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control and assurance of diffusion MRI, including visual checks and quality ratings.  For analysis, 

I established athe data processing pipeline for diffusion MRI data, in particular the implementation 

of advanced diffusion models to be evaluated in this project. I also contributed to the rating of 

conventional small vessel disease lesion markers. I conducted the statistical analysis of the pro-
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2. Introductory summary  

2.1 Introduction 

Cerebral small vessel disease (SVD) is highly prevalent in the aging society. Globally, it contrib-

utes to every second case of dementia – either on its own or in combination with Alzheimer’s 
disease – and the prevalence is expected to further increase [Prince et al., 2015]. SVD is a 

chronic, progressive disease and the underlying cause for the majority of hemorrhagic and one 

quarter of ischemic strokes [Wardlaw et al., 2019]. Due to the progressive nature and the lack of 

a curative treatment, patients show increasing deficits in cognitive, affective, and motor domains 

[Ter Telgte et al., 2018]. SVD affects the microcirculation of the brain and leads to multiple neu-

roimaging manifestations, predominantly in the white matter. While it was originally assumed that 

the amount of white matter lesions as seen on neuroimaging gives an objective indication of dis-
ease severity, recent studies revealed a more heterogeneous lesion-symptom relationship [van 

Uden et al., 2016; Wardlaw et al., 2019]. Clinical observations and case studies reported about 

an enormous heterogeneity in symptom severity for patients with a similar degree of conventional 

neuroimaging lesions [Ter Telgte et al., 2018]. This heterogeneity can be partly explained by the 

inability of conventional neuroimaging markers to visualize early and subtle manifestations of the 

disease, such as alterations in the so-called normal appearing white matter [Nucifora et al., 2007]. 

Other potential sources of variability include compensatory and reserve mechanisms, which might 

preserve functional independence even with severe lesion load [Ter Telgte et al., 2018]. This 
highlights our limited understanding of the involved pathomechanisms. Clinically validated and 

sensitive markers are needed for unraveling these mechanisms as well as for better diagnosis 

and treatment of the disease.  

The current thesis comprises the results of three research projects about novel disease markers 

for SVD and their clinical utility. The objective was to assess their potential in sporadic as well as 

genetic SVD samples. Another goal was the exploration of possible biological underpinnings. The 

results of the studies presented herein will facilitate characterization and management of the dis-

ease, treatment response monitoring in pharmacological trials, and insight into disease mecha-
nisms. In the upcoming sections, I will summarize the current understanding of the disease pa-

thology, followed by an overview of the different subtypes of SVD, their clinical characterization, 

and treatment options. Finally, an outline of existing biomarkers and their limitations will highlight 

the need for novel markers, as intended by the current thesis. 

2.2 Neuroimaging lesions and underlying pathomechanisms 

As defined by consensus criteria, typical neuroimaging features of SVD on MRI include white 

matter alterations with hyperintense signal on T2-weighted sequences (white matter hyperinten-

sities), recent small subcortical infarcts, microbleeds and large intracranial hemorrhages, en-

larged periventricular spaces, lacunes, and atrophy [Wardlaw et al., 2013]. Apart from visible le-

sions, signal alterations can also be measured in the so-called normal appearing white matter 
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[Baykara et al., 2016; Maillard et al., 2011]. The underlying pathology for parenchymal lesions is 

only incompletely understood, but recent evidence highlights the importance of blood-brain-bar-

rier (BBB) dysfunction as a key contributor. The BBB and its cellular constituents are essential for 

various aspects of physiological brain functioning [Cuadrado-Godia et al., 2018]. Damage to these 

cells might contribute to disease manifestations in several ways including impaired vasoreactivity, 

inflammatory cell migration, edema formation, and demyelination [Rajani et al., 2018; Shi et al., 

2020; Shoamanesh et al., 2015]. For a better understanding of the disease it is crucial to clarify 
which of these mechanisms (e.g. edema formation or demyelination) is predominantly responsible 

for SVD-related white matter damage and cognitive consequences. To explore the contribution 

of possible disease mechanisms, we analyzed the association between neurite specific imaging 

markers that can reflect different types of disease processes, e.g. vasogenic edema or demye-

lination and clinical symptoms.  

2.3 Types of SVD 

SVD is an umbrella term encompassing multiple sub-types of vasculopathies. Most prevalent are 

the arteriolosclerosis type and SVD due to cerebral amyloid angiopathy (CAA). The remaining 

SVD types are rare and include hereditary SVD, immunological-related SVD, venous collagen-

osis, and other causes [Pantoni, 2010]. The following description is confined to SVD types that 

were part of the research projects. 

2.3.1 Arteriolosclerosis-related SVD 

SVD with arteriolosclerosis, also referred to as sporadic SVD, is related to cardiovascular risk 

factors, in particular hypertension and diabetes, as well as aging. The disease mainly affects 

perforating arterioles. Histological features are lipohyalinosis, fibrinoid necrosis, loss of smooth 

muscle cells, leakage of plasma proteins, and vessel wall thickening. Although all types of con-
ventional neuroimaging lesions can be seen on radiological examination, patients most often pre-

sent with periventricular white matter hyperintensities (WMH), lacunes, and deep microbleeds 

[Cuadrado-Godia et al., 2018]. Sporadic SVD is the most common type of SVD and the main 

focus of this thesis.  

2.3.2 Cerebral amyloid angiopathy 

Cerebral amyloid angiopathy (CAA) is associated with old age and often exists next to Alzheimer’s 

disease [Arvanitakis et al., 2011; Kalaria et al., 1999]. The pathological hallmark is deposition of 

amyloid-beta protein in the vessel walls of pial arteries and cortical perforators. Typical MRI find-

ings in CAA patients are lobar microbleeds, large intracranial hemorrhages (ICH), and cortical 

superficial siderosis (cSS) [Cuadrado-Godia et al., 2018]. Due to the high risk and the severe 

clinical consequences of ICH, prognostication of bleeding in CAA is of major importance. Thus, 
one project of this thesis validated the imaging marker cSS for the prediction of ICH in a prospec-

tive, multicenter cohort of CAA patients. 
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2.3.3 CADASIL 

Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy 

(CADASIL) is the most common hereditary type of SVD and the most prevalent monogenetic 
stroke disorder. Similar to the arteriolosclerosis-related type of SVD, CADASIL affects penetrating 

arteries and arterioles. Besides the pathological features of arteriolosclerosis, a pathognomonic 

finding is the deposition of granular osmiophilic material [Chabriat et al., 2009] in vessel walls. 

The disease is caused by missense mutations in the NOTCH3 gene, encoding for a transmem-

brane receptor protein. It is assumed that the mutated protein is responsible for deposition of 

protein aggregates and eventually dysfunction or even death of vascular cells [Joutel et al., 1996]. 

Neuroimaging features are mostly similar to the arteriolosclerotic SVD type, but with an earlier 

onset and a more severe manifestation [Chabriat et al., 2009]. Due to clinico-pathological similar-
ities with sporadic SVD, we used CADASIL patients for independent validation of our findings in 

sporadic SVD patients. Importantly, the analysis of these genetically-defined patients with 

younger age of onset allows to conclude that findings are indeed driven by SVD, and not by age-

related comorbidities. 

2.4 Clinical characteristics 

The clinical picture of SVD is variable. Although mild radiological manifestations of SVD can be 

found in almost all elderly individuals, only some will progress and develop clinical symptoms [De 

Leeuw et al., 2001]. Initial disease stages are characterized by subtle cognitive deficits, mainly in 

processing speed. During the course of the disease, gait impairment and urinary incontinence 

may develop and cognition as well as mood worsens gradually [Pantoni, 2010]. The progressive 

nature of the disease and absence of curative treatment options renders patients bedridden and 

demented at terminal disease stages [Wardlaw et al., 2019]. Importantly, the variability in disease 
severity for patients with a similar degree of white matter lesion load is only incompletely under-

stood. This heterogeneity might be explained by the location and severity of parenchymal lesions, 

different vascular risk factor profiles, and compensatory mechanisms, but requires further inves-

tigation [Ter Telgte et al., 2018]. To address this topic, we evaluated the utility of novel imaging 

markers. By taking the complexity of brain tissue into account, these markers are supposed to 

better quantify the gradual nature of brain tissue damage in SVD. 

2.5 Treatment 

Due to the lack of curative therapies, treatment strategies in SVD are limited and mainly confined 

to reduction of risk factors and treatment of comorbidities [Bath et al., 2015]. Therefore, prevention 

programs focusing on lifestyle and vascular risk factors are highly relevant [Wardlaw et al., 2019]. 

A large, multidomain prevention study investigating the effects of exercise, risk factor reduction, 

cognitive training, and diet, showed improvements in cognitive functioning over the 2-year follow-

up period [Ngandu et al., 2015]. Although this study did not specifically focus on SVD but was 
intended to investigate preventive approaches in patients at risk taken form the general popula-

tion, it can be assumed that a considerable amount of study participants suffered from SVD due 
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to its high prevalence. However, as shown by another longitudinal prevention trial, there was no 

effect of the intervention on the progression of WMH lesions [Van Dalen et al., 2017]. As already 

acknowledged in interventional trials for Alzheimer’s disease, targeting patients at early disease 

stages might enlarge the effect of interventions [Mehta et al., 2017]. A major obstacle for research 

on mildly affected SVD patients is the lack of markers that are sensitive for early disease mani-

festations. Pharmacological studies targeting platelet aggregation and cardiovascular risk factors 

(hypertension and hyperlipidemia) showed mixed results [Wardlaw et al., 2019]. Treatment with 
antiplatelet drugs and antihypertensives reduced the recurrence of ischemic and hemorrhagic 

stroke, respectively [Benavente et al., 2012; Kwok et al., 2015; Pearce et al., 2014]. However, 

inhibition of platelet aggregation increased the number of serious adverse events, including bleed-

ing in patients with CAA [DeSimone et al., 2017; Kwok et al., 2015]. Similarly, extensive blood 

pressure reduction was associated with cerebral hypoperfusion especially in patients with severe 

lesion load [Pettersen et al., 2017]. Our current disease markers for CAA and sporadic SVD are 

only marginally suited to predict intracranial bleeding and to objectify white matter lesions, re-

spectively. Therefore, prognostic and sensitive disease marker are required to support clinical 
decision making and weigh the risks and benefits of pharmacotherapies.  

2.6 Disease markers 

By definition a biomarker is an objectively measured indicator of a physiological state or process 

[Biomarkers Definitions Working, 2001]. Biomarker are indispensable in clinical care for accurate 

diagnostics and prognosis. Furthermore, biomarker play an important role in interventional and 
mechanistic research. Ideally, a disease marker displays excellent performance in terms of relia-

bility and validity, is non-invasively collected and automatically analyzed [Biomarkers Definitions 

Working, 2001]. As interventional trials increasingly focus on pre-clinical disease stages, novel 

biomarkers need to be sensitive to early manifestations of the disease [Cummings et al., 2019]. 

2.6.1 Established SVD markers  

Pathological hallmarks of SVD are intra- and perivascular changes affecting the small vessels of 

the brain as well as secondary parenchymal lesions [Cuadrado-Godia et al., 2018]. Due to the 

limited resolution of conventional MR imaging, it is almost impossible and clinically not feasible to 

directly visualize early and subtle pathological changes inside the vessels wall [Pantoni, 2010]. 

Therefore, the disease is characterized by the presence and extent of SVD-related brain paren-

chymal lesions which can be detected by MR imaging (i.e. conventional neuroimaging marker) 
[Wardlaw et al., 2013]. These markers have advanced our understanding of the disease and rep-

resent the current diagnostic gold-standard, but lack the sensitivity to visualize early and subtle 

disease manifestations [de Groot et al., 2013; Pantoni, 2010]. Diffusion-weighted MRI is a non-

invasive and quantitative MRI method measuring the diffusion of water molecules in brain tissue 

[Hagmann et al., 2006]. The random motion of water molecules is influenced by the presence and 

density of macromolecules and (intra-)cellular structures. Measurement of these diffusion pat-

terns provides an objective characterization of the microstructural integrity of the tissue [O'Sullivan 
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et al., 2004]. A straightforward model to quantify diffusion-weighted MRI is diffusion tensor imag-

ing (DTI) [Nucifora et al., 2007]. The DTI model allows to assess the directedness (fractional 

anisotropy) and the extent (mean diffusivity) of water diffusion. SVD-related white matter altera-

tions are reflected in a decrease of fractional anisotropy and an increase in mean diffusivity. Im-

portantly, these diffusion changes were already observed in brain tissue outside of conventional 

neuroimaging lesions (i.e. in normal-appearing white matter) and can be regarded as early signs 

of the disease [de Groot et al., 2013]. Next to the higher sensitivity of DTI for subtle SVD mani-
festations, studies in sporadic as well as genetic SVD samples showed stronger correlations with 

cognitive functions and clinical deterioration compared with conventional neuroimaging markers 

[Holtmannspötter et al., 2005; Tuladhar et al., 2015; van Norden et al., 2012]. 

2.6.2 Novel SVD markers 

Technological advancements in MRI hard- and software improved the quantification of diffusion 

processes through acquisition of multiple and stronger diffusion weightings (multi-shell acquisition 

protocols). This enables a more detailed characterization of tissue microstructure through the 

application of advanced diffusion models [Alexander, 2008]. Among advanced diffusion models, 

diffusion kurtosis imaging (DKI) and neurite orientation dispersion and density imaging (NODDI) 

are most frequently used. DKI improves the characterization of non-Gaussian diffusion pro-

cesses, i.e. water movement that does not adhere to a normal distribution but is best described 
by a leptokurtic (peaked) or platykurtic (flat) distribution [Jensen et al., 2005]. This gives a more 

realistic picture of diffusion in complex biological tissue by taking into account the heterogeneous 

composition of the brain. DKI was shown to be more sensitive for white matter alterations in pa-

tients with multiple sclerosis than DTI [Bester et al., 2015]. NODDI is a three-compartment, bio-

physical model which separates the diffusion signal into a free water, a restricted extracellular 

water, and a intracellular water compartment [Zhang et al., 2012]. Based on complex and re-

source demanding calculations, NODDI aims to model biophysical properties of neurites. In stroke 

patients NODDI metrics showed a higher sensitivity to detect diffusion alterations [Wang et al., 
2019]. Importantly, the utility of advanced diffusion models as markers for SVD is unexplored.  

Due to relevant limitations of MRI markers in clinical and research settings, e.g. contraindications 

or center-effects constituting a roadblock for multicenter studies, there is a high demand for a 

blood-based biomarker. Serum neurofilament light chain (NfL) has been identified as promising 

research tool for neurological diseases [Poggesi et al., 2016]. NfL constitutes a part of the neu-

roaxonal cytoskeleton and is released upon axonal damage into the extracellular space and even-

tually peripheral circulation. So far, serum NfL was studied in various neurological conditions, 

such as patients with Alzheimer’s disease, motor neuron disease, and frontotemporal dementia, 
and showed promising results with regard to prognostication as well as quantification of disease 

severity [Lu et al., 2015; Mattsson et al., 2017; Rohrer et al., 2016]. Preliminary studies in SVD 

reported associations with lacunes and WMH lesions, but conclusive evidence is missing 

[Jonsson et al., 2010].  

Biomarkers for CAA are highly relevant due to the high risk and the severe clinical consequences 

of intracranial bleeding [Arvanitakis et al., 2011]. Furthermore, reliable prognostic information is 
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crucially important when considering antithrombotic medication for the prevention of ischemic 

strokes, e.g. in the presence of atrial fibrillation [DeSimone et al., 2017]. As suggested by small, 

retrospective studies, cSS might be a predictor for the future occurrence of ICH, but results from 

prospective multicenter studies are missing [Charidimou et al., 2017]. 

2.7 Aims of the thesis 

SVD is very common in the elderly and a significant contributor to disability, cognitive decline, 

dementia, and ultimately loss of independence. Conventional neuroimaging markers are the di-

agnostic gold standard and an important research tool despite relevant shortcomings in terms of 

sensitivity to early-stage alterations, prognostic abilities, and usability in research settings. Cur-

rent treatment strategies, such as multimodal prevention programs and pharmacotherapy, are 

only moderately effective and associated with adverse effects. Relevant obstacles for a better 

management of the disease are the limited understanding of the pathology, challenges in identi-
fication of patients at early disease stages, and difficulties in detection of possible contraindica-

tions against pharmacotherapy. Novel and clinically validated disease markers may improve dis-

ease characterization, prognostication of complications, and facilitate large interventional trials.  

Correspondingly, the overarching goal of this Ph.D. thesis was to evaluate novel SVD markers 

with regard to their sensitivity for early and subtle disease manifestations and their prognostic 

utility. An additional aim was to elucidate the biological underpinnings of white matter damage in 

SVD using novel approaches, including biophysical modelling of white matter microstructure and 

a blood-based marker for neuroaxonal damage. 

2.7.1 Multi-shell diffusion MRI models for white matter characterization in cerebral 
small vessel disease 

SVD leads to widespread microstructural changes that can be best assessed by diffusion MRI. 

Measures from DTI are strongly associated with clinical deficits, in particular processing speed 

performance. However, the simple tensor model has limitations and provides only limited insight 

into the underlying tissue microstructure. We therefore evaluated the utility of multishell acquisi-
tion and novel, advanced diffusion models: DKI for characterization of non-Gaussian diffusion and 

the NODDI three compartment model. These advanced diffusion models are potentially more 

sensitive to early and subtle white matter alterations and provide important insight into the disease 

pathology through biophysical modelling.  

In the first research project, we evaluated the performance of the advanced diffusion models in 

comparison to the established, simpler DTI model in sporadic and genetically defined SVD sam-

ples (arteriolosclerosis-related SVD and CADASIL, respectively). We analyzed associations be-

tween diffusion markers and cognitive performance. Furthermore, to address the need for sensi-
tive and robust markers in longitudinal multi-center trials, we evaluated the ability to monitor dis-

ease progression and determined inter-scanner reproducibility. We hypothesized that the ad-

vanced models show stronger associations with clinical deficits and disease progression. 
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2.7.2 Neurofilament light chain as serum marker for cerebral small vessel disease 

While MRI is the method of choice for diagnosis and research of SVD, there are relevant limita-

tions of neuroimaging-based markers, such as MRI contraindications or the susceptibility of MRI 
markers to center-effects. These limitations could be overcome by the implementation of a com-

plementary, blood-based biomarker. However, so far no circulating biomarker has been identified 

that matches the performance of MRI markers. Serum NfL was already validated in other neuro-

logical diseases, such as Alzheimer’s dementia, motor neuron disease, and frontotemporal de-

mentia. As a marker for neuroaxonal damage, serum NfL can provide insight into underlying dis-

ease mechanisms. So far, the utility of serum NfL as marker for SVD was not explored in sufficient 

detail. Therefore, the aim of this study was to assess the association between serum NfL and 

clinical as well as neuroimaging features of SVD. Again, we used 2 samples to validate our re-
sults, a genetically-defined and a sporadic SVD sample. We hypothesized that serum NfL levels 

are strongly associated with clinical deficits and neuroimaging features of SVD.  

2.7.3 Prognostic relevance of cortical superficial siderosis in cerebral amyloid 
angiopathy 

CAA is the major cause for non-traumatic lobar intracranial hemorrhages (ICH) [Arvanitakis et al., 

2011]. Due to high mortality rates and a significantly elevated recurrence risk of ICH, a prognostic 
marker for intracranial bleeding is urgently needed. Retrospective, single-center studies support 

the role for cSS in predicting the risk for bleeding in patients with CAA, but evidence from pro-

spective, multicenter studies is missing. Therefore, our study investigated the prognostic rele-

vance of cSS in a cohort of patients with possible or probable CAA from four European study 

sites. We hypothesized higher rates of stroke or death as well as higher ICH rates and greater 

worsening of disability in patients with cSS vs. those without. 

2.8 Discussion 

2.8.1 Main findings 

The current thesis summarizes the results from three research projects focused on novel markers 

for cerebral SVD. Our goal was to validate their potential for clinical application and elucidate 

possible pathomechanisms of SVD. In the first project, we evaluated the utility of multi-shell dif-

fusion imaging and advanced diffusion models (DKI and NODDI). We found a benefit for both 

advanced models in explaining cognitive deficits in comparison to established SVD markers. The 

benefit was most pronounced in early disease stages. The reproducibility analysis showed excel-

lent robustness for all diffusion metrics, except those from the NODDI model. Regarding possible 

pathomechanisms of SVD, the associations between biophysical metrics of the NODDI model 
and cognitive deficits indicate that edema may contribute to clinical manifestations of the disease. 

The second project established serum NfL as marker for disease burden in SVD. We found strong 

associations with clinical features and with established MRI markers. As marker for neuroaxonal 

damage, serum NfL is a highly valuable tool for mechanistic research. Due to relevant advantages 
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in comparison to MRI-based markers, serum NfL is an important alternative marker in clinical care 

and research settings. In the third project, we validated cSS as prognostic marker for intracranial 

bleeding in patients with CAA. Our prospective multicenter study showed that the presence of 

cSS is a strong predictor for stroke and death, ICH, and disability. In the upcoming sections, I will 

elaborate on the findings of the three research projects with regard to my aims and highlight the 

need for further investigations.  

2.8.2 Clinical utility of novel SVD markers 

In the first project, we evaluated the utility of multi-shell diffusion imaging and advanced diffusion 

models. Our study showed a benefit for markers from DKI and NODDI in explaining cognitive 

deficits in comparison to established SVD markers. The benefit of advanced diffusion models for 

explaining clinical symptoms was strongest in sporadic SVD patients and in genetically-defined 
SVD patients (CADASIL) with lower disease burden, indicating a benefit particularly for patients 

at early SVD stages. This finding is highly relevant for effective prevention programs of SVD, 

including lifestyle changes and pharmacological risk factor management at mild disease stages 

[Cummings et al., 2019; Wardlaw et al., 2019]. Importantly, we showed that markers from DKI 

and NODDI are more sensitive to subtle white matter alterations (i.e. alteration in normal-appear-

ing white matter) than the simpler DTI model. As discussed in the introduction, the inability of MRI 

markers to detect subtle disease manifestations makes it difficult to quantify the underlying dis-
ease burden and may contribute to the heterogeneity between clinical symptoms and imaging 

findings. The superior sensitivity of DKI and NODDI metrics might help to reduce this variability 

[Ter Telgte et al., 2018]. Lastly, in our longitudinal analysis we showed that metrics from the sim-

ple DTI model perform best in tracking of disease progression. While the performance of the DKI 

metric radial kurtosis was comparable to DTI, the high variability over time of the NODDI model 

impedes its application in longitudinal settings. It is conceivable that the complex modeling ap-

proach of advanced diffusion models, in particular NODDI, results in less repeatable measures. 

A reduced robustness was again confirmed in our inter-scanner study, showing the lowest repro-
ducibility for NODDI metrics. The overall best performance was seen for metrics of the DKI model: 

These metrics combine a high sensitivity for early and subtle SVD lesions with a stable and robust 

longitudinal and inter-scanner performance. DKI metrics therefore represent excellent candidate 

markers for future use in clinical and research settings.   

The second project established serum NfL as a blood marker for SVD burden. We showed sig-

nificant differences in serum NfL levels between patients and controls and strong associations 

with disease severity. Importantly, serum NfL outperformed all conventional MRI markers in terms 

of associations with cognitive deficits. Serum NfL is of high clinical utility by complementing or 
even replacing radiological or clinical assessment in certain scenarios. Furthermore, by overcom-

ing relevant limitations of MRI-based markers, such as multicenter-effects and selection bias by 

MRI contraindications, serum NfL is a promising research tool in large, interventional trials. How-

ever, as serum NfL captures neuroaxonal damage without specificity for the underlying disease, 

a multi-factorial origin of increased NfL levels always needs to be kept in mind. Along the same 
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line of thinking, SVD needs always to be considered as a potential confounder when measuring 

serum NfL in elderly subjects, especially in the presence of vascular risk factors. 

The third project, confirmed the high prognostic relevance of cSS for future ICH in patients with 

CAA, as suggested in prior retrospective studies. Using a large prospective cohort of CAA patients 

from four European study centers, we showed that cSS is a strong predictor of future bleeding 

and disability. The high predictive value of cSS can also be seen in recent work on a CAA-focused 

SVD score, which measures in addition to cSS the presence and severity of WMH, periventricular 
spaces and microbleeds [Charidimou et al., 2016]. In comparison with our study, the summary 

score did not show a better prediction performance, suggesting that cSS is the main driver within 

the score. However, calculation of this CAA summary score requires more elaborative assess-

ment and evaluation of multiple neuroimaging features of SVD. Our work suggests that assess-

ment of cSS alone in clinical routine is sufficient to serve as an important predictor for future 

events and clinical worsening. Lastly, cSS might be particularly relevant for guiding treatment 

decisions with respect to antithrombotic therapy. While certain cardiovascular comorbidities (e.g. 

atrial fibrillation) are impotant indications for antithrombotic medication [DeSimone et al., 2017], 
clinicians have to weigh the benefits against the risk of a major bleeding event. Assessment of 

cSS might be a way to identify the patient group which should avoid antithromotics even when 

indicated due to cardiac comorbidity [Wilson et al., 2018]. This could be tested in a future ran-

domized controlled trial. 

2.8.3 Biological underpinnings of SVD related white matter lesions 

The disease mechanisms by which vessel wall damage leads to parenchymal brain lesions and 

finally to clinical symptoms is largely unknown [Wardlaw et al., 2019]. Research into the biological 

underpinnings of SVD is needed for a better understanding of the disease and for the develop-

ment of targeted treatment strategies. Thus, an additional aim of this Ph.D. thesis was to examine 

the underlying biological changes that are reflected in the novel markers, such as metrics from 

the NODDI model and serum NfL.  

NODDI is a biophysical diffusion model that aims to characterize specific neurite structures based 

on their water diffusion signature. In the first research project, we found strong associations be-

tween the NODDI metric for extracellular water and cognitive deficits, while there was no associ-

ation between cognition and the NODDI metric orientation dispersion, a measure supposed to 

reflect demyelination [Luo et al., 2019]. Changes in extracellular water are in line with previous 

findings from a two-compartment diffusion model, i.e. free water imaging [Duering et al., 2018]. 

The free water model was introduced to separate an extracellular free water compartment from 

the tissue compartment, i.e. intracellular water and water with hindered diffusion by fiber struc-
tures. In SVD, elevated free water was strongly correlated with clinical symptoms, whereas no 

correlation was found between changes in the tissue compartment and clinical symptoms. To-

gether with the current results, this suggests a role for edema formation without substantial loss 

of white matter structure in the pathophysiological cascade of SVD. In the second project, we 

established serum NfL as a novel blood marker for disease severity, showing strong associations 
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with clinical deficits and imaging markers for SVD. Due to the neuroaxonal origin of serum NfL, 

this result suggests that structural fiber damage plays a role in the disease mechanism. While this 

is at first glance in contrast with the imaging findings as discussed above, one can speculate that 

edema in SVD causes white matter compaction and possibly destruction of fiber tracts. Relevant 

white matter lesions at periventricular and subcortical locations due to excess extracellular fluid 

were already found in experimental and human post-mortem studies of SVD [Fernando et al., 

2006]. In other conditions it has been shown that edema induced neuroaxonal injury is responsi-
ble for elevation of neurofilament levels through the accumulation of neurofilament proteins along 

axonal varicosities and in terminal bulbs [Siedler et al., 2014].  

2.9 Conclusions and future directions 

A major roadblock for the progress in clinical care and research of SVD is the lack of accurate 

and valid biomarkers. In the current thesis, I addressed this issue by exploring the utility of novel 
blood- and imaging-based markers for the disease. The results obtained in this thesis encourage 

the implementation of novel SVD markers. Advanced diffusion models are highly sensitive for 

early and subtle white matter alterations, serum NfL is a complementary marker with considerable 

advantages in clinical and research settings, and cSS is a strong predictor for severe bleeding 

events.  

Future studies on advanced diffusion models should continue exploring the sensitivity for early 

stage SVD patients and mild disease manifestations by studying the temporal dynamics over a 

longer follow-up period and encourage the implementation of diffusion MRI markers by clinical 
validation studies. By prospectively studying correlations between changes in the candidate 

marker and disease severity, treatment response and clinical outcome, a crucial step will be made 

for advancing biomarker development from discovery to clinical application.  

Additional insight into the biological underpinnings of SVD related white matter lesions can be 

obtained through experimental animal studies [Joutel et al., 2014]. While there are a variety of 

mouse models available for SVD, the short life span of the animals makes it difficult to study the 

effects of an old age disease like SVD [Joutel et al., 2010]. Furthermore, the small amount of 

white matter in lissencephalic brains and differences in vascular anatomy compared with gyrence-
phalic brains represent an important translational gap. As such, neuroimaging manifestations of 

the disease are absent in most SVD mouse models [Chabriat et al., 2009; Joutel, 2011]. 

More work is needed to evaluate the safety of antithrombotic treatment in patients with cSS or to 

evaluate cSS as a reason to withhold antithrombotics. Since a randomized clinical trial will be 

difficult to perform, additional insights on the risk of bleeding and the relevance of cSS in relation 

to antithrombotiuc medication could also be obtained from large population-based samples [An 

et al., 2017].  
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