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Summary

Undoubtedly, the current century is witness to an unprecedented speed in advancements
within biological sciences, which are owed to the immense technological progress in the
analytical tools and methods utilized, and to the dawn of the fast developing fields of omics
and bioinformatics. Omics allows the collection of holistic data on several different
biomolecule classes, and bioinformatics makes it possible to explore and understand the
vast amounts of data produced. The most mature omics fields, in terms of both hardware
and software, are genomics and transcriptomics, based on next generation sequencing
(NGS) technologies. With the introduction of electrospray ionization and high-resolution
mass spectrometry, liquid chromatography coupled to tandem mass spectrometry (LC-

MS/MS), has made significant leaps for the fields of metabolomics and proteomics.

One promising method for LC-MS/MS-based proteomics is data independent
acquisition (DIA), which requires advanced data analysis algorithms. MaxDIA, within the
MaxQuant software for the processing of LC-MS/MS-based proteomics data, is introduced
here. It comes with an accurate false discovery rate estimation of the peptide and protein
identification based on measured and predicted spectrum libraries. When compared to the
state of the art, MaxDIA also delivers comprehensive proteome coverages and lower

coefficients of variation in protein quantification.

Bioinformatics tools for the analysis of metabolomics data generally follow the
same principles and steps as proteomics software, but due the huge numbers of
metabolites and immense complexity of metabolomics data, much work is still needed to
bring metabolomics software to the level of maturity of their proteomics equivalents.
MaxQuant is a time tested and widely accepted software for the processing of proteomics
data, which was first recognized for its cutting-edge nonlinear recalibration for reaching
superior precursor mass accuracy, which helps significantly improve peptide
identifications. Here, following this direction, a new algorithm within MaxQuant for
improving mass accuracy in metabolomics data is introduced, which utilizes a novel

metabolite library-based mass recalibration algorithm.

The many types of omics data available today present a great opportunity for
developing approaches to combine such data in order to infer new knowledge, often
termed multi-omics studies. A robust approach to this end is to utilize prior knowledge on
the relationships of the various major biomolecules in question, which are often depicted
in network structures where the nodes of the network depict biomolecules and the edges

correspond to an interaction. To implement this approach, Metis is introduced, a new



plugin for the Perseus software aimed at analyzing quantitative multi-omics data based on

metabolic pathways.
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1. Introduction

Biological sciences in the current century are becoming an ever more data-driven
endeavor (MacKlin, 2019). This is both due to the shear increase in the availability of
vast resources of high-throughput omics data, and also improvements in methods
and algorithms used for the generation, processing and analysis of such data
(Chavan, Shaughnessy and Edmondson, 2011; Cox and Mann, 2011; Sinitcyn,
Rudolph and Cox, 2018). One can say that biological sciences have now truly entered
the fourth paradigm of science in efforts for the exploration and understanding of
biological systems (Figure 1.1). This has brought with it a new push to advance a
dynamic field of research within biology, namely bioinformatics, which has emerged
to be of central importance in many aspects of novel experimental design, and
knowledge discovery (Gauthier et al., 2019). Bioinformatics efforts aim to bridge the
gap between biology and informatics and work to enable biological researchers to
effectively analyze the data gathered to reach a deeper insight into various aspects of

living systems (Luscombe, Greenbaum and Gerstein, 2001).
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Figure 1.1: Paradigms in biology (adapted from (Agrawal and Choudhary, 2016)). Each

arrow depicts a paradigm in biology, with an example for a development in that direction.

Current bioinformatics solutions have been essential in propelling our
understanding of many aspects of biology, but there still exists a great deal that
remains to be developed and thus, it is ever more important to focus efforts on novel
tools and algorithms that can handle such large quantities of highly complex data
(Fuller et al., 2013; Gauthier et al., 2019). In this introductory chapter, omics are
discussed in general, along with computational proteomics, computational

metabolomics, and methods for multi-omics data analysis.
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1.1 Omics

The capacity to holistically collect data, and study any living entity, ranging from
single cells to large multicellular organisms, has given way to new fields of study,
commonly labelled as omics (Karahalil, 2016). Naturally, the generation of large
omics datasets has brought with it, both a novel set of opportunities, and challenges
which lay primarily in the realm of bioinformatics (Gauthier et al., 2019). Omics data
can be generated on different levels in respect to the major biomolecule class in
question, whether it be DNA (genomics), RNA (transcriptomics), protein

(proteomics) or metabolite (metabolomics) (Figure 1.2).
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Figure 1.2: Different levels of omics based on the major biomolecules studied.

Genomics is defined as the study of complete sets of genetic material found
within the cells of an organism, which not only includes both coding and noncoding
DNA, but also the genetic material found in the mitochondria of most eukaryotic cells
and chloroplasts in plant and algal cells. Genomics focuses on the study of whole
genomes with respect to their structure and function, and the impact of variations
within the genome on various aspects of life. Genomics data consist of the sequence
of the DNA, which carries information ranging from single nucleotide variations to
larger structural changes such as copy number variations, large deletions and

insertions, and their subsequent annotation (Del Giacco and Cattaneo, 2012).

Transcriptomics is the term given to the qualitative and quantitative study of
complete sets of transcripts, including coding and non-coding, within an organism
(Chang, 2016). Due to the closer relationship between transcripts and proteins, and
thus to the phenotype in comparison to the genome, transcriptomics is often the

preferred level of omics to study cellular states such as differentiation and biomarker
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discovery efforts. Phenomena such as alternative splicing and RNA editing are some
of the difficulties that are faced upon studying whole transcriptomes. Current
developments in the field of transcriptomics focus on studying the transcriptome of
single cells. Such efforts aim to identify cellular subpopulations, determine whether
detected changes are due to real cellular phenotypes or proliferation, investigate
processes such as cellular differentiation and study rare populations of circulating
tumor cells or cancer stem cells (Kanter and Kalisky, 2015; Trapnell, 2015; Chen,

Ning and Shi, 2019).

Proteomics allows the study of entire proteomes and relative quantitative
comparisons over various conditions with comprehensive proteome coverage
(Mishra, 2010). It promises to provide a more complete description of the cellular
state, since it informs the researcher about the end-point of the expression cascade,
and the amounts and properties of proteins (Cox and Mann, 2011; Altelaar, Munoz
and Heck, 2013; Aebersold and Mann, 2016). Two major types of proteomics
strategies are bottom-up (Wolters, Washburn and Yates, 2001; Sinitcyn, Rudolph
and Cox, 2018) and top-down proteomics (Marshall, 2006; Toby, Fornelli and
Kelleher, 2016; Fornelli et al., 2017). The bottom-up proteomics approach based on
liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS)
techniques, often named shotgun proteomics, aims to measure digested proteins
(peptides) since measuring intact proteins has proven to be cumbersome (Zhang et
al., 2013). Some of the difficulties in measuring intact proteins via mass
spectrometry, so-called top-down proteomics, include highly complex spectra which
are hard for deconvolution algorithms to handle due to the majority of ions within
the sample being multiply charged, and the sample preparation hurdles that arise
from having to deal with intact proteins, especially insoluble ones (Brown et al.,
2020). For bottom-up proteomics, the proteins are first digested using a protease.
Trypsin is often the protease of choice because of its high fragmentation efficiency,
suitable peptide length for HPLC separation and the fact that it cleaves peptides on
the C-terminal side of lysine and arginine residues (both of which carry a positive
charge), which is useful for the ionization of the peptides (Aebersold and Mann,

2003).

Metabolomics aims to study the entire set of small molecules, typically <1500
Daltons (Da) in mass, known as metabolites within an organism, tissue or cell
(Weckwerth, 2007). Since metabolites are the omics level closest to the phenotype of

an organism, the study of the metabolome is considered the closest one can get to the
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function of the underlying biological mechanisms governed by genes, transcripts and
proteins. Similar to proteomics, LC-MS/MS is the analytical platform of choice for
metabolomics studies. LC-MS/MS-based technologies due to the increased
sensitivity and potential for detecting novel unknown metabolites can cover a larger
portion of the metabolome (Stringer et al., 2016). The ultimate goal in metabolomics
is to detect and quantify metabolites similar to expression analysis in transcriptomics
or proteomics. By far the largest metabolomics data repository is the MetaboLights

database (Haug et al., 2013).

Genomics, transcriptomics, proteomics and metabolomics data is further
divided into data that focuses only on a certain aspect of each of the aforementioned
biomolecules. These areas of focus are typically the various chemical modifications
that can be found on such biomolecules, which are known to have a functional
significance. These include epigenetic modifications such as methylation
(Rauluseviciute, Drablgs and Rye, 2019), alternative splicing in the case of the
transcriptome (Ding, Rath and Bai, 2017), post-translational modifications (PTMs)
on proteins (Larsen et al., 2006) and structural variations in metabolites (Figure 1.3)
(Dettmer, Aronov and Hammock, 2007). Several different analytical techniques and
technologies are utilized for the generation of omics datasets, with the most popular
being next generation sequencing (NGS) for genomics and transcriptomics, and LC-
MS/MS for proteomics and metabolomics (Kandpal, Saviola and Felton, 2009).
Proteomics and metabolomics based on LC-MS/MS still need further development
to reach the level of genomics and transcriptomics, at both the technical and data
analysis level (Smith et al., 2014). In this section, the analytical platforms of choice
for genomics and transcriptomics (NGS), and proteomics and metabolomics (LC-
MS/MS) are discussed.
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Figure 1.3: Various omics dimensions with two major analytical platforms, namely
NGS and LC-MS/MS are shown. Each of the major omics data also have several
subdivision such as secondary modifications in genomics, transcriptomics and

proteomics, along with others such as localization in the case of proteomics.

1.1.1 Next Generation Sequencing

The analytical platform of choice for genomics and transcriptomics is NGS (Wang,
Gerstein and Snyder, 2009; Koboldt et al., 2013). It can arguably be considered the
first spark in the data revolution in biological research. During the past two decades,
scientists have been able to decipher the genome and transcriptome of many
organisms from different domains of life using NGS technologies, which have now
reached a level where improvements are incremental in both the hardware and
software utilized (Giannopoulou et al., 2019). It has quickly replaced microarrays and
has been rapidly adapted to the clinic mainly due to ultra-high throughput,
scalability, robustness and speed when compared to previous techniques such as
Sanger sequencing or microarrays, paving the way for the increasing availability of
personalized medicine (Hurd and Nelson, 2009). NGS empowers the average lab to

sequence the entire human genome in less than 24 hours (Levy and Myers, 2016).
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This is a huge feat when compared to Sanger sequencing which would require over a
decade to deliver such data (Lander et al., 2001) or microarrays, which are limited in
their capacity to capture the entire genome on a single chip (Bumgarner, 2013). NGS
owes its success largely to smart bioinformatics solutions, which are essential for
constructing the genome in question from millions of fragments that are sequenced
in parallel (Behjati and Tarpey, 2013). Whole genomes can now be easily sequenced
and stored along with annotation information in publically available databases
(Mailman et al., 2007; Kodama, Shumway and Leinonen, 2012; Clough and Barrett,
2016). The sequencing of the human genome (Lander et al., 2001) set the stage for

omics studies of many kinds.

1.1.2 Liquid Chromatography Coupled with Tandem Mass
Spectrometry

The most widely used analytical platform for proteomics and metabolomics is LC-
MS/MS (Blum, Mousavi and Emili, 2018). It provides data in three dimensions, m/z
(mass to charge ratio), retention time and intensity. Recent extensions of the LC-
MS/MS setup (Figure 1.4), such as the FAIMS interface (ion mobility) (Hale et al.,
2020) add a fourth dimension to the data, which will not be covered here. In the
classical LC-MS/MS setup, sample preparation, which may also include protein,
peptide, metabolite or lipid fractionation and enrichment, is followed by high
performance liquid chromatography (HPLC) and subsequently by mass
spectrometry (MS) data acquisition. The generated raw data is then processed and

analyzed to identify and quantify the features of interest (Sinitcyn, Rudolph and Cox,

2018).
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Figure 1.4: Basic LC-MS/MS setup.

Various fields of analytical chemistry utilize HPLC as an efficient method for
separating, identifying and quantifying components in liquid mixtures (Dahimiwal
et al., 2013). The basic principle used in this technique is pumping liquid containing

a desirable solvent and the sample in question through a column prepared with a
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suitable solid adsorbent. The system then relies on varying interactions between the
compounds in the liquid mixture and the adsorbent material, which would in turn
alter the flow rate of the liquid mixture and thus separate the components going
through the adsorbent packed column (Figure 1.5). The HPLC is used to derive the
retention time of the ions, which is the time measured from sample injection to the
HPLC and the appearance of the maximum signal for the ion post chromatographic
separation (Katajamaa and Oresi¢, 2005). In the case of proteomics, purified proteins
or peptides are separated after digestion with nanoliter per minute flow rates with
the HPLC, prior to being introduced to MS analysis via electrospray ionization
(Figure 1.6) (Hein et al., 2013). It is estimated that complex digested proteome
samples may contain well over a hundred thousand unique peptides (Michalski, Cox
and Mann, 2011; Nagaraj et al., 2011). Such complex samples cannot simply be
resolved directly by MS and thus, HPLC is crucial for slower sample introduction,
allowing the MS to be able to capture and measure as many peptides as possible. To
this end, the sample is loaded to a chromatographic column, which is usually packed
with a hydrophobic reverse phase material such as C18. This leads to the peptides
binding the hydrophobic reverse phase material with different strengths based on
their chemical properties and thus, be released gradually by increasing the amount

of the solvent.

3
L

Detector A

Waste
| |
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Figure 1.5: Basic schema of a HPLC setup.

Injector

The mass spectrometer has been a widely used platform in various field of
research for measuring the m/z of ions. Measurements are often visualized as a mass
spectrum where the intensity of an ion is plotted against its m/z ratio (Figure 1.6).
Different techniques exist, which can be divided into two major groups, MS with trap-

based mass analyzers and MS with beam-based analyzers. Regardless of the type of
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mass analyzer, every mass spectrometer used in LC-MS/MS has three key elements,
the ion source, the mass analyzer and the detector (Figure 1.4) (El-Aneed, Cohen and

Banoub, 2009).

selected
peptide
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Figure 1.6: Basic bottom-up proteomics approach leading to MS and MS/MS mass

spectra.

One goal in further developing new mass spectrometers is to reach a machine
capable of higher resolution measurements. Resolution is the ability to distinguish
two features corresponding to two different ions with very similar m/z ratio
(Scigelova et al., 2011) and is calculated as the ratio of a features’ m/z, and the delta
m/z at the full width half maximum (FWHM) of that feature (Marshall and
Hendrickson, 2008). Another goal is to reach better mass accuracy, which is the
deviation between the theoretical mass and the experimentally determined mass of
ion. Mass accuracy is influenced by the resolution of the mass spectrometer and the
signal to noise ratio within the MS data (G. Marshall et al., 2013). Furthermore, it is
important to have a mass spectrometer that not only detects highly abundant ions,
but also capable of detecting low abundant ions in complex mixtures. This is known
as the dynamic range. The scan speed is also important as it defines how fast a certain
my/zrange can be scanned, which is mostly inversely correlated with the resolution of
the mass spectrometer (Wu and Han, 2006). Finally, new mass spectrometers aim
for higher sensitivity, which is measured by the intensity of the MS signal for a certain
concentration of the sample. Many different operation modes exist for mass
spectrometers. In its targeted mode, a predefined target mass range is set with the
aim of reaching the highest possible quantitative accuracy and reproducibility (Marx,
2013). On the other hand, DDA and DIA mass spectrometry (Zhang et al., 2013,
2020) aim to capture the largest possible spectrum, both of which will be discussed

later in the chapter.

The latest game-changing mass spectrometer technology introduced is the

Orbitrap mass analyzer (Hu et al., 2005; Olsen et al., 2005; Michalski et al., 2011),
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which is similar to Fourier transform ion cyclotron resonance mass spectrometers
(FTMS) in its working principle, where ions are trapped using an electrostatic force
and thus orbit around a small spindle shaped electrode (Figure 1.7). This electrode is
designed in a manner that the orbiting ions are not only confined in their orbit, but
also oscillate along the length of the electrode. The oscillation is used to obtain what
is called an image current in the detector plates of the Orbitrap, which is subsequently
recorded by the mass spectrometer. Since the frequencies of the image currents are
related to the m/z ratios of the ions, the relevant mass spectra can be obtained from
performing Fourier transformation on them (Hu et al., 2005; Scigelova et al., 2011).
The Orbitrap is with its innovative working principle is the latest addition to the array
of different types of mass analyzers that are utilized in modern mass spectrometers.
It was introduced almost two decades ago (Makarov, 2000), and has been quickly
adopted by biologists as the go to platform for proteomics and metabolomics studies.
Its success is due to higher resolution, high mass accuracy and a large dynamic range

(Hu et al., 2005; Makarov et al., 2006).

lons

A

Orbitrap analyzer

Voltage ramp

Figure 1.7: The structure of the Orbitrap mass analyzer.

1.2 Computational Proteomics

Advancements in proteomics technologies have been rapid and thus, effective in

earning proteomics a significant place in today’s biomedical research (Cox and Mann,
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2008, 2011; Aebersold and Mann, 2016), but many areas are still in need of further
development. These include computational methods for data processing and analysis
(C.Chen et al., 2020) and some of the most important advancements in this direction
are computational platforms and workflows such as MaxQuant and Perseus (Cox and
Mann, 2008; Cox et al., 2011; Tyanova et al., 2016; Sinitcyn et al., 2018). MaxQuant
is a software suit, which provides an easy and intuitive means for performing
quantitative proteomics data analysis for large LC-MS/MS data sets, and Perseus
provides an intuitive and user-friendly platform for the downstream analysis of

MaxQuant outputs.

Peak detection within the spectra generated by MS is an important initial step
in computational proteomics (Zhang et al., 2009), and with the introduction of
higher resolution MS machines, it has been possible to resolve the isotope pattern
and even fine structures of peptides (Miladinovi¢ et al., 2012). The peak information
(m/z and intensity) coupled to the retention time information from HPLC become
3D features (Figure 1.8). These features are then taken and assembled to construct
isotope patterns. This information when combined, lead to considerably high mass
precision, but this is not necessarily true for mass accuracy, primarily due to
systematic errors that occur during MS measurements. Such errors have been
observed to be typically nonlinear and dependent on m/z, retention time, and signal
intensity. In case of LC-MS/MS coupled with ion mobility, the ion mobility index also
has an effect on the mass error (Sinitcyn, Rudolph and Cox, 2018). MaxQuant was
first introduced with an effective algorithm for tackling the mass error problem using
a multivariate nonlinear recalibration algorithm, which takes advantage of the many
peptides within complex proteomics samples as calibration points, resulting in
significant increases in mass accuracy (Cox and Mann, 2008, 2009; Cox, Michalski
and Mann, 2011). Besides mass accuracy, in order to ensure consistent retention time
values and ion mobility orders for peptides across different runs, similar
recalibration strategies are employed. This is important since HPLC and ion mobility
setups are naturally prone to irreproducibility, causing problems when comparing
different LC-MS/MS runs (Sinitcyn, Rudolph and Cox, 2018). Following these
recalibration steps, it is possible to transfer identifications across different runs and
compare several different runs together (Pasa-Toli¢ et al., 2004), which is especially
useful to tackle the stochastic nature of DDA methods in peptide fragmentation

(Tyanova, Temu and Cox, 2016).
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Figure 1.8: 3D peak information.

The fragmentation spectra obtained after the initial MS scan are analyzed in
order to sequence the peptides. This is done most frequently using a database search
engine approach, where the database contains all theoretical peptide fragmentation
spectra generated in silico, using whole genome information (Craig and Beavis,
2004; Geer et al., 2004; Cox et al., 2011). Such approaches match the measured
fragmentation spectrum to the entries within the database considering a certain mass
tolerance. Each such match is named a peptide-spectrum match (PSM), and to
control for false positive PSMs, a target-decoy approach is employed (Elias and Gygi,
2007), where in addition to the target database of all theoretical peptide
fragmentation spectra, a decoy database is constructed. The decoy database often
contains the reverse sequences of the target database and matches are labeled as
false-positive PSMs. The score distributions of the PSMs from the target and decoy
databases can then be used to calculate posterior error probabilities, and control for
the false discovery rate (FDR) along with other peptide features such as peptide
length and number of missed cleavages (Cox and Mann, 2008). After peptide
identification, the peptides are assembled into proteins. The main challenge in this
step is that during protein digestion many peptides are digested from a protein and
many peptides are not unique to a certain protein, thus, there is a many-to-many

relationship between peptides and proteins (Huang et al., 2012).
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After peptide identification and protein assembly, the proteins can then be
quantified. Protein quantification can be either absolute or relative. Absolute
quantification aims to determine the quantity of a protein within a certain sample,
whereas relative quantification deals with determining the ratio of the protein
quantity between samples (Figure 1.9). Quantification strategies can be based on
using labels, e.g. using stable isotopes to tag peptides, or be performed in a label-free
manner. Relative label-free quantification (LFQ) is challenging due to the nature of
LC-MS/MS data. These challenges include retention time differences between LC-
MS/MS runs due to parallel sample handling and irreproducibility of HPLC,
stochastic MS/MS sequencing as the mass spectrometer chooses the most abundant
peptides for MS/MS leading to missing peptide identifications across samples, and
pre-fractionation causing peptides to appear in several fractions. MaxQuant,
equipped with the MaxLFQ algorithm, overcomes such challenges via nonlinear
retention time alignment, peptide identification transfer between different runs and
peptide intensity normalization across fractions (Cox et al., 2014). In term of absolute
quantification, MS is not inherently quantitative due to the vastly different behavior
of peptides within the mass spectrometer, and the strong correlation of the MS signal
with the input amount of the protein. To overcome these challenges, Perseus is
equipped with the Proteomic Ruler plugin, which uses the histone signals identified
within the MS run as a scale with respect to the amount of DNA measured in the

sample, to estimate protein copy numbers (Wisniewski et al., 2014).
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Figure 1.9: Absolute and relative protein quantification. The vertical yellow shaded bar
depicts absolute quantification within a sample and the horizontal blue shaded line depicts

relative quantification across different samples.

Computational proteomics has been a corner stone of proteomics studies
(Sinitcyn, Rudolph and Cox, 2018). Its ultimate goal is to process and analyze the
data generated primarily via LC-MS/MS to identify and quantify proteins for
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studying comparative changes between different conditions, posttranslational
modifications, protein-protein interactions, and the subcellular localization of
proteins. Generally, endeavors in computational proteomics can be divided into two
major groups, the correct identification and precise quantification of proteins, and
the detailed analysis of this information within the context of the specific biological
question. To this end, bioinformaticians have to develop various algorithms for
handling the different types of LC-MS/MS data acquisition methods. In the following

two sections, DDA and DIA proteomics approaches will be discussed.

1.2.1 Data Dependent Acquisition

One of the most mature acquisition methods in proteomics is data dependent
acquisition (DDA) (Dupree et al., 2020). It is the most widely adapted method for
proteomics studies, in which ions are separated after the first MS scan based on their
m/z, and the instrument then selects certain ions in real-time with specific m/z
values for further analysis after fragmentation (MS2) (Figure 1.10). Subsequent
fragmentation techniques post precursor ion selection vary, and can be any of

collision-induced dissociation, ion-molecule reaction, or photo-dissociation.
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Figure 1.10: Schematic overview of data dependent acquisition proteomics (adapted from
(Wolf-Yadlin, Hu and Noble, 2016)).

Using DDA, the mass spectrometer is set to select a subset of ions based on
MSi-level data, usually the most abundant ions, for further analysis via MS2. This is
why DDA is also sometimes named the topN method (Venable et al., 2004). Higher
abundant ions are preferred, since they usually lead to higher quality MS/MS spectra,
leading to a higher number of identifications (Hebert et al., 2018). In this step, the
mass spectrometer uses ion fragmentation and tandem measurement to deliver
further information on the ion in question. In the case of peptides, the fragmentation
energies are set in a way that they are most optimized for single peptide backbone
breakages, leading to a set of complementary fragment ions. DDA has improved with
each new generation of mass spectrometers to capture more ions, leading to efficient
capture of effectively a complete proteome even with a single run MS run (Bekker-

Jensen et al., 2017).
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1.2.2 Data Independent Acquisition

The LC-MS/MS method for studying proteins, especially in its DDA form for shotgun
proteomics has allowed for the in-depth analysis of entire proteomes. In efforts to
make proteomics techniques a more stable and robust, new methods are being
developed using DIA. DIA promises to be a faster, thus cheaper alternative to the
current gold standard that is DDA. In DIA, all ions within a selected m/z range are
sent for fragmentation for further analysis in the second MS (Figure 1.11). It has been
in use and constant development during the last two decades, and has continued to
be utilized and improved, with methods focusing on fragmenting entire precursor
ranges, also with narrower windows which aim to simulate DDA runs (Panchaud et
al., 2009, 2011; Geiger, Cox and Mann, 2010b; Egertson et al., 2013). Fragmenting
entire precursor ranges result in faster data acquisition and thus, help to cover wider
mass ranges at the cost of higher spectral complexity, and utilizing narrower windows
lead to less complex spectra with a higher dynamic range at the cost of higher cycle
times (Chapman, Goodlett and Masselon, 2014). DIA is progressively attracting
traction for proteomics studies as it promises the advantages of targeted approaches
to studying complete proteomes, especially in terms of sensitivity and reproducibility
(Doerr, 2014). DIA strives to overcome the limitation in the number of MS/MS
spectra that the mass spectrometer is able to measure by isolating certain ions. Since
in DIA instead of a certain ion, a m/z range is selected for further fragmentation and
analysis, the resulting MS/MS spectra is essentially a combined spectrum for
multiple peptide precursors, which would need to be deconvoluted for effective
peptide identification (Masselon et al., 2000). On the other hand, DIA ensures that
essentially no data is lost and all precursors are fragmented and thus, it not only
promises to capture and record the entire proteome in the realm of the mass
spectrometers maximum dynamic range, but also allows for higher reproducibility
across different samples (Gillet et al.,, 2012). Although in theory DIA has been
proposed to have many advantages over the current DDA approaches, in practice it
has so far not been able to compete with DDA in terms of whole proteome coverage
(Rost et al., 2014; Navarro et al., 2016; Collins et al., 2017). Perhaps this is mainly
due to the lack computational workflows, which can effectively decipher the data to
reach higher rates of identification and reliable quantification. Initial computational
solutions for the analysis of the data were focusing on generating so called pseudo-
MS/MS spectra, where fragment ions were grouped based on retention time

information, and makeshift use of search engines initially designed for DDA data
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(Bilbao et al., 2015). MaxQuant equipped with MaxDIA, utilizes two different
strategies for the analysis of DIA data based on both experimentally generated
libraries using DDA methods and predicted libraries, which is further discussed in

detail in section 4.2.
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Figure 1.11: Schematic overview of data independent acquisition proteomics (adapted
from (Wolf-Yadlin, Hu and Noble, 2016)).

1.3 Computational Metabolomics

The latest LC-MS/MS platforms can measure well over 200,000 ions within each run
from typical biological samples, from which only a fraction of a percent are identified.
Computational workflows for such metabolomics data aim to reach higher mass
accuracy and effectively use information such as chromatographic retention time,
collision-induced dissociation products and collision cross section for metabolite

identification (Uppal et al.,, 2016). Numerous tools exist for the processing of
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metabolomics data designed to deal with the various aspects of the complexity of the
data ranging from peak detection to spectral noise removal and feature alignment
between different runs (Tautenhahn, Bottcher and Neumann, 2008; Yu et al., 2009;

Pluskal et al., 2010).

Peak detection is done in a per file fashion with certain criteria such as signal-
to-noise ratio and peak shape used to filter for peaks of high quality. This is followed
by alignment strategies to create a dataset of all peaks contained within all files so to
compensate for deviations and errors across LC-MS/MS runs. Such deviations and
errors occur especially within the retention time dimension, which could arise from
HPLC variables such as column temperature and the pressure within the system
along with the changes within the column during the course of the runs (Lange et al.,
2008). Deviations could also arise during mass spectrometry and technical replicates
are important to detect and account for such deviations (Uppal et al., 2013; Libiseller
et al., 2015). One of the most important factors in metabolomics data analysis is mass
accuracy. Since mass accuracy has a direct influence on the quality of alignment
between samples, downstream feature annotation and metabolite identification, low
mass accuracy jeopardizes the entire analysis (Kind and Fiehn, 2006). To this end,
mass error correction strategies exist that exploit internal standards and references,
which can estimate the error, and account for it downstream for improving
alignments between different runs (Shahaf et al., 2013). Such strategies are effective
to a degree, but due to the limited amount of standards and references, it is often
difficult to account for the mass error across the entire mass range of the
measurements. The following section discusses these limitations along of with some

lessons from proteomics and possible solutions.

1.3.1 What Computational Non-Targeted Mass Spectrometry-

Based Metabolomics can gain from Shotgun Proteomics

In the following review article (Hamzeiy and Cox, 2017), the common challenges
between computational proteomics and metabolomics are discussed with a focus on
how these challenges are met in the realm of proteomics, and how such strategies can
be adapted to the field of metabolomics. It is argued that similar to the effect of higher
mass accuracies in proteomics datasets where higher rates of identification are
achieved, metabolomics datasets would also benefit from a smart mass recalibration

algorithm, with the end goal of reaching higher rates of metabolite identification.
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Contributions to the following review within the context of this thesis include
the gathering and organizing of all publicly available metabolomics data for
preliminary testing of the mass recalibration strategy proposed for metabolomics
datasets, taking part in the implementation of the algorithm, testing and

benchmarking, and writing the review.

Hamzeiy, Hamid, and Jiirgen Cox. 2017. “What Computational Non-Targeted
Mass Spectrometry-Based Metabolomics Can Gain from Shotgun Proteomics.”
Current Opinion in Biotechnology 43: 141—46.
https://doi.org/10.1016/j.copbio.2016.11.014.
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Introduction

Mass spectrometry-based protcomics [1,2,3%°] has ma-
tured during recent vears to a degree that makes it
readily usable as a standard research tool in many
branches of biological and biomedical research. Most
often proteomics is implemented in the form of shotgun
proteomics, in which proteins are first digested to pep-
tides, separated by liquid chromatography, and finally
studied in the mass spectrometer as intact peptides as
well as their fragmentation patterns (I.C-MS/MS). Pro-
teomics applications include expression proteomics,
analysis of protein—protein interactions [4], study of
post-translational modifications [5], as well as determi-
nation of subcellular localization [6], which can all be
done in a dynamic, time-dependent manner [7]. Most

@ CrossMark

proteomics experiments can be performed without
the use of labels, owing to appropriate algorithms for
relative label-free quantification [8]. The complete
yeast proteome can be quantified nowadays with
moderate effort and studied in many different condi-
tions [9-11], while in human cellular proteomes a depth
of 10,000 proteins can be achieved [12-15].

I'en vears ago, the situation was very different. Proteo-
mics projects were very time consuming since the data
analysis was mostly done in a semi-manual fashion. While
peptide database search engines [16-20] and other soft-
ware and algorithms for the identification and quantifica-
tion of peptides already existed in principle, a lot of
manual validation was still necessary in order to obtain
reliable results that could be used for solid biological
interpretation.

Certainly, technological improvements like the introduc-
tion of the Orbitrap mass spectrometer [21-23] and
improvements in sample preparation also contributed
to today’s protecomics workflows to be evermore robust
and casy to use. However, a large part of the improved
situation is owed to the software platforms and computa-
tional workflows that have become mature and reliable.
This starts with basic activities such as feature detection,
correct label assignment, and processing of MS/MS spec-
tra. Then, the identification process can reliably be con-
trolled by false discovery rates on the peptide-spectrum
match (PSM) or protein level. Furthermore, the results of
quantification methods became better than what could be
achieved with manual analysis. All these improvements
together lead to a situation in which shotgun proteomics
data analysis is approaching a state of maturity that is
comparable to next generation sequencing data analysis.
Also, software tools that aid in the biological interpreta-
tion of quantitative proteomics results are available and
well accepted in the community [24].

One of these computational workflows is MaxQuant
[25,26°], including the Andromeda peptide search engine
[27], which provides a complete solution for most stan-
dard quantitative experimental designs in shotgun prote-
omics. Its development provided seminal contributions to
the reliable automation of the data analysis workflow. One
aspect in which MaxQuant is unique is how it improves
the mass accuracy of peptide features using computation-
al techniques [28,29]. Nonlinecar mass recalibration is
applied to the MS1 features in an m/z and retention
time dependent way. Multiple mass measurements over
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elution profiles and isotopic peaks are then integrated,
achieving mass accuracies in the ppb range for standard
Orbitrap data in a complex proteomics run, which is a
5-10-fold increase over standard techniques.

Untargeted metabolomics [30,31] is a highly evolved field
with many applications already accessible and high pro-
mises for the future. A wealth of analytical techniques
[32] exist for its study and many computational tools
[33,34] have been developed within the community.
However, interpreting mass spectrometry-based untar-
geted metabolomics data remains a challenge and limits
the translation of results into biologically relevant con-
clusions [35%°]. Although the power of untargeted profil-
ing is undeniable, it is the case that most mechanistic
links are still revealed by hypothesis-driven targeted
methods [36°]. This is likely due to untargeted metabo-
lomics typically yielding complex data patterns that are
not easily amenable to intuitive interpretation [36°]. One
could make the provocative statement that untargeted
metabolomics is several vears behind shotgun proteomics
in terms of ease of data analysis and interpretation.

Our planis to create a version of MaxQuant for the anal
of untargeted metabolomics LC-MS data whose workflow
follows loosely the shotgun proteomics workflow as
sketched in Figure 1. Several important data processing

Figure 1
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Schematic overview of high mass accuracy feature identification and
quantification workflows in MaxQuant for shotgun proteomics and for
untargeted metabolomics.

steps can be transferred to metabolomics with only minor
adaptations, as for instance the 3D feature detection,
retention time alignment and matching of features be-
tween LC-MS runs based on accurate masses and reten-
tion times. Other processing steps need more changes in
order to become applicable to metabolomics data. For
instance, the two-level peptide search strategy, in which
the identifications of the first round of searches are used to
determine  multidimensional  nonlinear  recalibration
curves need to be replaced by another two-level strategy
based on mass warping due to the absence of a universal
search engine approach in metabolomics. We strongly
believe that the application of this sort of nonlinear mass
recalibration to metabolomics data is highly beneficial for
compound identification by increasing the range of mole-
cules for which an elemental composition can be assigned.

Improvement of mass accuracy in proteomics
IHere we describe how high mass accuracy is achicved by
mass recalibration algorithms in protcomics. In the next
section we sketch our path to implementing similar
improvements in untargeted metabolomics. For the de-
termination of the nonlinear mass recalibration curves in
proteomics we follow a strategy employing two consecu-
tive peptide database searches (Figure 1). After having
performed the 3D feature detection, a first round of
Andromeda searches is performed. The purpose of this
search is to generate a list of features with known masses
which can then be used for recalibration. The precursor
mass tolerance for the first search is relatively large, for
example, 20 ppm, to be able to also correct for larger
instrumental drift. Since there are many peptides avail-
able in a complex shotgun proteomics run, we can be
restrictive at this stage and accept only identifications that
are correct with high certainty, for example, by requiring a
high Andromeda score threshold, which will typically still
result in thousands of peptides per LC-MS run. Alterna-
tively, one can use standards instead of the first search
identifications. However, this strategy has the disadvan-
tage that only a few features of known mass are available,
which is usually not sufficient to perform the nonlinear
recalibration to the accuracy attainable through the ap-
proach using many peptides from the sample. IFigure 2(a)
shows the mass deviations in a typical LC-MS run as a
function of m/z, while in Figure 2(b) they are shown as a
function of retention time. Clearly, just linear recalibra-
tion would leave many mass deviations far above 1 ppm.

Once we have obtained the long list of known masses, we
fit a model to the mass deviations describing them by
nonlinear dependencies on z/z and retention time. For
time-of-flight mass spectrometers, the intensity depen-
dence of the mass error is estimated and corrected (not
necessary for Orbitrap data). No particular functional form
of these dependencies is assumed. Instead, we use either
splines or piecewise linear functions as models for the m/z
and retention time dependencies. Overfitting is avoided

Current Opinion in Biotechnology 2017, 43:141-146
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Nonlinear mass recalibration in MaxQuant. (a) m/z dependence of the mass error before recalibration on an Orbitrap mass spectrometer.
(b) Retention time dependence of the mass error before recalibration on an Orbitrap mass spectrometer. (c) and (d) Same as (a) and (b) after

application of the nonlinear mass recalibration functions.
Adapted from Ref. [28].

by keeping the ratio of number of parameters to number of
data points to a low percentage number. Figure 2(c—d)
shows the residuals after applying the calibration functions
to the data which fluctuate independently around zero.

After having obtained the nonlinear recalibration func-
tions, these are applied to all peptide features, also to the
ones that were not used in the fit. T'his includes those MS1
feature that were fragmented, but not included in the
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Figure 3
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Mass error distributions before and after nonlinear mass recalibration. The red histogram on the right side is the same as the histogram on the left

side and was added for comparison.
Adapted from Ref. [25].

recalibration fit due to the Andromeda score threshold. Tt
also includes the MSI features that were not fragmented
at all, which is usually a vast majority of the signals [37].
Figure 3(a) shows a histogram of mass deviations obtained
after recalibration in a typical LC-MS run. The average
absolute mass deviation (absolute value of the difference
between measured and calculated masses) is below
300 ppb. In Figure 3(b) the same histogram is recorded
for masses taken directly from the instrument software
without applying MaxQuant recalibration. Since the his-
togram is centered near zero, a linear shift as recalibration
would obviously not improve the mass accuracy much. For
comparison purposes, the red histogram was included
which is the same as in IYigure 3(a). FFor this typical
LLC-MS run the mass accuracy was improved by about
6-fold using MaxQuant recalibration routines.

Such a strong increase in mass accuracy will have implica-
tions on the peptide identification process. When scarch-
ing in the human protcome the corresponding shrinkage of
the precursor mass tolerance window — which is individ-
ualized for each peptide in MaxQuant — will translate
proportionally into a restriction of possible peptide candi-
dates for a given MS1 feature. Therefore, less information
needs to come from the MS/MS spectrum to have the same
certainty of identification of a peptide. With a fixed false
discovery rate of, for example, 1% for PSMs (and 1% for
proteins) the coverage of identified proteins will rise [29].
The extent of the improvement depends on many factors,
like size of the protein sequence space used for generating
the inssilico peptide list for the database search, the type of
digestion and the number of variable modifications.

Improvement of mass accuracy in
metabolomics

Similar concepts as described in the previous section can
be applied to non-targeted metabolomics. While our work

in proteomics is mostly agnostic of the mass spectrometric
instrument, here we focus on the Orbitrap since the
scaling of resolution with the mass range is favorable
for small masses. A central part of the proteomics work-
flow is the generation of MS1 features with known masses
through the ‘first Andromeda search’ (Figure 1). In prin-
ciple, one could follow a similar route and replace the
peptide database search engine with a spectral library
search and accept only indisputable identifications. How-
ever, we decided to adapt a different strategy that would
also be applicable in the absence of MS/MS data.

We first generate a library of ‘plausible m/z values’ that
one is likely to find in a metabolomics LC-MS run. This
is in the first instance filled with all molecules from
databases of compounds with biological relevance, such
as CheBl [38]. 'Then we perform the MaxQuant 3D
feature extraction on a large amount of untargeted meta-
bolomics LC-MS runs in order to find which of the
features can be interpreted as an adduct of a molecule
that is already in the library of plausible m/z values, which
are then also added to the library of ‘plausible m/z values.
I'he library contains all isotopic peaks, not only mono-
isotopic masses, since the subsequent algorithms will
work on the 3D peak features before assembling them
to isotope patterns.

Each LLC-MS run to be analyzed is then mass aligned to
this list of plausible #/z values. For this we use a kind of
warping algorithm that finds an optimal nonlinear cali-
bration function under the objectives as bringing as many
MS1 features as possible as close as possible to a value in
the list of plausible masses. This is done while requiring
smoothness of the recalibration function in order to avoid
overfitting. In this optimization procedure most of the
MS1 features will ‘snap’ to the correct elemental compo-
sition. Some will not, because the correct composition is

Current Opinion in Biotechnology 2017, 43:141-146
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not present yet in the library. T'he algorithm will still be
able to find a good interpolating solution due to the
smoothness requirement.

‘The library is a dynamic entity which will be updated
based on the knowledge gain resulting from each align-
ment with an LC-MS run. If, after a new alignment there
are unmatched MS1 features left with good signal-to-
noise, and fitting a plausible new elemental composition,
it will be added to the library. The alternative to this
procedure would be to work in the space of all theoreti-
cally possible elemental compositions. However, we
think there are big advantages to build up this reference
list bottom up from real data and not have it filled up from
the beginning with things that will never be seen in actual
ILC-MS runs.

The degree to which mass accuracy helps in reducing the
number of possible molecular formulas depends on many
factors, including the molecular mass and assumptions on
the space of possible formulas. Under reasonable
assumptions the number of candidate formulas shrinks
considerably when going from 5 ppm to sub ppm accura-
cy overa wide range of masses as shown in Table 3 of Ref.
[39]. Orthogonal filters like isotopic abundance ratios or
ion mobility measurements would certainly diminish the
number of candidates as well. Preliminary results show
that the increase in mass accuracy obtained by our
proposed method is indeed comparable to the gains seen
in shotgun proteomics. The resulting reduction in can-
didates will lead to complete determination of elemental
compositions for the majority of MS1 features. ‘I'his will
improve MS1-only workflows that use a lab-specific
retention order library for distinguishing isomers. Meta-
bolic flux [40-43] analysis can be supported as well by
including the "*C-labeling patterns of metabolic inter-
mediates or end products into the list of plausible m/x
values.

Conclusions

The adaptation of MaxQuant to untargeted metabolo-
mics will strongly improve the mass accuracy of MSI
features. Similar to proteomics, this increased identifica-
tion information will strengthen the robustness of the
automated data analysis workflow in untargeted metabo-
lomics. Together with other features from the MaxQuant
workflow that are readily transferable to metabolomics —
retention time alignment and matching between runs —
MaxQuant should yield a useful addition to the compu-
tational metabolomics toolbox.

Conflict of interest statement
The authors declare no competing financial interests.

Acknowledgements

This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No
686547.

Computational Metabolomics

145

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

o of special interest
oo of outstanding interest

1. Cox J, Mann M: Quantitative, high-resolution proteomics for
data-driven systems biology. Annu Rev Biochem 2011,
80:273-299.

2. Altelaar AF, Munoz J, Heck AJ: Next-generation proteomics:
towards an integrative view of proteome dynamics. Nat Rev
Genet 2013, 14:35-48.

3. Aebersold R, Mann M: Mass-spectrometric exploration of

ee proteome structure and function. Nature 2016, 537:347-355.
This is a recent review of mass spectrometry-based proteomics sum-
marizing its achievements and the remaining challenges. It is summarized
how mass-spectrometry-based proteomics has matured from a largely
technology-driven field of research into a mainstream analytical tool for
the life sciences.

4. Hein MY, Hubner NC, Poser |, Cox J, Nagaraj N, Toyoda Y, Gak IA,
Weisswange |, Mansfeld J, Buchholz F et al.: A human
interactome in three quantitative dimensions organized
by stoichiometries and abundances. Cell 2015,

163:712-723.

5. Sharma K, D'Souza RC, Tyanova S, Schaab C, Wisniewski JR,
Cox J, Mann M: Ultradeep human phosphoproteome reveals a
distinct regulatory nature of Tyr and Ser/Thr-based signaling.
Cell Rep 2014, 8:1583-1594.

6. Itzhak DN, Tyanova S, Cox J, Borner GH: Global, quantitative and
dynamic mapping of protein subcellular localization. Elife
2016:5.

7. Robles MS, Cox J, Mann M: In-vivo quantitative proteomics
reveals a key contribution of post-transcriptional mechanisms
to the circadian regulation of liver metabolism. PLoS Genet
2014, 10:e1004047.

8. CoxJ, Hein MY, Luber CA, Paron |, Nagaraj N, Mann M: Accurate
proteome-wide label-free quantification by delayed
normalization and maximal peptide ratio extraction,
termed MaxLFQ. Mol Cell Proteomics 2014,

13:2513-2526.

9. Hebert AS, Richards AL, Bailey DJ, Ulbrich A, Coughlin EE,
Westphall MS, Coon JJ: The one hour yeast proteome. Mo/ Cell
Proteomics 2014, 13:339-347.

10. de Godoy LM, Olsen JV, Cox J, Nielsen ML, Hubner NC, Frohlich F,
Walther TC, Mann M: Comprehensive mass-spectrometry-
based proteome quantification of haploid versus diploid
yeast. Nature 2008, 455:1251-1254.

11. Stefely JA, Kwiecien NW, Freiberger EC, Richards AL, Jochem A,
Rush MJ, Ulbrich A, Robinson KP, Hutchins PD, Veling MT et al.:
Mitochondrial protein functions elucidated by multi-omic
mass spectrometry profiling. Nat Biotechnol 2016.

12. Nagaraj N, Wisniewski JR, Geiger T, Cox J, Kircher M, Kelso J,
Paabo S, Mann M: Deep proteome and transcriptome mapping
of a human cancer cell line. Mol Syst Biol 2011, 7:548.

13. Beck M, Schmidt A, Malmstroem J, Claassen M, Ori A,
Szymborska A, Herzog F, Rinner O, Ellenberg J, Aebersold R: The
quantitative proteome of a human cell line. Mo/ Syst Biol 2011,
7:549.

14. Munoz J, Low TY, Kok YJ, Chin A, Frese CK, Ding V, Choo A,
Heck AJ: The quantitative prot of h indi d
pluripotent stem cells and embryonic stem cells. Mo/ Syst Bio/
2011, 7:550.

15. Mann M, Kulak NA, Nagaraj N, Cox J: The coming age of
complete, accurate, and ubiquitous proteomes. Mo/ Cell 2013,
49:583-590.

16. Eng JK, McCormack AL, Yates JR: An approach to correlate
tandem mass spectral data of peptides with amino acid
sequences in a protein database. J Am Soc Mass Spectrom
1994, 5:976-989.

www.sciencedirect.com

Current Opinion in Biotechnology 2017, 43:141-146

33



Introduction

146 Analytical biotechnology

17. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS: Probability-
based protein identification by searching sequence databases
using mass spectrometry data. Electrophoresis 1999,
20:3551-3567.

18. Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M, Maynard DM,
Yang X, Shi W, Bryant SH: Open mass spectrometry search
algorithm. J Proteome Res 2004, 3:958-964.

19. Craig R, Beavis RC: TANDEM: matching proteins with tandem
mass spectra. Bioinformatics 2004, 20:1466-1467.

20. Bern M, Cai Y, Goldberg D: Lookup peaks: a hybrid of de novo
sequencing and database search for protein identification by
tandem mass spectrometry. Anal Chem 2007, 79:1393-1400.

21. HuQ, Noll RJ, Li H, Makarov A, Hardman M, Graham Cooks R: The
Orbitrap: a new mass spectrometer. J Mass Spectrom 2005,
40:430-443.

22. Olsen JV, de Godoy LM, Li G, Macek B, Mortensen P, Pesch R,
Makarov A, Lange O, Horning S, Mann M: Parts per million mass
accuracy on an Orbitrap mass spectrometer via lock mass
injection into a C-trap. Mol Cell Proteomics 2005, 4:2010-2021.

23. Michalski A, Damoc E, Hauschild JP, Lange O, Wieghaus A,
Makarov A, Nagaraj N, Cox J, Mann M, Horning S: Mass
spectrometry-based pri using Q E: , a high-
performance benchtop quadrupole Orbitrap mass
spectrometer. Mol Cell Proteomics 2011, 10 M111.011015.

24. Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T,
Mann M, Cox J: The perseus computational platform for
comprehensive analysis of (prote)omics data. Nat Methods
2016, 13:731-740.

25. Cox J, Mann M: MaxQuant enables high peptide identification
rates, individualized p.p.b.-range mass accuracies and
proteome-wide protein quantification. Nat Biotechno/ 2008,
26:1367-1372.

26. Tyanova S, Temu T, Cox J: The MaxQuant computational

e  platform for mass spectrometry-based shotgun proteomics.
Nat Protoc 2016, 11:2301-2319.

This is a protocol describing the usage of MaxQuant for shotgun pro-

teomics data analysis on a large variety of experimental designs and

quantification strategies.

27. Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV,
Mann M: Andromeda: a peptide search engine integrated into
the MaxQuant environment. J Proteome Res 2011, 10:1794-1805.

28. Cox J, Michalski A, Mann M: Software lock mass by two-
dimensional minimization of peptide mass errors. J Am Soc
Mass Spectrom 2011, 22:1373-1380.

29. Cox J, Mann M: Computational principles of determining and
improving mass precision and accuracy for proteome
measurements in an Orbitrap. J Am Soc Mass Spectrom 2009,
20:1477-1485.

30. Patti GJ, Yanes O, Siuzdak G: Innovation: metabolomics: the
apogee of the omics trilogy. Nat Rev Mol Cell Biol 2012,
13:263-269.

31. Fuhrer T, Zamboni N: High-throughput discovery
metabolomics. Curr Opin Biotechnol 2015,
31:73-78.

32. Zhang A, Sun H, Wang P, Han Y, Wang X: Modern analytical
techniques in metabolomics analysis. Analyst 2012,
137:293-300.

33. Misra BB, van der Hooft JJ: Updates in metabolomics tools
and resources: 2014-2015. Electrophoresis 2016,
37:86-110.

34. Alonso A, Marsal S, Julia A: Analytical methods in untargeted
metabolomics: state of the art in 2015. Front Bioeng Biotechnol
2015, 3:23.

35. Cho K, Mahieu NG, Johnson SL, Patti GJ: After the feature
ee presentation: technologies bridging untargeted
metabolomics and biology. Curr Opin Biotechnol 2014,
28:143-148.
In this publication emerging technologies that can be applied after
untargeted profiling to extend biological interpretation of metabolomic
data are reviewed. Recent advances are highlighted that help transform
untargeted profiling results into structures, concentrations, pathway
fluxes and localization patterns.

36. Sevin DC, Kuehne A, Zamboni N, Sauer U: Biological insights
e through nontargeted metabolomics. Curr Opin Biotechnol 2015,
34:1-8.

The authors compare the contributions of traditional targeted and non-
targeted metabolomics in advancing different research areas. They
conclude that novel computational approaches are required to tap the
full potential of nontargeted metabolomics.

37. Michalski A, Cox J, Mann M: More than 100,000 detectable
peptide species elute in single shotgun proteomics runs but
the majority is il ible to data-dep LC-MS/MS.
J Proteome Res 2011, 10:1785-1793.

38. de Matos P, Alcantara R, Dekker A, Ennis M, Hastings J, Haug K,
Spiteri |, Turner S, Steinbeck C: Chemical entities of
biological interest: an update. Nucleic Acids Res 2010,
38:D249-D254.

39. Kind T, Fiehn O: Metabolomi anr via query
of elemental compositions: mass accuracy is insufficient even
at less than 1 ppm. BMC Bioinform 2006, 7:234.

40. Zamboni N: "*C metabolic flux analysis in complex systems.
Curr Opin Biotechnol 2011, 22:103-108.

41. Munger J, Bennett BD, Parikh A, Feng XJ, McArdle J, Rabitz HA,
Shenk T, Rabinowitz JD: Systems-level metabolic flux profiling
identifies fatty acid synthesis as a target for antiviral therapy.
Nat Biotechnol 2008, 26:1179-1186.

42. Yuan J, Bennett BD, Rabinowitz JD: Kinetic flux profiling for
quantitation of cellular metabolic fluxes. Nat Protoc 2008,
3:1328-1340.

43. Wiechert W, Noh K: Isotopically non i ' bolic flux
analysis: complex yet highly informative. Curr Opin Biotechnol
2013, 24:979-986.

Current Opinion in Biotechnology 2017, 43:141-146

34

www.sciencedirect.com



Multi-Omics Data Analysis

1.4 Multi-Omics Data Analysis

Arguably, the most challenging task is to take what are in essence snapshots of the
state of a biological system under study, and combine them in a manner from which
meaningful information could be extracted (Subramanian et al., 2020). There are
many reasons for studying more than one omics dataset simultaneously. The main
challenge in such efforts, besides the handling of the huge amounts of data generated,
is the heterogeneous and multidimensional nature of the data since each omics
dimension is measured using a different technology, and is presented in a unique
manner (Kim and Tagkopoulos, 2018). These differences can arise from the nature
of the data, e.g. being discrete or continuous, or from the complexity of the measured
omics dimension, e.g. the expression levels of tens of thousands of mRNAs, and the
levels of thousands of metabolites, not to mention the differing sensitivity and
reproducibility of each different technology. On the other hand, multi-omics efforts
can be helpful in reducing noise and false positive findings within each omics
dimension by aggregating data and evidence from several different layers of

information (Rotroff and Motsinger-Reif, 2016).

Cross analysis of proteomics data with genomics data can correlate
personalized hereditary or disease-related information to proteomic phenomena,
such as correlating DNA copy number and loss of heterozygosity to protein
expression by grouping together proteins matching to the same gene (Geiger, Cox
and Mann, 2010a). By comparing the transcriptome to the proteome, the dynamic
phenomena of gene expression between transcription and translation becomes
detectable. When combining proteomics and transcriptomics data, expression levels
may be the easiest to integrate due to their near 1:1 relationship (Tyanova et al.,
2016). An even closer relationship exists between transcriptomics and proteomics
when one considers data from techniques such as ribosome profiling (Ingolia, 2014).
Metabolomics data combined with proteomics data bears the possibility to study the
interplay of enzymes with reaction reactants, since metabolites and proteins have an
organic connection via metabolic reactions where enzymes are responsible for the
consumption and production of metabolites. Metabolites can also act as catalysts,

allosteric regulators and help form protein complexes (Piazza et al., 2018).
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Introduction

1.4.1 Network Assisted Data Analysis

When analyzing data from different levels of omics, existing knowledge regarding
established relationships between various biomolecules ranging from DNA to
metabolites promises a logical approach to integrating such data (Y. X. Chen et al.,
2020). Many public databases are now available where data is curated by mining
literature, where various interactions are intuitively represented as networks
(Orchard et al., 2014; Szklarczyk et al., 2019; Oughtred et al., 2020). Metabolic
networks reconstructed on the level of various organisms provide a great opportunity
to integrate various omics data and analyze them together (Biichel et al., 2013). This
is because the metabolome is the closest level to the phenotype of the organism of
interest. The metabolic network provides the scaffold upon which all omics data can
be mapped for integrative analysis (Chong and Xia, 2017). Such an approach in

utilized in the paper presented in section 4.3 and discussed in detail.
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2, Purpose

Within the context of this thesis, several project have been carried out in aims of
improving computational methods for LC-MS/MS-based proteomics, metabolomics,
and downstream analysis of multi-omics datasets. To this end, a new algorithm is
proposed for improved mass accuracy in LC-MS/MS-based metabolomics datasets,
which incorporates a novel library-based mass recalibration approach. This will in
turn help increase the number of identifications in future metabolomics software and
help propel metabolomics to the level of maturity that proteomics has reached.
Furthermore, MaxQuant 2.0 equipped with MaxDIA is described for analyzing DIA
LC-MS/MS proteomics datasets, using both measured libraries and predicted
libraries. This further expands the abilities of the MaxQuant platform as the go to
platform for the quantitative analysis of proteomics datasets. Finally, the Metis
plugin for the Perseus software is introduced as an easy and accessible tool for
metabolic network-based multi-omics analysis. Metis expands the capabilities of the
popular Perseus software in network-based analysis and handling of various types of

omics data.
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3. Results

Here, the primary results on the improvement of mass accuracy in LC-MS/MS-based
metabolomics data is presented. Later in chapter 4, the relevant publications to the
improvements of the MaxQuant software suit in terms of supporting the Linux
operating system and DIA proteomics data is presented, along with the Metis plugin

for multi-omics data analysis within the Perseus software suit.

3.1 Metabolomics Library Generation

In order to generate a the initial library to use for mass recalibration in metabolomics,
m/z values which are known common metabolites in biological samples from
databases such as ChEBI (de Matos et al., 2010), which accumulate and curate
metabolites of biological importance are gathered. It is important to mention that the
library is made up of all possible isotopic peaks, rather than simply monoisotopic
masses for the metabolites, since features are to be matched to the library rather than
isotope patterns. Subsequently, publically available metabolomics data from several
resources, including MetaboLights (Haug et al., 2020) and Metabolomics
Workbench, were gathered and filtered for data from Orbitrap mass spectrometers,
due to the higher resolution that this type of mass spectrometer provides for the lower
mass range. This resulted in 71 datasets corresponding to 1511 runs. All data were
then processed using the MaxQuant software for feature detection and using our
novel mass morphing algorithm, features are mapped to the library. The library can
then be updated if there remains unmapped features with adequate signal-to-noise

ratio with a plausible new metabolite annotation (Figure 3.1).
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Metabolomics Library Generation
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Figure 3.1: Metabolite library generation workflow.

Following the library generation and update strategy, the size of the library
increases as newly identified high quality features within each dataset that are not
present within the library of plausible m/z values are added to the library, making
the library more comprehensive. This behavior plateaus as the library is updated with
each iteration of processing the same dataset and will continue with every new

dataset (Figure 3.2).
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Figure 3.2: Library size increases with subsequent mapping and mass morphing and
plateaus after several iterations on four datasets. The y-axis is the number of m/z vales
present within the library and the x-axis is the number of iterations of library mapping

and update.
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Results

The number of identified features within each dataset decreases as the growth
of the library leads to higher mass accuracy and thus, more confident identifications.
This is not the case for the initial dataset used to develop the algorithm and the initial

library as many of the features within that dataset were initially manually identified

(Figure 3.3).

First Dataset MTBLS165
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[SEENER 5 W

Figure 3.3: Number of identified features within four different mass spectrometry runs.
The y-axis is the number of identified and the x-axis is the number of iterations of mass

recalibration.

3.2 Library mapping, mass morphing and recalibration

We use our Easy Library Implementation (ELI) for mass recalibration in
metabolomics, for a significant improvement in mass accuracy of metabolomics
datasets. After generation of the library of plausible m/z values, the mass
spectrometry run to be analyzed is processed and aligned to the library using our
mass morphing approach, which calculates a nonlinear calibration function aiming
to map as many features to the library as possible. Special attention is made to the

smoothness of the fit to prevent overfitting (Figure 3.4).
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Figure 3.4: Schema of how features are mapped and morphed to the library.

ELI for mass recalibration in metabolomics when performed on all 1511

metabolomics runs that were gathered results in a general improvement across all

datasets with the median mass error being reduced, with significant improvements

in datasets which were suffering from high rates of mass error (Figure 3.5). Although

mass accuracy improvements depends on factors such as molecular mass and the

complexity of the sample, improvements in mass accuracy generally lead to the

reduction of the number of candidates for each feature and thus, help in the effective

processing analysis of metabolomics datasets.
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Figure 3.5: Average FWHM of un-calibrated vs. calibrated delta ppm across 1511
metabolomics runs. The mass error is significantly reduced in datasets that suffered from

mass errors higher than 3 ppm and the median has reduced to be below 2 ppm.

42



4. Manuscripts

During the past few years, we have published papers on improvements to the
MaxQuant software suit, multi-omics capabilities of the Perseus software suit and the

introduction of MaxQuant 2.0, which will be presented in the following sections.

4.1 MaxQuant goes Linux

MaxQuant has been accepted by the proteomics community as the gold standard in
analyzing proteomics data for more than a decade. However, due to its Windows only
structure and the limitations of Windows in running powerful servers with many
hundreds of CPU cores, many larger proteomics projects suffered from lengthy run
times. Adapting the MaxQuant code base to Linux-based operating systems has not
only allowed larger proteomics projects to be processed on larger servers running
Linus-based operating systems, it has also allowed the more advanced MaxQuant
user to utilize MaxQuant in custom scripts and workflows for streamlined analysis. I
have been privileged to be part of the team involved in this development in the
MaxQuant ecosystem by contributing to the transition to Linux and testing its

performance.

Contributions to the following correspondence within the context of this
thesis include software development and research into cross platform software

development strategies.

Sinitcyn, Pavel, Shivani Tiwary, Jan Rudolph, Petra Gutenbrunner, Christoph

Wichmann, Sule Yllmaz, Hamid Hamzeiy, Favio Salinas, and Jiirgen Cox. 2018.
“MaxQuant Goes Linux.” Nature Methods 15 (6): 401.
https://doi.org/10.1038/s41592-018-0018-y.
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MaxQuant goes Linux

To the Editor: We report a Linux version
of MaxQuant' (http://www.biochem.
mpg.de/5111795/maxquant), our popular
software platform for the analysis of shotgun
proteomics data.

One of our main intentions in developing
MaxQuant was to ‘take the pain out of”
quantifying large collections of protein
profiles’. However, unlike, for instance,
the Trans-Proteomic Pipeline’, the original
version of MaxQuant could be run only on
Microsoft Windows, and thus its use was
restricted in high-performance computing
environments, which very rarely use
Windows as an operating system. When
we began developing MaxQuant, Windows
was the only operating system supported
by vendor-provided raw data access
libraries. Therefore, we wrote MaxQuant
in the C# programming language on top
of the Windows-only .NET framework.
Windows support for cloud platforms is
more expensive, and the operating system
is harder to use and less scalable compared
with Linux.

We recently carried out a major
restructuring of the MaxQuant codebase,
and we made it compatible with Mono
(https://www.mono-project.com/), an
alternative cross-platform implementation
of the .NET framework. Furthermore, we
now provide an entry point to MaxQuant
from the command line without the
need to start its graphical user interface,
which allows execution from scripts
or other processing tools. Meanwhile,
Thermo Fisher Scientific has released
its platform-independent and Mono-
compatible implementation of its raw data
access library (http://planetorbitrap.com/
rawfilereader), and hopefully more vendors
will follow soon. Together, this leads to a
situation in which large-scale computing of
proteomics data with MaxQuant becomes
feasible on all common platforms.

When we parallelized the MaxQuant
workflow over only a few central processing
unit (CPU) cores, we hardly noticed
a difference in performance between
Linux and Windows (Fig. 1). However,
in benchmarking of a highly parallelized

100%

61%
Wiite output tables (52%)
€00 LFQ normalization (34%)
Protein assembly (118%)

0 Second peptide search (23%)

Running time (min)

p

Main search (31%)
Mass recalibration (41%)

First search (61%)
Feature detection (44%)

NET on Windows Mone on Linux

Fig. 1| Benchmarking MaxQuant on Linux and
Windows. We analyzed 300 LC-MS runs with
MaxQuant using 120 logical cores in parallel, once
with Ubuntu Linux (version 16.04.3) and once
with Windows server 2012 R2 as the operating
system. We used identical hardware in both
cases: four Intel Xeon E7-4870 CPUs and 256
GB of DDR3 RAM. The total running times are
shown, and several long-running sub-workflows
are highlighted. Percentages indicate the amount
of time needed to complete the relevant process
in Linux as a percentage of the total time required
for the same process in Windows.

MaxQuant run on 120 logical cores, we
observed that the Linux version showed
highly superior parallelization performance,
with speed 64% faster than that observed
under a Windows server operating system
using identical hardware. MaxQuant uses
operating system processes, rather than the
intrinsic multi-threading mechanism of C#,
to realize parallel execution, and it manages
the load-balancing of an arbitrarily large set
of raw data files over a specified number of
processors by itself. We hypothesize that this
allows Linux to optimize parallel execution
to the high extent that we observed. A larger
benchmark study is under way, in which
we will investigate the dependence of the
increased speed on hardware such
as, for instance, the type of CPU and
storage systems.

MaxQuant has already been adapted
in several forms for cloud and high-
performance computing applications,
as described, for instance, by
Judson et al." and on the Chorus platform

NATURE METHODS | VOL 15 | JUNE 2018 | 401 | www.nature.com/naturemethods

correspondence

(https://chorusproject.org). We expect that
the number of applications will increase
with our Linux-compatible MaxQuant
version. We envision that proteomics

core facilities, for instance, will benefit

from the combination of command-line
access and Linux compatibility, which
enables standardized high-throughput

data analysis. The MaxQuant code base is
identical for Windows and for Linux; thus
there is only a single distributable running
on both operating systems, which can be
downloaded from http://www.maxquant.
org (version 1.6.1.0). MaxQuant is freeware,
and contributions to new functionality

are collaboration-based. The code of open
source parts is available at https://github.
com/JurgenCox/compbio-base. A
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4.2 MaxDIA enables highly sensitive and accurate
library-based and library-free data-independent

acquisition proteomics

MaxQuant 2.0 follows in the lineage of the original MaxQuant software published
more than a decade ago, which has become the gold standard go to software for the
processing of raw LC-MS/MS data. Originally, MaxQuant was designed and
implemented for DDA experiments, and now, analysis of data-independent
acquisition data can be carried out by the MaxDIA algorithm. In the context of this
PhD work, all relevant testing data was gathered, benchmarking was performed,
machine-learning algorithms within the workflow were optimized, external
collaborations were coordinated, and the following manuscript was written along

with the other co-authors.

Contributions to the following correspondence within the context of this
thesis include software design and development, software benchmarking, data

analysis and ensuring support for external resources such as the PRIDE repository.

Pavel Sinitcyn, Hamid Hamzeiy, Favio Salinas Soto, Daniel Itzhak, Frank
McCarthy, Christoph Wichmann, Martin Steger, Uli Ohmayer, Ute Distler, Stephanie

Kaspar-Schoenefeld, Nikita Prianichnikov, Sule Yilmaz, Jan Daniel Rudolph, Stefan
Tenzer, Yasset Perez-Riverol, Nagarjuna Nagaraj, Sean J. Humphrey and Jiirgen
Cox. “MaxDIA enables highly sensitive and accurate library-based and library-free
data-independent acquisition proteomics.” Submitted to Nature Biotechnology,

2020
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MaxDIA enables highly sensitive and accurate library-based and library-free
data-independent acquisition proteomics

Abstract

MaxDIA is a universal platform for analyzing data-independent acquisition proteomics data
within the MaxQuant software environment. Using spectral libraries, MaxDIA achieves
cutting-edge proteome coverage with significantly better coefficients of variation in protein
quantification than other software. MaxDIA is equipped with accurate false discovery rate
estimates on both library-to-DIA match and protein levels, also when using whole-proteome
predicted spectral libraries. This is the foundation of discovery DIA — a framework for the
hypothesis-free analysis of DIA samples without library and with reliable FDR control.
MaxDIA performs three- or four-dimensional feature detection of fragment data and scoring
of matches is augmented by machine learning on the features of an identification. MaxDIA’s
novel bootstrap-DIA workflow performs multiple rounds of matching with increasing quality
of recalibration and stringency of matching to the library. Combining MaxDIA with two new
technologies, BoxCar acquisition and trapped ion mobility spectrometry, both lead to deep and

accurate proteome quantification.

47



Manuscripts

48

Data-independent acquisition (DIA) proteomics! promises robust and accurate quantification
of proteins over large-scale study designs and across heterogeneous laboratory conditions?. In
all omics sciences, robust data analysis pipelines are as important as the data acquisition

technology itself, and proteomics is no exception. MaxQuant> ¢

is the most widely-used
software for analyzing data-dependent acquisition (DDA) proteomics data, providing a vendor-
neutral complete end-to-end solution for all common experimental designs. With version 2.0
described here, MaxQuant offers an equally complete DIA software infrastructure, termed
MaxDIA. Such a unified framework over all mass spectrometry-based proteomics based on
peptide quantification comes with several advantages over existing software” '°. DDA libraries
and DIA samples can be processed in integrated, consistent ways. Algorithmic parts of the
workflow that do not depend on the type of acquisition, like protein quantification algorithms,
such as MaxLFQ!!, protein redundancy grouping, or protein-level false discovery rate (FDR)
can be applied to all data in exactly the same way, making DDA and DIA studies much more

comparable.

The classical approach to DIA data analysis utilizes a spectral library of peptides which are
queried in the DIA samples and quantified in case of their presence. In this spectral library-
based approach, the rate of false matches can in principle be controlled with techniques similar
to those developed in DDA proteomics'2. For instance, the target-decoy method'® has been
adapted to DIA®. Additionally, several library-free approaches exist'# and spectral predictions
have been successfully used for DIA data analysis’>2’. However, effective control of false
discovery rates, in particular on the level of identified proteins with these methods is still a
critical aspect. Once this is achieved, DIA can additionally be employed in a discovery mode,
without biases imposed by a library and with the certainty that the identified set of proteins
contains at most a predefined percentage of false positives, e.g. 1%, as is standardly applied in
DDA-based proteomics. Here we demonstrate that MaxDIA fulfills these criteria and can

indeed be used in such a discovery DIA mode.

Machine learning is an integral part of MaxDIA. We use the bidirectional recurrent neural
network?! (BRNN) approach termed DeepMass:Prism'? to create in silico very precise libraries
of MS/MS spectra for peptides digested from complete proteome sequence databases. BRNN's
are also used for the dataset-specific prediction of liquid chromatography retention times.

Furthermore, to score library DIA sample matches based on multivariate information derived
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from properties of the matches, we apply the gradient boosting method XGBoost??, which is
highly superior to only using the matching score itself, and also compared to applying other

machine learning approaches.

High-quality three-dimensional (3D) or, in the presence of ion mobility data, 4D feature

detection®?

of the precursor data is one of the most important ingredients of MaxQuant for
DDA data, leading to efficient noise suppression. In MaxDIA, fragment ions are additionally
detected as 3D/4D features. Besides noise removal, this ensures that data is not over-
interpreted: The feature detection on fragment data allows to require that all signals belonging
to a 3D/4D peak contribute as evidence only to one peptide identification, ensuring that signals
at slightly different retention times or ion mobility values, but really belonging to the same

feature, are not used as independent evidence for two similar peptides, e.g. differing by a

modification or resulting from an amino acid polymorphism.

In MaxDIA we support two new and promising technologies, both of which enable deep
quantification of DIA samples. One is to combine DIA with high dynamic-range precursor data
obtained by the BoxCar acquisition method?*. The second is to utilize ion mobility as an extra
data dimension on a timsTOF Pro instrument®?’ for DIA. Both increase the quantified
proteome in DIA samples substantially providing highly precise and linear quantification over
the whole dynamic range. Furthermore, since the MaxLFQ algorithm has been designed to
perform label-free quantification on pre-fractionated samples'!, also MaxDIA has the
capability to perform label-free quantification of pre-fractionated samples analyzed by DIA,
which opens up applications of DIA requiring ultra-deep proteome quantification. Complete
submissions to the PRoteomics IDEntifications?® (PRIDE) database using an adapted mzTab?’

scheme can also be performed automatically using MaxDIA.

RESULTS

MaxDIA data analysis workflow

MaxDIA is embedded into the MaxQuant software environment (Fig. 1) and shares with it the
graphical user interface, computational infrastructure, and many algorithmic workflow
components applicable to both. It is vendor-neutral, with direct support for the most common

native vendor file formats for reading mass spectra, as well as the open mzML file format’.
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MaxDIA can be operated in a classical library-based approach or in discovery DIA mode. In
the former, DIA datasets are interrogated within MaxQunat by spectral libraries generated with
MaxQuant, while the latter does not require acquisition of a spectral library. In discovery DIA
mode, spectral libraries are generated by DeepMass:Prism!®, a bidirectional recurrent neural
network that enables precise prediction of spectral intensities from peptide sequences. Decoy
spectra are generated by reverting library sequences under the constraint of preserving the
cleavage characteristics of the protease that was used in the experiment and ensuring that the
decoy peptide masses, retention times and ion mobility values follow the same multivariate
distribution as the target peptides. DIA samples and libraries are then analyzed in an end-to-
end workflow for peptide and protein identification and quantification. MaxQuant’s three-
dimensional (3D) or four-dimensional (4D) feature detection®* (Fig. 2) and de-isotoping is
performed on the precursor data and on all LC-MS/MS or LC-IMS-MS/MS fragment data
domains corresponding to precursor selection windows. Defining MS/MS features in a multi-
dimensional way is particularly important for fragment data, since it avoids over-interpretation
of identification results. This enables the requirement that every MS/MS feature is used at most
once in peptide identification. Problems may arise if such precautions are not taken, since
features will be double-counted for the identification of peptides that are similar to each other
due to sequence homology or due to the presence or absence of a modification, but for which

there is insufficient evidence for the existence of both peptide forms.

Bootstrap-DIA

Central to the workflow is bootstrap-DIA, which consists of multiple steps of matching the
library spectra to DIA samples (Supplementary Fig. 1). These steps aim to bootstrap the DIA
identification process based on the least possible prior knowledge. Bootstrap-DIA replaces and
substantially extends the concept of the ‘first search-main search’ strategy’! as well as the
‘retention time alignment’ and ‘match between runs’ used in DDA MaxQuant. Increasingly
more information is gained in each round, with this information utilized in subsequent rounds.
For instance, in the first round of matching, no retention time constraint is used. Based on these
matches, a linear model is fit between the library and sample retention times, which is used to
align runs to one another, even when gradient lengths substantially differ. This linear correction
can be applied to the data and in the second round of matching, retention times can be filtered
based on a time window that is automatically adapted to the distribution of all retention time
differences after linear alignment. This filtering removes sufficiently many false positive
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matches, so that from the third round of matching a nonlinear retention time recalibration

function can be determined. Application of the nonlinear recalibration function allows to

subsequently apply more stringent filtering. Similar multi-step recalibration and filtering steps

are applied to precursor and fragment masses, as well as to collision cross sections, if

applicable. Supplementary Fig. 2 shows how target decoy distributions are affected after each

matching step with increasingly more stringent filers. The resulting nonlinear precursor and

fragment m/z recalibrations depending on m/z and retention time are shown in Supplementary

Figs. 3, 4.

A consequence of the bootstrap-DIA process is that precursor and fragment masses, retention

times and ion mobility values are nonlinearly aligned between each DIA sample and library

without the need for spike-in standards. A prerequisite for this is that the DDA runs in the

datasets used for the library are well aligned to each other, since the precision of alignment

between library and DIA samples is otherwise limited by the variability of retention times and

collision cross sections within the library. Therefore, when processing libraries in MaxQuant,

retention time and ion mobility alignments should be activated. A challenging attribute that can

be learned from the data are nonlinear retention time mappings between library and samples.

This means that gradients between library and DIA runs do not need to be the same, and label-

free quantification is possible even between DIA measurements with different gradients

lengths. To evaluate the matching of different DIA gradient durations to a library we generated

a DDA library consisting of 16 high pH-reversed phase fractions of a HeLa cell lysate measured

with 25-minute gradients, and measured the same sample unfractionated with DIA using 30,

60, 90 and 120-minute gradients. Supplementary Fig. 5 shows retention time alignments

between the library and DIA samples, and precise quantification between samples with

different gradient lengths are shown in Supplementary Fig. 6. These capabilities greatly

enhance the flexibility of MaxDIA, making the software applicable to analyzing a broader

range of samples.

Scoring of library-to-sample matches by machine learning

To quantify the quality of match between a library spectrum and a DIA sample at a given

retention time (and CCS value) we first find a precursor feature and all fragment features that

match to the library spectrum with tolerances for m/z, retention time and CCS, dependent on

the matching step in the bootstrap-DIA workflow. To measure the match quality, we then
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calculate a score which is the sum over all matching features of numbers between zero and one,
each quantifying how far away from the apex the respective peak was hit (Supplementary Fig.
7). For a given library spectrum this score is maximized over retention time and ion mobility.
It is then ensured, through a second round of scoring, that every feature in a DIA sample is

used at most for one library spectrum match.

This score then is enhanced through machine learning. To this end, we construct a feature space
that in addition to the score contains various properties of the match (Supplementary Fig. 8),
such as mass errors (in p.p.m.) for precursor and fragments compared to masses calculated
from elemental compositions, retention time and ion mobility errors, and apex fractions. We
employ a classification algorithm to separate target from decoy hits based on this feature space.
We define the machine learning based match score as the assignment probability to the target
class of the machine learning algorithm. This is not just the binary decision of the classifier,
but a number expressing the affinity to the target spectra as opposed to the decoy spectra. To
eliminate the risk of overfitting, we determine these machine learning scores in 5-fold cross
validation, such that a match for which the machine learning score is calculated has not been

used for training the model that is used for its prediction.

We used several different classification algorithms and monitored their effect on the
identification performance of MaxDIA. We compared the performances of XGBoost??, fully
connected multi-hidden layer neural networks, random forests*? and AdaBoost (Supplementary
Fig. 9) scanning for each algorithm suitable ranges of meta-parameters. We found that
XGBoost performs best among the tested algorithms, in contrast to Demichev et al.!® who
found neural networks to perform favorably. This choice is also different from DDA where for
similar purposes support vector machine based methods are used®>. XGBoost provides
information on the importance of features for classification (Supplementary Fig. 8). We found
that in the library-based approach, the feature defining whether the precursor has an isotope
pattern assigned or was only seen as a single peak is of greater importance than the raw score
itself. Furthermore, retention time, precursor mass errors, number of modifications and missed
cleavages were among the top 10 highest ranked features. Also among the top 10 is the ‘sample
fragment overlap’ which quantifies if and to what extent the N- and C- terminal ion series are

overlapping in the DIA sample, thereby placing restrictions on the precursor mass.
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Identification performance and quantification precision

To evaluate the performance of MaxDIA we ran it, and Spectronaut 13 on a dataset comprising

27 technical replicate injections of peptides derived from the human HepG2 cell line measured

in DIA as well as a DDA library created from 12 high pH-reversed phase fractions (see online

Methods). Using default parameters in both software, including a 1% FDR on precursor and

protein levels, we obtain 6,238 protein groups mapped to Entrez gene identifiers with MaxDIA,

compared to 6,015 with Spectronaut with an overlap of 5,549 (Fig. 3a). MaxDIA finds 20%

more peptides than Spectronaut at 1% library-to-DIA matches FDR. The length distribution of

identified peptides is very similar between the two analysis software (Fig. 3b).

While DIA is believed to be better in terms of data completeness

3435 compared to DDA, we

observe that this depends on the algorithmic details and that there is a tradeoff between data

completeness and confidence of protein identification within a specific sample, as opposed to

the whole dataset. After identifying peptides and proteins for the whole dataset, we apply a

‘transfer g-value’ cutoff to the identifications of matches in each sample. Setting it to 1, implies

that no sample-specific restrictions are applied and that the peptide is quantified, whenever any

evidence is found for its existence. A transfer g-value of 0.01 (equal to the global g-value of

library-to-sample matches) results in stringent identification in every sample and hence,

certainty about the actual sample-specific presence of peptides and proteins. We scanned

through 7 values of the transfer g-value between 0.01 and 1 and monitored the number of

proteins which have a certain number or less valid values in terms of LFQ intensities (Fig. 3c).

As expected, for larger transfer g-values, the curves are flatter and higher in terms of total

protein numbers. When using 1 for the ‘minimum ratio count’ parameter of the LFQ algorithm,

most parts of all curves are above the line for the Spectronaut software. For ‘minimum ratio

count’ = 2, which ensures higher accuracy of quantification, the array of curves is intersecting

with the Spectronaut curve. After evaluating the accuracy of benchmark quantification results

on several mass spectrometry platforms we decided to select 0.3 as the default value for the

transfer g-value. Study-specific objectives (completeness of quantification vs. certainty of

identification in individual samples) may suggest deviations from this default value.

The distribution of coefficients of variation (CVs) (Fig. 3d) indicates substantially higher

quantification precision obtained with MaxLFQ (described below) in MaxDIA compared with

Spectronaut, with median CVs of 0.072 and 0.109, respectively. Fig. 3e.f show typical log-log
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scatter plots of protein intensities between replicates displaying less outliers and higher Pearson
correlation for MaxDIA. All pair-wise replicate Pearson correlations of logarithmic intensities
are represented as a heat map in Fig. 3g for both programs, showing consistently higher
correlations for MaxDIA (median 0.993) compared to Spectronaut (median 0.977). We find a
good overall agreement between averaged Spectronaut intensities and MaxDIA iBAQ values
(Fig. 3h) with a Pearson correlation of 0.87. We performed mRNA vs. protein copy number
comparisons based on RPKM3*¢ and iBAQY values, respectively, using MaxDIA and
Spectronaut (Fig. 3i,j). Both comparisons show similar correlations between mRNA and

protein levels, which are also compatible with correlations typically found in such studies.

Accuracy of FDR estimates and discovery DIA

In order to evaluate the reliability of FDR estimates using MaxDIA’s target-decoy strategy, we
used a pooled DDA library generated from mixed human and maize samples, with
corresponding DIA runs comprising only human samples®*. Hence, every match identified as
being derived from the maize proteome is a known false positive identification (having
discarded peptides that are shared between proteins of the two species). This enables
calculation of an ‘external” FDR which is calculated independently of the ‘internal” FDR
estimated by the decoy approach in MaxDIA. Fig. 4a compares internal and external FDRs on
match, peptide and protein group levels. The curves for internal and external FDR are in very
good agreement on all three levels. When comparing the numbers of identified matches,
peptides and protein groups at 1% FDR, which is often taken as a default value in shotgun
proteomics, the numbers differed only by 3.0%, 3.4% and 5.0%, respectively, between
internally and externally controlled FDR. Hence our decoy-based FDR estimates are in good

agreement with external FDR calculations.

Given these results, we investigated how accurate the FDR estimates are for cases in which the
library is dissimilar to the DIA sample. Hence, we assembled a library of in-silico predicted

spectra based on DeepMass:Prism'>

consisting of all tryptic peptides digested from all human
UniProt® sequences (Release 2019 05 containing 20959 proteins) without missed cleavages.
We additionally generated predicted retention times for each in-silico spectrum based on a
bidirectional recurrent neural network used previously for the same purpose'®. Using this
library with the same DIA dataset as in Fig 4a, we generated the same curves for internal and
external FDRs as before (Fig. 4b). Also here we observed good agreement between internal
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and external FDRs. In particular, at an FDR of 1% the number of identified protein groups

differed only by 1.5%. We do however identify 39% more protein groups with the in-silico

library compared to with the measured library. This highlights that MaxDIA does not require

that spectral libraries are generated from matching samples in a project-specific manner, and

yet FDRs are still reliably controlled. This enables the use of MaxDIA in a ‘discovery’ mode

(discovery DIA), which is not biased by a library and completely hypothesis-free in terms of

which proteins can be found, by using in-silico predicted libraries for all protein sequences.

We additionally repeated these analyses using the raw matching score instead of the machine

learning-improved score (Fig 4c, d). This revealed that the agreement of internal and external

FDR does not depend on whether the XGBoost-based machine learning was used to adjust the

scoring. However, the use of machine learning does substantially increase peptide (83% and

58% for library DIA and discovery DIA, respectively) and protein group identifications (28%

and 18%, respectively).

MaxLFQ adaptation for DIA

A prime example of the re-use and continued development of algorithms from DDA MaxQuant

to MaxDIA is the label-free quantification algorithm, MaxLFQ'!. Here, quantification is based

on first calculating all pair-wise peptide ratios between samples, which are then summarized

by the intensity profile that best fits all the pair-wise ratios. This procedure can be generalized

to DIA by replacing a single ratio per peptide with multiple ratios derived from precursor

intensities and from the most intense fragment peaks (Supplementary Fig. 10). This approach

naturally implements hybrid quantification of precursor and fragment intensities.

To benchmark quantification accuracy, we downloaded a four-species dataset with well-

defined small ratios between replicate groups*. Ratios are expected to be 0%, 10%, 20% or

30%, depending on the species comprising: H. sapiens, C. elegans, S. cerevisiae and E. coli.

We tested several combinations of precursor, fragment or mixed quantification and fragment

intensities summed up or kept separately. We measured the variability as the inter-quartile

range of ratios within each species, and summed these over the four species (Fig. 5a). We found

that hybrid quantification between precursors and fragments with fragment intensities kept

separate for individual ion types in LFQ resulted in the smallest quantification errors measured

as the sum of the inter-quartile ranges of ratio distributions over the four species. The accuracy
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observed exceeded both MS1- and MS2-level quantification reported by Bruderer et al.*. A
further question is how the filtering of fragments by their intensity improves quantification
accuracy. To this end, we used only the top-N intense peaks for quantification while varying
N (Supplementary Fig. 11a). We found that accuracy increases with the number of fragments
used, indicating that no filtering of fragments by intensity is required. Similarly, we
investigated, if filtering to top-N most intense peptides per protein is beneficial (Supplementary

Fig. 11b), finding that it is best to use all available peptides.

Next, we analyzed a quantitative benchmark dataset obtained on SCIEX TripleTOF 6600
instrument, mixing proteomes from three species in defined ratios between replicate groups?
(Fig. 5b). Using the original library analyzed with MaxQuant and using default values for all
parameters, we identify 4,627 protein groups and achieve linear quantification for all three
species over the whole dynamic range. In discovery mode with a predicted library allowing for
one missed tryptic cleavage, the number of identified protein groups raises by 48% to 6,858
(Fig 5c¢) with on average improved quantification accuracy for the species with ratios as
measured by inter-quartile ranges of species-specific ratio distributions. Importantly, H.
sapiens which expresses a much larger number of proteins received the largest increase,
identifying almost 2-fold more protein groups (4,012 vs. 2,127), while C. elegans and E. coli

received proportionally fewer additional proteins.

We next acquired a quantitative three-species benchmark dataset utilizing ion mobility on a
Bruker timsTOF Pro instrument. Using the DDA library acquired on the same instrument type,
we identify 10,352 protein groups. We again used MaxLFQ for DIA with hybrid quantification
with separate intensities for each fragment ion (Fig. 5d), seeing excellent quantification over
the whole dynamic range without nonlinearities. In discovery mode (Fig. 5¢), the number of
identified protein groups increases to 10,466 with higher quantification accuracy, again judged
by the inter-quartile ranges of ratio distributions. Scanning through the transfer g-value, we

found that quantification accuracy was best with a value near 0.3 (Supplementary Fig. 12).

BoxCar and fractionated DIA
We recently implemented analysis of data acquired using the BoxCar acquisition method in
MaxQuant in the DDA context?*, whose primary goal is to achieve higher dynamic range for

the precursor intensities. Since this should be beneficial for DIA as well, we implemented its
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generalization to combining high-dynamic range precursor measurements with DIA
acquisition for the fragments. Furthermore, it is possible with MaxDIA to analyze and quantify
DIA samples that have been pre-fractionated on peptide or protein levels. To showcase these
features, we acquired both DDA libraries and DIA measurements from HEK cell lysate as
single shots and as high-pH reversed phase peptide fractionated samples, which were pooled
into eight fractions for MS analysis (see Online Methods). We analyzed all combinations of
libraries and samples, and in addition we analyzed the DIA samples in discovery-DIA mode
allowing for one missed trypsin cleavage (Fig. 6a). For the fractionated DIA samples we
observe an increase in the number of identified protein groups concomitant with the size of the
library, with the most identifications in discovery mode. With single shot samples, the number
of identified proteins saturates with library size, having slightly more identifications with the
fractionated library. However, comparing identifications for the single shot DIA samples
between fractionated library and discovery mode, we find that the results are very similar with
89% overlap of Entrez gene identifier mapped protein groups (Supplementary Fig. 13). This
indicates that for both types of DIA samples it is not compulsory to produce a deep, fractionated
library, but that comparable or even better results can be achieved in discovery DIA mode.
Quantification with MaxLFQ between three replicates of fractionated DIA samples shows very

good correlation with a median Pearson correlation of 0.993 (Fig. 6b).

We then compared the results obtained with the three different library-creation approaches to
RNA-seq data of HEK cells (see Online Methods). Fig. 6¢ compares the four sets of
identifications based on gene identifiers. Out of the 9,503 genes covered by proteomics
methods, 65% were found with all three library methods. Additional 25% were found with
both, discovery mode and fractionated library, but not with the single shot library. 608 proteins
were uniquely found with the discovery approach, compared to 251 with the deep fractionated
library, suggesting preference for the discovery mode from the perspective of results, in
addition to its economic advantages. In Fig. 6d, the results from Fig. 6¢ are displayed according
to RPKM intervals of the RNA-seq data. The RNA-seq data shows a bimodal left shoulder that
is typical of expression noise*’, genes for which there is only limited proteomic evidence of
translation. As expected, highly abundant proteins are recovered with all methods, while at low

abundance, both the deep-fractionated library and discovery DIA approach add identifications.
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DISCUSSION

Here we introduce MaxDIA, a complete end-to-end DIA workflow embedded into the
MaxQuant environment with major new features and broad applicability to established and
novel mass spectrometry technologies. We demonstrate the widespread and general utility of
the software, including its use in analyzing BoxCar-DIA and ion mobility DIA data,

demonstrating very high proteome quantification coverage.

This framework lends itself to several extensions which are currently under development. In
particular, while the analysis of posttranslational modifications (PTMs) is possible in principle
by providing suitable libraries with spectra from modified peptides, proper localization of the
modification on the peptide has to be carefully implemented as an additional process following
peptide identification*!. For these purposes, a PTM score guiding localization needs to be
calculated directly from the DIA data and not from extracted spectra. Similarly, extensions to
the identification of cross-linked peptides are straightforward*? and are planned for future

releases of MaxDIA.
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ONLINE METHODS

HepG2 technical replicate data

Cell culture and MS sample preparation. HepG2 were from ATCC and cultured in MEM and

10% FCS. Cells were washed twice with ice-cold PBS and harvested using freshly prepared
SDC buffer (1% SDC, 10 mM TCEP, 40 mM CAA, 75 mM Tris-HCl at pH= 8.5). The SDC

lysates were heated to 95°C for 10 min while shaking at 750 rpm in a Thermomixer

(Eppendorf) and then sonicated for 10 min (10 x 30 sec on/off cycles) using a Bioruptor® Pico

sonication device (Diagenode). Protein concentrations were determined using the 660 nm assay

(Thermo Fisher Scientific) and the proteins were digested with trypsin/Lys-C mix (Promega,

V5071) overnight at 37°C with a 1:50 enzyme to protein ratio. The digestion was stopped by

adding two volumes of 99% ethylacetate/1% TFA, followed by sonication for 1 min using an

ultrasonic probe device (energy output ~40%). The samples were then desalted using in-house
prepared, 200 pl two plug SDB-RPS StageTips* (3M EMPORETM, 2241). SDB-RPS
StageTips were conditioned with 60 pl isopropanol, 60 pl 80% ACN/5% NH4OH and 100 pl

0.2% TFA. The SDC/ethylacetate mixture was directly loaded onto the tips followed by two
washing steps of 200 pl 0.2% TFA each. Peptides were eluted with 80% ACN/5% NH4OH,

speedvac dried and then resupended in 0.1% FA. After estimation of the concentration using a

nanodropTM device (Thermo Fisher Scientific), the samples were adjusted to 0.4 pg/ul with

0.1% FA, of which 2 pl (800 ng) were injected into the mass spectrometer.

LC-MS/MS measurements. Peptides were loaded on 40 cm reversed phase columns (75 pm

inner diameter, packed in-house with ReproSil-Pur C18-AQ 1.9 um resin [ReproSil-Pur®, Dr.

Maisch GmbH]). The column temperature was maintained at 60°C using a column oven. An

EASY-nLC 1200 system (ThermoFisher) was directly coupled online with the mass

spectrometer (Q Exactive HF-X, ThermoFisher) via a nano-electrospray source, and peptides

were separated with a binary buffer system of buffer A (0.1% formic acid (FA) plus 5%
DMSO) and buffer B (80% acetonitrile plus 0.1% FA plus 5% DMSO), at a flow rate of 250

nl/min. The mass spectrometer was operated in positive polarity mode with a capillary

temperature of 275°C. The samples were acquired with a DIA method established by Bruderer
et al.34, Briefly, the method consisted of a MS1 scan (m/z= 300-1,650) with an AGC target of

3x1076 and a maximum injection time of 60 ms (R=120,000). DIA scans were acquired at R=
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30,000, with an AGC target of 3x1076, ‘auto’ for injection time and a default charge state of

4. The spectra were recorded in profile mode and the stepped collision energy was 10% at 25%.

High pH reversed-phase fractionation. HepG2 cells were lysed as described in “Cell culture
and MS sample preparation’. 150 pg of total protein was digested with a trypsin/Lys-C mix
(Promega, V5071) overnight at 37°C with a 1:50 enzyme to protein ratio. The digestion was
stopped by adding two volumes of 99% ethylacetate/1% TFA, followed by sonication for 1
min using an ultrasonic probe device (energy output ~40%). The peptides were desalted using
30 mg (8B-S029-TAK) Strata-X-C cartridges (Phenomenex) as follows: a) conditioning with
1 ml of isopropanol; b) conditioning with 1 ml of 80% ACN/5% NH4OH; c¢) equilibration with
1 ml of 99% ethylacetate/1% TFA; d) loading of the sample; ¢) washing with 2 x 1 ml of 99%
ethylacetate/1% TFA; f) washing with 1 ml of 0.2% TFA; g) elution with 2 x 1 ml of 80%
ACN/5% NH4OH. The eluates were snap-frozen in liquid nitrogen and lyophilized overnight.
The lyophilized peptides were resuspended in 400 pl 0.1 % FA and fractionated using a 3x250
mm xBridge column (Waters) on an AKTA HPLC system (GE Healthcare). Fractionation was
performed with a flow rate of 0.5 ml/min and with a constant flow of 10% 25 mM ammonium
bicarbonate, pH 10. Peptides were separated using a linear gradient of ACN from 7% to 30%
over 15 min, followed by a 5-min increase to 55% ACN and a subsequent ramping to 100%
ACN. Fractions were collected at 50-sec intervals in 15 ml Falcon tubes to a total of 36 fractions
and then pooled to obtain 12 fractions (A1-B1-C1, A2-B2-C2 etc.). All fractions were acidified
by addition of FA to a final amount of 0.1% and then lyophilized. Peptides were subsequently
resuspended in 100 pl 0.1% TFA and desalted using in-house prepared C18 STAGE tips* as
follows: a) equilibration with 100 pl isopropanol, b) Equilibration with 100 pl 0.1% TFA, c)
loading of the sample, d) washing with 100 pl 0.1% formic acid (FA), e) elution with 30 ul of
80% Acetonitrile/0.1% FA. Peptides were speed-vac dried, resupended in 20 pl 0.1% FA and
the concentration estimated on a nanodropTM device (Thermo Fisher Scientific). The samples
were then adjusted to 0.4 pg/ul with 0.1% FA, of which 2 pl (800 ng) were injected into the

mass spectrometer.

HeLa data with varying gradients

High-pH reversed phase peptide fractionation. 6 ng of HeLa peptides were loaded onto a
Waters BEH130 C18 2.1 x 250 mm column in 90 uL of MS loading buffer at a flow rate of
0.5 mL/min using a Dionex Ultimate 3000 HPLC, and column temperature was maintained at
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50°C. After loading, a binary gradient of 10% buffer A (2% acetonitrile, 10 mM ammonium
formate pH 9) to 40% buffer B (80% acetonitrile, 10 mM ammonium formate pH 9) was
formed over 4.4 minutes, followed by a wash-out from 40—100% buffer B over 1 minute, after
which the column was held at 100% buffer B for 10 minutes prior to re-equilibration. Fractions
were collected over a period of 6.4 minutes from the first peptide elution, with fraction
collection each 8 seconds and automatic concatenation into 16 fractions (200 pL fraction
volume). Fractions were dried down in a vacuum concentrator (Eppendorf) and resuspended in

MS loading buffer (0.3% TFA, 2% acetonitrile).

MS analysis. Peptides were loaded onto a 40 cm column with a 75 pM inner diameter, packed
in-house with 1.9 uM C18 ReproSil particles (Dr. Maisch GmbH). Column temperature was
maintained at 60°C with a column oven (Sonation GmbH). A Dionex U3000 RSLC nano HPLC
system (Thermo Fisher Scientific) was interfaced with a Q Exactive HF X benchtop Orbitrap
mass spectrometer (Thermo Fisher Scientific) using a NanoSpray Flex ion source (Thermo
Fisher Scientific). For all samples, peptides were separated with a binary buffer system of 0.1%
(v/v) formic acid (buffer A) and 80% (v/v) acetonitrile/0.1% (v/v) formic acid (buffer B) and
peptides eluted at a flow rate of 400 nl/min. Gradient ranges and durations were as follows: 5—
40% buffer B over 30 minutes (DDA library); 3—-19% buffer B over 10 minutes and 19-41%
over 5 minutes (15 min DIA gradient); 3—19% buffer B over 20 minutes and 19—41% over 10
minutes (30 min DIA gradient); 3—19% buffer B over 40 minutes and 19-41% over 20 minutes
(1 h DIA gradient); 3—19% buffer B over 60 minutes and 19-41% over 30 minutes (1.5 h DIA
gradient); 3—19% buffer B over 80 minutes and 19-41% over 40 minutes (2 h DIA gradient).
For the DDA library, peptides were analysed with one full scan (350-1,400 m/z, R=60,000 at
200 m/z) with a target of 3e6 ions, followed by up to 20 data-dependent MS/MS scans with
HCD (target 1e5 ions, maximum IT 28 ms, isolation width 1.4 m/z, NCE 27%, intensity
threshold 3.7¢5), detected in the Orbitrap (R=15,000 at 200 m/z). Dynamic exclusion was
enabled (15 s). For DIA measurements, peptides were analysed with one full scan (350-1,400
m/z, R=120,000 at 200 m/z) at a target of 3e6 ions, followed by 48 data-independent MS/MS
scans spanning 350-975 m/z with HCD (target 3e6 ions, maximum IT 22 ms, isolation width
14 m/z, NCE 25%), detected in the Orbitrap (R=15,000 at 200 m/z).
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Three species timsTOF Pro benchmark data

Sample preparation. Human cervix carcinoma cell line HeLa was purchased from the German
Resource Centre for Biological Material (Braunschweig, Germany). Cells were cultured in
Iscove’s Modified Dulbecco Medium (PAN Biotech) supplemented with 10% (v/v) fetal calf
serum (FCS; Thermo Fisher Scientific), 1% (v/v) glutamine (Carl Roth) and 1% (v/v) sodium
pyruvate (Serva) at 37 °C in a 5% COz environment. A pure culture of the Saccharomyces
cerevisiae bayanus, strain Lalvin EC-1118 was obtained from the Institut Oenologique de
Champagne (Epernay, France). Yeast cells were grown in YPD media as described by Fonslow
et al.**. Escherichia coli (TOP10) cells were purchased from Thermo Fisher Scientific and
grown in LB liquid medium. After harvesting, cells were lysed adding a urea-based lysis buffer
(7 M urea, 2 M thiourea, 5 mM DTT, 2% (w/v) CHAPS). Lysis was promoted by sonication at
4°C for 15 min using a Bioruptor (Diagenode, Lic¢ge, Belgium). After cell lysis, protein
amounts were determined using the Pierce 660 nm Protein Assay (Thermo Fisher Scientific)
according to manufacturer’s protocol. Tryptic digestion applying a modified filter-aided
sample preparation®® protocol was performed as described in detail before*. To generate the
two hybrid proteome samples, tryptic peptides were combined in the following ratios as
detailed previously>*°. Sample A was composed of 65% w/w human, 30% w/w yeast, and 5%
w/w E. coli proteins. Sample B was composed of 65% w/w human, 15% w/w yeast, and 20%

w/w E. coli proteins.

LC MS analysis. Samples were analyzed by LC-MS on a trapped ion mobility spectrometry —
quadrupole time of flight mass spectrometer (timsTOF Pro, Bruker Daltonics), which was
coupled online to a nanoElute nanoflow liquid chromatography system (Bruker Daltonics) via
a CaptiveSpray nano-electrospray ion source. Peptides (corresponding to 200 ng) were
separated on a reversed-phase C18 column (25 cm x 75 pmi.d., 1.6 pm, lonOpticks, Australia).
Mobile phase A was water containing 0.1% (v/v) formic acid, and mobile phase B acetonitrile
containing 0.1% (v/v) formic acid. Peptides were separated running a gradient of 2-37%
mobile phase B over 100 min at a constant flow rate of 400 nL/min. Column temperature was
controlled at 50°C. MS analysis of eluting peptides was performed in diaPASEF mode. For
diaPASEF, we adapted the instrument firmware to perform data-independent isolation of
multiple precursor windows within a single TIMS separation (100 ms). We used a method with

two windows in each 100 ms diaPASEF scan. Sixteen of these scans covered the diagonal scan

17



MaxDIA enables highly sensitive and accurate library-based and library-free
data-independent acquisition proteomics

line for doubly charged and triply charged peptides in the m/z — ion mobility plane with narrow

25 m/z precursor windows resulting in a total cycle time of 1.6 s.

BoxCar DIA HEK data

Cell Culture and MS Sample preparation. HEK293 cells were grown in DMEM supplemented

with penicillin, streptomycin and 10% FCS. Cells were washed twice with ice-cold PBS, before

scraping in PBS and centrifuged at 300 x g for 6 mins at 4°C. Supernatant was aspirated and

the pellet lysed in 2.5 % SDS buffered with 50 mM Tris pH 8.1, and heated to 95C for 5

minutes, prior to probe sonication. The BCA assay was used to quantify the protein content of

centrifuge-clarified lysates prior to precipitation with 5 volumes of acetone. Pellets were

resuspended in 50 mM Tris pH 8.1 containing 8 M urea, reduced with 1| mM DTT and alkylated

with 5 mM [AA prior to initiation of digestion overnight with LysC at an enzyme to protein

ratio of 1:100. The digest mixture was diluted 4-fold, and trypsin was added at an enzyme to

protein ratio of 1:100 for 6 hours, followed by an additional aliquot of trypsin overnight.

Digestion was stopped by acidification to 1% TFA, placed on ice for 5 minutes and centrifuged

to remove insoluble material. Peptides were desalted with a mixed-mode SPE cartridges

(Strata-XC, Phenomenex), activated with 100% methanol, conditioned with 80% Acetonitrile,

0.1% TFA and equilibrated with 0.2% TFA, which was followed by sample loading, washing

with 99.9% isopropanol 0.1% TFA, washing twice with 0.2% TFA, and washing once with

0.1% formic acid, before elution with 60% acetonitrile 0.5% ammonium hydroxide. Eluate was

flash frozen and dried by centrifugal evaporation.

Offline peptide fractionation. Peptides were resuspended in buffer A (10 mM ammonium

bicarbonate) and injected onto a 4.6 x 250 mm 3.5um Zorbax 300 Extend-C18 column.

Peptides were separated on a non-linear gradient exactly as described (Mertins et al., 2018,

Nature protocols), using the following composition of buffer B (10 mM ammonium

bicarbonate, 90 % acetonitrile). Peptide fractions were frozen at -80 °C before centrifugal

evaporation. Peptides were resuspended in 1% TFA, and concatenated at by combining every

24" fraction for the library, or every 8" fraction for the fractionated BoxCar DIA runs, using

fractions 13 — 90.

Concatenated or non-fractionated samples were desalted with SEP-PAK tC18 SPE cartridges

(Waters), activated with 100 % methanol, conditioned with 80 % acetonitrile, 0.1% TFA, and
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equilibrated with 0.2 % TFA. Following sample loading, cartridges were wash with 0.5, 1, and
3 cartridge volumes of 0.2 % TFA, and eluted with 1 volume of 80% acetonitrile, 0.1 % TFA,

then frozen before drying in a centrifugal evaporator.

lug of peptide were loaded onto an Aurora 25cm X 75um ID, 1.6um C18 column (Tonopticks)
maintained at 40°C. Peptides were separated with an EASY-nLC 1200 system at a flow rate of
300 nl/min using a binary buffer system of 0.1% formic acid (Buffer A) and 80% acetonitrile
with 0.1% formic acid (Buffer B), in a two-step gradient from 3-27% B in 105 min and from
27-40 % B in 15 min. All scans were recorded in the Orbitrap of a Fusion Lumos instrument
running Tune version 3.3, equipped with a nanoflex ESI source, operated at 1.6 kV, and the
RF lens set to 30%. The scan sequence was initiated with MS1 scans from 350-1650 m/z
recorded at 120,000 resolution, with an AGC target of 250%, and maximum injection time of
246 ms. The mass range was divided into 24 segments of variable width, with 3 BoxCar scans
(multiplexed targeted SIM scan) isolating 8 segments per scan, comprising every third
segment. The segments used were identical to those in the MS2 scans, retaining a 1 m/z overlap
between boxes in adjacent scans. The normalized AGC target was 200% per segment, with a
maximum injection time of 246 ms. BoxCar scans were also recorded at a resolution of
120,000. This was followed by 24 MS2 scans from 200 — 2000 m/z with windows as previously
described (Bruderer et al., 2017 MCP). Fragmentation was induced with HCD using stepped
collision energy of 22, 27, and 32% for the window center. Each MS2 scan was recorded at a

resolution of 30,000, and an AGC target of 1000 % with a maximum injection time of 60 ms.

Data downloads
In addition to the data measured for this publication, we downloaded the following publicly

available datasets. The four-species mixture dataset**

containing H. sapiens, C. elegans. S.
cerevisiae and E. coli with ratios of 0%, 10%, 20% and 30%, respectively, between replicate
groups was downloaded from ProteomeXchange (PXD005573). SCIEX TripleTOF 6600 three
species benchmark data? was obtained from ProteomeXchange (PXD002952). The HepG2
RNA-seq data is part of the ENCODE dataset*’ and was downloaded from SRA (SRP014320).
The HEK RNA-seq data is part of the Cell Atlas dataset*® and was downloaded from SRA

(SRP017465).

19



MaxDIA enables highly sensitive and accurate library-based and library-free
data-independent acquisition proteomics

Data analysis

In all MaxQuant analyses for generating libraries and for analyzing DIA samples (MaxDIA)

version 2.0.0 was used and for all parameters the default values were used unless stated

otherwise. Searches were performed with the following FASTA files from UniProt:
UP000005640_9606 (H. sapiens), UP000007305_4577 (Z. mays), UP000002311_559292 (.
cerevisiae), UP000000625 83333 (F. coli), UP000001940 (C. elegans). Methionine oxidation

and protein N-terminal acetylation were used as variable modifications in all searches, as is

default in MaxQuant.

Comparing number of proteins between datasets. Proteins are assembled into protein groups

for identification to account for the redundancy of protein sequences with regards to the peptide

evidence distinguishing them. This works in MaxDIA in exactly the same way as in the

standard DDA usage of MaxQuant. These protein groups are dataset dependent and hence

comparisons between two protein groups tables, for instance in Venn diagrams, or between a

protein groups table and RNA-seq data are nontrivial. Here, we follow the route of mapping

all protein identifiers in a protein group to Entrez gene identifiers®. In the vast majority of

cases, protein groups map to single gene identifiers. For cases, in which they map to more than

one, both gene identifiers are taken into the set. For counting protein group identifications, we

always remove protein groups that are flagged as ‘reverse’ or ‘only identified by site’. For

human datasets, we removed protein groups denoted as ‘potential contaminant’ only if they are

of non-human origin and kept human proteins, which consist mostly of human keratins. For

the dataset containing bovine plasma the proteins in the standard MaxQuant contaminant list

of bovine origin were not removed.

FDR curves. For estimating external FDR, we used a combination of human and maize libraries

from reference

34 or of human and maize predicted libraries in discovery mode on the human

HepG2 DIA samples. For analyzing library-to-DIA-sample matches and peptide identifications

in Fig. 4, we do not apply a protein level FDR and scan through the library-to-DIA-sample

FDR. It is crucial to take this approach, in particular when comparing numbers of

identifications with other software, since when applying protein-level FDR in MaxQuant,

peptides which are not mapping to a protein identified at the specified protein FDR are

discarded, unlike in most other software packages. For obtaining the protein-level FDR curves
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in Fig.4 we applied a library-to-DIA-sample match FDR of 1%. Peptides that are shared

between human and maize proteins were discarded.

RNA-seq data analysis. Raw reads were filtered using trimmomatic®® (version 0.36) using
default parameters for paired-end data. Filtered reads were mapped to the human reference
genome GRCh38 (Ensemble release 100) using STAR®' aligner (version 2.5.3a). Further
processing — sorting, converting from SAM to BAM format and indexing — was done using
SAMtools®? (version 1.6). Gene expression quantification (RPKM) for protein-coding genes

was performed in Perseus® (version 1.6.14.0).

Spectronaut analysis. Raw MS data were processed using Spectronaut version 13.10.191212
using default settings, using a spectral library generated by searching using MaxQuant version

1.6.10.43.

Software development, requirements, availability and usage

MaxDIA has been developed in conjunction with MaxQuant in C#, runs on Windows and
Linux operating systems and requires .NET Core 2.1. In addition, NET Framework 4.7.2 has
to be installed on Windows. The graphical user interface version is currently restricted to
Windows. A platform-neutral command line version is available. MaxQuant is efficiently
running in parallel on arbitrarily many CPUs on single-node platforms. Having 4Gb of memory
per parallel running thread is recommended. Disk space should be at least twice the space that
is used by the raw data. MaxQuant is freeware and the code is partially open and available at
https://github.com/JurgenCox/compbio-base. MaxQuant including MaxDIA can be
downloaded from https://www.maxquant.org/. MaxDIA is included in the standard MaxQuant
release from version 2.0.0 onward. (MaxQuant 2.0.0 is included in the PRIDE submission for
the reviewers.) How to use MaxDIA in library or discovery mode is described in the
accompanying Supplementary Notes document. It also contains a list of all user-definable

parameters with a description of their meaning.

PRIDE support
We support complete submissions to the PRoteomics IDEntifications (PRIDE) database®® for

the DIA identification results. We extended the mzTab format® to cover DIA data sets. For
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this purpose, new controlled vocabulary terms were introduced along with additional external
reference files. These external reference files contain DIA library matches with mass, intensity
and annotation information in a spectral library format (msp-format). MaxQuant will generate
a new output folder called ‘combined\msp’ into which these results are written. A user must
provide this folder in addition to raw and mzTab files during submission to PRIDE. More
details on a complete PRIDE submission are provided in the Supplementary Notes. This is the

first instance of complete PRIDE submissions for DIA data sets.

Data availability

The MS proteomics data have been deposited to the ProteomeXchange Consortium
(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository with the
dataset  identifiers PXD022582 (DDA  data, login/password for  review:
reviewer _pxd022582@ebi.ac.uk / oKBHzhLq) and PXD022589 (DIA data, containing also

MaxQuant version 2.0.0, login/password for review: reviewer pxd022589@ebi.ac.uk /

yuiSMuP8).
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FIGURE LEGENDS
Fig. 1: Overview of the MaxDIA workflow. MaxDIA can be operated in library and

discovery mode. Many concepts and algorithms, for instance for protein quantification, are re-

used from the conventional MaxQuant workflow for DDA data and have been further

developed for DIA. This results in an end-to-end DIA software that contains many established

MaxQuant concepts, like label-free quantification with MaxLFQ or iBAQ quantification.

Fig. 2: 3D/4D feature detection of precursors and fragments. a, Visualization of precursor

and fragments of a peptide measured on an Orbitrap. The raw data can be visualized together

with the peak detection results as heat maps and 3D models for precursor and fragment data in

the graphical user interface of MaxQuant. b, Two peptides with nearly equal mass, both with

charge 2 and having very similar retention times are resolved by ion mobility on a timsTOF

Pro mass spectrometer. A heat map visualizes intensities as a function of retention time and

collision cross section for the precursor isotope patterns. The two respective MS/MS spectra

of fragments assigned to the precursors are shown.

Fig. 3: Performance evaluation. 27 technical replicates of HepG2 cell lysate were analyzed

on an Orbitrap mass spectrometer (see online Methods). a, Number of identified protein groups

with 1% FDR on protein and peptide level, and number of peptides at 1% library-to-DIA-

sample FDR obtained with MaxDIA and Spectronaut. b, Histograms of peptide lengths

identified with MaxDIA (blue) and in Spectronaut (red). ¢, Number of proteins with at most x

out of 27 valid values for Spectronaut (red), MaxDIA with MaxLFQ minimum ratio count = 1

(blue, dashed) and = 2 (blue, solid). Multiple curves for the two MaxQuant seies of curves

correspond to seven different choices for the transfer g-value (0.01, 0.02, 0.05, 0.1, 0.2 and

0.5). d, Histograms of coefficients of variation for analyses with default settings in MaxDIA

(blue) and in Spectronaut (red). e, Log-log scatter plot of LFQ intensities between two

representative replicates obtained with MaxQuant. The two replicates were chosen to have the

median Pearson correlation of all pair-wise replicate comparisons. f, Same as in panel f for

Spectronaut intensities. Similarly, the two replicates were chosen to represent the median

Pearson correlation coefficient of all pair-wise comparisons. g, Heat map with all pair-wise

Pearson correlations between the 27 replicates for MaxDIA (upper triangle) and Spectronaut

(lower traingle). The two values corresponding to the comparisons in panels e and f are marked

with red squares. h, Log-log scatterplot of iBAQ protein intensities from MaxDIA against

26

71



Manuscripts

72

Spectronaut protein intsnsities. i, Log-log scatterplot of MaxDIA iBAQ values averaged over
the replicates against RPKM values from RNA-seq data. j, Same as panel i with protein

intensities from Spectronaut.

Fig. 4: Internal and external FDR. a, Number of identifications (blue: matches, green:
peptides, red: protein groups) as a function of estimated FDR. The FDR is once estimated with
the ‘internal’ target-decoy method implemented in MaxQuant (solid lines) and once with the
‘external’ method using mixing maize and human samples for generating the library and using
only human sample in the DIA runs (dashed lines). b, Same as in panel a but using in-silico
predicted libraries generated using DeepMass:Prism! ¢, Same as panel a but using the raw
score instead of the machine learning-derived score. d, Same as panel b but using the raw score

instead of the machine learning-derived score.

Fig. 5: MaxLFQ for DIA. a, Stacked inter-quartile rages of protein ratio distributions in the

1.3% using different versions of MaxLFQ for

small-ratio four-species dataset from Bruderer et a
DIA and compared to the results from this publication. b, Quantification of a three-species
benchmark mixture measured on a SCIEX TripleTOF 6600 instrument mixing proteomes from
three species in defined ratio> with MaxLFQ for DIA. The accompanying DDA library was
used. ¢, Same as b, but analyzed with MaxDIA in discovery mode. d, Quantification of a three-
species benchmark mixture measured on a Bruker timsTOF Pro instrument mixing proteomes

from three species in defined ratio using a DDA library. e, Same as d, but analyzed in discovery

mode.

Fig. 6: BoxCar and fractionated DIA. a, Schedule of libraries and DIA samples. Three
different library approaches, single-shot, deep fractionated and discovery mode library were
compared to single-shot deep fractionated DIA samples. b, MaxLFQ quantification between
three replicates of fractionated BoxCar DIA samples analyzed in discovery DIA mode. All
pair-wise Pearson correlations are above 0.99. ¢, Venn diagram-like comparison represented
as bar plot between RNA-seq data of HEK cells and three different library methods applied to
the fractionated DIA samples. All data has been mapped to gene identifiers d, Histogram of
protein identifications mapped to gene identifiers sorted into bins according to log2 RPKM

values of the RNA-seq data.
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Figure 5
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Supplementary Fig. 1: The bootstrap DIA workflow. This sequence of algorithmic steps
is applied to each DIA sample vs. the whole library. A matching step is usually followed
by a step in which a calibration function (e.g. precursor m/z recalibration function) is
determined from the matches found in the previous step. Then constraints (e.g. m/z
deviation windows) are updated for the next round of matching. The DDA samples
constituting the library are assumed to be retention time (and ion mobility if applicable)
aligned to each other. a, The first matching from the library spectra to the DIA sample is
performed with initial m/z windows for precursor and fragments of 20 p.p.m. by default
and without restrictions on retention times or collision cross sections. b, Based on these
matches, a linear recalibration is calculated to adjust for different total gradient lengths of
library and DIA samples. ¢, After the linear retention time calibration has been calculated
and applied, a time window is calculated from the data, which defines the allowed retention
time difference for the next step. d, The second matching still uses the initial m/z windows
and in addition uses the time window determined in the previous step. e, Based on the
matches of the previous step a linear precursor m/z shift in p.p.m. between the DIA sample
and calculated peptide masses is determined. f, Similarly, a fragment m/z shift is calculated
from the data. g, Next, precursor and fragment m/z tolerances are calculated based on the

1

79



Manuscripts

8o

distributions of m/z differences between DIA sample and theoretically calculated masses.
h, The third matching uses adapted m/z and retention time windows which are applied to
the linear calibrated data. i, The elimination of noise achieved by the adapted tolerances
used in the matching in the previous step allows now to perform nonlinear retention tine
calibration. j, A time dependent nonlinear allowed region is determined from the data. k,
The fourth matching uses more stringent retention time constraints than the third matching,
since it is applied to nonlinear calibrated data. I, Now a nonlinear function for the
calibration of precursors is determined from the data. m. Similarly, fragment m/z are
nonlinear recalibrated. n, New, more stringent precursor and fragment m/z tolerances are
calculated from the distributions of mass errors. 0. Another matching step with updated
constraints is performed. p, A linear function for the recalibration of CCS values is
calculated from the data, in case of ion mobility spectrometry. q, A tolerance window for
the acceptance of CCS value deviations is calculated. r, A matching round with constraints
on the CCS values is performed. s, A nonlinear CCS calibration function is determined. t,
CCS tolerance is adapted to the nonlinear calibrated data. u, The final round of matching
is performed without constraints on retention time and CCS values. Instead, these
deviations are used as features in the XGBoost-based machine learning. Precursor and
fragment masses are still filtered with hard windows for the deviations.
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Supplementary Fig. 2: Score distributions along the bootstrap DIA workflow.
Histograms of score distributions, separately for target and decoy hits after the different
matching steps in the bootstrap DIA workflow. Target (blue) and decoy (red) distributions
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are stacked on top of each other. A single run of the HepG2 Orbitrap dataset (DIA_13.raw)
was used. a, Score histogram after the first matching step. (Step a in Supplementary Fig.
1.) No constraints on the retention time are used. Initial tolerances of 20 p,p,m. are applied
to precursor and fragment mass matches. The spikes at integer score values correspond to
matches in which all matching fragments hit exactly the apex of the peak in retention time
direction. The peaks from one to four matching fragments are dominated by false positives,
since these bins have half or even more decoy hits. Score values of six or above indicate
correctness of the match since hits are strongly suppressed. b, Score histogram after the
second matching step. (Step d in Supplementary Fig. 1.) Retention time is filtered after
linear retention time calibration between library and DIA sample and after determining a
tolerance from the distribution of retention time differences. ¢, Score histogram after the
third matching step. (Step h in Supplementary Fig. 1.) Linear ppm shifts are applied to
precursor and fragment masses and mass tolerances are adapted accordingly. Scores larger
than four indicate few false positives, d, Score histogram after the fourth matching step.
(Step k in Supplementary Fig. 1.) e, Score histogram after the fifth matching step. (Step o
in Supplementary Fig. 1.) in which nonlinear mass recalibrations have been applied to the
data. f, Each profile shows the rate of false positive matches after each of the five different
matching steps. g, After all recalibrations have been applied, the final matching is done
without constraints on retention times, but the mass constraints are kept. (The
corresponding score distribution is displayed.) Instead the deviation from the calibrated
retention time is offered as a feature to the machine learning for calculating an enhanced
score. This strategy (hard mass cutoffs and soft, machine learning based, retention time
cutoff) resulted in the highest number of identifications. Similarly, a soft cutoff is used for
collision cross sections in ion mobility spectrometry data.
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Supplementary Fig. 3: Nonlinear m/z recalibration of precursors. One consequence of
the bootstrap DIA is that masses of precursors and fragments are nonlinearly recalibrated
against theoretically calculated molecule masses. This replaces the software lock mass
strategy used in DDA MaxQuant which is based on a “first search’ with the Andromeda
search engine to produce the recalibration curves. We use the same data as in
Supplementary Fig. 2 to compare mass errors before and after recalibration. In all panels,
data points are color coded according to the conditional data density. For this, the bivariate
density of data points is divided by the marginal distribution on the x-axis. Blue signifies
the region of highest conditional density. a, Mass error in p.p.m. of precursor ions as a
function of m/z. b, Same precursor mass error as in panel a as a function of retention time.
¢,d Mass errors of panels a and b after recalibration through bootstrap DIA. The high-
density regions are centered around 0 error. e, Histograms of precursor mass errors before
and after recalibration. The medians of the error distributions are at 2.96 p.p.m. before and
at 0.099 ppm after recalibration. The FWHM reduces from 1.92 to 1.61 p.p.m.. f,
Dependency of the precursor mass error on logarithmic intensity. Interestingly, does the
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distribution of mass error not depend much on the intensity, since the lines of constant
density (constant color) run approximately horizontally.
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Supplementary Fig. 4: Nonlinear m/z recalibration of fragments. a, Histograms of
fragment mass errors before and after recalibration. Since in this dataset, the statistical
fluctuations are much larger for the fragment mass errors compared to the precursors, the
correction of systematic errors is of less importance here. b, Dependency of the fragment
mass error on logarithmic intensity. The distribution of mass errors gets wider towards
lower intensities.
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Supplementary Fig. 5: Nonlinear retention time alignment between different
gradients. a, A library of HeLa cell lysate was measured in 16 high-pH reversed phase
peptide fractions with an active gradient time of 25 minutes. b, While analyzing the library
in MaxQuant in DDA mode, retention times are aligned between the LC-MS runs in the
library. ¢, Alignment of library retention times against for DIA samples with active gradient
times of 120, 90, 60 and 30 minutes. d, Heat map views of the MS1 m/z-retention time
planes of the respective DIA samples.
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Supplementary Fig. 6: Nonlinear retention time alignment: LFQ after the alignment.
Triangular matrix of scatter plots showing MaxLFQ quantification results between the four
DIA samples with different gradients. The alignment enables precise quantification even
between samples with vastly different gradients. On the diagonal, technical replicates with
same gradients are shown. Pearson correlation coefficients between logarithmic LFQ
intensities range from 0.998 for 120h gradients to 0.979 for 30h gradients. Throughout,
quantification between non-equal gradients results in Pearson correlation values close to
the one achieved with equal gradients of the respective shorter length.
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Supplementary Fig. 7: Scoring library spectra against DIA samples. a, Libraries are
collections of DDA samples analyzed with MaxQuant. MS/MS spectra from the library are
first sub-divided into unique peptide-charge-modification combinations. Each such
combination that has assigned more than one MS/MS spectrum to it is then clustered into
retention time clusters. Prerequisite for this is that all library samples are retention-time
aligned to each other. The idea is that if a peptide is eluting at more than one place in a
gradient, it will be stored as multiple instances in the library with different retention times.
This is feasible, since from the MaxQunat DDA analysis it is known how the peptides elute
from their MS1 features. For data with ion mobility spectrometry this kind of library feature
clustering is done in the two-dimensional space consisting of retention times and collision
cross sections. A resulting cluster may still contain more than one MS/MS spectrum. In
that case, the one with the highest Andromeda score is chosen. This spectrum is then
filtered to the top-N most intense fragment peaks. These are then scored against the DIA
sample. By default, is N = 7. We visit each retention time in a DIA LC-MS run and
calculate the score which is defined below. The matching position is defined as the
retention time at which the highest score is achieved. This highest value of the score is also
defined as the matching score of this library spectrum to the DIA sample. For ion mobility
spectrometry, this score maximization takes place in the two-dimensional space of all
retention time and ion mobility value pairs. b, For calculating the score of a library
spectrum at a certain retention time (and CCS value) in the DIA sample, one first searches
with a given mass tolerance for 3D/4D features that match the precursor and the N
(typically = 7) top fragment peaks. For each spectrum mass that matches a feature in the
DIA sample we calculate the apex fraction which is the ratio of the maximum peak intensity
to the intensity at the current retention time. To obtain the score, we sum up the apex
fractions for the precursor (in case one was matched) and the matching fragments. ¢, So far
the scoring was done independently for each consolidated library spectrum. This can lead
to multiple usages of a DIA feature in several library matches. d, To prohibit over-
interpretation, we perform a second round of scoring. This time we put the library spectra
in descending order according to the score they achieved in the first round of scoring. The
same procedure is repeated, but now it is remembered which features in the DIA sample
(precursors and fragments) have already been assigned and these will be prohibited from
being assigned a second time. Note that a precursor match is not required but contributes
the same way to the total score as each fragment does.
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Supplementary Fig. 8: Feature space for the machine learning-based score. a, 22
‘single’ features for the feature matrix for calculating the machine learning score. b,
Machine learning features derived from fragments. By default, 7 top intense fragments are
considered for identification which results in a 23 + 7 * 5 = 58 dimensional feature space
in total. ¢, Explanation of the fragment overlap feature. The first peptide has a fragment
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overlap of 0 since the y and b ion series are not overlapping. The second peptide has
overlapping y and b series and hence is its fragment overlap greater than 0. ¢, The fragment
overlap score for the upper peptide is 0, since y and b ions are not overlapping and hence
carry no information on the precursor mass. The lower peptide has a fragment overlap score
larger than 0, since the y and b series ions are overlapping. d, List of the top 10 features
ranked by importance according to XGBoost ‘gain’. Even more important than the score
is whether the precursor had an isotope pattern or is a single feature. e, Log-log scatter plot
of feature importance according to XGBoost ‘gain’ for library against discovery mode. To
guide the eye, we drew a straight line from the cloud of non-important features in the lower
left corner to the raw score, which is expected to be of high relevance for the classification.
Whether the precursor feature has an isotope pattern became much less important in the
discovery mode. Features that are correlated with peptide length and charge became more
important in discovery mode, presumably since the length and charge distributions of
predicted spectra in the in silico library are significantly different from these distributions
for peptides that are detectable in the DIA samples.
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Supplementary Fig. 9: Comparison between different classification methods. We
compared XGBoost, random forests, AdaBoost and fully connected multi-hidden layer
neural networks to using the raw score. We tuned meta-parameters to its optimal value if
applicable. a, ROC curves for the five classification methods. XGBoost has the highest
area under the curve. b, Number of identified peptides when using each of the four
classification Methods or the raw score in MaxDIA. XGBoost results in the highest number

of peptide identifications. ¢, Number of identified protein groups when using each of the
four classification Methods or the raw score in MaxDIA. XGBoost results in the highest
number of peptide identifications. d, Optimal values of classification algorithm parameters

found in grid searches.
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6 Peptide 1 3 Unmodified 1st fragment
7 Peptide 1 3 Unmodified 2nd fragment
8 Peptide 1 3 Unmodified 3rd fragment
9 Peptide 2 2 Unmodified Precursor

10 Peptide 2 2 Unmodified 1st fragment
11 Peptide 2 2 Unmodified 2nd fragment
12 Peptide 2 2 Unmodified 3rd fragment
13 Peptide 2 2 M(ox) Precursor

14 Peptide 2 2 M(ox) 1st fragment
15 Peptide 2 2 M(ox) 2nd fragment
16 Peptide 2 2 M(ox) 3rd fragment
17 2 Unmodified Precursor

18 2 Unmodified 1st fragment
19 2 Unmodified 2nd fragment
20 2 Unmodified 3rd fragment

c

Sample 2 | Ratio 2,1 d
Sample 3 Ratio 3,1 Ratio 3,2
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Sample 1 Sample2 Sample3 Sample4

15

Int1,1 Int1,2 Int1,3 Int1,4
int2,1 Int 2,2 Int2,3 Int2,4
Int3,1 Int 3,2 Int3,3 Int3,4
Int4,1 Int4,2 Int4,3 Int4,4
Int 5,1 Int 5,2 Int 5,3 Int5,4
Int6,1 Int 6,2 Int6,3 Int6,4
Int7,1 Int7,2 Int7,3 Int7,4
Int 8,1 Int 8,2 Int 8,3 Int8,4
Int 9,1 Int 9,2 Int 9,3 Int9,4
Int 10,1 Int 10,2 Int10,3 Int 10,4
Int11,1 Int 11,2 Int11,3 Int11,4
Int12,1 Int12,2 Int12,3 Int12,4
Int13,1 Int13,2 Int13,3 Int 13,4
Int 14,1 Int 14,2 Int 14,3 Int 14,4
Int 15,1 Int 15,2 Int 15,3 Int 15,4
Int 16,1 Int 16,2 Int 16,3 Int 16,4
Int17,1 Int17,2 Int17,3 Int17,4
Int18,1 Int 18,2 Int18,3 Int 18,4
Int19,1 Int19,2 Int19,3 Int 19,4
Int 20,1 Int 20,2 Int 20,3 Int 20,4

Ratio 2,1 = LFQ intensity 2 / LFQ intensity 1
Ratio 3,1 = LFQ intensity 3 / LFQ intensity 1
Ratio 4,1 = LFQ intensity 4 / LFQ intensity 1
Ratio 3,2 = LFQ intensity 3 / LFQ intensity 2
Ratio 4,2 = LFQ intensity 4 / LFQ intensity 2

Ratio 4,3 = LFQ intensity 4 / LFQ intensity 3
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Supplementary Fig. 10: MaxLFQ algorithm for DIA. The conventional MaxLFQ
algorithm for DDA consists of two parts, feature intensity normalization and protein
quantification. While in the adaptation to DIA the normalization part did not change, the
quantification was adapted to accommodate signals contributing from precursor and
fragment features. a, As an example we use the protein sequence of UniProt entry P07327.
Three peptides were identified, Peptide 1, unmodified with charge 2 and 3, Peptide 2,
unmodified and with an oxidation of methionine, and Peptide 3, only unmodified with
charge 2. These five peptide, charge and modification combinations are treated as
independent intensities in the protein quantification, as was already the case in the DDA
version of MaxLFQ. In DIA, also the different types of ions, precursors and fragments, are
treated as separate signals. Feeding these as independent ‘channels’ into MaxLFQ is a
natural way of implementing hybrid precursor-fragment quantification. For every
combination of peptide, charge and modifications, we take the top N intense fragment
peaks over the whole dataset. These N annotations are then used in every spectrum of this
type for quantification. In the example we chose N = 3 for simplicity, although N is a user-
definable parameter and much larger by default. (See Supplementary Fig. 11a for the
influence of N on the quantification accuracy.) We also use the overall fragmentation
intensity pattern of the top N fragments averaged over the whole dataset for imputation of
fragments among the top N that are missing in certain samples. b, In the example from
panel a with five peptide-charge-modification combinations and N = 3 we end up with 20
peptide-charge-modification-ion combinations. We assume that data for four samples was
acquired. Then we have for this protein 20 intensity profiles over the four samples. Those
intensities in this matrix which are zero we call missing, since they cannot be used for
calculating ratios between samples. ¢, Next we calculate protein ratios between all pairs of
samples to fill the lower triangular matrix indicated in the figure. ‘Ratio 2,1’ is the median
of all ratios calculated from the intensities in the columns ‘Sample 1’ and ‘Sample 2’ in
panel b. These are 20 if all values are present but can be less due to missing values. If the
number of peptide-charge-modification combinations for which ratios can be calculated is
less than the parameter ‘LFQ min. ratio count’ the corresponding ratio in the triangular
matrix will be missing. d, For each ratio in panel ¢ that is not missing we obtain one
equation for the determination of the four LFQ intensities. (One for each sample.) This
system of equations is usually over-determined and a least-squares best fit is obtained. e.
Result of this operation is the profile of non-negative LFQ intensities over the four samples.
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Supplementary Fig. 11: Optimization of number of top fragments and peptides. a,
Summed inter-quartile ranges for the four-species benchmark dataset by XY et al. as a
function of the number of top intense fragments used for quantification. The accuracy is
increasing with rising number of fragments and plateauing around seven fragments after
which no noticeable improvement happens. b, Same as in panel a but optimizing the
number of top intense peptides used for quantification. The more peptides are taken, the
higher is the quantification accuracy.
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B Escherichia coli @ Homo sapiens Saccharomyces cerevisiae
Transfer

g-value: 0.01 0.03 0.05 0.10 0.30 0.50 1.00

Summed LFQ, Log2

@
-
3
2
o
£
& | M
0 A < i) A__JiLat A bt
4 2 0
Log,(ratio)
Valid LFQ ratios 1061 4523 1598 1130 4574 1672 1178 4585 1712 1284 4644 1787 1643 4775 2025 1679 4821 2176 1752 4831 2289
Valid Intensity ratios 1393 5436 2250 1448 5443 2306 1493 5445 2328 1580 5470 2377 1754 5520 2495 1837 5835 2575 1878 5537 2624
Summed IQR 130 1.20 1.18 1.08 158 241 3.04
Summed Absolute Error 043 0.38 0.34 025 on 029 0.58

Supplementary Fig. 12: Scanning through values for the transfer q.value. We analyzed
the Bruker tims-TOF pro three-species benchmark data using a range of values for the
transfer g-value between 0.01 and 1. We provide summed inter-quartile ranges of species-
specific ratio distributions as a measure of variability. Summed absolute errors are the
deviations of the expected value for each species.
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Supplementary Fig. 13: Text. a, Venn diagram of protein identifications mapped to
Entrez gene identifiers for the single shot BoxCar DIA samples using three different library
approaches. In particular, comparing protein identifications between fractionated library
and discovery approach shows good agreement of results. b, Venn diagram-like
comparison of replicate-specific identifications in the fractionated BoxCar DIA samples
analyzed in discovery mode. Only very few protein groups were not identified in all three
replicates.
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Supplementary notes to ‘MaxDIA enables highly sensitive and accurate
library-based and library-free data-independent acquisition
proteomics’ by Sinitcyn et al.

How to run MaxDIA in library mode

Summary: In order to enable MaxDIA for your DIA runs, after loading your mass spectrometry output data
(raw data) into MaxQuant and setting your experiment design and the number of threads you’d like to
utilize for your MaxQuant run, you can select either “Max DIA”, “TIMS MaxDIA” or “BoxCar MaxDIA” from
the “Type” menu within the “Group-specific parameters”. Doing so will bring up a menu where you can
specify your library files. These files include the peptide, evidence and msms text files from your DDA
MaxQuant runs.

Note: To be able to run MaxQuant, .NET Core 2.1 needs to be installed. Please visit
https://dotnet.microsoft.com/download/dotnet-core/2.1 and install the SDK x64."

Steps:

1. Using your internet browser, navigate to https://maxquant.org/

max planck institute
of biochemistry

2. Click on the blue “Download” button to navigate to the download form.
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Download MaxQuant

Name:
Emait

Company /
Institution:

Department
Country
Street

city

Zip:

Phone:

fax:

Comment:

| agree with license terms.

1 agree that Max-Planck Institute of Biochemistry,
Computational Systems Biochemistry may process
entered data for the purposes in accordance with the

MaxQuant Privacy Policy

max planck institute a
of biochemistry

3. Fill'in the form with your details and click on the check box at the end of the form to confirm
your agreement with the MaxQuant license terms.

4. Click on the blue “Download” button to download MaxQuant.

5. Navigate to your downloads folder on your PC, where the zipped MaxQuant folder has been
downloaded to.
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i MaxQuant.zip

Open

Open in new window

Extract All...

Open with

Restore previous versions

Send to

Cut
Copy

Create shortcut

D

elete

Rename

Properties

data-independent acquisition proteomics

6. Extract the contents of the zipped MaxQuant folder you downloaded.

bin
Changelog.txt
U MaxQuant.exe

: File description: MaxQuant

Company: Max Planck Institute of Biochemistry

|Size: 195 KB

7. After extraction, open the extracted MaxQuant folder and double click on MaxQuant.exe to run
MaxQuant.
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() session’ - MaxQuant
Fie Tools Window Hebp

Raw data  Groupspecfic parameters Global parameters  Peformance  Visualization  Configurarion  Server

Remove Wte template Set experment  Nofractions ~ Set PTM
Loadfolder Changefoider | Read fromfile Setiractons  Set parameter group  Set reference channels
npu: data Edit exparmental design
File Exists  Size Dataformat Parameter group  Experiment Fraction PTM Reference channels
Otems R
[ — P—
4 B Stat Stap Parial processing | ] Detad
8. Click on the “Load” button to load your mass spectrometry output data (raw data) into
MaxQuant.
() session1 - MaxQuant - O %

File Tools Window Help
Raw data specific parameters F Visuglization ~ Configuration
Load Remove Virite template Nofractions ~ Set PTM

Loadfolder ~ Change folder Read from file Set fractions ~ Set parameter croup St reference channels
npu: data Expenmental design fi Edit expermental design
File Exists | Size Dztaformat | Parameter group | Experiment Fraction PTM  Reference channels
1 D-DIADIA_1.raw True 46GB Thermora... |Group 0 ‘ False
2 D:DIADIA_2.raw Tue 4668 Thermo ra... | Group 0 [ False
[oa% w7
Sernrnst wn e
Start Stop Partial processing (m]

Detals

9. Now you can set the experiment design and the number of threads to be utilized by MaxQuant.
Most PCs have two threads per core. You can simply press the Windows key on your PC and
type “System Information”, press enter and look at the number of “Logical Processors” to find
out the maximum number of threads you can set. It is recommended to have at least 4 GB of

Ram per utilized thread (e.g. 4 threads would need 16 GB of Ram).
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[ session1 - MaxQuant - 0O X
Fle Tools Window Heb
Rawdetel Guwedcpa’aneteﬂl(}ktalpiamﬁm Peformance  Visualization  Configuration

load Remove Write template Set experiment  No fractions ~ Set PTM
Loadfolder  Change folder Read from file Setfractions  Set parameter goup  Set reference channels
Input data xpenmental design ik Edit expermental design
File Exists  Size Dataformat Parameter group  Experiment Fraction PTM Reference channels

1 DIDIADIA_1.raw True 46GB Thermora.. | Group 0 condition 1 | | False

2 D:\DIADIA_2.raw True 45GB Thermora.. Group 0 condition 2 \ | False
2items 0% v 1]
Nt o soremzrs Serd st whendre
4 H Stat Siop Parfal processing | ] Details

10. Next move on to the “Group-specific parameters” tab.

() session1 - MaxQuant — =] X
Fle Tools Window Help
Raw dsta Group-specfiic paramsters | Global parameters Pefommance  Visualization Configuration
[Growz 0] |[Tome | Modificatons Instrument ~Frt search
Digestion Labelfree quartfication Misc.

Parameser grous Parameter zection

Type Standard <
Tandard

Reporter ion MS2

Resoterion 33

NeuCode
EoxCar
TIMS-DDA
TIMS MaxDIA
EoxCar MaxDIA
T Dimethlys0
] Dimethlys2
Mineeea
v
Nurnber o rocessars Serd e atencere
4 + Siatt Stop Parsal processing | 1] Details

11. Here you can select the type of your mass spectrometry runs. There are three different MaxDIA
algorithms available, MaxDIA, TIMS MaxDIA and BoxCar MaxDIA. Depending on your runs,
choose the appropriate one.
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[ session1 - MaxQuant
Fle Tools Window Help
Rawdata Group-specific parameters  Global parameters Pefomance  Visualization Configuration
Type | Modficatons inetrument Firet eearch
Digestion  Labelfee quantfication Misc

Saramerer grous Barameter zeotion

s MaxDIA
Ubrary tyre MaxQuort
isv
Evidence files Add filefs) Bemove fi=
M Addfiels) | Removefie |
[ — POT—
4 3 Sat Stop Partal processing | [] Detaile

12. Next, you can choose the “Library type”. Choose “MaxQuant” for DDA library runs which have

been processed with MaxQuant and “tsv” for other third party software which support a tsv
output format.

e A 10> TePC » DAR@) > DA

Orgarze v Mewfoder = o @

botston Coturatin
3 Cropoen

@ Oncdine
s pe
20 Objects

evidencent msms ot peptides o1
1 Desitep

| Maxuant
8 Documens b sddfict) ]| Ramre e
& Downloads

D e

5 Pictures
B Video: =
L SYSTEM (C v

— oamy

= hamzery (\samba-home hameyechem.mpg.del
= pockcor-prejects-dis N\semise-pock-cox-projectsd

Fil name: [peptides.tat v | et Fdfie) | Revorefie

13. After choosing the library type, the library files should be added to each relevant section. The
“peptides.txt”, “evidence.txt” and “msmes.txt” files can be found in the “txt” folder of the
“combined” folder of your DDA library runs with MaxQuant.
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() sessiont - MaxQuant = r X
Fle Tools Window Help
Rawdata Group-specific parameters  Global parameters Pedommance Vieualizaton Configuration

Tive Wedicatons [ et [t search

Digestion ~ Label free quantfcation Miac

Parameter groug Parzmeter section
DA infial precuror mass lolerance ppm] 20 B
DIA intial fragment mass tolerance fppm] 20 |
DIA cor. threstold for feature chustering (/0.5
DIA prec. mass tol. forfeat. clustering ppm] [2
DIAfrag. mass tol. for feat. clustering [ppm] |2
DiAscore N 7
DIAmin. scors 1.95
DIA quant metnod Mixed, LFQ spli ~
DiAfeature quant metrod Sum =
DiAtop N quant 10
DiAtop meme ntensity cuantie forquant [ 85
DIA min. msms intensty “or quant 0
DIA precursor fiter typs = |
DIAmin. fragment overiap score 7 |
DIA miin. precursor score 05 |
DIA min. profie comelztion 0 ]
DIAglobal ML 2
DIA adaptive mass accuracy ]
DIA mass window factor 33 |
DIAbackground subtraction (]
DIA background subtraction quartle 05 ]
DIA background subtraction facter 4 |
DIA LFQ weighted median ]
DIA XGBoost Base Score 0.4
DIA XGBoost Sub Samcle 05
DIA XGRoost leaming objective Binaey logitic raw %
DIA XGBoost Min chid weight 9
DIA XGBoost Maximum Tree Depth 2
DIA XGBoost Estimators 580
DIA XGBoost Gamma 09
DIA XGBoost Max Deta Step 3
DliAno ML v
Sere ol wher dre
Sat Stop Patialprocessng | [ Detais

14. In the “Instrument” section, you can find many DIA related parameters. These parameters are
further explained within the table at the end of this document.
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() session* - MaxQuant

= o X
Fie Tools Wndow Hep
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4 = Start Stop. Panial processing | ] Details

15. MaxQuant’s label free quantification algorithm can be used for DIA samples too. To enable this,
navigate to the “Label-free quantification” section and select “LFQ” from the drop-down menu.

@
e Tools ‘'Window lep

Raw datz G P |Goba| parameters Visualizaton  Configuration

106

Pretein quantficaten  Tables MS/MS analyzer Advanced

Identficzrion Lal Foider locations
Parameter sevtion
Fasta fles %
v 4 [l > ThisPC > DATA(D) > DIA v o O SearchDIA
Organize v New folder - @ @
33 Dropbox
# OneDrive
Otems. 1 mmisec
Include contaminants i 2 3D Objects UP000005640_960  UP00000S640_960
e pertide lengtn T | moeuos basta 6_addttional facta
W pophda e ). B0, [& Documents
Min peptide length for unspecric search 8 ; i
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2 usic
Vaniaton made .
Nore =1 Pictures
B Videos
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Wanbe' s i SYSTEM (C)
4 # Start wp DATA (D)
= hamzeiy (\szmba-home-hamzeiy.biochem mpg.de)
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File name: | ) 960¢ fasta’ .9605_2ddit 3 | [Fasta file (festa) v

16. On the “Global parameters” tab, you can choose the appropriate FASTA files for your data under
the “Sequences” section. You can download FASTA files for different organisms from the UniProt
ftp server (ftp.uniprot.org) under:
/pub/databases/uniprot/current_release/knowledgebase/reference_proteomes
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() session - MaxQuant - o X
Fle Took Wndow Hep
Raw data Group-specfic parameters  Global parameters  Pedormance  Visualization Corfiguration
| Secuences | Frotein quantification  Tables M3/MS analyzer Advanced
Identiication ~ Label free quantfication ~ Folder locations  MS/MS fragmentation
Paramoter zaction
Fastz files Add Remove Crange folder | | Identier e Descripton | | Taxonomy nie | | Taxonomy ID ~
Vanation nule Teat
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17. You can now start your analysis.

How to run MaxDIA in discovery mode

Summary: Running MaxDIA is discovery mode is identical to the library mode in every step except for the
library files used (step 13 of library mode). Use in silico generated library files to run MaxDIA in discovery
mode and the relevant FASTA files. Follow the steps below to download in silico libraries for most common
species.

Steps:

1. Navigate to http://annotations.perseus-framework.org/.

. taShare Add to your ownCloud l 3 Download]

2. Click on “DiscoveryLibraries”.
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3. Here you can choose your organism of choice.

-
T ; rT— T

4. First download the relevant FASTA files. Then depending on the number of missed cleavages
choose the relevant folder.

K oaasna Ay e

5. Here you can find the three library files needed for the discovery mode. You should unzip these
files before use in MaxQuant.

How to submit results to the PRIDE repository

Summary: The PRIDE database has two main types of submissions “Complete Submission” and “Partial
Submission”. The main different between both types of submissions is that in Complete Submissions the
results (e.g. peptide and protein evidences) are provided in a standard file format such as mzTab or
mzldentML. In addition, Complete submissions received a DOIl. MaxQuant supports the mzTab file format
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to store its results, which is needed for the PRIDE complete submission. To generate the mzTab file, simply

enable it from the “Tables” menu of the “Global parameters”.
Steps:

) session1 - MaxQuant
Fe Tods Window Hep
Raw datz  Group-specific parameters  Global parameters  Performance  Visuakzation  Cenfiguration
Sequences Proten quantfication MS/MS analyzer Advanced
Label free f Folder locations MS/MS

Wte msScans table
Wrte msmsScane fable
Wrie ms3Scans tatle
Wite alPeptides table
Wrie mzHangs table
| Wite meTab
Wte DIA fragments table
Wric pascfMamaSaana table

RORKIQEDO

Nussbes of rocessars Ser el when o

1. To enable the mzTab output file, simple enable it from the “Tables” menu of the “Global

parameters”. It is disabled by default.

| session - MaxQuant

lers Global parameters  Performance  Visualzation Configuration  Server

Wte template Setexperiment  Nofractions  Set FTM
Read from file Setfractions  Setparametergroup  Set reference channels
Input data Zxpenmental design fk Edit expenmental design
f File Exists  Size Data format Parameter group  Experiment PTM Reference channels
1 | DADIA_1.raw True 46GB Thermo ra. Group 0 False
|
e p— = 0% | 1
Nusaber of pmoeass Sl ol when vk
4 & Start Stop Parial processing | [] Detaile
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Note: You can also enable the mzTab option as described in step one and use “Partial processing” to
simply only generate the mzTab file format for previously processed files by loading the relevant
mgpar.xml file within the folder containing your raw mass spectrometry data.

Prepare the Pride Complete submission:

Summary: To make a complete Pride submission, you should download the submission tool from
ProteomeXchange and follow the steps.

Steps:

1. Navigate to http://www.proteomexchange.org/submission/index.html.

Data submission

PRIDE - PRoteomics IDEntifications Database

PRIDE

e GUI based PX Submission Tool can b

PeptideAtlas - PASSEL
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2. Download the submission tool and extract the contents of the zip file. Make sure to have java
installed on your PC. The latest version of java can be downloaded and installed from
https://www.java.com/en/download/.

aspera
config

help

keyFiles

lib

log
checksum.txt

px-submission-tool-2.4.18.jar
| REAiType: JAR File
Size: 1.89 MB
| Date modified: 2020-08-12 17:10

3. Double click on the jar file or refer to the README file for instruction on running the tool from
the command line. Follow the steps accordingly.
4. After adding the title, sample and protocol description in the first two panels of the

ProteomeXchange submission tool, the user will arrive to a panel where files should be
provided:

R

L o] T

o 2w R 430

For MaxDIA Complete submissions the following files should be provided:

e The mzTab File (File Type RESULT): The mzTab contains the peptide and protein identifications in
a standard file format including the references to the spectra use for the identification and the
reference spectral library. The mzTab file is located in .../combined/txt/.

e RAW files (File Type RAW): The RAW files contain the original spectra capture by the mass
spectrometer.

e Protein FASTA database (File Type FASTA): Protein database used in MaxDIA to map the peptides
from the spectral library to the protein sequences.

e Parameters file mqpar.xml (File Type Other): The mgpar.xml contains all the parameters of the
experiment including search parameters such as enzyme, modifications and statistical thresholds
such FDRs. This file can be found where you have stored your RAW files.
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e Spectrum library references (File Type Spectrum Library): MaxDIA generates with the mzTab a list
of spectrum library files (extension MSP) which contains all the identified spectra from the original
spectral library generated with the DDA data or the in-silico libraries. The MSP files are located in
.../combined/msp/.

e combined.zip (File Type Other): In complete submissions it is important to provide also the
MaxDIA combined folder in a compressed format. This folder contains additional information not
included in the mzTab that are important for the users to understand the full experiment. This
folder can be found where you have stored your RAW files.

Note: PRIDE recommends to perform two separate submissions for DDA and DIA data even if they are
part of the same study. The user can cite or mention both accessions in the main manuscript. In this way,
the DDA data used to generate the spectrum libraries can be submitted as one project and the DIA data
with the resulting spectrum libraries from the DDA experiment can be submitted as a different project.

Table of all MaxDIA parameters

Parameter name
(GuI)

Type

Library type ("Type"
must be set to
"MaxDIA", "TIMS
MaxDIA" or
"BoxCar MaxDIA")

Peptide files
("Library type"
must be set to
"MaxQuant")

Evidence files
("Library type"
must be set to
"MaxQuant")

Msmis files ("Library
type" must be set
to "MaxQuant")
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Location in
GUI Tabs

Group-specific
parameters

Group-specific
parameters

Group-specific
parameters

Group-specific
parameters

Group-specific
parameters

Location
within GUI
Tab

Type

Type

Type

Type

Type

Parameter
name
(mgpar.xml)

lcmsRunType
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MaxDIA enables highly sensitive and accurate library-based and library-free
data-independent acquisition proteomics
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By clicking "Add file(s)", library
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defined
Minimum number of MS1 or
MS2 scans for defining a 3D
peak in DIA data

Indicates the mass tolerence for
the initial search

Indicates the quantification
method used for DIA data

Indicates the top MS/MS
intensity quantile to be used for
quantification
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4.3 Perseus plugin ‘Metis’ for metabolic pathway-
centered quantitative multi-omics data analysis
supporting static and time-series experimental

designs

Time-series omics data, available from circadian studies provide a unique
opportunity to infer new knowledge on dynamic biological processes by applying
multi-omics data analysis techniques. We take mice liver transcriptomics,
proteomics, phosphoproteomics, metabolomics, and lipidomics circadian data and
by utilizing a network-based method using a large-scale metabolic network
reconstruction provided by the BioModels database, we look for enzyme activity
regulation. In the context of this PhD work, data were gathered from different sources
and processed in a suitable manner, all necessary design, implementation of the
Perseus code-base was executed, and the following manuscript was written along

with the other co-authors.

Contributions to the following correspondence within the context of this
thesis include the design and implementation of the network-based multi-omics data

analysis approach, data analysis and writing of the manuscript.

Hamid Hamzeiy, Daniela Ferretti, Maria S. Robles, and Jiirgen Cox. “Perseus
plugin ‘Metis’ for metabolic pathway-centered quantitative multi-omics data analysis
supporting static and time-series experimental designs.” Submitted to Cell Systems,

2021
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Perseus plugin ‘Metis’ for metabolic pathway-centered quantitative multi-
omics data analysis supporting static and time-series experimental designs

Summary (134/150)

We introduce Metis, a new plugin for the Perseus software aimed at analyzing quantitative
multi-omics data based on metabolic pathways. Data from different omics types are
connected through reactions of a genome-scale metabolic pathway reconstruction.
Metabolite concentrations connect through the reactants, while transcript, protein and
protein posttranslational modification (PTM) data are associated through the enzymes
catalyzing the reactions. Supported experimental designs include static comparative studies
and time series data. As an example for the latter, we combine circadian mouse liver multi-
omics data and study the contribution of cycles of phosphoproteome and metabolome to
enzyme activity regulation. Our analysis resulted in 52 pairs of cycling phosphosites and
metabolites connected through a reaction. The time lags between phosphorylation and
metabolite peak show non-uniform behavior, indicating a major contribution of

phosphorylation in the modulation of enzymatic activity.

Keywords

Multi-omics, circadian rhythms, transcriptomics, proteomics, phosphoproteomics,

metabolomics, metabolic networks, enzyme activity regulation, Perseus, Metis
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Introduction

Studying two or more types of biomolecules simultaneously in omics studies is of great
benefit since it can reveal information that is not apparent when each of the omics
dimensions is considered separately. For instance, studying transcriptome and proteome
may reveal nodes of posttranscriptional regulation (Buccitelli and Selbach, 2020; Cox and
Mann, 2012) which are not apparent in the transcriptomic or proteomic data alone. Another
important example is expression quantitative trait loci (Cheung et al., 2005; Morloy et al.,
2004) in which genetic association is correlated with gene expression to shed light on the
relationship between traits and expression driven cellular processes. The combined
analysis of multiple omics dimensions is challenging for multiple reasons. First of all, the
quantitative measurements in each technology separately have to be of sufficiently high
quality before correlations with other domains can make sense. For instance, early day
studies of the relationship between cellular mRNA and protein levels found them to be
nearly uncorrelated (Gygi et al., 1999), which was likely due to the shortcomings of at least
one of the technologies. Since then a correlation has been confirmed in many cell types in
steady state with typically moderate positive values of the Pearson correlation coefficients,
despite all the differences in details between transcriptome and proteome (Wang et al.,
2019). Further obstacles for multi-omics analysis are limited dynamic range and the
resulting missing values problem inherent to most omics technologies. Furthermore, a
statistical challenge arises, when performing all against all comparisons of variables in one
technology to variables in another technology. The number of statistical tests for pair-wise
correlations explodes and therefore, either a large number of false positives is created when
working with p-value thresholds, or potentially meaningful truly positive signals are lost

due to the necessity of stringent false discovery rate control.

Here we introduce a software solution to this problem, for the cases in which a correlative
analysis involves untargeted metabolome data in combination with one or more other
omics technologies, which we connect through the reactions of a metabolic pathway. For
this purpose, we developed Metis, which is a plugin for the Perseus software (Tyanova et
al., 2016), and which we describe in this manuscript. Perseus is a comprehensive platform

for omics data analysis, which was developed with a user in mind, who is a life science
3
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researcher but not necessarily holds a degree in bioinformatics. Hence, we expect to enable
a large user base with this type of comparative multi-omics analysis, in contrast to other

software tools that are targeted at programmers or bioinformatics specialists.

While Metis can be applied to any kind of experimental design, we focus here on an
example with time series data highlighting an application to circadian multi-omics
integration. Circadian rhythms are endogenous and self-sustainable oscillators, present in
most living organisms, which drive daily cycles of molecular and metabolic processes
(Finger et al., 2020). The molecular mechanism of the clock, built on transcriptional and
translational feedback loops, regulates the expression of ~20% of the genes in any given
tissue in mammals. Additionally, post-transcriptional and post-translational mechanisms
are reported to play an essential role in circadian regulation of metabolism (Robles et al.,
2014, 2017). Metis allows the investigation of cross-correlations between quantitative
changes of a metabolic enzyme at different molecular level, such as transcript, protein,
phosphorylation status, and the abundance changes of the products and reactants of its
catalyzed reactions, aiding to pinpoint key regulatory enzymatic mechanisms. Regulatory
nodes could be modulated by phosphorylation-dependent enzyme activity but also by
enzyme expression changes at the protein and/or transcript level, which can be
distinguished by integrating the proteome and transcriptome in the PTM data analysis. The
integration of diverse temporal dynamic omics datasets together with rhythmic metabolite
profiles from mouse liver uncover phosphorylation as a major enzymatic regulatory mode.
Rhythmic phosphorylation of metabolic enzymes regulates its temporal activity and thus

metabolic reactions across the day.

Results

Perseus software and Metis plugins

The Perseus software (Tyanova et al., 2016) is a comprehensive framework for high-

dimensional omics data analysis with a focus on intuitive usability by interdisciplinary

users. Through its plug-in architecture it is extensible by writing code for workflow

activities in multiple programming languages, like C#, R and Python (Yu et al., 2020).
4
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Besides statistical analysis on data matrices, the study of networks is supported as well
(Rudolph and Cox, 2019). For instance, the PHOTON plug-in (Rudolph et al., 2016) can
be used to analyze phosphoproteomics data in the context of protein-protein interaction

networks with the aim of reconstructing kinase activities (Briining et al., 2019).

Here we extend the network capabilities of Perseus to the specific requirements of
metabolic pathways with the Metis toolbox. We use genome-scale networks of metabolic
reactions to interconnect data from different omics dimensions (Figure 1). We take
reactions, reactants and enzymes as nodes of the network, while edges connect the reactants
and enzymes to the reactions they are taking part in. The enzyme nodes can incorporate
multiple types of quantitative omics data such as proteomics, phosphoproteomics and
transcriptomics data. Moreover, nodes can associate to multiple quantitative datasets of
different experimental designs, comprising for instance sample group comparisons or time-
series data. This allows to compare metabolic reactions across diverse datasets spanning
many conditions and containing temporal data, providing thus relevant functional
biological information. While we focus in this manuscript on the analysis of multi-omics
time series data, Metis is more generic in terms of experimental designs and is also capable

of analyzing non-time series data (Supplementary Figure 1).

The alternative to this network-based analysis of multiple omics dimensions would be an
approach based on all pair-wise comparisons between the molecules in the omics datasets
without filtering through a network. However, the connection of omics features through
the reaction network is crucial to the analysis for the reason of statistical significance of
comparisons. To illustrate this, we provide the following example: assume a comparison
of untargeted metabolomics data with 1,000 compounds profiled over a time series with
10,000 phosphosites from samples of the same time series. All pair-wise comparisons
between phosphosites and metabolites would amount to 10,000,000 pairs. One would then
perform one statistical test per pair, for instance, to check if the Pearson or Spearman
correlation is significantly different from zero. Considering in addition time-lagged
correlations would further increase the number of tests on the order of ten-fold. Using a
moderate p-value threshold would result in many false positives with such a high number
5
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of hypotheses tested simultaneously. For instance, a p-value threshold of 0.01 would result
in on the order of 1,000,000 false significant calls. The proper alternative to this would be
false discovery rate (FDR) control, for instance with randomizations for generating the null
hypothesis distribution. This would, however, likely not call any of the tests as significant
due to the large background of noisy comparisons. Hence, the comparison of multiple
omics through a network that provides a priori knowledge about the relationship between

the omics levels is crucial for their statistical analysis.

Rhythmicity estimation of multi-omics circadian time series datasets

We decided to perform an integrative multi-omics analysis of publicly available datasets
assaying in vivo circadian dynamics in mouse liver. In order to achieve this, we obtained
and re-analyzed the most comprehensive published omics studies in transcriptomics
(Hughes et al., 2009), proteomics (Robles et al., 2014), phosphoproteomics (Robles et al.,
2017), metabolomics (Krishnaiah et al., 2017) and lipidomics (Adamovich et al., 2014)
(see Table 1 and Figure 2). An important selection criterion was to choose studies done
using the same animal housing conditions. In all studies, mice were entrained to light-dark
cycles prior to being released to constant darkness, allowing us to use the same periodicity
analysis in all datasets. Consequently, we use 23.6 hours as period length since this is the
approximate free running period of mice driven by the internal clock. Sampling resolution
differed among those studies, varying from lh to 4h, and we kept the original time
resolution of each dataset for the integrative re-analysis. Using the Perseus cycling analysis
package (see Methods), we analyze rhythmicity in all omics datasets individually, by fitting
the log-transformed data to a cosine curve with a period of 23.6h and calculating the FDR
using 1,000 randomizations to simulate the null hypothesis of no cycling behavior. To
avoid discrepancies with the findings in the published datasets we use the same FDR cut-
offs as in the original publications. In addition, we use the phosphoproteomics dataset to
predict kinase activity using the PHOTON method (Rudolph et al., 2016). The Perseus
session for the cycling analysis plus the respective software version are provided as

supplementary material.

Cycling biomolecules
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The resulting cycling analysis of the five omics datasets plus the predicted kinases with
daily patterns of activity is represented in Figure 3. The total number of cycling molecules
has to be interpreted with caution since it is biased by the depths of the respective
technologies. The fraction of cycling molecules relative to all molecules quantified by the
technology (Figure 3a) is more meaningful but still not free from biases. For instance, the
ability to detect statistically significant cycling profiles strongly depends on the
quantitative precision of the technology, the number of time points used per cycle and the
total length of the time series in relation to the period length. Furthermore, within datasets,
molecules which are close to the detection limit tend to be more difficult to consider them

cycling compared to highly abundant molecules.

The profiles of all cycling biomolecules are shown as heat maps in Figure 3b, which are
sorted in vertical direction by their acrophase. Out of all biomolecules, metabolites show,
with 58%, the largest fraction of cycling molecules. Next frequent are transcripts, of which
almost one third show rhythms in abundance with acrophases uniformly distributed across
the day, as described in the original publication and in other pioneering studies done with
wider spaced time points (Panda et al., 2002; Storch et al., 2002; Ueda et al., 2002). In
contrast, mouse liver proteins have a smaller cycling fraction, 6% of the total, sharply
peaking at two main clusters, one during the day and a second one in the middle of the
night (Figure 3c¢). The latter cluster is due to the induction of protein translation in respond
to an increase in energy levels due to feeding, occurring during the night in mice as
nocturnal animals. It was found (Robles et al., 2014) that when filtering the transcripts to
those for which the corresponding protein is cycling, phase relations between peaking
proteins and transcripts are on average compatible with the expected time lag between
transcription and translation, but with strong variations between individual transcript-

protein pairs.

Protein function is often regulated by post-translational modifications rather than, or in

addition to, changes in protein levels. This is the case for many proteins involved in

temporally regulated signaling pathways in the liver (Robles et al., 2017). Thus, it is not

surprising that 26% of the phosphorylation sites, corresponding to more than 40% of liver
7
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proteins, display daily rhythms, almost completely independent of protein abundance
cycles. Similar to rhythmic proteins, cycling phosphorylation showed two distinct clusters
of acrophases, but in contrast to proteins, with the majority of peaks occurring during the
day or resting phase and slightly earlier than the protein cluster. The extensive regulation
of phosphorylation in mouse liver implies temporal control of kinase activity. Kinase
activity is, in addition to protein levels, strongly regulated by phosphorylation, and often
by autophosphorylation. Thus, while among all cycling proteins in liver, there are three
kinases with rhythmic changes, 55 kinases displaying cycles of phosphorylation
abundance. It is however very challenging to infer kinase activity by using phosphorylation
patterns on the kinases since the majority of phosphorylation sites are of unknown function
(Needham et al., 2019). Taking advantage of curated kinase-substrate relationships
(Hornbeck et al., 2015) we were previously able to infer a number of kinases whose activity
oscillates across the day (Robles et al., 2017). Since this prediction method is biased
towards well-known kinases, we here use an alternative method to predict cycles of kinase
activity, the PHOTON algorithm (Rudolph et al., 2016), which is based on the statistical
analysis of protein-protein interaction networks. Applying it to the phosphoproteome data,
we were able to predict 33 distinct kinases with changes in their activities across the day,
corresponding to 20% of all kinases in the PHOTON analysis. Interestingly, predicted
kinase activities are enriched in two temporal regions slightly preceding the
phosphorylation clusters on average, indicative of a time lag between peak kinase activity
and maximum substrate phosphorylation. Overall, our data shows that kinetics of
molecular reactions, such as phosphorylation, can be studied using large scale time series

data.

Circadian clocks and metabolism crosstalk bi-directionally. While tissue clocks regulate
local metabolism, the metabolic state feeds back to the molecular clock (Brown, 2016).
Accordingly, in mouse liver, which is one of the most studied organs, a large proportion of
metabolites have been described to display rhythms across the day. Perseus cycling
analysis of the metabolomics data resulted in more than 50% of metabolites with daily
cycles, similar to what was reported in the original study (Krishnaiah et al., 2017).
Rhythmic metabolites peak at diverse times of the day, many of them during the inactive

8
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phase (Figure 3). Similarly, Perseus cycling analysis of the lipidomics data yielded cycling
lipids, 7% of the total, peaking predominantly during the day as previously reported
(Adamovich et al., 2014).

Reaction-based multi-omics filtering

Metabolic networks are represented within Perseus with three different node types, namely
reaction, enzyme and metabolite (Figure 4). Metabolite nodes are connected to the
reactions they participate in, and are classified as a substrate or a product of the reaction in
question. Since enzymes are not consumed or produced via the reaction but only catalyze
it, these nodes are connected to the reaction nodes in an undirected manner. All node types
can be annotated within the nodes table of the network in Perseus with both qualitative and
quantitative information, e.g. in the case of a reaction this can be its reversibility or rate.
Edges can also be annotated with various qualitative and quantitative information. When
filtering for reactions of interest, Perseus can retain all reaction nodes where a condition is
either true or false and/or a certain threshold is applied to the numerical annotation at the
metabolite or enzyme nodes of the metabolic network. In other words, all nodes that meet
the condition/s of the filter plus the reaction nodes directly connected to them can either be
retained or removed in order to reach the desired network for further analysis in the next
processing step. The user also has the option to apply several filters of a certain type on
different properties of the nodes and edges in union or as intersect, depending on the nature
of the question. Here, we apply a filter on the g-values of the periodicity analysis of each
of the three omics dimensions, namely proteomics (q-value >=0.33), phosphoproteomics
(g-value < 0.1) and metabolomics (g-value <0.05), to retain all reactions that have nodes
with our criteria for further analysis. Following this filtering, we looked for reactions
mediated by enzymes that are not cycling at the protein level, harbor cycling
phosphorylations and have rhythmic substrates and/or products. For more details on how

to perform the filtering see Methods and Figure 4.

Phosphorylation as driver of dynamic enzymatic reactions

The multi-omics network analysis with Metis resulted in a metabolic sub-network with

cycling metabolites of reactions mediated by enzymes with rhythmic phosphorylation
9
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changes (Figure 5 and Supplementary Table 1). Together, those rhythmic reactions covered
several metabolic processes that involve important metabolites such as NADH, AMP, CoA
and amino acids. Overall we find that phosphorylation works as a regulatory switch for
enzymes in key metabolic reactions in mouse liver. While phosphorylation can serve as an
activating or repressive modulator, most of the time, the functional relevance of a
phosphorylated residue identified in a large scale phosphoproteomics study is unknown
(Needham et al., 2019). This is the case for many of the rhythmic phosphorylations in
metabolic enzymes of our network as well. We thus seek to infer the functional role of the
phosphorylation in the activity of some of these enzymes based on the quantitative
correlation with the substrate and/or product of its reaction. An evident example of this is
the case of carbamoyl-phosphate synthetase 2 (CAD), which is confirmed by our analysis,
where we reproduce the fact that the enzyme is allosterically regulated by phosphorylation
at S1859 (Robitaille et al., 2013) (Supplementary Figure 2).

Moreover, S26 phosphorylation of acyl-coenzyme A oxidase 1 (ACOXI1), the enzyme
catalyzing the first step of peroxisomal very-long-chain fatty acid oxidation, cycles with a
peak in the resting phase concomitant with the nadir of FAD, the cofactor of this reaction
(Figure 5a, left panel). Low cofactor levels could indicate high enzymatic activity plausibly
driven by phosphorylation, leading to a temporal regulation of peroxisomal fatty acid
oxidation with a peak in the inactive phase as reported for mitochondria fatty acid oxidation
(Neufeld-Cohen et al., 2016). FAD is also a cofactor in first step of proline catabolism
mediated by proline dehydrogenase (PRODH). In addition to the cofactor FAD, proline as
substrate of this reaction is also rhythmic with a nadir during the inactive phase similar to
FAD and also to the cycling profile of PRODH phosphorylation of S32. Thus, under
nutrient stress during the resting phase when mice are not eating, PRODH activation would
mediate proline catabolism to maintain the cellular energy levels (Pandhare et al., 2009).
In contrast to what we observed for ACOX1, increased S32 phosphorylation of PRODH
would lead to enzymatic inhibition and accumulation of proline during the active phase

when nutrient levels are high due to food intake (Figure 5a, middle and right panels).

10
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Another example is the crosstalk between Acetyl-CoA Synthase (ACSS2) rhythmic
phosphorylation and the cycle of its enzymatic cofactor, coenzyme A (CoA). ACSS2 is
rhythmically phosphorylated in S267 while S30, S263, S267 and S263 phosphorylations
do not cycle. Acetyl-CoA is produced by ACSS2 using citrate and CoA as substrates,
therefore the fact that the CoA cycles in antiphase to the ACSS2 S267 phosphorylation
suggests that ACSS2 activity is promoted by S267 phosphorylation (Figure 5f). A similar
relationship can be inferred for the CoA Synthase, COASY, which cycling phosphorylation
at S177 and S182 occurred parallel to the rhythmic levels of its enzymatic product CoA

(Figure 5f).

Another very interesting cross-correlation between rhythmic enzymatic phosphorylation
and cycles of substrate and product metabolites is the reaction mediated by the Glycine N-
methyltransferase (GNMT). GNMT catalyzes the synthesis of N-methylglycine (sarcosine)
from glycine using S-adenosylmethionine (SAM) as the methyl donor, producing S-
adenosylmethionine (SAM). The peak of GNMT phosphorylation at S10 in the middle of
the night, likely driven by feeding as previously reported, is concomitant with the
maximum levels SAH and nadir of SAM, product and substrate of its enzymatic reaction,
respectively (Figure 5d). In this manner, the nutrient dependent regulation of GMNT
activity via phosphorylation would impact methionine metabolism and the methyl cycle by
controlling the SAM/SAH ratio. Since SAM is the methyl donor for almost all cellular
methylation reactions, temporal control of GNMT activity across the day would likely
contribute to the daily rhythms of RNA and histone methylation and their crosstalk to the
molecular clock (Fustin et al., 2013, 2020; Greco et al., 2020).

Phase relations between metabolite concentrations and enzyme phosphorylation

In the previous section we looked into specific examples of pairs of cycling metabolites
and cycling enzyme phosphorylation that passed our filters targeted at finding enzyme
regulation by phosphorylation. In Figure 6 we provide a histogram of phase differences
containing all such pairs found by the network analysis. The phase differences are grouped
into 3h bins. The bin at 0 contains those cases for which the enzyme phosphorylation is in
phase with the metabolite levels (phase difference between -1.5h and +1.5h), while the bin

11
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at 12 contains those cases for which metabolite and phosphorylation levels are in anti-phase
(phase difference between 10.5h and 13.5h). The highest bin is the one in exact anti-phase
at 12. In this bin, the metabolite concentration is high when the fraction of enzymes that
are phosphorylated at the respective site is low and vice versa. One needs to distinguish
cases in which the metabolite is counted as a product or as a substrate of the reaction. In
case the metabolite is a product, these can be interpreted as potential cases of enzyme
activity repression by phosphorylation. In case the metabolite is a substrate, the
interpretation is enzyme activation, since the more substrate is consumed, the greater
enzyme function driven by higher phosphorylation level. Accuracy of the data, simplicity
of the fit model and the binning of phases, all give some leeway to the phase relationship
which can accommodate 1-2h time lags due to accumulation or consumption times of

metabolite concentrations.

Another interesting region of the histogram is around time lag 0 (bins -3h, Oh, 3), which
also has an increased number of cases compared to the average. Here, phosphorylation
levels are close in phase with the metabolite concentration, leading to the opposite
interpretation as in the 12h bin. Here the cases with substrates are interpreted as enzyme
suppression by phosphorylation while cases with products are interpreted as enzyme
activation. Time lags due to accumulation/consumption effects seem to be larger here as is

manifested by the larger spread of phase differences onto the -3h and 3h bins.

In summary, the distribution of phase differences between metabolites and corresponding
enzyme phosphorylation is non-uniform and indicative of enzyme activity regulation due
to metabolite and phosphorylation crosstalk. Several of these enzyme-metabolite pairs

could be rationalized in the previous subsection.

Discussion

We introduced Metis, a Perseus plugin for the joint analysis of multiple omics datasets
through metabolic networks. On circadian multi-omics data for mouse liver we find

enzyme phosphorylation-metabolite pairs co-occurring in reactions, that show phase
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relationships indicative of activation and repression. The circadian multi-omics analysis
using Metis highlights phosphorylation as a major regulatory switch of enzymatic activity
regulating daily metabolic reactions in mouse liver as already shown for receptor

downstream signaling pathways in this same organ (Robles et al., 2017).

We see data quality in terms of completeness of quantification over whole time series, as
well as quantification accuracy as limitations to the data analysis, in particular for the
metabolome and phosphoproteome data. The noisiness led us to perform as a first step
circadian analysis separately in each of the omics levels and do the network-based analysis
with the resulting fit parameters. With advances in data quality it will be possible, as well
as of interest, to perform the network analysis with correlations across omics dimensions
on the raw time profiles. We see Perseus and Metis as a very suitable framework for this

purpose.

Analysis of circadian multi-omics dataset using Metis highlighted a predominant role for
phosphorylation regulating the activity of metabolic enzymes and consequently
metabolism. Metabolic state crosstalk to the molecular clock to thus ensure proper
circadian response to metabolic changes (Brown, 2016). One mechanism of crosstalk could
involve metabolic enzymes that directly modulate circadian transcriptional control by
physically interacting with chromatin remodeling systems, reprograming gene expression
in response to the metabolic state (Boon et al., 2020; Li et al., 2018). This reprogramming
would be largely based on posttranslational mechanism leading to modifications of
histones and nonhistone proteins to ultimately control their activity. Our analysis of
metabolite and enzymatic activity supports this notion and even exposes complementary
metabolic reactions which can impact transcription. For example, while ACSS2 phospho-
dependent peak of activity in the middle of the night would promote histone acetylation
(Mews et al., 2017) and transcriptional activity by generating Acetyl-CoA, food-driven
phosphorylation and activation of GNMT in the night would inhibit histone methylation
and thus transcriptional repression, by reducing SAM levels (Fustin et al., 2013, 2020;
Greco et al., 2020). Thus, rthythms of metabolic enzymatic activity and corresponding
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metabolite levels would specifically impact the circadian molecular machinery at the

chromatin to ultimately entrain the molecular clock to metabolic and nutrient state.
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Data and code availability
Data analysis was performed with Perseus version 1.6.15 containing the Metis plugin. All
Perseus sessions and further data are available in the Mendeley dataset

http://dx.doi.org/10.17632/n4nx6x999v.1,

Method details

Transcriptomics data

The mouse liver circadian transcriptomics data contained 18,647 transcripts, quantified
every hour (48 time points). The series matrix was downloaded as a .txt file from the Gene
Expression Omnibus (GEO) with the ID GSE11923 (Hughes et al., 2009). The header of
the downloaded file was removed, only keeping the “!Sample title”. This file was then
uploaded to Perseus using the “Generic matrix upload” function where all columns
containing expression values were uploaded as “Main” and the “ID_REF” column was
uploaded as “Text”. The “ID REF” column was used to annotate the transcripts with
UniProt IDs using a Perseus annotation file shipped with the software (which was also
uploaded to Perseus using the “Generic matrix upload” function) and the “Matching rows
by name” function of Perseus. Rows which were not annotated with a UniProt ID were
removed using the “Filter rows based on text column” function. The rows with the same
UniProt ID were combined, taking the median using the “Unique rows” function. Having
checked the distribution of the data using the “Histogram” function, the data was
transformed by logl 0(x) using the “Transform” function (see Perseus session file named

“Transcriptomics.sps”).

Proteomics data

The mouse liver circadian proteomics data contained 3,132 proteins, quantified every three
hours (16 time points). The data was obtained from the supplementary material of the
original article (Robles et al., 2014) as an Excel document. The sheet named “A- Total
dataset” was saved as a .txt file and uploaded to Perseus using the “Generic matrix upload”
function where all columns containing expression values were uploaded as “Main” and the

UniProt IDs of the proteins as “Text”. Having checked the distribution of the data using
15
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the “Histogram” function, and since the original paper reports the expression values to have
been transformed by log2(x), the data was first transformed by 2% and later by log10(x)
using the “Transform” function. This is done so that all data sets are treated exactly in the

same manner within Perseus (see Perseus session file named “Proteomics.sps”).

Phosphoproteomics data

The mouse liver phosphoproteomics data contained 7,986 phosphosites quantified every
three hours (16 time points). The data was obtained from the supplementary material of the
original article (Robles et al., 2017) as an Excel document. The sheet named “A- Total
dataset” was saved as a .txt file and uploaded to Perseus using the “Generic matrix upload”
function where all columns containing expression values were uploaded as “Main”, the
UniProt IDs of the proteins as “Text”, the phosphorylated amino acid as “Text” and the
position of the phosphorylated amino acid within the protein as “Text”. Since the data was
already log10(x) transformed, no further processing was carried out (see Perseus session

file named “Phosphoproteomics.sps”).

Metabolomics data

The mouse liver circadian metabolomics data contained 224 metabolites, quantified every
hour (48 time points). The data was obtained from the supplementary material of the
original article (Krishnaiah et al., 2017) as an Excel document. The sheet named
“Liver_data” was saved as a .txt file. For the measured metabolites we could retrieve 200
ChEBI IDs which were later used to map and annotate the metabolites according to the
mouse metabolic network from the BioModels database. The ChEBI IDs were retrieved
via a simple script from HMDB website using the supplied HMDB IDs within the original
supplementary file provided by Krishnaiah et al., 2017. For metabolites missing HMDB
IDs, metabolite names were used for manual retrieval of ChEBI IDs. The resulting .txt file
was then uploaded to Perseus using the “Generic matrix upload” function where all
columns containing the metabolite quantification values were uploaded as “Main”. Having
checked the distribution of the data using the “Histogram” function, the data was
transformed by logl0(x) using the “Transform” function (see Perseus session file named

“Metabolomics.sps”).
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Lipidomics data

The lipidomics data contained 159 lipids, quantified every four hours (6 time points). The
data was obtained from the supplementary material of the original article (Adamovich et
al., 2014) as an Excel document. The sheet named “A.” was modified to have the lipid
types as a column instead of row separators and saved as a .txt file and uploaded to Perseus
using the “Generic matrix upload” function where all columns containing the lipid
quantification values were uploaded as “Main”, the mass as “Numeric” and the type and
name as “Text”. Having checked the distribution of the data using the “Histogram”
function, the data was transformed by logl0(x) using the “Transform” function (see

Perseus session file named “Lipidomics.sps”).

Kinase activity prediction

Kinase activity prediction was performed using the PHOTON plugin of Perseus. The
phosphoproteomics data was annotated based on the UniProt IDs with Gene IDs and ENSP
IDs using the Perseus “Add annotation” function. Three different protein-protein
interaction networks were used, namely BioGRID, IntAct and STRING. These were
downloaded from the respective web sources and are available as supplementary data
within this paper. After the analysis described below for each interaction network, the
periodicity analysis is performed as explained in the Periodicity Analysis section and the
resulting matrices are merged, annotated using the “Add annotation” function with
“Keywords” which were later filters for “Kinase” using the “Filter rows based on
categorical column” to keep only the kinases from the PHOTON prediction (see Perseus

session file named “Kinase Activity Prediction.sps”).

The BioGRID network .txt file and uploaded to Perseus using the “Generic matrix upload”
function with the confidence column as “Numeric” and the source and target columns as
“Text”. The resulting matrix was converted to the Perseus “Network collection” data type
using the “From matrix” function of Perseus choosing the correct “Source” and “Target”
columns. Then the node degrees were calculated using the “Node degrees” function of
Perseus and filtered using the “Filter nodes by numerical column” function for nodes with

less than 600 degrees in order to discard nodes that are connected to too many other nodes
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which would cause significant noise within the PHOTON analysis. The remaining nodes
within the network were then annotated with the phosphoproteomics quantitative time
series data (all the “Main” columns) using the “Annotate nodes” function based on the
“Node” column of the network and the “GeneID” column of the phosphoproteomics data,
selecting “Keep separate” for the “Combine copied main values” option. PHOTON
analysis was done using the PHOTON plugin of Perseus where all the columns contacting
the quantitative data are selected and the “Side” is selected as “twosided” and a python.exe
path is given as “Executable”. As output, PHOTON provides two network collections and
a matrix. The matrix was further processed using the “To base identifiers” function based
on the “Node” column containing the Gene IDs to retrieve the UniProt IDs for the
PHOTON prediction. The columns were also renamed using the “Rename columns”
function and sorted using the “Sort columns” function. The resulting matrix was saved as

a .txt file using the “Generic matrix export” function.

The IntAct network .txt file and uploaded to Perseus using the “Generic matrix upload”
function with the confidence column as “Numeric” and the source and target columns as
“Text”. The resulting matrix was filtered using the “Filter nodes by numerical column”
function for the protein-protein interactions with confidence values greater than 0.5. The
resulting converted to the Perseus “Network collection” data type using the “From matrix”
function of Perseus choosing the correct “Source” and “Target” columns. The nodes within
the network were then annotated with the phosphoproteomics quantitative time series data
(all the “Main” columns) using the “Annotate nodes” function based on the “Node” column
of the network and the column containing the UniProt IDs of the phosphoproteomics data,
selecting “Keep separate” for the “Combine copied main values” option. PHOTON
analysis was done using the PHOTON plugin of Perseus where all the columns contacting
the quantitative data are selected and the “Side” is selected as “twosided” and a python.exe
path is given as “Executable”. As output, PHOTON provides two network collections and
a matrix. The matrix was further processed to rename the columns using the “Rename
columns” function and sort them using the “Sort columns” function. The resulting matrix

was saved as a .txt file using the “Generic matrix export” function.
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The STRING network .txt file was uploaded to Perseus using the “Raw upload” function
with the “Split into columns” selected along with the “Separator” as “Tab”. The resulting
matrix’s score column type was converted from string to numerical using the “Change
column type” function. Later the score column was used to filter for interactions with a
score higher than 900 using the “Filter nodes by numerical column” function. The “mode”
column was also used to filter for protein-protein interactions which were categorized as
“binding” using the “Filter rows based on text column” function with the search string set
as “binding”, without matching for case but matching for the whole word and the “Mode”
selected as “Keep matching rows” and the filter mode as “Reduce matrix”. The resulting
matrix was further processed using the “Process text column” function to remove “10090.”
from the beginning of the ENS IDs within the STRING network “item id a” and
“item_id_b” columns with the regular expression “10090\.(.*)” and no replacement string.
The “Rename columns” function was used to rename the columns within the matrix
containing the ENS IDs to “proteinl” and “protein2” for the interacting proteins. The
“Transform” function was then used on the confidence column with the transformation
formula as “x/1000”. Later, using the “Reorder/remove columns” function, only the
columns “Confidence”, “proteinl” and “protein2” were kept for creating the Perseus
network collection using the “From matrix” function to be used for PHOTON analysis.
Prior to the PHOTON analysis, the node degrees were calculated using the “Node degrees”
function which was used to filter the network for nodes with degrees less than 1000 in
order to discard nodes that are connected to too many other nodes which would cause
significant noise within the PHOTON analysis. The nodes within the network were then
annotated with the phosphoproteomics quantitative time series data (all the “Main”
columns) using the “Annotate nodes” function based on the “Node” column of the network
and the column containing the ENSP IDs of the phosphoproteomics data, selecting “Keep
separate” for the “Combine copied main values” option. PHOTON analysis was done using
the PHOTON plugin of Perseus where all the columns contacting the quantitative data are
selected and the “Side” is selected as “greater” and a python.exe path is given as
“Executable”. As output, PHOTON provides two network collections and a matrix. The

matrix was further processed to rename the columns using the “Rename columns” function
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and sort them using the “Sort columns” function. The resulting matrix was saved as a .txt

file using the “Generic matrix export” function.

Periodicity analysis

All the data acquired from previous publications and the kinase activity prediction were
analyzed using Perseus’s time-series analysis toolkit. Perseus performs this analysis in a
permutation-based FDR-controlled manner and calculates the amplitude of the change and
the peaking time for each case by fitting the data to a cosine function (Tyanova et al., 2016).
The results were then filtered to define “cycling” and “non-cycling” entries according to
the original g-values recommended by each of the publications that the data originated
from and g-value less than 0.1 for the kinase activity prediction data using the “Filter rows
based on numerical/main column” function. The data was annotated using the “Categorical
annotation rows” and “Numerical annotation rows” functions for all the measurements
within the 48 hours. The last five time points of the transcriptomics data were removed due
to systematic abnormalities observed in the data using the “Reorder/remove columns”
function. Using the numerical annotation, the circadian analysis was done using the
“Periodicity analysis” function with the period set to 23.6, FDR set to 1 and number of
randomizations set to 1000. The heat maps were made by collapsing and averaging the
measurements to 3 hour intervals using “Average groups” function and the zero and 24
time point were calculated using the same data points. Prior to visualizing the heat map the
“Z-score” function was used for normalization and the “Hierarchical clustering” function
was used without the row and column trees (see Perseus session files named
“Lipidomics.sps”, “Metabolomics.sps”, “Phosphoproteomics.sps”, “Proteomics.sps”,

“Transcriptomics.sps” and “Kinase Activity Prediction Cycling Analysis.sps”).

‘Whole genome metabolic networks

The metabolic network used in this study and available at http://annotations.perseus-

framework.org/ within the “MetabolicNetworks” folder for 11 most popular model

organisms are based on data downloaded from the BioModels database (Path2Models)
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(Biichel et al., 2013). These metabolic networks are parsed upon retrieval from the
BioModels database as an .xml file and reduced to two text files containing the edges and
the node annotations of the network. The .txt file with the edges of the network contains
two columns, “Source” and “Target”, while the .txt file with the node annotations contains
two columns, “Node” and “Type”. These files can simply be uploaded to Perseus as

explained in the following section and used.

Network mapping and filtering

The network .txt files for mouse were uploaded to Perseus using the “Generic matrix
upload” function. For the edge table both the “Source” and “Target” columns are selected
as “Text” and for the node annotation table the “Node” column is selected as “Text” and
the “Type” column as “Categorical”. Using the “From matrix” function, the matrix
containing the edges of the network was converted to a Perseus network collection. Later
using the matrix containing the node annotations, annotations were added to the network
using the “Annotate nodes” function. Note that these annotations can also be extended
using the Perseus annotation files shipped with the software and also available at

http://annotations.perseus-framework.org/ within the "PerseusAnnotation" folder. For the

purpose of this study we annotate the mouse metabolic network with g-values from each
of the omics dataset for which the periodicity analysis was performed using Perseus as
explained in the previous sections. The matrix from each periodicity analysis performed
on the various omics datasets was exported in .txt format and imported into the Perseus
session containing the metabolic network collection using the “Generic matrix upload”
function. Since these .txt files are generated using Perseus, upon upload to another Perseus
session, Perseus assigns the correct data types to each column in the file automatically. In
order to map the g-values from the metabolomics data to the network the ChEBI IDs were
used but since there were formatting differences between the network IDs and the data, the
“Process text column” function was used to add the string “CHEBI:” to the beginning of
the IDs within the metabolomics data with the regular expression “/([*;]+)” and the
replacement string “CHEBIL:$S&” on the “ChEBI” column of the matrix. The column
containg the g-values was also renamed using the “Rename columns” function to
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“Metabolomics q-value” prior to using the “Annotate nodes” function for mapping the data.
The same strategy is used to map the g-values from the phosphoproteomics, proteomics
and transcriptomics data. After annotating the network with the g-values, the network was
filtered using the “Filter for metabolic reactions” function with the “Number of columns”
set to four, “x” set to the metabolomics g-values, “y” set to the phosphoproteomics g-
values, “z” set to the proteomics g-values and “a” can be set to the transcriptomics g-values.
Subsequently, the four relations are set as “x<0.05”, “y<0.1” and “z>=0.33" and no
restriction on a. The “Combine through” option is set to “union”, since each node type is
annotated with a separate column containing the g-values of the cycling analysis for each
of the relevant datasets. This results in reactions where either of the three cases is true
(cycling metabolite/s, cycling phosphosite/s and non-cycling protein/s). The filtering
reduced the network from 6,453 nodes and 48,625 edges to 1,898 nodes and 5,636 edges.
For further analysis of the remaining reactions, the ‘“Metabolic reactions to matrix”
function was used to collapse each reaction with the filtered nodes to the Perseus matrix
format where each row represents a reaction. For this purpose, the column containing the
node types were selected, also, the reaction, modifier (enzyme/protein), substrate and
products were selected. The resulting matrix is then further processed to filter for reactions
that have both phosphosite information for their modifiers and metabolite information for
their reactants to reach phosphosite and metabolite pairs of interest (see the Perseus session

file named “Analysis-Time-Series.sps).

Network export to third-party software

Any metabolic network analyzed within Perseus can be exported in the .sif (simple
interaction file) format using the "SIF export for metabolic reactions" function. For this
purpose, both the Perseus metabolic network matrix and network types can be used. For
exporting networks from the matrix format, the columns containing the reaction, modifier
(enzyme/protein), substrate and products need to be selected along with the path to a
Python installation. Exporting the metabolic network from Perseus network format, simply
use the sif export function in the network tab (Supplementary Figure 3). The resulting
matrix can then be exported and used within third-party software, e.g. Cytoscape.
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Supplemental information
Supplementary Table 1.xIsx. Metis analysis of time series multi-omics data summary. The
Excel file includes all 111 reactions that have been filtered from the initial mouse metabolic

network after mapping all the omics data.
Supplementary Figures.pdf. Supplementary figures 1-3.
Supplementary Notes.pdf. A step by step protocol for using Perseus Metis.

Mendeley Data:

Hamzeiy, Hamid; Ferretti, Daniela; Robles, Maria; Cox, Juergen (2021), “Perseus Metis
Data”, Mendeley Data, V1, doi: 10.17632/n4nx6x999v.1
http://dx.doi.org/10.17632/n4nx6x999v.1

Metabolic Network Analysis Folder: Perseus session files and data used for Metis analysis

for both time series data and static data, along with the final results presented.

Metabolic Networks Folder: Metabolic networks for 11 most common organisms.
Periodicity Analysis Folder: Perseus session files and data used to perform the periodicity
analysis on the various datasets.

PHOTON Analysis Folder: Protein-protein interaction networks and Perseus session files

used to perform PHOTON analysis for kinases activity prediction.
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Figure legends

Figure 1. Perseus framework and Metis toolbox. Perseus is a plugin-based software for
the analysis of omics data. It supports two basic data types, matrices and networks. The
former usually carries relative bimolecular concentration data and a multitude of activities
exist in Perseus to process them. The generic network data structure consists of annotated
nodes and edges to accommodate diverse biological networks. Standard plugins contain
activities for the creation, import processing and analysis of, for instance, protein-protein
interaction networks or networks consisting of kinase-substrate relations. The Metis
toolbox extends the Perseus network framework to metabolic pathways consisting of
reactions, connecting metabolites that are consumed or created with the catalyzing
enzymes. Annotation of these networks connects metabolomics matrix data with matrices
related to enzymes, which can be proteomics, transcriptomics or phosphoproteomics data.
Network nodes and edges can then be filtered with simultaneous criteria on multiple omics
types resulting in a metabolic reaction matrix containing the results of interest. Finally,

results can be exported in .sif format, for instance for visualization in Cytoscape.

Figure 2. Schematic overview of the data analysis workflow with time-series circadian
data. Datasets used from five different studies of circadian rhythms in mice liver serve as
input, along with the results of the kinase activity prediction using the PHOTON plugin
within the Perseus software package. These were independently reanalyzed using the
periodicity analysis toolkit in the Perseus software. The results were then merged with the
reconstructed mouse metabolic network from the BioModels database using the network

analysis module of Perseus.

Fig. 3. Results of cycling analysis for the individual omics datasets. a. Pie charts show
the percentage of cycling transcripts, proteins, predicted kinases, phosphosites, metabolites
and lipids with respect to the total dataset. b. Heat maps of cycling molecules are shown
for each omics type. Biomolecules are sorted vertically according to their circadian phase
while horizontally the time points were mapped and averaged to a 24h interval in case the
time series were longer. ¢. Rose plots indicating peaking positions of all cycling molecules

in a circular histogram.
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Fig. 4. Representation and processing of metabolic networks within Metis. a.
Exemplary network structure which is represented in Metis using the three node types
reaction, metabolite and enzyme, which are connected according to the participation of
biomolecules in reactions. b. Nodes are attached to annotations originating from matrices
filled with quantitative omics data. The metabolite nodes are affiliated with rows in a
matrix object carrying metabolite concentrations over potentially complex experimental
designs, which are time series in the case at hand. The enzyme nodes are primarily
associated with proteomics data, connecting nodes to the quantitative data on relative
enzyme concentrations, here also in the form of time series data. Also quantitative
posttranslational modification data, as for instance phosphorylation or mRNA level data
are mapped here to the enzyme nodes. After mapping various omics data to the network,
filters can be applied on each node (filtered nodes are shown in green in this example). c.
Applying the filter results in a network where only the relevant reactions and enzymes are

retained.

Fig. 5. Network of enzymatic reactions with oscillating enzyme phosphorylation,
substrates and products. Orange squares depict enzymes and green hexagons depict
metabolites. For the highlighted regions common profile plots of normalized phosphosite
and metabolite intensities are shown. a. ACOX1 and PRODH. b. UBP1. ¢. HARS2. d.
GNMT. e. PTDSSI. f. ACSS2, PLA2G4A and COASY.

Fig. 6. Histogram of the difference between acrophases of metabolites and
phosphosites. All pairs of cycling metabolites and phosphorylation sites resulting from the
network filtering, that are hence connected through a reaction were used to create a
histogram of phase differences. The differences between acrophases of metabolites and
corresponding enzyme phosphorylations are sorted into 3h bins. Enrichments can be

observed around the ‘in phase’ and ‘in anti-phase’ regions.
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Table legends

Table 1. Datasets used in this study. Details of the five omics datasets of circadian mouse
liver entrained in day-night cycles and then free running from time point 0. Several details
of the time series acquisition, such as the total acquisition time, the sampling rate and the
number of replicates per time point vary. Cycling g-values differed between the analyses
performed in the respective publications. In order to keep consistency with previous work,

we applied the cycling q-value that was used in each publication.
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Figure 2
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Figure 4
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Table 1. Datasets used in this study. Details of the five omics datasets of

circadian mouse liver entrained in day-night cycles and then free running from time

point 0. Several details of the time series acquisition, such as the total acquisition

time, the sampling rate and the number of replicates per time point vary. Cycling g-

values differed between the analyses performed in the respective publications. In

order to keep consistency with previous work, we applied the cycling q-value that

was used in each publication.

Hughes, Rogles,JMg.(S., Robles, M. S., Krishnaia | Adamovi
Paper M. E. et Mz)r(\'n .M Humphrey,S.J. & | h,S.Y.et | ch,Y.et
al. 2009 P Mann, M. 2017 al. 2017 al. 2014
2014
Dataset Trans'crip Proteomics Phosphoproteomi Meta‘\bolo Lipidomic
tomics cs mics s
Number of
identified 18647 3132 7986 224 159
molecules
Number of
cycling 5989 186 2066 131 11
molecules
Total
duration of 48 48 48 48 20
sampling
(hours)
N”mbef of 48 (every 16 (every 16 (every three 48 (every 6 (every
time points four
hour) three hours) hours) hour)
measured hours)
Replicates
per time 1 3 3 4 4
point
Cycling g-
value 0.05 0.33 0.1 0.05 0.05
threshold
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/ Metabolomics /

BioModels
database

Perseus Student’s T-test

Metabolic

networks

Perseus metabolic networks plugin

Results

Supplementary Figure 1: Schematic overview of the data analysis workflow with static
data with two conditions. As an example for an analysis done with multi-omics data with two
conditions as shown in the figure, the liver metabolomics and proteomics data which were
processed as explained in the methods section of the paper prior to periodicity analysis was
utilized. The time points corresponding to the circadian times 6 and 18 (including 30 and 42)
were chosen and performed a Student’s T-test between these times using Perseus’s “Two-
sample tests” function, with the default values. Later, the mouse metabolic network which was
processed and prepared as explained in the methods section was mapped and filtered with the
significant metabolites and proteins. This is done by using the “Annotate node” function of
Perseus to map the Student’s T-test g-values to the network and the “Filter for metabolic
reactions” function of Perseus for filtering the network for reactions of interest. The resulting
network can then be converted to a Perseus matrix using the “Metabolic reactions to matrix”

function of Perseus for further analysis (see Perseus session file named “Analysis-Static.sps”).
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Supplementary Figure 2: CAD S1859, glutamine and carbamoyl phosphate data
averaged over 24 hours. CAD is an enzyme within the pyrimidine pathway with several
cofactor binding sites for Zn*" and Mg”*, which is also known to be allosterically regulated by
phosphorylation at S1859 (cycling at g-value 0.07 and phase 15.74) by RPS6KB1, which
stimulates dihydroorotase activity, downstream of MTOR. Several phosphosites are detected
for RPS6KB1 and three cycle at g-values at about 0.002 and phases at about 2.75 (S441, T444
and S447). This is also the case for MTOR, for which S2448 cycles at g-value 0.004 and phase
16.75. Phosphorylation at S1406 for CAD reduces sensitivity to feedback inhibition by UTP,
but this phosphosite is not detected within the phosphoproteomics data. CAD’s transcript is
detected within the transcriptomics data as non-cycling with a q-value of 0.29 but it is not
detected within the proteomics data. At the metabolomics level glutamine (q-value 0 and phase
2.73) and carbamoyl phosphate (q-value 0 and phase 12.44) are cycling as reactant and product
of the reaction, 1 H20 + 2 ATP + 1 L-glutamine zwitterion + 1 bicarbonate = 2 H(+) + 1
carbamoyl phosphate(2-) + 2 ADP + 1 L-glutamate + 1 phosphate, where CAD has catalytic
activity, respectively. The data shows that as phosphorylation levels increase at CAD S1859,
glutamine levels decrease and carbamoyl phosphate levels increase. It is interesting that the
kinase responsible for CAD S1859, RPS6KBI1, has a phase similar to glutamine, and that
MTOR S2448 has a phase similar to CAD S1859.
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Node (String) Type (Category) J§ Source (String) | Target (String)
R Reaction R =
. it : .  Reactions | Modifiers | Reactants | Products |
odifier
— R E M1 M2
M1 Reactant R M2
M2 Product M1 R
Perseus Network Perseus Matrix
I |
)
SIF Format
m Relationship Type

R rc M1

E pr R

R rc M2

M1 cr R

Supplementary Figure 3: Schematic overview of the Perseus “Metabolic reactions to
matrix” function and SIF format export functions. The Perseus “Metabolic reactions to
matrix” function allows the user to convert the Perseus network format structure to a Perseus
matrix, where each reaction within the respective network is represented as a row in the matrix
output along with its modifiers, reactants and products. This allows the reactions within the
network to be converted to a human readable format, and also allows the user to be able to use
the vast array of functions available within Perseus for matrix data manipulation on the
reactions of the network. The “Metabolic reactions to matrix” function, takes user input on the
relevant reaction, modifier, reactant and product nodes, and works to take all the reaction nodes
within the network and annotates them with columns corresponding to their respective
modifiers, reactants and products. Perseus metabolic networks and matrices can also be
converted to the SIF format and exported to third-party software for further analysis or

visualization using the "SIF export for metabolic reactions" function of Perseus.
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Supplementary Notes

Perseus Multiomics Tutorial

1. Navigate to https://maxquant.org/ to download Perseus:

@ MaxQuant x  + - 8 X

- C O & maxguantorg o a % »@

MaxQuant

MaxQuant is a quantitative proteomics software package designed for analyzing large s

data sets. It is specifically aimed at high-resolution MS data

mass-spectrometr
Several labeling techniques as well as label-free quantification are supported

MaxQuant is freely available and can be downloaded from this site. The download

includes the search engine andromeda, which is integrated into MaxQuant as well as
the v

results. For statistical analysis of MaxQuant output, we offer th

Download ocumentation

ver application for inspection of raw data and identification and quantification

erseus framework

2. Click on “Perseus” on the top menu to navigate to the Perseus page and click on the
“Download” button:

@ Perseus x  + = =} X
&« C O @ maxquantorg/perseus/ Q % » o H

Perseus

The Perseus software platform supports biological and bicmedical researchers in
slational modification data

interpreting protein quantification, interaction and post-tr
Perseus contains a comprehensive portfolio of statistical tools for high-dimensional
time-series analysis,

omics data analysis covering normalization, pattern recognition,
cross-omics comparisons and multiple-hypothesis testing. A machine learing module
supports the classification and validation of patient groups for diagnosis and prognosis,

and it also detects prec protein signatures. Central to Perseus is a user-friendly,
interactive workflow environment that provides complete documentation of

computational methods used in a publication

umentation

156



3

Perseus plugin ‘Metis’ for metabolic pathway-centered quantitative multi-
omics data analysis supporting static and time-series experimental designs

Fill in the form, click on the check box to agree with Perseus’s license and click on the

download button:

@ Download asset x +
[ C (O @ maxquantorg/download_asset/perseus/latest
up
Phone:
Fax;
Comment:

4.

4

D agree with license terms.

| agree that Max-Planck Institute of Biochemistry,
Computational Systems Biochemistry may process
entered data for the purposes in accordance with the

MaxQuant Privacy Policy .

Locate the downloaded .zip file and extract its content:

Extract

Downloads

Home  Share  View  Compressed Folder Took
M & Cu x
M Copy path -

% Copy Past Move Copy Delete

H Posteshortaut  you o0

Clipboard Organize
« v 4 &> ThisPC » Downloads
. ownCloud Pratisd
CoxBox Perseuszip

& Creative Cloud Files

32 Dropbox

% This PC
3D Objects

= Desktop

Documents

4 Downloads

& Music

= Plctures
& Videos
£ SYSTEM (C)
- DATA (D)
sxhamzely (\samba

~ pool-cox-projects-

1item

1 item selected 231 MB

Rename

New item ~ B

Open
Open in new window

o

Share with Skype
Open with RawTherapee

Extract All..
7-Zip

CRC SHA

Pin to Start

Edit with Notepad++

<

Send with Transfer...
Move to Dropbox

2]

Share
Open with

Restore previous versions
Send to

Cut

Copy

Create shortcut

Delete

Rename

Properties

Scan with Microsoft Defender...

% Cpen *

H selectall
Select none

Invert selection

Compressed (zipped)

237,299 KB

I =

5. Navigate to the extracted folder and double click on “Perseus.exe” to launch Perseus:
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v ¥ | CAUsers\hamzeiy\Downloads\Perseus
Home  Share  View ~Q

r  Cut " New item ~
& W : o X =] b
7 Easy access * Edit

¥ Copy path
PintoQuick Copy Paste Move Copy  Delete Rename  New Properties §
access. to*  to- = - & History o Invert selection

[ Posteshoriont o 1o

fg Open - 7H selectall
Select none

Clipboard Organize New Open Select
€ 5 v 4 > ThisPC > Downloads > Perseus v ® P searchPerseus
A Name Type Size
bin File folder
ChangeLog.txt
& Creative Cloud Files “ S
12 Perseus.exe Application

23 Dropbox

CoxBox
17 KB

37k8B

Text Document

File description: Perseus
Size: 365 KB
= This PC
3D Objects
= Desktop
+ Documents
4 Downloads
3 Music
& Pictures
& Videos
& SYSTEM (C)
~ DATA ()
sxchamzeiy (Wsamba-
w7 pool-cox-projects- ,
:

3items

6. You now have Perseus open:

{Wsession! - Perseus
Be Tods Wndow Hebp

Mattx  Network
t H [ | Basc - Fierows ~ Amnot coumns > imputation = Modfications ~ Extemal ~ Outhers - [l 1D X Pu

@ % B | Resrange - Fhercoumns ~ Amot.rows = Leaming = Homology * WGCNA ~ lscbaric Labeing ~ &3 2D P: A

| Visuakzation ~ _§ G5 & o iBuc'.
Custerng/PCA ~ [l T & @ | Annot rows ~
|

AN Nomalization v Guaity ~ Tests ~ Time senes » DEanalysis ~ Custenng ~ Iix) | ™1 Z v O i P, | Misc. ~ 3 %0 s s s |
Load Processng | Mui-proc
BOx$e”

o)

7. Navigate to http://annotations.perseus-framework.org/ to download your metabolic
network of choice before uploading it to Perseus for your analysis:
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@ Files - MP1B DataShare x + = o X

< C (O @ datasharebiochem.mpg.de/s/qeliqckbzaj2Ruf Qa w »@

- DiscoveryLibraries 12.2 GB 9 days ago

. . MetabolicNetworks .- 2104MB 9 minutes ago

- PerseusAnnotation 15.9GB

hitps://datashare biochem mpg de/s/qe

8. Navigate to the “MetabolicNetworks” folder:

@ MetabolicNetworks - files - M2 X == - o X

< C (O @ datasharebiochem mpg.de/s/qellqckbz2j2Ruf?path=%2FMetabolicNetworks a w »@

Add to your ownCloud f§ ¥ Download

#* MetabolicNetworks

- Caenorhabditis Elegans 11.3MB 14 minutes ago
- Danio Rerio 16.5 MB 14 minutes ago
- Drosophila Melanogaste 24.1 MB 13 minutes ago
- Escherichia Coli 18.6 MB 14 minutes ago
. | Homo Sapiens 27.3MB 14 minutes ago
- Macaca mulatta 16.2 MB 14 minutes ago
-

httpsi//datashare biochem.mpa.de/s/qe1lqekbz2i2Ruf 255MB 13 minutes ago

9. Choose and navigate to your organism of choice and download the two .txt files
corresponding to the edges of the network and node annotations (if the organism you
are interested in is not in the list, contact cox@biochem.mpg.de):
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x 4+

@ Homo Sapiens - Files - MPIB Da

< Cc o

#& datashare biochem.mpg.de/s/qe1lqcKbz2j2Ruf?path=%2FM

Homo%20Sapiens

Add to your ownCloud

abolicNetw

Homo Sapiens

desktop

HomoSapiensMetabolicNetworkEdges

HomoSapiensMetabolicNetworkNodeA.

MODEL1109130000- Thiele el al 2013 -

10. After downloading your network of
matrix upload” button in Perseus:

254 MB

choice, go back to Perseus and click on the “Generic

[Bsession! - Perseus - 2 *
He Toos Window Help
Matrx  Network
[R]5 % | Basc - Fherrows = Aot colmns = imputation = Modiications = Extemal = Outiens - [l 1D ¥ Pu Visualzation - b (£ & Basc - @ -
R Vs [ | Resvange ~ Ftercolumns + Amnot rows v Leaming  Homology  WIGCNA v lscbaric Labeing ~ &3 2D P A CusteringPCA ~ fE T & @ | Anct.rows =
G Y[ M Z vy X (TSR P e | i ffe e
25 2 tab-separated .txt file, ﬂtt}j

11. On the “Generic matrix upload” dialog box click on “Select” to select and import the

network files:
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[ HGeneric matrix upload
Cancel Descrpton @ oK

Fie [ S P

Main

>

<

Numesical

>

<

Categorical

>

<

Text

>

<

Cancel Descripton @ oK

12. First select the .txt file corresponding to the network edges:

| i@open \ @ ok
' o]0
4+ ¥ > ThisPC > Downloads » v [ m
Organize v New folder E- @ @ 1
. ownCloud Today (3)
CarBox HomoSapiensMetabolicNetworkNodeAnnotations.txt Date modfied: 2020-10-30 12:09
@ Creative Cloud Fil e 690 KR
o HomoSapi i xt Date modified: 2020-10-30 12:09
¥ Dropbox J Size: 133MB t
& OneDrive Perseus_1.6.14.0 Date modified: 2020-10-30 11:43
B This PC
3 3D Objects
[ Desktop
% Documents
& Downloads
D Music
& Pictures
B Videos v
File name: | HomoSapiensMetabolicNetworkEdges.txt v | | Text (Tab delimited) (*.txt;".tsv) v
[ Open | | Cancel
<
Cancel Descripton @ oK

13. Both the “Source” and “Target” columns should be selected and moved to the “Test”
box on the right side of the dialog box:
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[ HGeneric matrix upload
Cancel Descrpton

@ oK
- £ = = | =
| <
Numesical
5
I<
Categoncal
1>
I<
Text
&
- ‘ @
14. After moving the “Source” and “Target” columns to the “Text” box, press “OK":
{8 Generic matrix upload i
- @ ok
Fie e y oo -
| Man
8]
| <
Numesical
5
|
Categencd
>
I<
Text
bl
| <
Cancel Descripton ! & éK

15. Repeat steps 10-14 for the node annotations .txt files, keeping in mind that “Node”
should be in the “Text” box and “Type” should be in the “Categorical” box:
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[ HGeneric matrix upload - o
Cancel Descrpton @ ok
Fle [cae \Downloads | oo |
Main
>
<
Numesical
>
<
Categorical
> |Type
<
Tent
Bl
<
Nk
Cancel Descripton [} oK

16. Select the matrix with the network edges which you imported at step 14 and from the
“Network” tab, within the “From matrix” section, select “Basic” and “From matrix”:

[Wsession! - Perseus - o x
Fle Tods Wndow Heb
Matnc | Network | 3
€ s | Aot columns = Fiternodes ~ Subnetwork ~ [ Basic +| - Anctate + Visuaization = [P = | i
t | Combine + Modhications ~ Extemal ~ [ Fommam | 74 ] |
|
L | Topology ~ Fiter edges ~ K |
Load Processing From ma [ Create s network from a matrix containing all edges of the network. Jeson
P EREE X EEF] = matr| 3
Data Creator: hamaely
10/30/2020 122802
B Generic matxu.. | (Generic mavxu kg C: y\Dowr
DR 3 3 Fie: Homo SapiensMetaboicNetworkEdges txt
3 Quaity: {smal vakues are good )
Type Tet  Ted matro2 | Rows (28.906)
1 Q16853 | 1,3-Dia Main cokenns (0)
2 P19801  13-Dia.. ?;W Wa')"' o
! b S ig ol
3 075106 |1,3-Dia Numencal cokmns (0) v
4 13-Dia.. | Q16853 < B = 5
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17. Select the columns corresponding to the source and target, select “Network is directed”
and press “OK”:
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18. Select the network and the matrix (hold ctrl key to select the network and the matrix

together) and on the section called “Merge with matrix”, click on “Annotate” and
“Annotate nodes”:
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19. Select the annotations to be transferred to the network:
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20. Step 19 can be repeated for any omics data either by using UniProt IDs or ChEBI
identifiers.
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21. For example depending on the identifiers in your network and the identifiers within the
omics data in question, data can be added to the network. For example metabolomics
data can be added using the previously explained “Annotate nodes” function:

10
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22. After annotating the network with quantitative data, one can then filter the network to
retain metabolic reactions with regard to a threshold based on the quantitative data:

Basic - Metabolic networks ~ | Annotate ~ | Visualzation ~ Basc ~
Basic ~ L3 1
s
a x
@ oK
x 01 v
Muroer o relatons 5 T
Relation 1 [x01
| Combine through Intersecton v|
| Cancel Description @ ok |

23. Once you have annotated, manipulated and filtered your network, you can convert your
network to a Perseus matrix format where each reaction is depicted as a row for further

analysis using other tools within Perseus:
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24. In the “Metabolic reactions to matrix” dialogue box, you can choose which columns
correspond to reactions, modifiers, reactants and products:

LlMetabolic reactions to matrix
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25. You can also export your network in the SIF format for further analysis in other third
party software which support this generic format:
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5. Conclusion and Outlook

The rapidly evolving fields of omics, computational biology and multi-omics are
fueling the data-driven revolution of the exploration of biological systems, which has
had an immense impact on our understanding of the underlying mechanisms of
living organisms. MaxQuant and Perseus have been continuously developed and
widely accepted as trusted software platforms for the processing and analysis of
shotgun proteomics datasets. These platforms house a wealth of tools and algorithms
that can handle various aspects of the data and provide a user-friendly graphical
interface. Expanding these platforms to various operating systems others than their
native Microsoft Windows environment and their abilities in analyzing other types of
proteomics data such as DIA and metabolomics datasets, provide an substantial
added value as researchers are enabled to do more and with higher flexibility with

software that they already use and know well.

MaxQuant is equipped with ELI for mass recalibration in metabolomics,
which is the first step in developing MaxQuant as an all-in-one solution for
metabolomics studies, similar to the position of MaxQuant in proteomics. Achieving
higher mass accuracies in proteomics data has proven to be of paramount importance
in increasing the coverage of the proteome and robustness of the approach, and
similar benefits can be expected for metabolomics datasets. In addition, many of the
universal functionalities of MaxQuant for LC-MS/MS data can also be readily
transferred to the processing of metabolomics datasets, accelerating the development

process.

Ever since the introduction of MaxQuant in 2008, it had remained a
Microsoft Windows only software. With increased quantities of proteomics data
becoming available, bioinformatics facilities began to include MaxQuant in their
arsenal of frequently used tools. This made the need to release a Linux version of
MaxQuant evident. Currently, MaxQuant runs on Windows and Linux operating

systems.

Historically, MaxQuant has always been the preferred software for the
analysis of DDA shotgun proteomics data, primarily due to its superior performance
and ease of use. With the advancements and popularization of DIA methods for
proteomics studies, the community lacked a reliable and free software for DIA data
and thus, MaxQuant is now equipped with MaxDIA as a one stop DIA data processing

solution. MaxDIA is capable of analyzing a wide variety of DIA data ranging from
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BoxCar-DIA to ion mobility DIA data. It achieves comprehensive proteome coverage
and precise quantification across many runs. Future developments of MaxDIA will
focus on expanding the workflow to support PTMs; especially with respect to their

correct localization within the peptide sequence.

Although Perseus was initially designed primarily for the downstream
analysis of MaxQuant outputs, its popularity, flexibility and user-friendly approach
for analyzing data, has made it popular for use in analyzing other omics datasets, e.g.
transcriptomics. In this direction, Perseus is continuously developed to allow for
various other types of data such as NGS data and biological networks. Users can now
also integrate their own scripts written in Python or R and develop their own plugins
in C#. With the addition of Metis, a plugin for multi-omics data analysis using
metabolic networks, Perseus is now allows the user to analyze several different omics

datasets together.
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