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Summary

Prostate cancer (PCa) is the second most common cancer for men worldwide. Neverthe-

less, prevention, treatment, and patient health care improved the probability for men to

survive PCa. However, current screenings and imprecise prognostic tests lead to a high

number of overdiagnosed and overtreated patients accompanied by adverse effects and

health care burden. Therefore, more specific prognostic and predictive tests are nec-

essary to distinguish between benign and aggressive tumor to be able to adapt therapy

accordingly.

As a heterogeneous disease, PCa forms several subtypes. Its most prevalent form is

characterized by the TMPRSS2-ERG (T2E) gene fusion, which appears in around 50% of

PCa. Differentiating etiopathology, progression driving pathways, and disease outcome

of PCa subtypes make their treatment challenging. However, many established PCa test

do not distinguish between subtypes, so far, possibly affecting outcome prediction and

treatment decisions.

Recent advances in high throughput technologies allow the extensive generation of

genomic and transcriptomic data and pioneered personalized medicine empowering

clinical diagnostics and risk prediction. Consequently, identifying suitable biomarkers

via genome-wide association studies (GWAS) and gene expression analysis is crucial for

the development of gene and variant based prognostic as well as predictive tests.

This thesis assessed the contribution of somatic mutations and germline variation

in PCa progression. It emphasized the molecular differences between PCa subtypes

by investigating their gene-signatures associated with metastasis, affirming the impor-

tance of considering the T2E-status of a patient in research studies as well as in clin-

ical settings. Additionally, subtype specific biomarkers were identified showing that

their prognostic value decisively depends on the T2E-status. Furthermore, a risk lo-

cus (7q31.33) was detected that harbored five potential tag single nucleotide polymor-
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phisms (SNPs) associated with aggressive, high-grade PCa and partially altering GRM8

expression, thus, implying an influence of germline variants on PCa progression.

These findings were obtained from a meta-analysis of multiple GWAS and a gene

expression analysis of PCa subtypes:

GWAS testing for germline association with Gleason grade (GG) were performed

on three PCa cohorts including 1,098 Central European men. While two of the co-

horts were whole exon/genome sequenced (TCGA-PRAD, ICGC-CA), the third, own

cohort (PCGALMU) was genotyped on a microarray. The results were combined in

a meta-analysis. One genome-wide significant SNP (rs12537032) was found at the

risk locus chr7q31.33, which is associated with aggressive PCa (high GG) and com-

prises the GRM8 gene. With fine-mapping, five tag SNPs (rs12537032, rs74999840,

rs1910298267, rs76326523, and rs73451279) from two independent signals on the same

haploblock could be detected, which were in linkage disequilibrium with each other,

respectively. The risk/minor allele of these tag SNPs increased the risk for high-grade

PCa up to a factor of three. Located in intronic regions of GRM8 only the risk allele G

of rs73451279 was associated with lower gene expression (via eQTL). Variant effect pre-

diction indicated that the risk allele may induce nonsense-mediated mRNA decay, af-

fecting PCa progression. In survival analysis, however, neither the genotype nor GRM8

expression was associated with worse PCa outcome. Conditional analysis showed that

rs73451279 might not be the only functional variant at this locus affecting mechanisms

that drive the development of high-grade PCa.

Based on comprehensive transcriptomic and matched clinicopathological data of

two discovery cohorts (n = 783), the gene expression profiles of T2E-positive and -

negative PCa were independently investigated to compare metastasis associated gene-

signatures regarding their T2E-status. With gene set enrichment analyses distinct gene-

signatures characterizing T2E-positive and -negative tumors were detected. Genes fre-

quently involved in these functional gene-signatures were further investigated in a val-

idation cohort (n = 272). Beside being associated with metastasis, five genes (ASPN,

BGN, COL1A1, RRM2, and TYMS) were also identified to be associated with event-free

survival. In exclusively T2E-negative tumors, their overexpression was significantly as-

sociated with worse outcome. RRM2 and TYMS were both evaluated in another valida-

tion cohort (n = 135) by immunohistochemistry. Moreover, some of these subtype spe-
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cific biomarkers did enhance the Gleason score as current clinicopathological predictor

in T2E-negative PCa. In contrast, these observations did not apply for T2E-positive

tumors for which no biomarker could be found in this study. Taken together, these

findings strongly suggest considering molecular subtypes in combination with the ap-

plication of prognostic biomarkers to improve outcome prediction in PCa.
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Introduction

1.1 | Prostate cancer on a social level

Prostate cancer (PCa) is the second most common cancer in men worldwide [1, 2] and

the most common cancer for males in Europe [3]. Despite having the third-highest

mortality rate of cancer death in European men [3], PCa is no longer a death sentence

due to intense, regular screening [4]. Less than 20% of PCa patients develop aggressive

tumors, which are often lethal and require a fast and intense treatment [5], such as rad-

ical prostatectomy and radiation therapy. These treatments come along with significant

adverse effects [6, 7]. The remaining patients mostly exhibit a slowly growing tumor,

which can be safely treated with active surveillance [8]. These men can live with their

tumor without ever showing any PCa symptoms. So far, it remains difficult to discrim-

inate indolent from aggressive PCa [9], which is why 23 to 42% of men are over diag-

nosed and receive unnecessary therapy with significant morbidity [2,10,11]. Overtreat-

ment tends to be a major issue affecting men’s life quality and expectancy [12,13], which

spurs debates on regular PCa screening, including prostate specific antigen (PSA) mea-

surement [14, 15]. Apart from the adverse effects of current PCa treatment regimens

for individual patients, the enormous number of PCa incidences and the numerous

overtreatments tend to be a significant socioeconomic and health care burden in the

Western world [2,16]. In fact, compared to radical prostatectomy, treatment of patients

with low-risk PCa by active surveillance can reduce therapy costs by 35% [17]. Thus,
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novel approaches to discriminate aggressive from indolent forms of the disease are ur-

gently required.

1.1.1 | Screening, diagnosis, and prognosis

In Europe, there is no standardized screening for PCa. Even the advised age for starting

regular screening varies among countries. In Germany, the cancer information service

provided by the German Cancer Research Center (DKFZ) recommends starting regular

screening for men without genetic predisposition from 45 years [18]. This normally

includes digital rectal examination (DRE) and/or blood-based PSA screening. Both are

controversial because scientists and physicians disagree on their efficacy and sensitiv-

ity [14,15,19,20] and since they require further testing after initial PCa diagnosis. How-

ever, the complexity of pathogenesis makes it difficult to determine a patient’s disease

outcome. Hence, overtreatment is a major issue for many PCa patients.

Since the rise of biomarker discovery, multiple diagnostic and prognostic tests have

been developed based on the patients blood, urine or tumor tissue. Even though some

have been approved by the United States Food and Drug Administration (FDA) or Clin-

ical Laboratory Improvement Amendments (CLIA), none has yet predicted PCa pro-

gression clearly enough to replace the current standard procedure and facilitate appro-

priate treatment choices [21]. A prognostic test to reliably differentiate aggressive from

benign PCa still has to be found. Some biomarker-based tests available in the field are

briefly described below. The emerging number of tests and their differences in timing

and purpose of application complicate choosing the appropriate test. For screening,

the PSA, PHI, and 4Kscore test have established themselves as indicators for a potential

PCa onset for which more information is needed, such as via biopsy. Other diagnostic

tests, such as the ExoDx Prostate IntelliScore (EPI), assays of TMPRSS2-ERG (T2E), or

PCA3, attempt reliable recommendations regarding re-biopsy, prostatectomy, or active

surveillance. Prognostic tests, such as Decipher, Prolaris, and Oncotype Dx, enable PCa

risk stratification for feasible therapy approaches after PCa diagnosis as well as treat-

ment decisions after surgery and after care [21].

The variety of tests for PCa outcome prediction makes a decision for physicians

burdensome. Alam et al. compared three genomic tests (Decipher, Prolaris, Oncotype

Dx), which are described in this thesis below, pairwise to each other and found that
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they differed notably in their prognostic outcome [22]. This makes it even harder for

physicians to choose the right test for their respective patient. Hence, knowing whether

certain PCa tests are more suitable for specific patient subgroups is important.

Prostate Specific Antigen (PSA)

Potential PCa onset can be diagnosed by measuring increased (> 4 ng/ml ) or contin-

uous rising PSA levels from blood serum [11, 18]. PSAs are androgen regulated serine

proteases encoded by Kallikrein 3 (KLK3) and produced in the prostate gland [11].

PSAs exist in the serum in different forms. While most are bound to protease in-

hibitors and refered to as ’total PSA’, the molecular, unbound form of PSA is called

’free PSA’ [23]. Some alternative blood tests, such as the Prostate Health Index (PHI)

or the 4Kscore test, are among others mainly based on total and free PSA, but these

methods prevailed as screening tests for PCa rather than predictors for tumor aggres-

siveness [21].

For years, the PSA test was the primary method for PCa screening [23], but it has

received more and more criticism due to its exorbitant sensitivity and lack of specificity,

which leads to overdiagnosis [11, 14, 24].

Decipher

The Decipher Prostate Cancer Test developed by GenomeDx Biosciences in cooperation

with the Mayo Clinic is a genomic test relying on RNA expression extracted from pri-

mary PCa [25, 26]. The predictive test uses a genomic classifier modeled by the gene

expression of 22 markers with a random forest machine learning algorithm [25]. The

Decipher test is exerted after surgery to predict biochemical recurrence in men with

high-risk pathology [25, 27]. Its predictive score can assist in therapy to find an ap-

propriate treatment for the individual patient, which can relate to active surveillance,

radiotherapy, or even adjusting the timing of a treatment. Multiple studies [26, 28–30]

have validated the Decipher test as good predictor of aggressive tumors in high-risk

PCa patients.
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Prolaris

The Prolaris test designed by Myriad Genetic Laboratiories uses expression profiles of

31 genes involved in cell cycle progression (CCP) [31]. The test measures gene expres-

sion levels using RT-PCR with tumor tissue extracted via radical prostatectomy, but it

also works with tissue taken by needle biopsy [31, 32]. Normalized against 15 house

keeping genes, these genes were tested for association against recurrence via Cox pro-

portional hazards regression and partial likelihood ratio tests and configure the pre-

defined CCP score [33]. The Prolaris test enables risk prediction of recurrence after

radical prostatectomy for men with both low- and high-risk PCa [31, 32].

Oncotype Dx

The Oncotype Dx Prostate Cancer Assay established by Genomic Health, is a multi-gene

RT-PCR expression assay for prostate tissue specifically taken from needle biopsy spec-

imens. The test covers 12 cancer-related genes from four different biological pathways

and five reference genes. Using algorithms, these genes are compound to generate the

Genomic Prostate Score (GPS) [34]. The Oncotype Dx test has been validated in clinical

setting to relative reliably predict cancer aggressiveness [35, 36].

ExoDx Prostate IntelliScore (EPI)

A novel urine based test, the ExoDx Prostate IntelliScore (EPI), was recently developed

by McKiernan et al. [37, 38]. Using an exosome gene expression assay, mRNA of three

genes (ERG, PCA3, SPDEF) are measured to predict high-grade PCa. The noninvasive

EPI test applies to men with elevated PSA levels at initial biopsy [37, 38]. An initial

study [39] delivered promising results. Approved in 2019, the EPI test is only avail-

able in the United States, so far [40]. It remains to be seen if the EPI test prevails and

establishes itself in daily clinical routines.

1.1.2 | Tumor grading and staging

Although prognostic biomarker tests became popular, PCa is still evaluated by histopatho-

logical examination of tissue specimen. Based on needle biopsy or prostatectomy spec-

imen, the current stage of the tumor can be determined [41, 42]. While a needle biopsy
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is highly selective, the large scale post-operative tumor staging is much more reliable.

Tumor encapsulation and spreading to other parts of the patients body also play a role

in the staging process. For PCa, two common tumor staging systems have been es-

tablished: the Gleason grading system and the TNM-staging system, which are both

concomitantly used to describe the current tumor stage and as a rough prognostic indi-

cator for disease progression [41–43]. While the Gleason grading system is PCa specific,

the TNM-staging applies to malignant solid tumors in general and is adapted to PCa

accordingly [41, 42, 44]. All biomarker-based tests were developed using at least one of

these systems to distinguish between aggressive and benign tumors [25, 32, 34, 37].

Gleason grading system

PCa is graded by the Gleason score, which describes the differentiation of cancer cells

[41]. The Gleason grading system was developed by Donald Gleason in 1966 [45], but is

still in use today. The Gleason score is the sum of the two most common histologic pat-

tern scores, which range from 1 to 5 each, in multiple PCa core biopsies. A higher score

represents a poorly differentiated PCa, often referred to as high-grade PCa. Nowadays,

the Gleason score differs from the original system [46], starting with a lowest grade of

6 [47], which is prone to misdiagnosis of low grade PCa [46]. Another problem is the

discrimination between Gleason score 7 deriving from either Gleason pattern 3+4 or

4+3 [46], which show significant differences in their biologic behavior, prognosis, and

pathological specification [48, 49]. Therefore, the Gleason grading group system based

on the Gleason score was recently introduced [50]. It reevaluates and regroups the clas-

sical Gleason score into five new groups (Gleason grade group (GGG) I-V, Table 1.1).

The intention was to improve grade stratification, reduce the grading groups to 5 in-

stead of multiple Gleason pattern combinations, and reduce misdiagnosis in low-grade

PCa to accurately depict prostate cancer biology [46].

TNM-staging system

The TNM-staging system introduced by The American Joint Committee on Cancer

(AJCC) and the Union for International Cancer Control (UICC) is composed of three

categories. Thereupon, PCa can be classified based on primary tumor (T), regional

lymph node infiltration (N), and distant metastases (M) [51]. The T category derives
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Table 1.1: Stages of cancer differentiation as defined by Gleason score, Gleason grading

group, and corresponding histologic pattern [45, 46].

Grade Group Gleason Score Histologic Gleason Pattern

I 6 3+3

II 7 3+4

III 7 4+3

IV 8 3+5, 5+3, 4+4

V 9, 10 4+5, 5+4, 5+5

from pathological staging determined after the surgical removal of the prostate. It de-

scribes the size and extent of the primary tumor. Without evidence of primary tumor,

it is denoted as T0. T1 and T2 classify a PCa, which is still located inside the prostate

gland. In contrast, T3 and T4 stand for large PCa not encapsulated of the gland any-

more but already spread to nearby tissue [42, 44, 52]. The N category specifies whether

the lymph nodes are already affected (N1) or not (N0). The M category refers to the

existence of metastasis. If the cancer has spread it is documented as M1, otherwise it is

M0 [52].

1.2 | Prostate cancer on the molecular level

1.2.1 | Subtypes

Localized PCa is a distinctly heterogeneous disease, but early genomic driver events

in oncogenisis enable classification of PCa into multiple molecular subtypes. These

subtypes are defined by somatic genomic aberrations and alterations, such as chromo-

somal rearrangements or gene mutations, in their tumoral DNA [53, 54]. The largest

group of molecular PCa subtypes manifests in gene fusions of ETS family transcription

factors including ERG, ETV1, ETV4, and FLI1, with TMPRSS2 [53, 55]. ETS-negative

PCa subtypes exclusively posses recurrent mutations in SPOP, FOXA1, or IDH1 among

others, each representing an unique and discrete subclass. Alterations in tumor sup-
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pressor TP53 and PTEN are more frequent in tumors harboring an ETS fusion [53, 56].

In contrast to the frequency of the subtype defined by the ERG fusion, the remaining

subtypes are rather rare among PCa patients [53,57]. Regardless, the variety of distinct

molecular PCa subtypes and the affiliated differences in etiopathology make treatment

decisions challenging.

1.2.2 | TMPRSS2-ERG fusion

The TMPRSS2-ERG (T2E) fusion is the most common distinct molecular subtype in

PCa [53, 58]. It appears in around 50% of PCa and corresponds to 90% of PCa fusions

from the ETS family of transcription factors [56, 59]. The fusion gene is characterized

by either a chromosomal rearrangement or deletion on chromosome 21, amalgamat-

ing TMPRSS2 with ERG. Its oncogenic properties are associated with aggressive tumor

progression and worse outcome [60–62]. Despite its high specificity, the low sensitiv-

ity of T2E as prognostic biomarker makes its combination with additional biomarkers

inevitable [63, 64]. By differentiating between T2E-positive and T2E-negative PCa to

constitute molecularly distinct PCa subtypes, prior studies exploit various pathways or

gene-signatures promoting PCa malignancy [53, 58]. By distinguishing between T2E-

positive and -negative tumors, deviations in DNA methylation profiles have been re-

ported, which prove that these molecular PCa subtypes can be described by diverse

oncogenic pathways [65].

1.3 | Prostate cancer on genomic level

1.3.1 | High throughput sequencing

The sequencing of the human genome in the early 2000s, began to revolutionize med-

ical and biological research by empowering the analysis of the whole genome [66].

Since then, high throughput methods have facilitated comprehensive large-scale next-

generation sequencing projects, such as the 1000 Genomes Project [67] and the Inter-

national Hap Map Project [68] exploring the human genome, which cover millions of

single nucleotide variants (SNVs) and single nucleotide polymorphisms (SNPs) of thou-

sands of individuals.
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Next-generation sequencing, such as methods provided by Illumina, has prevailed

for whole genome (WGS) and whole exon sequencing (WXS) in research. Its contin-

uously declining costs allow the generation of large genomic data for exploring ge-

netic variation of diseases, opening new possibilities in cancer research [69]. Moreover,

third generation technology has been developed recently and is becoming more pop-

ular. Contrary to the preceding sequencing generation, technologies such as PacBio

instruments and Oxford Nanopore, have brought sequencing to a new level by en-

abling the sequencing of long reads, greater sequencing speed, or even decentralized

sequencing [69]. High throughput methods, such as DNA-seq or RNA-seq, transform

genetic or transcriptomic material into big data by assembling sequence reads across

the genome or transcriptome. More selective alternatives are costum- designed mi-

croarrays, which obtain specific known variants or gene expressions and have become a

popular approach in population studies [69, 70].

1.3.2 | Population studies and genetic variation

The accelerating technical progress in high throughput sequencing techniques and mi-

croarrays facilitated the assembly of population studies. In cancer research, population

studies conducted as genome-wide association studies (GWAS) have become popular

to extensively test for common genetic variants associated with disease traits. Since its

beginning, the number of detected variants affecting PCa has increased in the past ten

years. Benafif et al. reported 170 common variants from more than 40 GWAS, and the

numbers are still on the rise [71].

GWAS compare the allele frequencies of SNPs in different sample groups. While

common SNPs have a minor allele frequency (MAF) of more than 5%, rare SNPs are

only possessed by under 1% of the population. Thus, PCa cases are compared to a

healthy control group to identify genetic variants or susceptibility genes associated

with increasing PCa risk or genetic predisposition for PCa onset [70]. In contrast to

a case-control GWAS, a case-only GWAS is conducted on patients only and compares

patient subgroups with different disease traits. This approach identifies genetic varia-

tion associated with disease progression and outcome of tumor subtypes with divergent

etiopathology [72]. To avoid false positives or biases in GWAS, it is important to correct

for population stratification.
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In GWAS, identified SNPs significantly associated with disease traits, may not neces-

sarily be the causal SNP but rather its tag SNPs. Tag SNPs are representatives of a hap-

loblock, a genomic region with minor genetic recombination [73]. A causal or functional

SNP is in high linkage equilibrium (LD) with its tag SNPs, which describes the non-

random association of variants [70, 73]. SNPs in LD with each other are closely linked

variants that are non-independently inherited together on the same haploblock [73].

With genome-wide significant tag SNPs, potential risk loci can be easily identified.

These identified risk loci can be explored with fine-mapping to find adjacent causal

SNPs and elucidate their function. Fine-mapping is a complex process that prioritizes

potential causal SNPs based on their LD and pairwise correlation for further studies.

Moreover, potential candidates are scrutinized regarding their risk effect, genomic an-

notation, and function influencing the disease trait. Causal SNPs are often associated

with altered gene expression levels [74]. But, mRNA may not necessarily be directly

affected by a genetic variation in its coding region. In fact, most trait-associated SNPs

identified in GWAS were located in intronic or intergenic regions. Therefore, examining

the epigenetic background of causal SNPs specifically in non-coding regions can shed

light on their influence on regulatory mechanisms [74].

From these scattered tag SNPs, the remaining unknown variants on a haploblock can

be accurately predicted with imputation methods based on the genome of a reference

population. Imputation is also an important aspect in meta-analysis, which accumu-

lates the results of multiple GWAS. A single GWAS may indeed find significant results

but is not robust enough to evaluate whether significant variants were found coinciden-

tally or resulted from biased study design. A sufficient number of studies combined

in a meta-analysis increases both validity and power of the results. Due to different

genotyping and sequencing technologies, however, merging studies can lead to quality

issues. Imputation can solve this by harmonizing the data from different platforms [70].

1.3.3 | Epidemiology

Multiple risk factors influence PCa progression and tumorigenesis. PCa is known as the

tumor of older men, but it is also driven by environmental factors and life style choices.

Genetic factors, such as predisposition due to family history and ethnicity affect the

probability of PCa or disease outcome [75]. Allele frequencies of SNPs vary among
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populations [76, 77]. While some risk loci (8q24) are associated with PCa risk indepen-

dently of ethnicity, other risk loci and susceptibility alleles could be verified only in

Europeans so far or manifest deviating frequencies among ethnicities [78–82]. Partic-

ularly among Africans and African Americans, PCa and resultant mortality are much

more frequent than among populations of European origin [83, 84]. Despite higher in-

cidences of aggressive tumors, only 13% of men with African descent have tumors with

T2E fusions [85], which emphasizes the PCa differences between ethnicities. Likewise,

in East Asian populations, the amount of T2E-positive PCa is only a fraction of that

among Europeans and in contrast to them, is not associated with any clinicopathological

phenotype for East Asian patients [86, 87]. Powell et al. even implied that biomarkers,

such as the T2E fusion, are not eligible for patients of non-European descent [88]. This

variability in incidences among ethnicities is referable to genetic diversity and popula-

tion structure but not health care reasons [76].

1.4 | The Aim of this thesis project was to assess the

contribution of germline variation and somatic

mutations to PCa prognosis and prognostication

PCa is a complex, heterogeneous disease whose tumor progression is not yet fully un-

derstood. Distinguishing between benign and aggressive PCa is still challenging. De-

tecting further transcriptomic and genomic biomarkers to improve clinical tests and

understand the underlying mechanism driving PCa is inevitable.

The aim of this thesis was to assess the contribution of germline variation and so-

matic mutations to PCa prognosis and prognostication, which was explored by two

approaches based on transcriptomic and genomic data. To this end, gene expression

profiles of PCa from different subtypes were screened to highlight their subtype spe-

cific differences regarding their pathways and involved gene signatures. Furthermore,

the survival of theses subgroups was examined to evaluate potential subtype specific

biomarkers. The identified biomarkers were evaluated both experimentally and com-

putationally. Several case-only GWAS were exploited in a meta-analysis to find sig-

nificant SNPs that may conduce the development of high-grade PCa. Afterward, these

SNPs were fine-mapped to identify potential causal SNPs, whose potential function and
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regulatory effect on PCa progression was inferred.
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Data and methods

Detailed information on the software and datasets mentioned in the following Sections

is shown in Tables 2.5, 2.6, 2.7, and 2.8.

2.1 | Cohorts

2.1.1 | PCGALMU

The Prostate Cancer Genome Atlas of the Ludwig-Maximilians-University of Munich

(PCGALMU) is a German collaboration between the Max-Eder-Research Group of the

Institute of Pathology of the LMU, the Urologic Clinic and Polyclinic of the University

of Munich, the Institute of Genetic Epidemiology at the Helmholtz Center Munich,

and the Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI) of the

University Medical Center of the Johannes Gutenberg University Mainz.

Blood samples of 800 PCa patients before surgery were collected at the Urologic

Clinic of Munich between 2017 and 2019. Data management and pseudonymization

was managed by the Helmholtz Centre under the administration of Prof. Dr. Konstatin

Strauch. The overall study setting and data analysis was carried out by the Max-Eder-

Research Group of the Pathological Institute of the LMU. The PCGALMU study was ap-

proved by the LMU Ethics committee (Project Nr: 810-16). Prof. Dr. med Alexander

Buchner was responsible for the recruitment and elucidation of study patients. All
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study participants signed a patient’s agreement for the use of their genetic and bio ma-

terial as well as their clinical records.

2.1.2 | TCGA-PRAD

PCa samples from The Cancer Genome Atlas (TCGA) were incorporated for meta-analysis.

The TCGA-PRAD cohort comprises 440 samples of prostate adenocarcinoma with com-

prehensive genetic, transcriptomic, clinical, and survival data. For TCGA-PRAD, Abeshouse

et al. also provided information on the presences of the most common gene fusions and

mutations affecting PCa [53].

Both projects of this thesis, were based on the TCGA-PRAD cohort. However, due

to their time frame and different project target settings, the final samples used to differ

between both projects.

Small SNP assembly for detection of ethnical background

A small assembly of SNPs processed from DNA-seq data on level 2 were directly down-

loaded from TCGA Data Portal (controlled access), which was closed in June/July 2016

after the NCI launched the Genomic Data Commons (GDC) [89]. To the authors knowl-

edge, those files were not included in any of the GDC Data Portal data releases, but can

be found in the NCI GDC Legacy Archive (Table 2.8). These data were only used for the

roughly determination of the patients ethnical background to filter European samples

used for transcriptome analysis.

Broad set of exonic variants for GWAS

Genomic data and clinical records from 440 PCa samples from the TCGA-PRAD co-

hort were downloaded with gdc-client [90] from GDC-portal [91] of the National Can-

cer Institute, which hosts TCGA database (controlled access). The extensive dataset

of germline variants was retrieved by whole exon sequencing (WXS). Raw reads, se-

quenced from normal blood, enabled to retrieve germline data. The downloaded data

were already aligned against human reference genome assembly GRCh38.
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The clinical patient’s characteristics of both TCGA-PRAD cohorts used in both projects

are shown in Table 2.1 and 2.2.

2.1.3 | ICGC-CA

The ICGC-CA cohort is part of the PCAWG study (PanCancer Analysis of Whole Genomes)

[92] established by the International Cancer Genome Consortium (ICGC, [93]). Access

to the controlled individualized data was granted via the Data Access Compliance Of-

fice (DACO). With the Score-client (Table 2.7) all the germline data, extracted from

blood samples, could be downloaded as alignments from the ICGC data portal [94].

The ICGC-CA cohort was assembled in Canada and comprises WGS, transcriptomic,

and clinical data of 116 prostate adenocarcinoma samples of patients that underwent

radical prostatectonomy or image guided radiotherapy [95].

2.1.4 | 1000 Genomes Project

The 1000 Genomes Project is a comprehensive genomic dataset describing the genetic

variation of humans worldwide [67]. In its final phase it comprises 2,504 individuals of

26 populations around the world. Their genomes were sequenced by combining low-

coverage WGS, deep exome sequencing, and dense microarray genotyping.

Here, this dataset was used as reference set to genetically determine the ethnic back-

ground of patients. The focus was on three so-called super-populations regarding peo-

ple of African (n = 658), East-Asian (n = 504), and European (n = 503) descent (Table

2.4). People with European ancestry originate from France (CEU, n = 96), Finnland

(FIN, n = 99), United Kingdom (GBR, n = 91), Spain (IBS, n = 107), and Italy (TSI, n =

107) [67]. With these five populations, the samples of all three genomic cohorts could be

located more precisely within Europe and classified as Central European, Scandinavian,

or Mediterranean.

Genotype data of autosomal chromosomes were downloaded in VCF format phase 3

(Table 2.8).
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2.1.5 | GSE46691

The PCa cohort published under the accession number GSE46691 was assembled from

the Mayo Clinic Radical Prostatectomy Tumor Registry [25]. Patients were treated with

radical prostatectomy between 1987 and 2001. From the total number of 639 tumors,

RNA was extracted and profiled by gene expression microarray (Affymetrix Human

Exon 1.0 ST Array) for 545 samples [25]. Patients’ characteristic is shown in Table 2.2.

Raw RNA data is available at Gene Expression Omnibus (GEO).

2.1.6 | GSE16560

A watchful waiting cohort of 1,256 men was conducted over 30 years in Sweden [96].

From those patients, 281 “extreme” cases were selected, which can be differentiated be-

tween those with lethal and those with indolent PCa (10-years survival without metas-

tasis). Patients’ characteristic is summarized in Table 2.2. Normalized RNA data is

available at GEO under accession number GSE16560 [96].

2.1.7 | TMA-cohort

The Institute of Pathology of the University Hospital of Bonn (Germany) assembled a

well-characterized prostatectomy cohort (TMA-cohort) of 135 PCa patients with known

T2E fusion (Table 2.3). As the cohort data is not publicly available via an accession

number, it was referred to this cohort as TMA-cohort, in this thesis. From this cohort

an immunohistochemistry (IHC) based on tissue microarrays was conducted to serve

as further validation cohort for RRM2 and TYMS in T2E-positive and T2E-negative

tumors.
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Table 2.1: Patients’ characteristic of Central European samples in the PCGALMU, TCGA-

PRAD ans ICGC-CA cohorts.

PCGALMU TCGA-PRAD ICGC-CA

Central European patients # 751 263 84

Age (years) 67 62 62

median (range) (43-87) (46-78) (46-81)

PSA (ng/ml) 8.7 7.1 7.2

median (range) (0.2-343) (1.6-87) (1.6-39.5)

Gleason grade group (Gleason score)

I (3+3) 86 20 14

II (3+4) 275 77 43

III (4+3) 164 41 25

IV (4+4, 3+5,5+3) 92 48 1

V (> 4+5) 123 77 1

Pathological T

pT1 14 - 9

pT2 423 95 44

pT3 308 159 31

pT4 4 9 -

Pathological N (pN0/pN1) 539/73 177/48 -

Clinical M (0/1) 728/23 237/2 -

R (X/0/1/2) - 3/166/86/3 -

Event (no/yes) - 185/59 55/29

Time until event (month) - 24.8 72.1

median (range) - (1-119) (2-146)

T2E fusion (-/+) 65/58 155/108 36/48
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Table 2.2: Patients’ characteristic of samples in the European TCGA-PRAD cohort,

GSE46691 cohort and validation cohort GSE16560.

TCGA-PRAD GSE46691 GSE16560

T2E negative positive negative positive negative positive

Patients # 190 109 242 242 226 46

Age (years) 63 61 - - 74 74

median (range) (44-78) (46-75) - - (51-91) (60-91)

PSA (ng/ml) 0.1 0.1 - - - -

median (range) (0-37.36) (0-19.8) - - - -

Gleason Grade

Group (Gleason score)

I (3+3) 8 4 26 26 75 2

II (3+4) 47 38

III (4+3) 41 17
104 143 90 24

IV (4+4, 3+5, 5+3) 31 22 38 22 23 4

V (> 4+5) 63 28 72 50 38 16

Pathological T

pT2 62 36 - - - -

pT3 118 71 - - - -

pT4 7 2 - - - -

Pathological N

(pN0/pN1) 154/36 89/20 147/95 152/90 - -

R (0/1) 119/66 73/30 - - - -

EFS (no/yes) 128/44 82/24 - - 71/155 3/43

Time until Event

(month) 24 26 - - 110 66

median (range) (1-114) (2-140) - - (7-259) (6-170)
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Table 2.3: Patients’ characteristic of samples of validation cohort TMA-cohort stratified

by its patients’ T2E-status. (BCR = biochemical relapse)

TMA-cohort

T2E negative positive

Patients # 88 47

Age (years) 65 65

median (range) (48-75) (45-75)

PSA (ng/ml) 7.5 6.6

median (range) (1.0-163) (1.5-58.4)

Gleason Grade Group (Gleason Score)
I (3+3) 37 23

II (3+4) 19 12

III (4+3) 7 4

IV (4+4, 3+5, 5+3) 17 4

V (> 4+5) 7 2

Pathological T

pT2 49 26

pT3 37 20

pT4 2 1

Pathological N (pN0/pN1) 79/8 42/5

R (0/1) 51/37 23/23

BCR (no/yes ) 64/24 38/9

Time to BCR (month) 62 60

median (range) (1-134) (10-136)



20 2. Data and methods

2.2 | General methods

2.2.1 | Identification of ethnical origin

In GWAS, mostly homogeneous study populations are important to minimize false pos-

itive results. To keep the study population homogeneous, only people with similar

descent should be included into a GWAS. Genetic clustering of people with known an-

cestry and those with yet-unknown reveals the descent of the latter.

To determine the genetic origin of patients, their genome was compared to a ref-

erence set of different populations. Germline variants of PCa cohorts were separately

merged with the 1000 Genomes reference set comprising individuals of African, East

Asian, and European descent. Genetic clustering of their genome was performed with

principle component analysis (PCA) via PLINK [97, 98]. Their descent was identified

using the R package mclust [99, 100] combined with precise manual inspection of the

cluster visualization. The procedure was repeated with those patients identified as Eu-

ropeans. They were compared to European subpopulations to enable an even closer

location of their descent. Patients could be classified of Mediterranean, Scandinavian,

or Central European descent. The numbers of all cohorts are described in detail in

Section 2.6.2 and Table 2.4.

2.2.2 | Determination of tumor purity

Tumor purity was determined for all samples obtained with RNA-seq and gene expres-

sion microarrays (GSE46691 and GSE84042) with the ESTIMATE algorithm, which ap-

praised the fraction of immune and stromal cells in tumor samples from gene expres-

sion pattern [99, 101]. Due to the low number of genes represented on the respective

microarray, a tumor purity test on GSE16560 was not possible. All cases in the (Cen-

tral) European TCGA-PRAD and ICGC-CA (GSE84042) cohorts had a higher consensus

purity estimation (CPE) than 60%, which corresponds to the TCGA standard

(http://cancergenome.nih.gov/cancersselected/biospeccriteria, Figure 2.1a and 2.1b),

and were therefore kept for further analysis. In the GSE46691 cohort, for 7 of 545

samples, a CPE below 60% was observed and were therefore removed (Figure 2.1a).
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(a) CPE of samples used for transcriptome

analysis.

(b) CPE of Central European samples used for

GWAS.

Figure 2.1: Tumor purity of samples: Consensus purity estimation (CPE) calculated for

several cohorts.

2.2.3 | Determination of the TMPRSS2-ERG fusion status

Predictive approach

For the TCGA-PRAD cohort [53], Torres-García et al. inferred the T2E-status with

PRADA based on RNA-seq split-reads [102].

Contrary, Fraser et al. investigated genomic rearrangements in the ICGC-CA cohort

[95] using Delly [103] to discover breakpoints leading to the T2E fusion.

Estimation via gene expression level

In the Affymetrix dataset (GSE46691), the T2E-status was estimated from ERG expres-

sion levels, which show high concordance with the T2E-status [104]. As approximately

50% of PCa patients harbor the T2E fusion [59], all samples were classified into either

T2E-positive or -negative corresponding to their individual ERG expression level laying

above/below the median ERG expression. Those 10% of the microarray samples, whose

ERG expression levels lay between the 45th and 55th percentile (Figure 2.2), were ex-

cluded to reduce the number of potentially misclassified samples.
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Figure 2.2: ERG-status of samples of GSE46691 cohort estimated from ERG expression

levels [105]. Excluded samples (gray) lay between the 45th and 55th percentile.

Experimental detection of T2E fusion

In his Swedish cohort (GSE16560), Sboner et al. detected ERG rearrangements using

fluorescence in situ hybridization (FISH) assay and quantitative polymerase chain reac-

tion [96].

Immunohistochemical detection of ERG

Formalin-fixed paraffin-embedded (FFPE) prostate tumor samples were retrieved from

the archive of the LMU Munich’s Institute of Pathology matching 200 randomly selected

samples of the PCGALMU cohort. As the gene expression level of ERG directly corre-

lates with the presence of T2E fusion [104], an immunohistochemical (IHC) staining on

ERG could reveal the presence of the T2E fusion. Therefore, 4µm sections were cut for

every FFPE tumor sample. IHC staining was performed in collaboration with Jessica

Kövi on Benchmark Ultra of Roche (Ventana) using the UltraViewDetection-Kit. Slides

were pretreated with CC1 (pH 8.4) for 64 minutes, followed by an incubation with

ERG (EP111) Rabbit Monoclonal Antibody (AC-0105, 1:80 dilution) for 28 minutes.
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Afterwards, Dr. med. Fabienne Wehweck, an experienced resident pathologist on PCa,

evaluated the IHC staining for ERG and classified each sample as either ERG-positive

or -negative. Based on the correlation between ERG expression level and the T2E fu-

sion [104], IHC staining on ERG could identify 93 T2E-positive and 107 T2E-negative

PCa.

2.2.4 | Normalization of transcriptome data

Gene expression microarrays

Several publicly available gene expression datasets (GSE16569, GSE46691, and GSE84042)

gained from microarrays were downloaded from GEO.

Transcriptome data of 272 PCa cases of the Swedish validation cohort, were pro-

filed on Human 6k Transcriptionally Informative Gene Panel for DASL. With the novel

DASL method (cDNA-mediated annealing, selection, ligation, and extension) Sboner et

al. were able to determine mRNA of 6,100 genes from FFPE transurethral resection of

prostate samples. Using the qspline algorithm, Sboner et al. normalized the data with

the marginal mean of every gene as reference distribution. [96].

The dataset with accession number GSE46691 gathered 545 PCa cases profiled on

Affymetrix GeneChip Human Exon 1.0 ST arrays [25]. Microarray intensities were nor-

malized using the SCAN algorithm of SCAN.UPC [106] and the pd.huex.1.0.st.v2 an-

notation Bioconductor packages [99, 107] with brainarray chip description files (CDF,

huex10sthsentrez, version 21), yielding one optimized probe-set per gene (gene level

summarization) [108].

The GEO dataset GSE84042 comprised gene expression data from samples of the

ICGC-CA cohort [95]. 53 of 73 samples could be assigned to the Central European

samples. While 12 samples of those were profiled on the Affymetrix Human Gene 2.0 ST

Array, the microarray signals of the remaining 41 samples were measured on Affymetrix

Human Transcriptome Array 2.0. To account for this, the samples were normalized with

the RMA algorithm and batch corrected using the sva package by Fraser et al. [95].
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RNA-seq

Available transcriptome data of the TCGA-PRAD cohort consists of pre-processed RNA-

seq level 2 data [53]. Therefore, Illumina HiSeq 2000 RNA Sequencing Version 2 analy-

sis system [109] was used followed by the MapSplice algorithm for read mapping [110].

TCGA applies RSEM for transcript quantification [111]. Raw counts were normalized

by division by the 75th percentile of all raw counts and their multiplication by 1,000.

For the transcriptome analysis project, gene expression data of 384 identified European

samples were extracted from collectively 497 cases.

2.3 | Tissue microarray and immunohistochemistry

On the TMA-cohort (Section 2.1.7) an IHC-analysis based on 135 samples represented

on tissue microarrays (TMAs) was conducted to validate two of the identified candidate

genes, RRM2 and TYMS.

TMAs were constructed from formalin-fixed, paraffin-embedded archived tissue

with up to 5 cores (diameter: 1 mm) of non-necrotic tumor tissue for each patient.

Antigen retrieval for RRM2 and TYMS was achieved by ProTaqs IV Antigen-Enhancer

(# 401602392, Quartett) and ProTaqs IX (# 401603692, Quartett). RRM2 was detected

with a specific rabbit-anti-human RRM2 antibody (1:500, 60 min incubation time;

HPA056994, Atlas Antibodies). TYMS was detected with a specific rabbit-anti-human

TYMS antibody (D5B3) (1:100, 60 min incubation time; # 9045, Cell Signaling Technol-

ogy). Both primary antibodies were followed by an anti-rabbit IgG antibody (MP-7401

ImmPress Reagent Kit) and DAB+ chromogen (K3468, Agilent Technologies). Slides

were counterstained with hematoxylin Gill’s Formula (H-3401, Vector).

For 133 of 135 patient specimens (98.5%) represented on the TMAs, evaluation of

RRM2 immunoreactivity was possible. Likewise, 119 of 135 patient specimens (88.2%)

could be evaluated for TYMS. RRM2 and TYMS immunoreactivities were quantified

by an experienced data-blinded uropathologist (PD Dr. med. Yuri Tolkach, University

of Bonn) as percentage of positive tumor cells (cytoplasmatic staining). The survMisc

package for R [99] was used for optimal cut-off selection and Kaplan-Meier survival

analyses. The following percentages of positive cells were selected as best cut-offs for

marker positivity: ≥ 3% for RRM2 and ≥ 5.5% for TYMS.
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These IHC analyses and their evaluation were already described and published by

Gerke et al. [105].

2.4 | Transcriptome analysis pipeline

The integrative transcriptome analysis of T2E-positive and -negative PCa is mainly

based on two cohorts, TCGA-PRAD and GSE46691, and supported by two additional

validation cohorts (GSE16560 and the TMA-cohort). This analysis emphasized the tran-

scriptomic differences between T2E-positive and T2E-negative PCa as by identifying

potential subtype specific biomarkers.

This transcriptome analysis project and the following pipeline were already de-

scribed and published in Gerke et al. [105].

2.4.1 | Sample stratification and selection

Based on the TNM-classification of tumors, datasets were stratified into cases with and

without (lymph node) metastasis, which corresponds to N0M0 versus N>0 and/or M>0.

As metastasis indicates aggressiveness in PCa and is associated with increased mortality

[9], it was selected as prognostic factor in the transcriptome analysis.

In the transcriptome analysis pipeline based on both cohorts (TCGA-PRAD, GSE46691;

Figure 2.3) only samples with information on their T2E fusion status (Section 2.2.3),

sufficient tumor purity (Section 2.2.2), gene coverage of more than 90% and existing

TNM-classification on metastasis were included.

Furthermore, it was possible to filter the TCGA-PRAD cohort for European de-

scent, as incidence and aggressiveness is different in Africans and African Americans

compared to Europeans [112]. This was done via principal component analysis in

PLINK [97,98] on a small pre-processed set of filtered germline variants (Section 2.2.1).

2.4.2 | Processing of transcriptomic data

For every gene, the variance across all samples was calculated with the genefilter Bio-

conductor package [99, 113] leading to the removal of 50% of those genes with the

lowest variance in each cohort. Furthermore, transcripts with missing or ambiguous
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Figure 2.3: Processing pipeline of the transcriptome data from TCGA-PRAD and

GSE46691 cohorts [105]. Sample selection and stratification (green) into T2E depen-

dent subsets followed by generation of deferentially ranked gene lists (purple), rGL-pos

and rGL-neg (orange).
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Figure 2.4: Analysis pipeline to determine the two final gene lists (topGL-pos and

topGL-neg) for further downstream analysis [105].

annotation were removed. Genes represented in both cohorts assembled the final set of

3,068 variably expressed genes (Figure 2.3). After determining the T2E-status for each

sample as described in Section 2.2.3, 10% of samples were removed from the GSE46691

cohort, yielding two cohorts of 299 samples (TCGA-PRAD; from 384 European samples)

and 484 samples (GSE46691; from 545 samples) with 3,068 matching genes each. Next,

both cohorts were split into four sub-cohorts regarding their samples’ T2E-status com-

prising 109 T2E-positive samples and 190 T2E-negative samples (TCGA-PRAD) and

242 T2E-positive and -negative samples each (GSE46691). Afterwards, the median fold

change between samples with and without metastasis at diagnosis was calculated sep-

arately for all four sub-cohorts. From this, two lists comprising the same 3,068 genes

each were generated, which were ranked by their mean fold change in T2E-positive

(rGL-pos) and T2E-negative (rGL-neg) cases.

2.4.3 | Downstream analysis

Based on these sample selection criteria and gene filtering (Figure 2.3), which resulted

in two ranked gene lists, rGL-pos and rGL-neg, GSEA was performed followed by the

selection of frequent genes (topGL-pos and topGL-neg) from its most significant gene-

signatures (Figure 2.4) as described in Section 2.7.1. For every gene from both lists,
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association with metastasis was tested in the two cohorts TCGA-PRAD and GSE46691.

The testing procedure will be explained in more detail in Section 2.7.2. Afterwards,

survival analysis as described in Section 2.7.4 was carried out for all genes of topGL-

pos and topGL-neg on all European samples of TCGA-PRAD and the Swedish validation

cohort (GSE16560). Only genes that were significant in association testing and survival

analysis in both cohorts were considered as candidate genes.

For these significant candidate genes, GSEA was replicated based on T2E-negatives

stratified by their gene expression (Section 2.7.1) for validation. Two genes (RRM2 and

TYMS) were additionally validated via IHC from TMAs in the TMA-cohort (Section

2.3).

2.5 | Genotyping of germline variants

2.5.1 | DNA extraction from blood samples

For the PCGALMU cohort, DNA was extracted from blood with the NucleoSpin Tissue

Kit (Machery-Nagel) as described in the manufacturer’s protocol [114]. For genotyping,

15 µL DNA with a concentration of 60 ng/µL was used. This was executed and prepared

for genotyping in collaboration with Stefanie Stein and Rebeca Alba Rubio.

2.5.2 | Genotyping

All samples assembled for the PCGALMU were genotyped on the InfiniumTM Global

Screening Array-24 including the multi-disease drop-in panel (GSA-MD chip) of Illu-

mina [115]. Therefore, the prepared DNA (Section 2.5.1) was processed as described

in the official Infinium HD Assay Ultra Protocol Guide provided by Illumina. After-

wards, signal intensities were measured with the Illumnia iScan System using the clus-

ter files GSPMA24v1_0-A_4349HNR_Samples.egt and GSAMD24v2-0_20024620_A1-

762Samples-LifeBrain.egt, which were provided by a consortium initiative. Evaluation

was done with the Genotyping Analysis Module of the GenomeStudio Software 2.0 and

revealed good data quality. This process and its evaluation was conducted by Nadine

Lindemann and Dr. Jennifer Kriebel.

Genotyping was carried out in four batches of 200 samples, each. While the first
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batch was genotyped on the GSA-MD chip v1.0, the subsequent batches run on GSA-

MD chip v2.0. Samples genotyped on the same chip version were called together. Due

to withdrawal of their patient’s agreement or a later recognized diagnostic error, 12

samples were removed from the study leaving 788 PCa samples for the PCGALMU.

2.5.3 | Batch Effect Correction for different chip versions

As one of four batches from the PCGALMU cohort ran on an earlier version of the GSA-

MD chip, the samples had to be checked for batch effects in genotyping that might

appear from potential differences between the two versions. The genotypes of samples

from both chip versions were compared via PCA (Figure A.1). An association test be-

tween samples of both versions resulted in an inflation factor λ = 1.01. The correspond-

ing P-values from all variants with MAF > 0.05 included a very small number of signif-

icant hits P < 1.0× 10−4 and yielded a median P-value of 0.5 as suggested by Turner et

al. [116] for quality control in GWAS. These performed tests revealed no batch effects

between GSA-MD chip version 1 (n = 199) and 2 (n = 589). Therefore, the samples

of all four batches from the PCGALMU could be merged into one dataset and analyzed

together.

2.6 | Genomic data processing pipeline

2.6.1 | Calling germline variants

The variant calling process described below is following the GATK Best Practices work-

flow (version 4) used at the Broad Institute [117]. While the raw alignments from WGS

(ICGC-CA) run the whole pipeline, the WXS (TCGA-PRAD) could skip the cleaning

step, as they were available for download already cleaned. The processing pipeline is

shown in Figure 2.5. With vcftools [118] and bcftools [119], data was modified and ma-

nipulated to enable a better and faster processing of the used software in the processing

pipelines.

In all following steps the reference genome and the SNP database for WGS were

based on genome assembly hg19 (GRCh37), but for WXS they were based on the GRCh38

assembly.
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Figure 2.5: Pipeline of calling germline variants from alignments derived from nor-

mal blood and its (pre/post) processing as done for the ICGC-CA and TCGA-PRAD

cohort. While the ICGC-CA cohort runs through the whole pipeline, the TCGA-PRAD

cohort starts with the variant calling (right side) after its QC. Variant calling and its pre-

processing is run per sample (gray box), followed by chromosome-wise post-processing

of all samples combined.



31

Quality Check

First, all downloaded BAM files were checked for their quality with FastQC [120] fol-

lowed by MultiQC [121]. Alignments failing the base quality check were removed. In

the ICGC-CA cohort 3% out of 116 samples and 11% of 440 TCGA-PRAD samples did

not pass the quality check or were damaged. Therefore, only 113 samples were kept

from the ICGC-CA cohort and 393 from the TCGA-PRAD cohort.

Cleaning

Cleaning of alignments derived from sequencing of normal blood samples was done

separately for each sample. First, duplicate reads were removed from the alignments

using the MarkDuplicate method of Picard tools [122]. After indexing with samtools

[119], systematic errors in base quality scores were detected with GATK BaseRecalibra-

tor [123] using the ICGC reference genome (genome.fixed.fa; GRCh37, Table 2.8) and

SNP database version 138 (hg19, Table 2.8). Afterwards, the base quality score recali-

bration was executed with GATK ApplyBQSR [123].

Calling Germline Variants

For every sample, germline SNPs and indels were called with GATK HaplotypeCaller

[123] via local re-assembly of haplotypes with the reference confidence mode (ERC) in

GVCF format. Minimum base quality score was set to 30. As the focus was on SNPs

only, the maximum number of alternate alleles was reduced to 2, saving processing

time. The reference genome and SNP database used were on assembly hg19 for WGS,

but GRCh38 for WXS.

For WGS and WXS separately, all samples were merged with GATK GenomicsDBIm-

port [123] and split chromosome wise. Afterwards, joint genotyping was performed

with GATK GenotypeGVCFs [123] per chromosome.

Quality Filtering

With GATK VariantRecalibrator [123] a recalibration model is build for variant qual-

ity scoring, which is needed for filtering. It is used with the same corresponding ref-
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erence genome as described before. It runs in SNP mode only using QD, FS, SOR

MQ MQRankSum, and ReadPosRankSum parameter for calculations. Furthermore, re-

sources regarding the hapmap, omni, 1000G, and dbsnp databases are used for training

and truth sets. The exact resources for both cohorts based on GRCh38 and hg19/GRCh37

are listed in Table 2.8. Based on the resulting recalibration table, the quality of every

variant was calculated with GATK ApplyVQSR [123] in SNP mode for truth sensitivity

level of 99.0. These two steps for variant recalibration were only run in SNP mode but

not for indels, which were culled in the next step.

With GATK SelectVariants [123] in SNP mode, those variants that did not pass the

previous quality checks or were not biallelic were removed.

Unification of the genome assembly

Due to a different genome assembly of TCGA-PRAD cohort compared to the PCGALMU

cohort and ICGC-CA cohort, the genome of each chromosome was lifted from GRCh38

to hg19 using Picard LiftoverVCF [122] with hg38ToHg19.over.chain and the human

genome reference from UCSC (Table 2.8).

Standardization

All variants were annotated with SnpSift [124] for their unique rs id using a SNP an-

notation file (All_20180423.vcf.gz, Table 2.8). Finally, the dataset of each cohort was

converted from VCF into binary PLINK format, consisting of BED, MAP, and FAM file.

2.6.2 | Determination of ethnical origin

Clustering individuals by their genome against a reference set of multiple populations,

as described in Section 2.2.1, enables to identify their genetic descent. To receive a com-

parative homogenous study cohort, only PCa patients with Central European descent

were considered in this thesis. Therefore, the cohorts PCGALMU, TCGA-PRAD, and

ICGC-CA underwent this procedure to define which samples to use for GWAS analysis.

PCA on PCGALMU revealed four samples with African, one with East Asian, and

781 with European descent. When focusing on European subpopulations, two of Scan-

dinavian, 28 of Mediterranean, and 751 of Central European origin could be identi-



33

Figure 2.6: Workflow of GWAS on germline variants, lead SNP identification of its meta-

analysis and the subsequent statistical analysis. Processing of the sequencing data (first

green box) is described in detail in Figure 2.5. (LD = linkage disequilibrium; RA = risk

allele)
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Table 2.4: Ancestral population distribution in the cohorts. Final number of samples

(Central European ancestry) used for further analysis are highlighted in bold font.

Population PCGALMU TCGA-PRAD ICGC-CA 1000 Genomes

Total 788 393 113 1665

African 4 45 4 658

East Asian 1 9 3 504

Mixed ancestry 2 26 12 -

European 781 313 94 503

Central European 751 263 84 187

Mediterranean 28 49 10 210

Scandinavian 2 1 - 99

fied. TCGA-PRAD cohort is composed of 45 African, nine East Asian, and 313 Euro-

pean patients, whereas the latter can be grouped into 49 patients originating from the

Mediterranean area, one from the Scandinavian area, and 263 from Central Europe.

The ICGC-CA cohort contained four samples of African, three of East Asian, and 94

of European descent. Its European subpopulations split into 10 Mediteranean and 84

Central European samples. For individuals with mixed ancestry, population assign-

ment was ambiguous (26 for TCGA-PRAD, 12 for ICGC-CA, and 2 for PCGALMU) and

were hence excluded.

In the end, 751 Central European samples for PCGALMU, 263 for TCGA-PRAD, and

84 for ICGC-CA could be identified that were suitable for GWAS. All other samples

were discarded. All cohorts and their corresponding populations are summarized in

Table 2.4. The population clustering of the PCGALMU cohort is shown in Figures A.2a,

A.2b, and A.3, while those of TCGA-PRAD and ICGC-CA can be found in the Figures

A.2c, A.2d, and A.4.
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2.6.3 | Imputation

Genotype imputation enables the prediction of genetic variants that were not covered

by previous sequencing or genotyping. Based on an individuals germline variants,

missing variants can be inferred using haploblocks from a reference panel with known

genome.

Before converting the variants of all autosomes into VCF, the variant file was checked

with a perl script provided by the McCarthy Group (Table 2.7), which compares variants

against the corresponding reference set and corrects for potential strand flips, alleles,

erroneous positions, and ref/alt assignments to prepare the dataset for imputation. The

imputation was executed on the Michigan Imputation Server (Table 2.7), which uses the

genotype imputation algorithm Minimac3 [125] against the predominantly European

population of the Haplotype Reference Consortium reference panel (HRC r1.1 2016)

[126]. Phasing was performed with Eagle2 [127].

Imputed variants were filtered for good quality with GATK VariantFiltration and Se-

lectVariants [123]. Thereby, monomorphic variants and those with a predicted R2 < 0.3

were removed as proposed by Hancock et al [128]. Multi allelic variants were identi-

fied with bcftools norm [119] to be excluded later, as some subsequent analysis tools

are not able to handle them. Remaining variants were annotated with bcftools anno-

tate [119] followed by SnpSift [124] using the SNP database All_20180423.vcf.gz (Table

2.8). Variants located on allosomes and the mitochondrial DNA that could not be im-

puted on the Michigan Imputation Server were added to the variant set. Afterwards, all

variants were converted into binary PLINK format for GWAS and downstream analysis.

2.7 | Statistical Analysis

2.7.1 | Gene set enrichment analysis and leading edge analysis

Two pre-ranked lists (rGL-pos and rGL-neg) of 3,068 genes that were created as de-

scribed in Section 2.4 based on gene expression differences between PCa patients with

and without metastasis in T2E-positive and -negative samples, were used for gene set

enrichement analysis (GSEA) to identify significantly enriched gene-signatures. GSEA

was performed with 1,000 permutations on gene sets from the Molecular Signatures
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Database (MSigDB v6.2) that represents expression signatures of genetic and chemical

perturbations (CGP) [129–131]. From each resulting list of gene-signatures sorted by

normalized enrichment score (NES), the top 20 significantly enriched gene-signatures

(NES > 1.6, nominal P< 0.05, and FDR q < 0.3) were selected. To identify common

genes across these gene-signatures, those genes, which were involved in more than

three gene-signatures, were extracted using leading edge analysis (LEA) [130] yield-

ing two new top gene-signature based gene lists for T2E-positive and -negative samples

(topGL-pos and topGL-neg) for further analysis.

Later, GSEA was repeated several times. In contrast, the lists were compiled from

T2E-negative samples only and were based on genes that were similary ranked as before

( Section 2.4). Moreover, these T2E-negative samples were, stratified by their median

expression of five specific genes (ASPN, BGN, COL1A1, RRM2, and TYMS) into a high

and low expression subgroup, each. Within each subgroup of T2E-negative samples, the

fold change between cases with and without metastasis indicated the ranking of genes

for GSEA, as described in Section 2.4.2. Once more, from GSEA on every subgroup, the

top 20 gene-signatures were taken. The top 20 gene-signatures from GSEA between the

corresponding subgroups (low/high) were compared for each of those five genes.

2.7.2 | Transcriptomic association testing

All candidate genes from both lists, topGL-pos and topGL-neg (Section 2.7.1), were

separately tested in both PCa cohorts (TCGA-PRAD and GSE46691) for potential as-

sociation with metastasis. Using Mann-Whitney-U test [99], the significance of differ-

ential expression in PCa with and without metastasis at diagnosis was determined. P-

values were not adjusted for multiple testing. Only genes being significantly associated

(significance level α < 0.05) with metastasis in both cohorts were considered, further-

more, in transcriptome analysis.

2.7.3 | Network analysis

Based on all genes from both gene lists (topGL-pos and topGL-neg) resulting from GSEA

and LEA in Section 2.7.1, three different networks were created showing genetic inter-

action, pathways, and physical interaction of the corresponding genes of each list with
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Cytoscape [132]. Additionally, with a plug-in called GeneMania [133], the number of

genes in each network was doubled by extending the list with functionally similar genes

identified using available genomics and proteomics data. All networks were arranged

and optimized in organic layout.

2.7.4 | Survival analysis

Even though this type of analysis is called survival analysis, the event of interest is not

necessarily death. In cancer research it is also common to observe patients until a cer-

tain event or their drop out of the study. These cases are then referred to as censored.

The occurring event can cover biochemical relapse (BCR) or event-free survival (EFS)

additionally referring to the absence of metastasis, death, appearance of a new tumor.

The survival time refers to the elapsed time from diagnosis until corresponding event.

Resultant survival rates of different patient groups were compared and the correspond-

ing P-values were calculated using the Mantel-Haenszel test. Survival analyses were

carried out using the Kaplan-Meier method and the survival package in R [99, 134].

Survival analyses performed in this thesis were based on three different approaches

of patient grouping:

In the first approach, patients with genomic data were grouped by their genotype

(0/0, 0/1, 1/1). All resulting survival curves were compared to each other.

The second approach, referred to datasets with available transcriptome data. Sam-

ples were stratified into quartiles regarding their intratumoral gene expression levels.

Only patient groups with the most extreme gene expression (highest versus lowest;

Q1/Q4) were compared. Some survival analyses based on this approach were carried

out on T2E-positive and negative sub-cohorts.

The third approach mainly refers to clinical data such as the Gleason Grade (GG).

T2E-positive and -negative sub-cohorts were split by their GGG into two groups (GGG

I-III and IV/V) and compared to each other. Moreover, this analysis was expanded

by adding transcriptome data to analyze the potential added value of biomarker in

addition to the GGG. For this specialized Kaplan-Meier survival analysis, patients of

both GGG I-III and IV/V were stratified by their intratumoral gene expression levels of

specific genes split into low and high (cut-off = 80th percentile). The P-values for the

difference between high and low gene expression levels were calculated separately for
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GGG I-III and IV/V.

2.7.5 | GWAS - genome-wide association study

Imputed germline variants for all three cohorts (PCGALMU, TCGA-PRAD, ICGC-CA)

were tested separately for several clinical features with PLINK [97, 98]. Beside using a

homogenous population of Central European male patients, variants were filtered based

on genotype call rate ≥ 95%, Hardy-Weinberg-Equilibrium (P> 1 × 10−5), and a minor

allele frequency ≥ 1%, to ensure good sample and marker quality [116]. Additionally,

the patients’ age at diagnosis was used as covariate. For a GWAS on clinical features

split into two groups, the logistic regression was applied. For association testing based

on multiple ordinal scaled groups or ratio scaled data the linear regression was used in-

stead. Variant associations were visualized as Manhattan and Q-Q plots (with genomic

inflation factor λ) using qqman package in R [99, 135].

Clinical feature every cohort was tested for (patient characteristics of all cohorts are

shown in Table 2.1):

• T2E fusion: T2E-positive vs T2E-negative PCa samples (2 groups)

• Gleason Grade Group: I+II vs III vs IV+V (3 groups, ordinal)

• Tumor growth: pT1+2 vs pT3+4 (2 groups, ordinal)

• PSA: PSA > 1 (linear)

2.7.6 | Meta-analysis

The results from the GWAS analyses with PLINK [97, 98] were formatted with python

to match the input required for meta-analysis. Meta-analysis combined the P-values of

all variants from all GWAS, which were tested for the same clinical feature, applying

METAL [136] weighted by inverse variance using their P-value and standard error. De-

pending on the used regression, β (for linear) or log odds ratio (OR; for logistic) were

used as effect. Additionally, heterogeneity I2 across cohorts of every SNP was calcu-

lated.

From 7.3 million SNPs of PCGALMU, 9.2 million SNPs of ICGC-CA, and 2.3 million

SNPs of TCGA-PRAD tested in the GWAS, only those SNPs were considered in the meta-

analysis that were tested not only in the PCGALMU cohort, but also in at least one of
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the other two cohorts. Final SNP associations of the meta-analysis were visualized as

Manhattan plot with genome-wide significance of P< 5×10−8 using qqman package in

R [99, 135].

2.7.7 | Lead SNP identification via clumping

With the clumping procedure in PLINK [97, 98], lead SNPs with genome-wide signifi-

cance could be identified from the results of the meta-analysis. A lead SNP refers to

the most significant SNP of all SNPs in a region that are in LD with each other. SNPs

with P< 5× 10−8 were considered as genome-wide significant for whole genome based

analyses.

2.7.8 | Fine-mapping of lead SNPs

The haploblock of the lead SNPs, which is restricted by a high recombination rate of

variants, was investigated closely with LocusZoom [137]. The lead SNP was highlighted

in purple, while the remaining SNPs were colored by their r2 value against the lead SNP.

With LocusZoom, different lead SNPs on the same haploblock, which are not in LD with

each other, but exhibit a highly significant association signal, could be detected. Also

the second identified lead SNP was visualized with LocusZoom as described above.

2.7.9 | Evaluation of lead SNPs and determination of represen-

tative tag SNPs

Lead SNPs and those in LD (r2 > 0.4 ) with the lead SNPs, were evaluated by heterogene-

ity (I2) of the meta-analysis. Additionally, the association effect (95% CI) of each SNP

resulting from each single cohort was compared to the overall effect of the meta-analysis

in a forest plot created with the forestplot and meta packages in R [99, 138, 139]. Fur-

thermore, it is crucial for meta-analysis that the effect of the SNP points into the same

direction for each of the tested cohorts, thus, affecting the same allele. For lead SNPs

with high heterogeneity (I2 > 50%), the next most significant SNP in LD and I2 < 50%

was selected as representative tag SNP. These lead SNPs were analyzed together with

their corresponding representative tag SNPs and referred to as candidate SNPs in this

thesis.
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2.7.10 | Effect size of risk allele

In PLINK [97, 98], the effect size was calculated against the minor allele. Due to several

tested ordinal scaled groups, the effect was estimated by the regression coefficient. A

positive regression coefficient indicates an increased risk for patients possessing the

minor allele, while a negative value identifies the major allele as risk allele (RA) [97,98].

With an odds ratio (OR) the effect size between the groups can be measured. Therefore,

based on the number of risk and non-risk alleles the odds for the lowest ordinal group

is calculated as baseline. Afterwards, the odds of the other groups are calculated and

compared to the baseline as OR.

2.7.11 | Expression quantitative trait locus analysis

For detected candidate SNPs, expression quantitative trait locus (eQTL) analysis was

run on datasets with both genomic and transcriptomic data available. Therefore, vari-

ant annotation regarding eQTL genes acting in cis or trans with the candidate SNPs were

obtained from SNiPA [140]. With linear regression between those genes and the geno-

types of the candidate SNPs, eQTLs were estimated and visualized using the beeswarm

package in R [99, 141].

2.7.12 | Epigenetic fine-mapping

Candidate SNPs were also examined in their epigenetic context. ChIP-seq data from

PC-3 cell lines were downloaded from ENCODE [142] (Table 2.8). Beside DNase

(ENCFF504HAN), ChIP-seq data covers transcription factor CTCF (ENCFF785IOE),

and histone H2AFZ (ENCFF275MKL) as well as histone modifications H3K36me

(ENCFF231NLM), H3K27ac (ENCFF940SZQ), and H3K9me3 (ENCFF209KEN). ChIP-

seq reads were aligned on hg19 and visualized in IGV [143].

2.7.13 | Functional annotation of eQTL variant

For functional annotation, the most significant eQTL variant was annotated with An-

novar and ensembl’s Variant Effect Predictor (VEP) [144].
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2.7.14 | Conditional analysis

Conditional analysis was executed for the eQTL SNP. Therefore, a GWAS on variants

of PCGALMU against Gleason score was repeated in PLINK (Section 2.7.5) for variants on

the same haploblock as the eQTL SNP, but with the genotype of eQTL SNP as additional

covariate.

2.8 | STARLING - webserver organization and devel-

opment

A web service called STARLING (proSTAte cancer Research Leveraging Important Novel

Genomic biomarkers) was established to enable a user friendly and intuitive access

to the association testing results of our GWAS comprising three cohorts (PCGALMU,

TCGA-PRAD, and ICGC-CA).

STARLING helps other researchers of the prostate cancer field to identify biomark-

ers that are associated with certain clinical features or somatic mutations.

2.8.1 | Technical aspect and structure

The web service architecture is based on the client-server model (Figure 2.7). On client-

side the website content and structure was written in HTML using the Skeleton frame-

work and designed via CSS (Cascading Style Sheet). Interactions on the website were

implemented in JavaScript using jQuery library. Requests sent from client-side with

Ajax (Asynchronous JavaScript and XML) are processed on server-side by PhP. After-

wards, the compiled query is passed to the MySQL database, which is stored on the

server. From server-side, its JSON response is send back to the client-side, where it is

prepared and formatted into the corresponding outcome (table and plot) via JavaScript.

2.8.2 | Database design and data integration

The web service is based on a MySQL database, which stores the test results for all

association tests, SNPs, and cohorts. Additionally, every tested SNP is listed with its

meta data. Database design is described in Figure 2.8. With a python script the local
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Figure 2.7: Schematic client-server model describing the architecture of STARLING.

Figure 2.8: Database design used for STARLING. (PK = primary key; the remaining

short cuts refer to variable names in the database)
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database was created and loaded. The exported database was then uploaded onto the

server via MyPhpAdmin.

2.8.3 | Data visualization of response

The requested results received from the database are shown in a table, via the DataTables

plug-in for the jQuery JavaScript library, and visualized in an interactive Manhattan

plot, created with JavaScript library HighCharts.

The table exclusively shows the query SNPs sorted by ascending P-value . Location,

alleles, and risk allele of the SNPs are listed as well as the number of cohorts used for

association testing and its resulting heterogeneity. Additionally, a star symbol informs

about significance or genome wide significance. The table can be sorted interactively

and enables full text search on SNP IDs.

Beside the table, a Manhattan plot supports the requested GWAS results. It shows

the query SNPs in context to the remaining significant SNPs (P-value > 0.05) tested for

association to the same phenotype. The intuitive plot highlights the query SNPs in

orange. Furthermore, the interactive plot enables to identify other SNPs by hovering

over them with a cursor, that could also be of the user’s interest but have a lower P-

value . By doing so, a little pop up information window to the corresponding SNP is

shown.

2.8.4 | Web service security

To ensure maximum security, database access authorization and PhP scripts build-

ing a database connection were hidden in the server structure. Instead of unpopular

captchas, the invisible honeypot method was applied to the request submission form to

prevent bots from overloading or crashing the server with random automatically gener-

ated requests.

2.8.5 | Evaluation

Before its official launch, the website was tested for its web appearance, performance,

reachability, and findability. Therefore, comprehensive search engine optimization (SEO)

was done with WebSite Auditor (v4.38.1) of SEO PowerSuite Free.
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2.8.6 | Hosting

The STARLING web service is hosted on the webserver (webdev-lmu.lrz.de) of the

Leibniz-Rechenzentrum (LRZ) and accessible via the following domains:

• www.starling-pcga.med.uni-muenchen.de

• www.starling-pcga.med.lmu.de
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2.9 | Software and file summary

Table 2.5: Most important software packages and plug-ins used in this thesis with pro-

grams and languages listed in Table 2.6 and 2.7.

Name Software Version Usage Reference

ajax/jQuery javaScript 3.3.1 Data requests

AnnotationDbi R 1.46 For annotation in bioconductor [145]

beeswarm R 0.2.3 Beeswarm plot [141]

BiocManager R 1.30.4 Bioconductor package installer [146]

DataTables javaScript 1.10.19 Interactive tables

ESTIMATE R 1.0.13 Tumor purity predictor [101]

fontawesome CSS 5.8.1 Graphic symbols

forestplot R 1.9 Forest plot [138]

genefilter R 1.66 Filter genes [113]

HighCharts javaScript Interactive plots

meta R 4.9 Meta-analysis [139]

mclust R 5.4 Population clustering [100]

org.Hs.eg.db R 3.8.2 human annotation database [147]

pd.huex.1.0.st.v2 R Gene level summarization [107]

qqman R 0.1.4 Manhattan and QQ plots [135]

SCAN.UPC R 2.28.0 Microarray normalization [106]

skeleton CSS HTML framework

survival R 2.38 Kaplan Meier survival plots [134]

sva R 3.32.0 ComBat [148, 149]
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Table 2.6: Programming languages and development environments used throughout

this project to implement scripts and run bioinformatic software listed in Table 2.7.

Language/

Environment

Version Description Online

Awk 5.0.0 Text processing and data extrac-

tion

gnu.org/software/gawk/

Bash 4.4.12 Unix-shell gnu.org/software/bash/

Bioconductor 3.9 Open source software for bioin-

formatics

bioconductor.org/

CSS 3 Style sheet language for website

layout and presentation

Cygwin 3.0.7 Linux Environment for Win-

dows

cygwin.com/

HTML 5 Hypertext Markup Language for

creating web pages

javaScript 1.8.5 For interactive web pages

Java 1.8.0

(181)

General-purpose programming

language

java.com/

MySQL 8 Database management system mysql.com/

Perl 5.26.3 General-purpose programming

language

perl.org/

PhP 7.1 Scripting language for web de-

velopment

php.net/

Python 2.7.14 general-purpose programming

language

python.org/

R 3.5.0 Language and Environment for

statistical computing

r-project.org/

XAMPP 3.2.2 PHP development environment apachefriends.org/
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3

Results

Most of the results presented in Section 3.1 have previously been published in the peer-

reviewed International Journal of Cancer by Gerke et al. [105].

3.1 | Integrative clinical transcriptome analysis reveals

TMPRSS2-ERG dependency of prognostic biomark-

ers in prostate adenocarcinoma

PCa composes several distinct molecular subtypes [53, 58] that can mainly be split into

T2E-positives and T2E-negatives. In the first part of this thesis, the transcriptomes of

collectively 783 PCa of two public cohorts (TCGA-PRAD and GSE46691) with matched

clinicopathological data were analyzed, to emphasize the molecular differences associ-

ated with metastasis of both PCa subtypes. Contrary to other common clinical records

associated with PCa, information on metastasis was available for both cohorts. Thus,

metastasis was selected as surrogate for PCa aggressiveness.

Using multiple filtering steps regarding variance and regulation, a unity of 3,068

variably expressed genes was left for further analysis (Figure 2.3). After distinguishing

the transcriptomes by their samples T2E-status, genes were examined for T2E-positive

and -negative PCa separately, to emphasize the fusion associated differences in PCa

transcriptomes. With GSEA (Figure 2.4), followed by LEA, association testing against
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metastasis and survival analysis, five genes (ASPN, BGN, COL1A1, RRM2, and TYMS)

could be identified, whose high expression is associated with worse outcome in T2E-

negative PCa, exclusively. Furthermore, several of them add prognostic information

to clinicopathological predictors. Contrary, no similar observation was made for T2E-

positive PCa.

3.1.1 | T2E-positive and -negative PCa are characterized by dis-

tinct metastasis associated gene-signatures

Using multiple filtering steps regarding variance and regulation, a unity of 3,068 vari-

ably expressed genes was left for GSEA. By distinguishing the transcriptomes by their

samples T2E-status, those genes were ranked by their expression fold change between

patients with and without metastasis (Figure 2.3). On the resulting two ranked gene

lists, rGL-pos and rGL-neg, a GSEA was run selecting the resulting top 20 significant

gene-signatures obtained for each gene list. There was no overlap between the top 20

significant metastasis associated gene-signatures of both T2E-positives (rGL-pos) and

-negatives (rGL-neg) (Figure 3.1a, Table A.1, and A.2).

Using LEA, genes involved in more than three of the selected top 20 gene-signatures

were extracted to create two new ‘top gene-signature’ gene lists (topGL-pos and -neg,

Figure 2.4). Accordingly, 16 genes of rGL-pos were overrepresented in significant gene-

signatures of T2E-positives and summarized in topGL-pos (Table A.3). TopGL-neg con-

tained 74 genes frequently occurring in significant gene-signatures of T2E-negatives

(rGL-neg, Table A.4). By comparing the genes of topGL-pos to topGL-neg, only two

genes (RRM2 and TYMS) were part of both lists (Figure 3.1b). However, both shared

genes were involved in different gene-signatures of T2E-positive and -negative cases.

Altogether, these results indicated that T2E-positive and -negative PCa are charac-

terized by distinct metastasis associated gene signatures [105].

3.1.2 | Frequent genes involved in metastasis associated gene-

signatures are predominantly coding genes

Beside protein coding genes, non-coding genes were examined accordingly regarding

miRNAs, ncRNAs, and lncRNAs. However, only 20 non-coding genes were found
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(a) Overlap between top 20 significant gene-

signatures of rGL-pos and -neg as identified by

GSEA [105].

(b) Overlap of overrepresented genes in top

metastasis associated gene-signatures in T2E-

positive and -negative cases [105].

Figure 3.1: Venn diagrams showing a) T2E-positive and -negative PCa are character-

ized by distinct metastasis associated gene-signatures and b) the overlap between the

corresponding overrepresented genes of these gene-signatures.

among the unity of genes from both discovery datasets. Only one of those (DLEU2)

was among the top 20 significantly enriched gene-signatures, but too infrequent to be

included in topGL-pos or -neg gene list as candidate. Therefore, it was not further pur-

sued with non-coding genes [105].

3.1.3 | Different genes are associated with metastasis in T2E-

positive and -negative PCa

Subsequently, all genes of both gene lists (topGL-pos and -neg) obtained from the signif-

icant gene-signatures were tested in the discovery cohorts (TCGA-PRAD and GSE46691)

separately for significant differential expression depending on the formation of metas-

tases. In T2E-positive cases (topGL-pos), three genes (GMNN, TROAP, and WEE1) out

of 16 were significantly (P< 0.05) higher expressed in PCa samples with metastasis (Ta-

ble 3.1). In T2E-negative cases (topGL-neg) 29 of 74 genes were significantly (P< 0.05)
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higher expressed in PCa patients with metastasis. By comparing these significantly dif-

ferentially expressed and metastasis associated genes in the two gene lists, no overlap

could be found (Table A.3 and A.4).

These results suggest that, depending on the T2E-status, distinct genes are linked to

metastasis in PCa [105].

3.1.4 | Metastasis associated genes are not forming hubs in net-

works to enable gene function prediction

For every gene list (topGL-pos and -neg) three networks, visualizing genetic interac-

tions, pathways, or physical interactions between genes, were created, each. Beside

those genes, each network was extended with the same amount of functionally similar

genes. This results in three networks with 32 genes based on topGL-pos (Figure A.10)

and three networks consisting of 148 genes based on topGL-neg (Figure A.11).

None of the networks included all genes of each gene list in one cluster. While

both genetic interaction networks formed one main cluster and several single nodes,

the other four networks (physical interaction and pathway, respectively) additionally

formed several small clusters around single genes of the gene lists. These network pat-

tern did not allow an implication on the gene function affecting the aggressiveness of

PCa. The genetic interaction networks of both topGL-pos and topGL-neg (Figures A.10c

and A.11c) were highly connected and included many of the genes from the correspond-

ing gene list. But, no hub gene, which is defined by a very high node degree and a low

connectivity between its neighbor nodes and whose loss would destroy the whole net-

work, could be identified. This indicates that none of these genes played a major role

in the networks, which could correspond to an important effect in the development of

metastases. Also, each network in its entirety did not reflect a coherency between the

genes from the gene lists, topGL-pos and topGL-neg.

Due to the observed pattern of multiple small clusters and missing hub genes in the

examined networks, no biologic conclusion regarding gene function could be drawn

from the genes of topGL-pos and topGL-neg, respectively. Therefore, network analysis

was not pursued.
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3.1.5 | Identified prognostic biomarkers are subtype specific

Based on Kaplan-Meier analysis of two independent cohorts, a potential correlation

between the identified metastasis associated genes and event-free survival (EFS) was

explored. Apart from the TCGA-PRAD cohort, this analysis was supported by another

independent microarray-based validation cohort, GSE16560, to verify the findings. As

before, only those genes significantly (P< 0.05) and concordantly associated with EFS

in both cohorts were further pursued. None of the genes from topGL-pos was signif-

icantly associated with EFS in T2E-positive PCa and, therefore, not accepted as can-

didate as prognostic biomarker (Table A.3). Contrary, seven genes identified based on

T2E-negative cases were consistently associated with EFS (APOE, ASPN, BGN, COL1A1,

LY96, RRM2, and TYMS) and suit potential prognostic biomarkers. All seven identified

genes accorded with their observation of higher expression levels being associated with

shorter EFS (Figure 3.2, Table A.4). Strikingly, this effect of consistent association with

EFS could not be seen for these genes in T2E-positives cases (Figure 3.2).

However, only five genes (ASPN, BGN, COL1A1, RRM2, and TYMS) were associated

with metastasis (Section 3.1.3 ) and EFS in both discovery cohorts and the first valida-

tion cohort as summarized in Table 3.1. Thus, these five identified genes from topGL-

neg qualified for potential subtype specific biomarkers and were further validated.

Altogether, this confirms that the identified potential prognostic biomarkers ASPN,

BGN, COL1A1, RRM2, and TYMS could be employed for outcome prediction in T2E-

negative PCa, exclusively [105].

3.1.6 | Commonmutations associated with PCa did not bias pre-

viously conducted results

Beside T2E, multiple other additional molecular events affecting tumor suppressors

can occur in PCa and lead to worse outcome [53, 55]. The TCGA-PRAD cohort was

re-investigated for common mutations in PCa regarding suppressor genes SPOP, TP53,

and PTEN, which could be inferred from exome sequencing data [53]. These mutated

genes were investigated for a potential bias on previous results regarding EFS in Section

3.1.5.

The most frequent mutations are affecting the SPOP gene and occur in around 10%
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Figure 3.2: The prognostic value of identified biomarkers depends on the T2E-status

[105]. Kaplan-Meier plots for event-free survival (EFS)-associated genes (APOE, ASPN,

BGN, COL1A1, LY96, RRM2, and TYMS) of topGL-neg derived from samples of the

TCGA-PRAD and GSE16560 cohorts. Patiens were split by their T2E-status (posi-

tive/negative) and stratified by their quartile intratumoral gene expression level of the

corresponding gene. Using Mantel-Haenszel test, P-values were calculated between the

lowest (Q1) an highest (Q4) gene expression quartiles.
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Table 3.1: Result summary of genes in both gene lists (topGL-pos and topGL-neg) that

passed at least one of the applied tests (association test against metastasis and survival

analysis on EFS) for all cohorts, as well as those two genes (RRM2 and TYMS), which

were included in both gene lists. Data for all genes was extracted from Table A.3 and

A.4. Genes being significant in all tests are highlighted in bold font. [105]

Dataset GSE46691 TCGA GSE16560

P-value P-value P-value Expression level P-value Expression level

Gene (metastasis) (metastasis) (EFS) associated with (EFS) associated with

long EFS long EFS

topGL-pos

GMNN <0.001 0.005 n.s. low n.s. high

RRM2 0.005 n.s. n.s. high n.s. low

TROAP 0.021 0.032 n.s. low n.s. high

TYMS <0.001 n.s. n.s. high n.s. low

WEE1 <0.001 0.002 n.s. low n.s. high

topGL-neg

APOE n.s. 0.011 0.021 low 0.005 low

ASPN <0.001 <0.001 0.001 low <0.001 low

BGN 0.003 <0.001 0.015 low <0.001 low

COL1A1 <0.001 <0.001 0.025 low 0.007 low

LY96 n.s. <0.001 0.001 low 0.043 low

RRM2 0.044 <0.001 <0.001 low 0.002 low

TYMS 0.009 0.018 0.001 low <0.001 low
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of PCa, but in T2E-negative cases exclusively [53, 153]. The removal of 20 PCa cases

harbouring a mutation in the SPOP gene from the T2E-negative sub-cohort did not

affect the significance of previous results of the five subtype specific genes being as-

sociated with clinical outcome, described in this thesis. These results are not shown

as they hardly differ from those in Figure 3.2. This suggests that SPOP mutations do

not impact the validity of ASPN, BGN, COL1A1, RRM2, and TYMS for T2E-negative

tumors [105]. Furthermore, two additional genes (TP53, PTEN) possessing common

mutations in PCa were investigated, like SPOP mutations before, as they could have

biased the results from the TCGA-PRAD cohort (overall mutation frequency of 7% and

2%, respectively). Beside eleven TP53-mutated cases, only two PCa samples harbouring

a PTEN mutation could be identified in the T2E-negative TCGA-PRAD cohort. Again,

removing these minor amount of mutated cases from the T2E-negative sub-cohort did

not impact the significant associations of ASPN, BGN, COL1A1, RRM2, and TYMS with

clinical outcome.

This indicates, that none of the examined gene mutations in SPOP, TP53, or PTEN

could have confounded the previous results of this thesis [105].

3.1.7 | T2E-negative PCa stratified by candidate biomarker

expression deviate in their metastasis associated gene-

signatures

Five identified subtype specific genes (ASPN, BGN, COL1A1, RRM2, and TYMS) were

investigated, separately, regarding their gene expression level (low/high) being associ-

ated with different gene-signatures. GSEA was repeated for T2E-negative subgroups

that were split by their corresponding gene expression into high and low for each of the

five genes. By comparing the top 20 gene-signatures resulting from the high and low

subgroup for each gene, only a minor amount of gene-signatures did overlap (Tables

A.5, A.6, A.7, A.8, and A.9). The shared gene-signatures between the high and low sub-

groups ranged from 15% for COL1A1 to 45% for RRM2. The median overlap for all five

genes accounts for 38% of their corresponding top 20 gene-signatures.

These slight overlaps imply that T2E-negative tumors expressing high or low levels

of the given candidate marker genes may be driven by mostly distinct pathways and

thus may differ in their (patho)biology [105].
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3.1.8 | Validation by IHC endorsed RRM2 and TYMS as biomark-

ers for T2E-negative cases

With IHC a potential T2E dependent prognostic value of PCa biomarkers should be

explored. Therefore, TMAs from 135 PCa cases (TMA-cohort) were stained by IHC for

RRM2 and TYMS. These two genes were chosen as representatives of the five identified

genes, as for both a specific antibody was available. The BCR-free survival (BFS) of

T2E-positive and -negative cases were analyzed separately by stratifying the patients

by their percentage of RRM2-positive tumor cells as well as TYMS-positive tumor cells.

For RRM2 a cut-off ≥ 3% and for TYMS a cut-off ≥ 5% was selected according to the

respective median percentage of both RRM2- and TYMS-positive tumor cells across the

complete cohort.

Patients with T2E-negative PCa, which possess a high percentage of RRM2-positive

tumor cells, could be observed with significant (P= 0.005) worse BFS than those with

low RRM2-positivity (Figure 3.3a). Moreover, a significant (P= 0.004) lower BFS rate for

patients with T2E-negative PCa exhibiting a high percentage of TYMS-positive tumor

cell could be seen (Figure 3.3b). Contrary, no association of neither RRM2-positivity

nor TYMS-positivity with BFS was detected in T2E-positive cases.

These results verify that the prognostic value of biomarkers in PCa depends on the

T2E-status and suggest that analyses not considering the T2E-status may affect outcome

prediction.

3.1.9 | Subtype specific biomarkers add prognostic information

to Gleason grading

Currently, the GG is the most widely used predictor for patient outcome in PCa. Its

Gleason grading groups (GGG) were recently redefined based on the Gleason score and

cover five categories (I-V, Table 1.1) [50], which have been proven to be of high prognos-

tic significance in large cohorts [43, 154]. Nevertheless, it still remains challenging and

hazardous to predict the risk of developing an aggressive PCa for individuals based on

GG only [155, 156].

Therefore, both cohorts (TCGA-PRAD and GSE16560) were stratified by their T2E-

status followed by GGG (I-III vs. IV/V) to be compared via Kaplan-Meier analyses. As
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(a) Validation of RRM2 (median percentage of positive tumor cells with cutoff ≥ 3%)

(b) Validation of TYMS (median percentage of positive tumor cells with cutoff ≥ 5.5%)

Figure 3.3: Validation of genes as prognostic biomarkers for T2E-negative samples by

IHC [105]. Top a/b): Representative micrographs of T2E-positive and negative PCa

stained for the corresponding genes by IHC. Scale bars = 50µM for 10× and 40× mag-

nification, respectively. Bottom a/b): Kaplan-Meier analysis of biochemical relapse

(BCR)-free survival of T2E-positive and -negative cases stratified by their median per-

centage of positive tumor cells using the Mantel-Haenszel test.
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expected, a significant association (P< 0.002) of worse EFS with high GGG (IV/V) could

be observed for both cohorts, regardless of the T2E-status (Figure 3.4a).

Even though the identified genes did not outperform the GG as biomarker, the as-

sumption arose that they might increase the prognostic value of the GG and enhance

outcome prediction together. Depending on their samples T2E-status, ASPN, BGN,

COL1A1, RRM2, and TYMS were examined, whether their expression level might add

prognostic information to the GG. Thus, the previously described subgroups were fur-

ther divided regarding their gene expression of the potential subtype specific biomarker

into high and low. As shown in Figure 3.4b, high RRM2 and TYMS expression was as-

sociated with signifcantly worse outcome for patients in both GGG subgroups (high-

/low) with T2E-negative tumors. Interestingly, this additive prognostic effect was com-

pletely absent in T2E-positive cases of both cohorts (Figure 3.4b). For ASPN, BGN, and

COL1A1, slight effects could be seen that either present statistical trends or reached

statistical significance only in one cohort. The results are summarized in Table A.10.

Altogether, these results indicate that at least two out of five genes (RRM2 and

TYMS) can add prognostic information to routine GG for patients with T2E-negative

PCa [105].
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(a) T2E-positive and T2E-negative patients, separately, stratified by their GGG each.

(b) Samples stratified by their T2E-status, GGG (by high or low expression (cut-off =

80th percentile) of the indicated biomarkers. High versus low biomarker expression

were compared separately for high (IV/V, red color) and low (I-III, blue color) GGG.

P-values are listed in Table A.10.

Figure 3.4: Kaplan-Meier analysis of EFS from the TCGA-PRAD and GSE16560 co-

horts. Survival rates of patients with T2E-positive and -negative PCa were compared

separately a) regarding their GG and b) additionally stratified by gene expression levels

of the candidate biomarkers to emphasize the prognostic information, which subtype

specific biomarkers add to GG. Patients groups were compared by calculating the P-

value using the Mantel-Haenszel test. [105]
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3.2 | GWAS on germline variants identifies potential

risk loci for prostate cancer aggressivenes on

7q31.33

The following analysis results are comprised of three PCa cohorts. First, 800 PCa pa-

tients were enrolled in the PCGALMU cohort that were genotyped for germline variants.

The second cohort, ICGC-CA, comprises WGS data of 113 PCa samples. The last co-

hort, TCGA-PRAD, consists of 393 PCa subjects for which WXS data was available. An

overview on processing of germline sequencing data is shown in Figure 2.5. After iden-

tifying and selecting Central European samples to achieve a homogenous study group

(PCGALMU: n = 751, ICGC-CA: n = 84, TCGA-PRAD: n = 263), their germline vari-

ant data were imputed to enlarge their number of variants as well as to harmonize the

cohorts for better combination of analysis results later (Figure 2.6). For each cohort,

a GWAS was performed against several clinical features, whose results were combined

by meta-analysis. From this a genome-wide significant locus 7q31.33 was detected. Its

lead SNPs (rs12537032, rs191029826 and rs76326523) and corresponding representa-

tive tag SNPs (rs74999840 and rs73451279) were further fine-mapped and examined

regarding their potential function and effect on PCa progression (Figure 2.6). The re-

sults of these analyses are presented in the following subsections.

3.2.1 | T2E fusion is not associated with germline variants

Germline variants of patients with a T2E-positive and -negative tumor were tested

genome-wide for association in the PCGALMU, TCGA-PRAD, and ICGC-CA cohort,

separately. However, a meta-analysis of the results obtained from the three cohorts

revealed neither a SNP with genome-wide significance nor any trend of potential asso-

ciation (Figure A.6a).
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3.2.2 | Tumor growth and PSA show trends of germline associa-

tion in PCa

Next, each cohort (PCGALMU, TCGA-PRAD, and ICGC-CA) was tested for potential as-

sociation of its variants with PSA and tumor growth (encapsulated vs non-encapsulated

tumor). But, in both Manhattan plots from the TCGA-PRAD and ICGC-CA cohorts,

some common artifacts occurred affecting the GWAS results. Therefore, these results

were not pursued for further analysis. After combining the results of all three cohorts

regarding tumor growth in a meta-analysis, no genome-wide significant lead SNP could

be identified. Nevertheless, the resulting Manhattan plot (Figure A.6b) showed several

trends for potential association on chromosomes 1, 6, 8, 9, 17, and X. These results indi-

cate potential association of germline variants in PCa with tumor growth, which might

be identified by increasing the study size or adding further cohorts to meta-analysis for

clarification.

3.2.3 | GWAS identifies one genome-wide significant lead SNP

on 7q31.33 locus associated with GG

Furthermore, germline variants of all three cohorts (PCGALMU, TCGA-PRAD, and ICGC-

CA) were tested in a GWAS against the GGG, which were categorized into three groups

of lower (grade I and II), middle (grade III), and high GG (grade IV and V). The genomic

inflation factor λ of all tested cohorts ranges from 1.001 to 1.078 indicating no genome-

wide inflation caused by population stratification (Figure A.5). In the Manhattan plot

in Figure 3.5 only one single genome-wide significant hit (P = 2.372× 10−9) associated

with GGG can be observed. The intronic SNP rs12537032 is located on 7q31.33 and

marks a locus that is potentially associated with GGG in PCa.

3.2.4 | Fine-mapping reveals second lead SNP on 7q31.33

After identifying the genome-wide significant locus 7q31.33 via the lead SNP rs12537032,

fine-mapping on the haploblock of the lead SNP, which is restricted by a higher recom-

bination rate, revealed other significant SNPs. However, several of these SNPs were

not in LD with the lead SNP. Thus, a second significant signal determined by SNP

rs191029826 (P = 1.747× 10−6) could be detected (blue in Figure 3.6). Another rep-
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Figure 3.5: GWAS results from meta-analysis against GGG. Genome-wide significance

is marked with a red line, revealing one candidate lead SNP rs12537032 on 7q31.33.

Figure 3.6: Fine-mapping of locus 7q31.33 reveals two independent signals (red and

blue). Color gradient of SNPs indicate their LD to the lead SNP, whereas red refers to

lead SNP rs12537032 and blue to rs191029826 and rs76326523, respectively. The latter

overlaps with rs191029826 and cannot be seen in this Figure.
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resentative SNP rs76326523, which is in total LD to rs191029826, could be observed,

but is mostly not considered additionally, here, as corresponding results are identical.

3.2.5 | Evaluation of lead SNPs identifies additional tag SNPs

The lead SNPs (rs12537032 and rs191029826/rs76326523) were further fine-mapped

and evaluated regarding their meta-analysis results. As the locus was not covered by

TCGA-PRAD, the results relied on the PCGALMU and ICGC-CA cohorts only. Despite

the genome-wide significance, the heterogeneity for the lead SNPs was greater than 50%

(Figure 3.8a and 3.9a). Therefore, a second representative tag SNP was chosen for each.

Both representative tag SNPs were in LD (r2 > 0.4, Figures 3.7a and 3.7b ) with their

lead SNP, respectively, had a lower heterogeneity than 50% and were the most signifi-

cant SNP of those fulfilling the previous conditions. This led to the additional tag SNP

rs74999840 for lead SNP rs12537032 and rs73451279 representing the second signal

from rs191029826/rs76326523. Both representative tag SNPs possesed a heterogeneity

I2 ≤ 5% and were significantly associated (P = 7.1× 10−5) with GG. The five tag SNPs

and the study results obtained for them were evaluated with forest plots shown in Fig-

ures 3.8a, 3.8b, 3.9a, and 3.9b. For all of them their estimated effect of the single GWAS

(black square) was positive and consistent among the studies. Thus, their pooled results

from the meta-analysis (black diamond) were distant from the no effect line. This indi-

cates that for all five tag SNPs, the minor allele was significantly associated with higher

GG. Due to the smaller number of PCa patients in the ICGC-CA cohort, its 95% confi-

dence interval (CI; Figure 3.9a and 3.9b, horizontal grey line) crossed the no effect line

implying no significant study effect. However, as the results pooled in the meta-analysis

were nevertheless significant and only a few SNPs could be identified as potential tag

SNPs, the corresponding tag SNPs (rs191029826, rs76326523, rs73451279) were not re-

jected but, as an exception, further investigated in this thesis. As causality could not be

confirmed for any of them, all five SNPs were referred to as tag SNPs.
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(a) Lead SNP rs12537032

(b) Lead SNP rs191029826

Figure 3.7: Local association results from meta-analysis focusing on the haploblock of

the lead SNPs. Variants were colored according to their LD (r2) to the lead SNP a)

rs12537032 and b) rs191029826, both highlighted in purple.
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(a) Lead SNP rs12537032

(b) Tag SNP rs74999840

Figure 3.8: Forrest plots illustrating the genome-wide significant results of the meta-

analysis and the single GWAS it relied on in detail for a) lead SNP rs12537032 and its

b) representative tag SNP rs749998040 on locus 7q31.33. The vertical line located at 0

represents the point of no effect. The effect size is marked by a black square framed by

its corresponding 95 % confidence interval (grey). Results from TCGA-PRAD are not

shown as 7q31.33 was not covered by the study.



71

(a) Lead SNP rs191029826/rs76326523

(b) Tag SNP rs73451279

Figure 3.9: Forrest plots illustrating the results of the meta analysis and the GWAS it

relied on in detail for a) lead SNP rs191029826/rs76326523 and its b) representative

tag SNP rs73451279 regarding the second identified signal on locus 7q31.33. The ver-

tical line located at 0 represents the point of no effect. The effect size is marked by a

black square framed by its corresponding 95 % confidence interval (grey). Results from

TCGA-PRAD are not shown as 7q31.33 was not covered by the study.
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3.2.6 | Minor allele of tag SNPs can increase risk for aggressive

PCa up to three times

Next, an examination of the alleles from PCGALMU samples revealed, that the risk allele

(RA) referred to each tag SNP’s minor allele. This became apparent by the positive

linear regression coefficient resulting from the GWAS, which represents the effect β of

the risk allele (Table 3.2). This effect was transformed to the OR, which was calculated

from GGG I/II to both other groups (III and IV/V) separately.

For patients with the risk allele T for rs12537032 (β = 0.34, CI[0.19-0.49]), the risk

of developing a tumor of grade III was increased (OR(III) = 1.746). Moreover, their

risk for a tumor entering stage IV/V was further increased to an OR of 2.640 (Table

3.2). For rs74999840 (β = 0.41, CI[0.22-0.61]) the risk for PCa stage III as well as IV/V

tripled (OR(III) = 3.088, OR(IV/V) = 3.466). In contrast to rs12537032, the rising risk

of developing a GG of III or IV/V for patients carrying the risk allele at rs74999840 did

only slightly differ (OR(III) vs. OR(IV/V), ∆OR ∼ 0.5, Table 3.2).

The other lead SNPs rs191029826 and rs76326523, respectively, which were not in

LD with rs12537032, had both the same allele frequency and effect (β = 0.29, CI[0.18-

0.40]) on PCa progression. Patients with the corresponding risk allele of both SNPs

(Table 3.2) had a higher risk of PCa with GG III (OR(III) = 1.826). Moreover, their risk

for a tumor entering stage IV/V was more than twofold higher (OR(IV/V) = 2.212) than

for patients without the risk allele. PCa patients with minor allele G for the repre-

sentative tag SNP of the former two rs73451279 (β = 0.25, CI[0.13-0.37]), had indeed

an increased risk for aggressive PCa (OR(III) = 1.376). For patients harboring the risk

allele, the chance to develop PCa of GG IV/V doubled (Table 3.2).

These results indicate that Central Europeans with the risk allele in their geno-

type of the identified tag SNPs (rs12537032, rs74999840, rs191029826, rs76326523,

rs723451279) may have a two to threefold higher risk to develop an aggressive PCa of

GG III, IV or V.
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3.2.7 | Increased risk allele frequency in Central Europeans may

be connected to higher number of incidences

Beside estimating the potential effect of the risk allele from RAF for Central Europeans

from the PCGALMU cohort, the corresponding MAF of the tag SNPs was scrutinized,

which was here equivalent with RAF (Table 3.2). A difference between MAFs of Central

European patients and PCa patients from an international cohort of the 1000 Genomes

dataset, as provided in the dbSNP database [77], may partially explain the higher inci-

dence rate for PCa in European men compared to men with other ethnicity [76].

For all five tag SNPs, MAF of Central Europen men was much higher than its fre-

quency in a global cohort. The frequency for rs191029826, rs76326523, and rs73451279

with MAF > 14% was twice as high for Central Europeans compared to PCa patients

worldwide (MAF > 7%, Table 3.2). Moreover, with a MAF of 8% the risk allele of lead

SNP rs12537032 was increased fourfold in Central European samples of the PCGALMU

cohort compared to the worldwide MAF of 2%. Furthermore, its representative SNP,

rs74999840 (MAF = 5%) was even five times higher than its worldwide MAF (1%).

These numbers show that risk alleles of the identified tag SNPs are highly overrep-

resented in Central European PCa patients compared to their frequency worldwide.

3.2.8 | Genotype of rs73451279 correlates with GRM8 expres-

sion

All five tag SNPs (rs12537032, rs74999840, rs191029826, rs76326523, and rs73451279),

which are located within different introns of GRM8, were inspected for cis and trans

eQTL genes with SNIPA. However, beside GRM8 no other eQTL gene was found. Thus,

an eQTL analysis was performed to examine the potential effect of the tag SNPs on

GRM8 expression. For rs12537032, rs74999840, rs191029826, and rs76326523 eQTL

analysis was not significant (P> 0.39; Figure A.7). However, for rs 73451279 a signifi-

cant correlation (P= 0.009) between the genotype of rs73451279 and GRM8 expression

could be observed. For PCa patients harbouring the risk allele G, decreased gene ex-

pression levels could be seen (Figure 3.10).
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Figure 3.10: Result of eQTL analysis of rs73451279 against GRM8 based on data from

the ICGC-CA cohort. Effect size between both genotypes is represented by a gray line.

(RA = risk allele)

This indicates that PCa patients with a risk allele G instead of a homogenous geno-

type T/T in rs723451279 have lower GRM8 expression and are more likely to develop

an aggressive tumor embodied by a high GG.

3.2.9 | GRM8 expression is not associated with relapse in PCa

After identifying an association between rs73451279 with GRM8 expression, its expres-

sion levels were compared regarding BCR. With Kaplan-Meier method, the BFS curves

of patients split regarding their gene expression of GRM8 were compared. But, it did

not reveal any significant association (P> 0.2) with BCR in any of three different cohorts

(ICGC-CA, GSE16560, and GSE46691), as shown in Figure A.8.
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3.2.10 | Genotype of tag SNPs has no prognostic effect on BCR-

free survival

To examine, whether a patients’ genotype affects PCa progression such as BCR, a sur-

vival analysis was performed on samples from the ICGC-CA cohort, stratified by their

genotype of each tag SNP. However, neither of the tag SNPs (rs12537032, rs74999840,

rs191029826, and rs73451279) was significantly associated (P> 0.2) with BFS (Figure

A.9). This indicates, that the genotype of the identified tag SNPs are not suitable as

prognostic biomarkers for BCR of PCa.

3.2.11 | Tag SNPs are located in epigenetic inactive regions of

7q31.33

In general, GRM8 is rather low expressed in prostate cells [157, 158]. Nevertheless, the

epigentic background of GRM8 in PCa cells was scrutinized, to verify a potential ef-

fect of the identified tag SNPs on regulatory mechanisms in GRM8, which might affect

GRM8 expresssion. Investigation of ChIP-seq data of histone modifications (H3K36me3

and H3K9me3) in PCa cells (PC-3, Figure 3.11), showed that this region was barely

transcribed, which is in line with the observed low expression of GRM8 [159]. This

observation was also consistant with GRM8 expression levels in PCa seen on GTEx por-

tal [157, 158]. Also, H3K27ac did not show any enrichment for active enhancers in

the region around GRM8. DNase activity, which displays chromatin accessibility [159],

could only be observed slightly. For H2AFZ, which makes DNA more accessible to tran-

scription factors and can mark active promoter regions [160], no enrichment could be

seen in proximity of the tag SNPs. Only for CTCF one peak could be detected near

rs73451279 (Figure 3.11), but was with a distance of 2.5 kb still too distant to be likely

affected by the variant. Due to variant annotation and the location of the tag SNPs in

introns at the end of GRM8, an effect on the promoter or transcription start site could

be excluded.

These results, show that due to their location in epigenetic inactive regions, none of

the tag SNPs is involved in regulatory mechanisms, as can be seen from the available

data, so far.
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Figure 3.11: Epigenetic profile of the genomic region around GRM8 (chr 7, 126 mb

- 127 mb) on 7q31.33 locus showing the aligned reads of H3K27ac, H2AFZ, CTCF,

H3K36me3, H3K9me3, and DNAse from PC-3 cell lines. Identified tag SNPs are

marked by orange lines. Altogether, the epigenetic profile describes a rather inactive

genomic region.
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3.2.12 | Potential functional variant identified on rs73451279

With conditional association testing on the eQTL SNP rs73451279, based on data from

PCGALMU a significantly reduced association signal for variants in LD with rs73451279

could be observed (Figure 3.12), implying a major functional variant at the 7q31.33

locus. However, the observed association did not completely disappear, which can be

explained by other linked variants having a regulatory effect on the expression level of

GRM8.

3.2.13 | rs73451279 may affect nonsense-mediated RNA decay

Using the VEP on rs73451279 to annotate its potential effect, revealed an effect of risk

allele G on two GRM8 transcripts associated with nonsense-mediated mRNA decay

(NMD). The first transcript GRM8-211 (ENST00000472701.5; Figure 3.13a) is build

of 12 exons, while the other transcript GRM8-202 (ENST00000341617.7; Figure 3.13b)

consists of 11 exons. Even though their number of exons differes only by one, the dif-

ference was not caused by one missing exon, but a different composition and order of

exons (Figure 3.13). However, the exon responsible for this effect seemed to be the same

in both transcripts.

This result indicates that the risk allele of rs73452379 might activate NMD of GRM8.

3.2.14 | Availability and publication of GWAS results

Due to ethical reasons and patients privacy rights it was not possible to openly pub-

lish the genomic data from the PCGALMU. But to support PCa research of other sci-

entists, the results of the GWAS based on PCGALMU were made publicly available,

as any inference to the tested individuals or their genome is not possible. Therefore,

a webservice was implemented enabling the user to screen or specifically search for

germline variants that might be associated to GG or tumor encapsulation in PCa pa-

tients. STARLING, which stands for ’proSTAte cancer Research Leveraging Important

Novel Genomic biomarkers’, can be accessed online via www.starling-pcga.med.lmu.de.
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(a) Classic GWAS

(b) Conditional GWAS regarding rs73451279

Figure 3.12: Local association results from GWAS against GGG on PCGALMU data fo-

cusing on the haploblock of tag SNP rs73451279 showing a significant difference be-

tween a) classical GWAS without condition and b) conditional analysis. Variants are

colored according to their LD (r2) to the a) tag and b) conditional SNP rs73451279 (pur-

ple), respectively.
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(a) ENST00000472701.5

(b) ENST00000341617.7

Figure 3.13: GRM8 transcripts a) ENST00000472701.5 and b) ENST00000341617.7 as-

sociated with NMD.
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Discussion

This thesis addresses whether germline variation and somatic mutations in PCa patients

can conduce to the development of aggressive tumors. With the potential biomarkers

found here, predictions for improved therapy and fundamental PCa research can be

supported.

This thesis reports the results of a GWAS meta-analysis from imputed PCa cohorts

(PCGALMU, TCGA-PRAD, and ICGC-CA), which were tested against their GGG (I/II vs.

III vs. IV/V) to show a potential effect of germline variation on PCa aggressiveness. A

genome-wide significant signal on locus 7q31.33 was identified that was triggered by

rs12537032, an intronic variant of GRM8. This lead SNP revealed a second LD indepen-

dent signal on the same haploblock driven by rs191029826 and rs76326523. Moreover,

both were in LD with the eQTL SNP rs73451279, whose risk allele G was not only

linked to higher GG but was also associated with low GRM8 expression.

Interestingly, the discovered risk locus 7q31.33 is part of a previously discovered

chromosome location 7q31-33 that was associated with aggressive PCa in German men

[82]. The risk alleles of all identified tag SNPs were largely increased in Europeans com-

pared to global allele frequencies. The minor allele for all five tag SNPs (rs12537032,

rs74999840, rs191029826, rs76326523, and rs73451279) was also the risk allele multi-

plying the risk of an aggressive, high-grade PCa by two up to three times. Surprisingly,

this applied to a European population with high minor allele frequencies of tag SNPs
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but fewer incidences of aggressive tumors than in African and African American men,

for whom, in contrast, the minor allele frequencies were only a small fraction. Due

to different allele frequencies and the resultant incidences of aggressive tumors among

ethnicities [76, 77], this risk locus may evolve to malignancy represented by or even

restricted to European men.

The Glutamate Metabotropic Receptor 8 gene (GRM8) is located on the 7q31.33 lo-

cus [161]. Its gene product is activated by an excitatory neurotransmitter in the cen-

tral nervous system. This glutamatergic neurotransmission plays a key role in brain

function [161, 162]. Based on putative signal transduction mechanisms and pharmaco-

logic properties, metabotropic glutamate receptors (mGluR) are split into three groups.

Along with GRM4, GRM6, and GRM7, GRM8 is part of mGluR Group III, which is con-

nected to the inhibition of cyclic adenosine monophosphate (cAMP) cascade [161,162].

cAMP is a well-known secondary messenger that activates and interacts with diverse

proteins and kinases [163]. In PCa cells (PC-3, LNCaP), increased cAMP led to tu-

mor growth inhibtion [164, 165]. Furthermore, the cAMP dependent protein kinase A

(PKA) mediates cell proliferation and differentiation, especially in cancers. Both cAMP

and PKA participate in carcinogenesis and progression of PCa [163]. cAMP and PKA

signaling have been shown to regulate the activation of androgen receptor in PCa [163],

which plays a significant role in PCa development [166].

All mGluRs engage in the glutamatergic system, which is the main excitatory neu-

rotransmission system [162]. In PCa cell lines, Pissimissis et al. verified that mGluRs of

the glutamatergic system had a potential regulatory effect on PCa. While some mGluRs

(GRM1, GRM2, GRM3, GRM4, GRM5) were similarly expressed in both cell lines (PC-

3, LNCap), GRM8 was differentially expressed [167]. The results of this thesis suggest,

that this could be explained by different GG of PCa from which the cell lines derived.

Other studies [168–170] have linked GRM1 with the Gleason score and PCa aggressive-

ness, which was caused by a mutation altering its splicing process. However, no stud-

ies examining a similar connection specifically between GRM8 and PCa aggressiveness

have been found.

Based on their location in the introns of GRM8, the identified variants might be a

tag or even causal SNP affecting GRM8 expression. Indeed, the risk allele G of tag SNP

rs73451279 was significantly associated with lower GRM8 expression, which might be
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involved in developing aggressive PCa defined by high GG.

Based on this, the epigenetic profile of the variant was examined, but no regula-

tory effect could be observed in PCa cell line influencing the expression level of GRM8.

In general, GRM8 is mostly expressed in the brain and the testis, but only slightly ex-

pressed in prostate tissues [157,158]. This observation could be verified in its epigenetic

profile (Figure 3.11), where an increased level of H3K9me and a decreased H3K36me3

ChIP-seq signal in PC-3 cell line indicated a restricted chromosome accessibility affect-

ing GRM8 expression in PCa. Also, no active regulatory mechanisms in this area influ-

encing the GRM8 expression could be detected. However, it remains to be determined

whether the candidate tag SNPs affect binding motifs of transcription factors.

Variant effect prediction revealed, that in two transcripts of GRM8, rs73451279 was

associated with nonsense-mediated decay (NMD). NMD is a specific surveillance mech-

anism that recognizes defective mRNA arising from erroneous alternative splicing and

prompts its degradation [171]. Germline variation of rs73451279 might affect alterna-

tive splicing, leading to a premature translation stop codon in the pre-mRNA, which

provokes NMD [171]. Therefore, increased degradation of pre-mRNA could have re-

duced GRM8 transcripts. This was reflected by reduced GRM8 expression levels trig-

gered by rs73451279 specifically for patients carrying the risk allele associated with

more aggressive tumors. So far, alternative splice variants of GRM8 have not been fully

described or analyzed [161]. Whether this observation was only an association with

higher GG in PCa patients or was the reason to develop an aggressive tumor remains

to be determined. Further wet lab research to determine the underlying mechanism

accurately is necessary. Nevertheless, the identified tag SNPs (rs12537032, rs74999840,

rs191029826, rs76326523) and SNP rs73451279 might be potential biomarkers for de-

veloping PCa with higher GG.

Neither the genotype of the identified tag SNPs nor the gene expression of GRM8

was found to be associated with worse disease outcome. This finding disputes the hy-

pothesis that rs73451279 induces NMD and leads to decreased GRM8 expression and,

therefore, affected mechanisms that compound the development of aggressive PCa with

high GG. However, the survival analysis could only be conducted on a small sample size

of the cohorts, which puts its validity into question. A more representative study size

might support this hypothesis, so a repetition of the survival analysis with more pa-
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tients is highly recommend.

When repressing the signal from the identified eQTL SNP rs73451279 on the 7q31.33

locus by reapplying GWAS conditionally, the signal strength of the remaining variants

was indeed not dissolved but significantly reduced. This implies a potential functional

role of rs73451279 located on chromosome 7. However, the remaining signal also in-

dicates that apart from rs73451279 another, yet-undetected regulatory effect caused by

further SNPs may be involved affecting GRM8 expression and thus PCa progression.

After focusing on the potential impact of germline variations on PCa progression,

somatic mutations in PCa were investigated, particularly the T2E fusion, which charac-

terizes its own molecular subtype [53,58]. It seems likely that PCa with and without the

fusion gene may be driven by distinct pathways and develop via differentiated patho-

genesis. Apart from this hypothesis, specific differentially expressed genes were more

suitable to predict the development of metastases in PCa for one molecular subtype

than the other. Under this aspect, transcriptomic data with regard to T2E fusion were

explored to identify potential subtype specific biomarkers that might enable PCa out-

come prediction.

Based on transcriptomic data of two large cohorts (TCGA-PRAD and GSE46691)

and two validation cohorts (GSE16560 and the TMA-cohort), the molecular differences

in PCa and their potential impact were explored. After screening the patients’ intra-

tumoral gene expression levels, which were stratified by their T2E-status and pres-

ence/absence of metastasis, the top 20 metastasis associated gene-signatures were iden-

tified for T2E-positive and -negative PCa, each, via enrichment analysis. Interestingly,

the gene-signatures resulting from T2E-positive based data did not overlap with those

based on T2E-negative data. This was in line with prior studies [53, 58] implying that

T2E-positive and -negative PCa are distinct molecular subtypes whose disease progres-

sions evolve disparately. From these subtype specific gene-signatures the most frequent

genes (topGL-pos and -neg) were extracted each. Five genes (ASPN, BGN, COL1A1,

RRM2, and TYMS) that were overrepresented exclusively in T2E-negative PCa turned

out to be valuable for subtype specific outcome prediction. These findings show the

importance of considering subtype specific biomarkers for risk prediction in PCa to

improve their prognostic capability.



85

Both, Asporin (ASPN) and Biglycan (BGN) [161] are known for their association

with PCa progression [172] as well as poor prognosis [173]. Indeed, these observa-

tions endorsed the results here, but apply only to T2E-negative cases. No indication of

prognostic value for T2E-positive cases appeared. Moreover, a relation between BGN

expression and T2E fusion was reported by Jacobsen et al. [173]. The results presented

in this thesis could not confirm this observation in T2E-positive cases, as BGN was not

among the genes of the top gene-signatures associated with metastasis. In contrast, it

applied to T2E-negative PCa.

COL1A1 (Collagen Type I Alpha 1) encodes a component of the collagen protein

(type 1), which is a supportive and major constituent of connective tissues [161]. Sev-

eral studies [174–176] have declared COL1A1 as an oncogene whose high expression is

associated with progression in several tumor types and have introduced the gene as po-

tential biomarker. Nevertheless, a potential connection of COL1A1 and worse outcome

in PCa has not yet been reported. This proposes COL1A1 as novel potential biomarker

for T2E-negative PCa.

The protein product of RRM2 (Ribonuclease Reductase M2) is a subunit of the ri-

bonuclease reductase that plays a crucial role in DNA synthesis [161]. Its overex-

pression is known to promote tumor progression [177]. Indeed, several studies [178–

180] have confirmed the association of RRM2 overexpression with PCa progression and

worse outcome, but no study has distinguished between molecular PCa subtypes. The

study results obtained from mRNA and protein level based on four independent PCa

cohorts, here, coincided with the findings of these studies, but differentiated by the

refinement that the strong prognostic power of RRM2 in T2E-negative PCa did not ap-

ply to T2E-positive cases. One of these studies, however, conducted by Mazzu et al.,

additionally examined transcriptomic changes of RRM2 in the T2E-negative cell line

PC-3 indicating RRM2 overexpression to be an oncogenic trait [179,181]. Interestingly,

they partially confirmed the hypothesis reported by this thesis that transcriptomes of

PCa subtype specific genes are differentially affected by regulatory mechanisms. When

analyzing the epigenetic background of the candidate gene RRM2 in PCa cells, the sci-

entists detected a potential binding region for the transcription factor FOXM1 in the

promotor region of RRM2, which actives transcription [179].

In the results of this thesis, similar observations could be seen for TYMS (thymidyl
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synthetase), which is involved in DNA repair and replication [161]. Burdelski et al.

reported a correlation between TYMS and worse outcome in PCa [182]. Likewise, the

results disclosed here, show a significantly higher risk for short EFS for T2E-negative

patients expressing high levels of TYMS. This observed effect was completely absent in

T2E-positive PCa.

Pathway analysis was repeated, but this time focusing only on T2E-negative PCa

and stratified for cases with high and low expression of the previously identified sub-

type specific candidate genes (ASPN, BGN, COL1A1, RRM2, and TYMS). Different gene-

signatures were identified for subgroups defined by high and low expression for each

gene. With regard to the top 20 gene-signatures of the respective subgroups, a limited

average overlap of only 38% was observed. This observed effect indicates that tumors

expressing different levels of the identified marker genes differ in their (patho)biology.

So far, the GGG is a common clinicopathological marker for PCa risk-prediction.

Here, the GGG outperformed the identified subtype specifc biomarkers in an com-

parative survival analysis in both T2E-positive and -negative cases. However, in T2E-

negative PCa, the combination of both clinicopathologic and two gene markers (RRM2

and TYMS) could improve outcome prediction. This advantage induced by two of the

identified subtype specific genes emerged exclusively in T2E-negative PCa. For evalu-

ating the other three candidate genes (ASPN, BGN, and COL1A1) regarding their addi-

tional prognostic value with GGG, larger cohorts are necessary. Yet, the availability of

suitable anti-RRM2, anti-TYMS, and anti-ERG antibodies should enable a rapid trans-

lation of our findings to the clinic through the detection of the T2E-status, the RRM2,

and TYMS expression levels by IHC in conjunction with GG on routine histology [105].

Beside T2E-positive PCa, other molecular subtypes can be found in PCa. Not only

rare ETS translocations, but also mutations in presumable cancer driver genes like

SPOP, FOXA1, and IDH1 [53] are characterisic of a few PCa patients. The second

most frequent mutated gene in PCa with an observed frequency of around 10% is

SPOP [53, 153]. Nevertheless, it had no impact on the validity of the identified can-

didate genes (ASPN, BGN, COL1A1, RRM2, and TYMS) for outcome prediction. Even

without these SPOP-mutated cases, the subtype specific genes remain significant prog-

nostic markers for T2E-negative cases. For the other, less frequent mutations occurring

in FOXA1 and IDH1, which were present in 1.7% and 3% of cases in the TCGA-PRAD
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cohort, respectively, an impact on biomarker prediction was not comprehensible.

Furthermore, common cancer-driving mutations in tumor oncogenes, such as TP53

and PTEN, which are known for their enrichment in PCa [153], were investigated for

their influence on the results presented in this thesis. In the TCGA-PRAD cohort, 7% of

the PCa patients possessed TP53 mutations that were equally distributed between T2E-

positive and -negative cases. Their absence in the analysis did not alter the previous

results, which eliminates an alleged bias. With an overall frequency of only 2% in the

TCGA-PRAD cohort, the number of PCa cases harboring a PTEN mutation was far too

low to falsify the results.

Multiple predictive tests for PCa patients have been developed, but have not yet

entirely outperformed the standard diagnostic and histological parameters, such as PSA

and the Gleason score, yet.

Based on a discovery cohorts used in this thesis (GSE46691) the transcriptome based

Decipher Prostate Cancer Test was recently developed [25]. With transcriptomic pro-

filing of 22 PCa associated genes, the authors created a genomic classifier for the Deci-

pher test, which allows risk-stratification of PCa patients after surgery [25,27]. Multiple

clinical studies have certified the test [26, 28, 29]. Interestingly, the 22 Decipher genes

did not encompass any of the subtype specific biomarkers identified here. Among the

identified candidate genes, the absence of RRM2 in the genomic classifier is especially

surprising, as an association of RRM2 overexpression with aggressive PCa was reported

by Kosari et al. [180], whose co-authors from the Mayo Clinic were later involved in

the development of the genomic classifier of the Decipher test [25]. However, the Deci-

pher test does not discriminate between molecular PCa subtypes defined by T2E fusion,

which could explain both the divergence of genes and the absence of RRM2 among the

Decipher genes.

Other genomic tests also do not factor the patients’ T2E-status in their procedure

[31, 34]. Contrary to Decipher, however, both Oncotype Dx [34] and Prolaris [31] tests

had a concordance between their utilized biomarkers and the identified T2E-negative

specific genes. Likewise, both Oncotype Dx and Prolaris do not differ between mol-

ceular PCa subtypes [31, 34]. Prolaris tests 31 gene transcripts, including RRM2 [31].

Among the 17 markers used by the Oncotype Dx test [34] are both BGN and COL1A1.

Checking the candidate genes against the predictive markers of both genomic tests,
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however, was impossible. A fraction of their markers, which were necessary for this

comparison, were missing in the unity of variably expressed genes used to discover the

subtype specific candidate genes. Thus, it remains to be explored if and how subtype

specific prognostic genes affect the accuracy of such tests when including information

on the T2E-status [105].

In contrast to the three genomic tests mentioned above, the EPI test respects the

T2E fusion of PCa by considering ERG expression. Besides ERG, transcriptomic levels

of two more genes (PCA3 and SPDEF) are used to predict high-grade PCa [37,38]. Both

genes were not among the subtype specific genes identified in this thesis. However, it is

important to take the fact into account that the EPI test uses gene expression from exo-

somes extracted from urine, but not from mRNA obtained from primary tumor. Diverse

sources of gene expression can lead to divergent results. An initial study [39] validat-

ing the EPI test was promising, but it remains to be seen whether the test prevails in

clinical routines. Nevertheless, this supports the findings of this thesis regarding the

importance of the T2E-status in predicting high-grade PCa leading to worse outcome.

Moreover, it shows that a PCa patient’s T2E-status and, accordingly, the ERG expres-

sion level are critical factors independent of the sample tissue, which should not be

discarded.
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Conclusion, limitations, and perspec-

tive

5.1 | Conclusion and perspective

This thesis exemplified integration of comprehensive transcriptomic and genetic data

with clinical records of PCa patients to emphasize both the importance of considering

a patient’s T2E-status in prognostic biomarker based PCa risk prediction and the effect

of germline variation at potential risk loci on PCa aggressiveness.

Based on multiple transcriptomic cohorts, this study confirmed previous findings

that T2E-negative and T2E-positive PCa are distinct molecular subtypes most likely

induced by divers pathways. From this, five subtype specific prognostic biomarkers

(ASPN, BGN, COL1A1, RRM2, and TYMS) were identified for T2E-negative PCa exclu-

sively, whose overexpression promoted worse outcome. Even though these novel poten-

tial biomarkers did not outperform current prognostic biomarkers, they could enhance

them. As affirmed by several prior studies, specifically RRM2 stood out as promising

potential transcriptomic biomarker, particularly regarding T2E-negative PCa.

After all, it remains to be determined whether factors other than the T2E-status

affect the differential expression of the identified potential biomarkers ASPN, BGN,

COL1A1, RRM2, and TYMS. Exploring their epigenetic background may expose under-

lying mechanisms of progression in T2E-negative PCa. Further computational and ex-
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perimental investigations focusing on T2E-negative subtypes are advisable. The results

of the transcriptome analysis described in this thesis were published in an international

peer-reviewed journal [105].

GWAS derived from three PCa cohorts (PCGALMU, TCGA-PRAD, and ICGC-CA)

were combined via meta-analysis and identified five potential tag SNPs (rs12537032,

rs74999840, rs191029826, rs76326523, and rs73451279) located at the PCa risk locus

7q31.33, which is associated with aggressive PCa. The intronic SNPs of GRM8 may

affect its role in the cAMP cascade and the affiliated PKA, which are known to be in-

volved in carcinogenesis. In fact, no epigentic acitivity could be detected near GRM8.

However, the risk allele G of rs73451279 – which was associated with an almost dou-

bled risk of developing an aggressive PCa (high GG) – was predicted to provoke NMD

resulting in decreased GRM8 expression. Even though rs73451279 was shown to be a

potential functional variant on the 7q31.33 locus, it is probably not the only variant

influencing GRM8 expression. In particular, no association of the tag SNPs genotype or

GRM8 expression with worse outcome could be verified.

In the end, of all five tag SNPs, rs73451279 was the most promising variant to qual-

ify as potential biomarker for PCa aggressiveness, but has to be contemplated cau-

tiously, as the validity of some results was low. Nevertheless, these results indicate a

potential genomic biomarker that should be further investigated with increased num-

ber of cohorts and more comprehensive transcriptomic, genomic, and survival data.

Additional research may reveal its outright function as well as the role of GRM8 in the

mechanisms provoking tumor malignancy.

5.2 | Limitations and approaches

This thesis assessed whether somatic mutations and germline variation drove PCa pro-

gression. Several potential genomic and subtype specific transcriptomic biomarkers

associated with aggressive PCa were detected. But resources and time were limited so

some aspects could not be examined. Limitations, complications, and open questions

that arose during these projects should be addressed in continuing studies in the future,

were reflected here.
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With 800 participants, the PCGALMU had a sufficient number of participants for

valid results. In the results of the GWAS, compelling trends of significant effects in

germline variants could be observed. However, to detect common SNPs with genome-

wide significance, more patient samples are needed. To increase study power, the co-

hort will soon be extended up to 2,000 participants. Even more important aspects are

the transcriptomic data and genomic information about gene fusions, which were only

extracted from a fraction of participants so far. Enlarging the cohort regarding gene ex-

pression or T2E fusion status for the entire cohort immensely enhances the predictive

power and scientific value of the cohort. Amplifying the PCGALMU based GWAS with

eQTL analysis or subtype specific information would be a great benefit and add new

potential to the current results.

Continuing the survey of the PCGALMU participants for a certain time period would

enable a follow up study on survival data, which would add a valuable component

to this study. Due to the pseudonymisation and the participants reliability, however,

follow up studies are challenging.

Especially for the eQTL and survival analysis regarding the candidate tag SNPs,

the number of available samples played an important role as the required clinical and

transcriptomic data were only available for a fraction of the samples in the ICGC-CA

cohort. Therefore, the results of both analyses should be considered cautiously and are

recommended to be repeated with more samples for higher validity.

The meta-analysis was performed on three different PCa cohorts, of which one only

comprised WXS data. Therefore, intronic variants could only be obtained from two

cohorts. Moreover, the heterogeneity was too high for both identified lead SNPs and

many other variants. Increasing the number of specifically WGS PCa cohorts would

improve the validity of the results. However, the number of accessible WGS PCa cohorts

with comprehensive clinical, survival, and transcriptomic data as well as an adequate

number of participants is limited. Surveying the academic field for proper PCa cohorts

may enable a similarly constructed follow up study.

Five potential transcriptomic biomarkers (ASPN, BGN, COL1A1, RRM2, and TYMS)

were identified specifically for T2E-negative PCa. An intensive study of the epigenetic

background of these genes may illuminate the underlying regulatory mechanisms of

PCa progression. Comparing epigenetic profiles in the areas near the transcriptomic
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biomarkers from T2E-negative against T2E-positive PCa could also shed light on poten-

tial regulatory mechanisms influencing both PCa subtypes differentially regarding their

PCa aggressiveness. Potential ERG-binding sites or enhancers in proximity of these five

genes should also be examined. However, Unfortunately, the ChIP-seq data required for

these suggested investigations were not available for this study.

For the GRM8 gene harboring significant tag SNPs in its intronic regions, the epige-

netic activities could also be examined more closely. The activity of transcription factors

other than CTCF should be considered and observed. Especially the tag SNPs should

be surveyed for possibly influencing binding motifs or alternative splicing, which pro-

vokes NMD. These epigenetic examinations were not performed due to unavailable

ChIP-seq data for transcription factors and lack of time.

Both the transcriptome analysis and GWAS were conducted on European popula-

tions. Repeating these analyses with East Asian or African American populations would

reveal varying etiopathology in different ethnicities. Validating the identified transcrip-

tomic and genomic biomarkers in other populations would show whether they would

be suitable for PCa outcome prediction in general or were only representative of specific

subpopulations.

The results described in this thesis were mainly based on bioinformatic analysis.

However, for potential prognostic and predictive biomarkers, extensive wet lab exper-

iments are necessary for their validations before their establishment in PCa tests or

clinical routines.



A

Appendix

A.1 | Abbreviations

AFR African

AJCC American Joint Committee on Cancer

APOE Apolipoprotein E

ASPN Asporin

BAM Compressed binary file of aligned sequences

BCR Biochemical relapse

BFS BCR-free survival

BGN Biglycan

cAMP Cyclic Adenosine Monophosphate

CCP Cell cycle progression

CDF Chip description file

CEU Utah residents (CEPH) with Northern and Western European ancestry

ChIP-seq Chromain immunoprecipitation DNA-sequencing

CI Confidence interval

CLIA Clinical Laboratory Improvement Amendments, US

COL1A1 Collagen Type I Alpha 1

CPE Consensus purity estimation
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CTCF CCCTC-binding factor

DACO Data Access Compliance Office

DKFZ Deutsches Krebsforschungszentrum

DLEU2 Deleted In Lymphocytic Leukemia 2

DRE Digital rectal examination

EAS East Asian

EFS Event-free survival

EPI Exo Prostate Intellli Score

ERG ETS Transcription Factor ERG

ESTIMATE Estimation of stromal and immune cells in malignant tumor using ex-

pression data

ETS family E-twenty-six family

ETV1 ETS Variant Transcription Factor 1

geneETV4 ETS Variant Transcription Factor 4

EUR European

eQTL Expression quantitative trait loci

FISH Fluorescence in situ hybridization

FDA Food and Drug Administration, US

FDR False discovery rate

FFPE sample Formalin-fixed paraffin-embedded sample

FIN Finnish population in Finland

FLI1 Fli-1 Proto-Oncogene

FOXA1 Forkhead Box A1

FOXM1 Forkhead Box M1

GATK Genome Analysis Toolkit

GBS British population in England and Scotland

GDC Genomic Data Commons

GEO Gene Expression Omnibus

GG Gleason grade

GGG Gleason grade group

GMNN Geminin DNA Replication Inhibitor

GRM8 Glutamate Metabotropic Receptor 8

GRM1 Glutamate Metabotropic Receptor 1
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GSEA Gene set enrichement analysis

GWAS Genome-wide association study

I2 Percentage of variation across studies because of heterogeneity [183]

IBS Iberian population from Spain

ICGC International Cancer Genome Consortium

ICGC-CA Prostate adenocarcinoma study of ICGC

IDH1 Isocitrate Dehydrogenase 1

IGV Integrative Genomics Viewer

IHC Immunohistchemistry

kb Kilo base

KLK3 Kallikrein 3

λ Genomic inflation factor

LEA Leading edge analysis

LD Linkage disequilibrium

LNCaP Prostate cancer cell line from lymph node carcinoma of the prostate

LRZ Leibniz-Rechenzentrum

LY96 Lymphocyte Antigen 96

M0 Tumor stage, indicating no distant metastasis

MAF Minor allele frequency

mGluR Metabotropic glutamate receptors

N0 Tumor stage, indicating no involvement of regional lymph nodes

NES Normalized enrichement score

NCI National Cancer Institute

NMD Nonsense-mediated RNA decay

OR Odds ratio

∆OR Difference between ORs

PCa Prostate cancer

PCA Principal component analysis

PCA3 Prostate Cancer Associated 3

PC-3 Prostate cancer cell line

PCAWG PanCancer Analysis of Whole Genomes

PCGALMU Prostate cancer genome atlas of the Ludwig-Maximilian-University of

Munich
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PHI Prostate Health Index

PKA Proteine Kinase A

PRADA Pipeline for RNA-sequencing data analysis

PSA Prostate Specific Antigen

PTEN Phosphatase And Tensin Homolog

QC Quality check

r2 Measure of LD [184]

RA Risk allele

RAF Risk allele frequency

rGL-pos/neg Ranked gene list based on T2E-positive/-negative PCa samples

RNA-Seq RNA sequencing

RRM2 Ribonuclease Reductase Regulatory Subunit M2

RT-PCR Reverse transcription-polymerase chain reaction

SCAN Single channel array normalization

SEO Search engine optimization

SNP Single nucleotide polymorphism

SNV Single nucleotide variant

SPDEF SAM Pointed Domain Containing ETS Transcription Factor

SPOP Speckle Type BTB/POZ Protein

STARLING Prostate cancer research leveraging important novel genomic

biomarkers

T2E TMPRSS2-ERG fusion oncogene

TCGA The Cancer Genome Atlas

TCGA-PRAD Prostate adenocarcinoma study of TCGA

TMA Tissue microarray

TMN Classification of malignant tumors describing the stages of a solid tu-

mor (T = size of primary tumor, N = metastasis to regional lymph

nodes, M = distant metastases)

TMPRSS2 Transmembrane Serine Protease 2

topGL-pos/neg List of most frequent genes involved in top 20 gene-signatures based

on T2E-positive/-negative PCa samples

TP53 Tumor Protein 53

TROAP Trophinin Associated Protein
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TSI Tuscani population in Italy

TYMS Thymidylate Synthetase

UICC Union for International Cancer Control

VCF Variant call format

VEP Variant effect predictor

WEE1 WEE1 G2 Checkpoint Kinase

WGS Whole genome sequencing

WXS Whole exon sequencing
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A.2 | Tables

Table A.1: Top 20 functional gene-signatures from ranked GSEA of rGL-pos (NES, nor-

malized enrichment score; NOM, nominal P value; FDR, false discovery rate.) [105].

Gene-signature pathways NES NOM P FDR q

SOTIRIOU_BREAST_CANCER_GRADE_1_VS_3_UP 2.06 0.00 0.10

BIDUS_METASTASIS_UP 2.00 0.00 0.10

CROONQUIST_IL6_DEPRIVATION_DN 1.95 0.00 0.11

CHANG_CYCLING_GENES 1.91 0.00 0.12

ODONNELL_TFRC_TARGETS_DN 1.91 0.01 0.09

WINNEPENNINCKX_MELANOMA_METASTASIS_UP 1.89 0.01 0.10

ROSTY_CERVICAL_CANCER_PROLIFERATION_ CLUS-

TER

1.84 0.00 0.13

WHITFIELD_CELL_CYCLE_G1_S 1.82 0.00 0.14

FISCHER_DREAM_TARGETS 1.81 0.00 0.13

WEST_ADRENOCORTICAL_TUMOR_UP 1.77 0.00 0.17

NIKOLSKY_BREAST_CANCER_8Q23_Q24_AMPLICON 1.75 0.01 0.19

SETLUR_PROSTATE_CANCER_TMPRSS2_ERG_FUSION_

UP

1.74 0.00 0.19

FISCHER_G2_M_CELL_CYCLE 1.71 0.01 0.22

ROY_WOUND_BLOOD_VESSEL_UP 1.68 0.01 0.25

ZHAN_MULTIPLE_MYELOMA_CD1_AND_CD2_UP 1.67 0.03 0.25

JOHANSSON_BRAIN_CANCER_EARLY_VS_LATE_DN 1.65 0.02 0.28

CREIGHTON_ENDOCRINE_THERAPY_RESISTANCE_2 1.65 0.01 0.26

NIKOLSKY_MUTATED_AND_AMPLIFIED_IN_BREAST_

CANCER

1.65 0.02 0.25

JIANG_TIP30_TARGETS_UP 1.62 0.03 0.28

HORIUCHI_WTAP_TARGETS_DN 1.62 0.00 0.27
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Table A.2: Top 20 functional gene-signatures from ranked GSEA of rGL-neg (NES, nor-

malized enrichment score; NOM, nominal P value; FDR, false discovery rate.) [105].

Gene-signature pathways NES NOM P FDR q

POOLA_INVASIVE_BREAST_CANCER_UP 3.11 0.00 0.00

WIELAND_UP_BY_HBV_INFECTION 2.66 0.00 0.00

SANA_RESPONSE_TO_IFNG_UP 2.47 0.00 0.00

NAKAYAMA_SOFT_TISSUE_TUMORS_PCA1_UP 2.43 0.00 0.00

THUM_SYSTOLIC_HEART_FAILURE_UP 2.42 0.00 0.00

FULCHER_INFLAMMATORY_RESPONSE_LECTIN_VS_

LPS_DN

2.41 0.00 0.00

TURASHVILI_BREAST_LOBULAR_CARCINOMA_VS_

DUCTAL_NORMAL_UP

2.40 0.00 0.00

HELLER_SILENCED_BY_METHYLATION_UP 2.39 0.00 0.00

LINDSTEDT_DENDRITIC_CELL_MATURATION_A 2.38 0.00 0.00

BROWNE_INTERFERON_RESPONSIVE_GENES 2.43 0.00 0.00

LEE_DIFFERENTIATING_T_LYMPHOCYTE 2.33 0.00 0.00

RODWELL_AGING_KIDNEY_UP 2.32 0.00 0.00

GAURNIER_PSMD4_TARGETS 2.32 0.00 0.00

SENGUPTA_NASOPHARYNGEAL_CARCINOMA_UP 2.32 0.00 0.00

BOSCO_TH1_CYTOTOXIC_MODULE 2.31 0.00 0.00

SCHUETZ_BREAST_CANCER_DUCTAL_INVASIVE_UP 2.31 0.00 0.00

MCLACHLAN_DENTAL_CARIES_UP 2.30 0.00 0.00

TURASHVILI_BREAST_LOBULAR_CARCINOMA_VS_

LOBULAR_NORMAL_DN

2.29 0.00 0.00

KIM_GLIS2_TARGETS_UP 2.29 0.00 0.00

GRAESSMANN_RESPONSE_TO_MC_AND_SERUM_ DE-

PRIVATION_UP

2.29 0.00 0.00
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Table A.3: Result summary of all statistical tests of topGL-pos [105].

Dataset GSE46691 TCGA-PRAD GSE16560

P-value P-value P-value Expression level P-value Expression level

Gene (metastasis) (metastasis) (EFS) associated with (EFS) associated with

long EFS long EFS

ANP32E 3.74E-01 2.80E-01 8.58E-01 low 8.50E-02 low

ASF1B 4.97E-01 2.64E-01 5.89E-01 low - -

CDC20 2.36E-01 5.62E-02 4.43E-01 low 7.20E-02 high

CKS2 6.27E-01 1.06E-01 2.51E-01 low 9.84E-01 low

DEPDC1 1.19E-01 1.41E-01 1.63E-01 low - -

FAM83D 4.28E-01 1.57E-02 3.06E-01 low - -

GMNN 4.08E-05 5.61E-03 1.39E-01 low 6.40E-01 high

KIF4A 8.53E-01 6.14E-02 3.92E-01 low - -

PTTG1 7.00E-01 1.50E-01 1.70E-01 low 8.37E-01 low

RRM2 5.06E-03 1.90E-01 4.19E-01 high 2.15E-01 low

SPC25 3.91E-01 4.45E-02 5.38E-01 low - -

TROAP 2.11E-02 3.24E-02 6.70E-02 low 1.17E-01 high

TYMS 2.86E-05 3.12E-01 6.68E-01 high 6.87E-01 low

UBE2C 4.41E-01 7.40E-02 2.37E-01 low 1.66E-01 high

UHRF1 7.87E-02 1.78E-01 3.52E-01 low - -

WEE1 1.07E-04 1.65E-03 1.98E-01 low 2.11E-01 high
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Table A.4: Result summary of all statistical tests of topGL-neg [105].

Dataset GSE46691 TCGA-PRAD GSE16560

P-value P-value P-value Expression level P-value Expression level

Gene (metastasis) (metastasis) (EFS) associated with (EFS) associated with

long EFS long EFS

AIF1 7.65E-01 3.95E-04 2.40E-02 low 1.10E-01 low

APOC1 1.28E-01 1.69E-03 5.00E-02 low 8.60E-01 low

APOE 1.10E-01 1.20E-02 2.10E-02 low 5.00E-03 low

ARHGDIB 1.79E-02 6.77E-05 1.37E-01 low 8.24E-01 low

ASPN 7.37E-05 8.92E-06 1.00E-03 low 3.05E-04 low

BGN 2.53E-03 3.52E-04 1.50E-02 low 4.84E-04 low

BST2 2.08E-01 9.49E-03 1.22E-01 low 5.69E-01 high

C1QB 1.60E-01 9.89E-05 4.40E-02 low 7.39E-01 low

CCL2 1.21E-01 1.47E-01 8.88E-01 low 8.50E-01 low

CCL8 5.42E-02 6.22E-05 1.78E-01 low 7.45E-01 low

CCR1 9.57E-01 6.10E-06 1.62E-01 low 3.85E-01 low

CD14 7.62E-02 7.30E-02 7.30E-02 low 3.17E-01 low

CD52 1.71E-02 1.55E-04 5.80E-02 low 6.18E-01 high

CD53 1.55E-01 5.29E-06 1.21E-01 low 5.59E-01 high

CD74 5.39E-02 3.81E-04 2.53E-01 low 6.29E-01 high

CDH11 9.99E-04 4.55E-04 4.34E-01 low 8.06E-01 high

CFB 1.79E-01 2.07E-01 1.88E-01 high 3.50E-02 high

COL1A1 1.57E-04 9.64E-06 2.50E-02 low 7.00E-03 low

COL1A2 2.45E-03 2.75E-03 3.50E-01 low 2.32E-01 low

COL3A1 3.19E-04 2.34E-05 1.26E-01 low 8.00E-03 low

COMP 3.25E-01 5.55E-06 3.00E-03 low 9.60E-02 low

CTSS 6.21E-02 5.31E-05 3.77E-01 low 7.97E-01 low

CXCL11 2.93E-01 3.65E-06 5.30E-02 low 4.07E-01 high

CXCL13 2.33E-03 1.21E-02 5.19E-01 low 9.00E-03 high

CXCL9 9.40E-01 2.09E-06 3.10E-02 low 2.20E-01 high

CXCR4 9.25E-03 1.00E-03 1.66E-01 low 3.50E-01 low

EVI2B 9.61E-03 1.84E-05 4.35E-01 low 1.82E-01 high

F13A1 5.15E-01 7.11E-03 4.28E-01 low 2.68E-01 low

Continues on next page.
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Table A.4 continued: Result summary of all statistical tests of topGL-neg [105].

Dataset GSE46691 TCGA-PRAD GSE16560

P-value P-value P-value Expression level P-value Expression level

Gene (metastasis) (metastasis) (EFS) associated with (EFS) associated with

long EFS long EFS

FCGR2A 3.71E-01 1.98E-05 5.70E-02 low 3.70E-02 low

FN1 9.92E-04 4.01E-04 6.90E-02 low 2.90E-02 low

FYB 1.32E-01 4.65E-06 2.75E-01 low 7.99E-01 high

GBP1 1.69E-01 3.35E-04 4.36E-01 low 8.44E-01 low

GPNMB 2.45E-03 6.78E-04 9.10E-02 low 9.70E-02 low

GZMB 1.24E-01 6.68E-02 9.00E-01 low 7.70E-01 high

GZMK 8.94E-01 1.36E-03 5.30E-01 low 6.00E-03 high

HCLS1 9.99E-02 6.22E-05 1.80E-02 low 8.12E-01 high

HLA-DMB 2.32E-01 4.06E-04 1.90E-02 low 4.95E-01 high

HLA-DPA1 2.90E-02 1.64E-04 7.20E-02 low 9.38E-01 high

HLA-DPB1 5.98E-02 2.06E-03 4.60E-02 low 6.42E-01 high

HLA-DRA 2.91E-03 2.20E-05 1.60E-01 low 8.65E-01 high

HLA-DRB1 4.64E-01 8.05E-04 2.60E-02 low 9.74E-01 high

HLA-E 1.65E-01 4.97E-04 9.48E-01 high 1.65E-01 high

HLA-F 3.82E-01 5.63E-04 2.90E-02 low 9.97E-01 high

IFI27 2.35E-02 4.78E-04 1.04E-01 low 1.98E-01 low

IFI30 2.45E-03 9.36E-05 1.40E-02 low 2.75E-01 low

IFI44 6.44E-01 8.36E-07 1.10E-02 low 5.00E-02 high

IFIT3 4.59E-01 1.54E-08 2.20E-02 low 5.45E-01 high

INHBA 8.47E-03 4.50E-06 9.10E-02 low 5.07E-04 low

ISG15 9.18E-01 1.55E-04 8.64E-01 high 7.36E-01 high

LAPTM5 7.16E-02 4.74E-05 3.90E-02 low 2.49E-01 low

LRRC15 1.76E-01 3.27E-03 2.05E-01 low - -

LST1 1.62E-01 1.46E-03 4.70E-02 low 3.26E-01 high

LTB 5.51E-01 1.94E-04 8.70E-01 low 5.12E-01 low

LUM 2.25E-02 3.80E-02 6.96E-01 high 2.66E-01 low

LY96 8.76E-01 4.34E-05 1.00E-03 low 4.30E-02 low

LYZ 4.25E-02 2.86E-04 2.01E-01 low 2.45E-01 high

MS4A4A 8.83E-01 1.22E-03 8.10E-02 low 9.59E-01 low

Continues on next page.
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Table A.4 continued: Result summary of all statistical tests of topGL-neg [105].

Dataset GSE46691 TCGA-PRAD GSE16560

P-value P-value P-value Expression level P-value Expression level

Gene (metastasis) (metastasis) (EFS) associated with (EFS) associated with

long EFS long EFS

MS4A6A 9.10E-03 8.37E-06 1.70E-02 low 9.24E-01 low

PLA2G7 2.68E-05 3.95E-02 5.20E-02 low 4.31E-06 low

PLEK 9.60E-01 5.82E-06 5.76E-01 low 5.31E-01 high

POSTN 2.78E-04 3.06E-04 6.60E-02 low 7.00E-03 low

PSMB9 5.86E-01 1.01E-05 1.41E-01 low 1.93E-01 high

PTPRC 2.55E-01 2.45E-05 1.11E-01 low 9.28E-01 low

RARRES3 1.60E-01 1.00E-03 3.42E-01 low 2.93E-01 high

RGS1 4.94E-02 2.48E-05 1.98E-01 low 6.01E-01 high

RRM2 4.36E-02 8.02E-05 4.35E-05 low 2.00E-03 low

SAMHD1 1.50E-01 1.25E-03 8.06E-01 high 5.45E-01 low

SPARC 1.38E-04 6.53E-04 5.08E-01 low 1.82E-01 low

STAT1 1.32E-01 2.04E-05 5.39E-01 high 1.36E-01 high

SULF1 4.44E-04 1.55E-03 6.12E-01 low 7.58E-01 high

TRIM22 2.34E-01 1.44E-03 6.88E-01 high 8.55E-01 high

TYMS 8.81E-03 1.77E-02 1.00E-03 low 3.29E-06 low

TYROBP 1.81E-02 6.78E-04 8.10E-02 low 5.20E-01 low

UBE2L6 1.60E-01 3.87E-05 9.80E-01 high 9.16E-01 high
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Table A.5: Top 20 functional gene-signatures from ranked GSEA of T2E-negative sam-

ples stratified by low and high gene expression of ASPN. For each gene, the 20 Pathways

were sorted descending by their NES [105].

Low gene expression of ASPN High gene expression of ASPN

POOLA_INVASIVE_BREAST_CANCER_UP POOLA_INVASIVE_BREAST_CANCER_UP

BROWNE_INTERFERON_RESPONSIVE_GENES WIELAND_UP_BY_HBV_INFECTION

DER_IFN_ALPHA_RESPONSE_UP LEE_DIFFERENTIATING_T_LYMPHOCYTE

BOSCO_TH1_CYTOTOXIC_MODULE BROWNE_INTERFERON_RESPONSIVE_GENES

KRASNOSELSKAYA_ILF3_TARGETS_UP BOSCO_TH1_CYTOTOXIC_MODULE

RADAEVA_RESPONSE_TO_IFNA1_UP SANA_RESPONSE_TO_IFNG_UP

WIELAND_UP_BY_HBV_INFECTION NAKAYAMA_SOFT_TISSUE_TUMORS_PCA1_UP

LEE_DIFFERENTIATING_T_LYMPHOCYTE ALTEMEIER_RESPONSE_TO_LPS_WITH_ ME-

CHANICAL_VENTILATION

SANA_RESPONSE_TO_IFNG_UP SENGUPTA_NASOPHARYNGEAL_ CARCI-

NOMA_UP

DER_IFN_BETA_RESPONSE_UP RASHI_RESPONSE_TO_IONIZING_RADIATION_6

FARMER_BREAST_CANCER_CLUSTER_1 SMIRNOV_RESPONSE_TO_IR_6HR_DN

FULCHER_INFLAMMATORY_RESPONSE_

LECTIN_VS_LPS_DN

FARMER_BREAST_CANCER_CLUSTER_1

BOSCO_INTERFERON_INDUCED_ANTIVIRAL_

MODULE

ICHIBA_GRAFT_VERSUS_HOST_DISEASE_35D_

UP

DER_IFN_GAMMA_RESPONSE_UP VILIMAS_NOTCH1_TARGETS_UP

ZHAN_MULTIPLE_MYELOMA_LB_DN LU_IL4_SIGNALING

GAURNIER_PSMD4_TARGETS MCLACHLAN_DENTAL_CARIES_UP

GRAESSMANN_RESPONSE_TO_MC_AND_

SERUM_ DEPRIVATION_UP

WALLACE_PROSTATE_CANCER_RACE_UP

MORI_MATURE_B_LYMPHOCYTE_UP DEBIASI_APOPTOSIS_BY_REOVIRUS_ INFEC-

TION_UP

WORSCHECH_TUMOR_REJECTION_UP GAURNIER_PSMD4_TARGETS

SETLUR_PROSTATE_CANCER_TMPRSS2_ERG_

FUSION_UP

FULCHER_INFLAMMATORY_RESPONSE_

LECTIN_VS_LPS_DN
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Table A.6: Top 20 functional gene-signatures from ranked GSEA of T2E-negative sam-

ples stratified by low and high gene expression of BGN. For each gene, the 20 Pathways

were sorted descending by their NES [105].

Low gene expression of BGN High gene expression of BGN

POOLA_INVASIVE_BREAST_CANCER_UP POOLA_INVASIVE_BREAST_CANCER_UP

FISCHER_DREAM_TARGETS WIELAND_UP_BY_HBV_INFECTION

WIELAND_UP_BY_HBV_INFECTION LEE_DIFFERENTIATING_T_LYMPHOCYTE

SOTIRIOU_BREAST_CANCER_GRADE_1_VS_

3_UP

SENGUPTA_NASOPHARYNGEAL_CARCINOMA

_UP

BROWNE_INTERFERON_RESPONSIVE_GENES BROWNE_INTERFERON_RESPONSIVE_GENES

PUJANA_BRCA2_PCC_NETWORK SANA_RESPONSE_TO_IFNG_UP

RASHI_RESPONSE_TO_IONIZING_RADIATION

_6

DEBIASI_APOPTOSIS_BY_REOVIRUS_ INFEC-

TION_UP

FARMER_BREAST_CANCER_CLUSTER_1 NAKAYAMA_SOFT_TISSUE_TUMORS_PCA1_UP

LEE_DIFFERENTIATING_T_LYMPHOCYTE TURASHVILI_BREAST_LOBULAR_CARCINOMA

_VS_DUCTAL_NORMAL_UP

ROSTY_CERVICAL_CANCER_PROLIFERATION_

CLUSTER

RASHI_RESPONSE_TO_IONIZING_RADIATION

_6

CROONQUIST_IL6_DEPRIVATION_DN THUM_SYSTOLIC_HEART_FAILURE_UP

BOSCO_TH1_CYTOTOXIC_MODULE MORI_MATURE_B_LYMPHOCYTE_UP

FLECHNER_BIOPSY_KIDNEY_TRANSPLANT_

REJECTED_VS_OK_UP

BOSCO_INTERFERON_INDUCED_ANTIVIRAL

_MODULE

BERTUCCI_MEDULLARY_VS_DUCTAL_BREAST

_CANCER_UP

BOSCO_TH1_CYTOTOXIC_MODULE

MORI_LARGE_PRE_BII_LYMPHOCYTE_DN DEURIG_T_CELL_PROLYMPHOCYTIC_

LEUKEMIA_DN

ICHIBA_GRAFT_VERSUS_HOST_DISEASE_D7_

UP

DER_IFN_ALPHA_RESPONSE_UP

FULCHER_INFLAMMATORY_RESPONSE_

LECTIN_VS_LPS_DN

MORI_LARGE_PRE_BII_LYMPHOCYTE_DN

MCLACHLAN_DENTAL_CARIES_UP LINDSTEDT_DENDRITIC_CELL_MATURATION_A

ICHIBA_GRAFT_VERSUS_HOST_DISEASE_35D_

UP

RODWELL_AGING_KIDNEY_UP

MORI_MATURE_B_LYMPHOCYTE_UP TURASHVILI_BREAST_LOBULAR_CARCINOMA

_VS_LOBULAR_NORMAL_DN
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Table A.7: Top 20 functional gene-signatures from ranked GSEA of T2E-negative sam-

ples stratified by low and high gene expression of COL1A1. For each gene, the 20 Path-

ways were sorted descending by their NES [105].

Low gene expression of COL1A1 High gene expression of COL1A1

FISCHER_DREAM_TARGETS POOLA_INVASIVE_BREAST_CANCER_UP

ROSTY_CERVICAL_CANCER_PROLIFERATION

_CLUSTER

WIELAND_UP_BY_HBV_INFECTION

SETLUR_PROSTATE_CANCER_TMPRSS2_ERG_

FUSION_UP

BASSO_CD40_SIGNALING_UP

POOLA_INVASIVE_BREAST_CANCER_UP LEE_DIFFERENTIATING_T_LYMPHOCYTE

PUJANA_BRCA2_PCC_NETWORK SANA_RESPONSE_TO_IFNG_UP

CROONQUIST_IL6_DEPRIVATION_DN FULCHER_INFLAMMATORY_RESPONSE_

LECTIN_VS_LPS_DN

FARMER_BREAST_CANCER_CLUSTER_1 BROWNE_INTERFERON_RESPONSIVE_GENES

BROWNE_INTERFERON_RESPONSIVE_GENES GAURNIER_PSMD4_TARGETS

SOTIRIOU_BREAST_CANCER_GRADE_1_VS_3

_UP

DER_IFN_BETA_RESPONSE_UP

ACEVEDO_LIVER_CANCER_WITH_H3K9ME3

_DN

WALLACE_PROSTATE_CANCER_RACE_UP

WHITEFORD_PEDIATRIC_CANCER_MARKERS MCLACHLAN_DENTAL_CARIES_UP

RADAEVA_RESPONSE_TO_IFNA1_UP RASHI_RESPONSE_TO_IONIZING_RADIATION_6

BENPORATH_PROLIFERATION DER_IFN_ALPHA_RESPONSE_UP

ACEVEDO_LIVER_CANCER_WITH_H3K27ME3

_DN

ALTEMEIER_RESPONSE_TO_LPS_WITH_ ME-

CHANICAL_VENTILATION

MORI_MATURE_B_LYMPHOCYTE_UP THUM_SYSTOLIC_HEART_FAILURE_UP

FISCHER_G2_M_CELL_CYCLE SENGUPTA_NASOPHARYNGEAL_CARCINOMA

_UP

BOSCO_INTERFERON_INDUCED_ANTIVIRAL

_MODULE

BOSCO_TH1_CYTOTOXIC_MODULE

WIELAND_UP_BY_HBV_INFECTION LINDSTEDT_DENDRITIC_CELL_MATURATION_A

MORI_LARGE_PRE_BII_LYMPHOCYTE_DN ICHIBA_GRAFT_VERSUS_HOST_DISEASE_35D

_UP

ZHAN_MULTIPLE_MYELOMA_LB_DN FLECHNER_BIOPSY_KIDNEY_TRANSPLANT_

REJECTED_VS_OK_UP
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Table A.8: Top 20 functional gene-signatures from ranked GSEA of T2E-negative sam-

ples stratified by low and high gene expression of RRM2. For each gene, the 20 Pathways

were sorted descending by their NES [105].

Low gene expression of RRM2 High gene expression of RRM2

POOLA_INVASIVE_BREAST_CANCER_UP POOLA_INVASIVE_BREAST_CANCER_UP

RODWELL_AGING_KIDNEY_UP WIELAND_UP_BY_HBV_INFECTION

SCHUETZ_BREAST_CANCER_DUCTAL_ INVA-

SIVE_UP

NAKAYAMA_SOFT_TISSUE_TUMORS_PCA1_UP

THUM_SYSTOLIC_HEART_FAILURE_UP LEE_DIFFERENTIATING_T_LYMPHOCYTE

TURASHVILI_BREAST_LOBULAR_CARCINOMA

_VS_DUCTAL_NORMAL_UP

BOSCO_TH1_CYTOTOXIC_MODULE

WIELAND_UP_BY_HBV_INFECTION BROWNE_INTERFERON_RESPONSIVE_GENES

RASHI_RESPONSE_TO_IONIZING_RADIATION

_6

HELLER_SILENCED_BY_METHYLATION_UP

NAKAYAMA_SOFT_TISSUE_TUMORS_PCA1_UP RASHI_RESPONSE_TO_IONIZING_RADIATION_6

TURASHVILI_BREAST_LOBULAR_CARCINOMA

_VS_LOBULAR_NORMAL_DN

GRAESSMANN_RESPONSE_TO_MC_AND_

SERUM_DEPRIVATION_UP

LEE_DIFFERENTIATING_T_LYMPHOCYTE SANA_RESPONSE_TO_IFNG_UP

MORI_MATURE_B_LYMPHOCYTE_UP ICHIBA_GRAFT_VERSUS_HOST_DISEASE_35D

_UP

GAURNIER_PSMD4_TARGETS DER_IFN_BETA_RESPONSE_UP

FULCHER_INFLAMMATORY_RESPONSE_

LECTIN_VS_LPS_DN

WALLACE_PROSTATE_CANCER_RACE_UP

RODWELL_AGING_KIDNEY_NO_BLOOD_UP FULCHER_INFLAMMATORY_RESPONSE_

LECTIN_VS_LPS_DN

PUJANA_ATM_PCC_NETWORK DER_IFN_ALPHA_RESPONSE_UP

KIM_GLIS2_TARGETS_UP ICHIBA_GRAFT_VERSUS_HOST_DISEASE_D7_UP

MCLACHLAN_DENTAL_CARIES_UP RODWELL_AGING_KIDNEY_UP

ANASTASSIOU_MULTICANCER_INVASIVENESS

_SIGNATURE

KRASNOSELSKAYA_ILF3_TARGETS_UP

BROWNE_INTERFERON_RESPONSIVE_GENES GAURNIER_PSMD4_TARGETS

VECCHI_GASTRIC_CANCER_ADVANCED_VS_

EARLY_UP

QI_PLASMACYTOMA_UP
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Table A.9: Top 20 functional gene-signatures from ranked GSEA of T2E-negative sam-

ples stratified by low and high gene expression of TYMS. For each gene, the 20 Pathways

were sorted descending by their NES [105].

Low gene expression of TYMS High gene expression of TYMS

POOLA_INVASIVE_BREAST_CANCER_UP POOLA_INVASIVE_BREAST_CANCER_UP

RASHI_RESPONSE_TO_IONIZING_RADIATION

_6

WIELAND_UP_BY_HBV_INFECTION

LEE_DIFFERENTIATING_T_LYMPHOCYTE BOSCO_TH1_CYTOTOXIC_MODULE

WIELAND_UP_BY_HBV_INFECTION NAKAYAMA_SOFT_TISSUE_TUMORS_PCA1_UP

FARMER_BREAST_CANCER_CLUSTER_1 SENGUPTA_NASOPHARYNGEAL_CARCINOMA

_UP

ACEVEDO_LIVER_CANCER_WITH_H3K9ME3

_DN

TURASHVILI_BREAST_LOBULAR_CARCINOMA

_VS_LOBULAR_NORMAL_DN

THUM_SYSTOLIC_HEART_FAILURE_UP TURASHVILI_BREAST_LOBULAR_CARCINOMA

_VS_DUCTAL_NORMAL_UP

FULCHER_INFLAMMATORY_RESPONSE_

LECTIN_VS_LPS_DN

RASHI_RESPONSE_TO_IONIZING_RADIATION

_6

GAURNIER_PSMD4_TARGETS BROWNE_INTERFERON_RESPONSIVE_GENES

FLECHNER_BIOPSY_KIDNEY_TRANSPLANT_

REJECTED_VS_OK_UP

LEE_DIFFERENTIATING_T_LYMPHOCYTE

BROWNE_INTERFERON_RESPONSIVE_GENES GARY_CD5_TARGETS_UP

TURASHVILI_BREAST_LOBULAR_CARCINOMA

_VS_LOBULAR_NORMAL_DN

DODD_NASOPHARYNGEAL_CARCINOMA_DN

MCLACHLAN_DENTAL_CARIES_UP SCHUETZ_BREAST_CANCER_DUCTAL_ INVA-

SIVE_UP

SETLUR_PROSTATE_CANCER_TMPRSS2_ERG_

FUSION_UP

THUM_SYSTOLIC_HEART_FAILURE_UP

TURASHVILI_BREAST_LOBULAR_CARCINOMA

_VS_DUCTAL_NORMAL_UP

FULCHER_INFLAMMATORY_RESPONSE_

LECTIN_VS_LPS_DN

ICHIBA_GRAFT_VERSUS_HOST_DISEASE_35D

_UP

WALLACE_PROSTATE_CANCER_RACE_UP

VILIMAS_NOTCH1_TARGETS_UP QI_PLASMACYTOMA_UP

HADDAD_B_LYMPHOCYTE_PROGENITOR HADDAD_T_LYMPHOCYTE_AND_NK_ PRO-

GENITOR_DN

Continues on next page.
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Table A.9 continued: Top 20 functional gene-signatures from ranked GSEA of T2E-

negative samples stratified by low and high gene expression of TYMS. For each gene,

the 20 Pathways were sorted descending by their NES [105].

Low gene expression of TYMS High gene expression of TYMS

BOSCO_INTERFERON_INDUCED_ANTIVIRAL

_MODULE

FLORIO_NEOCORTEX_BASAL_RADIAL_GLIA

_DN

RODWELL_AGING_KIDNEY_UP ROSTY_CERVICAL_CANCER_PROLIFERATION

_CLUSTER
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Table A.10: Summary of P-values of Kaplan-Meier analyses shown in Figure 3.4b. P-

values were determined via Mantel-Haenszel test by comparing samples with high ver-

sus low expression of the indicated subtype specific biomarkers separately in cases strat-

ified by low (I-III) and high (IV/V) GGG. Significant genes were highlighted in bold

font [105].

TCGA-PRAD GSE16560

PCa subtype Gene GGG low GGG high GGG low GGG high

(III) (IV/V) (I-III) (IV/V)

ASPN 0.249 0.357 0.275 0.471

BGN 0.301 0.828 0.430 0.132

T2E-positive COL1A1 0.520 0.857 0.211 0.978

RRM2 0.622 0.800 0.467 0.704

TYMS 0.506 0.722 0.685 0.758

ASPN 0.919 0.151 0.005 0.104

BGN 0.391 0.374 0.111 0.674

T2E-negative COL1A1 0.958 0.090 0.064 0.077

RRM2 0.262 0.003 0.007 0.001

TYMS 0.391 0.004 0.001 0.021
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A.3 | Figures

Figure A.1: Genomic differences between PCGALMU samples genotyped by GSA-MD

chip v1.0 (batch 1, n = 199) and GSA-MD chip v2.0 (batch 2, n = 589).
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(a) PCGALMU (batch 1), n = 199 (b) PCGALMU (batch 2), n = 589

(c) ICGC-CA, n = 113 (d) TCGA-PRAD, n = 393

Figure A.2: Principal component analysis (PCA) of a+b) PCGALMU, c) ICGC-CA and d)

TCGA-PRAD against the 1000 Genomes reference set (worldwide: AFR = African, EAS

= East Asian, EUR = European) to determine each sample’s ethnical background.
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(a) European PCGALMU (batch 1) (b) European PCGALMU (batch 1), clustered

by Central European (turquoise), Mediterranean

(yellow) and Scandinavian (blue).

(c) European PCGALMU (batch 2) (d) European PCGALMU (batch 2), clustered

by Central European (blue), Mediterranean

(turquoise) and Scandinavian (yellow).

Figure A.3: Prinicipal component analysis (PCA) of European PCGALMU samples (batch

1 and 2) against European samples from the 1000 Genomes reference set colored a+c)

by population and b+d) by cluster (Central European, Mediterranean, Scandinavian).
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(a) European ICGC-CA (b) European ICGC-CA, clustered by Central Eu-

ropean (turquoise), Mediterranean (yellow) and

Scandinavian (blue).

(c) European TCGA-PRAD (d) European TCGA-PRAD, clustered by Central

European (turquoise), Mediterranean (blue) and

Scandinavian (yellow).

Figure A.4: Prinicipal component analysis (PCA) of European ICGC-CA and European

TCGA-PRAD samples against European samples from the 1000 Genomes reference set

colored a+c) by population and by b+d) by cluster of Central European, Mediterranean,

Scandinavian).
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(a) PCGALMU (b) TCGA-PRAD

(c) ICGC-CA

Figure A.5: QQ-plots evaluating GWAS testing variants against GGG (I/II, III, IV/V)

for a) PCGALMU, b) TCGA-PRAD and c) ICGC-CA.
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(a) GWAS on T2E fusion (yes/no))

(b) GWAS on tumor encapsulation (T1+2/T3+4)

Figure A.6: Manhattan plots representing the meta-analysis results of GWAS without

genome-wide significant hits. Genome-wide significance was marked with a red line.
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(a) (b)

(c)

Figure A.7: Non-significant results of eQTL analysis of tag SNPs a) rs12537032 b)

rs74999840 and c) rs191029826 against GRM8 from the ICGC-CA cohort. (RA = risk

allele)
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(a) ICGC-CA (b) TCGA-PRAD

(c) GSE16560

Figure A.8: Kaplan-Meier survival plots generated from cohorts a) ICGC-CA, b) TCGA-

PRAD and c) GSE16560 cohort. Samples were stratified by their quartile intratumoral

gene expression level of GRM8. P-values were calculated between the most extremes

(highest vs. lowest) using a Mantel-Haenszel test.
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(a) rs12537032 (b) rs74999840

(c) rs191029826 (d) rs73451279

Figure A.9: Kaplan-Meier survival plots based on samples from the ICGC-CA cohort

grouped by the genotype of identified tag SNPs. P-values were calculated between all

groups using a Mantel-Haenszel test.
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(a) Physical interaction network (b) Pathway network

(c) Genetic interaction network

Figure A.10: Gene networks visualizing a) physical interaction, b) pathways and c) ge-

netic interactions between genes from topGL-pos and the same amount of functionally

similar genes (n = 32).
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(a) Physical interaction network (b) Pathway network

(c) Genetic interaction network

Figure A.11: Gene networks visualizing a) physical interaction, b) pathways and c) ge-

netic interactions between genes from topGL-neg and the same amount of functionally

similar genes (n = 148).
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