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Abstract
Inference and the structure of concepts

This thesis studies the role of conceptual content in inference and reasoning.

The first two chapters offer a theoretical and historical overview of the relation

between inference and meaning in philosophy and psychology. In particular, a

critical analysis of the formality thesis, i.e., the idea that rational inference is a

rule-based and topic-neutral mechanism, is advanced. The origins of this idea

in logic and its influence in philosophy and cognitive psychology are discussed.

Chapter 3 consists of an analysis of the relationship between inference and rep-

resentation. It is argued that inference has to be studied from a pluralistic per-

spective due to its dependence on different formats of representing information.

The following four chapters apply conceptual spaces, a formal theory of con-

cepts within cognitive semantics, to three concept-based inference-types. First,

an explication of Sellars’ notion of material inference is advanced. Later, the

model is extended to account for nonmonotonic inference by studying the role

expectations in reasoning. Finally, a conceptual space-model of category-based

induction is presented. This model predicts most of the empirical properties of

this psychological phenomenon and subsumes some of the previous theories in

psychology. It is stated that the explanatory fruitfulness of this new approach

is evidence for the failure of the formality thesis and calls for a unified model

of rational inference that puts semantics at center stage. The last chapter of

the thesis discusses how inference and concepts interact in scientific reasoning,

which makes constant use of hybrid symbolic structures for representing con-

ceptual information. Stephen Toulmin’s notions of method of representation

and inferential technique are developed and applied in a case study about the

emergence of the notion of instantaneous speed during the passage from geomet-

rical physics to analytical mechanics. It is claimed that this analysis provides

support to the pluralistic perspective for theorizing about reasoning.
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Résumé

Cette thèse porte sur le rôle du contenu conceptuel dans l’inférence et le raison-

nement. Les chapitres 1 et 2 offrent un aperçu théorique et historique de la

relation entre "inférence" et "signification" en philosophie et en psychologie

cognitive. En particulier, une analyse critique de la "thèse formaliste", i.e.,

l’idée selon laquelle l’inférence rationnelle est un mécanisme neutre par rapport

au sujet (topic-neutral) et qu’il prend appui sur des règles syntaxiques. Les orig-

ines de cette idée dans la logique ainsi que son influence dans la philosophie et

la psychologie cognitive sont discutées. Le Chapitre 3 porte sur la relation entre

l’inférence et la représentation. Il est avancé que l’inférence doit être étudiée

depuis une perspective pluraliste en raison de sa dépendance à l’égard de dif-

férents formats de représentation des informations qui caractérisent la cognition

humaine. Les quatre chapitres suivants sont ceux de la mise en œuvre des es-

paces conceptuels, une théorie formelle des concepts au sein de la sémantique

cognitive, à trois types d’inférence basés sur des concepts. Tout d’abord, une

explication formelle de la notion d’inférence matérielle chez Wilfrid Sellars est

avancée. Ensuite, le modèle est étendu pour saisir l’inférence non monotone en

étudiant le rôle des "attentes" (expectations) dans le raisonnement. Enfin, un

nouveau modèle mathématique d’induction avec des concepts (category-based

induction) est présenté. Ce modèle prédit la plupart des propriétés empiriques

de ce phénomène psychologique et fait quelques prédictions nouvelles. Il est

indiqué que la fécondité explicative de cette approche novatrice montre l’échec

de la thèse formaliste et appelle le développement d’un modèle unifié d’inférence

rationnelle centré sur la sémantique. Le dernier chapitre de la thèse porte sur

la manière dont l’inférence et les concepts interagissent dans le raisonnement

scientifique, qui fait constamment appel à des structures symboliques hybrides

pour représenter les informations conceptuelles. Les notions de “methods of
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representation” et “inferential techniques,” de Stephen Toulmin, sont dévelop-

pées et appliquées dans une étude de cas sur l’émergence de la notion de vitesse

instantanée lors du passage de la physique géométrique à la mécanique ana-

lytique. On prétend que cette analyse soutient la perspective pluraliste pour

théoriser sur le raisonnement.
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Zusammenfassung

Reasoning (der psychologische Prozess, Schlussfolgerungen aus Daten oder Prämis-

sen zu ziehen) und Concepts (im psychologischen Sinne: die Bedeutung von

Wörtern, die sich in der menschlichen Denkweise darstellt), sind zwei zentrale

Themen der Philosophie und der kognitiven Psychologie. Umso erstaunlicher ist

es, dass sie traditionell als unabhängige Forschungsthemen verstanden werden

und sich in der Literatur nur selten überschneiden. Das ist besonders verblüf-

fend, wenn wir die weitgehende wissenschaftliche Einigkeit bedenken, die über

die zentrale Rolle beider Begriffe für die Erklärung des menschlichen Denkens

herrscht. Concepts sind historisch gesehen als ‚Bausteine‘ des Denkens konzip-

iert worden. Gleichzeitig bezieht sich Reasoning auf eine bestimmte Art von

Gedankenübergängen, die bei rationalen Akteuren das Handeln und die Fix-

ierung von Überzeugungen leiten sollen. Auf den ersten Blick scheinen die Be-

griffe untrennbar miteinander verbunden zu sein. Es stellt sich also die Frage,

warum die Theorien des Reasonings, sowohl in der Psychologie als auch in der

Philosophie den Begriff Concepts in ihrer Erklärungsstruktur vermeiden.

Eine mögliche Erklärung dafür ist, dass Studien zu Reasoning von einer

logikwissenschaftlichen Sichtweise dominiert werden, die Inferenz als einen rein

formal-syntaktischen Prozess —d. h. nicht-semantischen— versteht, der auf

einer Reihe bereichsübergreifender und themenneutraler Regeln aufbaut. Aus

dieser Sicht werden lexikalische Konzepte als ‚inferentiell inert‘ angesehen, d.

h. sie spielen im Prozess der Inferenz und des Reasoning keine Rolle. Das

ist keineswegs zufällig; im Gegenteil, es geht auf ein spezifisches Konstrukt des

Begriffs der „logical form“ ein, das die Logik seit Aristoteles dominiert (siehe

Etchemendy, 1983). Nach dieser Auffassung ist inferentielle Gültigkeit eine

Frage der Form und nicht des Inhalts. Deduktive Inferenzen sind gültig auf-

grund der Verteilungen der logischen Begriffe, die ihre Struktur charakterisieren,
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unabhängig von der Beziehung zwischen den außerlogischen (extra-logical) Be-

griffen (Concepts) in der/den Prämisse(n) und der Schlussfolgerung.

Diese Auffassung, ist in Inhelder und Piagets Behauptung zusammengefasst:

“[human] reasoning is nothing more than the propositional calculus itself.” (1958,

S.305). Sie führte dazu, dass kognitive Psychologen und Philosophen das de-

duktive Reasoning als Paradigma der rationalen Inferenz und den semantischen

Inhalt als irrelevant für die Erklärung des Reasoning betrachteten.

Parallel dazu wurde die philosophische Semantik von einer Sichtweise des

Meaning (Sinn, Bedeutung) dominiert, die die Trennung zwischen Concepts und

Reasoning bestätigte. Zu einem beträchtlichen Teil glaubten die Philosophen

erklären zu können, was die lexikalische Bedeutung oder Satzbedeutung ist,

ohne den Begriff der Inferenz - oder irgendeinen anderen Begriff, der sich auf

einen kognitiven Mechanismus bezieht - einzuführen. Die Semantik wurde dann

als etwas gedacht, das ausschließlich von der Beziehung zwischen Sprache und

der Welt geleitet ist; und in diesem Sinne wurde sie auf die Begriffe der Referenz

und der Wahrheitsbedingungen reduziert.

Ich bin davon überzeugt, dass diese Ideen grundlegend falsch sind und dass

es keine Möglichkeit gibt, Reasoning ohne Concepts zu erklären und umgekehrt.

Die vorliegende Arbeit ist ein Ansatz, diese Überzeugung zu rechtfertigen.

Ich bin nicht der erste, der davon überzeugt ist. Jonathan Evans, eine

zentrale Figur auf dem Gebiet der Psychologie des logischen Denkens, schrieb

vor Jahrzehnten, dass Concepts und Inferenz untrennbar miteinander verwoben

(„inextricably entangled“) sind (Evans, 1989, S. 29). Er war davon überzeugt,

dass Wissen - d.h. „bodies of concepts" - grundlegend für den Prozess des Rea-

soning selbst ist; und dass Theorien des Reasoning dies berücksichtigen müssen.

Insbesondere behauptete er, dass Reasoning nicht „blind“ sein könne, aber dies

erfordere ein gewisses Maß an Verständnis des betreffenden Themas. Und da

Verständnis den Besitz von Concepts voraussetze, könne es kein Reasoning ohne

Concepts geben.

Im Verlauf dieser Arbeit werde ich eine ähnliche Idee auf unterschiedliche
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Weise verteidigen. Ich behaupte, dass die Inferenz Eigenschaften von Repräsen-

tationssystemen (representational systems) ausnutzt, die konzeptuelle Informa-

tionen kodieren. Es ist zu beachten, dass dies nicht im Widerspruch zu der

logistischen Behauptung steht. Logiker glauben, dass die deduktive Inferenz

die logische Form ausnutzt, und die logische Form eine (implizite) Eigenschaft

der natürlichen Sprache ist —ein Repräsentationssystem. Ich glaube jedoch,

dass die logische Inferenz in der alltäglichen Kognition eine eher marginale Rolle

spielt; und dass die meisten sprachbasierten Inferenzen auf Eigenschaften der

semantischen Repräsentation (semantic representation) aufbauen. Was ist nun

‚semantische Repräsentation‘? Einer Tradition aus der kognitiven Semantik fol-

gend, die der wahrheitsbedingten Semantik entgegengesetzt ist, gehe ich davon

aus, dass diese Art der Repräsentation jene mentalen Strukturen betrifft, die

durch lexikalische Konzepte während der Sprachverarbeitung evoziert werden.

Ein zentrales Ziel dieser Arbeit ist es, diese letztere Idee im Detail zu entwick-

eln. Ich verwende Peter Gärdenfors’ Theorie der Conceptual Spaces (Begriffs-

räume) (2000; 2014), um verschiedene Formen semantisch basierter Inferenzen

so zu erklären, dass sie der oben gegebenen Definition entsprechen. Ein Fazit

dieser Analyse wird sein, dass Wortklassen aufgrund ihrer Abhängigkeit von

verschiedenen Conceptual Spaces bei der Repräsentation während der seman-

tischen Verarbeitung mit spezifischen Inferenzmustern assoziiert werden. Die

Auffassung von Inferenz, die ich hier vertrete, ist pluralistisch. Die Idee dahinter

ist einfach: Die menschliche Kognition verwendet viele verschiedene Arten von

Repräsentationssystemen. Die natürliche Sprache ist wohl die wichtigste. Den-

noch verwenden wir auch mentale Bilder und eine Fülle von äußeren Darstellun-

gen wie Diagramme, mathematische Formeln und komplexe wissenschaftliche

Modelle zur Darstellung von Phänomenen. Diese Systeme schreiben auch

konzeptuelles Wissen fest, und wir verwenden sie beim Schlussfolgern durch

Inferenzmechanismen, die für sie typische Eigenschaften ausnutzen. Um diese

Behauptung zu untermauern, ist das letzte Kapitel dieser Arbeit dem Studium

des modellbasierten logischen Denkens in der Wissenschaft gewidmet; insbeson-

dere der Beziehung zwischen wissenschaftlichen Konzepten, Modellen und Rea-

soning.
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Bevor die Struktur dieser Arbeit erläutert wird, sind zwei Dinge wichtig.

Erstens, die Arbeit war ursprünglich als eine Sammlung von Artikeln gedacht,

die sich um das zu Beginn dieser Einführung beschriebene Problem drehen. Die

letzten Kapitel (Kapitel 4-8) basieren auf diesen Artikeln. Die vorangehenden

Kapitel (Kapitel 1-3) zielen darauf ab, den gemeinsamen theoretischen Rahmen

aus historischer und philosophischer Sicht zu setzen. Nichtsdestotrotz enthal-

ten diese Kapitel einiges an Kritik an den diskutierten Ansichten sowie einige

Ideen, wie man die Beziehung zwischen Inferenz und Repräsentation auflösen

kann. Zweitens, bauen die Kapitel 6 und 7 direkt auf zwei Kollaborationen mit

Peter Gärdenfors auf. Kapitel 7 basiert auf dem Artikel „Category-based induc-

tion in conceptual spaces", der in dem Journal for Mathematical Psychology

(Osta-Vélez & Gärdenfors, 2020a) veröffentlicht wurde; während Kapitel 6 auf

dem Artikel „Nonmonotonic reasoning, expectation orderings, and conceptual

spaces“ (Osta-Vélez & Gärdenfors, n.d.).

Die vorliegende Arbeit ist wie folgt strukturiert. In Kapitel 1 wird die These

der Formalität (formality thesis), eine entscheidende Idee für viele Theorien des

Reasoning, erörtert, wobei behauptet wird, dass Inferenz ein formaler Prozess

ist, der auf einer satzähnlichen Gedankensprache beruht. Hier soll gezeigt wer-

den, wie diese Idee in der aus der klassischen Logik übernommenen begrifflichen

Unterscheidung zwischen Form und Inhalt verwurzelt ist. Danach wird der

Einfluss dieser Unterscheidung auf die Grundlagen der Kognitionswissenschaft

diskutiert, wobei ein besonderer Schwerpunkt auf Jerry Fodors einflussreiche

Version der rechnergestützten Theory of Mind gelegt wird. Der letzte Teil ist

der Rolle der formality thesis in der kognitiven Psychologie gewidmet. Drei

klassische Theorien werden kritisch diskutiert: Piagets entwicklungsorientierte

Betrachtung von Reasoning, die Mental Logic Theorie und die Mental Model

Theorie.

Kapitel 2 ist den Theories of Meaning gewidmet. Es beginnt mit einer his-

torischen Analyse der Beziehung zwischen Meaning und Inferenz in der allge-

meinen Sprachphilosophie. Ziel ist es, den philosophischen Rahmen zu erörtern,

der eine ‚Trennung‘ zwischen diesen beiden Begriffen förderte. Danach werden
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einige alternative Theorien analysiert, insbesondere die begriffliche Rollense-

mantik (Conceptual Role Semantics) und der Inferentialismus. Ich komme zu

dem Schluss, dass diese Theorien nicht gut geeignet sind, um die Beziehung

zwischen Meaning und Inferenz zu erklären. Schließlich wird die Kognitive Se-

mantik eingeführt und als der geeignete Rahmen für die Durchführung der oben

genannten Aufgabe dargestellt.

Kapitel 3 analysiert die Beziehung zwischen Repräsentation und Inferenz.

Es wird behauptet, dass produktive Inferenzmechanismen voraussetzen, dass

konzeptuelle Information vorher geordnet wird; und dass die rechnerischer Ef-

fizienz dieser Mechanismen vom Format der Informationsdarstellung abhängt.

Ein wichtiger Teil des Kapitels ist eine Kritik an dem, was ich als Repräsen-

tationskonservativismus bezeichne, d.h. die Idee, dass alle Überlegungen auf

persönlicher Ebene in einem sprachähnlichen Repräsentationssystem wie Fodors

Language of Thought stattfinden. Anschließend wird der inferentielle Pluralis-

mus verteidigt, und es werden einige Beispiele für verschiedene Inferenz-Typen

diskutiert.

Während die vorhergehenden Kapitel überwiegend kritisch und theoretisch

sind, ist der restliche Teil der Arbeit eher konstruktiv. Es soll gezeigt wer-

den, wie bestimmte Formen von Inferenzen, die aus formalistischer Perspek-

tive schwer zu erklären sind, leicht erläutert werden können, wenn man die

Abhängigkeitsbeziehung zwischen Konzepten und Inferenz annimmt. Kapi-

tel 4 führt in die Theorie der Conceptual Spaces ein, das wichtigste formale

Werkzeug, das in den folgenden Kapiteln verwendet wird. Kapitel 5 führt eine

Erläuterung von Wilfrid Sellars’ Begriff der Materiellen Inferenz unter Verwen-

dung von Conceptual Spaces ein. Es wird behauptet, dass, obwohl Sellars’ und

Brandoms Inferentialismus einen wesentlichen Gebrauch von der Idee der Ma-

teriellen Inferenz macht, keiner dieser Autoren eine Erklärung der kognitiven Ur-

sprünge und der dahinter stehenden Mechanismen anbietet. Ich veranschauliche

die Analyse Conceptual Spaces, indem ich die inferentiellen Möglichkeiten ver-

schiedener Wortklassen untersuche, insbesondere Substantive, Adjektive, räum-

liche Präpositionen und einige relationale Konzepte.

Kapitel 6 befasst sich mit nicht-monotischem Denken. Die Hauptthese ist,
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dass Schlussfolgerungen unter Unsicherheit auf der Struktur des Hintergrund-

wissens aufbauen. Das Kapitel baut auf Ideen von Gärdenfors und Makinson

(1992, 1994) über die Rolle von Erwartungen beim Reasoning auf. In groben

Zügen zeigten sie, dass sich die nicht-monotone Logik auf die klassische Logik

sowie eine Ordnung von Sätzen, welche Erwartungen repräsentieren, reduzieren

lässt. Es wird argumentiert, dass ihr Rahmenkonzept durch eine auf Concep-

tual Spaces basierende Analyse der Erwartungen erheblich bereichert werden

kann. Insbesondere können die in Conceptual Spaces eingebauten Distanzfunk-

tionen dazu verwendet werden, psychologisch realistische Erwartungsordnungen

zu erzeugen, die dazu beitragen, die Dynamik des nicht-monotonen Denkens zu

erklären. Gleichzeitig löst diese Analyse einige alte erkenntnistheoretische Prob-

leme der Standardlogik.

In Kapitel 7 wird ein neues mathematisches Modell für kategoriebasierte

Induktion vorgeschlagen, eine Art semantisch-basierte Inferenz, die hauptsäch-

lich in der Psychologie untersucht wird. Dieser Inferenzmechanismus nutzt die

Kenntnis konzeptueller Beziehungen, um abzuschätzen, wie wahrscheinlich es

ist, dass eine Eigenschaft von einer Kategorie auf eine andere projiziert wird.

Zum Beispiel wird die Schlussfolgerung ‚Hunde haben Sesambeine; daher haben

Wölfe Sesambeine‘ als stärker empfunden als ‚Hunde haben Sesambeine; daher

haben Wale Sesambeine‘. Weil Wölfe Hunden ähnlicher sind als Wale. Es wird

gezeigt, dass ein Conceptual-Spaces-Modell dieser Art von Induktion die meis-

ten ihrer empirischen Eigenschaften vorhersagen kann und einige neue Vorher-

sagen machen kann. Am Ende des Kapitels werden die Beziehungen zu anderen

Modellen und einige methodologische Ideen diskutiert.

Schließlich lässt Kapitel 8 sprachbasierte Inferenzen beiseite und konzen-

triert sich auf die Beziehung zwischen Reasoning und wissenschaftlichen Mod-

ellen. Aufbauend auf Stephen Toulmins Begriffen der Method of Representation

und Inferential Technique (Toulmin, 1972a) analysiere ich die Rolle hybrider

symbolischer Strukturen, wie beispielsweise Modelle bei der Zusammensetzung

bestimmter Formen des Reasoning zu Phänomenen in der Wissenschaft. Die

Analyse wird durch eine Fallstudie über die Entwicklung des Begriffs der augen-

blicklichen Geschwindigkeit von der geometrischen zur analytischen Mechanik
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unterstützt. Die hier verteidigten Ideen werden als Beweis für inferentiellen

Pluralismus und für die enge Verbindung zwischen Darstellungsformen (forms

of representation) und Formen des Reasoning herangezogen.
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Introduction
Reasoning and concepts are two central issues in philosophy and cognitive

psychology. Surprisingly enough, they have traditionally been understood as

independent research topics, and they rarely intersect in the literature. That is

particularly baffling if we consider the widespread agreement on both notions’

essential role in explaining human thinking. Concepts have been historically

conceived as the "building blocks" of thoughts. At the same time, reasoning

refers to a particular kind of thought-transitions which is supposed to guide

action and belief fixation in rational agents. At first glance, the notions seem to

be intrinsically connected. The question is, then, why do theories of reasoning,

both in psychology and in philosophy, obviate the notion of concept in their

explanatory structure?

One possible explanation for this is that reasoning studies have been dom-

inated by a logicist approach that understands inference as a purely formal-

syntactic process —i.e., non-semantic— which builds on some set of domain-

general and topic-neutral rules. From that point of view, lexical concepts are

considered "inferentially inert," i.e., not playing any role in the process of in-

ference. That is by no means casual; on the contrary, it responds to a specific

construal of the notion of "logical form" that has dominated logic since Aristotle

(see Etchemendy, 1983). In this view, inferential validity is a matter of form,

and not of content. Deductive inferences are valid in virtue of the distributions

of logical terms characterizing their structure, regardless of the relation between

the extra-logical terms (concepts) in the premises(s) and the conclusion.

This view, summarized in Inhelder and Piaget’s claim that “[human] reason-

ing is nothing more than the propositional calculus itself.” (1958, p. 305), led

cognitive psychologists and philosophers to consider deductive reasoning as the

paradigm of rational inference, and to see semantic content as irrelevant for the

explanation of reasoning.
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In parallel to this, philosophical semantics was dominated by a view ofmean-

ing that confirmed the disconnection between concepts and reasoning. To a

significant extent, philosophers thought they could explain what lexical or sen-

tential meaning was, without introducing the notion of inference —or any other

notion referring to a cognitive mechanism. Semantics was then thought as some-

thing exclusively concerned by the relation between language and the world;

and, in this sense, reduced to the notions of reference and truth-conditions.

I am persuaded that these ideas are fundamentally wrong and that there is

no way to explain reasoning without concepts and vice versa. This whole thesis

is an attempt to justify this conviction.

I am not the first to believe so. Jonathan Evans, a central figure in the

field of the psychology of reasoning, wrote decades ago that concepts and infer-

ence are "inextricably entangled" (Evans, 1989, p. 29). He was convinced that

knowledge —i.e., "bodies of concepts"— is constitutive of the very process of

reasoning; and that psychological theories must account for this. In particular,

he claimed that reasoning could not be "blind," but that requires some degree

of understanding of the topic in question; and since understanding requires

concept possession, there is no reasoning without concepts.

In a similar vein, Hugo Mercier and Dan Sperber have recently developed a

comprehensive theory of reasoning that seeks to explain its social, individual,

and evolutionary dimensions (Mercier & Sperber, 2017). A fundamental idea

behind it is that inferential mechanisms are meant to exploit empirical regulari-

ties in the environment that are codified in representational systems of different

sorts. Their theory is essentially anti-formalist, and understands inference as

inextricably entangled with representation. However, it does not explain how

this entanglement would work, nor does it explains how conceptual information

is structured within representation systems. In fact, —and once again— their

approach overlooks the notion of concept (see Osta-Vélez, 2019).

Throughout this thesis, I will defend —in different ways— ideas which are

similar to those mentioned above. My focus will be on the point Mercier’s and

Sperber’s theory left unexplained, i.e., the issue of how inferential mechanisms

are entangled to representational structures. In particular, I claim that inference
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exploits different properties of the representational systems used by everyday

cognition for encoding conceptual information.

Notice that this is not in contradiction to the logicist claims. Logicists

believe that deductive inference exploits logical form, and logical form is an

(implicit) property of natural language, i.e., of a representational system. How-

ever, I believe that logical inference plays a rather marginal role in everyday

cognition and that most language-based inferences build on properties of se-

mantic representation. Now, what is "semantic representation"? Following a

tradition from cognitive semantics opposed to truth-conditional approaches, I

assume that this kind of representation concerns the mental structures evoked

by lexical concepts during language processing.

A central aim of this thesis is to develop this latter idea in some detail. I use

Peter Gärdenfors’ theory of conceptual spaces (2000; 2014) to explicate different

forms of semantic-based inferences in such a way that fits the definition given

above.

Conceptual Spaces is a research program in cognitive science and knowledge

representation claiming that conceptual content is organized in different topo-

logical and geometrical structures at a sub-symbolic level of representation of

information. It provides many formal and theoretical tools for explaining how

concepts are used in cognitive processes like categorization, induction, concept

formation, or language learning.

In this dissertation, I intend to show how this approach can be successfully

used for explaining the role of concepts in reasoning. Regarding semantic-based

inference, an upshot of the analysis here developed will be that word classes

have specific inferential patterns associated with them due to their reliance on

different conceptual spaces while being represented during semantic processing.

Furthermore, it will be shown how inductive inference and nonmonotonic rea-

soning rely on very specific properties of conceptual structures like similarity

and typicality.

The view of inference defended here is pluralistic. The idea behind it is

straightforward: human cognition uses many different kinds of representational

systems. Natural language is, arguably, the most important one. Still, we also
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use mental images and a plethora of external symbolic structures like diagrams,

mathematical formulas, and scientific models to represent phenomena. These

systems also codify conceptual knowledge, and we use them in reasoning through

inferential mechanisms that exploit properties that are typical of them. To offer

some support for this claim, the last chapter of this work is devoted to studying

model-based reasoning in science; and, in particular, the relationship between

scientific concepts, models, and reasoning.

Before going on to explain the structure of this work, two things are impor-

tant to note. First, the content of several chapters has already been published

in the form of articles. In particular, chapters six and seven build on two collab-

orations with Peter Gärdenfors (Osta-Vélez & Gärdenfors, n.d., 2020a); while

chapter eight is based on (Osta-Vélez, 2019). Second, the thesis unfolds in two

stages. The first three chapters offer a critical analysis of the historical and

philosophical framework motivating this work; and they are supposed be the

"glue" connecting the rest of the content. On the other hand, the last five

chapters are rather constructive and propose different ways in which the issues

that this dissertation attends can be approached.

The thesis is structured in the following way. Chapter 1 discusses the formal-

ity thesis, a crucial idea for many theories of reasoning, claiming that inference

is a formal process carried out on a sentence-like language of thought. Here,

the aim is to show how this idea is rooted in the conceptual distinction between

form, and content inherited from classical logic. After this, the influence of this

distinction in the foundations of cognitive science is discussed, with a particular

focus on Jerry Fodor’s influential version of the computational theory of mind.

The last part is devoted to the role of the formality thesis in cognitive psychol-

ogy. Three classical theories are critically discussed: Piaget’s developmental

view of reasoning; Mental Logic theory, and Mental Model theory.

Chapter 2 is devoted to theories of meaning. It begins with a historical anal-

ysis of the relation between meaning and inference in mainstream philosophy

of language. The aim is to discuss the philosophical framework which promoted

a "divorce" between these two notions. Afterward, some alternative theories
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are analyzed, in particular conceptual role semantics and inferentialism. I con-

clude that these theories are not well equipped for explaining the relationship

between meaning and inference. At the end, cognitive semantics is introduced

and defended as the appropriate framework for doing the aforementioned job.

Chapter 3 is an analysis of the relation between representation and inference.

It is claimed that "productive" inferential mechanisms require that concep-

tual information is previously organized; and that the computational efficiency

of these mechanisms depends on the format of representation of information.

An important part of the chapter is a criticism of what I call representational

conservativism, i.e., the idea that all personal-level reasoning takes place in a

language-like representational system like Fodor’s language of thought. Finally,

inferential pluralism is defended, and some examples of different inference-types

are discussed.

While the previous chapters are mostly critical and theoretical, the remain-

der of the thesis is rather constructive. It aims at showing how certain forms

of inferences —that are difficult to explain from a formalist perspective— are

easily explicated if we assume the dependency relation between concepts, repre-

sentation, and inference. Chapter 4 introduces the theory of conceptual spaces,

the main formal tool used in the next chapters. Chapter 5 advances an expli-

cation of Wilfrid Sellars’ notion of material inference using the aforementioned

theory. It is claimed that while Sellars’ and Brandom’s views makes essential

use of the idea of material inference, none of these authors offers an explanation

of the cognitive origins and mechanisms behind it. I exemplify the conceptual

space-analysis by studying the inferential affordances of various word classes;

notably, nouns, spatial prepositions, and some relational concepts.

Chapter 6 deals with nonmonotic reasoning. The main claim is that infer-

ence under uncertainty builds on the structure of background knowledge. The

chapter builds on ideas from Gärdenfors and Makinson (1992; 1994) regarding

the role of expectations in reasoning. Roughly, they showed that nonmonotonic

logic can be reduced to classical logic plus an ordering of propositions repre-

senting expectations. It is argued that their framework can be significantly

enriched by a conceptual spaces-based analysis of expectations. In particular,



xxxviii

the built-in distance functions in conceptual spaces can be used to generate

psychologically realistic expectation orderings that help to account for the dy-

namics of nonmonotonic reasoning. At the same time, this analysis solves some

old epistemological issues of default logic.

Chapter 7 propose a new mathematical model for category-based induction,

a kind of semantic-based inference mainly studied in psychology. This inferential

mechanism uses knowledge of conceptual relations to estimate how likely it is

for a property to be projected from one category to another. For instance,

the inference "Dogs have sesamoid bones; thus wolves have sesamoid bones"

is perceived as stronger than "Dogs have sesamoid bones; thus, whales have

sesamoid bones" because wolves are more similar to dogs than whales. It will

be shown that a conceptual spaces-model of this kind of induction can predict

most of its empirical properties and make some new predictions. At the end

of the chapter, the relations with other models and some methodological ideas

will be discussed.

Chapter 8 leaves aside language-based inferences and focuses on the relation-

ship between reasoning and scientific models. Building on Stephen Toulmin’s

notions of method of representation and inferential technique (Toulmin, 1972a),

I analyze the role of hybrid symbolic structures in the constitution of particular

forms of reasoning about phenomena in science. The analysis is supported by

a case study about the development of the notion of instantaneous speed from

geometrical to analytical mechanics. The ideas defended here are taken as ev-

idence for inferential pluralism and for the intimate connection between forms

of representation and forms of reasoning.

Finally, Chapter 9 summarizes the main ideas defended in the dissertation

and points out various research lines that open up from them.
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Chapter 1

Formality: reasoning without

meaning

Summary

In this chapter, I discuss the formality thesis, a crucial idea for many

theories of reasoning claiming that inference is a formal process car-

ried out on a sentence-like language of thought. I aim to show how

this idea is rooted in the conceptual distinction between form and

content inherited from classical logic. And to discuss its interpre-

tation in the foundations of cognitive science and the psychology of

reasoning. I will analyze the limitations of this thesis and its con-

tribution to the influential idea that reasoning can be studied from

a syntactic perspective, without considering any semantic notion.

1.1 Logic, cognition, and the formality thesis

Logic has been historically conceived as central to reasoning. It has played an

essential part in the development of cognitive science in general, and theories

of reasoning in particular (Harman, 1984; Henle, 1962). It has been used as

a competence model for deductive reasoning (Overton, 1990); as a normative

framework for evaluating our performance in reasoning tasks (Osherson, 1975b;

Stenning & van Lambalgen, 2011); or as a methodological tool for modeling the

formal structure of high-level cognitive operations (Piaget, 1957). In general,

the various forms in which logic has influenced the study of reasoning over the
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years share an underlying assumption: logical properties are formal-syntactic

properties and, if human inference is logical, then it must be formal in some

similar way.

That idea is part of a long tradition of conceiving the mind as a ma-

chine/computer. It started with Thomas Hobbes, and was further developed

by George Boole, Charles Babbage, Alan Turing, Warren McCulloch and Wal-

ter Pitts, and Jerry Fodor —among many others— until becoming one of the

central paradigms in cognitive science (Boden, 1988; Gigerenzer & Goldstein,

1996). The general thesis behind this influential view is that some set of for-

mal/mathematical operations is what underlies human cognition. If we can

model them via the right mathematical algorithms, then thinking can be for-

mally explicated, and eventually replicated by some non-biological device.

However, the idea that reasoning can be formal in a logical sense is not ex-

actly equivalent to the idea that cognition can be described by some mathemat-

ical formalism. The first thesis applies exclusively to rational (personal-level)

inference, and it claims that classical logic can specify the mechanisms behind

it. In contrast, the second applies to any cognitive process whatsoever, and it

is not committed to one particular mathematical structure as a model.

These two notions of formality can be associated with the distinction made

by Dutilh Novaes between the formal as computable and the formal as de-

semantification (2012). The former notion emphasizes those features of formal

systems allowing to specify a mechanism via some algorithmic procedure; while

the latter refers to formal systems as structures devoid of any meaning or any

semantic property whatsoever.1

Both versions of formality are clearly compatible and often go hand by hand.

However, the emphasis on de-semantification is something that concerns espe-

cially to logical formality, since classical logic is built upon the assumption that
1Carnap was one of the main defenders of the formal as de-semantification. We can find

a nice definition of this idea in the following passage:

A theory [...] is to be called formal when no reference is made in it either to
the meaning of the symbols (for example, the words) or to the sense of the
expressions (e.g., the sentences), but simply and solely to the kinds and order
of the symbols from which the expressions are constructed. (Carnap, 2000, p.
1).



1.1. Logic, cognition, and the formality thesis 3

a sharp line between syntax and semantics can be drawn. For this reason, I will

focus exclusively on this last idea, trying to explain its role in cognitive science

and cognitive psychology via the influence of what I call the "formality thesis."

Roughly, the formality thesis claims that personal-level inference is a syntax-

driven, content-independent, and rule-based mechanism. Due to that, formalists

see no room for semantic notions (like meaning) in psychological explanations

of reasoning. When properly articulated, the formality thesis requires to make

two crucial assumptions about the nature of mental representation: (i) that it

has a language-like structure; and (ii) that its syntactic properties are entirely

independent of its semantic properties.

Understanding the role of this idea in psychology is crucial for having a better

insight on what researchers now call "the old paradigm" in the psychology of

reasoning (Elqayam & Over, 2013): a family of theories that used classical logic

as a model of deductive competence and/or performance (Chater & Oaksford,

1993; Overton, 1990). In what follows, I will explain the roots of the formality

thesis in classical logic and its role in the development of the computational

view of the mind. After that, I will discuss its influence on some important

theories in the psychology of reasoning.

1.1.1 Logical formality and the hylomorphic tradition

The contemporary assumption that reasoning is formal is an heir of the idea

that logic is the theory of correct inference plus the definition of deductive

validity as a function of logical form. Understanding this requires digging a

bit into the history of logic. In particular, into what John MacFarlane called

the hylomorphic tradition (MacFarlane, 2000). According to MacFarlane, our

contemporary view of logic is rooted in a hylomorphic conception that assumes

the existence of a sharp distinction between form and content in reasoning and

argumentation. In particular, this tradition assumes that those properties of

reasoning that are logically interesting are formal properties, i.e., independent of

the content or topics of arguments, and that are reflected in their grammatical

or syntactic structure.
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The hylomorphic view finds its main source in Aristotle’s famous distinction

between form and matter (Conway, 1995; MacFarlane, 2000). Aristotle brought

the distinction from the Physics to the study of reasoning and argumentation

by claiming that these two are also constituted by both formal and material

properties. He then advanced the idea that validity was a formal property of

arguments, as a result of his studies on everyday argumentation (Aristoteles

& Ross, 1965, p. 29). Roughly, he saw structural similarities among intu-

itively valid arguments with varied contents, and he was able to pinpoint these

similarities by using schematic letters as placeholders for lexical concepts (see,

Corcoran, 2006, for a detailed explanation). The upshot was a classification

of argument schemes representing different forms of valid arguments. Aristotle

called the systematic study of these schemes formal logic, and wrote the Prior

Analytics as a study of them.

However, Aristotle knew that a theory of reasoning and argumentation

needed more than a theory of the formal conditions of deductive consequence.

Thus, he proposed a complementary discipline, material logic, as the theory

which studies those features of inference that rely on (material) knowledge.

Aristotle devoted to that topic the Posterior Analytics (Aristoteles & Ross,

1965; Conway, 1995).

The hylomorphic view was strengthened during the mathematization of logic

thanks to Boole’s and Frege’s works (see, Van Heijenoort, 1967), leading to the

what Warren Goldfarb has called the schematic conception of logic (Goldfarb,

2001). In his words, according to the schematic conception:

...the subject matter of logic consists of logical properties of sen-

tences and logical relations among sentences. Sentences have such

properties and bear such relations to each other by dint of their hav-

ing the logical forms they do. Hence, logical properties and relations

are defined by way of the logical forms; logic deals with what is com-

mon to and can be abstracted from different sentences. (Goldfarb,

2001, p. 26)

The schematic conception specifies the old hylomorphic idea: sentences have



1.1. Logic, cognition, and the formality thesis 5

logical forms, and inferential moves among them are licensed by structural re-

lations among these forms, regardless of their content. As it is evident, the

problem lies in how the notion of logical form is defined. In the hylomorphic-

schematic tradition, this is done by selecting a set of linguistic particles that

are identified as invariant across subject matters on arguments. For instance,

consider the following two arguments:

1. Montevideo is a city. Cities are not countries. Thus, Montevideo is not a

country

2. Fido is a dog. Dogs are not Birds. Thus, Fido is not a bird

While (a) and (b) are about entirely different topics, they are structurally

equivalent if we take "not," "and," and "thus" to be logical constants; "Fido"

and "Montevideo" as names; and "City," "Country," "Dog" and "Bird" as pred-

icates. The logical analysis of these arguments tells us that both (a) and (b)

fit into the same logical scheme: (Pa ∧ ∀x(Px → ¬Qx)) → ¬Qa. From an

inferential perspective, this means that deductive inferences pivot exclusively

on logical constants, and that names and predicates areinferentially inert.

Topic-neutrality and truth-functionality

Specifying the exact set of logical constants is not an easy task (see, Bonnay,

2014; Gómez-Torrente, 2002). The traditional criterion for this says that logical

constants have to be topic-neutral. Topic-neutrality is an expression coined

by Gilbert Ryle (1954) for characterizing those linguistic items whose content

emerges from the structural role they play in articulating and relating concepts

and propositions. The peculiarity of logical constants —as concepts—, is that

they are not representational, i.e., they do not stand for any object or class of

objects in the world. As Ryle explains:

Formal Logic, it might be said, maps the inference-powers of the

topic-neutral expressions or logical constants on which our argu-

ments pivot; philosophy has to do with the topical or subject-matter

concepts which provide the fat and the lean, but not the joints or
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the tendons of discourse. The philosopher examines such notions

as pleasure, colour, the future, and responsibility, while the Formal

Logician examines such notions as all, some, not, if and or. (Ryle,

1954, p. 116)

Now, as Ryle himself recognizes, topic-neutrality is a slippery concept for

doing this demarcation. The problem is that many different words that are of-

ten taken as predicates in classical logic exhibit some degree of topic-neutrality.

For instance, relational concepts like taller than and north of refer to spe-

cific properties —they have a "topic"— but can be applied to several dif-

ferent domains —e.g., people, houses, trees, and so on. What is more, and

as we will see later in this work, these expressions may allow for different

(schematic) inferential patterns that are intuitively correct but formally invalid,

like "∀x∀y(Taller(x, y)→ Shorter(y, x))."

One possible way of fixing this issue is to choose as logical constants only

those terms which are maximally general (cf. MacFarlane, 2000, Chapter 3). In

other words, lexical items that are not about anything in particular. Truth-

functionality is the property that seems adequate to do this job. A term (con-

nective) is truth-functional when the truth-value of any expression in which the

term participates is a function of the truth-values of the compounds of that ex-

pression. Truth-functional connectives are topic-neutral; they cannot be about

anything because they cannot have a truth-value by themselves. Instead they

articulate the truth-values of others propositions.

This is the path that the schematic view has taken since it seems to be the

only way a sharp distinction between form and content can be established within

logical systems. In particular, they assume that only truth-functional lexical

items can have inferential properties. Thus, they construe validity as formal

—topic-neutral— because it only depends on the truth-functional structure of

sentences (cf. S. Read, 1994).

Now, what is the contribution of content to the process of inference according

to this approach? Truth-transmission is a bottom-up process that starts with

atomic propositions being assigned a truth-value. The only semantic property
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which matters here is that they are truth-bearers. All other semantic properties,

e.g., those associated to the topic of the predicates of these propositions, are

completely irrelevant. Since the truth-functional structure of arguments can be

mirrored by syntactic features of language, and since this structure has nothing

to do with content (predicate-meaning), the hylomorphic-schematic tradition

explains deductive inference as the result of a sort of division of labor between

the syntax and the semantics of language: we can make valid inferences about

things without having to "look into" the content of extra-logical terms, because

all what matters to validity is truth-transmission, and this is precisely mirrored

in the syntax of sentences.

To sum up, the tradition in question characterizes deductive inference as a

function of logical form, and logical form as completely topic-neutral. When

logic is taken as a model of thinking, these ideas are given a psychological in-

terpretation in which reasoning consists of decoding logical forms from natural

language sentences, and then applying formal rules with truth-functional prop-

erties, but are content insensitive. In few words, inference is formal because the

content of extra-logical terms does not play any role in deductive transitions.

In what follows, I will briefly explain how these ideas played a foundational

role in the development of, arguably, the most influential philosophical frame-

work in contemporary cognitive science, the Computational Theory of Mind

(CTM), mainly due to the influence of Fodor’s analysis of psychological expla-

nation.

1.2 Formality in the foundations of cognitive sci-

ence

1.2.1 Formality, causality, and rational thought

Broadly construed, formality played a central role in the foundations of cogni-

tive science via the idea that all mental processes are computational in some

sense (see, Piccinini & Scarantino, 2011). That idea is known as the computer
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metaphor, and it is probably the most important analogy in the history of cog-

nitive science (cf., Dennett, 1984; Searle, 1990). Its historical and philosophical

minutiae are too many, and it is not among the aims of this thesis to cover them.

Nevertheless, it is important to notice that logical formality is a particular case

of computational formality within the computational paradigm in cognitive sci-

ence. While the former exclusively concerns the computational structure of

rational thought, the latter concerns any cognitive mechanism whatsoever —

perception, learning, categorization, memory, etc. Furthermore, computational

formality emphasizes that cognitive mechanisms can be specified by some algo-

rithm, while logical formality plays an explanatory role in the relation between

syntax and semantics in rational thinking. In what follows, we will focus on

this last point.

As the story goes, one of the main challenges for psychology is to provide a

scientific explanation of a phenomenon that is both intentional and physically

grounded (Horst, 1999a). In particular, thoughts are intentional entities with

semantic content —for instance, they are about something— articulated in non-

arbitrary ways. And reasoning is a specific case of thought-transition that

preserves (ideally) some semantic coherence. For those concerned by giving an

empirically-grounded explanation of this process, the central question is then:

how is rationality mechanically possible? (see Rescorla, 2012).

Jerry Fodor saw that one way of answering this methodological and foun-

dational issue was through a psychological interpretation of logical formality

(see Fodor, 1975; 1987; 2008; 2015). Roughly, he claimed that psychology must

understand the mind as a syntax-driven machine that performs formal opera-

tions over language-like entities —thoughts— with both syntactic and semantic

properties. Causal transitions between thoughts are possible thanks to their

syntactic properties and since these properties mimic (Fodor, 1985, p. 93) the

semantic content of thoughts, rational thought is also possible. As Fodor ex-

plains:

...you connect the causal properties of a symbol with its semantic



1.2. Formality in the foundations of cognitive science 9

properties via its syntax. The syntax of a symbol is one of its higher-

order physical properties . To a metaphorical first approximation ,

we can think of the syntactic structure of a symbol as an abstract

feature of its shape. Because, to all intents and purposes, syntax

reduces to shape, and because the shape of a symbol is a potential

determinant of its causal role, it is fairly easy to see how there could

be environments in which the causal role of a symbol correlates

with its syntax. It’ s easy, that is to say, to imagine symbol tokens

interacting causally in virtue of their syntactic structures . The

syntax of a symbol might determine the causes and effects of its

tokenings in much the way that the geometry of a key determines

which locks it will open . (Fodor, 1987, pp. 18-19)

Fodor’s view builds on logical formality because, as said before, this idea

explains a sort of division of labor between syntactic and semantic properties of

language-like structures. In particular, he takes inspiration from classical proof-

theory, a formal system in which purely syntactic rules mirror truth-preserving

transitions between propositions (see Fodor,1987, p. 19; Fodor, 1985, p. 93). 2.

In Barwise words:

What has captured Fodor’s imagination is that we logicians have de-

veloped formal proof procedures for certain formal languages, proce-

dures that can be used to build inference engines, machines that can

carry our formal proofs, even if not very well. Here, Fodor thinks, is

hope for a mechanism underlying thinking. (Barwise, 1986, p. 331)

Thus, Fodor argues that the only way a naturalistic psychological theory can

explain non-arbitrary causal transitions between thoughts, while preserving in-

tentional notions like meaning and truth, is by specifying the computational
2For instance, Fodor and Pylyshyn claimed that classical cognitive science is "an extended

attempt to apply the methods of proof theory to the modeling of thought (and similarly, of what-
ever other mental processes are plausibly viewed as involving inferences; preeminently learning
and perception.) Classical theory construction rests on the hope that syntactic analogues can be
constructed for nondemonstrative inferences (or informal, common-sense reasoning) in some-
thing like the way that proof theory has provided syntactic analogues for validity." (Fodor &
Pylyshyn, 1988, p. 30)
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mechanisms that are exclusively syntactically-driven but that can mirror se-

mantic and normative properties:

Thinking can be rational because syntactically specified operations

can be truth preserving insofar as they reconstruct relations of log-

ical form; thinking can be mechanical because Turing machines are

machines. . . . [T]his really is a lovely idea and we should pause

for a moment to admire it. Rationality is a normative property;

that is, it’s one that a mental process ought to have. This is the

first time that there has ever been a remotely plausible mechanical

theory of the causal powers of a normative property. The first time

ever. (Fodor, 2001, p. 19)

The formalist approach, pioneered by Fodor, has had a tremendous influence

on the philosophy of mind and cognitive science ever since. Many researchers

saw it as establishing the foundations for a naturalistic theory of high-level cog-

nition, which can co-exists with an intentional psychology. However, this view

comes at a price. First, this approach assumes with little evidence that a seman-

tic engine can supervene on a syntactic engine. In Haugeland’s words (1989, p.

106), they believe that "if you take care of the syntax of a representational sys-

tem, its semantics will take care of itself." That is, at least, polemic. Formalists

do not propose an explanation of how this semantic mirroring works in a psy-

chological context. In general, they do not offer any criterion for demarcating

syntactic properties from semantic ones, something that is problematic since

their main claim is that computation has to be purely syntactic. (cf. Aydede,

2005; Peacocke, 1999; Rescorla, 2012).

Fodor’s own criterion is far from systematic. Even if he claims that the

formality condition is the main requirement for an empirical/intentional psy-

chology, the only definition he gives of "formal" is "non-semantic" (see Fodor,

1980, p. 102). He then claims that formality depends only on the shape of men-

tal symbols, implying that these shapes cannot include any kind of semantic

information in them, even if they mirror semantic content.
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Now, everything seems to depend on what "semantics" turn out to be. In

this regard, Fodor follows -again- the logical tradition. The only semantic prop-

erties he conceives are denotational relations between extra-logical concepts and

external things, and the truth conditions of belief states. As he states in his

last book: "reference is the only semantic property of mental or linguistic rep-

resentations" (Fodor & Pylyshyn, 2015, p. 10). This last claim is far from

obvious. Meaning can be thought as having properties that go beyond refer-

ence. For instance, the sentence "the cat is on the mat" refers to a specific

situation in the world, but also induces a representational state —in those who

understand it— with rich conceptual information that can trigger inferences or

other forms of thought transitions. I do not see how this information can be seen

as non-semantic, and not having a causal role in rational thought-transitions.

I will discuss the sources of this view in the following chapter, and some of its

implications in Chapter 3.

To sum up, CTM is fully committed to the formality thesis. Reasoning is

formal because its causal structure is fully determined by the syntactic prop-

erties of belief-like mental representations, not because it can be specified by

some mathematical structure. Then, what matters here is not "general" com-

putational formality, but logical formality:

To say that an operation is formal isn’t the same as saying that it is

syntactic since we could have formal processes defined over represen-

tations which don’t, in any obvious sense, have a syntax. Rotating

an image would be a timely example. What makes syntactic op-

erations a species of formal operations is that being syntactic is a

way of not being semantic. Formal operations are the ones that are

specified without reference to such semantic properties of represen-

tations as, for example, truth, reference and meaning. (Fodor, 1980,

p. 64)

I will go back to the CTM later, while discussing the notion of representa-

tion. In what follows, I explain the role of the formality thesis in some of the

most influential theories of reasoning in cognitive psychology. It is impossible
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to do justice to such a complex topic in the few following pages. It is not among

my aims to offer a systematic historical analysis of this. Instead, I intend to

illustrate how this thesis shaped the views that psychologists had about rea-

soning. For doing this, I will focus on Piaget’s developmental view of reasoning

skills, Mental Logic theory, and Mental Models theory.

1.3 Formality in the psychology of reasoning

1.3.1 Piaget’s logicism

As said before, logic played a central role in the development of cognitive psy-

chology, especially in early explanations of reasoning (Henle, 1962; Overton,

1990). One of the most influential figures in this process, the Swiss psycholo-

gist Jean Piaget, put together a theory of high-level cognition that understood

logical reasoning as the zenith of human cognitive development (Piaget, 1956).

Together with Inhelder, he famously claimed that “reasoning is nothing more

than the propositional calculus itself.” (Inhelder & Piaget, 1958, p. 305). For

various reasons, his theories have been mostly abandoned (see Braine, 1962),

but no doubt they set the conditions for the future discussion in psychology

about the relationship between logic and reasoning. In what follows, I will

briefly discuss Paiget’s ideas in this regard.

Logic was a central piece in Piaget’s theoretical apparatus. The Swiss was

deeply familiarized with the philosophical discussions about the relation be-

tween logic and psychology, rejecting any naive form of psychologism —i.e. the

idea that logic must be founded in psychological facts. In his “Logic and Psy-

chology” (Piaget, 1957), he discusses different forms in which logic has been

related to psychology in philosophy. The central issue here is whether logical

laws are related to the cognitive structures that organize experience —in the

Kantian sense (see Wartofsky, 1983), whether they are mere empirical contin-

gencies, or whether they are formal relations between the sentences of natural

language (Black & Overton, 1990).
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Among the various alternatives that he considers, he leans to operationalism,

a popular methodological view at that time (Feest, 2005). Piaget’s argument

for this is straightforward. He seems to believe that since operations are what

characterize cognition, an abstract theory of them must be central for the ex-

planation of cognitive mechanisms. He writes:

Operations (in spite of Couturat!) play an indispensable role in

logic, since logic is based on an abstract algebra and made up of

symbolic manipulations. On the other hand, operations are actual

psychological activities, and all effective knowledge is based on such

a system of operations. (Piaget, 1957, p. 7)

In this sense, Piaget believes that the operations studied by logic can shed

light on the structural features of cognitive procedures:

The algebra of logic can therefore help the psychologist, by giving

him a precise method of specifying the structures which emerge in

the analysis of the operational mechanisms of thought. (Piaget,

1957, p. xviii)

Just like in contemporary philosophy of logic, Piaget’s notion of formality

is based on the principle of invariance under substitutions:

The content of an operational relation is constituted by the data, or

by the terms that can be substituted within it, while the "form" is

what stays unchanged during these substitutions. (Piaget, 1949, p.

38; my translation)

However, which specific elements assume the role of "form" and "content" de-

pends on the kind of operation we analyze. Piaget distinguishes between oper-

ations working at the inter-propositional and at the intra-propositional levels.

The former correspond to the structures studied in propositional logic. In that

case, the forms are relations among propositions determined by logical con-

stants: The formula ((p→ q)∧ (q → r))→ (p→ r) has "p→ q", "p→ r", and

"p → r" as content and (φ ∧ ψ) → ψ as form. The latter correspond to those
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operations characterizing the internal structure of propositions or thoughts. In

these cases, the form is specified by set-theoretical relations like membership

and inclusion, while the content the very objects of these operations. According

to Piaget, intra-propositional operations are behind basic cognitive mechanisms

like categorization.

Piaget’s developmental view of cognition led him to a gradualist view of for-

mal operations. In early stages of development, children reason with domain-

specific cognitive schemes. For instance, during the "concrete operational state"

—ages 7 to 11—-, they are able to make transitive inferences regarding physical

properties, like "An apple is bigger than a grape; and a watermelon is bigger

than an apple. Thus, a watermelon is bigger than a grape". But they are

not able to understand transitivity as an abstract relation, i.e., they do not

grasp it as a domain-general principle. This type of understanding takes place

when children see that transitive inferences are reversible, i.e., that they have

"symmetric" operations that can reverse the original one. For instance, under-

standing that A is bigger than B implies that B is smaller than A allows them

to grasp "smaller than" as the reverse of "bigger than." Children master this

when they can make inferences like "A is bigger than B, and C is smaller than

B; thus, A is bigger than C." This requires an abstract understanding of transi-

tivity (Piaget, 1947). Thus, the passage from the concrete operational state to

the formal operational state happens when children grasp the domain-general

principles behind the concrete operations they used to perform.

In general, Piaget thinks that this transition depends on children’s ability

to come up with hypotheses about the logical relations underlying the concrete

operations they perform (see Chapman, 1979, for a detailed explanation). The

formal operational state is a high-order state because it includes the formal

schemes of these logical relations, later used in hypothetico-deductive reasoning,

which is, for Piaget, a form of thinking detached from immediate perception and

based on conceiving possibilities (Inhelder & Piaget, 1958, p. 254).

In conclusion, Piaget was a logicist, since he believed that fully developed

reasoning was completely topic-neutral and domain-general. However, his com-

mitment to the formality thesis is relative. He avoids the sharp distinction



1.3. Formality in the psychology of reasoning 15

between syntax and semantics of the hylomorphic-schematic tradition; and the

notion of logical validity seems to play no role in his view. Instead, Piaget seems

to think about logic in "Boolean" terms, that is, prioritizing the study of the

algebraic nature of logical operations over the notion of deductive validity. I

believe this shows that he viewed logic more as a competence model of reasoning

than as a model of performance.

As a final comment, there is an interesting plot-twist in Piaget’s logicist

view of reasoning, which is mostly overlooked in the literature. By the end

of his career, Piaget abandoned logicism for a content-based view of reason-

ing (see Byrnes, 1992, for a detailed explanation). Influenced by Anderson’s

and Belnap’s relevant logic (A. Anderson, Belnap Jr, & Dunn, 2017), Piaget

convinced himself that truth-functional logic, and specially purely formal oper-

ations, were not adequate for describing reasoning. Consequently, he tried to

develop a concept-based view of inference that he called "logic of meanings"

(Piaget & Garcia, 1990). In a way, this thesis in an attempt to advance some

basic ideas for developing a logic of meanings. That is, a theory of inferences

that depend on the representational structures behind lexical-concepts, and not

in logical form.

1.3.2 Mental Logic Theory

The theory that is most faithful to logic and the formalist thesis is Mental

Logic theory (MLT). It directly builds on the idea that reasoning consists of

operations over language-like mental representations, guided by logical rules

which are "activated" by the syntactic properties of these "mental sentences"

(Braine, 1990; Braine, Reiser, & Rumain, 1984; Rips, 1994).

The influence of classical logic in this theory is straightforward since its

basic principles are a psychological interpretation of natural deduction. MLT

finds its foundations in Fodor’s version of the CTM, that —as we saw— con-

ceives reasoning as operating over a language of thought that clearly separates

syntactic and semantic properties. Based on this, MLT claims that we are
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equipped with a set of abstract derivation rules that apply to information that

is propositionally represented in the mind/brain.3

For instance, MLT assumes that we have an abstract modus ponens scheme

like the following one:

If A, then B

A

Therefore, B.

Whenever we are before propositional information that match the form of the

rule, we use it to infer. For instance, if we hear the sentences "if the car is not

at home, then the house is empty, and the car is not at home", the rule allows

us to see the entailment and draw the conclusion "the house is empty."

One prominent theory within this tradition is Rips’ psychology of proof

*1994). Like the other models (Braine, 1978; Osherson, 1975a), Rips’ central

claim is that human reasoning is essentially a logical proof-system, he calls this

the "Deduction-System Hypothesis." The role of psychologists is to specify the

set of psychologically plausible rules of inferences and the cognitive mechanisms

that apply them in everyday reasoning. He writes:

I assume that when people confront a problem that calls for deduc-

tion they attempt to solve it by generating in working memory a

set of sentences linking the premises or givens of the problem to the

conclusion or solution. Each link in this network embodies an infer-

ence rule. . . , which the individual recognizes as intuitively sound.

(Rips, 1994, p. 104)

Rips’ model (called "PSYCOP") is a psychological interpretation of stan-

dard natural deduction.4 Roughly, it is constituted by a set of inference rules

for logical constants —including quantifiers—, plus a device that extracts the

syntactic form of premises as input for applying the rules (see Figure 1.1). Ex-

amples of rules are the introduction of the conjunction (A, B. Thus, A & B. and
3Another important theoretical framework for MLT is Macnamara (1986).
4PSYCOP was implemented in PROLOG and tested experimentally in various occasions

(see Rips, 1994, Chapter 4 and 6).
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the modus ponens (If A, then B. A, Thus B. The systems also deals with suppo-

sitions. Just like in natural deduction, suppositions used in the demonstration

process have to be "discharged" —by using an introduction of the conditional

or reaching a contradiction— in order to reach the conclusion.

Let’s see a brief example of this. Consider the premises (a) "If Maria did

not go to the library, Juan did not meet her", and (b) "Juan met Maria". The

proof-system will first retrieve from (a) and (b) the logical forms (a’) ¬A→ ¬B

and (b’) B. Then, ¬A is introduced as a supposition, and is used with (a’) in a

modus ponens to infer ¬B. ¬B is in contradiction with premise (b’), and this

allows for using the rule of reductio ad adsurdum to finally infer A ("Maria went

to the library"), discharging also the supposition.

One of the main issues for MLT is the problem of the computational viability

of rule application. Logical systems do not offer any constraints regarding the

derivations one may draw from a given set of premises. For instance, given the

premises p and q, one can derive p→ q, q → p, p∧ q,p∧ (q∧p), p∧ (q∧ (q∧p)),

etc. As it is evident, arbitrary rule application would be considered completely

irrational, since informational and contextual factors constrain human inference.

Rips’ solution to this issue is to constrain the application of introduction

rules exclusively for backward chains ——-from conclusions to premises— (cf.

Braine, 1978). He designed PSYCOP for working with three types of rule-

application: rules allowed for backward inferring, rules allowed for forward in-

ferring, and rules that work both ways (see Figure 1.1).

The set of psychologically plausible rules only includes rules that are some-

how intuitive for agents. However, Rips’ experiments show that some of the

rules above do not meet this criterion —the introduction of "or", for instance.

Rips also assumes variability across individuals in the set of rules. People may

learn new rules or use non-standard rules in reasoning (Rips, 1994, p. 104),

violating rules of classical logic but also accounting for individual variability in

reasoning.

Another important challenge for this theory is to deal with the potentially

intractable computational complexity of proofs (Rips, 1994, pp. 63-68). Rips

proposed a deterministic search protocol that implies to check all applicable
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Figure 1.1: Forward, backward, and bidirectional rules in Rips’
PSYCOP. From Rips (1994).

forward rules for finding a suitable conclusion, and if this process fails, then

the system works backwards from the conclusion till it finds the inferential

steps required to arrive to the premises. If the system fails to find a proof

after applying this protocol, then the subject concludes that there is no valid

conclusion to draw from the available set of premises.

1.3.3 The Wason selection task: troubles for logicism

Beyond its technical issues, this syntactic theory of reasoning had found some

empirical validation in various studies (see, Braine et al., 1984; Ford, 1995;

Galotti, Baron, & Sabini, 1986). However, experimental data were not always

benevolent with logicist theories of reasoning. TheWason selection task (Wason,

1968), the most influential experiment in the psychology of reasoning, provided
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robust evidence for the idea that our logical competence is rather bad, directly

undermining any logicist model of reasoning.

Roughly, this experiment starts by showing participants four cards with two

letters and two numbers inscribed on them. They are then told the following

rule: If a card has a vowel on one side, it has an even number on the other side.

The task consists of asking the subjects which of the cards are worth turning

over to test the rule in question (see Figure 2.2)

Figure 1.2: Classical setting of the Wason selection task.

This abstract form of the Wason selection task yielded the following distri-

bution of answers (Wason & Shapiro, 1971): 45% of the participants pick the A

card and the 4 card; 35% pick the A card alone; 7% pick the A card, and the 7

card; 4% pick the A card and the 7 card; 9% pick other combinations of cards.

Notice that the logical structure of the problem is quite simple. Participants

have to test a conditional rule of the form P → Q. The easiest way of doing

this is by considering the equivalence ¬Q→ ¬P , and applying a modus tollens :

P → Q, ¬Q, thus ¬P . Thus, the correct answer is to turn over the A and 7

cards. Strikingly enough, this is the less chosen option. The quick conclusion

is that people are rather bad at applying logical rules. This is serious trouble

for formalist theories; why are we bad at reasoning with logical rules if they

are supposed to be built-in into our cognitive structure? In this sense, Wason

—criticizing Piaget— wrote:

The results are . . . disquieting. If Piaget is right then the sub-

jects in the present investigation should have reached the stage of

formal operations. A person who is thinking in these terms will take

account of the possible and the hypothetical by formulating propo-

sitions about them. He will be able to isolate variables . . . and

subject them to combinatorial analysis. But this is exactly what
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subjects in the present experiment singularly fail to do. . . . Could

it be that the stage of formal operations is not completely achieved

at adolescence, even among intelligent individuals? (Wason, 1968,

p.281)

Content and Context effects

In Wason and Shapiro (1971), it was shown that when the same task was done

with familiar content the results changed dramatically. In the thematic version

of the task, subjects evaluated the rule "Every time I go to Manchester I travel

by car", using cards with cities on one side and modes of transport on the

other. The experiment showed that 62% of the participants gave the correct

answer, against a scarce 12%when the task used more abstract content in the

same study. According to Wason and Shapiro, the improved performance on

the thematic version was evidence that reasoning was mostly driven by content-

related mechanisms, and not by syntactic ones. After this, psychologists started

talking about "content-effects" on reasoning, a robust empirical phenomenon of

changes at the level of the solution frequency of reasoning tasks of the same log-

ical structure, according to the kind of contents used in them (see, Dominowski,

1995; Pollard & Evans, 1987).

Empirical studies on content-effects consistently showed that when subjects

reason with rules which are similar to the ones used in everyday life, they have

a good logical performance (Golding, 1981; Griggs & Cox, 1982; Manktelow

& Evans, 1979). In particular, prior knowledge and past experience seem to

make a big different in deductive reasoning (see Evans & Feeney, 2004, for a

review).This led researchers to claim that agents do not typically use domain-

general rules of inference, but they look for information and counterexamples

in domain-specific memories in problem-solving contexts.

Furthermore, context also has a big influence in reasoning in general. Belief

biases are very common in syllogistic reasoning (see, e.g. Klauer, Musch, &

Naumer, 2000; Markovits & Nantel, 1989). For instance, take the following

argument:
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Mammals have fur.

Dogs have fur.

∴ Dogs are mammals.

This argument is invalid, but most people take it as valid since the conclusion

coheres with their prior knowledge. Evans et. al. (1983) claim that there is a

complex interaction between validity and believability in argument evaluation.

There seems to be a strong tendency to accept or reject an argument based on

how believable or unbelievable is the conclusion, disregarding logical structure.

Also, Thompson (1996) found that premise-believability has an impact on the

perception of argument strength.

Content and context effects had a strong impact on the psychology of rea-

soning. Most researchers, since the 1980s, started assuming that reasoning

was content-dependent: "dependent, that is, on content which evokes relevant

knowledge from the memory" (Manktelow & Over, 1990, p. 111). The ex-

planatory limitations of the formalist approaches for accounting for these facts

made them lose ground within the psychology of reasoning (Evans, Newstead,

& Byrne, 1993; Johnson-Laird, 2010a; Johnson-Laird & Byrne, 1991).

However, this was not the end of the logicist view. There have been different

attempts from the logicist side to accommodate these effects. A prominent pro-

posal consists of incorporating content-specific rules to the theory or enriching

the formal language with modal operators of different sorts. 5. However, in-

corporating semantic content to the explanatory structure of the theory would

contradict the basic tenet about the purely syntactic character of our inferen-

tial mechanisms. Also, as some psychologists have noticed, this would weaken

the parsimony and testability of the theory (Manktelow & Over, 1991). Fur-

thermore, in case this is done, the theory would have to explain how semantic

content is articulated in reasoning, something that they do not do.

Other attempts two stays close to logicism consisted of weakening the for-

mality assumption by claiming the inferential rules behind reasoning, are not
5This is the psychological equivalent of the meaning-postulates approach in semantics,

which we will discuss in the following chapter.
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topic-neutral and domain-general, but domain-specific. Two competing theo-

ries emerged in this line: One was the pragmatic reasoning schemas approach,

developed by Cheng and Holyoak (1985; 1986); and the other was the social

contract theory, developed mostly by Cosmides and Tooby (1989; 2010). Both

theories attempt to explain content-effects on inference by analyzing deonto-

logical reasoning: problematic environments in which agents have to reason

about permissions and obligations. For reasons of space, I will not analyze

these theories here. However, it is worth saying that even if they gave content a

constitutive role in inference, they focus on fairly narrow reasoning domains. In

other words, they do not provide a general theory of content-based reasoning.

Content and context insensitivity is often considered a defeater of formalists

approaches like MLT. This makes sense, since as we saw initially, the theory

is explicitly founded on the formalist thesis, and there is no room for content

within this explanatory framework. However, mental logicians still try to ar-

gue that we must distinguish between two different processes that constitute

problem-solving (Bonatti, 1994b). The first one is comprehension, which is

content-sensitive; and the second one is reasoning proper, which is purely syn-

tactic. As Bonnatti explains:

After a first processing roughly delivering a syntactic analysis of

a linguistic signal, the identification of its logical form and a first

semantic analysis retrieving literal meaning, pragmatics and general

knowledge aid to select a particular logical form for the input signal.

Afterwards, representations possibly sharply different from the first

semantic analysis are passed onto a processor blind to content and

pragmatics...So a theory of mental logic cannot, and does not intend

to, explain the role of content in reasoning, though it may help to

locate how and when content and pragmatics interact with reasoning

proper. (Bonatti, 1994b, p. 20)

The distinction between comprehension and reasoning proper seems some-

what arbitrary, unless we take for granted the formalist thesis. Reasoning,
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broadly construed, is just drawing conclusions from sets of premises or data. Ev-

eryday inductive generalizations are deeply related to memory (Feeney, Hayes,

& Heit, 2015; B. Hayes, Fritz, & Heit, 2013) and do not follow deductive rules.

Likewise, abductive and inductive inferences cannot be reduced to logical rules,

and they rely heavily on background knowledge. From Bonnatti’s perspective,

these are not mechanisms within "reasoning proper."

Furthermore, there is robust evidence showing that we have trouble reason-

ing with abstract materials, that is, with premises that are very close to the

"logical forms" that are supposed to be used by our built-in deductive rules. If

prior to "reasoning proper," there are semantic-based mechanisms that "clarify"

the logical forms of the input, then it should be expected that the processing

times with abstract materials are lower than with contentful ones. But the situ-

ation is the opposite. Similarly, children learn to reason with generic statements

like "Birds fly" or "Tigers are stripped" before they have a proper understanding

of quantifiers (S. Gelman, Leslie, Was, & Koch, 2015; Leslie, 2008). If reasoning

proper is purely syntactic, it is hard to explain how they recover logical form

while reasoning with generics and cannot fully grasp quantified statements.

1.3.4 Mental Models Theory and the semantic turn

A fierce critic of MLT was Philip Johnson-Laird. The British psychologist

found rule-based approaches — especially fully syntactic ones— ill-equipped

for explaining human reasoning. In particular, he thought that their inability

to explain how people retrieve logical form from natural language, which is

inherently ambiguous and context-dependent, plus their failure to account for

thematic-content effects in reasoning, made the proof-theoretic views seriously

wrong (Johnson-Laird, 1983, 2010a; Johnson-Laird & Byrne, 1991).

The alternative that Johnson-Laird advanced implied changing syntax for

semantics as the foundational notion for understanding human inference. His

"Mental Models theory" (MMT) builds on the idea that the representational

format underlying reasoning is not propositional but iconic. According to MMT,

reasoning consists of representing propositional information in "meaningful"
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mental models that the agent sequentially construct and analyze in order to

draw conclusions.

For MMT, reasoning unfolds in three stages: comprehension, description,

and validation (Johnson-Laird & Byrne, 1991). In the first stage, agents con-

struct an initial mental model somehow analogous to the state of affairs —or

information— described in the premises. For this, they use "knowledge of the

language and their general knowledge to understand the premises" (Ibid., p. 35).

This stage is constrained by a "principle of truth" that minimizes the load on

working memory by avoiding the representation of mental models of "false" sit-

uations (Johnson-Laird, 2010b, p.14).6 In the second stage, the mental model

is inspected, and a putative conclusion that is compatible with the model is

drawn. Finally, in the validation stage, the agents analyze other possible mod-

els —implicit in the first representation— compatible with the premises looking

for counterexamples. If they find some, then the conclusion is falsified. If that

is not the case, the conclusion is definitely drawn.

To see an example, consider that a reasoner is given the following rule: if

the car is near the house, then John is in the house. The agent’s first move is

to represent an initial model with a situation in which both the antecedent and

the consequent are true. If the agent is then told "the car is near the house",

she will directly infer "John is in the house," because with this new information

no other compatible models are conceivable. This correspond to the application

of the modus ponens. Now, in a situation in which the new information is not

"the car is near the house," but "John is not in the house," the agent will have

to unfold all possible models —second column in Figure 1.3— and she will find

only one compatible model with the information in the premises —(c). She

will then conclude "the car is not near the house". This correspond to the

application of the modus tollens. 7

As illustrated above, reasoners draw a conclusion that holds in the models,

but that is not present explicitly in the premises. A basic notion of inferential
6These ideas are similar to Barwise’s situation semantics, in particular, to his notion of

"partial situation"(Barwise, 1989).
7Note that the models in the second column of Figure 1.3 correspond to the truth-table

of the conditional in the premise minus the case in which the conditional is false.
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Figure 1.3: Mental model of the premise if the car is in front
of the house, then John is in the house.

strength can be defined with this: a necessary conclusion is one that holds

in all models compatible with the premises. A conclusion that holds in most

compatible models is probable, but not necessary. And a conclusion that holds

in at least one compatible model is possible according to the premises (Johnson-

Laird, Legrenzi, Girotto, Legrenzi, & Caverni, 1999).

MMT makes several predictions that have been empirically tested. One that

is straightforward is that the number of situations represented in the implicit

model is a positive function of the complexity of the inferential procedure, since

the working memory load would be bigger. Consequently, the more situations

an agent has to revise during reasoning, the longer the time the process will take.

One way of testing this is by comparing agents’ performance while reasoning

with inclusive and exclusive disjunctions. MMT predicts that reasoning with

statements of the form A or B, but not both should be easier than with state-

ments of the form A or B, or both. Due to the principle of truth, the implicit

model of the former includes only two sub-models (¬A&B, or¬B&A), while the

implicit model of the latter includes three sub-models (¬A&B,¬B&A, orA&B)

(see Johnson-Laird & Byrne, 1991; Johnson-Laird, Byrne, & Schaeken, 1992).8

Besides this apparent empirical success of the theory, several authors have no-

ticed that it is not clear if the MMT does it better than the MLT accounting for

the empirical literature in propositional and syllogistic reasoning (Evans, Over,

& Handley, 2005; Oberauer, 2006)
8MLT fails to account for this. Within Rips’ model, the exclusive disjunction has to be

rephrased in terms of the conjunction and the inclusive or ((A ∨ B) ∧ ¬(A ∧ B)). Thus, the
number of rules used for proving statements with exclusive or is always longer than with
similar statements with inclusive or.
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Beyond its success, MMT has received many criticisms. The first problem

that the theory has concerns the vagueness of its central notion: model (Braine,

1978; Evans, 1993a).According to Johnson-Laird, models are based on "descrip-

tions, on perception, and on knowledge" (Johnson-Laird, 2010b, p.14). Taking

Craik (Johnson-Laird et al., 1992) and Peirce (Johnson-Laird, 2002) as forerun-

ners of the idea, Johnson-Laird has claimed that mental models are iconic, not

sentential (Johnson-Laird, 2012, pp.135–136). That feature would make them

a "semantically rich" format of representing information. However, most appli-

cations of the theory do not make use of this "rich" semantic content, but only

represent logical information (propositional) in the same way as MLT does.

In other occasions, Johnson-Laird claimed that mental models are inspired

in model-theoretic —Tarskian— semantics (Johnson-Laird, 1981). As some

have argued (Hodges, 1993; Lowe, 1993), it is far from clear how a Tarskian

model could be psychologically represented. These entities are set-theoretical

structures (not image-like) that are used to provide extensional interpretations

of propositions in a formal language. For any proposition, there are infinite

models that make it true. It is hard to see how to conceive an economic cog-

nitive procedure able to select from infinite possibilities relevant models for

interpreting sentences.

Another problem of the MMT is that there is no explanation of how peo-

ple construct these models in their minds, and how information is structured

within them (O’Brien, Braine, & Yang, 1994). In other words, Johnson-Laird

seems to allow mental models to represent many different kinds of informa-

tion —conceptual relations, iconic and spatial information, and propositional

information—, but there is no straightforward procedure of how semantic in-

formation (in the general sense) is structured within the models (For a critique

in this line, see Evans, 1993b).

How semantic was the semantic turn?

As said earlier, MLT was outspokenly syntacticist: It assumed the Fodorian the-

sis that inference is formal manipulation of sentences in a language of thought.
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In that way, it endorsed the hylomorphic tradition that draws a sharp line be-

tween form and content and assumes that all that matters to deduction concerns

the former and not the latter. The robust evidence of content-effects in rea-

soning seriously troubled the idea that inference could be exclusively syntactic.

Consequently, two theories (more or less compatible with the MLT) emerged

as ad-hoc solutions to this issue: the pragmatic-arguments scheme theory and

the domain-specific approach. However, as we explained before, these attempts

lack systematicity: they do not offer any general explanation about how content

participates in reasoning, and they focus exclusively on very narrow reasoning

domains.

Before the limitations of the rule-based approaches, the MMT emerged as

the alternative promising to include the right "machinery to deal with meaning"

(Byrne, 1991), and there is no doubt that Johnson-Laird and his collaborators

made a big contribution in this sense. The theory has a foundational dimension

that provided an explanation of how semantic content is constitutive of infer-

ence, at the same time that it was able to explain empirical data and make new

predictions. However, as I will next argue, the notion of semantic content that

the MMT uses is still logicist, and even if it can explain some content effects in

syllogistic reasoning, this is not enough to explain content-based inferences.

MMT builds on a procedural semantics that decodes logical form from am-

biguous linguistic or perceptual inputs. 9 The semantic procedure in question

translates a propositional representation into a mental representation preserving

essentially an non-ambiguous logical form. For instance, two conditional rules

with the same logical form but different content are going to generate mental

models —initials and explicit— that are structurally equivalent.

Even if according to the MMT, the "units" of reasoning are iconic models

in the mind of the agents instead of sentences in a language of thought, the

structure of the sets of models in some instance of reasoning responds to logical

formality, and the normative structure of the model to classical validity (for

a similar critique, see Mercier & Sperber, 2017). But, instead on focusing on
9There is no clear explanation of how mental models are constructed from perception. The

vast majority of the examples used on the literature are from linguistic inputs.
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syntax, it focus on the truth-functional structure of the propositions. Johnson-

Laird’s theory is semantic in the same sense as truth-tables are semantic (An-

drews, 1993): They represent possible distributions of truth values for a given

proposition according to the distribution of logical constants on it. In principle,

there is no room in this view for the content of extra-logical terms in the core

process of reasoning: just like with MLT, the inferential power lies exclusively

on logical constants and not on lexical concepts (For similar observations, see

Bonatti, 1994a; Lowe, 1993; Rips, 1994).

This logicist conception of reasoning that characterizes MMT can be seen in

the treatment that the theory gives to material implication. In its first version,

the theory had no constraints for reasoning with conditional statements with

completely unrelated antecedents and consequences. In particular, the theory

accepted the classical conditional, with its respective paradoxes of the material

implication (Johnson-Laird et al., 1992), which are widely considered as counter-

intuitive inferences that theories of reasoning should reject (Bonatti, 1994a;

R. C. Stalnaker, 1968). In this sense, Evans and Over wrote:

For us, the original sin of JLB [Mental Model] theory is their en-

dorsement of the logical validity of the paradoxes of interpreting a

natural language conditional as truth functional. We hold that the

paradoxes are logically invalid for natural language conditionals, in-

cluding “basic” conditionals. (Evans & Over, 2004, p. 153)

Furthermore, as Bonnatti showed (1994a), another relevant dimension of

semantic content that the MMT is not able to account for is context-sensitivity.

The procedural framework used to recover the meaning from the propositional

inputs in MMT is only capable of grasping literal meaning, neglecting in this

way, the pragmatic contexts of sentences. Also, as Van der Henst points out

(2000), the pragmatic dimension also constrains the kind of inferences that

someone can draw given a set of premises. For instance, if we have the following

propositions:

• Pedro is taller than Juan.

• Juan is taller than Paul.
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You can infer "Pedro is taller than Paul" or "Paul is the shortest of the group" or

"Pedro is taller than Juan and Paul" , etc. In general, as the relevance theory

shows (Sperber & Wilson, 1986; D. Wilson & Sperber, 2012), the context of

processing will have an important role in determining which inference is the

most relevant to draw. There is no explanation in MMT of how inference could

be context-sensitive in this sense.

In later work, Johnson-Laird and Byrne (2002) tried to fix these issues by

distinguishing two kinds of "meanings" in model-construction: the "core mean-

ing", which responds to the truth-functional structure of the premises, and

the "modulated meaning" which is the result of a mechanism that constraints

the models of the core meaning according to different content-based relations

between the antecedent and the consequent. To see an example, consider the

conditional statement (a) If Pat is in Italy then she is not in Rome (with logical

form A → ¬B). The mental models corresponding to the core meaning of (a)

are:

• Pat is in Italy and is not in Rome. < A,¬B >

• Pat is not in Italy and is not in Rome.< ¬A,¬B >

• Pat is not in Italy and is in Rome.< ¬A,B >

However, the represented models are only the first two, since the third one

is blocked by semantic modulation since that situation contradicts common

knowledge —if x is in Rome then x is in Italy.

There is some empirical evidence about this sort of semantic modulation (see

Quelhas, Johnson-Laird, & Juhos, 2010). Essentially, this update to the MMT

takes care of some semantic relations between the clauses of conditionals in a

better way than the original version. It goes beyond the truth-functional analy-

sis of the if...then... relation in natural language, and recognizes a contribution

of extra-logical content in reasoning (Byrne & Johnson-Laird, 2009).

I consider this an excellent improvement regarding Johnson-Laird original

intentions of building a semantic-based theory of reasoning. The changes made

to the original theory go in the direction of the ideas defended in this thesis:
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a semantic-based theory of inference must build on account of conceptual rela-

tions, and not only on truth-functional considerations. However, Johnson-Laird

and Byrne do not develop any systematic account of conceptual content for un-

derstanding this new kind of modulation. The semantic constraints on model

construction seem to be based in our (or the experimenter’s) intuitions about

conceptual relations, neither on a theory of conceptual representation nor on a

formal model of semantic relations.

This last point is the central concern of this thesis. As said in the introduc-

tion, I attempt to provide the basis for a model that can explicate the role that

lexical concepts have in rational inference. This model will explain immediate

inferences with different word classes. And in this sense, as it will be explained

in Chapter 5, it could provide a formal framework for modeling the second type

of semantic modulation that concerns MMT.

1.3.5 Bayesian models against formality

Logicism holds a highly idealized view of reasoning and rationality. As Cherniak

has shown, this view makes unrealistic assumptions about our computational ca-

pacities, the structure of working memory, and our sensitivity towards the global

coherence of our belief system (Cherniak, 1986). Maybe the biggest of these

idealizations is the one at its core: we reason by considering truth-functional

relations between logically-structured beliefs. Truth-functional relations in logic

are informationally conservative, i.e., the information in the conclusion is im-

plicit in the premises. In this sense, a deductive inference is a safe inference

because it is absolutely certain. However, everyday reasoning cannot afford this.

Navigating our environment requires us to cope with constant uncertainty and

partial information (Oaksford & Chater, 1989). Truth-preservation is not the

central concern here. The type of mechanisms needed are those allowing us to

make risky predictions, and draw nonmonotonic inferences about new stimuli

exploiting background knowledge.

The emergence of probabilistic approaches to reasoning and rationality —–

nowadays mainstream— was, to a certain extent, a reaction to the limitation
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above. (Oaksford & Chater, 2007, Chapters 1-3). In particular, Bayesian ap-

proaches claim that the normative framework provided by logicism is wrong

and, consequently, much of the experimental data that we thought indicated

that we were bad reasoners, when reinterpreted from a probabilistic perspective

shows the opposite. One of the core assumptions of Bayesianism is that we do

not reason from true premises to true conclusions. Instead, we have degrees of

beliefs about sentences, and we reason from more or less plausible beliefs to more

or less plausible conclusions. This basic assumption requires replacing the main

computational story of logicism with one based on probabilistic assumptions.

While logicism offers a "bottom-up" explanation of reasoning via the formal-

ity thesis, Bayesianism rejects any assumption related to formality in cognition

and develops a top-down strategy that takes reasoning as a situated activity,

where the goals of the cognitive system and the informational structure of the

environment are accounted for to derive an "optimal behavior function" (Oaks-

ford & Chater, 2003) that will serve to evaluate our rational performance:

So the idea...is to understand the problem that the cognitive system

faces, and the environmental and processing constraints under which

it operates. Behavioral predictions are derived from the assumption

that the cognitive system is solving this problem, optimally (or,

more plausibly, approximately), under these constraints. The core

objective of rational analysis, then, is to understand the structure

of the problem from the point of view of the cognitive system, that

is, to understand what problem the brain is attempting to solve.

(Oaksford & Chater, 2009, p. 72)

Reasoners are conceived here as "information optimizers." The point is not

whether they arrive or not to valid conclusions, but if they manage to conclude

the most probable statement from their degrees of belief about on the premises.

Naturally, this requires to assume that instead of logical rules, agents implement

some Bayesian probability rules while thinking.

Most of the criticism that Bayesian theories of reasoning make to "logicist

cognitive science" converge with the ideas defended here (Oaksford & Chater,
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1989, 1991, 2007). However, while anti-formalist, Bayesianism does not say

much about the role of conceptual content in reasoning. Their framework does

not even make use of —or need— notions like lexical concept or concept-based

inference. Consequently, this approach will not play a role in the following chap-

ters. We will only return to it briefly in chapter 7, while we discuss category-

based induction.

1.4 Summary and conclusions

The formality thesis has played a central role in the development of cognitive

science in general, and the psychology of reasoning in particular. In this chap-

ter, the origins of this thesis, as well as its interpretations within theories of

reasoning, were discussed. We saw that besides the traditional normative role

that classical logic was supposed to have over reasoning, certain ideas about log-

ical form and logical validity received different psychological interpretations and

took part in the very explanatory —descriptive— structure of these theories.

The crisis of the formality thesis in psychology started with a series of empir-

ical findings showing that logical performance of people was consistently poor.

As a consequence, two questions undermined the idea that logic could work as

a model of inferential competence: why are we bad at logical tasks if we reason

following logical rules? And, how is that rational inference is affected by content

and context if reasoning is syntactic-driven?

A prominent answer to these questions consisted of negating the core as-

sumption of the formlity thesis. MMT emerged as an alternative proposal that

did not explain reasoning as syntactic rule-following. Instead, reasoning was

conceived as a semantic-based mechanism working by looking for counterexam-

ples instead of by rule-application. However, we saw that even this theory was

still responding to the formality thesis and, in this sense, it continued within

the domains of logicism.

This chapter delved into the origins and development of the idea that rea-

soning is a formal —non-semantic— mechanism. But that is only one side of

the story. In the next chapter, I will discuss what I consider the other source
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of this idea: a "divorce" between inference and meaning that was promoted by

philosophical semantics, also due to the great influence of logic in this discipline.

In short, there was a view of inference as something not related to meaning. At

the same time, there was a view of meaning as something totally independent

to inference —or any other cognitive mechanism.
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Chapter 2

Meaning and cognition

Summary

This chapter focuses on the relationship between meaning and infer-

ence within the framework of semantics. It discusses how and why

mainstream analytic philosophy construed meaning as independent

of inference. Conceptual and inferential role semantics are later an-

alyzed as alternatives to this view. Finally, cognitive semantics is

defended as the proper framework to account for this relationship.

2.1 The formalist turn in semantics

In the previous chapter, we have analyzed the tradition in philosophy and psy-

chology that studies reasoning as independent of meaning. In what follows, we

will discuss the other side of the coin: the tradition in analytical philosophy

that understands the notion of meaning as completely independent of reasoning

— and of cognition in general. I speak of a "formalist turn" in semantics be-

cause I consider these ideas to be the result of the efforts of some philosophers

to provide a semantic framework that fits the requirements of classical logic.

2.1.1 From intensions to extensions

Both semantics and logic have to do, essentially, with relations between prop-

erties and objects in language. The issue of which of these two notions is more

fundamental than the other has divided philosophers for centuries (Rescher,

1959; Swoyer, 1995). Those who believe that objects are explanatory prior to
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properties are extensionalists ; those believing otherwise endorse some form of

intensionalism (see Bar-Am, 2008). The terms intension and extension comes

from Carnap’s work o semantics (Carnap, 1988), but the idea behind them has

a long history. It concerns the basic distinction between what an expression

means and the object(s) it denotes.1 For instance, the term "dog" denotes

objects in the world, but its meaning consists of ideas about what dogs are,

i.e., the cluster of properties and concepts that characterize dogs according to

some linguistic community. This distinction is relevant for multiple reasons; a

particularly salient one is that expressions with different meanings can have the

same denotation. For instance, "4+5" and "3x3" denote the same object but

mean different things.

Maybe the most influential extensionalist, both in logic and semantic, was

W.v.O. Quine. Quine famously promoted a "flight from intensions" (Quine,

2013, Ch. 6) since he considered this notion as obscure and theoretically ill-

conceived (see Harman, 1967). His entire program consisted of reducing the

notion of predicate to reference —sets of objects— and thus building a se-

mantics that is free from any mentalistic, Platonistic or metaphysical view of

meaning and predication. Quine’s path to radical extensionalism was a reaction

to a tradition starting from Frege assuming the intensions as central elements

for analyzing meaning (see Parsons, 2016). As Jerrold Katz (1992; 2004) con-

vincingly showed —and I will later explain— this discussion has a lot to do

with developing the classical notion of logical form and the formalist view of

inference that we explained in the previous chapter.

As the story goes, intensionalism in analytic philosophy started with Frege’s

idea that a proper analysis of meaning must distinguish between the sense

of an expression and its reference (Frege, 1948). For instance, the sentences

"Manchester United’s top goalscorer of all time" and "The captain of England’s

national football team in 2016" refer to the same person —Wayne Rooney—

, but are clearly different from an informational perspective. Frege famously

claimed that the sense of an expression contains the "mode of presentation" of
1The Port-Royal school used the terms “comprehension” and “denotation” for this distinc-

tion. John Stuart Mill used “connotation” and “denotation.” Frege famously used “sense” and
“reference.”
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its denotation. Senses have different cognitive values, even when they refer to

the same entity.

It is well known that Frege defended senses in his semantics because of their

role in explaining identity and analiticity, two crucial elements for his logicist

program (see MacFarlane, 2002). In particular, the notion of sense allowed

Frege to abandon Kant’s notion of the analytic as concept-containment, i.e., the

idea that in analytic propositions, the concept in the predicate is contained in

the concept in the subject. Against Kant, Frege proposed a logic-based notion

of analyticity: a judgment is analytic if it can be proven by logical laws plus

definitions (Frege, 1980, §3). Changing this notion allowed Frege to argue that

arithmetic was analytic and not synthetic a priori, as Kant held (see MacFarlane,

2002, or Hanna 2004, Ch. 3.3).

An often overlooked aspect of Frege’s semantics is the explanatory relation

between senses and references. As Katz (1992) claims, Frege’s intensionalism is

quite weak, since denotation is explanatory prior to sense:

...our understanding of the notions of sense and reference must come

from an account of reference, just as our understanding of the no-

tions of employer and employee must come from an account of hiring.

The sense/reference distinction is then a distinction within the the-

ory of reference, between the instruments of reference determination

(senses) and the objects which those instruments determine (refer-

ents). It is not lost on a Fregean reduction, but rather recast as a

distinction within the reducing theory. (Katz, 2004, p. 13)

Katz’ point is that even if Frege is considered the main figure of intensional

semantics, his ideas were, in fact, the sources of extensionalism, since his theory

of sense is reducible to its theory of denotation. That is mainly because he

conceives senses as mere means for reference determination. Thus, all that

is left to semantics is to explain the referential side of language, while logic

keeps the monopoly of its inferential structure.2 The upshot of this view is the
2A similar analysis can be found in Diego Marconi’s book "Lexical Competence" (1997),

where he shows how traditional semantics was focus on explaining our "referential compe-
tence" while taking inference as something pertaining only to logic.
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reaffirmation of the hylomorphic tradition in logic: only logical constants have

inferential properties.

Now, according to Katz’s historical reconstruction, Frege’s semantics en-

countered its first problem when Wittgenstein tried to apply it in the Trac-

tatus. Broadly speaking, Frege’s point of view typically asserted that logi-

cal relationships between sentences were a function of their logical structure.

Thus, atomic sentences could not be related to other atomic sentences through

their internal structure. In this sense, Wittgenstein writes that "It is a sign

of an elementary proposition, that no elementary proposition can contradict it"

(Wittgenstein, 2001 [1921], 4.211). In other words, Wittgenstein claimed that

atomic sentences cannot have inferential properties, because inference is the

result of truth-functional relations (see Rosenberg, 1968, for a detailed expla-

nation). However, he realized that some atomic propositions seemed to be in

obvious relations among to each other. For instance, the sentences "The spot

x is blue" and "The spot x is red" are in contradiction even if they are both

atomic. Wittgenstein tried to justify this by saying that it was due to "the

logical structure of colour" (Wittgenstein, 2001 [1921], 6.375 and 6.3751). How-

ever, according to Katz, he later saw that this kind of relations between atomic

propositions needed a more in-depth explanation, and he ended up by aban-

doning the Fregean program in semantics altogether and proposing a radically

different view of meaning. 3

The general problem here is that of explaining the inferential properties

of lexical concepts in natural language. The issue directly connects semantics

with logic because semantic relations between atomic propositions translate into

inferential (or entailment) relations —e.g. "Fido is a dog" licences the inference

"Fido is a mammal" because dog is an hyponym of mammal. Since logic is

supposed to study inferential relations among propositions, it should account

for these kinds of intuitive implication-relations.4 However, these entailment

relations are not captured in the classical notion of validity —as we saw in the

previous chapter— for the sake of preserving formality. A particular case of
3For an analysis of Wittgenstein’s color-exclusion problem, see (Sievert, 1989).
4For a discussion about this on purely logical grounds, see (S. Read, 1994; Sagi, 2018).
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this problem —central to the semantic tradition we are considering now— is

how to account for the class of sentences that seem to be true in virtue of their

meaning and not in virtue of their form. This is the problem of analyticity, the

backbone of the discussion about meaning in analytic philosophy from Frege to

Quine (see Boghossian, 1996).

As the story goes, Carnap attempted to save Frege’s intensionalism with his

theory of meaning postulates. In particular, Carnap saw that Frege’s notion of

analiticity was problematic because its reliance on a vague notion of definition

(Carnap, 1988). In face of this issue, Carnap proposed to explicate analytic

entailments between atomic sentences in a formal system by introducing sets

of meaning postulates as axioms of the system (Carnap, 1952). As an example,

suppose that I want my formal system to capture the analytic —conceptual—

relation between bachelor and not married. Then, I can introduce as an axiom

in the system the following formula: ∀x(Bachelor(x) → ¬Married(x)), and

use it in proofs.

Carnap’s meaning postulates theory attempts to capture the inferential pow-

ers of extra-logical terms in a language. Something that he considered episte-

mologically relevant since these relations were supposed to reflect the conditions

that objects must meet in order to be denoted by an extra-logical term, thus

playing a role in a possible explanation of our referential competence (Carnap,

1955, p. 34). However, Carnap’s explication of analiticity was also committed

to an extensionalist program, since he made clear that meaning postulates must

be understood as restrictions on the extensions of predicates. For instance, a

meaning postulate like ∀x(Bachelor(x) → ¬Married(x)) stipulates that any

individual within the extension of bachelor is not excluded from the extension

of married. Consequently, even if Carnap tried to keep the distinction between

intension and extension, his semantics was focused on objects, rather than on

properties, and the notion of reference was considered —again— as explanatory

prior to any other semantic notion.

Carnap’s meaning postulate theory was a significant attempt to integrate

inference with meaning. However, Carnap avoided any commitment to more

in-depth interpretations of this idea and presented it mostly as a technical or
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methodological solution to the problem of analyticity in logic. For instance, he

leaves open the question about the origins of these postulates, particularly, to

which extent they mirror forms of linguistic usage or other kinds of relations

between concepts. Meaning postulates had much more impact in linguistics

than in philosophy, through the development of formal semantics in the 1970s

(see Partee, 2014; Zimmermann, 1999).5

The final attack to intensionalism —and to the idea that extra-logical

terms can have inferential properties— came from Quine. He thought that

Frege’s and Carnap’s efforts to define analyticity were pointless because the

analytic/synthetic distinction was fundamentally wrong. One of his arguments

consisted of showing that the notion of analytic proposition requires the no-

tion of synonymy (Quine, 1951).According to him, this last notion cannot be

systematically articulated without referring to synthetic propositions expressing

matters of fact. Consequently, there is no possible clear-cut between analytic

and synthetic propositions. In a few words, Quine thought that our philosoph-

ical intuitions about the intensional dimension of meaning were impossible to

articulate in a systematic theory. The upshot was that the idea of atomic sen-

tences establishing analytic relations was theoretically useless (For a detailed

explanation, see Decock, 2010; Gaudet, 2006).

2.1.2 Extensionalism and logical form

By reducing meaning to reference, extensionalists block any possible way of

connecting meaning to inference. They provide the hylomorphic tradition with

a semantic framework reaffirming the idea that inference is a matter of form,

and not of content. Quine’s views on logical implication confirm this:

Logical implication rests wholly on how the truth functions, quan-

tifiers, and variables stack up. It rests wholly on what we may call,
5Formal semantics is an influential framework for analyzing sentential meaning based on

its compositional structure. It directly builds on the extensional theory described above,
where denotation and truth-conditions are enough for characterizing meaning. Since this
framework left lexical meaning unanalyzed, it is not useful for tackling the problem of this
thesis, i.e., how concept possession underlies inferential competence. In particular, formal
semantics is not about how we understand meanings, but about what is computed during
language processing (see Johnson-Laird, 1982, p. 15).
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in a word, the logical structure of the two sentences. (Quine, 1986,

p. 48)

Katz claims that the whole issue rests on something he calls the extension-

alist dogma:

The article of faith is that there exists a justifiable distinction be-

tween the logical and nonlogical components of sentences, one that

enables us to divide a theory of connectives and quantifiers from a

theory of the meaning of nouns, verbs, adjectives, etc., that form the

expressions and sentences they connect and quantify. (Katz, 1975,

p. 77)

Again, the extensionalist story about linguistic meaning builds on the same

principle than the one behind the hylomorphic tradition: inference is formal

and it is about truth-transmission, while lexical meaning is about reference,

and truth-determination.

Intensionalists, on the other hand, claim that inferential relations between

extra-logical terms are crucial for understanding natural language inference .

As a consequence, they promote a richer notion of logical form:

lntensionalists understand the logical form of a sentence to consist

of every property of the sentence that determines the role it plays

in valid arguments. For the intensionalist, any feature of a sen-

tence S that is part of S’s grammatical structure and by virtue of

which S occurs as an essential premise (or the conclusion) of a valid

argument (in the standard sense of one whose conclusion must be

true if its premises are)M is a feature of S’s logical form. In Frege’s

terms: whatever "influences its possible consequences. Everything

necessary for a correct inference ... " (Katz, 1975, p. 76)

However, the intenstional program in the philosophy of language has been over-

shadowed by the success of the referential tradition, which found a solid backup

in the technical success of model-theory in logic and formal semantics in lin-

guistics.
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Extensionalism found an important ally in the anti-mentalist trends in phi-

losophy of language, claiming that semantic properties are completely indepen-

dent of mental properties. In what follows, I briefly discuss these ideas and

their contributions to the "divorce" between meaning and inference.

2.2 Anti-mentalism in semantics and the divorce

of meaning and cognition

Before the mathematical revolution in logic, semantics leaned toward mentalism.

The prevailing view was that the meaning of a word was the idea regularly

associated with it. According to this tradition, language was a tool for making

these ideas public and communicating them to others.6

The mentalist tradition was mostly abandoned during the logical revolution

of Boole and Frege. According to Stephen Land (1974), this was due to a

gradual change in what philosophers considered to be the units of meaning. The

change went from the Lockean idea to the notions of proposition and sentence.

This change affected both the notion of grammatical structure and the notion

of logical form. As Quine’s similarly observed, the inflection point here can

be traced back to Bentham’s Doctrine of paraphrasis, who understood that

sentences (and not terms) had to be "the primary vehicles of meaning." The

central consequence of this change of focus, as Quine also claimed, was a new

agenda for epistemology, from concepts to truth and justification. (Quine, 1981,

p. 70).
6Locke was the central figure of this ideational view of meaning (see Hanna, 1991). In his

"Essay Concerning Human Understanding" he says: “The use, then, of words is to be sensible
marks of ideas; and the ideas they stand for are their proper and immediate signification”
(Locke, 1979, III.2.1, 405). For Locke, successful communication implied that the hearer de-
codes the speaker’s words’ references into her associated ideas. One advantage of ideational
semantics was that it could easily relate meanings and language with other cognitive faculties.
For instance, Locke’s theory of demonstrative inference made essential use of his semantic the-
ory. Just like Descartes, Locke was not convinced by the Aristotelian formalist approach, and
he explained reasoning as based on intuitions about the connection between ideas. Complex
reasoning implied to construct chains of ideas in such a way that the connections between
them were made explicit for intuition (see Owen, 1999, Chapter 3). As we will see, the spirit
of the view defended in this work is very much in this line.
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This was also the start of a strong trend of anti-psychologism in semantics

(see Elffers, 2014). In other words, breaking the association between meaning

and ideas was the first step towards taking meaning "out of the heads" and

re-locating it in the abstract relation between language and the world. Frege,

who was strongly anti-psychologistic in logic, assumed that meanings were com-

pletely mind-independent. Even with the intensional layer of "senses", meanings

were to be found in the relation between thoughts —abstract propositions—,

objects and truth-values; and not in the mind or any cognitive-related phe-

nomenon.7

Again, one of the leading figures in this trend was Quine, who was a behav-

iorist regarding linguistics. He thought that mentalism in semantics was not

scientific, and that any construal of meaning in terms of ideas or any intentional

entity would "end up as grist for the behaviorist’s mill." (Quine, 1969b, p. 26).

His arguments against mentalist semantics —and linguistics in general— were

based on a combination of methodological ideas about how to develop empir-

ical linguistics and philosophical arguments against intensional notions —e.g.,

ideas, thoughts, meanings, or propositions.8 To name one, he claimed that in-

tensional notions could participate in opaque expressions that did not admit

quantification, blocking the possibility of a truth-functional analysis. In other

words, he thought that since the classical tools of logic were not able to explicate

intensional expressions, they must be eliminated from our theories of meaning.

While Quine’s concerns leaned towards the methodological and ontological

issues of mentalism, Putnam offered a different argumentative strategy to prove

a similar point. According to Putnam, the semantic properties of expressions

are mostly determined by external factors to the speaker-hearer. Roughly, his

argument shows that it could be possible for two subjects to have the same

psychological states associated with two different expressions and yet these ex-

pressions could have different meanings if the extensions of the terms they use
7Similar ideas were dominant within the neo-positivist tradition, which, as Carnap explic-

itly suggested (Carnap, 1938-55, p. 46), avoided to use the term "concept" in the philosophical
analysis of language for being "too psychological."

8Quine went as far as to say that intensions were "creatures of darkness" (Quine, 1956,
p. 180) and that "obscurity is the breeding place of mentalistic semantics" (Quine, 1969b, p.
28).
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differ. He then concludes that meanings are not determined by psychological

facts —whatever they are— as the internalists claim, but by certain causal

relations between language and the world (see Putnam, 1975; also Wikforss,

2008).9

Semantic externalism was extremely popular and contributed to overshad-

owing the epistemic and cognitive dimensions of meaning. However, by ex-

clusively focusing on reference and truth, we risk ending up with a myopic

semantics which lacks the tools for answering a series of crucial questions about

the nature and use of meaning and language. As Michael Dummett argued in

his influential paper "What is a Theory of Meaning?" (Dummett, 1993, Ch. 1),

reducing meaning to reference and truth-conditions involves abandoning epis-

temological issues like how do we understand the meaning of expressions, or

what is the relationship between meaning and public language usage. It seems

then that if one of the goals of philosophical semantics is to explain linguistic

competence, we have to look beyond truth-conditional theories.

2.3 Back to cognition: meaning, inference, and

understanding

2.3.1 Conceptual and inferential role semantics

The explanatory limitations of classical theories of meaning led to the de-

velopment of "conceptual role semantics" (CRS), a family of views claiming

that meanings emerge from the role of lexical concepts —and propositional

attitudes— within the complex cognitive ecology of agents (Block, 1986; Bran-

dom, 1998b; Harman, 1982). There is no consensus on which specific cognitive
9Putnam’s defense of semantic externalism is often understood as an attack to psycho-

logical semantics. However, Putnam’s view is not as radical as Quine’s. His concern regard
the stability of reference across conceptual frameworks. He believes that if we assume that
reference is determined by intensional entities or by epistemic properties, then reference will
we subjected to constant variability. However, it seems that people with completely different
background knowledge can still refer to the same objects, just like scientific theories change
but yet the entities they talk about remain. Putnam’s conclusion is that even if reference
does not exhaust meaning, it has to be the essential notion for semantics. Anchoring meaning
in reference would be the only way to protect semantics from relativism.
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processes are meaning-constitutive, but attention has been mainly focused on

reasoning, perception, and categorization (see Greenberg & Harman, 2005; Sel-

lars, 1953).

CRS is considered a use theory of meaning; that is, a theory based on the

assumption that the content of linguistic expressions depends on how agents

use them within a linguistic community. In this sense, CRS downplays the

notions of truth and reference in the explanatory structure of philosophical

semantics. The central questions of semantic theory are no longer about how

expressions refer to things in the world, but about their functional/causal use in

agents’ mental life within a language community. However, how to specify the

notion of use is a major challenge for CRS. For instance, the lexical item "dog"

participates in many different contexts of use. We use it to talk about food,

categorize animals, or as a pejorative term in specific dialogical contexts. If we

take into account every context of use as meaning-constitutive, as well as all

the cognitive mechanisms they mobilize, we risk not being able to individuate

the content of the term at all (cf. Fodor & Lepore, 1991). For dealing with this

issue, CRS theorists restrict this notion to individual cognition:

There are three broadly different ways in which symbols can be

used—in communication, in speech acts like promising that go be-

yond mere communication, and in thinking. CRS takes the last of

these uses, the use of symbols in thought, to be the most basic and

important use for determining the content of symbols, where that

use includes (at least) perceptual representation, recognition of im-

plications, modeling, inference, labeling, categorization, theorizing,

planning, and control of action. (Greenberg & Harman, 2005, p.

270)

Although this is an attempt to delimit the notion of use, it still seems too

broad to specify the functional/causal role of concepts in the cognitive mech-

anisms listed above. What is more, if meaning is to be explained in terms of

the above listed psychological abilities, then semantic theory must be explana-

tory dependent on cognitive psychology. However, CRS theorists did not make
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any attempt to articulate this explanatory relation. The upshot is that CRS

lacks the analytical tools for a fine-grained explanation of the relation between

meaning and cognition. As Ned Block recognized (Block, 1998a), CRS looks

more like a general framework for developing a theory of meaning than a proper

semantic theory.

Maybe the most systematic effort to develop a CRS theory was made by

Robert Brandom, building on Wilfrid Sellars’ ideas. Instead of conceiving sev-

eral cognitive mechanisms as meaning-constitutive, Brandom focuses on infer-

ence. "Inferential role semantics" (IRS) affirms that the meaning of a concept is

determined by the set of inferential moves in which the concept participates in.

For instance, "Fido is a dog" licenses inferences like "Fido is a mammal," "Fido

is warm-blooded," "Fido barks," and can also be the consequence of sentences

like "Fido is a German shepherd" or "Fido is a Chihuahua," among others. In

this sense, the meaning of a lexical item can never be specified in isolation —for

instance, via a relation between the concept and something in the world—, but

it is a function of its role in a broader group of concepts (Brandom, 1998b,

2000).

The central strategy of Brandom’s semantics is to explain meaning in terms

of relationships of material validity and incompatibility. Again, truth-conditions

and reference are marginal notions in this approach. As Brandom explains:

The standard way [of traditional semantics] is to assume that one

has a prior grip on the notion of truth, and use it to explain what

good inference consists in....[IRS] reverses this order of explanation

also. It starts with a practical distinction between good and bad

inferences, understood as a distinction between appropriate and in-

appropriate doings, and goes on to understand talk about truth as

talk about what is preserved by the good moves. (Brandom, 2000,

p. 12)

For Brandom, meaning is based on a normative structure that is socially

regulated. The context in which linguistic normativity takes place is discur-

sive interaction. That implies that sentence meaning have priority over lexical
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meaning because assertion is the first speech act that allows making explicit

our conceptual commitments (Brandom, 1998b, p. 79). The content of declara-

tive sentences unfolds according to the inferences we make from them, and this

is normatively evaluated by other agents during interaction. A crucial point

of this approach is that pragmatics become central to semantic theory (Bran-

dom, 1998b, p. 83-84). As MacFarlane explains, within Brandom’s framework

"the fundamental semantic concepts can be defined in purely pragmatic terms”

(MacFarlane, 2010, p. 89).

One of the most controversial implications of the IRS is meaning holism,

since lexical and sentence meaning depend on large bodies of concepts —or

propositional attitudes:

...inferentialist semantics is resolutely holist. On an inferentialist

account of conceptual content, one cannot have any concepts unless

one has many concepts. For the content of each concept is articu-

lated by its inferential relations to other concepts. Concepts, then,

must come in packages (though it does not follow that they must

come in just one great big one). (Brandom, 2000, pp. 15-16)

Semantic holism has various problems (Fodor & Lepore, 1992). For instance,

it is hard to explain concept acquisition and conceptual competence from a

holistic perspective. How is that a subject learn its firsts concepts if possessing

one requires having others previously? How is it possible to have full conceptual

mastery considering that everyday cognition is seriously limited, and individual

knowledge is never complete? (e.g., see Fodor, 1994; Jönsson, 2014).

Another important problem of IRS concerns concept individuation. Fodor

and Lepore (Fodor & Lepore, 1992) gave strong arguments against the possibil-

ity of conceptual individuation for holistic views of meaning —i.e., the meaning

of an expression depends on the entire body knowledge. One popular solution

to this is local holism, which claims that only a closed set of inferential relations

between expressions are meaning-constitutive (Block, 1998b; Weiskopf, 2009).

For instance, the concept bachelor would be individuated though inferential re-

lations with concepts like man, married, civil status, and young ; while a logical
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concept like and would be individuated through its typical introduction and

elimination rules —i.e., p ∧ q, then p; p ∧ q, then q; p and q, then p ∧ q— (see

Peacocke, 1992, pp. 6-8). Nevertheless, Fodor and Lepore still think that no

demarcation criterion between meaning-constitutive and non-constitutive infer-

ences would be adequate, due to Quine’s arguments against analyticity and

synonymy. This problem opened a discussion that continues until today. I will

suggest a demarcation criterion in this sense in Chapter 5.

CRS and IRS are good attempts to build a bridge between meaning and

inference. A bridge that was destroyed by the anti-mentalistic trends in the

philosophy of language and by the success of truth-conditional semantics. How-

ever, I do not think that any of these theories allow us to build fine-grained

explanations of this relation. As Machery claims, the discussion about concepts

in philosophy is relatively isolated from the discussion in psychology and lin-

guistics (Machery, 2009, p. 3). The questions that philosophical semantics try

to answer are different from those that psychologists and linguists worry about.

Philosophers wonder about concept identity, individuation and possession con-

ditions. Psychologists, on the other hand, disregard foundational issues in favor

of analyses that try to understand the role of concepts in cognitive functions

like categorization, learning, and reasoning (Carey, 2000; G. Murphy, 2004).

Block’s seminal paper, "Advertisement for a Semantics for Psychology"

(1986), proposed CRS as a theory of meaning for psychological theorizing. I

think that the strategy for semantics should be the other way around, a philo-

sophical theory of meaning must build on psychological explanations. Especially

if what we want to elucidate is the relation between meaning and reasoning.

I believe that inference and concepts are two sides of the same coin and

that we cannot understand any of them in isolation. In this sense, I will look

into psychologically informed semantics to find conceptual tools for analyzing

reasoning with concepts. I will argue in favor of Cognitive Semantics as the

best candidate for this task.
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2.3.2 Cognitive and conceptual semantics

As it is well known, the cognitive revolution in linguistics came with Chomsky’s

generative grammar (Chomsky, 2014 [1965]). Chomsky’s work was the main

source behind the recovery of the notion of representation in cognitive science

(Chomsky, 2005), which was almost forbidden due to the influence of behav-

iorism. Chomsky’s review of B.F. Skinner’s book “Verbal Behavior” (Chomsky,

1959) —a milestone in the history of cognitive science— showed that behavioral

linguistics was implicitly based on intentional notions, and that assumed an in-

tuitive recognition of linguistic structure, besides its anti-mentalistic rhetoric.

Chomsky was one of the leading promoters of the return to internalism.

He was a fierce critic of semantic externalism (see Pietroski, 2017) and argued

against the possibility of studying language as a structure independent of knowl-

edge and cognition:

We should, so it appears, think of knowledge of language as a cer-

tain state of mind/brain, a relatively stable element in transitory

mental states once it is attained; furthermore as a state of some

distinguishable faculty of the mind – the language faculty – with its

specific properties, structure and organisation, one module of the

mind. (Chomsky, 1986, pp. 12-13)

He provided a new methodology for studying language which replaced the

frameworks of Bloomfield and Harris —Quine’s central influences. It success-

fully combined empirical, theoretical and formal considerations; and was also

deeply engaged with cognitive psychology. Within this new framework, under-

standing linguistic competence is required to study the nature of those cogni-

tive structures that make possible language development and acquisition (Cum-

mings, 2013, p. 53). Chomksy showed that it was possible to build a scientific

theory of language that used intentional and representational notions, and which

was at the same time situated at the core of empirical science: language was

assumed to be a natural object, a component of the human mind, physically

represented in the brain and part of the biological endowment of the species

(Chomsky, 2002, Chapter 1).
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Chomsky’s work focused on syntax. However, his methodological program

and theoretical commitments quickly reached semantics and linguistics in gen-

eral. A new field of study emerged thanks to his influence: Cognitive Linguistics,

a research program whose main objective was to develop an analysis of language

as an information system that mediates our interaction with the world through

the cooperation of several cognitive faculties such as perception, categorization,

reasoning and memory. As Geeraerts and Cuyckens explain:

...where "cognitive" refers to the crucial role of intermediate infor-

mational structures in our encounters with the world. Cognitive

Linguistics is cognitive in the same way that cognitive psychology

is: by assuming that our interaction with the world is mediated

through informational structures in the mind. It is more specific

than cognitive psychology, however, by focusing on natural language

as a means for organizing, processing, and conveying that informa-

tion. Language, then, is seen as a repository of world knowledge, a

structured collection of meaningful categories that help us deal with

new experiences and store information about old ones. (Geeraerts

& Cuyckens, 2007, p.5).

A subfield of cognitive linguistics,Cognitive Semantics, emerged in the 1970s

carried out by George Lakoff, Ronald Langacker and Leonard Talmy, among oth-

ers. Again, their central tenet was that meaning cannot be studied in isolation

from the psychological structures involved in language processing and knowl-

edge representation —memory, categorization, inference, perception, etc.— (see

Geeraerts, 2010, Chapter 5).

Contrary to mainstream truth-conditional semantics, this view takes lexical

meaning as explanatory prior to sentential meaning. And the notions of refer-

ence and truth play a relatively marginal role in its theoretical structure. The

main idea of cognitive semantics can be summarized in the following motto:

"meaning is conceptualization." In other words, semantic processing involves

the constant mobilization of knowledge structures to decode lexical and senten-

tial meaning. In words on Langacker: "Semantic structure is conceptualization
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tailored to the specifics of linguistic convention. Semantic analysis therefore re-

quires the explicit characterization of conceptual structure” (Langacker, 1987, p.

99). The building blocks of these knowledge structures —or as Quine would say,

the "vehicles of meaning "— are not propositions, but notions like prototypes,

frames, or image schemes, depending on the specific theory.

To see a quick example of how cognitive semantics approaches meaning,

let us briefly see Lakoff’s account of polysemy. According to Lakoff, lexical

terms’ meanings are constructed as complex radial structures organized around

a composite prototype.10 The members of this structure establish different kinds

of relations to the prototype according to linguistic conventions, and remain in

the mental lexicon for being used in thought and language processing (Brugman

& Lakoff, 1988; Lakkof, 2017).

Semantic phenomena like polysemy can be easily explained within this

framework. Consider, for instance, the lexical concept fruit. The sentences

(a) "Apples are fruits" and (b) "My salary is the fruit of my work" display dif-

ferent senses of fruit. In Lakoff’s view, all the different senses that a word can

have depend on the conceptual (radial) structure of the category. Moreover,

the different senses emerge as specific semantic relations with the prototype,

like metaphoric meaning or generalization. In the cases above, (a) express a

prototypical sense of fruit while (b) a metaphorical one (see Figure 2.1).

Polysemy is here a deep semantic phenomenon that reflects conceptual or-

ganization at the level of mental representation; and not a superficial linguistic

phenomenon associated to usage.

Another theory of meaning in this line is Jackendoff’s conceptual semantics

(Jackendoff, 1992, 2002). Jackendoff’s influential approach shares many

theoretical commitments to cognitive semantics, with the difference that he

remains committed to the generative program. Jackendoff supports the idea of
10Lakoff follows Rosch’s ideas about the prototypical structure of concepts (Rosch, 1983).

Categories are not homogeneous, since some of their members are more typical than others
and, consequently, more representative of the category in question (e.g., robin is a prototypical
bird while ostrich is rather atypical). We will come back to this idea in Chapter 4 since it is
central to our work.
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Figure 2.1: Radial structure of fruit. The links among senses
represent semantic relations. From (Geeraerts, 2010, p. 195).

a language faculty with a modular architecture. Different structures —such as

syntax and phonology— cooperate in semantic processing (Figure 2.2).

Figure 2.2: The structure of the language faculty according to
Jackednoff. From (Jackendoff, 2017).

Regarding meaning, the crucial module is the conceptual structure: an au-

tonomous level of cognitive representation in which concepts are interpreted in

terms of sets of semantic primitives. Conceptual structure is an interface be-

tween other linguistic modules such as phonology and syntax, and non-linguistic

structures representing perceptual information —such as vision:

Conceptual structure is not a part of language per se – it is a part

of thought. It is the locus for the understanding of linguistic utter-

ances in context, incorporating pragmatic considerations and “world

knowledge”; it is cognitive structure in terms of which reasoning and

planning take place.(Jackendoff, 2002, p. 123)
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Jackendoff’s theory is decompositional: it assumes that complex concepts

are analyzable in terms of conceptual primitives, i.e., a set of basic building

blocks of meanings combined through innate rules that constitute a conceptual

grammar. Conceptual primitives are concepts like "thing", "place", "path",

"property", "event" and "action". Sentence-structure has a parallel architecture

to phonological, syntactic and semantic structure. For instance, the sentence

"Peter entered into the room" has the following semantic structure:

[EventENTER([ThingPeter]i, ]PathTO([PlaceIN([ThingROOM ]m)])]k)]j

EVENT

ENTER THING

Peter

PATH

TO PLACE

IN THING

house

In general, Jackednoff proposes that we can uncover the underlying semantic

structure of every meaningful sentence with this kind of strategy.

2.3.3 Inference and meaning structure

Both cognitive and conceptual semantics offer interesting –and psychologically

informed— ways of relating inference with meaning. George Lakoff, for instance,

claims that:

The heart of metaphor is inference. Conceptual metaphor allows

inferences in sensory-motor domains (e.g., domains of space and

objects) to be used to draw inferences about other domains (e.g.,

domains of subjective judgment, with concepts like intimacy, emo-

tions, justice, and so on). Because we reason in terms of metaphor,
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the metaphors we use determine a great deal about how we live our

lives. (Lakoff & Johnson, 2008, p. 245)

In this account, metaphors play a crucial role in reasoning by allowing to ex-

ploit inferential patterns from one domain to another domain via conceptual

mappings. However, Lakoff did not developed formal tools for explicating these

mechanisms.

Jackendoff, on the other hand, uses his formal analysis of meaning structures

to explicate semantic-based inferences. This problem has a central role in his

theory. He writes that "one of the requisites of an adequate semantic theory is

that it provides an account of entailment between sentences" (Jackendoff, 1976,

p. 110). In the same spirit as Katz’s idea that deductive inference is related

to grammatical form (broadly construed), Jackendoff claims that lexical types

have associated inference patters. These patters can be generalized by analyzing

the structure shared by the decompositional analysis of sentences with the same

type.

Let’s see an example of this from Jackendoff (1992, p. 39). Consider the

following causal inferences:

X killed Y → Y died.

X lifted Y → Y rose.

X gave Z to Y → Y received Z.

The semantic structure of these sentences is:

X kill Y: Xcause[Y die]

X lift Y: Xcause[Y rose]

X gave Z to Y: Xcause[Y toreceiveZ]

And the generalized inference pattern for causal sentences is the following:

Xcause[Etooccur]→ Eoccurs
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This kind of analysis that uncovers inferential patterns associated with

meaning structures can be carried out systematically with other lexical types

in this framework.

That is very much in line with the approach to concept-based inference

developed later in this work. However, instead of using Jackendoff’s generative

grammar, I will use Gärdenfors’ conceptual spaces. This latter theory is better

equipped, both formally and theoretically, to explicate these kinds of inferences.

Furthermore, Jackendoff’s theory makes a central use of the notion of rule of

inference (Jackendoff, 1976, Sec. 4), while the approach defended in this thesis

avoids this notion since it could be problematic from a philosophical perspective

(see Hlobil, 2014; Valaris, 2017).

2.4 Summary and conclusions

In this chapter, I discussed some of the reasons underlying the explanatory gap

between meaning and inference in traditional philosophical semantics. Reduc-

ing semantic properties to reference and truth-conditions might be functional

to the logicist program —which claims that the inferential structure of natu-

ral language is a matter of logical form— but it lacks the tools for explaining

some evident entailment-relations between atomic statements —which are ul-

timately relations between concepts. This approach might help to shed some

light into the mechanisms behind our referential competence (see Calzavarini,

2020, Chapter 3), but it has serious limitations at the moment of accounting

for our inferential competence (cf. Marconi, 1997).

I argued that addressing the relationship between meaning and inference

requires recourse to cognitive semantics. This framework takes the psycholog-

ical dimension of linguistic meaning as the central feature of its explanatory

structure. And as we will see later, it provides tools for analyzing the role of

language in reasoning. I will return to it in Chapters 3 and 5. Next, we leave

meaning aside for a moment and move on to the relationship between the more

general notion of representation and its relation to reasoning.
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Chapter 3

Inference and Representation

Summary

This chapter advance an analysis of the relation between represen-

tation and inference. It is claimed that inferential mechanisms ex-

ploit properties of the structures encoding conceptual information;

and that the computational efficiency of these mechanisms depends

on the "format" or organization of these structures. An important

part of the chapter develops criticism to representational conser-

vativism, i.e., the idea that all personal-level reasoning takes place

in a language-like representational system like Fodor’s language of

thought. Finally, an pluralist framework for understanding infer-

ence is defended and some examples of different inference-types are

discussed.

3.1 Introduction

Inference is a cardinal notion in several research fields. Philosophy, Cognitive

Science, Computer Science, AI, and Statistics are some of the disciplines that

have it in their conceptual repertoire. Inference is such a fundamental notion,

that it often goes undefined.

In Cognitive Science, we can see a broad and narrow use of that notion. In

the broad usage, inference is equated with computation, and it covers both per-

sonal and sub-personal mechanisms.1 For instance, some researchers consider
1Personal mechanisms are those whose explanation requires the postulation intentional

attitudes as part of their causal structure. On the other hand, sub-personal mechanisms can
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low-level cognitive mechanisms —like perception— as inferential even if they

have a completely different computational structure than high-level cognition

(e.g. Aggelopoulos, 2015; Hatfield, 2002);2 while others use inference only for

referring to personal-level reasoning like deduction and induction (R. A. Wilson

& Keil, 2001, p. 404).

In philosophy, the notion has been central to epistemology and logic, and

it has evolved hand by hand with other notions like judgment, justification

and proof. Philosophers have mostly thought about inference as a personal-

level mechanism with three main features: it is language-based, it follows rules,

and it can be normatively evaluated. Deductive reasoning has monopolized

the attention since Aristotle. However, the discussion about non-demonstrative

inference gained protagonist with Locke’s and Hume’s discussions on probable

reasoning (see Owen, 1999). Nowadays, the standard view in philosophy accepts

the existence of three kinds of inferential mechanisms that are computationally

different: abduction, deduction and induction.

AI and Computer Science show a more homogeneous use of the notion, in

general, anchored in the notion of information. Roughly, inference refers to

processes carried out by programs that extract "new" information from a set

of "facts" or suppositions represented in some programming language in the

database of the program (e.g., Henschen, 1987). Researchers in this area de-

veloped a large amount of inference engines specialized in different kinds of

inferential procedures, most notably, deductive, inductive, nonmonotonic infer-

ence. (e.g., Singh & Karwayun, 2010).

Besides broadly used, inference does not seem to have a stable meaning,

neither within each particular discipline nor cross-disciplinary. In the following

section, I inquire into the foundations of this notion to advance a possible defi-

nition. I put the emphasis on the relation between the notion of representation

and inference; and I will argue in favor of a pluralist view of inference that

be explained without reference to intentional states as causes. The distinction comes from
Dennett (1969).

2In the famous essay "Some consequences of four incapacities", Peirce (1868) proposes a
notion of inference according to which every "operation of the mind" is an inference, including
emotions and sensations.
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builds on the idea that thinking can make use of different formats of represent-

ing information.

3.2 What inference is not

Inferences are transitions between mental states that take part in what it could

be called —using William James’ terminology— "the stream of thought".3 Ob-

viously, there is more to the stream of thought than just inferential transitions.

We are all familiarized with different kinds of mental associations —between

beliefs, perceptions, memories, and so on— that we would not consider infer-

ential.For instance, I can have a personal disposition to think about guitars

whenever I see a boat; or remember my childhood’s home when I think about

cats. These —idiosyncratic— mental transitions cannot be normatively evalu-

ated because they do not answer any specific rationale, and they do not seem to

follow any informational criterion. 4 Inferential transitions, on the other hand,

are supposed to satisfy these last two points.

Mainstream philosophy thinks about inferences as ruled-based transitions

between judgments. Frege, a crucial figure here (see Mezzadri, 2018), illustrates

this in the following passage:

The connections that constitute the essence of thinking differ in a

distinctive way from associations of ideas. The difference does not

lie in a mere ancillary thought [Nebengedanke] that is also present

and that adds the justification for the connection. (quoted in Hlobil,

2019, p. 10)

Inferential transitions are not mere associations because the causal relationship

between premise(s) and the conclusion has a non-idiosyncratic (normative) jus-

tification.

As we said earlier in this work, deductive logic was largely considered the

normative model of this justificatory relation. Again, the reason for this can
3We could talk about informational states if we wanted to include inferences in artificial

systems.
4This does not mean they cannot be explained from a psychological perspective.
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be found in Frege’s definition of inference as making "a judgment because we

are cognisant of other truths as providing a justification is known as inferring"

(Frege, 1979, p. 3). Frege’s conceived logic as the set of laws governing truth

transmission (see N. J. Smith, 2009). In this sense, the epistemic anchor of

inference is truth: An agent infers φ from ψ if she takes φ to be true and

recognizes a truth-functional relation between them. Thus, our inferential com-

petence depends on our ability to grasp truths and truth-functional relations

among propositions via our knowledge of logical laws.

As explained in Chapter 1, this is the core of the formality thesis. Logical

rules apply to the form of the propositions expressed in natural language sen-

tences because their syntax mirrors their semantic properties —understanding

semantics as truth-conditions plus reference. We can see the endurance of this

view within philosophy in the following passage of John Broome’s influential

book "Rationality through reasoning":

In...reasoning, you operate on the marked contents of your conscious

attitudes, following a rule. The marked contents are complex. They

have a syntactic structure, and the rules you apply in operating on

them depend on their structure. In operating on them, you have

to hold them in your consciousness, maintaining an awareness of

their syntactic structure. Language is well suited to doing that.

It has a meaning that can represent the semantic elements of the

marked contents, and it has a syntax that can represent their syn-

tactic structure. It is plausible that, without the help of language,

you could not keep the marked contents properly organized in your

consciousness. (Broome, 2013, p. 267)

In recent years, Paul Boghossian took up the Fregean approach to inference

emphasizing its intentional nature —that was already suggested by Frege—

(Boghossian, 2014, 2018). Roughly, he argued that for a thought-transition to

count as inferential —and not merely associational— the agent must take the

premises as support for the conclusion. More precisely, the taking condition

claims that any theory of personal-level inference must account for the fact
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that inferential moves are carried out by the agent acknowledging a justificatory

relation between the premises and the conclusion.

The Frege-Boghossian approach makes two interesting points about when a

thought transition qualifies as inferential: it must follow a systematic criterion,

and it must be an action that is the result of the agent’s understanding of a

justifying relationship between the premise(s) and the conclusion. However,

although this seems like a good starting point, I believe that it is also clearly

insufficient.

First, inferences indeed have to be the output of some stable information-

processing mechanism. However, as it is widely known, deductive logic is not

enough as normative criterion —as we saw earlier in this work. Most of our

inferential activity is under uncertainty and does not follow logical rules in any

classical sense (see Oaksford & Chater, 1989). Second, the directionality of

reasoning is not exclusively from premise(s) to conclusion. For instance, belief

revision and personal justification in dialogical contexts use different heuristics

to finds reasons (premises) for the agent’s claims or ideas (cf. Harman, 1986;

Mercier, 2012). Third, our grasp of truth-functional relations between state-

ments is hardly central to everyday thinking. We do not need to fully believe

a proposition to use it in reasoning (see Staffel, 2013). We also make constant

use of hypothetical situations while reasoning (Evans, 2019). And in many

cases, our intuitions about premise(s)-conclusions relations are better explained

by probabilistic models than by logical ones (e.g., see Elqayam & Over, 2012;

Oaksford & Chater, 2007). The same problem affects the classical notion of

logical validity based on truth-conditions. Recent Bayesian models of deductive

reasoning have shown that some inferential patterns traditionally classified as

formal fallacies are in fact reasonable inferential moves if they are evaluated

from a probabilistic perspective (Eva & Hartmann, 2018; Hahn, 2020).

Another problem of the Frege-Boghossian approach is that it does not in-

clude any informational constraint for inference production. Transitions like

"2+2=4. Thus 2+2=4 or Munich is in Germany" are genuine inferences if the

agent takes the premise as reasons for the conclusions. Something that would

be correct because the transition is logically valid. There is an infinite set of
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logically valid implications like the one above that can be considered completely

artificial and counter-intuitive because they lack any relevant cognitive use. A

theory of reasoning must include constraints regarding the informational fruit-

fulness of inferences. Inferential moves are not produced in the void, but they

respond to specific linguistic or physical stimuli within specific informational

contexts (cf. Barwise, 1989; Gardenfors, 1994). We will come back to informa-

tional constraints in at the end of this chapter.

These are some of the problems of the Frege-Boghossian view of inference.

Most of them converge with the critiques to the formalist thesis discussed in

Chapter 1. In what follows, I discuss another important assumption of this

tradition playing a central role in the mainstream computational view of think-

ing: The idea that thought transitions operate over propositionally-structured

mental states; i.e., in a language of thought.

3.3 Representation

If, while arriving home, I see the door of the house open, I will infer that

someone is inside. This thought transition has as premise a mental state that

is itself a product of a complex computational process. It starts when light

hits the retina and triggers a cascade of electrical signals that travel through

the visual cortex, processing first low-level visual features, like orientation and

spatial frequency, and then high-level features like shape and semantic category

(see Bullier, 2001). The output of this process is a belief that I somehow relate to

background information, to give rise to a new belief with the content "someone

is at home." The whole process is a matter of information-processing. The key

issue here is how the informational structure of the inputs are decoded and

processed. When we focus on the process’ outputs, the "information" jargon is

often changed for a "representation" jargon.

Perceptions, beliefs, images, and memories are all structured representations

that occur in our "mind’s eye" and constitute high-level psychological processes

like categorization, imagination, and reasoning. That idea has been at the core
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of cognitive science since its very beginnings (Von Eckardt, 1995). From phi-

losophy to artificial intelligence, every region of contemporary cognitive science

has used —or at least discussed— a notion of representation in their expla-

nations of cognitive phenomena. Due to this, the notion has been intensively

discussed by philosophers in relation to its role on psychological explanation

(e.g, Chemero, 2000; Dennett, 1979), its ontological status (Scheutz, 1999); and

for its possible connection to more fundamental explanatory frameworks coming

from neuroscience (see Shea, 2018).

The present work follows the mainstream tradition of cognitive science as-

suming that mental representation is a viable scientific hypothesis with im-

portant explanatory power, despite all the philosophical and methodological

problems it brings. For reasons of extensions, I cannot cover the many facets of

the issue. Instead, I will focus on one particular problem concerning the format

of mental representation, which I believe it is deeply related to the problem of

inference.

3.3.1 Representational conservativism and the transla-

tional approach

Analytic philosophy has been loyal to the following explanatory scheme for

thought and reasoning: no matter the topic, the units of thinking are beliefs,

and beliefs are language-like entities with logical properties —semantic and

syntactic. Reasoning, modulo formality thesis, consists of transitions between

beliefs generated by mechanisms that exploit their syntactic structure. As it is

obvious, this is the fundamental idea behind the computational theory of mind

(CTM) discussed in the first chapter. We will now revisit it, focusing on its use

of the notion of representation.

The underlying hypothesis of the CTM is that the question about the for-

mat in which information is represented is directly connected to the computa-

tional structure of cognitive mechanisms. Computationalists, specially Fodor

and Pylyshyn (Fodor & Pylyshyn, 2015), defend a "conservative" view of rep-

resentational format: all psychological representation is based on an amodal
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language-like system, the language of thought (LOT) or mentalase (Fodor, 1975,

2008). According to Fodor, LOT is "the only game in town" (Fodor, 1975, p.55),

i.e., the only plausible hypothesis for building a scientific psychology, because

the LOT has the right properties for explaining the productivity and system-

aticity of rational thought.

This idea requires a translational view of mental representation (see Clark,

2006; Landy, Allen, & Zednik, 2014). Roughly, all the different modalities of

information —visual, auditory, tactile, and so on— that the brain processes to

feed cognitive mechanism must be translated into the LOT in order to be used

by high-level cognition. As Landy et al. (2014, p. 3) explains:

Computationalist and semantic processing accounts of symbolic rea-

soning are equally translational because they both assume that prob-

lem representations are passed from a perceptual apparatus to an

internal processing system in a form that is no simpler than the ex-

ternal —notational or linguistic— problem representation. That is,

they assume that all transformations that involve changes in seman-

tic structure take place “internally,” over Mentalese expressions.

Since the 1970s, there has been an ongoing debate between representa-

tional conservatives and representational pluralists (cf. Dove, 2009; Fodor, 1975;

Pylyshyn, 1981; Simon, 1978). The central issue here is how can representa-

tional conservatism explain that thinking seems to includes formats of repre-

sentation that are not propositional. Everyday cognition makes constant use

different sorts of —external and internal— representational structures that are

not propositional, like images, maps, diagrams and formulas —just to name

few. There is also an overwhelming amount of evidence coming from psychol-

ogy and neuroscience about the central use of non-propositional representations

in cognition (e.g., see Dove, 2009; Kosslyn, Thompson, & Ganis, 2006; Parsons,

2016; Pylyshyn, 2002; Shepard & Metzler, 1971), as well as various robust the-

ories of visual and diagrammatic inference coming from logic and AI (Barwise

& Etchemendy, 1996).
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Fodor’s take on this issue is that despite all this psychological evidence,

mental imagery —or any other non-propositional mental representation— can-

not be truly representational because only LOT sentences can be intrinsically

meaningful, i.e., having proper intentional properties (Burnston, 2020; Fodor,

1985). Thus, if we want to accept in the ontology of our psychological theory

alternative representational types, they must be "anchored" in the LOT. To

put an example, Fodor claims that mental imagery would only make sense if

each mental images-token comes labeled with a description "written" in a men-

talese script. However, as various authors have noticed (Cummins, 1992; Horst,

1999b), the whole idea is deeply problematic. First, because there is no clear

translational strategy that can explain how our use of mental images can be

reduced to the LOT; second, the issues of how the LOT has intentional prop-

erties —and a proper syntax— are far from being settled. As a consequence,

any translation strategy would inherit all the theoretical problems of the LOT

hypothesis.

3.3.2 Representation and the organization of information

How representational structures organize information has an impact on the cog-

nitive processes that exploit them. For instance, a map of Paris’ metro system

could be informationally equivalent to a set of sentences describing it. How-

ever, it is often much easier for people to extract relevant information from

the map than from its linguistic description (see Lloyd, 1993). Non-discursive

—external— representations are pervasive in all our cognitive practices (see

Paivio, 2013). We use them in all kinds of contexts, and they seem to have

a positive impact in several cognitive procedures, from learning to everyday

reasoning (see Horowitz, 1967). This is hardly an intrinsic property of the

representational structures themselves. Instead, as Larkin and Simon (1987)

famously argued, it probably depends on the relation between the way they or-

ganize information and the information-processing mechanism acting on them.

Computationalists like Fodor seem to underestimate this point. In general,

those supporting the LOT as the universal medium of representing information
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have understood the issues of knowledge organization and computational effi-

ciency as marginal in their explanations of high-level cognition. AI researches,

on the other hand, have quickly seen that this problem was central for mod-

eling processes like reasoning in artificial systems (Lakemeyer & Nebel, 1994;

Woods, 1987). The propositional view, widely popular at the beginnings of AI

thanks to the prevalence of logical models, lost much popularity for a simple

reason: classical logic has several computational disadvantages when used as a

framework for knowledge representation (Minsky, 1991; Sowa, 1999).5 New rep-

resentational frameworks were developed for organizing knowledge structures

more efficiently. Frames (Minsky, 1974), semantic networks (Quillian, 1967),

and conceptual graphs (Sowa, 1991) were all non-propositional alternatives to

classical logic that proved themselves as useful ways for representing informa-

tion in inference engines. Even if, in most cases, these methods do not have

psychologically realistic foundations, and they do not explain where this seman-

tic organization comes from (Brachman, 1977), their analysis seems relevant for

the other disciplines studying reasoning.

The discussion about knowledge organization in AI is deeply related to the

frame problem (see P. Hayes, 1988; Lormand, 1990). Roughly, the frame prob-

lem is how to retrieve relevant knowledge from a rich database in problem-

solving contexts. For instance, let us say that I have to decide how to go from

my house to the cinema. Most of the information in my background knowl-

edge is completely irrelevant for answering that question; so there must be a

mechanism of information retrieval that select from this diverse corpus those

pieces that are useful for my task —for instance, from the category means of

transportation, concepts like train, bus, car, or bike.

It seems evident that the conceptual organization of knowledge in semantic

memory plays a crucial role in solving the frame problem. If we assume that

beliefs are unorganized abstract entities floating in a belief box — as some clas-

sical epistemologists do—, then the retrieval mechanism must go through all

the corpus of information to find the possible answers, something that will have
5See (P. Hayes, 1977; Lifschitz, Morgenstern, & Plaisted, 2008) for a discussion on this

matter.
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an extremely high computational cost. On the other hand, if we assume that

knowledge is organized in different conceptual domains, the retrieval mecha-

nism would only require to make a localized search in some closed body of

information.

According to Fodor, the frame problem is the biggest challenge to the CTM

(Fodor, 1988, 2001). This is a consequence of its reliance on the formality thesis.

If reasoning is a purely syntactic mechanism operating over an unstructured set

of sentence-like beliefs (LOT), 6 there is no way of explaining why when we

reason —when we look for reasons for justifying a claim, for instance— we

consider only information that is relevant for the problems’ domain.

One way of avoiding the frame problem is to reject the LOT theory and

assume that representation is organized in structured domains.7 In philosophy,

there have been few attempts to advance alternative theories of representation

that are not language-based. The first wave of ideas in this direction came from

Lewis map theory of belief (D. Lewis, 1994), which vaguely proposes that beliefs

represent content through structures that are isomorphic to what is represented;

consequently, knowledge is somehow organized mimicking the structure of the

things represented (Hendricks, 2006; Shea, 2014).8 Similar views have been pro-

posed by Colin McGinn (1989) and Frank Jackson (1997).9 More recently, a

second wave of anti-LOT theories was developed in a very similar direction by

Rescorla, Camps and Prinz (Camp, 2007; Prinz, 2004; Rescorla, 2018). The ef-

forts were focused on discussing how map-like representations could meet certain

properties that, in Fodor’s analysis, are central to representational systems and

are required for any account of mental causation —systematicity, productivity,

logical structure, etc.
6In Fodor’s view, the lack of structure is due to the fact that concepts —the building blocks

of these mental sentences— are atomic and totally disconnected from each other. For reasons
of space, I will not discuss this topic here. But it is deeply related to Fodor’s support to
purely referentialist semantics, and his rejection of any kind of meaning holism, such as that
advocated by Brandom and Sellars.

7Another solution to the frame problem comes from massively modular approaches to
high-level cognition (e.g., see Sperber, 2001)

8This idea has a long history in philosophy. One of the main defender of a structural view
of representation and reasoning was Leibniz. See Swoyer (1991) for an explanation.

9See Braddon-Mitchell and Jackson (2006) for a review of this approach to belief.



68 Chapter 3. Inference and Representation

Map-like theories of belief are interesting alternatives to the LOT because

they offer a way of explaining the strong connectivity of our web of beliefs

and, as Haugeland (1987) observed, this is an important step towards dealing

with the frame problem . However, the available theories have several limita-

tions. First, they do not offer any systematic model of the structure of these

non-linguistic representations. Second, they do not show how their structural

features affect crucial cognitive mechanisms like reasoning 10 and categoriza-

tion. 11 Third, they are still conservative —and thus probably translational—

regarding representational formats: they do not seem to accept different forms

of representation of information in cognitive processes. As I will show later,

representational pluralism is an interesting hypothesis for explaining reasoning

and other important cognitive mechanisms.

3.3.3 Knowledge structures and the centrality of belief

Compared to classic computationalism, the views mentioned above try to give

a richer idea of our knowledge system’s connectivity. However, they also seem

to buy the assumption that everything concerning mental causation starts and

ends with the notion of belief —or propositional attitude. In this sense, they are

aligned with the CTM since they seem to support some from of representational

conservatism. Fodor —following Peirce— used to talk about reasoning as belief

fixation; and this makes sense, since inferences are supposed to depart from

beliefs and have as output other belief —or at least some doxastic attitude

towards a proposition, as Harman (1986) observed. But, are beliefs enough for

explaining inference and knowledge?

Suppose I am told that Fido is a dog, and from this, I immediately infer that

he is also a mammal. The formalist will tell me that this piece of reasoning is

an enthymeme —i.e., a syllogism with implicit premises— and that what there

is in-between the premise and the conclusion is the implicit belief "All dogs are

mammals" and some logical rules that exploit logical form. However, which
10It is fair to mention that the psychological theory that builds on similar ideas, Mental

Models, does not give us a detailed description of what these structures are.
11Rescorla does show how his map-theory of belief could illuminate some problems of spatial

navigation (Rescorla, 2018).
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is the retrieval mechanism that brings this implicit belief to mind? And, how

this retrieval mechanism choose from the belief box the adequate proposition if

reasoning is a fully syntactic-based process —i.e., insensitive to content?

Computationalists like Fodor cannot answer this. As said earlier, this re-

trieval mechanism must be content-sensitive, and it operates over what is usually

called background knowledge. It associates lexical concepts like "dog" with re-

lated concepts that may be relevant for an instance of reasoning —in this case,

"mammal." As far as I can tell, there is no need to postulate that background

knowledge is structured as a belief-box or as a belief-network because what is

needed are not relations between propositional attitudes, but relations between

lexical concepts.

Fodor saw propositional attitudes as so central to knowledge and cognition

that he claimed that people have "innate beliefs about linguistic structure"

(Fodor, 2001, p. 95). However, this is misleading. Most people are competent

language users without having beliefs about the grammatical rules they use.

In other words, having a linguistic ability does not require to have an attitude

towards the truth of a proposition (see Jackendoff, 2002, p. 124-129).

Cognitive scientists took this direction when they started studying how back-

ground knowledge is structured in semantic memory. Semantic memory is a cru-

cial notion in the explanation of cognition. It is supposed to be the reservoir of

all the —experience-independent— information we have about concepts, prop-

erties and things in the world (Yee, Jones, & McRae, 2018). It has a central role

in reasoning and other high-level cognitive mechanisms (Benedek et al., 2017;

De Neys, Schaeken, & D’ydewalle, 2002). Several models of semantic mem-

ory have been developed over the years. Among the most influential, we find

network models like those developed by Quillian’s or Anderson’s (2014; 1966);

feature-based models like Smith et al. (1974) or McRae’s (2004); and more

recently, probabilistic models like the one developed by Kemp and Tenembaum

(2008).

None of these models requires the use of a notion like belief —or any other

propositional attitude— in its explanatory structure. Instead, they often as-

sume a level of representation of semantic information that is not language-like,
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and whose structural features are determinant in the interaction with other pro-

cessing systems. This is a crucial assumption for this thesis. In particular, I will

defend that there is a family of inferential mechanisms that exploit semantic

information at a sub-symbolic level and that a proper model of the structural

features of this information can shed light on the computational features of

them.

The idea that there is a sub-symbolic level of representation of information is

not new at all. For several decades, AI has been polarized between symbolic and

sub-symbolic approaches (Eliasmith & Bechtel, 2006; Smolensky, 2012). The

former propose that a language-like medium of representation of information,

plus a logic-like system of rules, is enough to model high-level cognition. The

latter tries to show that a connectionist model of representation can explain

cognition without reference to sentence-like notions, like beliefs (cf. Von Eckardt,

2005).

I do not think that the two models need to be understood as rivals. I follow

Gärdenfors (2000) in claiming that there can be various levels of representation

of information that interact in different ways during cognitive processing. In

particular, I think that reasoning requires the interaction of information that is

explicitly represented in language —or other external format of representation—

, with information that is implicit and codified in some sub-symbolic represen-

tational structure within semantic memory. As Gärdenfors has showed (1997),
12 assuming the existence of an intermediate level of representation of infor-

mation that bridges the symbolic —linguistic— level with the connectionist

level has many explanatory advantages. In particular, it can help explain and

model several cognitive phenomena associated with conceptual representation

manifested in linguistic behavior but not accountable from the symbolic. To

name just three, typicality effects in categorization and reasoning (Rosch, 1983),

non-monotonic reasoning (Osta-Vélez & Gärdenfors, n.d.), and some important

features of the dynamics of language acquisition (Gärdenfors, 2014).

As mentioned before, in the upcoming chapters I will explicate some of these
12Also see Lieto (2017) for a development of Gärdenfors’ argument.
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ideas by using conceptual spaces to model various kinds of concept-based in-

ference. The thesis I defend is that a big deal of the structure of background

knowledge can be explained with conceptual spaces, and that some of these

structural features can shed light on semantic-based inferential mechanisms. I

will show how different word-classes with specific semantic structures allow for

different patterns of inferences. Notice that is similar to Jackendoff’s idea dis-

cussed in the previous chapter. The difference is that conceptual spaces offer a

much more powerful formalism to account for these inferences, and this trans-

lates in both a better mathematical model and a more promising explanatory

framework.

Before introducing conceptual spaces in the next chapter, I will discuss some

more general ideas about how to understand inference and its relation to rep-

resentation.

3.4 From representational pluralism to inferen-

tial pluralism

This chapter opened by claiming that inference was a widely used yet under-

defined notion. Besides the recent efforts of some philosophers (e.g., Boghossian,

2014; Hlobil, 2019; Valaris, 2017), I think it is still not entirely clear which

analytical categories are best suited for theorizing about inference. In what

follows, I will propose a broad definition that tries to capture some common

ideas of what inference is and that is capable of encompassing the many different

mechanisms that are described in the literature under this cover term:

Definition:

An inference is a transition from an informational (mental) state I1 to a

new informational (mental) state I2 that satisfies the following points:

(i) It is informationaly fruitful;
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(ii) It follows a systematic criterion which exploits properties of the rep-

resentational structures that underlay I1 and I2.

Regarding (i), it is not among the aims (or possibilities) of this work to

develop a systematic criterion of informational fruitfulness. However, I think

that Johnson-Laird and Byrne’s three constraints on inference could be a good

starting point (Johnson-Laird et al., 1992, Chapter 3). The first one states that

inferences should not "throw away" semantic information. For instance, people

do not infer from a premise p, a disjunctive conclusion p ∨ q because, even if

logically valid, the conclusion is less informative —it is compatible with more

possibilities— than the premise. Second, rational inference is parsimonious : We

do not conclude, from a set of premises a conjunction of each of these premises.

Again, this is logically valid yet uninformative. Finally, inferences should add

something new to what it is already stated in the premises.

As mentioned earlier, the lack of criteria of informational fruitfulness is an

important problem of logical models of reasoning. Classical logic, taken as a

model of deductive competence, allows any inferential movement regardless of

the informative relationship between premises and conclusions —e.g., "Tigers

are reptiles. Thus it is raining or it is not raining" is a legitimate inference. The

principle of explosion (ex falso quodlibet) is an extreme symptom of this issue.

Furthermore, (i) would require to introduce principles accounting for the

role of the context of production in which inference is made. In the sense of

Barwise’s situation logic (Barwise, 1989) or, if the context is dialogical, some

Gricean constraints like those proposed by relevance theory (Sperber & Wilson,

1986). Finally, the new Bayesian paradigm of rationality can also contribute to

the specification of (i). As Eva and Hartmann have recently shown, argument

schemes that were traditionally considered as fallacious (and thus information-

ally useless) like affirming the consequent and denying the antecedent , when

analyzed from a probabilistic perspective can be seen as informationally fruit-

ful since they provide considerable support for a conclusion (Eva & Hartmann,

2018).
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(ii) captures what is mainstream in contemporary cognitive science: cog-

nitive processes operate on specific systems of representation of information.

In particular, the ideas I defend follow Mercier and Sperber’s approach to in-

ference (Mercier & Sperber, 2017), which makes a crucial use of the notion

of representation. According to them, inferences are mechanisms that exploit

empirical regularities of the environment for understanding, prediction and —

fundamentally— action. As they write: "No regularities, no inference. No

inference, no action.” (ibid, p. 85). These regularities are encoded in systems

for representing information that can be private or public. Natural language

is the most important public structure for representing regularities, but also

diagrams, scientific notations, and mental and external imagery do this job. 13

Since these systems of representation have different structural properties, it fol-

lows that the inferential mechanisms they allow are computationally different.

This last point is the focus on this work, and it is behind of what I call inferential

pluralism: A view that assumes the existence of a plethora of inferential mech-

anisms that are computationally different because they are based on different

systems of representing information. Inferential pluralism requires the rejection

of the formality thesis, and of any logicist and translational approach trying to

describe any inferential mechanism with the same set of inference rules.

3.4.1 The varieties of inference

Perceptual Inference

The definition of inference presented above builds on a general notion of

representation. I do not take representation to be only a personal-level phe-

nomenon. Any information-processing cognitive mechanism can be analyzed

as building on a way of representing information. An interesting case of this,

is visual perception. In particular, object recognition. Hoffman and Richards

(Hoffman & Richards, 1984) showed that object recognition exploits geomet-

rical properties in the retinal representation of objects that mirror regularities
13This idea has a long history in philosophy. Leibniz conceived reasoning as a surrogative

mechanism, that is, a process that manipulates information about a target phenomenon
through its symbolic representation in the human mind (see Swoyer, 1995).
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in nature. More specifically, the visual system parses object contours at ex-

trema of concave curvature —this is called "minima rule." This mechanism

works by exploiting a topological regularity in objects —"transversality": dis-

tinct parts of objects intersect in a contour of concave discontinuity of their

tangent planes (Figure 3.1). At any point around this intersection, a tangent

to one of the surface’s part forms a concave vertex with the tangent of the

surface of the other part. In other words, the transversality rule implies that

the different parts of images of complex shapes are segmented by recognizing

the "concavities" of their figures marking the divisions between the contours of

their constituent parts. This mechanism is crucial for object recognition but

also for 3-dimensional vision and optical illusions (Hoffman, 2005). 14

This way of analyzing perceptual inferences is consistent with the definition

presented above and with Mercier and Sperber’s idea about the relation between

inferences and empirical regularities. For matters of space, I will not attempt

an explanation of the informational criterion on visual perception. However, it

is generally accepted that perceptual inferences follow informationally efficient

heuristics (Hoffman, Singh, & Prakash, 2015).

Figure 3.1: The rule of transversality states that when two
surfaces penetrate each other at any random point, they always
meet at a concave discontinuity —in red—. From (Hoffman,

1983, p. 157)

14It is interesting to compare visual inferences with other forms of perceptual inferences
that exploit environmental information in different ways but accomplishing similar results. A
particularly illustrative example is fish’s electroreception. There is robust evidence showing
that some species of fish measure distances, and recognize shapes and other properties of
objects not by visual cues, but by interpreting information about the environment coming
from self-produced electric signals with epidermal electroreceptors (von der Emde, 2004).
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Concept-based inference

Inferences that exploit properties of conceptual structure are the main focus

of this work. As said earlier, the idea is that information about lexical concepts

is encoded in a sub-symbolic representational system that supports several

cognitive mechanisms among which is reasoning. For instance, inferences

like "Tiger(x) → Mammal(x)" use core —definitional— knowledge of the

concept tiger (we will discuss this in Chapter 5). A nonmonotonic inference

like "Robin(x) → Fly(x)" builds on the prototypical structure of the concept

bird. As we will see in the following chapters, most categories have prototypes

that "concentrate" those features which we consider typical (regular) of

objects falling under these categories (Rosch, 1983). Chapter 6 explicates how

prototypicality is exploited in nonmonotonic reasoning with conceptual spaces;

while Chapter 7 will extends this idea to category-based induction. In general,

this model will exemplify how semantic structure is exploited in inference

instead of logical —syntactic— structure.

Diagrammatic and model-based inference

Let’s briefly talk about inferences based on external —artificial— systems

of representations. I will use an example given by Mercier and Sperber to

elaborate this point (Mercier & Sperber, 2017, pp. 101-102). Numeral systems

are symbolic structures that represent mathematical information in different

ways. For instance, the number nine and three are represented as "9" and "3"

in the decimal system, and as "3" and "10" in a base-nine system. For those

familiarized with decimal numerals, it seems evident that the multiplication

"300 x 3" equals "900", since 9 is three times 3 and we know that adding zeros

to both numbers preserves the multiplicative proportion. But doing the same

thing with a base-nine system is much harder since this latter system does not

display these proportions with rounds numbers so easily (the above operation

is represented as "3x10=1210"). Thus, reasoning about the same problem is

different according to the system used, since they have other representational

properties (see also, Buijsman, 2018).
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Similarly, diagrams play a central role in inference. In particular, mathemat-

ical reasoning, both in teaching and professional contexts, makes a substantial

use of figures and diagrams, so that they are hardly replaceable by equivalent

linguistic descriptions. In recent years, this issue has gained relevance in psy-

chology and philosophy. Research indicates that diagrammatic systems have

their own inferential properties, which with significant epistemic advantages

compared to natural and logic-like languages (see Barwise & Etchemendy, 1996;

Moktefi & Shin, 2013).

In general, scientists use hybrid representational structures for reasoning

about phenomena. Philosophers of science have been discussing this for

decades now. In particular, they are interested in how scientific models make

possible forms of reasoning that were not feasible with only natural language

(see Nersessian, 1999; Vorms, 2011). Chapter 8 analyzes this particular

problem by looking into the development of the notion of instantaneous speed

from geometrical physics to analytical mechanics. This will exemplify how

conceptual information can also be distributed across external representational

structures, for later being used in inference.

Logical inference

The view defending here is incompatible with the formalist thesis and with

any translational approach like the one proposed by CTM. However, this does

not mean that it cannot account for formal inferences like the ones described

by classical logic. Experimental evidence from (Falmagne, 1990) suggests that

adults untutored in logic, when told the sentences with blank —unknown—

predicates "If Sarah fibbles, then she thabbles" and "Sarah fibbles," consistently

deduced that Sarah thabbles. Falmagne then claimed that, even if it is clear

that reasoning is content-related, we are able to deal with abstract schemes like

the ones proposed by logic (see also Falmagne & Gonsalves, 1995).

Formal properties like the ones described by classical logic are indeed prop-

erties of natural language —which is a representational system. It is possible

that when people reason with blank predicates, they focus on other cues like

the syntax and properties of logical form. In these cases, just like in the cases
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described above, subjects are exploiting properties of a representational system

to make inferences.

3.5 Conclusions

The few examples discussed above intend to illustrate how reasoning is anchored

in representation and how the format of the representational system in use

determine the "form" of the inferential mechanism that exploit it. From the

existence of multiple representational structures, it follows that inference must

be studied from a pluralist —not translational— perspective.

This chapter closes the theoretical discussion on inference and meaning

within the formalist tradition dominant in both psychology and philosophical

semantics. The following chapters of this dissertation try to lay the founda-

tions of a formal model attempting to explicate three types of semantic-based

reasoning: material inferences, non-monotonous inferences, and category-based

induction. The model builds on the theory of conceptual spaces (Gärdenfors,

2000, 2014). In particular, this framework is used to show that a rich and sys-

tematic approach to the structure of concepts can shed light into the nature of

the relationship between concepts, representation and inference.
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Chapter 4

Introducing Conceptual Spaces

Summary

This chapter contains a standard introduction to Conceptual Spaces,

a crucial framework for the analysis of semantic-based inferences in

the following chapters. Its basic theoretical and formal aspects will

be explained, as well as some of its possible applications.

As stated in the introduction, one of the fundamental ideas behind this thesis

is that reasoning requires understanding, and understanding requires concept-

possession. Therefore, a theory of how we reason cannot be detached from a

theory of how we represent concepts. In previous chapters, we discussed the

disadvantages of assuming otherwise. The endorsement of the formality thesis

faces us to the frame problem and blocks any possible explanation of content-

effects in reasoning —among other issues. It was argued that a way of avoiding

these issues was to assume that reasoning builds on features of representational

structures that organize conceptual knowledge in the mind/brain.

If we focus on language-based inference, the main representational structure

is our conceptual system, which encodes all sort of information associated with

lexical concepts. (e.g, see Jackendoff, 1992) In this sense, a theory of semantic-

based inference needs to build on a theory of the structure of concepts. I believe

that Conceptual Spaces (CS) is the best-suited theory for this task. It provides

a rich explanatory framework for analyzing the structure of concepts and their

interrelations and offers powerful formal tools to model several concept-related

phenomena. In what follows, I will explain the basics of this theory for latter

use in modeling different forms of semantic-based reasoning.
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4.1 Defining conceptual spaces

Conceptual Spaces (Gärdenfors, 2000, 2014) is a research program in cognitive

science for modeling several cognitive phenomena involving concepts and con-

ceptual structures —e.g., semantic processing, learning, reasoning, categoriza-

tion, concept formation, etc. Unlike the dominant computational tradition in

philosophy and cognitive science, CS does not assume that language —or some

language-like structure like the LOT— is the unique representational system

supporting high-level cognition. Instead, as explained in the previous chapter,

CS builds upon the fundamental hypothesis that there exists an intermediate

representational system that encodes semantic information with spatial struc-

ture.

This theory is an heir to the geometrical models of conceptual represen-

tations inaugurated by Shepard (1987) in psychology, and the development of

the notions of "quality spaces" in Quine (1969a; 2013), “attributes spaces” in

Carnap (1971), and “logical spaces” in Stalnaker (1981). Just like in the other

geometrical models in psychology, the fundamental idea behind CS is that con-

cept formation and representation takes place in some psychological space in

which similarity can be represented in terms of distances determined from some

metric. 1

CS builds on two paramount notions: quality dimensions and domains.

Quality dimensions are the "building blocks" of concepts. They represent dif-

ferent qualities of objects that are used as a basis for judging the similarities

among different stimuli (Gärdenfors, 2000, p. 6). For example, pitch is a quality

dimension of auditory stimuli; by focusing on pitch we can compare and classify

different sounds. Quality dimensions are diverse, they can be innate, culturally

acquired, phenomenal, or abstract depending on the concept.

A central point is that quality dimensions can be represented by different

geometrical structures (see Gärdenfors, 2000, Chapter 1). For instance, weight

and pitch can be both represented by a line isomorphic to the non-negative
1For an analysis of the notion of psychological space, see (Eliot, 1987).
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real numbers (Figure 4.1). Other dimensions have a discrete structure and

correspond to qualities that are represented as disjoint sets.

Figure 4.1: Geometric representation of the weight and pitch
dimensions

Dimensions can be integral or separable. They are integral when it is impos-

sible to assign to an object a value in one dimension without assigning another

value in another dimension (see Maddox, 1992). For instance, we cannot repre-

sent a tone with a specific pitch but without a value for its loudness. In contrast,

some dimensions can be represented independently from each other, like height

and wealth when thinking about people. In these cases we talk about separable

dimensions. Integral dimensions are often modeled with an Euclidian metric,

while separable dimensions with a City Block Metric.2

A set of integral dimensions that are separable from all other dimensions

is called a domain. The classic example of a domain is the color spindle. It

is composed of three integral dimensions: hue, saturation, and brightness. The

geometrical representation of hue is the color circle. Saturation or intensity is

represented as an interval of the real line, while brightness varies from white to

black and is thus a linear dimension with endpoints. Together, these three inte-

gral dimensions, one with a circular structure and two with a linear structure,

make up the color space (see Figure 4.2).3

Domains serve to represent different qualities of objects through their geo-

metrical and topological properties. A central notion in this sense is distance,

which serves as a measure of similarity among properties in the domain: The

closer they are in space, the more similar they are.4 For instance, within the
2Johannesson (2002) showed that, in some cases, a Minkowski metric can be useful too.
3It is worth mentioning that the figures in this chapter have only one illustrative purpose.

They do not come from real data about the conceptual spaces they are supposed to represent.
4Not all spaces have a metric. For example, some dimensions only have an ordering

structure.
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color space, predicates like red, blue or orange correspond to regions of the do-

main. The relationships among them can be analyzed as a function of their

relative positions in the color domain. For instance, the distances in the color

domain allow us to see why orange and red are more similar than red and green.

Figure 4.2: Color spindle. Red is a sub-region of the color
domain.

The domains of a conceptual space are related in several ways since the

properties of the objects modeled in the spaces will co-vary. For example, in

the "fruit space", the dimensions of ripeness and color will co-vary, as well as

size and weight. These co-variations are support different inferential procedures

that exploit conceptual properties, as we will see in Chapter 6.

A conceptual space is defined as a collection of one or more domains with a

distance function —a metric— which represents properties, concepts, and their

—similarity— relationships. Similarity among concepts and can then be easily

estimated since it is a monotonically decreasing function of their distance within

the space (Shepard, 1987).

Within this framework, concepts are understood as a region of some con-

ceptual space. Gärdenfors makes an important distinction between properties

and concepts : when the space correspond to a single domain, we talk about
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properties instead of concepts. He then claims that natural properties are

characterized by the following criterio (2000, Chapter 3):

Criterion P: A natural property is a convex region in some domain.

Convexity exploits the geometric features of quality dimensions. A region is

convex when for every pair of points x and y in it, all points between them are

also in the region. Convexity is a crucial feature for categorization and concept

comparison.

Gärdenfors (2000) claims that color terms, being natural properties, are

constrained by the structure of the conceptual space in which they are grounded

across different languages. In other words, it should not be possible for any

language to have one single word for two colors like red and green, since they

are represented as disjoint sub-regions of the color conceptual space —which is

perceptually grounded. This conjecture has been confirmed for an important

number of different languages by Jäger (2007).

Within this framework, concepts are represented as regions of some set of

interconnected domains. Gärdenfors (2000, p. 105) defines concepts according

to the following criterion:

Criterion C: A concept is represented as a set of convex regions in a number

of domains, together with information about how regions from different domains

are correlated.

Fruit categories are often used as examples of (natural) concepts. For in-

stance, consider a toy model of an apple-space that is a subset of the Cartesian

product of the color, taste, shape, ripeness, and texture domains. This apple-

space would extend itself thorough certain regions of each of these domains

—those representing the common properties of apples—, while leaving other

regions "untouched" —for instance, we do not represent apples with pyramidal

shape, or being black, so these properties are not covered in the conceptual

space. The concept apple has several correlations between its properties: the
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degree of sweetness and sourness, as well as the texture, are correlated to the

ripeness level. These correlations can be also represented in the conceptual

space though different mathematical tools (see Figure 4.3).

Figure 4.3: Illustrative diagram of an apple-space. The corre-
lations among properties are represented by dotted lines.

Object representation in conceptual spaces

Object representation is a central point for this work. As just said, CS under-

stands concepts as convex regions within the space, i.e., convex sets of points.

Individual objects are then seen as instances of concepts and are mapped into

points of the space. In formal terms, the conceptual space of concept M —

written C (M)— can be seen as a subset of the Cartesian product of n domains:

C (M) ⊆ D1 ×D2 × · · · ×Dn

An object x falling under M is represented as a n-dimensional point x =<

x1, x2, . . . , xn >∈ C (M). Each xi in x represents the coordinates of the point

in the domain Di , which will typically fall under some sub-region Ri ⊆ D1that

represent a sub-ordinate category of Di.

Just as in the case of concepts, the similarity among two objects in the space

can be estimated by using the built-in distance function. Similarity among

objects is generally easier to compute than similarity among concepts, since the

former requires to measure the distance among two points in the space and the

latter the distance between sets of points in the space. We will come back to

this point in Chapters 6 and 7.
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An important assumption underlying this work is that for each of the do-

mains that constitute a concept, there is a corresponding distance measure.

Furthermore, it is assumed that these domain-specific measures can be weighted

together to create an overall distance measure for the space. As we will see in

Chapter 7, this weighting is, in general, context dependent.

4.2 Prototypicality

Most everyday concepts have prototypes. That is, some members of the concept

that are considered as more central or more representative than the others. One

important advantage of the conceptual spaces framework is that it can represent

prototypes of concepts. In that sense, it fits very well with the prototype theory

of categorization (Gärdenfors, 2000; Lakkof, 2017; Mervis & Rosch, 1981; Rosch,

1975). In particular, Criteria P and C allow for a natural way of representing

the prototype effects (see Chapter 7). Within convex regions, one can take

some specific point —or set of points— as the prototype of a category.5 As a

result, and using the built-in metric of the space, one can measure the degree

of typicality of any member of a category by estimating its distance to the

prototype. For example, focal colors are often considered in cognitive science

and linguistics as prototypes of the color space (Douven, 2019; Rosch, 1971).

Assuming the prototypical structure of concepts does not require an actual

object representing the prototype. Conceptual spaces can represent every pos-

sible object falling under a concept. Gärdenfors (2000) claims that a prototype

can correspond to a partial vector containing only information about the values

of the most relevant dimensions for the concept.

Gärdenfors (2000, pp. 87-89) showed that it is possible to argue in the con-

verse direction. If we assume that concepts have a prototypical structure, then

it is expected that they are represented as convex regions. To obtain a proto-

typically structured conceptual space, we start from a set of prototypes p1, ..., pn

of the categories to be represented —for example, different bird species— that
5It should be noted that this does not necessarily lead to being central in the regions they

are assigned.



86 Chapter 4. Introducing Conceptual Spaces

will be the central points in the categories they represent. If we assume then

that for every point p in the space, its distance from each pi can be measured,

and stipulate that p belongs to the same category as the closest prototype pi,

then a partitioning of the space into convex regions can be generated. This is

called a Voronoi tessellation —a two-dimensional example of this is illustrated

in Figure 4.4. Thus, assuming that a metric is defined on the subspace that is

subject to categorization, a set of prototypes will generate a unique partitioning

of the subspace into convex regions.

Figure 4.4: Voronoi partitioning of a space from a set of points.

Because of the role that prototypes have within this theoretical framework,

typicality is an independent variable. As Gärdenfors shows, this particular

spatial configuration of the space has several advantages in terms of the economy

of cognitive processing (Gärdenfors, 2000, pp. 123–126).

4.3 Context, domain salience, and dynamic con-

ceptual spaces

An important phenomenon that any theory of concepts must account for is that

psychological similarity is a variable measure that is dependent on the context

(Goodman, 1972). In particular, as noticed by Robert Nosofsky (1986), concep-

tual similarity is modulated by attention to specific domains of the compared

concepts. For instance, apples are often seen as more similar to tomatoes than

to dates. However, in the context of choosing dessert —in which “sweetness” is

a salient feature— it is expected for this similarity judgment to change.
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The contexts in which concepts are used are crucial in the modulation of the

similarity measure. Context-effects have been extensively studied in the psycho-

logical literature (Goldstone, Medin, & Halberstadt, 1997; Keßler, Raubal, &

Janowicz, 2007), and geometrical models of similarity have been often criticized

because of their limitations at the moment of accounting for them (see Decock

& Douven, 2011; Tversky, 1977, for a review).

The conceptual spaces model, however, does not suffer these problems (cf.

Johannesson, 2002). In this theory, the context-sensitive character of psycho-

logical similarity is accounted for in terms of a weighted distance measure. For

instance, within the context of a Euclidean metric, the distance measure will

include attention-weights wi that modify the salience of dimension i in the con-

ceptual space:

d (x, y) =

√∑
i

wi (xi − yi)2

When a larger value is given to a weight wi, the conceptual space is "magnified"

along that dimension. That means that this dimension i will become more im-

portant when determining the similarity between categories (Gärdenfors, 2000,

p. 20). As we will see in Chapter 7, this weighted-distance function will have a

central role for accounting for the role of context in category-based induction.

In summary, thanks to their geometrical and topological structures, concep-

tual spaces allows us to represent concepts and their interrelations in a well

defined similarity space. It gives us then a powerful formal and explanatory

framework for analyzing concept-related cognitive phenomenon. Concept for-

mation and concept composition, categorization (Gärdenfors, 2000), semantic

vagueness (Douven, Decock, Dietz, & Égré, 2013), and word learning (Gärden-

fors, 2014) have been some of the cognitive or conceptual phenomena already

modeled with this theory. In what follows, we will focus on their role in inference

and reasoning.
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4.4 Inference and conceptual spaces

As we mentioned earlier, the formalist thesis claims that reasoning is based on

propositions and can be described by some set of topic-neutral and domain-

general rules. As a consequence, conceptual structures are immediately dis-

missed as inferentially irrelevant. However, as explained in Chapter 1, that

view has been criticized because of its psychological implausibility. Nowadays,

mainstream cognitive science assumes —in one way or another— that concepts

play a constitutive role in inferential processes. (see e.g, Carey, 1985, 2000;

Evans, 1989).

CS can offer interesting insights into the role of conceptual knowledge in

reasoning. In this framework, inference is not conceived as a process that takes

place —exclusively— at the propositional level, but one that supposes the in-

teraction between the conceptual and the symbolic levels (Gärdenfors, 1997).

In particular, and considering what was explained in the previous chapter, we

will use CS for showing how different forms of semantic-based inference can

be explicated as mechanisms exploiting properties of a representational sys-

tem encoding conceptual information.6 In this case, since conceptual structure

are geometrical and set-theoretical structures, inference can be understood as

exploiting different geometrical and set-theoretical properties.

As a simple example, consider the inference "the car is red; thus, the car is

not green". This inference is intuitively valid —yet logically invalid— for any

subject who grasps the basic color concepts. In conceptual spaces, understand-

ing the notion red involves being able to represent an object in the red region of

the color spindle, something which immediately implies that the object is not

located in the other regions of the spindle —green, yellow, etc.

Furthermore, Gärdenfors (2000; 2008) showed some ways in which CS can

model features of nonmonotonic and metaphorical inference. Recently, also

Schockaert and Prade (2013) used CS to model interpolative reasoning. In the

following three chapters, CS will be used for modeling three different inferential
6Notice that, unlike what happens with the belief-centered tradition discusses in the pre-

vious chapter, CS does not require us to assume that all thinking consists of relations between
propositional attitudes.
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mechanisms: material inferences —also known as semantic entailment—, non-

monotonic reasoning, and category-based induction.
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Chapter 5

Explicating material inferences via

Conceptual Spaces

Summary

This chapter discusses Wilfrid Sellars’ notion of material inference,

a semantic-based inferential mechanism playing an important role

within inferentialist theories of meaning. I critically discuss this idea

within the Sellars-Brandom tradition and point out some relations

to current views in the psychology of reasoning. The main claim

is that Sellars’ approach lacks the analytic tools for developing a

fine-grained —and psychologically grounded— account of material

inferring. I propose an alternative framework based on cognitive

semantics and conceptual spaces that can do this job.

5.1 Beyond logical forms

In Chapter 1, we saw how the classical notion of validity construes predicates

—i.e., concepts and properties— as inferentially inert lexical items. Roughly,

an inference scheme is valid in virtue of its formal structure, which depends

exclusively on the truth-functional properties of logical constants and not in

the content of the predicates involved.1

1As explained in Chapter 1, classical validity is formal because classical logic is truth-
functional. That is, it only accepts as logical constants —terms with inferential properties—
truth-functional lexical items (see S. Read, 1988, Ch.2, for a thorough examination of this
issue).
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This view has —at least— one important counter-intuitive upshot; it clas-

sifies as valid, inferences like (a),

(a) If my dog barks at sunset, then Chet Baker plays the trumpet or Chet

Baker does not play the trumpet.

And as invalid, inferences like (b),

(b) Munich is south of Berlin. Thus, Berlin is north of Munich.

The issue is that (a) is intuitively absurd and (b) intuitively obvious for any

competent language user; however, (a) is approved by logic, while (b) disap-

proved.

Argument schemes like the one instantiated by (a), are a result of the truth-

functional interpretation of the "if...then..." connector in classical logic, and take

part on what is called the "paradoxes of material conditional" (cf., Brandom,

1981). There is a long tradition in philosophical logic that criticizes this point,

arguing that classical implication does not reflect the right features of our use

of conditionals in natural language (Edgington, 2020; R. Stalnaker, 1981). In

particular, any formal interpretation of conditionals that abstract away the

thematic relation between premise and conclusion seems to be condemned to

failure if it aims to capture the intuitions behind our everyday use of them.

Maybe the most prominent attempt to fix this problem in logic was the de-

velopment of Relevant logic (A. Anderson et al., 2017; S. Read, 1988), a formal

system that avoids the alleged paradoxes by introducing a content-based con-

straint on the interpretation of conditional expressions —roughly, it demands

that antecedent and consequent of a "good" conditional are relevantly (top-

ically) related. The central idea behind it is that truth-functionality is not

enough to define a good conditional. We need to account for the intuitive fact

that any claim of the form "P implies Q" suggests that the truth of P gives

us a reason to believe in the truth of Q. Since the focus of this work is not

logic, but inference from a cognitive perspective, we are not going to dig into

these ideas further. However, I share the spirit behind relevant logic: that an
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accurate characterization of "inference" requires to go beyond truth-functional

structures and look into content-based relations among predicates.2

Maybe the most important attempt to build a theory of inference in

the aforementioned sense was made by Wilfrid Sellars and Robert Brandom,

through the development of the notion of material inference and material valid-

ity. Succinctly, an inferential move is material when it is based on a conceptual

relation between the predicates in the premise and the conclusion. Material

validity has nothing to do with logical form. It is not truth-functional, but

it is related to how concepts are articulated within a normatively structured

inferential practice. In what follows, we will take a closer look at Sellars’ ideas

about this notion.

5.2 Sellars on material inferences

Sellars was one of the first philosophers in the analytic tradition to tackle con-

ceptual content through an analysis of inference. 3 His concerns were not about

logical or meta-mathematical matters, but about the relations between language

and thought. In his influential paper, “Inference and Meaning” (1953), he uses

the terms "material inference" and "material validity" to refer to inferences like

(b), which are not valid in virtue of their logical forms, but are "materially

valid," that is, valid in virtue of their meaning. Roughly, Sellars believes that

our inferential practice is mostly "material," because of the role that the rules

behind these inferences —"material rules"— play in the construction and use

of concepts in language and thought.
2Notice that this is also what guides Katz’ program —as it was explained in Chapter

2.The difference is, however, that the approach presented here is entirely cognitivist, while
Katz believes that meanings are "autonomous" entities (cf. Jackendoff, 1981).

3It may be worth mentioning that Sellars’ discussion also revolves around the Kant-
Carnap-Quine riddle of analiticity (seee, Westphal, 2015). In particular, Carnap anticipated
the idea of meaning-constitutive inferences when claiming that the meaning of extra-logical
terms is fixed by the set of deduciblility rations between expressions containing these terms
and other expressions. For instance, the meaning of arthropod is determined by inferences
from "Athropod(x)" to "SegmentedBody(x)," "JointedLegs(x)," and "Animal(x)" (Carnap,
1959, pp. 62-63).



94 Chapter 5. Explicating material inferences via Conceptual Spaces

Before explaining his views, it may be worth commenting on the framework

within which they were developed. Sellars’ point of departure is a critical revi-

sions of Carnap’s ideas on the syntactic structure of language as characterized

by a set of formation and transformation rules.4 According to Carnap, for-

mation rules determine how symbols of the language can be combined to form

complex sentences; while transformation rules specify conditions under which

other sentences can replace sentences of the language (Carnap, 2000). For in-

stance, the introduction of the conjunction (P,Q ` P ∧Q) is a formation rule,

while modus ponens (P → Q,P ` Q) is a transformation rule.

Carnap thought that these rules exhausted the syntactic dimension of lan-

guage. Sellars, however, pushed the rule-based view further and conceived the

entire linguistic system as rule-governed (Sellars, 1950). In particular, he de-

veloped a functional view of meaning —as said in Chapter 2, he was one of the

founders of IRS— in which the meaning of expressions is determined by their

"role" in a language game. Thus, understanding the rules of the game will give

us an insight into the conditions of meaningfulness of type-expressions in the

language —i.e., into the semantic structure of the language.

Sellars identifies various kinds of rules governing language. There are

language-entry rules, which specify how to verbally react to an environmen-

tal —non-linguistic— stimulus. For example, when I see red, I think or say

"red". And there are language-exit rules, which concern how my actions are

consistent with what I express about my intentions —e.g., if I say "I will open

the window," then I open the window. For Sellars, language-entry transitions

make an important contribution to the content of lexical —extra-logical— con-

cepts. But they are far from been enough.

The rules that are crucial for this job are language-language rules. These are

intra-linguistic transitions that determine our verbal behavior before linguistic

inputs —and govern reasoning and understanding, according to Sellars (1974,

pp.423-424). Carnap’s formation and transformation rules are examples of this

kind of language-language rules. But Sellars claims that Carnap’s cannot say

much about the meaning of lexical concepts in the language. He then proposes
4For a discussion on Carnap’s influence on Sellars, see (Carus, 2004).
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a different kind of transformation rules called material, that are supposed to do

this explanatory job.

Material rules are transformation rules that govern our non-logical infer-

ential practice, that is, all the inferences we make by exploiting our knowl-

edge of conceptual relations and not our knowledge of logical constants. As

said before, (b) is an example of a material inference that follows a ma-

terial rule associated to the concepts north-south. But also inferences like

"Dog(x)→Mammal(x)," or the Wittgenstenian color-exclusion inferences like

"AllGreen(x) → ¬AllRed(x)" follow material rules. The difference between

formal and material rules is stated in the following passage:

The rules on which I wish to focus attention are rules of inference. Of

these there are two kinds, logical and extra-logical (or ’material’).

I can best indicate the difference between them by saying that a

logical rule of inference is one which authorizes a logically valid ar-

gument, that is to say, an argument in which the set of descriptive

terms involved occurs vacuously (to use Quine’s happy phrase), in

other words, can be replaced by any other set of descriptive terms of

appropriate type, to obtain another valid argument. On the other

hand, descriptive terms occur essentially in valid arguments autho-

rized by extra-logical rules. Let me now put my thesis by saying

that the conceptual meaning of a descriptive term is constituted

by what can be inferred from it in accordance with the logical and

extra-logical rules of inference of the language (conceptual frame) to

which it belongs. (A technically more adequate formulation would

put this in terms of the inferences that can be drawn from sentences

in which the term appears). (Sellars, 1953, p. 136)

According to Sellars, without material rules accounting for how predicates

are related, no logical or philosophical analysis of language would be accurate. 5

The reason for this is that the empirical content of natural language is codified in
5This is Sellar’s main point of disagreement with Carnap. Carnap thought that P-rules i.e.

material rules, were dispensable for the construction of the language (Carnap, 2000, §§51-52).
Sellars’, on the other hand, saw these rules as essential (Sellars, 1950, p. 268).
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its predicates and their interrelations. It is impossible to explain how language

can express, for instance, causal regularities about the world without accounting

for rules regulating our use of empirical concepts. In this view, possessing a

concept is knowing what inferences are afforded by it; which is basically to know

how this concept is related to other concepts (Sellars, 1948). For instance, there

is no way of possessing the (everyday) concept lightening without also knowing

other concepts like thunder, sky, or cloud, and in particular, without knowing

how they are inferentially articulated. As Brandom says:

On an inferentialist account of conceptual content, one cannot have

any concept unless one has many concepts. For the content of each

concept is articulated by its inferential relations to other concepts.

Concepts, then, must come in packages (though it does not yet follow

that they must come in just one great big one). (Brandom, 2000,

pp. 15-16)

Sellars (1958) discusses the relation between formal inferences and material

inferences. The central question here is if material inferences are in fact en-

thymemes, and as such, inherit their validity from formal rules. For instance,

in the enthymematic view, the inference "AllGreen(a) → ¬AllRed(a)" would

be a formal inference which has "∀(x)(AllGreen(x)→ ¬AllRed(x)" as hidden

premise; and whose validity depends on a formal transformation rule. If this

is the case for all material inferences, they will not play any substantial role in

describing the rules governing language.

However, Sellars’ analysis concludes that material rules cannot be accounted

for in terms of formal transformation rules. His main argument for this is that

there is no way of making sense of subjunctive conditionals without ultimately

relying on material rules (see Sellars 1958, or Brandom 1998b, pp. 102-104).

As a consequence, material inferences cannot be enthymemes and their validity

do not rely on formal rules but in material rules. I will come back to this point

later.
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5.2.1 Inference, laws, and regularities

The notion of inference plays a crucial role in Sellars’ entire philosophical sys-

tem, and it is closely related to the idea of law. Sellars can be seen as taking part

in a tradition that understands laws inferentially, together with Gilbert Ryle,

Stephen Toulmin, and Moritz Schlick (see Lange, 2000, p. 188-191). This tra-

dition defends the idea that what better defines lawlike statements is not their

logical structure, but a pragmatic feature: they entitle us to make inferences

about causal relations. As deVries explains:

Causal statements and other lawlike statements differ significantly

from accidental generalizations in that causal statements perform

a different function within our linguistic system, one that is not

purely descriptive but is importantly prescriptive. They express

our recognition of a standing permission to make certain inferences.

(deVries, 2005, p. 146)

For Sellars, lawlike statements play no role in the object language. Instead,

they are useful in a meta-language that we can use to make explicit our concep-

tual commitments. For instance, "Lightening causes thunder" is a generaliza-

tion that expresses a conceptual relation between lightening and thunder, and

which explains an inferential disposition: the disposition to infer "A thunder

will soon come" after seeing a lightening. In this sense, lawlike statements —as

sentences— have no direct role in our first-order linguistic practice. Instead,

they are used for justifying or explaining our claims in discursive contexts, that

is, in a second-order linguistic practice:

To make first hand use of [lawlike] expressions is to be about the

business of explaining a state of affairs, or justifying an assertion.

Thus, even if to state that p entails q is, in a legitimate sense, to

state that something is the case, the primary use of "p entails q"

is not to state that something is the case, but to explain why q, or

justify the assertion that q. (Sellars, 1958, p. 283)
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Now, according to Sellars, the correct way of understanding the role of law-

like statements in thought and language is as modal —subjunctive— expressions

that represent "inference tickets":

If anything were A, it would be B...is actually an inference ticket,

and not, so to speak, a letter of credit certifying that one has a

major premise and a formal inference ticket at home. (Sellars, 1958,

p. 286)

In this regard, Sellars claims that we should not think about induction as pro-

ducing universally quantified statements that we use as "major premises from

which we reason," but as "establishing principles in accordance with which we

reason." And these principles have a subjunctive structure of the form "If any-

thing were A, it would be B." (Sellars, 1958, pp. 286-287).

To sum up, Sellars saw our inferential practice as completely regulated by

material rules capturing empirical generalizations and giving empirical content

to natural language. Formal rules of inference, like those of classical logic, have

a relatively marginal role in everyday reasoning, and in particular, they are

not meaning-constitutive. On the other hand, material rules are essential for

articulating the content of lexical concepts in the language, and they operate at

an implicit level. We make them explicit in the form of lawlike statements only

when a second-order justificatory practice requires it —typically in discursive

contexts.

What remains unexplained in Sellars’ view is where these material rules of

inference come from, and how the agents apply them in personal-level reason-

ing. In general, a fine-grained analysis of material validity lacks within the

inferentialist framework. Instead, Sellars (and Brandom) assume that material

validity is just a matter of rule-following. Still, they do not discuss how we

follow or represent these rules from a cognitive perspective. I will come back

to this issue later in this chapter. In what follows, I will briefly discuss some

relations between Sellars’ characterization of our inferential practice with some
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ideas coming from cognitive psychology.6

5.2.2 Connections to the psychology of reasoning

The previous sections just scratch the surface of Sellars’ ideas on language

and thought. However, they are (hopefully) enough to support a small point

I want to make next. I believe that Sellars’ framework is in line with some

contemporary ideas in cognitive psychology about the roles of intuition and

conceptual knowledge in reasoning.

The first connection I want to make concerns Mercier and Sperbers’ ar-

gumentative theory of reasoning (Mercier & Sperber, 2011, 2017). As briefly

explained in Chapter 4, this theory departs from the assumption that our infer-

ential mechanisms exploit empirical regularities codified in different —private

and public— representational structures. According to them, most of these

mechanisms operate at the sub-personal level, while their outputs "come to

mind" as intuitions, i.e., a kind of mental representation with a peculiar "meta-

cognitive profile": Regardless of the opacity of their context of production, we

confidently deem their content veracious (Mercier & Sperber, 2017, p. 66). For

example, the "mindreading module" provides us with intuitions about others’

mental states —their beliefs, desires, emotions, and so on—, such as "John

thinks that that Maria is lying." We do not arrive at these ideas by a deliberate

and effortful process; but they just pop up to consciousness as the upshot of

an intuitive inferential mechanism in which we blindly trust. Now, in discur-

sive or argumentative contexts, when we need to justify or explain our claims,

we must make explicit the ideas supporting them. For explaining how do we

do this, Mercier and Sperber postulates a meta-representational module —the

"reason module"— that takes representations as inputs and give as back other

representations that would work as premises or justifications for the first claims

(Mercier, 2012; Mercier & Sperber, 2009).
6Beyond philosophy of language, Sellars’ notion of material inferences has been recently

used in philosophy of science for tackling induction (Norton, 2003) and conceptual change
(Brigandt, 2010).
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The connection I want to make is the following. For Sellars, our inferential

practice is mostly material in the sense that it directly uses intuitions about reg-

ularities expressed in conceptual relations. When we need to explain or justify

our claims —while arguing with others, for instance—, we come up with lawlike

statement that expresses these intuitions about our conceptual commitments.

In Brandom’s terminology, in this way, we "make them explicit" (Brandom,

1998b). Thus, both in Sellars and in the argumentative theory, reasoning un-

folds at two different levels: one is the first-order —intuitive— practice governed

by material inferential rules; and the other one is the second-order, justificatory

practice, in which we give reasons for our claims in a meta-linguistic or meta-

representation mode. That being said, neither Sellars nor Mercier and Sperber

explains how these intuitions about conceptual relationships work. This expla-

nation is part of what this chapter attempts to do. 7

The second point concerns a tradition in cognitive psychology that studies

reasoning building on Tversky and Kahneman distinction between intensional

thinking and extensional thinking (Tversky & Kahneman, 1983) . Intensional

thinking is a kind of intuitive inferential mechanisms that exploit conceptual

relations stored in semantic memory, disregarding extensional or probabilistic

criteria(Hampton, 2012). On the other hand, "extensional thinking" refers to

reasoning about the extensions of categories, within quantificational or proba-

bilistic contexts. For instance, an inference like "Some football players run fast.

Thus, at least one football player run fast" is based on extensional, rather than

intensional, considerations.

In the psychological literature, intensional relations are often explained as

material relations between concepts (e.g., see Hampton, 2012; Sutherland &

Cimpian, 2017). For instance, the intension of the concept bird links it to other

concepts like have feathers, fly, or lay eggs. Intensional reasoning consists on

using these relations in generic statements like "ducks lay eggs," or "apples are

sweet," to make inferences about categories or individuals. There is a growing
7It is fair to say that, beyond this coincidence, there is a fundamental difference between

Sellar’s and Brandom’s inferentialism and the argumentative theory. The former prioritize
inference over representation, while for the latter representations seems to come before infer-
ring.
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experimental literature showing that this kind of reasoning is highly prevalent

in everyday cognition (Cimpian, Brandone, & Gelman, 2010; Hampton, 2012;

Leslie, 2008; Leslie & Gelman, 2012). As Hampton explains:

Whereas extensional knowledge provides for clear reasoning about

the world, intensional knowledge is full of the richness and vagueness

that turns out to characterize much of our everyday intuitive thought

and language, for better or worse. (Hampton, 2012, p. 399)

Notice that this distinction mirrors —to some extent— the discussion be-

tween extensional and intensional views in semantics described in Chapter 2, as

well as Sellars’ and Brandom’s idea that material relations among concepts are

the crucial feature to account for when characterizing our everyday inferential

practice, while logical —and extensional— relations are mostly marginal in this

sense.

5.2.3 Limitations of the inferentialist approach

A salient feature of Sellars’ philosophy is that it is strongly language-centered.

This is particularly the case in his philosophical psychology, where he seems

to subsume the analysis of thought and concepts to the study of linguistic

activity. According to Sellars, mental activity is ontologically —and causally—

prior to linguistic behavior, but the latter is prior to the former in the order of

explanation (Sellars, 1991, pp. 161-164). As a consequence, a theory of concepts

as mental entities must come from a theory of linguistic activity. In other words,

we can only rationally reconstruct conceptual content and conceptual structure

in terms of material relations of sentences within the game-like structure of

natural language (cf. Marras, 1973).

The point that I want to bring out in this section is that the Sellars-Brandom

overtly linguistic approach to conceptual content could have some limitations

when explaining our conceptual activity. In particular, material rules and their

roles in argumentative reasoning dynamics do not seem to be enough for telling

the whole story about our conceptual systems and their structural features.
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The main issue I see here is the centrality of the notion of language-based

inference in their view of meaning. Sellars’ seems to understand this as the

only meaning-constitutive mechanism. We can see this in his discussion about

the differences between "sentient" and "sapient" organisms (Brandom, 2015;

Brown, 1986). We, humans, share with other organisms the ability to respond

differently to external stimuli. Systematized differential response to external in-

puts can be seen as the crucial feature behind categorization, and consequently,

to concept possession. But, can we say that animals, for instance, possess con-

cepts because they have this ability? Sellars’ answer is no. A parrot can be

trained to utter the word "red" every time it sees a red object. Still, this does

not mean that he possesses the concept red. According to Sellars, it only means

that the parrot is in a causal state mediated by an habit ; but not in a cogni-

tive or epistemic state (Sellars, 1991, pp. 90, 131). For being in an epistemic

state regarding the property red requires the agent to be able to understand

the implications of classifying something as red, like for example, that the thing

will also be colored, and that it will not be green or yellow. Sellars thinks that

having the right verbal behavior in the appropriate circumstances is, in fact,

a prerequisite of concept acquisition, but it is not equal to concept possession.

This last capacity involves being able to use the concept to "articulate rea-

sons" within a justificatory context —-a language game of giving and asking for

reasons—, and this is something that only sapient creatures (and not merely

sentient ones) has. As Brandom explains:

What the parrot lacks is a conceptual understanding of its response.

That is why it is just making noise. Its response means nothing to

the parrot—though it may mean something to us, who can make

inferences from it, in the way we do from changes in the states of

measuring instruments. The parrot does not treat red as entailing

colored, as entailed by scarlet, as incompatible with green, and so

on. And because it does not, uttering the noise ‘red’ is not, for the

parrot, the adopting of a stance that can serve as a reason commit-

ting or entitling it to adopt other stances, and potentially in need
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of reasons that might be supplied by still further such stances. By

contrast, the [human] observer’s utterance of ‘That’s red’, is making

a move, adopting a position, in a game of giving and asking for rea-

sons. And the observer’s grasp of the conceptual content expressed

by her utterance consists in her practical mastery of its significance

in that game: her knowing (in the sense of being able practically to

discriminate, a kind of knowing how) what follows from her claim

and what it follows from, what would be evidence for it and what

is incompatible with it. (Brandom, 2015, p. 102)

Two things emerge from here. One is that concept possession depends exclu-

sively on inferential articulation. And the other is that this articulation depends

on the public practice of giving and asking for reasons, which characterizes lan-

guage games. Brandom took this pragmatic character of inferentialism further

(Brandom, 1998b, 2000), by claiming that semantics must be completely sub-

sumed within pragmatics (see MacFarlane, 2010, for an analysis of this):

Pragmatism in this sense is the view that what attributions of se-

mantic contentfulness are for is explaining the normative significance

of intentional states such as beliefs and of speech acts such as as-

sertions. Thus the criteria of adequacy to which semantic theory’s

concept of content must answer are to be set by the pragmatic the-

ory, which deals with contentful intentional states and the sentences

used to express them in speech acts. (Brandom, 1998b, p. 143)

The "bridge" that allows to reduce semantics to pragmatics is inference,

understood as a "kind of doing" (Brandom, 1998b, p. 91) that is regulated by

a normatively structured linguistic practice. In this sense, inference appears

to be prior to representation in the order of explanation (cf. Kremer, 2010).

As such, any systematic explanation of concept representation and conceptual

activity must emerge from a theory of material inferring understood as a practice

embedded in a socially regulated language game.
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It seems unlikely that a pragmatic framework can offer a complete expla-

nation of semantic representation, and in particular, of those features of con-

ceptual structure that are related to perception, which are cross-cultural and

pre-linguistic (see, Barsalou & Wiemer-Hastings, 2005; Prinz, 2004). I want to

suggest that there is no full explanation of material inferring, understood as a

personal-level mechanism, without accounting for those fundamental cognitive

mechanisms that are behind concept formation, and which provide the "skeletal

principles" that give structure to our conceptual system.

As Susan Carey (2015) argues, a common problem with philosophical theo-

ries of concepts is that they systematically overlook the issue of concept acqui-

sition. Inferentialism in not an exception to this. If concept possession depends

entirely on the mastering of a set of material inferences that are determined by

a public practice, then it seems that only competent language users can gen-

uinely have concepts. The question about how cognitive agents come to acquire

these concepts remains unanswered. What is more, since semantic representa-

tion depends ultimately on pragmatics, it seems that any possible inferentialist

explanation of concept acquisition must be developed in the theoretical vocab-

ulary of that discipline.

However, this has not been the case for psychological explanations of con-

cepts. In order to explain the highly complex phenomenon of concept acquisi-

tion, most psychological theories make use of a conceptual toolbox that goes well

beyond pragmatics. The first one to mention is the notion of an innate quality

space that would give a basic structure the identification of perceptual features.

Quine (1969a) and others have claimed that this is a necessary assumption for

explaining concept formation to some extent. Within psychology, similar ideas

are generally assumed in order to explain judged similarity among objects as a

fundamental learning mechanisms behind concept formation (See for example,

Decock & Douven, 2011; Goldstone et al., 1997; Medin, Goldstone, & Gentner,

1993; Rips, 1989). Perceived similarity, as well as typicality effects discussed in

the previous chapter, can be certainly modulated by social and cultural factors.

However, in early cognitive development the mechanisms behind perceived sim-

ilairty and categorization seem to be innate, or at least, pre-lingusitic (Harnad,
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1987; Mahon & Caramazza, 2011).

Statistical learning theories are quite successful in explaining the in-

nate mechanisms behind categorization and language acquisition (see French,

Mareschal, Mermillod, & Quinn, 2004; Romberg & Saffran, 2010). In a differ-

ent line, some psychological theories of concepts distribute the load of concept

formation between innate learning mechanisms and sets of primitive concepts

that give some basic structure to experience at the beginnings of learning (cf.

R. Gelman, 1990). Following Chomsky’s poverty of stimulus argument (Chom-

sky, 2005), these approaches assume that the structure of physical inputs is

too unstable for allowing the recovery of basic perceptual features, regardless

how powerful the underlying learning mechanism are. Thus, they propose the

existence of skeletal principles of knowledge, such as "core domains", "innate

theories", and/or "core concepts" that would work as the ground from which

complex conceptual knowledge emerges (Carey, 2000, 2015; Keil, 1979; Mandler,

Bauer, & McDonough, 1991; Spelke & Kinzler, 2007).

In general, the existence of cognitive constraints and/or innate learning

mechanisms behind concept formation seems to be an unavoidable assump-

tion in most psychological theories of concepts. I believe this suggests that

an explanation of semantic content cannot be developed in purely pragmatic

terms, but has to account for those "hardwired" cognitive processes underlying

conceptual acquisition. I do not see how this can be done from Sellars-Brandom

inferentialism, where concept acquisition is reduced to socially regulated rule-

following. This might be one of the reasons behind their inability to produce a

fine-grained explanation of material inferring.

In what follows, I propose some guidelines for doing this. My approach is

different to classical inferentialism. I do not consider inference to be prior to

representation; neither I see rule-following as an explanatory useful notion. In-

stead, my analysis of material inference builds on ideas from cognitive semantics

and uses conceptual spaces as modeling framework.
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5.3 Word classes and types of material inferences

Philosophical semantics often prioritize coarse-grained analyses of meaning-

related phenomena. It is not common among philosophers to discuss notions

like meaning , reference, or concepts by distinguishing lexical categories, seman-

tic types, or by classifying kinds of pragmatic contexts modulating sentential

meaning. This is also the case, I think, for Sellars-Brandom inferentialism,

where concept is a cover term for any kind of extra-logical term that can take

part in a material inference.8 That represents, I believe, a substantial limitation

for any attempt to put together a systematic theory of material inference.

It seems quite evident that there are different kinds of concepts (Medin,

Lynch, & Solomon, 2000). Abstract concepts like freedom or causality, motion

verbs like run or swimm, spatial prepositions like below or near, artificial con-

cepts like bachelor, and natural kinds categories like dog or tree, are all different

from a cognitive perspective. They are learned at different stages of develop-

ment and they probably require the availability of different cognitive resources,

representational structures, and learning contexts (see, S. Gelman, 2009; Nagy

& Gentner, 1990; Waxman & Leddon, 2011).

There are different ways of classifying lexicalized concepts.9 For reasons of

space, I am not going to discuss this issue here. Instead, I will build in the

standard classification of lexical categories used by linguists that distinguish

between nouns, adjectives, verbs, and prepositions —among others— (Baker,

2003). I will follow Gärdenfors analysis showing that different lexical categories

have relatively different representational structures in conceptual spaces (Gär-

denfors, 2014).

In the same way that there are different kinds of lexicalized concepts, there

are different kinds of relations among them. For instance, dog and table are
8Just as classical logicians use the term predicate as a cover term for any non-logical

concept. As Gärdenfors explained (2000), this notion is too coarse-grained for capturing all
the nuances of conceptual representation.

9A lexicalized concept is one that has a corresponding word in the public lexicon, like dog
or festival. We obviously do not have lexical concepts for every class of object. For instance,
there are no English words for the class of animals that were "drawn with a very fine camel hair
brush", or for "those that tremble as if they were mad", for using Borges’ famous examples
in his story "The Analytical Language of John Wilkins." In general, the availability of lexical
concepts within a language seems to be, to an important extent, culture-specific.
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subordinate concepts of mammal and furniture respectively. Linguists called

this semantic relation hyponymy (L. Murphy, 2003, pp. 216-230). Hyponyms

are in a type-of relation with their hypernyms —or "superordinates". At the

same time, two lexical concepts that have the same hyperym are called co-

hyponyms (see Figure 5.1).

Figure 5.1: Hyponomy scheme.

These kinds of relations are pervasive in natural language since they give

structure to conceptual taxonomies. Taxonomical structures are behind a spe-

cific kind of inference-pattern called "property inheritance" (see Etherington &

Reiter, 1983; Sloman, 1998a), which allows the agent to attribute properties of

the hypernym to the hyponym. For instance, if the only thing I know about

platypuses is that they are mammals, I can use my knowledge of mammals to

infer that they are also vertebrates, that they breathe and they have fur —

among other things. Likewise, if I get to know that platypus is a co-hyponym

of cat, then I can materially infer "Platypus(x)→ ¬Cat(x)", since co-hyonymy

often implies semantic incompatibility (Cruse, 2002). 10

In general, different kinds of semantic relations allow for different patterns

of material inferences among lexical concepts. Thus, a systematic theory of

material inferences must build on the classification of these relations among

lexical categories. Consider, for example, the following inferences:

(c) The car is red. Thus, the car is colored.

(d) Fido is a dog. Thus, Fido is a mammal.
10Cognitive linguists studying lexical organization call these relations sense relations (see,

Cann, 2011; Storjohann, 2016). Hyponomy, antonomy, synonymy, and meronomy are some
well known examples of them. However, they rarely study them from the perspective of their
inferential affordances —an exception of this might be Cummins analysis of the pragmatics
of inference in Cummins (2013, Chapter 3).
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(e) Paris is north of Marseille. Thus, Marseille is south of Paris.

(f) The barbecue is behind the house. Thus, the house in front of the barbecue.

(g) Maria is Marco’s wife. Thus, Marco is Maria’s husband.

(h) Felix is a cat. Thus, Felix is not a bird.

For Sellars-Brandom inferentialism, all the sentences above fall into the cat-

egory of material inference, and their framework offers no tools for classifying

them. However, there are clear differences and similarities between them. (c)

and (d) are about different topics, but both exploit properties of the hyponymy-

hypernymy relation. (e) and (d) are also topically different but they both build

on properties of how spatial prepositions are cognitively represented. Finally, (g)

is an inference based on the fact that the pair wife:husband are complementary

terms, just like teacher :student ; while (h) exploits the semantic incompatibility

of co-hyponymy. In the following section, I will use conceptual spaces for expli-

cating these semantic relations behind different patterns of material inferences

according to how they are cognitively represented.

5.4 Explicating material inferences via concep-

tual spaces

5.4.1 Preliminary remarks: core meaning and attention

shifts

There is no clear criterion for defining the set of implications that can be materi-

ally inferred from a concept-type in the scarce literature on material inferences.

As said before, a systematic theory of this kind of inferences requires one. It is

beyond this chapter’s aims to build such a theory. Nevertheless, I believe that

some of the principles presented in what follows could help this endeavour. Be-

fore presenting the basics of the model, I will briefly comment on two important

issues on how to understand material inferences.
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The first point concerns how to delimit which conceptual information an

inference must exploit to be called "material." For instance, the inferences

"Apple(x) → Fruit(x)" and "Apple(x) → Red(x)" are different in the sense

that the former uses information from the basic definition of apple while the

latter uses information that is probable, but not necessary for all apples. In

other words the first inference seems to be truly "valid in virtue of meaning"

while the other is under uncertainty, and thus nonmonotonic. I believe that

Sellars’ approach to material inferences was mostly concerned by the first kind

of inferences, because of its relation to the notion of analytic entailment. Robert

Brandom, on the other hand, thinks that material inferences use any kind of

conceptual information, and that are mostly nonmonotonic (Brandom, 1998a;

Schaefer, 2016).

This issue connects directly with the problem of establishing the "amount"

of conceptual content characterizing concept possession. For instance, hav-

ing the concept dog seems to require to also have the concepts animal, four-

legged, and domestic; but not necessarily to have concepts like sesamoid bone or

vomeronasal organ. Kiefer (1988) and Bierwisch and Kiefer (1969) distinguished

between three different "layers" of lexico-conceptual knowledge. First, there is

knowledge which constitutes the "core meaning" of a lexical item. Second, there

is general "conceptual knowledge", which "concerns predictable modifications of

the core meaning in various contexts" (Kiefer, 1988, p. 2); and finally, "ency-

clopedic knowledge," which goes beyond linguistic competence and is related to

expertise.

As Marconi has remarked (1997, Chapter 2), drawing a sharp line dividing

these three layers is a big philosophical challenge that remains unanswered (see

also Paradis, 2003) . My analysis of material inference will focus on inferences

that can be made with the "core meaning" of concepts. Something very similar

to what definitional meaning is. I consider material inferences to include no

uncertainty —or at least to be minimally uncertain. It seems to me that,

from a personal-level perspective, someone performing an inference based on

core meaning is entirely sure of its correctness. On that depends her being a

competent user of the concept. If that person realizes that the inference was
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wrong for some reason, this will lead to conceptual revision. In Chapters 6 and

7, the conceptual-space model will be extended to other kinds of concept-based

inference that include uncertainty.

The second point concerns a theoretical hypothesis about the relation be-

tween material inference and attention. As said in Chapter 4, one of the main

theses here defended says that material inferences are transitions between infor-

mational states that exploit properties of the semantic structures representing

the lexical concepts in the premise and the conclusion. Now, what kind of cog-

nitive mechanism drives the act of inferring? I think that the answer to this

question can be found in the relation between attention and conceptualization,

as it is construed in some theories within cognitive semantics (cf. Marchetti,

2015; Talmy, 2007). In particular, a central mechanism behind material infer-

ences is "re-profiling" (Langacker, 1987), an attention-based cognitive ability

allowing to change focus within conceptual configurations.

As explained in Chapter 2 .3, the central tenet of cognitive semantics is that

meaning is conceptualization. That is, lexical concepts and sentences evoke

different representational structures in the mind of the speaker/listener; struc-

tures which are a condition of possibility of language understanding (Fillmore,

2006; Langacker, 2000). To break down this idea, cognitive semanticists often

build on the notions of figure and ground, a famous distinction introduced by

gestalt psychologists for characterizing the organization of perceptual experi-

ence. Talmy (1975) brought it to linguistics for accounting for the meaning of

sentences expressing spatial relations.

Location and motion relations are expressed by sentences that specify the po-

sition of one object —the figure— in relation to another object —the ground—,

as in the sentence "the pencil [figure] is on the desk [ground]." Langacker took

up this idea under the terminology profile-base alignment and generalized it as

the main trait of sentential meaning. Roughly, Langacker stressed that lexical

items and sentences always specify their content in association to organized

clusters of concepts. For instance, the word "Tuesday" can only be understood

against a base composed by the concepts day and weekend. The semantic struc-

ture of sentences typically consist in a designatum that "stands out" against
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a background —or base— that is composed by other concepts and conceptual

relations:

A predication always has a certain scope, and within that scope it

selects a particular substructure for designation. To suggest the spe-

cial prominence of the designated element, I refer to the scope of a

predication and its designatum as base and profile respectively. Per-

ceived intuitively, the profile.... “stands out in the bas-relief” against

the base. The semantic value of an expression resides in neither the

base nor in the profile alone, but only in their combination; it derives

from the designation of a specific entity identified and characterized

by its position within a larger configuration. (Langacker, 1987, p.

183)

Attention is the fundamental cognitive ability behind profile-base alignments

(see, Lampert, 2009; Talmy, 2007). Cognitive linguists often use visual percep-

tion as an analogy for clarifying the role of attention in conceptualization (see,

for example, Langacker, 1987, p. 116 or Gärdenfors 2014, Sec. 1.3.3). For

instance, navigating our environment requires constant visual scanning to iden-

tify possible obstacles and estimate distances. For that, we use procedures of

figure-ground segregation which build on attentional mechanisms.11

Linguistic structures show similar features. The semantic content of sen-

tences is specified by focusing on particular elements within rich conceptual

frameworks. Using Langacker’s terminology, sentences impose a profile over a

conceptual base. For instance, the sentence "John is painting the door green"

profiles an event in which an action performed by an actor is taking place. The

same event can be re-profiled by changing the designatum, like in "the door is

being painted green by John." In this last sentence, the same event is described

with a different profile, one in which the object that was part of the base now

is standing out.
11Some theories of concepts also assume that attentional mechanisms are behind the variety

of usages that concepts have in everyday cognition. For instance, selective attention seems
to play a crucial role in choosing, from a concept, the relevant information —or features—
used in different cognitive procedures, like inference or categorization (Barsalou, 2003; Schyns,
Goldstone, & Thibaut, 1998).
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Re-profiling —or "alternate profiling", in Langacker’s words— is an atten-

tional shift within a conceptual base that produces a minimal semantic transfor-

mations. I submit that material inferences are cases of re-profiling propositions

within their correspondent conceptual structures. For instance, an inference like

Dog(x)→Mammal(x) consists on re-profiling the object x within the concep-

tual space of dog towards the conceptual space of mammal, which is implicit in

the representation of dog because the former is a sub-region of the latter.

My explication of material inferences builds on two assumptions that I will

develop in upcoming sections. The first concerns object-representation in con-

ceptual spaces. A judgment expressing that entity x falls under concept C, is

represented by an arbitrary point within the conceptual space of C. In high-

order predication —when the subject of the proposition is not an entity but a

concept—-, instead of representing an arbitrary point, sets of points (regions) of

some conceptual space are represented. 12 The second assumption is that such

inferences’ validity does not depend on logical form, but on the formal proper-

ties of the conceptual structures that work as bases of the premises’ sentences.

The remainder of this chapter consists of an analysis of these properties in some

word classes.

5.4.2 Nouns

We start by discussing material inferences with nouns. According to the concep-

tual space-model, nouns correspond to concepts and, as such, they are a convex

region in a conceptual space, i.e., a subset of the product-space of the set of

dimensions that constitute the space. Starting from a concept M , C (M) corre-

sponds to a subset of the Cartesian product of n domains. As explained in the

previous chapter, an object x falling under M corresponds to a n-dimensional

point x =< x1, x2, . . . , xn >∈ C (M) with the coordinates of the point in each

dimension.
12In the next chapter, this assumption will be adapted for explaining inferences under

uncertainty.
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In most cases, x is a partial vector since the information available —the

specific values on each of the dimensions— is sparse.13This lack of information

translates into uncertainty when reasoning with these points. In the following

chapters, it is argued that everyday reasoning deals with these information-

gaps by "filling out" the unknown elements of the vector with the values of the

prototype of the concept. The resulting inferences are based on expectations

(Osta-Vélez & Gärdenfors, n.d., 2020a). For instance, if I am told that x is

an apple, then I will feel entitled to make inferences under different degrees of

uncertainty regarding the prototypical properties of x, like being round, red,

and/or sweet.

Since expectation-based inferences build directly on semantic knowledge,

they could also be called material. However, they differ from core material

inferences in an important respect. The former are inferences under uncertainty

that, if defeated, leave our background knowledge structure unchanged. On the

other hand, the latter are not perceived by the agent as defeasible, since they

reflect basic conceptual understanding. A defeated core material inference leads

to conceptual revision, that is, to restructuring parts of the agent’s conceptual

system. Consider, for instance, an inference like Eggplant(x)→ V egetable(x).

This inference is taken as correct in many everyday contexts of use, however, it

is wrong, since eggplants are botanically classified as berries. If, while believing

that eggplants are vegetables, I make that inference and someone who knows

better corrects me, I will revise my concept of eggplant relocating it in a different

part of the plant conceptual space —a case of conceptual change—, and I will

avoid to make that inference again.

Going back to nouns, I will distinguish two kinds of core material inferences

with nouns: top-down and bottom-up . In bottom-up inferences, the concept in

the premise is a hyponym —a subordinate— of the concept on the conclusion,

like in Cat(x) → Mammal(x). From the conceptual-space perspective, the

material validity of this kind of inference lies in a straightforward set-theoretical

fact. As we said above, when an entity x is categorized as being N , it is
13Here I am using "vector" as sequence of coordinates. Talking about vectors in a more

technical sense could lead to confusion since the dimensions that compose a conceptual space
are not necessarily isomorphic to the real numbers, some could be discrete.
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represented as a point in C (N). Thus, for any concept M such that C (N) ⊆

C (M), if x ∈ C (N) then x ∈ C (M). Furthermore, since the inclusion relation is

transitive, C (N) will be included in every superordinate concepts of M . Thus,

categorizing x as N will make it (by default) a member of every superordinate

concept of N .

Let us now turn to top-down material inferences. These are transitions that

exploit properties of the internal structure of the concept in the premise. In the

case of nouns, top-down inferences are directed towards the properties that are

subregions of the dimensions in the noun’s conceptual space. I will introduce

two different top-down inferences through an example. Assume that N is a

noun spanning across 3 discrete dimensions, D1, D2, D3. We will have that for

any x ∈ C (N), x =< x1, x2, x3 > with xi ∈ Di. Now, let’s further assume

that D1 and D2 are partitioned into two disjoint subregions R1
1, R

2
1, and R1

2, R
2
2

respectively; and that that D3 is not partitioned at all in C (N) —i.e., objects

falling under D3 have always the property R3 ⊆ D3 .

We can now identify two different kinds of top-down material inferences from

N . The first kind, which is hardly informative, consists on going from "N(x)"

to "Di(x)" (i ∈ {1, 2, 3}), where "Di" is the name of the dimension. These

inferences only require to acknowledge that an object falling under a concept

will also have a "value" in each dimension that constitute the conceptual space

of the concept. Inferences like this are often used as examples of material

inferences in the philosophical literature. For instance, "x is a car. Thus x has

a color" or "x is a man. Thus, x has a height".

The second type concerns inferences from N to the properties in the dimen-

sions of C (N). In our toy model, these are the disjunctions N(x)→ R1
1∨R2

1 and

N(x)→ R1
2 ∨R2

2 for domains D1 and D2; and the inference N(x)→ R3 for D1.

I take this last inference to be the most informative of top-down material infer-

ences, but it depends on the concept spanning exclusively across only sub-region

of the dimension. Examples of this could be Mammal(x)→ V ertebrate(x), or

Bechelor(x)→ Y oung(x) ∧Male(x).
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5.4.3 Co-hyponymy and material inferences with negation

As said earlier, co-hyponyms are concepts at the same conceptual level that

share one or more common super-ordinate category —the hypernym. Classic

examples are sets of categories like cat-dog-rat-cow or blue-green-yellow-red. Co-

hyponymy is often considered as an incompatibility relation (see Cruse, 2000,

Chapter 9): If an entity x falls under category N , then it cannot fall into N ’s

co-hyponyms. For this reason, hyponymy is inferentially rich: representing x as

falling under N , with M1, . . . ,Mn co-hyponyms of N , typically entails ¬Mi(x).

Explicating this kind of material inference with negation in CS is straightfor-

ward. The set of categories M1, . . . ,Mn, co-hyponyms of N , will be represented

as disjoint subregions of the C(N). This means that Mi ∩ Mk = ∅ for all

i 6= k. Since the sentence "Mi(x)" is represented by an object x ∈Mi ⊆ C (N),

then x /∈ Mk ⊆ C (N) since Mi and Mk are disjoints subregions of C (N).

This simple set-theoretical fact justifies all the material inferences of the form

"Mi(x) → ¬Mk(x)" for every category Mk co-hyponym of Mi. Normally, bi-

ological kinds are good examples of co-hyponyms in this sense. For instance,

representing the sentence "Dog(a)" materially implies "¬Cat(a)", "¬Seal(a)",

¬Whale(a), and so on, for any animal category, co-hyponyms of dog and at the

same conceptual level. 14

14One problem with this view of co-hyponymy is the existence of compatible co-hyponyms,
like queen and mother, whose hypernym is woman; or bachelor and actor which are hyponyms
of man (L. Murphy, 2003, pp. 217-219). As it is evident, the intersections of the sets that
represent these hyponyms are not empty. For instance, some actors are bachelors, and some
mothers are queens. The literature in cognitive linguistics is not clear on how to explain
this ambiguity. I think that conceptual spaces can shed light into this issue. As explained
before, a conceptual space is a similarity space partitioned into different sub-regions repre-
senting categories with the same dimensionality. For example, the conceptual space of bird is
partitioned into several subregions for the categories robin, penguin, pigeon, and so on. Those
categories are clear cases of incompatible co-hyponyms. However, there are other categories
that also target sub-regions of the bird-space but are not part of the "natural partitioning" of
the space. For instance, seabird spans across those sub-regions of C (BIRD) corresponding
to categories having "sea" as fixed value in the habitat dimension. Similarly, wader refers
to categories that occupy a specific subregion of the shape domain: birds with long necks
and long legs. Wader and seabird are compatible co-hyponyms of bird because they "block"
different properties in different domains. I suggest that this idea can be generalized as part of
a definition of compatible co-hyponymy. Furthermore, it seems to me that the compatibility
of co-hyponyms like bachelor/actor or queen/mother is also due to the fact that they are not
the result of the same partitioning of the space —a "person-space" in this case—, but they are
ad-hoc categories that profiles a person with salience in one or more particular dimensions.
If two co-hyponyms profile an object from their hypernym ’s conceptual space with salience
in different dimensions, then they should be compatible.
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5.4.4 Spatial prepositions and relational concepts

Prepositions form a class of words that serves multiple cognitive and commu-

nicational functions (see Lindstromberg, 2010; Tyler & Evans, 2003). Spatial

prepositions are a sub-stet of them used for specifying locations, directions, mo-

tions and other space-related states of affairs (see Cuyckens, 1997; Jackendoff

& Landau, 1993); and that seem to be grounded on some primitive intuitions

about our representation of space and spatial relations among objects (Levinson,

2003; Talmy, 1983).

Prepositions are often overlooked in the philosophical literature on concepts

and inference. However, some classic examples of material inferences include

them. In what follows, I propose an explication of material inferences with some

typical cases of spatial prepositions.

Let’s start by defining some of the fundamental notions used in cognitive

linguistics in the analysis of spatial prepositions. Consider the following sen-

tences:

(i) Buenos Aires is west of Montevideo.

(ii) John went to the supermarket.

(iii) The cat is on the mat.

The three sentences above include entities that are being described in some

spatial relation to some other entity. The described entity is called "trajector".

It can be static, like "Buenos Aires" in (i) or "the cat" in (iii), or dynamic

like "John" in (ii). The other entity is called "landmark," and it is the object

according to which the trajector’s location —-or trajectory of the motion— is

specified (Langacker, 1987).

It is important to point out that spatial terms do not tell the exact locations

of entities in space. Instead, they give information about a region in which an

object might be within a particular spatial configuration. For instance, the

sentence "The pen is on the desk" would be true if the pen is on the center

of the desk, on one corner, or in any other possible position within the table’s

surface. We will come back to this point later.
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Now, the guiding idea behind my analysis of material inferences with spa-

tial prepositions is analogous to the one presented in the previous subsection.

It builds on the assumption that we conceptualize sentences with those terms

through representational structures that are exploited in inference in different

ways. Again, I assume that these representational structures are conceptual

spaces, and I will directly build on Zwarts and Gärdenfors (2016) and Gärden-

fors (2015) for my analysis.

Unlike what happened with nouns and adjectives, spatial prepositions seem

to be more naturally represented in conceptual spaces by using spherical coor-

dinate systems (Gärdenfors, 2014). Within this kind of systems, a point p in

the three-dimensional space is determined via three quantities < r, θ, φ >. r is

the distance between the point and the origin (O) of the system, θ is the angle

between p and the x-axis —with 0o ≤ θ ≤ 360o—, and φ is the angle between

p and the z-axis (with 0o ≤ φ ≤ 180o) (see Figure 5.2).

Figure 5.2: Polar coordinate system.

Using this coordinate system, Gärdenfors defines the notion of polar be-

tweenness, which is used to show that, just as with nouns and adjectives, spatial

prepositions could correspond to convex regions in conceptual spaces.

Now, following Zwartz and Gärdenfors (2016) we will take the center of

mass of the landmark (L) —a point— in a spatial sentence as the origin of the

coordinate system.15 We will also assume that landmarks are circular/spherical,
15As Zwarts and Gärdenfors (2016, p. 118) explain, this is a strong idealization. Landmarks

can have different forms and this can have an impact in the representation of the spatial
relations.
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with and extension r (radius). Then, a the preposition in a spatial sentences

will determine a region of the space in which the trajector, represented as an

arbitrary point, might be.

Let us illustrate this by analyzing the conceptual space of the preposition

"CloseTo(L)". Most uses of "close" can be represented only with the horizontal

plane. Thus, we can say that a trajector P is close to a landmark L iff P ∈ {<

r, θ >: c > r > rL}. Notice that c has to be contextually defined. For instance,

the c in the sentence "Munich is close to Augsburg" will be much larger than

the c in "Maria is close to Juan" —we are only considering literal, and not

metaphorical, meaning.

Figure 5.3: Representational structure for the meaning of "T
is close to L".

This geometrical representation of "CloseTo" immediately shows that this

preposition is inferentially symmetric. That is, if I am told that (a) "T is close

to L", I can materially infer (b) "L is close to T." The representation of (a),

with L as landmark, implies that P ∈ {< r, θ >: c > r > rL}. Giving that

d(L, T ) = d(T, L), and considering that the c remains the same since (a) and

(b) share context, if (a) is true then (b) has to be true since (b) "means" that

L ∈ {< r, θ >: c > r > rT}.



5.4. Explicating material inferences via conceptual spaces 119

Another material inference from this preposition is: "L is close to T. Thus,

T is not far from L." Notice that FarFrom is an antonym of CloseTo. The for-

mer can be defined as occupying the complementary region of CS of the latter.

Thus, considering that "T is close to L" means that T ∈ {< r, θ >: c > r > rL},

this imply that T /∈ {< r, θ >: r > c} , which means "T is not far from L.”

Again, this inference is explained as an (attention-based) re-profiling of the

landmark and the trajector within a common conceptual base.

Cardinal Terms

The same rationale can be applied for explaining material inferences with

cardinal terms. It is often claimed that knowing the meaning of cardinal terms

entitle the agent to materially infer a a sentence like "Munich is south of Berlin"

from "Berlin is north of Munich." These spatial prepositions can be represented

in the same horizontal plane of a spherical coordinate system divided into convex

regions with a common central landmark. Cardinal terms will be represented

in a CS —approximately— by the following sets:

NorthL: {< r, θ >: r > rL and 330o > θ > 30o}

EastL: {< r, θ >: r > rL and 60o > θ > 120o}

SouthL: {< r, θ >: r > rL and 210o > θ > 150o}

WestL: {< r, θ >: r > rL and 240o > θ > 300o}

The inferential transition "T is south of L. Thus, L is north of T” is materially

valid in virtue of the geometrical properties of the conceptual space in which the

two cardinal terms are represented. Notice that “T is south of L” means that

T ∈ {< r, θ >: c > rL and 150o > θ > 210o}. Let’s assume that T is the point

< r′, φ >∈ SouthL. The inferential move from premise to conclusion implies to

re-focus and take T as landmark and L as a trajector. In that case, the new

coordinate system, with origin in T , will be aligned with the previous one since

cardinal terms have absolute frames. We will have then that L is a point with
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Figure 5.4: Conceptual space of cardinal terms.

coordinates < r′, β >, and that β = φ+ 180o. Given that 210o > φ > 150o, we

have that 210o + 180o > β > 150o + 180o, which is the same as 30o > β > 330o.

As it is obvious, this means that whenever T ∈ SouthL, then L ∈ NorthT .

Material inferences with negation, like "Munich is south of Berlin. Thus,

Berlin is not east from Munich" follow the same rationale. This is also the case

for many other forms of inferences with spatial prepositions having molecular

sentences in the conclusion.

Spatial prepositions are relational predicates. However, they are hardly

representative of this entire class of concepts because their conceptual spaces are

rather peculiar. In general, the representational structures of relational concepts

are diverse. Exhausitivity is beyond the aims and possibilities of this work, but

to furnish my proposal with some more examples, I will briefly comment on the

inferential affordances of a typical case of relational —dyadic— predicates: kin

relationships.

Kin relationships can be represented in a product space of three discrete di-

mensions: a gender dimension with two possible values; a dimension represent-

ing "vertical" degrees of offspring isomorphic to the integers —son/daughter,

father/mother, grandfather/grandmother, and so on— ; and a dimension repre-

senting "horizontal" degrees of kinship —brother/sister, cousin, second-cousin,
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and so on— isomorphic to the natural numbers.

A relational expression like "x is the father of y" must be interpreted in

the same way as locational prepositions, i.e., as a function that "locates" a

trajector within the kinship conceptual space by using a landmark as reference

(see Figure 5.5).

Figure 5.5: Kinship conceptual space.

To see some examples, in the first columns there are sentences with kin

relationship terms and in the second their corespondent vectors in the CS rep-

resentation.

(a) x is the son of y.

(b) z is the sister of y.

(c) w is the grandfather of y

(a’) < male,−1, 0 >

(b’) < female, 0, 1 >

(c’) < male, 2, 0 >

In general, these terms appear in expressions with proper names that —

most of the time— indicate the gender of the landmark and trajector and allow

for more precise inferences. In particular, names indicating gender allow to in-

fer the lexical converses of the kinship relation in question.16 A sentence like

"Maria is John’s mother" takes John as landmark and represents Maria with
16Lexical converseness is a sense relation defined by Lyons (1996, p. 129) and Cruse (1986,

pp. 230-241) denoting pairs of terms expressing relations that have a directionality and that
can be reversed. Like teacher:student, buy:sell or employer:employee.
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the vector < female, 1, 0 > in the kinship CS. Then, if by an attention shift I

change the roles and take Maria as landmark, I can materially infer "John is

Maria’s son" since John —now trajector— will appear in the CS represented

by the vector < male,−1, 0 > (the symmetrical point with respect to the "hor-

izontal" dimension), which means "son" in the CS —notice that Kin relations

are represented within an absolute frame of reference.

If we do not have names, the material inferences that can be drawn are less

precise. For instance, from (a) one can only materially infer "Male(x)," and

"Father(y, x) ∨Mother(y, x)."

Kinship terms are —as most concepts— culturally grounded and have

some degree of cross-linguistic variability (see, D. Read, Fischer, & Lehman,

2014). For instance, Spanish does not have a lexical concept for gender-neutral

brother/sister relations, like "sibling" in English. Languages with kinship struc-

tures different than English also induce their users to represent and think about

these relations in relatively different ways (cf., D. Read, 2013).

This tells us something about the normative structure of material inferences.

Deductive validity in classical logic has always been thought of as something

stable across languages since logic is not supposed to be culture-specific. On

the other hand, material validity, due to its dependence on the representational

structures underlying linguistic practices, is clearly culture-specific. This co-

heres with Brandom’s idea that this kind of inferential validity emerges from

socially-regulated linguistic practices. Nevertheless, in line with what was said

in Section 5.2.3, the extent to which material validity is culture-specific has to

be determined by considering not only pragmatic aspects but also those basic

—and universally shared— cognitive constraints behind conceptual represen-

tation. 17 For instance, it has recently been argued that kin terminologies,

even if subject to consistent cultural variations, are also the product of some

innate constraints on conceptual representation (D. Jones, 2010). In any case,
17A possible way of explaining material validity can follow from (Gärdenfors, 1993), where

the normativity of social meaning is explained in terms of a (social) "semantic power struc-
ture" that emerge from the interaction of individual meaning. Nevertheless, for matters of
space I will not explore this possibility here.
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the degree of cooperation between innate mechanisms behind conceptual rep-

resentation and cultural and pragmatic factors is something that has to be

empirically determined.

5.5 Summary and conclusions

In this chapter, I have discussed the notion of "material inference," a case of

semantic-based inference commonly studied in philosophy. I have argued that

Sellars’ and Brandom’s approach to this notion lacks the tools for explaining

the cognitive mechanisms behind this kind of inferring. And I have proposed

conceptual spaces as an alternative framework for doing this.

My proposal builds on two assumptions: (1) material inferences are transi-

tions between mental states that exploit properties of the semantic structures

representing —at a sub-symbolic level— the lexical concepts in the premise-

conclusion. (2), they can be understood as cases of re-profiling a designatum

within a conceptual base driven by an attention-based mechanism.

Through different examples, I provided guidelines on how to use CS to ex-

plicate this kind of inference. Nevertheless, most of the work, in this sense,

remains to be done. A systematic theory of material inferences should explain

the inferential affordances of each word class, according to its typical underlying

representational structures. Furthermore, it is expected that such a theory can

shed some light on the nature of sense-relations —like hyponymy, antonomy,

and meronymy— that give structure to the mental lexicon (see Cann, 2011).

The value of the analysis presented here lies in showing how a relatively

vague philosophical concept such as "material inference" — that logical models

fail to explain— can be formally explicated using a psychologically informed

theory of concepts and conceptual relations. In what follows, this model will be

expanded to tackle inferences under uncertainty. As we will see, these inferential

mechanisms deal with partial information by exploiting properties of conceptual

representation that are not used by material inferring. In particular, they focus

on relations of similarity and prototypicality among concepts.
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Chapter 6

Nonmonotonic inference and

expectation orderings

Summary

In Gärdenfors and Makinson (1994) and Gärdenfors (1992) it was

shown that nonmonotonic inference can be modeled using a classical

consequence relation plus an expectation-based ordering of formulas.

In this chapter, it is argued that this framework can be significantly

enriched by adopting a conceptual spaces-based analysis of the role

of expectations in reasoning. In particular, it will be show that

this approach can solve various epistemological issues surrounding

nonmonotonic and default logics. 1

6.1 Introduction

As it was previously explained, classical logic builds on two unwarranted as-

sumptions about reasoning. First, that inference is propositionally-based; and

second, that deductive validity is formal. Deductive logic is then information-

ally conservative, in the sense that the information in the conclusion is already

implicit in the premises. Following this idea, deductive reasoning has been tra-

ditionally conceived as a process that does not require to exploit conceptual

knowledge about the premises in order to draw a conclusion. The problem is,
1This chapter is based on the paper "Nonmonotonic reasoning, expectation orderings, and

conceptual spaces", written in collaboration with Peter Gärdenfors.
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as previously explained, that everyday reasoning builds on more than the logi-

cal form of explicit premises. Partial information and uncertainty are pervasive;

consequently, our inferential mechanisms can hardly afford to be information-

ally conservative. Instead, we are always using our background knowledge in

risky —yet productive— ways to make sense of our environment.(Oaksford &

Chater, 2009) In other words, everyday reasoning is strongly nonmonotonic,

and the formalist approaches based on classical logic cannot account for this.

One particular way in which this use of background knowledge expresses

itself is through our expectations about the world. For instance, if we know

that someone is from France, we expect the person to speak French and to have

a French passport; or if we are driving a car and we spot a person waiting on

one the side of the road, we expect her to intend to cross it. In general, our

expectations about the world are crucial for guiding our reasoning and action

in everyday life, and they build directly on the structure of our background

knowledge.

Gärdenfors and Makinson (1992; 1994) have shown that much of nonmono-

tonic logic is reducible to classical logic, with the aid of an analysis of the

expectations working as hidden premises in arguments. The guiding idea is

that when people try to find out whether a conclusion C follows from a set of

premises P, the background information used does not only contain the premises

in P, but also information about what they expect in the given situation, so

that they end up with a larger set of assumptions. Such expectations can be

expressed as "default" assumptions, i.e., statements about what the reasoners

represent as normal or typical. They include our core conceptual knowledge

but also other information that can be regarded as plausible enough to be used

as a basis for inference as long as they do not give rise to inconsistencies.

Expectations work as hidden assumptions in reasoning. The main difference

they have with explicit premises is that they are "more defeasible." That is,

if any of the expectations conflict with some of the explicit premises in P, we

do not use them for determining whether C follows from P. However, when

evaluating their role in reasoning, it is important to note that they do not all

have the same strength. For example, in certain cases, we consider the relation
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among two propositions to be strong enough to work as an almost universally

valid rule so that an exception to it would be extremely surprising. In other

situations, this relation could be better described as a rule of thumb used for

drawing more precise conclusions. For instance, while walking on the sidewalk,

we expect the ground to be solid enough to support our body weight; but when

we are hiking in the snow, this expectation will be weaker, and therefore we will

walk carefully to avoid sinking. An exception to the latter type of rule is not

unexpected to the same degree as in the former case. In brief, our expectations

are all defeasible, but they exhibit varying degrees of defeasibility.

This last point indicates that expectations can be ordered. Gärdenfors and

Makinson’s (1992; 1994) have shown that expectation orderings contains enough

information to express the default assumptions used by everyday reasoning. The

main idea is that a default statement of the type "F’s are normally G’s" can be

expressed by saying that "if something is an F then it is less expected that it is

non-G than that it is G." This formulation is immediately representable in an

expectation ordering < by assuming that the relation Fx→ ¬Gx < Fx→ Gx

holds for all individuals x.

However, a significant limitation of their work is that it does not provide

any explanation about the cognitive origin of expectations, nor does it offer

any criteria to determine their relative strength. The purpose of this chapter

is to show how an extension of the CS-model developed in Chapter 5 can offer

a solutions to these issues. In particular, the main objective here is to study

expectation orderings as ways of summarizing degrees of defeasibility of our

expectations regarding some piece of information about a given object.

In the previous chapter, —core— material inferences were discussed. They

involve a kind of reasoning which can also be called "deductive," since it is

not perceived as uncertain by the reasoner. Now, the model will be extended

to account for nonmonotonic —uncertain— inferences via the notion of expec-

tation. In particular, the focus will be on how the information a person has

about category structure influences the person’s expectations. We will first see

how expectations orderings can be constructed by looking into the prototypical

structure of concepts using the CS’s built-in distance function. Afterward, the
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connections to nonmonotonic logic will be explained. Finally, criteria for up-

dating expectation orderings will be offered, and the explanatory advantages of

the CS-model for tackling foundations issues of default logic will be discussed.

6.2 Reasoning with expectations

In brief, the position defended here is that a proper explication of the role of

expectations in reasoning must rely on a model of the structure of background

knowledge. As discussed in Chapter 3, even though this last notion has played

a central role in several areas of philosophy and logic over the last decades, few

efforts have been made to define it properly. Classic non-monotonic and default

logic has worked within the formalist setting: assuming that both implicit and

explicit knowledge are represented in a proposition-based format in some sort

of belief-box of the cognitive agent. The problem is that the origin of default

rules and their use in everyday reasoning remains unexplained. In what follows,

we will see how a proper articulation of CS as a model of inference can point

towards a solution.

As mentioned earlier, our expectations about the world mirror aspects of

the organization of our background knowledge. Consider, for instance, the

following hypothetical situation: our friend Maria tells us that she bought a

new pet. Since dogs are the most typical pets and we know that Maria does not

like cats, we can nonmonotonically infer that she got one, and start wondering

about what kind of dog it is. If we get to know later that her new pet is not a

mammal, then we might expect it to be a bird, since birds are less typical, but

still common kinds of pets. With this new expectation, we can infer that Maria’s

new pet flies, since birds typically fly. 2 This would be another nonmonotonic

inference, since we are still reasoning under uncertainty, and some might even

say that this form of reasoning is merely guessing. However, in situations in
2Our expectations about the world are, to a big extent, culturally shaped (cf. Lin, Schwa-

nenflugel, & Wisenbaker, 1990; Schwanenflugel & Rey, 1986). It might be the case that
in other cultural contexts lizards are more typical pets than dogs, then we would reason
accordingly.
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which we have environmental pressure to decide or act, we will be willing to

draw risky inferences disregarding their uncertain character.

This example highlights two important features of expectations: (1) it is

a graded and subjective phenomenon, and (2) the strength of an expectation

depends, to a significant extent, on the prototypical structure of concepts and

the available information. To be more precise about the second point, when we

receive some information about an object falling under some category, we tend

to decrease our remaining uncertainty by implicitly assuming that the object

also has the typical properties that are associated with the category in question.

The effects of this will depend on how we represent the category and its semantic

associates. As it will be explained in what follows, CS can give us some useful

tool for articulating such relations.

The analysis of expectations proposed here focuses on the agent’s represen-

tation of categories as associated with clusters of properties. As said before,

the main idea is that when we categorize an object x as C, we implicitly form

expectations about properties that this object is supposed to have because of

falling under C. These possible properties will have different strengths accord-

ing to how typical they are for objects falling under C. Within the framework

of CS, we can use this principle to generate an ordering of expected properties

by exploiting the prototypical structure of the space for C.

The underlying rationale for this method is the Gricean principle of maximal

informativeness (Grice, 1975). If we are told that the object x is a bird, and

that is all the information we have about it, we will expect that x has all the

prototypical properties of birds —that it flies, sings, build nests, has feathers,

and so on— because, according to this principle, your informant should have

communicated something more specific if these expectations about x are not

fulfilled.

Furthermore, when new information is added, expectations are restructured.

If, after learning that x is a bird, we learn that it is an ostrich, you will no longer

expect that it flies, nor that it sings. Instead, some new expectations will be

added, such that x is big, it runs fast and kicks hard. Understanding how

expectations are generated and organized when some information is received,
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and how they are restructured when new information is added, are the two main

aspects that a model of this phenomenon must account for.

6.2.1 CS-based expectation orderings

Let us now give some formal structure to these ideas. A concept M represented

in a n-dimensional space C (M) is a convex sets of points representing possible

objects falling underM . IfM has a prototype, it is assumed that it corresponds

to one of these points: a n-dimensional point pM =< pM1 , p
M
2 , . . . , p

M
n >∈ C (M).

The central idea is that our expectations are structured around this prototype.

In other words, if the only thing we know about x is that it falls under concept

M , we will expect it to be —close to— pM , i.e., to have all the properties of

the prototype.3

Now, our expectations towards the sentence "M(x)" go beyond the spe-

cific properties determined by the prototype.4 They extend to all the possible

properties that an object falling under M may have. In the conceptual space

framework, this means that representing an object under a concept M implies

that the object may occupy any possible position in C (M). Different positions

imply different properties for the object. The properties that do not apply

to pM can be considered as secondary expectations, since they are weaker —

more defeasible— than the ones that apply to pM . In general, for any possible

non-prototypical property in C (M), its degree of defeasibility will be a positive

function of its distance from the prototype.

Now, the question is whether it is possible to construct an ordering of

properties that reflects their "expectedness level" —and thus, their degree of

defeasibility— according to their relative distance to the prototype. One way

of doing this is by measuring the distance to the closest point where the prop-

erty is not satisfied. We can use the distance function to obtain this kind of

information from the conceptual space with the following criterion:
3Formally, if pMi ∈ Rj ⊆ Di, then we expect that xi ∈ Rj ⊆ Di
4We use the same notation for talking about concepts and their respective lexical coun-

terpart —predicates— in natural language.
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Typicality Criterion (TC) 1. Given domains Di and Dk in a concep-

tual space C (M), for any two properties Ri, Rk, such that Ri ⊆ Di and

Rk ⊆ Dk; Ri is more typical than Rk if and only if there is a point

x =< x1, x2, . . . , xi, . . . , xn >∈ C (M) with xi ∈ Ri, and for all points

x′ =< x′1, x
′
2, . . . , x

′
k, . . . , x

′
n >∈ C (M), x′k ∈ Rk, it holds d(x, pM) < d(x′, pM)

The criterion measures the distance of a region to a prototype via its closest

point.5 It is important to note that in TC, we do not count numbers of instances,

but the criterion is based on similarity to the prototype. In other words, this

model is not probabilistic. Probabilistic models will not give the right results

for expectation orderings since some property that is probable may be very

atypical. 6

Notice that TC not only allows us to compare non-prototypical properties;

it also applies to properties inside the prototype. For instance, having feathers,

building nests, and flying are all prototypical properties of bird. However, flying

is the more defeasible of all three, since instances of birds that don’t fly are

more common than instances that don’t build nests or have feathers. This

means that the former two properties will have priority over the latter in an

expectation order. In general, for all the properties in a conceptual space, TC

will produce an expectation ordering Exp(M) = {R1 > R2 > · · · > Rm} when

the following criterion is applied: given two properties Ri, Rk in C (M), Ri is

more expected than Rk (i.e. Ri > Rk) iff Ri is more typical than Rk. This

ordering of properties can be turned into an ordering of atomic sentences by

saying that, for all individuals x, Ri(x) > Rk(x) iff Ri > Rk. 7

To see an example, consider the fruit space introduced in Chapter 4, with

color, taste, shape, and texture as dimensions. If we are told that a is an apple,

our maximal expectations will be that a has the properties of a prototypical
5Lewis and Lawry (2016) also use this distance measure for sets. There are, however,

other possibilities to define the expectation ordering between properties, for example by using
average distances between a prototype and a region. It is a matter of empirical research to
determine which method gives the results that best fits with how humans reason.

6An example of such a model is Lieto and Pozzato (2019). We will return to a comparison
with their model later.

7There are other possibilities to define the expectation ordering between properties, for
example by using average distances between a prototype and a region. It is a matter of
empirical research to determine which method gives the results that best fits with how humans
reason.
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apple like being red, sweet, round, and smooth. But, as we said above, these

properties have different degrees of typicality even if they are all in the proto-

type. For instance, being sweet is more typical than being red for apples, since

it is more surprising to find a non-sweet apple than a non-red one. This means

that points representing non-red apples are going to be closer to the prototype

than points representing sour or bitter apples in the conceptual space. Simi-

larly, bitterness is a quite odd property for apples, certainly less expected than

being yellow . Thus, instances of yellow apples are going to be closer than the

prototype than instances of bitter apples. An expectations ordering of proper-

ties for Apple can thus look like this: Exp(Apple) = {round > red > sweet >

soft > green > · · · > yellow > · · · > bitter > . . . }.

Figure 6.1: Illustration of an apple region of the fruit space,
with points representing more and less typical instances of ap-

ples.

The typicality criterion produces a fine-grained order of expectations that

makes it possible to compare individual properties. Thus, TC solves the problem

of the origin of the expectation ordering that was mentioned above. We will

make use of this advantage later in this chapter.

It should be noted that, since it is based on a distance function, the TC

generates a total ordering of individual properties. In many cases, however, this

assumption is cognitively unrealistic. For example, which is the most typical

property of an ostrich: that it runs fast or that it kicks hard? In many cases, it
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would be more natural to avoid judging which property is more typical. This

would mean that the expectation ordering would be just a partial ordering of

properties. Which ordering to use when analyzing expectation is essentially an

empirical question. We will come back to this issue later.

6.3 Relations to Nonmonotonic Logic

Note that a partially ordered set of properties generated by the CS-model can

be translated into an ordering of a subset of atomic sentences within a logical

language. This allows to connect this treatment of expectations with the results

on nonmonotonic logic in (Gärdenfors & Makinson, 1994). The central idea is

that p nonmonotonically entails p (written p |∼ q) means that q follows from

p, together with all the propositions that are "sufficiently well expected" in the

light of p. According to the CS-model, these expectations would be those that

are associated with the prototype.

As said before, there are many other relevant propositions that are not de-

termined by the properties of the prototype, and can be part of the expectation

set. A possible way idea to technically specify what "sufficiently well" means

is to demand for any added sentence p to be more expected than ¬p in the

expectation ordering.

It can be proved that it follows from the postulates (E1)-(E3) below that

this will be a consistent set and that it is a maximal set with this property

(Gärdenfors & Makinson, 1994). Thanks to this, we make sure that the set of

extra premises added as expectations will not contradict p and that as many

as possible of the expectations are included as extra premises. The following

definition builds on these ideas:

Definition 1. C |∼ is an expectation inference relation iff there is an ordering

≤ such that the following condition holds: p |∼ q iff q ∈ Cn({p}∪{r : ¬p < r})

Here, Cn denotes the set of logical consequences of the premises in the set.
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Gärdenfors and Makinson assume that the expectation ordering ≤ —which

they call an ordering of epistemic entrenchment— satisfies the following prop-

erties:

(E1) If p ≤ q and q ≤ r, then p ≤ r

(E2) If p ` q, then p ≤ q

(E3) For any p and q, p ≤ p ∧ q or

q ≤ p ∧ q

(Transitivity)

(Dominance)

(Conjunctiveness)

(E2) means that if q is a logical consequence of p, then q is always more

expected than p. (E1)–(E3) entails that ≤ is a total ordering, that is, either

p ≤ q or q ≤ p.

Gärdenfors and Makinson used these postulates and the above definition to

demonstrate that the nonmonotonic entailment relation |∼ satisfies the follow-

ing postulates:

Superclassicality: If p ` q, then p |∼ q.

Right Weakening: If ` q −→ r and p |∼ q, then p |∼ r.

And: If p |∼ q and p |∼ r, then p |∼ q ∧ r.

Weak Conditionalization: If p |∼ q, then |∼ p −→ q.

Weak Rational Monotony: If p is logically consistent and |∼ p −→ q,

then p |∼ q.

Consistency Preservation: If p |∼ ⊥, then p ` ⊥.

Cumulativity: If p |∼ q and q ` p, then p |∼ r iff q |∼ r.

Or: If p |∼ r and q |∼ r, then p ∨ q |∼ r.

Rational Monotony: If p does not contradict q and p |∼ r, then p∧q |∼ r.

Supraclassicality means that the nonmonotonic inference relation is an extension

of the classical inference relation where only explicit premises are assumed.
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Nevertheless, the expectations expressed by the underlying ordering generates

an inference relation that extends the classical one.

An important thing to mention is that if we assume that the expectation

ordering is partial and not total, then the Rational Monotony is no longer

satisfied. However, the inference relation |∼ has many of the properties that

are desired for rational inference.

From a logical point of view, an agent would draw more conclusions based

on expectations if the underlying ordering is total. However, this assumption is

psychologically unrealistic. The agent may lack sufficient knowledge to compare

two partial vectors of information about an object. For example, how can I

compare the expectations about an apple’s size to expectations about its color?

If two domains in a conceptual space are largely independent, it may not be

easy to compare values in one domain to those of the other. Consequently, the

resulting expectation ordering will only be partial.

6.4 Criteria for updating expectations

Expectation orderings are context-specific. As such, they are dynamic struc-

tures that change according to the information available. A central problem

for the study of expectation-based inference is understanding the principles ac-

cording to which these orderings are updated when new information is added.

In what follows, it will be shown how the CS approach may bring some light

on this issue. In general, different kinds of information, for example, percep-

tual information, may generate different types of updates. Here, however, the

analysis will be restricted to updates produced by information already present

in the ordering generated by TC.

First of all, notice that only information that adds specificity to a previous

informational state will change the expectation orderings. Trivially, suppose

we are told that b is a dog and later that b is a mammal. In that case, the

expectation ordering remains the same since the new information is already
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implicit in the initial informational state.8 According to the framework

defended in this chapter, reasoning under uncertainty about objects’ properties

amounts to specifying a point’s position in an n-dimensional space. Each new

piece of information with a more specific value in one of the dimensions reduces

the space of uncertainty.

Prototype shifts

We start by analyzing a kind of updating named "prototype shift". The idea

is that given an expectation ordering Exp(C), with pC as maximal point, if we

are told that x is also G, and we know that G is a subordinate concept of C

(G ⊂ C), then Exp(C) will be updated into Exp(C&G), changing its maximal

point to the prototype of G, and being re-structured accordingly (following the

two criteria explained in section 6.2.1).

Notice that Exp(M) and Exp(G) include properties from the same number

of dimensions, since subordinate concepts inherit the dimensionality of their

superordinate. However, the regions in each of the domains may be reduced

substantially, because adding information that specifies the properties of an

objects "shrinks" the initial conceptual space. In other words, Exp(M) will

include elements which are not going to be in Exp(G).

To see an example, suppose that we are told that a is a bird. An expectation

set will be generated with pBird as a maximal point. Exp(BIRD) will contain a

large number of color properties and shapes (the bird category has a large color

and shape variability). If we are then told that a is a penguin, the updated

expectation ordering Exp(BIRD&PENGUIN) will change the maximal

to the prototype for penguins; and it will lose all the elements referring to

colors which are not black and white; as well as the elements referring to not

penguin-like shapes. Also, it will lose the property of flying, in the dimension

encoding information about locomotion.

Updating via properties
8Note that this correspond to a core material inference, and as such it is supposed to be

certain.
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A less dramatic kind of update happens when information about specific

properties is added. Given an expectation ordering Exp(M), if we get to know

that an entity a has property F , and F is a property in Exp(M), a specific

region of one domain Di in C (M), then the ordering Exp(M&F ) will be equal

to Exp(M) minus all the properties that are incompatible with F in Di. If Di is

partitioned into disjoint regions, then Exp(M&F ) will not include as properties

all the other sub-regions of Di which are not F . If this is not the case, then

Exp(M&F ) might lose or may not lose properties from Exp(M), depending on

the structure of Di.

Consider the simple example in which we start with the information

Man(a) and we get to know later also Bachelor(a). Then Exp(MAN) will

shrink by losing the property married (previously in Exp(MAN). However,

if we later get to know that a plays golf as a hobby, then we cannot delete

from Exp(MAN&BACHELOR) all the other properties corresponding to the

hobby dimension: since this domain is not disjoint, it might be the case that

a man has several hobbies. Thus, for properties corresponding to not-disjoint

dimensions, the updating will depend in the particular structure of the domain

in question.

Updating via properties and correlations

A more complex case of updating via properties happens when the new prop-

erty is correlated to another specific property in other domain. For instance, as

said before, in the fruit space, dimensions like ripeness and texture, or color and

taste, are strongly correlated. Apples, in general, are expected to be sweet, but

green apples are expected to be sour, since these two properties are correlated.

For these kinds of cases, the updating procedure will be the following. Given

Exp(M) and two correlated properties G and F from domains Di and Dk in

C (M). When new information G is added, we will have that:

(i) Exp(M) will be updated via property G in the previously explained way;

(ii) Exp(M&G) will have F as maximal or close to the maximal;

(iii) For any other H ⊆ Dk, F will be more expected than H in Exp(M&G).
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To continue with the apple example, suppose that our initial

Exp(APPLE) = {round > red > sweet > soft > green > · · · > yellow >

· · · > bitter > . . . }. If I am then told that apple a is green, properties like red

and yellow, will be deleted, while sour will approximate the maximal and be

more expected than any other taste-related property. The updated set would

look like this: Exp(APPLE&GREEN) = {green > round > sour > soft >

sweet > · · · > bitter > . . . }.

6.5 Defaults

6.5.1 Generating default rules

As explained in previous chapters, everyday reasoning rarely follows a set of

formal deductive rules. Instead, it works by exploiting semantic information

from our conceptual system. A formalization of this idea was developed by

default logics, through the notion of default rule (see Brewka, Roelofsen, & Ser-

afini, 2007; Delgrande, 2011; Horty, 2012). Default rules are predicate-specific

inference rules. They are meant to capture facts that are normally or typically

the case when something is claimed to fall under some predicate X. For in-

stance, the fact that most mammals have fur can be captured by the default

Mammal(x)→ HaveFur(x). Defaults like this can be used as rules of inference

in nonmonotonic logical systems to extend derivations.

A foundational problem of default logics concerns the interpretation of the

notion of a default rule (Delgrande, 2011). Two epistemological issues affect this

notion: (1) it is not clear where defaults come from; and (2) before multiple

defaults that can be applied to the same object, a decision method has to be

applied to determine which defaults have priority over the others (Horty, 2012,

p.19). A well-known example is the “Nixon diamond”: By default, quakers are

pacifists and, by default, republicans are not pacifist, but Richard Nixon is both

a quaker and a republican. Thus, when determining to conclude whether Nixon

is a pacifist or not, one must violate one of the default rules. Gärdenfors and

Makinson (1994, Section 3.3) argued that expectation orderings offer a natural
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way of representing defaults. In what follows, this idea will be developed and

adapted for the CS framework.

A natural answer to (1) is that defaults express strong regularities about

phenomena that we can use as "inference tickets" in reasoning. However, no-

tice that if we focus on cognitive modeling, we should prioritize an internalist

interpretation: the idea that defaults express close conceptual relationships cod-

ified in our background knowledge. In this sense, the question about the origins

of defaults becomes a question about how they emerge from the structure of

this background knowledge. As suggested by Gärdenfors (2000, p. 117), the

conceptual spaces framework offers an answer to this question. Again, when we

categorize an object under a concept, we automatically represent it as having

a cluster of properties associated with the concept’s prototype. For instance,

categorizing something as a fruit, implies also categorizing it as sweet. This

feature about categorization can also explain the kind of conceptual transitions

that are expressed by default rules. An answer to the problem about the origins

of defaults can be found, then, in the explanation that conceptual spaces offer

about the prototypical structure of concepts and its exploitation in inference

and categorization.

Let’s turn now to (2). Notice that a default rule of the form “F ′s are

normally G′s” can be expressed in terms of expectations as “if something is

an F then it is less expected that it is non-G than that it is a G”. This can

be represented in an expectation ordering as F (b) → ¬G(b) < F (b) → G(b)

for all b. Since the consequence relation α |∼ β is equivalent to α ` β or

α → ¬β < α → β (Gärdenfors & Makinson, 1994, p. 124), the fact that

F (b) |∼ G(b) can be directly proved. This means that an expectation-based

inference relation is a nonmonotonic relation with embedded defaults. Thus, we

don’t need any explicit representation of them.

Furthermore, TC gives us information about the comparative strength of

each of these defaults. For instance, for the concept bird, it is to be expected

that (according to TC) the property “build nests” has priority over “fly”. This

means that the default rule Bird(x)→ Fly(x) will be weaker than Bird(x)→

BuildNest(x). In general, the more entrenched a property is in the conceptual
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space-generated ordering, the stronger its correspondent default rule will be.

The discussion above shows that the framework introduced in this chap-

ter provide new insights into the two fundamental epistemological problems of

default logic, and it suggests constructive solutions to them.

6.5.2 Typicality and the conjunction fallacy

As explained above, one of the central aims of default logics is to capture our use

of typical predicate-relations in non-monotonic reasoning. In recent years, vari-

ous formal models have been developed in order to tackle in a more systematic

way the role of typicality in reasoning. For instance, Propositional Typicality

Logic (Booth, Meyer, & Varzinczak, 2013) uses a classical propositional lan-

guage plus a typicality operator for specifying the set of typical situations in

which some formula holds. Description logics have been also used for modeling

this phenomenon (see Giordano, Gliozzi, Olivetti, & Pozzato, 2008). In partic-

ular, Lieto and Pozzato (2019; 2018) developed a rich formal framework that

uses description logic to account for typicality in non-monotonic reasoning and

conceptual combination.

The model presented here is a natural framework for accounting for the role

of typicality in reasoning. No systematic explanation of this will be offered now;

but an idea of how this may work will be advanced by an expectation-based

explanation of the conjunction fallacy.

As is well known, Tversky and Kahneman (1974; 1983) have shown that in-

tuitive judgments of probability do not mirror the principles of standard proba-

bility calculus. They argued that in many cases, people violate these principles

because they prioritize intuitive heuristics that exploit typicality relations for

estimating the probability that and object has a specific property. Their claims

are supported by a famous experimental case called the "Linda problem." In

brief, subjects were given the following information: Linda is 31 years old, sin-

gle, outspoken, and very bright. She has a major degree in philosophy, and while

studying, she participated in anti-nuclear demonstrations and was involved with
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discrimination and social justice issues. Then subjects were asked which of the

following statement is more probable:

(i) Linda is a bank teller.

(ii) Linda is a feminist bank teller.

A large majority of the subjects answered that sentence (ii) is more probable,

although by the laws of probability (i) is at least as probable as (ii).

The issue is that ordinary people do not interpret the word "probable" in

the same way as people educated in statistics. The paradox disappears when

formulated in frequentist terms (see Cosmides & Tooby, 1996). Our Gricean

analysis coheres with Tversky and Kahneman’s idea that elements of typical-

ity come into play when making the judgment. According to our model, when

people are given the initial information, they will represent Linda in a multidi-

mensional "person space". In that space the prototype for feminist bank teller

is located much closer to the prototype of feminist, than to the prototype of

bank teller. This is mainly because the properties described initially are pos-

itively correlated to the feminist property and negatively correlated with the

bank teller property. Consequently, feminist will appear much higher in the

expectation ordering than a bank teller, making people highly disposed to use

it in inference.

Lewis and Lawry (2016) and Lieto and Pozzato (2019) also analyze the con-

junction fallacy with the ais of their respective models of concept combination,

so it is interesting to compare with their solutions. The goal of the model pre-

sented by Lewis and Lawry (2016) is to represent hierarchies of concepts. Their

model is similar to ours in that they also use a geometrical approach based on

conceptual spaces. Instead of using Voronoi tessellations to determine category

membership, they use random set theory. Nevertheless, since their explanation

of the conjunction fallacy is also based on distances to prototypes, it is similar

in spirit to the one advanced here.

The description logic presented by Lieto and Pozzato (2019) is less similar

since their representations are probabilistic rather than geometric. Therefore,

it is difficult to compare their account of the conjunction fallacy to the solution
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we present. There are, nevertheless, interesting similarities between the models:

The logic for their typicality operator T can be shown to be equivalent to the

nonmonotonic logic presented in Section 4 of this paper. 9

6.5.3 Inferential strength

When an inference is based on defeasible premises, a criterion for judging the

strength of the inference is helpful. Deductive inferences, for instance, are often

considered as maximally strong since they preserve truth. However, in everyday

reasoning, they can be analyzed as having different strengths according to the

“quality” of the premises’ information. In other words, the structural properties

of a deductive inference do not prevent it from being weak from the perspective

of everyday reasoning.

The strength of an inductive inference, on the other hand, may depend on

the size of the sample —or on the probability— on the premises. Other forms

of inductive inference, like category-based induction, depend on a more com-

plex combination of factors related to the exploitation of different conceptual

relations —as we will se in the following chapter.

Remember that an expectation ordering is a kind of epistemic entrenchment

ordering. The notion of epistemic entrenchment comes from belief revision, and

it was meant to capture the idea that within a belief system, certain beliefs

are more susceptible to be revised or deleted than others. In an expectation

ordering, the position of a belief in the ordering gives information about its

comparative degree of defeasibility (Gärdenfors & Makinson, 1994, p. 209). In

this chapter, TC was suggested as a criterion for measuring such a degree of

defeasibility for properties: The more typical a property is, the less defeasible

it is.

Let us go back to the pet example. Suppose I am told that John bought

a new pet. I could infer that it flies if I use as an implicit premise the belief

from my set of expectations that the pet in question is a bird. However, this
9Lieto and Pozzato (2019) remark that their logic is a reformation of Lehmann and Magi-

dor’s (1992) rational logic. Gärdenfors and Makinson (1994) show that this locic is equivalent
to the logic presented in Section 6.3 above.
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inference would be quite weak, since bird would typically be less entrenched in

Exp(PET ) than concepts like dog or cat. If instead of bird, I use as an implicit

premise that John’s new pet is a dog or a cat, then I would nonmonotonically

infer that it does not fly, and this inference would be clearly stronger than the

other one.

The above example shows that when we reason nonmonotonically, the

strength of our inferences depends on the choice of the information from the

set of expectations that we use as implicit premises. In more general terms, we

can say that the strength of an inference is a negative function of the degree

of defeasibility of the propositions that are used as implicit premises. As we

mentioned before, our framework allows for an explication of this criterion by

stating that the information to be used is always the one present in the maximal

point of the set of expectations, i.e. the prototypical information of the concept

in question or the one that results from an updating process previously defined.

As explained in Section 6.2, even among the sufficiently well-expected in-

formation in the set of expectations, some propositions are less defeasible than

others. As a result, they will produce stronger inferences. For a default logic

system, a comparative notion of inferential strength can be defined as a positive

function of the strength of the default rules used in specific inferences. As we

showed earlier, this strength measure comes from the rule’s position in the con-

ceptual space expectation ordering, which depends ultimately on the distance

measure defined in TC. To give a simple example, an inference that uses the

default Bird(x) → HaveFeathers(x) will be stronger than one that uses the

default Bird(x) → Fly(x) since following TC, HaveFeathers(x) will be more

entrenched in the expectation order than Fly(x) even if both pertain to the

prototype of bird.

Finally, another important issue in default logic concerns the possibility of

having defaults expressing conflicting information (Reiter & Criscuolo, 1981;

Touretzky, 1984). The most famous example of this situation is the “penguin

principle” (Lascarides & Asher, 1993): if we are told that x is a bird and that it is

also a penguin, then we will have at our disposal the defaults Bird(x)→ Fly(x)

and Penguin(x)→ ¬Fly(x). If we don’t have a clear criterion to choose which
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default has priority, we will end up addressing a contradiction. Above, we

saw the “Nixon diamond” where two conflicting defaults seeming lead to the

conclusion that Nixon is both a pacifist and not a pacifist. The TC criterion

gives a way of resolving the conflict since once it is decided whether Nixon

is more atypical as a quaker than as a republican, the resulting expectation

ordering determines which of the default rules should yield.

6.6 Conclusions

Despite the significant progress made in the field of nonmonotonic reasoning

during the past decades, the available logical models still suffer from various

epistemological issues. In particular, several formal systems make strong as-

sumptions about the role of background knowledge and entrenchment relations

of beliefs without providing any cognitive or epistemological argument for them.

In this chapter it was argued that some of these problems are due to the intrinsic

limitations of propositional-based models for capturing the internal structure of

conceptual knowledge.

It was shown that combining the CS framework with an expectation-based

analysis of nonmonotonic inference is a fruitful way of extending the modelling

tools of these logical systems while enriching their theoretical foundations. Fur-

thermore, this analysis implies a "construal" of nonmonotonic inference as a

kind of concept-based inference falling under the definition advanced in Chapter

3: a transition between two mental/informational states exploiting properties

of a representational system which codifies conceptual information. The model

presented here assumes that this representational system is CS, with its typical

geometrical properties.

Above, the models suggested by Lieto and Pozzato (2019) have been dis-

cussed, and there are other attempts to computationally implement reasoning

with default rules (e.g. Brewka et al., 2007; Delgrande & Schaub, 2000). How-

ever, in these systems the default rules must be provided by the user and they

do not generalize well. Here it was shown that a CS approach to modelling rea-

soning with default, and nonmonotonic reasoning in general, is a better method
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when attempting to build artificial systems with theses capacities. Once the

domains with their concept’s regions and distance functions have been imple-

mented, then the TC principle provides a direct way to generate expectation

orderings and default rules, and thereby a method to calculate nonmonotonic

inferences. Implementations, however, still remain to be constructed.

The ideas defended in this chapter are directly related to a kind of reasoning

known in psychology as category-based induction. This mechanism consists

in judging the strength of arguments that project some property from one or

more categories to another category, exploiting conceptual similarities (Feeney,

2017). In the next chapter, a model of this phenomenon based on distances on

conceptual spaces will be presented. Explicating both nonmonotonic reasoning

and category-based induction with the same modeling framework could be of

great value for the various disciplines studying these phenomena, and help to

integrate theories of reasoning with theories of concepts.

Finally, one limitation of the research presented here is that the expecta-

tions we can model concern only object predication. However, expectations are

pervasive in cognition, and a full model of their role in reasoning should also

account for more complex lexical items, like verbs or relational and functional

predicates. In Gärdenfors (Gärdenfors, 2014, 2020; Gärdenfors & Warglien,

2012), the conceptual space framework has been extended for modeling expec-

tations based on the structure of events, in particular causal inferences. Future

work on expectation-based nonmonotonic reasoning will hopefully result in a

more general model.





147

Chapter 7

Category-based induction in

conceptual spaces

Category-based induction is an inferential mechanism that uses

knowledge of conceptual relations to estimate how likely is for a

property to be projected from one category to another. During

the last decades, psychologists have identified several features of

this mechanism, and they have proposed different formal models of

it. In this chapter, a new mathematical model based on distances

in conceptual spaces is proposed. It will be argued that this CS

model can predict most of the properties of category-based induc-

tion, make some new predictions, and provide a solid theoretical

foundation for this psychological phenomenon. At the end of the

chapter, the relations with other models will be discussed, as well

as some methodological considerations. 1

7.1 Induction and conceptual relationships

Throughout this thesis, the formalist approach has been largely criticized, both

for its philosophical commitments and for its inability to explain different forms

of concept-based inferences. Formalists generally take deductive reasoning as

a paradigm of rational inference, while they see induction as an important but

elusive phenomenon that seems to resist formalization within logical frameworks
1This chapter is based on Osta-Vélez, M. and Gärdenfors, P. (2020) "Category-based

induction in conceptual spaces", Journal of Mathematical Psychology, 96, 102357.
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(e.g., see Norton, 2003, 2010). The problem is that induction and deduction

deal with semantic information in very different ways (see Johnson-Laird, 1983).

While deductions are safe inferences because they are informationally conser-

vative, in inductive reasoning the conclusion of an inference adds semantic in-

formation that is not present in the premises in order to tackle uncertainty. In

this sense, inductive reasoning is clearly cannot be "formal" in the traditional

sense (see also Thagard, 1984, pp. 27-29).

Induction —as a type of personal-level inference—, is a semantic-based

mechanism. Understanding it, therefore, requires explaining how background

knowledge is exploited in reasoning. Again, this can only be done if we con-

ceive reasoning as an activity which is not strictly propositionally-based, but

that combines information codified at the symbolic-propositional level with in-

formation encoded at the conceptual level (see Chapter 3).

During the last decades, psychologists have been studying a type of infer-

ential mechanism directly related to this last point. In his pioneering article

"Inductive judgments about natural categories," Lance Rips (1975) analyzed a

peculiar kind of inductive inference that exploits information about individual

categories (and about relations among categories) for estimating the probabil-

ity of property projection among them. For instance, the inference "Dogs have

sesamoid bones; thus, wolves have sesamoid bones" relies on the conceptual

similarities among the categories dog and wolf, and not on the logical form of

the argument or some other propositionally-codified property. Such processes,

called category-based inferences (CBI), are intuitive forms of reasoning funda-

mental to our cognitive lives. On the one hand, they are crucial for dealing with

uncertainty: they allow us to reason about some unknown input X by exploit-

ing information stored in our conceptual system about things that resemble X.

On the other hand, as Feeney observes (2017, p. 167), they are a clear example

of how concepts make our cognition efficient.

Understanding how CBI works, and which properties of our conceptual sys-

tems it exploits, can shed light on the general problem of this dissertation. In

this chapter, the general features of CBI are discussed, and the CS-model, de-

veloped in the previous chapters, is extended to model them. The chapter is
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organized as follows. Section 7.2 presents a basic taxonomy of category-based

inductions and reviews the central phenomena associated with them. Section

7.3 introduces some of the theoretical and technical aspects of conceptual spaces.

Section 7.4 presents the model and explains how the theory of conceptual spaces

provides a natural way of modeling CBI’s central properties based on the ca-

pacity of the theory for representing similarity and typicality relations among

categories. Section 7.5 compares the CS model to some of the previous expla-

nations, and Section 7.6 briefly considers some methodological aspects of the

approach defended here.

7.2 Category-based induction

7.2.1 The general structure of category-based inferences

Rips’ seminal paper (1975) intended to understand the strategies that agents

use for reasoning under uncertainty about property projection among biological

kinds —such as hawk, bird, eagle, etc. He showed that subjects exploit structural

properties of categories for estimating the plausibility of property projection.

In particular, Rips saw that similarity among categories, as well as the degree of

typicality of premise-categories, were guiding principles of this kind of reasoning.

Most studies on CBI follow Rips’ analysis (see for example Carey, 1985; Heit,

1997; Osherson, Smith, Wilkie, Lopez, & Shafir, 1990; Sloman, 1993). They all

assume that inductive reasoning is a process that exploits information at the

conceptual level, and not at the propositional level. From a methodological

perspective, these studies analyze cognitive agents’ inferential dispositions by

inspecting how they judge the strength of different types of inductive arguments.

Various empirical properties of CBI have been identified during the last decades

(see Feeney, 2017; B. Hayes, Heit, & Swendsen, 2010, for reviews). Before

explaining them, let’s see a basic taxonomy of CBI judgments that will help to

organize the following analysis.

Category-based inferences are structured as arguments with one or more

premises of the form ’X are S ’ —where X is a category and S a property—,
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and a conclusion of the same type with a different category. A typical example

would be "Dogs have sesamoid bones; thus wolves have sesamoid bones". In

what follows, these arguments will often be abbreviated as X → Y . This

is because, in most studies, subjects have little or no knowledge about the

property S, and therefore, it does not influence the strength of the argument.

CBI can be classified in two major ways: according to their number of

premises; and according to whether the conclusion is at the same conceptual

level as the premises or in some superordinate category. When the premise(s)

and conclusion categories are at the same conceptual level, the argument is

called "specific; " when the argument involves a generalization —a "jump" to

a superordinate conceptual level—, then it’s called "general." For instance,

arguments with the form robin → crow or table → chair are specific, while

arguments like robin → bird, robin → animal or table → furniture, are

general. Both specific and general arguments can be composed of one or

multiple premises (see Figure 7.1).

Figure 7.1: Basic taxonomy of category-based inferences.

In what follows, the main properties of CBI will be reviewed as described

by the empirical literature. The idea is that these phenomena say something

about what kind of categorical or conceptual relations people exploit when

judging category-based inductive arguments.
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7.2.2 Premise-conclusion similarity

The primary categorical relation guiding category-based inferences is similar-

ity. Similarity has been considered as a crucial criterion for induction since

—at least— Hume (1894). Quine famously argued (1969b; 1974) that similar-

ity might be a fundamental psychological principle in a wide range of cognitive

phenomena, like learning, concept formation, and reasoning. In psychology, the

notion of similarity has proved to be fruitful since the 1970s. Since the pio-

neering work of Shepard (1987) and Tversky (1977), formal models of similarity

have been developed for explaining concept formation, categorization, and even

induction. And since Rosch’s work on prototyes (1973; 1983), similarity has

been taken as the central criterion for explaining category structure.

Not surprisingly, the empirical literature has shown that the most robust

criterion used in CBI is similarity among categories (Carey, 1985; López, Gel-

man, Gutheil, & Smith, 1992; Osherson et al., 1990; Rips, 1975). This can

be formulated by saying that our expectations regarding property projection

among two categories X and Y is a positive function of their similarity. For

instance, arguments like "Ostriches are S, then emus are S" are generally seen

as stronger than arguments like "Ostriches are S, then blue jays are S", since

sim(ostrich, emu) > sim(ostrich, bluejay), where sim(X, Y ) denotes a mea-

sure of the similarity between the categories X and Y .

7.2.3 Typicality

Similarity, as a criterion for category-based inferences, can only be used for

categories at the same conceptual level. Still, it is not useful in arguments that

generalize a property from the category premise to the conclusion category. In

those cases, typicality is what guides categorical inferences. 2

As explained earlier in this work, the typicality effect is the finding that

individuals respond more quickly to typical examples of a category than they

do to cases that are considered atypical. For instance, when asked to name

a bird, an individual is much more likely to respond with "robin" than with
2Typicality is deeply related to similarity (see Hampton, 2001; Rips, 1989).
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"penguin". The idea was proposed and tested by Rosch (1973), and it suggests

that conceptual structures —especially natural kinds— are articulated around

prototypes. Most categories seem to have a graded structure (see Barsalou,

1987; Decock & Douven, 2014), which means that different members of the

category are perceived with varying degrees of typicality. For instance, cows

are generally seen as very typical representatives of the category mammal, while

mice are moderately typical, and whales are highly atypical members.

Typicality plays a crucial role in CBI. 3 The most robust effect found in

the empirical literature is that expectations of property projection are a pos-

itive function of premise-typicality. For instance, the inference "Robins have

enzyme E; thus ostriches have enzyme E" is often judged as stronger than

"Penguins have enzyme E; thus, ostriches have enzyme E." This is because

robins are prototypical birds, and as such, they better represent the category

than penguins —which are atypical. To a lesser extent, conclusion-typicality

also seems to be a factor in category-based inferences. Hampton and Cannon

(2004) have shown that arguments with prototypical conclusion-categories —

like chicken→ robin— are judged as stronger than arguments with non-typical

conclusion categories —like chicken→ vulture.

Furthermore, the typicality effect produces asymmetry, that is, the fact that

switching the categories from the premises and conclusion often changes the

expectations of property projection, according to the degree of typicality of the

category in the premise(s). For instance, arguments like "Cows have enzyme

E; thus, otters have enzyme E" is considered stronger than arguments like "Ot-

ters have enzyme E; thus, cows have enzyme E" since cows are more typical

mammals than otters.

7.2.4 Conclusion homogeneity and premise diversity

Another important aspect is that agents assume a common superordinate cate-

gory of the premises when making inferences or judging this kind of argument’s
3For a discussion on the role of prototypicality in reasoning in general —besides the dis-

cussion in the previous chapter— see Cherniak (1984).
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strength. Sometimes this superordinate category appears explicitly in the con-

clusion —as in general arguments—; some other times, it is just considered

implicitly. For instance, consider the arguments in Figure 7.1. In (1), the im-

plicit superordinate category is mammal, while in (2) it is bird. In (3) and (4),

the superordinate category appears explicitly in the conclusion. Four important

phenomena related to such an evoked superordinate category have been studied

in the empirical literature: homogeneity, monotonicity, nonmonotonicity, and

premise diversity.

(i) Homogeneity refers to the idea that the more abstract and less homoge-

nous the category in the conclusion is, the weaker the argument. For instance,

arguments like "Robins are S and blue jays are S ; thus, all birds are S" are

judged as stronger than "Robins are S, and blue jays are S ; thus all animals are

S". This is not surprising at all. As we said before, when evaluating arguments

or making inferences that involve generalizations, we deal with different degrees

of uncertainty. The more abstract the category in the conclusion is, the more

information we need from the premises to cover it. Hence CBI with abstract

categories (like animal or living being) involve higher degrees of uncertainty and

are more difficult to cover by the information from the premises.

Studies of categorization —especially in the prototype tradition— provide

some insight into this phenomenon. Categories may have different degrees of

generality —e.g. dog, mammal, animal, living, thing—, and these degrees are

related to the computational cost of using them in categorization. Categories

with an intermediate level of specificity are preferred in terms of cognitive ef-

ficiency. These are called "basic-level categories" —dog instead of mammal ;

chair instead of furniture—, and studies have shown that they are central for

carrying out several cognitive tasks (Mervis & Rosch, 1981). Inductive infer-

ence seems to follow the same principle. We have a preferred level of induction

(Sloman & Lagnado, 2005, p. 106) that coincides with basic-level categories.

A possible way of explaining this is by referring to similarity and typicality

as the two main criteria for using categories. Basic level categories are more

homogeneous. As such, it is easier for us to apply criterion of similarity among

their members. Abstract categories are more diverse and less homogeneous, so
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comparing their members in terms of similarity is more complex —for instance,

the category animal includes highly dissimilar subcategories, such as elephant

and starfish. Along the same line, basic categories have clear prototypes, while

it is complicated for us to construct prototypes for abstract categories (see

Ungerer & Schmid, 2006, Ch. 2 for an introductory explanation). In this sense,

typicality, considered as a criterion for using categories, is stronger in basic-level

categories than in abstract ones.

(ii) Monotonicity refers to the fact that the addition of premises, as

long as their categories are included in the evoked superordinate category,

strengthen the argument (Osherson et al., 1990). For instance, an argu-

ment of the form (robin&hawk) → bird is weaker that an argument of the

form(robin&hawk&pigeon)→ bird. However, if we add to the premises a cat-

egory that is not from the evoked superordinate category, then the argument

becomes weaker. This is called nonmonotonicity (iii). For instance, an argument

with the categories (peacock&crow) → bird —or (peacock&crow) → pigeon—

is stronger than an argument that goes from (peacock&crow&rabbit)→ animal

—or (peacock&crow&rabbit)→ pigeon—.

(iv) Finally, there is the diversity phenomenon (Feeney & Heit, 2011; Osh-

erson et al., 1990). Empirical studies have shown that having diverse categories

tends to promote expectations regarding property projections. For instance,

arguments like "Horses have an ulnar artery and seals have an ulnar artery;

thus, all mammals have an ulnar artery" are considered as stronger than the

argument "Horses have an ulnar artery, and cows have an ulnar artery; thus, all

mammals have an ulnar artery." The less similar the categories in the premises

are, the stronger the argument tends to be.

An interesting way of understanding this phenomenon builds on the idea of

"category coverage" (Osherson et al., 1990). As we mentioned before, when per-

forming or evaluating categorical inductions, we take as a reference —implicitly

or explicitly, according to whether we deal with a specific or general argument—

some superordinate category that includes all the categories in the premises.

The strength of the argument will depend, to some extent, upon how the cat-

egories in the premises cover this superordinate category. For instance, similar
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categories like horse and cow have less coverage of the superordinate category

than dissimilar categories like horse and seal. In this sense, coverage can be

described in terms of similarity. We will discuss this idea further in Section 5.

Sloman (1993, pp. 253-254) pointed out that diversity has a limit: if highly

dissimilar categories are used in the premises, this can weaken the argument

instead of making it stronger. For instance, the argument "German shep-

herds have sesamoid bones and elephants have sesamoid bones; thus, moles

have sesamoid bones" seems stronger than "German shepherds have sesamoid

bones, and blue whales have sesamoid bones; thus, moles have sesamoid bones".

This indicates that in arguments that include highly atypical categories in some

premise —blue whale is a highly atypical mammal—, then diversity becomes

negative regarding argument strength.

CBI has been analyzed from different perspectives, depending on what kind

of categorical relation it is assumed to explicate. Class-inclusion (Inhelder &

Piaget, 1964), shared features (Sloman, 1998b), and similarity (Osherson et al.,

1990), have been the most explored ones in the literature. However, reasoning

about categories seems to be a complex mechanism that involves combining all

these relations and probably other sophisticated heuristics. It is a challenge

to present a model that can account for all of them. In the following section,

a general model of CBI based on conceptual spaces is introduced. Among

other things, this model will offer a natural —and relatively simple— way of

explaining similarity and typicality, which are the two main categorical relations

in CBI.

This model also uses the notion of "expectation." In particular, we talks

about "expectations" of property projection among categories instead of argu-

ment strength. As we saw in the previous chapter, expectations play a crucial

role in everyday reasoning. The sentence "John got a new pet" comes asso-

ciated with a large set of expectations related to the lexical concepts in the

sentence. In relation to CBI, the idea is that the agent’s inferential dispositions

to project a property from one category to another are also determined —–to

a large extent—– by her expectations about regularities in the world, which

are codified in the agent’s background knowledge (cf., Section 3.4, and Section



156 Chapter 7. Category-based induction in conceptual spaces

5.2.1, this work).

In this sense, the expression ExpS(X → Y )Z will be used as standing for

the agent’s expectations that the property S is projected from category X to

category Y, with Z as the lowest-level superordinate category which contains

both X and Y. Let us start the analysis by focusing on the simplest case of

category-based inference: single premises/specific arguments. For this kind of

inductive inference, we need ExpS(X → Y )Z to satisfy the following criteria:

1. It is positively correlated with sim(X, Y ).

2. It is positively correlated with sim(X, pZ), where pZ is the prototype of

Z.

3. It is positively correlated with sim(Y, pZ).

The rationale for the first condition is that the more similar the categories

X and Y are, the more expected will it be that Y has property S if X has

it. Regarding condition (2), the intuition is that the more prototypical X is,

the more expected it is that another category Y has property S, given that X

has it. Condition (3) is motivated by Hampton and Cannon’ (2004) conclusion-

typicality: the more prototypical Y is, the more expected it is that Y has

property S if X has it.

7.3 A conceptual space-model

7.3.1 A simple model

To illustrate the basic idea of the approach defended here, let’s start with a

simple model. For the time being, let us assume that X and Y are small

regions so that we can identify them with points in a conceptual space. Then,

given a conceptual space representing the categories X, Y , and Z and a distance

function d of the space, we can account for the three conditions above by the

following equation:

ExpS(X → Y )Z = (d(X, Y ).d(X, pZ)a.d(Y, pZ)b)−1 (7.1)
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Where a and b are positive constants such that a > b. This assump-

tion expresses that premise typicality contributes more to expectations than

conclusion-typicality since, according to the literature, the former is a more

prevalent phenomenon than the latter. The values of both a and b must be

empirically determined from data about CBI judgments.

Now, following Shepard’s universal law of generalization (Shepard, 1987),

which claims that similarity is an exponentially decreasing function of distance,

we can take the logarithm of (1) and obtain:

logExpS(X → Y )Z = sim(X, Y ) + a.sim(X, pZ) + b.sim(Y, pZ) (7.2)

By convention, for any two categories X and Y , 0 ≤ sim(X, Y ) ≤ 1 and

sim(X, Y ) = 1 if and only if X = Y .

Now, equation 7.2 captures the idea that for single-premise specific ar-

guments the expectations of property projection among categories are de-

termined by a weighted sum of three factors: premise-conclusion similarity,

premise-typicality, and conclusion-typicality. Equation 7.1, applied to a set

of prototypes for categories, captures similarity, premise and conclusion typi-

cality and asymmetry effects in CBI. For instance, when considering the sen-

tence "emus have property S" people expect more that ostriches also have

property S than that penguins have it. This is due to the similarity effect

since sim(emu, ostrich) > sim(emu, penguin). If we construct a "bird space"

through some set of prototypes, this inequality would be immediately repre-

sented by the relative positions in the space of the two pairs < emu, ostrich >,

and< emu, penguin > (see Figure 7.2). And it can be measured via the distance

function of the space. Since sim(emu, ostrich) > sim(emu, penguin), if follows

from (7.1) that ExpS(emu→ ostrich)bird > ExpS(emu→ penguin)Bird.

As mentioned before, this model also predicts asymmetry and premise

and conclusion typicality. For instance, ExpS(robin → emu)Bird >

ExpS(emu → robin)Bird since sim(robin, pbird) > sim(emu, pbird) and

a > b . Regarding conclusion-typicality assume, following the bird space

in Figure 7.2, that sim(ostrich, vulture) ≈ sim(ostrich, robin) and that
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sim(ostrich, pbird) ≈ sim(vulture, pbird). Then ExpS(ostrich → robin)Bird >

ExpS(ostrich→ vulture)Bird since sim(robin, pbird) is significantly larger than

sim(vulture, pbird).

Figure 7.2: "Bird space" representing the positions of the dif-
ferent bird categories relative to a prototype.

7.3.2 A more general model

Concepts are represented as regions of conceptual spaces, not as points. We

then need a model that accounts for this. One strategy is to consider distances

between the prototypes of the categories, 4 and to take the volumes of the regions

representing concepts in some CS —areas in the case of a 2-dimensional space—

as predictors of expectations, i.e., argument strength in CBI. The volume of a

concept in a conceptual space depends on the metric assigned to the space, and

it is defined in a standard way. Note that the volume of a concept depends on

the variability of properties that can be attributed to an object falling under

that concept in each domain. For instance, it is expected that the concept dog

has a larger volume than the concept tiger, since dogs can be of many different

colors, shapes, and sizes; while tigers have less variability in these domains. The
4This is an idealization that involves to assumes that most concepts have single prototypes

that can be represented by some point in the space. An alternative idea is to explicitly
introduce distances between regions as a function of distances between their points (e.g., see
Niiniluoto, 1987). It would be a matter of empirical testing to determine which model would
give the best results.



7.3. A conceptual space-model 159

immediate consequence of this is that the more heterogeneous the concept is,

the larger its volume will be in a conceptual space.

Coming back to expectations, we assume that ExpS(X → Y )Z is positively

correlated with the volume V (X) of X and negatively correlated to the vol-

ume V (Y ) of Y . The positive correlation is due to the fact that the larger

V (X), the more it "covers" —or is more representative of— the superordinate

category Z. For example, ExpS(bear → wolf)Mammal should be larger than

ExpS(polarbear → wolf)Mammal (see Figure 7.3).

Figure 7.3: "Mammal space" representing the difference in
volumes of bear, polar bear and wolf.

The negative correlation holds because the smaller the region Y is, the more

likely it is for Y to have property S in the inductive argument. If X and Y cover

overlapping regions of the space, then the relative sizes of their non-overlapping

regions X−Y and Y −X, that is , V (X−Y )/V (Y −X) should be considered.

Building on (7.1), and considering the above ideas, the following equation is

proposed:

ExpS(X → Y )Z =
(
d(pX , pY )

V (X−Y )
(Y −X) .d(pX , pZ)a.d(pY , pZ)b

)−1

(7.3)
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Again, taking the logarithm and considering the relation between distance and

similarity, we obtain:

logExpS(X → Y )Z =
V (X − Y )

(Y −X)
.sim(pX , pY ) + a.sim(pX , pZ) + b.sim(pY , pZ)

(7.4)

In cases when X and Y are disjoint regions —which are the most typical

ones— the quotient reduces to V (X)/V (Y ). And in cases when X and Y are

represented by small non-overlapping regions, we can take V (X)/V (Y ) = 1

and then (7.3) and (7.4), respectively, will have (7.1) and (7.2) as limiting

cases. Just as (7.3), this new equation predicts premise-similarity, premise and

conclusion-typicality, and asymmetry.

To see an example of how it works, consider the conclusion-typicality effect.

As mentioned before, some experiments show a robust effect of conclusion typ-

icality in CBI (Hampton & Cannon, 2004). For instance, an argument with

categories koala→ guineapig should be seen as weaker than an argument like

koala → tiger, since tigers are more typical mammals than guinea pigs. As-

sume, for the sake of argument that sim(koala, guineapig) ≈ sim(koala, tiger),

and that V (guineapig) ≈ V (tiger). Then, using (7.4) we will have that,

V (koala)

V (guineapig)
.sim(pkoala, pguineapig) + a.sim(pkoala, pmammal)+

b.sim(pguineapig, pmammal) <
V (koala)

(tiger)
.sim(pkoala, ptiger)+

a.sim(pkoala, pmammal) + b.sim(ptiger, pmammal)

since, b.sim(pguineapig, pmammal) < b.sim(ptiger, pmammal). Then, it follows that

ExpS(koala→ guineapig)Mammal < ExpS(koala→ tiger)Mammal. 5

Note that (7.4) is not defined when Y ⊂ X, since in that case Y −X = ∅.
5It is possible that a concept with greater volume is less typical than a concept with a

smaller volume. For example, fish may have a greater volume than cat, but being less typical
as a pet. However, in equation 7.3, the expectation value is not only determined by the volume
of a concept but also its typicality. So even though fish may have a larger volume than cat,
the greater typicality of cat will counterweight this.
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Figure 7.4: Mammal space for categories koala, tiger and
guinea pig.

However, in this case the expectation of property projection is maximal, and

we can define it to be some arbitrary high value.6 For general judgments, for

example ExpS(vulture → bird)Bird , we have Y = Z and X ⊂ Y , and since

sim(bird, bird) = 1, (7.4) will consequently take the following form:

logExpS(X → Z)Z = a.sim(pX , pZ) + b (7.5)

This coheres with the idea that single premise/general arguments depend,

mostly, on premise-typicality relations, that is, on the idea that agents rep-

resent a category with a certain degree of typicality in the context of a more

abstract superordinate category.

This is not a minor point. In this model, it is assumed that agents cannot

compare categories from different conceptual levels directly in terms of similarity

—like comparing collie with mammal. Instead, the categorical relation that

works in these cases is typicality, which comes by default for all categories in a

conceptual space, given that conceptual spaces are constructed and articulated
6A reason for this assignment is that if Y is a region that partially overlaps X and then

shrinks to become a subset of X, then V (Y −X) will be smaller and smaller, which means
that ExpS(X → Y )Z will approach infinity. From a psychological perspective, we hypothesize
that these cases require agents using an inferential mechanism based on class-inclusion, like
property-inheritance. If Y ⊂ X, members of Y inherit all properties of X, thus, ExpS(X →
Y )Z is maximal.
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around prototypes. As we will see later, this is an advantage over the two

classical models of CBI, which have more difficulties representing typicality

relations among categories.

Now, Sloman (1993) observes that subjects exhibit an "inclusion fallacy"

since the argument "Robins have property S; thus, birds have property S"

is judged to be stronger than "Robins have property S; thus, ostriches have

property S" despite the fact that ostriches form a subset of birds. The CS model

can explain this phenomenon. To see how, note that —since V (robin− bird) =

∅— we have that logExpS(robin→ bird)Bird = a.sim(probin, pbird)+ b, and that

logExpS(robin→ ostrich)Bird =
V (robin)

V (ostrich)
.sim(probin, postrich)+

a.sim(probin, pbird) + b.sim(postrich, pbird).

Then, logExpS(robin→ bird)Bird > logExpS(robin→ ostrich)Bird, as long as

(a.sim(probin, pbird)− a.sim(probin, pbird)) + (b− sim(postrich, pbird)) >

V (robin)

V (ostrich)
.sim(probin, postrich),

which would typically be the case since sim(postrich, pbird) is small.

This shows that this model, unlike the similarity-coverage model (Osherson

et al., 1990), also predicts results that are not valid under all conditions, but

only under certain specific circumstances.

The CS-model can also predict the conclusion-specificity phenomenon (Os-

herson et al., 1990, p.187), which says that people tend to judge arguments

with more specific categories as stronger than argument with more abstract

categories. For instance, an argument from crow to bird will be judged as

stronger than an argument from crow to animal. This is easily explained by

the CS-model because the more abstract the conclusion category is, the big-

ger its volume in the conceptual space, and the further the prototype of this

category will be from the prototype of the premise-category (see Figure 7.5).
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Considering the above example, we have that, logExpS(crow → bird)Bird =

a.sim(pcrow, pbird) + b , and that

logExpS(crow → animal)animal = a.sim(pcrow, panimal) + b. Since,

d(pcrow, panimal) > d(pcrow, pbird), then

sim(pcrow, pbird) > sim(pcrow, panimal).

Making a.sim(pcrow, pbird) > a.sim(pcrow, panimal). It follows thenExpS(crow →

bird)Bird > ExpS(crow → animal)Animal.

Figure 7.5: Animal space including the subspace bird

7.3.3 Arguments with multiple premises

In single-premise arguments the focus is on the relation between the premise and

the conclusion categories; but when dealing with multiple premises, we must

also account for premise-premise categorical relations. The main phenomenon to

model in these cases is diversity, i.e., the more different are the categories in the

premises, the stronger the argument. For instance, the argument (i) "Jaguars

and leopards have property P; thus, otters have property P," is weaker than

the argument (ii) "Jaguars and elephants have property P; thus, otters have
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property P." That is because the categories jaguar and leopard are similar and

they provide less "coverage" of the superordinate category mammal than jaguar

and elephant.

The diversity phenomenon suggests that argument strength is a negative

function of premise-premise similarity. One possible way of modeling this would

be to compute the pairwise similarity of category premises, but this would rep-

resent a significant increase in the computational complexity of the process,

particularly when we have arguments with more than two premises. The pro-

posal presented here tries to avoid this by considering all the premises’ cat-

egories as part of one large inclusive set. In a sense, the premise categories

can be seen as "exemplars" of a more general category. More precisely, we can

model n-premises arguments by considering the convex hull of the categories

X1, X2, . . . , Xn in the premises. A convex hull of a set S —denoted by C(S)—

is the smallest convex region containing all elements in S (see Devadoss S., 2011,

for a detailed explanation).

Convex hulls are also convex regions of n-dimensional spaces with the same

geometrical properties as regions in conceptual spaces. The size of their volumes

is positively correlated to the number of convex regions they include, as well

as to the distances among these regions. For instance, in a conceptual space

in which all the categories have similar volumes, the volume of the hull of two

contiguous regions is going to be smaller than the volume of two non-contiguous

regions of the space 7. This is precisely the kind of property of interest to

represent the diversity phenomena. For example, if we consider the argument

described above, in an animal space the categories jaguar and leopard would

be represented by contiguous (or very close) regions in the space, while jaguar

and elephant would be far from each other. As a consequence, the volume of

C(jaguar∪leopard) would be smaller than the volume of C(jaguar∪elephant),

and then it would provide less coverage of the mammal category (see Figure

7.6).
7For cases in which this condition does not hold, it is possible that the volume of the

hull of two large contiguous regions is larger than the hull of two distant small regions. An
empirical study of this fact could be a way of testing the fruitfulness of the notion of volume
of a category for the analysis of CBI.
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However, one problem of this approach is that we don’t have a "natural"

prototype —like pX in equation (7.3)— for the premise anymore. The solution

proposed is to consider an "artificial" prototype pC , at the centroid of the convex

hull C(X1 ∪X2 ∪ · · · ∪Xn)
8. For convex hulls, we can then reformulate (7.4)

for multiple premises in the following way:

logExpS(X1, X2, . . . , Xn → Y )Z =
V (C(X1 ∪X2 ∪ · · · ∪Xn)− Y )

V (Y − C(X1 ∪X2∪, . . . ,∪Xn))
.sim(pC , pY )

+a.sim(pC , pZ) + b.sim(pY , pZ)

(7.6)

To see how this formula predicts diversity, consider the example at the be-

ginning of this section. According to (7.6), we have that

ExpS(jaguar, leopard→ otter)Mammal =
V (C(jaguar ∪ leopard)

V (otter)
.sim(pC , potter)

+ a.sim(pC , pmammal) + b.sim(potter, pmammal);

This is smaller than

ExpS(jaguar, elephant→ otter)Mammal =
V (C(jaguar ∪ elephant)

V (otter)
.sim(pC∗, potter)

+ a.sim(pC∗, pmammal) + b.sim(potter, pmammal).

since V (C(jaguar ∪ elephant)) > V (C(jaguar ∪ leopard)). Which makes

C(jaguar ∪ elephant)
V (otter)

.sim(pC∗, potter) >
V (C(jaguar ∪ leopard)

V (otter)
.sim(pC , potter)

when sim(pC∗, potter) ≥ sim(pC , potter).

8This assumption is not meant to be psychologically realistic. Prototypes are hardly
centroids of the convex regions that represent them, even for natural categories (see Douven,
2019). However, according to the empirical literature, the typicality effect holds for multiple-
premise arguments as a compound measure of the degree of typicality of some of the categories
in the premises. Considering the lack of robust evidence about how these degrees of typicality
interact, we introduced the centrality of the artificial prototype as a formal idealization that
seems to respond well to the classical examples.
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The result also follows in the case in which sim(pC∗, potter) < sim(pC , potter),

when the difference between V (C(jaguar∪elephant))
V (otter)

and V (C(jaguar∪leopard))
V (otter)

is enough

to make V (C(jaguar∪elephant))
V (otter)

.sim(pC∗, potter) > V (C(jaguar∪leopard))
V (otter)

.sim(pC , potter).

Again, this is a conclusion that is not always valid, but depends on the relations

between the categories involved.

If Y is a sub-region of C(X1∪X2∪...∪Xn), then Y −C(X1∪X2∪...∪Xn) = ∅,

so (7.6) is undefined. For the same reasons as before, we can set this to some

maximal value. For example, if buzzard belongs to the convex hull of eagle,

kite, and harrier, it would follow that ExpS(eagle, kite, harrier → buzzard)Bird

would be maximal. This is the first prediction that emerges from the CS model.

It is an interesting empirical problem, whether this would correspond to the

judgment of real subjects. As far as we are aware, this phenomenon has not

been tested.

Figure 7.6: Mammal space illustrating that the volume of
(elephant ∪ jaguar) is larger than the volume of (leopard ∪

jaguar)

If equation (7.6) is applied to multiple premise general arguments then

C(X1 ∪ X2 ∪ ... ∪ Xn) − Y = ∅,since C(X1 ∪ X2 ∪ ... ∪ Xn) ⊂ Y . Then,

(7.6) reduces to

logExpS(X1, . . . , Xn → Y )Z = a.sim(pC , pZ) + b.sim(pY , pZ) (7.7)
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Note that when Y = Z, sim(pY , pZ) = 1 and (7.7) reduces to

logExpS(X1, . . . , Xn → Y )Z = a.sim(pC , pZ) + b (7.8)

A problem with this expression is that is does not account for the diversity

of X1, X2, . . . , Xn, but only the prototype pC . One way of solving this prob-

lem is to let the constant a depend on the proportion of Z that is covered by

X1, X2, . . . , Xn, that is, V (C(X1, X2, . . . , Xn))/V (Z). However, since empirical

evidence for this case seems to be lacking, this there will not be pursued here.

Let us now see how this model can deal with monotonicity. As it was

mentioned before, the monotonicity effect states that adding premises to a

CBI argument increases expectations of property projection when the new

premise-categories are also included in the original evoked superordinate cat-

egory of the argument. For instance, adding a premise with the category pig

to the argument (fox&wolf) → mammal is going to strengthen it. Note

that adding a premise-category to an argument will increase the volume of

the convex hull of the premises. And in most cases, the volume of that set is

negatively correlated to the distance between pC and pY , that is, the more

V (C(X1, X2, . . . , Xn)) approximates V (Y ), the closest pC is to pY . Then, for

the above arguments we have that if pC is the centroid of C(fox ∪ wolf) and

pC∗ is the centroid of C(fox ∪ wolf ∪ pig), since V (C(fox ∪ wolf ∪ pig)) >

V (C(fox ∪ wolf)) then sim(pC∗, pmammal) > sim(pC , pmammal), and as a con-

sequence ExpS(fox, wolf, pig → mammal)Mammal > ExpS(fox, wolf →

mammal)Mammal.

This model can also predict Sloman’s (1993) observation that diversity

has a limit. To analyze his example (mentioned in Section 7.2.4), note

that sim(pC , pmole), where pC is the prototype of C(germanshepherd ∪

elephant), is considerably larger than sim(pC∗, pmole), where pC∗ is the pro-

totype of C(germanshepherd ∪ bluewhale). Similarly sim(pC , pmammal) >
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sim(pC∗, pmammal). Then it typically follows that:

(
V (C(germanshepherd ∪ elephant))

V (mole)
.sim(pC ,mole)+a.sim(pC ,mammal)+

b.sim(pmole, pmammal)

)
>

(
V (C(germanShepherd ∪ blueWhale))

V (mole)
.sim(pC∗,mole)+

a.sim(pC∗,mammal) + b.sim(pmole, pmammal)

)

Next, suppose that we add to some premise-set a new premise with a cate-

gory that is not included in Z. What will happen is that the new modified

argument will have a different (and more abstract) evoked superordinate cat-

egory Z∗ such that Y ⊂ Z∗ with Z ⊂ Z∗. According to the empirical lit-

erature, subjects should perceive the new argument as weaker than the orig-

inal one, making CBI nonmonotonic. Remember the example of nonmono-

tonicity that we gave in Section 2.4: the argument (peacock&crow) → bird

is stronger than the argument (peacock&crow&rabbit) → bird (see Figure

7.5). According to the analysis presented here, adding the premise rabbit

change the evoked superordinate category (Z) from bird to animal. Then,

the CS-model correctly predicts that logExpS(crow, peacock → bird)Bird >

logExpS(crow, peacock, rabbit → bird)Animal; because a.sim(pC , pbird) + b >

a.sim(pC∗, panimal) + b.sim(pbird, panimal). Since a.sim(pC , pbird) should larger

than a.sim(pC∗, panimal), and b.sim(pbird, panimal) < b.

7.3.4 Knowledge effects and nonblank properties

The model presented so far only focuses on two types of semantic relations

among premise and conclusion categories, namely similarity and typicality.

However, newer experimental results on CBI have shown that there are other

cognitive mechanisms that also influence inductive judgments. Beyond simi-

larity and typicality relations, different kinds of knowledge about premise and

conclusion categories (Coley, Shafto, Stepanova, & Baraff, 2005; Shafto, Coley,
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& Vitkin, 2007) or different reasoning heuristics (Rehder, 2006) might shape

inductive inferences. For instance, there is evidence that knowledge about the-

matic relations of the categories involved in the arguments (Coley et al., 2005),

as well as expertise in some domain related to the topic of the arguments (Prof-

fitt, Coley, & Medin, 2000), can play an important role in the agent’s expecta-

tions of property projection. Furthermore, in most CBI cases, people also use

knowledge (or make hypotheses) about the property projected for estimating

the strength of the argument. In any case, a full model of CBI should account

for the effects of background knowledge and consider non-blank properties. The

conceptual spaces approach seems rich enough to deal with CBI’s most studied

knowledge effects concerning non-blank properties. In what follows, a strategy

on showing how this can be done will be briefly explained.

An influential criticism of the similarity-based models of CBI was presented

by Heit and Rubinstein (1994). They showed that it is not possible to account

for some knowledge effects that influence inductive inferences using only a single

similarity measure. In particular, they showed that in category-based arguments

with nonblank properties, the agents’ knowledge about the property S that

was projected modulated the similarity measure that was used for comparing

the categories in the premise and conclusion. For instance, they showed that

arguments of the form chicken→ hawk are judged as stronger than arguments

of the form tiger → hawk when the property projected is anatomical —such

as "has a liver with two chambers." But the opposite holds when the property

projected is behavioral —such as "prefer to feed at night."

For explaining this phenomenon, we will no see an extension of the CS-model

that includes a similarity measure that puts larger weights on the categories

involved in the projected properties. This focus would be determined by the

dimensions of the non-blank property in the arguments. When the agent has

little knowledge of the property S that is projected —which is by definition

the case for a blank property—, she will compare categories using a general

similarity measure. However, if the agent has more precise knowledge about S

—at least about what kind of property S is—, it is expected for her to use a

similarity measure that gives more weight to the dimensions related to S.
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Formally this can be done by using a weighted distance function like the one

introduced in Chapter 4.3. Equation 7.1 would be reformulated in the following

way:

ExpS(X → Y )Z =
(
d(S)(X, Y ).d(S)(X, pZ)a.d(S)(Y, pZ)b

)−1

Where the function d(S)(x, y) is defined as the distance between x and y when

the domains relative to S are salient. In the example from Heit and Rubin-

stein (1994), when the projected category refers to anatomical properties —

"has a liver with two chambers"—, the model will predict that the argument

chicken→ hawk will be judged as stronger than tiger → hawk. On the other

hand, if the projected category refers to behavioral properties —"prefer to feed

at night"—, then the model will predict the converse relation — since now the

weight to the behavioral domain will make tiger more similar to hawk, just as

it was found in the experiments by Heit and Rubinstein.

Medin, Coley, Stroms, and Hayes (2003) showed that property effects also

show up in arguments with blank properties. In particular, they discovered a

non-diversity effect by property reinforcement that occurs when some salient

feature shared between the premise-categories leads the agent to produce hy-

potheses about the nature of the property S that is projected (cf. Shafto et al.,

2007). As a result, the agent will use a weighted similarity measure that can

override normal diversity effects. For instance, according to what we saw so

far, the argument "Polar bears and antelopes have property S; thus, all animals

have property S" should be considered weaker than the argument "Polar bears

and penguins have property S; thus, all animals have property S," since the

first premise set is less diverse than the second. However, in this case, both

polar bears and penguins inhabit cold areas, leading agents to hypothesize that

property S is related to this shared feature. That will weaken the argument

since properties of this kind are atypical regarding animals in general.

The interpretation of this example defended here is that the conjunction

of polar and penguin evokes a new —non-taxonomic— minimal superordinate,

namely animal in cold areas and thereby that the property S somehow is related

to this superordinate. The superordinate animal in cold areas generates a new
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way of classifying the similarity animals, that is a new distance function d∗. As

a result after applying Equation 7.7, we expect that

logExpS(polarbear, antelope→ animal)Animal >

logExpS(polarbear, penguin→ animal)Animal

since a.sim(pC , pAnimal) + b will be bigger than a.sim(pC∗, pAnimal) + b, because

the distance between pC and pAnimalwill be smaller than the distance between

pC∗ and pAnimal since animal in cold areas is a rather small and atypical region

of animal.

Finally, similar ideas can be applied for explaining some of the effects of

expertise in CBI (Proffitt et al., 2000). For a non- expert, the two inferences

"Dutch elms have disease A; thus, ginkgo trees have disease A" and "River

birches have disease A; thus ginkgo trees have disease A" would, for lack of

knowledge, be judged to be equally strong. However, for a tree expert, the

knowledge that ginkgo trees are more similar to Dutch elms when it comes to

which diseases affect them would make the first inference stronger than the

second. In brief, for experts, the distance measure d(S) in the model would

be dependent on that S relates to diseases, while this would not affect the

non-experts’ judgments.

These examples of how knowledge effects can be handled by the CS-model

show that it is able to cover a wide variety of experimental findings from the

literature. 9

9One issue that will not be considered here is the influence of causal relations between
the concepts involved. Various experimental studies have shown that causal knowledge is
important in CBI, sometimes overriding standard similarity and typicality relations (e.g., see
Bright & Feeney, 2014; Medin et al., 2003; Rehder & Hastie, 2001; Shafto et al., 2007). For
example, "Grass has enzyme E; thus, cows have enzyme E" is judged to be stronger than
"Cows have enzyme E; thus, grass has enzyme E" since there may exist a causal link from
the enzyme of the grass to the enzyme of the cows. One possible way to use the CS model
for these phenomena is that causal connections may introduce a different kind of typicality
relations between the concepts so that the presence of the enzyme is more typical for grass
than for cows.
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7.4 Previous models of CBI

7.4.1 The Similarity-coverage model

The first formal model of CBI was the similarity-coverage model (SCM), pro-

posed by Osherson et al. (1990). In this model, argument strength in CBI is

judged on the basis of two factors: (i) premise–conclusion similarity, and (ii)

the degree of coverage that the premise’s category has regarding the lowest su-

perordinate category that includes both the category of the premise and the

category of the conclusion.

For specific arguments, argument strength depends only on (i). If the ar-

gument has multiple-premises, the model uses a maximum rule that estimates

premise–conclusion similarly by focusing on the premise with the most simi-

lar category to the conclusion’s category. For instance, for an argument like

“Horses and bats have property S; thus, cows have property S”, argument

strength will be determined by Maxsim
[
(horse, cow), (bat, cow)

]
, which will

return sim(horse, cow).

Coverage is a more complex notion. The model assumes —as we did here—

that CBI with natural categories involves “evoking” an implicit superordinate

category that includes all the categories in the argument. Coverage is then

a relation between the premises’ categories with that superordinate category,

and it is also explained in terms of similarity. More specifically, coverage is

an average measure of several pairwise similarity judgments that compare the

premise’s category with members – “examples” – of the superordinate category

in question; and it is a negative function of similarity among premises. For

instance, consider the following arguments:

(a) Horses have sesamoid bones.

Cows have sesamoid bones.

∴ Mammals have sesamoid

bones.

(b) Horses have sesamoid bones.

Rats have sesamoid bones.

∴ Mammals have sesamoid

bones.

(a) is weaker than (b) because the pair (horse, cow) provides less coverage

of mammals than the pair (horse, rat). In particular, the degree of coverage
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can be associated with the extension of the set which includes all the categories

similar to those of the premises. In (a), that set is relatively small because most

categories that are similar to horse are also similar to cow. In (b), however, that

set is bigger, since most categories similar to rat are not in the set of categories

that are similar to horse.

Coverage is also related to typicality. The SMC assumes that typical cate-

gories are associated with larger sets of similar categories (of the same concep-

tual level) than atypical ones. For instance, the argument "Horses have property

S"; thus, mammals have property S" is stronger than "Bats have property S;

thus, mammals have property S" because the set of mammals similar to horses

is larger than the set of mammals similar to bats.

Despite being a very successful model thanks to its predictive power, the

SCM has various limitations. One of them is that it does not build on a psy-

chologically grounded notion of similarity. For instance, the model does not

include any precise notion of similarity relations among categories. It uses simi-

larity as an empty notion that can be filled out with different specific measures.

As it was mentioned before, it is desirable for a theory of CBI to build on some

fundamental theory of conceptual knowledge; one that provides a basic notion

of conceptual similarity and that can be used to give a unified explanation of the

diversity of concept-based cognitive phenomena (categorization, concept forma-

tion, language-learning, etc.). Furthermore, as observed by Tenenbaum, Kemp,

and Shafto (2007), the SCM lacks a systematic mathematical foundation. This

is also related to the previous point. The formal structure of this model is not

based on any formal model of inference or categorical relation, but it was di-

rectly designed to model the properties of CBI as described by the empirical

studies.

The approached presented here, while it is close to the SMC model in various

respects, does not suffer from the aforementioned problems since both the formal

and the psychological foundations of the model come from the general theory of

conceptual spaces. Furthermore, the CS-model can account for the same range

of CBI phenomena than the SMC model, while also predicting some results that

are valid in special cases, something that the SMC model cannot do.
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7.4.2 The feature-based model

The other well-known model of CBI was proposed by Sloman (1993) as an

alternative to the SCM. Sloman started by criticizing the assumption that rea-

soning with categories involves the necessary representation of their hierarchical

structure. He argued that inclusion fallacies in reasoning form strong evidence

against that idea. As an alternative, he proposed to understand categorical rela-

tions as based on the overlap of features. "Features", Sloman claims, “represent

a large number of interdependent perceptual and abstract attributes. In gen-

eral, these values may depend on the context in which categories are presented ”

(Sloman, 1993, p. 237).

Sloman develops his feature-based model within a connectionist framework

in which categories are represented as sets of features described by vectors of

real numbers from the [0, 1] interval. With it, he is able to explain ten of the

patterns explained by SCM and three new ones, not treated by Osherson et al.

(1990). He also presents empirical support for the new patterns. The central

idea of this model is that argument strength is positively correlated with the

proportion of features in the conclusion category that are also included in the

premise categories. For instance, in the simple case "All Xs are S; thus, all

Y s are S", the premise category X, and the conclusion category Y can be

represented by two vectors F (X) and F (Y ) of feature values. The strength of

the inductive argument is determined by the following expression: F (X)·F (Y )
|F (Y )|2 ,

where F (X) · F (Y ) can be seen as a measure of the overlap of the features of

X and Y , and |F (Y )|2 a measure of the magnitude of the conclusion category

vector. 10

Unlike the SCM, the feature-based approach does not have foundational

issues, since it is developed within a connectionist framework. 11 One could

think that this connectionist background leaves no space to the CS approach.

However, as it has been argued before (Gärdenfors, 1997; Lieto et al., 2017),

CS is compatible with connectionist approaches.
10F (X) · F (Y ) is the inner product of the two vectors, defined as

∑
i F (X)i.F (Y )i and

|F (Y )|2 is the inner product of F (Y ) with itself, defined as
∑

i F (Y )2i .
11See Rogers and McClelland (2004) for a connectionist approach to semantic cognition.
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In general, the main ideas of Sloman’s model are not in contradiction with

the CS approach. In fact, they could be translated into this framework. The

theory of conceptual spaces also assumes that concepts are represented as col-

lections of properties from different domains. The feature-overlap measure that

Sloman’s use to determine argument strength could be replaced by a similarity

measure in a conceptual space covering the dimensions of the feature vector.

One important advantage of the CS-model over the feature-based approach

concerns the representation of typicality relations. In Sloman’s model, there

is no specific mechanism for accounting for typicality. Both typicality and

similarity relations are reduced to feature-overlap. The model can account

for typicality effects in general arguments because it assumes that typical cat-

egories —such as apple) share more features with their immediate superor-

dinate category (fruit in this case— than non-typical categories. However,

this model cannot account for independent premise-typicality effects in spe-

cific arguments. For instance, if we have three categories A, B and C, and

A is more typical than B but both categories A and B have the same fea-

ture overlap with C, then the model would predict the arguments A → C

and B → C to be equally strong (Heit, 2000, p. 586). The CS approach

does not have this limitation since it is able to explicitly represent indepen-

dent typicality relations both in general and specific arguments. To give

an example, consider two arguments of the form quince → pineapple and

apple → pineapple. The categories apple and quince have the same feature

overlap with pineapple, but since apple is a more typical fruit than quince,

sim(papple, pfruit) is going to be significantly larger than sim(pquince, pfruit), con-

sequently ExpS(apple → pineapple)Fruit > ExpS(quince → pineapple)Fruit .

This is a second example of a new prediction that follows from the CS model.

In general, the two models presented here provide different insights into

CBI. One interesting thing about the CS-model, is that it combines the two

main features of the SMC and Sloman’s model: it is a similarity-based model

that includes a feature-based view of categories. Furthermore, the CS approach

has an important theoretical advantage regarding these other two models; it

inherits from the theory of conceptual spaces an explanation of how knowledge
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domains are formed and structured, and how they are grounded on perception

an action. In that way, the approach presented here is grounded on a systematic

psychological theory about the nature and structure of conceptual systems. At

the same time, this psychological theory comes with a formal model of some

of the main cognitive mechanisms behind conceptual processes. As mentioned

before, the CS-model leverages this formal model and, in that sense, builds on

a solid mathematical foundation. Another difference is, as Feeney (2017, pp.

172-173) notes, that neither SMC, nor the feature-based model can explain the

conclusion effect reported by Hampton and Cannon (2004).

7.4.3 Bayesian models

Besides these two classical models of CBI, Bayesian accounts have recently

become influential in the literature. The first proposal in this area was advanced

by Heit (1998) and consisted of a computational-level analysis that puts the

agent’s knowledge about properties at the center stage of the process of CBI.

His idea is that while evaluating a CBI argument, the agents estimate the

probability of property projections among categories based on her estimation

of the range of the property projected —i.e., the set of categories for which the

property is true and the set of categories for which the property is false—. For

doing so, the agent exploits prior knowledge about other familiar properties,

under the assumption that the property projected is distributed in a similar

manner.

For instance, in an argument of the form "X has property S; thus, Y has

property S", the agent will reason from a set of four basic hypotheses about

the possible range of S: (1) S is true of X and Y , (2) S is true of X and false

of Y , (3) S is false of X and true of Y , and (4) S is false of X and Y . The

prior probability distribution for these hypotheses may vary according to the

similarity between X and Y or other categorical relations. Then, using the

premise of the argument as evidence, the agent will update their beliefs about

the set of hypotheses and estimate the probability of the conclusion using Bayes’

theorem.
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Heit showed that his approach predicts as many properties of CBI as Os-

herson’s and Sloman’s models. However, it has also an important drawback:

it does not include any mechanism for estimating the prior distribution over

the hypotheses about the range of the property. This is mainly because, un-

like the other models (including ours), the Bayesian approach is centered on

property-relations instead of categorical-relations.

Tenenbaum et al. (2007) followed Heit’s approach and made some important

improvements regarding the above problem. Their strategy consists of defining

a set of structures with information about the agent’s knowledge of categorical

relations in different domains and knowledge about the compatibility of differ-

ent properties with these relations. These structures will determine the prior

probability that some property P may be projected from one category X to a

category Y from the same domain. Then, these probabilities may be updated

according to standard Bayesian rules when considering specific category-based

arguments.

This approach can work with different types of knowledge structures. Tax-

onomic systems of categories, causal structures, or spatial knowledge are some

of the knowledge structures that have been studied for CBI in the Bayesian

tradition. This represents an important advantage over the SCM and Sloman’s

model, which have serious troubles for dealing with forms of inductive reasoning

that do not involve natural categories.

There are, however, considerable drawbacks of Bayesian models of CBI. One

is that there is no natural way to represent similarity and typicality in these

models. Another is that probabilistic reasoning is very resource-demanding

when implemented computationally. These drawbacks make the Bayesian mod-

els psychologically unrealistic. 12

12Yang and Long (2020, p. 9) recently found some empirical evidence for this claim. See
also Jones and Love (2011) for a general criticism of the use of Bayesian models in cognitive
science.
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7.5 Methodological considerations

Empirical studies are crucial for research on category-based induction. A ma-

jor challenge for is then to develop quantitative tests for testing the models.

The framework presented in this chapter opens up for a new methodology of

investigating category-based induction. The distance measure and the similar-

ity and betweenness it generates will allow new and more precise quantitative

predictions. We have already seen that, according to the CS-model, when Y is a

subregion of C(X1∪X2∪ · · · ∪Xn), the prediction is that ExpS(X1, X2 → Y )Z

should be maximal. For regions Y , X1 and X2 ; Y lies between X1 and X2 if,

for every y in Y , there are points x1 and x2 in X1 and X2 respectively, such

that y is between x1 and x2. Given this definition, a special case of the predic-

tion above is that when Y lies between X1 and X2, then ExpS(X1, X2 → Y )Z

should be maximal. A second new prediction concerns explicit representations

of independent typicality relations as was discussed before.

Some other predictions are related to the introduction of the notion of vol-

ume of a category. First, the CS-model predicts that premise-specificity is

negatively correlated to argument strength. More formally, it is to be ex-

pected that for categories Y , X1 and X2, if X1 ⊂ X2 then ExpS(X2 → Y ) >

ExpS(X1 → Y ) because V (X2) > V (X1). For instance, arguments of the form

germanshepherd→ cow (or mammal) should be considered as weaker than ar-

guments of the form dog → cow (or mammal). Second, the model predicts that

for categories X1, X2 and Y , if it is the case that X1 , X2 are equally typical,

but that V (X1) > V (X2) then ExpS(X1 → Y ) > ExpS(X2 → Y ). These two

predictions hold ceteris paribus.

These predictions are interesting ways of testing this model. However, do-

ing that depends on having operational procedures for determining betweenness,

similarity and distances. There are general methods for estimating psychologi-

cal distances, such as Multi-Dimensional Scaling (MDS) (see Hout, Papesh, &

Goldinger, 2013, for a review) and Principal Component Analysis (PCA) (see

Abdi & Williams, 2010, for a review). For example, by asking subjects to judge

the similarities of a number of different categories, the data can be analyzed by
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MDS or PCA in order to generate a low-dimensional conceptual space with a

distance measure. Once the distance is established, similarity and betweenness

can be determined, and the predictions presented above can be tested.

As an example of the relevant type of data collection, Hampton and Cannon

(2004) asked subjects to rate the premise typicality, conclusion-typicality and

premise–conclusion similarity on a seven-graded scale. This data could also

have been used to estimate an underlying distance measure that would have

allowed Eqs. (1) or (2) to be tested. 13

7.6 Conclusions

Category-based induction is a fundamental cognitive mechanism for everyday

reasoning that has become a focus of research only during the last decades. In

this chapter, a new mathematical framework of such inferences, that can explain

almost all of the available empirical data, was presented. The model subsumes

the earlier SCM by Osherson et al. (1990) and Sloman’s (1993) feature-based

model and it generates new predictions. Furthermore, it builds on solid formal

foundations and it relies on a systematic theory of conceptual knowledge that

has been proven successful in the explanation and modeling of others concept-

based cognitive phenomena.

From a philosophical point of view, CBI is an interesting phenomenon be-

cause it clearly shows the degree to which concepts and reasoning are inter-

twined, challenging the formalist thesis. In Chapter 5, we saw how material in-

ferences exploit core semantic knowledge about the structure of lexical concepts,

and Chapter 6 showed how nonmonotonic reasoning uses the prototypical struc-

ture of categories to tackle uncertainty. Here, we saw a more complex inferential

mechanism that exploits a combination of properties of category representation

to make inductive inferences with sparse information. All things considered, I

believe that the ideas so far defended make a case for developing a richer view

of reasoning that goes beyond the rule-based and propositional approach and

takes conceptual representation as constitutive of the very process of inferring.
13Also Rips (1975) uses data from MDS for analyzing CBI arguments.
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Furthermore, the models presented so far complement well other attempts

of explaining forms of semantic-based inference with conceptual spaces, like

reasoning with analogies and metaphors in (Gärdenfors, 2000, 2008), or inter-

polative inference in (Schockaert & Prade, 2013). If such a program can be

worked through, it would form a unified basis for human inference that consid-

erably extends the classic logicist and probabilistic approaches.



181

Chapter 8

Beyond language: Model-based

inference in science

In this chapter, I analyze the role of concepts and representation

in scientific reasoning. I reconstruct Stephen Toulmin’s procedural

theory of concepts and explanations to develop two overlooked ideas

from his philosophy of science: methods of representations and in-

ferential techniques. I argue that these notions, when adequately

articulated, could be useful for shedding light on how scientific rea-

soning is related to representational structures, concepts, and ex-

planations within scientific practices. I explore and illustrate these

ideas by studying the development of the notion of instantaneous

speed during the passage from Galileo’s geometrical physics to an-

alytical mechanics. In the end, I argue that methods of representa-

tions could be considered as constitutive of scientific inference; and

I show how these notions relate to other similar ideas from contem-

porary philosophy of science, like those of models and model-based

reasoning.1

1This chapter is based on the article "Methods of Representation as Inferential Devices",
published in 2019 in the Journal for General Philosophy of Science (Osta-Vélez, 2019).
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8.1 Introduction

Throughout this dissertation, I have argued in favor of understanding reasoning

as a mechanism exploiting much more than propositional structure. In Chap-

ter 3, a pluralistic view of inference was advanced: depending on the cognitive

task, we represent conceptual information in different ways —images, formulas,

diagrams, natural language, and so on. Since inferential mechanisms depend on

the representational structures that support them, the diversity of representa-

tion formats implies a variety of ways of inferring. 2 Nevertheless, most of the

discussion here developed concerns forms of concept-based inferences that are

quite similar, since they are all supposed to use conceptual spaces as represen-

tational format. Furthermore, these inferences are also language-based, even if

they do not build on syntax, but on our semantic intuitions.3

In this chapter, I discuss a type of reasoning that is not exclusively language-

based, but builds on complex representational structures, external to the cog-

nitive agent and whose use requires extensive prior instruction. When we think

about reasoning in this sense, scientific thinking comes to mind as the paradig-

matic example. Scientists train for years to make inferences involving highly

abstract concepts mediated by complex informational structures like models,

formulas, graphs, and/or computer simulations. Considering that scientific rea-

soning involves different strategies and mechanisms than everyday reasoning, it

is important to see how it fits within a general theory of inference.

The classic literature on scientific reasoning —historically monopolized by

philosophers— has mainly understood this process from the formalist perspec-

tive, with logic and probability as its central engines, and deductive inference as

its paradigmatic case. In general terms, reasoning was pictured as an individ-

ual ability, depending exclusively on some "hardwired" cognitive mechanisms,
2In Section 3.3, I explained how this idea comes from a discussion in AI regarding the rela-

tion between the structure of information and the computational efficiency of the mechanisms
that exploit them.

3The inferential mechanisms studied so far fall under what Boghossian calls —following
the terminology of the dual-system view (Frankish, 2010)— "1.5 inferences" (Boghossian,
2014, 2018). That is, inferences which are fast and intuitive but still at the personal-level
—i.e., the agent is conscious of why and how she draw them. In this chapter, we will discuss
inferences that are typical of system 2, i.e., fully conscious, effortful, and resource consuming.
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and specified by some set of domain-general rules operating over a sentence-like

representational system. In recent decades, however, this view has been pro-

gressively abandoned by many cognitive scientists (Mercier & Sperber, 2017)

and, to a minor extent, by philosophers (Clark, 2006; Hacking, 2009; Harman,

1986; Wartofsky, 1987).The main reason behind abandonment is that this highly

idealized view of thinking neglects some relevant factors involved in reasoning,

notably, its socio-cultural dimensions and its dependence on non-linguistic and

external devices.

A good theory of reasoning should explain not only the internal processes

taking place in the mind/brain of cognitive agents, but also how these processes

are influenced by the socio-cultural context in which the agents are embedded

and the role of tools and external devices that agents use while performing dif-

ferent (high-level) cognitive tasks. Following this direction, cognitive scientists

have proposed other alternative theories to account for this "situated" charac-

ter of reasoning. To name some: Mercier and Sperber’s "argumentative theory"

(Mercier & Sperber, 2017) which proposes that the key element for understand-

ing the origins and function of reasoning is that of social interaction; Hutchins’s

"distributed approach", which sees cognition as a process distributed across

people and artifacts, and dependent both in internal and external representa-

tions (Hutchins, 2010); or "the extended mind" theory, which proposes that

high-level cognitive processes are driven, to a great extent, by elements that are

external to the cognitive agent herself (Clark, 2006; Clark & Chalmers, 1998).4

This tendency was echoed in the philosophy of science —where the classical

view was deeply rooted in— and has encouraged some philosophers to pro-

pose more realistic accounts of scientific thinking. Some notable examples are

Hacking’s "styles of reasoning" (Hacking, 1994), describing scientific reasoning

as a multi-dimensional notion depending on domain-specific forms of reasoning

that are socially and culturally developed; Nersessian and Magnani’s work on

model-based reasoning, which shows how scientific models are a central part of

scientific reasoning abilities and practices (Magnani, 2004; Nersessian, 2010); or
4From a more fundamental perspective, all these theories are a reaction to the formalist

view of high-level cognition promoted by the computationalist approach discussed in previous
chapters.
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Wartofsky’s "constructive mentalism", which claims that understanding scien-

tific cognition implies inquiring into the historical processes that give rise to the

specific forms of culturally-situated cognitive practices (Wartofsky, 1987).

Before all these proposals, within the framework of a systematic critique of

classical logic as an adequate theory of reasoning (see Toulmin, 1971, 2003),

Stephen Toulmin developed an "ecological" approach that understands scien-

tific thought through two central notions: "method of representation" (MR)

and "inferential technique" (IT). For Toulmin, scientific reasoning cannot be

explained by reducing it to a set of hardwired cognitive capacities working over

amodal inputs, and independently of any socio-cultural context. On the con-

trary, it can only be understood as a socially-embedded activity, which depends

on mastering different methods for representing information that make possible

specific forms of inferences. Toulmin uses these two notions in his two most

important works on the philosophy of science (Toulmin, 1953, 1972a), and they

play a central role in his explanatory-based approach to science. However, he

does not provide analytical definitions for them, nor does he use them system-

atically throughout his works.

In what follows, I intend to explore the notions of MR and IT and articu-

late them with Toulmin’s procedural view of concepts and explanation. I will

show that they constitute interesting analytical categories for studying scientific

practice. In particular, they can shed some light on the complex relationship

between scientific reasoning, models, and conceptual change. I will later ex-

plain how Toulmin’s analysis fits the general definition of inference proposed in

this work and gives some interesting insights into the complexity of scientific

concepts and their relation with reasoning.

The rest of the chapter is organized as follows. In Section 8.2, MRs and

ITs are characterized, and their relations to other central notions in Toulmin’s

philosophy of science, like explanation, conceptual use, and conceptual change,

are explained. Section 8.3 applies the previous ideas to a case study from

the history of mathematical physics. More precisely, it will be shown how the

development of an explicit notion if instantaneous speed in physics was possible

thanks to introducing a new MR that allowed for a new way of reasoning about
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motion. Section 8.4 finally shows how Toulmin’s ideas relate —and anticipated

in some cases— some important notions from the contemporary philosophy of

science like "models" or "model-based reasoning". At the end, the relations

between model-based reasoning and inferential pluralism will be discussed.

8.2 Representational methods and inferential

techniques

First, it is important to keep in mind that Toulmin’s philosophical project

was, to a big extent, a reaction to some foundational views in epistemology —

notably Frege’s program (Toulmin, 1972a, pp. 52-55)— that had a deep impact

in philosophy of science at the beginning of the twentieth century. 5 These views

—that Toulmin called "absolutists"— assumed that the job of philosophy was

to look for the ahistorical and immutable principles of rationality that would

underlay scientific knowledge. In particular, Toulmin was a fierce opponent of

logical positivists, and as such, he was against formalist views of reasoning.

According to him, logical positivism made the mistake of identifying scientific

rationality with "logicality", that is, to suppose that "the rationality of a science

could be explained in terms of the logical attributes of the propositional systems

intended to express its intellectual content at one time or another" (Toulmin,

1974, p. 404). Toulmin thought, on the contrary, that scientific rationality

was historically and culturally situated, and as such, dynamic in nature. In

this sense, he proposed that elucidating the principles underlying a rational

enterprise like science, required to dig into the complexities of the "intellectual

ecology" that characterize it in different periods of times (Toulmin, 1972a, Ch.

4.3).

Secondly, Toulmin defended an explanatory-centered view of science in

which its main role was to provide explanations of phenomena as a way for

obtaining understanding—in contrast to the traditional way of thinking of sci-

ence as allowing for prediction. In order to understand what scientists consider
5Toulmin discontent is related to some of the problems of Frege’s views on inference and

meaning discussed in Chapter 2 and 3.
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"rational" in some specific period of time, philosophers have to analyze the

"explanatory practices" used in scientific disciplines in that period. Toulmin

thought that these practices were articulated around ideals of natural order

—also called "explanatory ideals"—, that is, background explanatory struc-

tures that determine some "natural way" in which some class of phenomena

is supposed to behave (Toulmin, 1961, p. 79). They establish what is the

"normal"—and so the "expected"—behavior of the phenomena studied. When

some phenomenon deviates from the ideal, it needs to be explained, and for

doing that, scientists propose laws that encode specific explanatory procedures

to account for them. For instance, one of the explanatory ideals which ar-

ticulate classic geometrical optics is the principle of rectilinear propagation of

light. Refraction is a phenomenon that deviates from the ideal, and as such

it begs for an explanation. In this sense, Snell’s law of refraction is an ad-hoc

law which accommodates the deviant phenomenon to the background ideal of

natural order.

Toulmin used to call his approach to explanation "procedural" because

the focus was not in abstract patterns of arguments —like in the deductive-

nomological model— but on concepts-in-use. He conceived conceptual use in

science as depending on the mastering of standardized procedures for repre-

senting and modeling natural phenomena. For instance, possessing the concept

of refraction from geometrical optics does not only involve knowing its ab-

stract definition, but requires to master those symbolic techniques —geometrical

and algebraic— used for representing and reasoning about cases of refraction.

Most scientific concepts require, in order for someone to grasp them, master-

ing some of these techniques for representing information (Toulmin, 1972b, p.

161). In this sense, and because Toulmin thinks that concepts and conceptual

systems are the fundamental units of science, understanding scientific practices

—notably reasoning and explanation— requires to understand the MRs used

and developed by scientific communities.

But, what exactly are MRs? While Toulmin used this notion extensively in

his two most ambitious works on philosophy of science, he did not provide an

analytical definition of it. Roughly, MRs are "intellectual techniques" that allow
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scientists to construct and use models of target phenomena. In general, any

standardized symbolic system that scientists use for representing phenomena

—diagrams, pictures, mathematical formulas, computer programs, etc.— counts

as a MR. Toulmin suggests that the crucial role that MRs play in scientific

theorizing is related to how they make up for the representational limitations

of natural language. He writes:

..."representation techniques" include all those varied procedures by

which scien- tists demonstrate—i.e. exhibit, rather than prove de-

ductively—the general relations discoverable among natural objects,

events and phenomena: so, comprising not only the use of mathe-

matical formalisms, but also the drawing of graphs and diagrams,

the establishment of taxonomic "trees" and classifications, the de-

vising of computer programmes, etc. (Toulmin, 1972a, pp. 162–163)

Some of the most important features of MRs are: (1) they are associated

with the explanatory ideals of scientific disciplines; (2) they are generative,

since they establish the rules and the symbolic resources that will constitute

particular models that scientists will use to represent, understand, and reason

about phenomena; (3) they are part of the "collective methods of thought"

(Toulmin, 1972a, viii), and as such they are "communal" in nature —their use

and "validity" depends on the agreement of the scientific community; (4) they

play a central role in discovery; and (5) they are essential to scientific reasoning

because they bring with them new ITs. In the remainder of the chapter, I will

focus on (4) and (5) and their mutual relation.

Regarding the notion of "inferential technique," it can be roughly defined

as the set of procedures that allow scientists to draw model-based inferences

within the context of a particular MR. More specifically, when scientists try to

explain some phenomenon, they represent it by building a model using some

specific symbolic resources. Many of the inferences that scientists are going to

make using this model, depend on procedures for manipulating these symbolic

structures. As we will see, ITs are important because they challenge the classical
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view of reasoning that builds on the formality thesis (see Toulmin,1972a, pp.

487–488; or Toulmin, 1953, p. 25).

Regarding the relation between (4) and (5), Toulmin thinks that MRs play

a central role in discovery because they allow for the introduction of new ways

of thinking about phenomena:

The heart of all major discoveries in the physical sciences is the

discovery of novel methods of representation, and so fresh techniques

by which inferences can be drawn. (Toulmin, 1953, p. 34)

The above quotation only makes sense when we consider Toulmin’s ideas

regarding the "ecological" relation between conceptual use, representation, and

inference. As suggested before, Toulmin’s views about concept possession are

also procedural. Scientific concepts are neither linguistic entities nor abstract

ideas; instead, they obtain their content by being part of "communal" practices

that involve mastering representational techniques for explanatory purposes.

Scientific concepts are not abstract entities that agents somehow "grasp" —as

it would be from a Fregean perspective. They are acquired when agents learn

how to produce explanations by following the symbolic —and inferential— pro-

cedures established by the MR of the scientific discipline to which the concepts

belong. Furthermore, Toulmin believes that this procedural character of con-

cepts is not lost when scientists do their thinking "in their heads". But internal-

ized thinking that tokens some scientific concept reflect the external symbolic

procedures that characterize the MR (Toulmin, 1972a, p. 163).

Toulmin illustrates these ideas by analyzing the concept light in geometric

optics. As with many other concepts, light has a scientific version and an

everyday version of it. Propositions including light in the everyday sense, are not

necessarily supported by a MR, and so their inferential role is different from the

scientific version. In its everyday use, light ’s inferential role is associated with

concepts like vision, shadow, darkness, color, and so on. For instance, it can take

part of inferences like "If there is not light in the room, I will not be able to see."

But within the context of geometrical optics light shows a different inferential

role due to its association with a MR. In particular, the introduction of the
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principle of rectilinear propagation allows to model optical phenomena with

geometrical methods and brings a "fresh way of drawing inferences" (Toulmin,

1953, p.25) based on the reading/manipulation of geometrical diagrams and

other symbolic procedures. For instance, our reasoning about the length of a

shadow cast by a wall depends on the construction of geometrical diagrams

and the application of arithmetic and trigonometrical techniques to it. In other

words, this kind of reasoning build on a set of model-based inferences that

exploit formal properties of the model in order to draw some conclusion about

the target phenomenon (Figure 8.1).

Figure 8.1: Geometrical diagram used for calculating the
length of the shadow in basic geometrical optics.

These symbolic procedures are not heuristic tools that facilitate reasoning.

They constitute the inferential technique of geometrical optics and, according to

Toulmin, they cannot be fully translated to any language-based logical scheme:

If the novel techniques of inference-drawing here used have not been

recognized by logicians for what they are, that is probably because

in geometrical optics one learns to draw inferences, not in verbal

terms, but by drawing lines. (Toulmin, 1953, p. 26).

In this sense, the content of the scientific concept light becomes associated with

the kind of procedures aforementioned:

The view of optical phenomena as consequences of something trav-

elling and the diagram-drawing techniques of geometrical optics are

introduced hand-in-hand: to say that we must regard light as trav-

elling is to say that only if we do so can we use these techniques to

account for the phenomena being as they are. (Toulmin, 1953, p.

26)
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These ideas bring Toulmin closer to an inferentialist view of (scientific)

meaning (see Section 2.2). But with the peculiarity that for him, the inferences

contributing to the meaning of scientific concepts are not propositional, but

model-based. Furthermore, Toulmin’s ideas regarding inference and MRs have

as corollary that there is no unique —cross-disciplinary— form of scientific in-

ference, but different ITs are constituted by situated practices involving different

systems of representation and procedures of explanation. The central epistemic

value for these practices is not only to explain the data but to understand phe-

nomena in new and productive ways. Since different disciplines use different

representational methods and explanatory ideals, ITs are diverse. In this way,

Toulmin’s model-based approach involves a form of inferential pluralism similar

to the one defended in Chapter 3.

Now, coming back to (4), Toulmin seems to think about scientific discovery

mainly as conceptual innovation—at the level of individual concepts or at the

level of "conceptual populations" (Toulmin, 1971). In this sense, and because

of the previously explained relation between concepts, inference and represen-

tation, conceptual change could involve changes at the level of the MR and its

associated IT used within a scientific discipline. Toulmin endorses this idea in

different ways throughout various of his works. However, he does not give any

detailed example of it in the history of science. In what follows, I will analyze

the development of the concept of instantaneous speed during the passage from

geometrical physics to analytical mechanics using the analytical tools explained

above. With this, I will try to illustrate how representational techniques are

involved in conceptual development in science, and how scientific concepts and

reasoning are interwoven with representational structures.

8.3 From Geometrical Physics to Mathematical

Physics

Conceptual change has classically been understood as a problem circumscribed

to the linguistic dimension of science. Philosophers of science have tended
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to focus on language-related issues, like referential stability or the possibility

of translations between successive theories, disregarding the relations between

scientific language and other elements of scientific theorizing like models and

reasoning.6 Toulmin’s approach to conceptual change is centered in the latter

relation. For him, the "symbolic aspect" of scientific practice —the one related

to concepts— comprises both natural language and MRs (Toulmin, 1972a, p.

163). In this sense, conceptual changes should be studied by analyzing the

dynamic relation between MRs, concepts and procedures of explanation. I will

apply these ideas to the study of the development of the notion of instantaneous

speed during the passage from Galilean geometrical physics to analytical me-

chanics. For doing that, I follow two similar analyses of this episode by Michel

Blay (1992; 1998) and Marco Panza (2002). This case study will allow me to

make two points: one about the strong dependency relationship between the

MR and reasoning, which exemplifies the relation between inference and repre-

sentation discussed in Chapter 3; and a second one concerning the role of the

MR in the development of concepts, a point which, I believe, is often overlooked

in the literature on conceptual change in science.

8.3.1 Galileo’s geometrical method

The MR that characterized Galileo’s physics was based on two main mathe-

matical tools: the "method of the configuration of qualities" (an application of

two-dimensional geometry to kinematics) and the eudoxian theory of propor-

tions. The first one was developed in the Middle-Ages following the work of

Nicolas Oresme. Oresme’s intention was to represent the variations of qualities

(phenomena enduring in time like velocity, temperature or luminosity). Accord-

ing to this method, qualities are measured through its intensio and extensio.

The intensio (rate of change of the quality) is measured in degrees represented

as straight lines associated with different points in a horizontal line representing

the extensio of the quality.
6Except for the cases of Nersessian (1999; 2010) and Thagard (1992).
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For example, when we consider motion, speed is seen as an intensive quantity

in relation to the extensive quantity time. At different points at the extensio

line, speed has a correspondent degree, which can be represented by a per-

pendicular line. Oresme saw that the figures formed by delimiting the lines

of extensio and intensio could represent different types of motion, and what is

more, that the area of that figures was equivalent to the total space traversed

by the body in motion (Clagett & Oresme, 1968, p.15). As Schemmel explains

(2008, p. 65), this equivalence is due to the medieval idea that speed is space

traversed in a specific period of time. In this sense, a uniform quantity may

be represented by a rectangle, a uniformly difform quality by a triangle or a

trapezium (see Figure 8.2 ) and a difformly difform quality by various kinds of

irregular figures.

Figure 8.2: Representation of an uniformly difform quality,
like, for example, uniformly accelerated motion.

Galieo’s reasoning about motion was based on this very MR, 7 that implied

a great deal of diagrammatic manipulation and visual thinking. Along with it,

eudoxian theory of proportions was used as the tool for studying the mutual

dependencies of magnitudes by comparing ratios. This last method was the

precursor of the functional analysis of motion, which defines velocity as v = ∆s
∆t

.

But Galileo could not arrive to this last definition because the theory of propor-

tions included an "homogeneity constraint" establishing that only magnitudes

of the "same kind" could be compared in a ratio (see Def. 3 and 4, Book V, The

Elements). Since time and speed are represented by lines, and space by areas,
7There are, however, some differences concerning the interpretation of the extension of

the quality in Oresmes and Galileo (see Palmerino, 2010; Schemmel, 2008, for a detailed
explanation).
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it was impossible to form ratios between them. Hence, Galileo could not define

speed explicitly, but he had to use a more complex formula for expressing pro-

portional relations between different quantities (Guicciardini, 2013) : v1
v2

= s1
s2
. t1
t2

(using contemporary algebraic notation).

This initial constraint for finding a simple definition to the notion of velocity

clearly illustrates Toulmin’s claims that the explicit definition of some concepts

depends on the availability of a MR that supports their inferential role. In

general, as various scholars have observed (cf. Giusti, 1994; Palmerino, 2010;

Palmieri, 2003; Sellés, 2006), the MR that Galileo used allowed for the develop-

ment of some concepts but also imposed serious constraints to the development

of others:

[W]hen a mathematical theory is chosen to describe the phenomena

(but very often there is no freedom in this choice, and Galileo had

only the theory of proportions at his disposal), the mathematical

language will condition not only the manner of exposing, but also

sometimes the way of conceiving the very nature of things, to the

point that it is not always easy to separate what belongs to the au-

thor’s thought from what is instead determined by the underlying

mathematical theory, which organizes the phenomena of nature ac-

cording to its own structures. (Giusti, 1994, p. 493, my translation)

Giusti’s observation is perfectly aligned with Toulmin’s ideas about how

MRs set the limits of conceptual development in scientific practices.8 As we

just saw, Galileo’s analysis of motion is seriously limited by the mathemat-

ical —representational— structure that guides his reasoning. In particular,

because it prevents Galileo from reasoning with the notion of continuity and

with a proper notion of instantaneous speed. As Blay explains (1992, pp. 133-

151), within the framework of geometrical physics —the tradition of Galileo,

Descartes and Newton— there was an operational, yet non-explicit, notion of

instantaneous speed. And it was necessary to wait until the development of
8Following Roux (Roux, 2010, p. 3), we can say that Galileo’s case shows how mathemat-

ical language is not "conceptually neutral".
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analytical mechanics to have the representational tools that will make possible

one.

Galileo used the notion of degree of speed as an informal tool for capturing

the general idea of instantaneous speed. We can see this notion operating in

Galileo’s proof of the Mean Speed Theorem, which establishes a relation between

uniform motion and uniformly accelerated motion. The Theorem I, Proposition

I of the Dialogue expresses the following:

[T]he time in which any space is traversed by a body starting from

rest and uniformly accelerated is equal to the time in which that

same space would be traversed by the same body moving at a uni-

form speed whose value is the mean of the high- est speed and the

speed just before acceleration began. (Galilei, 1954 [1632], p. 173)

Galileo’s reasoning in the proof is built around the diagrammatic representation

of a particular case (see Figure 8.3):

Figure 8.3: Diagrammatic representation used for reasoning
about the mean speed theorem (Galilei, 1954 [1632], p. 173).

The line AB represents the time in which a body travers the space CD falling

from rest from point C. All the lines parallel to EB represent the degrees of speed

at different instants starting form A, while EB itself represents the highest value

of speed gained during AB. F bisects EB and FG is drawn parallel to AB until
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reaching GA, which is parallel to FB. The formed figures AGFB and AEB

represent the two different forms of motions mentioned in the above quotation.

And their relation—which is the central point of the theorem—is determined

by studying the geometrical properties of the fig- ures that represent them.

In particular, the areas of each figure is assumed to be equal to the infinite

"aggregate" (totidem velocitatis momentum) of degrees of speed. Since both

areas are equal, then the equality of both overall speeds is inferred. And as a

consequence, Galileo concludes that the space traversed by each motion is also

the same.

This proof clearly illustrates Toulmin’s ideas regarding how scientific rea-

soning depends upon representational techniques.Galileo’s reasoning is clearly

model-based, in the sense that it exploits formal properties of the model —

according to the rules established in the MR— in order to make inferences

about the phenomenon represented. One of the central points of Galileo’s rea-

soning is —as it was just said— the idea that the area of a geometrical figure is

made up of an aggregate of an infinity of lines (see Clavelin, 1968, p. 316), and

in that way the geometrical model represents the increase of momentum in time.

This is so due to the representational properties of the model, since geometri-

cal entities are considered continua like momentum and time (see Ducheyne,

2008, for a detailed explanation). A similar thing happens with the notion of

degree of speed, that tries to capture the idea of instantaneous speed. Galileo

did not have an explicit definition of instantaneous speed, because within the

framework of the MR he used for analyze motion, speed was considered as an

intensive magnitude increasing by "successive additions of degrees" (Blay, 1998,

p. 72), so his reasoning does not use an explicit definition of instantaneous speed

but it depends entirely on the formal properties of the MR. This was also the

case in Oresme’s proof of the same theorem. As Panza writes:

Though it explicitly deals with speed as an instantaneous (or punc-

tual) quality, the proof of this theorem is not founded on any explicit

definition, either of speed in general, or of instantaneous (or punc-

tual) speed. It simply works because of a diagrammatic formalism
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associated to the metaphysical idea of speed (or quality, in general).

(Panza, 2002, p. 260).

8.3.2 Towards an analytical method of representation

In the Principia, Newton takes a big step towards the development of the formal

notion of instantaneous speed, and with that, towards the mathematization of

motion.9 That implied the development of a new MR that will play a crucial role

in the conceptual development of analytical mechanics.Grosso modo, Newton

developed the concept of motion within the framework of dynamics, this is,

explaining motion in relation to the notion of forces as cause. According to

Newton, motion is a relation between two magnitudes represented by a curve,

which can be described within the framework of Cartesian geometry. The use

of analytical methods in geometry for analyzing motion implied a substantial

advance in relation to the Galilean MR. Still, Newton was tied to geometrical

ideas when reasoning about motion. As Panza emphasizes:

As long as motion is, for Newton, a mathematical object, it is essen-

tially a geometrical one. [...] One of the aims of analytical mechanics

in 18th century is that of trans- forming the Newtonian science of

motion in an analytical science, i.e. to pass from a geometrisation

of the science of motion to a new theory of motion where the latter

is just an analytical object. (Panza, 2002, p. 263)

Regarding the notion of instantaneous speed, as Blay showed, Newton

worked with an"operative" notion of it, but without any explicit definition.

For example, in the proof of the Proposition V, Theorem III, in the Principia

I, he uses the idea of instantaneous speed with a variable segment which rep-

resents the speed in an instant as the areas of the figures under the motion

curve (see Figure 8.4). The reasoning is still geometrical, but it’s also based on

an infinitesimal idea that he cannot really represent formally: supposing that
9It is common in the literature to talk about mathematization in Galileo, but I believe,

following Blay and Panza, that there is an important difference between geometrization of
motion in the tradition of Galileo–Descartes–Newton and the kind of mathematization in the
development of analytical mechanics.
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the area can be divided into innumerable equals intervals (see Blay, 1992, pp.

135–137).

Figure 8.4: Proposition V, Theorem III, Principia I (Newton,
1999 [1687], p. 642).

However, since an explicit definition of the notion of instantaneous speed

is not at disposal, it is impossible to explicitly reason with that concept. And

this could be easily seen as a conceptual limitation due to the MR in use. And

as Panza said (2002, p. 246), this limitation is not an expository choice, but a

consequence of the very method that Newton was using to reason about motion.

Another central change made by Newton was to eliminate the metaphysical

interpretation of motion as a quality (ibid., 263). That implied a big advance

in the explanatory structure behind the Galilean interpretation of motion, and

it will have a deep impact on the MR, notably because the new —analytical—

notion of motion will not be affected by the homogeneity constraint of the theory

of proportions.

The crucial step for leaving behind the geometric MR for understanding mo-

tion, as well as the conceptual limitations that came with it was taken by Pierre

Varignon. His interpretation of the concept of speed at each instant, which is

valid for both rectilinear and curvilinear motion, was a crucial step towards the

consolidation of a new MR in physics: analytical mechanics. Varignon built on

Leibniz’s differential —using the method developed by l’Hôpital in Analyse des

infiniment petits (1969)— in order to define the velocity at instant t as valid for

every infinitesimal interval of time dt. His argument was straightforward: since

t+ dt ≈ t, speed does not vary and so v(t) ≈ v(t+ dt). This allowed Varignon
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to give an explicit algebraic definition of instantaneous speed as: v = ds
dt
, as

well as of other crucial functional relations like dv = d2s
dt

and y = dv
dt

("force of

instantaneous acceleration").

Using Toulmin’s analytical tools again, we can see in this example how the

explicit definition of the notion of instantaneous speed depended on the MR

in use; clearly illustrating his idea regarding the role of MRs in conceptual

development. The mathematical language used in physical theories —and more

generally, the symbolic structure used in a MR— is not "conceptually neutral"

(cf. Roux, 2010), but quite the opposite. In fact, it is not a "language" in which

we can express any content, or any "abstract idea" but, in many cases, it is

the condition of possibility of the very emergence of the content of these ideas

and of their proper systematic use within a particular IT. Furthermore, with

the new MR of analytical mechanics comes a whole new IT for reasoning about

motion: algebraic-based reasoning instead of geometrical case-based reasoning.

As Blay explains:

[T]he figure, essential to the development and the organization of the

geometric- infinitesimal thinking, gradually becomes simple diagram

with Varignon. This is to say, that the figure loses its traditional

value of intellection in order to take a secondary value of mere illus-

tration. ((Blay, 1992, p. 16), my translation).

Furthermore, one of the main advantages of the new algebraic-based IT is

that it allows reasoning with generality, and is not tied to any particular figure

like in the Galilean-style of physics. As Panza explains:

This representation enables Varignon to eliminate any constraint of

homogeneity, since it allows him to compare spaces, times, speeds

and accelerative forces by means of a comparison of segments [...].

These identities make the solution of a number of cinematic and

dynamic problems independent of a geometric analysis of the data

are expressed by means of suitable equations, the solutions can also

be expressed by other equations derived by using the algorithm of

the calculus. (Panza, 2002, p. 265)
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In summary, this case study illustrates the two main features of MRs. First,

they are involved in conceptual change and conceptual use.Galileo’s way of un-

derstanding motion imposed serious limits to the development of an explicit

notion of instantaneous speed. However, he managed to reason with an oper-

ational version of this concept by exploiting the geometrical properties of his

MR. Furthermore, as it was explained above, proposing an explicit notion of

instantaneous speed required the development of a new MR for thinking about

motion. Secondly, this case study shows how scientific reasoning relies heav-

ily on representational techniques. As it was explained before, the two MRs

studied —the geometrical and the analytical one— provide their own symbolic

resources to build models for analyzing motion. These models work as infer-

ential devices that make possible different patterns of inferences, and in this

sense, different "styles of reasoning" about motion in physics.

8.4 Models, Model-based Reasoning, and Infer-

ential Techniques

Toulmin’s notion of IT was a pioneering attempt to propose a more realistic

alternative to the traditional view of scientific reasoning based on the formal-

ity thesis. However, looking beyond its historical merit, one could argue that

Toulmin’s view is not useful today because it is redundant with the new "envi-

ronmental" perspectives that proliferate in contemporary philosophy of science.

Particularly with the notion of model-based reasoning developed mainly by

Nersessian (1999; 2010), Giere (1999; 2004; 2010) and Magnani (2002; 2004).10

I will argue that, on the contrary, Toulmin’s approach is not redundant but

complementary to the model-based reasoning approach (MBRA). For that, I

will briefly compare these two views in order to show their strong coincidences

and their relevant differences.
10Toulmin’s ideas on representation, specially those developed in his 1972 book, are also

a clear antecedent of Suarez’s inferential view of scientific representation (Suárez, 2004).
However, discussing this particular relation exceeds the scope of this article.
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The first common point concerns the role of the notion of "model" in these

two views. Both Toulmin and the MBRA consider models as the key element for

understanding scientific practice, emphasizing their role in scientific reasoning,

concept formation, and discovery in general (Giere, 2004; Morrison & Morgan,

1999; Nersessian, 1999).

One important account of models within the MBRA was developed by Giere

(1999). He defends a "representational" view of models 11 which sees them as

the structures which enable us to ‘access’ phenomena, playing a central role in

scientific theorizing. They are not just tools for interpreting how mathemat-

ical formulae and theoretical principles connect with actual phenomena; but

they are the very target of these principles and formulae. Scientists can speak

of mathematical structures as describing phenomena thanks to the supposed

representational properties of models.

In Giere’s view, models are constructed according to theoretical principles

(like Newton’s laws, Darwin’s principles, etc.), which at the same time gain

meaning thanks to models, since we cannot understand them literally as laws

of nature. These principles work as "general templates" (Giere, 2004, p. 745)

for the construction of models:

[S]cientists generate models using principles and specific conditions.

The attempt to apply models to the world generates hypotheses

about the fit of specific models to particular things in the world.

Judgments of fit are mediated by models of data gener- ated by

applying techniques of data analysis to actual observations. Specific

hypoth- eses may then be generalized across previously designated

classes of objects. (Giere, 2004, pp. 60-61)

Toulmin also understands models as representational. However, his central

unit of analysis of science is not strictly models but MRs, this is —again—

the generative techniques and procedures that underlies the construction of

particular models. In Toulmin’s view, the epistemological dimension is center
11Against what he calls an "instantial view", which understands models as instantiations

of the axioms and mathematical structures of theories and focuses on the problem of truth
and reference in the relationship between models and target phenomena.
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stage. Explanation, conceptual use and reasoning are all interrelated aspects of

a model-based practice whose central goal is to provide understanding. MRs,

hand in hand with ITs, constitute new and productive ways of thinking about

already known phenomena, and in that way, they provide scientific understand-

ing:

By making the journeys (inferences) so licensed, the physicist finds

his way around phenomena: by thinking of the systems he studies

in terms of appropriate models, he sees his way around them and

comes to understand them. (Toulmin, 1953, p. 104)

Toulmin, as Giere, does not see theoretical principles as laws of nature that

could be literally interpreted as talking directly about phenomena. They gain

their meaning only in association with MRs and explanatory procedures that

influence the construction of models that allow us to reason (indirectly) about

phenomena:

If the layman is told only that matter consists of discrete particles,

or that heat is a form of motion, or that the Universe is expanding,

he is told nothing or rather, less than nothing. If he were given a

clear idea of the sorts of inferring techniques the atomic model of

matter, or the kinetic model for thermal phenomena, or the spherical

model of the Universe is used to interpret, he might be on the road

to understanding; but without this he is inevitably led into a cul-

de-sac. (Toulmin, 1953, p. 39)

It seems fair to see Toulmin as one of the pioneers of the representational

view of models, and in particular, his approach is very close to Giere’s, but

—I believe— with some additional virtues. Notably, it does not understand

models as abstract and independent objects but as part of a situated, cognitive

practice connecting understanding, inference, and explanation. In Giere’s view,

these elements are (supposedly) connected, but he does not specify how, while

Toulmin’s procedural view of concepts and explanation does.

Coming back to reasoning, within the MBRA, models also play a central

role in it, and it’s at this point where the deep similarities between the MBRA
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and Toulmin’s approach become clear. Nersessian (1999) defines "model-based

reasoning" as an inferential process that involves the construction and manipu-

lation of various kinds of representations, not mainly sentential and/or formal,

but associated with multiple formats of representation of information. As she

explains:

In model-based reasoning, inferences are made by means of creat-

ing models and manipulating, adapting, and evaluating them. A

model, for my present purposes, can be characterized loosely as a

representation of a system with interactive parts and with repre-

sentations of those interactions. Model-based reasoning can be per-

formed through the use of conceptual, physical, mathematical, and

computational models, or combinations of these. (Nersessian, 2010,

p. 12)

ITs are the model-specific patterns of reasoning that characterize the cogni-

tive practice of scientists working within a specific discipline which use a specific

MR. These patterns are rule-based procedures that make use of multi-modal

elements of the model and follow the explanatory schemes involved in the MR.

It is easy to see that ITs and model-based reasoning are deeply similar notions,

but still, they are not exactly the same.

The main difference between these two notions is that the study of model-

based reasoning is generally oriented to the specification of some domain-general

cognitive mechanisms that are involved in the cognitive manipulation of models

—for example: analogical reasoning, mental modeling, manipulative abduction

(Magnani, 2011, Ch. 3), or visual reasoning. While ITs, on the other hand, are

concerned with how the different model-specific symbolic systems, schemes of

explanations, and concepts interact in order to conform to a particular histori-

cally and socially-situated "procedure of reasoning".12 In this sense, Toulmin’s

analytical tools could be useful for studying the procedures of reasoning that are

not the direct product of our "hardwired" cognitive capacities, but those which
12In this sense, inferential techniques are close to Hacking’s notion of "style of reasoning"

(Hacking, 1994).
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depends upon the collective use of normative symbolic systems, like scientific

language and scientific systems of representation.

8.5 Conclusion

In the previous chapters, we have focused on the organization of concepts

in agents’ background knowledge. That is, we have remained "inside" the

mind/brain of reasoners. However, as argued in chapter 3, conceptual infor-

mation can also be distributed in symbolic structures external to the cognitive

agents. Since these structures’ primary function is to support reasoning, an

explanation of how they are used in inference is required. In this chapter, a

possible explanation in this sense was proposed focusing on scientific models,

i.e., hybrid representation systems whose use require a lot of previous training.

I revisited two notions of Toulmin’s philosophy of science that are a cen-

tral part of his procedural theory of concepts and explanation. I showed that

Toulmin’s ideas parallel some important new currents in philosophy of science

regarding models, conceptual change, and symbolic reasoning. And that they

point in the same direction as some new trends in cognitive science that under-

stand reasoning as socially and culturally situated. I explained in what specific

sense MRs could be considered as constitutive of scientific inference and how

these elements are of central importance to conceptual development in science.

I further showed how MRs (and models) in science play more than a mere rep-

resentational role, since they are central to inference. It is in this sense that

I speak of MRs as inferential devices, this is: symbolic systems that, when

correctly manipulated, allow users to arrive to conclusions that could not be

inferred otherwise. Furthermore, since inferential practices in science are spe-

cific of MRs, the diversity of MRs across scientific disciplines implies a diversity

of inferential practices. This point could be developed as an argument in fa-

vor of some forms of scientific pluralism, especially those forms associated with

the notion of style of reasoning (Ruphy, 2011). But specially, this last point

is clearly an argument in favor of inferential pluralism, as it was described in

Chapter 3.
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The discussion about models in science has advanced tremendously since

Toulmin (see Frigg & Hartmann, 2020). However, I devoted this chapter to him

because I believe that he pointed out to some connections between concepts,

models, and inference that are generally overlooked in philosophy. In partic-

ular, Toulmin’s ideas opened up for a way of seeing concepts that was rather

unusual in the field. He took scientific concepts "out of the mind" of scientists,

and situated them within the context of socially regulated procedures of rep-

resentation, manipulation, and action. He emphasized the normative character

of scientific concepts, claiming that they are "intellectual micro-institutions"

(Toulmin, 1972a, p. 166); but without overlooking their psychological complex-

ity.
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Chapter 9

Summary and concluding remarks

In this last chapter, I summarize what I consider the main results of this dis-

sertation and point out some future directions in which the approach outlined

here can be developed.

The previous eight chapters tried to challenge, on different fronts, the idea

that a psychologically plausible theory of reasoning can build on the formality

thesis. In Chapters 1 and 2, I have analyzed the philosophical origins of this

idea and its influence in psychology and semantics. Chapter 3 consisted of a

theoretical discussion on the relationship between inference and representation,

which motivated a pluralistic approach for theorizing about reasoning. Chapter

4 introduced Conceptual Spaces, the theoretical and formal framework that I

consider most suitable to explicate the role of concepts in reasoning. Chapter

5 showed that material inferences —which are not accountable from a logicist

perspective— can be modeled with CS. Chapters 6 and 7 extended these ideas

to nonmonotonic reasoning and category-based induction. Two CS-models

of these inferential mechanisms —developed in collaboration with Peter

Gärdenfors— were presented. Finally, Chapter 8 studied how model-based

inference builds on conceptual information encoded in external and hybrid

symbolic structures.

What have we learned? One of the main points made by this dissertation

is that logical formality should not be given a psychological interpretation within

an explanation of reasoning. Those theories endorsing the formality thesis are

ill-equipped to explain an overwhelming amount of data showing that reasoning
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is sensitive to content. In addition, they have various theoretical limitations,

such as not being able to account for several inference-types that are intuitively

correct —or that count as intuitively rational inferential moves— but formally

invalid.

While classical logic fails as a model of everyday reasoning, some might

argue that it can be "enriched" in different ways to accomplish this task.1 As

a matter of fact, the model presented in chapter 6 can be understood in this

sense. However, notice that these attempts generally involve the negation of the

formality thesis and, in particular, of the idea that conceptual content does not

play a role in inferential validity. As said before, a central aim of the analysis in

Chapter 6 was to show how integrating a model of conceptual knowledge to the

classical treatment of nonmonotonic inference can solve various foundational

and epistemological issues of this approach.

Does the denial of the formality thesis imply the assumption that reasoning

is not formal in any sense? Not really. The approach defended here shows that

several inferential mechanisms can be explicated with CS. Consequently, it as-

sumes that reasoning can be specified through some mathematical —"formal"—

structures. Still, this kind of formality is not equivalent to logical formality,

since it does not require us to accept that inferential validity responds only

to the truth-functional structure of natural language sentences. In contrast,

instead of accepting that inference pivots in the truth-functional structure of

propositions, the CS-model assumes that inference pivots on formal properties

of conceptual structure.

The other crucial point emerging from this thesis concerns the explanatory

advantages of giving to semantics a central place in the theorization about

reasoning. In particular, when meaning is understood as conceptualization —

as proposed by cognitive semantics— one can naturally address the elusive

problem of the role of knowledge in reasoning, as well as the largely neglected

relationship between understanding and inference.

The model presented in Chapter 7 illustrates this last point. Category-based
1Relevance logic, default logics, and description logics are some examples of such attempts.
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induction is an inferential mechanisms that directly builds on our understand-

ing of concepts and their interrelations. As such, it shows what Evans (1989)

suggested and this dissertation tried to prove: No concepts, no understanding.

No understanding, no inference.

Finally, as said at the end of Chapter 7, I believe that the fact that CS

can naturally model several types of inferential mechanisms shows that it is a

promising framework for a unified theory of reasoning.

Inferential pluralism

Another view defended in this dissertation was inferential pluralism, i.e., the

idea that from the diversity of representational structures encoding conceptual

information, it follows a diversity of inferential mechanisms exploiting them.

Inference is plural at different levels. Chapters 5, 6, and 7 showed how dif-

ferent inference-types exploit different properties of conceptual representation.

For instance, nonmonotonic reasoning and CBI make essential use of concepts’

prototypical structure, while material inferences only require core conceptual

knowledge. Furthermore, from the fact that different word classes have differ-

ent underlying representational structures (Gärdenfors, 2014), it follows that

they should also have different associated inference-patterns —even if they can

be all represented in CS.

In a different level of analysis, when we get "out of the head" of cognitive

agents, we can see how inference is plural in the diversity of (external)

representational devices used both in everyday and scientific cognition. The

analysis developed in Chapter 8 shows some possible ways to understand the

complex relationship between external models and rational inference.

Future work

Many of the ideas presented in this dissertation open up new research lines

and complement others that already exist. First, if the preliminary model of

material inference presented in Chapter 5 is correct, it should be possible to

extend it to most word classes with inferential properties. Verbs and sentences

expressing events are good candidates for continuing this line of work since
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there are some available CS-model of them (Gärdenfors, 2014; Gärdenfors, Jost,

& Warglien, 2018; Warglien, Gärdenfors, & Westera, 2012). Furthermore, I

believe that the CS-model of material inferences could help the study of sense-

relations in lexical semantics. Some initial suggestions in this line were advanced

in Section 5.4.3 regarding semantic compatibility and co-hyponymy. Finally,

this framework could also be used as an explication of the kind of semantic

modulation affecting the process of model-construction in the MMT. It seems

to me that this could be an interesting research line to develop.

There is a lot of work to be done building on the ideas presented in Chapter

6. In particular, our model of expectation-based inference (Osta-Vélez & Gär-

denfors, n.d.) can be adapted for the analysis of prototypical reasoning, a kind

of inference that has recently attracted attention in the Computer Science and

AI (e.g., see M. Lewis & Lawry, 2016; Lieto, Minieri, Piana, & Radicioni, 2015;

Lieto & Pozzato, 2018). It remains to be seen how it performs compared to the

other alternative models, or if they can be complementary in some way. In ad-

dition, the CS-model should be extended beyond expectations related to object

properties. For instance, future work may focus on nonmonotonic reasoning

about events, actions, or intentions. Furthermore, it could be interesting to

use this model to analyze the relation between expectations and vague concepts

(Douven et al., 2013); as well the relation between expectations and generic

statements (Cimpian et al., 2010).

Concerning CBI, the CS-model needs to be also extended to better account

for "property-effects" in inductive reasoning. In particular, to effects associated

to properties describing causal relations. Some suggestions in this sense were

advance in Chapter 7, but they need to be further developed and formally

implemented to see if they are able to explain the available data (e.g., Bright &

Feeney, 2014; Rehder & Hastie, 2001). Moreover, this model can be empirically

tested. Some methodological ideas on how to do that were also discussed in the

chapter mentioned above.

Lastly, I believe that the analysis in Chapter 8 can be developed in var-

ious ways. In particular, the claim that the concrete procedures of model-

manipulation are constitutive of scientific reasoning could find some grounding
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in some recent views about situated conceptualization in cognitive science.

A hint on how to bridge them can also be found in Toulmin. He wrote:

After a time, no doubt, any experienced scientist begins to do much

of his thinking “in his head”, just as we all of us learn to do elemen-

tary arithmetic “in the head”· · · our “internalized thinking” conforms

to the same arithmetical, zoological or physical procedures, and cri-

teria of “correctness”, as the thinking we do overtly or out loud.

(Toulmin, 1972a, p. 163)

While vague, his suggestion points to the idea that, instead of using abstract

rules or inner language, scientific thinking continues to conform to symbolic

manipulation procedures used with the concrete models.

These ideas relate to recent views of complex thinking as involving percep-

tual and sensorimotor simulations of concrete situations, like Barsalou’s "situ-

ated conceptualization" (Barsalou, 2003; Barsalou, Santos, Simmons, & Wilson,

2008) or the "perceptual account of symbolic reasoning" (Landy et al., 2014).

For instance, this latter approach conceives symbolic thinking as a special kind

of embodied mechanism in which mathematical formulas are "internalized" by

simulating the external procedures by which agents manipulate the symbols

(Ibid., p. 4).

There have been some attempts to combine this discussion in philosophy

with cognitive science (e.g., see Carruthers, Stich, & Siegal, 2002; Nersessian,

2006). However, as far as I know, none of them have used the above-mentioned

theories. I believe that the insights in Chapter 8 can be naturally connected to

situated accounts of conceptualization, possibly enriching our understanding of

how scientific reasoning works.





211

Appendix A

Résumé détaillé en Français

Le raisonnement et les concepts sont deux sujets centraux en philosophie et en

psychologie cognitive. Curieusement, ils ont été traités comme des thèmes de

recherche indépendants dans la littérature. Cela est particulièrement déconcer-

tant si l’on considère le large consensus sur le rôle essentiel de ces deux notions

dans l’explication de la cognition. Historiquement, les concepts ont été conçus

comme les "éléments constitutifs" de la pensée. En même temps, le raison-

nement est un type de transition entre des pensées censé guider l’action et la

fixation des croyances dans les agents rationnels. À première vue, les notions

semblent être intrinsèquement liées. La question est donc de savoir pourquoi

les théories du raisonnement, tant en psychologie qu’en philosophie, évitent la

notion de concept dans leur structure explicative.

Une explication possible de cette situation est que les théories du raison-

nement ont été dominées par une approche logiciste qui voit l’inférence comme

un processus purement formel-syntaxique (i.e., non sémantique) qui s’appuie

sur un ensemble de règles générales et indépendants du contenu (topic-neutral).

De ce point de vue, les concepts lexicaux sont considérés comme non perti-

nents pour le processus d’inférence rationnelle. Cela n’est pas du tout fortuit;

au contraire, cela répond à une interprétation spécifique de la notion de "forme

logique" qui a dominée la logique depuis Aristote (see Etchemendy, 1983). Dans

cette optique, la validité inférentielle est une question de forme, et non de con-

tenu. En d’autres termes, les inférences déductives sont valides en vertu de ses

structures logiques, indépendamment de la relation entre les termes (concepts)

extra-logiques dans les prémisses et la conclusion.
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Cette conception, synthétisée dans l’affirmation d’Inhelder et Piaget selon

laquelle "le raisonnement [humain] n’est rien d’autre que le calcul propositionnel

lui-même". (1958, p. 305), a encouragé les psychologues et les philosophes cog-

nitifs à considérer le raisonnement déductif comme le paradigme de l’inférence

rationnelle, et à concevoir le contenu sémantique comme sans intérêt pour

l’explication du raisonnement.

Parallèlement à cela, la sémantique philosophique a été dominée par une

vision da la signification qui confirme la déconnexion entre les concepts et le

raisonnement. Dans une large mesure, les philosophes croyaient pouvoir expli-

quer ce qu’était la signification lexicale sans introduire la notion d’inférence —

ou toute autre notion faisant référence à un mécanisme cognitif. La sémantique

était alors pensée comme quelque chose exclusivement concernée par la relation

entre le langage et le monde. Dans ce sens-là, elle est réduite aux notions de

référence et conditions de vérité.

Je suis persuadé que ces idées sont fondamentalement erronées et qu’il n’y a

pas moyen d’expliquer le raisonnement sans concepts et vice versa. Cette thèse

est une tentative de justifier cette conviction.

Je ne suis pas le premier à affirmer cela. Jonathan Evans, une figure centrale

dans le domaine de la psychologie du raisonnement, a écrit que les concepts et

l’inférence sont "inextricably entangled" (Evans, 1989, p. 29). Il était convaincu

que connaissance —C’est-à-dire que le "corps des concepts" est constitutif du

processus même du raisonnement; et que les théories psychologiques doivent

en tenir compte. En particulier, il a affirmé que le raisonnement ne pouvait

pas être "aveugle", mais qu’il nécessitait un certain degré de compréhension du

sujet en question. Étant donné que la compréhension suppose la possession de

concepts, il ne peut pas avoir du raisonnement sans concepts.

Dans la même optique, Hugo Mercier et Dan Sperber ont récemment

développé une théorie générale du raisonnement qui vise à expliquer ses di-

mensions sociale, individuelle et évolutive (Mercier & Sperber, 2017). L’idée

fondamentale est que les mécanismes inférentiels sont censés exploiter les régu-

larités empiriques de l’environnement qui sont codifiées dans des systèmes de

représentation. Leur théorie est essentiellement anti-formaliste, et comprend
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l’inférence comme inextricablement enchevêtré avec la représentation. Cepen-

dant, elle n’explique pas comment cet enchevêtrement fonctionnerait, ni com-

ment les informations conceptuelles sont structurées au sein dans systèmes de

représentation. En fait, —et encore une fois— leur approche néglige la notion

de concept (see Osta-Vélez, 2019).

Cette thèse défends —par des stratégies diverses– des idées qui sont sim-

ilaires à celles mentionnées ci-dessus. Je me focalise sur le point négligé par

la théorie de Mercier et Sperber, à savoir, la question relative à l’imbrication

des mécanismes d’inférence avec les structures de représentation. En partic-

ulier, je soutiens que l’inférence exploite différentes propriétés des systèmes de

représentation utilisés par la cognition humaine pour coder les informations

conceptuelles.

Notez que cela ne contredit pas les affirmations des logicistes. Ceux derniers

pensent que l’inférence déductive exploite la forme logique, et que la forme

logique est une propriété (implicite) du langage naturel (i.e., un système de

représentation). Cependant, je crois que l’inférence logique joue un rôle plutôt

marginal dans la cognition de haut niveau, et que la plupart des inférences

basées sur le langage dépendent des propriétés de la représentation sémantique.

Maintenant, qu’est-ce que la "représentation sémantique"? Suivant une tradi-

tion en sémantique cognitive, et par opposition aux approches conditionnelles

de la vérité, je suppose que ce type de représentation fait référence aux struc-

tures mentales évoquées par les concepts lexicaux lors du traitement du langage

(language processing).

L’un des objectifs principaux de cette thèse est de développer cette dernière

idée en détail. J’utilise la théorie des espaces conceptuels de Peter Gärdenfors

(2000; 2014) pour expliquer différentes formes d’inférences basées sur la séman-

tique de façon telle qu’elles correspondent à la définition donnée ci-dessus.

Les espaces conceptuels sont un programme de recherche en science cognitive

et en représentation des connaissances qui affirme que le contenu conceptuel

est organisé en différentes structures topologiques et géométriques à un niveau

sous-symbolique de représentation de l’information. Il fournit de nombreux

outils formels et théoriques pour expliquer comment les concepts sont utilisés
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dans les processus cognitifs tels que la catégorisation, l’induction, la formation

de concepts ou l’apprentissage des langues.

Dans cette thèse, j’ai l’intention de montrer comment cette approche peut

être utilisée pour expliquer le rôle des concepts dans le raisonnement. En ce qui

concerne l’inférence basée sur la sémantique du langage naturel, un résultat de

l’analyse développée ici sera que les classes de mots ont des patterns inféren-

tiels spécifiques qui leur sont associés en raison de leur dépendance à différents

espaces conceptuels. Par ailleurs, on montrera comment l’inférence inductive

et le raisonnement non monotone reposent sur des propriétés spécifiques des

structures conceptuelles comme la similarité et la typicalité.

La notion de inférence défendue ici est pluraliste. L’idée sous-jacente est

simple: la cognition humaine utilise de nombreux types de systèmes de représen-

tation différents. Le langage naturel est, sans doute, le plus important. Cepen-

dant, nous pensons également avec des images mentales et une pléthore de

structures symboliques externes comme des diagrammes, des formules math-

ématiques et des modèles scientifiques. Ces systèmes codifient également les

connaissances conceptuelles, et nous les utilisons pour raisonner par le biais

de mécanismes inférentiels qui exploitent des propriétés qui leur sont propres.

Pour appuyer cette affirmation, le dernier chapitre de cet ouvrage est consacré

à l’étude du raisonnement scientifique basé sur des modèles et, en particulier, à

la relation entre les concepts, les modèles et le raisonnement scientifiques.

Avant d’expliquer la structure de ce travail, il est important de noter deux

choses. Premièrement, le contenu de plusieurs chapitres a déjà été publié sous

la forme d’articles. En particulier, les chapitres 6 et 7 s’appuient sur deux

collaborations avec Peter Gärdenfors (Osta-Vélez & Gärdenfors, n.d., 2020a);

tandis que le chapitre 8 est basé sur (Osta-Vélez, 2019). Deuxièmement, la

thèse se déroule en deux étapes. Les trois premiers chapitres offrent une analyse

critique du cadre historique et philosophique qui motive ce travail. Ces chapitres

sont censés être le "ciment" qui relie le reste du contenu. En revanche, les

cinq derniers chapitres sont plutôt constructifs et proposent différentes façons

d’explique et modéliser les questions abordées dans cette thèse.



Appendix A. Résumé détaillé en Français 215

La thèse formaliste

Le chapitre 1 porte sur la thèse formaliste, une idée centrale pour les théories

classiques du raisonnement qui affirme que l’inférence est un processus formel

effectué sur un "langage de la pensée" qui compte avec une structure proposi-

tionnelle. Le but de ce chapitre c’est de montrer comment cette idée est basée

sur la distinction conceptuelle entre forme et contenu héritée de la logique clas-

sique.

La logique a été traditionnellement conçue comme une théorie abstraite

du raisonnement. Elle a joué un rôle essentiel dans le développement de sci-

ences cognitives et, en particulier, dans des théories du raisonnement (Harman,

1984; Henle, 1962). Elle a été utilisé comme modèle de compétence pour le

raisonnement déductif; comme cadre normatif pour évaluer nos performances

dans les tâches de raisonnement (Osherson, 1975b; Stenning & van Lambalgen,

2011); et comme outil méthodologique pour modéliser la structure formelle des

opérations cognitives de haut niveau (Piaget, 1957). En général, les différentes

formes sous lesquelles la logique a influencée l’étude du raisonnement au fil des

ans partagent une hypothèse sous-jacente: les propriétés logiques sont des pro-

priétés formelles-syntaxiques et, si l’inférence humaine est “logique," alors elle

doit être également “formelle.”

Cette idée s’inscrit dans une longue tradition qui consiste à concevoir l’esprit

comme une machine/ordinateur. Elle est née avec Thomas Hobbes, et a été

développée par George Boole, Charles Babbage, Alan Turing, Warren Mc-

Culloch et Walter Pitts, et Jerry Fodor —entre autres–, jusqu’à devenir l’un

des paradigmes centraux de la science cognitive (Boden, 1988; Gigerenzer &

Goldstein, 1996). La thèse générale qui sous-tend ce point de vue est qu’un

ensemble d’opérations formelles/mathématiques constitue la base de la cogni-

tion humaine. Si nous pouvions les comprendre via les algorithmes mathéma-

tiques appropriés, alors le raisonnement pourrait être formellement expliqué, et

éventuellement reproduit par un dispositif non biologique.

Cependant, l’idée que le raisonnement peut être formel dans un sens logique

n’est pas exactement équivalente à l’idée que la cognition peut être décrite par
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un formalisme mathématique particulier. La première thèse s’applique exclu-

sivement à l’inférence rationnelle et elle revendique que la logique classique peut

spécifier les mécanismes qui la sous-tendent. En revanche, la seconde s’applique

à tout processus cognitif quel qu’il soit et elle n’est pas engagée à une structure

mathématique particulière comme modèle.

Étant donné que nous nous concentrons sur la formalité logique, la question

est de comprendre les origines de cette notion. Selon MacFarlane (2000), la

formalité logique remonte à l’utilisation de la distinction aristotélicienne entre

forme et contenu pour analyser le raisonnement et l’argumentation. En gros,

cette tradition affirme que le raisonnement a des propriétés à la fois formelles et

matérielles, mais que la "validité" déductive est une question de forme, et non

de contenu.

Cet approche (appelé “hylomorphique”) a été renforcé lors de la mathémati-

sation de la logique grâce aux travaux de Boole et Frege (see, Van Heijenoort,

1967), conduisant à ce que Warren Goldfarb a appelé la conception schématique

de la logique (Goldfarb, 2001). Selon ses mots, d’après la conception schéma-

tique :

...the subject matter of logic consists of logical properties of sen-

tences and logical relations among sentences. Sentences have such

properties and bear such relations to each other by dint of their hav-

ing the logical forms they do. Hence, logical properties and relations

are defined by way of the logical forms; logic deals with what is com-

mon to and can be abstracted from different sentences. (Goldfarb,

2001, p. 26)

L’idée c’est que il y a des formes logique “cachées” dans les énoncées du

langage natural; des relations structurels entre ces formes est ce qui permet

les mouvements inferentiels entre premise(s) et conclusion. Dans la tradition

schématique ces formes son déterminées par les constantes logiques, i.e., des

particules linguistiques sans contenu conceptuel. Dans ce sens-là, les prédicats

n’ont aucun “puissance inférentielle”.
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En résumé, la thèse de la formalité trouve ses sources dans l’idée que la va-

lidité déductive dépend exclusivement de la distribution des constantes logiques

dans les propositions de langage naturel, et non du contenu des prédicats im-

pliqués dans ces propositions.

La thèse formaliste dans les sciences cognitives

L’un des principaux défis pour la psychologie cognitive est de fournir une ex-

plication scientifique d’un phénomène à la fois intentionnel et matériel (Horst,

1999a). En particulier, les pensées sont des entités intentionnelles avec du

contenu sémantique – ils sont à propos (“about”) quelque chose– articulées de

manière non arbitraire. Le raisonnement est un cas spécifique de transition entre

des pensées qui préserve (idéalement) de la cohérence sémantique. Si l’on veut

donner une explication empirique de ce processus, la question centrale est alors,

comment le raisonnement est-elle mécaniquement (matérielment) possible? (see

Rescorla, 2012).

Jerry Fodor a vu qu’une façon de répondre à cette question était de re-

courir à une interprétation psychologique de la formalité logique (voir Fodor,

1975; 1987; 2008; 2015). En gros, il affirmais que la psychologie doit expliquer

l’esprit comme une machine syntactique effectuent des opérations formelles sur

des entités semblables à des propositions linguistiques —pensées—, avec des

propriétés à la fois syntactiques et sémantiques. Les transitions causales en-

tre les pensées sont possibles grâce à leurs propriétés syntaxiques. Comme ces

propriétés reflètent le contenu sémantique des pensées, (Fodor, 1985, p. 93) la

pensée rationnelle est également possible. Comme l’explique Fodor :

...you connect the causal properties of a symbol with its semantic

properties via its syntax. The syntax of a symbol is one of its higher-

order physical properties . To a metaphorical first approximation ,

we can think of the syntactic structure of a symbol as an abstract

feature of its shape. Because, to all intents and purposes, syntax

reduces to shape, and because the shape of a symbol is a potential

determinant of its causal role, it is fairly easy to see how there could
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be environments in which the causal role of a symbol correlates

with its syntax. It’ s easy, that is to say, to imagine symbol tokens

interacting causally in virtue of their syntactic structures . The

syntax of a symbol might determine the causes and effects of its

tokenings in much the way that the geometry of a key determines

which locks it will open . (Fodor, 1987, pp. 18-19)

Cette idée a eu un profond impact dans la psychologie du raisonnement

au XXème siècle. La deuxième partie du chapitre 1 montre comment la thèse

formaliste a façonné trois théories différentes dans cette discipline: La théorie

du développement cognitif de Piaget ; la théorie de la logique mentale, et la

théorie des modèles mentaux.

La thèse formaliste dans la philosophie du langage

En même temps que la logique excluait la sémantique de l’analyse de

l’inférence, les philosophes commençaient à penser à la "signification" comme

quelque chose de complètement déconnecté de la cognition. En particulier, des

philosophes comme Quine, Carnap et Putnam promouvaient l’idée que la sig-

nification linguistique était quelque chose qui appartenait exclusivement à la

relation entre le langage et le monde. De cette façon, ils ont promu l’idée que

la philosophie du langage n’avait pas besoin de coopérer avec une théorie de

l’inférence et vice versa.

Par exemple, Quine pensait qu’aucune théorie systématique du langage ne

pouvait émerger de l’association de la notion de signification à des entités men-

tales ou abstraites comme les idées ou les intentions. Pour lui, les notions

d’extension et de référence étaient suffisantes pour analyser la signification des

termes extra-logiques dans le langage naturel. Notons que ce dernière idée

implique qu’on peut construire une théorie sémantique sans l’aide de théories

psychologiques ou cognitives.

En résumé, les extensionalistes pensaient que la sémantique était complète-

ment indépendante des théories de l’inférence. En ce sens, ils ont également suivi

la thèse formaliste : une théorie de l’inférence doit être axée sur les constantes
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logiques, tandis que la sémantique concerne tous les éléments extra-logiques du

langage naturel. Jerrold Katz appelle ça le “dogme extensionaliste”:

The article of faith is that there exists a justifiable distinction be-

tween the logical and nonlogical components of sentences, one that

enables us to divide a theory of connectives and quantifiers from a

theory of the meaning of nouns, verbs, adjectives, etc., that form the

expressions and sentences they connect and quantify. (Katz, 1975,

p. 77)

Comme l’a montré Katz (Ibid.), cette dernière idée a de nombreuses lim-

itations. En général, toute théorie sémantique qui déconnecte la signification

de la cognition aura plusieurs problèmes pour expliquer des phénomènes que

sont directement liés à la sémantique, comme par example la communication,

la compréhension linguistique, la catégorisation et le changement conceptuel.

Cela a conduit les philosophes à élaborer des théories de la signification plus

compréhensives. La tentative la plus importante a était la "sémantique du rôle

conceptuel", qui affirme que les significations des mots émergent du rôle des con-

cepts lexicaux —et des attitudes propositionnelles— dans “l’écologie cognitive

complexe des agents”(Block, 1986; Brandom, 1998b; Harman, 1982).

Même si la sémantique du rôle conceptuel est une tentative intéressante de

faire le lien entre l’inférence et la signification, je soutiens dans le Chapitre 2

que cette théorie n’est pas assez systématique pour expliquer la relation entre

la signification et le raisonnement. Au lieu de cela, je propose la Sémantique

Cognitive comme une alternative prometteuse pour accomplir ce tâche. La

sémantique cognitive est un programme de recherche dont l’objectif principal

est de développer une analyse du langage en tant que système d’information qui

sert de médiateur dans notre interaction avec le monde grâce à la coopération

de plusieurs facultés cognitives telles que la perception, la catégorisation, le

raisonnement et la mémoire (voir Geeraerts & Cuyckens, 2007, p. 5).

Contrairement à la sémantique traditionnelle, focalisée sur la signification

propositionnelle et la vérité, la tradition cognitive prend la signification lexical

(lexical meaning) comme central. Les notions de référence et vérité jouent un
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rôle relativement marginal dans sa structure théorique. L’idée principale de

la sémantique cognitive peut être résumée par la devise suivante: “meaning is

conceptualisation". En d’autres termes, le traitement sémantique implique la

mobilisation constante des structures de connaissance pour décoder la signi-

fication lexicale et propositionnelle. Comme Langacker l’explique: "Semantic

structure is conceptualization tailored to the specifics of linguistic convention.

Semantic analysis therefore requires the explicit characterization of conceptual

structure” (Langacker, 1987, p. 99). Les éléments constitutifs de ces structures

de connaissances - ou comme dirait Quine, les "véhicules da la signification"- ne

sont pas des propositions, mais des notions comme les prototypes conceptuels,

les cadres (frames) ou les “image schemes” de Lakoff et Johnson.

Représentation et inférence

La notion d’inférence est au centre de plusieurs domaines de recherche. Par

exemple, elle fait partie du répertoire conceptuel de la philosophie, les sciences

cognitives, l’informatique, l’IA, et les statistiques. Le problème est que cette

notion est si fondamentale qu’on l’utilise souvent sans la définir. Au chapitre 3,

je propose une définition de la notion d’inférence dans le cadre d’une perspective

pluraliste.

Les inférences sont des transitions entre des états mentaux qui participent

à ce que l’on pourrait appeler — selon la terminologie de William James– “the

stream of thought". Il est évident que ce stream of thought ne se limite pas aux

transitions inférentielles. Nous sommes tous familiarisés avec différents types

d’associations mentales —entre des croyances, perceptions, souvenirs, etc. —

que nous ne considérerions pas comme inférientielles. Par exemple, je peux avoir

une disposition personnelle à penser à des guitares chaque fois que je vois un

bateau; ou me souvenir de la maison de mon enfance quand je pense à des chats;

mais es transitions mentales ne peuvent pas être évaluées de façon normative

car elles ne répondent à aucune logique spécifique, et elles ne semblent suivre
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aucun critère informationnel. Les transitions inférentielles, en revanche, sont

censées satisfaire ces deux derniers points.

La tradition dominante en philosophie considère les inférences comme des

transitions entre des jugements avec une forme linguistique, qui suivent des

règles logiques. Parmi les nombreux problèmes que pose cette tradition, je n’en

analyse que deux : (1) elle n’inclut pas de contraintes informationnelles sur

le type d’inférences qu’il est raisonnable de tirer d’une certaine information ;

et (2) elle a une notion très limitée de la représentation. Dans ce qui suit, je

développerai brièvement ce deuxième point.

Le “conservatisme représentationnel”

La philosophie analytique a été fidèle au schéma explicatif suivant pour la

pensée et le raisonnement: quel que soit le sujet, les unités de pensée sont

des croyances, et les croyances sont des entités avec structure propositionnelle

et propriétés logiques —sémantiques et syntaxiques. Le raisonnement, modulo

thèse de la formalité, consiste en des transitions entre les croyances générées par

des mécanismes qui exploitent leur structure syntaxique. Comme il est évident,

c’est l’idée fondamentale qui sous-tend la théorie computationnelle de l’esprit

(CTM) examinée dans le premier chapitre. Nous allons maintenant la revisiter,

en nous focalisant sur son usage de la notion de représentation.

La CTM (en particulier Fodor et Pylyshyn (Fodor & Pylyshyn, 2015))

défends un approche “conservateur" du format de représentation: toute

représentation psychologique est basée sur un système amodal qui ressemble

un langage, la langue de la pensée (LOT) ou mentalase (Fodor, 1975, 2008).

Selon Fodor, LOT est “the only game in town" (Fodor, 1975, p.55), c’est-à-dire

la seule hypothèse plausible pour construire une psychologie scientifique, parce

que le LOT a les bonnes propriétés pour expliquer la productivité et la systé-

maticité de la pensée rationnelle. En gros, toutes les différentes modalités de

l’information –visuelle, auditive, tactile, etc. – que le cerveau traite pour ali-

menter les mécanismes cognitifs doivent être traduites dans le LOT afin d’être

utilisées dans la cognition de haut niveau.
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Le principal problème du conservatisme représentationnel est qu’il

n’explique pas comment l’information est organisée dans la mémoire séman-

tique. En conséquence, cette perspective ne peut pas résoudre le "problème du

cadre" (frame problem, c’est-à-dire la question de savoir comment extraire les

connaissances pertinentes d’une riche data-base dans des contextes de résolu-

tion de problèmes. Par exemple, disons que je dois décider comment aller de

chez moi au cinéma. La plupart des informations contenues dans ma data-base

ne sont absolument pas pertinentes pour répondre à cette question; il doit donc

y avoir un mécanisme de recherche d’informations qui sélectionne parmi ce cor-

pus diverse les éléments qui sont utiles pour la tâche – par exemple, dans la

catégorie moyens de transport, des concepts comme train, bus, voiture, ou vélo.

Je défends l’idée que pour résoudre le problème du cadre, il faut postuler

l’existence d’une structure sub-linguistique de représentation des informations

qui a comme des concepts comme des unités de base, en lieu des croyances,

comme l’indique la tradition susmentionnée. Plus précisément, j’affirme que

le raisonnement a besoin de l’interaction d’informations qui sont explicitement

représentées dans le langage – ou dans un autre format de représentation externe

–, avec des informations implicites et codifiées dans une structure de représen-

tation sub-symbolique au sein de la mémoire sémantique. Je propose que cette

structure sub-linguistique peut être modélisée en utilisant la théorie des espaces

conceptuels de Peter Gärdenfors.

Les espaces conceptuels

La théorie des Espaces Conceptuels (EC) (Gärdenfors, 2000, 2014)

est un programme de recherche en sciences cognitives visant à modéliser

plusieurs phénomènes cognitifs liés à la conceptualisation — par exemple, le

l’apprentissage, le raisonnement, la catégorisation, la formation de concepts,

etc. Contrairement à la tradition computationaliste prédominante en sciences

cognitives, EC ne part pas du principe que la pensée est basée sur un langage

mental —comme le LOT. Au contraire, EC es fondeé sur l’hypothèse qu’il existe
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un système représentationnel intermédiaire qui codifie l’information sémantique

avec une structure spatiale.

EC s’appuie sur deux notions fondamentales: dimension qualitative (DQ)

et domaine. Les premières sont les éléments constitutifs des concepts. Elles

représentent les différentes qualités des objets qui servent de base pour juger

des similitudes entre différents stimuli (Gärdenfors, 2000, p. 6). Par exemple,

"hauteur" est une DQ des stimuli auditifs; en se concentrant sur la hauteur, on

peut comparer et classer différents sons. Les DQ sont diverses, elles peuvent être

innées, culturellement acquises, phénoménales ou abstraites selon le concept.

Un point fondamental est que las DQ peuvent être représentées par dif-

férentes structures géométriques (voir Gärdenfors, 2000, Chapitre 1). Par exem-

ple, le poids et la hauteur peuvent être tous deux représentés par une ligne iso-

morphe aux nombres réels non négatifs. D’autres DQ ont une structure discrète

et correspondent à des qualités qui sont représentées sous forme d’ensembles dis-

joints.

Les DQ peuvent être intégrales ou séparables. Elles sont intégrales lorsqu’il

est impossible d’attribuer à un objet une valeur dans une dimension sans lui

attribuer une autre valeur dans une autre dimension (see Maddox, 1992). Par

exemple, nous ne pouvons pas représenter un son avec une hauteur spécifique

mais sans valeur pour son intensité sonore. En revanche, certaines DQ peu-

vent être représentées indépendamment les unes des autres, comme height et

wealth lorsque l’on pense aux personnes. Dans ces cas, on parle de dimen-

sions séparables. Les dimensions intégrales sont souvent modélisées avec une

métrique euclidienne, tandis que les dimensions séparables avec une métrique

"city block".

Un ensemble de dimensions intégrales qui sont séparables de toutes les autres

dimensions est appelé un domaine. L’exemple classique d’un domaine est le

“espace du couleur”. Il est composé de trois dimensions intégrales: ton, satu-

ration, et luminosité. La représentation géométrique du ton est le cercle chro-

matique. La saturation ou l’intensité est représentée comme un intervalle de

la ligne réelle, tandis que la luminosité varie du blanc au noir et est donc une

dimension linéaire avec des points terminaux. Ensemble, ces trois dimensions
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intégrales, une à structure circulaire et deux à structure linéaire, constituent

l’espace couleur (voir figure 4.2, Chapitre 4).

Les domaines d’un espace conceptuel sont reliés de plusieurs façons puisque

les propriétés des objets modélisés dans les espaces co-varient. Par exemple,

dans l’"espace des fruits", les dimensions de maturité et couleur co-varieront,

ainsi que taille et poids. Ces co-variations sont le support de différentes procé-

dures inférentielles qui exploitent les propriétés conceptuelles, comme nous le

verrons au chapitre 6.

Un espace conceptuel est défini comme une collection d’un ou plusieurs do-

maines avec une fonction de distance —a métrique— qui représente les pro-

priétés, les concepts, et leurs inter-relations de similarité. La similarité entre des

concepts peut être facilement estimée puisqu’il s’agit d’une fonction monotone

décroissante de leur distance dans l’espace (Shepard, 1987). Dans ce cadre, les

concepts sont compris comme une sous-région d’un certain espace conceptuel.

Pour illustrer ces idées avec un exemple, considérons un l’EC du concept

pomme, qui serait un sous-ensemble du produit Cartésien des domaines de la

couleur, du goût, de la forme, de la maturité et de la texture. Cet espace

s’étendrait à travers certaines régions de chacun de ces domaines —ceux qui

représentent les propriétés communes des pommes—, tout en laissant d’autres

régions "intactes" – par exemple, nous ne représentons pas les pommes de forme

pyramidale, ou étant noires, donc ces propriétés ne sont pas couvertes dans

l’espace conceptuel. Le concept pomme a plusieurs corrélations entre ses pro-

priétés : le degré de douceur et d’aigreur, ainsi que la texture, sont corrélés

au niveau de maturité. Ces corrélations peuvent également être représentées

dans l’espace conceptuel par différents outils mathématiques (voir la figure 4.3,

Chapitre 4).

Dans les chapitres 5, 6 et 7, je propose différents modèles de processus

inférentiels qui s’appuient sur la théorie des espaces conceptuels.
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Les inférences matérielles modélisés avec des EC

Dans le chapitre 5, je montre comment la notion d’inférence matérielle, proposée

par Wilfrid Sellars et Robert Brandom, peut être développée et modélisée avec

la théorie des espaces conceptuels. Dans ce qui suit, je vais expliquer les points

centraux de mon argumentation.

Wilfrid Sellars était l’un des plus importants critiques de l’approche formal-

iste de l’inférence. Dans plusieurs de ses travaux, il a essayé de montrer que la

plupart de nos inférences dans le langage naturel ne sont pas formelles au sens

logique du terme, mais qu’elles sont "matérielles". En quelques mots, une mou-

vement inférentiel est matériel lorsqu’il est basé sur une relation conceptuelle

entre les prédicats de la prémisse et de la conclusion. La validité matérielle

n’a rien à voir avec la forme logique. Elle ne dépende pas de l’organisation des

constantes logiques, mais elle est liée à la façon dont les concepts sont articulés

dans une pratique inférentielle structurée de façon normative.

Deux exemples classiques d’inférence matérielle sont “Fido est un chien,

alors Fido est un mammifère” et "Munich est au sud de Berlin, donc Berlin

est au nord de Munich”. En gros, Sellars pense que notre pratique inférentielle

est surtout "matérielle", en raison du rôle que les règles qui sous-tendent ces

inférences — "règles matérielles"— jouent dans la construction et l’utilisation

des concepts dans le langage et la pensée. Selon Sellars, sans règles matérielles

tenant compte de la façon dont les prédicats sont liés, aucune analyse logique ou

philosophique du langage ne serait exacte. On pourrait dire que les inférences

matérielles peuvent être analysées comme des enthymèmes (inférences avec des

prémisses implicites), mais Sellars montre que cette stratégie échouerait.

Le problème chez Sellars (et Brandom) c’est que l’origine de ces règles

matérielles d’inférence, et la manière dont les agents les appliquent dans le

cadre d’un raisonnement au niveau personnel, reste inexpliqué. En général, une

analyse approfondie des fondements psychologiques de l’ingérence matérielle

manque dans le cadre inférentialiste. Sellars partent plutôt du principe que cet

type d’inférence n’est qu’une question de suivre des règles. Brandom va même
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plus loin en affirmant que toute théorie sémantique doit être précédée d’une

théorie pragmatique. Dans la section 5.2.3, je critique cette dernière idée en

montrant qu’il n’est pas possible d’éliminer les facteurs cognitifs (non pragma-

tiques) lors de l’explication du contenu conceptuel. En particulier, je montre

que l’existence de contraintes cognitives et/ou de mécanismes d’apprentissage

innés derrière la formation des concepts doit être une hypothèse inévitable dans

la plupart des théories psychologiques des concepts. Cela suggère qu’une ex-

plication du contenu sémantique ne peut être développée en termes purement

pragmatiques, mais doit tenir compte des processus cognitifs "câblés" qui sous-

tendent l’acquisition des concepts.

Classes de mots et types d’inférences matérielles

Le modèle proposé ici commence par analyser les types d’inférences

matérielles en fonction des types d’éléments lexicaux. Je m’appuie sur la classifi-

cation standard des catégories lexicales utilisée par les linguistes qui distinguent

entre nouns, adjectifs, verbes, et prépositions —entre autres– (Baker, 2003). Je

suivrai l’analyse de Gärdenfors qui montre que les différentes catégories lexicales

ont des structures de représentation différentes du point de vue de la théorie

des espaces conceptuels (Gärdenfors, 2014).

De plus, mon analyse se base sur une hypothèse théorique concernant la rela-

tion entre l’attention et l’inférence. Je propose qu’un mécanisme cognitif central

derrière les inférences matérielles es le “re-profiling" (Langacker, 1987). Selon les

termes de Langacker, cela c’est un déplacement attentionnel au sein d’une base

conceptuelle qui produit des transformations sémantiques minimales. Je sou-

tiens que les inférences matérielles sont des cas de propositions de re-profilage

au sein de leurs structures conceptuelles correspondantes. Par exemple, une

inférence comme chien(x) → mammifere(x) consiste à “reprofile” l’objet x

dans l’espace conceptuel de chien vers l’espace conceptuel de mammifère, ce

qui est implicite dans la représentation du chien parce que le premier est une

sous-région du second.

Voyons maintenant comment modéliser certains cas d’inférences matérielles
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avec des EC. Commençons par discuter des inférences matérielles avec des noms

(“nouns”). Selon le modèle de l’espace conceptuel, les noms correspondent à des

concepts et, en tant que tels, ils constituent une région convexe dans un espace

conceptuel: i.e., un sous-ensemble de l’espace-produit de l’ensemble des dimen-

sions qui constituent l’espace. À partir d’un concept M , C (M) correspond

à un sous-ensemble du produit cartésien des domaines n. Comme expliqué

dans le chapitre 4, un objet x catégorisé comme M correspond à un point à

n-dimensions x =< x1, x2, . . . , xn >∈ C (M) avec xi les coordonnées du point

dans chaque dimension.

Un type fréquent d’inférénce materielle avec des noms c’est “bottom-up”,

où le concept dans la prémisse est un subordonné du concept sur la conclu-

sion, comme dans Chat(x) → Mammifere(x). Du point de vue de l’espace

conceptuel, la validité matérielle de ce type d’inférence réside dans un simple

relation ensembliste. Comme nous l’avons dit plus haut, lorsqu’une entité x est

classée comme étant N , elle est représentée comme un point dans C (N). Ainsi,

pour tout concept M tel que C (N) ⊆ C (M), si x ∈ C (N) alors x ∈ C (M). En

outre, comme la relation d’inclusion est transitive, C (N) sera inclus dans tous

les concepts supérieurs de M . Ainsi, le fait de classer x comme N en fera (par

défaut) un membre de chaque concept supérieur de N .

Avec la même logique, on peut expliquer les inférences avec la négation.

Considérons un ensemble des catégories M1, . . . ,Mn, co-hyponymes de N , qui

vont être représentés comme des sous-régions disjointes des C(N). Cela signifie

que Mi∩Mk = ∅ pour tout i 6= k. Puisque l’expression "Mi(x)" est représentée

par un objet x ∈ Mi ⊆ C (N), alors x /∈ Mk ⊆ C (N) puisque Mi et Mk

sont des sous-régions disjointes de C (N). Ce simple fait ensembliste justifie

toutes les inférences matérielles de la forme "Mi(x) → ¬Mk(x)" pour chaque

catégorie Mk co-hypothèse de Mi. Normalement, les types biologiques sont de

bons exemples de co-hyponymes dans ce sens. Par exemple, représenter l’énoncé

"Chien(a)" implique matériellement "¬Chat(a)", "¬Pigeon(a)", "¬Aigle(a)",

et ainsi de suite, pour toute catégorie animale, des co-hyponymes de chien et

au même niveau conceptuel. Ce type d’analyse est étendu dans le chapitre 5

aux adjectifs, aux relations de parenté et aux prépositions spatiales.
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Les déductions matérielles sont sans incertitude. Elles dépendent de notre

connaissance des relations sémantiques de base entre les concepts. Cependant,

la plupart de nos raisonnements sont soumis à l’incertitude. Dans le chapitre

6, je propose un modèle d’inférences non monotones basé sur des espaces con-

ceptuels.

Inférence non monotone et expectatives

Issu d’un article en collaboration avec P. Gärdenfors, le chapitre 6 est con-

sacré à la relation entre les inférences non-monotones et les représentations

conceptuelles. Le problème est, comme a été expliqué précédemment, que le

raisonnement quotidien repose sur plus que la forme logique des prémisses

explicites. L’information partielle et l’incertitude sont omniprésentes chez la

pensé humaine. En conséquence, nos mécanismes inférentiels peuvent difficile-

ment se permettre d’être “conservateurs” par rapport à l’information disponible.

Au lieu de cela, nous utilisons systématiquement nos connaissances de base de

manière risquée, mais néanmoins productive, pour donner un sens à notre en-

vironnement. En d’autres termes, le raisonnement quotidien est fortement non

monotone, et les approches formalistes basées sur la logique classique ne peuvent

pas expliquer cela.

Cette utilisation des connaissances de base s’exprime notamment à travers

nos expectatives sur le monde. Par exemple, si nous savons qu’une personne

vient de France, nous attendons d’elle qu’elle parle français et qu’elle ait un

passeport français ; ou si nous conduisons une voiture et que nous apercevons

une personne qui attend sur le bord de la route, nous attendons d’elle qu’elle ait

l’intention de la traverser. En général, nos expectatives vis-à-vis du monde sont

cruciales pour guider notre raisonnement et notre action dans la vie quotidienne,

et elles s’appuient directement sur la structure de nos connaissances de base.

Gärdenfors et Makinson (1992; 1994) ont montré qu’une grande partie de

la logique non monotone est réductible à la logique classique, à l’aide d’une
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analyse des expectatives fonctionnant comme des prémisses occultes dans les

arguments. L’idée directrice est que lorsque les gens essaient de savoir si une

conclusion C découle d’un ensemble de prémissesP, les informations de base

utilisées ne contiennent pas seulement les prémisses dans P, mais aussi des in-

formations sur ce qu’ils expectent dans la situation donnée, de sorte qu’ils se

retrouvent avec un ensemble plus large d’hypothèses. Ces expectatives peuvent

être exprimées comme des hypothèses "par défaut", c’est-à-dire des énoncés sur

ce que les raisonneurs représentent comme normal ou typique. Elles compren-

nent nos connaissances conceptuelles de base, mais aussi d’autres informations

qui peuvent être considérées comme suffisamment plausibles pour servir de base

à une inférence, pour autant qu’elles ne donnent pas lieu à des incohérences.

La principale différence entre les expectatives et les prémisses explicites c’est

qu’elles sont "plus défaisables". En d’autres termes, si l’une des expectatives est

en conflit avec certaines des prémisses explicites du P, nous ne les utilisons pas

pour déterminer si le C découle du P. Toutefois, lors de l’évaluation de leur rôle

dans le raisonnement, il est important de noter qu’ils n’ont pas tous la même

force. En bref, nos expectatives sont toutes défaisables, mais elles présentent

des degrés variables de défaisabilité.

En bref, la position défendue ici est qu’une bonne explication du rôle des

expectatives dans le raisonnement doit s’appuyer sur un modèle de la structure

des connaissances de base. Comme nous l’avons vu au chapitre 3, même si cette

dernière notion a joué un rôle central dans plusieurs domaines de la philosophie

et de la logique au cours des dernières décennies, peu d’efforts ont été faits

pour la définir correctement. La logique classique non monotone a toujours

travaillé dans le cadre formaliste : elle suppose que les connaissances implicites

et explicites sont représentées sous forme de propositions dans une sorte de

belief-box de l’agent cognitif. Le problème est que l’origine des règles par défaut

et leur utilisation dans le raisonnement quotidien restent inexpliquées. Dans

ce qui suit, nous verrons comment une bonne articulation des EC en tant que

modèle de l’inférence non monotone peut indiquer une solution.

Donnons maintenant une structure formelle à ces idées. Un concept M

représenté dans un espace n-dimensionnel C (M) est un ensemble convexe des
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points représentant des objets possibles tombant sousM . SiM a un prototype,

on suppose qu’il correspond à l’un de ces points : un point à n-dimensionnel

pM =< pM1 , p
M
2 , . . . , p

M
n >∈ C (M). L’idée centrale est que nos expectatives

s’articulent autour de ce prototype. En d’autres termes, si la seule chose que

nous savons sur x est qu’il tombe sous M , nous nous attendrons à ce qu’il soit

— proche de pM , c’est-à-dire qu’il ait toutes les propriétés du prototype.

Maintenant, nos expectatives par rapport à l’énonce "M(x)" vont au-delà

des propriétés spécifiques déterminées par le prototype. Ils s’étendent à toutes

les propriétés possibles qu’un objet tombant sous M peut avoir. Dans le cadre

de la théorie des EC, cela signifie que la représentation d’un objet sous un con-

cept M implique que l’objet peut occuper toute position possible dans C (M).

Des positions différentes impliquent des propriétés différentes pour l’objet. Les

propriétés qui ne s’appliquent pas à pM peuvent être considérées comme des

expectatives secondaires, car elles sont plus faibles —plus défaisables— que

celles qui s’appliquent à pM . En général, pour toute propriété non typique dans

C (M), son degré de défaisabilité sera une fonction positive de sa distance par

rapport au prototype.

Nous pouvons construire un ordre des propriétés qui reflète leur " degré

de expectative " —et donc, leur degré de défaisabilité– en fonction de leur

distance relative au prototype. Une façon de le faire est de mesurer la distance

par rapport au point le plus proche où la propriété n’est pas satisfaite. Nous

pouvons utiliser la fonction de distance pour obtenir ce type d’information à

partir de l’espace conceptuel avec le critère suivant :

Typicality criterion (TC) Étant donnés les domaines Di et Dk dans

l’espace conceptuel C (M), pour deux propriétés quelconques Ri, Rk, tels que

Ri ⊆ Di et Rk ⊆ Dk; Ri est plus typique que Rk sii s’il y a un point x =<

x1, x2, . . . , xi, . . . , xn >∈ C (M) avec xi ∈ Ri, et pour tous les points x′ =<

x′1, x
′
2, . . . , x

′
k, . . . , x

′
n >∈ C (M), x′k ∈ Rk, il détient d(x, pM) < d(x′, pM)

Pour voir un exemple, considérez l’espace conceptuel du fruit (Chapitre 4)
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qui a comme des dimensions la couleur, le goût, la forme et la texture. Si

l’on nous dit que a est une pomme, nos expectatives maximales seront que a

a les propriétés d’une pomme prototypique: rouge, sucrée, ronde et lisse. Mais

ces propriétés ont des degrés de typicité différents, même si elles sont toutes

présentes dans le prototype. Par exemple, une pomme sucrée est plus typ-

ique qu’une pomme rouge, car il est plus surprenant de trouver une pomme

non sucrée qu’une pomme non rouge. Cela signifie que les points représentant

des pommes non rouges vont être plus proches du prototype que les points

représentant des pommes acides ou amères dans l’espace conceptuel. De même,

l’amertume est une propriété atypique pour les pommes, certainement moins at-

tendue que le fait d’être jaune . Ainsi, les pommes jaunes seront plus proches du

prototype que les pommes amères. Un classement des propriétés attendues pour

la pomme peut donc ressembler à ceci : Exp(Pomme) = {ronde > rouge >

sucr > lisse > vert > · · · > jaune > · · · > amer > . . . }.

Le critère de typicité produit un ordre d’expectatives qui permet de com-

parer les propriétés individuelles. Cela résout le problème de l’origine de l’ordre

d’expectatives qui a été proposé par Gärdenfors et Makinson, et permet de

connecter la théorie des espaces conceptuels à la logique non monotone. Par

ailleurs, on montre dans ce chapitre que cette stratégie peut également expliquer

l’origine et les forces relatives (degrés de défaisabilité) des règles par défaut dans

la logique par défaut. Pour finir, il est montré comment cette approche offre

une nouvelle solution à le “problème de Linda” (aussi connue comme "l’erreur

de conjonction”, voir Tversky and Kahneman (1983)).

L’induction et la représentation des catégories

L’induction basée sur des catégories (CBI, par “category-based induction”)

est un mécanisme inférentiel qui exploite notre connaissance des relations con-

ceptuelles pour estimer la probabilité qu’un propriété soit projeté d’une caté-

gorie à une autre. Au cours des dernières décennies, les psychologues ont iden-

tifié plusieurs caractéristiques de ce mécanisme, et ils en ont proposé différents
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modèles formels. Dans le Chapitre 7, un nouveau modèle mathématique basé sur

les distances dans les espaces conceptuels est proposé. On montrera que ce mod-

èle basé sur les EC peut prédire la plupart des propriétés de CBI, faire quelques

nouvelles prédictions et fournir une base théorique solide pour ce phénomène

psychologique. À la fin du chapitre, les relations avec d’autres modèles sont

examinées, ainsi que certaines considérations méthodologiques.

Dans son article pionnier "Jugements inductifs sur les catégories naturelles",

Lance Rips (1975) a analysé un type particulier d’inférence inductive qui ex-

ploite les informations sur les catégories individuelles (et sur les relations entre

les catégories) pour estimer la probabilité de projection de propriété parmi elles.

Par exemple, l’inférence “Les chiens ont des os sésamoïdes, donc les loups ont des

os sésamoïdes" repose sur les similitudes conceptuelles entre les catégories chien

et loup, et non sur la forme logique de l’argument ou sur une autre propriété

codifiée de manière propositionnelle. Ces processus sont des formes intuitives

de raisonnement fondamentales pour notre vie cognitive. D’une part, ils sont

essentiels pour faire face à l’incertitude: ils nous permettent de raisonner sur

un objet inconnue X en exploitant les informations stockées dans notre système

conceptuel sur des choses qui ressemblent à X. D’autre part, comme l’observe

Feeney (2017, p. 167), ils sont un exemple clair de la manière dont les concepts

rendent notre cognition efficace.

Les inférences basées sur les catégories sont structurées comme des argu-

ments avec une ou plusieurs prémisses de la forme "Les X sont S" —où X est

une catégorie et S une propriété—, et une conclusion du même type avec une

catégorie différente. Les CBI peuvent être classées de deux manières: selon

la quantité de prémisses; et selon que la conclusion se situe au même niveau

conceptuel que les prémisses ou dans une catégorie supérieure. Lorsque les

prémisses et les catégories de conclusions sont au même niveau conceptuel,

l’argument est dit "spécifique" ; "lorsque l’argument implique une généralisation

—un "saut" vers un niveau conceptuel supérieur—, alors il est dit "général".

Par exemple, les arguments de la forme rouge − gorge → corbeau ou table →

chaise sont spécifiques, alors que des arguments comme rouge-gorge→ oiseau,

rouge-gorge → animal ou table → Mobilier, sont généraux. Les arguments
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spécifiques et généraux peuvent être composés d’une ou de plusieurs prémisses

(voir figure 7.1, Chapitre 7).

Il existe plusieurs propriétés empiriques du CBI, et le modèle présenté dans

cette thèse peut les expliquer toutes. Toutefois, pour ce résumé, je n’en consid-

érerai que deux : la similarité et la typicité.

La principale relation catégorielle qui guide les CBI est la similarité. En

psychologie, la notion de similarité s’est avérée fructueuse depuis les années

1970. Depuis les travaux pionniers de Shepard (1987) et Tversky (1977), des

modèles formels de similarité ont été développés pour expliquer la formation

des concepts, la catégorisation et même l’induction. Et depuis les travaux de

Rosch sur les prototyes (1973; 1983), la similarité a été prise comme critère

central pour expliquer la structure des catégories. Il n’est pas surprenant que la

littérature empirique ait montré que le critère le plus solide utilisé dans la CBI

est la similarité entre les catégories (Carey, 1985; López et al., 1992; Osherson

et al., 1990; Rips, 1975). Cela peut être formulé en disant que nos expectatives

concernant la projection de la propriété entre deux catégories X et Y est une

fonction positive de leur similarité. Par exemple, des arguments tels que "Les

autruches sont S, puis les émeus sont S" sont généralement considérés comme

plus forts que des arguments tels que "Les autruches sont S, puis les geais

bleus sont S", puisque sim(autruche, emeu) > sim(autruche, geaibleu), où

sim(X, Y ) indique une mesure de la similarité entre les catégories X et Y .

Une autre relation conceptuelle derrière CBI est la typicité. L’effet le plus

robuste constaté dans la littérature empirique est que les expectatives sur la

projection de la propriété dans un argument inductif sont une fonction positive

de la typicité de la catégorie dans la prémisse. Par exemple, l’inférence "Les

rouges-gorges ont l’enzyme E, donc les autruches ont donc l’enzyme E" est

souvent jugée plus forte que "Les pingouins ont l’enzyme E; donc les autruches

ont l’enzyme E". Cela s’explique par le fait que les rouges-gorges sont des

oiseaux prototypiques, et qu’en tant que tels, ils représentent mieux la catégorie

que les pingouins – qui sont atypiques. Dans une moindre mesure, la typicité

de la conclusion semble également être un facteur dans les inférences basées sur

la catégorie. Hampton et Cannon (2004) ont montré que les arguments avec
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des catégories de conclusions prototypiques —comme poule→ rouge− gorge—

sont jugés plus forts que les arguments avec des catégories de conclusions non

typiques —comme poule→ vulture.

Par aillieurs, l’effet de typicité produit une asymétrie, c’est-à-dire que le fait

de changer les catégories des prémisses et de la conclusion modifie souvent les

expectatives de la projection de la propriété, selon le degré de typicité de la

catégorie dans les prémisses. Par exemple, des arguments tels que "Les vaches

ont l’enzyme E, donc les loutres ont l’enzyme E" sont considérés comme plus

forts que des arguments tels que "Les loutres ont l’enzyme E, donc les vaches

ont l’enzyme E" puisque les vaches sont des mammifères plus typiques que les

loutres.

Un modèle basé sur des espaces conceptuels

Ce modèle utilise également la notion d’expectative. Nous parlons notam-

ment de l’expectative de projection de la propriété parmi les catégories au lieu

de force de l’argument. Comme nous l’avons vu dans le chapitre précédent, les

expectatives jouent un rôle crucial dans le raisonnement quotidien. La phrase

"Jean a un nouvel animal de compagnie" est associée à un large ensemble

d’expectatives liées aux concepts lexicaux de la phrase. En ce qui concerne

le CBI, l’idée est que les dispositions inférentielles de l’agent à projeter un pro-

priété d’une catégorie à une autre sont également déterminées — dans une large

mesure– par ses expectatives concernant les régularités dans le monde, qui sont

codifiées dans les connaissances de base de l’agent (cf., section 3.4, et section

5.2.1, ce travail).

En ce sens, l’expression ExpS(X → Y )Z sera utilisée pour représenter les

expectatives de l’agent selon lesquelles la propriété S est projetée de la catégorie

X à la catégorie Y, avec Z comme catégorie de niveau supérieur qui contient à

la fois X et Y. En générale, on propose que les expectatives ExpS(X → Y )Z

doivent répondre aux critères suivantes: pour satisfaire les critères suivants :

1. Ils sont positivement corrélées avec sim(X, Y ).
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2. Ils sont positivement corrélées avec sim(X, pZ), où pZ est le prototype de

Z.

3. Ils sont positivement corrélées avec sim(Y, pZ).

Le rationale de la première condition est que plus les catégories X et Y

sont similaires, plus on s’attend que Y ait les memes propriétés que X. En ce

qui concerne la deuxième condition, l’intuition est que plus la catégorie X est

prototypique, plus on s’attend à ce qu’une autre catégorie Y ait la propriété

S, étant donné que X la possède. La condition (3) est motivée par l’effet de

typicité de Hampton et Cannon (2004): plus le Y est prototypique, plus on

s’attend à ce que Y ait la propriété S si X l’a.

Le modèle présenté ici est basé sur les distances entre les catégories représen-

tées dans les espaces conceptuels. Comme nous l’avons dit précédemment, les

concepts sont des régions d’espaces conceptuels. La stratégie consiste ici à con-

sidérer les distances entre les prototypes des catégories (représentés par des

points), et à prendre les volumes des régions représentant les concepts dans

l’EC comme prédicteurs des expectatives, c’est-à-dire de la force des arguments

dans le CBI. Le volume d’un concept dans un espace conceptuel dépend de la

métrique attribuée à cet espace, et il est défini de manière standard. Notez

que le volume d’un concept dépend de la variabilité des propriétés qui peuvent

être attribuées à un objet relevant de ce concept dans chaque domaine. Par

exemple, on s’attend à ce que le concept chien ait un volume plus important

que le concept tigre, car les chiens peuvent avoir de nombreuses couleurs, formes

et tailles différentes; alors que les tigres ont une variabilité moindre dans ces

domaines. La conséquence immédiate est que plus le concept est hétérogène,

plus son volume sera important dans un espace conceptuel.

Nous supposons que ExpS(X → Y )Z est positivement corrélé avec le volume

V (X) de X et négativement corrélé avec le volume V (Y ) de Y . La corrélation

positive est due au fait que plus le volume V (X) est grand, plus il "couvre" —ou

est plus représentatif de la catégorie supérieure Z. Par exemple, ExpS(ours→
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loup)Mammifre devrait être plus grand que ExpS(ourspolaire→ loup)Mammifre

(voir figure 7.3). La formule proposée pour modéliser ces idées est la suivant:

logExpS(X → Y )Z =
(
d(pX , pY )

V (X−Y )
(Y −X) .d(pX , pZ)a.d(pY , pZ)b

)−1

(A.1)

Cette équation peut être transformée en la suivante en prenant le logarithme

et en considérant la relation entre la distance et la similarité, établie par la loi

de Shepard:

logExpS(X → Y )Z =
V (X − Y )

(Y −X)
.sim(pX , pY ) + a.sim(pX , pZ) + b.sim(pY , pZ)

(A.2)

Pour voir comment cette formule prédit l’effet de similarité, supposons que

nous avons les arguments (i) "Les chiens ont la propriété S, donc les ours ont la

propriété S" et (ii) "Les chiens ont la propriété S, donc les loups ont la propriété

S". Supposons que V (ours) est identique ou très similaire à V (loup), alors,
V (chien−ours)
(ours−chien)

≈ V (chien−loup)
(loup−chien)

; et que d(pours, pmammifere) ≈ d(ploup, pmammifere).

Alors, comme d(pours, pchien) > d(ploup, pchien), on a que sim(ploup, pchien) >

sim(pours, pchien), et donc ExpS(chien → loup)mammifere > ExpS(chien →

ours)mammifere.

De la même manière, voyons maintenant comment le modèle prédit l’effet de

la typicité. Considérez les arguments suivants: "Les pigeons ont la propriété S,

donc les hérons ont la propriété S" et "Les pingouins ont la propriété S, donc les

hérons ont la propriété S". Selon les études empiriques, le premier argument est

plus fort que le second car les pigeons sont des oiseaux plus typiques que les pin-

gouins. Ce dernier fait implique que d(ppigeons, poiseaux) < d(ppingouins, poiseaux),

et donc sim(ppigeons, poiseaux) > sim(ppingouins, poiseaux). Si l’on suppose que

toutes ces catégories aient un volume similaire, alors l’équation ci-dessus va

donc donner que ExpS(pigeons → herons)oiseaux > ExpS(pingouins →

herons)oiseaux.

Ce modèle peut être adapté à des arguments inductifs avec multiples
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prémisses. Dans ces cas, nous utilisons un enveloppe convexe ("convex Hull")

pour traiter l’ensemble des catégories dans les prémisses comme une seule caté-

gorie avec un volume spécifique et un prototype artificiel qui sera le centroïde

de ce nouvel ensemble. Les enveloppes convexes sont également des régions

convexes d’espaces à ndimensions avec les mêmes propriétés géométriques que

les régions dans les espaces conceptuels. La taille de leurs volumes est positive-

ment corrélée au nombre de régions convexes qu’elles comprennent, ainsi qu’aux

distances entre ces régions. Par exemple, dans un espace conceptuel dans lequel

toutes les catégories ont des volumes similaires, le volume de le enveloppe con-

vexe de deux régions contiguës va être plus petit que le volume de deux régions

non contiguës de l’espace

Dans ces cas, l’équation prendrait la forme suivante:

logExpS(X1, X2, . . . , Xn → Y )Z =
V (C(X1 ∪X2 ∪ · · · ∪Xn)− Y )

V (Y − C(X1 ∪X2∪, . . . ,∪Xn))
.sim(pC , pY )

+a.sim(pC , pZ) + b.sim(pY , pZ)

(A.3)

Au final du chapitre 7, on montre que cette dernière équation prédit un

phénomène très important dans le CBI avec de multiples prémisses, appelé "di-

versité", parmi beaucoup d’autres. Par ailleurs, le modèle présenté ici englobe

la plupart des modèles formels disponibles dans la littérature, et fait quelques

nouvelles prédictions.

Au-delà du langage : Modèles, inférence, et

concepts scientifique

Au chapitre 8, j’analyse le rôle des concepts et de la représentation dans le

raisonnement scientifique. Je reprends la théorie procédurale des concepts et

des explications de Stephen Toulmin pour développer deux idées négligées de sa
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philosophie de la science : méthodes de représentation et techniques interféren-

tielles. Je soutiens que ces notions, lorsqu’elles sont correctement articulées,

pourraient être utiles pour éclairer la façon dont le raisonnement scientifique

est lié aux structures de représentation, aux concepts et aux explications au

sein des pratiques scientifiques. J’explore et illustre ces idées en étudiant le

développement de la notion de vitesse instantanée lors du passage de la physique

géométrique de Galilée à la mécanique analytique. En conclusion, je soutiens

que les méthodes de représentation pourraient être considérées comme consti-

tutives de l’inférence scientifique ; et je montre comment ces notions sont liées

à d’autres idées similaires de la philosophie scientifique contemporaine, comme

celles des modèles et du raisonnement basé sur des modèles.

La littérature classique sur le raisonnement scientifique —historiquement

monopolisée par la philosophie– a principalement compris ce processus selon

la perspective formaliste, avec la logique et la probabilité comme moteurs cen-

traux, et l’inférence déductive comme cas paradigmatique. En termes généraux,

le raisonnement était représenté comme une capacité individuelle, dépendant

exclusivement de certains mécanismes cognitifs "câblés", et spécifié par un en-

semble de règles générales de domaine opérant sur un système de représentation

de type phrase.

Stephen Toulmin a été l’un des premiers philosophes de la science à critiquer

ces idées (qui étaient très fortes grâce à l’influence du positivisme logique).

Selon lui, une bonne théorie du raisonnement doit expliquer non seulement les

processus internes qui se déroulent dans l’esprit/le cerveau des agents cognitifs,

mais aussi comment ces processus sont influencés par le contexte socioculturel

dans lequel les agents sont intégrés et le rôle des outils et des dispositifs externes

que les agents utilisent lorsqu’ils effectuent différentes tâches cognitives (de haut

niveau).

Toulmin a développé une approche "écologique" qui aborde la pensée sci-

entifique à travers deux notions centrales : "méthode de représentation" (MR)

et "technique inférentielle" (IT). Pour Toulmin, le raisonnement scientifique ne

peut être compris que comme une activité socialement ancrée, qui dépend de
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la maîtrise de différentes méthodes de représentation de l’information permet-

tant des formes spécifiques d’inférences. Toulmin utilise ces deux notions dans

ses deux ouvrages les plus importants sur la philosophie des sciences (Toulmin,

1953, 1972a), et elles jouent un rôle central dans son approche de la science basée

sur l’explication. Toutefois, il ne leur fournit pas de définitions analytiques et

ne les utilise pas systématiquement dans ses travaux.

Mais, quelles sont exactement ces méthodes de représentation? Si Toulmin

a largement utilisé cette notion dans ses deux ouvrages les plus ambitieux sur la

philosophie des sciences, il n’en a pas donné de définition analytique. En gros,

les MR sont des "techniques intellectuelles" qui permettent aux scientifiques

de construire et d’utiliser des modèles de phénomènes. En général, tout sys-

tème symbolique standardisé que les scientifiques utilisent pour représenter des

phénomènes –des diagrammes, images, formules mathématiques, programmes

informatiques, etc. Toulmin suggère que le rôle crucial que les MR jouent dans

la théorisation scientifique est lié à la manière dont ils compensent les limites

de représentation du langage naturel. Il écrit:

..."representation techniques" include all those varied procedures by

which scien- tists demonstrate—i.e. exhibit, rather than prove de-

ductively—the general relations discoverable among natural objects,

events and phenomena: so, comprising not only the use of mathe-

matical formalisms, but also the drawing of graphs and diagrams,

the establishment of taxonomic "trees" and classifications, the de-

vising of computer programmes, etc. (Toulmin, 1972a, pp. 162–163)

Les caractéristiques les plus importantes des MR sont : (1) ils sont asso-

ciés aux idéaux explicatifs des disciplines scientifiques ; (2) ils établissent les

règles et les ressources symboliques qui constitueront les modèles spécifiques

que les scientifiques utiliseront pour représenter, comprendre et raisonner les

phénomènes ; (3) elles font partie des "méthodes collectives de pensée" (?, viii),

et en tant que telles elles sont de nature "communautaire" - leur utilisation et

leur "validité" dépendent de l’accord de la communauté scientifique ; (4) elles
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jouent un rôle central dans la découverte ; et (5) elles sont essentielles au raison-

nement scientifique car elles apportent avec elles de nouvelles technologies de

l’information. Dans la suite du chapitre, je me concentrerai sur les points (4)

et (5) et sur leur relation mutuelle.

En ce qui concerne la notion de "technique inférentielle", elle peut être

définie approximativement comme l’ensemble des procédures qui permettent

aux scientifiques de tirer des conclusions basées sur un modèle dans le con-

texte d’un MR particulier. Plus précisément, lorsque les scientifiques tentent

d’expliquer un phénomène, ils le représentent par moyen de la construction

d’un modèle à l’aide de ressources symboliques spécifiques. De nombreuses dé-

ductions que les scientifiques vont faire en utilisant ce modèle, dépendent des

procédures de manipulation de ces structures symboliques. Comme j’explique

dans le Chapitre 8, les IT sont importantes parce qu’elles remettent en question

la vision classique du raisonnement qui s’appuie sur la thèse de la formalité (voir

Toulmin,1972a, pp. 487-488 ; ou Toulmin, 1953, p. 25).

De mon analyse des idées de Toulmin, il découle une conclusion forte en

accord avec mon approche pluraliste de l’inférence : le format de représentation

détermine (dans un sens fort) le type de mécanismes inférentiels possibles. En

d’autres termes, il n’y a pas d’inférence sans représentation.

Je soutiens cette denrière affirmation en analysant une étude de cas de

l’histoire des sciences. Je montre, à partir des idées de M.Panza (Panza, 2002)

et M. Blay (Blay, 1998), que l’émergence de la notion de vitesse instantanée

en physique a été possible grâce au développement d’une nouvelle méthode de

représentation.En gros, la physique du mouvement avant Newton était prin-

cipalement basée sur une méthode de représentation géométrique héritée de

Galilée. Cette méthode avait, comme contrainte implicite, l’impossibilité de

comparer directement deux variables liées au mouvement. Au lieu de cela,

seules les proportions (relations entre deux variables) étaient candidates à la

comparaison. Cela empêchait les scientifiques de représenter directement une

notion explicite de vitesse instantanée, et par conséquent, les empêchait de

raisonner sur ce phénomène.

Lorsque Leibniz et Newton développèrent le calcul infinitésimal, il devint
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possible de construire une méthode analytique de représentation qui était libre

de cette contrainte. Ce changement dans la façon de représenter le mouvement

a permis à Varignon de construire une définition fonctionnelle de la vitesse

instantanée, basée sur la notion d’infinitésimaux. Il en résulte une nouvelle façon

de faire des inférences sur le mouvement, qui n’était pas disponible auparavant.

Une conclusion importante de cette analyse est qu’en science, le contenu

conceptuel est distribué, dans une large mesure, sur des modèles externes qui

utilisent différentes ressources symboliques. En conséquence, et en raison de

la relation entre les concepts, le raisonnement et la compréhension qui a été

soulignée au début de cette thèse, la manipulation des modèles est une condition

préalable à la possession de concepts pour de nombreuses notions scientifiques.

En même temps, le pluralisme inférentiel peut être vu comme une conséquence

naturelle de la diversité des formes de représentations dans la science.





243

References

Abdi, H., & Williams, L. (2010). Principal component analysis. Wiley inter-

disciplinary reviews: computational statistics , 2 (4), 433–459.

Aggelopoulos, N. C. (2015). Perceptual inference. Neuroscience & Biobehavioral

Reviews , 55 , 375–392.

Anderson, A., Belnap Jr, N. D., & Dunn, J. M. (2017). Entailment, vol. ii:

The logic of relevance and necessity. Princeton University Press.

Anderson, J., & Lebiere, C. J. (2014). The atomic components of thought.

Psychology Press.

Andrews, A. D. (1993). Mental models and tableau logic. Behavioral and Brain

Sciences , 16 (2), 334–334.

Aristoteles, & Ross, W. D. (1965). Aristotle’s prior and posterior analytics: A

revised text with introduction and commentary. Clarendon Press.

Aydede, M. (2005). Computation and functionalism. In G. Irzik & T. Grünberg

(Eds.), Turkish studies in the history and philosophy of science (pp. 177–

204). Springer.

Baker, M. C. (2003). Lexical categories: verbs, nouns, and adjectives. Cam-

bridge University Press.

Bar-Am, N. (2008). Extensionalism: The revolution in logic. Springer Science

& Business Media.

Barsalou, L. (1987). The instability of graded structure. In U. Neisser (Ed.),

Concepts and conceptual development (pp. 101–140). Cambridge Univer-

sity Press.

Barsalou, L. (2003). Situated simulation in the human conceptual system.

Language and cognitive processes , 18 (5-6), 513–562.

Barsalou, L., Santos, A., Simmons, W. K., & Wilson, C. D. (2008). Language

and simulation in conceptual processing. In M. de Vega, A. Glenberg,



244 REFERENCES

& A. Graesser (Eds.), Symbols, embodiment, and meaning (pp. 245–283).

Oxford University Press.

Barsalou, L., & Wiemer-Hastings, K. (2005). Situating abstract concepts. In

D. Pecher & R. Zwaan (Eds.), Grounding cognition: The role of perception

and action in memory, language, and thought (pp. 129–163).

Barwise, J. (1986). Information and circumstance. Notre Dame Journal of

Formal Logic, 27 (3), 324–338.

Barwise, J. (1989). The situation in logic. Center for the Study of Language

(CSLI).

Barwise, J., & Etchemendy, J. (1996). Visual information and valid. Logical

Reasoning with Diagrams .

Benedek, M., Kenett, Y. N., Umdasch, K., Anaki, D., Faust, M., & Neubauer,

A. C. (2017). How semantic memory structure and intelligence contribute

to creative thought. Thinking & Reasoning , 23 (2), 158–183.

Bierwisch, M., & Kiefer, F. (1969). Remarks on definitions in natural language.

In F. Kiefer (Ed.), Studies in syntax and semantics (pp. 55–79). Springer.

Black, J., & Overton, W. F. (1990). Reasoning, logic, and thought disorders.

In W. F. Overton (Ed.), Reasoning, necessity, and logic (pp. 255–297).

Lawrence Elrbaum.

Blay, M. (1992). La naissance de la mécanique analytique. PUF.

Blay, M. (1998). Reasoning with the infinite: from the closed world to the

mathematical universe. University of Chicago Press.

Block, N. (1986). Advertisement for a semantics for psychology. Midwest studies

in philosophy , 10 , 615–678.

Block, N. (1998a). Conceptual role semantics. In E. Craig (Ed.), Routledge

encyclopedia of philosophy (pp. 242–256). Routledge.

Block, N. (1998b). Holism, mental and semantic. In E. Craig (Ed.), Routledge

encyclopedia of philosophy. Routledge.

Boden, M. (1988). Computer models of mind: Computational approaches in

theoretical psychology. Cambridge University Press.

Boghossian, P. (1996). Analyticity reconsidered. Noûs , 30 (3), 360–391.

Boghossian, P. (2014). What is inference? Philosophical studies , 169 (1), 1–18.



REFERENCES 245

Boghossian, P. (2018). Delimiting the boudaries of inference. Philosophical

Issues , 28 , 55–69.

Bonatti, L. (1994a). Propositional reasoning by model? Psychological Review ,

101 , 725–733.

Bonatti, L. (1994b). Why should we abandon the mental logic hypothesis?

Cognition, 50 (1-3), 17–39.

Bonnay, D. (2014). Logical constants, or how to use invariance in order to

complete the explication of logical consequence. Philosophy Compass ,

9 (1), 54–65.

Booth, R., Meyer, T., & Varzinczak, I. (2013). A propositional typicality

logic for extending rational consequence. Trends in belief revision and

argumentation dynamics , 48 , 123–154.

Brachman, R. J. (1977). What’s in a concept. International journal of man-

machine studies , 9 (2), 127–152.

Braddon-Mitchell, D., & Jackson, F. (2006). The philosophy of mind and

cognition. Wiley-Blackwell.

Braine, M. (1962). Piaget on reasoning: A methodological critique and alter-

native proposals. Monographs of the Society for Research in Child Devel-

opment , 41–63.

Braine, M. (1978). On the relation between the natural logic of reasoning and

standard logic. Psychological review , 85 (1), 1—21.

Braine, M. (1990). The “natural logic” approach to reasoning. In W. F. Overton

(Ed.), Reasoning, necessity, and logic (p. 133—157). Lawrence Elrbaum.

Braine, M., Reiser, B., & Rumain, B. (1984). Some empirical justification

for a theory of natural propositional logic. In Psychology of learning and

motivation (pp. 313–371).

Brandom, R. (1981). Semantic paradox of material implication. Notre dame

journal of formal logic, 22 (2), 129–132.

Brandom, R. (1998a). Action, norms, and practical reasoning. Philosophical

Perspectives , 12 , 127–139.

Brandom, R. (1998b). Making it explicit. Harvard University Press.

Brandom, R. (2000). Articulating reasons: An introduction to inferentialism.



246 REFERENCES

Harvard University Press.

Brandom, R. (2015). From empiricism to expressivism. Harvard University

Press.

Brewka, G., Roelofsen, F., & Serafini, L. (2007). Contextual default reason-

ing. In Proceedings of the 20th international joint conference on artifical

intelligence (p. 268–273). Morgan Kaufmann Publishers.

Brigandt, I. (2010). Scientific reasoning is material inference: Combining con-

firmation, discovery, and explanation. International Studies in the Phi-

losophy of Science, 24 (1), 31–43.

Bright, A., & Feeney, A. (2014). Causal knowledge and the development of

inductive reasoning. Journal of Experimental Child Psychology , 122 , 48–

61.

Broome, J. (2013). Rationality through reasoning. John Wiley & Sons.

Brown, H. I. (1986). Sellars, concepts and conceptual change. Synthese, 68 (2),

275–307.

Brugman, C., & Lakoff, G. (1988). Cognitive topology and lexical networks. In

S. Small, G. Cottrell, & M. Tanenhaus (Eds.), Lexical ambiguity resolution

(pp. 477–508).

Buijsman, S. (2018). How numerals support new cognitive capacities. Synthese,

197 , 1–18.

Bullier, J. (2001). Integrated model of visual processing. Brain Research

Reviews , 36 (2/3), 96–107.

Burnston, D. (2020). Fodor on imagistic mental representations. Rivista inter-

nazionale di Filosofia e Psicologia, 11 (1), 71–94.

Byrne, R. (1991). Can valid inferences be suppressed? Cognition, 39 (1), 71–78.

Byrne, R., & Johnson-Laird, P. N. (2009). ‘if’ and the problems of conditional

reasoning. Trends in Cognitive Sciences , 13 , 0–287.

Byrnes, J. (1992). Meaningful logic: Developmental perspectives. In H. Beilin

& P. B. Pufall (Eds.), Piaget’s theory: Prospects and possibilities (pp.

163–183). Erlbaum Hillsdale.

Calzavarini, F. (2020). Brain and the lexicon. Springer.

Camp, E. (2007). Thinking with maps. Philosophical perspectives , 21 , 145–182.



REFERENCES 247

Cann, R. (2011). Sense relations. In K. von Heusinger, C. Maienborn, &

P. Portner (Eds.), Semantics (p. 456-478). De Gruyter Mouton.

Carey, S. (1985). Conceptual change in childhood. MIT Press.

Carey, S. (2000). The origin of concepts. Journal of Cognition and Development ,

1 (1), 37–41.

Carey, S. (2015). Why theories of concepts should not ignore the problem of

acquisition. Disputatio, 7 (41), 113–163.

Carnap, R. (1938-55). Logical foundations of the unity of science. In O. Neu-

rath, R. Camap, & C. Morris (Eds.), International encyclopedia of unified

science (p. 42-62). University of Chicago Press.

Carnap, R. (1952). Meaning postulates. Philosophical studies , 3 (5), 65–73.

Carnap, R. (1955). Meaning and synonymy in natural languages. Philosophical

studies , 6 (3), 33–47.

Carnap, R. (1959). The elimination of metaphysics through logical analysis of

language. In A. Ayer (Ed.), Logical positivism (pp. 60–81). Free Press.

Carnap, R. (1971). A basic system of inductive logic, part i. In R. Carnap &

R. C. Jeffrey (Eds.), Studies in inductive logic and probability (Vol. 1, pp.

35–165). University of California Press.

Carnap, R. (1988). Meaning and necessity. University of Chicago Press.

Carnap, R. (2000). Logical syntax of language. Routledge.

Carruthers, P., Stich, S., & Siegal, M. (2002). The cognitive basis of science.

Cambridge University Press.

Carus, A. (2004). Sellars, carnap, and the logical space of reasons. In S. Awodey

& C. Klein (Eds.), Carnap brought home: The view from jena (pp. 317–

355).

Chapman, M. (1979). Constructive evolution: Origins and development of

piaget’s thought. Cambridge University Press.

Chater, N., & Oaksford, M. (1993). Logicism, mental models and everyday

reasoning. Mind & Language, 8 , 72–89.

Chemero, A. (2000). Anti-representationalism and the dynamical stance. Phi-

losophy of Science, 67 (4), 625–647.

Cheng, P., & Holyoak, K. (1985). Pragmatic reasoning schemas. Cognitive



248 REFERENCES

Psychology , 17 , 391–416.

Cheng, P., Holyoak, K., Nisbett, R., & Oliver, L. (1986). Pragmatic versus syn-

tactic approaches to training deductive reasoning. Cognitive Psychology ,

18 (3), 293–328.

Cherniak, C. (1984). Prototypicality and deductive reasoning. Journal of Verbal

Learning and Verbal Behavior , 23 (5), 625–642.

Cherniak, C. (1986). Minimal rationality. MIT Press.

Chomsky, N. (1959). A review of bf skinner’s verbal behavior. Language, 35 (1),

26–58.

Chomsky, N. (1986). Knowledge of language. Greenwood Publishing Group.

Chomsky, N. (2002). On nature and language. Cambridge University Press.

Chomsky, N. (2005). Rules and representations. Columbia University Press.

Chomsky, N. (2014 [1965]). Aspects of the theory of syntax. MIT Press.

Cimpian, A., Brandone, A., & Gelman, S. (2010). Generic statements require

little evidence for acceptance but have powerful implications. Cognitive

science, 34 (8), 1452–1482.

Clagett, M., & Oresme, N. (1968). Nicole oresme and the medieval geometry of

qualities and motions. University of Wisconsin Press.

Clark, A. (2006). Language, embodiment, and the cognitive niche. Trends in

cognitive sciences , 10 (8), 370–374.

Clark, A., & Chalmers, D. (1998). The extended mind. Analysis , 58 (1), 7–19.

Clavelin, M. (1968). La philosophie naturelle de galilée. Librairie Armand

Colin.

Coley, J., Shafto, P., Stepanova, O., & Baraff, E. (2005). Knowledge and

category-based induction. In W.-K. Ahn, R. Goldstone, B. Love, A. Mark-

man, & P. Wolff (Eds.), Categorization inside and outside the laboratory:

Essays in honor of douglas medin (pp. 69–85). American Psychological

Association.

Conway, P. (1995). Aristotelian formal and material logic. University Press of

America.

Corcoran, J. (2006). Schemata: the concept of schema in the history of logic.

Bulletin of Symbolic Logic, 12 (2), 219–240.



REFERENCES 249

Cosmides, L. (1989). The logic of social exchange: Has natural selection shaped

how humans reason? studies with the wason selection task. Cognition,

31 (3), 187 - 276.

Cosmides, L., Barrett, H. C., & Tooby, J. (2010). Adaptive specializations,

social exchange, and the evolution of human intelligence. Proceedings of

the National Academy of Sciences , 107 (Supplement 2), 9007–9014.

Cosmides, L., & Tooby, J. (1996). Are humans good intuitive statisticians after

all? Cognition, 58 (1), 1–73.

Cruse, A. (1986). Lexical semantics. Cambridge University Press.

Cruse, A. (2000). Meaning in language. Oxford University Press.

Cruse, A. (2002). Hyponymy and its varieties. In R. Green, C. Bean, &

S. H. Myaeng (Eds.), The semantics of relationships (pp. 3–21). Springer.

Cummings, L. (2013). Pragmatics: A multidisciplinary perspective. Routledge.

Cummins, R. (1992). Conceptual role semantics and the explanatory role of

content. Philosophical Studies , 65 , 103–127.

Cuyckens, H. (1997). Prepositions in cognitive lexical semantics. Lexikalische

und grammatische Eigenschaften präpositionaler Elemente, 63–82.

Decock, L. (2010). Quine’s antimentalism in linguistics. Logique et Analyse,

53 , 371–385.

Decock, L., & Douven, I. (2011). Similarity after goodman. Review of philosophy

and psychology , 2 (1), 61–75.

Decock, L., & Douven, I. (2014). What is graded membership? Noûs , 48 (4),

653–682.

Delgrande, J. (2011). What’s in a default? thoughts on the nature and role

of defaults in nonmonotonic reasoning. In G. Brewka, V. W. Marek, &

M. Truszczynski (Eds.), Nonmonotonic reasoning. essays celebrating its

30th anniversary (pp. 89–109). College Publications.

Delgrande, J., & Schaub, T. (2000). Expressing preferences in default logic.

Artificial Intelligence, 123 (1-2), 41–87.

De Neys, W., Schaeken, W., & D’ydewalle, G. (2002). Causal conditional

reasoning and semantic memory retrieval: A test of the semantic memory

framework. Memory & cognition, 30 (6), 908–920.



250 REFERENCES

Dennett, D. (1969). Content and consciousness. Routledge.

Dennett, D. (1979). Brainstorms series. Harvester Press.

Dennett, D. (1984). The role of the computer metaphor in understanding

the mind. In Proc. of a symposium on computer culture (Vol. 426, pp.

266–275).

Devadoss S., O. J. (2011). Discrete and computational geometry. Princeton

University Press.

deVries, W. A. (2005). Wilfrid sellars. Acumen.

Dominowski, R. (1995). Content effects in wason’s selection task. In S. Newstead

& J. S. Evans (Eds.), Perspectives on thinking and reasoning: Essays in

honour of peter wason (pp. 41–65). Psychology Press.

Douven, I. (2019). Putting prototypes in place. Cognition, 193 , 104007.

Douven, I., Decock, L., Dietz, R., & Égré, P. (2013). Vagueness: A conceptual

spaces approach. Journal of Philosophical Logic, 42 (1), 137–160.

Dove, G. (2009). Beyond perceptual symbols: A call for representational plu-

ralism. Cognition, 110 (3), 412–431.

Ducheyne, S. (2008). Galileo and huygens on free fall: Mathematical and

methodological differences. Dynamis , 28 , 243–274.

Dummett, M. (1993). The seas of language. Clarendon Press Oxford.

Dutilh Novaes, C. (2012). Formal languages in logic. Cambridge University

Press.

Edgington, D. (2020). Indicative conditionals. In E. N. Zalta (Ed.), The Stan-

ford encyclopedia of philosophy (Fall 2020 ed.). Metaphysics Research

Lab, Stanford University. https://plato.stanford.edu/archives/

fall2020/entries/conditionals/.

Elffers, E. (2014). Earlier and later anti-psychologism in linguistics. In V. Ka-

sevich, Y. A. Kleiner, & P. Sériot (Eds.), History of linguistics 2011

(Vol. 123, p. 127-136). John Benjamins Publishing Company.

Eliasmith, C., & Bechtel, W. (2006). Symbolic versus subsymbolic. In L. Nadel

(Ed.), Encyclopedia of cognitive science (pp. 123–142). MacMillian.

Eliot, J. (1987). Models of psychological space. Springer-Verlag.

Elqayam, S., & Over, D. (2012). Probabilities, beliefs, and dual processing: the

https://plato.stanford.edu/archives/fall2020/entries/conditionals/
https://plato.stanford.edu/archives/fall2020/entries/conditionals/


REFERENCES 251

paradigm shift in the psychology of reasoning. Mind & Society , 11 (1),

27–40.

Elqayam, S., & Over, D. E. (2013). New paradigm psychology of reasoning.

Thinking & Reasoning , 19 (3-4), 249–265.

Etchemendy, J. (1983). The doctrine of logic as form. Linguistics and Philoso-

phy , 319–334.

Etherington, D. W., & Reiter, R. (1983). On inheritance hierarchies with

exceptions. In Aaai (Vol. 83, pp. 104–108).

Eva, B., & Hartmann, S. (2018). Bayesian argumentation and the value of

logical validity. Psychological review , 125 (5), 806.

Evans, J. S. (1989). Concepts and inference. Mind & Language, 4 (1-2), 29–34.

Evans, J. S. (1993a). The mental model theory of conditional reasoning: Critical

appraisal and revision. Cognition, 48 (1), 1–20.

Evans, J. S. (1993b). On rules, models and understanding. Behavioral and

Brain Sciences , 16 (2), 345–346.

Evans, J. S. (2019). Hypothetical thinking: Dual processes in reasoning and

judgement. Psychology Press.

Evans, J. S., Barston, J. L., & Pollard, P. (1983). On the conflict between logic

and belief in syllogistic reasoning. Memory & cognition, 11 (3), 295–306.

Evans, J. S., & Feeney, A. (2004). The role of prior belief in reasoning. In

J. Leighton & R. Sternberg (Eds.), The nature of reasoning (pp. 78–102).

Cambridge University Press.

Evans, J. S., Newstead, S., & Byrne, R. (1993). Human reasoning: The psy-

chology of deduction. Psychology Press.

Evans, J. S., & Over, D. (2004). If: Supposition, pragmatics, and dual processes.

Oxford University Press.

Evans, J. S., Over, D., & Handley, S. (2005). Suppositions, extensionality, and

conditionals: A critique of the mental model theory of johnson-laird and

byrne (2002). Psychological Review , 112 , 1040–1052.

Falmagne, R. J. (1990). Language and the acquisition of logical knowledge.

In W. F. Overton (Ed.), Reasoning, necessity, and logic (pp. 111–131).

Lawrence Elrbaum.



252 REFERENCES

Falmagne, R. J., & Gonsalves, J. (1995). Deductive inference. Annual Review

of Psychology , 46 (1), 525–559.

Feeney, A. (2017). Forty years of progress on category-based inductive rea-

soning. In L. J. Ball & V. Thompson (Eds.), International handbook of

thinking and reasoning (pp. 167–185). Routledge.

Feeney, A., Hayes, B., & Heit, E. (2015). From tool to theory: What recognition

memory reveals about inductive reasoning. In A. Feeney & V. Thompson

(Eds.), Reasoning as memory (p. 110-127). Psychology Press.

Feeney, A., & Heit, E. (2011). Properties of the diversity effect in category-based

inductive reasoning. Thinking & Reasoning , 17 (2), 156–181.

Feest, U. (2005). Operationism in psychology: What the debate is about, what

the debate should be about. Journal of the History of the Behavioral

Sciences , 41 (2), 131–149.

Fillmore, C. (2006). Frame semantics. In D. Geeraerts (Ed.), Cognitive linguis-

tics: Basic readings (pp. 373–400). Mouton de Gruyter.

Fodor, J. (1975). The language of thought. Harvard University Press.

Fodor, J. (1980). Methodological solipsism considered as a research strategy in

cognitive psychology. Behavioral and brain sciences , 3 (1), 63–73.

Fodor, J. (1985). Fodor’s guide to mental representation. Mind , 94 (373),

76–100.

Fodor, J. (1987). Psychosemantics. MIT Press.

Fodor, J. (1988). Modules, frames, fridgeons, sleeping dogs and the music of the

spheres. In Z. Pylyshyn (Ed.), The robot’s dilemma: The frame problem

in artificial. Ablex Publishing Corporation.

Fodor, J. (1994). Concepts: A potboiler. Cognition, 50 (1-3), 95–113.

Fodor, J. (2001). The mind doesn’t work that way. MIT Press.

Fodor, J. (2008). Lot 2. Oxford University Press.

Fodor, J., & Lepore, E. (1991). Why meaning (probably) isn’t conceptual role.

Mind and language, 6 (4), 328–43.

Fodor, J., & Lepore, E. (1992). Holism: A shopper’s guide. Blackwell Publish-

ing.

Fodor, J., & Pylyshyn, Z. (1988). Connectionism and cognitive architecture. In



REFERENCES 253

S. Pinker & J. Mehler (Eds.), Connections and symbols (pp. 3–71). MIT

Press.

Fodor, J., & Pylyshyn, Z. (2015). Minds without meanings. MIT Press.

Ford, M. (1995). Two modes of mental representation and problem solution in

syllogistic reasoning. Cognition, 54 (1), 1–71.

Frankish, K. (2010). Dual-process and dual-system theories of reasoning. Phi-

losophy Compass , 5 (10), 914–926.

Frege, G. (1948). Sense and reference. The philosophical review , 57 (3), 209–

230.

Frege, G. (1979). Posthumous writings. University of Chicago Press.

Frege, G. (1980). The foundations of arithmetic. Northwestern University

Press.

French, R., Mareschal, D., Mermillod, M., & Quinn, P. (2004). The role of

bottom-up processing in perceptual categorization by 3-to 4-month-old

infants. Journal of experimental psychology: General , 133 (3), 382.

Frigg, R., & Hartmann, S. (2020). Models in Science. In E. N. Zalta

(Ed.), The Stanford encyclopedia of philosophy (Spring 2020 ed.). Meta-

physics Research Lab, Stanford University. https://plato.stanford

.edu/archives/spr2020/entries/models-science/.

Galilei, G. (1954 [1632]). Dialogues concerning two new sciences. Dover Publi-

cations.

Galotti, K., Baron, J., & Sabini, J. (1986). Individual differences in syllogistic

reasoning: Deduction rules or mental models? Journal of Experimental

Psychology: General , 115 (1), 16–25.

Gärdenfors, P. (1992). The role of expectations in reasoning. In M. Masuch

& L. Pólos (Eds.), Knowledge representation and reasoning under uncer-

tainty (pp. 1–16). Springer.

Gärdenfors, P. (1993). The emergence of meaning. Linguistics and Philosophy ,

16 (3), 285–309.

Gardenfors, P. (1994). How logic emerges from the dynamics of information

peter gardenfors. In A. Visser & J. Eijck (Eds.), Logic and information

flow (pp. 49–77). MIT Press.

https://plato.stanford.edu/archives/spr2020/entries/models-science/
https://plato.stanford.edu/archives/spr2020/entries/models-science/


254 REFERENCES

Gärdenfors, P. (1997). Symbolic, conceptual and subconceptual representations.

In V. Cantoni, V. Di Gesù, A. Setti, & D. Tegolo (Eds.), Human and

machine perception (pp. 255–270). Springer.

Gärdenfors, P. (2000). Conceptual spaces. MIT Press.

Gärdenfors, P. (2008). Reasoning in conceptual spaces. In J. Adler & L. Rips

(Eds.), Reasoning: studies of human inference and its foundations (pp.

302–320). Cambridge University Press.

Gärdenfors, P. (2014). The geometry of meaning. MIT Press.

Gärdenfors, P. (2015). The geometry of preposition meanings. Baltic Interna-

tional Yearbook of Cognition, Logic and Communication, 10 (1), 2–33.

Gärdenfors, P. (2020). Events and causal mappings modeled in conceptual

spaces. Frontiers in Psychology , 11 , 1-10.

Gärdenfors, P., Jost, J., & Warglien, M. (2018). From actions to effects: Three

constraints on event mappings. Frontiers in psychology , 9 , 1391.

Gärdenfors, P., & Makinson, D. (1994). Nonmonotonic inference based on

expectations. Artificial Intelligence, 65 (2), 197–245.

Gärdenfors, P., & Warglien, M. (2012). Using conceptual spaces to model

actions and events. Journal of semantics , 29 (4), 487–519.

Gaudet, E. (2006). Quine on meaning: The indeterminacy of translation. A&C

Black.

Geeraerts, D. (2010). Theories of lexical semantics. Oxford University Press.

Geeraerts, D., & Cuyckens, H. (2007). The oxford handbook of cognitive lin-

guistics. Oxford University Press.

Gelman, R. (1990). First principles organize attention to and learning about

relevant data. Cognitive science, 14 (1), 79–106.

Gelman, S. (2009). Learning from others: Children’s construction of concepts.

Annual review of psychology , 60 , 115–140.

Gelman, S., Leslie, S.-J., Was, A. M., & Koch, C. M. (2015). Children’s interpre-

tations of general quantifiers, specific quantifiers and generics. Language,

cognition and neuroscience, 30 (4), 448–461.

Giere, R. N. (1999). Using models to represent reality. In Model-based reasoning

in scientific discovery (pp. 41–57). Springer.



REFERENCES 255

Giere, R. N. (2004). How models are used to represent reality. Philosophy of

science, 71 (5), 742–752.

Giere, R. N. (2010). Scientific perspectivism. University of Chicago Press.

Gigerenzer, G., & Goldstein, D. (1996). Mind as computer: Birth of a metaphor.

Creativity Research Journal , 9 , 131–144.

Giordano, L., Gliozzi, V., Olivetti, N., & Pozzato, G. L. (2008). Reason-

ing about typicality in preferential description logics. In S. Hölldobler,

C. Lutz, & H. Wansing (Eds.), European workshop on logics in artificial

intelligence (pp. 192–205). Springer.

Giusti, E. (1994). Il filosofo geometra. matematica e filosofia naturale in galileo.

Nuncius , 9 (2), 485–498.

Goldfarb, W. (2001). Frege’s conception of logic. In J. Floyd & S. Shieh (Eds.),

Future pasts: The analytic tradition in twentieth-century philosophy (pp.

25–41). Oxford University Press.

Golding, E. (1981). The effect of past experience on problem-solving. In Bulletin

of the british psychological society (Vol. 34, pp. 186–186).

Goldstone, R., Medin, D., & Halberstadt, J. (1997). Similarity in context.

Memory & Cognition, 25 (2), 237–255.

Gómez-Torrente, M. (2002). The problem of logical constants. Bulletin of

Symbolic Logic, 8 (1), 1–37.

Goodman, N. (1972). Seven strictures on similarity. In N. Goodman (Ed.),

Problems and projects (p. 437–446). Bobbs-Merrill.

Greenberg, M., & Harman, G. (2005). Conceptual role semantics. In E. Lepore

& B. Smith (Eds.), Oxford handbook of philosophy of language. Oxford

University Press.

Grice, P. (1975). Logic and conversation. In P. Cole & J. Morgan (Eds.), Syntax

and semantics (pp. 41–58). Academic Press.

Griggs, R. A., & Cox, J. R. (1982). The elusive thematic-materials effect in

wason’s selection task. British journal of psychology , 73 (3), 407–420.

Guicciardini, N. (2013). Mathematics and the new sciences. In J. Z. Buchwald

& R. Fox (Eds.), The oxford handbook of the history of physics (pp. 226–

264).



256 REFERENCES

Hacking, I. (1994). Styles of scientific thinking or reasoning. In K. Gavroglu,

J. Christianidis, & E. Nicolaidis (Eds.), Trends in the historiography of

science (pp. 31–48). Springer.

Hacking, I. (2009). Scientific reason. National Taiwan University Press Taipei.

Hahn, U. (2020). Argument quality in real world argumentation. Trends in

Cognitive Sciences , 34 , 363–374.

Hampton, J. (2001). The role of similarity in natural categorization. In U. Hahn

& M. Ramscar (Eds.), Similarity and categorization (pp. 13–28). Oxford

University Press.

Hampton, J. (2012). Thinking intuitively: The rich (and at times illogical) world

of concepts. Current directions in psychological science, 21 (6), 398–402.

Hampton, J., & Cannon, I. (2004). Category-based induction: An effect of

conclusion typicality. Memory & Cognition, 32 (2), 235–243.

Hanna, R. (1991). How ideas became meanings: Locke and the foundations of

semantic theory. The Review of Metaphysics , 44 , 775–805.

Hanna, R. (2004). Kant and the foundations of analytic philosophy. Oxford

University Press.

Harman, G. (1967). Quine on meaning and existence, i. the death of meaning.

The Review of Metaphysics , 124–151.

Harman, G. (1982). Conceptual role semantics. Notre Dame Journal of Formal

Logic, 23 (2), 242–256.

Harman, G. (1984). Logic and reasoning. In H. Leblanc, E. Mendelson, &

A. Orenstein (Eds.), Foundations: Logic, language, and mathematics (pp.

107–127). Springer.

Harman, G. (1986). Change in view: Principles of reasoning. MIT Press.

Harnad, S. (1987). Psychophysical and cognitive aspects of categorical percep-

tion: A critical overview. In S. Harnad (Ed.), Categorical perception: The

groundwork of cognition (pp. 1–52). Cambridge University Press.

Hatfield, G. (2002). Perception as unconscious inference. In D. Heyer &

R. Mausfeld (Eds.), Perception and the physical world (pp. 113–143). John

Wiley & Sons.

Haugeland, J. (1987). An overview of the frame problem. In K. Ford &



REFERENCES 257

Z. Pylyshyn (Eds.), The robot’s dilemma (pp. 77–94). Ablex.

Haugeland, J. (1989). Artificial intelligence: The very idea. MIT Press.

Hayes, B., Fritz, K., & Heit, E. (2013). The relationship between memory and

inductive reasoning: Does it develop? Developmental Psychology , 49 (5),

848.

Hayes, B., Heit, E., & Swendsen, H. (2010). Inductive reasoning. WIREs

Cognitive science, 1 (2), 278–292.

Hayes, P. (1977). In defense of logic. In Proceedings of the 5th ijcai’77

(p. 559–565). Morgan Kaufmann.

Hayes, P. (1988). What the frame problem is and isn’t. In Z. Pylyshyn (Ed.),

The robot’s dilemma: The frame problem in artificial (pp. 123–137). Ablex

Publishing Corporation.

Heit, E. (1997). Features of similarity and category-based induction. In An

interdisciplinary workshop on similarity and categorisation (simcat).

Heit, E. (1998). A bayesian analysis of some forms of inductive reasoning.

In M. Oaksford & N. Chater (Eds.), Rational models of cognition (pp.

248–274). Oxford University Press.

Heit, E. (2000). Properties of inductive reasoning. Psychonomic Bulletin &

Review , 7 (4), 569–592.

Heit, E., & Rubinstein, J. (1994). Similarity and property effects in inductive

reasoning. Journal of Experimental Psychology , 20 (2), 411.

Hendricks, S. (2006). The frame problem and theories of belief. Philosophical

studies , 129 (2), 317–333.

Henle, M. (1962). On the relation between logic and thinking. Psychological

review , 69 (4), 366.

Henschen, L. (1987). Inference. In S. Shapiro (Ed.), Encyclopedia of artificial

intelligence (pp. 418–419). John Wiley and Sons.

Hlobil, U. (2014). Against boghossian, wright and broome on inference. Philo-

sophical Studies , 167 (2), 419–429.

Hlobil, U. (2019). Inferring by attaching force. Australasian Journal of Philos-

ophy , 97 (4), 701–714.

Hodges, W. (1993). The logical content of theories of deduction. Behavioral



258 REFERENCES

and Brain Sciences , 16 (2), 353–354.

Hoffman, D. (1983). The interpretation of visual illusions. Scientific American,

249 (6), 154–163.

Hoffman, D. (2005). Visual illusions and perception. Yearbook of Science and

Technology. McGraw-Hill .

Hoffman, D., & Richards, W. (1984). Parts of recognition. Cognition, 18 (1-3),

65–96.

Hoffman, D., Singh, M., & Prakash, C. (2015). The interface theory of percep-

tion. Psychonomic bulletin & review , 22 (6), 1480–1506.

Horowitz, M. (1967). Visual imagery and cognitive organization. American

Journal of Psychiatry , 123 (8), 938–946.

Horst, S. (1999a). Symbols and computation a critique of the computational

theory of mind. Minds and Machines , 9 (3), 347–381.

Horst, S. (1999b). Symbols, computation, and intentionality. University of

California Press.

Horty, J. F. (2012). Reasons as defaults. Oxford University Press.

Hout, M., Papesh, M., & Goldinger, S. (2013). Multidimensional scaling.

WIREs: Cognitive Science, 4 (1), 93–103.

Hume, D. (1894). An enquiry concerning the human understanding: And an

enquiry concerning the principles of morals. Clarendon Press.

Hutchins, E. (2010). Cognitive ecology. Topics in cognitive science, 2 (4),

705–715.

Inhelder, B., & Piaget, J. (1958). The growth of logical thinking from childhood

to adolescence. Psychology Press.

Inhelder, B., & Piaget, J. (1964). The early growth of logic in the child. Harper

and Row.

Jackendoff, R. (1976). Toward an explanatory semantic representation. Lin-

guistic inquiry , 7 (1), 89–150.

Jackendoff, R. (1981). On katz’s autonomous semantics. Language, 425–435.

Jackendoff, R. (1992). Semantic structures (Vol. 18). MIT Press.

Jackendoff, R. (2002). Foundations of language. Oxford University Press.

Jackendoff, R. (2017). In defense of theory. Cognitive science, 41 , 185–212.



REFERENCES 259

Jackendoff, R., & Landau, B. (1993). "what” and “where” in spatial language

and spatial cognition. Behavioral and brain sciences , 16 (2), 217–265.

Jackson, F. (1997). Mental causation without the language of thought. In

M. L. DallaChiara, K. Doets, D. Mundici, & J. V. Benthem (Eds.), Struc-

tures and norms in science (pp. 303–318). Springer.

Jäger, G. (2007). The evolution of convex categories. Linguistics and Philoso-

phy , 30 (5), 551–564.

Johannesson, M. (2002). Geometric models of similarity (Vol. 90). Lund

University.

Johnson-Laird, P. N. (1981). Comprehension as the construction of mental

models. Philosophical Transactions of the Royal Society of London. B,

Biological Sciences , 295 (1077), 353–374.

Johnson-Laird, P. N. (1982). Formal semantics and the psychology of meaning.

In E. Saarinen & S. Peters (Eds.), Processes, beliefs, and questions (pp.

1–68). Springer.

Johnson-Laird, P. N. (1983). Mental models. Harvard University Press.

Johnson-Laird, P. N. (2002). Peirce, logic diagrams, and the elementary oper-

ations of reasoning. Thinking & Reasoning , 8 (1), 69–95.

Johnson-Laird, P. N. (2010a). Against logical form. Psychologica Belgica,

50 (3-4).

Johnson-Laird, P. N. (2010b). Deductive reasoning. WIREs Cognitive Science,

1 (1), 8–17.

Johnson-Laird, P. N. (2012). Inference with mental models. In J. Holyoak

& R. G. Morrison (Eds.), The oxford handbook of thinking and reasoning

(pp. 134–145). Oxford University Press.

Johnson-Laird, P. N., & Byrne, R. (1991). Deduction. Lawrence Erlbaum

Associate.

Johnson-Laird, P. N., Byrne, R., & Schaeken, W. (1992). Propositional rea-

soning by model. Psychological review , 99 (3), 418.

Johnson-Laird, P. N., & Byrne, R. M. (2002). Conditionals: a theory of mean-

ing, pragmatics, and inference. Psychological Review , 109 (4), 646.

Johnson-Laird, P. N., Legrenzi, P., Girotto, V., Legrenzi, M. S., & Caverni,



260 REFERENCES

J.-P. (1999). Naive probability: a mental model theory of extensional

reasoning. Psychological review , 106 (1), 62.

Jones, D. (2010). Human kinship, from conceptual structure to grammar.

Behavioral and Brain Sciences , 33 (5), 367.

Jones, M., & Love, B. C. (2011). Bayesian fundamentalism or enlightenment?

on the explanatory status and theoretical contributions of bayesian models

of cognition. Behavioral and brain sciences , 34 (4), 169.

Jönsson, M. L. (2014). Semantic holism and language learning. Journal of

Philosophical Logic, 43 (4), 725–759.

Katz, J. (1975). Logic and language: An examination of recent criticism of

intensionalism. In K. Gunderson (Ed.), Language, mind, and knowledge

(p. 36-130). University of Minnesota Press, Minneapolis.

Katz, J. (1992). The new intensionalism. Mind , 101 (404), 689–719.

Katz, J. (2004). Sense, reference, and philosophy. Oxford University Press.

Keil, F. (1979). Semantic and cognitive developmen. Harvard University Press.

Kemp, C., & Tenenbaum, J. B. (2008). The discovery of structural form.

Proceedings of the National Academy of Sciences , 105 (31), 10687–10692.

Keßler, C., Raubal, M., & Janowicz, K. (2007). The effect of context on semantic

similarity measurement. In Otm confederated international conferences"

on the move to meaningful internet systems" (pp. 1274–1284).

Kiefer, F. (1988). Linguistic, conceptual and encyclopedic knowledge. In Pro-

ceedings of the 3rd euralex international congress. budapest: Akadémiai

kiadó (pp. 1–10).

Klauer, K. C., Musch, J., & Naumer, B. (2000). On belief bias in syllogistic

reasoning. Psychological review , 107 (4), 852.

Kosslyn, S. M., Thompson, W. L., & Ganis, G. (2006). The case for mental

imagery. Oxford University Press.

Kremer, M. (2010). Representation or inference: must we choose? should

we? In B. Weiss & J. Wanderer (Eds.), Reading brandom (pp. 237–256).

Routledge.

Lakemeyer, G., & Nebel, B. (1994). Foundations of knowledge representa-

tion and reasoning. In G. Lakemeyer & B. Nebel (Eds.), Foundations of



REFERENCES 261

knowledge representation and reasoning (pp. 1–12). Springer.

Lakkof, G. (2017). Cognitive models and prototype theory. In U. Neisser (Ed.),

Concepts and conceptual development (pp. 63–100). Cambridge University

Press.

Lakoff, G., & Johnson, M. (2008). Metaphors we live by. University of Chicago

press.

Lampert, M. (2009). Attention and recombinance. Peter Lang.

Land, S. K. (1974). From signs to propositions. Longman.

Landy, D., Allen, C., & Zednik, C. (2014). A perceptual account of symbolic

reasoning. Frontiers in psychology , 5 , 1-10.

Langacker, R. W. (1987). Foundations of cognitive grammar: Theoretical pre-

requisites (Vol. 1). Stanford University Press.

Langacker, R. W. (2000). Grammar and conceptualization (Vol. 14). Walter de

Gruyter.

Lange, M. (2000). Natural laws in scientific practice. Oxford University Press.

Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth

ten thousand words. Cognitive science, 11 (1), 65–100.

Lascarides, A., & Asher, N. (1993). Temporal interpretation, discourse relations

and commonsense entailment. Linguistics and philosophy , 16 (5), 437–

493.

Lehmann, D., & Magidor, M. (1992). What does a conditional knowledge base

entail? Artificial intelligence, 55 (1), 1–60.

Leslie, S.-J. (2008). Generics: Cognition and acquisition. Philosophical Review ,

117 (1), 1–47.

Leslie, S.-J., & Gelman, S. (2012). Quantified statements are recalled as gener-

ics. Cognitive psychology , 64 (3), 186–214.

Levinson, S. (2003). Space in language and cognition: Explorations in cognitive

diversity. Cambridge University Press.

Lewis, D. (1994). Reduction of mind. In S. Guttenplan (Ed.), A companion to

philosophy of mind (p. 412–431). Blackwell Publishers.

Lewis, M., & Lawry, J. (2016). Hierarchical conceptual spaces for concept

combination. Artificial Intelligence, 237 , 204–227.



262 REFERENCES

Lieto, A., Chella, A., & Frixione, M. (2017). Conceptual spaces for cognitive

architectures. Biologically inspired cognitive architectures , 19 , 1–9.

Lieto, A., Minieri, A., Piana, A., & Radicioni, D. P. (2015). A knowledge-based

system for prototypical reasoning. Connection Science, 27 (2), 137–152.

Lieto, A., & Pozzato, G. (2019). A description logic framework for commonsense

conceptual combination integrating typicality, probabilities and cognitive

heuristics. Journal of Experimental & Theoretical Artificial Intelligence,

32 (5), 1–36.

Lieto, A., & Pozzato, G. L. (2018). A description logic of typicality for concep-

tual combination. In M. Ceci, N. Japkowicz, J. Liu, G. Papadopoulos, &

Z. Raś (Eds.), Foundations of intelligent systems (pp. 189–199).

Lifschitz, V., Morgenstern, L., & Plaisted, D. (2008). Knowledge representation

and classical logic. In Handbook of knowledge representation (Vol. 3, pp.

3–88). Elsevier.

Lin, P.-J., Schwanenflugel, P., & Wisenbaker, J. (1990). Category typicality,

cultural familiarity, and the development of category knowledge. Devel-

opmental Psychology , 26 (5), 805—813.

Lindstromberg, S. (2010). English prepositions explained. John Benjamins

Publishing.

Lloyd, R. (1993). Cognitive processes and cartographic maps. Advances in

psychology , 96 , 141–169.

Locke, J. (1979). An essay concerning human understanding (P. Nidditch,

Trans.). Clarendon Press.

López, A., Gelman, S., Gutheil, G., & Smith, E. (1992). The development of

category-based induction. Child development , 63 (5), 1070–1090.

Lormand, E. (1990). Framing the frame problem. Synthese, 82 (3), 353–374.

Lowe, E. (1993). Rationality, deduction and mental models. In K. Manktelow &

D. Over (Eds.), Rationality: Psychological and philosophical perspectives

(pp. 211–230). Taylor & Frances/Routledge.

Lyons, J. (1996). Linguistic semantics. Cambridge University Press.

MacFarlane, J. (2000). What does it mean to say that logic is formal? (Unpub-

lished doctoral dissertation). University of Pittsburgh.



REFERENCES 263

MacFarlane, J. (2002). Frege, kant, and the logic in logicism. The philosophical

review , 111 (1), 25–65.

MacFarlane, J. (2010). Pragmatism and inferentialism. In B. Weiss & J. Wan-

derer (Eds.), Reading brandom. on making it explicit (pp. 81–95). Rout-

ledge.

Machery, E. (2009). Doing without concepts. Oxford University Press.

Macnamara, J. (1986). A border dispute: The place of logic in psychology. MIT

Press.

Maddox, T. (1992). Perceptual and decisional separability. In G. Ashby

(Ed.), Multidimensional models of perception and cognition (p. 147–180).

Lawrence Erlbaum Associates.

Magnani, L. (2002). Epistemic mediators and model-based discovery in science.

In L. Magnani & N. J. Nersessian (Eds.), Model-based reasoning (pp. 305–

329). Springer.

Magnani, L. (2004). Reasoning through doing. Journal of Applied Logic, 2 (4),

439–450.

Magnani, L. (2011). Abduction, reason and science. Springer Science & Business

Media.

Mahon, B. Z., & Caramazza, A. (2011). What drives the organization of object

knowledge in the brain? Trends in cognitive sciences , 15 (3), 97–103.

Mandler, J. M., Bauer, P. J., & McDonough, L. (1991). Separating the sheep

from the goats: Differentiating global categories. Cognitive Psychology ,

23 (2), 263–298.

Manktelow, K., & Evans, J. S. (1979). Facilitation of reasoning by realism:

Effect or non-effect? British Journal of Psychology , 70 (4), 477–488.

Manktelow, K., & Over, D. (1990). Deontic thought and the selection task. In

N. Wetherick, K. Gilhooly, K. Gilhooly, M. Keane, R. Logic, & G. Erdos

(Eds.), Lines of thinking (pp. 91–114). Jons Wiley & Sons.

Manktelow, K., & Over, D. (1991). Social roles and utilities in reasoning with

deontic conditionals. Cognition, 39 , 1–105.

Marchetti, G. (2015). Attentional semantics: An overview. In G. Marchetti,

G. Benedetti, & A. Alharbi (Eds.), The attentional basis of meaning



264 REFERENCES

(p. 33-76). Nova Science Publishers.

Marconi, D. (1997). Lexical competence. MIT Press.

Markovits, H., & Nantel, G. (1989). The belief-bias effect in the production

and evaluation of logical conclusions. Memory & cognition, 17 (1), 11–17.

Marras, A. (1973). On sellars’ linguistic theory of conceptual activity. Canadian

Journal of Philosophy , 2 (4), 471–483.

McGinn, C. (1989). Mental content. Blackwell.

McRae, K. (2004). Semantic memory: Some insights from feature-based con-

nectionist attractor networks. The psychology of learning and motivation:

Advances in research and theory , 45 , 41–86.

Medin, D., Coley, J., Storms, G., & Hayes, B. (2003). A relevance theory of

induction. Psychonomic Bulletin & Review , 10 (3), 517–532.

Medin, D., Goldstone, R., & Gentner, D. (1993). Respects for similarity.

Psychological review , 100 (2), 254-278.

Medin, D., Lynch, E. B., & Solomon, K. O. (2000). Are there kinds of concepts?

Annual review of psychology , 51 (1), 121–147.

Mercier, H. (2012). Looking for arguments. Argumentation, 26 (3), 305–324.

Mercier, H., & Sperber, D. (2009). Intuitive and reflective inferences. In

J. S. Evans & K. Frankish (Eds.), In two minds: dual process and beyond

(p. 149—170). Oxford University Press.

Mercier, H., & Sperber, D. (2011). Why do humans reason? arguments for an

argumentative theory. Behavioral and Brain Sciences , 34 (2), 57-74.

Mercier, H., & Sperber, D. (2017). The enigma of reason. Harvard University

Press.

Mervis, C. B., & Rosch, E. (1981). Categorization of natural objects. Annual

Review of Psychology , 32 (1), 89–115.

Mezzadri, D. (2018). Logic, judgment, and inference. Journal of the History of

Philosophy , 56 , 727–746.

Minsky, M. (1974). A framework for representing knowledge. Artificial Intelli-

gence, 12 .

Minsky, M. (1991). Logical versus analogical or symbolic versus connectionist

or neat versus scruffy. AI magazine, 12 (2), 34–34.



REFERENCES 265

Moktefi, A., & Shin, S.-J. (2013). Visual reasoning with diagrams. Springer

Science & Business Media.

Morrison, M., & Morgan, M. S. (1999). Models as mediating instruments. Ideas

in context , 52 , 10–37.

Murphy, G. (2004). The big book of concepts. MIT Press.

Murphy, L. (2003). Semantic relations and the lexicon. Cambridge University

Press.

Nagy, W., & Gentner, D. (1990). Semantic constraints on lexical categories.

Language and Cognitive Processes , 5 (3), 169–201.

Nersessian, N. J. (1999). Model-based reasoning in conceptual change. In

L. Magnani, N. J, Nersessian, & P. Thagard (Eds.), Model-based reasoning

in scientific discovery (pp. 5–22). Springer.

Nersessian, N. J. (2006). Model-based reasoning in distributed cognitive sys-

tems. Philosophy of science, 73 (5), 699–709.

Nersessian, N. J. (2010). Creating scientific concepts. MIT Press.

Newton, I. (1999 [1687]). The principia: mathematical principles of natural

philosophy. University of California Press.

Niiniluoto, I. (1987). Truthlikeness. Reidel.

Norton, J. D. (2003). A material theory of induction. Philosophy of Science,

70 (4), 647–670.

Norton, J. D. (2010). There are no universal rules for induction. Philosophy of

Science, 77 (5), 765–777.

Nosofsky, R. (1986). Attention, similarity, and the identification–categorization

relationship. Journal of experimental psychology , 115 (1), 39–61.

Oaksford, M., & Chater, N. (1989). Rationality in an uncertain world: Essays

on the cognitive science of human reasoning. Psychology Press.

Oaksford, M., & Chater, N. (1991). Against logicist cognitive science. Mind &

Language, 6 (1), 1–38.

Oaksford, M., & Chater, N. (2003). Optimal data selection. Psychonomic

Bulletin & Review , 10 (2), 289–318.

Oaksford, M., & Chater, N. (2007). Bayesian rationality: The probabilistic

approach to human reasoning. Oxford University Press.



266 REFERENCES

Oaksford, M., & Chater, N. (2009). Précis of bayesian rationality: The prob-

abilistic approach to human reasoning. Behavioral and Brain Sciences ,

32 (1), 69–84.

Oberauer, K. (2006). Reasoning with conditionals: A test of formal models of

four theories. Cognitive Psychology , 53 (3), 238–283.

O’Brien, D. P., Braine, M., & Yang, Y. (1994). Propositional reasoning by

mental models? simple to refute in principle and in practice. Psychological

Review , 101 (4), 711.

Osherson, D. (1975a). Logical abilities in children. Lawrence Erlbaum.

Osherson, D. (1975b). Logic and models of logical thinking. In R. Falmagne

(Ed.), Reasoning: Representation and process in children and adults (pp.

81–92). Erlbaum Hillsdale.

Osherson, D., Smith, E. E., Wilkie, O., Lopez, A., & Shafir, E. (1990). Category-

based induction. Psychological review , 97 (2), 185.

Osta-Vélez, M. (2019). The enigma of reason. Philosophical Psychology , 32 (6),

995–999.

Osta-Vélez, M. (2019). Methods of representation as inferential devices. Journal

for General Philosophy of Science, 50 (2), 231–245.

Osta-Vélez, M., & Gärdenfors, P. (n.d.). Nonmonotonic reasoning, expectation

orderings, and conceptual spaces. (submitted)

Osta-Vélez, M., & Gärdenfors, P. (2020a). Category-based induction in con-

ceptual spaces. Journal of Mathematical Psychology , 90 , 102357.

Overton, W. F. (1990). Competence and procedures. In W. F. Overton (Ed.),

Reasoning, necessity, and logic (pp. 1–32). Lawrence Elrbaum.

Owen, D. (1999). Hume’s reason. Oxford University Press.

Paivio, A. (2013). Imagery and verbal processes. Psychology Press.

Palmerino, C. R. (2010). The geometrization of motion. Early Science and

Medicine, 15 (4-5), 410–447.

Palmieri, P. (2003). Mental models in galileo’s early mathematization of nature.

Studies in History and Philosophy of Science Part A, 34 (2), 229–264.

Panza, M. (2002). Mathematisation of the science of motion and the birth of

analytical mechanics: A historiographical note. In P. Cerrai, P. Freguglia,



REFERENCES 267

& C. Pellegrini (Eds.), The application of mathematics to the sciences of

nature (pp. 253–271). Springer.

Paradis, C. (2003). Is the notion of linguistic competence relevant in cognitive

linguistics. Annual Review of Cognitive Linguistics , 1 (1), 207–231.

Parsons, D. (2016). Theories of intensionality: A critical survey. Springer.

Partee, B. H. (2014). A brief history of the syntax-semantics interface in western

formal linguistics. Semantics-Syntax Interface, 1 (1), 1–20.

Peacocke, C. (1992). A study of concepts. MIT Press.

Peacocke, C. (1999). Computation as involving content: A response to egan.

Mind & Language, 14 (2), 195–202.

Peirce, C. S. (1868). Some consequences of four incapacities. The Journal of

Speculative Philosophy , 2 (3), 140–157.

Piaget, J. (1947). La psychologie de l’intelligence. Armand Collin.

Piaget, J. (1949). Traité de logique: essai de logique opératoire. Armand Collin.

Piaget, J. (1956). Les stades du développement intellectuel de l’enfant et de

l’adolescent. In M. Osterrieth et al. (Eds.), Le problèmes des stades en

psychologie de l’enfant (pp. 33–99). PUF.

Piaget, J. (1957). Logic and psychology. Basic Books.

Piaget, J., & Garcia, R. (1990). Toward a logic of meanings. Lawrence Erlbaum.

Piccinini, G., & Scarantino, A. (2011). Information processing, computation,

and cognition. Journal of Biological Physics , 37 (1), 1–38.

Pietroski, P. M. (2017). Semantic internalism. In J. Mcgilvray (Ed.), The

cambridge companion to chomsky (pp. 196–216). Cambridge University

Press.

Pollard, P., & Evans, J. S. (1987). Content and context effects in reasoning.

The American journal of psychology , 100 (1), 41–60.

Prinz, J. J. (2004). Furnishing the mind. MIT Press.

Proffitt, J. B., Coley, J., & Medin, D. (2000). Expertise and category-based

induction. Journal of Experimental Psychology: Learning, Memory, and

Cognition, 26 (4), 811.

Putnam, H. (1975). The meaning of "meaning". In K. Gunderson (Ed.),

Language, mind, and knowledge (pp. 131–193). University of Minnesota



268 REFERENCES

Press.

Pylyshyn, Z. W. (1981). The imagery debate. Psychological Review , 88 (1), 16.

Pylyshyn, Z. W. (2002). Mental imagery. Behavioral and brain sciences , 25 (2),

157.

Quelhas, A. C., Johnson-Laird, P. N., & Juhos, C. (2010). The modulation of

conditional assertions and its effects on reasoning. Quarterly Journal of

Experimental Psychology , 63 (9), 1716–1739.

Quillan, M. R. (1966). Semantic memory (Tech. Rep.). Cambridge, MA.: Bolt

Beranek and Newman INC.

Quillian, M. R. (1967). Word concepts. Behavioral science, 12 (5), 410–430.

Quine, W. V. O. (1951). Two dogmas of empiricism. Philosophical Review , 60 ,

20–43.

Quine, W. V. O. (1956). Quantifiers and propositional attitudes. the Journal

of Philosophy , 53 (5), 177–187.

Quine, W. V. O. (1969a). Natural kinds. In N. Rescher (Ed.), Essays in honor

of carl g. hempel (pp. 5–23). Springer.

Quine, W. V. O. (1969b). Ontological relativity and other essays. Columbia

University Press.

Quine, W. V. O. (1974). The roots of reference. Open Court.

Quine, W. V. O. (1981). Five milestones of empiricism. In Theories and things

(pp. 70–71). Harvard University Press.

Quine, W. V. O. (1986). Philosophy of logic. Harvard University Press.

Quine, W. V. O. (2013). Word and object. MIT Press.

Read, D. (2013). Reconstructing the proto-polynesian terminology: Kinship

terminologies as evolving logical structures. Kinship systems: Change and

reconstruction, 59–91.

Read, D., Fischer, M., & Lehman, F. (2014). The cultural grounding of kinship.

L’Homme. Revue française d’anthropologie(210), 63–89.

Read, S. (1988). Relevant logic. Basil Blackwell.

Read, S. (1994). Formal and material consequence. Journal of Philosophical

Logic, 23 (3), 247–265.

Rehder, B. (2006). When similarity and causality compete in category-based



REFERENCES 269

property generalization. Memory & Cognition, 34 (1), 3–16.

Rehder, B., & Hastie, R. (2001). Causal knowledge and categories. Journal of

Experimental Psychology: General , 130 (3), 323.

Reiter, R., & Criscuolo, G. (1981). On interacting defaults. In Ijcai (Vol. 81,

pp. 270–276). Morgan Kaufmann Publishers.

Rescher, N. (1959). The distinction between predicate intension and extension.

Revue philosophique de Louvain, 57 , 623–636.

Rescorla, M. (2012). Are computational transitions sensitive to semantics?

Australasian Journal of Philosophy , 90 (4), 703–721.

Rescorla, M. (2018). Maps in the head. In K. Andrews & J. Beck (Eds.), The

routledge handbook of philosophy of animal minds (p. 34-45). Routledge.

Rips, L. (1975). Inductive judgments about natural categories. Journal of

verbal learning and verbal behavior , 14 (6), 665–681.

Rips, L. (1989). Similarity, typicality, and categorization. In S. Vosniadou &

A. Ortony (Eds.), Similarity and analogical reasoning (pp. 21–59). Cam-

bridge University Press.

Rips, L. (1994). The psychology of proof. MIT Press.

Rogers, T., & McClelland, J. (2004). Semantic cognition. MIT Press.

Romberg, A. R., & Saffran, J. R. (2010). Statistical learning and language

acquisition. Wiley Interdisciplinary Reviews: Cognitive Science, 1 (6),

906–914.

Rosch, E. (1971). "focal" color areas and the development of color names.

Developmental psychology , 4 (3), 447–455.

Rosch, E. (1973). On the internal structure of perceptual and semantic cat-

egories. In T. E. Moore (Ed.), Cognitive development and acquisition of

language (pp. 111–144). Elsevier.

Rosch, E. (1975). Cognitive representations of semantic categories. Journal of

experimental psychology: General , 104 (3), 192.

Rosch, E. (1983). Prototype classification and logical classification. In E. Schol-

nick (Ed.), New trends in conceptual representation: Challenges to piaget’s

theory (pp. 73–86). Lawrence Erlbaum Associates.

Rosenberg, J. F. (1968). Wittgenstein’s theory of language as picture. American



270 REFERENCES

Philosophical Quarterly , 5 (1), 18–30.

Roux, S. (2010). Forms of mathematization (14th-17th centuries). Early Science

and Medicine, 15 (4-5), 319–337.

Ruphy, S. (2011). From hacking’s plurality of styles of scientific reasoning to

“foliated” pluralism. Philosophy of science, 78 (5), 1212–1222.

Ryle, G. (1954). Dilemmas: the tarner lectures 1953. Cambridge University

Press.

Sagi, G. (2018). Logicality and meaning. The Review of Symbolic Logic, 11 (1),

133–159.

Schaefer, R. (2016). Brandom’s account of reasoning. Journal of Philosophical

Research, 41 , 129-150.

Schemmel, M. (2008). The english galileo. Springer.

Scheutz, M. (1999). The ontological status of representations. In A. Riegler,

M. Peschl, & A. von Stein (Eds.), Understanding representation in the

cognitive sciences (pp. 33–38). Springer.

Schockaert, S., & Prade, H. (2013). Interpolative and extrapolative reasoning

in propositional theories using qualitative knowledge about conceptual

spaces. Artificial Intelligence, 202 , 86–131.

Schwanenflugel, P. J., & Rey, M. (1986). The relationship between category

typicality and concept familiarity. Memory & Cognition, 14 (2), 150–163.

Schyns, P. G., Goldstone, R. L., & Thibaut, J.-P. (1998). The development of

features in object concepts. Behavioral and brain Sciences , 21 (1), 1–17.

Searle, J. R. (1990). Cognitive science and the computer metaphor. In B. Göran-

zon & M. Florin (Eds.), Artifical intelligence, culture and language (pp.

23–34). Springer.

Sellars, W. (1948). Concepts as involving laws and inconceivable without them.

Philosophy of Science, 15 (4), 287–315.

Sellars, W. (1950). Language, rules and behavior. In S. Hook (Ed.), John

dewey: Philosopher of science and freedom (pp. 129–155).

Sellars, W. (1953). Inference and meaning. Mind , 62 (247), 313–338.

Sellars, W. (1958). Counterfactuals, dispositions, and the causal modalities. In

H. Feigl, M. Scriven, & G. Maxwell (Eds.), Concepts, theories, and the



REFERENCES 271

mind-body problem (p. 225-308). University of Minnesota Press.

Sellars, W. (1974). Meaning as functional classification. Synthese, 27 (3-4),

417–437.

Sellars, W. (1991). Science, perception and reality. Ridgeview.

Sellés, M. A. (2006). Infinitesimals in the foundations of newton’s mechanics.

Historia Mathematica, 33 (2), 210–223.

Shafto, P., Coley, J. D., & Vitkin, A. (2007). Availability in category-based

induction. In A. Feeney & E. Heit (Eds.), Inductive reasoning (pp. 114–

136). Cambridge University Press.

Shea, N. (2014). Exploitable isomorphism and structural representation. Pro-

ceedings of the Aristotelian Society , 114 , 123–144.

Shea, N. (2018). Representation in cognitive science. Oxford University Press.

Shepard, R. (1987). Toward a universal law of generalization for psychological

science. Science, 237 (4820), 1317–1323.

Shepard, R., & Metzler, J. (1971). Mental rotation of three-dimensional objects.

Science, 171 (3972), 701–703.

Sievert, D. (1989). Another look at wittgenstein on color exclusion. Synthese,

78 , 291–318.

Simon, H. (1978). On the forms of mental representation. In W. Savage (Ed.),

Perception and cognition (pp. 3–18). University of Minnesota Press.

Singh, S., & Karwayun, R. (2010). A comparative study of inference engines.

In 2010 seventh international conference on information technology: New

generations (pp. 53–57).

Sloman, S. (1993). Feature-based induction. Cognitive psychology , 25 (2), 231–

280.

Sloman, S. (1998a). Categorical inference is not a tree: The myth of inheritance

hierarchies. Cognitive Psychology , 35 (1), 1–33.

Sloman, S. (1998b). Categorical inference is not a tree: The myth of inheritance

hierarchies. Biologically inspired cognitive architectures , 35 (1), 1–33.

Sloman, S., & Lagnado, D. (2005). The problem of induction. In K. Holyoak

& R. Morrison (Eds.), The cambridge handbook of thinking and reasoning

(pp. 95–116). Cambridge University Press.



272 REFERENCES

Smith, E., Shoben, E., & Rips, L. (1974). Structure and process in semantic

memory: A featural model for semantic decisions. Psychological review ,

81 (3), 214-241.

Smith, N. J. (2009). Frege’s judgement stroke and the conception of logic as the

study of inference not consequence. Philosophy Compass , 4 (4), 639–665.

Smolensky, P. (2012). Symbolic functions from neural computation. Philo-

sophical Transactions of the Royal Society A: Mathematical, Physical and

Engineering Sciences , 370 (1971), 3543–3569.

Sowa, J. (1991). Toward the expressive power of natural language. In J. Sowa

(Ed.), Principles of semantic networks (pp. 157–189). Elsevier.

Sowa, J. (1999). Knowledge representation. Brooks/Cole Publishing Co.

Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge. Developmental science,

10 (1), 89–96.

Sperber, D. (2001). In defense of massive modularity. In E. Dupoux (Ed.),

Language, brain and cognitive development: Essays in honor of jacques

mehler (pp. 47–57). MIT Press.

Sperber, D., & Wilson, D. (1986). Relevance. Harvard University Press.

Staffel, J. (2013). Can there be reasoning with degrees of belief? Synthese,

190 (16), 3535–3551.

Stalnaker, R. (1981). Anti-essentialism. Midwest Studies of Philosophy , 4 ,

343–355.

Stalnaker, R. C. (1968). A theory of conditionals. In W. Harper, R. Stalnaker,

& G. Pearce (Eds.), Ifs (pp. 41–55). Springer.

Stenning, K., & van Lambalgen, M. (2011). Reasoning, logic, and psychology.

Wiley Interdisciplinary Reviews: Cognitive Science, 2 (5), 555–567.

Storjohann, P. (2016). Sense relations. In N. Riemer (Ed.), (pp. 248–265).

Routledge London.

Suárez, M. (2004). An inferential conception of scientific representation. Phi-

losophy of science, 71 (5), 767–779.

Sutherland, S. L., & Cimpian, A. (2017). Inductive generalization relies on

category representations. Psychonomic bulletin & review , 24 (2), 632–

636.



REFERENCES 273

Swoyer, C. (1991). Structural representation and surrogative reasoning. Syn-

these, 87 (3), 449–508.

Swoyer, C. (1995). Leibniz on intension and extension. Noûs , 29 (1), 96–114.

Talmy, L. (1975). Figure and ground in complex sentences. In Annual meeting

of the berkeley linguistics society (Vol. 1, pp. 419–430).

Talmy, L. (1983). How language structures space. In H. Pick & L. Acredolo

(Eds.), Spatial orientation (pp. 225–282). Springer.

Talmy, L. (2007). Attention phenomena. In D. Geeraerts & H. Cuyckens (Eds.),

The oxford handbook of cognitive linguistics. Oxford University Press.

Tenenbaum, J., Kemp, C., & Shafto, P. (2007). Theory-based bayesian models

of inductive reasoning. inductive reasoning. In A. Feeney & E. Heit (Eds.),

Inductive reasoning (pp. 167–204). Cambridge University Press.

Thagard, P. (1984). Frames, knowledge, and inference. Synthese, 61 (2), 233–

259.

Thagard, P. (1992). Conceptual revolutions. Princeton University Press.

Thompson, V. A. (1996). Reasoning from false premises: The role of soundness

in making logical deductions. Canadian Journal of Experimental Psychol-

ogy/Revue canadienne de psychologie expérimentale, 50 (3), 315.

Toulmin, S. (1953). An introduction to philosophy of science. Hutchinson

University Press.

Toulmin, S. (1961). Foresight and understanding. Hutchinson & CO.

Toulmin, S. (1971). From logical systems to conceptual populations. In

R. C. Buck & R. S. Cohen (Eds.), Psa 1970 (pp. 552–564). Springer.

Toulmin, S. (1972a). Human understanding. Clarendon Press.

Toulmin, S. (1972b). Rationality and scientific discovery. In Psa: Proceedings

of the biennial meeting of the philosophy of science association (Vol. 1972,

pp. 387–406). D. Reidel Publishing.

Toulmin, S. (1974). Scientific strategies and historical change. In R. J. Seeger

& R. S. Cohen (Eds.), Philosophical foundations of science (pp. 401–414).

Springer.

Toulmin, S. (2003). The uses of argument. Cambridge University Press.

Touretzky, D. S. (1984). Implicit ordering of defaults in inheritance systems.



274 REFERENCES

In Aaai-84 proceedings (pp. 322–325). Morgan Kaufmann Publishers.

Tversky, A. (1977). Features of similarity. Psychological Review , 84 (4), 327.

Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics

and biases. science, 185 (4157), 1124–1131.

Tversky, A., & Kahneman, D. (1983). Extensional versus intuitive reasoning:

The conjunction fallacy in probability judgment. Psychological review ,

90 (4), 293.

Tyler, A., & Evans, V. (2003). The semantics of english prepositions. Cambridge

University Press.

Ungerer, F., & Schmid, H.-J. (2006). An introduction to cognitive linguistics.

Pearson-Longman.

Valaris, M. (2017). What reasoning might be. Synthese, 194 (6), 2007–2024.

van der Henst, J.-B. (2000). Mental model theory and pragmatics. Behavioral

and Brain Sciences , 23 , 283–284.

Van Heijenoort, J. (1967). Logic as calculus and logic as language. Synthese,

17 , 324–330.

von der Emde, G. (2004). Distance and shape: perception of the 3-dimensional

world by weakly electric fish. Journal of Physiology , 98 (1-3), 67–80.

Von Eckardt, B. (1995). What is cognitive science? MIT Press.

Von Eckardt, B. (2005). Connectionism and the propositional attitudes. In

C. Erneling & D. Johnson (Eds.), (p. 225). Oxford University Press.

Vorms, M. (2011). Representing with imaginary models: Formats matter.

Studies in History and Philosophy of Science Part A, 42 (2), 287–295.

Warglien, M., Gärdenfors, P., & Westera, M. (2012). Event structure, concep-

tual spaces and the semantics of verbs. Theoretical linguistics , 38 (3-4),

159–193.

Wartofsky, M. (1983). From genetic epistemology to historical epistemology:

Kant, marx, and piaget. In L. S. Liben (Ed.), Piaget and the foundations

of knowledge (pp. 1–17). Lawrence Erlbaum.

Wartofsky, M. (1987). Epistemology historicized. In A. Shimony & D. Nails

(Eds.), Naturalistic epistemology (pp. 357–374). Springer.

Wason, P. C. (1968). Reasoning about a rule. Quarterly journal of experimental



REFERENCES 275

psychology , 20 (3), 273–281.

Wason, P. C., & Shapiro, D. (1971). Natural and contrived experience in a

reasoning problem. Quarterly journal of experimental psychology , 23 (1),

63–71.

Waxman, S. R., & Leddon, E. M. (2011). Early word-learning and concep-

tual development. In U. Goswami (Ed.), Blackwell handbook of childhood

cognitive development (p. 102–126). Wiley-Blackwell.

Weiskopf, D. A. (2009). Atomism, pluralism, and conceptual content. Philoso-

phy and Phenomenological Research, 79 (1), 131–163.

Westphal, K. R. (2015). Conventionalism and the impoverishment of the space

of reasons: Carnap, quine and sellars. Journal for the History of Analytical

Philosophy , 3 (8), 1–63.

Wikforss, Å. (2008). Semantic externalism and psychological externalism. Phi-

losophy Compass , 3 (1), 158–181.

Wilson, D., & Sperber, D. (2012). Meaning and relevance. Cambridge University

Press.

Wilson, R. A., & Keil, F. C. (2001). The mit encyclopedia of the cognitive

sciences. MIT Press.

Wittgenstein, L. (2001 [1921]). Tractatus logico-philosophicus (D. Pears &

B. McGuinness, Trans.). Routledge.

Woods, W. A. (1987). Knowledge representation: What’s important about it?

In N. Cercone & G. McCalla (Eds.), The knowledge frontier (pp. 44–79).

Springer.

Yang, J., & Long, C. (2020). Common and distinctive cognitive processes be-

tween categorization and category-based induction: Evidence from event-

related potentials. Brain Research, 147134.

Yee, E., Jones, M. N., & McRae, K. (2018). Semantic memory. In J. Wixted &

S. Thompson-Schill (Eds.), Stevens’ handbook of experimental psychology

and cognitive neuroscience (Vol. 3, pp. 1–38). Wiley Online Library.

Zimmermann, T. E. (1999). Meaning postulates and the model-theoretic ap-

proach to natural language semantics. Linguistics and Philosophy , 52 ,

529–561.



276 REFERENCES

Zwarts, J., & Gärdenfors, P. (2016). Locative and directional prepositions in

conceptual spaces: The role of polar convexity. Journal of Logic, Language

and Information, 25 (1), 109–138.


	Abstract
	Résumé
	Zusammenfassung

	Acknowledgements
	Introduction
	Formality: reasoning without meaning
	Logic, cognition, and the formality thesis
	Logical formality and the hylomorphic tradition
	Topic-neutrality and truth-functionality


	Formality in the foundations of cognitive science 
	Formality, causality, and rational thought

	Formality in the psychology of reasoning
	Piaget's logicism
	Mental Logic Theory
	The Wason selection task: troubles for logicism
	Content and Context effects

	Mental Models Theory and the semantic turn
	How semantic was the semantic turn?

	Bayesian models against formality

	Summary and conclusions

	Meaning and cognition
	The formalist turn in semantics
	From intensions to extensions
	Extensionalism and logical form

	Anti-mentalism in semantics and the divorce of meaning and cognition
	Back to cognition: meaning, inference, and understanding
	Conceptual and inferential role semantics 
	Cognitive and conceptual semantics
	Inference and meaning structure

	Summary and conclusions

	Inference and Representation
	Introduction
	What inference is not
	Representation
	Representational conservativism and the translational approach
	Representation and the organization of information
	Knowledge structures and the centrality of belief 

	From representational pluralism to inferential pluralism
	The varieties of inference

	Conclusions

	Introducing Conceptual Spaces
	Defining conceptual spaces
	Object representation in conceptual spaces

	Prototypicality
	Context, domain salience, and dynamic conceptual spaces
	Inference and conceptual spaces

	Explicating material inferences via Conceptual Spaces
	Beyond logical forms
	Sellars on material inferences
	Inference, laws, and regularities
	Connections to the psychology of reasoning
	Limitations of the inferentialist approach

	Word classes and types of material inferences
	Explicating material inferences via conceptual spaces
	Preliminary remarks: core meaning and attention shifts
	Nouns
	Co-hyponymy and material inferences with negation
	Spatial prepositions and relational concepts

	Summary and conclusions

	Nonmonotonic inference and expectation orderings
	Introduction
	Reasoning with expectations
	CS-based expectation orderings

	Relations to Nonmonotonic Logic
	Criteria for updating expectations
	Defaults
	Generating default rules 
	Typicality and the conjunction fallacy 
	Inferential strength

	Conclusions

	Category-based induction in conceptual spaces
	Induction and conceptual relationships
	Category-based induction 
	The general structure of category-based inferences
	Premise-conclusion similarity
	Typicality
	Conclusion homogeneity and premise diversity 

	A conceptual space-model
	A simple model
	A more general model
	Arguments with multiple premises
	Knowledge effects and nonblank properties

	Previous models of CBI
	The Similarity-coverage model
	The feature-based model
	Bayesian models

	Methodological considerations
	Conclusions

	Beyond language: Model-based inference in science
	Introduction
	Representational methods and inferential techniques
	From Geometrical Physics to Mathematical Physics
	Galileo's geometrical method
	Towards an analytical method of representation

	Models, Model-based Reasoning, and Inferential Techniques
	Conclusion

	Summary and concluding remarks
	Résumé détaillé en Français
	Bibliography

