
Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie  
der Ludwig-Maximilians-Universität München 

 

 

Novel computational methods  
for in vitro and in situ 

cryo–electron microscopy 
 

 

 

Dmitry Tegunov 

aus 

St. Petersburg, Russland 

 

2020 



I 
 

 

 

Dissertation zur Erlangung des Doktorgrades 
der Fakultät für Chemie und Pharmazie 

der Ludwig-Maximilians-Universität München 
 

 

 

 

Novel computational methods  
for in vitro and in situ 

cryo–electron microscopy 
 

 

 

Dmitry Tegunov 
aus 

St. Petersburg, Russland 

 

 

 

2020 

  



II 
 

Erklärung 

 

Diese Dissertation wurde im Sinne von §7 der Promotionsordnung vom 28. November 
2011 von Herrn Prof. Dr. Patrick Cramer betreut, und von Herrn Prof. Dr. Roland Beck-
mann von der Fakultät für Chemie und Pharmazie vertreten. 

 

 

Eidesstattliche Versicherung 

 

Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfe erarbeitet. 

 

Göttingen, den 02.02.2021 

 

 

 

………………………………………….. 
Dmitry Tegunov 

 

 

 

 

 

 

Dissertation eingereicht am 07.12.2020 

1. Gutachter Prof. Dr. Roland Beckmann 

2. Gutachter Prof. Dr. Patrick Cramer 

Mündliche Prüfung am 28.01.2021  



III 
 

Summary 

Over the past decade, advances in microscope hardware and image data processing al-

gorithms have made cryo-electron microscopy (cryo-EM) a dominant technique for pro-

tein structure determination. Near-atomic resolution can now be obtained for many chal-

lenging in vitro samples using single-particle analysis (SPA), while sub-tomogram averag-

ing (STA) can obtain sub-nanometer resolution for large protein complexes in a crowded 

cellular environment. Reaching high resolution requires large amounts of image data. 

Modern transmission electron microscopes (TEMs) automate the acquisition process and 

can acquire thousands of micrographs or hundreds of tomographic tilt series over several 

days without intervention.  

In a first step, the data must be pre-processed: Micrographs acquired as movies are cor-

rected for stage and beam-induced motion. For tilt series, additional alignment of all mi-

crographs in 3D is performed using gold- or patch-based fiducials. Parameters of the con-

trast-transfer function (CTF) are estimated to enable its reversal during SPA refinement. 

Finally, individual protein particles must be located and extracted from the aligned mi-

crographs. Current pre-processing algorithms, especially those for particle picking, are 

not robust enough to enable fully unsupervised operation. Thus, pre-processing is started 

after data collection, and takes several days due to the amount of supervision required. 

Pre-processing the data in parallel to acquisition with more robust algorithms would save 

time and allow to discover bad samples and microscope settings early on. 

Warp is a new software for cryo-EM data pre-processing. It implements new algorithms 

for motion correction, CTF estimation, tomogram reconstruction, as well as deep learn-

ing-based approaches to particle picking and image denoising. The algorithms are more 

accurate and robust, enabling unsupervised operation. Warp integrates all pre-pro-

cessing steps into a pipeline that is executed on-the-fly during data collection. Integrated 

with SPA tools, the pipeline can produce 2D and 3D classes less than an hour into data 

collection for favorable samples. Here I describe the implementation of the new algo-

rithms, and evaluate them on various movie and tilt series data sets. I show that 
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unsupervised pre-processing of a tilted influenza hemagglutinin trimer sample with Warp 

and refinement in cryoSPARC can improve previously published resolution from 3.9 Å to 

3.2 Å. 

Warp’s algorithms operate in a reference-free manner to improve the image resolution 

at the pre-processing stage when no high-resolution maps are available for the particles 

yet. Once 3D maps have been refined, they can be used to go back to the raw data and 

perform reference-based refinement of sample motion and CTF in movies and tilt series. 

M is a new tool I developed to solve this task in a multi-particle framework. Instead of 

following the SPA assumption that every particle is single and independent, M models all 

particles in a field of view as parts of a large, physically connected multi-particle system. 

This allows M to optimize hyper-parameters of the system, such as sample motion and 

deformation, or higher-order aberrations in the CTF. Because M models these effects ac-

curately and optimizes all hyper-parameters simultaneously with particle alignments, it 

can surpass previous reference-based frame and tilt series alignment tools. Here I de-

scribe the implementation of M, evaluate it on several data sets, and demonstrate that 

the new algorithms achieve equally high resolution with movie and tilt series data of the 

same sample. Most strikingly, the combination of Warp, RELION and M can resolve 70S 

ribosomes bound to an antibiotic at 3.5 Å inside vitrified Mycoplasma pneumoniae cells, 

marking a major advance in resolution for in situ imaging. 
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1. Introduction 

1.1 Single-particle analysis and sub-tomogram averaging 

1.1.1 Sources of noise and signal corruption 

Modern cryo-electron microscopy1 (cryo-EM) can image 2D projections of the 3D Cou-

lomb potential of biological macromolecules (‘particles’) in vitreous ice with atomic accu-

racy2. However, the precision of such measurements is very low due to several sources 

of noise3. Some of the sources can be assumed to follow a 0-mean, Gaussian distribution4, 

while others can be explicitly corrected for. Thus, the underlying signal can be retrieved 

up to a very high resolution by filtering and averaging many independent measurements 

of parts of the same signal5. This is possible because for many species of biological mac-

romolecules, copies of the same molecule exhibit a very high degree of structural simi-

larity. Aligned to a common 3D reference frame, the 2D projections can be related to 

parts of the underlying 3D potential through the central-slice theorem. This enables the 

averaging of projections from arbitrary directions to obtain a 3D reconstruction of the 

Coulomb potential with significantly increased signal-to-noise ratio (SNR)5. 

Biological macromolecules are fragile and cannot sustain a large amount of electron ra-

diation in the microscope6. While any sampling the molecule with electrons destroys its 

structure by knocking individual atoms from their original positions in random directions, 

it is a gradual process. The effect can be averaged out given enough data, but explicit 

exposure-weighting can improve the data efficiency7. Typical micrographs use an overall 

exposure of 40-50 e-/Å2, and fractions of this exposure are filtered in silico in the fre-

quency domain to down-weight the high-resolution part of the signal as a function of the 

accumulated exposure7. In the weighted data, only the first 2-4 e-/Å2 contribute mean-

ingfully to the signal at 2 Å resolution and beyond. The sampled object’s phase contrast 

as well as parameters of the electron-optical system determine the 2D probability func-

tion of where the electrons will impact the detector. For every electron, the time and 

position of its impact on the direct electron detector (DED) sensor are recorded. DEDs 
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significantly improve the event localization and secondary-scattering noise compared to 

previously used indirect CCD-based solutions8, now approaching the theoretical maxi-

mum detective quantum efficiency (DQE). However, even with a 40 e-/Å2 exposure on a 

DED, the measured probability function remains vastly undersampled, leading to the 

most significant source of noise: shot noise3. Although it follows a Poisson distribution, 

its long tail is ignored and a Gaussian distribution is assumed in all current processing 

methods. 

Large-scale sample motion occurs during the exposure as well9, 10. Mechanical stage in-

stabilities lead to fast, global shifts of the entire field of view throughout the exposure. In 

a tilt series, the assumed stage angles are also inaccurate because of stage instability. 

Local shifts occur at a slower pace due to beam-induced motion (BIM)9. The fast readout 

speed of a DED allows to fractionate the exposure and thus the motion into frames, and 

align them later in silico10. If the motion is fast or the fractionation is coarse, some intra-

frame motion remains. This decreases high-resolution signal anisotropically and dampens 

its amplitude in the final average if left uncorrected. 

Because biological macromolecules consist of elements of similar mass as the surround-

ing vitreous ice, amplitude contrast is negligible in cryo-EM. Instead, phase contrast11 be-

tween elastically scattered and unscattered electrons is achieved through deliberate in-

troduction of aberrations (typically defocus), or a phase plate12 in the electron-optical 

system. Because the aberration-induced phase shift grows with increasing spatial fre-

quency, the resulting contrast transfer function11 (CTF) oscillates between -1 and 1 in the 

frequency domain. With all other parameters fixed, the defocus determines how fast the 

CTF oscillates and where the contrast peaks and reversals are in the frequency domain. 

In the spatial domain, this determines how far sidebands of a signal corresponding to a 

certain spatial frequency are offset from its original position13. Further higher-order pat-

terns in the CTF’s phase shift come from astigmatism, trefoil and other electron-optical 

aberrations, and can be modeled with Zernike polynomials14. Because the specimen 

rarely lies flat in the focal plane, defocus variations can be expected within a micrograph 
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and even between individual macromolecules. CTF corrupts the image signal in a way that 

cannot be averaged out because signal randomly modulated with -1 and 1 will average 

to 0. Thus, all signal observations must be demodulated using the respective CTF before 

they can be averaged. Many of the CTF parameters are not known a priori and must be 

determined by fitting an analytical model to the signal. The CTF modulates the particle 

signal and solvent noise, but not the shot noise3. 

The particles of interest are embedded in a thin layer of vitreous ice. Similarly to the par-

ticles, its water molecules scatter electrons and are present in the images. Because all but 

a few water molecules around each particle are located randomly, their contribution to 

the projections can be treated as random Gaussian ‘solvent noise’3 that will average out. 

Thicker ice results in stronger solvent noise, but also leads to more inelastically scattered 

electrons, which are an additional source of noise. Impurities of other compounds are 

also located within the ice layer and on its surface15. Some of them, such as ethane drops, 

are visible as high-contrast spots in the image. Such areas are best excluded from aver-

aging because they break the Gaussian noise assumption. Macromolecules can also over-

lap with each other’s projections in overly concentrated in vitro samples, or when imag-

ing the crowded cellular environment16. From the point of view of averaging, overlapping 

projections are additional solvent noise that is assumed to have a Gaussian distribution 

in all current algorithms.  

A very high degree of structural similarity between copies of the same molecule at the 

time of vitrification is essential for averaging. If extensive classification and alignment17 

of conformationally or compositionally heterogeneous regions cannot reduce the heter-

ogeneity, the resulting average will be a superposition of all present states, limiting the 

resolution. For compositional heterogeneity (‘occupancy’), the resulting noise follows a 

bimodal distribution4. Although the superposition can reach high resolution, it might be 

hard to disentangle without knowing the underlying atomic model. Conformational het-

erogeneity (‘flexibility’) often results in approximately Gaussian noise and anisotropic 
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amplitude attenuation. Given vast amounts of data, high resolution can be obtained and 

the amplitude attenuation reversed. However, collecting so much data is impractical. 

In summary, single-particle analysis5 (SPA) and the closely related sub-tomogram averag-

ing18 (STA) techniques aim to model the noise in the data accurately, and to correct it as 

far as possible. With only 0-mean, Gaussian noise left in the data before averaging, mod-

ern hardware and processing pipelines can reach 3 Å and better with 105-106 asymmetric 

particles19, 20. 

1.1.2 Data pre-processing 

Before they can be fed into SPA/STA tools, cryo-EM data need to be pre-processed. Alt-

hough the necessary algorithms are accessible through SPA/STA software suites, they are 

not strictly part of the SPA/STA concept and often available as stand-alone tools. 

Cryo-EM samples experience global and local motion during exposure. If the exposure is 

fractionated into many parts, this motion can be largely canceled out. Reference-free 

alignment algorithms21-25 attempt to estimate a shift vector for each frame in the expo-

sure that minimizes the difference between each aligned frame and their average. To 

account for local motion, the field of view can be split into quadrants, or a field of several 

vectors can be estimated per frame with smooth interpolation between them. Because 

each frame and the resulting average have very low SNR, the fitted model requires strong 

regularization. This puts a limit on the temporal and spatial resolution achievable for the 

motion model with reference-free alignment. In tilt series, the different projection angles 

in different parts of the exposure pose an additional problem because the overlap in un-

derlying signal is very small, making alignment more difficult. In the absence of a priori 

knowledge of particles, high-contrast features such as gold fiducials or patch-tracking al-

gorithms are used. Because of the increased difficulty, attempts at local motion align-

ment usually bring little benefit26. 

Without the ability to perform CTF correction, averages of cryo-EM data would get stuck 

at ca. 20 Å, i.e. where the first contrast reversal occurs on the average. Thus, any kind of 
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further analysis requires a priori knowledge of the CTF parameters for each image. Most 

of the parameters, such as acceleration voltage, spherical aberration, or pixel size, can be 

treated as fixed at this point. Defocus, astigmatism and, in the presence of a phase plate, 

phase shift are different in every image and must be fitted. This can be done in a refer-

ence-free manner by fitting a simulated CTF to the amplitude or power spectrum of the 

image that is modulated by the CTF27-29. Because the spectrum does not capture the 

phase and is strictly positive, the CTF’s absolute value or its square is used. The contribu-

tion of shot noise and inelastic scattering to the spectrum is significant and varies be-

tween spatial frequencies. This can affect the fitting, and even break it completely. Thus, 

prior to fitting the CTF, the spectrum envelope must be fitted. The lower boundary should 

ideally go through all zero-crossings of the CTF, while the upper boundary should go 

through its peaks. The lower boundary is then subtracted from the spectrum to improve 

the fitting27. In some cases such as very low defocus, the envelope estimation itself can 

break. Thus, CTF fitting algorithms are not entirely robust, and may require some super-

vision. It is desirable to fit the defocus more locally to account for an uneven or tilted 

sample30, but reference-free per-particle estimation does not have enough signal to de-

liver accurate results. 

One of the central assumptions in SPA, and STA by extension, is that each piece of data 

contains a single particle roughly at its center31. To satisfy this condition, particles must 

be located and extracted from motion-corrected micrographs or tilt series. Due to low 

SNR and the presence of other molecules and high-contrast artifacts in the images, this 

is often a difficult task. In addition, bias in the selection procedure will affect all down-

stream analysis. Template-free methods32, 33 attempt to find features within the selected 

size range, while excluding bigger and smaller features. Although the methods do not 

introduce bias beyond the object size, they can have very low specificity in the presence 

of significant noise and other objects in the images. Template-based methods34-36 require 

at least a set of low-resolution templates, which can be obtained by processing the results 

of template-free methods or manual selection. Using these positive examples, the 
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methods are more accurate, but still pick up high-contrast artifact because the algorithms 

lack knowledge of the negative example space (i.e. ‘what is not a particle’). If the particle 

selection is unreliable, extensive manual curation is required, which can take several days 

for a few thousand micrographs. 

1.1.3 Reference-based optimization 

Once located and extracted, individual particles must be iteratively aligned to a 3D refer-

ence so they can be averaged to obtain a high-SNR reconstruction5. In case of a hetero-

geneous sample, each particle must be compared to multiple references (‘classes’) to find 

the one it most likely belongs to. During alignment, the most likely pose, i.e. orientation 

and in-plane translation, is estimated37. The reference is projected (in 3D in case of STA38) 

at the sampled angles and offsets, and an imaging model is applied to these forward-

projections. The model includes modulation with the estimated CTF, and a weighting 

function based on the estimated spectral SNR (SSNR) to give less weight to the noisier 

parts of the signal37. The projections are then compared to the experimental particle im-

age to select a projection that matches it the most, and the corresponding pose is as-

sumed to be optimal in the current iteration. Once poses have been established, particles 

are CTF-corrected, weighted, and back-projected in 3D. The result is divided by the back-

projected sum of weights to obtain the weighted average as the reconstruction37. If the 

resolution of this reconstruction is better than the previous reference, it can be used for 

an additional reference-based alignment iteration with the prospect of improving the res-

olution further. The resolution is estimated through Fourier shell correlation (FSC)39, 

which is a form of cross-validation and requires the particle set to be split in 2 halves that 

are refined independently. 

Even the first iteration of reference-based alignment requires a reference. In some cases, 

the structure of a similar macromolecule is available, which is enough to guide the opti-

mization in the right direction. If no initial structure is available, the optimization starts 

with one or several random low-resolution blobs. Stochastic gradient descent (SGD) is a 

popular method40 used to slow the convergence rate of the optimization and decrease 
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the chance that it will get stuck in a local optimum. The algorithm aligns a small random 

subset of the particles to the current reference in each iteration, and updates the refer-

ence towards being more similar to the resulting reconstruction. Coupled with SGD, STA 

can improve the convergence even further because each sub-tomogram covers a larger 

part of the underlying signal and contains information about the correct handedness of 

the structure, which is degenerate in SPA data41. 

By going back to the raw micrograph data, reference-based optimization can improve the 

previous reference-free frame alignments42. Instead of optimizing the similarity between 

each frame and their average, forward-projections of a high-resolution reference are 

used. The projections can be either combined to a larger image and compared against 

entire frames43, or compared to particle images extracted from frames42. Because the 

projections contain far more signal than frame averages, the granularity of the motion 

model can also be increased to fit faster and more localized movements. The same ap-

proach can be applied to tilt series that were previously aligned through fiducial or patch 

tracking43. Instead of comparing 3D forward-projections against sub-tomograms, a set of 

2D projections is compared against particle images extracted from all tilt images at posi-

tions corresponding to the sub-tomograms position in 3D. This way shifts and angles can 

be optimized for individual tilts. 

The CTF is another part of the image model that can be improved with reference-based 

optimization. Instead of sampling different particle poses, values such as defocus and 

astigmatism are changed in the CTF the forward-projections are modulated with to find 

the combination with the highest similarity to the particle images. As with frame align-

ment, this provides better signal than fitting against the amplitude spectrum14. The fit is 

also not affected by a contrast-rich substrate such as carbon, which may lie above or be-

low the particles and systematically bias the defocus. Reference-based optimization ena-

bles the fitting of defocus and, in some cases, astigmatism per-particle14. Symmetric and 

asymmetric higher-order optical aberrations can also be estimated based on reference 

projections by altering the corresponding Zernike polynomial factors in the CTF. 
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1.2 Artificial neural networks and differentiable programming 

Inspired by a simplified model of biological neurons, artificial neurons accumulate input 

signals and apply a non-linear sigmoid function to the result44. Composed of multiple lay-

ers of neurons, neural networks can approximate any mathematical function. To achieve 

this, the weights each neuron assigns to its inputs must be adjusted44. For most practical 

uses, the true function that needs to be approximated is not known, and only pairs of 

input and output values are available. Because any non-trivial function requires thou-

sands or millions of neurons for accurate approximation, an exhaustive parameter search 

is not feasible. Instead, parameters are ‘trained’ in a gradient descent-like procedure45 

using gradient information obtained by presenting the network with an input, and com-

paring its output to the target output. 

Modern neural networks46 are far more versatile than the original ‘perceptron’ concept44. 

Instead of only accumulating inputs and applying sigmoid activation, any number of dif-

ferentiable operations can be concatenated in intricate graphs. The differentiability is 

crucial because every output variable can then be related to every input variable through 

a fully differentiable path, and gradients for all parameters involved can be computed 

easily. Hence, this approach to building and training machine learning models is called 

‘differentiable programming’47. The gradient is calculated in a process called ‘back-prop-

agation’48, which uses the chain rule of differentiation to propagate the gradient back 

from the output layer, operator by operator. Without this algorithm, training large net-

works would not be computationally feasible because the network would need to be 

evaluated at least once for each parameter to obtain the gradients. 

Convolutional neural networks (CNN)49 are particularly popular for computer vision 

tasks46. In the ‘fully connected’ layers of classical neural networks each neuron is con-

nected to every output variable of the previous layer. In CNNs, a small kernel of weights 

(e.g. 3x3 pixels in case of image data) is applied at each position in the input data and the 

results are summed, convolving overlapping groups of spatially adjacent variables. A non-

linear function is applied to the result of each convolution, and they are combined in a 
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layer of the same dimensionality as the input. Multiple kernels are usually applied to the 

same input to obtain multiple channels in the output layer. Kernels in the next layer then 

extend in the additional channel dimension. The initial convolutions act as edge detec-

tors, while subsequent convolutions can capture larger and more complex features. Un-

like fully connected networks that learn to expect an object at a certain position in the 

input data, CNNs are translation-invariant and will produce the same encoding for an ob-

ject at any location. Over the past decade, CNNs have outperformed every other ap-

proach to segmentation50, image classification51, denoising52, super-resolution53, and 

many other tasks. 

1.3 Warp and M 

In this thesis, I describe and evaluate two new software tools developed to tackle two 

major problems in cryo-EM data processing: robust and automated data pre-processing, 

and comprehensive reference-based optimization of the imaging model in movie and tilt 

series data. Used in conjunction with an established SPA tool like RELION, the new algo-

rithms provide a highly automated pipeline that achieves record-high resolution for chal-

lenging samples. 

Warp takes over all pre-processing steps such as motion correction, CTF estimation, par-

ticle picking, and tomogram reconstruction. The new tool integrates its algorithms into a 

fully graphical, intuitive user interface that helps the microscopist with immediate feed-

back during data collection. The new algorithms can reliably handle modern data acqui-

sition regimes such as tilted movie collection, and dose-symmetric tilt series. The appli-

cation of CNNs in conjunction with an extensive training data corpus enables very robust 

particle picking, while micrograph denoising greatly helps the user in making sense of 

low-contrast images. Operating in parallel with automated data acquisition, Warp pro-

vides a constantly updated stream of accurately picked particles that can be immediately 

fed into 2D classification or ab initio 3D refinement to quickly assess the sample quality 

and, in favorable cases, complete most of the processing by the time data acquisition is 

finished. To evaluate its performance, Warp is used to pre-process several challenging 
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data sets. Most notably, a previously published data set that produced a 3.9 Å influenza 

hemagglutinin trimer map is pre-processed with Warp and cryoSPARC in a highly auto-

mated fashion to obtain an improved 3.2 Å map. 

M treats the contents of a micrograph or tomogram as a physically connected multi-par-

ticle system instead of following the single-particle assumption from SPA. The new multi-

particle framework enables the simultaneous reference-based optimization of all aspects 

of the sample and imaging model such as particle poses, physically plausible sample and 

particle motion trajectories, and CTF parameters including higher-order aberrations. The 

optimization procedure can incorporate multiple references of different resolution at the 

same time, thus benefitting from the signal of more particles per field of view in hetero-

geneous samples. M unifies the processing of movies (further denoted as ‘frame series’) 

and tilt series by treating the latter as series of images with angular and translational 

constraints imposed by the multi-particle sample model. Evaluation shows that the new 

approach can achieve the same high resolution with frame and tilt series data of the same 

sample. M further integrates machine learning-based map denoising to robustly filter its 

reconstructions to local resolution and to avoid the overfitting of low-resolution regions. 

The new tool is evaluated on several published frame and tilt series data sets, and im-

proves the resolution in each case. Most strikingly, M is tested on a tilt series of Myco-

plasma Pneumoniae cells and is able to resolve the 70S ribosome bound to an antibiotic 

at 3.5 Å, paving the way for high-resolution structural biology inside cells. 
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2. Automated pre-processing of cryo-EM data in Warp 

The work presented in this chapter was published in: 

D. Tegunov, P. Cramer. Real-time cryo-electron microscopy data preprocessing with 
Warp. Nat Methods 16, 1146-1152 (2019). 

2.1 Results 

2.1.1 Rationale of Warp 

We aimed at providing a software package that enables the electron microscopy user to 

evaluate, correct, and process cryo-EM raw data immediately during data acquisition. The 

rationale was to provide a single, streaming interface between the data acquisition soft-

ware that produces the raw data, and the existing software solutions for 2D classification 

and 3D refinement of pre-processed cryo-EM single-particle data, such as RELION37 or 

cryoSPARC40. We called the resulting software package ‘Warp’ in reference to its fast cor-

rection of object distortions that occur in cryo-EM, and its GPU-based implementation 

that results in almost instantaneous output. Our rationale was that Warp should be used 

for the online evaluation, correction and processing of both 2D and tilt series cryo-EM 

data. Warp can be installed on standard platforms and operated by non-expert users via 

a streamlined user interface (UI) that has been developed in parallel to the underlying 

algorithms to augment their operation. Warp was designed to be widely applicable for 

biological data acquisition at any cryo-EM facility and substantially speeds up the process 

of cryo-EM structure determination with improved results. 

2.1.2 Overall design 

A schematic of the computational steps carried out by Warp is provided in Figure 2.1. For 

simplicity, we first describe the workflow for 2D data, before we describe the application 

to tomographic tilt series at the end of the results section. At the beginning of the pipe-

line, Warp reads any new data saved by the acquisition software. Warp then estimates 

and corrects the motion captured in the frames both globally and locally. Next, Warp fits 
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a spatially resolved CTF model, enabling the assignment of local defocus values to any 

particles extracted from the micrograph later. Warp then uses a neural network-based 

approach to automatically pick particles from the corrected micrographs with very high 

accuracy. Finally, Warp exports the resulting dose-weighted particle images to a down-

stream structure determination program such as RELION37 or cryoSPARC40, which carry 

out 2D and 3D classification, map refinement and reconstruction. During pre-processing, 

Warp provides a comprehensive overview of all important data parameters, allowing the 

operator to tune the acquisition settings to achieve optimal results faster. In the following 

we will describe the most important components in more detail. 

2.1.3 User interface 

Warp’s UI is designed to help the user to comprehend and interact with the thousands of 

data objects generated routinely during cryo-EM data collection (Figure 2.2). The ‘Over-

view’ tab displays various properties, such as defocus, estimated resolution, amount of 

Figure 2.1 | Warp handles all pre-processing steps to close a gap in the 2D cryo–EM 
pipeline.  
Data is acquired by the microscope in an automated fashion and stored as compressed 
stacks of movie frames. Warp continuously monitors its input folder for new files, and 
subjects them to all steps of the pre-processing pipeline: frame alignment, CTF estimation 
and particle picking. Warp writes out a stack of particles for each pre-processed micro-
graph and maintains a dynamically updated STAR file with references to all particles and 
their local CTF parameters. This file can be used as a data source in a tool such as cry-
oSPARC, which will periodically run subsequent processing steps like 2D classification and 
ab initio reconstruction on the latest set of particles. 
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motion, or particle count, for all processed micrographs or tilt series as interactive plots. 

The user can immediately grasp the statistical distribution, observe intrinsic patterns, and 

make an informed decision to adjust the acquisition strategy, e.g. to tune the lens astig-

matism, increase the stage settling time, or skip a bad grid square. A filter range can be 

specified for every plotted parameter to automatically exclude lower-quality images from 

downstream processing. Any data point can be quickly inspected in more detail in a tab 

called ‘Fourier & Real Space’. Here, a display of the power spectrum and the CTF fit allows 

optimization of CTF fitting parameters. In the real-space view, a deconvolution filter and 

neural net-based denoising (Methods, Figure 2.3) can be instantly applied to micrographs 

to improve the contrast and make the particles more visible to the human eye. The defo-

cus variation obtained through local CTF estimation can be overlaid semi-transparently. 

Particle picking results can be assessed in the context of a micrograph, and edited manu-

ally. Dedicated dialogs assist the user with tasks like micrograph list export, particle ex-

traction, template matching, tomogram reconstruction, and neural network training. 

2.1.4 Motion correction 

Warp generally represents space- and time-dependent parameters as coarse, uniform 

grids, on which a computationally cheap B-spline interpolation can retrieve any interme-

diate value (Methods). The motion, i.e. the translational shift observed between frames, 

Figure 2.2 | User interface of Warp. 
a) The processing settings (left) specify all steps and parameters for online data evalua-
tion, correction and processing. The 'Overview' tab (right) presents all important pro-
cessing results and lets the user specify selection filters to remove low-quality data. 
b) View of a single micrograph. In Fourier space (left), the simulated 2D CTF (i), the 1D 
power spectrum (PS) and its fit (ii), and the 2D PS (iii) are presented. The real space view 
(right) shows the aligned movie average with particle positions (green dots), motion 
tracks (white curves) and the defocus variation (transparent magenta-cyan overlay), and 
applies a deconvolution filter as well as denoising. Individual display elements can be 
shown or hidden. The navigation bar (bottom) shows the processing status for all items 
and allows to quickly switch between them as well as to manually exclude single items 
from processing. 



 

15 
 

is due to two effects: movement of the mechanical sample stage, and BIM. Stage move-

ment causes global shifts over the entire field of view, whereas BIM leads to shifts be-

tween adjacent micrograph patches10, 21. While stage drift can lead to rapid shift changes 

between frames, BIM occurs more slowly after rapid relaxation during initial exposure9. 

Warp corrects for both global drift and local BIM at variable temporal resolution (Figure 

2.4). The strategy is similar to the one used by MotionCor223, except that Warp does not 

apply additional a priori assumptions about BIM beyond those imposed by the parameter 

grid resolution. As a result, Warp corrects very efficiently and thoroughly for the two 

types of motion that occur during cryo-EM data acquisition in any kind of support film 

hole morphology and orientation. 

2.1.5 Estimation of local defocus and resolution 

The CTF model can be estimated based on the power spectrum (PS) of a micrograph. 

However, the defocus varies over the micrograph area due to stage inclination, uneven 

sample surface, or an uneven particle distribution along the optical axis15. Warp provides 

a flexible way to model local defocus variation in spatial and temporal dimensions with-

out the need for a priori knowledge of particle positions. Instead of one global estimate, 

Figure 2.3 | Deconvolution and denoising of a low-defocus micrograph. 
a) A raw micrograph from EMPIAR-10061 acquired at 0.8 μm defocus.  
b) Same micrograph after applying deconvolution. Low-resolution contrast is boosted 
and the defocused signal is more localized, allowing to distinguish the particles better. 
c) Same micrograph after applying deconvolution and denoising with a noise2noise 
model retrained on this data set. The shapes of individual 400 kDa proteins nearly invisi-
ble in the raw image can be distinguished clearly against the background.  
d) Shape and effect of the deconvolution filter. The filter largely reverses the effect of the 
first CTF peak, while also suppressing the lowest and higher frequencies. 
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a tilted plane or a more complex geometry is fitted to the PS of a movie patch to estimate 

local defocus. A 1D average of all local power spectra rescaled to a common defocus value 

allows the user to easily assess whether fitting the more complex geometry recovered 

more Thon rings beyond the spatial frequencies used for the fitting (Figure 2.5). Thus, 

Warp goes beyond state-of-the-art CTF estimation by providing a spatially resolved 

model without the need for a priori knowledge of particle positions, and costly hyper-

parameter tuning. The spatially resolved CTF model can converge on the correct solution 

for tilts as high as 60°, based on the inclination of the estimated defocus gradient. This 

makes Warp a useful tool for tilted 2D data collection, which has been shown to increase  

Figure 2.4 | Motion and CTF model fitting by Warp. 
The unaligned, defocused movie (i) is parametrized with a coarse grid (black dots), divided 
into patches for the alignment (ii), and power spectra of these patches are computed (iii) 
for CTF fitting. The motion model (iv) includes 2 components: global motion (cyan trajec-
tory) with fine temporal and no spatial resolution, and local motion (magenta trajecto-
ries) with coarse temporal, and fine spatial resolution. Both components are optimized 
to minimize the squared difference between the individual patch frames and their aligned 
average. The spatially resolved CTF model (v) is optimized to minimize the squared dif-
ference between the power spectra (iii, upper left part of each patch) and the simulated 
local 2D CTF (iii, bottom right part of each patch). Here, the defocus gradient follows the 
40° tilt of the specimen, with the notable exception of the hole edge in the bottom left 
corner. 
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Figure 2.5 | CTF fitting of flat, tilted and tilt series data. 
Fitted spectra without (left column) and with (right column) a spatially resolved defocus 
model. The samples are (a) flat (EMPIAR-10078), (b) tilted at 40 ° (EMPIAR-10097), (c) a 
tilt series ranging from -60 ° to +60 ° (EMPIAR-10045). In all three cases, using a spatially 
resolved model allowed to fit the sample geometry more accurately, as evidenced by the 
clearer Thon rings in the rescaled, averaged 1D spectra. The fitting range (grey rectangle 
in the 1D spectra) was chosen well below the estimated resolution to avoid overfitting 
the higher number of parameters in the spatially resolved model. 



 

18 
 

the resolution isotropy for samples with preferred orientation30. The useful resolution 

range of a micrograph is estimated as the spatial frequency where the fit quality falls 

below a threshold (Methods). 

2.1.6 Particle picking with BoxNet 

The next step in cryo-EM structure determination is the accurate selection of single par-

ticles from the corrected micrographs. Warp includes a novel particle picking routine 

based on a machine learning algorithm (Methods). For several years, the computer vision 

community has been using convolutional neural nets (ConvNets) to vastly outperform 

Figure 2.6 | Automated particle picking with Warp’s deep learning-based BoxNet. 
Representative example of automated particle picking with BoxNet in Warp on a micro-
graph with high-contrast artifacts. Areas masked out automatically by BoxNet are colored 
purple. The generic version of BoxNet was never presented with the sample during train-
ing. The re-trained version was given 5 micrographs of the same sample, which did not 
include the one shown. The template-based picking in RELION used 25 class averages de-
rived from 3000 particles, filtered to 20 A. RELION’s results show the 120 highest-scoring 
positions. For visualization purposes, the micrograph was deconvolved, high-pass filtered 
and cropped at the borders. 
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template matching in object recognition tasks54, 55. First attempts to apply ConvNets to 

the particle picking problem in cryo-EM have shown performance on par with traditional 

template matching approaches56. Today, deep residual network (ResNet) architectures 

enable the training of arbitrarily deep models51. Warp employs ‘BoxNet’ – a fully convo-

lutional ResNet architecture with 72 layers, implemented in TensorFlow 1.557. BoxNet 

was trained with data from the EMPIAR raw data repository58 and synthetic data simu-

lated from PDB59 structures with a molecular weight range of 0.064–18 MDa. As a result 

of these efforts, the pre-trained neural network bundled with Warp performs well on 

many particle species and is able to accurately mask out high-contrast artifacts, such as 

ethane. The performance of BoxNet compares favorably with available tools when rep-

resentative single-particle cryo-EM data are used as input (Figure 2.6). For heterogeneous 

Figure 2.7 | Unbiased particle picking with Warp’s BoxNet. 
Examples of automated particle picking on samples not seen by BoxNet in training. For 
comparison, the same micrographs were picked with crYOLO’s generic model, and 
RELION’s Laplacian of Gaussian (LoG) method. Micrographs were selected from in-house 
data to make sure they were absent in crYOLO’s knowledge base. BoxNet reliably recog-
nizes almost all particles (yellow), and masks out all artifacts (purple). LoG is often con-
fused by high-contrast edges and ethane impurities. crYOLO performs better than LoG, 
but is also routinely confused by ethane impurities and protein aggregates, and misses 
many of the small particles (bottom row). 
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data sets, BoxNet’s generic model can provide an advantage compared to the generic 

model in crYOLO60 or the Laplacian of Gaussian approach in RELION 3.033 (Figure 2.7). 

2.1.7 Retraining of BoxNet 

Since the performance of BoxNet can vary between different data, Warp offers a retrain-

ing interface for BoxNet. Such retraining leads to a very high accuracy in automated par-

ticle picking. For retraining, the user can indicate to Warp positive and negative examples 

of BoxNet performance. Using ~1000 examples, retraining of BoxNet typically takes less 

than 10 minutes, with an estimate of the achieved accuracy provided during the process. 

After retraining, the user can pick the same micrographs with the re-trained network and 

select more positive and negative examples for another round of retraining if required. 

To decrease the need for retraining in the future, Warp also provides the option of sub-

mitting training data to a central GitHub repository. De novo training will be carried out 

by us periodically with all deposited data, and the resulting updated pre-trained BoxNet 

offered to the community. The training set is centrally curated and a list of particle species 

in the current version is available from https://github.com/cramerlab/boxnet. The 

BoxNet version name will be stored in each micrograph’s metadata to ensure reproduci-

bility of picking results obtained with older versions. 

2.1.8 Online pre-processing during data collection 

The design of Warp is optimized for processing raw cryo-EM data immediately during 

data collection. Files written out by the image acquisition software are detected auto-

matically in the specified input folder and added to the list of ‘processable items’ in Warp. 

Each item maintains its metadata in an XML file that includes the exact previous pro-

cessing settings. Warp continuously performs the processing steps necessary to bring 

each item into accord with the settings currently specified for the entire folder. All results 

can be immediately inspected during processing. Items can be forcibly included (i. e. ex-

empted from the quality filters) or excluded from downstream processing. The processing 

must be stopped to change the settings or to retrain the BoxNet model. If changes were 

made, Warp will first reprocess all outdated items. During online processing, Warp is able 

https://github.com/cramerlab/boxnet
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to estimate parameters such as motion, defocus and the resolution limit from micro-

graphs, as well as perform particle picking within less than one minute after the raw data 

become available. In our experience, high-quality single-particle data of complexes of 

RNA polymerase II enable the user to obtain detailed 2D classes of particles and 3D re-

constructions at better than 5 Å resolution using Warp and cryoSPARC within only a few 

hours after the start of data collection. 

2.1.9 Interoperability with other software 

To ensure interoperability with a plethora of cryo-EM tools, Warp allows the user to im-

port and export data at several steps in its workflow using widely accepted formats and 

standards. Raw movie data in the MRC, TIFF and EM formats are supported, and a ‘head-

erless’ option allows the user to manually specify properties of an unknown binary for-

mat. Data are exported in the widely used MRC format, whereas all metadata are saved 

in the STAR format, adhering to the conventions established by RELION and adopted by 

many other tools. All pre-processing steps can be turned off if required. Results obtained 

with other tools can be imported to skip or benefit from particular algorithms in Warp. 

For instance, particle positions can be imported to export aligned particle averages, up-

date their CTF models with Warp’s local estimates, to obtain a comprehensive overview 

of the particle distribution in a large project, or to retrain a BoxNet model. Frame align-

ment data can be exported to initiate a more accurate, reference-based alignment in 

RELION 3.0. Micrograph and particle lists adhering to user-selected quality criteria can be 

quickly prepared and exported. Taken together, Warp is highly flexible and allows for easy 

interoperation with other cryo-EM data processing tools used by the community. 

2.1.10 Pre-processing tomographic data 

Warp can also be used to pre-process data from cryo-electron tomographic (cryo-ET) tilt 

series. Warp can reconstruct tomograms from a tilt series and can perform template 

matching in tomograms with available 3D structures. The (sub)-tomogram reconstruction 

considers the local CTF, sample distortion and magnification anisotropy (Methods). Addi-

tionally, a deconvolved version of the tomograms can be produced using the same 
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interface to help with their visual evaluation. To ensure the CTF model is as accurate as 

possible, Warp’s CTF fitting procedure goes beyond fitting the tilt images individually. 

Instead, local patch 2D power spectra from all tilts are fitted simultaneously, with con-

straints imposed on the inter-tilt angles, and regularizing assumptions made for the pro-

gression of phase shift and astigmatism (Methods). The tilt series CTF fitting can also be 

performed as part of the online processing. 

2.1.11 Template matching 

In addition to picking particles of a new species of unknown shape with a system like 

BoxNet, finding a previously known structure in new data is central to many stages of 

cryo-EM data processing. The structure must be compared at many different orientations 

to every position in the new data under the consideration of the CTF. Warp implements 

template matching only for 3D templates, because matching a set of de novo 2D tem-

plates for particle picking is better handled by a neural network such as BoxNet (see 

above). A template volume can be either provided by the user or automatically down-

loaded from the EMDB61 through the same UI. For template matching, 2D micrographs 

are subdivided into tiles. Then, normalized cross-correlation is computed between the 

tiles and 2D projections generated from the 3D template at the specified angular inter-

vals, convolved with the local 2D CTF (Methods). All local correlation peaks with a mini-

mum inter-peak distance corresponding to the template particle diameter, and the cor-

responding best-scoring template orientations are saved so that the user can later in-

stantly explore different peak thresholds without repeating the costly correlation step. 

This procedure is also implemented for tomographic volumes, where the local patches 

are replaced by local sub-volumes, and the local 3D CTF is considered to incorporate 

knowledge of defocus and the missing wedge. In both cases, the matching should be per-

formed at a resolution significantly lower than the expected map resolution to avoid tem-

plate bias62. In case the map resolution does not surpass the resolution used for template 

matching, the procedure should be rerun at a lower resolution, and the results repro-

cessed. 
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2.1.12 Software implementation 

Warp is written in the programming languages C#, C++ and CUDA C. The expressiveness 

of C# and the availability of powerful development tools kept the high-level data man-

agement layer brief and maintainable. Warp’s rich UI is enabled by the Windows Presen-

tation Foundation (WPF) framework. All performance-critical parts are implemented to 

run on a GPU. Central data primitives, such as 2D movies and tilt series, and all associated 

algorithms are wrapped in a stand-alone C# library that we called ‘WarpLib’. The granu-

larity of most of these methods is fine enough to make them useful for applications be-

yond those implemented in Warp. Thus, WarpLib has the potential to speed up the de-

velopment of future GPU-enabled tools that provide new functionality around the same 

data. We intend to keep developing Warp to enable state-of-the-art, rapid cryo-EM data 

pre-processing in the future. Updates will be shared with the community via GitHub. 

2.1.13 Benchmarking for 2D data 

To test the performance of Warp, we reprocessed a published single-particle cryo-EM 

data set for the influenza hemagglutinin trimer30 (Methods) (Figure 2.8). We chose this 

case for benchmarking because the processing of a 150 kDa protein imaged at 40° tilt 

required a significant amount of manual screening in the original analysis30, providing a 

challenging test case for the Warp pipeline. With the original set of 130,000 particles, 

cryoSPARC reached a similar resolution as that reported in the original analysis (Figure 

2.8a, b), showing that refinement in cryoSPARC and RELION yields equivalent results for 

this data set. However, because this particle set and the general particle population both 

exhibit significant heterogeneity, we draw the comparison between results obtained af-

ter subjecting all data to the same 3D classification steps in cryoSPARC (Methods). For 

the original set, the best class containing 57,346 particles reached a global resolution of 

3.9 Å with a B-factor of -200 Å2. The same particles, updated with the defocus information 

from Warp, reached a notably higher resolution of 3.5 Å with a B-factor of -170 Å2. This 

suggests that Warp’s local CTF model is more accurate than the per-particle CTF fitting in 

gCTF29 used in the original study. Warp processing also estimated a narrower range of 
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astigmatism amplitudes (Figure 2.8c), in agreement with the assumption of a stable op-

tical system. For the full, completely automated Warp pre-processing pipeline, the best 

class containing 249,495 particles reached a global resolution of 3.2 Å with a B-factor of -

Figure 2.8 | Warp's 2D pipeline improves cryo-EM density for influenza hemagglutinin. 
As a benchmarking case we used the published EMPIAR-10097 data set containing influ-
enza hemagglutinin trimer particles. 'Original set': 130,000 pre-extracted particles from 
EMPIAR-10097 with their original CTF parameters; 'Original set, best class': 57,346 parti-
cles from 'Original set' after 3D classification in cryoSPARC with their original CTF param-
eters; 'Original set, best class + Warp CTF': the same 57 346 particles, but with Warp's 
CTF estimates; 'Full Warp pipeline': 249,495 particles obtained from the raw EMPIAR-
10097 data after unsupervised pre-processing in Warp and 3D classification in cryoSPARC.  
a) Isosurface renderings of the 3D maps generated with cryoSPARC using the respective 
sets of particles and CTF parameters, filtered to local resolution using the auto-tightened 
masks generated by cryoSPARC.  
b) Global masked FSC plots, and histograms of the local resolution used to filter the maps 
depicted in (a). 'EMPIAR-10097 half-maps' refers to the original half-map volumes depos-
ited in EMPIAR-10097, obtained from the same 130,000 particles as 'Original set'.  
c) Histogram comparison between the original defocus parameters and those estimated 
by Warp for the 130 000 particles from 'Original set'. The mean value for each metric is 
specified underneath the horizontal axis in the same color as the corresponding histo-
gram. 
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170 Å2, accompanied by a significantly increased level of detail in the map (Figure 2.8a). 

This improvement from 3.5 Å to 3.2 Å is due to the higher particle count, which was ob-

tained by Warp in a fully automated fashion at no time cost to the user. After classifica-

tion in cryoSPARC, the best classes contained 45% and 51% of all particles in the original 

EMPIAR-10097 set and Warp’s automatically picked set, respectively, suggesting a similar 

degree of particle ‘purity’ in the manual and automated approaches. Furthermore, this 

demonstrates that tilted data collection can lead to near-atomic resolution with minimal 

efforts at the data pre-processing step. 

The pre-processing of 668 movies from EMPIAR-10097 in Warp required ca. 3 h using a 

system with 4 Nvidia Titan X GPUs, thus averaging to ca. 220 movies per hour. This speed 

allows Warp to keep up with any of the current automated acquisition schemes, which 

collect ca. 90 movies per hour on a Titan Krios microscope (Thermo Scientific, USA), and 

can reach up to 150 movies per hour in the most favorable cases (Wim Hagen, EMBL – 

personal communication). Taken together, our results establish Warp as a very useful 

tool for high-performance, automated cryo-EM data pre-processing. 

2.1.14 Complementarity of Warp with other tools 

We further tested Warp’s performance on a data set of β-galactosidase particles63 that is 

often used for benchmarking purposes (Figure 2.9). Because of the sample’s high struc-

tural stability, these data stress the software’s ability to obtain particularly accurate CTF 

and motion estimates to reach the highest end of cryo-EM resolution. Furthermore, the 

particles are difficult to pick due to the low defocus and prevalence of high-contrast ob-

jects in the micrographs. To estimate the frame alignment accuracy independently of 3D 

refinement, we calculated the average CTF fit quality for aligned movie averages pro-

cessed with MotionCor223 or Warp. Warp’s averages could be fitted to 2.6 Å, and those 

of MotionCor2 to 2.7 Å (Figure 2.9c), indicating slightly better frame alignment in Warp. 

After refinement of particles from the full, completely automated Warp pre-processing 

pipeline, the best class containing 127,000 particles reached a global resolution of 2.09 Å 

with a B-factor of -35 Å2.  
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To test the advantage of using reference-based refinements implemented in RELION 

3.033, the same particle set was first subjected to beam tilt refinement and reached a 

resolution of 1.95 Å with a B-factor of -29 Å2. Adding per-particle defocus refinement did 

not improve the resolution further. Adding reference-based frame alignment, referred to 

as ‘polishing’ in RELION, improved the resolution further to 1.86 Å with a B-factor of -26 

Å2. This slightly surpasses the result reported33 for the same set of refinements in RELION 

3.0 by 0.04 Å, possibly through cleaner initial particle picking. Whereas the additional 

refinements improved the resolution beyond that achieved with the pure Warp pre-pro-

cessing pipeline, we note that these procedures required the data to be fully classified 

and refined first. In contrast, Warp provided its accurate initial results before any down-

stream processing took place. This was evident for the hemagglutinin trimer data, where 

Figure 2.9 | Warp’s 2D pipeline in combination with RELION 3.0 improves cryo-EM den-
sity for β-galactosidase. 
For our second benchmark, we used the published EMPIAR-10061 data set containing β-
galactosidase particles. The data were processed using the full Warp pre-processing pipe-
line, and beam tilt, per-particle defocus and frame alignment were later refined against 
high-resolution references in RELION 3.0 to assess the additional improvement provided 
by these refinements. 
a) Isosurface rendering of the 1.86 Å map (left) and a detailed view of some of its 
sidechains, clearly displaying the aromatic rings (right). 
b) Global masked FSC plots for the map obtained with the Warp pipeline only, and for the 
additive effects of reference-based beam tilt and per-particle defocus refinement, as well 
as particle polishing in RELION 3.0. 
c) Average CTF fit quality curves for aligned movie averages produced with MotionCor2 
and Warp. Warp’s averages can be fitted to a higher resolution, indicating more accurate 
frame alignment. For comparison, a fit quality curve is also included for amplitude spectra 
obtained from the average of individual frame spectra, which are invariant to residual 
inter-frame motion and radiation damage. 
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Warp obtained the local defocus values immediately, whereas several rounds of refine-

ment were required by RELION 3.033. Thus, the pre-processing in Warp and reference-

based refinements in RELION 3.0 are complementary approaches, whose combination 

leads to faster convergence and higher resolution. 

2.1.15 Benchmarking for tilt series data 

To assess the benefits of using the full local 3D CTF for template matching in tomograms 

compared to a binary missing wedge mask, we matched 7 tomograms from a publicly 

available 80S ribosome data set64 with the 3D map published as a result of its initial pro-

cessing (Figure 2.10). Among the 3,288 top-scoring matches, the false positive rate was 

1% when using the full local 3D CTF, and 15% when using the binary missing wedge mask. 

At 15.9 standard deviations, the CTF-aware correlation peaks rose 2.7 times higher above 

Figure 2.10 | Effect of using the full local 3D CTF for template matching in tomograms. 
During template matching, Warp multiplies the rotated 3D reference by the local 3D CTF 
before correlating it to a local portion of the tomogram volume, as opposed to multiply-
ing it by a binary missing wedge mask. This produces sharper correlation peaks. 
a) XY slice through a tomogram reconstructed from EMPIAR-10045 data. The faint shapes 
of 80S ribosomes are visible. 
b) XY slice through the correlation volume at the same location as (a), using a binary miss-
ing wedge mask. White indicates higher correlation. The peaks are broad and hard to 
distinguish against the background. 
c) XY slice through the correlation volume at the same location as (a), using the full local 
3D CTF. White indicates higher correlation. The peaks are sharper, leading to higher tem-
plate matching accuracy. 
d) Rotational average of a 48 px window around all correlation peaks, mean-subtracted 
and normalized against the respective correlation background. 3D CTF-aware template 
matching (+CTF) produces peaks rising 2.7 times higher above the background compared 
to binary missing wedge masks (–CTF). 
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the respective background distribution than the 5.8 standard deviations of the CTF-una-

ware peaks (Figure 2.10), thus allowing more accurate template matching. 

To benchmark the proposed CTF estimation routine and sub-tomogram export for tilt se-

ries, we pre-processed, exported and refined particles from two publicly available data 

sets. For EMPIAR-10045 and EMPIAR-10164 (subset of 5 tomograms used in the assess-

ment of NovaCTF65), we obtained a resolution of 11.6 Å with 3,200 particles (Figure 2.11a, 

b), and 3.8 Å with 22,000 particles (Figure 2.11c, d), respectively. These results slightly 

surpass the resolution figures of 12.8 Å and 3.9 Å reported in the original studies. Thus, 

the new tilt series processing algorithms implemented in Warp can improve upon the 

state of the art, leading to higher resolution in sub-tomogram averaging. 

2.2 Methods 

2.2.1 Spline interpolation on multi-dimensional grids 

Many methods in Warp are based on a continuous parametrization of 1—3-dimensional 

spaces. This parameterization is achieved by spline interpolation between points on a 

coarse, uniform grid, which is computationally efficient. A grid extends over the entirety 

Figure 2.11 | Sub-tomogram averaging results obtained by using Warp’s tilt series CTF 
estimation and sub-tomogram export. 
To assess the benefits of the proposed CTF estimation and sub-tomogram export strate-
gies, data from EMPIAR-10045 and EMPIAR-10164 were pre-processed and exported in 
Warp, and refined in RELION 3.0. Improved resolution was observed in both cases com-
pared to published results. 
a) Isosurface rendering (left) and FSC plot (right) of the 80S ribosome sub-tomogram av-
erage obtained from EMPIAR-10045 data. The originally published resolution was 12.8 Å. 
b) Isosurface rendering (left) and FSC plot (right) of the HIV-1 sub-tomogram average ob-
tained from 12% of the EMPIAR-10164 data. The originally published resolution for this 
subset was 3.9 Å. 
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of each dimension that needs to be modeled. The grid resolution is defined by the num-

ber of control points in each dimension and is scaled according to physical constraints (e. 

g. number of frames or pixels) and available signal. The latter provides regularization to 

prevent overfitting of sparse data with too many parameters. When a parameter de-

scribed by the grid is retrieved for a point in space (and time), e. g. for a particle (frame), 

B-spline interpolation is performed at that point on the grid. To fit a grid’s parameters, in 

general, a cost function associated with the interpolants at specific positions on the grid 

is optimized. In the following, we distinguish between 2—3 spatial grid dimensions (X and 

Y axes in micrographs; X, Y and Z in tomographic volumes), and a temporal dimension as 

a function of the accumulated electron dose. We note that B-splines are only used to 

interpolate parameters, not image data. For the latter higher-order schemes are used. 

2.2.2 Motion model 

Two sources contribute to the observed translational shift between frames in a dose-

fractionated image sequence. First, mechanical stage instability leads to rapid shift 

changes that are uniform within the entire frame. Second, beam-induced motion (BIM) 

causes slowly changing, local motion. Warp considers the physical properties of both 

sources in its motion model, using two sets of grids to parametrize the frame shifts and 

sample deformation. Global motion is described by two grids, Xglobal and Yglobal, with high 

temporal, and no spatial resolution. The temporal resolution can match the number of 

frames, or, in case finer dose fractionation is performed to reduce intra-frame motion, 

the resolution can be lower to regularize a potentially overfitted model. BIM is described 

by two grids, Xlocal and Ylocal, with a temporal resolution of at most 3, and a spatial resolu-

tion of typically 4—5 in both dimensions. The overall shifts required to bring the same 

object in all frames into a common reference frame are then defined as (Xglobal + Xlocal, 

Yglobal + Ylocal).  

2.2.3 Global and local motion correction 

In the absence of known particle positions and high-resolution reference projections, in-

dividual frame patches are aligned to their averages. The movie is subdivided into groups 
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of 5122 px patches with a 50 % spatial overlap, masked with a raised cosine. To simplify 

computation, the images are transformed into Fourier space where complex multiplica-

tion replaces translation. For each group, the patches are shifted according to the inter-

polants at their extraction positions using the current grid values. The average of a 

group’s shifted patches is then compared to the individual patches to calculate the patch 

costs as 

𝐶𝐶 = ∑ ∑ �𝐼𝐼𝑖𝑖,𝑓𝑓 − 𝐼𝐼𝑓𝑓��
2

𝑓𝑓𝑖𝑖 , 

where 𝑖𝑖 denotes the frame index, 𝑓𝑓 denotes the spatial frequency, 𝐼𝐼 is the Fourier trans-

form of a shifted patch frame, and 𝐼𝐼 ̅is the average of all shifted patch frames. The shifts 

are obtained by interpolating on the current state of the parameter grids at the patch 

frame’s position in space and time. The derivative is approximated numerically with the 

symmetric difference quotient. The overall cost for all grid control points is the sum of all 

patch costs, and the derivative for each grid control point is the weighted sum of the 

derivatives of all patches affected by it. The weights for each control point’s derivative 

can be precomputed by applying a one-pixel shift to the control point and storing all re-

sulting non-zero patch shifts. The cost and derivatives are used by the Limited-memory 

Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm66 to optimize the values of all con-

trol points. The optimization is performed in several steps to improve global convergence. 

In the first step, the temporal resolution of Xglobal and Yglobal is set to 3, and increased to 

the next power of 3 in subsequent steps until the desired temporal resolution is reached. 

2.2.4 Contrast transfer function estimation in micrographs 

The CTF analytically describes the convolution applied to the images by the electron-op-

tical system. Estimating its properties with high precision is essential for reversing the 

effects and obtaining high-resolution reconstructions67. Whereas the methodology for 

measuring defocus and astigmatism from a micrograph’s power spectrum (PS) has been 

well-established27, 68, the recent increase in EM map resolution calls for a more localized 

approach. Local defocus variation of a seemingly flat sample can exceed 60 nm within a 
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single micrograph, resulting in an out-of-phase CTF for some particles at resolutions be-

yond 3 Å. Attempts to address this issue by fitting the defocus per-particle have been 

made29, but they require knowledge of particle positions, and lack robustness for all but 

the largest particle species. Even with a local smoothing approach, per-particle defocus 

requires high particle density to not lose accuracy compared to a global estimate. On the 

other hand, strong local irregularities in the specimen surface are almost never observed 

in tomographic volumes in vitro15, suggesting per-particle precision might be unneces-

sary. 

2.2.5 Estimation of local defocus 

To parametrize the defocus, a single grid typically consists of 5x5 spatial control points 

and 1 temporal control point. Optionally, another single grid with exclusively temporal 

resolution tracks the development of the phase shift generated by a Volta Phase Plate12. 

Global parameters, such as astigmatism magnitude and angle, are optimized as additional 

scalars in the model. In practice, the effect of using a more complex geometry or temporal 

resolution appears negligible. However, the increased signal of future camera hardware 

might make these options relevant. Like in the frame alignment procedure, groups of 

patches matching the desired PS size (e. g. 5122—10242 px) are extracted with a spatial 

overlap of 50% from the raw movie data, transformed into Fourier space, and converted 

to PS by taking their squared amplitudes. If no temporal resolution is desired, each group 

will be averaged to a single PS to save resources. Similarly, in the absence of spatial res-

olution, the same frame from all groups will be averaged. 

For the initial, exhaustive search, a 1D rotationally averaged PS is calculated from 

all patches. A B-spline with 3 control points is then fitted through it and subtracted to 

remove most of the background. The user-defined range of defocus and, optionally, 

phase shift values is evaluated by matching a simulated 1D CTF. The result with the high-

est normalized correlation is then used to estimate the 1D PS background and envelope 

more accurately to consider both in subsequent 2D CTF fitting. The cost function to be 
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minimized is calculated between a 2D PS, and the 2D CTF simulated based on the local 

defocus at the patch extraction position: 

𝐶𝐶 = ∑ ∑ ��𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑓𝑓� ∙ 𝐸𝐸𝑓𝑓�𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ∙ ��𝐼𝐼𝑖𝑖,𝑓𝑓� − 𝐵𝐵𝑓𝑓�𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑓𝑓𝑖𝑖  , 

where 𝑖𝑖 denotes the frame index (in case a temporal dimension is used), 𝑓𝑓 denotes the 

spatial frequency within the range used for fitting, 𝐶𝐶𝐶𝐶𝐶𝐶 is the 2D contrast transfer func-

tion, 𝐼𝐼 is the FT of a patch frame, 𝐸𝐸 is the envelope of the 1D PS, 𝐵𝐵 is the background of 

the 1D PS, and (… )𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 is a normalization operator that brings the value distribution to 

mean = 0, standard deviation = 1. The defocus and, optionally, phase shift is obtained by 

interpolating on the current state of the respective parameter grid at the patch frame’s 

position in space and time. The derivative is approximated numerically with the symmet-

ric difference quotient. The same pre-computed weights strategy as in the frame align-

ment procedure is employed for the control point derivatives. An L-BFGS algorithm finally 

optimizes the model for all control point values. 

The PS of a tilted plane will usually only show low-resolution Thon rings, regard-

less of what model was used for the defocus gradient. To provide the user with feedback 

on whether the more complex defocus model is beneficial, the 2D spectra from all 

patches, whose parameters are herein referred to as the “source” PS, are rescaled and 

rotationally averaged to a 1D PS with a single defocus value, referred to as the “target” 

PS, such that the CTF phases match using the following scaling function: 

𝑥𝑥𝜑𝜑′ = ��
−�𝑝𝑝𝜑𝜑′4∙𝑝𝑝𝜑𝜑4 ∙�𝐶𝐶𝑆𝑆

2∙𝜆𝜆4∙𝑓𝑓𝑁𝑁4∙𝑥𝑥𝜑𝜑4+2𝐶𝐶𝑆𝑆∙𝜆𝜆2∙𝑓𝑓𝑁𝑁
2∙𝑝𝑝𝜑𝜑2 ∙𝑥𝑥𝜑𝜑2 ∙𝑧𝑧𝜑𝜑+𝑝𝑝𝜑𝜑4 ∙𝑧𝑧𝜑𝜑′2�−𝑝𝑝𝜑𝜑′2∙𝑝𝑝𝜑𝜑4 ∙�𝑧𝑧𝜑𝜑′ �

𝐶𝐶𝑆𝑆∙𝜆𝜆2∙𝑓𝑓𝑁𝑁2∙𝑝𝑝𝜑𝜑4
� , 

where ′ denotes the “target” PS coordinate system, and its absence denotes the “source” 

PS coordinate system; 𝜑𝜑 is the sampling angle coordinate, 𝑝𝑝 is the anisotropic pixel size, 

𝐶𝐶𝑆𝑆 is the spherical aberration, 𝜆𝜆 is the electron wavelength, 𝑓𝑓𝑁𝑁 is the spatial Nyquist fre-

quency, 𝑧𝑧 is the anisotropic defocus value, and 𝑥𝑥 is the sampling radius coordinate. A 

similar formulation was provided before68 for the special case of isotropic pixel size, and 
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was used to reduce the comparison between CTF and PS to a 1D problem. However, Warp 

performs the fitting in 2D and only uses the rescaling for visualization purposes. If the 

complex defocus model fits the data better, the recovery of additional high-resolution 

Thon rings can be observed in the 1D average. 

2.2.6 Resolution estimation 

To estimate the useful resolution range, a normalized cross-correlation value between 

the averaged 1D PS and the simulated 1D CTF curve is calculated within a sliding window. 

The window size at any given position scales to twice the width between the zero points 

of the closest CTF peak, but is not allowed to fall below 16 samples. The resolution limit 

is then reported as the frequency where the cross-correlation falls below 0.3 for the first 

time. Since the higher number of optimizable parameters allows for some overfitting, it 

is important that the useful resolution extends beyond the range used for fitting. 

2.2.7 Contrast transfer function estimation in tilt series 

The single micrograph CTF estimation procedure with planar sample geometry described 

in the previous section can be used for tilted 2D data collection. However, full tilt series 

pose additional challenges for CTF fitting. Mechanical stage instabilities and imperfect 

eucentric height setting necessitate additional exposures for tracking and focusing69 to 

correct the stage position between individual tilt images. Thus, the defocus cannot be 

assumed to stay constant, or change smoothly over the course of a tilt series. Each tilt 

image requires its own defocus value, which can be challenging due to the small amount 

of signal available. Even at 120 e-/Å2 for an entire series of 60 images, each tilt only has 2 

e-/Å2 to perform the same estimation as for a 40 e-/Å2 2D image, while striving to achieve 

comparable accuracy. 

CTF estimation in tilt series has traditionally received less attention than its equiv-

alent in 2D data, with the most recent publication70 predating the introduction of direct 

electron detectors and phase plates. As the resolution obtainable through sub-tomogram 

averaging has come close to parity with 2D data71 since then, simplifying assumptions 

such as the neglect of astigmatism72 or the assumed flatness of the sample can limit the 
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resolution. Combined with the lack of integration of dedicated tilt series CTF estimation 

tools into common sub-tomogram averaging pipelines38, this has created a situation 

where state-of-the-art studies71, 73 employ tools designed for 2D data such as CTFFIND27. 

To improve the fit accuracy, the individual tilt image fits must be subjected to a 

common set of constraints. As the imaged sample content does not change significantly 

throughout the tilt series, 1D background and envelope can be derived from the average 

1D spectrum of all tilt images. The relative tilt angles and the tilt axis orientation are 

known to a higher precision than could be derived from fitting a planar geometry de novo, 

and are kept constant throughout the optimization as suggested previously72. However, 

the absolute inclination of the sample plane is unknown. This is especially critical in some 

of the typical applications of tomography, like the imaging of lamellae prepared through 

FIB milling because a lamella can be tilted by over 20° relative to the grid. This additional 

inclination remains constant throughout the tilt series, and is made a single optimizable 

parameter for all tilt images. Astigmatism and, optionally, phase shift can be kept con-

stant throughout 2D image exposures, but can benefit from a temporally resolved model 

in a tilt series where the overall exposure is fractionated over a much longer time, e. g. 

20—30 min. Warp uses 3 control points in the temporal dimension to model these pa-

rameters. 

With these considerations, the full estimation process is as follows. 2D patches 

are extracted from all aligned tilt movie averages, as described in the micrograph CTF 

fitting procedure, and treated in parallel in all subsequent calculations. To provide a bet-

ter initialization for the per-tilt defocus searches, an estimate for the average defocus of 

the entire series is obtained by preparing 1D spectra from all patches, and comparing 

them to simulated CTF curves for the defocus values at the respective positions and tilts, 

taking into account the fixed relative tilt information and the currently tested average 

defocus (and phase shift, optionally). This search is performed exhaustively over a range 

of values specified by the user. The result is used as the starting point of a more complex 

optimization. Defocus values for all individual tilts, 3 astigmatism magnitude/angle pairs, 
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3 optional phase shift values, and the two global inclination angles (i. e. the plane normal) 

are optimized using the L-BFGS algorithm with the derivatives obtained numerically as 

described in the micrograph CTF fitting section. Upon convergence, the 1D spectra of all 

patches are rescaled to a common defocus value. This is especially useful for validation 

in tilt series since the individual images will have very noisy spectra. If the useful resolu-

tion range does not extend sufficiently beyond the fitting range, the latter is automati-

cally decreased and the optimization repeated. 

In our experience, the direction of the tilt axis is often miscalibrated. Correct 

handedness in structures obtained from sub-tomogram averaging does not guarantee 

the tilt angle sign is not flipped. In Warp, a positive rotation around the positive Y image 

axis is defined to result in an increased underfocus at positions to the positive X side of 

the tilt axis, i. e. those parts of the sample come physically closer to the electron beam 

source. The CTF fitting procedure in Warp can detect such mistakes by optionally repeat-

ing the optimization with the tilt angles flipped, and notifying the user if the “wrong” set 

of angles provides a better fit. Such a test can be used to re-calibrate the acquisition soft-

ware for future data collection. 

2.2.8 Considerations for tomogram reconstruction 

Whereas the process of 3D map reconstruction from 2D images of single particles is well 

established today, full-tomogram reconstruction breaks some of the simplifying assump-

tions so they must be handled explicitly to obtain better results. In the 2D case, the CTF 

can be assumed to be the same for all parts of a single particle image, although correc-

tions for a wider range of defocus values in images of large objects have been proposed74. 

In a tomographic tilt series, the highest tilt image can show a defocus spread of 1 um or 

more. Accounting for such variations in local defocus is necessary for reaching high reso-

lution65. Furthermore, each region in the tomographic volume is reconstructed from im-

ages with different CTFs, and the zeros and peaks of those CTFs will not overlap in Fourier 

space. CTF-based weighting of individual projections is commonplace for 2D data37, 75, but 

the algorithms used in tomographic reconstruction do not go beyond CTF phase flipping, 
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giving all spectral components equal weight65, 76. This gives spectral components with 

pure noise (CTF = 0) the same weight as the best available signal (|CTF| = 1) if they over-

lap. Performing CTF-, dose- and tilt-based weighting later in sub-tomogram averaging has 

been shown to be beneficial38, but it has an even more significant effect when applied at 

the level of initial tomogram reconstruction. Anisotropic magnification has been de-

scribed in the past22 and is routinely corrected in 2D data. In tomography, the real-space 

distortion is even more pronounced than in single particle reconstructions because the 

distances affected by the distortion are more than 1 μm, i. e. the extent of the entire 

tomogram, leading to positional errors on the order of nanometers in scenarios where 

the anisotropy does not coincide with the tilt axis. 

2.2.9 Tomogram reconstruction 

Warp takes the local defocus and sample distortion, as well as magnification anisotropy 

into account when reconstructing full or partial tomographic volumes. For a partial re-

construction at any position in the volume, the original 2D images are sampled at the 

following positions: 

𝐬𝐬 = 𝐑𝐑𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑁𝑁(0,𝛼𝛼𝑇𝑇𝑖𝑖𝐸𝐸𝑇𝑇,𝜓𝜓𝑇𝑇𝑖𝑖𝐸𝐸𝑇𝑇) ∙ 𝐩𝐩 + 𝐨𝐨𝑇𝑇𝑖𝑖𝐸𝐸𝑇𝑇 , 

where 𝐑𝐑𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑁𝑁 is the rotation matrix for 3 Euler angles following the Xmipp convention77, 

𝛼𝛼 is the stage tilt angle, 𝜓𝜓 is the in-plane angle of the tilt axis, 𝐩𝐩 is the particle position 

within the tomographic volume, and 𝐨𝐨 is the in-plane offset of the tilt axis. The coordi-

nates are centered within the volume and images. The CTF for each 2D image is calculated 

using a defocus of: 

𝑧𝑧 = 𝑧𝑧𝑇𝑇𝑖𝑖𝐸𝐸𝑇𝑇 + 𝐬𝐬∗𝐧𝐧𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝐧𝐧𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑧𝑧

 , 

where 𝑧𝑧𝑇𝑇𝑖𝑖𝐸𝐸𝑇𝑇 is the average defocus estimated for the tilt image, 𝐧𝐧𝑇𝑇𝑖𝑖𝐸𝐸𝑇𝑇 is the sample plane 

normal, 𝐧𝐧𝑇𝑇𝑖𝑖𝐸𝐸𝑇𝑇,𝑧𝑧 is the z component of the normal, and ∗ denotes the scalar product be-

tween two vectors. The reconstruction is performed in Fourier space using a gridding al-

gorithm37, with the data weighted by the respective CTF, and the dose- and tilt-depend-

ent heuristic from RELION38, but without the final deconvolution step (i. e. the weights 
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are inserted as |CTF|, not as CTF2). To obtain a full tomogram, Warp reconstructs a uni-

form grid of small, cubical volumes with an overlap of 50%, and inserts the central 50% 

into the overall volume to account for artifacts associated with Fourier space reconstruc-

tion at the borders of the local volumes. This ensures the corrections can be applied with 

local precision and remain reasonably continuous between adjacent sub-volumes. 

2.2.10 Export of corrected data 

Whereas the Warp model for a movie or tilt series describes the non-linear deformation 

of the entire particle ensemble and its environment, it is unclear whether this defor-

mation gradient stays continuous throughout a single particle, i. e. if the protein structure 

is subject to the same compression and shearing as the ice around it. Many recent high-

resolution maps were reconstructed using particles extracted from dose-weighted aver-

ages produced by MotionCor223. The tool assumes the deformation gradient to be con-

tinuous in all parts of the image, and will thus deform images of particles and ice in the 

same way. This will be beneficial if the underlying physical model is indeed continuous. 

However, it also distorts the CTF locally without passing any knowledge of the distortion 

to downstream processing tools. In case of a strong local change in the motion direction, 

this will result in an artifact similar to lens astigmatism. 

Warp assumes a continuous deformation field when exporting dose-weighted av-

erages of whole 2D movies, i. e. each pixel will be shifted according to the grid inter-

polants at that exact position. This has the benefit of uniformly sharper images for visual 

inspection and particle picking. For particle and sub-tomogram extraction, however, the 

entire particle image will be shifted uniformly according to the grid interpolants at the 

particle’s center. This keeps the CTF true to its fitted analytical description, but makes the 

assumption that the protein is more rigid than the surrounding ice and thus deforms less 

due to BIM. For whole-tomogram reconstruction, a hybrid approach is pursued: the local 

volumes are produced using the same procedure as sub-tomogram extraction, but the 

combined volume is largely continuous depending on how small the local volumes were. 
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Dose weighting in Warp adds a B-factor of -4 Å2  per 1 e-/Å2 of dose, similar to a heuristic 

published previously7. While a different heuristic is used in MotionCor223 and Unblur7, 

the accuracy of both approaches is of decreased significance as data-driven re-weighting 

is likely to be performed using an approach like the “particle polishing” in RELION 3.0. 

2.2.11 Particle picking with a residual neural network 

In the past years, the recipe for improving the performance of deep learning algorithms 

has been “deeper networks, more training data”. Outside of cryo-EM, deep ResNet archi-

tectures have been demonstrated to enable the training of very deep models by essen-

tially solving the vanishing gradient problem51. At the same time, the EMPIAR raw data 

repository58 has accumulated a diverse collection of 2D cryo-EM data sets that can be 

leveraged for training. Warp employs a model with 35 ResNet blocks and 2 conventional 

convolution layers (Figure 2.12) to segment a micrograph into 3 classes: background, par-

ticle, and high-contrast artifact (e. g. ethane drops). The input window has a constant size 

of 2562 px. After initial convolution with 32 5x5 kernels the data are processed by a 

Figure 2.12 | Neural network architecture of BoxNet. 
Rectangles depict the intermediate tensor dimensions. Their width and height are pro-
portional to the number of channels and the spatial extent, respectively. Thick arrows 
represent convolution operations. Their format is encoded as “(Kx R), LxMxN /O”, where 
K is the number of consecutive ResNet blocks, or absent in case of a single convolution 
operation; L and M are the dimensions of the convolution kernel; N is the number of 
kernels, resulting in N channels in the output; O is the stride length (1 = no change, 2 = 
downsampling by factor of 2, 0.5 = upsampling by factor of 2 through transposed convo-
lution). The stride parameter is only applied to the first convolution in a chain of ResNet 
blocks, whereas all subsequent convolutions use stride = 1. The contractive part of the 
network is colored in cyan, the expanding part in magenta. The final image shows the 
result of applying a per-pixel ArgMax operator to the result of the last convolution to 
obtain the spatial distribution of the 3 labels the model is trained to predict: background 
(black), particle (yellow), artifact (purple). 
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sequence of 5 groups of each 5 ResNet blocks. At the beginning of each but the first 

group, the data are down-sampled by a factor of 2, while the number of channels is dou-

bled. This enables the recognition of an increasing number of large, higher-order fea-

tures. After reaching a spatial extent of 16x16 in the contractive part of the network, the 

data are processed by the expanding part: a sequence of 4 groups of each 2 ResNet 

blocks. At the beginning of each group, the data are up-sampled by a factor of 2. Each 

group’s output is concatenated with the output of its mirror counterpart from the con-

tractive part in a U-Net-like fashion50. This combines the global context and higher-order 

features obtained in the contractive part with the higher spatial resolution of the previous 

layers. After reaching the original extent of 256x256 in the expanding part, the data are 

processed by the final 2 ResNet blocks and projected onto 3 channels by convolution with 

3 1x1 kernels. A pixelwise argmax operation finally retrieves the most likely label at each 

Figure 2.13 | Examples of data used to train BoxNet. 
Examples of micrographs presented to BoxNet as input (top row), and the per-pixel labels 
used as the desired output during training (bottom row). The pixel classes predicted by 
BoxNet are background (black), particles (yellow), and artifacts (purple). 
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location in the original image. The model graph and variables are initialized and saved 

using TensorFlow’s Python API, while all subsequent training and inference are per-

formed through its C API, wrapped in C# classes.  

To segment a micrograph, it is down-scaled to the standard 8 Å/px resolution and 

divided into 2562 px tiles with 64 px overlap. Each tile is extracted, normalized, and pre-

sented to the network. All tiles’ softmax and argmax outputs are combined and subjected 

to a user-defined threshold for the softmax value to remove uncertain picks. Connected 

components of pixels labeled as “particle” are extracted, and their centroids are used as 

particle positions. In cases where two particles overlap according to a user-defined diam-

eter, the particle with the bigger connected component is kept. To obtain a mask from 

the “artifact” label, a threshold of 0.1 is applied to the softmax values, and connected 

components with less than 20 pixels are removed. The remaining pixels are saved as a 

binary mask. The final list of particle positions only contains those with a user-defined 

minimum distance to the masked regions. 

2.2.12 Initial training of BoxNet 

11 EMPIAR and 14 in-house data sets (Figure 2.13, Table 2.1) each contributed 20–50 

micrographs to the training set. Additionally, synthetic data were prepared from 21 PDB 

models (Table 2.1) using a modified version of the InSilicoTEM78 package, contributing 

ca. 1600 particles per species. The simulated data contained only one species per micro-

graph, although more heterogeneous examples might be added in the future. The train-

ing set was split 9/1 for training/validation, and trained with the momentum optimizer in 

TensorFlow 1.5 using a learning rate gradually decreasing from 1E-2 to 1E-5. The normal-

ized data were augmented in each training epoch by extracting the 2562 px window at 

random positions, and applying random rotation, flipping, shearing, and Gaussian noise 

with a random standard deviation between 0.0 and 0.6. This augmentation was observed 

to have an excellent regularizing effect, as the final training and validation scores were 

virtually identical. The training was performed for 800 epochs, using a batch size of 1. 
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2.2.13 Retraining of BoxNet 

User-supplied positions of positive examples and, optionally, areas of increased and de-

creased certainty in the micrographs are automatically converted to training data. If re-

quested, the training set is diluted with data from the latest version of the centrally cu-

rated set (in the following referred to as ‘old data’) in a 1:1 ratio to prevent possible over-

fitting of the new data. The retraining regime is identical to initial training, but lasts only 

100 epochs. During the retraining, 4 metrics are calculated continuously for every batch: 

the old network’s accuracy for old and new data, and the retrained network’s accuracy 

for old and new data. Ideally, the retrained network’s accuracy for new data will improve 

to approach or even surpass the old network’s accuracy for old data by the end of the 

retraining process, whereas the accuracy for old data will stay constant. 

2.2.14 Template matching in micrographs and tomograms 

2D micrographs are subdivided in tiles with an overlap matching twice the template par-

ticle diameter. For each square, 2D projections of the template are prepared at user-de-

fined angular intervals, convolved by the square’s CTF, and normalized to mean = 0, 

standard deviation = 1 in real space. The square’s FT is multiplied by the conjugate of the 

projection’s FT, and an IFT yields the cross-correlation scores for all positions within the 

square. These scores are normalized by the local standard deviation within the square. 

The scores are compared for all template orientations, and the best one is stored for each 

pixel within the square. Finally, the result is cropped to exclude a border matching the 

template particle diameter, and combined with the results from other squares to obtain 

the correlation scores for the entire micrograph. A local peak search is performed using 

the template particle diameter as the minimum distance, and all peak positions are 

stored for further processing. Template matching in tomographic volumes follows the 

same concept. Instead of square tiles, local cubes are cross-correlated with the template 

convolved by the local 3D CTF. Optionally, a spectrum whitening of the target micro-

graph/tomogram can be performed as previously described79. This has the benefit of 
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equalizing the spectral noise amplitudes for all spatial frequencies, effectively giving more 

weight to the higher frequencies and sharpening the correlation peaks. 

2.2.15 Deconvolution 

In the absence of a phase plate, the CTF will be dominated by its sine component, i. e. 

have very little contrast in the lowest spatial frequencies. This creates a high-pass filter 

effect in the raw data and, due to increasingly noisier higher frequency components, 

makes it hard to assess the image content visually. On the other hand, a phase plate cre-

ating the desired phase shift of π/2 will apply a low-pass filter in defocused images, ren-

dering them blurry. Both scenarios do not affect subsequent alignment and averaging 

procedures significantly, and the filters will be reversed in the final reconstruction by di-

viding its 3D FT by the weighted average of all contributing CTFs. This becomes possible 

because the spectral signal-to-noise ratio (SSNR) is sufficiently high after averaging 

enough particles with different CTFs. However, even in single images the lowest fre-

quency components often contain enough signal so that boosting them by inverting the 

CTF will increase the visible low-frequency contrast while maintaining acceptable noise 

levels. This provides conventional images with a better definition of object boundaries, 

making their manual selection easier. In defocused phase plate images, this improves 

sharpness. 

To construct a Wiener-like filter, Warp makes ad hoc assumptions about the SSNR 

that can be adjusted by the user. The SSNR is assumed to be a combination of an expo-

nential decay curve and a raised cosine high-pass filter: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓 = 𝑒𝑒−𝑓𝑓∙100𝐹𝐹 ∙ 103𝑆𝑆 ∙ 𝐻𝐻𝑓𝑓 , 

where 𝑓𝑓 denotes the spatial frequency, 𝐻𝐻 is an optional high-pass filter, 𝐶𝐶 is the custom 

fall-off parameter, and 𝑆𝑆 is the custom strength parameter. The factors for 𝐶𝐶 and 𝑆𝑆 are 

empirically tuned so that the default values of 1 produce good results for typical direct 

electron detector data, although adjustments might be required in some cases. The SSNR 

is then used in a Wiener-like filter: 
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𝐼𝐼𝑓𝑓′ = 𝐼𝐼𝑓𝑓∙𝐶𝐶𝑇𝑇𝐹𝐹𝑓𝑓
𝐶𝐶𝑇𝑇𝐹𝐹𝑓𝑓

2+𝑆𝑆𝑆𝑆𝑁𝑁𝑆𝑆𝑓𝑓
−1 , 

where 𝐼𝐼 is the FT of the image, and 𝐶𝐶𝐶𝐶𝐶𝐶 is the 2D contrast transfer function. The shape 

of the SSNR curve prevents the lowest frequency components from being boosted too 

much, giving rise to a noisy sample background, and acts as a low-pass filter at the same 

time to suppress the noisy high frequency components. An example of such a filter and 

its effect on a 2D micrograph are shown in Fig. S2b. In practice, a higher electron dose 

helps to obtain good low-frequency contrast in conventional images. The commonly used 

dose of 30–40 e-/Å2 works well for holey grids with thin ice, while more might be required 

in the presence of carbon support or thick ice. The deconvolution works especially well 

in tomograms, where the overall dose often surpasses 100 e-/Å2. 

2.2.16 Denoising improves particle visibility 

Even after deconvolution, micrographs will often display a high amount of noise that 

makes their visual inspection difficult. Deep convolutional neural network-based denoi-

sers have been shown to perform better than hand-crafted statistical models80, 81. [REFs]. 

However, their training has traditionally required pairs of noisy and noise-free observa-

tions of the same signal. This prevented denoiser training on cryo–EM data, where a 

noise-free ground truth is not available due to quickly increasing radiation damage in sen-

sitive samples. Recently, the Noise2Noise principle82 has been proposed to circumvent 

this limitation while achieving comparable performance. Pairs of independently noisy ob-

servations of the same signal are used in training as input and output. In the absence of 

correlation between the noise patterns, the expectation value is the underlying noise-

free signal, which the model learns to predict. Pairs of independently noisy data are read-

ily available in cryo–EM. Since every micrograph’s signal is fractionated in a multitude of 

frames, computing the aligned averages of all odd and even frames renders a pair of al-

most identical observations with independent patterns of camera shot noise. By using 

odd and even frames instead of the first and second halves of a movie, the effect of radi-

ation damage is very similar in both averages.  
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Warp adopts the published Noise2Noise U-net-like network architecture with one 

change; a batch normalization layer is added before each leaky ReLU layer. The denoising 

is performed on overlapping 2562 px tiles, and the central 1282 px windows are combined 

to produce the final image shown in Fig. S2c. Warp generates training data from pro-

cessed movies automatically. These images are also pre-deconvolved. While deconvolu-

tion and denoising are independent processes, their combination provides the most nat-

ural-looking result for the human observer. Once enough training examples have been 

generated (up to 128 are supported by default), the user can request to retrain the 

model, which will take a few minutes. A default pre-trained model is provided with Warp 

that covers a narrow range of conventional and VPP data. However, the best denoising 

performance is achieved by retraining the model for every new data set. Like deconvolu-

tion, denoising can be applied on-the-fly to any micrograph displayed in Warp, using the 

default or retrained model. While denoising provides a great visual aid for human inter-

pretation of raw data, the process removes all signal that cannot be reliably distinguished 

from noise in a single observation. Thus, denoised particle images do not render them-

selves to averaging as a means of increasing the SNR at higher resolution.  

2.2.17 Benchmarking for 2D data 

For the influenza hemagglutinin trimer benchmark, raw movie data and pre-extracted 

particles from EMPIAR-10097 were downloaded. The movies were processed with the 

full Warp pipeline using the following settings: motion correction with a temporal reso-

lution of 40 for the global motion, and 5x5 spatial resolution for the local motion, using 

the 0.03–0.25 Nyquist range and a B-factor of -400 A2; CTF estimation with 6x6 spatial 

resolution, using the 0.1–0.35 Nyquist range; particle picking with a BoxNet model re-

trained on particles from 3 micrographs, using the default 0.95 threshold. Quality filters 

were applied in Warp as follows: defocus between 0.3 and 5.0 µm, resolution better than 

8 Å, intra-frame motion of at most 1.5 Å, particle count above 120. Particles were ex-

tracted from the micrographs meeting these filters and subjected to processing in cry-

oSPARC: no 2D classification was performed; ab initio refinement was performed with 6 
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classes and no symmetry; the 6 classes were then refined heterogeneously, with no sym-

metry imposed; the only class showing the expected Hemagglutinin structure was refined 

with C3 symmetry. The original particle set from EMPIAR-10097 was subjected to 3 dif-

ferent processing strategies. First, the full set was refined in cryoSPARC with C3 symmetry 

using the original CTF estimates. Second, the full set was subjected to the same classifi-

cation and refinement as the particles from Warp, using the original CTF estimates. Third, 

particles from the Hemagglutinin class obtained in the second processing branch were 

updated with local CTF estimates from Warp, and refined again with C3 symmetry. Reso-

lution estimates were obtained for all maps using the respective masks automatically 

generated by cryoSPARC. 

For the β-galactosidase benchmarking studies, raw data from EMPIAR-10061 were down-

loaded. The movies were processed with the full Warp pipeline using the following set-

tings: motion correction with a temporal resolution of 38 for the global motion, and a 5x5 

spatial resolution for the local motion, using the 0.03–0.60 Nyquist range and a B-factor 

of -160 Å2; CTF estimation with 5x5 spatial resolution, using the 0.08–0.60 Nyquist range; 

particle picking with a BoxNet model retrained on particles from 5 micrographs, using a 

threshold of 0.30. No quality filters were used as the data already represent a high-quality 

subset curated for the initial publication. Picked and extracted particles were subjected 

to 2D and 3D classification with C1 symmetry in RELION 2.1 to remove incomplete parti-

cles. The remaining particles were refined with D2 symmetry. The final half-maps were 

then used to refine beam tilt and per-particle defocus in RELION 3.0. Global motion tracks 

for all movies were exported from Warp to RELION 3.0 to perform Bayesian particle pol-

ishing.  

To assess the frame alignment accuracy in Warp independently of downstream map re-

finement, β-galactosidase movies were aligned in Warp as described above, and using 

the default settings in MotionCor2. CTF fitting was performed with 5x5 spatial resolution, 

using the 0.08–50 Nyquist range. Frequency-dependent fit quality was calculated as 
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described in the ‘Resolution estimation’ section, and all resulting curves averaged. The 

resolution was then estimated at a cut-off value of 0.3. 

2.2.18 Benchmarking for tilt series data 

For the template matching benchmark, pre-aligned tilt series from EMPIAR-10045 were 

downloaded. The defocus was estimated, and full tomograms were reconstructed with a 

pixel size of 10 Å in Warp. The 80S ribosome map derived from these data in the original 

publication64  and deposited under EMD-3228 was used as the template. Template 

matching was performed on the 10 Å/px tomograms with an angular sampling of 7.5 °, 

using a local 3D CTF. The same steps were performed using a binary missing wedge mask 

instead of the 3D CTF. The picked positions were screened manually to determine the 

false positive rate. Background statistics were calculated for the correlation volume 

trimmed to remove the vacuum region, and excluding 48 px windows around the peaks.  

To benchmark CTF estimation and sub-tomogram export on EMPIAR-10045 data, 

the particles previously picked through template matching were exported together with 

their 3D CTF volumes at a pixel size of 5 Å. The sub-tomograms were then subjected to 

3D refinement in RELION 3.0 without prior classification. 

To benchmark CTF estimation and sub-tomogram export on HIV-1 particles, raw data 

from EMPIAR-10164 were downloaded. A subset of 5 tilt series previously used by the 

authors of NovaCTF65 was selected. Movies were aligned in Warp using only global align-

ment with a temporal resolution of 5. Gold beads were picked manually and used to align 

the tilt series in IMOD83. Full tomograms were reconstructed with a pixel size of 5 Å in 

Warp. Template matching was performed with the EMD-4015 map with an angular sam-

pling of 7.5 ° and C6 symmetry. A custom script was used to remove particles not fitting 

into a regular hexagonal grid as described previously71. The particles were exported to-

gether with their 3D CTF volumes at a pixel size of 1.35 Å. The sub-tomograms were then 

subjected to 3D refinement in RELION 3.0 without prior classification. 
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3. Multi-particle refinement in M 

The work presented in this chapter was published in: 

D. Tegunov, L. Xue, C. Dienemann, P. Cramer, J. Mahamid. Multi-particle cryo-EM refine-
ment with M visualizes ribosome-antibiotic complex at 3.7 Å inside cells. bioRxiv 
2020.06.05.136341, Nature Methods (‘accepted in principle’). 

3.1 Results 

3.1.1 Overall design 

M was designed to form the last part of a largely automated cryo-EM data pre-processing 

and map refinement pipeline – preceded by Warp84 and RELION37, or compatible tools 

(Figure 3.1). Warp performs initial, reference-free motion correction and CTF estimation 

on frame series or tilt movies during data acquisition. For tilt series pre-processing, Warp, 

starting with version 1.1.0, automatically calls routines from IMOD83 to perform the initial 

tilt series alignment, estimates per-tilt CTF using the tilt angles as constraints, and recon-

structs the tomographic volumes at a large pixel size for visual analysis and particle pick-

ing. Warp then picks the particles using a convolutional neural network-based (CNN) ap-

proach for frame series, or template matching for micrographs or tomograms, and ex-

ports them as images or reconstructed volumes depending on the data type. In case of 

tilt series, 3D CTF volumes containing the missing wedge and tilt-dependent weighting 

information are generated for each particle38. The particle poses and classes are then 

determined in RELION using a multitude of strategies available there85. All classes and 

their respective refinement results are finally imported into M to perform a more accu-

rate, reference-based, multi-particle frame or tilt series refinement and obtain the final 

high-resolution maps. Optionally, the refined parameters can be used to re-export more 

accurately aligned particles for further classification in RELION or compatible software. 

The new alignments can be applied to generate tomograms at higher resolutions to be 

used for further particle picking. 
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M provides a graphical user interface (GUI) that allows the user to create, import, export 

and manage data. Projects are organized as “populations”, which contain “data sources” 

and “species”. A data source is a set of frame or tilt series, that stem ideally from the 

same sample grid and acquisition session. A species is any distinct type of macromolecule, 

or its compositional and conformational sub-state. Each version of a data source or spe-

cies is tracked using a cryptographic hash of its current state, the preceding version, and 

Figure 3.1 | The Warp–RELION–M pipeline for frame and tilt series cryo-EM data refine-
ment. 
Electron microscopy data are pre-processed on-the-fly in Warp, which then exports par-
ticles as images or sub-tomograms. Particles are imported in RELION, where they can be 
subjected to a multitude of processing strategies, resulting in 3D reference maps, global 
particle pose alignments, and class assignments. The particle population encompassing 
all classes is then imported in M, where reference-based frame or tilt image alignments 
are performed simultaneously with further refinement of particle poses and CTF param-
eters to improve resolution. Finally, M produces high-resolution reconstructions that can 
be used for model building. Alternatively, the improved alignments can be used in Warp 
to re-export particles for further, more accurate classification in RELION. 
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the processing parameters connecting them. The entire refinement evolution can be 

tracked as a directed graph, parts of which can be stored in different locations while re-

maining uniquely connected through the hashes. Thus, multiple users can process differ-

ent collections of data sources and species independently and merge them later. This is 

especially useful for processing data sets of complex cellular environments, where each 

user will typically process only a small fraction of all species contained and everyone 

would benefit from pooling data and results together. 

3.1.2 Multi-particle system modeling 

M considers the entire field of view of a frame or tilt series as a physically connected 

multi-particle system (Figure 3.2a). The particles can belong to different refined species, 

which can be of varying size, symmetry, and resolution. As parts of the same system, the 

particles are subject to the same global transformations such as the translation and rota-

tion of the microscope stage, as well as locally similar transformations caused by BIM that 

result in apparent translation and rotation of particles. M performs a reference-based 

registration of these transformations (Figure 3.2b), and reverses them when back-pro-

jecting individual particle frame or tilt images to obtain more accurate reconstructions. 

In frame series, all transformations occur in the same image reference frame. Their com-

bined effects are parametrized as a pyramid of 3D cubic spline grids (Figure 3.3). This 

pyramid results from a combination of grids where the top grid has low spatial and high 

(per-frame) temporal resolution, and 1–2 subsequent grids have double the spatial and 

1/4 the temporal resolution of the previous grid. This model is similar to the one used in 

Warp but fits more parameters due to the higher accuracy of reference-based registra-

tion. The user can set the spatial resolution of the top grid to adjust the model’s resolu-

tion to the available signal. In addition to image-space warping, M can fit doming-like 

motion that is known to occur at the beginning of an exposure9 (Figure 3.2b). This is im-

plemented as parameter grids for defocus and orientation offsets with 3x3 spatial and 

per-frame temporal resolution. 
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Figure 3.2 | Multi-particle system modeling and optimization. 
M employs a reference-based multi-particle optimization to model sample deformation 
and improve map resolution. 
a) Particles are typically treated as isolated entities in SPA. Each particle has its own cost 
function based on the similarity between a simulated reference projection and the ex-
perimental particle image, which is optimized independently. However, particles in a real 
sample are physically connected and experience locally similar effects during exposure. 
Each imaged location is modeled as a multi-particle system. Its state model is fitted using 
a single cost function, which compares simulated reference projections to all experi-
mental particle frame or tilt images. The particle poses in each frame or tilt are addition-
ally affected by the modeled deformation of the multi-particle system, which is optimized 
together with the per-particle pose alignments. 
b) The multi-particle system deformation model incorporates several modes: Global 
movement and rotation to account for inaccuracies in stage movement between frames 
and stage rotation between tilts; image-space warping to model local non-linear defor-
mation in the 2D reference frame of a frame or tilt image; volume-space warping to 
model the movement of overlapping particles perpendicular to the projection axis (tilt 
series only); doming to account for the hypothesized bending of a thin sample along the 
projection axis (frame series only). 
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For tilt series data, M distinguishes image-space and volume-space effects because the 

tilt images show the volume from different angles. Image-space transformations are par-

ametrized as a 3D cubic spline grid with per-tilt temporal, and a spatial resolution set by 

the user depending on the available signal. Additionally, parameters of a coarse 3D cubic 

spline grid can be fitted for every tilt movie to account for the significant exposure and 

deformation captured in each of them. Volume-space transformations, such as the shear-

ing of a thick sample, are modeled as a 4D parameter grid with quadrilinear interpolation, 

with the accumulated exposure as the temporal dimension. Because M does not average 

particle frames or tilts in intermediate steps, per-particle translation and rotation trajec-

tories can be fitted to model the most local transformations. The temporal resolution of 

the trajectories can be set for each species depending on its size and thus the signal avail-

able per particle. 

Using frame series data collected on an apoferritin sample (AF-f, see Methods), we show 

the benefit of considering the particles of multiple species in refinement. To this end, we 

Figure 3.3 | Example of a parameter grid pyramid that models in-plane motion in a 
frame series. 
Several grids are combined to model the in-plane motion occurring in a frame series with 
40 frames as a function of position and dose. Each cubical cell represents a sampling 
point. Starting with a grid with full temporal (exposure) and no spatial resolution to model 
fast, global motion (left, 1x1x40, shown truncated), temporal resolution is reduced by a 
factor of 4 and spatial resolution is doubled to model slower, local motion (center, 
2x2x10; right 4x4x3). The spatial resolution of the first grid can be set higher if there is 
enough particle signal to fit. 
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artificially split the apoferritin population in two species comprising 5% or 95% of the 

particles (Figure 3.4a, Table S3.1). No structural similarity between the two species was 

assumed during refinement. Refining the 5% species alone produced a 3.2 Å map, while 

adding the 95% species to the multi-particle system improved the map calculated from 

the 5% species to 2.8 Å (Figure 3.4b). This demonstrates that our multi-species refine-

ment approach can improve the resolution for heterogeneous data sets. 

3.1.3 Correction of electron-optical aberrations 

In addition to a geometric deformation model, M fits CTF parameters and higher-order 

aberrations including beam tilt. For frame series, defocus is optimized per-particle, similar 

to cisTEM86 and recent RELION versions33. For tilt series, defocus is optimized per-tilt, 

similar to the capability offered in emClarity43. For both types of data, astigmatism, ani-

sotropic pixel size and higher-order aberrations are fitted and corrected per-series.  

CTF correction at high defocus can introduce artifacts if the chosen particle box size is too 

small to retain high-resolution Thon rings, leading to their aliasing (Figure 3.5a) and lim-

iting the resolution for many combinations of high defocus images and small particle 

Figure 3.4 | Benefits of considering more particles per micrograph through multi-spe-
cies refinement. 
Apoferritin frame series were refined using a small 5% sub-population of the particles 
alone, and together with another 95% sub-population that improved the accuracy of the 
multi-particle system hyperparameters, but did not contribute particles to the 5% half-
maps. 
a) Exemplary distribution of the 2 sub-populations within a frame series. 
b) FSC curves between the half-maps of the 5% population in both scenarios, showing the 
benefit of multi-species refinement. 
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box sizes. M automates the selection of a sufficiently large box size at which the data are 

pre-multiplied by an aliasing-free CTF. The images are then cropped in real space. To 

match the underlying CTF of these images, correctly band-limited CTF2 images are con-

structed in a similar way (Figure 3.5a). Both are then used for refinement and reconstruc-

tion.  

Figure 3.5 | CTF correction at low and high defocus. 
High-resolution information is delocalized at high defocus. Choosing an insufficiently 
large particle box size results in loss of that information. In Fourier space, this results in 
CTF oscillations becoming too fast to be resolved at the sampling rate provided by the 
small box, averaging to 0. M chooses the box size automatically for each frame or tilt 
series’ defocus, pre-multiplies the data and simulated CTF by the CTF to eliminate the 
oscillations and localize the signal, and then crops the data to the desired map size. This 
avoids the pitfall of losing map resolution due to an inappropriately chosen box size. 
a) Visualization of the delocalization and aliasing effects in Fourier space as 2D and rota-
tionally averaged 1D CTFs; grids depict sampling rate. At low defocus (row 1), all signal is 
localized within the box and no aliasing is seen in the simulated CTF used for the image 
formation model during refinement. At high defocus (row 2), high-resolution signal is de-
localized outside the small particle box. Once the particle is extracted, the fast CTF oscil-
lations are averaged to 0 and high-resolution information is lost. At the same time, the 
simulated CTF is filled with aliasing artifacts because it is not low-pass filtered in the same 
way. If the particle data are pre-multiplied by the CTF at a box size large enough to contain 
all signal and resolve all CTF oscillations (row 3), as can be done optionally in RELION, all 
particle signal is contained in the box after cropping it to a smaller size, and the CTF aver-
ages to 0.5. However, the simulated CTF2 does not match this and contains aliasing arti-
facts. M applies the pre-multiplication to both particle data and simulated CTF in a larger 
box before cropping (row 4) to avoid the mismatch. 
b) FSC between the half-maps reconstructed from HIV1 virus-like particles of a single 
high-defocus (3.9 μm) tilt series in an insufficiently large box. Using data extracted with-
out pre-multiplication, as is currently common, limits the resolution to 3.9 Å (grey). Pre-
multiplying both particle data and CTF in a larger box, as automated in M, provides the 
best 3.2 Å result (green). Pre-multiplying only particle data is only slightly worse here 
(blue), but would likely lead to noticeably worse results in RELION as the aliased CTF2 
would be used in the image formation during refinement. The FSC curves diverge as the 
proportion of CTF sign errors (orange) increases. 
c) Relation between tilt series defocus and associated contribution of high-resolution in-
formation to the reconstruction. For the larger data set, not pre-multiplying the data re-
sults in a strong correlation, where high-defocus data is down-weighted to contribute less 
(grey). The correlation disappears when pre-multiplication is applied, so more tilt series 
contribute high-resolution information (green). 
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We show the benefit of this approach by reconstructing a map from a previously refined 

high-defocus tilt series of HIV1 virus-like particles (EMPIAR-10164, Table S3.1). Using 

twice the particle diameter as the box size, the resolution is limited to 3.9 Å as the average 

sign error of the aliased CTF increases (Figure 3.5b). Pre-multiplying the data and CTF at 

an aliasing-free size and then cropping them improved the resolution to 3.2 Å using the 

same reconstruction box size. Only pre-multiplying the data but using an aliased analyti-

cal CTF2 for the Wiener-like reconstruction filter did not decrease the nominal resolution 

in this case. However, for algorithms that would use such aliased models during refine-

ment and classification as well, we expect these effects to be more noticeable. This ap-

proach improved the empirically estimated per-tilt series weighting factors (see Meth-

ods) for high-defocus data to the level of low-defocus data for the entire EMPIAR-10164 

data set (Figure 3.5c). 

3.1.4 Optimization procedure 

M optimizes all selected hyperparameters describing geometric deformation (Figure 

3.2b), electron-optical aberrations, and particle pose trajectories, simultaneously. Be-

cause exhaustive search over an ensemble of thousands of parameters would be impos-

sible, M performs a local, gradient descent-type optimization using the Limited-memory 

Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm66. The target function is the sum 

of normalized cross-correlations between all extracted particle images contained in a 

frame series or a tilt series, and reference projections at angles and shifts defined by the 

particles’ poses and additional corrections described by the hyperparameters (Figure 

3.2a). To compute the derivatives for the variables efficiently, M precomputes sets of 

weights using a strategy similar to Warp’s84 (see Methods). Derivatives for many of the 

parameters can then be computed as weighted sums of per-particle image derivatives, 

which in turn are calculated using GPU-accelerated routines. The optimization procedure 

considers the signal of all defined particle species simultaneously to maximize the particle 

density in each frame or tilt series, thus increasing the hyperparameter fitting accuracy 

for heterogeneous data sets. 
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At the end of an optimization iteration, similar to the Fourier Ring Correlation (FRC) ap-

proach introduced previously39, 87, M calculates the per-Fourier component normalized 

cross-correlation (NCC) between reference projections and image data. This can be used 

to empirically optimize exposure- and tilt-dependent data weighting, and reconstruct 

new half-maps using the updated model, correcting for Ewald sphere curvature88. Be-

cause the NCC is resolved in 2D, unlike the FRC, anisotropic weights can be fitted to make 

better use of the first frames, which are often affected by strong, unidirectional motion 

(Figure 3.6). Then, various map metrics, including global, local, and anisotropic resolution, 

are calculated. Further optimization iterations can be performed to arrive at a denoised 

or low-pass filtered and sharpened map. Alternatively, 2D particles or sub-tomograms 

can be extracted and reconstructed from the raw data using the updated alignment in-

formation, to be exported to RELION for further, more accurate classification. 

Figure 3.6 | Examples of anisotropic B-factor weighting. 
Normalized 2D correlation between reference projections and data, averaged over all 
particles in a single frame is shown for the 1st and 3rd frame of the same exposure. Values 
in the low-frequency region are excluded to reduce the value range. The fitted B-factor is 
highly anisotropic for the 1st frame because of intra-frame motion: 0 Å2 and -62 Å2 along 
X and Y, respectively. For the 3rd frame, the fit is much more isotropic due to lack of intra-
frame motion, but some high-resolution information is lost to radiation damage: -8 Å2 
and -10 Å2 along X and Y, respectively. 
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3.1.5 Map denoising and local resolution 

Instead of using a traditional Fourier Shell Correlation (FSC)-based approach for local res-

olution estimation89, M trains a CNN-based denoiser model using a species’ half-maps to 

filter them to local resolution for the next refinement iteration (see Methods). The de-

noiser applies the noise2noise82 training regime to gold-standard90 half-map reconstruc-

tions obtained at the end of each refinement iteration in M by back-projecting extracted 

images from the original frames or tilts. Because the noise estimation and filtering are 

done for each half-map independently, no common artifacts are introduced that could 

be amplified over subsequent refinement iterations. Even without local resolution filter-

ing, the denoising helps to avoid artifacts that may be introduced and amplified when 

regions of significantly lower resolution are filtered to higher global resolution. 

To assess the benefits of M’s denoising, we processed the EMPIAR-10288 data set con-

taining the membrane protein cannabinoid receptor 1-G91 (Table S3.1). The 3.0 Å map 

published with the original study (EMD-0339) showed overfitting artifacts in the lipid bi-

layer (Figure 3.7a). Processing the data with Warp, RELION and M led to only slightly im-

proved resolution of 2.9 Å (Figure 3.7b) using 149,308 particles (ca. 15% fewer than in 

the original study). However, the overfitting artifacts were absent in M’s final reconstruc-

tion (Figure 3.7a).  

Denoising was also tested on the EMPIAR-10453 tilt series data set containing SARS-CoV-

2 virions with spike proteins displayed on the coronavirus surface (Table S3.1). The S1 

domain of the spike protein is conformationally heterogeneous and has significantly 

lower resolution than the more stable parts. Processing the data with Warp, RELION and 

M led to a 3.8 Å map (Figure 3.7c–e), improving over the originally obtained 4.9 Å92. Re-

peating the refinement in M without denoising decreased the global resolution to 4.1 Å 

and generated visible overfitting artifacts in the S1 domain (Figure 3.7c, d). This is in line 

with improvements recently demonstrated using different approaches to local map fil-

tering that do not rely on conventional FSC-based estimates93, 94. 
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3.1.6 Contribution of different model parameters to map resolution 

We used apoferritin frame and tilt-series data sets, collected from the same grid square 

under identical conditions (data sets AF-f and Af-t, see Methods), to estimate the contri-

bution of different groups of optimizable parameters to the quality of the reconstructed 

maps (Figure 3.8 and Table S3.1). For frame series, particles extracted following 

Figure 3.7 | Effects of deep learning-based denoising of reconstructions during refine-
ment. 
M trains a denoising model on each species’ half-maps after every refinement iteration 
to filter the maps to local resolution and avoid overfitting artifacts in low-resolution ar-
eas, such as lipid nanodiscs or flexible domains. 
a) 2D XY slices through 3D reconstructions of the cannabinoid receptor 1-G membrane 
protein. The original refinement in cisTEM (left) introduced artifacts in the highly disor-
dered lipid region (green arrow). The denoised map (middle) and the raw reconstruction 
before denoising (right) used in the last refinement iteration in M are devoid of the arti-
facts because the denoising filtered and downweighed the low-resolution region. 
b) FSC between the half-maps refined in M, showing a global resolution of 2.9 Å. A value 
of 3.0 Å was reported in the original study, with no FSC curve included with the deposited 
map. 
c) 2D XY slices and isosurface renderings of the S1 domain in SARS-CoV-2 spike protein 
reconstructions. Refinement in M without denoising introduced visible artifacts (left, 
top–right) in the region (green arrows), which had significantly lower resolution than the 
rest of the protein. Using denoising, the artifacts were avoided (center, bottom–right). 
d) FSC between the half-maps refined in M with and without denoising, showing an im-
provement in global resolution from 4.1 Å to 3.8 Å when using denoising. 
e) Isosurface rendering of the entire denoised SARS-CoV-2 reconstruction with a global 
resolution of 3.8 Å. Through the denoising process, the more disordered S1 domain 
(green arrow) was filtered to lower resolution compared to other parts where side chains 
are visible (orange arrow). 
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reference-free alignment in Warp and refined in RELION (without polishing and CTF re-

finement) provided a baseline resolution of 2.75  Å, which was then improved by accu-

mulating the following sets of optimizable parameters in M: Reference-based global mo-

tion alignment improved the resolution to 2.73  Å. Relaxing this constraint to allow local 

motion alignment improved the resolution to 2.71  Å. Resolving individual particle pose 

trajectories as a function of exposure led to a resolution of 2.66  Å. Fitting per-particle 

defocus and per-frame series astigmatism and beam tilt improved the resolution to 2.45 

Å. Data-driven anisotropic weight estimation improved the resolution to 2.39 Å. Finally, 

resolving doming-like motion slightly improved the resolution to 2.32 Å. 

For tilt series, sub-tomograms reconstructed following reference-free tilt movie align-

ment in Warp, patch tracking-based tilt series alignment in IMOD and refinement in 

RELION provided a baseline resolution of 4.1 Å, which was then improved by accumulat-

ing the following optimizations in M. First, reference-based global tilt image alignment 

improved the resolution to 3.3 Å. Relaxing this constraint to allow local image-space 

warping improved the resolution to 2.84 Å. Resolving individual particle poses as a func-

tion of exposure increased the resolution to 2.75 Å. Fitting per-tilt defocus and 

Figure 3.8 | Contributions of individual multi-particle system model components to 
map resolution. 
Fourier shell correlation between half-maps for frame series and tilt series apoferritin 
data obtained through extending the set of optimizable parameter groups. Starting with 
the ‘No refinement’ baseline, in top-down order in the legend, a new group of parameters 
was added, while keeping the previously added groups, and refinement was performed 
from scratch. The resolution for each step is given in the legend. 
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astigmatism, and per-tilt series beam tilt improved the resolution to 2.59 Å. Data-driven 

anisotropic weight estimation improved the resolution to 2.50 Å. Finally, reference-based 

tilt movie alignment led to a resolution of 2.32 Å. Volume-space warping was not tested 

because the particles were arranged in a single 2D layer.  

We conclude that accurately registering image-space deformation is essential for obtain-

ing high-resolution maps from frame and tilt series data, whereas modeling other effects 

leads to smaller improvement that may generally only become significant in the sub-5 Å 

resolution range. Initial reference-free alignment is significantly less accurate for tilt se-

ries than for frame series. However, it is accurate enough to obtain initial reference maps 

and particle poses that can be further refined in M. 

3.1.7 Similar resolution obtained from frame and tilt series data 

Because tilt series are often associated with lower resolution compared to frame series, 

we processed both types of data collected from grid holes in close proximity (Af-f and AF-

t) to test potential intrinsic limitations of the tilt series data. Given equal amounts of par-

ticles, M was able to achieve the same resolution with very similar map features (Figure 

3.9) from either frame series or tilt series data. Thus, collecting data as tilt series does not 

incur a resolution penalty. However, because tilt series data are still much slower to  

Figure 3.9 | M achieves similar resolution for frame series and tilt series data. 
Given equal amounts of frame series and tilt series data of similar quality, M can achieve 
identical resolution, closing the gap previously assumed between both data types. This is 
exemplified on apoferritin data collected in both ways on the same grid. 
a) Representative side chain densities observed in the frame series and tilt series maps. 
b) Comparison between the global FSC curves for each map. 
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acquire95 and commonly used for more crowded, thicker samples, we expect maps de-

rived from tilt series data to remain at lower resolution on average.  

3.1.8 Comparison with RELION on atomic-resolution frame series data 

To assess whether M can provide further improvements for frame series data processed 

with RELION 3.1, we refined a previously published96 apoferritin data set (EMPIAR-10248, 

Table S3.1). The data were acquired on a novel JEOL microscope with a cold field emission 

gun to achieve an atomic resolution of 1.54 Å. Adding M to the pipeline improved the 

resolution to 1.35 Å, revealing densities for hydrogen atoms (Figure 3.10). This shows 

that the image artifact model implemented in M can correct data at the highest end of 

the SPA resolution currently possible. At this high resolution, we were also able to assess 

the effect of Ewald sphere correction with the single side-band algorithm88. Applying it to 

the reconstruction alone, as would be possible in RELION 3.0, improved the resolution 

from 1.44 to 1.41 Å. Correcting the particle data and considering the sphere curvature 

during the multi-particle system refinement, improved the resolution further to 1.34 Å. 

Coupled with the demonstrated benefits of multi-species refinement and map denoising, 

this makes M a useful addition to the frame series SPA pipeline. 

Figure 3.10 | Comparison with RELION on atomic-resolution frame series data. 
Atomic-resolution data of apoferritin previously refined with RELION 3.1 to 1.54 Å (EMD-
9865) were processed with M to achieve a resolution of 1.34 Å, showing that M’s image 
artifact model is suited for very high resolution. 
a) Examples of side-chain densities produced by RELION (top) and M (bottom), showing 
cases of improved atomic features such as one of the hydrogens in Tyr29 (black arrow). 
b) FSC between the half-maps produced by RELION (grey) and M (green), showing a gen-
eral improvement in resolution through M. 
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The high resolution of the data also enabled a detailed analysis of the sample’s doming 

behavior during exposure, as modeled in M. The defocus of the entire field of view 

changed by over -25 Å during the first 7.5 e-/Å2 of exposure (Figure 3.11a), corresponding 

to the sample moving away from the electron source. After this initial global decrease, a 

more localized, steadily increasing bending of the center relatively to the periphery was 

observed, reaching a difference of ca. -16 Å after 37.5 e-/Å2 (Figure 3.11b, c). However, 

because the observed change in the CTF can also be caused by electrostatic lensing ef-

fects due to sample charging, further experiments are necessary to investigate the exact 

nature of doming. 

3.1.9 Comparison with other tools for tilt series data refinement 

To compare M’s reference-based tilt series alignment performance with the previously 

published EMAN297 and emClarity43 packages, we reprocessed some of the data sets used 

in the respective publications (Figure 3.12 and Table S3.1). EMAN2 reached a resolution   

Figure 3.11 | Quantification of the doming effect in frame series data. 
Doming models describing per-frame, spatially resolved (3x3 points) defocus offsets fit-
ted during the refinement of atomic-resolution data of apoferritin (EMPIAR-10248) were 
averaged across the data set, showing significant changes in the CTF during exposure. 
a) Defocus change plotted against the accumulated exposure show a fast change in both 
the central point and the average of the entire field of view’s 3x3 points at the beginning 
of the exposure. After the first 7.5 e-/Å2 of exposure, the average change stabilizes, while 
the central point continues to decrease in defocus. 
b) When corrected for global inclination, the difference between the central and periph-
eral defocus change indicates a steady increase in doming within the field of view as a 
function of accumulated exposure. 
c) Surface rendering of the spatially resolved defocus change for the first 7 frames shows 
an inclination of the entire field of view as well as a more localized dent in the center. 
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Figure 3.12 | Comparison of maps obtained from published tilt series using M or other 
software. 
When applied to data used previously to test the EMAN and emClarity packages, M pro-
duces maps that compare favorably in terms of resolution and visual features. 
a) 80S ribosome data from EMPIAR-10064 were used to benchmark the new tilt series 
processing in EMAN (EMD-0529). M achieved higher resolution, accompanied by visibly 
better resolved features such as RNA (green arrow) and α-helices (orange arrow). 
b) 80S ribosome data from EMPIAR-10045 were used to benchmark emClarity. The orig-
inally published map (EMD-8799, not shown) exhibited strong resolution anisotropy. A 
recently updated map shown here still suffered from resolution anisotropy (“smearing” 
direction indicated by orange arrows). M achieved higher and more isotropic resolution, 
aiding the map’s interpretability. 
c) HIV-1 capsid-SP1 data from EMPIAR-10164 were used to benchmark emClarity. Here, 
M achieved slightly higher resolution using ca. 30% of the particle number used by em-
Clarity. Doubling the number of particles did not increase the resolution. 
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of 8.4 Å on an in vitro 80S ribosome sample (EMPIAR-10064), improving significantly upon 

a previous 13 Å result98. For emClarity, a resolution of 8.6 Å was reported for the same 

data99. M improved the resolution to 5.7 Å and resulted in a map that clearly showed 

secondary structure elements and the helical groves of the RNA (Figure 3.12a). We at-

tribute a significant part of this improvement to M’s application of constraints between 

individual particle tilt images, which is not part of EMAN2. 

We further tested M on two data sets used in emClarity’s benchmarking. The emClarity 

software reached a resolution of 7.8 Å on purified 80S ribosomes (EMPIAR-10045) in the 

original publication43, and was later refined to 7.1 Å99, improving significantly upon a pre-

vious 12.9 Å result38. M improved the resolution to 6.0 Å, accompanied by improved res-

olution isotropy and map features (Figure 3.12b). We attribute the improved resolution 

isotropy to M’s denoising-based map filtering approach that learns the optimal filtering 

empirically, whereas emClarity employs an FSC-based approach that may have to be 

tuned more conservatively to achieve the desired robustness to artifacts.  

It was also reported that emClarity achieved a resolution of 3.1 Å on a thicker sample 

with a locally high particle density of isolated HIV-1 capsid-SP1 assemblies (EMPIAR-

10164), improving upon previous 3.9 Å71 and 3.4 Å65 results. M improved the resolution 

to 3.0 Å, accompanied by local improvements in map quality (Figure 3.12c). We attribute 

the slight improvement of overall resolution in this and the EMPIAR-10045 data sets to 

M’s more accurate deformation model and simultaneous optimization of all parameters, 

in contrast to emClarity’s separate steps for full image alignment (performed in IMOD83) 

and particle alignment (performed in emClarity). Our results show that M can improve 

over current methods, and achieve higher resolution with various tilt series data sets. 

3.1.10 M enables the visualization of an antibiotic bound to 70S ribosomes at 3.5 Å in 

cells 

To assess M’s performance on in situ data in the strictest sense, i.e. in tilt series obtained 

from intact cells, we used a data set of chloramphenicol-treated Mycoplasma pneu-

moniae100 (Figure 3.13a). M was able to resolve the 70S ribosome at 3.5 Å (Figure 
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3.14a,d) based on 17,890 particles from 65 tomograms, and a B-factor101 of 86 Å2 (Figure 

3.13b). The obtained map exhibited a wide range of local resolution values (Figure 3.14b, 

d). The large 50S ribosomal subunit dominated the alignment and had a higher average 

resolution than the small 30S subunit, with much of its core reaching the 3.4 Å Nyquist 

limit of the data. Independent refinement of the 30S and 50S subunits further improved 

the resolution to 3.7 Å and 3.4 Å, respectively (Figure 3.13d). In contrast, processing these 

data with Warp and RELION alone led to a 10 Å-resolution map of the 70S ribosome (Fig-

ure 3.14c). M’s result constitutes a dramatic improvement compared to the previously 

used Warp-RELION pipeline, leading to a striking increase in structural detail (Figure 

3.14e).  

The map possesses features typical for this resolution range, such as amino acid side 

chain stubs and β-sheets with individually resolved β-strands (Figure 3.14e). A rigid body 

fit of an E. coli 70S ribosome–chloramphenicol structure (PDB-4v7t) further revealed the 

presence of a density corresponding to the chloramphenicol molecule at its expected tar-

get site (Figure 3.14f), marking the first direct visualization of a drug bound to its target 

inside a cell. The density was absent in a 5.6 Å 70S reconstruction from untreated M. 

pneumoniae cells produced from processing with the older 1.0.6 Warp/M versions100 

Figure 3.13 | Overview of the M. pneumoniae data set. 
a) 2D XY slice through an exemplary tomogram. 
b) Resolution plotted against the number of particles shows that 5 Å can be obtained with 
less than 3000 large, asymmetric particles in cells. Extrapolation beyond the Nyquist limit 
of the data (magenta line) is speculative, but indicates that 3 Å could be surpassed with 
less than 100,000 particles, given data with higher magnification 
c) Histogram of manually measured tomogram thickness values. 
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(Figure 3.14f). Therefore, tilt series data acquisition on an intact cellular specimen with a 

mean thickness of 160 nm (Figure 3.13c), in combination with the multi-particle refine-

ment introduced in M, can lead to residue-level resolution structures of macromolecules 

in their native biological context.  
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Figure 3.14 | M. pneumoniae 70S ribosome-antibiotic map at 3.5 Å refined with the 
new Warp–RELION–M pipeline. 
We applied the Warp-RELION-M pipeline to a tilt series data set of intact cells. The 
achieved resolution reveals residue-level detail and a bound molecule of the antibiotic 
chloramphenicole (Cm). 
a) Isosurface representation of the 3.5 Å resolution map. 
b) Isosurface of the same map colored by local resolution. Despite stalling of the ribosome 
that is induced by antibiotic binding, residual ratcheting occurs that leads to higher reso-
lution in the large 50S subunit, which dominates the alignment, and lower resolution in 
the small 30S subunit. 
c) Isosurface of a 10.8 Å map derived from the same data set using only Warp and RELION 
shows the striking increase in detail after refinement with M. 
d) Comparison between the FSC curves of the 3.5 Å and 10.8 Å map shows the increase 
in resolution achieved with M. Focused refinement of the 30S and 50S subunits further 
increased their resolution to 3.7 Å and 3.4 Å, respectively. The overlaid local resolution 
histogram of the 3.5 Å 70S map shows that a significant portion of the map is resolved 
close to the data’s Nyquist limit of 3.4 Å. 
e) High-resolution features, such as large amino acid side chains (in green and orange) 
and well-separated β-strands (cyan arrows), are resolved at a level expected for this res-
olution range. 
f) Atomic model of a Cm-bound 70S ribosome (PDB-4v7t) fitted into the 3.4 Å 50S map 
(top) shows correspondence of map density (light green) to the Cm molecule (dark 
green). Fitting the same model into a 5.6 Å 70S ribosome map of untreated M. pneu-
moniae cells (EMD-10683, bottom) does not show any density for Cm, providing a nega-
tive control. 
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3.2 Methods 

3.2.1 Data management 

M requires data sources initialized based on a Warp project folder. Beside a list of 

frame/tilt series items, it stores the deformation model to be refined. M saves the refined 

deformation model for each item in the same XML metadata files previously created by 

Warp. Due to a shared code base, Warp can use the updated model when calculating new 

frame series averages or tomographic reconstructions. Multiple data sources of either 

type can be combined in a single population to facilitate the sharing and pooling of valu-

able in situ data that can contribute to far more than one project, but do not contain 

enough data for any single project on their own. To account for minor pixel size miscali-

brations between different microscopes, the pixel size can be refined alongside other pa-

rameters in M. 

A species is initialized from the refinement results of RELION or other compatible soft-

ware, taking the unfiltered half-maps, a mask, and the particle coordinates and poses (i.e. 

translations and rotations) as a starting point. The state of a species after each refinement 

iteration comprises the reconstructed half-maps, the weights of the trained denoising 

model, various filtered and sharpened maps, a denoised map, and a list of particle coor-

dinates and poses with multiple temporal sampling points if desired. The particles refer-

ence their data source items by their data hash to avoid naming conflicts between differ-

ent data sources. 

To enable multiple users to collaborate and pool their results, M tracks precisely the chain 

of refinements and other operations on data. After each refinement iteration, a “commit” 

is generated to save the new state. Similar to version-control systems like Git102, the com-

mit’s hash is based on the exact state of the system committed. The hash of each data 

source item is calculated from the raw data, the refined deformation and imaging models, 

and the hashes of all species used for their refinement. The hash of each species is calcu-

lated based on the half-maps, the weights of the denoising model, the particle coordi-

nates and poses, and the hashes of all data source items contributing information. The 
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hashes can be used to verify a graph representing all steps that led to a particular state 

of a data source or species. Similar to the “pull request” mechanism in Git, species can be 

added to a population taking into account potential physical collisions with existing par-

ticles. This enables the maintenance of a centralized population repository from which 

multiple users can obtain pre-aligned data sources, identify new particle species or re-

classify existing particles into more states, and contribute the results back to the reposi-

tory. 

3.2.2 Deformation model 

For frame series data, deformation of the multi-particle system is modeled in the XY plane 

only, with a pyramid (Figure 3.3) of cubic spline grids84 𝐺𝐺𝐹𝐹,𝑗𝑗(𝛿𝛿, 𝑖𝑖) (where 𝑗𝑗 is the index 

within the pyramid, 𝛿𝛿 is the spatial interpolation coordinate, and 𝑖𝑖 is the temporal inter-

polation coordinate) going from high temporal/low spatial to low temporal/high spatial 

resolution. This accounts for the fast-changing, global stage movement, and the slowly-

developing, local BIM. Furthermore, translation and rotation of individual particles as a 

function of exposure can be modeled with 2–3 control points depending on the particle 

size and overall exposure. 

The model for tilt series data is more complex, owing to the higher potential for pertur-

bations in the system between individual tilt exposures. As the mechanical rotation of the 

microscope stage and the estimated orientation of the tilt axis are imperfect, the as-

sumed stage orientation can be randomly off in every tilt. M thus refines an independent 

set of stage rotation angle corrections 𝜔𝜔𝑖𝑖 for every tilt 𝑖𝑖. These corrections only affect the 

particle orientations to avoid redundancy, as the induced changes in the projected parti-

cle positions can be fully modeled by a deformation grid that must already be employed 

for other purposes.  

Similarly, stage translation varies randomly between individual tilts. BIM patterns can be 

very different across adjacent tilt images as additional exposures are taken for focusing 

and tracking in-between. Particle positions can further deviate due to other imaging arti-

facts, such as wrongly calibrated magnification anisotropy22. M employs an “image warp” 
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grid of cubic splines 𝐺𝐺𝑇𝑇𝐼𝐼 with a spatial resolution of 3–5 in X and Y and per-tilt temporal 

resolution to model these geometric displacements in image space collectively. Further-

more, in vitro and in situ sample types for which tilt series are commonly used contain 

multiple overlapping layers of particles. Some deformations of densely filled volumes, 

such as shearing, or bending in the Z dimension when viewed at a high tilt angle, cannot 

be modeled accurately by XY translations in image space. M employs an additional “vol-

ume warp” grid 𝐺𝐺𝑇𝑇𝑇𝑇, implemented as a 4D grid of control points with quadrilinear inter-

polation between them that is anchored in volume space rather than image space. Hence 

it rotates with the sample and can model slow, continuous deformation that affects the 

particles’ projected positions in image space. As with frame series data, per-particle 

translation and rotation as a function of exposure is also modeled for tilt series. 

Finally, a single tilt image exposure is usually fractionated in multiple frames, making it a 

tilt movie. At 1–3 e-/ Å2, the exposure in a single tilt movie is usually short, but still re-

quires additional modeling to compensate motion. M parametrizes the XY translation as 

a combination of a grid with no spatial and per-frame temporal resolution, and a grid with 

a spatial resolution of 3x3 and a temporal resolution of 3. Stage and particle orientations 

are assumed to remain constant throughout a tilt movie, as the biggest beam-induced 

changes have been shown to occur in the very beginning of each of the short exposures26. 

Overall, the number of parameters for tilt series is larger than for frame series, requiring 

a higher particle density to achieve equivalent accuracy. 

3.2.3 Imaging model 

The ability to model imaging conditions such as defocus, astigmatism, magnification or 

higher-order aberrations is equally important for obtaining high-resolution reconstruc-

tions. Frame and tilt series offer different advantages for refining some of these parame-

ters. 

For particles in frame series data, the Z coordinate and thus the relative offset from the 

global defocus of the micrograph is unknown. Although local defocus estimation based 

on amplitude spectrum fitting has been shown to increase resolution84, reference-based 
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refinement of per-particle defocus can lead to a further increase in resolution33. M refines 

per-particle defocus and a per-series astigmatism for frame series, assuming constant 

values throughout the series. 

Tilt series, on the other hand, provide accurate Z coordinates for all particles. However, 

the initial amplitude spectra-based global defocus estimates for each tilt have lower ac-

curacy due to very short exposures, and cannot be assumed to remain constant through-

out the series due to stage movement and refocusing. Furthermore, these estimates can 

be biased by contrast-rich objects that are not the particles of interest, such as a carbon 

film below or above the particles, or the platinum coating layer for FIB-thinned sam-

ples103. The astigmatism can also change between tilts due to fluctuating electron optics. 

M refines per-tilt defocus and astigmatism for tilt series, and calculates per-particle tilt 

CTFs based on these values and the Z coordinate of a particle’s position transformed ac-

cording to the fitted stage orientation. Particles in tilt series can potentially have more 

accurate defocus values because the number of parameters that can be fitted scales with 

the number of tilts or particles for tilt or frame series, respectively. In many cases the 

number of tilts will be significantly lower than the number of particles. 

In both frame and tilt series, M also models per-series anisotropic magnification and 

higher-order optical aberrations. Refinement of a global set of Zernike polynomials rep-

resenting the aberrations based on a 2D phase residual image calculated from all particles 

in a data set has been shown to improve the resolution significantly for slightly misaligned 

microscopes14. Within individual tilt series, too, beam tilt can vary as it is applied to com-

pensate stage misalignments during tracking. Unfortunately, the signal in individual tilts 

is insufficient for accurate beam tilt estimation, and such an option is not implemented 

in M. 

3.2.4 Optimization procedure 

M seeks to maximize the following target function 𝑀𝑀, which is essentially a weighted, 

normalized cross-correlation between all particle images and the corresponding refer-

ence projections: 
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𝑀𝑀 =
∑ ∑ ∑ 𝐴𝐴𝑠𝑠,𝑝𝑝,𝑇𝑇∗𝐵𝐵𝑠𝑠,𝑝𝑝,𝑇𝑇𝑇𝑇𝑝𝑝𝑠𝑠

�∑ ∑ ∑ �𝐴𝐴𝑠𝑠,𝑝𝑝,𝑇𝑇�
2

𝑇𝑇𝑝𝑝𝑠𝑠 ∙∑ ∑ ∑ �𝐵𝐵𝑠𝑠,𝑝𝑝,𝑇𝑇�
2

𝑇𝑇𝑝𝑝𝑠𝑠

 , 

𝐴𝐴𝑠𝑠,𝑝𝑝,𝑖𝑖 = 𝑊𝑊𝑖𝑖 ∙ 𝑃𝑃(𝑠𝑠,Θ𝑝𝑝,𝑖𝑖, 𝜏𝜏) , 

𝐵𝐵𝑠𝑠,𝑝𝑝,𝑖𝑖 = 𝐶𝐶 ∙ FT�FT−1�𝑊𝑊𝑖𝑖 ∙ 𝐶𝐶𝐶𝐶𝐶𝐶(𝑖𝑖,Λ𝑝𝑝,𝑖𝑖) ∙ 𝐴𝐴𝑆𝑆𝑖𝑖−1 ∙ 𝐼𝐼(𝑖𝑖,Λ𝑝𝑝,𝑖𝑖)� ∙ 𝐷𝐷(𝑑𝑑𝑠𝑠)� , 

where 𝑠𝑠 is a particle species, 𝑝𝑝 is a particle of that species, and 𝑖𝑖 is the index of a frame 

or tilt in a series; ∗ denotes the dot product between two complex vectors, where the 

complex numbers are treated as pairs of scalars; |… | denotes the L2 norm; 𝑊𝑊 is the ani-

sotropic exposure- and tilt angle-dependent amplitude weighting of frame or tilt 𝑖𝑖; 𝑃𝑃 is a 

projection operator in Fourier space sampling a central slice of the volume of species 𝑠𝑠 at 

orientation Θ, taking into account the anisotropic scaling 𝜏𝜏, bent to account for the Ewald 

sphere curvature determined by the species’ diameter; ∙ denotes scalar multiplication; 𝐶𝐶 

is the complex-valued beam tilt compensation; 𝐶𝐶𝐶𝐶 denotes the discrete Fourier trans-

form; 𝐶𝐶𝐶𝐶𝐶𝐶 is the real-valued CTF taking into account the defocus at position Λ and the 

astigmatism in frame or tilt 𝑖𝑖; 𝐴𝐴𝑆𝑆 is the real-valued, rotational average over the amplitude 

spectra of all particle images of all species extracted from tilt 𝑖𝑖 or the average of all aligned 

frames, used for spectrum whitening, scaled and cropped to the respective species size 

and resolution; 𝐼𝐼 is the FT of a particle image extracted from frame or tilt 𝑖𝑖 at position 𝛿𝛿, 

cropped to the respective species resolution; 𝐷𝐷 is a soft circular mask with particle diam-

eter 𝑑𝑑.  

Similar target functions in previous literature used 𝑃𝑃 ∙ 𝐶𝐶𝐶𝐶𝐶𝐶 to model the contents of 𝐼𝐼4, 

86. However, in M’s implementation 𝐼𝐼 is pre-multiplied by 𝐶𝐶𝐶𝐶𝐶𝐶 to avoid CTF aliasing de-

spite using small particle windows. This change does not affect the numerator part of 𝑀𝑀 

due to the associativity of complex number multiplication; its impact on the denominator 

part of 𝑀𝑀 does not affect the achieved resolution in any way. It also avoids the additional 

memory footprint of storing pre-calculated CTFs, or the computational overhead of cal-

culating them on-the-fly. 
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M can consider the Ewald sphere curvature during refinement if this is made necessary 

by a large species and/or high resolution104. In this case 2 copies of 𝐶𝐶𝐶𝐶𝐶𝐶 ∙ 𝐼𝐼 are prepared 

using the single side-band algorithm88: 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃 ∙ 𝐼𝐼 and 𝐶𝐶𝐶𝐶𝐶𝐶𝑄𝑄 ∙ 𝐼𝐼. To calculate the cost func-

tion, one is correlated with a bent central slice 𝑃𝑃, and the other with a central slice bent 

in the opposite direction. The resulting cost functions 𝑀𝑀𝑃𝑃 and 𝑀𝑀𝑄𝑄 are then added. As with 

previous implementations33, the absolute handedness for the correction must be pro-

vided by the user. 

For frame series, the position and orientation of particle 𝑝𝑝 in frame 𝑖𝑖 are calculated as: 

Λ𝑝𝑝,𝑖𝑖 = 𝜆𝜆𝑝𝑝(𝑖𝑖) + ∑ 𝐺𝐺𝑂𝑂𝐹𝐹,𝑗𝑗�𝜆𝜆𝑝𝑝(𝑖𝑖), 𝑖𝑖�𝑗𝑗 + ∑ 𝐺𝐺𝐹𝐹,𝑗𝑗�𝜆𝜆𝑝𝑝(𝑖𝑖), 𝑖𝑖�𝑗𝑗 + 𝑍𝑍𝑝𝑝 , 

Θ𝑝𝑝,𝑖𝑖 = 𝜃𝜃𝑝𝑝(𝑖𝑖) , 

where 𝜆𝜆 is the value of the refined particle position trajectory interpolated at the accu-

mulated exposure of frame 𝑖𝑖; 𝐺𝐺𝑂𝑂𝐹𝐹 is a deformation grid pyramid produced by Warp’s 

original reference-free alignment that is not altered in M refinement; 𝐺𝐺𝐹𝐹 is a deformation 

grid pyramid that is refined in M; 𝑍𝑍 is the refined defocus value of particle 𝑝𝑝 that is added 

as the Z coordinate to its position; 𝜃𝜃 is the value of the refined particle orientation trajec-

tory interpolated at the accumulated exposure of frame 𝑖𝑖. 

For tilt series, the position and orientation of particle 𝑝𝑝 in tilt 𝑖𝑖 are calculated as: 

Λ𝑝𝑝,𝑖𝑖 = 𝑆𝑆(Ω𝑖𝑖) ∙ �𝜆𝜆𝑝𝑝(𝑖𝑖) + 𝐺𝐺𝑇𝑇𝑇𝑇�𝜆𝜆𝑝𝑝(𝑖𝑖), 𝑖𝑖� − 𝐶𝐶𝑇𝑇� + 𝐶𝐶𝑖𝑖 + 𝐺𝐺𝑇𝑇𝐼𝐼�𝜆𝜆𝑝𝑝(𝑖𝑖), 𝑖𝑖� + 𝑍𝑍𝑖𝑖  , 

Θ𝑝𝑝,𝑖𝑖 = 𝑆𝑆−1 �𝑆𝑆𝑋𝑋𝑋𝑋𝑋𝑋(ω𝑖𝑖) ∙ 𝑆𝑆(Ω𝑖𝑖) ∙ 𝑆𝑆�𝜃𝜃𝑝𝑝(𝑖𝑖)�� , 

where 𝑆𝑆 and 𝑆𝑆𝑋𝑋𝑋𝑋𝑋𝑋 construct a rotation matrix based on a set of Euler and XYZ angles, 

respectively, and 𝑆𝑆−1 calculates a set of Euler angles based on a rotation matrix; 𝐶𝐶𝑇𝑇 is the 

center of the volume in which the multi-particle system is anchored, and 𝐶𝐶𝑖𝑖 is the center 

of the full tilt image; 𝑍𝑍𝑖𝑖  is the refined defocus value of tilt 𝑖𝑖 that is added to the Z coordi-

nate of the transformed particle position; Ω is the stage orientation determined in the 
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initial, reference-free tilt series alignment that is not altered in M refinement; ∙ denotes 

matrix multiplication here. 

For frames in tilt movie 𝑖𝑖, the position of particle 𝑝𝑝 in frame 𝑘𝑘 is calculated as: 

Λ𝑝𝑝,𝑘𝑘 = Λ𝑝𝑝,𝑖𝑖 + ∑ 𝐺𝐺𝑂𝑂𝐹𝐹,𝑖𝑖,𝑗𝑗�Λ𝑝𝑝,𝑖𝑖,𝑘𝑘�𝑗𝑗 + ∑ 𝐺𝐺𝑇𝑇𝐹𝐹,𝑖𝑖,𝑗𝑗�Λ𝑝𝑝,𝑖𝑖,𝑘𝑘�𝑗𝑗  , 

where 𝐺𝐺𝑂𝑂𝐹𝐹 is the deformation grid pyramid produced by Warp’s original reference-free 

alignment of the tilt movie that is not altered in M refinement; 𝐺𝐺𝑇𝑇𝐹𝐹 is a deformation grid 

pyramid for the tilt movie that is refined in M. 

Due to the very large number of parameters, M employs L-BFGS66 to perform almost all 

of the optimization. Only the initial defocus search is done exhaustively over a limited 

range to avoid getting trapped in a local optimum because of the quickly oscillating na-

ture of the CTF. Every L-BFGS search iteration requires the calculation of a partial deriva-

tive of the target function with respect to each optimizable parameter. Reevaluating 𝑀𝑀 

twice per parameter to compute the gradient with the central differences numerical 

scheme would be very computationally expensive. Like Warp, M takes a computational 

shortcut for most of the parameters.  

Before optimization starts, M calculates the partial derivatives of the X and Y components 

of all Λ𝑝𝑝,𝑖𝑖 with respect to all warping grid parameters and all control points of a particle’s 

position trajectory that affect them. Similarly, the partial derivatives of the individual Eu-

ler angle components of all Θ𝑝𝑝,𝑖𝑖 with respect to all stage angle correction parameters and 

all control points of a particle’s orientation trajectory are calculated. As each parameter 

influences only a small fraction of particle frames or tilts, most of the derivatives are 0. 

They are excluded from the precalculated lists to avoid unnecessary computation. Then, 

during optimization, once per search iteration, the partial derivative of 

(𝐴𝐴 ∗ 𝐵𝐵) �|𝐴𝐴|2|𝐵𝐵|2⁄  for each particle frame or tilt is calculated with respect to X, Y and 

the Euler angles. This amounts to evaluating 𝑀𝑀 10 times. A useful approximation for the 

derivative for each parameter 𝜂𝜂 can then be calculated as follows: 
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
∑ ∑ ∑ ∑

𝜕𝜕�𝐴𝐴𝑠𝑠,𝑝𝑝,𝑇𝑇∗𝐵𝐵𝑠𝑠,𝑝𝑝,𝑇𝑇 ��𝐴𝐴𝑠𝑠,𝑝𝑝,𝑇𝑇�
2
�𝐵𝐵𝑠𝑠,𝑝𝑝,𝑇𝑇�

2
� �

𝜕𝜕𝜕𝜕 ∙𝜕𝜕𝑇𝑇𝑝𝑝𝑠𝑠 Κ𝑠𝑠,𝑝𝑝,𝑇𝑇∙�𝐴𝐴𝑠𝑠,𝑝𝑝,𝑇𝑇�∙�𝐵𝐵𝑠𝑠,𝑝𝑝,𝑇𝑇�

∑ ∑ ∑ ∑ �𝐴𝐴𝑠𝑠,𝑝𝑝,𝑇𝑇�∙�𝐵𝐵𝑠𝑠,𝑝𝑝,𝑇𝑇�𝜕𝜕𝑇𝑇𝑝𝑝𝑠𝑠
 , 

Κ𝑠𝑠,𝑝𝑝,𝑖𝑖 =
𝜕𝜕�Λ𝑝𝑝,𝑇𝑇∥Θ𝑝𝑝,𝑇𝑇�𝜕𝜕

𝜕𝜕𝜕𝜕
 , 

where 𝛼𝛼 ∈ {𝑥𝑥,𝑦𝑦,𝜙𝜙,𝜗𝜗,𝜓𝜓}, i. e. one of the translation axes or Euler angles; ∥ denotes the 

concatenation of two tuples; (… )𝛼𝛼 denotes the selection of component 𝛼𝛼 from a tuple. 

The deformation parameters make up the bulk of all parameters. Parameters such as ab-

solute magnification and beam tilt do not benefit from the same shortcut and their de-

rivatives must be calculated independently with the central differences scheme. The CTF-

related parameters are few, but the calculation of their derivatives is especially expensive 

because it requires the particles to be reextracted at an aliasing-free size, pre-multiplied 

by the altered CTF, and cropped to refinement size – all involving expensive FT steps. M 

calculates the values of 𝑀𝑀 by adding up the results from small batches of particles. This 

allows the cost of the first FT at aliasing-free size to be amortized over all optimizable CTF 

parameters, as its result is reused for all subsequent calculations. The gradients for all 

per-particle or per-tilt defocus and astigmatism parameters can all be calculated in the 

same pass as each of them affects only one particle or tilt. 

If defocus is to be optimized, an iterative grid search can be executed before the L-BFGS 

optimization starts. The search runs for 5 iterations. For the first iteration, a range of ±300 

nm around the current values is sampled in 10 nm steps. For each subsequent iteration, 

the search step is halved, and a range of ± the new search step around the 2 best values 

for each particle or tilt from the previous iteration is sampled. 

3.2.5 Memory footprint considerations 

Traditional SPA refinement treats every particle as an isolated entity, thus requiring no 

more than one particle to be held in memory at any given time if parallelization is not 

considered. A multi-particle approach, however, needs to rapidly evaluate the state of 

the entire multi-particle system during refinement. The particle frame/tilt series need to 
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be stored in memory because re-extracting and reprocessing them for every evaluation 

would be too inefficient. While an in vitro sample usually contains a single layer of pro-

teins with up to 1000–2000 particles in a field of view, a densely packed in situ volume 

has the potential to contribute tens of thousands of particles to refinement if enough 

species can be identified. The image size is selected to be twice the particle diameter to 

account for signal delocalization and interpolation artifacts, leading to significant overlap 

even in the single-layer case. At high refinement resolution, the memory requirements of 

all extracted particle frame/tilt series in a system can vastly exceed those of the original 

data, rising to tens or even hundreds of gigabytes.  

Although M uses GPUs for acceleration wherever possible, currently available consumer-

level cards offer up to 12 GB, which would be insufficient in many cases. Therefore, the 

extracted particle frame/tilt series are held in “pinned” (i.e. page-locked) CPU memory 

where they can be transparently accessed by the GPU. Despite the low bandwidth of 

CPU–GPU memory transfers, the GPU does not experience a significant performance pen-

alty when correlating them to reference projections. This is because the particle data ac-

cesses are sequential and highly coalesced, whereas the creation of reference projections 

on-the-fly accesses the GPU memory randomly, creating significant overhead. As faster 

CPU–GPU interfaces are being developed, the penalty should become more negligible in 

the future. 

Still, memory requirements can become too high even for CPU memory. To reduce the 

footprint, M exploits the varying information content of frames/tilts over the course of a 

series. As sample damage from radiation is accounted for by applying a Gaussian (“B-

factor”) weighting function in Fourier space7, 33, the contribution of higher-frequency 

components becomes negligible at high exposure. M crops extracted particle images in 

Fourier space to a resolution that corresponds to the weighting function value falling be-

low 0.25, resulting in considerable space savings once high resolution is reached. Assum-

ing an increase in the weighting B-factor of 4  Å 2 per 1 e-/ Å 2 of accumulated exposure, 

the maximum useful frequency at exposure 𝑑𝑑 is 𝑓𝑓𝑁𝑁𝑚𝑚𝑥𝑥 = �ln(4) /𝑑𝑑, and the image size 𝑚𝑚 
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scales with a factor of min(1,𝑓𝑓𝑁𝑁𝑚𝑚𝑥𝑥/𝑓𝑓𝑁𝑁𝐸𝐸𝑓𝑓𝑖𝑖𝑟𝑟𝐸𝐸). Thus, the upper bound for memory con-

sumption in case of low refinement resolution and/or low overall exposure is 𝑂𝑂(𝑚𝑚2𝑑𝑑), 

while the lower bound is Ω(𝑚𝑚2ln(𝑑𝑑)) in case of high refinement resolution and/or high 

overall exposure.  

3.2.6 Avoiding CTF aliasing 

Cryo-EM data of thin biological specimens are usually acquired at defocus to achieve 

phase contrast. In the absence of a phase plate device, and often in the case of in situ 

tomography, defocus values can exceed 4 µm to enable better visual interpretation of 

the raw data. Higher defocus results in stronger delocalization of the signal in real space, 

as reflected by faster oscillations of the CTF in Fourier space. As the CTF oscillates be-

tween -1 and 1, combining signals with different defoci would result in an average value 

of 0 at higher spatial frequencies. Thus, a phase shift of 𝜋𝜋 must be applied to frequency 

components modulated by negative CTF values prior to averaging. Furthermore, it is de-

sirable to compute the reconstruction as a weighted average, using the CTF for the 

weighting. Multiplying the FT of a particle image by the corresponding real-valued CTF 

achieves both goals. 

Current SPA packages advise the user to select the particle box size as 1.5–2 the particle 

diameter to account for Fourier-space interpolation artifacts, not considering the image 

defocus. When an image is cropped around a particle, the Fourier-space modulation pat-

tern becomes band-limited to the new window size. If CTF oscillations are too fast to be 

resolved, the band-limited values for the amplitudes of the corresponding frequency 

components will converge to 0. Even worse, the analytical 2D CTF model used in refine-

ment and reconstruction is not band-limited, and contains solely aliasing artifacts past 

the Fourier-space Nyquist frequency instead of converging to 0. This can put a hard limit 

on the achievable resolution for small particles and those acquired at high defocus that 

is independent of the actual data quality. 

This problem can be mitigated by selecting a box size large enough to avoid CTF aliasing68 

at the highest defocus value in a data set. However, the required size 𝑚𝑚 can exceed 1000 
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px at high resolution or defocus, significantly slowing down refinement algorithms whose 

complexity and memory footprint are 𝑂𝑂(𝑚𝑚2) and 𝑂𝑂(𝑚𝑚3), respectively. This increase can 

be entirely avoided by pre-multiplying particle images by the CTF at an aliasing-free size, 

and cropping them to a smaller size for refinement or reconstruction. As the modulation 

pattern is CTF2 after pre-multiplication, the band-limited oscillations will converge to 0.5 

instead of 0. The 2D CTF model used in refinement and reconstruction must be similarly 

band-limited to match the data. As M operates on all particles of an entire frame/tilt se-

ries at a time and extracts the particle images on-the-fly, such considerations are made 

automatically for the currently needed resolution. 

The minimum box size needed for CTF correction at a given resolution is dictated by the 

maximum oscillation rate of the CTF within the available spatial frequency range. This is 

not necessarily the oscillation rate at the highest spatial frequency as 𝜑𝜑 is not a mono-

tonic function: A combination of low underfocus and high Cs will cause the oscillations to 

slow down significantly and accelerate again at higher spatial frequencies. The oscillation 

rate can be calculated as the first derivative of 𝜑𝜑. In practice, it is easier to evaluate 

𝑑𝑑𝜑𝜑/𝑑𝑑𝑘𝑘 numerically within the relevant range of spatial frequencies to find its maximum 

absolute value. To fully resolve the oscillation, one period must be rasterized onto at least 

2 pixels, i.e. the window size must be chosen such that max(𝑑𝑑𝜑𝜑/𝑑𝑑𝑘𝑘) = 2𝜋𝜋/2𝑝𝑝𝑥𝑥. While 

this guarantees a fully resolved CTF in 1D, a CTF rasterized on a Cartesian 2D grid has an 

anisotropic sampling rate. At its lowest, i.e. along the diagonals, it requires √2 the sam-

pling rate of the 1D case. 

Before particle extraction, the size padding factor at which the images will be pre-multi-

plied by the CTF has to be determined, taking into consideration the maximum defocus 

value expected in a frame/tilt series, and the expected maximum resolution. During re-

finement, the latter is set to the refinement resolution. For the final reconstruction, it is 

set to 1.25x the current global resolution. Particles are extracted using the calculated 

minimum box size (or twice the particle diameter in case that value is larger), and pre-

multiplied by the CTF in Fourier space. Then the inverse FT (IFT) is applied, the particles 
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are cropped to the refinement or reconstruction size in real space, and transformed back 

to Fourier space for refinement. The band-limited CTF2 model is prepared by simulating 

the function at the same aliasing-free size in Fourier space, cropping its IFT in real space, 

and taking the real components of the result’s FT. 

3.2.7 Data-driven weighting 

To account for radiation damage as a function of accumulated exposure, or increasing 

sample thickness as a function of the stage orientation, several heuristics and empirical 

approaches have been proposed7, 33, 38. By default, M adopts the heuristic introduced in 

RELION 1.438. The B-factor is increased by 4 Å 2 per 1 e-/Å2 of exposure, and each tilt is 

weighted as cos𝜗𝜗. Once high resolution is reached, the weights can be estimated empir-

ically using a reference correlation-based approach similar to the one introduced in 

RELION 3.033. 

In a departure from RELION’s scheme, the normalized correlation (NC) is calculated be-

tween particle images and reference projections at the end of a refinement iteration are 

not combined across the entire data set. It is kept as a 2D image to enable the fitting of 

anisotropic weights rather than averaging rotationally. The correlation data can then be 

recombined in different ways to calculate different kinds of weights. Furthermore, be-

cause M supports the refinement of multiple species with different resolution, the per-

species correlation vectors for each frame or tilt need to be combined. This is done by 

weighting each one by the FSC calculated between the half-maps of the respective spe-

cies. This produces a set of vectors 𝑆𝑆𝐶𝐶𝑑𝑑,𝑖𝑖,𝑘𝑘, where 𝑑𝑑 is the series, 𝑖𝑖 is the frame or tilt, 

and, optionally, 𝑘𝑘 is the tilt movie frame. 

The procedure then iteratively calculates 𝑆𝑆𝐶𝐶���� as: 

𝑆𝑆𝐶𝐶���� = ∑ ∑ ∑ 𝑁𝑁𝐶𝐶𝑑𝑑,𝑇𝑇,𝑘𝑘∙𝐺𝐺(𝐵𝐵𝑑𝑑+𝐵𝐵𝑇𝑇+𝐵𝐵𝑘𝑘)∙𝑊𝑊𝑑𝑑∙𝑊𝑊𝑇𝑇∙𝑊𝑊𝑘𝑘∙𝐶𝐶𝑇𝑇𝐹𝐹������𝑑𝑑,𝑇𝑇𝑘𝑘𝑇𝑇𝑑𝑑
∑ ∑ ∑ 𝐺𝐺(𝐵𝐵𝑑𝑑+𝐵𝐵𝑇𝑇+𝐵𝐵𝑘𝑘)∙𝑊𝑊𝑑𝑑∙𝑊𝑊𝑇𝑇∙𝑊𝑊𝑘𝑘∙𝐶𝐶𝑇𝑇𝐹𝐹������𝑑𝑑,𝑇𝑇𝑘𝑘𝑇𝑇𝑑𝑑

 , 

and optimizes the weighting parameters to minimize the following cost function: 

𝐶𝐶 = ∑ ∑ ∑ �𝑆𝑆𝐶𝐶𝑑𝑑,𝑖𝑖,𝑘𝑘 − 𝑆𝑆𝐶𝐶���� ∙ 𝐺𝐺(𝐵𝐵𝑑𝑑 + 𝐵𝐵𝑖𝑖 + 𝐵𝐵𝑘𝑘) ∙ 𝑊𝑊𝑑𝑑 ∙ 𝑊𝑊𝑖𝑖 ∙ 𝑊𝑊𝑘𝑘�𝑘𝑘𝑖𝑖𝑑𝑑  , 
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where ∙ denotes scalar multiplication; 𝐺𝐺 is an anisotropic 2D Gaussian B-factor weighting 

function; 𝐵𝐵 is a vector describing the B-factor along the X and Y axes, and their rotation; 

𝑊𝑊 is a scalar weight; 𝐶𝐶𝐶𝐶𝐶𝐶������ is the weighted average of all particle CTFs in one frame or tilt. 

The B-factors in each group are constrained such that the highest value in a group is set 

to 0. 

In this default formulation, the weighting scheme allows to assign separate weights not 

only to individual frames/tilts, but also to weight the contribution of an entire series. For 

data with high particle density this scheme can be extended to assign different weights 

to frames/tilts of each individual series. Anisotropic B-factors improve the weighting of 

frames with significant intra-frame motion (Figure 3.6). Combined with per-series, per-

frame weighting, such granularity allows to rescue more information from the first few 

frames of an exposure if parts of them are less affected by BIM. 

3.2.8 Map reconstruction 

Previous refinement packages took two different approaches to map reconstruction from 

frame and tilt series data. For frame series, weighted averages were prepared either di-

rectly from the initial, reference-free alignments, or based on a “polishing” procedure33. 

These 2D averages were then weighted based on a 2D CTF model and a spectral signal-

to-noise ratio (SSNR) term4, and back-projected to obtain the reconstruction. For tilt se-

ries, the algorithms operated on intermediate per-particle 3D reconstructions (‘sub-

tomograms’) with fixed translational and rotational offsets between individual tilt im-

ages. These 3D sub-tomograms were then weighted based on a 3D CTF model38 and an 

SSNR term, and back-projected to obtain the reconstruction. 

M seeks to unify the handling of both types of data and uses the original, non-interpo-

lated 2D data at every step, including reconstruction. For tilt series, this approach avoids 

any artifacts from intermediate interpolation and reconstruction steps. For frame series, 

the requirement for identical orientation of all particle frames no longer exists as they 

are not averaged in 2D, enabling the modeling of particle orientation as a function of 

exposure. Only for individual tilt movie frames a shortcut is taken to save memory and 
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computation, and they are pre-averaged in 2D using the approach described for Warp84 

after a separate multi-particle refinement of the respective tilt movie. 

Thus, for the reconstruction, individual particle frames or tilts are weighted by an expo-

sure-dependent function to account for radiation damage, and an aliasing-free 2D CTF 

model (see previous section) that incorporates the exact defocus and astigmatism values 

for that position and frame/tilt. The weighted data are then back-projected through Fou-

rier space summation, accounting for Ewald sphere curvature. The reconstruction is fi-

nalized by dividing the summed data component by the summed weights component4. 

3.2.9 Map denoising 

Reconstructions of biological specimens derived from cryo-EM data rarely have homoge-

neous resolution throughout all parts of the macromolecule. Using a map filtered to its 

global resolution for particle alignment can have detrimental effects. Poorly resolved re-

gions, such as floppy protein domains or the lipid bilayer around transmembrane do-

mains, will make the alignment worse by adding noise to reference projections below the 

refinement resolution. In the case of fully independent half-maps90, the noise patterns 

that the particles will be aligned against are independent, and amplifying them over sev-

eral iterations only has the potential of making the resolution worse. In the case of re-

finement with merged half-maps86, where overfitting is avoided by limiting the refine-

ment resolution, the poorly resolved regions may be well below that limit, leading to a 

common, overfitted noise pattern in both half-maps. 

Past attempts at filtering maps based on local resolution estimates for refinement28, 105 

applied FSC-based approaches89 to estimate the local resolution and performed the fil-

tering in the Fourier domain. As only one set of estimates can be made based on one pair 

of half-maps, any spurious patterns in the estimated values will be introduced into both 

half-maps when the filtering is performed. The locality and accuracy of the estimates de-

pends on the window size89. A smaller window increases locality at the expense of accu-

racy. Once introduced, the noise pattern can become amplified over multiple iterations, 

leading to overestimated local resolution and phantom features that can be 
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misinterpreted. More advanced regularization schemes have been proposed93, 94 since to 

deal with this problem. 

M implements a new approach to map filtering that uses neural network-based de-

noising. The recently proposed noise2noise training principle82 allows the training of dif-

ferentiable denoiser models without a noise-free ground truth, using only two inde-

pendently noisy observations. It has been successfully applied to micrograph84 and tomo-

gram52, 84 denoising. The implementation in M utilizes gold-standard90 half-map recon-

structions, which represent another obvious case of two independently noisy observa-

tions of the same signal, and are interchangeably used as input and target in training. The 

reconstructions are obtained at the end of each refinement iteration in M by back-pro-

jecting extracted images from the original frames or tilts, using the particle half-sets car-

ried over from RELION at the beginning of the workflow. We find that a denoiser trained 

on one pair of half-maps not only matches closely the result of conventional global reso-

lution filtering when applied to maps with homogeneous resolution, but also provides 

locally smooth, artifact-free local resolution filtering. As such models can train on and 

denoise sets of micrographs or tomograms with different defocus values and thus differ-

ent noise models, they can also recognize and adapt to different noise levels within the 

same reconstruction. In another important departure from FSC-based methods, the de-

noising step is applied to the half-maps independently and the denoiser sees only one of 

them at a time. Thus, even if some spurious pattern is introduced as part of the denoising, 

it is independent between the half-maps. 

The neural network architecture is identical to the one used for tomogram denoising in 

Warp. A separate denoising model is maintained for every species, and trained only on 

the respective pair of half-maps. The model is initialized with random values and trained 

for 800 iterations upon the creation of a new species. It is later retrained for another 800 

iterations after every refinement. Spectrum whitening is applied to the maps before 

training to restore high-frequency amplitudes86, similar to B-factor-based sharpening101. 

During training, 643 px volumes are extracted from both maps at the same random 
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position and orientation, and presented to the network as input and output in mini-

batches of 3. The random orientations make sure the network learns the noise model 

rather than merely learning the average map. The learning rate for the Adam optimizer 

is exponentially decreased from 10-3 to 10-5 throughout the training. For the denoising of 

each half-map, the map is partitioned in 643 px windows overlapping by 24 px, denoised, 

and the results from each window are inserted into the output volume. Regardless of 

regions with above-average resolution being potentially present, the refinement resolu-

tion is set conservatively to the global map resolution. In addition to the two half-maps 

for refinement, a denoised average map is also prepared by applying the same denoising 

model to the average of the spectrum-whitened half-maps. 

3.2.10 Assessment of map denoising 

Frame series data were downloaded for the EMPIAR-10288 entry (Figure 3.7a, b). Frame 

alignment and local CTF estimation were performed in Warp with a spatial resolution of 

5x5. 1,033,994 particles were picked with a retrained BoxNet model in Warp and ex-

ported at 1.5 Å/px. 2D classification, 3D classification and refinement were performed in 

RELION using EMD-0339 as the initial reference. 149,328 particles corresponding to the 

best 3D class were imported in M. The particle poses were given a temporal resolution of 

2, the deformation grid resolution was set to 2x2, and refinement of all parameters was 

performed for 5 iterations (Table S3.1). Data-driven weight estimation was performed to 

assign unique weights to every frame index. 

Pre-aligned tilt movies were downloaded for the EMPIAR-10453 entry (Figure 3.7c, d). 

Gold fiducials were picked with BoxNet in Warp, and fiducial-based tilt series alignment 

was performed in IMOD. Tilt series CTF estimation and reconstruction of full tomograms 

at 12 Å/px was performed in Warp. A binary classifier based on a 3D CNN (in develop-

ment, not part of Warp and M) was trained using 5 manually segmented tomograms to 

segment the SARS-CoV-2 virions. Another 3D CNN-based binary classifier was trained on 

manually picked spike protein positions in 7 tomograms. Automatically picked spike pro-

tein positions were cross-referenced with the segmented virions to remove particles 
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further away than 200 Å, obtaining 38,742 particles. Sub-tomograms were reconstructed 

at 5 Å/px for refinement in RELION. After ab initio map generation, 3D refinement was 

performed, reaching the 10 Å Nyquist limit. The results were imported in M, where a 

1x1x41 image warping grid and particle poses were optimized for 2 iterations. Sub-tomo-

grams were reconstructed at 5 Å/px using the improved alignments, and subjected to 

classification into 4 classes in RELION. 22,998 particles from 2 classes showing the spike 

trimer were imported in M, where a 3x2x41 image warping grid, CTF, and particle poses 

were optimized for 4 iterations with C3 symmetry (Table S3.1). For the comparison, the 

refinement procedure was modified to omit the denoising step. Refinement was then 

restarted at 10 Å and performed for 5 iterations using the same settings. 

3.2.11 Acquisition of apoferritin benchmark data 

To compare the resolution achievable with frame and tilt series data and assess individual 

algorithms implemented in M, we acquired two data sets of human heavy-chain apofer-

ritin: AF-f (frame series) and AF-t (tilt series). To make sure that any observed differences 

came from data type and processing strategies rather than local variance in sample qual-

ity, neighboring holes within the same grid square were used for both data sets.  

The apoferritin plasmid and purification protocol were kindly provided by Louise Fairall 

and Christos Savva from the Midlands Regional Cryo-EM Facility, University of Leicester. 

In brief, GST-tagged apoferritin was overexpressed in E. coli, captured on Gluthatione-

sepharose beads after cell lysis, cleaved off the resin by TEV protease and purified to 

homogeneity by size exclusion chromatography in 50 mM Tris-HCl pH 7.5, 100 mM NaCl 

and 0.5 mM TCEP.  

3 µl of apoferritin at 3.8 mg/ml were applied to freshly glow discharged R 1.2/1.3 holey 

carbon grids (Quantifoil) at 4˚C and 100% relative humidity followed by plunge-freezing 

in liquid ethane using a Vitrobot Mark IV (Thermo Fisher Scientific). The sample concen-

tration resulted in a dense, single-layered hole coverage. Data were collected on a Titan 

Krios TEM (Thermo Fisher Scientific) operated at 300 kV and a magnification resulting in 

a calibrated pixel size of 0.834 Å. The energy filter (Gatan) was operated in zero loss mode 
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with a slit width of 20 eV. The K3 direct electron detector (Gatan) was operated in count-

ing mode with a freshly acquired reference for gain correction. The exposure rate was 

adjusted to 20 e-/px/s. SerialEM69 was used for frame and tilt series acquisition. 

Positions for both data sets were selected to be distributed evenly over the same grid 

area to maximize the similarity in ice thickness and particle density. For AF-f, 150 frame 

series were collected with a total series exposure of 32 e-/Å2, fractionated in 40 frames. 

For AF-t, 135 tilt series ranging from -40 to +40 degrees were collected in a grouped dose-

symmetric scheme106 with a group size of 2 and in 2 degree steps. Each tilt was exposed 

to 2.7 e-/Å2, fractionated in 3 frames. 

3.2.12 Comparison between frame and tilt series performance 

Using data set AF-f, frame series alignment and local CTF estimation were performed in 

Warp with a spatial resolution of 8x5, owing to the rectangular format of the K3 chip. 

22,122 particles were picked with a retrained BoxNet model in Warp and exported at full 

resolution in 512 px boxes. Global 3D refinement with octahedral symmetry was per-

formed in RELION 3.0. The results were imported in M. The particle poses were given a 

temporal resolution of 3, the deformation grid resolution was set to 6x4, and refinement 

of all parameters was performed for 5 iterations (Table S3.1). Data-driven weight estima-

tion was performed to assign unique weights to every series and frame index. 

Using data set AF-t, tilt movie frame alignment was performed in Warp using a model 

without spatial resolution. Initial tilt series alignment was performed in IMOD using patch 

tracking on 6x binned images with default settings. Tilt series CTF estimation was per-

formed in Warp. 18,991 particles were picked using Warp’s 3D template matching in full 

tomograms reconstructed at 10 Å/px. Sub-tomograms and 3D CTF volumes were ex-

ported at 2 Å/px using 140 px boxes. Global 3D refinement with octahedral symmetry 

was performed in RELION 3.0. The results were imported in M. The particle poses were 

given a temporal resolution of 3, the image warp grid resolution was set to 6x4x41, and 

refinement of all parameters was performed for 5 iterations, including tilt movie frame 
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alignment in the last 2 iterations (Table S3.1). Data-driven weight estimation was per-

formed to assign unique weights to every series and tilt index.  

3.2.13 Assessment of multi-species refinement 

Particles from each frame series of the AF-f data set were split in 5% and 95% sub-popu-

lations, resulting in species with 3,710 and 70,497 particles, respectively. Frame align-

ments and particle poses previously obtained from Warp and RELION were reused. In the 

first scenario, the 5% species was refined alone. In the second scenario, the 5% species 

was co-refined with the 95% species. Both species were assumed to be structurally inde-

pendent and did not contribute particles to each other’s reconstructions. For both tested 

scenarios, a 6x4 starting grid for the deformation was used, the resolution of all species 

was set to 4.0 Å and only one refinement iteration was performed in M to avoid possible 

benefits from the higher resolution the 95% species would reach after the first iteration. 

3.2.14 Comparison with RELION on atomic-resolution frame series data 

Frame series data were downloaded for the EMPIAR-10248 entry and pre-processed in 

Warp. 109,437 particles were exported at 0.6 Å/px using 466 px boxes and refined in 

RELION. The resulting particle poses and half-maps were imported in M and refined for 5 

iterations starting with a resolution of 3.0 Å in the first iteration. A starting grid of 4x4 

was used for the deformation model, and the number of frames was truncated to 25. All 

CTF-related parameters were refined, including doming, per-series beam tilt and a 3x3 

grid model for local astigmatism (Table S3.1). For the last 2 iterations, anisotropic per-

series, per-frame B-factor weights were estimated. The final iteration was completed in 

ca. 24 hours, using 4 GeForce 2080 Ti GPUs. The original mask deposited with EMD-9865 

was used to estimate the final resolution. 

To analyze the doming behavior, fitted doming model parameters were averaged across 

the data set. Because doming was fitted after per-particle defocus, which was dominated 

by frames 3–4 due to weighting, the values were normalized by subtracting those of 

frame 1 from all. As a larger, planar inclination spanning the field of view was observed 

in the fits in addition to the more local bending of the center relative to the periphery, a 
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plane was fitted into each frame’s values and subtracted from them before quantifying 

the doming. 

3.2.15 Comparison with other tools for tilt series data refinement 

Tilt series data were downloaded for the EMPIAR-10064 entry. Initial tilt series alignment 

was performed in IMOD using manually picked gold fiducials on 4x binned images with 

default settings. Tilt series CTF estimation was performed in Warp. 3,566 particles were 

picked using Warp’s 3D template matching in full tomograms reconstructed at 10 Å/px. 

Sub-tomograms and 3D CTF volumes were exported at 5.0 Å/px. Global 3D refinement 

reached a resolution of 13 Å. The results were imported in M. The particle poses were 

given a temporal resolution of 3, the image warp and volume warp grid resolutions were 

set to 8x8x41 and 4x4x2x20, respectively, and refinement of all parameters was per-

formed for 5 iterations (Table S3.1). Data-driven anisotropic weight estimation was per-

formed to assign unique weights to every series and tilt index. 

The processing of EMPIAR-10045 tilt series was performed in exactly the same way as 

descried in the previous paragraph for EMPIAR-10064, using 3,058 particles (Table S3.1).  

Tilt series movie data were downloaded for the EMPIAR-10164 entry. Tilt movie frame 

alignment was performed in Warp using a model without spatial resolution. Initial tilt 

series alignment was performed in IMOD using gold fiducials automatically picked in 

Warp, on 6x binned images with default settings. Tilt series CTF estimation was per-

formed in Warp. 130,658 particles were picked using Warp’s 3D template matching with 

a template derived from EMD-3782 in full tomograms reconstructed at 10 Å/px. Sub-

tomograms and 3D CTF volumes were exported at 5 Å/px using 56 px boxes. Global 3D 

refinement with C6 symmetry was performed in RELION 3.0, and reached the 10 Å 

Nyquist limit. The results were imported in M. The particle poses were given a temporal 

resolution of 3, the image warp and volume warp grid resolutions were set to 8x8x41 and 

3x3x3x20, and refinement of all parameters was performed for 5 iterations, including tilt 

movie frame alignment in the last 2 iterations (Table S3.1). Data-driven anisotropic 
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weight estimation was performed to assign unique weights to every series, tilt index and 

tilt frame index. 

3.2.16 Acquisition and refinement of M. pneumoniae in situ tilt series data 

Data previously used in another study100 were re-analyzed with the release version of M. 

As described there, Mycoplasma pneumoniae strain M129（ATCC 29342）cells were 

grown on 200 mesh gold grids coated with a holey carbon support (R 2/1, Quantifoil). 

Cells were cultivated at 37 °C in modified Hayflick medium: 14.7 g/L Difco PPLO (Becton 

Dickinson, USA), 20% (v/v) Gibco horse serum (New Zealand origin, Life Technologies, 

USA), 100 mM HEPES-Na (pH 7.4), 1% (w/w) glucose, 0.002% (w/w) phenol red and 1,000 

U/mL freshly dissolved penicillin G. Chloramphenicol (Cm; Sigma-Aldrich, USA) was added 

15 minutes prior to vitrification, at a final concentration of 0.5 mg/ml. Grids were quickly 

washed with PBS buffer containing 10 nm protein A-conjugated gold beads (Aurion, Neth-

erlands), blotted from the back side for 2 seconds, and plunged into mixed liquid 

ethane/propane at liquid N2 temperature with a manual plunger (Max Planck Institute of 

Biochemistry, Germany). The cryo-EM grids were stored in a sealed box in liquid N2 before 

usage.   

Tilt series data were collected on a Titan Krios TEM operated at 300 kV (Thermo Fisher 

Scientific) equipped with a field-emission gun, a Gatan K2 Summit direct detector and a 

Quantum post-column energy filter (Gatan). Images were recorded in exposure-fraction-

ation, counting mode using SerialEM 3.7.2. Tilt-series were acquired with a dose-symmet-

ric scheme using dedicated scripts106 with the following settings: TEM in nano-probe 

mode, magnification 81,000 with a calibrated pixel size of 1.7 Å, energy filter in zero loss 

mode, defocus range 1.5 to 3.5 µm, tilt range -60° to 60° with 3° tilt increment and con-

stant exposure per tilt, total exposure of 120 e-/Å2. In total, 65 tilt series were collected 

from Cm-treated cells.  

Raw tilt movies were processed in Warp. De novo tilt series alignment was performed in 

IMOD using gold fiducials picked automatically with Warp’s BoxNet, and the results were 
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imported in Warp, where the tilt series CTFs were estimated. Using full tomograms re-

constructed at 10 Å/px, two tomograms were denoised using Warp’s Noise2Map tool to 

pick the ribosome particles manually. Using these coordinates, sub-tomograms were ex-

ported from Warp to RELION to obtain an initial reference. This reference was used to 

perform template matching in Warp at 10 Å/px. In addition, a binary classifier based on 

a 3D CNN was trained on the 2 manually picked tomograms to remove false positives 

(membranes, carbon hole edges etc.) from the template matching results. 24,202 parti-

cles were obtained this way. Sub-tomograms for all particles were exported from Warp 

to RELION and aligned against the previously refined low-resolution reference. No classi-

fication was performed. The results were imported in M. There, global movement and 

rotation, a 5x5x41 image-space warping grid, a 8x8x2x10 volume-space warping grid, as 

well as particle pose trajectories with 3 temporal sampling points were refined over 5 

iterations (Table S3.1). Starting with iteration 3, CTF parameters were also refined. At the 

beginning of iteration 4, reference-based tilt movie alignment was performed, resulting 

in a 3.7 Å map. Using the improved alignments, sub-tomograms were reconstructed at 3 

Å/px. Classification into 5 classes was performed in RELION. 17,890 particles from the 2 

best classes were imported in M and refined for another iteration using the same settings 

to obtain a 3.5 Å map. The final iteration was completed in ca. 6 hours, using 4 GeForce 

2080 Ti GPUs. Afterwards, focused refinements were performed in M using masks limited 

to the 30S and 50S subunits, optimizing only image warping and particle poses. 

To calculate the Rosenthal–Henderson101 plot, deformation, weighting and CTF parame-

ters from the last iteration of 70S refinement were kept. The number of particles was 

reduced by excluding entire tilt series from the data set, thus keeping the average particle 

density per series constant. Resolution was reset to 10 Å at the beginning of each subset’s 

refinement, and only the particle pose trajectories were optimized for 3 iterations. 
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Table S3.1 | Refinement parameters for all data sets. 
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4. Conclusions and outlook 

In this thesis, two new computational tools for cryo-EM were described and evaluated: 

Warp and M. Together, the tools cover a significant portion of the cryo-EM structure de-

termination pipeline and set new resolution records for tomographic data of in vitro and 

in situ samples.  

Warp bridges the gap between data acquisition and SPA, providing new algorithms for 

motion correction, CTF estimation, particle picking, and tomogram reconstruction. Be-

cause the new algorithms are more robust, Warp is able to execute them automatically 

and in parallel with data collection to provide real-time monitoring of sample and data 

quality. Advances in machine learning largely solve the long-standing problem of particle 

picking, reaching human-like accuracy even on challenging samples. Transparent han-

dling of defocus gradients in tilted samples allows to use this data collection strategy rou-

tinely in case of strongly preferred particle orientation. Frame series and tilt series data 

can be pre-processed using the same user-friendly interface, making Warp a versatile tool 

for cryo-EM facilities. Extensive testing on published data sets showed that Warp can 

achieve equal or significantly better resolution than previous pre-processing pipelines. 

M takes over from SPA tools like RELION once particle classes and global alignments have 

been established. It improves the solution further by going back to the raw frame series 

or tilt series data that had been previously refined with reference-free algorithms, and 

uses a new multi-particle framework to perform simultaneous reference-based optimi-

zation of all aspects of the sample and imaging models. Sample motion within the field of 

view is constrained in physically plausible ways, and higher-order optical aberrations can 

be fitted to achieve atomic resolution on favorable samples. We showed that M can 

achieve equally high resolution for frame and tilt series, closing the gap that had made 

tilt series unattractive for high-resolution work. Most importantly, our work showed that 

unprecedentedly high resolution can be obtained for structures imaged inside cells, open-

ing in situ structural biology to new applications such as de novo structure determination 

and structure-based drug design. 
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4.1 Further development of Warp and M 

Warp and M are mature, well-integrated with each other and external programs, and 

have already impacted many projects in structural biology. They will also provide a solid 

foundation for future methods that go beyond today’s SPA.  

Warp’s pre-processing automation needs to be integrated with acquisition software like 

SerialEM69. Implementing this will make acquisition faster and more efficient, especially 

for tilt series. Unlike conventional micrographs, tilt series are much slower to acquire, 

making the loss of tracking or the targeting of an undesirable grid location especially 

costly. Problems can be avoided if they are noticed during pre-processing and communi-

cated to the acquisition software. Furthermore, on-the-fly tilt series alignment must be 

accelerated to a level where Warp can communicate necessary adjustments to SerialEM 

during stage tilting to avoid additional tracking steps. 

Interactive and automated tomogram segmentation must be added to Warp. While in 

vitro micrographs rarely require segmentation beyond particle picking, in situ tomograms 

automatically reconstructed in Warp hold a great wealth of context that must be ana-

lyzed and made available to the user and downstream processing algorithms. Such anal-

ysis will include the segmentation of organelles, membranes, extracellular vesicles, and 

other recurring objects. Having such context will greatly benefit any further analysis of in 

situ data. 

Many features remain to be added to M. The added ability to refine molecules with heli-

cal symmetry will open an important class of structures to high-resolution in situ refine-

ment. Furthermore, a neural net-based image similarity metric must be developed that 

is more robust to non-Gaussian noise than conventional correlation. Integrated in M, this 

metric can enable the refinement of smaller molecules both in vitro and in situ through 

improved alignment. 
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4.2 Central repository for sharing in situ cryo-ET data 

Our processing of in situ data with Warp and M demonstrated that residue-level resolu-

tion can be achieved inside a thick, crowded cell. Ribosomes are special in their molecular 

mass, rigidity, and abundance in cells, making them an ideal target for in situ SPA. Most 

molecules with a molecular mass over 100 kDa are far less abundant. A single tomogram’s 

field of view will contain only a few particles of a single molecule species on the average, 

and even less than one copy in many cases.  

Despite improvements in resolution, our research showed that thousands of particles are 

still required to achieve high resolution. Even without factoring in the increased compo-

sitional and conformational heterogeneity expected for most proteins in situ, this trans-

lates to a larger amount of data than any researcher or even a lab can acquire and process 

within a reasonable amount of time. We also demonstrated that our multi-particle re-

finement framework benefits from a higher number of particles per field of view. Thus, a 

rare molecule will achieve higher resolution with the same number of particles when co-

refined with other molecule species in the same data using M. While thousands of mole-

cules beyond the molecule of interest are present in any researcher’s in situ data, they 

are not analyzed and cannot contribute to M’s multi-particle refinement, even though 

they could be of high interest to others. Thus, by pooling their data and analyzing them 

together, everyone stands to gain not only more particles for their projects, but also im-

proved multi-particle alignments through all the other analyzed molecule species. 

Scientists are still very reluctant to share in situ data because they can power many more 

projects beyond the initial study. However, once the few ribosome-like molecules have 

been researched exhaustively, the two strong incentives outlined above will make the 

field much more collaborative. This is already common in other “big data” fields such as 

genomics or proteomics, where sharing large amounts of raw data is common and pooled 

data sets enable studies of unprecedented scale.  
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Such collaborations will require powerful data sharing mechanisms and advanced pro-

cessing workflows. Like the collaborative editing of text or program code, collaborative in 

situ cryo-ET necessitates versioning to keep track of the exact processing of every piece 

of data. The merging of independent processing branches generates conflicts, e.g. when 

multiple molecules occupy the same space, which must be resolved with intuitive tools. 

A foundation for this has already been laid in M, which keeps track of the exact changes 

occurring between refinement iterations and links them cryptographically into a version 

graph. However, branch merging and conflict resolution are still unsolved problems that 

will require a significant engineering effort. 

At the same time, a central repository must be built to host the pooled data sets and 

provide an open API for local clients like M to retrieve data, and submit updated pro-

cessing results such as the positions and identities of new molecules, improved align-

ments, or higher-resolution maps. Because of the integrated annotation, SQL-like search 

queries can enable scientists outside of structural biology to mine the knowledge for their 

studies.  

New data will be automatically segmented and mined for already known structures using 

continuously improving deep learning models. Because the addition of new data also af-

fects what can be done with previously refined particles, e.g. the discovery of additional 

states due to more data, such decisions must be automated. Centralized, continuous pro-

cessing will likely change how we publish results. Whereas currently maps deposited in 

the Electron Microscopy Data Bank (EMDB) remain frozen after publication, results will 

be more fluid in the future, continuing to evolve long after the first publication and ena-

bling valuable meta-studies. 

4.3 Resolving compositional and conformational heterogeneity with ma-

chine learning 

Understanding how biological molecules change over time is key to understanding biol-

ogy. Cryo-EM is in a unique position to image their full dynamics both in vitro and in situ. 
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Unfortunately, current methods are still rooted in crystallographic assumptions about the 

sample’s rigidity, and attempt to sort all changes into discrete classes. Such assumptions 

are a poor fit for the continuous movements and complex interplay of binding partners. 

Ever bigger data sets are required to resolve the dynamics with finer granularity, but still 

yield an incomplete picture in the end. 

Computational workarounds such as focused refinement restrict the analysis to a sub-

region of the molecule. This works well if a flexibly attached sub-region is independent in 

its behavior, but fails to capture any co-variance between different regions. Methods like 

multi-body refinement107 automate the refinement of several regions based on a crude 

partitioning provided by the user, but only work for certain tree-like region topologies.  

Higher-dimensional embeddings of cryo-EM data with 3D principal component analysis 

(PCA) or variational autoencoders (VAE) are completely agnostic to the type of heteroge-

neity they model because they operate on voxel intensities and can capture continuous 

movement, dissociation, and occupancy changes equally well. The resulting models ena-

ble visual, interactive exploration of the full heterogeneity space. However, this does not 

lead to increased resolution because the algorithm does not know that the different 

states belong to one molecule. 

An algorithm must be developed to combine the advantages of both methods. In a first 

step, a VAE-based embedding will provide a low-resolution, but high-accuracy model of 

the heterogeneity space. Then a pseudo-atomic representation (i.e. “connected, movea-

ble voxels”) will be fitted to the VAE outputs to encode the same space as explicit spatial 

movement and occupancy changes. Finally, experimental data can be iteratively fitted 

with the pseudo-atomic representation, and back-projected into a single, flexible basis to 

obtain both more precise embeddings and a higher-resolution map. 

4.4 Applying machine learning to in situ cryo-ET data 

In situ cryo-ET data present the most exciting opportunity, but also the biggest technical 

challenge in structural biology today. Applied to chaotic excerpts of cells filled with 
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dynamic, interacting molecules, shortcomings of modern SPA methods become most ev-

ident. While a sizeable portion of in vitro samples could be investigated at high resolution 

even if methods development stopped today, moving beyond ribosomes and a few simi-

larly favorable targets will be very hard in situ. A community-driven data repository can 

solve the problem of data availability. However, to make sense of the data, the field needs 

to move beyond classic computer vision and SPA approaches. 

In vitro data can be easily tailored to a methods developer’s needs, and reliably evaluated 

by eye. For instance, to come up with ground truth data for a particle picking model, the 

particles can be picked manually. This is not possible in situ, where most particles are very 

hard to recognize by eye, and to pick exhaustively due to their number. The best way to 

come up with the ground truth is through simulation. Unfortunately, previous attempts 

at cryo-EM image simulation have failed to deliver a realistic noise model. While our un-

derstanding of the physical imaging model is likely sufficient, it is the lack of imperfections 

in the simulated sample that makes the result unrealistic. A solution to this might be to 

simulate in situ samples with coarse-grained molecular dynamics and to explore a gener-

ative-adversarial network-based approach108 to image simulation. Therein, two antago-

nistic networks train each other: a generative model attempts to generate a realistic im-

age, while a discriminative network tries to distinguish between real and generated ex-

amples. This will allow the generative model to incorporate all the fine statistical intrica-

cies lacking in classic multi-slice methods, and will facilitate the training of a wide range 

of algorithms on simulated data. 

CNNs solved the problem of reliably picking particles in vitro84. Through training on large 

amounts of manually labeled data, these models learned to classify image regions as 

“particle” and “not particle” with superhuman accuracy. Because in vitro samples usually 

contain only the molecule of interest, this lack of selectivity is desirable as it simplifies 

training and avoids the discrimination of rare particle orientations. However, if a similar 

training corpus of in situ data could be created, applying the trained model to a cellular 

tomogram would yield tens of thousands of particles, as the model picks every protein. 
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Manually labeling data for every new molecule of interest and retraining the model is 

also highly impractical. Instead, a system must be created that can leverage prior 

knowledge of a high-resolution structure, and possibly orthogonal data sources such as 

light microscopy, to guide the segmentation process. This will merge the selectivity of 

template matching with the robustness and high accuracy of a CNN model.  

Using improved methods for particle localization and refinement of heterogeneous struc-

tures, researchers will be able to model larger portions of in situ data. Growing amounts 

of shared data and analyzed structures will elevate our understanding of many biological 

processes to a new level. However, cell biology is too complex to be understood particle-

by-particle. In the early days of other fields such as natural language processing, chess 

programs, or expert systems, large databases of manually curated building blocks were 

leveraged by algorithms following carefully formulated sets of rules to produce poor re-

sults. Cryo-EM map and atomic model databases play a similar role today. The success of 

massive, differentiable models like GPT-3109 or AlphaZero110 showed that such systems 

can incorporate knowledge in a humanly incomprehensible form that is more useful to 

their function (i.e. weights of a neural net), and recombine it in extremely complex ways 

to achieve superiority in very difficult domains. Our early attempts at denoising tomo-

grams using deep CNNs indicate that the models learn not only a noise model for the 

signal, but also recurring structural motives in the data such as membranes or highly 

abundant proteins, and renders them with increased resolution. The future of in situ 

structural biology likely belongs to a system that models the cell in a “particle-less” way, 

rather “denoising” every observation to high resolution. To do so efficiently, the model 

will need to learn the building rules from a vast corpus of unlabeled cryo-ET data: starting 

with amino acids and secondary structure, individual protein structures, all the way up to 

how proteins are likely to arrange in cells. Orthogonal omics-scale data sources such as 

proteomics will help refine these rules. If implemented successfully, such a system would 

fundamentally transform structural biology. 
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