

Dec (Enc(vi),Enc(vj)) ≈ Si,j , (2.3)

where S ∈ R|V|×|V| is called node proximity matrix. Equation 2.3 resembles a self-

supervised learning setting since the node proximity matrix constitutes a supervision

signal that is automatically generated from the graph data. A common node proximity

matrix is given by the adjacency matrix. In that case, neighboring nodes are enforced to

be close in the embedding space preserving so-called first-order proximity. Among others,

this proximity measure is a common choice for link prediction tasks since the decoder’s

output is a proxy for the edge reconstruction probability. Considering higher powers of

the adjacency matrix as similarity measure induces a higher-order proximity measure that

captures long-range dependencies [30].
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Many pioneering works in graph learning belong to the class of matrix decompositions.

These techniques can be roughly divided into Graph Laplacian eigenmaps and inner-

product methods. We focus on the latter because they play an essential role in Chapter

5. Inner-product methods employ a parameter free decoder consisting of a dot product.

That means the objective function is typically of the form

min
V ∈R|V |×d

‖S − V V ᵀ‖2F =
∑
i,j

‖Si,j − vᵀ
i vj‖22 , (2.4)

where V ∈ R|V |×d is an embedding matrix and the rows of V contain embeddings for the

corresponding nodes. That means the embeddings are obtained via a simple lookup

Enc(vi) = vi = V ᵀ
1i . (2.5)

The differences between existing inner product methods mainly lie in the formulations

of the loss functions and regularizations imposed on the optimization problem in Equa-

tion (2.4) to enforce additional constraints. These modifications include non-negativity

constraints [56], regularized Gaussian matrix factorization [1], or the deployment of max-

margin losses [49]. Inner-product methods are still among the most frequently used tech-

niques in representation learning in graphs. However, they do suffer from a set of short-

coming: First, parallelization of inner product methods is non-trivial since the embeddings

of the nodes require frequent synchronization. Consequently, without taking additional

measures (e.g., graph partitioning), inner-product methods often face challenges scaling

to massive graphs with billions of nodes and edges. Moreover, it is not straightforward

to incorporate and encode context information in the embedding space. Another short-

coming is that the shallow encoder does not employ a weight sharing mechanism which

is one of the most effective regularization techniques in machine learning (see [20] for a

discussion).

In contrast to shallow embeddings that employ a simple embedding lookup (Equation

2.5), deep learning techniques allow to build expressive encoders that can leverage node

features. Neural networks have shown impressive performance in various disciplines, such

as computer vision and NLP. Substantial efforts have been devoted to transfer deep learn-

ing techniques to graphs efficiently. One major difficulty is that, in contrast to image,

video, or text data, graph data is not sampled on a regular grid. For example, the variable
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number of nodes in a graph (or in a given neighborhood of a vertex) and the absence of a

straightforward up- or downsampling operation imposes a challenge for feedforward neural

network architectures that consider vectors with fixed dimensionality as input. Moreover,

the lag of a natural order of the vertices prohibits the straightforward use of recurrent

neural networks that process the input signal in a sequential manner. Similarly, convolu-

tional neural networks cannot be applied directly to the graph domain because sliding a

fixed filter mask over the input data requires a directional structure that allows to define

a shift operator. Nevertheless, there exists neural network models for graph learning that

aim to directly apply existing network architectures to graphs. An example of such kind

of adoptions is the class of graph autoencoders (GAEs). Autoencoders are a popular tool

for unsupervised learning tasks consisting of two neural network components: An encoder

and a decoder network. The encoder network is usually a dense neural network that

computes a non-linear mapping of the input into a low dimensional space. The decoder

mirrors the encoder’s action in the sense that it takes the encoding of the input and aims

to recover the original input. GAEs are a special case of autoencoders that take as input

a row of the similarity matrix Si ∈ R|V| and produce a d-dimensional encoding vi of the

corresponding node. The decoder network aims to recover Si from vi. In other words,

an encoder network fenc : R|V| → Rd compresses the structural information contained in

Si into a low-dimensional vector, while the decoder aims to reconstructs Si from that

embedding via the neural network fdec : Rd → R|V|. The GAE is given by

f = fenc ◦ fdec . (2.6)

The parameters of fenc and fdec are trained jointly to reconstruct the rows of some sim-

ilarity matrix. Wang et al. [52] propose the structure deep network embedding (SDNE),

which employs the adjacency matrix A as similarity measure and an additional regular-

ization term that enforces neighboring nodes to have similar embeddings. Cao et al. [10]

employ positive pointwise mutual information (PPMI) as similarity matrix. The entries of

this matrix corresponds to a probabilistic co-occurrence measure based on random walks

that captures structural information. To incorporate node attributes, Tran [47] considers

a vector of node features along with the similarity matrix as input to the GAE. All of

these methods have in common that the input dimension is at least the number of nodes.

That can be extremely costly in terms of time and space complexity such that GAEs
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(a) (b)

Figure 2.2: In analogy to a CNN on a regular grid (a), GNNs (b) aggregate features from
its neighboring nodes. The inner circle indicates the receptive field with one layer that
corresponds to the one-hop neighborhood. The outer circle indicates the receptive field
after adding an additional layer corresponding to the two-hop neighborhood.

may not scale to large graphs. Moreover, since the autoencoder requires an input vector

with constant dimensionality where every entry corresponds to a fixed vertex, GAEs are

bound to the graphs they are trained on (up to isomorphisms) and cannot be transferred

to other unseen graphs or nodes.

Convolutions on regular grids are the basic building blocks of convolutional neural

networks (CNNs) [35]. CNNs extract localized spatial features by sliding trainable, but

invariant filter masks over regular grids. This imposes not only location invariance but

also constitutes a parameter sharing mechanism that acts as a powerful regularizer. The

extracted features are subsequently combined by feeding them through multiple layers to

build new expressive representations. Motivated by the achievements of CNNs in com-

puter vision, different graph neural networks (GNNs) were developed in parallel that aim

to transfer convolutional operators to the graph domain. These attempts resulted in two

different frameworks: One branch of methods perform graph Fourier transforms to employ

trainable filters in the spectral domain (such as in [8] or [14]). The other conceptually

simpler line of research is based on spatial convolutions and employs a message-passing

heuristic between neighboring nodes (e.g., [42]). One of the most influential methods is
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the graph convolutional network (GCN) introduced in [31]. GCNs are a unification of

both spectral and spatial methods in the sense that they can be derived as a special, sim-

plified case of both the message passing GNN proposed in [42] and the spectral method

ChebNet from [14]. Subsequently, a variety of extensions to GCNs were proposed. For

example, [12] propose FastGCN that allows for efficient training on massive graphs, [50]

add attention mechanisms to GCNs to increase the expressivity leading to graph attention

networks (GAT), and GraphSage [19] can operate in the inductive setting (i.e., nodes can

be embedded during deployment which are not seen during training).

In what follows, we review GNNs that fit into the framework of spatial message passing

[18]. Thereby, an embedding v ∈ Rd for a node v ∈ V is formed by first aggregating node

features from the neighborhood of v denoted by Nv := {w ∈ V|(v, w) ∈ E}. The current

node of interest v is usually called the center node. In contrast to shallow encoders

that consist of a simple lookup function (see Equation 2.5), GNNs can naturally leverage

auxiliary node features. Concretely, it is assumed that every node v comes with a set

of initial features denoted by xv ∈ RF . These initial features may contain additional

context information that describes the entity corresponding to the node (e.g., demographic

information in a social network or technical attributes of an item in a recommender

system), embeddings obtained from a different data modality (e.g., word embeddings

from a textual description of the node), or generic graph features such as the node degree,

centrality measures, and clustering coefficients. In a first step, these features from the

nodes adjacent to the center node v ∈ V are aggregated

hNv = faggregate ({xw|w ∈ Nv}) , (2.7)

where faggregate is a trainable function shared by all nodes that aggregates the features

from its neighbors. In general, faggregate operates on an unordered set of vectors with

variable size. Hence, faggregate typically involves a commutative pooling operation with

constant output dimension such as summation, averaging or max-pooling. Subsequently,

the aggregated feature representation hNv is combined with the input features of the

center node to obtain an embedding hv ∈ Rd. Concretely, this leads to

hv = fcombine (xv,hNv) . (2.8)

The successive application of faggregate and fcombine in Equations (2.7) and (2.8) defines one
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layer of the encoder network. Note that in Equations (2.7), each center node aggregates

information from its immediate neighbors. Information beyond this one-hop neighborhood

is discarded in the aggregation step. Thus, the so-called receptive field is equal to the one-

hop neighborhood of a each node. Multiple layers of GNNs can be stacked on top of each

other to increase both the expressivity and the receptive field. In particular, in a GNN with

L layers each center node receives information from the nodes L hops away, broadening

the receptive field to the L-hop neighborhood (see Figure 2.2). The trainable parameters

in Equations (2.7) and (2.8) are typically tuned via backpropagation to minimize a task-

specific loss. However, due to the modularity of encoder-decoder architectures, GNNs can

also be combined with a generic decoder and trained in an unsupervised setting.

Various GNNs can be distinguished according to the formulation of faggregate and

fcombine. For example, the GCN is given by

hNv =
∑
w∈Nv

1√
dvdw

Wxw (2.9)

and

hv = σ

(
1

dv
Wxv + hNv

)
, (2.10)

where W ∈ Rd×F is a trainable weight matrix, dw := |Nw| denotes the degree of w, and σ

denotes a non-linear activation function. More compactly, a GCN with one layer is given

by

EncGCN(v) =
∑

w∈Nv∪{v}

1√
dvdw

Wxw . (2.11)

Note that when computing the embedding for a node according to Equation 2.11, the

same weight matrix W is applied to all adjacent nodes. However, it may be the case

that certain neighbors carry more useful information than others. Based on this insight,

Veličković et al. [50] proposed the graph attention network (GAT), which employs a

multi-head attention mechanism. Concretely, an adaptive attention weight is assigned

to a neighboring node depending on the current embedding of the center node and the

neighboring node. For two adjacent nodes v, w ∈ V the corresponding attention weight

(up to normalization) for the k-th head is given by

α(k)
v,w = ak

(
W k

a xv,W
k
a xw

)
, (2.12)
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where ak : RF × RF → R is the attention mechanism given by a single-layer feedforward

neural network. Combining the aggregation and combination step, the encoder of a one-

layered GAT is given by

EncGAT(v) =

[
σ

(∑
w∈Nv

α(k)
v,wW

(k)xw

)]K
k=1

, (2.13)

where [·]Kk=1 denotes the concatenation of K vectors. The GCN’s aggregation and combi-

nation step can be thought of as a low-pass filter on graph signals. Thus, using multiple

layers of a GCN may smooth over informative signals on a densely connected graph. The

GAT’s attention mechanism can be seen as a remedy to this problem allowing to use

multiple layers and increasing the receptive field and extract more expressive features.

We make use of GATs in Chapter 4 where we consider the task of visual question

answering. In that context, the purpose of using a GAT is to compute context-aware

node embeddings in a scene graph. Thereby, the nodes correspond to detected object

and the initial node features are given by word embeddings of the predicted classes. We

employ GATs to produce embeddings for the depicted objects that pool information from

neighboring objects to facilitate path-based reasoning on the scene graph.

2.3.2 Knowledge Graph Embeddings

Machine learning methods for KG reasoning are studied under the umbrella of statistical

relational learning (SRL) [38]. Similar to the graph learning methods discussed in the pre-

vious section, KG embeddings have become the dominant approach for AI applications on

KGs. The underlying idea is that features that explain the connectivity pattern between

entities can be encoded in low-dimensional vector spaces. In the embedding spaces the

interactions between the embeddings of entities and relations can be efficiently modelled

to produce scores that predict the validity of a triple. Moreover, since the learned embed-

dings also contain rich semantic information similar to word embeddings, the embeddings

can also be used for clustering or KG visualization tasks. In analogy to homogeneous

graphs in the previous section, we can define KG embeddings as follows.

Definition 5 (KG Embeddings).

Given a knowledge graph KG ⊂ E×R×E, the problem of learning embeddings is concerned
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with finding mappings that associate each entity e ∈ E with a vector in RdE and each

relation r ∈ R with a vector in RdR.

In order for this definition to subsume all KG embeddings models that we consider

in this thesis, we assume that Rm×n ∼= Rmn, where a matrix in Rm×n is identified with a

vector in Rmn via the natural linear isomorphism (i.e., via reshaping). Most KG embed-

ding methods can be analyzed within the encoder-decoder-framework. This leads to the

following definition.

Definition 6 (Encoder, Decoder, and Node Embedding Model).

KG encoders are mappings from the symbolic objects in E and R to low-dimensional vector

spaces

EncE : E → RdE and EncR : R → RdR . (2.14)

A KG decoder is given by

Dec : RdE × RdR × RdE → R . (2.15)

Composing the encoders and the decoders Dec ◦ (EncE ⊗ EncR ⊗ EncE) leads to a KG

embedding model. The encoders and the decoder can be trained jointly such that their

decomposition approximates a similarity measure SKG : E ×R× E → R leading to

Dec (EncE(s),EncR(p),EncE(o)) ≈ SKG(s, p, o) . (2.16)

Usually, the embeddings are initialized randomly and updated by solving the optimiza-

tion problem induced by the similarity measure. Since most KG embedding methods are

tuned for the KG completion task, the similarity measure scores the plausibility of triples

by approximating the characteristic function φ. Ideally, this scoring function assigns high

values to missing triples, which are actually true and low values to false triples. Hence, it

can be used to discover unknown but true facts or detect false positives.

While there are attempts that generalize GNNs to multi-relational data [43], most

KG embedding models to this day employ a simple embedding lookup as encoder. That

means

EncE(ei) = Eᵀ
1i . (2.17)
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and

EncE(rj) = Rᵀ
1i . (2.18)

where E and R are embeddings matrices for the entities and the relations, respectively. In

that case, the decoder distinguishes different KG embedding methods and determines how

the embeddings are combined to score an input triple. Most methods can be categorized

according to the decoder’s interaction mechanisms in multiplicative, additive, and neural

network models. Additive models such as TransE [7] project both entities and relations

into the same vector space and interpret relations as translations between in the embed-

ding space. An early neural network-based approach is the neural tensor network (NTN)

introduced in [46], which combines both tensor products and neural networks to model

the interaction between entities. However, simple neural network architectures such as

ER-MLP [16] that concatenate shallow embedding vectors of a triple and pass it through

a dense neural network are more parameter efficient but achieve similar performance.

More recently, ConvE [15], which learns 2D-convolutional networks over the embedding

spaces to obtain feature maps, achieved state-of-the-art-approach. After the convolution

operation, the latent features are fed through a linear layer followed by a bilinear product

with all the candidate object entities.

In this thesis, we focus on multiplicative scoring functions that are based on tensor

factorizations. A knowledge graph has a natural representation in terms of a binary,

three-way adjacency tensor X ∈ {0, 1}nE×nE×nR . Each entry of X indicates the abscence

or the presence of a triple: 1 corresponds to an observed triple and 0 to an unobserved one.

For most tensor factorizations, X serves directly as similarity measure (i.e., SKG(s, p, o) =

Xs,o,p). The rationale is to compute a low-rank decomposition of this tensor by associating

an embedding vector to each entity and a matrix to each relation and compute a bi-linear

form induced by the relation matrix with the two entities as input.

An early tensor factorization, the canonical polyadic decomposition (CANDECOMP),

was proposed in the 1920s [27]. CANDECOMP was later rediscovered by Harshman [22]

and popularized under the name PARAFAC. That is why CANDECOMP/PARAFAC is

often abbreviated with CP. When directly applied to KGs, CP computes one embedding

for each relation and two embedding vectors for each entity. Thereby, one embedding

represents the entity when it appears as subject in a triple and the other is the object

representation. The decoupling of subject and object embedding leads to poor perfor-

mances when CP is applied directly to KG reasoning tasks (see for example the results
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Figure 2.3: A visualization of the low-rank tensor decomposition performed by RESCAL
(depiction based on a figure in [33]).

in [48]). In particular, the absence of a weight sharing mechanism hinders the flow of

information between triples where the same entity appears as subject in different triples.

RESCAL was proposed in [37] and, in contrast to CP, it employs the same embeddings

for entities no matter at what position of a triple they appear. RESCAL is a special case

of the Tucker decomposition (see [32] for more details) which factorizes the adjacency

tensor into a core tensor multiplied twice by the same factor matrices along the first and

the third mode. Concretely, this leads to

Dec(Enc(s),Enc(p),Enc(o)) = sᵀR:,:,po. (2.19)

with R ∈ RdE×dE×dR . In particular, this means that given a query relation p ∈ R, the

scoring function is given by a bilinear form induced by R:,:,p. Hence, the connectivity

prediction between a pair of entities is channeled through the core tensor where each

frontal slice contains an embedding of a different relation leading to dR = d2E . This

leads to one of the disadvantage of RESCAL: The number of trainable parameters grows

quadratically in the latent dimension d ∈ N as the number of relations increases. As a

remedy to this problem the core tensor of DistMult [55] is constrained to be diagonal.

Concretely, the decoder of DistMult is given by

Dec(Enc(s),Enc(p),Enc(o)) =
d∑

i=1

sipioi = sᵀdiag(p)o , (2.20)

where s,p,o ∈ Rd and diag(p) is diagonal matrix with diagonal entries given by p. While
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this lowers the burden on the number of trainable parameters, the scoring function of

DistMult is symmetric and asymmetric relations cannot be modelled. The factorization

method ComplEx [48] offers a solution to this limitation by extending DistMult over

the field of complex numbers. More concretely, by imposing that subject and object

embeddings of the same entities are complex conjugates, ComplEx is able to break the

symmetry of DistMult and allows to take asymmetric relations into account. The decoder

is given by

Dec(Enc(s),Enc(p),Enc(o)) =
d∑

i=1

real (sip̄iōi) = real (sᵀdiag(p̄)ō) , (2.21)

where s,p,o ∈ Cd and ¯: C→ C denotes the complex conjugate.

In our published work, we employ tensor factorization approaches to perform the

recommendation task in a KG setting. In particular, in Chapter 5, we develop a context-

aware recommender engine based on RESCAL and test it with respect to its real-world

applicability in a specific industrial use case.
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Figure 2.4: When predicting the field of work of Leonhard Euler (i.e., the dashed arrow),
the two paths highlighted with red and blue arrows can serve as explainable features.

2.4 Path-based Reasoning for Knowledge Graphs

Despite achieving good results in KG reasoning tasks, a fundamental problem with many

embedding based methods that fit into the encoder-decoder framework is their nontrans-

parent nature in the sense, that it remains hidden to the user what contributed to the

model’s prediction. Path-based reasoning methods (also known as multi-hop reasoning

methods) follow a different philosophy than embedding-based methods. The underlying

idea is to infer missing knowledge based on sequentially extended inference paths on the

KG. Thereby, these methods have an inherent transparency mechanism by providing ex-

plicit reasoning chains that can be analyzed by the user. Moreover, path-based reasoning

methods can naturally capture the compositionality expressed by long reasoning chains

allowing them to perform complex reasoning tasks.

Path-based reasoning methods naturally connect machine learning methods with the

rule mining and logical reasoning literature. Classical methods rely on applying explicit

logical rules. That means, during test time, inference is conducted by plugging instance
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data into the learned formulas in order to infer missing knowledge (see [53, 39]). However,

massive scales and diverse topologies of real-world KGs often result in combinatorial

complexities that prevent using these symbolic approaches. Besides, symbolic methods

tend to be sensitive to the presence of noisy, corrupted facts. In this thesis, we focus on

a class of methods based on randomly sampled reasoning paths. More concretely, these

methods rely on stochastic paths that correspond to trajectories of random walks.

The pioneering method Path Ranking Algorithm (PRA) proposed in [34] performs

triple classification based on random walks that connect a subject entity and a candidate

object entity. More concretely, for a given query triple (s, p, o) ∈ E ×R×E , PRA samples

connecting paths on the KG from s to o. Each path is regarded as a feature and a weighted

combination of all paths is processed by a relation specific elastic net to predict φ(s, p, o).

While PRA employs uniformly at random extracted paths on a KG between two en-

tities, the pathfinding problem can also be posed in a reinforcement learning framework.

More specifically, pathfinding can be framed as a sequential decision problem where subse-

quent transitions are added to the current inference path. This procedure can be modeled

in terms of a Markov decision process (MDP).

Definition 7 (Markov decision process).

A discounted MDP consists of a quintuple < S,A,P ,R, γ >, where S denotes the state

space, the set A contains all available actions, P (St+1|St = s, At = a) is called the

transition probability defined over the state space conditioned on an action a and a state

s, and R(s, a) ∈ R defines the expected reward of the agent for every state-action pair.

γ ∈ (0, 1] is called the discount factor and balances rewards across time.

Goal-directed path extraction on KGs can be naturally conducted via policy-guided

random walks modeled in terms of MDPs. Thereby, the environment evolves deter-

ministically in the sense that the transition probabilities (given an action and a state)

P (St+1|St = s, At = a) are degenerate point measures. In addition to information about

the query, the state contains a representation of the agent’s location (i.e., the entity where

the agent is currently located). Given the current location, the available actions corre-

spond to the set of outgoing edges along with their target entities. Roughly speaking,

reinforcement learning methods can be categorized into value function and direct policy

search techniques. Value function-based methods aim to estimate the long-term utility

of decisions and derive a behavioural policy by selecting actions that lead to the highest
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utility estimate. Policy search methods directly fit a policy function that maps each state

to an action distribution. For navigating over a KG, policy search methods have the ad-

vantage of exhibiting superior convergence behavior given the high-dimensional state and

action spaces. Furthermore, policy-based methods naturally induce stochastic policies

that balance between exploration and exploitation [54]. Thereby, the agent is represented

by its policy π(s, a) = P(a|St = s) for a ∈ A, and s ∈ S, where P(·|St = s) is a probabil-

ity distribution over A from which the next action is sampled. The goal of the training

process is to find a policy that maximizes the expected discounted, cumulative rewards

of the agent given by

EP

[
∞∑
t=0

γtR(St, At)π(St, At)

]
=
∞∑
t=0

∑
St∈S

∑
At∈A

γtR(St, At)π(St, At)P (St+1|St, At) ,

(2.22)

where EP denotes the expectation with respect to the transition probabilities P .

Xiong et al. [54] extend the idea from PRA and frame the task of path extraction

as a reinforcement learning problem. They propose Deeppath, which substitutes the

nearest-neighbor random walk from PRA with a policy-guided random walk. Deeppath

operates in the triple classification setting (see Definition 1). Concretely, a subject and an

object entity are shown to the agent that has the goal to find multiple connecting paths

between these two entities. Once the paths are extracted, they are fed into a relation

specific classifier that predicts the truth value of the triple. However, this setup leads to

scalability issues on large KGs, since a different classifier needs to be trained for every

relation.

The path-based method MINERVA [13] overcomes this issue by combining the path-

finding and prediction task in one reasoning module. In contrast to Deeppath, MINERVA

operates in the link prediction setting (see Definition 1). That means a subject-predicate

pair (s, p) ∈ E × R are presented to the agent. The agent’s goal in MINERVA can be

roughly described as follows: Start at the subject entity and walk to the correct answer.

More formally, starting from the subject entity s, the objective of the agent is to extract a

relational path in KG to an unknown object entity o ∈ E that forms a correct triple (i.e.,

φ(s, p, o) = 1). After the agent has terminated its walk, a positive reward is assigned if the

agent reaches the desired target entity. By maximizing these rewards, the agent’s policy

implicitly incorporates sequences of relations that allows to find correct object entities.
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Hence, the policy embodies an inductive bias to encode structural rules.

Outline This section on path-based reasoning methods completes the background ma-

terial of this thesis. The remainder of this work contains our publications. In the following

two chapters, we consider two different settings that employ path-based reasoning using

reinforcement learning: First, in Chapter 3, we propose the idea of debate dynamics where

two agents take opposing positions and extract paths on a KG that serve as adversarial,

sparse features for and against the validity of a query triple. Second, in Chapter 4, we de-

velop a new scene graph reasoning module, where a reinforcement learning agent is trained

to navigate on a scene graph to provide a conclusive reasoning path that allows answering

questions about an image. Chapter 5 and 6 are centered around an industrial application

concerning the configuration of control systems. In Chapter 5 we introduce RESCOM,

a recommender systems that is based on the tensor factorization method RESCAL (see

Chapter 2.2). The architecture and underlying data model of RESCOM are designed so

that RESCOM can operate in a partially inductive setting and deal with the cold start

problem. In the follow-up work presented in Chapter 6, we introduce NECTR, which

couples an autoencoder-like neural network with a tensor factorization to produce rich

embeddings that also capture non-linear interactions between configured components.

Chapter 7 concludes and sketches directions for future works.
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Chapter 3

Reasoning on Knowledge Graphs

with Debate Dynamics

This chapter contains the publication

Marcel Hildebrandt, Jorge Andres Quintero Serna, Yunpu Ma, Martin

Ringsquandl, Mitchell Joblin, and Volker Tresp. Reasoning on Knowledge

Graphs with Debate Dynamics. In Proceedings of the AAAI Conference on

Artificial Intelligence, 2020.
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Chapter 4

Scene Graph Reasoning for Visual

Question Answering

This chapter contains the publication

Marcel Hildebrandt, Hang Li, Rajat Koner, Volker Tresp, and Stephan Günne-

mann. Scene Graph Reasoning for Visual Question Answering. In Interna-

tional Conference on Machine Learning: Workshop GRL+, 2020.
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Chapter 5

Configuration of Industrial

Automation Solutions Using

Multi-relational Recommender

Systems

This chapter contains the publication

Marcel Hildebrandt, Swathi Shyam Sunder, Serghei Mogoreanu, Ingo Thon,

Volker Tresp, and Thomas Runkler. Configuration of industrial automation

solutions using multi-relational recommender systems. In Proceedings of the

Joint European Conference on Machine Learning and Knowledge Discovery in

Databases, 2018.
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Chapter 6

A Recommender System for

Complex Real-World Applications

with Nonlinear Dependencies and

Knowledge Graph Context

This chapter contains the publication

Marcel Hildebrandt, Swathi Shyam Sunder, Serghei Mogoreanu, Mitchell

Joblin, Akhil Mehta, Ingo Thon, and Volker Tresp (2019, June). A recom-

mender system for complex real-world applications with nonlinear dependen-

cies and knowledge graph context. In Proceedings of the European Semantic

Web Conference, 2019.
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Chapter 7

Conclusion

In this thesis, we examined machine learning on graph-structured data in three different

settings. In what follows, we summarize our main contributions and point out directions

for future works.

Explainable Knowledge Graph Reasoning We developed the idea for debate dy-

namics for explainable KG reasoning. The resulting method, R2D2, models the triple

classification task as a debate between two opposing reinforcement learning agents. Both

agents extract arguments in favor of a query fact being true or false, respectively. The

agents’ objective is to shift the judge’s decision, a binary classifier, towards their position.

Since the judge’s decision is solely based on the extracted arguments, the user can examine

the arguments and trace back the classification decision. We evaluated the performance

of R2D2 in the triple classification setting on the benchmark datasets FB15k-237 and

WN18RR. Our findings show that R2D2’s performance is at least as good as several pop-

ular baseline methods with respect to the triple classification accuracy. To analyze the

interpretability aspect of R2D2 in a systematic setting, we conduct a survey where 44

respondents took the role of the judge classifying the truthfulness of facts based on auto-

matically extracted arguments. Thereby, we find that nine out of ten facts are classified

correctly by the majority respondents and that for each fact the respondents’ predictions

agree with the decision of R2D2’s judge. These findings indicate that the arguments of

the agents are informative and the judge is aligned with human intuition. Hence, R2D2

allows building tools where users interact with the system via deriving their own conclu-

sions based on the presented arguments or input new arguments. Such a tool can lead
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to higher acceptance of KG reasoning methods, in particular in sensitive domains where

transparency and robustness are crucial.

The idea to employ debate dynamics for deriving predictions is not restricted to graph-

structured data. In future works, we want to explore whether using debating agents as

sparse, adversarial feature generators also leads to explainable and robust predictions in

other areas such as computer vision or natural language processing.

Scene Graph Reasoning for Visual Question Answering Based on the insight

that current methods for visual question answering (VQA) lack compositional reasoning

abilities, we develop a new scene graph reasoning module. Our approach consists of the

following two-step procedure: First, we generate a scene graph from an image. Second,

conditioned on a questions, a reinforcement learning agent is trained to navigate on the

scene graph until a reasoning path is obtained that allows to answer the question. The

reasoning module contains state-of-the-art components from graph representation learning

and natural language processing that allow the agent to form instrumental embeddings of

the scene graph and the question, respectively. In the first preliminary work that is part

of this thesis, we conduct experiments with manually curated scene graphs. Thereby, our

method reaches human-like performance on a challenging VQA dataset.

In future works, we will integrate our own scene graph reasoning module into our

method such that we can cover the whole VQA task in the sense that we map an image-

question pair to a candidate answer.

Multirelational Recommender System for Industrial Automation Solutions

We developed the recommendation engine RESCOM. The underlying idea is that we

merge databases with historical configurations of industrial control systems and technical

attributes of the components in a KG. Subsequently, we formulate the recommendation

task in a link prediction setting. RESCOM is based on the existing tensor factorization

method RESCAL. In particular, we derive a novel projection map that allows to com-

pute recommendations in a partially inductive setting. This is crucial for the method’s

real-world applicability since it allows RESCOM to operate in real-time without having

to retrain the embedding model. Incorporating the technical attributes of items allows

dealing with data sparsity issues, which are particular pronounced in our user case (e.g.,

the sparsity measured in terms of the relative frequency of zero entries in the adjacency
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tensor is more than an order of magnitude higher than in the popular benchmark datasets

FB15k and WN18). Control systems are complex systems where multiple, highly differen-

tiated components are available. RESCOM allows aligning components that have similar

types and technical information in the embedding space. As a consequence, the recom-

mendation task is lifted to a technical level lowering the dependency on exact historical

matches for computing recommendations. This mechanism also allows tackling the cold

start problem, which arises when no or very few historical configurations for new items

are available. Next to experiments in the canonical recommendation setting, we perform

dedicated experiments to examine the cold start performance and show that RESCOM

can compute reasonable recommendations in the absence of any historical information

for a set of novel items. For example, we find that RESCOM outperforms other popu-

lar baseline methods with respect to the mean rank, the mean reciprocal rank, and the

Hits@10% by at least 29%.

In a follow-up work, we introduce NECTR, which couples a tensor factorization with

a graph autoencoder. The latter component is a remedy to one of the shortcomings of

RESCOM, which fits a bilinear functional to model interactions between entities during

training. However, during inference, when the embeddings for existing entities are fixed,

computing recommendations boils down to applying a linear mapping. Thus, RESCOM

cannot model any non-linear effects such as interactions among items and non-linear

scaling effects. While the tensor decomposition component of NECTR incorporates the

technical attributes, the autoencoder component produces a representation of the config-

ured components that takes non-linear effects into account. Both components are coupled

via a simple weight-sharing mechanism that allows end-to-end training. We show experi-

mentally that NECTR leads to a significant performance increase compared to RESCOM,

underlining the importance of higher-order effects when recommending components for

industrial engineering solutions.

One of the shortcomings of RESCOM and NECTR is that both approaches are agnos-

tics towards the control systems’ topological structure. Concretely, while the components’

technical attributes are modeled via triples in a KG, links between configured components

corresponding to physical connections are not considered. We plan to incorporate this

information via a GNN-based encoder. This approach allows not only to recommend

which items should be configured in a control system but also how and where to connect

the new component.
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