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Abstract

Topological phases of matter describe systems beyond the paradigm of spontaneous sym-
metry breaking, giving rise to unconventional phenomena with possible applications in
topological quantum computing. Almost 40 years after their discovery, topological phases
remain among the most active research fields of condensed matter physics. As evidenced
by the recent discovery of higher order topological insulators (HOTIs), novel physics can
emerge even in non-interacting systems. Theoretical investigations of strongly correlated
systems are extremely difficult due to the exponential growth of the quantum-mechanical
Hilbert space and frequently require the application of approximative methods such as
model wave functions. Tensor network states (TNS) are a class of variational wave func-
tions which allow an efficient encoding of relevant quantum many body states and which
form the basis for very successful numerical algorithms. Projected entangled pair states
(PEPS), a class of TNS in two and higher dimensions, permit the exact representation of
many interacting topological phases with time reversal symmetry. However, the description
of experimentally relevant chiral topological phases like the integer and fractional quantum
Hall effects is much more subtle using the TNS framework.

The first part of this thesis focuses on the description of chiral topological phases using
PEPS. Firstly, we study a previously proposed chiral PEPS that was conjectured to possess
anyonic excitations. By a careful analysis of its symmetries we are able to align important
entanglement observables more closely with the expected universal behavior. This high-
lights that efficient PEPS can possess characteristic properties of chiral topological phases.
Secondly, we focus on the issue that all known chiral PEPS have algebraic bulk correlation
functions and therefore cannot be the ground states of gapped local Hamiltonians. Since
this problem arises already for non-interacting chiral topological phases, we focus on two
examples of such systems and show that their ground states can be represented exactly by
efficient PEPS in a hybrid lattice with one momentum-space direction. After an inverse
Fourier transform, the PEPS with only real-space coordinates requires an exponentially
growing number of parameters for an exact representation. This provides a concrete illus-
tration of the impossibility to encode gapped chiral phases exactly with efficient PEPS.

Finally, we analyze a model wave function for a three-dimensional (3D) HOTI with
strong intrinsic correlations using large-scale variational Monte Carlo simulations. This
wave function is obtained by projection of two copies of a non-interacting HOTI with chiral
hinge states. We characterize the gapless hinge states of the interacting system and show
that they are of the same nature as the edge states of the 1/2 Laughlin state. Surprisingly,
the gapped surfaces host a two-dimensional (2D) phase whose topological entanglement
entropy is half of that of the 1/2 Laughlin state. Such a value cannot be obtained by any of
the known 2D topological orders, showing a clear departure not only from the Laughlin 1/2
physics but from conventional 2D topological order. This demonstrates that 3D topological
phases can host rich phenomena that are not yet fully understood.
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Zusammenfassung

Topologische Phasen der Materie beschreiben Systeme, die über das Paradigma der spon-
tanen Symmetriebrechung hinausgehen und unkonventionelle Phänomene hervorbringen.
Mögliche Anwendungen dieser Systeme sind topologische Quantencomputer. Fast 40 Jahre
nach ihrer Entdeckung stellen topologische Phasen eines der aktivsten Forschungsfelder in
der Physik der kondensierten Materie dar. Die Entdeckung von topologischen Isolatoren
höherer Ordnung (HOTIs) hat kürzlich neuartige Physik selbst in nicht wechselwirken-
den Systemen aufgedeckt. Theoretische Untersuchungen stark korrelierter Systeme sind
aufgrund des exponentiellen Wachstums des quantenmechanischen Hilbertraums extrem
anspruchsvoll und erfordern in der Regel die Anwendung approximativer Methoden wie
Modell-Wellenfunktionen. Tensor-Netzwerk-Zustände (TNS) sind eine Klasse variationeller
Wellenfunktionen, die eine effiziente Encodierung relevanter Quantenvielteilchenzustände
erlauben und welche die Grundlage sehr erfolgreicher numerischer Algorithmen darstellen.
Sogenannte “Projected entangled pair states” (PEPS), eine Gruppe von TNS in zwei und
mehr Dimensionen, gestatten die exakte Darstellung vieler wechselwirkender topologischer
Phasen mit Zeitumkehrsymmetrie. Allerdings ist die Beschreibung experimentell relevan-
ter chiraler topologischer Phasen wie der integralen und fraktionalen Quanten-Hall-Effekte
durch TNS sehr viel subtiler.

Der erste Teil dieser Arbeit befasst sich mit der Beschreibung chiraler topologischer
Phasen durch PEPS. Zunächst wird ein aus der Literatur bekannter chiraler PEPS stu-
diert, der mutmaßlich anyonische Anregungen besitzt. Durch eine sorgfältige Analyse sei-
ner Symmetrien können wichtige Verschränkungs-Observablen genauer mit dem erwarte-
ten universalen Verhalten in Einklang gebracht werden. Dies zeigt, dass effiziente PEPS
charakteristische Eigenschaften chiraler topologischer Phasen besitzen können. In einem
zweiten Schritt fokussiert sich die Arbeit auf das Problem, dass alle bekannten chiralen
PEPS algebraisch abfallende Korrelationsfunktionen in ihrem Inneren besitzen und des-
wegen nicht die Grundzustände lokaler Hamiltonoperatoren mit einer Energielücke sein
können. Da dies bereits für nicht wechselwirkende chirale topologische Phasen der Fall ist,
konzentriert sich die Analyse auf zwei Beispiele solcher Systeme. Es wird gezeigt, dass die
Grundzustände exakt darstellbar sind durch effiziente PEPS in einem hybriden Gitter mit
einer Impulsraumrichtung. Nach einer inversen Fouriertransformation benötigt der PEPS
eine exponentiell wachsende Zahl von Parametern, um mit ausschließlich Ortsraumkoordi-
naten exakt dargestellt zu werden. Dies ist ein konkretes Beispiel für die Unmöglichkeit,
chirale Phasen mit einer Energielücke exakt mit effizienten PEPS zu encodieren.

Abschließend wird eine Modell-Wellenfunktion für einen dreidimensionalen (3D) HO-
TI mit starken intrinsischen Korrelationen durch großangelegte variationelle Monte-Carlo-
Simulationen analysiert. Diese Wellenfunktion ist als die Projektion zweier Kopien ei-
nes nicht wechselwirkenden HOTI mit chiralen Kantenzuständen konstruiert. Es wird
gezeigt, dass die Kantenzustände des wechselwirkenden Systems dieselben Eigenschaf-
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ten haben wie die Randzustände eines 1/2-Laughlin-Zustands. Überraschenderweise be-
sitzt die zweidimensionale (2D) Phase der Oberflächen mit einer Energielücke eine topo-
logische Verschränkungsentropie, deren Wert halb so groß ist wie die topologische Ver-
schränkungsentropie des 1/2-Laughlin-Zustands. Dies kann durch keine der bekannten 2D
topologischen Ordnungen erklärt werden. Damit zeigt sich eine klare Abkehr nicht nur von
der Physik des 1/2-Laughlin-Zustands, sondern von allen bekannten 2D topologischen Ord-
nungen. Dies legt nahe, dass 3D topologische Phasen eine reiche Phänomenologie zeigen
können, die noch nicht vollständig verstanden ist.
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Chapter 1

Introduction

The objective of Condensed Matter Physics is to study and to understand the properties of
materials in different conditions. To this end, it is of special importance to identify universal
properties which are shared by all systems in the same phase. Theoretical physicists can
then construct simplified models which reproduce the universal properties of a given phase,
and whose analysis often results in a deeper understanding of the latter’s nature. The
theoretical study of simple models can also lead to experimentally verifiable predictions.
For example, it has become possible to engineer complex material heterostructures chosen
for their predicted useful properties.

Since the discoveries of the integer and fractional quantum Hall effects (QHE) in 1980 [4]
and 1982 [5], topological phases of matter have been the subject of intense research efforts
in Condensed Matter Physics. In contrast to conventional phases generated by sponta-
neous symmetry breaking, topological phases cannot be characterized using a local order
parameter. Their defining properties are instead of a topological nature, implying that
they are robust towards local perturbations. This can lead to an astounding quantization
of observables in macroscopic samples, allowing for instance the measurement of the Hall
conductivity e2/h of the integer QHE to a precision of more than 10 digits.

From a theoretical point of view, topological phases may be broadly separated into
two groups. Phases in the first group can be described using simple models that neglect
the interactions between electrons. The universal properties of these models can therefore
effectively be computed by considering only a single particle, making them very numerically
tractable. Examples include the phase of the integer QHE [6] and those of the celebrated
topological insulators in two and three dimensions [7], which were theoretically predicted
to occur in two-dimensional (2D) and three-dimensional (3D) materials in 2006 [8] and
2007 [9] and experimentally realized in 2007 [10] and 2008 [11, 12], respectively.

On the other hand, topological phases in the second group feature strong electronic
interactions, rendering their theoretical description much more complex. As a result of
the strong correlations, these phases can also give rise to a host of novel and fascinat-
ing phenomena subsumed under the term intrinsic topological order [13]. For instance,
2D phases with intrinsic topological order have point-like anyonic excitations which obey
neither fermionic nor bosonic exchange statistics. Such systems have thus been proposed
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as platforms for topological quantum computing, which would enjoy an inbuilt protection
from local errors due to the topological quantization [14]. Numerous theoretical models
displaying different kinds of intrinsic topological order have been constructed. However,
to date the only experimentally realized system with this kind of topological ordering is
the fractional QHE, where excitations with fractional charge [15, 16] and fractional statis-
tics [17, 18] have been observed in experiments.

After 40 years of research, many universal properties of 2D phases with intrinsic topo-
logical order are well understood and classified theoretically. However, several important
open problems remain. For example, the generalization of topological order to 3D systems
is a subject of current interest with many questions as yet unsettled. It has already be-
come apparent that the phenomenology of interacting topological phases can be even richer
in three dimensions, including for instance the recently proposed fractonic systems [19].
Another avenue towards higher-dimensional topological order may be presented by the re-
cently discovered higher order topological phases [20, 21, 22, 23, 24]. They are an entirely
new class of topological phases possessing universal boundary properties similar to the
characteristic edge physics of lower-dimensional conventional topological phases. There is
strong experimental evidence that bismuth realizes a higher order topological phase [25].

Moreover, it is an important task of theoretical Condensed Matter Physics to predict
the topological phase of a given interacting microscopic model. In the presence of strong
interactions, this is a highly non-trivial undertaking which can usually only be achieved
using numerical simulations. Due to the exponential growth of the quantum-mechanical
Hilbert space, straightforward numerical methods such as exact diagonalization are limited
to systems with very few particles. However, topological properties are emergent effects
requiring the presence of many particles, such that numerical methods based on well-chosen
approximations are highly important.

Historically, the method of model wave functions has enjoyed great success. Here, the
ground state of a quantum system in a given phase is approximated by a many body state
which displays the correct universal features and is obtained by an educated guess rather
than an exact solution of the problem. The most well-known example is the Laughlin
wave function introduced in 1983 as a model state for the fractional QHE [26]. It can
correctly predict the quantized Hall conductivity as well as the fractional charge and frac-
tional statistics of the bulk excitations. There are frameworks that allow the systematic
construction of model wave functions, for instance using conformal field theory [27, 28] or
Gutzwiller projections. The properties of the resulting model wave functions can often be
analyzed in numerical computations using for example Monte Carlo simulations.

Topological phases are characterized by unusual patterns of quantum entanglement [29,
30], intrinsic correlations that can be present between different parts of a quantum system.
Whereas entanglement is usually not directly experimentally observable, it can be com-
puted in numerical simulations and has become an important theoretical tool to diagnose
different kinds of topological phases [31]. Tensor network states (TNS) are a class of model
states which intrinsically follow the entanglement patterns characteristic for ground states
of gapped Hamiltonians. They can be viewed as natural generalizations of trivial product
states and are therefore highly numerically efficient. TNS lie at the heart of extremely
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successful variational algorithms [32, 33, 34, 35], and they have also led to analytical un-
derstanding of topological phases [36, 37]. TNS can naturally describe ground states of
many simple models with intrinsic topological order that are invariant under time reversal
symmetry [38, 39]. However, the description of experimentally relevant chiral topological
systems, where time reversal symmetry is broken like in the fractional QHE, is much more
subtle in the TNS framework and remains one of the open challenges in the field.

The first part of this dissertation focuses on different problems relating to the descrip-
tion of chiral topological phases using projected entangled pair states (PEPS) [40], a class
of TNS in two and higher dimensions. Due to the numerical usefulness of TNS, it would
be highly desirable to find efficient PEPS encodings of chiral topological phases. Indeed,
it is possible to construct PEPS possessing key universal properties of chiral topological
phases [41, 42, 43, 44, 45, 46, 47]. However, such TNS have algebraic bulk correlation
functions and therefore cannot be the ground states of gapped local Hamiltonians [43, 48].

Firstly, we study a chiral PEPS that has been conjectured to possess intrinsic topological
order [45, 46]. By a careful analysis of its symmetries we are able to align key entanglement
observables more closely with the expected universal behavior. This highlights that efficient
PEPS can possess certain characteristic properties of chiral topological phases. We then
consider PEPS for certain non-interacting chiral topological phases. We show that their
ground states can be represented exactly by efficient PEPS in a hybrid lattice with one
momentum-space direction. After an inverse Fourier transform, the PEPS with only real-
space coordinates requires an exponentially growing number of parameters for an exact
encoding. This provides a concrete illustration of the impossibility to encode gapped chiral
phases exactly with efficient PEPS. Finally, we consider a 3D higher order topological
phase with strong intrinsic correlations using a model wave function constructed from
Gutzwiller projection. Via large-scale variational Monte Carlo simulations, we are able to
characterize the gapless hinge states. We are also able to show that the gapped surfaces
host a topological phase beyond the known topological orders in purely 2D systems.

This dissertation is structured as follows. In the first three chapters, we provide an
overview of several important concepts underlying our research projects. In Chapter 2, we
review topological phases that can be realized in systems of free fermions in the presence
of certain symmetries. In Chapter 3, we discuss systems with intrinsic chiral topological
order, in particular the Laughlin wave function for the fractional QHE. In Chapter 4, we
review the concept of quantum entanglement including the entanglement entropies and the
entanglement spectrum, and we discuss TNS as a class of model wave functions based on
entanglement. Chapter 5 contains the reprints of my publications. Finally, in Chapter 6
we summarize and provide an outlook on possible directions of future research.
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Chapter 2

Symmetry protected topological phases
in free fermion systems

In this chapter we take a look at symmetry protected topological (SPT) phases that can
be realized in fermionic systems even without strong interactions between the electronic
constituents. In the literature, such systems are also frequently referred to as topological
insulators (TIs), but we will use the more modern term ’SPT’ when referring to the collec-
tion of all such phases. We begin in Sec. 2.1 with a historical overview of the discovery of
SPT phases, focusing in particular on the integer quantum Hall effect. We then review two
examples of systems hosting SPT phases: The one-dimensional (1D) Su-Schrieffer-Heeger
(SSH) model in Sec. 2.2 and a two-dimensional (2D) Chern insulator model in Sec. 2.3. In
both cases, we discuss the existence of protected gapless edge states and of a topological
invariant characteristic for the SPT phase. In Sec. 2.4 we then give a brief overview of how
this discussion can be generalized to other SPT phases. Finally, in Sec. 2.5 we discuss two
examples of the recently discovered higher order TIs.

2.1 Historical overview: The integer quantum Hall

effect

We give a brief historical overview, starting with a discussion of spontaneous symmetry
breaking in quantum phases in Sec. 2.1.1. We then describe the experimental discovery of
the integer quantum Hall effect in Sec. 2.1.2, and summarize some key properties of SPT
phases in Sec. 2.1.3.

2.1.1 Quantum phases and spontaneous symmetry breaking

Until 1980, it was believed that the primary mechanism for phase transitions in condensed
matter systems is that of spontaneous symmetry breaking: a system whose equations
of motion possess a certain symmetry is in a symmetry-broken phase if the preferred
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configuration of its constituents is not invariant under this symmetry. For example, as
the temperature is lowered below a critical temperature Tc the 2D Ising model undergoes
a thermal phase transition from a paramagnetic phase preserving the spin-flip symmetry
to a symmetry-broken ferromagnetic phase, where the system chooses a preferred spin
direction.

Quantum systems at zero temperature can also undergo symmetry-breaking quantum
phase transitions, if the symmetry of the ground state changes as certain parameters in the
Hamiltonian are varied. For instance, the 1D quantum Ising model in a transverse field on
a chain with N sites is described by the Hamiltonian

H = −
[N−1∑

j=1

σz,jσz,j+1 + g

N∑

j=1

σx,j
]
, (2.1)

where σx,j = ( 0 1
1 0 ), σy,j = ( 0 −i

i 0 ) and σz,j = ( 1 0
0 −1 ) are the Pauli matrices for the spin on

lattice site j ∈ {1, . . . , N} [49]. The parameter g describes the strength of the transverse
field compared to the nearest-neighbour spin coupling.

For all values of g, the Hamiltonian H commutes with the global Z2 symmetry

U =
N∏

j=1

σx,j (2.2)

representing a global spin flip. Indeed, U acts on the eigenstates {|↑〉, |↓〉} of σz with
σz|↑〉 = |↑〉 and σz|↓〉 = −|↓〉 as σx|↑〉 = |↓〉. At zero field strength g = 0, H has two
degenerate ground states |ψ1〉 = |↑ · · · ↑〉 and |ψ2〉 = |↓ · · · ↓〉 corresponding to all spins
pointing upwards and downwards, respectively. The system will spontaneously choose its
ground state as a superposition of |ψ1〉 and |ψ2〉. Since U |ψ1〉 = |ψ2〉, the ground state is
generally not invariant under the global spin flip U . However, in the limit g →∞, H has
a unique eigenstate |ψ0〉 = |→ · · · →〉 with |→〉 = (|↑〉+ |↓〉)/

√
2, such that σx|→〉 = |→〉

and U |ψ0〉 = |ψ0〉 is invariant under the global spin flip symmetry. Therefore, for some
critical value gc, the quantum Ising chain undergoes a quantum phase transition from a
symmetry-broken phase for g < gc to a symmetric phase for g > gc. The phase can be
diagnosed using the magnetization m =

∑N
j=1 σz,j as a local order parameter. Since m

changes sign under the global spin flip, a non-zero expectation value of the magnetization
implies a spontaneous breaking of the symmetry by the ground state.

2.1.2 The integer quantum Hall effect

The discovery of the quantum Hall effect (QHE) [4, 5] demonstrated that there exist
phases beyond the paradigm of spontaneous symmetry breaking, which are now referred to
as topological phases. The QHE is observed in 2D electron gases at very low temperatures
subject to a strong transverse magnetic field B. A typical set-up is sketched in Fig. 2.1(a),
with the 2D electron gas in the xy-plane and the transverse magnetic field pointing in
the positive z direction. An electrical current in the positive x direction then causes the
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(a) (b)

Figure 2.1: (a) Schematic of an experimental setup for observing the quantum Hall effect.
(b) Hall resistance and longitudinal resistance as a function of magnetic field B in the
integer QHE. The plateaus in the Hall resistance with vanishing longitudinal resistance
are clearly visible. From the 1998 Press Release of the Swedish Academy of Sciences.

appearance of a Hall voltage VH in the y direction between the edges of the sample. Classi-
cally, the associated Hall resistance RH is expected to grow linearly with the magnetic field
strength B. However, von Klitzing et al. found in 1980 [4] that at very low temperatures
and strong magnetic fields, RH displays plateaus where it remains constant as a function
of B and the longitudinal resistance vanishes. This is shown in Fig. 2.1(b). They observed
that the value of the Hall conductivity σH = 1/RH on these plateaus is given to extremely
high precision by

σH = ν × e2

h
(2.3)

with a positive integer ν ∈ N>0. This is referred to as the integer QHE.

Fig. 2.1(b) shows that the longitudinal resistance displays strong peaks when the value
of the Hall resistance changes from one plateau to the next. These are signatures of phase
transitions that the system undergoes between different quantum Hall plateaus. Notably,
these phase transitions are not caused by symmetry breaking, since the symmetries of the
system are the same on all Hall plateaus (the only difference being the strength of the
magnetic field). Therefore, there has to be a mechanism beyond spontaneous symmetry
breaking that can cause the appearance of quantum phases and quantum phase transitions.

2.1.3 Symmetry protected topological phases

In modern terminology, the integer QHE constitutes the first experimental observation of
a symmetry protected topological (SPT) phase. SPT phases can be realized in electronic
systems even without strong interaction effects. Every SPT phase is protected by certain
symmetries: it can only occur in systems which possess these symmetries, and it is stable
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under all perturbations respecting these symmetries. The integer QHE is a special case
of an SPT phase. It occurs in the absence of all symmetries except charge conservation,
in particular the absence of time reversal invariance, which is broken due to the magnetic
field. The phase of the integer QHE is thus stable to any (non-interacting) perturbations
as long as they preserve charge conservation.

For many SPT phases, one of their main signatures is the existence of gapless (d− 1)-
dimensional modes at physical edges of a d-dimensional system, which are topologically
protected as long as the symmetries of the SPT phase are preserved. Due to their topolog-
ical protection, the edge modes provide dissipation-less transport even in the presence of
disorder. As we will show in Sec. 2.3.3, in the case of the QHE they lead to the observed
quantization of the Hall conductance.

SPT phases cannot be detected by any local order parameter such as the magnetization,
but instead by a non-local quantity characterizing the system’s topology, a topological
invariant [6]. For each combination of symmetries that can lead to SPT phases, there is
an associated topological invariant which can take a certain set of discrete values. When a
system possessing these symmetries is in an SPT phase, the topological invariant evaluates
to a non-zero value. However, if the system is in the trivial phase that is adiabatically
connected to a trivial insulator, the value of the topological invariant is zero. Any two
systems possessing the symmetries in question and for which the topological invariant
takes the same value are in the same quantum phase. This means that their Hamiltonians
can be deformed into each other while respecting the symmetries and without a closing of
the bulk energy gap. Note that the set of values which a topological invariant can take,
and hence the number of possible non-trivial SPT phases, varies based on the protecting
symmetries. In Sec. 2.3.4 we discuss that for the integer QHE the appropriate topological
invariant is the Chern number, whose value is directly proportional to the observed Hall
conductance σH .

In order to illustrate the existence of gapless edge states and topological invariants,
we will now discuss two examples of systems which can host non-trivial SPT phases. We
begin with the 1D SSH model, before moving to a 2D Chern insulator (CI) model, which
can realize the same SPT phase as the integer QHE.

2.2 The Su-Schrieffer-Heeger model

The SSH model [50] is a simple example of an SPT phase in one dimension. In Sec. 2.2.1
we introduce the model using a tight-binding Hamiltonian, before discussing its gapless
protected edge states in Sec. 2.2.2 and the winding number as the appropriate topological
invariant in Sec. 2.2.3.

2.2.1 Hamiltonian

The SSH model describes the hopping of spinless fermions on a chain with two sites per
unit cell denoted A and B (see Fig. 2.2). On a chain with N unit cells and open boundary
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A AB B

t− δ t+ δ t− δ

Figure 2.2: Sketch of the SSH Hamiltonian, with the unit cell that consists of an A site
(red balls) and a B site (blue balls) marked by a green rectangle.

conditions (OBC), the tight-binding Hamiltonian is given by

HSSH = (1− δ)
N−1∑

j=0

(c†A,jcB,j + h.c.) + (1 + δ)
N−2∑

j=0

(c†B,jcA,j+1 + h.c.), (2.4)

with the dimerization parameter δ. Here, cA,j and cB,j are the annihilation operators for
a fermion on site A and B in unit cell j with j = 0, . . . , N − 1, respectively. They obey
canonical anti-commutation relations. Sites on the same unit cell are connected by a real
hopping of strength (1 − δ), whereas B and A sites on adjacent unit cells are connected
by a real hopping of strength (1 + δ). Therefore, δ characterizes how much the hopping
strength differs between lattice sites in the same and in different unit cells.

The SSH Hamiltonian of Eq. (2.4) is invariant under the anti-unitary time reversal
operation. It is also invariant under spatial inversion acting on the fermionic orbitals as

cA,j 7→ cB,N−j+1, (2.5a)

cB,j 7→ cA,N−j+1. (2.5b)

In addition, the Hamiltonian anti-commutes with the unitary chiral symmetry C defined
by

CcA,jC 7→ cA,j, (2.6a)

CcB,jC 7→ −cB,j, (2.6b)

since all nearest-neighbour hopping terms connect two sites on different sublattices, which
pick up a negative sign under the application of C. Therefore, {HSSH , C} = 0, where
the curly brackets denote the anti-commutator. If |ψ〉 is an eigenstate of the Hamilto-
nian with energy E, HSSH |ψ〉 = E|ψ〉, then the chiral symmetry implies that C|ψ〉 is an
eigenstate with energy −E. Indeed, HSSHC|ψ〉 = −CHSSH |ψ〉 = −EC|ψ〉 due to the
anti-commutation of the Hamiltonian with the chiral symmetry. Therefore, C implies that
the spectrum of the Hamiltonian is symmetric w.r.t. the energy zero, since any eigenstate
with energy E has an image under the chiral symmetry with energy −E.

On a chain with periodic boundary conditions (PBC), we can easily compute the energy
spectrum of the SSH Hamiltonian by moving to momentum space. The Fourier transform
of the fermionic mode operators for the A sites is given by

c†A,k =
1√
N

N−1∑

j=0

e−ijkc†A,j, (2.7)
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and similarly for the B sites. Here, k = 2πn/N with an integer n ∈ {0, . . . , N − 1} is the
lattice momentum. Applying this Fourier transform to the SSH Hamiltonian, one obtains
the Bloch Hamiltonian

HSSH(k) = σx [(1− δ) + cos(k)(1 + δ)] + σy(1 + δ) sin(k), (2.8)

with energy bands ±ε(k) and dispersion

ε(k) =
√

2×
√

(1 + δ2) + cos(k)(1− δ2). (2.9)

This dispersion is gapless if δ = 0 with a gap closing at k = −π, and gapped otherwise.
Therefore, the only parameter value where a phase transition may occur is δ = 0. We now
want to determine if the phases of the SSH model for δ < 0 and δ > 0 are identical, or
if they are distinct phases, in which case the value δ = 0 would mark a phase transition.
Notably, the dispersion relation of Eq. (2.9) is symmetric under the transformation δ 7→ −δ.
The bulk energy spectrum thus offers no distinction between the regions δ < 0 and δ > 0.
However, we now show that the energy spectrum of the SSH model on a chain with OBC
is very different in these two regions.

2.2.2 Gapless edge states for δ > 0

Since we know that the only bulk gap closing in the SSH model occurs for δ = 0, it is
in principle enough to determine the phase of the model for a single value of δ from each
of the two regions δ < 0 and δ > 0 of the phase diagram. Therefore, let us first study
the value δ = −1 to understand the phase of the SSH model for δ < 0. At this point,
the second term in the Hamiltonian of Eq. (2.4) vanishes identically such that there is no
hopping between adjacent unit cells. We therefore say that the SSH model at δ = −1 is
fully dimerized. In this limit the Hamiltonian with OBC is identical to the Hamiltonian
with PBC. The dispersion relation of Eq. (2.9) then implies that the single particle energy
spectrum is fully gapped with N levels at +2 and N levels at −2.

On the other hand, in order to understand the nature of the phase for δ > 0 we consider
the point δ = 1. In this case, the first term in the Hamiltonian of Eq. (2.4), describing the
hopping between sites in the same unit cell, is identically zero. Hence, the SSH model is
fully dimerized. In the bulk of the SSH chain, two sites in adjacent unit cells form pairs
that decouple from the rest of the system. In analogy to the case δ = −1, they lead to
N −1 levels at +2 and N −1 levels at −2 in the single particle energy spectrum. However,
the mode operators for the fermions at the two ends of the chain, c†A,0 and c†B,N−1, do not
appear in the Hamiltonian. Hence, these operators create excitations with zero energy,
which are fully localized on the two ends of the chain.

The presence and absence of these mid-gap states is characteristic for the parameter
regions δ > 0 and δ < 0, respectively. In Fig. 2.3(a) we show the single particle energy
spectrum of the SSH model on an open chain with N = 20 unit cells for 20 values of δ
ranging between −1 and 1. Whereas the spectrum is fully gapped for all negative values
of δ, for all positive values of δ there are two mid-gap states close to zero energy. On a
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Figure 2.3: (a) Single particle energy spectrum of the SSH model on an open chain with
N = 20 unit cells and t = 1 for different values of the dimerization −1 ≤ δ ≤ 1. For δ > 0,
there are two in-gap states close to zero energy, whereas the spectrum is fully gapped
for δ < 0. (b) Density of the two eigenvectors v+ and v− of the Hamiltonian matrix of
Eq. (2.10) corresponding to the mid-gap states of the SSH model, showing their exponential
localization at the edges. As in (a), the chain has N = 20 sites, t = 1, δ = 0.5 and we have
added a small staggered chemical potential µ = 0.3 to break the inversion symmetry of the
SSH model. The x-axis shows the unit cell index j, where integer and half-integer values
of j correspond to A and B sites, respectively. Density values below 10−18 are suppressed.

chain with a finite number of sites and away from the dimerized limit δ = 1, they acquire
a small finite energy which decays exponentially with the system size.

The mid-gap states for δ > 0 are exponentially localized at the two ends of the chain. In
order to show this, it is convenient to add a small staggered chemical potential to the SSH
Hamiltonian, which is µ on A sites and −µ on B sites. The chemical potential breaks both
inversion symmetry and chiral symmetry. A small µ therefore breaks the degeneracy of
the edge modes, and determines which of the two modes is occupied at half filling. Indeed,
in the dimerized limit for δ = 1, the left edge mode associated with c†A,0 acquires a small

positive energy µ, whereas the right mode associated with c†B,N−1 obtains a small negative
energy −µ. With respect to the basis of local mode operators for the chain ordered as
c†A,0, c

†
B,0, c

†
A,1, . . . , c

†
B,N−1, the SSH Hamiltonian including the staggered chemical potential

can be written as a 2N × 2N matrix of the form

HN(µ, t, δ) =




µ t− δ 0 0 . . . 0 0
t− δ −µ t+ δ 0 . . . 0 0

0 t+ δ µ t− δ . . . 0 0

0 0 t− δ −µ . . . 0 0
...

...
...

. . . . . . . . .
...

0 0 0 . . .
. . . µ t− δ

0 0 0 0 . . . t− δ −µ




. (2.10)
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For the SSH Hamiltonian of Eq. (2.4) we have µ = 0 and t = 1. For δ > 0, we denote
the two eigenvectors of Eq. (2.10) that lead to the mid-gap states at energies close to ±µ
by v±. In Fig. 2.3(b), we plot the density |v+(j)|2 and |v−(j)|2 for an open chain with
δ = 0.5, t = 1 and a small chemical potential µ = 0.1 as a function of the unit cell index
j. The eigenstates are exponentially localized at the left and right edges of the chain,
respectively. Moreover, up to exponentially small corrections the left and right edge modes
are supported on only A and only B sites, respectively.

It is not difficult to show the exponential localization of the edge modes analytically. In-
deed, as long as t−δ < t+δ, the mid-gap states of HN(µ, t, δ) are given up to exponentially
small corrections by the vectors

v+(t, δ) =
(

1 0 − t−δ
t+δ

0 . . . −
(
t−δ
t+δ

)N−1
0
)
, (2.11a)

v−(t, δ) =
(

0 −
(
t−δ
t+δ

)N−1
0 −

(
t−δ
t+δ

)N−2
. . . 0 1

)
, (2.11b)

where we used the same basis of mode operators as for HN(µ, t, δ). Indeed, applied to the
Hamiltonian matrix of Eq. (2.10), these vectors satisfy the equation

HN(µ, t, δ)v±(t, δ) = ±µ v±(t, δ) +O
(

(t− δ)
(
t− δ
t+ δ

)N−1
)
, (2.12)

and are therefore eigenvectors with eigenvalues ±µ up to a correction which decays expo-
nentially with the system size N (remember that (t− δ)/(t + δ) < 1). The vector v+ has
support only on the A sites of the chain and is strongly localized at the left end of the
chain with an exponentially decaying tail in the bulk. On the other hand, the vector v−
has support only on the B sites of the chain and is localized at the right end of the chain.
This is precisely the behavior shown in Fig. 2.3(b).

For δ > 0, the SSH model on an open chain therefore possesses robust mid-gap states
which are localized at the two edges of the chain. This hints at a topologically non-trivial
nature of the phase for δ > 0. On the other hand, for δ < 0, the open SSH model does not
possess any edge states. In the following subsection, we show that the topological nature of
the phase for δ > 0 can be confirmed by considering its topological invariant, the winding
number.

2.2.3 Winding number

In Sec. 2.2.1 above we showed that the dispersion relation of the SSH model is invariant
under the exchange δ 7→ −δ, such that the two regions δ > 0 and δ < 0 appear identical in
the bulk energy spectrum. However, in Sec. 2.2.2 we showed that the energy spectrum with
OBC is very different in the two regions, suggesting the existence of two distinct phases.
It is therefore natural to ask how the two phases can be distinguished in the system with
PBC. For the SSH model, this can be done by computing the winding number of the Bloch
Hamiltonian, the topological invariant for the SSH phase.
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Since the SSH model has only two energy bands, its Bloch Hamiltonian from Eq. (2.4)
can be written as a linear combination of the Pauli matrices,

HSSH(k) = h(k) · σ. (2.13)

Here, σ = (σx σy)
T is the 2D vector of Pauli matrices, and h(k) = (hx(k) hy(k))T is a

2D vector of real numbers that depends on the lattice momentum k ∈ [0, 2π). Note that
a term proportional to σz in Eq. (2.13) is forbidden due to the chiral symmetry C of the
SSH model.

Away from δ = 0, the SSH model is gapped such that h(k) 6= 0 for all momenta k.
Due to the periodicity of the lattice momentum k in the Brillouin zone, h(k) therefore
describes a loop in the 2D punctured plane R2 \ {0}. The winding number Wδ ∈ N then
measures how often this loop winds around the origin 0 counter-clockwise. For the fully
dimerized limit of the SSH model in the topological phase at δ = 1, the Bloch Hamiltonian
is described by the vector

h(k) = 2×
(

sin k
cos k

)
. (2.14)

Clearly, this function describes one full circle around the origin, such that the associated
winding number is Wδ=1 = 1. On the other hand, in the trivial phase for δ = −1, the
Hamiltonian vector is given by the constant

h(k) =

(
2
0

)
, (2.15)

such that the loop does not enclose the origin and the winding number is Wδ=−1 = 0. For
general values of δ, the Hamiltonian vector describes a circle with radius 1 + δ around the
point ([1− δ] 0)T . This circle encloses the origin if and only if δ > 0.

Therefore, the value of the winding number serves as an unambiguous distinction be-
tween the topological and the trivial phases of the SSH model. Moreover, as it can take
only discrete integer values, the winding number cannot change under small perturba-
tions respecting the chiral symmetry C. The edge modes of the SSH model can be seen
as the necessary gap closing point between a region with W 6= 0 and the vacuum with
W = 0. Their presence is therefore topologically protected by the winding number against
perturbations respecting the chiral symmetry. This is an instance of the bulk-boundary
correspondence in SPT phases, where a non-trivial bulk implies a non-trivial protected
edge physics.

2.3 The two-dimensional Chern insulator

As we mentioned in Sec. 2.1 above, the integer QHE is an example of an SPT phase
which requires an explicit breaking of time reversal symmetry. This phase is therefore
referred to as a chiral phase. In the QHE, time reversal is broken by the external magnetic
field. However, as first suggested by Haldane in 1988 [51], systems which break time
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Figure 2.4: Hall conductivity σxy and longitudinal conductivity σxx at zero external mag-
netic field as a function of gate voltage in a magnetic TI. The plateau of σxy close to the
value e2/h with a simultaneous dip in σxx demonstrate the quantum anomalous Hall effect.
From Cui-Zu Chang et al. “Experimental Observation of the Quantum Anomalous Hall
Effect in a Magnetic Topological Insulator”. In: Science 340.6129 (2013), pp. 167–170.
Reprinted with permission from AAAS.

reversal intrinsically can host this phase also without an external magnetic field. This is
referred to as the quantum anomalous Hall effect. The quantum anomalous Hall effect
has been observed experimentally in magnetic materials with spin-orbit coupling [52], see
Fig. 2.1. Moreover, ultracold atoms in optical lattices have allowed the implementation of
models with topologically non-trivial band structures [53, 54, 55], including the Haldane
model [56]. They therefore constitute a promising platform for the observation of the
quantum anomalous Hall effect.

As we will discuss below, the topological invariant appropriate for the characterization
of integer and anomalous quantum Hall phases is the Chern number. Lattice systems in
this phase are thus referred to as Chern insulators (CIs). We now consider a simple tight-
binding model which can host a CI phase. We do not use Haldane’s original honeycomb
lattice model, but instead make use of a simpler square lattice model [57]. This model is
also relevant for our publication of Ref. [3] (see Sec. 5.3). We begin by introducing the
Hamiltonian in Sec. 2.3.1, before studying its gapless chiral edge modes in Sec. 2.3.2. In
Sec. 2.3.3, we then show how the edge modes lead to a Hall conductivity σxy = e2/h, and
we conclude in Sec. 2.3.4 with a discussion of the Chern number.

2.3.1 Hamiltonian

The tight-binding model describes spinless fermions hopping on a square lattice with Nx

unit cells in the horizontal direction and Ny unit cells in the vertical direction, where each
unit cell consists of two lattice sites labeled A and B. The system is sketched in Fig. 2.5(a),

http://dx.doi.org/10.1126/science.1234414
http://dx.doi.org/10.1126/science.1234414
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where the A and B sites are drawn in blue and red, respectively, and the unit cells are
marked by green rectangles. With PBC in both directions, the Hamiltonian is given by

HCI =
Nx−1∑

x=0

Ny−1∑

y=0

[
t
(
c†A,(x,y)cA,(x+1,y) + c†A,(x,y)cB,(x,y) + c†A,(x,y)cB,(x,y+1) − c†B,(x,y)cB,(x+1,y)

)

+i∆
(
c†B,(x+1,y)cA,(x,y) + c†A,(x+1,y)cB,(x,y) + c†A,(x,y)cB,(x+1,y+1) + c†B,(x,y)cA,(x+1,y−1)

)
+h.c.

]
.

(2.16)

Here, c†i,(x,y) is the creation and ci,(x,y) the annihilation operator for a fermion on site

i ∈ {A,B} in the unit cell at position (x, y) for x = 0, . . . , Nx − 1 and y = 0, . . . , Ny − 1.
These operators obey canonical anti-commutation relations

{c†i,(x,y), c
†
j,(x′,y′)} = {ci,(x,y), cj,(x′,y′)} = 0, (2.17a)

{c†i,(x,y), cj,(x′,y′)} = δi,jδx,x′δy,y′ , (2.17b)

for i, j ∈ {A,B}, x, x′ ∈ {0, . . . , Nx−1} and y, y′ ∈ {0, . . . , Ny−1}. The couplings of the CI
Hamiltonian of Eq. (2.16) are sketched in Fig. 2.5(a). Each pair of nearest-neighbour sites
is connected by a real hopping of strength t marked by black lines. Between two B sites,
the nearest-neighbour hopping has a negative sign (marked by dashed black lines) to ensure
that there is a flux π through every plaquette. In addition, next-nearest neighbour sites
are connected by a purely imaginary hopping i∆ across the diagonals of the plaquettes,
marked in Fig. 2.5(a) by red arrows. In the following, we consider the model at half filling,
where the number of particles is equal to the number NxNy of unit cells.

The Hamiltonian of Eq. (2.16) breaks time reversal symmetry T explicitly whenever
the purely imaginary next-nearest neighbour hopping is non-vanishing. Indeed, under time
reversal, the fermionic real-space creation operators are invariant,

T : c†A,(x,y) 7→ c†A,(x,y), c
†
B,(x,y) 7→ c†B,(x,y). (2.18)

Therefore, the nearest-neighbour hopping terms in Hamiltonian (2.16) are unchanged.
However, due to the anti-unitarity of T , the imaginary next-nearest neighbour hopping
changes sign under time reversal, i∆ 7→ −i∆.

In order to study the bulk properties of the CI model, it is convenient to express the
Hamiltonian of Eq. (2.16) in momentum space. The Fourier transform of the real-space
creation operators is given by

c†α,(kx,ky) =
1√
NxNy

∑

x,y

e−i(xkx+yky)c†α,(x,y), (2.19)

where α ∈ {A,B}, kx = 2πnkx/Nx with an integer nkx ∈ {0, . . . , Nx−1} and ky = 2πnky/Ny

with an integer nky ∈ {0, . . . , Ny − 1} are the lattice momenta in the first Brillouin zone.
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Figure 2.5: (a) Microscopic model for the CI defined on a square lattice with two sublattices,
A in blue and B in red. The nearest-neighbour hopping t (−t for dashed lines) drawn in
black is real, whereas the next-nearest neighbour hopping i∆ in the direction of the red
arrows is purely imaginary. (b) Single particle energy spectrum of the CI model with
parameters t = 1 and ∆ = 1/2 for a system of 40 × 40 unit cells and PBC in both
directions, as a function of kx.

Due to the translation invariance of the CI Hamiltonian, it is diagonal in momentum space
and can be written as

HCI =
∑

kx,ky

(
c†A,(kx,ky) c

†
A,(kx,ky)

)
HCI (kx, ky)

(
cA,(kx,ky)

cB,(kx,ky)

)
, (2.20)

where HCI(kx, ky) is the Bloch Hamiltonian matrix of size 2×2 at the momentum (kx, ky).
As a function of the momenta, the Bloch Hamiltonian for the model of Eq. (2.16) is given
by

HCI (kx, ky) = [(2∆ sin(kx) + t) cos(ky)− 2∆ sin(kx) + t]σx

+ [(2∆ sin(kx) + t) sin(ky)]σy + 2t cos(kx)σz. (2.21)

The eigenvalues of the Bloch Hamiltonian define the Bloch bands, which have energy
±ε (kx, ky), with

ε (kx, ky) =
√

[(2∆ sin(kx) + t) cos(ky)− 2∆ sin(kx) + t]2 + [(2∆ sin(kx)− t) sin(ky)]
2 + [2t cos(kx)]

2.

(2.22)
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Figure 2.6: (a) Cylinder geometry of the CI with PBC in the x direction and OBC in the
y direction. There are chiral modes of opposite chirality at the top and bottom edges.
(b) Single particle energy spectrum of the CI model in the cylinder geometry with param-
eters t = 1 and ∆ = 1/2 for a system of 40× 40 unit cells as a function of kx. The gapless
edge modes are clearly visible.

For a non-zero nearest-neighbour hopping t, the dispersion ε is gapped unless ∆ = 0.
Therefore, the model has two gapped phases for ∆/t > 0 and ∆/t < 0, separated by a
gap closing at ∆ = 0. Since the sign of ∆ changes under time reversal T , the two phases
are time reversal conjugates, and we can focus on the phase ∆/t > 0. In Fig. 2.5(b), we
show the single particle energy spectrum of the CI model with PBC in both directions for
parameters t = 1 and ∆ = 1/2.

2.3.2 Edge states and relation to SSH model

We now want to show that the CI model hosts gapless edge modes in a geometry with
open boundaries. To that end, we consider the model in a cylinder geometry with PBC
in the x direction, but OBC in the y direction as sketched in Fig. 2.6(a). After a partial
Fourier transformation in the periodic x direction, the Bloch Hamiltonian of the CI model
takes the form

HCI(kx) =

Ny−1∑

y=0

[
t′(kx)

(
c†A,(kx,y)cA,(kx,y) − c†B,(kx,y)cB,(kx,y)

)

+ (t−∆′(kx))
(
c†B,(kx,y)cA,(kx,y) + c†A,(kx,y)cB,(kx,y)

) ]

+

Ny−2∑

y=0

[
(t+ ∆′(kx))

(
c†A,(kx,y)cB,(kx,y+1) + c†B,(kx,y+1)cA,(kx,y)

) ]
, (2.23)
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where we defined the effective kx-dependent couplings

t′(kx) = 2t cos(kx), (2.24a)

∆′(kx) = 2∆ sin(kx). (2.24b)

When comparing the Hamiltonian of Eq. (2.23) to the Hamiltonian of the SSH model of
Eq. (2.4), we see that for each value of the lattice momentum kx, the CI model with OBC in
the y direction defines an effective SSH model with dimerization δ = ∆′(kx) and staggered
chemical potential µ = t′(kx). At the two momenta kx = π/2 and kx = 3π/2, the effective
chemical potential t′ = 2t cos(kx) vanishes such that the effective SSH model recovers its
chiral symmetry. Moreover, at these two momenta the effective dimerization is equal to
∆′(π/2) = 2∆ and ∆′(3π/2) = −2∆, such that the SSH model is in its topological and
trivial phase, respectively (remember that we are focusing on the case ∆/t > 0). For this
reason, the CI can be interpreted as a charge pumping interpolation between the trivial
and the topological phases of the SSH model, along which the chemical potential µ is varied
such that there is some charge transport.

With this knowledge, we can characterize the edge modes of the CI model using the
edge states of the SSH model discussed in Sec. 2.2.2 above. Indeed, we showed that the
open SSH model with δ > 0 with a finite staggered chemical potential µ has two eigenmodes
that lie inside the band gap with energies ±µ and which are exponentially localized at the
edges. Applied to the CI model, this implies that for any momentum kx ∈ (0, π) such that
∆′(kx)/t > 0, there are two mid-gap states with dispersion

Eedge,±(kx) = ±2t cos(kx) (2.25)

which are exponentially localized at the top edge (in the case of Eedge,+) and the bottom
edge of the cylinder (in the case of Eedge,−). The single particle energy spectrum of the CI
model for parameters t = 1 and ∆ = 1/2 is shown in Fig. 2.6(b) and the edge modes with
dispersion given in Eq. (2.25) are clearly visible. In particular, at kx = π/2, the two mid-
gap modes have zero energy and cross each other. At this point, the dispersion of the two
modes is linear, and we say that they are chiral modes of opposite chirality, corresponding
to the opposite signs of the velocity v± = (1/~)∂Eedge,±/∂kx. Note that single chiral modes
such as the CI edge modes cannot occur in a purely one-dimensional lattice system, which
necessarily features an equal number of chiral and anti-chiral modes.

2.3.3 Relation to Hall conductance

We can understand how the chiral edge modes of the CI model lead to a Hall conductance
σxy = e2/h using the Landau-Büttiker formalism [58] and a simple semi-classical argument.
Indeed, let us consider the CI as sketched in Fig. 2.6(a) with PBC in the x direction and
OBC in the y direction, such that there is one chiral edge mode at the top edge and one
chiral mode of opposite chirality at the bottom edge. We assume that the Fermi energy
EF lies in the band gap, such that only the two edge states are crossed by it. We now
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apply a Hall voltage VH between the top and bottom edges of the CI, and want to infer
which current Ix in the horizontal direction is caused by it.

As sketched in Fig. 2.6(a), VH leads to a shift of the Fermi energy EF → EF + eVH
only at the top edge of the sample, while the Fermi energy at the bottom edge remains
unchanged. Therefore, an additional n single particle modes from the chiral mode at the
top edge become occupied. If we denote by ~v+ = ∂Eedge,+/∂kx the slope of the edge mode
dispersion close to the Fermi energy, the number of additional occupied orbitals is

n = eVH × (~v+)−1 ×
(

2π

Nx

)−1

, (2.26)

where 2π/Nx is the spacing of the single particle orbitals in the Brillouin zone. Each of
these occupied modes causes a current

Imode = v+ ×
e

Nx

, (2.27)

where we used that v+ is the group velocity and assumed an equal distribution of the charge
e over the whole edge of the cylinder of length Nx. Combining the number of modes n and
the current per mode Imode, we find that the horizontal current is given by

Ix = Imode × n =
e2

h
× VH , (2.28)

leading to a Hall conductance σxy = Ix/VH = e2/h.

2.3.4 Chern number

In a more rigorous argument, it can be shown that the Hall conductance for a system in
a CI or integer quantum Hall phase is given as in Eq. (2.3) by σxy = (e2/h)ν where the
integer ν is the Chern number [6]. The Chern number is the topological invariant of the
integer quantum Hall phase and enjoys an integer quantization. For a translation invariant
tight-binding Hamiltonian for free fermions defined on a lattice, the Chern number is given
by the first Chern class of the principal bundle over the Brillouin zone defined by the
occupied Bloch bands [59]. In practice, it can be computed as the integral of the Berry
connection over the Brillouin zone [49].

In order to compute the Chern number of the CI model of Eq. (2.16), we make use of
a simpler topological index, the Pontryagin index, which is applicable to models with only
two energy bands and can be used to compute the Chern number of the lower band [49].
To that end, similarly to the case of the SSH model, we consider the Bloch Hamiltonian
of the model and express it as a linear combination of the Pauli matrices,

HCI(kx, ky) = h(kx, ky) · σ. (2.29)

Here, σ = (σx σy σz)
T is the three-dimensional (3D) vector of Pauli matrices, and the 3D

Hamiltonian vector h(kx, ky) = (hx(kx, ky) hy(kx, ky) hz(kx, ky))
T depends on the lattice
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momentum in the 2D Brillouin zone. Since the CI model is gapped for ∆/t > 0, which
is the case we are considering here, the vector h(kx, ky) cannot be equal to 0 for any
momentum value. The Pontryagin index then measures how often the map h from the 2D
Brillouin zone to R3 \ {0} covers a closed surface (such as a sphere) around the origin 0.
For the CI model, the Hamiltonian vector can be directly read off from Eq. (2.21) as

h(kx, ky) =




(2∆ sin(kx) + t) cos(ky)− 2∆ sin(kx) + t
(2∆ sin(kx) + t) sin(ky)

2t cos(kx)


 . (2.30)

For simplicity, we focus on the parameters t = 1 and ∆ = 1/2 since we know that the phase
is the same for all values of ∆/t > 0. In this case, the map h(kx, ky) reaches the points
(0 0 ± 2)T corresponding to the north and south poles of a sphere around the origin for
kx ∈ {0, π} and ky = π, respectively. On the other hand, for kx = π/2, the map h(kx, ky)
describes a circle around the origin in the xy-plane. In this way, it is easy to see that the
map defines a surface that encloses the origin exactly once. As a result, the Chern number
of the CI model is equal to unity, ν = 1, as expected based on the relation σxy = (e2/h)ν.

Due to its integer quantization, the Chern number is robust against perturbations as
long as the bulk gap does not close. It can be shown that the boundary between a region
with ν 6= 0 and a trivial region must host gapless chiral edge states [49]. This is another
example for the bulk-boundary correspondence in SPT phases. Therefore, the presence of
the chiral edge modes is topologically protected, explaining the extreme accuracy even in
the presence of disorder of the experimentally observed value for the Hall conductivity.

2.4 Extension to other symmetry classes

The SSH model and the CI model are two examples of non-trivial SPT phases protected
by a combination of time reversal symmetry and particle-hole symmetry. In total, there
are 10 symmetry classes that can be defined by these two anti-unitary symmetries and
their product, the chiral symmetry. The non-trivial SPT phases that can occur in these
symmetry classes in different spatial dimensions have been classified theoretically in the
10-fold way [60, 61, 62].

An important SPT phase from the 10-fold way is given by the TI in two and three
dimensions protected by time reversal symmetry [63, 64]. A minimal model for a 2D
TI can be constructed by combining two copies of the Haldane model in a time reversal
invariant way [7]. In 2006, a 2D TI was theoretically predicted in 2D HgTe quantum
wells [8] and experimentally observed in 2007 [10]. The existence of a 3D TI was pre-
dicted for certain materials in 2007 [9] and experimentally observed shortly thereafter [11,
12]. The experiments included the direct observation of an odd number of surface Dirac
cones characteristic for the 3D bulk TI via angle-resolved photoemission spectroscopy (see
Fig. 2.7). Similar to the 1D chiral edge modes of the CI, the existence of an odd number
of Dirac cones is forbidden in a purely 2D system and possible only on the surface of a
higher-dimensional system.
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Figure 2.7: Angle-resolved photoemission spectroscopy measurement of a single Dirac cone
at the surface of a 3D TI. From Yiman Xia et al. “Observation of a large-gap topological-
insulator class with a single Dirac cone on the surface”. In: Nature Physics 5 (May 2009),
pp. 398–402. Reprinted with permission from Nature Publishing Group.

The classification of SPT phases has been extended to crystalline symmetries such as
mirror and rotation symmetries. In fermionic systems, they give rise to crystalline TIs
which can have protected gapless states at high-symmetry-surfaces [65, 66]. Akin to the
TIs from the 10-fold way, crystalline TIs are characterized by bulk topological invariants
which take a non-zero value in a topologically non-trivial phase. In the next section, we
will discuss a generalized form of crystalline TIs, which have gapped edges and surfaces,
but gapless states at corners and hinges in two and three dimensions, respectively.

The topological properties of TIs can be traced back to the non-trivial nature of their
band structures, exemplified for instance by a non-zero Chern number. The band structure
is a single particle property and thus not inherently quantum mechanical. Indeed, it is pos-
sible to construct classical systems with coordinate spaces of non-trivial connectivity, which
have band structures akin to those of TIs. These systems have a similar phenomenology
including gapless boundary modes. Such classical topological models have been realized in
photonic [67, 68], mechanical [69, 70], acoustic [71] and electronic [72, 73] systems. Note
that in classical systems, there is usually no topological quantization, and the boundary
modes often do not enjoy a topological protection, such that the systems are much weaker
to perturbations.

http://dx.doi.org/10.1038/nphys1274
http://dx.doi.org/10.1038/nphys1274
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(a) (b)

Figure 2.8: (a) Experimentally observed spatial intensity profiles showing localized corner
modes in a photonic lattice realization of the topological quadrupole model. From Sunil
Mittal et al. “Photonic quadrupole topological phases”. In: Nature Photonics 13, 692-
696 (2019) (Dec. 21, 2018). arXiv: 1812.09304v2 [physics.optics]. Reprinted wit
permission. (b) Differential conductance map of a hexagonal pit on a bismuth (111) surface,
showing high conductance at every other edge of the hexagonal pit, a pattern characteristic
for the hinge modes of a helical 3D HOTI. From Frank Schindler et al. “Higher-order
topology in bismuth”. In: Nature Physics 14.9 (Sept. 2018), pp. 918–924. Reprinted with
permission.

2.5 Higher order topological insulators

Recently, an entirely new class of topological phases has been discovered among the crys-
talline TIs: Higher order topological insulators (HOTIs) [20, 21, 22, 23, 24]. Like con-
ventional crystalline TIs, HOTIs are protected by crystalline symmetries such as mirror
and rotation symmetries, possibly augmented by time reversal symmetry. In contrast to a
conventional TI in d dimensions, whose protected boundary modes are of dimension d− 1,
a HOTI of order n has (d−n)-dimensional protected boundary modes. In this terminology,
conventional TIs are therefore of order n = 1. On the other hand, second order TIs in two
dimensions and third order TIs in three dimensions have protected zero-dimensional corner
modes. In three dimensions, second order TIs have protected 1D hinge modes. Bosonic
models hosting higher order topological phases have also been found [74, 75].

Important examples of second order topological phases include the 2D quadrupole
model of Ref. [20] and the 3D chiral and helical hinge insulators of Ref. [21]. The topolog-
ical phase of the quadrupole model is protected by two anti-commuting mirror symmetries
and has been experimentally observed in mechanical [77], acoustic [78, 79], photonic [76,
80, 81] and electrical [82, 83, 84] systems (see Fig. 2.8(a)). There is strong experimental
evidence that the 3D helical hinge insulator is realized in Bismuth, where conductance pat-
ters indicative of hinge modes have been observed (see Fig. 2.7(b)) [25]. In the following,

http://dx.doi.org/10.1038/s41566-019-0452-0
http://arxiv.org/abs/1812.09304v2
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Figure 2.9: Sketch of the quadrupole model from Ref. [20]. A unit cell (marked with a
green square) contains four sites. The nearest-neighbour hopping t within unit cells is
sketched in black, whereas the nearest-neighbour hopping t′ between unit cells is sketched
in red. The couplings corresponding to dashed bonds carry a negative sign to ensure a flux
π through every plaquette. Lattice sites marked in blue and red have a chemical potential
µ and −µ, respectively.

we will illustrate the characteristics of HOTIs using the 2D quadrupole model by discussing
its Hamiltonian in Sec. 2.5.1 and key properties of its topological phase in Sec. 2.5.2. We
conclude by highlighting some aspects of the 3D chiral hinge insulator in Sec. 2.5.3.

2.5.1 The topological quadrupole model

The topological quadrupole model [20] is described by a tight-binding Hamiltonian of free
fermions on the square lattice. Each site hosts one spinless fermionic mode and a unit cell
consists of 2 × 2 sites labeled 1, 2, 3, 4 as depicted in Fig. 2.9. We consider the system at
half-filling where only the lowest two bands are occupied. On a lattice with PBC and Nx

and Ny unit cells in the x and y directions, respectively, the Hamiltonian is given by

HQuad =
Nx−1∑

x=0

Ny−1∑

y=0

[
t
(
c†1,(x,y)c3,(x,y) + c†4,(x,y)c2,(x,y) + c†1,(x,y)c4,(x,y) − c†3,(x,y)c2,(x,y) + h.c.

)

+ t′
(
c†1,(x,y)c3,(x+1,y) + c†4,(x,y)c2,(x+1,y) + c†1,(x,y)c4,(x,y+1) − c†3,(x,y)c2,(x,y+1) + h.c.

) ]
. (2.31)

Here, (x, y) is the position of the unit cell with 0 ≤ x ≤ Nx − 1 and 0 ≤ y ≤ Ny − 1. For

τ = 1, . . . , 4, c†τ,(x,y) denotes the creation operator for a fermion on the site τ in the unit

cell at position (x, y). The Hamiltonian of Eq. (2.31) describes hopping between nearest-
neighbour sites in the same unit cell with amplitude t, and between nearest-neighbour sites
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in adjacent unit cells with amplitude t′. The signs of the hopping amplitudes ensure that
there is a flux π through every plaquette of the square lattice. Due to the alternating
hoppings t and t′ in each row and column of the square lattice, the quadrupole model can
be viewed as a 2D generalization of the SSH model of Sec. 2.2. Similarly to the SSH model,
we will also consider the Hamiltonian of Eq. (2.31) with an additional staggered chemical
potential µ which is µ on sites 1 and 2 of each unit cell, and −µ on sites 3 and 4 of each
unit cell (see Fig. 2.9(a)).

On a square lattice with PBC in both directions, the four-band Bloch Hamiltonian of
the quadrupole model including the staggered chemical potential is given by

HQuad(kx, ky) = (t+ t′ cos(kx))σ1 ⊗ σ0 + t′ sin(kx) (−σ2 ⊗ σ3)

+ (t+ t′ cos(ky)) (−σ2 ⊗ σ2) + t′ sin(ky) (−σ2 ⊗ σ1) + µσ3 ⊗ σ0, (2.32)

where kx = 2πnkx/Nx with an integer nkx ∈ {0, . . . , Nx − 1} and ky = 2πnky/Ny with an
integer nky ∈ {0, . . . , Ny − 1} are the lattice momenta in the first Brillouin zone.

For zero chemical potential µ = 0, the Hamiltonian of the quadrupole model is invariant
under the two mirror symmetries Mx and My. On the Bloch Hamiltonian, the mirror
symmetries are implemented as

m̂xHQuad(kx, ky)m̂
†
x = HQuad(−kx, ky), (2.33a)

m̂yHQuad(kx, ky)m̂
†
y = HQuad(kx,−ky), (2.33b)

where

m̂x = σx ⊗ σz, (2.34a)

m̂y = σx ⊗ σx. (2.34b)

Therefore, the mirror symmetries anti-commute {m̂x, m̂y} = 0. They are the symme-
tries which protect the topological phase of the quadrupole model [20]. In addition to
the mirror symmetries, the Hamiltonian of Eq. (2.31) is invariant also under time reversal
symmetry, charge conjugation and C4 rotation symmetry (up to a gauge transformation).
However, these symmetries are not necessary for the realization of the higher order topo-
logical phase [20].

The four energy bands of the Bloch Hamiltonian of Eq. (2.32) form two degenerate
pairs with energy ±ε(kx, ky), where the dispersion is

ε(kx, ky) =
√

2t2 + 2(t′)2 + 2tt′ [cos(kx) + cos(ky)] + µ2. (2.35)

This dispersion is gapped unless µ = 0 and |t′| = |t|. Therefore, the phase diagram at zero
chemical potential splits into two regions |t/t′| < 1 and |t/t′| > 1. Similarly to the case of
the SSH model, the bulk energy spectrum does not allow to distinguish these parameter
regions since the dispersion of Eq. (2.35) is invariant under exchange of the two hoppings
t and t′. However, we show now that analogously to the SSH model, the energy spectrum
with OBC in both directions is very different in the case |t/t′| < 1 and the case |t/t′| > 1,
indicating that they describe different phases.
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2.5.2 Topological signatures of the quadrupole model: corner
modes and quantized bulk multipole moments

In order to understand the structure of the energy spectrum of the quadrupole model at
zero chemical potential µ = 0 with OBC in both directions in the two regions |t/t′| > 1 and
|t/t′| < 1, we first consider the two dimerized cases where t′ = 0 and t = 0, respectively. For
t′ = 0, there is no coupling between different unit cells. Therefore, the Hamiltonian with
OBC is identical to the Hamiltonian with PBC. From the dispersion relation of Eq. (2.35)
we see that the single particle energy spectrum is fully gapped, with 2NxNy levels at energy√

2|t| and 2NxNy levels at energy −
√

2|t|.

On the other hand, for t = 0, there is no coupling between sites in the same unit cell.
The resulting pattern of coupled sites is shown in Fig. 2.10(a). In the bulk, the system
splits into plaquettes of four sites from four different unit cells, which are coupled through
the hopping t′. Similarly to the case t′ = 0, these plaquettes lead to 2(Nx − 1)(Ny − 1)
levels with energy

√
2|t′| and 2(Nx − 1)(Ny − 1) levels with energy −

√
2|t′|. However, the

remaining lattice sites at the edges of the system form a very different pattern: At each
edge, one obtains one copy of the SSH model in its topological dimerized phase. According
to the SSH model dispersion relation of Eq. (2.9) evaluated in the topological dimerized
phase at δ = 1 and rescaled by a factor t′/2, the bulks of these SSH chains give rise to
2(Nx +Ny − 2) levels at energy |t′| and 2(Nx +Ny − 2) levels at energy −|t′|. In addition,
at each corner where two SSH chains meet, there is one mode that decouples entirely from
the rest of the system and hence lies at zero energy. Each of these four modes corresponds
to a shared edge mode of the two SSH chains that meet at the corner. Therefore, for t = 0
the quadrupole model possesses four mid-gap states at zero energy.

Away from the dimerized points at t = 0 and t′ = 0, we can evaluate the single particle
energy spectrum of the quadrupole model with OBC in both directions numerically. It is
shown in Fig. 2.10(b) for several values of t/t′. For |t/t′| > 1 the energy spectrum is fully
gapped. On the other hand, for |t/t′| < 1, there are four gapless modes close to zero energy,
which are localized at the corners. The edges of the system are gapped. This indicates
that the quadrupole model in this region is in a topologically nontrivial phase.

Similarly to the SPT phases discussed above, the nature of the phases for |t/t′| > 1
and |t/t′| < 1 can also be understood through a bulk topological invariant, which vanishes
for |t/t′| > 1 but has a non-zero value if |t/t′| < 1. For the quadrupole model, the bulk
topological invariant is the bulk quadrupole moment qxy, which can be computed via nested
Wilson loops [20]. Due to the mirror symmetries Mx and My, the quadrupole moment is
quantized and can only take the values qxy = 0 or qxy = e/2. In the trivial phase for
|t/t′| > 1, one finds qxy = 0 [20]. However, in the topological phase for |t/t′| < 1, the bulk
quadrupole moment is qxy = e/2, which leads to a non-vanishing edge polarization and
fractional corner charge ±e/2. The latter manifests in the single particle energy spectrum
through the four zero energy modes we observed in Fig. 2.10(b) [22].
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Figure 2.10: (a) Coupling pattern in the dimerized topological phase of the quadrupole
model for t = 0 on a lattice with OBC in both directions. (b) Single particle energy
spectrum of the topological quadrupole model on a square lattice with Nx = Ny = 10 unit
cells and OBC in both directions for different values of t/t′ ranging from t/t′ = −1.5 to
t/t′ = 1.5, and t′ = 1. Note that the states around zero energy correspond to the four
corner state modes discussed in the text.

2.5.3 The chiral hinge insulator

In Sec. 2.3.2 we mentioned that the 2D CI can be viewed as the result of a charge pumping
cycle of the 1D SSH model. Similarly, it is possible to define a 3D second order TI
with chiral hinge modes [21] via a dipole pumping cycle of the quadrupole insulator with
staggered chemical potential µ [22]. In this picture, the chiral hinge modes emerge as a
consequence of the corner modes of the quadrupole model in the same way as the edge
modes of the CI are related to the edge states of the SSH model. This connection is explored
in the language of tensor network states in our publication of Ref. [2] (see Sec. 5.2).

The 3D chiral hinge insulator is protected by the product C4zT of four-fold rotation
symmetry in the xy-plane and time reversal T [21]. With OBC in the x and y directions,
its vertical surfaces are gapped, but the hinges parallel to the z direction host chiral gapless
modes akin to the edge modes of a CI (see the sketch in Fig. 2.11(a)). With OBC in the z
direction, the top and bottom surfaces host a single gapless Dirac cone each, analogously
to the 3D time reversal invariant TI.

The number of these hinge modes per hinge is not protected, but the parity of their
number is, similar to the number of edge modes in a 2D time reversal invariant TI. Indeed,
the minimal surface perturbation compatible with the C4zT symmetry is the addition of 2D
CIs with Chern number ν = ±1 on the gapped vertical surfaces as sketched in Fig. 2.11(b).
Here, the CIs on the surfaces normal to the x direction (marked in blue) have ν = 1, while
those on the surfaces normal to the y direction (marked in red) are their time reversal
conjugates with ν = −1. Each of the CIs possesses edge modes localized at the vertical
hinges of the 3D system. As indicated in Fig. 2.11(b), the CI edge modes combine in such
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(a) (b)

Figure 2.11: (a) Chiral modes at the hinges parallel to the z direction in the chiral hinge
insulator with OBC in the x and y directions and PBC in the z direction. (b) Minimal
surface perturbation preserving C4zT , which changes the number of hinge modes by two.
The 2D CIs on the surfaces normal to the x direction (marked in blue) have ν = 1, while
those on the surfaces normal to the y direction (marked in red) are their time reversal
conjugates with ν = −1. From Frank Schindler et al. “Higher-order topological insulators”.
In: Science advances 4.6 (2018), eaat0346. Reprinted with permission from AAAS.

a way that the number of chiral hinge modes is changed by 2 on each hinge. Therefore,
the number of chiral hinge modes cannot be topologically protected, but their parity is,
leading to a Z2 topological characterization.

Indeed, it can be shown that the bulk topological invariant of the chiral hinge insulator
is the magnetoelectric polarizability, the same bulk invariant as for the 3D Z2 TI [21]. In
the case of the chiral hinge insulator, there is a higher order bulk boundary correspondence
leading to gapped vertical surfaces and gapless vertical hinges. In our publication of Ref. [3],
we study the chiral hinge insulator at fractional band filling and in the presence of strong
interactions. The non-interacting HOTI is discussed in greater detail there (see Sec. 5.3).
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Chapter 3

Intrinsic topological order and the frac-
tional quantum Hall effect

The integer QHE in 2D electron gases leads to the quantization of the Hall conductivity
to values σxy = (e2/h)ν with a positive integer ν. As we discussed in Chapter 2, it marks
the first example of a topological insulator, a class of phases that can be understood using
single particle physics and the theory of topological band structures.

Only two years after the first observation of the integer QHE, the fractional QHE was
discovered in very clean experimental samples [5]. In the fractional QHE, the plateaus in
the Hall conductivity occur additionally at certain rational values of ν such as ν = 1/3. In
contrast to the case of the integer QHE, strong correlations between the electrons are essen-
tial for the description of the fractional QHE. Its understanding required the development
of an entirely new theory, that of intrinsic topological order [13]. Compared to the SPT
phases discussed in the previous chapter, phases with intrinsic topological order give rise
to a number of qualitatively new and highly non-trivial phenomena. For example, in two
dimensions they can possess elementary excitations with fractional quantum numbers and
fractional anyonic exchange statistics that is neither bosonic nor fermionic. The fractional
QHE has allowed the direct experimental observation of such excitations with fractional
charge [15, 16] and, very recently, fractional exchange statistics [17, 18]. As a result of
these properties, systems with intrinsic topological order have been proposed as platforms
for topological quantum computation, which would enjoy an inbuilt protection from local
errors [14].

Due to the strong interaction effects, the ground states of realistic microscopic models
hosting intrinsic topological order are generally very difficult to compute. Instead, one
frequently relies on model wave functions which are easier to analyze and capture the
essential properties of the phase. Here, we will focus on one specific class of model wave
functions, the Laughlin states [26]. They provide very good approximations to the ground
state of a fractional quantum Hall system on plateaus with ν = 1/q, where q is an odd
integer.

In order to motivate the expression for the Laughlin wave function, we begin with a
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brief review of the many body wave function for the integer QHE in Sec. 3.1. This allows
us to introduce the Laughlin wave function in Sec. 3.2. We then discuss the characteristic
properties of the gapless edge modes at the boundary of Laughlin systems in Sec. 3.3.
Next, we briefly review some of the unusual properties in their bulk in Sec. 3.4. Finally,
we discuss lattice realizations of fractional quantum Hall physics using fractional Chern
insulators in Sec. 3.5.

3.1 The integer quantum Hall effect

We demonstrated in Chapter 2 that the description of CIs and the integer QHE does not
require the consideration of interactions between the electrons. Once the single particle
energy eigenstates of these systems are known, the many body ground state is obtained
by filling the single particle orbitals according to the Pauli principle. In Sec. 2.3, we
considered a CI on a periodic lattice, where the single particle orbitals are obtained by
a diagonalization of the Bloch Hamiltonian in second quantization. We now repeat this
analysis for the integer QHE in the continuum. To that end, we review the single particle
wave functions in Sec. 3.1.1 and compute the many body wave function in first quantization
in Sec. 3.1.2. This will be useful for understanding the structure of the interacting Laughlin
wave function in the next section.

3.1.1 Single particle wave functions

As described in Sec. 2.1.2, the QHE occurs in 2D electron gases in the presence of a
strong transversal magnetic field. Let us assume that the electrons with charge −e and
mass M are confined to move in the 2D xy-plane, such that the external magnetic field is
B = (0 0B)T . In this section we assume for simplicity that the electrons are spinless (as
we will argue below, this is a good approximation for the regime that we are interested in).
The motion of a single electron in this setting is governed by the Hamiltonian

H =
1

2M

[(
−i~∂x −

e

c
Ax

)2

+
(
−i~∂y −

e

c
Ay

)2
]
. (3.1)

Here, A = (AxAy 0)T is the vector potential for the external magnetic field, satisfying
∇ × A = B. In the following, we want to focus on a disk geometry which is invariant
under rotations around the origin in the xy-plane. It is therefore convenient to work in
the symmetric gauge, where the non-vanishing components of the vector potential are
Ax = −y(B/2) and Ay = x(B/2).

The energy bands defined by the single particle Hamiltonian of Eq. (3.1), which are
referred to as Landau levels, are massively degenerate with energies [49]

En = ~ωc
(
n+

1

2

)
. (3.2)
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Here, n ≥ 0 is the Landau level index, and ωc = (eB)/(Mc) is the cyclotron frequency,
which determines the band gap between different Landau levels. Within each Landau
level, the single particle orbitals may be labeled by their angular momentum Lz in the z
direction. In the Landau level of index n, the angular momentum takes values Lz = ~m
with an integer m ≥ −n [49]. The angular momentum index m leads to a macroscopic
degeneracy of the Landau levels. In a finite system, the number of states in each Landau
level is finite and given (in the thermodynamic limit) by the number NΦ = Φ/Φ0 of flux
quanta. Here, Φ is the total flux through the system, and we introduced the flux quantum
Φ0 = hc/e. Denoting by N the total number of filled single particle orbitals, we can define
the filling fraction

ν =
N

NΦ

. (3.3)

As suggested by our choice of symbol, it is the filling fraction which determines the value
of the Hall conductance via σxy = ν(e2/h) [49].

From now on we assume that the filling fraction satisfies ν ≤ 1, such that only states
from the lowest Landau level (LLL) are occupied. For a fixed number of particles N , this
can be achieved by increasing the strength of the magnetic field B. In the LLL, the wave
function for the single particle orbital with angular momentum m is given by

ψm(z) = zme−|z|
2/(4l20). (3.4)

Here, l0 =
√

(c~)/(eB) is the magnetic length and z = x + iy with absolute value |z|
denotes a complex position coordinate in the 2D plane. The density |ψm|2(|z|) associated
with this wave function is invariant w.r.t. rotations around the origin of the xy-plane, and
peaks at the radius |z| = rm with

rm =
√

2ml0. (3.5)

We now consider a disk with a finite radius R� l0, and discard all single particle orbitals
of the LLL whose density peaks outside the radius R. Therefore, the number of allowed
single particle orbitals with rm < R is given by

R2

2l20
= πR2B ×

(
hc

e

)−1

=
Φ

Φ0

≡ NΦ, (3.6)

and is therefore equal to the number NΦ of flux quanta that pierce the system, as we
mentioned above.

3.1.2 Many body wave function

Let us consider the integer QHE in the case where the magnetic field B is strong enough
that the Fermi energy EF lies between the LLL and the second lowest Landau level,

1

2
~ωc < EF <

3

2
~ωc. (3.7)
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We can also assume that B is sufficiently large that the system is completely spin polarized
due to the strong Zeeman splitting between different spin orientations. This is frequently
the case in real experiments. The electrons therefore behave like spinless fermions. In this
case, the many body ground state of the system is given by filling each of the NΦ single
particle orbitals in the LLL exactly once. Hence, the number of particles is equal to the
number of orbitals, N = NΦ, and the filling fraction is ν = 1.

The corresponding many body wave function is simply the Slater determinant of all
admissible single particle wave functions of Eq. (3.4),

Ψν=1(z1, . . . , zN) =

( ∏

1≤i<j≤N

(zi − zj)
)
× e−

1

4l20

∑N
i=1 |zi|2

, (3.8)

where we have omitted the normalization factor. Here, zi denotes the 2D position of
the particle i for i = 1, . . . , N . As required by the Pauli principle, this wave function is
completely anti-symmetric under exchange of particles.

This analysis can be repeated in a toroidal geometry with generalized boundary con-
ditions parametrized by two angles θ1, θ2 ∈ [0, 2π). The dependence of the single particle
wave functions on these angles defines a vector bundle, akin to the vector bundle of the
Bloch bands over the 2D Brillouin zone for a CI. It can be shown that the Hall conductivity
of the many body wave function of the integer QHE is given by the Chern number of this
vector bundle multiplied with e2/h [6, 85]. In particular, for the LLL the Chern number
is unity, such that σxy = (e2/h)ν with the filling fraction ν = 1.

3.2 The Laughlin wave function

The Laughlin wave functions are a series of model wave functions which provide very good
descriptions for the ground states of fractional quantum Hall systems at filling fractions 1/q
with q an odd integer [26]. They can be generalized to bosonic systems (with q even in that
case), and serve as building blocks for more complicated model wave functions describing
other filling fractions [27, 28]. We begin in Sec. 3.2.1 by discussing the fermionic Laughlin
wave functions, before considering the bosonic Laughlin wave functions in Sec. 3.2.2. We
conclude in Sec. 3.2.3 with a description of the generalized Pauli principle satisfied by the
Laughlin wave functions.

3.2.1 Fermionic Laughlin wave functions

The Laughlin wave functions are a series of model wave functions for incompressible quan-
tum fluids, which are labeled by an integer q. The q = 3 wave function was proposed in
1983 by Robert Laughlin as a variational many body wave function for the experimentally
observed quantum Hall plateau at σxy = (1/3)(e2/h) [26].

The Laughlin wave functions describe a completely spin-polarized quantum Hall system,
where only a fraction of the single particle orbitals of the LLL are occupied. With the same
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notations as in Sec. 3.1 above, the many body wave function for N electrons at positions
z1, . . . , zN is

Ψν=1/q(z1, . . . , zN) =

( ∏

1≤i<j≤N

(zi − zj)q
)
× e−

1

4l20

∑N
i=1 |zi|2

. (3.9)

Formally, this wave function resembles the ground state wave function of Eq. (3.8) for the
integer QHE in the LLL. The crucial difference lies in the power q of the polynomial factor,
which is q = 1 for the integer QHE, and q ≥ 3 for the Laughlin wave function of Eq. (3.9).

Let us argue that the Laughlin wave function of Eq. (3.9) describes a system at filling
fraction ν = 1/q in the thermodynamic limit (a rigorous derivation can be made). We
assume that the wave function Ψν=1/q describes a system on a finite disk of radius R with
a homogeneous electron density. By expanding the first factor in Eq. (3.9), we see that
the highest power of any zi appearing in the polynomial factor is mmax(N) = q(N − 1). In
other words, the single particle orbital with the largest radius that appears in the Laughlin
wave function of Eq. (3.9) has radius rmmax(N) = l0

√
2q(N − 1). This implies that the

radius R of the disk is given by R = rmmax+1(N). According to Eq. (3.6), the number
of flux quanta in the system is then NΦ = R2/(2l20) = q(N − 1) + 1. Hence, the filling
fraction is ν = N/(qN − q + 1), which approaches the value 1/q in the thermodynamic
limit N →∞.

The Laughlin wave functions are not the exact ground states of realistic Hamiltonians at
filling ν = 1/q. However, exact diagonalization studies on numerically accessible systems
have shown that the Laughlin states have a very high overlap with the ground states
of electrons that interact with the Coulomb interaction in the LLL [86]. Moreover, the
Laughlin states are the exact ground states of model Hamiltonians with a finite interaction
range. The Laughlin state at filling ν = 1/3 is the unique densest ground state of the
shortest-range interaction for fermions. Knowing that realistic interactions usually have a
strong short-range repulsion component, this provides some qualitative understanding of
why the Laughlin state is a fairly good description of the true ground state.

3.2.2 Bosonic Laughlin wave functions

Until now, we have restricted our discussion to fermionic systems such as 2D electron
gases, where the fractional QHE was discovered experimentally. However, the fractional
QHE is not a result of the fermionic statistics of the itinerant particles. Instead, it is a
consequence of the massively degenerate Landau levels and the resulting importance of
interactions. This is a situation which can also occur in bosonic systems with interactions.
Indeed, there have been numerous proposals for the realization of fractional quantum Hall
physics in bosonic systems.

One possible platform for bosonic fractional quantum Hall physics is given by ultra-cold
atoms in rotating harmonic traps [87]. In a certain regime, the single particle levels in this
system form Landau level bands, where the angular velocity plays the role of the magnetic
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field. In the simplest case, the repulsive interactions between the bosonic atoms can be
modeled by a simple δ-function potential

V (zi, zj) = g δ(2)(zi − zj), (3.10)

where zi and zj are the complex 2D positions of two bosons.
The fermionic Laughlin wave functions of Eq. (3.9) can easily be extended to bosonic

systems by choosing an even integer q ≥ 2 for the power of the Slater determinant, rather
than an odd integer as for the fermionic case. Indeed, for even q, the many body wave
function of Eq. (3.9) is symmetric under exchange of any two particles, as required by
Bose-Einstein statistics. It is clear that the potential energy w.r.t. the δ-function potential
of Eq. (3.10) vanishes for all bosonic Laughlin states, meaning that they are ground states
of the effective Hamiltonian in the LLL. Moreover, it can be shown that the q = 2 Laughlin
state is the densest such state, i.e. the state with the lowest total angular momentum.

A second very promising platform for the observation of the bosonic fractional QHE is
given by ultra-cold quantum gases in optical lattices [53, 54, 55, 56]. Due to the periodic
potential, such systems are described by periodic Hamiltonians rather than continuum
wave functions such as the Laughlin wave function. We will provide more details on these
fractional Chern insulators in Sec. 3.5.

3.2.3 Generalized Pauli principle

The Laughlin wave function of Eq. (3.9) defines a many body state in the LLL. Therefore,
it can be expressed as a linear combination of Fock states in the occupancy basis of the
single particle orbitals in the LLL with index m ∈ {0, . . . , NΦ − 1}, whose wave functions
are given in Eq. (3.4). In theory, the Fock space representation can be computed by
expanding the polynomial factor in Eq. (3.9) into monomials. For example, by picking the
first term zi in every factor (zi − zj) with i < j, we find that one term in the expansion of
the polynomial factor is given by the monomial

z
q(N−1)
0 × zq(N−2)

1 × · · · × zqN−1 × z0
N . (3.11)

Since the Laughlin wave function describes fermions for odd q and bosons for even q, we
know that this monomial appears with the same coefficient as its images under completely
anti-symmetric or symmetric permutations of the particle positions, respectively. The
linear combination of these monomials corresponds to the fermionic or bosonic Fock state
with one particle in the orbital m = jq for j = 0, . . . , N − 1, and no particle in any other
orbital. We can refer to this Fock state by its occupation number sequence

λ =
[
1 0q−1 1 0q−1 . . . 1 0q−1

]
(3.12)

where a 1 indicates a filled orbital, 0q−1 denote q − 1 successive empty orbitals, and the
orbital index m is increasing from left to right. Since the orbital m carries angular mo-
mentum Lz = ~m as discussed in Sec. 3.1.1, the total angular momentum associated with
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the occupation number sequence of Eq. (3.12), and hence that of the Laughlin state, is

Ltotz = ~
N−1∑

j=0

jq = ~
q

2
(N − 1)(N − 2). (3.13)

Due to the large number of terms in the polynomial factor of Eq. (3.9), the computation
of the Fock space expansion is very difficult and not feasible for big systems. However,
it has been shown that the Fock space representation of many fractional quantum Hall
wave functions including the Laughlin wave function follows a very specific pattern [88].
Concretely, the polynomial factors are given by Jack polynomials [89], which are determined
by a single occupation number sequence like that in Eq. (3.12), referred to as a root
partition. The coefficients of other Fock states can be efficiently computed recursively in
terms of the root partition.

For the Laughlin wave function on a disk, it can be shown that the root partition is the
unique occupation number sequence which minimizes the total angular momentum Ltotz for
a given number of particles, and which obeys a generalized Pauli principle [88]. This Pauli
principle requires that out of any q adjacent orbitals, only a single one may be occupied.
It is easy to see that the root partition for the Laughlin state at filling 1/q is given by the
occupation number sequence λ of Eq. (3.12).

Crucially, the correspondence between many body wave functions and root partitions
satisfying the generalized Pauli principle applies not only to the Laughlin ground state, but
also to its elementary excitations in the bulk and at the edges. Therefore, the generalized
Pauli principle can be employed to count the number of excitations of the Laughlin wave
function and their angular momentum. We will make use of this possibility in the next
section describing the edge physics of the Laughlin state.

3.3 Chiral edge mode

In Sec. 2.3.2 above, we showed that the CI in a geometry with OBC possesses chiral edge
modes, which are a signature of the topologically non-trivial nature of the bulk phase.
Similarly, the integer and fractional quantum Hall systems possess characteristic protected
chiral edge modes, which are responsible for the observed quantization of the Hall con-
ductivity. Since the edge modes are a consequence of the topologically non-trivial bulk,
a careful analysis of their properties reveals information about the bulk phase. Here, we
focus on the edge mode of the Laughlin state at filling 1/q. We begin in Sec. 3.3.1 by
discussing the single particle spectrum on a finite disk in the presence of a confining po-
tential. In Sec. 3.3.2, we then show how the fractional Hall conductivity emerges using
the same arguments as in Sec. 2.3.3. We continue by considering the state counting in the
many body spectrum of the edge excitations in Sec. 3.3.3. Finally, we briefly discuss the
description of the edge mode as a chiral Luttinger liquid in Sec. 3.3.4.
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3.3.1 Single particle spectrum with confining potential

We return to the problem of a single electron on a finite 2D disc of radius R in the presence
of a transversal magnetic field. In contrast to our earlier discussion from Sec. 3.1.1, we now
explicitly include the effects of a radially symmetric confining potential which implements
the finite size of the disc. Hence, the potential is zero in the center of the disk for |z| � R,
and very large outside the disk for |z| � R. Assuming that the potential varies slowly as a
function of |z| on the scale of the magnetic length l0, the single particle orbitals in the LLL
of Eq. (3.4) are still energy eigenfunctions. However, their energies are no longer strictly
degenerate, but instead follow the confining potential. Hence, the single particle orbitals
with small angular momentum localized in the bulk of the disc do not feel the effect of
the confining potential and are still quasi-degenerate at energies close to ~ωc/2. On the
other hand, the orbitals localized at large radii rm ≈ R close to the edge of the disc bend
upwards in energy towards the second lowest Landau level (see Fig. 3.1(a)).

For the remainder of this section, we will assume that the magnetic field is sufficiently
strong that only orbitals from the LLL are occupied. The Fermi energy EF then lies
between the LLL and the second lowest Landau level, and therefore crosses the bent-up
edge of the LLL at the angular momentum m = NΦ. Close to this point, the confining
potential can be linearized, such that the single particle dispersion close to the Fermi energy
is

E(m)− EF =
2πv

Ldisk

(m−NΦ). (3.14)

Here, Ldisk = 2πR is the circumference of the disk, and v is the dispersion velocity at
the Fermi energy. This is a chiral dispersion, where the energy above the Fermi energy is
proportional to the relative angular momentum ~(m−NΦ). This single particle dispersion
gives rise to a chiral edge mode both for the integer and the fractional QHE.

3.3.2 Hall conductivity

In Sec. 2.3.3, we computed the Hall conductivity σxy in a cylinder geometry resulting from
chiral edge modes in a system of non-interacting fermions using a simple semi-classical
argument, finding that σxy = e2/h. Let us now see how this argument can be adapted for
the Laughlin states. We use the same geometry and notations as in Sec. 2.3.3.

The number n of additional single particle orbitals that become accessible by a shift
in the Fermi energy from EF to EF + eVH at the upper edge of the cylinder is the same
in the interacting and non-interacting systems. Therefore, n is still given by Eq. (2.26)
for the Laughlin states. However, the current per mode, which is given by Eq. (2.27) for
the non-interacting system, needs to be modified for a general Laughlin state. Indeed, as
we discussed in Sec. 3.2.3, the Laughlin state at filling 1/q is characterized by the root
partition of Eq. (3.12), in which only N = NΦ/q out of the NΦ available single particle
orbitals for the electrons are filled. Hence, the average charge per single particle orbital is
no longer the electronic charge −e, but instead a fractional charge −e∗ with

e∗ =
e

q
. (3.15)
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Figure 3.1: (a) Schematic depiction of the ground state in the integer QHE at filling ν = 1
on a open disc with a confining potential. The shaded blue area denotes the orbitals
below EF . (b) - (g) Schematic depictions of the lowest-lying edge excitations. The relative
many body angular momentum w.r.t. the ground state is in (b) ∆Ltotz = 1, in (c) and (d)
∆Ltotz = 2, and in (e), (f) and (g) ∆Ltotz = 3.

Consequently, the average current per mode is then given by Imode = v+e
∗/Nx. As a result,

the Hall conductivity for the Laughlin state is

σxy =
Ix
VH

=
Imode × n

VH
=

1

q

e2

h
. (3.16)

This result confirms the Laughlin state as a model wave function for the Hall plateau at
ν = 1/q.

3.3.3 Many body spectrum

Let us now discuss the many body excitation spectra that result from the chiral edge
mode for the different Laughlin states on a disk. Due to the dispersion of Eq. (3.14), the
many body excitation energy for the edge excitations is directly proportional to their total
angular momentum ∆Ltotz measured relative to the ground state. Therefore, we proceed
by counting the number of many body states at each value of ∆Ltotz .

We begin with the case of the integer QHE at filling ν = 1, corresponding to the
value q = 1. The ground state at ∆Ltotz = 0 is given by the filled Fermi sea, where all
NΦ single particle orbitals below EF are occupied and those above EF are empty. This
is shown schematically in Fig. 3.1(a). Gapless excitations above this ground state are
obtained by moving particles from just below the Fermi energy to orbitals just above the
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Figure 3.2: (a) Schematic depiction of the root partition of the Laughlin state at filling
ν = 1/2 on a open disc with a confining potential. The shaded blue area denotes the
orbitals below EF . (b) - (g) Schematic depictions of the root partitions of the lowest-lying
edge excitations. The relative many body angular momentum w.r.t. the ground state is in
(b) ∆Ltotz = 1, in (c) and (d) ∆Ltotz = 2, and in (e), (f) and (g) ∆Ltotz = 3.

Fermi energy. At ∆Ltotz = 1, there is one state allowed by the fermionic Pauli principle,
obtained by moving one particle from the first level beneath EF to the first level above
EF (see Fig. 3.1(b)). At ∆Ltotz = 2, there are two possible states, with are obtained from
the state at ∆Ltotz = 1 by either moving the first particle one level further up, or else
by moving the second-lowest particle to the lowest level beneath EF (see Fig. 3.1(c) and
(d)). At ∆Ltotz = 3, there are three possible states, whose occupation number sequences
are sketched in Fig. 3.1(e), (f) and (g). In this fashion, one finds that the number of many
body excited states for the first few values of ∆Ltotz ≥ 0 is given by the sequence

1, 1, 2, 3, 5, 7, 11, . . . . (3.17)

Let us now discuss the Laughlin states. As we explained in Sec. 3.2.3, the Laughlin
ground state and its many body excited states, as well as their total angular momentum,
are determined by root partitions such as in Eq. (3.12). The latter satisfy the generalized
Pauli principle requiring that no more than 1 out of any q consecutive single particle orbitals
be occupied. In order to determine the number of excited states at a given ∆Ltotz ≥ 0, we
therefore have to find the number of compatible root partitions. For concreteness, let us
focus on the case q = 2.

The root partition for the ground state at ∆Ltotz = 0 is sketched in Fig. 3.2(a), with every
second single particle orbital occupied as required by the generalized Pauli principle. At
∆Ltotz = 1, there is one root partition allowed by the generalized Pauli principle, obtained
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by moving the particle from the second level beneath EF to the first level beneath EF (see
Fig. 3.2(b)). At ∆Ltotz = 2, there are two possible states, with are obtained from the state
at ∆Ltotz = 1 by either moving the first particle one level further up, or else by moving
the second-lowest particle (see Fig. 3.2(c) and (d)). At ∆Ltotz = 3, there are three possible
states, whose root partitions are sketched in Fig. 3.2(e), (f) and (g). In this fashion, it can
be shown that the number of many body excited states of the Laughlin state at q = 2 is
given by the same sequence of Eq. (3.17) as for the integer QHE. The same holds true for
the other Laughlin states at different values of q.

3.3.4 Luttinger liquid with u(1)q/2 free boson CFT

The low energy physics of interacting fermions in 1D critical systems known as Luttinger
liquids can be described in terms of free boson CFTs [90] using a technique called bosoniza-
tion [91]. The 1D edge of the 2D quantum Hall system can be interpreted as such a Lut-
tinger liquid [92]. As we mentioned in Sec. 2.3.2, the crucial difference to a purely 1D
system, which always combines chiral and anti-chiral CFT, lies in the intrinsic chirality of
the edge state.

The edge modes of the Laughlin states are Luttinger liquids described by the CFT
u(1)q/2 of a compactified chiral free boson with central charge c = 1 and Luttinger param-
eter K = 1/q [27]. This theory has q primary fields with conformal dimensions

hj =
j2

2q
(3.18)

and U(1) charge
j

q
(3.19)

for j = 0, . . . , q − 1. The Verma modules created by the application of the bosonic mode
operators on these highest-weight states have the state counting that we observed for the
Laughlin states in Eq. (3.17) [90]. It has been shown that finite-size corrections to this
state counting can be used to infer the Luttinger parameter K [93]. Moreover, the central
charge and Luttinger parameter can be extracted from the scaling of certain correlation
functions at the edge [94, 95]. We make use of this in our publication of Ref. [3] (see
Sec. 5.3).

For the first bosonic Laughlin state at q = 2, the u(1)1 theory has an extended SU(2)
symmetry and can be identified with the CFT su(2)1. Under this mapping, the U(1)
current is identified with the current Sz of SU(2). According to Eq. (3.18), this theory has
two primary fields h0 = 0 with spin Sz = 0 and h1 = 1/4 with spin Sz = 1/2. The states in
the two corresponding Verma modules therefore form representations of SU(2) with integer
and half-integer spin, respectively [90]. In our publications of Ref. [1] (see Sec. 5.1) and
Ref. [3] (see Sec. 5.3), we study chiral topologically ordered systems whose edge states are
described by this CFT.
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3.4 Bulk properties

The bulk of systems with intrinsic topological order gives rise to a number of uncon-
ventional and highly non-trivial phenomena. In two dimensions, these include anyonic
excitations with fractional charge and fractional exchange statistics, as well as a ground
state degeneracy on surfaces of non-trivial genus. In this section, we briefly discuss some
of these properties for the case of the Laughlin states, for which we already encountered
elementary excitations with fractional charge e∗ = e/q in Sec. 3.3.2. We begin in Sec 3.4.1
by reviewing the bulk boundary correspondence, and proceed by discussing the topological
degeneracy of the Laughlin states on a torus in Sec. 3.4.2.

3.4.1 The bulk boundary correspondence

In Chapter 2 we saw using the example of certain fermionic SPT phases that the bulk
and edge of topologically non-trivial systems are tightly related. This is referred to as the
bulk boundary correspondence. For chiral systems with intrinsic topological order such as
fractional quantum Hall systems, this correspondence has been especially well explored [27,
49, 90]. In many cases including the Laughlin states, the gapless chiral edge modes of these
systems are described by a chiral CFT which can also be used to characterize the bulk
physics. This is a strong form of the bulk boundary correspondence, which has been used
to construct fractional quantum Hall wave functions beyond the Laughlin states based on
complicated CFTs, such as for the ν = 5/2 state [27].

Concretely, this strong form of the bulk boundary correspondence implies that the
chiral edge CFT contains operators which correspond to the electrons and the anyonic
excitations in the bulk, as well as certain symmetry currents. For example, the Laughlin
state at filling 1/q has q types of quasi-holes which are represented by the primary fields
of the CFT u(1)q/2. There is a similar CFT operator which represents a single electron in
the bulk. Moreover, the current defining the electric charge is given by the U(1) current of
this CFT [27]. The bulk wave functions for the ground state and the states with anyonic
excitations can then be evaluated as CFT correlation functions. Moreover, the fractional
quantum numbers of the anyonic excitations can be extracted from the properties of their
CFT representations. For example, the fractional electric charge of the Laughlin quasi-
holes is given by their U(1) charge of Eq. (3.19) (in units of e).

The bulk boundary correspondence is an important aspect of chiral topologically or-
dered systems, which also has practical relevance. Indeed, the close relation between the
edge CFT and bulk properties allows to characterize the topological phase of a given mi-
croscopic model by studying its gapless edge physics. The edge properties are often easier
to access in numerical computations than the gapped bulk excitations. For example, in
our publication of Ref. [3] we study the gapless hinge modes of a 3D interacting model to
conclude that the system is in a non-trivial topological phase (see Sec. 5.3). In the next
chapter, we will present a method to study the gapless edge spectrum directly from the
bulk ground state via the entanglement spectrum (see Sec. 4.2).
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3.4.2 Topological degeneracy

Systems with intrinsic topological order have a topological degeneracy: In topologically
nontrivial geometries such as a torus, they possess more than one ground state. The number
of ground states depends on the topology of the space, and different ground states cannot
be distinguished by any local measurement. The existence of a topological degeneracy is a
signature of topological order generated by strong interactions. In particular, SPT phases
such as the integer QHE do not have a topological degeneracy.

It can be shown that there is a tight relation between topological degeneracy and the
number of different elementary bulk excitations with fractional statistics [96]. For example,
the Laughlin state at filling ν = 1/q with q types of quasi-holes has a topological degeneracy
of qg on a 2D surface with genus g [97, 98]. In particular, on a 2D torus with genus g = 1,
there are q distinct ground states. This can be understood in terms of the root partitions
we discussed in Sec. 3.2.3. Indeed, the torus is periodic in both directions, as opposed to
the disk, which is periodic only in one direction. Therefore, on the torus, the index m of
the single particle orbitals is periodic and we should identify m = NΦ with m = 0. As the
torus has no edge, all single particle orbitals in the LLL are degenerate in energy. Hence,
the sequence of Eq. (3.12) describing a Laughlin state on the open disk is not the only
admissible root configuration. Instead, there are q different root partitions that satisfy the
generalized Pauli principle and which have N out of NΦ = (1/ν)N filled orbitals,

λr =
[
0r 1 0q−1 1 0q−1 . . . 1 0q−1−r] (3.20)

where r = 0, . . . , q−1. These partitions λr correspond to the ground states of the Laughlin
state on the torus, confirming the topological degeneracy q.

3.5 Fractional Chern insulators

Until now we have focused on describing the fractional QHE in continuous systems such as
2D electron gases. However, the effect can also occur in lattice systems [99]. For example,
there are lattice analogs of the Laughlin states, the Kalmeyer-Laughlin states [100], which
have the same topological properties as their continuum versions.

In Sec. 2.3 we discussed CIs, which are lattice analogs of the integer QHE without an
external magnetic field. They possess bands with a non-zero Chern number, like the Landau
levels in the continuum case. The fractional QHE occurs when strong interactions stabilize
a ground state at fractional filling of the LLL band. Analogously, strongly correlated
topological states can emerge in a band with non-zero Chern number at fractional filling
in the presence of interactions: fractional Chern insulators (FCIs) [101, 102, 103, 104].

An FCI can be created using the CI model of Sec. 2.3 [105]. We first include the
electronic spin s =↑, ↓ by considering two uncoupled copies of the Hamiltonian of Eq. (2.16).
At half filling, the ground state is given by filling each orbital from the lower band with two
electrons of opposite spin. Note that this ground state naturally has an SU(2) symmetry
describing the electronic spin. As described above, we need to introduce interactions
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to obtain an FCI. The shortest-range interaction is given by an on-site density-density
interaction between fermions of different spin,

Hint = U
Nx−1∑

x=0

Ny−1∑

y=0

∑

α=A,B

(
c†α,↑,(x,y)cα,↑,(x,y)c

†
α,↓,(x,y)cα,↓,(x,y)

)
. (3.21)

Here, c†α,s,(x,y) denotes the creation operator of an electron with spin s ∈ {↑, ↓} on the site

α for α = A,B in the unit cell (x, y) (see Sec. 2.3.1).
If the interaction strength U is sufficiently strong, doubly occupancy of any lattice site

is strongly suppressed, and the low-energy physics can be described in terms of the spin
degree of freedom. In this case, the ground state forms an FCI described by the CFT
su(2)1 like the bosonic Laughlin state at filling ν = 1/2. For practical computations,
the FCI ground state can be modeled using a Gutzwiller projection [105], which formally
corresponds to the limit U → ∞. In our publication of Ref. [3], we use this state as a
benchmark for the application of the Gutzwiller projection to a 3D system (see Sec. 5.3).



Chapter 4

Entanglement in quantum many body
systems

Over the past years, quantum entanglement has emerged as a crucial numerical and the-
oretical tool to diagnose and understand quantum many body systems. In the study of
topological phases it allows to detect their underlying non-local correlations characteristic
for the topological ordering. This can be applied both to the non-interacting SPT phases
discussed in Chapter 2 and to the strongly correlated systems with intrinsic topological
order discussed in Chapter 3. We begin in Sec. 4.1 with a brief review of the most impor-
tant measures for quantum entanglement, the entanglement entropies, and their typical
scaling laws for different quantum phases. We continue in Sec. 4.2 by discussing a more
refined entanglement observable, the entanglement spectrum, and review its application
to the SSH model, the CI model and the Laughlin state. Finally, in Sec. 4.3 we consider
tensor network states, a class of model states which naturally incorporate the entanglement
patterns required to efficiently encode many body quantum states.

4.1 Entanglement entropy

Quantum entanglement denotes the intrinsic correlations that may be present between
different parts of a quantum system. For example, a system of two identical spin-1/2
particles which has total spin S = 0 is described by the spin-singlet state

|S = 0〉 =
1√
2

[|↑〉 ⊗ |↓〉 − |↓〉 ⊗ |↑〉] . (4.1)

Here, |↑〉 and |↓〉 denote the eigenstates of Sz with Sz|↑〉 = (1/2)|↑〉 and Sz|↓〉 = (−1/2)|↓〉,
and the first and second terms in the tensor product of Eq. (4.1) refer to the first and
second spin, respectively. If only the first spin is measured, and found to be in the state
|↑〉, we know that the second spin is in the state |↓〉, no matter how far the two spins are
separated. In the spin-singlet state, the two spins are intrinsically correlated or entangled.



44 4. Entanglement in quantum many body systems

This should be contrasted to the situation if the system has total spin S = 1 and
Sz = 1. In this case, the quantum state is |S = 1, Sz = 1〉 = |↑〉 ⊗ |↑〉, which is a simple
tensor product of states for the two spins. It is thus a separable quantum state without
entanglement.

In this section, we discuss the entanglement entropies (EEs), which allow to system-
atically distinguish between the two extreme cases of the spin-singlet and the separable
state. Applied to quantum ground states, the EEs obey scaling laws showing that different
quantum phases possess specific entanglement patterns. We begin with the definition of
the different EEs in Sec. 4.1.1, before reviewing their characteristic scaling for different
quantum phases in Sec. 4.1.2.

4.1.1 Definition

In a quantum many body system, the amount of entanglement present between two subsys-
tems A and B can be quantified using the entanglement entropies (EEs) (see Ref. [106] for
a review). The more entanglement is present, the larger the value of the EE. The absence
of entanglement is indicated by a vanishing EE. For simplicity, we assume in the following
that the total system is in a pure quantum state |ψ〉 with 〈ψ|ψ〉 = 1, and that A and B
form a disjoint bi-partition of the system. The key object in the study of the entanglement
between A and B is the reduced density matrix. The reduced density matrix ρA of the
subsystem A,

ρA = TrB [ρ] , (4.2)

is obtained as the trace TrB over the degrees of freedom in B of the density matrix ρ =
|ψ〉〈ψ| of the total system. Similarly, the reduced density matrix ρB of the subsystem B is
ρB = TrA [ρ], where we use the notation TrA for the trace over the degrees of freedom in
region A.

Using the reduced density matrix, several EE measures can be defined. The most
well-known measure is the von Neumann entropy

S
(vN)
A = −TrA [ρA ln (ρA)] . (4.3)

Less well-known measures which are easier to evaluate numerically are given by the Renyi
entropies of order n defined as

S
(n)
A =

1

1− n ln (TrA [ρnA]) . (4.4)

In the limit n→ 1, S(n) corresponds to the von Neumann entropy. For the characterization
of topological phases, the von Neumann and Renyi entropies are equally suited [107].

In practice, the EEs can be evaluated from the Schmidt decomposition of the pure state
|ψ〉,

|ψ〉 =
D∑

i

e−ξi/2|vAi 〉 ⊗ |vBi 〉. (4.5)
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Here, {|vAi 〉}i and {|vBi 〉}i are orthonormal sets in the Hilbert spaces describing the degrees
of freedom in A and B, respectively. Therefore, the smallest of the dimensions of these
two Hilbert spaces forms an upper bound on the number D of terms in the Schmidt
decomposition. The non-negative numbers e−ξi/2 are the Schmidt weights of the state |ψ〉.
Since the norm of the state |ψ〉 is equal to unity, the Schmidt weights satisfy

∑D
i=1 e

−ξi = 1.
As we will discuss below, the set of Schmidt weights of a quantum ground state often gives
important information about its structure. Moreover, they determine the EEs of the state
|ψ〉. Indeed, due to the orthonormality of the set {|vBi 〉}i, the reduced density matrix ρA
can be straightforwardly computed from Eq. (4.5) as

ρA =
D∑

i=1

e−ξi |vAi 〉〈vAi |. (4.6)

The reduced density matrix ρB for the subsystem B is given by an analogous expression
w.r.t. the basis {|vBi 〉}i. Therefore, the spectra of both ρA and ρB are given by the set
of the squared Schmidt weights {e−ξi}i. In terms of these eigenvalues, the von Neumann
entropy is

S
(vN)
A =

D∑

i=1

ξie
−ξi , (4.7)

and the Renyi entropies are given as

S
(n)
A =

1

1− n ln

(
D∑

i=1

e−nξi

)
. (4.8)

In particular, the EEs computed w.r.t. the subsystems A and B are identical.
Let us now illustrate these concepts using the example of the spin-singlet state of

Eq. (4.1), where the subsystem A consists of only the first spin. The spin-singlet is already
in Schmidt form, with Schmidt weights e−ξi/2 = 1/

√
2 for i = 1, 2 and orthonormal sets

|vA1 〉 = |↑〉, |vA2 〉 = |↓〉, |vB1 〉 = |↓〉 and |vB2 〉 = −|↑〉. Hence, the reduced density matrix ρA
is given by

ρA =
1

2
[|↑〉 ⊗ 〈↑|+ |↓〉 ⊗ |↓〉] . (4.9)

Therefore, the associated von Neumann entropy is S
(vN)
A = ln(2). It can be shown that

the maximal value of the von Neumann entropy for a density matrix ρ with rank r is
S(vN)(ρ) = ln(r). As the Hilbert space of one spin has dimension 2, S

(vN)
A = ln(2) is the

maximal possible value for the EE between the two spins. The spin singlet is therefore
also referred to as a maximally entangled state. On the other hand, for the separable
state |S = 1, Sz = 1〉 = |↑〉 ⊗ |↑〉, the reduced density matrix ρA = |↑〉 ⊗ 〈↑| has only a
single eigenvalue 1, such that the EEs vanish. The EE therefore gives a systematic way to
distinguish between the strongly entangled spin-singlet state, for which the EE takes the
maximal possible value, and the separable state without entanglement, for which the EE
is zero.
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D

A
B

C

Figure 4.1: Sketch of the partition of a 2D square system into subsystems A, B, C and
their complement D in a Kitaev-Preskill scheme. The TEE can be computed according to
Eq. (4.12).

4.1.2 Area law for gapped quantum ground states

The ground states of gapped quantum many body systems follow an area law for the
EE [108, 109]. For 1D systems, this has been proven [110], and it is conjectured for higher-
dimensional systems [109]. The area law implies that the EE of a subsystem A scales with
the size |∂A| of its boundary rather than its volume |A| (which is the expected extensive
scaling for a thermal system). Concretely, the EE is of the form

SA = α× |∂A|+ o(|∂A|), (4.10)

where α is a constant independent of the system size, but which can depend on the mi-
croscopic details of the system and thus does not carry any universal information on the
quantum phase. Moreover, α may be different for the different EE measures. The second
term in Eq. (4.10) stands for sub-leading corrections to the linear term, which can carry
topological information [29, 30].

For example, strongly correlated systems with intrinsic topological order like the frac-
tional quantum Hall systems discussed in Chapter 3 give rise to a constant correction −γ to
the area law with γ the topological entanglement entropy (TEE) [29, 30]. For 2D systems,

γ = ln(D), (4.11)

where D is the total quantum dimension, which contains information about the anyonic
excitations. The TEE provides an important, although non-unique, characterization of the
topological order of a given system. For the Laughlin state at filling ν = 1/q discussed
in Chapter 3, D =

√
q with q the total number of different elementary anyons. The total

quantum dimension of a system with non-trivial topological order satisfies D ≥
√

2. In
numerical simulations on systems of finite size, the TEE can be evaluated using a Kitaev-
Preskill or Levin-Wen subtraction scheme [29, 30]. To that end, the system is divided into



4.2 Entanglement spectrum 47

four regions A, B, C and D as sketched in Fig. 4.1. The EE of these regions and their
unions can be collected into the linear combination

− γ = S
(2)
ABC − S

(2)
AB − S

(2)
BC − S

(2)
AC + S

(2)
A + S

(2)
B + S

(2)
C (4.12)

which cancels all area law terms and contributions from potential corners of the subsystems.
We are employing such a scheme in our publication of Ref. [3] (see Sec. 5.3).

On the other hand, gapped systems of non-interacting fermions follow the area law
with a vanishing TEE γ = 0 for subsystems with a smooth boundary, both in topologically
trivial phases and in the SPT phases that we discussed in Chapter 2. Therefore, in this
case the area law does not possess any corrections informing about the nature of their
topological phase.

Gapless quantum systems with a divergent correlation length do not generally satisfy
the area law. For instance, 1D critical systems like Luttinger liquids possess a logarithmic
scaling of their EE [111, 94]. It can be shown that the EE of a single interval of length `
in a total system of length L satisfies

Scrit(`;L) = p× c× ln

[
L

π
sin

(
π`

L

)]
+ const. (4.13)

Here, the constant correction is independent of ` and L. Moreover, p is a known numerical
prefactor which depends on the boundary conditions of the system and the EE measure that
is being used [111, 94]. For the von Neumann entropy and a system with PBC, p = 1/3.
On the other hand, c denotes the central charge of the CFT describing the 1D critical
system. The logarithmic scaling of the EE can therefore be used to measure the central
charge for a given system in numerical computations. This is used in our publication of
Ref. [3] (see Sec. 5.3).

4.2 Entanglement spectrum

In the previous section, we discussed the EEs, which provide information on how strongly
two subsystems are entangled in a given quantum state. However, the EEs have limitations.
For instance, the EE scaling in the bulk of non-interacting SPT phases contains no signature
of their non-trivial phase. However, it is still possible to characterize these phases via
quantum entanglement by making use of the entanglement spectrum (ES), which we discuss
in this section. We begin in Sec. 4.2.1 with the definition of the ES. In Sec. 4.2.2 we review
the single particle ES for non-interacting fermionic systems. To conclude, we discuss the
ES for three systems we considered above, namely for the SSH model in Sec. 4.2.3, for the
CI in Sec. 4.2.4 and for the Laughlin state on a disk in Sec. 4.2.5.

4.2.1 Definition

The ES applied to topological phases was first introduced in the context of the fractional
QHE [31]. In contrast to the EE, which is a single number, the ES aims to take a more
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detailed look at a system’s entanglement structure by studying the full spectrum of the
reduced density matrix ρA. Since ρA is a positive matrix satisfying TrA[ρA] = 1, we can
write it in analogy to a thermal state as

ρA = e−Hent , (4.14)

with the matrix Hent denoted the entanglement Hamiltonian of ρA. The ES is defined as
the spectrum of the entanglement Hamiltonian. From the expression of Eq. (4.6) for the
reduced density matrix ρA, we see that the ES is given by the collection of real numbers
{ξi}i and can therefore be directly read off from the Schmidt weights.

Since its introduction, the ES has been applied to a wide variety of quantum systems,
including spin chains, strongly correlated topological phases and SPT phases, and has
emerged as a crucial numerical tool for the study of these quantum phases (see Ref. [112]
for a review). It was found that in many systems, the ES can reveal the structure of low-
energy excitations. Depending on the nature of the bi-partition into subsystems, the ES
informs about different kinds of excitations. For example, the subsystem A can be defined
as a region in real space or in momentum space. The boundary ∂A is often referred to as a
virtual cut of the total system, as opposed to a physical cut which leads to a system with
OBC. If the virtual cut is a real-space cut, the ES reflects the low-energy edge excitations
that would occur if the virtual cut were a physical edge of the subsystem. In the context
of the fractional QHE it was shown that other kinds of virtual cuts can also inform about
the fractional bulk excitations [113].

It should be stressed that the ES provides this information about the excitations from
just the ground state wave function with PBC. No computation of higher-lying energy
eigenstates or introduction of a physical boundary is required. This is especially useful in
strongly interacting systems, where the diagonalization of the Hamiltonian is extremely
difficult, or where the ground state is given in terms of a model wave function like the
Laughlin state. All in all, the rich information contained in the ES combined with its
numerical accessibility make it an extremely useful tool in the study of topological phases.

In many cases, the ES possesses well-defined quantum numbers which allow the sep-
aration of the full spectrum into different sectors corresponding to different values of the
quantum numbers. Indeed, if the ground state of the total system is an eigenstate of a
Hermitian operator O, the density matrix ρ commutes with O such that [ρ,O] = 0. We
now consider the case where the symmetry can be written as a sum O = OA +OB of two
terms OA and OB acting only on the subsystems A and B, respectively. Then,

0 = TrB ([ρ,OA]) + TrB ([ρ,OB]) = [ρA,OA], (4.15)

since the second term vanishes identically. This implies that the spectrum of Hent can be
labeled using the eigenvalues of OA.
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4.2.2 Single particle entanglement spectrum

We recall that in systems of free fermions (or more generally Gaussian systems), the many
body Hamiltonian H is quadratic in the mode operators. It can therefore be expressed as

H =
∑

i,j

hijc
†
icj (4.16)

with a matrix h whose spectrum is the single particle energy spectrum. In such systems,
the entanglement Hamiltonian is also quadratic in the mode operators [114] and can be
expressed in a completely analogous fashion as

Hent =
∑

i,j∈A

hent
ij c

†
icj (4.17)

with a matrix hent. Here, the notation i, j ∈ A implies that the summation runs only
over the degrees of freedom in the subsystem A. The matrix hent is directly related to the
correlation matrix

CAij = 〈ψ|c†icj|ψ〉 (4.18)

of the degrees of freedom in A. As before, |ψ〉 is the total quantum state of the system.
Indeed, it can be shown that [114]

(
CA
)T

=
1

1 + ehent
. (4.19)

Therefore, the spectrum {λi}i of CA is referred to as the single particle ES, where the
eigenvalues lie in the range 0 ≤ λi ≤ 1 [114].

Since the single particle ES determines the eigenvalues of the reduced density matrix
ρA, it also determines the EE. Concretely, for the von Neumann entropy one finds

S
(vN)
A = −

∑

i

[λi log(λi) + (1− λi) log(1− λi)] . (4.20)

Eigenvalues λi = 0 or λi = 1 do not contribute to the sum in Eq. (4.20), since the function
x log(x) vanishes at x = 0, 1. The single particle modes corresponding to these eigenvalues
therefore have no entanglement w.r.t. the virtual cut and are fully supported in either the
subsystem A or the subsystem B. On the other hand, eigenvalues λ = 1/2 contribute the
largest possible amount log(2) to the sum in Eq. (4.20), and therefore correspond to single
particle modes which are maximally entangled w.r.t. the virtual cut.

For TIs, and more generally systems of free fermions, the single particle ES w.r.t. a
virtual cut in real space reflects the single particle energy spectrum that would occur if
the virtual cut were a physical boundary of the system [115]. In particular, gapless edge
modes of SPT phases also occur in the single particle ES. We will now illustrate this
correspondence using the two SPT phases discussed in Chapter 2, the SSH model and the
CI model.
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4.2.3 Single particle entanglement spectrum of the SSH model

Let us consider the SSH model from Sec. 2.2 on a chain with PBC and N unit cells. As
sketched in Fig. 4.2(a), we partition the chain into a subsystem A consisting of the first L
unit cells and its complement B consisting of the remaining N − L unit cells. We want to
compute the single particle ES of the SSH ground state w.r.t. to A in the two phases of
the SSH model.

In the dimerized limits in the trivial and the topological phases obtained for δ = −1
and δ = 1, respectively, we can compute the single particle ES analytically. Indeed, in
these limits the chain spits into N pairs of strongly coupled nearest-neighbour fermions,
where each pair decouples from the rest of the chain. As a consequence, we can consider
each pair independently from the rest of the chain. Let us denote by c†1 and c†2 the creation
operators for the left and right fermion in one such pair. In the trivial dimerized phase,
c†1 = c†A,j and c†2 = c†B,j for some unit cell j ∈ {0, . . . , N − 1}, whereas in the topological

dimerized phase, c†1 = c†B,j and c†2 = c†A,j+1 (see Fig. 4.2(a)). The strongly coupled pair is
described by the Hamiltonian

Hpair = c†1c2 + c†2c1. (4.21)

The normalized ground state of the pair Hamiltonian Hpair is given by the state

|ψpair〉 =
1√
2

[
c†1 − c†2

]
|0〉, (4.22)

where |0〉 denotes the vacuum state.
As a preparation for computing the single particle ES, let us now derive the correlation

matrix C of the ground state of the total system in the dimerized limits. The correlation
matrix CA for the subsystem from Eq. (4.18) is obtained by restricting C to the degrees of
freedom in A. Due to the dimerization of the SSH chain, the only non-vanishing elements
of C are given by blocks of size 2 × 2 on the diagonal, which describe one decoupled pair
of sites each. Every mode is part of exactly one such pair. The block Cpair of C describing
the strongly coupled pair we considered above is

Cpair =
(
〈ψpair|c†icj|ψpair〉

)
i,j=1,2

=
1

2

(
1 −1
−1 1

)
, (4.23)

with eigenvalues λ = 0 and λ = 1.
In order to obtain the contribution of the modes c†1 and c†2 to the single particle ES

of the SSH model, we need to distinguish two cases. In the first case, both modes lie in
the subsystem A. Then, the correlation matrix Cpair of Eq. (4.23) forms a sub-block of

the subsystem correlation matrix CA. As we discussed above, the two modes c†1 and c†2
decouple from the rest of the system, such that Cpair contains the only non-zero elements
of CA that involve the two modes. It therefore gives rise to two eigenvalues λ = 0 and
λ = 1 in the single particle ES. As discussed below Eq. (4.20), these eigenvalues do not
contribute any EE, which is expected since both modes are fully localised in the subsystem
A.
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Figure 4.2: (a) Partition of an SSH chain with PBC and N = 4 unit cells into a subsystem
A of the first L = 2 unit cells (marked in blue) and its complement. The virtual cut
lies between the unit cells marked by green rectangles. Sketched in black and red are the
non-zero couplings in the dimerized trivial phase at δ = −1 and the dimerized topological
phase at δ = 1, respectively. In the dimerized topological phase, the virtual cut crosses two
non-zero couplings, whereas this is not the case in the dimerized trivial phase. (b) Single
particle ES of the SSH model on a chain with N = 40 unit cells and PBC w.r.t. the
subsystem A of the first 20 unit cells, for several values of the dimerization δ ranging from
δ = −1 to δ = 1. The two mid-gap levels for δ > 0 are signatures of topological edge
modes at the virtual edges of A.

In the second case, only one of the two modes, denoted c†i for either i = 0 or i = 1, lies
in the subsystem A, whereas the second lies in the subsystem B. This can occur only in the
topological dimerized phase at the edges of A. Then, the block (Cpair)ii is the only part of
CA involving the mode i and therefore contributes an eigenvalue λ = (Cpair)ii = 1/2 to the
single particle ES. In this case, the pair contributes strongly to the EE of A, as expected
since the virtual cut crosses the strong bond between the two modes.

At the fully dimerized point δ = −1 in the trivial phase of the SSH model, there is
no coupling between sites on different unit cells (see Fig. 4.2(a)). Therefore, no pair of
coupled sites is separated by the virtual cut (which lies between unit cells) and only the
first of the two cases above occurs. Hence, the single particle ES consists of L eigenvalues
λ = 0, 1 and is fully gapped like the single particle energy spectrum for δ = −1. On the
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other hand, at the fully dimerized point δ = 1 in the topological phase of the SSH model,
the pairs of coupled sites are formed from sites of two adjacent unit cells (see Fig. 4.2(a)).
Therefore, the virtual cut crosses the two bonds between sites N − 1 and 0 and between
sites L− 1 and L. Each crossed bond corresponds to the second case discussed above, and
contributes a level λ = 1/2 to the single particle ES. The other bonds inside the subsystem
are not crossed by the virtual cut and contribute L− 1 levels λ = 0, 1 as discussed above.
Therefore, the single particle ES contains two mid-gap levels coming from the edges of A,
akin to the single particle energy spectrum of an open SSH chain defined on A.

For other values of δ ranging from δ = −1 to δ = 1, the single particle ES of the SSH
chain is shown in Fig. 4.2(b). For negative values of δ, the spectrum is fully gapped. On
the other hand, for positive values of δ there are two to mid-gap levels close to the value
λ = 1/2. Therefore, throughout the full parameter range the single particle ES computed
from the ground state with PBC resembles the single particle energy spectrum for an SSH
chain with OBC. This is an instance of the bulk boundary correspondence for topological
phases, where the bulk ground state with PBC reflects the boundary spectrum in its ES.

Correspondingly, the single particle ES w.r.t. the subsystem A in the topological dimer-
ized phase of a chain with OBC contains a single mid-gap state from the virtual cut in
the bulk. In this case, the single particle ES does not depend on the Fermi energy level as
long as it lies in the bulk gap. In particular, the ES is the same no matter if the physical
boundary modes are empty or occupied.

4.2.4 Single particle entanglement spectrum of the Chern insu-
lator

Let us now compute the ES for the CI model discussed in Sec. 2.3. We consider the
cylinder geometry sketched in Fig. 4.3(a) with PBC in the x direction and OBC in the
y direction. As subsystem A we choose the lower half of the cylinder, i.e. all sites with
0 ≤ y ≤ Ny/2 − 1, such that A preserves translation invariance in the x direction. This
subsystem possesses one virtual edge in the physical bulk, which is parallel to the physical
edges. Based on the discussion of the single particle ES of the SSH model with OBC, we
expect this virtual edge to cause one chiral edge mode in the ES.

The single particle ES in the topological phase of the CI model is shown in Fig. 4.3(b)
as a function of the conserved momentum kx. As expected, there is a single chiral edge
mode associated with the virtual edge. The appearance of the chiral mode in the ES does
not depend on the Fermi level, as long as it lies in the bulk energy band gap.

The CI model can be driven into a topologically trivial phase by the addition of a
sufficiently strong staggered chemical potential µ which is µ on A sites and −µ on B sites
(see also our publication of Ref. [3] reprinted in Sec. 5.3). In Fig. 4.3(c) we show the single
particle ES of the ground state in this phase. There is no chiral edge mode, and the two
bands in the ES are not connected.

Therefore, virtual edges lead to chiral modes in the single particle ES if and only if
the model is in a topologically non-trivial phase. The chiral modes in the ES of the bulk
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Figure 4.3: (a) Computation of the ES on the cylinder with PBC in the x direction and
OBC in the y direction. The subsystem A marked in red consists of the lower half of the
cylinder, i.e. all sites with 0 ≤ y ≤ Ny/2 − 1 and preserves translation invariance in the
x direction. (b) and (c) Single particle ES of the CI model with parameters t = 1 and
∆ = 1/2 for a system of 40× 40 unit cells in the geometry sketched in (a). The spectrum
is shown as a function of kx. (b) Single particle ES in the topologically non-trivial phase
of the CI model. The single chiral edge mode is due to the virtual edge of the subsystem
A. (c) Single particle ES in a trivial phase generated by addition of a strong staggered
chemical potential µ = 2.5 (see text). The spectrum is gapped without a mode connecting
the two bands.

ground state reflect the chiral edge modes in the single particle energy spectrum created
by physical edges. This exemplifies the bulk boundary correspondence for the CI model.

4.2.5 Entanglement spectrum of the Laughlin state

As a final example, let us now consider the Laughlin states for the fractional QHE, which
we discussed in Chapter 3. Since these are strongly interacting systems, their entanglement
Hamiltonian is not quadratic in mode operators. Hence, there is no single particle ES and
we need to rely on the many body ES {ξi}i.

For convenience, we consider a an infinitely long cylinder with OBC in the x direction,
and a finite radius Ly and PBC in the y direction. The single particle eigenfunctions and
Laughlin states in this geometry can be defined analogously to those on the disk [49]. We
focus on the ES w.r.t. a real-space partition of the cylinder into a region A with x > 0 and
its complement with x < 0. The dominant levels in the ES of the Laughlin state at filling
ν = 1/2 are shown as a function of the conserved many body momentum Ky in Fig. 4.4.
These levels display a chiral dispersion with the same state counting as the edge modes,
namely that of a chiral free-boson CFT given in Eq. (3.17). The exact degeneracy of the
levels at the same momentum is lifted due to finite-size effects. This demonstrates the
bulk boundary correspondence for the ES in chiral phases with intrinsic topological order,
where the ES computed from the bulk ground state gives access to the gapless edge energy
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Figure 4.4: Dominant levels in the real-space ES of the Laughlin state at filling ν = 1/2.
We consider an infinitely long cylinder with OBC in the x direction, and a finite radius
Ly = 17l0 and PBC in the y direction. The spectrum is shown as a function of the conserved
many body momentum Ky.

spectrum.

4.3 Tensor network states

In Sec. 4.1.2 we saw that gapped quantum ground states obey an area law for the EE.
In this section we give a brief review of tensor network states (TNS) (see Ref. [116] for a
review), a class of ansatz states that naturally incorporate the area law. This makes them
good candidates for modeling physically relevant quantum states [117]. TNS can be seen
as natural generalizations of trivial product states and allow thus a very efficient encod-
ing of quantum many body states. They for the basis for extremely successful variational
algorithms [32, 33, 34, 35, 118]. TNS are defined in terms of local building blocks that me-
diate the entanglement between physical constituents using virtual particles. Hence, they
elucidate the entanglement patterns underlying quantum ground states and have thereby
helped to understand topological phases with [36] and without [37] strong correlations.

Here, we focus on 1D matrix product states (MPS) [119, 120] and 2D projected entan-
gled pair states (PEPS) [40]. We begin in Sec. 4.3.1 by explaining the construction of these
TNS in terms of local tensors. In Sec. 4.3.2 we then show that TNS obey the area law and
discuss the version of the bulk boundary correspondence applicable to TNS. Finally, in
Sec. 4.3.3 we briefly review the role of symmetries in the TNS framework, and the capacity
of TNS to describe different topological phases.
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4.3.1 Definition

TNS are model states for quantum systems on a lattice with a finite-dimensional physical
Hilbert space per lattice site. Typically, the lattice lies in real space, but TNS defined on
lattices in momentum space [121] or orbital spaces [122] have also been constructed. Here
we focus on bosonic TNS, for which the physical degrees of freedom are either spins or
hard-core bosons. It is also possible to construct TNS for fermionic particles [123, 124]
as we did in our publication of Ref. [2]; such TNS are reviewed in great detail there (see
Sec. 5.2). A TNS is obtained by associating virtual particles to each physical site, which
mediate the entanglement between different physical constituents. For bosonic TNS, the
virtual particles obey bosonic statistics.

For a 1D MPS defined on a chain of length N we associate two virtual Hilbert spaces,
denoted the left and right virtual space, to each lattice site j ∈ {0, . . . , N − 1} . They
are responsible for encoding the correlations of the physical particle with its left and right
neighbors, respectively. The left and right virtual space have orthonormal bases {|l〉} and
{|r〉}, respectively, with l, r = 0, . . . , D − 1. The dimension D of the virtual spaces is
referred to as the bond dimension. For simplicity we only consider uniform TNS which
have the same bond dimension for every virtual space, although more general states can
be constructed. We denote by {|i〉} with i = 0, . . . , d − 1 an orthonormal basis for the
physical Hilbert space with dimension d. The MPS is defined by the set of local tensors

A[j]ilr (4.24)

which relate the virtual and physical particles associated to each lattice site j. For a fixed
physical index i, the local tensors can be interpreted as matrices (A[j]i)lr of dimension
D × D. Graphical representations of TNS are often very useful. In this language, the
local MPS tensor is represented as shown in Fig. 4.5 by an object with three open legs,
corresponding to the physical and the two virtual indices, respectively.

The many body quantum state |ψ〉 defined by the MPS is given by a linear combination
of product states of the physical degrees of freedom

|ψ〉 =
d−1∑

i0,...,iN−1=0

ci0,...,iN−1
[|i0〉 ⊗ · · · ⊗ |iN−1〉] , (4.25)

where |ij〉 denotes the basis state |i〉 on the lattice site j. The coefficients ci0,...,iN−1
in

the expansion are obtained by contracting the local MPS tensors for all lattice sites. As
indicated by the term MPS, in a 1D system this contraction can be expressed as a product
of the corresponding local matrices for fixed physical indices,

ci0,...,iN−1
= Tr

[
A[0]i0 · · ·A[N − 1]iN−1

]
. (4.26)

Here, we assumed PBC for the chain and the trace acts on the left and right virtual spaces
on sites j = 0 and j = N − 1, respectively. In the graphical notation, the coefficient
ci0,...,iN−1

is represented as in Fig. 4.5(b) by connecting the virtual legs of different local
tensors which are contracted.
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Figure 4.5: Graphical notation for TNS. (a) Local MPS tensor A with physical index i,
left virtual index l and right virtual index r. (b) Contraction of several MPS tensors on
a periodic chain with four sites. (c) Local PEPS tensor with physical index i, left virtual
index l, up virtual index u, right virtual index r and down virtual index d. (d) Contraction
of several PEPS tensors.

Similarly, 2D PEPS on the square lattice are constructed by associating four virtual
spaces of bond dimension D to each site, which encode the correlations in the left, up,
right and down directions. We use the same notations as above for the left and right
virtual space and the physical space. The up and down virtual spaces have orthonormal
bases {|u〉} and {|d〉}, respectively, with u, d = 0, . . . , D − 1. The PEPS is defined by the
collection of local five-index tensors

A[(x, y)]ilurd (4.27)

for each lattice site at position (x, y). In the graphical notation, the PEPS local tensor
corresponds as shown in Fig. 4.5(c) to an object with five open legs. The coefficients of
the physical many body basis states are obtained by contracting the virtual indices of all
local tensors (see Fig. 4.5(d) for the corresponding graphical representation). Due to the
2D space, this contraction is of much higher complexity [125] and can in general no longer
be expressed as a matrix product.

MPS and PEPS are local model states which are fully defined by the set of local tensors
for all lattice sites. Indeed, it can be shown that they possess parent Hamiltonians with
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local interactions for which they are the exact ground states [119]. Due to their definition
in terms of finite-dimensional local tensors, TNS are also very simple in the sense that they
contain few variational parameters. For example, a 1D MPS with bond dimension D for a
chain with N sites is determined by a polynomial number of ND2d complex parameters.
On the other hand, a generic quantum state in this physical Hilbert space is specified
by an exponential number dN of complex many body coefficients. Therefore, TNS with
small bond dimension allow an extremely numerically efficient encoding of a many body
quantum state.

Every many body quantum state in a finite-dimensional system can be expressed as a
TNS with sufficiently large bond dimension. The usefulness of a TNS representation is the
greatest when the bond dimension can be chosen small and in particular independent from
the system size. As we will motivate now, whether or not a given quantum state admits
such an efficient (approximate) TNS representation depends crucially on its entanglement
structure [120].

4.3.2 Area law and entanglement spectrum

Let us consider an MPS defined on a periodic chain with N sites, which is partitioned into
a subsystem A consisting of the first L sites j = 0, . . . , L− 1, and its complement. Due to
the form of the MPS many body coefficients of Eq. (4.26), the state from Eq. (4.25) can
be expressed as

|ψ〉 =
D−1∑

l,r=0

|v(l, r)〉 ⊗ |w(r, l)〉 (4.28)

where

|v(l, r)〉 =
d−1∑

i0,...,iL−1=0

(
A[0]i0 · · ·A[L− 1]iL−1

)
lr

[|i0〉 ⊗ · · · ⊗ |iL−1〉] , (4.29)

|w(r, l)〉 =
d−1∑

i0,...,iL−1=0

(
A[L]iL · · ·A[N − 1]iN−1

)
rl

[|iL〉 ⊗ · · · ⊗ |iN−1〉] . (4.30)

This expression looks very similar to the Schmidt decomposition of Eq. (4.5). The D2

terms originate from the possible configurations of the left virtual index of site 0 and the
right virtual index of site L− 1. As sketched in Fig. 4.6(a) these are the virtual indices of
sites in A which cross the subsystem boundary.

In fact, Eq. (4.28) is not yet a Schmidt decomposition of the MPS because the states
|v(l, r)〉 and |w(r, l)〉 are in general not orthonormal. Nonetheless, choosing an orthonormal
basis from the spaces spanned by these states can only reduce the number of terms in the
decomposition. Hence, the number of terms in the Schmidt decomposition of the MPS
or equivalently the rank of its reduced density matrix ρA is at most equal to D2. The
von Neumann entropy of a reduced density matrix of rank r is at most equal to ln(r).
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Figure 4.6: Restriction of an MPS in (a) and a PEPS in (b) to a subsystem A marked in
blue. As explained in the text, the Hilbert space of the virtual legs of the TNS which are
crossed by the boundary of A carries a boundary theory that can be used to compute the
ES.

Therefore, the EE of the MPS satisfies

S(vN)(ρA) ≤ 2 ln(D) (4.31)

and is therefore bounded by the logarithm of the bond dimension irrespective of the size
of A. This implies that MPS with a constant bond dimension satisfy a 1D area law for
the EE. Hence, they are good model states for ground states of 1D gapped Hamiltonians
with exponentially decaying correlation functions. Indeed, the extremely successful density
matrix renormalization group algorithm [32] can be understood in modern terms as a
variational algorithm over MPS [33].

On the other hand, MPS with a constant D cannot exactly represent gapless critical
models like Luttinger liquids due to their logarithmic EE scaling from Eq. (4.13). However,
by increasing the bond dimension, critical states can be approximated with MPS to arbi-
trary precision [33]. Indeed, Eq. (4.31) implies that the bond dimension D of an MPS for
a critical state with S(vN)(ρA) ∝ ln(L) should grow as D2 ∝ N . Therefore, the number of
complex parameters dN3 of this MPS grows polynomially in the system size, rather than
the exponential number dN for a generic quantum state. Hence, MPS offer an extremely
efficient encoding even for critical quantum states.
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For 2D PEPS, an analogous argument can be made. The number of terms in the
Schmidt decomposition of a given PEPS is at most equal to D to the power of the number
of virtual legs crossed by the subsystem boundary. As sketched in Fig. 4.6, the number of
these legs is equal to the length |∂A| of the boundary of the subsystem (in units of the
lattice spacing). Therefore, the EE of a PEPS is bounded as

S(vN)(ρA) ≤ |∂A| ln(D) (4.32)

and obeys a 2D area law with the linear coefficient α from Eq. (4.10) determined by the
logarithm of the bond dimension.

From Eq. (4.28) it is clear that the virtual particles at the boundary of the subsystem A
play a decisive role in the Schmidt decomposition. They generate a set of non-orthonormal
states from which the orthonormal Schmidt bases are chosen. Due to the close relation
between the Schmidt decomposition and the ES (see Sec. 4.2.1), the virtual particles at
the boundary can also be used to compute the ES of the TNS. Indeed, it is possible to
construct an operator acting on the Hilbert space of the virtual boundary particles whose
spectrum gives access to the many body ES [126]. This is referred to as the bulk boundary
correspondence for TNS. For MPS on an infinite open chain and for PEPS on an infinitely
long cylinder with a finite circumference, the bulk boundary correspondence allows the
efficient computation of the many body ES [126]. For a more detailed review including
technical details, see our publication of Ref. [1] reprinted in Sec. 5.1.

4.3.3 Symmetries

Local symmetries such as spin rotations and point group symmetries such as mirror op-
erations have intuitive representations in the TNS formalism. For many MPS and PEPS,
such physical symmetries correspond to symmetries of the local tensor involving both the
physical and the virtual degrees of freedom. In Fig. 4.7 we show the example of a local
symmetry acting by a unitary linear transformation U on a given site. For the local tensor
A of a TNS which is invariant under this symmetry, the physical symmetry action can
equivalently be expressed as the action of linear representations Uv on the virtual degrees
of freedom. This understanding has led to crucial analytical results such as the classifica-
tion of 1D bosonic SPT phases using MPS [37] as well as decisive speed-ups for numerical
simulations [127].

An important role is played by virtual symmetries of local tensors, whose action on the
physical leg is trivial. Such virtual symmetries can be used to encode intrinsic topological
order in PEPS [36]. The virtual symmetries then give direct access to characteristic prop-
erties of the topological phase such as the ground state manifold, the TEE and anyonic
excitations. Indeed, ground states of many models with non-chiral topological order such
as Kitaev’s toric code [14] or string-net models [128] have exact representations in terms
of PEPS with a low bond dimension [38, 39].

The description of 2D chiral topological systems such as a non-interacting CIs or in-
teracting FCIs with TNS is much more subtle. On one hand, PEPS with a finite bond
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Figure 4.7: Local symmetry acting by a unitary linear transformation U on the physical
leg of a PEPS tensor, which is equivalent to the action of linear maps Uv acting on the
virtual legs.

dimension and features of chiral topological phases have been constructed. For example,
there are PEPS for non-interacting fermionic systems which possess a non-zero Chern num-
ber and a matching chiral ES [41, 42, 43]. Their local tensors possess a virtual symmetry
which can be related to the chiral edge mode [42]. On the other hand, these TNS are
ground states of Hamiltonians with algebraically decaying interaction terms. Hence, they
possess algebraic instead of exponentially decaying correlation functions and hence cannot
be the ground states of gapped local Hamiltonians. Indeed, it has been proven in a no-go
theorem [43, 48] that PEPS with a finite bond dimension cannot exactly represent gapped
free-fermionic SPT phases.

Similarly, there are examples of interacting PEPS with features of chiral intrinsic topo-
logical order. These are constructed either by Gutzwiller projection of several copies of
non-interacting chiral PEPS [44], or else from local tensors which transform under time
reversal and mirror operations in a specific representation [45, 46, 47]. Such PEPS exhibit
chiral ES, but also algebraically decaying correlation functions in the bulk as opposed to
the exponentially decaying correlators expected for gapped phases. Indeed, it has been
argued on general grounds that no interacting chiral PEPS can be the ground state of a
gapped and local Hamiltonian [129]. Nonetheless, it is expected that PEPS can still serve
as a numerically efficient approximate description for chiral topological phases.



Chapter 5

Publications

During my thesis, I carried out three main projects studying the entanglement signatures
of different chiral topological phases. This chapter contains the reprints of the publications
resulting from these projects.

In the preceding three chapters we discussed that chiral topological phases, in par-
ticular those with intrinsic topological order, give rise to fascinating phenomena that are
potentially relevant for applications in quantum computing. Due to the strong correlations
required for the realization of such phases, they are very difficult to study analytically
and numerically. Therefore, representations using the numerically efficient tool of TNS are
highly desirable. However, the nature of chiral topological phases prevents exact PEPS
representations with a finite bond dimension. While there are PEPS with typical features
of chiral topological phases such as a non-zero Chern number or a chiral ES, these states
have algebraic bulk correlation functions. My first two projects focused on the question of
how well chiral topological phases can be described approximately with PEPS.

In Sec. 5.1 we study a PEPS on the square lattice with a chiral ES reminiscent of
su(2)1 CFT [45, 46]. Using a careful analysis of the compatibility between the different
symmetries imposed on its local tensor, we are able to explain and partially resolve some
discrepancies between the ES of the PEPS and the CFT spectrum. This highlights that
PEPS with a finite bond dimension can correctly reproduce certain properties of chiral
topological phases despite the algebraically decaying bulk correlations.

In Sec. 5.2, we aim to give an intuitive example for the impossibility to represent a chiral
topological phase exactly with a PEPS of finite bond dimension. Since the obstruction
appears already for non-interacting phases, we focus on the 2D CI and a 3D HOTI with
chiral hinge states. These phases can be obtained by a charge pumping interpolation of
the 1D SSH model and the 2D topological quadrupole model, respectively. Using exact
TNS representations of the latter two states, we construct hybrid TNS with a finite bond
dimension for the CI and the 3D HOTI, where one dimension corresponds to momentum
space. We show that the associated real-space TNS have an infinite bond dimension in one
direction, corresponding to the non-locality of the inverse Fourier transform.

Finally, in Sec. 5.3 we revisit the 3D HOTI with chiral hinge states. We construct a
wave function for a strongly correlated 3D HOTI by a Gutzwiller projection of two copies
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of this state, analogous to the construction of an FCI from a CI discussed in Sec. 3.5.
We show using large-scale variational Monte Carlo computations of the EE that this state
has chiral hinge states of the same nature as the edge states of a Laughlin state at filling
ν = 1/2. We also study the bulk properties, and show that the gapped surfaces host a 2D
topologically non-trivial theory whose TEE cannot be explained using topological quantum
field theory.
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5.1 Interplay of SU(2), point group, and translational

symmetry for PEPS

This section contains a reprint of the following publication:

• Anna Hackenbroich, Antoine Sterdyniak, and Norbert Schuch. “Interplay of SU(2),
point group, and translational symmetry for projected entangled pair states: Appli-
cation to a chiral spin liquid”. In: Phys. Rev. B 98 (8 Aug. 2018), p. 085151

In this publication, we study a PEPS for spin-1/2 particles on the square lattice. This
TNS breaks time reversal symmetry explicitly. It is constructed in such a way that mirror
operations act by a complex conjugation, akin to the application of time reversal [45, 46].
It was shown in previous publications that this state has chiral features similar to a spin
liquid in the same phase as the FCI we discussed in Sec. 3.5 [45, 46]. It is thus expected
to be described by the free boson CFT su(2)1, which we reviewed in Sec. 3.3.4. However,
certain discrepancies between the chiral ES of the PEPS and the expected spectrum of the
CFT su(2)1 were also observed.

The chiral PEPS has several physical symmetries including spin SU(2) rotation, the
point group symmetries of the square lattice and translation symmetry with respect to a
possibly enlarged unit cell. As we discussed in Sec. 4.3.3, these physical symmetries are
reflected as symmetries of the local tensor. Here we investigate how the interplay of these
symmetries determines which symmetry representations are allowed for the local tensor.
Using the bulk boundary correspondence for TNS discussed in Sec. 4.3.2, we then show the
consequences of this interplay for the ES of the PEPS on an infinite cylinder. As reviewed
in Chapter 3 and Chapter 4, the ES is expected to reflect the gapless edge spectrum at
physical boundaries of the system, which in turn should be described by the chiral CFT
su(2)1. Our results explain the discrepancies that had been observed between the ES of the
PEPS and the CFT spectrum. Moreover, in a certain parameter region where the PEPS
possesses an additional U(1) symmetry we can resolve these discrepancies and obtain an
ES with the expected state counting of Eq. (3.17) and conformal weight h = 1/4 for the
half-integer spin sector.

http://dx.doi.org/10.1103/PhysRevB.98.085151
http://dx.doi.org/10.1103/PhysRevB.98.085151
http://dx.doi.org/10.1103/PhysRevB.98.085151
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Projected entangled pair states (PEPS) provide exact representations for many nonchiral topologically ordered
states whereas their range of applicability to interacting chiral topological phases remains largely unsettled. In
this context, the symmetries of the local PEPS tensors are crucial for determining the characteristic topological
features of the state. In this paper we examine the constraints that arise when different symmetries are imposed
simultaneously on the local tensor such as internal SU(2), point group, and translation symmetry. We show how
the interplay of these symmetries manifests in the entanglement spectrum which is the main diagnostic tool for
chiral topological order. We apply our results to a spin liquid PEPS introduced previously as a chiral generalization
of the resonating valence bond state. Our findings explain the discrepancies observed between the entanglement
spectrum of this state and the expected edge spectrum described by a chiral conformal field theory. Finally, in a
certain parameter region where this PEPS possesses an additional U (1) symmetry we are able to resolve these
discrepancies and obtain an entanglement spectrum with the expected state countings and conformal weight.

DOI: 10.1103/PhysRevB.98.085151

I. INTRODUCTION

Topological phases are the most prominent examples of
phases of matter that cannot be understood in terms of sym-
metry breaking and local order parameters. In the strongly
interacting regime, topological order can develop where the
system hosts free anyonic bulk excitations [1,2]. While global
symmetries may naively seem to play a smaller role for
topological than for symmetry-broken phases, they are crucial
for determining the different phases a system can realize
as exemplified by the classification of free-fermionic [3,4]
and one-dimensional symmetry-protected [5–7] topological
phases. Indeed, chiral topologically ordered phases [8] pos-
sessing gapless edge modes described by chiral conformal field
theory (CFT) can only appear in the absence of time reversal
symmetry. They have been observed in the paradigmatic
example of the fractional quantum Hall effect [1,9] and were
predicted to emerge in spin systems [10–12].

In the last decades, entanglement has emerged as a key
probe for strongly correlated topological phases [13–15]. The
entanglement patterns characteristic for systems with local
interactions at zero temperature [16] are accurately captured
by tensor network states [17] such as matrix product states
(MPS) [18] in one dimension and projected entangled pair
states (PEPS) [19] in two dimensions. These variational states
are defined in terms of local building blocks that mediate the
entanglement between physical constituents through virtual
particles. Crucially, they permit both analytical understand-
ing [6] and numerically efficient algorithms [20–22]. In one
dimension, variational algorithms approximating ground states
with tensor network states are extremely successful even for
critical systems [20] and algorithms based on PEPS have
nowadays become competitive also in two dimensions [23].

Despite their local structure, PEPS capture the physics
of nonchiral topological order in a very simple and elegant

manner. Indeed, ground states of many models with nonchiral
topological order such as Kitaev’s toric code [24] or string-net
models [25] have exact representations in terms of simple
PEPS [26,27]. In these examples, topological order is encoded
locally in the PEPS through symmetries of the virtual degrees
of freedom [28]. These virtual symmetries give direct access
to characteristic properties of the topological phase such as the
ground state manifold, topological entanglement entropy, and
fusion rules.

In contrast, the application of the PEPS framework to chiral
topological phases remains one of the open challenges in the
field. It is known that Gaussian, i.e., free fermionic, PEPS
can possess a nonzero Chern number [29–31]. However, they
exhibit algebraically decaying correlation functions as was
proven in a no-go theorem [31,32], implying that PEPS cannot
exactly represent gapped chiral free-fermionic topological
phases. As this no-go theorem does not apply to interacting
PEPS, it is still unclear whether gapped chiral PEPS with
intrinsic topological order exist. The two examples known to
date are gapless: Firstly, in Ref. [33], a PEPS possessing the
chiral CFT u(1)4 as an edge theory was obtained by applying
a Gutzwiller projection to two copies of a chiral Gaussian
PEPS. Secondly, a chiral spin-liquid PEPS was constructed in
Refs. [34,35] as a generalization of the square lattice resonating
valence bond (RVB) state [36–39] with long-range singlets
and complex amplitudes. The entanglement spectrum (ES) of
this PEPS resembles the spectrum of the chiral CFT su(2)1

which is the edge spectrum of the bosonic Laughlin state
at filling fraction 1/2. However, certain discrepancies were
observed between the PEPS entanglement spectrum and the
CFT spectrum such as mismatching conformal weights and
state countings whose origin could not be resolved.

In the quest for PEPS representations of chiral topologically
ordered states, the study of symmetries and their interplay

2469-9950/2018/98(8)/085151(21) 085151-1 ©2018 American Physical Society
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is of particular importance: Chiral spin liquids are invariant
under multiple symmetries such as spin rotations, spatial
rotations, and translations. Moreover, their idealized instances
transform equivalently under reflections and time reversal
symmetry. For injective MPS and PEPS it is known that a
given physical symmetry has to be represented locally on the
virtual degrees of freedom [40,41]. This understanding has
led to crucial analytical results such as the classification of
one-dimensional symmetry protected topological phases [6]
as well as decisive speed-ups for numerical simulations [42].
However, it has not been investigated systematically how
multiple symmetries, for example spatial and internal trans-
formations, can be implemented simultaneously and whether
this leads to nontrivial constraints intrinsic to the PEPS
formalism.

In this paper we analyze systematically the interplay of
SU(2), translation, and point group symmetry for PEPS and
then focus on the case of the chiral spin liquid PEPS which
possesses an additional nonunitary symmetry, namely reflec-
tion combined with time reversal. First, we show that for
half-integer physical spins one cannot simultaneously impose
invariance under spin rotations, spatial rotations, and single site
translation at the level of the local tensor. The states obtained
from local tensors satisfying either translation invariance or
point group symmetry generally differ by their flux around
noncontractible loops. Furthermore, in addition to the physical
symmetries the local tensors necessarily possess a virtual Z2

symmetry which determines the possible topological proper-
ties of the state.

In the second part of this paper, we consider the effect of the
additional symmetry arising in the case of the chiral spin liquid
PEPS. We show that its antiunitarity has consequences in the
transfer matrix and entanglement spectra, such as the emer-
gence of a peculiar multiplet structure. These results explain
the discrepancies of the ES from the CFT spectrum which
were observed in Refs. [34,35]. In particular we show that
the interplay of reflection symmetry and virtual Z2 symmetry
leads to unphysical degeneracies in the PEPS entanglement
spectrum. Finally, we show that there is a region of parameter
space where the PEPS exhibits an additional virtual U(1)
symmetry which permits us to lift these degeneracies by
considering states which break the underlying symmetry. We
demonstrate numerically that within this region, the corrected
low-energy ES of the PEPS is in perfect correspondence with
the spectrum of the chiral CFT su(2)1 including a correct value
for the conformal weight.

The paper is organized as follows. In Sec. II we introduce
PEPS, recalling how global symmetries of the state such as
space group and SU(2) symmetries are implemented on the
local tensors. We also review the role of virtual symmetries,
the entanglement spectrum, and the PEPS transfer matrix. In
Sec. III we discuss the formal incompatibility of translation
invariance and point group symmetry in SU(2) invariant PEPS
and analyze the consequences for half-integer spin. Using the
example of the chiral PEPS from Ref. [34] we continue by
analyzing the implications of SU(2) invariance, translation
invariance, and point group symmetry for the transfer matrix
and its fixed points in the case of a virtual Z2 symmetry in
Sec. IV. Finally, in Sec. V we focus on the case where the PEPS
possesses a virtual U(1) symmetry and present our numerical

FIG. 1. Schematic description of the two different ways of defin-
ing a PEPS. (a) Four virtual spins are introduced around each physical
spin. The relation between them is given by a five-index tensor. The
many-body state is obtained by contracting nearest-neighbor virtual
spins as shown in (c). (b) The PEPS is defined by a local projection
map from the four virtual spins to the physical spin. Nearest-neighbor
virtual spins are placed in a maximally entangled state |ω〉 as shown
in (d).

results establishing the correspondence between the CFT and
entanglement spectra.

II. PRELIMINARIES ON PEPS

In this section we introduce our notations and review the
construction of PEPS with space group symmetry, SU(2)
symmetry, and virtual symmetries as well as the computation
of entanglement spectra for cylinder PEPS.

A. Construction of PEPS

We study a spin system on a square lattice � with one spin- 1
2

degree of freedom per lattice site. The local Hilbert space on
every lattice site is therefore two-dimensional and spanned by
the states {|sx〉|sx = 0, 1} with x ∈ �. For every configuration
{x �→ sx} of the spins one obtains a many-body basis state
|{x �→ sx}〉 for the whole system as the tensor product ⊗x∈�|sx〉
of the corresponding local basis states on every lattice site. A
generic quantum state

|ψ〉 =
∑

{x �→sx}
c{x �→sx}|{x �→ sx}〉 (1)

for the lattice spin system is defined by its expansion coeffi-
cients c{x �→sx} with respect to this product basis.

Projected entangled pair states (PEPS) are model states for
lattice spin systems which depend only on a small number of
parameters. These are given by the entries As

lurd of a five-index
tensor that describes the physical spin s of one lattice site as
well as four virtual spins l, u, r, d placed at the left, top, right,
and bottom of each lattice site, respectively [see Fig. 1(a)].
The dimension D of the Hilbert space for each virtual spin is
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called the bond dimension and is independent of the dimension
d = 2 of the physical spin- 1

2 Hilbert space on every site. The
network obtained by placing a tensor A(x) on each lattice site
x and contracting nearest-neighbor virtual indices defines the
PEPS expansion coefficient

c{x �→sx} =
∑
{lxux
rxdx}

∏
x∈�

δlx,rx−e1
δux,dx+e2

A(x)sx
lxuxrxdx

, (2)

where lx, ux, rx, dx = 0, . . . ,D − 1 for all lattice sites x ∈ �

[see Fig. 1(c)]. In Eq. (2) we implicitly assumed periodic
boundary conditions rx = lx+(Nh−1)e1 (dx = ux+(Nv−1)e2 ) for the
virtual spins corresponding to a torus of size Nh (Nv) in the
horizontal (vertical) direction. A PEPS defined on a torus
therefore has no open virtual legs and is a state of the physical
spins only. In the following we also study PEPS on cylinders
obtained by compactifying only the vertical direction. The
choice of virtual boundary conditions at the left and right
edges of the cylinder may have a profound impact on the
resulting physical state which persists even in the limit of an
infinitely long cylinder Nh → ∞. For instance whenever the
local tensor possesses some symmetry the quantum numbers
of the virtual boundary vectors influence the transformation
behavior of the physical state. The degrees of freedom for a
PEPS on the cylinder therefore consist of the physical spins
and the boundary virtual spins.

Alternatively, PEPS can be defined as the result of a
projection of a layer of entangled virtual spins onto the layer
of physical spins. As above one associates to every lattice site
four D-dimensional virtual spins placed at its left, top, right,
and bottom edges which are then mapped to the physical spin
of this site by the local tensor map [see Fig. 1(b)]

A =
∑

s

D−1∑
l,u,r,d=0

Âs
lurd |s〉[〈l| ⊗ 〈u| ⊗ 〈r| ⊗ 〈d|]. (3)

Throughout this paper we also refer to A as a local projection
map and we denote its basis entries by Â in order to distinguish
them from the local tensor A. Here, {|l〉|l = 0, . . . ,D − 1}
is an orthonormal basis of the Hilbert space of the left
virtual spin and similarly for |u〉 (up), |r〉 (right), and |d〉
(down). Nearest-neighbor virtual spins on adjacent lattice
sites x, y are placed in a pairwise maximally entangled state
|ω(x, y)〉 = ∑D−1

ix,jy=0 ωixjy |ix〉 ⊗ |jy〉. As sketched in Fig. 1(d)
the application of the product of all local projection maps to
the tensor product of the virtual maximally entangled states for
all nearest-neighbor bonds 〈x, y〉 defines the PEPS

|ψ̃〉 =
[⊗

x∈�

A(x)

] ∏
〈x,y〉

|ω(x, y)〉 (4)

with many-body basis coefficients

c̃{x �→sx} =
∑
{lxux
rxdx}

∏
x∈�

ωlx,rx−e1
ωux,dx+e2

Â(x)sx
lxuxrxdx

. (5)

If the basis entries of the tensor map coincide with the local
tensor, i.e., Âs

lurd = As
lurd , and all virtual maximally entangled

states are given by |ω〉 = ∑D−1
i=0 |i〉 ⊗ |i〉 with basis entries

ωij = δij the many-body basis coefficients (2) and (5) agree

such that the states |ψ〉 and |ψ̃〉 are identical. However, other
options for Â and |ω〉 exist and are relevant for the construction
of SU(2) spin-singlet PEPS. The PEPS in Eq. (5) can be cast
into the form (2) with local tensors A defined by absorbing the
virtual maximally entangled state ωij into Â. For the rest of
this section we therefore assume w.l.o.g. that the maximally
entangled state is given by ωij = δij and Âs

lurd = As
lurd unless

stated otherwise.
In this paper, we consider PEPS which possess symmetries

that act either nonlocally such as space group transformations
or locally such as physical SU(2) rotations. Under such oper-
ations, a PEPS is mapped to another PEPS with transformed
local tensors. Hence, by imposing that the new tensors are
related to the original tensors in a certain way, we can ensure
that the PEPS transforms in a given representation of the
symmetry group. At the beginning of the next subsection
Sec. II B, we describe the action of space group operations
on PEPS, whereas the first paragraph of Sec. II C reviews the
implementation of SU(2) symmetry for PEPS. Finally, local
virtual symmetries of PEPS are considered in Sec. II D.

B. PEPS with space group symmetry

In this subsection we examine how lattice translations and
point group transformations act on PEPS. All lattice rotations
and reflections considered here are defined with respect to the
vertices of the lattice. An element |{x �→ sx}〉 = ⊗x∈�|sx〉 of
the many-body product basis of a lattice spin system is mapped
by a space group transformation g to a different basis state
|{x �→ sg−1x}〉 = ⊗x∈�|sg−1x〉. Such operations therefore map
any PEPS to a different PEPS whose expansion coefficients
are obtained from transformed local tensors

Ã(x)sx
lurd = A(g−1x)sx

g(lurd ). (6)

Here, the space group action on the virtual indices is trivial
for translations whereas for the point group it is given by the
natural two-dimensional representation ofC4v on the directions
left, up, right, and down. For instance, the vertical mirror Mx

acts on the indices as lurd �→ ldru, and similarly for the other
group elements. In the following we consider only translation-
invariant PEPS but with unit cells which can be larger than that
of the underlying spin lattice �.

We recall that the point group C4v for a site x ∈ � of the
square lattice has four real one-dimensional representations
which we denote by boldface letters A1, A2, B1, B2. The
character table of these representations is shown in Table I. In
the following we will be especially interested in the rotation-
invariant representations A1, A2 that are even and odd under
mirrors, respectively. Based on Eq. (6) we say that a PEPS
local tensor A transforms in a one-dimensional representation
σ of C4v if

As
g(lurd ) = σ (g)As

lurd (7)

for all point group elements g.
Whenever the local tensor of a translation-invariant PEPS

is point-group symmetric according to Eq. (7), the local repre-
sentation σ also determines the transformation behavior of the
PEPS under C4v transformations. We denote the resulting point
group representation of the PEPS by �(σ ) which generally
depends also on the system size. For instance if the local
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TABLE I. Character table of the one-dimensional irreducible
representations of the square lattice point group C4v . Here, e denotes
the identity element, C4 (resp. C2) the rotation by π

2 (resp. π ) and
Mx (resp. Mxy) the mirror about the horizontal axis (resp. the main
diagonal).

e C2 C4 Mx Mxy

A1 1 1 1 1 1
A2 1 1 1 −1 −1
B1 1 1 −1 1 −1
B2 1 1 −1 −1 1

tensor transforms as σ = A1 the resulting PEPS will also be
invariant under rotations and reflections, i.e., �(A1) = A1.
On the other hand, a local representation σ = A2 causes the
PEPS to transform underC4v in the representation�(A2) = A1

(�(A2) = A2) on a lattice with an even (odd) number of
sites. These statements extend to PEPS with a checkerboard
sublattice structure which are translation invariant with a
bigger unit cell of 2 × 2 lattice sites. The checkerboard lattice
is invariant under C4v operations. If both local tensors of such
a PEPS satisfy Eq. (7) the state will therefore transform in
the same representation �(σ ) as a translation-invariant PEPS
whose local tensor has the representation σ . In addition to
Eq. (7) there generally are other possibilities to ensure that a
PEPS transforms under the point group in a representation �;
for instance it suffices that the local tensor transforms in the
representation σ up to a local basis change of the virtual spins.

In the final sections of this paper, we study a chiral spin-
liquid PEPS which is invariant under lattice translations and
rotations but gets mapped to its complex conjugate by lattice
mirrors. Its real (imaginary) part therefore transforms under
C4v in the one-dimensional representation A1 (A2) and we
denote the transformation of the entire state by A1 + iA2. Such
a state is special since the transformation behavior under time
reversal and lattice symmetries which is expected for the edge
modes of a chiral topological system is satisfied by the bulk of
the PEPS. By analogy we say that a PEPS local tensor

As
lurd = (A1)slurd + i (A2)slurd (8)

transforms under the point group as σ = A1 + iA2 if the real
tensors A1 and A2 transform in the representations A1 and
A2 according to Eq. (7), respectively. The local tensor A is
then invariant (complex conjugated) under cyclic permuta-
tions (reflections) of its virtual indices. One can show that a
translation invariant PEPS whose local tensor satisfies Eq. (8)
transforms under C4v in the representation �(A1 + iA2) =
A1 + iA2 regardless of the system size.

C. Spin-singlet PEPS

Within the PEPS framework it is possible to construct
quantum states which are invariant under global group trans-
formations such as SU(2). This is the case if two conditions are
met [41,43]. Firstly, the local projection map (3) should be an
intertwiner between the group representation ρphys of the phys-
ical spin and some group representations ρv,l (ρv,u, ρv,r , ρv,d )

for the left (up, right, down) virtual spins such that

ρphys(γ ) ◦ A=A ◦ [ρv,l (γ ) ⊗ ρv,u(γ ) ⊗ ρv,r (γ ) ⊗ ρv,d (γ )]

(9)

for all group elements γ . This implies that any group operation
acting on the physical spins can be pushed to the virtual layer
where it factorizes as a product of group operations acting
on every virtual leg separately. Secondly, if a virtual particle
transforms in the representation ρv its nearest-neighbor virtual
spin has to transform in the conjugate virtual representation ρ∗

v

with basis representation ρ∗
v (γ )ij = ρv (γ −1)ji for any group

element γ . The contribution of this nearest-neighbor virtual
bond to the many-body basis coefficient (2) is thus invari-
ant under group transformations since ρv (γ )i ′iδij ρ

∗
v (γ )j ′j =

(ρv (γ ) ◦ ρv (γ −1))i ′j ′ = δi ′j ′ . The basis coefficient remains
therefore unchanged and the PEPS transforms trivially under
global group operations.

Generally, invariance of the PEPS therefore prevents
nearest-neighbor virtual spins such as the left and right (up and
down) tensor legs from transforming in identical group repre-
sentations. However, one can reformulate a pair of nearest-
neighbor virtual spins with representations (ρv, ρ

∗
v ) as two

identical representations (ρv, ρv ) by simultaneously changing
their connecting maximally entangled state provided that ρv is
self-conjugate. Let us exemplify this reformulation for the Lie
group SU(2) whose representations are self-conjugate with the
isomorphism between a representation and its conjugate given
by the spin-flip operator Y ,

ρ∗(γ ) = Y ◦ ρ(γ ) ◦ Y−1. (10)

We consider the horizontal bond between two sites x and x′ =
x + e1 with local tensors Â(x) and Â(x′) initially connected
with an identity on the virtual bond. SU(2) invariance then
requires that the right (left) virtual spin of site x (x′) transforms
in the representation ρv (ρ∗

v ). Without changing the PEPS, we
can insert an identity 1 = YY−1 into the virtual bond and define
a modified right local tensor by absorbing the inverse spin flip
to its left,

˜̂A(x′)s
′

l′u′r ′d ′ =
∑

l̃′

(Y−1)l′ l̃′Â(x′)s
′

l̃′u′r ′d ′ . (11)

Due to the self-conjugacy Eq. (10) the left virtual leg of ˜̂A
transforms in the same representationρv as its nearest neighbor.
However, the two local tensors are now contracted with a
nontrivial virtual maximally entangled state ωij = Yij that we
also refer to as a virtual singlet,

Â(x)slurdδrl′Â(x′)s
′

l′u′r ′d ′ = Â(x)slurdωrl′
˜̂A(x′)s

′
l′u′r ′d ′ . (12)

This reformulation is advantageous for the systematic study
of PEPS with simultaneous SU(2) and space group symme-
try [44]. Indeed, it allows the construction of SU(2) invariant
PEPS in terms of local projection maps whose four virtual spins
transform identically under spin rotations. This is the situation
we will study in the following, i.e., we place virtual singlets
on all bonds and moreover assume that the horizontal and
vertical representations are identical. We can then investigate
the symmetry properties of the local projection map and those
of the virtual singlets separately. In the canonical Sz eigenbasis
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the spin-flip operator is given by the unitary

Y = eiπSy

. (13)

It is symmetric (antisymmetric) and squares to +1 (−1) for
integer (half-integer) spin representations. The virtual singlet
|ω〉 is therefore neither symmetric nor antisymmetric under
exchange of the two virtual particles if ρv contains a mixture
of integer and half-integer spin representations. As will be
discussed in Sec. II D, this is a necessary condition for the
realization of PEPS with half-integer physical spin. In this
case there may be several distinct spin-singlet PEPS with
the same local projection map and inequivalent orientations
for the virtual singlets. We devote Sec. III to the study of
their relations and symmetry properties. We emphasize that
the singlet absorption Eq. (11) relies on the self-conjugacy of
ρv and is therefore not always possible for groups possessing
non-self-conjugate representations such as SU(3).

D. Virtual symmetries of PEPS

Many toy models with intrinsic topological order such as
the Z2 toric code [24] possess exact representations in terms
of simple PEPS [26]. For these models it has been realized that
topological order is intimately related to the invariance of the
local tensor under virtual symmetries which by definition do
not involve the physical spin [28],

A = A ◦ [τv,l (g) ⊗ τv,u(g) ⊗ τv,r (g) ⊗ τv,d (g)]. (14)

Here, τv,l (τv,u, τv,r , τv,d ) are representations of the virtual
symmetry group G carried by the left (up, right, down)
virtual legs with τ ∗

v,l = τv,r and τ ∗
v,d = τv,u. For such PEPS all

characteristic features of intrinsic topological order such as a
topological ground state degeneracy, topological entanglement
entropy, or anyonic excitations can be traced back to the virtual
symmetry (14) of the local tensor. We review in particular
the construction of states from the topological ground state
manifold that are locally equivalent to a PEPS |ψ〉 but generally
possess different eigenvalues with respect to certain nonlocal
operators.

On a square lattice torus or cylinder, vertical (horizontal)
flux lines of the virtual symmetry group G can be added to
the PEPS |ψ〉 by inserting a group element τv,r (u)(g) on every
horizontal (vertical) link crossed by a vertical (horizontal) line
through the centers of plaquettes as sketched in Fig. 2(b). Due
to the virtual symmetry (14) of every local tensor, these strings
can be moved throughout the bulk of the tensor network. Hence
they are not localized at any one position and generally cannot
be detected by a local operator such as a local Hamiltonian.
The number of different states that can be generated through
addition of flux strings depends both on the group G and on
the topology of the underlying lattice [24,25,45]. Indeed, the
former determines the number of string types whereas the
latter determines the number of independent noncontractible
loops. However this consideration gives only the maximal
dimension of the ground state manifold as some states may
vanish or be linearly dependent. This notably occurs at phase
transitions [46].

Let us now focus on SU(2) invariant PEPS with half-
integer physical spin per unit cell which necessarily pos-
sess a virtual symmetry with symmetry group G = Z2.

FIG. 2. Insertion of Z2 fluxes into one- and two-dimensional
tensor network states by multiplication of certain virtual bonds with
matricesZ (here represented by red crosses). The blue points represent
the local tensors for which we suppressed the physical legs in the
interest of readability. (a) MPS |ψ〉Z with a nontrivial flux through
the circle. (b) PEPS |ψ〉h,v with both horizontal and vertical flux lines.
Similarly there exist PEPS |ψ〉h, |ψ〉v with only one horizontal or
vertical flux line, respectively.

Indeed, the tensor product of two integer or two half-integer
spin representations contains only integer spins. As a result,
the intertwiner condition (9) between physical and virtual
SU(2) representations has a solution for half-integer physical
spin only if the virtual representation ρv contains both integer
and half-integer spins. The SU(2) rotation e2πiSz

then has a
nontrivial virtual representation in terms of a diagonal matrix

Z = ρv (e2πiSz

) (15)

equal to +1 (−1) on integer (half-integer) virtual spin rep-
resentations such that Z �= ±1 but Z2 = 1. Due to its SU(2)
invariance the local projection map for half-integer physical
spin satisfies

(−1) × A = A ◦ Z⊗4 (16)

in analogy to Eq. (14). The overall sign −1 stems from the
half-integer physical spin and has no essential influence on the
intrinsic topological features of the resulting PEPS.

For PEPS with a virtual Z2 symmetry there is only a
single type of flux string that can be inserted around any
noncontractible loop since two strings around the same loop
annihilate each other. This leads to an expected topological
degeneracy of four in a system defined on a two-dimensional
torus, where the ground state manifold is spanned by the
original state |ψ〉 as well as |ψ〉h, |ψ〉v , and |ψ〉h,v with
horizontal, vertical, and both horizontal and vertical flux lines,
respectively. Similar concepts apply to matrix product states
(MPS) as the one-dimensional analogues of PEPS. If the local
MPS tensor possesses a virtual Z2 symmetry one can define
a state |ψ〉Z with a nonvanishing flux through the circle by
inserting a matrixZ on one virtual bond as sketched in Fig. 2(a).

E. Entanglement spectrum for PEPS

Ever since their introduction [15], entanglement spectra
have been used extensively to probe the nature of states
especially in the context of topologically ordered phases
[47–49]. The entanglement spectrum (ES) of a part A of a
system in the state |ψ〉 is defined as the spectrum of its entangle-
ment Hamiltonian HEnt = − log ρA where ρA = TrĀ |ψ〉〈ψ |
is the corresponding reduced density matrix. In the rest of
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FIG. 3. Entanglement spectrum for PEPS. The lattice is divided
in two disjoint regions A and Ā. The entanglement between these
regions is naturally carried by the virtual spins at the one-dimensional
boundary. The entanglement Hamiltonian is obtained as an operator
acting only on those spins [Eq. (18)].

this paper we will focus on the case where A and A form a
real-space bipartition of the system. The ES is related to the
spectrum of the physical edge theory as shown numerically
in many cases [50–53] and analytically for noninteracting
topological phases [54], certain one-dimensional symmetry
protected topological phases [55], and for quantum states
whose edge states are described by a chiral conformal field
theory [56]. This allows, for example, us to extract conformal
data such as conformal weights and thus to identify the edge
conformal theory starting only from the ground state [57].

A correspondence at the level of the ES between bulk and
edge degrees of freedom is very natural in the framework of
PEPS. We can decompose the state for the entire system as a
sum

|ψ〉 =
∑

l

|ψ (l)〉A ⊗ |ψ (l)〉Ā, (17)

where |ψ (l)〉A(Ā) denotes the PEPS restricted to the sub-
system A (Ā) depending explicitly on the configuration l =
(l1, l2, l3, . . . ) of the virtual legs which cross the entanglement
cut ∂A (see Fig. 3). Equation (17) shows that the entanglement
between the physical spins in A and Ā is carried by the virtual
spins connecting the two regions. Within the PEPS formalism
it is therefore natural to interpret the entanglement Hamiltonian
of a two-dimensional system as an operator for the virtual spins
at the one-dimensional boundary [58].

Specifically, we consider a PEPS on a cylinder of total
length Nh with subsystem A consisting of the first NA columns
starting from the left edge. The entanglement cut therefore
crosses all Nv horizontal virtual bonds of one PEPS column
with Hilbert space Hsl = (CD )⊗Nv where the subscript in-
dicates that all virtual bonds lie in a single layer. We stack
the PEPS with its complex conjugate, thereby forming an
object with both a ket layer and a bra layer, and compute
the reduced density matrix ρA by contracting the physical

FIG. 4. Definition of the cylinder transfer matrix. (a) The local
tensor is contracted with its complex conjugate to obtain the single-site
transfer matrix. (b) Single-site transfer matrices are contracted along
the periodic direction of the cylinder to obtain the cylinder transfer
matrix.

legs corresponding to sites in the complement Ā. A detailed
calculation shows that [58]

ρA = U
√

(σL)T σR
√

(σL)T U †, (18)

where U is an isometry from the boundary virtual spins Hsl to
the physical spins in A. On the other hand, the virtual reduced
density matrix σL(R) is an operator which maps the virtual spins
at the left (right) edge of the entanglement cut from the bra layer
to the ket layer. It is obtained by tracing out the physical spins
in the density matrix of the restricted state |ψ (l)〉A (|ψ (l)〉Ā)
while keeping the virtual legs at the entanglement cut free,

σL

ll̃ = TrA[|ψ (l)〉A A〈ψ (l̃)|] (19)

and similarly for σR . Here, all virtual reduced density matrices
are normalized according to Tr(σL(R) )2 = 1. In this paper we
study reflection-symmetric PEPS for which the left and right
virtual density matrices are related as (σR )∗ = σL such that
the ES is given by the spectrum of

− log[(σL)2]. (20)

F. Transfer matrix

An object of central importance for the study of PEPS in
two dimensions is the cylinder transfer matrix �. As sketched
in Fig. 4, � is obtained by stacking a single column of local
PEPS tensors with their complex conjugates and contracting
the physical indices of both layers. As for MPS, the transfer
matrix spectrum determines the correlation length of the state.
Moreover, in the presence of virtual symmetries the leading
eigenvalues of � in different symmetry sectors determine
the number of independent ground states with nonvanishing
norm [46]. We will make use of this fact in Sec. V B.

In addition the transfer matrix gives access to the virtual
reduced density matrices and thereby to the ES of the PEPS.
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If the state has virtual boundary conditions vL(R) ∈ Hsl at the
left (right) edges of the cylinder one finds

σL = (�T )NA (vL ⊗ (vL)∗), (21a)

σR = �Nh−NA (vR ⊗ (vR )∗). (21b)

Here we used that the transfer matrix acts equivalently on
two copies Hsl ⊗ Hsl of the single-layer virtual column or on
virtual density matrices σ ∈ End(Hsl ). For an infinitely long
cylinder the subleading eigenspaces of the transfer matrix are
suppressed in Eq. (21) and σL,R correspond to the leading left
and right eigenvectors.

Without symmetries or fine tuning, these leading eigen-
vectors are nondegenerate, positive, and have nonvanishing
overlap with a generic boundary vector. The ES is therefore
expected to be independent of the boundary conditions in
the thermodynamic limit. However, in the presence of virtual
symmetries the transfer matrix is block diagonal and the
ES may depend on the symmetry sector of the boundary
vectors. All in all, the transfer matrix therefore contains crucial
information about the topological properties of a PEPS and we
devote Sec. IV B to the study of its symmetries for the chiral
PEPS in which we are interested.

III. INCOMPATIBILITY OF TRANSLATION INVARIANCE
AND POINT GROUP SYMMETRY IN CONSTRUCTION

OF SU(2) INVARIANT PEPS

Spin liquids are states which are invariant under global
SU(2) transformations and lattice translations in addition to
transforming in a well-defined way under rotations and reflec-
tions about lattice sites. In order to construct spin liquid PEPS
we therefore need to understand how translation invariance
and point group symmetry can be implemented for SU(2)
invariant PEPS. This is a subtle issue since generically either
translation invariance or point group symmetry are formally
broken in the construction of SU(2) invariant PEPS which
we described in Sec. II C. In the present section we examine
under which conditions this formal breaking of translation
invariance or point group symmetry manifests at the physical
level and has consequences for the transformation properties
of the state. Since this question arises also in one-dimensional
tensor networks we discuss the simpler MPS in parallel to
two-dimensional PEPS throughout this section.

We begin with a statement of the problem in subsection III A
and a summary of our findings in subsection III B before
moving to a detailed analysis in subsection III C. The section
concludes with the discussion of two simple MPS examples in
subsection III D.

A. Statement of problem and assumptions

As described in Sec. II C, SU(2) invariant PEPS (also
referred to as spin-singlet PEPS) can be defined via local
projection maps which intertwine between the physical spin
representation and the tensor product of representations for
the virtual spins [see Eq. (9)]. If the tensor network is con-
tracted with identities ωij = δij on the bonds, SU(2) invariance

requires that nearest-neighbor virtual spins transform in op-
posite representations (ρv, ρ

∗
v ) under SU(2). For an explicitly

translation-invariant PEPS with ωij = δij this implies that
the unique local projection map cannot transform straightfor-
wardly under reflections and rotations since its virtual spins
possess nonidentical SU(2) representations.

However, the self-conjugacy of SU(2) representations per-
mits the rewriting of a virtual nearest-neighbor pair (ρv, ρ

∗
v )

connected by ωij = δij as a pair of spins transforming in
identical representations (ρv, ρv ) and connected by a virtual
singlet ωij = Yij (see Sec. II C). One can therefore consider
spin-singlet PEPS with the same representation ρv for every
virtual spin, a single local projection map

A : ρ⊗4
v → ρphys (22)

valid for every lattice site and singlets ωij = Yij on the bonds.
Here, the local projection map is defined on four identical
virtual spins and can therefore transform in a simple way
under C4v , for instance in a one-dimensional representation
[Eq. (7)]. The space group transformations of the PEPS are then
determined both by the point group representation of A and by
the space group transformations of the orientation pattern for
the virtual singlets, where both contributions can be analyzed
separately. This is the approach we follow here. Let us now
specify our assumptions and notations.

For the rest of this section, A denotes a local tensor map of
the form (22) with basis entries denoted as Âs

lurd . As specified
in Eq. (9) A acts as an intertwiner between the four virtual
spins transforming in identical SU(2) representations ρv and
the physical spin with representation ρphys. We assume that the
physical particle has a well-defined spin ρphys = sphys whereas
the virtual representation

ρv =
n⊕

α=1

sα (23)

is a direct sum of n irreducible representations of spin sα for
α = 1, . . . , n. As in Sec. II we denote by

Y =
n⊕

α=1

eiπρsα (Sy ) (24)

the virtual spin flip operator with square

Z = Y 2 =
n⊕

α=1

e2πiρsα (Sz ) (25)

that is equal to +1 (−1) on integer (half-integer) representa-
tions. Moreover we demand that the local tensor map changes
in a simple manner under point group operations, i.e., under
permutations of its virtual spins. Specifically, we assume that
A transforms either in a one-dimensional representation σ

as defined in Eq. (7) or else that its real and imaginary
part transform in one-dimensional representations σ1 and σ2,
respectively [cf. Eq. (8) and the subsequent discussion]. In
the latter case, we abbreviate the transformation of A as
σ = σ1 + iσ2. For MPS the point group C2 has trivial and
fundamental representations denoted by boldface letters A and
B which are even and odd under inversion, respectively.

An SU(2) invariant PEPS is obtained from the local
projection map A by placing virtual singlets wij = Yij on

085151-7



HACKENBROICH, STERDYNIAK, AND SCHUCH PHYSICAL REVIEW B 98, 085151 (2018)

FIG. 5. Two different singlet orientation patterns for MPS in
(a), (b) and PEPS in (c) and (d). The patterns in (a) and (c) are
invariant under translation by one lattice site but not under point
group operations, whereas the patterns (b) and (d) are invariant under
the lattice point group but have an enlarged unit cell with respect to
translation.

nearest-neighbor bonds. When |ω〉 possesses an orientation
(see Sec. II C), the PEPS is well defined only once we specify an
orientation pattern for the singlets on all bonds. It is not possible
to choose an orientation pattern for the square lattice that is
simultaneously invariant under translations by one lattice site
and invariant under rotations and reflections about lattice sites.
In this construction either translation invariance or point group
symmetry are therefore formally broken at the virtual level. We
consider two natural choices for orientation patterns that are
either translation invariant [see Figs. 5(a) and 5(c)] or point
group invariant [see Figs. 5(b) and 5(d)]. The latter pattern
has an enlarged unit cell of 2 (2 × 2) sites in one dimension
(two dimensions) and therefore applies only to lattices with
an even number of sites in every direction and sublattices
�A(B ) = {∑i niei |

∑
i ni even (odd)}, where i runs from 1 to

the number of spatial dimensions. We denote the PEPS and
MPS derived from these two orientation patterns by |ψ1〉 and
|ψ2〉, respectively.

For future reference we want to express the states |ψ1〉
and |ψ2〉 in terms of tensor networks with identities δij on
all virtual bonds as in Eq. (2). The state |ψ1〉 is computed from
an explicitly translation invariant network with a single local
tensor

MPS : Cs
lr =

∑
l′

Yl′l Â
s
l′r , (26a)

PEPS : Cs
lurd =

∑
l′d ′

Yl′lYd ′dÂ
s
l′urd ′ , (26b)

that is obtained by absorbing the virtual singlet on every left
(left and down) virtual leg for MPS (PEPS), respectively [see
Fig. 6(a) for PEPS]. The local tensor C does not generally

(a) (b)

FIG. 6. Two different ways of absorbing oriented singlets into
PEPS local tensors leading to (a) an explicitly translation invariant
state or (b) a manifestly point group symmetric PEPS.

transform under point group operations in the representation
σ as defined above. On the other hand, |ψ2〉 has a sublattice
structure with local tensors A (B) for sites on �A (�B),
where As

lurd = Âs
lurd and B is obtained by absorbing the virtual

singlets on all virtual legs [see Fig. 6(b) for PEPS] such that

MPS : Bs
lr =

∑
l′r ′

Yl′l Â
s
l′r ′Yr ′r , (27a)

PEPS : Bs
lurd =

∑
l′u′r ′d ′

Yl′lYu′uYr ′rYd ′dÂ
s
l′u′r ′d ′ . (27b)

Due to the SU(2) symmetry of the local projection map the
local tensor B can also be obtained by applying a physical
spin flip eiπρphys(Sy ) to the tensor A. Therefore both A and B

transform under C4v in the representation σ .
The space group transformations of the states |ψ1〉 and |ψ2〉

are determined both by the point group representation σ of
the local tensor map and the transformation of the respective
singlet orientation pattern. We denote by �(σ ) the contribution
of A to the PEPS and MPS point group transformations.
�(σ ) is a one-dimensional representation or consists of in-
dependent one-dimensional representations for the real and
imaginary parts and generally also depends on the system
size (cf. Sec. II B). The singlet orientation pattern for the state
|ψ2〉 is invariant under rotations and reflections about lattice
sites such that |ψ2〉 transforms under point group operations as
�(σ ). However, |ψ2〉 is not manifestly translation invariant. On
the other hand, the orientation pattern for |ψ1〉 is invariant under
translations but not point group transformations. The state
|ψ1〉 is therefore manifestly translation invariant but generally
transforms under point group operations in a manner different
from �(σ ).

The questions we want to answer are therefore threefold:
(1) How does the translation invariant state |ψ1〉 transform

under point group operations?
(2) How does the point group symmetric state |ψ2〉 trans-

form under lattice translations?
(3) What is the relation between the two states |ψ1〉 and

|ψ2〉 when both are well defined, i.e., when the number of
lattice sites in every direction is even?

B. Summary of results

The answers to the questions above will depend on the
system size and also on the physical and virtual spins sphys, sα .
N denotes the total system size, i.e., the length of the chain for
MPS and N = NhNv for PEPS. Let us recall that N should be
even for half-integer spins and �2 is defined only if both Nh
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and Nv are even. We will distinguish three cases of interest to
us:

Case I: The virtual spins are purely integer such that sphys

is integer by the SU(2) fusion rules.
Case II: The virtual spins are purely half integer such that

sphys is integer.
Case III: The virtual spins are mixed integer and half integer

and sphys is half integer such that the local tensor possesses the
virtual Z2 symmetry defined in Eq. (16).

A fourth case exists where the physical spin is integer and
the virtual spins are mixed integer and half integer. However,
this situation is less relevant than Case III since the latter
constitutes the only possibility to build PEPS for half-integer
physical spin whereas for integer spin Case I and II provide
more natural options. As the results for both cases are identical
up to sign factors we focus here on Case I-III. We found the
following:

(1) Point group transformations of |ψ1〉:
Case I: |ψ1〉 transforms as �(σ ).
Case II: |ψ1〉 transforms as �(σ ) for N even and as B ⊗

�(σ ) (B2 ⊗ �(σ )) for MPS (PEPS) with N odd.
Case III: |ψ1〉 transforms as �(σ ) on chains of length

N ∈ 4N, as B ⊗ �(σ ) on chains of length N ∈ 4N + 2 and it
vanishes on odd-length chains. In two dimensions it transforms
as �(σ ) on even-by-even tori and vanishes if both Nh,Nv

are odd. It transforms in a two-dimensional representation on
nonquadratic tori with Nh even and Nv odd such that it is
mapped to the state |ψ1〉h ((−1)Nh/2|ψ1〉) with a horizontal flux
line under the horizontal (vertical) mirror, and analogously for
Nh odd and Nv even.

(2) Translation of |ψ2〉:
Case I: |ψ2〉 is translation invariant.
Case II: |ψ2〉 is translation invariant.
Case III: Translation changes |ψ2〉by a phase (−1)N/2 that is

nontrivial on chains of length N ∈ 4N + 2 but which is always
trivial in two dimensions since N ∈ 4N for even-by-even tori.

(3) Relation of |ψ1〉 and |ψ2〉:
Case I: |ψ1〉 = |ψ2〉.
Case II: |ψ1〉 = (−1)N/2|ψ2〉 for MPS and |ψ1〉 = |ψ2〉 for

PEPS.
Case III: The two states possess different Z2 fluxes around

noncontractible loops if the system size in at least one direction
is not divisible by four. For MPS

N ∈ 4N : |ψ1〉 = |ψ2〉, (28a)

N ∈ 4N + 2 : |ψ1〉 = |ψ2〉Z (28b)

and for PEPS

Nh,Nv ∈ 4N : |ψ2〉 = |ψ1〉, (29a)

Nh(v) ∈ 4N, Nv(h) ∈ 4N + 2 : |ψ2〉 = |ψ1〉h(v), (29b)

Nh,Nv ∈ 4N + 2 : |ψ2〉 = −|ψ1〉h,v, (29c)

where the states with flux insertions are as defined in Sec. II D.

C. Proofs

1. Point group transformations of |ψ1〉
The deviations of the point group transformations of |ψ1〉

from �(σ ) are caused by the nontrivial transformation of the
corresponding singlet orientation pattern displayed in Fig. 5(a)
and 5(c). The flipping of an arrow in this singlet orientation
pattern corresponds to the insertion of a matrix (YT )−1Y = Z

on that virtual bond.
Case I: Z = 1 such that the flipping of arrows does not

manifest at the physical level.
Case II: Z = −1 such that the flipping of arrows results in an

overall phase (−1)N for horizontal and vertical reflections as
well as rotations. Diagonal reflections leave the singlet pattern
invariant or cause a trivial phase (−1)2N .

Case III: Z �= ±1 such that rotations and reflections cause
the insertion of Z2 fluxes. On one-dimensional chains reflec-
tion causes the insertion of N matrices Z that cancel pairwise
due to the virtual Z2 symmetry given by Eq. (16). The (−1)
factor in this equation leads to an overall sign of (−1)N/2 for
the MPS (note that N is even for half-integer sphys). For PEPS,
the horizontal mirror and rotation by π/2 (vertical mirror
and rotation by −π/2) cause the insertion of a Z matrix on
every vertical (horizontal) bond and therefore of Nv horizontal
(Nh vertical) flux lines. These can be rearranged to obtain
the transformation properties stated above. Note that |ψ1〉
vanishes if the total number of sites is odd since in this case the
half-integer physical spins cannot fuse to an SU(2) invariant
state.

2. Translation of |ψ2〉
Translation of |ψ2〉 by one lattice site exchanges the two

sublattices and acts on the state as a staggered physical spin
flip ⊗

x∈�A

eiπρphys(Sy )
⊗
x∈�B

e−iπρphys (Sy ). (30)

The physical spin flip is related to its inverse as eiπρphys (Sy ) =
±e−iπρphys (Sy ) for integer (half-integer) sphys and |ψ2〉 is invari-
ant under a global spin flip. It is therefore invariant under lattice
translations in Case I and Case II but changes by a phase
(−1)N/2 in Case III. This phase is always trivial for PEPS
but can be relevant in MPS such as for the Majumdar-Ghosh
chain, see Sec. III D.

3. Relation between |ψ1〉 and |ψ2〉
The singlet orientation patterns defining |ψ1〉 and |ψ2〉 are

related by the flipping of the arrow direction on every other
nearest-neighbor bond corresponding to the insertion of the
matrix (Y T )−1Y = Z on that link [see Fig. 7(a)]. Case I: Z = 1
such that the two states are identical. Case II: Z = −1 such that
the states are related by a phase (−1)N/2 for MPS and (−1)N

for PEPS.
For Case III the Z insertions can be rearranged using

the virtual Z2 symmetry of every local tensor, see Fig. 7(b)
for PEPS. In one dimension, the total number of such Z

insertions is given by N/2 and thus even (odd) on chains of
length N ∈ 4N (N ∈ 4N + 2), giving the relation (28). In two
dimensions, the Z insertions on every second horizontal and
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FIG. 7. (a) Schematic representation of the difference between
the singlet orientation patterns defining |ψ1〉 and |ψ2〉. Whenever
the direction of a singlet has to be exchanged this corresponds to
the insertion of a matrix Z on the corresponding bond. The inserted
Z matrices are represented by red crosses while the physical legs
are suppressed in the interest of readability. The dotted lines delimit
patches on which the graphical equation given in (b) will be applied
whereas the dashed lines indicate flux lines. (b) Using the Z2 virtual
symmetry, the two outer crosses can be moved to the interior links.
(c) As a result of applying (b) to the four squares on (a), a PEPS with
a flux line along every other row and every other column is obtained.

vertical link can be rearranged to obtain a network with a Z2

flux line wrapping around every other horizontal and vertical
line through the centers of plaquettes such that there are a total
of Nv/2 (Nh/2) horizontal (vertical) flux lines, respectively
[see Fig. 7(c)]. Since flux lines around the same noncontractible
loop cancel pairwise one obtains the result (29).

D. Examples

In this subsection we illustrate the previous discussion with
two examples of spin-chain ground states which have an exact
MPS representation: the AKLT state [59] and the Majumdar-
Ghosh state [60].

1. AKLT-type MPS

A general AKLT MPS is constructed by choosing an
irreducible representation ρv = s for all virtual legs and by
projecting the two virtual spins corresponding to a physical site
onto the maximal spin sphys = 2s. Thus integer (half-integer) s

corresponds to Case I (Case II) of subsection III B, respectively.
This construction is sketched in Fig. 8(a). The resulting local
tensor map is inversion symmetric, i.e., Âs

lr = Âs
rl . On the other

hand, the singlets created by the operator Y = ρv (eiπSy ) are
symmetric (antisymmetric) for integer (half-integer) virtual
spin s. The local tensor of the translation invariant state |ψ1〉 is
therefore symmetric (antisymmetric) up to a local basis change

(Cs )T = (−1)2s Y−1CsY. (31)

The MPS |ψ1〉 therefore transforms under the point group in the
representation A unless s is half integer and N is odd in which
case it transforms as B. Interestingly, the sign in Eq. (31) is
a manifestation of the topologically nontrivial (trivial) nature
of the AKLT state for odd (even) spin sphys as pointed out
in Ref. [61]. Since the singlet orientations contribute only an

(a)

(b)

FIG. 8. (a) Schematic representation of the AKLT state: Two spin-
s virtual spins are projected onto the maximal spin sector 2s at each
site and are connected to their nearest neighbors by a singlet state.
Depending on s, the singlet state is oriented (case shown here) or not.
(b) Schematic description of the two degenerate Majumdar-Ghosh
states |χ1〉 and |χ2〉 where the physical singlets are represented by
red arrows. While they are directly related by translation, a reflection
around the dashed line exchanges the two states but also flips the
antisymmetric singlets giving a sign (−1)N/2.

overall sign that is trivial for even N , |ψ2〉 is always both
translation invariant and equal to |ψ1〉.

2. Majumdar-Ghosh MPS

The Majumdar-Ghosh state is a spin- 1
2 valence bond state

where every physical spin forms a singlet with one of its nearest
neighbors (hence the number of sites must be even). On a
periodic chain there are two possible states |χ1〉, |χ2〉 sketched
in Fig. 8(b) for which the first spin forms a singlet either with
the second one (on the right) or with the last one (on the left).
Both translation T and inversion M around sites exchange
the two states, |χ2〉 = T |χ1〉 and M|χ1〉 = (−1)N/2|χ2〉. Here,
the sign counts the antisymmetric physical singlets flipped by
inversion.

Since translation symmetry is broken in the valence bond
description, a translation invariant MPS exists only for linear
superpositions of |χ1〉 and |χ2〉. This MPS has virtual SU(2)
representations ρv = 0 ⊕ 1

2 and the local tensor map Âs
lr =

δ0,lδs,r + δ0,r δs,l . Thus this example belongs to Case III of
subsection III B. It is fully specified only once we choose
an orientation pattern for the virtual singlets. Indeed, the
orientation of a physical singlet between two sites in the
resulting state corresponds to the orientation of the virtual
singlet of the corresponding bond. The translation-invariant
and inversion-symmetric MPS are therefore given by the
linear superpositions |ψ1〉 = |χ1〉 + T |χ1〉 and |ψ2〉 = |χ1〉 +
M|χ1〉, respectively. These two states are the same for N ∈ 4N
whereas T |χ1〉 = −M|χ1〉 for N ∈ 4N + 2 due to the odd
number of physical singlets. In the tensor network language,
we can account for this by multiplying one bond with the matrix
Z which adds an overall phase −1 when this bond is crossed
by a physical singlet. Therefore |ψ2〉 = |ψ1〉Z for N ∈ 4N + 2
as shown in Eq. (28).
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IV. SYMMETRIES OF CHIRAL SPIN LIQUID PEPS

From now on until the end of this paper we study the chiral
PEPS for spin- 1

2 on the square lattice that was introduced in
Ref. [34] and subsequently studied in Ref. [35]. Unlike the
chiral PEPS from Refs. [29,30,33] this state is not defined
in terms of free fermions or Gutzwiller projections thereof.
Instead, the PEPS is constructed from interacting bosonic spins
by considering the most general local tensor map satisfying
certain symmetry conditions: A1 + iA2 symmetry under C4v

and invariance under simultaneous physical and virtual SU(2)
rotations, where the virtual spins are assumed to transform in
the representation ρv = 0 ⊕ 1

2 . One thereby obtains a family
of spin-singlet states parametrized by three real numbers
λ1, λ2, λc. These spin liquids are deformations of the PEPS
for the nearest-neighbor RVB state [37,38], where additional
terms with amplitudes λ2 and λc in the local tensor generate
long-range singlets [39]. They provide good variational states
for the square lattice Heisenberg model with additional chiral
cyclic plaquette terms [62]. Moreover, for λc = 0 it was shown
that this PEPS can be either critical or in the Z2 spin liquid
phase [63].

The ES for the chiral PEPS presented in Refs. [34,35] resem-
bles the spectrum of the chiral conformal field theory (CFT)
su(2)1. However, this correspondence is not perfect. Firstly, the
ES for the state with Z2-even boundary conditions exhibited
unambiguous chiral features only after the momentum was
projected onto the region between 0 and π . Secondly, the
ES for the state with Z2-odd boundary conditions displayed
two identical modes shifted in momentum by π . Interpreted
as the two sectors of the CFT su(2)1, these spectra therefore
do not give the expected conformal weight of h = 1/4 [64].
Moreover, the ES of the state with a flux line along the cylinder
was found not to display any chiral features.

In this section we are going to conduct a comprehensive
analysis of the symmetries possessed by the chiral spin liquid
PEPS which follow from the special form of its local projection
map. This understanding will permit us to explain some of the
discrepancies between its ES and the CFT su(2)1. In particular
we show that the Z2-even ES is chiral in the entire Brillouin
zone for the explicitly translation invariant PEPS defined in
the previous section. Moreover we prove that the two branches
in the Z2-odd ES follow from a dressed mirror symmetry. In
Sec. V, this identification will allow us to resolve this issue by
considering states which break this symmetry and have only
a single branch in the ES. We also compute the momentum-
resolved ES of the PEPS with a horizontal flux line and show
that it has some chiral features even though they do not appear
linked to a simple CFT.

After formally defining the chiral PEPS in Sec. IV A we
analyze the symmetries of its transfer matrix and the generic
form of its spectrum in Sec. IV B and Sec. IV C, respectively.
We provide the same analysis for the transfer matrix with a
horizontal flux line in Sec. IV D. Finally, we investigate the ES
of the corresponding fixed points in Sec. IV E.

A. Definition

We study a spin liquid PEPS for particles with spin sphys = 1
2

on a square lattice. The state has bond dimension D = 3 and

virtual SU(2) representations

ρv = 0 ⊕ 1
2 . (32)

The local projection map is an intertwiner of SU(2) represen-
tations and transforms in the representation A1 + iA2 of C4v .
It therefore possesses the virtual Z2 symmetry from Eq. (16).
Specifically, one chooses

A = λ1P
(
Aϕ

1

) + λ2P
(
A3ϕ

1

) + iλcP
(
A3ϕ

2

)
, (33)

where P are projections on irreducible C4v and spin- 1
2 repre-

sentations in the tensor product ρ⊗4
v . The coefficients λ1, λ2 are

real for the A1 representations whereas iλc is purely imaginary
for the representation A2. The superscripts ϕ, 3ϕ refer to the
transformation under a local U(1) action described below. The
concrete form of the projection map is given in the Appendix.

We can equivalently define the local projection map (33) as
a superposition of the spin- 1

2 B1,2 representations in ρ⊗4
v [34].

Indeed, due to the virtual Z2 symmetry the two sets of local
tensors corresponding to the A1,2 and B1,2 representations are
related by a local gauge transformation and therefore define
the same PEPS on tori and cylinders [65].

Since ρv is a sum of spin representations it carries a U(1)
action

U (ϕ) : |v〉 + |w〉 ∈ 0 ⊕ 1
2 �→ |v〉 + eiϕ|w〉 (34)

which modifies the relative phase of vectors in the spin-0 and
spin- 1

2 subspaces. States in the representations Aϕ
1 , A3ϕ

1 , A3ϕ
2

that define the local tensor have different eigenvalues ϕ (3ϕ)
under this group action such that a simultaneous group action
on all four virtual legs changes the parameter λ1 relative to
λ2,c,

A(λ1, e
2iϕλ2, e

2iϕλc ) = e−iϕA(λ1, λ2, λc ) ◦ U (ϕ)⊗4. (35)

The transformation (35) implies that on an even-by-even
torus the PEPS with parameters (λ1, λ2, λc ) is equal to the
state with parameters (λ1,−λ2,−λc ). In particular it is real
if either λ2 or λc vanishes. For a proof we multiply all four
virtual legs corresponding to tensors on the sublattice �A (�B)
with U (π/2) (U (−π/2)) such that the two transformations
cancel each other on every bond and the tensor network remains
invariant. On the other hand, according to Eq. (35) the U(1)
transformations change the parameters of every local tensor as
(λ1, λ2, λc ) �→ (λ1,−λ2,−λc ) up to a phase which cancels on
a patch of 2 × 1 lattice sites.

B. Transfer matrix symmetries

In this section we study the symmetries of the transfer matrix
� of the translation invariant PEPS |ψ1〉 on cylinders of even
width Nv . Our results are summarized in Table II. Since the two
transfer matrices are unitarily equivalent after blocking four
columns up to the insertion of a horizontal flux line for Nv ∈
4N + 2 (see Sec. III), our results apply also to the point-group
symmetric state |ψ2〉 after corresponding transformations of
the quantum numbers. The notation O1 ⊗ O2 refers to a linear
operator for a double-layer column of virtual spins that is
a tensor product of two operators O1,2 ∈ End(Hsl ) acting
on the ket layer and bra layer separately. We denote by
l ≡ (l0, . . . , lNv−1) ∈ {0, . . . ,D − 1}Nv a multi-index for the
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TABLE II. Operators commuting with the transfer matrix � which define quantum numbers (upper part) or which create multiplets (lower
part) according to Eq. (39) and Eq. (43) [we exclude the SU(2) ladder operators]. Here, ε = 0 (ε = 1) for the integer (half-integer) spin sector.
The table is valid also for the transfer matrix �(h) with a horizontal flux line in both layers after substitution of the dressed translation operator
T dl

(h) for T dl .

Operator Symbol Properties Quantum numbers

Transfer matrix � (Anti-) Hermitian for sz
dl (half-)integer E

SU(2) spin
∑

a ρdl (Sa )2, ρdl (Sz ) Hermitian sdl, s
z
dl

Z2 charges Z⊗Nv ⊗ 1⊗Nv , 1⊗Nv ⊗ Z⊗Nv Hermitian & unitary Zk, Zb

Translation T dl Unitary Kdl

Layer inversion I Antiunitary E �→ (−1)εE, Kdl �→ −Kdl , Zk ↔ Zb

Dressed mirror Rdl
x Antiunitary E �→ (−1)εE, Kdl �→ Kdl + επ

single-layer virtual space Hsl and by L = (l, l̃) a multi-index
for the double-layer space Hsl ⊗ Hsl .

1. SU(2) symmetry

Spin rotations applied to the physical leg of the local tensor
C can be pushed to the virtual layer and factorize as a product
of representations acting on every virtual leg individually. Due
to the virtual spin flips contained in the definition (26) of C,
its left and down (up and right) virtual legs transform in the
representation ρ∗

v (ρv). This may be interpreted as an ingoing
(outgoing) transformation ρv (g−1) (ρv (g)) acting on the left
and down (up and right) virtual legs of C as sketched in
Fig. 9. The complex conjugate tensor C∗ for the bra layer
transforms under SU(2) in a similar fashion but with conjugate
representations ρ∗

phys for the physical leg and ρv (ρ∗
v ) for the

left and down (up and right) virtual legs. Hence, � commutes
with simultaneous SU(2) transformations

ρdl = ρsl ⊗ ρ∗
sl = ρ⊗Nv

v ⊗ (ρ∗
v )⊗Nv (36)

of all virtual spins in both layers.

2. Virtual Z2 symmetry

The total charge Z⊗Nv of the virtual Z2 symmetry is
conserved independently in both layers of the transfer matrix
[see Eq. (16)]. We denote the eigenvalues of the ket-layer and
bra-layer operators Z⊗Nv ⊗ 1⊗Nv and 1⊗Nv ⊗ Z⊗Nv by Zk and
Zb, respectively. One has

Z⊗Nv = ρsl (e
2πiSz

) (37a)

Z⊗Nv ⊗ Z⊗Nv = ρdl (e
2πiSz

) (37b)

such that the configurations (Zk,Zb ) ∈ {(1, 1), (−1,−1)}
({(1,−1), (−1, 1)}) correspond to integer (half-integer)
double-layer virtual spin ρdl (Sz).

FIG. 9. Factorization of a physical spin rotation as a product of
virtual SU(2) transformations for the local tensor C of the translation
invariant PEPS |ψ1〉. The arrow directionality is a consequence of the
singlet absorption pattern.

3. Translation invariance

The transfer matrix � commutes with the unitary translation
operator T dl ≡ (T sl )⊗2 defined by

T sl
lr = δl0,r1δl1,r2 · · · δlNv−1,r0 . (38)

The single-layer (double-layer) translation operator satisfies
(T sl(dl) )Nv = 1 such that the momenta are Ksl(dl) = 2πn/Nv

with n = 0, . . . , Nv − 1.

4. Layer inversion

The transfer matrix is complex conjugated when the indices
in its ket and bra layers are exchanged, i.e., L = (l, l̃) �→ L′ =
(l̃, l). Formally, � commutes with an antiunitary operator I =
C ◦ Ĩ where Ĩ is a unitary double-layer operator with basis
elements ĨLR = δl̃rδr̃l and C denotes complex conjugation in
this basis. The layer inversion operator satisfies I 2 = 1 and
commutes with spin rotations and translation. It exchanges the
ket layer and bra layer Z2 charges,

I ◦ (Z⊗Nv ⊗ 1⊗Nv ) = (1⊗Nv ⊗ Z⊗Nv ) ◦ I. (39)

5. Hermiticity

The Hermitian conjugate of the transfer matrix is defined
as (�†)LR = (�RL)∗. Since the local projection map [Eq. (33)]
transforms in the representation σ = A1 + iA2 of C4v the local
tensor C behaves under the exchange of its left and right virtual
indices as Cruld = ∑

l′r ′ Yll′ (Cs
l′ur ′d )∗Yr ′r . Due to the SU(2)

symmetry of the transfer matrix this implies

�† = � ◦ ρdl (e
2πiSz

) (40)

such that the transfer matrix is Hermitian (anti-Hermitian) for
integer (half-integer) double-layer virtual spin ρdl (Sz). Hence,
the transfer matrix eigenvalues E are real (purely imaginary)
for integer (half-integer) spin and complex conjugation acts as
E �→ (−1)εE with ε = 0 (ε = 1), respectively.

6. Dressed mirror symmetry

We denote by Msl
x the unitary operator that reflects the

virtual spins in a single-layer column about the (nonperiodic)
x axis with basis elements(

Msl
x

)
lr = δl0,rNv−1δl1,rNv−2 · · · δlNv−1,r0 , (41)

and by Mdl
x = (Msl

x )⊗2 its double-layer variant. Transposition
of the up and down virtual indices modifies the PEPS local
tensor as Cldru = ∑

d ′u′ Ydd ′Yu′u(Cs
lu′rd ′ )∗. The application of
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Mdl
x to the virtual legs on the left and right of the transfer

matrix therefore amounts to a complex conjugation of � as
well as the insertion of a matrix Y 2 = Z on every vertical bond
in both layers. These insertions can be removed by multiplying
every other horizontal virtual leg with Z. Hence � commutes
with the staggered antiunitary operator

Rdl
x ≡ C ◦ (Z ⊗ 1 ⊗ · · · ⊗ Z ⊗ 1)⊗2 ◦ Mdl

x ◦ ρdl (e
iπSy

),

(42)

where C denotes complex conjugation. We included the
spin flip ρdl (eiπSy

) to make sure that Rdl
x commutes with

global spin rotations and that it squares to the identity
(Rdl

x )2 = 1. Due to its staggering the dressed mirror operator
satisfies (

Rdl
x

)−1 ◦ T dl ◦ Rdl
x = (T dl )† ◦ ρdl (e

2πiSz

), (43)

where the last factor causes a momentum shift by π for half-
integer spin. Analogous relations hold in a single-layer column
with the single-layer dressed mirror operator Rsl

x ≡ C ◦ (Z ⊗
1 ⊗ · · · ⊗ Z ⊗ 1) ◦ Msl

x ◦ ρsl (eiπSy

).

C. Spectrum of �

The spectrum of the transfer matrix � can be analyzed using
the symmetries listed in Table II. A maximal set of Hermitian
or unitary operators that commute with the transfer matrix and
explains all numerically observed degeneracies is given by the
spin operators, the translation operator, and the Z2 charges.
Joint eigenstates of this set are given by

|X〉 = ∣∣E, sdl, s
z
dl, K

dl, Zk, Zb

〉
, (44)

where �|X〉 = E|X〉, ∑
a=x,y,z(ρdl (Sa ))2|X〉 = sdl (sdl +

1)|X〉, ρdl (Sz)|X〉 = sz
dl|X〉, and T dl|X〉 = eiKdl |X〉. On the

other hand, the antiunitary layer inversion and dressed mirror
operators commute with the transfer matrix and spin rotations
but not with the translation and the Z2 charges, see Eq. (39)
and Eq. (43). Hence they create multiplets of states with
the same spin quantum numbers and whose transfer matrix
eigenvalues have the same absolute value |E| but which
have different momenta and Z2 charges. These multiplets are
spanned by |X〉 together with the states

I |X〉 = ∣∣(−1)εE, sdl, s
z
dl,−Kdl, Zb, Zk

〉
, (45a)

Rdl
x |X〉 = ∣∣(−1)εE, sdl, s

z
dl, K

dl + επ,Zk, Zb

〉
, (45b)

Rdl
x ◦ I |X〉 = ∣∣E, sdl, s

z
dl,−Kdl + επ,Zb, Zk

〉
, (45c)

where ε = 0 (ε = 1) and the transfer matrix eigenvalues
are real (purely imaginary) for integer (half-integer) sz

dl , re-
spectively. The complex conjugation E �→ (−1)εE and the
momentum inversion Kdl �→ −Kdl are a consequence of the
antiunitarity of I and Rdl

x whereas the momentum shift επ

is caused by the spin-dependent sign factor in Eq. (43). For
half-integer spin these four states are linearly independent such
that there are four redundant spectra with Zk �= Zb.

On the other hand, for integer spin the dressed mirror
symmetry does not cause any degeneracies [66]. The two-
dimensional multiplet for Kdl �= 0, π is spanned by |X〉, I |X〉
whereas these two states are identical for Kdl = 0, π [65].
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FIG. 10. Spectrum of minus the logarithm of the transfer ma-
trix for PEPS parameters λ1 = λ2 = λc = 1, Nv = 8 and different
topological sectors Zk = Zb = 1 in (a), Zk = Zb = −1 in (b), Zk =
Zb = 1 and a vison line in both layers in (c), and Zk = Zb = −1
and a vison line in both layers in (d). These spectra are expected to
give the minima of the dispersion relation of the topologically trivial
excitations of a local parent Hamiltonian above the corresponding
topological ground state at the point kx = arg(E), ky = Kdl in the
two-dimensional Brillouin zone (see main text). In all cases we show
only the first few leading eigenvalues per spin and momentum sector.
States with higher spin appear at higher values of − log[|E|/|E0|] and
are not shown here.

The spectrum of minus the logarithm of the transfer matrix
without flux lines for λ1 = λ2 = λc = 1 and Nv = 8 is shown
in Fig. 10(a) for Zk = Zb = 1 and Fig. 10(b) for Zk = Zb =
−1. This spectrum is expected to reproduce the relative energy
of the minima of the dispersion relation of a local parent
Hamiltonian at the point kx = arg(E), ky = Kdl in the two-
dimensional Brillouin zone (BZ) [67,68]. Due to the reflection
symmetry discussed in Sec. IV B 5 the transfer matrix in these
sectors is Hermitian with real eigenvalues such that we probe
two lines of the BZ where kx = 0, π . Since each plot contains
only states in the same topological sector of the Z2 symmetry
the data we show describes topologically trivial excitations
which are expected to be identical in every topological sector
in the thermodynamic limit. Indeed, the dispersion relation for
states with given spin is similar in all considered topological
sectors with minima at Kdl = 0, π and maxima at Kdl =
π/2, 3π/2. The spectrum appears gapless without visible
branches of single-particle excitations in agreement with the
expectation that chiral topological PEPS are gapless [29,31].
An exception is the lowest level at zero momentum in the
Z2-even sector whose gap to the rest of the states may be a
finite-size effect [31]. The quasienergy of the lowest excitations
with given spin grows with sdl such that the leading states
all have zero spin. For Nv = 8, the lowest levels in either
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topological sector lie at zero momentum and we will use the
corresponding states to compute the ES in the next section.

D. Transfer matrix �(h) with horizontal flux string

The ground state manifold for a PEPS with a virtual Z2

symmetry includes the state |ψ〉(h) with a horizontal flux string
along the cylinder as described in Sec. II D. The transfer matrix
�(h) for this state is obtained from � by the insertion of a matrix
Z on the vertical virtual bond between the sites (Nv − 1, 0)
both in the ket and the bra layer.

�(h) possesses the same symmetries as � except for transla-
tion which is replaced by a dressed translation operator which
accounts for the changing position of the flux line. Indeed,
translation by one lattice site in the vertical direction causes a
shift of the Z insertions from the bond (Nv − 1, 0) to the bond
(0,1). The insertions can be returned to their original position
by multiplying the external virtual legs of site 0 in both layers
with matrices Z and exploiting the virtual Z2 symmetry of the
local tensors on that site. The transfer matrix with a flux line
therefore commutes with a unitary dressed translation operator

T dl
(h) = (

T sl
(h)

)⊗2 = (T sl ◦ (Z ⊗ 1 ⊗ 1 ⊗ · · · ⊗ 1))⊗2. (46)

In contrast to the usual translation operator, the dressed
translation satisfies

(
T dl

(h)

)Nv = ρdl (e
2πiSz

) (47)

and thereby imposes antiperiodic boundary conditions for
half-integer virtual spins. Correspondingly, the momentum
takes integer (half-integer) values in the sector of integer
(half-integer) spin ρdl (Sz). Analogous statements hold for
the single-layer dressed translation operator and momentum.
The dressed translation operator satisfies Eq. (43) with the
antiunitary dressed mirror operator such that Table II applies
also to �(h) after substitution of T dl

(h) for T dl .
The spectrum of minus the logarithm of the transfer matrix

with a horizontal flux line in both layers for λ1 = λ2 = λc = 1
and Nv = 8 is shown in Fig. 10(c) for Zk = Zb = 1 and
in Fig. 10(d) for Zk = Zb = −1. In the Z2-odd sector the
spectrum is very similar to the case without flux line. In the
Z2-even sector the dispersion of the states in the continuum
appears flatter than without flux line. The minima at Kdl =
0, π split into multiple levels each and appear at almost the
same quasienergy that is significantly above the lowest state
without flux line. Again, the leading states in either topological
sector that we will use to compute the ES lie at zero spin and
momentum.

E. Entanglement spectrum

In this section we investigate the ES of the chiral PEPS on an
infinite cylinder in all topological sectors of the Z2 symmetry.
As explained in Secs. II E and II F the ES is given by the leading
eigenvectors of the transfer matrix according to Eq. (20). We
begin by analyzing the symmetries of the ES, thereby providing
an analytical explanation for the observation of two branches
in the ES corresponding to the spin- 1

2 field of su(2)1 [34,35].

1. Symmetries of the entanglement spectrum

Any eigenstate |X〉 of the transfer matrix defines a virtual
reduced density matrixσX with matrix elements (σX )ll̃ = X(l,l̃).
If |X〉 is an eigenvector with eigenvalue μ of a double-layer
operator O1 ⊗ O2 the associated σX satisfies the relation

O1 ◦ σX ◦ OT
2 = μσX, (48)

where O1,2 are single-layer operators. Applied to the double-
layer spin (translation) Eq. (48) implies that the virtual density
matrix of a double-layer eigenstate with sdl = 0 (Kdl = 0)
commutes with the single-layer spin (translation). On the other
hand, Zk,b determine the eigenvalue of Z⊗Nv on the image
and support of σX. Equation (48) applies also to antiunitary
double-layer operators such as the mirror Rdl

x . Its fixed points
are therefore associated with mirror-symmetric reduced den-
sity matrices σXRsl

x = Z⊗NvRsl
x σX. Moreover, layer inversion

maps the virtual density matrix to its Hermitian conjugate such
that fixed points of I correspond to Hermitian virtual density
matrices.

We now show that the ES derived from a transfer matrix
eigenstate |X〉 with zero spin and momentum and Zk = Zb =
−1 contains two degenerate branches related by a momentum
shift Ksl �→ Ksl + π . Provided that there are no accidental
degeneracies, we can choose the phase of |X〉 such that the
density matrix σX is Hermitian and commutes or anticommutes
with Rsl

x . In the Z2-odd sector the dressed mirror causes
a momentum shift of π according to Eq. (43). Hence, any
density matrix eigenstate σx |v〉 = e−ξ/2|v〉 has an orthogonal
mirror image Rsl

x |v〉 with the same entanglement energy ξ

but momentum shifted by π . As long as the dressed mirror
symmetry is not broken, the ES of this state therefore contains
two exactly degenerate branches shifted in momentum by π .

2. Numerical results

The ES of the leading eigenstates is shown in Fig. 11 for
λ1 = λ2 = λc = 1 and Nv = 8. The ES for the PEPS without
flux line in (a) and (b) display a linear dispersion relation
where the number of low-lying states per momentum sector
is that expected for the chiral CFT su(2)1. Due to the dressed
mirror symmetry of the transfer matrix the spectrum (b) in
the half-integer spin sector possesses two branches shifted in
momentum by π as discussed above. Moreover, the estimated
conformal weight of the half-integer sector is much larger than
the expected value of 1/4. In the half-integer spin sector the
ES in Fig. 11(d) with a flux line looks very similar to the ES
without flux line up to an overall momentum shift of 1/2 due
to the antiperiodic boundary conditions. However, the ES with
a horizontal flux line in the integer spin sector has some chiral
features but does not possess a single mode with the state
counting of su(2)1. Up to now, we were not able to find a
simple CFT with the state counting of this ES.

V. CHIRAL SPIN LIQUID PEPS FOR λ1 = 0

In this section we study the chiral spin- 1
2 liquid PEPS

for λ1 = 0. This case is interesting since the PEPS possesses
an additional virtual U(1) symmetry provided that the lattice
is bipartite. Such a symmetry appears also for the nearest-
neighbor RVB PEPS [38] albeit with a different charge per
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FIG. 11. Entanglement spectrum for the leading eigenvectors of
the transfer matrix with λ1 = λ2 = λc = 1 and Nv = 8 in the diagonal
sectors with Zk = Zb = 1 in (a), (c) and Zk = Zb = −1 in (b), (d)
and a vison line in both layers for (c), (d). The ES in (a) has a single
chiral mode with the integer-spin state counting of the chiral CFT
su(2)1. The ES in (b) and (d) are very similar and are symmetric
under a momentum shift of π caused by the dressed mirror operator.
In the region 0 � Ksl � π they have a single chiral mode with the
half-integer-spin state counting of su(2)1. The ES in (c) has some
chiral features but possesses multiple branches whose state counting
could not be related to a simple CFT.

unit cell. After defining the U(1) symmetry in Sec. V A we
analyze its implications for the transfer matrix spectrum in
Sec. V B. Moreover we provide numerical evidence that not all
charge sectors lead to independent physical states and identify
the dominant sectors. In Sec. V C we compute the ES of the
leading independent states with fixed charge and show that the
half-integer spin sector has a single chiral branch and does
not contain any degeneracies created by the dressed mirror
symmetry. Furthermore we show that the estimated conformal
weight is very close to the value expected for su(2)1 when
λc ≈ λ2.

A. Staggered virtual U(1) symmetry

The virtual Hilbert space 0 ⊕ 1
2 carries a virtual U(1) action

U (ϕ) defined in Eq. (34) that changes the relative phase of
vectors in the two spin subspaces. Generically this phase
rotation maps the local PEPS tensor to a different point in
the parameter space, (λ1, λ2, λc ) �→ (λ1, e

2iϕλ2, e
2iϕλc ) [see

Eq. (35)]. However, if either λ2 = λc = 0 or λ1 = 0 all non-
vanishing configurations in the local tensor acquire the same
phase under this operation such that

A ◦ U (ϕ)⊗4 = einϕA, (49)

where the charge is n = 3 (n = 1) for λ1 = 0 (λ2 = λc = 0).
This identity is very similar to the definition of the virtual Z2

symmetry in Eq. (16). However, Eq. (49) implies the existence

of a global virtual U(1) symmetry for the PEPS only if the
lattice is bipartite. Indeed, invariance of the state requires that
the left and right (top and bottom) virtual legs of every unit cell
transform in mutually conjugate representations. On a bipartite
lattice with a unit cell of 2 × 2 sites one can therefore construct
a staggered symmetry by combining transformations U (ϕ) and
U (−ϕ) for sites on �A and �B , respectively. This staggering
of the U(1) symmetry will become crucial in order to obtain
an ES with only a single branch in the half-integer sector.

When expressed in terms of the generator

Q = −i(∂ϕU (ϕ))|ϕ=0 =
⎛
⎝0 0 0

0 1 0
0 0 1

⎞
⎠ (50)

which counts the number of virtual legs in the spin- 1
2 virtual

representation, the relation (49) translates into a virtual Gauss
law

A ◦ [
Q ⊗ 1 ⊗ 1 ⊗ 1 + 1 ⊗ Q ⊗ 1 ⊗ 1

+ 1 ⊗ 1 ⊗ Q ⊗ 1 + 1 ⊗ 1 ⊗ 1 ⊗ Q
] = nA. (51)

For λ1 = 0, n = 3 in Eq. (51) implying that exactly three
virtual legs of every local tensor are in the spin- 1

2 state. On
the other hand, for the nearest-neighbor RVB state obtained at
λ2 = λc = 0 one finds n = 1 such that exactly one virtual leg
is in the spin- 1

2 state [38].
Similarly to the case of discrete virtual symmetries one can

consider states obtained from the chiral PEPS by inserting
strings of virtual U(1) operators along noncontractible loops
of the manifold. For any local parent Hamiltonians these states
are indistinguishable from the original PEPS when λ1 = 0.
On a cylinder the minimally entangled states with respect to
a vertical entanglement cut are generated by insertion of flux
strings in the horizontal direction on one hand and projection
on sectors of fixed charge in the vertical direction on the
other hand. The conserved charge of the staggered virtual U(1)
symmetry acting on one column of virtual boundary legs is

Qsl =
Nv−1∑
i=0

(−1)iQ(i) (52)

with integer eigenvalues q in the range −Nv/2 � q � Nv/2.
In Eq. (52), the subscript i indicates on which virtual spin the
local generator (50) acts and the factor (−1)i accounts for the
staggering of the virtual symmetry. The local Z2 matrix is a
special case of a U(1) rotation, Z = U (π ). Therefore, even
(odd) charges q correspond to trivial (nontrivial) Z2 charge.
Moreover, the single-layer spin in a given charge sector is
constrained as ∣∣2sz

sl

∣∣ � Nv − |q|. (53)

In the following we focus on analyzing the PEPS with fixed
vertical charge q and without horizontal U(1) flux strings.

B. Transfer matrix

In this section we analyze the consequences of the staggered
virtual U(1) symmetry atλ1 = 0 for the spectrum of the transfer
matrix � on a cylinder of even Nv .
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1. Quantum numbers

Due to the virtual Gauss law (51) the single-column transfer
matrix anticommutes with the generator (52) applied to both
the ket and bra layer separately,

Qk = Qsl ⊗ 1, (54a)

Qb = 1 ⊗ Qsl. (54b)

As discussed above, the corresponding charges qk and qb in
the ket and bra layer take values −Nv/2 � qk, qb � Nv/2 and
define a bound for the double-layer spin,∣∣2sz

dl

∣∣ � |2Nv − |qk| − |qb||. (55)

The double-column transfer matrix �2 for the PEPS on a
patch of size 2 × Nv therefore commutes with Qk,b and thus
possesses a U(1) × U(1) symmetry with generators (54).

It is natural to analyze the spectrum of the transfer matrix
in terms of the U(1) charges qk, qb. However, this is not
compatible with the set of quantum numbers from Table II
that we used for the single-column transfer matrix at arbitrary
PEPS parameters λ1, λ2, λc. Indeed, due to their staggering
the generators Qk,b generally anticommute both with the
translation operator and the single-column transfer matrix. We
therefore pass to a modified set of quantum numbers given
by the double-column transfer matrix �2, the U(1) generators
Qk,Qb, the SU(2) spin operators, double-step translation
(T dl )2, and the product �T dl of the single-column transfer
matrix and single-step translation (individually, both of these
operators anticommute with the U(1) generators). We refer to
joint eigenstates of this commuting set as

|X̃〉 = ∣∣E2, sdl, s
z
dl, K̃

dl, μ, qk, qb

〉
, (56)

where �2|X̃〉 = E2|X̃〉, the spin quantum numbers are as de-
fined above, and the momentum of the double-step translation
takes values K̃dl = 2πn/(Nv/2) with 0 � n � Nv/2 − 1. The
quantum number μ is defined as the eigenvalue of �T dl and
satisfies μ2 = E2eiK̃dl

so that it can take only two values once
the transfer matrix weight and double-step momentum are
fixed.

Alternatively one can use the set of quantum numbers
from Table II extended by the products q2

k , q
2
b , qkqb which

are compatible with single-step translation. The resulting joint
eigenstates

|X〉 = ∣∣E, sdl, s
z
dl, K

dl, q2
k , q

2
b , qkqb

〉
(57)

generally are linear superpositions of multiple eigenstates |X̃〉
defined in Eq. (56).

In the following we will use the basis given by Eq. (56)
to analyze the transfer matrix spectrum. A special situation
arises in the sector with qk = qb = 0 where Qk,b are identically
zero and therefore commute with the single-column transfer
matrix and single-step translation operator. In this case we
recover the single-step momentum as a quantum number and
the eigenstates Eq. (57) are in one-to-one correspondence with
the states Eq. (56).

2. Multiplets

The spectrum of the square of the transfer matrix contains
multiplets of states with the same weight E2 and spin quantum

numbers but different values for the momentum, U(1) charges
or quantum number μ. In terms of the eigenstates defined in
Eq. (56) these multiplets are created by layer inversion I , the
dressed mirror symmetry Rdl

x , and their combination which act
on the quantum numbers as [69]

I : K̃dl �→ −K̃dl, μ �→ μ∗, qk ↔ qb (58a)

Rdl
x : K̃dl �→ K̃dl, μ �→ μ, qk,b �→ −qk,b. (58b)

Hence there are four degenerate states whenever (i) |qk| �= |qb|
or (ii) |qk| = |qb| �= 0 and K̃dl �= 0. Similarly one finds that
there are two degenerate states when (iii) |qk| = |qb| �= 0
and K̃dl = 0 or (iv) qk = qb = 0 and K̃dl �= 0. Compared
to general values of the parameters (λ1, λ2, λc ) the spectrum
at λ1 = 0 therefore contains larger multiplets of degenerate
states.

For any given diagonal sector with nonzero charge qk =
qb = q this discussion implies that the leading transfer matrix
eigenstate

|X̃0〉(q,q ) (59)

is exactly degenerate with the leading state with opposite
charge qk = qb = −q. Numerically we found that these lead-
ing states have zero spin as well as zero momentum with
respect to the double-step translation operator. Therefore they
are invariant under layer inversion I , and their degeneracy
is due to the dressed reflection symmetry of the transfer
matrix. Numerically we observe that there are no additional
degeneracies. Since single-step translation also reverses the
sign of the charges, qk,b �→ −qk,b, we can therefore choose a
basis such that

|X̃0〉(−q,−q ) = T dl |X̃0〉(q,q ). (60)

Thus we can construct eigenstates with well-defined single-
step momentum Kdl = 0, π and q2

k = q2
b = qkqb = q2 as

linear superpositions

|X0〉Kdl=0,N = 1√
2

[|X̃0〉(q,q ) ± |X̃0〉(−q,−q )] (61)

of the two degenerate states with well-defined charges. The
states (59) and (60) are not stable under perturbations of the
PEPS induced by small nonvanishing values of λ1 due to the
breaking of the U(1) symmetry for any nonvanishing λ1. On
the other hand we expect that to first order in λ1 the states (61)
remain eigenstates of the transfer matrix although degeneracy
will be lifted.

3. Dominant sectors on finite-site cylinders

The chiral PEPS at λ1 = 0 gives rise to an extensive number
of states obtained by projecting the virtual boundary vector
at one end of the cylinder onto a given eigenvalue sector of
the conserved charge Qsl . However, it is not clear whether all
of these boundary sectors correspond to independent physical
states in the thermodynamic limit. Indeed, some of these
states may have vanishing norm or correspond to a linear
superposition of other states in the limit Nv → ∞ as has
been observed for free fermionic chiral PEPS [30]. For long
cylinders the quotient of the norm of two states |ψq〉 and
|ψp〉 with fixed boundary charges q and p is expected to
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FIG. 12. Normalized leading eigenvalue Eq,q/E0,0 of the double
column transfer matrix in the diagonal sector qk = qb = q as a
function of λc for λ1 = 0, λ2 = 1, different cylinder widths Nv , and
q = 1 in (a) and q = 2 in (b). On long cylinders, this ratio is expected
to determine the relative norm of the states in different U(1) sectors
according to Eq. (62).

approach [46]

〈ψq |ψq〉/〈ψp|ψp〉 ≈
(

Eq,q

Ep,p

)Nh/2

, (62)

where Eq,q refers to the dominant eigenvalue of the double-
column transfer matrix in the diagonal sector where the bra-
layer and ket-layer charges are qb = qk = q. Moreover, the
dominant eigenvalues of the transfer matrix in the off-diagonal
sectors with qk �= qb determine the overlap of two normalized
states [46]

〈ψq |ψp〉 ≈
(

Eq,p√
Eq,qEp,p

)Nh/2

. (63)

In order to study the overlap and weight of different sectors
we have performed exact diagonalization of the double-column
cylinder transfer matrix including the quantum numbers qk, qb

for the numerically accessible values of the cylinder width Nv .
The normalized leading eigenvalue Eq,q/E0,0 in the diagonal
sector for U(1) charges q = 1, 2 is displayed in Fig. 12 as
a function of the PEPS parameter λc for λ2 = 1 and for
system sizes Nv = 4, 6, 8. For all considered values of λc and
Nv , the ratio Eq,q/E0,0 decreases with increasing q and is
much smaller than unity if |q| > 1 (for Nv = 8 we find that
E3,3/E0,0 ∼ 10−3 and E4,4/E0,0 ∼ 10−4, respectively). The
normalized overlap Eq,−q/Eq,q for q = 1, 2 and Nv = 4, 6, 8
is displayed as a function of λc in Fig. 13. For both values
of q and all system sizes the overlap increases rapidly for
0.5 � λc � 1, has a maximum in the vicinity of λc = 1, and
decreases again for bigger values of λc. The overlap for q = 1
(q = 2) appears to increase with Nv for λc � 1.3 (λc � 2). For
Nv = 8 the maximal overlap for q = 1 is above 97% whereas
for q = 2 the maximal value is around 65% but does not appear
to be converged as a function of the system size. All in all, the
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FIG. 13. Ratio of the leading transfer matrix eigenvalues in the
off-diagonal and diagonal sectors with qk = −qb = q and qk = qb =
q as a function of λc for λ1 = 0, λ2 = 1, different cylinder widths
Nv and q = 1 in (a) and q = 2 in (b). On long cylinders, this ratio
is expected to determine the overlap of the states in different U(1)
sectors according to Eq. (63). Since the normalized overlap for q = 1
is very close to unity when λc ≈ λ2 we expect that the states |ψ1〉 and
|ψ−1〉 become identical in the thermodynamic limit in this region.

dominant sectors for small cylinder width Nv are therefore
those with small U(1) charges |q| � 1 where the states with
q = 1 and q = −1 that are related by a single-step translation
have a very large overlap above 97%. Since we are restricted
to small systems the finite-size scaling in Figs. 12 and 13 is not
conclusive. However, it is consistent with the hypothesis that
the only two independent leading sectors in the thermodynamic
limit are those with q = 0 and q = 1.

C. Entanglement spectrum

The ES for a PEPS on an infinite cylinder is obtained from
all transfer matrix eigenstates whose eigenvalues approach the
leading eigenvalue in the limit Nv → ∞. Here, the contribut-
ing states should form an orthogonal set. If the PEPS has a
virtual symmetry the correct relative weight for the leading
states in different symmetry sectors in the ES is a priori
not known and should be chosen such that the entanglement
Hamiltonian as an operator for the one-dimensional spin chain
at the virtual cut is as local as possible [46]. As discussed in
the previous subsection the leading sectors at finite cylinder
width for the chiral PEPS at λ1 = 0 are those with conserved
U(1) charge q = −1, 0, 1. In particular we exclude sectors
with charge |q| � 2 since their transfer matrix eigenvalues are
far suppressed. Moreover we include only one of the states
with q = ±1 since we expect that they become identical in
the thermodynamic limit. The virtual reduced density matrix
is then a linear superposition of the density matrices σq for the
leading states in the sectors q = 0, 1 which are individually
normalized to Tr σ 2

q = 1. The relative weight in this linear
superposition determines the overall shift in entanglement
energy between levels with integer and half-integer spin and
thereby also the conformal weight of the spin-1/2 field. We
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expect that the ansatz

σ = σ0 + σ1 (64)

for the virtual reduced density matrix correctly reproduces
the low-lying levels in the ES. Indeed, the linear superpo-
sition (64) possesses equal weight on the Z2 even and odd
sectors as expected for a PEPS with a virtual Z2 symmetry
[46].

In the following subsection (Sec. V C 1) we further motivate
the ansatz Eq. (64) for the virtual reduced density matrix
by showing analytically that the two density matrices σ±q

possess an identical ES without any degeneracies caused by
the dressed mirror symmetry. On the other hand the ES of the
translation invariant linear superposition Eq. (61) contains two
copies of the ES of σ±q shifted in momentum by π . Finally,
in Sec. V C 2 we discuss the chirality of the ES derived from
Eq. (64) for Nv = 8 and show that the conformal weight of the
spin-1/2 sector is very close to the expected value of 1/4 when
λc ≈ λ2.

1. ES for q �= 0

For any value of the U(1) charge q, the transfer matrix
eigenstate |X̃0〉(q,q ) corresponds to a virtual reduced density
matrix σq that maps the virtual spins in the bra layer of the
entanglement cut to those in the ket layer as explained in
Sec. IV E 1. Due to the fixed charge the support and image
of σq consist of the subspace of the single-layer virtual space
with Qsl = q such that

Qsl σq = σq Qsl = q σq. (65)

Since |X̃0〉(q,q ) is invariant under double-step translation, the
virtual reduced density matrix σq commutes with the single-
layer double-step translation (T sl )2.

Whenever the leading states |X̃0〉(±q,±q ) with opposite
nonvanishing charges are related by single-step translation as
in Eq. (60) their virtual reduced density matrices are unitarily
equivalent with the basis change given by single-layer single-
step translation,

σq = T sl σ−q (T sl )†. (66)

Hence the ES of |X̃0〉(±q,±q ) given by the spectra of − log σ 2
±q

are identical. This ES does not possess any degeneracies caused
by the antiunitary dressed mirror symmetry since Rsl

x does not
act within a subspace of fixed nonzero U(1) charge q.

On the other hand the virtual reduced density matrix of the
momentum eigenstate |X0〉Kdl=0 defined in Eq. (61) is given
by the sum

σ+ = 1√
2

[σq + σ−q] (67)

which has support on both the Qsl = ±q subspaces. Eigen-
states of σ+ with well-defined single-step momentum Ksl

are given by linear superpositions of eigenstates of σ±q with
well-defined double-step momentum K̃sl . For a relative phase
of ±1 in the linear superposition one finds either Ksl = K̃sl

or Ksl = K̃sl + π . Therefore the ES of |X0〉Kdl=0 consists of
two copies of the ES of |X̃0〉(±q,±q ) shifted in momentum by
π . Note that the normalized ES of |X0〉Kdl=0 is shifted by

0
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12

π
2 π 3π

2 2π 5π
2 π 2π 3π

ξ

Ksl

ssl = 0
ssl = 1
ssl = 2

K̃sl

ssl = 1/2
ssl = 3/2

FIG. 14. Entanglement spectrum for the chiral PEPS with fixed
virtual U(1) charge in (a) for q = 0 corresponding to integer spin and
in (b) for q = 1 corresponding to half-integer spin. The dotted lines
are linear fits obtained from the averaged multiplets in the lowest four
and three levels for (a) and (b), respectively. We plotted parts of the
second BZ in gray to show the chirality of the branches extending for
more than a single BZ. The parameter values are λ1 = 0, λ2 = λc = 1
and the system size is Nv = 8.

ln 2 compared to that of |X̃0〉(q,q ) due to the factor of 1√
2

in
Eq. (67).

2. Conformal weight

In Fig. 14 we display the ES derived from the virtual reduced
density matrix Eq. (64) for the chiral PEPS on a cylinder
of width Nv = 8 with parameters λ1 = 0 and λ2 = λc = 1
which is close to the point where the overlap between the
states with charges q = ±1 is maximal. We used the maximal
set of quantum numbers such that the ES is computed using
the single-step (double-step) translation in the sector q = 0
(q = 1). The low-lying entanglement energies in either sector
lie on a chiral branch where the dispersion velocity is nearly the
same in both sectors and the counting of the SU(2) multiplets
is precisely that of the CFT su(2)1 up to the first four levels
[64].

We studied different properties of the ES in order to quantify
how closely it resembles the CFT su(2)1 spectrum for different
values of λc. Firstly, we computed the conformal weight of the
half-integer spin sector using two different methods. On one
hand, we used a simple estimate

hse ≈ ξ
(1/2)
0 − ξ

(0)
0

ξ
(0)
1 − ξ

(0)
0

, (68)

where ξ
(s)
i is the entanglement energy of the ith level in

the sector with spin s = 0 or s = 1/2. On the other hand,
we approximated the average entanglement energy of the
multiplets corresponding to the lowest four (three) levels of
the chiral branch in the ES of the spin-0 (spin-1/2) sector
using a linear fit with the offset as and dispersion velocity
vs as free parameters. The conformal weight is then given
by

hfit ≈ 2

v0 + v1/2
(a1/2 − a0). (69)

Secondly, we compared the ratio v1/2/v0 of the dispersion
velocities for the two sectors as obtained from the linear
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FIG. 15. Numerical estimates for the conformal weight of the
spin-1/2 sector and the ratio of the half-integer and integer spin
dispersion velocities as a function of λc. In the vicinity of λc = 1,
the conformal weight approaches the expected value of 1/4 and
the dispersion velocities are approximately equal as required by
conformal invariance. The expected values for these quantities are
indicated by dashed lines. Here, the data was analyzed using a linear
fit and the estimates for the conformal weight are obtained using
Eqs. (68) and (69), respectively. The PEPS parameters are λ1 = 0
and λ2 = 1 and the cylinder width is Nv = 8.

fits. Since a CFT has no mass scale, these velocities are
equal for su(2)1. A third measure for the chirality of the ES
is given by the difference in entanglement energy between
the second-lowest level at Ksl = 0 and the lowest state at
momentum Ksl = 7. This difference should be positive if the
chiral branch wraps more than once around the BZ. We observe
that this criterion is fulfilled for 0.6 � λc � 1.12, showing that
the correspondence to the CFT is closest inside this region.
In Fig. 15 we show the conformal weight and the ratio of
the two dispersion velocities for Nv = 8 as a function of λc.
The conformal weight derived from either estimate has a clear
minimum in the vicinity of λc = 1 with values of h ≈ 0.27 for
the simple estimate and h ≈ 0.25 for the linear fit. This is in
very good agreement with the value of h = 1/4 expected for
su(2)1 [64]. For small and very large values of λc the estimated
conformal weight grows rapidly as the ES becomes gapped.
This is expected as we showed in Sec. IV A that the PEPS is real
both for λc = 0 approached in the limit λc � λ2 and for λ2 = 0
which up to an overall normalization is the state we obtain in
the limit λc � λ2. Moreover, the ratio of estimated dispersion
velocities for the half-integer and integer spin sectors is very
close to unity in the vicinity of λc = 1 whereas it decreases
rapidly for λc < 1. All in all, for 0.8 � λc � 1.12 the estimated
conformal weight is less than 0.3, the ratio of the two dispersion
velocities deviates by less than 10% from the expected value,
and the chiral branch in the integer spin sector wraps more
than once around the BZ. We therefore conclude that the
chiral PEPS in this parameter region possesses an ES whose
low-lying levels correspond very closely to the spectrum of
the chiral CFT su(2)1 since it has the correct state counting,
conformal weight, and identical dispersion velocities in both
sectors.

VI. CONCLUSION

In this paper we investigated the interplay of point group
symmetry and translation symmetry for SU(2) invariant PEPS.
We showed that for half-integer physical spins it is not possible
to simultaneously impose both translation invariance and point
group symmetry at the level of the local tensors. Depending
on which symmetry is imposed one obtains generically distinct
PEPS that are related by the insertion of virtual Z2 flux strings.
This understanding enabled us to explain the discrepancies
between the spectrum of the chiral CFT su(2)1 and the ES
of the chiral spin liquid PEPS introduced in Refs. [34,35].
Moreover, we were able to identify a region of the param-
eter space where these discrepancies can be lifted due to a
staggered virtual U(1) symmetry of the PEPS and presented
numerical data establishing a correspondence between the ES
and the CFT spectrum. Many questions remain open in the
application of PEPS to chiral topologically ordered states. A
crucial missing ingredient is an analytical understanding of
the link between the symmetry structure of the local tensors
and the CFT obtained in the entanglement spectrum. Such an
understanding would permit the generalization of the PEPS we
analyzed in this paper to other edge CFTs. Another important
direction would be the development of additional probes to
detect the edge chirality and to identify the precise nature
of the edge CFT. These would allow for more precise dis-
ambiguation of regimes with chiral and gapped entanglement
spectra.
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APPENDIX: TENSOR ELEMENTS

In this Appendix we provide an explicit expression for the
local projection map Eq. (33) of the chiral spin liquid PEPS. In
contrast to Refs. [34,35] we use a representation where the local
tensor transforms under the point group as A1 + iA2 rather than
B1 + iB2. As explained in Sec. IV A, both representations for
the local tensor define the same state. We denote by |0〉, |1〉 the
eigenstates of the spin- 1

2 representation with Sz eigenvalue ± 1
2

both on the physical and virtual legs whereas |2〉 corresponds
to the virtual spin-0 state. In this basis, the nonvanishing tensor
elements are given by

As
s222 = As

2s22 = As
22s22 = As

222s = λ1, (A1)

As
ss̄s2 = As

s̄s2s = As
s2ss̄ = As

2ss̄s = −2(−1)sλ2, (A2)

As
sss̄2 = As

ss̄2s = As
s̄2ss = As

2s2s̄ = (−1)s[λ2 + iλc], (A3)

As
s̄ss2 = As

ss2s̄ = As
s2s̄s = As

2s̄ss = (−1)s[λ2 − iλc], (A4)

where s = 0, 1.
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5.2 Fermionic tensor networks for HOTIs from charge

pumping

This section contains a reprint of the following publication:

• Anna Hackenbroich, B. Andrei Bernevig, Norbert Schuch, and Nicolas Regnault.
“Fermionic tensor networks for higher-order topological insulators from charge pump-
ing”. In: Phys. Rev. B 101 (11 Mar. 2020), p. 115134

In the previous section we showed that PEPS can have features of chiral topological
phases such as a chiral ES with the state counting of a CFT. However, as we discussed in
Sec. 4.3.3, these TNS cannot be the ground states of gapped and local Hamiltonians. Here
we want to give an illustration of this statement using an intuitive example. Since this
obstruction appears already for non-interacting SPT phases, we consider two free-fermionic
systems with chiral boundary modes. On one hand, we consider the 2D CI discussed in
Sec. 2.3, and on the other hand, the 3D chiral hinge insulator discussed in Sec. 2.5.3.
Both of these models can be obtained from charge pumping interpolations between trivial
and topological phases of lower-dimensional systems: the 1D SSH model we discussed in
Sec. 2.2 in the case of the CI, and the 2D topological quadrupole model we reviewed in
Sec. 2.5.1 in the case of the 3D chiral hinge insulator.

In order to construct TNS for the chiral models we therefore proceed by first deriv-
ing TNS representations of the ground states of the lower-dimensional models along the
dipole pumping interpolations. Here we make use of the formalism of Gaussian TNS,
which offers a very efficient description of free-fermionic systems and which is reviewed
in great detail in the appendices of this publication. We thus find a Gaussian MPS with
bond dimension 2 which interpolates between the trivial and the topological dimerized
limits of the SSH model. The parent Hamiltonian of this MPS is a gapped next-nearest
neighbor Hamiltonian interpolating between the trivial and topological phases of the fully
dimerized SSH model. Similarly, we obtain a Gaussian PEPS with bond dimension 2
which interpolates between the trivial and the topological dimerized limits of the topolog-
ical quadrupole model. The parent Hamiltonian of this PEPS is a gapped next-nearest
neighbor Hamiltonian interpolating between the trivial and topological phases of the fully
dimerized topological quadrupole model.

The TNS representations of the lower-dimensional models allow us to express the ground
states of the chiral models as TNS in a hybrid real-momentum-space lattice with a finite
constant bond dimension in all directions. Here, the single momentum-space direction
corresponds to the interpolation parameter of the charge pumping cycles. After an inverse
Fourier transform in this direction, the PEPS with only real-space coordinates requires an
exponentially growing Hilbert space dimension for these bonds, whereas the bond dimen-
sion in the other directions remains finite. This confirms that it is not possible to express
the ground states of the chiral models as real-space TNS with a constant and finite bond
dimension.

http://dx.doi.org/10.1103/PhysRevB.101.115134
http://dx.doi.org/10.1103/PhysRevB.101.115134
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We apply the charge-pumping argument to fermionic tensor network representations of d-dimensional
topological insulators (TIs) to obtain tensor network states (TNSs) for (d + 1)-dimensional TIs. We exemplify
the method by constructing a two-dimensional projected entangled pair state (PEPS) for a Chern insulator
starting from a matrix product state (MPS) in d = 1 describing pumping in the Su-Schrieffer-Heeger (SSH)
model. In extending the argument to second-order TIs, we build a three-dimensional TNS for a chiral hinge
TI from a PEPS in d = 2 for the obstructed atomic insulator (OAI) of the quadrupole model. The (d + 1)-
dimensional TNSs obtained in this way have a constant bond dimension inherited from the d-dimensional TNSs
in all but one spatial direction, making them candidates for numerical applications. From the d-dimensional
models, we identify gapped next-nearest-neighbor Hamiltonians interpolating between the trivial and OAI phases
of the fully dimerized SSH and quadrupole models, whose ground states are given by an MPS and a PEPS with
a constant bond dimension equal to 2, respectively.

DOI: 10.1103/PhysRevB.101.115134

I. INTRODUCTION

Higher-order TIs [1–4] have recently been introduced as a
new class of symmetry-protected topological systems general-
izing the framework of TIs with surface states [5]. According
to one definition, a TI of order n in d spatial dimensions
has topological boundary modes at the (d − n)-dimensional
intersection of n crystal faces. In this terminology, conven-
tional TIs such as Chern insulators [6] are of order n = 1
with protected boundary modes at (d − 1)-dimensional edges.
On the other hand, second-order TIs protected by mirror or
rotation symmetries have zero-dimensional corner states in
d = 2 dimensions (in which case they may exemplify ob-
structed atomic limits [7] with local Wannier states) and one-
dimensional chiral or helical hinge states in d = 3 dimensions
(and bulk bands without a local Wannier description). Proto-
typical examples of second-order topological phases include
the two-dimensional quadrupole model of Ref. [1], a natural
extension [8] of the Su-Schrieffer-Heeger (SSH) model [9],
and the three-dimensional chiral hinge insulator of Ref. [2],
both of which have been experimentally observed in either
materials [10] or mechanical [11], acoustic [12,13], photonic
[14–17], and electrical [18–20] systems.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Open
access publication funded by the Max Planck Society.

The bulk-boundary correspondence states that the topolog-
ical properties of a system are reflected in the excitations at
its physical boundary. For instance, a two-dimensional Chern
insulator is characterized by an integer number of gapless
chiral edge modes [21]. Similarly, second-order TIs in two
dimensions possess gapless corner modes at the intersection
of two edges compatible with the crystal symmetry [1]. In
three dimensions, one type of second order TI is characterized
by the presence or absence of a chiral hinge mode [2]. For
strong TIs [22] as well as chiral topological phases, the
universal features in the boundary energy spectrum are en-
coded in its entanglement spectrum (ES) [23] characterizing
the bulk entanglement properties. The convenience of this
bulk characterization makes the ES an important tool for the
numerical analysis of topological phases. Recently, it was also
observed, as expected, that the ES of higher-order TIs displays
characteristic (d − n)-dimensional boundary states as long as
the entanglement cut preserves the crystal symmetries of the
phase [24–26].

A natural platform for the bulk-boundary correspondence
is provided by tensor network states (TNSs) [27] in which the
entanglement between physical particles is mediated through
virtual particles hosting the lower-dimensional boundary the-
ory [28]. Physical and virtual particles are related by a lo-
cal tensor whose bond dimension determines the maximal
amount of entanglement in the state [29,30]. The structure of
the local tensor encodes the topological properties of the quan-
tum state, and an analysis of this relation has led to valuable
insight for the systematic understanding of one-dimensional
symmetry-protected topological (SPT) phases [31] and intrin-
sically ordered topological phases [32]. Free-fermion systems
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can be described using Gaussian fermionic TNSs (GfTNSs)
that are defined purely in terms of two-point correlation
functions [33]. Starting from such Gaussian TNSs, interacting
states can be constructed, whose topological properties derive
from the features of the initial Gaussian model [34].

Many nonchiral topologically ordered phases in two di-
mensions [35,36] have a simple representation in terms of
projected entangled pair states (PEPSs) [37] with a finite and
constant bond dimension [38,39]. However, Gaussian PEPSs
with chiral topological properties do not adequately describe
the bulk of a gapped phase since their correlation functions
decay algebraically [40,41]. Indeed, the existence of gapped
Gaussian PEPSs with finite bond dimension for SPT phases
of free fermions is forbidden in dimensions d > 1 [41,42].
The no-go theorem states that only Wannierizable phases
corresponding to the product of one- and zero-dimensional
systems can be exactly represented as a Gaussian TNS.

This no-go theorem does not prevent TNSs from being a
useful numerical description at finite system size for chiral
topological phases like the fractional quantum Hall effect
[43]. Hence, numerically efficient TNSs for such phases
are valuable, especially in two and three dimensions. One
method for the construction of TIs in d + 1 dimensions from
d-dimensional TIs is given by charge pumping [44]. For
instance, a two-dimensional Chern insulator is obtained from
a charge-pumping interpolation in the one-dimensional SSH
model when the periodic time direction is identified with the
momentum in the second spatial direction [45]. For second-
order TIs, dipole pumping in the quadrupole model defines a
three-dimensional chiral hinge insulator [2,3]. In both cases,
the zero-dimensional boundary modes of the d-dimensional
model give rise to one-dimensional chiral boundary modes in
the (d + 1)-dimensional system.

In this paper, we exemplify how the charge-pumping
argument applied to d-dimensional GfTNSs with constant
bond dimension yields gapped GfTNSs for TIs in d + 1
dimensions. By construction, the (d + 1)-dimensional TNS
has a constant finite bond dimension in a hybrid coordinate
system with d real-space axes and one momentum axis in the
additional dimension. In order to obtain a real-space tensor
network for the (d + 1)-dimensional state, we apply to the
hybrid TNS an inverse Fourier transform (FT) in the direction
d + 1. As a result, the bond dimension of the real-space local
tensor in this direction generically grows with the system size
due to the nonlocality of the FT, whereas it is identical to the
finite bond dimension of the d-dimensional TNS in the other d
directions. We apply this construction both to a matrix product
state (MPS) [46] for the SSH model in order to obtain a PEPS
for a Chern insulator, and to a Gaussian PEPS with finite bond
dimension for the topological quadrupole model in order to
obtain a three-dimensional GfTNS for the second-order chiral
hinge state TI of Refs. [2,3]. Therefore, our approach provides
us with a gapped TNS with one-dimensional chiral boundary
states and a constant finite bond dimension in all but one of the
spatial directions. This representation is therefore potentially
useful for tensor network algorithms.

This paper is structured as follows: In Sec. II we begin
with a brief overview of charge pumping in the SSH model
and fermionic TNSs, and continue by studying an MPS for
the SSH ground state along the charge-pumping interpolation.

In the following Sec. III, we employ this MPS to construct
a two-dimensional PEPS describing a Chern insulator. In
Sec. IV we extend our method to the two-dimensional second-
order quadrupole insulator and the construction of a three-
dimensional PEPS for the chiral hinge state higher-order TI.
Finally, we summarize our results and discuss remaining open
questions in Sec. V.

II. FERMIONIC MPS FOR CHARGE PUMPING
IN THE SSH MODEL

In this section we introduce a fermionic MPS that describes
a charge-pumping cycle in the SSH model corresponding to
a Chern insulator with Chern number C = 1 in two spatial
dimensions. We begin by briefly reviewing the SSH model,
the charge-pumping argument, and its relation to Chern insu-
lators in Sec. II A. We continue with a short introduction to
fermionic MPSs in Sec. II B. In Sec. II C, we construct the
MPS for the SSH model and study its parent Hamiltonian.

A. Chern insulator from charge pumping in the SSH model

The SSH model describes a one-dimensional chain of
spinless fermions with two orbitals denoted A and B per
unit cell [9]. We consider the model at half-filling where the
number of particles is equal to the number Nx of unit cells. For
open boundary conditions, the Hamiltonian reads as

HSSH = t (0)
Nx−1∑
x=0

(â†
A,xâB,x + H.c.)

+ t (1)
Nx−1∑
x=1

(â†
B,x−1âA,x + H.c.), (1)

where we use the notation âA,x and âB,x for the fermionic
annihilation operators of the orbitals A and B in unit cell x
with x = 0, . . . , Nx − 1, respectively. Here, t (0) denotes the
hopping amplitude between A and B orbitals within the same
unit cell, and t (1) the hopping amplitude between sites on
neighboring unit cells [see Fig. 1(a)]. For |t (1)| > |t (0)|, the
hopping between unit cells dominates the hopping within unit
cells and the SSH model is in a phase topologically different
from the case |t (0)| > |t (1)|. This phase is protected by spa-
tial inversion symmetry and characterized by fermionic edge
modes [45] and a “filling anomaly” [8]. It is called obstructed
atomic insulator (OAI) [7]. When the intracell hopping t (0)

vanishes in the deep OAI phase, the system is dimerized since
its bulk splits into decoupled two-site blocks. In this case, the
edge excitations are created by the mode operators â†

A,0 and

â†
B,Nx−1 and have exactly zero energy in this specific model,

but can generally be moved in energy. On the other hand, for
|t (0)| > |t (1)| the SSH model is trivial, with a dimerized point
at t (1) = 0 and no state at zero energy.

A gapped interpolation between the trivial and OAI phases
of the SSH model can be constructed by adding to the Hamil-
tonian HSSH the term

Nx−1∑
x=0

(μAâ†
A,xâA,x + μBâ†

B,xâB,x ) (2)

introducing a staggered chemical potential μA = −μB = μ

which breaks the inversion symmetry as shown in Fig. 1(a).
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FIG. 1. (a) Extended SSH model with a staggered chemical po-
tential μ, nearest-neighbor hoppings t (0) and t (1) within and between
unit cells, and next-nearest-neighbor hoppings t (2)

A and t (2)
B on the A

and B sublattices, respectively. The unit cells consisting of one site
of each sublattice are marked by gray rectangles. (b) Action on the
local MPS tensors of the U(1) symmetry ensuring that the MPS of
Eq. (11) lies at half filling of the chain.

In Ref. [3], the authors consider the periodic time-dependent
Hamiltonian Hpump(t ) with time t ∈ (−π, π ] defined by the
couplings

(μ, t (1), t (0) ) =
{

(cos(t ), 0,− sin(t )), −π < t � 0

(cos(t ), sin(t ), 0), 0 < t � π.

(3)
At t = −π (equivalent to t = π ), the system is in an atomic
phase with only the A orbitals occupied. For −π < t < 0,
the coupling between A and B sites in the same unit cell
is nonzero and the charge is transferred from left to right
by the changing chemical potential until only the B orbitals
are occupied at t = 0. At t = −π/2, the staggered chemical
potential vanishes and the system is in the trivial dimerized
phase of the SSH model. For 0 < t < π , the intra-unit-cell
coupling vanishes whereas the hopping between different unit
cells is nonzero and the charge is transferred from left to
right such that at t = π the system returns to the state with
all A orbitals occupied. At t = π/2, the chemical potential
vanishes and the system is in the OAI dimerized phase of the
SSH model. The ground state of the pumping Hamiltonian
Hpump(t ) is continuous as a function of time t if the chain has
periodic and antiperiodic boundary conditions for Nx odd and
even, respectively.

The charge-pumping interpolation of Eq. (3) can be used
to generate a lattice model in one dimension higher with the
topology of a Chern insulator [3]. Indeed, Hpump(t ) corre-
sponds to the time-dependent Bloch Hamiltonian

Hpump(kx, t ) = [t (0)(t ) + t (1)(t ) cos kx]σ1

+ t (1)(t ) sin kx × σ2 + μ(t ) σ3, (4)

where σ1 = (0 1
1 0), σ2 = (0 −i

i 0 ), and σ3 = (1 0
0 −1) are the

Pauli matrices and kx = π
Nx

(2 j − Nx ) ∈ [−π, π ] for 0 � j �
Nx − 1 the lattice momentum. Since the interpolation is
cyclic, the time t ∈ [−π, π ] may be interpreted as the lattice

momentum ky of a second spatial direction y and Eq. (4) as the
Bloch Hamiltonian of a two-dimensional system with closed
boundaries in both directions. This Hamiltonian has a Chern
number C = 1 due to the charge transport between unit cells
induced by the interpolation for t ∈ [0, π ] [3].

We note that the cycle of Eq. (3) can be deformed to
a smooth charge-pumping interpolation, without changing
the topology or breaking the dimerization. In this cycle,
the couplings μ(t ), t (1)(t ), and t (0)(t ) and hence the Bloch
Hamiltonian are smooth functions of the time t , i.e., they are
infinitely often continuously differentiable with respect to t .
As explained in the previous paragraph, a two-dimensional
Chern insulator model is obtained by identifying the time t
and the momentum ky. Due to the smoothness of the cycle, the
real-space representation of the Chern insulator has couplings
which decay faster than any polynomial [47]. The smooth
cycle is obtained by smoothing out the nonanalyticities of
Eq. (3) at t = 0, π using smooth functions that interpolate
between 0 and 1. This can be done in such a way that,
like in Eq. (3), at each time t the smooth couplings satisfy
μ(t )2 + t (1)(t )2 + t (0)(t )2 = 1 [48].

B. Fermionic MPSs for a half-filled lattice

Similarly to bosonic MPSs for spin chains, fermionic
MPSs describing chains of electrons are obtained by associ-
ating virtual particles to each physical particle which mediate
the entanglement between different physical constituents [33].
In the case of fermionic tensor networks, the virtual particles
obey fermionic statistics. A fermionic MPS with f physical
complex fermionic modes per site and ξ virtual complex
fermionic modes per lattice site and nearest-neighbor bond
has physical dimension dp = 2 f and bond dimension D = 2ξ .
The state is fully characterized by the set of local maps
which relate the virtual and physical particles associated to
one lattice site. With respect to orthonormal bases {|i〉} with
i = 0, . . . , dp − 1 for the physical Hilbert space and {|l〉},
{|r〉} with l, r = 0, . . . , D − 1 for the left and right virtual
spaces on one site, respectively, the local maps are represented
by dp local matrices Ai

lr of dimension D × D [49].
In order to fix the global parity of the state, we restrict

ourselves to parity-even local tensors which preserve the
fermion parity between the physical and virtual layers [49].
We choose the orthonormal basis for the physical Hilbert
space such that all basis states |i〉 have either even fermion
parity |i| = 0 or odd fermion parity |i| = 1, and similarly for
the virtual Hilbert spaces. A local tensor is parity even if for
all nonvanishing elements Ai

lr �= 0, the total fermion parity
|i| + |l| + |r| = 0 is even, such that

(−1)|i|Ai
lr = (−1)|l|Ai

lr (−1)|r| (5)

for all configurations of i, l , and r (where no summation is
implied). If the MPS is constructed from tensors A[ j] at each
site j with this property, the state on a closed chain with Nx

sites is given by

|ψ〉 =
∑

i0,... ,iNx−1

∑
l

(−1)ε|l|

× (A[0]i0 . . . A[Nx − 1]iNx−1 )ll |i0, . . . , iNx−1〉. (6)
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Here, |l| is the parity of the virtual basis state on the link
between the first and last site, and ε = 1 or 0 corresponding to
periodic and antiperiodic boundary conditions for the many-
body state, respectively [49].

Below, we construct a fermionic MPS with parity-even
local tensors for the ground state of the SSH model along
the dimerized charge-pumping interpolation. Due to the parity
symmetry of Eq. (5), this MPS necessarily has an even number
of physical particles on a closed chain where all virtual bonds
are contracted. On the other hand, the ground state of the
SSH model is half-filled such that the number of particles is
odd if the number of unit cells is odd. Therefore, to construct
the parity-even SSH MPS we use a many-body basis built by
acting with creation operators on the state |�〉 that contains Nx

physical particles. To that end, we define new mode operators
aA,x and aB,x for the physical fermions by performing a
particle-hole transformation on all B orbitals of the SSH chain
while leaving the A orbitals unaltered,

aA,x ≡ âA,x, (7a)

aB,x ≡ â†
B,x. (7b)

The state |�〉 is the vacuum of the new operators, given
in terms of the original vacuum state |�̂〉 with âA,x|�̂〉 =
âB,x|�̂〉 = 0 as

|�〉 =
∏

x

â†
B,x|�̂〉. (8)

It satisfies aA,x|�〉 = aB,x|�〉 = 0. Therefore, the new vacuum
contains Nx of the original fermions and thus is half-filled. The
MPS of the SSH model along the interpolation is then defined
with respect to the Fock states constructed from the modes
a†

A,x and a†
B,x acting on the new vacuum |�〉. This particle-hole

transformation is motived by our desire to write the MPS in
terms of parity-even local tensors, which will in turn enable us
to express the state as a GfTNS and thereby compute a Bloch
parent Hamiltonian analytically.

C. MPS for the SSH model

In this section, we study a fermionic MPS for the SSH
model. In Sec. II C 1, we define the state in terms of its
local tensors and identify the U(1) symmetry leading to a
conserved number of particles. In Sec. II C 2, we derive a
parent Hamiltonian for the MPS, allowing us to conclude in
Sec. II C 3 that the MPS describes the SSH model along the
charge-pumping cycle of Eq. (3).

1. Local tensors and U(1) symmetry

In order to describe the ground state of the SSH model
along the dimerized charge-pumping interpolation, we con-
sider a fermionic MPS with physical dimension dp = 2 corre-
sponding to one fermionic mode per site and bond dimension
DSSH = 2. This is the minimal bond dimension for an MPS
along the charge-pumping cycle since the ES of an open
SSH chain in the OAI and trivial dimerized phases has two
degenerate levels with respect to all cuts between and within
unit cells, respectively.

The fermionic MPS is translation invariant with a unit
cell of two sites. It is therefore fully specified by the local

matrices Ai
lr and Bi

lr with i, l, r ∈ {0, 1} for sites on the A and
B sublattices, respectively. In terms of the local tensors the
physical state on a closed chain is given as

|ψ〉 =
∑

iA,0, . . . , iA,Nx−1
iB,0, . . . , iB,Nx−1

|iA,0, iB,0, iA,1, . . . , iB,Nx−1〉

×
∑

l

(−1)ε|l| × (AiA,0 BiB,0 AiA,1 . . . BiB,Nx−1 )ll , (9)

where ε = 1 or 0 for periodic and antiperiodic boundary
conditions. The physical many-body basis state is∣∣iA,0, iB,0, iA,1, . . . , iB,Nx−1

〉
= (a†

A,0)iA,0 (a†
B,0)iB,0 (a†

A,1)iA,1 . . .
(
a†

B,Nx−1

)iB,Nx−1 |�〉 (10)

with the vacuum |�〉 from Eq. (8). Guided by the dimerized
limits to be discussed below, for the local MPS matrices we
make the ansatz

A0 =
(

γ 0
0 0

)
, A1 =

(
0 β

−α 0

)
, (11a)

B0 =
(

γ 0
0 0

)
, B1 =

(
0 −α

−β 0

)
, (11b)

depending on parameters α, β, γ ∈ R. Note that the nor-
malized quantum state defined by these local MPS matrices
depends only on the two quotients α/γ and β/γ . Nonetheless,
we choose to work with the parametrization of Eq. (11) since
the case γ = 0 can be treated more conveniently without
divergences.

In order to motivate the ansatz of Eq. (11) for the local
matrices, let us see how the MPS from Eq. (9) can describe the
ground state of the SSH model both in the trivial and the OAI
dimerized phases with appropriate choices for the parameters
α, β, and γ . In the trivial dimerized phase of the SSH model,
each unit cell decouples from the rest of the system and is
in the state (a†

Aa†
B − 1)|�〉. In order to ensure the absence of

entanglement on the bonds between unit cells, the blocked
MPS matrices (AiA BiB )lr for one unit cell should be nonzero
only if l = r = 0. Then, the restriction of the MPS to the unit
cell,

∑
iA,iB

(AiA BiB )00|iA, iB〉, is proportional to (a†
Aa†

B − 1)|�〉
if the blocked MPS matrices have only two nonzero entries
(A0B0)00 = −(A1B1)00. Therefore, the MPS represents the
trivial dimerized phase of the SSH model if the parameters
are chosen as α = 0 and |β| = |γ | �= 0. Similarly, in the OAI
dimerized phase the chain splits into decoupled plaquettes
composed of two adjacent sites from different unit cells. The
state on each of the plaquettes is given by the superposition
(a†

Ba†
A + 1)|�〉 such that the blocked MPS matrices for the

plaquette should have only two nonzero entries (B0A0)00 =
(B1A1)00. This is achieved if β = 0 and |α| = |γ | �= 0. The
ansatz of Eq. (11) is chosen such as to allow an interpolation
between these two cases.

The MPS of Eq. (9) with the parametrization of Eq. (11)
has a U(1) symmetry which ensures that the physical state
lies at half-filling of the chain. The U(1) rotation acts on
a single complex fermion with the matrix U (ϕ) = (1 0

0 eiϕ ).
The local tensors for the two sublattices are invariant under a
combination of U(1) rotations of the physical and virtual legs
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as sketched in Figs. 1(b) and 1(c) (see for instance Ref. [50]
for MPSs with physical symmetries):

Ai
lr =

∑
j

∑
l ′r′

U (ϕ)i jU (ϕ)†
ll ′A

j
l ′r′U (ϕ)†

r′r, (12a)

Bi
lr =

∑
j

∑
l ′r′

U (ϕ)†
i jU (ϕ)ll ′B

j
l ′r′U (ϕ)r′r . (12b)

If we choose ϕ = π , these identities correspond to the
parity symmetry of Eq. (5), showing that the local MPS
tensors are parity even. For each nearest-neighbor bond, one
virtual leg transforms with U (ϕ) and the other with U (ϕ)†

in Eq. (12), such that the two U(1) rotations cancel if the
bond is contracted. Therefore, the state on a chain with
closed boundaries after the contraction of all virtual bonds
is invariant under the physical part of the U(1) rotations of
Eq. (12), given by staggered transformations U (ϕ) and U (ϕ)†

on A and B orbitals, respectively. Invariance under this global
symmetry implies that

0 =
〈∑

x

[a†
A,xaA,x − a†

B,xaB,x]

〉

=
〈∑

x

[â†
A,xâA,x + â†

B,xâB,x]

〉
− Nx, (13)

forcing the number of particles measured in terms of the
original physical modes to be equal to the number of unit
cells as required for the SSH ground state. In Eq. (12),
the physical legs on the A and B sublattices transform as
particles and holes, respectively, as expected due to the
particle-hole transformation of Eq. (7). In addition, Eq. (12)
implies that the virtual legs on the A and B sublattices trans-
form as holelike and particlelike degrees of freedom (DOFs),
respectively.

In order to gain a better understanding of the parameters
α, β, and γ as well as of the systems described by the MPS
from Eq. (9), it is helpful to consider a parent Hamiltonian for
which it is the exact ground state. This Hamiltonian can be
computed directly in terms of its Bloch representation once
the MPS of Eq. (9) is expressed as a Gaussian fermionic TNS.

2. Parent Hamiltonian

Since the charge-pumping Hamiltonian of Eq. (3) describes
noninteracting fermions, its ground state is a fermionic Gaus-
sian state. It is thus fully characterized by its covariance
matrix (CM) (see Appendix A for a summary of our conven-
tions) [51]. As we review in Appendix B, the tensor network
formalism may be used to construct Gaussian fermionic TNSs
which are ground states of free-fermion Hamiltonians [33].
The CM in Fourier space of a translationally invariant Gaus-
sian TNS is given by a simple expression which can often
be evaluated analytically. Then, any positive function ε(k) >

0 on the Brillouin zone gives rise to a parent Hamiltonian
with dispersion relation ε(k), whose Bloch representation is
obtained by multiplying the CM by ε(k).

For all values of the parameters α, β, and γ , the MPS of
Eq. (11) corresponds to a Gaussian fermionic TNS whose
Fourier CM is computed analytically in Appendix E. We
show that this MPS with bond dimension D = 2 is the

unique ground state of a longer-range SSH-like model with
a staggered chemical potential μ and next-nearest-neighbor
hoppings t (2)

A and t (2)
B on the A and B sublattices, respec-

tively, as sketched in Fig. 1(a). The coupling constants of the
parent Hamiltonian HMPS depend on the parameters of the
MPS as

μ = γ 4 − α4 − β4

α4 + β4 + γ 4
, (14a)

t (0) = 2β2γ 2

α4 + β4 + γ 4
, (14b)

t (1) = 2α2γ 2

α4 + β4 + γ 4
, (14c)

t (2)
A = −t (2)

B = −2α2β2

α4 + β4 + γ 4
, (14d)

where t (0) and t (1) denote the hopping amplitudes between
nearest-neighbor sites on the same and adjacent unit cells,
respectively.

Depending on the parameter values, HMPS describes differ-
ent phases of the fermionic chain. If any two out of the three
parameters α, β, γ vanish, the system is in an atomic state
without entanglement between different sites. Indeed, if only
γ is nonzero, all hopping constants vanish and the chemical
potential is μ = +1 such that we obtain the state with all B
sites occupied. On the other hand, if either only α or only
β is nonzero, all hopping constants vanish and the chemical
potential is μ = −1 such that the MPS is equal to the state
with all A sites occupied. This implies that the atomic state
with occupied A orbitals is obtained from two distinct pa-
rameter configurations (α, β, γ ) = (1, 0, 0) and (α, β, γ ) =
(0, 1, 0) whose corresponding local MPS matrices are related
by a virtual unitary gauge transformation with representation
matrix σ1.

On the other hand, if only γ and β are nonzero, the sys-
tem is in a dimerized phase where the next-nearest-neighbor
hopping as well as the nearest-neighbor hopping between unit
cells vanishes, whereas the nearest-neighbor hopping within
unit cells is finite. Unless |γ | = |β|, inversion symmetry is
broken by the nonzero chemical potential. For |γ | = |β|,
we obtain the trivial dimerized phase of the SSH model.
Similarly, if only γ and α are nonzero, all couplings vanish
except for the nearest-neighbor hopping between unit cells
and the chemical potential. For |γ | = |α|, inversion symmetry
is restored and we obtain the OAI dimerized phase of the
SSH model. Finally, if all three parameters are nonzero, both
nearest-neighbor hopping constants t (0) and t (1) are nonzero
and there is an additional next-nearest-neighbor hopping
t (2)
A = −t (2)

B which is odd under inversion.

3. Charge-pumping interpolation

We now use the MPS of Eq. (11) to describe charge
pumping by considering the evolving state obtained from
time-dependent parameters α(t ), β(t ), and γ (t ) with time
t ∈ (−π, π ]. In Eq. (14) we saw that the MPS can represent
charge pumping with a dimerized nearest-neighbor as well
as a longer-range nondimerized Hamiltonian. For simplicity,
we focus on the dimerized case. For the MPS given by the
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FIG. 2. (a), (b) Coupling constants of HMPS and (c), (d) single-
particle ES for the MPS of Eq. (11) along topologically nontrivial
and trivial interpolations. In (a) and (c), along the charge-pumping
interpolation of Eq. (15) corresponding to a Chern insulator with
Chern number C = 1. In (b) and (d), along the topologically trivial
interpolation of Eq. (17). In both (a) and (b), the vanishing next-
nearest-neighbor coupling t (2)

A = t (2)
B = 0 of HMPS is not shown. The

ES in (c) and (d) was computed on half of a periodic chain with
Nx = 10 unit cells.

parametrization

φpump : (α(t ), β(t ), γ (t ))

=
{

(0,
√| sin t/2|,√| cos t/2|), −π < t � 0

(
√| sin t/2|, 0,

√| cos t/2|), 0 < t � π
(15)

the parent Hamiltonian HMPS is exactly equal to the time-
dependent Hamiltonian Hpump(t ) of the dimerized charge-
pumping cycle of Eq. (3). The evolution of the couplings in
HMPS along the parametrization is shown in Fig. 2(a). Hence,
the MPS of Eq. (11) can describe the ground state of the
pumping model of Eq. (3) with the topology of a Chern
insulator for all times t ∈ (−π, π ].

The ground state of the charge-pumping cycle Hpump(t )
and its correlation functions are continuous along the entire
interpolation. However, the local MPS tensors parametrized
by φpump are discontinuous at the point t = ±π along the
cycle: α → 0 and β → 1 as t → −π from above, whereas
α → 1 and β → 0 as t → π from below. In fact, at t = ±π

the system is in the atomic state with all A orbitals occupied.
As discussed in the paragraph beneath Eq. (14), there are two
distinct configurations for the MPS parameters corresponding
to this state which are attained for t = ±π .

For the MPS we are considering, the discontinuity in the
parametrization φpump is related to the chiral edge mode of the
Chern insulator defined by the interpolation. Indeed, charge
pumping in the SSH model with open boundaries corresponds
to a Chern insulator on a cylinder with periodic and open
boundaries in the vertical and horizontal directions, respec-
tively. In the topological phase with Chern number C = 1,
each edge of the cylinder hosts a one-dimensional chiral mode
[21]. These modes are reflected in the ES of the SSH chain

along the charge-pumping cycle. For instance, the single-
particle ES [52] of half the chain with periodic boundaries
computed from the representation of the state as a Gaussian
fermionic TNS along φpump is shown in Fig. 2(c). It has both a
left- and a right-moving mode which are localized at the two
virtual edges and which are degenerate in the SSH topological
phase at t = π/2.

Using the representation of the MPS in terms of local
tensors, we can also compute the many-body ES of half of
an infinite chain with open boundaries. Indeed, the many-
body ES is isometric to the spectrum of the logarithm of the
normalized and symmetrized left and right fixed points of
the MPS transfer matrix [28]. In the case of the MPS from
Eq. (11), the fixed point is a matrix of dimension 2 × 2 with
eigenvalues

1

2
± −α4 + β4 + γ 4

2
√

(−α4 + β4 + γ 4)2 + 4α2β2γ 4
. (16)

Therefore, the many-body ES has two nontrivial levels that
are related by normalization and which describe the spinless
fermion at the single virtual boundary of the half-infinite
chain. If and only if α4 = β4 + γ 4, the two eigenvalues from
Eq. (16) are degenerate. This corresponds to a crossing of the
Fermi level by the edge fermion. If the interpolation describes
a Chern insulator with Chern number C = 1, a degeneracy of
the eigenvalues from Eq. (16) should therefore occur exactly
once along the cycle. For the parametrization φpump this hap-
pens in the SSH topological phase at t = π/2 with α = γ and
β = 0. Indeed, α4 < β4 + γ 4 for t < π/2 and α4 > β4 + γ 4

for t > π/2. Hence, the nontrivial Chern number implies that
for MPS of the form of Eq. (11) the parametrization has to
be discontinuous along the cycle in order to combine the two
parts of the interpolation where α4 ≷ β4 + γ 4 with only a
single degenerate point.

We emphasize that this discontinuity in the MPS interpola-
tion is required by the topology of the charge-pumping cycle,
even if the pumping cycle itself is infinitely often continuously
differentiable. For example, the smooth deformation of the
topological pumping cycle, whose existence is discussed in
Sec. II A, has an MPS ground state of the form of Eq. (11).
Due to the nontrivial topology of the cycle, this MPS has
a discontinuous interpolation despite the smoothness of its
Bloch Hamiltonian.

The MPS of Eq. (11) can also describe cyclic interpola-
tions corresponding to topologically trivial two-dimensional
models. For instance, the MPS with parametrization

φtriv : (α(t ), β(t ), γ (t )) = ( 1
2 e−(tan |t |

2 )−2
, 0, 1

)
(17)

for t ∈ (−π, π ] corresponds to the ground state of a model
with finite chemical potential and nearest-neighbor hopping
t (1) between unit cells, whereas the hopping within unit cells
and the next-nearest-neighbor hopping vanish [see Fig. 2(b)].
From the single-particle ES in Fig. 2(d) we see that the
conduction and valence bands in this system are not con-
nected by the edge modes such that the Chern number is
zero. Indeed, both the MPS parametrization φtriv and the
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corresponding Bloch parent Hamiltonian are smooth along
the cycle.

III. CHERN INSULATOR PEPS FROM SSH
CHARGE PUMPING

In this section we discuss how charge pumping can be
used to construct tensor networks in d + 1 dimensions starting
from d-dimensional TNSs. Specifically, we show how the
MPS from Sec. II for the SSH model along a charge-pumping
cycle leads to a two-dimensional PEPS for a Chern insula-
tor. In Sec. III B we define a hybrid real-momentum space
PEPS with finite bond dimension for the Chern insulator.
In Sec. III C, we perform an inverse FT in the direction
d + 1 required to transform the state to a fully real-space
representation. In Sec. III D we study how the resulting state
can be expressed as a real-space PEPS, whose bond dimension
is investigated in Sec. III E.

A. (d + 1)-dimensional TIs from charge pumping

Charge pumping provides a systematic method to obtain
a TI in d + 1 spatial dimensions from a d-dimensional TI.
Indeed, if the Bloch Hamiltonian of the d-dimensional model
is smooth along the charge-pumping interpolation as a func-
tion of the cyclic time t ∈ (−π, π ], t can be identified with
the momentum kd+1 in the (d + 1)st direction of the (d +
1)-dimensional system. The time-dependent Hamiltonian of
the d-dimensional model then gives the Bloch Hamiltonian
of the (d + 1)-dimensional system as a function of kd+1.
For instance, charge pumping in the SSH model with d = 1
defines a two-dimensional Chern insulator with Chern number
C = 1 (cf. Sec. II A).

We discretize the (d + 1)st dimension with a finite num-
ber Nd+1 of lattice sites. The discrete momentum values
in (−π, π ] are k( j)

d+1 = π
Nd+1

(2 j − Nd+1) for even Nd+1, and

k( j)
d+1 = π

Nd+1
(2 j − Nd+1 + 1) for odd Nd+1. They are identified

with discrete times t ( j) = k( j)
d+1 for j = 0, . . . , Nd+1 − 1.

Let us express the identification of time t and momentum
kd+1 as a relation between the mode operators of the hy-
brid and real-space systems. The d-dimensional system has
annihilation operators âτ,x(t ( j) ) for the physical fermion on
the orbital τ = 1, . . . , f on the unit cell x ∈ Zd , where f
is the number of orbitals per unit cell. They depend on the
discretized time value t ( j) along the pumping interpolation at
which the d-dimensional model is evaluated. For example, in
the SSH model we have mode operators âA,x (t ( j) ), âB,x (t ( j) )
with x = 0, . . . , Nx − 1.

The (d + 1)-dimensional model obtained from charge
pumping has the same number of orbitals as the d-
dimensional model it is derived from. For instance, the Chern
insulator constructed from the SSH model also has sublattices
A and B. Therefore, the physical creation operators of the
(d + 1)-dimensional system in real space are âτ,(x,xd+1 ), where
xd+1 = 0, . . . , Nd+1 − 1 is the real-space coordinate in the
(d + 1)st direction and τ = 1, . . . , f . The charge-pumping
construction of the (d + 1)-dimensional model requires pe-
riodic boundary conditions in the direction d + 1. We may
therefore consider the FT of the mode operators in the

direction d + 1, while keeping the real-space coordinate x in
the other d dimensions, given by

â
τ,(x,k( j)

d+1 ) =
Nd+1−1∑
xd+1=0

Fk( j)
d+1xd+1

âτ,(x,xd+1 ) (18a)

with

Fk( j)
d+1xd+1

= e−ik( j)
d+1xd+1

√
Nd+1

. (18b)

In terms of these mode operators, the identification of time
t and momentum kd+1 is the expressed by the identity

âτ,x(t ( j) ) = â
τ,(x,k( j)

d+1 ) (19)

for all d-dimensional unit cells x and sublattices τ =
1, . . . , f . For example, in the case of the SSH charge
pumping we have âτ,x(t ( j) ) = â

τ,(x,k( j)
y ) for τ = A, B and x =

0, . . . , Nx − 1.
The Bloch Hamiltonian of the (d + 1)-dimensional model

is the time-dependent Hamiltonian of the d-dimensional sys-
tem. Hence, with the identification of Eq. (19), the (d + 1)-
dimensional ground state is given by the direct product

|ψd+1〉 =
Nd+1−1⊗

j=0

|ψd (t ( j) )〉 (20)

of the many-body ground states |ψd (t )〉 of the d-dimensional
model evaluated at the Nd+1 discrete times along the interpola-
tion. From Eq. (19) it is clear that this defines the ground state
with respect to hybrid (d + 1)-dimensional real-momentum
space coordinates (x, k( j)

d+1).
In order to obtain the state in terms of (d + 1)-dimensional

real-space coordinates (x, xd+1), we need to apply the inverse
of the FT of Eq. (18) to the hybrid state of Eq. (20). If
the d-dimensional pumping Bloch Hamiltonian is smooth as
a function of time, the real-space correlation functions are
guaranteed to decay faster than any polynomial [47].

B. Hybrid real-momentum-space Chern PEPS

We now specialize this construction, which we explained
above in terms of generic free-fermionic TIs, to d-dimensional
TIs which are described by a GfTNS at all times along their
charge-pumping cycle. We will thereby obtain a GfTNS for
the (d + 1)-dimensional TI.

For the remainder of this section and for pedagogical
purposes, we will focus on the one-dimensional case (i.e.,
d = 1) and the corresponding notation. We will mostly rely on
charge pumping in the SSH model which is described by the
MPS with bond dimension DSSH = 2 from Eq. (9). Hence, we
will obtain a Gaussian fermionic PEPS for the Chern insulator
with Chern number C = 1. Extensions to other models and
higher dimensions are straightforward.

In case the d-dimensional ground state along the pumping
cycle is given as a GfTNS, Eq. (20) allows to define the
(d + 1)-dimensional ground state as a hybrid TNS, where the
first d dimensions correspond to real space and the (d + 1)st
dimension is expressed in momentum space. Indeed, the local
tensor of the hybrid TNS at the position (x, k( j)

d+1) is given
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FIG. 3. (a) Hybrid real-momentum-space PEPS for Ny = 3 sites in the vertical direction obtained by stacking rows of the MPS of Eq. (11)
evaluated at different times t ( j) along the charge-pumping interpolation. Physical and virtual legs transforming as particles and holes under the
U(1) symmetry of Eq. (12) are marked in red and blue, respectively. Since the vertical bond dimension is trivial, i.e., equal to one, it is omitted
in this sketch. (b) Inverse FT F̃ acting separately on the physical and horizontal virtual legs of one column of A sites of the hybrid PEPS. The
result defines the column tensor Acol for the real-space PEPS. (c) Decomposition of the column tensor Acol into the contraction of local PEPS
tensors A2D for the two-dimensional state. The vertical virtual legs of A2D marked in red have a bond dimension Dy,A which generally grows
with the system size Ny due to the nonlocality of the inverse FT. The inverse FT and decomposition of a column of B sites is analogous.

by the local tensor of the d-dimensional model at the d-
dimensional real-space position x and time t ( j).

Thus, the virtual DOFs of the hybrid TNS in the first d
directions are identical to those of the d-dimensional model.
In other words, the identification of time and momentum from
Eq. (19) holds not just for the physical mode operators, but
also for the virtual mode operators in the first d dimensions.

On the other hand, due to the direct product in the direction
of kd+1 in Eq. (20), the hybrid TNS does not need virtual legs
in the direction d + 1, and we say that the bond dimension in
this direction is equal to one (implying that the contraction of
this direction corresponds trivially to a product).

The hybrid Chern PEPS obtained from the SSH charge
pumping MPS of Eq. (9) is sketched in Fig. 3(a) in the hybrid
coordinate system where the horizontal axis describes x and
the vertical axis corresponds to ky ≡ kd+1. The local tensor for
a site on the A sublattice at the position (x, k( j)

y ) is given by the
SSH local tensor Ai

lr (t ( j) ) at the time t ( j) along the cycle, and
similarly for the B sublattice. In the horizontal direction, the
two-dimensional hybrid state hence inherits both the transla-
tion invariance and the constant finite bond dimension DSSH of
the MPS. As discussed in the previous paragraph, virtual legs
in the vertical direction are not needed for the hybrid Chern
PEPS and are hence not shown in Fig. 3(a).

C. Inverse Fourier transform

As discussed below Eq. (20), the hybrid state obtained
from charge pumping is mapped to a (d + 1)-dimensional
real-space coordinate system by applying an inverse FT in the
direction d + 1 to the fermionic mode operators. For GfTNSs,
which have virtual in addition to physical DOFs, the inverse
FT should be applied to both the physical mode operators and
the virtual fermionic mode operators in the first d directions.
For the hybrid Chern PEPS, we therefore apply the inverse
FT in the vertical direction to the physical and the horizontal
virtual legs. The extension of the FT to the horizontal virtual

modes amounts to a virtual basis change and does not alter
the physical state, but ensures that the real-space PEPS is
invariant under vertical translations y 	→ y + 1 of its physical
and virtual legs (see also Appendix F).

For the hybrid Chern PEPS, the correct definition of the
inverse FT in the vertical direction y entails a subtlety. Indeed,
recall that the SSH charge-pumping MPS from Eq. (9) is
defined with respect to mode operators aτ,x(t ( j) ) related to the
âτ,x(t ( j) ) used in Eq. (19) by the particle-hole transformation
of Eq. (7). For the Chern PEPS, we perform an analogous
particle-hole transformation in two-dimensional real space
and define new mode operators

aA,(x,y) = âA,(x,y), (21a)

aB,(x,y) = â†
B,(x,y). (21b)

The operators aA,(x,y), a†
A,(x,y), aB,(x,y), a†

B,(x,y) span the basis in
which we want to express the real-space Chern PEPS.

The SSH particle-hole transformation of Eq. (7) acts within
the set of operators at time t ( j). Since we identify time and
momentum, this is equivalent to a particle-hole transformation
acting on the modes of the Chern PEPS in momentum space
rather than real space like in Eq. (21). Due to the antiunitarity
of the particle-hole transformation, the inverse FT relating
the modes aB,x (t ( j) ) and aB,(x,y) on the B sublattice therefore
contains an additional complex conjugation. Hence, the phys-
ical mode operators aτ,x(t ( j) ) of the SSH models, providing
the basis for the hybrid Chern PEPS, and the mode operators
aτ,(x,y) for the real-space Chern PEPS are related as

aτ,(x,y) =
Ny−1∑
j=0

F̃τ,τ ;y,t ( j) aτ,x(t ( j) ) (22a)

with the inverse vertical FT

F̃τ,τ ′;y,t ( j) = δτ,τ ′√
Ny

eiητ yt ( j)
. (22b)

115134-8



FERMIONIC TENSOR NETWORKS FOR HIGHER-ORDER … PHYSICAL REVIEW B 101, 115134 (2020)

Here, ηA = 1 and ηB = −1 for the physical modes which
are particlelike on the A sublattice and holelike on the B
sublattice.

The inverse FT of the horizontal virtual legs of the hybrid
PEPS is analogous to Eq. (22) for the physical modes. Here,
the particlelike or holelike character of the virtual modes is
determined by their transformation under the U(1) symmetry
of Eq. (12). Specifically, the left and right virtual legs on the A
sublattice transform as holes, i.e., ηL,A = ηR,A = −1, whereas
the left and right virtual legs on the B sublattice transform as
particles such that ηL,B = ηR,B = 1.

Let us now study how the inverse vertical FT F̃ acts on
the hybrid Chern PEPS. Due to the translation invariance in
the horizontal direction, it is enough to consider one column
of the hybrid state given by the sites (x, k( j)

y ) for a fixed
horizontal position x and j = 0, . . . , Ny − 1 [see Fig. 3(a)].
Under F̃ , the hybrid column is mapped to one column of the
two-dimensional real-space state, given by the sites (x, y) with
y = 0, . . . , Ny − 1.

Since the inverse FT F̃ is nonlocal, for a generic inter-
polation there are long-range correlations in the real-space
column {(x, y)}0�y�Ny−1 of the PEPS. In the tensor network
language, the real-space column is therefore described by
a single tensor obtained from the application of F̃ to one
column of the hybrid PEPS [in contrast to the hybrid column
{(x, k( j)

y )}0� j�Ny−1 which is described by a product of individ-

ual tensors for each k( j)
y , signifying the absence of correlations

in the vertical direction]. For a real-space column of A sites,
we denote this tensor by Acol as shown in Fig. 3(b). Similarly,
we define a tensor Bcol for a real-space column of B sites. The
tensors Acol and Bcol have Ny physical legs of dimension dp =
2 and Ny left and right virtual legs of dimension DSSH = 2,
which describe the physical and horizontal virtual DOFs of
the real-space PEPS.

The SSH pumping MPS is a Gaussian MPS for free
fermions. Thus, the column tensors Acol and Bcol are also
Gaussian states, which can be described by their covariance
matrices (CMs). These CMs are computed in Appendix F
for the general d-dimensional case. There we show that the
CMs of the real-space columns Acol and Bcol, defined by the
application of the inverse FT of Eq. (22) to the physical and
horizontal virtual legs of the hybrid columns, are given by
the inverse FT of the time-dependent CMs describing the
local SSH tensors Ai

lr (t ( j) ) and Bi
lr (t ( j) ) along the pumping

cycle. This result fully characterizes the column tensors Acol

and Bcol.

D. Translation-invariant real-space PEPS

From the previous subsections, we are now ready to discuss
how the two-dimensional real-space state can be expressed
as a TNS with local tensors for each site. For that purpose,
the column tensors Acol and Bcol have to be decomposed
into a column of local PEPS tensors A2D and B2D with both
horizontal virtual legs of dimension DSSH and vertical virtual
legs with dimension Dy,A and Dy,B, respectively. We require
the local PEPS tensors to be identical on all sites of the same
sublattice as shown in Fig. 3(c) in order to make the invariance
under real-space translations explicit.

The decomposition of the column into PEPS tensors can
be achieved using tools developed for one-dimensional MPSs
[53,54]. To that end, we define one-dimensional pure states
|ψ1D(Acol )〉 and |ψ1D(Bcol )〉, whose many-body wave func-
tions are the tensor elements of Acol and Bcol, respectively.
Therefore, |ψ1D(Acol )〉 effectively describes a chain of length
Ny, where the local Hilbert space at each site of the fictitious
chain is the tensor product of the physical and horizontal
virtual Hilbert spaces of Acol at the corresponding physi-
cal site (and similarly for |ψ1D(Bcol )〉 and Bcol). Pictorially,
|ψ1D(Acol )〉 and |ψ1D(Bcol )〉 are obtained by merging at each
site the physical and horizontal virtual legs of Acol and Bcol

into an effective physical index of dimension d̃p = dpD2
SSH

per site.
Our goal is now to express |ψ1D(Acol )〉 and |ψ1D(Bcol )〉

as translation-invariant MPSs with periodic boundary condi-
tions. Then, after unfolding the effective physical index into
the physical and horizontal virtual indices of the PEPS, the
local tensors of these MPSs will define the PEPS tensors A2D

and B2D, respectively. Similarly, the MPS bond dimensions
Dy,A and Dy,B are equal to the vertical bond dimensions of the
PEPS local tensors A2D and B2D, respectively.

Numerically, the translation-invariant MPSs for
|ψ1D(Acol )〉 and |ψ1D(Bcol )〉 can be obtained as follows.
Multiple steps are necessary since the common and
stable MPS algorithms rely on the presence of open
boundary conditions and do not directly find a periodic
translation-invariant MPS for a translation-invariant state.
Instead, in a first step the Gaussian states |ψ1D(Acol )〉 and
|ψ1D(Bcol )〉 can be decomposed into non-translation-invariant
Gaussian MPSs with open boundary conditions by
performing successive Schmidt decompositions of the
system [53,55]. We are not aware of any method to
transform a Gaussian open-boundary MPS into a Gaussian
translation-invariant MPS. We therefore interpret the
Gaussian MPSs for |ψ1D(Acol )〉 and |ψ1D(Bcol )〉 as regular
fermionic open-boundary MPSs by choosing physical and
virtual basis states and computing the local MPS tensors for
each site. Finally, these open-boundary MPSs are transformed
into translation-invariant and generically non-Gaussian MPSs
with periodic boundary conditions following the standard
procedure described in Ref. [54]. This approach leads to the
bond dimension of the translation-invariant MPS being given
by the sum of the bond dimensions of the open-boundary
MPS for each site. Therefore, the bond dimension grows at
least linearly with the system size [54].

E. Vertical PEPS bond dimension

Above, we showed that the inverse FT of the hybrid PEPS
can be decomposed into a (d + 1)-dimensional real-space
TNS, where the bond dimension in the first d directions is
equal to that of the original d-dimensional state. The core
question is the scaling of the bond dimension in the (d + 1)st

real- space dimension with respect to the system size in
this direction.

1. Lower bound from ES

The bond dimension of a tensor network is intimately
related to the entanglement between its physical particles: For
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FIG. 4. Schmidt decomposition of the one-dimensional effective
state |ψ1D〉 for the PEPS column with physical dimension d̃p into the
subsystem AL of the first L sites and its complement. When |ψ1D〉 is
written as a translation-invariant MPS with bond dimension Dy, the
virtual boundary of the subsystem AL , marked in blue, crosses two
bonds of the MPS.

a TNS describing a physical system with a subsystem A, the
total dimension of all virtual legs at the boundary ∂A can be
no smaller than the rank of the state’s Schmidt decomposition
into the DOFs of A and its complement. This constraint allows
us to infer a lower bound for the vertical bond dimension
of the real-space PEPS from the ES of the one-dimensional
column states.

We consider a generic one-dimensional effective column
state denoted |ψ1D〉 with an effective physical dimension d̃p.
Below, we will choose either |ψ1D〉 = |ψ1D(Acol )〉 or |ψ1D〉 =
|ψ1D(Bcol)〉 with d̃p = dpD2

SSH. We assume that |ψ1D〉 is ex-
pressed as a translation-invariant MPS with a bond dimension
Dy corresponding to the vertical PEPS bond dimension (see
Fig. 4). Such a representation can be obtained for instance
using the procedure described in the previous subsection. We
now perform a Schmidt decomposition of the pure state |ψ1D〉
with respect to the subsystem AL of the first L sites 0 � y �
L − 1, and denote the rank of the decomposition by rL(|ψ1D〉).
As sketched in Fig. 4, the cut between AL and its complement
crosses exactly two virtual bonds of the MPS, namely, those
between sites (L − 1, L) and (Ny − 1, 0), each of dimension
Dy. Since the virtual dimension can be no smaller than the
Schmidt rank for any subsystem size L, we obtain the bound

D2
y � max

1�L�Ny−1
rL(|ψ1D〉). (23)

The Schmidt rank rL(|ψ1D〉) may be obtained by counting
the nontrivial levels in the single-particle ES of the Gaussian
column state |ψ1D〉. This ES can be computed numerically
based on the explicit result for the CM of |ψ1D〉 given in
Appendix F. Since the state |ψ1D〉 with physical dimension d̃p

has log2(d̃p) free-fermionic modes per lattice site, its single-
particle ES with respect to the subsystem AL consists of levels

0 � |λi(L)| � 1 with 1 � i � L log2(d̃p) [see Eq. (A5) for a
definition of the single-particle ES and its levels |λ j |]. For an
improved numerical stability, we actually compute μi(L) =√

1 − λi(L)2 that may be conveniently extracted from the
CM [see Eq. (A6)]. Here, values μi(L) = 1 and μi(L) = 0
correspond to maximally entangled and nonentangled modes,
respectively. The many-body Schmidt rank of the state |ψ1D〉
is therefore given by the exponential

rL(|ψ1D〉) = 2#{μi (L) > 0} (24)

of the number of entangled modes in the single-particle ES
with μi(L) bigger than zero.

2. Exponential growth

The number of entangled modes in the single-particle ES of
a column Acol of unit cells of the real-space PEPS is displayed
in Fig. 5(a) for two different cyclic interpolations of the MPS
from Eq. (11): on one hand, the parametrization φpump of
Eq. (15) giving rise to a two-dimensional Chern insulator,
and on the other hand the parametrization φtriv of Eq. (17)
corresponding to a topologically trivial two-dimensional state.
The corresponding data of the column Bcol is identical.

For φpump the number of entangled modes is equal to

#{μi(L) > 0} = min{3L, Ny} (25)

when L � Ny/2 (the spectra for L and Ny − L are identical).
In Appendix G we show that this is the maximal number of
entangled modes which is compatible with the global U(1)
symmetry of Acol inherited from the SSH model MPS. Here,
the factor 3 in Eq. (25) is a consequence of the column
tensor having three fermions (one physical fermion and two
virtual fermions) per site. The validity of Eq. (25) can be
seen in Fig. 5(a) for the smallest system size Ny = 28. For
larger system sizes, the number of entangled modes shown
in Fig. 5(a) is lower than Eq. (25) because of the finite
numerical resolution, as shown by the ES in Fig. 5(b). We
have checked that for the Chern PEPS obtained from the MPS
corresponding to the smooth charge-pumping cycle described
in Sec. II A, the number of entangled modes is also given
by Eq. (25).

For φtriv, the number of entangled modes is given by 2L
when L � Ny/2. This is lower than Eq. (25) for φpump except
at L = Ny/2, where both numbers agree. As discussed in
Appendix G, this reduction of entangled modes is due to
the decoupling of all right virtual legs and is not related to
topology. Indeed, for the trivial cycle, the parameter β(t ) = 0
vanishes for the entire duration of the interpolation φtriv. Any
small perturbation of φtriv by a nonzero β increases the num-
ber of entangled modes to Eq. (25). Moreover, these additional
decoupled modes disappear when blocking the two columns
Acol and Bcol, i.e., by contracting the bonds connecting them.
Hence, the column for AB unit cells has the same Schmidt
rank for both φpump and φtriv.

The number of entangled modes from Eq. (25) corresponds
to a maximal Schmidt rank

max
1�L�Ny−1

rL[|ψ1D(Acol )〉] = 2Ny (26)
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FIG. 5. Single-particle ES of a column Acol of the two-dimensional real-space TNSs defined by two different parametrizations for the MPS
of Eq. (11): the charge-pumping interpolation φpump of Eq. (15) leading to a Chern insulator, and the parametrization φtriv of Eq. (17) leading
to a topologically trivial two-dimensional state. (a) Number of modes in the single-particle ES with a finite entanglement corresponding to a
value μi > δ with δ = 10−13 the numerical accuracy for different system sizes Ny as a function of the subsystem size L. (b) Single-particle ES
for a column with Ny = 256 sites with respect to the subsystem AL with L = 20. The double degeneracy in the ES corresponding to φtriv is due
to the decoupling of all right virtual legs since β(t ) = 0 along φtriv.

for the state |ψ1D(Acol )〉, and similarly for |ψ1D(Bcol)〉. The
bound of Eq. (23) therefore implies that the vertical bond
dimensions Dy,A and Dy,B grow exponentially as a function
of Ny. This is a generic feature of our construction and
not related to the topology of the state: It originates in the
nonlocality of the inverse FT which couples all states in the
exponentially growing Hilbert space of one column. Indeed, a
generic quantum state requires an exponentially growing bond
dimension to be represented exactly as a TNS.

Despite the faster decay of the single-particle entanglement
energies for the topologically trivial state than for the Chern
insulator in Fig. 5(b), this does not allow us to make any
statement about differences in the growth of the vertical
bond dimension required for an approximative PEPS for the
two systems.

IV. FERMIONIC PEPS FOR TWO-DIMENSIONAL
HIGHER-ORDER TI

In this section, we study a Gaussian fermionic PEPS for
the topological quadrupole model from Ref. [1], which is
reviewed in Sec. IV A. The PEPS is defined in Sec. IV B,
where we also provide its parent Hamiltonian. In Sec. IV C we
discuss a three-dimensional PEPS with chiral hinge states ob-
tained from a dipole-pumping interpolation of the quadrupole
model [2,3].

A. Second-order quadrupole insulator

A two-dimensional second-order topological phase with
a quantized bulk quadrupole moment was recently proposed
theoretically [1] and has subsequently been observed experi-
mentally in mechanical [11], photonic [14–17], and electrical
[18,19] systems. This phase is described by a microscopic
free-fermionic model with one spinless fermionic mode per

site and a unit cell of 2 × 2 sites depicted in Fig. 6(a). We
consider the system at half-filling where only the lowest
two bands are occupied. With open boundary conditions, the
nearest-neighbor Hamiltonian is given by

HQuad =
∑

x

∑
j=0,1

[
t ( j)
x (â†

1,xâ3,x+ jx̂ + â†
4,xâ2,x+ jx̂ )

+ t ( j)
y (â†

1,xâ4,x+ jŷ − â†
3,xâ2,x+ jŷ) + H.c.

]
, (27)

where x̂ and ŷ denote the unit vectors in the horizontal and
vertical direction, respectively. The positions of the unit cells
are x = xx̂ + yŷ with 0 � x � Nx − 1 and 0 � y � Ny − 1
on a lattice with Nx and Ny unit cells in the horizontal and
vertical directions. For τ = 1, . . . , 4, â†

τ,x denotes the creation
operator for a fermion in orbital τ and unit cell at position x.
The Hamiltonian of Eq. (27) contains four nearest-neighbor
hopping amplitudes t (0)

x , t (0)
y , t (1)

x , and t (1)
y , where the subscripts

x and y refer to hoppings in the horizontal and vertical
directions, and the superscripts (0) and (1) indicate hopping
between sites on the same and adjacent unit cells, respectively.
The signs of the hopping amplitudes ensure that there is a flux
π through every plaquette of the square lattice.

The quadrupole model of Eq. (27) is in a second-order
topological OAI phase protected by the horizontal and ver-
tical mirror symmetries Mx and My if t (0)

x /t (1)
x ∈]−11[ and

t (0)
y /t (1)

y ∈]−11[ [1,56]. In this phase, corners host gapless
protected states at the intersection of two gapped edges.
Moreover, the system possesses a quantized bulk quadrupole
moment, edge dipole moment, and corner charge [3]. When
the hopping amplitudes t (0)

x and t (0)
y within unit cells vanish

in the OAI phase, the model is in a dimerized OAI phase
where every site in the bulk is contained in a decoupled
plaquette shifted from the unit cell by one site in the horizontal
and vertical directions. Hence, the corner modes are fully
localized on the four corner sites of a rectangular patch. On
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FIG. 6. (a) Sketch of the quadrupole model from Ref. [3]. A unit cell (marked with a green square) contains four sites. The horizontal
and vertical nearest-neighbor hoppings t (0)

x and t (0)
y within unit cells are sketched in black, whereas the nearest-neighbor hoppings t (1)

x and t (1)
y

between unit cells are sketched in red. The couplings corresponding to dashed bonds carry a negative sign to ensure a flux π through every
plaquette. Lattice sites marked in blue and red have a chemical potential μ and −μ, respectively. (b) Sketch of a unit cell of the quadrupole
PEPS from Eq. (29). For each site 1, 2, 3, or 4 marked by a dashed blue square, the blue (red) circles denote its physical (virtual) fermions.
Each edge connecting a physical and virtual fermion is labeled with the amplitude of the local tensor when these two fermions are in state
|1〉 and all other virtual fermions of the same site are in state |0〉. (c) Next-to-nearest-neighbor hopping terms of Eq. (32) in the parent
Hamiltonian HPEPS.

the other hand, for |t (0)
x /t (1)

x | > 1 or |t (0)
y /t (1)

y | > 1 the model
of Eq. (27) is in a trivial phase with gapped edges and corners.
If the hoppings t (1)

x and t (1)
y between adjacent unit cells vanish,

the system is in a trivial dimerized phase where each unit cell
decouples from the rest of the system.

Similarly to the charge-pumping cycle discussed in
Sec. II A, a dipole-pumping cycle interpolating between the
trivial and OAI dimerized phases of the quadrupole model can
be defined by adding the chemical potential μ to all sites on
the sublattices 1 and 2 and −μ to all sites on the sublattices
3 and 4 [3]. Therefore, the staggering pattern breaks the sym-
metries protecting the topological phase but preserves the C2

rotation symmetry [see Fig. 6(a)]. The dipole-pumping cycle
is obtained from C4-symmetric hopping amplitudes t (0) ≡
t (0)
x = t (0)

y and t (1) ≡ t (1)
x = t (1)

y and a chemical potential μ

evolving according to the same cyclic interpolation of Eq. (3)
as for the SSH charge pump.

The properties of the dipole-pumping cycle for the
quadrupole model are analogous to those of the charge-
pumping cycle for the SSH model. In particular, the system
remains in a dimerized state throughout the interpolation
since at all times t ∈ [−π, π ] only one of the two hopping
amplitudes t (0)(t ) and t (1)(t ) is nonzero. At t = ±π and t = 0,
the system is in an atomic state with only the orbitals 1 and 2
occupied at t = ±π and only the orbitals 3 and 4 occupied
at t = 0. For −π < t < 0, the hopping within unit cells is
nonzero, whereas the hopping between unit cells is nonzero
for 0 < t < π . In both cases, charge gets transferred by the
changing chemical potential. At t = −π/2 and π/2, the
chemical potential vanishes such that the mirror symmetries
are restored and the Hamiltonian corresponds to the trivial and
OAI dimerized phase of the quadrupole model, respectively.

In the same manner as charge pumping relates the SSH
model to a Chern insulator, dipole pumping induces a model
with chiral hinge states from the quadrupole model [2,3].
The chiral hinge model is a three-dimensional second-order

topological insulator whose one-dimensional protected
boundary modes occur at the intersection of a pair of
two-dimensional faces. The topology of the hinge model
obeys a Z2 classification protected by the product MxMyT
of the horizontal and vertical mirror symmetries and time
reversal T [2].

B. PEPS for the quadrupole model

In this section, we provide a Gaussian fermionic PEPS
for the ground state of the quadrupole model. After giving
the details of the construction in Sec. IV B 1, we compute
its parent Hamiltonian in Sec. IV B 2 and discuss its ES in
Sec. IV B 3.

1. Construction

In order to construct a Gaussian PEPS for the ground state
of the quadrupole model, we use similar ideas as in the SSH
model MPS derived in Sec. II. In analogy to the particle-hole
transformation of Eq. (7) on the B sublattice of the SSH chain,
we define new physical modes aτ,x by performing a particle-
hole transformation on the sublattices 3 and 4 while leaving
the sublattices 1 and 2 unaffected,

a1,x = â1,x, a2,x = â2,x, (28a)

a3,x = â†
3,x, a4,x = â†

4,x. (28b)

The vacuum |�〉 of the new modes, satisfying aτ,x|�〉 = 0
for τ = 1, . . . , 4, contains exactly 2NxNy physical particles
as required for the quadrupole model at half-filling. Thus,
the particle-hole transformation allows us to express the
quadrupole PEPS in terms of a separate and parity-even local
tensor for each lattice site. Parity evenness is required in
order to ensure that the state is independent of the order of
contractions in the network [57].
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The quadrupole PEPS has bond dimension DQuad = 2 and
is constructed from four local tensors A[τ ]i

lurd for sites on the
four sublattices τ = 1, . . . , 4, respectively. Here, i ∈ {0, 1}
corresponds to the physical index and l, u, r, d ∈ {0, 1} to
the left, up, right, and down virtual indices, respectively. The
physical basis states |0〉 = |�〉 and |1〉 = a†

τ,x|�〉 are obtained
from the transformed mode operators of Eq. (28).

Due to the close relation between the SSH and the
quadrupole models, we are guided in our ansatz for the
local tensors of the quadrupole PEPS by the MPS tensors
of Eq. (11). This can be most easily seen from Fig. 6(b).
We obtain the quadrupole model by coupling neighboring
sites both horizontally and vertically according to the pattern
of an SSH chain. In the PEPS tensors, the couplings of the
horizontal SSH chains are transmitted by the left and right
virtual fermions associated to parameters αx, βx analogous to
Eq. (11). Similarly, the vertical SSH chains are implemented
using the top and bottom virtual fermions associated to the
parameters αy, βy. Using the analogy to Eq. (11), we there-
fore obtain local PEPS tensors whose nonvanishing elements
are given in terms of five real parameters γ , αx, αy, βx,
and βy as

A[1]0
0000 = A[2]0

0000 = A[3]0
0000 = A[4]0

0000 = γ , (29a)

−A[1]1
1000 = A[2]1

0010 = A[3]1
0010 = A[4]1

1000 = βx, (29b)

A[1]1
0001 = A[2]1

0100 = A[3]1
0001 = A[4]1

0100 = βy, (29c)

A[1]1
0010 = −A[2]1

1000 = A[3]1
1000 = A[4]1

0010 = αx, (29d)

−A[1]1
0100 = −A[2]1

0001 = A[3]1
0100 = A[4]1

0000 = αy. (29e)

All the other tensor elements are equal to zero. The phases
in Eq. (29) were chosen such as to ensure that there is a
flux π through every plaquette. As sketched in Fig. 6(b), the
parameters βx and βy represent the coupling of the physical leg
to the virtual legs corresponding to the horizontal and vertical
bonds pointing into the unit cell, respectively. Similarly, αx

and αy control the coupling of the physical leg to the virtual
legs pointing out of the unit cell.

The PEPS of Eq. (29) has a global U(1) symmetry analo-
gous to Eq. (12) for the SSH MPS. Indeed, the local tensors
are invariant under a combination of U(1) rotations of the
physical and virtual legs given by

A[τ ]i
lurd =

∑
j

∑
l ′u′r′d ′

U (ϕ)i jU (ϕ)†
ll ′U (ϕ)†

uu′

× A[τ ] j
l ′u′r′d ′U (ϕ)†

r′rU (ϕ)†
d ′d (30a)

for sites on the sublattices τ = 1, 2, and

A[τ ]i
lurd =

∑
j

∑
l ′u′r′d ′

U (ϕ)†
i jU (ϕ)ll ′U (ϕ)uu′

× A[τ ] j
l ′u′r′d ′U (ϕ)r′rU (ϕ)d ′d (30b)

for sites on the sublattices τ = 3, 4. Here, U (ϕ) = (1 0
0 eiϕ )

is the U(1) rotation acting on a single fermion. Equation
(30) implies that the virtual legs for the local tensors on
the sublattices τ = 1, 2 and τ = 3, 4 transform as holes and
particles. Hence, each pair of virtual legs associated with
the same nearest-neighbor bond transforms oppositely under

the U(1) rotation, such that the PEPS is invariant under the
physical part of Eq. (30). The charge associated with this
symmetry is

∑
x

[∑
τ=1,2

a†
τ,xaτ,x −

∑
τ=3,4

a†
τ,xaτ,x

]

=
∑

x

4∑
τ=1

â†
τ,xâτ,x − 1

2
NxNy (31)

such that the U(1) symmetry ensures that the state lies exactly
at half-filling of the lattice just as in the one-dimensional case.

2. Parent Hamiltonian

For all values of the parameters γ , αx, αy, βx, and βy, the
PEPS from Eq. (29) can be expressed as a Gaussian TNS
for free fermions. In Appendix H, we show that the PEPS
with parameters α ≡ αx = αy and β ≡ βx = βy is the unique
ground state of an extended version of the quadrupole model
HPEPS with C4-symmetric hoppings, with a staggered chemical
potential that breaks C4 symmetry and with an additional
next-to-nearest-neighbor hopping∑

τ

∑
x

t (2)
τ [â†

τ,xâτ,x+x̂ + â†
τ,xâτ,x+ŷ + H.c.] (32)

between sites on the same sublattice τ with amplitude t (2)
τ .

The pattern of next-to-nearest-neighbor hoppings is shown in
Fig. 6(c). The couplings of HPEPS depend on the parameters of
the PEPS as

μ = γ 4 − α4 − β4

α4 + β4 + γ 4
, (33a)

t (0)
x = t (0)

y =
√

2β2γ 2

α4 + β4 + γ 4
, (33b)

t (1)
x = t (1)

y =
√

2α2γ 2

α4 + β4 + γ 4
, (33c)

t (2)
1 = t (2)

2 = −t (2)
3 = −t (2)

4 = −1

2

α2β2

α4 + β4 + γ 4
. (33d)

Similarly to the parent Hamiltonian HMPS of the SSH
model MPS of Eq. (11), HPEPS describes different phases
depending on the values of the parameters α, β, and γ .
When two out of the three parameters vanish, the system
is in an atomic insulator state: If α = β = 0, the particles
are localized on the orbitals τ = 3, 4, whereas they are lo-
calized on the orbitals τ = 1, 2 if α = γ = 0 or β = γ = 0.
In contrast, when α = 0 and β, γ �= 0, all hoppings of the
parent Hamiltonian vanish except for the nearest-neighbor
hopping within unit cells. Similarly, when β = 0 and α, γ �=
0, the only nonzero hopping is the nearest-neighbor hop-
ping between unit cells. In both cases, the system is in a
dimerized phase with a staggered chemical potential. Setting
β = γ and α = γ , respectively, we recover the trivial and
OAI dimerized phases of the quadrupole model with van-
ishing chemical potential. Finally, when all three parameters
are nonzero, the system has a nonvanishing nearest- and
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next-nearest-neighbor hopping as well as a finite staggered
chemical potential.

3. Corner states and entanglement spectrum

The characteristic (d − 1)-dimensional gapless edge states
of a conventional d-dimensional TI are reflected in the state’s
bulk ES [22]. Similarly, the ES of the quadrupole model in its
dimerized OAI phase hosts gapless corner states as long as the
virtual cut is compatible with the protecting symmetries [24].
In order to further characterize the different phases described
by the PEPS from Eq. (29), we therefore study the ES of
the state defined on a torus with respect to a rectangular
subsystem ALx×Ly of Lx and Ly unit cells in the horizontal and
vertical direction.

For β = 0, the PEPS from Eq. (29) is in a dimerized
phase where the system splits into four-site plaquettes shifted
from the unit cell by one site in the horizontal and vertical
directions. For α = γ , we obtain the OAI dimerized phase of
the quadrupole model, whereas for α �= γ there is a nonzero
staggered chemical potential that breaks the symmetries pro-
tecting the OAI phase. Due to the dimerization, with open
boundaries the system has SSH chains with a staggered chem-
ical potential at the edges, and corner sites which decouple
from each other and the bulk. Correspondingly, the single-
particle ES of the PEPS with respect to the subsystem ALx×Ly

has three distinct contributions from the bulk, the edges,
and the corners as sketched in Fig. 7. The bulk consists
of (Lx − 1)(Ly − 1) plaquettes decoupled from the rest of
the system, which contribute 4(Lx − 1)(Ly − 1) nonentangled
modes with levels |λbulk| = 1 (in the dimerized limit) to the
single-particle ES.

On the other hand, the corner and edge sites belong to
plaquettes crossed by the boundary of the subsystem ALx×Ly .
In Appendix H 3 we show that the four boundaries pro-

FIG. 7. Quadrupole model in the dimerized OAI phase with a
rectangular subsystem A marked by a blue rectangle. The four-site
plaquettes coupled by the nearest-neighbor hopping t (1) (drawn in
red) are shifted from the unit cells (denoted by green squares) by one
site in both directions. The decoupled plaquettes in the bulk of A
(marked in blue) do not contribute to the ES. In contrast, nontrivial
levels in the ES come from both the plaquettes at the corners with a
single site in A (marked in green), and from those at the edges with
two sites in A (marked in orange).

vide 4(Lx − 1 + Ly − 1) entangled modes with levels ±λedge,
where

λedge =
√

γ 8 + α8

γ 4 + α4
. (34a)

Since the number of these entangled modes grows linearly
with the size of the edge, the boundary leads to an area-law
term in the entanglement entropy.

Furthermore, each corner site hosts exactly one mode
corresponding to a level ∓λcorner with

λcorner = γ 4 − α4

γ 4 + α4
. (34b)

Here, the negative sign holds for the top right and bottom
left corner sites on the sublattices τ = 1 and 2, respectively,
whereas the positive signs applies to the top left and bottom
right corner sites on the sublattices τ = 3 and 4, respectively.

For α = γ , the PEPS of Eq. (29) describes the OAI phase
of the quadrupole model. Indeed, in this case the edges have
entanglement levels λedge = 1/

√
2 and the four corners have

degenerate levels λcorner = 0 corresponding to maximally en-
tangled corner modes. On the other hand, for α = 0, both
λedge = 1 and λcorner = 1 such that the TNS describes an
atomic state.

Finally, if the OAI dimerized phase is perturbed by a small
nonzero value β �= 0, one can check numerically that the
corner modes acquire a finite splitting λcorner �= 0 and are no
longer perfectly localized at the corner sites. This confirms
that the TNS with β �= 0 is not in the OAI phase of the
quadrupole model as expected from the breaking of the mirror
symmetries and C4 symmetry by the next-nearest-neighbor
hopping and the chemical potential.

C. 3D chiral hinge PEPS from dipole pumping

The PEPS of Eq. (29) with parameters α = αx = αy and
β = βx = βy describes a dimerized dipole-pumping cycle of
the quadrupole model if α, β, and γ follow the parametriza-
tion φpump which we found for the dimerized charge-pumping
cycle of the SSH model MPS. The coupling constants of
the parent Hamiltonian HPEPS derived from the parametriza-
tion φpump are shown in Fig. 8(a). They differ from those
of the dipole-pumping Hamiltonian of Ref. [3] only by a
factor of 1/

√
2 for the hopping amplitudes, which does not

affect the topology of the interpolation. The single-particle
ES of the PEPS along φpump is shown in Fig. 8(b). In the
first half of the cycle, the system is in a dimerized phase
with each unit cell decoupled from the rest of the system.
Hence, the single-particle ES contains only the bulk bands
with λ = ±1. However, in the second half of the cycle for
0 < t < π , the contributions from the edges and corners can
be clearly distinguished. The four corner modes connect the
bands with λ = ±1 and are degenerate in the OAI dimerized
phase of the quadrupole model obtained for t = π/2. In the
three-dimensional second-order TI of Ref. [2] obtained by
the identification of the time t along the dipole-pumping
cycle with the momentum kz in the third direction, these
corner modes generate the chiral modes localized at the
hinges.
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FIG. 8. (a) Coupling constants of the parent Hamiltonian HPEPS

and (b) single-particle ES of the PEPS of Eq. (29) along the dipole-
pumping interpolation generated by the parametrization φpump. In (a),
the vanishing of the next-nearest-neighbor coupling t (2)

τ = 0 of HPEPS

is not shown. In (b), we marked the bulk contribution in blue and for
times t ∈ [0, π ] with β(t ) = 0, the edge contribution in orange and
the corner contribution in green. The ES was computed on a torus
with Nx = Ny = 10 unit cells with respect to the subsystem ALx×Ly

with Lx = Ly = 5.

Following the steps described in Sec. III, we may use
the PEPS of Eq. (29) along the interpolation φpump to de-
fine a three-dimensional PEPS for the second-order hinge
TI. Moreover, we can construct a topologically trivial three-
dimensional state from the interpolation φtriv from Eq. (17).
These PEPSs have a finite bond dimension DQuad = 2 in the
x and y directions. In the hybrid real-momentum space where
the third dimension corresponds to the momentum kz or time
t , the states have a finite bond dimension equal to one also in
the third direction.

On the other hand, due to the nonlocality of the inverse FT,
in real space their bond dimension Dz,τ in the third direction
for sites on the sublattice τ for τ = 1, . . . , 4 grows with
the system size Nz. As in Sec. III E, we can estimate Dz,τ

from the ES of a column of sites on the sublattice τ with
respect to the subsystem AL of the first L sites.

The number of entangled levels in the single-particle ES
of a column of sites on the sublattice τ = 1 of the three-
dimensional PEPSs is shown in Fig. 9(a). As we can see
from the smallest system size Nz = 28, for both φpump and
φtriv the number of entangled modes is identical to the two-
dimensional case from Sec. III when replacing Ny with Nz.
Moreover, the spectra displayed in Fig. 9(b) are similar,
although not identical, to the corresponding results for the
two-dimensional PEPSs.

As we show in Appendix G, for φpump this number of
entangled modes is the maximal number compatible with the
symmetries of the quadrupole PEPS, here the U(1) symmetry
from Eq. (30), and the mirror symmetry Mxy of the local
tensor on the sublattice τ = 1. Indeed, the latter causes the
decoupling of one superposition of the left and down virtual
legs, and similarly for the up and right virtual legs. For φtriv,
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FIG. 9. Single-particle ES of a column of sites on the sublattice τ = 1 of the three-dimensional real-space TNSs defined by two different
parametrizations for the quadrupole PEPS of Eq. (29): the charge-pumping interpolation φpump of Eq. (15) leading to a chiral hinge insulator
(blue) and the parametrization φtriv of Eq. (17) leading to a topologically trivial three-dimensional state (red). (a) Number of modes in the
single-particle ES with a finite entanglement corresponding to a value μi > δ with δ = 10−13 the numerical accuracy for different system
sizes Nz as a function of the subsystem size L. Due to the mirror symmetry Mxy of the quadrupole PEPS tensor on the sublattice τ = 1, the
number of entangled modes for both parametrizations is identical to the two-dimensional case shown in Fig. 5(a). (b) Single-particle ES for a
column with Nz = 256 sites with respect to the subsystem AL with L = 20. The double degeneracy in the ES corresponding to φtriv is due to
the decoupling of the left and down virtual legs since β(t ) = 0 along φtriv (see Appendix G). The spectra are similar, with the same number of
entangled modes, but not strictly identical to those of the two-dimensional state shown in Fig. 5(b).
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there is an additional reduction of the number of entangled
modes since the left and down virtual legs decouple due to the
vanishing parameter β = 0 along the trivial interpolation (see
Appendix G).

Analogously to Sec. III E, we therefore conclude that the
bond dimension Dz,τ in the third direction grows exponen-
tially with Nz for τ = 1, 2, 3, 4. Due to the mirror symmetries
of the quadrupole model, Dz,τ has the same value as the ver-
tical bond dimension of the two-dimensional PEPSs obtained
from cyclic interpolations of the SSH model. The increase in
spatial dimensionality therefore does not cause an increase of
the bond dimension in the (d + 1)st direction.

V. CONCLUSION

In this paper, we showed how to use charge pumping to
define TNSs for (d + 1)-dimensional conventional or higher-
order TIs starting from TNSs of TIs in d-space dimensions.
To that end, we constructed a Gaussian fermionic MPS for
the SSH model with bond dimension DSSH = 2 in d = 1
dimension, and a Gaussian fermionic PEPS for the topolog-
ical quadrupole model with bond dimension DQuad = 2 in
d = 2 dimensions. We proved that these TNSs have local
gapped parent Hamiltonians with up to next-nearest-neighbor
hopping, and thereby showed that they describe the SSH
model along a charge-pumping cycle and the quadrupole
model along a dipole-pumping cycle, respectively. We em-
ployed these TNSs to construct a two-dimensional PEPS for
a Chern insulator and a three-dimensional PEPS for a chiral
hinge higher-order topological insulator (HOTI), respectively.
The (d + 1)-dimensional TNSs inherit the finite bond di-
mension DSSH and DQuad in the first d dimensions, respec-
tively. In a hybrid coordinate system where the (d + 1)st di-
mension corresponds to momentum, the (d + 1)-dimensional
TNSs have a finite bond dimension in this direction. In
contrast, we showed that the bond dimension in the (d +
1)st direction grows exponentially in a real-space coordinate
system.

Our results suggest several directions for future work. On
one hand, it would be interesting to study if a real-space PEPS
for the Chern insulator with a polynomially growing bond
dimension can be found by truncating the Schmidt values of
the real-space column in our construction. Such a result could
potentially provide insight into the physical origin for the
obstructions preventing the existence of chiral PEPSs with a
finite bond dimension. On the other hand, we expect the TNSs
constructed here to be useful for finite-size simulations despite
their growing bond dimension since the bond dimension is
finite in all but one direction. By their local nature, they could
be employed as the building block of interacting (d + 1)-
dimensional TIs obtained by Gutzwiller projection or parton
constructions [58–61].
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APPENDIX A: COVARIANCE MATRICES OF GAUSSIAN
FERMIONIC STATES

Eigenstates and thermal states of free-fermion systems are
given by Gaussian states which satisfy Wick’s theorem. They
are hence fully characterized by their covariance matrix (CM)
of two-point correlation functions [51]. In this Appendix,
we review the definitions of the complex and real CM for
pure and mixed states in Appendix A 1. We summarize the
relation with the entanglement spectrum in Appendix A 2 and
provide the concrete expression for the CM of a Gaussian
state parametrized as the exponential of a fermion bilinear in
Appendix A 4.

1. Definitions

We consider a generic system of N fermionic DOFs with
annihilation operators a j and creation operators a†

j for j =
1, . . . , N . In a pure or mixed state of this system, its covari-
ance matrix is defined as

Gμν = i

2
〈[χ†

μ, χν]〉 =
(

R∗ Q∗
Q R

)
, (A1)

where μ, ν = 1, . . . , 2N and χ = (a1, . . . , aN , a†
1, . . . , a†

N )
is the mode vector. The blocks R and Q of dimension N × N in
Eq. (A1) are anti-Hermitian and antisymmetric, respectively,
i.e., R† = −R and QT = −Q, such that G is anti-Hermitian.
For a generic mixed state, G satisfies the inequality GG† � 1

41

and its eigenvalues come in complex-conjugate pairs ± i
2 |λ j |

with 0 � |λ j | � 1 for 1 � j � N . For pure states, GG† = 1
41

such that its eigenvalues are given by |λ j | = 1.
For a state with charge conservation, the levels −1 �

λ j � 1 can be computed directly including their sign [62]:
Since 〈a†

j a
†
k〉 = 0 for all 1 � j, k � N , the off-diagonal block

Q∗ vanishes in the complex CM G of Eq. (A1), and the
eigenvalues of the diagonal block R∗ are given by i

2λ j .
For a generic system with pair creation and annihilation, it

is convenient to define Majorana fermionic modes c2 j = a†
j +

a j , c2 j−1 = (−i)(a†
j − a j ) for j = 1, . . . , N with {cμ, cν} =

2δμν [63]. We denote the matrix corresponding to this basis
change by

Sμν =
{
δν,μ/2 + δν,μ/2+N , μ even
i(δν,(μ+1)/2 − δν,(μ+1)/2+N ), μ odd (A2)
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with cμ =∑ν Sμνχν and S† = 2S−1. In terms of the Majorana
modes, the CM

�μν = i

2
〈[cμ, cν]〉 = [S∗ G ST ]μν (A3)

of size 2N × 2N is real and antisymmetric. Hence, each of
its singular values |λ j | with 1 � j � N is doubly degenerate.
Moreover, � satisfies ��† � 1 with equality for a pure state.

2. Relation to entanglement spectrum

We frequently consider the restriction of a pure quantum
state |ψ〉 to a subsystem A of the entire system, which is
described by the reduced density matrix ρA = trĀ[|ψ〉〈ψ |]
obtained by tracing over the DOFs in the complement Ā of A.
The many-body entanglement Hamiltonian HEnt with respect
to this partition is given by the logarithm of the reduced
density matrix as [23]

ρA = 1

Z
e−HEnt , (A4)

where Z = tr(e−HEnt ).
If |ψ〉 is a Gaussian state with CM G, then ρA is Gaussian

with its CM GA = (Gμν )
μ,ν∈A given by the restriction of G to

the modes of A. In this case, the many-body entanglement
Hamiltonian is a bilinear function of the fermionic mode
operators defined by a square matrix referred to as the single-
particle entanglement Hamiltonian. The eigenvalues β j of the
single-particle entanglement Hamiltonian are related to the
eigenvalues ± i

2 |λ j | of GA as |λ j | = tanh β j

2 , where 1 � j � L
and L is the number of modes in the subsystem A [52]. We
therefore refer to the collection

{|λ j |}1� j�L (A5)

as the single-particle ES of ρA.
The single-particle ES can also be computed from the

Majorana CM � of Eq. (A3) for the Gaussian state |ψ〉. One
obtains the levels |λ j | for 1 � j � L directly as the singular
values of the block (�μν )μ,ν∈A associated with the DOFs in
A. On the other hand, the levels can be computed indirectly
from the off-diagonal block (�μν )μ∈A,ν∈Ā describing the cor-
relations between A and its complement Ā. Indeed, the two
blocks are coupled by the constraint ��T = 1 originating in
the purity of the state |ψ〉. Concretely, the singular values of
the off-diagonal block are given by

μ j =
√

1 − λ2
j (A6)

for 1 � j � L [64]. This allows to infer the single-particle
entanglement energies for weakly entangled modes |λ j | ≈ 1
with an improved numerical accuracy.

3. Gaussian projections and Schur complements

In the construction of GfTNSs to be discussed in
Appendix B, we will frequently encounter the following
situation: Let us take a total system of N + M fermionic
modes with mode operators aj, a†

j for j = 1, . . . , N + M,
and consider the subsystem defined by the M last modes
j = N + 1, . . . , N + M. Let |Q〉 be a Gaussian pure state of

the total system and |ω〉 a Gaussian pure state of the subsystem
of the last M modes. Then, the projection

|ψ〉 = 〈ω|Q〉, (A7)

which is a state of only the first N modes, is again a Gaussian
state. The Majorana CMs �ψ , �Q, and �ω of the three Gaus-
sian states are given by the expression in Eq. (A3), where the
expectation values are taken in the states |ψ〉, |Q〉, and |ω〉,
respectively.

�ψ can be computed from �Q and �ω using a Schur
complement coming from the Gaussian integration over the
last M modes [51,65–67]. Indeed, we can write the antisym-
metric Majorana CM �Q of the unprojected state of the total
system as

�Q =
(

A B
−BT D

)
, (A8)

where the block A of size 2N × 2N refers to the Majorana
modes corresponding to a j, a†

j for j = 1, . . . , N , and the
block D of size 2M × 2M refers to the Majorana modes cor-
responding to a j, a†

j for j = N + 1, . . . , N + M. The block B
of size 2N × 2M encodes the correlations between the first N
and last M modes. In terms of these blocks and the CM �ω of
size 2M × 2M, the CM of the projected state is

�ψ = A + B [D + �ω]−1 BT . (A9)

Mathematically, this is the Schur complement of the block
corresponding to the last M modes.

4. Parametrization of Gaussian states

We consider a normalized Gaussian state with even
fermionic parity which, anticipating Appendix B, we will
denote by |ψ〉 = |Q〉. |Q〉 is parametrized in terms of
the antisymmetric complex matrix M of dimension N × N
as [51,68]

|Q〉 = N × e
∑

i j Mi j a
†
i a†

j |�〉, (A10)

where |�〉 is the fermionic vacuum and N is a normalization
factor.

A relevant case is given by states whose parametrization
matrices have nonzero entries only in the first row and column
(or more generally, in the nth row and column). In particular,
we will see in Appendices E and H that the local tensors of the
MPS of Eq. (11) and the PEPS of Eq. (29) define Gaussian
states of this form. In this case, Mi jMkl a†

i a†
j a

†
ka†

l = 0 for all
1 � i, j, k, l � N since all nonvanishing terms contain the
factor (a†

1)2 = 0 [(a†
n)2 = 0 in the general case]. Therefore,

the series expression of the exponential in Eq. (A10) termi-
nates after first order such that

|Q〉 = N

⎡
⎣1 +

N∑
i, j=1

Mi ja
†
i a†

j

⎤
⎦|�〉, (A11)

leading to the CM

G = i

2

(−1N + 8N 2 × M†M −4N 2 × M†

−4N 2 × M 1N − 8N 2 × MM†

)
,

(A12)
where the normalization is N −2 = 1 + 2 tr(MM†).
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APPENDIX B: CONSTRUCTION OF GfTNS

Gaussian fermionic tensor network states (GfTNS) de-
scribe free-fermion systems. They have the advantage that
the contraction of the network can be performed in terms of
covariance matrices, allowing efficient computations even for
large systems. In this Appendix, we review the construction of
Gaussian TNSs in one and two spatial dimensions. We begin
in Appendix B 1 by illustrating the construction of a TNS via
fiducial states using the simple example of a bosonic MPS,
where we do not need to take care of fermionic signs in tensor
products. In Appendix B 2, we move to the case of fermionic
physical and virtual particles. In Appendix E, the concepts
introduced here are illustrated using the pedagogical example
of the SSH model MPS from Sec. II C.

1. Fiducial state approach

We recall that the construction of a TNS can be performed
in several different but equivalent ways. Within the most well-
known approach, the local information on the state is encoded
in the local tensor with physical and virtual legs. For example,
for a one-dimensional bosonic MPS |ψbMPS〉 the local tensor
at position x takes the form A[x]ix

lxrx
, where ix is the physical

index, lx is the left virtual index, and rx is the right virtual
index. The global state is obtained by contracting, for each
nearest-neighbor bond, the two virtual legs associated with
this bond which belong to neighboring tensors. This is done
by identifying and summing over the corresponding virtual
indices. For example, the contraction of two neighboring MPS
tensors gives

∑
rx,lx+1

A[x]ix
lxrx

δrx lx+1 A[x + 1]ix+1

lx+1rx+1
.

More formally, this can be expressed as follows: First, we
create a total maximally entangled state in the virtual layer
whose role it is to implement the contraction of bonds. The
total maximally entangled state is the tensor product over all
nearest-neighbor bonds of a maximally entangled state of the
two virtual particles for this bond. In our MPS example, the
maximally entangled state for the bond between sites x and
x + 1 is

|ωx,x+1〉 =
∑

rx,lx+1

δrx lx+1 |rx, lx+1〉. (B1)

Second, at each site we translate the local tensor into a local
projection map, which maps the virtual particles onto the
physical particle at this site. The representation matrix of the
local projection map is given by the local tensor. For instance,
the MPS local projection map at site x is

Â[x] =
∑

ix,lx,rx

A[x]ix
lxrx

|ix〉〈lx, rx|. (B2)

The bond between sites x and x + 1 is contracted by applying
the projection maps Â[x] and Â[x + 1] to |ωx,x+1〉, giving

Â[x]Â[x + 1]|ωx,x+1〉
=
∑

ix, ix+1
lx, rx+1

|ix, ix+1〉〈lx, rx+1|

×
∑

rx,lx+1

A[x]ix
lxrx

δrx lx+1 A[x + 1]ix+1

lx+1rx+1
. (B3)

The global state is then obtained by contracting all bonds, i.e.,
by applying the product of all local projection maps to the total
virtual maximally entangled state. For instance, the MPS on a
chain with Nx sites and periodic boundaries takes the form

|ψbMPS〉 =
Nx−1∏
x=0

Â[x]
Nx−1⊗
x=0

|ωx,x+1〉, (B4)

where the lattice site indices are x = 0, . . . , Nx − 1. This is a
state of only the physical particles.

For GfTNSs, we will deal with fermionic particles and
therefore follow a slightly different, but equivalent, approach
to construct the TNSs using so-called fiducial states (see
Refs. [47,68] for pedagogical introductions). In this approach,
we consider fiducial states instead of local projection maps,
which contain only creation operators. The fiducial state on
each lattice site lies in the joint Hilbert space of the physical
and virtual particles on this site. Its basis coefficients are
given by the entries of the local tensor. For example, the local
fiducial states of the MPS are

|Qx〉 =
∑

ix,lx,rx

A[x]ix
lxrx

|ix〉|lx, rx〉. (B5)

Hence, the fiducial states are equivalent to the local projection
maps or local tensors; in particular, they contain all the local
information about the TNSs. The total state is obtained by
projecting the tensor product of all local fiducial states on the
total virtual maximally entangled state. For the MPS, we have

|ψbMPS〉 =
Nx−1⊗
x=0

〈ωx,x+1|
Nx−1⊗
x=0

|Qx〉 (B6)

which is equivalent to the expression in Eq. (B4). We are now
ready to generalize the fiducial state formalism to fermionic
physical and virtual particles.

2. Fermionic particles

We consider a one- or two-dimensional lattice system
of free fermions with f fermionic modes per lattice site
x, which are associated to the physical creation operators
a†

τ,x with τ = 1, . . . , f . A Gaussian fermionic TNS for this
system with physical dimension 2 f and bond dimension 2ξ

is obtained by associating ξ complex virtual fermionic modes
with each physical lattice site x and nearest-neighbor direction
α, where α = L, R for one-dimensional MPSs with left and
right nearest-neighbor bonds and α = L,U, R, D for two-
dimensional PEPSs on the square lattice with left, up, right,
and down nearest-neighbor bonds [33,68]. We denote the
creation operators for these virtual modes by b†

α, j,x where
j = 1, . . . , ξ labels the different modes per bond and lattice
site. For each lattice site, there are hence nmodes = f + 2ξ

modes for a fermionic MPS and nmodes = f + 4ξ modes for a
two-dimensional fermionic PEPS. The mode operators needed
for the construction of the SSH MPS are discussed in the first
paragraph of Appendix E.

We collect the mode operators associated with one lattice
site into a mode vector

χx = (a1,x, a2,x, . . . , a f ,x, bL,1,x, bL,2,x, . . . , bR,1,x, . . . ,

a†
1,x, . . . , b†

L,1,x, . . . , b†
R,1,x, . . . )T (B7)
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of length 2nmodes. The physical and virtual mode operators
obey canonical anticommutation relations

{(χx)μ, (χx′ )ν} = δx,x′δ|μ−ν|,nmodes (B8)

for 1 � μ, ν � 2nmodes. Their joint vacuum state |�〉 satisfies

aτ,x|�〉 = bα, j,x|�〉 = 0 (B9)

for all x, τ = 1, . . . , f , α, and j = 1, . . . , ξ .
The local information about the TNS is contained in the

local fiducial states |Qx〉, introduced in Eq. (B5), which are
equivalent to the local tensors A[x] used in the main text.
We can easily translate between the two approaches since the
basis elements of the local fiducial state are by definition equal
to the local tensors [cf. Eq. (B5)]. For fermions, we write
|Qx〉 = Qx|�〉 where Qx is a polynomial of creation operators
which acts on the vacuum to create the fiducial state. For
fermionic MPSs and PEPSs in one and two dimensions we
have [49,57]

A[x]i
lr = [〈r| ⊗ 〈i| ⊗ 〈l|]Qx|�〉, (B10)

A[x]i
lurd = [〈d| ⊗ 〈r| ⊗ 〈u| ⊗ 〈l| ⊗ 〈i|]Qx|�〉, (B11)

where |i〉 with i = 0, . . . , 2 f − 1 is a basis for the Fock space
associated with the physical mode operators {a†

τ,x}1�τ� f , and
|l〉 with l = 0, . . . , 2ξ − 1 is a basis of the Fock space associ-
ated with the left virtual mode operators {b†

L, j,x}1� j�ξ on site x

(similarly |u〉 for the up mode operators {b†
U, j,x}1� j�ξ , |r〉 for

the right mode operators {b†
R, j,x}1� j�ξ , and |d〉 for the down

mode operators {b†
D, j,x}1� j�ξ ). For the SSH model MPS, the

fiducial states obtained thus are given in Eq. (E1).
A Gaussian fermionic TNS has the property that all local

fiducial states |Qx〉 satisfy Wick’s theorem. In this case, the
global physical state |ψ〉 is also Gaussian [33,51]. We denote
by �Q the Majorana CM of the product of all fiducial states,∏

x Qx|�〉, also referred to as total fiducial state. From now
onward, we consider GfTNSs with parity-even local tensors
as discussed in Sec. II B, whose local fiducial states therefore
have an even number of physical and virtual fermions. The
maps Qx can thus be expressed as in Eq. (A10) as the expo-
nential of a quadratic form of the physical and virtual creation
operators on the site x, which are contained in the last nmodes

entries [(χx)nmodes+m]1�m�nmodes
of the mode vector of Eq. (B7)

[51,68]. Concretely, the local fiducial state is parametrized as

Qx = exp

[
nmodes∑

m,m′=1

(Mx)mm′ (χx)nmodes+m(χx)nmodes+m′

]
, (B12)

with an antisymmetric square matrix Mx of dimension nmodes.
For the SSH model MPS, this matrix is given in Eq. (E2).

In order to illustrate the concepts introduced above, let us
construct a Gaussian maximally entangled state of the virtual
fermions for each nearest-neighbor bond 〈x′x′′〉. Let us denote
by α′ and α′′ the type of virtual fermion involved in the bond
〈x′x′′〉 on the site x′ and x′′, respectively. For instance, if
x′′ = x′ + x̂, then α′ = R and α′′ = L. A fermionic maximally
entangled state for this bond is then given by [33]

|ωx′x′′ 〉 =
ξ∏

j=1

1√
2

(1 + b†
α′, j,x′b

†
α′′, j,x′′ )|�〉. (B13)

Due to the fermionic anticommutation relations, this expres-
sion is not symmetric under exchange of (α′, x′) and (α′′, x′′);
we say that the bond points from the initial site x′ to the
final site x′′.

The state |ωx′x′′ 〉 is a Gaussian state satisfying Wick’s
theorem. To see this, we first consider the simple case of a
one-dimensional MPS with ξ = 1 virtual fermion per nearest-
neighbor bond and lattice site. In this case, the virtual maxi-
mally entangled state from Eq. (B13) for the bond 〈x, x + x̂〉
becomes

|ωx,x+x̂〉 = 1√
2

[1 + b†
R,xb†

L,x+x̂]|�〉

= 1√
2

[
1 + (b†

R,x b†
L,x+x̂ )

1

2

(
0 1

−1 0

)(
b†

R,x

b†
L,x+x̂

)]
|�〉,

(B14)

where the bond points from site x to site x + x̂. This is a
Gaussian state of the form of Eq. (A11) parametrized by the
antisymmetric matrix M = (i/2)σ2. Hence, its complex CM
G can be computed from Eq. (A12) and is given by

G = −1

2

(
0 σ2

−σ2 0

)
, (B15)

where σ2 = (0 −i
i 0 ) denotes the second Pauli matrix. Accord-

ing to Eq. (A3), the corresponding Majorana CM � is obtained
by conjugation with the matrix S, and is found to be

� =
(

0 σ1

−σ1 0

)
, (B16)

where σ1 = (0 1
1 0) denotes the first Pauli matrix. For a two-

dimensional TNS with ξ = 1, the real CM of the virtual state
for the vertical nearest-neighbor bond 〈x, x − ŷ〉 is also given
by Eq. (B16). In this case, we choose the bond to be oriented
downward from x to x − ŷ to comply with our ordering of
the virtual legs as L,U, R, D. For TNS with more virtual
fermions, ξ > 1, the virtual maximally entangled state from
Eq. (B13) is a tensor product of multiple states of the form of
Eq. (B14). Hence, the corresponding real CM is a direct sum
of multiple copies of the � from Eq. (B16). We denote by
�ω the Majorana CM of the total virtual maximally entangled
state ⊗〈x′x′′〉|ωx′x′′ 〉. Since the total virtual maximally entangled
state is a tensor product over all bonds, �ω is a direct sum of
multiple copies of the � from Eq. (B16).

As explained in Appendix B 1, the global physical state
|ψ〉 is obtained from the constituents introduced above by
projecting the total fiducial state onto the virtual maximally
entangled state

|ψ〉 =
⎡
⎣⊗

〈x′x′′〉
〈ωx′x′′ |

⎤
⎦∏

x

Qx|�〉. (B17)

We recall from Appendix A 3 that for Gaussian states, this
projection can be formulated in terms of CMs and gives rise
to a Schur complement. This is the approach we take in the
following.

Let us see how we can apply the general Schur complement
expression of Eq. (A9) in order to compute the Majorana
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CM �|ψ〉 for the physical state from the CMs �Q and �ω

defined above for the fiducial and virtual maximally entangled
states. We introduce the symbols p and v to collectively refer
to all Majorana mode operators for the physical and virtual
fermions. Therefore, (�Q)pp and (�Q)vv denote the blocks of
the CM of the total fiducial state that describe the reduced
state of only the physical and virtual degrees of freedom
(DOFs), respectively. On the other hand, the blocks (�Q)pv =
−(�Q)T

vp encode the correlations between physical and virtual
fermions. In Eq. (B17), we are projecting the fiducial state of
physical and virtual modes onto a maximally entangled state
of the virtual modes in order to obtain a state of only the
physical modes. According to Eq. (A9), this is represented by
the Schur complement of the virtual block (vv) given by

�|ψ〉 = (�Q)pp + (�Q)pv[(�Q)vv + �ω]−1(�Q)T
pv. (B18)

Note that the CM on the left-hand side of this equation tracks
every physical mode independently. Hence, its dimension
is proportional to the system size and becomes large for
our cases of interest. We will now specialize Eq. (B18) to
translation-invariant states, where we can achieve a massive
reduction of the size of the physical CM down to the number
of Bloch bands independent of the system size.

APPENDIX C: TRANSLATION-INVARIANT GfTNSs

In this Appendix, we specialize the formalism reviewed in
Appendix B to translation-invariant GfTNSs, where the con-
traction of the network can often be performed analytically. In
Appendix C 1, we compute the CM of a translation-invariant
GfTNS, which we then use in Appendix C 2 to construct a
parent Hamiltonian for the state.

1. Covariance matrix

For translation-invariant Gaussian TNSs, we introduce the
Fourier transform (FT) of the physical and virtual mode
operators as

aτ,k =
∑

x

Fk,xaτ,x, (C1a)

bα, j,k =
∑

x

Fk,xbα, j,x (C1b)

for all τ = 1, . . . , f , j = 1, . . . , ξ , α = L, R for MPSs, and
α = L,U, R, D for two-dimensional PEPSs. Here, the FT in
two spatial dimensions with Nx and Ny sites in the horizontal
and vertical direction, respectively, position vector x = (x, y)
and momentum vector k = (kx, ky), is given by

Fk,x = 1√
NxNy

e−ikx. (C1c)

The momenta in the horizontal (kx) and vertical (ky) direc-
tion take values kx = 2π j

Nx
with 0 � j � Nx − 1 and ky = 2π j

Ny

with 0 � j � Ny − 1. The FT for a single spatial direction is
analogous.

We define the FT of the mode vector χx from Eq. (B7)
to be

χk =
∑

x

Fk,xχx. (C2)

Therefore,

χk = (a1,k, a2,k, . . . , a f ,k, bL,1,k, bL,2,k, . . . , bR,1,k, . . . ,

a†
1,−k, . . . , b†

L,1,−k, . . . , b†
R,1,−k, . . .)

T (C3)

mixes mode operators at momenta k and −k similarly to a
Nambu spinor.

Due to the translation invariance of the GfTNS, the FT
brings the CMs of the physical state, the total fiducial state,
and the total virtual maximally entangled state into a block-
diagonal form. We denote the Majorana CM of the total
fiducial state with respect to the Fourier transform of the mode
operators by

(�Q)μ,ν;kq =
∑
x,x′

F∗
k,x(�Q)μ,ν;xx′Fq,x′ = δkq(�̃Q(k))μ,ν,

(C4)

where the last equality defines the Majorana CM �̃Q(k)
restricted to the block of momentum k. Note that the size
of �̃Q(k) is given by twice the number of Bloch bands,
2 × nmodes, and therefore no longer grows with the system
size. Analogous statements hold for the physical CM �|ψ〉
with the Fourier block matrix �̃|ψ〉(k) of size 2 f , and for the
CM of the total virtual maximally entangled state �ω with
Fourier block �̃ω(k) of size 2(nmodes − f ).

Since the TNS is translation invariant, the local fiducial
state |Qx〉 is the same on every unit cell. Hence, the Fourier
CM of the total fiducial state is localized at momentum k = 0,

�̃Q(k) = �Qx × δk,0. (C5)

Here, �Qx is the CM of the local fiducial state |Qx〉 on a single
site of dimension 2nmodes. It has the block structure

�Qx =
(

A B
−BT D

)
, (C6)

where the real antisymmetric blocks A and D of dimension 2 f
and 2(nmodes − f ) describe the physical and virtual subspaces,
respectively, whereas the block B encodes the coupling be-
tween physical and virtual modes.

On the other hand, the CM of the total virtual maximally
entangled state �̃ω(k) has a nontrivial momentum dependence
since the maximally entangled states from Eq. (B13) connect
different unit cells. It is a direct sum of the contributions from
the different spatial directions. For a single virtual fermion
with ξ = 1, the Majorana Fourier CM of the horizontal bonds
oriented from left to right is the Fourier transform of the
matrix � from Eq. (B16). It reads as [40]

�̃ω(kx ) =
(

0 −σ1e−ikx

σ1eikx 0

)
. (C7)

This matrix is written in the basis of the FT of the
Majorana operators constructed from the complex modes
(bL,x, bR,x, b†

L,x, b†
R,x ) where we have omitted the index j since

ξ = 1. The contribution from the vertical bonds is given by
Eq. (C7) with kx 	→ −ky since the vertical bonds are oriented
downward and hence in the direction of negative ky. There-
fore, the Fourier CM of the virtual bonds is anti-Hermitian
and satisfies the identities �̃ω(k)∗ = �̃ω(−k) and �̃ω(k)T =
−�̃ω(−k).
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We are now in a position to compute the physical Majorana
CM in momentum space by taking the FT of Eq. (B18). In
momentum space, the right-hand side simplifies significantly
due to the expression for the fiducial state CM given in
Eqs. (C5) and (C6). We thus find [33]

�̃|ψ〉(k) = A + B[D + �̃ω(k)]−1BT . (C8)

The physical state is well defined if the matrix inversion can
be carried out, i.e., if the determinant

q(k) = det[D + �̃ω(k)] (C9)

is not equal to zero. We emphasize that the matrices in
Eq. (C8) have a constant size given by the number of Bloch
bands, such that Eq. (C8) can typically be evaluated ana-
lytically. In Appendix E, we use Eq. (C8) to evaluate the
Bloch CM of the SSH model MPS from Sec. II A, and in
Appendix H, we use Eq. (C8) to evaluate the Bloch CM of
the quadrupole model PEPS of Sec. IV B.

2. Parent Hamiltonian

A translation-invariant Gaussian fermionic TNS |ψ〉 has an
infinite number of parent Hamiltonians for which it is an exact
ground state. For any non-negative scalar function ε(k) � 0
on the Brillouin zone,

Hε = i

4

∑
k

ε(k)
(
χ

(p)
k

)†
[ST �̃|ψ〉(k)S∗]χ (p)

k (C10)

is a parent Hamiltonian for the Gaussian fermionic TNS |ψ〉
[33,40]. Here,

χ
(p)
k = (a1,k, . . . , a f ,k, a†

1,−k, . . . , a†
f ,−k )T (C11)

is the physical part of the mode vector of Eq. (C3), and S is the
transformation matrix defined in Eq. (A2) from the Majorana
fermions to the complex fermions.

The properties of the parent Hamiltonian Hε depend on
the dispersion function ε(k). If ε(k) > 0 is strictly positive
throughout the Brillouin zone, Hε is gapped. Moreover, if all
matrix entries of the product ε(k)�̃|ψ〉(k) are polynomials in
e±ikx and e±iky , the parent Hamiltonian is strictly local.

A natural, but not unique, choice for the dispersion function
is given by ε(k) = q(k) from Eq. (C9). Indeed, since D
and �̃ω(k) are anti-Hermitian and of even dimension [see
Eqs. (C6) and (C7)], it follows that q(k) is real. If more-
over q(k) is strictly positive throughout the Brillouin zone,
implying that the PEPS has exponentially decaying real-space
correlations, the parent Hamiltonian Hq is gapped and strictly
local with all terms acting on at most 2ξ successive unit
cells [40,47].

APPENDIX D: GfTNSs WITH CONSERVED
PARTICLE NUMBER

In the main text, we consider Gaussian fermionic TNSs
with a conserved particle number: the ground states of both
the SSH model and the quadrupole model lie at half-filling.
The TNSs are written in a basis related to the physical basis
by a staggered particle-hole conjugation [cf. Eq. (7) for the
SSH MPS and Eq. (28) for the quadrupole PEPS]. Hence,
the U(1) symmetry of the local tensors, which imposes the

conservation of the physical particle number, also takes a
staggered form [cf. Eq. (12) for the SSH MPS and Eq. (30)
for the quadrupole PEPS]. In this Appendix, we rephrase this
U(1) symmetry in the language of fiducial states, and show
that it enforces many vanishing elements for the CM of the
local fiducial state. These are equivalent to the vanishing of the
off-diagonal block Q = 0 of the complex CM of a state with
conserved particle number (see Appendix A 1), but expressed
in the basis after the staggered particle-hole transformation.
We focus on the one-dimensional case since the computation
for two-dimensional GfTNSs is analogous.

For one-dimensional Gaussian fermionic MPS, we con-
sider a U(1) symmetry of the local tensor of the general form

A[x]i
lr =

∑
i′l ′r′

(
f⊗

τ=0

U (ητ,xϕ)

)
ii′

⎛
⎝ ξ⊗

j=0

U (ηL, j,xϕ)

⎞
⎠

ll ′

×
⎛
⎝ ξ⊗

j=0

U (ηR, j,xϕ)

⎞
⎠

rr′

A[x]i′
l ′r′ , (D1)

where ητ,x, ηL, j,x, ηR, j,x ∈ {±1} for τ = 1, . . . , f and j =
1, . . . , ξ . Here,

U (ϕ) =
(

1 0
0 eiϕ

)
(D2)

is the U(1) rotation acting on a single spinless fermion. Posi-
tive and negative values for η indicate that the corresponding
physical or virtual modes transform as particles and holes,
respectively. The symmetries of Eq. (12) for the local tensors
on the A and B sublattices of the SSH charge-pumping MPS
are examples with f = ξ = 1.

Since the elements of the local tensor A[x] are the basis
coefficients of the local fiducial state |Qx〉 [cf. Eq. (B10)],
Eq. (D1) is equivalent to the invariance of the local fiducial
state under the U(1) symmetry

Ûx(ϕ) =
f∏

τ=0

Ûτ,x(ητ,xϕ)
ξ∏

j=0

ÛL, j,x(ηL, j,xϕ)ÛR, j,x(ηR, j,xϕ)

(D3)

whose many-body basis representation is given in Eq. (D1).
Here, each individual operator Û in the product acts on exactly
one fermion. For instance, the operator acting on the physical
fermion τ is given by

Ûτ,x(ητ,xϕ) = eiητ,xϕa†
τ,xaτ,x + aτ,xa†

τ,x (D4)

and similarly for the virtual fermions. This agrees with the
matrix representation of the U(1) rotation acting on a single
mode given in Eq. (D2).

We observe that the U(1) operator of the physical
fermion τ from Eq. (D4) satisfies aτ,xÛτ,x(ητ,xϕ) = eiητ,xϕ

Ûτ,x(ητ,xϕ)aτ,x and a†
τ,xÛτ,x(ητ,xϕ) = e−iητ,xϕÛτ,x(ητ,xϕ)a†

τ,x.
Extending this to all of the modes in the mode operator of
Eq. (B7), we find that

(χx)μÛx(ϕ) = eiϕ(ηx )μÛx(ϕ)(χx)μ, (D5)

where 1 � μ, ν � 2nmodes. Here, we collected all the parame-
ters η into a vector of length 2nmodes using the same ordering
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as in the mode vector of Eq. (B7),

ηx = (η1,x, η2,x, . . . , η f ,x, ηL,1,x, ηL,2,x, . . . , ηR,1,x, . . . ,

− η1,x, . . . ,−ηL,1,x, . . . ,−ηR,1,x, . . . ), (D6)

where the last nmodes entries describe the creation opera-
tors which transform with the opposite sign under the U(1)
symmetry.

We are now ready to infer the consequences of the local
fiducial state’s invariance under the U(1) symmetry from
Eq. (D3) for its complex CM. Indeed, due to the rela-
tion of Eq. (D5), correlation functions transform under the
symmetry as

〈Qx|(χ†
x )ν (χx)μ|Qx〉 = 〈Qx|Û †

x (ϕ)(χ†
x )ν (χx)μÛx(ϕ)|Qx〉

= eiϕ[(ηx )μ−(ηx )ν ]〈Qx|(χ†
x )ν (χx)μ|Qx〉.

(D7)

Therefore, they vanish unless (ηx)μ = (ηx)ν . This shows that
the symmetry of Eq. (D1) forces the vanishing of half the
elements of the complex CM of the local fiducial state

(Gx)μν = 0 if (ηx)μ �= (ηx)ν, (D8)

where 1 � μ, ν � 2nmodes.

APPENDIX E: COVARIANCE MATRIX FOR SSH MPS

In this Appendix, we illustrate the formalism of GfTNS
introduced in Appendices B and C using the example of the
MPS from Eq. (11) describing charge pumping in the SSH
model. After expressing the state as a GfTNS in Appendix E 1,
we demonstrate the computation of its Bloch CM and parent
Hamiltonian in Appendix E 2.

1. Expression as GfTNS

Our goal is to express the SSH charge-pumping MPS,
which is already fully defined by Eq. (11) in the lan-
guage of local tensors, as a GfTNS using the formalism
from Appendix B. Since the MPS has physical dimen-
sion 2 and bond dimension 2, it is described by f = 1
physical fermion and ξ = 1 virtual fermion per nearest-
neighbor bond and lattice site (cf. the first paragraph of
Appendix B 2). On the A sublattice, the annihilation operators
for the physical, left virtual, and right virtual modes are aA,x,
bL,A,x, and bR,A,x, respectively, and similarly for the B sublat-
tice. Following the recipe given above, we need to find the
local fiducial states |QA,x〉 = QA,x|�〉 and |QB,x〉 = QB,x|�〉
that match the local tensors A and B from Eq. (11) at each unit
cell x. The link between the local tensors and fiducial states
is then given by Eq. (B10) stating that the local tensor entries
are the basis coefficients of the fiducial state. For example,
the tensor element A1

01 = β tells us that the local fiducial map
QA,x contains a term βa†

A,xb†
R,A,x. Performing this matching for

every nonzero tensor entry, we find that the fiducial maps are
given by

QA,x = γ + αa†
A,xb†

L,A,x + βa†
A,xb†

R,A,x, (E1a)

QB,x = γ + βa†
B,xb†

L,B,x − αa†
B,xb†

R,B,x. (E1b)

In a second step, we want to write the local fiducial states as
Gaussian states satisfying Wick’s theorem in order to express
the MPS as a GfTNS. Since the local tensors are parity even,
the local fiducial states |QA,x〉 and |QB,x〉 can be parametrized
as in Eq. (B12) using the exponential of antisymmetric coeffi-
cient matrices MA,x and MB,x. In the case of the SSH pumping
MPS, this is very simple since the fiducial states we derived in
Eq. (E1) have the form of Eq. (A11), allowing us to directly
read off MA,x and MB,x (imposing antisymmetry). We find that
the coefficient matrices are given by

MA,x = 1

2

⎛
⎝ 0 a b

−a 0 0
−b 0 0

⎞
⎠, (E2a)

MB,x = 1

2

⎛
⎝ 0 b −a

−b 0 0
a 0 0

⎞
⎠. (E2b)

Here, we defined the quotients a = α/γ and b = β/γ of
the parameters used in Eq. (11), and we absorbed the remain-
ing factor γ into the normalization constant N in Eq. (A11).
The complex CMs of these local fiducial states are computed
from MA,x and MB,x using Eq. (A12), and are then transformed
to the Majorana representation using Eq. (A3). One finds that
the Majorana CM �QA,x is

�QA,x = 1

c

⎛
⎝(c − 2)iσ2 4aσ1 4bσ1

−4aσ1 (8a2 − c)iσ2 8abiσ2

−4bσ1 8abiσ2 (8b2 − c)iσ2

⎞
⎠,

(E3)
where we introduced the shorthand notation c ≡ 1 +
4a2 + 4b2, and the basis is the Majorana basis de-
rived from (aA,x, bL,A,x, bR,A,x, a†

A,x, b†
L,A,x, b†

R,A,x ). The Ma-
jorana CM �QB,x in the Majorana basis derived from
(aB,x, bL,B,x, bR,B,x, a†

B,x, b†
L,B,x, b†

R,B,x ) is given by Eq. (E3)
with the replacements a 	→ b and b 	→ −a. We have thus
successfully expressed the MPS from Eq. (11) as a GfTNS.

The virtual maximally entangled states for the SSH MPS
are of the form discussed in Appendix B 2. In particular,
the Majorana CM �|ωA,x,B,x〉 of the state |ωA,x,B,x〉 within a
unit cell is given by Eq. (B16) in the Majorana basis ob-
tained from (bR,A,x, bL,B,x, b†

R,A,x, b†
L,B,x ). Similarly, the Ma-

jorana CM of the state |ωB,x,A,x+1〉 between unit cells is
given by Eq. (B16) in the Majorana basis obtained from
(bR,B,x, bL,A,x+1, b†

R,B,x, b†
L,A,x+1).

2. Bloch CM and parent Hamiltonian

Now that we have expressed the MPS from Eq. (11) as a
GfTNS, we want to use the power of the formalism introduced
in Appendix C to derive its CM and parent Hamiltonian on a
chain with periodic boundary conditions. We will compute the
Bloch CM by evaluating Eq. (C8), and from there obtain the
parent Hamiltonian via Eq. (C10).

a. CM for a unit cell

The expression for the Bloch CM from Eq. (C8) is valid
for a translation-invariant GfTNS. In particular, the CM �Qx

with its blocks A, B, and D from Eq. (C5) is the Majorana
CM of the fiducial state of a unit cell, not a single site. In

115134-22



FERMIONIC TENSOR NETWORKS FOR HIGHER-ORDER … PHYSICAL REVIEW B 101, 115134 (2020)

order to proceed, we therefore need to derive the fiducial state
of an entire unit cell by contracting the virtual bond within
a unit cell. In the language of GfTNSs, this is described by
projecting the fiducial states QA,xQB,x|�〉 of the two sites
in one unit cell onto the virtual maximally entangled state
connecting them:

〈ωAB|[QA,xQB,x|�〉]. (E4)

This projection is a special case of Eq. (A7). Hence, the
CM �Qx of the resulting state is given, as in Eq. (A9), by
the Schur complement of the block of size 4 × 4 corre-
sponding to the Majorana mode operators constructed from
(bR,A, bL,B, b†

R,A, b†
L,B):

�Qx = A′ + B′ [D′ + �|ωA,x,B,x〉]
−1 B′T . (E5)

Here, A′ and D′ are the blocks on the diagonal of the di-
rect sum �QA,x ⊕ �QB,x corresponding to the Majorana modes
derived from (aA,x, aB,x, bL,A,x, bR,B,x, a†

A,x, a†
B,x, b†

L,A,x, b†
R,B,x )

and (bR,A,x, bL,B,x, b†
R,A,x, b†

L,B,x ), respectively. Correspond-
ingly, B′ is the off-diagonal block.

�Qx has the block form

�Qx =
(

A B
−BT D

)
, (E6)

where A and D are real antisymmetric blocks of size 4 × 4,
and B is a real block of size 4 × 4. We find that the diagonal
blocks A and D are of the form

Z (1)(r, s) =

⎛
⎜⎝

0 −r 0 −s
r 0 −s 0
0 s∗ 0 −r
s∗ 0 r 0

⎞
⎟⎠, (E7)

where r and s are parameters. Specifically, the physical and
virtual blocks are

A = Z (1)(rp, sp), (E8a)

D = Z (1)(rv, sv ) (E8b)

with

rp = 1 − a4 − b4

1 + 2a2 + a4 + b4
, (E8c)

sp = 2b2

1 + 2a2 + a4 + b4
, (E8d)

rv = 1 − a4 + b4

1 + 2a2 + a4 + b4
, (E8e)

sv = 2a2b2

1 + 2a2 + a4 + b4
. (E8f)

Here, the denominator is a consequence of the matrix
inverse in Eq. (E5). In addition, the block containing the
coupling between physical and virtual fermions is

B = a

⎛
⎜⎝

0 rp + 1 0 −sp

rp + 1 0 sp 0
0 −sp 0 −rp − 1
sp 0 −rp − 1 0

⎞
⎟⎠. (E9)

b. Bloch CM

We can now directly compute the Fourier Majorana CM
�̃|ψ〉(kx ) of the physical state defined by the MPS on a chain
with Nx sites and periodic boundary conditions. �̃|ψ〉(kx )
is given by the Schur complement in Eq. (C8), where the
Fourier Majorana CM �̃ω(kx ) for the virtual bonds is given by
Eq. (C7), and A, B, and D are given in the previous section.

For the SSH pumping MPS, Eq. (C8) is a matrix equation
of size 4 × 4 since there are two physical Bloch bands. The
matrix inverse can be evaluated analytically using the special
parametrization Z (1)(r, s) from Eq. (E7). Indeed, the Fourier
Majorana CM for the virtual bonds from Eq. (C7) can be
written as �̃ω(kx ) = Z (1)(0, eikx ). One easily checks that

Z (1)(r, s) + Z (1)(r′, s′) = Z (1)(r + r′, s + s′), (E10a)

det[Z (1)(r, s)] = (r2 + ss∗)2, (E10b)

(Z (1)(r, s))−1 = − Z (1)(r, s)√
det[Z (1)(r, s)]

. (E10c)

Using these identities, the matrix inverse in Eq. (C8) can
be performed by hand,

(D + �̃ω(kx ))−1 = (Z (1)(rv, sv + eikx ))−1

= − Z (1)(rv, sv + eikx )√
r2
v + (sv + eikx )2

, (E11)

and we evaluate the determinant q(kx ) from Eq. (C9) as

q(kx ) = [r2
v + (sv + eikx )2

]2
= 4(1 + a4 + b4 + 2a2b2 cos kx )2

((a2 + 1)2 + b4)2 . (E12)

Unless γ = 0 and |α| = |β|, q(kx ) is strictly positive such
that the MPS is well defined everywhere except for these
parameter values.

After the matrix inversion in Eq. (C8), the remaining
matrix multiplications in Eq. (C8) can be performed using
a computer algebra system. We thus find that the Fourier
Majorana CM �̃|ψ〉(kx ) of the physical state is again of the
form of Eq. (E7):

�̃|ψ〉(kx ) = Z (1)(r(kx ), s(kx )) (E13a)

with parameters

r(kx ) = 1 − a4 − b4 − 2a2b2 cos kx

1 + a4 + b4 + 2a2b2 cos kx
, (E13b)

s(kx ) = 2(b2 + a2e−ikx )

1 + a4 + b4 + 2a2b2 cos kx
. (E13c)

c. Parent Hamiltonian

Using Eq. (C10), we can now find a Bloch parent Hamil-
tonian Hε for the MPS from its Majorana Fourier CM which
we computed in Eq. (E13). In order to gain a physical under-
standing of the parent Hamiltonian, we express it in terms of
the original complex physical modes before the particle-hole
transformation of Eq. (7) given by

âA,k = aA,k, (E14a)

âB,k = a†
B,−k (E14b)
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after the FT of Eq. (C1). We find

Hε =
∑

kx

ε(kx )

(
âA,kx

âB,kx

)†(
r(kx ) s(kx )
s(kx )∗ −r(kx )

)(
âA,kx

âB,kx

)
, (E15)

where the functions s(kx ) and r(kx ) are defined in Eq. (E13).
In order for Hε to be gapped and strictly local, we need to

find a dispersion function ε(kx ) which is strictly positive such
that ε(kx )s(kx ) and ε(kx )r(kx ) are polynomials in e±ikx . As
explained in Appendix C 2, a natural choice is ε(kx ) = q(kx ).
Indeed, q(kx ) computed in Eq. (E12) cancels the denominator
of Eq. (E13). Since q(kx )s(kx ) and q(kx )r(kx ) contain the
factor e±ikx up to second order, the parent Hamiltonian Hq con-
tains hopping terms between up to second-nearest-neighbor
unit cells.

Due to the special structure of Eq. (E8), we can in fact ob-
tain a more short-ranged parent Hamiltonian from the choice

ε(kx ) = 1 + a4 + b4 + 2a2b2 cos kx

a4 + b4 + 1
(E16)

proportional to
√

q(kx ), which is in turn proportional to the
denominator of r and s from Eq. (E13b). ε(kx ) is strictly
positive for all parameter values that lead to a well-defined
state. The factor 1/(a4 + b4 + 1) is a normalization ensuring
that the parent Hamiltonian matches Eq. (3) if the MPS is
given by the parametrization φpump of Eq. (15). We see that
the parent Hamiltonian Hε with Bloch representation

Hε (kx ) = 1

a4 + b4 + 1
[(1 − a4 − b4 − 2a2b2 cos kx )σ3

+ 2(b2 + a2 cos kx )σ1 + 2a2 sin kxσ2] (E17)

with respect to the original complex physical modes has
hopping only up to nearest-neighbor unit cells.

APPENDIX F: COLUMN COVARIANCE MATRIX OF
REAL-SPACE (d + 1)-DIMENSIONAL TNS FROM CHARGE
PUMPING OF d-DIMENSIONAL TNS WITH CONSERVED

PARTICLE NUMBER

In Sec. III C, we introduced the tensors Acol and Bcol

describing the real-space Chern PEPS restricted to a column
of sites on the A and B sublattices at positions {(x, y)}0�y�Ny−1.
Acol and Bcol are defined by the application of the inverse FT of
Eq. (22) to the physical and horizontal virtual legs of a column
of the hybrid Chern PEPS at positions {(x, k( j)

y )}0� j�Ny−1. In
this Appendix, using the representation of the SSH pumping
MPS as a GfTNS from Appendix E, we compute Acol and
Bcol explicitly in terms of their CMs. In order to demonstrate
the generality of the result, we will consider a general (d +
1)-dimensional TNS constructed from charge pumping of a
d-dimensional TNS, which is assumed to have a conserved
number of physical particles, and hence possess a U(1) sym-
metry of the form discussed in Appendix D.

Thus, let |ψd (t )〉 be the Gaussian fermionic TNS in d
spatial dimensions along a cyclic interpolation parametrized

by the time t ∈ (−π, π ]. With the same basis as in Eq. (B7),
we collect the physical and virtual mode operators for one unit
cell x ∈ Zd of |ψd (t )〉 into the mode vector

χx(t ) = (a1,x(t ), a2,x(t ), . . . , a f ,x(t ),

bL,1,x(t ), bL,2,x(t ), . . . , bR,1,x(t ), . . . ,

a†
1,x(t ), . . . , b†

L,1,x(t ), . . . , b†
R,1,x(t ), . . .)T (F1)

of length 2nmodes. The physical and virtual mode operators
now depend on the time t along the interpolation. As ex-
plained in Appendix B, the d-dimensional TNS is defined by
its Gaussian local fiducial state Qx(t )|�〉, which is character-
ized by its complex CM Gx(t ) of dimension 2nmodes.

We assume that the TNS has a conserved number of
particles, such that the local fiducial state Qx(t )|�〉 of |ψd (t )〉
has a U(1) symmetry of the form discussed in Appendix D.
This symmetry determines which physical and virtual modes
correspond to holes and particles: for each 1 � μ � nmodes,
an entry (ηx)μ = 1 or (ηx)μ = −1 in the vector ηx from
Eq. (D6) indicates that the mode μ has a particlelike or
holelike character, respectively. Note that ηx does not depend
on the time t , such that the holelike or particlelike character
of the modes remains unchanged along the interpolation.

We can now move to the hybrid (d + 1)-dimensional TNS,
which is defined by Eq. (20) of the main text. From Sec. III B
we recall that the local fiducial state (equivalent to the local
tensor) of the hybrid state at the position (x, k( j)

d+1) is given by
Qx(t ( j) )|�〉 containing the modes χx(t ( j) ) from Eq. (F1). In
particular, due to the tensor product in the (d + 1)st direction,
virtual fermions in this direction are not needed.

We can now easily write the CM of one column of the hy-
brid (d + 1)-dimensional TNS, given by the sites at positions
{(x, k( j)

d+1)}0� j�Nd+1−1. Indeed, due to the absence of virtual
legs in the direction d + 1, the contraction of the bonds in
this direction of the hybrid column amounts to a trivial tensor
product in the language of local tensors. In terms of fiducial
states, this corresponds to a direct sum of CMs. Hence, the
complex CM Ghybrid

x of the column {(x, k( j)
d+1)}0� j�Nd+1−1 of

the hybrid state is block diagonal:(
Ghybrid

x

)
μ,μ′;t ( j),t ( j′ ) = δ j, j′ (Gx(t ( j) ))μ,μ′ . (F2)

Here, Ghybrid
x is written in the basis {(χx)μ

(t ( j) )}1�μ�2nmodes,0� j�Nd+1−1 of all operators for the physical
and virtual modes in the first d directions in the column.

We now consider the (d + 1)-dimensional real-space state
restricted to a column {(x, xd+1)}0�xd+1�Nd+1−1, which is ob-
tained by applying the inverse FT F̃ in direction d + 1 to the
physical and virtual legs of the hybrid column. The complex
CM Gcol

x of this at position x is therefore given by

Gcol
x = F̃∗Ghybrid

x F̃T . (F3)

The inverse FT is the d-dimensional generalization of
Eq. (22),

F̃μ,μ′;xd+1,t ( j) = δμ,μ′√
Nd+1

ei(ηx )μxd+1t ( j)
(F4)

with 0 � j, xd+1 � Nd+1 − 1.
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From Eqs. (F2), (F3), and (F4), Gcol
x becomes(

Gcol
x

)
μ,μ′;xd+1,x′

d+1

= 1

Nd+1

Nd+1−1∑
j=0

e−i[(ηx )μxd+1−(ηx )μ′ x′
d+1]t ( j)

(Gx(t ( j) ))μ,μ′ . (F5)

This expression can be further simplified due to the constraint
of Eq. (D8) imposed on Gx(t ( j) ) by its U(1) symmetry,
implying Gx(t ( j) )μ,μ′ = 0 unless (ηx)μ = (ηx)μ′ . Indeed, we
may thus define the matrix

G̃x(t ( j) )μ,μ′ ≡ Gx((ηx)μt ( j))μ,μ′ (F6)

that mixes elements of the complex CM of the d-dimensional
state at times t ( j) and −t ( j) according to whether the modes
μ and μ′ transform as particles or holes, respectively. The
2nmodes-dimensional blocks of the column CM Gcol

x are then
given by the FT of this matrix:

(
Gcol

x

)
xd+1,x′

d+1
=

Nd+1−1∑
j=0

e−i[xd+1−x′
d+1]t ( j)

Nd+1
G̃x(t ( j) ). (F7)

This expression is explicitly invariant under real-space trans-
lations xd+1 	→ xd+1 + 1 acting on both the physical modes
and the virtual modes in the first d directions. Hence, the
inverse FT of Eq. (F4) guarantees the translation invariance
of the column CM Gcol

x in the direction d + 1.
Finally, we want to investigate which form the global U(1)

symmetry related to particle-number conservation takes for
Gcol

x . This result will be used in Appendix G. The U(1) is
inherited from the invariance of each fiducial state Qx(t )|�〉
under the U(1) symmetry of Eq. (D3), which is independent
of t . From the expression of the latter in second quantization
[cf. Eq. (D4)], we see that the generator of the global U(1)
symmetry of the column state is

˝
Nd+1−1∑
xd+1=0

[
f∑

τ=0

ητ,xa†
τ,(x,xd+1 )aτ,(x,xd+1 )

+
∑

α

ξ∑
j=0

ηα, j,xb†
α, j,(x,xd+1 )bα, j,(x,xd+1 )

⎤
⎦
˛

= 0, (F8)

whose expectation value vanishes.

APPENDIX G: DISENTANGLED MODES IN
SINGLE-PARTICLE ES AT FIXED PARTICLE NUMBER

In this Appendix, we show that as stated in Eq. (25),
the maximal number of entangled modes compatible with
the U(1) symmetry of the SSH model MPS in the ES of the
Chern PEPS column state is given by max{3L, Ny}, where
L is the number of sites in the subsystem. We proceed by
deriving a lower bound on the number of disentangled modes
in the ES of a state with a conserved particle number (and
therefore an upper bound on the number of entangled modes).
We first consider a generic state in Appendix G 1, before
specializing to the fiducial state of a real-space column of the
(d + 1)-dimensional TNS in Appendix G 2.

1. Insulator with filling fraction q

We consider a noninteracting system of N fermionic
DOFs with creation and annihilation operators a†

j , a j for
j = 1, . . . , N . We define a bipartition of the system into the
subsystem A and its complement Ā, where the DOFs of A
are described by the first NA modes j = 1, . . . , NA. Let |ψ〉
be a pure state of this system with a conserved particle number
and filling fraction q, such that the total number of occupied
modes in |ψ〉 is qN . We denote by nλ=1

A the number of
entanglement levels with the value λ = 1 in the single-particle
ES of |ψ〉 restricted to A. We now want to show that this
number is bounded below by the filling fraction as

nλ=1
A � max{qN − (N − NA), 0}. (G1)

Proof. Let H =∑N
i, j=1 hi ja

†
i a j be a noninteracting flat-

band Hamiltonian whose ground state is |ψ〉, where h is a
Hermitian matrix of dimension N × N . The occupied modes
in |ψ〉 are given by the qN orthogonal eigenstates u(k) of h
with energy −1, i.e.,

N∑
j=1

hi ju
(k)
j = −u(k)

i , (G2)

where k = 1, . . . , qN .
With respect to the bipartition into A, Ā, each basis state

u(k) falls into exactly one of the following three categories
(assuming that the eigenstates are ordered accordingly):

(1) For k = 1, . . . , m1, the states satisfy u(k)
i = 0 for i =

NA + 1, . . . , N such that the corresponding occupied modes
are composed of DOFs of the subsystem A. According to The-
orem 1 of Ref. [69], each such state leads to an entanglement
level λ = 1 in the single-particle ES of |ψ〉 restricted to A.
Hence, m1 � nλ=1

A .
(2) For k = m1 + 1, . . . , m2, u(k)

i = 0 for i = 1, . . . , NA
such that the corresponding occupied modes are localized
in Ā.

(3) For k = m2 + 1, . . . , qN , u(k)
i �= 0 both for some i ∈

{1, . . . , NA} and some i ∈ {NA + 1, . . . , N} such that the
corresponding occupied modes are localized neither in A
nor in Ā.

The numbers m1, m2 are assumed to be maximal in the
sense that no linear combination of eigenstates of the category
(3) lies either purely in A or purely in Ā.

In the next paragraph, we will show that the number qN −
m1 of states from the categories (2) and (3) is no larger than
the number N − NA of DOFs in Ā. This proves the claim since
the number of states from the different categories can then be
estimated as

qN = m1 + (qN − m1) � nλ=1
A + (N − NA), (G3)

leading to Eq. (G1).
As a final step, we need to show that qN − m1 � N − NA.

This follows from the linear independence of the qN − m1

vectors {ũ(k)}k>m1 of dimension N − NA, where ũ(k)
i = u(k)

NA+i
for i = NA + 1, . . . , N is the restriction of the eigenvector to
the DOFs of Ā. Indeed, let us assume that we have a vanishing
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linear combination

0 =
qN∑

k=m1+1

μkũ(k) (G4)

with coefficients μk . The scalar product with ũ(l ) shows
that 0 = μl for l = m1 + 1, . . . , m2: indeed, the orthogonal-
ity of the u(k) implies

∑
i>NA

ũ(l )
i ũ(k)

i =∑i�1 u(l )
i u(k)

i = δkl .

Equation (G4) therefore implies 0 =∑qN
k>m2

μkũ(k) where the
sum runs only over category (3). Due to the maximality
of m1, m2 as defined above just below point (3), we then
have 0 =∑qN

k>m2
μku(k). Otherwise, this would be a linear

combination purely in A since the part in Ā vanishes by
assumption. We thus also get 0 = μl for l = m2 + 1, . . . , qN ,
proving that qN − m1 � N − NA.

2. Real-space column of (d + 1)-dimensional TNS

We now apply Eq. (G1) to the case where |ψ〉 is
the fiducial state of one real-space column of the (d +
1)-dimensional pumping TNS, whose CM is computed in
Eq. (F5). The column state has N = nmodesNd+1 degrees of
freedom, where Nd+1 is the number of sites in the direc-
tion d + 1 and nmodes the number of physical and virtual
particles per lattice site of the d-dimensional TNS. Below
we will show that in a suitable basis, the column state has
a conserved particle number qN = Nd+1nη− , where nη− is
the number of values −1 in the first nmodes entries of the
vector ηx from Eq. (D6). We consider the single-particle ES
of the column state with respect to the subsystem AL of
the first L sites 0 � xd+1 � L − 1 of the column, which
has NAL = Lnmodes DOFs. By Eq. (G1), the number nλ=1

AL
of

entanglement levels with the value λ = 1 in this spectrum is
lower bounded as

nλ=1
AL

� max{Nd+1nη− − (Nd+1 − L)nmodes, 0}. (G5)

We now show that with a suitable particle-hole transforma-
tion we can find a single-particle basis with respect to which
the column state has a conserved particle number Nd+1nη− . In
Eq. (F5) the state is expressed in a basis where the CM Gcol

x
has a nonvanishing off-diagonal block Q corresponding to
superconducting correlations, such that only the parity of the
particle number is conserved [cf. Eq. (A1)]. Below Eq. (F5)
we note that half the entries of Gcol

x vanish, namely, those with
(ηx)μ �= (ηx)μ′ . A new basis, in which the complex CM has
only a diagonal block R and hence a fixed particle number,
is created as follows: For those modes 1 � m � nmodes with
(ηx)m = −1, we exchange annihilation and creation operators
since the latter have (ηx)m+nmodes = 1. This is a particle-hole
transformation corresponding to the mapping

aτ,(x,xd+1 ) 	→ a†
τ,(x,xd+1 ) (G6)

for all physical modes with ητ,x = −1 while leaving modes
with ητ,x = 1 unchanged, and similarly for the virtual
modes.

The number of particles in the column state is given by the
expectation value from Eq. (F8) of the generator of its global
U(1) symmetry. Note that this is not the physical particle
number, but rather the number of particles in the system
composed of the physical legs and the virtual legs in the first d

spatial dimensions. Under the transformation of Eq. (G6), the
particle-number expectation value from Eq. (F8) transforms
as explained in Eq. (13). We thus find that in the new basis of
modes the particle number is Nd+1nη− as claimed above.

a. Chern PEPS

Let us apply these results to the Chern PEPS derived from
the SSH pumping MPS. For simplicity, we restrict ourselves
to a column Acol of A sites with nmodes = 3 DOFs per site
and ηA = 1 and ηL,A = ηR,A = −1 [cf. the discussion below
Eq. (13)]. Therefore, nη− = 2 and Eq. (G5) becomes

nλ=1
AL

� max{3L − Ny, 0}. (G7)

This shows that Eq. (25) gives the maximal number of entan-
gled modes compatible with the U(1) symmetry of the SSH
model MPS.

For the PEPS defined by the trivial cycle φtriv from Eq. (17),
the discussion above can be refined: since β = 0 throughout
the interpolation, all right virtual modes decouple from the
column tensor such that there trivially are Ny entanglement
levels |λ| = 1. Let us investigate if the U(1) symmetry causes
additional decoupled levels in the system of the coupled
physical and left virtual particles. This system has only two
DOFs per site, namely, the physical leg with ηA = 1 and the
left virtual leg with ηL,A = −1. In this case, Eq. (G5) gives a
trivial lower bound for the number of decoupled modes with
levels λ = 1:

nλ=1
AL

� max{2L − Ny, 0} = 0 for L � Ny/2. (G8)

Hence, the U(1) symmetry does not cause any additional
decoupled modes, and the number of entangled modes is given
by 2L as discussed in the main text.

b. Chiral hinge PEPS

The discussion for the three-dimensional chiral hinge
PEPS from Sec. IV C is analogous, where a column of sites
on the sublattice 1 has nmodes = 5 DOFs per site with η1 = 1
and ηL,1 = ηU,1 = ηR,1 = ηD,1 = −1. Therefore, nη− = 4 and
Eq. (G5) implies nλ=1

AL
� max{5L − Nz, 0}.

For the mirror-symmetric case with couplings α = αx =
αy and β = βx = βy, this bound can be refined. Indeed, by
defining the linear combinations bLD

±,1 = (bL,1 ± bD,1)/
√

2 and

bUR
±,1 = (bR,1 ± bR,1)/

√
2, the local fiducial state |Q[1]〉 from

Eq. (H1) below can be written as

|Q[1]〉 = [γ −
√

2βa†
1

(
bLD

−,1

)† −
√

2αa†
1

(
bUR

−,1

)†]|�〉. (G9)

Therefore, when considering only one column of sites on the
sublattice 1, two virtual fermionic modes decouple from the
local tensor on each site. Effectively, the remaining coupled
system therefore has only nmodes = 3 DOFs per site with
η1 = 1 and ηLD

−,1 = ηUR
−,1 = −1, such that the number of ad-

ditional disentangled modes due to the U(1) symmetry can be
estimated as above for the Chern PEPS. Hence, with the iden-
tification Ny 	→ Nz, the bound on the number of disentangled
modes is given by Eqs. (G7) and (G8) for the PEPSs derived
from φpump and φtriv, respectively.
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APPENDIX H: QUADRUPOLE PEPS AS GfTNS

In this Appendix we apply the formalism of GfTNSs
to the quadrupole model pumping PEPS of Eq. (29). In
Appendix H 1, we show how the state can be expressed as
a GfTNS. This allows us to compute its Bloch CM and a
Bloch parent Hamiltonian on the torus in Appendix H 2. These
sections are completely analogous to Appendix E for the SSH
pumping MPS. We therefore refer the reader to this Appendix
for a detailed explanation of each step. Finally, in Appendix
H 3 we discuss the ES of the PEPS when the parameters are
chosen such that the state represents the OAI dimerized phase
of the quadrupole model.

1. Expression as GfTNS

The quadrupole model pumping PEPS is defined in
Eq. (29) of the main text in the language of local tensors. Here,
we want to reexpress this state in the formalism of GfTNSs.
We recall that each unit cell consists of 2 × 2 lattice sites, and
that the PEPS has physical dimension 2 and bond dimension
2. This corresponds to f = 1 physical fermion per lattice
site and ξ = 1 virtual fermion per nearest-neighbor bond and
lattice site, represented in Fig. 6(b) by blue and red circles,
respectively.

As explained in Appendix B, the local PEPS tensors A[τ ]

on the four sublattices τ = 1, 2, 3, 4 from the main text cor-
respond to local fiducial states |Q[τ ]〉, whose basis coefficients
are given by the local tensors [see Eq. (B10)]. We write
aτ for the annihilation operator of the physical fermion and
bL,τ , bU,τ , bR,τ , bD,τ for the annihilation operators of the
left, up, right, down virtual fermions on the sublattice τ (we
dropped the unit-cell index due to the translation invariance).
Let |�〉 denote the vacuum annihilated by all these operators.
Applying Eq. (B10), we see that the local fiducial states
on the four sublattices derived from the local tensors of
Eq. (29) are

|Q[1]〉 = [γ − βxa†
1b†

L,1 − αya†
1b†

U,1 + αxa†
1b†

R,1

+βya†
1b†

D,1]|�〉, (H1a)

|Q[2]〉 = [γ − αxa†
2b†

L,2 + βya†
2b†

U,2 + βxa†
2b†

R,2

−αya†
2b†

D,2]|�〉, (H1b)

|Q[3]〉 = [γ + αxa†
3b†

L,3 + αya†
3b†

U,3 + βxa†
3b†

R,3

+βya†
3b†

D,3]|�〉, (H1c)

|Q[4]〉 = [γ + βxa†
4b†

L,4 + βya†
4b†

U,4 + αxa†
4b†

R,4

+αya†
4b†

D,4]|�〉. (H1d)

These fiducial states are of the form of Eq. (A11) with
only zero- and second-order terms in the creation opera-
tors. Hence, the fiducial states are Gaussian and can be

parametrized as in Eqs. (A10) and (B12) with antisymmetric
coefficient matrices

M1 = 1

2 × 21/4

⎛
⎜⎜⎜⎜⎜⎝

0 −bx −ay ax by

bx 0 0 0 0

ay 0 0 0 0

−ax 0 0 0 0

−by 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, (H2a)

M2 = 1

2 × 21/4

⎛
⎜⎜⎜⎜⎜⎝

0 −ax by bx −ay

ax 0 0 0 0

−by 0 0 0 0

−bx 0 0 0 0

ay 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, (H2b)

M3 = 1

2 × 21/4

⎛
⎜⎜⎜⎜⎜⎝

0 ax ay bx by

−ax 0 0 0 0

−ay 0 0 0 0

−bx 0 0 0 0

−by 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, (H2c)

M4 = 1

2 × 21/4

⎛
⎜⎜⎜⎜⎜⎝

0 bx by ax ay

−bx 0 0 0 0

−by 0 0 0 0

−ax 0 0 0 0

−ay 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠. (H2d)

Here, we defined the quotients ax = αx/γ , ay = αy/γ ,
bx = βx/γ , and by = βy/γ of the parameters from Eq. (29).
We absorbed the remaining factor γ into the normalization
constant N in Eq. (A11).

We have thus successfully written the PEPS from Eq. (29)
as a GfTNS. Before proceeding, we choose the orientation of
the virtual bonds as follows: all horizontal bonds are oriented
from left to right and all vertical bonds are oriented from top
to bottom.

2. Bloch CM and parent Hamiltonian

Having expressed the quadrupole model pumping PEPS
as a GfTNS, we now want to use the formalism from
Appendix C to compute the Bloch CM and a Bloch parent
Hamiltonian for the state on a torus. We will compute the
Bloch CM by evaluating Eq. (C8), and from there obtain the
parent Hamiltonian via Eq. (C10).

a. CM of unit cell

The Majorana CM �Qx in Eq. (C8) refers to the fiducial
state of a unit cell, not that of a single site. We therefore need
to compute �Qx from the fiducial states for each individual
sublattice given in Eq. (H1). This is done by contracting the
four virtual bonds within one unit cell. In the language of
fiducial states, we project the tensor product |Q[1]〉 ⊗ |Q[2]〉 ⊗
|Q[3]〉 ⊗ |Q[4]〉 of the fiducial states for a unit cell on the
product of the maximally entangled states of the four virtual
bonds connecting the lattice sites within this unit cell. This is
analogous to the computation leading to Eq. (E13), and we
refer the reader to Appendix E 2 a for details. Here, we will
only state the result for the Majorana CM �Qx .
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FIG. 10. Unit cell of the quadrupole model pumping PEPS after
projection of the virtual fermions corresponding to the bonds within
the unit cell (marked by green ellipses) onto maximally entangled
states. This results in a fiducial state with four physical fermions
(blue circles) collected into the block p, four horizontal virtual
fermions in the block vh, and four virtual fermions in the block vv

(red circles for both). The order of the individual fermions within
these blocks is indicated by the labels next to each circle.

The fiducial state of one unit cell, after contraction of the
virtual bonds within the plaquette, describes four physical
fermions and two virtual fermions per direction left, up, right,
down (see Fig. 10). We collect the four physical, horizontal
virtual and vertical virtual fermions into blocks labeled p,
vh, and vv . The order of the individual fermions within these
blocks is indicated in Fig. 10. Since the Majorana CM �Qx

of the fiducial state of a unit cell is antisymmetric (see
Appendix A 1), we can then separate it into 8 × 8 blocks as

�Qx =

⎛
⎜⎝

Ap Bpvh Bpvv

−BT
pvh

Dvh Bvhvv

−BT
pvv

−BT
vhvv

Dvv

⎞
⎟⎠. (H3)

The blocks Ap, Dvh , and Dvv
describe the reduced fiducial

state of the physical, horizontal virtual and vertical virtual
subsystem, respectively. The off-diagonal blocks describe the

coupling between these three subsystems. Equation (H3) is a
generalization of Eq. (C6) with

A = Ap, (H4a)

B = (Bpvh Bpvv

)
, (H4b)

D =
(

Dvh Bvhvv

−BT
vhvv

Dvv

)
(H4c)

which we find useful since we want to treat horizontal and
vertical virtual fermions separately.

We are now ready to give the expression for the Majorana
CM �Qx of the fiducial state of a unit cell. For simplicity, we
set αx = αy ≡ α and βx = βy ≡ β from now on, correspond-
ing to parameters ax = ay ≡ a and bx = by ≡ b in Eq. (H2).
The diagonal blocks Ap, Dvh , and Dvv

of �Qx take the form

Z (2)(r, s, u) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −r 0 −u 0 −s 0 0
r 0 −u 0 −s 0 0 0
0 u∗ 0 −r 0 0 0 −s
u∗ 0 r 0 0 0 −s 0
0 s∗ 0 0 0 −r 0 u
s∗ 0 0 0 r 0 u 0
0 0 0 s∗ 0 −u∗ 0 −r
0 0 s∗ 0 −u∗ 0 r 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(H5)

with parameters r ∈ R and s, u ∈ C. Specifically,

Ap = Z (2)(rp,−sp, sp), (H6a)

Dvh = Z (2)(rv, sv, sv ), (H6b)

Dvv
= Z (2)(rv,−sv, sv ) (H6c)

with parameters

rp = −
√

2(2a4 + b4 − 1)

4a2 + 2
√

2a4 + √
2(1 + b4)

, (H7a)

sp = 2b2

4a2 + 2
√

2a4 + √
2(1 + b4)

, (H7b)

rv = 2a2 + √
2(b4 + 1)

4a2 + 2
√

2a4 + √
2(1 + b4)

, (H7c)

sv =
√

2a2b2

4a2 + 2
√

2a4 + √
2(1 + b4)

, (H7d)

where the denominator stems from the matrix inversion in
the Schur complements used to evaluate the projection on the
virtual bonds within one unit cell. The off-diagonal blocks of
�Qx are

Bvhvv
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 − rv 0 sv 0 −sv 0 0

rv − 1 0 sv 0 −sv 0 0 0

0 sv 0 0 0 1 − rv 0 −sv

sv 0 0 0 rv − 1 0 −sv 0

0 sv 0 rv − 1 0 0 0 sv

sv 0 1 − rv 0 0 0 sv 0

0 0 0 s 0 sv 0 1 − rv

0 0 sv 0 sv 0 rv − 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (H8a)

115134-28



FERMIONIC TENSOR NETWORKS FOR HIGHER-ORDER … PHYSICAL REVIEW B 101, 115134 (2020)

Bpvh = a

21/4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 rp + 1 0 −sp 0 −sp 0 0
rp + 1 0 sp 0 sp 0 0 0

0 sp 0 0 0 rp + 1 0 sp

−sp 0 0 0 rp + 1 0 −sp 0
0 −sp 0 −rp − 1 0 0 0 sp

sp 0 −rp − 1 0 0 0 −sp 0
0 0 0 sp 0 −sp 0 rp + 1
0 0 −sp 0 sp 0 rp + 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (H8b)

Bpvv
= a

21/4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 rp + 1 0 sp 0 −sp 0 0
rp + 1 0 −sp 0 sp 0 0 0

0 sp 0 −rp − 1 0 0 0 sp

−sp 0 −rp − 1 0 0 0 −sp 0
0 −sp 0 0 0 −rp − 1 0 sp

sp 0 0 0 −rp − 1 0 −sp 0
0 0 0 sp 0 sp 0 rp + 1
0 0 −sp 0 −sp 0 rp + 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (H8c)

b. Bloch CM

We can now compute the Bloch CM �̃|ψ〉(k) of the physical
state on a torus by evaluating Eq. (C8). Here, the Majorana
CM of the local fiducial state of the unit cell with its blocks
A, B, and D is given in the previous subsection.

In the same basis as D, the Bloch CM �̃ω(k) of the total
virtual maximally entangled state of size 16 × 16 is

�̃ω(k) =
(

�̃ω,vh (k) 0
0 �̃ω,vv

(k)

)
, (H9a)

where the blocks �̃ω,vh (k) and �̃ω,vv
(k) refer to the horizontal

and vertical virtual fermions, respectively. Since the horizon-
tal fermions on the sublattice 1 couple only to the horizontal
fermions on sublattice 3 (and similarly for 2 and 4), the CM
�̃ω,vh (k) is given by a sum of two copies of the CM from
Eq. (C7) for an MPS with ξ = 1. Hence,

�̃ω,vh (k) =

⎛
⎜⎜⎝

0 0 −σ1e−ikx 0
0 0 0 −σ1e−ikx

σ1eikx 0 0 0
0 σ1eikx 0 0

⎞
⎟⎟⎠.

(H9b)
The expression for �̃ω,vv

(k) is analogous with kx → −ky

(where the negative sign indicates that the bonds are oriented
from top to bottom and hence point in the direction of nega-
tive y). Note that �̃ω,vh (k) = Z (2)(0, e−ikx , 0) and �̃ω,vv

(k) =
Z (2)(0, eiky , 0) are of the form of Eq. (H5).

For the quadrupole model pumping PEPS, the evaluation
of Eq. (C8) requires the inversion of the matrix D + �̃ω(k) of
size 16 × 16. This can be done analytically using the special
representation from Eq. (H5). Indeed, one can show that the
matrix Z (2) has the properties

Z (2)(r, s, u) + Z (2)(r′, s′, u′) = Z (2)(r + r′, s + s′, u + u′),

(H10a)

det[Z (2)(r, s, u)] = (r2 + ss∗ + uu∗)4, (H10b)

[Z (2)(r, s, u)]−1 = − Z (2)(r, s, u)

[det Z (2)(r, s, u)]1/4
.

(H10c)

Moreover, conjugation with the matrix Bvhvv
from

Eq. (H8a), which gives the off-diagonal block of D, returns
a matrix of the form of Eq. (H5),

Bvhvv
Z (2)(r, s, u)BT

vhvv
= Z (2)(r′, s′, u′), (H11)

where r′ = r[(1 − rv )2 − 2s2
v] + 2(1 − rv )svRe(s − u), s′ =

−s(1 − rv )2 + 2rsv (rv − 1) − 2s2
v[Re(u) + iIm(s)], and u′ =

u(1−rv )2+2rsv (rv−1)+2s2
v[Re(s)+iIm(u)]. Using these

identities, the inverse of D + �̃ω(k) can be evaluated
blockwise, and we compute the determinant in Eq. (C9)
as

q(k) = 28(1 + a4 + b4 + a2b2 cos kx + a2b2 cos ky)4

(1 + 2
√

2a2 + 2a4 + b4)4
.

(H12)

This is strictly positive unless γ = 0 and |α| = |β|, such
that the PEPS is well defined everywhere except for these
parameter values.

Proceeding thus, we find that the Bloch Majorana CM
�̃|ψ〉(k) of the physical state is also of the form of Eq. (H5),

�̃|ψ〉 = Z (2)(r(k), s(k), u(k)), (H13a)

where the parameters are

r(k) = 1 − a4 − b4 − a2b2 cos kx − a2b2 cos ky

1 + a4 + b4 + a2b2 cos kx + a2b2 cos ky
, (H13b)

s(k) = −√
2(b2 + a2e−ikx )

1 + a4 + b4 + a2b2 cos kx + a2b2 cos ky
, (H13c)

u(k) =
√

2(b2 + a2eiky )

1 + a4 + b4 + a2b2 cos kx + a2b2 cos ky
. (H13d)

In the denominator, we recognize the fourth root q(k)1/4

coming from the matrix inversion according to Eq. (H10c).

c. Parent Hamiltonian

We are now in a position to find a parent Hamiltonian
for the physical state on a torus, using Eq. (C10) and the
result for the Bloch Majorana CM �̃|ψ〉 from Eq. (H13). To
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get an intuitive understanding of the Hamiltonian, we find it
useful to express it in terms of the original fermionic modes
before the particle-hole transformation of Eq. (28). Their FT is
related to the FT of the new modes as âτ,k = aτ,k for τ = 1, 2
and âτ,k = a†

τ,−k for τ = 3, 4. With respect to the original
fermionic modes, Eq. (C10) is given by

Hε =
∑

k

ε(k)

× â†
τ,k

⎛
⎜⎝

r(k) 0 −s(k)∗ u(k)
0 r(k) −u(k)∗ −s(k)

−s(k) −u(k) −r(k) 0
u(k)∗ −s(k)∗ 0 −r(k)

⎞
⎟⎠

ττ ′

âτ ′,k,

(H14)

where a summation over τ, τ ′ is implied in the second line.
As discussed in Appendix H 2 c, the properties of the

parent Hamiltonian are determined by our choice of disper-
sion relation ε(k). By setting ε(k) = q(k), we would obtain
a gapped parent Hamiltonian with coupling between up to
fourth-nearest-neighbor unit cells. However, we can find a
more short-ranged parent Hamiltonian due to the special form
of the fiducial state CM using Eq. (H5). Indeed, by choosing
the dispersion function

ε(k) = 1 + a4 + b4 + a2b2 cos kx + a2b2 cos ky

a4 + b4 + 1
(H15)

which is proportional to the denominator of r, s, and u
from Eq. (H13), we obtain a second-nearest-neighbor parent
Hamiltonian with Bloch representation

Hε (k) = 1

a4 + b4 + 1

× [(1 − a4 − b4 − a2b2 cos kx − a2b2 cos ky)σ3 ⊗ σ0

+
√

2(b2 + a2 cos kx )σ1 ⊗ σ0

+
√

2a2 sin kx(−σ2 ⊗ σ3)

+
√

2(b2 + a2 cos ky)(−σ2 ⊗ σ2)

+
√

2a2 sin ky(−σ2 ⊗ σ1)], (H16)

where σ0 is the identity matrix of dimension two.

3. ES in topological quadrupole phase

When b = 0, the system described by the PEPS of Eq. (H2)
splits into decoupled four-site plaquettes shifted from the

unit cell by one site in both directions, corresponding to the
OAI dimerized phase of the quadrupole model if a = 1. The
Majorana CM �Plaquette describing the physical state of one
such decoupled plaquette takes the form of Eq. (H5) with

r = 1 − a4

1 + a4
, (H17a)

u = s = −
√

2a2

1 + a4
. (H17b)

As an application, we will derive the ES contributions from
the edges and corners given in Eqs. (34a) and (34b), respec-
tively.

We begin with the four corners. The Majorana CM �corner,τ

for a single corner site on the sublattice τ is given by the cor-
responding block of dimension 2 on the diagonal of �Plaquette.
Specifically,

�corner,τ =
(

0 −r
r 0

)
(H18)

for τ = 1, 2, 3, 4. We now transform �corner,τ to the basis of
the original complex fermionic modes before the particle-hole
transformation of Eq. (28). Then, the CM of the corner site
has a vanishing off-diagonal block Q̂∗

corner,τ = 0 and a diag-
onal block R̂∗

corner,τ = ∓ i
2λcorner with λcorner = r, where the

negative and positive signs hold for the sublattices τ = 1, 2
and τ = 3, 4, respectively. Using the expression for r from
Eq. (H17a) and a = α/γ , we obtain the formula for the corner
ES level given in Eq. (34b) with one level per corner.

Similarly, the Majorana CM �edge,τ1,τ2 for two decoupled
edge sites on the sublattices τ1 and τ2 is given by a block of
dimension 4 of �Plaquette. Concretely,

�edge,τ1τ2 =

⎛
⎜⎝

0 −r 0 −s
r 0 −s 0
0 s 0 −r
s 0 r 0

⎞
⎟⎠ (H19)

for (τ1, τ2) ∈ {(3, 1), (4, 2), (4, 1), (2, 3)}. In the basis of the
original complex fermionic modes before the particle-hole
transformation of Eq. (28), �edge,τ1,τ2 takes the following
form: it has a vanishing off-diagonal block Q̂∗

edge,τ1τ2
= 0 and

a nonzero diagonal block R̂∗
edge,τ1τ2

with doubly degenerate
eigenvalues ± i

2λedge and

λedge =
√

r2 + s2 =
√

1 + a8

1 + a4
. (H20)

This corresponds to the formula given in Eq. (34a).
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5.3 Fractional chiral hinge insulator

This section contains a reprint of the following publication:

• Anna Hackenbroich, Ana Hudomal, Norbert Schuch, B. Andrei Bernevig, and Nicolas
Regnault. “Fractional Chiral Hinge Insulator”. In: arXiv e-prints (Oct. 2020).
arXiv: 2010.09728 [cond-mat.str-el]

In this publication, we study a model wave function for a strongly correlated 3D HOTI
with chiral hinge states. This wave function is obtained from Gutzwiller projection of
two copies of the ground state of the chiral hinge insulator discussed in Sec. 2.5.3 with
different spin orientations. This is analogous to the construction of the ground state of the
FCI discussed in Sec. 3.5 for the case of an infinitely strong on-site repulsion U between
electrons with different spin.

We analyze this model wave function using large-scale variational Monte Carlo simu-
lations. Analogous to the fractional quantum Hall edge modes discussed in Sec. 3.3.4, the
chiral hinge modes are described by chiral Luttinger liquids. From the logarithmic scaling
of the EE, we extract the central charge of the Luttinger CFT as discussed Sec. 4.1.2. A
similar scaling analysis of the spin fluctuations allows us to extract the Luttinger parameter
K. We are thus able to show that the chiral hinge modes are of the same nature as the
edge modes of the Laughlin state at filling ν = 1/2 discussed in Chapter 3.

We also study the bulk properties of the model wave function, in particular its topolog-
ical degeneracy and TEE. To that end, we employ a Kitaev-Preskill subtraction scheme as
discussed in Sec. 4.1.2. While the TEE in the bulk vanishes for the model wave function,
we show that the gapped surfaces host a 2D topologically non-trivial theory whose TEE
cannot be explained using topological quantum field theory.

http://arxiv.org/abs/2010.09728
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We propose and study a wave function describing an interacting three-dimensional fractional chiral
hinge insulator (FCHI) constructed by Gutzwiller projection of two non-interacting second order
topological insulators with chiral hinge modes at half filling. We use large-scale variational Monte
Carlo computations to characterize the model states via the entanglement entropy and charge-
spin-fluctuations. We show that the FCHI possesses fractional chiral hinge modes characterized
by a central charge c = 1 and Luttinger parameter K = 1/2, like the edge modes of a Laughlin
1/2 state. By changing the boundary conditions for the underlying fermions, we investigate the
topological degeneracy of the FCHI. Within the range of the numerically accessible system sizes,
we observe a non-trivial topological degeneracy. A more numerically pristine characterization of the
bulk topology is provided by the topological entanglement entropy (TEE) correction to the area
law. While our computations indicate a vanishing bulk TEE, we show that the gapped surfaces host
a two-dimensional topological order with a TEE per surface compatible with half that of a Laughlin
1/2 state, a value that cannot be obtained from topological quantum field theory.

I. INTRODUCTION

Strong interactions in condensed matter systems can
lead to fascinating emergent phenomena. In two-
dimensional (2D) systems, strong interactions may lead
to the emergence of topological order (TO), such as ex-
perimentally observed in the fractional quantum Hall ef-
fect. Features of TO in 2D include a non-trivial ground
state degeneracy on certain surfaces and the appearance
of itinerant excitations with fractional quantum numbers
and braiding statistics. It has long been an active field
of study to extend this rich physics to three-dimensional
(3D) strongly interacting systems, where the emergent
physics can be even more diverse, including systems with
fractonic excitations [1, 2]. Whereas many microscopic
models based on interacting spin systems have been pro-
posed to exhibit TO in 3D, such as the 3D toric code [3]
and 3D Kitaev models [4–7], there is a scarcity of elec-
tronic or realistic examples that could be experimentally
relevant.

Among the 3D electronic topological insulators (TIs),
an entirely new class has recently been discovered:
certain TIs protected by crystalline symmetries, now
dubbed higher order TIs [8–23], possess a much richer
bulk-boundary correspondence than conventional, or first
order, TIs. For example, there exists a 3D chiral hinge
insulator (CHI), whose gapped surfaces are connected by
gapless chiral hinge modes [10]. Higher order TIs in two
and three dimensions have been experimentally observed
in either materials [24], mechanical [25], acoustic [26, 27],

photonic [28–31] or electrical [32–34] systems.
In this letter, we provide a first stepping stone in the

realization of a full-fledged electronic 3D fractional TI
by building a 3D fractional chiral hinge insulator (FCHI)
model wave function. Indeed, the hinge modes of the
non-interacting CHI are of the same nature as the edge
modes of a Chern insulator, two copies of which at frac-
tional filling and with strong interactions form a frac-
tional Chern insulator (FCI) hosting fractional quantum
Hall physics [35–37]. Therefore, we may speculate that
under similar conditions the FCHI will also display non-
trivial topology with fractionalized excitations at least
at the hinges or surfaces. The FCHI could also repre-
sent another lane between higher order TI and fractonic
systems [38].

Numerical computations and especially exact diago-
nalizations for interacting electronic systems in 3D are
notoriously difficult due to the spatial dimensionality.
To partially circumvent this challenge, we will rely on
a model wave function, a fruitful approach for TO, to
capture the FCHI. This approach has been extensively
applied in the realm of the fractional quantum Hall ef-
fect [39, 40] and FCIs [41]. In order to define the FCHI
wave function, we will make use of Gutzwiller projection,
a systematic method to construct interacting model wave
functions starting from copies of non-interacting ground
states. Large-scale variational Monte Carlo (MC) sim-
ulations then allow us to analyze this wave function for
bigger system sizes than possible with other methods.

To probe the topological content of the wave function,
we will study the entanglement entropy (EE), which can
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be evaluated in MC simulations [41–43], and follows an
area law with characteristic subleading corrections [44].
In two dimensions there are logarithmic corrections for
gapless edge modes [45–47] which along with the con-
stant topological entanglement entropy (TEE) correction
to the bulk area law [48, 49] provide information on the
system’s topology. In three dimensions, corrections to
the bulk area law include the TEE and possible size-
dependent corrections for fractonic systems and layered
constructions [50–52]. In particular, we study the hinge
modes in an open system and show that they are frac-
tionalized excitations characterized by a central charge
c = 1 and Luttinger parameter K = 1/2, like the FCI
edge modes. We then study the linear independence of
different interacting wave functions obtained by chang-
ing the boundary conditions for the underlying fermions,
thus finding a non-trivial topological degeneracy for the
numerically accessible system sizes. Finally, we study
the TEE of the bulk system, and that of the gapped sur-
faces. Whereas our computations indicate a vanishing
bulk TEE, we show that the gapped surfaces host a non-
trivial two-dimensional topological phase with a TEE per
surface compatible with half that of a Laughlin 1/2 state.

II. MODEL WAVE FUNCTION

We consider an interacting model wave function ob-
tained by Gutzwiller projection of the ground state of
a non-interacting 3D second-order TI with chiral hinge
modes. The CHI model is described by a local Hamilto-
nian for spinless fermions with four sites per unit cell [10]
(see Fig. 1 (a) for a sketch of the model). The ground
state |ψ〉 of the CHI model lies at filling ν = 1/2 of the
lattice. With open boundary conditions (OBC) in the x
and y directions, each of the four hinges of the CHI paral-
lel to the z-axis supports a single chiral mode localized at
the hinge. Each hinge mode corresponds to a free bosonic
mode with central charge c = 1 and Luttinger parameter
K = 1 akin to the edge modes of a Chern insulator (see
App. C). Since the CHI model is non-interacting, it does
not have TO or a non-trivial ground state degeneracy
with periodic boundary conditions (PBC).

In order to define the interacting model wave function
|Ψ〉, we take two copies |ψs〉 of the ground state of the
CHI model at half filling, to which we assign different
values s ∈ {↑, ↓} of a spin-like degree of freedom. The
interacting wave function is obtained as the Gutzwiller
projection

|Ψ〉 = PG [|ψ↑〉 ⊗ |ψ↓〉] (1)

of the product of the two non-interacting wave func-
tions. With n̂s,i denoting the particle number operator
for fermions of spin s on the lattice site i, the Gutzwiller
projection operator is expressed as

PG =
∏

i

(1− n̂↑,in̂↓,i). (2)

4
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2
1
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3
1

2

3

2
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M

−∆2
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−i∆2
2

z

x

y

(a)

x

y

z

Nx

Ny

Nz

ANx,Ny ,Nz,A

(b)

FIG. 1. (a) Local real-space model for a 3D second order TI
with chiral hinge states. The Hamiltonian is defined on a cu-
bic lattice with a unit cell of four sites lying in the xy-plane.
In this plane, sites in the same unit cell are connected by
a nearest-neighbour hopping M marked by black lines (−M
for dashed black lines). In the xy-plane, sites in adjacent
unit cells are connected by a nearest-neighbour hopping ∆1

marked by violet lines (−∆1 for dashed violet lines). In the
z direction, adjacent unit cells are connected by a real next-
nearest neighbour hopping −∆2/2 marked by light blue lines
(∆2/2 for dashed light blue lines). In addition, there is a
purely imaginary nearest neighbour hopping between adja-
cent unit cells in the z direction with value −i∆2/2 in the
direction of the green arrows. We study the model for param-
eter values M = ∆1 = ∆2 = 1, where the correlation length
is close to its minimal value (see App. C). (b) 3D system with
OBC and Nx, Ny unit cells in the x, y directions, and periodic
boundaries and Nz sites in the z direction. The subsystem
ANx,Ny,Nz,A consists of Nx, Ny unit cells in the x, y directions
and Nz,A unit cells in the z direction.

It forbids simultaneous occupancy of any lattice site i
by both a particle with spin ↑ and spin ↓. Therefore, it
simulates the effect of a very large on-site Hubbard inter-
action. Since each copy of the ground state of the CHI
model has a filling νψ↑ = νψ↓ = 1/2, the Gutzwiller pro-
jection enforces that the interacting wave function lies at
filling νΨ = 1/2 with exactly one particle per lattice site
(each lattice site having a spin degree of freedom which
can take two values). Hence, charge fluctuations are com-
pletely frozen and the only relevant degree of freedom in
the interacting wave function is the spin s.

III. CHARACTERIZATION OF HINGE MODES

With OBC in the x and y directions, the interacting
model wave function |Ψ〉 is expected to posses one gap-
less chiral mode at each of the four hinges parallel to
the z-axis, inherited from the hinge modes of the non-
interacting CHI. Like the edge modes of chiral topolog-
ically ordered phases in two dimensions, we expect the
hinge modes of |Ψ〉 to be described by a chiral conformal
field theory (CFT). Moreover, since |Ψ〉 is interacting,
we expect its hinge CFT to be possibly different than
the trivial free-boson CFT describing the hinge modes of
the non-interacting CHI.

In order to characterize the chiral hinge modes, we
adapt the methods that have previously been employed
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for 2D chiral phases [46, 47, 53] to the 3D setting: We
study the second Renyi entropy S(2) and spin fluctuations
of |Ψ〉, in focusing on the critical contributions stemming
from the physical hinges. We evaluate these observables
for the interacting wave function |Ψ〉 in large-scale MC
simulations using the SWAP-operator technique [54] with
sign-problem refinement [55] (see App. A).

We consider the geometry sketched in Fig. 1(b): A to-
tal system with Nx×Ny×Nz unit cells, OBC in the xy-
plane, and PBC in the z direction to ensure that the only
gapless excitations are the four hinge states. We consider
a series of subsystems ANx,Ny,Nz,A with Nx, Ny unit cells
in the x, y directions and Nz,A ∈ {1, . . . , Nz − 1} unit
cells in the z direction, marked in red in Fig. 1(b). The
ANx,Ny,Nz,A bisect each of four physical hinge modes into
a part of length Nz,A contained in ANx,Ny,Nz,A , and the
remaining part outside of the subsystem. Hence, we ex-
pect that the EE and spin fluctuations w.r.t. ANx,Ny,Nz,A
will contain signatures from the hinges.

Specifically, if the hinge modes are described by a chiral
CFT with central charge c, the second Renyi entropy S(2)

of |Ψ〉 w.r.t. the ANx,Ny,Nz,A for different Nz,A at fixed
Nx and Ny is expected to scale as

S
(2)
ANx,Ny,Nz,A

(Nz,A) = α+ 4× S(2)
crit(Nz,A;Nz). (3)

Here, α is a constant independent of Nz,A. It includes
the area law contributions from the virtual surfaces at
z = 0, Nz,A which scale proportional to NxNy, and are
therefore independent of Nz,A in the thermodynamic
limit, and any potential corner contributions. In Eq. (3),

S
(2)
crit(Nz,A;Nz) =

c

8
ln

[
Nz
π

sin

(
πNz,A
Nz

)]
(4)

is the second Renyi entropy of a periodic one-dimensional
chiral critical mode with central charge c and total system
size Nz restricted to a single interval of length Nz,A [45].
The factor of 4 in Eq. (3) takes into account the four
hinge modes, which contribute equally to the EE.

The scaling of the second Renyi entropy of |Ψ〉 as com-
puted from MC is shown in Fig. 2(a) for two different
system sizes 2 × 2 × 20 and 3 × 2 × 20. For computa-
tional reasons, we choose Nx and Ny much smaller than
Nz (see App. C). Due to the short correlation length of
the CHI, equal to one lattice spacing (see App. C), we
may expect that the characteristic parameters approach
their thermodynamic limit even for small Nx, Ny. The
logarithmic scaling from the hinge states is clearly visi-
ble, and numerical values for c and α can be extracted
by fitting the data to Eq. (3). The numerical value for
the central charge is c = 1.19 ± 0.07 for 2 × 2 × 20 and
c = 1.03 ± 0.14 for 3 × 2 × 20. This provides strong
evidence that the hinge modes of the interacting model
wave function |Ψ〉 are described by a chiral free-boson
CFT with central charge c = 1.

Free-boson CFTs with c = 1 are characterised by their
Luttinger parameter K. For such Luttinger liquids, the
variance of the U(1) current integrated over a subsystem
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c = 1.03± 0.14,
α = 4.87± 0.12
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3× 2× 20
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Nz,A
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1.3

V
ar

( M
A
N
x
,N
y
,N
z
,A

)

(b)

K = 0.49± 0.02,
α′ = 0.86± 0.01

K = 0.49± 0.03,
α′ = 1.11± 0.01

2× 2× 20

3× 2× 20

FIG. 2. Second Renyi entropy and spin fluctuations of the
interacting model wave function |Ψ〉 for a series of subsystems
ANx,Ny,Nz,A (for a sketch see Fig. S1(b)). We plot MC data
obtained for two different systems sizes 2 × 2 × 20 (in blue)
and 3 × 2 × 20 (in orange). (a) Scaling of the second Renyi
entropy, fit to the prediction of Eq. (3). (b) Scaling of the
spin fluctuations, fit to the prediction of Eq. (6).

scales proportionally to the EE, where the proportional-
ity constant allows the extraction of K [53]. Since charge
fluctuations are completely frozen in the wave function
|Ψ〉, the relevant U(1) symmetry stems from the spin de-
gree of freedom, and we need to consider the fluctuations
of the number MA of particles with spin ↑ in a subsystem
A. Concretely, we consider the variance

Var(MANx,Ny,Nz,A
) ≡ 〈M2

ANx,Ny,Nz,A
〉−〈MANx,Ny,Nz,A

〉2.
(5)

which is expected to scale as [53]

Var(MANx,Ny,Nz,A
) = 2× K

π2
ln

[
Nz
π

sin

(
πNz,A
Nz

)]
+ α′

(6)
with the Luttinger parameter K and a constant α′ inde-
pendent of Nz,A.

The scaling of the spin fluctuations in the wave func-
tion |Ψ〉 as computed from MC is shown in Fig. 2(b) for
two different system sizes 2 × 2 × 20 and 3 × 2 × 20.
Remarkably, even for these small sizes, the numerical
value for K extracted by fitting the data to Eq. (6) is
K = 0.49 ± 0.02 for 2 × 2 × 20 and K = 0.49 ± 0.03
for 3 × 2 × 20. This provides strong evidence that the
Luttinger parameter for the chiral hinge modes of the
interacting higher order TI is K = 1/2, similarly to the
edge modes of a FCI.

IV. TOPOLOGICAL DEGENERACY AND
TOPOLOGICAL ENTANGLEMENT ENTROPY

In two dimensions, fractionalized excitations such as
those of the edge modes of an FCI are an indication for
bulk TO. Above, we showed that the FCHI has fractional
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hinge modes. It is therefore natural to investigate if it
also possesses non-trivial topology in the bulk.

2D topologically ordered systems are characterized by
a non-zero TEE and a non-trivial topological degener-
acy on surfaces with a genus greater than zero. In three
dimensions, TEE and topological degeneracy remain im-
portant bulk signatures of non-trivial topology and can
display various forms. For example, 3D systems with in-
trinsic TO have a ground state degeneracy which depends
only on the topology of the space, such as the 3D Kitaev
model, which has a topological degeneracy of 8 on the 3-
torus [56]. On the other hand, fractonic systems possess
a ground state degeneracy which might grow exponen-
tially with the system size [2]. They can also exhibit
non-trivial corrections to the area law, which are also
size-dependent [50–52].

a. Topological degeneracy In order to study the
topological degeneracy of the FCHI we closely follow a
well-known approach established for 2D projected wave
functions such as the FCI. On the 2D torus, one defines
four interacting wave functions by choosing PBC or anti-
periodic boundary conditions (APBC) for the underlying
fermions in each direction of the torus. For the FCI, these
four states yield two linearly independent wave functions
as expected in the phase of the Laughlin wave function
with filling ν = 1/2 (see App. B 4).

For the FCHI, we consider 8 independent ansatz states
on the 3D torus obtained by Gutzwiller projection of the
non-interacting CHI wave function with PBC or APBC in
each direction. The ground state degeneracy is then given
by the rank of an 8-dimensional overlap matrix O con-
taining the normalized overlaps of these ansatz states (see
App. D). Note that the topological degeneracy could in
principle be larger than 8, in particular for fractonic sys-
tems. In such a case, the rank of the overlap matrix con-
sidered here would still be at most 8 and our approach
would fail to measure the full ground state degeneracy.

We have studied the topological degeneracy of the
FCHI on isotropic 3-tori with N × N × N unit cells up
to N = 4 using variational MC simulations (see App. D).
The results are shown in Fig. 3(a). For these system
sizes, we observe a separation of the eigenvalues of the
overlap matrix O into a group of two larger eigenvalues
and a group of 6 smaller eigenvalues. However, there is
no clear trend indicating that the former would converge
to a finite value and the latter to zero in the thermody-
namic limit.

On the other hand, for very anisotropic 3-tori with Nz
much larger than Nx = Ny we observe a clear separa-
tion of the eigenvalues of O into a group of four large
and a group of four small eigenvalues, which approach
the values 2 and 0, respectively, exponentially fast as a
function of growing Nz for Nx and Ny constant. In the
limit Nz → ∞, we thus find four linearly independent
wave functions associated with the four different bound-
ary conditions in the horizontal directions, whereas the
system becomes insensitive to the boundary conditions in
the z direction. This is tightly related to the behavior of

2 3 4
N
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1
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4
N ×N ×N

λ0

λ1

λ2

λ3

λ4

λ5

λ6

λ7

(a)

x

y

z
A C B D

(b)

FIG. 3. (a) Scaling of the eigenvalues λi with i = 0, . . . , 7
of the overlap matrix O of the FCHI on the isotropic 3-torus
with N × N × N unit cells. (b) Subsystems A, B, C and
D for the extraction of the bulk TEE using a Kitaev-Preskill
cut. Note that the subsystems are translation invariant in the
z-direction.

the underlying non-interacting wave function, for which
the normalised overlap between two many-body wave
functions corresponding to different boundary conditions
in the z direction also approaches unity as Nz → ∞
for Nx and Ny constant. However, in the non-interacting
system this approach is only algebraic as a function ofNz,
whereas it is exponential in the interacting system (see
App. D).
b. Topological entanglement entropy In order to

compute the TEE of the FCHI, we use the Kitaev-
Preskill construction [48] extended to 3D systems [50].
As sketched in Fig. 3(b), the system is divided into four
regions A, B, C and D, which are translation invariant
in the z direction and whose cross sections with the xy-
plane form the pattern required for the usual 2D Kitaev-
Preskill cut. The EE of these regions and their unions
can be collected into the linear combination

−γ = S
(2)
ABC−S

(2)
AB−S

(2)
BC −S

(2)
AC+S

(2)
A +S

(2)
B +S

(2)
C (7)

which cancels all contributions from the virtual surfaces
and hinges. The remaining quantity, denoted γ, could
contain two contributions γ = γ3D + Nz × γ2D. The
constant γ3D is the 3D TEE [50]. γ2DNz would occur for
layered constructions of 2D topological orders perpendic-
ular to the z direction with 2D TEE γ2D [50] or in some
fractonic systems [1, 2].

We have computed γ for the FCHI on the 3-torus in
large-scale variational MC computations. For the ge-
ometry sketched in Fig. 3(b), we were able to study
the FCHI with 3 × 3 × 2 unit cells, where we found
γ = −0.08± 0.04, and with 3× 3× 3 unit cells, where we
found γ = −0.06 ± 0.11. In both cases, the subsystem
A is of size 1 × 2 ×Nz unit cells, and the subsystems B
and C are of size 1 × 1 × Nz unit cells [57]. Because of
the intrinsic anisotropy of the FCHI, also considered a
second geometry obtained by rotating the subsystems in
Fig. 3(b) along the y axis such that they are translation
invariant in the x direction, while leaving the insulator
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unchanged. Here, we computed γ for a system of 2×3×5
unit cells [58] and found γ = −0.009 ± 0.102. All these
values are consistent with γ = 0 (up to small finite-size
effects for 3 × 3 × 2) irrespective of the orientation of
the cut. We stress that γ is several orders of magnitude
smaller that any of the EE appearing in Eq. (7), exclud-
ing the existence of both a non-vanishing 3D TEE γ3D

and a non-zero γ2D.
Since we have not been able to find any clear signa-

ture of a true non-trivial bulk topology, we now probe
the nature of the gapped surfaces perpendicular to the x
direction [59]. Since the vertical hinges host fractional-
ized one-dimensional modes like those of an FCI, we may
speculate that the vertical surfaces host some non-trivial
TO [60]. To characterize it, we compute γ according to
Eq. (7) for the geometry obtained by rotating the sub-
systems in Fig. 3(b) as described above, OBC in the x
direction and PBC in the y and z directions. We have
performed this computation for a system with 2× 3× 5
unit cells and found γ = 0.31± 0.20 [61]. Since the same
computation with PBC in x yields a vanishing result for
γ as discussed above, this non-zero value is due entirely
to the two surfaces at x = 0 and x = Nx−1 and confirms
that the vertical surfaces host a non-trivial 2D TO. The
value for γ is consistent with ln

√
2, the TEE of a single

2D FCI in the Laughlin 1/2 phase, which would imply

that each of the surface TOs has a TEE of (ln
√

2)/2.
We mention that we have also studied the degeneracy

of the four ansatz states for the FCHI in this geometry,
which are generated by changing the boundary conditions
for the underlying CHI in the two periodic directions.
We have found very similar behavior to the the full-PBC
case discussed above, namely two larger eigenvalues but
no clear evidence of a reduction of the bulk degeneracy
in the thermodynamic limit (see App. D).

V. DISCUSSION AND CONCLUSION

We have studied a model wave function for a 3D chi-
ral hinge insulator with strong interactions at fractional
band filling. By studying the EE and spin fluctuations
in an open geometry, we showed that the hinges host
fractional gapless modes which have the same charac-
terization as the edge modes of an FCI in the Laughlin
1/2 phase. We have also studied the system’s topology
through the topological degeneracy and the TEE. While
the results for the topological degeneracy remain incon-
clusive due to the small number of numerically acces-

sible system sizes, our results point to the absence of
a bulk TEE. However, we found clear signatures of a
non-trivial 2D topological order on the vertical surfaces.
Interestingly, the TEE contribution per surface is con-
sistent with (ln

√
2)/2, in other words half of the TEE

of an FCI, which cannot be described using a quantum
dimension [62]. This suggests a non-trivial relation be-
tween the surface topology and the hinge modes [60]. In
this letter, we have restricted our analysis to the gapped
surfaces and their gapless edges. It would be highly inter-
esting but very numerically challenging to consider the
top and bottom surfaces, which host single Dirac cones
in the non-interacting CHI [63]. Their fate in the inter-
acting system is yet unknown and beyond the scope of
the present work, but it should be the focus of further
study.
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B. A. Bernevig, and T. Neupert, Higher-order topology
in bismuth, Nature Physics 14, 918 (2018).

[25] M. Serra-Garcia, V. Peri, R. Süsstrunk, O. R. Bilal,
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INTRODUCTION TO THE APPENDICES

In this work, we have built and studied a model state for a three-dimensional (3D) fractional chiral hinge insulator
(FCHI). In the following, we provide additional information on our numerical methods, their benchmark on a two-
dimensional (2D) fractional Chern insulator and the non-interacting 3D chiral hinge insulator, and additional results
for the topological degeneracy of the 3D model.

We begin in Appendix A by introducing the Monte Carlo (MC) observables that we used for the computations
of entanglement entropy and the overlap matrix whose results are discussed in the main text. In Appendix B, we
proceed to give a detailed account of the benchmark of our MC algorithm and the entanglement observables from the
main text on a 2D fractional Chern insulator. This includes a characterization of the edge modes from variational MC
simulations, and the computation of the topological entanglement entropy and topological degeneracy. In Appendix C,
we complement the characterization of the fractional hinge modes of the FCHI in the main text by a similar analysis
for the underlying non-interacting chiral hinge insulator, confirming that its hinge modes are of the same nature as the
edge modes of a non-interacting Chern insulator. In Appendix D, we give additional details about the computation
of the topological overlap matrix for the FCHI whose eigenvalue scaling for isotropic system sizes is discussed in the
main text. We also provide results for the scaling of the overlap matrix for highly anisotropic systems that are much
larger in the z direction than in the x and y directions, and for geometries with open boundary conditions in the x
direction and periodic boundary conditions in the y and z directions. Finally, in Appendix E we provide technical
data about our MC computations, including the computational cost.

Appendix A: Monte Carlo simulations

In this appendix, we provide a quick overview of the Monte Carlo (MC) procedure that was used to derive the
results in the main text. The technical details of the MC simulation will be discussed in Appendix E.

1. Entanglement entropy

For a quantum state |ψ〉, the Renyi entropy of order n w.r.t. a subsystem A is given by

S
(n)
A =

1

1− n ln (TrA [ρnA]) . (A1)

Here, ρA = TrB [|ψ〉〈ψ|] is the reduced density matrix of the subsystem A obtained by tracing over the degrees of
freedom in its complement B. We use the notation TrA for the trace over the degrees of freedom in region A. In the
limit n→ 1, S(n) corresponds to the von Neumann entropy SA = −TrA [ρA ln (ρA)]. Since the von Neumann entropy
is hard to evaluate numerically, we focus on the second Renyi entropy S(2), which can be computed using the replica
trick with the SWAP operator technique [54].

To that end, we consider two identical copies of the system, which together are in the quantum state |ψ〉⊗ |ψ〉. The
SWAP operator acts by exchanging the degrees of freedom within the subsystem A between the two copies, while
leaving the degrees of freedom in B unchanged. Specifically, let {|v〉} be an orthonormal basis of (a single copy of)
the system, whose elements |v〉 = |vA, vB〉 factorize as a tensor product of states describing only the subsystem A and
its complement B, respectively. Expressed in this basis, the SWAP operator acts on the two copies as

SWAP (|v〉 ⊗ |v′〉) = SWAP (|vA, vB〉 ⊗ |v′A, v′B〉) = |v′A, vB〉 ⊗ |vA, v′B〉. (A2)

It can be shown that the second Renyi entropy is related to the expectation value 〈SWAP〉 as [54]

e−S
(2)
A = TrA

[
ρ2
A
]

= 〈SWAP〉 =
〈ψ ⊗ ψ|SWAP |ψ ⊗ ψ〉
〈ψ ⊗ ψ|ψ ⊗ ψ〉 . (A3)

The expectation value 〈SWAP〉 can be computed using MC simulations on the double-copy system. Computations of
the entanglement entropy with this method have been successfully performed in the context of topological phases for
systems such as spin liquids [41, 43], Laughlin states [43] and non-Fermi-liquids [42].

Since the Renyi entropy of a quantum ground state obeys an area law and the expectation value 〈SWAP〉 measured

in MC simulations is given by e−S
(2)
A , the value of 〈SWAP〉 decays exponentially with |∂A|. Therefore, for larger

subsystems the convergence of 〈SWAP〉 quickly becomes extremely slow. This can partially be mitigated by a sign
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trick [55] for non-positive wave functions, which allows to separately evaluate the contributions to 〈SWAP〉 from the
amplitude and the phase of the wave function. To that end, we write

〈SWAP〉 = 〈SWAPamp〉 × 〈SWAPphase〉 , (A4)

where 〈SWAPamp〉 and 〈SWAPphase〉 can be measured in separate MC simulations with faster convergence. Denoting
by ψ(v) ≡ ψ(vA, vB) ≡ 〈v|ψ〉 the coefficient of the quantum state |ψ〉 w.r.t. the basis state |v〉, the two expectation
values are given by [55]

〈SWAPamp〉 =
∑

v,v′

ρ(v, v′)amp × f(v, v′)amp, (A5a)

〈SWAPphase〉 =
∑

v,v′

ρ(v, v′)phase × f(v, v′)phase, (A5b)

where

ρ(v, v′)amp =
|ψ(v)|2
〈ψ|ψ〉

|ψ(v′)|2
〈ψ|ψ〉 , (A5c)

f(v, v′)amp = |f(v, v′)| , (A5d)

ρ(v, v′)phase =
|ψ(v′A, vB)ψ(vA, v′B)ψ(vA, vB)ψ(v′A, v

′
B)|∑

v,v′ |ψ(v′A, vB)ψ(vA, v′B)ψ(vA, vB)ψ(v′A, v
′
B)| , (A5e)

f(v, v′)phase = ei arg[f(v,v′)], (A5f)

and we used the shorthand

f(v, v′) ≡ ψ(v′A, vB)ψ(vA, v′B)

ψ(vA, vB)ψ(v′A, v
′
B)

(A6)

split into its norm |f(v, v′)| and its phase, arg[f(v, v′)]. The expectation values 〈SWAPamp〉 and 〈SWAPphase〉 can be
evaluated using MC simulations with the probability densities ρ(v, v′)amp and ρ(v, v′)phase and estimators f(v, v′)amp

and f(v, v′)phase, respectively. We note that for the entropy computations in the FCHI presented in Fig. 2 of the main
text, the convergence of the 〈SWAPphase〉 observable is much faster than that of the 〈SWAPamp〉 observable. Similar
observations have been made for RVB states, where this was linked to an approximate Marshall sign rule [64].

2. Wave function overlap

In Appendix D, we will compute the overlap matrix of the different ansatz states for the FCHI on the 3D torus in
order to check if the system has a topological degeneracy. The overlap matrix element Oψ1,ψ2 between two a priori
unnormalized ansatz states |ψ1〉 and |ψ2〉 is given by

Oψ1,ψ2
=

〈ψ1|ψ2〉√
〈ψ1|ψ1〉

√
〈ψ2|ψ2〉

. (A7)

In order to compute this overlap with MC, we make use of the identity

Oψ1,ψ2
=
∑

v

ψ1(v)∗ ψ2(v)√
〈ψ1|ψ1〉

√
〈ψ2|ψ2〉

=
√
O1,abs
ψ1,ψ2

×O2,abs
ψ1,ψ2

×Ophaseψ1,ψ2
, (A8)

where

O1,abs
ψ1,ψ2

=
∑

v

ρ(v)1,abs × f(v)1,abs, (A9a)

O2,abs
ψ1,ψ2

=
∑

v

ρ(v)2,abs × f(v)2,abs, (A9b)

Ophaseψ1,ψ2
=
∑

v

ρ(v)phase × f(v)phase. (A9c)
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and

ρ(v)1,abs =
|ψ1(v)|2
〈ψ1|ψ1〉

, (A10a)

f(v)1,abs =
|ψ2(v)|
|ψ1(v)| , (A10b)

ρ(v)2,abs =
|ψ2(v)|2
〈ψ2|ψ2〉

, (A10c)

f(v)2,abs =
|ψ1(v)|
|ψ2(v)| , (A10d)

ρ(v)phase =
|ψ2(v)||ψ1(v)|∑
v |ψ2(v)||ψ1(v)| , (A10e)

f(v)phase = ei(arg[ψ2(v)]−arg[ψ1(v)]). (A10f)

In Eq. (A9), the sum is over all configurations v. As before, arg[ψi(v)] refers to the phase of the wave function

ψi(v) = 〈v|ψi〉 for i = 1, 2. The quantities O1,abs
ψ1,ψ2

, O2,abs
ψ1,ψ2

and Ophaseψ1,ψ2
can be evaluated in separate MC computations

with weights ρ(v)1,abs, ρ(v)2,abs, ρ(v)phase and measurement estimators f(v)1,abs, f(v)2,abs and f(v)phase, respectively.
It is also possible to express the overlap matrix element as the product of three expectation values that can be sampled
in MC computations with the same weight [65].

In order to compare the physical validity of different unnormalized ansatz states, it can be useful to compare their
norms. To that end, we note that the ratio of the norms of the ansatz states |ψ1〉, |ψ2〉 is given by

〈ψ1|ψ1〉
〈ψ2|ψ2〉

=
O2,abs
ψ1,ψ2

O1,abs
ψ1,ψ2

, (A11)

and is therefore a by-product of the MC computations for the overlap matrix.

Appendix B: Fractional Chern insulator

In this section, we test the concepts developed in the main text and benchmark our tools by considering a fractional
Chern insulator (FCI) in two dimensions. The latter is obtained as the Gutzwiller projection of two copies of a simple
two-band Chern insulator (CI) described in Ref. 43. We begin by briefly presenting the non-interacting CI model in
Sec. B 1. In Sec. B 2, we then benchmark the methods used in the main text for the hinge mode characterization on
the edge modes of the FCI. Subsequently, we study the stability of the FCI under the addition of a staggered chemical
potential in Sec B 3, before concluding with a study of the topological degeneracy in Sec. B 4.

1. Chern insulator

We consider the two-band Chern insulator (CI) of Ref. 43 at half filling whose valence band has a non-zero Chern
number C = 1. The corresponding tight-binding Hamiltonian sketched in Fig. S1(a) is defined on a square lattice with
Nx unit cells in the horizontal direction and Ny unit cells in the vertical direction, where each unit cell consists of an
A and a B site. It is characterized by a real next-nearest neighbour hopping t and a purely imaginary next-to-nearest
neighbour hopping i∆. We will also consider an additional staggered chemical potential with +µ on A sites and −µ
on B sites. The Bloch Hamiltonian of the CI is given by

H (kx, ky) = [2∆ sin(kx) (cos(ky)− 1) + t (cos(ky) + 1)]σx + [(2∆ sin(kx) + t) sin(ky)]σy + [µ+ 2t cos(kx)]σz, (B1)

where σx, σy and σz are the Pauli matrices. The Bloch bands have energy ±ε (kx, ky), with

ε (kx, ky) =

√
[2∆ sin(kx) (cos(ky)− 1) + t (cos(ky) + 1)]

2
+ [(2∆ sin(kx) + t) sin(ky)]

2
+ [µ+ 2t cos(kx)]

2
. (B2)

For µ = 0, the single-particle gap is maximal when the hopping parameters are t = 1 and ∆ = 1/2. In the following,
we therefore always choose t = 1 and ∆ = 1/2.
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FIG. S1. (a) Microscopic model for the Chern insulator of Ref. 43 defined on a square lattice with two sublattices, A in blue
and B in red. The nearest-neighbour hopping t (−t for dashed lines) drawn in black is real, whereas the next-nearest neighbour
hopping i∆ in the direction of the red arrows is purely imaginary. (b) Correlation lengths ξx and ξy (in units of the unit cell) for
the two-point correlator in the ground state of the perturbed CI with staggered chemical potential µ. The correlation lengths
diverge at the critical value µc = 2. Note that due to the anisotropy of the unit cell, ξx and 2ξy are comparable.

Increasing µ away from 0 leads to a trivialization of the model (i.e., when the two bands have a zero Chern number)
for µ larger than a critical value µc where the band gap closes. For t = 1 and ∆ = 1/2, the single-particle gap closes
at µc = 2. As expected, the correlation length of the CI ground state at half filling diverges as µ approaches µc, but
stays reasonably small for values µ ≤ 1 (see Fig.S1(b)).

a. Twisted boundary conditions

On the torus, we can consider the CI with twisted boundary conditions determined by phases Φx and Φy that a
particle should pick up on a loop parallel to the x and y axes, respectively. Here, we choose to implement the twisted
boundary conditions in the tight-binding model in a translation-invariant way by multiplying all hopping terms in
the positive x and y directions with phases λx and λy, respectively, where

λx = ei
Φx
Nx , (B3a)

λy = e
i

Φy
2Ny . (B3b)

Correspondingly, hopping terms with a component in the negative x and y directions are multiplied with the complex
conjugate phases λ∗x and λ∗y.

b. Particle-hole symmetry

The unperturbed CI model with zero staggered chemical potential µ = 0 possesses a unitary particle-hole (PH)
symmetry, which relates states with different boundary conditions on the torus. The PH conjugation acts on the
creation operators as

cA,(x,y) 7→ c†A,(x,y), (B4a)

cB,(x,y) 7→ −c†B,(x,y), (B4b)

where x ∈ {0, . . . , Nx − 1} and y ∈ {0, . . . , Ny − 1} are the unit cell coordinates. It is straightforward to verify that
on the torus, this symmetry maps the CI Hamiltonian with twist phase factors (λx, λy) to the CI Hamiltonian with
modified phase factors (λ′x, λ

′
y), given by

(
λ′x, λ

′
y

)
=
(
−λ∗x, λ∗y

)
. (B5)
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FIG. S2. (a) Geometry used for the extraction of the edge physics: Cylinder with periodic boundary conditions and Nx unit cells
in the horizontal direction, and open boundaries and Ny sites in the vertical direction. The rectangular subsystem ANx,A,Ny

consists of Nx,A unit cells in the horizontal direction and Ny sites in the vertical direction. (b), (c) MC results for the EE and
spin fluctuations characterizing the edge modes extracted from the geometry in (a).

Using Eq. (B3), this implies that the non-interacting ground state with (Φx,Φy) is mapped to the ground state with
(
Φ′x,Φ

′
y

)
= (−Φx +Nxπ,−Φy) (B6)

Note that for Nx odd, the change in Φx is an odd multiple of π, such that the symmetry relates states with periodic
and anti-periodic boundary conditions in the horizontal direction.

2. FCI edge modes

The FCI obtained as the Gutzwiller projection of two copies of the CI at half filling lies in the same universality class
as the bosonic Laughlin state at filling ν = 1/2. In particular, its chiral gapless edge modes are described by the chiral
CFT su(2)1. Two key characteristic quantities of this CFT, the central charge c = 1 and the Luttinger parameter
K = 1/2, can be extracted numerically from the scaling of the entanglement entropy (EE) and spin fluctuations in
a suitable geometry, respectively [46, 47, 53]. Here, we reproduce these known results with our MC setup using a
geometry which can easily be generalized to the 3D setting of the main text. This serves both as a benchmark for
our numerical tools, and as a validation of the geometry used here and in the main text.

We consider the FCI in the “ribbon” geometry sketched in Fig. S2(a). The system is defined on a cylinder with
periodic boundary conditions and Nx unit cells in the x-direction, and open boundaries and Ny unit cells in the
y-direction. We consider the EE and spin fluctuations w.r.t. a series of subsystems ANx,A,Ny

which have Nx,A ∈
{1, Nx/2} unit cells in the horizontal direction and span the full height of the cylinder in the vertical direction.
The ANx,A,Ny

cuts break the translation invariance in the horizontal direction and introduce virtual boundaries
perpendicular to the physical edge states (marked in red and blue). Hence, the EE and spin fluctuations w.r.t. ANx,A,Ny

will contain contributions from both chiral edge modes, in addition to the area law and corner contribution which do
not depend on Nx,A.

Concretely, the second Renyi entropy S(2) is expected to scale with Nx,A as

S
(2)
ANx,A,Ny

(Nx,A) = α2D + 2× S(2)
crit(Nx,A;Nx). (B7)

Here, α2D contains the area law contributions proportional to Ny from the virtual cuts, as well as the corner contri-
butions or constant corrections. It is therefore a constant independent of Nx,A. In Eq. (B7),

S
(2)
crit(Nx,A;Nx) =

c

8
ln

[
Nx
π

sin

(
πNx,A
Nx

)]
(B8)

is the second Renyi entropy of a periodic one-dimensional chiral critical mode with central charge c and total system
size Nx restricted to a single interval of length Nx,A [45]. The factor of 2 in Eq. (B7) takes into account the two edge
modes, which each contribute equally to the EE.
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FIG. S3. (a) Sketch of the Kitaev-Preskill cut for a system of 5×3 unit cells. (b) Topological entanglement entropy for the FCI
as a function of staggered chemical potential µ. The results were obtained for the system size 5× 3 using exact diagonalization
and the Kitaev-Preskill scheme shown in (a).

In the main text, we also considered the variance of the number MA of spin up particles in the region A, given by

Var(MA) ≡ 〈M2
A〉 − 〈MA〉2. (B9)

For the ANx,A,Ny cut used here, the variance is expected to scale as [53]

Var(MANx,A,Ny
) = α′2D +

K

π2
ln

[
Nx
π

sin
πNx,A
Nx

]
, (B10)

where K is the Luttinger parameter of the CFT describing the edge modes, and α′2D is a constant independent of
Nx,A subsuming the corner and area law contributions to the spin fluctuations.

The scaling of the EE and spin fluctuations for the FCI as computed from MC, fit to the predictions of Eqs. (B7)
and (B10), are shown in Fig. S2(b) and (c). In both cases, the logarithmic contributions from the edge states are
clearly visible. The fit values of the central charge c = 1.0 ± 0.1 and the Luttinger parameter K = 0.50 ± 0.03 are
very close to the expected values c = 1 and K = 1/2, respectively.

3. Topological entanglement entropy

We now explore the stability of the FCI under the perturbation by a staggered chemical potential µ as defined in
Eq. (B1). To this end, we compute the topological entanglement entropy (TEE) [48] denoted γ. For the FCI obtained
as the Gutzwiller projection of two copies of the non-interacting CI, the TEE is expected to be γ = ln(2)/2 ≈ 0.347.

In order to test our MC calculations, we first extract the TEE using exact diagonalization (ED) and the Kitaev-
Preskill scheme [48]. Here by ED we mean that the ground state at half filling of the CI is obtained directly by
ED, providing the ground state decomposition onto the real space many-body basis. With such a decomposition,
we can easily perform the Gutzwiller projection and exactly compute any EE, while the EE calculation using MC is
considerably more complex, as described in Appendix A 1. For the system size we study here, ED is fast enough and
provides exact results without any errors. It can therefore be used as a reference for MC calculations.

We study a system of size 3× 5 unit cells with periodic boundary conditions in both directions and a cut shown in
Fig. S3(a). The system is divided into four regions labeled A, B, C and D (see Fig. S3(a)). The linear combination
of the entanglement entropies of these regions and their unions

SABC − SAB − SBC − SAC + SA + SB + SC (B11)

suppresses all unwanted contributions (such as the area law or corner contributions) and only the TEE term remains.
The TEE for the FCI as a function of staggered chemical potential µ is presented in Fig. S3(b). We consider two

different cases, same µ in both non-interacting CI copies (i.e., before projection) and mixed µ (+µ in one copy and
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−µ in the other). As can be seen from Fig. S1(b), for µ ≤ 1 the correlation length of the CI ground state is shorter
than two lattice spacings of the underlying square lattice. We may therefore expect that in this case the subsystem
sizes considered here are large enough compared to the correlation length that our computation gives a finite size
TEE close to the result in the thermodynamic limit. Indeed, for µ = 0, the numerically obtained value is γ ≈ 0.344,
which is close to the predicted value of 0.347. The agreement is expected to be even better in larger systems which
are not accessible in our ED calculations. In the case of same µ (red line), the TEE stays approximately constant for
µ ≤ 1 and then it starts to deviate due to increasing correlation length. In contrast, the TEE for opposite µ (green
line) immediately decreases from the expected value and drops to zero shortly after µ = 1. We can conclude that
the FCI is only stable to addition of a staggered chemical potential with the same sign in both CI copies, while it is
destroyed by a staggered chemical potential with opposite signs.

Finally, we repeat the calculation for system size 5 × 3 and µ = 0 using MC and the Kitaev-Preskill scheme. The
TEE obtained in this way is γ = 0.34 ± 0.03, which is in good agreement with the ED result and the theoretical
prediction.

4. Topological degeneracy

In Appendix D we will discuss the topological degeneracy of the fractional chiral hinge insulator with periodic
boundary conditions in all directions. For sake of comparison, here we compute the topological degeneracy of the
FCI on the torus. The topological degeneracy is given by the number of linearly independent states generated by
Gutzwiller projection of the non-interacting CI with twisted boundary conditions characterized by the phases Φx and

Φy as introduced in Appendix B 1 a above. Denoting by |ψ(Φx,Φy)
σ 〉 the ground state of the CI model with twisted

boundary conditions with spin σ ∈ {↑, ↓}, we compute the rank of the overlap matrix

(
PG

[
〈ψ(Φx,Φy)
↑ | ⊗ 〈ψ(Φx,Φy)

↓ |
]
PG

[
|ψ(Φ′

x,Φ
′
y)

↑ 〉 ⊗ |ψ(Φ′
x,Φ

′
y)

↓ 〉
])

(Φx,Φy),(Φ′
x,Φ

′
y)
. (B12)

For simplicity, we only consider phases Φx,Φy,Φ
′
x,Φ

′
y ∈ {0, π}. This choice ensures that the Gutzwiller projected

state has periodic boundary conditions, while the underlying electronic system has periodic or anti-periodic boundary
conditions.

a. Unperturbed FCI (µ = 0)

We use ED, as discussed in Appendix B 3, in order to obtain the rank of the overlap matrix for the FCI in different
system sizes. In contrast to MC where we need to perform an independent calculation for each matrix element of
the overlap matrix, as explained in Appendix A 2, in the case of ED it is enough to compute the four Gutzwiller

projected states PG

[
|ψ(Φx,Φy)
↑ 〉 ⊗ |ψ(Φx,Φy)

↓ 〉
]

for different combinations of phases (Φx,Φy). The full overlap matrix is

then straightforwardly obtained by simply computing the scalar products of these states.

The expected topological degeneracy for the FCI is 2. For system sizes with odd Nx, there are indeed two pairs of
linearly dependent states, thus an exact twofold degeneracy. This exact degeneracy is due to the dressed particle-hole
symmetry of the CI model which relates states with different boundary conditions (Φx,Φy) and (Φ′x,Φ

′
y) in accordance

with Eq. (B6). However, when Nx is even all states are linearly independent and the overlap matrix rank is equal to
4. In this case, each of the four states is mapped to itself by the PH conjugation. It is important to note that for
even Nx there are two eigenvalues approximately equal to 2 and two very small eigenvalues (see Fig. S4(b) and (c)
for µ = 0). As will be shown in the next subsection, the two largest eigenvalues are approaching 2 with increasing
system size, while the two smallest eigenvalues are decreasing towards zero. This points to the conclusion that the
overlap matrix rank will be equal to 2 in the thermodynamic limit, as expected.

We note that we first normalize the states obtained by the Gutzwiller projection of two copies of the CI ground state
and then generate the overlap matrix and compute its rank. This may lead to numerical inaccuracy in larger systems
where the weight of the Gutzwiller projected state is small, as numerical errors might be significantly amplified by
normalization. It is also possible to generate the overlap matrix using unnormalized states. However, the trace of the
overlap matrix will no longer be equal to its dimension in that case.
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FIG. S4. Eigenvalues of the overlap matrix computed from ED for the FCI as a function of the staggered chemical potential
µ for different system sizes. In all cases, the chemical potential is the same in both copies of the CI wave function underlying
the FCI. The size of the torus is in (a) 3 × 4 and in (b) 4× 4. In both cases, the overlap matrix for µ < µc = 2 has two very
small eigenvalues and two eigenvalues close to 2, indicating a topological degeneracy of 2 as expected for the FCI. The phase
transition at µc = 2 is clearly visible in the discontinuity of some eigenvalues, with an a priori unclear phase for µ > µc (see
text). In (c), comparison of the scaling of the two largest overlap matrix eigenvalues for three different system sizes 4 × Ny
with Ny ∈ {2, 3, 4} in the FCI phase with µ < µc = 2. The eigenvalues approach the value 2 with increasing Ny, implying due
to the conserved trace of the overlap matrix that the remaining two eigenvalues (not shown) approach the value 0.

b. Staggered chemical potential

We also consider the effect of staggered chemical potential µ on the eigenvalues and the rank of the overlap matrix.
The key idea is to move away from the dressed PH symmetry at µ = 0 that enforces exactly two linearly independent
states for odd Nx, knowing the nature of the FCI should be unchanged. We again consider the FCI with PBC in both
directions and perform ED.

The eigenvalues λi of the overlap matrix as a function of µ for two different system sizes can be observed in Fig. S4(a)
and (b). In both cases, some of the eigenvalues clearly have a discontinuity at µc = 2. As previously discussed in
Sec. B 1, a staggered potential larger than the critical value µc = 2 trivializes the CI model. The number of nonzero
eigenvalues (rank of the overlap matrix) in the region µ > 2 is 4. However, the same is formally true even in the FCI
phase, except for odd Nx at µ = 0 where there is an exact degeneracy due to the dressed PH symmetry. As already
discussed in the previous subsection for even Nx and µ = 0, the main difference is that in the topological phase there
are two very small eigenvalues and two eigenvalues of the overlap matrix close to 2. Fig. S4(c) shows the scaling of
the two largest overlap matrix eigenvalues for system sizes with even Nx. The two largest eigenvalues are approaching
the value 2 with increasing system size. At the same time, the other two eigenvalues are decreasing towards zero (not
shown here), as the sum of all eigenvalues must be exactly 4. These results suggest that the rank of of the overlap
matrix in the FCI phase is 2 in the thermodynamic limit.

We note that the Gutzwiller projection for µ > 2 might not be meaningful. In the limit of large µ, all the particles
are located at B sites in the CI ground state. The Gutzwiller projection removes double occupancies, meaning that
the projected state in the high-µ region will consist only of particle fluctuations. These fluctuations are then squared
during the overlap matrix calculation, which may further lead to numerical instability. We therefore cannot infer the
nature of the phase beyond µc = 2. In contrast, the Gutzwiller projection of two CI ground state copies with opposite
µ is well defined, as there are no doubly occupied sites in the µ → ∞ limit: one copy has the electrons sitting on A
sites while the other copy has its electrons sitting on B sites. The Gutzwiller projected state is this a perfect Mott
insulator. However, the TEE calculations in Appendix B 3 have shown that the FCI is not stable to the addition of
opposite staggered chemical potential in the two CI copies. Although the system is in that case clearly in the trivial
phase for µ > 2, the nature of the phase for a Gutzwiller projection of two states with opposite µ is unknown for
µ < 2.

Appendix C: Chiral hinge HOTI

In this appendix, we revisit the non-interacting chiral hinge HOTI [10] whose Gutzwiller projection leads to the FCHI
wave function studied in the main text. We begin in Sec. C 1 with a quick review of the tight-binding Hamiltonian.
In Sec. C 2, we then characterize the non-interacting hinge states via their EE and particle number fluctuations
analogously to the analysis of the FCHI hinge modes in the main text. This allows us to test our MC methods on a
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similar system where a direct, non-interacting, calculation is available.

1. Tight-binding model

The second-order chiral hinge TI was introduced using a band structure which can be realized both in a tight-
binding model for spin-1/2 electrons as well as an optical lattice set-up with spinless fermions [10]. Here, we study
a variant of the latter realization with an additional staggered chemical potential of magnitude µ. The model is
described by a local Hamiltonian for spinless fermions on the cubic lattice with four sites per unit cell lying in the xy
plane, labeled 1 to 4 as sketched in Fig. 1(a) of the main text. In this plane, sites in the same unit cell are connected
by a nearest-neighbour hopping M , whereas sites in adjacent unit cells are connected by a nearest-neighbour hopping
∆1. Additionally, there is a π-flux through each plaquette in the xy-plane. In the z-direction, adjacent unit cells are
connected by a real next-nearest neighbour hopping −∆2/2, and a purely imaginary nearest neighbour hopping with
value −i∆2/2. In addition, we consider a staggered chemical potential with +µ on sites 1 and 2 and −µ on sites 3
and 4. All in all, the Bloch Hamiltonian of this model is

H(kx, ky, kz) = [M + ∆1 cos(kx)−∆2 cos(kz)] τxσ0 + [M + ∆1 cos(ky)−∆2 cos(kz)] (−τyσy)

+ ∆1 sin(kx) (−τyσz) + ∆1 sin(ky) (−τyσx) + [µ−∆2 sin(kz)] (τzσ0) , (C1)

where τx, τy, τz, σx, σy, σz are the Pauli matrices and σ0 the identity matrix acting on the sublattice degree of freedom.
The valence and conduction bands of the CHI model are doubly degenerate with energies ±ε, where

ε2 = [M + ∆1 cos(kx)−∆2 cos(kz)]
2

+ [M + ∆1 cos(ky)−∆2 cos(kz)]
2

+ ∆2
1

[
sin(kx)2 + sin(ky)2

]
+ (µ−∆2 sin(kz))

2.
(C2)

We consider the model at half filling ν = 1/2.
Note that the CHI model in the topological phase can be seen as a trivial-to-topological dipole pumping interpolation

of the topological quadrupole model of Refs. [8, 9]. Indeed, for each fixed kz, the Bloch Hamiltonian of Eq. (C1) for
µ = 0 defines an instance of the two-dimensional quadrupole model with a staggered chemical potential. With the
notation of Eq. (VI.55) of Ref. [9], the Hamiltonian parameters δ(kz), λ(kz) and γ(kz) of this two-dimensional model
at fixed kz are related to the parameters M , ∆1 and ∆2 of the three-dimensional model as

δ(kz) = −∆2 sin(kz), (C3a)

λ = ∆1, (C3b)

γ(kz) = M −∆2 cos(kz). (C3c)

For M = ∆1 = ∆2 = 1 and µ = 0, the CHI model is in its topological phase: Indeed, the parameters of the quadrupole
model at kz = 0 are (δ, λ, γ) = (0, 1, 0), so we get the obstructed atomic limit phase of the quadrupole model. For
kz = π, the parameters are (δ, λ, γ) = (0, 1, 2), so the model is in the trivial phase of the quadrupole model. Therefore,
the CHI model realizes a trivial-to-topological interpolation of the topological quadrupole model, under which the
corner states of the quadrupole model map to the hinge states of the CHI model.

At µ = 0, the topological phase of the CHI model around the point M = ∆1 = ∆2 = 1 is bordered by phase
transitions lines when ∆2/M = ∆1/M ± 1 and ∆2/M = −∆1/M ± 1. At these parameter values, the minimal direct
gap

∆E ≡ min
kx,ky,kz

ε(kx, ky, kz) (C4)

of the CHI Hamiltonian of Eq. (C1) closes. This can be seen in Fig. S5(a), where we show the inverse of the minimal
direct gap in units of M . The horizontal and vertical correlation lengths ξx (which is equal to ξy) and ξz shown in
Fig. S5(b) and (c), respectively, diverge around the phase transition lines. Note that due to the intrinsic anisotropy of
the CHI model, the correlation lengths in the vertical z direction and the horizontal x and y directions do not need to
be identical. The minimal direct gap reaches its maximal value

√
2 for parameters ∆2/M = ∆1/M ≥ 2. However, the

smallest value of the larger of the two correlation lengths, max(ξx, ξz) shown in Fig. S5(d), is obtained for parameter
values close to ∆2/M = ∆1/M = 1. Since we want to minimize the finite-size effects, we therefore always choose
M = ∆1 = ∆2 = 1.

Increasing µ away from zero at half filling leads to a trivialization of the model for µ larger than a critical value
µc. For M = ∆1 = ∆2 = 1, the single-particle gap closes at µc = 1. As expected, the correlation length of the CHI
ground state diverges as µ approaches µc, but stays reasonably small for values µ ≤ 1/2 (see Fig.S6).
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FIG. S5. Inverse gap and correlation lengths of the CHI model of Eq. (C1) for different Hamiltonian couplings ∆1/M and
∆2/M when µ = 0. The model in in its topological phase in the region around the point M = ∆1 = ∆2 = 1, bordered by phase
transitions when ∆2/M = ∆1/M ± 1 and ∆2/M = −∆1/M ± 1 (marked by red lines). In (a), inverse of the minimal direct
gap ∆E in units of M , i.e. M/∆E . In (b) and (c), horizontal and vertical correlation lengths ξx(= ξy) and ξz, respectively,
in units of unit cells and computed from the two-point correlation function. In (d), the largest correlation length max(ξx, ξz),
which attains its minimal value close to the point ∆1/M = ∆2/M = 1.

The CHI model is invariant under the product Cz4T of the fourfold rotation Cz4 and time reversal T [10]. This is the
symmetry which protects the higher-order topological phase. In addition, the model is invariant under the product
IT with the inversion I [10].

Similarly to the 2D case discussed in Appendix B 1 a, on the 3D torus we can also consider the CHI with twisted
boundary conditions set by phases Φx, Φy and Φz that a particle should pick up on a loop in x, y and z direction,
respectively. These phases are implemented in the tight-binding model by multiplying all hopping terms in the positive
x, y, and z directions with phases λx, λy, and λz, respectively, where

λx = ei
Φx
2Nx , (C5a)

λy = e
i

Φy
2Ny , (C5b)

λz = ei
Φz
Nz . (C5c)

Correspondingly, hopping terms with a component in the negative x, y, and z directions are multiplied with the
complex conjugate phases λ∗x, λ∗y, and λ∗z.

2. Hinge state characterization

In the CHI ground state with open boundary conditions in the xy-directions, each of the four hinges parallel to the
z-axis supports a single chiral mode localized at the hinge [10]. Since the CHI model is non-interacting, each hinge
mode is expected to correspond to one free bosonic mode described by a CFT with central charge c = 1 and Luttinger
parameter K = 1, analogous to the edge states of a non-interacting Chern insulator with Chern number C = 1. In
order to confirm this expectation, we numerically extract c and K from the EE and particle number fluctuations using
the same geometry as in the main text for the FCHI hinge modes, see Fig. 1(b). This geometry is a 3D generalization
of the “ribbon” geometry used for similar analyses of 2D edge states [46, 47, 53], see Fig. S2(a) and Appendix B 2.
In both cases the cut is perpendicular to the hinge/edge modes, which results in contribution of these modes to the
EE and the particle/spin fluctuations.

Since the CHI is a free-fermion model, the EE and particle number fluctuations can be computed efficiently using
the correlation matrix (CorrM) method for free fermions. The results are shown in Fig. S7(a) for the second Renyi
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FIG. S6. Correlation lengths ξx , ξy and ξz (in units of the unit cell) for the two-point correlator of the CHI as a function of
staggered chemical potential µ for M = ∆1 = ∆2 = 1.

entropy S(2), which is expected to obey the scaling of Eq. (3) with central charge c = 1,

S
(2)
ANx,Ny,Nz,A

(Nz,A) = α+ 4× S(2)
crit(Nz,A;Nz), (C6)

where S
(2)
crit(Nz,A;Nz) is given by Eq. (4) and the factor 4 comes from the number of hinge modes. From Fig. S7(a)

we see that the data agree very well with this prediction, where the observed value for the central charge is c = 0.98.
The numerical value for c is in even closer agreement with the expected value c = 1 for bigger system sizes.

Analogously to the main text and Appendix B 2 where we considered the variance Var(MA) (B9) of the number

MA of spin up particles in the region A, we now consider the variance of the number of particles M̃A (note that the
particles are “spinless” in the non-interacting CHI model and we have a single copy):

Var(M̃ANx,Ny,Nz,A
) ≡ 〈M̃2

ANx,Ny,Nz,A
〉 − 〈M̃ANx,Ny,Nz,A

〉2. (C7)

The Luttinger parameter K for the hinge modes of the CHI can be extracted from the scaling of the particle number
fluctuations. Note that for the non-interacting CHI, the particle number fluctuations Var(M̃ANx,Ny,Nz,A

) give access

to a conserved current analogous to the spin fluctuations Var(MANx,Ny,Nz,A
) for the fractional CHI as studied in

the main text. Therefore, Var(M̃ANx,Ny,Nz,A
) in the CHI is expected to scale according to Eq. (6) with Luttinger

parameter K = 1:

Var(M̃ANx,Ny,Nz,A
) = 2× K

π2
ln

[
Nz
π

sin

(
πNz,A
Nz

)]
+ α′. (C8)

From Fig. S7(b) we see that the data agree very well with this expectation, where the observed value of the Luttinger
parameter K = 0.99 is very close to the expected value K = 1.

Moreover, we can use this geometry to benchmark our MC algorithm on a 3D system of similar size and nature
as the FCHI studied in the main text. To that end, we compare the results for the EE obtained from the CorrM
computation to those obtained from the MC algorithm, as sketched in Fig. S7(c) for a system of size 2 × 2 × 20. It
is clear that the results obtained from the two techniques are in very good agreement. Furthermore, in Fig. S7(d) we
show how the MC result for the entanglement entropy is obtained by addition of the contributions stemming from the
amplitude and the phase of the wave function (cf. Appendix A). For the CHI, the amplitude contribution is dominant
and contributes more significantly to the logarithmic hinge scaling.

Note that the computation of the EE via MC in this geometry is feasible only for systems which have a small
cross section in the xy plane. Indeed, for larger cross sections, the area law contribution contained in the constant
α quickly grows such that the EE can no longer be computed in MC due to exponentially long convergence times
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FIG. S7. Numerical extraction of the central charge c and Luttinger parameter K of the CFT describing the chiral hinge
modes of the non-interacting CHI. In (a), scaling of the second Renyi entropy as computed from the CorrM technique fit to
the prediction of Eq. (C6), and in (b), scaling of the particle number fluctuations as computed from the CorrM technique fit
to the prediction of Eq. (C8) w.r.t. the series of subsystems ANx,Ny,Nz,A as a function of Nz,A. In (c), comparison of the MC
results for the EE with those from the CorrM technique. In (d), formation of the MC result for the EE by addition of the
contributions from the amplitude and phase of the wave function (cf. Appendix A). In all cases, the system has open boundary
conditions and Nx = 2, Ny = 2 unit cells in the x, y directions, and periodic boundary conditions and Nz = 20 unit cells in
the z direction.

(cf. Appendix A). The data presented in Fig. S7 show that the correlation length of the CHI model is sufficiently small
that a cross section of 2 × 2 is already big enough to extract the universal properties of the hinge states, despite a
finite hinge state hybridization which is estimated around 0.57 in a system of size 2×2×Nz (assuming an exponential
localization of the hinge modes in the x and y directions).

Appendix D: Topological degeneracy of the Fractional Chiral Hinge Insulator

In this appendix, we present our results for the topological degeneracy of the fractional chiral hinge insulator
(FCHI). We begin in Appendix D 1 with a description of our approach and a discussion of topological degeneracy for
3D systems. We then proceed to present our results for the topological degeneracy of the FCHI in isotropic geometries
in Appendix D 2, and for anisotropic geometries with Nz > Nx, Ny in Appendix D 3. Finally, in Appendix D 4 we
discuss the topological degeneracy of the FCHI with open boundary conditions in the x direction and periodic boundary
conditions in the y and z directions.

1. Topological degeneracy for 3D systems

In order to characterize the topological degeneracy of the FCHI, we consider a set of ansatz states obtained by
Gutzwiller projection of the non-interacting CHI wave function with different boundary conditions for the underlying
electronic degrees of freedom, and compute the number of linearly independent states among them. We are following
the same procedure described in Appendix B 4 for a FCI. Concretely, to compute the topological degeneracy on the
three-torus we consider the non-interacting wave function with periodic boundary conditions (PBC) or anti-periodic
boundary conditions (APBC) in each direction. Indeed, both PBC and APBC for fermions lead to PBC for the
Gutzwiller projected state. This yields eight ansatz states for the FCHI on the three-torus.

In keeping with the notation from the main text, we denote by |ψ(Φx,Φy,Φz)
s 〉 the ground state of the non-interacting

CHI model with twisted boundary conditions Φx,Φy,Φz ∈ {0, π} corresponding to PBC and APBC, respectively,
and with spin s ∈ {↑, ↓}. The fractional wave function obtained by Gutzwiller projection of two copies of the
non-interacting wave function with the same flux insertions but with opposite spin is denoted

|Ψ(Φx,Φy,Φz)〉 = PG

[
|ψ(Φx,Φy,Φz)
↑ 〉 ⊗ |ψ(Φx,Φy,Φz)

↓ 〉
]
. (D1)
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FIG. S8. Overlap matrix eigenvalues (λ0 to λ7) as a function of staggered chemical potential µ for the FCHI on a three-torus.
The system size is 2× 2× 2 unit cells.

In order to determine the topological degeneracy, we need to compute the rank of the overlap matrix O, whose entries

O(Φx,Φy,Φz),(Φ′
x,Φ

′
y,Φ

′
z) =

〈
Ψ(Φx,Φy,Φz)|Ψ(Φ′

x,Φ
′
y,Φ

′
z)
〉

√〈
Ψ(Φx,Φy,Φz)|Ψ(Φx,Φy,Φz)

〉√〈
Ψ(Φ′

x,Φ
′
y,Φ

′
z)|Ψ(Φ′

x,Φ
′
y,Φ

′
z)
〉 . (D2)

contain the overlap between the normalised ansatz states for the FCHI. Since we start with eight ansatz states, the
rank of the overlap matrix can be at most equal to eight. In the following, we study if this maximal rank is saturated
or if there are linear dependencies between the ansatz states leading to a reduction of its rank.

2. Isotropic case

a. Stability under staggered chemical potential µ for 2× 2× 2

As we already did for the FCI in Appendix B 4 b, we now consider the effect of a staggered chemical potential µ
as defined in Eq. (C1) on the eigenvalues of the overlap matrix for the FCHI on a three-torus. Here, the chemical
potential µ is the same in both copies of the non-interacting CHI underlying the FCHI wave function. We study a
system of size 2× 2× 2 unit cells and perform ED. The computation of the overlap matrix elements is simpler using
ED compared to MC, as previously discussed in Appendix B 4 a.

The overlap matrix eigenvalues as a function of the staggered chemical potential µ are shown in Fig. S8. Similar
to the case of the FCI, most of the eigenvalues are obviously discontinuous at µc = 1. This is the critical point where
the underlying CHI model becomes trivial, see Appendix C 1. This is a very small system and there are no exact
degeneracies, therefore it is expected that the finite size overlap matrix rank is equal to the maximal value 8. However,
the separation between sets of eigenvalues is not as clear as for the FCI case, albeit the two largest eigenvalues stand
out from the rest. For the FCHI case we cannot explore the scaling of overlap matrix eigenvalues with the system size
using ED, as 2× 2× 2 is the largest system accessible to this method. Larger systems will be studied in the following
sections using MC computations.

We again emphasize that the Gutzwiller projection in the limit of large µ might not be meaningful: all the particles
are (mostly) located on the same sites (3 and 4) in both CHI copies and the Gutzwiller projection excludes double
occupancies thus leaving only particle fluctuations. This was discussed in more details in Appendix B 4 b. In particular,
we have not investigated the opposite staggered chemical potential for FCHI as we have shown this was not physically
meaningful in the “topological” regime for the FCI (see Appendix B 3).



22

2 3 4
N

0

1

2

3

4
(a) N ×N ×N

2 3 4
N

(b) N ×N × 2N

λ0

λ1

λ2

λ3

λ4

λ5

λ6

λ7

FIG. S9. Scaling of the overlap matrix eigenvalues for the FCHI on a three-torus for isotropic systems of size N × N × N in
(a) and size N ×N × 2N in (b).

b. Larger systems at µ = 0

We now move on to bigger systems, which are accessible only via MC computations. Focusing solely on µ = 0, we
attempt to study the overlap matrix eigenvalues of the FCHI if we increase the system size in an isotropic fashion. We
consider two cases: on one hand, a system of N×N×N unit cells, and on the other hand, a system of N×N×2N unit
cells (where the number of lattice sites in each direction is equal since the unit cell contains two sites in the horizontal
x and y directions, but only a single site in the z direction). The results for the eigenvalues of the overlap matrix
as computed from MC are sketched in Fig. S9(a) and (b) for these two cases, respectively. Due to the 3D setting
and the large number of observables that we have to compute to obtain the full overlap matrix (cf. Appendix A), we
are restricted to relatively small systems up to N = 4. For the biggest of these systems, the computations already
consumed a considerable number of CPU hours (see Appendix E).

From the data presented in Fig. S9 we cannot infer a non-trivial reduction of the number of linearly independent
states for the FCHI in the thermodynamic limit for isotropic systems. Indeed, it appears that the largest eigenvalue is
decreasing as N increases, whereas the smaller eigenvalues appear to increase. This would indicate that the number of
linearly independent states is equal to 8 which is the maximal number given the size of the overlap matrix. However,
it is possible that this is a finite size effect and that the result differs for bigger systems which are not accessible in
numerical computations.

3. Anisotropic case

In addition to the isotropic case, we also studied the topological degeneracy of the FCHI for anisotropic systems,
where Nx = Ny such that the C4 rotation symmetry in the horizontal plane is preserved, but where Nz is larger than
Nx and Ny. Note that this is the aspect ratio which we used in the main text to study the hinge mode physics, albeit
with open instead of periodic boundary conditions in the horizontal directions.

In contrast to the isotropic case, for anisotropic systems the ground state degeneracy is reduced if Nz is much larger
than Nx and Ny. Indeed, the normalized overlap between the two ansatz states |Ψ(Φx,Φy,0)〉 and |Ψ(Φx,Φy,π)〉, with the
same fluxes (Φx,Φy) in the horizontal directions but differing flux in the z direction, approaches unity exponentially
fast as Nz increases. This is shown in Fig. S10(a) and (d) for systems of size 2× 2×Nz and 3× 3×Nz, respectively.
This implies that the two ansatz states |Ψ(Φx,Φy,0)〉 and |Ψ(Φx,Φy,π)〉 become linearly dependent in the limit Nz →∞.
Since there are four different flux patterns (Φx,Φy) in the horizontal directions, in the limit Nz → ∞ the 8 ansatz
states split into four pairs, where the two states in each pair have the same (Φx,Φy) and are linearly dependent.

We note that a similar phenomenon occurs for the non-interacting CHI whose ground states generate the FCHI
ansatz states by Gutzwiller projection. Indeed, we have checked for several fixed values of Nx = Ny that the overlap

∣∣∣
〈
ψ(Φx,Φy,0)
s |ψ(Φx,Φy,π)

s

〉∣∣∣
2

(D3)
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FIG. S10. Characterization of the overlap matrix in the anisotropic limit for systems of size 2× 2×Nz in (a), (b), (c) and (g),
and for systems of size 3× 3×Nz in (d), (e), (f) and (h). Where possible, we have fit the data to an exponential decay of the

form ue−iNz/ξ with a “correlation length” ξ in units of unit cells and an amplitude u (not shown). In (a) and (d), we find an
exponentially fast approach to the value 1 of the normalised overlap between states differing only by a π-flux in the z direction,
showing that the states become identical in the limit Nz → ∞. In (b) and (e), scaling of the four largest eigenvalues of the
overlap matrix as a function of Nz. Note that in (b), we show the difference from the value 2 of the eigenvalues on a logarithmic
scale to demonstrate the exponential approach to the value 2. In (c) and (f), scaling of the four smallest eigenvalues of the
overlap matrix. In (g) and (h), ratio of the norms of the ansatz states with vanishing flux in the z direction after Gutzwiller
projection but before normalization. For Nx, Ny even, the norms of the states with zero or only a single π-flux in the horizontal
directions are exponentially suppressed compared to the weight of the states with π-fluxes in both horizontal directions. For
Nx, Ny odd, the weights of states with at least one π-flux in the horizontal directions are exponentially suppressed compared
to the weight of the state without any π-fluxes. Note that the exponential growth in (h) corresponds to negative values of the
fitted correlation length ξ.
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the anisotropic limit for a system of size 2× 2×Nz. The data is fit to an algebraic decay b×N−az with power a.

between the normalised many-body non-interacting ground states with the same fluxes (Φx,Φy) in the horizontal
directions but differing flux in the z direction also approaches unity as Nz increases. One example for systems of size

2 × 2 × Nz is shown in Fig. S11. (Note that for two non-interacting many-body states |ψ(Φx,Φy,0)
s 〉 and |ψ(Φx,Φy,π)

s 〉
their square overlap can easily be computed as the determinant of the sum of their correlation matrices). This implies

that the two states |ψ(Φx,Φy,0)
s 〉 and |ψ(Φx,Φy,π)

s 〉 become identical in the limit Nz → ∞. However, we have observed
that for the non-interacting model this convergence to the value one is algebraic and thus much slower than for the
FCHI, where the overlap approaches one exponentially. Therefore, we believe that the behavior shown in Fig. S10(a)
and (d) is qualitatively new and reserved to the interacting wave function.

As a result of the linear dependencies between the FCHI ansatz states for Nz much larger than Nx and Ny, the
ground state degeneracy of the FCHI in this case can be at most four. As shown in Fig. S10(b) and (e), the four
larger eigenvalues of the overlap matrix approach a non-zero value as Nz increases, implying that the four different
horizontal flux combinations generate four linearly independent ansatz states. On the other hand, the four smaller
eigenvalues go to zero exponentially fast with increasing Nz as shown in Fig. S10(c) and (f). It is interesting to note
that the four largest eigenvalues all approach the same value λ = 2 exponentially. This is a similar behavior as for the
FCI, where the two non-zero eigenvalues also approach the same value in the thermodynamic limit (cf. Appendix B 4).
However, we have not found any arguments indicating that the asymptotic degeneracy of all non-zero eigenvalues of
the overlap matrix contains information on the topology of a system.

In the discussion above, we have always considered the normalized overlap matrix, which measures the topological
degeneracy on the manifold of normalized ansatz states. In other words, we have defined different ansatz states for
the interacting model by projecting the wave function of the non-interacting model, normalizing each ansatz state
separately and only then considering linear dependencies.

However, it may also be valid to follow a different approach where one considers the linear independence of the
unnormalized ansatz states for the interacting model. In other words, one considers linear combinations of the ansatz
states after the Gutzwiller projection but before normalization. In the thermodynamic limit, this may lead to a
different result for the rank of the overlap matrix if the different unnormalized ansatz states for the interacting model
have very different weights. Indeed, this is the case here as shown in Fig. S10(g) and (h) for systems of size 2×2×Nz
and 3×3×Nz, respectively. In both cases, there is one out of the four horizontal flux combinations, denoted (Φ0

x,Φ
0
y),

for which the corresponding ansatz states |Ψ(Φ0
x,Φ

0
y,Φz)〉 have a weight which grows exponentially with increasing Nz

compared to the weights of the ansatz states obtained for the other three horizontal flux combinations. Note that

the weights of |Ψ(Φ0
x,Φ

0
y,0)〉 and |Ψ(Φ0

x,Φ
0
y,π)〉 are asymptotically identical. This dominant horizontal flux combination

(Φ0
x,Φ

0
y) is staggered in Nx and Ny, where

(Φ0
x,Φ

0
y) =

{
(π, π) for Nx = Ny even

(0, 0) for Nx = Ny odd
. (D4)
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FIG. S12. Ground state degeneracy of the FCHI with OBC in the x direction and PBC in the y and z directions. In (a),
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Following this approach, the ground state degeneracy is given by the rank of a rescaled overlap matrix Õ with
entries

Õ(Φx,Φy,Φz),(Φ′
x,Φ

′
y,Φ

′
z) =

〈
Ψ(Φx,Φy,Φz)|Ψ(Φ′

x,Φ
′
y,Φ

′
z)
〉

〈
Ψ(Φ0

x,Φ
0
y,0)|Ψ(Φ0

x,Φ
0
y,0)
〉 . (D5)

Note that the trace of the overlap matrix of the unnormalized ansatz states is not normalized to eight. Here, we
have therefore normalized Õ w.r.t. the weight of the state with dominant horizontal flux combination, which allows
for a meaningful comparison between the eigenvalues of Õ for different system sizes. For the anisotropic FCHI, the
rescaled overlap matrix Õ has one dominant eigenvalue converging to the value λ = 2, and seven eigenvalues decaying
exponentially to zero with different correlation lengths. Therefore, following this approach, the FCHI has only one
ground state for Nz much larger than Nx and Ny. Note that for the isotropic case discussed above, the spectrum of

the rescaled overlap matrix Õ is very similar to that of O for the system sizes we have studied.
The large difference in the weight of the ansatz states that we observe for the anisotropic FCHI does not appear

to be a necessary consequence of the reduction of the rank of the overlap matrix to a value lower than 8 in the
thermodynamic limit. For instance, for the FCI on the two-torus with 6 × 6 and 8 × 8 unit cells the construction
discussed in Appendix B 4 yields four ansatz states with approximately the same weight, even though the rank of the
overlap matrix is reduced from four to two. Therefore, for the FCI the normalised and the rescaled overlap matrix
give the same result for the topological degeneracy.

4. OBC in x

Finally, let us discuss the topological degeneracy of the FCHI with OBC in the x direction and PBC in the other
two directions. This is the configuration which we used in the main text to extract the TEE contributed by the gapped
surface states. For these boundary conditions, we consider four ansatz states for the FCHI obtained by Gutzwiller
projection of the non-interacting wave function with either PBC and APBC in the y and z directions. In the x
direction, all four ansatz states have vanishing flux. Therefore, the overlap matrix O now has dimension four.

The results for the topological degeneracy of the FCHI with this boundary configuration are very similar to those
discussed above for the 3D torus. We first increase the system size in an isotropic fashion. While there is a separation
between two larger and two smaller eigenvalues, they seem to converge to a finite value as shown in Fig. S12(a). This
indicates that for isotropic systems the maximum rank of the overlap matrix is saturated. However, as before we are
restricted to relatively small systems (albeit bigger that the all PBC case discussed in Appendix D 2 due to the smaller
number of overlaps to compute; note that the MC algorithm does not benefit from an intrinsic speedup due to PBC
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like an exact diagonalization would). Therefore we cannot make any reliable statements about the thermodynamic
limit.

On the other hand, for anisotropic systems the normalized overlap between two ansatz states |Ψ(0,Φy,0)〉 and
|Ψ(0,Φy,π)〉, with the same flux Φy in the y direction but differing flux in the z direction, approaches unity as Nz
increases. This is shown in Fig. S12(b) for systems of size 2× 2×Nz. Correspondingly, as shown in Fig. S12(c) the
normalised overlap matrix for Nz much larger than Nx and Ny has two finite eigenvalues converging to the value
λ = 2, and two eigenvalues that vanish as Nz increases. Again, the weight of the ansatz states before normalisation
is not the same, with the weight of the states with Φy = 0 being exponentially suppressed compared to the weight of

the states with Φy = π for Nx = Ny = 2 as shown in Fig. S12(d). This implies that the overlap matrix Õ computed
from the ansatz states before normalization has one finite and 3 vanishing eigenvalues for Nz much larger than Nx
and Ny.

Appendix E: Technical data for MC computations

In this appendix, we provide some technical details on our MC simulations. In Appendix E 1, we discuss the update
used in the simulations, and in Appendix E 3 we give the technical parameters and run times for all computations
whose results are presented in the main text.

1. Monte Carlo update

As discussed in the main text, charge fluctuations in the FCHI wave function are frozen out and the layer index
(which will from now on be dubbed spin) is the only relevant degree of freedom on each site. The same holds for
the FCI wave function studied in Appendix B. Therefore, our MC computations are performed in the basis of spin
configurations |v〉 = |s0, . . . , sN−1〉 with si ∈ {↑, ↓} on each site i = 0, . . . , N − 1, where N is the total number of
physical lattice sites. We used a single-spin-exchange update to suggest a new many-body configuration after each
MC step. In other words, after each MC step, the configuration |v〉 is updated by exchanging the spin values si and
sj on two randomly chosen sites with opposite spin occupations si 6= sj .

In order to improve the acceptance rate of the simulations, we limited the range of the spin exchange to an integer
value rupdate. Concretely, we require that the graph distance d(i, j) on the relevant lattice of the two sites i, j should
satisfy d(i, j) ≤ rupdate. Here, the relevant lattices are the cubic lattice for the FCHI and the square lattice for the FCI.
Therefore, for rupdate = 1 this permits spin exchange only between nearest-neighbour sites, whereas for rupdate = 2
spin exchange both between nearest-neighbour and next-nearest-neighbour sites is allowed.

We have observed that the parameter rupdate has a small systematic influence on the mean value of the MC
simulations. For instance, Fig. S13 provides a comparison of the MC results for the spin fluctuations in the FCHI,
as discussed in the main text, for different values rupdate = 2, 3, 4,∞. The data points for rupdate = 2 do not agree
within the statistical error bar with the data points for the most accurate measurement with rupdate =∞. However,
for larger values rupdate = 3 and 4, the data points quickly move much closer to those for rupdate = ∞ and their
statistical error bars overlap. Indeed, the fit values for the parameters K and α′ agree within the statistical error
bars for all four simulations. For all MC simulations presented in this paper, we chose rupdate sufficiently big that the
systematic deviation is insignificant compared to the statistical uncertainty, while increasing the acceptance rate as
much as possible.

2. MC errors

Here, we briefly explain how we obtain the estimates for the errors of our MC measurements. For each MC
measurement, we launched Nseed instances of the algorithm, with each instance having a distinct seed of the random
number generator. Typically, we chose Nseed = 100. For each seed, the algorithm was performed until the Metropolis
chain had a length of NMC MC steps, after which we evaluated the average of each run separately. Then, we computed
the final value and error of the MC measurement as the mean and standard deviation, respectively, of the collection
of Nseed averages per run. Therefore, the final value is the average after Nseed ×NMC total MC steps.

In practice we have observed that the error estimated in this way is much larger than the fluctuations of the
mean value of the measurements as a function of the number of MC steps after the initial convergence phase. For
instance, in Fig. S14 we show the evolution of the mean value of the SWAPamp observable of Eq. (A5a) for the four

EE measurements required for the computation of the TEE of the FCHI, namely S
(2)
B , S

(2)
AB, S

(2)
AC , S

(2)
ABC as defined
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) in the subsystem

ANx,Ny,Nz,A of the FCHI as a function of Nz,A, fit to the prediction of Eq. (6).
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FIG. S14. Evolution of the mean value of the SWAPamp observable for the four EE measurements S
(2)
B in (a), S

(2)
AB in (b), S

(2)
AC

in (c) and S
(2)
ABC in (d) required for the computation of the TEE of the FCHI with OBC in the x direction and PBC in the y

and z directions. Here, the system has 2× 3× 5 unit cells and the subsystems are rotated compared to Fig. 3(b) along the y
axis such that they are translation invariant in the x direction. The fluctuations of the mean as a function of the number NMC

of MC steps per run are much smaller than the statistical error.
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Physical observable System size Boundary conditions MC observable rupdate
Acceptance

rate [%]
MC Steps Total CPU

hours

S
(2)
ANx,Ny,Nz,A

in Fig. 2(a)

2× 2× 20 OBC × OBC × PBC 〈SWAPamp〉 2 3.6 108 115500

2× 2× 20 OBC × OBC × PBC 〈SWAPphase〉 2 3.7 107 25000

3× 2× 20 OBC × OBC × PBC 〈SWAPamp〉 2 2.1 1.2× 108 383370

3× 2× 20 OBC × OBC × PBC 〈SWAPphase〉 2 2.2 107 62854

Var(ANx,Ny,Nz,A) in Fig. 2(b)
2× 2× 20 OBC × OBC × PBC Var(MA) 3 11 8× 107 43000

3× 2× 20 OBC × OBC × PBC Var(MA) 3 11 8× 107 147300

Overlap matrix O with
eigenvalues shown in
Fig. 3(a)

2× 2× 2 PBC × PBC × PBC O1,abs
ψ1,ψ2

, O2,abs
ψ1,ψ2

∞ 18 1× 107 1385

2× 2× 2 PBC × PBC × PBC Ophaseψ1,ψ2
∞ 18 1× 107 900

3× 3× 3 PBC × PBC × PBC O1,abs
ψ1,ψ2

, O2,abs
ψ1,ψ2

∞ 8 1× 107 2500

3× 3× 3 PBC × PBC × PBC Ophaseψ1,ψ2
∞ 8 1× 107 2500

4× 4× 4 PBC × PBC × PBC O1,abs
ψ1,ψ2

, O2,abs
ψ1,ψ2

∞ 7 1× 107 7000

4× 4× 4 PBC × PBC × PBC Ophaseψ1,ψ2
∞ 7 1× 107 7000

Topological entanglement
entropy γ from
Kitaev-Preskill cut in
Fig. 3(b)

3× 3× 2 PBC × PBC × PBC 〈SWAPamp〉 ∞ 1 1.6× 109 112182

3× 3× 2 PBC × PBC × PBC 〈SWAPphase〉 ∞ 1 108 14312

3× 3× 3 PBC × PBC × PBC 〈SWAPamp〉 ∞ 1 3.6× 109 331495

3× 3× 3 PBC × PBC × PBC 〈SWAPphase〉 ∞ 1 108 14312

Topological entanglement
entropy γ from rotated
Kitaev-Preskill cut

2× 3× 5 PBC × PBC × PBC 〈SWAPamp〉 ∞ 1.7 1.4× 109 142341

2× 3× 5 PBC × PBC × PBC 〈SWAPphase〉 ∞ 2 2× 108 56728

2× 3× 5 OBC × PBC × PBC 〈SWAPamp〉 ∞ 1 4.4× 109 438886

2× 3× 5 OBC × PBC × PBC 〈SWAPphase〉 ∞ 1.2 2× 108 37083

TABLE S1. Overview of technical data of all MC runs whose results are discussed in the main text. Here, the MC observables
are defined in Appendix A. As introduced in Appendix E 1, the parameter rupdate controls the maximal range of the spin
exchange in the MC update, which can take a finite integer value or the value ∞ (meaning that there is no restriction on the
maximal range).

in Eq. (7) of the main text. We focus here on the OBC case, i.e. OBC in the x direction and PBC in the y and z
directions. Therefore, we think that the statistical fluctuations computed in this way might overestimate the actual
error of the final MC measurement.

3. Technical data

For the convenience of anyone wishing to reproduce our results, we have summarized some technical data including
the acceptance rate, the number of MC steps and the run time of all computations discussed in the main text in
Table S1. The computations were performed for the most part on machines with CPUs of type Intel(R) Xeon(R)
E5-2680 v2 @ 2.80GHz (Ivybridge), with between 500 and 1000 cores in use simultaneously.
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Chapter 6

Conclusion

Almost 40 years after their discovery, topological phases of matter remain an active re-
search field of both experimental and theoretical Condensed Matter Physics. The search
for experimentally relevant systems with intrinsic topological order continues, which may
become platforms for topological quantum computing. Novel phenomena can emerge even
in non-interacting systems, as evidenced by the recent discovery of higher order topolog-
ical phases. These phases may also shed new light on the generalization of topological
order to three dimensions, where many fundamental open questions remain. To tackle
these challenges, efficient numerical methods are required as the exponential growth of
the quantum-mechanical Hilbert space renders numerical computations in interacting and
higher-dimensional systems extremely difficult. TNS are a class of variational wave func-
tions which offer an efficient encoding of relevant quantum many body states, and are thus
a promising candidate for the description of interacting topological phases. This disserta-
tion focuses on the representation of chiral topological phases in two and three dimensions
using TNS, and their diagnosis using entanglement observables.

In the first part of this dissertation, we reviewed topological phases of matter and their
characterization using quantum entanglement. In Chapter 2, we discussed SPT phases
which can be realized in systems of free fermions. Focusing on the examples of the 1D SSH
model and the 2D CI, we showed that such systems possess characteristic gapless modes
at physical boundaries. We also discussed that the boundary physics is tightly related
to non-trivial values of bulk topological invariants, which in the case of the CI lead to
a quantization of the Hall conductivity. Finally we reviewed an example of a 2D HOTI
with gapless protected corner modes. In Chapter 3, we considered interacting phases with
intrinsic topological order, focusing on the Laughlin states for the fractional QHE. We
discussed the generalized Pauli principle satisfied by these wave functions and reviewed
how this can be used to explain the fractional Hall conductivity as well as the chiral edge
spectra. We pointed out that the chiral edges modes can be described using Luttinger liq-
uids characterized by a chiral CFT. We also reviewed the bulk boundary correspondence,
according to which this CFT also describes certain bulk properties. Lastly, we considered
a lattice model and discussed that it can host an FCI phase with intrinsic chiral topological
order. In Chapter 4 we reviewed quantum entanglement and its application to the descrip-
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tion of quantum many body states. We began with a discussion of the EEs and their area
law scaling for gapped quantum systems, as well as their logarithmic scaling in gapless 1D
systems. We then moved to the ES and illustrated its usefulness as a diagnostic numerical
tool using the SSH model, the CI and the Laughlin states. In particular, we discussed
the bulk boundary correspondence allowing the extraction of edge spectra from the bulk
ground state. Finally, we gave a brief overview of TNS, beginning with the construction of
MPS and PEPS. We discussed their in-built area law scaling of the EE and their resulting
numerical efficiency. We concluded with a review of the applicability of TNS to topological
phases with and without time reversal symmetry.

The second part of this dissertation contains a reprint of my publications. In Sec. 5.1
we studied a PEPS for a chiral spin liquid in the same phase as the Laughlin state at filling
1/2. By a careful analysis of its symmetries we were able to explain certain discrepancies
between its chiral ES and the expected CFT spectrum. In a parameter region where the
PEPS possesses an additional U(1) symmetry we were able to resolve these discrepancies
and obtain an ES with the correct state counting and conformal weight of the CFT su(2)1.
In Sec. 5.2 we constructed exact PEPS with a constant finite bond dimension in hybrid
real-momentum space for a CI and a 3D HOTI with chiral hinge modes. After an inverse
Fourier transform in the momentum-space direction, the resulting real-space PEPS have
a finite constant bond dimension in all but one direction, making them candidates for an
efficient numerical description of these phases. The construction of the hybrid TNS is based
on a charge pumping argument relating the CI model to the 1D SSH model, and the chiral
hinge model to the 2D topological quadruple model. We were thus able to identify gapped
next-nearest neighbor Hamiltonians interpolating between the fully dimerized trivial and
topological phases of the SSH and quadrupole models. Their ground states are given by
an MPS and a PEPS with a constant bond dimension equal to 2, respectively. In Sec. 5.2
we studied a wave function for a strongly interacting 3D fractional chiral hinge insulator
constructed by Gutzwiller projection of two copies of the chiral hinge insulator. Using
large-scale variational Monte Carlo computations, we showed that the gapless hinge states
are of the same nature as the edge states of the Laughlin state at filling 1/2. We also
showed that the gapped surfaces host a 2D topological phase with a TEE incompatible
with any known topological quantum field theory for purely 2D systems.

All in all, we have thus studied different aspects of both interacting and non-interacting
chiral topological phases, focusing in particular on their entanglement structure and their
representations using TNS. We have also taken steps towards a better understanding of
interacting chiral topological phases in three dimensions, using the route of HOTIs. There
are several directions for future research related to our work. Further investigation of
the numerical applicability of PEPS to chiral topological phases can definitely be useful.
Furthermore, it would be very interesting, yet also extremely numerically challenging, to
investigate the fate of the single Dirac cones on the horizontal surfaces of the chiral hinge
insulator under the addition of strong interactions. More generally, a characterization of
the appropriate topological field theory for the 3D fractional chiral hinge insulator and
possible relations to topologically ordered and fractonic systems would be desirable.
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[70] Roman Süsstrunk and Sebastian D. Huber. “Observation of phononic helical edge
states in a mechanical topological insulator”. In: Science 349.6243 (2015), pp. 47–
50. eprint: https://science.sciencemag.org/content/349/6243/47.full.pdf.

[71] Zhaoju Yang et al. “Topological Acoustics”. In: Phys. Rev. Lett. 114 (11 Mar. 2015),
p. 114301.

[72] Jia Ningyuan, Clai Owens, Ariel Sommer, David Schuster, and Jonathan Simon.
“Time- and Site-Resolved Dynamics in a Topological Circuit”. In: Phys. Rev. X 5
(2 June 2015), p. 021031.

[73] Victor V. Albert, Leonid I. Glazman, and Liang Jiang. “Topological Properties of
Linear Circuit Lattices”. In: Phys. Rev. Lett. 114 (17 Apr. 2015), p. 173902.

[74] Oleg Dubinkin and Taylor L. Hughes. “Higher-order bosonic topological phases in
spin models”. In: Phys. Rev. B 99 (23 June 2019), p. 235132.

[75] Yizhi You, Trithep Devakul, F. J. Burnell, and Titus Neupert. “Higher-order symmetry-
protected topological states for interacting bosons and fermions”. In: Phys. Rev. B
98 (23 Dec. 2018), p. 235102.

[76] Sunil Mittal et al. “Photonic quadrupole topological phases”. In: Nature Photonics
13, 692-696 (2019) (Dec. 21, 2018). arXiv: 1812.09304v2 [physics.optics].

[77] Marc Serra-Garcia et al. “Observation of a phononic quadrupole topological insu-
lator”. In: Nature 555.7696 (2018), p. 342.

[78] Haoran Xue, Yahui Yang, Fei Gao, Yidong Chong, and Baile Zhang. “Acoustic
higher-order topological insulator on a kagome lattice”. In: Nature Materials 18.2
(Feb. 2019), pp. 108–112.

[79] Xiang Ni, Matthew Weiner, Andrea Alù, and Alexander B. Khanikaev. “Obser-
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