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1. INTRODUCTION 
 
Nature does amazing things… We are what we eat… In the following pages the effects of 

phytoestrogens on the estrogen receptor (ER) and other cellular pathways will be 

explained. The two attached papers outline the effects of two phytoestrogen containing 

plants, sambucus nigra (elder flower) and petrosilium crispum (parsley root) on breast 

cancer cell lines.  

 
 
 
1.1. Epidemiology Breast Cancer    

 

Until today breast cancer remains the most abundant cancer in women. 2.1 million 

Women are confronted with the diagnosis breast cancer every year and it is responsible 

for the greatest cancer mortality in women. 627,000 women succumbed due to breast 

cancer in 2017 – representing more than 15% of all women dying of cancer worldwide.  

Although traditionally breast cancer rates were higher in developed regions of the world, 

today breast cancer incidence is also increasing rapidly in developed countries1. 

 

Nevertheless during the last three decades breast cancer therapy has evolved rapidly, it 

remains an incurable disease once metastasis are diagnosed. Most women will only live 

two to three years with the disease (median overall survival) and after five years of 

metastatic breast cancer only 25% of the women affected remain alive23. 

 

 

1.2. Breast cancer treatment 

 
The basic therapeutic options of early breast cancer usually involve standardized 

algorithms including surgery, radiation therapy, chemotherapy and endocrine therapy in 

hormone receptor positive breast cancer and the use of antibody therapy in Her2 positive 

breast cancer4. 
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Once hormone receptor positive metastatic breast cancer has been diagnosed systemic 

therapy with extended endocrine therapy including CDK4/6 inhibitors and aromatase 

inhibitors are first line therapy in patients that are not affected by visceral crisis5. In Her2 

positive metastatic breast cancer chemotherapy with paclitaxel and the application of the 

antibodies trastuzumab and pertuzumab is the first line treatment of choice4. In any type 

of breast cancer patients presenting with visceral crisis, usually chemotherapy is the 

preferred therapeutic option4.  

 

Endocrine resistance and resistance to chemotherapeutic drugs are one of the greatest 

problems in the treatment of breast cancer6. The majority of breast cancer is ER positive4. 

The already mentioned CDK4/6 inhibitors are a new class of drugs that intervene in the 

cellular process of endocrine resistance78. The ER plays a central role as a ligand-

dependent transcription factor for the expression of genes that lead to key mechanisms 

associated with carcinogenesis like tumor growth, cellular proliferation and survival9. 

Therefore one of the main targets of endocrine therapy is estrogen receptor interaction 

and modulation by means of selective receptor interaction or by depriving the tumor of 

estrogen10. Although effective therapies for hormone receptor positive breast cancer have 

been developed such as Tamoxifen and aromatase inhibitors, approximately 30-50% of 

breast cancer patients will present with progressive disease in the course of treatment 

due to the cancers ability to adapt and mutate thus developing resistance pathways11.  

 

Breast cancer pathogenesis is complex and besides a substantial genetic burden mostly 

related to BRCA mutations and factors like age of menarche and menopause, lifestyle 

factors such as age at first child, parity, breast feeding, contraception, nutrition, obesity, 

nicotine and alcohol consumption also play major roles1213. Therefore the question to 

which extend phytoestrogens influence the pathogenesis of breast cancer or the course of 

breast cancer is of great interest14. Because of the preventive properties of 

phytoestrogens that have emerged from epidemiological evidence and from clinical 

research, where substance safety and therapeutic effects were observed, in this work the 

effects of two phytoestrogen containing plants, sambucus nigra (elder flower) and 

petrosilium crispum (parsley root) on breast cancer cell lines will be assessed.  
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1.3. Phytoestrogens: 

1.3.1. Definition, Sources, Chemical Structure, History 
 

To withstand environmental stressors, evolution drove some plants to produce 

secondary metabolites with antioxidant, antifungal and antibiotic properties belonging to 

the large family of polyphenols15. Phytoestrogens are a group of polyphenols produced by 

plants that functionally and structurally demonstrate certain similarities with 17β-

estradiol and therefore interact as agonists or antagonists with the estrogen receptor and 

estrogen receptor independent pathways1617. All phytoestrogens contain one or more 

aromatic rings with at least one hydroxyl group. Hydroxyl groups may be free, but usually 

they are engaged in another function with an ester, ether or a glycoside18. 

 

Phytoestrogens are found at a wide great variety in whole grains, vegetables and fruits 

and are a natural component of human diet19. Nevertheless the affinity of phytoestrogens 

to interact with the estrogen receptor is low compared with 17β-estradiol, the two 

substances compete for the receptor binding domain20. Phytoestrogens can only enter 

human metabolism by ingestion and cannot be synthesized by the endocrine system21. 

The name “phytoestrogen” is a combination of the Greek word phyto (plant) and the word 

estrus (sexual desire) and gene (to generate)2223.   

 

Natural polyphenolic compounds that are classified as phytoestrogens are the 

coumestans, the stilbenes, the isoflavones and the lignans24. Coumestans can be found in 

soybean sprouts, alfalfa and clover whereas resveratrol is the stilbene present in grape 

and red wine19. Isoflavones from flavus (yellow in Latin), are mostly found in legumes 

such as soybean, kalachanna, mung bean, red lentils, and red clover. On the one hand soy 

and its phytoestrogen compounds genistein and daidzein represent the most important 

isoflavones often found in Asian diets, on the other hand lignans which are components 

of plant cell walls are often found in traditional occidental diets such as grains, fiber-rich 

cereals such as flaxseed, seaweed, whole grains, oil seeds, fruits, and vegetables 2526. 

Secoisolariciresinol and matairesinol are the most abundant and important lignans in 

human diet27. It was demonstrated in clinical studies that enterolignans exposure at high 

concentrations reduces the risk of developing breast cancer by 16%28. Furthermore other 
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studies associated a significant reduction of breast cancer mortality with elevated 

enterolactone levels in the blood of postmenopausal women2930.    

 

Phytoestrogens first made headlines in Western Australia when sheep feeding on 

subterranean clover leaves demonstrated decreased fertility rates and an elevated 

number of miscarriages and malformations3132. As a result of the studies listed, the 

hypothesis has been made, that plants use phytoestrogens to protect themselves from   

herbivore animals by controlling female fertility thus preventing overpopulation and 

overgrazing22. 

 

In the last fifty years phytoestrogens research has expanded rapidly because evidence of 

epidemiological studies suggest that phytoestrogen rich diets cause beneficial health 

effects. Associated data reports positive effects such an improvement in metabolic 

features like a lowered risk of obesity, metabolic syndrome, type 2 diabetes and 

effectively cardiovascular disease. Moreover phytoestrogen drugs as treatment options 

for common menopausal symptoms like osteoporosis and hot flushes are available and 

other data suggests an improvement in a variety of brain function disorders and a positive 

influence on various cancers such as bowel cancer, prostate cancer and breast cancer3334.  

 

After the publication of the first results of the women’s health initiative study, where 

alarming side effects of hormonal replacement therapy where published in 2002 many 

physicians ceased to prescribe and women individually stopped their hormonal 

replacement therapy35. Due to this the already existing trend towards plant derived 

therapeutic options emerged increasingly and the demand for phytoestrogens as a save 

therapeutic alternative for climacteric symptoms became apparent36.  

 

Besides the efficacy in hormonal replacement therapy, epidemiological observations 

demonstrated chemo preventive properties of soy ingestion (‘Japanese Phenomenon’) on 

breast cancer prevalence, as women originating from Asian countries, where soy is a 

regular part of the diet, have a three to five times lower risk of developing breast cancer 

than European or American women, not consuming soy products on a regular basis3714. 

Interestingly, in the offspring of female Asian immigrants in the second or third 
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generation who migrated to occidental countries, breast cancer prevalence resembles the 

prevalence of women living in occidental countries, emphasizing the importance of 

lifestyle factors associated with breast cancer genesis 14. Some Asian diets lead to a high 

isoflavone consumption of concentrations around 47 mg/day compared with 0.1–1.2 

mg/day in Western diets. Vegetarian diets or dietary soy supplements can elevate soy 

blood levels to the concentrations of the Asian diets mentioned above38394041. 

Interestingly and often underestimated, soy is found besides soy milk and soy compounds 

such as tempeh and tofu in a broad variety of processed foods (up to 60 %)25. Soy textured 

protein, were the soy protein percentage is as high as 70 %, can be found in fast foods 

meats such as burger patties, hot dog sausage meat and other meat compounds such as 

chicken nuggets25. Isolated soy protein, where the soy protein percentage is up to 90% is 

used in many different processed foods ranging from imitation dairy products such as 

infant formula, cheese and ice cream to sports drinks, granola bars and cereals25.  

 

The general perception of soy being healthy and a rewarded popular food additive is not 

only due to the phytoestrogen content, but also because of attractive appealing features 

such as being rich in complex carbohydrates, free of lactose and unsaturated fats.  

Furthermore it is a cholesterol-free, vegetable protein with a relatively high fiber 

content25. Due to this in the United States school breakfast and lunch programs include 

textured soy protein as a part of federal assistance programs2542.  

 

After the US Food and Drug Administration (FDA) approval in 1999, which stated that the 

risk of coronary artery disease can be effectively reduced by daily soy consumption43, 

prevalence of soy products and consumption increased tremendously25. The soy product 

sales data clearly reflects the soy boom in the USA; in the time between 2000 and 2007, 

up to 2700 new products containing soy were put on the market resulting in a boost in 

sales from $300 million in 1992 up to $4 billion in 200825. Nowadays, soy compounds and 

other phytoestrogens containing food compounds can be purchased as dietary 

supplements with substrate concentrations excessively higher than present in traditional 

soy and soy based foods4425. To sum up, these marketing and sales data clearly 

demonstrate that phytoestrogen consumption is increasing tremendously. Therefore 



 

10 
 

experimental and clinical data evaluating the effect of phytoestrogens has to be critically 

analyzed to determine definite positive and negative health effects at a broad spectrum25. 

 

 

1.3.2. Phytoestrogen Metabolism 
 
A common problem with phytoestrogens is that in order to achieve high serum 

concentrations of the substrates, proportional high quantities of the referred 

phytoestrogen have to be ingested41. After ingestion of foods, phytoestrogens are not 

ready to enter the blood in their bioavailable chemical structure because they are bound 

to metabolically passive glycoside conjugates consisting of carbohydrate or glucose 

moieties45. Thus in order to be activated they require digestion in the form of enzymatic 

conversion by a group of enzymes called the glucosidases45. These enzymes break the 

phytoestrogen down to their respective aglycon leading to efficient absorption45. Some 

phytoestrogens also depend on the intestinal bacterial flora for further metabolism, as it 

is the case with the lignans secoisolariciresinol and matairesinol 28. Once ingested, the 

metabolic inactive secoisolariciresinol and matairesinol are being metabolized by 

intestinal aerobe and anerobe bacteria into the bioavailable metabolic active 

enterolignans enterodiol and enterolactone2930. 

 

Genistein and daidzein are another interesting example demonstrating the complexity of 

phytoestrogen metabolism. They are metabolized to the three substrates; equol and to O-

desmethylangolensin (O-DMA) and/or p-ethyl phenol, depending on the individual 

intestinal flora39. Only 30% of the western population and 60% of the asian population 

possess gut microbiota that can metabolize daidzein into the isoflavan equol and 

approximately 80%-90% 0-DMA3846. Therefore, it becomes clear that it is not only 

dependent on an individual’s diet, but also on the intestinal flora to which extend 

phytoestrogens are being absorbed46.  

 

After enzymatic conversion and in some cases bacterial metabolism the phytoestrogens 

are absorbed from the intestine and then, in the hepatic circulation conjugated for the 

most part to glucuronic acid and for the lesser part to sulphuric acid 4745. After 
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conjugation, the conjugated phytoestrogens are de-conjugated prior to excretion48. The 

amount of phytoestrogen consumption correlates with urinary excretion47. The actual 

bioavailable active unconjugated phytoestrogen is usually found in proportional very low 

levels of less than 3 % of the amount ingested49. Detectable concentrations are usually in 

the ng/ml range and sometimes even lower49. In most in vitro studies using cancer cell 

lines the concentrations demonstrating effectiveness are much higher than the 

concentrations that can be physiologically achieved in humans5051.    

 

Properly indicated therapeutic implications remain scarce although as already mentioned 

a large body of data in the preclinical and clinical setting exist.  

 

 

1.3.3. Mechanism of action and in in vitro data of phytoestrogens  
 

Phytoestrogens are able to interact within cellular processes in different ways14. Evidence 

exists, represented by a large body of research that besides ER interaction a wide variety 

of cellular pathways and mechanisms such as angiogenesis, cell signaling pathways, 

mitochondrial metabolism, oxidative reactive stress, antioxidant properties, regulation of 

autophagia, apoptosis, cell cycle alternation and epigenetic changes are influenced by 

phytoestrogens5214. The most studied effect of phytoestrogens is ER interaction14. When 

activated by a ligand ER-α and ER-β are considered ligand-activated transcription factors 

that translocate from the cytoplasm into the nucleus of the cell where they attach to 

estrogen response elements (ERE) at the promoter regions of the referred gene causing 

specific DNA transcription and mir-RNAs leading to cellular modification and action5354.  

 

Phytoestrogens have an increased affinity for ER-β than for ER-α 5556. ERβ binding affinity 

is considered an important feature of phytoestrogens because ERβ signaling is associated 

with anti-proliferative and anti-carcinogenic effects, while ER-α signaling is related to 

carcinogenesis1457. As the loss of ERβ is associated with aggressive breast cancers, ERβ 

has been considered as a tumor suppressor gene controlling ERα-induced proliferation58. 

In a study, the phytoestrogen calycosin upregulated ERβ, thus causing many different 

effects in downstream cellular signaling pathways, like the stimulation of p38 MAPK and 
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oppression of the serine/threonine kinase (Akt), the poly(ADP-ribose) polymerase 1 

(PARP-1) division to induce apoptosis and the inactivation of insulin-like growth factor 1 

receptor (IGF-1R) in MCF-7 cells1459.  

 

Another possible ER independent mechanism of action is the binding of a phytoestrogen 

ligand with receptors of the cell surface, thus promoting the creation of cytoplasmic cyclic 

nucleotides and associated protein kinases, affecting target cells by the induction of 

signaling pathways1414. For example, the soy flavonoid genistein demonstrated the ability 

to induce apoptosis in MCF-7 cells by inactivating IGF-1R, downregulating 

phosphatidylinositol 3-kinase(PI3K)/Akt signaling pathway606162, and decreasing the Bcl-

2/Bax protein ratio1463. In MCF-7 cells daidzein induced apoptosis via the mitochondrial 

pathway by generating reactive oxygen species leading to disruption of the 

transmembrane potential of the mitochondria, the downregulation of Bcl-2/Bax ratio 

leading to a liberation of mitochondrial cytochrome C into the surrounding cytosol 

effectively activating caspase-7 and incaspase-91464. Equol induced in ER-negative MDA-

MB-453 cells an up-regulation of cytochrome c expression and an activation of the p53 

pathway finally leading to significant cell cycle arrest at the G1/S transition and in the 

G2/M phase65. Also in triple negative breast cancer MDA-MB-231 cells genistein 

inactivated NF-kappaB via the Akt or Notch-1 signaling pathway signaling pathway by 

downregulating the expression of cyclin B1, Bcl-2, and Bcl-xl 1466. 

 

Besides the mechanisms described above, phytoestrogens are able to induce epigenetic 

modulation by histone modification, DNA methylation and microRNA regulation18. The 

most investigated phytoestrogens in this context are genistein listing the highest amount 

of publications, followed by daidzein and its intestinal flora metabolite equol67.  

 

It was demonstrated that genestein induces DNA methylation in exposed mice during 

gestation. Genestein exposed mice had lower incidence of developing obesity early in life 

compared to mice without gestational exposure 68. The results of this study led to the 

hypothesis that the observed epigenetic modulation takes place more likely when soy 

exposure starts already during gestation or early in life and that later exposure is less 

effective6970. Moreover it was concluded that the effect observed is a possible reason for 
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the earlier described Asian phenomenon; decreased obesity and cancer prevalence in 

Asian countries71.  

 

Due to the mechanisms described above it seems clear that phytoestrogens can cause a 

wide variety of effects ranging from ER mediated effects to the regulation of the cell cycle, 

enhancement of antioxidant properties, induction of apoptosis or autophagy, modulation 

of cell signaling pathways to epigenetic alterations72.   

 

 
1.4.  Clinical data and experience with phytoestrogens 

 
A systematic review investigating the effects of dietary soy consumption on the prognosis 

of breast cancer patients published in 2013 analyzed 80 observational studies 11 

uncontrolled trials, and 40 randomized controlled trials 737414. The study resulted with 

the conclusion that soy consumption may decrease the risk of breast cancer mortality, 

recurrence and incidence and that the amount of soy ingested (2–3 meals/day, 

approximately 25–50 mg isoflavones) in a traditional Japanese diet is likely to decrease 

breast cancer recurrence and incidence. The effects and safety of high dose isoflavones 

(≥100 mg) need further assessment before recommended for breast cancer patients18. 

Other epidemiological studies such as meta‐analysis and case–control studies 

demonstrated that increased genistein ingestion is associated with decreased breast 

cancer risk1875. Moreover it was pointed out that the intestinal metabolite equol has 

positive effects on breast cancer incidence, but can only be metabolized by 30 – 40 % of 

the population767778.   

Besides soy and other flavones, the lignans have demonstrated positive effects on 

estrogen receptor but also estrogen receptor negative breast cancer. In a Canadian study, 

breast cancer risk was significantly reduced by flaxseed or flax bread consumption (OR = 

0.77, 95 % CI 0.67-0.89) 79. In another study by Buck et al high enterolactone levels in the 

serum of postmenopausal women with breast cancer was associated with increased 

survival80.  Besides having influence on breast cancer risk and survival, it was shown in a 

case-control study that lignan ingestion may also have an beneficial impact on tumor 
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characteristics; increased lignan uptake inversely correlated with the odds of developing 

grade 3 tumors and a decreased rate of triple negative tumors81. 

A broad variety of clinical data with phytoestrogens and breast cancer dealing in the 

clinical setting exists. As observed in the in vitro setting, data and substrate heterogeneity 

of phytoestrogens is great. Therefore, even the data assessing the impact of soy diet on 

breast cancer results in different conclusions. As phytoestrogen metabolism depends on 

multiple factors such as ethnicity, gut flora and the phytoestrogen ingested it becomes 

clear that thoroughly planned and designed clinical studies are crucial to gain further 

understanding and knowledge.  

 

 

1.5. Overview on Results and Achievements 

In both publications extracts of the plants were prepared in different concentrations and 

analyzed by mass spectrometry. In the parsley root publication, breast cancer MCF12A 

and MCF7 cells were exposed with different PCE concentrations and incubated. After 

incubation the effect of the different concentrations of PCE on MCF12A and MCF7 breast 

cancer cells was analyzed using various tests. For cytotoxicity, metabolic activity and DNA 

synthesis performance LDH, MTT and BrdU proliferation assays were used respectively.  

In the elder flower publication, trophoblast tumor cell lines BeWo and JEG-3, as well as 

MCF7 breast cancer cells were exposed and then incubated at different EFE 

concentrations. Cells remaining untreated served as test controls. In supernatant cells 

estradiol production was tested using an ELISA method. Changes induced by EFE in 

ER/PR expression were analyzed by immunocytochemistry.  

It was demonstrated that the plants investigated contain a substantial amount of 

phytoestrogens. Moreover, both plants demonstrated anti-cancerogenic properties on 

breast cancer cell lines by means of receptor expression patterns and the inhibition of cell 

proliferation. If the effects observed are only caused by phytoestrogen action remains 

unclear. Further investigations on different breast cancer cells and with the isolated 

phytoestrogen substances is needed before proper clinical investigations can be planned.   
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2. PUBLICATIONS INCLUDED IN THIS THESIS  
 
 2.1. Publication 1 

 
Title:  

The Effects of Petroselinum Crispum on Estrogen Receptor-positive Benign and Malignant 

Mammary Cells (MCF12A/MCF7). 

 

Authors: 

Schröder L, Koch J, Mahner S, Kost BP, Hofmann S, Jeschke U, Haumann J, Schmedt J, Richter DU. 

Journal:  

Anticancer Res. 2017 Jan;37(1):95-102. 

Abstract:  

BACKGROUND:  

Phytoestrogens have controversial effects on hormone-dependent tumors. Herein we investigated 

the effects of parsley root extract (PCE) on DNA synthesis performance, metabolic activity and 

cytotoxicity in malignant and benign breast cells. 

MATERIALS AND METHODS:  

The PCE was prepared and analyzed by mass spectrometry. MCF7 and MCF12A cells were 

incubated with various concentrations of PCE and analyzed for DNA synthesis performance, 

metabolic activity and cytotoxicity by BrdU proliferation, MTT and LDH assays, respectively. 

RESULTS:  

PCE was found to contain a substantial ratio of lignans. At a concentration range of 0.01 μg/ml-

100 μg/ml the LDH assay analysis showed no significant cytotoxicity of PCE in both cell lines. 

However, at 500 μg/ml PCE's cytotoxicity was well over 70% of total cell population in both cell 

lines. According to the BrdU proliferation assay analysis, PCE demonstrated significant DNA 

synthesis inhibition of up to 80% at concentrations of 10, 50, 100 and 500 μg/ml in both cell lines. 

Based on the MTT assay analysis, only at a concentration of 500 μg/ml, PCE demonstrated a 

statistically significant inhibition of cellular metabolic activity of 63% in MCF7 and 75% in 

MCF12A of their  

https://www.ncbi.nlm.nih.gov/pubmed/?term=Schr%C3%B6der%20L%5BAuthor%5D&cauthor=true&cauthor_uid=28011479
https://www.ncbi.nlm.nih.gov/pubmed/?term=Koch%20J%5BAuthor%5D&cauthor=true&cauthor_uid=28011479
https://www.ncbi.nlm.nih.gov/pubmed/?term=Mahner%20S%5BAuthor%5D&cauthor=true&cauthor_uid=28011479
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kost%20BP%5BAuthor%5D&cauthor=true&cauthor_uid=28011479
https://www.ncbi.nlm.nih.gov/pubmed/?term=Hofmann%20S%5BAuthor%5D&cauthor=true&cauthor_uid=28011479
https://www.ncbi.nlm.nih.gov/pubmed/?term=Jeschke%20U%5BAuthor%5D&cauthor=true&cauthor_uid=28011479
https://www.ncbi.nlm.nih.gov/pubmed/?term=Haumann%20J%5BAuthor%5D&cauthor=true&cauthor_uid=28011479
https://www.ncbi.nlm.nih.gov/pubmed/?term=Schmedt%20J%5BAuthor%5D&cauthor=true&cauthor_uid=28011479
https://www.ncbi.nlm.nih.gov/pubmed/?term=Richter%20DU%5BAuthor%5D&cauthor=true&cauthor_uid=28011479
https://www.ncbi.nlm.nih.gov/pubmed/28011479
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respective normal capacity. 

CONCLUSION:  

PCE showed anti-proliferative effects in MCF7 and MCF12A cells. Further investigation is required 

to determine whether this effect can be solely attributed to its phytoestrogens. 
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Abstract. Background: Phytoestrogens have controversial 

effects on hormone-dependent tumors. Herein we investigated 

the effects of parsley root extract (PCE) on DNA synthesis 

performance, metabolic activity and cytotoxicity in malignant and 

benign breast cells. Materials and Methods: The PCE was 

prepared and analyzed by mass spectrometry. MCF7 and 

MCF12A cells were incubated with various concentrations of 

PCE and analyzed for DNA synthesis performance, metabolic 

activity and cytotoxicity by BrdU proliferation, MTT and LDH 

assays, respectively. Results: PCE was found to contain a 

substantial ratio of lignans. At   a concentration range of 0.01 

μg/ml-100 μg/ml the LDH assay analysis showed no significant 

cytotoxicity of PCE in both cell lines. However, at 500 μg/ml 

PCE’s cytotoxicity was well over 70% of total cell population in 

both cell lines. According to the BrdU proliferation assay 

analysis, PCE demonstrated significant DNA synthesis inhibition 

of up to 80% at concentrations of 10, 50, 100 and 500 μg/ml in 

both cell lines. Based on the MTT assay analysis, only at a 

concentration of 500 μg/ml, PCE demonstrated a statistically 

significant inhibition of cellular metabolic activity of 63% in 

MCF7 and 75% in MCF12A of their respective normal capacity. 

Conclusion: PCE showed antiproliferative effects  in MCF7 and 

MCF12A cells. Further investigation is required to determine 

whether this effect can be solely attributed to its phytoestrogens. 
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Breast cancer, alongside bronchial and colorectal cancer, is one of 

three most commonly diagnosed cancers in women.   It accounts 

for almost one third of all cancers diagnosed in women (1). The 

most prevalent type of breast cancer (65%)  is estrogen (ER) and 

progesterone (PR) receptor-positive (2). For all patients 

diagnosed with hormone receptor positive breast cancer, 

endocrine therapy is recommended either with tamoxifen, a 

selective estrogen receptor antagonist (SERM) or with an 

aromatase inhibitor, depending on the menopausal status and 

comorbidities. Although endocrine therapy has led to a 

considerable decline in breast cancer mortality, endocrine 

resistance often causes disease progression, leading to 

metastasis with a poor 5-year relative survival outcome (23%) 

(3). 

Phytoestrogens are a group of plant-derived polyphenolic 

compounds, their chemical structures resemble that of estrogen 

(4). Due to their molecular structures these compounds can bind 

and interact with human ER and PR resulting in both estrogen and 

anti-estrogen effects (5, 6). Because phytoestrogens are abundant 

in human and animal food sources, it has been suggested that they 

can influence hormone-dependent cancers. Besides interacting 

with ER and PR, phytoestrogens may contribute to low cancer risk 

by inhibiting aromatase enzymatic activity, decreasing CYP19 

gene expression in human tissues (7) and by other biochemical 

actions identified that lead to tumor suppression and inhibition of 

neovascularization (8, 9). Moreover, phytoestrogens have been 

applied as an alternative to hormone replacement therapy. In 

menopausal women, besides improving the cardiovascular 

system, the lipid and bone metabolism, they also positively affect 

major symptoms such as hot flushes and mood swings (10, 11). 

Parsley root (Petroselinum crispum) is a perennial and herbaceous 

plant. It originated in the Mediterranean region and is cultivated 

as a dietary and medicinal plant. Parsley root is used in traditional 

and folklore medicines for digestive disorders, kidney and liver 

problems, menstrual  irregularities 
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and for detoxification. It contains a substantial amount of 

vitamin C and constitutes as a good source of iron, potassium, 

calcium, manganese and folic acid (12, 13). The active 

compounds identified in Petroselinum crispum are phenolic 

compounds, flavonoids (particularly apigenin, apiin and 6- 

acetylapiin) and essential oils – mainly myristicin and apiol (14). 

Also notable are the photosensitizing furocoumarines bergapten 

and isoimperatorin in the root that increase the photosensitivity 

of the skin and are associated with an increased incidence of 

malignant melanoma (15). 

Research on the presence of phytoestrogens in parsley root has 

attracted little attention. Only the research team led by 

M. Yoshikawa demonstrated that the methanolic extract from 

the aerial parts of Petroselinum crispum showed potent 

estrogenic activity, which was equal to that of isoflavone 

glycosides from soybean. In addition, they demonstrated that the 

methanolic extract of parsley, apiin and apigenin restored the 

uterus weight in ovariectomized mice when orally administered 

for seven consecutive days (16). 

Due to the interesting characteristics of parsley root described 

above, the current in vitro study aims to identify the molecular 

chemical composition of parsley root extract (PCE) by mass 

spectrometry and to evaluate the potential phytoestrogen effects 

of PCE in terms of DNA synthesis performance (BrdU 

proliferation assay), metabolic activity (MTT assay) and 

cytotoxicity (LDH assay) on MCF7 breast cancer and MCF12A 

benign breast cell lines. Furthermore, the receptor status of 

MCF7 and MCF12A cells will be determined by 

immunohistochemical staining of ERα, ERβ and PR. 

Materials and Methods 

Origin of the PCE. The parsley root (Petroselinum crispum subsp. 

tuberosum) was grown, harvested and obtained commercially in 2011 

in Mecklenburg-Western Pomerania, at vegetable farming Hofer 

Neubrandenburg. 

Preparation of the PCE. The lignan-isolations were prepared as 

previously described (17-18). Deep frozen (–20˚C) parsley root  (40 

g) was cut into pieces of 5 mm. The pieces were ground in a mortar with 

liquid nitrogen and extracted under reflux with 360 ml methanol 

(methanol 99.5%; Roth, Karlsruhe, Germany) in a water bath at 75˚C. 

The extract was suspended in 10 ml of distilled water and partitioned 

with 16 ml ethyl acetate (five times) to give on drying an ethyl acetate 

soluble residue. After cooling the sample,   the larger components were 

removed twice by using a folded filter (diameter: 185 mm; Schleicher 

und Schuell GmbH, Dassel, Germany). The solution was then 

evaporated in a 100 ml round bottom flask using a rotational damper 

(VV2011, Heidolph Instruments GmbH & Co.KG, Schwabach, 

Germany) under uniform reduction of pressure from 350 mbar to 

approximately 100 mbar. Adhering extract to the wall of the round 

bottomed flask was removed with 10 ml distilled water and then 

dissolved in an ultrasonic bath (Ultrasonics (300/H); Omnilab, Bremen, 

Germany) and extracted 5 times with 16 ml ethyl acetate (99.5%; 

Roth, 

Karlsruhe, Germany) in a 50 ml Falcon tube. This process leads to 

significant phase separation into a lower, denser phase (water phase), 

and an upper phase (lipid phase, containing lignans). The upper phase 

was carefully aspirated by a pasteur pipette and transferred to a 50 ml 

round bottomed flask. The sample was again evaporated in a rotational 

evaporator at 45˚C, under a uniform decrease in pressure from 400 

mbar to about 250 mbar. The evaporated extract was dried overnight 

using a desiccator (with dried silica). To determine the net weight of 

the extract, the difference of the tare of the round bottom flask and the 

weight of   the flask with dried extract was made (MC1 Analytic scale 

AC120S; Sartorius GmbH, Göttingen, Germany). The extract was 

stored protected from light in a refrigerator at 4˚C. 

In order to verify the previously reported increased phytoestrogen 

concentration in PCE the molecular–chemical composition of the 

extract was further analyzed by pyrolysis-field ionization mass 

spectrometry by using a LCQ-Advantage (Thermo Finnigan’s city  & 

state). The peaks were identified by ion trap technology on ESI mode. 

The source voltage was set at 4.5 kV while the mass detection range 

was 150-2000 amu. 

 
Creation of different PCE concentrations. After determining the weight 

of the extract it was dissolved with 96% ethanol (Roth, Karlsruhe, 

Germany) in an ultrasonic bath (Ultrasonics (300/H); Omnilab, Bremen, 

Germany) and the concentration of 100 mg/ml was determined (stock 

solution). For the following test series, 7 dilutions (excl. the stock 

solution) were set at the concentrations of 50,000 - 10,000 - 5,000 - 

1,000 - 100 - 10 - 1 μg/ml. The extract was then 

further diluted, 1:100 giving the final concentrations 500 - 100 - 50 - 10 

- 1 - 0.1 to 0.01 μg/ml. The dilutions were frozen at –85˚C. 

 
Cell lines. The ER-positive, malignant breast cancer cell line MCF7 and 

the ER-positive, benign breast cell line MCF12A were used. Both cell 

lines were obtained commercially from the American Type Culture 

Collection (ATCC) and for further use in 1.5 ml culture medium (PAA, 

Germany) + 10% DMSO + 20% fetal calf serum (fetal bovine serum, 

Biochrom, Germany) stored at –180˚C. 

Cell culture. After slow thawing, the cryopreserved cells were washed by 

5 ml cell type-specific medium. For MCF7 cells, DMEM, high Glucose 

4.5g (PAA, Germany), for MCF12A, Ham’s F12 medium (PAA 

Germany) were used. For this, the cell suspension was carefully pipetted 

into 15 ml tubes and diluted with 5 ml culture medium. After vortexing 

and subsequent centrifugation for 5 min at 1000 rpm (centrifuge 

Universal 320R Hettich Zentrifugen, Gemany), the supernatant was 

discarded. The cells were re-suspended in 5 ml culture medium, 

transferred to 25-cm2 cell culture flasks (Biochrom, Germany) and 

incubated at 37˚C, 5% CO2 for 2-3 days. At a confluence rate of 80%, 

the medium was changed and the cells were splitted in a larger culture 

flask (75 cm2, 150 cm2, Biochrom, Germany). The cells were rinsed with 

phosphate buffered saline (PbS: Dulbecco’s PbS powdered buffer, 

without Ca & Mg, PAA, Germany) to remove the upper layer of protein 

on the cells which would prevent an effective engagement of the trypsin 

before incubating them with trypsin (10%, trypsin EDTA, PAA, 

Germany) for 5 min at 37˚C. The reaction was stopped by adding 

DMEM (DMEM High Glucose (4,5g) 

+L-glutamin; without phenol red, PAA, Germany). The complete 

detachment of the cells was monitored by light microscopy. Following 

centrifugation for 5 min at 1000 rpm, the supernatant was discharged 

and cells were re-suspended in 5 ml cell-specific medium. For MCF7,



 

20 
 

Schröder et al: Effects of Petroselinum Crispum on Benign and Malignant Mammary Cells 

 

Table I. Salient features of the antibodies used in the present study. 
 

Antibody/Source Origin Dilution in PBS Incubation Temperature 

Anti – ERα, (Dako, Germany) Mouse monoclonal 1:150 1h RT 

Anti – ERβ,  (Serotec, Germany) Mouse monoclonal 1:600 O/N 4˚C 

Anti – PR, (Dako, Germany) Mouse monoclonal  1:50  1h RT 

O/N: Overnight, RT: room temperature. 

 
 

10% FKS, (PAA, Germany), for MCF12A, 10% Horseserum, (SIGMA, 

Germany) were used. Penicillin/Streptomycin 0.2% (PAA, Germany) and 

Amphotericin B 0.5% (PAA, Germany) were added to both cell lines. 

Cell counting. Despite the fact that cell proliferation depends on the cell 

concentration and that cells need contact with neighboring cells in order 

to grow, when cell count is elevated nutrient shortages occur that may 

lead to apoptosis. The optimal cell concentration, determined by previous 

studies was set at 5×105 cells/ml (19). Most cell vitality assays that allow 

cell count determination are based on the change in membrane 

permeability of dead cells. Vital cells are impermeable for dyes such as 

trypan blue. Therefore, only the colorless cells are counted in phase 

contrast microscopy. To cell count, 20 μl of the cell suspension were 

diluted with 340 μl of cell culture medium and then combined with 20 μl 

trypan blue (corresponding dilution 1:20). To avoid trypan blue staining 

of intact cells, prompt counting was done. For this, about 20 μl of the 

probe was added to both sides of a Bürker cell counting chamber. 

Counting was done under a phase contrast microscope at a magnification 

of 100×. 

General and statistical considerations. In all tests, a positive control 

(17β-estradiol, E2) and a negative control (tamoxifen, TAM) were carried 

along with the extract in different concentrations levels. Preliminary tests 

done using the same workgroup yielded optimal concentrations for E2: 

10–9 mol/l and TAM: 10–4 mol/l. All calculations of the results were 

performed using Microsoft Excel considering the standard deviation. 

Statistical analysis was performed using the t-test. Each observation with 

p<0.05 was considered as statistically significant. 

Measurement of cytotoxicity by LDH assay. The LDH assay (Roche, 

Mannheim, Germany) was performed in accordance with the 

manufacturer’s instructions. Best results were achieved after incubation 

of treated cells (5×105 cells/ml) for 24 h in the absence (controls: TAM, 

E2) or the presence of PCE at different concentrations. Maximum LDH 

release (high control) was determined by incubating cells with Triton 

X-100 at 1% final concentration (Ferak, Berlin, Germany). Untreated 

cells were used  to determine spontaneous LDH release (low control). 

After incubation, cells were gently centrifuged for 5 min 1,000 rpm. 

Subsequently, cell-free supernatants were carefully removed and 

transferred into a new 96-well microplate. Supernatants were mixed 1:1 

with freshly prepared reaction mixture and incubated protected from light 

for 30 min at room temperature. The principle of the assay is based on a 

LDH/diaphorase coupled reaction with creation of a red colored 

formazan. Absorbance of the color was measured   at 490 nm (620 nm 

wave length was used as a reference). 

Proliferation measurement: MTT assay. Cell proliferation was analyzed 

using an MTT-kit according to the instructions of the manufacturer 

(Roche, Germany). After incubation of treated cells (5×105  cells/ml) for 

24 h in the absence (controls: TAM, E2, N2)   or presence of PCE at 

different concentrations, MTT labelled reagent was added to each well 

in a final concentration of 0.5 mg/ml. Subsequently, cells were incubated 

under culture conditions for 4 h. During this time the metabolic active 

cells transformed the yellow tetrazolium salt MTT to purple colored 

formazan crystals. After addition of the solubilization solution the plates 

were incubated overnight in a humidified atmosphere at 37˚C. With a 

microplate reader (Model 680, Bio-Rad, Hercules, CA, USA) the color 

intensity was measured at 570 nm using a reference wave length of 650 

nm. 

BrdU proliferation-assay. Cell proliferation was analyzed with a 5- 

bromo-2’-deoxy-uridine (BrdU) labelling and detection kit (Roche, 

Germany) according to the instructions of the manufacturer. MCF7 and 

MCF12A cells (5×105 cells/ml) were grown in 96-well tissue culture 

plates for 24 h in the absence (controls: TAM, E2, N2) or presence of 

PCE at different concentrations. After labelling with BrdU for 3 h, the 

cells were fixed and BrdU incorporation into DNA was measured by an 

ELISA technique. Cellular proliferation inhibition is expressed in 

relation to controls (100%)±SD. 

Immunohistochemical staining for the ERα, ERβ and PR. For immuno-

detection of the steroid receptors ERα, ERβ and PR, the Vectastain R Elite 

ABC-kit (Vector Laboratories, USA) was used according to 

manufacturer’s protocol. The slides were first air dried, rinsed in PBS for 

5 min and then incubated with the ABC normal serum for 60 min in a 

humidified environment. The slides were then washed again and 

incubated with the respective primary antibodies. Salient features of the 

antibodies used are presented in Table I. The slides were then incubated 

with the diluted biotinylated secondary antibody (30 min), followed by 

incubation with the ABC reagent  (30 min) and the ABC substrate (15 

min). A single wash (PBS, 5 min) was applied between steps. Finally, 

the slides were counterstained with Mayer’s acidic hematoxylin (30 

sec), rinsed with water and covered with Aquatex. 

Results 

Immunohistochemistry. Expression of ERα, ERβ and PR 

receptors was evaluated in MCF7 and MCF12A cells (Figure 1). 

A negative control measurement was carried out in which instead 

of the primary antibody only secondary antibodies were added to 

show possible non-specific fluorescence signals. In both cell lines 

secondary antibodies were 
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Figure 1. Expression of hormone receptors in cell culture systems (MCF7 & MCF12A) used for the study. 

 

 
 

negative, ruling out non-specific fluorescence signals. ERα 

demonstrated the strongest expression in both cell lines. ERβ 

and PR were less pronounced and comparable in intensity. 

MCF12A cells expressed lower levels of all receptors tested 

compared to MCF7 cells, which can be due to the benign nature 

of MCF12A and its lower metabolic activity and growth rate. 

LDH cytotoxicity assay. The lactate dehydrogenase assay 

(LDH assay) indicates non-specific cytotoxic effects of the 

given extract that are measurable by enzymatic reactions of 

LDH. LDH is a cytosolic enzyme that is released from dead 

cells, making its concentration suitable as a quantitative 

indicator of cell death. As a positive control and to establish  a 

reference value, cells were incubated with 1% Triton X- 100, 

resulting in complete cell death. LDH activity in these controls 

was, therefore, set at 100%. Figure 2 shows that no significant 

cytotoxicity was observed at concentrations of 

0.01 μg/ml to 100 μg/ml. Also estradiol (E2) did not cause 

significant cytotoxicity. However, significant cytotoxicity 

(p<0.01) was caused by PCE at the concentration of 500 μg/ml 

in up to 80% of the cells of both cell lines (MCF7: 74.9±36.6%, 

MCF12A: 81.5%±14.7%), which is approximately equivalent to 

the effect observed with TAM (MCF7: 69.6%±22.6%, 

MCF12A: 98.7%±1.7, p<0.01). 

DNA synthesis performance: BrdU proliferation assay. The 

bromodeoxiuridine (BrdU) proliferation assay provides insights 

into the DNA synthetic capacity of cells, making it a suitable 

marker for cell proliferation. During the DNA synthesis phase of 

the mitotic cycle, cells build the added base analogue BrdU into 

their genome. An antibody directed against BrdU catalyzes a 

colour reaction whose intensity 

directly correlates with the synthetic capacity of the cells. As a 

reference value, the negative control (N2, ethanol/DMSO) was 

set at 100%. Figure 3 compares proliferation rates of MCF7 and 

MCF12A cell lines incubated with the respective extract 

concentrations. PCE showed less pronounced antiproliferative 

effects in MCF12A cultures compared to MCF7, as more 

significant results were obtained using MCF7 cells. At PCE 

concentrations of 0.01, 0.1 and 1 μg/ml, little growth inhibition 

of MCF12A cells (max. 15%, at PCE 

0.1 μg/ml: 85.5%±5.6%, p<0.01) was demonstrated. At the 

concentrations of 50 and 100 μg/ml the antiproliferative effect of 

PCE in MCF12A intensified, and statistical significance was 

demonstrated (50 μg/ml: 56.7%±13.8%, p<0.01, 100μg/ml: 

61.1%±14%, p=0.01). At 500 μg/ml extract concentration, 

significant inhibition of proliferation of 84.5% was noted 

(15.5%±11.7%, p=0.01) in MCF12A cells. In MCF7 cells, the 

PCE concentration of 0.01 μg/ml caused, compared to the 

concentrations of 1 and 0.1 μg/ml an increased, although not 

significant inhibition of cell proliferation of approximately 40% 

(61.77%±13.0%, p=0.08). Statistical significant inhibitions over 

40% were demonstrated in MCF7 cells at the concentration 

levels of 10, 50, 100 and 500 μg/ml. The strongest inhibition of 

proliferation in MFC7 cells of approximately 80% was observed 

at a PCE concentration of 100 μg/ml (19%±2.7%, p<0.01). 

Cellular metabolic activity: MTT cell viability assay. 

Metabolically-active cells have high activity of the 

mitochondrial enzyme succinate dehydrogenase, whose 

catalytic activity can be measured directly by a color reaction. 

High color intensities indicate increased metabolism and cell 

viability. As a reference value, the negative control N2 was set 

to 100%. In MFC7 and
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Figure 2. LDH test of the PCE (μg/ml) on MCF7 and MCF12A cells for the 

assessment of cytotoxicity. Values are given as a percentage of the triton 

control (100%). *Marks values below the significance level of α=5%. 

Figure 4. MTT cell viability assay of the PCE at different concentrations 

(μg/ml) on MCF7 and MCF12A cellscfor the assessment of cellular 

metabolic activity. Values are given as a percentage of negative control  2 

(N2). *Marks values below the significance level of α=5%. 

 

 
 

  

Figure 3. BrdU proliferation test of the PCE in different concentrations 

(μg/ml) on MCF7 and MCF12A cells for the assessment of cell proliferation. 

Values are given as a percentage of negative control 2 (N2). *Marks values 

below the significance level of α=5%. 

 

 

 
MCF12A cell lines, both inhibitory and proliferative effects of 

PCE were demonstrated. At PCE concentration levels of 

0.01 μg/ml to 10 μg/ml, weak effects in both cell lines were 

observed (Figure 4). Generally, metabolic activity was lower in 

MCF12A cells than in MCF7 cells, except at PCE concentration 

of 100 μg/ml (MCF12A: 155.7%±6.3%, p<0.01, MCF7: 

144.9%±34.5%, p<0.01). Nevertheless, statistically significant 

results were found for all MCF12A concentrations, in contrast 

to MCF7 cells, were increased 

Figure 5. Comparison of the main classes of organic extract components 

between untreated parsley root (PW) and a parsley root extract (PWE, 100 

mg/ml, according to Luyengi et al.). The mean values are shown from 3 

measurements, expressed as a percentage of the total ion intensity (TI). 

LIPID=Alkanes, alkenes, aldehydes, alcohols, fatty acids, n-alkyl esters, 

waxes, fats; NCOMP=N-containing compounds; ISOPR=isoprenoid 

compounds (sterols, terpenes, carotenoids); PEPTI=peptides and free amino 

acids; LOWMW=low molecular weight compounds m/z 15 to 56; 

POLYPH=other polyphenols (suberin, cutin, stilbene, tannins, etc.). 

 

 

 
metabolism and significant results were achieved only at 

concentration levels of 100 μg/ml (proliferative effect, 

144.9%±34.5%, p<0.01) and 500 μg/ml (inhibitory effect, 

37.0%±9.3%, p<0.01). Strong, significant inhibition of cell
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growth and metabolic activity was demonstrated in both cell 

lines at PCE concentration of 500 μg/ml, 37.0%±9.3% (p<0.01), 

cell viability for MCF7 cells and 24.4%±4% (p<0.01) for 

MCF12A cells. No influence on cell viability was observed by 

E2. However, Tamoxifen caused significant cytotoxicity and thus 

reduced metabolic activity in both cell lines (MCF7: 

3.8%±0.9%, p<0.01, MCF12A: -14.0%±5.4%, p<0.01). 

Pyrolysis/FI mass spectrometry. The results from pyrolysis 

mass spectrometry were compared with masses of different 

substance classes from public databases. In Figure 5 the main 

categories identified are presented with the respective 

percentage of the substance class from the total ion intensity. 

Untreated parsley root (PC) showed high carbohydrate and lipid 

fractions (18.6% and 12.3% respectively). Peptides and free 

amino acids are represented with 8.1%, as the third largest 

group. The extraction process caused a shift of the respective 

proportions of substances classes, resulting in less carbohydrates 

(2.1%), more lipids (18.2%) and more isoprenoids (14.1%) in 

PCE compared to PC. Together, the fractions monolignols, 

lignin dimers, lignans, flavones, isoflavones and other 

polyphenols (PHLM, LDIM, LIGNA, FLAVO, ISOFL, 

POLYO) represent the group of phytoestrogens (PC: 17%; PCE: 

16.6%). 

Discussion 

In this study we demonstrated that PCE has cytotoxic, 

inhibitory and anti-proliferative effects on cultures of both  

the benign MCF12A and cancer-derived MCF7 cell lines. The 

BrdU proliferation assay was used as the main method  to 

detect inhibitory or stimulatory effects of PCE. To verify its 

accuracy, a LDH assay was performed to determine 

cytotoxicity. In both cell lines and at all PCE concentration 

levels with the notable exception of 500 μg/ml, no 

substantial increase in LDH activity was observed. In 

combination with the BrdU assay, these results suggest 

antiproliferative effects of PCE not related to cytotoxicity. 

So far, the exact cytotoxic effects of PCE remain unknown. 

However, according to Dorman et al. it is likely that at high 

concentrations, toxicity is not mediated by caspase 3 apoptosis 

pathways but by strong pro-oxidative effects (20). Other 

possible apoptosis pathways are intrinsic signal molecules 

(cytochrome c, p53, p21) which can be activated by isoflavones, 

such as genistein (21, 22), apigenin 

(23) and lignans (24). 

The BrdU assay showed little to no effect of PCE in both cell 

lines at low concentrations, but at higher concentrations (≥10 

μg/ml) the following strong inhibitory effects: a reduction of cell 

proliferation by 42% in MCF12A (at 50 μg/ml) and by 80% in 

MCF7 cell lines (at 100 μg/ml). In further studies the effect of 

PCE at the given different concentrations on ERα/ERβ/PR 

expression and the assessment by 

immunocytochemistry could clarify whether it is likely that 

MCF12A as a benign cell line is less sensitive to possible anti- 

estrogenic properties of PCE due to a decreased receptor 

expression compared with malignant MCF7 cells. 

A stronger inhibition was demonstrated in MCF12A cells at the 

concentration of 500 μg/ml, attributable to increased 

cytotoxicity and the associated cell loss. Paradoxically, in MCF7 

cells PCE demonstrated a weaker inhibition of cell proliferation 

at 500 μg/ml than at 100 μg/ml, despite cell death rates of up to 

75%. Accordingly, the remaining intact cells (25%) would have 

to operate at a higher synthesis performance than, in this case, 

90% of the cells at a PCE concentration of 100 μg/ml. Similar 

results were obtained by Moorghen et al. (25). They concluded 

that a higher proliferation rate compensates the cells under 

apoptosis (secondary effect). However, the low MTT assay 

values contradict this assumption. At a PCE concentration of 

500 μg/ml, when high cytotoxicity was reported, low metabolic 

activity in both cell lines (max. 37%) was registered. 

Interestingly, in MCF12A and MCF7 cells that demonstrated an 

inhibition of proliferation at the PCE concentrations of 100 

μg/ml and 50 μg/ml, excessive metabolic activities were 

reported (max. 155% in MCF12A cells or max. 145% in MCF7 

cells). A potential explanation is the already mentioned 

compensatory secondary effect which was also reported by 

Abarzua et al. in MCF7 cell lines with similar values (26). 

Moreover, in the E2 control no stimulatory effect on MCF7 cells 

was observed. Therefore, PCE-induced enhancement of viability 

at 100 and 50 μg/ml is probably not related to an ER-mediated 

process. Other possibilities that increase cellular viability at 100 

and 50 μg/ml could be the activation of protective or resistance 

pathways (elimination of the active compounds by MDR 

transporters, metabolic detoxification, activation of alternative 

metabolic pathways). At low PCE concentrations (10 μg/ml-

0.01 μg/ml) no eminent metabolic changes were visible, 

matching the weakly altered proliferation status of the MCF7 

and MCF12A cells. 

Only one other study investigating the phytoestrogen effects of 

Petroselinum crispum on MCF7 cell lines exists 

(16) where the influence of parsley leaf extracts and other 

isolates on MCF7 breast cancer cell lines was investigated. The 

methanol extract showed progesterone-like properties 

associated with increased proliferation rates of up to 156%  (at 

a concentration of 10 μg/ml). However, the cell proliferation 

was not measured by BrdU but only with the MTT assay. It 

reported similar MTT values (155% at a concentration of 100 

μg/ml in MCF12A cell cultures). However, it remains unclear 

to what extent the cellular metabolic activity is linked with 

the proliferation rate. 

In all assays, estrogen was used as a positive control. In both cell 

lines it demonstrated no significant cytotoxicity and 

proliferation compared with the negative control. Previous 

works using the same cell lines demonstrated similar results 
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(27, 28). It is likely that both receptor subtypes (ERα/ERβ) are 

activated by E2, whereby ERβ intracellularly suppresses the 

proliferative effect of ERα. Thus the ratio of the expression of 

ERα/ERβ would be decisive for the different proliferation 

patterns of the cells. Immunohistochemistry analysis showed that 

both ERα and ERβ are present on cells (Figure 1). Looking at the 

images, it is evident that the ERβ expression is weaker but likely 

strong enough to inhibit ERα mediated cell proliferation. 

TAM, which was used as a negative control is a SERM used for 

the treatment of hormone-sensitive breast cancer for already more 

than twenty years. It acts as a competitive inhibitor or partial 

agonist on the ER. On breast cancer cell lines it has an inhibitory 

effect (29). Correspondingly, a high cytotoxicity and a low 

metabolism and proliferation were observed in both cell lines 

treated with TAM. 

Previous results demonstrated that PCE has anti- carcinogenic 

properties. The question of whether and to what extent 

phytoestrogens are involved cannot be answered precisely. For 

this reason, mass spectrometry was performed which provided 

information on the different extract components. In order to 

determine the efficiency of the extraction method used based on 

the Luyengi et al. study, a sample of 5 mg raw material (PC) was 

analyzed in addition  to the extract sample. 

Mass spectrometry of PCE and PC demonstrated a loss of 

carbohydrates, monolignols, and nitrogen-containing 

compounds as well as free amino acids in PCE compared to PC. 

Except for the monolignols these compounds are not probable 

constitutes of phytoestrogens. An increase in concentration was 

registered in the groups of lipids, isoprenoids, lignindimeres, 

lignans and other polyphenols. Particularly the latter three 

groups are known to have phytoestrogen activity. This leads to a 

total sum of 16.6% phytoestrogen compounds in the PCE. The 

isoprenoids group contains sterols such as cholesterol (animal) 

and ergosterol (fungi/protozoa). Other metabolites can form 

steroids or steroid hormones like estradiol. It seems likely that 

isoprenoids may have estrogenic activity. Further, non- 

estrogenic effects can be found in the group of lipids: free fatty 

acids inhibit cell proliferation through activation of peroxisome 

proliferator-activated receptors PPARα and PPARγ, which bind 

as transcription factors to the promoters of retinoid X receptors, 

regulating the expression of various genes  (30,  31).  In  MCF7  

breast  cancer  cells,  PPARγ 

counteracts the transcription factor NFĸB, inducing the promoter 

of p53 to drive apoptosis (32). Also, the group the alkyl esters 

cytotoxic effects have been assigned: n-alkyl ester as a basic 

component of the (methyl) acrylates have lipophilic side groups 

that mediate cytotoxicity (33). Due to the overall high percentage 

of lipids (18.2%) in PCE it cannot be ruled out that 

phytoestrogens exhibit little or no influence on its overall effect. 

Therefore, in further studies, 

lipopolysaccharide could be used as an additional control 

substance to demonstrate the extent to which lipids are involved 

in the observed effects. 

So far, few studies have been conducted with extracts of 

Petroselinum crispum. Differently to our study, Yoshikawa  et al. 

used a methanol extract of the leaves, but not of the  root (16). By 

means of high pressure liquid chromatography various fractions 

were separated and subsequently detected by electron impact 

mass spectrometry. Ten individual substances were identified, of 

which five possess proven anti-estrogenic properties: apigetrin, 

apiin, diosmetin, kaempferol, 6-acetylapiin (all from the group 

of flavone glycosides, which also include the strong growth 

inhibitors genistin and daidzein). Furthermore, an increase in 

uterine weight of ovariectomized mice fed with the parsley leave 

extract was observed, which suggests progesterone like growth-

promoting effect. 

This work proved that PCE causes anti-carcinogenic effects on 

MCF7/MCF12A cell lines. Growth inhibitory potency of parsley 

root extract (PCE) on MCF7 mammary tumor cells at non-toxic 

concentrations (up to 100 μg/ml) was reported. Complementary 

observation of a less marked inhibition on related MCF12A 

benign cells suggests an ER-mediated process. Whether this 

apparent anti-carcinogenic effect of PCE can be solely attributed 

to its phytoestrogens requires complementary investigations. As a 

possible approach to determining the role of hormone receptor 

mediated cell response, PCE could be tested on malignant and 

benign ER- negative cells (e.g. BT-20/MCF-10A). Additional 

control substances to assess the lipid signal pathway, such as 

lipopolysaccharide could demonstrate the extent to which lipids 

are involved in the effects observed. Furthermore, fractional 

chromatography could provide information of the individual 

substances and their impact on breast cancer cell lines. 

Cytotoxicity could be evaluated in detail by 

immunohistochemistry or RTQ-PCR quantification apoptosis 

induced markers like, p53, p21, BCL2 and Caspase 8/9. Other 

extraction methods besides the ones used (17) could probably 

create qualitatively improved extracts (e.g., water extraction, 

resuspension of the dry extract in various solvents). 
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Abstract:  

Herein we investigated the effect of elderflower extracts (EFE) and of 

enterolactone/enterodiol on hormone production and proliferation of trophoblast tumor 

cell lines JEG-3 and BeWo, as well as MCF7 breast cancer cells. The EFE was analyzed by 

mass spectrometry. Cells were incubated with various concentrations of EFE. Untreated 

cells served as controls. Supernatants were tested for estradiol production with an ELISA 

method. Furthermore, the effect of the EFE on ER/ER/PR expression was assessed by 

immunocytochemistry. EFE contains a substantial amount of lignans. Estradiol production 

was inhibited in all cells in a concentration-dependent manner. EFE upregulated ER in JEG-

3 cell lines. In MCF7 cells, a significant ER downregulation and PR upregulation were 

observed. The control substances enterolactone and enterodiol in contrast inhibited the 

expression of both ER and of PR in MCF7 cells. In addition, the production of estradiol was 

upregulated in BeWo and MCF7 cells in a concentration dependent manner. The 

downregulating effect of EFE on ER expression and the upregulation of the PR expression 

in MFC-7 cells are promising results. Therefore, additional unknown substances might be 

responsible for ER downregulation and PR upregulation. These findings suggest potential 

use of EFE in breast cancer prevention and/or treatment and warrant further 

investigation. 
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Abstract: Herein we investigated the effect of elderflower extracts (EFE) and of enterolactone/enterodiol on 

hormone production and proliferation of trophoblast tumor cell lines JEG-3 and BeWo,  as well        as MCF7 

breast cancer cells. The EFE was  analyzed  by  mass  spectrometry.  Cells  were  incubated with various 
concentrations of EFE. Untreated cells served as controls. Supernatants were tested for estradiol 

production with an ELISA method. Furthermore, the effect of the EFE on ERα/ERβ/PR expression was 
assessed by immunocytochemistry. EFE contains a substantial amount of lignans. Estradiol production was 

inhibited in all cells in a concentration-dependent manner. EFE upregulated ERα in JEG-3 cell lines. In 

MCF7 cells, a significant ERα downregulation and PR upregulation were observed. The control substances 

enterolactone and enterodiol in contrast inhibited the expression of both ER and of PR in MCF7 cells.  In 
addition, the production of estradiol was upregulated in BeWo   and MCF7 cells in a concentration 

dependent manner. The downregulating effect of EFE on ERα expression and the upregulation of the PR 

expression in MFC-7 cells are promising results. Therefore, additional unknown substances might be 

responsible for ERα downregulation and PR upregulation. These findings suggest potential use of EFE in 

breast cancer prevention and/or treatment and warrant further investigation. 
 

Keywords: lignans; isoflavones; elder flower; breast cancer; trophoblast tumor 

 

1. Introduction 

A growing body of data points to health benefits of phytoestrogens in diet and to possible 

pharmaceutical applications [1]. The two main groups of phytoestrogens, isoflavones and lignans, are 

polyphenolic compounds derived from plants with a molecular structure that closely resembles 

mammalian estrogens [2]. Due to their molecular structure, these compounds can bind and interact 

with human estrogen receptors (ER) resulting in both estrogen and anti-estrogen effects [3]. Thus, it 

is assumed that some phytoestrogens can be classified as selective estrogen receptor modulators 

(SERM) [4,5]. 
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Isoflavones are mostly found in legumes,  with the most common representative being soy  and its 

derivative products [6], making them more common in Asian diets, whereas lignans, more common 

in occidental diets, are usually found in seeds and fiber-rich cereals [7,8]. Their role in the pathogenesis 

of hormone-dependent malignancies, especially breast cancer, has been investigated using chemically 

pure isolates or product extracts in several in vitro or in vivo models [9–11]. Their effects as 

hormonally-active diet components have been excessively and controversially discussed [12,13]. 

Isoflavone extracts and supplements are often used for the treatment of menopausal symptoms and 

for the prevention of age-associated conditions, such as cardiovascular diseases and osteoporosis in 

postmenopausal women [12]. 

In humans the most important lignans are secoisolariciresinol and matairesinol [14]. 

After oral intake they are transformed by intestinal aerobe and anerobe flora into bioavailable 

enterolignans enterodiol and enterolactone [15]. 

Clinical studies proved that a high exposition to enterolignans reduced the risk of breast cancer by 

16% [16]. Moreover, increased blood concentrations of enterolactone in postmenopausal women are 

related with a significant reduction of breast cancer mortality [17]. 

With the goal of identifying potential sources of phytoestrogens and selecting those with beneficial 

functions, our group has tested, in prior trials, the phytoestrogen properties of pumpkin and flax seed 

lignan and isoflavone extracts on the proliferation of trophoblast and breast cancer cell lines [18,19]. 

Moreover, the effect of the phytoestrogens genistein and daidzein on human term trophoblasts and 

their influence on fertility was investigated [20]. 

Elder flower (Sambucus nigra) is a historically-significant herbal medicinal plant used for centuries 

as a cold remedy. It is used as a general nutritive tonic and due  to  its  strong  taste  as  a  flavor  enhancer 

in meals and beverages. Elder extracts possess significant antioxidant activity and have been shown to 

impair angiogenesis. The anthocyanins present in elderberries protect vascular epithelial  cells against 

oxidative insult, and reduce low-density lipoprotein (LDL) and cholesterol, therefore, preventing vascular 

disease [21]. Elder extracts boost  cytokine  production  [22].  The  influenza  A virus subtype H1N1 

inhibition activities of the elder flavonoids compare favorably to the known anti-influenza activities of 

oseltamivir and amantadine [23]. The terpenes extracted from elder flower show notably strong 

antimicrobial effects in vitro upon methicillin-resistant Staphylococcus aureus [24]. Moreover elder flower 

could improve bone properties by inhibiting the process of bone resorption and stimulating the process of 

bone formation [25]. 

Due to the interesting characteristics of elder flower described above, this in vitro study aims to identify 

the distribution of lignans and isoflavones in elder flower extracts (EFE) and evaluate the potential 

phytoestrogen effects of EFE on tumor trophoblast BeWo and JEG-3 cells and the ER-positive MCF7 breast 

cancer cell lines, and compare those with the effects of enterodiol and enterolactone. 

2. Materials and Methods 

2.1. Preparation of the EFE 

In total six EFE from the species Sambucus nigra were produced. Three lignan-isolations were 

prepared as previously described [26] and, afterwards, dissolved in 100% ethanol. In the aim to verify 

the previously-reported increased lignan concentration in elder flowers [27] the molecular–chemical 

composition of the extract was further analyzed by pyrolysis-field ionization mass spectrometry by 

using an LCQ-Advantage (Thermo Finnigan’s, Arcade, NY, USA). The peaks were identified by ion trap 

technology in electrospray ionisation (ESI) mode. The source voltage was set at 4.5 kV, while the mass 

detection range was 150–2000 amu. For the production of the three flavonoid extracts, the method 

previously described by Franz and Koehler was used [28]. 
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2.2. Cell Lines 

For the current work the chorion carcinoma cell lines JEG-3 and BeWo, and the breast carcinoma cell 

line MCF7, were used. All cell lines were obtained from the European Collection of Cell Cultures 

(ECACC, Salisbury, UK). The cells were grown in Dulbecco’s Modified Eagle Medium (DMEM) without 

phenol red (Biochrom AG, Berlin, Germany) supplemented with 10% heat-inactivated fetal calf serum 

(PAA Laboratories GmbH, Pasching, Austria), 100 µg/mL Penicillin/Streptomycin (Biochrom AG) and 

2.5 µg/mL Amphotericin B (Biochrom AG). Cultures were maintained in a humidified incubator at 37 
◦C with a 5% CO2 atmosphere. Prior to cell culture, the levels of estrogen or progesterone in the medium 

were measured, using an automated Immulite (DPC Biermann, Freiburg, Germany) hormone analyzer, 

in order to exclude their presence. 

2.3. Effect of EFE on Cell Lines 

For all experiments, the cells were seeded on Quadriperm tissue slides with or without added lignan 

and flavonoid EFE separately. In brief, cells were seeded at a concentration of 400,000 cells per slide. 

The cells were left to attach for 24 h. Then, the medium was replaced by medium supplemented with 

lignan and flavonoid EFE separately at final effective concentrations of 10, 50, and 100 µg/mL. Since 

the original EFE was diluted in 100% ethanol, medium supplemented with 100% ethanol at  a 

concentration of 5 µg/mL (this being the maximum ethanol concentration achieved during these 

experiments) served as the internal control. In addition, enterolactone and enterodiol (Sigma-Aldrich, 

Taufkirchen, Germany) were added to the same cell cultures as used for EFE in concentrations of 10, 

50, and 100 µg/mL, respectively. After the cells were cultured for 72 h, 1 mL from each supernatant 

was stored at −80 ◦C for estradiol analysis. The remaining supernatant was then discarded and the 

slides were washed in phosphate-buffered saline (PBS), fixed in acetone for 10 min, and left to dry at 

room temperature. Cells treated with equal concentrations of estradiol (10, 50, and 100 µg/mL) served 

as external controls. 

2.4. Estradiol Determination in the Cell Culture Medium 

For the determination of estradiol in the culture medium, a competitive enzyme immuno-assay (EIA)  

was  applied  as  described  previously  [29].  The  measurements  were  performed  using   an 

automated Immulite 2000 (DPC Biermann, Freiburg, Germany) hormone analyzer. 

2.5. Immunocytochemistry for the ERα, ERβ, and Progesterone Receptor (PR) 

For immuno-detection of the steroid receptors ERα, ERβ, and PR, the Vectastain R Elite Avidin/Biotin 

Complex (ABC) Kit (Vector  Laboratories, Burlingame, CA, USA) was used according to   the manufacturer’s 

protocol. After being air dried, the slides were rinsed in PBS for 5 min and incubated with the ABC normal 

serum for 60 min in a humidified environment.  The slides were then washed     and incubated with the 

respective primary antibodies. Salient features of the antibodies used are presented in Table 1. The slides 

were then incubated with the diluted biotinylated secondary antibody (30 min),  followed by incubation 

with the ABC reagent (30 min),  and the ABC substrate (15 min).          A PBS wash (5 min) was applied 

between steps. Finally, the slides were counterstained with Mayer’s acidic hematoxylin (30 s), rinsed with 

water, and covered with Aquatex. The intensity and distribution patterns of the specific 

immunocytochemical staining was evaluated using a semi-quantitative method (IRS score) as previously 

described [30]. Briefly, the IRS score was calculated as the product of the optical staining intensity (0 = no 

staining; 1 = weak staining; 2 = moderate staining; and 3 = strong straining) multiplied by staining extent 

(0 = no staining;  1%  ≤ 10% staining;  2 = 11%–50% staining;  3 = 51%–80% staining and 4 ≥ 80% 

staining). The percentage of positively-stained cells was estimated by counting approximately 100 cells. 
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Table 1. Antibodies used for expression analysis of steroid hormone receptors. 
 

Salient Features of the Antibodies Used in the Present Study 

Antibody (Source) Origin Dilution in PBS Temperature 

Anti-ERcr (Dako, Germany) Mouse monoclonal 1:150 1 h RT 

Anti-ERβ (Serotec, Germany) Mouse monoclonal 1:600 O/N 4 ◦C 

Anti-PR (Dako, Germany) Mouse monoclonal 1:50 1 h RT 

ER = estrogen receptor; PR = progesterone receptor; O/N = overnight; RT = room temperature. 

 
2.6. Statistical Analysis 

The results are presented as mean ± sem of three independent experiments. Statistical analysis was 

performed using the Wilcoxon’s signed rank tests for pairwise comparisons. Each observation with p 

< 0.05 was considered statistically significant. 

3. Results 

3.1. EFE Contains Phytoestrogen Compounds 

Mass spectrometry was performed to identify the different substrates  and  to  determine  their 

proportions in EFE. The results showed that the EFE contains phytoestrogen compounds. Lignan 

dimers (LDIM) were found with a total intensity of 2.6%, lignans (LIGNA) with 1.3%, isoflavones 

(ISOFL) with 0.6%, and flavones (FLAVO) with 0.1%. Figure 1 demonstrates the distribution of the 

different substance classes found in EFE. With a total intensity of 18.1% the most abundant substance 

class in EFE were lipids, including alcanes, alcenes, fatty acids, waxes, and fats (LIPID). Monolignoles 

(PHLM) were found with an intensity of 13.4% and carbohydrates (CHYDR) with 11.1%. Nitrogen 

(NCOMP) compounds were found with a total intensity of 6%, amino acids and peptides with 5.4% 

(PEPTI), isoprenoid compounds (ISOPR) with 1.5%, other polyphenolic (POLYO) with 5.2%, and low 

molecular compounds (LOWMW) with 4.7%. 
 

Figure 1. Cont. 
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Figure 1. Characteristic diagram of mass spectrometry analysis results of the EFE using both the microwave 

extraction (A) and the extraction method modified from Luyengi et al. [26] (B); moreover, the different 

substances extracted are presented (C). 

 
3.2. EFE Lignan and Flavonoid Extracts Induce the Inhibition of Estradiol Secretion in JEG-3, BeWo, and 
MCF7 Cells in a Dose-Response Pattern and the Inhibition of Progesterone Secretion in JEG-3 Cells 

To assess the estradiol and progesterone secretion, all three cell lines were cultured for 72 h in the 

presence of different EFE concentrations. An automated hormone analyzer was used to determine the 

estradiol and progesterone concentration in the medium by applying a competitive EIA. All cell lines 

were incubated with elder flower flavonoid and lignan extracts. The EFE lignan and flavonoid extracts 

demonstrated a statistical significant inhibition in estradiol secretion in a dose-response pattern in all 

three cell lines (Figure 2). Only statistical significant data is demonstrated in the figures. The cell culture 

medium with 10% FCS did not contain any measurable amounts of estrogen and progesterone, as 

determined with the automated hormone analyzer Immulite (DPC Biermann, Freiburg, Germany). 

In JEG-3 cells, the estradiol production was inhibited from 5634.96 ± 235.77 pg/mL in the control to 

4547.48 ± 145.89 pg/mL, 1283.88 ± 29.78 pg/mL, and 1030.43 ± 24.50 pg/mL when the EFE lignan 

concentration was 10 µg/mL, 50 µg/mL, and 100 µg/mL, p = 0.018, respectively (Figure 2A). EFE 

flavonoids had a similar effect using the same concentrations, as the estradiol production was 

inhibited from 5634.97 ± 235.77 pg/mL in the control to 5049 ± 187.28 pg/mL, 1264.5 ± 151.26 pg/mL, 

and 1137 ± 138.08 pg/mL (Figure 2B). 

In JEG-3 cell lines progesterone secretion was also significantly inhibited using EFE lignan extracts 

from 87.95 ± 1.36 pg/mL in the control to 84.88 ± 1.98 pg/mL, 66.22 ± 2.25 pg/mL, and 

45.98 ± 1.92 pg/mL when the EFE concentration was 10 µg/mL, 50 µg/mL and 100 µg/mL. 
The cultivation of the BeWo  cell line with EFE lignan extracts resulted again in an inhibition  of 

estradiol secretion from 245.25 ± 16.25 pg/mL in the control to 230.85 ± 8.17 pg/mL, 

231.95 ± 6.1 pg/mL, and 206.81 ± 5.69 pg/mL when the EFE concentration was 10 µg/mL, 50 µg/mL, 

and 100 µg/mL (Figure 2C). The differences between the stimulated cells and the control were only 

significant at a concentration of 100 µg/mL, with p = 0.05. 

In MCF7 cell lines the EFE flavonoid concentrations of 10 µg/mL and 50 µg/mL first  provoked a 
transient increased secretion of estradiol from 146.37 ± 9.91 pg/mL in the control to 

185.44 ± 4.28 pg/mL at 10 µg/mL and 164.07 ± 3.16 pg/mL at 50 µg/mL (Figure 2D). Then, at 100 

µg/mL, the estradiol secretion was inhibited to 140.21 ± 2.22 pg/mL, p = 0.08 respectively. 
Using the same concentrations with EFE flavonoid-extracts, progesterone secretion was also 

significantly inhibited in JEG-3 cells (Figure 2E) from 104.83  ± 5.13 pg/mL in the control to    77.94 

± 1.32 pg/mL, 56.18 ± 1.7 pg/mL, and 47.76 ± 1.56 pg/mL (p = 0.043). 
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Figure 2. Estradiol and progesterone concentration in the tissue culture medium of JEG-3, BeWo, and MCF7 

cells in the absence or presence of EFE. The effective EFE concentrations were 10 µg/mL, 50 µg/mL, and 

100 µg/mL. Significantly different observations are highlighted with an asterisk. 

 
3.3. EFE Flavonoid Extracts up Regulates ERα in JEG-3 Cells 

JEG-3 cell lines that were cultivated with EFE flavonoid in the concentrations of 10 µg/mL,     50 

µg/mL, and 100 µg/mL an upregulation of ERα was demonstrated. The IRS score of ERα was 

increased from 1 ± 0 in the control to 1.33 ± 0.23, 1.67 ± 0.54, and 2.167 ± 0.44. At 100 µg/mL 
statistical significance was demonstrated, p = 0.015, respectively (Figure 3A). 
 

Figure 3. Upregulation of ER α and progesterone receptor by elder flower flavonoids in JEG-3   and MCF7 

cells. The effective EFE concentrations were 10 µg/mL, 50 µg/mL, and 100 µg/mL. Significantly different 
observations are highlighted with an asterisk. 
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3.4. EFE Flavonoids Downregulate ER α and EFE Lignans and Flavonoids Upregulate the PR in a 
Dose-Response Pattern Predominantly in Lower Concentrations in MCF7 Cells 

MCF7 cells that were exposed to EFE flavonoids with the concentrations of 10 µg/mL, 50 µg/mL, and 100 

µg/mL responded  significantly  with  a  downregulation  of  ER  α  at  the  concentrations  of  10 µg/mL 

(3.5 ± 0.55) and 50 µg/mL (6.3 ± 0.88) compared to the control (11.33 ± 0.73, p = 0.002 and 
0.004), (Figure 4A). 

MCF7 cells that were exposed to EFE lignan and flavonoid extracts with the concentrations    of 10 

µg/mL, 50 µg/mL, and 100 µg/mL responded significantly in an upregulation of the PR in      a dose-

response pattern (Figure 4B). The upregulation of the progesterone IRS score significantly reached a 

peak at the EFE lignan concentration of 10 µg/mL (8 ± 0.98) compared to the control (3.3 ± 0.36, p 

= 0.002). As the EFE concentration increased, the IRS score decreased at 50 µg/mL to 

7.66 ± 1.04, and at 100 µg/mL to 5.83 (Figure 4B). 
The same phenomenon was observed using EFE flavonoids where the IRS score increased from 

2.66 ± 0.46 in the control to 6 ± 0 at 10 µg/mL (p = 0.002), and then decreased to 4.83 ± 0.59 (p = 0.026) at 

50 µg/mL, and to 2.83 ± 0.44 at 100 µg/mL (Figure 3B). 
 

Figure 4. Representative microphotographs of MCF7 cells grown in the absence or presence of elder flower 

extract (at effective EFE concentrations of 10 µg/mL, 50 µg/mL, and 100 µg/mL), after immuno-detection 

of ER-α (A) and PR (B); and presentation of the immunocytochemistry results by the semi-quantitative 

immunoreactivity score (IRS). Significantly different observations are highlighted with an asterisk. 

 
3.5. Enterolactone Downregulates Expression of ERα and PR in a Dose-Response Pattern in MCF7 Cells 

MCF7 cells that were exposed to enterolactone at concentrations of 10 µg/mL, 50 µg/mL, and    100 µg/mL 

responded significantly with a downregulation of ER α at concentrations of 50 µg/mL (IRS score 2.5) and 

100 µg/mL (IRS score 0) compared to the control (IRS score 5, p = 0.027 and 0.024) (see Figure 5). MCF7 

cells that were exposed to enterolactone at concentrations of 10 µg/mL, 50 µg/mL, and 100 µg/mL 
responded with a dose-response-related downregulation of the PR. The downregulation     of the PR was 

significant at enterolactone concentrations of 50 µg/mL (IRS score 4) and 100 µg/mL downregulation (IRS 
score 2) compared to the control (IRS score 9, p = 0.028 for both concentrations). 
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Figure 5. Representative microphotographs of MCF7 cells grown in the absence or presence of 

enterolactone at concentrations of 10 µg/mL, 50 µg/mL, and 100 µg/mL), after immuno-detection of ER-α 

(A) and PR (B); and presentation of the immunocytochemistry results by the semi-quantitative 
immunoreactivity score (IRS). Significantly different observations are highlighted with an asterisk. 

 
3.6. Enterodiol Downregulates Expression of ERα and PR Only at High Concentrations in MCF7 Cells 

MCF7 cells that were exposed to  enterodiol  at  concentrations  of  10  µg/mL,  50  µg/mL,  and  100 µg/mL 

responded with a significant downregulation of ERα only at 100 µg/mL (IRS score 0) compared to the 
control (IRS score 5, p = 0.023) (Figure 6). MCF7 cells that were exposed to enterodiol at concentrations of 

10 µg/mL, 50 µg/mL, and 100 µg/mL responded with a significant downregulation  of the PR at 100 

µg/mL (IRS score 0) compared to the control (IRS score 5.5, p = 0.023). 
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Figure 6. Representative microphotographs of MCF7 cells grown in the absence or presence of enterodiol 

at concentrations of 10 µg/mL, 50 µg/mL, and 100 µg/mL), after immuno-detection of ER-α (A) and PR (B) 
; and presentation of the immunocytochemistry results by the semi-quantitative immunoreactivity score 
(IRS). Significantly observations are highlighted with an asterisk. 

 
3.7. Enterolactone Inhibits Estradiol Secretion in JEG-3 Cells and Induce Estradiol Secretion in BeWo and 
MCF7 Cells in a Dose-Response Pattern 

In JEG-3 cells, the estradiol production was inhibited from 211.8 ± 8.88 pg/mL in the control to 

190.9 ± 7.9 pg/mL, and 149.59 ± 7 pg/mL at enterolactone concentrations of 10 µg/mL and 50 µg/mL, 

p = 0.028, respectively (Figure 7). 

The  cultivation  of  the  BeWo  cell  line  with  enterolactone  resulted  again   in  an  upregulation   of 

estradiol secretion from 75.07 ± 2.33 pg/mL in the control to 94.66 ± 6.39 pg/mL, 

137.66 ± 10.04 pg/mL, and 173.53 ± 9.56 pg/mL when the enterolactone concentration was 10 µg/mL, 

50 µg/mL, and 100 µg/mL. The differences between the stimulated cells and the control were significant 
at all concentration levels of enterolactone, p = 0.028, respectively. 

In MCF7 cells the concentrations of 10 µg/mL, 50 µg/mL and 100 µg/mL provoked an increased secretion 

of estradiol from 52.65 ± 7.90 pg/mL in the control to 75.22 ± 2.11 pg/mL at 10 µg/mL, 

123.93 ± 3.93 pg/mL at 50 µg/mL, and 172.12 ± 10.05 pg/mL at 100 µg/mL, p = 0.028, respectively. 
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Figure 7. Estradiol concentration in the  tissue  culture  medium  of  JEG-3,  BeWo  and  MCF7  cells  in the absence 

or presence of enterolactone. The effective enterolactone concentrations were 10 µg/mL,  50 µg/mL, and 100 

µg/mL. Significantly different observation are highlighted with an asterisk. 
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3.8. Enterodiol Induces Estradiol Secretion in JEG-3, BeWo, and MCF7 Cells at Distinct Concentrations 

In JEG-3 cells, the estradiol secretion was significantly enhanced from 79.85 ± 1.14 pg/mL in the 

control to 86.37 ± 1.07 pg/mL, when the concentration was 50 µg/mL enterodiol, p  = 0.028 (Figure 8). 
The cultivation of the BeWo cell line with enterodiol resulted again in a significant upregulation 

of  estradiol  secretion  from  63.71  ± 0.68  pg/mL  in  the  control  to  72.71  ± 0.79  pg/mL,  and 

84.37 ± 4.63 pg/mL at the enterodiol concentrations of 50 µg/mL and 100 µg/mL, respectively. The 
differences between the stimulated cells and the control were significant at both concentration of 

enterodiol, p = 0.028, respectively. 

In MCF7 cells the concentrations of 50 µg/mL and 100 µg/mL provoked an increased secretion    of 

estradiol from 35.64 ± 1.32 pg/mL in the control to 53.28 ± 0.39 pg/mL at 50 µg/mL, and 

56.94 ± 2.54 pg/mL at 100 µg/mL, p = 0.028, respectively. 
 

Figure 8. Cont. 
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Figure 8. Estradiol concentration in the tissue culture medium of JEG-3, BeWo and MCF7 cells in the 

absence or presence of enterodiol. The effective enterodiol concentrations were 50 µg/mL and 100 µg/mL. 
Significantly different observation are highlighted with an asterisk. 

 
4. Discussion 

To our knowledge, this is the first study evaluating the phytoestrogen properties of EFE on BeWo, JEG-3, 

and MCF7 cells regarding the estrogen and progesterone response. Prior to this study it was uncertain 

if EFE contains phytoestrogen compounds. Although mass spectrometry proved that EFE contains 

lignans and isoflavones, the subgroups of each class were not identified and, thus, precision is lacking. 

EFE proved to be richer in lignans than in isoflavones (presented in Figure 1). This may explain why 

more significant results were found using the lignan EFE. However, further studies with isolated 

fractions of the subgroups of EFE lignans and isoflavones could clarify if one subgroup is more potent 

than the other. Therefore, it would be interesting to isolate and identify the different lignans and 

isoflavones in the EFE that cause phytoestrogen activity for further characterization. Before further 

evaluation in an animal model, in vitro evaluation of the various components’ effects as single 

substances is required. 

In a previous study of our group, the phytoestrogen properties of pumpkin seed extract were tested 

on the same cells, which resulted in an unexpected estrogen secretion in all cell lines [18].  As 

hormone-dependent tumors react with proliferation when exposed to estrogens, pumpkin seeds, thus, 

could provoke carcinogenic effects. 

In contrast, EFE was the first of the potential phytoestrogens previously tested by our group, which 

had an inhibitory effect on the estradiol secretion of all three cell lines. 

The effect on JEG-3 and BeWo cells was observed to be dose-dependent. Interestingly, in MCF7 cells, 

estrogen secretion was higher following the administration of intermediate phytoestrogen 

concentrations than in controls or with the highest EFE concentration tested. The degree to which the 

inhibition of estrogen secretion results in a decreased cell proliferation has to be tested in further 

investigations using EFE. In addition, it is possible that at the highest EFE concentration estrogen 

secretion was decreased due to cytotoxic effects of the extract itself, as other studies suggest that 

phytoestrogens cause cytotoxicity and decrease growth in MCF7 tumors.   For example,  in        a study 

by Bergman et al. [31] ovariectomized mice were treated with continuous release of estrogen. MCF7 

tumors were established and mice were fed with basal diet or 10% flaxseed, and two groups that were 

fed basal diet received daily injections with enterodiol or enterolactone (15 mg/kg body weight). 
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The regimens containing flax seeds or enterodiol or enterolactone injections resulted in decreased 

estrogen-induced growth and angiogenesis in solid tumors by decreasing the secretion of VEGF. 

It is of  interest  that  EFE  induces  not  only  an  inhibition  of  estradiol  secretion,  but  also  an 

upregulation of the ERα in JEG-3 cells.   It could be assumed that,  if EFE causes an inhibition   on the 

trophoblast estrogen secretion, the cells react by increasing ERα expression in order to obtain 
stimulation even in a low-estrogen environment. A recent study by Lim et al. [32] outlined that the 

flavonoid apigenin reduces survival of JEG-3 cells by inducing apoptosis via the PI3K/AKT and 

ERK1/2 MAPK pathways. Therefore, it seems likely that the phytoestrogens also found in EFE could 

trigger non-genomic estradiol receptor signal transduction causing apoptosis in JEG-3 cells. In contrast 

to the effects of EFE on JEG-3 cells, another study by our group [33] demonstrated that the two well-

known phytoestrogens genistein and daidzein provoked a reduced progesterone production and a 

stimulation of the estrogen production in JEG-3 cells. Therefore, regarding the other extracts 

investigated by our group, the characteristics of EFE seem to be favorable for further research due to 

the properties of decreased estrogen secretion and increased ERα expression in JEG-3 cells. 

MCF7 cells that were exposed to EFE extracts responded with a significant downregulation of ERα 

and an upregulation of PR, both predominantly in lower concentrations of EFE. Why the lower 

concentrations provoked a stronger effect on receptor expression remains unknown. Although it is, 

again, possible that higher concentrations of EFE resulted in cytotoxic effects leading to cell damage 

and, therefore, to decreased cellular function. Nevertheless, the fact that lower EFE concentrations 

resulted in a decreased expression of the ERα receptor and an increase in the progesterone receptor 

could be beneficial for clinical use as low blood concentrations of phytoestrogens are easier to achieve 

by dietary intake alone. It is important to mention that the concentrations used in this study were 

extremely high (non-physiological). The highest level of enterolactone that has been measured in 

serum/plasma in humans is 2 µmol/L (over 16 times less than the enterolactone concentration used). 

Furthermore, estradiol levels in adult females reach levels only as high as 300 pg/mL in the luteal phase 

(30,000 times less than the external control). Therefore, before realistic interpretation, our findings 

must be reevaluated in further studies using more physiologically relevant doses. 

Our current findings partially concur with a previously-described downregulation of ERα and 

upregulation of PR on the MCF7 cells when treated with other potential phytoestrogen compounds 

such as flax and pumpkin isoflavone and lignan extracts or mixtures [19,34]. Interestingly, it has been 

demonstrated  that estradiol  has similar effects  on the  MCF7 ERα and on  PR, as  it causes   a 

downregulation of ERα and an upregulation of PR [35,36]. Therefore, whether EFE causes MCF7 cell 

proliferation or inhibition has to be tested in future investigations. In a study by Stendahl et al., it was 

demonstrated that high progesterone receptor expression correlates with a better effect of adjuvant 

tamoxifen in premenopausal breast cancer patients [37]. This suggests clinical trial evaluation of 

elderflower as a combination partner for tamoxifen. 

It is unclear whether the lignans present in the EFE require any metabolic processing prior to exerting 

biological effects and whether the cell culture systems used are capable of completing this conversion. For 

example secoisolariciresinol diglycoside (SDG) is the primary lignan in flaxseed; however, in vitro studies 

use bioavailabile enterodiol and enterolactone when investigating effects of flaxseed lignans.  This is 

because in vitro systems do not have the components necessary to convert  SDG to enterodiol and 

enterolactone. Therefore, additional in vivo studies could provide valuable information regarding EFE 

metabolism prior to the conduction of further in vitro studies. Nevertheless, the pattern of hormone  

secretion  and  receptor  expression  of  enerolactone  and  enterodiol  tested  on JEG-3, BeWo, and MCF7 

cells were different to those of EFE. Therefore, it is  probable  that  the lignans in EFE are not  related  to  

the  enterolignans.  Enterolactone  and  enterodiol  in  contrast  to  EFE  inhibited  not  only  the  expression  

of  the  ER  but  also  PR  in  MCF7  cells.  Moreover  contrary   to  EFE,  both   control   substances  upregulated   

estradiol   production  in   BeWo   and   MCF7   cells  in a concentration-dependent manner. 
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5. Conclusions 

Our results clearly demonstrate beneficial features of EFE in the setting of hormone receptor-positive 

breast cancer MCF7 cells by inhibition of estrogen secretion, downregulation of Erα, and 

upregulation of PR. Decreased local and circulating estrogen concentrations are certainly considered 

an advantage in treating breast cancer. In that view, EFE could be related to reduced tumor cell 

proliferation, possibly suggesting a protective effect on breast cancer. Nevertheless, the results and the 

conclusions made must be interpreted with caution as this is an in vitro cell culture study. In this 

setting, the use of plant extracts instead of chemically pure agents may be advantageous as it may 

more accurately reflect the effects of phytoestrogen-rich diets. 

If the effects of EFE can be attributed solely to potential phytoestrogen activity remains unsolved. To which 

degree other non-estrogenic pathways play a role can currently not be clarified. For example, mass 

spectrometry demonstrated a high amount of lipids in EFE. Lipids can inhibit cell proliferation through 

activation of PPARα and  PPARγ  (peroxisome  proliferator-activated  receptors)  which  bind as 

transcription factors to the retinoid X receptors  and,  thus,  regulate  the  expression  of  various genes 

[38,39]. In MCF7 breast cancer cells PPARγ activates  p53  by  stimulating  the  transcription factor NFkB 

(nuclear factor kappa-light-chain-enhancer of activated B-cells), which is a gene promoter of p53 and, thus, 

induces apoptosis [40]. Therefore, the following additional investigations are necessary to  obtain  further  

insight  of  the  promising  anti-carcinogenic  effects  of  EFE:  the  results  of hormone secretion and receptor 

expression of EFE should be correlated with DNA synthesis performance (BRDU proliferation assay), 

metabolic activity (MTT assay), and cytotoxicity (LDH assay) tests. Cytotoxicity could be evaluated in detail 

by immunohistochemistry or reverse transcriptase quantitative (RTQ)-PCR quantification of apoptosis-

induced markers (for example, p53, p21, BCL2, Caspase 8/9). Then, as a possibility to determine the role 

of  hormone  receptor-mediated  cell  response, EFE could be tested on malignant ER-negative cells (e.g., 

BT-20). Furthermore, fractional chromatography could provide information of the individual substances 

and their impact on breast cancer cells. Finally, after further in vitro investigations, properly designed 

animal studies could highlight a potential role of EFE in trophoblast and breast cancer prevention and/or 

treatment. 
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3. SUMMARY  
 

Laboratory and clinical research on phytoestrogens suggests related dietary health 

benefits and relevant pharmaceutical implications for the treatment of breast cancer. 

Phytoestrogens are a group of polyphenols produced by plants that functionally and 

structurally resemble 17β-estradiol and can therefore interact as agonists or antagonists 

with the estrogen receptor and estrogen receptor independent pathways1617. Traditional 

medicinal plants like elder flower (sambuccus nigra) and parsley root (Petroselinum 

crispum) are known since centuries for their health benefits. Therefore, we chose them 

as plants for our investigations on breast cancer cells.   

In both publications extracts of the plants were prepared in different concentrations and 

analyzed by mass spectrometry. In the parsley root publication, breast cancer MCF7 and 

MCF12A cells were exposed with different PCE concentrations and incubated. After 

incubation, the effect of the different concentrations of PCE on MCF7 and MCF12A cells 

was analyzed using various tests. For cytotoxicity, metabolic activity and DNA synthesis 

performance LDH, MTT and BrdU proliferation assays were used respectively.  

In the elder flower publication, trophoblast tumor cell lines BeWo and JEG-3, as well as 

MCF7 breast cancer cells were exposed and then incubated at different EFE 

concentrations. Cells remaining untreated served as test controls. In supernatant cells 

estradiol production was tested with an ELISA method. Changes caused by EFE in ER/PR 

expression were analyzed by immunocytochemistry.  

It was demonstrated that the plants investigated contain a substantial amount of 

phytoestrogens. Moreover, both plants demonstrated anti-cancerogenic properties on 

breast cancer cell lines by means of receptor expression patterns and the inhibition of cell 

proliferation. If the effects observed are only caused by phytoestrogen action remains 

unclear. Further investigations on different breast cancer cells and with the isolated 

phytoestrogen substances is needed before proper clinical investigations can be planned.   
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4. ZUSSAMENFASSUNG 
 

Eine wachsende Anzahl von Daten weist auf die gesundheitlichen Vorteile von 

Phytoöstrogenen in der Ernährung und auf mögliche pharmazeutische Anwendungen hin. 

Phytoöstrogene sind pflanzliche Polyphenole, die strukturell und funktionell 17β-

Östradiol ähneln und daher als Agonisten oder Antagonisten mit Östrogenrezeptor-

abhängigen und östrogenrezeptor-unabhängigen Zellkaskaden interagieren können. 

Traditionelle Heilpflanzen wie Holunderblüten (Sambuccus nigra) und 

Petersilienwurzeln (Petroselinum crispum) sind seit Jahrhunderten für ihre 

gesundheitlichen Vorteile bekannt. Deshalb haben wir sie als Pflanzen für unsere 

Untersuchungen an Brustkrebszellen ausgewählt. 

In beiden Publikationen wurden Extrakte der Pflanzen in unterschiedlichen 

Konzentrationen hergestellt und massenspektrometrisch analysiert. In der 

Petersilienwurzelveröffentlichung wurden MCF7- und MCF12A-Zellen mit verschiedenen 

Konzentrationen von PCE inkubiert und auf DNA-Syntheseleistung, metabolische 

Aktivität und Zytotoxizität durch BrdU-Proliferations-, MTT- bzw. LDH-Assays analysiert. 

In der Holunderblütenveröffentlichung wurden die Zellen mit verschiedenen EFE-

Konzentrationen inkubiert. Als Kontrolle dienten unbehandelte Zellen. Die Überstände 

wurden mit einem ELISA-Verfahren auf Östradiolproduktion getestet. Darüber hinaus 

wurde die Wirkung des EFE auf die ER / PR-Expression durch Immunzytochemie 

bewertet. 

In beiden Publikationen konnte gezeigt werden, dass die untersuchten Pflanzen eine 

erhebliche Menge an Phytoöstrogenen enthalten. Darüber hinaus zeigten beide Pflanzen 

durch das Rezeptorexpressionsmuster und die Hemmung der Zellproliferation anti-

kanzerogene Eigenschaften in Brustkrebszelllinien. Ob dieser Effekt ausschließlich auf 

Phytoöstrogene zurückzuführen ist, ist unklar. Weitere Grundlagenforschung mit 

verschiedenen Brustkrebszellen und isolierten Phytoöstrogen sind erforderlich, bevor 

geeignete klinische Untersuchungen geplant werden können. 

 



 

45 
 

5. ACKNOWLEDGEMENTS 
 
I acknowledge Prof. Dr. med. Sven Mahner and former director Prof. Dr. med. Klaus Friese 

for providing me the opportunity to complete my dissertation at the Department of 

Gynecology and Obstetrics at the Ludwig-Maximilians-University of Munich.  

My exceptional thanks go to Prof. Dr. rer. nat. Udo Jeschke for his patience, help and 

insight, for all the helpful discussions and directing major parts of this work. I thank 

Simone Hofmann and Christina Kuhn for her excellent support and laboratory work. 

Special thanks also to PD Dr. rer. nat. habil. Dagmar-Ulrike Richter and her team Rostock 

for organizing parts of the studies, the supervision of the experiments and laboratory 

work. I really want to thank all the co-authors for their great help realizing the 

publications.   

 

 

  

 
 
 
 
 
 
 



 

46 
 

6. EIDESSTATTLICHE VERSICHERUNG  
 
 
 

Eidesstattliche Versicherung 
 
 
 
Henrik Lennard Wilhelm Schröder 
Name, Vorname 

 
 
 
Ich erkläre hiermit an Eides statt, 
 
 
dass ich die vorliegende kumulative Dissertation mit dem Thema 
 
 

Influence of the phytoestrogens of Sambuccus nigra and Petroselinum 

crispum on the proliferation and receptor expression in breast cancer 

cell lines  

 
 
selbständig verfasst, mich außer der angegebenen keiner weiteren Hilfsmittel bedient 

und alle Erkenntnisse, die aus dem Schrifttum ganz oder annähernd übernommen sind, 

als solche kenntlich gemacht und nach ihrer Herkunft unter Bezeichnung der Fundstelle 

einzeln nachgewiesen habe. 

 

Ich erkläre des Weiteren, dass die hier vorgelegte kumulative Dissertation nicht in 

gleicher oder inähnlicher Form bei einer anderen Stelle zur Erlangung eines 

akademischen Grades eingereicht wurde. 

 
 
 

  München, 08.03.20201                                                              Schröder 
____________________________________________                       ____________________________________________ 
 
 Ort, Datum      Unterschrift Doktorand 



 

47 
 

7. Bibliography 
 
1. WHO | Breast cancer. WHO (2018). 

2. Sundquist, M., Eriksson, Z., Tejler, G. & Brudin, L. Trends in survival in metastatic 

breast. Cancer Eur J Cancer 8, 191 (2010). 

3. Kobayashi, K. et al. Impact of immunohistological subtypes on the long-term 

prognosis of patients with metastatic breast cancer. Surg. Today 46, 821–826 

(2016). 

4. Harbeck, N. & Gnant, M. Breast cancer. Lancet 389, 1134–1150 (2017). 

5. Iwata, H. et al. PALOMA-3: Phase III Trial of Fulvestrant With or Without 

Palbociclib in Premenopausal and Postmenopausal Women With Hormone 

Receptor–Positive, Human Epidermal Growth Factor Receptor 2–Negative 

Metastatic Breast Cancer That Progressed on Prior Endocrine Th. J. Glob. Oncol. 3, 

289–303 (2017). 

6. Gu, G., Dustin, D. & Fuqua, S. A. Targeted therapy for breast cancer and molecular 

mechanisms of resistance to treatment. Curr. Opin. Pharmacol. 31, 97–103 (2016). 

7. Eggersmann, T. K., Degenhardt, T., Gluz, O., Wuerstlein, R. & Harbeck, N. CDK4/6 

Inhibitors Expand the Therapeutic Options in Breast Cancer: Palbociclib, 

Ribociclib and Abemaciclib. BioDrugs 33, 125–135 (2019). 

8. Maurer, C., Martel, S., Zardavas, D. & Ignatiadis, M. New agents for endocrine 

resistance in breast cancer. The Breast 34, 1–11 (2017). 

9. Szostakowska, M., Trębińska-Stryjewska, A., Grzybowska, E. A. & Fabisiewicz, A. 

Resistance to endocrine therapy in breast cancer: molecular mechanisms and 

future goals. Breast Cancer Res. Treat. (2018). doi:10.1007/s10549-018-5023-4 

10. Osborne, C. K. & Schiff, R. Mechanisms of Endocrine Resistance in Breast Cancer. 

Annu. Rev. Med. 62, 233–247 (2011). 

11. Salkeni, M. & Hall, S. Metastatic breast cancer: Endocrine therapy landscape 

reshaped. Avicenna J. Med. 7, 144 (2017). 

12. Momenimovahed, Z. & Salehiniya, H. Epidemiological characteristics of and risk 

factors for breast cancer in the world. Breast cancer (Dove Med. Press. 11, 151–164 

(2019). 

13. Garcia-Estevez, L. & Moreno-Bueno, G. Updating the role of obesity and 

cholesterol in breast cancer. Breast Cancer Res. 21, 35 (2019). 

14. Hsieh, C.-J., Hsu, Y.-L., Huang, Y.-F. & Tsai, E.-M. Molecular Mechanisms of 



 

48 
 

Anticancer Effects of Phytoestrogens in Breast Cancer. Curr. Protein Pept. Sci. 19, 

323–332 (2018). 

15. Lecomte, S., Demay, F., Ferrière, F. & Pakdel, F. Phytochemicals Targeting Estrogen 

Receptors: Beneficial Rather Than Adverse Effects? Int. J. Mol. Sci. 18, 1381 

(2017). 

16. Tham, D. M., Gardner, C. D. & Haskell, W. L. Clinical review 97: Potential health 

benefits of dietary phytoestrogens: a review of the clinical, epidemiological, and 

mechanistic evidence. J. Clin. Endocrinol. Metab. 83, 2223–2235 (1998). 

17. Basu, P. & Maier, C. Phytoestrogens and breast cancer: In vitro anticancer 

activities of isoflavones, lignans, coumestans, stilbenes and their analogs and 

derivatives. Biomed. Pharmacother. 107, 1648–1666 (2018). 

18. Rietjens, I. M. C. M., Louisse, J. & Beekmann, K. The potential health effects of 

dietary phytoestrogens. Br. J. Pharmacol. 174, 1263–1280 (2017). 

19. Hwang, K.-A. & Choi, K.-C. Anticarcinogenic Effects of Dietary Phytoestrogens and 

Their Chemopreventive Mechanisms. Nutr. Cancer 67, 796–803 (2015). 

20. Virk-Baker, M. K., Nagy, T. R. & Barnes, S. Role of phytoestrogens in cancer 

therapy. Planta Med. 76, 1132–42 (2010). 

21. Yildiz, F. Phytoestrogens in functional foods. (CRC Press, 2006). 

22. Hughes, C. L. Phytochemical mimicry of reproductive hormones and modulation of 

herbivore fertility by phytoestrogens. Environ. Health Perspect. 78, 171–4 (1988). 

23. Bentley, G. R. & Mascie-Taylor, C. G. N. Infertility in the modern world : present and 

future prospects. (Cambridge University Press, 2000). 

24. Basu, P. & Maier, C. Phytoestrogens and breast cancer: In vitro anticancer 

activities of isoflavones, lignans, coumestans, stilbenes and their analogs and 

derivatives. Biomed. Pharmacother. 107, 1648–1666 (2018). 

25. Patisaul, H. B. & Jefferson, W. The pros and cons of phytoestrogens. Front. 

Neuroendocrinol. 31, 400–19 (2010). 

26. Schröder, L. et al. Effects of Phytoestrogen Extracts Isolated from Elder Flower on 

Hormone Production and Receptor Expression of Trophoblast Tumor Cells JEG-3 

and BeWo, as well as MCF7 Breast Cancer Cells. Nutrients 8, 616 (2016). 

27. Adlercreutz, H. et al. Excretion of the lignans enterolactone and enterodiol and of 

equol in omnivorous and vegetarian postmenopausal women and in women with 

breast cancer. Lancet 2, 1295–1298 (1982). 



 

49 
 

28. Heinonen, S. et al. In vitro metabolism of plant lignans: New precursors of 

mammalian lignans enterolactone and enterodiol. J. Agric. Food Chem. 49, 3178–

3186 (2001). 

29. Buck, K., Zaineddin, A. K., Vrieling, A., Linseisen, J. & Chang-Claude, J. Meta-

analyses of lignans and enterolignans in relation to breast cancer risk. Am. J. Clin. 

Nutr. 92, 141–153 (2010). 

30. Wang, L. Q. Mammalian phytoestrogens: Enterodiol and enterolactone. Journal of 

Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 

777, 289–309 (2002). 

31. Scherr, F. F., Sarmah, A. K., Di, H. J. & Cameron, K. C. Degradation and metabolite 

formation of 17beta-estradiol-3-sulphate in New Zealand pasture soils. Environ. 

Int. 35, 291–7 (2009). 

32. Bennetts, H. W., Uuderwood, E. J. & Shier, F. L. A SPECIFIC BREEDING PROBLEM 

OF SHEEP ON SUBTERRANEAN CLOVER PASTURES IN WESTERN AUSTRALIA. 

Aust. Vet. J. 22, 2–12 (1946). 

33. Rietjens, I. M. C. M., Louisse, J. & Beekmann, K. The potential health effects of 

dietary phytoestrogens. Br. J. Pharmacol. 174, 1263–1280 (2017). 

34. Hairi, H. A. et al. The Effects and Action Mechanisms of Phytoestrogens on 

Vasomotor Symptoms during Menopausal Transition: Thermoregulatory 

Mechanism. Curr. Drug Targets 18, (2017). 

35. Writing Group for the Women’s Health Initiative Investigators, W. G. for the W. H. 

I. Risks and Benefits of Estrogen Plus Progestin in Healthy Postmenopausal 

Women: Principal Results From the Women’s Health Initiative Randomized 

Controlled Trial. JAMA J. Am. Med. Assoc. 288, 321–333 (2002). 

36. Lethaby, A. et al. Phytoestrogens for menopausal vasomotor symptoms. Cochrane 

database Syst. Rev. CD001395 (2013). doi:10.1002/14651858.CD001395.pub4 

37. Watanabe, S., Uesugi, S. & Kikuchi, Y. Isoflavones for prevention of cancer, 

cardiovascular diseases, gynecological problems and possible immune 

potentiation. Biomed. Pharmacother. 56, 302–12 (2002). 

38. Patisaul, H. B. & Jefferson, W. The pros and cons of phytoestrogens. Front. 

Neuroendocrinol. 31, 400–419 (2010). 

39. Bilal, I., Chowdhury, A., Davidson, J. & Whitehead, S. Phytoestrogens and 

prevention of breast cancer: The contentious debate. World J. Clin. Oncol. 5, 705–



 

50 
 

12 (2014). 

40. Atkinson, C., Frankenfeld, C. L. & Lampe, J. W. Gut bacterial metabolism of the soy 

isoflavone daidzein: exploring the relevance to human health. Exp. Biol. Med. 

(Maywood). 230, 155–70 (2005). 

41. Vitale, D. C., Piazza, C., Melilli, B., Drago, F. & Salomone, S. Isoflavones: estrogenic 

activity, biological effect and bioavailability. Eur. J. Drug Metab. Pharmacokinet. 

38, 15–25 (2013). 

42. Senti, F. R. Soy protein foods in U.S. assistance programs. J. Am. Oil Chem. Soc. 

(1974). doi:10.1007/BF02542114 

43. Administration, U. S. F. and D. Food Labeling: Health Claims; Soy Protein and 

Coronary Heart Disease; Final Rule. Federal Register (1999). 

44. Piotrowska, E., Jakóbkiewicz-Banecka, J. & Wȩgrzyn, G. Different amounts of 

isoflavones in various commercially available soy extracts in the light of gene 

expression-targeted isoflavone therapy (Phytotherapy Research (2010) 24, Suppl. 

1, (S109-113)). Phytotherapy Research (2010). doi:10.1002/ptr.3162 

45. de Cremoux, P., This, P., Leclercq, G. & Jacquot, Y. Controversies concerning the use 

of phytoestrogens in menopause management: bioavailability and metabolism. 

Maturitas 65, 334–9 (2010). 

46. Setchell, K. D. R. The history and basic science development of soy isoflavones. 

Menopause 24, 1338–1350 (2017). 

47. Karr, S. C., Lampe, J. W., Hutchins, A. M. & Slavin, J. L. Urinary isoflavonoid 

excretion in humans is dose dependent at low to moderate levels of soy-protein 

consumption. Am. J. Clin. Nutr. 66, 46–51 (1997). 

48. Nie, Q. et al. Metabolism and health effects of phyto-estrogens. Crit. Rev. Food Sci. 

Nutr. 57, 2432–2454 (2017). 

49. Verkasalo, P. K. et al. Soya intake and plasma concentrations of daidzein and 

genistein: validity of dietary assessment among eighty British women (Oxford arm 

of the European Prospective Investigation into Cancer and Nutrition). Br. J. Nutr. 

86, 415–21 (2001). 

50. Richter, D. et al. Effects of Phytoestrogen Extracts Isolated from Pumpkin Seeds on 

Estradiol Production and ER/PR Expression in Breast Cancer and Trophoblast 

Tumor Cells. Nutr. Cancer 65, 739–745 (2013). 

51. Leclercq, G. & Jacquot, Y. Interactions of isoflavones and other plant derived 



 

51 
 

estrogens with estrogen receptors for prevention and treatment of breast cancer-

considerations concerning related efficacy and safety. J. Steroid Biochem. Mol. Biol. 

139, 237–44 (2014). 

52. Guerrero-Bosagna, C. M. & Skinner, M. K. Environmental epigenetics and 

phytoestrogen/phytochemical exposures. J. Steroid Biochem. Mol. Biol. 139, 270–6 

(2014). 

53. Yanagihara, N. et al. New insights into the pharmacological potential of plant 

flavonoids in the catecholamine system. J. Pharmacol. Sci. 124, 123–8 (2014). 

54. Paterni, I., Granchi, C., Katzenellenbogen, J. A. & Minutolo, F. Estrogen receptors 

alpha (ERα) and beta (ERβ): Subtype-selective ligands and clinical potential. 

Steroids 90, 13–29 (2014). 

55. Sirotkin, A. V. & Harrath, A. H. Phytoestrogens and their effects. Eur. J. Pharmacol. 

741, 230–236 (2014). 

56. Gehm, B. D., McAndrews, J. M., Chien, P.-Y. & Jameson, J. L. Resveratrol, a 

polyphenolic compound found in grapes and wine, is an agonist for the estrogen 

receptor. Proc. Natl. Acad. Sci. (1997). doi:10.1073/pnas.94.25.14138 

57. Turner, J. V, Agatonovic-Kustrin, S. & Glass, B. D. Molecular aspects of 

phytoestrogen selective binding at estrogen receptors. J. Pharm. Sci. 96, 1879–85 

(2007). 

58. Lecomte, S., Demay, F., Ferrière, F. & Pakdel, F. Phytochemicals Targeting Estrogen 

Receptors: Beneficial Rather Than Adverse Effects? Int. J. Mol. Sci. 18, (2017). 

59. Chen, J. et al. Calycosin suppresses breast cancer cell growth via ERβ-dependent 

regulation of IGF-1R, p38 MAPK and PI3K/Akt pathways. PLoS One 9, e91245 

(2014). 

60. Anastasius, N., Boston, S., Lacey, M., Storing, N. & Whitehead, S. A. Evidence that 

low-dose, long-term genistein treatment inhibits oestradiol-stimulated growth in 

MCF-7 cells by down-regulation of the PI3-kinase/Akt signalling pathway. J. 

Steroid Biochem. Mol. Biol. 116, 50–5 (2009). 

61. Cotrim, C. Z. et al. Estrogen receptor beta growth-inhibitory effects are repressed 

through activation of MAPK and PI3K signalling in mammary epithelial and breast 

cancer cells. Oncogene (2013). doi:10.1038/onc.2012.261 

62. Chen, J., Lin, C., Yong, W., Ye, Y. & Huang, Z. Calycosin and genistein induce 

apoptosis by inactivation of HOTAIR/p-Akt signaling pathway in human breast 



 

52 
 

cancer MCF-7 cells. Cell. Physiol. Biochem. 35, 722–8 (2015). 

63. Prietsch, R. F. et al. Genistein induces apoptosis and autophagy in human breast 

MCF-7 cells by modulating the expression of proapoptotic factors and oxidative 

stress enzymes. Mol. Cell. Biochem. 390, 235–42 (2014). 

64. Jin, S., Zhang, Q. Y., Kang, X. M., Wang, J. X. & Zhao, W. H. Daidzein induces MCF-7 

breast cancer cell apoptosis via the mitochondrial pathway. Ann. Oncol. (2010). 

doi:10.1093/annonc/mdp499 

65. Choi, E. J. & Kim, T. Equol induced apoptosis via cell cycle arrest in human breast 

cancer MDA-MB-453 but not MCF-7 cells. Mol. Med. Rep. 1, 239–44 

66. Gong, L., Li, Y., Nedeljkovic-Kurepa, A. & Sarkar, F. H. Inactivation of NF-κB by 

genistein is mediated via Akt signaling pathway in breast cancer cells. Oncogene 

(2003). doi:10.1038/sj.onc.1206583 

67. Lowcock, E. C., Cotterchio, M. & Boucher, B. A. Consumption of flaxseed, a rich 

source of lignans, is associated with reduced breast cancer risk. Cancer Causes 

Control 24, 813–816 (2013). 

68. Dolinoy, D. C., Weidman, J. R., Waterland, R. A. & Jirtle, R. L. Maternal genistein 

alters coat color and protects Avy mouse offspring from obesity by modifying the 

fetal epigenome. Environ. Health Perspect. 114, 567–72 (2006). 

69. Molzberger, A. F., Soukup, S. T., Kulling, S. E. & Diel, P. Proliferative and estrogenic 

sensitivity of the mammary gland are modulated by isoflavones during distinct 

periods of adolescence. Arch. Toxicol. 87, 1129–40 (2013). 

70. Anderson, L. N., Cotterchio, M., Boucher, B. A. & Kreiger, N. Phytoestrogen intake 

from foods, during adolescence and adulthood, and risk of breast cancer by 

estrogen and progesterone receptor tumor subgroup among Ontario women. Int. 

J. cancer 132, 1683–92 (2013). 

71. Qin, W. et al. Soy isoflavones have an antiestrogenic effect and alter mammary 

promoter hypermethylation in healthy premenopausal women. Nutr. Cancer 61, 

238–44 (2009). 

72. Martin, J. H., Crotty, S. & Nelson, P. N. Phytoestrogens: perpetrators or protectors? 

Futur. Oncol. 3, 307–318 (2007). 

73. Fritz, H. et al. Soy, Red Clover, and Isoflavones and Breast Cancer: A Systematic 

Review. PLoS One 8, e81968 (2013). 

74. Wu, A. H., Lee, E. & Vigen, C. Soy isoflavones and breast cancer. Am. Soc. Clin. Oncol. 



 

53 
 

Educ. book. Am. Soc. Clin. Oncol. Annu. Meet. 33, 102–6 (2013). 

75. Taylor, C. K., Levy, R. M., Elliott, J. C. & Burnett, B. P. The effect of genistein 

aglycone on cancer and cancer risk: a review of in vitro, preclinical, and clinical 

studies. Nutr. Rev. 67, 398–415 (2009). 

76. Magee, P. J. Is equol production beneficial to health? Proc. Nutr. Soc. 70, 10–8 

(2011). 

77. Ingram, D., Sanders, K., Kolybaba, M. & Lopez, D. Case-control study of phyto-

oestrogens and breast cancer. Lancet (London, England) 350, 990–4 (1997). 

78. Goodman, M. T. et al. Urinary phytoestrogen excretion and postmenopausal breast 

cancer risk: the multiethnic cohort study. Cancer Prev. Res. (Phila). 2, 887–94 

(2009). 

79. Lowcock, E. C., Cotterchio, M. & Boucher, B. A. Consumption of flaxseed, a rich 

source of lignans, is associated with reduced breast cancer risk. Cancer Causes 

Control 24, 813–816 (2013). 

80. Buck, K. et al. Serum Enterolactone and Prognosis of Postmenopausal Breast 

Cancer. J. Clin. Oncol. 29, 3730–3738 (2011). 

81. McCann, S. E. et al. Dietary intakes of total and specific lignans are associated with 

clinical breast tumor characteristics. J. Nutr. 142, 91–8 (2012). 

                                                 

                                                                                                                                                                         
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



 

54 
 

8. Abbreviations 
 
Akt                                                                                                                     serine/threonine kinase 
 
BAX protein                                                                                                 Bcl-2-associated X protein 
 
BCL2                                                                                                             B-cell lymphoma 2 protein 
 
BRCA                                                                                  Breast cancer type susceptibility protein 
 
CDK4/6 inhibitors                                                                  cyclin-dependent kinases inhibitors 
 
DNA                                                                                                                        deoxyribonucleic acid 
 
EFE                                                                                                                              elderflower extract 
 
ERE                                                                                                         estrogen responsive elements 
 
ER                                                                                                                                   estrogen receptor  
 
Her2                                                                              human epidermal growth factor receptor 2 
 
IGF-1R                                                                                       insulin-like growth factor 1 receptor   
 
MCF-7 cells                                 Michigan Cancer Foundation – 7, ER+ breast cancer cell line 
 
MDA-MB-453 cells                      androgen receptor positive, ER/PR/Her2 negative cell line 
 
mir-RNA                                                                      small non-coding ribonucleic acid molecule  
 
NF-kappaB                            nuclear factor 'kappa-light-chain-enhancer' of activated B-cells 
 
O-DMA                                                                                                               O-desmethylangolensin  
 
PARP-1                                                                                               poly(ADP-ribose) polymerase 1 
 
PI3K                                                                                                        phosphatidylinositol 3-kinase    
 
p38 MAPK                                                                            P38 mitogen-activated protein kinases 
 
PRE                                                                                                                             parsley root extract 
 
PR                                                                                                                          progesterone receptor 
 
ROS                                                                                                                     reactive oxygen species  
 
SERM                                                                                      selective estrogen receptor modulator  
 
 


