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Summary 

Undoubtedly, the current century is witness to an unprecedented speed in advancements 

within biological sciences, which are owed to the immense technological progress in the 

analytical tools and methods utilized, and to the dawn of the fast developing fields of omics 

and bioinformatics. Omics allows the collection of holistic data on several different 

biomolecule classes, and bioinformatics makes it possible to explore and understand the 

vast amounts of data produced. The most mature omics fields, in terms of both hardware 

and software, are genomics and transcriptomics, based on next generation sequencing 

(NGS) technologies. With the introduction of electrospray ionization and high-resolution 

mass spectrometry, liquid chromatography coupled to tandem mass spectrometry (LC-

MS/MS), has made significant leaps for the fields of metabolomics and proteomics. 

One promising method for LC-MS/MS-based proteomics is data independent 

acquisition (DIA), which requires advanced data analysis algorithms. MaxDIA, within the 

MaxQuant software for the processing of LC-MS/MS-based proteomics data, is introduced 

here. It comes with an accurate false discovery rate estimation of the peptide and protein 

identification based on measured and predicted spectrum libraries. When compared to the 

state of the art, MaxDIA also delivers comprehensive proteome coverages and lower 

coefficients of variation in protein quantification. 

Bioinformatics tools for the analysis of metabolomics data generally follow the 

same principles and steps as proteomics software, but due the huge numbers of 

metabolites and immense complexity of metabolomics data, much work is still needed to 

bring metabolomics software to the level of maturity of their proteomics equivalents. 

MaxQuant is a time tested and widely accepted software for the processing of proteomics 

data, which was first recognized for its cutting-edge nonlinear recalibration for reaching 

superior precursor mass accuracy, which helps significantly improve peptide 

identifications. Here, following this direction, a new algorithm within MaxQuant for 

improving mass accuracy in metabolomics data is introduced, which utilizes a novel 

metabolite library-based mass recalibration algorithm.  

The many types of omics data available today present a great opportunity for 

developing approaches to combine such data in order to infer new knowledge, often 

termed multi-omics studies. A robust approach to this end is to utilize prior knowledge on 

the relationships of the various major biomolecules in question, which are often depicted 

in network structures where the nodes of the network depict biomolecules and the edges 

correspond to an interaction. To implement this approach, Metis is introduced, a new 
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plugin for the Perseus software aimed at analyzing quantitative multi-omics data based on 

metabolic pathways. 

This thesis includes four publications, the first of which is a review article on 
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 Introduction 

Biological sciences in the current century are becoming an ever more data-driven 

endeavor (MacKlin, 2019). This is both due to the shear increase in the availability of 

vast resources of high-throughput omics data, and also improvements in methods 

and algorithms used for the generation, processing and analysis of such data 

(Chavan, Shaughnessy and Edmondson, 2011; Cox and Mann, 2011; Sinitcyn, 

Rudolph and Cox, 2018). One can say that biological sciences have now truly entered 

the fourth paradigm of science in efforts for the exploration and understanding of 

biological systems (Figure 1.1). This has brought with it a new push to advance a 

dynamic field of research within biology, namely bioinformatics, which has emerged 

to be of central importance in many aspects of novel experimental design, and 

knowledge discovery (Gauthier et al., 2019). Bioinformatics efforts aim to bridge the 

gap between biology and informatics and work to enable biological researchers to 

effectively analyze the data gathered to reach a deeper insight into various aspects of 

living systems (Luscombe, Greenbaum and Gerstein, 2001). 

 

Figure 1.1: Paradigms in biology (adapted from (Agrawal and Choudhary, 2016)). Each 

arrow depicts a paradigm in biology, with an example for a development in that direction. 

Current bioinformatics solutions have been essential in propelling our 

understanding of many aspects of biology, but there still exists a great deal that 

remains to be developed and thus, it is ever more important to focus efforts on novel 

tools and algorithms that can handle such large quantities of highly complex data 

(Fuller et al., 2013; Gauthier et al., 2019). In this introductory chapter, omics are 

discussed in general, along with computational proteomics, computational 

metabolomics, and methods for multi-omics data analysis. 

[Grab your reader’s 

attention with a great quote 

from the document or use this 

space to emphasize a key 

point. To place this text box 

anywhere on the page, just 

drag it.] 
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1.1 Omics 

The capacity to holistically collect data, and study any living entity, ranging from 

single cells to large multicellular organisms, has given way to new fields of study, 

commonly labelled as omics (Karahalil, 2016). Naturally, the generation of large 

omics datasets has brought with it, both a novel set of opportunities, and challenges 

which lay primarily in the realm of bioinformatics (Gauthier et al., 2019). Omics data 

can be generated on different levels in respect to the major biomolecule class in 

question, whether it be DNA (genomics), RNA (transcriptomics), protein 

(proteomics) or metabolite (metabolomics) (Figure 1.2).  

 

Figure 1.2: Different levels of omics based on the major biomolecules studied. 

Genomics is defined as the study of complete sets of genetic material found 

within the cells of an organism, which not only includes both coding and noncoding 

DNA, but also the genetic material found in the mitochondria of most eukaryotic cells 

and chloroplasts in plant and algal cells. Genomics focuses on the study of whole 

genomes with respect to their structure and function, and the impact of variations 

within the genome on various aspects of life. Genomics data consist of the sequence 

of the DNA, which carries information ranging from single nucleotide variations to 

larger structural changes such as copy number variations, large deletions and 

insertions, and their subsequent annotation (Del Giacco and Cattaneo, 2012). 

Transcriptomics is the term given to the qualitative and quantitative study of 

complete sets of transcripts, including coding and non-coding, within an organism 

(Chang, 2016). Due to the closer relationship between transcripts and proteins, and 

thus to the phenotype in comparison to the genome, transcriptomics is often the 

preferred level of omics to study cellular states such as differentiation and biomarker 
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discovery efforts. Phenomena such as alternative splicing and RNA editing are some 

of the difficulties that are faced upon studying whole transcriptomes. Current 

developments in the field of transcriptomics focus on studying the transcriptome of 

single cells. Such efforts aim to identify cellular subpopulations, determine whether 

detected changes are due to real cellular phenotypes or proliferation, investigate 

processes such as cellular differentiation and study rare populations of circulating 

tumor cells or cancer stem cells (Kanter and Kalisky, 2015; Trapnell, 2015; Chen, 

Ning and Shi, 2019). 

Proteomics allows the study of entire proteomes and relative quantitative 

comparisons over various conditions with comprehensive proteome coverage 

(Mishra, 2010). It promises to provide a more complete description of the cellular 

state, since it informs the researcher about the end-point of the expression cascade, 

and the amounts and properties of proteins (Cox and Mann, 2011; Altelaar, Munoz 

and Heck, 2013; Aebersold and Mann, 2016). Two major types of proteomics 

strategies are bottom-up (Wolters, Washburn and Yates, 2001; Sinitcyn, Rudolph 

and Cox, 2018) and top-down proteomics (Marshall, 2006; Toby, Fornelli and 

Kelleher, 2016; Fornelli et al., 2017). The bottom-up proteomics approach based on 

liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) 

techniques, often named shotgun proteomics, aims to measure digested proteins 

(peptides) since measuring intact proteins has proven to be cumbersome (Zhang et 

al., 2013). Some of the difficulties in measuring intact proteins via mass 

spectrometry, so-called top-down proteomics, include highly complex spectra which 

are hard for deconvolution algorithms to handle due to the majority of ions within 

the sample being multiply charged, and the sample preparation hurdles that arise 

from having to deal with intact proteins, especially insoluble ones (Brown et al., 

2020). For bottom-up proteomics, the proteins are first digested using a protease. 

Trypsin is often the protease of choice because of its high fragmentation efficiency, 

suitable peptide length for HPLC separation and the fact that it cleaves peptides on 

the C-terminal side of lysine and arginine residues (both of which carry a positive 

charge), which is useful for the ionization of the peptides (Aebersold and Mann, 

2003). 

Metabolomics aims to study the entire set of small molecules, typically <1500 

Daltons (Da) in mass, known as metabolites within an organism, tissue or cell 

(Weckwerth, 2007). Since metabolites are the omics level closest to the phenotype of 

an organism, the study of the metabolome is considered the closest one can get to the 
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function of the underlying biological mechanisms governed by genes, transcripts and 

proteins. Similar to proteomics, LC-MS/MS is the analytical platform of choice for 

metabolomics studies. LC-MS/MS-based technologies due to the increased 

sensitivity and potential for detecting novel unknown metabolites can cover a larger 

portion of the metabolome (Stringer et al., 2016). The ultimate goal in metabolomics 

is to detect and quantify metabolites similar to expression analysis in transcriptomics 

or proteomics. By far the largest metabolomics data repository is the MetaboLights 

database (Haug et al., 2013). 

Genomics, transcriptomics, proteomics and metabolomics data is further 

divided into data that focuses only on a certain aspect of each of the aforementioned 

biomolecules. These areas of focus are typically the various chemical modifications 

that can be found on such biomolecules, which are known to have a functional 

significance. These include epigenetic modifications such as methylation 

(Rauluseviciute, Drabløs and Rye, 2019), alternative splicing in the case of the 

transcriptome (Ding, Rath and Bai, 2017), post-translational modifications (PTMs) 

on proteins (Larsen et al., 2006) and structural variations in metabolites (Figure 1.3) 

(Dettmer, Aronov and Hammock, 2007). Several different analytical techniques and 

technologies are utilized for the generation of omics datasets, with the most popular 

being next generation sequencing (NGS) for genomics and transcriptomics, and LC-

MS/MS for proteomics and metabolomics (Kandpal, Saviola and Felton, 2009). 

Proteomics and metabolomics based on LC-MS/MS still need further development 

to reach the level of genomics and transcriptomics, at both the technical and data 

analysis level (Smith et al., 2014). In this section, the analytical platforms of choice 

for genomics and transcriptomics (NGS), and proteomics and metabolomics (LC-

MS/MS) are discussed. 
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Figure 1.3: Various omics dimensions with two major analytical platforms, namely 

NGS and LC-MS/MS are shown. Each of the major omics data also have several 

subdivision such as secondary modifications in genomics, transcriptomics and 

proteomics, along with others such as localization in the case of proteomics. 

1.1.1 Next Generation Sequencing 

The analytical platform of choice for genomics and transcriptomics is NGS (Wang, 

Gerstein and Snyder, 2009; Koboldt et al., 2013). It can arguably be considered the 

first spark in the data revolution in biological research. During the past two decades, 

scientists have been able to decipher the genome and transcriptome of many 

organisms from different domains of life using NGS technologies, which have now 

reached a level where improvements are incremental in both the hardware and 

software utilized (Giannopoulou et al., 2019). It has quickly replaced microarrays and 

has been rapidly adapted to the clinic mainly due to ultra-high throughput, 

scalability, robustness and speed when compared to previous techniques such as 

Sanger sequencing or microarrays, paving the way for the increasing availability of 

personalized medicine (Hurd and Nelson, 2009). NGS empowers the average lab to 

sequence the entire human genome in less than 24 hours (Levy and Myers, 2016). 
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This is a huge feat when compared to Sanger sequencing which would require over a 

decade to deliver such data (Lander et al., 2001) or microarrays, which are limited in 

their capacity to capture the entire genome on a single chip (Bumgarner, 2013). NGS 

owes its success largely to smart bioinformatics solutions, which are essential for 

constructing the genome in question from millions of fragments that are sequenced 

in parallel (Behjati and Tarpey, 2013). Whole genomes can now be easily sequenced 

and stored along with annotation information in publically available databases 

(Mailman et al., 2007; Kodama, Shumway and Leinonen, 2012; Clough and Barrett, 

2016). The sequencing of the human genome (Lander et al., 2001) set the stage for 

omics studies of many kinds. 

1.1.2 Liquid Chromatography Coupled with Tandem Mass 

Spectrometry 

The most widely used analytical platform for proteomics and metabolomics is LC-

MS/MS (Blum, Mousavi and Emili, 2018). It provides data in three dimensions, m/z 

(mass to charge ratio), retention time and intensity. Recent extensions of the LC-

MS/MS setup (Figure 1.4), such as the FAIMS interface (ion mobility) (Hale et al., 

2020) add a fourth dimension to the data, which will not be covered here. In the 

classical LC-MS/MS setup, sample preparation, which may also include protein, 

peptide, metabolite or lipid fractionation and enrichment, is followed by high 

performance liquid chromatography (HPLC) and subsequently by mass 

spectrometry (MS) data acquisition. The generated raw data is then processed and 

analyzed to identify and quantify the features of interest (Sinitcyn, Rudolph and Cox, 

2018). 

 

Figure 1.4: Basic LC-MS/MS setup. 

Various fields of analytical chemistry utilize HPLC as an efficient method for 

separating, identifying and quantifying components in liquid mixtures (Dahimiwal 

et al., 2013). The basic principle used in this technique is pumping liquid containing 

a desirable solvent and the sample in question through a column prepared with a 
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suitable solid adsorbent. The system then relies on varying interactions between the 

compounds in the liquid mixture and the adsorbent material, which would in turn 

alter the flow rate of the liquid mixture and thus separate the components going 

through the adsorbent packed column (Figure 1.5). The HPLC is used to derive the 

retention time of the ions, which is the time measured from sample injection to the 

HPLC and the appearance of the maximum signal for the ion post chromatographic 

separation (Katajamaa and Orešič, 2005). In the case of proteomics, purified proteins 

or peptides are separated after digestion with nanoliter per minute flow rates with 

the HPLC, prior to being introduced to MS analysis via electrospray ionization 

(Figure 1.6) (Hein et al., 2013). It is estimated that complex digested proteome 

samples may contain well over a hundred thousand unique peptides (Michalski, Cox 

and Mann, 2011; Nagaraj et al., 2011). Such complex samples cannot simply be 

resolved directly by MS and thus, HPLC is crucial for slower sample introduction, 

allowing the MS to be able to capture and measure as many peptides as possible. To 

this end, the sample is loaded to a chromatographic column, which is usually packed 

with a hydrophobic reverse phase material such as C18. This leads to the peptides 

binding the hydrophobic reverse phase material with different strengths based on 

their chemical properties and thus, be released gradually by increasing the amount 

of the solvent. 

 

Figure 1.5: Basic schema of a HPLC setup. 

The mass spectrometer has been a widely used platform in various field of 

research for measuring the m/z of ions. Measurements are often visualized as a mass 

spectrum where the intensity of an ion is plotted against its m/z ratio (Figure 1.6). 

Different techniques exist, which can be divided into two major groups, MS with trap-

based mass analyzers and MS with beam-based analyzers. Regardless of the type of 
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mass analyzer, every mass spectrometer used in LC-MS/MS has three key elements, 

the ion source, the mass analyzer and the detector (Figure 1.4) (El-Aneed, Cohen and 

Banoub, 2009). 

 

Figure 1.6: Basic bottom-up proteomics approach leading to MS and MS/MS mass 

spectra. 

One goal in further developing new mass spectrometers is to reach a machine 

capable of higher resolution measurements. Resolution is the ability to distinguish 

two features corresponding to two different ions with very similar m/z ratio 

(Scigelova et al., 2011) and is calculated as the ratio of a features’ m/z, and the delta 

m/z at the full width half maximum (FWHM) of that feature (Marshall and 

Hendrickson, 2008). Another goal is to reach better mass accuracy, which is the 

deviation between the theoretical mass and the experimentally determined mass of 

ion. Mass accuracy is influenced by the resolution of the mass spectrometer and the 

signal to noise ratio within the MS data (G. Marshall et al., 2013). Furthermore, it is 

important to have a mass spectrometer that not only detects highly abundant ions, 

but also capable of detecting low abundant ions in complex mixtures. This is known 

as the dynamic range. The scan speed is also important as it defines how fast a certain 

m/z range can be scanned, which is mostly inversely correlated with the resolution of 

the mass spectrometer (Wu and Han, 2006). Finally, new mass spectrometers aim 

for higher sensitivity, which is measured by the intensity of the MS signal for a certain 

concentration of the sample. Many different operation modes exist for mass 

spectrometers. In its targeted mode, a predefined target mass range is set with the 

aim of reaching the highest possible quantitative accuracy and reproducibility (Marx, 

2013). On the other hand, DDA and DIA mass spectrometry (Zhang et al., 2013, 

2020) aim to capture the largest possible spectrum, both of which will be discussed 

later in the chapter. 

The latest game-changing mass spectrometer technology introduced is the 

Orbitrap mass analyzer (Hu et al., 2005; Olsen et al., 2005; Michalski et al., 2011), 
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which is similar to Fourier transform ion cyclotron resonance mass spectrometers 

(FTMS) in its working principle, where ions are trapped using an electrostatic force 

and thus orbit around a small spindle shaped electrode (Figure 1.7). This electrode is 

designed in a manner that the orbiting ions are not only confined in their orbit, but 

also oscillate along the length of the electrode. The oscillation is used to obtain what 

is called an image current in the detector plates of the Orbitrap, which is subsequently 

recorded by the mass spectrometer. Since the frequencies of the image currents are 

related to the m/z ratios of the ions, the relevant mass spectra can be obtained from 

performing Fourier transformation on them (Hu et al., 2005; Scigelova et al., 2011). 

The Orbitrap is with its innovative working principle is the latest addition to the array 

of different types of mass analyzers that are utilized in modern mass spectrometers. 

It was introduced almost two decades ago (Makarov, 2000), and has been quickly 

adopted by biologists as the go to platform for proteomics and metabolomics studies. 

Its success is due to higher resolution, high mass accuracy and a large dynamic range 

(Hu et al., 2005; Makarov et al., 2006). 

 

Figure 1.7: The structure of the Orbitrap mass analyzer. 

1.2 Computational Proteomics 

Advancements in proteomics technologies have been rapid and thus, effective in 

earning proteomics a significant place in today’s biomedical research (Cox and Mann, 
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2008, 2011; Aebersold and Mann, 2016), but many areas are still in need of further 

development. These include computational methods for data processing and analysis 

(C. Chen et al., 2020) and some of the most important advancements in this direction 

are computational platforms and workflows such as MaxQuant and Perseus (Cox and 

Mann, 2008; Cox et al., 2011; Tyanova et al., 2016; Sinitcyn et al., 2018). MaxQuant 

is a software suit, which provides an easy and intuitive means for performing 

quantitative proteomics data analysis for large LC-MS/MS data sets, and Perseus 

provides an intuitive and user-friendly platform for the downstream analysis of 

MaxQuant outputs. 

 Peak detection within the spectra generated by MS is an important initial step 

in computational proteomics (Zhang et al., 2009), and with the introduction of 

higher resolution MS machines, it has been possible to resolve the isotope pattern 

and even fine structures of peptides (Miladinović et al., 2012). The peak information 

(m/z and intensity) coupled to the retention time information from HPLC become 

3D features (Figure 1.8). These features are then taken and assembled to construct 

isotope patterns. This information when combined, lead to considerably high mass 

precision, but this is not necessarily true for mass accuracy, primarily due to 

systematic errors that occur during MS measurements. Such errors have been 

observed to be typically nonlinear and dependent on m/z, retention time, and signal 

intensity. In case of LC-MS/MS coupled with ion mobility, the ion mobility index also 

has an effect on the mass error (Sinitcyn, Rudolph and Cox, 2018). MaxQuant was 

first introduced with an effective algorithm for tackling the mass error problem using 

a multivariate nonlinear recalibration algorithm, which takes advantage of the many 

peptides within complex proteomics samples as calibration points, resulting in 

significant increases in mass accuracy  (Cox and Mann, 2008, 2009; Cox, Michalski 

and Mann, 2011). Besides mass accuracy, in order to ensure consistent retention time 

values and ion mobility orders for peptides across different runs, similar 

recalibration strategies are employed. This is important since HPLC and ion mobility 

setups are naturally prone to irreproducibility, causing problems when comparing 

different LC-MS/MS runs (Sinitcyn, Rudolph and Cox, 2018). Following these 

recalibration steps, it is possible to transfer identifications across different runs and 

compare several different runs together (Paša-Tolić et al., 2004), which is especially 

useful to tackle the stochastic nature of DDA methods in peptide fragmentation 

(Tyanova, Temu and Cox, 2016).  
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Figure 1.8: 3D peak information. 

The fragmentation spectra obtained after the initial MS scan are analyzed in 

order to sequence the peptides. This is done most frequently using a database search 

engine approach, where the database contains all theoretical peptide fragmentation 

spectra generated in silico, using whole genome information (Craig and Beavis, 

2004; Geer et al., 2004; Cox et al., 2011). Such approaches match the measured 

fragmentation spectrum to the entries within the database considering a certain mass 

tolerance. Each such match is named a peptide-spectrum match (PSM), and to 

control for false positive PSMs, a target-decoy approach is employed (Elias and Gygi, 

2007), where in addition to the target database of all theoretical peptide 

fragmentation spectra, a decoy database is constructed. The decoy database often 

contains the reverse sequences of the target database and matches are labeled as 

false-positive PSMs. The score distributions of the PSMs from the target and decoy 

databases can then be used to calculate posterior error probabilities, and control for 

the false discovery rate (FDR) along with other peptide features such as peptide 

length and number of missed cleavages (Cox and Mann, 2008). After peptide 

identification, the peptides are assembled into proteins. The main challenge in this 

step is that during protein digestion many peptides are digested from a protein and 

many peptides are not unique to a certain protein, thus, there is a many-to-many 

relationship between peptides and proteins (Huang et al., 2012). 
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After peptide identification and protein assembly, the proteins can then be 

quantified. Protein quantification can be either absolute or relative. Absolute 

quantification aims to determine the quantity of a protein within a certain sample, 

whereas relative quantification deals with determining the ratio of the protein 

quantity between samples (Figure 1.9). Quantification strategies can be based on 

using labels, e.g. using stable isotopes to tag peptides, or be performed in a label-free 

manner. Relative label-free quantification (LFQ) is challenging due to the nature of 

LC-MS/MS data. These challenges include retention time differences between LC-

MS/MS runs due to parallel sample handling and irreproducibility of HPLC, 

stochastic MS/MS sequencing as the mass spectrometer chooses the most abundant 

peptides for MS/MS leading to missing peptide identifications across samples, and 

pre-fractionation causing peptides to appear in several fractions. MaxQuant, 

equipped with the MaxLFQ algorithm, overcomes such challenges via nonlinear 

retention time alignment, peptide identification transfer between different runs and 

peptide intensity normalization across fractions (Cox et al., 2014). In term of absolute 

quantification, MS is not inherently quantitative due to the vastly different behavior 

of peptides within the mass spectrometer, and the strong correlation of the MS signal 

with the input amount of the protein. To overcome these challenges, Perseus is 

equipped with the Proteomic Ruler plugin, which uses the histone signals identified 

within the MS run as a scale with respect to the amount of DNA measured in the 

sample, to estimate protein copy numbers (Wiśniewski et al., 2014). 

 

Figure 1.9: Absolute and relative protein quantification. The vertical yellow shaded bar 

depicts absolute quantification within a sample and the horizontal blue shaded line depicts 

relative quantification across different samples. 

Computational proteomics has been a corner stone of proteomics studies 

(Sinitcyn, Rudolph and Cox, 2018). Its ultimate goal is to process and analyze the 

data generated primarily via LC-MS/MS to identify and quantify proteins for 
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studying comparative changes between different conditions, posttranslational 

modifications, protein-protein interactions, and the subcellular localization of 

proteins. Generally, endeavors in computational proteomics can be divided into two 

major groups, the correct identification and precise quantification of proteins, and 

the detailed analysis of this information within the context of the specific biological 

question. To this end, bioinformaticians have to develop various algorithms for 

handling the different types of LC-MS/MS data acquisition methods. In the following 

two sections, DDA and DIA proteomics approaches will be discussed.  

1.2.1 Data Dependent Acquisition 

One of the most mature acquisition methods in proteomics is data dependent 

acquisition (DDA) (Dupree et al., 2020). It is the most widely adapted method for 

proteomics studies, in which ions are separated after the first MS scan based on their 

m/z, and the instrument then selects certain ions in real-time with specific m/z 

values for further analysis after fragmentation (MS2) (Figure 1.10). Subsequent 

fragmentation techniques post precursor ion selection vary, and can be any of 

collision-induced dissociation, ion-molecule reaction, or photo-dissociation.   
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Figure 1.10: Schematic overview of data dependent acquisition proteomics (adapted from 

(Wolf-Yadlin, Hu and Noble, 2016)). 

Using DDA, the mass spectrometer is set to select a subset of ions based on 

MS1-level data, usually the most abundant ions, for further analysis via MS2. This is 

why DDA is also sometimes named the topN method (Venable et al., 2004). Higher 

abundant ions are preferred, since they usually lead to higher quality MS/MS spectra, 

leading to a higher number of identifications (Hebert et al., 2018). In this step, the 

mass spectrometer uses ion fragmentation and tandem measurement to deliver 

further information on the ion in question. In the case of peptides, the fragmentation 

energies are set in a way that they are most optimized for single peptide backbone 

breakages, leading to a set of complementary fragment ions. DDA has improved with 

each new generation of mass spectrometers to capture more ions, leading to efficient 

capture of effectively a complete proteome even with a single run MS run (Bekker-

Jensen et al., 2017). 
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1.2.2 Data Independent Acquisition 

The LC-MS/MS method for studying proteins, especially in its DDA form for shotgun 

proteomics has allowed for the in-depth analysis of entire proteomes. In efforts to 

make proteomics techniques a more stable and robust, new methods are being 

developed using DIA. DIA promises to be a faster, thus cheaper alternative to the 

current gold standard that is DDA. In DIA, all ions within a selected m/z range are 

sent for fragmentation for further analysis in the second MS (Figure 1.11). It has been 

in use and constant development during the last two decades, and has continued to 

be utilized and improved, with methods focusing on fragmenting entire precursor 

ranges, also with narrower windows which aim to simulate DDA runs (Panchaud et 

al., 2009, 2011; Geiger, Cox and Mann, 2010b; Egertson et al., 2013). Fragmenting 

entire precursor ranges result in faster data acquisition and thus, help to cover wider 

mass ranges at the cost of higher spectral complexity, and utilizing narrower windows 

lead to less complex spectra with a higher dynamic range at the cost of higher cycle 

times (Chapman, Goodlett and Masselon, 2014). DIA is progressively attracting 

traction for proteomics studies as it promises the advantages of targeted approaches 

to studying complete proteomes, especially in terms of sensitivity and reproducibility 

(Doerr, 2014). DIA strives to overcome the limitation in the number of MS/MS 

spectra that the mass spectrometer is able to measure by isolating certain ions. Since 

in DIA instead of a certain ion, a m/z range is selected for further fragmentation and 

analysis, the resulting MS/MS spectra is essentially a combined spectrum for 

multiple peptide precursors, which would need to be deconvoluted for effective 

peptide identification (Masselon et al., 2000). On the other hand, DIA ensures that 

essentially no data is lost and all precursors are fragmented and thus, it not only 

promises to capture and record the entire proteome in the realm of the mass 

spectrometers maximum dynamic range, but also allows for higher reproducibility 

across different samples (Gillet et al., 2012). Although in theory DIA has been 

proposed to have many advantages over the current DDA approaches, in practice it 

has so far not been able to compete with DDA in terms of whole proteome coverage 

(Röst et al., 2014; Navarro et al., 2016; Collins et al., 2017). Perhaps this is mainly 

due to the lack computational workflows, which can effectively decipher the data to 

reach higher rates of identification and reliable quantification. Initial computational 

solutions for the analysis of the data were focusing on generating so called pseudo-

MS/MS spectra, where fragment ions were grouped based on retention time 

information, and makeshift use of search engines initially designed for DDA data 
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(Bilbao et al., 2015). MaxQuant equipped with MaxDIA, utilizes two different 

strategies for the analysis of DIA data based on both experimentally generated 

libraries using DDA methods and predicted libraries, which is further discussed in 

detail in section 4.2. 

 

Figure 1.11: Schematic overview of data independent acquisition proteomics (adapted 

from (Wolf-Yadlin, Hu and Noble, 2016)). 

1.3 Computational Metabolomics 

The latest LC-MS/MS platforms can measure well over 200,000 ions within each run 

from typical biological samples, from which only a fraction of a percent are identified. 

Computational workflows for such metabolomics data aim to reach higher mass 

accuracy and effectively use information such as chromatographic retention time, 

collision-induced dissociation products and collision cross section for metabolite 

identification (Uppal et al., 2016). Numerous tools exist for the processing of 
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metabolomics data designed to deal with the various aspects of the complexity of the 

data ranging from peak detection to spectral noise removal and feature alignment 

between different runs (Tautenhahn, Bottcher and Neumann, 2008; Yu et al., 2009; 

Pluskal et al., 2010).  

Peak detection is done in a per file fashion with certain criteria such as signal-

to-noise ratio and peak shape used to filter for peaks of high quality. This is followed 

by alignment strategies to create a dataset of all peaks contained within all files so to 

compensate for deviations and errors across LC-MS/MS runs. Such deviations and 

errors occur especially within the retention time dimension, which could arise from 

HPLC variables such as column temperature and the pressure within the system 

along with the changes within the column during the course of the runs (Lange et al., 

2008). Deviations could also arise during mass spectrometry and technical replicates 

are important to detect and account for such deviations (Uppal et al., 2013; Libiseller 

et al., 2015). One of the most important factors in metabolomics data analysis is mass 

accuracy. Since mass accuracy has a direct influence on the quality of alignment 

between samples, downstream feature annotation and metabolite identification, low 

mass accuracy jeopardizes the entire analysis (Kind and Fiehn, 2006). To this end, 

mass error correction strategies exist that exploit internal standards and references, 

which can estimate the error, and account for it downstream for improving 

alignments between different runs (Shahaf et al., 2013). Such strategies are effective 

to a degree, but due to the limited amount of standards and references, it is often 

difficult to account for the mass error across the entire mass range of the 

measurements. The following section discusses these limitations along of with some 

lessons from proteomics and possible solutions. 

1.3.1 What Computational Non-Targeted Mass Spectrometry-

Based Metabolomics can gain from Shotgun Proteomics 

In the following review article (Hamzeiy and Cox, 2017), the common challenges 

between computational proteomics and metabolomics are discussed with a focus on 

how these challenges are met in the realm of proteomics, and how such strategies can 

be adapted to the field of metabolomics. It is argued that similar to the effect of higher 

mass accuracies in proteomics datasets where higher rates of identification are 

achieved, metabolomics datasets would also benefit from a smart mass recalibration 

algorithm, with the end goal of reaching higher rates of metabolite identification. 
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 Contributions to the following review within the context of this thesis include 

the gathering and organizing of all publicly available metabolomics data for 

preliminary testing of the mass recalibration strategy proposed for metabolomics 

datasets, taking part in the implementation of the algorithm, testing and 

benchmarking, and writing the review. 

Hamzeiy, Hamid, and Jürgen Cox. 2017. “What Computational Non-Targeted 

Mass Spectrometry-Based Metabolomics Can Gain from Shotgun Proteomics.” 

Current Opinion in Biotechnology 43: 141–46. 

https://doi.org/10.1016/j.copbio.2016.11.014. 
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1.4 Multi-Omics Data Analysis 

Arguably, the most challenging task is to take what are in essence snapshots of the 

state of a biological system under study, and combine them in a manner from which 

meaningful information could be extracted (Subramanian et al., 2020). There are 

many reasons for studying more than one omics dataset simultaneously. The main 

challenge in such efforts, besides the handling of the huge amounts of data generated, 

is the heterogeneous and multidimensional nature of the data since each omics 

dimension is measured using a different technology, and is presented in a unique 

manner (Kim and Tagkopoulos, 2018). These differences can arise from the nature 

of the data, e.g. being discrete or continuous, or from the complexity of the measured 

omics dimension, e.g. the expression levels of tens of thousands of mRNAs, and the 

levels of thousands of metabolites, not to mention the differing sensitivity and 

reproducibility of each different technology. On the other hand, multi-omics efforts 

can be helpful in reducing noise and false positive findings within each omics 

dimension by aggregating data and evidence from several different layers of 

information (Rotroff and Motsinger-Reif, 2016).  

Cross analysis of proteomics data with genomics data can correlate 

personalized hereditary or disease-related information to proteomic phenomena, 

such as correlating DNA copy number and loss of heterozygosity to protein 

expression by grouping together proteins matching to the same gene (Geiger, Cox 

and Mann, 2010a). By comparing the transcriptome to the proteome, the dynamic 

phenomena of gene expression between transcription and translation becomes 

detectable. When combining proteomics and transcriptomics data, expression levels 

may be the easiest to integrate due to their near 1:1 relationship (Tyanova et al., 

2016). An even closer relationship exists between transcriptomics and proteomics 

when one considers data from techniques such as ribosome profiling (Ingolia, 2014). 

Metabolomics data combined with proteomics data bears the possibility to study the 

interplay of enzymes with reaction reactants, since metabolites and proteins have an 

organic connection via metabolic reactions where enzymes are responsible for the 

consumption and production of metabolites. Metabolites can also act as catalysts, 

allosteric regulators and help form protein complexes (Piazza et al., 2018). 
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1.4.1 Network Assisted Data Analysis 

When analyzing data from different levels of omics, existing knowledge regarding 

established relationships between various biomolecules ranging from DNA to 

metabolites promises a logical approach to integrating such data (Y. X. Chen et al., 

2020). Many public databases are now available where data is curated by mining 

literature, where various interactions are intuitively represented as networks 

(Orchard et al., 2014; Szklarczyk et al., 2019; Oughtred et al., 2020). Metabolic 

networks reconstructed on the level of various organisms provide a great opportunity 

to integrate various omics data and analyze them together (Büchel et al., 2013). This 

is because the metabolome is the closest level to the phenotype of the organism of 

interest. The metabolic network provides the scaffold upon which all omics data can 

be mapped for integrative analysis (Chong and Xia, 2017). Such an approach in 

utilized in the paper presented in section 4.3 and discussed in detail. 
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 Purpose 

Within the context of this thesis, several project have been carried out in aims of 

improving computational methods for LC-MS/MS-based proteomics, metabolomics, 

and downstream analysis of multi-omics datasets. To this end, a new algorithm is 

proposed for improved mass accuracy in LC-MS/MS-based metabolomics datasets, 

which incorporates a novel library-based mass recalibration approach. This will in 

turn help increase the number of identifications in future metabolomics software and 

help propel metabolomics to the level of maturity that proteomics has reached. 

Furthermore, MaxQuant 2.0 equipped with MaxDIA is described for analyzing DIA 

LC-MS/MS proteomics datasets, using both measured libraries and predicted 

libraries. This further expands the abilities of the MaxQuant platform as the go to 

platform for the quantitative analysis of proteomics datasets. Finally, the Metis 

plugin for the Perseus software is introduced as an easy and accessible tool for 

metabolic network-based multi-omics analysis. Metis expands the capabilities of the 

popular Perseus software in network-based analysis and handling of various types of 

omics data. 
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 Results 

Here, the primary results on the improvement of mass accuracy in LC-MS/MS-based 

metabolomics data is presented. Later in chapter 4, the relevant publications to the 

improvements of the MaxQuant software suit in terms of supporting the Linux 

operating system and DIA proteomics data is presented, along with the Metis plugin 

for multi-omics data analysis within the Perseus software suit. 

3.1 Metabolomics Library Generation 

In order to generate a the initial library to use for mass recalibration in metabolomics, 

m/z values which are known common metabolites in biological samples from 

databases such as ChEBI (de Matos et al., 2010), which accumulate and curate 

metabolites of biological importance are gathered. It is important to mention that the 

library is made up of all possible isotopic peaks, rather than simply monoisotopic 

masses for the metabolites, since features are to be matched to the library rather than 

isotope patterns. Subsequently, publically available metabolomics data from several 

resources, including MetaboLights (Haug et al., 2020) and Metabolomics 

Workbench, were gathered and filtered for data from Orbitrap mass spectrometers, 

due to the higher resolution that this type of mass spectrometer provides for the lower 

mass range. This resulted in 71 datasets corresponding to 1511 runs. All data were 

then processed using the MaxQuant software for feature detection and using our 

novel mass morphing algorithm, features are mapped to the library. The library can 

then be updated if there remains unmapped features with adequate signal-to-noise 

ratio with a plausible new metabolite annotation (Figure 3.1). 
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Figure 3.1: Metabolite library generation workflow. 

Following the library generation and update strategy, the size of the library 

increases as newly identified high quality features within each dataset that are not 

present within the library of plausible m/z values are added to the library, making 

the library more comprehensive. This behavior plateaus as the library is updated with 

each iteration of processing the same dataset and will continue with every new 

dataset (Figure 3.2). 

 

Figure 3.2: Library size increases with subsequent mapping and mass morphing and 

plateaus after several iterations on four datasets. The y-axis is the number of m/z vales 

present within the library and the x-axis is the number of iterations of library mapping 

and update. 
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The number of identified features within each dataset decreases as the growth 

of the library leads to higher mass accuracy and thus, more confident identifications. 

This is not the case for the initial dataset used to develop the algorithm and the initial 

library as many of the features within that dataset were initially manually identified 

(Figure 3.3). 

 

Figure 3.3: Number of identified features within four different mass spectrometry runs. 

The y-axis is the number of identified and the x-axis is the number of iterations of mass 

recalibration. 

3.2 Library mapping, mass morphing and recalibration 

We use our Easy Library Implementation (ELI) for mass recalibration in 

metabolomics, for a significant improvement in mass accuracy of metabolomics 

datasets. After generation of the library of plausible m/z values, the mass 

spectrometry run to be analyzed is processed and aligned to the library using our 

mass morphing approach, which calculates a nonlinear calibration function aiming 

to map as many features to the library as possible. Special attention is made to the 

smoothness of the fit to prevent overfitting (Figure 3.4). 
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Figure 3.4: Schema of how features are mapped and morphed to the library. 

ELI for mass recalibration in metabolomics when performed on all 1511 

metabolomics runs that were gathered results in a general improvement across all 

datasets with the median mass error being reduced, with significant improvements 

in datasets which were suffering from high rates of mass error (Figure 3.5). Although 

mass accuracy improvements depends on factors such as molecular mass and the 

complexity of the sample, improvements in mass accuracy generally lead to the 

reduction of the number of candidates for each feature and thus, help in the effective 

processing analysis of metabolomics datasets. 
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Figure 3.5: Average FWHM of un-calibrated vs. calibrated delta ppm across 1511 

metabolomics runs. The mass error is significantly reduced in datasets that suffered from 

mass errors higher than 3 ppm and the median has reduced to be below 2 ppm. 
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 Manuscripts 

During the past few years, we have published papers on improvements to the 

MaxQuant software suit, multi-omics capabilities of the Perseus software suit and the 

introduction of MaxQuant 2.0, which will be presented in the following sections. 

4.1 MaxQuant goes Linux 

MaxQuant has been accepted by the proteomics community as the gold standard in 

analyzing proteomics data for more than a decade. However, due to its Windows only 

structure and the limitations of Windows in running powerful servers with many 

hundreds of CPU cores, many larger proteomics projects suffered from lengthy run 

times. Adapting the MaxQuant code base to Linux-based operating systems has not 

only allowed larger proteomics projects to be processed on larger servers running 

Linus-based operating systems, it has also allowed the more advanced MaxQuant 

user to utilize MaxQuant in custom scripts and workflows for streamlined analysis. I 

have been privileged to be part of the team involved in this development in the 

MaxQuant ecosystem by contributing to the transition to Linux and testing its 

performance.  

 Contributions to the following correspondence within the context of this 

thesis include software development and research into cross platform software 

development strategies. 

Sinitcyn, Pavel, Shivani Tiwary, Jan Rudolph, Petra Gutenbrunner, Christoph 

Wichmann, Şule Yllmaz, Hamid Hamzeiy, Favio Salinas, and Jürgen Cox. 2018. 

“MaxQuant Goes Linux.” Nature Methods 15 (6): 401. 

https://doi.org/10.1038/s41592-018-0018-y. 
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4.2 MaxDIA enables highly sensitive and accurate 

library-based and library-free data-independent 

acquisition proteomics 

MaxQuant 2.0 follows in the lineage of the original MaxQuant software published 

more than a decade ago, which has become the gold standard go to software for the 

processing of raw LC-MS/MS data. Originally, MaxQuant was designed and 

implemented for DDA experiments, and now, analysis of data-independent 

acquisition data can be carried out by the MaxDIA algorithm. In the context of this 

PhD work, all relevant testing data was gathered, benchmarking was performed, 

machine-learning algorithms within the workflow were optimized, external 

collaborations were coordinated, and the following manuscript was written along 

with the other co-authors. 

 Contributions to the following correspondence within the context of this 

thesis include software design and development, software benchmarking, data 

analysis and ensuring support for external resources such as the PRIDE repository. 

Pavel Sinitcyn, Hamid Hamzeiy, Favio Salinas Soto, Daniel Itzhak, Frank 

McCarthy, Christoph Wichmann, Martin Steger, Uli Ohmayer, Ute Distler, Stephanie 

Kaspar-Schoenefeld, Nikita Prianichnikov, Şule Yılmaz, Jan Daniel Rudolph, Stefan 

Tenzer, Yasset Perez-Riverol, Nagarjuna Nagaraj, Sean J. Humphrey and Jürgen 

Cox. “MaxDIA enables highly sensitive and accurate library-based and library-free 

data-independent acquisition proteomics.” Submitted to Nature Biotechnology, 

2020 
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4.3 Perseus plugin ‘Metis’ for metabolic pathway-

centered quantitative multi-omics data analysis 

supporting static and time-series experimental 

designs  

Time-series omics data, available from circadian studies provide a unique 

opportunity to infer new knowledge on dynamic biological processes by applying 

multi-omics data analysis techniques. We take mice liver transcriptomics, 

proteomics, phosphoproteomics, metabolomics, and lipidomics circadian data and 

by utilizing a network-based method using a large-scale metabolic network 

reconstruction provided by the BioModels database, we look for enzyme activity 

regulation. In the context of this PhD work, data were gathered from different sources 

and processed in a suitable manner, all necessary design, implementation of the 

Perseus code-base was executed, and the following manuscript was written along 

with the other co-authors. 

 Contributions to the following correspondence within the context of this 

thesis include the design and implementation of the network-based multi-omics data 

analysis approach, data analysis and writing of the manuscript. 

Hamid Hamzeiy, Daniela Ferretti, Maria S. Robles, and Jürgen Cox. “Perseus 

plugin ‘Metis’ for metabolic pathway-centered quantitative multi-omics data analysis 

supporting static and time-series experimental designs.” Submitted to Cell Systems, 

2021 
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Table 1. Datasets used in this study. Details of the five omics datasets of 

circadian mouse liver entrained in day-night cycles and then free running from time 

point 0. Several details of the time series acquisition, such as the total acquisition 

time, the sampling rate and the number of replicates per time point vary. Cycling q-

values differed between the analyses performed in the respective publications. In 

order to keep consistency with previous work, we applied the cycling q-value that 

was used in each publication. 

Paper 
Hughes, 
M. E. et 
al. 2009 

Robles, M. S., 
Cox, J. & 

Mann, M. 
2014 

Robles, M. S., 
Humphrey, S. J. & 

Mann, M. 2017 

Krishnaia
h, S. Y. et 
al. 2017 

Adamovi
ch, Y. et 
al. 2014 

Dataset 
Transcrip

tomics 
Proteomics 

Phosphoproteomi
cs 

Metabolo
mics 

Lipidomic
s 

Number of 
identified 
molecules 

18647 3132 7986 224 159 

Number of 
cycling 

molecules 
5989 186 2066 131 11 

Total 
duration of 
sampling 
(hours) 

48 48 48 48 20 

Number of 
time points 
measured 

48 (every 
hour) 

16 (every 
three hours) 

16 (every three 
hours) 

48 (every 
hour) 

6 (every 
four 

hours) 

Replicates 
per time 

point 
1 3 3 4 4 

Cycling q-
value 

threshold 
0.05 0.33 0.1 0.05 0.05 
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 Conclusion and Outlook 

The rapidly evolving fields of omics, computational biology and multi-omics are 

fueling the data-driven revolution of the exploration of biological systems, which has 

had an immense impact on our understanding of the underlying mechanisms of 

living organisms. MaxQuant and Perseus have been continuously developed and 

widely accepted as trusted software platforms for the processing and analysis of 

shotgun proteomics datasets. These platforms house a wealth of tools and algorithms 

that can handle various aspects of the data and provide a user-friendly graphical 

interface. Expanding these platforms to various operating systems others than their 

native Microsoft Windows environment and their abilities in analyzing other types of 

proteomics data such as DIA and metabolomics datasets, provide an substantial 

added value as researchers are enabled to do more and with higher flexibility with 

software that they already use and know well.  

MaxQuant is equipped with ELI for mass recalibration in metabolomics, 

which is the first step in developing MaxQuant as an all-in-one solution for 

metabolomics studies, similar to the position of MaxQuant in proteomics. Achieving 

higher mass accuracies in proteomics data has proven to be of paramount importance 

in increasing the coverage of the proteome and robustness of the approach, and 

similar benefits can be expected for metabolomics datasets. In addition, many of the 

universal functionalities of MaxQuant for LC-MS/MS data can also be readily 

transferred to the processing of metabolomics datasets, accelerating the development 

process. 

Ever since the introduction of MaxQuant in 2008, it had remained a 

Microsoft Windows only software. With increased quantities of proteomics data 

becoming available, bioinformatics facilities began to include MaxQuant in their 

arsenal of frequently used tools. This made the need to release a Linux version of 

MaxQuant evident. Currently, MaxQuant runs on Windows and Linux operating 

systems. 

Historically, MaxQuant has always been the preferred software for the 

analysis of DDA shotgun proteomics data, primarily due to its superior performance 

and ease of use. With the advancements and popularization of DIA methods for 

proteomics studies, the community lacked a reliable and free software for DIA data 

and thus, MaxQuant is now equipped with MaxDIA as a one stop DIA data processing 

solution. MaxDIA is capable of analyzing a wide variety of DIA data ranging from 
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BoxCar-DIA to ion mobility DIA data. It achieves comprehensive proteome coverage 

and precise quantification across many runs. Future developments of MaxDIA will 

focus on expanding the workflow to support PTMs; especially with respect to their 

correct localization within the peptide sequence. 

Although Perseus was initially designed primarily for the downstream 

analysis of MaxQuant outputs, its popularity, flexibility and user-friendly approach 

for analyzing data, has made it popular for use in analyzing other omics datasets, e.g. 

transcriptomics. In this direction, Perseus is continuously developed to allow for 

various other types of data such as NGS data and biological networks. Users can now 

also integrate their own scripts written in Python or R and develop their own plugins 

in C#. With the addition of Metis, a plugin for multi-omics data analysis using 

metabolic networks, Perseus is now allows the user to analyze several different omics 

datasets together. 
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