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1 Abstract 

Background 

To end AIDS by 2030, the WHO 90-90-90 targets call for 90% virologic suppression 

in those on ART. In this context, it is crucial to understand which factors drive 

virologic suppression and how available resources can be targeted most effectively. 

This thesis evaluates a large HIV treatment program in Tanzania and explores 

performance and factors associated with treatment outcome on individual and on 

health system level. It then develops a clinical score to predict virologic failure and 

optimize patient management.  

Design  

This cross-sectional facility-based study assessed 702 patients stratified by time on 

ART at 7 study sites selected to represent regions of the study area and health care 

level.  

Methods 

Facility and patient-level information were collected during a single study visit. 

Logistic regression analysis and Generalized Boosted Model Technique derived 

Propensity Score Methods were used to explore health system and individual-level 

factors associated with virological failure. Predictive multilevel mixed logistic 

regression models were developed, externally validated and simplified into a 

normogram for the clinical score which was then tested against WHO recommended 

failure criteria using Decision Curve Analysis.  

Results  

Within the population on ART, 89% was virologically suppressed below 1000 

copies/ml and 86% below 400 copies/ml. Differences could be found between health 

care levels but not regions. The study site had a direct impact on treatment outcome 

on the individual and health system level. Performance of the clinical scores was high 

with a ROC-AUC of 0.8 in the training, and ROC-AUC between 0.7 and 0.8 in the 

population and the geographic validation dataset. Decision Curve Analysis showed a 

net benefit against the WHO routine and targeted viral load monitoring strategies.  

Conclusion 

To fully reach the “the last 90” health system-level interventions should support sites. 

On individual level, the clinical score developed could be used to better identify and 

manage individuals at risk of treatment failure.  
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6 Introduction 

Since more than a decade, coping with the Human Immunodeficiency Virus (HIV) 

epidemic has been in the centre of global public health activities. The introduction 

and increasing availability of antiretroviral therapy (ART) has substantially 

transformed HIV related interventions: while initially HIV therapy was delivered purely 

for humanitarian reasons, it has become central to reach the United Nations 

Sustainable Development Goal 3 (SDG3) which envisions to “end AIDS by 2030”[1] 

as one of the health-related objectives. The 90-90-90 strategy of the World Health 

Organisation (WHO) guides the concerted efforts of national and international 

partners towards SDG3: the first two “90” stand for reaching 90% of individuals living 

with HIV to let them know their status and linking 90% of those reached to treatment 

and care. The “last 90” commit to achieving serologic virologic suppression in 90% of 

those receiving ART. It is envisioned that with this strategy, the rate of new infection 

can be reduced to below 1:1000 per annum, which is considered the threshold 

signifying epidemic control.  

Virologic suppression can be described as the outcome of a complex and dynamic 

interplay between biological factors driving the host-virus interaction and factors on 

individual and community level that impact serologic ART concentrations which  halt 

viral replication. In such a concept, the health system would be an important 

community-level factor impacting treatment success. The “last 90” thus are not a 

static end result of a public health intervention, but the expression of a fragile balance 

between favourable and unfavourable factors within the unit of observation which can 

be it an individual, a region, a time period or a population.  

To achieve “the last 90” as a contribution towards ending AIDS in 2030, virologic 

suppression has to be not only achieved but sustained within programs, across 

populations served, on sub-national level and overtime while maximising the impact 

of available resources through their targeted use.  

In Sub-Saharan Africa, 90-90-90 is implemented through national governments 

supported by international implementing partners who augment and complement 

national structures and services relevant for HIV management. The Walter Reed 

Southern Highlands HIV Care Program (WRSHCP) which is evaluated in this thesis 

exemplifies such a collaboration between national and international actors, 

supporting ARV delivery of the governmental health system in western Tanzania.  
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For such a program, it is not only important to understand how far it has been able to 

achieve 90-90-90 on the programmatic level, but also how it can best improve 

equitable service delivery. In this respect, interventions to improve quality of care 

could strengthen regional service, health care levels or specific sites, but 

interventions could also be targeted to the characteristics of the individual for 

example through a predictive clinical score that could help identify individuals with a 

higher risk of failing treatment. Individuals identified through such a score could then 

be linked to additional targeted services. Especially with the increasing introduction of 

digital patient management systems in public health programs, a predictive score 

could be integrated into patient management software and the predicted risks could 

initiate a triage system that could fast-track low-risk individuals while focussing 

resources on those most likely to benefit.  

To contribute to this understanding, the current thesis addresses the following 

research questions, using the data generated through a multi-centre cross-sectional 

cohort study in the population reached by the WRSHCP: 

1) Does the national ART program supported by WRSHCP achieve “the last 90” on 

the programmatic level? 

2) Can differences in virologic suppression be observed that are associated with 

regions, health care levels or individual Care and Treatment Centres (CTCs)? 

3) Does programmatic outcome differ in subpopulations defined by time on 

treatment and which other factors are associated with virologic failure on the level 

of an individual accessing ART within the program? 

4) Can a predictive diagnostic score be developed that could identify individuals with 

a higher risk of exhibiting virologic failure?  

 

As the WRSHCP is implemented through the national structures, results generated 

on program level can be generalized to the national ARV service delivery in the 

region covered by the program and further inform other ARV programs in comparable 

settings and with comparable populations. This transfer will be supported by the use 

of three different definitions of virologic failure as an outcome measure based on the 

rationales presented in 6.1.3.  
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6.1 Background  

6.1.1 Epidemiology Of HIV/AIDS In Tanzania  

After the first three cases of AIDS were reported from Northern Tanzania in 1983, 

HIV infection had spread across the country by 1986. By 2017 the national 

prevalence was estimated to be 5% [2] and has since then plateaued at this level, 

with 5% national prevalence reported in the most recent national survey conducted in 

2018 [3]. As illustrated in Figure 1, the population is not uniformly affected. Women 

have an overall higher prevalence than men (national prevalence of 6.5 per cent 

among females and 3.5 per cent among males) [3] and contract HIV earlier in life. 

While female peak prevalence of 12% is found at 45 to 49 years, the prevalence in 

males is half that in women during adolescence and as young adults and only peaks 

between 40 and 44 years at 8.4% [3]. Annual HIV incidence in the overall population 

is estimated at 0.3%, with 0.4 and 0.14 in women and men respectively [3]. 

 

(error bars represent 95% confidence intervals) 

Figure 1: HIV Prevalence by Gender and Age 2017 [3]  

Sub-national differences exist in HIV prevalence, with lower prevalence along the 

coastal regions and a concentration of the epidemic in the highlands of Tanzania 

where this study was conducted. The study regions Ruvuma, Mbeya, Katavi and 

Rukwa are above the national average with an HIV prevalence of 5.6, 9.3% 5.9% and 

4.4% respectively (Figure 2) [3]. 
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Figure 2: HIV Prevalence by Region 2016 [3] 

 

6.1.2 National And International Response To HIV/AIDS In Tanzania 

The initial response to HIV/AIDS in Tanzania focused primarily on prevention, but in 

2001, the national HIV/AIDS policy acknowledged the right to HIV treatment for 

people living with HIV [4]. First treatment targets were set in the national strategic 

plan for HIV/AIDS 2003-2008, which aimed to accelerate ART treatment access from 

16.000 people on ART in 2004 to 423.000 in 2008 [5]. In the following National 

Strategic Framework 2008-2012, access to treatment and care had become one of 

three priorities [6]. The third strategic plan for the period of 2013-2017 fully centred 

around comprehensive antiretroviral therapy, considering the continuum of care from 

HIV testing to ART access the most important area of primary investment [7].  

In 2014, the Joint United Nations Programme on HIV/AIDS (UNAIDS) launched the 

ambitions 90–90–90 targets that aimed to give 90% of all People living with HIV 

knowledge of their HIV status, 90% of those diagnosed HIV sustained antiretroviral 

therapy and 90% of all people receiving ART to be virologically suppressed. 

Tanzania incorporated 90-90-90 as a pathway to reach the “three zeros” – Zero New 
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HIV Infections, Zero AIDS-related Deaths, and Zero Stigma and Discrimination –at 

the heart of the 2013-2017 strategic plan [7], reflecting the countries’ commitment to 

HIV elimination. It is estimated that for every 1% increase in ART coverage, an 

estimated 1-2% decline in HIV transmission risk can be expected and that a 

successful 90-90-90 strategy will allow achieving virological suppression in 73% of 

the total HIV infected population [8]. Such a level of suppression is expected to result 

in epidemiological control of HIV at the population level, which is commonly defined 

as HIV transmission below 1:1000 per annum.  

The increased focus on treatment provision resulted in an acceleration of treatment 

access and in 2016 an estimated 62% people living with HIV (850.000 [CI 480.000 – 

740.000]) of those in need of treatment were on ART [9]. At the same time, the 

increase of the CD4 threshold for ART start from 250 to 500 CD4 cells and later to 

the “test and treat” policy led to an increase of the overall population of HIV infected 

individuals eligible for treatment [8,10,11]. However, these changes also increased 

the pressure on infrastructure and patient load at the facilities at a time when funds 

for HIV specific programming stagnated as donors re-oriented themselves to the new 

UN Sustainable Development Goals [12] that prioritize health system support over 

support for disease-specific interventions [13,14].  

The 2016/2017 Tanzania HIV Impact Survey (THIS) provides information on the 

progress made 3 years after the beginning of 90-90-90: It found 52.2% of PLHIV 

aged 15 to 64 years knew their HIV positive status, and among these, 90.9% were on 

ART. Of those on ART, 87.7% (89.2 per cent of HIV-positive females and 84.0 per 

cent of HIV-positive males) were virally suppressed below 1000 copies/ml [3]. 

However, due to the large proportion of undiagnosed HIV infections, the goal of 75% 

viral load suppression on a population level could not be achieved [3]. Differences in 

suppression could be seen by age and gender, and gender disparity in viral load 

suppression was greater at a younger age [3]. Additionally, regional variations in the 

viral load suppression were observed, with 57.4% and 56.7% for Mbeya and Ruvuma 

Region, while Rukwa and Katavi region (which both were unified in one district when 

this study was conducted) showed an even lower suppression of 42.9% and 47.3% 

respectively (Figure 3) [3]. 

Despite the nearly universal adoption of the 90-90-90 strategy in Tanzania as much 

as internationally, it’s practical implementation and the possibility to achieve the 
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underlying objectives have been repeatedly questioned, arguing that even in high-

resource countries, 90-90-90 has not been achieved [15]. 

 

Figure 3: Tanzanian HIV Impact Survey 2016-2017 (THIS): Virologic Suppression <1000 copies 

in HIV Infected Individuals by Region [3] 

 

The Walter Reed Southern Highland Care And Treatment Program In Tanzania As 

Example For Implementation of 90-90-90 In Tanzania  

The Walter Reed Southern Highland Care and Treatment Program in Tanzania 

(WRSHCP) is an example of concerted national and international efforts to control 

HIV in Tanzania and is the program evaluated in this thesis:  

The President’s Emergency Plan for AIDS Relief (PEPFAR) invested a total of 

4,205,708,000 USD between 2004 and 2017 into HIV related interventions [16], with 

the Walter Reed Army Institute of Research being one of its prime recipients. This 

Institute supports a network of sites conducting HIV prevention, care, and treatment 

as much as HIV vaccine and therapeutics research across more than four other 



Thesis Lennemann  

20  

Africa countries [17] and started to support the governmental roll-out of ART in 

Tanzania in 2004 in the context of the larger United States Embassy PEPFAR 

mission in Tanzania. In this context, the Walter Reed Southern Highland Care and 

Treatment Program (WRSHCP) was conceived with a mission to develop and 

implement a comprehensive community approach to HIV care and treatment in 

Mbeya, Ruvuma and Rukwa Region. Activities by WRSHCP are conducted in 

collaboration with the Mbeya Zonal Referral Hospital (MZRH) and the Mbeya, Rukwa 

and Ruvuma Regional Medical Offices in close coordination with the Ministry of 

Health and the National AIDS Control Programme. WRSHCP provides technical 

assistance for clinician and laboratory training using the national curriculum as well 

as support for laboratory services. It thus supports the facility-based national health 

system on referral, regional and district level. 

6.1.3 Measures of Outcome To Determine Treatment Success 

The introduction of 90-90-90 also shifted the outcome measures used to judge 

treatment success on the project and individual level. On the individual level, clinical 

or immunological parameters were replaced by viral load measurement [18, 19], 

while on the population level, the focus was shifted from the number of people 

accessing ART to a proportion of the client population with viral suppression as a 

programmatic outcome measure.  

Blood viral HIV concentration has become the standard to judge treatment 

effectiveness as much as transmission risk and is the unit within which treatment 

success is measured. But the cut-off  to convert the continuous viral load 

measurement  to a binary measure of success or failure depends on underlying aims 

and settings, with the following three main cut-offs commonly used internationally: 

Below 1000 Copies/ml – Definition Of The World Health Organisation (WHO)  

Current WHO guidelines use a cut-off of above 1000 copies/ml as the definition of 

virologic failure both for defining treatment failure in the individual [20-22] and on 

programmatic level [23]. Individuals who fall below this cut-off are counted under the 

“last 90”. The choice of this cut-off is based on the following considerations: 

1) The cut-off is feasible in a setting with constrained infrastructure. 

The higher cut-off was  chosen for considerations of feasibility in low resource 

countries as it would allow the use of dried blood spots - a sampling method already 
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established for early infant HIV diagnostics - in the context of treatment monitoring, 

simplifying sample generation and transportation for the price of a higher detection 

limit for HIV in these samples [24].  

2) The cut-off prevents unnecessary treatment switches without compromising 

clinical prognosis for People Living With HIV: 

Temporary viremia under treatment is frequently observed: next to drug failure due to 

resistance development, co-infections, reduced adherence, co-medications and 

increased viral production in compartments other than blood [25] can all contribute to 

low-level replication or temporary “blips” in the presence of effective treatment that is 

not always associated with resistance development [26, 27]. Without the opportunity 

to conduct a drug resistance test and acknowledging the large intervals between the 

viral load tests arising from the prohibitive high costs of the viral load tests, a lower 

cut-off as a definition of treatment failure - such as >50 copies used in high resource 

countries - would result in a high level of unnecessary treatment switches to second-

line therapy, compromising cost-effectiveness of the HIV program as a whole and 

unnecessarily limiting future treatment options for the individual. As viral loads below 

1000 copies/ml have been associated with low risk of disease progression [28], this 

cut-off is thus considered a suitable threshold where clinical morbidity and mortality of 

HIV infected individuals is not compromised. 

3) The cut-off is relevant with respect to HIV transmission 

On population level under the aspect of treatment as prevention, HIV transmission 

has been shown to be dependent on the level of viremia [29] and is considered 

unlikely below 1000 copies/ml [30]. In serodiscordant heterosexual couples in 

Uganda, transmission probabilities significantly dropped from 0.0023 per act at 38500 

copies/mL to 0.0001 per act at viral loads of less than 1700 copies/mL [31]. Also in 

respect to mother to child transmission of HIV, only 1% vertical transmission has 

been reported under this cut-off [32]. In consequence, this cut-off is seen as a 

pragmatic compromise that is feasible in a real-life setting.  

Below 50 Copies/ml – The Linear Detection Limit Of Commonly Used Viral Load 

Tests 

The WHO definition of treatment failure of viral load above 1000 copies/m has been 

contested in various ways: Concerns were raised about applicability across different 
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populations such as infants, children, adolescents and pregnant and breastfeeding 

women [30] and the safety of this rule for individuals with low-level viremia below the 

WHO threshold. Especially prolonged low-level viremia has been linked to 

subsequent failure in high-income settings [27, 33-35] and individuals with replicating 

virus have been shown to have a higher risk of morbidity and mortality independent 

of their immunological status. Similar evidence is emerging from Sub-Saharan Africa: 

Studies assessing resistance patterns in patients failing with low-level replication 

indicate the substantial presence of drug resistance that compromises future 

treatment options and argues for a lower cut-off for individual client management [35, 

36]. A large South African cohort managed according to WHO guidelines most 

recently reported 23.3% low-level replication, with an increased risk of treatment 

failure or a switch to second-line treatments with increasing viral load. The study 

reported a hazard ratio of 3 for replication under 200, 4.2 for clients replicating 

between 200 and 400 copies/ml and 7.7 for those between 400 and 1000 copies/ul 

[37, 38]. These considerations support the use of this lower cut-off of 50 copies/ml or 

below and drug resistance test driven treatment switch which is the gold standard in 

resource-rich settings.  

Below 400 Copies/ml - A Cut-off For Quality Assessment Of Service Providers 

A threshold of 400 copies – which was the detection limit of the first HIV viral load 

test available in the 1980ies- has been used alongside 1000 copies to describe 

treatment outcome especially of programs where repeated measurements were not 

feasible to avoid misclassification of transient viremia as treatment failure. In 

research-rich settings, >400 copies or > 200 copies are applied as cut-offs in the 

context of quality assessment of the health care service rather than individuals, 

adjusted by a case-mix that accounts for morbidity and mortality [39]. The Ryan 

White HIV/AIDS Program, which provides HIV primary medical care and support for 

uninsured people living with HIV in the United States by funding states, 

cities/counties, and local community-based organizations has included this cut-off for 

monitoring funded site performance in the context of it’s Performance Measure 

Portfolio [40]. 

Program Attrition As Form Of Treatment Failure 

While treatment success can best be defined through viral load below a certain cut-

off as outlined above, treatment failure does not only include viral replication above 
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this threshold in individuals remaining in care, but also a complete drop-out of the 

individual from the service. Real attrition may be due to self-transfer, death, true 

service drop-out, but on the population level, challenges related to documentation 

such as duplication of hospital IDs or dual registration of clients [41-44] can inflate 

patient numbers and thus bias results. Throughout public health programs in Africa, 

attrition is high, with an overall estimate of 33% attrition of which 18.8% are attributed 

to true treatment termination and 14.7% to mortality after 5 years on ART[45]. WHO 

has established <20% attrition of a program as a quality measure, but reports on 

attrition show a wide range [46] and attrition based on programmatic data is 

increasingly considered to be prone to overestimation as individuals might choose to 

self-transfer or re-access treatment following a treatment interruption[45, 47, 48] . 

Reasons for attrition also change over time, with the declining risk of death and 

increased undocumented transfers and treatment interruptions with longer time on 

treatment [43, 49] and may differ in urban and rural areas [43]. While the dynamics of 

attrition are poorly understood, it is likely that dynamics driving viral replication are 

also underlying attrition and identification of individuals likely to fail treatment might 

also help reduce real project attrition. 

6.1.4 Factors And Dynamics Determining Viral Replication And Virologic 

Suppression  

Viral replication in this thesis is seen as the product of complex dynamics and 

interactions between biological, socio-cultural and community-level factors that either 

impact drug levels hampering viral replication or affect the virus-host interaction 

driving HIV associated morbidity and mortality.  

Individual-level Characteristics Impacting Adherence  

On the level of an individual living with HIV, individual characteristics can impact the 

ability to adhere to the daily drug regimen, resulting in irregular dosing intervals, 

inadequate drug intake and drop-out from the ART program while individual biological 

factors - especially co-morbidities and their treatment - can interfere both with the 

ability of the individual to adhere to treatment as with the efficacy of the drugs 

through drug-drug interaction or compromised resorption. Unchecked viral 

replication, on the other hand, drives chronic inflammatory processes of immune 

activation, that in turn increase the risks for non-infectious co-morbidities such as 

cardiovascular diseases.  
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Among demographic variables that have been associated with treatment outcome in 

Tanzania are younger age [50] and male gender [49, 51, 52], marital status, level of 

education, literacy and distance to an ART treatment clinic. Many of these are also 

indicators of the economic and social status of an individual which in turn may impact 

individual ability to manage consequences of infection from stigma to practicalities 

surrounding clinic access and regular drug intake: Out of pocket payments are known 

barriers to health care access and are especially relevant in a disease that requires 

time-consuming life-long clinic visits on a monthly basis. Consequently, time and 

money available to access ART have been an established variable defining treatment 

failure [53]. On the other hand, the ability to manage stigma associated with HIV is 

crucial for continuous adherence and might be decreased with increased income and 

social standing especially in the public health HIV programs where confidentiality 

sometimes is constrained. As in many other diseases where no cure is offered 

through biomedicine, alternative health belief models are consulted by many clients 

to varying degrees next to the biomedical healthcare system [54, 55]. The personal 

concept of health and illness and the reliance on biomedical or alternative healing 

traditions will shape the way individuals interact with the biomedical treatment 

strategy provided by the health system and thus impact the virologic outcome. 

Client-level factors interfere with the efficacy of ART, or by influencing viral replication 

through impacting immunological control. A variety of laboratory and clinical 

parameters has been associated with treatment outcome in resource-limited settings, 

of which the WHO clinical and immunological failure criteria are the best-established 

examples [51]. However, due to their low sensitivity and specificity of these clinical 

parameters, other variables are constantly explored as alternative surrogate 

parameter for treatment monitoring or to predict treatment failure: next to variables at 

treatment start, such as CD4 count, weight and poor functional status [46], a positive 

association with virologic suppression has been reported for haemoglobin 

concentration [53], total lymphocyte count [53] and CD4 counts at the time of 

assessment [46]. 

Further, the drug regimen provided in the context of first-line ART unsurprisingly is 

highly relevant for treatment outcome and defines the type and speed within which 

drug resistance emerges. In a comparable study conducted in Uganda, virologic 

suppression was positively associated with Efavirenz use [53]. Drug regimen also 

impact adherence as side effects often cause drug avoidance [56] either through 
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directly affecting drug intake for example when causing vomiting or confusion, 

through making the infection visible as in case of lipodystrophy or because the fear of 

side effects outweighs the expected or perceived benefit of the medication.  

Drug-drug interactions of ART with co-medication further may complicate drug 

efficacy and tolerability, while prophylactic short-term use of ART – such as single-

dose NNevirapine during pregnancy to prevent vertical transmission - might have an 

impact on the outcome of later ART due to long half-life and low resistance barrier of 

some drugs.  

Community And Context Within Which HIV Treatment Takes Place 

On a community level, dynamics driven by the environment within which treatment 

takes place can support or hamper individual treatment outcome: Client-Community 

interactions such as gender and age normative behaviour or economical 

discrepancies can impact individual adherence while cultural believes and norms 

modulate disease perception that guides individual health-related behaviour.  

A functional personal social environment with strong social support networks has 

been shown to benefit treatment outcome [57]. Social support may mediate 

pressures and practical challenges that are a consequence of HIV infection and ART 

treatment. A protective factor in this respect, for example, is the ability to disclose 

one’s own HIV infection within the family and to sexual partners so that the day-to-

day reality of taking medication and attending CTCs is not complicated by the need of 

confidentiality. On a different level, responsibility for other individuals, be it in the form 

of their financial dependency, care for someone with HIV [57], or parenthood often 

serves as a motivation to adhere to ART [57]. Likewise, being employed has shown 

to be an international predictor of treatment adherence [58]. Support groups and 

treatment buddies can be counted in this context as an extended private social 

network.  

Health System Impacting Treatment Outcome  

Integrated into the various dynamics of the community, the health system plays an 

important role in mediating treatment outcome beyond providing the correct drugs 

consistently: Service satisfaction and client-centred service delivery define success at 

the client-clinic interface, while treatment can be compromised by facility-related 
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obstacles such as drug stock-outs, doctor to client ratios and other variables of 

service quality:  

Complex dynamics at the client-clinic interface may impact individual adherence to 

ART [59] at various levels: Logistical aspects of clinic access such as distance from 

home to CTC, duration of the clinic visit and related monetary, time and logistical 

costs have been established factors influencing the individual ability to sustain ARV 

[57]. Long waiting time, friendly staff, level of confidentiality or supportive opening 

hours further can modify the interaction of the individual with the health system and 

impact willingness to prioritize regular treatment access over competing priorities in 

the individual’s life. ART clinics may employ various measures to mediate at the 

client-clinic interface: telephone calls or automated SMS messages and home visits 

of outreach programs have shown a positive impact on retention in care [43]. 

Services provided at the clinic such as frequency of counselling, facility-based 

support groups or electronic reminders for the daily drug dosing [60, 61] but also 

complementary services such as nutritional support [62] are associated with positive 

treatment outcome, as is the wider clinic infrastructure such as availability laboratory 

reagents, drugs or space and overall years of clinic operation [51]. In this respect, 

Health Care Workers (HCW) are central to treatment outcome which is positively 

associate with HCW training levels [63, 64], task shifting, the use of peer educators, 

and HCW attitudes and resulting practices [65]. 

Clinic effectiveness may vary and clinics and might have the potential to maximize 

output with the existing infrastructure through streamlining workflow, roles and 

responsibilities. Di Giorgio et al. estimated that in Kenya, Zambia and Uganda facility 

capacity to initiate new individuals on ART could be increased by 40% if 

effectiveness could be raised from the below 50% observed to 80% [66] without 

introducing differentiated care models that may shift ART treatment and care to the 

community level.  

Next to improving efficiencies of clinics, differentiated care models have been 

developed that diversify the health system through the addition of service delivery 

models that go beyond ART provision in a dedicated CTCs: Facility-based outreach 

services [46], community-based ART[65, 67, 68] or HIV services integrated into other 

hospital-based services such Outpatient Departments (OPD), Tuberculosis (TB) 

services or ANC services [62] have shown to positively impact identification, linkage 
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or retention and are considered efficient and cost-effective approaches that diversify 

the entry point to HIV treatment and care and address obstacles to treatment access. 

Further, as a positive impact on population-level disease control is only possible if 

service equity can be achieved, these models might better target the needs of 

specific sub-groups of the client population such as clinically ill or second-line 

patients, pregnant women [62, 67], HIV infected adolescents [50] or key populations 

[50] that otherwise might be left behind, jeopardizing the overall program outcome. 

Differentiated Care Models further reduce overall client volume at clinics as they shift 

ART services to the community level. This decongestion at the clinic level in itself has 

been directly associated with improved treatment outcome [69]. Nevertheless, 

differentiated care models mainly address the first and second 90, and especially in 

Tanzania CTCs remain the major providers of ART and thus central to reaching the 

“last 90”. 

Quality of health care service has been directly linked to treatment outcome also in 

resource-rich settings: In 2010, national HIV/AIDS performance measures for system-

level quality improvement were published for the US [70], and >80% of those 

measures received was associated with survival prior adjustment for disease severity 

[85]. Podlekareva used a similar set of indicators to assess the quality of care in the 

EuroSIDA study by comparing services provided by the study sites to the respectively 

applicable treatment guidelines. Regional differences observed could be correlated 

with the client-level virologic outcome. Nevertheless, it is unclear which parameters 

best describe the quality of care of a facility, and different outcome measures, such 

as viral suppression or retention in care, have shown to be only poorly correlated with 

each other.  

6.1.5 Management Of Virologic Failure In The Public Health Approach 

Virologic suppression under ART is desirable for the HIV infected individual as it 

prevents morbidity associated with HIV infection on the individual- and HIV 

transmission on the population level. Viral replication, on the other hand, can indicate 

incomplete drug adherence and increased risk of drug-resistant development.  

WHO recommends two strategies depending on available resources to address 

virologic failure in individuals: When choosing routine viral load monitoring, viral load 

is monitored in all patients on ART at 6 and 12 months of after ART start and 

annually thereafter. Alternatively, a targeted viral load approach only in clients with 
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suspected treatment failure – such as those who meet the definition of clinical or 

immunological failure - is recommended. In any case, if the first viral load test shows 

a viremia above 1000 copies/ml, intensified adherence support interventions should 

be initiated and a second viral load should be performed after 2-3 months. If this 

second viral load remains above 1000 copies, treatment should be switched to 

second-line therapy [71]. However, due to delays surrounding sample transportation, 

availability of reagents and result feedback, this process often takes substantially 

longer [72] and the complexity of this algorithm is considered one of the reasons why 

uptake of second-line ART is much lower than what would be expected, resulting in 

preventable morbidity and mortality in people in care [73]. Thus, alternative 

approaches have been recommended both in respect to using a lower cut-off for 

treatment switch and switching individuals after the first high viremia [73]. 

6.1.6 Clinical Scores For Client Management And Triage In the Public 

Health Approach 

Risk stratification and triage are central to clinical medicine across different 

disciplines. From the APGAR score to assess neonates to the Framingham 

Cardiovascular Risk Score to predict cardiovascular risk, clinical scores are often 

used to guide the choice of prophylaxis and therapeutic interventions [74] and tailor 

treatment to the risk profile of the individual client [75]. Many of these scores are 

based on mathematical algorithms that predict risk based on surrogate variables 

which are then presented as a paper-based nomogram or score chart or integrated 

into web-based calculators, apps or electronic patient record systems to inform 

decision making both on individual and population level [76]. Diagnostic risk scores 

can predict the probability of the presence of diseases in an at-risk person or 

differentiate between individuals more likely to benefit from particular treatments or 

interventions. They thus allow to better target available resources and promise more 

cost-effectiveness.  

Several clinical risk scores have been developed in for HIV related patient 

management in Africa mainly in to identify HIV negative individuals with high risk of 

HIV acquisition that then could be targeted with tailored preventive messaging [77, 

78] or to determine Co-infections such as Tuberculosis [79] but also to improve 

diagnosis of clinical failure on ARV [72] [80, 81]. So far, clinical scoring does not play 

a large role in the public health approach and has not been integrated into treatment 

guidelines on a national or international level. However, with increasing digitalization 
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of the health care sector in developing countries which also results in increasing 

availability of electronic patient management software in clinical and public health 

projects, new opportunities arise to integrate scores and utilize prediction algorithm to 

guide the patient flow through the clinic, optimizing clinic efficiency and enforcing 

treatment standards. Scores could also support tasks-shifting to less specialised 

HCW in the context of community-based differentiated care models, or integrated 

care models where HIV is treated in clinics specialised in care of pregnancy, TB or 

the general outpatient department, where scores integrated in decision support 

systems could assist patient triage, management and referral of clients not 

responding well to treatment.  

6.2 Study Objectives And Rationale 

If viral suppression as a central outcome measure of the “last 90” is understood as a 

result of interacting dynamics between virus, host and the socio-cultural context 

including the health system, research exploring viral suppression needs to investigate 

these dynamics both on individual and health system level.  

In this thesis, such an investigation is conducted using the Walter Reed Southern 

Highlands HIV Care Program (WRSHCP) as an example. The WRSHCP is a large 

treatment program which uses the national health system to deliver HIV treatment 

and care in western Tanzania thus information gained from the program evaluation 

may inform national HIV treatment policy as much as other settings with comparable 

population and health system characteristics. Using the data of a cross-sectional 

study that included a retrospective data collection component, the current research 

aims to: 

1) Describe the population benefitting from the WRSHCP and the facilities within 

which this population accesses care. 

This objective will focus on the descriptive presentation of the study population 

and the study sites. 

2) Investigate the ability of the WRSHCP to achieve “the last 90” on the 

programmatic level using three different cut-offs commonly used as binary 

outcome measures of treatment success. 

3) Explore if differences in virologic suppression can be observed associated with 

regions, health care levels or individual Care and Treatment Centres (CTCs) 

using different virological cut-offs.  
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Towards this aim, an analysis will also include comparisons adjusting for 

population differences through Propensity Score (PS) as detailed in the method 

section 8.9.2. As an alternative method to regression analysis preferable in the 

presence of multiple variables, adjustment by Propensity Score can balance the 

distribution of observed baseline covariates between the different exposure 

groups [82-84] and even allows a causal attribution of outcome to exposure [82, 

85-88]. 

4) Explore treatment outcome in subpopulations defined by time on treatment and 

identify factors associated with virologic failure on the client level. 

5) Develop and validate a predictive clinical score that can assist in identifying 

individuals in the population who are likely to fail ART > 400 copies/ml based on a 

theoretical framework that conceptualizes individual treatment outcome as the 

result of a multifactorial interplay between individual and community factors.  

This score is aimed to be used in the facility-based setting of the national ART 

program in Tanzania but could be adapted to other populations such as 

community-based ART delivery or national programs in other developing 

countries. It is envisioned as a screening tool for health care workers – particularly 

clinical officers, doctors and other personnel who request viral load tests in ART 

clinics - to identify individuals with increased risk of treatment failure. In order to 

identify viral replication early when additional interventions still promise viral re-

suppression, HIV viremia above 400 copies/ml would be the preferable outcome 

to be predicted over the higher WHO definition of clinical failure above 1000 

copies/ml.  

6) Use Decision Curve Analysis to explore the benefit of the score developed in 

objective 5 in the context of the WRSHCP.  

7 Endpoints  

7.1 Primary Endpoint  

To estimate the proportion of program participants on ART for at least 6 months who 

have achieved viral load suppression in this study defined as >400 copies /ml. 

7.2 Secondary Endpoints 

1) To describe viral load suppression in the cohort according to: 
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a. WHO virologic failure criteria defined as >1000 copies/ml.  

b. The most conservative cut-off of >50 copies/ml.  

2) To assess the impact of the site, region, health care level and ART stratum on 

program outcome. 

3) To describe in separate analysis client factors associated with viral suppression 

4) To develop a theoretical contextual framework that conceptualizes individual 

virologic treatment outcome as a balance of underlying dynamics supporting or 

hampering virologic suppression.  

5) To develop and validate a clinical score based on the framework developed able 

to predict virologic suppression in the study population using the definition of >400 

copies/ml as a virologic failure.  

6) To explore the clinical utility of the clinical score in the public health approach 

using Decision Curve Analysis.  

8 Methods 

8.1 Study Design 

The RV288 is a cross-sectional, observational cohort study with a two-stage 

sampling design. In the first stage, a sampling frame was generated from the 

WRSHCP programmatic data and 7 study sites were selected stratified by region and 

health care level as detailed in section 8.3.1. In the second step, a sample size of a 

total of 700 participants was recruited. Each site contributed 100 participants that had 

been stratified by time on ART and selected through Probability Proportionate to Size 

(PPS) sampling as detailed in section 8.3.2. Following an informed consent 

procedure as described in section 8.3.2, a single visit was conducted that included a 

blood draw, clinical assessment and a patient questionnaire as specified in section 

8.5. With random sampling in both stages, the study design resulted in a self-

weighted study sample considered representative of the WRSHCP population. Figure 

7 presents a flowchart of the two-stage study design and recruitment of participants.  

8.2 Setting  

The study was part of a program evaluation titled “RV288 - A Virological Assessment 

of Patients on Antiretroviral Therapy in the US Military HIV Research 
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Program/President’s Emergency Plan for AIDS Relief (PEPFAR) – Supported 

Programs in Africa”. This multi-country program evaluation selected a representative 

sample of 22 ART clinics from six MHRP-supported PEPFAR programs in Kenya, 

Nigeria, Tanzania, and Uganda. Overall, the study population across the different 

countries targeted a randomly selected sample, stratified by time on ART (6-12 

months; 13-24 months; >24 months), of approximately 2600 MHRP-supported 

PEPFAR program adult participants (either 325 or 700 participants from each of the 

six programs) enrolled in the MHRP-PEPFAR-supported antiretroviral treatment 

programs on first-line ART for at least 6 months who had had at least one follow-up 

ART clinic visit in the last 6 months.  

The Tanzanian country program was evaluated through the RV288d protocol, which 

is the focus of this thesis. This protocol targeted 700 program participants at 7 sites 

stratified by region, time on ART and health care level. The study was implemented 

between 2013 and 2014. All sites were visited one month prior enrolment start to 

conduct the site assessment and clients were then enrolled over a period of two 

months. Sites were consecutively included by region, starting from Mbeya referral 

hospital and ending in Rukwa District Hospital. No follow-up was planned or 

conducted. 

8.3 Participants 

Participants were selected in a two-stage sampling design with the first stage 

selecting study sites and the second stage selecting participants.  

8.3.1 Study Site Selection 

Inclusion And Exclusion Criteria For Sites: 

Sites were eligible for selection if they had: 

- Offered ART services for at least 12 months.  

- Had at least 100 patients on ART.  

- Received support from WRSHCP.  

Site Stratification 

Accounting for Region and Health Care Level strata, sites were selected as follows:  
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1. Within the program catchment area, Mbeya Zonal Referral Hospital (MZRH) in 

Mbeya Region was the only tertiary hospital, hence was included to represent the 

referral health care level (sampling probability=1). 

2. Four regional hospitals were in the project catchment area, one in Mbeya and 

Ruvuma respectively (sampling probability=1) and two in Rukwa (sampling 

probability =0.5). As the study aimed for regional representation, a regional 

hospital was included from each region.  

3. On the district level, one hospital from each region was randomly selected, taking 

geography, partner type, length of time offering ART services, number of patients 

on ART and logistical considerations into account. 

The resulting study sites considered representative for the PEPFAR sites were:  

Mbeya Region:  

Mbeya Zonal Referral Hospital    (MZRH) 

Mbeya Regional Hospital in Mbeya  (MbRH)    

Mbeya District Hospital in Tukuyu      (MbDH)  

Ruvuma Region:   

Ruvuma Regional Hospital in Songea  (RvRH)   

Ruvuma District Hospital in Mbinga  (RvDH)  

Rukwa Region  

Rukwa Regional Hospital in Sumbawanga (RuRH)    

Rukwa District Hosptial in Mpanda  (RuDH)  

8.3.2 Participant Selection 

Inclusion Criteria 

To be eligible for study participation, study participants had to be: 

- Willing and able to provide informed consent. 

- Enrolled in an MHRP-supported PEPFAR program. 

- ≥18 years of age. 

- On first-line ART for at least 6 months.  



Thesis Lennemann  

34  

- Had attended at least one routine ART clinic visit in the past 6 months. 

- Willing to be interviewed and to provide a blood specimen.  

- Registered at the clinic under a patient ID on the Pre-recruitment List through the 

random selection process described below. 

Exclusion Criteria 

Study participants were excluded if they met any of the following criteria: 

- On second-line ART. 

- Mental or physical incapacity with the inability to provide informed consent. 

Selection Procedure Of Study Participants 

Four weeks prior study initiation at any of the study sites, the respective site was 

visited by the Principal Investigator and a complete list of patient identifiers and their 

respective ART strata was collected for all active subjects at this site. This list 

constituted the sampling frame for participant selection.  

Clinic identification numbers were randomly selected from this list by an independent 

statistician and a Pre-Recruitment List was produced for each ART strata. To achieve 

Proportional Probability Sampling (PPS) by ART strata, a recruitment target was set 

for each stratum so that the proportion of study participants in this stratum reflected 

the proportion of clients in the patient population in this stratum at this site. 

In a second step, the clinic identification numbers on the Pre-Recruitment Lists were 

matched to the corresponding patient medical records. If according to the medical 

record clients were likely to meet the inclusion criteria, they were approached for 

study participation. Sites with patient tracking procedures in place scheduled 

appointments for study enrolment along with the participant’s routine clinic visits. 

Those sites without patient tracking procedures waited for patients to report for their 

routine ART clinic appointments. Each site recruited participants in the order as they 

appeared on the Pre-Recruitment List until all stratification groups were filled. If a 

client could not be enrolled, the reason for non-enrolment was documented in the 

Pre-Recruitment List. At each site, patients were recruited over 4-8 weeks. Figure 4 

depicts the principle of the participant selection process, Figure 7 describes the 

recruitment outcome of the study population.  
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Figure 4 Principle Of Selection Procedure For Study Participants Using A List Sampling Frame

 

Informed Consent Procedure 

Once clients reported to the clinic, they were approached for study participation. 

Written consent forms were available both in English and Kiswahili. Potential subjects 

had the consent form administered to them in a confidential environment by a trained 

member of the study team in the language best understood. For illiterate subjects, an 

impartial witness separate from the study staff was sought to witness the consent 

process following a study-specific Standard Operation Procedure that emphasized 

the voluntary participation and ability to withdrawal without penalty at any time. 

8.4 Variables  

The following definitions were applied for variables used in this analysis 

8.4.1 Outcome Variable: Virologic Suppression  

Virologic outcome was defined as binary endpoint Virologic Success/Failure based 

on the blood HIV viral load as measured at the study visit. In alignment with the three 

This figure demonstrates participant selection using a fictive site with 2000 participants on ART > 6 

months with 20% in the 6-12, 30% in the 13-24 and 60% in the >24 month stratum: In the first step (1.) a 

complete list of clinic identification numbers by stratum is compiled. From this list, participants are 

randomly selected by a statistician independent from the study site, who prepares the Pre-Recruitment 

List and also provides recruitment targets for each stratum (2.). The list is returned to site (3.) that starts 

recruiting participants in order given by the Pre-Recruitment List (4.). The study population thus is 

representative of the study site population.   
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different cut-offs used globally as discussed in section 6.1.3, three binary endpoint 

variables (VS400, VS1000, VS50) were created to describe treatment outcome for 

the primary and secondary endpoints. VS400 was the primary outcome parameter for 

which sample size and power had been calculated. Figure 5 presents the names, 

definitions of the different cut-offs used and the respective endpoint level.  

Name Virologic Failure Virologic success Endpoint* 

VS400 >400 Copies/ml =/<400 Copies/ml Primary 

VS1000 >1000 Copies/ml =/<1000 Copies/ml Secondary 

VS50 >50 Copies/ml =/<50 Copies/ml Secondary 

*Sample Size was powered for the primary endpoint only. 

Figure 5: Definitions of Binary Outcome Variable “Virologic Success/Failure” Used In This 

Analysis. 

8.4.2 Individual Level Exposures Assessed As Potential Confounders, 

Predictors and Effect Modifiers In The Analysis. 

In line with the perception of virologic failure as a multifactorial outcome, additional 

information about the sites and individuals on treatment were collected as exposures 

with potential to confound, predict or modify the outcome depending on the method 

and analysis aim. Below, they are listed by thematic area: 

Immunologic Parameters 

CD4 counts at study visit, prior treatment start and available highest cd4 count were 

collected during the study and further immunological outcome parameters were 

derived from their relationship as follows:  

Immunological failure (IF) was defined in line with the Tanzanian National Guidelines 

[89]. Based on available CD4 count development over time, IF was present if at least 

one of the following criteria was met: i) CD4 count at study visit dropped below 

baseline or ii) CD4 count dropped below 50% of peak CD4 value on treatment or iii) 

None of the available CD4 count on treatment was >100.  

Immunologic Success (IS) was defined as an improvement in the immunological 

status characterized as an increase in CD4 count of at least 50 cells/mm3 per year or 

CD4 cell count >350cells/mm at study visit [2]. Where baseline or peak CD4 count 

was missing, cases were classified as unknown.  
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Clinical Parameters  

Next to WHO stage defining events prior, during ART and on a study visit, specific 

non- communicable diseases of interest were collected. These included non-

communicable diseases (Hypertension, Diabetes, heart, renal and liver disease) (ii) 

common co-morbidities of HIV infection (Anemia, Cancer, Tuberculosis, sexually 

transmitted infections) and diseases in the neurologic-mental health domain 

(migraine, seizures and depression) (diabetes, cardiac events, liver diseases).  

Additionally, a detailed assessment of symptoms observed within three months prior 

the study visit included fever, skin rash, mouth sores, sore throat, shortness of 

breath, unintentional weight loss, night sweats and cough, fatigue, muscle and joint 

aches, loss of appetite, nausea, vomiting, abdominal pain, diarrhoea, and 

neurological symptoms such as confusion, headache and stiff or painful neck.  

All disease events and symptoms were assessed if they met the WHO clinical case 

definitions [90] and classified as either non-WHO or WHO stage 1 to 4. Clinical failure 

was defined as new or recurrent WHO stage 4 disease 6 months after treatment start 

[91]. Immune Reconstitution Syndrome (IRS) IRS was met if a stage 4 WHO defining 

disease was recorded within 180 days after initiation of ART. Clinical success was 

defined as an improvement of WHO T-stage - which was the WHO staging at study 

visit without considering previous WHO disease – against the WHO stage at 

treatment start. The study further collected HIV disease-specific information such as 

time of HIV diagnosis, weight and functional status at treatment start and vital signs 

(weight, height, temperature, Blood Pressure and Respiration rate) at the study visit.  

Laboratory Values: 

The following laboratory values were collected:  

Closest to the time of treatment start (retrospective data extraction): CD4 count, 

Haemoglobin, Lymphocytes, Alanine aminotransferase (ALT), Creatinine, Wight and 

Body Mass Index prior ART. On Study visit: CD4 count, Red Blood Count, White 

Blood Count, Haemoglobin, Haemoglobin %, MCV, Neutrophile, Platelets, 

Monocytes, Monocytes %, Lymphocytes, Lymphocytes %, Eosinophile, 

Eosinophile %, Basophile, Basophile %, ESR, Creatinine, ALT. 

Existing Antiretroviral Therapy and Co-medications:  

The components of the ART regimens used were collected separately and two 

groups were formed identifying clients by their Non-Nucleoside Reverse 
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Transcriptase Inhibitor (NNRTI) use and the Nucleoside Reverse Transcriptase 

Inhibitor (NRTI) backbone of their regimen, ever received prevention of mother to 

child prophylaxis, use of Pneumocystis Jiroveci Pneumonia (PCP) and TB 

prophylaxis. 

Study Design Variables:  

Region, Health Care Level, ART Stratum 

Demographic Variables:  

Age, gender, literacy, highest formal schooling obtained, 

Socio-Economic Status:  

marital status, occupation, number of financial dependents, adults and children living 

in the household and availability of electricity in the household. Costs, time and mode 

of clinic access for the individual. 

Adherence And Health-Related Behaviour 

The number of missed clinic visits, participation in support groups and having a 

treatment supporter, use of traditional healers and remedies in parallel to ART. 

Alcohol consumption per week, smoking and drinking habits. 

Interaction With The Health System:  

Duration of treatment cascade from diagnosis to ART initiation as a whole and each 

individual step (diagnosis-enrolment in care-eligibility for ART-ART initiation). 

8.4.3 Site Level Exposures 

The following Site Level variables were assessed in the context of this analysis: 

CTC specific information included: type of adherence counselling (group, individual 

or combined), number of adherence sessions prior ART initiation, tracing of patients 

lost to follow up and weeks after which such tracing is initiated, year of ART program 

initiation, patients ever and currently enrolled on ART, including total number of 

patients on ART disaggregated by first or second-line regimens. Inter-site referral of 

critically ill and stable patients. Number and cadres of Health Care Workers (HCW) 

assigned to the CTC. Further, the site level exposure variables included population 

size of the catchment area as per 2012 national household survey and population 

size of the town in which the facility is situated. From this information, the following 
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variables were derived: health care worker to patient ratio, number of patients lost 

per patient retained, the average number of patients lost per year of operation and as 

the percentage of the current patient population and the ratio of the total population 

on ART per clinic day.  

8.5 Data Sources And Assessment 

Data was collected through a site visit assessment and during the study visit that 

included a patient assessment, retrospective data extraction and collection and 

analysis of blood specimen. Information was collected in source documents and then 

transferred into four paper-based collection tools provided as templates in Appendix 

13.5: 

1) A Site Observation Questionnaire  

2) A Nurse Administered Questionnaire  

3) A Participant Specific Case Report Form  

All steps of the study procedures were defined by the study protocol and a manual of 

procedures and performed by specifically trained study staff. Data collection 

procedures are summarized in the following. 

8.5.1 Site Level Assessment  

A structured site assessment was conducted within 4 weeks prior to recruitment of 

participants at study sites. During these site assessments, the Principal Investigator 

of the study discussed with a team of health care workers (HCW) following the 

assessment in the site observation questionnaire. Following this discussion, a site 

visit was performed which collected information on the availability of resources in a 

structured fashion. The Site Observation Questionnaire is provided in Appendix 13.5. 

8.5.2 Nurse Administered Patient Questionnaire 

A trained health care worker administered the patient questionnaire in a confidential 

setting. Translations for the questionnaire were available in English and Kiswahili and 

the interview was administered in the language best spoken by the client which was 

Kiswahili in all times. Participants were encouraged to answer to the best of their 

knowledge but always had the option to decline a response. The information was 

collected separately in the Nurse Administered Questionnaire (Appendix 13.5). 
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8.5.3 Clinical Assessment And Medical History:  

Through patient interview and review of the clinical file, a general medical history was 

taken by a clinical officer trained in study procedures. The clinical officer further 

recorded the presence or absence of clinical symptoms for the period of 3 months 

prior study visit and at study visit through triangulation of patient self-report, 

documentation in the patient file and clinical observation. A complete physical 

examination was performed at study visit, and abnormalities by organ system were 

documented as free text description, collecting both diagnoses and symptoms. Vital 

signs were collected (body weight in kilogram), the temperature in degrees 

centigrade, pulse in beats per minute, respiration in breaths per minute and blood 

pressure following Standard Operation Procedures using calibrated equipment. The 

clinical officer then assessed all diseases entities comprised in the WHO clinical case 

definition [90] separately in respect to lifetime presence, onset in relation to ART start 

and if present at the study visit.  

Following the completion of the study visit, a trained health care worker completed 

the medical record abstraction form that was part of the Participant Specific Case 

Report From extracting from the clinical patient file. 

Blood was collected at study visit and laboratory analysis was performed at the local 

and central study laboratories. 

The laboratory of the study site performed the following assessments: 

- CD4 count (Facs Calibur from Becton Dickinson),  

- Haematology (XT 1800i Sysmex ) and  

- Erythrocyte Sedimentation Rate (ESR, Westergreen method)  

- Plasma separation for sample transportation 

The Mbeya Zonal Referral Hospital laboratory or its backup-laboratory at the Mbeya 

Medical Research Center performed the following assessments: 

- Clinical Chemistry (Cobas INTEGRA 400 plus (Roche)) and  

- HIV-PCR (Cobas TaqMan 48 HIV-1 test version 1.5 (Roche Diagnostics, NJ, 

USA).  

Samples were shipped maintaining a cool chain of -20 degrees from site to the 

central laboratory. 
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8.5.4 Comparability Of Assessment Methods 

Quality Assurance Of Clinical Data Collection 

Prior to the study initiation at each site, study staff was trained in a one-day study-

specific training that included all study-specific procedures relevant to their specific 

roles. Following the completion of the Case Report Forms, the forms were reviewed 

for completeness and validity by a second study team member on-site before they 

were transferred for data entry.  

Quality Assurance Of Laboratories  

Standard operation procedures, tests of laboratory competency, documentation of 

quality assurance measures and inter-laboratory validation runs with the College of 

American Pathologists accredited laboratory for all parameters ensured laboratory 

comparability. All laboratories involved in the study underwent targeted training prior 

to the study initiation and were required to meet defined quality standards for the 

respective test prior to the study initiation at that site. Personnel performing 

laboratory tests were blinded to clinical information. The central HIV laboratories 

were located at the Mbeya Zonal Referral Hospital (MZRH) and supported by the 

laboratory of the National Institute of Medical Research Mbeya Medical Research 

Centre. The latter is accredited with the College of American Pathology, providing a 

wide panel of haematology, clinical chemistry, immunophenotyping, HIV-RNA 

(COBAS TaqMan HIV-1), and immunological assays. 

8.6 Bias 

The study design aimed to ensure a study population representative to the overall 

program population. However, as a cross-sectional study, results of RV 288 are 

limited in the following respect:  

• Selection bias: In RV 288, the following patient group had a lower probability of 

recruitment: Patients enrolled in the PEPFAR Program but lost to follow up or 

died prior to study enrolment, HIV infected people in need of treatment and living 

in the catchment area but not accessing treatment in the PEPFAR program, 

patients on treatment at the respective sites but not captured in the database or 

treatment register that is used to generate the randomization list, patients 

approached for the study but not willing to give informed consent. In the face of a 

high number of undiagnosed HIV infections in Tanzania, a substantial amount of 
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HIV infected persons in the regions of interest were not represented in the study 

sample. The study results, in consequence, were biased positively and caution 

should, therefore, be applied when generalizing to all patients ever started in the 

PEPFAR program or to the target population of HIV infected people in the 

Southern Highlands at country level, and HIV infected population in the 

catchment area of PEPFAR programs in respective countries on the program 

level. 

• Information bias was especially relevant in the Site Observation Questionnaire 

applied to all sites and aiming to assess the site and quality of services provided 

and the Patient Questionnaire aiming to asses adherence. In both cases, the 

number of interviewers was limited and emphasis was put on specific training for 

study personnel responsible for assessing those aspects.  

To counteract selection bias, we applied the following measures:  

• Stratification for the applicable program, region and level of care when selecting 

the sites involved in the study and stratification of the patients according to time 

on ART on subject recruitment level. 

• Assessment of a number of patients not enrolled for any reason through the 

screening log. 

• Review of status of databases and treatment registers during pre-site initiation 

visits to all sites involved in the study.  

8.7 Study Size And Sample Size Calculation 

8.7.1 Sample Size Calculations For Data Collection And Determination of 

Primary Endpoint 

The sample size calculation was based on an expected refusal rate of 0% at the site 

level, <5% at the patient level and 12% virologic failure after 12 months.  

For point estimates for the primary endpoint – virologic suppression on the program 

level - 700 patients were needed for estimates between 8% - 50% (0.05 precision 

and 95% confidence interval). This sample size further allows point estimates 

between 8% and 30% for secondary endpoints. To compare different health facilities 

with 80% power and an alpha of 0.5, a total of 98 participants had to be recruited 

from each site. 

Additional sample size calculations were performed to evaluate virologic suppression 

on health care level and across regions.  
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8.7.2 Sample Size Considerations For The Development Of The Predictive 

Score 

As the sample size was determined by the primary endpoint of the study, which was 

virologic outcome above 400 copies/ml, there was no specific sample size calculation 

for the derivation of the score. For predictive models, the number of events to be 

predicted is more important than the number of participants in the sample and at 

least 10-20 outcome events per variable is considered acceptable [92, 93]. In our 

study, we had 458 participants in the training dataset, of which 75 had virologic 

failure above 400 copies/ml. We hence were planning to include not more than 7 

variables into the predictive model. 

8.8 Quantitative Variables 

The following presents the main conversions of quantitative variables during analysis.  

8.8.1 Outcome Variables:  

Virologic Suppression And Virologic Failure 

Based on the considerations presented in section 6.1.3, we used the continuous 

variable of viral load at study visit to group participants into three binary endpoints of 

treatment success or failure defined as follows: 

VS400: Virological failure defined as the viral load at study visit above 400 

copies/ml,  

Virological suppression defined as the viral load at study visit equal or 

below 400 copies/ml. 

This definition was the primary endpoint of our study, on which power 

calculation was based.  

VS1000:  Virological failure defined as the viral load at study visit above 1000 

copies/ml, Virological suppression defined as viral load at study visit < 

or equal to 1000 copies/ml.  

This definition was a secondary endpoint using the cut-off favoured by 

WHO 

VS50:  Virological failure defined as the viral load at study visit >50 copies/ml, 

Virological suppression defined as viral load at study visit below or 

equal to 50 copies/ml. 
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This definition was a secondary endpoint using the cut-off commonly 

used in resource-rich countries.  

8.8.2 Confounder Variables:  

Body Mass Index (BMI) 

The BMI is a measure for indicating nutritional status in adults defined as a person’s 

weight in kilograms divided by the square of the person’s height in metres (kg/m2). 

The BMI at study visit and at treatment start were calculated using the weight 

recorded as outlined above. Results were then grouped using a simplified WHO 

classification: <18.5 underweight, 18.5–24.9 normal weight, >24.9: obesity [85] [94]. 

Reclassification Of Variables With Low Cell Values 

To avoid low single values in some of the categorical variables across regions, 

variables were collapsed prior analysis:  

- The variable accessing the use of support groups combined the answer 

possibility “I don’t know” and “No”.  

- The number of missed refill visits were collapsed to a binary measure of has/has 

not missed any re-fill visit.  

- To account for missing values in the baseline safety laboratory assessment 

(Lymphocytes, Haemoglobin, Creatinine, ALT), variables categorized as 

described above were collapsed into 3 categories (normal, abnormal, missing) 

using regional normal ranges [95].  

- Functional status was combined with binary (working, others)  

- Drug regimen were collapsed to PMTCT binary “yes, any” or “no”  

8.9 Statistical Methods 

Data were analysed using Stata Statistical Software Package version 12 or 16 [96]. 

Which version was used is stated in the respective method section.  

8.9.1 Descriptive Statistics  

Summary statistics for all outcome variables and confounders are presented for the 

total study population and by site with missing values stated.  

Continuous variables include the mean and standard deviation, categorical variables 

include frequency and percentages. WHO relevant disease events are presented 

disaggregated by stage and individual diseases and in relation to ART initiation.  
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For single variable comparison of unadjusted data, Kruskal –Wallis rank test was 

used for comparisons of medians and Pearson Chi-square test was used for 

comparison of proportions. 

8.9.2 Virologic Outcome Analysis 

In line with the objectives of this research, virologic suppression was assessed at 

three different virologic cut-offs relevant in the context of international public health 

decision making as detailed in section 6.1.3., using three binary virologic cut-offs 

(VS50 VS400 and VS1000) derived from the continuous variable viral load at study 

visit as described in section 8.8.1. A 95% confidence interval was generated around 

the point estimates.  

In line with STROBE Guidelines and the aim of this study, analysis is presented 

with different levels of adjustments: 

(i) “Outcome in the Study Population” –presents the unadjusted outcome in the 

study participants as discussed in section 8.11.2 

(ii) “Outcome in the WRSHCP Population” –presents the estimates that apply 

for the WRSHCP Population of which the Study population was only a 

sample. Here, study design is adjusted for as discussed in section 8.11.1 

and the point estimate and confidence interval are estimates applicable to 

the full Walter Reed Southern Highland Care and Treatment Program 

(WRSHCP). 

(iii) “PS Adjusted Population” present the results of the sub-group comparisons 

controlling for pre-treatment differences through Propensity Score (PS) 

weighting as described below.  

Virologic Outcome Controlled For Baseline Variables Through Propensity Score 

Methods 

We assessed the outcome of sub-groups defined by site, health care level and the 

region controlling for differences in the study population through Propensity Score 

Methods.  

The Propensity Score (PS) as defined by Rosenbaum and Rubin [87] is the 

probability of a study participant to be in a specific exposure group (in case of the 

current analysis the study site, region or health care level) as derived from the 

baseline characteristics of the study population. Adjustment of the study population 

by the Propensity Score through stratification, matching or weighting [82-84] can 
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balance the distribution of observed baseline covariates between the different 

exposure groups. The average effect of the exposure on the outcome can then be 

estimated in this PS adjusted sample, as the balanced sample allows the estimation 

of the counterfactual outcome for exposed subjects from the control subjects [82-84] 

given the assumptions of “overlap” and “strong ignorability” hold:  

 “Overlap” describes a situation where the probability of a study participant to be in a 

specific exposure group is non-zero for more than one exposure group. Overlap thus 

implies that there are no values of variables that occur only at one of the exposure 

groups. Overlap can be assessed in the data and the respective overlap plots for the 

analysis conducted in this thesis have been included in the supplemental material 

provided in section 13.4.  

The assumption of “strong ignorability” as the second assumption of PS methods 

states that next to the variables used to derive the Propensity Scores, there are no 

further unknown relevant confounders that influence the outcome of interest. “strong 

ignorability” by definition cannot be ascertained as it concerns unknown confounders 

[97]. 

If these two assumptions are met, Austin states that a PS method “... mimics some of 

the particular characteristics of a randomized controlled trial” [82], as any difference 

between outcome in the exposed and unexposed group in the presence of the PS 

can be causally attributed to the exposure” [85-88].  

Compared to regression analysis as an alternative method to adjust for confounders, 

PS methods are recognized for several advantages: They can reduce multiple 

confounders into a single score and thus avoid the multi-dimensionality that often 

restricts the number of variables that can be included in a regression model [98-100]. 

Further, contrary to regression methods that combine outcome analysis and control 

for confounders in one model, PS methods balance baseline characteristics through 

an independent step that is separated from the outcome assessment. Through this 

separation, bias is prevented as the regression model selection process cannot be 

influenced by desired outcomes [101].  

Especially in datasets with few events per confounder, Propensity Score Methods 

have shown to be less biased and produce more robust and precise estimates than 

logistic regression models In simulation studies [98], making PS methods the 

favourable method for the outcome analysis controlling for population baseline 

differences in the RV288d dataset.  
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We derived Propensity Scores (PS) using the Generalized Boosted Model Technique 

(GBM) that is described in detail below. To compute the score, we followed the 

procedure developed by Cefalu et al. [102] which uses Stata Macros developed by 

the RAND Corporation to create an interface through which stata can access the 

twang package in R [103] [102, 104]. Through this interface, the mnps command in 

twang – which has been designed to develop PS for exposures with more than two 

groups – can be used by stata [102, 103] and the thus derived PS scores can be fed 

into the outcome analysis.  

Accordingly, we generated PS scores and in a second step, we applied a PS 

weighted logistic regression model to assess the impact of the exposure on the three 

binary outcome measures (VS 50, VS400 and VS1000). The “double robust method”, 

which adjust for PS and in addition includes variables, where a full balance has not 

been achieved through the PS in the regression model, has shown to provide the 

most balanced baseline variable estimates in simulation studies [85, 97, 105, 106]. 

We hence applied the “double robust method”, included selected variables where full 

balance had not been achieved with the PS score weight alone. For weighting, we 

used the syv commands in stata [107] as described in section 8.11, replacing the 

probability weights for the Propensity Score. This allowed us to further account for 

the study design.  

Pairwise outcome measures commonly referred to as the Average Treatment Effect 

(ATE) were used to describe the impact of the respective exposure. ATE is a 

summary measure that compares estimated mean outcomes if the entire population 

been observed under one exposure versus had the entire population been observed 

under another exposure [97].  

We now discuss in detail the considerations that guided variable selection, describe 

in more detail the GBM method and the assessment of balance and overlap. 

Variable Selection  

Guided by existing literature [82, 88, 97, 108], we considered all potential 

confounders as presented in section 8.4.2. and identified demographic and baseline 

variables. Variables that are only related to the exposure but not to the outcome have 

been shown to decrease precision without proving balance in simulations studies 

evaluating binary Propensity Score Methods [108], so only known or assumed 

confounders to treatment outcome were selected for further assessment.  



Thesis Lennemann  

48  

Following the procedure described by Spreeuwenberg et al [88], we selected all 

variables that were associated with the VS50, VS400 or VS1000 outcome with a 

significant level of p<0.4 in univariate logistic regression analysis. We further included 

time on ART and years with HIV infection at study visit to account for the 

retrospective nature of the dataset. As the Generalized Boosted Model Technique 

(GBM) automatically includes indicators for missing values in the model [97], we 

included the continuous variables even if they had several missing values rather than 

categorical variables that were applied in the logistic regression for patient-specific 

factors as discussed in section 8.4.2. 

The following variables were included in the Generalized Boosted Model as 

described below : 

Individual characteristics: gender, age, education, profession, drinking and smoking 

habits,  

Relationship to others: Marital status, number of financial dependents, number of 

adults in the household and access to electricity.  

Relationship to the clinic: Mode of transport to the clinic, and distance to the clinic, 

time on ART at study visit and years of HIV infection  

Clinical presentation at ART start: Body Mass Index, weight, Cd4 count, ALT, 

Lymphocyte count, Haemoglobin, history of the following WHO staging relevant 

diseases at baseline: Herpes Zoster (WHO stage2), Prolonged fever (WHO stage3), 

Tuberculosis (WHO stage 3 or 4), Loss of body weight (WHO stage 2 or 3). 

Estimation Of The Propensity Scores Through The Generalized Boosted Model 

Technique (GBM) 

The Generalized Boosted Model Technique (GBM) is a computational tool based on 

machine learning techniques which creates a constant model out of an iterative 

combination of regression trees to predict a binary outcome. McCaffrey describes the 

computational process as follows: 

“The model consists of many simple regression trees [109] iteratively combined to 

create an overall piecewise constant function. The iterative fitting algorithm begins 

with a single simple regression tree and at each new iteration, another tree is added. 

The new tree is chosen to provide the best fit to the residuals of the model from the 

previous iteration. […] When combining trees, the predictions from each tree are 

shrunken by a scalar less than one to improve the smoothness of the resulting 
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piecewise-constant model and the overall fit. Each iteration increases the likelihood 

and with enough iterations, the model is sufficiently flexible to perfectly fit the 

data.”[97] Pre-defined stopping rules determine which model is at the end selected to 

produce the Propensity Scores. These stopping rules aim are commonly based on 

either the Absolute Standardized Mean Difference (SMD) or the Kolmogorov Smirnov 

Statistic (KS) that compare the mean and distribution of the unadjusted and PS 

adjusted variables avoid model overfit [97] and are defined below.  

Compared to other methods to determine the PS, GBS automates the iterative 

refinement process and has been shown to provide PS that allow a better balance 

between the different exposure groups. GBM was developed for the comparison of 

binary exposures but has also been applied successfully to generate PS for multiple 

exposure groups [97, 102]. The twang package in R - which was used in this 

analysis- generates PS scores for multiple exposures through a series of binary 

comparisons, each comparing a selected group of the exposure with the cumulative 

data of all groups not in this group.  

GBM - assessment of balance and overlap 

For each exposure category, we developed a GBM model using the variables 

selected as described above. Balance of adjusted variables and population overlap 

were assessed through a series of visual plots centred around the stopping rules 

used in the GBM model (Absolute Standardized Mean Difference (SMD) and the 

Kolmogorov Smirnov Statistic (KS)) following the procedure delineated by Cefaru 

[102]: First, optimization plots of the respective stopping rule (SMD or KS) against the 

number of iterations were used to ascertain that sufficient iterations of the model 

trees were run and thus the best model selected. Overlap was then assessed using 

visual inspections of the distribution of the Propensity Scores across the sites and is 

included as supplementary material presented in 13.4.1.  

The main measure used to assess balance was the Absolute Standardized Mean 

Difference, which for our outcome of interest - the ATE - in a sample with more than 

two exposures is defined by McCaffrey as the “absolute value of the difference 

between the mean for treatment group and the mean for the control group divided by 

unweighted standard deviation of the pooled sample”[97]. Generally, standardized 

mean differences of less than 0.25 are considered small, 0.40 are considered 

moderate, and 0.60 are considered large [110]. Variables with the mean SMD above 
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0.2 in the weighted sample were included as additional variables in the double robust 

logistic regression.  

The Kolmogorov Smirnov Statistic (KS) was used to assess the distribution of the 

differences between weighted and unweighted variables and compare different 

models. In line with McCaffrey, we considered KS statistics greater than 0.1 as signs 

of imbalance for the comparison of Region and Health Care Level but not for the 

comparison of sites with their much smaller sample size [97].  

Next to assessing individual variables, we used the overall summary measure 

Suggested by McCaffrey of taking the maximum of the balance metrics for each 

treatment [97]. 

8.9.3 Additional Analysis - Influence Of Patient-Level Characteristics On 

Treatment Outcome 

To identify factors associated with treatment outcome, we first assessed the 

distribution of those variables against the respective binary outcome of virologic 

suppression below 1000, 400 and 50 copies/ml (VS1000, VS400, VS50) using 

Kruskal-Wallis test for comparisons of continuous variables and Chi-square test for 

comparison of proportions and a significant threshold of p<0.2.  

All variables thus identified were ordered by domains and the order of these domains 

were fixed across the models using the VS400, VS1000 and VS50 cut-off. Domains 

were as follows:  

1) Non-modifiable variables such as ART stratum, region, health care level, or 

PMTCT history or pill burden  

2) Clinical information such as clinical failure or specific diseases.  

3) Laboratory variables of the study visit.  

4) Laboratory variables prior to study visits, such as peak or baseline CD4cells  

5) Adherence parameter and socio-economic contexts such as reasons why 

drug intake might be missed and patient satisfaction of services  

All variables were then included in a logistic regression model which reported Odds 

Ratio (OR), respective confidence interval and Fisher’s exact p-value was created in 

a stepwise backward selection process for each of the virologic outcomes. Akaike 

Information Criterion was used to assess model fit. All reported p-values were two-
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sided and for all statistical tests an alpha level of <0.05 was used to define 

significance.  

8.9.4 Development Of A Clinical Score To Predict Virologic Failure Above 

400 copies/ml. 

A further objective of this research was to develop a diagnostic clinical score to 

predict individual treatment failure in adult patients receiving HIV treatment in 

Tanzania through the PEPFAR supported national treatment program as outlined in 

section 6.2. The score was designed to predict HIV viraemia above 400 copies/ml, 

but its performance to predict clinical failure above 1000 copies/ml were to be 

additionally explored in a separate analysis.  

To develop the score, we first split the dataset into training and validation datasets 

and then developed a theoretical framework for treatment failure and a multilevel 

diagnostic model based on this framework using the training dataset. This model was 

validated internally through bootstrapping and externally using the validation 

datasets. Throughout, the methods applied aligned with the approaches proposed by 

Steyerberg and Vergouwe [76] and Lee [111] and are reported guided by the 

TRIPOD Statement [92, 112] for quality reporting of clinical predictive models. In the 

current section, we focus on the description of the statistical analysis methods in 

respect to model development, validation and transformation to nomograms.  

Model Development 

Generating The Training And Validation Dataset 

To generate training and testing datasets, we used the stata “random” function to 

assign random numbers to the individual cases and then rank the cases by these 

random numbers from low to high. The first 150 cases were sett aside as validation 

dataset. We further selected the complete population of the treatment site of the case 

with the lowest random number as the testing site so that we could evaluate the 

predictive capacity of the model for a patient population with an unknown site.  

Development Of A Theoretical Framework  

Prior to variable selection, a theoretical framework developed based on existing 

literature reviews that conceptualize individual treatment outcome as the result of a 

multifactorial interplay between individual and community factors, with the health care 
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system being considered a specially relevant area of the community. These 

dynamics were assumed to cumulate in two causal pathways that describe viraemia 

as the variable through which virologic failure or success is defined. The framework is 

presented in section 10.2.1. and formed the basis for variable selection.  

Variable Selection  

For a variable to be considered for inclusion in the predictive model, it had to be 

considered a meaningful surrogate parameter of the underlying dynamics described 

in the theoretical framework. Thus in a first step, all variables collected in the study 

were assessed in the context of the theoretical framework and either paired with the 

respective step of the causal pathway for which they were considered meaningful 

surrogate parameter or excluded from further consideration. Paired variables were 

then assigned a position according to the step in the causal pathway they 

represented. The closer to the outcome measure viremia (considered more 

“downstream” in the causal pathway) a step was, the better the position associated 

with this step and the respective paired variables. 

In a second step, all paired variables were ranked in comparison to other variables 

that had the same position as they had paired with the same step of the causal 

pathway. Aspects considered in this ranking were potential competing physiological 

dynamics that would impact the respective surrogate parameter independently of the 

causal pathway, number of events in the study population, association of the variable 

with the outcome in univariate analysis and evidence of the association between the 

variable and viral load suppression from existing peer-reviewed literature. Ranking of 

variables was further influenced by the intended user and setting in mind: As we 

envisioned a trained health care staff delivering HIV treatment and care in a clinical 

setting - most likely doctors or clinical officers who would also make the decision on 

viral load testing - This would allow the inclusion of variables that require clinical 

knowledge and the ability to make diagnostic classifications such as to correctly 

apply the WHO staging, verify the presence of clinical symptoms, the correct 

identification and differentiation between different classes of drugs or drugs used for 

prophylaxis and treatment. Further, the clinical setting would allow to include 

laboratory variables as much as basic clinical examinations such as height, weight, 

pulse or temperature, for which basic medical equipment would be needed. However, 

keeping stockouts and laboratory shortages but also potential use in community-
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based settings in mind, laboratory diagnostics available as point-of-care or “bedside” 

tests were prioritized over tests that require laboratory equipment.  

The ranks were assigned through expert opinion triangulating existing information 

and considerations as follows:  

Rank 1: Variable shows an overall preferable profile for model inclusion  

Rank 2: Variable is meaningful but less so than other variables paired to the same 

step in the causal pathway.  

Rank 3: Other reasons exist to not include the variable as per expert assessment, 

such as variable is correlated with treatment outcome in literature or but 

not in the study sample, it does not promise to add additional value to the 

model next to other variables with higher ranking paired to the same step 

in the causal pathway, can be expected to become irrelevant due to 

future changes in treatment guidelines or has very little variance in the 

sample population. 

Rank 4: Substantial reasons exist that prohibit variable inclusion such as a very 

low number of cases or significant missing values in the training dataset 

Due to the low variance in the site-level variables (Level2), variable inclusion was 

highly limited by co-linearity. In these variables, we additionally assessed correlation 

matrices and ranked variables by the amount of correlation with other variables within 

their group. Variables were then ordered first by their rank compared and then by the 

position of the step in the causal pathway they represented. This order defined their 

entry into the prediction model and is in detail presented in the supporting documents 

13.4.2. 

Model Estimation  

Considering the study design as detailed in 8.11.3, we aimed to develop a diagnostic 

multilevel mixed logistic regression model that included participant-specific variables 

as fixed Level1 effects (individual characteristics) and Level 2 effects (site-specific 

characteristics) as much as a random intercept for the sites. The model was 

estimated using the “melogit” command in stata 16 [113], which fits mixed-effects 

logistic regression models for binary responses using the Bernoulli distribution to 

model random effects.  

In the initial complete case analysis, the model was fitted to all cases with complete 

data in the training dataset. Starting with an empty model to determine, a full model 

was defined which included the eleven highest ranked individual-level parameters 
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which represented variables considered most suitable for model inclusion and most 

downstream steps in the causal pathways. This model was reduced through a 

backward selection process guided by AIC and BIC. 

Continuous variables that were then one-by-one re-scaled and centred if appropriate, 

guided by visual inspection of their distribution plots, AIC and BIC to assess the 

impact of different scales on model fit. Exclusion of the variables that had been 

removed in the first step was then confirmed by entering them again one by one into 

the model containing scaled and centred continuous variables. Next, groups of 

variables paired to pathway steps further upstream were assessed for variables that 

could improve model-fit. A group-wise forward-backwards selection process was 

used to explore different combinations that were considered clinically meaningful.  

Interaction terms between the variables remaining in the model were explored. In this 

respect, we specifically considered the possible influence of age to either attenuate 

or aggravate the impact of other exposures, interactions between measurement and 

context of measurement, between calendar time and treatment and interactions 

between quality and quantity of risk factors [114]. However, only a few meaningful 

interactions could be identified as theoretically impacting viral suppression and none 

of them showed a clear benefit to model fit. As interaction terms rarely add to the 

predictive ability of a model and selective interaction term inclusion may drive model 

overfitting [92], interaction terms eventually were not included.  

Finally, fixed site-level (Level2) effects were included in the model with first entering 

variables that highly correlated with other site-level variables followed by site-level 

variables that were not correlated with Level 2 variables maintained in the model. In 

this step, fixed site-level variables that reduced the random effect were favoured next 

to those improving AIC and BIC with the aim to generate a model that could support 

prediction in sites not represented in the training sample. Inclusion of random slopes 

into the model fit did not improve AIC or BIC.  

Assessment Of Model Performance 

Overall performance is the mathematical distance between predictions and outcomes 

[115] and was determined for the model both in the training (Apparent Performance) 

as much as in the external validation dataset. To assess performance, we used the 

following parameters: 

Calibration 
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Calibration describes the correctness of prediction and extent of bias of a model by 

comparing predicted and observed endpoints [76, 115, 116]. We assessed calibration 

through visual plots of the Hosmer-Lemeshow test that compare observed and 

predicted probabilities. Smoothed lines overlaid over the plots ideally should have an 

intercept of 0 and a slope of 1 for best prediction [76]. Perfect prediction of the 

outcome from a 45-degree line in this calibration plot. In the validation dataset, a 

higher or lower intercept indicates systematic bias and resulting continuously too high 

or too low-risk predictions (“calibration at large”), while a slope lower than 1 may be 

the result of regression to the mean or indicate overfitting of the model to the training 

dataset. Better calibration is achieved if the Hosmer-Lemeshow test p-value is large, 

indicating no difference between the predicted and observed outcomes across the 

quantiles.  

Discrimination 

Discrimination describes the ability of the model to correctly differentiate between 

patients with the endpoint and patients without [76] and is commonly assessed 

through the concordance statistics (C-statistics) [115, 116]. For a binary endpoint, the 

area under the receiver operating characteristic curve (ROC-AUC) is the graphical 

equivalent of the C-statistics, when the true positive rate (sensitivity) is plotted 

against one minus the false positive rate (specificity) [76]. The larger this area under 

the curve, the higher is the discriminatory properties of the model. A ROC-AUC of 1 

represents perfect prediction, a ROC-AUC of 0.5 represents chance [92]. As ROC-

AUC - opposite to the positive and negative predictive value as alternative measures 

of discrimination - do not depend on event prevalence, they are preferred for 

predictive models that should work in settings with various and changing prevalence 

[117]. 

Model Validation 

Internal Validation 

For internal validation, we describe model calibration and discrimination (apparent 

performance) [118] in the sample dataset within which the model was developed (the 

training dataset). To quantify the model optimism of the model as a measure for 

model overfit in the training database, we followed the TRIPOD recommended 

approach as follows[92]: 
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1) A bootstrap sample the same size than the training dataset was generated from 

the testing dataset by sampling 200 individuals with replacement from the original 

sample. As simulation studies in clustered data demonstrate that accurate 

estimates of optimism can be obtained from re-sampling either on a cluster or 

participant level, but estimates are overestimated when a sequential sampling 

strategy from both levels is applied, we drew the bootstrap samples on patient-

level only [119]. 

2) The multilevel logistic model was fitted to this bootstrap sample. As initial variable 

selection had been theory-driven and further model modifications during the 

model fitting process had balanced AIC and BIC improvement against model 

complexity and expected field practicability, the variable selection process as a 

whole was not repeated in the bootstrap sample.  

3) The apparent performance (C-index for performance at large, Hosmer-Lemeshow 

test for calibration and for discrimination) of the model in the bootstrap sample 

was determined. (Bootsrap performance) 

4) The performance of this model in the dataset not included in the bootstrap model 

was determined. (Test Performance) 

5) The optimism was calculated as the difference between the bootstrap 

performance and the test performance. 

6) Steps 1 to 5 were repeated 150 times and an average was generated from the 

estimated optimisms in step 5 that then represented the estimated optimism of the 

model in the test database. 

7) This estimated optimism was then subtracted from the apparent performance to 

obtain an optimism-corrected estimate of performance. 

External Validation 

External validation provides information on model performance in populations 

unrelated to the training dataset [115]. As the strength of an external validation grows 

with the difference between the training and validation dataset, the random split as 

used in this thesis is often considered internal rather than external validation [76, 92] 

Nevertheless, as the score was aimed primarily as a programmatic tool in the 

Program Population population from which the study participants were sampled, the 

two validation datasets were considered sufficient for the primary use of the score. 

We had two overlapping datasets as testing datasets: One consisted out of the total 

population of one study site that had not been included in the training dataset. This 
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dataset was used to evaluate score performance in a separate location, providing a 

geographically separate testing dataset. The second dataset was the one which had 

been randomly chosen and included subjects managed at the sites that had been 

included in the training dataset and subjects that had been selected from the 

validation site.  

8.9.5 Decision Curve Analysis 

Decision Curve Analysis is increasingly used to evaluate predictive models in the 

context of their usefulness in clinical practice and is recommended as additional 

analysis in the TRIPOD guidelines as it complements mathematical measures of 

performance [92]. Decision Curve Analysis allows identifying the best strategy 

through which the benefit of an intervention can be maximized in a real-world setting. 

As it is a method that compares the benefit of an intervention relative to the benefit of 

other possible options, it does not require additional information but can generate a 

recommendation using only the dataset the new intervention was derived from. 

Decision Curve Analysis recognizes that the importance of a false positive or false 

negative prediction derived from a model or test result can differ depending on its 

clinical use: In a case where a false positive prediction leads to an unnecessary 

intervention that carries significant risk – for example, pre-emptive mammectomy to 

prevent potential breast cancer - the trade-off between the expected benefit and the 

harm associated with the intervention will be different from a situation where a false 

positive prediction would have less drastic consequences - for example a vaccination 

to prevent Cervical Carcinoma [120]. Such trade-offs between harm and benefit of an 

intervention are continuously made in clinical or public health practice impacted not 

only by clinical but also by economical and feasibility considerations. While the 

choice of “treat” or “don’t treat” are relatively self-explanatory at the ends of the scale 

– if the risk for cancer is high, mammectomy is reasonable, if there is just a small risk 

for cancer, mammectomy would be declined - decision is less clear between these 

ends of the scale and at one point, expected benefits and risks of treatment will be 

equal [121]. This concept of clinical “trade-off” is a key concept in decision analysis 

and is expressed as “Probability Threshold” which is the most unfavourable ratio of a 

true positive to a false-positive result that would still be acceptable for the decision-

maker [120]. Using this Probability threshold, different strategies can be compared by 

calculating the “Net benefit” as Net benefit = Benefit − (harm × trade-off), as further 

described by Vickers et al [121, 122] using the following formula: 
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Net Benefit = True positive/N - False positives/N  x  p/1-p  

with N= total sample size, and p= probability threshold considered acceptable.  

Net benefit describes the absolute increase in true positives achieved through the 

deployed strategy at the respective probability threshold [123, 124] compared to not 

testing and will range from negative infinity to disease incidence [125]. A Decision 

Curve then visually compares different strategies across different possible trade-offs 

by putting benefits and harms on the same scale. It thus helps make informed 

choices on a reasonable cut-off to balance risk and harms [120]. 

For prediction models that provide a probability of a positive outcome for an individual 

case, a probability threshold has to be chosen above which a result will be 

considered positive. In Decision Analysis, this threshold aligns with the probability 

threshold of the strategy. A Decision Curve hence can visualize net benefit against 

different probability thresholds and provide guidance on the best cut-off for prediction 

models [76, 122, 126, 127]. 

8.10 Description Of Missing Data And Patterns Of Missingness 

Them majority of missing values could be found in the retrospectively assessed data 

from baseline visits, particularly those requiring laboratory analysis. Only half of the 

study population (56%) had a complete set of the main baseline assessments such 

as weight, BMI, CD4 count, Haemoglobin, White Blood Count and Lymphocyte 

Count, with a large variability across sites, ranging between 95% of clients with 

complete baseline parameters in Mbeya Referral Hosptial and 19% at Ruvuma 

Regional Hospital. Liver function tests and Creatinine - that were only required for 

clients with a suspected liver problem or receiving Tenofovir (TDF) containing 

regimens respectively- were even more restrictively performed, and not available for 

any client at some sites. CD4 counts were only missing for 8% of the population and 

were available for most patients even at sites where other safety variables had not 

been done. On study visit, the datasets were more complete, with the exception of 

differential blood count, that had not been performed at some of the sites. 

Model.Throughout we performed complete case analysis. However, for some 

analysis, continuous variables were meaningfully categorized as outlined above with 

a category including missing data. Only for the Propensity Score Adjustment using 

the Generalized Boosted Model Technique, where imputation is performed as part of 

the program, continuous variables were imputed as part of the adjustment process.  
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8.11 Analytical Methods Considering Clustering And Sampling Strategy  

8.11.1 Use And Functionality Of STATA “svy” Command  

To generate estimates on the population level that account for study design, the 

STATA “svy” commands [107, 128] were used to analyse the primary endpoint and 

sub-group outcome measures. 

Through these commands, probability weights are applied and the results are 

adjusted for design effects and strata. Further, Taylor linearization for variance 

estimation is used which is appropriate for multiple stages of clustered sampling. The 

t rather than the more common z statistic are applied to test the significance of 

coefficients which is relevant in clustered samples with a small number of clusters. In 

this thesis, p-values based on t statistics and referring to the population-based 

estimates will be denoted with capital “P” rather than “p”, which will denote statistical 

tests in the unadjusted data. For model diagnostics, the “svy” command provides an 

adjusted Wald test [128].  

 

Site  

stratification by Region and 

Health Care Level 

Total 

Eligible 

sites 

Total 

population 

eligible 

Sample size 

PPS sampling 

by ART strata 

Wight 

Mbeya Referral Hospital 1 6661 100 66.61 

Mbeya Regional Hospital 1 16288 100 162.88 

Mbeya District Hospital 9 1922 100 172.98 

Ruvuma Regional Hospital 2 2065 100 41.3 

Ruvuma District Hospital 5 2108 100 105.4 

Rukwa Regional Hospital 1 1410 102 13.74 

Rukwa District Hospital  5 1505 100 75.25 

Figure 6: Sampling Weights By Sites 

 

In all analysis using the svy command, sites were designated as the first level 

sampling units. Probability weights as derived from the sampling probability at the 

site and patient-level as described in section 8.3.1were applied and ART categories 

were included as strata. Only in the Propensity Score Adjusted regression analysis, 

probability weights were replaced by the Propensity Score.   

8.11.2 Correction Of Standard Error To Account For Sites As Clusters 

The study design was in itself self-weighted through site selection and probability 

sampling, reducing the need for weighting of the sample to adjust for non-equal 

probabilities of selection. As proportionate stratification applied in stage 2 of the 
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sampling process usually reduces the standard error resulting in a design factor of 

less than 1[129], the unadjusted standard error has to be considered the more 

conservative and hence acceptable to use. Thus some secondary analysis did not 

include weights or design adjustment. However, in these cases, the vce (cluster 

clustvar) option of Stata was used to obtain a robust variance estimate that adjusts 

for within-cluster correlation of participants [130-134]. 

8.11.3 Specific Considerations Underlying Methods For Predictive Score 

Development 

Although clinical scores are often developed in multicentre trial datasets, methods to 

account for the clustered data and inherent violation of the unrelatedness assumption 

are not standardized. In a review of the various clinical predictive scoring system in 

cardiology, Wynants showed that clustered data is often either ignored or 

circumvented [75]. Ignoring the cluster effect can lead to underestimated standard 

errors and effect estimates [75] while accounting for clustered data improves model 

calibration [135], discrimination and performance [135, 136]. In response, various 

methods have been used to reflect the clustered study design in predictive modelling, 

ranging from the inclusion of a centre-level covariate and “leave-one-centre-out”-

cross-validation to mixed effects, random effect, logistic or stratified regression 

models [75, 135].  

In this analysis, accounting for clusters was especially important as the sites had 

shown to be independent risk factors of virologic failure that could not be fully 

explained by the health care level as strata. Including the site as one of the model 

variables, on the other hand, was not desirable for a generalizable predictive model, 

as the value for sites not represented in the study sample would be unknown. To not 

only mirror the sample design and correct the standard errors to account for the 

reduced independence of data from clients accessing the same clinic [137], but also 

to better reflect the impact of site-level influence on treatment outcome [138], we 

developed a multi-level model as described in section 8.9.4. However, while the 

methodology would allow investigation of between and within-site variance or across 

level interactions, the sample size on cluster level was too small to provide sufficient 

power for such an analysis. 

https://www.rips-irsp.com/articles/10.5334/irsp.90/#n2
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9 Results 

9.1 Participants  

Between January and December 2013, participants were recruited over 4-8 weeks at 

each site, starting in Mbeya Region (Mbeya Zonal Referral Hospital, Mbeya Regional 

and Mbeya District Hospital), Ruvuma Region (Regional followed by District Hospital) 

and closing with Rukwa Region (Region followed by District Hospital).  

Total patients randomized  n=2504 

Enrolled  n=702 
Strata: 6-12 Months n=68 13-24Months n=123 >24 Months n=511

Mbeya Referral n=100

6-12 n= 12
13-24 n=19
>24 n=68

Mbeya Regional n=100

6-12 n= 4
13-24 n=6
>24 n=90

Tukuyu District n=100

6-12 n= 15
13-24 n=20
>24 n=65

Songea Regional n=100

6-12 n= 8
13-24 n=10
>24 n=82

Mbinga District n=100

6-12 n= 8
13-24 n=17
>24 n=75

Sumbawanga Regional
n=102

6-12 n= 12
13-24 n=11
>24 n=68

Mpanda District n=100

6-12 n= 9
13-24 n=29
>24 n=62

Sites sampled : n=7  (sampling probability)
Total Study Population n=31950

Excluded: n=217
Ineligible n=22 
Transitioned to different 
stratum n=192 
Declined participation n= 3 

Not assessed for eligibility: n= 1586 
Stratum full n= 729
File not found n= 744
Not reachable n= 37 
Lost to follow up n= 46 
Transferred out n=24 
Died n=6

Total ART sites of Southern Highlands PEPFAR Program, Tanzania (May2009) n=21
Referral Hospital n=1, Regional Hospital n=4, District Hospital n=16

Assessed for eligibility
N= 919

Mbeya Region

Ruvuma Region

Rukwa Region

District LevelReferral Level Regional Level

Referral Level Regional Level District Level

Mbeya Referral H.(1) Mbeya Regional H. (1) Tukuyu District H (0.1) Mbeya Region

Songea Regional H. (0.5) Mbinga District H. (0.2) Ruvuma Region

Sumbawanga Regional H (1) Mpanda Distirict H. (0.2) Rukwa Region

Sampling
Stage 2

Sampling 
Stage 1

 

Figure 7: Flow-chart of Study Design And Recruitment Outcome 
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Of a total of 31950 patients on treatment at all study sites, 2504 patients were pre-

randomized. Of these, 1586 were not assessed for eligibility as they had not been 

reachable, were lost to follow up, died, transferred out or their file had not been 

found. Of 919 assessed, 192 had changed stratum in the interval between random 

selection and recruitment, 3 declined participation and 22 were ineligible for other 

reasons. As two enrolled in the wrong stratum were replaced, An additional 

recruitment of two participants compensated two of the three subjects with missing 

viral load information. A total of 702 patients were enrolled and the minimal targeted 

sample size was met at all sites. All consented patients completed study procedures 

(Figure 7). 

9.2 Descriptive Data  

9.2.1 Demographic Data 

With 10% in the 6-12 month stratum, 18% in the 12-24 month stratum and 73% in 

the > 24-month stratum, participants had been on treatment for a median of 48 

months at the study visit. The majority of the study population were female married 

farmers with completed primary education and a median age of 43 years at study 

visit, who provided for 2-5 persons financially. They lived in a household of a median 

of 3 adults and 2 children without electricity (Table 1). 

9.2.1 Morbidity In The Study Population 

Most participants initiated ART at WHO clinical stage 3 (63%), with 9% starting ART 

at Stage 4 and 6% at stage 1 and 3 participants missing clinical information prior 

treatment start. Prior ART initiation, weight loss and mucocutaneous manifestations 

were the main WHO stage 2 disease events reported with a prevalence of 23 and 

24% respectively. Nearly half of the population had experienced unexplained 

prolonged fever (47%) followed by weight loss >10% of body weight (24%) and 

chronic diarrhoea (20.5%) as WHO stage 3 events. Overall, WHO stage 4 disease 

prevalence in the population prior ART start was 9%, with disseminated candidiasis 

(2.1%) and HIV wasting (2.4%) being the main stage 4 defining diseases.  

After ART start, 8% of the population developed a WHO stage 2 or 3 event, and 4% a 

WHO stage 4 disease, which again mainly included weight loss (8%), skin diseases 

(4%), oral thrush (1%) but also intra- and extrapulmonary tuberculosis (prevalence of 

0.1%, 0.4% respectively).  
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Table 1: Outcome and Demographic Data Of The Study Population By Site 

 MZRH MbRH MbDH RvRH RvDH RuRH RuDH Total 
Total 100 14 100 14 100 14 100 14 100 14 102 15 100 14 702 100 

Outcome N % N % N % N % N % N % N % N % 
VS <1000 81 81 92 92 88 88 83 83 88 89 88 88 93 93 613 87 
1000  >1000 19 19 8 8 12 12 17 17 11 10 12 12 7 7 86 12 
VS400 <400 71 71 91 91 87 87 78 78 84 85 87 87 92 92 590 84 
  >400 29 29 9 9 13 13 22 22 15 14 13 13 8 8 109 16 
VS50 <50 50 50 72 72 65 65 67 67 70 71 64 64 78 78 466 66 
  >50 50 50 28 28 35 35 33 33 29 28 36 36 22 22 233 33 

ART Stratum  N % N % N % N % N % N % N % N % 

 6-12 12 18 4 6 15 22 8 12 8 12 12 18 9 13 68 100 
  13-24 19 15 6 5 20 16 10 8 17 14 22 18 29 24 123 100 
  >24 69 14 90 18 65 13 82 16 75 15 68 13 62 12 511 100 
 

Med SD Med SD Med SD Med SD Med SD Med SD Med SD Med SD 
Age  44 9 41 10 44 11 44 10 41 9 43 10 43 11 43 10 
Gender   N % N % N % N % N % N % N % N % 

 Female 61 61 60 60 54 54 74 74 71 71 70 69 66 66 456 65 
 Male 39 39 40 40 46 46 26 26 29 29 32 31 34 34 246 35 
Marital status N % N % N % N % N % N % N % N % 

Married 44 44 42 42 48 48 45 45 51 51 59 58 52 52 341 49 
Widowed 37 37 36 36 31 31 27 27 23 23 30 29 24 24 208 30 

Other 19 19 22 22 21 21 28 28 26 26 13 13 24 24 153 22 
Literate  N % N % N % N % N % N % N % N % 
 No 8 8 11 11 13 13 11 11 15 15 13 13 33 33 104 15 
 Yes 92 92 89 89 87 87 89 89 85 85 89 87 67 67 598 85 
Education N % N % N % N % N % N % N % N % 

None 20 20 20 20 34 34 23 23 15 15 36 35 41 41 189 27 
Primary compl. 62 62 66 66 59 59 66 66 72 72 54 53 49 49 428 61 

> primary 18 18 14 14 7 7 11 11 13 13 12 12 10 10 85 12 
Profession N % N % N % N % N % N % N % N % 

Worker 10 10 6 6 1 1 3 3 6 6 42 41 22 22 90 13 
Farmer 32 32 56 56 86 86 80 80 72 72 38 37 59 59 423 60 

Business 58 58 38 38 13 13 17 17 22 22 22 22 19 19 189 27 
Smokes/drinks    N % N % N % N % N % N % N % N % 
 Yes 18 18 24 24 19 19 13 13 17 17 47 46 16 16 154 22 
 

Med SD Med SD Med SD Med SD Med SD Med SD Med SD Med SD 
# Adults in HH 2 2 1 1 2 2 2 1 2 1 2 9 2 2 2 4 
# Children in HH 1 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 
Financial 
dependents N % N % N % N % N % N % N % N % 

<2 7 7 22 22 8 8 6 6 9 9 26 26 12 12 90 13 
 2-5 64 64 65 65 76 76 71 71 77 77 69 68 81 81 503 72 
 >5 29 29 13 13 16 16 23 23 14 14 7 7 7 7 109 16 
Electricity in HH 35 35 38 38 9 9 38 38 13 13 36 35 24 24 193 28 
HIV status of 
spouse N % N % N % N % N % N % N % N % 

Don’t know 19 19 15 15 17 17 4 4 11 11 9 9 20 20 95 14 
I know status 44 44 38 38 43 43 41 41 44 44 50 49 49 49 309 44 

 N/A 37 37 47 47 40 40 55 55 45 45 43 42 31 31 298 43 
Spouse HIV neg. 12 12 11 11 6 6 12 12 11 11 12 12 13 13 77 11 
Spouse HIV pos. 32 32 27 27 37 37 29 29 33 33 38 37 36 36 232 33 
Spouse on ART N % N % N % N % N % N % N % N % 

No 17 24 11 15 10 13 5 6 9 11 9 11 12 18 73 14 
 Yes 15 21 17 23 29 37 24 29 25 32 29 35 25 37 164 31 
 N/A 37 52 47 63 40 51 55 66 45 57 44 54 31 46 299 56 

Don't know 2 3 0 0 0 0 0 0 0 0 0 0 0 0 2 0 
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At study visit, 10% of the study population presented with a stage 2, 6% with a stage 

3 and 3% with at least one stage 4 disease (Table 4).  

In the median, 2 (IQE 1-3) new onsets of WHO relevant diseases were recorded for 

each participant, which were mainly found prior treatment initiation. Once ART was 

started, 75% (n=530) of participants did not develop further diseases, and the 

morbidity under ART was concentrated on a minority of clients. 

Ninety-two per cent (n=643) of the study participants had received a baseline CD4 

count, and in the median had 149 CD4 cells/μL. Of those, 82% (n=530) were below 

250 CD4 cells/μL as a relevant cut-off for treatment initiation according to the national 

guidelines at that time, and only three had above 500 CD4 cells at baseline. (Table 2)  

Table 2: Clinical Presentation At Treatment Start  

 MZRH MbRH MbDH RvRH RvDH RuRH RuDH Total 
Clinical Presentation at Treatment Start          

WHO stage N % N % N % N % N % N % N % N % 
 stage 1 4 4 8 8 2 2 12 12 1 1 14 14 3 3 44 6 
stage 2 19 19 18 18 16 16 26 26 19 19 35 34 18 18 151 22 
 stage 3 62 62 63 63 71 71 58 58 60 60 52 51 77 77 443 63 
stage 4 15 15 11 11 11 11 4 4 20 20 1 1 2 2 64 9 

Treatment 
eligibility 

N % N % N % N % N % N % N % N % 

Clin.&CD4 64 64 66 66 75 75 50 50 43 43 49 48 70 70 417 59 

CD4 count 32 32 26 26 16 16 35 35 21 21 50 49 22 22 202 29 
Clinical 

Only 
4 4 7 7 9 9 15 15 36 36 1 1 8 8 80 11 

Unknown 0 0 1 1 0 0 0 0 0 0 2 2 0 0 3 0 

Funct. Status N % N % N % N % N % N % N % N % 
Working 92 92 93 93 95 95 94 94 70 70 72 71 92 92 608 87 

< Working 7 7 6 6 5 5 6 6 30 30 11 11 3 3 68 10 
Unknown 1 1 1 1 0 0 0 0 0 0 19 19 5 5 26 4 

Vitals Med SD Med SD Med SD Med SD Med SD Med SD Med SD Med SD 
Weight (kg) 57 9 54 11 54 10 55 10 52 10 52 8 53 8 54 10 
BMI  22 3 21 4 21 4 22 4 20 4 21 3 20 3 21 4 
CD4 count 134 128 131 79 114 91 173 98 179 91 156 85 140 101 149 99 

Haemoglob 12 2 12 2 11 2 11 2 11 2 12 2 10 3 11 2 
Lymphocyt 2 1 2 3 1 1 2 2 1 1 2 1 2 1 2 2 
ALT  20 19 23 27 27 23 22 14 28 12 22 20 16 11 23 21 
Creatinine 64 49 70 64   79 36 88 176 185  79 75 74 82 

Clinical Failure 

Three per cent of the study population had been failing clinically (n=21). Of those 8 

had met the criteria prior to the study visit and 19 were identified as clinically failing at 

the time of assessment. Most WHO stage 4 diseases leading to the diagnosis of 
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clinical failure were weight loss >10% of body weight (n=12), 4 cases were recurrent 

Kaposi Sarcoma cases and 3 clients presented with Tuberculosis.  

Of the WHO defining disease events that occurred after treatment start and did not 

meet the criteria for immune reconstitutions syndrome (n=204), the majority (62%,  

Table 3: Clinical Presentation at Study Visit by Site 

 MZRH MbRH MbDH RvRH RvDH RuRH RuDH Total 
Clinical Presentation at Study Visit         

RR N % N % N % N % N % N % N % N % 
Normal 62 62 63 63 67 67 53 53 50 50 69 68 68 68 432 62 

Hypertens. 38 38 37 37 33 33 47 47 50 50 33 32 32 32 270 39 

WHO stage N % N % N % N % N % N % N % N % 
stage 1 4 4 8 8 2 2 5 5 1 1 13 13 2 2 35 5 
 stage 2 19 19 14 14 16 16 25 25 18 18 35 34 19 19 146 21 
 stage 3 58 58 64 64 69 69 56 56 60 60 50 49 76 76 433 62 
 stage 4 19 19 14 14 13 13 14 14 21 21 4 4 3 3 88 13 

IRS  No 98 98 99 99 100 100 98 98 98 98 102 100 99 99 694 99 
  Yes 2 2 1 1 0 0 2 2 2 2 0 0 1 1 8 1 

Clin.failure N % N % N % N % N % N % N % N % 
  Yes 3 3 3 3 3 3 8 8 1 1 3 3 0 0 21 3 

 No 97 97 97 97 97 97 92 92 99 99 99 97 100 100 681 97 
   Med SD Med SD Med SD Med SD Med SD Med SD Med SD Med SD 
Years ART 4 3 5 2 4 2 5 2 5 2 4 3 3 2 4 2 
Years HIV+. 5 3 5 2 4 2 6 2 5 2 5 2 3 2 5 2 
Peak CD4  567 319 497 318 227 178 467 250 335 297 436 233 306 254 414 289 
CD4 gain 
from BL 

270 231 283 190 241 214 315 230 226 218 223 210 204 194 245 215 

BMI  24 4 23 4 22 3 22 4 22 4 23 4 23 3 23 4 
CD4 count 402 219 416 216 383 230 502 236 378 210 385 221 349 211 402 223 
RBC 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 
WBC 4 1 5 1 5 1 5 1 5 1 5 1 5 2 5 1 
Haemogl 14 2 14 2 14 2 13 2 13 2 13 1 13 2 14 2 
Haemogl% 39 4 41 4 40 5 42 6 43 7 39 5 40 8 40 6 
MCV 104 10 104 9 103 8 112 146 107 10 99 10 103 10 105 55 
Neutrophils 43 12 48 11 43 12 47 11 53 12 46 12 54 11 47 12 
Platelets 233 70 253 77 228 168 268 303 277 73 197 55 314 395 253 214 
Monocyt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Monocyt% 10 3 9 2 9 3 9 5 6 4 8 3 6 2 8 3 
Lymphocy 2 1 2 1 2 1 2 2 2 1 2 1 2 1 2 1 
Lympho % 42 11 39 10 40 11 42 11 40 11 41 12 40 10 40 11 
Eosinophi  0 0 0 0 0 0   7  0 0 1 1 0 0 
Eosino% 2 3 2 5 4 5     3 4 16 14 3 5 
Basophile 0 0 0 10 0 0     0 0 0 0 0 5 
Baso % 0 0 0 0 0 0     0 1 1 1 0 0 
ESR  25 24 20 23 27 33 30 26 8 9 25 27 50 35 24 29 
Creatinine 56 12 53 22 60 16 45 93 44 60 49 14 55 28 52 45 
ALT  19 13 16 14 17 12 14 9 12 10 13 36 14 9 14 17 
Weight (kg) 62 10 60 11 59 8 55 11 56 12 57 8 57 9 58 10 

 

While sites reported different proportions of clinical failure (p= 0.04), no significant 

differences could be observed between regions (p=0.2), health care levels (p= 0.06) 
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and treatment strata (p= 0.2). Clinical failure was not associated with virological 

failure at any of the cut-offs used (p= 0.699, p= 0.489, p= 0.885 for VS1000, VS400 

and VS50 respectively). 

Immunological Reconstitution and Immunological Failure 

Prevalence of Immune Reconstitution Syndrome (IRS) was 1% in the patient 

population, with 8 individuals developing new or recurred WHO stage 4 events during 

the first 6 months of treatment. Next to two cases of newly developed Esophageal 

Candiasis and extrapulmonary TB, IRS manifested itself as a case of Toxoplasmosis, 

Pneumocystis Carinii Pneumonia (PCP), Cytomegalovirus Disease and 

extrapulmonary Cryptococcosis. None of the subjects who developed symptomatic 

IRS and remained on treatment developed subsequent WHO stage 4 diseases 

meeting the definition of clinical failure. 

Participants gained a median of 254 CD4 (IQR -187,936) between baseline and 

study visit. CD4 increase differed significantly by ART stratum (p<0.001) and 

increased with longer time on ART (>24 months: median 291 [IQR -102, 932], 13-24 

months: median 153 [IQR -149,676], 6-12 months: median 139 [IQR -36, 457])  

However, 14% met the definition of immunological failure, with 12% meeting one, 2% 

meeting two and 1 person meeting all three failure criteria. For 13% immunological 

failure could not be ruled out as the parameters needed for assessment – especially 

baseline and peak value – were not all available for the specific client. A drop of CD4 

counts of more than 50% to peak value was the criteria met by most participants 

failing (63% n=62), followed by a drop below baseline (28%). 8% of clients did not 

experience immune reconstitution above 100 CD4 counts. Clinical failure was 

associated with virological outcome at all cut-offs assessed. Clients failing 

immunologically were 6 times more likely to have a viral load above 1000 copies/ml 

(OR 5.8 p<0.001), 4 times more likely to be above 400 copies (OR 3.6, p<0.001) and 

2 time more likely to have over 50 copies/ml (OR 1.9, p=0.002). 

Nevertheless, sensitivity of immunological failure to predict virologic failure was low 

with a sensitivity and septicity of 44% (95%CI 33-56%) and 88% (95%CI 85-91%) for 

VS1000, 34% (95%CI 25-45%) and 87% (95CI 84-90%) for VS 400,and 23% (95%CI 

17-29%) and 87% (95%CI 84-90%) for VS50. 



 

 

Table 4: WHO Defining Disease Events And Their Prevalence In The Study Population 

 never had ever had before ART start after ART start ongoing at SV 

Disease Event n % Prev n % Prev n % Prev n % Prev n % Prev 

Generalized Lymphadenopathy 694 94.4 8 5.6 7 1.0 0 0.0 0 0.0 

Minor Mucocutaneous Manifestations 506 72.1 196 27.9 163 23.2 33 4.7 31 4.4 

Weight Loss < 10% of Body Weight 524 74.6 178 25.4 170 24.2 7 1.0 29 4.1 

Recurrent Upper Respiratory Track Infections 558 79.5 144 20.5 133 18.9 11 1.6 15 2.1 

Herpes Zoster within last 5 years 617 87.9 85 12.1 78 11.1 7 1.0 0 0.0 

Unexplained Prolonged Fever >1 month 371 52.8 331 47.2 330 47.0 1 0.1 2 0.3 

Weight loss >10% of Body Weight 524 74.6 178 25.4 167 23.8 10 1.4 28 4.0 

Unexplained Chronic Diarrhoea >1 month 550 78.3 152 21.7 144 20.5 8 1.1 6 0.9 

Pulmonary Tuberculosis 618 88.0 84 12.0 66 9.4 18 2.6 1 0.1 

Severe Bacterial Infections 625 89.0 77 11.0 69 9.8 7 1.0 3 0.4 

Oral Candidiasis 643 91.6 59 8.4 48 6.8 11 1.6 7 1.0 

Anaemia 659 93.9 43 6.1 39 5.6 4 0.6 4 0.6 

Oral Hairy Leucoplakia 698 99.4 4 0.6 4 0.6 0 0.0 0 0.0 

HIV Wasting Syndrome 674 96.0 28 4.0 17 2.4 11 1.6 12 1.7 

Disseminated Candidiasis 684 97.4 18 2.6 15 2.1 3 0.4 0 0.0 

Tuberculosis, extrapulmonary 687 97.9 15 2.1 7 1.0 8 1.1 3 0.4 

Kaposi’s Sarcoma 691 98.4 11 1.6 9 1.3 2 0.3 4 0.6 

Pneumocystis Carinii Pneumonia 691 98.4 11 1.6 10 1.4 1 0.1 0 0.0 

Cryptococcal, extrapulmonary 694 98.9 8 1.1 5 0.7 3 0.4 0 0.0 

HIV Encephalopathy 697 99.3 5 0.7 5 0.7 0 0.0 0 0.0 

Toxoplasmosis 699 99.6 3 0.4 2 0.3 1 0.1 0 0.0 

Cryptosporidiosis with Diarrhoea >1 month 701 99.9 1 0.1 1 0.1 0 0.0 0 0.0 

Cytomegalovirus Disease 701 99.9 1 0.1 0 0.0 1 0.1 0 0.0 

Mucocutaneous Herpes simplex >1month, or any 
visceral 

701 99.9 1 0.1 1 0.1 0 0.0 0 0.0 



Thesis Lennemann  

68  

9.2.2 Antiretroviral Drug Regimen And Co-medications 

When starting ART, 59% of clients met clinical and immunological criteria for 

treatment start, 11% started due to a low CD4 count alone and in 29%, the clinical 

presentation was the main criteria. The majority of clients started in the WHO clinical 

stage 3 (63%), 9% started in stage 4, while 6% were at stage 1 at treatment start.  

Almost all participants received a Non-Nucleoside (NNRTI) based regimen with either 

Efavirenz (EFV, 41%) or Nevirapine (NVP, 58%), in 92% in combination with 

Lamivudine (3TC) and Zidovudine (AZT). Only 7 per cent of women participating in 

the study had a lifetime history of PMTCT, of which 67% had received single-dose 

Nevirapine. The main co-medication was PCP prophylaxis in 37%. Twelve per cent of 

the total study population were using traditional healing interventions next to their 

ART either consulting with a traditional doctor, using traditional remedies or both 

(Table 3). 

Table 5: Medication At Study Visit By Site 

 MZRH MbRH MbDH RvRH RvDH RuRH RuDH Total 
NRTI  N % N % N % N % N % N % N % N % 

AZT/3TC 99 99 86 86 78 78 99 99 92 92 98 96 97 97 649 93 
  Other 1 1 14 14 22 22 1 1 8 8 4 4 3 3 53 8 
NNRTI N % N % N % N % N % N % N % N % 
  EFV 31 31 39 39 34 34 43 43 44 44 46 45 50 50 287 41 
  NVP 69 69 57 57 63 63 57 57 56 56 56 55 50 50 408 58 
  Other 0 0 4 4 3 3 0 0 0 0 0 0 0 0 7 1 
PMTCT  2 2 3 3 4 4 10 10 4 4 6 6 1 1 30 4 
Any prophylaxis 35 35 30 30 81 81 17 17 73 73 19 19 9 9 264 38 
PCP Prophylaxis 35 35 30 30 81 81 14 14 73 73 18 18 9 9 260 37 
TB Prophylaxis  0 0 0 0 1 1 1 1 0 0 2 2 0 0 4 1 
Other Co-Med.  46 46 37 37 81 81 42 42 74 74 26 26 11 11 317 45 
Currently on TB 7 7 0 0 1 1 1 1 0 0 2 2 1 1 12 2 
   

Med SD Med SD Med SD Med SD Med SD Med SD Med SD Med SD 

No. of Pills ARV 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 
Total Pills/ day 2 1 3 1 4 1 5 1 4 1 3 2 2 1 3 2 

 

9.2.3 Adherence And Interaction With The Health System 

Self-assessed adherence was high with 96% not having missed drug pick up in the 

last 6 months. 

While 67% had a treatment supporter, only 12% actively attended support groups. 

Disclosure in the private space was high with 85% of all married participants knowing 

the HIV status of their spouse, of which the majority was HIV positive as well. 
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Table 6: Adherence and Patient-Clinic Interaction 

 MZRH MbRH MbDH RvRH RvDH RuRH RuDH Total 

 N % N % N % N % N % N % N % N % 

Distance to clinic              

0-5kn 43 43 55 55 25 25 71 71 52 52 54 53 51 51 351 50 

5-10km 26 26 24 24 40 40 13 13 26 26 30 29 21 21 180 26 

  >10 31 31 21 21 35 35 16 16 22 22 18 18 28 28 171 24 

Clinic access            

Own 
transport 

12 12 11 11 16 16 24 24 43 43 27 27 22 22 155 22 

Hired two-
wheel 

1 1 1 1 11 11 34 34 50 50 27 27 52 52 176 25 

Public 
transport 

87 87 88 88 73 73 42 42 7 7 48 47 26 26 371 53 

Missed clinic visits last month 

Yes 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 
Time to clinic 
(min) 

45 54 43 92 60 52 30 33 45 51 30 64 60 78 45 64 

Attends 
support group  

14 14 9 9 44 44 2 2 3 3 12 12 3 3 87 12 

Has Treatment 
Supporter  

10 10 56 56 27 27 100 100 95 95 87 85 97 97 472 67 

Has any 
reason to miss 
ART 

32 32 5 5 25 25 1 1 17 17 25 25 20 20 125 18 

ART could be missed due to …      

Toxicity  5 5 0 0 0 0 0 0 0 0 0 0 0 0 5 1 
Shared 

medication 
0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 

Forget med. 19 19 3 3 8 8 1 1 8 8 21 21 11 11 71 10 

Feel better  3 3 2 2 0 0 0 0 0 0 1 1 0 0 6 1 

Too Ill  3 3 1 1 4 4 0 0 0 0 1 1 0 0 9 1 

Travel probl 3 3 0 0 2 2 0 0 0 0 0 0 2 2 7 1 

 out of stock 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 1 

Has no pills 2 2 0 0 1 1 0 0 0 0 0 0 2 2 5 1 

Alcohol  2 2 2 2 12 12 0 0 8 8 1 1 2 2 27 4 

Depression 3 3 0 0 1 1 1 1 1 1 0 0 4 4 10 1 
told to be 

cured  
0 0 0 0 0 0 0 0 0 0 3 3 0 0 3 0 

Uses trad. 
healers  

7 7 6 6 7 7 0 0 7 7 27 27 3 3 57 8 

Uses trad. 
medicine 

13 13 2 2 9 9 0 0 7 7 42 41 3 3 76 11 

Patient Satisfaction        The following has to improve…        

waiting time 61 61 22 22 22 22 0 0 10 10 40 39 87 87 242 35 

skills HCW 9 9 1 1 0 0 0 0 0 0 0 0 2 2 12 2 

attitude HCW 13 13 1 1 1 1 0 0 0 0 3 3 1 1 19 3 

building 4 4 1 1 0 0 0 0 28 28 2 2 88 88 123 18 

overall  12 12 1 1 1 1 0 0 7 7 0 0 78 78 99 14 

 

When asked what they considered the main reasons to miss drug intake, simply 

forgetting drug intake was the main reasons for incomplete dosing, cited by 10% of 
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the population. Clinic related aspects such as waiting time, staff attitude or bad 

quality of care were not cited as a reason to miss a drug pickup visit.  

After their confirmatory HIV test, clients were enrolled in care within a median of 4 

days. For 25% of clients, test and enrolment were performed on the same day, and 

75% had enrolled within 16 days after their confirmatory HIV test. In 7 cases, 

enrolment in care preceded a documented HIV test result by 7 up to 229 days. With a 

median of 9 days, most clients were eligible for ART when enrolling for care, and 

76% met eligibility criteria within the first three months after enrolment. Only 10% of 

the study population was still not eligible after one year in care.  

Clients started on treatment within a median of 11 days after meeting eligibility 

criteria, with 58% initiating within 2 weeks and 88% within 2 months. Overall, time 

from the first diagnosis to treatment initiation took a median of 50 days for the whole 

population, and for those where a CD4 count at baseline was available, about half of 

the population had a result within one month after ART start. 

Half of the population lived within 5 km from the clinic and took a median of 45min 

and cost approximately one dollar (1000 TZS) to access care. Half of the participants 

used public transport, and one quarter either had their own means of transport, 

walked or used hired two-wheel transportation such as a motorcycle or bicycle taxis. 

The commitment of these resources appeared acceptable to clients, although 

transport distance and time were cited as reasons for missing clinic visits.  

9.2.4 Description Of Site Level Characteristics 

In each region, one district and one regional hospital had been included and the only 

zonal referral hospital - Mbeya Referral Hospital - as an additional site in Mbeya. The 

catchment area of these hospitals varied widely between a population of 7,296,789 

served by the Zonal Referral Hospital and 564,604 people covered by Rukwa District 

Hospitals. Regional hospitals tended to be in urban areas with a population above 

50000 people, while district hospitals were in smaller villages. Most sites had been 

operating for 8 years. 

Across all sites, a total of 41372 patients had ever been enrolled on ART, most at 

Mbeya District Hospital (22%) and least at Ruvuma District Hospital (6.5%). Of the 

total of 14966 patients receiving ART through the study sites, Mbeya Referral 

Hospital had the biggest and Ruvuma District Hospital the smallest patient 

population. Only Mbeya referral and the regional hospitals but no district hospitals 
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had any patients on second line, with the majority of patients managed at Mbeya 

Referral Hospital. Overall, the proportion of second line patients was 1.1%, with 3.5% 

in Mbeya. Absolut attrition was highest in Mbeya District hospital, with 5.4 patients 

lost per patient retained and lowest in Rukwa Regional Hospital with 1.6 patients lost 

per patient retained. All sites acted as referral facilities to which lower-level CTCs 

could refer critical patients and in turn down-referred stable patients to lower-level 

health facilities. Except for Mbeya Referral Hospital, all sites transferred terminally ill 

patients to home-based care services, but the scale and intensity of collaboration of 

these inter-facility referrals differed by site. The integration with other services of the 

hospital such as TB clinic, outpatient clinic and Antenatal Care for management of 

HIV positive pregnant women varied across sites with different combinations of 

integration including stand-alone CTCs in Ruvuma and the Rukwa Regional and 

Ruvuma District Hospital having achieved substantial integration.  

Clinics offered ART service on 3 to 5 days per week and required patients to return 

for monthly drug pick-up visits. Except for Ruvuma District Hospital, sites did not run 

support groups. Except for Mbeya District Hospital, all sites reported tracing patients 

lost to follow up. Meantime between diagnosis and enrolment (p=0.0001) and from 

enrolment to eligibility (p=0.0001), eligibility to ART start (p=0.0001) and between 

ART start and first CD4 count (p=0.0001) differed significantly between sites. 

In the median, CTCs were staffed with 10 HCW (range 7-29) of various cadres, with 

1 to 8 medical staff (physicians or clinical officers), 3 to 13 nursing staff (nurses, 

nurse assistants, student nurses) and between 0 and 4 support staff such as 

nutritionists, counsellors, peer counsellors, community healthcare workers or others. 

As all CTCs shared their staff with the hospital and applied different rotation 

schemes for different cadres, ascertainment of the actual staffing situation was 

difficult. Physicians often attended to CTCs for a limited number of hours per day, 

while the nursing staff was more likely to rotate on a monthly or weekly basis. Sites 

might also have a mixed model with a core staff of often retired nurses or clinical 

officers continuously staffing the CTC and additional staff that would change over 

time. At the referral hospital, some of the staff were directly funded through partner 

organizations to supplement the governmental health workforce. Daily clinical staff to 

patient ratio across the sites was 1:256 (Range 176-295), being highest at the 

Referral Hospital (1:158) and lowest in Regional Hospitals (1:296). (Table 7) 



Thesis Lennemann  

72  

With 7 sites only, sample size on the facility level was too low to employ statistical 

methods, however, what could be seen in the site assessment was that differences 

did not always follow the same pattern. While some aspects of service provision 

seemed to differ along health centre levels such as much higher lack of consumables 

such as laboratory reagents, other aspects followed a more regional distribution: 

Chemoprophylaxis for Pneumocystis Jiroveci Pneumonia (PCP) for those <200 CD4 

cells for example as much as INH prophylaxis recommended in HIV infected 

individuals was generally less commonly provided. Overall, only 54% of those in 

need received PCP prophylaxis. However, coverage was especially low with Rukwa, 

with 27% at Rukwa Regional Hospital and 18% at Rukwa District Hospital 

respectively, while in the other regions, this shortage only affected district hospitals. 

Only 2% received INH prophylaxis on study visit, all of which were treated at Mbeya 

Referral Hospital.  
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Table 7: Facility Characteristics 

Facility Characteristic MZRH MbRH MbDH RvRH RvDH RuRH RuDH 

Health Care Level  Referral  Regional  District  Regional  District  Regional  District  

Catchment area  7,296,789  2,707,410  339,157  1,376,891  353,683  1,004,539  564,604  

Year ART clinic started  2004  2005  2005  2004  2005  2005  2006  

Location >=50.000 >=50.000 2.500-49.000 >=50.000 2.500-49.000 >=50.000 >=50.000 

Patients ever enrolled in ART      n (%) 

N=41372 

7868 

(19%) 
8060 

(19.5%) 
9462 

(22.9%) 
6107 

(14.8%) 
3521 

(8.5%) 
3682 

(9%) 
2672 

(6.5%) 

Patients on ART at facility visit    n (%) 

N=14966 
3310 (22%) 2071 (13.8%) 1756 (11.7% ) 2636 (17.6%) 1407  (9.4%) 2281 (15.2%) 1505 (10%) 

Total on 1st line at facility visit    n (%) 

N=14803  
3195 (21.6%) 2048 (14%) 1756 (11.9%) 2614 (17.7%) 1407 (9.5%) 2278 (15.4%) 1505 (10.2%) 

Total on 2nd line at facility visit    n (%) 

N=163  
115 (70.6%) 23 (14.11%) 0.0 22 (13.5%) 0.0 3 (1.8%) 0.0 

Nr. Of patients lost per patient retained  2.4  3.9  5.4  2.3  2.5  1.6  1.8  

Average number of patients lost per 

year of operation  
506.4  748.6  963.3  385.7  264.3  175.1  166.7  

patients lost as % of current patient 

population.  

15.3  36.1  54.9  14.6  18.8  7.7  11.1  
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9.3 Main Results – Virologic Outcome  

With 3 missing viral loads, the primary endpoint was available for 699 (99.57%) 

participants.  

In line with the objectives of this research, we assessed virologic suppression at 

three different virologic cut-offs based on the rationale in section 6.1.3. and 

definition in section 8.8.1. with virologic failure being defined as viral load at study 

visit above 400 copies/ml (VS400), above 1000 copies/ml (VS1000) or above 50 

copies/ml (VS50). In line with the STROBE guidelines, we present outcomes as 

unadjusted outcomes in the study participants (“Study Population”), estimated for 

the total WRSHCP population adjusted for study design as specified in section 

8.9.2. (“WRSHCP Population”) and controlled for pre-treatment differences of the 

participant population through GMB generated Propensity Score weighting as 

described in section 8.9.2. (“PS Adjusted Population”). 

9.3.1 Virological Suppression In The WRSHCP  

Across the Study Population, 84% (n=590) had achieved suppression below 400 

copies/ml, 88% (n=613) had achieved viral load suppression <1000 copies/ml, and 

67% (n=466) below 50 copies/ml (Figure 14). The corresponding estimates for 

virologic suppression in the WRSHCP Population adjusted for study design was: 

86% (95%CI 80-91%) virological suppression below 400 copies/ml, 89% (95% CI 

85-92%) <1000 copies/ml and 68% (95% CI 61-74%) for <50 copies/ml (Figure 8). 

 

Figure 8: Virologic Outcome by Different Cut-Offs in the Study and WRSHCP Population 
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9.3.2 Comparison Of ART Strata, Regional And Health Care Level 

Outcome 

Virologic outcome did not differ significantly by treatment strata for all cut-offs used in 

both the unadjusted study population (Figure 9) and study design adjusted WRSHCP 

population (Figure 10), although viral load suppression was lowest in the >24 month 

group with an estimated 87% (95%CI 79-92), 84% (95%CI 74-91%) and 67% 

(95%CI 58-74%) of the program population below VS1000, VS400 and VS50 

respectively.  

Likewise, no significant regional differences could be observed and virologic 

suppression was similar across the regions at a range between 88% (95%CI 82-

93%), 86% (95%CI 75-93%) and 65% (95%CI 55-74%) in Mbeya and 92% (95%CI 

89-94%), 91% (95%CI 88-93%) and 76% (95%CI 68-82%) in Rukwa for the VS1000, 

VS400 and VS50 cut-off respectively.  

 

 

Figure 9: Unadjusted Proportion Of Virologic Failure in the Study Population By Cut-off, 

Region, ART Stratum, And Health Care Levels  

 

However, when comparing different health care levels, significant differences could 

be observed for the lower cut-offs (VS50 and VS400) for both study and WRSHCP 

population (VS50 p=0.003, p=001, VS400 p=0.001, p=0.02 respectively), but not for 

the highest cut-off of 1000 copies/ml, where groups did not differ significantly 

(p=0.07, p=0.07 for unadjusted and study design adjusted analysis respectively). 
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Virological suppression estimated for the program population accessing care at 

different health care levels was lowest at referral level with 81% (95%CI 81-81), 

71 % (95%CI 71-71%) and 50% (95%CI 50-50%) and highest at district level with 

89% (95%CI 86-92%), 87% (95%CI 84-90%) and 70%(95% CI 77-61%) for the VS 

1000, VS400 and VS50 outcome.  

Especially the referral level showed substantially more treatment failure compared to 

the other levels not only in those meeting the WHO criteria of failing above 1000 

copies but also in those showing lower level replication. At the referral level, half of 

the population was above the test detection limit of 50copies/ml. Without taking 

population differences into account, the referral level seems to perform much worse 

than the other health care levels, while the district and regional level seemed to be 

very similar in outcome across the cut-offs, with virologic suppression at the regional 

level of 90% (95%CI 83-94%) at VS1000, 88% (95%CI 80-94%) at VS400 and 71% 

(95%CI 65-76%) at VS50. 

 

 

Figure 10: WRSHCP Population Point Estimates and Confidence Intervals For Treatment 

Outcome By Cut-Off In Sub-groups 
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section 8.9.2 to assess the impact of health care level and region on treatment 

outcome controlling for differences in the patient population. 

As outlined in the methods section, the “overlap” assumption is crucial pre-requisite 

for method validity and signifies that there are no values of variables that occur only 

at one of the sites. For the final PS weights generated for health care level and 

region, the “overlap” assumption held as demonstrated with the overlap plots 

provided as additional material in section 13.4. (Figure 35, Figure 33). 

Weighting by the PS balanced both regions and health care level, reducing the 

overall maximum Absolute Standardized Mean Difference (SMD) from 1.3 to 0.6 and 

1.2 to 0.9 respectively. As the pairwise comparison of SDM changes presented in 

Figure 11 depicts, the referral level population was quite different from the lower 

levels, resulting not only in SMD reduction but also increase after weighting.  

 

Applying the “double robust method” as discussed in the method section, variables 

that had not been fully balanced by Propensity Score were additionally included as 

       

 Each circle represents the maximum SMD for one of the confounder variables in the weighted or 
unweighted dataset. Full red circles indicate statistically significant differences, empty circles indicate 
statistically non-significant differences. Solid red lines indicate differences which are increased through 
weighting. Results are presented for both stopping rules, SMD and KS statistics 
 
Figure 11: Pairwise Comparison of SDM change for Individual Variables In The PS Weighted and 

Unweighted Population 
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variables in the logistic regression model. For health care level analysis this resulted 

in the inclusion of a mode of transport and profession. For the analysis of the impact 

of region on the outcome, we only included mode of transport and baseline WHO 

staging relevant weight loss as direct variables as regions were nearly fully balanced 

following the PS score alone (Figure 11). The results of the logistic regression 

analysis are presented in Figure 12 and Figure 13. When accounting for differences 

in the patient population, no differences could be found between the treatment 

outcome across regions. At the health care level, however, the district health care 

level significantly differed from referral and regional outcome on all virologic cut-offs 

evaluated: Participants with comparable characteristics were between 5 to 7 times 

less likely to fail at district level than at referral level (VS50: OR=0.5, p=0.02; VS400 

OR=0.4 p=0.59; VS1000 OR = 0.3, p= 0.003), while for participants managed at the 

regional hospitals, the observed odds of treatment failure did not significantly differ 

from the referral level, indicating that the differences observed in the unadjusted 

analysis were mainly due to the patient population rather than the care received at 

the respective health care level.  

 

Health Care Level Referral Regional District 

VS50     

Risk of failure Odds Ratio (OR) 1 0.6 0.5 

 95%Confidence Interval  0.3-1 0.3-0.9 

 p  0.058 0.021 

VS400     

Risk of failure Odds Ratio (OR) 1 0.6 0.4 

 95%Confidence Interval  0.3-1.3 0.1-0.9 

 P  0.151 0.049 

VS1000     

Risk of failure Odds Ratio (OR) 1 0.7 0.3 

 95%Confidence Interval  0.3-1.4 0.2-0.6 

 P  0.254 0.003 
Figure 12: Estimated Proportion Of Virologic Suppression And Risk of Virologic Failure For 

Health Care Level Controlled For Patient Population Differences 
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Region  Mbeya Ruvuma Rukwa 

VS50     

Risk of failure Odds Ratio (OR) 1 1 0.9 

 95%Confidence Interval  0.6-1.6 0.3-2.5 

 P  0.933 0.827 

VS400     

Risk of failure Odds Ratio (OR) 1 1.3 0.8 

 95%Confidence Interval  0.361 0.411 

 P  0.7-2.3 0.4-1.6 

VS1000     

Risk of failure Odds Ratio (OR) 1 1 0.8 

 95%Confidence Interval  0.5-1.8 0.4-1.5 

 p  0.902 0.456 
Figure 13: Estimated Proportion Of Virologic Suppression And Risk of Virologic Failure For 

Regions Controlled For Patient Population Differences 

At the district health care level, the “last 90” could be achieved with an estimated 

92% (95%CI 90-94) were below the WHO defined cut-off of 1000 copies/ml. All other 

levels showed lower outcome even when differences in the patient population were 

taken into account 

9.3.3 Virologic Outcome At Individual Study Sites 

The Outcome In The Study And WRSHCP Population 

At two sites – Mbeya Regional Hospital and Rukwa District Hospital - more than 90% 

of the population were suppressed below 1000 copies/ml at a study visit, with all 

other sites showing above 80% virologic suppression. In the unadjusted and study-

design adjusted analysis, no statistically significant difference between sites could be 

found (p=0.1 and p=1 for study and WRSHCP population respectively).  

However, the lower virological cut-offs reviled significant differences for both the VS 

400 cut-off (p=0.001, p<0.001 respectively for unadjusted and design adjusted 

analysis) and VS50 (p=0.003, p<0.001 respectively). Mbeya Referral Hospital and 

Rukwa District Hospital marked the opposite ends of the range with 71% to 92% for 

VS400 and 50% to 78% for VS50 (Figure 14).  
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Figure 14: Unadjusted Virologic Outcome in the Study Population By Site and Viral Load Cut-

off (n=700) 

 

Effect Of Treatment Site On Virologic Outcome Controlling for Pre-Treatment 

Characteristics Of The Study Population. 

As population characteristics among study sites differed substantially, we analysed 

the outcome of the different sites adjusting for confounding variables that were 

considered not influenced by the health care service provided. As described in 

section 8.9.2, we used logistic regression analysis with a double robust method of 

adjusting for confounders through Generalized Boosted Model Technique (GBM) 

generated Propensity Score (PS) weights and direct inclusion of selected 

confounders that had not been fully balanced by the Propensity Score.  

For the final PS weights, the “overlap” assumption held as demonstrated with the 

overlap plots provided as additional material in section 13.4.,Figure 35. In the 

balance assessment, PS weights reduced the overall maximum SMDs for the  
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 majority of covariates  , with a substantial overall drop of the highest SMD from 1.6 

to 1.2. In a pairwise comparison of sites, mean of the SMDs across all variables 

dropped below 2.5 in all comparisons, but differences remained after weighting the 

SMD maxima. Those variables (mode of transport to the clinic, profession, baseline 

WHO stage 3 or 4 changes in body weight and WHO stage 2 Mucocutaneous 

Manifestations) were included in the final, PS weighted Logistic Regression Model 

that assessed site impact on the different virologic outcome variables. 

When adjusting for patient population characteristics, differences between the sites 

became clear at all outcome thresholds:  

Mbeya Regional Hospital had the best outcome with a significantly better 

performance at all three cut-offs. Here, risk of failure directly attributable to the site 

was between 7 and 8 times lower (VS50 OR 0.3, p=0.003, VS400 OR 0.22, p=0.002, 

VS 1000 OR 0.3 p=0.03) than at the Mbeya Referral Hospital.  

For Mbeya District Hospital, a similar outcome could be observed for the VS1000 and 

the VS400 cut-off (OR 0.3, p=0.016 and OR=0.24, p=0.001 respectively), but not for 

VS50. Finally, Rukwa District Hospital had a significantly better outcome in the VS 

400 (OR 0.3, p=0.03) and VS50 (OR 0.4 p< 0.03), but not in the VS1000 (OR 0.3 

p=0.06) outcome. Both Hospitals in Ruvuma region and the Regional Hospital in 

Rukwa performed similarly to the Referral Level in all cut-offs used (Figure 16). 

 

 
Each pair of dots connected by a line represent 
the maximum SMD for one of the confounder 
variables in the weighted or unweighted 
population. Full red circles indicate statistically 
significant differences of the variable distribution 
between the sites, empty circles indicate non-
significant differences. Blue lines indicate 
decrease and solid red lines indicate increase of 
differences through weighting. Results are 
presented for PS weights generated using the 
SMD stopping rule (ed.mean) and the KS stopping 
rule (ks.mean). 

Figure 15: Change of Maximum SDM For The Pairwise Comparison Between The Weighted And 

Unweighted Total Population. 
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  MZRH MbRH MbDH RuRH RuDH RvRH RVDH 

Risk of Failure OR 1 0.3 0.5 0.6 0.9 0.9 0.4 

VS50 95%CI  0.2-0.7 0.2-1.1 0.3-1.3 0.3-2.2 0.4-1.9 0.2-0.9 

 P  0.003 0.071 0.224 0.747 0.738 0.026 

Risk of Failure OR 1 0.2 0.2 0.9 0.9 0.8 0.3 

VS400 95%CI  0.1-0.6 0.1-0.6 0.3-2.2 0.3-3.0 0.3-2.1 0.1-0.9 

 P  0.002 0.001 0.764 0.826 0.601 0.028 

Risk of Failure OR 1 0.3 0.3 0.8 0.5 1.0  
VS1000 95%CI  0.1-0.9 0.1-0.8 0.3-2.4 0.1-1.6 0.3-2.9 0.1-1.1 

 P  0.028 0.016 0.706 0.235 0.946 0.066 
Figure 16: Estimated Proportion of Virologic Suppression and Risk of Virologic Failure By 

Study Sites Adjusted For Pre-Treatment Patient Population Characteristics. 

 

  

Figure 17: Estimated Proportion of Virologic Suppression By Study Site And Virological Cut-off 

Adjusted For Pre-Treatment Population Differences. 

10 Other Analyses  

10.1.1 Patient Factors Associated With Viral Suppression 

As described above, three logistic regression models were built to assess patient-

level factors associated with virologic failure against the different cut-offs which are 

presented in Figure 18,  

Figure 19 and Figure 20. 

The relevance of sites described in section 9.3.3 was confirmed in the assessment of 

individual factors associated with treatment outcome: Compared to accessing 

treatment at the Mbeya referral hospital, individuals treated at Mbeya Regional 

Hospital had a lower risk of virological failure at all cut-offs used (VS50 OR 0.3, 
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p=0.003, VS400 OR 0.2, p=0.002 and VS1000 OR 0.3, p=0.028) while individual risk 

of treatment failure at Rukwa District Hospital was lower for VS 1000 and VS 400, but 

not VS 50 (OR 0.1, p=0.003, OR 0.1, p<0.001 respectively). For Mbeya District 

Hospital, the Propensity Score adjusted model had predicted a better outcome for all 

cut-offs compared to Mbeya Referral Hospital, but on an individual level, a significant 

association between the site and lower failure risk could only be seen for the VS400 

cut-off. Similarly, the sites that had not differed in predicted outcome to the Referral 

Hospital in the Propensity Score adjusted did show association with reduced virologic 

failure for some, but not all cut-offs. (See Figure 18,  

Figure 19, Figure 20 and Figure 16) Next to the study sites, no other variable 

assessed was retained in all final models for the different cut-offs. Of the 

demographic variables, age was relevant for the higher cut-offs (OR 0.9, p<0.001, 

OR 0.97, p=0.009 for VS1000 and VS 400 respectively), but not for VS50, where 

access of the household to electricity was associated with an increased in virological 

failure (OR 1.5, p= 0.048).  

While clinical failure was not retained in the models for any cut-offs, the occurrence of 

specific WHO stage defining events - particularly WHO stage 2 or stage 3 weight 

loss, recurrent upper respiratory tract infections and stage 3 or 4 Candidiasis after 

ART initiation – increased the risk of individual failure in participants compared to 

participants who never experienced the event or who had had such a diagnosis prior 

to ART treatment start. While weight at study visit or baseline was not retained in the 

models, weight loss of more than 10% of body weight under treatment increased risk 

of virologic failure for the VS 1000 (OR 5.8, p=005) and VS 400 cut-off (VS400, OR 

2.6, p=0.02). Recurrent upper respiratory tract infections meeting WHO stage 2 

during ART increased failure risk for the VS 400 cut-off (OR 6.4, p=0.035), while 

Candidiasis as oral thrush or in disseminated form increased risk of virological failure 

above 50 copies only (OR 4.4, p=0.04).  

The general presence of immunological failure at study visit by itself was retained in 

the VS1000 and VS50 models as a factor, although it did not meet the significance 

threshold after CD4 at baseline, peak value and on study visit as much as overall 

immunological recovery over treatment time were taken into account. Although all 

final models retained more than one variable evaluating immunological outcome of 

treatment, only higher CD4 at study visits was significantly associated with less 
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virologic failure for the VS 1000 and VS400 cut-off (OR 0.994, p<0.001; OR 0.996, 

p<0.001 respectively) but not with the VS50 cut-off. 

 

 > 1000 copies/ml OR p 
95%CI 

Low 
95%CI 
High 

Study Site (Ref.: Mbeya Zonal Referral 
Hospital)     

Mbeya Regional Hospital  0.2 0.004 0.1 0.6 

Mbeya District Hospital 0.4 0.093 0.1 1.2 

Ruvuma Regional Hospital 0.4 0.121 0.1 1.3 

Ruvuma District Hospital 0.4 0.170 0.1 1.5 

Rukwa Regional Hospital 0.4 0.040 0.1 1.0 

Rukwa District Hospital 0.1 0.003 0.0 0.5 

Age 0.9 0.000 0.9 1.0 

Number Of Alcoholic Drinks Per Week 0.9 0.111 0.8 1.0 

WHO Stage 2 Or Stage 3 Weight Loss 
(Ref: Before ART)     

During ART 5.8 0.005 1.7 19.9 

Never 0.5 0.056 0.3 1.0 

Recurrent Upper Respiratory Tract 
Infections (Ref: Before ART)     

During ART 6.1 0.077 0.8 44.6 

Never 0.8 0.547 0.4 1.6 

Pulse At Study Visit 1.0 0.145 1.0 1.0 

Highest CD4 Count Under Treatment 
(Ref:<100)     

100-199 0.5 0.344 0.2 1.9 

200-300 0.9 0.851 0.3 3.0 

>300 1.4 0.561 0.4 4.7 

Missing 0.1 0.014 0.0 0.7 

Immunologic Recovery Per Year (Ref: Less 
Than 50 CD4 Cells Per Year On ART)  

>50/y or >350 0.8 0.652 0.3 1.9 

Missing 0.2 0.091 0.0 1.3 

Immunological Failure (Ref: None)     
Yes 2.1 0.053 1.0 4.5 

CD4 Count At Study Visit 1.0 0.000 1.0 1.0 

Platelets At Study Visit 1.0 0.131 1.0 1.0 

Erythrocyte Sedimentation Rate At 
Study Visit 1.0 0.000 1.0 1.0 

_cons 155.9 0.001 7.0 3472.9 

Number of obs     675.0                Log likelihood = -171.8                 Prob  chi2<0.001 
Figure 18: Association of Individual-Level Factors On Treatment Failure Above 1000 Copies/ml 

In The Study Population 

Here, a higher CD4 count between 200 and 300 at baseline (OR 0.5, p=0.008) and 

immunologic recovery over 50 CD4 counts per year (OR 0.6, p=0.03) was associated 

with less virologic failure. Further, an increased Erythrocyte Sedimentation Rate 

(ESR) as a more general marker of immunologic activity was associated with failure 
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in the VS 1000 and VS400 but not the VS50 cut-off (OR 1.01, p<0.001, for both cut-

offs). 

Overall, although a high amount of surrogate parameter for patient adherence and 

factors acting on adherence were assessed, the only variables in this domain 

retained in the model described patient satisfaction with building quality and waiting 

time at the clinic: Dissatisfaction with the clinic buildings was associated with a 

decreased risk to fail treatment above 50 copies/ml (OR 0.3, p=0.003) compared to 

those satisfied, while participants who were unhappy with the waiting time were less 

likely to fail against the VS 400 cut-off (OR 0.4, p=0.01).  

 >400 Copies(ml OR p 
95%CI 

Low 
95%CI 
High 

Study Site (Ref: Mbeya Zonal Referral Hospital)     
Mbeya Regional Hospital  0.1 0.000 0.0 0.3 

Mbeya District Hospital 0.2 0.000 0.1 0.4 

Ruvuma Regional Hospital 0.3 0.003 0.1 0.6 

Ruvuma District Hospital 0.3 0.004 0.1 0.7 

Rukwa Regional Hospital 0.2 0.000 0.1 0.5 

Rukwa District Hospital 0.1 0.000 0.1 0.4 

ART Stratum (Ref 6-12 Months)     
13-24 Months 1.7 0.343 0.6 5.1 

>24 Months 4.7 0.002 1.8 12.3 

Age 1.0 0.009 0.9 1.0 

WHO Stage 2 Or Stage 3 Weight Loss (Ref: 
Before ART)     

During ART 3.6 0.022 1.2 10.5 

Never 0.7 0.266 0.4 1.3 

Recurrent Upper Respiratory Tract Infections (Ref: Before ART)   
During ART 6.4 0.035 1.1 36.6 

Never 0.8 0.372 0.4 1.4 

CD4 Count At Study Visit 1.0 0.000 1.0 1.0 

Platelets At Study Visit 1.0 0.152 1.0 1.0 

Erythrocyte Sedimentation Rate At Study Visit 1.0 0.000 1.0 1.0 

Waiting Time Unsatisfactory (Ref: Satisfied) 0.4 0.012 0.2 0.8 

Fear a Reason To Miss Clinic Visit 4.9 0.072 0.9 27.7 

_cons 6.3 0.050 1.0 39.9 

Number of obs 676            Log likelihood = -228.17598                Prob  chi <0.001 
 

Figure 19: Association of Individual-Level Factors On Treatment Failure Above 400 Copies/ml 

In The Study Population 
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>50 copies/ml  OR p 
95%CI 

Low 
95%CI 
High 

Study Site (Ref: Mbeya Zonal Referral Hospital)     

Mbeya Regional Hospital  0.4 0.004 0.2 0.7 

Mbeya District Hospital 0.6 0.166 0.3 1.2 

Ruvuma Regional Hospital 0.7 0.268 0.4 1.3 

Ruvuma District Hospital 0.7 0.336 0.4 1.4 

Rukwa Regional Hospital 0.6 0.077 0.3 1.1 

Rukwa District Hospital 1.1 0.802 0.4 3.0 

Number Of Alcoholic Drinks Per Week 1.0 0.146 0.9 1.0 

Household Has Electricity (Ref: None) 1.5 0.048 1.0 2.2 

Candidiasis WHO Stage 3 Or 4 (Ref: Before 
ART Start)      

During ART 4.4 0.040 1.1 18.1 

Never 1.5 0.233 0.8 2.9 

Has Had Any Skin Infections At Study Visit (Ref: 
None) 0.2 0.130 0.0 1.6 

ART Pill Burden At Study Visit 0.8 0.129 0.6 1.1 

CD4 Count At Baseline (Ref: <100)     

100-199 0.8 0.202 0.5 1.2 

200-300 0.5 0.008 0.3 0.8 

>300 1.0 0.964 0.5 1.9 

Missing 1.0 0.993 0.3 3.4 

Immunologic Recovery Per Year (Ref: Less Than 50 CD4 Cells 
Per Year On ART)   

>50/Year or >350 0.6 0.034 0.4 1.0 

Missing 0.9 0.809 0.2 3.0 

Immunological Failure (Ref: None)     

Yes 1.5 0.124 0.9 2.6 

Unknown 0.9 0.856 0.4 2.1 

Platelets At Study Visit 1.0 0.053 1.0 1.0 

MCV At Study Visit 1.0 0.121 1.0 1.0 

Building Unsatisfactory (Ref Satisfied) 0.3 0.003 0.1 0.6 

Fear A Reason To Miss Clinic Visit 4.0 0.144 0.6 25.7 

_cons 9.6 0.036 1.2 80.2 

Number of obs  680         Log likelihood =  - -392.54     Prob  chi2 <0.001 
Figure 20: Association of Individual-Level Factors On Treatment Failure Above 50 Copies/ml In 

The Study Population 

 

10.2 Development Of A Clinical Score To Predict Virologic Failure 

10.2.1 The Theoretical Framework Underlying Model Selection 

The theoretical framework developed as a basis for model selection conceptualizes 

individual treatment outcome as the result of a multifactorial interplay between 

individual and community factors, with the health care system being considered a 
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specially relevant area of the community. These dynamics cumulate in two main 

causal pathways that drive viraemia in the individual:  

The Active Drug Pathway influences the concentration of active medication in the 

blood, while the Immunologic Control Pathway describes the interaction between 

human host immunologic system and virus.  

The Active Drug Pathway is governed by the ability of the individual to maintain 

constant blood drug levels through regular drug intake which in turn requires regular 

engagement with the health system for continuous drug supply. At this interface 

between individual and clinic, factors and clinic dynamics affecting the clinic’s ability 

to provide continuous drug supply and correct prescriptions as much as a welcoming 

and supportive environment are crucial for individual treatment outcome. The 

individual’s perception of health and illness, any diseases affecting the central 

nervous system, available resources and a supportive private and community 

environment are further important factors for this pathway.  
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Figure 21:Framework of dynamics leading to virologic outcome

 

The Immunologic Control Pathway describes the interaction between the HI-virus and 

the host immune system. A functional immune system contributes to virologic control, 

but immunologic pressure can be reduced temporarily in the presence of further co-

morbidities. Incomplete viral suppression, on the other hand, leads to chronic 

inflammatory immune activation, which in turn can cause further co-morbidities and 

increases cardiovascular risks. While parameters of immune activation are not causal 

agents of virologic failure, they still can be used as predictive surrogate parameters 

indicating incomplete virologic suppression (Figure 21). Variables observable at study 

visit in the majority were more upstream than retrospectively collected variables such 

as information about medical history and treatment start, as most of the 

retrospectively collected variable were considered only indirectly impacting viral load 

mainly through influencing the immunologic recovery capacity.  

Viral replication in individuals on ART is considered a function of active drug pressure (Dx, green 

arrows) and immunologic control (Ix, blue arrows) on one side and viral replication and its immune 

activation on the other. Where factors affect different steps of the pathway, the pathway considered 

most relevant and most downstream is indicated for clarity. Full lines indicate major unidirectional, 

causal steps in the respective pathway, while dotted lines indicate important interactions. All steps 

presented are numbered in relation to their position in the causal pathway starting “downstream” with 

the direct interaction with the virus. Boxes filled in grey and white contain individual level factors, 

separated by pathway, blue filling indicates clinic and health care level characteristics. 
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10.2.2 Characteristics Of The Training And Validation Datasets  

Of the total of 702 participants in the RV288d trial, 470 participants were allocated to 

the training dataset, with 73 failing >400 copies/ml. A total of 232 participants had 

been allocated to the validation datasets as described in section 8.9.4. The 

Population Validation Dataset (PVD) included 150 participants with 26 cases of 

virological failure above 400 copies. The Geographical Validation Dataset (GVD) 

consisted of all 102 participants managed at Rukwa Regional Hospital including 

twenty participants shared with the PVD and included 13 cases of virological failure.  

Figure 22: Characteristics Of The Training And Validation Datasets 

None of the validation datasets differed significantly in the distribution of outcome 

variables both at the 400 cut-offs (p=0.6) and around 1000 copies/ml (p=0.3) nor at 

the Level1 predictors that remained in the final model when compared to the training 

dataset. However, significant differences existed for the site level (Level 2) predictor 

(Figure 22). 

10.2.3 Model Specification  

A total of 200 variables were assessed for model fit, paired with steps in the causal 

pathway and ranked as described in section 8.9.4. Of these, 85 were excluded due to 

the high amount of missing values or a low number of events in the total RV288d 

population. Twenty-eight received rank 3 and were excluded due to considerations 

surrounding their practicability within the context of the intended use of the model. 

Sixty-seven variables were considered relevant but less so than another variable 
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within the same step of the logic model which had received rank 1 paired with this 

step. Twenty variables (12 level 1 and 8 level 2 variables) were included in the model 

building process (Figure 23). Details of variable selection are provided in the 

supplementary material (13.4.2) which includes the rationale for rank assignment, the 

number of missing values and events in the total RV288d population, the unadjusted 

association between each candidate predictor and outcome in the training dataset as 

much as the assigned rank and paired step in the causal pathway.  

It should be noted that the drug regimen used would be a desirable variable to be 

included into the model, as drug regimen are located very much “downstream” in the 

causal chain and impact of different drugs on treatment outcome has been 

established in multiple contexts. In our sample, very little variance could be observed 

between the components of the ART regimen, with most people receiving either EFV 

or NVP in combination with 3TC/AZT, which is a combination that is being phased 

out in the public health approach. NVP containing regimen are considered less 

effective than EFV based regimen, so the NNRTI component was considered 

relevant for a potential model however, including this variable did not impact model fit 

hence was not retained. Ideally, a score also would be independent of the regimen 

used to be robust to regimen changes.  

The initially selected Level 1 variables with rank 1 were: time on ART, drinks any 

alcohol, missed any follow-up visit, mode of transport to the clinic, gender, marital 

status age, CD4 count, ESR, platelets, respiration rate and WHO T-staging at the 

study visit. Level 2 variables selected were: clients per clinic day per clinical staff 

member, ratio clients ever on ART to currently on ART, years of operation of the 

clinic, number of clients received as referral from lower health care levels, number of 

clients received as up-referral from lower health care levels, clients on ART at CTC 

number of clients ever on ART at the clinic and health care level.  

 Variable Rank  

Step In The Causal Pathway 1 2 3 4 Total 

Individual Level variables (Level 1)      

D0 Active drug 
  

1 
 

1 

I0 Immunological control 1 3 
  

4 

D1 ARV Resistance 1 1 
  

2 

D1 Metabolism/Resorption 
   

5 5 

D1 Side effects 
   

2 2 

I1 Biological determinants 2 
  

4 6 



Thesis Lennemann  

91  

I1 Immunologic reserve 2 12 
 

4 18 

D2 Regular ART Intake 
 

1 
 

2 3 

I2 Co-Morbidity-Infectious 2 8 10 12 32 

I2 Morbidity other 
 

3 
 

4 7 

D3 Disease Perception 
 

3 
 

7 10 

D3 Regular Pick up visits 1 1 
 

1 3 

D3 Co-Medication 
 

2 
 

4 6 

D3 CNS 1 
  

4 5 

I3 Medical history 
 

11 3 18 32 

D4 Treatment support 
 

1 1 
 

2 

D4 Transport 1 
   

1 

D5 Individual Resources 
 

5 4 1 10 

D6 Private Life 1 1 5 
 

7 

Facility Level Variables (Level2 )      

D4 Pt /Clinic Interface 
 

5 2 9 16 

D5 CTC Human Resources 1 4 
  

5 

D6 CTC Characteristics 6 3 
 

4 13 

D7 Pharmacy characteristics 
   

3 3 

D8 Hospital characteristics 1 3 2 1 7 

Total 20 67 28 85 200 
Figure 23: Variables Assessed As Surrogate Parameters For Steps In The Causal Pathways 

Leading To Viraemia And Ranks Assigned 

Following the selection process during the model fit described in section 8.9.4., the 

number of variables was reduced guided by AIC and BIC. Two models were 

developed with the site as a random intercept. The short model with the most 

favourable BIC included population mean-centred age, time on ART, squared CD4, 

log of ESR, and years as fixed level 1 and years of CTC operation as fixed level 2 

variable. The long model with the most favourable AIC included additionally the 

information if the individual had missed any clinic visits and had had any alcohol 

(Figure 28).  

10.2.1 Model Performance 

We assessed overall performance through brier score, discrimination with the c-

statistics and its graphical equivalent, the ROC-AUC and model calibration visually 

and through the Hosmer-Lemeshow test.  

Apparent performance in the training dataset of both models was similar with a brier 

score of 0.1 and a ROC AUC of 0.8 (95%CI 0.7-0.9 and 0.8-0.9 in the small and large 

model respectively) and an estimated model optimism of 0.02 in both models (Figure 
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28, 

 

Figure 24). The models performed slightly less well in the population validation 

dataset but still comparable with a brier score of 0.12 and a c-index of 0.7 (95%CI 

0.5-0.8 and 0.6-0.8 for the large and small model respectively) (Figure 25, Figure 28). 

Predictive performance in the geographical validation sample was high with a brier 

score of 0.1 and a c-index of 0.8 (95%CI 0.8-0.9 for both models, see Figure 26, 

Figure 28). 
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Figure 24: Apparent Performance In The Training Dataset ROC and Calibration Plot of the Small 

Model (A and C respectively) and the Large Model (B and D) 

 

Figure 25: ROC and Calibration Curve for the Small (A and C) and Large Model (B and D) In The 

Population Validation Dataset 



Thesis Lennemann  

94  

 

Figure 26: ROC And Calibration Curve In The Geographical Validation Sample for the Small 

Model (A, C) and Large Model (B, D) 
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Figure 27: ROC Curve And Calibration Curve For the Logistic Model Used In Constructing The 

Normogram In The Training Database (A, B), Population Validation Data (C, D) and 

Geographical Validation Sample (E, F) 
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 Large Model Small Model  

    95%CI    95%CI 
Variable Coef. SE p low up Coef. SE p low Up 
Age (centered on population mean) -0.04 0.02 0.019 -0.07 -0.01 -0.04 0.02 0.009 -0.07 -0.01 
Drank any alcohol (Ref. none) -1.03 0.47 0.028 -1.94 -0.11      
Time on ART (months) 0.22 0.07 0.002 0.09 0.36 0.22 0.07 0.001 0.08 0.35 
Missed any follow up visit (Ref. none) 1.35 0.72 0.062 -0.07 2.77      
Square root CD4 at Study Visit -0.17 0.03 0 -0.23 -0.11 -0.17 0.03 0 -0.23 -0.11 
Log ESR at Study Visit 0.45 0.16 0.004 0.14 0.75 0.43 0.15 0.004 0.13 0.73 
Years of Operation CTC 1.13 0.27 0 0.59 1.67 1.06 0.26 0 0.54 1.57 
_cons -10.06 2.35 0.000 -14.67 -5.45 -9.56 2.23 0.000 -13.93 -5.18 
Site id cons 0.11   0.00 2.72 0.04 0.10  0.00 3.91 

Model Performance                     
Nr of Obs. (Nr of VL>400 copies/ml) 458 (75) 458 (75) 
ICC site 0.02  (SE 0.03)  [95%CI 3E-04-0.45] 0.01 (SE 0.029) [95%CI 0.0001-0.54] 
Optimism in Training Dataset 0.02  (SD 0.06) [95%CI 0.01 - 0.03] 0.02 (SD 0.06) [95%CI 0.01 to 0.03] 
Apparent Performance – ROC-AUC 0.81 (SE 0.03, p<0.001)  [95%CI 0.8-0.9] 0.79 (SE 0.029, p<0.001)[95%CI .7-0.9] 

ROC-AUC Population Validation  0.70 (SE 0.06, p=0.002) [95%CI 0.6-0.8] 
0.67 (SE 0.07, p=0.006) [95%CI 0.5-

0.8] 

ROC-AUC Geographic Validation  0.81 (SE 0.07, p<0.001) [95%CI 0.7-0.9] 
0.79 (SE 0.07, p< 0.001)[95%CI 0.7-

0.9] 

ICC = Intercorrelation Coefficient, ROC-AUC= Reciever Operating Curve – Aurea Under The Curve, VL= Viral Load, CTC= Care and 
Treatment Center, ART=Antiretroviral Therapy, ESR = Erythrocyte Sedimentation Rate, Nr of Obs.= Number of Observations. 

Figure 28: Coefficients And Model Performance Parameter Of The Two Diagnostic Models To Predict Viral Load Above 400 copies/ml (Virologic 

Failure) On Study Visit Using A Multi-Level Logistic Model.
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10.3 Development Of A Model Nomogram To Use In The Clinical 

Setting. 

To construct a nomogram which could be used in the context of clinical practice in 

settings without access to electronic prediction tools, the small model was simplified 

to a logistic regression model accounting for clustered data and re-scaling the 

continuous variables to represent more relatable units. Performance of this model 

was similar to the multi-level models but with wider confidence intervals. (Figure 29, 

Figure 27). The resulting nomogram is presented in Figure 30. 

 Small Model for Nomogram 

    95%CI 

Variable Coef. SE P low Up 

Age -0.0429 
0.0237

4 
0.07

1 -0.0894 
0.0036

1 

Time on ART (month) 
0.1997

3 
0.0972

1 0.04 0.0092 
0.3902

6 

CD4 at study visit -0.0043 0.0016 
0.00

7 -0.0075 -0.0012 

ESR on Study Visit 
0.0127

6 
0.0068

4 
0.06

2 -0.0006 
0.0261

7 

Years of Operation CTC 
1.1186

9 
0.3713

9 
0.00

3 
0.3907

7 1.8466 

Cons -8.7174 
2.0596

4 0 -12.754 -4.6806 

Model Performance   
Nr of observation (Nr of VL>400 
copies/ml) 458 (75) 

Optimizm in Traning Dataset 0.02 (SE 0.06)[95%Ci .009-0.03] 

Appearant Performance – ROC-AUC 0.8 (SE 0.03, p<0.001 )[95%CI 0.7-0.8) 

ROC AUC Population Validation Dataset 0.7 (SE 0.68,p<0.006)[95%CI 0.5-0.8] 

ROC AUC Geographic Validation Dataste 0.8 (SE 0.08, p=0.001)[95%CI 0.6.0.9] 

ROC-AUC= Reciever Operating Curve-Area Under The Curve, VL= Viral Load, CTC= Care and 
Treatment Center, ART=Antiretroviral Therapy, ESR = Erythrocyte Sedimentation Rate 

Figure 29: Coefficients and Performance Measures For Predictive Model Using Logistic 

Regression Analysis With Sites As Clusters 
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Figure 30: Nomogram To Predict Probability Of Virologic Failure In Patients On Antiretroviral 

Therapy In The PEPFAR Supported Program In Tanzania. 

10.4 Decision Curve Analysis 

The method of constructing a Decision Curve has been detailed in section 8.9.4. As 

summarized in the TRIPOD guidelines: “Decision curve analysis offers insight into 

clinical consequences by determining the relationship between a chosen predicted 

probability threshold and the relative value of false-positive and false-negative results 

to obtain a value of the net benefit of using the model at that threshold.” [92]. In the 

context of this analysis, the Decision Curve plots the net benefit of different strategies 

of using viral load tests against different probability thresholds that describe the 

maximal acceptable number of viral load tests to identify an individual with virologic 

failure above 400 copies/ml.  

The Decision Curve presented in Figure 31: Decision Curves For Different Scenarios 

In The WRSHCP Figure 31 compares the following different scenarios: 

Scenario 1: Test all clients with viral load (routine viral load). 

Scenario 2: Test no one for viral load. 

Scenario 3: Targeted viral load testing using the clinical and immunological failure 

criteria only. 

Scenario 4: Targeted viral load testing in patients who either fail clinically and 

immunologically or have a probability of at least >25% to fail as 

predicted by the nomogram. 
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Scenario 5: Targeted viral load testing only using the large model (scenario 5a), small 

model (scenario 5b) and the model supporting the nomogram (scenario 

5c). 

As direct all scenarios require blood draw – directly for the viral load sample, or for 

the immunologic and ESR assessments needed for WHO classifications or the model 

– the direct risk or side effects to the individual in all strategies are comparable. 

Besides, they are considerably low as they mainly contain the risk associated with a 

routine blood draw. However, economic considerations around the costs of the HIV 

viral load test itself as much as the need to set up and maintain the logistics that 

allow sample transport and result feedback will restrict how many negative viral load 

tests the program can afford to identify one failing individual.  

As can be seen in the Decision Curves presented in Figure 31, if a program cannot 

afford to test 20 individuals or more to identify one failing individual at a probability 

threshold of 5%, a model-driven testing strategy (scenario 5) will offer the best net 

benefit compared to all other strategies. Testing all - (scenario 1) - will only be viable 

in settings that can afford between 100 and 95% of its beneficiaries, supporting the 

costs and workload connected to 19 or more negative tests to identify one positive 

test. If a program cannot afford to test so many individuals, the use of any of the 

models developed to predict virologic failure (scenario 5) will have preferable odds of 

finding viraemic patients in those targeted for viral load compared to the alternatives 

of not testing (scenario 2), targeted viral load testing triggered by clinical and 

immunological criteria (scenario 3) alone or in combination with a >25% risk of clinical 

failure in the nomogram (scenario 4).  

What is more, scenario 5 is the only strategy that is consistently better than not 

testing anybody (scenario 2), while the graphs of scenario 1, 3 and 4 all undercut the 

benefit of scenario 2 (test no one) at some point, resulting in negative net-benefit or 

harmful impact. For the “test all” approach, this refers to a threshold probability above 

the prevalence. For the WHO clinical and immunological decision criteria with or 

without the model (scenario 4 and 3 respectively), this will be at a threshold 

probability of 32% and 30% respectively. The negative benefit implies that at higher 

threshold probability, the strategy underestimates the risk of failure.  

When comparing the models to each other, their net benefit did not substantially 

differ across the probability thresholds, although in the higher risk range between 
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25% and 55%, the model seemed to achieve a slightly higher net benefit than the 

other two models. 

Using the model with a probability threshold in the range between 10% and 30% for 

targeted viral load testing would identify at least one-third of the true positives. 

However, higher thresholds would still be beneficiary, especially when using the large 

model, but less so that with a lower probability cut-off.  

 

Figure 31: Decision Curves For Different Scenarios In The WRSHCP  

Net benefit of different scenarios are plotted against the probability threshold and the corresponding 

numbers of tests needed to identify one true positive. The area between the dashed lines (A and B) 

identify the threshold probability range within which targeted viral load testing would be most 

meaningful, however, even with a higher probability cut-off, model driven viral load test would be 

preferable over no intervention or clinical and immunological criteria.  In the area C, the Large model 

seems to have a slightly higher net benefit than the other two models. 
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11 Discussion 

11.1 Key Results 

This evaluation of the Walter Reed Southern Highlands HIV Care Program 

(WRSHCP) provided representative information on the population accessing care 

and treatment in Mbeza, Rukwa and Ruvuma region through the PEPFAR supported 

national health system in (Objective 1) in section 9.2 and the performance of this 

system in delivering against the “last 90” as a whole (Objective 2) and disaggregated 

by region, health care level, ART stratum and site (Objective 3) in section 1.1.:  

Using the WHO definition of virologic suppression to determine the “last 90”, we 

found that 89% (95% CI 85-92%) of the population in care was virologically 

suppressed as per WHO definition (below 1000 copies/ml) and 86% (95%CI 80-91%) 

were below 400 copies/ml which was the initial primary endpoint. 

No significant differences could be found for the WHO cut-off of 1000 copies/ml 

across regions, health care levels and sites prior to controlling for pre-treatment 

population-level differences, but lower cut-offs indicated differences between all 

health care levels. After adjusting for baseline population differences, the District 

Healthcare Level consistently had a significantly lower risk of failure compared to the 

Referral Level which was attributable to treatment at this level, while substantial 

differences in outcome at the regional and referral level became insignificant.  

When comparing sites, 4 hospitals across all regions (both sites in Ruvuma, the 

referral hospital and Rukwa Regional Hospital) performed similarly, but at Mbeya 

Regional Hospital, treatment failure was less likely across all cut-offs and the 

remaining two sites showed differences at the 400 copies/ml cut-off and one 

additional cut-off assessed. With an OR between 0.2 and 0.3, risk of failure at these 

sites was 70% lower than at the referral level. 

When exploring the impact of participant characteristics on treatment outcome, we 

compared the treatment strata (Objective 3) and identified characteristics associated 

with treatment outcome on the individual level (Objective 4) as presented in section 

8.9.3. In the comparison of treatment strata, no significant difference in treatment 

outcome could be detected for all cut-offs, but strata were significantly associated 

with virologic failure in the regression analysis and time on treatment was retained in 

the predictive model for treatment failure used to develop the clinical score to predict 
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risk of failing ART with a viral load above 400 copies/ml (Objective 5). The relevance 

of sites for treatment outcome was reiterated in this analysis with sites being one of 

the major factors associated with treatment outcome at any of the cut-offs applied. 

We developed a clinical score guided by a theoretical framework. This framework 

conceptualized participant and site characteristics as a surrogate marker for 

underlying chains of causality that described viraemia as the outcome of host-virus 

interaction on one side and dynamics that influenced the presence of continuous 

active drug levels on the other. Details of this framework have been presented in 

section 10.2.1. Three predictive logistic regression models were constructed, two 

complex multi-level models with a random intercept and scaled predictors and a 

single level predictive model using original variables which was converted into a 

paper-based nomogram. Apparent performance in the training dataset of all models 

was high with a ROC-AUC of 0.8 [95%CI 0.6-0.9], 0.8 [95%CI .7-0.9] and 0.8 [95%CI 

0.7-0.8) respectively. In the validation dataset that included a random sample of 

participants from the whole RV288d population, the performance was slightly lower 

with a ROC-AUC of 0.7 [95%CI 0.6-0.8], 0.7 [95%CI 0.5-0.8] and 0.8 [95%CI 0.5-0.8] 

respectively. External validation in the geographical sample was also satisfactory 

with 0.8 [95%CI 0.7-0.9], 0.8 [95%CI 0.7-0.9] and 0.8 [95%CI 0.6-0.9].  

We explored the clinical utility of these models in Decision Curve Analysis against 

the WHO routine viral load monitoring approach and targeted viral load strategies 

using either WHO clinical and immunological failure criteria only or a combination of 

WHO failure criteria and risk as calculated through the nomogram. When a 

probability threshold over 5% was applied, all models had a higher net benefit than 

all comparators, below 5%, the models resulted in the same net benefit than the “test 

all” approach. Based on this analysis, a cut-off between 10% and 30% failure 

probability was recommended. 

11.2 Limitations 

11.2.1 Limitations Of The Study Design 

In respect to study design, the following limitations should be considered that might 

have compromised representativeness of the study sample for the WRSHCP as a 

whole:  

This survey applied a two-stage sampling strategy stratified at both stages, and the 

completeness and accuracy of list sampling frames as used is crucial for the equal 
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probability assumption that later on allows generalizability of the findings to the 

overall population as will be further discussed below [139]. In this survey, sampling 

frames were constructed using routine programmatic data which had not been 

previously quality assured other than routine measures applied by the program. In 

such a situation, it is likely that delay of data entry or other data entry errors resulted 

in incomplete data frames and unknown exclusion of potentially eligible sites or 

participants. Possible errors in the sampling frames further might have compromised 

the self-weighing characteristics of the sample and introduce bias [140].  

Information and survival bias inherent in a cross-sectional, time stratified design with 

retrospective data collection could further be aggravated on Level 1 (Participants) by 

the implication of our inability to account for 31% of pre-randomized, potentially 

eligible participants, making attrition a likely positively bias to program outcome. On 

sampling level 2 (facility level) it needs to be mentioned that while the sampling frame 

for participant selection was generated not more than 4 weeks prior enrolment at 

each site, site selection was performed over one year prior to enrolment. This early 

time point resulted in the exclusion of any sites that might have met the eligibility 

criteria at the time of data collection. Sites thus excluded might have had a particular 

service or patient profile leading to specific outcome patterns that might impact 

overall program results. Further, while this stage was initially designed as probability 

sampling, the additional sampling frame introduced through the stratification by 

health care level and the region as much as compromises made due to practical 

considerations and logistical constraints resulted in some sites being sampled 

through a method that strongly resembled a purposeful selection [139].  

11.2.2 Limitations Of The Analysis 

In this thesis, two relatively new methodologies were applied where limitations 

should be discussed in detail:  

Limitations Of The Logistic Regression Models Evaluating Factors Associated With 

Individual Level Outcome 

When discussing the three models using different outcome criteria in parallel, the 

methodological limitations should be kept in mind: although a standardized and 

uniform procedure was used to select the models as outlined in 8.9.3, retention of a 

variable in one model but not in the other does not imply that the variable dropped is 

not relevant or associated with the respective outcome, but only that in combination 
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with the other variables in the model it does not contribute to the best model fit in this 

specific study population. Comparison and interpretation of associations found 

across models hence have to be done primarily descriptive and with caution. 

Furthermore, in the backwards selection process, several variables were retained 

that had very few events in the study population, and thus showed large confidence 

intervals. However, as they remained to be significant and impacted the AIC and BIC 

results, they were kept in the model, acknowledging that this might not be a very 

strong indication of association. 

Limitations For The Propensity Score Method And Generalized Boosted Model 

Technique 

As the nature of the study design does not provide for a control group, causal 

attribution of factors associated with the outcome can generally not be made. 

However, Propensity Score Methods derived through Generalized Boosted Model 

Technique (GBM) - which first balances baseline differences and in a second step 

assesses correlation - is considered to retrospectively generate a baseline balance 

similar to the balance that would be achieved through randomization, given that no 

relevant confounder is left out. However, although we collected a magnitude of 

confounders considered relevant for the study outcome as detailed in section 8.4.2, 

unknown confounders cannot be fully excluded in such a complex ecosystem and 

might have affected both the Propensity Score matching as much as the individual-

level analysis of factors associated with treatment failure. In the case of confounding, 

the difference in outcomes may reflect systematic differences in subject 

characteristics rather than differences of the sites [84]. 

Limitation Of The Predictive Model  

In respect to the developed score, the following limitations should be kept in mind: 

Due to the low number of events, we were limited with respect to the variables 

included in the model, hence it is likely that meaningful variables could further 

increase the predictive capacity of the model, if the number of events would be 

larger. Similarly, our estimates showed large confidence intervals, which might 

compromise the value of the score when applying it to any other populations. 

Although we validated the score internally through a bootstrap method as much as in 

a population and geographical dataset, both datasets were drawn from the same 
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underlying population and the use of the score in a different population should be 

evaluated in further studies.  

In the practical use of the score, ideally the score could be used as a point-of- care-

test, where the risk of failure could be determined during the clinic visit and 

adherence counselling or viral load testing could be initiated based on the score. 

However, the inclusion of the CD4 counts from the day of the study visit will make 

such a direct application difficult, if no point-of-care CD4 counter is used. While ESR 

can be determined on-site with very easy procedures, CD4 counts in the majority are 

analysed in the laboratory and results will be delayed until after the client has left the 

site. It is unknown how the use of retrospective CD4 count will impact the 

performance of the model. The implications of this delay are discussed in more detail 

in section 11.3.4. The limitations relating to generalizability of the score will be 

discussed in section 11.4. in detail, but it should be noted that while our selection 

process provided a sample of participants that can speak for the larger program 

population, some sub-groups of the populations such as transferred-in clients which 

might have a higher risk of failure have not been covered.  

11.3 Interpretation 

11.3.1 Virologic Outcome In The WRSHCP 

Using [141] the WHO definition of virologic suppression to determine the “last 90”, 

our findings of 89% (95% CI 85-92%) virologic suppression is in line with other 

outcomes reported from treatment programs in Tanzania, such as a suppression 

between 88% and 81% VS <1000 copies/ml observed in Dar Es Salaam [141], a city 

not covered by the WRSHCP. In a meta-analysis of 184 cohorts from 35 countries, 

the pooled virologic suppression was 85.6%, which is the lower limit of the estimated 

95% Confidence Interval in our findings. Most recent data from the Tanzanian HIV 

Impact Survey 2017 (THIS) demonstrated 87.7% VS < 1000 copies /ml in those with 

self-reported ART treatment, which aligns within our estimate [142]. As THIS was a 

household survey, the comparative outcome between our findings and THIS may 

indicate that the amount of positive bias in the study is low. It further can indicate that 

the findings of this WRSHCP evaluation may be representative of the National HIV 

Treatment and Care Program which is supported through WRSHCP as discussed 

further in section 11.3.4. When looking at other cut-offs such as suppression below 

400 copies/ul as primary outcome of our study, the 86% (95%CI 80-91%) observed 
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on program level is in line with program outcomes elsewhere [44] : meta-analyses of 

49 studies using <500 copies/ml estimated an overall VS of 84% [143]. 

Regional outcome differences have been reported from other countries [129] [53, 

144-146] and have been attributed to both patient-level and health system factors. 

Regional differences are important when judging the equity of care of an HIV 

treatment program and its ability to provide equitable access to treatment and care in 

line with the SDGs to “leave no one behind”. In our analysis, regional differences 

were not statistically significant, indicating that once an individual is enrolled in care, 

quality of care is similar across the regions.  

However, it needs to be kept in mind that differences related to the location are likely 

to exist on a sub-regional level. In our study, the majority of the study population 

lived less than 10 km from their CTC and only 24% travelled more than 10km to 

access care, while catchment areas of the sites, particularly the Referral Hospital, 

are much larger. Distance from clinic has been identified as a major factor impacting 

treatment outcome in other studies [147, 148], but the population represented in the 

study sample did not indicate that clinic access was a major obstacle to treatment 

access. Thus, distance to the clinic might either be a prohibitive factor for accessing 

the health system, or the majority of citizens in the regions outside of the 10km belt 

access care at lower health care levels such as primary care facilities or community-

based programs.  

The THIS study indicates that the main challenge in Tanzania is “the first 90”, which 

refers to HIV testing uptake. In its regional disaggregation, most individuals who 

were aware of their positive HIV status were on ART, but 60% of the total HIV 

positive population in Rukwa and 41% ins Mbeya and Ruvuma were not aware of 

their positive HIV status [149]. Due to this high proportion of unknown HIV Infections, 

virologic suppression in all HIV positive individuals was 57% in Ruvuma and Mbeya 

and 43% Rukwa [149], which is far below the 75% targeted by WHO to reduce HIV 

incidence at the population level. It is possible that equitable regional difference can 

be achieved, but on a sub-regional level, coverage for both HIV testing and HIV 

treatment access might be limited. Further research that utilizes geospatial data is 

needed to explore geospatial dynamics impacting access to care in order to improve 

not only testing but also treatment coverage.  
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In this context, attrition should be re-visited as a crucial problem identified in other 

ART programs. In Tanzania, a comprehensive assessment of attrition showed a loss 

of 18% of the patient population after 12 months and 36% after 36 months on ART 

with 10% and 14% mortality at 12 and 36 months of treatment respectively. In this 

study, mortality and attrition rates both peaked within the first six months [49]. 

Although RV288 did not directly trace or otherwise account for attrition in the study 

design, 34% of the individuals earmarked for enrolment on the Pre-Recruitment List 

could not be identified, and only a few of those could be established as lost to follow 

up (2%), transferred out (1%) or dead (0.2%). If the remaining individuals are used 

as a proxy for attrition, the program would be above the <20% attrition threshold 

targeted by WHO, within range of estimates produced by others [41, 42], but in 

contrast to the results of the Tanzanian impact survey (THIS) that - as a household 

survey - collected self-reported ART enrolment at community level. THIS reported 

that only 5% of those who self-reported as HIV positive were not on ART, while the 

majority of HIV infected not on treatment were unaware of their positive HIV status 

[149], which would indicate that the high level of attrition reported from facility level 

studies and seen also in our recruitment process is either due to unreported death, a 

documentation problem or a problem of scale. Even if one accounts for the fact that 

in THIS, self-report and biomarkers did not always align and 10% reporting not to be 

aware of their positive HIV status had measurable ARV drug concentration in their 

blood, while 10.0% of those reporting ARV use had no serologic ARV levels, these 

variances cannot fully explain attrition rates seen in our study. 

11.3.2 The Impact Of The Health Care System On Programmatic Outcome  

Latest with the adoption of the SDGs, focus on international public health is shifting 

from disease-specific public health programming to strengthening the health system 

as a whole. With this shift, the quality and efficacy of service provision come into 

focus as important factors influencing treatment outcome. 

Prior to discussing differences of health care levels and site-specific performance it 

should be acknowledged that a decentralized health care system can be a cause for 

regional differences [150]: Regional health offices provide the vertical structures 

within the health care system responsible for logistics such as procurement of drugs 

and laboratory reagents. Thus, all sites within a particular region will be similarly 

affected if these regional structures are compromised and in consequence regional 
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outcome differences will be observed. In our cross-sectional study with 7 sites, all 

sites reported drug shortages and difficulties to access essential medication which 

could be attributed to such regional logistics and procurement structures. To mediate 

such shortages, sites resorted to local collaboration as borrowing drugs from other 

sites or by reducing the drug-refill intervals for beneficiaries. The substantial amount 

of missing values in the area of the retrospectively collected laboratory results at 

ART initiation may further testify about the incomplete supply of reagents or 

maintenance of equipment. However, these irregularities did not lead to noticeable 

differences in regional outcome. 

The impact of the health care level on treatment outcome has been explored by 

others: In Nigeria, secondary satellite facilities showed significantly more deaths in 

the first 12 months on ART, and less immune reconstitution and virologic 

suppression in the first 12 weeks compared to the tertiary hospital [151], while 

smaller facilities elsewhere were associated with a higher loss to follow up and 

mortality [129]. In contrast, clients at regional and district hospitals in South Africa 

were less likely to fail treatment than referral hospitals, even after controlling for 

baseline differences [144]. The latter aligns with our findings that treatment at the 

district level is associated with a lower risk of failure, supporting the abundance of 

existing evidence that ART delivered at lower health care levels is at least 

comparable to higher levels particularly for those stable patients comprising the 

majority of our study population [51, 65, 152, 153]. However, the categorization by 

health care level might be too crude to draw meaningful conclusions that can inform 

program planning. What is more, health care levels are not necessarily defined by a 

particular set of functionalities a clinic would have but rather relative to other clinics 

within the respective region, so the comparison is difficult across countries or even 

between different regions within country.  

ART delivery in Tanzania as in other Sub-Saharan countries is increasingly 

decentralized and fragmented into a variety of ART delivery models [154, 155] that 

differ in the way service is delivered, their level of integration with other services, 

their use of digital support tools such as text message supports [156] or other forms 

of patient tracing [157, 158] or the distribution of responsibility across different cadres 

of health care workers [155]. Especially with the start of “test-and-treat”, individuals 

further might move between these models, initiating ART during testing campaigns 

or community outreach activities and then continuing treatment at a local CTC. The 
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outcome of a site might not be so much defined by its health care level, but by the 

service delivery models a site is using and collaborating with. Only a few of these 

models have been assessed with respect to their impact on virologic suppression 

[154].  

Our analysis at suggest that rather than health care levels, the individual sites are 

relevant in respect to virologic treatment outcome: While the regional health care 

level did not perform differently to the referral level as a whole when adjusting for 

population differences, the regional hospital in Mbeya performed better across all 

cut-offs used compared to the referral hospital after pre-treatment differences in the 

patient population were taken into account. Further, two other sites performed 

significantly better at the 400 copies cut-off and at least one other cut-off used.  

It is important to recognize that in the literature various outcome measures are used 

in parallel from hard endpoints such as mortality, emergency room visits [159] or 

hospitalization to surrogate parameters such as treatment uptake, engagement in 

care [154] or conformity with treatment guidelines [160] and other process measures 

to capture service delivery quality of a facility. Many authors both in resource-rich 

and developing countries further deliberately use a panel of outcome measures to 

reflect the quality of care for different sub-groups of patient populations such as 

adolescents, pregnant women or severely immunocompromised clients [161, 162]. 

This complicates direct comparison of study outcomes further, especially as delivery 

models might produce mixed results depending on the outcome measure [69]. Viral 

suppression achieved within the population of a site is rarely used to describe 

service delivery quality especially in developing settings. However in the United 

States, virologic benchmarks have been established as part of the portfolio of 

outcome measures to assess and compare treatment in different health facilities 

funded by The Ryan White HIV/AIDS Program, that provides HIV primary medical 

care and support for uninsured people living with HIV [40]. These benchmarks can 

be very useful to assess the service at a site as they can describe the impact the 

service delivered at the site has as a whole, capturing also synergisms between 

different activities that the site might deploy.  

However, our findings highlight that for viral load to be a measure that would allow 

comparability, it is important to account for population differences. As we could show, 

binary comparisons between health care levels without adjusting for population 
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differences can be misleading: while treatment outcome at referral and regional level 

differed, this difference was not attributable to the health care level but to the 

differences in the populations treated at these levels. When we adjusted for these 

differences, outcome at these two levels was comparable, indicating that rather than 

the health care level providing different treatment quality, patients might with 

particular characteristics self-select to accessing treatment at specific levels.  

In this study, we did not further explore in depth if specific site characteristics, such 

as characteristics of health care staff, integration of HIV care with other services, or 

impact of patient load, and patient-health care worker ratio, although many were 

associated with virological outcome in binary comparison. We instead used the viral 

load as outcome parameter, that - after adjusting for patient-level differences at 

treatment start - would then reflect the impact of the overall efficiency and efficacy of 

the site and all dynamics within the site that hamper or support such an outcome. We 

found that the viral load cut-off of 400/ml did identify most differences, although the 

higher cut-off might have been constrained by power and sample size calculations. 

We thus recommend using this cut-off when assessing the quality of sites and further 

explore underlying dynamics that may impact site performance.  

11.3.3 Patient-Level Factors Affecting Treatment Outcome  

In the patient-level analysis against the three different thresholds presented in 

10.1.1 main clinical variables associated with treatment failure across all thresholds 

was a lower absolute CD4 count at study visit, while all other variables were not 

consistently represented in the models obtained. Overall, our models were able to 

reproduce associations between virologic failure and patient-level variables that 

have been described extensively before [96, 103, 104], while other correlations 

reported elsewhere such as gender [105], cost or time for clinic visit could not be 

reproduced.  

Immunological failure criteria were only associated with virologic failure in VS1000, 

supporting the decreasing relevance of such surrogate parameters for ART 

treatment monitoring due to previously reported low sensitivity and specificity to 

detect the virologic failure and their low clinical benefit over clinical monitoring [106-

109]. As focus shifts towards establishing and maintaining a functional “continuum of 

viral load” [110] the importance of surrogate parameters is diminishing, being 

replaced by direct treatment monitoring through viral load test.  
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What can be observed when looking at the models in parallel is that in the VS1000 

and VS400 model laboratory parameters associated with inflammation - namely 

ESR– were significantly associated with virological failure. As infection markers, such 

correlations with viremia could be explained by temporary viral replication through 

Co-infections [111-114] independent of drug resistance or as a surrogate parameter 

for immune activation caused by viral replication itself [115], which has been 

associated with progression to AIDS [116] and higher overall mortality [117, 118].  

In the lower cut-offs, variables describing service satisfaction of the client with the 

ART service – Building and Waiting time - showed a significant correlation with the 

outcome, although the events themselves were low and hence we could observe 

large confidence intervals.   

With this in mind, the different models nevertheless can contribute to the discussion 

about different virologic thresholds: The VS1000 cut-off was associated with other 

variables that indicate morbidity, and hence might identify treatment failure too late, 

when it has already had an impact on the immune system. In addition, this cut-off 

might identify specifically those with an adherence problem rather than those who 

might have a low-level replication of a resistant virus in the presence of continuous 

drug intake.  

11.3.4 Clinical Score To Predict Virologic Failure And It’s Utility In The 

Public Health Approach. 

As outlined in section 6.1.5, the WHO recommended a way to detect virologic failure 

is either through annually viral load testing in all individuals or targeted viral load 

testing in individuals suspected of treatment failure. If treatment failure above 1000 

copies/ml is detected, viral load should be repeated after intensified adherence 

counselling and patients should be switched to second-line therapy if no significant 

drop in viremia can be observed.  

Most authors propose to use a score in settings where targeted viral load testing is 

implemented: the score augments or replaces clinical and immunological criteria in 

identifying individuals with a risk of virologic failure [81, 163] who are then tested for 

treatment failure. This scenario is the most common, and the Decision Curve 

Analysis presented in section 8.9.5. could be used to explore this strategy. As shown, 

all models had a higher net benefit and thus identified more virologic failure than the 

clinical or immunological failure criteria at all probability thresholds. The models alone 
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had further a higher net benefit compared to a combination of a fixed model cut-off, 

clinical and immunological criteria. The models also showed a higher net benefit 

compared to a “test all” approach above a 5% probability. Their use would thus 

maximize the “yield” of viral load testing - which would be the odds of finding a 

positive test in the ones tested- in settings that are using targeted viral load testing for 

treatment monitoring. The decision curve also supports a range of possible cut-off 

points to define if the predicted model probability should be considered “positive for 

virologic failure” or “negative for virologic failure”. This can be of an advantage in 

settings where viral load measurements might be infrequently available or the 

number of available tests varies. If tests are available, the cut-off could be lowered, if 

tests are sparse, the cut-off could be raised to always ensure that those most at risk 

will receive the test. A similar approach has been taken by Koller et al.: Using a large 

dataset including African and Asian routine data, the authors constructed risk charts 

based on probability models using current and first CD4 count, gender and time on 

treatment and provided three different cut-offs for initiating viral load tests depending 

if viral load tests would be available for 10%, 20% or 40% of the population on ART 

[164].   

In respect to performance, the ROC-AUC of all RV288d scores around 0.7, 0.6 and 

0.8 in the training, the population and the geographical validation dataset included in 

the confidence interval ROC-AUC reported by others [81, 165]. The four scores 

reported by Van Griesven et al. to predict a viral load above 1000 copies/ml, which 

were simplifications of the prediction score initially developed in Cambodia by Lynen 

[81], performance in training and validation dataset for the most complex score 

including laboratory parameters was 0.78 and 0.69 which fell to 0.59 in the validation 

dataset when the variables were limited to clinical parameters [166].  

In comparison with each other, the C-statistic of the three scores developed were 

similar, with overlapping confidence intervals. In the decision curve analysis, the 

large score suggested a slightly better net-benefit in a limited range of Threshold 

Probabilities slight advantage over the other scores the higher risk range.  

However, when comparing the score to others reported in the literature, it is important 

to be aware of other aspects that distinguish our RV288d score from the others 

reported: 
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A big strength of our score is that it was developed in a representative sample of the 

WRSHCP population that included individuals with a large range of treatment 

duration. Besides the Lynen score [81] and the work of Koll et al. [164], most scores 

are generated from routine data or prospective cohort studies from single sites where 

participants have not been recruited as a representative sample of a wider 

programmatic population. Further, many published scores are not validated, while we 

performed an intensive validation process using internal validation through 

bootstrapping as much as external validation taking into account the Limitations 

discussed in 11.2.2. The performance of this score hence has to be considered 

representative for the adult program population accessing the WRSHCP more than 6 

months on therapy. Other scores were designed to predict treatment outcome at a 

particular time on ART, commonly one year or 6 months [165, 167, 168]. These 

scores not aim to identify treatment failure due to resistance development, but rather 

delayed initial suppression after treatment start due to reduced adherence, to then 

target these individuals with additional adherence counselling [165]. Our RV288 

score developed in this thesis does not exclude the use in such a context, although 

for this population, variables that refer to treatment start, especially the clinical status 

at ART start, might be more relevant and might provide better predictors of virologic 

failure.  

The choice of parameters used to predict virologic failure and the feasibility that they 

can be reliably collected in a standardized fashion in the field further differentiates 

scores available for viral load prediction:  

Most scores use baseline variables collected at treatment start, but do not clearly 

guide how missing values should be handled in the practical setting to determine 

failure risk in an individual. For scores like the one developed by Lynen et al. in 

Cambodia [81] and also validated in an African cohort [72], retrospective values are 

central and the initial score considered changes from treatment start rather than the 

values itself, which was the reasons for later simplifications by van Griesen [166]. In 

all other scores that utilized the immunological WHO failure criteria, a peak CD4 

count and a baseline CD4s count are needed to identify the immunological failure. In 

our study population, such a score would not have been usable for a large number of 

cases, as often at least one of these variables was missing, prohibiting a complete 

assessment of immunological failure. While current CD4 count is crucial to predict 

risk in our score as much as in most others, the inability to establish a CD4 count at 
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the time of assessment might prevent establishing risk at one point, but not for the 

remaining duration of the ART treatment. Recognizing that documentation is 

sometimes limited and patients might transfer from one delivery model to another, 

switch or re-start ART at different sites, we deliberately did not include variables that 

had to be collected retrospectively, and the strict limitation to variables that can be 

collected at the study visit is a further strength of this score. Especially clients with a 

complex treatment history - for example a woman who started ART in the context of 

antenatal care and then moved to the CTC after delivery but also anyone switching 

treatment site – or someone who has been on treatment for longer time can be 

expected to be more likely to fail treatment and at the same time more likely not have 

baseline information available. The limitation to current variables allows maximizing 

the chance that full information is collected in routine clinics and best prediction 

results are obtained for all.  

Scores further vary in complexity of score or underlying variables: The score 

proposed by Evans et al. includes 14 variables with 5 of them requiring laboratory 

analysis [163], other scores only rely on one or two variables in addition to or instead 

of the WHO criteria for immunologic or clinical treatment failure [167]. The complexity 

of variable generation such as calculating percentage drop of CD4 count of 

Haemoglobin introduces estimation error in clinical praxis substantial enough to 

revise the score [166].  

Our score placed emphasis on the practicability of the variables collected and should 

not requires substantial extra time, especially in the patient face-to-face contact to be 

implemented in the context of a routine visit. While it did include current CD4 count, it 

does not include clinical diagnosis, which is considered an advantage if the sore 

should be reproducible or conducted from less-skilled health care workers in the 

context of a task-shifting approach. However, it should be noted that in a situation 

where CD4 count is not established through a point of care test but provided through 

a laboratory, the score will not be completed at the study visit. Further analysis 

should explore if a retrospective CD4 count could provide similar information and how 

long the window between score and CD4 count could be to allow for better 

integration into clinical work. Such further studies would also provide more 

information on how often and in which intervals this score could be repeated and if it 

could be an alternative way to monitor treatment over time.  
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While the scores performed largely comparative, they have all advantages that might 

make them preferential to each other in particular settings: The score which was 

used to create the nomogram is, of course, the most practical scoring system as it 

allows to predict patient risk with a paper-based chart requiring no further equipment 

and immediate information. The large score, which includes alcohol use and 

adherence information as additional variables, could be chosen due to its trend to 

provide slightly higher net benefit and performance which in the current setting did 

not become statistically significant if the collection of the variables is feasible and an 

electronic support system would be available to provide the transformation of the 

variables and calculation of the score. The advantage of the small score, which only 

included variables that should be available in the patient record and electronic patient 

files is that this score would not need clinical information from the study visit. Thus, 

this score would be most useful in case a score should be run as an automated 

screening tool within a database or even collected to an electronic laboratory system.  

Next to using the score to identify individuals that then could undergo viral load 

testing following the WHO-recommended approach with two consecutive viral loads 

around an adherence intervention (Figure 32, option B), other use of the score could 

be considered, which would optimize or change the current WHO guidelines:  

As a clinical score provides an immediate result, it could pre-empt laboratory results 

and trigger adherence counselling [72, 81] allowing the client to move on in the 

algorithm from the first viral load to adherence counselling while waiting for the viral 

load result (Figure 32, option C). This would shorten the time between the first and 

the second viral load test while focussing the resources available to provide quality 

adherence counselling.  

However, the score could also act as the beginning of a triage, that could focus on 

the use of limited resources on those who would most benefit. Replacing the first viral 

load, the score with a lower probability threshold could be used to identify those likely 

to fail, who then could undergo adherence counselling. Following an appropriate 

period where improved adherence could impact viral suppression, individuals would 

then undergo a single viral load measurement that would determine virological failure 

and treatment switch to second line (Figure 32, option D). In modelling studies that 

simulated a changed WHO algorithm where individuals would be switched to second-

line immediately after a first viral load above 1000 copies/ml estimated a median 



Thesis Lennemann  

116  

reduction in AIDS-related morbidity of 31% and mortality of 18% [73] with more 

individuals with NNRIT resistance mutations being switched to second line. This 

model did however not account for increase in cost associated with unnecessary 

switches to second line. Using the score as a digital “first viral load measurement” 

with adherence counselling would allow reducing the numbers who are above 1000 

copies/ml due to adherence challenges and thus decrease the number of individuals 

switched unnecessarily. While the increase of individuals considered likely to fail 

would result in an increase in workload for counselling staff, the reduction of viral load 

test per patients as much as the reduction in costs spent on second line in clients 

switched unnecessarily are likely to compensate part of the costs.  

  

Finally, a score could streamline procedures and triage individuals in accordance with 

their triage results: Those with a high risk of failure would directly switch to second-

line, those with low risks would not undergo viral load testing and only those with an 

intermediate risk would receive a viral load test (Figure 32, option E). In this scenario 

and depending on the cut-offs used to define “high”, “intermediate” and “low risk”, it is 

A: Current WHO Guideline. B: Score is used to identify individuals at risk in a targeted viral load 
approach. Only number of individuals tested is increased, C: Score used for targeted testing and 
triggers adherence counselling, reducing time to second line viral load test. D: Score replaces 1st 
viral load test in those at risk of failure and triggers adherence counselling. Only one viral load is 
needed to identify virologic failure and trigger second line ART start. E: Score triages patients by 
risk, only those with intermediate risk are tested, those with high risk are immediately switched,  

Figure 32: Strategic use of a predictive Clinical Score Integrated Into The Procedure To Manage 

Individuals Failing Antiretroviral Therapy 
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likely that not all individuals with a virological failure would be picked up, but the 

available resources would be utilized most effectively [81, 164].The digital 

transformation in the health sector of developing countries with increasing use of 

electronic patient management systems that collect individual-level data in real-time 

opens new areas for applications and further developments of predictive scores. If a 

predictive model would be integrated into patient management or a laboratory 

software, digital screening for virological failure could be automatized, and patients 

could be monitored on an ongoing basis, integrating laboratory and clinical results. 

Integrated software programs could for example link clinical and laboratory data after 

the client had accessed the clinic and alert health care workers on individuals at risk 

of treatment failure. The usefulness and efficacy of such clinical decision support 

systems have been shown before. In a randomized controlled trial in Kenia, a 

decision support system able to identify immunologic failure and alert health care 

staff increased clinical action to respond to this immunologic failure by three-fold 

compared to an unsupported facility [169]. However, digital integration of these tools 

could transform health care further as score driven processes could range from 

sending automated re-call SMS to clients with higher risk requesting them to return 

for further testing, to scheduling adherence counselling at the clinic, or alerting 

community-based health care workers or lay counsellor to provide adherence support 

within the community. Clients at risk could be receiving daily reminders to take the 

medication as part of the adherence counselling or even receive “intelligent drug 

bottles” for the period between the viral load measurements that could register 

adherence patterns to inform the interpretation of viral load results. In this context, 

future work could explore the possibility to use machine learning techniques to 

improve prediction and provide risk estimations that not only take individual patient 

risks but also clinic characteristics into account, and allow the model to adapt to 

changes in the treatment context such as a patient population changing as the 

proportion of Tanzanians not aware of their positive HIV status is decreasing and 

more newly diagnosed individuals are enrolled in care.  

11.4 Generalisability And Conclusion 

Acknowledging the limitations discussed in section 11.2, the results of this analysis 

are representative for the WRSHCP and findings should be transferable to all 

individuals accessing care at this program. As the WRSHCP primarily supports the 

governmental health sector in the regions covered by the study, results are also 
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generalizable to the national health program in Tanzania and to other countries with a 

similar setting. However, in the face of a high number of undiagnosed HIV infections 

in Tanzania, a substantial amount of HIV infected persons in the regions of interest 

are yet enrolled on ART and thus not represented in the study sample. With 

intensified focus on reaching those undiagnosed individuals, population 

characteristics might change and other parameters might become relevant to identify 

virologic failure.  

The clinical score we developed could be shown to perform well across the program 

including at the site that had been used for the geographical validation. We saw a 

very low level of model optimism and similar performance in training and validation 

datasets. The model hence could be used confidently across the sites and clinics of 

the WRSHCP in Tanzania to predict the risk of failure across the whole adult 

population on ART. As variables that could describe cultural or other local 

specifications were not included in the model, it can be expected that the score could 

be used across Tanzania, and even globally. However, further validation in a 

population different from the WRSHCP would be important. It is possible that the 

score would perform well in a comparative setting, as our study sample covered 

several regions as much as different health care levels. However, with changing 

populations in care, population characteristics will subsequently change and over 

time and the performance of this score should be re-evaluated. Similarly, while the 

score was designed to also be feasible in a community or outreach setting such as a 

mobile laboratory where it could be deployed through the nomogram and a point of 

care CD4 counter, our dataset only included facility-based ART provision down to the 

district health care level. Where ART delivery is taken out of the facility and delivered 

through community and outreach programs, the population might be different and the 

predictive performance of the score might be less reliable.  

Digitalisation and the availability of electronic routine data allows to generalize not the 

score itself but rather the procedure of its generation: machine learning algorithms 

could automate score development based on the theoretical framework and 

dynamically produce predictive models for specific programs, sites or locations that 

can identify failure at a specific site without requiring to be equally reliable in other 

settings.  
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Such a “site-specific” score would go in line with our finding of the importance of the 

study site and its direct effect on treatment outcome. Our findings call for a shift in 

perspective from the discussion on which health care level can provide better care to 

a more differentiated focus on the role of local dynamics at the treatment sites 

themselves that are the interface between the health system and the individual. Our 

results show that sites are impacting treatment outcome presumably through the 

quality of care they provide, but also that individuals chose the sites they go to. This 

implies that similar to quality assurance monitoring of service provision in resource-

rich countries, programs could employ monitoring of their sites using the methods 

described in this thesis. Such a monitoring should use the virologic cut-off of 400 

copies/ml rather than 1000 copies/ml to have a more sensitive marker of differences 

and should ensure that assessments control for population-level differences.  
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13.4 Supplemental Material 

13.4.1 Overlap Plots Of The GBM Models 

The assumption of overlap requires that all units of the dataset have a non-zero 

probability to be included in other groups than the one they are in and that this non-

zero probability is the propensity score. In GBM models with more than two exposure 

groups, probabilities are calculated for each of the exposures against the pooled 

group of others not exposed. The overlap plots present these probabilities for each of 

the exposure groups 

Figure 34: Distribution of Regional Propensity Scores  

 

Figure 33: Distribution of Health Care Level Propensity Scores 
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Figure 35: Distribution of Site Propensity Scores 
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13.4.2 Table 8: Level 1 Variables Assessed For Inclusion In Predictive Model, Association With Outcome In The Training Dataset And Rationale 

For Inclusion 
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Rationale for Rank 

Mean Copuscular Volumen 
(MCV) 

1 523 0.578 D0 Active drug 3 

MCV could be a good marker for adherence to AZT 
continaing regimen, but AZT is phased out of first 
line therapy so varibale can be expected to have 
less relevance in the future 

Time on ART 0 NA 0.099 D1 ARV Resistance 1 
Exposure time to ART is one of the main factors for 
resistance development and subsequent treatment 
failure 

Ever had TB/ART co-
medication 

0 62 0.222 D1 ARV Resistance 2 Very relevant but few cases 

ALT at SV 0 7 0.162 D1 Metabolism/Resorption 4 
no association with outcome aligns with very 
indirect  causal relationship between ALT and viral 
load 

Creatinin at SV 0 16 0.966 D1 Metabolism/Resorption 4 
no association with V400, TDF major confounder, 
many missing values in study sample, not part of 
routine Labpanel for all clients 

Ever had liver disease 37 5 0.829 D1 Metabolism/Resorption 4 not enough cases 

Ever had renal disease 37 8 0.762 D1 Metabolism/Resorption 4 not enough cases 

ALT at BL 45 18 0.661 D1 Metabolism/Resorption 4 not enough cases 

Lypodrystrophy at SV 0 20 0.582 D1 Side effects 4 not enough cases 

Polyneuropathy at SV 0 26 0.976 D1 Side effects 4 not enough cases 

Number of tablets per day 0 NA 0.836 D2 Regular ART Intake 2 Pill burden known to be associated with adherence 

Dosage frequency/per day 0 NA 0.210 D2 Regular ART Intake 4 not enough variance as 93% of population take BD.  

Number of ARVs per day 0 NA 0.229 D2 Regular ART Intake 4 
would change with available medication and full pill 
burden (tabsday) should be the better measure 
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Drinks any alcohol 0 149 0.002 D3 CNS 1 
Association with viral failure, easy screenign 
question for field 

Ever had neurologic 
diseases 

0 4 0.530 D3 CNS 4 not enough cases 

Reason not to take ARV - 
Depression 

0 10 0.275 D3 CNS 4 not enough cases 

Ever had depression 37 32 0.309 D3 CNS 4 not enough cases 

Ever had migrane 37 55 0.320 D3 CNS 4 not enough cases 

Takes any co-medications 
including prophylaxis next 
to ART 

0 313 0.206 D3 Co-Medication 2 Simplified to number of CO-medication 

Any prophylaxis 0 264 0.141 D3 Co-Medication 2 

Prof not directly influencing VL, but could identify 
particular patient group who are still of risk of 
opportunitstic infections but at the same time 
enaged in care. 

Any therapeutic medication 
next to ART, excluding 
prophylaxis 

0 63 0.851 D3 Co-Medication 4 
CO-medication could be a surrogate for 
compromised clinical disease status and risk of 
interaction with ART, but not enough cases 

Current dabetic medication 0 4 0.024 D3 Co-Medication 4 not enough cases 

Current hypertensive 
therapy 

0 40 0.585 D3 Co-Medication 4 not enough cases 

Current pulmonal 
medication 

0 3 0.001 D3 Co-Medication 4 not enough cases 

Number of reasons to miss 
ART 

0 125 0.429 D3 Disease Perception 2 Might present a grade of difficulty to adhere to ART 

Number of reasons to miss 
study visit 

0 84 0.692 D3 Disease Perception 2 Might present a grade of difficulty to access clinic 

Uses traditional healthcare 
next to CTC 

0 85 0.970 D3 Disease Perception 2 
Could indicate particular adherence pattern and 
risk of interaction with ART 

Reaons to miss ART - 
share medication 

0 1 0.657 D3 Disease Perception 4 not enough cases 

Reason to miss ART - ill 
health 

0 5 0.428 D3 Disease Perception 4 not enough cases 

Reason to miss ART- 
feeling better 

0 6 0.069 D3 Disease Perception 4 not enough cases 
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Reason to miss ART- 
forgetting 

0 71 0.241 D3 Disease Perception 4 not enough cases 

Reason to miss ART- 
toxicity 

0 5/10 0.031 D3 Disease Perception 4 not enough cases 

Uses traditional healers 0 57 0.718 D3 Disease Perception 4 not enough cases 

Uses traditional remedies 0 76 0.549 D3 Disease Perception 4 not enough cases 

Missed any follow up visit 0 27 0.030 D3 Regular Pick up visits 1 Rough measure of adherence, easy to collect 

Number of missed follow 
up visits 

0 27 0.028 D3 Regular Pick up visits 2 
Introduces scale, but very little variance in study 
sample 

Reason to miss visits - 
stigma and discrimination 

0 7 0.152 D3 Regular Pick up visits 4 not enough cases 

Eliglibililty criteria for 
treatment start 

0 NA 0.699 D4 Pt /Clinic Interface 2 
this variable has changed with new guideline test 
and treat 

Use of EFV or NVP as 
NNRTI backbone 

0 NA 0.350 D4 Pt /Clinic Interface 2 
Relevance according to literature but no 
association in study sample 

Time from eliglibility to 
treatment start 

2 NA 0.203 D4 Pt /Clinic Interface 2 
technically could be used but might have changed 
due to programmatic change 

Time between diagnosis 
and access to care 

6 NA 0.278 D4 Pt /Clinic Interface 2 
Relevanc according to literature but no association 
in study sample 

Service Satisfaction - long 
waiting time 

0 20 0.415 D4 Pt /Clinic Interface 2 
no association to outcome in study sample but in 
literature, and low cases 

Duration between CD4 
count and ART start 

9 NA 0.007 D4 Pt /Clinic Interface 3 
This variable is ambigous, as time between ART 
start and CD4 count can be influenced by various 
effects within the clinic 

Way adherence counceling 
is provided 

0 NA  D4 Pt /Clinic Interface 3 
not much variability - either only group counseling 
or combination 

Functional status at 
treatment start 

0 NA 0.353 D4 Pt /Clinic Interface 4 very little variance 

NRTI backbone in current 
regimen 

0 649/53 0.139 D4 Pt /Clinic Interface 4 little variance 

Reason not to take ARV - 
Pharamcy out of stock  

0 4/1 0.662 D4 Pt /Clinic Interface 4 not enough cases 

Reason not to take ARV - 
has no pills 

0 1 0.642 D4 Pt /Clinic Interface 4 not enough cases 
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Time from entry to care to 
eliglibility 

3 NA 0.274 D4 Pt /Clinic Interface 4 
this variable has changed with new guideline test 
and treat 

Time from diagnosis to art 
start 

5 NA 0.233 D4 Pt /Clinic Interface 4 
this variable has changed with new guideline test 
and treat 

Weeks clients considered 
lost to follow up are traced 

0 NA  D4 Pt /Clinic Interface 4 missing for one site 

Service Satisfaction - Care 
is not good 

0 0 
(no 

event
) 

D4 Pt /Clinic Interface 4 not enough cases 

Service Satisfaction - Staff 
is disrespectfull 

0 0 
(no 

event
) 

D4 Pt /Clinic Interface 4 not enough cases 

Mode of transport to clinic 0 NA 0.275 D4 Transport 1 documented impact on adherence/clinic visit 

Has treatment supporter 0 472 0.146 D4 Treatment support 2 
very low variability, most clients have treatment 
buddy 

Attends support groups 0 82 0.263 D4 Treatment support 3 
no association to outcome in study sample but in 
literature, and low cases 

Clients per clinic day per 
clinical staff member 

0 NA 0.000 D5 CTC Human Resources 1 
This term was to describe the time availabel for 
direct patient management 

Client per HCW 0 NA 0.000 D5 CTC Human Resources 2 
this term includes non-medical staff and does not 
reflect clinic days 

Clients per clinical staff 
member 

0 NA 0.000 D5 CTC Human Resources 2 
clinical knowledge might not be most important for 
sustainable service 

All staff positions allocated 
to clinic 

0 NA 0.000 D5 CTC Human Resources 2 this is a very braod term 

All clinical staff positions 
allocated to clinic 

0 NA 0.000 D5 CTC Human Resources 2 might be less informative than other HR variables 

Costs to access clinic 0 NA 0.763 D5 Individual Resources 2 
no association with outcome, positive bias can be 
expected as clients for whom this is relevant are 
likely not included in the study sample 

Distance from household 
to clinic 

0 NA 0.589 D5 Individual Resources 2 
no association with outcome, positive bias can be 
expected as clients for whom this is relevant are 
likely not included in the study sample 

Reason to miss clinic visit - 
lack of time 

0 14 0.382 D5 Individual Resources 2 not enough cases 
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Reason to miss clinic visit - 
too far 

0 10 0.664 D5 Individual Resources 2 not enough cases 

Time to access clinic 1 NA 0.424 D5 Individual Resources 2 
no association with outcome, positive bias can be 
expected as clients for whom this is relevant are 
likely not included in the study sample 

Access to electricity in the 
HH 

0 193 0.712 D5 Individual Resources 3 other variables have more evidence 

Education 0 NA 0.412 D5 Individual Resources 3 little variance 

Literacy 0 NA 0.529 D5 Individual Resources 3 other variables have more evidence 

Profession 0 NA 0.668 D5 Individual Resources 3 large variance in the study sample 

Reason to miss clinic visit - 
does not have enough 
money 

0 0 
(no 

event
) 

D5 Individual Resources 4 not enough cases 

Ratio clients ever on ART 
to currently on ART 

0 NA 0.000 D6 CTC Characteristics 1 rough parameter for attrition and positive bias 

Years of operation 0 NA 0.000 D6 CTC Characteristics 1 
shown to be relevant for treatment outcome in 
literature 

Number of clients recieved 
as referral from lower 
health care levels 

0 NA 0.000 D6 CTC Characteristics 1 would mean more sick patients 

Number of clients recieved 
as up-referral from lower 
health care levels 

0 NA 0.000 D6 CTC Characteristics 1 would mean less sick patients 

Clients on ART at CTC 0 NA 0.000 D6 CTC Characteristics 1 easyer parameter than 1st/2nd line 

Number of clients ever on 
ART at the clinic 

0 NA 0.000 D6 CTC Characteristics 1 experience but also workload variable 

Clinic days per patient 
managed 

0 NA 0.000 D6 CTC Characteristics 2 other variables more specific 

Clients on First Line 0 NA 0.000 D6 CTC Characteristics 2 better combined siteart 

Number of clinic days per 
week 

0 NA 0.036 D6 CTC Characteristics 2 
Relevance depends on the number of clients seen 
in those days 

Pt on Second Line 0 NA 0.000 D6 CTC Characteristics 4 
could be a variable of service and difficult patient, 
but very low rate 

Renovations conducted at 
the CTC 

0 NA 0.029 D6 CTC Characteristics 4 just not a very meaningfull predictor for a model 
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Minor Renovations 0 NA 0.000 D6 CTC Characteristics 4 just not a very meaningfull predictor for a model 

Major Renovations 0 NA 0.038 D6 CTC Characteristics 4 just not a very meaningfull predictor for a model 

Marial status 0 NA 0.119 D6 Private Life 1 
might be indication of overal resources available to 
participant 

Number of financial 
dependants 

0 NA 0.046 D6 Private Life 2 less variance due to categorical variables 

Knows HIV status of 
spouse 

0 309 0.883 D6 Private Life 3 not usefull to predict risk in single individuals 

Number of adults in HH 0 NA 0.389 D6 Private Life 3 other variables have more evidence 

Number of children in HH 0 NA 0.258 D6 Private Life 3 other variables have more evidence 

Spouse is HIV positive 0 232 0.311 D6 Private Life 3 not usefull to predict risk in single individuals 

Spouse is on ART 23 164 0.424 D6 Private Life 3 not usefull to predict risk in single individuals 

Number of weeks of ARV 
the pharmacy typically 
keeps on hand 

0 NA 0.000 
D7 Pharmacy 
characteristics 

4 not much variability  

Pharmacy has access to 
electricity 

0 NA 0.091 
D7 Pharmacy 
characteristics 

4 only MZRH has integrated CTC in OPD 

Do non-pharmacy hospital 
personnel have access to 
medications stored in the 
pharmacy 
after hours (for example, 
nights/weekends) 

0 NA 0.797 
D7 Pharmacy 
characteristics 

4 only MZRH has integrated CTC in OPD 

Health Care Level 0 NA 0.000 D8 Hospital characteristics 1 Stratum, easy to assess 

CTC integrated in OPD 0 NA 0.000 D8 Hospital characteristics 2 only MZRH has integrated CTC in OPD 

Number of integrations of 
CTC with other disease 
specific clinics 

0 NA 0.724 D8 Hospital characteristics 2 not much variance 

Facility Size 0 NA 0.000 D8 Hospital characteristics 2 very borad 

CTC integrated in TB clinic  0 NA 0.002 D8 Hospital characteristics 3 rather a facility characteristic 

Location of Clinic 0 NA 0.420 D8 Hospital characteristics 3 not much variance 

CTC integrated in ANC 
clinic 

0 NA 0.272 D8 Hospital characteristics 4 only MZRH has integrated CTC in OPD 

CD4 count at SV 0 NA 0.000 I0 Immunological control 1 highly associated with outcome 
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Lymphocyte count at SV 1 NA 0.003 I0 Immunological control 2 
associated with outcome but less so than CD4 
count and more missing values 

Lymphocyte percentage at 
SV 

1 NA 0.844 I0 Immunological control 2 
associated with outcome but less so than CD4 
count and more missing values 

White blood count at SV 1 NA 0.000 I0 Immunological control 2 
associated with outcome but less so than CD4 
count and more missing values 

Age 0 NA 0.083 I1 Biological determinants 1 known relevance, easy to assess 

Gender 0 NA 0.877 I1 Biological determinants 1 known relevance, easy to assess 

Blind at SV 0 16 0.757 I1 Biological determinants 4 not enough cases 

Death at SV 0 5 0.642 I1 Biological determinants 4 not enough cases 

Pregnant at SV 0 3 0.530 I1 Biological determinants 4 not enough cases 

Years HIV infected 5 NA 0.149 I1 Biological determinants 4 
mostly alligns with tonart, not easily to be verified 
when longer ART/confidential tests 

ESR at SV 1 NA 0.005 I1 Immunologic reserve 1 
could be a variable to well describe immune 
reconstitution 

Plateltes at SV 1 NA 0.000 I1 Immunologic reserve 1 
might be surrogate parameter of immunologic 
reserve 

Hemoglobine % at SV 1 NA 0.141 I1 Immunologic reserve 2 Cd4 count considered more predictive 

Hemoglobine at SV 1 NA 0.336 I1 Immunologic reserve 2 Cd4 count considered more predictive 

Red blood cells at SV 1 NA 0.414 I1 Immunologic reserve 2 Cd4 count considered more predictive 

Moncytes at SV 2 NA 0.652 I1 Immunologic reserve 2 Cd4 count considered more predictive 

Monocytes percentage at 
SV 

2 NA 0.042 I1 Immunologic reserve 2 Cd4 count considered more predictive 

Neutrophiles % at SV 2 NA 0.777 I1 Immunologic reserve 2 Cd4 count considered more predictive 

Neutrophiles at SV 2 NA 0.001 I1 Immunologic reserve 2 Cd4 count considered more predictive 

Absoluet CD4 gain since 
ART start on SV 

8 NA 0.000 I1 Immunologic reserve 2 
BL variables expected to have little impact on 
current VL 

CD4 count at BL 8 NA 0.160 I1 Immunologic reserve 2 
BL variables expected to have little impact on 
current VL 

Peak CD4 count 9 NA 0.108 I1 Immunologic reserve 2 
BL variables expected to have little impact on 
current VL 

Hemoglobine at BL 31 NA 0.617 I1 Immunologic reserve 2 
BL variables expected to have little impact on 
current VL 
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Lymphocytes at BL 43 NA 0.133 I1 Immunologic reserve 2 
BL variables expected to have little impact on 
current VL 

Basophiles % at SV 42 NA 0.164 I1 Immunologic reserve 4 missing at sites 

Basophiles at SV 42 NA 0.198 I1 Immunologic reserve 4 missing at sites 

Eosinophiles at SV 42 NA 0.522 I1 Immunologic reserve 4 missing at sites 

Eosinophiles % at SV 43 NA 0.214 I1 Immunologic reserve 4 missing at sites 

WHO T-staging at SV 0 NA 0.687 I2 Co-Morbidity-Infectious 1 easy to assess at SV 

Respiration rate 0 NA 0.309 I2 Co-Morbidity-Infectious 1 easy to assess at SV 

Fever within the last three 
months or on SV 

0 417 0.274 I2 Co-Morbidity-Infectious 2 not easy to collect in a standardized manner 

Weight at SV 0 NA 0.267 I2 Co-Morbidity-Infectious 2 
weight in itself might be good for AIDS but not for 
VL replication >400 copies/ml 

BMI on SV 0 NA 0.123 I2 Co-Morbidity-Infectious 2 
easy to assess at SV but only indirect connection 
to viraemia 

Ever TB 37 113 0.383 I2 Co-Morbidity-Infectious 2 known relevane but few cases 

Pain at SV 38 97 0.255 I2 Co-Morbidity-Infectious 2 to vague for standardized determination 

Loss of Apetite within 3 
months prior SV 

38 52 0.158 I2 Co-Morbidity-Infectious 2 not easy to collect in a standardized manner 

Night Sweats at SV 38 72 0.835 I2 Co-Morbidity-Infectious 2 other variables better indication of infection 

Sore Throat at SV 38 53 0.275 I2 Co-Morbidity-Infectious 2 other variables better indication of infection 

WHO3-Anaemia at SV 0 702 0.642 I2 Co-Morbidity-Infectious 3 single disease entity to specific for model 

WHO2- Minor 
Mucocutaneous 
Manifestations at SV 

72 196 0.088 I2 Co-Morbidity-Infectious 3 single disease entity to specific for model 

WHO2 - Weight Loss < 
10% at SV 

75 178 0.472 I2 Co-Morbidity-Infectious 3 single disease entity to specific for model 

WHO3-Weight loss >10% 
of Body Weight at SV 

75 177 0.463 I2 Co-Morbidity-Infectious 3 single disease entity to specific for model 

WHO3- Unexplained 
Chronic Diarrhea at SV 

78 152 0.413 I2 Co-Morbidity-Infectious 3 single disease entity to specific for model 

WHO2 - Recurrent Upper 
Respiratory Track 
Infections at SV 

79 144 0.608 I2 Co-Morbidity-Infectious 3 single disease entity to specific for model 
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WHO2 - Herpes Zoster 
(within last 5 years) at SV 

88 85 0.331 I2 Co-Morbidity-Infectious 3 single disease entity to specific for model 

WHO3-TB at SV 88 83 0.352 I2 Co-Morbidity-Infectious 3 single disease entity to specific for model 

WHO3-Severe Bacterial 
Infections at SV 

89 76 0.537 I2 Co-Morbidity-Infectious 3 single disease entity to specific for model 

WHO3-Candidiasis oral at 
SV 

92 59 0.279 I2 Co-Morbidity-Infectious 3 single disease entity to specific for model 

Temperature at SV 0 NA 0.486 I2 Co-Morbidity-Infectious 4 not enough cases with elevated temperature at SV 

WHO3-Unexplained 
Prolonged Fever at SV 

53 2 0.009 I2 Co-Morbidity-Infectious 4 not enough cases 

WHO4-HIV Wasting 
Syndrome at SV 

96 28 0.186 I2 Co-Morbidity-Infectious 4 not enough cases 

WHO4-Disseminated 
Candidiasis at SV 

97 18 
(no 

event
) 

I2 Co-Morbidity-Infectious 4 not enough cases 

WHO4-Disseminated TB at 
SV 

98 14 0.880 I2 Co-Morbidity-Infectious 4 not enough cases 

WHO4-Kaposi’s Sarcoma 
at SV 

98 11 0.343 I2 Co-Morbidity-Infectious 4 not enough cases 

WHO4-
PneumocysticCarinii 
Pneumonia (PCP) at SV 

98 11 
(no 

event
) 

I2 Co-Morbidity-Infectious 4 not enough cases 

WHO4-Cryptococcal, 
extrapulmonary at SV 

99 8 
(no 

event
) 

I2 Co-Morbidity-Infectious 4 not enough cases 

WHO4-Encephalopathy at 
SV 

99 5 
(no 

event
) 

I2 Co-Morbidity-Infectious 4 not enough cases 

WHO3-Oral Hairy 
Leukoplakia at SV 

99 4 
(no 

event
) 

I2 Co-Morbidity-Infectious 4 not enough cases 

WHO4-Cryptosporidiosis 
with Diarrhea at SV 

100 1 
(no 

event
) 

I2 Co-Morbidity-Infectious 4 not enough cases 
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WHO4-Herpes simplex 
chronic at SV 

100 1 
(no 

event
) 

I2 Co-Morbidity-Infectious 4 not enough cases 

Diastolic Blood Pressure at 
SV 

0 NA 0.078 I2 Morbidity other 2 easy to assess at SV 

Pulse at SV 0 NA 0.160 I2 Morbidity other 2 
might indicate underlying infection but temperature 
would be better 

Systolic Blood Pressure at 
SV 

0 NA 0.019 I2 Morbidity other 2 easy to assess at SV 

Asthma at SV 0 4 0.018 I2 Morbidity other 4 not enough cases 

Ever had Asthma 0 4 0.069 I2 Morbidity other 4 not enough cases 

Ever had Heart Disease 37 8 0.296 I2 Morbidity other 4 not enough cases 

Heart Disease at SV 37 5 0.420 I2 Morbidity other 4 not enough cases 

BMI at Baseline 3 NA 0.436 I3 Medical history 2 
summary measure prefered over individual disease 
for model 

WHO3-History of 
Unexplained Prolonged 
Fever at SV 

53 331 0.699 I3 Medical history 2 
summary measure prefered over individual disease 
for model 

WHO2- History of Minor 
Mucocutaneous 
Manifestations 

72 196 0.516 I3 Medical history 2 
summary measure prefered over individual disease 
for model 

WHO2-History of Weight 
Loss < 10% of Body 
Weight 

75 177 0.736 I3 Medical history 2 
summary measure prefered over individual disease 
for model 

WHO3-Histroy of Weight 
loss >10% of Body Weight 

75 177 0.368 I3 Medical history 2 
summary measure prefered over individual disease 
for model 

WHO3- History of 
Unexplained Chronic 
Diarrhea 

78 152 0.686 I3 Medical history 2 
summary measure prefered over individual disease 
for model 

WHO2 - History of 
Recurrent Upper 
Respiratory Track 
Infections 

79 144 0.051 I3 Medical history 2 
summary measure prefered over individual disease 
for model 

WHO3-History of TB 88 84 0.352 I3 Medical history 2 
summary measure prefered over individual disease 
for model 
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WHO3- History of Severe 
Bacterial Infections 

89 76 0.537 I3 Medical history 2 
summary measure prefered over individual disease 
for model 

WHO3- History of Anaemia 
at SV 

94 43 0.536 I3 Medical history 2 
summary measure prefered over individual disease 
for model 

WHO4-History of HIV 
Wasting Syndrome at SV 

96 28 0.237 I3 Medical history 2 
summary measure prefered over individual disease 
for model 

Clinical fialure at SV 0 21 0.981 I3 Medical history 3 
low number of cases and no association with 
outcome, known bad predictive value 

WHO Stage at BL 0 NA 0.328 I3 Medical history 3 
Model should not include variables that can not 
retrospectively be assessed if missing on SV 

Weight at BL 3 NA 0.337 I3 Medical history 3 
Model should not include variables that can not 
retrospectively be assessed if missing on SV 

Ever recieved PMTCT 0 30 0.578 I3 Medical history 4 not enough cases 

Immune Reconstitution 
Syndrome 

0 8 0.260 I3 Medical history 4 not enough cases 

WHO Stage 1 - Persistent 
Generalized 
Lymphadenopathy 

0 8 0.828 I3 Medical history 4 not enough cases 

Ever had cancer 37 4 0.420 I3 Medical history 4 not enough cases 

Ever had diabetis 37 8 0.700 I3 Medical history 4 not enough cases 

Creatinine at BL 73 NA 0.233 I3 Medical history 4 very limited data 

WHO2 - History of Herpes 
Zoster (within last 5 years) 

88 85 0.331 I3 Medical history 4 not enough cases 

WHO Stage 3 during or 
before ART - Candidiasis– 
Oral (Thrush) 

92 59 0.065 I3 Medical history 4 not enough cases 

WHO4-History of 
Disseminated Candidiasis 

97 18 0.099 I3 Medical history 4 not enough cases 

WHO4-History of 
Disseminated TB 

98 15 0.898 I3 Medical history 4 not enough cases 

WHO4-History of Kaposi’s 
Sarcoma at SV 

98 11 0.047 I3 Medical history 4 not enough cases 

WHO4-History of 
PneumocysticCarinii 
Pneumonia (PCP) 

98 11 0.571 I3 Medical history 4 not enough cases 
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WHO4-History of 
Cryptococcal, 
extrapulmonary 

99 8 0.635 I3 Medical history 4 not enough cases 

WHO4- History of 
Encephalopathy 

99 5 0.428 I3 Medical history 4 not enough cases 

WHO3- History of Oral 
Hairy Leukoplakia 

99 4 0.642 I3 Medical history 4 not enough cases 

WHO4-History of 
Toxoplasmosis, CNS 

100 3 0.386 I3 Medical history 4 not enough cases 

WHO4- History of Herpes 
simplex chronic 

100 1 0.657 I3 Medical history 4 not enough cases 

WHO4-History of 
Cryptosporidiosis with 
Diarrhea 

100 1 0.657 I3 Medical history 4 not enough cases 

 



Thesis Lennemann  

145  

13.5  Case Report Forms 

13.5.1 Site Observation Questionnaire  

13.5.2 Nurse Administered Questionnaire 

13.5.3 Participant Specific Case Report Form  


