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Zusammenfassung

Diese Arbeit behandelt die Entwicklung einer neuartigen Methodik (Random
Forest basierte Energierekonstruktion, RF-Erec) zur Bestimmung der Energie
von sehr hochenergetischen (VHE, Energie & 50 GeV) �-Strahlen-Ereignissen,
welche mit den MAGIC-Teleskopen aufgezeichnet wurden. RF-Erec verbessert
die Energierekonstruktion von �-Strahlen und erweitert damit die Möglichkeiten
der MAGIC-Teleskope im Vergleich zur früheren Methodik der Energierekon-
struktion, die auf Lookup-Tabellen (LUTs-Erec) basiert und in den letzten
zehn Jahren verwendet wurde. Wenn die Energierekonstruktion in Bezug auf
die Energieauflösung bewertet wird, d.h. der Breite der Gaußschen Anpassung
an die Verteilung des mit der Energie normalisierten Schätzfehlers, ist RF-Erec
in einem sehr breiten Energie- und Beobachtungszenitwinkelbereich (Zd) um
einen Faktor & 2 besser, und diese Verbesserung ist bei Beobachtungen unter
hohen Zd sogar noch größer. Außerdem ist die Standardabweichung der Fehl-
verteilung wesentlich kleiner, da der lange Ausläufer, der in der LUTs-Erec zu
sehen sind, in der RF-Erec verschwindet. Dies bedeutet, dass die Energiemi-
grationsmatrix schmaler wird und die Abschätzung der Energie jedes Ereignis-
ses robuster wird. Folglich ermöglicht RF-Erec eine zuverlässige Messung des
Spektrums auch in Situationen mit niedriger Statistik, eine ereignisbezogene
Analyse wie für Untersuchungen zur Verletzungen der Lorentzinvarianz (LIV)
und eine Suche nach spektralen Anomalien. Der Vorteil ist nicht nur eine ver-
besserte Genauigkeit, sondern auch eine breitere Anwendbarkeit, wie z.B. für
Beobachtungen unter hohen Zenitwinkeln und gemeinsame morphologische und
spektrale Untersuchungen. Als Nebenprodukt meiner Forschung identifizierte
ich auch die Hauptquelle systematischer Unsicherheiten in der LUTs-Erec, legte
ihren Mechanismus dar und bestätigte, dass dieser in der RF-Erec unbedeutend
ist.

Ich bewertete die tatsächliche Leistungsverbesserung bei der Rekonstruk-
tion der Spektren für verschiedene realistische Szenarien. Einer der Fälle mit
der größten Verbesserung ist die Beobachtung einer �-Strahlenquelle mit sehr
steilem Spektrum unter hohen Zd-Winkeln.

Für ein solches Spektrum erschwert die falsche Energierekonstruktion, ge-
nauer gesagt das Verschieben von Ereignissen in Bins höherer Energie, die Spek-
tralanalyse erheblich und verringert ihre Zuverlässigkeit. Während sich die An-
zahl falsch zu richtig rekonstruierten Ereignissen bei der RF-Erec höchstens auf
einen Faktor von einigen wenigen erstreckt, dehnt er sich bei der LUTs-Erec
auf mehr als eine Größenordnung aus. Daher werden die mit LUTs-Erec ab-
geschätzten hochenergetischen Ereignisse von Überlaufereignissen dominiert,
wohingegen die RF-Erec den Anteil der echten Ereignisse bei mehr als der Hälfte
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Zusammenfassung

hält. Ich zeige, dass die RF-Erec bessere Fähigkeiten als die LUTs-Erec bei der
Abschätzung der spektralen Steigung und Amplitude hat sowie zuverlässigere
und einheitlichere Ergebnisse als andere verfügbare Strategien für die Spektral-
analyse liefert.

Ich habe diese neuartige Methodik in das Standard-Softwarepaket zur
MAGIC-Analyse (MARS) implementiert. Es steht nun der MAGIC-Kollabo-
ration zur Verfügung und wird seit dem Jahr 2020 als Teil des Standard-Daten-
analysesystems betrachtet.

Die erste wissenschaftliche Anwendung der neuartigen Energieschätzung ge-
schah auf die Daten der MAGIC-Beobachtungen des Gammastrahlenausbruchs
(GRB) GRB 180114C. Dies war, nach 15 Jahren intensiver Suche mit den
MAGIC-Teleskopen, der erste GRB, der bei VHE �-Strahlen signifikant nach-
gewiesen wurde. Das Spektrum hat die steilste Steigung über eine Energiede-
kade (von 0,2 TeV bis 2 TeV), die jemals mit MAGIC oder einem anderen
VHE �-Strahleninstrument gemessen wurde. Das steile Spektrum ist auf die
Absorption durch das extragalaktische Hintergrundlicht (EBL) zurückzuführen,
das den Strahlenfluss von �-Strahlen bei den höchsten Energien auf weniger
als ein Hundertstel reduziert. Außerdem wurde die Beobachtung bei hohem
Zd durchgeführt. Unter diesen Beobachtungsbedingungen wäre die bisherige
Methode zur Energierekonstruktion, LUTs-Erec, nicht in der Lage gewesen,
eine zuverlässige Charakterisierung der Form des VHE �-Strahlenspektrums
von GRB 190114C zu liefern. Basierend auf meiner neuartigen Methodik wur-
den die MAGIC GRB-Daten jedoch erfolgreich analysiert, was zu zwei Nature-
Verö↵entlichungen führte, die über diese historische Entdeckung berichten
(Nature, Bd. 575, p455-458 und p459-463). Die ergiebige Photonenstatistik er-
möglicht die Charakterisierung der VHE-Spektren auf kurzen Zeitskalen von nur
einer Minute. Die Analyse o↵enbarte die Existenz einer neuen Emissionskom-
ponente, die sich bis etwa 2 TeV erstreckt. Diese neue Komponente könnte als
Synchrotron-Selbst-Compton-Prozess (SSC) aus dem externen Vorwärtsschock
des GRB-Ausstroms erklärt werden, der von mehreren Theoretikern seit langem
vorhergesagt wurde. Die Daten o↵enbaren, dass die SSC-Komponente ungefähr
das gleiche zeitliche Potenzverhalten wie die Synchrotron-Komponente aufweist,
welche mit der Verlangsamung des Schocks abnimmt, und dass sie für einen be-
trächtlichen Anteil der kinetischen Energie verantwortlich ist, die im Ausstrom
des GRBs deponiert wird.

Trotz der technischen Schwierigkeiten beim Nachweis von TeV �-Strahlen
aus GRBs deuten diese Ergebnisse darauf hin, dass die SSC-Emission ein bei
GRBs üblicher Prozess sein könnte, was die Notwendigkeit impliziert, unser
Wissen über diese extremen Phänomene grundlegend zu aktualisieren.



Abstract

This thesis is about the development of a novel methodology, the Random For-
est based Energy reconstruction (RF-Erec), to determine the energy of the
very high energy (VHE, energy & 50 GeV) �-ray events detected with the
MAGIC telescopes. RF-Erec improves the energy reconstruction of �-rays, and
thereby extends the capabilities of the MAGIC telescopes, compared to the pre-
vious methodology for energy reconstruction, which is based on Look-Up-Tables
(LUTs-Erec), and has been used over the last decade.

When the energy reconstruction is evaluated in the energy resolution, which
is the width of Gaussian fit to the distribution of estimation error normalised
with energy, RF-Erec is better by a factor & 2 in a very wide range of the energies
and pointing Zenith distances (Zd). Such improvement is even larger for high
Zd observations. Moreover, the standard deviation of the error distribution is
substantially smaller, as the long tail seen in the LUTs-Erec disappears in the
RF-Erec. This means the energy migration matrix becomes tighter, and the
energy estimation of each event becomes more robust. Consequently, RF-Erec
enables a reliable spectral measurement even in situations with poor statistics,
an event-wise analysis like for Lorentz Invariance Violation (LIV) studies, and
a search for anomalies in the spectral shape. The benefit is not only a better
accuracy, but also a wider applicability, such as for observations at high Zenith
distance, and morphological together with spectral studies. As a side-product
of my studies, I also identified the major source of systematic uncertainties in
the LUTs-Erec, clarified its mechanism, and confirmed that it is insignificant in
the RF-Erec.

I evaluated the actual performance improvement in the spectrum reconstruc-
tion for di↵erent realistic scenarios. One of the cases with the biggest improve-
ment is on a high Zd observation of a �-ray source with very steep spectrum.
In such spectrum, the energy mis-reconstruction error, namely the spillover to
higher energies, complicates substantially the spectral analysis and reduces its
reliability. While spillover extends to at most factor of a few in the RF-Erec,
it extends to more than one order of magnitude in the LUTs-Erec. Therefore
the high energy events estimated using LUTs-Erec are dominated by spillover
events, but the RF-Erec keeps the fraction of genuine events to be more than
half. I show that the RF-Erec has better ability than LUTs-Erec in estimating
the slope and amplitude, as well as more reliable and consistent results among
the available strategies for spectral analysis.

I have implemented this novel methodology into the standard MAGIC Anal-
ysis and Reconstruction Software (MARS). It is now available to the MAGIC
collaboration and, starting from year 2020, regarded as part of the standard
data analysis framework.
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Abstract

The first scientific application of the novel energy estimation was on the data
from the MAGIC observations of the gamma-ray burst (GRB) GRB 190114C. It
was the first GRB detected significantly at VHE �-rays, after more than 15 years
of intense searches with the MAGIC telescopes. The spectrum has the steepest
shape over one decade in energy (from 0.2 TeV to 2 TeV) that has been ever
measured with MAGIC, and with any VHE �-ray instrument to date. The steep
spectrum is due to the absorption by the Extragalactic Background Light (EBL),
that reduces the �-ray flux by factors of several hundreds at the highest energies.
Moreover the observation was performed at high Zd. Under these observing
conditions, the previous method for energy reconstruction, LUTs-Erec, would
not have been able to provide a reliable characterization of the VHE �-ray
spectral shape from GRB 190114C. However, based on my novel methodology,
the MAGIC GRB data were analyzed successfully, leading to two Nature papers
reporting this historical discovery (Nature, vol.575, p455-458 and p459-463).
The rich photon statistics enabled the characterization of the VHE spectra on
timescales as short as 1 minute. The analysis revealed the existence of a new
emission component extending to about 2 TeV. This new component could be
explained as SSC from the external forward shock of the GRB outflow, which
has been long predicted by several theorists. The data reveal that the SSC
component has approximately the same power-law temporal behavior as the
synchrotron component that decreases as the shock decelerates, and that it
accounts for substantial amount of the kinetic energy deposited in the outflow
from the GRB.

Despite the technical di�culties in detecting TeV �-rays from GRBs, these
results indicate that the SSC emission may be a common process among GRBs,
which implies the need to substantially update our knowledge about these ex-
treme phenomena.



Chapter 1

Introduction

The sky is bright and full of stellar objects (stars and galaxies) in the optical
light. However it is also bright in other wavebands, including the high energy
band, namely the �-rays. The �-ray astronomy has become one of the major
fields for astronomy in the new era of multi-messenger astronomy. The study
of �-ray sources above ⇠30 MeV have seen a great progress since the launch of
the LAT telescope onboard the Fermi satellite in 2008. In the mean time, the
energy above ⇠50 GeV, called very high energy (VHE) �-ray, has been led by
ground-based telescopes, especially by IACTs.

Figure 1.1: Skymap of VHE �-ray sources

The locations of the VHE �-ray sources are marked with colored dots on the
skymap in a galactic coordinates expressed in Hammer-Aito↵ projection. The
background is a sky map of the �-ray flux (low to high is shown as blue to
red) measured by the LAT detector onboard Fermi satellite. The colors of dots
indicate di↵erent source types as shown in the legend. From top to bottom,
they are, pulsar wind nebulae, binary objects, active galactic nuclei, super nova
remnants, starburst galaxies, unidentified objects, and the others. Image taken
from http://tevcat.uchicago.edu/
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2 Chapter 1. Introduction

Figure 1.1 shows the map of VHE �-ray sources, superposed on the HE
(GeV) �-ray skymap from Fermi. There have been more than 200 sources
discovered at VHE �-rays, which comprise various kinds of objects for a wide
range of scales and distances, all of which are energetic phenomena. The galactic
objects, which are mostly along the galactic plane of our galaxy, are related to
the explosive events of stars like supernova remnant (SNR) and pulsar wind
nebulae (PWN), and the extra-galactic objects, which scatters throughout the
map, are mainly super massive objects as active galactic nuclei (AGN).

All of them must contain extreme environments to produce such high energy
photons. They must be extraordinary cosmic accelerators. Then the interest
is how the �-rays are radiated. A key ingredient to obtain is the SED, namely
the power distribution of the emission as a function of the photon’s energy.
Comparing the broad-band spectra together with other wavelengths measured
by various telescopes, we can clearly see that the emission from those VHE �-
ray sources are of non-thermal origin, which requires the existence of particles
in extremely high energy. In some cases, the particles are accelerated to ener-
gies millions of times higher than those that can be produced in Earth-based
laboratories.

Figure 1.2 shows two examples of such non-thermal emissions. The first
spectrum is from an AGN named Markarian 501 (Mrk 501), and the second
from a SNR named Cassiopeia-A (CasA). By investigating the �-ray spectra
we can unravel the extreme processes that occur in these cosmic sources. More
specifically, the spectral shapes, e.g. spectral slope, spectral break, and cut-
o↵, bring information about the emission mechanisms, which relate to di↵erent
parent particle populations and their environments. Typically, the mechanisms
are identified to be leptonic interactions, in which VHE �-rays are produced
through inverse Compton boosting of ambient photons, or to be hadronic in-
teractions, in which the decay of neutral pions produced VHE �-rays. In the
two examples mentioned above, the �-ray emission has been identified to have a
leptonic origin (electrons play a major role) for Mrk501, and a hadronic origin
(protons play a major role) for CasA. Moreover, the �-ray spectral shape also
reflects the parent particles’ energy distribution, the magnetic field, the ambient
medium, and the speed of the accelerator, namely the shock wave. And in some
cases, the �-ray spectra have a temporal evolution or spatial morphology, which
provide additional dimensions to be explored. Therefore the energy distribu-
tion of �-rays is a crucial tool to understand the non-thermal emission processes
occurring in the extraordinary cosmic accelerators.

We can also study the environment where the radiation is propagated,
through the interactions of the �-rays with the ambient medium. The most
important example is the measurement of the di↵use extragalactic background
light through the energy-dependent absorption of the �-rays that travel to Earth
from sources located at cosmological distances. Additionally, the �-rays can also
be used to perform a wide range of fundamental physics investigations. Rele-
vant examples of these applications are the searches for new particles beyond
the Standard Model, e.g., the elusive Dark Matter (DM) and the Axion [109,
115]. As shown in figure 1.3, the energy distribution plays an essential role for
these studies. Moreover, �-rays can also be used to perform tests of Lorentz
Invariance Violation (LIV), which depend on the energy and the arrival time of
the detected photons [14, 83].

The work presented in this thesis is dedicated to the improvement of the en-
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Figure 1.2: Broadband spectrum dominated by non-thermal emission from �-ray
sources

Top: The broadband emission spectrum of Mrk 501, taken simultaneously by
multiple telescopes. The red bow-tie in the figure corresponds to the 68% con-
tainment of the power-law fit to the average Fermi-LAT spectrum (photon index
1.74 ± 0.05). The dotted black curve denotes the fit to the starlight emission of
the host galaxy assuming a template of a luminous elliptical galaxy. The black
curves and red dot-dashed curves are the two example model spectra with di↵er-
ent model parameters. The model is leptonic and both consist of two emission
components, synchrotron and synchrotron-self-compton (SSC). Figure extracted
from [5].
Bottom: The broadband emission spectrum of CasA. The di↵erent lines show
the results of fitting the measured energy fluxes using naima (https://github.
com/zblz/naima) and assuming a leptonic or a hadronic origin of the GeV and
TeV emission. The hadronic origin was successfully confirmed by the fit to the
spectral data points, which preferred exponential cuto↵ over power law at the
highest energy. Figure extracted from [12].

https://github.com/zblz/naima
https://github.com/zblz/naima
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Figure 1.3: The expected e↵ect by Dark Matter and Axion on the observed
spectrum of �-ray

Top: Simulation of the �-ray spectrum for a benchmark model of �-ray emis-
sion from Dark Matter (DM). The model represents a typical region in the
supersymmetric parameter space where internal-bremsstrahlung e↵ect becomes
important. The horizontal axis is the �-ray energy in the unit of the assumed
mass of DM m�, where m� ⇠ 1.4 TeV. Figure extracted from [37].
Bottom: Simulation of the observation of one �-ray source at z = 0.1, with
the e↵ect of �-ALP mixing. Figure extracted from [115].
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ergy estimation of the �-rays in the data from the Major Atmospheric Gamma-
ray Imaging Cherenkov telescope system (MAGIC). MAGIC is a worldwide
leading instrument for �-ray astronomy in the energy range from ⇠ 25 GeV to
beyond 100 TeV. It is a system of two IACTs with a 17 m diameter parabolic
reflector. The two telescopes are used to record stereoscopic images with the
Cherenkov radiation from the relativistic secondary charged particles from the
extensive air showers (EAS) induced by the VHE �-rays and cosmic rays pen-
etrating the Earth atmosphere. From the characteristics of the images, it is
possible to estimate the properties of the primary particle from each EAS event,
such as the particle species (�-ray or cosmic ray), the incoming direction and
the energy.



6 Chapter 1. Introduction



Chapter 2

Detection of VHE �-rays

The atmosphere is opaque to VHE �-rays and prevents them to arrive at ground
level. However, the detection from ground is possible by measuring a cascade
of numerous particles produced during the absorption. The cascade is called
”Extensive Air Shower (EAS)” and it is common process for a high-energy
particle to impinge the atmosphere. Among various techniques to measure the
EAS, this study focuses on the ”Imaging Atmospheric Cherenkov Telescope
(IACT)”, which is the most successful technique to detect VHE �-rays. The
IACT technique takes advantage of the Cherenkov radiation from the cascaded
particles in EAS, which makes the shape of EAS visible.

This chapter introduces the detection method of VHE �-rays in the following
steps. First of all, since all the processes are governed by the atmosphere, the
related characteristics of atmosphere are introduced in section 2.1. Section 2.2
explains the properties of EAS, and the radiation from EAS will be followed
by section 2.3. In the last section, section 2.4, the IACT technique will be
described.

2.1 Atmosphere

Since the Extensive Air Shower (EAS) occurs in the atmosphere, it is important
to understand the atmospheric properties that a↵ect the development of the
shower. In addition, the attenuation and scattering of light in the atmosphere
are also important to IACT, which measures the radiation from EAS.

2.1.1 Density profile

Although the actual atmosphere is a complex turbulent system, it is still ad-
equate to simplify the profile for the development of EAS. The atmosphere
extends up to the altitude of 100 km1 and composed of the four primary layers,
which are, from bottom on the ground to top, the troposphere, stratosphere,
mesosphere, and thermosphere. The lowest part, troposphere, is of greatest im-
portance to EAS development, as well as to the radiation and the propagation of
Cherenkov light, because three quarters of the atmosphere’s mass resides within

1 This is named as Karman line and is commonly used to define the boundary between
Earth’s atmosphere and outer space.

7
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the troposphere. The extension is from sea level to around 11 km height, and
the density profile follows a exponential function,

⇢(h) = ⇢s exp(�h/H0) (2.1.1)

where H0 is called scale height and ⇢s is the density at sea level. However
the density profile varies mainly depending on the locations and the seasons.
Figure 2.1 shows how well the density profile in case of La Palma follows the ex-
ponential law [56]. The number density n(h) instead of the density ⇢(h) is mea-
sured and the vertical axis is the ratio to the exponential profile ns exp(h/H0),
where ns = 2.55 · 1019 cm�3 is the U.S. Standard Atmosphere density and
H0 = 9.5 km is an average scale height. The variation of the atmosphere profile
causes a systematic e↵ect in the measurement of �-rays.
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Figure 2.1: Seasonal change of atmospheric density profile

Density profiles of 3-years (2013 - 2015) Global Data Assimilation System2 now-
casts at 21h, 0h, 3h and 6h UTC. The dark blue, red and green points display an
“average Winter”, “average Spring/Autumn” and “average Summer” scenario,
respectively3. Error bars represent the standard deviation, while the light blue
lines show the peak-to-peak di↵erences for the entire data set. Figure extracted
from [56] and modified.

2.1.2 Slant depth

When a high-energy particle is absorbed in matter, the absorption process pro-
gresses as the amount of matter it passes. The path of the particle varies



2.1. Atmosphere 9

dramatically in the density from the almost absolute emptiness of extragalactic
space to the relative clutter of our atmosphere, to the extreme density of our
rocky Earth or even lead shielding. Therefore, measure of the path length is
expressed as the atmospheric depth along a line inclined to the vertical. This is
called the ”atmospheric slant depth”. In this thesis, the slant depth is denoted
as X. For the inclined paths at the Zenith distance ✓z less than 75�, where the
e↵ect of the curvature of the Earth is small, the slant depth as a function of the
height h can be approximated to be

X(h, ✓z) = Xs exp(�h/H0)/ cos ✓z (2.1.2)

where Xs = 1033 g·cm�2 is the vertical atmospheric depth at sea level. The
standard values of slant depth in vertical path (vertical depth) are shown in
table 2.1.

Table 2.1: Atmospheric parameters

altitude vertical depth Cherenkov Cherenkov
(km) (g/cm2) threshold (MeV) angle (˝)

40 3 386 0.076
30 11.8 176 0.17
20 55.8 80 0.36
15 123 54 0.54
10 269 37 0.79
5 550 28 1.05
3 715 25 1.17
1.5 862 23 1.26
0.5 974 22 1.33
0 1032 21 1.36

Atmospheric parameters of relevance to Cherenkov light production by electrons.
The parameters are given for the US standard atmosphere, measured relative to
sea level. Table extracted from [52].

2.1.3 Atmospheric absorption of light

The absorption of light by the atmosphere is due to di↵erent attenuation and
scattering processes, and their strengths are dependent on the wavelength of the
light to absorb. Figure 2.2 shows the transmissions due to individual absorption
processes, together with the total transmission.

The wavelength below 242 nm su↵ers from the disassociation of normal oxy-
gen (O2). At wavelengths of less than 290 nm the ozone component of the
atmosphere strongly absorbs ultraviolet [102]. Wavelengths larger than 800 nm

2 https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/
global-data-assimilation-system-gdas

3 The seasons indicated here are for the following months; Winter is from January to
April, Spring is May and June, Autumn is October and November, Summer is July, August
and September.

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-data-assimilation-system-gdas
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-data-assimilation-system-gdas
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Figure 2.2: The atmospheric transmission

Direct transmission of light from space (100 km altitude) along a vertical path
to an altitude of 2.2 km (the same as that of MAGIC telescopes) is calculated
with MODTRAN. Together with the total transmission (black), the colored lines
indicate the transmissions due to atmospheric absorption by ozone absorption
(blue), molecular scattering (Rayleigh scattering, green) and aerosol scattering
(Mie scattering, red). The total transmission for the light from 10 km of altitude
is also shown as the grey dashed line. Figure extracted from [27] and modified
by [50].

(infrared) are usually absorbed by the H2O and CO2 molecules in the air. In
the region between them, the primary mechanism for attenuation is scattering
by the atmospheric molecules themselves (Rayleigh scattering) and by natural
and man-made aerosol particles (Mie scattering).

The cross section of Rayleigh scattering is proportional to �
�4, thus the

shorter part of the spectrum is especially a↵ected by the scattering. Mie scat-
tering is quite complex. In general it is not possible to calculate the total aerosol
extinction coe�cient analytically. Moreover, aerosol scattering depends on par-
ticle composition, which can change quite rapidly depending on the wind and
weather conditions [6]. A much more realistic model of aerosol vertical struc-
ture, aerosol properties plus all the relevant molecular absorption and scattering
is included in the MODTRAN program [27]. When good visibility (40 km), the
contribution of Mie scattering is less than 20% of Rayleigh scattering [102].

2.2 Extensive Air Shower (EAS)

EAS is common phenomenon to all the high-energy particles (cosmic rays or
�-rays)4 impinging the atmosphere. When a high energy particle (primary par-

4 High-energy particles with intrinsic mass are known as ”cosmic” rays, while photons,
which are quanta of electromagnetic radiation (and so have no intrinsic mass) are known by
their common names, such as �-rays or X-rays, depending on their photon energy.
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ticle) enters the atmosphere, the interaction of the primary particle with atmo-
spheric matter create new particles (secondary particles). The interaction will
repeat also to the secondary particles, as long as the energy of the particle is
su�ciently high (the lowest energy called critical energy). In this way a cas-
cade of particles will be formed, and the repetitive interaction creates numerous
particles. In addition to the deceleration via ionization, the multiplication of
secondary particles reduces individual energies and they are then stopped in the
matter and absorbed.

While the EAS from VHE �-ray is the target to measure in this study, the
EAS is common phenomenon to all the high-energy particles impinging the at-
mosphere. These non-�-ray showers produce a very high level of background
events that mask the rare �-ray showers that account for ⌧ 1 % of all showers,
making it very di�cult to filter them out. Therefore it is essential to under-
stand the properties of EAS to discriminate the EAS between di↵erent primary
particles. The EAS is classified to two distinctive types. One is called electro-
magnetic shower, whose primary particle is a photon (VHE �-ray) or a leptonic
particle like electron. The other is called hadronic shower, whose primary par-
ticle is a hadronic particle like a nucleon or a heavier nucleus, especially proton
and helium.

Hadronic showers cause the main background events in the detection of VHE
�-rays. However, hadronic showers have di↵erent properties from electromag-
netic showers, and therefore it is possible to mostly remove by taking advantages
of the di↵erences. In addition, the electromagnetic showers are geometrically
simple and thus helps the direction reconstruction and the energy estimation of
primary particle.

Following the motivations above, the properties of electromagnetic show-
ers and hadronic showers will be elaborated separately in section 2.2.1 and
section 2.2.2.

2.2.1 Electromagnetic Shower

Dominant processes

The dominant interaction processes in an electromagnetic shower are brems-
strahlung and pair production5. Bremsstrahlung is radiative loss process for
electrons and dominant above Ec = 87MeV in the atmosphere. The loss in-
creases almost in proportion to energy for E � Ec (figure 2.3a), which is char-
acterised as

dEe(X)

dX
= � 1

X0

Ee(X) (2.2.1)

where X0 is called the radiation length, 37 g/cm2 for electrons in air.
Pair production is the process where a photon vanishes and in its place an

electron and a positron appear as a matter-antimatter pair of particles. This is
possible in photon-matter collisions for the photon energy above
2me = 1.022 MeV, and becomes dominant above ⇠ 10 MeV. In the case of high
energy limit, the pair-production probability reaches constant value ⇠ 7/9 thus

5 Note that �-ray-induced showers might contain muons, although the number of muons
in a �-ray-induced shower is much smaller than that in a hadron-induced shower.
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the pair-production cross section per target air nucleus is

��!e+e� ⇠ 7

9

A

NAX0

(2.2.2)

where A is the averaged mass number in the air and NA is Avogadro number.
[52] The mean free path ��!e+e� is

��!e+e� =
1

n�
=

A

NA

· 9

7

NAX0

A
=

9

7
X0 (2.2.3)

Therefore in pair creation, the energy transfer of losing roughly half energy
occurs after traveling 9

7
X0, which can be regarded as exponential energy loss at

similar rate to bremsstrahlung.

Development of the cascade

In case of a �-ray entering the atmosphere, the first interaction is predominantly
pair production. It occurs typically at altitude around 20 km for a vertical
shower, where the mean free path eq.(2.2.3) corresponds to the altitude as shown
in table 2.1.

The electron-positron pair then produce additional photons through brems-
strahlung, some of which are still high energy that can produce electron-positron
pair. This cycle repeats with the total number of particles in the shower increas-
ing exponentially. However, as the average energy of each particle decreases due
to the increase of number of particles, the particles dissipate their energy by ion-
ization and excitation rather than by the generation of more shower particles.
Eventually the number of particles will reach the maximum and this point is
known as the “shower maximum” (The correspondent vertical height from the
ground is called MaxHeight). Afterwards the number of particles decreases and
the shower finishes.

Longitudinal distribution

The longitudinal distribution of the secondary particles is one of the most dis-
tinctive property to characterise an EAS. Since electromagnetic showers are
governed by the two interactions with exponential energy losses at similar rate,
the cascade process can be illustrated in a simple binomial energy transfer model
called Heitler model.

In the sketch shown in figure 2.4, each line segment can be thought of as a
particle or as a packet of energy. At each vertex the energy on a line is split
in two. Branching occurs after one collision length � for either pair production
or bremsstrahlung. The number of particles at the depth of shower X develops
as N(X) = 2X/�. The multiplication of the number of particles continues until
they can not produce �-rays any more at which point the energy falls below
the critical energy for bremsstrahlung Ec. When the multiplication reaches the
shower maximum Xmax, the number of particles is N(Xmax) = E0/Ec. On
the other hand, the shower maximum in this model can also be expressed as
a function of the primary energy E0, and is Xmax = �

ln(E0/Ec)

ln 2
. The two basic

features we obtain are

Nmax / E0 and Xmax / ln(E0) (2.2.4)
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Figure 2.3: Electron and photon cross sections from various processes

(a)Electron cross section and energy loss in Lead, as a function of energy. Figure
extracted from [106].

(b) Total photon cross section in Cu, as a function of energy. Figure extracted
from [68].
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15.1 Basic features of cascades 303

Figure 15.1 Simple branching model of an air shower.

The splitting continues until EpXq “ Ec, a critical energy for the splitting process.
After this the “particles” only lose energy, get absorbed or decay (depending again
on what the physics is). For electromagnetic cascades in air the critical energy is
Ec « 87 MeV.

The number of particles at shower maximum in this model is

NpXmaxq “ E0{Ec, (15.1)

and

Xmax “ λ
lnpE0{Ecq

ln 2
. (15.2)

The basic features of Eqs. 15.1 and 15.2 hold for high-energy electromagnetic
cascades and also, approximately, for hadronic cascades; namely

Nmax 9 E0 and Xmax 9 lnpE0q. (15.3)

15.1.2 General form of solution

In general, the particle content of any air shower (number of particles of each
species as a function of E and X ) is given by the solution of the coupled cas-
cade equations (5.1) subject to the delta function boundary condition (Eq. 5.9). If
the transfer functions, Fji scale (Eq. 5.4), then there is no dimensional quantity in
the problem and the dimensionless quantity, Ei Ni pEi , E0, Xq must be a function
only of the ratio ξi ” Ei {E0. Let us call this dimensionless function

Fi pξi , Xq ” Ei Ni pEi , E0, Xq. (15.4)

The yield function, Fi , gives the number of particles of type i per logarithmic
interval of fractional energy. The yield depends only on the ratio of the particle
energy, Ei , to the total energy, E0, of the air shower. This result holds only to the
extent that scaling is valid and only when decay and continuous energy loss can be
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�	���&(����'�'#�'�����!�%������#%��'�%!&�#��(&����)�� �� ���'

Figure 2.4: A simple model for an electromagnetic shower.

Image taken from [52].

Although the model is extremely simple, these two qualitative features are
applicable to the development of an electromagnetic shower, as well as to the
electromagnetic cascade parts of a hadronic shower [104].

The expected first interaction point would not be di↵erent because the pho-
ton cross section to pair creation is almost flat with energy [68]. On the other
hand, the simple model for the electromagnetic shower shows the development
of shower development dependent on the primary energy, where the higher the
energy, the deeper the shower, with the depth roughly following log

2
(E/E0).

Thus the MaxHeight lowers as the energy is higher on average.
There are detailed mathematical treatments of the electromagnetic shower

development, as the solution of transport equations taking into account particle
loss as well as particle production. The model best described is proposed by
Rossi and Greisen [95]6.

The development of the shower from �-ray with primary energy E0 can be
denoted in terms of the number of electrons and positrons Ne(t) as

Ne(t) ⇠ 0.31p
ln(E0/Ec exp

⇥
t(1 � 3

2
ln s)

⇤

s =
3t

t + 2 ln(E0/Ec)
(2.2.5)

where s is called the age parameter, the shower maximum occurs for s = 1 and
t is the depth of shower in the unit of radiation length X0 = 37g/cm2, namely,
t = X(g/cm2)/X0. Examples of the shower development from various initial
energy are shown in figure 2.5. The shower extends ⇠ 10 km longitudinally, and
the extension is longer with higher energy. Since the pair creation cross section
is constant independent from the energy for ' 1 GeV, the higher energy shower
grows deeper in the atmosphere, while the expected first interaction point stays
the same. Therefore MaxHeight (the height of shower maximum) is on average

6 They propose two approximate solutions, Approximation A and Approximation B. Ap-
proximation A neglects the electron energy loss in ionization. Approximation B, which is
introduced here, accounts for the ionization loss and thus depicts the development dependent
on the primary energy.
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Figure 2.5: Development of photon-initiated showers with di↵erent initial en-
ergy.

The lines in the di↵erent colors depict the development of the showers with
various initial energy E0, with the dots on the lines indicating shower maximum
(s = 1). The horizontal axis is the depth of the shower t, in the unit of the
radiation length X0. The vertical lines show the depth of the showers at 2200
m a.s.l.(altitude of MAGIC telescopes) and sea level. The shower is expected to
start at the same height, as the cross section of the pair creation for the incoming
�-ray is constant regardless of the initial energy.

related to the energy of initial �-ray. Given that the measurement of the shower
maximum is essential to observation of EAS, it is possible to observe the shower
with the energy until about 100 TeV when it is observed towards zenith, because
the shower maximum is at ⇠ 5 km above sea level and visible from ground level.

In reality, the longitudinal distribution su↵ers from fluctuation. The fluctu-
ation of the longitudinal profile in ln Ne is

�(lnNe(s)) ⇠ �Ne(s)

Ne(s)
⇠ 9

14
(s � 1 � 3 ln s) (2.2.6)

While the fluctuations in shower size are small near the shower maximum, the
growing and decaying phase of shower would show large fluctuations.

In addition to the fluctuation in the development in atmosphere, the fluc-
tuation also comes from the first interaction point. The fluctuation of shower
profiles su↵ering from both e↵ects is well depicted when it is compared in several
showers simulated by Monte Carlo study, as shown in figure 2.6. The number
of secondary particles are very di↵erent between the showers at depths smaller
or larger than the shower maximum point. However, the number of secondary
particles stays similar at their shower maximums even taking into account the
fluctuated interaction points.
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Figure 2.6: Fluctuations in the longitudinal development of EAS

Number of electrons (size) with energy above 1 GeV as a function of the shower
depth in the unit of the radiation length X0, in a shower from primary photon of
energy 105 GeV. The lines show the profiles of 10 examples of individual showers
and the squares show the average profile from 100 showers. At the maximum of
the averaged shower profile, all the example profiles except for one take about the
same size. On the other hand, the sizes are very di↵erent between the showers
at depths smaller than 5 and greater than 15 radiation lengths. Figure extracted
from [104].

Lateral distribution

The shower develops along the primary �-ray direction, however the particles
created in the shower have lateral distribution not only because of the opening
angles in pair creation and bremsstrahlung, but mainly because of multiple
Coulomb scattering. The lateral spread of a shower is determined largely by
Coulomb scattering of the many low-energy electrons [106] and is characterised
by the Molière unit, which is the spread of the particle with the energy Ec in a
shower.

XM =
21MeV

Ec

X0 ⇠ 9.3g/cm2

RM = XM/⇢ (2.2.7)

Where Molière radius is RM , converted from Molière unit XM through the
density in the atmosphere ⇢. RM ⇠ 80 m at sea level and RM ⇠ 200 m at
the position of shower maximum (for a vertical 1 TeV shower). In case of an
electromagnetic shower, the development has been studied both by an analytical
approach to solve the coupled cascade equations by Nishimura and Kamata [90]
and by empirical fits to Monte Carlo simulations [10]. The full function ⇢e(r),
the density of electrons and positrons as a function of the radial distance r

from shower axis, is known as the Nishimura–Kamata–Greisen (NKG) lateral
distribution function and is given by [102]
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where �(x) is a gamma function.
In case of 1 TeV photon, the lateral distribution at shower maximum s = 1

is figure 2.7. The figure shows electrons are condensed within ⇠ 10 m of radial
distance from shower axis. The shower is highly collimated along the incident
direction of the primary particle.

Figure 2.7: Lateral distribution of an electromagnetic shower from 1 TeV photon

The electron density as a function of the radial distance from the shower axis,
for an air shower of 1 TeV photon, at the position of shower maximum (s = 1,
RM = 200 m).

2.2.2 Hadronic Shower

The hadronic shower has the hadronic cascade as the parent process that is
chiefly responsible for the energy transport within a shower. The hadronic
cascade produces various kinds of primary fragments and mesonic particles,
which further decay into di↵erent particles. Thus the development of a hadronic
shower is quite complex with many kinds of secondary particles and the structure
of the cascade largely fluctuates.

In this study, the hadronic shower needs to be understood in the aspect of
background events for the VHE �-ray detection. The development of hadronic
shower is focused especially on the di↵erence of morphology compared to the
electromagnetic shower. And the other properties related to VHE �-ray detec-
tion are mentioned as well.

Development of the cascade

Figure 2.8 is the sketch of the main processes in the hadronic shower.
When a hadronic high-energy particle enters the Earth’s atmosphere, it in-

teracts with a nucleus in the air (mainly nitrogen, oxygen, and argon) via strong
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force, at a typical height of 15 to 35 km and initiate the successive collisions pro-
ducing a shower of secondary particles. The productions are not only baryons
like protons and neutrons, but also mesons, great majority of which are charged
and neutral pions and partially kaons (K mesons). The neutral pions immedi-
ately decay mostly into photons7

⇡
0 ! 2� (2.2.9)

and the daughter �-rays start electromagnetic cascades practically at the in-
teraction point, which are called sub-showers. The charged pions decay in the
following way.

⇡
+ ! µ

+ + ⌫µ (2.2.10)

⇡
� ! µ

� + ⌫̄µ (2.2.11)

Due to the longer life time compared to neutral pions, the charged pions above
the critical energy of E

⇡
c = 20 GeV 8 continue as part of the hadronic cascade,

contributing to the further interaction [46, 59, 78]. High energy proton continues
the hadronic cascade until the energy of the projectiles falls below the one-pion
threshold of ⇠ 280 MeV. The atmosphere has the thickness as a calorimeter for
the collisions with a vertical thickness of more than 11 interaction lengths for
hadronic cascades and 26 radiation lengths for electromagnetic cascades [78].

The processes involved are much more complicated than an electromagnetic
shower, therefore the shower profile is also more fluctuated and complicated, as
shown in figure 2.9.

Approximation of the development

The complexity of the hadronic shower process can be simplified in the concept
of the superposition of the multiple layers of cascades; the primary hadronic
cascade is overlapped by pion cascades and electromagnetic cascades generated
from the neutral pions from the hadronic cascades, as shown in figure 2.8.

In the simplified picture, the development of the hadronic skeleton of the
shower is carried by hadronic component consisting of various kinds of nucleons
and mesons, and the skeleton works as a source of pions, which are the lightest
hadron thus dominant production9. The pions are traced in the model as they
are the sources of electromagnetic sub-showers and muons component. The
production rate is ⇡

+ : ⇡
� : ⇡

0 = 1 : 1 : 1, and the model assumes that the
pions are produced after each interaction length by 2N⇡ of charged pions and
N⇡ of neutral pions, where 3N⇡ is pion multiplicity. For pion energy between
1 GeV and 10 TeV a charged multiplicity 2N⇡ ⇠ 10.

The charged pions continue as part of the hadronic cascade, contributing to
the further interaction before their decay, as long as their energy is above the

7 Neutral pions decay immediately into two �-rays unless their energy is extremely high.
The neutral pion decay length is ld = �⇡0 ⇥ 2.51⇥ 10�6 cm.

8 Charged pions have a much longer decay length ld = �⇡± ⇥ 780 cm - they can either
decay or re-interact. This interaction/decay competition of all charged mesons determines the
details of the development of hadronic showers. High energy charged pions, with their large
decay length because of time dilation, almost exclusively interact. Low energy pions decay
into muons and muon neutrinos.

9 The second dominant production is kaons, but the ratio of kaons to pions is an asymptotic
value of ⇠ 0.1 [59].
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Figure 2.8: Development of a hadronic shower in the atmosphere

A sketch of hadronic interactions (top, image taken from http://www.
telescopearray.org) and simplified model of hadronic air shower (bottom,
Figure extracted from [78]).

http://www.telescopearray.org
http://www.telescopearray.org
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Figure 2.9: Variability of shower developments for primary �-rays and protons

Illustration of the intrinsic variability of shower development, showing 10 indi-
vidual vertical shower simulations induced from �-rays in top panel and protons
in the bottom panel. The energy of primary particles is 300 GeV. The showers
are shown at the interval of 1 km next to each other. Figure extracted from [89].
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critical energy E
⇡
c . Interacting charged pions generate again two-thirds charged

and one-third neutral pions [104]. The neutral pions initiate sub-showers where
Heitler’s model can be adapted [78].

The discussion above can also be applied to heavier primary particles. One
can consider a nucleus of mass A approximately as A independent nucleons,
because the typical interaction energy is much larger than binding energy of
5 MeV. In this superposition model, a nucleus with mass A and energy E0 is
considered as A independent nucleons with energy Eh = E0/A. [52]

Longitudinal and lateral distribution

The longitudinal development of a hadronic shower is more complex than that
of a pure electromagnetic shower, because there are many more factors to a↵ect
it significantly.

For discussing the first interaction point, the behavior is di↵erent depend-
ing on the mass (species) of the primary. The hadronic interaction length is
70 g·cm�2 for protons and approximately 15 g·cm�2 for iron nuclei at PeV en-
ergies [102]. Therefore, the proton interaction length is longer compared to �-ray
and the first interaction point is lower in altitude. Correspondingly the first in-
teraction point fluctuates more. On the other hand, a hadronic shower from
heavier nuclei has a first interaction at higher altitude, with less fluctuation.

Subsequent development depends also on the primary particle. In proton
case, the development is longer than heavier nucleon, because the behavior of
a nucleus with mass number A is like the superposition of A showers with A

times lower energy, as discussed above.
Comparing the maximum height of proton showers with that of an electro-

magnetic shower, they are comparable if the primary energies are the same. It
would be explained by the net e↵ect from the interaction length and the multi-
plicity. The interaction lengths of the participating squadrons are longer than
the radiation length. The nucleon and pion interaction lengths in air are energy
dependent, but good approximate numbers at energy below 105 GeV are 85
and 120 g·cm�2, respectively. Therefore the hadronic component of the shower
carries a large fraction of the primary particle energy deeper than electromag-
netic cascade would. On the other hand, the secondary particles multiplicity in
hadronic interactions is higher than the e↵ective multiplicity of two secondaries
in electromagnetic interactions and this faster energy dissipation compensates
for the longer interaction lengths [104].

At atmospheric depths beyond shower maximum, there is little influence
from the hadronic core, and the shower behaves like an electromagnetic cascade.
The remaining particles continue to decay and the detectable particles on the
ground will be mostly muons, which live long and many of them reach on the
ground. The e↵ect of muon cannot be neglected for ground-based detectors for
EAS, and it is also the case for this study. It will be discussed in section 2.4.4.

Lateral distribution

In a hadronic shower the secondary particles created via hadronic interaction
acquire large transverse momentum. Typically, the transverse momentum is
almost energy-independent, p? ⇠ 350 � 400 MeV, leading to a large angle of
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low energy hadrons relative to the shower axis. In contrast, most of the electro-
magnetic particles (i.e. electrons and positrons) are in the cascades initiated by
high-energy ⇡

0 nearly parallel to the hadronic core. Thus the lateral distribution
of muon, which is produced mainly in the decay of low-energy pions, is wider
than that of electro-magnetic particles [52].

2.3 Radiation from EAS

The charged particles of an EAS generate light due to two physical processes;
namely, the Cherenkov e↵ect and the fluorescence emission [88]. It means we
can ”see” the image of EAS through the emission from the shower. Because
of the di↵erent emission mechanisms, the ways to make use of them are also
di↵erent. In this study, the Cherenkov radiation is focused, and this section
describes mainly this radiation and its e↵ects, for the detection of �-rays with
the ground-based observations.

2.3.1 Cherenkov Radiation

Cherenkov radiation occurs when charged particles traverse a dielectric medium
of refractive index n with a velocity v = �c larger than the local phase velocity
of light c/n. Figure 2.10 shows a sketch of the cases of if radiation occurs or not,
depending on the velocity. If the velocity of the charged particle is below c/n,
the polarization appearing near the track in the dielectric matter disappears
immediately, thus the interference of dipole radiations from individual particles
remains destructive. However, when v > c/n, the phase interference becomes
constructive and coherence occurs.

The interference can be interpreted using Huygens law, in which the con-
structive interference appears as the superposition of the wave front that make
a line on which the phase of the individual dipole radiation is equal. Therefore
the propagation of the radiation has directionality at the certain angle with
respect to the direction of the charged particle, which results in conical shape
of the radiation. The angle of the direction with respect to the trajectory of the
charged particle, ✓c, is

cos ✓c =
1

n�

therefore, 1 > cos ✓c >
1

n
(2.3.1)

✓c is called Cherenkov angle. The maximum of the angle corresponds to the
upper limit of the velocity v ! c and the minimum ✓c = 0 corresponds to the
minimum speed to emit Cherenkov radiation dependent on the refractive index
n, called Cherenkov threshold. The typical Cherenkov angle and the Cherenkov
threshold at various altitude in atmosphere is in table 2.1.



2.3. Radiation from EAS 23

Figure 2.10: Cherenkov radiation

Top: The emission of Cherenkov light can be explained by investigating the
polarization of the surrounding medium. (a) If a charged particle travels at a
speed below the speed of light in the medium, a symmetric polarization occurs,
and thus the dipole fields add up destructively. (b) If the particle moves at
superluminal speed, the polarization becomes asymmetric and a resulting elec-
tromagnetic field forms. (c) Consequently, the electromagnetic field is enhanced
by interference and the Cherenkov light wavefront is formed.
Bottom: Huygens’ construction for determining the direction, in which the
wavefront of the Cherenkov radiation propagates. In this way, Cherenkov light
is interpreted as ”shock wave” being produced by the particle moving at superlu-
minal motion - in analogy to the well-known phenomenon of a supersonic shock
front. A cone is formed, since only at this geometrical position the wavefronts
interfere constructive.
Image taken from [65].
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2.3.2 Light Pool

The directionality of Cherenkov radiation from EAS results in the limitation of
the region to illuminate on the ground by the Cherenkov light. The illuminated
region is called ”light pool”, as the examples shown in figure 2.11. The con-
centration of the Cherenkov photons within the light pool enhances the photon
density in the illuminated region and is a big advantage to the measurement of
EAS for better sensitivity.

Figure 2.11: Examples of Cherenkov light pool

The two panels show the distribution of the Cherenkov photon density on the
ground for MC simulated vertical showers initiated from a 100 GeV �-ray (left)
and a 300 GeV proton (right). Figure provided by Chai Yating.

A light pool is formed from an electromagnetic cascade, thus a �-ray forms a
single light pool. On the other hand a hadronic shower typically initiates multi-
ple electromagnetic subshowers and forms multiple light pools. In addition, the
hadronic component leaves muons which also form light pools in a di↵erent way
(discussed in section 2.4.4). In an electromagnetic cascade, the Cherenkov pho-
tons are emitted from a number of electrons and positrons which have di↵erent
energies thus di↵erent Cherenkov angles and have slightly di↵erent directions
due to multiple scattering. Thus the photons emitted at an altitude make a
disk of photons, expanding at the maximum Cherenkov angle as they travel
downwards.

In the disk-like distribution of a light pool, there is a ’hump’ at the edge
(see figure 2.14). This comes from the varying refractive index dependent on
altitude, as already shown in table 2.1. According to the Gladstone-Dale Law
[105], the reflactive index n(h) is a function of the local air density

n(h) = 1 + (n(0) � 1)
⇢(h)

⇢(0)
(2.3.2)

where n(0) = 1.000283 [52] is the refractive index at sea level, and ⇢(h)

⇢(0)
is
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the ratio of air mass densities at the height h and at sea level, which can be
calculated from a simple atmospheric model eq.(2.1.1). Correspondingly the
Cherenkov angle changes and the photons from di↵erent altitude arrives on the
ground after tracing di↵erent opening angles. The atmospheric parameters and
the di↵erent trajectories of the outermost Cherenkov photons10 are shown in
figure 2.12. The figure shows that the region close to the edge is dense with the
di↵erent trajectories, indicating accumulation of photons.

The figure also shows that a position on the ground can be illuminated by
the photons from all the altitudes if it is close radial distance to the shower axis,
while the farthest position is illuminated by the photons from only upper part
of the shower.

10 The upper limit of Cherenkov angle at the given height, assuming � = 1.
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Figure 2.12: Atmospheric properties and characteristics of Cherenkov radiation

Left: The atmospheric parameters at di↵erent altitudes. From top to bottom,
vertical depth, refractive index and Cherenkov angle. The points are the values
shown in table 2.1, while the curves are calculated from eq.(2.1.1), eq.(2.3.2) and
eq.(2.3.1), with scale height of 8 km.
Right: The lines show the trajectories of the Cherenkov radiation from a verti-
cal EAS with the maximum Cherenkov angle, which is dependent on altitudes
as cos ✓c,max = 1/[n(h) · c]. The di↵erent colors are just to discriminate the
trajectories in the dense region. The emission altitudes are sampled every 2 km
within the typical height to have significant Cherenkov emission from an EAS
with primary energy 1 TeV. The values are calculated from the model shown
in the left plots. The bottom of the vertical axis is set to be 2.2 km (MAGIC
telescope).
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2.3.3 Light yield and radiated/absorbed spectra

The energy loss by radiation per unit frequency interval of the radiated photons
per unit length of the path of the radiating particle is known as Frank and
Tamm formula [70]

✓
d
2
E(!)

dld!

◆

rad

=
(ze)2

c2
!

✓
1 � 1

�2n(!)2

◆
(2.3.3)

where ! is frequency of the radiated photons and l is path length of the radiating
particle. Integration gives the total energy loss. The range of ! is limited
because the refractive index n = n(!) and it is limited as eq.(2.3.1). The
energy loss by Cherenkov radiation is a few % of MIP11 and is negligible in the
cascade.

The number of photons produced per unit path length of the particle dl

and per unit frequency interval of the radiated photons d! depends on their
frequencies and can be derived via
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It is normally discussed in wave length � = 2⇡c
!

, and using fine structure constant
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In Earth’s atmosphere, n can be considered as a constant value for wave-
lengths longer than 250 nm which reaches the ground thus is important for
ground-based observation. Therefore, the number of Cherenkov photons per
unit wavelength interval is proportional to 1/�

2. Neglecting the dispersion, the
integration over the wavelength �1 to �2 yields
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�1�2

◆
(2.3.6)

For an electron, the number of Cherenkov photons emitted between 300 nm
and 600 nm is ⇠ 10 m�1. As shown in the top left panel of figure 2.13, the total
emission of Cherenkov photons from all the charged particles in EAS reflects the
number of particles thus the production of photons is the largest at the shower
maximum of ⇠ 10 km a.s.l.. Due to the absorption via di↵erent processes, the
photons will be strongly absorbed, especially those with wavelength below 300
nm.

11 MIP is a particle whose mean energy loss rate through matter is close to the minimum.
The energy loss becomes close to MIP, when the velocity of the particle is relativistic, but not
yet too high to have significant radiative losses. Such velocity range is, �� from about 1 to
100.
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Figure 2.13: The Cherenkov light yield and spectrum

(a) Average vertical light emission profile of a 100 GeV vertical electromagnetic
air shower. Figure extracted from [27].
(b) The total spectrum of Cherenkov light produced by EAS, initiated by �-
ray primary particles with di↵erent energies. The solid lines are Cherenkov
light spectra at 10 km height and the dotted lines are at 2.2 km above sea
level (MAGIC telescope) after attenuation during the propagation of light. See
figure 2.2 for the transmission as a function of the wavelength. Figure extracted
from [113].

A clear atmosphere has good transmittivity down to 290 nm at which point
ozone absorption sets in. Therefore, the most interesting waveband of the
Cherenkov light from EAS to detect on the ground is from around 300 nm
to several hundred nm. Figure 2.14 shows the expected density of Cherenkov
photons on the ground (2200 m above sea level). For a location at the distance
less than 100 m respect to shower axis, the expected number of photons m�2 is
around 10 to 15, dependent on atmospheric profile.
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Figure 2.14: Radial distribution of Cherenkov photon density

Average lateral distributions of Cherenkov light photons in the wavelength range
300–600 nm for vertical 100 GeV �-ray showers in CORSIKA 5.71 simulations
with di↵erent atmospheric profiles (2000 showers simulated for each profile).
The horizontal axis, core distance, is the radial distance from shower axis. The
distributions are drawn in two panels to avoid the overlap of the lines and legends,
while the distribution with tropical atmospheric profile is drawn in both panels.
Absorption of Cherenkov light is taken into account. Observation altitude is
2200 m above sea level (the same as the MAGIC telescopes). Figure extracted
from [27].

2.3.4 Arrival time spread

The arrival time on the ground of Cherenkov photons from EAS has typically
several ns of spread, and the spread conveys the geometrical information of the
EAS. There are two di↵erent e↵ects that cause this spread. The schematic view
of the e↵ects are drawn in figure 2.15.

The first e↵ect comes from the radial distance of observation point to the
shower axis. Let us imagine that the shower develops at the same velocity as
the speed of light and Cherenkov photons are still produced. The particles are
always at the front of the shower, therefore the Cherenkov light front is formed
always at the shower front, and there is no spread at the shower axis. On the
other hand, the location far from the shower axis will have a timing spread,
because the distance to travel for a Cherenkov photon from higher altitude
is shorter than the distance of a path. For example, the trajectory of the
Cherenkov light traveling straight from the top of the shower to an observer
is shorter than the one, half of which is flown downwards as a secondary and
another half is flown to the observer as a Cherenkov photon.

The second e↵ect is induced from the refractive index. The charged particle
in the shower travels faster than light. Therefore close to the shower axis, the
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photons emitted at low altitude reach the detector before those emitted at high
altitude.

By the two e↵ects combined together, the arrival time spread has the specific
trend dependent on the distance from the shower axis; the photons from higher
altitude arrives later at near side to the shower axis, and vice versa.
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Figure 2.15: Arrival time di↵erence of Cherenkov photons from di↵erent emis-
sion sites

A vertical shower is assumed, and the shower axis is drawn as the vertical line,
along which three di↵erent emission heights (A, B and C) of Cherenkov light
are indicated. The arcs indicate the shapes of Cherenkov light fronts from the
three heights, (a) assuming no variation of atmospheric index of refraction and,
(b) realistic case. The horizontal axis is the radial distance from shower axis.
The arrow indicates the distance beyond which the index of refraction variation
e↵ects does not invert the order of the light fronts. Figure extracted from [102].

2.3.5 E↵ect of geomagnetic field

Without geomagnetic field the �-ray showers look quite symmetric, and a light
pool is formed in a circular shape on the plane normal to the shower axis.
However the component of the geomagnetic field normal to the shower axis
acts on the charged particles with the Lorentz force and bends the trajectories
of electrons and positrons in opposite directions. It is called the east–west
separation.

The separation leads to stretched distribution of light pool and the photon
density in the light pool drops. It means less light content to detect, thus worse
sensitivity.

The maximum influence is expected for EAS developing perpendicular to
the direction of the geomagnetic field lines, i.e. for zenith distance (Zd) ⇠ 39�

and Az ⇠ 180� at the location of the MAGIC telescopes [41].

2.3.6 High Zenith distance

When a primary particle penetrates the atmosphere at large zenith distance
(Zd), the trajectory in the atmosphere becomes longer and the cascade reaches
shower maximum at longer distance before the shower reaches on the ground.
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Figure 2.16 shows the Cherenkov emission as a function of distance from ob-
server on the ground, where the shower passes through. The peak height of
Cherenkov emission changes dependent on Zd and the peak distance from ob-
server becomes almost 100 km when the Zd is 80�, while it is only ⇠ 10 km in
case of low Zd. ( )K. BernlohrrAstroparticle Physics 12 2000 255–268¨266

Fig. 14. The average longitudinal Cherenkov emission profile as a
Žfunction of distance from the observer Cherenkov photons emit-

ted in the wavelength range 300–600 nm per meter along the
.shower axis . An analytical approximation is used for different

Žzenith angles solid lines: spherical geometry, dashed: planar
.geometry .

above threshold into account. This approximation
reproduces the longitudinal profile of Cherenkov
emission in CORSIKA simulations very well for all
model atmospheres. This approximation has been
used with both spherical and planar atmospheric
geometry to show that the difference is insignificant
below 608 zenith angle, and little significant below

Ž .708 see Fig. 14 . For hadronic showers there is a
small additional effect of fewer pions and kaons
decaying before the next interaction and, thus, fewer
muons with the spherical geometry at very large
zenith angles.

6. Refraction

One of the recent achievements in VHE energy
g-astronomy is the fact that TeV g-ray sources can

w xbe located with sub-arcminute accuracy 21 . In addi-
tion, observations at large zenith angles are carried
out by more and more Cherenkov telescope experi-
ments, either to extend the observation time for a
source or the effective area for high-energy showers,
or to detect sources only visible at large zenith
angles. Refraction of Cherenkov light in the atmo-
sphere is therefore of increasing concern but is usu-
ally either neglected entirely or only considered in a
qualitative way. The following discussion is based
on numerical ray-tracing. The refraction method built
into recent CORSIKA versions is based on a fit to
such ray-tracing.

For a plane-parallel atmosphere Snell’s law of
refraction is
n z sinu z sconst. , 8Ž . Ž . Ž .

Ž .with n z being the index of refraction at altitude z
Ž .and u z being the zenith angle of the ray at this

altitude. For a spherical atmosphere
n z R qz sinu z sconst. 9Ž . Ž . Ž . Ž .E

has to be used instead, with R being the earthE
radius.
The refraction of Cherenkov light emitted in the

atmosphere is evidently smaller than that of star light
seen from the same direction. Thus, even when using
guide stars for tracking of Cherenkov telescopes, a
correction for refraction has to be applied to take full
advantage of measured shower directions. For g-
showers of 0.1–1 TeV the Cherenkov light is re-

Ž .fracted typically 60–50% 70–60% as much as
Ž .stellar light up to 408 near 608 zenith angle, with

Žless refraction for showers of higher energy see Fig.
.15 . The different amount of refraction of light from

the beginning and the end of the shower, respec-
tively, leads to a change of image length. When an
inclined shower is seen from below the axis, it
appears slightly shorter, and when seen from above
the axis, it appears longer – by a fraction of an
arcminute.

Fig. 15. The refraction angle of Cherenkov light as a function of
zenith angle, expressed as a fraction of the corresponding refrac-
tion of stellar light. Numerical integrations for U.S. standard
atmosphere with spherical geometry and 2200 m observation
altitude. Curves shown are for emission at constant atmospheric
depth along the shower axis. For vertical showers, the depths of
483, 365, 272, and 199 g cmy2 correspond to altitudes of 6, 8, 10,
and 12 km, respectively.

Figure 2.16: Longitudinal shower profile vs distance to observer for several
Zenith distances.

The average longitudinal Cherenkov emission profile as a function of distance
from the observer Cherenkov photons emitted in the wavelength range 300–600
nm per meter along the shower axis. An analytical approximation is used for dif-
ferent zenith angles (solid lines: spherical geometry, dashed: planar geometry).
Figure extracted from [27].

2.3.7 Fluorescence light

Fluorescence is the emission of light by de-excitation of a substance that has ex-
cited by absorbing light or other electromagnetic radiation. In an EAS, fluores-
cence light is produced by the de-excitation of atmospheric molecules previously
excited by charged particles of the shower.

Electrons and positrons in an electromagnetic shower passing through the
atmosphere lose energy by inelastic collision with air molecules. A small fraction
of the deposited energy is emitted as UV fluorescence radiation in the spectral
range 290–430 nm. This air fluorescence in this spectral range basically comes
from nitrogen [22]. The lifetime of the excited states of nitrogen is of the order
of 10 ns. Therefore it is indistinguishable from Cherenkov light, however the
contribution is negligible in the target energy range of VHE �-ray because the
fluorescence emission is isotropic. Fluorescence light contribution is significant
when the shower energy exceeds E > 1017 eV [52].
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2.4 Imaging Atmospheric Cherenkov telescopes
(IACT)

In the previous sections I explained the Cherenkov radiation from EAS, which
is induced from a high energy particle including VHE �-ray. This section in-
troduces the basic concept of benefiting from the radiation, called the Imaging
Atmospheric Cherenkov Telescope (IACT) technique. This technique is used to
measure the image of the EAS via detection of its Cherenkov radiation, from
which we estimate the incoming direction and the energy of incident �-rays. This
technique has excellent angular and energy resolution, with relatively large field
of view. It also has good capability to determine the parent particle species thus
to suppress the cosmic-ray-induced showers (gamma/hadron separation). There
is now a general consensus that arrays of IACTs provide the most promising
avenue for future VHE studies.

In section 2.4.1, the basic requirement for the ability of IACT is discussed,
followed by the two important components, which are the reflector (section 2.4.2)
and the camera (section 2.4.3). The basic properties of the images are described
in section 2.4.4, and in the last, section 2.4.5 introduces an additional impor-
tant technique to enhance the ability of the IACT, which is the stereoscopic
observation.

2.4.1 Required ability

An IACT instrument is essentially an optical telescope to see the image of the
EAS via detection of its Cherenkov radiation. The field of view needs to be
wide enough so that the shower image at the most distant possible (the largest
distance corresponds to the light pool radius, which is ⇠ 120 m) is captured
and it is typically � 3.5�. It needs to overcome the very low brightness of the
image12 and high Night Sky Background (NSB) noise rate13. To deal with these
problems, the telescope is equipped with a large reflector (typically in a short
focal length f/0.7 to f/1.5 optical system) with a high-speed camera in the focal
plane.

2.4.2 Reflector

The reflector is required to be large enough to collect enough photons. For typ-
ical IACT photon detection e�ciencies (e.g. about 10% , because of the mirror
specular reflectivity and the detection e�ciency of camera), ⇠ 100 m2 of mirror
area is needed to trigger a telescope with 100 photoelectrons14 for a 0.1 TeV
shower [51]. Current telescopes are based on either parabolic reflectors or the
Davies–Cotton (DC) optical design. The parabolic design provides very good
angular resolution on-axis, and moreover theoretically perfect timing conserva-
tion, but degrading resolution due to coma at larger field angles. On the other

12 Cherenkov photon density is more or less constant within the light pool and can be
approximated as 10 photons/m2/100 GeV.

13 ⇠ 2 · 1012 photons/m2/s/sr
14 In the condition that the incident flux of light is so low that detection of individual photons

is required, the detection technique normally adopts photoelectric e↵ect. The photoelectric
e↵ect can be attributed to the transfer of energy from the light to an electron. And the
amount of electrons is measured via amplification to the current of charge. Thus the number
of photons to be detected is measured in units of photoelectrons.
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hand, the DC design reduces coma, the dominant source of o↵-axis aberration,
providing a good Point Spread Function (PSF) over the entire Field of View
(FoV), while the design introduces significant wavefront distortions (resulting
in a time spread of several ns) and actually degrades the on-axis performance.

2.4.3 Camera

The image of �-ray-induced showers seen from the ground looks like an ellipse
with a typical root-mean-square width and length of 0.1� and 0.3� respectively,
for a few-hundred GeV shower viewed at the zenith. To resolve the important
structure of a shower image, the angular resolution of the telescope, angular
diameter of the pixels and the pointing accuracy of the telescope mount should
all ideally be  0.1�. However a pixelation in the camera much finer than
this root-mean-square width does not seem to be very e↵ective [51], because it
degrades signal to noise ratio of a pixel.

Even after being collected by a very large reflector, the Cherenkov light of an
EAS is still so faint that a pixel capturing the photons on the border of image
needs to be sensitive to light down to single photons. Moreover, the signal needs
to be discriminated from the background photons, which several ns of spread
against the Poisson fluctuation in the night-sky. Therefore a pixel needs to
adopt very sensitive detector with quick response. Currently the most utilized
detector is Photo Multiplier Tube (PMT).

The electronics to record the signal is correspondingly required to minimize
the integration time.

2.4.4 Imaging the EAS

The image of an EAS in the camera is just like a ”picture”, but with excellent
time resolution, high sensitivity and enhanced brightness. Figure 2.17 shows
a sketch of the relation between the EAS geometry and the image geometry
in case of a �-ray shower. The EAS from �-ray can be seen as an ellipse in
the camera, which reflects the longitudinal development of the shower along its
major axis. The shower maximum, which is the brightest point of the image, is
located around the center of the ellipse.

Figure 2.18 shows some examples of actual shower images of various EAS,
triggered by MAGIC telescopes. The image of EAS initiated from a �-ray
is shown in figure 2.18a. The details about the images are described in the
followings.

E↵ect of Zenith distance on the image

The image in the high zenith distance (Zd) observation is very di↵erent from the
low Zd. The image becomes small (figure 2.18b) and the stereo images (intro-
duced in section 2.4.5) become identical, because of the much longer distance
from observer to the shower maximum with respect to the e↵ective distance
between the telescopes, as shown in section 2.3.6.

E↵ect of geomagnetic field on the image

Because of the geomagnetic field, the Lorentz force systematically deflects the
electrons and positrons in EAS into opposite directions. This geomagnetic field
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Figure 2.17: Sketch of the Imaging Atmospheric Cherenkov Telescope technique

Left: Sketch of a �-ray shower, a light pool on the ground and the Cherenkov
telescope. The scale of drawing is exaggerated. Typically a �-ray shower devel-
ops at a distance of around 10 km if it comes from zenith, and the Cherenkov
light arrives at the disk-like region with the diameter of 250 m.
Right: The example trajectories of Cherenkov light from three di↵erent radi-
ation sites in the �-ray shower through the reflector to the camera, and their
correspondences to the shower image in the field of view of the camera. In this
example the incoming direction of the �-ray is assumed to be the same as the
pointing direction of the telescope. The viewing angle between the direction of
radiation site and the pointing direction or the �-ray incoming direction is, from
top of the shower (A) to bottom (C), small (✓A) to large (✓C). Reflecting this
relation, the shower image is elliptical.
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(d) LZd hadron with muon ring

Figure 2.18: Various shower images in the PMT camera of a MAGIC telescope

Examples of images in the telescope camera capturing various EAS events. The
images are cleaned; after calculating the number of arrival photons at the pixels,
those which are dim and not clustered are removed.
(a),(b): Images of simulated �-ray-origin showers when the telescope points
towards low Zenith distance and large Zenith distance. The shower image can
be seen as ellipses. The smaller image in the large Zenith distance is due to more
distant location of the shower from the telescope.
(c),(d): The image shape can be used to estimate the particle species that
originated the image of the EAS. The hadronic showers have irregular shapes.
The large islands are normally from sub-shower components, the ring-like and
arc-like shaped islands are from local muons, and the tiny islands may also be
from local muons.
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e↵ect becomes non-negligible compared to the random displacement from mul-
tiple Coulomb scattering, and it degrades the measurement of very low energy
�-rays, lowering the trigger rate below a few 100 GeV by the reduction of the
light content to detect.

The geomagnetic field also a↵ects higher energy events in a relatively high Zd
observation on the image shape. For EAS developing under unfavorable orien-
tation with respect to the direction of the geomagnetic field, the corresponding
Cherenkov light images in the camera of an IACT will be rotated [41].

Arrival time distribution in the image

As explained in section 2.3.4, the Cherenkov photons from EAS has the arrival
time spread, and the spread has a trend reflecting the geometry of the shower,
which is dependent on the distance to the shower axis (Impact). This trend is
also seen in the image.

An image of EAS from a �-ray is an ellipse, and the major axis of the ellipse
indicates the shower axis. One side of the ellipse along the major axis is the top
of the shower, while the other side is the bottom. Therefore the trend of the
arrival times of photons appears along the major axis of the image.

As shown in figure 2.15, the arrival times of the Cherenkov photons from
di↵erent emission heights are the same at around 125 m of Impact. When
Impact is larger, the photons from the top part of the EAS arrives earlier than
those from the bottom, and vice versa in smaller Impact. Consequently the
di↵erence of Impact appears in the arrival time distribution along the major
axis in the elliptical image, namely the gradient of the arrival time along the
shower image axis. This is called TimeGradient. This property of the image
can be measured only by a parabolic reflector.

Hadronic images

The shapes of hadronic showers are typically far di↵erent from an ellipse, shown
in figure 2.18c. The image consists of multiple clusters, which are called ”is-
lands”. Typically, an island relates to an electromagnetic sub-shower compo-
nent, in addition the image often contains islands from ”local” muons.

Muon images

Among the secondary particles created in a hadronic cascade, a muon traveling
at relativistic speed has a much longer life time and can reach the ground before
decay. If such a muon passes through (or at least close to) the telescope, the
Cherenkov light emitted at close distance is detected without losing intensity.
Moreover, the Cherenkov light is emitted at the constant angle, which means
the light comes to the reflector from the same viewing angle. The light is
concentrated at the camera plane, thus the light from the muon creates a very
bright image. It is called ”local” muon.

The relation between some example trajectories of Cherenkov light and the
images of local muons are shown in figure 2.19. When it passes through the
reflector, the shape is a complete ring. The ring becomes an arc when it passes
outside the reflector, then, the more distant, the more point-like. The point-
like islands may appear similar to �-ray origin. An example can be seen in
figure 2.18d.
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Figure 2.19: Sketch of imaging of muons in the telescope camera

Two examples of local muons, coming from the same direction as the pointing
direction of the telescope. In the left panel the muon passes through the reflector,
while in the right panel it passes nearby. The Cherenkov radiation from the muon
(colored trajectories) is emitted with the Cherenkov angle ✓ ⇠ 1�, collected with
the reflector, and detected at the camera.

Due to the large transverse momentum given to the secondary particles in
a hadronic shower, the local muons sometimes arrive at a telescope without ac-
companying the Cherenkov light from other secondary particles or sub-showers
of the same shower. Because of the risk of decreased e↵ective time due to the
pile-up of trigger dead time and of contamination of pseudo �-like image in the
analysis, it needs to be avoided. The stereoscopic observation (introduced in
section 2.4.5) is useful also for rejecting muon-only events. If the trajectory of
the muon is deviating from the electromagnetic subshower component, requir-
ing coincidence between two a distance on the order of 100 m can work as an
e↵ective veto.

Due to the very clear behavior, the muon image can be used for measuring
PSF and reflectivity. Related material can be seen in [65, 75].

2.4.5 Stereoscopic observation

In addition to selecting �-ray events, the image of the air shower is also useful
for estimating the properties of primary �-ray. And the ability to determine the
�-ray properties is significantly enhanced by stereoscopic observation, which is
the observation of the same EAS from di↵erent locations, shown in figure 2.20.
In the compact elliptic shape of the �-ray origin EAS, the major axis of the
ellipse indicates the shower axis projected onto the image plane. Thus its ori-
gin (the incoming direction of the primary particle) lies along the major axis.
This motivates the development of a stereoscopic system; if a �-ray shower is
observed by a stereoscopic system of two Cherenkov telescopes, its origin can
be determined by superimposing the two images and intersecting their major
axes.

Similarly it is possible to extract geometrical information of the EAS. Espe-
cially the distances of telescopes from the shower axis, Impact, is crucial infor-
mation for the determination of the shower energy on the basis of the intensities
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Figure 2.20: Sketch of stereoscopic observation of EAS from a �-ray

In the sketch, two telescopes and an EAS from a �-ray is drawn (red lines
of particle trajectories) with the shower axis (black line). In addition, the two
dimensional histograms are superposed, which are the camera fields of view. The
histograms show the light contents captured by the pixels of the cameras in the
two telescopes. The two telescopes point towards the same location in the sky,
however the images look di↵erent, because the shower is seen from the di↵erent
locations on the ground. However, the incoming direction of the primary particle
is approximately the same in the field of view, because the incoming direction
is far away.

detected in the telescopes [67]. The details are discussed in section 3.7.2.
The larger the separation distance of the telescopes, the better the stereo-

scopic images. However there is a limit due to the limited size of the light pool.
Therefore the separation distance is typically around 100 m. Having multiple
telescopes to see the same shower also contributes to background rejection.

The system needs deeper time depth, on the order of micro seconds, to
temporally keep the signal before storing, to wait for the trigger signal for
telescope coincidence to be propagated.



Chapter 3

The MAGIC telescopes and
the analysis of MAGIC data

This chapter describes the MAGIC telescope system, together with the obser-
vation strategies and data analysis.

Section 3.1 introduces MAGIC, the observation strategy is explained in
section 3.2, and the analysis method is described from section 3.3 on.

3.1 The MAGIC telescopes

MAGIC is a system of two 17 m-diameter Imaging Atmospheric Cherenkov Tele-
scopes (IACTs) located at the Roque de los Muchachos Observatory (ORM) on
the Canary Island of La Palma, Spain, at an altitude of 2200 m a.s.l (figure 3.1).

The telescopes were designed to reach the lowest possible energy threshold
by optimizing various specifications; e.g. large reflector area, sensitive camera,
high timing resolution and distance between telescopes. The telescopes are
separated by a distance of 85 m from each other [17].

The achieved energy threshold is as low as ⇠50 GeV at the trigger level
for observations at zenith distance angles below 25� in dark conditions (without
moon) [18]. Using the so-called sum-trigger, it is possible to reach an even lower
energy threshold [21]. The benefit is not only the largest overlap in IACT with
space telescopes like Fermi which covers lower energy range, but also ⇠ 10000
times higher sensitivity than Fermi.

The second goal is to achieve a fast repositioning speed in order to catch
rapid transient events such as Gamma-Ray Bursts.

Despite a few technical di↵erences1, the two MAGIC telescopes can be con-
sidered nearly identical for practical purposes.

1 The two MAGIC telescopes started operation 5 years apart (MAGIC-I in 2004 and
MAGIC-II in 2009, respectively), and the second telescope was an “improved clone” of the
first one. There has been upgrades of the system in 2012 and 2013, which made them more
similar to each other. [18]

39
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Figure 3.1: Photo of the MAGIC telescopes.
Image taken from [18].

3.1.1 Reflector, structure and drive system

Reflector

Each Telescope has a 17 meter diameter parabolic reflector system with focal ra-
tio of f/1. The total area is about 240 m2, which is composed of many segmented
mirrors, attached on the individually adjustable mirror facets2. The PSF of the
reflector3 is ⇠ 10 mm, which corresponds to ⇠0.03�, which is less than one pixel.
To approximate the parabolic reflector, the individual segmented mirrors have
spherical surface with di↵erent curvature radii. Due to the parabolic shape, the
time spread of synchronous light signals is negligible compared to the typical
time spread of 1-2 ns in Cherenkov pulses. This means that the reflector does
not introduce any significant broadening to the observed pulses.

Structure and drive

The structure and drive system are designed so that the telescopes can slew 7�/s,
enabling fast repositioning to any direction in the sky within 20-30 seconds. To
this end, the telescope structure is made out of reinforced carbon fiber tubes
and achieved through a light weight (< 70 tons) frame.

The camera is mounted on a vertical Aluminum arch that is supported
against horizontal oscillations by steel cables. The telescopes are moved by two
11 kW electric motors on the azimuthal and one electric motor on the elevation
axis [82].

2 There are two sizes of the mirrors; 0.5 ⇥ 0.5 m2 and 1.0 ⇥ 1.0 m2. While the former
is used exclusively for MAGIC-I, the latter is for MAGIC-II, as well as for upgraded mirrors
in MAGIC-I. The adjustment of mirror facet is performed in order to keep the PSF of the
reflector constantly to a minimum, by compensating the deformation of the support structure
dependent on the pointing direction. The individual adjustment is available for single mirrors
of MAGIC II and groups of 2 ⇥ 2 facets of MAGIC I.

3 PSF of the reflector is the 39% containment radius of the reflected spot of a point-like
source on the focal plane of the mirror.
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3.1.2 Camera, trigger and readout system

Camera

Both MAGIC telescopes have cameras with 1039 pixels covering a 3.5� Field of
View (FoV) [18]. Light detection in each pixel is done by a Photo Multiplier
Tube (PMT). Using the photoelectric e↵ect on photo cathode (the detection
plane of PMT), the arrival photon stimulates a flow of bunch of electrons, which
is enhanced using the dinodes with high voltages applied, to be visible as a
pulse in probing voltage. Since the photo cathode of PMT has circular shape,
the camera plane is covered by Winston Cones (WCs), whose outer shape is
hexagonal to serve as light concentrators to circular inner shape. The shape of
WC is optimized for collecting light only from the solid angle occupied by the
mirror. The angular diameter mapped onto a single pixel is about 0.1�.

Trigger

Trigger system consists of multiple stages [18].

• Telescope level (standard trigger)

The standard telescope level trigger of the MAGIC telescope system con-
sists of two sub-levels, called “L0” trigger and ”L1” trigger. L0 is a pixel-
wise trigger to evaluate if the analogue signal from PMT is above a certain
discriminator threshold. L1 is a digital coincidence trigger logic to allow
only the moment when more than a required number of pixels next to
each other fire L0 triggers.

The threshold of L0 trigger is calibrated to take into account the di↵erence
of response by PMT, and the threshold level is adjusted online with respect
to the Night Sky Background (NSB) level (trigger rate) of the observation
direction, to avoid too high accidental trigger. L1 trigger is configurable
for the number of neighboring pixels, which is called next-neighbor pixels
(NN). It can range from 2 to 5, but usually 3 is chosen. L1 is performed
only for the central pixels (figure 3.2).

• Coincidence of the telescopes

The L1 trigger signals from two cameras generated are sent to the third
trigger level, the stereo trigger (L3)4. The L1 signals are artificially
stretched to 100 ns width and delayed according to the zenith and az-
imuth orientation of the MAGIC telescopes to take into account the dif-
ferences in the arrival times of the Cherenkov light from air showers at
the corresponding focal planes.

Readout

The current or voltage enhancement by the detection of photon occurs with time
scale of ns. Thus very high sampling speed to record the varying voltage (wave-
form) is needed, and this is the core element of the readout system. MAGIC

4 There was L2 trigger between L1 and L3, which performed rough analysis and apply
topological constraints [45]. However it is not used now.
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Figure 3.2: MAGIC camera and trigger region

The pixels in the trigger region are marked in yellow. Figure extracted from [75].

adopts the DRS4 waveform digitizer chip5. The DRS4 chip is a switched ca-
pacitor array, developed at the at the Paul Scherrer Institute that can store
1024 samples of the waveform and can be operated at sampling speeds of 0.7
to 5 GSamples/s. The sampling speed used in the MAGIC readout system is
1.64 GSamples/s to be able to look back to the time region which stereo trig-
ger judges to take data6. The readout process itself happens at a much lower
frequency and generates a deadtime of about 27 µs for each event. At a typical
L3 trigger rate of 250 Hz, the deadtime fraction stays well below 1% [108].

3.2 Observation with MAGIC telescopes

The observation of a �-ray source with MAGIC telescopes must be designed
taking into account the background events. Although most of the background
events are removed in the analysis of the observation data, they still dominate
the remaining events in most of the cases. Therefore it is impossible to obtain a
pure �-ray event sample, instead it is necessary to evaluate if there are significant
amount of excess events in the target region, compared to some control region(s),
where no �-ray source is expected. Correspondingly, the measurement of the
�-ray flux is possible only through the measurement of the excess events.

The target direction, where the �-rays are supposed to come from, is called
ON-region and that for control region is the OFF-region. Below I discuss how
to obtain the ON data and the OFF data. The strategies to compare the ON
and OFF data to extract the �-ray signal will be discussed in section 3.9 and
section 3.10.

5 https://www.psi.ch/en/drs
6 The time region of interest is 1/1.64 GHz · 50 = 30.5 ns long out of the bu↵er length of

1/1.64 GHz · 1024 ⇠ 624 ns.

https://www.psi.ch/en/drs
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3.2.1 ON and OFF observation

The most simple way to determine the background is to use, in addition to ON
observations (pointing at the region with the source), dedicated OFF observa-
tions (pointing at a region where we do not expect to see any �-ray source).
However this reduces the total amount of available observation time. In ad-
dition, as ON and OFF are not taken simultaneously in this strategy, it can
be challenging to maintain the same observation conditions. The flux of back-
ground events changes mainly due to the change of pointing direction, as the
source needs to be tracked. In addition, the NSB noise level, the transparency of
the atmosphere, and the response of the camera (including the trigger threshold)
also vary with time.

3.2.2 Wobble mode observation

This is the most common strategy to maximize the observation time as well as
to reduce the systematic e↵ect on the background estimation.

The source direction is slightly o↵set from pointing direction, namely the
center of the field of view. The o↵set angle is called ”wobble angle” (0.4� in
MAGIC observations). The benefit of this strategy is the gain of OFF regions
simultaneously at the same distance from the camera center, because the accep-
tance of the camera degrades radially towards the outside and is symmetric.

However, this can still introduce systematic di↵erences caused by intrinsic
inhomogeneities (e.g., slightly di↵erent Quantum E�ciencies of the PMTs in
the camera or di↵erent noise level due to existence of some stars). To avoid this
e↵ect the pointing position is regularly switched (about every 20 minutes) such
that the source position in the camera changes around the camera center.

The simplest switching is to choose a pair of wobbles, which have the pointing
directions (camera center) o↵set with respect to the target direction in opposite
sides (180�). The two OFF regions are towards di↵erent directions in the sky,
however the background flux is assumed to be the same for almost the same
directions.

The wobbling strategy can be elaborated more. Given the symmetric ac-
ceptance profile, the OFF region can be increased in the circle at the radius
of wobble angle. Correspondingly the systematic e↵ect should be reduced, by
switching the pointing positions with respect to the choice of OFF regions.
Figure 3.3 shows the example of 4 wobble positions. The o↵set directions of
pointing positions are selected by every 90�.



44 Chapter 3. The MAGIC telescopes and the analysis of MAGIC data

run W1 run W2

run W3

run W4

0.4 deg

run W1

ON

run W2

OFFON

W1W2

OFF

OFF

OFF

OFF

OFF

ON
run W3

OFF

OFF OFF

W3

W4

ON

OFF

OFF

OFF

run W4

Figure 3.3: Schematic view of the wobble pointing mode.

An example of wobble pointing mode, with four wobble positions with 0.4� of
wobble o↵set angle. As the top figure shows, there are 4 types of runs performed
in turn, in which the pointing direction is o↵set from the target (�-ray source)
direction, shown as the green diamond, by 0.4�. The four regions in a camera
plane, shown as diamond, are used for the comparison between the target di-
rection (ON) and the direction without expectation of �-ray flux (OFF). As the
bottom figure shows, the ON region appears on di↵erent positions in the camera,
shown as green diamond, over four consecutive runs (W1, W2, W3, W4). The
other three regions are used as OFF regions for the background estimation.
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3.3 Analysis chain with MARS

Almost all the analysis procedures of the observation data are carried out using
the standard analysis package developed by the MAGIC collaboration named
MAGIC Analysis and Reconstruction Software (MARS) [19, 116]. This software
uses C++ routines combined with ROOT libraries [38].

In the following sections, I describe the MARS software in the phases of data
analysis summarized as below.

section 3.4: Monte Carlo simulation We need a set of reference �-ray events
of the observations. However, a test �-ray cannot be injected into the at-
mosphere to get a calibration of the whole system. Thus the reference
�-ray data are obtained via Monte Carlo simulations.

section 3.5: Photon signal extraction The observation data is comprised
of many events in which the waveforms of all the pixels of cameras recorded
at the readout level are stored. The first step of the analysis is to search
in the waveform for the signal induced by the photons hitting the PMT.
From the characteristics of the signal, the charge and timing of the signal
are extracted. The charge will be interpreted as the unit of number of
photoelectrons (phe).

section 3.6: Image cleaning The distributions of charges and their arrival
times over the camera show the image of the EAS. But many pixels are
dominated by NSB noise. These pixel information must be removed before
the next analysis step.

section 3.7: Event parametrization The images are parametrized. And
based on the image parameters, the geometrical parameters are also cal-
culated.

section 3.8: Event reconstruction Using the parameters of the events, the
property of the primary particle is estimated for each event. The event
classification estimates the particle species, the direction reconstruction
estimates the incoming direction, and the energy reconstruction estimates
the primary energy before the EAS was initiated. The latter two estima-
tions are done under the assumption that the primary particle is a �-ray.

section 3.9: Extraction of �-ray excess counts As discussed in section 3.2,
the �-rays can be extracted only by the number of excess events by com-
paring ON and OFF regions (observations). When the existence of �-rays
is not certain, the number of excess events must be compared with the
background events and the significance must be evaluated.

section 3.10: Flux estimation The flux is an important measurement for a
�-ray source. Rich statistics allows detailed flux estimation, decomposing
in the energy domain or time domain, which are called energy spectrum
or light curve, respectively.

section 3.11: Spectral unfolding If the flux is investigated as a function of
energy, the e↵ect of confusion in the energy estimation needs to be taken
into account. The distribution over energy is distorted by the confusion,
therefore the correction process is needed. This is called spectral unfold-
ing.
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3.4 Monte Carlo Simulation

3.4.1 Purpose of the simulation

It is necessary to develop a detailed model of the telescope performance, as
well as the whole process of the EAS from the primary �-ray penetrating the
atmosphere to the Cherenkov photons arriving on the ground. However we
can not perform such calibration of the telescope using real �-rays. Instead
a chain of simulation programs is used. And a number of samples needs to
be simulated in di↵erent configurations because the telescope response di↵ers
dependent on the EAS properties with respect to the telescope, like the primary
energy of �-ray, incoming direction, the arrival point on the ground, and so on.
To reasonably cover the distribution of possible configurations, the samples are
generated randomly. This strategy is called ”Monte Carlo” (MC) simulation.
There are two reasons why we need the simulated events of the �-rays as a
reference. The simulated samples are divided into two subsamples for respective
purposes, which are called ”train” samples and ”test” samples.

”train” samples to estimate the nature of the primary particle
The simulated �-ray events are used as reference to identify the real �-
rays from the observation data which is dominated by background events,
as well as to estimate the direction and energy of the potential �-ray
candidate. The details are described in section 3.8. These estimations of
the properties need the construction of the estimators, using the reference
events, called training. The general explanation on the training and the
evaluation of an estimator will be in section 4.1.

”test” samples to estimate the response of telescope and analysis
Once we obtain the �-ray like events in the observation data, we need
another set of simulated �-ray events to infer the real flux from the ob-
served distribution. The simulated �-ray tells how much the probability
of a �-ray would be to survive the trigger system and analysis. The pro-
cedure to realize this will be described in section 3.10. Also, when the
performance of estimator needs to be evaluated, this data set would be
used. The explanation will be given in section 4.1.3.

3.4.2 Programs and strategies used in the MC simulations

The MC simulation for MAGIC [36] is performed outside the MARS framework.
The simulation starts from a primary particle penetrating the atmosphere with
a given energy, in a given direction and towards a given location with respect to
the telescopes on the ground. It performs the generation of the secondary parti-
cles through interaction with the atmosphere, the generation of the Cherenkov
radiation, and finally the detection with the telescopes. This is composed of
three stages, associated to three di↵erent programs; the shower simulation part
called CORSIKA, and the telescope part called Reflector and Camera.

1. ”CORSIKA” (customized for MAGIC as MMCS): The simulation of EAS

CORSIKA (COsmic Ray SImulations for KAscade) is a program for de-
tailed simulation of extensive air showers initiated by high energy cos-
mic ray particles. It was developed for the KASCADE experiment and



3.4. Monte Carlo Simulation 47

is widely used for detailed simulation of air showers. Various kinds of
primary particle like protons, light nuclei up to iron, and many other par-
ticles, including photons may be treated. For the MAGIC simulation, a
customized version of CORSIKA is used, called MAGIC Montecarlo Soft-
ware (MMCS).

The simulation starts from the cosmic ray primary particle. The important
initial conditions to give are the primary particle species, the energy, the
incoming direction (shooting direction), and the reaching point on the
ground (Impact point), as well as the location information like the altitude
of ground, the atmospheric density profile, and the geomagnetic field.
In the simulation, a shower of the secondary particles are created from
the primary particle through interaction with the atmosphere. All the
secondary particles produced are tracked down to low energy until they
produce no more Cherenkov light. The processes taken into account are
as below.

• Hadronic interactions and decay of unstable particles
The largest uncertainty of these simulations comes from the lim-
ited knowledge concerning the hadronic interactions at TeV energies.
Since at the energies above TeV there is no experimental data on
the cross sections yet, they have to be extrapolated from current
measurements. Several models are in use to describe hadronic inter-
actions and they are divided in low-energy and high-energy models.
The transition energy between low and high energy models depends
on the model combination and varies from 50 GeV to 1 TeV. In the
standard MC package, the FLUKA model has been used, in combi-
nation with the high-energy QGSJet-II model.

• Particle tracking through the atmosphere
Propagation of particles between two interactions accounts for ion-
ization losses, deflection by the Earth’s magnetic field and Coulomb
multiple scattering.

• Electromagnetic interactions
Unlike the hadronic interactions, electromagnetic interactions are
few and well understood. The interaction of electrons, positrons
and photons are simulated in CORSIKA using the EGS4 model.
Bremsstrahlung, multiple scattering and annihilation processes are
taken into account for electrons, while Compton scattering, electron-
positron production and photoelectric reactions are considered for
�-rays.

• Cherenkov radiation
In MMCS, the functionality related to Cherenkov photons is imple-
mented. It calculates the production of the Cherenkov photons in
air and the transport through the atmosphere. The program stores
the information of individual photons reaching at the telescope; the
arrival times, traveling direction and the height of production. The
absorption of photons is not taken into account in this program, in-
stead implemented in the program for later steps.

The program has been upgraded occasionally. MMCS currently integrates
the version named Corsika 6.990 [64].
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2. ”Reflector”: The ray tracing of the reflection at the mirror

This program simulates the reflection of the Cherenkov photons by the
mirrors onto the camera plane, as well as their atmospheric absorption
and scattering before reaching the mirrors.

• Atmospheric absorption
For the atmospheric absorption and scattering of Cherenkov photons,
the Rayleigh and Mie scattering and Ozone absorption are calculated.
The emission height, arrival angle and wavelength of the photons are
also taken into account. The atmospheric density profile is essential
to the calculation, however it has seasonal tendency as well as daily
or even short time scale variability. The standard production uses a
fixed profile, called ”MAGIC winter”.

• Ray tracing
The photons survived the aforementioned process are passed to the
ray-tracing of the reflection at the mirrors, and the program outputs
the light distribution arriving at the camera plane. It will be passed
to the next program called Camera.

3. ”Camera”: The detection of the photon at the Camera

This program simulates the camera, readout electronics, and triggers of
the telescopes. The arrival distribution of the photons on the camera
plane is given to the pixels of the camera, and the responses of PMTs
are generated as the waveforms of the electric current, if they pass the
simulated trigger logic.

All parameters of the telescope, such as gain fluctuation distributions,
noise levels of the above listed components and signal shapes, are imple-
mented in the simulation programs. These parameters are obtained from
measurements.

After these processes, we obtain the events in almost the same format as
observation data7. Each event consists of digitized waveforms from all the pixels
in the camera of both telescopes. It can be processed with the data analysis in
the same way as the observation data, mentioned in the next sections.

3.4.3 Standard data sets

A huge amount of simulation samples are needed because the telescope response
to the �-rays need to be understood in large variety; the �-rays with di↵erent
energy, incoming direction and arrival location on the ground, in di↵erent point-
ing configuration of the telescopes. Thus the MC simulation is standardized and
the standard productions are commonly shared.

The simulated samples and real events should be ideally independent and
identically distributed (i.i.d) in a given energy, given incoming direction, and in
a giving telescope pointing.

7 Observation events include additional information, e.g. the weather and the time. Con-
trary the simulated events include supplemental data like true information about the primary
particle.
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Parameter ranges

• Pointing direction (tracking)

The standard MC production provides uniform distribution in Azimuth
angle (Az) and Zenith distance (Zd), in given Zd ranges. However the
production is separated by Zd ranges because the telescope response is
di↵erent mainly due to the di↵erent energy threshold and collection area.
The ranges are low Zd (LZd) defined as 5-35 deg and 35-50 deg, high Zd
(HZd) as 50-62 deg and 62-70 deg, and very high Zd (VHZd) as 70-75 deg
and 75-80 deg.

Since the telescopes need to track a source, the analysis needs to take
into account the telescope response dependent on Zd and Az. For Zd
dependence, the telescope response is evaluated binned in Zd and the total
response is calculated with weight to meet the observation time spent in
the corresponding Zd (e.g. the calculation of collection area and energy
migration. They are explained later). For Az dependence, the telescope
response is not so significant in LZd, thus the usual analysis procedure
calculates the averaged response over Az by taking all the events, however
in HZd and VHZd the dependence on Az is significant thus the response
is evaluated binned in Az.

• Incoming direction

For a standard wobble-mode observation, the incoming direction with re-
spect to the FoV is assumed to be o↵set by 0.4�, thus the events are
simulated with the distribution of incoming direction in a ring of 0.4� ra-
dius (with a width of 0.1�) from the camera center. This is called ”ring
wobble” sample, and it is used for the analysis of point-like sources.

On the other hand, for an analysis of �-rays from unknown direction like
morphology study, the telescope response must be evaluated also at any
location of incoming direction with respect to the camera field of view. In
this case, di↵use �-rays are simulated covering a circle of 1.5� radius8.

Figure 3.4 shows the range of incoming directions of both types of MC.

• Energy

The energy range of �-rays needs to cover the range of possible detection.
And it varies dependent on Zd range. For LZd, the range is from 10 GeV
to 30 TeV. In the higher Zd range, the energy threshold becomes higher
but the collection area becomes larger, thus the target energy range is
higher. For HZd, the energy range simulated is from 50 GeV to 80 TeV
for the Zd setting from 50 deg to 62 deg and 100 GeV to 80 TeV for 62 deg
to 70 deg. For VHZd, it is from 400 GeV to 100 TeV for the Zd range
from 70 deg to 75 deg and from 1 TeV to 100 TeV for the Zd range from
75 deg to 80 deg.

Taking into account the balance between the low trigger rate in the low-
est energy range, very heavy computational stress in the highest energy
range, very wide range of the energy spanning in many decades and the
real spectrum as power law, the generation of events follows power-law
probability distribution with spectral index of �1.6.

8 For full di↵use source there is also 2.5� radius di↵use source available.
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(a) (b)

Figure 3.4: The incoming direction distributions of simulated �-rays

The incoming distribution of the simulated �-ray of the ring-wobble sample (a)
and the di↵use sample (b). Image extracted from [81].

• Arrival point distribution on the ground

The arrival point on the ground should be uniformly distributed in enough
wide range so that e↵ective area can be calculated properly (mentioned
in section 3.10.1). The maximum distance to the telescopes is called max
impact, where the trigger probability becomes negligible. The max impact
is, for example, 350 m for LZd.

Analysis periods

There are versions of standard productions which are called ”periods”. A period
is defined each time there is a major hardware intervention or a significant
performance change due to weather conditions or minor hardware maintenance,
so that MC simulations should accurately reproduce the real telescopes response.

3.5 Photon signal extraction

This step is performed with a program called Sorcerer (Simple, Outright Raw
Calibration; Easy, Reliable Extraction Routines). The input data to this step
is the raw data, in which, for each event, the waveforms of the electric voltage
for all the pixels at the moment of trigger are stored. A waveform is a chain
of measured voltage as a function of time, stored temporally in the capacitor
arrays. The waveform stored in raw data is in the form of readout counts by
Fast Analog to Digital Converters (FADCs), as a function of time slice (one
time cell is 1/1.64 GHz). Figure 3.5 shows an example of such a waveform,
which contains a signal of a light pulse in a pixel (PMT). The photoelectrons
emerged from the photons hitting the photocathode of a PMT induce the flow
of an amplified bunch of electrons, thus a pulse occurs in the time profile.
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Figure 3.5: Signal waveform in a camera pixel

The signal waveform is sampled by the DRS4 chip (mentioned in section 3.1.2)
at the frequency of 1.64 GHz, and 50 time slices (which is worth the time window
of ⇠ 30 ns) per event is saved. The vertical axis displays fast analog to digital
converter (FADC) counts, which is linearly correlated to the current (and volt-
age) in the measurement range. The dotted green horizontal line is the baseline,
and the blue shade surrounded by the two vertical dotted lines indicate the signal
integration range. Figure extracted from [61].

Sorcerer searches for such a signal and extracts two pieces of information for
the identified signal in each pixel in each event:

• Charge: The estimated number of photoelectrons detected

• Arrival time: Time at which this signal arrived

The charge can be measured by the current (voltage) integrated over time.
However one needs to integrate the counts above the baseline in the region of the
pulse, therefore the baseline and the integration region needs to be determined.
For determination of the baseline, many events with random triggers, called
”pedestal” events, are used9. They are taken before and during the observation.
The integration region is a sliding window of 5 consecutive samples (i.e., the
largest sum of 5 consecutive slices).

Then the conversion from the integrated FADC counts to number of phe is
needed. Let the conversion factor be C, and assume n photoelectrons result on
average in the charge < q >. Then,

n = C < q > (3.5.1)

9 The pedestal events should not contain any pulse inside. Therefore it is taken as the
events with random trigger.
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The conversion is not constant in time due to the performance of the ampli-
fier during the signal transmission for data acquisition. Thus it needs to be
calculated on-site using the so-called F-factor method [87]. For this method an-
other bunch of events called ”calibration” events is taken also before and during
the observation. The calibration events are triggered at the moment when the
calibration light illuminates the camera. The light is assumed to give a pulse
of photoelectrons which follows a Poisson distribution with unknown mean N

and standard deviation
p

N . The charge measured from the calibration events
should be distributed correspondingly. Inspecting the distribution in the output
of the PMT, namely the distribution of the integrated charge for the photoelec-
trons, the distribution is ”diluted” from the intrinsic Poisson distribution. The
modified relation between the mean and the standard deviation is kept inde-
pendent from the conversion factor, then the mean and the standard deviation
of the integrated charge < Q > and �Q are in the following relation with the
intrinsic Poisson distribution.

F

p
N

N
=

�Q

< Q >
(3.5.2)

Where F is called F-factor which is characteristic for individual PMTs, and can
be measured at the lab. From the equations above, one can obtain

C =
N

< Q >
= F

2
< Q >

�
2

Q

(3.5.3)

Typically 1 phe corresponds to ⇠60 readout counts integrated over 5 time slices.
As for arrival time, it is determined as the average of the time slices in the

integration window, weighted with the signal heights.

3.6 Image cleaning

This step is performed with a program called Star 10. The input data to this
step is the charge (measured in the unit of phe) and arrival time for each pixel
for each event. Star searches for the pixels which are supposed to be from the
EAS, and removes all the rest of pixels.

If the pixels contain the photoelectrons related to EAS emission, they are
supposed to be clustered spatially and temporally. Thus the algorithm picks
up clusters of bright pixels and extends them to include dim pixels around the
identified clusters, also taking care of the arrival times. Most pixel signals should
contain only noise and such noise pixels are not clustered.

There are two stages in the algorithm. The first stage is to identify core
pixels. It searches for groups of 4, 3 and 2 neighboring (4NN, 3NN, 2NN)
pixels with a summed charge above a given level, Qcore, within a given time
window, tcore. To prevent one pixel from dominating the signal of a group, the
signal of each pixel is clipped with a given clipping level Qcore,clip. The second
stage is to expand the core pixels. The selected pixels at this stage are called
boundary pixels. It evaluates the neighboring pixels with charge above a given

10
Star also performs di↵erent tasks, however I mention only image cleaning here. The other

steps are image parametrisation for single telescope, and adding NSB noise to the pixels before
the image cleaning. The former will be explained in section 3.7 and latter is in section 3.4.2.
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level Qboundary and arrival time o↵set from that of adjacent core pixel within
given time tboundary.

The limit values above are dependent on the NSB level. The brighter the sky,
the more the NSB noise, thus the higher the threshold needed. Depending on
the condition, two values Q1 and Q2 are determined. In standard observation,
(Q1, Q2) = (6, 3.5)[phe]. The values for core pixels are summarised in table 3.1,
and the ones for boundary pixels are Qboundary = Q2, tboundary = 1.5 ns.

Table 3.1: The limit values for core pixels search in the image cleaning algorithm
Topology Qcore Qcore,clip tcore

4NN 4 ⇥ 1.2 ⇥ Q1 1.05 ⇥ Q1 0.5
3NN 3 ⇥ 1.3 ⇥ Q1 1.05 ⇥ Q1 0.7
2NN 2 ⇥ 1.8 ⇥ Q1 2.2 ⇥ Q1 1.1

3.7 Event parametrisation

In this section I introduce the parametrisation of each event. The input data
to this step are the charge and arrival time distributions over pixels after image
cleaning. The distributions are parametrized in many di↵erent ways to deduce
the properties of the incident particle of the event, namely the particle species,
the incoming direction and the energy. Since the so-called ”Hillas parameters”
were proposed [66], the analysis with parametrisation have been the leading
strategy. Although one can derive these properties without parametrisation
via an elaborated machine learning algorithm, the estimation of the properties
through the parametrisation works better for now. Moreover the parametrisa-
tion reduces the computational workload and gives transparency and robustness
to the analysis.

There has been substantial amount of e↵ort to improve the analysis perfor-
mance, thus many parameters have been defined. Here I describe the image
parameters that are used for the standard analysis, including the ones related
to the �-ray energy estimation.

The event parameters can be separated in two levels. One are the image-
based parameters and the other are geometry-based parameters. The former
are calculated in the program called Star, and the latter are in Superstar and
Melibea. The image-based parameters need only the charge or arrival time
distributions to calculate, while the geometry-based parameters are derived from
incoming direction, together with the image-based parameters from the two
telescopes.

3.7.1 Image-based event parameters

The main image-based event parameters are the Hillas parameters, which are
CoG, Length, Width and Size. They are computed from the charge distribution
of the image, through the first and second moments. In this computation, an
ellipse can be defined using these moments, as well as its major and minor
axes. They play the main role in the analysis, however there are some other
complementary parameters.
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CoG (MeanX, MeanY) The so-called “center of gravity” of the image. The
CoG consists of a pair of values (X,Y) that determine the position in the
camera of the weighted mean signal along the X and Y axis respectively.
The X and Y values are the first moments of the charge distribution in
the image and are called MeanX and MeanY, respectively.

Length, Width These are known as Hillas parameters [66], which characterise
the image shape as an ellipse. Length and Width are calculated as second
moment of the charge distribution along the major and minor axis.

Size The total charge, in the unit of number of photoelectrons (phe), summed
over all pixels surviving the image cleaning.

Leakage (Leakage1, Leakage2) There are Leakage1 and Leakage2. Leak-
age1 is the fraction of the number of phe in the outer most pixels in the
camera to the total charge of the image, i.e. Size. Leakage2 is the same for
the pixels in the second row from the outer edge. In case the shower image
is not fully contained in the Camera field of view, the image spans to the
edge pixels on the camera field of view. Thus Leakage is correlated to the
amount of spill-over of the shower image, and can help with correcting
Size.

TimeGradient The arrival time development along the major axis [20]. The
slope of the first order polynomial function, fitted to the distribution of
the arrival time of pixel signals projected on the major axis.

NumIslands Number of islands in the image, namely the number of isolated
groups of pixels that survived the image cleaning. Typically �-ray showers
produce only one island while hadron-initiated showers often contain two
or more.

3.7.2 Geometry-based event parameters

The geometry-based event parameters are based on the three-dimensional re-
construction of the shower, which I call the geometrical reconstruction. The
main part of the geometrical reconstruction is to determine the shower axis.

To determine the shower axis, two kinds of information are used; the in-
coming direction vectors and the shower core direction vectors of the two tele-
scopes. They need to be determined from the shower images. The upper panel
of figure 3.6 shows the shower axis in the relation with those information. The
incoming direction of primary particle is approximately the vanishing point of
the shower axis seen in the camera field of view. Therefore the incoming direc-
tion vector is approximately parallel to the shower axis. The shower maximum
direction should be well represented by the brightest point, which is approxi-
mately CoG (image core).

There are currently two ways to estimate the incoming direction. One is by
the classical method, which is the intersection point of the axes of the two su-
perposed images. The other is by the Disp method, introduced in section 3.8.2.
Note that an image axis does not represent the shower axis any longer in the
Disp method (See section 3.8.2). Hereafter, I di↵erentiate them as Classical-
geometry-based variables and Disp-geometry-based variables. For the simulated
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showers, the true geometrical configuration can be extracted. For those com-
puted with the true geometrical configuration, I denote True-geometry-based
variables.

Once the incoming directions and the shower core (the point on shower axis
with shower maximum) directions are determined, the shower axis is determined
in the following way. Since the shower axis can be seen as a line connecting the
incoming direction and the image core in the camera field of view, the plane
spanned by the incoming direction vector and the image core direction vector in
3D contains the shower axis. Thus the shower axis is derived as the intersection
of the two planes created in such way by the images of the two telescopes.

It is also needed for some variables to obtain the shower maximum point.
It should be well represented by the point where the two image core direction
vectors meet, however it is almost impossible for the two vectors to exactly meet
each other. Therefore the shower maximum point is defined on the shower axis,
where the three points parallel to the ground, two on the image core direction
vectors and one on the shower axis vector, make the smallest triangle.

I include Disp here, although it is not a geometry-based variable. It is neither
an image-based variable. It is primarily to estimate the incoming direction,
however it is also of great importance for the energy estimation. The Disp for
direction reconstruction is mentioned in section 3.8.2 and that for the energy
estimation is described in section 4.4.1.

Disp Disp is the angular distance in the field of view from the CoG to the
incoming direction (see figure 3.9). It is not possible to measure in ob-
servation data, however the simulated �-rays have the incoming direction
of the �-ray, which means that the simulated �-ray has the true incom-
ing directions, thus it has ”TrueDisp”. Disp is correlated to other event
parameters, therefore it is possible to estimate. The Disp estimator is con-
structed using the simulated �-rays, by supervising the relation between
Disp and the correlated event parameters.

Impact The distance from the telescope to the shower axis. See also figure 3.6.
Impact can also have true value in case of simulation data.

CosBSangle Cosine of the angle between the shower axis and the geomagnetic
field. The component of the geomagnetic force normal to the shower axis
act on the tracks of positively and negatively charged particles in the
shower and bend them in opposite directions. Thus the shower particles
are diluted and the Size will be reduced [41]. The shower axis is known in
a simulated �-ray thus the true value of CosBSangle is also available for
the simulation data.

MaxHeight Height of the shower maximum point from the ground.

Cherenkov Radius / Cherenkov Density Cherenkov Radius is the radius,
on the plane perpendicular to the pointing direction at the center of the
two telescopes, of the Cherenkov light distribution produced by a 86 MeV
electron11 at the shower maximum. And Cherenkov Density is calculated

11 An e
+/� above this energy radiates high energy photons through bremsstrahlung, which

then produce further e+/� by pair creation. A typical electron should have this energy at the
maximum of shower development, because it is the point just before the number of particles
start to decrease.
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as the photon density on the plane in the Cherenkov Radius. They are
measures to indicate the distance to the shower maximum.

Pointing Zd, Pointing Az The telescope pointing direction, in Zenith dis-
tance angle (Zd) and Azimuthal angle (Az). Characteristics of the shower
images change significantly dependent on Zd and Az, especially at large
Zd.
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Figure 3.6: Sketch of shower axis, Impact and MaxHeight

Top: The shower axis in the relation with the incoming direction vectors and
shower core direction vectors (represented by image core directions). The two
vectors span a plane and the intersection of the two planes can be approximately
regarded as shower axis. Note that the two image core direction vectors do note
meet, hence additional considerations are needed to determine shower maximum
point.
Bottom: The relations of Impact and MaxHeight with the shower axis.
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3.8 Event reconstruction

This step is performed with two programs called Coach and Melibea. For study-
ing a �-ray source from an observation data, there are only three kinds of in-
formation needed about a shower event; the particle species (if it s a �-ray or
not), the incoming direction and the primary energy. Here I call these the event
properties, and I describe the event reconstruction, namely the reconstruction
of the event properties.

The three event properties are estimated from some of the parameters listed
in the last section, by using the dedicated estimators. The estimators need to
be constructed by supervisions in advance, for which we use simulated data,
as discussed in section 3.4. The construction (training) of the estimators is
performed by Coach. The estimation of the event properties using the estimators
is done by Melibea.

Figure 3.7 shows an example of the event reconstruction. The reconstructed
three event properties are shown; the particle species shown as Hadronness, the
reconstructed direction shown as ✓ (the angular distance from the true incoming
direction), and the energy. In the following subsections, I will describe these
three event properties in detail.
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Figure 3.7: Example of event reconstruction

An example of event reconstruction for a simulated �-ray event is shown.
Top right panel: The information of the event, which are the true values, the
event parameters, and the reconstructed event properties.
Top left and top middle panels: The cleaned images of the �-ray event
captured by the two telescopes.
Bottom left and bottom middle panels: The cleaned images, superposed by
the Hillas parameters (the green ellipse and the red lines as axes), reconstructed
incoming direction (magenta star), and the true incoming direction (white star).
Bottom right panel: the Hillas parameters, reconstructed incoming direction,
and the true incoming direction, without the shower image.
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3.8.1 Particle species (Hadronness)

The observation data are contaminated with large amounts of background events,
which mostly come from hadronic showers. In most of the cases, the background
events dominate true �-rays, and there must be some e↵ective strategy to re-
ject or at least reduce them in the analysis. To this end, the particle species is
estimated. The background rejection by judging a �-ray shower or a hadronic
shower is called gamma-hadron (g/h) separation. Since the need is just binary
decision, the variable ”hadronness” is introduced. Hadronness is a measure to
evaluate if it is �-ray-like (Hadronness = 0 for a perfectly �-ray-like event) or
hadron-like (Hadronness = 1 for a perfectly hadron-like event).

Some of the image parameters show clear di↵erence between �-ray and the
hadronic primaries, and they are used as the input variables to determine the
hadronness. The computation of hadronness adopts Random Forest (RF). RF is
introduced in section 4.3, and the details of the usage of RF for the hadronness
estimator are given in section 4.3.3. The hadronness estimator is constructed
using the supervision events, which are simulated �-ray events as �-ray shower
examples and the observation data as hadronic shower examples.

The examples of the hadronness distributions are shown in figure 3.8. The
observation data are dominated by hadronic events, thus its hadronness distri-
bution peaks at 1. On the other hand, if a set of simulated �-ray events is given,
the distribution peaks at 0. Therefore, if a cut on Hadronness is introduced, a
large fraction of hadronic shower events are discarded, while most of the �-ray
events are kept.
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Figure 3.8: Hadronness distributions of simulated �-rays and observation data

The distributions of Hadronness, assigned to individual events. Note that the
data evaluated here are di↵erent populations of simulated �-ray events and ob-
servation data, from those used as supervision samples for g/h RF.

3.8.2 Direction reconstruction and Disp method

In the standard MAGIC analysis, the event-wise direction reconstruction of the
incoming �-ray is performed with a DISP RF method (Disp method) [19].

The Disp method starts from the estimations of Disp for both telescopes, by a
Random Forest (RF) regression (The explanation is given in section 4.3). Some
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image parameters are correlated with Disp and the combination of them leads
to the estimation. The Disp estimators are constructed for individual telescopes
by giving the relations between the TrueDisp and the related parameters in MC
simulated �-ray events (the details of the usage of RF for Disp are explained in
section 4.3.3. I also discuss the improvement of Disp in section 4.4.6).

Based on the estimated Disp, there appear two possible points as incoming
direction, because the putative incoming direction is along the axis at the angu-
lar distance of Disp from the image core, in either side (left panel of figure 3.9).
The problem is solved superposing the two images. When they are superposed,
there are four pairs of possible combinations to indicate the incoming directions.
The most probable incoming direction should be around the closest pair of the
estimated directions.

If none of the four pairs give a similar arrival direction in both telescopes
(namely the lowest distance is larger than 0.22�) the event is discarded. As
the estimation of the Disp parameter is trained with simulated �-rays, hadronic
background events often obtain non-consistent results. Therefore this step pro-
vides an extra �/h separation criterion.

The estimated incoming direction is computed as the average of the positions
from both telescopes weighted with the number of pixels in each image. The
angular distance from this point to the assumed source position is called ✓.

2. THE IMAGING ATMOSPHERIC CHERENKOV TECHNIQUE AND THE
IACTS MAGIC AND CTA

Figure 2.27: Disp reconstruction method for single-telescope (left panel) and stereo (right panel).

are shown in the right panel of Figure 2.28. We can see that the energy resolution is as good as
15 % at few hundred GeV. It worsens for higher energies because the impact parameter grows
and truncated images become more frequent. For low energies it also gets worse due to misre-
constructed images. The energy bias is close to 0 for energies > 100 GeV, however it rapidly
increases below these energies due to threshold e�ects.

Finally, the energy threshold of the telescope is defined as the peak of the simulated energy
distribution for a source with photon spectral index 2.6. It can be evaluated at several stages of
the analysis, but most relevant is the threshold obtained after applying analysis cuts because it
corresponds to the energy at which most of the events used for analysis are recorded. Events with
energies below the threshold can be reconstructed as well, but the spectral points have significant
errors. After applying a cut of 50 phe, hadronness and �2 cuts, the current energy threshold of the
MAGIC telescope is �75 GeV for low Zd observations. A plot showing the energy distribution
of gamma rays after analysis cuts of MAGIC for two Zd ranges is shown in Figure 2.29.

2.2.3.7 Signal extraction and sensitivity

Once we have evaluated hadronness, reconstructed energy and direction of the events, we can
evaluate if the data sample contains a signal. For stereo analysis, a program called odie computes
the angular distance � between the reconstructed and the expected source position for every event
and fills the so-called signal histogram, binned in �2. Assuming that the acceptance of the camera
is the same for regions close to the center, the background would be flat over the whole histogram,
while the �-like events would accumulate at small values of �2. Only events that survive some
other previously defined cuts in hadronness, size... are included in the signal histogram. These

50

Figure 3.9: Sketch showing the principle of the Stereo Disp method.

The major axes of the images are plotted with solid lines. For each image,
two possible positions shown as filled circles are obtained along the major axis
(left image). However the true incoming direction, marked with a diamond, is
not known thus it is impossible to choose one. When the images from the two
telescopes are superposed (right image), the possible directions from the two
images should be close to each other. The distances between the 4 pairs of the
directions are evaluated, which are dotted lines connecting the filled circles, and
the closest is chosen. The final reconstructed position (the filled square) is a
weighted average of the two closest points. Figure taken from [81].

3.8.3 Energy reconstruction (LUTs-Erec)

The standard MAGIC analysis has adopted the Look Up Tables (LUTs) method
for the energy reconstruction [17, 19]. This method has been used over the last
decade, but now it is overtaken by my novel strategy, introduced in the next
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chapter. Here I describe the LUTs method energy reconstruction (LUTs-Erec)
in detail for a comprehensive comparison.

In the LUTs-Erec, the energy of an event is estimated by averaging individual
energy estimators for both telescopes. This is because the Size, namely the
light content observed, is a direct and independent information to indicate the
primary energy of the �-ray. The shower energy is approximately proportional
to the number of electrons in the shower, as introduced in eq.(2.2.4), hence to
the total light content emitted and to the Size of the image [116]. However Size
needs corrections using additional parameters like Impact and Leakage to take
into account the dependencies on the geometrical relation between the shower
and the telescope. Therefore, if there are multiple telescopes recording the image
of the shower, Size needs the corrections separately for individual telescopes at
di↵erent locations.

Reflecting the thoughts above, the LUTs-Erec has three steps to reconstruct
the energy. In the first step, several corrections to Size parameter are computed.
Then, the energy of an event is estimated by two Look-Up-Tables for the in-
dividual telescopes. In the last step, the telescope-wise estimated energies are
combined.

Size correction

Before the LUT is applied, the Size is corrected by empirical formulas to recover
linearity of Size to energy.

• Zenith correction
The larger the Zenith distance, the longer distance to the shower maximum
point, thus the dimmer image results in smaller Size. To compensate this,
Size is multiplied by

0.97x
�0.3

1 � (1 � x)2.25

where x = cos Zd.

• Leakage correction
For the events with truncated images, Size needs to be compensated with
the missing amount of light content outside the field of view. Size is
multiplied by

1

1 � 4x2

where x = Leakage2.

• Magnetic correction
In the presence of the geomagnetic field, the acceleration acts in opposite
directions on electrons and positrons in the electromagnetic cascades. The
separation leads to a stretched distribution of light pool and to a drop of
light content to detect, as introduced in section 2.3.5. Size is multiplied
by

0.93 + 0.2
p

1 � x2

where x = CosBSangle.
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• Max height correction
The density of Cherenkov photons reaching the ground is a↵ected by the
distance to the shower. The density drop is characterised by the Cherenkov
Density. Size is multiplied by

1

x

where x = CherenkovDensity.

Two dimensional Look-up table

After Size is corrected with all the factors mentioned above, the LUT is applied.
The target value to search in the LUT is

TrueE

CorrectedSize

The LUT has two dimensions to search this value. One is Size and the other is
Impact. Size is expressed as

p
log(Size) for adjusting the grids, and Impact is

expressed in the unit of Cherenkov radius so that it can take into account that
the light pool radius changes according to the maximum height.

In the generation of LUTs, the target value in each grid is calculated from
the train samples. They are filled to the histograms of the target value for
corresponding grids, and the estimation value is determined by the peak position
of the Gaussian fit to the histogram. For the combining process of the two
estimations from individual telescopes, the uncertainty is also obtained as the
width of the Gaussian fit. The application to each event is done by estimating
the target value as the linear interpolation to the grids.

Note that the training of estimator (constructing the LUT) uses TrueImpact
and TrueCosBSangle, which can be retrieved from the MC simulations. In the
application to the data, the true information is not known and the estimated
Impact (DispImpact) and CosBSangle (DispCosBSangle) are given as input to
estimate the energy. I call this strategy as swap strategy. It is summarised in
table 4.2.

Combining the estimation

The estimated energy of each event is the weighted average of both telescopes,
where the weight is given by the uncertainty of the grid.

3.9 Extraction of �-ray excess counts

Once the event properties are assigned, we can evaluate if the data sample
contains a signal. As discussed in section 3.2, the statistical confirmation of
the existence of genuine �-ray source requires the comparison of the observed
counts between the region around the direction of an expected source (ON-
region) and the control regions (OFF-regions). The observed counts are derived
from the so-called ✓

2 histogram, and the computation of the significance from
the comparison of the counts was formulated by Li and Ma [79].
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3.9.1 ✓2 histogram

Figure 3.10 shows an example of real observation data, the first two runs (Run1
and Run2) of the GRB 190114C observation. The pointing direction is o↵set
from the target direction by 0.4 deg, and is altered run by run. Top panels
are the two dimensional histograms of reconstructed incoming directions of the
events in the two runs. The ON-regions and OFF-regions are surrounded by
the red circles and cyan circles respectively. The �-ray signal is clearly visible in
the ON-region of the Run1 data because of the extremely high �-ray flux from
this source, which decayed exponentially with time (see chapter 5 for further
details).

The actual range of ON and OFF regions needs to be adjusted to minimize
the background events. The �-ray events spread around the target direction,
thus the most e�cient way is to define the circular region around the ON direc-
tion and adjust the radius. To this end, the ✓

2 distribution is used.
The bottom panel of figure 3.10 shows the ✓

2 distributions around ON and
OFF direction. ✓

2 is the angular distance to the target (ON or OFF) direction
squared. For each event, ✓

2 of ON and OFF are calculated and filled into the
two histograms.

When the ✓
2 histograms of ON-region and OFF-region are made from the two

runs, the two histograms are expected to be consistent under null hypothesis,
as the exposures in terms of the camera response should be the same in total.
The figure shows a clear excess at low ✓

2 values, which are the real �-rays from
this object. The determination of the radius of the ON and OFF region, namely
the maximum ✓

2, is described in figure 3.10.3.

3.9.2 Number of excess events

In the example above, the observed counts of the �-rays is regarded as the
number of excess counts, comparing the counts in the ON region with that in
the OFF region.

Nexcess = NON � NOFF (3.9.1)

The excess counts, Nexcess is essential information for a discussion on the target
�-ray source, and it will be used for the estimation of flux from the source.
As discussed in section 3.2.2, there are di↵erent strategies of observations, and
the exposure of OFF region(s) is not equal to that of ON region in those cases.
Therefore some normalisation process is applied to the counts in the o↵ region(s).

Nexcess = NON � NnormalisedOFF (3.9.2)

In case of an ON and OFF observation, NnormalisedOFF takes into account the
di↵erence in observation time and observation directions. For an wobble mode
observation, the multiple OFF regions can be defined in the camera field of
view, thus the number of OFF regions is taken into account.
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Figure 3.10: Example of the incoming direction distributions and ✓
2 in ON and

OFF regions

Top: The two dimensional histograms of the incoming directions, reconstructed
for the two runs of observation data. The red circles are the ON regions, and
the blue circles are the OFF regions.
Bottom: The ✓

2 distributions around ON and OFF directions, accumulated
from the two runs.

3.10 Flux estimation from excess counts

The main interest in a �-ray observation is the �-ray flux �, which is defined as
the number of �-ray particles passing through unit area per unit time.

On the other hand, the measured �-ray events are the excess events that
survived the trigger, the event reconstruction and the event selection. In the
following, the derivation of flux is discussed, introducing the term ”collection
area”.

3.10.1 Collection area (e↵ective area)

The flux of �-rays from a source reaching at the Earth is uniform, and the mea-
sured counts of �-rays is the accumulation of the events at di↵erent distances
from the telescopes. On the other hand, the probability for a �-ray arriving at
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the ground to remain after all the procedure through trigger and analysis is de-
pendent on the distance to the Extended Air Shower (EAS) from the telescopes.
Let us define ”ground”, a plane perpendicular to the incoming direction of the
�-rays, and define the coordinates on the plane to be (x, y). Given the proba-
bility to survive for the �-rays until the excess counts as p(x, y), the number of
�-ray events N obtained in an observation of a �-ray source with flux � after
observation time T

12 is,

N = T

Z Z
� · p(x, y) dx dy (3.10.1)

Acoll =
R R

p(x, y) dx dy is called collection area. The collection area is strongly
dependent on energy and the observation direction, thus it must be derived in
a range of energy and direction with negligible variance.

By lack of an adequate calibrated high-energy �-ray source in the sky, Acoll

has to be derived using MC simulations. Acoll depends on the energy E of the
incident �-ray, on the telescope pointing zenith distance Zd (at high Zd also
on the azimuth angle), on the incoming direction and also on the atmospheric
conditions. For a simple case, like observing at low Zd in stable atmospheric
conditions, it is su�cient to take into account only E and Zd. The simulation
events must be generated uniformly in the given area Asim. Assuming that
Nsim events are simulated, and Ncoll events are collected after all the steps from
trigger, through event reconstruction until event selection. Then, the collection
area is

Acoll = lim
Asim!1

Asim

Ncoll

Nsim

(3.10.2)

3.10.2 Light curve and spectrum

There are two ways to express the flux in more decomposed way; light curve
and spectrum. Light curve is the flux integrated over a given energy range and
in bins of time. The other way is the spectrum, which is to show the flux as a
function of the energy of the �-rays. Since the collection area is strongly energy-
dependent, the calculation is always done over su�cient number of energy bins.
I begin with introducing the calculation of the spectrum. The introduction to
the light curve follows as the flux integrated over energy.

The dependency of collection area Acoll on the observation direction is taken
into account by averaging Acoll over the observed directions, weighted by the
time spent. Hereafter Acoll represents the averaged collection area. In the case
the energy dependence is taken into account, for N(t, Ei) events collected in the
time interval t � �t/2 < t < t + �t/2 and in the energy interval
Ei,min < E < Ei,max, the flux is

d�(t, E)

dE
|E=Ei

⇠ 1

�t

N(t, Ei)

Acoll(Ei)

1

Ei,max � Ei,min

(3.10.3)

This is called the di↵erential flux. While the di↵erential flux has the unit of
number of particles per unit area, it is also useful to express the energy flux as

12 The observation time T needs to be the e↵ective time of observation, in which the dead
time in the observation due to triggering and data read out is taken into account.
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a function of energy, called Spectral Energy Distribution (SED). In this study
I mainly show SEDs.

And the integral flux, for light curve, is,

�(t) =

Z Eh

El

d�(t, E)

dE
dE ⇠ 1

�t

X

i

N(t, Ei)

Acoll(Ei)
(3.10.4)

3.10.3 Event selection

For robust estimation of the flux, an event selection needs to be performed.
There are three kinds of selection criteria; Size cut and two e�ciency cuts over
✓
2 and hadronness.

Size cut

Size is primarily correlated with the energy of the �-ray. And it is in the
lowest Size range that is likely to have large systematic uncertainty because
the trigger e�ciency drops very quickly towards threshold. In addition, the
background events overwhelm the signals and the statistical uncertainty is also
large. Therefore the events with lowest Size needs to be avoided in the time and
spectral analysis. In general, the cut value is decided as the peak of the Size
distribution for the simulated �-rays surviving the analysis. Most analysis use
the cut Size > 50.

E�ciency cuts for ✓
2 and hadronness

The parameters ✓
2 and hadronness are used to reduce background events. The

distributions of ✓
2 and hadronness for �-ray events and hadronic events change

significantly over energy, therefore the selection criteria (cut conditions) are
assigned in energy dependent. For robustness, the cut conditions are determined
from the desired �-ray e�ciency, where a given percentage of simulated �-ray
events are collected after the cut condition. Typically, the e�ciency values used
are 75 % for ✓

2 and 90 % for hadronness. The actual cut values are looser at
lower energies.

3.10.4 Energy threshold

The energy threshold of IACTs is commonly defined as the peak of event dis-
tribution as a function of energy. Figure 3.11 shows examples in two Zd ranges,
displayed by the di↵erential number of MC �-ray events that survived the event
reconstruction with Size larger than 50. For low Zd range, i.e. Zd < 30�, the
reconstruction threshold energy is ⇠ 70 GeV. Note however that the peak is
broad and extends to lower energies. Therefore it is also possible to evaluate
the performance of the telescopes and obtain scientific results below this energy
threshold.
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Figure 3.11: The event distribution used to determine the energy threshold

Normalized number of MC �-ray events surviving the image cleaning with at
least 50 phe for a source with a spectral index of -2.6. Solid line: zenith distance
below 30�, dotted line: zenith distance between 30� and 45�. Figure based on
the figure from [19].

3.11 Spectral unfolding and migration matrix

The calculation of spectrum described in section 3.10 needs a correction before-
hand, which is called ”unfolding”, because the accuracy of energy reconstruction
is limited and the mis-reconstruction (also called ”energy migration”) leads to
deformations in the event distribution over energy. Figure 3.12 shows a sketch
of such deformation.
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Figure 3.12: An example of smeared measurement

An example of smeared measurement. Two di↵erent distributions of some value
with limited resolution become almost identical because of the limited resolution.
Original distributions are solid lines and measured distributions are shown with
dashed lines. Figure extracted from [32].

The deformation of the histogram binned in energy can be described as a
matrix equation using the probability distribution of energy migration, called
migration matrix (see also figure 4.35). Let us consider a histogram binned
in estimated energy with ny bins and a corresponding true energy histogram
with ns bins. Let the content of the estimated energy histogram be a vector
y, with an element for bin i as yi. Similarly, the true energy histogram be s,
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with an element for bin j as sj . While true energy distribution s is necessary
for proper spectrum, the available distribution is only over estimated energy y,
which is deformed via convolution (or folding) with the migration matrix M .
The migration matrix Mij relates them as,

yi =
nsX

j=1

Mijsj + �i (3.11.1)

where the matrix element Mij gives the probability to find an event in bin i

of the observed histogram which was produced in bin j of the true histogram,
namely

P
i Mij = 1. And �i is noise term, which accounts for e↵ects that are

not described by the model of the measurement. The most obvious such e↵ect is
the statistical uncertainty, which comes not only from the fluctuation of signal
events and their migrations, but also from background events, because y is
obtained as excess events compared with control regions. In addition, �i may
also account for the deviation of modeling the migration matrix.

To unfold the distribution, the migration matrix needs to be estimated. It is
obtained from the MC simulation. Using the ”test” samples, Mij is estimated
as 13

Mij =
N

srv,rec
ij

N
srv

j

(3.11.2)

where N
srv

j is the number of events in j-th true energy bin which survived
the event selection in the analysis, and N

srv,rec
ij is the number of events in j-

th true energy bin which survived the event selection in the analysis and were
reconstructed to be the energy corresponding to i-th estimated energy bin. Note
that the distribution of the observation direction, especially in Zd, needs to be
equalized between the number of generated �-rays for the ”test” samples and
the duration of the observation time.

To solve eq.(3.11.1), a straightforward way is to approximate the equation
neglecting the noise term and to solve it inverting M . However this computation
tends to yield unphysical and extremely unstable results, and there needs to be
more constraint for the solution. The strategy is to look for a solution close
to a reasonable estimate of the spectrum (this is a requirement that concerns
the space of solutions) and which gives a good fit to the data but without over-
fitting (this is a requirement that concerns the space of data). The requirements
in these two viewpoints cannot be simultaneously fulfilled and there needs to be
a compromise. And there are two di↵erent approaches based on the di↵erence
in the weights on these two viewpoints; forward folding and unfolding.

In the followings, I explain the forward folding and unfolding in the MAGIC
standard spectral analysis.

13Note that an energy bin has certain width thus the estimated matrix element is a↵ected
by the di↵erence of the spectral slopes between the MC and the reality. To deals with this
problem, the events are weighted for the spectral slope di↵erence in a spectral analysis.
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3.11.1 Forward folding

Forward folding assumes a particular spectral shape as a parametric function
with a small number of free parameters, and it is fitted to the observed data. The
fit process searches for the global maximum of the likelihood function, which is
the joint probability density function of explaining the measured distribution.
Not only the measured signal distribution y, the background distribution can
also be added to the function. Thus the likelihood function consists of the prob-
abilities in each bin of the measured ON distribution yon and OFF distribution
yo↵ , under the assumption of the signal distribution ŷ from the assumed spectral
parameters ✓ and the background distribution ŷb as nuisance parameters.

L(yon,yo↵ |✓, ŷb) =

nyY

i=1

P (yon,i|ŷi + ŷb,i)P (yo↵,i|ŷb,i/↵) (3.11.3)

where a probability P is in Poisson distribution and ↵ is the ratio of the obser-
vation time intervals in ON and OFF. To derive ŷ from ✓, the spectral shape
as di↵erential flux is convoluted with the collection area as a function of energy
and the migration is applied.

Forward folding requires reasonable spectral shape. Empirically and theo-
retically, most of the �-ray spectra can be well described with power-laws, or
power-laws with exponential cuto↵s. If the source is at cosmological distance,
the spectrum su↵ers from the deformation due to the energy dependent ab-
sorption of �-rays. In that case, the forward folding can take into account the
absorption in the fit process, starting the fit from the spectrum at the source
(intrinsic spectrum).

The validity of the assumption is justified as long as the goodness-of-fit
parameter (the probability to obtain the observed data if it is caused by the
given spectral model) is reasonable.

3.11.2 Unfolding

Unfolding tries to perform a sort of inversion of the matrix M and derive ŝ,
namely the estimated distribution before deformation, without imposing a para-
metric functional spectral shape. However, the direct solution to the inversion
problem tends to yield unphysical and extremely unstable results. Therefore
there needs a regularization method, namely a reasonable assumption on the
unfolded spectrum which gives a good fit to the data but without over-fitting.
In this way, it attempts to filter out the noise in the unfolded distribution.

There are di↵erent regularization methods based on di↵erent assumptions.
In MAGIC collaboration, there are five methods adopted [15]. The five methods
are based on either the Tikhonov method [94], the Bertero method [28] or the
Schmelling method [100]. These methods work in the way explained in either
one of the two following approach bases.

Adding regularization term to �
2 (Tikhonov and Schmelling)

The first approach is to search for ŝ with global minimum of �
2. Assuming that

the measured number of counts in the energy bins are independent from each
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other with Gaussian distribution as an approximation to the Poisson distribution
in large number, �

2

0
is given, 14

�
2

0
=

nyX

i=1

(yi � ŷi)2

�2

yi

= (y � M ŝ)T · K
�1 · (y � M ŝ) (3.11.4)

where K is the covariance matrix of y.
The regularization is applied as the additional term into �

2, which works as
suppression on the overall shape of unfolded distribution.

�
2 =

!

2
�

2

0
+ Reg(ŝ) (3.11.5)

where Reg(ŝ) is the regularization term as a function of ŝ, and ! is a weight
which allows to steer the regularization strength. �

2 minimum is searched chang-
ing !. There are many formalization of the regularization term, and in MAGIC
analysis adopts the Tikhonov method and the Schmelling method.

The Tikhonov method is the method of curvature regularization. The un-
folded distribution is estimated by the smoothest or least curved distribution
which is still statistically compatible with the measurements. The regularization
term gives penalty on the frequent change of derivative, defined as

Reg(ŝ) =
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✓
d
2
s(E)

dE2

����
E=Ei

!2

⇠
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◆�2
(3.11.6)

where in the middle term s(E) is the s under the assumption that it is obtained
as a continuous function of energy E. In the strong regularization, s approaches
to smooth power-law distribution in general.

The Schmelling method is the method of reduced cross-entropy regulariza-
tion.

Reg(ŝ) =

nyX

i=1

pi ln
pi

"i

(3.11.7)

where pi is the normalised distribution of ŝ and "i is a normalized prior distri-
bution. The cross entropy quantifies by how much p deviates from ". In the
MAGIC standard analysis, the prior distribution is set to be the measured dis-
tribution, thus the unfolded distribution approaches the measured distribution
itself in the strong regularization.

14 In the �
2 minimization of unfolding in the MAGIC standard analysis, the error of esti-

mated value is added to the covariance matrix K, namely,

�
2
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nyX

i=1

(yi � ŷi)2

�2
yi

+ �
2

ŷi

= (y �M ŝ)T ·K�1

e · (y �M ŝ)
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Suppressing small eigenvalues of Grams’s matrix

Another approach of regularization is to approximate the inversion of the migra-
tion matrix M , with suppression in the small eigenvalues. The matrix relation

y = Ms (3.11.8)

is solvable by introducing so-called Gram’s matrix,

G = M · M
T (3.11.9)

G is symmetric thus is diagonalizable by orthogonal matrices, which can be
denoted as

G = (�1g1, �2g2, . . . �nrgnr) · (g1,g2, . . .gnr)
T =

nrX

l=1

�l(gl · gT
l ) (3.11.10)

where gl is the orthogonal vector with the correspondent eigenvalue �l. The
solution of eq.(3.11.8) reads

s = M
T (M · M

T )�1y = M
T (G)�1y = M

T

nrX

l=1

1

�l

(gl · gT
l ) · y (3.11.11)

Thus small eigenvalues give strong oscillation in the solution. The Bertero’s
method tries to suppress the contribution from them by using the Richard-
son’s iterative method. The equation is constructed for approximate solution of
c = G

�1y to iterate over c.

ci+1 = ci � ⌧(G · ci � y) (3.11.12)

where ⌧ is the relaxation parameter. If 0 < ⌧ < 2/�max, the solution converges
to G

�1 for infinite i. In MAGIC analysis, ⌧ = 1/�max. The solution depends on
c0, the initial distribution of c, and the number of iterations i. In the case of
MAGIC analysis c0 is configurable to be either 0 or y. In the case c0 = y, the
approximated solution of G

�1 reads

G̃
�1 =

nrX

l=1

✓
1

�l

[1 � (1 � ⌧�l)
i + (1 � ⌧�l)

i
�l]

◆
gl · gT

l (3.11.13)

Search for the global solution

For the above mentioned strategies, the solution changes dependent on the
weight ! for the former strategies or the iteration number i for the latter strate-
gies. However there is no unique way to choose the best ! or i. Therefore in
MAGIC analysis, the ”best” value is searched over a wide range of ! or i, from
10�5 to 1010 and there are di↵erent criteria of choosing the ”best” value. The
options of the criteria are discussed in section H.1.

3.11.3 Pros and cons

Forward folding is very beneficial in the sense that a spectrum with theoretical
model can be directly fitted to the observed counts in order to obtain best-fit
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spectral parameters and a goodness of the fit. However, the fit never works if a
reasonable spectral model is missing. In such a case, the spectrum needs to be
reconstructed with minimum assumption beforehand so that the shape can be
characterized. A spectrum can have various kinds of structure like a cuto↵, a
broken power-law or even a complicated irregularity.

To this end, unfolding is an indispensable alternative approach to the spec-
tral analysis. A spectral shape can be reconstructed without any strict as-
sumption on the shape, in as small scale as the energy resolution. However it
does not take into account the fluctuation of background events. Moreover, it
considers the energy migration only for the energy bins with enough statistics
and the number of excess events are treated with Gaussian uncertainty. These
treatments a↵ect the low statistics region, namely at the edge of the range. In
addition, the entire range can be a↵ected in case of a steep spectrum, where a
systematic uncertainty of spillover from lowest energies might change the slope.

Therefore both forward folding and unfolding should be cross-checked for
consistency.

3.12 The performance of MAGIC telescopes

3.12.1 Crab Nebula as reference source

As discussed in the previous sections, the flux estimation of a �-ray source is
based on the telescope response measured using simulated �-rays. Additionally,
the overall performance of MAGIC observation and analysis is also evaluated us-
ing observations from the Crab Nebula. The Crab Nebula is a nearby (⇠ 1.9 kpc
away, [110]) pulsar wind nebula, and the first source detected at VHE �-rays
[114]. At VHE �-rays, it is the brightest persistent and not time-variable source.
However, there has been a few �-ray flares observed at GeV energies by AGILE
& Fermi-LAT [4, 107] but no counterpart has been detected at VHE. There-
fore, the Crab Nebula is commonly referred to as the “standard candle” of VHE
�-ray astronomy, and it is frequently used to evaluate the performance of VHE
instruments.

The comparison of the spectra of the Crab Nebula drawn by di↵erent exper-
iments and di↵erent versions of the MAGIC telescopes is shown in figure 3.13.

3.12.2 Sensitivity

The sensitivity of the instrument is calculated as the minimum flux level that can
be detected at 5 � of significance s, in 50 hours of observation. The significance
here is calculated as s = NS/

p
NB, where NS is the number of excess events and

NB is the number of background events.
The sensitivity can be calculated from the Crab Nebula observations. In gen-

eral, NS should scale proportionally with flux level in a given observation time,
and NS and NB should scale proportionally with observation time tobs in gen-
eral, thus s /

p
tobs. There are two ways to express the sensitivity, the integral

sensitivity refers to the integrated flux above a selected minimum (threshold)
energy, while the di↵erential sensitivity addresses the flux in di↵erential bins of
energy. Figure 3.14 shows the sensitivity of MAGIC as of 2016.
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Figure 3.13: Spectra of the Crab Nebula measured with di↵erent instruments

Spectral energy distribution of the Crab Nebula obtained with the MAGIC
telescopes after the upgrade (red points and shading) compared to other ex-
periments: MAGIC-I (cyan solid), MAGIC Stereo 2009–2011 (green dot-dot-
dashed), HEGRA (gray dot-dashed), VERITAS (blue thick solid), ARGO-YBJ
(magenta, dashed) and H.E.S.S. (black dotted). The vertical error bars show
statistical uncertainties, while the horizontal ones represent the energy binning.
Image taken from [19].

Figure 3.14: The sensitivity of MAGIC telescopes

MAGIC integral (left) and di↵erential (right) sensitivity as a function of energy.
The black lines are the sensitivities in 2010, before major upgrades in hardware,
and the red and blue lines show the sensitivity after the last major upgrade in
2013. The color indicates the di↵erent pointing condition (red curves correspond
to Zd observations below 30�, and the blue for the Zd in the range 30�-45�.
Image taken from [19].



Chapter 4

Improvement of the energy
reconstruction

This chapter describes the strategies I developed to improve the estimation of
the energy of �-rays in the data of the MAGIC telescopes.

First, the problem definition introduces an estimator, with the training pro-
cess and important properties to be evaluated. Second, the Random Forest (RF)
method, which plays the main role to improve the energy estimation, is intro-
duced with the benefit to choose among a number of Machine Learning (ML)
algorithms. There are di↵erent algorithmic approaches to RF in detail, and the
approach I chose for the energy estimation will be highlighted, together with all
the event reconstruction methods in MAGIC. The detailed explanation of the
new energy estimator comes in the next, and the validation of the estimator will
be followed. Finally, the performance evaluation shows the improvement of the
energy estimation with respect to the standard strategy that has been used in
the MAGIC collaboration during the last decade.

4.1 Problem definition

4.1.1 Definition of an estimator

Supervised learning

As mentioned in section 3.8 the event reconstruction focuses on the three event
properties; the event class, the direction (Disp) and the energy. The determi-
nation of these �-ray properties are done by the dedicated estimators, built by
the dedicated algorithms.

Each algorithm builds an estimator as a mathematical model from a set of
data that contains both the inputs and the desired outputs, and it will be applied
to accurately generate outputs when given new inputs. This type is called
supervised learning. Hereafter I discuss exclusively on a supervised learning
problem.

73
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Train data set

Let us consider a supervised learning task of estimating y from a set of input
variables x on a sample in D, where the pair of (y,x) follows the joint probability
function y = f(x). However, there is uncertainty in the mapping from x to y,
because of having limitation in the measurements of (y,x) as well as not having
enough attributes to su�ciently characterise the relation. Thus the relation
needs additional term expressing the noise.

y = f(x) + " (4.1.1)

where " is noise which has zero mean and variance �
2.

To construct the estimator, an algorithm learns the relation between y and
x from a finite number of samples Dtrain, called train sample. The train sample
must ”asymptotically” cover entire region of interest for an unseen sample in
D. Normally the region of interest corresponds to the probability distribution
of D. In that case the train sample Dtrain is chosen so that it is independent
and identically distributed (i.i.d.) from D.

After the estimator is constructed, it estimates y. The estimation is denoted
with circumflex over the symbols in interest. The estimated value ŷ for an event
with a set of input variables x is the output of the model f̂ . Namely,

ŷ = f̂(x) (4.1.2)

For notational convenience, hereafter abbreviation f = f(x) and f̂ = f̂(x) will
be used.

4.1.2 Training an estimator

Overfitting and generalization error

The training process is a fit of a model f̂ to the train data. The complexity of
the model is a measure of the ability of how precisely the model can adequately
capture the underlying structure of the data. However, the accuracy of the
estimation drops if the model is overly complex with respect to the noise in the
data and the model captures the noise. This is called overfitting.

Therefore the performance of an estimator must be examined in terms of
generalization error. It is a measure of how accurately an algorithm is able to
predict outcome values for previously unseen data. And it is formulated as the
absolute value or square of deviation of the estimation ŷ = f̂ from the real value
y, averaged over entire samples in D. Here we define this as the expected Mean
Squared Error (MSE).

MSE = E
h
(y � f̂)2

i
(4.1.3)

Bias-variance decomposition

The e↵ect of overfitting in training can be interpreted in the concept called the
bias-variance decomposition [63, 84]. This concept shows that generalization
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error is decomposed into two sides called ”expected bias” and ”model variance”1.

For the decomposition I introduce E
h
f̂

i
, as the expectation of f̂ over asymp-

totically infinite number of train samples to construct f̂ . As the train samples
increases, the estimation ŷ approaches y but the generalization error never goes
to zero because the estimation learns from and is applied to the data with noise
denoted in eq.(4.1.1). Because of the noise ", the model can never know under-
lying function f in training, neither can match y which is randomly o↵set from
f .

Using E
h
f̂

i
, MSE eq.(4.1.3) is decomposed as below (See section A for the

detail).

MSE =
⇣
Bias

h
f̂

i⌘2

+ Var

h
f̂

i
+ �

2 (4.1.4)

Where we define expected bias and model variance as below.

Bias

h
f̂

i
= E

h
f̂

i
� f (4.1.5)

Var

h
f̂

i
= E

⇣
f̂ � E

h
f̂

i⌘2
�

(4.1.6)

Expected bias is the di↵erence between the estimation by the expectation
of model and the correct value which the model is trying to predict. The more
complex the model, the closer the expectation of model to the correct function
f and the model gets low expected bias.

Model variance is the ”distance” of the model trained, from the expectation
of model. Since the train samples are limited, the more complex the model, the
more amount of train samples are needed to converge towards the expectation
of model, thus there remains more variance. In other words, the less complex

the model can make f̂ already close to E
h
f̂

i
.

The generalization error has these two decomposed terms, and it shows which
of correct function or expectation of model is closer to the model f̂ constructed
from the train data set.

Underfitting and overfitting

For a given amount of train data, the generalization usually develops with in-
crease of model complexity as figure 4.1. The generalization error never ap-
proaches 0, instead it shows turnover at some point. This is called bias-variance
tradeo↵ and related to the expected bias term and model variance term decom-
posed from the generalization error.

In the generalization error, a high expected bias indicates missing of the
relevant relations between x and f in the estimation model f̂ even after approx-
imately infinite training. It happens when the model is oversimplified and does
not capture the complexity of data. It always leads to high error naturally not

1 Normally they are called just bias and variance. However, the names are very general
and can confuse the reader with the other terms which can also be regarded as ”bias” or
”variance”. The bias here in the focus of training process is di↵erent from the one mentioned
later in the evaluation with test data set. I call the bias treated here as ”expected bias” to
discriminate. In the same way, I name ”variance” here as ”model variance”.
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Figure 4.1: Bias-Variance tradeo↵ vs model complexity.

Top: The dart example for (a) high bias and low variance, (b) low bias and high
variance, (c) high bias and high variance, and (d) low bias and low variance. The
worst and best cases are (c) and (d), respectively. The center of the circles is
the true value of the variable. Figure extracted from [57].
Bottom: The schematic of the bias-variance tradeo↵. Bias, shown in the green
dashed line, decreases as the model complexity increases. But the variance,
yellow dashed line, increases instead. Thus the generalization error, the red
solid line, upturns after an optimum point. The figure is redrawn based on [84]

only on training data but also on test data. This is called underfitting. Thus we
prefer low expected bias; The model should learn as much in detail as possible
the relation between the input and output for given train data set.

However, learning too much in detail results in capturing also the random
noise of the training data, and the model cannot make the right prediction to
unseen data. In this case, the model variance term enhances the contribution
to the generalization error. If the model was too complex that can be tuned
so flexible to the training set, it means the expectation of model is so close
to the correct function (low expected bias) that it requires infinite amount of
train data to converge the training. Therefore variance of the model f̂ trained
from the limited amount of train data is large with respect to the expectation
of model. Consequently, a model with high model variance shows very small
error to train data set, but large error to test data set. This is called overfitting.
Thus we prefer low model variance; we also keep an eye on the variance so that
both low expected bias and low variance are achieved to some fair extent.

The bias-variance trade-o↵ is a central problem in supervised learning.
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4.1.3 Evaluation of an estimator

Test data set

The evaluation of an estimator is ideally to use generalization error eq.(4.1.3),
however it is impossible to collect all the unseen data. Instead it is approximated
by another set of samples called test sample. Here I denote it Dtest. To properly
predict the generalization error, the test data should be e↵ectively independent
and identically distributed from D 2.

MSE =
1

N

X

X2Dtest

(f̂ � y)2 (4.1.7)

Bias and resolution

For an evaluation of generalization error, two properties, bias and resolution
will be more useful in this study. Because the output ranges widely, I express
them in the form of normalised error.

Bias is the average di↵erence between the prediction of our model and the
correct value which we are trying to predict. Model with high bias pays very
little attention to the training data and oversimplifies the model. It always leads
to high error on training and test data.

Bias(f̂ , Dtest) =
1

N

X

X2Dtest

(f̂ � y)/y (4.1.8)

Resolution, or standard deviation (SD), is the variability of model prediction
for a given output value which tells us the spread of the model prediction.
Namely, it is square root of variance as below.

V ar(f̂ , Dtest) =
1

N

X

X2Dtest

 
f̂ � y

y
� Bias(f̂ , Dtest)

!2

SD(f̂ , Dtest) =
q

V ar(f̂ , Dtest) (4.1.9)

Fitted bias and resolution

For more practical point of view, it is better to show bias and resolution in a
form of representing the distribution of majority events. Especially in case of
energy estimation, as described in section 3.10, the distortion of spectrum due
to the energy estimation error needs to be corrected dependent on the migration
matrix. In that case, the population becomes important measure.

An example of fitted bias and resolution is shown in figure 4.2. The nor-
malised error distribution is fitted with a Gaussian. The bias and resolution are
the peak and width extracted from the function. This works well for evaluating
energy estimation, but this evaluation misses taking the ”outlier” in the distri-
bution into account, which is the case of previous method (LUTs-Erec). Thus
for evaluating the outlier in distribution, SD will also be used.

2 The selection of test data in the energy estimation is described in detail in section 3.4.3.
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Figure 4.2: Bias and resolution

An example distribution of the normalised error,(Eest � Etrue)/Etrue, for the
energy estimation of �-rays, in the energy range 1 TeV  Etrue  2 TeV. The
red curve is the Gaussian function fitted to the distribution. In this thesis, the
peak position and the width of the Gaussian are referred to as ”fitted bias” and
”fitted resolution”.

4.2 The advantage of Random Forest for the en-
ergy reconstruction among Machine Learn-
ing algorithms

Machine Learning (ML) is a method of statistical learning that computer sys-
tems use in order to perform a specific task e↵ectively without using explicit
instructions, relying on patterns and inference of inputs instead. The learning
process are classified into the three categories; supervised learning, unsupervised
learning, and reinforcement learning. The study reported in this thesis focuses
on the supervised learning.

Classification or regression More in detail, supervised learning are catego-
rized to two algorithms; classification algorithms and regression algorithms.We
adopt both algorithms depending on di↵erent purposes as below. Classification
algorithms are used when the outputs are restricted to a limited set of val-
ues. This meets our problem of the event classification, that is to discriminate
�-ray-like events from the background events. On the other hand, regression
algorithms are named for their continuous outputs, meaning they may have any
value within a range. In case of the MAGIC analysis, the estimation of DISP
for the direction reconstruction of �-ray is categorized as this type of problem,
and the energy estimation as well.
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Choice of Random Forest There are a number of ML algorithms well ac-
cepted these days, however the selection of the optimal ML algorithm for a
specific problem is not well established yet. There has been the attempts to
compare the performances of the ML algorithms on classification problems [47,
91], and the results show that the performance of an algorithm is problem-
dependent and there is no single guaranteed solution to outperform in all the
problem cases. However, these studies show the Random Forest (RF) proves to
be one of the algorithms with generally the best performance in a number of
di↵erent problem settings.

RF has some advantages by its design [34], which was the reason to adopt it
for the event reconstruction of VHE �-ray observation in MAGIC. The merits
can also be compared with the other methods [63]. Table 4.1 characterises the
appropriate situations of each of the respective methods. In the comparison, the
RF can refer to a ”Trees” method, as it is an algorithm with ensemble learning
approach to Decision Tree (DT) method. The ”Trees” method also includes
Boosted Decision Trees (BDTs) method, which performs the best in [91].

From the superior points of RF and the comparison with the other methods,
the following is especially important to the event reconstruction.

• Versatile
RF can be applied to both classification and regression problems.

• Robust to outliers in training samples
RF is robust to outliers and non-linear data. The training of algorithm
is not influenced by outliers and multicollinearity to some fair extent.
Thus the training process requires less data cleaning and we can treat the
simulation data with di↵erent conditions of the telescopes in fair way.

• Almost no risk of overfitting
Training process of RF supervises the model to be with low expected bias,
however at the same time it achieves moderate model variance by the
randomization. Namely, RF is less likely to overfit on the training data.

• Easy to tune
The performance of RF is already close to its best in general, with very
little tuning required.

• Light and fast computation
The size of the estimator is proportional to the number of trees. And RF
requires less number of trees to obtain su�cient performance. RF tends
to converge already at around 50 trees, which is significantly less than
BDTs. Moreover the generation of RF can be parallelized, while BDTs
need subsequent generation of trees. Therefore RF is lighter and faster.

• Interpretability
Having Decision Tree method in the basis, we can take advantage of in-
terpretability because the tree is structured with simple binary decisions.
Moreover the training process tells the importance of each input variable.
To be always watching the possible systematic e↵ects or lack of statistics,
having interpretability is very important.
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Table 4.1: Some characteristics of di↵erent learning methods.

10.7 “O�-the-Shelf” Procedures for Data Mining 351

TABLE 10.1. Some characteristics of di�erent learning methods. Key: ▲= good,
◆=fair, and ▼=poor.

Characteristic Neural SVM Trees MARS k-NN,

Nets Kernels

Natural handling of data
of “mixed” type

▼ ▼ ▲ ▲ ▼

Handling of missing values ▼ ▼ ▲ ▲ ▲

Robustness to outliers in
input space

▼ ▼ ▲ ▼ ▲

Insensitive to monotone
transformations of inputs

▼ ▼ ▲ ▼ ▼

Computational scalability
(large N)

▼ ▼ ▲ ▲ ▼

Ability to deal with irrel-
evant inputs

▼ ▼ ▲ ▲ ▼

Ability to extract linear
combinations of features

▲ ▲ ▼ ▼ ◆

Interpretability ▼ ▼ ◆ ▲ ▼

Predictive power ▲ ▲ ▼ ◆ ▲

siderations play an important role. Also, the data are usually messy: the
inputs tend to be mixtures of quantitative, binary, and categorical vari-
ables, the latter often with many levels. There are generally many missing
values, complete observations being rare. Distributions of numeric predic-
tor and response variables are often long-tailed and highly skewed. This
is the case for the spam data (Section 9.1.2); when fitting a generalized
additive model, we first log-transformed each of the predictors in order to
get a reasonable fit. In addition they usually contain a substantial fraction
of gross mis-measurements (outliers). The predictor variables are generally
measured on very di↵erent scales.

In data mining applications, usually only a small fraction of the large
number of predictor variables that have been included in the analysis are
actually relevant to prediction. Also, unlike many applications such as pat-
tern recognition, there is seldom reliable domain knowledge to help create
especially relevant features and/or filter out the irrelevant ones, the inclu-
sion of which dramatically degrades the performance of many methods.

In addition, data mining applications generally require interpretable mod-
els. It is not enough to simply produce predictions. It is also desirable to
have information providing qualitative understanding of the relationship

Key:N= good, ⌥=fair, and H=poor. Learning methods: SVM=Support Vector
Machine, MARS=Multivariate Adaptive Regression Splines, k-NN=k-Nearest-
Neighbor Classifiers. The RF is in a family of Trees. The table is redrawn based
on [63].
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4.3 Random Forest

Random forest was first described by Breiman et al (2001) [34], and is now one
of the most widely used and versatile algorithms in data science and machine
learning [84]. It is based on Decision Tree (DT) method, and it overcomes bias-
variance limit by the ensemble approach on a number of decision trees (DTs),
which is the origin of ”forest”. And the ensemble approach features randomiza-
tion strategy in building individual DTs, which is where ”random” comes from.
Thanks to this ensemble approach, RF achieves overwhelmingly more reliable
prediction than DT. In bias-variance tradeo↵ point of view, training process of
RF generates many models with low bias but large variance. The point is the
models are randomized so that they are uncorrelated to each other. By com-
bining the predictions, the large number of uncorrelated errors average out to
zero to solve this problem

In this section, I introduce DT method first to be a basis for the RF method.
Afterwards, the ensemble approach of RF to DT will be described, listing dif-
ferent actual approaches. At last, the RF already equipped in MAGIC analysis
package ,”MAGIC Analysis and Reconstruction Software (MARS)”, will be ex-
plained.

4.3.1 Decision Tree

A Decision Tree is an algorithm to make a decision on output, judging from a set
of input variables via repetitions of di↵erent binary decisions. As the example
(figure 4.3) shows, the entire schematic view of the process flow looks like a tree
drawn upside down (See the description as well for the terminology). When an
input is given, it traces the nodes which represent binary decisions, where one
of the variables of the input is compared with the criterion value and is judged
which side of the next node to be passed via the link (branch). When it reaches
a terminal called a leaf, a single correspondent outcome is given as an output.

Construction and application of a tree

A DT is grown from a training samples Dtrain by the recursive processes of split-
ting them into two groups to construct new nodes. This process is summarized
in algorithm 1. The application of the DT for the estimation is in algorithm 2.

The procedure starts from a set of training samples, which have the input
variables paired with the desired output. The construction of the decision tree
consists of the node building processes, each of which is done by splitting the
samples into two groups, and the determinations of the predictive values at the
end of splittings. The split focuses on one of the input variables. The samples
are arranged in the sequence of the input variable and the split position is
examined. The best split position should make the output values in each group
the most di↵erent from each other. There are di↵erent methods to achieve
this split and they will be described later. When a group of samples reaches
the given condition to terminate further split, the terminal is defined with the
prediction value decided from the samples in the group. In the followings, the
detail of the termination condition and the prediction construction will also be
separately discussed.
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Figure 4.3: An example of Decision Tree

This example shows a sketch of a Decision Tree applied to the classification
problem to separate �-ray events (denoted as g) from the background events
(denoted as h) in the observation data. A set of observation data is given at the
top of the figure called ”Root node”, and will be evaluated by a set of questions.
The questions are given one by one at the blue diamond points called ”node”, at
each of which an attribute (variable) is compared with the criterion and passed
to the correspondent branch. At the terminal node, the result of the evaluation
(g or h) is given.

Algorithm 1 Construction of a Decision Tree

1: The set of training samples {X|X 2 Dtrain} is given. An event has both the
output and the p input variables paired. Namely, for an event,

X = (y,x)
x = (x(1)

, x
(2)

. . . x
(p)).

In the following steps, Dtrain will be split recursively.
2: Let n a node to generate a split and we define Dn 2 Dtrain to be a set of

subsamples before a split and DL, DR to be after, such that

{DL 2 Dk, DR 2 Dk|DL \ DR = ?, DL [ DR = Dn }

3: For splitting Dn, a variable x
(j) is chosen. Define two regions RL and RR,

as the left (lower) and right (bigger) sides of the split point s on x
(j) over

the samples.
RL(j, s) = {X|X 2 Dn, x

(j)
< s}

RR(j, s) = {X|X 2 Dn, x
(j) � s}

Search for s to separate the y the best.
4: Step 3 is usually repeated for di↵erent variables, and the best x

(j) and s

will be chosen.
5: Evaluate if the recursive process reaches the condition to stop. If RL(j, s)

is still to be split again, Dn = RL(j, s) and repeat the procedure from step
2. The same rule is applied to RR(j, s).

6: After RL(j, s) or RR(j, s) reaches the condition to stop the split, the node
becomes a terminal (last node). A terminal t will be given a prediction value
ŷt from the population in t. When all the split processes reach terminal, the
construction terminates.
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Algorithm 2 Application of a Decision Tree

1: For an event in interest, the tree generated in algorithm 1 estimates ŷ, the
value of the target variable y. The event has the same set of input variables
as the training events x = (x(1)

, x
(2)

. . . x
(p)), and x is given to the tree.

2: The tree is traced branch to branch. On the track every node evaluate x
and decide which side of branch to pass to. For a node n, the variable to
evaluate and the split criteria x

(j) and s are assigned in the construction of
the tree. Using them, the event is traced to the side with the condition it
satisfies.

3: The previous step is repeated until it reaches the last node. When the event
reach the correspondent last node t for which ŷt is assigned as the predictive
value in the construction, the tree gives the predictive value, namely, ŷ = ŷt.

Split method for regression problems

The split method is dependent on if the problem is regression or classification.
For a regression problem, minimization of weighted mean of variances with the
events going to the two sides of node is used. The discussion below is based on
the studies reported in the following publications [63, 69, 71].

Consider a train data set Dtrain with the number of events of Ntrain. The
element X 2 Dtrain has the p input variables x and desired output y. Namely,
the i-th event can be denoted as below.

Xi = (yi,xi)

xi = (x(1)

i , x
(2)

i . . . x
(p)
i ) (4.3.1)

To construct an estimator of y, the goal is to partition Dtrain into the seg-
ments with similar y. Assume that after the partitioning there are T non-
overlapping regions.

Rt 2

8
<

:R1, R2, . . . RT |
Rt ⇢ Dtrain

^Ri \ Rj = ?8i, j 2 {1, 2, . . . , T}
^R1 [ R2 [ . . . RT = Dtrain

9
=

;

Each Rt corresponds to a leaf, where the predictive value ŷt is assigned. The
predictive value needs to be chosen so that the Residual Sum of Squares (RSS)
from output is minimized. So that,

RSSmin(Dtrain, T ) = min
ŷt

TX

t=1

X

Xi2Rt

(yi � ŷt)
2 (4.3.2)

This means the fit with T values of constants to the distribution of y. Thus
the best split search is an instance of the maximum likelihood approach. If
we try to solve this by splitting all T regions, it is computationally infeasible.
However, the problem is easy to solve when the regions to split is two and we
can su�ciently partition Dtrain by recursive split processes.

For more in detail of the split, let us assume a node n to split the data
Dn 2 Dtrain. From the set of input variables x a variable x

(j) is chosen. Define
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the two regions RL and RR , which are based on the split point s on x
(j) over

the samples.

RL(j, s) = {X|X 2 Dn, x
(j)

< s}
RR(j, s) = {X|X 2 Dn, x

(j) � s} (4.3.3)

RSSmin(Dn) := RSSmin(Dn, 2)

= min
j,s

2

4min
cL

X

Xi2RL(j,s)

(yi � cL)2 + min
cR

X

Xi2RR(j,s)

(yi � cR)2

3

5 (4.3.4)

Where CL and CR are the solutions to minimize the square sum of residuals
in left and right sides of the split. The minimum of CL and CR is achieved by
the average of y in the respective side.

Cm = ŷm =
1

Nm

X

Xi2Rm(j,s)

yi

(4.3.5)

where Nm is the number of samples in Rm.
So that,

RSSmin(Dn) = min
j,s

2

4
X

X2RL(j,s)

(yi � ŷL)2 +
X

X2RR(j,s)

(yi � ŷR)2

3

5

= min
j,s

2

4NL

X

Xi2RL(j,s)

(yi � ŷL)2

NL

+ NR

X

Xi2RR(j,s)

(yi � ŷR)2

NR

3

5 (4.3.6)

Thus the squared sum of error can be regarded as the weighted mean of popu-
lation variances3.

The reduction of the squared sum of error as below indicates the strength
of the discrimination power for the regression.

�RSSmin(Dn)

=
X

i2Dn

(yi � ŷn)2 � min
j,s

2

4
X

X2RL(j,s)

(yi � ŷL)2 +
X

X2RR(j,s)

(yi � ŷR)2

3

5 (4.3.7)

The discrimination power for a variable j, or ”importance of j”, is defined
as the sum of all the reductions for the nodes in the recursive split where j is
selected.

3 In the regression process of RF in MARS, sample variance is used and the denominator
is Nm � 1.
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Split method for classification problems

Unlike the regression problem to predict a quantitative output, the estimator
for a classification problem predicts a qualitative output from a set of inputs
in a form of a choice from a limited set of values. The predictive values should
be the most commonly occurring class of observations in the region to which it
belongs.

Thus training process for classification problem cannot define RSS and an-
other measure for good split is needed. It can be defined by focusing on a
proportion of a class observed in the node.

In a region Rm, the proportion of class k among K classes is denoted as

pmk =
1

Nm

X

Xi2Rm

I(yi = k)

where I(yi = k) =

⇢
1, yi = k

0, yi 6= k
(4.3.8)

Instead of minimizing the variance, the target on the splitting is to make
the separated regions to be more purely dominated by a class. In other words,
we define a measure of impurity and minimize it. The simplest way to define
impurity, called misclassification error, is to find the most dominant k and
calculate the proportion of the rest as below.

1

Nm

X

Xi2Rm

I(yi 6= k) (4.3.9)

But this is not useful measure. Instead there are two of more amenable functions
to apply, the Gini index and the cross-entropy. Compared to misclassification
error, they are di↵erentiable and more sensitive to changes in the node propor-
tions (figure 4.4).

• Gini index (for classification)
The Gini index is a measure of total variance of the population across all
the defined classes. In a region Rm where K classes are defined, the Gini
index 4 is

Gm =
KX

k=1

pmk(1 � pmk) (4.3.10)

Gini index takes smaller value for the case with a more dominant class. For
the split, Gini indexes in the both sides are calculated and the minimum
of the average weighted by the population is searched. Namely, for the
separation in the setting as eq.(4.3.3), the minimum averaged Gini index
is

Gmin(Dn) = min
j,s

[NLGL + NRGR]

= min
j,s

"
NL

KX

k=1

pLk(1 � pLk) + NR

KX

k=1

pRk(1 � pRk)

#
(4.3.11)

4 In two-class case, eq.(4.3.9) can be converted a p1(1�p1)+p2(1�p2) = 2p1p2 = 1�p
2

1
�p

2

2
.

Thus sometimes it is also written as p
2

1
+ p

2

2
.
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Like eq.(4.3.7), ”Gini decrease”, the reduction of Gini, indicates the sep-
aration power.

• Information gain (for classification)
Entropy of a distribution can be defined from information theory 5, as

Sm = �
KX

k=1

pmk log
2
pmk (4.3.12)

The uniform distribution gives the highest entropy, and the more the dis-
tribution is skewed, the smaller the entropy. The purpose of split is to
get the distribution with more purely dominated by a class, namely more
skewed. Thus it can be interpreted as impurity. The impurity to be min-
imized is defined as weighted average similarly to the Gini index strategy.

Smin(Dn) = min
j,s

[NLSL + NRSR]

= min
j,s

"
NL

KX

k=1

pLk(� log
2
pLk) + NR

KX

k=1

pRk(� log
2
pRk)

#
(4.3.13)

The amount of entropy reduction after split can be the measure of better
separation like eq.(4.3.7). This is called ”Information gain”.

Gini index and the cross-entropy are quite similar numerically and both of
them are typically used to evaluate the quality of a particular split. In MARS,
Gini index is used for the g/h separation. Gamma hadron separation tries to
separate two classes, �-ray (�) and hadronic (h) events. Using the denotions of
the propotions of them in the node m as below,

pm� =
Nm�

Nm

, pmh =
Nmh

Nm

where m = {R, L} (4.3.14)

The weighted average of the Gini index is defined as

G =
4

NL + NR

(NLpL�pLh + NRpR�pRh) (4.3.15)

Prediction value assignment

After the recursive split stops, the subsamples left in the node are used to make
a prediction.

5 In information theory eq.(4.3.12) is obtained in following way. ”Information” is defined for
an event to obtain, with the probability p of the event, as � log2 p. The lower the probability,
the higher quantity the information the event carries. And the unit is called ”bit”. For the
event with probability p = 1/2, information is 1 bit.

Entropy is the expected quantity of information to obtain, for an event x under probability
distribution p(x). Thus entropy S is,

X

x

p(x)(� log2 p(x))
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FIGURE 9.3. Node impurity measures for two-class classification, as a function
of the proportion p in class 2. Cross-entropy has been scaled to pass through
(0.5, 0.5).

impurity measure Qm(T ) defined in (9.15), but this is not suitable for
classification. In a node m, representing a region Rm with Nm observations,
let

p̂mk =
1

Nm

X

xi�Rm

I(yi = k),

the proportion of class k observations in node m. We classify the obser-
vations in node m to class k(m) = arg maxk p̂mk, the majority class in
node m. Di↵erent measures Qm(T ) of node impurity include the following:

Misclassification error: 1
Nm

P
i�Rm

I(yi 6= k(m)) = 1 � p̂mk(m).

Gini index:
P

k �=k� p̂mkp̂mk� =
PK

k=1 p̂mk(1 � p̂mk).

Cross-entropy or deviance: �
PK

k=1 p̂mk log p̂mk.

(9.17)
For two classes, if p is the proportion in the second class, these three mea-
sures are 1 � max(p, 1 � p), 2p(1 � p) and �p log p � (1 � p) log (1 � p),
respectively. They are shown in Figure 9.3. All three are similar, but cross-
entropy and the Gini index are di↵erentiable, and hence more amenable to
numerical optimization. Comparing (9.13) and (9.15), we see that we need
to weight the node impurity measures by the number NmL and NmR of
observations in the two child nodes created by splitting node m.

In addition, cross-entropy and the Gini index are more sensitive to changes
in the node probabilities than the misclassification rate. For example, in
a two-class problem with 400 observations in each class (denote this by
(400, 400)), suppose one split created nodes (300, 100) and (100, 300), while

Figure 4.4: Node impurity measures in classification

Node impurity measures for two-class classification, as a function of the pro-
portion p in class 2. Cross-entropy has been scaled to pass through (0.5, 0.5).
Figure extracted from [63].

• Regression
For a node Rt, the predicted value ŷt is assigned as

ŷt =
1

Nt

X

Xi2Rt

yi (4.3.16)

• Classification
In case of a classification problem, there are two ways. The simplest way
is to assign the majority class in the node.

ŷt = arg max
k

NtX

i=1

I(yi = k) (4.3.17)

It is also possible to assign a set of fractions in the population as the
probabilities to the respective classes.

p(ŷt = k) =
1

Nt

X

Xi2Rt

I(yi = k) (4.3.18)

• Classification of two classes
In case the problem is binomial classification, the probabilities of the two
classes are conjugate thus assigning y as following,

y =

⇢
1, for class 1
0, for class 2

(4.3.19)

and calculating ŷt as eq.(4.3.16), it is possible to give a single value as the
probability to the class.
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Regularization to avoid overfitting

It is clear that more complex decision trees lead to finer partitions and give
better performance on the training set. In theory, one can grow the tree as deep
as possible until the number of last nodes becomes the same as the number
of training samples. However, as discussed in the bias-variance trade-o↵, this
generally leads to overfitting and show larger generalization error on the test
set. In other words, the algorithm becomes ”noisy”, causing it to model the
random noise in the training data. Therefore decision trees need some form of
regularization to control complexity and reduce overfitting. The regularization
can be done in two ways.

• Setting constraints on growing a tree
If growing tree is stopped well before the tree becomes too deep, the
predictive model can avoid overfitting. There are many ways to stop the
growing as below.

1. Minimum node size (before split)
Defines the minimum number of samples in a node. It can be used
to judge if the growing will continue by the next split. Higher val-
ues prevent a model from learning detailed relations which might be
highly specific to the particular sample selected for a tree. On the
other hand, too high values can lead to under-fitting.

2. Minimum node size (after split)
If there is too few samples in one side after split, the samples can be
noise. The split would be canceled and the node becomes terminal.

3. Maximum depth of tree (vertical depth)
The maximum number of the iteration of split. It can also be ex-
pressed in the form of ”Maximum number of terminal nodes”, as the
number of terminal nodes is 2 to the power of the depth.

4. Number of trials for a split
The number of variables to consider while searching for a best split.
In a split, the variables will be randomly selected under the limitation
of iteration on this number, and the best split will be chosen. In
this way, the split can avoid being too sensitive to a variable in the
training samples. This strategy is one of the features of Random
Forest.

• Tree Pruning
This strategy first let the tree grown to a large depth. If the model is
evaluated with the training data set itself then, the model with no expected
bias and the prediction error would be 0. However, it has high variance and
the prediction error becomes very large if it is evaluated with another data
set. Then the proper depth is searched backwards, starting at the bottom
and removing the nodes one by one until the error becomes minimum.
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4.3.2 Ensemble approach of RF

As mentioned in the previous section, DT has a strong risk of overfitting and
it cannot be free from the e↵ort to balance the bias-variance trade-o↵ by itself.
However it can be overcome via an ensemble approach. An ensemble approach
is to combine predictions from many predictive models. The models are gen-
erated rather deeply so that they become noisy but approximately unbiased
models (They are also called weak learner). When the predictions by individual
predictive models are combined, the noise will be canceled out and the predic-
tion obtains low expected bias and low variance. To su�ciently decrease the
noise from individual predictive models, the critical concept to ensemble ap-
proach is to have many uncorrelated models. And the ensemble approach via
RF is one of the most successful strategies.

In case of Random Forest, the key to de-correlate the individual predictive
models (trees) is to give two forms of randomization in the generation. One
is the randomization in the samples to feed for the training of a tree, called
”Bagging (Bootstrap Aggregating)”. And the other is the randomization in the
variable selection in the node splitting. The summaries of the algorithms of
the training process and application process are described in algorithm 3 and
algorithm 4 respectively, and the details of these strategies are described is the
below.

Algorithm 3 Construction of a Random Forest

1: The set of training samples X 2 Dtrain is given to the generation process
2: For a tree b, a set of subsamples Db is generated from Dtrain by the Bagging

process.
3: The tree b is generated from Db via the same process as DT described in

algorithm 1, but with random variable selection. For the generation of a
branch, the limited number of random choice of split variable is performed.
The best split position of the samples is searched for each variable. The
variable with best split power is chosen for the branch generation.

4: Step 2 and 3 is repeated for B times.

Algorithm 4 Application of a Random Forest

1: For an event in interest, the RF generated in algorithm 3 estimates ŷ, the
value of the target variable y. The event has the same set of input variables
as the training events x = (x(1)

, x
(2)

. . . x
(p)), and x is given to the RF.

2: In the RF, x is given to all the trees. A tree b predicts ŷb from x. The
process is described in algorithm 2

3: An ensemble is performed to combine predictions {ŷb|b = 1, 2, . . . B} and
the estimation ŷ is obtained.

Bagging (Bootstrap Aggregating)

The ensemble method ideally requires the use of independent samples for gen-
erating individual trees. But it means the train data set needs to be divided
to feed to each tree generation, and each tree cannot gain low expected bias
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due to lack of statistics (with very less amount of data, a model is unable to
capture the underlying pattern of the data). However, the bagging approach to
the train data set gives a way to emulate the process of obtaining approximately
new distinct sample sets keeping statistics.

BAGGing, or Bootstrap AGGregatING, first introduced by Leo Breiman
[33], is a sampling technique in which one randomly samples with ”replacement”
from the data set. More specifically, from the original train set
Z = {X1, X2, . . . XN}, a new set of data set Z⇤1 = {X

⇤1
1

, X
⇤1
2

, . . . X
⇤1
N } is gener-

ated picking the same number of samples at random, which possibly contains
repetitive elements (figure 4.5).
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FIGURE 5.11. A graphical illustration of the bootstrap approach on a small
sample containing n = 3 observations. Each bootstrap data set contains n obser-
vations, sampled with replacement from the original data set. Each bootstrap data
set is used to obtain an estimate of �.

Note that the histogram looks very similar to the left-hand panel which dis-
plays the idealized histogram of the estimates of ↵ obtained by generating
1,000 simulated data sets from the true population. In particular the boot-
strap estimate SE(↵̂) from (5.8) is 0.087, very close to the estimate of 0.083
obtained using 1,000 simulated data sets. The right-hand panel displays the
information in the center and left panels in a di↵erent way, via boxplots of
the estimates for ↵ obtained by generating 1,000 simulated data sets from
the true population and using the bootstrap approach. Again, the boxplots
are quite similar to each other, indicating that the bootstrap approach can
be used to e↵ectively estimate the variability associated with ↵̂.

5.3 Lab: Cross-Validation and the Bootstrap

In this lab, we explore the resampling techniques covered in this chapter.
Some of the commands in this lab may take a while to run on your com-
puter.

Figure 4.5: An example of bootstrap sampling

A graphical illustration of the bootstrap approach on a small sample containing
N = 3 events. There are B bootstrap samples generated, each of which also
contains N events, sampled with replacement from the original data set. Each
bootstrap data set is used to obtain an estimate of target variable ↵̂⇤b(X). Image
is taken from [71].

Because of the duplication, there will be samples that do not appear in
the bootstrap samples. Consider there is N samples in train set and a set of
subsamples will be generated by the bootstrap procedure. After the trials of
random sampling for N times allowing a sample to be chosen multiple times,
the probability of being NOT selected is (1 � 1/N)N and it asymptotically
approaches 1/e. This means, only 1 � 1/e ⇠ 63% of N total number of samples
are selected for a large number of the samples, and the rest are duplicate samples.

The samples which were not selected are called ”Out-Of-Bag (OOB)” sam-
ples. These samples are independent from the bagged samples thus can be used
for cross validation for the tree trained with the bagged samples.
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Random variable selection

When the trees are trained using di↵erent bootstrap samples, the correlation
of the trees is weakened (it is called a bagging trees). However, the bagging
trees are still strongly correlated to each other because the bagged samples are
not enough independent from each other, and they cannot have a significant
improvement from using one tree [57]. To overcome this problem, Random
forest addresses this issue by the random variable selection [43].

The random variable selection is the strategy for the split process in the
training. In a normal decision tree, when it is time to split a node, every
possible variables are considered and the one that produces the best separation
will be selected. Therefore the models will be grown as similar splits. On the
contrary, the random variable selection is the strategy to select limited number
of variables at random at each node for the split, and choose the best split
among them. Limited by the number of trials of random variable selection,
the trees will be forced to grow as more variation in the models among the
trees. In the end, it ultimately results in lower correlation across trees and more
diversification and thus results in a noticeable improvement.

The number of trials of random variable selection a↵ects the performance.
The best number of trials msp needs to be much smaller than the number of
variables p. Typically msp ⇠ p

p is chosen [71]. But the optimal range of msp

is usually quite wide [35].

Combining predictions

The trees are trained in the same randomization strategy, originally from the
same train set. The expectation of an average of B such trees is the same as the
expectation of any one of them. This means the expected bias of bagged trees
is the same as that of the individual trees, however the averaging improves the
estimation error through variance reduction. The actual averaging strategy is
as follows.

From a train set Z, imagine we take B sets of subsamples {Z⇤1
, Z⇤2

. . . Z⇤B}
via bagging to construct a forest consist of B trees, which can be regarded a set
of functions {↵̂

⇤1
, ↵̂

⇤2
. . . ↵̂

⇤B}. A b-th tree predicts an output variable y from a
set of inputs x,

ŷb = ↵̂
⇤b(x) (4.3.20)

From the outputs from the B trees {ŷb}, the combined prediction ŷ is cal-
culated. There are mainly two strategies to combine these B predictions.

• Majority vote
The forest chooses that classification having the most out of N votes.

ŷ = arg max
k

1

B

BX

b=1

I(↵̂⇤b(x) = k) (4.3.21)

This is possible for only classification problem to predict single choice of
class from discrete set of classes.
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• Average
The forest just the averages all the individual predictors.

ŷ =
1

B

BX

b=1

↵̂
⇤b(x) (4.3.22)

This is suitable for continuous predictors like regression. But it is also
applicable to classification if there are only two classes, as it can work as
binomial probability.

• Weighted average
It is also possible to introduce weight in averaging the predictions from the
individual trees. In the generation of a tree, the node split does not finish
with equal number of samples in all the last nodes, as long as minimum
node size is not 1. The weight is set using the population at the last node
when the tree is generated.

RMS of predictions

In case the prediction is performed as an average of the predictions, RMS of
prediction can be defined.

�ŷ =
1

B

vuut
BX

b=1

(ŷb � ŷ)2 (4.3.23)

This is not a measure of uncertainty. The distribution of prediction error
does not have a reasonable correlation with RMS of prediction. The estimation
values by individual trees varies primarily due to the randomization in training,
therefore the RMS of predictions would indicate how well the trees are decorre-
lated. This means that the RMS of predictions can be used for a pathological
purpose. One of such possibilities is an evaluation of statistical coverage on
training data. The detail is discussed in section E.1.

Forest-growing parameters

Unlike DT, RF has almost no risk of overfitting, consequently, there is almost
no strict regularization needed. However, there are some parameters available
for tuning the performance. Here I name these parameters ”forest-growing
parameters”.

• Number of trees

• Number of trials
The number of random selection of variables for a split step.

• Minimum node size
Number of events at last node. This number sets the condition to stop
splitting a node.
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4.3.3 RF in MAGIC

The RF reconstruction was implemented inside the MARS analysis package for
MAGIC collaboration originally by Thomas Hengesthebek [65], and reported in
[13]. The functionality is developed as C++ adoption of the original Fortran
code by Leo Breiman and Adele Cluster [34].

As introduced in section 3.8, there are three event properties to reconstruct
in the standard MAGIC analysis; particle-species class, incoming direction, and
energy. The first two are determined with RF, and they work as below.

Direction through the parameter Disp

The parameter ”Disp” is estimated separately for the individual telescope im-
ages. For the Disp of telescope k(k = {1, 2}),

• Input data
MC train data is used.

• Target value
TrueDisptel.k

• Input variable

– log
10

(Sizetel.1)

– log
10

(Sizetel.2)

– Widthtel.k

– Lengthtel.k

– ClassicalImpacttel.1

– ClassicalImpacttel.2

– ClassicalMaxHeight

– |T imeGradienttel.1|
– |T imeGradienttel.2|
– Zd

• Event selection
For the events which succeed in stereo reconstruction,
50  Sizetel.1  50000 & 50  Sizetel.2  50000
& Leakage1tel.1 < 0.15 & Leakage1tel.2 < 0.15

• Node split criteria
Weighted average of the variances

• Prediction assignment of a tree
Average of the target values in the last node.

• Ensemble of the predictions
Average of the predictions by all the trees.

• Forest growing parameters

– Number of trees : 100

– Number of trials : 3

– Minimum node size : 5
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Particle-species classification through the hadronnes parameter

• Input data
MC train data is used for �-ray samples and observation data is used for
hadron samples. The characteristics of a shower image are dependent on
the pointing direction and Size. To make the RF able to discriminate
in di↵erent pointing direction and Size, the distribution of input data is
adjusted so that the number of events are the same between the �-ray sam-
ples and hadron samples in each bin in the three-dimensional histogram,
with the dimensions and binning below:

– log
10

((Sizetel.1 + Sizetel.2)/2) : 90 bins from 1 to 5.5

– cos(Zd) : NZd bins from 0 to 1

– Az : NAz bins from 0 to 2⇡

NZd and NAz are configurable with default values of 30 and 1 respectively.

• Target value
�-ray samples as 0 and hadron samples as 1.

• Input variable

– log
10

(Sizetel.1), discretized in an interval of 0.05

– log
10

(Sizetel.2), discretized in an interval of 0.05

– Widthtel.1

– Widthtel.2

– Lengthtel.1

– Lengthtel.2

– ClassicalImpacttel.1

– ClassicalImpacttel.2

– |T imeGradienttel.1|
– |T imeGradienttel.2|
– cos(Zd) discretized into 30 levels with equal intervals

• Event selection
For the events which succeed in stereo reconstruction,
50  Sizetel.1  50000 & 50  Sizetel.2  50000
& Leakage1tel.1 < 0.15 & Leakage1tel.2 < 0.15
& NumIslandstel.1 = 1 & NumIslandstel.2 = 1

• Node split criteria
Gini index.

• Prediction assignment of a tree
Average of the target values in the last node.

• Ensemble of the predictions
Average of the predictions by all the trees.

• Forest growing parameters
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– Number of trees : 100

– Number of trials : 3

– Minimum node size : 5
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4.4 The new methodology with Random Forest
for the energy reconstruction

In this section I introduce the novel strategy of energy estimation using Ran-
dom Forest (RF-Erec). First, the selection of input variables is described in
section 4.4.1. The selection follows the insight into the nature of EAS and its
geometrical relation with the telescopes, so that the energy reconstruction be-
comes robust and transparent to possible systematic e↵ects. In the section 4.4.2
and section 4.4.3, the treatment of the input and output variables in the estima-
tor is explained. For better performance, some variables need to be considered
about how to be treated in the estimator. Section 4.4.5 summarizes the train-
ing and application processes. Among them are the flow of event reconstruction
procedure, the summary of input variables and their importance in di↵erent
Zd ranges. I also introduce the improvement of Disp in section 4.4.6, that of
RF-Erec also contributes to the improvement of energy estimation. All these
above are summarized in section 4.4.7, where the description about intermedi-
ate versions is included. At last, the implementation in the MAGIC standard
analysis software is described in section 4.4.8.

4.4.1 The selection of input variables

The basis for the energy estimator is to define the input variables and the
output. The output is of course the energy, and the input variables are all the
parameters of an event that are correlated to the energy. To this end, RF has
a great advantage since its training process gives the importance of each input
variable, as well as it has good dimensionality of input variables and robustness
to outlier samples. However, it is impossible to point a missing important
variable, thus the investigation of the input variables is mandatory. Moreover,
all the input variables need to be well controlled so that the risk of a systematic
e↵ect can be minimized, especially for the following points.

• Since it is impossible to artificially produce real VHE �-ray event for cal-
ibrating the telescopes, the supervision data for the energy estimators
must be produced by Monte Carlo simulation (MC). However it cannot
perfectly reproduce real �-ray event and it is inevitable to have discrep-
ancies to the actual observation data. Therefore it is necessary to choose
only relevant variables under physical view, otherwise some variables may
be systematically di↵erent from reality and would bias the estimation.

• The variables chosen for the energy reconstruction need to be tied together
under the physical view to minimize the systematic e↵ects. They can arise
from various reasons like statistical coverage, limited precision and so on.
The physical view can help with identifying the sources of the systematic
errors. In this thesis, some identification of systematic e↵ects are done in
this way.

Therefore, in this study, I introduce the integrated view of the input variables
on a shower event not to miss the relevant variables, as well as to limit the
amount of input variables not to introduce unknown e↵ects.
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Here, I remind the basic geometrical view of a shower to make sure to select
all the important variables to estimate the energy of the �-ray. The list of vari-
ables chosen are similar to the LUTs-Erec, and the view of the relation between
the energy and the variables are also similar. But reviewing the geometrical
view of the shower leads to additional variables and a better usage of them.

Size to energy and important corrections

As discussed in section 3.8.3, the most dominant variable to determine the en-
ergy of �-ray is the total light content, which is primarily indicated by the
parameter ”Size”. Size has already very strong linear correlation to the energy,
however there are two obvious ideas on how they should be corrected for better
correlation.

Firstly it is obvious that a fraction of events su↵er from the limited field of
view. The Size cannot explain the total light content if the image is truncated
at the edge of the field of view. Thus the Leakage variables are indispensable
to correct the truncated images.

Secondly, the size-to-energy relation needs further corrections based on the
distance from the telescope to the location of the shower. Owing to the di-
rectionality of the Cherenkov light with the opening angle of ⇠ 1�, the total
amount of photons will be preserved roughly in the disk-like region. However
the opening angle makes the density enhancement at the outer region of the
disk. Thus the size-to-energy relation needs correction using lateral o↵set, i.e.
how much the shower axis is lateral o↵set from a telescope (Impact). Moreover,
the opening angle causes linearity between the emission height and illuminated
region, the photon density to illuminate changes dependent on emission height
of the photons. Thus the size-to-energy relation needs correction using the in-
formation of longitudinal o↵set, i.e. how much the shower is o↵set along the
shower axis (MaxHeight).

The lateral distribution of the photon density is shown in figure 4.6. Al-
though the Cherenkov density is constant at the close distance from the Impact
point, the tail of the radial distribution follows roughly inverse proportion, as
the sum of each particle’s radiations is still reflecting the conical radiation.
Therefore the distribution can be expressed roughly in a form of a function
below,

d(x) =
1

2

✓
1 � tanh(x � xc) +

1

(x/xc)
(tanh(x � xc) + 1)

◆
(4.4.1)

where x is Impact [m] and xc is the lightpool radius.

This function of Impact can be used as the correction factor to Size, denoted as
below,

Energy = C · Size/d(x) (4.4.2)

where C is a constant.

It already works well as the correction factor to the events with di↵erent
Impact, and the corrected size obtain stronger linearity to energy as shown
in figure 4.7. Therefore, it is advantageous to use the quantity Impact in the
energy estimator.
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Rep. Prog. Phys. 71 (2008) 096901 F Aharonian et al

2.1.3. Cherenkov light. Any secondary charged particle in
the shower can produce Cherenkov light if its velocity exceeds
the threshold v/c > n. This is equivalent to the condition that
the electron Lorentz factor γ exceeds the threshold value γ0

given by

γ0 = n(z)
√

n(z)2 − 1
, (7)

where n(z) = 1+η(z) is the index of refraction as a function of
height z. At sea level, γ0 = 48, at a height of 8 km γ0 = 66.5,
and at 10 km this increases to γ0 = 87. This threshold
corresponds to an electron energy of Emin = γ0mec

2 =
0.511 MeV/

√
2η, giving for example, a threshold of 44 MeV

at 10 km above sea level. The Cherenkov angle is given by
cos(θ) = 1/βn, but for particles well above the threshold is
given by the saturation value as a function of the altitude z:

θc(z) = cos−1
(

1
βn(z)

)
. (8)

Each secondary electron in the shower will follow a random
walk due to multiple Coulomb scattering, emitting Cherenkov
light until γ � γ0. For γ # γ0 Cherenkov light will be
emitted in a cone of emission with angle θc about the trajectory,
with a Cherenkov angle decreasing with increasing height. For
example, the Cherenkov angle decreases from 0.74◦ at 8 km
to 0.66◦ (12 mrad) at 10 km. This results in a rough focusing
of light onto the ground into a blurry Cherenkov ring with
radius of R ≈ 10 km · 0.012 = 120 m for a typical gamma
ray shower. Multiple Coulomb scattering gives rise to an
exponential distribution of scattering angles with respect to
the shower axis ∼ exp−θ/θ0 where the characteristic scattering
angle is about θ0 = 0.83E−0.67

min [46, 47] giving a typical value
of ∼5◦. While this angle is much larger than the Cherenkov
angle, the exponential distribution is still strongly peaked in
the forward direction and the Cherenkov ring, while blurred
by scattering, is still discernable (see figure 6). Combined
these angles are relatively large compared with the angular
extent of a shower image and comparable to a typical field
of view for an IACT. Thus, to a coarse approximation, it
is reasonable to break the problem of understanding shower
images into two steps: (1) the lateral distribution (governed by
the Cherenkov angle and Coulomb scattering angle) gives the
total intensity of a shower image as a function of the impact
parameter and (2) since the Cherenkov angle and Coulomb
angle are fairly large (on the order of the size of the field of
view), the angular distribution of Cherenkov light in an image
recorded by an IACT is close to what one would predict if
the electromagnetic shower is emitted isotropically giving a
simple angular projection of the shower development on the
telescope detector plane. From this perspective, it is apparent
that if the Cherenkov telescope is placed anywhere in the
lightpool, the shower image will appear very roughly as a
glowing shaft of light pointing towards the direction of the
gamma ray source. As the impact parameter increases, the
image will appear more elongated and the image centroid will
have a larger angular displacement from parallax. A more
complete understanding of the shower images requires taking
into account the detailed distribution of secondary particles

Figure 6. Actual simulations of the lateral distribution of
Cherenkov light as a function of the impact distance along the
Earth’s magnetic field direction (dashed line) and 90◦ perpendicular.
Simulations were done using the Altai code assuming an
observatory elevation of 2600 m (courtesy of Slava Bugaev).

produced in the shower development folded with the forward-
peaked Coulomb scattering distribution and highly beamed
distribution of Cherenkov light.

As a relativistic charged particle traverses the atmosphere,
the number of Cherenkov photons emitted per unit length is
given by nc ≈ 800(n − 1) ≈ 0.1 photons cm−1 at the sea
level. By multiplying nc by Nmax and the path length of shower
particles, the total number of Cherenkov photons is roughly
Nc ∼ 106 for 1 TeV gamma ray and is proportional to Eγ .

Cherenkov light is emitted with a spectrum that is strongly
peaked at short wavelengths (UV–blue). The source spectrum
is given by the Franck–Tamm relation for a singly charged
particle:

d2Nph

dxdλ
= 2πα

λ2
sin2(θc), (9)

giving the differential number of Cherenkov photons emitted
per unit pathlength dx in the wavelength interval (λ, λ +
dλ) at Cherenkov angle θc. Atmospheric absorption of the
UV component substantially modifies the received spectrum
making the detailed spectral shape sensitive to the height of the
observatory, the zenith angle of observations and the height
of the shower max for each shower. In addition, the strong
wavelength-dependence of the quantum efficiency of PMTs
and the mirror reflectivity truncates the spectrum at short
wavelengths.

2.1.4. Lateral and longitudinal shower development as seen in
Cherenkov images. Here we give a more detailed derivation
of the angular distribution in Cherenkov light images starting
with a discussion of electromagnetic shower development. It
is useful to define a number of scaled dimensionless quantities
to simplify the expressions for the lateral and longitudinal
distributions. The dimensionless pathlength t is obtained by
normalizing the pathlength x to a radiation length, t ≡ x/X0.
A dimensionless, logarithmic energy y is obtained by scaling

10

Figure 4.6: Cherenkov light density vs radial distance (Impact)

Actual simulations of the lateral distribution of Cherenkov light as a function
of the radial distance from the shower axis (Impact). The dashed lines are the
case when shower axis is along the Earth’s magnetic field direction and the solid
lines are perpendicular. Simulations were done using the Altai code assuming
an observatory elevation of 2600 m. Figure extracted from [10].
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Figure 4.7: Energy vs Size with and without Size correction

The two-dimensional histograms of simulated �-rays, displaying true energy vs.
averaged Size, before (left) and after (right) the Size correction, mentioned in
eq.(4.4.2), is applied.
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On the other hand, the longitudinal o↵set (MaxHeight) varies shower to
shower, dependent not only on energy but also on the first interaction point
which is governed by the probabilistic process, although the expected height
of first interaction is almost constant as shown in figure 2.3. The higher the
MaxHeight, the more distant the brightest location in the shower, thus the
dimmer the image (smaller Size). The relation is seen in the simulated data,
shown in figure 4.8. Therefore it is advantageous to use the MaxHeight in the
energy estimator.
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Figure 4.8: MaxHeight vs Size

The simulated �-ray events in a two dimensional histogram to show the relation
between MaxHeight and Size. In this example, the events selected are with true
energy of 1-2 TeV, true Impact of 100-200 m for both telescopes.

From the inspection of the e↵ects of the Impact and the MaxHeight above,
it is clear that they provide useful information to obtain better energy estima-
tion. And the reconstruction process has the estimated Impact and MaxHeight,
via the geometrical reconstruction of three-dimensional shower profile. However
their precision is limited and even becomes insu�cient in high Zenith distance,
thus we must collect the related variables to indicate them. Moreover their cor-
relation to Impact or MaxHeight change mainly dependent on the energy range
and the Zenith distance range. In the following sections, firstly the precision
of Impact and MaxHeight is discussed and the related variables are introduced
later, discussing also on the precision and the dependencies.

Impact and MaxHeight

Impact and MaxHeight needs to be discussed further. As discussed in
section 3.7.2, Impact and MaxHeight are calculated in a integrated way as ge-
ometrical reconstruction of three-dimensional shower profile. The calculation is
based on the reconstructed incoming direction, and there are two ways of direc-
tion reconstruction; classical method and Disp method. In general, the Impact
calculated by Disp method (DispImpact) is much more accurate than that by
classical method (ClassicalImpact). However the accuracy is dependent on the
conditions and the possible systematic e↵ect needs to be noted.
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Figure 4.9: Accuracy in determination of DispImpact and ClassicalImpact

Two-dimensional histogram of �-rays by MC simulation, showing normalized
Impact estimation error, (Iest � Itrue)/Itrue, where Iest is the estimated Im-
pact and Itrue is the true Impact, as a function of angle between shower axes,
which is the crossing angle of shower image axes in superposed field of views
of two telescopes. The left figure is for the estimated Impact via Disp method
(DispImpact) and the right is via Classical method (ClassicalImpact).

Figure 4.9 shows the comparison of the accuracy of DispImpact and Clas-
sicalImpact, presented as a function of the crossing angle of the axes of two
shower images, as it is the most important dependence to a↵ect direction recon-
struction. As the Disp method improves the reconstruction of shower incoming
direction, especially when the crossing angle is small, the accuracy comparison
of Impact estimations also shows the most dramatic improvement in the small
crossing angle.

Thus there is no doubt to choose DispImpact instead of ClassicalImpact, and
it had been already adopted to LUTs-Erec. However there is always limited ac-
curacy and it introduces systematic e↵ects, thus it needs to be treated carefully.
The systematic e↵ects from the treatment will be discussed in section E.3.1
and the treatment in the new energy estimator will be discussed in detail in
section 4.4.2.

The accuracy of DispImpact as the dependence on the TrueImpact is shown
in figure 4.10. Out of the four figures, the top left shows the overall accuracy.
The performance degrades in small Impact, although it should not heavily a↵ect
the energy estimation performance because the Cherenkov density is relatively
flat inside the light pool. The other three figures are the same histograms but
filtered in the energy of the �-ray, 0.1-0.2 TeV, 1-2 TeV and 10-20 TeV. We can
see that the accuracy has energy dependence worsening in the low energy. This
would a↵ect the estimation performance in the lowest energy range.

The accuracy is dependent also on the zenith distance. For the large zenith
distance, the determination of the incoming direction cannot give enough pre-
cision for the determination of geometrical information especially on Impact,
because the shower develops at very large distance from the ground, and the
small fluctuation of the shower axis results in the large fluctuation of impact
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Figure 4.10: Normalised Impact error vs Impact

The accuracy of Impact estimation as a function of Impact is shown by nor-
malized Impact estimation error vs TrueImpact of M1, for simulated �-rays of
di↵erent energies.

point at the order of several hundreds of meters in worst case of zenith degree
over 70�. This e↵ect is discussed in detail in section E.3.1.

Therefore, there needs to be alternative variables to support the poor Impact
estimation especially in the small Impact range, low energy range and high
zenith distance range.

As for MaxHeight, the calculation in the geometrical reconstruction is more
indirect than Impact because the process is based on the Impact point as well
as the reconstructed incoming direction, Thus the precision is obviously lower
than that for Impact. Here I do not include the investigation on the accuracy
of MaxHeight. In the next section, the correlated variables with Impact and
MaxHeight will be discussed.

The variables to support Impact and MaxHeight

The variables listed here are correlated with Impact and/or MaxHeight, thus
help the energy estimation with the geometrical correction to Size.

• Disp
Disp is strongly correlated to both Impact and MaxHeight because it
is the origin of the direction reconstruction, and hence the geometrical
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reconstruction. The relations between Disp and Impact or MaxHeight
can be understood intuitively in the following way. Disp should be larger
either when the shower axis is more distant laterally (large Impact) as
figure 4.11, or when the shower maximum location is lower longitudinally
along the shower axis (low MaxHeight) as figure 4.12. Both relations can
be seen clearly in the figures.
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Figure 4.11: Correlation of TrueDisp with TrueImpact

TrueDisp vs TrueImpact of M1 for simulated �-rays of di↵erent energies.

The accuracy of Disp is shown in figure 4.13. It degrades in the edges
of the distribution range, where the distribution of estimated value is
suppressed. In addition, the precision in low energy is worse. To deal with
these issues, the variables correlated with Disp should be included. Since
Disp is estimated using RF the input variables to the Disp estimator. The
Disp is estimated mainly by Length, Width and TimeGradient. Of course
they are also correlated to Impact and MaxHeight. They are described in
the following.

• Length and Width
As a characterization of the image shape, Length and Width should work
together as a measure of the elongation of the image. Intuitively the
image should be more elongated either when the lateral o↵set is large
(large Impact) or the shower develops deeper (low MaxHeight).

As the true value is available in Impact, I show the correlation the



4.4. The RF energy reconstruction 103

0

10

20

30

40

50

MaxHeight vs TrueDisp

[deg]
1

TrueDisp
0 0.5 1 1.5

M
ax

H
ei

gh
t[k

m
]

5

10

15
MaxHeight vs TrueDisp

Figure 4.12: Correlation of TrueDisp with MaxHeight

TrueDisp of M1 vs MaxHeight estimated by Disp method, for simulated �-rays
of di↵erent energies. To decompose the Impact better, limited region of recon-
structed Impact point is chosen by the selection of DispImpact between 100 m
and 150 m for both telescopes.
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Figure 4.13: Accuracy of Disp

Estimated Disp vs true Disp of M1 for simulated �-rays of di↵erent energies.
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Figure 4.14: Length over Width vs Impact

Length over Width vs TrueImpact of M1, for simulated �-rays of di↵erent energies.

Length/Width with TrueImpact in figure 4.14. They are strongly cor-
related, especially in small Impact range. And the correlation can be seen
even in the low energy range. The small Impact is one of the ranges Disp
needs a support, because the precision of Disp is a↵ected in low value
range and the range is to indicate small Impact. These variables could
contribute to the energy estimation through compensating the Impact es-
timation.

• TimeGradient
Among the other variables, TimeGradient is also useful parameter to esti-
mate the parameter ”Impact”, as shown in figure 4.15. It is very strongly
linearly correlated, especially in high energy, and in the high energy range
it is the strongest variable to indicate Impact. It is also strong in high Zd
observation, in which the uncertainty of DispImpact becomes too large to
properly indicate Impact.

However the correlation is smeared out in low energy, presumably because
the shower image becomes smaller, and the TimeGradient cannot be cal-
culated if the shower is so close that the light from top and bottom of the
shower is no more at edges of the image.

Moreover, it su↵ers from the uncertainty in which side of shower image
indicates the head of the shower, consequently the confusion results in the
cross shape in the relation between TimeGradient and TrueImpact, shown
in figure 4.15. It is possible to determine via stereo calculation, but it still
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su↵ers from the uncertainty to some extent. Nonetheless, the estimation
of the energy is not significantly improved by the usage of the correct sign
of the TimeGradient, and hence there is no need to correct for that in the
strategies related to the energy reconstruction.
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Figure 4.15: TimeGradient vs Impact

TimeGradient, namely the arrival time gradient of the photons along the ma-
jor axis of the shower image (described in section 3.7.1) vs TrueImpact, of M1
for simulated �-rays of di↵erent energies. Due to the arrival time spread at the
ground caused by the two e↵ects shown in figure 2.15, the linear relation between
TimeGradient and Impact appears as described in section 2.3.4. The cross shape
is due to the confusion of not knowing which side of shower image is the incom-
ing direction. The solution to successfully determine the sign of TimeGradient is
described in section 4.4.6.

The other variables related to energy estimation

Other than the variables described above, the most important input variable to
include is Pointing Zenith distance angle (Pointing Zd). The characteristics of
the shower images change dependent on the pointing direction, especially in the
high Zenith distance range (Zd >50).

I include also the additional variables, Cherenkov density, Cherenkov radius
and CosBSangle. They are migrated from LUTs-Erec. Although their contri-
bution to the energy estimation is marginal, the redundancy would to some
extent contribute to the variable randomization in the split in generating the
RF, thereby to suppressing the correlation between the trees. For all these vari-
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ables, Classical values are adopted since the contributions to energy estimation
were not large, while Classical values are preferable to avoid systematic e↵ects.
The detail is discussed in section 4.4.2.

4.4.2 Treatment of the geometrical variables

The geometrical variables have multiple ways to be used, and here I discuss the
method I adopt for the energy estimation. The variables which I list as geomet-
rical variable in the input variables for energy are Disp, Impact, MaxHeight,
CosBSangle, CherenkovRadius and CherenkovDensity. They are the variables
to characterise the geometrical properties of shower events. The options of dif-
ferent implementations come from the two di↵erent direction reconstructions
and the possibility of extracting true information about the shower geometry in
simulation. The two ways of direction reconstructions are Classical method and
Disp method, which results in two kinds of geometrical variables. And the vari-
ables about which we can extract true value from simulation are Disp, Impact
and CosBSangle.

Among the geometrical variables, Disp and Impact are particularly impor-
tant to the energy reconstruction. First I discuss them comparing the strategy to
use them between previous methods and the novel method. The other variables
are discussed in the second part.

Nested use of Impact and Disp, instead of Swap

The new energy estimation adopts Impact (in a form of DispImpact) and Disp
for the input variables as introduced in section 4.4.1. Since the true value of
these variables can be extracted in the simulated events, it has been popular
strategy to make use of them in training an energy estimator. I name this strat-
egy ”swap”, because the true variable from simulation is used for the training
of the estimator, while the estimated variable in the measurement of the event
is given as the input for applying the estimator. By the use of true value, the
estimator can learn the direct relation with the target value. Therefore one may
expect that it avoids the smearing of the estimator response by these geometrical
variable error. This is used for Impact in the latest strategy in H.E.S.S. collab-
oration [40], while MAGIC used Impact and CosBSangle with this strategy in
the previous standard energy estimation, namely LUTs-Erec (section 3.8.3). I
also adopted it to the RF-Erec during the intermediate versions. The history of
development is summarized in section 4.4.7.

However, this strategy is vulnerable to noise, thus should be treated carefully.
The accuracy of estimation of these variables is limited, and systematic e↵ects
will appear when the estimated value fluctuates significantly more than the noise
level of true values in train samples. In this study, the systematic e↵ects become
important in the swap strategy for high Zd range observations. The detail is
separately discussed in section E.3.1 for Impact and section E.3.2 for Disp. One
can clearly see the systematic e↵ects in both variables.

Therefore I adopt a di↵erent strategy in this study, as I name it ”nest”
strategy. In nest strategy, true value is not given as input variable in training,
instead the Disp-method-origin geometrical variables are used just like the other
input variables; the estimated value is used for both training and estimation. To
make use of Disp-method-origin geometrical variables as inputs in the training of
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the energy estimator, the direction reconstruction needs to be already performed
for the training sets. Thus the process needs to be ”nested”; The RF for Disp
estimation needs to be trained and applied to the train data itself, before the
RF for energy is trained with the training data.

However this nesting procedure also has a possibility of systematic e↵ect,
because the Disp-method-origin geometrical variables are given to the training
set in the direction reconstruction based on the Disp RF, which is generated by
the same training set. Consequently the noise level of the Disp-method-origin
geometrical variables in the training set is still di↵erent from the real observation
data. Nonetheless, there is no visible systematic e↵ect from nesting strategy.
The investigation on the real data is also done using Crab Nebula observation
in section 4.5.4.

The new procedure in the integrated MARS analysis chain is denoted in de-
tail in section 4.4.5. The contribution of these variables are shown in section C.1.

The other geometrical parameters

Although the other geometrical parameters do not seem to directly contribute,
they are still taken in the input variables to keep the trees better decorrelated
to each other by maintaining good amount of input variables. To avoid the risk
of the systematic e↵ect coming from di↵erent noise level between the training
sets and the data to apply, Classical method instead of Disp method is chosen.

4.4.3 Target Output and Size as logarithmic form

The target value, namely the true �-ray energy, is fed to the training process in
RF in the form of logarithm base 10. The aim is to deal with the many decades
of the energy range, performing geometrical mean of the target values of the
events in the last node to determine the estimation value. Correspondingly in
the estimation process, the estimated value by RF is computed back to the value
as power of 10.

The e↵ect of this strategy is clearly seen in figure 4.16. In case of the esti-
mation of energy as linear target, it su↵ers from the constant bias and larger
energy resolution and standard deviation. And Size is also set to logarithmic
scale, to keep the linear correlation in the linear scale between Size and energy
as shown in figure 4.7.

4.4.4 Energy RMS

As the target is modified to be logarithm, the RMS of the prediction is also in
logarithmic scale. To be available for a health check of estimation, I implemented
the EnergyRMS, rescaling the prediction RMS6 . The estimated energy Ê is
calculated from the predictive value ŷ as Ê = 10ŷ and I define the RMS of the
energy �Ê as below, calculating from the RMS of the prediction �ŷ.

�Ê+
:= 10(ŷ+�ŷ) � 10ŷ

�Ê� := 10ŷ � 10(ŷ��ŷ)

�Ê := (�Ê+
+ �Ê�)/2 (4.4.3)

6 See details in section 4.3.2, and a case study in section E.1
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Figure 4.16: The performances of the RFs with linear target and logarithmic
target

The performances of the energy reconstruction by the two RFs are plotted.
”LinE target” is the RF with the target in linear form, and ”logE target” is
in logarithmic form. The bias (solid line), resolution (the filled circles), and
the standard deviation (SD, dashed line) as a function of energy are drawn all
together. The definition is explained in section 4.1.3.

4.4.5 Training process of the energy RF

Update on the analysis chain by using the nested RF

The input variables include the Disp-based geometrical variables. Therefore, as
introduced in section 4.4.2, the train samples must already have the variables
before being used for training the RF for energy. This requires an additional
step to add Disp-based geometrical variables through direction reconstruction to
the train data set. Therefore the RF for the Disp must be already constructed
and applied to the train data set before the generation of the RF for energy
estimation. Namely, the generations of the RFs needs to be ”nested”. The
updated analysis flow is shown in figure 4.17.

Data cleaning on the training set

For generating the RF, the cut conditions are minimized to avoid unbalanced
cleaning. Since the RF tries to average the characteristics from entire popula-
tion, the data cleaning can cause biases. The removed events for training are
only the events that failed direction reconstruction with Disp method.
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Figure 4.17: The updated analysis chain to obtain the reconstructed event prop-
erties

The two sets of data as ”Analysis data” are the data that needs to be analyzed,
while there are another two sets of data as ”Supervision data”, which are used
to train RFs. A thin arrow shows flow of data and a thick arrow represents
the application of a RF to a set of data. The two sets of supervision data are
used to train the RFs for three event properties. In the nested RF strategy, the
train samples for Energy RF need the Disp-method-origin geometrical variables,
therefore the geometry RF (Disp RF) must be applied to the simulated �-ray,
before the energy RF is trained.
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Forest-growing parameters

As discussed in section 4.2, RF does not require any elaborated tweak to op-
timize the performance. Thus the forest-growing parameters (section 4.3.2) do
not a↵ect the performance significantly, as long as the values are reasonable. In
this study, the random selection of the variable is repeated 4 times in the search
for the best split, taking into account that the total number of variables is 18.
The number of trees of 150 and minimum node size of 3. In the implementa-
tion to the MARS software package (see section 4.4.8) they are configurable to
meet the computational resource and demand for the precision. However RF
performance is robust in general, and there is no significant di↵erence. The
performance study on forest-growing parameters is discussed in section D.1.

Importance of the variables (result of training)

As discussed in the section 4.4.1, the characteristics of the shower image changes
significantly dependent on the Zenith distance (Zd). Correspondingly, the im-
portances of some variables change as shown in figure 4.18. The changes of the
importances of the variables can be interpreted in the following way.

Figure 4.18: Variable importances in the energy reconstruction

The ”importance”, calculated as eq.(4.3.7), are shown for the individual variables
in the three Zd ranges.

As the Zd increases, the shower becomes distant, and the shower image
captured becomes small. The entire shower image will be contained in most
of the events, therefore importance of Leakage drops. On the other hand, due
to the target energy range shifting to high energy via higher energy threshold
and higher collection area in high energy, the TimeGradient becomes a distinct
feature.
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The distant location of the shower in high Zd is also the reason why the Im-
pact becomes less important. Since the impact point is calculated tracing from
incoming direction through the shower maximum location, the longer distance
to the shower maximum gives larger fluctuation to the impact point, hence the
larger fluctuation to Impact. In the high Zd range, the TimeGradient becomes
one of the most important variables.

And above all, the importance of Zd itself changes as the observing Zd is
large. The importance is larger in the higher Zd. This reflects the small change
of Zd already changes the characteristics of the shower image significantly, as
the thickness of the atmosphere increases roughly / 1/ cos(Zd).

4.4.6 Improvement of Disp

The new Disp estimation

In addition to the energy estimation, I improved the RF for Disp estimation
by updating the input variables. Based on the physical properties of EAS, I
improved the accuracy of Disp with two variables.

One is Leakage. Leakage was not used in the previous standard Disp RF.
Leakage conveys the information of how much the image would be truncated
because of the limited field of view of the camera. Thus Leakage can help
with compensating the missing part of the shower image, e.g. Size and Length.
Indeed, Size and Length are correlated to Disp and they are the variables which
su↵er the most from the truncation of image.

The other is TimeGradient. In the previous standard Disp RF, TimeGra-
dient is used only in a form of absolute value, thus the value is degenerated,
especially when the value is small. The removal of sign information is necessary
to the TimeGradient, because it is calculated based only on the camera coordi-
nates, not taking into account the shower incoming direction. I give a detailed
explanation together with the solution to determine the sign of the value in the
following paragraphs.

First of all, let us formulate the di↵erence of the TimeGradient calculation
between the consideration of incoming direction or not. For a given point X in
camera coordinate, we represent a vector X from origin of the camera coordi-
nates, denoted as X = (x, y). In this notation, let C be the CoG calculated as
one of the Hillas parameters. The calculation also determines the image axis as
linear function in the coordinate, namely y = ax+b, where a and b are constant.
The gradient a can be converted to a vector parallel to image axis, a = (1, a).
Being normalised, the unit vector e can be denoted as e = (cos ✓, sin ✓), where
✓ is the angle between horizontal axis and the image axis.

Now we convert a point on the image axis X, into the scalar to denote the
position on the image axis. It is a projection of X � C onto the 1 dimensional
space with unit vector e along the image axis.

⇠ = (X � C) · e (4.4.4)

where ⇠ is the variable to denote the position. TimeGradient is based on the
arrival time distribution of each pixel to the projected position on the image
axis, namely ⇠.
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The problem is the choice of the projection vector. We want to know the
time profile of the position along the shower image axis, as a function of the
angular distance from the incoming direction. If the shower image develops in
opposite side of the incoming direction with respect to the direction e points,
the profile su↵ers from the flipped tendency.

x (-1) x (+1)

OO

C
CSs s

S

direction of tim
e profile

direction of tim
e profile

Figure 4.19: Assignment of sign to TimeGradient

Schematic views of the superposed camera images showing two cases resulting in
the di↵erent time profiles. The biggest circles are the camera field of view, whose
center, O, is the origin of the camera coordinates. S is the incoming direction
of the �-ray, and the two ellipses in red and blue are the shower images seen by
the two telescopes. We focus on the red ellipse, whose CoG is C.

Figure 4.19 shows the two possible directions of time profile and the solution.
Multiplying �1 to the TimeGradient the profile towards wrong direction, the
sign of TimeGradient yields proper information. For judging the direction, the
vector S � C can be used.

e · (C � S) =

⇢
� 0 TimeGradient ⇥ = (+1)
< 0 TimeGradient ⇥ = (�1)

(4.4.5)

The result of the sign assignment to the simulated �-rays is shown in
figure 4.20. The left figure is after the correction with the true incoming di-
rection for S. The x-shape which was present in the row distribution, shown in
figure 4.15, is not seen any more. For the real data, the incoming direction is
impossible to know, therefore we can only apply the classical incoming direction
(the intersection of the shower axes). The right figure is the result with the cor-
rection using the incoming direction by Classical method. It still contains the
events of confusion in the head-tail decision, however the majority of events are
corrected with remaining mismatch events only in the order of 10 %.
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Figure 4.20: Corrected TimeGradient vs Impact

The two-dimensional histograms of simulated �-rays as TimeGradient vs
TrueImpact. The TimeGradient is corrected using the incoming direction. The
left is the correction with the true incoming direction, while the right is the
correction with the estimated incoming direction using Classical method (axes
crossing). See also the relation before the correction shown in figure 4.15.

The evaluation of improvement

I evaluate the accuracy of Disp estimation for each event, by the sum of the
errors of two Disp estimations.

�Disp = (Disp
1,est � Disp

1,true) + (Disp
2,est � Disp

2,true) (4.4.6)

This is because the purpose of evaluating Disp is to discuss the improvement
of direction reconstruction, and the Disp method for direction reconstruction is
averaging of the two estimated positions. For example, if Disp for one image is
longer than true value and another is shorter, it still keeps high probability of
correct reconstruction to some extent.

In the statistical evaluation over the distribution of �Disp, there are two
properties to focus; the bias which indicate the systematic deviation from the
true value, and the RMS which indicate the outliers. The bias and RMS of
�Disp are defined as

DispBias =
1

N

X

X2Disptest

(�Disp) (4.4.7)

DispRMS =

s
1

N

X

X2Disptest

(�Disp)2 (4.4.8)

The result is shown in figure 4.21. The improvement of Disp is seen for
entire range of Disp, as the bias closer to 0 and the RMS also closer to 0.
The improvement is higher at large Disp. The improvement evaluated in energy
ranges shows around 0.1� improvement of bias and also around 0.1� improvement
of RMS reduction in the high energy range. This results in better direction
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Figure 4.21: Performance in the Disp reconstruction

The two figures show the accuracy of the Disp estimation as the function of
TrueDisp (top) and TrueEnergy (bottom), comparing the default Disp RF (blue)
and the improved Disp RF (red). In each plot, the upper frame depicts the bias
and the lower depicts the RMS, whose definitions are noted in eq.(4.4.7) and
eq.(4.4.8) respectively.
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reconstruction, which has an impact in the determination of signal region in the
✓
2 plot.

The figure 4.22 shows the comparison of the ✓
2 plots in low Zenith distance,

together with the fraction of the gain of events by the improvement. The plots
show that several percent of gain is expected7.

Not only the gain in the number of the events, but also the better Disp leads
naturally to a better energy estimation.
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Figure 4.22: Comparison of the ✓
2 distributions for the classical and improved

Disp reconstruction

The classical and improved Disp estimations are compared in the reconstructed
directions of standard simulation data for low Zenith distance (Zd=[5,35] deg).
The top left panel is the comparison of the ✓

2 distributions for all the events
between the classical and improved Disp reconstructions. The top right panel
is the cumulative distributions of the ✓

2 distributions, normalised by the total
number of events. The bottom panel is the relative gain in the di↵erent energy
ranges of true energy. The calculation of relative gain is based on the number
of events at the cut position. The cut position is determined by the standard
procedure with e�ciency of 80 %, which means that the cut position is the larger
value from either at the point 80 % of the MC �-rays are collected or 0.01 deg2.

7 In the standard analysis, the cut applied for ✓2 is based on the �-ray e�ciency, explained
in section 3.10.3. The ✓

2 cut position moves according to a given e�ciency, which is the
fraction to cover the simulated �-rays after the cut. In this sense, the improvement to evaluate
is the reduction in background events due to tighter ✓

2 cut. However the e�ciency cut sets
the minimum cut value = 0.01 [deg2] and typically the cut value reaches the minimum for the
energy above 1 TeV. Therefore I evaluate the improvement by the increase in the number of
events.
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4.4.7 Summary of the input variables and RF-Erec ver-
sions

Compared to LUTs-Erec, the di↵erences of input variables for the latest version
of RF-Erec are

• ”Nest” strategy of DispImpact instead of ”Swap” strategy

• The additional use of TimeGradient, Width, Length and Disp,

• Using Classical-CosBSangle instead of swap use of Disp-CosBSangle.

Table 4.2 summarizes the list of input variables and their ways of application
for the energy estimation. In the table, I also show the list of variables for
LUTs-Erec, as well as all the intermediate versions of RF-Erec. They had been
already released in the past as part of the MARS software package and used as
o�cial program, and were recently used also in scientific publications.

The updates underwent mainly due to the change of the geometrical vari-
ables. The di↵erence is summarised in detail in section 4.4.2. In the latest
versions, the upgrades also involve the image parameters.

Below, I summarize the history of updates together with brief justifications.

• ver. 1 (released in May 2017)
The set of variables does not include any geometrical variable by Disp
method, because I adopted the simplest set of variables in the picture of
the shower. It already showed a better performance than LUTs-Erec.

• ver. 2 (released in Jan 2018)
DispImpact was added into the input variables, which improved the per-
formance especially in lowest energy range. I adopted swapping strategy
for the DispImpact, following the strategy adopted in LUTs-Erec. How-
ever the Swap impact introduces very significant systematic e↵ect in High
Zd, which was one of the motivation to the next version. The detail of the
e↵ect is described in section E.3.1.

• ver. 3 (released in May 2018)
Disp was added into the input variables, which improved the energy res-
olution in the entire range. The Disp did not show obvious systematic
e↵ect as Impact, thus it was introduced using swapping strategy. On the
other hand, to remove the systematic e↵ect from the swapping DispIm-
pact, I introduced two subversions dependent on the Zd range (for more
information, see section D.3).

– ver. 3.1 for Low Zd
Disp was added in swap strategy. DispImpact was kept in swap
strategy because it does not show visible systematic e↵ect.

– ver. 3.2 for High Zd
While Disp was added in swap strategy, DispImpact was removed
to deal with the heavy systematic e↵ect and instead ClassicalImpact
was listed again. The parameter Length was added because it slightly
improves the resolution in high Zd range. This version performs
well but su↵ers from systematic e↵ect when the analysis cut condi-
tion is relaxed. The detail about the systematic e↵ect is reported in
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section E.3.2, and the proper usage to avoid the e↵ect is in
section D.3.2.

• ver. 4 (Intermediate version, not to be released)
The nest strategy to determine the parameters Impact and Disp is in-
troduced to remove the systematic e↵ect seen in the swap strategy. The
strategy also reduces the outliers in the estimation error distribution in
Low Zd range, as well as keeps comparable levels of the bias and resolution.

In addition, Length and Width are added because I confirmed in the
comparison between MC and Real data that the distributions of Length
and Width do not show obvious di↵erences (see the detail in section 4.5.1).
I evaluated the shift of the energy estimation when one of the variables is
shifted, and noted the impact on the energy estimation due to the small
scale di↵erence would be within the energy resolution. The details are
described in section 4.5.2.

• ver. 5 (Final version, to be released)
I improved Disp estimation as described in section 4.4.6.

Table 4.2: The variables used in the various energy estimators.

RF-Erec LUTs-Erec
variables v1 v2 v3.1 v3.2 v4,v5

Size (tel.1/2) • • • • • •
Leakage (tel. 1/2) • • • • • •

Impact(tel.1/2)
Classic • •
Swap • • •
Disp •

Time Gradient (tel.1/2) • • • • •
Width (tel.1/2) •
Length (tel.1/2) • •

Disp(tel.1/2)
Swap • •
Disp •

CosBSangle
Classic • • • • •
Swap •

Zd of telescope pointing • • • • • •
Classic-Cherenkov Density • • • • • •
Classic-Cherenkov Radius • • • • • •

4.4.8 Implementation in the MARS software package

I have implemented the novel methodology into the standard MAGIC analy-
sis software package, mentioned in section 3.3. The technical summary of the
implementation is reported in Appendix B. This package is now provided as
part of the standard data analysis framework, and it takes over the previous
LUTs-Erec for the energy reconstruction. Thereby the MAGIC collaboration
can benefit from the methodology. I also gave lectures on the usages and tips
in the MAGIC software schools and MAGIC collaboration meetings.
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4.5 Validation

In this section I discuss the validity of the novel energy reconstruction method
(RF-Erec-v5, hereafter simply RF-Erec). First I show that RF-Erec performs
consistently on simulated �-rays and real �-rays in section 4.5.1. They are al-
most consistent, apart from a small discrepancy. Then I discuss the e↵ect of such
small scale systematic e↵ect on the reconstruction of energy in section 4.5.2. I
also show event-wise comparisons, between LUTs-Erec and RF-Erec, and be-
tween the information from two telescopes, in section 4.5.3. In section 4.5.4,
I show that the spectrum of the reference source, the Crab Nebula, using the
novel energy reconstruction, agrees well with the past results. The agreement
is good also for the spectra obtained from the observation data in di↵erent Zd
ranges.

4.5.1 Variable distribution

Albeit we cannot know the true energy of the observed �-ray, it is possible to
check the consistency of the energy estimation between the simulated �-rays
and real �-rays in observation data.

If the energy reconstruction works consistently in both the simulated �-rays
and the real �-rays with the same energy spectrum, the measured variables of
events should distribute in the same way in a given energy. This comparison
is possible only if there is a bright source that allows us to reliably remove the
contamination of background events. Fortunately, there is a suitable data set:
the large flaring activity of the blazar Mrk421 in April 2013, which delivered
the highest VHE �-ray fluxes (during hour and day timescales) recorded with
MAGIC to date. The VHE fluxes were larger than ten times that from the Crab
Nebula, the bright standard candle source for �-ray instruments.

In the following, the Monte Carlo (MC) simulated data of �-rays is compared
to the (Real) observation data.

The basic idea

The variables distribute di↵erently over energy, and this is how it is possible
to judge the energy of the �-rays from the set of variables. In other words,
for a �-ray with a given energy coming from a given direction towards a given
position on the ground, the measured value of the variables should follow the
correspondent probability distribution. Therefore the accumulated distribution
of measured values for �-rays with given energy must be the same between real
and simulated �-rays, if they come from the same direction and arrive uniformly
on the ground. This comparison should work in the estimated energy in the same
way.

There are still some issues to carefully take into account as follows.

• Astrophysical sources emit following roughly power-law spectra with neg-
ative spectral indices, not to mention that there is no mono-energy source.
Therefore the samples with the estimated energy in a certain range are
the mixture of di↵erent true energies, often dominated by lower true en-
ergy events because of steep power-law nature. To take into account this
e↵ect, the comparison between the MC data and the real data requires
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the adjustment of the spectrum, so that the mixture of the true energy in
the estimated energy domain becomes the same.

• The source in the sky moves, and the relation between the true energy and
observed variables changes correspondingly. Therefore the Zenith distance
distribution must also be taken into account.

• The real �-ray event is embedded among the dominating background
events. Therefore the distribution of entire data will end up showing
the distribution of background events. However, like the usual process
to extract the statistics of the �-ray, the distribution of the �-ray events
should emerge by performing the on-o↵ subtraction.

• The flux of real �-rays we observe is typically very low and dominated
by the overwhelming flux of the cosmic-ray background events. Therefore
the observation data must contain very high flux of �-ray.

Therefore we compare the distributions of observed variables for �-ray events
dependent on the energy between simulated events and the real observation data,
namely the two-dimensional histogram of the estimated energy and the variable.
In the following, we discuss how to proceed with the issues above.

The (Real) observation data

The data set selected for the these studies is the observation of Mrk421 taken
in April in 2013. Figure 4.23 shows the summary of the data used in this study.

The source exhibited the highest flux level, persistent over several days,
among all the TeV �-ray sources. I select the first four days in the high flux
term, April 12, 13, 14 and 15 in 2013. The total observation time is ⇠ 20 hours.
For these four days, the integrated flux > 200 GeV was the highest, varying
from 1 · 10�9 to 2 · 10�9cm�2s�1 , which corresponds to around 5 to 10 C.U..
The data used here was taken at low Zd, and the weather condition was very
good.

After the event reconstruction, the cut conditions applied are Size > 50,
✓
2 e�ciency = 0.9 and Hadronness e�ciency = 0.9. The spectrum of �-rays

for the entire data is estimated by forward folding. The spectral model applied
is power law with semi-exponential cuto↵ which gave the best fit result among
the usual assumptions with the reasonable probability, �

2
/n.d.f. = 13.2/16

(p-value = 0.66).

f(E) / ·
✓

E

E0

◆↵

· e
�(E/Ec)

�

(4.5.1)

where E is the energy in GeV, E0 = 387 GeV, Ec = 1044 GeV, ↵= -1.8 and
�=0.65.

To construct the variable distributions of �-ray events, the main concern in
the real observation data is the background events. The histogram needs the
subtraction of the contribution from background events. Since the data is taken
by wobble mode, it is possible by the ON - OFF subtraction. The events around
the source direction are filled to on-histogram, and the ones around the axi-
symmetric direction to an o↵-histogram. The residual of these two histograms
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Figure 4.23: Characteristics of the Mrk421 data taken in Apr 2013

Top: The estimated source flux and the observation condition as a function of
time. From top to bottom, the light curve, namely the flux vs time, the Zenith
distance angle, and the transmission of the atmosphere. The red line is the av-
erage flux for all the data, and the blue blue line is the flux level of the Crab
Nebula.
Bottom left: The spectrum of �-rays estimated by forward folding. The red
curve is the model function with the fitted parameters, and the points are the
reconstructed flux as a function of energy.
Bottom right: The observed number of events vs estimated energy. The num-
ber of events in ON and OFF regions are plotted, together with the number of
events in ON region, obtained from forward folding.
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should indicate the distribution of real �-ray events, because the distribution of
background events should be the same for the axi-symmetric directions.

The cut conditions applied on both on- and o↵- histogram are ✓
2

< 0.1
and hadronness < 0.95. It is to avoid the unnecessary events. From the ✓

2

distribution shown in figure 4.24, the criteria su�ciently covers the distribution
range of signal events.

The (MC) simulated data

For the MC data, there is no need for subtraction of background, but instead the
energy spectrum and the Zenith distance (Zd) distribution must be the same as
the real data. Therefore the distribution of MC data is adjusted giving weights
to individual events.

The weight for adjusting the spectrum is calculated from the true energy, so
that the resultant distribution of the true energies for given estimated energy is
equalized. The spectrum of the real data is assumed to be the spectral function
obtained from the forward folding, mentioned above. On the other hand, the
spectrum of the MC data can be regarded as the probability distribution on
energy when it was generated, which is proportional to E

�1.6
true .

The weight for the Zd is calculated from the di↵erence of the Zd distribu-
tions between observation data and the MC data shown in figure 4.24. The
distributions are binned in the cosine of Zenith distance with 10 bins. For the
observation data, the amount to be counted in each Zd bin is the observation
time. On the other hand, that for the MC data should be characterised in the
number of simulated events. Based on them, the weight for an event is assigned
from the scale factor in the Zd bin where the event belongs.

To impose the same condition between the real data and the MC data, the
same cut conditions as the observation data are applied. And the two weights
are adjusted further so that the total number of events between the MC data
and the real data (ON - OFF) become the same after the cut.

In the comparison of ✓
2 distributions shown in figure 4.24, the MC data and

the real data show discrepancy. The MC data has higher fraction accumulated
to the smallest ✓

2 bin, and the real data has higher fractions than MC data in
the next bins. It indicates that the event reconstruction done for MC is better
than real data. This small di↵erence can naturally come from the di↵erence in
Point Spread Function (PSF) of the Cherenkov light collection, which is mostly
from the adjustment of the reflector system.

The result

Here I show the variable distributions for the MC and the real data and compare
them. I select the variables with highest contributions to estimate the energy.
Leakage is omitted because the distribution is dominated by 0 and it does not
make sense for the comparison. For simplicity, the distributions of the telescope
wise variables are shown only for telescope 1 (M1), because the trends are similar
for both telescopes.

The resultant variable distributions are shown in the top left panels for the
MC data, which denote simulated �-ray, and in the top right panels for the
real data as ON - OFF of the distributions, which denote the real �-rays, in
the figures from figure 4.25 to figure 4.30. The distributions are drawn in two
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Figure 4.24: The comparison of the simulated data with the real data, in ✓
2

distributions and Zd distributions

The Monte Carlo (MC) simulated data of �-rays is compared to the observation
(Obs) data to see if it reproduces reasonably the real �-rays in the observation
data. In addition to the spectral weight, the weight to take into account the Zd
distribution is applied.
The top panel is the distribution of Zd for the simulated data and the observation
data.
In the bottom, the performance of direction reconstruction is compared. The
bottom left panel is the ✓

2 distributions in the ON and OFF regions of the Obs
data. The subtraction of them yields the �-rays, that are shown in the bottom
right panel. The ✓

2 distribution of simulated �-rays is shown together in the
panel. The weights for the spectrum and Zd are applied.
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Figure 4.25: The variable distributions of Size of M1

The distributions of Size of the telescope 1 (M1) vs estimated energy are drawn
in the top two panels. The top left panel is for the simulated �-rays (MC)
weighted in the true energy and Zd. The top right panel is for the observation
(Obs) data as excess events of ON - OFF. The two distributions are compared
in the bottom two panels. The bottom left panel is the profile histograms, for
four selected energy bands. The bottom right panel is the mean and the RMS
around the mean in the binned energy ranges, on top of the residual of the two
histograms normalized by the total number of events in each estimated energy
bin of the observation data. The energy range with less than 100 events of the
excess events of the observation data is omitted.

dimensions so that the energy dependence of the variable distributions can be
seen. At a glance, the distributions are very similar for all the variables between
the MC and the real data.

The detailed comparisons of the two distributions are seen in the bottom pan-
els. The bottom left panel shows the profile histograms, which are the variable
distributions in four selected energy ranges; 0.10 - 0.13 TeV, 0.32 - 0.42 TeV,
1.0 - 1.3 TeV and 3.2 - 4.2 TeV. The shapes of the profile histograms are irreg-
ular, however the data points of the MC and the real data mostly agree with
each other.

The bottom right panel shows the subtraction of the two histograms. The
distribution of real data is subtracted from that of MC data, and is shown as
the ratio to the total number of events in the real data integrated over each
energy bin. All the grids with good statistics are within several percent of the
total events in the estimated energy bin. The graph superposed indicates the
mean and the RMS of the distribution in each energy.

All the variables show consistency between the MC data and the real data.
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Figure 4.26: The variable distributions of MaxHeight

The explanation follows in the same way as figure 4.25.
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Figure 4.27: The variable distributions of DispImpact of M1

The explanation follows in the same way as figure 4.25.
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Figure 4.28: The variable distributions of Disp of M1

The explanation follows in the same way as figure 4.25.
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Figure 4.29: The variable distributions of Width of M1

The explanation follows in the same way as figure 4.25.
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Figure 4.30: The variable distributions of Length of M1

The explanation follows in the same way as figure 4.25.

It is remarkable that the profile histograms mostly agree with each other in
di↵erent energy ranges, although the shapes of the distributions are complicated
and vary in energy. However some discrepancies can be seen. The discrepancies
in the lowest energy and the highest energy are not a problem because they
su↵er from the limitation in statistics. The systematic di↵erence seen especially
in Width distribution should be discussed. The residual histogram shows it is
a systematic shift; the mean of the distributions is shifted by around 1 mm.

One challenge in the MC-real data comparison is the uncertainty in the
spectrum variability. To give the weight for adjusting spectrum of the simu-
lated data, the primary spectrum of the observation data is fitted to the entire
data. However the light curve shows very strong variability with the changing
of flux by factor of more than two even within a night. Therefore there is no
guarantee of the spectrum shape to be stable, and if the spectrum varies with
time, the weight dependent on the time spent for the Zenith distance cannot ac-
curately work. It is also supporting that the variable distribution really changes
dependent on the Zenith distance weight.

Another challenge is the di↵erence of the pointing direction distributions
in Azimuthal (Az) direction. The observation tracked the source, thus the Az
distribution is narrow; but the simulation data is generated uniformly in Az
direction. Usually Az dependence has been neglected in low Zd observation in
standard analysis, however the systematic e↵ect might be non-negligible now,
because of better precision. To confirm this possibility, dedicated simulation is
needed, which is out of the scope of the work presented here.
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However the most likely reason that caused the discrepancy is the di↵erence
in the PSF of the reflector system. As shown in the figure 4.24, the ✓

2 distri-
butions are di↵erent between the MC and the real data. The PSF is measured
regularly, however it is not possible to have a nightly dedicated measurement.
On the other hand, the PSF always changes slightly, mainly due to the de-
formation of the telescope structure. Therefore it is unavoidable to contain a
small deviation from reality. In this study, the ✓

2 distribution is better in MC
data, which indicates that the direction reconstruction is performed better in
the MC data. It is likely that the MC data was produced with the better PSF in
the simulation. And this is consistent with the variable distributions of Width,
where the Width of the MC data distributes in smaller values than that of the
real data.

Above all, the variable distribution shows good agreement between simulated
�-rays and the real observation data.

4.5.2 Energy uncertainty caused by MC-Real data di↵er-
ences

The variable distributions reported in section 4.5.1 show good agreement be-
tween the simulated �-rays and the real �-rays, although a small di↵erence can
still be seen. As mentioned, the reason of the di↵erence could be attributed to
the uncertainty of the time-varying true spectrum or the di↵erent Azimuthal
angle distribution between the simulation data and observation data. However
an existence of bias in the simulation cannot be excluded for now, e.g., owing
to the di�culty of simulating perfectly the optical PSF. This section shows the
impact in the reconstructed energy if one assumes that the systematic di↵erence
of a measured variable is genuine.

The procedure

In this study I assume a simple case of systematic di↵erence, where a variable is
systematically larger by certain fraction or interval for all the events. I compare
the reconstructed energies of the �-rays between the original input variables and
those with a variable shifted systematically. The comparisons are performed for
di↵erent variables. I select them based on the importance to determine the
energy as discussed in the variable selection in section 4.4.1. Table 4.3 shows
the list of variables and the shifts used in this study. From the comparison
between the simulated �-rays and the real �-rays the systematic di↵erence of a
variable would not be larger than those.

I select the same low Zd (between 5 deg and 35 deg) as the variable distri-
bution test.

The result

The result of the investigation for the energy between 0.5 TeV and 1.6 TeV is
reported in figure 4.31. I set this energy range because it is the most important
range to most of the VHE �-ray sources, as well as because it is the range with
the best reconstruction performance. Moreover the biggest discrepancy seen
between the simulated �-ray and the real �-ray is in Width around this energy
range, as shown in the left bottom panel of figure 4.29. Also this energy range
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Figure 4.31: Energy uncertainty caused by MC-Real data di↵erences

The distributions of the estimated energy (Eest) shift due to the shift of a vari-

able. The shifted variables are all in M1, which are from left to right, Size,

Length, Width, TimeGradient (Dt), Disp and Impact. The amounts of shift

given are listed in table 4.3. Top row is the entire distribution, and the other

rows show the pair plots, in which the distributions are decomposed to another

variable. The diagonal plots are two dimensional histograms of energy shift vs.

the shifted variable. The o↵-diagonal plots are the heat maps of average energy

shift for the grid of the shifted variable and another variable.
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Table 4.3: Selected variables and their shifts

Variable Shift

Size1 + 5%
Length1 + 2 mm
Width1 + 1 mm
TimeGradient1 + 0.01 ns/mm
Disp1 + 0.05deg
DispImpact1 + 10 m

seems to be the most sensitive to the shift of the variables, because of the good
statistics of number of photons per event and the good statistics of events.

Each column represents the shifted variable, from left to right, Sizetel.1

(shown in logarithmic form), Lengthtel.1, Widthtel.1, T imeGradtel.1, Disptel.1,
and Impacttel.1. The top row reports the histograms of the shift of reconstructed
energy, normalized to the true energy. For all variables shifted, most of the im-
pact in the reconstructed energy is typically less than 10 %.

The other panels show the dependence of the energy shift on the variables in
the diagonal plots, and the pair plots of heat maps in the rest, where correlations
between two variables are searched. The heatmaps depict the average of the
reconstructed energy shift, red for positive shift and blue for negative shift. A
map is binned in two dimensions, of which the horizontal axis is the shifted
variable and the vertical axis is another variable. Looking closely, the influence
of the variable shift on reconstructed energy has trends.

4.5.3 Event-wise consistency checks

Comparison with LUTs-Erec

Since the LUTs-Erec has been used as the o�cial strategy in the MAGIC col-
laboration during the last decade, if there is an anomaly in the distribution of
the event-wise di↵erence of estimated energy between LUTs-Erec and RF-Erec,
a reasonable explanation should be given. Figure 4.32 shows the distribution
of event-wise di↵erence of estimated energies between LUTs-Erec and RF-Erec,
(ERF

est � ELUT
est )/Etrue, to the true energy in the form of logarithm of 10. The

majority of the events are distributed symmetrically around 0, therefore there
is no bias between the LUTs-Erec and RF-Erec. However, the outliers are not
symmetrically distributed, showing the long tail only in the negative side. This
seems to come mainly from the systematic e↵ects by swapping Impact, which
are discussed in section E.3.1.

Comparison between two telescopes

The information from the two telescopes should contribute equally to the energy
estimation. To check this, two RF energy estimators are constructed, in which
the image-based parameters of either one telescope are removed from the input
variables. Compared to the estimator with the full input variables, the two
estimators bias should lose the information symmetrically, thus the di↵erence
of the estimations by them should be distributed symmetrically. The result of
this test is shown in figure 4.33, confirming that the distribution is symmetric.
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Figure 4.32: The event-wise comparison of LUTs-Erec and RF-Erec

Di↵erence of the reconstructed energies by LUTs-Erec and RF-Erec, as a func-
tion of energy. The left panel is for the simulated �-ray (MC data). In the
vertical axis, the di↵erence of the reconstructed energies is normalized by the
true energy, and the horizontal axis is true energy. The right panel is for the
observation data. The di↵erence of the reconstructed energies is normalized by
average energy, which is the geometrical mean of the two reconstructed energies.
Horizontal axis is the average energy. The events are selected under the cut
condition of
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Figure 4.33: The event-wise comparison of the reconstructed energies by the
RFs with limitations on image-based parameters of M1 and M2

Di↵erence of the reconstructed energies by the RFs with limitations on image-
based parameters. The two RFs are trained with reduced variables, removing the
image-based parameters of either one telescope. The reconstructed energy Eest1
denotes the reconstructed energy by the RF keeping the image-based parameters
of telescope 1 (M1). The di↵erence is normalized by the true energy Etrue. The
events are selected under the cut condition of
0  ✓

2  0.02 & Hadronness  0.5 & 50  Sizetel.1 & 50  Sizetel.2.
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4.5.4 Crab Spectrum

As described in section 3.12.1, the most pragmatic test to validate RF-Erec
consists in determining the spectrum for our bright standard candle, the Crab
Nebula, and compare it to that produced with the LUTs-Erec.

I performed this test in four Zenith distance ranges; Zd=[5,35]deg,
Zd=[35,50]deg, Zd=[55,65]deg, and Zd=[70,80]deg. In this subsection I call
them specifically as LZd, MZd, HZd and VHZd. The observation data used
here was taken during astronomical night, with no moon in the sky or near the
horizon, and in good weather, to avoid any other systematic e↵ects. The total
observation time collected are 3.6 hours, 2.1 hours, 3.7 hours and 20.5 hours for
LZd, MZd, HZd and VHZd 8.

The flux points are calculated by the number of excess events divided by
collection area, which was corrected for the energy migration using the migration
matrix9, collection area for true energy and the assumed spectrum obtained from
the past study [16]. The cut condition was optimized. Since the source is bright,
the ✓

2 e�ciency was increased to 85%. The hadronness e�ciency was left to be
the standard value of 90% for LZd and MZd, however HZd and VHZd needed
it to be relaxed to be 99% because there appears the systematic e↵ect in the
hadronness distribution, due to the di↵erences between real and MC data. The
Size cut remained the same, 50 phe.

The result is shown in figure 4.34. For comparison, the spectra via the
LUTs-Erec are also shown. The vertical lines are the energy threshold to prop-
erly estimate the spectral data points. For more details, see section D.4. The
red dashed lines are the reference spectrum obtained from the past study.

When the spectral shape is fitted to the spectral data points, they all agree
with the reference spectrum. Therefore the energy reconstruction worked well.
As for the individual data points, they should be consistent with the reference
spectral lines, given the assumed spectrum for the flux calculation is valid. All
the data points are well aligned with the reference spectral lines, except for some
deviations, which are mostly within around 2 sigma. There is an exception at
around 6 TeV in the Spectral Energy Distribution (SED) by LUTs-Erec in HZd,
which deviates by around 3 sigma. This is very likely due to the systematic e↵ect
induced from the swapping, because the deviation coincides with the isolated
probability bin in the migration matrix, shown in figure 4.35. The mechanism
is discussed in section E.3.1, and a clearer example for LUTs-Erec is seen in
section 4.6.

8 All the selected data are in the same period described in section 3.4.3. The period selected
is from 2016-04-29 to 2017-08-02. This period is compatible with the telescope performance
in 2019.

9 The migration matrices used are presented in figure 4.35.



132 Chapter 4. Improvement of the energy reconstruction

Energy (GeV)
10 210 310 410

]
-1

 s
-2

/d
E 

[T
eV

 c
m

φ
 d2 E

12−10

11−10

10−10 LUTs-Erec Zd=05-35

Energy (GeV)
10 210 310 410

]-1
 s

-2
/d

E 
[T

eV
 c

m
φ

 d2 E

12−10

11−10

10−10 RF-Erec Zd=05-35

Energy (GeV)
10 210 310 410

]
-1

 s
-2

/d
E 

[T
eV

 c
m

φ
 d2 E

12−10

11−10

10−10 LUTs-Erec Zd=35-50

Energy (GeV)
10 210 310 410

]-1
 s

-2
/d

E 
[T

eV
 c

m
φ

 d2 E

12−10

11−10

10−10 RF-Erec Zd=35-50

Energy (GeV)
210 310 410

]
-1

 s
-2

/d
E 

[T
eV

 c
m

φ
 d2 E

12−10

11−10

10−10 LUTs-Erec Zd=55-65

Energy (GeV)
210 310 410

]-1
 s

-2
/d

E 
[T

eV
 c

m
φ

 d2 E

12−10

11−10

10−10 RF-Erec Zd=55-65

Energy (GeV)
310 410 510

]
-1

 s
-2

/d
E 

[T
eV

 c
m

φ
 d2 E

12−10

11−10

10−10 LUTs-Erec Zd=70-80

Energy (GeV)
310 410 510

]-1
 s

-2
/d

E 
[T

eV
 c

m
φ

 d2 E

12−10

11−10

10−10 RF-Erec Zd=70-80

Figure 4.34: Validation of the energy reconstruction via the Crab Nebula spectra

The Crab Nebula spectra obtained with LUTs-Erec (left) and RF-Erec (right).
From top to bottom, the Zenith distance range of the observations are indicated
in the panels. The red dashed line is the Crab Nebula spectrum presented in
past study by MAGIC collaboration [16].
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4.6 Performance evaluation

In this section I discuss the performance of the new energy estimator, RF-Erec,
compared with the previous strategy, LUTs-Erec. The simplest and most gen-
eral way of measuring the performance is through properties related to general-
ization error which is introduced in section 4.1.3. I show the migration matrix
as raw distribution of the estimation error in section 4.6.1, and quantify the
properties in section 4.6.2.

However, these are not su�cient to prospect the e↵ect on the result of anal-
ysis, because the goal of the analysis is to extract physical parameters from a
spectrum after the accumulation of statistics. The reconstructed spectrum is
deformed because the confusion of the estimated energy in individual events
changes the actual distribution. And the deformation is strongly dependent not
only on the reconstruction performance, but also on the spectral shape itself.
Moreover, scientific interests depend on di↵erent parts of the spectrum.

For example, the slope of a spectrum changes the strength of deformation.
The interest in existence or not of cuto↵ requires reliability to measure the
highest energies. The interest in anomaly in the spectral shape like a bump or
dip requires stable performance over energy.

In this study, I evaluate the estimator in two ways; the energy-wise bin
reliability of the events, and the actual e↵ect on modeling a spectrum. The
energy-wise bin reliability is especially important for the high energy range,
where the data runs short of statistics. For this purpose, I discuss bin purity
and spillover in section 4.6.3. For the actual e↵ect on modeling a spectrum, I
evaluate the reliability on determining the spectral parameters. I discuss power-
law unfolding in section 4.6.4.

Throughout this section, I use the same set data that were used in
section 4.5.4.

4.6.1 Migration matrix

The migration matrix, introduced in section 3.11, is the best measure to di-
rectly asses the performance of an energy estimator. The migration matrices
from RF-Erec and LUTs-Erec are shown in figure 4.35, separately in di↵erent
Zenith distance (Zd) ranges; Zd=[5,35]deg, Zd=[35,50]deg, Zd=[55,65]deg, and
Zd=[70,80]deg.

The migration matrices obtained with LUTs-Erec show wide spread of mi-
gration probabilities while the ones from RF-Erec have tight band of bins along
the diagonal line. The tight spread indicates good energy resolution, which
means that the spread of the reconstructed energies for a given true energy is
small. The quantification of the properties to characterise this is discussed in
section 4.6.2.

In the example shown here, the LUTs-Erec migration matrix for
Zd=[55,65] deg has a cell, which tells the events of the true energy < 100 GeV
have a probability above 20 % to migrate to estimated energy of about 5 TeV.
These features bring di�culty in precisely unfolding an energy spectrum. This
issue can cause a visible systematic e↵ect in an unfolded spectrum, especially
when the spectrum is steep. Some examples of the actual influences on the
analysis can be seen in section 4.6.3 and section 4.6.4.
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Figure 4.35: Migration matrices from LUTs-Erec and RF-Erec for various Zenith
distance ranges

The migration matrices, derived with the LUTs-Erec (left) and RF-Erec (right),
shown separately for various Zenith distance (Zd) ranges. The events are selected
with the same size cut and e�ciency cuts (see section 3.10.3), and the weight is
applied based on the Zd distribution spent on the observation. The observation
data used are the same as the ones for the validation through Crab Nebula
spectrum, discussed in section 4.5.4.
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4.6.2 The basic performance

Here I show the basic performance, namely the generalization error parametrised
as the bias and resolution. The definition is explained in section 4.1.3. The
performance, over wide range of energies, is reported in figure 4.36.

The result shows significant improvement of RF-Erec compared to LUTs-Erec
in all Zd ranges. In case of low Zd range, the fitted energy resolution by RF-Erec
reaches around 11 % above 1 TeV, while the one by LUTs-Erec never goes be-
low ⇠ 15 %, and becomes worse as energy increases, reaching ⇠ 30 %. In the
low energy side, the RF-Erec shows mostly ⇠ 20% of fitted resolution, which is
comparable to LUTs-Erec.

While the fitted resolution is to depict the tendency of majority population,
the evaluation via standard deviation focuses on the tendency of outliers. To
quantify the outliers, let us introduce tail spread.

TailSpread = (SD � �)/� (4.6.1)

where SD is the standard deviation of the distribution, and � is the fitted
resolution, namely the width of the fitted Gaussian. The tail spread indicates
the deviation from the Gauss distribution in the tail, giving large value for the
larger numbers and/or the wider spread of the outliers10. The tail spread is
shown in the bottom subpanels. The improvement is clear. For low Zd range
the tail spread is reduced to less than half for entire energy range with stable
bias. In the other Zd ranges, the improvement is more significant. Among
the ranges shown here, Zd from 55 to 65 shows the biggest improvement, by
reducing the tail spread to around 10 % of that with LUTs-Erec.

Even more, when the fitted resolution and the standard deviation are com-
pared in higher Zd, the di↵erence is even more dramatic. The discrepancy of
standard deviation becomes always factor ⇠ 2 or more, and the fitted resolution
also approaches similar improvement as the Zd is larger.

RF-Erec shows better performance than LUTs-Erec also in bias. Bias by
RF-Erec is always stable in the middle energy range, while LUTs-Erec shows
instability in Zd from 35 to 50 and 70 to 80. Especially in Zd range from 70 to
80, the bias by LUTs-Erec cannot stay close to zero any more.

However, the bias always deviates from zero in the both edges. It can be
naturally attributed to unbalanced energy distribution of train samples. As the
estimated energy is determined in training by averaging the samples remaining
at the last node after splitting, the population at the last node should ideally
include equal amount with energy. For the energy estimator, I set the target
value as logarithmic form, thus the distribution should be ideally uniform in
logarithmic scale of energy, namely power-law distribution.

In highest energy side, the problem is the truncation of the distribution. The
bias start to appear around the half of the maximum energy of the train data.
This problem can be solved by extending the energy range of train data set.

In the lowest energy side, the deviation is larger. It would primarily come
from the threshold e↵ect. Since the lowest energy events survive the trigger
and analysis only when it is bright enough, and resembles higher energy events,
this threshold e↵ect cannot be removed. Moreover there would be another

10 For a Gauss distribution, the standard deviation is the width of the distribution. Since
the fit focuses on the peak for a with Gaussian like distribution, the tail spread can be non-zero
for the deviation from the Gauss fit in the tail.
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Figure 4.36: Basic performance of LUTs-Erec and RF-Erec in di↵erent Zd ranges

Performance of the LUTs-Erec (black) and RF-Erec (red) energy estimators are
shown as a function of true energy, separately for four di↵erent ranges of Zenith
distance (the ranges are shown on top of the plots).
In all panels, the top subpanels show the fitted bias (the solid lines), the
fitted resolution derived from the Gaussian fit (the filled circles) and the
resolution as standard deviation (SD) of the distributions of the quantity
(Eest � Etrue)/Etrue, where Eest is the reconstructed energy (the empty cir-
cles). For more details, see section 4.1.3. The bottom subpanels are the tail-
spread, defined as the normalised deviation of the SD from the width of the
fitted Gaussian.
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reason to make the bias. The population of the training data set is distorted
in energy because of the quick drop of the surviving probability of events in
triggering and analysis. This distortion is critical to determine the prediction
value because it is designed to meet the power-law distribution. The association
between the energy bias and the energy distribution is noticeable, as I discuss
in section E.2.2.

4.6.3 Bin reliability (purity and spillover)

As the migration matrix shows, the majority of the events are evaluated properly
with RF-Erec; i.e. the Eest is similar to Etrue. But even the small probability
at the tail of the distribution can influence significantly the analysis. Since a
spectrum of the �-ray from the astrophysical source has power-law like distri-
bution, and the collection area at high energy range is more or less flat, the
number of signal events we have in an observation data will also follow power-
law-like distribution. Therefore, the number of events in lower energy side are
more abundant than in the higher energy side, and the tiny fraction of spillover
to an estimated energy bin from the lower energy side results in a considerable
amount. The steeper the spectrum, the larger the e↵ect.

In this section I discuss bin purity and spillover e↵ects. These evaluations
focus on the reliability of the number of excess events in an histogram binned
in energy, after statistical accumulation of misreconstruction.

Setup of the data generation

Figure 4.37 shows the schematic view of generating a histogram to evaluate. A
spectrum of an imaginary �-ray source is assumed, and it is convoluted with
the telescope and analysis response. Since the response changes dependent on
pointing position, a tracking history of observations with Crab Nebula was cho-
sen, whose total observation time is approximately three hours. The collection
area and migration matrix are generated on this tracking condition. The pro-
cess takes into account two fluctuations. One is the Poissonian fluctuation on
obtaining signals, and the other is on the energy migration, in which the esti-
mated energy for each event is assigned based on the probability distribution
for the correspondent true energy.

I evaluated two types of spectrum of the simulated source, in two types of
Zenith distance observations11. The spectral types are continuous power law
with typical index, -2.5, and steep index, -5. And the Zenith distance ranges
are low Zd (from 5 to 35) and high Zd (from 55 to 65).

Bin purity

Bin purity is the fraction of excess events in a given estimated energy bin, whose
true energy is also within the same energy range. We can judge how much a
bin is free from contamination of the events with wrongly assigned energy.

In the migration process, the binning in estimated energy Eest and Etrue

are evaluated. For i-th bin, the bin purity is Nremain(Ei
true)/N(Ei

est), where
N(Ei

est) is the number of events ending up in the i-th bin of estimated energy,

11 The observation times are 3.6 hours (3.7 hours) for the observations with Zenith distance
range between 5 degrees and 35 degrees (55 degrees and 65 degrees).
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Figure 4.37: The scheme of generating a simulated observation for bin reliability
evaluation

In this scheme, the simulated observation data takes into account only the sim-
ulated �-rays, to focus on the e↵ect of confusion in the energy reconstruction.
To this end, the flux spectrum of �-rays with e↵ective observation time teff is
given. The first step is to generate the distribution of number of �-ray events
(Nsignal,) over Etrue, which is not accessible in the real data, and the second
step is to convert it to that over Eest, which is accessible. In the first step,
the flux is convoluted with the collection area, and multiplied by teff to obtain
Nsignal, then the Poisson fluctuation is given to Nsignal in each Etrue bin. In
the second step, the conversion is performed using the migration matrix in a
statistical way; the destination bin of Eest is determined statistically event by
event, following the probability distribution in the migration matrix.

and Nremain(Ei
true) is the number of events to be delivered into the bin of the

same energy range of E
i
est as that of E

i
true. The result is shown in figure 4.3812.

I choose the binning to be 7 bins per decade in both Eest to that of Etrue, so that
a bin should contain su�cient quantile for the median energy event assuming a
resolution of ⇠ 15%.

The result shows significant di↵erence between RF-Erec and LUTs-Erec.
In the typical spectrum, while the purity of RF-Erec continues rising from
0.4 at lowest energy to 0.7 at highest energy, the LUTs-Erec never surpasses
RF-Erec and start to drop after several hundred GeV. In the steep spectrum,
LUTs-Erec performs always worse, and the di↵erence is larger. Both RF-Erec
and LUTs-Erec show lowering of the bin purity in the low energy side. Not only
the worsening of the energy resolution in the lowest energy range, but also the
energy range below hundreds of GeV su↵ers from the rising bias, and the events
start to escape from the correct energy bin to higher energy bin. Moreover,
small spillover from lowest energy bin contributes large fraction to the higher
energy bin because of the power-law energy distribution.

For the high Zd observation, the di↵erence is more dramatic. The steep
spectrum comparison in HZd shows that the purity by LUTs-Erec is below 2 %
above 2 TeV in LUTs-Erec, while that by RF-Erec is above 40%.

Spillover

As part of spillover (the migration of events to wrong energy bin), I quantify
the (fake) excess events in a energy bin where no excess event is expected. Let

12 For the steep source, the evaluation was done separately for low energy and high energy,
because the number of events are enormously di↵erent. The low energy and high energy
evaluation has the overlap region so that the purity continues smoothly.



4.6. Performance evaluation 139

index=-2.5,  Zd=5-35

Eest [GeV]
10 210 310 410

Bi
n 

Pu
rit

y

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
LUTs-Erec

RF-Erec

index=-2.5,  Zd=5-35 index=-5.0,  Zd=5-35

Eest [GeV]
10 210 310 410

Bi
n 

Pu
rit

y
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
LUTs-Erec

RF-Erec

index=-5.0,  Zd=5-35

index=-2.5,  Zd=55-65

Eest [GeV]
210 310 410

Bi
n 

Pu
rit

y

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
LUTs-Erec

RF-Erec

index=-2.5,  Zd=55-65 index=-5.0,  Zd=55-65

Eest [GeV]
210 310 410

Bi
n 

Pu
rit

y

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
LUTs-Erec

RF-Erec

index=-5.0,  Zd=55-65

Figure 4.38: Bin purity vs Energy with LUTs-Erec and RF-Erec

The bin purities as a function of energy, with LUTs-Erec and RF-Erec, are shown
for two power-law indices and two Zd ranges, denoted in the panels.

us consider a spectrum of true energy Etrue, as power law with a hard cuto↵ at
energy Ecut, to see clearly the e↵ect of the spillover. A wide migration matrix
changes the observed spectrum over estimated energy Eest to smear out the
intrinsic cuto↵, and events with Eest beyond Ecut appear. Having the excess
events, an analyzer is forced to consider the possibility of observing events with
Etrue beyond Ecut. In this way, a wide migration matrix adds confusion to the
investigation of the highest energy observed, from a �-ray source, which can
lead to profound physics implications.

To this end, I set a hard cut o↵ at energy of 1 TeV in the aforementioned
power-law spectra of a simulated �-ray source. After the generation of a sim-
ulated observation, the histograms of Etrue and Eest are compared bin by bin.
The figure 4.39 shows the ratio of the number of events in Eest, denoted as
N(Eest), to that in Etrue, denoted as N(Etrue). Above the cuto↵ energy of 1
TeV, there must be no event in Etrue. Thus the denominator is set to the num-
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Figure 4.39: Spillover ratio vs energy with LUTs-Erec and RF-Erec, for spectra
with hard cuto↵ at 1 TeV

The spillover ratio, which is the ratio of the number of events of Eest in the
same bin of Etrue to that of Etrue is plotted. Two power-law spectra with index
-2.5 and -5 (indicated in the right of the panels) with a hard cuto↵ at 1 TeV,
are investigated in the two Zd ranges of observation. Due to the hard cuto↵,
there is no event above 1 TeV of true energy (pure spillover region), thus the
spillover ratio is computed as the ratio to the number of events in the last bin
below 1 TeV. Likewise, the lowest energy is also pure spillover region, there the
ratio is computed as the ratio to the number of events in the lowest energy bin
of true energy.
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ber of events (in Etrue) at the last bin below 1 TeV. The lowest energy side also
has the bins with simulated excess events, and they are treated similarly13. The
number of bins in Etrue and Eest are set to be equivalent as 10 per decade to see
the spillover tendency in detail. I discuss the result in the following, separately
for below and above 1 TeV.

As the main property below 1 TeV, the ratio should ideally be 1. For the typ-
ical spectrum in Low Zd, the ratio is close to 1 for both RF-Erec and LUTs-Erec.
It shifts positively in steep spectrum or/and in High Zd, because of the power-
law spectrum. The distribution of numbers of events is not balanced over energy,
so that the number of events coming in from lower energy bins is always higher
than that going out from higher energy bins. The steeper the slope of power
law or the higher Zd, the more the spillover, resulting in the higher ratio.

Below 1 TeV, the di↵erences between RF-Erec and LUTs-Erec lie in the
ranges close to 1 TeV and lowest energies.

In the range close to 1 TeV, the di↵erence is significant in the steep spectrum.
Despite the higher spillover due to the steep spectrum, RF-Erec lets the ratio
approach 1 for higher energy by better energy resolution. However the ratio by
LUTs-Erec does not improve for higher energy, and it shows even quick rise to
above 2 in the case with steep spectrum in low Zd. It indicates that the bins
are already dominated by the contamination from di↵erent energies of Etrue,
and it is consistent with the drop of bin purity shown in figure 4.38. Therefore
RF-Erec improves the bin reliability especially in the high energy range.

In lowest energies, LUTs-Erec shows the long tails in all the cases, although
the expectation is 0 below energy threshold. The ratio is higher in the typical
index case. This tells the large number of events in lowest energies spillover
into even lower energies in LUTs-Erec, and such escape of events can clearly
be seen by lower ratios in the energies of several tens of GeV in low Zd and a
few hundreds of GeV in high Zd. Therefore the RF-Erec can lower the energy
threshold, because the higher ratio, kept in the lowest energies, results in higher
number of excess events.

As for the energy range above the cuto↵ energy of 1 TeV, the value should
be 0, as there is no signal. However the spillover brings the (fake) excess events
there. In all the settings, RF-Erec shows good performance; the ratio quickly
falls down above 1 TeV and disappears already at 2 TeV, on the other hand,
LUTs-Erec shows a long tail continuing to even above 10 TeV.

And in the region above 1 TeV, the systematic e↵ect can be seen in the
result by LUTs-Erec for the steep spectrum in high Zd. The distribution above
1 TeV is not just a decreasing tail, but is wiggled. The reason is presumably
due to the wide distribution of the migration probability, together with low
statistics of the MC data for the migration matrix. The range of estimated
energy for a true energy is wide for LUTs-Erec, however the number of events
to be used for constructing the migration matrix is low in the low energy range.
Therefore the probability distribution in the migration matrix becomes sparse
and wiggled, which is of course di↵erent from the real probability distribution of
migration. In the generation of the simulated observation data, the distribution
is generated using the migration matrix and the spillover from the low energy
range into the high energy range is enhanced by very high flux.

13 The lowest energy bin of continuous positive excess bins is chosen as the reference bin.
Below the bin, the ratio of the excess events of Eest in each bin to that of Etrue in the
reference bin is calculated.
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4.6.4 E↵ects on unfolding

Here I show a direct influence of the energy estimation performance on modeling
the spectrum of a source.

As discussed in section 3.11, the accuracy of energy reconstruction is always
limited, and the energy distribution of detected events is deformed from what
it is in the real energy. Therefore there must be spectral unfolding, a process
to take into account the deformation when the energy spectrum of the flux
is reconstructed. And the performance of energy reconstruction will appear
in this process, where a better energy reconstruction results in smaller spectral
deformation, hence better spectral unfolding. We deal with such inverse problem
by forward folding or unfolding. In case of forward folding, we must assume a
model of the initial spectrum to explain the observed distribution as a function of
the estimated energy. On the other hand, unfolding does not require any model,
however it instead imposes a regularization in the unfolded distribution like a
smoothness of the spectrum to force the solution to converge. Both methods
have pros and cons, and they work complementary to each other. Thus the
most important point for practical use of unfolding methods would be to obtain
consistent results via both methods.

This subsection focuses on evaluating the consistency between the true spec-
trum and the one reconstructed. To this end, I generate a set of simulated ob-
servation data with given spectra, to be compared with the results of analysis on
them. I adopt a very bright source with very steep spectrum for the simulated
observation data, to be an simple and clear example.

Setup of the data generation

Figure 4.40 shows the schematic view of the strategy used to generate the his-
tograms to evaluate. In addition to signal generation process, the background
events are generated. The ”ON” distribution is the sum of signal distribution
and background distribution. And the three ”OFF” regions all consist of back-
ground events. these background events are taken from the real data14, giving
Poissonian fluctuation. The OFF distribution is the average of the three OFF
regions. Then the analysis can determine the number of signal events only by
the excess events, namely the subtraction of OFF distribution from ON distri-
bution.

In this evaluation, two migration matrices with di↵erent binning are used to
take into account the energy migration more in detail. One is 280 bins in true
energy and 28 bins in estimated energy. This tries to simulate more detailed
migration process in generating the signal for the simulated observation data.
The other is 20 bins in true energy and 28 bins in estimated energy, to be used
for normal unfolding15.

I consider a source with a power-law index -5 and the flux level of 10 C.U. at
500 GeV. The observation condition is set to be 3 hours of total observation time
and high Zd range. The data analysis of unfolding needs both ”ON” distribution
and ”OFF” distribution. The number of OFF regions is set to be 3. They are
summarised in table 4.4.

14 The background distribution depends on the tracking history, because it varies with
Zenith distance and Azimuthal angle.

15To make the unfolding process converge, coarse binning in true energy is normally adopted.
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Observation scheme with background contamination
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Figure 4.40: The scheme of generating a simulated observation for unfolding
performance evaluation

In spectral unfolding, the distributions to be given to the analysis are, the num-
ber of events in ON region and in OFF regions, as a function of estimated energy
Eest. The number of excess events, NON �NnormalisedOFF, is used for unfold-
ing, and the number of ON and OFF events, NON, NOFF, are used in forward
folding.

To this end, the schematic view shows the generation of signal events (in the
blue region) and the background events (in the gray regions) for the ON re-
gion and the OFF regions. The signal events is generated in the same way
as figure 4.37 (the convolution step with collection area is omitted). The dis-
tributions of background events are calculated from the template distribution
by adding Poissonian fluctuation. The template distribution is obtained from
the real observation data of the Crab Nebula. In the schematic views, all the
statistical fluctuations applied are written in orange texts.
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Table 4.4: The condition parameters for unfolding evaluation

Parameter Value

Source
Slope -5

Amplitude 5.6 · 10�11

Observation and anaylsis
Zd range 55 - 65

Observation time 3 h

Number of OFFs 3

The source parameters are to formulate the di↵erential flux of �-ray,

dF/dE = A ·
⇣

E
1TeV

⌘↵
[TeV�1·cm�2·s�1] , where ↵ is slope, A is Amplitude

and E is energy. By the parameters above, the flux level is adjusted to be
10 C.U. at 500 GeV.

Setup of the analysis

The forward folding does not require any special treatment, because it requires
only the model spectral shape. The model is fitted to explain the measured dis-
tributions of both ON and OFF regions, also taking into account the fluctuation
of signal and background events.

On the other hand, unfolding aims at no strict assumption on the spectral
shape. Instead it needs more elaborated configuration in the bin selection of
estimated energy and true energy bins. The configuration should be considered
more carefully than adopting the standard selection, because the spectral shape
is unusual like the case I evaluate here. It is challenging to recover a steep
spectrum because the energy distribution of the excess events is heavily distorted
by the confusion in energy estimation. A tiny fraction of events spilling over
to another energy bin sometimes becomes majority in the destination bin in
estimated energy, as shown in section 4.6.3. Therefore the unfolding needs to
consider as many bins as possible to reduce systematic e↵ect, as long as the
contribution from the background events is small.

To this end, the bin range of estimated energy is selected in which all the
consecutive bins have at least 4 excess events. Typically, the minimum number
of excess events is 10, but this limit would be too tight in steep spectrum case,
and it would deform the unfolded spectral shape at the edge. Therefore, for this
study I set the minimum number of excess as 4.

On the other hand, the criteria to choose the true energy bins is based
on collection area and migration matrix. In the low energy side, the edge is
determined by the collection area because the bins below energy threshold do
not provide many events. In the formal limit the minimum collection area of the
bin to be selected is 1000 m2. However a steep spectrum generates significant
amount of events despite the small collection area, thus I chose the low energy
side bins as long as the collection area is non-zero. For the high energy side, I
chose the criteria in the same way as the typical one; the true energy bins whose
sum of migration probability covered by the selected estimated energy bins is
more than 70 %.

The actual selected bin ranges are shown in figure 4.41.
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Figure 4.41: Collection area, migration matrix and excess events of simulated
observation data with LUTs-Erec and RF-Erec

The ranges for calculating the unfolding are also shown as the colored bars in
the plots. The green (blue) bars are the lowest and highest edge of the estimated
(true) energy range.

The result of forward folding

The forward folding is a fit of a model function to the measured distribution
with maximum likelihood process. The result comes as the fitted parameters
of model spectrum, together with the goodness of the fit. In this performance
evaluation, the model spectrum is set to be a power law.

dF

dE
= A0

✓
E

E0

◆�ph

(4.6.2)

where dF
dE

[TeV�1 cm�2 s�1] is the di↵erential flux as a function of energy E, A0

is the amplitude, �ph is spectral index, and E0=1 TeV is the pivot energy. The
parameters obtained and the goodness of fit are shown in table 4.5.

Both RF-Erec and LUTs-Erec show good agreement with the true spectrum.
The model parameters are estimated to be consistent with the original spectrum
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Table 4.5: Forward folding results for the simulated observation data

A0 [10
�11/TeV cm2 s] �ph �2/NDF

LUTs-Erec 5.79 ± 0.31 �4.99 ± 0.05 6.3/11

RF-Erec 5.68 ± 0.15 �5.00 ± 0.03 8.4/11

shown in table 4.4 at almost the same precision, and there is no clear di↵erence
of energy reconstruction performance between them, although RF-Erec shows
closer estimated power-law parameters to the original spectrum with smaller
uncertainty. However the di↵erence can be understood deeper in the control
plots and these contain major di↵erences to possibly a↵ect the result in real
cases.

In the control plots shown in figure 4.42, the top two panels compare the
measured values with the expected ones based on the spectral model with the
maximum likelihood. Both strategies show good agreements between the ex-
pected and observed distributions both in ON and OFF regions. The agreement
can also be assessed via the residual and the �

2 contribution plots, shown in the
3rd and 4th rows of the figure. However, the distributions are di↵erent between
the two strategies especially in ON events, where an enhancement at about 4
TeV can be seen in the ON distribution with LUTs-Erec (it can also be seen in
the excess events distribution shown in figure 4.41).

The reason is identified via the assessment on the collection area and the
migration matrix, shown in figure 4.41. There is no anomaly in the collection
area, thus this is not due to the enhancement of the sensitivity at the energies.
Instead it is from the migration probability from low true energy to the high en-
ergy, as the migration matrix for LUTs-Erec shows an isolated high probability
bin at about 100 GeV of true energy vs about 4 TeV of estimated energy. This
small probability of spillover is enhanced by the steep power-law spectrum, and
gives the large impact in the destination estimated energy. This problem is also
discussed in section 4.6.3 and section E.2.1.

Although the distribution has such anomaly, the forward folding performs
well, because it already ”knows” the anomaly; both of the migration matrices,
namely the one for performing migration in producing the simulated observation
data and the other for spectral unfolding, have the same distributions of the
migration probabilities although the di↵erent binnings are used, because they
are generated from the same test samples.

Therefore, if di↵erent sets of simulation data were provided for the sim-
ulated observation data and the spectral unfolding, the forward folding with
LUTs-Erec would have performed worse than that with RF-Erec, because the
wider distribution and isolated bins in the migration matrix can make larger
di↵erence of distribution patterns when di↵erent sets of test samples are used.
This indicates that the forward folding with LUTs-Erec su↵ers from larger sys-
tematic uncertainty in the analysis also for a real observation data, because
the migration matrix used for the spectral unfolding is di↵erent from the real
migration process.

The bottom panels of the control plots show the contamination fraction,
which is the fraction of events in an estimated energy bin migrated from the
energies higher or lower by more than 20 %. The contamination fraction with
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Figure 4.42: Control plots from forward folding with LUTs-Erec and RF-Erec
for simulated observation data

The consistency of the result of forward folding is shown in the di↵erent point
of views. The top two rows are the number of events in ON and OFF regions,
where the reconstructed number of events from the fitted model spectrum (red
markers) is shown together with the observed number of events (black markers).
The vertical dashed lines indicate the range to calculate the likelihood for fitting.
The third row is the residual of the reconstructed number of events with respect
to the measured number of events. The fourth row is the �

2 contribution. The
bottom row is the contamination fraction, which is the fraction of the spillover
events migrated from the energies higher or lower by more than 20 %.
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LUTs-Erec is always high from about 0.7 below 1 TeV and even higher above
1 TeV, reaching almost 1 at several TeV. The one with RF-Erec is lower for
higher energies, reaching below 0.4 at several TeV. As discussed in section 4.6.3,
the high contamination fraction drops the bin purity and it a↵ects the flux
reconstruction for the individual energy bins based on the forward folding.
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Figure 4.43: The spectra of simulated observation data, reconstructed by for-
ward folding with LUTs-Erec and RF-Erec

The reconstructed spectra by LUTs-Erec and RF-Erec are drawn overlaid in
di↵erent colors, shown in the legend. The lines are the fitted model spectra,
and the points are the reconstructed flux, using the spectra for taking into
account the energy migration in the collection area. The parameters of the true
spectrum are shown in table 4.4, and the ones obtained by forward folding and
their goodness of fit are shown in table 4.5.

Figure 4.43 shows the reconstructed spectral points via forward folding, to-
gether with the fitted model spectra drawn as dashed lines. The flux points
are calculated from the number of excess events, the observation time and the
collection area, but the collection area takes into account the spectral shape
and the energy migration. For this reason, the points are plotted at the median
true energy (according to MC) of the �-ray events from which they are calcu-
lated. If the contamination fraction becomes higher, the median true energy in
a bin becomes far o↵ the corresponding energy range, thus such data points are
removed.

Consequently, there are di↵erences in the number of data points and the po-
sitions of them, between RF-Erec and LUTs-Erec. The di↵erence clearly shows
that RF-Erec significantly improves the reliability of data points by enabling
the estimation of the flux data points above 1 TeV.

The result of unfolding

The spectral points reconstructed by unfolding are shown in figure 4.44. There
are di↵erent regularization methods as described in section 3.11.2, and are in-
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dicated by color. The black points overlaid are the reconstructed points by
forward folding.

The consistency of these reconstructed spectral points with the measured
excess event distributions is shown in table 4.6, together with the results of
power-law fit to the spectra.

Table 4.6: Results from unfolding and power-law fits to unfolded data points of
simulated observation data with LUTs-Erec and RF-Erec

(a) LUTs-Erec

Unfolding Power-law fit

�2
0/ny A0 �ph �2

PL/NDF

Tikhonov 3.7 / 18 5.91 ± 0.19 -4.96 ± 0.03 8.9 / 7

Schmelling 99.9 / 18 7.22 ± 0.16 -4.74 ± 0.02 53.0 / 9

Schmelling(m) 674.3 / 18 1.49 ± 0.02 -3.81 ± 0.02 635.6 / 9

Bertero 47.9 / 18 7.61 ± 0.1 -4.71 ± 0.02 82.1 / 6

Bertero(w) 179.3 / 18 1.01 ± 0.02 -4.32 ± 0.02 239.8 / 8

(b) RF-Erec

Unfolding Power-law fit

�2
0/ny A0 �ph �2

PL/NDF

Tikhonov 2.8 / 12 5.72 ± 0.10 -4.97 ± 0.02 29.6 / 8

Schmelling 223.1 / 12 5.88 ± 0.12 -4.90 ± 0.02 34.9 / 8

Schmelling(m) 725.4 / 12 3.27 ± 0.08 -5.09 ± 0.03 295.4 / 7

Bertero 27.5 / 12 6.00 ± 0.13 -4.93 ± 0.02 59.6 / 8

Bertero(w) 34.7 / 12 6.72 ± 0.13 -4.79 ± 0.02 159.0 / 7

The left column shows the consistency of the unfolding result, �2

0
/ny , where �

2

0

is the chi-square between back-folded distribution of number of excess events
and the one measured, and ny is the number of bins of estimated energy which
were taken into account in unfolding process. The right columns are the result
of the power-law fit to the unfolded spectra, performed with the correspondent
regularization methods, using RF-Erec and LUTs-Erec. The power-law function

used for the fit is dF
dE = A0

⇣
E
E0

⌘�ph
, where dF

dE [TeV�1 cm�2 s�1] is the dif-

ferential flux as a function of energy E, A0 is the amplitude, shown in the unit
of [10�11

/TeV cm
2
s] in the table, �ph is the spectral index, and E0 is the pivot

energy set to be 1 TeV.

It is not su�cient to compare just the data points drawn here. In each regu-
larization strategy, there are five di↵erent criteria for choosing the best strength
of the regularization, explained in section H.1. The results shown here are only
by the point of comparable noise levels between before and after unfolding, as
the representative criterion. Moreover the results are not obvious for compar-
ing the performance of energy reconstruction. In addition to the data points,
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Figure 4.44: The spectra of simulated observation data, reconstructed by un-
folding with LUTs-Erec and RF-Erec

Simulated observation of a source with a power-law index -5 and the flux level
of 10 C.U. at 500 GeV, whose observation parameters are denoted in table 4.4.
The results are separately drawn for the ones with the LUTs-Erec and RF-Erec.
The colored points are the reconstructed flux by unfolding with di↵erent regular-
ization methods, shown in the legend. The black points show the reconstructed
flux based on forward folding.
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the consistency in many aspects should be satisfied. The main idea on how to
examine the results is summarized in section H.2. Since the evaluation is com-
plicated, I begin with discussing the results on the representative criterion, and
continue to the detailed comparison among the di↵erent criteria for the best
regularization strength, together with the di↵erent regularization methods.

Comparing the reconstructed spectral data points by the representative cri-
terion, figure 4.44, the results with RF-Erec are consistent among all of the
regularization methods and they are consistent also with the data points by for-
ward folding. On the other hand, the unfolding with LUTs-Erec shows di↵erent
results among the di↵erent regularization methods, also showing deviation from
the reconstructed spectral line by forward folding above 1 TeV, especially in the
Schmelling(minuit) method. Moreover, some regularization methods show the
missing data points in the middle before the highest energy point. This is not
physically reasonable thus it should be avoided.

The reason behind this can be clarified by the control plots shown in
figure H.3, together with the detailed discussion. Here I summarize the dif-
ference in unfolding between RF-Erec and LUTs-Erec, that resulted from the
energy reconstruction performance. All the di↵erences indicate that RF-Erec
performs better.

• LUTs-Erec shows larger deviations from the true spectrum

The unfolding with LUTs-Erec in general results in worse reconstruction
than that with RF-Erec. While the true spectrum is a simple power law
with the index of -5, the power-law fit to the reconstructed points are
typically significantly harder with LUTs-Erec, as shown in table 4.6. The
�

2

PL
for the fit are also worse, even after comparing among the di↵erent

criteria for the best regularization strength.

Moreover, the unfolded spectrum with LUTs-Erec sometimes indicates
anomaly with respect to a power-law shape. There are sometimes a dis-
continuity in the data points above several TeV, cuto↵ or an upturn to-
wards high energy above 1 TeV. The presence of such artificial anomalies
would challenge the scientific interpretation of the results.

• LUTs-Erec shows inconsistent results among di↵erent weight choices

In the real observation, the real spectrum is not known, thus the di↵erent
results among di↵erent ways of unfolding would complicate the interpreta-
tion of the results. While RF-Erec shows mostly consistent results among
all, LUTs-Erec gives di↵erent results, not only among the di↵erent reg-
ularization methods, but also among the di↵erent criteria for the best
regularization strength within the same regularization.

• LUTs-Erec shows problems to converge

Unfolding with LUTs-Erec sometimes shows a failure in convergence for
finding a �

2 minimum. It can still determine the solution because it is cho-
sen from the �

2 minima for di↵erent strengths of regularization, however
it is less reliable for the choice of the best weight.
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Chapter 5

RF-Erec enables the
spectral analysis of the first
Gamma Ray Burst detected
at TeV energies

On Jan 14 in 2019, MAGIC detected the clear signal from a �-ray burst (GRB),
named GRB190114C. This was the first time a GRB was significantly detected
at VHE �-rays. The significance of the detection from the source at redshift
0.4245 was 50 sigma, and the estimated energies of the thousands of photons
ranged from 0.2 TeV to around 1 TeV.

Due to such cosmological distance, they are strongly a↵ected by Extragalac-
tic Background Light (EBL) absorption, and the absorption becomes very strong
for the highest energy photons. The TeV photons from GRB190114C are the
most distant ones detected to date, and hence the ones su↵ering the strongest
EBL attenuation. This means that the spectrum becomes so soft that it becomes
challenging to reconstruct. If there had not been the novel method available,
the spectral analysis of these data with LUTs-Erec would have led to large bi-
ases in the final results, as I show in section 4.6 and later on in this chapter.
Fortunately, I had provided the novel energy reconstruction using the RF-Erec
just on time, and the spectral analysis of these data was successfully conducted,
yielding two scientific publications in Nature about the physics of GRBs [8, 111],
and one on PRL about constraints on Lorentz Invariance Violation [83].

However, the latest version of my energy reconstruction (RF-Erec-v5) was
not yet available by the time of preparation of these papers, and an intermediate
version (RF-Erec-v3) had to be used. As introduced in section 4.4.5, RF-Erec-v3
had some issues that may introduce small bias in the reconstructed spectra, but
it was already superior than LUTs-Erec, and hence the MAGIC collaboration
decided to use it for the spectral analyses of this unprecedented data set.

In this chapter I show the better analysis using RF-Erec-v5 energy recon-
struction and the alternative cut condition determined after further investiga-
tion on the observation and simulation data. Although the major tendencies
of spectral shape are consistent,i.e., the main physical properties do not change
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from the publication, my analysis show higher statistics and thus more infor-
mation at higher energy. In addition, I will also present the spectral analysis
using the LUTs-Erec, which is the result we would have obtained if my energy
estimation method had not been available.

This chapter composes as follows. In section 5.1, I introduce GRB, focus-
ing on the measure issues related to the VHE �-rays. The observation of the
GRB190114C is summarised in section 5.2 describing the outline of observa-
tions, the basic properties indicated from the analysis of the observations, and
the analysis of the MAGIC observation data. The analysis method is described
in section 5.3. The data taking condition was atypical, and the data needed
additional inspection to adjust the analysis. In section 5.4, I compare the anal-
yses between the latest RF energy estimation (RF-Erec-v5) with LUTs-Erec.
The comparison of my analysis with the standard GRB analysis is discussed in
appendix I. In section 5.5, I summarise the interpretation of the data, featur-
ing the TeV component of the emission from GRB190114C observed with the
MAGIC telescopes.

5.1 Introduction to Gamma-Ray Bursts

Gamma-Ray Bursts (GRBs) are a burst of �-rays. To more specific, it is a
sudden release of emission that lasts from milliseconds to thousands of seconds,
in the energy range from tens of keV to several MeV, which is the typical band-
pass of spaceborne GRB detectors [117]. The burst accompanies the emission in
the other energies of electromagnetic wave, as well as much longer and di↵erent
temporal profiles.

Physically, GRBs are the most luminous explosions in the Universe, although
their locations are cosmologially distant even up to redshift 10. The typical
isotropic �-ray luminosity is ⇠ 1051 � 1053 erg s�1. Compared to the Sun, with
⇠ 1033 erg s�1, this energy release corresponds to the energy released by the
Sun in its entire 10-billion-year lifetime. And this value is far above even the
emission from an Active Galactic Nuclei (AGNs), which is the central active
region of a galaxy, dwarfed by a GRB. Powered by accreting super-massive
black holes, the most energetic AGN luminosity is merely ⇠ 1048 erg s�1.

Despite the enormous energy release, the variability seen in the explosion is
very high with the timescale of down to ms. This apparent compactness problem
requires that the source emitting the �-rays of GRB must move relativistically
towards Earth [96]. The boost e↵ect with relativistic speed lowers the photon
energy at the comoving frame of production site and enlarges the emission region
size. GRB comes from the collimated relativistic outflow towards line of sight.

Multi-wavelength observations now reveal at least two distinct physical ori-
gins of cosmological GRBs. One type is initiated in the deaths of some special
massive stars. The other is believed to be produced by the mergers of binary
compact objects.

Although emission of �-rays at even higher (TeV) energies has been theoret-
ically predicted, it had not been previously detected.

Besides being strong emitters across the entire electromagnetic spectrum,
GRBs are believed to be sources of non-electromagnetic signals, including cos-
mic rays, neutrinos, and gravitational waves. Recently the direct association
between a GRB and a gravitational wave event has been made [2].
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5.1.1 Prompt and Afterglow

The emission from GRBs occurs in two stages, which can partially overlap in
time. The first stage is the burst itself or called ‘prompt’ emission phase, and
the second is called ’afterglow’ phase.

The prompt emission phase is conventionally defined as the temporal phase
during which excessive sub-MeV emission is detected by the GRB triggering
detectors above the instrumental background emission level. The duration is
quantified by so-called the ”T90”, which is defined as the time interval between
the epochs when 5% and 95% of the total fluence is registered by the detector1.
However, from theoretical point of view, the prompt emission and afterglow
are better to be separated by its di↵erent origins, and it is widely accepted
that the �-rays are emitted at di↵erent physical locations. The most distinctive
characteristic of the prompt emission is the light curve. Although it is a brief
flash, the emission is intense and exhibits irregular variability on timescales
shorter than milliseconds and lasts up to hundreds of seconds. The examples
are shown in section G.1.

The ensuing ‘afterglow’ phase is characterised by emission that spans a
broader wavelength range (from radio waves to GeV �-rays) and decays grad-
ually over much longer timescales compared to the prompt emission. The af-
terglow emission exhibits smooth power-law decay, and its spectrum can be
explained mostly by synchrotron spectrum.

5.1.2 Short GRBs and long GRBs

T90 measured in the Burst And Transient Source Experiment (BATSE) energy
band (25–350 keV) includes two Gaussian components with a separation line
around 2 s [74] (for more details, see figure G.1). They are regarded as di↵erent
classes and are called short GRBs and long GRBs.

The long GRBs have been clearly associated with the broad-line Type Ic Su-
pernovae (SNe), which are the most massive cases of gravitational core collapse
of a star together with the Doppler broadening of emission lines due to the larger
velocity of the ejecta. Short GRBs are believed to be produced by the mergers
of binary compact objects. The leading scenario is mergers of two neutron stars
(NS-NS) or one neutron star and one stellar-size black hole (NS-BH).

Many evidences supports the associations, therefore the classification of
Type I (compact-star-mergers) and Type II (massive-core-collapse) are intro-
duced because the separation between the long and short populations is not
clean. The associations are identified mainly by spectroscopy and localization
as described below.

• Spectroscopy

Some long GRBs have been detected with spectroscopically identified SN
associations, all of which belong to Type Ic (e.g. [53, 103]). And even
though the SNe are not spectroscopically identified, a light curve bump
has been observed in the optical light curves of many long GRBs around
10 days after the GRB trigger, simultaneously changing its color. This

1 Note that the duration varies dependent on the energy range of the detector. In this thesis
I mention T90 measured in the Burst And Transient Source Experiment (BATSE) energy band
(25–350 keV), if there is no description.
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bump is consistent with the underlying thermal flux of supernova starting
to overtake the synchrotron flux of GRB afterglow [31].

On the other hand, short GRBs do not show SN associated light. In
the model of compact-star-merger, nucleosynthesis like r-process gener-
ates heavier elements and the photosphere would be at larger radius and
lower temperature. Thus bright infrared emission rather than optical is
expected. Such associated excess after around 10 days, called kilonova,
r-process nova or mergernova, were detected for some short GRBs (e.g.
[24, 55])

• Host galaxies and locations in host galaxies

The studies show that the long GRBs occur in the environment with high
star-forming rate, and it is quite consistent with the massive star origin
of long GRBs. The majority of the long GRBs host galaxies are star-
forming galaxies [49]. Long GRBs favor a low-metallicity environment
[58]. Besides, most long GRBs reside in the brightest core regions of the
host galaxies, where the specific star formation rate is the highest [49].

On the other hand, the host galaxies of short GRBs are somewhat larger,
the stellar population is relatively older, and metallicity is relatively higher
[25]. As for the location in the host, most short GRBs are found to be far
from the bright light of the host galaxies, and the physical o↵set of the
GRB with respect to the center of the host is large [48]. And some are
even hostless, suggesting that they may have been kicked away from host,
or reside in distant faint host galaxies [23]. All these are consistent with
the expectation of the compact-star-merger models.

• Gravitational wave

The first NS-NS gravitational wave event GW170817 was associated with
a short GRB, GRB170817A [1, 2]. The GRB was discovered also to be
associated with kilonova events (e.g. [112])

5.1.3 Relativistic outflow

Because of the bright and high energy emission observed, together with fast vari-
ability, the emission region must move relativistically towards the observer [96].
Otherwise, calculating from total ”isotropic” energy and the scale of emission
region obtained from the burst duration, the photon density at the production
site would be high enough to enable pair conversion, and the > MeV photon
would not be able to escape from the source. This requires the existence of a
relativistic jet for the emission, and it is supported by the existence of the jet
break in the afterglow light curve. The Lorentz factor of the bulk motion of jet
is denoted as �.

The formation of the jet is still subject of intense debate [77, 117]. A widely
used model is the matter-dominated fireball, which consists of baryons (pri-
marily protons and neutrons), electron and positron pairs, and photons. A
progenitor star undergoes a catastrophic event (a merger of binary or an ex-
plosion of massive star), resulting in a sudden release of gravitational energy.
This creates a central engine and powers an outflow for a certain duration of
time, during which gravitational energy or spin energy is released in the form
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of thermal energy or Poynting flux energy, respectively. Later on, the energy is
converted to kinetic energy of the outflow, making the ejecta reach a relativistic
speed.

Figure 5.1: The evolution of a GRB jet within the general theoretical framework
of GRBs

A cartoon picture of the evolution of a GRB jet within the general theoretical
framework of GRBs. The dashed curves denote possible internal emission sites
for the prompt emission, which are bracketed by the photosphere (included) and
the external shocks (excluded). The afterglow is normally considered to be from
forward shock in external shock region. Figure extracted from [117].

5.1.4 Prompt emission

Although the prompt �-ray emission was the earliest detected signal more than
five decades ago, the origin of the prompt emission is not well understood, and
is still subject of intense debate.

The location of prompt emission is still not settled. However, it is indicated
to be normally of internal origin (see figure 5.1). The innermost location is on
the photoshere. It is where the photon optical depth for Thomson scattering
becomes less than unity in the outflow.

A prompt emission spectrum may include three components: one thermal,
and two non-thermal components (see section G.1). One of the non-thermal
components is called ”Band” component, and the other is called the high-energy
component, because it extends to higher energies and it starts somewhat later
(with respect to the thermal and the Band component). The significance of dif-
ferent spectral components may vary among GRBs. The physical origins of the
three elemental spectral components have not been fully identified. A plausible
picture attributes the thermal component to the photosphere emission, and the
Band component to the non-thermal synchrotron radiation in the optically thin
region. The high energy component remains unknown and subject to debate,
even though some sort of Inverse Compton scattering processes are likely at
play.



158 Chapter 5. GRB spectral analysis with RF-Erec

5.1.5 Afterglow emission

The long-lasting afterglow emission originates from shock waves caused by the
interaction of the jet with the circumburst medium.

The shock waves are called ’external shocks’. There are two types of external
shocks (figure 5.1); the forward shock propagates into the circumburst ambient
medium, while early on a reverse shock propagates into the jet itself and crosses
the jet in a short duration of time. The afterglow emission comes from these
external shocks. In the beginning, the reverse shock coincides with the forward
shock and later on the forward shock emission remains2.

Spectrum

The ubiquitous property of a GRB afterglow is its ”multi-wavelength” nature.
As predicted from the synchrotron/SSC external shock model (e.g. [42, 85, 98,
99, 118]) , the afterglow should cover a very wide frequency range, from low-
frequency radio to the TeV range. In the models, the broad-band afterglow
spectrum emerges in the following way and is supposed to be a broken power
law (details are given in section G.2.2).

In the relativistic shocks owing to plasma instabilities or other mechanisms,
the magnetic field is e�ciently amplified from values of a few µG, which are
typical of the unshocked ambient medium. The electrons (and protons) would
be accelerated, giving rise to bright broad-band non-thermal emission through
synchrotron radiation. It can explain the afterglow emission of previously ob-
served GRBs mostly in wide ranges from radio frequencies to GeV energies, and
the spectral shape such as breaks originates from the properties of shocks. Since
the energy carried by an electron is much smaller in reverse shock, the reverse
shock emission actually peaks in IR/optical/UV, while the forward shock has
the emission peaks in X-rays or even soft �-rays [73].

However some theoretical scenarios predict emission at still higher energies
towards TeV range, produced by additional radiation mechanisms. Among all
them, one that is particularly important is IC radiation, whereby the population
of electrons responsible for synchrotron radiation also give rise to photons at
higher energies by Compton upscattering ambient low-energy photons. This
is called SSC. IC emission has been clearly observed in other types of cosmic
sources of electron synchrotron emission, such as pulsars or blazars.

Until very recent, the highest energy at which a GRB had been previously
seen was ⇠ 95 GeV, with a single photon detected from GRB 130427 by Fermi-
LAT [9]. This is close to the maximum photon energy that is theoretically
possible due to the synchrotron process in the afterglow, called synchrotron
burno↵ limit (section G.2.2). However, its quantitative significance has been
uncertain because the SSC luminosity and spectral properties depend strongly
on the poorly constrained physical conditions in the emission region, like the
magnetic field strength.

Given the spectral shape of both the synchrotron and SSC components, the
physical properties in the shock region can be revealed. Moreover, the time-
resolved spectra can further lead us to the time development of the shock that
decelerates in the ambient medium.

2 If the central engine is long lived, or if � in the ejecta is stratified (widely distributed),
the reverse shock can be long lived.



5.1. Introduction to Gamma-Ray Bursts 159

Light curve

The evolution of afterglow is typified by a power-law smooth decay in time in
all wavebands, and it is well explained by theory, in which the jet is decelerated
by a circumburst ambient medium, as the relativistic forward shock propagates
into the medium. The theory of relativistic blast waves has been worked out in
a classical paper by Blandford & McKee in 1976 [30], and later on the afterglow
models were proposed [72, 85, 92] before the actual observation of the afterglow.

However further multi-wavelength observations revealed a more complex
chromatic behavior, hence suggesting more complicated afterglow physics. The
afterglow is a superposition of multiple emission components. For example,

• The afterglow emission is overlapped by the internal origin prompt emis-
sion in the early phase of afterglow.

• Early on, a reverse shock occurs and the emission from reverse shock
sometimes coincides with the emission from external shock, during reverse
shock crossing phase.

• A steepening temporal break attributed to the end of collimation of GRB
jets occurs. It is called ”jet break”.

• In the optical afterglow light curves of a good fraction of long GRBs, a
bump feature, usually with a red color, shows up about a week after the
GRB trigger. This is usually interpreted as the signature of an associated
supernova, with thermal emission dominating the synchrotron emission.

Among the wide range of the spectrum, the most important waveband in
relation with the TeV energy range is X-ray, because the TeV energy is expected
to be from SSC, which is based on the synchrotron emission peaked at around
X-ray. The morphology of the X-ray afterglow light curve also indicates multiple
components, whose existence and characteristics vary from burst to burst. Many
are with just a single power-law decay, with the index of -1, which is called
”normal decay”. It may contain steeper decay because of the jet break in the
end. Some show very steep decay as the tail of prompt emission. Some show
a shallower decay in the beginning or after the steep decay, which could be
explained by the energy injection from a spinning-down newly-born magnetar
or from accretion caused by core-envelope structure [26]. They are summarized
in section G.2.1.

5.1.6 GRBs and MAGIC

As mentioned above, TeV �-rays from GRBs have been predicted. If the IC
component (in addition to the synchrotron component) is measured, it allows
a better understanding of the physical parameters of the source such as the
magnetic field strength and particle density, which is limited when observing
only the synchrotron emission.

Therefore the search for TeV �-rays from GRBs has been one of the more
fascinating challenges in ground-based �-ray astronomy during the last 30 years,
however their detection had remained elusive. As GRBs occur at unpredictable
times and sky locations and then rapidly fade in brightness, observing them
requires telescopes with either a very wide field of view, or the capability to
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quickly respond to alerts from satellite instruments with wide fields of view
(and optimized for the search of GRBs).

Since their inception, MAGIC has been regularly conducting automated
follow-up observations of GRBs in response to alerts from space-borne instru-
ments. In addition to the fast slewing speed of the telescopes, to achieve the
fastest possible response to GRB alerts, an automatic alert system (AAS) has
been also developed. If an alert is tagged as observable by the AAS, the tele-
scopes automatically repoint to the new sky position and the new observation
starts. After repointing the telescopes to the di↵erent direction, the condition
of sky and the telescope structure are di↵erent, thus the relevant procedures3

are also automated. To maximize the chance to detect GRBs, there has been
many years of technical improvements and dedicated e↵orts for various points.
One of the most important attempts to increase the chances to observe and
detect GRBs was to adapt the observation and analysis to relatively high moon
light condition. Since GRBs occur at random times and locations in the sky,
increasing the number of possible observations was crucial.

At last, the MAGIC telescopes were able detect TeV emission from GRBs. In
2016 there was already marginal detection at 3 standard deviations of
GRB 160821B by the MAGIC collaboration. And finally in 2019, the first clear
detection was announced with GRB 190114C at more than 50 standard devia-
tions.

.

5.2 Observation of GRB190114C

5.2.1 MWL observation history on GRB190114C

GRB 190114C was first identified as a long-duration GRB by the Burst Alert
Telescope (BAT) onboard the Neil Gehrels Swift Observatory (Swift) [60] and
the Gamma-ray Burst Monitor (GBM) instrument onboard the Fermi satellite
[62] on 14 January 2019, 20:57:03 universal time (hereafter T0)4. The time t

indicates the elapsed time from T0.
At t = 22 s, Swift-BAT distributed an alert reporting the first estimated

coordinates of GRB 190114C. The AAS of MAGIC telescopes received the alert,
validated it as observable, and triggered the automatic repointing procedure.
The telescopes repositioned the pointing position by slewing in fast mode and
reached the target position after approximately 27 s. The telescopes were on
target, and began tracking GRB 190114C at t = 50 s. Data acquisition started
at t = 57 s and the data acquisition system was operating stably from t = 62 s.
The observation data with GRB 190114C was taken from t ⇠ 57 - 15,912 s.
The automated observation was executed although the GRB happened during
the presence of moon, by which the Night Sky Background (NSB) was 6 to 8
times higher. The regular operation under presence of relatively bright moon is
possible only by MAGIC among the leading IACTs [11], which proved to be a
crucial advantage for the GRB observation. Together with the relatively high

3 The trigger tables are reloaded, appropriate electronics thresholds are reset, and the
mirror segments are suitably adjusted by the Automatic Mirror Control hardware.

4 Subsequently, it was also detected by several other space-based instruments, including
Fermi-LAT, INTEGRAL/SPI-ACS, AGILE/MCAL, Insight/HXMT and Konus-Wind
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Zd, the energy threshold of the observation was above 0.2 TeV, which is about
four or five times higher than the energy threshold that MAGIC telescopes have
for soft-spectrum sources observed in low zenith angles (below 35 deg) during
dark nights.

In the first 20 minutes of the data, the online analysis showed the signifi-
cance of the total �-ray signal is more than 50 standard deviations. The signifi-
cant detection in TeV opens a new window in the electromagnetic spectrum for
the study of GRBs. Its announcement [86] triggered an extensive campaign of
follow-up observations.

In the end, the follow-up observations gathered for the publication [7] were
from instruments onboard six satellites and 15 ground telescopes (radio, sub-
millimetre, near-infrared (NIR), optical, ultraviolet (UV), and VHE �-rays) for
the first ten days after the burst. The frequency range covered by these obser-
vations spans more than 17 orders of magnitude, from 1 to about 2 ⇥1017 GHz
(from 5 ⇥10�6 to about 1012 eV), the most extensive for any GRB to date.

5.2.2 Basic properties obtained from MWL observations

The basic properties of GRB 190114C obtained from multi waveband observa-
tion are as follows [7, 8].

• T90 and prompt emission
Its duration in terms of T90 was measured to be about 116 s by GBM
onboard Fermi [62] and about 362 s by Swift-BAT [76]. Judging from the
moment the last flaring-emission episode ends, the prompt emission lasted
for approximately 25 s.

• red-shift

z = 0.4245 ± 0.0005, corresponding to cosmic distance [39, 101].

• Isotropic-equivalent energy of prompt emission
The isotropic-equivalent energy of the emission at energy of " = 1–104 keV
during T90 observed by Fermi-GBM was E�,iso ⇠ 2.5 ⇥ 1053 erg, implying
that GRB 190114C was fairly energetic, but not exceptionally so compared
to previous events.

• Afterglow onset time and reverse shock duration
The onset of the afterglow component is estimated to occur from around
t ⇠ 5-10 s, because there is a term of quiescence at t ⇠ 5-15 s during which
the flux decays smoothly and similarly as t > 25 s (seen in Swift BAT and
Fermi GBM). The decay of flux F follows a power law as a function
of time, F / t

�↵ where ↵ is energy range dependent but comparable
to typical values as the normal decay phase shown in figure G.5. The
reverse shock component can be seen up to t ⇠ 1000 s for optical and up
to t ⇠ 105 s for radio emission.

• Initial bulk Lorentz factor
From the afterglow onset time and the ambient medium density, the ini-
tial bulk Lorentz factor are constrained. Typically there are two kinds of
assumptions for the ambient medium density, which are s = 0 (homoge-
neous medium) and s = 2 (wind-like medium, typical of an environment
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shaped by the stellar wind of the progenitor), in the radial profile defined
as eq.(G.2.2),

n(R) = n0R
�s

n0 = 3 ⇥ 1035
A⇤

The detail is described in section G.2.2.

The initial bulk Lorentz factor for those two cases are �0 ⇠ 300 and
�0 ⇠ 700 for s = 2 and s = 0.

• Synchrotron peak shift
The bulk Lorentz factor � decreases due to the deceleration of jet. Corre-
spondingly the synchrotron peak energy shifts towards low energy and the
light curve shows decay-slope change with time; if the peak is at higher
energy than the observation energy range, the light curve slope steepens
and the spectrum within the detection range changes from hard through
flat to soft when the peak moves across the range. This feature can be
seen in the NIR-optical light curves at t ⇠ 105 s, which is relatively large,
supporting the existence of the peak around 10 keV in the beginning.

• Fast and slow cooling
In a wind-like scenario, X-ray and optical emission and their evolution in
time can be explained if p = 2.4–2.5 and the emission, which is initially
in the fast-cooling regime, transitions to a slow-cooling regime around
t ⇠ 3 ⇥ 103 s (See section G.2.2).

5.3 The analysis of MAGIC data

The MAGIC data were analysed in detail using MAGIC Analysis and Recon-
struction Software (MARS), the standard MAGIC software. The analysis was
carried out by the team of people appointed to the GRB190114C observation
(from now on, I will refer to them as GRB analysis team). The GRB analysis
team o�cially adopted my novel energy estimation method, because it showed
superior and more reliable performance than LUTs-Erec, the previous standard
method for energy reconstruction. However I show the alternative analysis done
by myself for two reasons. Firstly, the GRB analysis team used the older version
(RF-Erec-v3) of the energy estimation, because it was the latest version I had
released at the moment. In this thesis I discuss the result using the final version
(RF-Erec-v5). Secondly the event selection applied for the spectral analysis was
very conservative, and suppressed the statistical abundance, causing the loss of
the highest energy data points. Thus the benefit from the novel method is not
maximized. Moreover, I apply an alternative event selection to the GRB data
set, yielding better results.

In the following, section 5.3.1 describes the simulation data and image clean-
ing to match the observation condition, which are common to both my alterna-
tive analysis and the original analysis by the GRB analysis team. Section 5.3.2
describes the di↵erence of the event reconstruction and event selection (cut) be-
tween the two analyses. This chapter aims at showing the e↵ect of RF-Erec-v5
energy reconstruction in the improvement of spectral analysis compared to
the LUTs-Erec. The comparison between the my alternative analyses with
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RF-Erec-v5 and the analysis with RF-Erec-v3 used by GRB analysis team is
shown in Appendix I.

5.3.1 Observation conditions and analysis strategy

In the observation, the MAGIC telescopes tracked the source in the wobble mode
by 0.4� o↵set. There are two issues to investigate carefully in the analysis.

First, the zenith distance(Zd) of the observation was relatively high, about
55� at T0. At the Zd larger than 50�, the Zd dependence of the shower images
is high and also the azimuth dependence becomes relevant, therefore a set of
generic simulation data was produced for better accuracy of the analysis with the
same tracking positions5, although there is standard simulation data available.
The GRB location was almost at its culmination in the sky at t=0, and the Zd
changed only within 1� in the first 1 hour (55.4�

< Zd < 56.4�). Therefore the
energy threshold should be stable with Zd. The other conditions relevant to the
energy threshold, like night sky background level, discriminator threshold and
trigger rage were also stable.

Second, the GRB was observed under the presence of the moon. In this case,
the sky is brighter and the contamination of the NSB photon is higher. Therefore
the discriminator threshold (DT) during the observation was automatically set
higher to suppress accidental trigger. Moreover, the images are contaminated
with the NSB photons, and the image cleaning needs a higher cleaning level.
To deal with these issues, the analysis followed the steps optimized for the data
taken under moderate moon illumination [11]. As mentioned in section 3.6,
there are two threshold values for the image cleaning. The higher cleaning
threshold value compared to standard analysis, (Q1, Q2) = (9, 6.5)[phe], was
applied. Correspondingly, the simulation data also needs to be processed in
the same manner. Before the same cleaning level to be applied, the simulation
data needs be produced with the same NSB noise level and the DT level. The
GRB analysis team produced the simulation data with di↵erent DT settings
(DT =4,5,7 phe) and corresponding noise levels, and they chose the one closest
(DT=7) to the real data.

contains the hadronic background events. To remove them,
The consistency between the observation data and the simulated data was

checked over the distributions of Size for �-ray-like events, because it is the
most strongly correlated variable with the �-ray energy. Figure 5.2 show the
comparison, and they are consistent over 70 phe. The simulation data may
be systematically lowered by about 10 phe. However the GRB analysis team
showed the spectra using these simulation data with di↵erent DT settings are
consistent each other. Therefore the simulation data with DT=7 phe would
be good enough. Moreover, if Size > 65 is applied, the distributions become
consistent.

For the Size cut of the analysis, the peak of the distribution about 80 phe
would be proper. However, based on the aforementioned reason, the Size cut
could be lowered down to 65. The events with such low Size are dominated by
low energy events, therefore they contribute to lower the energy threshold.

5 In the MC simulation, the observation direction is uniformly distributed in the generation
of the data, where the Zenith distance angle (Zd) is from 55 - 62 deg and Azimuthal angle
(Az) is 175 - 212 deg, to be close to the observation of GRB190114C.
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Figure 5.2: Normalized distribution of the parameter Size for simulated and real
�-ray events, before and after Size cut

The two panels show the normalized distributions of Size, before (left) and after (right) the
Size cut is introduced. The Size cut removes the systematic di↵erence by DT settings, between
�-ray events by MC simulation (blue) and the �-ray candidate events from the observation
data (red). The simulated events are drawn with energy-spectrum weight applied to the true
energy. The energy spectrum could be determined via tentative analysis and was power law
with the index -5, which was later on confirmed as consistent with the detailed analysis (see
table 5.2). Observation data are drawn as the subtraction of the histograms as the ”ON”
histogram (the events whose reconstructed incoming direction is within ✓

2
< 0.1 deg2 around

the source position) minus the ”OFF” histogram (the ones around counterpart position of the
wobble). The hadronnes cut (Hadronness < 0.5) is also applied to both the simulation and
the observation data.

5.3.2 Event reconstruction and event selection

To both analyses, the same procedure is applied before event reconstruction,
including the production of simulation data. Here I describe the di↵erences
between my alternative analysis and the one performed by the GRB analysis
team, which relate to the event reconstruction and event selection (cut) between
the two analyses.

GRB analysis team

The energy reconstruction was performed through the novel method with RF.
This is the first time the novel method was applied in a MAGIC publication.
However, the version I could provide at that moment was version 3 (3.1 for LZd
and 3.2 for HZd), thus ver 3.2 was applied (hereafter RF-Erec-v3). The di↵er-
ence of the versions of the energy reconstruction is described in section 4.4.7.

The events are selected under the cut condition on Size > 80, hadronness ef-
ficiency 0.9, ✓

2 e�ciency 0.75 and EnergyRMS< 0.3. For the discussion on these
values, see also section 3.10.3. About the role of EnergyRMS, see section E.1).

Alternative analysis

I adopt the RF-Erec-v5 energy reconstruction. I also optimize the cut condi-
tion to be suitable for strong signal with very soft spectrum. The flux is very
abundant and its spectrum is far softer than that of usual sources. Therefore
careful consideration needs to be given to the suitability to the data. I adopt
the cut condition as Size > 65, hadronness e�ciency 0.9, ✓

2 e�ciency 0.85. I
do not apply any cut on the variable EnergyRMS. See section E.1 for details.
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The optimised condition intends to deal with extraordinary high flux with
very steep energy spectrum, which had not been experienced in MAGIC to date.
The lower Size cut tries to mitigate the systematic e↵ects in the lowest energy,
and the higher ✓

2 e�ciency is to gain more statistics at the highest energies. The
detailed discussion and the comparison with the analysis by the GRB analysis
team is summarised in appendix I.

For the spectral analysis with the LUTs-Erec, the same cut condition as for
RF-Erec-v5 is applied.

5.3.3 Intrinsic and observed spectrum

Intrinsic spectrum

The aim of the spectral analysis of the observation data is to obtain a reason-
able estimation of the �-ray spectrum when it was emitted, referred to as the
’intrinsic spectrum’. However �-rays from cosmologically distant objects such
as GRBs su↵er from the attenuation by the EBL. The attenuation is energy
dependent and quickly rises for the energy higher than a few hundred GeV. This
e↵ect is also dependent on the distance. If the �-ray source is at cosmological
distance, the observed �-ray spectra can be substantially modified. Therefore
the observed spectrum needs to take into account the EBL e↵ect, if the interest
is in the intrinsic spectrum. There are some models of the attenuation available,
and in this study the model of Domı́nguez et al. [44] is used6. The detail about
EBL absorption is described in section G.3.

The reasonable application of unfolding

Since the attenuation is strongly energy dependent, the forward and unfolding
are not equivalent to obtain the intrinsic spectrum. This is specially important
in the GRB data, because the source is at cosmological distance and the energy
dependence is so strong that the observed spectrum becomes very steep. More-
over, the flux is so high that the observed spectrum extends above 1 TeV, which
means the spectral analysis needs to deal with the attenuation factor chang-
ing from about 1 to 300. Therefore this unusual situation requires a careful
treatment in determining the intrinsic spectrum through unfolding.

The suitable method is forward folding. It can directly show the consistency
of the assumption of intrinsic spectrum with the observed number of excess
events, because the observed spectrum can be analytically calculated from an
intrinsic spectrum when the attenuation is given as a function of energy. On
the other hand, the unfolding is to obtain only the observed spectrum. The
calculation in binned values from observed spectrum to intrinsic spectrum su↵ers
from additional uncertainty.

Therefore, I perform the spectral fitting of intrinsic spectrum only by the
forward folding. The unfolding is used only for obtaining the estimated flux in
the true energy bins, to check the consistency with the forward folding results.

6 In the spectral analysis, the uncertainty on the EBL model, as well as the choice of the
EBL model, contributes to the systematic error on the determination of the parameters of the
intrinsic spectrum model. These contributions are investigated. The systematic error from
the choice of EBL model is less than the systematic uncertainty in a model. The systematic
uncertainty in a model is smaller than the statistical uncertainty (one standard deviation).
The details about the investigation is described in [8].
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5.4 The improved spectral analysis

In this section, I compare the spectrum obtained from the latest version of the
RF energy reconstruction (RF-Erec-v5, hereafter RF-Erec in this section), with
the classical energy reconstruction in the MAGIC collaboration (LUTs-Erec).
This is the method that would have been used if my energy estimation method
had not been available.

In forward folding, the maximum likelihood fit process also takes into ac-
count the EBL absorption by setting intrinsic spectrum as the model spectrum
together with the redshift z = 0.4245, as mentioned in section 5.3.3. The in-
trinsic spectrum to fit is chosen to be simple power law,

dF

dE
= fEBL

"
A0

✓
E

E0

◆�ph
#

⇠ A0,obs

✓
E

E0

◆�ph,obs

, (5.4.1)

where dF/dE [TeV�1 cm�2 s�1] is the di↵erential flux as a function of energy
E, measured after the intrinsic spectrum is distorted by the EBL absorption
fEBL. As explained in section G.2.2, a power law is a reasonable functional
shape for the intrinsic spectrum. A0 is the amplitude, �ph is spectral index, and
E0 = 500 GeV is the pivot energy7. As will be shown later, the actual measured
spectral shape distorted by EBL absorption can still be approximated as a power
law. A0,obs and �ph,obs are the power-law amplitude and spectral index for the
measured power-law spectrum.

In unfolding, the bin range for estimated energy and true energy needs to
be selected. I adopted the same criteria as in section 4.6.4, in the setup to
analyze the power-law spectrum with index -5. The selected ranges are shown
in figure 5.3. In addition, unfolding needs to control the regularization strength.
The criteria for the best strength are chosen to balance the agreement with the
measured excess events and the noise. More details about the strategies to
control the regularization strength are described in appendix H.

5.4.1 The result of forward folding

The spectral parameters of the intrinsic spectrum obtained from the forward
folding are shown in table 5.1. The spectrum obtained with LUTs-Erec is sig-
nificantly steeper than that from RF-Erec. And the uncertainty of the slope
is larger in LUTs-Erec. The numbers of degree of freedom (NDF) are also
di↵erent.

Table 5.1: Forward folding results for the GRB190114C data

A0 [10
�9/TeV cm2 s] �ph �2/NDF

LUTs-Erec 5.99+0.92
�0.93 �2.91+0.28

�0.33 6.8/8

RF-Erec 7.60 ± 0.67 �2.32+0.17
�0.19 14.1/6

7 If E0 is adjusted to de-correlate A0 and �ph, E0 becomes di↵erent between RF-Erec and
LUTs-Erec and A0 cannot be compared. Therefore E0 is fixed to the value of 0.5 TeV, which
is close to the de-correlation energy for both methods. The de-correlation energies are 444
GeV for RF-Erec and 414 GeV for LUTs-Erec.
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Figure 5.3: Collection area, migration matrix and excess events of GRB190114C
with LUTs-Erec and RF-Erec

The ranges for calculating the unfolding are also shown as the colored bars in
the plots. The green (blue) bars are the lowest and highest edge of the estimated
(true) energy range. In the unfolding with LUTs-Erec, both Bertero methods
were forced to reduce the selection of the estimated energy bins by one in the
highest energy side, because they did not converge regardless of the criterion of
choosing the best regularization strength.
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More investigations clarify the situation. From the top 4 rows in the control
plots presented in figure 5.4, both RF-Erec and LUTs-Erec show consistency
between the fit result and the observed counts. The upper two rows report
the number of ON events and OFF events in which the observed and expected
(by the fit) counts are drawn together. The next two rows show the di↵erence
between the observed and expected, and the �

2 contribution from all the energy
bins.

However there is clear di↵erence in the contamination fraction shown in the
bottom row of the control plots, figure 5.4. The energy bins for LUTs-Erec
shows very high contamination fraction, quickly rising with energy from 0.5 at
a few 100 GeV and reaching already almost 1 at a few TeV. This is resulted
from the noisy migration matrix, shown in the second row of figure 5.3, together
with the very steep observed spectrum. Even though it is the tiny fraction of
low energy events to spill into high reconstructed energy, it becomes dominant
(high contamination fraction) in the high energy bins.

Consequently, a clear di↵erence appears in the reconstruction of the flux
data points, shown in figure 5.5. In the forward folding with LUTs-Erec, the
high contamination fraction indicates that the excess events in an energy bin are
dominated by such spillover events from lower energies. The flux data points
are dragged towards lower energy due to too low estimated median energy, and
many of them cannot be placed. This significant reduction in the number of
data points is in the similar way to the performance evaluation discussed in
section 4.6.4. On the other hand, the forward folding with RF-Erec provides
reliable data points until a few TeV without being a↵ected by the contamination.

The noisy migration matrix with LUTs-Erec can also explain the di↵er-
ence in the fitted parameters of the intrinsic spectrum. Since the outliers (low-
probability cells) of the migration matrix come from the minority of the popu-
lation, they cannot be reproduced by the limited statistics of the test samples
of simulated �-rays, even if the simulated �-rays describe perfectly well the real
�-rays. Consequently the fluctuated pattern of outliers in the migration matrix
would not lead to the original energy distribution. Instead it is likely to find
a consistent answer to migrate the high estimated-energy events back to low
energy events, because of the noisy distribution. Therefore it is natural for a
LUTs-Erec to obtain steeper intrinsic spectrum, by losing high energy events
’absorbed’ into low energy. This is in apparent contradiction to the performance
evaluation discussed in section 4.6.4, where the spectral slope di↵erence is not
seen. However, this result is expected because I had to use the same set of events
for generating the migration matrix for analysis, as well as that for generating
an simulated observation data.

The noisy migration matrix with LUTs-Erec also means that there are more
possibilities to find a consistent migration, thus the uncertainty is naturally
higher. Moreover, the noisy migration matrix also explains the larger NDF in
the fit, which means that the excess events distribute in more bins of estimated
energy. The larger NDF in this sense is not welcomed, because it comes from
smearing the distribution, which means loss of information.
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Figure 5.4: Control plots from forward folding with LUTs-Erec and RF-Erec on
GRB 190114C data

Control plots yielded by the forward folding when using the RF-Erec and
LUTs-Erec energy reconstruction on the VHE MAGIC data from GRB190114C.
See the caption of figure 4.42 for a detailed description.
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Figure 5.5: VHE spectrum of GRB19014C reconstructed by forward folding,
with LUTs-Erec and RF-Erec

The reconstructed spectra by LUTs-Erec and RF-Erec are drawn overlaid in
di↵erent colors, shown in the legend. The lines are the fitted model spectra.
The dotted line is the intrinsic (deabsorbed) spectrum as a power-law function,
the solid curve is the observed (EBL-absorbed) spectrum. The points are the
reconstructed flux, using the spectra for taking into account the energy migration
in the collection area. The filled circles are the reconstructed flux data points
as the measured spectrum, and the open circles are the flux level after EBL
correction. The parameters of the spectral model obtained by forward folding
and their goodness of fit are shown in table 5.1.

5.4.2 The result of unfolding

Evaluation of the results

The results by unfolding are shown in figure 5.6. The unfolded spectra are the
most reasonable results among di↵erent criteria for choosing the best regular-
ization strength, described in section H.1, where both �

2

0
and the noise are close

to reasonable values.
The unfolded spectra with RF-Erec are consistent among the di↵erent reg-

ularization methods and also with the observed spectral curve from forward
folding. However the ones with LUTs-Erec have di↵erent tendencies among dif-
ferent regularization methods. The highest energy data point is isolated from
the lower data points with a gap in Bertero(W), and the flux in the lowest
energy data point is low in Schmelling.

The �
2

0
in unfolding, shown in the right of table 5.2, tells how well the un-

folded spectral points agree with the measured number of excess events through
the migration matrix. The values are low in both RF-Erec and LUTs-Erec, thus
all the unfolding give the results reasonably explaining the measured counts.

Table 5.2 also shows the result when they are fitted with a power-law func-
tion. The spectral points obtained by unfolding can be regarded to follow power
law, based on the forward folding results, shown in the bottom row of the table.
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Figure 5.6: VHE spectrum of GRB19014C reconstructed by unfolding, with
LUTs-Erec and RF-Erec

The results are separately drawn for the ones with the LUTs-Erec and RF-Erec.
The colored points are the reconstructed flux by unfolding with di↵erent regu-
larization methods, shown in the legend. The black points are the reconstructed
flux based on forward folding.
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Table 5.2: Results from unfolding and power-law fits to unfolded data points of
GRB190114C data with LUTs-Erec and RF-Erec

(a) LUTs-Erec

Unfolding Power-law fit

�2
0/ny A0,obs �ph,obs �2

PL/NDF

Tikhonov 7.6 / 9 2.99 ± 0.39 -5.30 ± 0.26 0.6 / 5

Schmelling 8.5 / 9 4.07 ± 0.32 -4.58 ± 0.15 23.5 / 2

Schmelling(m) 9.3 / 9 2.62 ± 0.33 -5.48 ± 0.25 2.7 / 4

Bertero 6.8 / 8 3.26 ± 0.24 -5.05 ± 0.15 8.6 / 4

Bertero(w) 9.9 / 8 4.69 ± 0.35 -4.34 ± 0.17 11.3 / 3

Forward folding 2.98 ± 0.40 -5.58 ± 0.28 8.7 / 8

(b) RF-Erec

Unfolding Power-law fit

�2
0/ny A0,obs �ph,obs �2

PL/NDF

Tikhonov 6.6 / 8 3.27 ± 0.25 -5.19 ± 0.17 1.8 / 5

Schmelling 11.3 / 8 3.10 ± 0.18 -5.32 ± 0.13 10.6 / 5

Schmelling(m) 6.6 / 8 2.96 ± 0.24 -5.32 ± 0.19 7.7 / 5

Bertero 7.5 / 8 3.44 ± 0.22 -5.11 ± 0.13 9.0 / 5

Bertero(w) 7.7 / 8 3.48 ± 0.22 -5.04 ± 0.13 6.9 / 5

Forward folding 3.44 ± 0.25 -5.21 ± 0.16 10.0 / 6

The left column shows the consistency of the unfolding result, �2

0
/ny , where �

2

0

is the chi-square between back-folded distribution of number of excess events
and the one measured, and ny is the number of bins of estimated energy which
were taken into account in unfolding process (the reason for Bertero to have a
lower ny with LUTs-Erec is mentioned in the description of figure 5.3).
The right columns are the result of the power-law fit to the unfolded spectra,
performed with the correspondent regularization methods, using RF-Erec and
LUTs-Erec. In the bottom of each table, the fit result to the reconstructed points
by forward folding after EBL absorption is also shown. The power-law function

used for the fit is dF
dE = A0,obs

⇣
E
E0

⌘
�ph,obs

, where dF
dE [TeV�1 cm�2 s�1] is the

di↵erential flux as a function of energy E, A0,obs is the amplitude, shown in the

unit of [10�10
/TeV cm

2
s] in the table, �ph,obs is spectral index, and E0 is the

pivot energy set to be 0.5 TeV.
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The reconstructed flux points of measured spectrum based on the forward fold-
ing results are fitted with a power law, and show the good agreement. Since the
forward folding already shows good agreement of the model with the measured
counts as shown in table 5.1, this result can also be validated.

Comparing the result of the power-law fit, the ones with RF-Erec show the
consistent values of amplitudes A0,obs and index �ph,obs among all the regular-
ization methods, and the goodness-of-fit are acceptable for all the results by
the di↵erent regularization methods. However, LUTs-Erec gives significantly
di↵erent results among each other, with some goodness-of-fit values that are
not acceptable.

Evaluation of the process and the control plots

There are also the di↵erences in the unfolding process itself together with the
control plots. For the reliable result, the unfolding should show robustness in
the choice of the best criterion of searching for the best regularization strength,
denoted in section H.3, and the control plots should be with reasonable appear-
ance. The detailed discussion about the di↵erences is given in section H.4, and
I summarise the discussion in the followings.

• If the same criterion of choosing the best regularization strength is se-
lected, the unfolding with RF-Erec always gives better �

2

0
than with

LUTs-Erec for all the regularization methods.

• The unfolded spectra with RF-Erec show better agreement with each
other, not only among the di↵erent regularization methods, but also among
the di↵erent criteria of choosing the best regularization strength. On the
other hand, LUTs-Erec showed inconsistencies among the spectra by dif-
ferent criteria of choosing the best regularization strength in all the regu-
larization methods except for both Bertero methods.

• While RF-Erec went all fine in the convergence, LUTs-Erec had a problem
in unfolding with Schmelling method, where the �

2 minimization did not
converge partially for the regularization strengths ! larger than ⇠ 103,
which can be seen in the right panels of figure H.2d. In both Bertero
methods the unfolding did not converge regardless of the criterion. This
problem was solved by changing the selected ranges of energy bins, drop-
ping the highest estimated energy bin.

It is notable that the performance di↵erence of unfolding on the GRB data
with RF-Erec and with LUTs-Erec is similar to that found on the simulated
observation data for a steep spectrum, which I discussed in section 4.6.4; the
LUTs-Erec showed worse �

2

0
, inconsistent results between di↵erent regulariza-

tion strength choice and di↵erent regularization methods, failure of convergence,
and deviation from reality. RF-Erec is superior than LUTs-Erec in all these ar-
eas.



174 Chapter 5. GRB spectral analysis with RF-Erec

5.5 The interpretation of TeV component

Here I summarise the results related to the TeV emission detected by MAGIC,
which have been recently published in Nature [7, 8]. The temporal evolution
of the flux in the MAGIC energy range suggests its connection to the after-
glow, observed in the other wavebands. Therefore the emission in TeV energies
should be explained within the external shock model. However the spectrum
obtained is too high energy to be interpreted as synchrotron emission. Moreover
it suggests the existence of another emission peak in the SED, in addition to
the synchrotron peak around 10 keV, as it requires spectral hardening below 0.2
TeV despite the decreasing SED below 1 GeV. Determining the theoretical mod-
eling parameters for the synchrotron peak, the other peak at higher energy can
be explained naturally by the Synchrotron-Self Compton process (SSC). The
temporal evolution of the spectrum also suggests the decrease of the peak en-
ergy with time, consistent with the deceleration nature of the external shock. In
the following, I explain the discussion above in detail. The physical parameters
mentioned here are explained in more detail in section G.2.

Connection to the afterglow indicated by the light curve

Figure 5.7 shows the light curves measured in various frequencies. In the af-
terglow epoch, the light curve of MAGIC (green data points) has the extended
duration and the smooth, power-law temporal decay of the radiation. It sug-
gests a direct connection between the TeV emission and the broadband afterglow
emission. As discussed later, MAGIC energy range is closely related to X-ray
(the energy range 1- 10 keV) in theoretical scenarios. The indices of the power-
law decay of flux F / t

�↵ are ↵X ⇠ �1.36 ± 0.02 and ↵TeV ⇠ �1.51 ± 0.04,
respectively.

Need of SSC interpretation

The SEDs of the radiation detected by MAGIC are shown in figure 5.8, where
the whole duration of the emission detected by MAGIC is divided into five time
intervals. For the first two time intervals, observations in the GeV and X-ray
bands are also available. During the first time interval (68–110 s; blue data
points and blue confidence regions), Swift-XRT, Swift-BAT and Fermi-GBM
data show that the afterglow synchrotron component peaks in the X-ray band
(around 10 keV). At higher energies, up to 1 GeV, the SED is a decreasing
function of energy, as supported by the Fermi-LAT flux between 0.1 and 0.4
GeV. On the other hand, the MAGIC spectra above 0.2 TeV indicates the need
for a spectral hardening between GeV energies and 0.2 TeV. This evidence is
independent of the EBL model adopted to correct for the attenuation. This
demonstrates that the newly discovered TeV radiation is not a simple extension
of the known afterglow synchrotron emission, but a separate spectral compo-
nent.

The most natural way to explain the TeV emission is through SSC in the
external forward shock. The other possible mechanisms are proton synchrotron
or the Inverse Compton in internal shock, but they are too ine�cient to explain
the data.
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Reasonable values of the model parameters

For a reasonable theoretical modeling of the spectra, the physical parameters
need be balanced among each other, especially for the bulk Lorentz factor �,
the electron Lorentz factor �, and the magnetic field B. From the peak energies
of synchrotron ⌫

Sync
peak

⇠ 10keV and SSC ⌫
SSC
peak

⇠ 100GeV, eq.(G.2.21) tells that
the SSC peak is
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Therefore the electron Lorentz factor needs to be �e / 103 in any case,
which is relatively small in GRBs. This value is di�cult to reconcile with the
requirement from the synchrotron peak energy. From eq.(G.2.17), the peak of
the observed synchrotron emission is
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This relation yields �B
0
> 105 G, which requires both � and B

0 to be large.
However if the bulk Lorentz factor � is larger than 150 (which is a necessary
condition to avoid strong �-� opacity) it leads to another problem with the
electron acceleration e�ciency ✏e. It connects the bulk Lorentz factor in the
shock � and the minimum Lorentz factor of the accelerated electron �m, via
eq.(G.2.5),

�m = ✏e
p � 2

p � 1

mp

me

�

Thus the large � and small �m require a small e�ciency of the electron
acceleration with ✏e < 0.05. If B

0 is large and ✏e is small, the emission will be
dominated by synchrotron and the SSC emission becomes ine�cient. Therefore
the low ⌫

SSC
peak

challenges the theoretical interpretation of the data.
The reasonable way to solve this problem is to consider the opacity by �-� ab-

sorption. As it happens in the EBL absorption (section G.3), two photons collide
and produce e

+
e
� pair. The target photons for �-rays of energy E� ⇠ 0.2–1 TeV

and for � ⇠ 120-150 have energies in the range 4-30 keV. This absorption plays
a role in sharpening and softening the observed SSC spectra, and gives a non-
negligible contribution to the radiative output.

Plausible result

Acceptable models of the broadband SED are obtained if the conditions at
the source are the following. The initial kinetic energy of the blast wave is
Ek ' 3 ⇥ 1053 erg (isotropic-equivalent). The electrons swept up from the ex-
ternal medium are e�ciently injected into the acceleration process and carry
a fraction ✏e ' 0.05 - 0.15 of the energy dissipated at the shock. The accelera-
tion mechanism produces an electron population characterised by a non-thermal
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energy distribution, described by a power law with index p ' 2.4 - 2.6, an in-
jection Lorentz factor of �m ' (0.8 - 2) ⇥ 104 and a maximum Lorentz factor of
�M ' 108 (at about 100 s). The magnetic field behind the shock conveys a frac-
tion ✏B ' (0.05 - 1) ⇥ 10�3 of the dissipated energy. At t ⇠ 100 s, correspond-
ing to a distance from the central engine of R ' (8 - 20) ⇥ 1016 cm, the density
of the external medium is n ⇠ 0.5–5 cm�3 and the magnetic field strength is
B ' 0.5 - 5 G.

The values of the parameters above fall within the range typically inferred
from broadband (radio to GeV) studies of GRB afterglow emission. The mag-
netic field was e�ciently amplified from values of a few µG, which are typical
of the unshocked ambient medium, owing to plasma instabilities or other mech-
anisms. The relation of the e�ciency ✏e � ✏B is a necessary condition for the
e�cient production of SSC radiation.

This theoretical scenario does not require special conditions to be at work,
which indicates that the SSC emission can occur in the usual framework of
GRB afterglow. In other words, the SSC emission may be common among
GRBs, despite the di�culty in detecting it with the current instrumentation.

TeV component consistent with the deceleration of the jet

Spectral softening is marginally observed throughout the duration of the GRB
emission. This is di�cult to attribute to �-ray absorption. The absorption due
to opacity should decrease with time because the radiation field becomes less
dense due to deceleration and the lower density medium. Instead, it can be nat-
urally explained by the change in emission due to well known deceleration nature
of the jet. The deceleration of the jet causes the synchrotron peak shift towards
the lower energies, and the SSC peak shifts correspondingly. Consequently, the
spectral softening occurs as the relation between observed energy range and the
SSC peak changes from lower energy side (harder) to higher energy side (softer).

Given that the emission occurs in the fast cooling regime, the peak shift
should be rather fast8, and it can be even the time scale of several tens of seconds.
An example of the theoretical modelling in this scenario is shown in figure 5.9,
in which first two time intervals of 68–110 s and 110–180 s, which are the bright-
est, are selected. From the modelling, the energy in the synchrotron and SSC
component are estimated to be about 1.5 ⇥ 1052 erg and around 6.0 ⇥ 1051 erg
respectively in the time interval 68–110 s, and about 1.3 ⇥ 1052 erg and around
5.4 ⇥ 1051 erg respectively in the time interval 110–180 s.

The time development of the TeV component is also consistent with the
usual framework of GRB afterglow. This supports the insights that the SSC
emission can occur in the usual framework of GRB afterglow.

The influence on our knowledge about GRBs

It has been more than 15 years for the MAGIC telescopes to finally detect the
TeV emission from a GRB, although the observations have been performed on
average about once per month. However, the TeV emission recently detected,

8 In the slow-cooling regime, the SSC peak evolves to higher frequencies for a wind-like
medium, and decreases very slowly (⌫ / t

�1/4) for a constant-density medium (both in
the Klein-Nishina and Thomson regimes). In the fast-cooling regime, the evolution is faster
(⌫ / t

�1/2 � t
�9/4) depending on the medium and regime.
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which can be explained as the SSC component, may be a process occurring in
many GRBs, as the modeling does not require special conditions to account
for the additional component. The detection had been possible this time be-
cause the distance to the GRB was relatively closer among GRBs, and the the
observation conditions were relatively optimal.

The new SSC component accounts for substantial fraction of energy emitted
in the GRB afterglow. The modeling tells that the total energies of emission
are comparable between the synchrotron and SSC component. These results
are anticipated to be a step towards a deeper understanding of the physics of
GRBs and relativistic shock waves.
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Figure 5.7: Multi-wavelength light curves of GRB 190114C

Energy flux at di↵erent wavelengths, from radio to �-rays, versus time t = T�T0.
The light curve for the energy range 0.3–1 TeV (green circles) is compared with
light curves at lower frequencies. Those for VLA (yellow square), ATCA (yellow
stars), ALMA (orange circles), GMRT (purple filled triangle) and MeerKAT
(purple open triangles) have been multiplied by 109 for clarity. The vertical
dashed line marks approximately the end of the prompt-emission phase. For
the data points, vertical bars show the 1� errors on the flux, and horizontal
bars represent the duration of the observation. The fluxes in the V, r and K
filters (pink, purple and grey filled squares, respectively) have been corrected for
extinction in the host and in our Galaxy; the contribution from the host galaxy
has been subtracted. Figure extracted from [7].
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Figure 5.8: Multi-band spectra of GRB190114C in several time intervals.

Five time intervals are considered: 68–110 s (blue), 110–180 s (yellow), 180–360
s (red), 360–625 s (green) and 625-2,400 s (purple). MAGIC data points have
been corrected for attenuation caused by the EBL. Data from other instruments
(Swift-XRT, Swift- BAT, Fermi-GBM and Fermi-LAT) are shown for the first
two time intervals. For each time interval, LAT contour regions are shown,
limiting the energy to the range in which photons are detected. MAGIC and
LAT contour regions are drawn from the 1� error of their best-fit power-law
functions. For Swift data, the regions show the 90% confidence contours for the
joint fit for XRT and BAT, obtained by fitting a smoothly broken power law to
the data. Filled regions are used for the first time interval (68–110 s). Figure
extracted from [7].
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Figure 5.9: Theoretical modelling of the broadband spectra of GRB 190114C in
the time intervals 68–110 s and 110–180 s.

The thick blue curve shows the theoretical model of the multi-band data in
the synchrotron and SSC afterglow scenario. The thin solid lines show the
synchrotron and SSC (observed spectrum) components of the model spectrum,
including EBL attenuation. The dashed curve shows the SSC when internal
� � � opacity is neglected. The adopted parameters are: s = 0,✏e = 0.07,
✏B = 8⇥ 10�5, p = 2.6, n0 = 0.5 and Ek = 8⇥ 1053 erg.

The circles show the observed spectrum, and the instruments used are indicated
by the colors of the circles and the energy ranges; green are Swift-XRT and
Swift-BAT, red are Fermi-GBM and Fermi-LAT, and white and orange are by
MAGIC. White circles show the observed MAGIC spectrum, that is, uncorrected
for attenuation caused by the EBL. Orange circles show the spectrum corrected
for attenuation. Contour regions and data points are as in figure 5.8. Figure
extracted from [7].
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Chapter 6

Summary

In this thesis, I report the development of a novel methodology of energy recon-
struction for the very high energy (VHE, energy & 50 GeV) �-ray events de-
tected with the MAGIC telescopes. This new method substantially improves the
energy reconstruction performance and extends the capabilities of the MAGIC
telescopes to study �-ray sources. This novel method for energy reconstruction
has been validated and used for the first time on the observation data of the
gamma-ray burst (GRB) GRB 190114C, the first GRB detected significantly at
VHE. The data led to two publications in Nature reporting the spectral analysis
results (Nature, vol.575, p455-458 and p459-463), and one in PRL reporting the
test of Lorentz invariance violation (LIV) via event-wise analysis of the energies
of �-rays (Phys. Rev. Lett. 125, 021301).

The �-rays bring information from the non-thermal particles in the Universe.
Some of these particles are accelerated to energies millions of times higher than
those that can be produced in Earth-based laboratories. Analyzing the energy
distribution of �-rays and their temporal evolution or spatial distribution, we
can study the non-thermal emission processes occurring in the extraordinary
cosmic accelerators, which is the key to the parent particle population and its
temporal evolution. Additionally, the �-rays can also be used to perform a wide
range of fundamental physics investigations, like the study of the di↵use extra-
galactic background light and the inter-galactic magnetic field, the test of LIV,
and the search for new particles beyond the Standard Model, like the elusive
Dark Matter and the Axion. The accurate determination of the energy of the
incoming �-rays plays a crucial role in all these studies.

The Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) stereo
telescope system is a worldwide leading instrument for �-ray astronomy in the
energy range from about 25 GeV to beyond 100 TeV. It is a system of two
IACTs with 17 m-diameter parabolic reflector, which detects �-rays through
the images of Extensive Air Showers (EAS), visible via Cherenkov radiation.
Before my PhD thesis, the standard energy estimation of the �-ray was based
on the Look Up Tables method (LUTs-Erec), which maps the energy of the
�-ray and the values from the variables derived from the EAS images. This has
been the energy reconstruction method used by the MAGIC collaboration over
the last decade.

During the last 3 years, I have developed a novel methodology of energy
reconstruction for MAGIC observation data based on a machine learning algo-
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rithm called Random Forest (RF-Erec). I carefully selected the input variables
and defined the strategies to use them and to configure the RF, based on the
physical insights on the EAS development and the telescope capability, to max-
imize performance as well as robustness and flexibility to diagnose possible sys-
tematic e↵ects. The validation studies were done in various ways. I demonstrate
that the RF-Erec works reliably on both the Monte-Carlo simulated �-rays and
the real �-rays.

Compared to the LUTs-Erec, the RF-Erec improves the energy reconstruc-
tion performance in many aspects. The main merits are the following.

• Improvement in energy resolution by a factor ⇠2

The energy resolution is quantified by the width of a Gaussian fitted to
the error distribution, which focuses on the majority of the distribution.
For a wide range of the observable energies, the improvement of energy
resolution reaches roughly factor & 2, and the improvement is even larger
for high Zenith distance (Zd) observations. The RF-Erec energy resolution
is 20 % at 100 GeV, and 11 % above 1 TeV in low Zd, 20 % at 1 TeV and
13 % above 10 TeV in high Zd.

• Reduction in the energy errors dispersion by a factor ⇠3

The standard deviation of the error distribution takes into account the
entire distribution including outliers, therefore its main di↵erence from the
energy resolution relates to the outliers of the distribution. I quantify this
di↵erence as tail spread, (SD � �)/� where SD is the standard deviation
and � is the width of the fitted Gaussian. RF-Erec yields a narrower
distribution with the better agreement with the fitted Gaussian shape,
than LUTs-Erec, which shows long tails. Therefore the tail spread is
reduced to less than half in low Zd, and even more in the other Zd ranges,
with the maximum reduction in high Zd to around 10 % (i.e. ⇠ 10 times
better).

• Decrease in the energy bias

The energy bias is quantified as the peak of a Gaussian fit to the error
distribution. The bias from the RF-Erec is smaller for all energies and Zd
ranges.

• Reduction of the systematic uncertainties

I show that the usage of geometry-related parameters in the LUTs-Erec
method is a dangerous source of systematic uncertainties. The e↵ect be-
comes noticeable in the high Zd observation. To remove the systematic
e↵ect, I adopted a di↵erent strategy in the RF-Erec, and confirmed that
it makes the systematic e↵ect insignificant.

The better capabilities of RF-Erec compared to LUTs-Erec are visible in
the migration matrix, implying that the spectral shape is less deformed by mis-
reconstruction of energy in individual events, and that the correction of the
deformation is easier. Therefore, RF-Erec gives better performance on spec-
tral analysis. Moreover the energy estimation of each event becomes reliable,
enabling a reliable spectral measurement even in situations with poor statis-
tics, event-wise analysis like for Lorentz Invariance Violation (LIV) study, and
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a search for anomalies in the spectral shape. The benefit is not only a better
accuracy, but also a wider applicability, such as for observations at high Zenith
distance, and morphological together with spectral studies.

In this thesis, I evaluate the actual e↵ect of the performance improvement
on spectrum reconstruction. One of the cases with the biggest improvement is
on a high Zd observation of a source with very steep power-law �-ray spectrum.
Using MC �-rays, I show that, in these situations, the RF-Erec provides a
number of improvements, which I list below.

• Reduction in the spillover range

Spillover is the energy mis-reconstruction, causing the events to be mi-
grated to di↵erent estimated energies from the true energy. If the spillover
is large, one may obtain �-ray spectra with artificial spectral features that
would lead to wrong scientific interpretations. These e↵ects are partic-
ularly important at the high end of the �-ray spectra, where a few ex-
tra high-energy photons could have dramatic consequences for studies re-
lated to the EBL attenuation, Lorentz invariance violation, or searches for
Axion-like-particles. While spillover extends to at most factor of a few in
RF-Erec, it extends to more than one order of magnitude in LUTs-Erec.
In the high energy range, where there low statistics, the spillover to high
energy can produce a substantial impact on spectral-analysis results.

• Improvement in the bin purity

Bin purity is the fraction of �-ray events in a given estimated energy bin,
whose true energies are also within the same energy range. High bin purity
is needed for accurate and reliable spectral determination. For a source
with typical power-law index, RF-Erec improves the bin purity above ⇠
1 TeV by ⇠50 % in low Zd observations, and by a factor ⇠ 2 in high Zd
observations. In the case of a �-ray source with a steep power-law of index
-5 that is observed at high Zd, the RF-Erec provides a bin purity that is
more than one order of magnitude higher than LUTs-Erec for energies
above 1 TeV, hence enabling energy measurements that would not have
been possible otherwise.

• Improvement in the determination of the spectral shape

The e↵ect listed above results in a better determination of the spectral
shape. RF-Erec has a better ability than LUTs-Erec in estimating the
slope and amplitude, and yields more reliable and consistent results among
di↵erent spectral analysis strategies.

I have implemented the novel methodology into the MAGIC Analysis and
Reconstruction Software (MARS). It is now provided as part of the standard
data analysis framework, and the whole MAGIC collaboration can benefit from
this methodology. After validation by the MAGIC software board, this novel
strategy was approved to be used in scientific papers, and, because of the su-
perior performance, it is now becoming the new standard energy reconstruction
method in the MAGIC collaboration.

The first scientific application of the novel energy estimation was on the data
from the MAGIC observations of GRB190114C. It was the first GRB detected
significantly at VHE �-rays after more than 15 years of dedicated searches with
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the MAGIC telescopes, and more than 40 years with many ground-based �-ray
instruments. GRBs are the most luminous explosions in the universe, happening
at cosmological distance. Since its serendipitous discovery in 1967, the GRBs
were gradually understood as a merger of binary compact objects or a death
of massive star. The detection of GRBs at VHE �-rays had been long awaited
as the last missing waveband in the electromagnetic spectrum. However the
spectral shape is very steep due to the absorption by the Extragalactic Back-
ground Light (EBL), that reduces the �-ray flux by factors of several hundreds
at TeV energies. Moreover the observation of this event was performed at high
Zd. Under these conditions, the previous method for energy reconstruction,
LUTs-Erec, would not have been able to provide a reliable characterization of
the VHE �-ray spectral shape from GRB190114C.

The rich photon statistics enabled the characterization of the VHE spectra
on timescales as short as 1 minute. The spectral analysis revealed that the
spectrum has the steepest shape over one decade in energy (from 0.2 TeV to
2 TeV) that has been ever measured with MAGIC, and with any VHE �-ray
instrument to date. The broadband energy spectrum (SED) indicates that the
TeV emission belongs to another component other than the classical synchrotron
component. The broadband SED shows, for the first time, a peak at ⇠ 100
GeV, in addition to the well known synchrotron peak at ⇠ 10 keV. The new
component is interpreted as SSC emission from the external forward shock of
the GRB outflow, emerging from the same population of relativistic electrons
as those which radiated the synchrotron photons. This interpretation is also
supported by the same power-law temporal decay trend of the light curves at
keV and TeV energies.

The detection and characterization of the TeV emission is a big milestone
for understanding GRBs because it accounts for about half of the total energy
output of the GRB afterglow. Moreover, our results indicate that, despite the
technical di�culties in detecting TeV �-rays from GRBs, the SSC emission may
be a common process among GRBs, which implies the need to substantially
update our knowledge about these extreme phenomena.
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Derivation of bias-variance
decomposition
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Appendix B

Implementation of RF-Erec
in the MARS software
package

Here I describe the implementation of the Random Forest energy reconstruction
in the MAGIC Analysis and Reconstruction Software (MARS).

Adding time gradient correction functionality

As mentioned in section 4.4.6, the correction of TimeGradient helps the better
Disp estimation. To implement the TimeGradient correction, I defined two kinds
of classes, MTmpPar and MCalcTmp, and integrated them into the MARS soft-
ware package. In the MARS framework, they work for each event via MEvtLoop
class, which governs a loop process over all the events in given input files.

MTmpPar is a class to store the corrected TimeGradient as one of the param-
eters for an event, therefore it inherits from the basic class MParContainer.
MCalcTmp is a class to calculate corrected TimeGradient and store it in the
MTmpPar. To perform the calculation in a loop over the events, it inherits from
the basic class MTask.

When objects of MTmpPar and MCalcTmp are registered into an object of
MEvtLoop, the corrected TimeGradient for every event in given input files is
calculated and stored. The latter tasks registered in the loop can refer to it.

Modification of RF classes

To realize the functionality of energy estimation, I have modified an existing
RF class. The classes which can work as interface to the other classes are the
following ones:

• MRanForest is the class to describe RF.

• MRanForestGrow is the interface for training the RF.

• MRFGHSeparation is the interface for applying RF as a classification,
especially the Hadronness estimation.
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• MRFEnergyEst is for regression value estimation and had been used only
for Disp estimation for stereo observation.

The switching of the target value is added to the MRFEnergyEst class.
When the target value is in logarithmic form, the estimated value will be com-
puted back to the value as power of 10. The RMS of the estimation is also
calculated correspondingly.

Adding training functionality to Coach

The functionality of training the RF is integrated into Coach, which is dedicated
to the generation of all the estimators of event property.

All the functionality of Coach is written in coach.cc and the training
of the energy RF is added there too. The program now takes a set of new
additional arguments to switch on the RF energy estimation. When Coach is
kicked together with the arguments, the training of RF for energy estimation
is processed. The program loads the configuration file (called rc file), which
is specified also as an argument when the program is kicked, and reads the
configuration for the training listed as below.

• Input file path

• List of variables

• Condition of data cleaning (skip condition)

• Forest configuration parameters

• Output file name

The actual training process is done by creating instances of the MRanForest
class and the MRanForestGrow class interacting with them. It is given to the
loop process over the training events, loaded from input file. In the loop process,
instances of the temporal variable classes, MTmpPar and MCalcTmp, are also
given.

After the loop finishes, the RF file is ready and stored.

Adding reconstruction functionality to Melibea

All the functionality of giving the reconstructed event property is in Melibea,
thus the energy reconstruction is also added there.

The main function of Melibea is written in melibea.cc, but it only config-
ures arguments and kicks the actual tasks through an instance of MJMelibea.
Thus melibea.cc was edited for configuration of the energy reconstruction,
which reads switching the RF energy reconstruction (RF-Erec) and the RF file
name via arguments. The actual energy reconstruction part was added into
MJMelibea. Objects of MEnergyEst class (the class to store reconstructed
energy) and MRFEnergyEst class are generated and they are given to the loop
process over the input file. Before the loop process, MRFEnergyEst is config-
ured in the way below

• RF file path
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• Swap of variables (Not used for RF-Erec ver.5)

• Switching on the computations for logarithmic target value.

In the loop process, instances of the temporal variable classes, MTmpPar and
MCalcTmp, are also given.
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Appendix C

Contributions of variables
to the energy
reconstruction

C.1 The e↵ect of Disp and DispImpact

As discussed in section 4.4.2, Disp and DispImpact are the important variables
for the performance of energy reconstruction. In figure C.1 I show the contri-
bution of Disp and DispImpact to accuracy of energy estimation by a control
experiment. I only show low Zd observation for simplicity. To see the e↵ect
of them, energy was estimated to the same test data set by two di↵erent RF
energy estimators; one includes Disp and DispImpact in the input variables,
but the other omitted Disp and replaced DispImpact by ClassicalImpact. The
result shows that the performance drops if the alternative parameters are used.
The di↵erence of the performance shows the contribution from these variables.
In low Zd observation, the largest contribution is lowest energy, where bias is
suppressed by several tens of percent. The smaller bias can be seen also in
highest energy range. Resolution is also improved slightly from low energy to
middle energy.
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Figure C.1: The performance of the RFs with di↵erent treatments of Disp and
Impact

The performances of the energy reconstruction by the two RFs are plotted. The
bias (solid line), resolution (the filled circles), and the standard deviation (SD,
dashed line) as a function of energy are drawn all together. The definition is ex-
plained in section 4.1.3. ”DispImp Disp” (blue) is with the inputs listed as v4 in
table 4.2, but without Width and Length. The other, ”NonSecondaryParams”,
is with the same inputs as ”DispImp Disp”, except for Disp and Impact. Disp
is omitted and Impact is ClassicalImpact, instead of DispImpact. The detail of
the evaluation is explained in section 4.1.3.



Appendix D

Validation and performance
evaluation of RF-Erec

D.1 Forest growing parameters

I explained in section 4.2 that RF does not require any elaborated tweak to
optimize the performance, and in section 4.4.5 that it is also the case to the RF
for the energy reconstruction. Thus it is unnecessary to care about the forest
growing parameters in general for better performance, however they might be
important when a user need to deal with the limitation on the computational
resource. If the tree size is smaller or the node size is larger, the RF file size will
be lighter. Therefore this section is intended also to show valid range of these
forest growing parameters for lighter RF file size. To this end, the performance
of RF-Erec is evaluated changing the number of trees and the node size.

Figure D.1 shows the result. The number of trees can be reduced to 50
without any significant degradation of the performance, and the minimum node
size is still fine with 13.
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Figure D.1: The performances of di↵erent forest growing parameters

The performances of the energy reconstruction by the di↵erent settings of forest
growing parameters. The left is for di↵erent number of trees, and the right is
for di↵erent node size (the minimum number of events at the last node). The
bias (solid line), resolution (the filled circles), and the standard deviation (SD,
dashed line) as a function of energy are drawn all together. The definition is
explained in section 4.1.3.

D.2 Applicability on morphological studies

The energy reconstruction works almost equivalently well, not only for the point
source observation, but also for morphological study. In a morphological study,
the analysis assumes that the source location in the field of view can be any-
where. Accordingly, the MC simulation of the �-ray is performed as di↵use
source throughout the field of view. The MAGIC collaboration provides the
dedicated MC data sets of the �-rays for morphological studies, as one of the
standard analysis framework.

Here I show the basic performance of energy reconstruction for the mor-
phological studies, using the di↵use source MC �-ray data set. In the data
set, the incoming directions are distributed uniformly within the circle around
the camera center with radius of 2.5�, as shown in figure 3.4 and explained in
figure 3.4.3. The date set is split into train and test samples, and the train set
was used for generating RF and the test set was used for the evaluation.

Figure D.2 shows the performance properties on the di↵use source data,
compared with the estimation on the standard ring wobble data. There is a
discrepancy between them in bias in low energies, however this can be taken
into account in the spectral unfolding. The energy resolution is very similar.
The SD is also almost identical, except for the low energies. The slightly larger
SD indicates that there are small fraction of outliers with large estimation error
in the tail of the energy error distribution. However these outliers in the low
energies would be negligible due to the uncertainty given by large amount of
background events.
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Figure D.2: Performance of the energy estimation on di↵use source

The performances of the energy reconstruction for the di↵use data and the ring
wobble data (for pointing observation). Since the performance is evaluated for
the morphological study, ✓2 cut is not applied. The bias (solid line), resolution
(the filled circles), and the standard deviation (SD, dashed line) as a function of
energy are drawn all together. The definition is explained in section 4.1.3.

D.3 RF-Erec-v3

Since the intermediate versions of RF-Erec were released, it may happen that a
user needs to refer to the performance of a previous version. Here I describe the
performance of RF-Erec-v3, because it was already used for some publications,
like the two about GRB 190114C, that were published in Nature.

D.3.1 The basic properties of generalization error

Here I present the performance of RF-Erec-v3 (RFv3), comparing with the
the latter versions (RFv4 and RFv5). The versions of RF-Erec are described
in section 4.4.7. The most significant di↵erence between RFv3 and the latter
versions to cause the di↵erence in the energy estimation performance is the
treatment of Impact and Disp. In RFv3, the treatment of these variables are
di↵erent in Zenith distance (Zd) ranges. In the low Zd range, Impact and
Disp are used via swap strategy. In high Zd range, while Disp is used also via
swap strategy, Impact is used by ClassicalImpact, to avoid the systematic e↵ect
reported in section E.3.

Figure D.3 is the basic performance, namely the bias, the resolution, and the
standard deviation (SD) of estimation error, of RFv3, presented together with
RFv4 and RFv5. The definitions of these properties of estimation performance
are explained in section 4.1.3. They are shown in two di↵erent Zd ranges, which
are Zd=[5, 35]deg (low Zd) and Zd=[55,65]deg (high Zd).

There is no significant di↵erence between RFv4 and RFv5, while RFv3 shows
some di↵erences from the other versions. In low Zd range, RFv3 is better in
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Figure D.3: The performance properties of di↵erent versions of RF-Erec

Performance of the di↵erent versions of RF-Erec energy estimators are shown,
separately for di↵erent 2 ranges of Zenith distance (the ranges are shown on top
of the plots). They are shown as a function of true energy (Etrue). The solid
lines depict the fitted bias, the filled circles show the fitted resolution, derived
from the Gaussian fit, and the empty circles show the resolution as standard
deviation of the distributions of the quantity (Eest �Etrue)/Etrue, where Eest

is the reconstructed energy. For more details of definition, see section 4.1.3.

bias below a few hundred GeV. However it is not as important as resolution
or SD, because this can be taken into account in the spectral unfolding. RFv3
has worse SD in entire energy range, indicating wider spread of outliers. This is
caused from the swapping strategy,in which the RF does not know the deviation
in the estimated values from the true values. Therefore, the overall performance
in low Zd is not as good as latter versions. As for high Zd, the performance
look similar to each other.

D.3.2 Valid usage of RF-Erec-v3

It is also important to discuss the valid usage of RF-Erec-v3, because it contains
the systematic e↵ect which was the reason that it was overtaken by the latter
versions. The validity of the performance of RF-Erec-v3 was investigated by
drawing the spectrum of the Crab Nebula in the same way as section 4.5.4.
In the investigation, there was no visible e↵ect in the spectrum from low Zd
observation. However, the spectrum from High Zd observation showed a visible
feature, which was wiggling shape instead of smooth log-parabola curve. This
anomaly is invisible as long as the Size cut and ✓

2 e�ciency cut remains strict1.
The e↵ect comes from the usage of Disp, and it is discussed more in detail in
section E.3.2.

1 For the data set I selected, the analysis with Size > 50 and ✓
2 e�ciency 85 showed the

systematic e↵ect, and it was invisible when Size > 80 and ✓
2 e�ciency 75
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D.4 Energy threshold of Crab spectrum

I describe the details about the energy threshold in the Crab Nebula spectra for
the validation of energy reconstruction, in figure 4.34. In the energy range close
to the energy threshold for the detection of �-rays, the collection area drops
very quickly as the energy lowers and the number of events also drops despite
the higher flux of �-ray due to the power-law nature of the spectrum. Therefore
the flux estimation su↵ers from heavy systematic e↵ects in this range, and there
needs to be an energy threshold for the spectrum.

To determine the energy threshold for energy spectra, I define the criteria in
a histogram of excess events over estimated energy. The energy threshold is set
to be the low edge of the lowest energy bin in the continuous bins with larger
than 4 events and with the di↵erence less than factor of 5 next to each other.
The result is shown in figure D.4.
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Figure D.4: The number of excess events in the analyses of Crab Nebula for
validation

The histograms of the excess events are for the observation data of Crab Nebula
taken in the Zenith distance (Zd) ranges indicated each panel. The strategies
of energy reconstruction, RF-Erec or LUTs-Erec, are also indicated there. The
vertical lines are the energy threshold determined by the criteria explained in
the main text.



Appendix E

Investigations of the
systematic uncertainties

E.1 RMS of prediction

In this section I discuss what the RMS of prediction indicates, and I conclude
that prediction RMS is associated with uncertainty. I propose that an event
with high prediction RMS can indicate shortage of statistics. I show a case
study for applying this idea.

The definition of RMS of prediction is described in section 4.3.2. In the case
of this study, the RMS of energy estimations from the individual trees is defined
as EnergyRMS, described in section 4.4.4.

E.1.1 Understanding the prediction RMS

A RF is designed to give a prediction by combining di↵erent predictions by
the trees it contains, and it is a part of designed feature that the RMS of
the predictions by the trees has an amount larger than 0. The di↵erence of
the predictions by the trees comes from the randomization. Because of the
randomization in selecting training data (bagging) and in selecting variable for
split in construction of a tree, the iterative splitting of the nodes results in the
populations at the last nodes, none of which are identical to any population at a
last node in another tree, in ideal case (in which the decorrelation of trees works
su�ciently by the randomization). The di↵erent populations lead to di↵erent
predictive values. In the followings, I discuss more in detail about the meaning
of RMS of prediction, focusing the role of randomization.

The prediction RMS and uncertainty

To work out the meaning conveyed by the prediction RMS, let us focus on the
energy estimation by RF-Erec and define NERMS, which is the EnergyRMS
normalised with the estimated energy, to treat the EnergyRMS equally over
di↵erent energy scale.

NERMS =
EnergyRMS

Eest

(E.1.1)
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Figure E.1 is the distribution of NERMS for the simulated �-rays of di↵erent
energies. In the two-dimensional histograms, the vertical axis is NERMS, and
the horizontal axis is normalised energy error, (Eest � Etrue)/Etrue. The dis-
tribution tells that the NERMS is not correlated with the estimation error in
general, moreover the distribution of NERMS peaks around 0.3 regardless of
the estimation error.
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Figure E.1: NERMS vs normalised energy error

The relation between normalised EnergyRMS (NERMS) and the prediction error
is presented for simulated �-rays of di↵erent energies. The data is the test sam-
ples in high Zd range, dedicated to the GRB 190114C analysis (see section 5.3.1
for details). The vertical axis is NERMS, EnergyRMS normalised with esti-
mated energy, and the horizontal axis is the estimation error normalised with
the true energy.

However, NERMS is correlated with the width of the distribution of energy
estimation error. Figure E.2 shows the standard deviation (SD) of normalised
energy error as a function of NERMS, using the same data for figure E.1. The
SD is positively correlated with NERMS almost in proportion especially in the
range smaller than about 1, where there is enough statistics. It is reasonable
to regard the SD of the normalised energy error to be uncertainty. Under
this assumption, NERMS is correlated with uncertainty in almost proportional
relation. Then the next question comes to if the NERMS is reasonable indication
of uncertainty and how they are related. To understand this, let us begin with
considering the purpose of the randomization, and continue with discussing
separately on the randomization of samples and that of variables.

The purpose of randomization is to decorrelate the trees from each other so
that the averaging of the predictions from the trees e↵ectively mediates the bias
in each tree. Ideally the trees can be decorrelated better if the subsamples for the
training are di↵erent from each other, however it is unrealistic because simple
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Figure E.2: Standard deviation of normalised energy error vs NERMS

The standard deviation (SD) of normalised energy error in the same simulated
�-rays, presented in figure E.1 is investigated. The di↵erent colors indicate the
selected energy ranges.
Top panel: The standard deviation of normalised energy error is computed
for the events in the ranges of NERMS.
Bottom panel: The number of events selected for the computation is shown.

separation of the training samples for individual trees significantly reduces the
amount of subsamples. Nonetheless, to understand the ideal decorrelation, let us
consider an extreme example, where approximately infinite amount of training
data set is divided to give to training the individual trees, so that su�cient
amount of subsamples can be given to each tree without duplication. A RF is
a mapping between the input variables and the target value and the precision
becomes high with rich statistics. However the mappings are di↵erent among
the trees because the di↵erent sets of train samples are used. The di↵erence
must come from the fluctuation in input variables. Therefore, in this ideal case,
the di↵erence in the predictive values contains uncertainty originated from the
range of variables indistinguishable from di↵erent energies, and the prediction
RMS can be interpreted as uncertainty.

The randomization in RF works di↵erently as an alternative way to the
ideal decorrelation. By the bagging, namely the random subsample selection, a
set of subsamples for a tree has a di↵erent population from that for the other
trees. Although the populations of bagging subsamples are not exactly di↵erent
because some events are shared, the bagging tries to decorrelate by an additional
feature, which is to allow duplicated samples within the population, so that the
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population itself is biased than the original population. This additional bias
works for the tree to give a predictive value biased towards random direction.
When the predictive values by all the trees in a RF are averaged, the additional
biases from individual trees will also be averaged out.

A random variable selection in node split contributes to decorrelation too,
by working as a random split, when none of the selected variables for a split is
correlated with the target value. The best variable for a node split is selected
from given number of trials, however, if the number of trials is su�ciently low
compared to the number of weakly correlated variables, there are often the cases
in which none of the important variables appears in the trials. In this case the
split point of the samples over the variable is not related to the target value, and
the split becomes random. The random split reduces the chance of the similar
events to be clustered at the last node, which means adding an additional bias.

Above all, the randomizations plays a role to artificially add biases in random
directions, which will be washed out in averaging the predictions from all the
trees. This would be the reason to have NERMS larger than SD of normalised
energy error, and it would be possible to introduce an uncertainty of energy
estimation by using NERMS with the proportional constant. However, as shown
in figure E.2, the relation changes with energy. Especially in the highest energy
range, the predictive value is a↵ected by the bias due to the truncation of
energy range in training samples (see section E.2.4). Moreover, uncertainty
does not mean actual energy error. As figure E.1 shows, there are outliers with
high energy error even for the events with relatively low NERMS. Therefore,
although there is a demand to remove high energy error events using NERMS, it
is not reasonable to apply a cut on NERMS because large amount of events will
be lost. Instead it is reasonable to take advantage of NERMS for pathological
studies by investigating very high NERMS events, as the events with very high
estimation error can be seen only in that range.

The prediction RMS and statistical shortage

If the the train data does not have enough statistics, the prediction RMS would
become larger for the following reason. Training process of RF requires the
train data to have enough statistics to dominate the last node by the events
with the similar values of variables as well as similar values of target variable.
The node size, namely the number of events at the last nodes, is as small as
less than several down to three in general. If a location in the variable space
lacks statistics, it will not be able to cover the corresponding last node, and the
mixing with di↵erent population will happen. The mixing will cause estimation
bias for a tree, as well as larger prediction RMS by the di↵erent prediction
values tree by tree. The estimation bias will remain in RF, namely after the
averaging over the trees, if the location in the parameters space with insu�cient
population is mixed mainly with that with abundant population.

In the next subsection I present a case study to take advantage of the relation
between the prediction RMS, estimation bias and lack of statistics.
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E.1.2 Case study in HZd data

I apply the insight on the prediction RMS to the investigation on the energy
spectral analysis of GRB190114C with RF-Erec, presented in section 5.4. En-
ergyRMS is used in a pathological manner to investigate the reliability of every
single event. In this study, the investigation focuses especially on the energy
range around 1 TeV, where it becomes di�cult to claim the significance of the
spectral data point due to the poor statistics. In addition, it is also di�cult
to claim the highest energy detected. In this situation, the reliability of every
single event becomes important.

Let us focus on the range of estimated energy from 900 GeV to 5 TeV. From
the reconstructed spectrum of GRB190114C, the highest energy observable to
MAGIC should exist in this range. The top panel in figure E.3 shows the dis-
tributions of normalised energy error of the simulated test data for di↵erent
NERMS. The tail of the distribution in the large normalised energy error side
is dominated by large NERMS events, presumably because of larger energy un-
certainty for the larger NERMS events. However the fraction of events with
large energy uncertainty is still small even if the events with large NERMS are
extracted, and there needs to be another e↵ort to identify if there is a systematic
e↵ect in the large normalised energy error.

Based on the insight on prediction RMS, it is possible to contain large
NERMS events emerging from statistical shortage. And in this energy range,
the one obvious tendency to make statistical shortage is the increase of Leak-
age events with energy, shown in figure E.4. The events with Leakage start to
appear before 1 TeV, and the fraction continues to increase for higher energy,
finally dominating more than half in 10 TeV. Since the non-zero Leakage events
are very few around 1 TeV, they will let the last node to be contaminated with
high energy events with similar Leakage. Consequently the constructed estima-
tion value will be dragged to higher energy and the non-zero Leakage events
around 1 TeV start to have systematic e↵ect, which is positive energy error.

This diagnosis is confirmed by the lower panel of figure E.3, which is the dis-
tribution of normalised energy error in di↵erent NERMS, for the events without
Leakage. Compared to the upper panel of the figure, non-zero Leakage events
are removed, and the distribution is almost the same except for the high energy
error side of the high NERMS distribution of NERMS > 0.45. And the dis-
tribution for NERMS > 0.45 does not have high energy error events any more
than the distributions for lower NERMS, while the smaller NERMS ranges still
have large energy error events.

The subspace of parameter space with statistical shortage would now be
removed. In this way, NERMS would be of use indirectly for identifying the
events with possibly higher energy error. And if there needs to be a rigorous
test for the non-zero Leakage events, it would be reasonable to evaluate if the
number of non-zero Leakage events in this energy range is consistent or not,
by comparing the fraction of non-leakage events to all the excess events in this
energy range in observation data, with that in MC data.

However, the ability to identify high energy error events by NERMS is lim-
ited. It is inevitable that there still remain events with high energy error with
low NERMS. Figure E.5 shows the NERMS distributions for normal events and
the events with high energy error, after non-zero Leakage events are removed.
The distributions are not significantly di↵erent. Moreover, the NERMS of high
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Figure E.3: The distribution of the normalised energy error for di↵erent NERMS

Each panel shows the energy error distribution for di↵erent NERMS ranges,
shown in the legend. The data investigated is MC test data dedicated to the GRB
190114C analysis, which is in high Zd range with high NSB (see section 5.3.1 for
details). The energy range is from 900 GeV to 5 TeV. The upper panel is for all
the events, while the lower panel is for the events with no Leakage.
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Figure E.4: The fraction of non-leakage events in the high Zenith distance MC
data.

In this plot, the MC test data for figure E.3 is investigated. The histogram in
the upper panel shows the number of events as a function of true energy, for
all the events and for the events with no Leakage. The fraction of no Leakage
events is shown in the lower panel.

energy error events is distributed only below 0.4. Therefore it is impossible to
extract these high energy error events only by NERMS.

The reason why they have high energy error is revealed when the events are
shown in the dimensions of Size and Impact. Since the energy is mostly deter-
mined from Size with the correction by Impact, an event with large energy error
is likely to have wrong values of these variables. Especially Impact estimation
can deviate from reality via the geometrical reconstruction of the event. To
investigate such events, the distribution of events over Size and Impact is shown
in figure E.6.

It clearly indicates that the events with high energy error are with higher
error of Impact estimation. The top panels are the distributions in Size vs
ImpactTrue (the true Impact measured in the simulation), in which the left
panel is for M1 telescope and the right for M2. On the other hand, the lower
panels are shown in Size vs ImpactEst (the estimated Impact via Disp method).
The high energy error events are indicated as the scatter plots, on top of the
two dimensional histograms of the normal events. Comparing the ImpactTrue
and ImpactEst (the top panels and bottom panels), the estimated Impact of
high energy error events is significantly higher than the true Impact. Moreover,
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Figure E.5: Distributions of NERMS for normal events and high energy error
events with no-Leakage

The distributions of NERMS for the MC test data for GRB 190114C, with
estimated energy between 900 GeV and 5 TeV, Hadronness < 0.3 and ✓

2
< 0.02,

after non-zero Leakage events are removed. The left panel is for all such events
and the right panel is for high energy error. The additional cut applied is
normalised energy error > 1.0.

most of them are deviated in the true Impact from the dense region of the
distribution, while the estimated Impact is in the dense region. It is reasonable
to regard them that they spilled over from low energy, due to the deviation of
estimated Impact. The exceptional two events would be estimated to be even
higher energy.

As the figures indicate, the events with high energy error can be with normal
NERMS, if the energy estimation is presumably a↵ected by high Impact error.
The reason would be that they are just noise events in the variable space so
that they do not form a group in the variable space. This example indicates
that NERMS cannot be the general strategy to exclude the high energy error
events.
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Figure E.6: Size vs. Impact, for normal events and high energy error events

The distribution of Size1 vs ImpactTrue1 (top left), Size2 vs ImpactTrue2 (top
right), Size1 vs ImpactEst1 (bottom left), Size2 vs ImpactEst2 (bottom right)
are shown. The events for the two-dimensional histograms are selected in the
estimated energy between 900 GeV and 5 TeV, Hadronness < 0.3 and ✓

2
< 0.02.

The scatter plots (red dots) overlaid indicate the events with normalised energy
error larger than 1.0 but no Leakage.
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E.2 The remaining (non-negligible) systematic
uncertainties

Here I discuss the systematic uncertainties in energy reconstruction which are
still di�cult to remove. They arise in the specific regions of the parameter space.
They are due to the suppression in statistics in the region, or the unbalanced
confusion among the regions. In the former case, the di�culty is in accumulating
statistics. In the latter case, it is in inevitable mixture in the parameter space.
These e↵ects can mostly be corrected by spectral unfolding process.

E.2.1 Sparse distribution of migration probability

Among the migration matrices presented in figure 4.35, the ones for Zd 55-
65 deg have artifacts in the lowest-energy side of true energy; the estimated
energy bins are not continuous for given true energy bin. Looking the sparse
distribution in detail, the contents of the bins are too high to consider them
as tail of the distribution. Moreover, the probability of migrating to the lowest
estimated energy bin is not given by the lowest true energy bin.

These features are not reasonable to regard as having some physical origin,
instead it would be due to very low number of events in low energy, as shown in
figure E.7. In the lowest energy side the number of events is heavily suppressed
by small collection area due to the energy threshold e↵ect (drop of trigger ef-
ficiency and surviving rate after image cleaning). Consequently the number of
events in the lowest energy is heavily suppressed. The problem is not only the
number of events given for training, but also for the construction of the migra-
tion matrix. Therefore, one must be aware that the systematic e↵ect can exist
not only in the energy estimation, but also in the spectral unfolding.

The example of an artifact appearing in spectral unfolding is seen in section 4.6.4.
In case of LUTs-Erec, the poor energy resolution results in the wide distribution
of energy migration, and the e↵ect is clearly visible (more details are described
in section E.3.1). On the other hand, RF-Erec has good energy resolution and
tight distribution of energy migration, thus it is less probable to create visible
artifact in the analysis.

To prevent from the systematic e↵ect as sparse distribution of the migration
probabilities, there need to be larger statistics to construct smooth distribution
of migration matrix. Since LUTs-Erec is heavily a↵ected by this problem, it
needs significantly more events than RF-Erec.

E.2.2 Bias in the lowest energy

As shown in figure 4.36, the bias of energy estimation becomes large in the lowest
energy side. The reason is generally attributed to the threshold e↵ect, in which
the low energy events can be triggered and survive until the flux estimation,
only for those which resemble a typical event with higher energy. However,
there is another certain reason.

The distortion of energy distribution of train samples, coming from the drop
of collection area in the low energy side, is also likely to be the source of the
bias. In the training of RF, the estimated energy is determined as geometrical
mean of events in the last node, because the MC simulation data for train and
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Figure E.7: Energy distributions for simulated �-rays of di↵erent Zd ranges

These are the actual energy distribution for the samples given to the training of
RF-Erec. The original energy distributions in the MC simulation of �-rays is in
power law, however it is heavily distorted in the lowest energy range due to the
drop of the collection area. The distortion tendency coincides with the rise of
energy bias at low energy side shown in figure 4.36.

test samples are generated in power law over energy. However, the distribution
of �-rays is exact power-law only at the stage when �-rays are generated. Before
the events are given to train an energy estimator, they must be processed via
the simulation of the telescope triggering, the signal extraction and the image
cleaning, down to the event parametrization. In low energy side, the probability
of surviving these steps quickly drops towards energy threshold and the actual
events available for the training is heavily distorted, as shown in figure E.7. The
distortion a↵ects in a way that the geometrical mean of the events at the last
node tends to shift the estimated energy upwards, because the events to take
average is always dominated by higher energy events.

This is consistent with the trends of the energy distribution and the bias.
The bias, shown in figure 4.36, start to increase where the energy distribution
departs from the power-law distribution.
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E.2.3 Bias in the middle energy range and at high Zenith
distances

The performance of energy estimation is not uniform with Zenith distance (Zd),
and it becomes a source of systematic e↵ect as bias. The bias appears in the
middle energy range, where the bias keeps flat. While the bias in the middle
energy range is almost zero for lower Zd side in the applicable range of RF, the
bias becomes negative by a few to several % for higher Zd side.

The e↵ect comes from the confusion of the events among di↵erent Zd. As
explained in section 4.4.1, the energy estimation is mainly based on Size, and the
other variables work as corrections, mainly to take into account the geometrical
configuration of the shower with respect to the telescope. Therefore, it is likely
to mix the events with similar Size but in di↵erent Zd.

1
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Energy vs Zd (Size=300 - 500 [phe])
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Figure E.8: Energy vs. Zd for the events with the same range of Size

The distribution is drawn from di↵erent mass productions of MC data for dif-
ferent Zd ranges. Thus the number of events generated is not uniform with Zd.
However, the figure tends to show the typical energy for di↵erent Zd with similar
Size.

Figure E.8 shows the event distribution of simulated events which have Size
for M1 between 300 and 500 phe. For the events with the same Size, the energy
is higher when the Zd is higher. The gradient of energy with Zd is steeper in
higher Zd. Therefore, if a last node for typically lower Zd is contaminated with
one with higher Zd, the estimated energy will be determined as higher value,
on the other hand, the node for higher Zd can be contaminated with lower Zd
events, lowering the estimated energy.
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The contamination becomes likely if the parameter space is di�cult for the
energy estimation. As shown in figure 4.36, the higher the Zd, the worse the
energy resolution. Thus the confusion is likely for higher Zd range and this
would be the reason why the lower Zd range has less bias than higher Zd.

E.2.4 Bias in the highest energy range

As shown in figure 4.36, the bias of energy estimation becomes large in negative
direction in the highest energy side. This originates from the truncation of the
energy distribution of the MC simulation at highest energy.

When the training process of RF determines the estimated energy, the pre-
dictive values for a tree are calculated for the last nodes, from the average (ge-
ometrical mean) of the true energies for the events in the corresponding nodes.
Therefore the estimated energy cannot be larger than the maximum energy of
the training samples, and the estimated energy starts to be lowered when the
distribution at the last node lacks the ”proper” event at higher energy side; the
information about the EAS is limited and the confusion among di↵erent energy
cannot be removed, therefore the confusion in the parameter space must be
reproduced in the training process.

The energy range in interest should be free from the bias, by extending the
energy range of the simulation to enough high energy. The suitable maximum
energy to simulate would be around double of the maximum energy in interest.
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E.3 The systematic uncertainties from swap strat-
egy

As introduced in section 4.4.2, the swap strategy in training an estimator is
to use the true value available in the simulation instead of the one from the
measured parameters of the shower event. However, this strategy is vulnerable
to noise and can easily produce visible artifacts. The accuracy of estimation of
these variables is limited, and systematic e↵ects will appear when the estimated
value fluctuates significantly more than the noise level of the true values in the
train samples.

In this section, the detail of the e↵ect is discussed presenting examples as
well as explaining the probable mechanisms.

E.3.1 Swapping Impact

The swap strategy for Impact is used not only in RF-Erec-v2, the intermediate
version of RF-Erec, but also in LUTs-Erec. Although the appearance of the
systematic e↵ect is di↵erent between them, they can be explained consistently
that the estimators did not learn other than what was provided; they did not
learn the noise.

Noise of Impact

The error of Impact is interpreted as the error of Impact point. Since the
Impact point is derived tracing the shower axis from incoming direction through
the shower maximum to the ground, the error of incoming direction a↵ects the
direction of the vector towards the Impact point and results in the error of the
Impact point. In case of low Zd, assuming the su�cient error of the direction
reconstruction as �✓ ⇠ 0.2� for the ✓

2 cut and typical MaxHeight as ⇠ 10 km
would make ⇠ 40 m of the error of Impact. The error dramatically increases as
the Zd increases, because the shower develops at similar height and the distance
to the shower from the telescopes becomes longer. In case Zd = 80�, the distance
to the shower would become possible to be even larger than 50 km. It would
make ⇠ 200 m of the error of Impact.

Swap Impact in RF-Erec-v2

In case of RF-Erec with swapping Impact strategy (RF-Erec-v2), the e↵ect is
clearly visible in the two dimensional distribution over estimated energy vs true
energy, shown in the top panel of figure E.9. The distribution is not only around
the diagonal line of Eest = Etrue, but also around the line with constant Eest,
close to the highest value of Etrue and regardless of Etrue. This e↵ect can be
explained by the noise of Impact in the following way.

An EAS at too large distance from the telescopes cannot be triggered, there-
fore there is a maximum Impact value set in a MC simulation, above which the
trigger rate is negligible thus not simulated. In a high Zd range, the noise of
Impact become too large that there become significant amount of event with de-
viation of Impact exceeding even far outside the range of the maximum Impact
as shown in figure E.10.
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Figure E.9: Systematic e↵ects in RF-Erec-v2 from swapping Impact

The distribution of the MC simulation data with the Zenith distance in
70- 80 deg is drawn in estimated energy vs. true energy. Top panel is for all the
events, bottom left is for the events with DispImpact > 1 km, and bottom right
is for the events with DispImpact < 1 km. In the distribution for all the events,
the branch can be seen in addition to the diagonal band, and the bottom panels
show that it comes from large Impact.
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Figure E.10: True Impact vs. estimation error of Impact in two Zd ranges

The distributions of the MC �-rays generated in two di↵erent Zd ranges. The
horizontal axis is the estimation error of DispImpact. The error should be 0,
no matter what the true Impact (the vertical axis) is. The distributions show
accumulation around 0, however the distributions have tails and it is wider for
higher Zd. The red dashed lines show the border of maximum Impact simulated,
and the right side of the border indicates that the estimated Impact is larger
than the maximum Impact.

Due to TrueImpact used for the training, Impact becomes strong clue to
determine the energy. On the other hand, the energy is determined from esti-
mated Impact, and it ranges to larger than the largest value of the TrueImpact.
The events with the estimated Impact larger than the possible range of TrueIm-
pact will be forced to refer to the relation between the maximum Impact and
the energy. Since the maximum possible distance to be triggered enlarges as
the energy becomes higher, the events with the largest TrueImpact exist only
with the highest energies. This causes the saturated energy estimation, and
creates the flat distribution of Eest around the maximum Etrue. This view is
confirmed by dividing the distribution by the estimated Impact, shown in the
bottom panels of figure E.9. When the distribution is divided at 1 km of the
estimated Impact, the two clusters are clearly separated.

Furthermore, the detailed shape, namely the branches in the saturated Eest

distribution, also reflects the functionality of the RF. In the RF energy estima-
tion, the estimated energy is determined as the average of the estimations by
the trees. The trees are grown in di↵erent way, therefore Impact is not always
the most influential variable, and the Influence of the estimated Impact varies
event by event and tree by tree. Consequently the di↵erence of the influences
create the di↵erent numbers of trees to give the saturated energy changes, and
the branches are created.

Swap Impact in LUTs-Erec

This e↵ect is the same sort as described for RF-Erec in section E.2.1, however
the e↵ect described here for LUTs-Erec is more significant due to the swap
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strategy for Impact.
In LUTs-Erec, the e↵ect appears in two stages. The first stage, which is

not yet a systematic e↵ect, is the very wide distribution of the estimation error.
As can be seen in figure 4.35, the tail of the estimation error distribution is
significantly wider than RF-Erec, and it is even wider in higher Zenith distance
(Zd) range. It comes mainly from the overlooked-noise of Impact; the Look-
Up Tables (LUTs) of energy estimation are constructed based on the relation
between the true energy and the true Impact, thus the error of the estimated
Impact directly contributes to the error of estimated energy. The fluctuation of
Impact is larger as the Zd is higher, thus the outlier of the energy estimation
error is wider.

The second stage comes as the systematic e↵ect in the migration matrix. The
migration matrix requires su�cient statistics to reproduce the real probability
distribution of migration. When the distribution of energy estimation error is
wider, the range of possible estimated energy to a given true energy becomes
also wider, thus the number of test samples, i.e. the number of samples to
evaluate the energy migration, needs to be increased. However it is limited,
and the migration matrix becomes di↵erent from the truth. As the actual
e↵ect, the probabilities distribute sparsely over energy with gaps, although each
probability is high.

The visible e↵ect can be seen clearly in the migration matrix for the Zd from
55 to 65 deg, shown in figure 4.35. The true energy around 100 GeV has the
probability to migrate to around 5 TeV, as an isolated bin with high probability
above a few tens of percent. As this example shows, the e↵ect is more serious
in the lowest energy, and the reason is related to Impact.

The low energy events cannot be triggered when the event is with large
Impact, because the low energy events are too dim to be triggered at large
distance. Therefore, if TrueImpact is used for training, the estimator learns the
events with large Impact is related only to high energy. However, the estimated
Impact, DispImpact can be largely mis-reconstructed in high Zenith distance,
because the shower maximum becomes much distant from the telescopes and
the impact point reconstruction will su↵er from the large fluctuation. Thus
the estimated energy becomes very high, especially for a low energy event with
highly up-fluctuated DispImpact.

It is very unlikely to overcome the problem of sparse distribution in the
lowest energy. Close to the energy threshold, the number of events to survive the
trigger, image cleaning and analysis cut is very small, however the fluctuation
of the energy estimation is much larger than low Zenith distance case. The wide
distribution of impact parameters cannot be covered by very small amount of
surviving events.

Above all, the LUTs-Erec cannot avoid the systematic e↵ect in unfolding
process, for a data with high Zd range observation. The detail of the visible
e↵ect on the spectral analysis is also discussed in section 4.6.

E.3.2 Swapping Disp

The swap strategy for Disp is used in RF-Erec-v3, the intermediate versions
of RF-Erec. The systematic e↵ect from this strategy is not as obvious as the
other e↵ects that I show. It is not visible in a migration matrix nor the basic
performance. However it becomes significantly visible in a spectral analysis at
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high Zenith distance (Zd) range. Firstly I show the control experiment drawing
the SED of Crab Nebula by high Zd observation, to reveal the existence of the
systematic e↵ect and it is caused by the swapping Disp. Secondly I give the
explanation on the mechanism of the e↵ect.

Identifying the systematic e↵ect by Disp from SED comparison

The systematic e↵ect becomes noticeable when the spectrum for the same data
is drawn by di↵erent energy estimators generated by di↵erent configurations
of the input variables. Figure E.11 are the spectra of the same Crab Nebula
observation data analysed in the same way, but by di↵erent energy reconstruc-
tions. The data was taken at the Zenith distance between 55 deg and 65 deg
for 3 hours of total observation time. The energy reconstructions are based on
the di↵erent energy estimators, which are all RF but di↵erent choices of input
variables. They are based on RF-Erec-v2, and the input variables are changed,
as the names indicate; ”SwImp” indicates that SwapImpact is used, ”ClImp”
indicates that SwapImpact is replaced by ClassicalImpact, and ”DispImp” indi-
cates that SwapImpact is replaced by DispImpact (nested use of DispImpact).
RF-Erec-v2 does not adopt any Disp, however, ”Disp” indicates that Disp is
added (nested use of Disp), and ”SwDisp” indicates that SwapDisp is added.
”L” indicates that Length is added.

Comparing the 14 spectra, some show wiggled feature in the same way. They
all adopt ”SwDisp”, on the other hand, those which do not adopt ”SwDisp” do
not show the feature. Therefore it is certainly better not to adopt SwapDisp
strategy. It is also notable that the migration matrix is worse when input
variables contain ”SwImp”, the SwapImpact. Therefore Swap strategy should
be avoided.

Figure E.12 is the comparison of the basic performances of the 14 energy es-
timators. Among the estimators with safe performance, the ”DispImp Disp L”
shows the best performance. Therefore, the nested use of Impact and Disp
is the best way as the input variables for the energy estimator. And Length
contributes to the performance.

The mechanism of systematic e↵ect from swapping Disp

As presented above, the systematic e↵ect can be seen in the Crab Nebula spec-
trum drawn from high Zd observation data, and it comes certainly from the swap
strategy for Disp. The mechanism of the systematic e↵ect can be reasonably
explained in the following way.

Since the systematic e↵ect in the energy reconstruction appears in the use
of SwapDisp, the source of the e↵ect must be seen in Disp. To search for the
relation to the energy, it is reasonable to decompose Disp into two geometri-
cal factors, MaxHeight and Impact. As introduced in section 4.4.1, Disp is the
angular distance between shower incoming direction and shower maximum di-
rection, thus it is closely related to them. Especially, we can approximately
attribute the systematic e↵ect in Disp to the systematic e↵ect in Impact be-
cause Impact is stronger information than MaxHeight. Therefore I compare the
systematic di↵erence between the TrueDisp and estimated Disp, in the relation
with TrueImpact.
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Figure E.11: The migration matrices and Crab Nebula spectra by the RF energy
estimators with di↵erent input variables

The Crab Nebula spectra obtained with RF-Erec (right) and the migration ma-
trix (left), from the observation data with the Zd 55-65 deg. The red dashed line
is the Crab Nebula spectrum presented in past study by MAGIC collaboration
[16]. Based on RF-Erec-v2, the input variables are changed. About Impact, the
followings are used, ”ClImp”: ClassicalImpact, ”SwImp”: SwapImpact (Swap
use of DispImpact), ”DispImp”: DispImpact(Nested use of DispImpact). About
Disp, ”SwDisp”: SwapDisp(Swap use of Disp), ”Disp”(Nested use of Disp). And
Length is added for ”L”.
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Figure E.12: The performances of the RF energy estimators with di↵erent input
variables

Based on RF-Erec-v2, the input variables are changed. About Impact, the
followings are used, ”ClImp”: ClassicalImpact, ”SwImp”: SwapImpact (Swap
use of DispImpact), ”DispImp”: DispImpact(Nested use of DispImpact). About
Disp, ”SwDisp”: SwapDisp(Swap use of Disp), ”Disp”(Nested use of Disp). And
Length is added for ”L”. The energy estimators with safe performance, namely
without visible systematic e↵ect in the SED, is listed in the legend.
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Figure E.13 shows such comparison, and it shows the systematic e↵ect of es-
timated Disp. Compared to the original relation between TrueDisp and TrueIm-
pact, estimated Disp tends to have two sides around the boundary of Impact
⇠ 130 m with opposite trends. The smaller Impact side tend to have larger
estimated Disp than TrueDisp, while larger Impact side tend to be smaller, and
both sides become suppressed towards around 0.7, which is the similar to the
peak value of TrueDisp for the TrueImpact around 130 m. This Impact is the
event with the edge of light pool hitting at the telescope. The smaller Impact
indicates the location of telescope to be inner region of the light pool, while the
larger Impact is outside. For the inner region of the light pool, as figure 4.6
indicates, the brightness would not be so di↵erent and the shift of Disp would
not heavily a↵ect the energy estimation. However, the brightness drops as ap-
proximately inverse proportional to Impact in outer region, therefore the shift
of Disp heavily a↵ect the energy estimation. The smaller Disp indicates the
smaller Impact, thus the estimated energy would be lowered. The estimated en-
ergy can be lowered only until the lowest energy possible, therefore the drop of
estimated energy is less influential in the lowest energy range. Consequently the
events are accumulated around the lowest energy and they create the decrease
of the excess events at around 1 TeV and increase at the lowest energy.
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Appendix F

Application of Neural
Network as cross check

Artificial Neural Networks (ANN), also called neural networks or neural nets, are
nonlinear computing models vaguely inspired by the biological neural networks
that constitute animal brains. Over the last decade, ANN have emerged as the
one of most powerful and widely-used supervised learning techniques. For more
details, see [29, 84].

Here I discuss the study on the energy reconstruction using ANN. In the
beginning phase of my project, I tried the improvement of the energy recon-
struction by both RF and ANN. I achieved good performance in the energy re-
construction also with ANN, with the same set of input variables as RF-Erec-v1.
It can perform with similar accuracy as RF-Erec-v1. However I decided to give
further e↵ort on RF-Erec for improvement, because the performance of RF-Erec
is better and there are the more advantages in RF-Erec listed in section 4.2.

In the following, I show the comparison of the performance between ANN
and RF-Erec-v1. I also show one of the most important disadvantage in ANN,
which is dependency of the performance on filtering the training samples.

Comparison of Neural Network with Random Forest

The basic functionality of ANN was implemented in standard MAGIC analysis
software package, as a library based on JETNET [93]. However the performance
had not been significantly better than LUTs-Erec. Choosing the exact network
architecture for a ANN remains an art that requires extensive numerical exper-
imentation and intuition, and is often times problem-specific. Both the number
of hidden layers and the number of neurons in each layer can a↵ect the per-
formance of a neural network. There seems to be no single recipe for the right
architecture for a neural net that works best.

In my trial, the better performance was achieved mainly by changing the
target value to be in the form of logarithm base 10. Other than this point, the
configuration of the ANN energy estimator I applied is as below.

• Input variables
Input is the same as RF-Erec-v1.
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• Cut condition
The training samples are filtered. Compared to RF-Erec, the filtering is
more important factor to tune the performance. However the cut condition
I introduce here is not thoroughly optimized. The cut conditions are in
the followings1 ; the number of islands to be 1, the core pixels 2 to be
more than 2, Leakage1 to be less than 0.2, Cherenkov Radius to be more
than 40 m, Cherenkov Density to be positive, 0 < ✓

2
< 0.1.

• Activation function
Sigmoid function is applied for all the nodes.

• Node structure
The structure of the network has 5 layers. From the input layer, through
three hidden layers, to the output layer, the number of nodes are
15, 12, 9, 5, 1.

• Training
The training is to adjust weights in the nodes so that the predicted value
from the input variables matches the target value. The adjustment is done
for every event in the train samples after the cut, in which the weights are
moved in the direction of the gradient of the cost function. The training
should continue until the network stabilization and the number of itera-
tions over whole samples is called epoch. The epoch is 2500 in this study.

The result is compared with the RF-Erec-v1 in figure F.1. The performance
is comparable to the RF-Erec-v1, especially in the resolution. Looking in detail,
there are the di↵erences in the bias and standard deviation (SD). The bias
is smaller (better) in lowest and highest energy side, on the other hand, the
standard deviation (SD) is significantly larger (worse). This drawback in SD
gives high risk in the analysis for the data with low statistics, therefore RF-Erec
is preferred.

Nonetheless, ANN is another independent strategy to energy estimation, and
can be used as the opportunity of cross-check.

The need of event filtering

In the training of the ANN, the training samples need to be filtered by proper
cut conditions to obtain a good performance of energy estimation. I show this
point, and discuss that this is one of the most important reason not to adopt
ANN for energy estimation.

Figure F.2 shows the performances of the two ANN energy reconstructions.
One is trained with event filtering for the training samples, and the other is done
with all the samples. The performance clearly changes with the di↵erence of
the event filtering, therefore the event filtering is heavily involved in the perfor-
mance optimization. On the other hand, RF-Erec does not require optimization
via filtering the train samples, and if the same cut is applied to RF-Erec, the
performance drops.

1 For the description of parameters, see section 3.7.
2 The number of pixels which detected the light content above Qcore. The definition is

described in section 3.6.
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Figure F.1: The performances of the ANN and RF energy reconstructions

The performances of the energy reconstruction by ANN and RF are plotted.
The bias (solid line), resolution (the filled circles), and the standard deviation
(SD, dashed line) as a function of energy are drawn all together. The definition
is explained in section 4.1.3.
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Therefore the training samples need to be filtered properly in the training of
the ANN. This means the training process of ANN is sensitive to outlier events
and the risk of systematic e↵ect is higher. It is also likely that the optimization
to a data set creates a systematic e↵ect to another data set when strict filtering
is applied. Therefore it would require more attention on the risk of systematic
e↵ects, because the parameter distribution changes for di↵erent configurations
like Zenith distance, energy range, incoming direction distribution, and so on.
Moreover, adjusting the cut condition complicates the optimization of the energy
estimator.



Appendix G

Physics related to GRBs

G.1 Prompt emission

Temporal properties (duration and light curve)

The most important temporal properties of the prompt emission are the du-
ration and the light curve. The duration of the prompt emission is associated
with the physical origins, and the variability of light curve is the most impor-
tant clue to discriminate the prompt emission phase from afterglow phase from
theoretical point of view.

Figure G.1: T90 distribution

Duration (T90) distribution of GRBs for the events detected by Burst And
Transient Source Experiment (BATSE) onboard CGRO. Reproduced from the
BATSE GRB 4B catalog1.

Figure G.1 shows the distribution of the duration of prompt emissions. The
duration is characterized with the parameter T90, which is defined as the time
interval between the epochs when 5 % and 95 % of the total fluence is registered
by the detector. As introduced in section 5.1.1, the duration of the prompt
emission distributes in two Gaussian components with a separation line around

1 https://gammaray.nsstc.nasa.gov/batse/grb/duration/
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2 s; a long-duration class with T90 peaking at 20–30 s, and a short-duration
class with T90 peaking at 0.2–0.3 s. It is notable that the relative significance
of the two components and the peak duration values are energy and sensitivity
dependent. One important property related to the dependence is the spectral
hardness of the burst. Statistically, the long-duration class is on average softer
than the short-duration class. As a result, the two classes of GRBs are also
termed ”long/soft” and ”short/hard”, respectively.

As the examples shown in figure G.2, the light curves of GRB prompt emis-
sions are very irregular. Some are extremely variable, with detectable minimum
variability time scale reaching millisecond range, while some others have smooth
light curves with relatively simple temporal structures. Some GRBs have dis-
tinct emission episodes separated by long gaps in between.
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Figure G.2: The examples of prompt emission light curve

The light curves of GRB prompt emissions, detected by BATSE, are drawn.
They are labeled by their trigger numbers instead of the dates when they oc-
curred. Figure extracted from [77].

The light curves of GRB prompt emission vary with energy. Figure G.3
shows the light curves of GRB 090902B, observed with Gamma-ray Burst Mon-
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itor (GBM) and LAT onboard Fermi. In general, pulses tend to be narrower in
harder energy bands, and wider in softer energy bands. And arrival time also
has a trend with energy. In the energy range below 10 MeV, the arrival time of
a pulse in a softer band is typically delayed with respect to the arrival time in
a harder band. This trend is seen in Long GRBs in general [120].
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Figure 1. GBM and LAT light curves for the gamma-ray emission of GRB 090902B. The data from the GBM Na i detectors were divided into soft (8–14.3 keV)
and hard (14.3–260 keV) bands in order to reveal any obvious similarities between the light curve at the lowest energies and that of the LAT data. The fourth panel
shows all LAT events that pass the on-board gamma filter, while the fifth and sixth panels show data for the “transient” class event selection for energies >100 MeV
and >1 GeV, respectively. The vertical lines indicate the boundaries of the intervals used for the time-resolved spectral analysis. Those time boundaries are at
T0 + (0, 4.6, 9.6, 13.0, 19.2, 22.7, 25.0, 30.0) s. The insets show the counts for the corresponding data set binned using these intervals in order to illustrate the relative
numbers of counts considered in each spectral fit.

The time-integrated spectrum of GRB 090902B is best
modeled by a Band function (Band et al. 1993) and a power-law
component (Table 1). The power-law component significantly
improves the fit between 8 keV and 200 GeV both in the time-
integrated spectrum and in the individual time intervals where
there are sufficient statistics. It is also required when considering
only the GBM data (8 keV–40 MeV) for the time-integrated
spectrum, as its inclusion causes an improvement of ≈ 2000 in
the CSTAT statistic over the Band function alone. When data
below ∼50 keV are excluded, a power-law component can be

neglected in the GBM-only fits. We conclude that this power-law
component contributes a significant part of the emission both at
low (<50 keV) and high (>100 MeV) energies. Figure 3 shows
the counts and unfolded νFν spectra for a Band function with
a power-law component fitted to the data for interval b (when
the low energy excess is most significant) using the parameters
given in Table 1.

Spectral evolution is apparent in the Band function compo-
nent from the changing Epeak values throughout the burst, while
β remains soft until interval e when it hardens significantly. β

Figure G.3: The examples of prompt emission light curve

Multi-wevelength light curves of GRB 090902B as observed with Fermi GBM
and LAT. Figure extracted from [3].

Spectrum

The three components in a prompt emission spectrum are; (I) a non-thermal
Band component, (II) quasi-thermal component, and (III) another non-thermal
component extending to high energies (figure G.4). Usually the component I is
the dominant component.
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100 102 104 106 108 1010

Fig. 25. The three possible elemental spectrum components that shape the observed time-resolved spectra of GRBs. Some components can be suppressed
in some GRBs.
Source: Adapted from [103].

• In some bursts, e.g. GRB 080916C [99,103], there exists a trend of ‘‘opening’’ of the ‘‘Band’’ spectra. Initially, the spectrum
is narrow with a relatively large ↵ and a relatively small � . However, this behavior is not representative in the 17 LAT
GRB sample [103]. Most bursts do not show a clear pattern of evolution trend.

• A good fraction (but not all) of LAT GRBs show a delayed onset of GeV emissionwith respect toMeV emission as shown in
Figs. 21 and 22 [99,359,101,103]. For GRB 080916C, the delayed onset may be related to hardening of � or the existence
of a spectral cutoff early on [103]. For GRB 090902B and 090510, it may be related to the delayed onset of the power
law component extending to high energies (component III). Several models have been suggested for the delayed onset
of GeV emission [104,456,457,103,458,361,459–461], but it is unclear which of these mechanisms operates in GRBs.

6.3. Broad-band prompt emission

During the prompt phase, it is believed that there should be emission outside the triggering detectors’ bandpass window.
Observationally it is very challenging to obtain a broad-band prompt emission spectrum. Nonetheless, current observations
revealed a sparse picture.

In the high energy regime, Fermi/LAT observations so far suggest thatmost GRBs do not have significant emission beyond
100 MeV (e.g. [462,463]). Their prompt spectra are consistent with the extension of a Band-function spectrum to the GeV
regime [103], sometimes with a possible spectral cutoff [102]. On the other hand, occasionally one does have bursts with
a second component extending to high energies (e.g. GRB 090902B and GRB 090510, [100,101,103]). The hard component
of these GRBs have a rising slope in their spectral energy distribution, suggesting that there could be more energy emitted
above the LAT band. These sources can be ideal targets for ground-based 100 GeV–TeV detectors (e.g. [464,465]).

In the low energy regime, broad-band (optical to sub-MeV gamma-ray) spectra are available for several GRBs that
had a precursor or a very long duration. Swift XRT and UVOT were able to slew to the source before the main burst
arrives. Examples include GRB 060124 [466], GRB 060218 [60], and GRB 061121 [467]. For some other bursts, early optical
observations were carried out by ground-based robotic telescopes during the prompt phase, which revealed interesting
features. Examples include GRB 990123 [149], GRB 041219A [468,469], GRB 050820 [470], GRB 080319B [209,471], and
GRB 110205A [472–474].

So far no burst, with the exception of GRB 130427A [475], has been simultaneously detected from optical all the way to
GeV during the prompt phase.

Regarding the relation between the prompt optical and gamma-ray emissions, there are at least three patterns. The first
pattern shows a clear offset between the optical flux peak and gamma-ray flux peaks. An example is GRB 990123, which
showed an optical peak after all the gamma-ray peaks [149]. This suggests different physical origins of the two components.
The standard interpretation is that gamma-rays come from the internal dissipation region (internal shocks or magnetic
dissipation), while optical comes from the external reverse shock during the early deceleration of the ejecta by the ambi-
ent medium [150,151]. The second pattern shows a tracking behavior between the optical and gamma-ray lightcurves. It
was seen in GRB 041219B with sparse time resolution in the optical data [469], and in the ‘‘naked-eye’’ GRB 080319B with
high-quality optical and gamma-ray data [209,471] — see Fig. 26. Spectroscopically, although the optical fluxes are consis-
tent with spectral extension of the gamma/X-ray fluxes in GRB 041219B [476], the optical fluxes in GRB 080319B clearly
stand above the spectral extension of the gamma/X-ray fluxes, suggesting a distinct origin [209]. Leadingmodels include at-
tributing optical and gamma-ray emission to synchrotron and synchrotron self-Compton emission components, respectively
[477,209], invoking two different emission sites [349,478], or two (reverse and forward) shocks in a pair of internal shocks
[151,479]. The third pattern shows a mix of both (offset and tracking) components, as evidenced in GRB 050820 [470] and
GRB 110205A [472]. Multiple emission sites have to be invoked to generate these components.

Figure G.4: Prompt emission spectrum with the possible components

The three possible elemental spectral components that shape the observed time-
resolved spectra of GRBs. Some components can be suppressed in some GRBs.
Figure extracted from [120].

G.2 Afterglow

G.2.1 Light Curve

The X-ray afterglow light curve was summarized from the accumulated samples
as a canonical light curve [119], shown in figure G.5. The curve is composed of
five possible components, which may or may not exhibit. The components has
been discussed as below [26, 77, 117].

• I. An early time steep decay phase
Temporal decay index steeper than -2 and normally -3. This phase is
connected to the tail of the prompt emission, and the very rapid decline
of emission could be explained only when the jet opening angle is larger
than the collimation angle of the emission due to the relativistic e↵ect,
��1. The collimation makes the prompt emission from higher latitude
reach the observer, however the arrival time will be later because of the
longer trajectory, which results in the the tail of temporal decay.

• II. Shallow decay phase (or plateau phase)
The temporal decay of flux is shallow with slope from ⇠ 0 to ⇠ �0.7,
sometimes even slightly rising early on. Can be incorporated within the
external shock model, with the shallow decay phase being due to contin-
uous energy injection into the blast wave. A possible source of energy
injection is the power emitted by a spinning-down newly-born magnetar,
which explains the relation between the plateau luminosity and the end
time of the plateau. Another possibility is the accretion, which could occur
if the progenitor star has a core-envelope structure.

• III. Normal decay phase
Temporal decay index ⇠ �1, which is the typical value predicted in the
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Figure G.5: The canonical X-ray afterglow light curve

The numbers correspond to the 5 distinct components: I. the steep decay phase
which is the tail of prompt emission; II. the shallow decay phase (or plateau);
III. the normal decay phase; IV. the late steepening phase; V. X-ray flares. The
Numerical value provided for each segment of the light curve is the typical decay
index for that segment, e.g. the light curve decays as t�3 during Phase I. Figure
extracted from [119].

standard forward shock model. It is therefore considered as ”normal”.
In theory, the deceleration of the forward shock due to the circumburst
medium is the cause of the decay. The actual temporal decay index is
dependent on the density profile of circumburst medium and the injection
of the high-energy relativistic electrons.

• IV. Late steep decay phase
Temporal decay index t

�2 or steeper. The decay is expected to follow the
normal decay with steeper decay index in the forward shock model. When
the jet is decelerated, the collimation angle ��1 becomes larger. When the
angle is no longer small enough, it becomes insu�cient to collimate most
of the emission towards observer, and the fraction of the emission to reach
starts to drop. The start of the steep decay is called jet break.

• V. X-ray flares
The rapid rise and fall, before and after which can be smoothly connected
with the same temporal decay index. Therefore it is regarded as flare
component superposed on the power-law decay component. One or more
X-ray flares can be found in nearly half of GRB X-ray afterglows. Most
flares happen early but some flares can be very late, e.g. as late as 106 s.
These flares share many properties with prompt emission pulses thus are
believed to be internal origin.

Figure G.6 shows a set of examples of major light curves with the compo-
nents listed above. The examples are with no occurrence of the flare component
however the light curves with flares comprise of the same types.
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Figure G.6: Examples of X-ray afterglow light curves without flare activity

Examples of the light curves, the luminosity as a function of time in double-
logarithmic form, are shown. Upper left, GRB080804, comprises of only normal
decay phase (III). Upper right, GRB081222, has shallow decay phase (II) in
the beginning and normal decay phase (III) later on. Lower left, GRB090814A,
shows early time steep decay phase (I) in the beginning and shallow decay phase
(II) later on. Lower right, GRB061021, comprises of early time steep decay phase
(I), shallow decay phase (II) and normal decay phase (III). Figure is taken from
[26].

G.2.2 Spectrum

Here I summarize the main emission process in afterglow phase to explain the
spectrum. The emission is originated from electrons which are swept by the
shock wave of the jet. The bulk motion of the shock wave is expressed in bulk
Lorentz factor �. The electrons in the ambient are swept up by the shock and
are accelerated into a power-law distribution. Namely, the energy distribution
of the electrons in the co-moving frame of the shock wave is described by the
power-law dN

d�e
/ �

�p
e , where p is the spectral index and �e is the electron Lorentz

factor.

On the other hand, due to the enhanced magnetic field in the shock wave,
the electrons emit synchrotron radiation and are cooled down. The spectrum
of the synchrotron radiation reflects the property of the electrons. In the mean
time, the photons emitted are up-scattered by the electrons themselves, and it
results in another component in the energy distribution of photons.

In the following I roughly summarize the process above, which is performed
in the spectrum modeling. The prime (0) refers to quantity measured in the rest
frame of the shocked fluid.
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Circumburst medium

The density profile of circumburst medium a↵ects the deceleration of the ex-
ternal shock, therefore it is crucial element in modeling the evolution of the
emission with time. The profile of the number density of circumburst medium
n is formulated as a function of the distance from central engine R,

n(R) = n0R
�s

n0 = 3 ⇥ 1035
A⇤ (G.2.1)

where A⇤ is a parameter characterizing the normalization of the density. Two
normal profiles are s = 0 (homogeneous medium) and s = 2 (wind-like medium,
typical of an environment shaped by the stellar wind of the progenitor).

Shock wave and particle acceleration

The afterglow is radiated by ensemble of electrons in forward external shock.
The radiation can be high energy and non-thermal, because the shock proceeds
the very e�cient acceleration called first-order Fermi acceleration mechanism.
The shock sweeps the electrons in the circumburst medium and generates the
power-law energy distribution. Hereafter we discuss such a power-law energy
distribution of electrons in the shock wave,

dNe

d�e

/ �
�p
e , �m < �e < �M (G.2.2)

where �m and �M are the minimum and maximum Lorentz factors of the electron
energy distribution, respectively.

The minimum Lorentz factor can be estimated from the relation between
shocked and unshocked regions. The shock front separates the un-perturbed
region (upstream) and the perturbed region (downstream). The unshocked
upstream is cold and will be heated by the passage of the shock front. In
other words, the number density and internal energy increases, and the e↵ect is
enhanced if the shock propagates at relativistic speed. Let us denote the number
density in upstream and downstream as n1 and n2 (e↵ectively the particles are
protons with mass mp), and the internal energy in upstream and downstream
as e1 and e2. The shockwave propagates at the bulk Lorentz factor �. Using
the conservation laws of mass, momentum and energy across the shock front,

n2 = (4� + 3)n1 ' 4�n1

e2 = (� � 1)n2mpc
2 ' 4�2

n1mpc
2 (G.2.3)

The internal energy e2 is converted to the electrons’ energy and magnetic
field energy at certain e�ciency. Let ✏e the fraction of the shock internal energy
that is partitioned to electrons, and ✏B the one to magnetic fields. The electrons
in the shock can be denoted as

Z

�m

N(�e) d�e = n2

mec
2

Z

�m

N(�e)�e d�e = ✏ee2 (G.2.4)
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Using the relations above and assuming p > 2, �m is obtained as

�m = ✏e
p � 2

p � 1

mp

me

� (G.2.5)

Also the magnetic field B can be obtained

B = (32⇡mp✏Bn1)
1/2�c (G.2.6)

Synchrotron radiation

Synchrotron radiation, electromagnetic radiation of relativistic particles in a
magnetic field, is widely believed to power GRB afterglow, and to be the lead-
ing candidate radiation mechanism of GRB prompt emission as well. In the
following, I will briefly introduce the formation of the observed synchrotron
spectrum.

The spectrum of the synchrotron radiation radiated by a single charged
particle (The derivation of the equations, see [80, 97]) is

P (⌫, �) =

p
3q

3
B sin ↵

mc2
F

✓
⌫

⌫ch

◆

F (x) ⌘ x

Z 1

x

K5/3(⇠) d⇠ (G.2.7)

where ↵ is pitch angle (the angle between the direction of magnetic field and
that of the charged particle), and �, m and q are the Lorentz factor, the mass
and the charge of the charged particle, respectively. ⌫ch is critical frequency as

⌫ch = ⌫ch(�) =
3

4⇡
�
2
eB?

mec
(G.2.8)

and K5/3(⇠) is modified Bessel function as

K◆(x) =

Z 1

0

e
�x cosh t cosh(◆t) dt. (G.2.9)

The spectrum is continuous and has a maximum at x = 0.29. The F (x) can be
approximated in large or small x, so that

F (x) ⇠

8
<

:

4⇡p
3�(

1
3 )

�
x
2

�1/3
for x ⌧ 1

�
⇡
2

�1/2
e
�x

x
1/2 for x � 1

(G.2.10)

The spectral shape is shown in top left of figure G.7. The spectrum has a
peak ⌫ch with rising part with F (⌫) / ⌫

1/3 and steep falling part.
The total radiation power is dependent on the energy (represented by the

Lorentz factor �). Integrating eq.(G.2.7) over ⌫, the total emission power of the
particle reads

P (�) = 2�T c�
2
�

2
UB sin2

↵ (G.2.11)
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where UB is the magnetic field energy density in the emission region2, and
�T is Thomson scattering cross section3. This radiation power can be inter-
preted that the synchrotron radiation has the cooling mechanism with the re-
lation �̇ / �

2, and the radiation immediately cools down with the time scale
tcool = 7.8 ⇥ 108

/(B�) s.

Figure G.7: Synchrotron spectra of electrons

Synchrotron spectra of electrons. Top left: Spectrum for one single electron (or
mono-energetic electrons) in a uniform magnetic field. Top right: Spectrum of
an ensemble of electrons with a power-law energy distribution with an impulsive
injection. A power-law segment is formed, with the high-energy end decreasing
with time due to synchrotron cooling. Lower left: When continuous injection of
fresh particles is considered, the observed spectrum is a superposition of many
spectra produced by electrons with di↵erent “ages”, forming a new segment.
Notice that, for illustration purposes, the injection rate of electrons is adopted
to decrease with time. However, the conclusion applies to more general cases
(e.g. the injection rate of electrons remains the same or increases with time).
Lower right: Putting all these e↵ects together, the spectrum can be described
by a three-segment broken power law. Figure extracted from [77].

2
UB = B

2
/8⇡

3
�T = 8⇡
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.
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Synchrotron radiation from ensemble of electrons

The afterglow is radiated by an ensemble of electrons in forward external shock
which is distributed as eq.(G.2.2). The total spectrum of synchrotron radiation
is superposition of the emission from each particle. Since the radiation imme-
diately cools down the distribution, the spectrum distortion needs to be taken
into account.

Top right of figure G.7 is the time development of the synchrotron radiation
spectrum from an impulsive injection of the electrons with the energy distribu-
tion. The peak is formed at ⌫m, correspondent to the minimum Lorentz factor
of the injection �m, and the slope with the power-law index �(p�1)/2 is formed
in the right of the peak. The cuto↵ occurs at ⌫M , correspondent to �M at the
moment of injection, however it will become ⌫c,i, the critical frequency of the
highest Lorentz factor of the distribution at ti (i = 0, 1, 2, 3). This is due to the
faster cooling for higher energy electron.

If the injection is continuous, the observed spectrum is stable but there
becomes a spectral break between ⌫m and ⌫M , shown in the bottom right of
figure G.7. The frequency is denoted as ⌫c, and the correspondent Lorentz
factor �c is called cooling energy or cooling Lorentz factor. The power-law
index at ⌫c < ⌫ < ⌫M is �p/2.

Synchrotron radiation with fast/slow cooling

If the cooling is fast, the entire spectrum will be a↵ected because of very low
�c with �c < �m. In this case, there are two energy range di↵erently a↵ected,
which are �e > �m > �c and �m > �e > �c.

To examine them, one can consider a continuity equation of electrons in
energy space. Associated to the equation @⇢

@t
+ @

@x
(v⇢) = �,

@

@t

dNe

d�e

+
@

@�e


�̇e

dNe

dt

�
= S(�e) (G.2.12)

where dNe
d�e

is the spectrum of the electron, @
@�e

⇥
�̇e

dNe
dt

⇤
is the flow of the electrons

in the energy space, and S(�e) is the source term. Our interest is to see the
stable spectrum case, namely @

@t
dNe
d�e

= 0.
In the slow cooling case with �e > �c > �m or the fast cooling case with

�e > �m > �c, eq.(G.2.12) is

@

@�e


�̇e

dNe

dt

�
= C1�

�p
e (G.2.13)

The cooling mechanism of synchrotron radiation has the relation �̇ / �
2. The

electron spectrum, and accordingly the synchrotron radiation spectrum, are
modified in the following.

dNe

dt
/ �

�(p+1)

e , thus P (⌫) / ⌫
�p/2 (G.2.14)

In the energy range �m > �e > �c in the fast cooling case, eq.(G.2.12) is

@

@�e


�̇e

dNe

dt

�
= 0 (G.2.15)
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Fig. 5. Synchrotron spectrum for the case where ⌫a < ⌫m < ⌫c is shown in the left panel, and for the case ⌫a < ⌫c < ⌫m in the right panel, e.g. [131].

The power-law index of the synchrotron spectrumchanges at ⌫c due to the fact that electron distribution function for�e > �c
is modified as a result of loss of energy. This can be seen from the continuity equation for electrons in the energy space:

@

@t
dne

d�e
+

@

@�e


�̇e

dne

d�e

�
= S(�e), (24)

where �̇e = ��T B2� 2
e /(6⇡mec) is the rate of change of �e due to synchrotron loss, and S(�e) is the rate at which electrons

with LF �e are injected into the system. The continuity equation has a steady state solution (@/@t = 0) for time independent
magnetic field which is: dne/d�e / �̇e

�1 / � �2
e for �c < �e < �m; where �m is the minimum LF of injected electrons

i.e. S(�e) = 0 for �e < �m. The synchrotron spectrum corresponding to this segment of electron distribution function is
f⌫ / ⌫�1/2. For a time dependent magnetic field the distribution function is not a power law function of �e with index 2, and
in general its shape evolves with time [130].

For �e > �c > �m, the solution of the continuity equation is dne/d�e / �
�p�1
e in the steady state (for constant B). And

the corresponding synchrotron spectrum is f⌫ / ⌫�p/2.

2.2.2. Synchrotron self-absorption frequency
Yet another characteristic frequency, ⌫a, corresponds to the casewhere absorption of photons by the inverse-synchrotron

process becomes important. The easiest way to determine ⌫a is by the application of Kirchhoff’s law— the emergent specific
flux cannot exceed the black-body flux corresponding to the appropriate electron temperature which is

kBT ⇡ max(�a,min[�m, �c])mec2/2.7 (25)

where �m, �c and �a are electron Lorentz factors corresponding to synchrotron frequencies ⌫m, ⌫c and ⌫a, respectively, and
kB is Boltzmann constant. The synchrotron self-absorption frequency (⌫a) is the frequency where the emergent synchrotron
flux is equal to the black-body flux:

2mec2 max(�a,min[�m, �c])⌫2
a

2.7c2
⇡

�T Bmec2N>

4⇡q
(26)

where the left side of this equation is the Planck function in the Rayleigh–Jeans limit, and N> is the column density of
electrons with LF larger than max(�a,min[�m, �c]).

The emergent synchrotron spectrum for a distribution of electrons depends on the ordering of these characteristic
frequencies. Spectra for two particular orderings are shown in Fig. 5.

2.2.3. Maximum energy of synchrotron photons
Charged articles are accelerated as they travel back and forth across a shock front via the first order Fermi process. They

gain energy by a factor⇠2 each time they are scattered from one side to the other of a relativistic shock front. Themaximum
synchrotron frequency for an electron in this case turns out to be about 50� MeV, and for a proton it is a factormp/me larger;
� is the Lorentz factor of shocked plasma with respect to the observer, andmp is proton mass.

Theminimum time required for acceleration of a charged particle ofmassmwhile crossing a shock front is of the order of
the Larmor time t 0L = mc� /(qB0); where � is LF of the particle in the shock comoving frame, and prime (0) refers to quantity
measured in the rest frame of the shocked fluid. The particle should not lose more than half its energy to synchrotron
radiation in time t 0L, otherwise it will never get accelerated to LF � . This implies that 4q4B02� 2t 0L/(9m

2c3) < mc2� /2 or
qB0� 2/(2⇡mc) < 9mc3/(16⇡q2). The left side of the last inequality is the synchrotron frequency for the particle, and the
right side depends on the particle’s mass. So we find that the maximum synchrotron photon energy for an electron (proton)
is ⇠50 MeV (100 GeV) in shocked fluid comoving frame under the optimistic Bohm diffusion limit.

It is possible to violate this limit, by a factor of a few at least, when the magnetic field is highly inhomogeneous down
stream of the shock front; synchrotron photons produced when a particle is passing through a region of much higher-than-
average magnetic field can have energy larger than the limit described above, e.g. [132].

Figure G.8: Synchrotron spectra in fast and slow cooling

In the slow cooling case (left), cooling energy ⌫c is above the minimum injection
energy ⌫m. However, the fast cooling case (right) cools down to below the injec-
tion energy, and deforms the spectrum. ⌫a is called synchrotron self absorption
frequency, below which the emergent specific flux cannot exceed the black-body
flux corresponding to the appropriate electron temperature. Figure extracted
from [77].

So that
dNe

dt
/ �

�2

e , thus P (⌫) / ⌫
�1/2 (G.2.16)

The spectra in fast and slow cooling cases are shown in figure G.8.
The peak of synchrotron emission at the frame of an observer can be denoted

by
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where the Doppler boosting e↵ect by the bulk Lorentz factor � is taken into
account.

Maximum synchrotron energy

The cooling time scale by synchrotron radiation is shorter for higher energy of
an electron, however it takes more time to accelerate it to higher energy, thus
there is a maximum energy for electrons. There are several ways to obtain the
maximum energy, but the simplest way is as follows.

The minimum time required for acceleration of an electron while crossing a
shock front is of the order of the Larmor time

t
0
L = mec�e/(eB0) (G.2.18)

In this time scale, the first order Fermi process takes place and electrons gain
energy by a factor ⇠2 each time they are scattered from one side to the other
of a relativistic shock front. Therefore the particle should not lose more than
half its energy to synchrotron radiation in time t

0
L.
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Equating that the energy loss of an electron by synchrotron radiation 4 for
the time t

0
L is smaller than half of the electron’s energy,

4

3
c�T�

2
�
2
B

02
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0
L <

�emec
2

2
(G.2.19)

Therefore, the two equations above yields 5,

h⌫sync = h
3

4⇡
�
2

e

eB
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mec
<

27

16
mec

2
~c
e2

⇠ 118 MeV (G.2.20)

The observed spectrum of afterglow synchrotron emission is then expected
to display a cuto↵ below the energy "

Syn

max
⇠ 100 MeV ⇥ �/(1 + z).

Synchrotron Self-Compton(SSC) emission

A high energy particle can transfer its energy to lower energy photon through
collision process, called IC scattering process. Besides synchrotron radiation, IC
process by high energy electron is another important radiation mechanism in
high energy phenomena to generate high energy photons. SSC is the IC process
in a distribution of high energy electron, where high energy electrons up-scatter
the photons emitted by the electrons in the same distribution via synchrotron
emission.

Figure G.9: Synchrotron+SSC spectra in fast and slow cooling

Synchrotron and SSC spectra of electrons with slow cooling regime (left) and
fast cooling regime(right). Figure extracted from [54].

From a high energy electron with Lorentz factor �e, a typical photon gains
energy by a factor of �

2

e and the collision cross section is almost constant by
Thomson cross section �T . Thus the SSC spectrum reproduces almost the
same shape as the spectrum of the seed photon of the synchrotron radiation
(figure G.9). However, it is valid only when the photon energy is su�ciently
low (Thomson regime) because the photon energy after collision cannot exceed
�emec

2 due to energy conservation law. The energy regime with the suppressed

4 For isotropic distribution of particles, the pitch angle is averaged to be
⌦
sin2 ↵

↵
= 2

3
.

Therefore the single particle synchrotron power eq.(G.2.11), averaged for the pitch angle, is

hP (�)i =
4

3
c�T �

2
�
2
UB

5 The calculation adopted the fine structure constant, ↵f = e2

~c = 1/137, and � ⇠ 1.



G.3. Extragalactic Background Light (EBL) absorption 239

cross section due to high incident energy of the photon is called Klein-Nishina
regime 6.

The SSC peak is

8
<

:
⌫
SSC

peak
⇠ 2�

2

e⌫
Syn

peak
Thomson regime

⌫
SSC

peak
⇠ 2�e�mec

2 Klein-Nishina regime
(G.2.21)

G.3 Extragalactic Background Light (EBL) ab-
sorption

Extragalactic Background Light (EBL) is a cosmic di↵use radiation field. It is
mainly composed of the ultraviolet, optical and near-infrared light emitted by
stars through the history of the universe. It is the brightest background photon
field after the Cosmic Microwave Background (CMB) radiation. It permeates
the intergalactic space, and VHE �-rays can be e↵ectively absorbed during their
propagation via photon–photon pair-production interactions with low-energy
photons of the EBL.

In environments with very high radiation energy density, photons interact
and produce a pair of electron and positron.

� + � ! e
+ + e

� (G.3.1)

In the propagation of the VHE �-rays from extragalactic sources to Earth,
the �-rays traverse in the radiation field of EBL. Therefore they can interact
with EBL photons if there is su�cient energy in the center of mass frame to
create an electron-positron pair, namely twice the electron mass, 2me.

q
2E�EEBL(1 � cos ✓) � 2mec

2 (G.3.2)

where E� is the energy of �-ray photon, EEBL is the energy of EBL photon, and
✓ is the angle of interaction between the two photons to collide.

The cross section for pair production is
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where �
⇤ = v

⇤
/c with v

⇤ being the velocity of electron (positron) in center
of momentum frame. The �

⇤ can be expressed in terms of the energies of the
photons to collide E1 and E2, and the collision angle ✓. Introducing total energy
of electron(positron) E

⇤
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⇤
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6 Thomson scattering occurs for a photon with a incident energy E
0
i in the comoving frame

of the electron, when E
0
i ⌧ mec

2. Namely, in lab frame, Ei ⌧ �mec
2
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This yields the maximum of cross section,

�max ⇠ 0.25�T at E1E2 ⇠ 4m
2

ec
4 (G.3.5)

This tells that a 1 TeV photon has the largest cross section with a ⇠ 1eV photon.
As EBL contains large amount of optical radiation, VHE �-ray is the waveband
to su↵er from strong absorption. Therefore it is important for the analysis of
intrinsic spectrum to estimate the absorption.

The optical depth relates the total distance a �-ray travels to its mean free
path for interaction ⌧ as a full integral over the distance. For �-rays with energy
of E� coming from a source at a red shift of z0, ⌧ is

⌧(E� , z0) =
1

2

Z z0

0

dz
dl

dz

Z
1

�1
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⇥
Z 1
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where
dl

dz
is the cosmological element
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=
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(1 + z)H0
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(G.3.7)

There are some models of the EBL available, and the attenuation and in
this is correspondingly di↵erent. This study adopts the model of Domı́nguez et
al. [44]. Figure G.10 shows the optical depth for the �-rays at the distance of
GRB 190114C. The �-rays at TeV energies su↵er from severe attenuation by a
factor of about 300.
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Figure G.10: The optical depth vs the energy of �-rays for a source at z =0.4245

The optical depth of �-rays from the source at the distance of z0 = 0.4245, as
a function of the �-ray’s energy. The ,calculated with the nominal EBL scale
model of Domı́nguez et al. [44].
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Methods used to evaluate
the various unfolding
strategies

In this chapter, I discuss the methods to evaluate the unfolding strategies. As
the basis of unfolding is introduced in section 3.11.2, there are five regularization
methods based on di↵erent assumptions on the unfolded spectrum. Moreover,
the process does not automatically lead to a stable and reasonable solution.
The regularization strength, namely the weight ! or the iteration number i,
needs to be searched from a wide range, for a reasonable agreement between the
assumption and the consistency with the measured values. There are various
criteria for choosing the best regularization strength proposed, however none of
them is optimal for all cases. Therefore unfolding is a complicated process, and
its result needs to be investigated carefully.

Here I introduce the criterion of the search for the best regularization strength
and discuss how to evaluate the result using control plots. I also describe the
discussion on the control plots needed in section 4.6.4 and section 5.4.2.

H.1 The criteria for the best regularization strength

There are 5 options implemented in the standard analysis procedure, for the
search of the best regularization strength. For all the regularization methods,
the range of the strength of regularization, ! or i, is set to be from 10�5 to 1010.
Among the solutions in this range, the best strength of regularization is chosen,
judging from �

2

0
or the noise level. The below are the 5 criterion.

Focusing on �
2

0

• Least �
2

0

The least �
2

0
is searched as the solution. This means that the regularization

is practically ignored and by setting the weight ! in eq.(3.11.5) to be
maximum.

• �
2

0
closest to the number of measured points

241



242 Appendix H. Methods used to evaluate the various unfolding strategies

Assuming that the number of events measured in each energy bin follows
Poisson distribution independently, the �

2

0
should be around the number

of bins.

• �
2

0
closest to the rank of G

The �
2

0
should actually take into account the number of degrees of freedom

in the true energy bins. It would be estimated as around the rank of G
for the migration matrix.

Focusing on the noise level (covariance matrix)

The noise level, which is the net error of a distribution, should be kept in
reasonable range. The noise level in the original measured distribution y can
be regarded as the trace of the covariance matrix K introduced in eq.(3.11.4),

Tr(K) =

nyX

i=1

�
2

yi
=

nyX

i=1

yi (H.1.1)

On the other hand, the noise level of unfolded distribution ŝ is obtained as
the trace of the covariance matrix T of ŝ. When ŝ is obtained using approximate
inverse matrix of the migration matrix M as ŝ = Dy, the covariance matrix T

is

T = D · K · D
T (H.1.2)

Using these values, there are two following strategies implemented.

• Comparable noise level after unfolding
The distribution after unfolding should not be too di↵erent. This can
be interpreted as the noise levels to be similar between before and after
unfolding. Therefore the criterion is

Tr(T )/Tr(K) = 1 (H.1.3)

• Strongest noise increase in unfolded distribution
The noise level after unfolding is dependent on the strength of regular-
ization. Since regularization is introduced to reduce noise, the noise level
increases for weaker regularization, namely the larger ! or i. And it can
be a strategy to choose the point of highest gradient of noise level for
increasing ! or i.

H.2 Evaluation of the unfolding results

In this section I discuss how to investigate the results from unfolding in the
MAGIC standard analysis, which adopts five regularization methods with five
criteria of choosing the strength of regularization, introduced in section 3.11.2
and section H.1 respectively.

There is no promising way to obtain the reasonable unfolding result. Instead,
the results from those di↵erent regularization methods with di↵erent criteria
should be compared to choose the most reasonable ones. The unfolded spectral
data points should be reasonably regularized and must explain the measured
number of excess events through migration matrix. To this end, the unfolding
results in this study are evaluated for the following points.
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Back-folded distribution

The unfolded distribution must be consistent with the measured distribution.
When the unfolded distribution is folded again with the migration matrix (back
folded), the distribution must agree with the measured distribution (the distri-
bution before the unfolding). This can be examined by the plot of measured
distribution together with backfolded distribution overlaid.

�
2

0
with respect to the number of bins

The overall consistency can be represented by �
2

0
in eq.(3.11.5), which is the

discrepancy between the backfolded distribution and the measured distribution.
The migration can be regarded as statistical process, and �

2

0
should be within

fluctuation. As a reasonable value of the fluctuation, I refer to the number of
estimated energy bins used for the migration and the rank of G

1.

The noise level in the unfolded distribution

Noise increase, Tr(T )/Tr(K) should be close to 1. If it is too large, the noise
is too large and it results in the error matrix with too large uncertainties in the
correlation bins.

The strength of regularization

The regularization should not be too strong or too weak.

Agreement among the best-regularization-search criteria

In each regularization strategy, it is needed to choose the best result from the
five criteria for searching the best regularization strength. However, three of
the criteria are relatively reasonable in general; �

2

0
closest to the number of

measured points, �
2

0
closest to the rank of G, and the comparable noise levels

after unfolding. The results given by them should be robust and consistent to
each other, because all of these are the requirement for the reasonable result. On
the other hand, the Least �

2

0
is actually the solution when the regularization is

almost neglected, and Biggest noise increase does not guarantee the noise level
in the unfolded distribution to be similar to that in the measured distribution.

Therefore, if the results by the three criteria are similar, the unfolding can
be regarded to be robust.

Agreement among the regularization methods

The di↵erent regularization methods are based on the di↵erent assumption on
the unfolded spectrum, and some of the results can fail if the assumption is not
proper. However the assumptions are reasonable in most cases, thus a good
spectral analysis requires the agreement among the di↵erent methods.

1 In the point of view of unfolding process, it is possible to compute the e↵ective number of
degrees of freedom, which is the number of bins neglected in solving the unfolding problem. In
the unfolding for MAGIC standard analysis, it is computed only in some of the regularization
methods.
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H.3 Control plots in the performance evaluation

To obtain the result of unfolding, shown in figure 4.44, the estimated energy
range and true energy range are selected as shown in figure 4.41. Figure H.1
is the control plots for the results, in which the best regularization strength is
determined by the point of comparable noise level.

Tikhonov

While RF-Erec gives consistent results among the di↵erent criteria with rea-
sonable �

2

0
and with reasonable power-fit results, the unfolding with LUTs-Erec

results in two tendencies of unfolded spectra, both of which are deviated from
the original spectrum.

In noise-based solutions, the spectrum looks good power law, and PL fit is
fine(⇠ -4.96 ± 0.03), however there is an isolated point at around 10 TeV after
two bins with no excess. On the other hand, in the spectra by the �

2

0
based

solutions, there is sudden drop of flux after 1 TeV, which read as a cuto↵. These
problems are not visible in the other control plots. In all the criteria, the �

2

0
are

mostly good, the smoothness is not significantly bad.
In RF, the data points are consistent among all the weight choice, and the

PL fits show the same slope in all criteria for the best regularization strength.

Schmelling

In both RF-Erec and LUTs-Erec, the unfolded spectra are mostly consistent
with the original spectrum. The power-law fit to the spectral points gives the
same index as original (at most 0.05 pm 0.03 di↵erence).

There is a di↵erence between RF-Erec and LUTs-Erec in the control plot.
In LUT, In the middle of the weight range (around 103), the Gauss-Newton
iteration did not converge for some weights.

And there is a problem in mitigating �
2

0
and noise level, for both RF-Erec and

LUTs-Erec. For the solutions with the criteria for best regularization strength
related to �

2

0
, the noise results in bad values by factor of several 10 s. When

the comparable noise is chosen for the best regularization strength selection, the
results obtain bad �

2

0
(LUTs-Erec: 100, RF-Erec: 220). In this criterion, the PL

fit to the points is also worse, especially in LUTs-Erec (LUTs-Erec: -4.74 ± 0.02,
RF-Erec: -4.90 ± 0.02).

The same problem happens also to Schmelling(minuit). Schmelling and
Schmelling(minuit) may not be proper for a very steep spectrum. They impose
the regularization to control the cross entropy, in which the prior distribution is
set to be the measured distribution. However, a measured distribution should
be heavily distorted from the true distribution because of very steep spectrum.
This would also cause the problem that there is no point to satisfy both �

2

0
and

noise level.

Schmelling(m)

The results are in a similar tendency as Schmelling but are worse, especially in
LUTs-Erec.
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In LUTs, the unfolded data points are deviating from the original spectrum
above 1 TeV. The tendency is dependent on the criterion of the best regulariza-
tion strength. The point around 10 TeV becomes isolated in most of the cases,
and in case of comparable noise level, the points show upturn.

The control plots indicate that it is more di�cult to mitigate between �
2

0

and the noise level. It is impossible to obtain both low �
2

0
and low noise level

together.

Bertero

In RF-Erec, all the unfolded spectra are very similar to each other and consistent
with the true spectrum. The power-law fits to them result in the same indices
and acceptable �

2

0
and noise levels.

However in LUTs-Erec, the unfolded spectra are totally di↵erent for di↵erent
ways of regularization strength selections, all of which are deviating from the
true spectrum except for the choice of comparable noise. Loss of the intermedi-
ate points (�2

0
= number of measured points), obvious upturn (�2

0
= rank of G),

and very di↵erent PL indices (-3 to -4.71, -4.89) as well as very di↵erent chi
2 of

the PL fit (1.48, 58,82,2365) among the ways of weight selections. The selection
of the best weight does not work properly. The control plots are not stable
either. The �

2

0
as a function of iteration number (the regularization strength) is

always over 4000 in unfolding with the criterion of the regularization strength
of �

2

0
= rank G, which means the solution is not reasonable at all.

Bertero(W)

In RF-Erec, the unfolded spectra are similar to those by Bertero method, con-
sistent with the true spectrum for most of the criteria of choosing regularization
strength, with an exception that the criterion of comparable noise choice gives
harder spectrum (by power -law fit, index is -4.79 ± 0.02 and �

2
/NDF = 159/7).

Looking the control plot, this is due to very fast change of �
2

0
in regularization

strength, while the noise slowly develops. Therefore in this case �
2

0
-based criteria

are better.
In LUTs, the results are better than Bertero method, but are still worse

than those in RF-Erec. The di↵erence of the unfolded spectra among the dif-
ferent criteria remains. The deviation tendencies are the upturn and isolated
high energy point. Consequently the power-law fits give hard indices and bad
probabilities.
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H.4 Control plots in the analysis of GRB190114C
data

To obtain the result of unfolding, shown in figure 5.6, the estimated energy
range and true energy range are selected as shown in figure 5.3. Figure H.2 is
the control plots for the results, in which the best regularization strength is
determined by the point of comparable noise level.

Tikhonov

In both RF-Erec and LUTs-Erec, the solution by the criterion of keeping the
noise level resulted in �

2

0
of above 30, while the number of estimated energy

bins used for migration was less than 10. Therefore the �
2

0
are too high and I

adopted the criterion of the best regularization strength to be at the point with
�

2

0
closest to the number of bins for the migration. It is natural that the noise

level increases when the regularization strength with smaller �
2

0
is selected. And

the unfolding with RF-Erec had reasonable increase of noise level to about 10.
In LUT, the tendency looks similar but the noise level develops in peculiar way.
In the change of the regularization strength, there appears suddenly the low
noise solution. It is too low and further investigation is needed what is actually
happening.

Comparing the unfolded spectra among di↵erent criteria for the selection
of best regularization strength, RF-Erec resulted in the spectra consistent with
each other. On the other hand, LUT-Erec showed less consistent spectra, espe-
cially between the criterion of selecting comparable noise level and the others.

When �
2

0
are compared between RF-Erec and LUTs-Erec in the same crite-

rion of choosing the best regularization strength, RF-Erec always gives better
value, although the di↵erence is just around 1.

Schmelling

Similarly to the case for the simulated observation data, the unfolding with
LUTs-Erec for the GRB data has the problem in convergence in Schmelling
regularization. The Gauss-Newton iteration fails to converge in the weights
above 100. The range of weight facing the failure of convergence is much wider
than for the simulated observation data.

Apart from this, the control plots show normal behaviors, where �
2

0
increases

as the regularization strength lowers (the weight ! decreases), while the noise
increases. It is di�cult in balancing �

2

0
and noise level. In RF-Erec, the best

balance between chi
2

0
and the noise level was obtained with the criterion of

searching for comparable noise level. With the noise level about 1, �
2

0
stays

around 11. In LUTs-Erec, the solution by the same criterion gives �
2

0
about 27,

which is too high. Therefore the criterion adopted is to search for �
2

0
closest

to the number of bins for the migration. In this case, the noise level becomes
about 7.

Comparing the unfolded spectra among di↵erent criteria for the selection
of best regularization strength, RF-Erec resulted in the spectra consistent with
each other. On the other hand, the spectra with LUT-Erec showed inconsistent
spectra, especially between the criterion of selecting comparable noise level (The
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spectrum extends until 700 GeV) and the others (The spectra extend until above
2 TeV).

When �
2

0
are compared between RF-Erec and LUTs-Erec in the same crite-

rion of choosing the best regularization strength, RF-Erec always gives signifi-
cantly better value. In case of Schmelling method, there is the e↵ective number
of degrees of freedom available, and RF-Erec always gives larger number than
LUTs-Erec. These indicate the unfolded spectra with RF-Erec is more consis-
tent with the measured distribution than with LUTs-Erec.

When �
2

0
and noise level for the best unfolded spectra are compared between

RF-Erec and LUTs-Erec, RF-Erec is better because the noise level is much lower
while �

2

0
is moderately worse.

Schmelling(m)

In both RF-Erec and LUTs-Erec, the solution by the criterion of keeping the
noise level resulted in high �

2

0
(about 20 and about 30 respectively), while the

number of estimated energy bins used for migration was less than 10. Therefore
I adopted the criterion of the best regularization strength to be at the point with
�

2

0
closest to the number of bins for the migration. In the case, the �

2

0
become

6.6 and 9.3 respectively. Therefore, when �
2

0
are compared between RF-Erec and

LUTs-Erec in the same criterion of choosing the best regularization strength,
RF-Erec gives significantly better value in those two criteria. In the criterion
being at the point with �

2

0
closest to the rank of G, �

2

0
of RF-Erec is slightly

worse than LUTs-Erec (6.6 and 5.4 respectively).
In both RF-Erec and LUTs-Erec, the unfolded spectra are consistent with

each other among di↵erent criteria for the selection of best regularization strength.

Bertero and Bertero(W)

In both RF-Erec and LUTs-Erec, the solutions by the di↵erent criteria of choos-
ing regularization strength are close to each other. Namely, the �

2

0
and noise

level are close to or the same as each other. �
2

0
is several and at most less than

10, and noise level is about 1. As the representative unfolded spectrum I choose
the one with the criterion of selecting comparable noise level.

Since the selected strengths of regularization are almost the same, the un-
folded spectra are close to each other among di↵erent criteria for the selection
of best regularization strength. However, in the unfolding with LUTs-Erec, the
unfolded spectra by BerteroW contain a gap between the highest energy point
above 1TeV and the lower energy side below ⇠ 700 GeV.
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Appendix I

The alternative analysis
and the GRB team analysis

In this chapter, I compare my analysis done with RF-Erec-v5 (Alternative
analysis), with that by the GRB analysis team done with RF-Erec-v3 (GRB
team analysis). The di↵erence between these two analyses is summarized in
section 5.3.2.

Figure I.1: The spectra of GRB 190114C by the GRB team analysis and the
alternative analysis

The GRB spectra are drawn by GRB team analysis (blue) and the alternative
analysis (red). he solid line is the assumed spectral shape as observed spectrum,
namely the shape after the EBL absorption is applied to the power-law intrinsic
spectrum. The filled circles are the observed spectral data points and the open
circles are the intrinsic spectral points.
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The SEDs by the di↵erent two analyses are shown in figure I.1. Both of the
spectral data points are based on the same spectral shape as assumed intrinsic
spectrum, which is set to be a power law with index -2.67 at the red shift
of z =0.4245. The assumed observed spectrum is computed from the intrinsic
spectrum applying the EBL absorption by Domı́nguez et. al, and it is convoluted
with the collection area and the correspondent migration matrix, which are
obtained using MC test data, to obtain the collection area directly for the excess
events distribution versus estimated energy. Since the assumed spectrum is set
to be the same, the spectral data points can be evaluated whether they are
consistent with each other or not.

The overall shape of the SED are consistent with each other, therefore the
scientific discussion on the source in section 5.5 is valid for both results. However
the di↵erence can still be seen above 1 TeV, where only the alternative analysis
show two additional data points. It is possible to claim that the spectrum is
extended until about 2 TeV.

The di↵erence of the results is consistent with the di↵erence in the strategy
of the analysis. The source is so bright that it allows us to relax the cut because
of higher signal to noise ratio. It is beneficial especially in the highest energy
which always su↵er from poor statistics. Therefore in the alternative analysis,
the cut condition was relaxed to enlarge the collection area. The cut condition
which is e�cient for gaining statistics in the high energy range is ✓

2 1. In
addition, the RF-Erec-v5 can also contribute to gaining statistics, because of
better direction reconstruction especially in high energy range.

However, the cut condition in the alternative analysis should be considered
carefully not to introduce any systematic e↵ect. In the lowest energy, it contains
higher risk of systematic e↵ect due to the very steep spectrum, where the changes
of flux and collection area are both dramatic as a function of energy. Therefore
the change of collection area as a function of energy is mitigated by relaxing
Size. In the lowest energy range ✓

2 cut also needs to be watched carefully,
because the cut is e�ciency-base and the lower energy has the larger cut value
for relaxing ✓

2 cut and Size cut. The largest allowed value is 0.08 deg2, not
to overlap between the on region and o↵ regions. In the end the spectral data
points of the alternative analysis become reliable especially at both lowest and
highest energies.

As shown in figure I.2, the collection area in alternative is larger due to the
relaxed cut condition and the improved Disp estimation by RF-Erec-v5. The
e↵ects of individual cut conditions are energy dependent, however the overall
e↵ect is more or less constantly around several tens of %. When the number
of events in each energy bin is investigated, the number of excess events are
increased at more or less constant ratio. At highest energy of the spectrum,
the increase is dramatic. However, the increase in the background region is not
peculiar, and still the number of events in the bins above 1 TeV is of the order
of 1. Therefore the additional events at above 1 TeV in the alternative analysis
would be genuine.

1 The cut condition which gives a major di↵erence of collection area between the GRB
team analysis and the alternative analysis is EnergyRMS. However it is not usual to use
EnergyRMS for a cut condition, therefore it is not mentioned here.
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Figure I.2: The intermediate plots for the spectrum of the GRB 190114C , by
the GRB team analysis and the alternative analysis

From top to bottom, the collection area, the number of number of excess events,
and the number of background events, as a function of energy.
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