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Summary 
Overconsumption of sugar promotes the occurrence of metabolic disorders. 

Therefore, studying the mechanisms underlying our physiological responses to sugar 

helps identify the underlying molecular mechanisms and potential therapeutic targets. 

Mondo family transcription factors are evolutionarily conserved across a number of 

species including Drosophila melanogaster, and they are known as the key “sugar 

sensor” in our body. Lines of evidence indicate that this component is misregulated in 

insulin resistance and diabetes.  

The aims of my PhD thesis are to determine the function of fly Mondo and its 

interacting partner Mlx during different stages and in different nutrition states, and to 

globally identify its direct target genes and regulated pathways. A deficiency in 

Mondo and Mlx causes sugar inviability in flies fed on a high sugar diet. Furthermore, 

Mondo is essential for survival during starvation after sugar deprivation, which brings 

our attention to the involvement of Mondo in the regulation of nutrient usage and 

metabolic adaptation during starvation. 

The chromatin Mondo-Mlx binding profile reveals several known sugar-

dependent Mondo target sites and potential new targets. The identified target genes 

are functionally clustered in metabolic pathways regarding sugar, lipid, and amino 

acids, which supports the concept that Mondo is a master metabolic regulator.  

Importantly, the data indicates that Mondo-Mlx is at the top of a regulatory network 

composed of abundant secondary transcriptional effectors. Motif searching analysis 

shows some interesting findings: in addition to the canonical ChoRE motif, a putative 

novel Mondo binding motif was also identified. Finally, our RNA Pol II ChIP-seq 

data provides the first direct evidence indicating that Mondo acts as both a 

transcriptional activator and repressor for different target genes and regulates gene 

transcription via influencing Pol II recruitment or elongation.  

Less is known about the role of Mondo family proteins in the nervous system, 

although Mondo expression has previously been observed in this metabolically active 

organ system. Here, I provide evidence of Mondo’s role in the central nervous 

system’s metabolism of sugar, lipids, and amino acids, specifically in the amino acids 

serine, glycine, and glutamine. Interestingly, the metabolism of lipid and serine in the 

fly brain has been shown to determine sleeping behaviors, though further 
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investigation is necessary to test whether Mondo has a systemic role in controlling 

sleeping behaviors. 

 

Zusammenfassung 
Der vermehrte Konsum von Zucker fördert die Entstehung metabolischer 

Erkrankungen. Die Erforschung der grundlegenden Mechanismen der 

physiologischen Antwort auf Zucker ist hilfreich, um die zugrundeliegenden 

molekularen Mechanismen und mögliche therapeutische Targets zu identifizieren. Die 

Familie der Mondo Transkriptionsfaktoren ist evolutionär über Spezies hinweg, 

inklusive Drosophila melanogaster, konserviert und sie werden als „Zucker 

Sensoren“ unseres Körpers bezeichnet. Mehrere Beweislinien zeigen, dass diese 

Komponente in Diabetes und der Insulinresistenz falsch reguliert ist.  

Die Ziele meiner Promotion sind sowohl die Bestimmung der Funktion von 

Mondo sowie seines Interaktionspartners Mlx während der verschiedenen 

Entwicklungsstadien der Fliege und unter unterschiedlicher Nahrungsbedingungen, 

als auch die globale Identifizierung der Zielgene und der regulierten 

Stoffwechselwege. Ein Mangel an Mondo und Mlx führt zu einer Zucker-

Lebensunfähigkeit der Fliege, wenn diese unter einer Diät mit hoher Zuckerzufuhr 

gefüttert wurde. Des Weiteren ist Mondo essentiell für das Überleben während des 

Hungerns nach einer Zuckerreduktion. Dies lenkt unsere Aufmerksamkeit auf die 

Beteiligung von Mondo in der Regulation von Nährstoffverwendung und der 

metabolischen Anpassung während des Hungers.  

 Das Mondo-Mlx Chromatin-Bindeprofil offenbart einige bekannte Zucker-

abhängige Mondo-Zielgene, sowie potentiell neue Zielgene. Die identifizierten Gene 

sind funktionell nach metabolischem Weg in Bezug auf Zucker, Lipide und 

Aminosäuren gruppiert, was die Rolle von Mondo als einen metabolischen Master-

Regulator hervorhebt. Die Daten zeigen, dass Mondo-Mlx an der Spitze eines 

regulatorischen Netzwerkes aus den zahlreichen sekundären 

Transkriptionsregulatoren steht. Die Motif-Analyse für Mondo-Mlx Bindestellen 

zeigen ein weiteres interessantes Ergebnis: zusätzlich zum kanonischen ChoRE Motif 

konnte ein neues Bindemotif beschrieben werden. Zu guter Letzt liefern unsere RNA 
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Pol II ChIP-seq Daten erstmalig eine direkte Evidenz, dass Mondo einerseits sowohl 

als Aktivator als auch als Repressor für unterschiedliche Zielgene agiert und darüber 

hinaus die Transkription von Genen durch die Beeinflussung der Pol II Rekrutierung 

und Elongation reguliert.  

 Weniger ist über Rolle der Mondo-Proteinfamilie im Nervensystem bekannt, 

dies obwohl die Expression von Mondo in diesem metabolisch aktiven Organsystem 

gezeigt wurde. In dieser Arbeit liefere ich Hinweise für eine Rolle von Mondo im 

Zentralen Nervensytem für die Metabolisierung von Zucker, Lipiden und 

Aminosäuren, im Speziellen für Serin, Glycin und Glutamin. Interessanterweise 

zeigten Studien im Fliegenhirn bereits eine Rolle des Serin- und des 

Lipidmetabolismus bei der Bestimmung des Schlafverhaltens. Ob Mondo eine 

systemische Rolle bei der Kontrolle des Schlafverhaltens hat, muss durch 

weiterführende Studien erforscht werden. 
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Chapter 1  

Introduction 
1. 1 Nutrient sensing and metabolism 

Nutrients are macromolecules such as carbohydrates, lipids, and amino acids that can 

be utilized to produce energy, and they serve as the building blocks of biomass in 

organisms. Organisms acquire the ability to sense and respond to the abundance of 

essential nutrients for survival under the selective pressure derived from food scarcity. 

Meanwhile, as different nutrients are required for specific cellular and physiological 

processes, evolutionarily conserved nutrient-sensing pathways built in organisms 

enable them to choose different types of food based on the nutrition content (1,2). 

Moreover, nutrient-sensing pathways integrate external nutrition inputs and internal 

satiation signals to maintain a balanced nutrient homeostasis and to facilitate the 

coordination of cellular processes (3,4). Overly high or low nutrient levels both cause 

adverse effects for survival. For example, high blood glucose levels can result in 

glucotoxicity and negatively affect the function of β cells and insulin secretion, 

subsequently leading to diabetes. Therefore, nutrient-sensing pathways have evolved 

into complex networks for organisms to adapt to fluctuations in nutrition states.  

Nutrient metabolism can be classified into two primary categories: catabolism, 

the decomposition of organic matters, and anabolism, the assembly of cellular 

components such as proteins, nucleic acids, and lipids. For example, during prolonged 

starvation, fatty acids are catabolized in the β-oxidation pathway to provide energy for 

the maintenance of cellular functions. In contrast, when food is available, the anabolic 

processes are activated to promote cellular growth and energy storage.  

In general, specialized sensors sense particular types of nutrients, and they 

activate specific downstream signaling pathways and stimulate corresponding output 

signals. At the same time, each nutrient-sensing pathway is connected through sensors 

that can respond to multiple nutrients. This crosstalk allows efficient metabolic 

switches when the nutrition state changes and promotes the holistic maintenance of 

the energy balance. In the following sessions, I review the sensors and signaling 
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pathways that sense each type of nutrient and discuss how these pathways are 

delicately interlinked in response to a dynamic environment. 

 

1.1.1 Sugar-sensing pathways 

Sugar is an important fuel for most of the cells in organisms, and it is essential for 

organs such as the brain and red blood cells (RBCs) because they mainly rely on it as 

an energy source. Sugar-sensing pathways have evolved to ensure effective sugar 

utilization in organisms; they are conserved across species but have adapted 

divergences in each. 

In mammals, sugar sensing first starts in oral taste buds with G-protein-

coupled taste receptors T1R2-T1R3 (5). These receptors bind sugars at a high 

concentration and trigger the downstream signal cascades, leading to the 

neurotransmission of taste information to the brain. Sugar is then absorbed in the 

small intestine. As in the taste buds, the intestinal epithelium also senses sugars via 

T1R2-T1R3 receptors. Glucose and galactose are transported from the intestinal 

lumen into enterocytes by the Na+/glucose cotransporter (SGLT1) (6), while fructose 

is transported by GLUT5, which is the specific transporter for fructose but not for 

glucose or galactose. Instead, flies sense sugars with the gustatory system. In contrast 

to mammals which use a widely tuned heterodimeric receptor, the fly genome harbors 

a subset of nine gustatory receptor (Gr) genes, Gr5a, Gr43a, Gr61a, and Gr64a–Gr64f, 

which have been shown to mediate the sensing of various types of sugar and even 

regulate feeding behaviors (7-9). 

While sugar is taken up, it is of critical importance in both mammals and flies 

that sugar levels are maintained within a narrow range for normal cellular functions 

(10,11). In order to ensure an efficient clearance/release of glucose from/into the 

blood/hemolymph upon the fed or fasting state, glucose uptake, glucose storage, and 

metabolism are tightly regulated at different levels by different mechanisms, 

including hormonal regulation, glucose transporter regulation, and sugar-induced 

signaling. Insulin and glucagon are the two major hormonal regulators that 

systemically regulate sugar sensing in mammals, and a homologous hormonal system 

also exists in the fly (12-14). After food consumption, the pancreas senses elevated 

blood glucose levels and secretes insulin, which accelerates the uptake of blood 
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glucose into the liver, adipose tissues, and muscle. Conversely, while blood glucose 

levels decrease, the pancreas produces and secretes glucagon, which signals liver and 

muscle cells to convert stored glycogen into glucose or glucose metabolites that are 

again released into bloodstream.  

In addition to hormonal regulation, several intracellular “glucose sensors” play 

a critical role in glucose-sensing pathways. One group of such sensors is sugar 

transporters, through which cells uptake sugars. In humans, the glucose transporter 

family is comprised of 14 isoforms, of which the GLUTs 1-4 are the most 

characterized (15). Different sugar binding affinity contributes to particular 

physiological properties of GLUTs 1-4. The Km value for GLUT1 is approximately 1 

mM; thus, it is close to saturation even during fasting. This high affinity of GLUT1 to 

glucose enables basal glucose uptake, which explains the high expression in the 

blood-brain barrier and RBCs, where sustained glucose supply is required. GLUT4 

has a Km value of around 5 mM and is predominantly expressed in the muscle and 

adipose tissues. GLUT2 has a higher Km (20 mM) value than other glucose 

transporters of the same family, and this kinetic parameter makes it a glucose sensor 

that promotes glucose flux. Similar to human GLUT2, fly GLUT1 has been shown to 

regulate glucose levels rather than trehalose levels in the hemolymph, although 

trehalose is the main circulating carbohydrate (16). This suggests that the fly 

hemolymph glucose mirrors the physiology of mammalian blood glucose. Once 

glucose is transported into cells via the transporter, glucokinase (GCK) carries out the 

first step of glucose breakdown. Similar to GLUT2, GCK also has a low glucose 

affinity. Therefore, it can function as a glucose sensor when blood glucose levels rise, 

and it controls systemic glucose levels by stimulating insulin secretion from the 

pancreas.  

  Mondo family transcription factors are also a group of important glucose 

sensors conserved across many species, including humans and the fly. The fly 

genome also encodes single orthologues of Mondo and Mlx, the interacting partner of 

Mondo. The Mondo-Mlx complex is required for the maintenance of carbohydrate 

homeostasis in the fly. Interestingly, emerging evidence shows that Mondo family 

members not only transit sugar-induced signaling, but they also respond to lipids and 

amino acids, the other two major nutrient types. The main focus of my PhD project is 



1. INTRODUCTION 

4 

studying the physiological role and downstream effectors of Mondo-Mlx complex in 

the fly. 

 

1.1.2 Lipid-sensing pathways 

Lipids are generally categorized into eight types: fatty acids, sterol lipids, 

glycerolipids, glycerophospholipids, polyketides, saccharolipids, sphingolipids, and 

prenol lipids (17). Lipids serve not only as stored fuel, but also as constituents of 

cellular membranes due to their hydrophobicity. Many sphingolipid derivatives also 

act as signaling molecules that bind to its particular receptor to transduce signaling to 

maintain cellular homeostasis (18, 19).  

There are two G protein-coupled receptors, GPR40 and GPR120, responsible 

for sensing long-chain fatty acids (20) in mammals. GPR40 is predominantly 

expressed in islet β cells (21) and controls the fatty acids-induced insulin secretion. 

GPR120 also indirectly promotes fatty acid-induced insulin secretion by stimulating 

the release of a gastrointestinal hormone named glucagon-like peptide-1 (GLP1; 22), 

which in turn promotes satiation (23). Deficiency in the GPR120 function has been 

known to be associated with diet-induced obesity in mice and has been also identified 

in some obese people. Generally speaking, these receptors mediate insulin sensitivity, 

insulin secretion, and β-cell function, suggesting that they are anti-diabetic targets. In 
addition, they have become therapeutic targets for the treatment of type 2 diabetes.  

Studies have also suggested that sugar-sensing Mondo family members also 

sense lipids . However, in contrast to sugar, fatty acids exert an inhibitory effect on 

the activity of Mondo family members. Evidence indicates that fatty acids 

significantly induce the AMP level, which directly inhibits the mammalian Mondo 

protein called the carbohydrate response element binding protein (ChREBP) via an 

allosteric mechanism (24). In addition, AMP can also indirectly hinder the 

transactivity of ChREBP through the action of AMP-activated protein kinase 

(AMPK), by which ChREBP is phosphorylated and therefore inactivated (25).  

 

1.1.3 Amino acid-sensing pathways 

Amino acids are the building blocks for proteins, the functional units for nearly every 

cellular process. The absence of any amino acid can lead to failure in peptide-chain 
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synthesis; therefore, a system controlled by general control nonderepressible 2 (GCN2) 

kinase has emerged to sense amino acid levels in food, and it is highly conserved 

from worms to humans (4). GCN2 has a high affinity with all uncharged tRNAs (non-

amino acid-coupled tRNAs). Upon a low amino acid level, GCN2 binds to uncharged 

tRNAs, resulting in the inhibitory phosphorylation of the eukaryotic translation 

initiator factor 2 α (eIF2α) and the global inhibition of translation initiation. Moreover, 

GCN2 encourages animals to avoid the food-lacking essential amino acids by 

inhibiting GABA signaling within dopaminergic neurons of the brain (26). This 

indicates that GCN2 can sense the nutrition levels in food and can encourage 

nutrition-balanced food sources.  

The mechanistic target of the rapamycin complex 1 (mTORC1) signaling 

pathway and the upstream regulators of mTORC1 activity constitute another system 

for sensing the intracellular amino acids level. mTORC1 integrates several signals, 

including hormones, growth factors and nutrients such as amino acids and glucose, to 

control protein synthesis and cell growth. The amino acid-dependent activation of 

mTORC1 is regulated by the Rag family of GTPase, which is in turn controlled by 

several cytosolic amino acids sensors, such as Sestrin2 (SESN2), Leucyl-tRNA 

synthetase (LRS) and Folliculin (FLCN). These upstream regulators sense specific 

amino acids inputs, particularly arginine and leucine, to activate and recruit mTORC1 

on the surface of the lysosome. In addition, the amino acid transporters, SLC38A9 

and SLC36A1 have been identified on the surface of lysosome. The fact that a lack of 

these amino acid transporters can lead to dysfunctional mTORC1 action in response 

to amino acids further strengthens the model of amino acid-sensing at lysosomes (27).  

Amino acid sensing is also interlinked with sugar sensing through the direct 

inhibitory action of mTOR on ChRBEP. In addition, the inhibition of mTOR drives 

the expression of a ChREBP target gene, thioredoxin-interacting protein (TXNIP).  

Recent studies have shown that elevated TXNIP levels can lead to β-cells apoptosis in 

diabetes (121). In sum, these data indicate that a coordination between sugar- and 

amino acid-sensing pathways mediated by ChREBP/Mondo and mTOR, respectively, 

is important for normal β-cell functioning.  
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1.1.4 The metabolic organ system and nutrient sensing in the fly 

Nutrient-sensing signaling and metabolic pathways are highly conserved across 

mammals, insects and worms. Drosophila is a particularly powerful model for 

studying metabolic pathways for several reasons; it has: 1) a short generation time, 2) 

a wide variety of genetic tools, 3) the possibility of performing high-throughput 

genetic screening and 4) ~75% similarity to the human genome. Furthermore, many 

metabolic organs in the fly have functional counterparts in mammals (Table 1.1). For 

example, the fly and human gut share a similar anatomical structure and physiological 

function. The fly gut can be divided into three parts: foregut, midgut and hindgut. 

Food is mixed in the foregut and is then mainly digested and absorbed at midgut. The 

hindgut is where water reabsorption and waste excretion occur. The Malpighian 

tubules connect to the gut; they are the site of urine formation in insects and excrete 

metabolic waste (28). The fly fat body is commonly seen as equivalent to mammalian 

liver and adipose tissue. Unlike the solid structure of the liver, however, the fat body 

is a loose organ that is distributed throughout the body. 

Meanwhile, the fat body also acts as an endocrine organ similar to mammalian 

adipose tissue; it regulates larval growth by integrating nutritional and hormonal 

signals (29). For example, CCHamide-2 (CCHa2), a sugar-responsive hormone, and 

its receptor, CCHa2-R in insulin-producing cells (IPCs), form a direct link between 

the fat body and the brain. This crosstalk regulates the release of dILP2 and dILP5 

from IPCs, which is essential for the coordination of systemic growth (30). Moreover, 

it serves as the primary nutrient sensor, and it secretes endocrine molecules in 

response to the nutritional status, transducing signals to IPCs to coordinate metabolic 

homeostasis systemically. Fat body-derived Unpaired 2 (Upd2) is the fly equivalent 

of mammalian Leptin, which serves as a “satiation signal” to mediate the energy 

balance by reducing hunger (31). Upd2 relieves the inhibitory effect of GABAergic 

neurons on IPCs; this leads to the secretion of insulin-like peptides (dILPs), which 

drive nutrient storage (32). In addition to the fat body, specialized cells called 

oenocytes are required for the mobilization of triglycerides in the fat body during 

fasting. Its function is similar to that of hepatocytes, so oenocytes are thus considered 

the functional analog of the mammalian liver (33).  
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Table1.1 Conservation of metabolic tissues between flies and mammals 

 

 

 

  

 

 

 

 

 

 

 

 

 

The basic hormonal regulation of metabolic homeostasis is also conserved in 

the fly. The fly counterparts of insulin and glucagon are dILPs and the adipokinetic 

hormone (dAKH; 12-14). The specialized IPCs in the fly brain function as pancreatic 

β cells, producing four of the eight insulin-like peptides (dILP1, 2, 3, and 5). Other 

organs secret dILPs; for instance, dILP4 is expressed in the embryo mesoderm and 

larval gut (34), and dILP6 is produced in the larval and adult fat body (35, 36). dILP7 

is expressed in specialized neurons that innervate the hindgut (37). The selective 

secretion of different dILPs is regulated by distinct nutritional cues and by nutrient 

availability (38, 39). Specifically, the release of dILP2 is stimulated by amino acids 

(40), whereas the secretion of dILP3 from IPCs is promoted by dietary sugars (41). 

dILP6 expression is enhanced upon low protein diets. Starvation also increases dILP6 

expression, while dilp2 and dilp5 were decreased or remained the same (36). Corpora 

cardiaca (CC) secrete dAKH (42); therefore, they are seen as the fly homolog of 

mammalian pancreatic α-cells. dAKH binds to its receptors’ AKHR in the fat body to 

induce the breakdown of glycogen (43,44), and carbohydrates are released into 

circulation. A recent study has indicated that glucose, rather than trehalose, is the 

main circulating sugar in the fly hemolymph, and it acts as a regulator of appetite 

through the action of insulin signaling in the fly (45). Collectively, the harmonic 

Fly Mammal Metabolic function 

Brain Brain Feeding behavior 
Central metabolic coordination 

Gut Gut Digestion and absorption  

Fat body Liver  
Adipose tissue 

Lipid storage 
Lipid mobilization 
Glycogen storage  

Oenocytes Liver Lipid mobilization 

Insulin producing cells  Pancreatic β cells Carbohydrate homeostasis  

Corpora cardiaca Pancreatic α cells Carbohydrate homeostasis  

Malphigian tubes Kidney Metabolism and detoxification 
of xenobiotics 

Muscles Muscles Glycogen storage  
Amino acid storage 
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regulation of hormone signaling in response to dietary carbohydrates maintains not 

only sugar levels in the hemolymph, but also the systemic energy balance in the fly. 

Similar to mammals, flies have postingestive mechanisms to detect the 

calories of food independently of taste. For example, flies can build appetitive 

memories for odors associated with the tasteless sugar alcohol sorbitol (46). In 

addition, a recent study indicates that flies can detect the nutritional content of sugars, 

regardless of taste, through the brain-gut axis, which is connected by neurons that 

secrete the diuretic hormone 44 neuropeptide (Dh44). Moreover, this Dh44-driven 

brain-gut axis also mediates the feeding and digestion of sugars through a positive 

feedback mechanism (47). The other taste-independent system that perceives 

nutritious food is based on a signal called a calorie-induced secreted factor (CIF), 

which is secreted by flies after feeding. Flies release CIF signals around the food to 

inform the presence of nutritive food to other flies. These taste-independent pathways 

enable flies to choose the food in the most efficient way.  

 

1.2 Transcription regulation in response to different nutrients 
 
1.2.1 Transcriptional regulation of carbohydrate metabolism 
 
A high glucose level regulates gene transcription either directly or through insulin 

signaling. The action of insulin stimulates phosphatidylinositol 3-kinase (PI3K) 

signaling, which further activates the sterol regulatory element-binding transcription 

factor-1c (SREBP-1c)-induced transcription cascade and the protein kinase B 

(PKB)/Akt pathway. SREBP-1c regulates the insulin-mediated transcription of 

glycolytic and lipogenic genes and is particularly important in the lipogenic program 

in the liver (48). On the other hand, activated PKB/Akt inhibits the activity of the 

Forkhead box O (FOXO) family transcription factors that integrate insulin signaling 

to hepatic gluconeogenesis by regulating key gluconeogenic genes, such as 

phosphoenolpyruvate carboxykinase (pepck) and glucose-6-phosphatase (G6p; 49). 

FOXO proteins also control diverse processes, including glucose metabolism (50), 

cell growth (51), apoptosis (52,53), oxidative stress response and longevity (54). 

Moreover, FOXO activates the transcription of the insulin receptor (InR) itself, 

forming a transcriptional feedback loop in the InR pathway. While fasting or lacking 
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nutrients, FOXO is activated and up-regulates the InR, which allows cells to 

accumulate higher levels of InR on the membrane. It establishes a sensitized state to 

signal when it is triggered by changes in insulin levels (55). 

The transcription of the key glucose sensor gene Glut2 is directly regulated by 

several transcription factors, such as hepatocyte nuclear factor 1α  (HNF1α) and 

pancreatic duodenal homeobox 1 (PDX1). In β-cells, HNF1α activates Glut2 and 

other genes involved in glucose-stimulated insulin secretion and β cell differentiation 

(56). PDX1 enhances Glut2 gene expression through binding to the TAAT motif at 

the Glut2 promoter (57, 58). The PDX1-GLUT2 pathway is important in maintaining 

the glucose-sensing ability and insulin secretion in β cells (59). Hepatocyte nuclear 

factor 4α (HNF4α) increases the expression of another important glucose sensor gene, 

GCK, in the liver when the inhibitory effect of FOXO1 on HNF4α is eliminated in 

response to insulin signaling. 

Independent of the action of insulin signaling, ChREBP broadly targets 

lipogenic and glycolytic genes that contain the carbohydrate response element 

(ChoRE) to regulate their transcription. Animals without ChREBP display severe 

sugar intolerance and hyperglycemia (60,61), indicating its importance in maintaining 

glucose homeostasis in organisms. Interestingly, the hepatic GCK gene has also been 

shown to be the direct target of ChREBP, and in turn, GCK is required for the action 

of ChREBP on the regulation of genes involved in glucose metabolism.  

 

1.2.2 Transcriptional regulation of the lipid metabolism 

The two major transcription factor families involved in the metabolism of fatty acids 

are peroxisome proliferator-activated receptors (PPARs) and SREBPs. The three 

isoforms of PPARs have been described as PPARα PPARδ, and PPARγ which 

display different tissue-specific distribution patterns and functions (62). PPARα 

regulates the uptake of fatty acids and β-oxidation by transcriptionally activating the 

genes involved in lipid catabolism (63,64). Therefore, PPARα prevents lipotoxicity 

by reducing the lipid content in the tissues (65). PPARδ expresses in a wide range of 

tissues and cell types (66). In islets, the activation of PPARδ enhances insulin 

secretion, increases fatty acid oxidation and protects β-cells from the adverse effects 

of prolonged fatty acid exposure (67). In skeletal muscle, PPARδ regulates the genes 
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involved in lipid catabolism, cholesterol efflux and energy uncoupling (68). PPARγ 

promotes the storage of fatty acids in adipose tissue by enhancing the storage capacity 

and the uptake of fatty acid into adipocytes. PPARγ also enhances insulin sensitivity 

by negatively regulating the transcription of genes that impair insulin resistance (69). 

Moreover, it also has an anti-inflammation effect by inhibiting the transcription of the 

proinflammatory cytokines genes in adipose tissue (70). There are no orthologs of the 

PPARs in lower organisms, including flies and worms. In the fly, as fly HNF4 

mutants and PPARα mutant mice share several phenotypes, including increased 

sensitivity to starvation, enhanced plasma free fatty acids, and a fatty liver with 

enlarged lipid droplets, Palanker et al. have proposed that the ancestral function of 

HNF4 was replaced by PPARα during evolution (71). The SREBP family 

transcription factors are also considered master transcriptional regulators that 

mediating the expression of genes regulating lipid metabolism, lipid transport and 

cholesterol synthesis in response to insulin stimulation. Among isoforms, SREBP-1c 

is highly abundant in the liver, where it promotes lipid synthesis (72), while SREPB2 

is the key regulator of cholesterol synthesis (73). The major role of SREBP-1c is to 

activate the expression of lipogenic and glycolytic genes that contain a sterol 

regulatory element (SRE) sequence in their promoter. The target genes include fatty 

acid synthase (FAS), acetyl-CoA carboxylase (ACC), stearoyl-CoA desaturase 1 

(SCD1) and glucose-6-phosphate dehydrogenase (G6PD), which are important for 

fatty acid synthesis (74,75). The enhancement of the SREBP-1c level and the 

resulting lipogenesis are seen in obesity and may mechanistically explain the onset of 

fatty liver. The SREBP-1c expression can also be induced by the activation of the 

liver X receptor α (LXR α), a nuclear hormone receptor that is activated by 

derivatives of cholesterol such as oxysterols. Mice that lack LXRα display a reduced 

expression of SREBP-1c, FAS, ACC and SCD1 gene (76). The transcription factors 

PPARs and SREBP-1c can respond to the changes in lipid levels in tissues, thereby 

coordinating fat anabolism or catabolism based on the dynamic metabolic states.  

 

1.2.3 Transcriptional regulation of amino acid metabolism 

As previously described, the uncharged tRNA activates the GCN2 upon low cellular 

amino acid levels. GCN2 further phosphorylates eIF2a, whereby the overall protein 
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synthesis is repressed, except the expression of activating transcription factor 4 

(ATF4), which is an important transcription factor in the regulation of amino acid 

metabolism (78, 79). ATF4 transcriptionally regulates the expression of genes 

involved in amino acid synthesis to ease the stress responses derived from the scarcity 

of amino acids. ATF4 is regulated by histone lysine demethylase KDM4C upon serine 

deprivation. KDM4C mediates the biosynthesis and transport of amino acids in cancer 

cell lines, which requires ATF4 to induce relevant genes. KDM4C binds to the 

promoter of ATF4 and removes the repressive H3K9me3 mark, conferring the active 

expression of ATF4. These findings link KDM4C-induced H3K9 demethylation and 

ATF4-induced activation in the reprogramming of amino acid metabolism for cancer 

cell survival (80).  

 Glutamine, as the most abundant amino acid in humans, supplies amino 

groups for the synthesis of amino acids and nucleotides. The formation of glutamine 

is mainly controlled by the ATP-dependent glutamine synthase (GS), whose 

expression is transcriptionally regulated by glucocorticoids. The direct binding of the 

glucocorticoid to the glucocorticoid response element (GRE) within the upstream 

region of the GS gene confers the activation of the GS reporter (81, 82). With regard 

to the uptake of glutamine, MondoA performs this role in the process by activating 

the expression of the glutamine transporter SLC1A5.  

 Although PPARα is well known as a master regulator in lipid metabolism, it 

also mediates the expression of genes involved in amino acid metabolism, including 

deamination, transamination, and the urea cycle (83). Consistently, plasma urea 

concentration is increased in PPARα-deficient mice (83). In fact, several transcription 

factors such as SREBP1-c, PPARs and ChREBP can regulate genes involved in the 

metabolism of different nutrients. This coordinated regulation in response to various 

physiological conditions enables the organism to adapt to different nutrition states.  

 

1.3 The Mondo protein family as major sugar sensors 

1.3.1 The Mondo protein family belongs to the basic helix-loop-helix leucine 

zipper (bHLH/LZ) class of transcription factors 

The basic helix-loop-helix (bHLH) proteins constitute a large transcription factor 

superfamily. A subclass of the bHLH superfamily that features an additional leucine 



1. INTRODUCTION 

12 

zipper region is called the basic helix-loop-helix/leucine zipper (bHLH/LZ) regulator. 

One of the most well-studied networks of bHLH/LZ regulators is the Myc-Max-Mad 

network. Max sits at the center of the network by interacting with the Myc family of 

transcriptional activators for gene activation, while dimerizing with the Mad family of 

transcriptional repressors for gene repression. Consistent with their molecular 

function, Max-Myc and Max-Mad have opposing physiological roles in growth. Myc-

Max heterocomplexes drive cell growth. In contrast, Mad-Max complexes promote 

cell differentiation. The Mondo protein family belongs to the bHLH/LZ class of 

transcription factors, as well. Mondo A was identified as the first member of the 

Mondo protein family (84), followed by the discovery of the second family member, 

ChREBP (85). Mondo interacts with the bHLH/LZ factor called Max-like protein, 

Mlx (Fig. 1.1). Like Max, Mlx also interacts with the Mad protein to regulate 

transcriptional gene repression while Mlx alone with the Mondo family mediate 

transcriptional gene activation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Model of the bHLH/LZ region of two ChREBP/Mlx heterodimers 

binding to a tandem E box DNA element. Figure adapted from Ma et al., 2006. LZ: 

leucine zipper; HLH: helix loop helix.  
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1.3.2 Functional protein domains are conserved in the Mondo protein family 

MondoA and ChREBP are paralogous proteins encoded by two distinct genes and are 

highly conserved in several functional domains. The N-terminal region of MondoA 

and ChREBP contains a glucose-sensing module (GSM), which includes a low-

glucose inhibitory domain (LID) and a glucose-response activation conserved element 

(GRACE). The GRACE domain confers the sugar-responsiveness of 

MondoA/ChREBP activity, which is suppressed by the LID domain upon a low 

glucose condition (87). In addition, there are five identified conserved regions in 

GSM that are required for the regulation of cellular localization and the activity of 

MondoA/ChREBP. At the C-terminal region, MondoA/ChREBP has a bHLH/LZ 

region and a cytoplasmic localization domain (DCD), which allows dimerization with 

the interacting partner, Mlx, for binding to the target genes (Fig. 1.2).  

 

 

Figure 1.2. Structural domains of human Mondo and Mlx proteins and fly 

Mondo. Figure modified from Ma et al., 2006. The full-length proteins MondoA and 

ChREBPa are highly conserved and share several functional domains: the GSM, 

which includes the five Mondo conserved regions indicated by the roman numerals; a 

polyproline region; a basic helix-loop-helix/Zip domain; and a DSD domain for 

heterodimerization with MLX. The GSM is divided into LID and GRACE domains. 

The conserved regions are labeled with roman numerals from I to V. 
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ChREBP and MondoA are products of the genome duplication event in the 

early vertebrate lineage (88). The conservation in protein domains between ChREBP 

and MondoA supports common protein function. However, in general, the ChREBP 

protein sequence shows a greater divergence in most of the domains than MondoA 

during evolution across most species, suggesting that the MondoA sequence has 

undergone stronger selection than the ChREBP protein sequence. Hence, MondoA 

may have a more important role in survival, which causes the evolutionary constraints 

on these conserved protein sequences, though their biological importance still needs 

to be better understood. 

ChREBP and MondoA both regulate the transcription of glucose-induced 

genes and share several common target genes, suggesting a redundant function of the 

paralogs. The major difference between the two is their expression profile. ChREBP 

is expressed in various tissues, including the liver, gut, adipose tissue, and pancreas 

(61), but MondoA is mainly expressed in the skeletal muscle (84, 89). To be specific, 

ChREBP regulates genes involved in carbohydrate metabolism and lipogenesis. Mice 

lacking ChREBP in the liver display glucose intolerance and insulin resistance (61, 

90). Recent studies have shown that ChREBP has diverse roles in different tissues and 

functions as a central coordinator of metabolism; the tissue-specific function of 

ChREBP is described in detail in chapter 1.5. MondoA, on the other hand, promotes 

energy storage in the form of lipid and glycogen through the activation of 

corresponding enzymes in muscle. Moreover, MondoA inhibits insulin signaling and 

restricts glucose uptake by upregulating the expression of TXNIP and arrestin 

domain-containing 4 (ARRDC4), which suppresses insulin signaling (91). As 

ChREBP and MondoA have some similarities but also have different functions in 

mammals, it is sometimes difficult to distinguish the impact of these two proteins on 

downstream effectors. The fly genome contains only a single Mondo gene and thus 

has no genetic redundancy. Moreover, critical protein functional domains, such as the 

GSM and bHLHzip domains, are conserved in the fly and humans (Fig. 1.3). These 

make the fly an optimal animal model for exploring the functions of the Mondo-Mlx 

complex in metabolic pathways. 
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Figure 1.3. Protein functional domains are conserved in the fly and human. The 

protein sequence alignment of the fly Mondo (first line), human MondoA (second 

line) and human ChREBP (third line) are shown. The domain highlighted in the 

yellow box is the N-terminal GSM domain, while the one highlighted in the pink box 

is the C-terminal bHLHzip domain. Those in green within the pink box are the leucine 

zipper domain, and the conserved residues are labeled with a red asterisk. The figure 

is adapted from Carla Margulies. This figure uses the same nomenclature as in Figure 

1.2, such as using roman numerals for the conserved regions.  
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1.3.3 Regulatory mechanisms of ChREBP activity  

Maintaining carbohydrate homeostasis in a coordinated manner is essential to 

maintaining normal cellular processes and organ functions. Therefore, ChREBP, 

which has been shown to be a central regulator of carbohydrate homeostasis, needs to 

be tightly regulated. ChREBP protein activity can be regulated at several levels, such 

as intra-molecule interaction, binding with interacting proteins, post-translational 

modification, protein stability and subcellular localization (Fig. 1.4). The coordinated 

regulation of ChREBP transcriptional activity enables a balanced ChREBP-induced 

downstream response towards diverse physiological conditions in the organisms. 

There are two ChREBP isoforms,: ChREBP-α and ChREBP-β; each interacts 

with Mlx and forms a heterotetramer, which is necessary for DNA targeting and the 

induction of gene expression. ChREBP-α contains both the LID and GRACE domains 

in the GSM. Functional analysis of the domain-deleted ChREBP-α reveals that LID 

and GRACE may interact intra-molecularly and result in a repressive state of 

ChREBP (93, 94). In other words, under a low glucose condition, the LID domain 

restrains GRACE function by intra-molecular interaction (93). When glucose levels 

increase, the repression may be relieved; thus, ChREBP is activated. The newly 

identified ChREBP-β has no LID domain and therefore stays constitutively active, 

which also supports the repressive LID-GRACE interaction. ChREBP-β-promoter-

luciferase assays indicate that glucose-induced ChREBP-α is required for the 

transcription of ChREBP-β. In contrast, ChREBP-β has been shown to downregulate 

ChREBP-α signaling in islet cells (95), suggesting a negative feedback loop of 

glucose-induced gene expression. The current model suggests that the direct binding 

of metabolites, such as glucose-6-phosphate (G6P) and fructose-2,6-bisphosphate (F-

2,6-BP), to the LID domain can lead to a conformational change. Therefore, ChREBP 

can interact with Mlx and other coactivators (96).  
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Figure 1.4. The model of Mondo/ChREBP regulation in response to glucose. 

Figure modified from Abdul-Wahed et al., 2017. The GSM domain of the 

Mondo/ChREBP protein contains a nuclear import signal (NLS) and two nuclear 

export signals (NES1 and NES2). The nuclear import factor and nuclear export 

factors bind to NLS, NES1 and NES2, respectively, to regulate their subcellular 

trafficking according to the nutritional states. The N-terminal GSM domain contains 

LID and GRACE domains, by which a dynamic intramolecular inhibition of ChREBP 

activity is formed. Low glucose levels repress the transactivity of GRACE by LID, 

whereas this intramolecular inhibition is released with a high glucose level. The 

shorter ChREBP β isoform lacks the LID domain and thus stays constitutively active 

(92). ChREBP activity is induced by acetylation on lysine and O-linked 

GlyNAcylation, while ChREBP is suppressed by phosphorylation on specific serine 

or threonine residues. 
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The post-translational modification of ChREBP is a major mechanism 

whereby ChREBP activity is regulated. Fasting-associated signals, such as AMPK 

and PKA phosphorylate ChREBP at Ser196, Ser568, Ser626, and Thr666, 

respectively (25,97), all lead to ChREBP inactivation. Xylulose 5-phosphate (Xu5P) 

specifically activates the protein phosphatase PP2A, which dephosphorylates 

ChREBP and therefore activates it. In addition to phosphorylation/dephosphorylation, 

O-linked GlyNAcylation modification of ChREBP has also been found to be an 

important mechanism for ChREBP transactivity. O-GlcNAcylation not only increases 

its transcriptional activity but also stabilizes ChREBP protein (98). The histone 

acetyltransferase (HAT) p300 interacts and acetylates ChREBP as a transcriptional 

coactivator, thereby promoting DNA binding of the complex (99). In turn, the activity 

of p300 activity is hindered by salt-inducible kinase 2 (SIK2), whose activity is 

regulated by the starvation signal (99, 100). The nuclear localization of ChREBP is 

regulated by nuclear transport signals and the respective nuclear transport factors.  

A nuclear import signal (NLS) and two nuclear export signals (NES1 and 

NES2) in the N-terminal region of ChREBP appear to be important to the subcellular 

trafficking of ChREBP (101). The nuclear import factor, importin, binds to NLS 

within ChREBP to affect its nuclear importing, while nuclear export factor such as 

exportin and 14-3-3 bind to NES1 and NES2 to regulate nuclear export. Additionally, 

the binding of 14-3-3 β to phosphorylated ChREBP prevents importin α from binding 

to the NLS. ChREBP is therefore retained in the cytoplasm under a low glucose 

condition (102). Several metabolites, such as ketone bodies and adenosine 

monophosphate (AMP), increase ChREBP’s affinity for 14-3-3 β in hepatocytes and 

lead to subsequent nuclear export (24). Therefore, the inactivated ChREBP protein 

pool is stored in the cytoplasm upon starvation. As the glucose level increases, 

ChREBP translocates into the nucleus through interaction with importins and 

regulates the transcription of target genes (103).  

The activity of ChREBP may also be affected by a single nucleotide 

polymorphism (SNP), which is a glutamine 241 to histidine missense mutation in the 

GSM region. This SNP is associated with a reduction in triglyceride levels, which 

may be the outcome of reduced ChREBP activity. Kooner et al. have hypothesized 

that the chrebp gene is a “thrifty gene” that enables individuals to efficiently convert 
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food to stored fat during periods of food abundance to provide energy when food is 

scarce (104). Nakayama et al. later supported this hypothesis based on the observing 

that the frequency of this SNP is much higher among Mongolian, Uyghur and Tibetan 

populations. Their primary food is dairy products, and their diet lacks sugar content 

(105). Therefore, the reduction of ChREBP activity may allow them to adapt to a 

metabolic switch from glucose to amino acids as the main energy source. However, 

evidence at the molecular level is needed to confirm the reduced activity of the 

Q241H variant of ChREBP.  

In conclusion, the activity of the ChREBP-Mlx complex is coordinated by the 

regulation of interacting factors and the post-translational modifications that mediate 

both the cellular localization and transactivity of the protein complex upon different 

nutritional states. The essence of it is a sugar regulation activation mechanism, which 

in its molecular detail remains ill-understood. 

 

1.3.4 ChREBP is at the center of interlinked transcription networks in response 

to different nutrition 

ChREBP-Mlx was originally characterized as a transcription factor that specifically 

mediates the sugar signaling and carbohydrate metabolism (85). Recent studies have 

suggested that ChREBP/Mondo-Mlx may sit at the center of an interlinked metabolic 

network by interacting with various transcription factors in response to different 

nutrient inputs such as sugar, amino acids and lipids (Fig. 1.5). Hence, it confers the 

ability of ChREBP/Mondo-Mlx to control metabolic adaptation in response to diverse 

nutrition landscapes.  

 

The crosstalk between ChREBP and HNF4α is responsive to sugar signaling 

Upon glucose induction, many transcription factors have been shown to physically 

interact with ChREBP. One of them is the HNF4 nuclear receptor, whose expression 

is stimulated by long-chain fatty acids and sugar (71, 106). Several lines of evidence 

suggest a direct interaction between HNF4α and ChREBP. First, HNF4α and 

ChREBP share a binding site that contains one E-box sequence within the promoter 

region of the pyruvate carboxylase gene (107, 108). Second, HNF4α has been shown 

to co-immunoprecipitate with ChREBP in primary hepatocytes, indicating that  
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Figure 1.5. Regulatory network composed of the interplay between 

ChREBP/Mondo and other nutrient-induced factors and the downstream 

effector. ChREBP/Mondo-Mlx activity is directly switched on by sugar and inhibited 

by signaling factors such as FOXO, mTOR and AMP, which respond to insulin, 

amino acids and fatty acids, respectively. ChREBP/Mondo-Mlx acts alone with SIK3 

on the PPP pathway, with SREBP on lipogenesis and glycolysis, and with HNF4 on 

the TCA cycle and glycolysis. In addition, Mondo-Mlx regulates the transcription of 

the second level of transcriptional regulators, including Cabut and Sugarbabe.  

 

HNF4α may act together with ChREBP to regulate the transcription of metabolic 

genes containing both ChoRE and direct repeat-1 (DR1) sites at the promoter regions 

under glucose induction (109). Finally, Burke and colleagues have demonstrated that 

the binding of the protein complex includes ChREBP and HNF4α, which are required 

for the induction of L-PK gene in response to glucose (110). Additionally, more than 

acting jointly with ChREBP on downstream gene transcription, HNF4α also activates 

the transcription of both ChREBP isoforms (111). This claim is supported by the 

observation of the increase in ChREBP transcription when HNF4α is overexpressed 

and a decline in ChREBP mRNA levels when HNF4α is knocked down. Interestingly, 
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ChREBP-α works synergistically with HNF4a to directly target to DR1 sites within 

the promoter of ChREBP-β. The cross-talk between ChREBP and HNF4 may be 

necessary for transducing signals that originate from sugar inputs, as the protein-

protein interaction is enhanced while glucose induction is increased (111).  

 

ChREBP interacts with Salt-Inducible Kinase 3 (SIK3) to activate the pentose 

phosphate pathway 

The other example of ChREBP’s interacting protein is Salt-Inducible Kinase 3 

(SIK3). In the fly, Mlx and SIK3 act synergistically to activate the pentose phosphate 

pathway (PPP) upon sugar refeeding (112). As Mlx is commonly seen as the 

interacting partner of Mondo, the activity of the PPP is also considered to be Mondo-

dependent (112,113). Evidence indicates that SIK3 enables flies to survive on high-

sugar diets by suppressing oxidative stress with the reductive power of NADPH 

derived from PPP.  

 

The interplay between ChRBEP and SREBP links glucose and insulin signaling 

ChREBP links glucose signaling to insulin signaling by acting synergistically with the 

insulin-induced factor SREBP. SREBPs regulate the expression of genes involved in 

the metabolism of fatty acids, triglyceride and cholesterol in the liver (114,115). The 

most abundant isoform expressed in the liver is SREBP-1c (116), and it primarily 

regulates the genes involved in fatty acid biosynthesis (115). ChREBP and SREBP-1c 

have been shown to synergistically control de novo lipogenesis (DNL) and the 

lipogenic program in the liver. The genetic ablation of either fails to support the 

expression of lipogenic genes (72). In sum, these data indicate that ChREBP and 

SREBP-1c are necessary for the activation of glycolytic and lipogenic genes. Only the 

action of ChREBP on gene regulation is primarily responsive to glucose, but for 

SREBP-1c, insulin induces signaling.  

 

FOXO1 and mTOR exert inhibitory effects on ChREBP activity 

FOXO1 is another transcription factor through which ChREBP links glucose 

signaling to insulin signaling, though FOXO1 is an inhibitory target of insulin 

signaling. FOXO1 suppresses ChREBP activity through inhibiting O-glycosylation 
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(117), an important post-translational modification (PTM), to maintain ChREBP 

stability in primary mouse hepatocytes (98). In line with this, the deletion of FOXO1 

in mice livers leads to enhanced O-glycosylation and ChREBP levels, and the 

recruitment of ChREBP to the promoter of the L-PK gene (117). In addition, FOXO1 

confers the inhibitory effect on TXNIP expression by competing for the binding site 

with ChREBP without affecting the expression and cellular location of ChREBP in 

INS-1 β cells (118). Significantly, the ChREBP-TXNIP signaling axis has a critical 

influence on pancreatic β cell death, as it stimulates the generation of reactive oxygen 

species (ROS) and the resulting oxidative stress, which further leads to apoptosis 

(119, 120). It is interesting to note that mTOR, a well-known factor responsible for 

sensing amino acids, exerts signaling against apoptosis as protection in β-cells 

through direct binding to ChREBP to repress TXNIP expression, thereby inhibiting 

oxidative stress and mitochondrial dysfunction (121). Similarly, the levels of TXNIP 

and ChREBP are highly increased at both mRNA and protein levels in the diabetic 

and mTOR-deficient background in mouse islets. Conversely, mTOR overexpression 

decreases the induction of TXNIP and ChREBP and protects the β cell from apoptosis 

(121).  

ChREBP sits at the center of the regulatory network in response to different 

nutrient inputs by interacting with different factors. Further, ChREBP also targets 

many second tiers of transcription factors and sits on the top of a transcriptional 

cascade. For example, in the fly, Mondo directly targets transcription factors such as 

Cabut and Sugarbabe. Interestingly, Cabut not only controls the expression of 

metabolic genes, but also those involved in the circadian rhythm in response to sugar 

feeding. Sugarbabe maintains lipid homeostasis by inducing the expression of 

lipogenic genes upon sugar feeding. The activation of ChREBP activity 

predominantly depends on increased sugar signaling. The interplay between ChREBP 

and other nutrients/insulin-regulated transcription factors not only provides additional 

levels of regulation on gene transcription by ChREBP, but also integrates the signals 

from different nutrition inputs, allowing the organism to exert subtle metabolic 

adaptation to the complex intracellular environment. Meanwhile, the molecular 

crosstalk between ChREBP and other important metabolic regulators may enable 

more pharmacological opportunities.  
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1.4 Metabolic adjustment in the fasting-refeeding cycle 
1.4.1 Metabolism of the fed state 

The metabolism of the fed state is an anabolic process in which absorbed nutrients are 

utilized for energy synthesis and storage. In the fed state, insulin is secreted and 

drives the entry of glucose into the liver, muscle and adipose tissue. Overall, the liver 

helps maintain blood glucose levels by storing it as glycogen when glucose is 

abundant and by releasing glucose when food is scarce. When glucose or the 

glucogenic precursors (such as pyruvate and lactate) exceed the storage capacity of 

the liver, they can be converted into fatty acids and amino acids. Glucose is also taken 

up by adipose tissue, where the metabolic-intermediate glycerol-3-phosphate is 

generated and used for the synthesis of triacylglycerols, which are the storage 

molecule of fatty acids (122). Moreover, the action of insulin extends to the 

metabolism of amino acids and protein. Insulin stimulates the uptake of branched-

chain amino acids into the muscle in the postprandial period (123). Insulin also 

stimulates protein synthesis and inhibits protein degradation in muscles (124, 125). 

 

1.4.2 Metabolism of the starvation state  

The blood-glucose level needs to be maintained within a narrow range, even upon the 

starvation condition; therefore, metabolic adaptation to starvation is required to ensure 

sufficient glucose supply to the brain or RBCs. The metabolism of the starvation state 

can be divided into early fasting and prolonged starvation states. During early fasting, 

glucagon is secreted and preferentially stimulates the breakdown of glycogen into 

glucose in the liver, allowing glucose to be released into the bloodstream again. In 

addition, glucagon promotes hepatic gluconeogenesis and blocks glycolysis to restore 

glucose levels. When hepatic glycogen is completely depleted during starvation, the 

carbon chain of amino acids, particularly alanine and glutamine, become the major 

source for gluconeogenesis (126, 127). Gluconeogenesis derived from amino acids 

eventually slows as the supply of amino acids from muscle protein degradation 

decreases. However, glycerol released from adipose tissue can also contribute to a 

low level of gluconeogenesis in the liver (128). A low insulin level during starvation 

also inhibits the uptake of glucose by the liver and muscle, resulting in the switch of 

fuel usage from glucose to fatty acids in these two tissues. The fatty acids can be 
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catabolized to acetyl-CoA by the process of β-oxidation; the acetyl-CoA is 

subsequently oxidized via the TCA cycle for energy production. When starvation is 

prolonged, the fatty acids are also converted to ketone bodies in the liver (129). These 

ketone bodies can serve as an energy source for all tissues except those without 

mitochondria, such as RBCs. The brain, the most energy-consuming organ, also 

slowly switches to the use of ketone bodies during prolonged starvation. 

 

1.4.3 Metabolism of the refed state 

During the refed state, fat is metabolized in the same way that it is processed in the 

fed state. However, the liver does not take up glucose during the transition from 

fasting to the refed state; rather, other peripheral tissues do. This is because the liver is 

still in a gluconeogenic mode to restore the liver's glycogen levels (130). After the 

glycogen stores are replenished in the liver, excessive glucose is processed for fatty 

acid synthesis, as it is in a normal fed state. Refeeding after a fast also leads to a rapid 

metabolic switch, including a decrease of serum ketone bodies and free fatty acids 

(131). 

 

 

 

 

 

 

 

 

 

Figure 1.6. Metabolic adjustment upon fed and starvation states. In the fed state, 

carbohydrates are the main source of Acetyl-CoA, which is used in the TCA cycle to 

generate energy. Upon starvation, glucose is quickly used up for energy generation. 

Amino acid skeletons are then converted to pyruvate and continue to be made into 

glucose. Acetyl CoA is then mainly made from the β-oxidation of fatty acids. Green 
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depicts the β oxidation pathway from fatty acids, and blue depicts the 

gluconeogenesis pathway from amino acids. 

 

1.5 Dynamic functions of ChREBP/Mondo protein in different tissues 

ChREBP is predominantly expressed in active sites of de novo lipogenesis: the liver 

and adipose tissues, where it has been shown to be the key regulator of lipid 

metabolism (61). Additionally, ChREBP is also highly expressed in the pancreatic 

β−cells and the intestine. To a lesser extent, the expression of ChREBP was also 

identified in the brain (61,132,133). Owing to the distinct function that ChREBP plays 

in different tissues, ChREBP is considered the central coordinator of metabolism. 

ChREBP’s role in specific tissues is discussed in this section (Fig.1.7). 

 

 

 

 

 

 

 

 

 

Figure 1.7. ChREBP functions as a central metabolic coordinator in various cell 

types. The functions of ChREBP in each tissue are listed, and the target genes 

involved are shown in the brackets. ChREBP directly or indirectly regulates the 

downstream signaling, which is transported to brain and affects the food intake or 

preference systemically. 

Glycolysis (PYK) 
Gluconeogenesis (PEPCK) 
Lipid synthesis (FAS, ACC) 
 

β cell survival (TxNIP) 
Insulin production & secretion 
(PPARr, TxNIP,ARNT/HIF1β ) 
 

Adipocyte differentiation (PPARr) 
Lipid synthesis (FAS, ACC) 
Insulin sensitivity (PAHSAs) 

FGF21 

Leptin Insulin 

Fructose breakdown (Khk, AldoB) 
Fructose tolerance (Glut5)  

Gut-Brain axis 

Sugar preference 
Food intake 
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1.5.1 ChREBP regulates sugar-induced de novo lipogenesis in the liver 

The liver is the primary organ where de novo lipogenesis (DNL) takes place. 

Evidence shows that the hepatic ChREBP is essential in regulating lipogenesis in the 

liver. The downregulation of ChREBP in hepatocytes reduces the expression of genes 

in glycolysis and lipogenesis, thus decreasing lipid accumulation. This finding is 

supported in that the inhibition of ChREBP in obese mice leads to the reversal of 

hepatic steatosis, which exhibits increased hepatocellular triglycerides (TG; 132). 

However, the global metabolic effects of hepatic ChREBP on insulin sensitivity seem 

to be controversial in healthy or diseased backgrounds. Mice that are deficient in 

ChREBP in the liver display intolerance to sugar and insulin resistance (61, 90), 

whereas the inhibition of hepatic ChREBP in the insulin-resistant obese mice 

improves insulin sensitivity (132).  

In addition, ChREBP and SREBP-1c work synergically to regulate the 

lipogenic program in the liver. The expression of SREBP-1c at mRNA and protein 

levels is downregulated in the liver-specific ChREBP knockout mice. The 

overexpression of nuclear SREBP-1c only restores the expression of lipogenic genes 

partially, without affecting glycolytic genes. Similarly, ChREBP overexpression is 

unable to normalize the expression of lipogenic genes in the liver of SREBP-1c 

deficient mice compared with WT mice (75). Moreover, there is ample evidence that 

the expression of lipogenic genes through SREBP-1c is stimulated by insulin-

mediated signaling (48, 136), while gene regulation by ChREBP mainly depends on 

increased carbohydrate signals. Taken together, these data demonstrate that ChREBP 

and SREBP-1c jointly regulate the induction of glycolytic and lipogenic mRNAs. The 

interplay between ChREBP and SREBP-1c on hepatic DNL ensures that the synthesis 

of fatty acids in the liver only occurs when insulin and carbohydrates are both present.  

 

1.5.2 ChREBP controls adipocyte differentiation and systemic insulin sensitivity  

Two types of adipose tissue can be categorized: white adipose tissue (WAT) and 

brown adipose tissue (BAT), and they are functionally antagonistic. WAT stores 

excess energy as lipids, primarily in the form of triglycerides, whereas BAT 

specializes in burning fatty acids for heat production to maintain body temperature 

(137). The expression of ChREBP has been reported in both WAT and BAT. In 
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particular, the ChREBP β isoform has been shown to play an important role in 

lipogenesis in WAT by regulating the expression of lipogenic genes (94, 138). In 

addition to lipogenesis, ChREBP in WAT also regulates the genes involved in 

adipocyte differentiation (139). The increased ChREBP expression during this 

process has been observed in mouse cell lines and human precursor cells (140, 141), 

whereas the depletion of endogenous ChREBP or the expression of dominant-

negative ChREBP in progenitor cells decreases lipid accumulation and hinders 

adipocyte differentiation (141). WAT ChREBP also contributes to favorable effects 

on glycemic control, which is supported by the fact that the benefits of the 

overexpression of GLUT4 in WAT on glycemic control are lost in ChREBP-deficient 

mice (94). Furthermore, WAT ChREBP is linked to insulin sensitivity. ChREBP 

directly or indirectly regulates the transport and metabolism of glucose in adipocytes, 

as well as the secretion of fatty acids, adipokines and cytokines, which are now 

known to induce systemic insulin resistance.  

ChREBP has a significant impact on the regulation of BAT function, as well. 

Mice that lack ChREBP show a general reduction of adipose tissue, in particular a 

43% decrease in BAT. Moreover, these mice become hypothermic when fed a high-

sucrose diet (61). It has been shown that the negative feedback loop between 

ChREBP and PPARα may maintain the homeostasis of lipid metabolism in BAT 

(142). A recent study has shown that BAT activity is induced by the active thyroid 

hormone triiodothyronine (T3), which upregulates the expression of the ChREBP 

gene and the downstream effectors of ChREBP (143). In addition, expanding the 

activities of BAT reduces metabolic disorders such as obesity in mice (144, 145). 

These data indicate that ChREBP is a potential target for the therapeutic regulation of 

BAT activity as a defense against metabolic disorders. 

 

1.5.3 ChREBP promotes the proliferation of β  cells 

ChREBP is expressed during the pancreas development, and its level increases during 

differentiation (146). In addition, ChREBP expression depends on the regulation of 

FOXA1/2, the important regulators for the development and maintenance of 

metabolic-associated tissue (147). Nevertheless, ChREBP does not appear to be 

necessary for pancreatic differentiation, as homozygous ChREBP knockout 
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(ChREBP-/-) mice display an increased insulin response upon high sugar feeding when 

compared with wild type mice (61). On the other hand, evidence suggests that 

ChREBP promotes β cell proliferation. In the adult pancreas, ChREBP exerts the 

glucose-induced proliferative effect on β cells by upregulating the cell-cycle 

accelerators (148). At the mechanistic level, Schmidt et al. have shown that ChREBP 

mediates the glucose-stimulated expression of the cell-cycle genes by inducing 

transcription factors, including the RAR-related orphan receptor (ROR) γ, which 

promotes β cell proliferation (149). In line with the mechanism of glucose-induced β 

cell proliferation, the calcium influx under a high glucose condition induces ChREBP 

dissociation from Sorcin, allowing ChREBP to shuttle into nucleus and drive 

proliferation (150). Besides having a role in mediating β cell proliferation, ChREBP 

also regulates β cell survival in association with mTOR signaling to decrease the 

expression of TXNIP, a key inducer of oxidative stress and apoptosis (121). 

 

1.5.4 Intestinal ChREBP is required for fructose tolerance  

ChREBP expression has been detected in the intestine (61), but only in recent years 

has its intestinal function in association with fructose tolerance been uncovered. The 

intestine is the first place for the absorption and breakdown of fructose. The fructose 

absorption capacity of the GLUT5 in the small intestine is limited under a high 

fructose condition (151); thus, the overconsumption of fructose can lead to fructose 

malabsorption, which is known to be a potential cause of irritable bowel syndrome 

(152). ChREBP regulates the expression of the fructose transporter (Glut5), 

fructolytic enzymes and gluconeogenic genes in the small intestine. ChREBP 

deficiency in the intestine can result in fructose intolerance. It is supported by the 

observation that high-fructose-fed ChREBP knockout mice display a distended cecum 

and serious diarrhea, indicating the incomplete absorption of fructose (153). In sum, 

intestinal ChREBP is indispensable for fructose tolerance, which is potentially 

important in the prevention of inflammatory bowel disease. 

 

1.5.5 ChREBP in the brain may mediate feeding behavior  

ChREBP/Mondo has been detected in the brains of mice, rats and flies (61, 132, 133, 

154, 155), and its role in the brain has begun to be explored. Docherty et al. have 
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shown that the pan-neuronal knockdown of Mondo leads to enhanced triglyceride and 

glycogen levels, while the knockdown of Mondo specifically in insulin-producing 

neurons leads to increased food intake associated with an upregulation of dILP3. 

These data indicate that Mondo in the brain may control systemic carbohydrate 

homeostasis through mediating feeding behaviors. Interestingly, the crosstalk between 

peripheral ChREBP and PPARα contributes to the expression of fibroblast growth 

factor 21 (FGF21) in the liver, which later acts on specific brain regions to mediate 

sugar preference (156).  
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Chapter 2 

Investigating sugar- and 

starvation-induced phenotypes of 

the Mondo-Mlx-deficient fly 

2.1 Summary 

In this chapter, Mondo is shown to play different roles at different developmental 

stages and in different nutritional states in flies. A severe lethality during development 

has been observed in MondoK05106 mutants, CRISPR-induced Mondo mutants and 

Mondo knockdown flies that have been raised on a high-sugar diet in comparison to 

their corresponding genetic controls and low-sugar-diet controls. The death of 

Mondo-deficient flies before entering the adult stage has also been observed during 

high-glucose and fructose diets, indicating that Mondo is required for survival on a 

high-sugar diet, regardless of the sugar type. Overall, these data confirm that Mondo 

is essential in maintaining carbohydrate homeostasis during development.  

 Nevertheless, adult flies show a different phenotype compared to developing 

flies. Adult MondoK05106 mutants only display sugar intolerance when they are fed 

sugar-based food. They are able to tolerate the high sugar level provided that the food 

is nutritionally balanced (sucrose and yeast). Although WT adult flies can survive 

better than mutants that have been fed sugar-based food, these WT flies still behave 

worse than those on a nutritionally balanced diet. Collectively, these data suggest that 

Mondo has different roles in the larvae and the adult flies. 

In addition, a potential role of Mondo in response to starvation has recently 

been discovered. Surprisingly, MondoK05106
 mutant flies are more sensitive to 

starvation compared to WT flies that have been fed protein-based food instead of 

sugar-based food. Hence, the underlying mechanism of this Mondo-dependent 

phenotype in terms of starvation warrants further investigation. 

 Mondo’s expression profile in different tissues was determined with the GFP-

tagged Mondo fly line, which harbors functional fused GFP-Mondo protein.  A 
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prominent GFP signal was mainly observed in the fat body of the flies. In addition, 

the contribution of tissue-specific Mondo to sugar tolerance was examined. However, 

sugar-induced lethality was not observed among the flies lacking Mondo in the fat 

body, neuron and glia. In addition, there was no observable alteration to the food 

intake in the tissue-specific Mondo knockdown flies. 

 

2.2 Introduction 

In the past two decades, Mondo/ChREBP has been shown to be the key regulator in 

sugar and lipid metabolism. This role has been supported by the intolerance to sugar 

and the change in metabolic gene expression profile displayed in Mondo/ChREBP-

deficient animals (113, 157, 158). In addition, ChREBP-/- mice have been 

characterized as suffering from hypothermia and hyperglycemia. The lethality rate of 

these mice has also been shown to be greater than 50% upon a high-sugar diet (61), 

reflecting the adverse effects of sugar toxicity on Mondo/ChREBP-deficient animals.   

The Drosophila Mondo has been identified from a screen for genes that 

increase the hemolymph glucose levels in larvae (16). Mondo-dependent lipogenesis 

confers protection against hyperglycemia in high sugar-fed larvae (60). Interestingly, 

the ablation of Mondo in the fly fat body leads to feeding aversion, suggesting its 

potential role in the coordination of feeding behavior with nutrient availability (159). 

The role of Mlx, the interacting partner of Mondo, in sugar metabolism has also been 

assessed in flies. Havula et al. have previously shown that sugar metabolism is mis-

regulated in Mlx mutant larvae. In addition, evidence from chromatin pull-down 

assays (157, 160) and the modeling of the protein-DNA binding structure (161) 

support the finding that Mondo requires Mlx for DNA binding. The formation of a 

heterodimeric complex of Mondo-bound-Mlx has been shown to regulate sugar 

metabolism.  

Mondo/ChREBP has been demonstrated to be an important factor involved in 

metabolically distorted conditions. On the other hand, Mondo may be involved in 

adaptation upon starvation, as it interacts with several “starvation factors” such as 

FOXO and FGF21 (162, 163). It is intriguing to study whether Mondo is required for 

energy mobilization upon starvation. In addition, several studies have demonstrated 
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the function of Mondo/ChREBP at the systemic level; however, the tissue-specific 

function of Mondo/ChREBP is still unclear. Mondo/ChREBP is expressed in the 

liver, intestine, adipose tissue, muscle, kidney and brain (61, 133). In mice, hepatic 

ChREBP has been shown to regulate FGF21 to mediate the preference for sugar (134, 

135, 164). Havula et al. have also reported a fat body-specific Mlx expression can 

rescue the development and the adult emergence of the Mlx mutants. In addition, the 

neuronal-specific expression of Mondo rescues pupation of the Mlx mutants up to 

20%, as well. The expression of fat body-specific Mlx has also rescued the overly 

high circulating glucose in Mlx mutants. These findings indicate the functional 

importance of Mondo-Mlx in the fat body, and potentially in the central nervous 

system. In addition to the essential role in sugar sensing and metabolism in the fat 

body, several lines of evidence suggest that Mondo also plays a role in the brain in the 

control of nutrient storage and feeding behavior (155). Thus, this project investigates 

the tissue-specific functions of Mondo, particularly in the fat body and CNS. 

In this project, I have focused on understanding the role of Mondo by 

addressing its function upon different nutritional statuses (feeding/starvation), at 

different life stages (larva/adult), on different sugar diets (glucose/fructose) and in 

different cell types (fat body/CNS). I report that the sugar intolerance phenotype has 

been observed in Mondo knockdown flies and two different Mondo mutants 

(MondoK05106 and CRISPR-Mondo). Mondo has been shown to have different roles in 

sugar tolerance between the adult and larval stages. In addition, I show that Mondo is 

involved in starvation adaptation in a nutrient-dependent manner. Surprisingly, 

Mondo mutants that have been on a protein-based diet instead of a sugar-based diet 

did not survive after 21 hours of starvation. This suggests that Mondo may regulate 

the storage or mobilization of protein as an energy source. Lastly, we studied the 

effect of knocking down Mondo in the fat body, neurons and glia on the survival of 

flies on high-sugar diets. However, these cell-type-specific Mondo knockdowns did 

not result in lethality during development.  
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2.3 Methods 

CRISPR/Cas9 Mondo knockout fly was done in collaboration with the lab 

technician Teresa Burrell. Hui-Lan designed the CRISPR strategy and cloned 

the constructs. Embryo injection and fly characterization were done by Teresa 

Burrell. CAFÉ experiments were also performed by Teresa Burrell. 

 
2.3.1 Fly husbandry  

Flies were kept on standard media at 25°C for maintenance. The following strains 

were used: 2202U2 (wild-type; 165) MondoK05106 mutant (Kyoto center stock 

no.102338), tubulin-GAL4 (Bloomington stock center no.5138), takeout-GAL4 (166), 

ppl-GAL4 (Bloomington stock center no.58768), nsyb-GAL4 (Bloomington stock 

center no. 458), repo-GAL4 (167), Act5C-Cas9,lig4 p[169] (168), PBac{Mondo-

GFP.FPTB}VK00033 (Bloomington stock center no.42279), 

w[1118];PBac{768.FSVS-0}Mio[CPTI003395] (Kyoto center stock no.115402).  

 

2.3.2 Fly food  

For standard fly maintenance, food containing agar 0.84% (w/v), dry yeast 6% (w/v), 

cornmeal 7.6% (w/v), sucrose 3.14% (w/v), glucose 6.27% (w/v), sodium potassium 

tartrate 0.87% (w/v), calcium chloride 0.07% (w/v) and Nipagin (methylparaben) 

0.26% (w/v) was used. Additional dried yeast was added on top of the food before 

use. For studies on defined nutrients, larvae were grown on food containing 10% 

(w/v) dry yeast, 1% (w/v) agar and 2.5% (v/v) Nipagin in PBS supplemented with 

varying concentrations of sucrose, glucose or fructose.  

 

2.3.3 Viability assay  

The MondoK05106 mutant and Tubulin-Gal4 driver were balanced with CyO and TM3 

marked with both stubble bristles (Sb) and serrated wings (Ser), respectively, due to 

homozygous lethality on the standard laboratory fly food. For the MondoK05106/CyO 

mutant, crosses were set up with 10 females and males on no sucrose (10% yeast) and 

high sucrose food (10% yeast+20% sucrose). Viability was calculated based on the 

emergence of Mondo-deficient (adult flies with straight wings) and Mondo-
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heterozygous adult flies (adult flies with CyO wings). Homozygous CyO flies die. If 

100% of the homozygous mondo mutant flies survive to adults, the expected ratio of 

the heterozygous CyO with wild-type mondo and the mondo mutant is 2:1. Therefore, 

the expected viability was calculated as 100 x {(2 x No. flies with straight wings)/No. 

flies with CyO} for Mondo mutant. A similar scheme was used for the ubiquitous 

knockdown experiments. The Tubulin-Gal4 driver was kept over the TM3, Ser, Sb 

balancer and crossed with a homozygous UAS-RNAi line. The expected outcome if 

100% of the flies survived was half would have the genotype TM3, Ser, Sb; UAS-

RNAi where the RNAi is not expressed, and half of the flies would have Tublin-Gal4; 

UAS-RNAi where the RNAi is expressed. The expected viability for ubiquitous 

knockdown flies was calculated as 100 x (No. flies with straight wings/No. flies with 

Ser, Sb).  

 

2.3.4 RNA extraction and RT-qPCR  

The total RNA of the whole fly was extracted using Trizol (Life Technologies, 

15596018). RNA was treated with TURBO DNase I (ThermoFisher, AM1907) to 

digest double-stranded DNA. Reverse transcription was conducted to synthesize 

complementary DNA by using SuperScript III Reverse Transcriptase (Life 

Technologies, 18080085) and a random hexamer primer (Life Technologies, 

48190011). RT–qPCR was carried out by using power up POWERUP SYBR Master 

Mix (Life Technologies, A25778) and a Chromo4 Real-Time PCR Detector 

(BioRad). Fly genomic DNA was used to make standard curves for the quantification 

of target genes. Quantification was normalized to the mRNA coding for the 

endogenous ribosomal protein rp49. The Mondo primers (Forward: 

GCGGCGTTACAACATAAAGA, Reverse: CTCCATGCGCAAAGCTTCAA) and 

rp49 primers (Forward: GGTTACGGATCGAACAAGCG, Reverse: 

TAAACGCGGTTCTGCATGAG). 

 

2.3.5 CRISPR Mondo mutant design  

The general CRISPR mondo mutant approach used the scheme to insert a cassette that 

included an alternative splice site upstream of a stop codon. To aid screening for 

transgenic animals, the DsRed gene and an alternative splice site upstream of a stop 
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codon were also included in the cassette (168). To target this cassette, single-strand 

guide RNA (sgRNA) target sites were designed by the web tool 

(http://CRISPR.mit.edu) from the Zhang laboratory for sequences of the fourth 

intronic region in the Mondo gene. The sgRNA template was produced using overlap 

PCR with a common scaffold primer, a shorter antisense amplification primer and a 

gene-specific primer containing a T7 promoter and sgRNA sequence. The sequences 

of all sgRNA primers are summarized in table 2.1.  

Table 2.1 Primers used in generation of CRISPR-based Mondo mutant fly 

 

The PCR product was checked by agarose gel electrophoresis with the 

expectation of seeing a single band. The PCR product with the correct pattern was 

then purified with the Qiagen MinElute kit (Qiagen, 28006). The in vitro transcription 

of the sgRNAs was performed using the T7-MEGAshortscriptTM Kit (AM1354, Life 

Technologies). The purification of sgRNA was performed with the MEGAclear 

Transcription Clean-Up Kit (Life Technologies, AM1354). The activity of sgRNAs 

for each specific target site was evaluated in Drosophila Schneider 2 (S2) cells 

expressing myc-Cas9 (169). Cells were cultured in Schneider’s Drosophila medium 

supplemented with 10% fetal calf serum (Life Technologies, 10270106) to 5-10 x 106 

cells/ml at 25 °C. The cells were then diluted to 0.7 x106/ml and plated 1ml per well 

in a 24-well plate. 1 ug of sgRNA was diluted in a 50 ul serum-free medium in one 

tube. 4 ul FuGENE® HD transfection reagent mix (Promega, E2311) was added in a 

46 ul serum-free medium in another tube. Then, the sgRNAs and FuGENE reagent 

Primer name Primer sequence
gRNA synthesis

Scaffold oligo AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAAC
TTGCTATTTCTAGCTCTAAAAC

Antisense primer AAAAGCACCGACTCGGTGCC
gene-specific primer-sgRNA1 TAATACGACTCACTATAGGGCAGTGTTGGTCGGTTAGGTTTTAGAGCTAGAAATAGC
gene-specific primer-sgRNA2 TAATACGACTCACTATAGGGCGTGGGTATATTATTTAGTTTTAGAGCTAGAAATAGC

T7 endonuclease I assay
Conrtol primer-forward ACACAAATAAGACTTTGGGACCT
Conrtol primer-reverse GCTCCACCTTTTGCATAATTTC
gRNA1-500bp-forward CGATCTGGCTATGTTTGCAT
gRNA1-500bp-reverse GTGGGACTTTTTGCAGTGTT
gRNA2-500bp-forward GAACAACAGTCTGCGTGGTT
gRNA2-500bp-reverse TTTTGCACGGCATACATACAT

Homology arms
Left-Homology arm-forward CGTCTCAGGACTTCTTGATGATACTTTTGTTG
Left-Homology arm-reverse CGTCTCACTGGACCGACCAACACTGCCTATTCTTTA

Right-Homology arm-forward CGTCTCATGTTTTAAGGATGTACAATAAGGTTTT
Right-Homology arm-reverse CGTCTCAGCATATCCGAGTCGATTCCACATAGCCAT
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were mixed and incubated for 45 min at room temperature before being added to the 

well and mixed gently. After 72 hours, genomic DNA was extracted with the QIAamp 

DNA mini kit (Qiagen, 51304) followed by a T7-endonuclease I assay. 

 

2.3.6 Plasmid construction  

Left and right homology arms with lengths of approximately 1.5 kb were amplified 

from the fly strain that was used for homology-directed repair. These two fragments 

were subsequently cloned into the pJET-1.2 vector by following the manual of the 

CloneJET PCR Cloning kit (Fisher Scientific, K1231). The golden gate cloning 

reaction was assembled from plasmids contain each homology arms and CRISPR 

donor cassette. The ligation reaction was performed using the following cycles: 10-15 

cycles of 37°C, 5 mins and 16°C and 10 mins in a PCR machine. The plasmid-safe 

nuclease reaction was assembled and incubated at 37°C for 60 mins. 5–10 ul of the 

reaction were transformed in bacteria. The primers used to clone homology arms are 

listed in table A2.1.  

 

2.3.7 Embryo injection  

Approximately 1,000 Act5C-Cas9,lig4p embryos (168) were injected with pBS-donor 

(500ng/µl) and two sgRNAs (100 to 500 ng/µl each) using an inverted compound 

microscope and microinjector (Narishige IM-300). Survivor G0 flies were mated with 

2202u white-flies, a Cantonized W1118 (165). The F1 progeny were screened for 

fluorescent red eyes. To avoid complications of carrying the Act5C-Cas, lig4 on the X 

chromosome, males were used to isolate any CRISPR insertions from continued Cas 

expression. The three positive insertions were mapped to the second chromosome, 

and the insertions verified the targeting event by genomic DNA PCR and sequencing.  

 

2.3.8 Starvation resistance assay  

WT and MondoK05106 mutants were raised on yeast-only food with additional live 

yeast to obtain homozygous mutant flies. One- to two-day old flies were collected and 

maintained on yeast-only food for flies to mate. Mated females were separated from 

males on CO2; the flies were exposed to CO2 for no longer than five minutes. The 

flies were transferred on yeast-only food to recover for one day. Flies were fed on 
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yeast-only, yeast + 20% sucrose food and sucrose-only food for another day, and they 

were then starved on agarose medium for 21 hours. Fly survival was calculated after.  

 

2.3.9 Feeding assay  

Flies starved for 21 hours were transferred to fresh food containing 0.5% Brilliant 

Blue FCF and fed for 1 hour. After feeding, flies were homogenized in 200 µl of PBS 

+ 1% Tween 20 (PBST). Samples were centrifuged, and 100 ul supernatant was added 

into a 96-well plate. The absorbance of samples was measured in a plate reader 

(TECAN infinite M1000) at 630 nm. Flies exposed to non-dyed food were used as the 

baseline during spectrophotometry. The amount of labeled food in the fly was 

calculated from a standard curve made by serial dilution in PBST of blue dye.  

 

2.3.10 Immunohistochemistry  

Adult flies were fixed with 4% paraformaldehyde (PFA) for 1 hour at 4°C and then 

embedded in cryo gel (Structure Probe, Inc.). The sample was frozen in liquid 

nitrogen before sectioning at 40 µm horizontally on a cryostat. Frozen samples can 

also be stored at -80°C. The slides were washed with 1x phosphate-buffered saline 

(PBS) buffer for 30 min and subsequently incubated in the blocking solution (PBS, 

2% Bovine serum albumin, 0.2% Triton X-100) for another 30 min. Rabbit anti-GFP 

antibody (Life Technologies A-11122, 1∶200) was used to probe GFP protein. The 

immunohistochemical signals were detected with goat anti-rabbit IgG, Alexa Fluor® 

488 conjugate (ThermoFisher, 1:200) for GFP. Nuclei were counterstained with 

Hoechst reagent (Fisher Sci. 1:1000). The coverslips were then slowly placed on the 

slides to avoid bubbles and sealed with transparent nail polish. The images of the 

samples were obtained with a confocal laser-scanning microscope (LSM-710, Zeiss), 

and were processed using Fiji (ImageJ 1.48r, http://imajej.nih.gov.ij) 

 

2.3.11 Statistical analysis  

The statistically significant difference between the controls and experimental group 

was determined by an unpaired Student’s t-test with assumed unequal standard 

deviation in each group. Data are shown as mean ± SEM. 
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2.4 Results 

2.4.1 Drosophila requires Mondo-Mlx to develop on high-sugar food 

Mondo and its interacting partner Mlx have an essential role in the regulation of 

carbohydrate metabolism in the developing fly (113, 157, 159). Mondo-deficient 

animals, both in mice and fly models, have elevated blood/hemolymph sugar levels 

and die on a high-sugar diet (61,157). To confirm this developmental sugar 

intolerance phenotype caused by Mondo deficiency in the fly, survival to the adult 

stage was examined with the MondoK05106 mutants containing a P-element insertion in 

the intronic region of the mondo and Gr39a gene (170) and several RNAi-induced 

Mondo and Mlx knockdown flies while raising them on high- or low-sugar food ( Fig. 

2.1A).  

The MondoK05106 mutants and wild type flies were raised on yeast-only and 

yeast +20% sucrose food, and the number of adult flies that emerged was counted. On 

food lacking additional sucrose, mutant flies develop normally into adult flies that are 

comparable to WT flies. In contrast, on food containing 20% sucrose, the 

MondoK05106 mutants are not viable (Fig. 2.1B). ) This Mondo-dependent phenotype 

was supported by the observation from RT-qPCR showing that the mondo mRNA 

expression level is significantly lower in the MondoK05106 mutant compared to the 

levels in WT, regardless of gender (Fig. 2.1C). However, because the P-element 

insertion in the MondoK05106 mutant line may affect the expression of Gr39a gene 

(171), we generated a CRISPR-induced Mondo mutant in which only the mondo 

expression was affected. The strategy was to use CRISPR/Cas9 to generate DNA 

double-strand breaks in the intronic region of mondo gene, then integrate the donor 

cassette containing a splice acceptor and a SV40 polyA terminator together with a 

3xP3-dsRed eye reporter into the chromosome using the homology-directed repair 

(HDR) pathway (172; Fig.2.2A). The splice acceptor and SV40 polyA terminator 

enable the creation of a strong loss of function allele while a 3xP3-dsRed eye reporter 

was used to screen for mutant flies quickly under a fluorescent dissecting microscope. 

Three candidate mutants were isolated and mapped to the second chromosome, where 

the mondo gene is located. To help avoid the off-target effect, CRISPR mutation in 

the second chromosome was isolated genetically from the other founder 

chromosomes. In addition, the mutant was outcrossed to a wild-type genetic 
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background to avoid other potential CRISPR off-target mutations. The rate of three 

positive insertions to the approximately 1,000 injected embryos is similar to the rate 

reported by Zhang et al., 2014. The screening identifies that only one of the positive 

DsRed flies had a significantly lower expression of mondo measured by RT-qPCR 

(Fig. 2.2B). This CRISPR mondo mutant is also not viable on high sugar  (Fig. 2.2C), 

similar to the MondoK05106 mutant.  

 

Figure 2.1. MondoK05106 mutant fly is not viable on high sugar food. (A) 

Schematic presentation of the P-element insertion site in the MondoK05106 mutant. The 

mondo gene is indicated in blue, with the 5’ end of the gene orientated to the right and 

the 3’ end at the left side of the diagram. The two transcripts originating from two 

different promoters are indicated in yellow. In pink, the gustatory receptor gene 

Gr39a is oriented in the opposite direction from mondo. One of the Gr39a transcripts 

is indicated in gray. The upside-down blue triangle indicates the insertion site of the 

P-element K05106. The RNAi targets for mondo appear in purple. A red line indicates 

the location of the Mondo primers used in RT-qPCR. The green text indicates the 

location of the GFP protein fusion in line Mio[CPTI003395]. (B) The MondoK05106 

mutant can develop on yeast-only food but not on high-sugar content food. (C) 
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Mondo expression is low in both male and female MondoK05106 mutants. The error 

bars represent ± SEM (* p<0.05; ** p<0.01; *** p<0.001)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Generating CRISPR/Cas9 mondo knockout fly. (A) The strategy used 

to generate the mondo mutant. The top part of the diagram shows a map of the mondo 

gene, which is indicated in blue, and its two transcripts are indicated in yellow. The 

internal Gr39a gene is indicated in pink, and one of its transcripts indicated in gray. 

The gray box indicates the third intron of the mondo gene, the target of our 

CRISPR/Cas strategy. Within this box, the two homology arms are indicated, the left 

in blue and the right in purple. The bottom of the diagram contains the CRISPR donor 

cassette. HA: homology arms (blue and purple rectangle), a splice acceptor (blue 

circle), and a 3xP3 promoter with DsRed gene (red rectangle), P: attp sites (black 

triangles). pA: S40 poly A terminator (black rectangle), Stop codon (*). (B) mondo 

expression in CRISPR Mondo mutant fly. (C) WT flies can survive on both yeast only 

and yeast+20%sucrose. MondoK05106 and CRISPR Mondo mutant flies died on high 

sugar. The error bars represent ± SEM (* p<0.05; ** p<0.01; *** p<0.001)  
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In addition, RNAi lines specific to mondo and Mlx mRNA were used and 

replicated the published results from the Hietakangas laboratory (157). The ubiquitous 

knockdown of Mondo and Mlx with Mondo or Mlx RNAi, respectively results in 

poor viability of flies. On no-sucrose food, there is no significant difference in 

viability between control groups and the Mondo and Mlx knockdown groups, except 

for knockdown flies by KK109821 Mondo RNAi flies (Fig. 2.3, left panel), which 

may be due to the off-target effect. The knockdown efficiencies from four separate 

Mondo RNAi lines and one Mlx RNAi line are between 25–60% (Figure 2.3, right 

panel). This data recapitulated the sugar phenotype shown in the MondoK05106 mutant 

and the CRISPR mutant. Taken together, these data indicate that the Mondo-Mlx 

complex has an important role in maintaining carbohydrate homeostasis in the fly. 
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Figure 2.3.  Flies require Mondo and Mlx to survive on high-sugar food.  

Mondo was ubiquitously knocked down in the fly with four different Mondo RNAi 

lines. Mlx was ubiquitously knocked down with an Mlx RNAi line. Monod/Mlx 

knockdown flies and control group flies were raised on low- (1.5% sucrose) and high-

sugar (15% sucrose) food. Viability was calculated. The results of RT-qPCR on 

Mondo-Mlx are shown on the right. Error bars represent ± SEM (* p<0.05; ** 

p<0.01; *** p<0.001).  
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2.4.2 Mondo is required for the fly to develop on both high-glucose and high-

fructose diets 

Evidence from the human population study supports the correlation between the 

consumption of high-fructose corn syrup (HFCS) and the development of type 2 

diabetes (173). However, it is still highly debated whether added sugar is the 

causative agent for the increased prevalence of metabolic diseases (174, 175). With 

regard to the metabolism of fructose and glucose, they are in fact not metabolized 

equivalently, though they share the same chemical formula. In a human study, an 

isotope tracer demonstrated that postprandial fructose but not glucose is incorporated 

de novo into triglycerides (176). In mice, fructose consumption increases hepatic de 

novo lipogenesis and serum triglycerides to a greater extent than isocaloric glucose 

loads and impaired inulin signaling over a 12-week period (177). Nevertheless, the 

effects of fructose on body weight are inconsistent across different studies.  

 Several studies have also investigated the regulation of ChREBP levels in 

response to fructose and glucose. Increased nuclear ChREBP protein is observed in 

the livers of mice with high-fructose diets compared with high-glucose diets or 

control diets (no supplementary fructose; 177, 178). As glucose and fructose undergo 

different metabolic pathways, and ChREBP is regulated by carbohydrates, ChREBP 

may have different roles in metabolizing different sugars. Because Mondo is clearly 

required for flies to develop on a high-sucrose diet (Fig. 2.2 C), and considering that 

sucrose is composed of glucose and fructose, the viability of Mondo-deficient flies 

was tested on high-glucose and high-fructose food. The same viability assay on 

ubiquitous Mondo knockdown flies was performed on 15% of glucose and fructose 

diets. Poor viability of Mondo knockdown animals on both high-glucose and high-

fructose diets was observed, indicating that flies require Mondo to survive under 

either condition (Fig. 2.4). In addition, genetic controls and the wild type developed 

equally well on both monosaccharides. Surprisingly, Rovenko et al. have observed a 

small decrease of survival to pupa on 10% glucose compared with fructose (179).  

Although food content is largely the same between my experiment and the Revenko 

experiment, the difference is that I left out propionic acid and used Nipagin as a 

fungus retardant. Another interesting point is that life spans of adult flies were shorter 
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when fed on sucrose (180). It is worth further study to see whether fructose and 

glucose cause the lethality in Mondo mutant larvae with the same mechanisms.  

 

Figure 2.4. Mondo knockdown flies 

are not viable on high-glucose and 

high-fructose food. Mondo 

knockdown flies could not survive on 

either on high-glucose or high-fructose 

food compared to other control groups. 

   

 

 

2.4.3 Does Mondo have a different role in the adult than in the developing 

organism? 

Above, we and other laboratories have observed that Mondo is required for larval 

development on high-sugar food (Fig. 2.1-2.4). However, it remains unclear how a 

high-sugar diet affects Mondo-deficient flies at the adult stage. Therefore, I tested 

whether Mondo is required for adult survival on diets with different nutrition 

contents. To be specific, WT and MondoK05106 mutant larvae were raised on 10% 

yeast food until eclosion, and then the adult flies were transferred to 10% yeast only, 

20% sucrose only and 10% yeast + 20 % sucrose diets. To our surprise, adult Mondo 

mutants survived just as well as WT flies on the 10% yeast + 20 % sucrose diet (Fig. 

2.5). This is in contrast to Mondo mutant larvae, which failed to develop on this same 

diet (Fig. 2.1). In addition, on the 10% yeast diet without extra sucrose, the Mondo 

mutant flies had a similar life span to WT flies. However, flies on a 10% yeast diet 

displayed an overall shorter life span compared to flies on a 10% yeast + 20 % 

sucrose diet. This indicates that a diet balanced in carbohydrates and proteins is 

required for the survival of adult flies. Interestingly, when yeast is removed from the 

high-sugar diet, Mondo mutants have a shorter life span than WT. Fifty percent of the 

Mondo mutant flies died 14 days earlier than when 50% of WT flies died. 

Accordingly, I interpret this to mean that yeast extract provides specific nutrients to 

mitigate the high-sugar diet for the adult flies. This is in contrast to the developing 
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animal lacking Mondo, where the yeast extract does not mitigate the high sugar 

toxicity for the animal. Further experiments can conducted on a chemically defined 

diet in which the components can be controlled to identify the essential nutrients from 

yeast extract for adult flies (181).  

Fig 2.5. Adult Mondo mutant has a reduced life span when fed a high-sucrose 

only diet. Both WT and MondoK05106 mutant flies have similar life spans on 10% 

yeast + 20 % sucrose diet, however, mutants have reduced survival on a sucrose-only 

diet compared to WT flies over 60 days. Lacking carbohydrate in the diet shortens the 

life span of flies, regardless having Mondo or not. 

 

2.4.4 Flies deprived of sugar are more sensitive to starvation 

To continue to probe the role of Mondo in sugar metabolism, particularly during 

starvation state in which stored carbohydrate can be quickly used up, I tested how 

Mondo mutants respond to starvation when they are fed in advance on either sugar-

based or protein-based food. The hypothesis is that Mondo mutants would have 

difficulties using sugar-derived energy during starvation, as they lack the major 

regulator in sugar metabolism, which can lead to death. The experiment was 

conducted by raising the WT and Mondo mutant flies on 20% sucrose, 20% sucrose + 

10% yeast, and 10% yeast food overnight, and subsequently fasting them on an 
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agarose-based medium for 21 hours. Unexpectedly, both mutant and WT flies that 

were pre-fed on diets containing sucrose survived 21 hours of starvation (Fig. 2.6A). 

However, mutant flies that had a diet of yeast-only food showed increased morbidity 

compared with WT during starvation for 21 hours (Fig. 2.6A).  

 

Figure 2.6. Flies deprived of sugar require Mondo to survive upon starvation. 

(A) Starvation resistance of WT and MondoK05106 mutants was tested on flies that 

were previously fed on sugar only, yeast+20%sucrose or yeast-only food and then 

starved for 21 hours. Survival was recorded after starvation. (B) The same starvation 

resistance experiment was performed on WT and MondoK05106 mutants that were 

previously fed on 20% sucrose or 2% tryptone. (C) Food intake of 20% sucrose and 

2% tryptone was measured by color spectrophotometry assay after starvation for 21 

hours. WT and MondoK05106 mutant flies consumed a similar amount of sucrose and 

the same for tryptone food. Error bars represent ± SEM (* p<0.05; ** p<0.01; *** 

p<0.001)  
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Because WT flies displayed similar survival rate across three diet groups, the 

increased morbidity of mutant flies observed in the group pre-fed on 10% yeast is less 

likely due to toxicity from yeast extract. To confirm this nutrient-dependent 

phenotype, the same experiment was performed on a diet containing pure source of 

protein: tryptone. Similarly, the mutants pre-fed on 20% sucrose survived 21-hour 

starvation, as WT flies did, whereas the Mondo mutants pre-fed on 2% tryptone had 

50% morbidity after starvation (Fig. 2.6B). However, this phenotype may also result 

from the decreased consumption of protein-based food among mutant flies, which 

could explain their vulnerability to starvation. To eliminate this possibility, food 

intake was measured by spectrophotometric assay after flies were fed on sucrose or 

tryptone diets. WT and Mondo mutants displayed a difference in food intake while 

fed on the sucrose diet, but not on the tryptone diet (Fig. 2.6C). One possible 

explanation for this nutrient-dependent phenotype during starvation is that Mondo 

mutants have defects either in converting protein into stored energy or in mobilizing 

the protein-derived fuel upon starvation. In sum, this is the first evidence suggesting 

that Mondo could have a regulatory role upon starvation, likely by mediating the 

usage of amino acids. 

 

2.4.5 Mondo is most highly expressed in the fat body  

Determining where Mondo is expressed will allow us to better understand its 

physiological role in the fly from the perspective of organ function. Two GFP-tagged 

Mondo flies are available for this purpose. One contains a GFP tag at the N-terminal 

end of the endogenous mondo locus (GFP-Mondo fly; 182), and the other contains a 

BAC construct that includes a GFP tag at the C-terminal end of mondo at the 

exogenous locus (Mondo-GFP fly) {Spokony:2012em}. I determined whether these 

GFP-fused Mondo proteins are functional by examining fly viability on high-sugar 

food.  N-terminal-tagged GFP-Mondo flies were viable on high sugar food (Fig. 

2.7A). The fused GFP-Mondo protein was also detected in GFP-Mondo flies by 

western blot (Fig 2.7C), suggesting that GFP-Mondo is functional in the fly. In 

contrast, the C-terminal-tagged Mondo-GFP did not rescue the viability of the 

MondoK05106 mutant on a high-sugar diet (Fig. 2.7B). Using anti-GFP antibodies, GFP 

expression was identified in the GFP-Mondo fly with a distribution similar to the 
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expression of the fat body pattern (Fig. 2.8), suggesting that Mondo is most highly 

expressed in the fat body. 

 

 

Figure 2.7. Functional characterization of N-terminal and C-terminal GFP-

tagged Mondo protein in the fly. (A) Endogenous N-terminal GFP-tagged Mondo 

flies survive on high-sugar food. (B) The fly with C-terminal GFP-tagged Mondo is 

not functional and fails to rescue the sugar intolerance displayed in the MondoK05106 

mutant. (C) The Mondo antibody was able to probe Mondo protein in both WT and 

GFP-Mondo flies (left panel). GFP-tagged Mondo protein was detected in the protein 

extract from GFP-Mondo flies (right panel). Lamin was used as a loading control. 

Error bars represent ± SEM (* p<0.05; ** p<0.01; *** p<0.001).  
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Figure 2.8. GFP expression in the fat body-GAL4 driven H2B-GFP fly and the 

N-terminal tagged GFP-Mondo fly. Scale bar=300 um. A: anterior. P: posterior. 

 
2.4.6 Investigating the cell-type-specific role of Mondo in sugar tolerance  

Docherty et al. have demonstrated that Mondo has a role in the CNS (155); thus, we 

aim to functionally dissect the contribution of Mondo in neurons and the glia for high-

sugar viability. We took advantage of the Mondo RNAi lines to knockdown Mondo in 

the fat body, neurons and glia by using fat body- (ppl-GAL4), neuronal- (nsyb-GAL4) 

or glia- (repo-GAL4) specific driver lines. The cell-type-specific knockdown animals 

were raised on high-sugar and low-sugar food. Ubiquitous Mondo knockdown flies 

were used as a positive control and showed severe sugar intolerance on high-sugar 

food. Both RNAi lines expressed using the Tublin-Gal4 behave in a highly 

reproducible compared with previous experiments (Fig 2.3 and 2.9). Unexpectedly, 

none of the cell-type-specific knockdown animals displayed sugar intolerance on 

high-sugar food (Fig. 2.9). This result was particularly surprising with the fat body 

driver ppl-GAL4, as it has been shown to rescue the viability of the Mlx mutant to 
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about 80% of wild type (157). This may due to poor knockdown efficiency in each 

tissue, even though UAS-dicer was incorporated to increase RNAi interference. Other 

laboratories that use RNAi lines in the fly have found that RNAi knockdown is more 

efficient when flies are kept at 27oC; we think that Mondo likely is required in the fat 

body to survive on high-sugar food, and thus it is worth repeating these experiments. 

The tissue-specific rescue in the CRISPR-induced Mondo mutant that we generated 

can be an alternative to investigate the tissue-specific contribution of Mondo to the 

sugar-induced phenotypes. 

 
 
 

 

  

  

 

 

 

 

  

 

 

 

Figure 2.9. Investigating the sugar-dependent viability of flies by knocking down 

Mondo in the fat body, neuron and glia. KK109821 Mondo RNAi and Mondo 

dsRNAi lines were previously combined with UAS-dicer2 flies for the purpose of 

increasing knockdown efficiency. Mondo was knocked down tissue-specifically in the 

fat body, neuron and glia by crossing the RNAi lines with the fat body- (ppl-GAL4)-, 

neuronal- (nsyb-GAL4)- and glia (repo-GAL4)-specific GAL4 drivers. The same 

experiment was conducted with ubiquitous Mondo knockdown flies (tub-GAL4) as an 

active control. Lethality was only observed with ubiquitous Mondo knockdown flies, 

but not with tissue-specific Mondo knockdown flies on high-sugar food.  
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2.5 Discussion and future directions 

Our data suggest that Mondo may regulate sugar metabolism differently at different 

developing stages. The results show that Mondo-deficient larvae fail to develop on a 

10% yeast + 20% sucrose diet, whereas the adult Mondo mutant flies lived as long as 

WT flies on the same diet. One of the explanations of the higher sugar tolerance of 

adult Mondo mutants on high-sugar food is that sugars may have distinct impacts on 

organisms at different stages. It has been shown that hyperglycemic exposure for 

longer than 24 hours is toxic to early embryo development in mice (183); 

nevertheless, hyperglycemia more often causes chronic effects, such as diabetes and 

fatty liver in adult mice. Therefore, the difference in viability between larvae and 

adult mutants on a high-sugar diet may result from the detrimental effect of 

hyperglycemia on early embryo development. Moreover, the underlying Mondo-

regulated network in adult flies may be different from that in larvae, which may allow 

adult flies to be more tolerant of high sugar levels. However, interestingly, when adult 

Mondo mutant flies were fed on a sugar-only diet (20% sucrose), they showed a 

reduced life span compared with WT flies. This implies that the extent of sugar 

toxicity derived from nutrient-balanced food is smaller than that from pure sugar food, 

even though the sugar proportion is the same in both diets.  

The role of Mondo in response to starvation was also investigated. I 

hypothesized that Mondo mutants fed on sugar-based food would be more vulnerable 

to starvation, as sugar may not be used efficiently as fuel due to the misregulation of 

carbohydrate metabolism in Mondo mutants. However, in contrast to what we 

expected, almost half of the Mondo mutants died after a 21-hour starvation if they 

were previously fed on protein-based food, but only fewer deaths were seen in those 

fed on sugar-based food. The lethality was not due to an alteration in food intake in 

mutants, since no significant difference in consuming protein-based food was 

observed between WT and mutant flies. This nutrient-dependent phenotype suggests 

that sugar could still be metabolized and utilized in adult Mondo mutants, possibly by 

other signaling pathways, such as HNF4 and FOXO1 pathways. On the other hand, 

Mondo mutants may have defects in utilizing protein as an energy source or in 

converting protein into stored energy. However, a defect in using protein as fuel is 

excluded because amino acids have been reported to be utilized in the absence of 
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Mondo-Mlx in the fly (157). Moreover, it has been shown that amino acids are 

materials for gluconeogenesis to maintain glucose supplies to the body upon 

starvation. Therefore, a deficiency in gluconeogenesis supplied by amino acids may 

be another explanation of this phenotype in Mondo mutants. To further study the 

mechanism underlying this phenotype, one can measure the level of glycogen and 

triglyceride, the two major forms of stored energy, in WT and mutant flies fed on 

sugar- or yeast-only food before and after starvation. Meanwhile, we can examine the 

metabolic profile in each group by conducting mass spectrometry-based 

metabolomics. It should be noted that the MondoK05106 mutant was used for most of 

the experiments. However, for the long term, it is useful to use the CRISPR-Mondo 

fly without interrupting the gr39a gene, as the adult phenotypes discussed here may 

also be the result of the disruption of the gustatory receptor gene. Repeating the 

experiment with the CRISPR-Mondo fly will help validate the starvation phenotype. 

The CRISPR-Mondo fly can be transformed into different genetic tools, as the 

donor cassette used to generate the knockout allele contains attp sites that can be 

further replaced with any interested DNA fragment by recombinase-mediated cassette 

exchange (RMCE). For example, a GAL4 construct can be introduced to make the fly 

into a GAL4 driver line under the endogenous mondo promoter, while the same 

knockout allele is kept. By crossing the Mondo-GAL4 driver with the UAS-reporter 

fly, one can potentially determine the expression profile of Mondo in the fly. 

Moreover, to functionally characterize the protein domains of Mondo in vivo, we can 

cross the GAL4 Mondo mutant with the UAS-Mondo mutant fly to see whether 

Mondo mutant proteins rescue the sugar phenotype. 

To gain insight into the physiological roles of Mondo in different cell types, 

Mondo was knocked down specifically in the fat body, different types of neurons and 

glia in the fly, followed by the examination of its sugar tolerance and feeding 

behavior. However, neither a reduction in viability on high-sugar food nor an 

alteration in food consumption compared with the control groups was observed. As an 

alternative method, a cell-type-specific rescue experiment with the Mondo mutants 

can be considered. Regarding the feeding assay, I adopted the methods from Docherty 

et al. The age of fly, food type, temperature and humidity were all controlled in the 

same way; however, I used wet kimwipes instead of agar to keep the flies from 
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dehydrating in the feeding assay. The genetic backgrounds between each 

experimental group, a factor that often leads to inconsistency in behavior assays, were 

also controlled by outcrossing them with WT flies. One should first establish a 

positive control of the feeding assay with the Mondo mutant before revisiting the 

influence of Mondo in specific cell types in feeding behavior. 
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Chapter 3 

Genome-wide identification of 

target genes for the Mondo-Mlx 

complex in the fly 
 

3.1 Summary 

In this chapter, I demonstrate the kinetic profile of sugar-regulated transcriptome. The 

sugar-regulated genes are first categorized into four clusters based on the temporal 

expression profile. Next, to globally determine the direct target of the Mondo-Mlx 

complex, the Mondo-Mlx ChIP-seq was performed with the respective generated 

antibodies. The specificity and sensitivity of these antibodies were first examined by 

western blot on recombinant proteins and fly protein extract, as well as by ChIP-

qPCR on putative Mondo-Mlx target sites. With the Mondo and Mlx antibodies 

against the N-terminal GSM domain and the full-length Mlx protein, respectively, 

Mondo-Mlx ChIP-seq was performed on WT and MondoK05106 mutants to identify the 

direct target genes of Mondo-Mlx. Downstream analyses, such as genomic 

distribution, motif searching and GO term analysis, were executed to functionally 

characterize the target genes of Mondo-Mlx in the fly. To understand how Mondo 

regulates the transcription of target genes via RNA polymerase II (Pol II), I also 

performed RPB3 (Pol II subunit) ChIP-seq on WT and Mondo mutants. Mondo has 

been shown to regulate the gene transcription via Pol II at two levels: 1) the 

recruitment of Pol II to the transcription start site (TSS) and 2) the elongation of Pol II 

at the gene body. In addition, these results suggest that Mondo may act either as an 

activator or a repressor of targeted genes, which the published Mondo-Mlx RNA-seq 

data further supports. 
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3.2 Introduction 

Organisms consume sugar as an energy source to live, but they also need to maintain 

the blood sugar level within a narrow range to avoid glucose toxicity. Thus, a 

sophisticated regulatory network has evolved to maintain carbohydrate homeostasis in 

organisms. Studying the kinetics of sugar-induced signaling will help us understand 

how this happens.  

In addition to insulin/glucagon signaling, the two major hormonal regulators 

that systemically regulate blood glucose levels, the Mondo protein family has also 

been characterized as key sugar-responsive regulator of glucose metabolism in recent 

decades. Uyeda et al. have identified ChREBP as one of the Mondo family members 

that recognizes the ChoRE within the promoter of L-type pyruvate kinase (L-PK; 85). 

It has been shown that ChREBP target genes are involved in glycolysis, lipogenesis, 

hormone regulation, cell survival and the circadian rhythm (108).  

Genome-wide analyses of ChREBP targets have been done in HepG2, a 

human hepatocellular carcinoma cell line (184), and in mouse livers and white 

adipose (108) to globally unbiased identified ChREBP targets. Consistent with the 

phenotypic importance of ChREBP, the pathway analysis of ChREBP targets genes 

from these two studies and shows a significant role of ChREBP in regulating a wide 

range of metabolic pathways. The Drosophila genome contains only a single mondo 

gene and thus has no genetic redundancy, making the fly an optimal model to 

investigate the function of Mondo-Mlx in nutrient metabolism. Havula et al. have 

performed Mlx ChIP-qPCR to confirm several Mondo-Mlx target sites in the fly 

larvae. In order to focus on the role of Mondo in the adult fly by addressing the genes 

to which Mondo directly binds, several Mondo antibodies were developed, and ChIP 

experiments were performed for this project. The target sites of Mondo-Mlx were 

identified by comparative Mondo-Mlx ChIP-seq on WT and MondoK05106 mutants.  

The binding of transcription factors to target genes is commonly coupled with 

the levels of steady-state mRNA as a readout to study how transcription factors (TFs) 

regulate gene expression. However, the mRNA levels are not only affected by the 

activity of TFs and transcription mediated by Pol II, but they also depend on the RNA 

turnover rate. The integrated analysis of genome-wide TF binding and Pol II 

occupancy provides important insights into the regulatory mechanisms of gene 
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expression. Specifically, gene expression depends on the recruitment of Pol II to TSS 

and the levels of Pol II occupancy in the gene body. Another key mechanism for rapid 

induction of gene expression in response to extracellular cues is Pol II pausing. It has 

been suggested that ChREBP acts as either an activator or repressor based on the fact 

that some ChREBP target genes are up-regulated under a high sugar condition, 

whereas the others are down-regulated (184). ChREBP has been shown to bind 

directly to the ARNT/HIF-1β proximal promoter and negatively regulates 

ARNT/HIF-1β gene expression in living clonal β-cells (185). However, the concern 

with a secondary effect on the gene expression by other TFs or quick mRNA turnover 

is also present in both studies. I performed RPB3 ChIP-seq on WT and Mondo 

mutants to directly elucidate how Mondo regulates gene transcription via Pol II. The 

results showed that, in a majority, Mondo regulates the Pol II elongation at the gene 

body, but it also regulated Pol II recruitment at the TSS of some genes. Moreover, 

both increased and decreased Pol II occupancy at different TSS and gene bodies were 

observed, indicating that Mondo could act as either a transcriptional activator or a 

repressor. 
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3.3 Methods 

The antibodies against the N-terminal activation domains of Mondo and Mlx 

were previously generated by Teresa Burrell. The antibody against the C-

terminal DNA binding domain of Mondo was generated by Hui-Lan Huang.  

 

3.3.1 Plasmid construction and recombinant protein expression of pETMCN 

MondoDBD plasmid 

The Mondo DNA binding domain sequence was amplified by polymerase chain 

reaction (PCR) from genomic DNA of wild-type flies and then sub-cloned into a 

pETMCN vector. The primers used for PCR amplification contains Age I and XbaI 

restriction sites. The PCR product and pETMCN vector were double digested with 

Age I and XbaI. The map of the expression construct is shown in appendix figure 

A3.1. The pETMCN MondoDBD His plasmid was transformed into BL21 E. coli. A 

single colony was selected and grown in a 20 mL culture within LB medium+ 

chloramphenicol overnight at 37°C.  This overnight culture was used to inoculate 1 L 

LB + chloramphenicol, and it was grown at 37°C to an optical density close to 0.6. 

For the un-induced control, 20 mL of the culture was placed into a new flask and 

grown side-by-side with the rest of the 1L culture, to which isopropyl β-D-1-

thiogalactopyranoside (IPTG) was added to a final concentration 0.4 mM. Both the 

induced and un-induced cultures were grown for two to three hours at 37°C. To assess 

the protein expression, 200 ul of un-induced and induced culture samples were taken 

into labeled eppendorf tubes and spun down at the speed of 14,000 rpm, 4°C for 1 

minute. Supernatants were carefully removed from the eppendorf tubes, and pellets 

were re-suspended in a 100 ul buffer (500 mM NaCl, 50 mM Tris 7.5, 2 mM DTT, 

2mM PMSF, 1x protease inhibitor). Next, protein samples were denatured in SDS 

loading buffer at 95°C for 5 minutes. Protein samples were then run on the SDS page, 

followed by coomassie staining to examine the result of protein expression. The rest 

of the culture was spun down at 4,000 rpm at 4°C for 10 minutes. The supernatant 

was discarded, and the pellet was frozen in liquid nitrogen and stored at -80°C until 

protein purification continued. Because the expressed His-tagged Mondo DBD 

protein was not soluble, the purification protocol for insoluble protein was used and is 

described below.  
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3.3.2 Purification of insoluble His-tagged proteins 

Ni-NTA Agarose beads (ThermoFischer R90110) were used to purify the His-tagged 

Mondo DBD protein. Beads need to be handled gently and pipetted exclusively with 

end-cutting tips. 4mL of bead slurry and 50 ml of distilled water were added to a 

50mL falcon tube followed by gentle mixing. The beads were then spun down at 

1,000 rpm at 4°C for 3 minutes, and the supernatant was discarded. To continue the 

wash and equilibration of beads, 50mL of buffer 4 (500mM NaCL, 50mM Tris 7.5, 

10mM Imidazol, 2mM PMSF, 6M Urea) was added. The beads were gently mixed 

with the buffer 4 and were spun down again. The wash of beads with buffer 4 was 

repeated two more times.   

The pellet from the culture (see 3.3.1) was re-suspended and thawed in buffer 

4. The sample was sonicated for 2 minutes a total of three times, until the sample was 

not gooey. Then, the sonicated sample was spun down at 18,000 rpm at 4°C for 20 

minutes. Supernatant was added to the beads via gentle rotation for 1 hour at 4°C. The 

beads were spun down at 1,000 rpm at 4°C for 3 minutes. The supernatant was placed 

in a tube labeled “unbound.” The beads were washed with the buffer 4 five times 

(50mL per wash), and each time, the sample was spun down at 1,000 rpm, and the 

supernatant was removed. 100µL of supernatant from each wash was taken. Finally, 

protein was eluted out from the beads with buffer 5 (500mM NaCL, 50mM Tris 7.5, 

500mM Imidazol, 2mM PMSF, 6M Urea; 10-15 mL if the protein expressed well, 

otherwise, less was used). The original culture, unbound fraction, washes and eluent 

were run on SDS page gel followed by coomassie staining to examine the efficiency 

of protein purification. 

 

3.3.3 Generation of the antibody 

Because the expressed Mondo DBD protein was not soluble, protein had to be run on 

an SDS page and transferred onto nitrocellulose membrane. The membrane was 

stained with Ponceau (Sigma Aldrich, P7170) for 1 minute and washed with distilled 

water. The stained band at the expected size was cut out and dried under red light in 

an eppendorf tube and kept at -20°C before injection. Before an experiment begins, 

one must test whether the animal is suitable for the required antigen. The rabbit serum 

was tested for cross reactivity to Drosophila denatured extract by western blot. If a 
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clean blot is obtained, injection can be initiated. The injection of antigen for 

immunization and bleeding were scheduled and performed by the animal facility in 

the physiological biochemistry department, LMU. Serum was prepared from the 

clotted blood by following the standard lab protocol. Then serum was snap frozen in 

liquid nitrogen and stored at -20°C.  

 

3.3.4 Western blot assay 

3.3.4.1 Preparing, running and transferring the protein samples 

Recombinant protein was diluted in a 4 X SDS sample loading buffer at a 1:1 ratio, 

boiling for 5 minutes at 95°C and was then stored at -80°C. Fly samples were ground 

using a micro pestle 50 times in a 2X SDS sample loading buffer. Samples were then 

boiled at 95°C for 5 minutes and centrifuged at full speed for 5 minutes. The 

supernatant was transferred into a new eppendorf and stored at -80°C until it was 

required. In general, several freeze and thaw cycles should be avoided. 10% 

acrylamide gel was cast using 4.5 mL acrylamide (30 %), 2.25 ml 4x Tris-Cl/SDS 

buffer (pH 8.8), 2.25 mL H2O, 40 µL APS (10 %) and 18 µL TEMED. Normally, one 

fly or 10 heads are loaded. Samples were loaded on SDS-PAGE and were run at 200 

V and 30 mA for 45 minutes. A transfer cassette containing the gel and nitrocellulose 

membrane (Protran BA 83 Whatman, GE Healthcare Life Sciences) arranged between 

layers of paper and sponges was assembled. Proteins were transferred from gel to a 

transfer buffer at 100 V and 400 mA for 1 hour on ice.  

 

3.3.4.2 Antibody staining and membrane development  

The Mondo long antibody was first diluted at a ratio of 1:4,000 in blocking buffer, 

and it was pre-absorbed on a blot with transferred protein extract from MondoK05106 

mutants overnight at 4°C. The pre-absorbed Mondo long antibody was ready to use or 

could be stored at -20°C.  

The membrane with transferred protein samples was blocked at RT for 1 hour 

in blocking buffer (1X TBS, 0.1% Tween 20, 5 % milk), and then incubated with the 

primary antibody in the blocking buffer with rotation overnight at 4°C. Mondo short 

(No. serum 521.9, 1:5000), Mondo DBD (No. serum 536.10, 1:10000), and pre-

absorbed Mondo long (No. serum 522.14, 1:10000) antibodies were used to detect 
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either recombinant or endogenous Mondo proteins. It was expected that lamin protein 

would not change under different conditions, and it was thus seen as loading control 

for fly protein extracts. Lamin antibody (DSHB, ADL67.10, 1:5000) was used to 

probe endogenous lamin protein. After the incubation of primary antibody, the 

membrane was washed three times with TBST with rotation, and each wash was 10 

minutes. Then membrane was subsequently incubated with secondary antibody goat 

anti-rabbit HRP (BioRed, 1706515, 1:10000) or goat anti-mouse HRP with rotation at 

RT for 1 hour. The membrane was subsequently washed three times with TBST with 

rotation, and each wash was 10 minutes. The membrane was then incubated with 

Immobilon Western HRP Substrate (Millipore, WBKLS0500) and exposed to 

photographic film in the dark for signal detection (Kodak).  

 

3.3.4 Generation of the UAS-Mondo transgenic fly  

3.3.4.1 Plasmid construction 

The Mondo full-length coding sequence was amplified using PCR from pETMCN-

Mondo RJ plasmid and then sub-cloned into a pUAST vector. The primers used for 

PCR amplification contained Bgl II and XbaI restriction sites. The PCR product and 

pUAST vector were double digested with Bgl II and XbaI and purified by gel 

purification (Metabion, mi-GE100). PCR amplification was performed using the 

following components and conditions: the ligation of the Mondo RJ (FlybaseID: 

FBtr0301461) insertion and the pUAST vector was performed in the reaction 

containing 100 ng of vector, 15 ng of insert, 1 µL T4 ligase (NEB), 1 x T4 DNA 

ligase buffer, and H2O to 20 µL. Ligation reactions were incubated at RT for 20 

minutes, followed by bacterial transformation. Positive clones were screened by 

colony PCR and sequencing. The construct map is shown in appendix figure A3.2. 

 

3.3.4.2 Generation of transgenic lines  

The company BestGene generated the transgenic fly. The UAS-Mondo RJ transgenic 

fly was generated using random P-element insertion to incorporate the transgene into 

the genome. Mini white (w+mC) was used as a selective marker for positive transgene 

carriers. The transgene insertion site was mapped to a particular chromosome, and the 

transgenic flies were then outcrossed for six generations. 
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3.3.5 Chromatin immunoprecipitation (ChIP) assay 

3.3.5.1 Preparation of Chromatin 

The fly heads with the desired genotype was firstly measured 0.5 mL in eppendorf 

tube and then were ground into powder with a precool mortar and pestle on dry ice. 

The ground sample was transferred to a dounce and 25 mL NE buffer was added for 5 

minutes of incubation on ice. The sample was homogenised by using a 100 mL 

homogeniser at 2,000 rpm for 20 times at 4°C. The sample was then cross-linked with 

1% formaldehyde with rotation at room temperature for exactly 10 minutes. The 

formaldehyde was quenched by adding 1.25 mL 2.5 M glycine into the sample. The 

sample was rotated at room temperature for another 5 minutes. The sample was 

filtered through a 60 µm filter (Millipore) and then centrifuged at 2,000 rpm for 5 

minutes at 4°C to pellet the nuclei. The supernatant was carefully removed and the 

pellet was gently resuspended in 1 mL RIPA buffer with a cutted 1ml tip. The sample 

was transferred to a 1.5 mL low-binding eppendorf (Sigma CLS3207). Next, the 

pellet was washed with 1 mL RIPA buffer after centrifugation at 2,000 rpm for 1 

minute at 4°C; This wash was repeated twice. After the second wash, the pellet was 

resuspended in 300 µL RIPA buffer and sonicated by using a Branson Sonicator with 

the settings: intensity 3; pulse 40; 20 seconds of pulsing followed by a 45-second 

break. This process was repeated six times with breaks on ice for 1 minute. The 

sample was then transferred into covaris tube and sonicated by using the covaris 

sonicator with following settings: power 150, duty cycle 20, burst 200, 7 min. After 

sonication, the samples were centrifuged at full speed at 4°C for 10 minutes. The 

supernatant was transferred into a new low-binding eppendorf with sample name 

labeled, and 50 ul of the supernatant was kept in another tube for a size check. The 

rest of sample was stored at -80°C until use.   

 

3.3.5.2 Preparation of beads  

Bead preparation was consistently performed at 4°C in a cold room or on ice. 

ProteinA Sepharose Cl-4B (GE healthcare, 17096302) beads were prepared by 

washing them three times in 1 mL of nuclease-free water for 15 min while they 

rotated on a tube rotator. To reduce none-specific binding, the beads were blocked for 

1 hour in RIPA buffer with sperm DNA (1 mg/ml) and BSA (1 mg/ml) added (RIPA: 
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150 mM NaCl, 25 mM HEPES [pH 7.5], 1 mM EDTA, 1% Triton-X 100, 0.1 % SDS, 

0.1% DOC). Complete EDTA free protease inhibitor (Sigma, 05056489001) and 

1mM PMSF were freshly added. The beads were then washed three times with RIPA 

buffer for 5 minutes with rotation. After the last wash, the beads were resuspended in 

the same volume of RIPA buffer. 

 

3.3.5.3 Chromatin immunoprecipitation 

These assays were always performed at 4°C in a cold room or on ice. To reduce non-

specific binding to the beads, 10 ug of chromatin diluted in 650 ul RIPA buffer were 

incubated with 20 ul blocked and equilibrated beads in 1.5 ml low-binding eppendorf 

tubes for 1 hour with mixing on a tube rotator. To remove the beads, each reaction 

was centrifuged at full speed (15,000 rpm). The preabsorbed chromatin (supernatant) 

was transferred into a new, low-binding eppendorf. The optimal amount of antibody 

was added to the preabsorbed chromatin and incubated overnight on a tube rotator. A 

50 µL sample of the antibody-chromatin reaction was collected as a 10% input 

sample. For the ChIP, 500 µL of the antibody-chromatin reaction was incubated with 

20 ul of blocked and equilibrated beads and rotated for 3 hours at 4°C. The ChIP 

sample was centrifuged at 500 rpm for 1 minute to spin down the antibody-chromatin 

coupled beads, and the supernatant was discarded. To reduce non-specific binding, 

the beads were washed with 1 mL of RIPA buffer and rotated for 5 minutes. The 

samples were centrifuged at 500 rpm, and the supernatant was carefully removed. The 

beads were then washed three more times. For a last wash, the beads were incubated 

with LiCl buffer (250 mM LiCl, 1 mM EDTA, 10 mM Tris-Hcl [pH 8], 0.5% DOC, 

0.5% NP-40; protease inhibitor complex and PMSF were freshly added) for 10 

minutes. The beads were centrifuged at 500 rpm, and then the supernatant was 

discarded. The beads were rapidly rinsed with 1 mL of TE buffer twice. The beads 

were again centrifuged at 500 rpm. The supernatant was discarded with little buffer 

remained inside the tube, and then the beads were resuspended in TE buffer to 100 

µL. 50 µL of TE buffer was added to each 50 uL 10% input sample. The eppendorf 

tubes containing input and ChIP samples were tightly sealed with parafilm and 

incubated overnight at 65°C with shaking at 1,000 rpm. The samples were incubated 

with 1 µL RNase A (ThermoFisher, EN0531) at 37°C for 30 minutes with shaking at 
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1,000 rpm. 5 µL SDS and 1 µL proteinase K (10 mg/ml, Roche) were added into the 

sample and the reaction was incubated at 55°C with shaking at 1,000 rpm for 1.5 

hours to reverse cross-link and degrade the proteins in each sample. The DNA was 

then purified using Ampure-XP beads (Agencourt, A63882) by following the manual 

with some modified steps: 500 µL 80% freshly prepared ethanol were used at step 6, 

the samples were dried for 5-10 minutes, and 20 µL of water was used for elution. 

Samples were stored at -20°C until use. 

 

3.3.6 RPB3 ChIP on WT and Mondo mutants 

ChIP was performed as described in the methods section in chapter 3. The Rpb3 

antibody was used for immune-pull down. 

 

3.3.7 ChIP-qPCR 

A qPCR reaction is composed of DNA 6ul, PowerUp SYBR Green Master Mix 

(Applied Biosystems, A25742) 7.5 ul, and primer pairs 1.5 ul. Primers targeted the 

putative Mondo target sites of ACC, and Cbt genes were designed as previously 

described (113, 186) and used to evaluate Mondo-Mlx ChIP efficiency in this project.  

Primers targeting 28bp upstream of the fas2 gene were used to assay the binding of 

Pol II to this region in Pol II ChIP. The respective negative control primers were also 

included in each ChIP experiment. Sequences of primers and product sizes are shown 

in appendix table A3.1. Quantitative PCR amplification was performed using a 7500 

FAST Real-Time PCR system (Applied Biosystems) with a PowerUp amplification 

program with a melting curve. The percentage of input was calculated based on the 

CT values obtained from 1% and 10% input and the ChIP sample.  

 

3.3.8 Statistic analysis 

Statistical significance was determined with an unpaired Student’s t-test with an 

assumed unequal standard deviation in each group. Data are shown as mean ± SEM 

for a minimum of three independent biological replicates.  
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3.3.9 DNA library preparation and ChIP-sequencing 

Technical replicates of the ChIP samples that were previously tested by ChIP qPCR 

were pooled together. The concentration of DNA was measured using the Qubit 

dsDNA high-sensitivity assay (Thermo Fisher, Q32854). The quantity of the starting 

material for library preparation is 0.5 ng, and the library was prepared with the 

NEBNext® Ultra™ II DNA Library Prep Kit (NEB, E7645L) by following the 

manual with modifications regarding the purification of libraries; this is described in 

what follows. 50 ul of Ampure-XP beads (Agencourt, A63882) were added to 50 ul of 

PCR reaction and gently mixed. The sample was left to stand on the magnetic rack for 

2 minutes, until magnetic beads were separated from the supernatant, 50 ul of which 

was then transferred to a new, low-binding tube. 30 ul of Ampure-XP beads were 

added to the supernatant with gentle mix. The sample was left to stand on the 

magnetic rack for 2 minutes, and 80 ul of supernatant was transferred to a new, low-

binding tube. 20 ul of Ampure-XP beads were again added into the supernatant via 

gentle mixing. Beads were separated from the supernatant on the magnetic rack, and 

this time, the supernatant was discarded, and beads were washed twice with freshly 

prepared 80% ethanol. The beads were dried for 2 minutes, and then the DNA library 

was eluted with 15 ul of 0.1xTE buffer. The concentration and size profile of DNA 

libraries were checked on a DNA 1000 chip on Bioanalyzer (Agilent 2100). Single-

end sequencing was performed on an Illumine Hiseq2000 to an average depth of 20 

M reads and a sequencing length 50 bp by Lafuga, the sequencing facility in Gene 

Center, Martinsried, Germany.  

 

3.3.10 Bioinformatics analysis of ChIP-seq data 

3.3.10.1 Mapping and data transformation  

The mapping of raw sequencing reads to the Drosophila genome release 6 (dm6) was 

performed using the mapping tool bowtie 1.1.2 (187) with the command line: bowtie -

S -m 1 drosophila_index <input file> <output path/filename>. The sorting of the 

mapped bam files was carried out using the samtools sort function. The average 

mapping rate of the samples is around 80%. The mapping and sorting were performed 

on the high-performance computing cluster of the Bioinformatics Core facility at the 

Biomedical Center (BMC).  
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3.3.10.2 Peak calling and differential binding analysis of Mondo-Mlx ChIP-seq 

data 

MACS2 (model-based analysis of ChIP-seq) was used for peak calling using the input 

data as the control sample. A MACS2-derived output excel file was imported in R, 

and peak filtration was performed by setting the threshold at 2 to filter out small 

peaks. The DiffBind package (188) was used to identify the differential Mondo and 

Mlx target sites between WT and the Mondo mutant, while the fold change was set at 

2.  

 

3.3.10.3 Genomic distribution 

The Cis-regulatory Element Annotation System (CEAS) tool (189) was used to 

characterize ChIP binding sites at important genome features, such as upstream open 

reading frames, promoters, gene bodies, introns, and exons. CEAS needs two input 

files: the gene annotation table file (sqlite3) and the BED file with ChIP regions (.txt). 

The gene annotation table was created based on the Drosophila genome sequence 

Release 6 with the following command line: build_genomeBG -d dm6 -g refGene -w 

<wig file> -o dm6.sq3. The bed file containing the Mondo-Mlx targeted regions was 

used as input for the analysis, and the command ceas -g dm6.sq3 -b <bed file> --name 

<output name> was then run to obtain the result. 

 

3.3.10.4   

A fastq file was first generated from a bed file containing the regional information of 

putative Mondo-Mlx target sites by using the following command line: fastaFromBed 

-fi drosophila genome file -bed peak.bed -fo output.fa. Next, the fastq file was 

uploaded in MEME ChIP webtool (190) for motif finding. The analysis was done by 

MEME ChIP with the default setting (MEME options: motif width: 6-30 bp and count 

of motif, 3. DREME options: E-value<0.05. CentriMo options: minimum acceptable 

match score ≥ 5 and E-value threshold for reporting centrally enriched regions ≤ 10). 

The logos of different motifs were generated from MEME-ChIP analysis. The output 

graph displays the distribution of the best matches to the motif in the sequences as 

found by a CentriMo analysis (190). 
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3.3.10.5 Gene ontology (GO) term enrichment 

Gene Ontology (GO) terms classification was performed by DAVID bioinformatics 

software v 6.7. The pre-built default background, including all annotated Drosophila 

genes, was used in the analysis. P-values were obtained with the overrepresentation 

Fisher Exact Test, which was calculated by the EASE method in DAVID.    

 

3.3.10.6 Peak calling and differential binding analysis of Rpb3 ChIP-seq data 

MACS2 was used for peak calling, while input data was used as control. A MACS2-

derived output Excel file was imported in R, and peak filtration was done by setting 

the threshold at 1 to filter out small peaks.  

 The regional information of transcripts in the whole fly genome was obtained 

by using the TxDb.Dmelanogaster.UCSC.dm6.ensGene package, which is an 

annotation database generated from UCSC. Then, 500 bp downstream of TSS was 

removed, and only the genebody region was kept. To be specific, the following code 

was used in R to define 500 bp around the TSS of all annotated genes: 

> library(TxDb.Dmelanogaster.UCSC.dm6.ensGene) 

>t<transcripts(TxDb.Dmelanogaster.UCSC.dm6.ensGene::TxDb.Dmelanogaster.UCS

C.dm6.ensGene) 

>t <- data.frame(chr=seqnames(t), start=start(t),end=end(t),strand=strand(t)) 

>positive_gene <- data.frame(t[which(t$strand== "+"),])  

>negative_gene <- data.frame(t[which(t$strand== "-"),]) 

 

To remove 500 bp around tss: 

> positive_gene_500 <- data.frame(chr=gsub("chr", "", paste(positive_gene$chr)), 

                                start=positive_gene$start+500, 

                                end=positive_gene$end, 

                                strand=positive_gene$strand) 

> negative_gene_500 <- data.frame(chr=gsub("chr", "", paste(negative_gene$chr)), 

                                start=negative_gene$start, 

                                end=negative_gene$end-500, 

                                strand=negative_gene$strand) 
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To combine positive and negative: 

> t_genebody <- rbind(positive_gene_500,negative_gene_500) 

To remove genes where the length of the gene is less than 500 bp:  

>t_genebody_remove_bed> t_genebody[t_genebody$start<t_genebody$end,] 

>t_genebody_remove_bed <- t_genebody_remove_bed[,1:3] 

>t_genebody_remove_bed <- unique(t_genebody_remove_bed) 

 

The DiffBind package was used to identify the differential Rpb3 targeted regions at 

peaks identified by MAS2 and genebody separately between WT and Mondo mutants.   

3.3.10.7 Average profile of Pol II occupancy at Mondo-Mlx target genes 

The average profile plots of Pol II occupancy were generated using NGS-plot tool 

(158). They were generated by applying the following commands: ngs.plot.r -G dm6 -

R tss -C <config.file> -O <output path/output file name> ngs.plot.r -G dm6 -R 

genebody -C <config.file> -O <output path/output file name>. 

 

3.3.11 RNA-seq on whole heads of flies 

Wild-type flies (2202U2; 165) were kept on standard media at 25°C. One- to two-

day-old flies were starved for 21 hours and refed on 20% sucrose-only agarose food 

for 0.5, 1, 2, 3 and 6 hours. In each case, the flies were collected and frozen in liquid 

nitrogen at the same time of the day. 10 heads from female flies then underwent RNA 

extraction and subsequent ribosomal RNA depletion by using the NEBNext® rRNA 

Depletion Kit (Human/Mouse/Rat). cDNA libraries were prepared by using the 

NEBNext® Ultra™ II Directional RNA Library Prep Kit for Illumina®. Pair-end 

sequencing was performed with illumina Hiseq2000 to an average depth of a 20 M 

read sample and a sequencing length of 100 bp at the Lafuga sequencing facility at 

Gene Center, Martinsried, Germany. 

 

3.3.12 Bioinformatics analysis of RNA-seq data 

3.3.12.1 Mapping 

The mapping of raw sequencing reads to the Drosophila genome was performed by 

using the mapping tool STAR, which must be run on a high-performance cluster 

computer. The detailed command lines are as follows: 
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STAR --runThreadN 8 \ 

--readFilesCommand gunzip -c \ 

--quantMode GeneCounts \ 

 --genomeDir /path/to/reference genome\ 

--readFilesIn paired sequencing fastq file 1 paired sequencing fastq file 2\ 

 --sjdbGTFfile /path/to/annotations.gtf \ 

 --outSAMtype BAM SortedByCoordinate \ 

 --outFileNamePrefix /path/to/output directory/output file name\ 

The output STAR-derived samples.ReadsPerGene.out.tab files were imported into R, 

and differential expression analysis was done with the Deseq2 package. 

 

3.3.12.2 Clustering analysis 

Hierarchical clustering was performed using Cluster 3.0 (191). Gene expression levels 

were adjusted with Log transformation, and genes that did not have at least one 

observation and at least an absolute value of 1.5 were removed. Genes whose 

maximum minus minimum values were less than 0.7 were also filtered out. 

Subsequently, genes were centered on the median. Clustering was performed using 

average linkage and centered correlation as the metric. Heat maps were generated 

using Java TreeView (192), and MaSigPro was used to find genes with a significant 

change in temporal expression by applying a two-step regression strategy. The cut-off 

value for the R-squared of the regression value was 0.6.  
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3.4 Results 

3.4.1 The time-course of sugar-induced transcriptome reveals the dynamics of 

sugar response 

Determining the dynamics at the levels of the individual gene and the whole 

transcriptome in response to sugar consumption can provide valuable insights about 

the sugar-induced pathways at specific time points and the mechanism by which 

carbohydrate homeostasis is maintained. To this end, I determined the kinetics of the 

sugar-induced transcriptome in the fly by performing a time-course RNA-seq 

experiment in which flies were refed on sucrose-only food for a different period of 

time after overnight starvation. To control for the effect of the circadian clock, flies 

kept on the starvation medium were used as a control for the sugar refeeding group at 

indicated time points. In this setting, we were able to specifically focus on sugar 

signaling.  

The reproducibility of each biological replicate in the RNA-seq data, as well 

as the correlative relationships between each condition, were examined in PCA 

analysis (Fig. 3.1). The biological replicates of each condition were in proximity to 

each other in PCA plot and were generally closer in principle component 1, indicating 

a satisfactory reproducibility. Moreover, all of the data can be grouped into four major 

clusters, which may reflect the similarity in terms of transcriptome level in groups 

from the same cluster. In particular, the first cluster only includes the groups before 

the start of refeeding, while the second cluster mainly contains the starvation control 

groups at 0.5, 1, 2, 3 and 6 hours, as well as the groups refed for 0.5 hours. In fact, 

only 14 differentially expressed genes (DEGs) were identified at the 0.5 hour 

refeeding time point, supporting the grouping of data from this refeeding condition 

with those from starved conditions, as shown in the PCA plot. Groups refed on 

sucrose for 1 and 2 hours were in the third cluster, while groups refed on sucrose for 3 

and 6 hours were in the fourth one. In sum, each cluster represents a profile of the fly 

transcriptome in response to dietary sugars or starvation. In addition, the analysis also 

shows how nutrition states (refed vs. starved) or feeding paradigms (feeding length: 

0.5, 1, 2, 3, 6 hours) are associated with the sugar-induced transcriptome. 
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Figure 3.1. PCA analysis shows the reproducibility of biological replicates and 

the correlative relationships between each condition in the RNA-seq experiment.  

The satisfactory reproducibility of biological replicates is shown in the PCA plot. The 

data can be basically grouped into four major clusters, which reveals the correlative 

relationships between each condition. Each experiment condition is color-coded in the 

same color, and each point represents an experimental group: RF: refed group. S: 

starved group. 

 

The heatmap of the hierarchical clustering of DEGs pooled from the data of 

every refeeding time point demonstrates the grouping of DEGs in terms of the 

expression level, along with the feeding length (Fig. 3.2). In essence, four major 

clusters with distinct expression patterns are observed in the heatmap. The genes 

upregulated by sugar refeeding are functionally clustered in “membrane protein” and 

“oxidoreductase”, while those presenting a late upregulated expression pattern are 

related to “ribosome biogenesis” and “aminoacyl-tRNA biosynthesis”. Interestingly, 

the sugar-downregulated genes are involved in several metabolic pathways, such as 

“fatty acid degradation,” “beta-oxidation of fatty acid,” and “valine, leucine and 

isoleucine degradation.” In consistent with this finding, the downregulation of these 

metabolic pathways was also observed after feeding for 6 hours in our unpublished, 
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starved-refed RNA-seq, in which flies were refed on the regular yeast/sugar fly 

medium (data not shown). Moreover, because catabolism of fatty acids mostly 

happens in the starved state, the downregulation of the genes involved in the 

breakdown of fatty acid in our sugar-induced transcription indicates a metabolic 

switch from the starved to the refed state.  

To find genes for which there are significant gene expression profile 

differences from starvation controls in the time course, a regression-based approach 

was applied in the analysis based on the temporal expression profile of identified 

DEGs. They could be simply categorized as cluster 1, “early-expressed genes”; 

cluster 2, “late up-regulated genes”; cluster, 3 “down-regulated genes”; cluster 4, 

“down-regulated genes”; and cluster 5, ”circadian-dependent genes” (Fig. 3.3). 

Several known target genes of Mondo, such as cabut, dawdle and sugarbabe, were 

identified in cluster1, suggesting that Mondo may be rapidly activated by sugar and 

subsequently regulate its downstream effector genes. Bartok et al. (2015) have 

demonstrated that many key metabolic genes were rapidly repressed by Cabut upon 

sugar feeding in the sugar-induced transcriptome, in which flies were refed for 6, 12, 

and 18 hours on 5% sucrose food after 16 hours of starvation (186). Based on the fact 

that Cabut is the direct downstream effector of the Mondo-Mlx complex in the fly, 

Mondo may function as the upstream factor in response to dietary sugars. Schmidt et 

al. (2016) integrated the time course sugar-induced transcriptome and the time course 

ChREBP binding events in INS-1E β cells. The results reveal that ChREBP 

contributes to a biphasic glucose response: metabolic genes are activated during the 

first wave of gene transcription, and the genes involved in proliferation are indirectly 

activated by ChREBP during the second wave. Collectively, Mondo/ChREBP may 

have a more direct role in the early sugar refeeding time points. Hence, to understand 

how Mondo is involved in the early response to sugar signaling, I aim to determine 

the direct target genes of Mondo genome-wide in the fly and later compare these with 

the time course sugar-induced transcriptome to study how Mondo contributes to the 

dynamics of sugar responses. 
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Figure 3.2. Hierarchical clustering of the time-course sugar-induced 

transcriptome. The heatmap of the hierarchical clustering of DEGs identified from 

the time-course sugar-induced transcriptome demonstrates four clusterings based on 

expression levels. GO terms and the associated p values were depicted next to each 

cluster. Red indicates the higher expression values, and blue indicates the lower 

expression ones (Log Expression Count). 
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Figure 3.3 Clustering of the time-course Drosophila transcriptome profiling 

based on the gene expression differences between sugar-refeeding and starvation 

groups. DEGs upon sucrose refeeding were clustered into five groups with 

characteristic expression patterns in the time course. The gene expression profile of 

the refed group is depicted in purple, and the fasted group in orange. The number of 

genes grouped in each cluster is shown in the upper right corner. 

 

3.4.2 Drosophila Mondo antibodies show specificity to recombinant and 

endogenous Mondo protein  

In order to identify the direct target genes of Mondo genome-wide by ChIP-seq 

approach, a ChIP-grade antibody is required for the assay. We used different antigens 

against several functional Mondo domains to obtain a ChIP-grade antibody. Two 

antibodies were raised against different lengths of the GSM at the N-terminus and 

thus called Mondo-short and Mondo-long, respectively. The third antibody was raised 
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against the DNA binding domain and was called Mondo DBD (Fig. 3.4A). E. coli 

overexpression constructs were used to produce enough purified protein for each 

antigen. These proteins were expressed in an E.coli culture by IPTG induction (Fig. 

3.4B and 3.4C).  

 

Figure 3.4. Expressing Mondo protein domains as antigens to raise Mondo-

specific antibodies. (A) The schematic representation depicts the longest Mondo 

isoform and shows the four main domains of Mondo protein and the location of 

epitopes for the antibodies used in this project. There are two domains at the N-

terminus: LID (orange) and GRACE (yellow-green); there is also one proline-rich 

domain (yellow) and one domain in the C-terminus called the DNA-binding domain 

(DBD), which is composed of the bHLHZ/ZIP (green) and the ZIP-like domains 

(light blue). The epitopes at the N- and C- terminus are indicated below with black 

lines. Coomassie stained-SDS-Page gels show (B) the overexpression of Mondo long 

and short epitopes, and (C) the overexpression of the Mondo DBD epitope at their 

expected molecular weight.  
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Subsequently, protein purification was done, and its efficacy was checked on 

SDS page (Appendix Fig. A3.3); these proteins were used as antigens for antibody 

generation. The sensitivity and specificity of each antibody were tested by western 

blot analysis. The Mondo-long and Mondo-short antibodies can detect the sub-

nanogram of a purified Mondo protein (Fig. 3.5A, 3.5B). The Mondo DBD antibody 

is less sensitive and can detect Mondo when 6 ng of Mondo is loaded for SDS-PAGE 

(Fig. 3.5C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Assessing the sensitivity of Mondo antibodies on the serial titration of 

recombinant proteins.  Antibodies developed from specific antigenic peptides can 

detect the recombinant proteins, Mondo long (A), Mondo short (B) to sub-nanogram 

levels, and Mondo DBD to at least 6.25 ng (C). The molecular weights of Mondo 

long, Mondo short and Mondo DBD are 50KD, 35KD and 28KD. 
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Next, Mondo long and Mondo DBD antibodies were tested for specificity on 

endogenous Mondo in the fly protein extracts. Western blot analysis was performed 

on extracts made from WT flies, as well as from negative control flies, MondoK05106 

mutants and CRISPR Mondo mutants, and as a positive control, from flies 

overexpressing Mondo (heat-shocked and non-heat-shocked hsp70 promoter-driven 

Gal4, UAS-Mondo). As expected, the antibodies identified a 130 KD protein, which 

is seen in most WT samples and is increased in the overexpression flies, but it is not 

seen in the Mondo mutant flies (Fig. 3.6A, 3.6B). A peptide in the CRISPR Mondo 

flies with the molecular weight at 40 KD was detected by the Mondo long antibody 

(Fig. 3.6A) but not by Mondo DBD antibody, suggesting that a truncated N terminal 

part of Mondo was still translated and terminated by the stop codon in the CRISPR 

cassette. To summarize, we were able to produce antibodies that recognize Mondo in 

WT fly extracts.  

 

Figure 3.6. Western blot analysis on fly protein extracts with Mondo antibodies. 

(A) Overexpressed and endogenous Mondo were detected by Mondo long antibody 

probed in the fly, but not in Mondo mutants. (B) The Mondo DBD antibody probed 

Mondo protein in Mondo overexpressed flies and WT flies, but not in Mondo 

mutants. Lamin was used as a loading control. 
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Lastly, these antibodies were tested to determine whether they were able to 

immunoprecipitate Mondo in ChIP assay. Mondo ChIP was performed on the flies, 

which were continuously fed on 20% sucrose + yeast food.  ChIP assay was then 

followed by qPCR, which was performed against the Mondo target site. The acetyl-

CoA carboxylase (acc) gene was used as a putative target for Mondo to test these 

antibodies. Several lines of evidence suggest that the acc gene is a direct target of 

Mondo in mammals and flies. The mammalian ChREBP can bind directly to the 

mammalian acc gene and regulates acc expression (193). The acc mRNA expression 

is down-regulated in Mondok05106 (159) as well as in the Drosophila Mlx mutant Mlx1 

(157). In addition, the ChoRE site within the acc gene was identified in Mlx mutant 

Mlx1 (113), and the same ChoRE site was used as a putative target of Mondo in the 

ChIP-qPCR.  

For negative controls, 700 bp upstream of the acc ChoRE site and a polycomb 

binding site upstream of the ubx gene (194) were used in qPCR. The results show that 

the Mondo long antibody was enriched for the acc ChoRE site compared to both 

negative controls, and it performed better than the other two antibodies (Figure 3.7A). 

The Mondo long antibody also displayed a better enrichment in comparison to the 

preimmuneserum. In contrast, the other two antibodies had little enrichment when 

compared with their respective preimmuneserums (Figure 3.7B). Taken together, the 

Mondo long antibody will be useful to immunoprecipitate Mondo and was therefore 

used for the ChIP-seq experiments to identify the direct target genes of Mondo in the 

fly. 
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Figure 3.7. The efficiency of the Mondo-ChIP experiment with three Mondo 

antibodies is evaluated with qPCR. (A) ChIP-qPCR against the Mondo binding site 

at the acc promoter and non-binding sites indicates a better ChIP result with a 

Mondo-long antibody. (B) qPCR following ChIP with Mondo antibodies and the 

corresponding pre-immune serums shows a better ChIP result with Mondo-long 

antibody. Error bars represent ± SEM (* p<0.05; ** p<0.01; *** p<0.001).  
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3.4.3 Mondo is most active at the early sugar-refeeding time point 

In order to know when Mondo is activated, I performed RT-qPCR on flies that were 

refed on 20% sucrose-only food for 0.5, 1, 2, 3 and 6 hours after 21 hours starvation 

(Fig. 3.8A). We observed that the expression of cbt, a known Mondo target, was 

already increased after refeeding for 0.5 hr (Fig. 3.8B). This indicates that Mondo 

rapidly responds to sugar and regulates the transcription of its direct target genes. In 

support of this observation, a time course Mondo ChIP-qPCR showed that Mondo is 

more enriched at the putative ChoRE site of the cbt gene after 1 hour of sugar 

refeeding compared with the later refeeding time points. Thus, I applied the feeding 

paradigm with which flies were first starved and refed for 1 hour on 20% sucrose food 

for the ChIP-seq experiment to achieve better ChIP results.  

 

Figure 3.8. Mondo is most active at the 1 hour sugar-refeeding time point. (A) 

Schematic presentation of the starved and sugar-refeeding paradigm used in the time-

course feeding experiment. (B) RT-qPCR showed the cbt mRNA expression pattern 

from the flies that were refed on 20% sucrose for different periods of time. (C) qPCR 

against the cbt gene following the timecourse Mondo ChIP shows that Mondo is more 

enriched at the 1 hour sugar-refeeding time point. 

 

3.4.4 Identification of Mondo direct targets in the adult fly head 

Performing ChIP-seq to identify the genome-wide target sites of Mondo allows the 

globally unbiased determination of the target genes of Mondo, and it also helps 

identify the overall enriched biological and molecular pathways by functional 
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clustering analysis. Mondo ChIP was performed on adult WT flies and MondoK05106 

mutants. Because the Mondo mutant is adult viable and appears to be a protein-null 

mutant (Figure 3.6), it is an exemplary control for Mondo ChIP. Ideally, it is expected 

that the Mondo-specific antibody would only enrich for specific DNA sequences from 

WT chromatin, but not from Mondo mutant chromatin. In addition, Mlx ChIP was 

also performed on WT and MondoK05106 mutant chromatin. Mlx is commonly seen as 

the only bHLHZip partner of Mondo (160, 195); thus, we expect that Mlx should bind 

to many and maybe to all of the Mondo binding sites. However, this bHLHZip 

transcription factor family often has several different interacting partners and forms a 

protein heterodimer to bind to a DNA target. By comparing Mondo and Mlx binding 

sites, we could test the current model of Mondo interacting with Mlx as a binding 

partner to recognize cis-regulatory elements.  

RNA polymerase II (Pol II) ChIP was also performed using a Rpb3 antibody 

on chromatin isolated from WT flies and Mondo mutants. The rationale for including 

the Pol II ChIP in this experiment was to investigate the mechanisms by which 

Mondo activates transcription. In the past, transcription factors were thought to only 

activate transcription by recruiting RNA polymerase to promoters (196, 197). Since 

then, the genome wide-profiling of Pol II has indicated that Pol II is already recruited 

at many promoters well before any signal of transcription is given (198-200), thus 

modifying the model of how transcription factors activate transcription. Some 

transcription factors, such as pioneering factors and the GAGA factor, recruit Pol II to 

promoters in accordance with the classic model of the transcription function (201, 

202). In contrast, other transcription factors, such as the bHLHZip transcription factor 

c-Myc (203), have been shown to induce elongation or promoter escape. In addition 

to adding the mechanistic understanding of Mondo transcriptional activity, the Pol II 

ChIP serves as a control for the quality of the chromatin, particularly for the Mondo 

mutant chromatin. In contrast to Mondo and Mlx, which should not ChIP this mutant 

chromatin, Pol II should still bind to chromatin in the mutant, thus verifying the 

quality of the mutant chromatin. As when testing the antibodies, chromatin was 

prepared from flies that were refed sucrose for 1 hour after fasting for 21 hours. To 

test for the quality of the Mondo and Mlx ChIP, qPCR was used to assess the 

enrichment of protein at a putative binding site. Here, the binding site for Mondo-Mlx 
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in the Krüpple-like transcriptional repressor, the cbt gene was used. This gene, like 

the acc gene, was also previously identified as a putative target for Mondo, as it also 

has two ChoRE sites, and the Mondo binding partner Mlx binds to the cbt ChoRE site 

in a glucose-dependent manner in Drosophila cell culture (186). The ChIP-qPCR 

showed that both Mondo and Mlx were enriched at the cbt ChoRE site in WT flies, 

and were much less enriched at 28 bp downstream of the fas2 gene that can be bound 

by Pol II but be targeted by Mondo-Mlx (Fig. 3.9A and 3.9B). On the other hand, Pol 

II was enriched at 28 bp downstream of the fas2 gene but not at ChoRE site in both 

WT and Mondo mutants (Fig. 3.9C). Taken together, the ChIP-qPCR results reveal 

the satisfactory quality of ChIP experiments, therefore sequencing libraries were 

made of these ChIPs and input DNA via Illumina sequencing. 

Figure 3.9. Mondo-Mlx ChIP-qPCR on WT and Mondo mutant flies. ChIP-qPCR 

shows that Mondo (A) and Mlx (B) were enriched at the target site of the cbt gene but 

not at 28 bp downstream of the fas2 gene that is considered as a negative Mondo-Mlx 

target site. (C) ChIP-qPCR shows that Pol II was enriched at 28 bp downstream of the 

fas2 gene. Error bars represent ± SEM (* p<0.05; ** p<0.01; *** p<0.001).  
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Principle component analysis (PCA) based on total read counts was first 

conducted to examine the quality of sequencing samples in terms of the 

reproducibility of the biological replicates (Fig. 3.10A). An acceptable reproducibility 

is shown if the biological replicates are clustered in proximity. As expected, the input 

chromatin clustered closely, indicating a similar background in the replicates. Both 

WT and mutant Rpb3 ChIP-seq data cluster away from inputs, while Mondo and Mlx 

ChIP-seq data are clustered particularly for the first principle component. Rpb3 ChIP-

seq data for the mutant and WT cluster together suggest that there are no large 

changes in Pol II binding to chromatin in the presence or absence of Mondo. In 

contrast, both the Mondo and Mlx ChIP-seq data cluster away from the input samples 

and the Rpb3 ChIP-seq data. The WT Mondo ChIP-seq data cluster separately from 

the mutant Mondo ChIP-seq data along the second component axis. Similarly, Mlx 

ChIP-seq on Mondo mutant chromatin clusters separately from the Mlx ChIP-seq on 

WT. This suggests that there are differences in Mondo and Mlx binding in the WT 

and mutant. In addition, Mondo and Mlx were shown bind to the known Mondo-Mlx 

target genes in WT but not in Mondo mutants (Fig. 3.10B), indicating that our data 

are reliable in terms of continuing the analyses. 

To identify the direct targets for Mondo and Mlx, I compared the peak sets in 

the ChIP-seq data from WT (2,849 peaks) and mutants (2,593 peaks). To our surprise, 

1,875 of the peaks called in the WT Mondo-ChIP-seq were also seen in the Mondo 

mutant. Although the Mondo ChIP-seq appears to have a high background, using the 

data from the Mondo mutant to perform differential analysis, I have excluded the non-

specific background to obtain 1,252 putative Mondo binding sites (Fig. 3.11A). 

Because of the non-specific binding of chromatin in the Mondo ChIP-seq, it is highly 

possible that the same non-specific binding occurs in the Mlx-ChIP-seq. Therefore, 

instead of using the Mlx and the Mondo ChIP-seq to identify the genes that Mondo 

regulates independently of Mlx and the genes that Mlx regulates independently of 

Mondo, Mlx-ChIP-seq was used to validate the Mondo binding sites, as Mlx is known 

to be interacting partner of Mondo. For this purpose, I identified the 2,248 differential 

peak regions in the WT Mlx ChIP-seq compared to the data from the Mondo mutant 

(Fig. 3.11B). To create a list of Mondo target sites with high stringency, I overlapped 

the differential Mondo binding sites with differential Mlx binding sites that requires 
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Mondo for DNA binding, resulting in 1,104 identified binding sites for Mondo-Mlx 

complex (Fig. 3.11C). In total, 88% (1,104 out of 1,251) of the Mondo binding sites 

were also targeted by Mlx, suggesting that Mondo interacts with Mlx for most of the 

putative target genes. In addition, the list of Mondo-Mlx binding sites was used for 

subsequent analyses. 
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Figure 3.10. PCA analysis and the Mondo-Mlx peak profile at known target sites. 

(A) PCA analysis on the read counts of each data is presented as dots in the plot. 

Biological replicates of the same group are color-coded in the same color. (B) The 

peak profile of Mondo and Mlx at known target genes in WT and the Mondo mutant 

indicate convincing ChIP-seq results. 

 

Figure 3.11. Differential binding analysis of Mondo and Mlx targeted sites. 

Mondo (A) and Mlx (B) binding analysis between WT and Mondo mutants. The line 

in blue is the baseline for differential peaks in WT or mutants. The dashed line in pink 

indicates the threshold (fold change > 2) set for the differential peaks identified in WT. 

(C) The Venn diagram shows the overlapping between putative Mondo and Mlx 

target sites. 
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3.4.5 Mondo-Mlx binds primarily to promoters and intronic regions  

Transcription factors are commonly thought to bind to regulatory regions, such as 

promoter and transcription start sites, to regulate gene transcription. In order to 

understand the regions Mondo most likely binds to, the Mondo-Mlx binding sites are 

characterized based on their relative positions to the closest genes using the 

Drosophila genome sequence release 6 (dm6). The distribution of the genetic features 

in the genome background was characterized (Fig. 3.12 A). Among Mondo-Mlx-

binding regions, approximately 30.7% are in the promoter (<=1,000 bp) of the genes. 

An additional 39% are located in introns that may represent enhancers or silencers, or 

TSS for the shorter isoforms of the gene. The remaining site distributions are within 5′ 

UTRs (3.9%), 3′ UTRs (1.7%) and exons (4.8%; Fig. 3.12 B).  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.12. Genomic distribution of Mondo-Mlx target sites. (A) Genomic 

features in the genome background. (B) Genomic distribution of Mondo-Mlx-binding 

sites.  
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3.4.6 Motif searching analysis reveals the canonical ChoRE motif and a novel 

“GATAA” motif within putative Mondo-Mlx target sites 

It has been demonstrated that many glucose-regulated ChREBP/Mondo target genes 

contain the conserved ChoRE binding sites featured with two separate E boxes and 

five nucleotides in between. To determine whether the canonical Mondo binding 

motif also presented in our ChIP-seq dataset, motif searching was performed based on 

the sequences of 1,104 putative Mondo-Mlx target sites. It is worth noting that none 

of the motifs identified from the unfiltered data was centrally enriched at target sites 

in the analysis (data not shown). The motif searching based on the filtered binding 

sites showed a centrally enriched ChoRE motif at 398 target sites (Fig. 3.13A), again 

indicating that the identified peaks in our ChIP-seq presented those convincible peaks. 

Meanwhile, a novel DNA motif sequence “GATAA” was also identified at 289 

Mondo-Mlx binding sites with more dispersed distribution within peaks compared to 

the ChoRE motif (Fig. 3.13B). It is interesting to clarify whether this putative 

“GATAA” motif was targeted solely by the Mondo-Mlx complex or co-existed in the 

same peak with ChoRE, which may provide an additional level of regulation by 

Mondo-Mlx to those genes. The comparison of the peak sets associated with these 

two motifs showed that 318 peaks contain the ChoRE element, 209 peaks contain the 

“GATAA” motif and 80 peaks have both (Fig. 3.13C). Next, to address whether the 

annotated genes associated with the peaks in each subset are functionally clustered 

distinctly, GO term analysis was performed. The results showed that genes with the 

“GATAA” motif were related to amino acid biosynthesis, while genes with the 

ChoRE motif were associated with fatty acid biosynthesis (Fig. 3.13D).  Certainly, the 

binding of Mondo-Mlx to “GATAA” sites must be confirmed with experiments such 

as reporter assay or electrophoretic mobility shift assay (EMSA). It is of vital 

importance to study whether this region also serves as a regulatory binding site and 

how Mondo targets this motif to transduce regulation signaling. 
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Figure 3.13.  Mondo-Mlx consensus binding sites predicted from the motif 

discovery program in MEME-ChIP.  Motifs found by de novo searching of Mondo-

Mlx targets are the ChoRE element (A) and a novel motif (B). Plots of motif position 

as a function of distance from the peak summit are presented below. (C) A Venn 

diagram showing the overlap between ChoRE-contained peaks and TTATC- 

contained peaks. (D) GO term analysis on genes associated only with the ChoRE or 

GATAA motif. 

 

3.4.7 Mondo-Mlx’s target genes are functionally clustered in metabolic pathways 

To understand the potential function of Mondo-Mlx direct target genes, GO 

enrichment analysis regarding the biological process, molecular function and KEGG 

pathways was performed on those putative Mondo-Mlx targets (Fig. 3.14). Most of 

the functionally clustered KEGG pathways are related to metabolic pathways. 
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Moreover, several target genes were mapped in the pathways, such as “glycolysis and 

gluconeogenesis” (Fig. 3.15 A), “fatty acid metabolism” (Fig. 3.15 B), and 

“biosynthesis of amino acids” (Fig. 3.15 C); this reveals that these pathways are 

tightly regulated by Mondo-Mlx. This result is consistent with the role of Drosophila 

Mondo and mammalian ChREBP, which has been reported as a key metabolic 

regulator in the fly. Additionally, GO terms such as “sleep,” “long-term memory” and 

“olfactory learning” were among those associated with biological processes, 

suggesting that Mondo-Mlx may mediate these behaviors in the fly to control the 

overall energy balance. Fifty-four Mondo-Mlx target genes were shown to be 

involved in the oxidation-reduction process, which can be important during energy 

production and can maintain redox in cells to prevent oxidative stress. The GO terms 

regarding molecular function included “protein serine/threonine kinase activity,” 

“glucose transmembrane transporter activity,” “ATP binding” and “transcription 

factor activity”. Overall, the results suggest that Mondo-Mlx may have an extended 

function beyond metabolism. 

 

3.4.8 Mondo-Mlx is on top of a transcription cascade that targets several 

transcription factor genes 

It is noteworthy that 20 transcription factor genes were shown in the GO term 

analysis, and the canonical DNA binding motif was identified at all of these genes in 

the motif searching analysis (Figure. 3.16). The ChoRE sequences are shown in 

appendix table A3.2. In support of this observation, 12 out of 20 transcription factor 

genes displayed an altered expression in published Mondo-Mlx-dependent RNA-seq 

(60, 113). Interestingly, a decreased association of CTCF with its binding sites has 

been shown in the presence of aberrant metabolism (205). Our data also demonstrate 

the binding of Mondo-Mlx complex to the hnf4 gene. In fact, Meng et al. have shown 

that the binding of HNF4α to the cis-element of the ChREBP gene can activate the 

sugar-induced ChREBP transcription. This indicated a potential feedback loop 

between Mondo and HNF4α. Taken together, it appears that Mondo may orchestrate a 

transcriptional cascade and regulate the transcription of various transcription factors. 
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Figure 3.14. GO term analysis on Mondo-Mlx targeted genes from DAVID. 

Significantly enriched GO terms related to biological process (BP), molecular 

function (MF) and KEGG pathways (KEGG) are presented. Their –log2 P-values are 

plotted on the x-axis. Terms derived from the biological process are color-coded in 

gray, those associated with molecular function are depicted in red and those from 

KEGG pathways are shown in blue. 
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Figure 3.15. Mondo-Mlx targeted genes involved in glycolysis, lipid synthesis and 

amino acid biosynthesis. The identified Mondo targets are involved in the glycolysis 

pathway (A), the lipid synthesis pathway (B), and the amino acid biosynthesis 

pathway (C). 
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Figure 3.16. Differential Mondo and Mlx peaks at the genes with transcription 

factor activity. The peak profiles of Mondo-Mlx binding at genes with transcription 

factor activity binding are depicted. ChoRE element within these genes are identified 

and shown in the figure. The tracks in blue are the Mondo binding profile, and those 

in red present the Mlx binding profile. 
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3.4.9 Mondo regulates the recruitment and elongation of Pol II at the direct 

target genes 

The recruitment, pausing, elongation and termination of RNA Pol II are important 

steps for gene transcription (198, 206). To determine how Mondo-Mlx regulates gene 

transcription via RNA Pol II, either by regulating RNA Pol II recruitment or by 

promoting elongation, RNA Pol II ChIP-seq was performed on WT and Mondo 

mutant flies that were cultured in the same setting as in the Mondo-Mlx ChIP-seq 

experiment. To evaluate the RNA Pol II ChIP-seq data, I compared Mondo mutant 

and WT RNA Pol II over promoters. In parallel, I also compared the RNA Pol II over 

the gene bodies in the two genotypes. Differential binding analysis revealed 66 

regions with differential Pol II binding at the promoter of genes (Fig. 3.17A) and 100 

regions identified with differential PoI II binding at the gene body (Fig. 3.17B).  

To focus on Mondo, differential Pol II regions with Mondo-Mlx binding were 

identified. The average profiles show the distribution of Pol II in terms of reads per 

kilobase of transcript per million mapped reads (RPKM) at the promoters or gene 

bodies of Mondo-Mlx target genes in WT and Mondo mutants. Among these, nine 

Mondo-Mlx target genes have a decrease of the Pol II signal at the promoter (Fig. 

3.17C), whereas four Mondo-Mlx target genes showed an increased Pol II signal at 

the promoter (Fig. 3.17E) in Mondo mutants. For genes displaying differential Pol II 

occupancy at the gene body, 43 genes had diminished Pol II occupancy (Fig. 3.17D), 

and eight genes had an increase of Pol II occupancy (Fig. 3.17F) in mutant flies.  

Changes in the Pol II profile at representative genes for each case are shown as in 

average profiles in Figure. 3.18. The diminished Pol II peak at the CTCF gene in 

Mondo mutants indicates a regulatory role of Mondo in Pol II recruitment, while an 

increase of RNA Pol II peak at the mtp gene in mutants suggests that Mondo represses 

the RNA Pol II recruitment (Fig. 3.18A). Opposing changes in Pol II occupancy were 

also observed across the gene body of the AcCoAS and Fmo-2 genes, implying both 

the positive and negative regulation of Mondo in RNA Pol II elongation (Fig. 3.18B). 

Collectively, these results suggest that Mondo is capable of regulating gene 

transcription at the level of Pol II recruitment and Pol II elongation for some genes. In 

addition, the results provide the direct evidence indicating that Mondo functions as an 

activator or a repressor on gene transcription. 
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Figure 3.17.  Differential Pol II occupancy at the promoter and the gene body of 

the Mondo-targeted genes between WT and Mondo mutants. Differential Pol II 

analysis between WT and Mondo mutants at the promoter (A) and the gene body (B). 

(FDR<0.05). Average profile with decreased Pol II occupancy in Mondo mutants at 

the promoter region (C) or gene body (D). Average profile with increased Pol II 

occupancy in Mondo mutants at the promoter region (E) or gene body (F).  
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Figure 3.18.  Peak profile of Mondo, Mlx and RPB3 at the putative Mondo-Mlx 

target genes. (A) Mondo-Mlx regulates Pol II recruitment at the CTCF and mtp 

genes. (B) Mondo-Mlx regulated Pol II elongation at AcCoAS and Fmo-2 genes. The 

Mondo peak profile is depicted in blue, the Mlx peak profile in red and the RPB3 

peak profile in black. The profiles ChIP-seq are shown in total tags normalized to 

1.00e+07. The normalization was performed by HOMER software. The tracks in blue 

stand for the Mondo binding profile, those in red present the Mlx binding profile, and 

those in black are the Rpb3 binding profile. 
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3.4.10 Correlation of Mondo binding and Mondo-dependent Pol II occupancy 

with RNA expression 

To study the correlation between Mondo-Mlx binding and sugar-induced gene 

expression, I compared Mondo-Mlx putative target genes with DEGs identified in 

each cluster from the sugar-induced time-course transcriptome as shown in figure 3.3. 

As previously mentioned, genes are grouped in the same cluster based on its temporal 

expression pattern. Genes in cluster 1 are early-expressed genes, those in cluster 2 are 

late up-regulated genes, those in cluster 3 are down-regulated genes, those in cluster 4 

are down-regulated genes and those in cluster 5 are circadian-dependent genes. 

Interestingly, Mondo targeted genes were observed to be more enriched in cluster 1 

than in the other four clusters, suggesting that Mondo was able to quickly respond to 

sugar and regulated downstream effectors (Fig. 3.19). 

 

Figure 3.19. Comparison of  

Mondo target genes with genes 

clustered based on the temporal 

expression profile. The 

overlapping of putative Mondo-

Mlx target genes with sugar-

regulated genes in each cluster 

indicate that Mondo target genes 

were relatively enriched in early 

sugar-responsive genes (cluster 1). 

 

Next, to determine the ability of Pol II ChIP-seq in identifying DEGs, 

differential Pol II binding genes were compared with sugar-induced DEGs as detected 

in the time-course sugar-induced transcriptome. The analysis was focused on the 43 

genes that were shown with increased Pol II signals across gene body at which 

Mondo protein is present (Fig. 3.2D). Nineteen percent of the genes (eight out of 43) 

showed up-regulated expression at the mRNA level in response to sugar. The RNA 

expression profile and Pol II occupancy for the selected genes are shown in figure 

3.20.  
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Figure 3.20.  Gene expression profile correlates with RNA Pol II binding at 

selected genes. Temporal gene expression and Pol II occupancy at the cbt, sug, drat, 

and fasn1 genes upon sucrose refeeding. The line in blue is the gene expression 

profile upon refed states, while the line in red is the gene expression profile during 

starvation. 
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The percentage of Pol II differentially bound genes coupled with increased 

expression level could possibly be higher than was observed in the analysis. The 

mapped reads in time-course RNAseq were low; therefore, only genes with a higher 

expression in response to sugar can be detected. Moreover, in addition to regulation 

from TFs binding and Pol II-directed transcription, RNA levels are also affected by 

the RNA turnover rate. This may also explain the low overlapping between datasets. 

Nevertheless, this cross-dataset comparison allows us to analyze the transcription 

regulation of Mondo on specific genes. 

 
3.4.11 The comparison of Mondo-Mlx binding data with RNA expression data 

supports the role of Mondo as either a transcription activator or repressor 

To understand how Mondo-binding affects gene transcription, a cross-dataset 

comparison was performed between Mondo-Mlx ChIP-seq and published Mondo 

RNA-seq data (60), as well as Mlx RNA-seq data (113). The Mondo RNA-seq was 

performed on the dissected fat body from WT and Mondo RNAi flies at the 

wandering third instar larva stage upon 0.15M vs. 0.7M sucrose. The Mlx RNA-seq 

was done on WT and Mlx mutants at the early instar larvae stage while feeding on 

10% yeast vs. 10% yeast + 20% sucrose food. Among the Mondo-Mlx-dependent 

DEGs, some are upregulated by sugar, while some are down-regulated, indicating that 

Mondo-Mlx can both activate or repress the gene expression. However, these sugar-

regulated and Mondo-Mlx-dependent genes should include both direct and indirect 

Mondo-Mlx targets, and these genes’ expression change may result from the 

regulation of a secondary effector. To determine whether Mondo-Mlx can directly 

activate or repress the gene transcription, DEGs from the Mlx-dependent and Mondo-

dependent RNA-seq data were compared with the Mondo-Mlx targets identified in 

our ChIP-seq data. The overlapping with both sugar-upregulated and sugar-

downregulated genes supports the notion that Mondo-Mlx primarily acts as an 

activator (Fig. 3.21A and 3.21C), but can also function as a repressor for some target 

genes (Fig. 3.21B and 3.21D). 

 



3. GENOME-WIDE IDENTIFICATION OF TARGET GENES FOR MONDO-MLX COMPLEX  
IN THE FLY 

100 

 

 

Figure 3.21. Comparison of Mondo-Mlx target genes with sugar-regulated Mlx-

dependent and Mondo-dependent genes identified in larvae. 197 Mondo-Mlx 

target genes overlapped with sugar-up regulated Mlx-dependent genes (A), and 81 

Mondo-Mlx target genes overlapped with sugar-down regulated Mlx-dependent genes 

identified in the whole larva (B). 232 Mondo-Mlx target genes overlapped with sugar-

up regulated Mondo-dependent genes (C), while 97 Mondo-Mlx target genes 

overlapped with sugar-down regulated Mondo-dependent genes (D). 
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3.5 Discussion and future directions 

The genome-wide sequencing data demonstrate that the Mondo-Mlx complex directly 

targets the genes involved in metabolic pathways such as glycolysis, de novo 

lipogenesis and amino acid metabolism. Overall, evidence from the viability assay 

(see chapter 2) and genomic data confirm that Mondo acts as a key metabolic 

regulator. Moreover, analysis of the Mondo-Mlx ChIP-seq reveals a putative novel 

DNA binding motif of Mondo, the “GATAA” motif. The results show that some 

identified target sites contain the canonical Mondo binding motif, the ChoRE motif 

and the contain the “GATAA” motif, while some target sites only contain the 

“GATAA” motif, suggesting the direct binding of Mondo-Mlx at the “GATAA” sites. 

It has been shown that the “GATAA” motif is bound by the GATA factor, as well as 

by DAF-16, the homolog of the FOXO transcription factor in C. elegans, which binds 

to the reverse complement of the “GATAA” motif. Moreover, in C. elegans, the 

GATA factor and FOXO transcription factor were shown to share binding sites at 

several metabolic genes. It is interesting to study whether Mondo actually binds to the 

“GATAA” motif and whether GATA factors assist the binding of Mondo to the target 

sites.  

It is also intriguing to discover lines of evidence from GO term analysis, motif 

searching and expression data that suggest that Mondo is on the top of a transcription 

cascade by regulating the expression of several transcription factor genes. For 

example, the Mondo-Mlx complex was shown to target the mnt gene, which encodes 

a basic-helix-loop-helix-zipper transcription factor, which form heterodimers with the 

protein encoded by Max. This suggests the interplay between Mondo-Mlx network 

and Myc/Max/Mad network in the fly. Mondo-Mlx also targets the hnf4α gene, which 

encodes an important transcriptional regulator of glucose, fatty acid and cholesterol 

metabolism (207-209). This crosstalk allows cells to respond to nutrient input in a 

more delicate way. It is worth noting that many of the transcription factors targeted by 

Mondo-Mlx, such as PDP1 and CTCF, do not target metabolic genes, indicating that 

the function of the Mondo-Mlx-regulated network may extend beyond metabolism. 

The first direct evidence indicating that Mondo can act as either a 

transcriptional activator or a repressor is also reported. By integrating the Mondo-Mlx 

ChIP-seq and Pol II ChIP-seq data, it was observed that Pol II occupancy was altered 
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in a Mondo-dependent manner at the promoter and/or the gene body of certain 

Mondo-Mlx-target genes. These data provide a direct readout of Mondo’s role as a 

transcriptional activator or a repressor without concerns derived from the potential 

secondary effects on the gene expression. Our data also suggest that the Mondo-Mlx 

complex may regulate gene transcription mainly by regulating Pol II elongation 

because the percentage of Mondo target genes with altered Pol II occupancy at the 

gene body was higher than those with different Pol II binding levels at the promoter 

(51% vs. 20%). Moreover, increased Pol II levels at the gene body were observed in 

84% (43 out of 51) of the Mondo target genes that are coupled with altered Pol II 

occupancy, suggesting that the Mondo-Mlx complex mainly acts as a transcriptional 

activator rather than a repressor.  

However, it was also observed that very few Mondo target genes (64 out of 

1,130) were coupled with either Pol II recruitment to the promoter or with Pol II 

elongation along the gene body, suggesting that Pol II-directed transcription may not 

rapidly respond to the binding of the Mondo-Mlx complex. It is worth noting that we 

address Mondo’s role in gene transcription at the early sugar refeeding time point. 

Performing a time-course Mondo and Pol II ChIP-seq upon sugar refeeding will 

provide insight into sugar-induced Mondo-regulated transcription. Moreover, the 

mechanisms behind the Mondo-Mlx complex as an activator or repressor in gene 

transcription also merit further study. It would also be interesting to learn whether the 

binding of Mondo with different interacting partners, such as FOXO and HNF4, may 

result in different transcription outcomes. 
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3.6 Appendix  
 
 
 
 
 
 
 
 
 
 

 
Figure A3.1. Map of expression plasmid pETMCN Mondo DBD
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Figure A3.2. Map of expression plasmid pUAST Mondo RJ 
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Figure Ａ3.3. The purification of recombinant Mondo proteins was tested on 

Coomassie-stained SDS-page.  Protein samples were saved from each purification 

step for the evaluation of purification efficiency. Coomassie-staining of SDS-pages 

with  (A) Mondo long recombinant protein, (B) Mondo short recombinant protein and 

(C) Mondo DBD recombinant protein indicate the successful purification of each 

recombinant protein in the elution. 
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 Table A3.1 Primers used in ChIP-qPCR assays 

 

Primer name Primer sequence Product size
acc forward CGAAAACGCCAGAAATTGAT
acc reverse GCATCACGGAATGAAAACAA

acc forward-negative GCTGCTGACCTTGATTCCTA
acc reverse-negative ACACACACGTTGGCAGCTAT

cbt forward GCGAAAGCAGGAGAGTATGG 
cbt reverse AATGCCTGCTTTTCGTGACT 

fas2+28 forward GTGCTCTGCTTGCTGAGAGA 
fas2+28 reverse GCCACGACCGTTAACACATA 

ubx forward TAGTCTTATCTGTATCTCGCTCTT A 
ubx reverse CAGAACCAAAGTGCCGATAACTC 

119

107

100

115

83
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Table A3.2. Mondo target genes with transcription factor activity are listed with 
the gene name and corresponding ChoRE sequence

Gene ID ChoRE sequence pvalue qvalue
pdp1 CACCCTATCGGTACGTG 1.16E-50 0.0614
NFAT CACGCGCACGTCACGTG 2.87E-08 0.0103
hnf4 CACACGTTGTCCACATG 9.11E-06 0.0567
Eip75B CCTGCTTTCGACGCGTG 6.38E-05 0.149
crebA CCCGTACCCGGGGCGTG 3.84E-05 0.115

CHES-1-like CATACGTTTTGCACATG 5.40E-05 0.138
crc CACTCGCTTAACGCGTG 8.49E-07 0.025
Mnt CAGGCGTTGGCAGCGTG 9.32E-08 0.0136
cbt CACGCGTTGACCTCATG 5.50E-07 0.0219
lilli CAGGCAGATGAAACGTG 8.08E-05 0.166
srp CGCGCGACCGACGCGTG 3.00E-06 0.0363
hng3 CACTCGCCGAGAGGCTG 2.03E-05 0.0829
dsx CACACGCGAGCAAAGTG 9.17E-05 0.175
cnc CACGCCGTAAGAGAGTG 5.25E-06 0.0467
cwo CACGGGAGGCAAACGTG 7.16E-05 0.156

REPTOR CAGCCAACAGCCGCGTG 2.53E-06 0.0346
CTCF CACTCCAATTCGGCATG 7.76E-05 0.162
fru CACTCACTCTCCCCGTG 1.64E-06 0.0293
sik3 CATACATGGTGCGCGTG 1.95E-05 0.0822
bun CACGTGTTGGGGGCGTG 1.45E-07 0.0142
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Chapter 4 

Investigating Mondo function in 

the central nervous system of the 

fly 
 

4.1 Summary 

In this chapter, the tissue-specific function of Mondo is addressed in the fly brain via 

RNA-seq. Data from our previous tissue-specific Pol II ChIP-seq and RNA 

expression profiles from Flyatlas indicate that mondo is expressed in the fly brain. To 

elucidate Mondo’s role and its downstream regulatory network in the brain under 

different nutritional states, RNA-seq was performed on the dissected brains of WT 

and Mondo mutant flies that underwent either fasting or sugar refeeding. DEGs 

identified from the brain RNA-seq data are involved in metabolic pathways, 

oxidation-reduction process and sleep behaviors. It suggests that Mondo may have a 

function beyond metabolism in the fly brain, which would indicate a metabolic role of 

Mondo in the brain. Consistent with its role in sugar metabolism in the liver, Mondo 

also appears to regulate the expression of trehalose transporter (tret1-1) and trehalose-

6-phosphate synthase 1 (tps1), which are important in trehalose metabolism in the fly. 

Mondo also regulates genes involved in amino acid (glycine, serine and glutamine) 

metabolism. To our surprise, the expression of these genes is only significantly 

changed upon starvation in a Mondo-dependent manner. In addition, a gene such as 

aay, a key enzyme in serine biosynthesis, has been shown to modulate sleep 

homeostasis. It would be intriguing to study how this brain-specific Mondo regulates 

the metabolism of sugar and amino acids and the corresponding physiological 

outcomes in the future. 

 

 

 



4. INVESTIGATING ＭONDO FUNCTION IN THE CENTRAL NERVOUS SYSTEM  
OF THE FLY 

109 

4.2 Introduction 

The brain is one of the most metabolically active organs in the organism. It mainly 

relies on circulating glucose as an energy source and stores a small amount of energy 

in the form of glycogen. The brain also utilizes substrates other than glucose in some 

circumstances to obtain energy. For example, ketone bodies are catabolized under 

prolonged starvation, and lactate is used as fuel during extensive physical activity. In 

addition to the quick metabolic adaptation to starvation, the brain also responds to 

nutrient fluctuation by mediating feeding and sleep behaviors, which play a major role 

in regulating energy homeostasis. Understanding the underlying molecular 

mechanisms of nutrient metabolism in either a nutrient-rich or nutrient-scarce state is 

thus an important research goal. 

ChREBP, a key regulator in carbohydrate metabolism, has been reported to 

express in the CNS of murines and humans (133). Mondo expression has also been 

reported in the fly brain. Flies containing endogenously GFP-tagged Mondo present a 

GFP signal in the suboesophageal ganglion (SOG) in the fly brain (BrainTrap 

database). Tissue-specific RNA Pol II ChIP-seq data shows Pol II peaks at the mondo 

gene promoter not only in the fly fat body, but also in neurons and glia (210). 

Although evidence suggests that Mondo is expressed in the brain, its downstream 

effectors and associated function in the brain remain elusive. Docherty et al. have 

demonstrated that the downregulation of mondo in neurons leads to enhanced 

glycogen and triglyceride levels in the fly, while targeting mondo specifically in IPCs 

results in increased food intake of fly (155). Fat body-derived Mondo has been shown 

to promote feeding behavior, suggesting the crosstalk of Mondo signaling between 

the fat body and the brain (159). 

To determine the function of Mondo in the brain, RNA-seq was performed on 

dissected fly brains of WT and Mondo mutant flies. The results reveal that Mondo is 

involved in metabolic pathways such as sucrose and glycerolipid metabolism. Mondo 

also regulates the tret1-1 and tps1 genes, which are essential in trehalose metabolism 

(10, 211). Moreover, Mondo regulates the metabolism of several amino acids, such as 

serine, glycine, and glutamine upon starvation, which may suggest a Mondo-directed 

metabolic switch in the fly brain in response to food scarcity. The results also 
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demonstrate that Mondo may potentially mediate sleep behaviors. It is important to 

understand whether Mondo controls serine levels in the fly brain and subsequently 

modulates sleep behavior during starvation, which may in turn balance the overall 

energy.  

 

4.3 Methods 

4.3.1 RNA-seq on the whole head and the fly brain 

Flies were anaesthetized with CO2 or ice. The proboscis of the fly was removed with 

fine-tipped forceps and torn from the cuticle from the opening of proboscis. The rest 

of the cuticles attached to the brain were carefully removed. The dissected brains 

were immediately put into Trizol reagent, and samples were left on ice until the 

collection was finished. In total, 10 brains were collected, and the samples from males 

and females were equal. RNA was extracted by following the protocol mentioned in 

chapter four. The cNDA library and the details of the sequencing experiment are the 

same as described previously. 

 

4.3.2 Regulatory network analysis 

DEGs identified in the fly brain were analyzed for pathway enrichment by using the 

ClueGO and CluePedia plugins of Cytoscape. 



4. INVESTIGATING ＭONDO FUNCTION IN THE CENTRAL NERVOUS SYSTEM  
OF THE FLY 

111 

4.4 Results 

4.4.1 Evidence indicating Mondo expression in the fly brain 

Mondo/ChREBP has been extensively studied in many metabolic tissues in the past 

two decades (75, 94, 98, 132, 148, 212), and is commonly known to be the key 

metabolic regulator. However, its role in the brain, the most metabolically active 

organ, remains unclear. In mice, ChREBP has been detected in the brain via in situ 

hybridization and northern blot assays (61, 133). Multiple lines of evidence also 

indicate that Mondo is expressed in the fly brain. First, the RNA-seq data from 

Flyatlas (213) indicates not only the predominant expression of Mondo in the 

Malpighian tube and the fat body, but also the moderate expression in the brain, 

midgut, hindgut, etc. (Fig. 4.1A). Second, our cell-type-specific Pol II ChIP-seq data 

demonstrate Pol II occupancy at the promoter region of the mondo gene in the fat 

body, as well as in neurons and glia (210), indicating that the mondo gene is 

transcribed in these three tissues (Fig.4.1B). Third, the brain image of an 

endogenously GFP-tagged Mondo fly line (refer to chapter 2; 214) displays a GFP 

signal in the SOG (Fig. 4.1C), a region of the fly brain that is considered a primary 

taste center responsible for feeding behavior (215, 216). From the functional 

perspective, Docherty et al. have shown that the pan-neuronal knockdown of Mondo 

increases overall triglyceride and glycogen levels but has no effect on food intake. 

Conversely, knockdown of the Mondo specifically in IPCs, the specialized neurons 

that produce and release ILPs to the hemolymph, alters food intake but has no effect 

on the global triglyceride and glycogen levels (155). Taken together, the expression 

profile and functional characterization of Mondo suggest that Mondo plays a role in 

CNS. To globally study Mondo’s role in CNS, genome-wide approaches were used to 

determine its function and downstream effectors. 
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Figure 4.1. Lines of evidence suggest Mondo expression in the fly brain. (A) 

RNA-seq data from Flyatlas shows the mondo mRNA expression levels in different 

adult fly tissues (213). (B) A genome browser snapshot of Poll ChIP-seq data shows 

that Pol II is located at mondo promoter in the fat body, neuron and glia (210). (C) 

The brain image of the GFP-tagged Mondo fly shows Mondo expression in the SOG 

region of fly brain. The image was modified from the BrainTrap database (214).  
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4.4.2 RNA-seq data confirm Mondo’s expression and regulatory role on known 

target effector genes in the CNS 

An RNA-seq experiment was performed on dissected brains from WT flies and 

MondoK05106 mutants to determine the Mondo-dependent regulatory network in the fly 

brain. The same feeding paradigm used in the ChIP-seq experiment mentioned in 

chapter 3 was applied. Flies were fasted for 21 hours and refed on sucrose for 1 hour 

before the dissection of their brains. The RT-qPCR results showed a reduced mRNA 

level of mondo and its target gene cabut in Mondo mutants compared with WT flies. 

This data provides additional evidence for the expression of mondo in the brain and 

the Mondo-dependent misregulation of cbt expression (Fig. 4.2A). RNA sequencing 

was performed on cDNA libraries prepared from the extracted brain RNA. After 

normalizing for batch effects, replicates of each group clustered well in PCA analysis, 

indicating sufficient reproducibility between replicates (Fig. 4.2B). RNA-seq data 

showed that a truncated Mondo transcript lacking the DNA binding domain was still 

transcribed in MondoK05106 mutants. Full-length was not detected in protein extracts 

from the MondoK05106 mutant with Mondo antibodies raised against the C-terminal 

DNA binding or N-terminal activation domains, as shown in Chapter 3 (Fig. 3.6). The 

downregulation of Mondo’s known targets cabut and dawdle was observed in 

mutants, as well (Fig. 4. 2C). In addition, several Mondo target genes identified in the 

whole head Mondo-Mlx ChIP-seq, such as the lip4, bmm and teq genes, were shown 

to be downregulated in a Mondo-dependent manner in the brain RNA-seq data, 

suggesting that Mondo may suppress the expression of these genes directly or through 

a secondary effector in the brain (Fig. 4.2D). 
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Figure 4.2. RT-qPCR and RNA-seq indicate the expression of mondo and 

downstream effectors. (A) mondo and cbt mRNA expression levels in the brains of 

WT flies and Mondo mutants were measured by RT-qPCR. The relative expression 

over rp49 mRNA expression level is presented. (B) PCA analysis of replicates of data 

from groups of fed-WT, starved-WT, fed-mutant and starved-mutant groups after 

batch normalizing. (C) Genome browser snapshots show that the normalized read 

counts of mondo, cbt and dawdle mRNA are higher in WT flies compared to mutants. 

(D) Genome browser snapshots show that the normalized read counts of lip4, teq and 

bmm mRNA are lower in WT flies compared to mutants. RNA-seq data are presented 
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in biological replicates. The profiles of RNA-seq data are shown in total tags 

normalized to 1.00e+07. The normalization was performed by HOMER software. 

 

4.4.3 Comparison of sugar-induced transcriptome from the brain and whole 

head 

The differential expression analysis on the brain RNA-seq reveals that 64 genes were 

differentially regulated (FDR < 0.05) in sugar-fed control flies compared with fasted 

control flies. To determine whether there were unique changes in gene expression in 

the brain compared to the whole head, DEGs in response to sugar were compared 

with the sugar-induced transcriptome from timecourse RNAseq data (Fig. 4.3). In 

total, 22% (14 out of 64) of DEGs in the brain were observed to overlap with genes 

that respond to sugar in the whole head. Biologically speaking, this suggests that a 

subset of genes specifically responds to sugar in the brain. Genes (N=10) with 

oxidoreductase activity are observed to be enriched specifically in the brain. 

Interestingly, it seems that five of these 10 genes are downregulated during starvation 

in a Mondo-dependent manner (data not shown).  

 

Fig. 4.3. Comparison of sugar-induced 

transcriptome in the brain and whole head. 

Venn diagram of sugar-induced transcriptome in 

the whole head (shown in blue) and in the brain 

(shown in pink). Fifty genes were shown to 

respond to sugar exclusively in the brain. 

 

 

4.4.4 Comparison of Mondo-dependent transcriptome in the brain with Mondo-

Mlx target genes 

To understand the correlation between Mondo-Mlx binding and subsequent action on 

gene transcription, the identified putative Mondo-Mlx direct targets were compared 

with the Mondo-dependent regulatory network determined from brain RNA-seq data. 

The comparison shows that 14% (31 out of 217) and 18% (20 out of 129) of the 
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DEGs identified upon starvation and sugar refeeding conditions, respectively, were 

also putative Mondo-Mlx targets, suggesting that Mondo may directly regulate these 

genes (Fig. 4.4). The comparison of Mondo-Mlx-regulated DEGs between starvation 

and sugar-refeeding conditions is shown in Table 4.1. Performing a Mondo ChIP 

specifically from the brain provides solid evidence to support the direct regulation of 

Mondo on these genes.  

There may be several reasons for the poor overlapping of the genes between 

the two datasets. First, the binding of Mondo to the target gene may not immediately 

transmit regulation on gene transcription, which is supported by the low overlapping 

percentage between Mondo-Mlx ChIP-seq and Pol II-ChIP-seq shown in chapter 3. 

Only a few Mondo-Mlx target genes showed the altered Pol II occupancy while 

lacking Mondo, suggesting that the transcription machinery and the subsequent 

transcription do not respond to Mondo binding quickly. Second, the Mondo-Mlx 

ChIP-seq was done on the fly head instead of on neurons or glia cells; thus, the 

resolution of peaks at CNS-specific genes in the whole head ChIP-seq may be 

weaker. Taken together, it may not be necessary to observe a high correlation between 

these datasets. More importantly, this RNA-seq data shows several intriguing and 

potentially significant aspects of Mondo’s function that are further discussed in the 

following sections. 

 

 

 

 

 

 

 

 

Figure 4.4. Comparison of brain Mondo RNA-seq data with Mondo-Mlx ChIP-

seq data. The overlapping of Mondo-Mlx target genes (shown in pink), Mondo-

dependent transcriptome upon starvation (shown in blue) and the sugar refeeding 

condition (shown in purple).  
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Table 4.1. Mondo-dependent DEGs in the brain under sugar-refeeding, 

starvation or under both conditions 

 

 

4.4.5 Functional clustering of DEGs suggests that CNS-Mondo may be involved 

in the oxidation-reduction process, metabolic pathways and sleep behavior  

To explore the possible function of Mondo in the brain in response to sugar, 

regulatory network analysis was performed on DEGs identified from the data 

generated on the sugar-refeeding condition. The analysis reveals that Mondo may 

have functions associated with “monooxygenase activity,” “glycerolipid,” “sugar 

transporter,” “sleep” and “starch and sucrose metabolism” (Fig. 4.5). Approximately 

12% (14 out of 118) and 12.7% (23 out of 180) of DEGs were shown to have 

oxidoreductase activity upon the refed condition and starved condition, respectively 

(Table 4.2). In support of this observation, 6.4% (70 out of 1091) of putative 

Mondo/Mlx direct target genes were also shown to possess the oxidoreductase 

activity in the whole head Mondo ChIP-seq (data not shown). The regulation of 

Mondo on oxidoreductase has also been reported in fly larvae (113). Although several 

genome-wide studies suggest that Mondo may control oxidation-reduction reactions 

via regulating the expression of oxidoreductase, the physiological outcomes remain 

unclear and require further study.  

The results also demonstrate that Mondo may potentially mediate sleep 

behaviors, as 5.1% (six out of 118) and 4.4% (eight out of 180) of DEGs identified in 

either the refed or starved condition were shown to functionally cluster with the GO 

term “sleep” (Table 4.3). Consistent with this, 2.7% (29 out of 1,091) of putative 

targets identified in ChIP-seq from the whole head were also clustered with the GO 

Genes only differentially 
expressed in refed condition

Genes only differentially 
expressed in starved condition

Genes differentially expressed in 
both conditions

lip4, beat-Ib, CG14688, aralar1, 
odc1, CG31324, CG31688, gk2, 

teq, elB, CR45973

cbt, mondo, cyp6g1, tret1-1, 
pncr009:3L, CG5830, bmm, tps1, 

bgm

CG3011, irc, CG11089, CG13868, 
CG10924, CG2233, hex-c, 

sardh,CG5835, hn, CG3376, wdp, 
ork, gs2, lsd-2, CG10960, 

CG6910, aay, prat2, pelo, sh, muc
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term “sleep” (Fig. 3.14). In our analysis, genes such as bmm and CG4500 have 

already been shown to control sleep homeostasis, which is defined as the increase in 

sleep following sleep deprivation (217). It is interesting to note that these genes are 

involved in lipid metabolism and storage. That is, bmm is known to be homologous 

with the human adipocyte triglyceride lipase, while CG4500 is a long-chain fatty 

acid-CoA ligase. It remains to be determined whether Mondo mediates sleep 

homeostasis though regulating lipid levels in the brain. In conclusion, functional 

clustering analysis indicates that brain-specific Mondo may act not only as a 

metabolic regulator in the brain, but may also have a function beyond metabolism, for 

example, concerning regulation in sleep behaviors.  

 

 

Figure 4.5. Mondo-dependent regulatory network upon sugar refeeding in the 

brain. DEGs regulated by Mondo involved in oxidoreductase, glycerolipid, sucrose 

metabolism, and sleep, as well as in glycine, serine and threonine metabolism. 

Regulatory network analysis was done with the cytoscape and ClueGO tool. 
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Table 4.2 Oxidoreductase-associated DEGs identified from brain RNA-seq data 

 

 

Table 4.3 Sleep-associated DEGs identified from brain RNA-seq data 

 

4.4.6 CNS-Mondo regulates the expression of sugar transporter in the brain 

CNS-Mondo also seems to regulate the expression of the sugar transporter gene, 

trehalose transporter 1-1 (tret1-1), in the brain. Unexpectedly, the Mondo-dependent 

downregulation of tret 1-1 was observed upon sugar refeeding (Fig. 4.6A). Consistent 

with this result, our whole head Pol II-ChIP-seq also showed less Pol II occupancy at 

the gene body of tret 1-1 in WT flies compared with mutants (Fig. 4.6C). This 

indicates that Mondo negatively controls the trehalose transport into the brain, which 

may help maintain the steady state of carbohydrate homeostasis. 

A higher expression of trehalose-6-phosphate synthase 1 (tps1) gene was 

observed in WT flies compared to the mutant upon sugar-refeeding (Fig. 4.6B), which 

is also consistent with Pol II occupancy at the gene body of tps1 (Fig. 4.6D). This 

indicates that Mondo may inhibit the sugar uptake and glycolysis by down-regulating 

these two genes in the brain. Studying the physiological meaning and the underlying 

molecular mechanisms will lead us to a better understanding of how Mondo maintains 

carbohydrate homeostasis. 

Oxidoreductase-associated DEGs 
identified upon refed condition

Oxidoreductase-associated DEGs 
identified upon starved condition

cyp12a5, CG14688, cyp9h1, CG17691, 
cyp6a13, CG31075, CG3999, CG8046, 

cyp6w1, cyp6g1, cyp28a5, cyp6a2, 
ppo2, sodh-2

CG17896, CG3999, CG5065, CG910, 
CG8302, CG8345, CG8453. CG8687, 
CG8864, cyp4e1, cyp6a2, cyp9b2, hn, 

irc, nmdmc, nd4, nd5, ppo2, sardh, 
sodh-2, zw, cox2, pug

Sleep-associated DEGs identified 
upon refed condition

Sleep-associated DEGs identified 
upon starved condition

amy-p, CG10383, mondo, cyp6g1, 
bmm, cbt

CG10383, CG13868, CG4500, 
CG8453, aay, bmm, cbt, mondo
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Figure 4.6. CNS-Mondo regulates the expression of tret1-1 and tps1 in the brain. 

mNRA expression profile of tret1-1 (A) and tps1 (B)  in brain Mondo RNA-seq data 

in WT and Mondo mutants upon sugar refeeding. Deseq2-derived normalized read 

counts of tret1-1 and tps1 are depicted below the profile. The peak profile of Mondo, 

Mlx and Pol II at tret1-1 (C) and tps1 (D). The profiles of ChIP-seq are shown in total 

tags normalized to 1.00e+07. The normalization was performed by HOMER software. 
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4.4.7 The metabolism of glycine, serine, glutamine and purine may be regulated 

in a Mondo-dependent manner in the fly brain upon starvation 

Strikingly, GO term analysis on DEGs exclusively expressed in either condition 

revealed that pathways regarding amino acid metabolism and nucleotide (purine) 

metabolism were solely enriched under the starvation condition, but not under the 

sucrose-refeeding condition (Fig. 4.7). The genes involved in the pathway “glycine 

and serine metabolic pathway” are the astray (aay), serine pyruvate aminotransferase 

(spat), CG11899 and CG3011 genes (Fig. 4.8A). Except for spat, these three genes 

are identified as direct targets of Mondo in our whole-head Mondo ChIP-seq data.  

Mondo exerts an inhibitory effect on the expression of these genes, particularly upon 

starvation (Fig. 4.8B). Specifically, the downregulation of aay, a phosphoserine 

phosphatase involved in serine biosynthesis, by Mondo upon starvation was observed. 

Interestingly, the depletion of aay has been reported to reduce starvation-induced 

sleep suppression as a result of altered serine metabolism in the fly brain (218). It is 

important to understand whether Mondo controls serine levels in the fly brain and 

further mediates sleep behavior during starvation, which may in turn balance overall 

energy.  

Genes such as glutamine synthase 2 (gs2), phosphoribosylamidotransferase 2 

(prat2) and ade2 that are involved in “glutamine metabolic pathway” and “purine 

metabolism” are also downregulated by Mondo upon starvation (Fig. 4.9). Gs2 

encodes an enzyme that converts glutamate to glutamine. Prat2 encodes a type-2 

glutamine amidotransferase that controls the de novo synthesis of the precursor for 

purine nucleotides required for energy transfer and cell signaling. Collectively, this 

analysis indicates a distinct role of Mondo in the brain upon different nutrient states. 

It is also the first genome-wide data that probe Mondo’s function upon starvation in 

the brain. 

 



4. INVESTIGATING ＭONDO FUNCTION IN THE CENTRAL NERVOUS SYSTEM  
OF THE FLY 

122 

 

 

 

 

 

Figure 4.7. Comparison of Mondo-dependent DEGs between the starvation 

condition and the sugar-refeeding condition. Venn diagram of brain Mondo-

dependent transcriptome upon the starved condition (shown in blue) and the sugar 

refeeding (shown in purple) condition. GO terms that were enriched only upon the 

starvation condition or the sugar-refed condition are shown below the Venn diagram 

with –Log2 (P value) plotted at the x-axis. 
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Figure 4.8. Mondo-dependent DEGs are involved in glycine and serine 

metabolism in the brain (A) Mondo-regulated genes encoding enzymes involved in 

the glycine and serine metabolic pathways are shown in green text. (B) The 

expression of the genes in the brain Mondo RNA-seq data in WT and Mondo mutants 

upon the sugar refeeding and starved conditions. ＊: Indicates Mondo-targeted genes 

that were shown in both the whole head ChIP-seq and brain RNA-seq data. 
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Figure 4.9. Mondo-dependent DEGs are involved in glutamine and purine 

metabolism in the brain. (A) Mondo-regulated genes encoding enzymes in the 

glutamate metabolism and purine synthesis are shown in the green text. (B) 

Expression of the genes in the brain Mondo RNA-seq data in WT and Mondo mutants 

upon the sugar refeeding and starved conditions. ＊: Indicates Mondo-targeted genes 

that were shown in both the whole head ChIP-seq and brain RNA-seq data. GAR: 5-

phosphoribosyl-glycinamide. FGAR: 5-phosphoribosyl-N-formylglycinamide. FGAM: 

5-phosphoribosyl-N-formylglycinamidine. AIR: 5-phosphoribosyl-5-aminoimidazole. 

CAIR: 5-phosphoribosyl-5-amino-imidazole-4-carboxylate. SAICAR: 5-amino-4-

imidazole-N-succinocarboxamide ribonucleotide. AICAR: 5-amino-4-

imidazolecarboxamide ribonucleotide. FAICAR: 5-phosphoribosyl-4-carboxamide-5-

formamidoimidazole.  
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4.5 Discussion and future directions  

Our brain-RNA-seq data and Pol II ChIP-seq data show that Mondo may be involved 

in trehalose transport by repressing the expression of the trehalose transporter gene 

tret1-1. It has been shown that trehalose, the main circulating carbohydrate in flies, is 

taken up and catabolized in the glial cells to provide energy to the brain (222). Given 

that a high glucose level has adverse impacts on brain function (219-221), materials 

are selectively transported through the blood-brain barrier to maintain the glucose 

level in the steady state in the brain. This may suggest that Mondo could serve as a 

glucose sensor to reduce the expression of tret1-1 upon high circulating trehalose to 

maintain the steady state of the glucose level in the brain.  

In addition to the metabolic function, our data also suggest a role of Mondo in 

sleep behaviors. Mondo-regulated genes such as CG4500 and bmm have been 

reported to be involved in modulating sleep homeostasis via regulating lipid deposit. 

However, CG4500 and bmm display opposing effects in sleep recovery after sleep 

deprivation (217, 223). This indicates that Mondo may act as an upstream regulator to 

balance the energy expense overall. Additionally, Mondo may also mediate 

starvation-induced sleep suppression by regulating the expression of genes such as 

aay, spat, CG3001 and CG11899, which are involved in serine metabolism. It has 

been shown that the serine level in the fly brain controls starvation-induced sleep 

suppression (218). Moreover, the pan-neuronal knockdown of the aay gene, a rate-

limiting enzyme in serine biosynthesis, has been shown to suppress starvation-

induced sleep suppression. Overall, these data suggest that Mondo, particularly brain-

specific Mondo, may regulate sleep behaviors via reprogramming lipid and serine 

metabolism in the fly brain (Fig. 4.10), though fat body-specific Mondo has been 

shown to have no influence on starvation-induced sleep suppression (159). 

Performing sleep behavior assays with Mondo mutants may help address the potential 

regulatory role of Mondo in sleep behaviors. In addition, measuring the alteration in 

sleep patterns with Mondo mutants along with tissue-specific rescue experiments will 

help unravel whether Mondo has a function in mediating sleep behaviors. 

Overall, our RNA-seq data suggest that Mondo is expressed in the fly brain 

and has multiple extended functions beyond metabolism. However, one concern is 
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that the glucose level in the brain is not within the glucose range for the activation of 

ChREBP by high glucose (224, 225).  The way Mondo is activated in the brain 

deserves further investigation. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10. Hypothesized Mondo-dependent regulation on the genes involved in 

lipid and serine metabolism and subsequent outcome in sleep behaviors. Genes 

involved in lipid metabolism such as bmm and CG4500, as well as the genes involved 

in serine metabolism such as aay, are downregulated by Mondo in the brain during 

starvation. The graph depicts the regulation of Mondo on these genes observed in our 

analysis and the published evidence of these genes in sleep behaviors.  

 



 

127 

Chapter 5 

Perspectives 

My PhD project broadly addresses the role of Mondo from different aspects. In 

chapter 2, I have demonstrated the physiological role of Mondo on the survival rate at 

different stages of the life cycle, on different types of sugar diet and different 

nutritional states. Next, in chapter 3, the downstream effectors of Mondo-Mlx were 

identified globally with genome-wide approaches. Lastly, in chapter 4, the tissue-

specific role of Mondo was addressed in the fly brain. 

In the past decade, ChREBP has been shown as a key metabolic regulator in 

mammals (61,90,113,226). Consistent with the mammalian data, Mondo is required 

for flies to survive on a high sugar diet. Interestingly, I have also observed that 

Mondo is essential for flies to survive starvation if they were previously fed on yeast-

only (protein-based) food but not on yeast+sucrose food. This nutrient-dependent 

phenotype is the first evidence implying an extended role of Mondo in metabolic 

adaption in response to starvation. However, to study the underlying mechanisms of 

this phenotype, several works still need to be done (Fig. 5.1). First of all, this 

phenotype should be validated with CRISPR-Mondo mutant, which is believed to be a 

null Mondo mutant fly line. Second, metabolic indicators such as biomass, glucose 

levels, glycogen levels, and TG contents need to be measured to better characterize 

the metabolic profiles upon different nutritional states in the absence or presence of 

Mondo. Third, MS-based metabolomics can be performed to elucidate the overall 

alteration in metabolism profiles dependent on Mondo upon starvation.  

Besides determining the Mondo-regulated physiological outcomes in the fly, 

identification of direct target genes of Mondo-Mlx has been another major focus of 

my project. ChIP-seq data reveals that Mondo-Mlx not only regulates the genes 

involved in metabolic pathways but also directly controls a wide range of 

transcription factors, which overall constitute a large transcription cascade. 

Consistently, the laboratory of Hietakangas has discovered the regulatory role of Mlx 

on specific transcription factors genes such as sugarbabe and cbt, that are presented in 

the analysis (227). Moreover, these downstream effectors contain the canonical 
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ChoRE motif within identified Mondo binding sites (see chapter 3, Fig.3.16), which 

also supports the Mondo-dependent regulation on these genes. These downstream 

transcription factors have been shown to play different roles in several biological 

processes including sugar metabolism, development, and circadian rhythm…etc. 

Functional characterization of these effectors allows further understanding of the 

physiological role of Mondo in the fly. 

 

Figure 5.1. Measuring metabolic profiles across different time points. Our data 

suggest that flies fed on yeast-only (protein-based) food require Mondo to survive 

starvation. To study how Mondo is involved in the metabolism of amino acids upon 

starvation, general indices for energy storage and mobilization such as biomass, 

glucose levels, glycogen levels, lipid content can be measured during feeding on 

yeast-only food and yeast+sucrose food and during starvation. MS-based 

metabolomics and lipidomics can be performed to explore the Mondo-dependent 

metabolic profiles under each condition. TG: Triglycerides. 

 

In addition, in the motif searching analysis, a novel motif “GATAA” besides 

the canonical ChoRE motif was discovered to be centrally-enriched within Mondo-

Mlx binding sites (see chapter 3, Fig. 3.13B). It is known that the “GATAA” motif is 

targeted by GATA factors. Meanwhile, the “GATAA” motif is reverse complement of 

the DAF-16-associated element (DAE), CTTATCA. It has been shown that GATA 

factor and DAF-16, the homolog of FOXO transcription factor in C. elegans share 

binding sites on several metabolic genes in worms. It is interesting to learn apart from 

WT						mut	

Starvation 21 hrs Feeding  yeast 

Starvation 21 hrs Feeding  yeast + 20%sucrose 

1.  Biomass 
2.  Glucose level 
3.  Glycogen level 
4.  Lipid content (TG) level 
5.  MS-based Metabolomics & Lipodomics 

Energy Storage Energy Mobilization Survival outcome  



5. PERSPECTIVES 

129 

Mlx, whether Mondo interacts with another interacting partner such as FOXO to bind 

to genes containing this “GATAA” motif. To address this question, reporter assays in 

combination with mutated binding sites (Fig. 5.2A) or electrophoretic mobility shift 

assay (EMSA) can be used to elucidate the binding fidelity of Mondo at this motif. 

Alternatively, performing Mondo ChIP-qPCR on flies introduced with mutation at 

identified “ GATAA” sites can also validate the binding of Mondo at this specific 

motif in vivo if limitations exist in vitro assays (Fig. 5.2B). 

  

 

 

 

 

 

 

 

 

Figure 5.2 In vitro and in vivo assays allow the investigation of the interaction 

between TF and DNA binding sites. (A) Promoter/enhancer activity reporter assay 

can be performed to validate the binding of Mondo at the “GATAA” motif. (B) 

Genome editing can be introduced into the “GATAA” motif for assessing the 

contribution of the motif to the binding of Mondo. 

 

The current model suggests that the transcription activity of Mondo protein 

family is turn on by direct binding of G6P to the LID domain. To validate this model 

in the fly, CRISPR-Mondo mutants can be utilized. CRISPR-Mondo mutant needs to 

be transformed into a Mondo-GAL4 driver fly line by replacing the original cassette 

with GAL4 fragment. Moreover, to functionally characterize the protein domains of 

Mondo in vivo, one can cross GAL4 Mondo null mutant with different UAS Mondo 

mutant flies such as G6P binding deficient mutant or domain deletion mutant to see if 

Mondo mutant proteins are able to rescue the sugar intolerance phenotype.  

When deep dive into the tissue-specific function of Mondo in the fly brain, 

Mondo is shown to be involved in metabolic pathways and also have function beyond 

Mondo ? 

GATAA LUC 

Mondo ? 

Mutation LUC 

A 

B 
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metabolism such as sleep behavior. The brain-specific RNAseq data reveals that 

Mondo regulates the expression of bmm and CG4500 genes which have been shown 

to associate with sleep homeostasis response (223). In addition, Mondo seems to 

regulate aay gene which has been reported to mediate starvation-induced sleep 

suppression via regulating serine level in the fly brain (218). To investigate whether 

brain-specific Mondo controls sleep behavior, firstly, sleep behaviors of WT flies and 

mondo mutants that can be measured with a Drosophila activity monitor (DAM) 

system (Fig. 5.3). If misregulated sleep behaviors are observed with mondo mutants, a 

rescue experiment can be performed by expressing mondo or the downstream genes 

such as bmm, CG4500, and aay genes in the Mondo mutants to validate the 

involvement of Mondo in the sleep behavior.  

 

 

 

 

 

 

  

 

 

 

Figure 5.3 Graphic representation of fly activity monitor system. Sleep behavior 

can be analyzed using DAM system. WT and Mondo mutants tested on regular or 

starvation medium within the DAM to measure sleep. 

 

Last but not the least, to better understand the role of Mondo in the fly brain, 

the detailed expression pattern of Mondo in the brain needs to be characterized. It is 

of great importance to identify the expression profile, and cell types where Mondo is 

expressed in the brain. It allows speculation of the potential role of Mondo in the fly 

brain based on the characterized function of the cell types or the specific brain regions. 
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Abbreviations 
 
RBCs : red blood cells 

SGLT1: sodium/glucose cotransporter 

Gr: gustatory receptor  

GCK: glucokinase  

GLUT: glucose transporter 

GPR: G protein-coupled receptors 

GLP1: glucagon-like peptide-1 

ChREBP: carbohydrate response element binding protein  

AMPK: AMP-activated protein kinase 

GCN2: general control nonderepressible 2 

eIF2α: eukaryotic translation initiator factor 2 α  

mTORC1: mechanistic target of rapamycin complex 1 

SESN2: Sestrin2  

LRS: Leucyl-tRNA synthetase  

FLCN: Folliculin  

TXNIP: thioredoxin-interacting protein 

CCHa2: CCHamide-2  

IPCs: insulin producing cells  

Upd2: Unpaired 2  

dILPs: insulin-like peptides  

sAKH: adipokinetic hormone  

CC: Corpora cardiaca  

Dh44: diuretic hormone 44 neuropeptide  

CIF: calorie-induced secreted factor 

PI3K: phosphatidylinositol 3-kinase  

SREBP-1c: sterol regulatory element-binding transcription factor-1c  

PKB: protein kinase B  

FOXO: Forkhead box O  

InR: insulin receptor  

HNF1a: hepatocyte nuclear factor 1a  
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PDX1: pancreatic duodenal homeobox 1  

HNF4a: hepatocyte nuclear factor 4a  

ChoRE: carbohydrate response element  

PPARs: peroxisome proliferator-activated receptors  

SRE: sterol regulatory element  

ACC: acetyl-CoA carboxylase 

FAS: fatty acid synthase  

SCD1: stearoyl-CoA desaturase 1  

G6PD: glucose-6-phosphate dehydrogenase 

LXR a: liver X receptor a  

ATF4: activating transcription factor 4  

GS: glutamine synthase  

GRE: glucocorticoid response element 

bHLH/LZ : basic helix-loop-helix leucine zipper  

L-PK: L-type pyruvate kinase  

GSM: Glucose sensing module  

MCR: Mondo conserved regions 

LID: low glucose inhibitory domain 

GRACE: glucose-response activation conserved element  

DCD: cytoplasmic localization domain  

ARRDC4: arrestin domain-containing 4  

G6P: Glucose-6-phosphate   

F-2,6-BP : fructose-2,6-bisphosphate  

Xu5P : Xylulose 5-phosphate  

HAT : histone acetyltransferase  

SIK2: Salt-inducible kinase 2  

NES: nuclear export signals  

NLS: nuclear import signal  

AMP: adenosine monophosphate 

gRNAs: guiding RNA 

PPRE : proliferator response element 

SIK3: Salt-Inducible Kinase 3  
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PPP: pentose phosphate pathway  

DNL: de novo lipogenesis 

PTM: post-translational modification  

ROS: reactive oxygen species 

TG: triglycerides  

WAT: white adipose tissue 

BAT: brown adipose tissue  

T3: triiodothyronine  

ROR: RAR-related orphan receptor  

CNS: central nervous system 

FGF21: fibroblast growth factor 21  

Sb: stubble bristles  

Ser: serrated wings  

sgRNA: single strand guide RNA  

PFA: paraformaldehyde  

PBS: phosphate-buffered saline  

HDR: homology-directed repair  

HFCS: high-fructose corn syrup  

RMCE: recombinase-mediated cassette exchange  

TSS: transcription start site  

TFs: transcription factors  

PCR: polymerase chain reaction  

IPTG: isopropyl β-D-1-thiogalactopyranoside  

ChIP: chromatin immunoprecipitation  

Dm6: Drosophila genome release 6  

GO: gene ontology 

DEGs: differentially expressed genes  

RNA Pol II: RNA polymerase II  

PCA: principle component analysis 

tret1-1: trehalose transporter  

tps1: trehalose-6-phosphate synthase 1  

SOG: subesophageal ganglion  
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ILPs: insulin-like peptides 

aay: astray  

spat: serine pyruvate aminotransferase 

GAR: 5-phosphoribosyl-glycinamide 

FGAR: 5-phosphoribosyl-N-formylglycinamide  

FGAM: 5-phosphoribosyl-N-formylglycinamidine 

AIR: 5-phosphoribosyl-5-aminoimidazole 

CAIR: 5-phosphoribosyl-5-amino-imidazole-4-carboxylate 

SAICAR: 5-amino-4-imidazole-N-succinocarboxamide ribonucleotide 

AICAR: 5-amino-4-imidazolecarboxamide ribonucleotide 

FAICAR: 5-phosphoribosyl-4-carboxamide-5-formamidoimidazole 

DAE: DAF-16-associated element 

EMSA: electrophoretic mobility shift assay  

DAM: Drosophila activity monitor  
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