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Zusammenfassung 

Die Untersuchung molekularer Proben mit breitbandiger Mittelinfrarot-Strahlung (MIR) 

führt zu hochspezifischen "Schwingungs-Fingerabdrücken", die eine Fülle von 

Informationen über die molekulare Struktur und Zusammensetzung enthalten. Dies macht 

die Schwingungsspektroskopie zu einem leistungsstarken und vielseitigen Werkzeug für 

Anwendungen, die von der Grundlagenwissenschaft über die Biowissenschaften bis hin zu 

industriellen Anwendungen reichen. Konventionelle MIR-Spektroskopietechniken stoßen 

auf starke Einschränkungen in der Nachweisempfindlichkeit, insbesondere aufgrund der 

schlechten Kohärenzeigenschaften üblicher MIR-Quellen sowie der mäßigen Detektivität 

und des dynamischen Bereichs breitbandiger MIR-Detektoren. Die in dieser Arbeit 

berichtete Forschung hat sich mit der Suche nach neuartigen Wegen zur Erschließung des 

Potenzials breitbandiger MIR-Fingerabdrücke befasst, wobei moderne Hochleistungs-

Femtosekunden-Lasertechnologie zum Einsatz kommt. 

Im ersten Teil der Arbeit wird über die Konstruktion oktavübergreifender, kohärenter 

Femtosekunden-MIR-Quellen berichtet, bei denen modernste Yb:YAG-modengekoppelte 

Dünnscheiben-Oszillatoren mit 100 W mittlerer Leistung zum Einsatz kommen. Wir 

demonstrierten ultrabreitbandige kohärente MIR-Quellen mit einer Brillanz, die die von 

MIR-Experimenten bei Synchrotrons der 3. Generation übertrifft, und stellten fest, dass 

Pulse, die durch die Erzeugung von Intra-Puls-Differenzfrequenzmischung entstehen, eine 

überlegene (und unübertroffene) optische Wellenformstabilität im Vergleich zur 

gewöhnlichen optisch-parametrischen Verstärkung bieten. Die zeitliche Beschränkung der 

breitbandigen MIR-Strahlung auf Folgen von Pulsen mit einer Dauer von unter 100 

Femtosekunden und die feldaufgelöste Detektion mittels elektro-optischer Abtastung 

(electro-optic sampling, EOS) ermöglicht die Detektion des molekularen 

Fingerabdrucksignals im nahen Infrarotbereich, wo hocheffiziente Detektoren mit hoher 

Dynamik verfügbar sind. Die optimierte EOS-Detektion ermöglichte eine lineare Antwort 

über einen dynamischen Intensitätsbereich von 150 dB bei einer zentralen Wellenlänge von 

8,6 µm. Dies übertrifft den bisherigen Stand der Technik bei weitem und ebnet den Weg für 

Transmissionsmessungen mit hohem Signal-Rausch-Verhältnis von wässrigen biologischen 

Proben, wie biologischen Flüssigkeiten, lebenden Zellen und Gewebe.  

Die Wellenformstabilität der Pulse im mittleren Infrarotbereich spielt eine entscheidende 

Rolle für reale feldaufgelöste Spektroskopiemessungen und ist von größter Bedeutung für 

präzisionsmetrologische Anwendungen.  Im zweiten Teil dieser Arbeit wurde EOS mit 

hoher Quanteneffizienz für Präzisionsmessungen des Wellenformjitters eingesetzt und für 

Millionen von Pulsen ausgewertet. Diese Studie zeigte einen zeitlichen Jitter von wenigen 

Attosekunden im Band von 1 Hz bis 0,625 MHz zwischen dem Massenschwerpunkt der 

treibenden Nahinfrarot-Pulse und einzelnen Feld-Nulldurchgängen des entstehenden, 
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breitbandigen MIR-Feldes. Dies bestätigt die hervorragende Wellenformstabilität, die mit 

parametrischen Prozessen zweiter Ordnung mit einer um eine Größenordnung verbesserten 

Genauigkeit im Vergleich zu früheren Messungen erreicht werden kann. Darüber hinaus 

zeigte sich beim Chirpen des MIR-Pulses ein von der optischen Frequenz abhängiger 

Wellenformjitter im Attosekundenbereich, dessen Dynamik quantitativ auf das 

Intensitätsrauschen des modengekoppelten Oszillators zurückgeführt wurde.  Somit 

validierte diese Studie EOS als breitbandige (sowohl im Radiofrequenz- als auch im 

optischen Bereich), hochempfindliche Messtechnik für die Dynamik optischer 

Wellenformen jenseits des standardmäßigen, das optische Spektrum integrierenden Träger-

Hüllkurven-Phasenmodells. 

Das im Rahmen dieser Arbeit entwickelte Instrument wurde für die ersten 

hochempfindlichen feldaufgelösten Messungen im molekularen Fingerabdruckbereich. Es 

ermöglichte den Nachweis von molekularen Konzentrationen über 5 Größenordnungen bis 

hinunter zu 200-ng/mL in wässrigen Lösungen und die Untersuchung lebender biologischer 

Systeme mit einer Dicke von bis zu 0,2 mm. Gegenwärtig wird das Instrument für die ersten 

groß angelegten Studien zur Erkennung von Krankheiten auf der Grundlage von Vibrations-

Fingerabdrücken von menschlichem Blutserum eingesetzt. 

Die Einführung der Intra-Scan-Referenzierung, die in den letzten Wochen dieser 

Doktorarbeit erfolgreich durchgeführt wurde, zusammen mit den Schnellabtasttechniken 

und der Erweiterung der spektralen MIR-Bandbreite, die in unserem Labor derzeit 

entwickelt werden, versprechen eine Ausweitung der in dieser Arbeit vorgestellten 

Technologie auf neue Ebenen der Empfindlichkeit und Reproduzierbarkeit in der 

Schwingungsspektroskopie. Neben dem direkten Nutzen für analytische Anwendungen 

werden diese Entwicklungen höchstwahrscheinlich auch neue Einblicke in Licht-Materie-

Wechselwirkungen ermöglichen. 

 



 

Abstract 

The interrogation of molecular samples with broadband mid-infrared (MIR) radiation results 

in highly specific “vibrational fingerprints,” containing a wealth of information on molecular 

structure and composition. This renders vibrational spectroscopy a powerful and versatile 

tool for applications ranging from fundamental science to the life sciences and to industrial 

applications. Conventional MIR spectroscopic techniques face severe limitations in 

detection sensitivity, in particular due to the poor coherence properties of common MIR 

sources as well as to the moderate detectivity and dynamic range of broadband MIR 

detectors. The research reported in this thesis has addressed the quest for novel routes 

towards tapping the potential of MIR spectral fingerprinting, harnessing modern, high-

power femtosecond laser technology. 

The first part of the work reports the construction of octave-spanning, coherent 

femtosecond MIR sources, employing state-of-the-art 100-W-average-power-level thin-disk 

Yb:YAG modelocked oscillators. We demonstrated ultrabroadband coherent MIR sources 

with a brilliance exceeding that of MIR beamlines at 3rd-generation synchrotrons, and found 

that pulses emerging via intra-pulse difference frequency generation offer superior (and 

unparalleled) optical-waveform stability as compared to standard optical-parametric 

amplification. The temporal confinement of broadband MIR radiation to trains of sub-100-

femtosecond pulses, together with field-resolved detection via electro-optic sampling (EOS) 

affords detection of the molecular fingerprint signal in the near-infrared region, where 

highly-efficient, high-dynamic-range detectors exist. Optimized EOS detection enabled a 

linear response over an intensity dynamic range of 150 dB at a central wavelength of 8.6 µm. 

This exceeds the previous state of the art by a large margin and has paved the way to high-

signal-to-noise-ratio transmission measurements of aqueous biological samples like living 

cells and tissue.  

The waveform stability of the mid-infrared pulses plays a crucial role for real-life field-

resolved spectroscopy measurements, and is of paramount importance for precision-

metrological applications.  In the second part of this thesis, high-quantum-efficiency EOS 

was employed for precision measurements of waveform jitter, evaluated for millions of 

pulses. This study demonstrated few-attosecond temporal jitter in the 1-Hz-to-0.625-MHz 

band, between the centre of mass of the driving near-infrared pulses, and individual field 

zero-crossings of the emerging, broadband mid-infrared field. This confirms the outstanding 

waveform stability achievable with second-order parametric processes with an order-of-

magnitude improved accuracy compared to previous measurements. Furthermore, chirping 

the MIR pulse revealed attosecond-level optical-frequency-dependent waveform jitter, 

whose dynamics were quantitatively traced back to excessive intensity noise of the mode-

locked oscillator.  Thus, this study validated EOS as a broadband (both in the radio-

frequency and in the optical domain), high-sensitivity measurement technique for the 
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dynamics of optical waveforms beyond the standard, optical-spectrum-integrating carrier-

envelope phase model. 

The instrument developed during this thesis was utilized for the first highly sensitive field-

resolved measurements in the MIR molecular fingerprint region. It enabled the detection of 

molecular concentrations spanning 5 orders of magnitude down to 200-ng/mL in aqueous 

solutions and the examination of living biological systems with a thickness of up to 0.2 mm. 

Currently, the instrument is being used for the first large-scale studies on disease recognition 

based on vibrational fingerprinting of human blood serum. 

The implementation of intra-scan referencing, successfully carried out in the last weeks of 

this doctoral work, together with fast-scanning techniques and the extension of the MIR 

spectral bandwidth which are underway at our laboratory, promise to extend the technology 

pioneered in this thesis to new levels of sensitivity and reproducibility in vibrational 

spectroscopy. In addition to directly benefitting analytical applications, these developments 

are likely to afford novel insights into light-matter interactions. 

 



 

Table of Contents 

Zusammenfassung ............................................................................................................................ v 

Abstract ............................................................................................................................................ vii 

List of Figures .................................................................................................................................. xi 

List of Tables .................................................................................................................................. xiv 

1. Introduction ............................................................................................................................ 1 

1.1 Thesis outline ............................................................................................................ 3 

2 Theoretical Background ........................................................................................................ 4 

2.1 Mid-infrared absorption spectroscopy .................................................................. 4 

2.2 Field resolved infrared spectroscopy ..................................................................... 5 

3 Source of waveform-stable broadband infrared light ....................................................... 9 

3.1 Near-infrared femtosecond frontend ................................................................. 10 

3.1.1 Yb:YAG Oscillator .................................................................................. 10 

3.1.2 Fiber-based pulse compression .............................................................. 14 

3.1.3 Bulk-based pulse compression ............................................................... 16 

3.2 Mid-infrared generation ........................................................................................ 21 

3.2.1 Narrowband pump OPA ........................................................................ 22 

3.2.2 Broadband pump OPA ........................................................................... 24 

3.2.3 Intra-pulse difference frequency generation ........................................ 28 

3.3 Comparison of OPA with IPDFG ..................................................................... 33 

4 Electro-optic sampling ........................................................................................................ 36 

4.1 Working concept ................................................................................................... 36 

4.2 Design considerations ........................................................................................... 38 

4.3 Simulations ............................................................................................................. 42 

4.4 Infrasampler 1.1 ..................................................................................................... 45 

4.5 Infrasampler 1.2 ..................................................................................................... 49 

5 Field-resolving spectrometer .............................................................................................. 55 

5.1 Experimental setup ................................................................................................ 55 

5.1.1 Distinct features of FRS .......................................................................... 56 

5.1.2 Sample cuvette .......................................................................................... 60 

5.1.3 Instrument Linearity ................................................................................ 61 



x 
 

5.2 Waveform stability of IPDFG with EOS .......................................................... 62 

5.2.1 Measurement Principle ............................................................................ 63 

5.2.2 Detection sensitivity ................................................................................. 65 

5.2.3 Compressed pulse characterization ........................................................ 68 

5.2.4 Chirped pulse characterization ............................................................... 69 

5.3 Towards real-world applications .......................................................................... 71 

5.3.1 Attosecond-timed molecular signals ...................................................... 71 

5.3.2 Sensitivity and specificity ......................................................................... 73 

6 Conclusion and Outlook ..................................................................................................... 76 

6.1 Spectral coverage .................................................................................................... 77 

6.2 Intra-scan referencing ............................................................................................ 77 

6.3 Precision time-domain optical metrology .......................................................... 80 

Data Archiving ................................................................................................................................ 82 

Bibliography ..................................................................................................................................... 83 

List of publications ......................................................................................................................... 95 

Acknowledgments........................................................................................................................... 96 

 



 

List of Figures 

Figure 3.1 | Schematic representation of the CEP stabilization schemes. ............................ 10 

Figure 3.2 | Thin disk laser oscillator. ......................................................................................... 12 

Figure 3.3 | Noise characteristics of the thin-disk oscillator. .................................................. 13 

Figure 3.4 | Spectral broadening in photonic crystal fibers. .................................................... 14 

Figure 3.5 | Fiber-based spectral broadening. ........................................................................... 17 

Figure 3.6 | Bulk-based spectral broadening scheme. .............................................................. 17 

Figure 3.7 | Reproducibility measurements for broadband NIR. ........................................... 18 

Figure 3.9 | Correlation in the power fluctuations of the oscillator and wing of the 

broadened NIR. .............................................................................................................................. 18 

Figure 3.10 | Relative intensity noise measurements for the oscillator, full broadband NIR 

and spectral wing of the NIR. ....................................................................................................... 19 

Figure 3.11 | Polarization characterization of the MPC output. ............................................. 20 

Figure 3.12 | Polarization extinction ratio measurement as a function of input power to 

MPC setup.. ..................................................................................................................................... 21 

Figure 3.13 | Sketch of frequency down-conversion process via three-wave mixing. ........ 22 

Figure 3.14 | Sketch of OPA setup based on KLM-1. ............................................................. 23 

Figure 3.15 | Seed spectrum and power for narrowband pump OPA. ................................. 23 

Figure 3.16 | Generated idler power and spectrum in narrowband pump OPA. ................ 24 

Figure 3.17 | Sketch of the broadband pump-driven OPA setup. ......................................... 24 

Figure 3.18 | Seed generation in photonic crystal fibre............................................................ 25 

Figure 3.19 | FROG measurements of seed and pump beams............................................... 25 

Figure 3.20 | Spectrum of the seed and pump beam for broadband pump OPA. .............. 26 

Figure 3.21 | Phase matching for LGS crystal. .......................................................................... 27 

Figure 3.22 | RIN measurements of the OPA beams. ............................................................. 28 



xii 
 

Figure 3.23 | Measured MIR power for 30 minutes. ................................................................ 29 

Figure 3.24 | Design curves for reflectivity and group delay dispersion of customized HR 

mirrors for 45 and 46 layers. ......................................................................................................... 30 

Figure 3.25 | Sketch of the setup used to generate MIR using IPDFG. ................................ 31 

Figure 3.26 | Design and FTIR measurements of the NIR/MIR dichroic filter.................. 31 

Figure 3.27 | Correlation in power fluctuations. ....................................................................... 32 

Figure 3.28 | Spectral tuning of the generated MIR spectrum in IPDFG............................. 33 

Figure 3.29 | EOS measurements of the MIR generated in broadband pump OPA. ......... 34 

Figure 3.30 | Design of the custom wave-plate for partial polarization rotation. ................ 35 

Figure 4.1 | Schematic diagram of EOS process as optical-field-induced polarization 

rotation. ............................................................................................................................................ 37 

Figure 4.2 | Analytical EOS calculations. ................................................................................... 40 

Figure 4.3 | Calculated overlap integral for different sampling beam and MIR waist. ........ 41 

Figure 4.4 | EOS simulations for different crystal thickness. .................................................. 42 

Figure 4.5 | EOS simulations for unfiltered and filtered case. ................................................ 43 

Figure 4.6 | EOS simulations for different spectral filter. ....................................................... 44 

Figure 4.7 | EOS simulations for different sampling pulse durations. ................................... 44 

Figure 4.8 | Schematic setup of the Infrasampler 1.1. .............................................................. 45 

Figure 4.9 | EOS measurement with and without spectral filtering. ...................................... 46 

Figure 4.10 | EOS measurement for different phase-matching angles of EOS crystal. ...... 46 

Figure 4.11 | Characterization of the PZT assembly. ............................................................... 47 

Figure 4.12 | EOS measurement for different chopping techniques. .................................... 48 

Figure 4.13 | OSA measurement of the XPW output. ............................................................. 48 

Figure 4.14 | Schematic setup of Infrasampler 1.2.. ................................................................. 50 

Figure 4.15 | Frequency-resolved measurement of the noise in EOS setup. ........................ 51 

Figure 4.16 | OSA measurement of NIR spectra after the EOS crystal. ............................... 52 



xiii 

Figure 4.17 | Dynamic range for different crystal configurations.. ........................................ 52 

Figure 4.18 | Spectral tuning for different crystal configurations. .......................................... 53 

Figure 4.19 | Comparison of IS 1.2 source brilliance with conventional sources. ............... 54 

Figure 5.1 | Detailed sketch of the field-resolved spectrometer. ............................................ 56 

Figure 5.2 | MIR pulse dispersion. .............................................................................................. 57 

Figure 5.3 | MIR pulse compression. .......................................................................................... 58 

Figure 5.4 | Detection Limit with attenuation. .......................................................................... 60 

Figure 5.5 | Water background suppression. ............................................................................. 60 

Figure 5.6 | Liquid cuvette and adapters for vacuum compatibility. ...................................... 61 

Figure 5.7 | EOS dynamic range and linear response of the spectrometer.. ........................ 63 

Figure 5.8 | Sketch of experimental setup for waveform stability measurements. .............. 64 

Figure 5.9 | Data acquisition and correction for waveform stability measurements. .......... 65 

Figure 5.10 | Simulation of MIR electric field and EOS trace fluctuations. ......................... 67 

Figure 5.11 | Measurement of waveform fluctuations for a compressed MIR pulse. ......... 69 

Figure 5.12 | Measurement of waveform fluctuations for a chirped MIR pulse. ................. 70 

Figure 6.1 | Driving NIR spectrum and MIR spectrum generated in PPLN. ...................... 78 

Figure 6.2 | Sketch of the intra-scan referencing scheme. ....................................................... 78 

Figure 6.3 | EOS measurement of interleaved MIR pulses.. ................................................... 79 

Figure 6.4 | First ISR measurements campaign.. ....................................................................... 80 



 

List of Tables 

Table 1.1 | Overview of infrared sources. .................................................................................... 2 

Table 3.1 | Laser parameters of Kerr-lens mode-locked oscillators ....................................... 11 

Table 3.2 | Broadening parameters of different PCF. .............................................................. 15 

 

 



 

Chapter 1 

1. Introduction 

The quest to probe matter lies in the very nature of human beings. Different 

molecular structures that constitute matter possess specific signatures for their identification 

and quantification. This makes optical spectroscopy an indispensable tool for the analysis of 

molecules in physics, chemistry, biosciences and related disciplines1–6. The scheme relies on 

the absorption of light, which causes the molecules in a sample to vibrate. The “optical 

response” is then detected by either recording the reduction in the intensity of the incident 

light or by monitoring the free-induction decay.  

Transitions between molecular vibrational states lie in the wavelength range of 1-20 

µm (10000-500 cm-1). Vibrational modes describing the motion of chemical bonds of the 

molecule, are mainly of two types: stretching and bending. The former is characterized by a 

variation in interatomic distances along the bond axis and the latter by the change in bond 

angles. Two widely used techniques based on vibrational studies are Raman spectroscopy 

and infrared (IR) spectroscopy. Raman spectroscopy utilizes the detection of inelastically 

scattered light to explore the molecular information7,8. IR spectroscopy, on the other hand, 

relies on the absorption of incident light and re-emission of light to study the transition 

between vibrational energy levels of the molecules9,10. Both of these techniques provide 

molecular-specific information based on the fact that each molecule has a characteristic 

fingerprint. 

The label-free nature of these techniques makes them highly attractive both for 

fundamental research and for industrial applications. Direct and broadband probing of 

molecular vibrations at their characteristic frequencies in the mid-infrared (MIR) fingerprint 

region profits from the large interaction cross-sections, along with a unique combination of 

spectral coverage and sensitivity4,11.  

To date, the most widespread scheme for infrared vibrational spectroscopy, namely 

Fourier-transform infrared spectroscopy10 (FTIR), relies on thermal sources. These sources 

have technological limitations in terms of brightness and lack spatial as well as temporal 

coherence. This leads to a limit in their performance in terms of sensitivity to weak signals, 

investigation of thick samples, and dynamic range of detectable signals. An alternative to 

such broadband sources is synchrotron-based radiation, but these sources are scarce and 

expensive. Table 1.1 shows the comparative overview of broadband IR sources.   
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Table 1.1 | Overview of infrared sources. 

Source Bandwidth Brightness Spatial 

coherence 

Temporal 

coherence 

Compactness 

Globar      

Synchrotron      

Laser-Based      
 

Developments in femtosecond laser technology with mode-locked oscillators, 

promise an alternative route for optical metrology and precision spectroscopy. The temporal 

interplay between optical gain, linear and nonlinear propagation in a mode-locked laser 

oscillator12 results in a train of output pulses with highly reproducible shot-to-shot intensity 

envelopes, and with durations of few hundreds of femtoseconds. These sophisticated 

sources became powerful tools for a variety of time- and frequency-domain applications. 

The lack of suitable laser gain media for longer wavelengths (> 3µm) restricts these 

oscillators to the near-infrared and visible spectral regions. At wavelengths close to 1 µm, 

femtosecond pulses with more than hundred watt of average power have been realized13–16. 

Laser sources emitting at 2-µm wavelength, on the other hand, can provide several watts of 

average power directly from the oscillator17–19 These high-power laser sources can be utilized 

in frequency down-conversion processes, to achieve femtosecond laser pulses in the MIR 

spectral region.  

The control of phase of the optical carrier wave with respect to its intensity 

envelope20–22 further pushed the precision limits of temporal and frequency resolution in 

optical measurements. Second-order nonlinear processes such as optical parametric 

amplification (OPA) and intrapulse difference-frequency generation (IPDFG), intrinsically 

and passively23,24 comprises this control. The nonlinear polarization responsible for the 

emission of the difference-frequency wave follows the temporal intensity envelope of the 

driving pulse25. This renders passive stabilization techniques a preferred scheme for the 

generation of waveform-stable ultrashort pulse trains and carrier-envelope offset frequency 

controlled frequency combs19,26–28. 

These developments of laser technology have spawned MIR radiation sources 

meeting the long-standing challenge of combining broad bandwidth with high average power 

and outstanding coherence properties27–30. Another unique feature of femtosecond MIR 

laser sources is the temporal confinement of the broadband MIR pulses to durations 

significantly shorter than the typical picosecond dephasing time of molecular vibrations31. 

Using frequency up-conversion in electro-optic sampling, this property can be utilized for 
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time-domain observation32,33 of resonant MIR molecular vibrations following impulsive 

excitation in field-resolved spectroscopy (FRS).  

In FRS, the generation of waveform-stable MIR pulses along with electro-optic 

sampling26 detection grants access to the electric field emitted by the sample molecules as 

the most direct observation of the molecular dipoles coherently oscillating following the 

impulsive excitation. Additionally, signal strength in FRS scales linearly with the electric field 

of the MIR waveform rather than with its intensity, in contrast to conventional techniques. 

This makes FRS a promising approach to study thick, strongly attenuating samples, and 

rapidly dephasing molecular vibrations in biological samples34–36. 

1.1 Thesis outline 

The thesis is structured as follows: Chapter 2 addresses theoretically the comparison 

of the minimum detectable absorbance in time-integrating, frequency-resolved spectroscopy 

and in electric-field-resolved infrared spectroscopy.  

Chapter 3 covers details of the laser front-end, including the laser oscillator and MIR 

generation. Experimental setups for MIR generation based on narrowband and broadband 

pump optical parametric amplification, and intra-pulse difference frequency generation are 

presented. The advantages and drawbacks of both schemes for are summarized.  

Chapter 4 discusses the electro-optic sampling detection setup. The performance of 

electro-optic detection in two Infrasampler* setups is demonstrated.  

Chapter 5 combines all the technological know-how into realizing the world’s first 

field-resolving spectrometer optimized for liquid biopsies, and presents its performance. 

Electro-optic sampling is introduced as a highly sensitive metrology technique for the 

analysis of infrared waveform stability in radio-frequency domain of noise and in the optical 

domain of the laser pulse. The unprecedented temporal coherence and waveform stability 

was utilized to explore sensitivity and specificity of first experimental studies towards real-

world application of the field-resolving spectrometer.  

Finally, Chapter 6 concludes the experimental findings and gives an overview of 

future prospects. 

                                                 
 

* Infrasampler = Infrared field sampling measurement device. This name is adopted for the spectrometer 
designed to measure the electric field of the mid-infrared laser. 



 

Chapter 2 

2 Theoretical Background 

Advancements in spectroscopic technologies offer various tools and methods to 

study the interaction between electromagnetic radiation and fundamental molecular modes. 

Optical techniques interrogate the molecular sample by detecting the resonant vibrational 

response to infrared excitation. As molecules have unique vibrational eigenstates, when the 

molecular fragments are subjected to spectroscopic interrogation, their dephasing results in 

sample-specific temporal and spectral responses. These spectral fingerprints provide 

information about individual molecules, the sample’s molecular composition and structure.  

2.1 Mid-infrared absorption spectroscopy 

Traditionally, the measurement of molecular absorption is performed by frequency 

resolved intensity attenuation of input radiation. The intensity noise of the source directly 

limits the minimum detectable signal for each spectral component and their reproducibility. 

Molecular absorption is detected when the intensity of the spectral component 

corresponding to the absorption is smaller than 𝐼0(1 − 𝜎), where 𝐼0 is the mean reference 

intensity and 𝜎 is the relative standard deviation for a given spectral component from 

measurement to measurement. For a propagation length 𝑧 and absorption coefficient 𝛼, 

Beer’s law reads 

 𝐼𝑠 = 𝐼0𝑒−𝛼𝑧 , (2.1) 

where 𝐼𝑠 represents the spectral component intensity. The inequality 𝑒−𝛼𝑥 ≤ 1 − 𝜎 needs 

to hold for an absorption to be detectable. This implies, 

 𝛼𝑥 ≥ ln (
1

1 − 𝜎
) (2.2) 

This can be further approximated for small values of 𝜎 by Taylor expansion. This gives, 

 ln (
1

1 − 𝜎
) ≈ ln(1 + 𝜎) ≈ 𝜎 (2.3) 

So, the minimum detectable absorbance (MDA) is: 

 𝑀𝐷𝐴𝐹𝐷 ≈ 𝜎 (2.4) 
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This relation holds for experimental schemes that measure time-integrated fields in the 

frequency domain. The relative standard deviation 𝜎 incorporates contributions from the 

excitation source noise, detection noise, and from the dynamic range of the measurement 

scheme. 

2.2 Field resolved infrared spectroscopy 

In this scheme, when a sample is subjected to excitation by an ultrashort infrared 

pulse, the emerging response is a superposition of the resonant and non-resonant fields. This 

can be modelled by solving the wave equation semi-classically*. The linear interaction of the 

infrared excitation pulse with the electric field amplitude envelope 𝐸0(𝑡) = 𝐸(𝑧 = 0, 𝑡) 

propagating through the medium with absorption coefficient 𝛼1 for the non-resonant 

interaction in the z-direction. The resonant absorption, can be described as a Lorentzian-

shaped absorption band with a dephasing time 𝑇𝐿 and peak absorption 𝛼2. Here, we consider 

this band to be centred at the carrier frequency of the infrared excitation pulse, so the 

intensity of this pulse is attenuated by exp[(𝛼1+𝛼2)𝑧]. The dephasing time can be estimated 

by 𝑇𝐿 = (𝜋𝑐𝛿𝜐)−1, where 𝛿𝜐 is the full-width at half depth of the power spectral density 

absorption line, and c is the speed of light. Assuming that the pulse duration of the infrared 

pulse is smaller than 𝑇𝐿 , the time-domain electric field envelope is given by: 

 

𝐸(𝑧, 𝑡) = 𝐸0(𝑡) exp (−
1

2
𝛼1𝑧) − 𝜀 ∙ exp (−

1

2
𝛼1𝑧 −

𝑡 − 𝑡𝑚𝑎𝑥

𝑇𝐿
)

∙  
𝐽1(√2𝜀(𝑡 − 𝑡𝑚𝑎𝑥))

√2𝜀(𝑡 − 𝑡𝑚𝑎𝑥)
∫ 𝐸0(𝑡′)𝑑𝑡′

𝑡

−∞

, 

(2.5) 

where 𝑡𝑚𝑎𝑥 denotes the time at the maximum of 𝐸0(𝑡), 𝐽1 denotes the first-order Bessel 

function and 𝜀 =
𝛼2𝑧

𝑇2
. For a weak resonant absorption, the term 𝛼2𝑧 ≪ 1, and the term 

𝐽1(√2𝜀(𝑡−𝑡𝑚𝑎𝑥))

√2𝜀(𝑡−𝑡𝑚𝑎𝑥)
 can be approximated to 

1

2
. 

 𝐸(𝑧, 𝑡) ≈ 𝐸𝑖𝑛𝑠𝑡(𝑧, 𝑡) −
1

2

𝛼2𝑧

𝑇𝐿
exp (−

𝑡 − 𝑡𝑚𝑎𝑥

𝑇𝐿
) ∙ ∫ 𝐸𝑖𝑛𝑠𝑡(𝑧, 𝑡′)𝑑𝑡′

𝑡

−∞

 (2.6) 

The first term 𝐸𝑖𝑛𝑠𝑡(𝑧, 𝑡) = 𝐸0(𝑡) exp (−
1

2
𝛼1𝑧), corresponds to the non-resonant sample 

response. The envelope decays quickly in time due to the ultrashort duration of the infrared 

excitation pulse. The second term corresponds to the ensemble-integrated macroscopic 

                                                 
 

* The formulism presented here is in close analogy to Ref. 31, and were calculated for the field-resolved infrared spectroscopy in Ref. 37. 
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electric field emitted by the coherent oscillations of the resonantly excited molecular dipoles. 

These oscillations decay exponentially with 𝑇𝐿 and their strength is proportional to the 

number of emitters (i.e. 𝛼2𝑧). The negative sign in the second term shows that the phase of 

the resonant response is opposite to that of the nonresonant response. This appears as a 

Lorentzian absorption dip in the frequency domain representation of the total field.  

Along with a weak resonant absorption, assuming that on the time scale of the infrared 

excitation pulse, the field is not attenuated by the resonant absorption, Eq. (2.6) becomes 

 

𝐸(𝑧, 𝑡) ≈ 𝐸𝑖𝑛𝑠𝑡(𝑧, 𝑡) −
1

2

𝛼2𝑧

𝑇𝐿
Θ(𝑡 − 𝑡𝑚𝑎𝑥)exp (−

𝑡 − 𝑡𝑚𝑎𝑥

𝑇𝐿
)

∙ ∫ 𝐸𝑖𝑛𝑠𝑡(𝑧, 𝑡′)𝑑𝑡′

∞

−∞

, 

(2.7) 

where Θ(𝑡) denotes the Heaviside step function. This holds well for an ultrashort infrared 

input pulse and a longer dephasing time. The second term on right side of the expression is 

a good approximation for the field emitted by resonantly excited polarization. This 

corresponds to Lorentzian emission with a spectral maximum of 
1

2
𝛼2𝑧𝐶, where 𝐶 =

∫ 𝐸𝑖𝑛𝑠𝑡(𝑧, 𝑡′)𝑑𝑡′
∞

−∞
. 

The resonant response of the sample also overlaps in time with the non-resonant 

response. The effect of the non-resonant part can be minimized in the measured signal by 

applying a high-pass time filter at time 𝑡𝐵. This gives the resonant response in a background 

free manner. As the nonresonant contribution 𝐸𝑖𝑛𝑠𝑡(𝑧, 𝑡) is negligible after time 𝑡𝐵, the time-

filtered resonant response is given by: 

 Θ(𝑡 − 𝑡𝐵)𝐸(𝑧, 𝑡) ≈ −
1

2

𝛼2𝑧

𝑇𝐿
Θ(𝑡 − 𝑡𝐵)exp (−

𝑡 − 𝑡𝐵

𝑇𝐿
) exp (−

𝑡𝐵

𝑇2
) ∙ 𝐶. (2.8) 

This gives a good estimate of the Lorentzian emission line for the field delayed by 

time 𝑡𝐵 and with spectral amplitude attenuated by exp (−
𝑡𝐵

𝑇𝐿
).  

At the central frequency (𝜔 = 0 Hz, corresponding to 0 cm-1), the magnitude of the 

Fourier transform of 𝐸𝑖𝑛𝑠𝑡(𝑧, 𝑡) is: 

 ∫ 𝐸𝑖𝑛𝑠𝑡(𝑧, 𝑡)exp(−𝑖𝜔𝑡)𝑑𝑡

∞

−∞

=  ∫ 𝐸𝑖𝑛𝑠𝑡(𝑧, 𝑡)𝑑𝑡 = 𝐶

∞

−∞
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The magnitude ratio of the field envelope corresponding to the resonant response to that of 

the high-pass time-filtered instantaneous (nonresonant) response amounts 

to 
1

2
𝛼2𝑧 exp (−

𝑡𝐵

𝑇𝐿
). 

In field resolved spectroscopy, the oscillating electric field itself is the observable 

(rather than its envelope). For a carrier angular frequency 𝜔0, the electric field is related to 

its envelope 𝐸(𝑧, 𝑡), by multiplying the oscillating function cos(𝜔0𝑡) (the carrier-envelope 

phase is not considered here for simplicity). And the Fourier transform gives the two-sided 

spectrum with two copies of the 𝐸(𝑧, 𝑡) spectrum, at −𝜔0 and 𝜔0, with the magnitude of 

each component reduced by a factor of 0.5. The magnitude ratio remains unaffected, since 

this reduction applies for both the resonant and instantaneous non-resonant responses.  

The minimum detectable absorbance for FRS will be when the signal 𝑆 (high pass 

time filtered) of the resonant excitation equal to the background noise level 𝑁(𝑆/𝑁 = 1). 

Normalization by the instantaneous field magnitude gives: 

 
1

2
𝛼2𝑧 exp (−

𝑡𝐵

𝑇𝐿
) =  

1

𝐷𝑅𝐸
, (2.9) 

where, the electric field dynamic range 𝐷𝑅𝐸 corresponds to the magnitude ratio of the 

instantaneous (nonresonant) field to the background in the frequency domain at the carrier 

frequency 𝜔0. 

 𝑀𝐷𝐴𝐹𝑅𝑆  =  
2

𝐷𝑅𝐸
exp (

𝑡𝐵

𝑇𝐿
) (2.10) 

This expression shows that the weakest detectable signal in an FRS measurement is largely 

immune to the intensity noise of the excitation pulse, for the time filtered signal. In the 

measurements, this time window is defined when the numerical difference between the two 

measurements reaches the detection noise floor. In a typical FRS measurement, for an 

aqueous sample (having a dephasing time on the order of a picosecond), this gives a 

minimum detectable absorbance37 on the order of 10−6. This criterion for estimation of the 

MDA can be extended to all optical frequencies of the excitation pulse, by extending the 

definition of 𝐷𝑅𝐸 , i.e. the magnitude ratio of the measured instantaneous response to the 

frequency dependent background level. 

The intensity noise of the excitation pulse certainly puts a limit on the efficiency of 

the subtraction of measurements. But for an ultrashort pulse, the excitation pulse decays 

after a few hundreds of femtoseconds, down to the detection noise floor, while the signal 

from an aqueous sample has a dephasing time of several picoseconds. Thus, for the high 
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pass time filtered signal, the detection is mainly limited by the detection noise floor and not 

by the technical noise of the excitation pulse. 

 



 

Chapter 3 

3 Source of waveform-stable broadband 

infrared light 

The generation and control of waveform-stable broadband light are of great interest2 

in both fundamental and applied research. Ultrashort near-infrared laser pulses with 

durations of a few femtoseconds have contributed to the observation and manipulation of 

chemical reactions38,39, exploring highly nonlinear effects such as high-harmonic 

generation40–42, current switching in solids43, and field-resolved spectroscopy26,37.  

Mode-locked oscillators provide a train of temporally equidistant ultrashort pulses 

with durations in the range of a few hundred femtoseconds, and highly reproducible intensity 

envelopes. These ultrashort pulses enable many interesting applications in both the time and 

frequency domains. The two key ingredients required for most metrological applications are 

the broad bandwidth, to address a certain interaction in the material under observation, and 

high reproducibility of the electric field under the field envelope. The shot-to-shot 

reproducibility of the electric field requires different frequency modes locked with each other 

as well as phase-locked to the envelope of the electric field. This phase parameter is termed 

“carrier-envelope phase” (CEP). CEP stability is essential to achieve high reproducibility and 

a high signal-to-noise ratio in optical-field-sensitive measurements. For instance, strong-field 

effects depend on the instantaneous electric field rather than the intensity envelope, and this 

role becomes crucial for broadband sources, i.e., for few-cycle laser pulses.  

The broad bandwidth is typically achieved by nonlinear mixing of the frequency 

components in a suitable medium, and the stability of the CEP is achieved by using either 

active20,21 or passive schemes23,24 (Figure 3.1). Active optical-phase stabilization is typically 

achieved by a phase measurement with an f-2f interferometer and providing the feedback 

via control electronics to the laser resonator. Passive stabilization is achieved in an all-optical 

scheme, such that CEP of mixing frequency components cancels out, resulting in the 

cancellation of shot-to-shot phase fluctuations. There are some clear advantages of the 

passive stabilization in comparison to active stabilization: (i) it is an all-optical technique; (ii) 

it uses a compact setup that directly produces a CEP-stable pulse train; (iii) it does not require 

feedback/control electronics. Furthermore, both of these schemes can be combined, noting 

that active stabilization provides constant phase for a limited frequency bandwidth, while 

passive stabilization provides a stable phase at the parametric output frequencies.  
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Figure 3.1 | Schematic representation of the CEP stabilization schemes. 

This chapter describes the femtosecond front-end laser system used for the 

generation of passively waveform-stable mid-infrared light, in the frame of this thesis. 

Section 3.1 describes the femtosecond laser oscillator and the spectral compression needed 

to drive the parametric process. Section 3.2 presents the different schemes used to generate 

(nominally) waveform-stable mid-infrared pulses via optical parametric amplification and 

intra-pulse difference frequency generation, and a comparison between the two schemes. 

3.1 Near-infrared femtosecond frontend 

Most of the high-energy laser systems across the world are based on Ti:Sapphire 

technology, thanks to its unique properties as a laser medium, including large nonlinear 

index, high thermal conductivity, and broad gain bandwidth. However, it also has some 

limitations in terms of average and peak power scalability. This led to the development of a 

different family of femtosecond laser systems, based on Yb-doped active media, offering 

comparatively high average-power laser pulses44–47. The main drawback in Yb-based systems 

is the comparatively narrow gain bandwidth so that pulses with a duration of a few hundred 

femtoseconds are the shortest that have been achieved directly from the oscillator, so far. 

Extra-cavity nonlinear spectral broadening techniques provide a route to generate 

broadband ultrashort pulses from these high-average- and high-peak-power sources. 

3.1.1 Yb:YAG Oscillator 

The experiments presented in this thesis have been performed with three different 

Yb:YAG Kerr-lens mode-locked thin-disk (KLM TD) oscillators. For convenience, the first 

oscillator47 is referred to as KLM-1, the second48 as KLM-2 and the third13,49 as KLM-3 

throughout the thesis. An overview of the laser parameters of these oscillators is shown in 

Table 3.1.   
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Table 3.1 | Laser parameters of Kerr-lens mode-locked oscillators 

Oscillator 

Name 

Rep. 

rate 

(MHz) 

Average 

power 

(W) 

Pulse 

duration 

(fs) 

Integrated 

RIN RMS 

(%) 

Ave. 

power 

RMS (%) 

KLM-1 37.5 50 230 0.1 0.16 

KLM-2 100 70 250 0.1 - 

KLM-3 28 120 220 0.07 < 0.1 
 

The majority of the experiments presented in this thesis were performed with KLM-

3, which offers the highest pulse energy, with higher stability and improved infrastructure as 

compared to the other two oscillators. Also, KLM-3 is used in the field-resolving 

spectrometer named InfraSampler 1.2, presented in detail in Chapter 5.  

KLM-3 offers robust and turn-key laser operation. During the course of the 

experiments, only minor changes were required to improve the stability and handiness of the 

laser system. KLM-3 produces a train of pulses with a repetition rate of 28.3 MHz, full-

width-half-maximum duration of 220 fs, and with an average power exceeding 120W. A 

picture of the setup is shown in Figure 3.2a. The laser cavity was built in a water-cooled 

monolithic aluminium housing resulting in relatively low thermal drifts. Laser housing and 

all optics mounts were water-cooled. For day-to-day operation, the output-coupling mirror, 

hard aperture, and end mirror were adjusted to reach the reference laser parameters without 

opening the housing. Inside the oscillator housing, a half-wave plate (HWP) followed by a 

thin-film polarizer is used, such that the rotation of the HWP defines the amount of laser 

power sent to the experiment. The rest is guided to a water-cooled thermal power meter. 

Figure 3.2b shows the sech2 fit to the autocorrelation (AC) measurement. The NIR 

beam has a nearly perfect Gaussian profile, as shown in the inset. Evaluating the measured 

AC width for 3.5 hours in steps of ~20 minutes, reveals a root-mean-square (RMS) deviation 

of 0.2%. The stability and reproducibility of the laser spectrum are crucial for the subsequent 

spectral broadening and temporal compression.   

To further stabilize the frontend laser, active suppression of intensity noise based on 

an acousto-optic-modulator (AOM) in a configuration similar to Ref. 50 was implemented. 

Here, an error signal for the feedback loop was generated from the outer wing of the 

broadband NIR spectrum (presented in Section 3.1.3) using an indium gallium arsenide 

(InGaAs) amplified photodiode (Thorlabs, PDA20CS2). The signal of the photodiode was 

fed into ta PI2D controller, which regulates the RF power of the AOM driver. The integrator 

parameters of the PI2D controller were chosen to minimize noise at the lock-in detection 

frequency in electro-optic detection.  
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Figure 3.2 | Thin disk laser oscillator. a) Photograph of the laser oscillator. Lower right corner 

shows the remote knobs used to operate the position of the hard aperture, Kerr-medium, end-

mirror, and half-wave plate. b)  Autocorrelation measurement. The inset shows the intensity profile 

of the NIR beam output by the oscillator. 

Relative intensity noise (RIN) measurements were taken by focusing the laser light 

on a similar InGaAs amplified photodiode. To this end, the laser beam was focused at the 

centre of the photodiode to minimize any noise coupling due to beam pointing drifts. This 

signal was recorded with a Fast Fourier Transform (FFT) spectrum analyser (Stanford 

Research, SR780) in four different bandwidth ranges (0-50 Hz, 0-800 Hz, 0-12.8 kHz, 0-102 

kHz) to avoid low resolution at low frequencies, and the data was stitched together to obtain 

better resolution throughout the measurement bandwidth. The noise spectrum was 

normalized by the DC signal level to obtain the RIN spectrum SRIN [in Hz-0.5]. RIN 

measurements of short-time and long-time laser fluctuations are presented in Figure 3.3. The 

integrated RMS RIN value between the frequencies 𝑓1 and 𝑓2 for a given bandwidth was 

obtained by: 

(a) 

(b) 
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𝑅𝑀𝑆 𝑅𝐼𝑁 (𝑓1, 𝑓2) =  √ ∫ (𝑆𝑅𝐼𝑁(𝑓))
2

𝑑𝑓

𝑓2

𝑓1

 

 For the free-running oscillator, integrated RMS RIN from 1Hz to 102 kHz is 0.07 

%, and it shows a typical 1/f noise behaviour. It is suppressed by more than a factor of two 

for the stabilized case, down to 0.03 % for the same bandwidth. The shape of the noise 

spectrum is modified due to the integrator parameters of the PI2D controller, these 

parameters were adjusted for a minimum balanced detector noise for the lock-in detection 

at the chopping frequency (Section 4.5) . Long-term fluctuations were measured with a 

thermal power meter for 50 minutes, shown in Figure 3.3b. The sensitivity of the 

measurement here was limited by the noise of the thermal sensor used. The RMS relative to 

the mean is 0.097%. These sub-percent noise values play a central role in the experimental 

studies presented later on in this thesis. 

These measurements were performed after the typical oscillator warm-up, to avoid 

any initial thermal drifts. The oscillator can typically be mode-locked after half an hour from 

switching on the system. It takes ~1 hour to reach thermal stability in mode-locked 

operation. To ensure long-term stability, various diagnostics* were used, so that any 

perturbation at a later stage could be diagnosed and fixed quickly. These includes monitoring 

the full width at half intensity maximum (FWHM) of Gaussian fit to the measured oscillator 

spectrum, pump spot on the thin-disk, and output power of the oscillator. 

    

Figure 3.3 | Noise characteristics of the thin-disk oscillator. a) Relative intensity noise and 

integrated noise (in the bandwidth of 1Hz-102KHz) for free running and stabilized laser oscillator 

KLM-3. b) Power fluctuation measurements of laser oscillator KLM-3.  

 

                                                 
 

* At a later stage, a relative humidity control was installed Wolfgang Schweinberger. 

rel. rms = 0.097 % 

(a) (b) 
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To achieve further spectral broadening and compression, KLM-1 and KLM-2 rely 

on solid-core fiber based pulse compression, while bulk-based pulse compression was 

utilized with KLM-3, thanks to the availability of the higher pulse energies needed for bulk 

broadening. 

3.1.2 Fiber-based pulse compression 

Optical fibers with a solid core have been widely used to exploit self-phase 

modulation (SPM) to further broaden the laser spectrum51–53, beyond the width achievable 

directly at the output of a modelocked laser. As mentioned earlier, Yb-doped gain media 

have lower gain bandwidth in comparison to the Ti:Sa medium, so that cavity-external 

techniques for spectral broadening are needed to access the few-cycle regime. Large-mode-

area solid-core photonic crystal fibers offer spectral broadening by more than a factor of ten 

for laser pulses with several megawatts of peak power54.  

The laser beam is focused to the solid core of the photonic crystal fiber (PCF), and 

spectral broadening is achieved via SPM. Subsequently, negative group delay dispersion 

(GDD) is applied to obtain the compressed pulses. The material of the solid-core fiber puts 

an upper limit to the peak power at the input of the fiber facet, limiting the attainable spectral 

broadening. Figure 3.4 shows the spectral broadening obtained with a solid-core fiber for 

four different mode-field diameters (MFD), performed with KLM-155.  

 

Figure 3.4 | Spectral broadening in photonic crystal fibers. Spectrum measured with an 

optical spectrum analyser (OSA), for four different fibers, is shown. LMA-35 has a MFD of about 

26 μm, LMA-25 is of 20.9 μm, LMA-12 (also known as ESM-12) is of 10.3 μm and ANDi fiber 

(NL-1050-NEG-1) is of about 3 μm. Data taken from Ref. 55. 
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Table 3.2 | Broadening parameters of different PCF*.  

Name MFD  

(μm) 

Broadening 

factor 

Peak 

Irradiance 

(TW/cm2) 

Peak power 

(MW) 

LMA-35 26 19 0.73 1.93 

LMA-25 20.9 24 0.97 1.67 

LMA-12 10.3 28 1.3 0.55 

NL-1050-NEG-1 3 51 2 0.07 
 

The parameters of these fibers, along with the laser parameters used, are given in 

Table 3.2. With the given broadening factor, a Fourier transform limit (FTL) down to 10 fs 

can be achieved with LMA fibers. While the ANDi fiber with the smallest MFD leads to 

more than an octave-spanning spectrum, supporting sub-5-fs FTL.  On one hand, this 

suggests the use of smaller MFD fibers to generate a broadband spectrum, while on the 

other hand the power spectral density is limited to a few mW/nm compared to ~200 

mW/nm for the LMA fibers. 

To couple the Gaussian laser beam into the fundamental fiber modes, a coupling 

lens is chosen in accordance with the equation56: 

𝑓 =
𝜋𝐷𝑖𝑛𝑀𝐹𝐷

4𝜆
 

where 𝑓 is the focal length of the input coupling lens, 𝐷𝑖𝑛 is the diameter of the input 

collimated beam before the lens, and 𝜆 is the wavelength. 

For the laser oscillator KLM-2, the setup for the fiber-based broadening is shown in 

Figure 3.5a. KLM-2 provides a pulse train of 100 MHz having a full width at half intensity 

maximum (FWHM) of 250 fs centred at 1030 nm, and an average power of 70W48. The 

pulses are sent to an 8-cm long LMA-35 PCF, followed by a set of dispersive mirrors, 

resulting in 20-fs FWHM pulses. To maintain stable operation of the system in the long 

term, only 40 W were sent to the fiber, resulting in 28 W of average power after the 

compressor being available for the experiment, corresponding to a compression efficiency 

of 70 %.  

A Faraday isolator is used after the oscillator, before coupling to the fiber in order 

to avoid pulses reflected at the front facet of the fiber from coupling back to the oscillator, 

as this would interfere with the intra-cavity pulse and eventually force it out of mode-locking. 

                                                 
 

* Data taken from Ref. 55 
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Figure 3.5b shows the normalized intensity of the generated broadband near-infrared (NIR) 

spectrum. These pulses are later used to drive the broadband pump optical parametric 

amplification (OPA) and intra-pulse difference frequency generation (IPDFG), presented in 

Section 3.2.2 and 0 respectively.  

3.1.3 Bulk-based pulse compression 

Although nonlinear pulse compression using a fiber-based setup offers good results 

in terms of broadening factors, beam quality, and throughput, the small coupling area makes 

fiber-based setups hard to align and limit their capability to handle beams with high average 

power and high peak power, due to material threshold. Another technological limitation of 

the fiber-based approach comprises of instabilities due to input beam pointing. Such 

instabilities lead to increased intensity noise as well as distortion in the output beam profile57. 

These limitations can be avoided in a bulk based broadening scheme to a certain extent.  

In contrast to a single-pass geometry through the bulk medium, a multi-pass cell 

(MPC) can be utilized58,59. Furthermore, these MPCs can be cascaded to exploit moderate 

nonlinearities in each cell. In our setup, three Herriot type MPCs serve as a broadening setup, 

as shown in a schematic Figure 3.6a. The input beam was mode matched before entering the 

MPC so that a single broadening medium could be used for multiple passes in a compact 

fashion. Out of the available > 100 W of power, only 100 W were sent to the broadening 

stages (for a stable long-term operation). Each of the three stages comprises an 

antireflection-coated fused silica nonlinear broadening medium, and curved dispersive 

mirrors designed to compensate for the material dispersion of the broadening medium.  

The first two stages have 1-inch dispersive mirrors with a radius of curvature (ROC) 

of 300 mm and a mirror separation of 560 mm with 12 passes, while the third stage has 

dispersive mirrors with a ROC of 500 mm and a separation of 894 mm with 38 passes. After 

each broadening stage, the pulses were compressed by a set of dispersive mirrors. This 

resulted in compressed pulses with durations of 84 fs, 43 fs, and 16 fs respectively after each 

stage, with an average power of 82 W, 74 W and 60 W. Figure 3.6 b-c shows the retrieved 

spectrum and pulse obtained with a second harmonic frequency-resolved optical gating 

(FROG) measurement. The retrieved spectrum shows a nice agreement with the spectrum 

measured using an optical spectrum analyser (OSA). This setup was built by Kilian Fritsch49 

and was slightly modified and optimized over the course of several months for stable 

operation over the long term, as required for the field-resolved measurements presented in 

Chapter 5. 
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Figure 3.5 | Fiber-based spectral broadening. Schematic diagram of the broadening setup.  A 

faraday rotator is used before the fiber to avoid any back reflection going back to the oscillator. 

Right panel shows the spectrum of the broadband NIR in LMA-35. 

  

     

Figure 3.6 | Bulk-based spectral broadening scheme.  a) Schematic of the multi-pass 

broadening scheme. The oscillator and the first two broadening stages were operated in a closed 

environment, while the third broadening stage was operated in vacuum. b) Spectrum measured 

with OSA and retrieved spectral intensity and phase from FROG. c) Temporal intensity and phase. 

Sketch of setup is adopted from Ref. 49 

 

(c) 

(a) 

(b) 
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Figure 3.7 | Reproducibility measurements for broadband NIR.  Retrieved spectrum and 

pulse from a FROG measurement for three consecutive days. 

To further characterize the system, a series of FROG measurements was done on 

subsequent days at a moderate vacuum level. Figure 3.7 shows that the day-to-day 

reproducibility was good. The fluctuations in the oscillator power also directly translate into 

the nonlinear broadening. The residual oscillator power and NIR power were measured with 

a thermal power meter for 30 minutes, since this NIR would be used further for the MIR 

generation, where the wings of the driving NIR plays a central role. A long-pass filter at 1100 

nm (Thorlabs, FEL1100) was used for measuring NIR power fluctuations. The oscillator 

power measurement was limited by the digitization of the thermal sensor used, nevertheless 

a clear correlation could be observed, as shown in Figure 3.8 (a correlation with MIR power 

is shown in Figure 3.26). This reinforces the importance of the active stabilization of NIR 

presented in Section 3.1.1. A vacuum level of 10 mbar was maintained for the third stage, 

while both power meters were placed in air. 

 

Figure 3.8 | Correlation in the power fluctuations of the oscillator and at the wing of the 

broadened NIR. 

The effect of intensity noise was also measured for short-term fluctuations, as shown 

in Figure 3.9, as per the procedure presented in Section 3.1.1. The measurements were 

 (a)  (b) 
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performed for the oscillator, broadband NIR, and also for the wing of the NIR, by using a 

short pass filter at 925 nm (this filter is chosen in accordance with the spectral filter used in 

electro optic sampling (EOS), presented in Chapter 5).  

 

Figure 3.9 | Relative intensity noise measurements for the oscillator, full 

broadband NIR and spectral wing of the NIR. In the a) free-running case and b) 

stabilized case. 

For a free-running mode, the oscillator has a relative RIN of 0.07 %, broadband NIR 

has 0.1 %, and the spectral wing beyond 925 nm has 1.3 %. The reason behind the higher 

RIN value for the full broadband NIR was not clearly understood. This result is in contrast 

to the RIN measurements for bulk compression in air60 and for PCF based compression50, 

while an increase in the RIN for the compressed NIR has been reported for a gas-filled 

Kagome-type hollow-core photonic crystal fiber in Ref. 61,62 The increase in RIN for the 

spectral wing, however, is expected, as reported in Ref. 50,63. Also, the increase in RIN for 

the spectral wing is a factor of 13 higher than the full broadband NIR RIN, which is almost 

the same as the broadening factor achieved with the setup. For the stabilized case, where the 

AOM was switched ON, integrator parameters are chosen to minimize the noise at lower 

(a) 

(b) 
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frequencies for the blue spectral wing of the NIR. This corresponds to a 0.03 % integrated 

RIN for the oscillator, 0.06% for the full broadband NIR, and 0.13 % for the NIR spectral 

wing. For this chosen spectral wing of NIR, RIN suppression by a factor of ten is achieved. 

           

Figure 3.10 | Polarization characterization of the MPC output. a) Picture of the setup b) 

OSA measurement for the full spectrum, minimum and maximum transmission through the 

polarizer 

The beam goes to multiple reflections in the MPC in a circular fashion, exploiting 

the SPM nonlinearity in the broadening medium. The polarization at the output of the third 

MPC was analyzed using a simple setup (shown in Figure 3.10). A 45o custom-designed 50-

50 beam splitter was used to the divide the beam into two arms, for characterization.  The 

reflected beam was directed to a thermal power meter. The transmitted beam was picked by 

a FS wedge and analyzed using a wire-grid linear polarizer (Thorlabs, WP25M-UB). The 

spectrum and power after the polarizer were measured with an OSA and a thermal power 

meter. At an input power of 100 W from the oscillator, the beam had a de-polarization of 

40%, and almost similar spectral components in each arm, as shown in Figure 3.10b. The 

polarization was manipulated by a combination of polarization optics. A Glan-Taylor 

polarizer was used to clean the polarization after the oscillator. A half-wave plate and a 

quarter-wave plate were also placed after the second and third MPCs respectively. The 

rotation of the two wave-plates was chosen such that both arms have the same power on 

increasing the input power from the oscillator. This gives an extinction ratio of less than 2% 

for an input power up to 100 W, as shown in Figure 3.11. The percentage is calculated by 

taking the ratio of the minimum to maximum transmitted power through the polarizer. A 

clean polarization is a necessity for the IPDFG presented in Section 0. 

 (a)  (b) 
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3.2 Mid-infrared generation 

Optical parametric processes offer a robust way for the generation of broadband and 

tuneable mid-infrared radiation. In these processes, the energy and momentum of the 

interacting waves remain conserved. In this thesis, frequency down-conversion is achieved 

via three-wave mixing, as optical parametric amplification (OPA) and difference frequency 

(DFG). Figure 3.12 shows a typical sketch for such schemes. In OPA, a strong beam, 

commonly termed as the pump beam with frequency ωp, interacts in a thick χ(2) crystal with 

a weak beam, termed as the seed beam with frequency ωs, resulting in a third beam, termed 

as the idler beam with frequency ωi. Here the weak seed beam undergoes a coherent build 

up process in a thick χ(2) crystal, resulting in high conversion efficiencies. On the other hand, 

DFG processes utilize a strong seed beam in a relatively thin χ(2) crystal, so that broadband 

idler can be generated at the cost of a reduced conversion efficiency29,64. The mathematical 

description of these processes can be found in Ref. 25,64,65.  

Briefly, during an OPA process, a pump photon of frequency ωp is absorbed by a 

virtual level in the nonlinear crystal, and two photons, one at the signal frequency ωs and 

another at the idler frequency ωi are emitted. In this process, both energy conservation 𝜔𝑝 =

𝜔𝑠 + 𝜔𝑖  and momentum conservation 𝑘𝑝 =  𝑘𝑠 + 𝑘𝑖 are fulfilled. The phases of the three 

waves are linked by 𝜑𝑝 − 𝜑𝑠 − 𝜑𝑖 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. Both OPA and DFG results in a passively 

stabilized CEP. The momentum conservation, also known as the “phase-matching 

condition”, is to be fulfilled in the nonlinear crystal for efficient energy transfer between the 

three interacting beams. In addition, the nonlinear crystal needs to be non-centrosymmetric, 

transparent, having good optical quality and a high nonlinear coefficient. Although a large 

number of nonlinear crystals are available, only a few crystals can be efficiently utilized for a 

given laser system. Two different schemes for OPA that have been realized using KLM-1 

      

Figure 3.11 | Polarization extinction ratio measurement as a function of input power to 

MPC setup. a) Extinction ratio measurement, and b) measured power in each arm as a function 

of input power.  The measurements were performed in air at atmospheric pressure.  

 (a)  (b) 
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and KLM-2 are presented in the next section, following which an intra-pulse difference 

frequency setup based on KLM-3 has been described. 

 

Figure 3.12 | Sketch of frequency down-conversion process via three-wave mixing. Figure 

is inspired by Ref. 64 

3.2.1 Narrowband pump OPA 

In this setup, KLM-1 serves as the front-end oscillator delivering ~ 50 W of average 

power, 230 fs pulses at a repetition rate of 37.5 MHz. The output of the oscillator directly 

serves as the pump source, while the seed is generated in an ANDi fiber* having a mode field 

diameter of about 3 µm. A dichroic mirror was used as a beam combiner for pump and seed, 

reflecting only the long wavelengths of the seed spectrum.  

The transmitted pump and long wavelength of seed beam were focused on a 

nonlinear crystal in a collinear fashion, such that the generated MIR beam is free from spatial 

chirp. The polarization of each of the two beams was optimized for higher MIR output. The 

setup is shown in Figure 3.13a, and the design parameters are described in detail in Ref 29. 

Properties of the generated MIR beam, separated by a beam splitter, were evaluated using a 

Fourier transform infrared spectrometer (FTIR) and a thermal power meter. 

                                                 
 

* This setup was built in High-repetition-rate Femtosecond Source (HFS) group, by Marcus Seidel. I built the 

LGS based OPA setup presented here, and supported OPA noise characterization presented in Ref. 29 
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Figure 3.13 | Sketch of OPA setup based on KLM-1. λ/2, half-wave plate; OC, output coupler; 

POL, polarizer; TFP, thin-film polarizer; DM, dichroic mirror; Xtal, LGS crystal; BS, beam splitter. 

Figure is taken from Ref.29  

The continuum generated in the ANDi fiber is very broadband and fairly symmetric, 

as shown in Figure 3.14. An output coupler transmits 3% of the power from the oscillator 

to the seed arm. The polarization is cleaned in front of the fiber to suppress cross-phase 

modulation. At full-power operation, 1.5 W were sent to the fiber. At this power, the 

broadening is almost saturated, as shown in Figure 3.14. The top axis of the plot of the seed 

spectrum shows values of the difference wavelength (λi) that could be generated, considering 

the central pump wavelength (λp) to be 1030 nm, for the seed wavelengths (λs) displayed 

along the bottom axis, such that λ𝑖
−1 = |λ𝑝

−1 − λ𝑠
−1|. These beams were focused on lithium 

gallium sulphide (LGS) crystal for type I phase matching. The availability of broadband seed 

allows for tunability of the central wavelength of the generated idler beam, at the cost of 

phase matching efficiency. For the generation of shorter wavelengths, the phase-matching 

conditions become strict and a significant drop in the idler was observed.  

    

Figure 3.14 | Seed spectrum and power for narrowband pump OPA. Measured a) spectrum 

and, b) power of the seed beam after dichroic mirror at different input power from the oscillator.  

 

 (a)  (b) 
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Figure 3.15 | Generated idler power and spectrum in narrowband pump OPA.  a) Measured 

idler power for different pump powers.  b) Measured spectrum of the idler beam at a central 

wavelength of 8.7 µm. 

3.2.2 Broadband pump OPA 

In order to explore the generation of broadband idler radiation and its noise 

characteristics, the setup was designed to use a broadband pump source to drive the OPA. 

The frontend shown in Figure 3.5 was utilized for this purpose. For an input of 40 W to the 

fiber compressor, 20-fs NIR pulses with an average power of 28 W are generated. A small 

fraction is picked off with an uncoated fused silica wedge, and used as a probe beam for 

electro-optic sampling. An uncoated sapphire wedge reflects 7% of the incoming beam for 

the seed generation, resulting in 22 W of power being available for use as the pump beam. 

The setup is sketched in Figure 3.16.  

 

Figure 3.16 | Sketch of the broadband pump-driven OPA setup. The frontend delivers 20 fs 

pulses with an average power of 28W, out of which 22W were available for utilization as a pump 

beam.  

For the seed generation, a 20-mm long second photonic crystal fibre with a mode 

field diameter of 20.9 µm was used. The fibre was placed on a fibre clamp (Thorlabs, 

HFF003) and a 50-mm lens placed on a three-dimensional stage was used to focus the beam 

into the fiber. An off-axis parabolic mirror was used to collimate the beam. A fiber of such 

 (a)  (b) 
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a small size is difficult to handle and align. A picture of the fiber setup, the front facet of the 

cleaved fiber, and the output beam profile are shown in Figure 3.17. 

    

Figure 3.17 | Seed generation in photonic crystal fibre. a) Picture of the setup, 20-mm long 

fibre was placed on a fibre groove and a plano-convex lens on a 3D stage was used to focus the 

NIR beam into the fibre. An off-axis parabolic mirror was used collimated the beam. Inset shows 

the front facet of the fibre, b) output beam profile after collimation. 

 

 

 

Figure 3.18 | FROG measurements of seed and pump beams. a) Measured and, b) retrieved 

trace of the seed beam. c) measured and, d) retrieved trace of the pump beam. 

 

 (a)  (b) 

 (a)  (b) 

 (c)  (d) 
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The seed beam was not compressed after the fibre. A second harmonic FROG 

measurement was done to characterize the seed beam, giving out a pulse duration of 59 fs. 

The pump beam was transmitted through a half-wave plate (HWP) and Glan-Taylor Calcite 

Polarizer (Thorlabs, GT10-B), used to control the pump power sent for the OPA. As the 

pump beam of 20 fs would lead to overlap of limited frequency components, resulting in 

gain narrowing and lower pulse energy23,66. In order to increase the pulse overlap and 

interaction length, pump pulses were stretched to a pulse duration of 49 fs using two 6-mm 

thick Infrasil windows additionally so that a better overlap between the seed and pump beam 

could be achieved in the nonlinear crystal. Figure 3.18 shows the measured and retrieved 

FROG traces for the pump and seed beams. In principle, if broadband phase matching is 

satisfied, the pulse duration of an OPA does not depend on the pulse duration of OPA. But 

to ensure the temporal overlap, the seed pulse duration should be at least comparable to the 

pump pulse duration66. 

    

Figure 3.19 | Spectrum of the seed and pump beam for broadband pump OPA. a) Spectral 

power of the seed beam for different input power sent to the frontend fibre. b) Normalized pump 

and seed spectrum after the beam combiner, used for the OPA. The pump beam in transmission 

and seed beam in reflection, both have sharp wavelength cut-off due to the dichroic mirror used 

for combining both beams.  

Figure 3.19a shows the evolution in spectral power of seed beam for two input power 

at the front end LMA-35 fibre. For an input power of 30 W and 40 W, average powers of 

1.16 W and 1.56 W were sent to the seed LMA-25 fibre, respectively. The top axis shows 

the difference wavelength that corresponds to these seed wavelengths, considering a central 

wavelength of 1030 nm for the pump seed. The pump beam with an average power of 22 W 

goes to a delay stage, used for optimization of the temporal overlap. A dichroic short pass 

filter with a cut-off wavelength of 1100 nm (Edmund Optics, #86-691) was used as a beam 

combiner for the two beams, such that the pump beam below the cut-off wavelength is 

transmitted and the seed beam above the cut-off wavelength was reflected from the filter. 

 (a)  (b) 
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As, the filter response was polarization-dependent, both the p-polarized pump beam and s-

polarized seed beam see slightly different filter cut-off wavelength as shown in Figure 3.19b. 

 These beams were focused on an LGS crystal for MIR generation. It is important 

to mention here that the purpose of this proof-of-principle experiment was to study the 

bandwidth and noise characteristics of the generated MIR, and to have enough MIR power 

to characterize it with EOS. It has been found that a thicker LGS crystal seems to suffer 

damage at lower intensities29, compared to the damage threshold reported in the literature 

for thinner LGS crystals26.  

      

         

Figure 3.20 | Phase matching for LGS crystal.  Calculated idler wavelength for a) xy-cut crystal, 

b) xz-cut crystals for different pump wavelengths. Experimental results for the c) measured MIR 

power as a function of pump power d) measured MIR spectrum with FTIR for xy-cut and xz-cut 

LGS crsytal.  

Moreover, in the course of these experiments, no replacement for the LGS crystal 

was available*. The OPA in this setup was driven only at low pump powers. Two LGS 

crystals were used in these experiments, an xy-cut LGS (θ = 90o
, ϕ = 38.6o) which allows for 

type-II phase matching and an xz-cut LGS with (θ = 48.3o
, ϕ = 0o) which allows for type-I 

phase matching. For a central wavelength of 1.03 µm, xy-cut LGS crystals have a higher 

nonlinear coefficient (𝑑𝑒𝑓𝑓 ≈ 6.0 𝑝𝑚 𝑉⁄ ) compared to xz-cut LGS crystal (𝑑𝑒𝑓𝑓 ≈

                                                 
 

* The LGS crystals used in the experiments were ordered from the company ASCUT, and their delivery time 
for the new crystals is rather quit long, more than three months typically. 

 (c)  (d) 

 (a)  (b) 
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−4.6 𝑝𝑚 𝑉⁄ ). For both crystals, phase matching calculations were done using SNLO67, 

considering three different pump wavelengths of 980, 1030, 1080 nm, which correspond to 

seed wavelengths of 1099, 1163, and 1227 nm respectively, for an idler generation of 9000 

nm. The phase-matching curves are shown in Figure 3.20 a,b. The turning points of these 

curves indicate that a very broadband phase-matching can be achieved at the respective 

phase-matching angles for pump wavelengths around 1 μm. 

After the LGS crystal, the beams were separated by using a custom in-house designed 

dichroic filter that reflects the pump and seed beams and transmits the generated MIR, which 

was collimated by an off-axis gold parabolic mirror. The MIR beam after collimation goes 

to the diagnostics that measure the power with a thermal power meter and the spectrum 

with an FTIR spectrometer. Both of the findings predicted by SNLO were observed in the 

experiment as shown in Figure 3.20 c,d. While type-II phase matching resulted in a higher 

MIR power, a broader MIR spectrum was generated by type-I phase matching. 

      

Figure 3.21 | RIN measurements of the OPA beams. a) Measured RIN of the full probe beam, 

probe filtered with a bandpass filter of 1100 nm, seed, pump, and idler beams. b) RIN for different 

idler powers.  

The noise characteristics of OPA were analysed by performing relative intensity 

noise measurements, and are shown in Figure 3.21. The probe and pump beams (grey and 

blue curve) exhibit similar noise characteristics, since both originate from the first fibre 

compressor. The seed beam (green curve) exhibits a higher noise than the pump beam. The 

noise of the idler beam (brown curve) almost follows the seed noise. The RIN of the probe 

beam was also measured with a bandpass filter (Thorlabs, FB1100-10) with a central 

wavelength of 1100 nm (±10 nm). Both the seed and the red part of the probe beam (yellow 

curve) have higher noise since these beams are form only a part of the full spectrum, and the 

fact that the outer wings of broadened components have higher noise has been reported in 

literature50,63. Under these conditions of operation, no change in the RIN of the idler beam 

was observed on increasing pump power (shown in Figure 3.21b), corresponding to 

 (a)  (b) 
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measured idler power levels of 0.6, 2.1 and 4.4 mW. The idler pulses were also characterized 

using EOS, and are presented in Section 3.3. 

3.2.3 Intra-pulse difference frequency generation 

Intra-pulse difference frequency generation (IPDFG) relies on mixing the different 

frequency components within a single broadband driving pulse.  It is a slight variant of the 

widely used technique known as inter-pulse DFG or simply DFG, where the mixing 

frequency components come from two different beams. In IPDFG, the nonlinear optical 

mechanism is a similar effect reported in terahertz generation as optical rectification. As, 

both the pump and seed photons come from the same pulse, the need for temporal and 

spatial overlap are eliminated, which are required in inter-pulse DFG and OPA. The idler 

photons are generated by the mixing of the outer wings of the driving pulse, so that the idler 

bandwidth is defined by the available spectral width of the driving pulse and by the phase-

matching conditions of the nonlinear crystal. In addition, the generated idler pulse gets a 

fixed phase, due to the subtraction of the equal phase of the pump and seed spectral 

components of the driving pulse23,24. All these factors combined lead to some unique 

features in IPDFG including optical synchronisation, a compact experimental setup, 

intrinsically locked CEP, and broadband idler generation.  

MIR generation via IPDFG was realized for both NIR sources frontend presented 

in Section 3.1.2 and 3.1.3. The MIR generation from NIR driving beam based on fiber-based 

compression is described briefly here, while a detailed description is presented for the bulk-

based compression setup. As the later source was used in the final configuration of the field-

resolved spectrometer (Chapter 5). 

 

Figure 3.22 | Measured MIR power for 30 minutes. The slow fluctuations are due to 

temperature fluctuations of cooling water. Inset shows the beam profile of the NIR focus at the 

LGS crystal.  

The NIR frontend (see Figure 3.5) provides 20-fs pulses with an average power of 

28 W, and an uncoated fused-silica (FS) wedge reflects a small portion of this beam for the 
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electro-optic detection setup, presented in Section 4.4. The transmitted NIR pulses were 

focused onto the LGS crystal for Type-I phasematching with a 250-mm focal-length lens for 

IPDFG. The focusing was chosen such that the peak intensity at the 75-µm focus (l/e2-

intensity-radius) was 1.38x1011 W/cm2, which is an almost an order of magnitude below the 

intensity damage threshold26. This circumvents thermal effects in the LGS crystal and 

provides long term stability of the MIR power. Figure 3.22 shows the measured MIR power 

normalized to the mean, inset shows the NIR focus at the DFG crystal. The generated MIR 

beam was separated from the driving NIR beam, and detected via electro-optic sampling 

presented in Section 4.4. 

The broadband pulses presented in Section 3.1.3, based on bulk-based compression 

were utilized for the MIR generation. Since metallic mirrors are prone to damage at such 

high levels of power and pulse energy, in order to steer the beam for IPDFG without adding 

any dispersion, custom designed 45o high reflective mirrors (HR502) were used. The 

reflectivity and group delay dispersion of these mirrors for s-polarization are shown in Figure 

3.23. The design simulations suggest a slightly different GDD behaviour for an odd and even 

number of layers. 

 

Figure 3.23 | Design curves for reflectivity and group delay dispersion of customized HR 

mirrors for 45 and 46 layers. (Courtesy: Michael Trubetskov). 

The oscillator and the first two MPC were in closed chambers, while the third MPC 

and the IPDFG were operated at a few millibar vacuum level. The setup is sketched in Figure 

3.24. For an input power of 100 W from the oscillator, the third MPC provides 16 fs pulses 

with an average power of 60W, corresponding to a pulse energy of 2.1µJ. Each MPC has an 

additional set of dispersive mirrors for optimized compression. These NIR pulses were 

focused down to 330-µm (1/e2-intensity diameter) using a 700-mm focusing lens, 

corresponding to a peak intensity of 180 GW/cm2, onto a 1-mm thick LGS crystal. The 

crystal was anti-reflection coated on the front surface for the NIR. A half-wave plate before 

the focusing lens was used to rotate the polarization of the NIR beam such that the beam 
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on the LGS was distributed evenly between the ordinary and extraordinary axis, for achieving 

type I phase matching.  

 

Figure 3.24 | Sketch of the setup used to generate MIR using IPDFG*. The shaded region 

indicates vacuum environment. The beam profile for the NIR focus at the crystal and collimated 

MIR beam after the parabolic mirror are shown. DM, dichroic mirror.  
 

    

 

Figure 3.25 | Design and FTIR measurements of the NIR/MIR dichroic filter. The NIR 

beam is reflected while MIR beam is transmitted through the filter. a) Measured transmission for 

the full spectral range, b) magnified view of transmission for the NIR region. (Courtesy: Florian 

Habel).  

 

                                                 
 

* A detailed sketch of the setup is presented in Section 5.1 

 (a) 

 (b) 
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The NIR and MIR beams were separated after the crystal with a custom-designed 

dichroic filter on a 1 mm thick zinc selenide (ZnSe) substrate. The transmission performance 

of this filter (S161108) is shown in Figure 3.25. The NIR beam was reflected back from the 

front surface with total reflection > 99 %, and the MIR beam was transmitted with average 

transmission > 80 %. The MIR beam was collimated with an off-axis gold parabolic mirror. 

The collimated MIR beam was guided outside of the vacuum chamber for further 

diagnostics. 

Fluctuations in the laser front end translate directly into the MIR power. For an input 

power of 100W from the oscillator, the residual power at the oscillator, power in the red 

wing of the NIR spectrum, and the power of the generated MIR were measured 

simultaneously. Figure 3.26 shows that the noise in the oscillator power directly translates 

into the MIR intensity noise (similar measurement to already shown in Figure 3.8). This 

reveals the need for intensity noise suppression, represented in Section 3.1.3, for sensitive 

measurements.  

 

Figure 3.26 | Correlation in power fluctuations. Measured for the residual power at the 

oscillator (black curve), spectral wing of NIR (red curve) and generated MIR (purple curve). The 

power of the oscillator was measured with a water cooled thermal power meter, the broadened 

NIR and MIR power were measured with air cooled power meters. 

Broadband NIR pulses allow for a wide phase-matching bandwidth to be exploited 

in the type I configuration of the biaxial LGS crystal. In addition to the phase-matching angle 

of the crystal, the dispersion of the NIR beam and the polarization of the NIR were also 

utilized for the MIR spectrum shown in Figure 3.27. The MIR spectrum was measured with 

an FTIR spectrometer (Lasnix L-FTS). The MIR has a beam path of less than 500 cm in air. 

The dispersion of the NIR beam was tuned by adding an additional bounce on the set of 

dispersive mirrors and then by adding bulk fused silica in the beam path. The polarization 

of the NIR was manipulated with a combination of a QWP and a HWP.  In Figure 3.27, for 

all configurations except 5, the measured MIR power was around 80 mW. The blue tuned 

spectra (curve 5) has a factor of four less power. The NIR beam had an additional bounce 

on the set of dispersive mirrors, and bulk fused silica was added in combination of crystal 
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phase matching angle tuning for the generation of the spectra shown in curve 2, 3, and 5 in 

Figure 3.27. The spectra in curves 1 and 4 were generated with the optimization of the crystal 

phase-matching angle. The polarization of the input NIR beam was optimized for all 

configurations. All of the four broadband MIR spectra (curve 1-4) shown have bandwidths 

which are clearly broader than the MIR spectra generated in the OPA schemes described 

earlier. 

 

Figure 3.27 | Spectral tuning of the generated MIR spectrum in IPDFG, measured with 

FTIR. These measurements were done by changing the dispersion of the driving NIR beam as 

well as the phase matching of the LGS crystal. See text for description  

3.3 Comparison of OPA with IPDFG 

The OPA scheme offers a high conversion efficiency, enabling the generation of 

MIR pulses with higher pulse energies and peak power. As the pump and seed beam come 

from different pulses, with a typically narrowband pump it is only the seed beam that needs 

to be broadened. Moreover, the high pump intensities can be utilized without crystal damage. 

The control over the full pump and seed spectra give more flexibility for the required 

application. A large nonlinear crystal can be used for a typically narrowband pump. The 

IPDFG scheme driven by a single beam is insensitive to slight beam misalignments, ensures 

temporal and spatial overlap. The timing jitter of the pump and seed beam is eliminated, due 

to synchronization. IPDFG requires broadband driving pulses, so that the driving short 

pulses are prone to pulse stretching due to group velocity dispersion (GVD), causing a 

decrease in peak irradiance of the three-wave mixing process, resulting in a lower efficiency. 

In addition, the interaction length is limited due to temporal walk-off, so that thin nonlinear 

crystals are a preferred choice for IPDFG. This results in a trade-off between the bandwidth 

and conversion efficiency. In an OPA setup, on the other hand, the slight misalignment in 

the pump and seed beam could lead to lower efficiency as well cause angular dispersion of 

the idler beam. Any instability in the experimental setup would cause timing jitter and 

therefore cause CEP fluctuations in the idler. 
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Both schemes have their advantages and disadvantages, depending on the 

application of interest. Here, the MIR pulses were meant to be utilized in a field resolved 

measurement, where the issue of timing jitter is of central importance. To explore this, the 

MIR pulses generated in the broadband pump OPA setup were analysed by EOS detection 

(EOS detection is described in detail in chapter 4). The measured EOS field and spectra for 

ten measurements are shown in Figure 3.28. The inset shows the fluctuations at the centre 

of the EOS field. The RMS fluctuation of the zero-crossing is 1.73 fs, which is a factor of 

12 higher than that for a similar IPDFG setup.  

     

Figure 3.28 | EOS measurements of the MIR beam generated in broadband pump OPA. 

a) EOS field for ten measurements, and b) corresponding power spectral density of MIR spectrum. 

The bold lines shows the averaged data. The noise floor was measured with MIR blocked to the 

EOS setup. 

Since the driving pulse in IPDFG has a single-polarization, and the driving electric 

field is projected onto the slow and fast axes of the nonlinear crystal, only half of the photons 

contribute to the three-wave mixing process. This issue can be tackled with the help of 

custom-designed optics that rotate the polarization of only half of the spectral components 

of the beam, resulting in an increase in power by a factor of two for the generated MIR 

beam. Figure 3.29 shows the calculate data for the design for such a wave-plate for the 

IPDFG driving pulse presented in Section 0. The polarization of blue side of the NIR 

spectrum is not effected by the wave plate, while for red side of the spectrum (1150-1250 

nm) it acts like a conventional achromatic half wave plate. Figure 3.29c shows the 

transmission through the wave plate when placed between parallel (0 degree) and crossed 

polarizer (90 degree). The magnified plots (dotted line) shows polarization loss is less than 

one percent in the centre of either wing of the spectrum. 

 

 

 (a)  (b) 
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Figure 3.29 | Design of the custom wave-plate for partial polarization rotation. a) phase 

shift b) axis orientation c) transmission through a set of polarizers. (Courtesy : B.Halle Nachfl. 

GmbH) 

 

a) 

b) 

c) 



 

Chapter 4 

4 Electro-optic sampling 

Electro-optic sampling (EOS) is a powerful scheme to obtain complete temporal 

information of the laser electric field, providing access to the amplitude of the pulses with a 

high temporal resolution and the phase with high accuracy. Since its first demonstration, a 

few decades ago, the scheme has seen several improvements, thanks to developments in 

laser sources and nonlinear crystals. While initial experiments were limited to the 

measurement of localized field68, the technique has been extended to coherent detection of 

freely propagating THz radiation69,70, and subsequently to the mid-infrared71–74 and near-

infrared regions75.  

In EOS, an external field (to be examined) interacts with a short probe pulse in an 

electro-optic crystal. The field information is obtained by detecting the delay-dependent 

polarization rotation of the probe pulse. The working principle of EOS is explained in 

Section 4.1, and the design characteristics are discussed in Section 4.2. The effect of various 

parameters associated with the process were studied with the help of numerical models and 

are presented in Section 4.3. Two experimental configurations were explored to study the 

broadband spectrum generated via IPDFG and detected with EOS, and are discussed in 

Sections 4.4 and 4.5. A more detailed description of the characterization of broadband MIR 

waveform stability with EOS is presented in Chapter 5.2.  

4.1 Working concept  

The working principle of EOS is the second-order nonlinear interaction between an 

external low-frequency field and a higher-frequency probing field in a nonlinear crystal. In 

the THz community, this is widely interpreted in terms of the Pockels effect. The linearly 

polarized probe pulse co-propagates with the external field inside the nonlinear crystal, 

preferably satisfying phase matching conditions. If the probe pulse duration is much shorter 

than a half-cycle of oscillation of the external field, the latter appears as a quasi-static field 

during the interaction in the crystal. The external field induces a change in birefringence of 

the EO crystal, i.e. different axes of the crystal exhibit different refractive indices for the 

polarized light. This induced birefringence causes a change in the polarization of the probe 

beam, causing the initially linearly polarized beam to become elliptically polarized. This 

change in polarization depends on the delay between external field and the probe beam, and 

also on the strength of the external field. The two orthogonal polarization components are 

separated in an ellipsometer and sent to a pair of balanced photodetectors, as sketched in 

Figure 4.1. Balanced detection suppresses the common laser noise and enhances the signal-
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to-noise ratio of the measurement. The temporal waveform of the external field is measured 

by varying the relative time delay between the external field and the probe beam. 

 

Figure 4.1 | Schematic diagram of EOS process as optical-field-induced polarization 

rotation. 

The above description of EOS is valid when the frequency of the external field is 

much smaller than the bandwidth of the probe spectrum76,77. For a high frequency, 

broadband external field (referred to as MIR field in the following section), the detection 

process is better described in the frequency domain78,79. The interaction of the MIR field 

with the probe beam in the EO crystal causes the generation of phase-coherent sidebands 

through DFG and sum-frequency generation (SFG). Here, we describe only the SFG case, 

in accordance with the experimental conditions presented later in this chapter.  

The incident MIR field and probe beam are linearly polarized, with the axes of 

polarization being perpendicular to each other. Their interaction for the given phase 

matching conditions results in an orthogonally polarized newly generated field, spectrally 

overlapping with the probe pulse. For the case of SFG signal, the newly generated spectrum 

overlaps with the probe spectrum on the high frequency side (short wavelengths) of the 

spectrum. The interference of the original probe photons with SFG photons results in the 

EOS signal.  

The signal is detected in an ellipsometer consisting of a phase retarder (typically a 

quarter-wave plate) and a Wollaston prism. The EOS signal is measured using a pair of 

balanced photodetectors. The orientation of the phase retarder is chosen such that the 

balanced photodetector signal vanishes in the absence of MIR field. In principle, a single 

half-wave plate, or a single quarter-wave plate or a combination of both could be used, such 

that a better suppression of laser intensity noise at the output of the balanced photodetector 

in the absence of MIR field is achieved. This description of EOS process brings about some 

interesting implications on the detection process, such as enhancing the signal-to-ratio of 

the detection79, and extension of the detection bandwidth75. 
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4.2 Design considerations 

In this section, various aspects related to the design of a state-of-the-art EOS setup 

are discussed, while a more rigorous simulation of the EOS process is presented in Section 

4.3, followed by the experimental results in Sections 4.4 and 4.5. 

• Spectral Filtering 

Shot-noise-limited detection can, in principle, be achieved by the suppression of 

technical noise in balanced detection. The shot-noise limitation arises from the non-

deterministic quantum distribution of the number of photons incident on each of the two 

detectors. The EOS signal scales linearly with the average power of the sampling pulse 𝑃𝑠, 

while shot noise scales with the square root of this power. Thus, the signal-to-noise ratio 

(SNR) for shot-noise-limited balancing scales with the square root of the sampling pulse 

power as: 

 𝑆𝑁𝑅 ~
𝑃𝑠

√𝑃𝑠

= √𝑃𝑠 (4.1) 

An upper limit to this scaling is set by the available power of the sampling pulse or undesired 

nonlinear process in the EOS crystal, which could eventually lead to crystal damage.  

EOS signal is generated by interference in the overlapping spectral region of the 

sampling pulse and the up-converted phase-coherent signal. This spectral overlap region 

depends on the central frequency of the MIR spectrum 𝜐𝑀𝐼𝑅 and the bandwidth of the probe 

spectrum 𝛿𝑠. If 𝜐𝑀𝐼𝑅 is comparable to 𝛿𝑠, the overlap occurs only on the outer wings of the 

sampling pulse spectrum. The spectral components beyond this region contribute to the shot 

noise, and not to the signal in the detection. A spectral filter can be inserted to the beam 

path that allows the photons in the overlap region to pass through it, while blocking the 

spectral regions not contributing to signal.  

Assuming perfect phase matching for the SFG, bandwidth-limited pulse duration, 

and a frequency-independent susceptibility χ(2), the spectral density of the electro-optic 

signal79 for a given MIR frequency 𝜈𝑀𝐼𝑅 is proportional to 𝜈𝐴(𝜈)𝐴(𝜈 − 𝜈𝑀𝐼𝑅), where 𝐴(𝜈) 

denotes the sampling pulse spectrum, and 𝐴(𝜈 − 𝜈𝑀𝐼𝑅) denotes the SFG spectrum resulting 

from the given MIR frequency. Figure 4.2 shows a schematic description of the three spectra. 

Integration over frequency 𝜈 yields the electro-optic response as a function of the MIR 

frequency 𝜈𝑀𝐼𝑅. For the spectrally filtered sampling pulse with a high-pass optical filter, cut-

on frequency 𝜈𝐻𝑃 defines the lower boundary for integration. The spectral signal amplitude 

is given by the relation: 



4 . 2  Design  cons idera t ions| 39 

 

 𝑆(𝜈𝑀𝐼𝑅) ∝ 𝐴𝑀𝐼𝑅(𝜈𝑀𝐼𝑅) ∫ 𝜈𝐴(𝜈)𝐴(𝜈 − 𝜈𝑀𝐼𝑅)𝑑𝜈

∞

𝜈𝐻𝑃

 (4.2) 

The shot noise recorded with the spectral filter amounts to  

 ∆𝑆 ∝ √ ∫((1 − 𝜂)|𝐴(𝜈)|2 + 𝜂|𝐴(𝜈 − 𝜈𝑀𝐼𝑅)|2)𝑑𝜈

∞

𝜈𝐻𝑃

 (4.3) 

Figure 4.2 compares the signal 𝑆 and shot noise ∆𝑆 as a function of filter cut-on 

frequency 𝜈𝐻𝑃 for 𝜈𝑀𝐼𝑅 = 33 THz, 𝜈𝑠 = 291 THz, and assuming quantum efficiency 𝜂 = 

0.0001 (processing in close analogy to Ref. 79). The electro-optic signal S has a fixed value 

for cut-on frequencies smaller than the central frequency of sampling pulse, and it starts to 

decrease through the overlap region between the sampling pulse spectrum and SFG 

spectrum. The noise, on the other hand, drops faster with increasing cut-on frequency. The 

SNR, defined by the ratio of the two, exhibits a maximum before it drops to zero. The peak 

at 317 THz defines the cut-on frequency of the high pass filter for maximum SNR, if no 

other noise sources are present. 

• Power scaling 

For a given time delay 𝜏, the EOS signal emerging from the interference of the 

sampling pulse and the SFG pulse can be written as: 

 𝑆(𝜏) ∝ 𝐸𝑠(𝑡 − 𝜏) × 𝐸𝑆𝐹𝐺(𝑡 − 𝜏) (4.4) 

The SFG amplitude depends on the amplitude of the sampling pulse and the MIR 

pulse. So,  

 𝐸𝑆𝐹𝐺(𝑡 − 𝜏) ∝ 𝐸𝑠(𝑡 − 𝜏) × 𝐸𝑀𝐼𝑅(𝑡) (4.5) 

Thus,  

 𝑆(𝜏) ∝ 𝐸𝑠
2(𝑡 − 𝜏) × 𝐸𝑀𝐼𝑅(𝑡) (4.6) 

This implies that the EOS signal is proportional to the intensity of the sampling field 

and the amplitude of the incident MIR field. The EOS signal scales accordingly, depending 

upon the available power in the sampling and MIR fields. A hard upper limit for increasing 
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the sampling field* is set by undesired nonlinear processes in the EOS crystal, eventually 

culminating in damage of the crystal. 

 

Figure 4.2 | Analytical EOS calculations. For the case when central frequency of the MIR is 

comparable to the spectral width of the sampling spectrum. a) Scheme of EOS according to sum-

frequency generation description, b) Spectrally integrated signal S, and shot-noise level ∆𝑆 as a 

function of cut-on frequency of the spectral filter. Light blue line: normalized ratio of S and ∆𝑆. 

• Focus size 

The geometric overlap between the sampling and MIR beams is crucial for efficient 

EOS signal generation†. The focus waist of the incident sampling and MIR beams should be 

chosen for an efficient generation of the SFG signal. The MIR frequency whose spot size 

spatially overlaps with the sampling beam will be detected with higher efficiency. The overlap 

integral for the concentric Gaussian beams80 is  

                                                 
 

* The undesired nonlinear processes in the EOS crystal a result of high sampling power degrades the balancing 
in the detection process. 
† The efficient heterodyne detection at the photodiode requires a constant modulation depth across the focus, 
so the mode size of the sampling and the SFG beams would be same. Too small waists size leads to short 
Rayleigh length and interaction length, thus lowering the conversion efficiency. Too larger waist size, on the 
other hand, also lowers the efficiency due to less peak intensity. 

 (a) 

 (b) 
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 𝑇𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝜈) ~ √
𝜔𝑠

2𝜔𝑀𝐼𝑅
2 (𝜈)

𝜔𝑠
2 + 2𝜔𝑀𝐼𝑅

2 (𝜈)
 (4.7) 

where, 𝜔𝑠 and 𝜔𝑀𝐼𝑅 denote the beam waists of the sampling beam and the MIR beam 

respectively. Figure 4.3 shows this relationship for various beam waists.  

• Lock-in detection 

The output of the balanced detector is typically fed to a lock-in amplifier for the 

detection of the modulated signal. A mechanical chopper is used to modulate the MIR beam, 

typically at a frequency of a few kHz. For detection in high frequency range, various other 

methods, such as photoelastic modulator81,82, acousto optic modulator83,84 and other fast-

scan methods85 can be used. A lock-in detection based on the piezoelectric modulation at 

104 kHz was realized, and is presented in Section 4.4. 

 

Figure 4.3 | Calculated overlap integral for different sampling beam and MIR waist. 

• Sampling pulse duration 

The frequency domain description of EOS, presented earlier in this chapter requires 

the sampling pulse duration to be shorter than a half-cycle of the MIR pulse. The EOS signal 

tends to become distorted (as it deviates substantially from the actual electric field) if this 

condition is not fulfilled. Also, the use of a spectral filter in the EOS detection79 not only 

selects the photons that contribute to the EOS signal and suppresses the noise contribution, 

but also reshapes the response function of the EOS detection75. Thus, signal detection can 

be pushed towards higher frequencies for the given pulse duration of the sampling beam.  
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4.3 Simulations 

Simulations of the EOS process were performed, based on a first-order propagation 

equation in the slowly-evolving wave approximation75,86, expressed in the frequency domain 

as 

 
𝜕𝐸𝜔(𝑧)

𝜕𝑧
= −𝑖𝑘𝜔𝐸𝜔(𝑧) −

𝑖𝜔

2𝑛(𝜔)𝜀𝑜𝑐
𝑃𝜔

𝑁𝐿(𝑧) (4.8) 

where 𝐸𝜔is the complex amplitude of a spectral component of frequency 𝜔, propagating in 

the 𝑧 direction with wave-vector 𝑘𝜔, 𝑛(𝜔) is the frequency dependent refractive index, and 

𝑃𝜔
𝑁𝐿 is the nonlinear polarization of the EOS crystal. The simulations were performed in 

MATLAB, using modified Euler algorithm. The nonlinear polarization was calculated in the 

time domain, and transformed back to the frequency domain via Fourier transformation. 

The frequency dependent refractive index was calculated by using the Sellmeier equation for 

the EOS crystal.  

Simulations were performed as a qualitative analysis of EOS detection for the MIR 

source from the fiber-based setup, presented in Section 0.  Transform-limited Gaussian 

spectra (analogous to the experimental conditions) for NIR and MIR were employed as the 

input to the simulations, to calculate the SFG signal for 1D propagation in gallium selenide 

(GaSe) for type-II phase matching. The EOS signal was simulated for various values 

corresponding to the crystal thickness, sampling pulse duration, and spectral filtering.  

    

Figure 4.4 | EOS simulations for different crystal thickness.  a) EOS signal and b) EOS 

spectrum.  

Figure 4.4 shows the EOS signal for a crystal thickness of 30 µm and 100 µm. Thin 

crystals support relatively broader detection bandwidth especially on the blue side of the 

spectrum. An increase in crystal thickness leads to the increase of the SFG signal due to a 

 (a)  (b) 



4 . 3  S imula t ions| 43 

 

longer interaction length between the sampling and MIR beams. The EOS signal is almost a 

factor of 2.5 higher for the 100-µm crystal. 

      

Figure 4.5 | EOS simulations for unfiltered and filtered case. a) EOS signal and b) EOS 

spectrum for a 100-µm thick GaSe crystal. The results for 30-µm GaSe thick crystal are also shown 

for comparison. The dotted lines show the respective noise floor, calculated as a mean value in 

the wavelength range from 3 to 5.5 µm. 

 Figure 4.5 shows the effect of spectral filter on the simulated EOS signal. A short 

pass spectral filter with cut-off wavelength of 950-nm (Thorlabs, FES0950) was used to filter 

the sampling pulse spectrum before detection. For a crystal thickness of 100-µm, the filtered 

signal is almost a factor of 5 higher than the un-filtered case. The spectrum for the filtered 

case is reduced on the longer wavelength side, but slightly enhanced on the short wavelength 

side. For comparison, the filtered case for 30-µm thick EOS crystal is also shown. The EOS 

signal is a factor of 2.3 higher than the unfiltered signal, and it supports more blue 

components in detection. The noise floor (dashed line in Figure 4.5 b) is calculated as a mean 

value for the wavelength range from 3 to 5.5 µm for the spectrum shown. This implies that 

the intensity dynamic range is higher by a factor of 28 for the filtered case. 

The simulations were performed for different spectral filters to identify the optimum 

spectral filter, considering the options available from different industrial suppliers. We 

considered three different short pass filters with cut-off wavelengths of 912 nm (Semrock, 

FF01-950/SP-25), 930 nm (Asahi-spectra, XIS0930), and 950 nm (Thorlabs, FES0950). The 

EOS simulation results and the transmission curves for these filters are shown in Figure 4.6. 

These results indicate an increase in the dynamic range as well as the enhanced detection of 

the shorter MIR wavelengths with strong spectral filtering. Further, in order to study the 

effect of the duration of the sampling pulse, the EOS signal was simulated for 20-fs and 12-

fs sampling pulses in a 30-µm thick EOS crystal, while keeping the peak intensity constant 

for both cases. Using a spectral filter with a cut-off wavelength of 950-nm, sampling with 

12-fs pulses results in a  slightly higher dynamic range compared to using 20-fs pulses, as 

shown in Figure 4.7.  For the un-filtered case, the EOS signal for 12-fs gating pulses is only 

marginally better than for 20-fs pulses, implying that the increase in dynamic range is mainly 

 (a)  (b) 
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due to spectral filtering for the earlier. The spectrum for unfiltered EOS is similar in both 

the cases. Besides the EOS signal strength, a shorter sampling pulse also helps reduce noise 

on the balanced detector in a shot-noise limited detection setup87. 

     

Figure 4.6 | EOS simulations for different spectral filter. a) EOS signal, b) EOS spectrum, 

and c) transmission curve of the spectral filters. The data for the spectral filter 912 nm, 930 nm, 

and 950 nm is taken from Ref.88, Ref. 89, and Ref. 90 respectively. 

 

    

Figure 4.7 | EOS simulations for different sampling pulse durations. a) EOS signal, and b) 

EOS spectrum for different sampling pulse durations with and without spectral filtering in a 30-

µm thick GaSe crystal.  

The simulations presented in this section give a good qualitative estimate for various 

parameters in the EOS process for enhancing the detection efficiency*. These insights play 

an important role in improving the EOS detection, as presented in the next section. Also, 

these simulations show an overestimate of the long wavelength spectrum. This would have 

to be taken into consideration for quantitative analysis. 

                                                 
 

* A careful simulation study would be needed while designing EOS setup with a short sampling pulse (~15-fs 
or less) and a thicker EOS crystal. Since dispersion will play a critical role in determining the EOS signal 
strength and detection bandwidth. 

 (a)  (b)  (c) 

 (a)  (b) 
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4.4 Infrasampler 1.1 

The field-resolved detection in the setup based on fiber compression (Section 3.1.2) 

is referred to as Infrasampler 1.1 (IS 1.1). The schematic diagram of the setup is shown in 

Figure 4.8.   

 

Figure 4.8 | Schematic setup of the Infrasampler 1.1. A beam profile of MIR beam before 

EOS is shown. The dotted box in the middle shows a sketch of the PZT mount assembly, small 

silver mirror and a piezo actuator are glued on a big copper block of cylindrical-cone shape. 

A fraction of the beam after the NIR compressor, separated by means of an uncoated 

fused-silica wedge, serves as a sampling beam in the EOS detection. The NIR beam is 

focused onto an LGS crystal for MIR generation. A mechanical chopper at 4.2 kHz is used 

in front of the LGS crystal for lock-in detection. This frequency was chosen to avoid any 

access mechanical vibration noise of the chopper wheel. The generated MIR beam 

propagates collinearly with driving NIR beam transmitted through LGS crystal. A perforated 

parabolic mirror was used, such that the NIR beam passes through the hole of the mirror to 

the beam dump, and the collimated MIR beam is reflected. Any remaining NIR beam was 

filtered by a germanium (Ge) window after the collimation parabola. A potassium bromide 

(KBr) window was used as a beam combiner. The sampling NIR beam and MIR beam 

propagate collinearly and were focused to a 100-µm thick GaSe crystal for EOS detection. 

A short-pass spectral filter with a cut-off wavelength of 950 nm was used before the quarter-

wave plate and the Wollaston prism. The experimentally measured EOS amplitude and 

spectrum with and without spectral filter are shown in Figure 4.9. For the unfiltered case, a 

neutral density filter was used such that the NIR power incident on the photodiode is similar 

to that of the filtered case. As predicted in the simulations, the filtered measurements show 

enhanced short-wavelength components in the MIR spectrum and a higher dynamic range. 

On the long-wavelength side, a CO2 absorption dip around 15 µm is clearly visible in both 

cases. On the short-wavelength side, the filtered spectrum shows many ripples due to water 

vapor absorption between 6 µm and 7 µm.  
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Figure 4.9 | EOS measurement with and without spectral filtering. a) EOS amplitude 

(normalized), and b) EOS spectrum. The dotted lines represent the noise floor as an average of 

five measurements with the MIR beam blocked to the EOS setup. 

Typically, the MIR spectrum is tuned by choosing a different phase-matching angle 

at the MIR generation crystal. In principle, such spectral tuning can also be achieved in the 

detection crystal. The interaction geometry of the NIR and MIR beams, and the orientation 

of the EOS crystal affect the polarization state of the sampling beam. This leads to a change 

in balancing at the photo-diode, and thus, a relatively higher noise in certain cases. EOS 

measurements were performed for three different phase-matching angles The orientation of 

20o resulted in the highest dynamic range with broadband detection, as shown in Figure 4.10. 

The noise floor is calculated by taking the average of spectra in the range from 3 to 4 µm of 

the respective measurements.  

         

Figure 4.10 | EOS measurement for different phase-matching angles of EOS crystal. a) 

EOS amplitude and b) EOS spectrum. The dashed lines indicate the respective noise floor levels 

calculated from the spectra in the range from 3 to 4 µm. 

The EOS measurements reported above were performed with lock-in detection 

using a mechanical chopper, which is typically limited to the range of few kHz. A proof-of-

concept experiment was performed for detection at higher frequencies, by modulating the 

length of the sampling beam path by means by a piezo actuator at its resonance frequency.  

 (a)  (b) 

 (a)  (b) 
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Figure 4.11 | Characterization of the PZT assembly. The side-bands shows resonance 

frequency of the PZT assembly. 

The piezo actuator (PI, PL033.3x) was attached to a big cylindrical cone shaped 

copper block*, and a small silver mirror (thickness = 1 mm, diameter = 3mm) was attached 

on the other side with Torseal. The sketch of the assembly is shown Figure 4.8. A sinusoidal 

signal of 10 Vpp from a signal generator was applied to the actuator. This assembly gives a 

resonance frequency of 105 kHz, characterized with a spectrum analyzer, as shown in Figure 

4.11. The central peak shows the repetition rate of the laser used for the characterization, 

while the side-bands across the central peak show the resonance frequency of the PZT 

assembly. 

The EOS measurement with a mechanical chopper at 4.2 kHz were compared with 

the PZT-based modulation at 105-kHz, and the results are shown in Figure 4.12.  The time-

axis of the chopper-based amplitude is shifted such that central part of the EOS amplitude 

overlaps for the two cases. The EOS amplitudes and the corresponding spectra for both 

cases are quite similar. For fifty consecutive EOS scans, the PZT-based measurement shows 

an increase by a factor of 3 in SNR compared to that with the chopper. This increase is 

possibly due to the fact that the typical noise sources lies in the range of few kHz, and the 

effect is largely reduced at higher frequencies. 

The PZT-based setup faced two problems, but further characterization was not 

performed due to the course of the planned experiments on the setup. The first issue was 

that the NIR beam profile at EOS balanced photo-diode get distorted. This could be due to 

the beam movement in the large angle of incidence geometry of the PZT mount. Possibly, 

a decreased angle of incidence and a careful alignment would help to overcome this problem. 

Secondly, the PZT amplitude showed a phase slightly different from the chopper phase, so 

a careful analysis of the effect of PZT phase modulation in an EOS measurement would be 

                                                 
 

* The weight and size of the mirror are crucial to get a uniform modulation for a given piezo actuator. Moreover, 
the shape and material of the holding adapter also plays an important role regarding noise attributes.   
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need to use this scheme in a field-resolved measurement. In principle, such a modulation 

scheme offers an attractive route to fast-scan applications, and high SNR measurements by 

avoiding noise/drifts on slow time scales. 

    

Figure 4.12 | EOS measurement for different chopping techniques. a) EOS amplitude 

(normalized), and b) EOS spectrum measured by using mechanical chopper and PZT-based 

modulation.   

Another proof-of-principle experiment was performed to test if a short pulse 

duration could improve the EOS detection. A scheme based on cross-polarized wave 

generation91,92 (XPW) was implemented, as it can lead to compression by a factor of √3. 

For an efficient conversion considering negligible dispersion and nicely compressed input 

pulses, this would lead to ~12-fs sampling pulse instead of the 20-fs pulse. 

  

Figure 4.13 | OSA measurement of the XPW output. The input spectrum is shown for 

reference. 

A sapphire wedge was used instead of the fused-silica wedge that reflects ~ 7% of the 

incident power, after the fiber compressor. An additional set of chirped mirrors with a 

wedge-pair was used to optimize the pulse compression. An off-axis parabolic mirror was 

used to focus the NIR beam to a 1-mm thick BaF2 crystal (z-cut) for XPW broadening, and 

a second parabolic mirror was used to collimate the beam. As an XPW generated beam is 

 (a)  (b) 



4 . 5  Infra sampler  1 .2| 49 

 

orthogonal to the original linear polarization, a Glan-Taylor polarizer was used to separate 

the input and XPW beams. Figure 4.13 shows the spectra of the input and XPW output, 

measured with OSA. The XPW process acts as a spatial and temporal filter to the input 

beam, so the XPW spectrum shows relatively less modulations as compared to the input 

spectrum. The output power of the XPW beam was limited to a few hundred micro-watt 

only. This scheme was not used in the EOS experiments as there was not sufficient power 

available to drive the third-order XPW process, and to use its output as a sampling beam in 

the EOS setup. 

4.5 Infrasampler 1.2 

The setup referred to as Infrasampler 1.2, utilizes the MIR beam generated by 

IPDFG based on bulk-compression presented in Section 0. A schematic diagram of the 

setup is shown in Figure 4.14. The NIR pulses were recycled and used to sample the MIR 

waveforms. The polarization of the NIR beam after the dichroic mirror was cleaned by 

reflecting it off a fused-silica wedge at Brewster’s angle. The pulses were recompressed with 

chirped mirrors and a custom designed beam splitter was used to further attenuate the power 

for optimum gating conditions in the EOS detection. The sampling pulse power was 

adjusted just below the damage threshold of GaSe. This corresponds to an average power 

of 420 mW at the crystal.  

The delay between the NIR beam and MIR waveform was achieved with a 

mechanical stage (PI-Micos, L-511). The NIR beam size was adjusted with a two-lens 

telescope before the beam combiner. A germanium window was used as a beam combiner, 

to spatially recombine the NIR and MIR beams. The MIR beam was chopped before the 

beam combiner, at a frequency of 7.5 kHz. The NIR sampling beam was reflected off the 

Ge plate and the MIR beam was transmitted at Brewster’s angle. Both beams were focused 

to the EOS crystal using a 50-mm focal-length off-axis parabolic mirror. MIR beam profile 

along the beam path is also shown in Figure 4.14.  

• Delay Tracking:  

To reduce phase artefacts due to the variations in the mutual delay between MIR 

field and the NIR sampling pulse, we track this delay interferometrically, by using an auxiliary 

continuous-wave laser. A beam from a frequency-controlled distributed-feedback laser diode 

at 1550 nm was co-propagated along the MIR and NIR paths, after being split at the dichroic 

mirror (green line in Figure 4.14). Interferometric delay tracking93 was achieved by 

modulating the frequency of the laser and by demodulating the resulting interference signal 

at two different frequencies that can be phase shifted with respect to each other to construct 

a quadrature signal. In contrast to a simple interference signal, this allows for a constant 

position sensitivity and for a directionality of the measurement. The implemented system 
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was based on a commercial interferometer (Smaract PICOSCALE). All data was taken with 

a common clock. Synchronization of the EOS and delay information was realized by 

recording forward and backward scans, and then shifting the entire data sets by a constant 

time value such that the forward and backward traces become congruent.  

 

Figure 4.14 | Schematic setup of Infrasampler 1.2. NIR pulse drive IPDFG in LGS, and a 

dichroic mirror (DM) separates the two beams. NIR beam (blue) was recompressed with chirped 

mirror, and its power and size was optimized for EOS. MIR beam (red) was chopped recombined 

with germanium (Ge) window for EOS detection. An auxiliary continuous-wave laser beam 

(green) co-propagates to track the beam path. MIR beam profile at various positions is also shown. 

SF, spectral filter; λ/2, half-wave plate; λ/4, quarter-wave plate. 

• Spectral Filter and balanced detection:  

The combination of a spectral filter, a half-wave plate and a quarter-wave plate was 

used to balance the photodiodes after the Wollaston prism. A short-pass filter at 912 nm 

was used for enhancing the SNR79 of the EOS. The signal was detected with a self-built 

balanced detector, consisting of two photodiodes (first sensor, series 7, chip PC10-7), 

followed by a low-noise current amplifier (femto DLPCA-200). The diodes were reverse-

biased with 15 V and the amplification was set as high as possible without saturating the 

lock-in amplifier (integration time 186 µs with 6th-order filtering at a chopping frequency of 

7.5 kHz). The resulting noise floor was a factor of 1.6 above the shot noise level of the NIR 

beam, as shown in Figure 4.15. Assuming a DC signal due to averaging over several pulses, 

the theoretical value for the single-sided linear spectral density 𝑠q of the relative quantum 

power noise was calculated as 

 𝑠q = 1.9 × 10−8Hz−
1
2 × √

1mW

𝑃
× √

1064nm

λ
 (4.9) 
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where 𝑃 is the optical power incident on the detector, λ  is the wavelength of the radiation ( 

the detector quantum efficiency was assumed to be 1). 

 

Figure 4.15 | Frequency-resolved measurement of the noise in EOS setup. Noise at balance 

detector (black), and calculated shot noise (red). The lock-in frequency is indicated by dotted line. 

Figure is taken from Ref. 37. 

• Conversion efficiency optimization:  

The parameters of the NIR beam were optimized for efficient sum-frequency 

generation (SFG) and EOS detection.  The telescope in the NIR beam path was adjusted to 

achieve a similar focal spot size as that of MIR beam (~80-µm) at the EOS crystal. The 

upconvesion can be optimized by monitoring either the SFG signal or the dip in the MIR 

power after the EOS crystal94. The measured NIR spectra after the EOS crystal is shown in 

Figure 4.16. The spectrum of the NIR beam (gray) that drives the MIR generation is shown 

for reference. The sampling beam spectrum (red) shows a stronger modulation on red side 

of the spectrum in comparison to the driving spectrum. The sampling and SFG spectra were 

measured by placing a polarizer in the beam path with orthogonal orientations. The SFG 

spectrum was measured with (light blue) and without (violet) a spectral filter (912 nm) after 

the 500-µm thick GaSe crystal used for EOS. The position of the delay stage and phase 

matching were adjusted to obtain maximum power in the sum-frequency spectrum. A 

background measurement, performed by moving the GaSe crystal out of focus, shows that 

the central components of sampling beam are still present in the orthogonal polarization 

state. This could either be due to the limited extinction ratio of the polarizer or due to the 

birefringence in the GaSe crystal. A dip measurement of MIR depletion shows a frequency 

up-conversion efficiency of 2.2% for a 500 µm thick crystal, and 0.3% for an 85 µm thick 

crystal37,94. The dip measurement was performed by measuring the delay dependent MIR 

power after the EOS crystal.   
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Figure 4.16 | OSA measurement of NIR spectra after the EOS crystal. A typical spectrum 

of driving NIR beam (grey curve) is shown for reference. 

• Dynamic range and spectral tuning:  

The higher conversion efficiency for the thicker crystal translates into a higher 

dynamic range, and the relatively lower efficiency for thin crystal translates into broad 

detection bandwidth at the cost of a lower dynamic range. A comparison of three different 

configurations is shown in Figure 4.17.  

 

Figure 4.17 | Dynamic range for different crystal configurations. C1: using 1mm thick LGS 

crystal for DFG and 500-µm thick GaSe as EOS crystal, C2: using 0.7-mm thick LGS crystal for 

DFG and 30-µm thick GaSe as EOS crystal, C3: same as C2 but without liquid cuvette. 

EOS detection was optimized with a liquid cuvette in the MIR beam path, and it 

consists of two parallel 2-mm ZnSe windows, enclosing a 34-μm-long propagation path 

through the liquid sample. This cuvette was used for field-resolved measurements of the 

liquid samples. For the black curve, MIR was generated in a 1-mm thick LGS crystal and a 

500-µm thick GaSe was used for EOS. For the red curve, MIR was generated in a 0.7-mm 

thick LGS crystal and EOS detection was done using a 30-µm thick GaSe crystal. The blue 
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curve is the same as the red curve, except that the liquid cuvette was removed from the MIR 

beam path. The dashed lines show the corresponding noise floor levels. The broadband 

configuration represents almost an octave-spanning spectrum having a dynamic range of 12 

orders of magnitude, making the system a one-of-a-kind instrument for spectroscopic 

applications. 

 

Figure 4.18 | Spectral tuning for different crystal configurations. The thickness of the MIR 

generation crystal (LGS) defines the generated MIR power and bandwidth. And, thickness of the 

EOS crystal (GaSe) defines the detection bandwidth and EOS signal strength. 

The spectral tuning was further explored by using different combinations of the 

generation and detection crystals. A few different combinations are shown in Figure 4.18. 

Each of the spectra is normalized to its corresponding noise floor, such that curve shows its 

dynamic range. The thickness of each of the two (generation and detection) crystals exhibits 

a trade-off between the achievable spectral bandwidth and spectral power. All measurements 

were taken at a vacuum level of a few milli-bar, except the green curve which has almost one 

meter of its beam path in air and shows ripples in the spectrum due to absorption in water 

vapor around 6.5 µm. The green curve (0.5-mm thick LGS and 100-µm thick GaSe) is 

broader than the others, but with a lower dynamic range. The dynamic range and spectral 

bandwidth for the red (1-mm thick LGS and 100-µm thick GaSe), violet (0.7-mm thick LGS 

and 100-µm thick GaSe), and light blue (0.7-mm thick LGS and 60-µm thick GaSe) curves 

are similar. The latter (light blue curve) gives a good compromise between detection 

efficiency and bandwidth. 

• Source brilliance:  

Figure 4.19 shows the brilliance of the broadband configuration of IS 1.2 in 

comparison to conventional sources of radiation in the mid-IR. The table-top source 

presented here, across the available bandwidth, provides more than five orders of magnitude 

higher spectral brilliance compared to the conventional thermal sources (Globar), and more 

than two orders of magnitude higher spectral brilliance in comparison with 3rd-generation 
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synchrotron beamlines95. In this measurement configuration, the spectrum below 6-µm and 

above 12-µm are the artifacts more likely. Additionally, this MIR source maintains a high 

degree of spatial and temporal coherence and delivers pulses close to their temporal 

bandwidth limit. 

 

Figure 4.19 | Comparison of IS 1.2 source brilliance with conventional sources.  



 

Chapter 5 

5 Field-resolving spectrometer 

The majority of table top, broadband MIR absorption spectroscopy measurements 

are performed with FTIR spectrometers employing thermal radiation sources4,9,10. Having 

matured over more than half a century, FTIR based setups have reached a performance 

plateau regarding dynamic range and sensitivity. Limitations relating to the poor coherence 

properties of thermal sources and the modest efficiency of broadband MIR detectors, as well 

as thermal background96 render a significant further improvement of the performance of 

this technology rather unlikely. 

 Quantum cascade lasers (QCLs) and synchrotron sources, due to their high spectral 

brightness, have been shown to be advantageous over thermal radiation sources for use in 

vibrational spectroscopy of liquid samples3,97. However, QCL sources98–100 have a limited 

coverage over the MIR spectral bandwidth due to their narrowband emission, while 

synchrotron sources101,102, being extremely expensive to set up, are not readily accessible. In 

addition, the temporal coherence properties of both these sources are rather modest. 

Field-resolved spectroscopy introduces the possibility of performing highly 

coherent, background-free, broadband molecular vibrational spectroscopy in a compact way. 

This scheme combines the experimental findings presented in chapters 3 and 4. The 

spectrometer employs a waveform-stable broadband femtosecond MIR source for the 

resonant excitation of molecules in a sample, and efficiently optimized EOS for field-

resolved detection of the sample response. Section 5.1 describes the experimental 

implementation of the field-resolving spectrometer. The stability of the measured 

waveforms is characterized by EOS, and is presented in Section 5.2, and the utilization of 

the spectrometer for real-life applications is presented in Section 5.3. 

5.1 Experimental setup 

A detailed sketch of the experimental setup is shown in Figure 5.1. The NIR front-

end is based on bulk compression in three stages (Section 0), in general providing better 

stability when compared to fiber-based compression schemes. The generation of broadband 

MIR based on IPDFG (Section 4.5) ensures high waveform stability, compared to OPA-

based schemes employing separate pump and signal beams.  
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Figure 5.1 | Detailed sketch of experimental setup of the field-resolved spectrometer. 

AOM, acousto-optic modulator; PD, photodiode; SF, spectral filter; HWP, half-wave plate; 

IDT, interferometric delay tracking; SiN, Silicon Nitride; Ge, germanium beam combiner; GaSe, 

gallium selenide; QWP, quarter-wave plate. For high power NIR beam after stage 3 custom 

designed high-reflective mirrors were used, all mirrors in low power NIR beam after the dichroic 

mirror were silver coated and bare-gold coated mirrors were used in the MIR beam path.   

For the majority of the experiments presented in this chapter, 90 W of average power 

were sent to the nonlinear compression stages, resulting in 16-fs pulses with 60 W of average 

power available for MIR generation, at a repetition frequency of 28 MHz. The phase 

matching of the IPDFG process resulted in an almost octave-spanning MIR spectrum 

centred around 8.3 µm (1200 cm-1). The MIR beam was chopped mechanically for lock-in 

detection, and focused down for transmission through the liquid cuvette. The liquid cuvette 

encloses a 34-µm long transmission path length for the liquid sample. For the liquid sample 

subjected to the ultrashort MIR pulse, the impulsive excitation of the sample results in a 

free-induction decay signal trailing the excitation pulse for several picoseconds. 

5.1.1 Distinct features of FRS 

FRS exhibits three distinct features as compared conventional absorption 

spectroscopy techniques, namely a background-free advantage, detection in the NIR region, 

and field scaling of the measured signal. These three features are discussed in the following. 
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a. Background-free advantage  

The detection of molecular fingerprints in FRS is largely unaffected by MIR 

background, both from the radiation source and thermal background. The polarization 

response of molecules to an ultrashort, impulsive excitation can be described as the 

superposition of two contributions31,103: an instantaneous (non-resonant) part, characterized 

by a rapid amplitude decay owing to the impulsive excitation, and a resonant part induced 

by the dipoles oscillating coherently at the eigenfrequencies of the molecular sample, as a 

consequence of the impulsive excitation. The resonant part mainly contains sample-specific 

information and its decay time is given by the inverse linewidths of the excited molecular 

vibrations.  

For the experimental setup, shown in Figure 5.1, the MIR beam accumulates 

dispersion from the IPDFG crystal, sample cuvetteand the germanium beam combiner, 

before EOS detection. The group delay (GD), and group delay dispersion (GDD) of the 

EOS pulse was evaluated for five EOS measurements from different days (Figure 5.2).  

        

Figure 5.2 | MIR pulse dispersion. Group delay and group delay dispersion, evaluated from 

different EOS measurements. The grey curve shows the typical MIR spectrum for broadband 

detection.  

A set of custom dispersive mirrors (DMs) based on multi-layers of Ge and YbF3 

were designed in house104 to compensate the accumulated dispersion over the broadband 

MIR region. The choice of this combination of layer materials provides optimum 

performance in this spectral range. The commonly used combination of Ge/ZnS covers a 

rather narrow bandwidth105, while a recently reported combination of ZnS/YbF3 thin-film 

materials as a beam-splitter106 is understood to be unsuitable for DM development, due to 

the ratio of their refractive index.  

 (a)  (b) 
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Figure 5.3 | MIR pulse compression. EOS signal with and without the MIR dispersive mirrors 

(DM), measured with an 85 µm-thick EOS crystal on a) linear scale, and b) logarithmic scale. The 

pulse was compressed from 85fs to 59 fs. 

The thin-film combination employed here utilizes Ge as a high-refractive-index 

material and YbF3 as a low-refractive index material. Four bounces over DMs were added 

to the beam path*, for broadband EOS detection. The DMs enable the compensation of 

group delay variations of up to 400 fs over the spectral range from 6.5 to 11.5 µm. This 

resulted in a reduction in the full-width-at-half-maximum-intensity pulse duration from 85 

fs to 59 fs (Figure 5.3). This compression of the instantaneous response results in a more 

prominent temporal separation of the molecular fingerprint signal from the excitation pulse, 

thus enabling the detection of weak molecular signals to be largely unaffected by the intensity 

noise of the excitation pulse. 

b. Frequency up-conversion detection:  

In EOS detection, the sample response is frequency up-converted to the NIR 

spectral region, and heterodyne measurement enables (close-to) shot-noise-limited detection 

of the NIR photons (Figure 4.15). The scheme thus avoids the use of relatively noisy MIR 

                                                 
 

* The implementation of the MIR chirped mirrors in the experimental setup was done by Daniel Gerz. 

 (a) 

 (b) 
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detectors, and benefits from the high-power NIR local oscillator, high detectivity and low 

noise semiconductor photodetectors at room temperature107. Furthermore, the up-

conversion78,79 of the fingerprint signal to the spectral range of the sampling pulse is 

confined to the duration of the interaction of the sampling pulse with sampled waveform in 

the EOS crystal, providing efficient temporal filtering against MIR thermal background. 

c. Field scaling: 

Field-resolved detection in EOS gives access to the full temporal phase information 

of the MIR waveform. The signal strength scales linearly with the electric field of the 

measured MIR waveform instead of its intensity. For FTIR based spectroscopy, the 

transmitted path length is limited to <10 µm due to low source brightness and relatively 

noisy MIR detectors108. Relatively brighter sources, such as QCLs have limitations98,99 in 

intensity noise and spectral bandwidth. This has important consequences for enhancing 

efficiency in measurements for strongly-attenuating and rapidly-dephasing molecular 

vibrations (e.g., in liquids etc.).  

For a given analyte with absorption coefficient 𝛼 and interacting length 𝑥, theoretical 

estimate shows a lower limit of detection for a wide range of interaction lengths (Figure 5.4). 

As the measured signal scales linearly with the electric field, it decreases with square root of 

the intensity attenuation. Field-scaling thus becomes increasingly advantageous for strong 

attenuations. Experimentally, this leads to sub-microgram per milliliter detection sensitivity 

for an 80-µm thick sample and a detection limit in the range of 10 micrograms per milliliter 

for 200-µm thick samples34,37 for FRS measurement. 

• Water background suppression: 

As MIR radiation is prone to interaction with water vapour and various other 

molecules present in the atmosphere, even a few centimetres of beam path in air will cause 

considerable background in the measurement. Figure 5.5 shows a 2D sonogram of the EOS 

measurement with a 500-µm thick EOS crystal. For a beam path of almost one meter, the 

measured signal exhibits a constant background signal around 7 µm, over several 

picoseconds. In order to suppress this unwanted molecular signal in the environmental 

background, the third NIR compression stage and subsequent stages of the beam path were 

pumped down and maintained at a vacuum level of a few millibar. This largely suppresses 

the water background signal (Figure 5.5b) in the wake of the impulsive excitation. Besides 

suppression of the water background, another benefit of keeping the beam path in vacuum 

is enhanced stability by avoiding air fluctuations.  
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Figure 5.4 | Detection Limit with attenuation. Theoretical minimum detectable analyte 

concentration for field- and intensity scaling techniques. Figure is taken from Ref.34. 

 

     

Figure 5.5 | Water background suppression. Contour map of EOS measurement in a) air and 

b) vacuum. The inset shows absolute normalized EOS signal for air and vacuum. After 1 ps from 

the maxima of the pulse, the background level is suppressed by almost an order of magnitude. 

 

5.1.2 Sample cuvette   

The sample cuvette is a commercially available unit (Micro Biolytics GmbH) 

consisting of two parallel 2-mm thick zinc selenide windows, along with an automated 

microfluidic delivery system. The original cuvette was supposed to be used in a free-standing 

form. In order to integrate the cuvette as a vacuum-compatible unit, homemade adapters 

(Figure 5.6) were designed to be glued onto the surface of cuvette window, and it was 

integrated between the two vacuum chambers along with MIR beam path. The air tightness 

of the cuvette limits the achievable vacuum level around 1mbar level, mainly due to the 

manual gluing process onto the small aperture of the cuvette window. 

 (a)  (b) 
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Figure 5.6 | Liquid cuvette and adapters for vacuum compatibility. a) Sample cuvette 

window with glue for connecting the adapter, b) homemade adapters with KF 40 flanges, each of 

the two sides has a slightly different design, c) side view of the cuvette with glued adapters, d) 

inward view through the glued adapter, and e) integrated liquid cuvette between the IPDFG and 

EOS vacuum chambers. The tunnel on top is for sampling the NIR beam. MIR beam was focused 

by using gold OAP mirrors on the liquid cuvette.   

5.1.3 Instrument Linearity 

The phase-matched frequency up-conversion process in EOS implies the existence 

of a trade-off between detected bandwidth and quantum efficiency. To demonstrate the 

capability to detect very weak signals, EOS was phase-matched at the central optical 

frequency in a 0.5-mm thick GaSe crystal. The thick detection crystal increases the detection 

efficiency, resulting in ~1014 intensity dynamic range for a measurement time of 16 seconds. 

Additionally, the use of thicker EOS crystal also provides a larger measurement time window 

after the EOS pulse by avoiding internal reflections.  

To demonstrate the linear response of the measurement, the MIR beam was 

attenuated using optical density filters (instead of the liquid cuvette). The instrument gives a 

NIR 
beam 

MIR 
beam 

 (a)  (b) 

 (c)  (e)  (d) 



5  F i e ld - r e so lv ing  spec t ro me te r |  6 2  

 

linear (in good approximation) instrument response over more than 107 in the electric field 

strength, and the intensity dynamic range scales in a linear fashion with measurement time 

(Figure 5.7). Dispersion in the OD filters causes slight variations in the pulse shape for 

different attenuations. The detection noise floor was obtained by blocking the MIR beam 

and the mean value of background noise was evaluated in the given spectral range. The noise 

floor also decreases linearly with measurement time. The demonstrated linear-response 

intensity dynamic range of ~1014 by sampling the MIR electric field instead of the average 

intensity, is several orders of magnitude higher than in typical infrared spectroscopy 

measurements99.  

Sampling the electric field along with high detection dynamic range enable highly 

efficient measurements for thick samples. This opens new avenues in vibrational 

spectroscopic applications involving biological samples such as bio fluids, living cells, and 

biological tissues.  

5.2 Waveform stability of IPDFG with EOS  

The control of phase of the optical carrier wave with respect to its intensity envelope 

brings high temporal and frequency resolution in optical experiments. The mode-locking 

mechanisms act on the optical intensity envelope rather than on the carrier electric field109, 

such that the control of the latter requires additional measures. Phase control of ultrashort 

pulses is obtained either by actively-stabilised feed-back20–22,110 or feed-forward111–113  loops, 

or passively, via nonlinear optical conversion processes whose time-dependent polarisation 

follows the intensity evolution of the driving wave23,114–116. Active stabilization typically 

faces problems like complex experimental setups and limited bandwidths of the feedback 

loop. Furthermore, techniques like f-2f stabilization are affected by intensity fluctuations117, 

since they rely on two nonlinear processes: supercontinuum generation and (second-

)harmonic generation. Their use in a cascaded way results in a weak signal, limiting the 

measurement SNR. Additional optical gain is needed to improve the signal to noise ratio and 

thus the overall stability of the scheme111. 

The second-order (i.e., 𝜒(2)) nonlinear process of IPDFG, intrinsically and passively 

performs this control, as the nonlinear polarization responsible for the emission of the 

difference-frequency wave follows the temporal intensity envelope of the driving pulse23,25. 

This has rendered IPDFG a preferred scheme for the generation of trains of waveform-

stable ultrashort laser pulses and carrier-envelope-offset-frequency-controlled frequency 

combs in a number of applications27,37,118. 
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Figure 5.7 | EOS dynamic range and linear response of the spectrometer.* a) Normalized 

EOS pulse recorded with different optical density filters for a scan range of 1200 fs and with 

measurement time of 16s and 1600s. b) Normalized spectral intensity and noise floor for different 

measurement times, and c) corresponding phase.  

 To date, the values for the root-mean-square (RMS) carrier-envelope-phase (CEP) 

jitter reported in literature for laser pulses passively phase-stabilized via parametric processes 

lie in the range 20-220 mrad24,119–122 and include the lowest reported for CEP-stable pulse 

trains. In light of the multiple (nonlinear conversion) processes used in the CEP noise 

measurement schemes, it seems likely that metrology itself has often represented a limitation, 

and that the waveform stability achievable with IPDFG can be orders of magnitude higher.  

5.2.1 Measurement Principle 

Here, we introduce EOS as a highly sensitive metrology technique for characterizing 

waveform stability, broadband both in the radio-frequency (RF) domain of the occurring 

noise/jitter, and in the optical domain of the laser pulses123. The direct measurement of 

optical waveforms, sampled with sub-optical-cycle temporal resolution grants access to both 

                                                 
 

* This measurement were taken and evaluated by Ioachim Pupeza and Marinus Huber, as presented in Ref 37. 

  

 (b) 

  

 (a) 

 (c) 
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the temporal jitter of the zero-crossings of the electric field of the carrier wave with respect 

to the gating pulse, and to the extrema of the field.  

The intensity fluctuations of the front-end oscillator propagate through the self-

phase modulation and IPDFG stages and are mainly responsible for the residual waveform 

noise of the resulting MIR pulses124,125. Because the wings of the near-infrared spectrum 

contribute most to the IPDFG process in a broadband phase-matching configuration, and 

their intensity is more susceptible to intensity fluctuations of the mode-locked oscillator 

output, a fraction of the blue part of the self-phase-modulation-broadened near-infrared 

spectrum was used to generate an error signal for active intensity-noise suppression with an 

AOM50, presented in Section 3.1.1 and 3.1.3. The delay between the MIR and NIR pulses 

was tracked interferometrically with an auxiliary laser (IDT), with attosecond accuracy93, 

explained in Section 4.5. This frequency-controlled distributed-feedback-diode-laser 

auxiliary beam at 1550 nm co-propagates along the interferometer arms with the exception 

of a ~10-cm distance necessary to circumvent the germanium beam combiner that is opaque 

at 1550 nm. The frequency-modulated beam allows the determination of the direction of 

delays, in contrast to a simple interference signal.  

 

Figure 5.8 | Sketch of experimental setup for waveform stability measurements. Measured 

temporal intensity profile and spectrum of the Yb:YAG thin-disk oscillator output and the 

compressed NIR. 60 W of power in the NIR drives IPDFG in LGS. The NIR pulses are split 

from the emerging MIR beam with a dichroic mirror (DM), attenuated, recompressed and used as 

gate pulses for EOS detection; PD, photodiode; Ge, germanium; GaSe, gallium selenide; SF, 

spectral filter; QWP, quarter-wave plate; WP, Wollaston prism; BPD, balanced photodiode. 

The experimental setup is sketched in Figure 5.8. IPDFG generates nearly-octave-

spanning MIR waveforms spectrally centred at 8.1 µm with an average power in excess of 

60 mW. For this characterisation, the liquid cuvette was removed from the setup. The 16-fs 

NIR pulses with an average power of 0.4 W and MIR beam with an average power of 20 

mW were collinearly focused into an 85-µm-thick GaSe crystal for EOS detection. The 

heterodyne detection in EOS utilizes a short-pass-filter at 912 nm to increase the signal-to-

noise-ratio79. The EOS data (output of the balanced photodetector) are taken with the IDT 
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electronics and, thus, with a common clock, such that the EOS and position data are 

automatically synchronised93. 

 

Figure 5.9 | Data acquisition and correction for waveform stability measurements. a) 

Typical EOS trace in the MIR pulse time frame (𝑡pulse). EOS data at fixed delays is measured for 

zero crossings (e.g., olive trace) and extrema (e.g., dark-green trace) in the laboratory time frame 

𝑡lab. For the blocked MIR beam, the detection noise is measured (grey trace). b) EOS data for the 

detector-noise signal, 𝑆det, and a (local) amplitude-maximum signal, 𝑆amp (the former was 

normalised to the mean of the latter), with their respective relative standard deviations 𝜎det,amp 

and 𝜎amp. c) Measurement of the zero-crossing jitter: the EOS signal (olive) is corrected by the 

position signal (violet) via the EOS trace slope (gray-dotted line in a), yielding the zero-crossing 

jitter (red). d) Frequency-domain representation of the data for one-second measurement time. 

IDT position correction is applied below 3 kHz. 

EOS traces of the MIR waveforms are recorded by varying the delay of the gate 

pulse (cf. axis 𝑡pulse in Figure 5.9a), permitting the determination of the delay values for 

individual signal extrema and zero-crossings. At these fixed delay values of the waveform 

extrema and zero crossings, variations in EOS signal are recorded at a sampling rate of 1.25 

MHz for one second (cf. axis 𝑡lab in Figure 5.9a), limiting the maximum measurable 

frequency to 0.625 MHz (Nyquist theorem). For measurements at a zero-crossing, where the 

signal is most sensitive to delay variations in the interferometer, recording the interferometric 

delay/position (violet line in Figure 5.9c) in synchronization with the EOS signal (olive line 

in  Figure 5.9c) shows a clear correlation between the two. The slope of the field at a specific 

zero crossing allows for a correction of the geometric path length jitter in the interferometer 

(red line in Figure 5.9c). For frequencies beyond 3 kHz, IDT position correction does not 

 (b)  (a) 

 (c)  (d) 
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improve zero-crossing statistics, such that the raw data (i.e., assuming a constant delay in the 

interferometer) is used for analysis above this frequency. Processing the time-domain data 

yields the RF-frequency-resolved noise, such as shown in Figure 5.9d for the example of the 

jitter of a field zero crossing. 

5.2.2 Detection sensitivity 

The high detection sensitivity for fluctuations of mid-infrared (MIR) waveforms 

results from the high dynamic range of the electro-optic sampling (EOS) detection setup. 

We determined the maximum detection sensitivity* (for the uncorrected data in the 10-kHz-

to-0.625-MHz frequency band) as follows: Over the integration time per point (0.8 µs), given 

by the maximum sampling rate of the electronics (1.25 MHz), we measured the average 

amplitude values of the signal at the maximum of the EOS trace (i.e., delay 𝜏 = 0), 𝑆m̅ax(0) 

(average: 4.8 V) and of the detection noise (average: 3x10-4 V), i.e. with blocked MIR beam. 

This results in an amplitude DR for the given measurement time of 16000. With both signals 

normalized to 𝑆m̅ax(0), the noise corresponds to the minimum detectable relative amplitude 

change 𝜎det,amp(0) = 6 × 10−5, which is reduced for each extremum according to the 

normalized electric field envelope amplitude �̂�(𝜏): 𝜎det,amp(𝜏) = 𝜎det,amp(0)/�̂�(𝜏). The 

timing jitter was measured by mapping the IDT-position-corrected amplitude jitter at a zero-

crossing position to the time domain via the average slope of the optical waveform with 

angular frequency ω and amplitude 𝐴 (approximation: 𝐴 × sin(𝜔𝜏) ≈ 𝐴𝜔𝜏 around the 

zero-crossing): Δ�̂�(𝜏) = �̂�(𝜏) × 𝜔 × Δ𝜏. Therefore, the minimum detectable timing- and 

amplitude-jitter values are related as follows: 𝜎det,τ(0) =
𝜎det,amp(0)

𝜔
, this gives 𝜎det,τ(0) ≈

0.5 as. 

To infer the fluctuations of the actual MIR field from EOS measurements, 

simulations were performed†, to study the correspondence between the two. As the intensity 

noise of the oscillator propagates through the nonlinear optical process and causes phase 

noise in MIR pulses124,125, we simulated the self-phase modulation based NIR pulse 

compression, IPDFG and EOS for various intensity levels of the soliton pulse emitted by 

the oscillator with the experimentally measured RIN value of 0.019 % (at >10 kHz). An 

absolute temporal reference for all fluctuations can therefore be given by the maximum-

intensity instant of this soliton (while the experimental measurement gives the relative 

fluctuations of the MIR field and probe pulse). The simulations yielded two main 

conclusions: 

                                                 
 

* The mathematical formulism for sensitivity was derived by Christina Hofer. 

† The simulations were performed mainly by Christina Hofer and Maximilian Högner. 
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Figure 5.10 | Simulation of MIR electric field and EOS trace fluctuations. a) Electric field 

and EOS trace with typical spectral coverage (27 – 47 THz at -30 dB). The electric fields were 

calculated via IPDFG of 15-fs pulses emerging from a three-stage self-phase-modulation-based 

compression scheme. EOS was simulated with those fields and the same 15-fs pulses as a gate, in 

85-μm thick GaSe rotated to 56.5°. This results in EOS spectra comparable to the experimental 

results. Empty circles: Selected extrema (green) and zero-crossings (red) for the jitter 

determination. b) Resulting relative amplitude fluctuations (relative standard deviation, 𝜎amp) of 

the field and of the EOS trace for an assumed RMS value of the soliton RIN of 0.019 %. Full 

triangles: gate pulse fluctuations on, empty triangles: gate pulse fluctuations off. c), Simulated 

absolute zero-crossing fluctuations for the field and EOS trace (absolute standard deviation, 𝜎τ) 

with gate pulse fluctuations on (full circles) and off (empty circles). The grey, dashed, vertical lines 

enclose the intensity-full-width-at-half-maximum duration of the MIR pulse (blue, shaded area). 

On average, the fluctuations of the gate pulses cause roughly a doubling of the fluctuations for 

our experimental EOS parameters. (Courtesy: Christina Hofer). 

Firstly, for broadband EOS response functions (i.e., if the EOS trace closely 

resembles the IPDFG electric field) and assuming gate pulses to be free from fluctuations, 

there is an excellent agreement between the optical-field fluctuations and those of the EOS 

signal (Figure 5.10). Secondly, with gate pulse fluctuations included, the amplitude fluctuations 

are approximately doubled, most likely because both the EOS signal and the MIR field 

strength depend linearly on the gate pulse intensity78. As the MIR and gate pulses emerge 

from the same source, their fluctuations are correlated. This causes a minimum of the zero-

crossing fluctuations, in this specific case close to the maximum of the EOS trace. The 

simulations predict average relative intensity and absolute timing jitter within the intensity-

full-width-at-half-maximum of the MIR wave of 0.12 % and 4.45 as, respectively. This 

 (a) 

 (b) 

 (c) 
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implies a CEP-jitter of approximately 0.5 mrad. The order-of-magnitude increase of the 

amplitude jitter compared to the oscillator RIN can be attributed to the MIR wavelengths 

being generated by the wings of the broadened NIR spectrum that are more sensitive to 

changes in the oscillator intensity. 

5.2.3 Compressed pulse characterization 

For a temporally-compressed MIR pulse with a FWHM of 62 fs (Figure 5.11a), 

statistics for fluctuations at the waveform extrema and zero-crossings were obtained from 

five measurements at each delay point, and evaluated for frequencies up to 0.625 MHz as 

shown in Figure 5.11b,c respectively.  

For the frequency band 10-kHz-to-0.625-MHz, we expect the interferometer jitter 

to be negligible, which is confirmed by the fact that interferometric delay tracking does not 

improve the zero-crossing statistics. For the cycles within the intensity FWHM, we obtain 

mean values of 𝜎amp = 0.05 % and 𝜎τ = 0.8 as, respectively. These exceed by – on average 

– 5 and 1.8 times the detector sensitivity for the intensity and timing jitter, 𝜎det,amp and 

𝜎det,τ (grey shaded areas in Figure 5.11), respectively. The measured values agree reasonably 

well with those predicted in the simulations. The discrepancies between the two can be 

attributed to the wavelength selectivity of the AOM intensity stabilization (which was not 

taken into account in the simulations). From the correspondence between the jitter of the 

field and that of EOS traces discussed above, it can be inferred that the CEP fluctuations of 

the MIR electric field in our experiment are on the order of a few hundred µrad, which is 

significantly below the lowest values previously reported. Including the frequencies between 

1 Hz and 10 kHz into the evaluation increases both the mean and the variation of the jitter 

values (Figure 5.11b, c). Most probably, this increase can be attributed to the influence of 

acoustic noise on the entire setup. Also, the detection sensitivity in this frequency range is 

limited by the accuracy of the IDT position data used for correction. 

Furthermore, to study the effect of detection noise on the measurement, the EOS 

signal was attenuated electronically by a factor of ten, which leads to a reduction by a factor 

of three in amplitude dynamic range (due to different scaling of signal and noise with 

attenuation). For the full bandwidth (1-Hz-to-0.625-MHz), the attenuated measurement 

gave very similar values for zero-crossing and extrema in the centre of the pulse. In the wings 

of the attenuated pulse, the phase noise started to deviate when the EOS signal was a factor 

of 14 lower than at the maximum signal, while the relative amplitude noise stayed the same 

down to a factor of 30 in reduced signal. This shows, how a given dynamic range limits the 

detectable phase fluctuations more strictly then the amplitude changes. 



5 . 2  Waveform stabi l i ty  of  IPDFG wi th  EOS | 69 

 

 

Figure 5.11 | Measurement of waveform fluctuations for a compressed MIR pulse. a, 

Measured few-cycle EOS trace. Empty circles: Selected zero crossings (red) and extrema (green). 

Blue shaded area: Range of intensity FWHM of the MIR pulse envelope. b, Measured amplitude 

noise across the pulse in the 1-Hz-to-0.625-MHz band (green triangles) and in the 10-kHz-to-

0.625-MHz band (green circles). Grey shaded area: detection noise level (i.e., sensitivity) for the 

measurement of relative amplitude fluctuations, determined by the dynamic range of EOS 

detection. c, Temporal jitter for each selected zero-crossing of the EOS trace, in the 1-Hz-to-

0.625-MHz band (red triangles), and in the 10-kHz-to-0.625-MHz band (red circles). Grey shaded 

area: Sensitivity for timing jitter measurements. For the 1-Hz-to-0.625-MHz band, the zero-

crossing positions are corrected with the IDT position data up to 3 kHz, while for the 10-kHz-to-

0.625-MHz band no correction was performed. The error bars in (b) and (c) indicate the standard 

deviation across five measurements each. 

5.2.4 Chirped pulse characterization 

To demonstrate the ability of our method to sensitively characterize waveform 

stability beyond the CEP model, we have inserted a 5-mm-thick CaF2 plate in the MIR beam 

path, dispersing the short and long wavelengths along the (increased) pulse duration (Figure 

5.12a,b). This grants access to the waveform fluctuations at different carrier wavelengths 

within the same pulse. For both the amplitude (Figure 5.12c, dark green) and zero-crossing 

fluctuations (Figure 5.12d, dark red), we observe a steady decrease with decreasing 

wavelength. We attribute this to the active intensity stabilization, whose error signal is 

derived from the blue part of the nonlinearly-broadened NIR spectrum, which in IPDFG 

contributes more to the short MIR wavelengths. This is confirmed by the result of turning 

 (a) 

 (b) 

 (c) 
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off the active intensity stabilisation, which increases both the amplitude and zero-crossing 

fluctuations predominantly for the shorter wavelengths (Figure 5.12c,d, light green/red). It 

is noteworthy that differences in the mean values of the zero-crossing jitter of less than 1 as 

can be measured in a wavelength-resolved fashion. 

 

Figure 5.12 | Measurement of waveform fluctuations for a chirped MIR pulse. a) Measured 

EOS trace of a chirped pulse. Empty circles: selected zero-crossings (red) and extrema (green). b) 

λinst, Instantaneous wavelength variation over the chirped pulse. c) Measured amplitude noise 

across the pulse in the 10-kHz-to-0.625-MHz band, with AOM-stabilization on (dark green circles) 

and off (light green circles). d) Temporal jitter for each selected zero-crossing of the MIR 

waveform, in the 10-kHz-to-0.625-MHz band, with AOM-stabilization on (dark red circles) and 

off (light red circles). Grey shaded areas: detection limit, analogous to Figure 5.11. 

These experiments validates high-dynamic-range EOS as a broadband – in both the 

radio- and the optical-frequency domains – and high-sensitivity measurement technique for 

optical-waveform stability. As a first application, we have confirmed the CEP stability of 

IPDFG with an order-of-magnitude improved sensitivity compared to previous reports. 

Furthermore, we have detected wavelength-dependent temporal jitter with variations on the 

order of 1 attosecond within an ultrashort mid-infrared pulse and explained their origin.  

 (c) 

 (d) 

 (b) 

 (a) 
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5.3 Towards real-world applications 

The unprecedented passive waveform stability, confinement of the infrared field to 

sub-two-cycle pulse with intensity FWHM of ~60 fs, robustness against thermal 

background, and high dynamic range of detection, render this instrument ideal for field-

resolved infrared vibrational spectroscopy of strongly absorbing samples, such as biofluids, 

biological tissues, and live cells, as well as in frequency-comb spectroscopy of gases. 

Ultrashort pulses are transmitted through the sample, and the waveforms are measured with 

EOS. The spatial distribution of microscopic charges (nuclei and electrons) in the organic 

sample is inhomogeneous and characteristic of the molecular species. The interaction of 

infrared field with molecules induces microscopic charge separation in space, due to electric 

dipole moments. The oscillating electric field drives the time evolution in these dipoles. The 

microscopic dipole oscillations occur with characteristics frequencies and magnitude, with 

fixed mutual timings, set by the excitation field. These resonant vibrations keep oscillating 

after excitation by few-cycle infrared pulse, constituting a molecular fingerprint. This 

resonant signal contains sample-specific information, as coherent superposition of the 

resonating sample oscillating fields.  

The spectrometer, named as Infrasampler 1.2 (IS 1.2), was commissioned to the in 

house collaboration Broadband Infrared Diagnostic (BIRD) group, for the investigating of 

bio-fluids. In the next subsection, first studies done with this instrument are presented. The 

samples under investigation were prepared by the BIRD team (led by Mihaela Zigman), 

measurements and analysis by the team37 including Ioachim Pupeza, Marinus Huber, Michael 

Trubetskov, Wolfgang Schweinberger.  

5.3.1 Attosecond-timed molecular signals 

For the investigation of a given molecular sample, sensitivity and specificity of field-

resolved molecular fingerprints critically depends on temporal coherence of the fingerprint 

signal and its reproducibility over the measurement time. For the liquid-phase samples, 

coherent molecular signal typically survives for several picoseconds31. Field-resolved 

molecular fingerprint of human blood serum was measured with quantum-efficiency 

optimised EOS (grey curve in Figure 4.18).  
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Figure 5.13 | Molecular fingerprint signals of human blood serum and their 

reproducibility. a) Magnitude of the EOS signals for blood serum, water and their difference. 

Linear scale representation of the EOS signals of main panel in different time windows. For five 

hundred consecutive measurements of the molecular fingerprint of a serum sample: b) Relative 

RMS of the oscillation amplitude and c) absolute RMS of the zero-crossings. Figure is taken from 

Ref. 37. 

Figure 5.13 a,b show the time-resolved fingerprint signal of human blood serum, and 

differential signal by subtracting the blood serum signal from pure water signal. This bio-

molecular signal decays by a few orders of magnitude within a few picoseconds. This reveals 

the dephasing time of bio-molecular vibrations in blood serum far below one picosecond. 

The blood serum was measured five hundred times consecutively for the same serum sample 

(each scan taking 4.5 s). The individual EOS traces were aligned in time using a one-

parameter (time shift) optimisation. Furthermore, a one-parameter amplitude correction of 

 (c) 

 (b) 

 (a) 
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all traces to the maximum amplitude of the first measurement was performed, allowing for 

a compensation of minor, slow drifts of the laser intensity with time. Subsequently, the traces 

were frequency-filtered by a 20th order super-Gaussian filter suppressing any noise outside 

the spectral window 900–1450 cm-1. For each trace, in steps of a few field oscillations, a sinus 

curve of ~1.5 oscillations was fitted with respect to 4 parameters: amplitude, amplitude 

offset, frequency and phase. The relative amplitude noise and the absolute timing jitter of 

the zero crossings, shown in Figure 5.13 c and d, respectively, were obtained by evaluating 

the statistics of the amplitude and phase fit parameters, respectively. Because the oscillating 

EOS trace exhibits regions of strong deviation from a sinus function (e.g., due to the 

temporal evolution of the molecular fingerprint signal), the fits with relative errors larger 

than 3 % are excluded. This resulted in the grey dots in Figure 5.13 c, d. The black, 

continuous lines indicate a trend, calculated by interpolating the grey points with an 82-point 

LOWESS filter (OriginPro 2017). Within the first two picoseconds following the main 

excitation, the relative RMS deviation of field oscillations amplitude form its mean value of 

~0.2 % and an absolute RMS of the zero crossings of the infrared molecular fingerprint field 

of ~20 attoseconds (Figure 5.13 c,d). This reproducibility enables suppression of the infrared 

electric field background by up to three orders of magnitude compared to the reference field. 

This implies a background-free measurement after ~2 picoseconds following the excitation 

pulse peak, in a highly complex biofluid such as blood serum in a field-resolved fashion.  

5.3.2 Sensitivity and specificity  

The utilization of the spectrometer for biomedical applications greatly depends on 

its capability to distinguish smallest changes in molecular concentrations of the sample. The 

molecular fingerprinting needs to probe small changes in the chemical composition of the 

sample under investigation. Different concentrations of methylsulfonylmethane (DMSO2) 

in serum sample (BioWest, Nuaillé, France) was measured to assess the smallest 

concentration level*. For each prepared concentration, 900 µl of serum were mixed with 100 

µl of DMSO2 in pure water. Subsequently, 1000, 100, 50, 10, 5 and 0 µg/ml of DMSO2 

solution were used to obtain spiked serum samples with 100, 10, 5, 1, 0.5, 0 µg/ml DMSO2 

concentration, respectively. These samples were measured with FRS (IS 1.2) as well as with 

FTIR. In order to avoid systematic effects in the sample preparation that might lead to a 

separation in the subsequent principal component analysis, each concentration of spiked 

serum was prepared 5 times independently. Concentrations below 10 µg/ml were measured 

at least 8 times. For FTIR measurements 0.5 µg/ml was excluded, as the previous experiment 

showed that this is below the limit of detection of our FTIR. 

                                                 
 

* These measurements and their evaluation were led by Marinus Huber. 



5  F i e ld - r e so lv ing  spec t ro me te r |  7 4  

 

Figure 5.14a shows the mean and relative standard deviation of the different 

concentration sets for repeated measurements of the samples, along the first principal 

component. The error bars show the capability of FRS for detecting changes in the 

concentration level down to 200-ng/ml level in human blood serum. This shows almost an 

order of magnitude improvement as compared to the research grade FTIR spectrometer. 

Hence, currently detectable smallest changes are more than 5 orders of magnitude below the 

concentration of the most highly abundant constituent of this biofluid, albumin126. This 

implies a concentration dynamic range in excess of 105, directly detectable without depletion 

of high-abundance molecules. While the relative intensity noise of the excitation does not 

affect the FRS detection limit with a spectrally isolated feature, the lowest detectable 

concentration of the same specimen in a complex environment is limited by the relative intensity 

noise of the overall molecular fingerprint signal. This, in turn, is likely to be dominated by 

the noise of the excitation source. As an important consequence, the current FRS 

concentration dynamic range of 105 offers substantial room for further improvement by 

suppressing the noise of the molecular fingerprint signal. An efficient measure to this end 

may be “freezing” the excitation source noise by scanning faster than the characteristic time 

of intensity fluctuations84,127. 

To study the specificity of the measured fingerprints, i.e., the sensitivity to small 

changes in relative concentrations, aqueous solutions of two different sugar molecules of 

constant total concentration, and varying relative concentrations were prepared. The 

measurement was performed with the bandwidth-optimised setting of the spectrometer, 

covering the spectral range between 900 cm-1 and 1524 cm-1 at -20-dB intensity. With this 

setting, the intensity dynamic range of detection was roughly 100 times lower than with the 

previous setting. Two sugars specimens, maltose (D-Maltose; Serva Electrophoresis GmbH) 

and melibiose (D-(+)-Melibiose; Sigma-Aldrich) were mixed in pure water at a constant total 

concentration of 100 µg/ml and at varying relative concentrations. Both of these sugars have 

similar spectral fingerprints. The total concentration of 100 µg/ml was chosen well above 

the limit of detection of both instruments. The data in Figure 5.14b reveal that FRS 

outperforms FTIR spectrometry in sensing not only small absolute changes but also relative 

changes in concentration of molecules of a complex ensemble.  
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Figure 5.14| Sensitivity and specificity of complex fluids. a) PCA analysis for different 

concentrations of DMSO2 in human blood serum, measured with FRS and FTIR, b) PCA analysis 

for a mixture of two sugars dissolved in water with constant total concentration and varying 

relative concentration, measured with FRS and FTIR. Figure is taken from Ref. 37.  
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Chapter 6 

6 Conclusion and Outlook 

The results presented in this thesis established the foundations of world’s first laser 

instrument to perform highly-sensitive, broadband optical-field-resolved spectroscopy. The 

proof-of-principle experiments show a sensitivity surpassing that of commercial Fourier-

transform infrared spectrometers by more than a factor of 40. Field-resolved spectroscopy 

of molecular vibrations requires three main ingredients. Firstly, is necessitates a highly-stable 

source of broadband mid-infrared light. This was accomplished by utilizing a bulk-

broadening based near-infrared (NIR) frontend driving intra-pulse difference frequency 

generation (IPDFG) of an almost-octave-spanning mid-infrared (MIR) spectrum centred at 

8.1 µm, with an average power of >50 mW. Secondly, a field-resolved detection scheme was 

realized by setting up electro-optic sampling (EOS). EOS detection was optimized for the 

maximum NIR power to the EOS crystal (limited by the crystal damage threshold), the size 

of NIR and MIR beams at the common focus, phase matching conditions and balanced 

detection.  This resulted in shot-noise-limited balanced, high-quantum-efficiency EOS. 

Thirdly, high stability and reproducibility of the measured electric field waveforms is 

necessary. This requires both the generation and detection to be highly stable. IPDFG was 

found to have superior intrinsic stability compared to optical-parametric-amplification 

schemes employing separate signal and pump beams. In addition to the optimum EOS signal 

detection, the delay was tracked interferometrically along the NIR and MIR beam paths, 

instead of tracking only the delay stage.  

High-quantum-efficiency EOS94 was validated to be a broadband – in both the radio- 

and the optical-frequency domains – and highly sensitive metrology technique for optical-

waveform stability. The measured waveforms were characterized and the pristine stability of 

the IPDFG was validated with an order-of-magnitude improved accuracy compared to 

previous measurements114,115, reporting the – to the best of our knowledge – most phase-

stable train of ultrashort light pulses to date. This certifies the need of highly-stable passive 

frontend sources for high-precision metrology, whether for a direct field-resolved 

application or as a seed for strong-field laser physics. Furthermore, wavelength-dependent 

temporal jitter variations on the order of 1 attosecond within an ultrashort pulse were 

measured and their origin was tracked back to the excessive intensity noise of the 

modelocked oscillator, showcasing the ability of the EOS-based metrology to characterise 

waveform stability beyond the carrier-envelope-phase model. 

Highly phase-stable few-cycle MIR sources together with high-sensitivity sub-

optical-cycle waveform sampling are instrumental for further developing time-domain, field-
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resolved spectroscopy. For instance, our study promises that increasing the scan rate84,128 

from <1 Hz to >10 kHz in field-resolved infrared molecular fingerprinting of complex 

samples37 will considerably improve the reproducibility of individual waveform scans, 

improving the visibility of low-abundance molecular constituents. In addition, the passive, 

high phase stability demonstrated here, together with nonlinear frequency 

upconversion129,130 show a route towards the generation highly-stable near-infrared and 

(therewith) extreme-ultraviolet frequency combs131. 

Building on the results and insights presented in the thesis, the following directions 

of further development promise a substantial increase of the impact of field-resolved 

infrared spectroscopy in the near future. 

6.1 Spectral coverage 

The sample response for living cells and biomolecules is rather broadband and even 

the octave-spanning spectral coverage demonstrated here only partially covers the 

vibrational frequencies of proteins and carbohydrates. An interesting spectral region that is 

not covered in these experiments lies between 3 and 6 µm, corresponding to the 

characteristic vibrational modes for lipids. This requires the extension of the bandwidth of 

the driving NIR pulse for the generation of the idler beam at shorter wavelength, and a study 

of the phase-matching configuration of different nonlinear crystals.  

MgO-doped periodically poled lithium niobate (MgO:PPLN) crystals with a poling 

period in the range of 23 µm to 28 µm would be potential candidates for MIR generation in 

this spectral region132,133. Preliminary experiments showed that MIR light centred at a 

wavelength of 4.5 µm, as shown in Figure 6.1, can be generated with a driving NIR pulse 

similar to the one presented in Section 3.1.3*.  Further bandwidth in the driving NIR beam 

would be needed to reach shorter MIR wavelengths.  

6.2 Intra-scan referencing 

Real-life spectroscopic applications require the sample and the reference 

measurements to be performed close to each other in time. In the data processing, the two 

measurements are either subtracted or deconvolved/divided to obtain high-signal-to-noise-

ratio sample-specific information. Such data processing is sensitive to the technical noise 

occurring on a time scale of a few seconds which is typically necessary to switch between the 

                                                 
 

* This experiment was performed on Infrasampler 1.5 setup, the frontend provides slightly broadband NIR 
pulses, as compared to the NIR pulses presented in in Section 3.1.3. The experiment was performed with the 
help of Theresa Buberl. 
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sample and reference measurement. Moreover, it restricts standardization of the 

measurements performed under slightly different conditions.  In principle, this issue can be 

tackled by decreasing the time between the two measurements by an intra-scan referencing 

(ISR) scheme and/or by fast-scanning techniques. ISR was implemented in the Infrasampler 

1.2 setup, as a proof-of-principle experiment. 

      

Figure 6.1 | Driving NIR spectrum and MIR spectrum generated in PPLN. The grey lines 

in the right panel shows water absorption lines in this spectral range. This experiment was 

performed in air, so the measured spectrum is attenuated by both the absorption from water in air 

as well as from the crystal absorption beyond 5 µm. 

 

  

Figure 6.2 | Sketch of the intra-scan referencing scheme. MIR beams were separated before 

the chopper wheel and recombined after the sample cuvette by using ~0.5-mm thick diamond 

wedged windows. Right panel: design of custom chopper wheel used for chopping in ISR scheme. 

The MIR beam was separated into two arms by using a very thin (~0.5-mm) diamond 

wedged window, such that only one MIR beam goes to the sample cell serving a sample arm 

and the other beam is used as a reference arm. The sample-arm and reference-arm beams 

were chopped such that there is a constant phase shift between the times each of the two 

are blocked. This could be done either by using two mechanical choppers synchronised for 

the given phase shift, or a specially-designed chopper wheel of a single optical chopper. The 

 (a)  (b) 
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chopper wheel with 60 slots, shown in Figure 6.2, was designed* for the commercial optical 

chopper previously used in the experiment (Newport optical chopper 3502). The outermost 

ring is used by the chopper controller itself for speed feedback, the next ring for the sample 

MIR beam, and the inner ring for the reference MIR beam. 

The MIR beams were focused on the chopper by using bare-gold off-axis parabolic 

mirrors to avoid any distortions. Both of the MIR signals were measured with EOS, a delay 

stage was introduced in one of the MIR beam paths so that the two MIR pulses could be 

shifted relative to each other. The position of the MIR delay stage was adjusted, such that 

both of MIR pulses lied very closely to each other. Figure 6.3 shows the first interleaved 

EOS measurement of both MIR pulses. The beams were chopped with a frequency of 5.7 

kHz, with a data acquisition rate of 312.5 kHz, corresponding to 54 points per chopping 

cycle. The inset shows raw data for two chopping cycles. The lower plateau of points 

corresponds to the reference MIR pulse (green circle), the centre plateau to the zero-base 

line (grey circle), and upper plateau to the sample MIR pulse (purple circle).  

  

Figure 6.3 | EOS measurement of interleaved MIR pulses. The inset shows the set of data 

acquisition points for two chopping cycles. Green circle for the data points of reference MIR 

pulse, grey circle for the data points zero-base line, purple circle for the data points of the sample 

MIR pulse. 

The ISR technique promises a higher SNR compared to the conventional 

measurement technique, in particular for longer measurement times (that is necessary for 

any real-life application measurement campaign). To demonstrate the ISR performance, a 

measurement campaign was performed† for 1-mg/ml concentration of DMSO2 solved in 

water, measured in a 35-µm cuvette, and subsequent measurements of water. Figure 6.4 

                                                 
 

* The chopper wheel used here was designed by Alexander Weigel, and is shown in right panel of the Figure 
6.2. 
† These measurements were performed along with Wolfgang Schweinberger, and the data evaluation shown in 
Figure 6.4 was performed by Michael Trubetskov. 
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compares the deviation of the standard transfer function (spectrum and phase) for 

conventional scheme, and ISR scheme (with inter-leaved EOS traces of sample and reference 

arm, as shown in Figure 6.3). For the conventional scheme, the transfer function was 

calculated in the frequency domain from the measured averaged EOS traces of DMSO2 and 

water. For the ISR evaluation, the transfer function was calculated from the measured 

averaged EOS traces of DMSO2 and water, each referenced to the interleaved averaged EOS 

trace first, obtained from the reference arm. The same dataset was used in these evaluations, 

and ISR reference-arm measurements were discarded for the conventional scheme. Despite 

being in the very early development stages, these results attest to the promise of the ISR 

scheme for spectroscopic studies in real-life applications.  

       

        

Figure 6.4 | First ISR measurements campaign.  Comparison of the standard deviation of the 

transfer functions for conventional scheme a) intensity and b) phase and for ISR scheme c) 

intensity and d) phase. The variable A indicates the number of average transfer functions. 

6.3 Precision time-domain optical metrology 

The waveform stability characterization provides a promising route various 

nonlinear precision measurements. The demonstrated sub-attosecond real time field 

measurement could be combined with an induced nonlinear polarization measurement. The 

nonlinear polarization will induced the temporal change in the electric field cycle period. The 

z-scan of a very thin plate of MIR window (such that Ge or ZnSe) in the focus of the MIR 

 (a)  (b) 

 (c)  (d) 
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beam and recording the transmitted waveform at different intensity levels. The sub-

attosecond timing precision of the zero crossings will translate into a precision measurement 

of the (quasi-instantaneous) nonlinear response of the electronic polarization and, thereby 

that of the nonlinear index of refraction. This promises to measure the nonlinear refractive 

index with unprecedented accuracy. Similarly, the transmitted waveform measurement of the 

z-scan an organic sample dissolved in water would have the retarded molecular response at 

different intensity levels. This may reveal miniscule changes of the vibrational response of 

an organic molecule with varying peak intensity of the excitation. This would give access to 

the (delayed) nonlinear response of the nuclear polarization, providing thereby insight into 

the anharmonicity and possible nonlinear coupling between vibrational modes with never-

before achieved accuracy. Moreover, by employing fast scanning scheme, if the relative 

electric field period clocking clocking could be improved to zeptosecond level, this would 

allow to measure nonlinear phase shift of the order of ~ 𝜋 105⁄  level. 

 



 

Data Archiving 

The experimental raw data, evaluation files, and figures can be found on the Data 

archive server of the Laboratory for Attosecond Physics at the Max Planck Institute of 

Quantum Optics:  

//afs/ipp-garching.mpg.de/mpq/lap/publication_archive  

The main folder Syed Ali Hussain contains two sub-folders Data and Figure, which 

contains all the raw data and figures, saved as chapter sub-folder. Each sub-folder, a readme 

file can be found which contains the detailed description of the raw data, and about figures. 
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