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Summary 
 

Novel morphological traits originate largely from the novel expression patterns of genes 

controlled by enhancers during development. Enhancers bind and integrate the spatial-temporal 

activity of transcription factors, and their combinatorial interplay determines the time, location 

and levels of transcriptional output. New enhancers can arise through enhancer co-option by 

reusing some of the regulatory information from a preexisting enhancer. While enhancer co-

option is thought to be a fast and likely way to evolve new enhancers, its genetic and molecular 

mechanisms still remain elusive. 

 

In this context, this thesis investigates the genetic origin of a novel enhancer and the regulatory 

logic underlying its function. I used the spot enhancer of the gene yellow as a model, which 

underlies the evolution of a morphological trait, the wing spot in Drosophila biarmipes. I 

sought to understand how the novel spot enhancer has evolved and what regulatory logic 

governs its function.  

 

Specifically: 

In the first chapter, I examined the evolutionary mechanism of spot enhancer in the context of 

the preexisting wing blade enhancer. By revisiting the entire D. biarmipes yellow 5´ region 

with a comprehensive and quantitative method, I mapped the full activities of the novel spot 

and preexisting wing blade enhancers to a much larger region (3.5 kb) than previously 

described (1.1 kb together). Within the region, the regulatory information necessary and 

sufficient for the spot activity was inseparable from, and extensively overlapping with the wing 

blade activity. Further dissection of the shared core region revealed a pleiotropic binding site 

that contributed to both activities by regulating the local chromatin accessibility. I therefore 

confirmed that the novel spot activity originates from the co-option of the preexisting wing 

blade activity. The pleiotropic site for chromatin accessibility suggests a possible model where 

a new enhancer could evolve by co-option of chromatin accessibility input from the ancestral 

element, and that might facilitate the emergence and diversification of morphological traits. 
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In the second chapter, I investigated how the various aspects of regulatory information encoded 

in the spot enhancer sequences influenced its activity. Through introducing systematic 

mutations along the enhancer sequences and implementing a quantitative framework, the 

spatial activities on the wing of all the mutant enhancers were measured. The analysis showed 

an unexpected density of regulatory information within the spot enhancer. Moreover, it reveals 

an unanticipated regulatory logic underlying the activity of this enhancer and how it reads the 

wing trans-regulatory landscape to encode a spatial pattern. 

 

The gene yellow is required for black pigment production and its expression in late pupal stage 

prefigures the adult wing spot pigmentation pattern. Therefore, understanding the dynamics of 

yellow expression is essential to elucidate the process of yellow enhancer regulation as well as 

pigment formation during development. Chapter three investigates the process of pigment 

formation in space and time using the pigment gene yellow in D. melanogaster. Firstly, a 

fluorescent protein-tagged yellow allele was generated, then the dynamics of yellow expression 

and cellular localization in relationship to the process of pigment formation was examined 

during development. It was found that yellow is expressed in a few neurons in the brain and the 

ventral nerve chord from the second larval instar to adult stage, indicating a neuro-

developmental function of yellow. In addition, the results mainly showed how yellow 

expression in the adult cuticle is determined by regulated developmental processes affecting 

the body color, and suggested a structural role of Yellow in the establishment of pigmentation 

patterns. 
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Zusammenfassung 
 
Der Ursprung von neu evolvierten morphologischen Merkmalen ist oftmals eine neuartiges 

Genexpressionsmuster, welches während der Entwicklung durch Enhancer kontrolliert wird. 

Transkriptionsfaktoren binden an diese Enhancer und deren räumlich-zeitliche Aktivität wird 

integriert. Das kombinatorische Zusammenspiel verschiedener Transkriptionsfaktoren und 

dem Enhancer bestimmt Zeit, Ort und Stärke der Gentranskription. Neue Enhancer können 

durch Enhancer-Kooptation entstehen, indem einige der regulatorischen Informationen von 

einem bereits vorhandenen Enhancer wiederverwendet werden. Obwohl man davon ausgeht, 

dass die Enhancer-Kooptation ein schneller und daher wahrscheinlicher Weg ist, neue 

Enhancer zu entwickeln, sind die genetischen und molekularen Mechanismen dieser 

Kooptation noch unbekannt. 

 

Diese Arbeit untersucht den genetischen Ursprung eines neuartigen Enhancers und die seiner 

Funktion zugrunde liegende regulatorische Logik. Als Modell dient der spot Enhancer des 

Gens yellow, welches der Evolution eines morphologischen Merkmals zugrunde liegt, dem 

Flügelfleck bei Drosophila biarmipes. Ziel war es zu verstehen, wie dieser neuartige spot 

Enhancer evolviert ist und welche regulatorische Logik seiner Funktion zugrunde liegt.  

 

Im Besonderen: 

Im ersten Kapitel wird der evolutionäre Mechanismus untersucht welcher dem spot Enhancer 

zugrunde liegt, im Zusammenhang mit dem bereits existierenden wing blade Enhancer welcher 

eine generelle Flügelpigmentierung treibt. Indem wir die gesamte yellow 5'-Region von D. 

biarmipes mit einer umfassenden und quantitativen Methode überprüften, konnten Ich die 

gesamten Aktivitäten des neuartigen spot Enhancer und des bereits existierenden wing blade 

Enhancer auf eine viel größere Region (3,5 kb) abbilden als zuvor beschrieben (1,1 kb). 

Innerhalb dieser Region waren die regulatorischen Informationen, welche für die spot Aktivität 

notwendig und ausreichend waren, nicht von der wing blade Aktivität zu trennen und 

überlappten sich weitgehend mit ihnen. Die weitere Zergliederung der gemeinsamen 

Kernregion ergab eine pleiotrope Bindungsstelle, die zu beiden Aktivitäten beitrug, indem sie 

die lokale Chromatinzugänglichkeit regulierte. Ich konnten somit bestätigten, dass der 

neuartige spot Enhancer mittels der Kooptation des bereits vorhandenen wing blade Enhancers 
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evolviert ist. Diese pleiotrope Stelle für die Chromatinzugänglichkeit deutet auf ein mögliches 

Modell hin, bei dem sich ein neuer Enhancer durch Kooptation der 

Chromatinzugänglichkeitseingabe aus dem ursprünglichen Element entwickeln könnte, 

welches die Entstehung und Diversifizierung morphologischer Merkmale erleichtern könnte. 

 

Im zweiten Kapitel untersuchten Ich, wie die verschiedenen Aspekte der in den spot Enhancer-

Sequenzen kodierten regulatorischen Informationen deren Aktivität beeinflussten. Durch die 

Einführung systematischer Mutationen entlang der Enhancer-Sequenzen und die 

Implementierung eines quantitativen Rahmens wurden die räumlichen Aktivitäten auf dem 

Flügel aller mutierten Enhancer. Die Analyse zeigte eine unerwartete Dichte an regulatorischer 

Information innerhalb des spot Enhancers. Darüber hinaus enthüllt sie eine unerwartete 

regulatorische Logik, die der Aktivität dieses Enhancers zugrunde liegt und wie er die 

transregulatorische Landschaft auf dem Flügel liest, um ein räumliches Muster zu kodieren. 

 

yellow ist für die Produktion von schwarzem Pigment erforderlich, und seine Ausprägung im 

späten Puppenstadium deutet auf das Pigmentmuster der erwachsenen Flügelflecken hin. 

Daher ist das Verständnis der Dynamik der yellow-Expression von wesentlicher Bedeutung, 

um den Prozess der yellow Enhancer-Regulation sowie die Pigmentbildung während der 

Entwicklung aufzuklären. Das dritte Kapitel untersucht den Prozess der Pigmentbildung in 

Raum und Zeit anhand des Pigmentgens yellow in D. melanogaster. Es wurde ein 

fluoreszenzmarkiertes yellow Allel erzeugt, und die Dynamik der yellow Expression und des 

zellulären Lokalisation im Zusammenhang mit dem Prozess der Pigmentbildung während der 

Entwicklung wurde untersucht. Es zeigte sich, dass Yellow in einigen wenigen Neuronen im 

Gehirn und in der ventralen Nervensehne vom zweiten Larvenstadium bis zum 

Erwachsenenstadium exprimiert wird, was auf eine neurologische Entwicklungsfunktion von 

Yellow hinweist. Darüber hinaus zeigten die Ergebnisse hauptsächlich, wie die yellow 

Expression in der adulten Kutikula durch regulierte Entwicklungsprozesse bestimmt wird, die 

die Körperfarbe beeinflussen, und legten eine strukturelle Rolle von Yellow bei der Etablierung 

von Pigmentierungsmustern nahe. 
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Introduction 
 

 

1. Morphological diversity and gene regulation 
 
 

1.1. From morphological diversities to changes in gene expression 
patterns 

 
Today, we share the planet with millions of different species, with astonishing levels of 

diversity in behavior, physiology, habitats and morphology (Hickman 2018). Morphological 

diversity, which refers to the different characteristics in the shape, size, color, texture or 

organization of body structures, has been the primary criterion for species identification and 

classification (Foote 1997). 

 
In animals, body structures are composed of modules, and each structure serves a unique role 

that is relatively independent from that of other structures. Modular organization allows 

morphological components to respond to natural selection individually without necessarily 

changing other parts. Therefore, the evolution of the genetic mechanism controlling the 

development of one body part can be dissociated from that of another body part. This allows 

further modular modifications of an individualized morphological trait and promotes 

morphological diversification (Gilbert, Opitz, and Raff 1996; Bedau 2009; Wagner 1996).  

For example (Figure 1), some higher Diptera share a common wing plan regarding the shape 

and the venation pattern, but have evolved a variety of wing pigmentation patterns with 

different colors, dots and lines on the wing (Prud’homme, Gompel, and Carroll 2007). These 

diverse wing pigmentation patterns represent a starting place to study the genetic changes 

underlying morphological differences.  
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Figure 1: The various pigmentation patterns on the wings of some higher Diptera. 

Adapted with permission from (Prud’homme, Gompel, and Carroll 2007). Copyright (2007) 

National Academy of Sciences. 
 
 
 
A main goal in biology is to identify the genetic mechanisms underlying morphological 

evolution. In this respect, one first step is to understand the developmental process producing 

these forms, and how genes control it. This involves the field of evolutionary developmental 

biology, referred to as “Evo Devo” (Gilbert 2003; Hall 2012).  

 

Numerous genes that control the specification and segmentation of body structures have been 

identified by isolating mutants with morphological abnormalities in Drosophila, (Wakimoto 

and Kaufman 1981; E. B. Lewis 1978). These developmental genes are called toolkit genes. 

Characterizations of the toolkit genes revealed that many of them encoded transcription factors 

(TFs) or signaling molecules that regulate the expression of other genes to control tissue-

specific functions during development (Zaraiskii 2001; Krumlauf 1994; Hueber and Lohmann 

2008). Later, with more toolkit genes being identified in Drosophila as well as in vertebrates 
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and other animals, comparisons of the structure and biological function of the toolkit genes 

revealed high conservation among distantly related species (Tyas et al. 2006; Schneider and 

Amemiya 2016; Sanetra et al. 2005; Carroll 1995). 

 

These discoveries, however, lead to an apparent paradox: if different animals, from flies to 

humans, use a similar set of toolkit genes in development, how has all the morphological 

diversity arisen from a common ancestor? The answer lies not in what the genes are but in how 

the genes are used during development, including their dynamic expression in space, time and 

levels and their interactions with other genes during the formation of diverse morphological 

structures. Molecular techniques such as in situ hybridization (Gall and Pardue 1969) or 

antibody staining (Coons, Creech, and Jones 1941) allow us to directly visualize the 

distribution of gene products, RNAs or proteins, respectively (Akam 1983; Coons, Creech, and 

Jones 1941; Ransick et al. 1993), especially during development. It turns out that the adult body 

plan is pre-patterned by expression patterns of the developmental genes in the embryo. The 

precise spatial-temporal expression of these genes during development prefigures and 

determines the final morphology (Pechmann et al. 2011; Niwa et al. 1997; Schaefer, Oliver, 

and Henry 1999; Jang et al. 2003; Bandyopadhyay et al. 2006; Pandur et al. 2013). 

 

This finding has related the action of the invisible genes during development to the visible 

phenotypic trait in the adult. The dynamic expression pattern of the key regulatory genes are 

thus snapshots of the unfolding process of morphology formation during development. 

 

Over the past three decades or so, a vast body of comparative studies across all taxonomic 

levels has proven that variation in gene expression patterns corelated with the evolution of 

morphological traits (Rawls and Kumar 2002; Carroll 2005). One iconic example was found in 

the Darwin’s finches (Figure 2), which revealed a correlation between the changes in 

developmental gene expression pattern and the differences in morphological traits between 

closely related species. Different closely related species have evolved different shapes of the 

beak associated with the exploitation of various food types. Several key genes are involved in 

the formation of the beak. The comparative analysis of expression patterns of these genes 

revealed two genes whose expression correlated with the specific shape of the beak. The 

expression pattern of the gene bone morphogenetic protein 4 (Bmp4) in the beak was shown to 

correlate with the depth and width of beaks among ground finches, while the expression pattern 
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of another target calmodulin (CaM) was shown to correlate with the long and pointed beak 

morphology of the cactus finches (Abzhanov et al. 2004; 2006).  

 

In summary, changes in gene expression of developmental genes can produce morphological 

variation. The question of morphological diversity then can be switched to the question of how 

changes in gene expression patterns occur.  

 

 

 
 

 
 

Figure 2: Changes in gene expression correlate with the diverse morphology of beaks in 

Darwin finches. (A) The finches display distinct beak morphologies between different species. 

At stage 29 (st.29), Bmp4 is expressed in the distal-dorsal domain in the mesenchyme of the 

beak in species with wide beaks. CaM is expressed in the distal-ventral domain in the 

mesenchyme in species with long beaks. (B) a.The 3D structure of the developing beak. b. The 

model of how the expression of Bmp4 and CaM regulate the development of the length and 

width of the beaks. Modified with permission from (Abzhanov et al. 2004; 2006).  

 

 

 

1.2. From changes in enhancers to morphological evolution 
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Changes in gene expression patterns can result from the alterations of TFs that regulate the 

expression of these genes, and/or the cis-regulatory elements (CREs) mostly called enhancers 

which are non-coding DNA containing binding sites for TFs (C.-T. Ong and Corces 2011). 

 

As TF coding sequences and function tend to be conserved across species, and as they are 

deployed in multiple tissues and developmental stages, mutations in their protein coding 

sequence are likely to be pleiotropic (Carroll 2008). By contrast, the relative low pleiotropy 

and modularity of enhancers poise them to accommodate mutations resulting in gene 

expression changes. 

 

Evidence from whole-genome comparisons and the deeper understanding of the structure of 

enhancers has led to propose that changes in enhancers are a major source of morphological 

variation  (Carroll 2000; Wittkopp and Kalay 2012; Kalay 2012; Nagy et al. 2018; Camino et 

al. 2015; Madgwick et al. 2019; Wittkopp, Vaccaro, and Carroll 2002a; Gompel et al. 2005; 

Jeong, Rokas, and Carroll 2006; Indjeian et al. 2016; Attanasio et al. 2013; M.-C. King and 

Wilson 1975; Britten and Davidson 1969; Carroll 2005). The whole-genome comparisons from 

chimpanzee and human show that chimpanzee shares about 99% of the human DNA, while the 

1% variation is found in non-coding DNA sequences (Ebersberger et al. 2002; M.-C. King and 

Wilson 1975). 

 

Protein-coding sequences are embedded in the vast non-coding sequences, which include 

enhancers. Enhancers function as genetic switches to determine where, when and how much a 

gene is expressed in the tissue during development (Melamed et al. 2016; Mike Levine 2010; 

Long, Prescott, and Wysocka 2016). The non-coding region of many genes encoding regulatory 

proteins was found to contain multiple arrayed enhancers. Each enhancer independently 

regulates gene expression in a specific tissue (Koshikawa 2015; Martin 2014; Gaunt and Paul 

2012; Serfling, Jasin, and Schaffner 1985; Prud’homme et al. 2006; Wenick and Hobert 2004; 

Melamed et al. 2016; Li, Notani, and Rosenfeld 2016). Gene regulation by these individual 

enhancers is therefore modular, and mutational changes in one enhancer are predicted to only 

affect gene expression in the tissue where the enhancer drives expression. Therefore, the 

modular gene regulation facilitates the evolution of morphological traits of one body part 

independently of other parts, minimizing the deleterious penalty on fitness cost (Rebeiz et al. 

2009; Carroll 2008; Adachi et al. 2003; Gomez-Skarmeta et al. 1995).  
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A great number of studies has demonstrated that changes in enhancers underlies the diversity 

of morphological traits (Wittkopp, Vaccaro, and Carroll 2002b; Gompel et al. 2005; Shapiro et 

al. 2004; E. Sucena et al. 2003; É. Sucena and Stern 2000; Belting, Shashikant, and Ruddle 

1998). A typical example of changes in enhancers contributing to morphological variation is 

the reduced pelvic fin in stickleback fish (Figure 3). Compared to the marine stickleback fish, 

the freshwater sticklebacks have reduced pelvic fins. The changes in the size of the pelvic fin 

has been shown to be associated with the gene expression pattern of pitx1, which encodes a TF 

functioning in multiple tissues (Shapiro et al. 2004). The expression of pitx1 is regulated by 

multiple discrete regulatory elements, each of which governs the gene function in a certain 

tissue. The pelvic loss in freshwater stickleback fish was shown to result from the specific loss 

of activity of the hindlimb element, whereas other elements regulating pitx1 in other structures 

remained unaffected (Chan et al. 2010).  

 

To conclude, this chapter has pointed the paradox that different species use a common set of 

toolkit genes, and how the conserved toolkit genes find their different use in various gene 

expression patterns, which are controlled by enhancers. In the next chapter, I will describe the 

molecular bases underlying enhancer function in generating precise spatial-temporal gene 

expression patterns. 
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Figure 3: The evolution of the reduced pelvis in the freshwater sticklebacks. (A) The 

marine sticklebacks (top) have normal pelvic fins compared to the freshwater sticklebacks 

(bottom) which evolved reduced pelvic fins (both are indicated by the empty squares). (B) 

Gene pitx1 is expressed in pelvic buds of the marine stickleback larvae, but not of freshwater 

sticklebacks (highlighted by the arrowheads). (C) The absence of pitx1 gene expression is due 

to the disruption (red star) of the hindlimb enhancer of the pitx1 gene, whose expression is 

controlled by multiple independent modular enhancers (yellow boxes). Figure 3B is modified 

with permission from Nature Springer (Shapiro et al. 2004), copyright 2004. Photos of Figure 

3A were taken by Mike Shapiro. 
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2. Transcriptional regulation 
 
 
2.1. Transcription 

 

The regulation of gene expression occurs at different levels: transcription, post-transcriptional 

events, translation and post-translational modifications (Reményi, Schöler, and Wilmanns 

2004). 

 

During development, the regulation of transcription in space and time, which is the first step 

of gene expression, plays a major role (Michael Levine and Tjian 2003). Transcription is the 

process where genetic information contained in DNA is copied to a complementary RNA 

molecule that exits the nucleus. It involves large protein complexes, including, for most 

eukaryotic genes, the RNA polymerase II. In eukaryotes, gene transcription takes place in 

nucleus with three sequential steps: initiation, elongation and termination. Among these three 

steps, transcription initiation is the most controlled step and involves, on the DNA side, 

promoters and enhancers (Kadonaga 1998; Lee and Young 2000; Cramer 2019).  

 
Promoters locate near the transcription start site (TSS) of the target gene. Promoters can be 

classified as core promoters which are within 100 bp around the TSS and proximal promoters 

which locate several hundred base pairs upstream of the TSS. Transcription typically initiates 

at the core promoter region. General transcription factors (GTFs) bind to the core promoter and 

recruit RNA polymerase II to form transcription pre-initiation complex (PIC) (Juven-Gershon 

et al. 2008). The proximal promoters bind to specific transcription factors to determine the 

tissue specificity of gene expression (Smith et al. 2006). 

 

2.2. Enhancers: general information 
 
Core promoters are sufficient to initiate gene transcription, but at a low basal level. To increase 

the transcription rate, more distantly located regulatory elements called enhancers are needed. 

The first enhancer was discovered in 1981 as a 72-bp sequence from the Simian Virus 40 late 

gene region, which was found to increase the transcription of a reporter gene by several hundred 

fold regardless of its relative position and orientation to the gene TSS (Moreau et al. 1981; 

Banerji, Rusconi, and Schaffner 1981).  
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Since then, enhancers were identified as short DNA sequences, usually a few hundred base 

pairs in length. Enhancers can be located upstream, downstream, or even within the intron of 

the gene and increase transcription independently of their orientation, position or distance 

relative to the TSS (W. Li, Notani, and Rosenfeld 2016; Melamed et al. 2016).  

 

Functional enhancers contain clusters of 6-12 bp transcription factor binding sites (TFBSs) 

which can each be recognized by a specific TF (Shlyueva, Stampfel, and Stark 2014; C. T. Ong 

and Corces 2011; Li, Notani, and Rosenfeld 2016; Khoury and Gruss 1983; Christina Ione 

Swanson 2010) . Once bound by TFs, enhancers can act at a distance by looping onto the core 

promoter, bringing activators at enhancers and general transcription factors and RNA 

polymerase II at the promoter together (Tolhuis et al. 2002; Krivega and Dean 2012) to increase 

the initiation rate of transcription (Figure 4). As a result, the distance between the TFBSs and 

the promoter can affect the loop formation and thus affect the efficiency of transcription (Nolis 

et al. 2009). 

 

 

 
       Figure 4: Overview of eukaryotic transcriptional control 
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2.3. Enhancers and TF interactions 
 

Understanding the rules governing transcriptional regulation is important to predict what 

changes in the DNA sequences or TFs may affect gene expression, and subsequently 

morphological evolution. 

 
The combinatorial interactions between enhancers and bound TFs determine the precise 

temporal and spatial gene expression (Reményi, Schöler, and Wilmanns 2004). Overall, the 

TF-enhancer interactions can be influenced by several features in vivo. 

 
The TFs:  
TFs are expressed spatially and temporally in a tissue-specific manner during development.  

Different TFs recognize and bind distinct DNA motifs with variations in the length and 

composition of the sequence, and even with different sensitivities and strengths to the same 

motif (Slattery et al. 2014; Khoueiry et al. 2017; Levy and Hannenhalli 2002; Nitta et al. 2015; 

Spitz and Furlong 2012). Thus, regulation of transcription is correlated with the TF binding 

specificity and affinity. In vivo, TFs often cooperatively interact with each other and their 

cofactors to increase their binding specificity and affinity. How the activity of TFs and 

cofactors is tuned is therefore essential for the precise control of transcription (Slattery et al. 

2011; Siggers et al. 2011). 

 
Chromatin accessibility: 

Even when the TFs are present with proper activity in a tissue, transcription might also not 

happen. This is because in eukaryote the chromatin fiber can block the access of TFs and RNA 

polymerases to enhancers (Kornberg 1977).  

 

Decompaction of the chromatin requires a specific class of chromatin modifying factors 

including histone modifying enzymes and ATP-dependent chromatin remodelers (Workman 

and Kingston 1998; Kingston and Narlikar 1999; Kadonaga 1998). Post-translational 

modifications of histone tails by histone-modifying enzymes, such as methylation and 

acetylation of specific residues, can affect the interplay between TFs and enhancers. For 

example, it has shown that active enhancers are marked with mono-methylation on lysine 4 

(H3K4me1) and acetylation on lysine 27 of histone H3 (H3K27ac), while poised enhancers are 

marked with H3K4me1 and tri-methylation on lysine 27 of histone H3 ( H3K27me3) 
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(Heintzman et al. 2009; Ernst et al. 2011; Heintzman and Ren 2009; C.-T. Ong and Corces 

2011).   

 

ATP-dependent chromatin remodelers, such as the SWItch 2/Sucrose Non-Fermentable 2 

(SWI2/SNF2) group can reposition or evict nucleosomes so that inaccessible TFBSs can be 

exposed to TFs and RNA polymerases (Becker and Workman 2013).  

 

Another special class of factors, the pioneer factors, have the intrinsic ability to bind 

nucleosomal DNA in condensed chromatin early in development, resulting in the opening of 

chromatin to create a permissive environment for transcription. Unlike other TFs, pioneer 

factors have the ability to bind directly to closed chromatin can evict histones from the 

chromatin (Cirillo L.A. et al. 2002). However, the binding of pioneer factor itself is insufficient 

to trigger the enhancer activity. Pioneer factors can recruit other TFs and work cooperatively 

to initiate gene transcription (Iwafuchi-Doi 2019; Iwafuchi-Doi and Zaret 2014; Soufi et al. 

2015; Zaret and Carroll 2011). 

 
Enhancer grammar:  

The organization of TFBSs in the enhancer sequence, sometimes referred to as “enhancer 

grammar”, can also affect TF interactions. “Enhancer grammar” is defined as the number, order, 

orientation and spacing of the TFBSs and greatly affect the TF-enhancer interactions (Long, 

Prescott, and Wysocka 2016).  

 

Mainly three models have been proposed regarding the grammar of the enhancer (Spitz and 

Furlong 2012) (Figure 5). The “enhanceosome model” represents a rigid enhancer architecture, 

where the enhancer activity depends on a precise array of TFBSs, which form a platform for a 

TF scaffold. Any changes in the TFBS organization can disrupt the protein-protein interactions 

and thus the enhancer activity (Merika and Thanos 2001; Thanos and Maniatis 1995). On the 

contrary, the “billboard model” posits a more flexible binding site grammar. Enhancer activity 

is maintained by the presence of the TFBSs but with great flexibility as to the order, orientation 

or spacing of these binding sites (Kulkarni and Arnosti 2003; Arnosti and Kulkarni 2005). This 

model can help explain the rapid motif turnover across species (Farley et al. 2015). The “TF 

collective” model represents a “no grammar” enhancer function model. In this model, TFs, 

which are either recruited directly by TFBSs or indirectly by other TFs, act collectively to 

regulate the enhancer activity. The recruitment of the collective binding is mediated by the 
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high-affinity TFBSs for a subset of TFs and thus not any specific TFBS is required for the 

enhancer function (Erceg et al. 2014; Junion et al. 2012).  
 
Until today, the regulatory logic of “enhancer grammar” is still not fully understood. The above 

models to investigate the TFBS organization are tested based on the output of the enhancer 

activity through changing the relative order, number or distance of the known TFBSs within 

an enhancer. However, we are far from interpreting the enhancer activity through its sequences. 

The effect of mutated TFBSs on transcriptional output might come from epistatic interactions 

between TFBSs, which makes the results complicated to interpret (Michael Z Ludwig et al. 

2000; Doniger and Fay 2007). Besides, there is a large gap in our understanding of the function 

of sequences between the known TFBSs. For most enhancers, the known TFBSs are not 

sufficient to generate the enhancer activity (Vincent, Estrada, and DePace 2016), suggesting 

that other uncharacterized TFBSs, as well as the remaining sequences between the TFBSs play 

a role too. Therefore, uncovering more of the sequence determinants of enhancer activity 

requires to run more systematic scans along enhancer sequences. 

 
 

 

 

 

 

 

 

 
 



Introduction 

 19 

 

 

 

Figure 5: Models of enhancer grammar. a. The enhanceosome model, which represents a 

highly rigid enhancer architecture. Enhancer activity requires the presence and precise position 

of all the TFBSs. b. The billboard model, which represents a grammar that enhancer activity is 

maintained by more flexible organizations of the TFBSs. c. The TF collective model, in which 

TFs, either recruited directly or indirectly, act collectively to regulate the enhancer activity. 

From (Spitz and Furlong 2012) with permission. 
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3. Enhancer evolution and morphological novelties 
 
 
Morphological novelties have been defined as new body structures or patterns, derived from 

an ancestor, and described as a qualitative change rather than just a quantitative modification 

in size or shape of a pre-existing trait (Wagner and Lynch 2010). Morphological novelties arise 

from the novel execution of organ-specific gene regulatory program during development, 

which is mainly controlled by enhancers (Monteiro and Podlaha 2009). 

 
Multiple possible mechanisms can account for the origin of new enhancers, which are mainly 

summarized into four possible scenarios (Rebeiz and Tsiantis 2017) (Figure 6). 

 
Transposable elements (TEs) have been shown to be a rich source for the generation of new 

enhancers, as TEs account for a large proportion of eukaryotic genomes (de Koning et al. 2011; 

Feschotte 2008). TEs carrying regulatory elements or functional binding sites can be inserted 

into different locations of the genome, and thus provide raw materials to derive novel enhancer 

activities (Feschotte 2008). The role of TEs in the evolution of novel gene expression patterns 

was shown by a number of studies (Emera and Wagner 2012; Lynch et al. 2011; Ting et al. 

1992). For instance, TEs contributed to the evolution of a novel gene regulatory network during 

the pregnancy of placental mammals. It is found that TEs can directly bind TFs required for 

pregnancy and regulate related gene expression (Lynch et al. 2011).  

 
Another scenario for the origin of a new expression pattern is promoter-switching. An enhancer 

often interacts with a specific target promoter (Burgess-Beusse et al. 2002; Butler and 

Kadonaga 2001). Altered enhancer-promoter specificity can therefore switch the enhancer to 

another promoter and result in the control a different gene. In practice, chromosome inversions 

can lead to novel enhancer-promoter interactions by replacing an enhancer nearby a distinct 

gene or by removing insulators between an enhancer and a promoter (Cande, Chopra, and 

Levine 2009; Imsland et al. 2012). In the beetle Tribolium castaneum, a chromosomal 

inversion allows a conserved ladybird enhancer to redirect the expression of a neighboring gene 

C15 to generate a novel pattern of gene expression. In Drosophila, due to an insulator element 

at the ladybird promoter, this enhancer fails to activate C15 expression. Such promoter-

switching via genome rearrangements might be common in the evolution of diversification of 

the arthropods (Cande, Chopra, and Levine 2009). 
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New enhancers can also simply emerge de novo through the accumulation of random mutations 

from neutral DNA sequences. However, to form a cluster of functional TFBSs to generate a 

new expression pattern takes more evolutionary steps (Rebeiz and Tsiantis 2017; Gompel and 

Prud’homme 2009) than in other evolutionary scenarios. 

 

Enhancer co-option is another mechanism for the origin of a new expression pattern. In this 

case, a novel activity can be derived by reusing some of the regulatory sequences or even 

TFBSs from the preexisting enhancers (Rebeiz and Tsiantis 2017), while keeping the 

preexisting enhancer activity unchanged. Therefore, sequence overlap between a new activity 

and an old activity, is a signature of co-option. It can also result in sequence dependency of the 

new and old activities.  

 

Several studies have revealed that enhancer co-option can facilitate the evolution of novel 

enhancer activities and suggested that enhancer co-option might be common to derive 

morphological novelties (Koshikawa et al. 2015; Rebeiz et al. 2011; Gompel et al. 2005; 

Glassford et al. 2015). It is likely that within a region already containing an activity, bound by 

TFs with diverse expression patterns and with a favorable chromatin environment, fewer 

mutations are required to generate a novel activity. Compared to de novo emergence of an 

enhancer, enhancer co-option therefore takes fewer evolutionary steps for the origin of new 

enhancers (Rebeiz and Tsiantis 2017; Gompel and Prud’homme 2009).  

 

In Drosophila santomea, the Neprilysin-1 (Nep1) gene has evolved a novel expression pattern 

in the optic lobe, which is governed by the Nep1 optic lobe enhancer. It is found that the optic 

lobe enhancer is localized in a region significantly overlapping with preexisting enhancers 

driving expression in multiple tissues such as the retinal field, larval central nervous system 

(CNS), leg, and wing hinge. This indicates that the novel Nep1 optic lobe enhancer has evolved 

by co-option of preexisting regulatory sequences (Rebeiz et al. 2011). 

 

In another species Drosophila guttifera, a novel domain of wingless (wg) expression at the 

wing vein tips was found associated with an evolved vein-tip enhancer. Analysis of this vein-

tip enhancer revealed that it overlapped with an ancestral enhancer that was active in the wing 

crossveins, indicating that the novel vein-tip enhancer of wg might emerge by enhancer co-

option (Koshikawa et al. 2015). 
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The molecular correlates of enhancer co-option are the co-opted TFBSs and their functions in 

the novel and ancestral developmental contexts (Rebeiz and Tsiantis 2017). However, finding 

the binding sites used by the new and the ancestral enhancers is challenging since it requires 

detailed dissection within the overlapping region, and until today few studies have explored 

enhancer co-option in depth at the site level. One representative example is the origin of the 

male-specific posterior lobe of the male genitalia in D. melanogaster. The authors showed that 

the developmental program of the derived posterior lobe during pupal stage has recruited an 

ancestral Hox-regulated network required for the development of an ancestral structure, the 

posterior spiracle of the embryo. Binding sites for STAT and Abdominal-B (Abd-B) of an 

enhancer of poxn gene in this network were found to be used by both structures (Glassford et 

al. 2015). This example demonstrates how TFBSs from ancestral developmental contexts can 

be co-opted to a novel developmental context. 

 

When a common set of binding sites are used in more than one developmental context, it results 

in TFBS pleiotropy (Preger-Ben Noon et al. 2018). The existence of pleiotropy in enhancers 

may impose more constrains on the enhancer sequence evolution, since a mutation affecting 

one expression pattern will also affect others (Andersson et al. 2014; Huang, Gulko, and Siepel 

2017; Sabarís et al. 2019; Infante et al. 2015a), potentially resulting in deleterious effects. 
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Figure 6: Scenarios of enhancer evolution. (A) The 4 different ways for the origin of new 

gene expression patterns. (B) The steps of enhancer co-option event. From (Rebeiz et al. 2011) 

with permission.  
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4. Enhancer identification 
 
 
Given their importance for development and evolution, methods to identify or predict 

enhancers have been explored since the discovery of enhancers (Shlyueva, Stampfel, and Stark 

2014). However, unlike the well-defined protein coding sequences (Lee and Young 2000), 

enhancers lack general sequence code. Also, a gene can have multiple enhancers that can locate 

anywhere from the TSS of the target gene (Melamed et al. 2016). All these have made it 

challenging to locate enhancers in the genome. 

 

 

4.1. Enhancer prediction  
 
Classically, enhancers have been identified using reporter gene assays in vivo. In these assays, 

DNA sequences located upstream or downstream of the TSS are isolated, fused with a minimal 

promoter and a reporter gene, and transformed to the germline of an organism for permanent 

integration into its genome (Shlyueva, Stampfel, and Stark 2014; O'Kane and Gehring 1987; 

Chiocchetti et al. 1997)  

 
In the recent years, the development of genomic technologies and next-generation sequencing 

technologies have revolutionized enhancer identification on a genome-wide scale.  

 
Initially, comparing genomic sequences between different species was used to predict 

enhancers. Functional regulatory sequences are under increased evolutionary constraint 

compared to non-functional sequences and are thus more conserved between different species 

(Visel, Bristow, and Pennacchio 2007). While this method is easy to compute, it is insufficient 

to predict the stage- and tissue-specific activity of enhancers. Besides, it may fail to predict 

functionally conserved enhancers with divergent sequences. Finally, it hinders the discovery 

of newly evolved regulatory elements (Kheradpour et al. 2007; Yáñez-Cuna et al. 2012; Blow 

et al. 2010). 

 

Some of these limitations of sequence comparision can be overcome with a more recent method: 

chromatin immunoprecipitation followed by deep sequencing (ChIP–seq) (Solomon, Larsen, 

and Varshavsky 1988). ChIP using antibodies against active enhancer histone marks (e.g., 

H3K4me1 and H3K27ac) and enhancer cofactors (e.g., CBP/P300) can reveal the dynamic 
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patterns of enhancer activity from specific stages or cell types (Yáñez-Cuna et al. 2012). 

However, because none of the known marks is shown to perfectly correlate with enhancer 

activity, this method can generate a number of false positive targets that are not functional in 

vivo (Kvon et al. 2012; Bonn et al. 2012).  

 

Chromatin accessibility represents another complementary approach for genome-wide 

enhancer predictions as open chromatin is necessary for enhancer activity. Several methods 

have been developed to provide a genome-wide map of accessible chromatin regions, like 

DNase-seq (Hesselberth et al. 2009), MNase-seq (Yuan et al. 2005), Formaldehyde-

Assisted Isolation of Regulatory Elements (FAIRE–seq) (Giresi et al. 2007), and more recently 

Assay for Transposase-Accessible Chromatin (ATAC- seq) (Buenrostro et al. 2013). 

Compared to other methods, ATAC-seq requires fewer cells and a simpler protocol and gives 

base pair resolution of the chromatin accessible regions. ATAC-seq is performed via two-steps 

that involves chromatin tagmentation with sequencing adapters using the Tn5 transposase 

(Goryshin and Reznikoff 1998) followed by PCR amplification using barcoded primers. DNA 

regions identified based on chromatin accessibility are not only enhancers but also other active 

CREs. Furthermore, not all open regions correspond to active and functional enhancers as 

activation of enhancer also requires other factors during development (Arnold et al. 2013; 

Thurman et al. 2012).  

 

STARR-seq (self-transcribing active regulatory region sequencing) is a technique to identify 

enhancers directly and quantitatively in a genome-wide manner (Arnold et al. 2013). In this 

experiment, enhancer fragments are placed downstream of a minimal promoter, so that active 

enhancers can transcribe themselves. The enhancer library is then transfected into cells and the 

resulted enhancer activity is measured by RNA sequencing. STARR-seq provides functional 

identification of enhancers. It can also measure enhancer activities from “closed” chromatin. 

However, it measures the enhancer activity outside the endogenous chromatin environment 

(Muerdter, Boryń, and Arnold 2015). 

 
Combinations of these predictive approaches can increase the success rate of enhancer 

identification. However, it is important to note that the evidence provided by the genome-wide 

mapping of genomic features is just an indication of potential enhancer activity and should not 

be taken as equivalent to demonstrating regulatory function. Therefore, direct functional 

validation of enhancers is required.  
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4.2. Enhancer validation 
 
The enhancer-reporter assays are widely used to study the function of enhancers. One way to 

use reporter assays to validate enhancers is by massively parallel reporter assays (MPRAs) 

(Inoue and Ahituv 2015). Typically, libraries of thousands of barcoded enhancer-reporter 

vectors are introduced into cell lines or tissues via transient transfection or electroporation 

(Uchikawa 2008; Corbo, Levine, and Zeller 1997) . The reporter expression is then quantified 

by RNA‐seq (Mortazavi et al. 2008; Emrich et al. 2007).  

 

MPRAs can validate enhancers in a high throughput with a quantitative readout, and have 

identified numerous functional enhancers (Kwasnieski et al. 2012; Kheradpour et al. 2013; 

Wenick and Hobert 2004; Inoue and Ahituv 2015). However, since most of the MPRAs are 

conducted in an episomal manner and the enhancer-reporter constructs do not incorporate into 

the genome, these systems lack chromatin environment for gene expression (Inoue and Ahituv 

2015). Besides, in this case the spatial-temporal expression pattern of reporter gene is lost. 

 

Another way to validate enhancers is through transgenic assays. In Drosophila and other model 

organisms where transgenesis is possible, one primary validation method is through functional 

transgenic reporter assays in vivo, which provides a direct read-out of enhancer activity in 

different tissues and time points during development (Kvon 2015) (Figure 7).  

 

In Drosophila, reporter assays have heavily relied on P element-mediated transgenesis. P 

elements are transposable elements (Castro and Carareto 2004), and their introduction has 

brought a breakthrough to Drosophila transgenesis (Rubin and Spradling 1982). However, P 

element can only integrate DNA fragments of relatively small size (up to a few tens of kb). 

Moreover, the insertion location of P element is random, increasing expression variability 

between lines (Venken and Bellen 2007). To be able to compare any quantitative changes 

between different enhancer activities, it is desirable to have all constructs inserted into the same 

genomic location. This can be achieved by site-specific integration using the bacteriophage 

φC31 integrase. The φC31 integrase catalyzes the irreversible recombination between the 

phage attachment (attP) site in the bacteriophage genome and a bacterial attachment (attB) site 

in the host genome (Groth et al. 2004). Thus, the φC31-mediated transgenesis can result in the 
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site-specific integration of a vector containing attB sites into an organism genome containing 

attP “docking” sites (Groth et al. 2000).  

 

 

4.3. Minimal enhancers 
 

Such functional validation of the predicted enhancers allows selecting a representative DNA 

segment driving the reporter expression in a pattern that is similar or identical to that of the 

endogenous gene. This DNA segment can be further dissected to a minimal enhancer, which 

is the smallest contiguous DNA segment that recapitulates largely the spatial-temporal 

expression pattern of the endogenous gene (Arnone and Davidson 1997) (Figure 7).  

 

Over many years, while studies on minimal enhancers have shed light on our understanding of 

the logic of enhancer function and evolution (Istrail and Davidson 2005), they also showed 

some limits to our understanding of enhancers. 

 

How minimal enhancers are identified is dependent on the assumption that enhancers are 

collections of compact, modular units (Shlyueva, Stampfel, and Stark 2014). As mentioned 

above, minimal enhancers have been identified qualitatively, with a focus on the relative spatial 

distribution of enhancer activity rather than on its quantitative levels. Moreover, minimal 

enhancers are identified by arbitrarily chosen fragments, only assessing the sequence 

sufficiency rather than necessity for the enhancer activity (Muller and Basler 2000; Milewski 

et al. 2004) (Figure 7).  

 

However, it is widely recognized that minimal enhancers often fail to recapitulate the precise 

expression pattern boundaries of the native gene, and that most minimal enhancers drive 

significantly lower levels of gene expression compared to that of the native gene (Summerbell 

et al. 2000; Irvine et al. 2008; Barrière, Gordon, and Ruvinsky 2011; S. Small, Blair, and Levine 

1992; Chao, Wang, and Yuh 2010; Frankel et al. 2011). Many minimal enhancers have been 

shown to drive expression in ectopic cell types or at ectopic developmental stages, and flanking 

sequences are necessary for correcting the enhancer activity (Chao, Wang, and Yuh 2010).  

 

There is no reason to take for granted that enhancers should be short, contiguous segments with 

clear physical limits (Milewski et al. 2004). Different enhancers can have diverse architectures, 
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that some might contain complex spatial distributions of regulatory information. Actually, 

some enhancers have been found to spread over a larger region of several kilobases, making 

the boundaries of enhancers difficult to justify (Klingler et al. 1996; Stephen Small, Blair, and 

Levine 1996; Davis et al. 2007). For example, the regulation of the gene runt in Drosophila 

embryo is controlled by TFBSs dispersed over a 5 kb segment region rather than clustered into 

a compact element (Klingler et al. 1996). A comprehensive assay of the 

Hox gene Ultrabithorax (Ubx) locus failed to identify the cis-regulatory regions of Ubx that 

drive expression on the posterior second femur in Drosophila, suggesting this enhancer 

structure is complex and that the TFBSs might be scattered across a larger region outside of 

the region surveyed (Davis et al. 2007). Such distributed enhancers have been implicated in 

fine-tuning gene expression and maintaining robustness of gene expression against genetic and 

environmental perturbation (Michael Z. Ludwig et al. 2011; Frankel et al. 2010; Swami 2010), 

as well as conferring the precision of gene expression (Dunipace, Ozdemir, and Stathopoulos 

2011). In addition, evolutionary conserved TFBSs have also been found outside the annotated 

minimal enhancers (Hare, Peterson, and Eisen 2008; M Z Ludwig, Patel, and Kreitman 1998). 

 

 

4.4. Quantifying the enhancer activities in the tissue  
 

Although the minimal enhancers are clearly insufficient to understand enhancer function and 

evolution, very few studies have comprehensively investigated the regulatory inputs necessary 

and sufficient for the full activity of an enhancer. 

 
In this thesis, we applied a more systematic and high-resolution quantitative approach to 

directly measure the spatial expression pattern in a tissue. By systematically dissecting a larger 

DNA region, we are able to map regulatory sequences both necessary and sufficient to produce 

the full enhancer activity. Our high-resolution quantitative method therefore makes it possible 

to attribute the measured reporter expression differences to any single sequence change, which 

can be a powerful tool to deepen our understanding of the grammar of enhancer function. 
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Figure 7: The identification of minimal enhancers using transgenesis in Drosophila. A. 

The arbitrary dissection of regulatory region to identify minimal enhancers (left) and the 

reporter gene expression patterns driven by the corresponding regulatory fragments (right). The 

blue fragment indicates the identified minimal enhancer. The intensity of green color indicates 

the intensity of reporter gene expression. B. The classical reporter assay in Drosophila for 

enhancer validation. 
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5. Drosophila pigmentation model 
 
 

5.1. Drosophila pigmentation synthesis 
 

Drosophila pigmentation is an ideal model to study the molecular mechanisms that underlie 

the evolution of morphological diversities. Pigmentation is one of the most rapidly evolving 

and variable traits within and among species in Drosophila (Prud’homme, Gompel, and Carroll 

2007; Wittkopp et al. 2009). The diverse pigmentation patterns decorating fruit fly bodies as 

well as other animal bodies, have played an important role in organismal fitness such as mating 

choice, thermoregulation, ultraviolet light resistance and mimicry (COOK 1998). In addition, 

the availability of multiple genetic tools in Drosophila has offered an opportunity to elucidate 

the genetic and developmental mechanisms of pigmentation patterning and evolution (Hales et 

al. 2015; Wittkopp, Carroll, and Kopp 2003) 

 

Understanding the process of pigmentation formation in Drosophila, for example, what genes 

are required, how do these genes interact to paint different pigmentation patterns, has laid a 

foundation to investigate the regulation underlying the divergence of pigmentation patterns. 

 

In Drosophila, body color results from a combination of black, brown and yellowish pigments 

which are synthesized through a complex biochemical pathway (Figure 8) (Wittkopp, Carroll, 

and Kopp 2003; True 2003; Wright 1987). Tyrosine from the diet is first converted into DOPA 

(L-3,4-dihydroxyphenylalanine) by tyrosine hydroxylase (encoded by pale). DOPA is then 

converted into dopamine by the Dopa decarboxylase enzyme (encoded by Ddc). Dopamine can 

then be converted into different pigments. It can be converted into black pigments by Yellow 

(encoded by yellow or y); It can also be converted into brown pigments by phenol oxidases 

(PO), or be converted into N-β -alanyl dopamine (NBAD) through the activity of Ebony 

followed by being polymerized into yellow-tan pigments by PO. The conversion of dopamine 

into NBAD is reversible, and this reverse reaction is catalyzed by Tan (encoded by tan or t); it 

can also be converted into N–acetyl dopamine (NADA) by arylalkylamine N-acetyl 

transferases (aaNATs) and then lead to colorless pigments by PO (Stern, Road, and Cb 1998; 

Wittkopp, Carroll, and Kopp 2003; Massey and Wittkopp 2016).  
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Figure 8: A simplified scheme of pigment biosynthesis pathway in Drosophila. The gene 

yellow is highlight in yellow color. Modified with permission from (Massey and Wittkopp 

2016). 

 
 
5.2. Drosophila pigmentation regulation 

 

In the pigmentation synthesis pathway, one of the most studied gene is yellow. The gene yellow 

is required for the production of black pigment as yellow mutants display a light yellowish 

body color (Biessmann 1985; Morgan and Bridges 1916). In Drosophila, Yellow expression 

during pupal life prefigures the pigmentation patterns in the adult wing and the abdomen 

(Prud’homme et al. 2006; Arnoult et al. 2013; Camino et al. 2015; Jeong, Rokas, and Carroll 

2006; Wittkopp, Vaccaro, and Carroll 2002) (Figure 9A). The different expression patterns of 

yellow on these locations are controlled by distinct modular enhancers. 

 
In D. melanogaster, the male abdomen is darkened in the A5 and A6 tergites, which is an 

evolved trait from an ancestor that lacked this trait (Jeong, Rokas, and Carroll 2006). Yellow 

is expressed in a pattern that prefigures the abdominal pigmentation pattern, and this specific 

pattern is controlled within a body enhancer (Wittkopp, Vaccaro, and Carroll 2002) that 

contains binding sites for the Abdominal-B (Jeong, Rokas, and Carroll 2006) and Bric-a-brac 

(Roeske et al. 2018) transcription factors. 
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In the wing, Yellow is controlled by the wing enhancer (Figure 10). In D. melanogaster, Yellow 

is expressed at a low level throughout the wing during late pupal development, resulting in a 

uniform wing pigmentation. By contrast, in D. biarmipes, where the males have evolved a dark 

spot at the wing tip from an unspotted ancestor (Prud’homme et al. 2006), Yellow is also 

expressed at a much higher level in the spot region (Figure 9B). The novel spot-specific 

expression pattern was shown to be regulated by a spot enhancer, which evolved in the vicinity 

of the preexisting wing enhancer (Gompel et al. 2005). Further dissection of the wing enhancer 

identified a sub-fragment, the right element, driving yellow expression exclusively in the wing 

blade (Figure 9C). Analyses of the enhancer sequence indicate that spatial spot activity in D. 

biarmipes has evolved TFBSs for the transcriptional activator Distal-less (Dll) (Arnoult et al. 

2013) and the repressor Engrailed (En) (Gompel et al. 2005).  

 

The evolved spot element thus represents a good model to investigate the emergence of a 

morphological novelty. These studies, however, were unable to resolve the evolutionary origin 

of the spot element: it is possible that the spot element has evolved through co-option of the 

preexisting wing enhancer although the two enhancers appear to not overlap (Prud’homme et 

al. 2006). Alternatively, it could have evolved de novo in a region next to the wing enhancer.  
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Figure 9: The novel spot expression pattern in D. biarmipes is controlled by the new spot 

enhancer of yellow. A. The wing spot is a morphological novelty derived from an unspotted 

ancestor. Expression of yellow prefigures the diverse spot pigmentation patterns on the wing 

of different Drosophila species. B. The wing enhancer from D. melanogaster drives a low level 

of activity across the wing, while the wing enhancer from D. biarmipes also drives a high level 

of activity in the spot region. C. Two separable elements, the spot and the right enhancer drives 

a spatial reporter expression pattern specifically in the spot region and the wing blade region, 

respectively. Panel A is adapted from (Arnoult et al. 2013) with permission. Figure B is kindly 

provided by Prof. Nicolas Gompel. 
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Figure 10: Summary of prior work for the mapping of the wing enhancer of yellow in D. 

melanogaster. Each of the fragment mel_A1, mel_A2 and mel_A3 drives reporter expression 

in the wing blade. Modified with permission from (Kalay et al. 2019). 
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6. A pipeline for the quantification of gene 
expression in Drosophila wing 

 
 

The work described in this thesis relies on a technical pipeline developed in our lab to precisely 

quantify the enhancer activities in the wing. The workflow is depicted in Figure 11. The idea 

of this pipeline is to assess phenotypes (gene expression), not from a single wing for each given 

line, but from dozens of wings in order to take non-genetic variation into account in our 

analyses. 

The pipeline comprises different steps, each optimized to reduce experimental noise. For 

instance, animal staging is very precise (in a 15 min time window after emergence from the 

pupa). The protocol for sample dissection and fixation is highly stereotyped, and so are the 

imaging conditions. 

An important aspect of this pipeline is the alignment of wing images. Although the architecture 

of Drosophila wings is very stable, wings from two different animals do not perfectly overlap, 

even after scaling. This represents a limit for the quantitative comparison of spatial gene 

expression among individuals. To overcome this limit, the lab uses a methodology known as 

image registration or image alignment, where individual wing images are deformed (warped) 

to match a reference image. The landmarks used to align images are the wing veins. The 

resulting images are wings with the same shape and size, irrespective of the gene expression 

pattern being considered. The deformation is computed on bright-field images, and then 

applied to the fluorescent channel containing the gene expression information. 

Wing alignment opens the possibility to perform quantitative analyses, as all the wing in a 

dataset share the same system of spatial coordinates, and this system can be used to describe 

quantitative gene expression in two dimensions. 

Multiple quantitative information become available from a dataset of registered wings which 

are imaged under the same conditions. These include: 

 the average phenotype. This is a wing image representing the average value of each 

pixel among images of the same genotype (the same line). These images are smoothened and 

colored with a heat map to represent the signal intensities. 
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the overall variation in a dataset. This is visualized in a Principal Component Analysis 

(PCA). In our experiments, the first two components always captured most of the variation and 

corresponded to overall changes in intensity and changes in pattern. 

 

additional tools to measure changes between lines. The difference between groups (Diff 

image) is an image representing the subtraction of two average phenotypes. Similarly, the local 

fold change between two genotypes is represented by the logRatio image. Colormaps for Diff 

and logRatio images represent the absolute value of differences between the compared 

phenotypes. Grey color means no change between the compared phenotypes. 
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  Figure 11: Pipeline for wing image quantification. 
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Aim of the thesis 
 

In this thesis, I aim to investigate the evolutionary path and the regulatory logic underlying the 

emergence of a novel enhancer.  

 

Firstly, I asked how a novel enhancer has evolved from a preexisting regulatory context. While 

enhancer co-option has provided evidence to support this phenomenon, its genetic and 

molecular mechanisms still remain elusive. This breaks down into several questions: What is 

the positional and functional relationship of the novel and the preexisting activities? 

Furthermore, do the novel and the preexisting activities share co-opted TFBSs? How have the 

shared sites, if any, contributed to both enhancer activities? 

 

As a model system to tackle these questions, I used the regulation of the pigmentation gene 

yellow in Drosophila. I focused in particular on the spot enhancer, a derived activity found in 

D. biarmipes in the vicinity of the preexisting wing blade enhancer. This spot enhancer 

underlies the evolutionary origin of a novel aspect of yellow expression in fly wings, and a 

novel pigmentation pattern. With the collaboration of Dr. Yann Le Poul, we used a quantitative 

and systematic approach to precisely map the sequence boundaries of the spot and wing blade 

enhancer activities. To assess their functional relationship, we dissected sequences upstream 

of yellow in a reporter assay. 

 

Secondly, I investigated how an enhancer is built to generate a spatial expression pattern, trying 

to decipher the underlying regulatory logic. Using a similar experimental set-up, again in 

collaboration with Dr. Yann Le Poul, I undertook the fine dissection of the core of the spot 

enhancer, spot196. We introduced systematic mutations along the enhancer sequence and 

precisely quantified the spatial pattern from all the enhancer variants. 
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Paper One: Ancestral and derived transcriptional 
enhancers share regulatory sequence and a 
pleiotropic site affecting chromatin accessibility  
 

 

Yaqun Xin, Yann Le Poul, Liucong Ling, Mariam Museridze, Bettina Mühling, Rita Jaenichen, 

Elena Osipova, Nicolas Gompel 

PNAS August 25, 2020 117 (34) 20636-20644. 

 

 

 

 
In this paper, we investigated the evolutionary origin of the novel spot enhancer of yellow in 

D. biarmipes, which underlies the evolutionary origin of a novel wing pigmentation pattern. 

We used precise quantitative analysis and a systematic dissection of yellow regulatory regions 

to revisit the positional and functional relationship of the novel spot and the preexisting wing 

blade activities. We found that the novel spot activity has evolved by co-opting most of the 

sequences from the preexisting wing blade activity. We further demonstrate that a pleiotropic 

site within the overlapping region is required for the local chromatin accessibility, suggesting 

that chromatin accessibility might be a component seeding evolutionary co-option. 
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Drosophila enhancer 
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Bunk, Hartmann Harz, Heinrich Leonhardt, Yingfei Wang, Elena Osipova, Mariam Museridze, 

Deepak Dharmadhikari, Eamonn Murphy, Remo Rohs, Stephan Preibisch, Benjamin 

Prud’homme and Nicolas Gompel 

Accepted by Science Advances on 09 October 2020. 
 
 
 
 
This manuscript deciphers the regulatory logic of enhancer structure and function, trying to 

elucidate how the spatial enhancer activity is encoded in the enhancer sequence. We used the 

minimal version of the spot enhancer, which is 196 bp, as a model. We introduced systematic 

mutations along the spot enhancer sequences, and precisely quantified their effects on the 

spatial activity of the spot enhancer on the wing. Our results reveal a highly density of 

regulatory information distributed along the spot enhancer sequence, and deepen our 

understanding on how enhancer reads the wing trans-regulatory environment to encode a 

spatial pattern. 
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Abstract 
 
Developmental enhancers control the expression of genes prefiguring morphological patterns. 

The activity of an enhancer varies among cells of a tissue, but collectively, expression levels 
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in individual cells constitute a spatial pattern of gene expression. How the spatial and 

quantitative regulatory information is encoded in an enhancer sequence is elusive. To link 

spatial pattern and activity levels of an enhancer, we used systematic mutations of the yellow 

spot enhancer, active in developing Drosophila wings, and tested their effect in a reporter 

assay. Moreover, we developed an analytic framework based on the comprehensive 

quantification of spatial reporter activity. We show that the quantitative enhancer activity 

results from densely packed regulatory information along the sequence, and that a complex 

interplay between activators and multiple tiers of repressors carve the spatial pattern. Our 

results shed light on how an enhancer reads and integrates trans-regulatory landscape 

information to encode a spatial quantitative pattern. 

 
 
Introduction 

 Enhancers constitute a particular class of cis-regulatory elements that control in which 

cells a gene is transcribed, when, and at which rate (1, 2). Notably, enhancers play a central 

role during development in plants and animals (3), generating patterns of gene expression that 

delineate embryonic territories and prefigure future forms (4). How the information 

determining these patterns is encoded in a developmental enhancer has therefore been at the 

center of attention for several decades. Enhancers integrate spatial information from 

transcription factors (TFs) bound to them, and the number, the affinity and the arrangement of 

TF binding sites (TFBSs) in the enhancer sequence are relevant to the enhancer spatial activity 

(reviewed in (5)). Yet, the logic of TFBS organization that determines a spatial pattern is not 

sufficiently understood to reliably design functional synthetic enhancer driving correct 

expression levels (6, 7). 

 

The study of developmental enhancers has been polarized by two conceptions of gene 

expression patterns. Until recently, most studies have referred to enhancer activities in 

qualitative terms exclusively, where the notion of spatial pattern evokes discrete and relatively 

homogeneous domains of gene expression (8). With the rise of genomics from the early 2000s, 

it has become possible to precisely measure gene expression, and by extension, enhancer 

activity. However, whether it is measured in a given tissue or in single cells, this quantification 

of gene expression is done at the expense of losing spatial information (e.g., (9-11)), with few 

exceptions (e.g., (12, 13)). It is nevertheless critical to appreciate that the overall levels and the 

spatial pattern of activity in a given tissue are intrinsically linked. Therefore, to understand how 
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a spatial pattern of gene expression is encoded in the sequence of an enhancer, it is necessary 

to measure quantitative variation of gene expression in space in the tissue where the enhancer 

is active. Leading this endeavor, recent studies have quantified pattern elements of enhancer 

activity, but with limited spatial or quantitative resolution (13-18).  

 

To pursue this effort of measuring quantitative variation in spatial gene expression, we have 

analyzed the structure and the functional logic of a compact Drosophila enhancer sequence 

with quantitative measurements of its spatial activity in fly wings. The so-called spot196 

enhancer, from the yellow gene of the fruit fly Drosophila biarmipes, drives a patterned gene 

expression in pupal wings with heterogenous expression levels among cells (19-21). The 

spot196 enhancer sequence contains at least 4 TFBSs for the activator Distal-less (Dll) and at 

least one TFBS for the repressor Engrailed (En) (19, 20) (Figure 1A). Together, these inputs 

were considered to be sufficient to explain the spatial activity of spot196 in the wing, with 

activation in the distal region and repression in the posterior wing compartment (19, 20). 

Grafting TFBSs for these factors on a naive sequence in their native configuration, however, 

proved insufficient to produce regulatory activity in wings (B. Prud'homme and N. Gompel 

unpublished results). This prompted us to dissect the spot196 element further to identify what 

determines its regulatory activity, considering simultaneously spatial pattern and activity levels. 

We first introduced systematic small-scale mutations along the 196 base pairs (bp) of the 

enhancer sequence to test the necessity of the mutated positions; we then randomized large 

blocks of enhancer sequence to test sufficiency of the remaining intact sequence to drive 

activity. To assess the activity of each mutant enhancer, we devised a pipeline that uses 

comprehensive descriptors to quantify variations in reporter activity levels across the wing of 

D. melanogaster transgenic lines. Our quantitative analysis revealed a high density of 

regulatory information, with all mutated positions along the spot196 enhancer sequence 

contributing significantly to the activity levels. It also outlined an unanticipated regulatory 

logic for this enhancer, where the spatial pattern in the wing results from a complex interplay 

between activators and multiple tiers of repressors carving a spatial pattern. 

 

 

Results 

Regulatory information distributed along the entire spot196 enhancer contributes to its 

quantitative spatial activity in the wing 
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We first systematically evaluated the potential role of all positions along the spot196 enhancer 

sequence to produce an activity pattern and wild-type levels of gene expression. We generated 

a series of mutants scanning the element and thereby testing the necessity of short adjacent 

segments to the enhancer function. Of note, we made no prior assumption (e.g., predicted 

TFBSs) on the function of the mutated nucleotides. We maximized the disruption of sequence 

information by introducing stretches of 10-18 bp (11.5 bp on average) of poly(dA:dT), also 

known as A-tracts (22) at adjacent positions along the sequence (Figure 1A). Thus, the 

sequence of each of the 17 constructs (spot196 [0] to spot196 [16], or [0] to [16] in short, Figure 

1A) is identical to the wild-type spot196 ([+] in short), except for one segment where the 

sequence was replaced by the corresponding number of adenines. These mutations affect the 

local sequence composition, without changing distances or helical phasing in the rest of the 

enhancer. We measured activities of each mutant enhancer in the wing of the corresponding 

reporter construct line of D. melanogaster, here used as an experimental recipient for site-

specific integration. In brief, for each reporter construct line we imaged individually around 30 

male wings (one wing per fly) under bright-field and fluorescent light. We detected the 

venation on the bright-field images of all wings and used it to compare reporter activity across 

wings. For this, we applied a deformable model to warp the fluorescent image of each wing, 

using landmarks placed along the veins of the corresponding bright-field image, and aligning 

them to a reference venation (see methods for details). The resulting dataset is a collection of 

fluorescence images for which the venation of all specimens is perfectly aligned. These images, 

represented as the list of fluorescence intensity of all pixels, constitute the basis of all our 

quantitative dissection. To assess whether or not the activity driven by a given enhancer 

sequence significantly differs from any other, wild type or mutant, we used the scores produced 

by Principal Component Analysis (PCA) that comprehensively summarizes the variation of the 

pixel intensities across wings. To visualize the reporter activity per line, we used images 

representing the average activity per pixel (hereafter: average phenotype). 

 

The activity of each mutant (Figure 1B) differs significantly from that of [+], as measured in 

the PCA space (Figure S1 and Data file S1). This means that the activity of each mutant had 

some features, more or less pronounced, that significantly differentiates its activity from [+], 

revealing the high density of regulatory information distributed along the sequence of spot196. 

The magnitude and direction of the effects, however, vary widely among mutants, ranging from 

activity levels well above those of [+] to a near complete loss of activity.  
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The average activity levels of each mutant construct in the wing relative to the average activity 

levels of [+] show how effect directions and intensities are distributed along the enhancer 

sequence (Figure 1C). This distribution of regulatory information, the magnitude and the 

direction of the effects, including several successions of over-expressing and under-expressing 

mutants, suggest a more complex enhancer structure than previously thought (20). The density 

of regulatory information is also reminiscent of what has been found for other enhancers (13, 

23, 24). 

 

 In principle, the localized mutations we introduced can affect the spot196 enhancer 

function through non-exclusive molecular mechanisms. Mutations may affect TF-DNA 

interactions by disrupting TFBS cores or by influencing TF binding at neighboring TFBSs (for 

instance by altering DNA shape properties (25, 26)). A-tract mutations may also influence 

nucleosome positioning and thereby the binding of TFs at adjacent sites (27). Not exclusively, 

because of stacking interactions between adjacent As and Ts, they increase local DNA rigidity 

(22, 28, 29) and may thereby hinder or modulate TF interactions. Such changes in rigidity, 

which we have evaluated for our mutant series (Figure S2A), may affect TF-TF interactions 

(Figure S2B). Regardless of the precise molecular mechanisms underlying the mutations we 

introduced in the spot196 sequence, we wanted to assess how they affect the integration of 

spatial information along the enhancer sequence. 

 

An enhancer's view on the wing trans-regulatory landscape revealed by logRatio images 

To visualize the changes in spatial activity caused by each mutation, we computed the log of 

the pixel-wise ratio between two average phenotypes (single mutants over [+]) at every pixel 

(30), hereafter noted logRatio. As detailed in the supplementary methods, logRatio images 

reveal in which proportion a mutant affects the enhancer activity across the wing. Therefore, 

logRatio images highlight local effects of low activity that would be eluded by stronger activity 

levels in other areas of the wing. In this respect, logRatio images further support our previous 

conclusion that all the sequences we have mutated affect the activity pattern, one way or 

another (Figure 2), and therefore that regulatory information is densely packed in the spot196 

sequence.  

 

logRatio images also reflect, to some extent, the distribution of the individual spatial inputs 

received and integrated along the spot196 sequence. They can be particularly informative when 

both a TFBS and the spatial distribution of the cognate TF are known, as they shed light on 
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how directly the TF information is integrated. This is the case for En and Dll, for which TFBSs 

have been previously characterized in the spot196 (19, 20). The disruption of an En binding site 

(Figure 1A,B, construct [15]) resulted in a proportional increase of activity in the posterior 

wing compartment (75%, F(1,124) = 77.8, p=8.8818e-15). The log([15]/[+]) image (Figure 2) 

shows that mutant [15] proportionally affects the activity mostly in the posterior wing. The 

effect correlates with En distribution (20) and is consistent with the repressive effect of its TF. 

Interestingly, contrary to what the average phenotypes suggested (Figure 1C), mutant [16] 

shows a very similar logRatio to that of [15], albeit with only 25% increase in activity. The 

effect of mutant [16] was barely discernible when the considering variation in the overall 

fluorescence signal (Figure 1C), illustrating the power of the logRatio analysis to detect local 

effects of low activity. Mutations that disrupted characterized Dll binding sites (Figure 1A,B, 

constructs [0], [1], [7] and [9]) resulted in strong reduction in reporter expression (90% F(1,74) 

= 143.3, p=0; 75%, F(1,78) = 109.3, p=2.2204e-16; 47%, F(1,107) = 75.4, p=4.8073e-14 and 

39%, F(1,74) = 23.2, p=7.6363e-06, respectively; Data file S1). The logRatio images for 

mutants [0], [1], and to a lesser extent [7], show a patterned decrease of activity in line with 

Dll distribution in the wing (Figure 2) (19), with a proportionally stronger loss of activity 

toward the distal wing margin. This corroborates previous evidence that Dll binds to these sites. 

The respective logRatio images for segments [0] and [1] correlate with levels of Dll across the 

wing. This suggests that these sites individually integrate mostly Dll information, and do so in 

a near-linear fashion. Site [9], which produces a relatively different picture with areas showing 

over-expression, is discussed below. Mutations of Dll sites, however, clearly have non-additive 

effects, as mutants [0], [1], [7] and [9] result in a decrease of activity levels by 90%, 75%, 47% 

and 39% compared to [+], respectively. This non-additivity could be explained by strong 

cooperative binding of Dll at these sites, or alternatively by considering that these Dll TFBS 

are interacting with other sites in the sequence.  

 

In addition, we noted that despite mutating a Dll TFBS, mutant [9] showed a substantially 

different logRatio than [0] and [1] but similar to [8], with a repressing activity in the posterior 

wing compartment, proximally, and a distal activation (Figure 2B). This dual effect could be 

explained by the disruption of the Dll site along with a distinct TFBS for a posterior repressor. 

Alternatively, a single TFBS could be used by different TFs with opposite activities. In this 

regard, we note that the homeodomain of Dll and En have similar binding motifs (31) and could 

both bind the Dll TFBS disrupted by [9] (and possibly [8]). The posterior repression of En and 

distal activation of Dll seem compatible with this hypothesis. 
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Unraveling trans-regulatory integration along the spot196 sequence 

Following the same approach, we next analyzed the information integrated in other segments. 

Apart from the known Dll and En TFBSs, the enhancer scan of Figure 1C identified several 

segments with strong quantitative effects on the regulatory activity. Between the two pairs of 

Dll TFBSs, we found an alternation of activating sites ([3]and [6], reducing overall levels by 

36% (F(1,69) = 17.6, p=7.8336e-05) and 93% (F(1,98) = 284.9, p=0) compared to [+], 

respectively), and strong repressing sites ([2], [4] and [5], with an overall level increase of 3.2 

folds (F(1,72) = 511.5, p=0), 1.9 folds (F(1,85) = 103.2, p=2.2204e-16) and 2.7 folds (F(1,82) 

= 426.5, p=0) compared to [+], respectively). Construct [3] proportionally decreases the 

expression mostly around wing veins (Figure 2B), suggesting that this segment integrates 

information from an activator of the vein regions. We had found a similar activity for this 

region of yellow from another species, D. pseudoobscura, where no other wing blade activity 

concealed it (20). Interestingly, the logRatio of mutant [6], with a stronger, more uniform effect 

than for the other mutants that repress the activity, suggests a different trans-regulatory 

integration than Dll sites We have recently shown that this site regulates the chromatin state of 

the enhancer (21). Regarding segments with a repressive effect, mutants [4] and [5] result in a 

fairly uniform relative increase in expression, different from the activity of [2], indicating that 

the information integrated by these two regions ([2] vs. [4] and [5]) likely involves different 

TFs. Three segments, [6], [0] and [1] (the last two containing previously known Dll binding 

sites), each decrease the activity levels by 75% or more. Finding additional strong repressive 

sites ([2], [4], [5]) with a global effect on the enhancer activity across the wing is also 

unexpected. 

 

The analysis revealed another activating stretch of sequence, between 116-137 bp, as mutated 

segments [10] and [11] decreased activity by 56% relative to [+] and showed very similar 

logRatios. Mutant [12] showed a mixed effect, with practically, in absolute terms, no effect in 

anterior distal wing quadrant. Finally, segments [13], [14], and [15] showed a succession of 

repressing and activating sites, as we have seen for segments [2] - [6], although with a lower 

amplitude. Mutant [13] caused an overall increase in activity (1.4 fold relative to [+]) with, 

proportionally, a uniform effect across the wing (logRatio). By contrast, mutant [14] decreased 

the overall activity by 36% with a logRatio indicating an activating effect in the spot region, 

and a repressive effect in the proximal part of the posterior wing compartment, similarly to 

mutants [8] and [9] but with lesser effects. 
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Together this first dissection, focusing on the necessity of segments for the enhancer activity 

at the scale of a TFBS, which is typically 10 bp long (32), suggested a much higher density of 

regulatory information in the spot196 enhancer than previously described (19, 20). The non-

additivity of effects at Dll binding sites, three repressing and four activating novel segments 

distributed in alternation along the enhancer, and the variety of their effects pointed to a 

complex regulatory logic, involving more (possibly 6 to 8) factors than just Dll and En. We 

resorted to a different approach to further probe the regulatory logic of spot196. 

 

An interplay of activating and repressing inputs produces a spatial pattern of enhancer 

activity 

The first series of mutations informed us on the contribution of the different elementary 

components of the spot196 enhancer sequence to its regulatory activity. Yet, it failed to explain 

how these components integrated by each segment interact to produce the enhancer activity. 

To unravel the regulatory logic of this enhancer, it is required to understand which segments 

are sufficient to drive expression, but also how elementary components underlying the 

regulatory logic influence each other. To evaluate the sufficiency of, and interactions between, 

different segments, would require to test all possible combinations of mutated segments, 

namely a combinatorial dissection. Doing this at the same segment resolution as above is 

unrealistic, as the number of constructs grows with each permutation. Instead, we used three 

sequence blocks of comparable sizes in the spot196 enhancer, A, B and C, defined arbitrarily 

(Figure 3A), and produced constructs where selected blocks were replaced by randomized 

sequence (noted "-"). This second series, therefore, consists of eight constructs, including all 

combinations of one, two or three randomized blocks, a wild type [ABC] (which has strictly 

the same sequence as [+] from the first series) and a fully randomized sequence, [---].  

With these constructs, we can track which segments, identified in the first series as necessary 

for activation in the context of the whole spot196, are also sufficient to drive activity (Table S3; 

see Figure 1C for the correspondence between the two series of mutations). Of the three blocks 

(constructs [A--], [-B-] and [--C]), only block C is sufficient to produce activity levels 

comparable to those of the wild-type spot196 in the wing blade, although with a different pattern 

from [ABC] (Figure S4A-C). Reciprocally, randomizing block C (construct [AB-]) results in a 

uniform collapse of the activity (Figure S4A-C). We concluded that the sequence of block C 

contains information necessary and sufficient to drive high levels of activity in the wing in the 

context of our experiment. This is particularly interesting because C does not contain 
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previously identified Dll TFBSs, or strong activating segments. By contrast, blocks A and B, 

although they each contain two Dll sites, do not drive wing blade expression. The activating 

segments in block C revealed in the first dissection, particularly segments [10] and [11], are 

therefore candidates to drive the main activity of the spot196, in the context of these reporter 

constructs. 

 

Block A alone ([A--]) produces high levels of expression in the veins (Figure S4A-C). 

Combined with block C (construct [A-C]), it also increases the vein expression compared to C 

alone. We concluded that A is sufficient to drive expression in the veins. Segment [3], which 

proportionally decreased the activity mostly in the veins could therefore be the necessary 

counterpart for this activation. 

 

Block B alone drives expression only near the wing hinge, in a region called the alula ([-B-], 

Figure 3B-D). The first dissection series, however, did not identify a mutated segment within 

block B that affected specifically the alula. 

 

The necessity of Dll binding sites (in segments [0], [1], [7] and [9]) and of segment [6], and 

their insufficiency to drive activity in the wing blade in the context of block A alone, block B 

alone, or blocks A and B combined, suggest that these sites with a strong activation effect 

function in fact as permissive sites. We next focused on understanding the interplay between 

repressing and activating sites, to shed light on how the spot196 patterning information is built. 

In the first series of constructs, we identified several strong repressing segments in block A ([2] 

and [4]) and block B ([5]). Using sufficiency reasoning with the second series of constructs, 

we further investigated how these inputs interacted with other parts of the enhancer (Figure 3). 

Such interactions are best visualized with logRatios, comparing this time double-block 

constructs to single-block constructs used as references (Figure 3D and Figure S4D-F). Block 

B has a strong repressive effect on block C throughout the wing, except at the anterior distal 

tip, where C activity is nearly unchanged (log([-BC]/[--C]), Figure 3D). Likewise, 

log([AB-]/[A--]) shows that B also represses the vein expression driven by A. Similarly, block 

A represses the C activity across the wing blade, except in the spot region log([A-C]/[--C]). 

We have seen above that blocks A and B both contain strong repressing segments, but also 

known Dll TFBSs. Because both A and B show a repressive effect on block C, except in the 

spot region, we submit that the apparent patterned activation by Dll may in fact result from its 

repressive effect on direct repressors of activity, mostly at the wing tip. This indirect activation 
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model would explain the non-additivity of the individual Dll binding sites observed in the first 

construct series and why grafting Dll TFBSs on a naïve DNA sequence is not sufficient to 

create a wing spot pattern. 

 

Together, these results outline an unexpectedly complex regulatory logic that contrasts with 

the simple model we had initially proposed (19, 20) and involves multiple activators and 

several tiers of repressors. 

 

Sequence reorganization affects activity levels of the spot196 enhancer, not its spatial 

output 

In a final series of experiments, we wondered whether the complex regulatory architecture 

uncovered by the first two mutant series was sensitive to the organization of the inputs. To test 

the effect of changes in the organization of enhancer logical elements, we introduced new 

constructs with permutations of blocks A, B and C (Figure 4A). These permutations preserve 

the entire regulatory content of the enhancer, except at the junction of adjacent blocks where 

regulatory information may be lost or created. All permutations that we have tested (4 out of 5 

possible permutations) drive significantly higher levels of expression than the wild type [ABC] 

([ACB]: 2.9 folds (F(1,98) = 191.8, p=0); [BAC]: 6 folds (F(1,93) = 589.1, p=0); [BCA]: 5.8 

fold (F(1,93) = 589.1, p=0); [CBA]: 8.4 folds (F(1,93) = 1664.2, p=0); Figure 4B), yet with 

minor effects on the activity distribution proportionally to the wild type (Figure 4C). We 

concluded from these experiments that, in terms of pattern, the regulatory output is generally 

resilient to large-scale rearrangements. As long as all inputs are present in the sequence, the 

spatial activity is deployed in a similar pattern, yet its quantitative activity is strongly 

modulated. Because they have little influence on the activity pattern, the rearrangements may 

not change the nature of the interactions within the enhancer or with the core promoter. 

Although we would need to challenge this conclusion with additional constructs and blocks 

with different breakpoints, we speculate that, molecularly, the block randomization perturbates 

the action of some of the uniformly repressing elements. It highlights the robustness of the 

enhancer logic to produce a given patterned activity. 

 

Discussion 

With this work, we have set to decipher the regulatory logic of an enhancer, spot196. The view 

point presented here is the information that the enhancer integrates along its sequence. 

Combined with the quantitative measurement of enhancer activity in a tissue, the wing, this 
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information reveals the enhancer regulatory logic and how it reads the wing trans-regulatory 

environment to encode a spatial pattern. The strength of our arguments stems from the 

introduction of two complementary aspects of the method (discussed in the following sections): 

one to combine the assessment of necessity and sufficiency of regulatory information in our 

analysis and another to compare the spatial activity of enhancer variants (logRatio). 

 

Regulatory necessity and regulatory sufficiency 

When dissecting a regulatory element, it is straightforward to assess the necessity of a TFBS 

or any stretch of sequence to the activity, by introducing mutations. It is generally more difficult 

to assess whether the same sequence is sufficient to promote regulatory activity at all and most 

enhancer dissections are focusing on necessity analysis (see for instance (12, 17, 19, 20, 23, 

33-37)). Yet, our study clearly shows that to decipher regulatory logic, and eventually design 

synthetic enhancers, understanding which regulatory components are sufficient to build an 

enhancer activity is key. 

 

A visual tool to compare spatial activities driven by enhancer variants  

We introduced a new representation to compare activities between enhancer variants, typically 

a wild type and a mutant. Proportional effects, or local fold changes, as revealed by logRatio 

produce representations that are independent from the distribution of the reference activity. 

They also better reflect the distribution of factors in trans and their variations as seen by the 

enhancer (here, across the wing) than differential comparisons (compare Figure 2 and Figure 

S3). Indeed, differential comparisons are dominated by regions of high activities and thereby 

focusing our attention to the regions of high variation of activity. By contrast, logRatios reveal 

strong effects in regions of low activity that would hardly be visible using differential 

comparisons, highlighting some cryptic components of the regulatory logic. When additional 

knowledge about TFBSs and TF distribution will become available, they will also inform us 

on the contribution of the TF in the regulatory logic. In this respect, the introduction of 

logRatios in our analysis has proven useful and could be adapted to any system where image 

alignment is possible, such as Drosophila blastoderm embryos (38), or developing mouse limbs 

(39). 

 

A-tracts did not disrupt major effect of TF-TF interactions  

A-tracts are known to change local conformational properties of DNA. As such, our A-tract 

mutations could influence the regulatory logic not only by directly disrupting the information 
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contained in the sequence they replaced, but also indirectly, by introducing more changes than 

wanted. As an alternative, sequence randomization, however, is more likely to create spurious 

TFBSs, which is difficult to control for, especially if all the determinants of the enhancer 

activity are not known. The possible occurrence of undesired and undetected TFBSs would 

have biased our interpretation of the effect of individual segments, and consequently, of the 

regulatory logic of the enhancer. The chance that A-tracts introduce new TFBSs in the enhancer 

sequence is quite low compared to sequence randomization, which is why we favored this 

mutational approach for the analysis of short, individual segments. Yet, A-tracts can modify 

various physical properties of the DNA molecule, and in turn, influence interactions between 

TFs binding the enhancer. The disruption of a TF-TF interaction due to the introduction of an 

A-tract between two TFBSs (Figure S2B) would be revealed if mutating a particular segment 

would have an effect similar to the effect of mutating immediately adjacent flanking segments. 

We note, however, that we do not have such situation in our dataset. This suggests that the A-

tracts we introduced, if anything, only mildly altered TF-TF interactions through changes in 

the physical properties of spot196. Instead, we think that the effects of A-tract mutations are 

mostly due to disrupted TFBSs along the enhancer sequence. 

 

The regulatory logic underlying spot196 enhancer activity 

The main finding of our study is that the spot196 enhancer likely integrates 6 to 8 distinct 

regulatory inputs, with multiple layers of cross-interactions (Figure 5). We had previously 

proposed that the spot pattern resulted from the integration of only two spatial regulators, the 

activator Dll, and the repressor En (19, 20). The regulatory density that we reveal here (Figures 

1C and 2) is reminiscent of what has been found for other enhancers (13, 23, 24). A logical 

analysis of systematic mutations along the enhancer gives a different status to the factors 

controlling spot196. The main levels of spot196 activity across the wing blade seem to result 

mostly from two unknown activators, one promoting a relatively uniform expression in the 

wing blade, and another along the veins (Figure 5A). This activation is in turn globally 

repressed throughout the wing by an unknown repressor whose action masks that of the global 

activator (Figure 5B). Upon this first two regulatory layers, the actual spot pattern of activity 

is carved by two local repressions. A distal repression counteracts the effect of the global 

repressor in the distal region of the wing (Figure 5C) but the spatial range of this repression is 

limited to the anterior wing compartment by another repressor acting across the posterior wing 

compartment (Figure 5D). The former local repression could be mediated by Dll itself, a 

hypothesis compatible with the non-additive effects of Dll TFBS mutations, while the latter is 
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almost certainly due to En. Thus, the pattern of activity results not so much from local 

activation but from multiple tiers of repressors. 

 

One would expect this complex set of interactions between TFs that bind along the enhancer 

sequence to be vulnerable to sequence reorganization. We find surprising that shuffling blocks 

of sequence resulted in dramatic changes in activity levels with little effect on the activity 

pattern. Similarly, many of the mutations still produced a pattern of activity quite similar to the 

one of [+]. This suggests that the exact organization of the different inputs, and the absence of 

some of these inputs, do not affect the TF-enhancer and TF-TF interactions required for a 

patterned activity, which here translates mainly to the role of Dll in repressing global repressors, 

and the repressing role of En. The frequency of these interactions, or the interactions with the 

core promoter, may, however, change significantly upon sequence modifications, impacting 

transcription rate. In other words, the regulatory logic described above is robust to changes for 

the production of a spatial pattern, but less so for the tuning of enhancer activity levels. 

 

 The evolutionary steps of the emergence of spot196 perhaps reflect in the regulatory 

logic of this enhancer. The spot196 element evolved from the co-option of a pre-existing wing 

blade enhancer (20). The sequences of this ancestral wing blade enhancer and the evolutionary-

derived spot196 overlap and share at least one common input (21). This perspective is consistent 

with the idea that a novel pattern emerged by the progressive evolution of multiple tiers of 

repression carving a spot pattern from a uniform regulatory activity in the wing blade. To 

further deconstruct the regulatory logic governing the spot196 enhancer and its evolution, one 

first task will be to investigate how some of the mutations we introduced impact the activity of 

a broader fragment containing the entire spot activity (and the wing blade enhancer), closer to 

the native context of this enhancer. Another challenging step will be to identify the direct inputs 

integrated along its sequence. It will also be necessary to characterize their biochemical 

interactions with DNA and with one another. Ultimately, to fully grasp the enhancer logic will 

mean to be able to recreate these interactions in a functional synthetic regulatory element. 

 

 

Materials and Methods 

Fly husbandry. Our Drosophila melanogaster stocks were maintained on standard cornmeal 

medium at 25ºC with a 12:12 day-night light cycle. 
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Transgenesis. All reporter constructs were injected as in (19). We used ɸC31-mediated 

transgenesis (40) and integrated all constructs at the genomic attP site VK00016 (41) on 

chromosome 2. All transgenic lines were genotyped to ascertain that the enhancer sequence 

was correct. 

 

Molecular biology. All 196 bp constructs derived from the D. biarmipes spot196 sequence were 

synthetized in vitro by a Biotech company (Integrated DNA Technologies, Coralville, United 

States, Cat. #121416). Table S1 provides a list of all constructs and their sequences. Each 

construct was cloned by In-Fusion (Takara, Mountain View, United States) in our pRedSA 

vector (a custom version of the transformation vector pRed H-Stinger (42) with a 284 bp attB 

site for ɸC31-mediated transgenesis (40) cloned at the AvrII site of pRed H-Stinger). All 

constructs in Figure 1 were cloned by cutting pRedSA with Kpn I and Nhe I, and using the 

following homology arms for In-Fusion cloning: 5'-GAGCCCGGGCGAATT-3' and 5'-

GATCCCTCGAGGAGC-3'. Likewise, constructs in Figure 3 were cloned by cutting pRedSA 

with BamH I and EcoR I, and using the following homology arms for In-Fusion cloning: 5'-

GAGCCCGGGCGAATT-3' and 5'-GATCCCTCGAGGAGC-3'. 

 

Wing preparation and imaging. All transgenic wings imaged in this study were homozygous 

for the reporter construct. Males were selected at emergence from pupa, a stage that we call 

"post-emergence", when their wings are unfolded but still slightly curled. When flies were 

massively emerging from an amplified stock, we collected every 10 minutes and froze staged 

flies at -20ºC until we had reached a sufficient number of flies. In any case, staged flies were 

processed after a maximum of 48 hours at -20ºC. We dissected a single wing per male. Upon 

dissection, wings were immediately mounted onto a microscope slide coated with transparent 

glue (see below), and fixed for 1 hour at room temperature in 4% paraformaldehyde diluted in 

phosphate buffer saline 1% Triton X-100 (PBST). Slides with mounted wings were then rinsed 

in PBST and kept in a PBST bath at 4ºC until the next day. Slides were then removed from 

PBST and the wings covered with Vectashield (Vector Laboratories, Burlingame, United 

States). The samples were then covered with a coverslip. Preparations were stored for a 

maximum of 48 hours at 4ºC until image acquisition. 

 

The glue-coated slides were prepared immediately before wing mounting by dissolving 

adhesive tape (Tesa brand, tesafilm®, ref. 57912) in heptane (2 rolls in 100 ml heptane), and 

spreading a thin layer of this solution onto a clean microscope slide. Once the heptane had 
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evaporated (under a fume hood), the slide was ready for wing mounting. All wing images were 

acquired as 16-bit images on Ti2-Eclipse Nikon microscope equipped with a Nikon 10x plan 

apochromatic lens (N.A. 0.45; Nikon Corporation, Tokyo, Japan) and a pco.edge 5.5 Mpx 

sCMOS camera (PCO, Kelheim, Germany) under illumination from a Lumencor SOLA SE II 

light source (Lumencor, Beaverton, OR, USA). Each wing was imaged by tiling and stitching 

of several z-stacks (z-step = 4 µm) with 50% overlap between tiles. Each image comprises a 

fluorescent (ET-DSRed filter cube, Chroma Technology Corporation, Bellows Falls, VT, USA) 

and a bright field channel (acquired using flat field correction from the Nikon NIS-Elements 

software throughout), the latter being used for later image alignment. To ensure that 

fluorescence measurements are comparable between imaging sessions, we have used identical 

settings for the fluorescence light source (100 % output), light path and camera (20 ms exposure 

time, no active shutter) to achieve comparable fluorescence excitation. 

z-Projection. Stitched 3D stacks were projected to 2D images for subsequent analysis. The 

local sharpness average of the bright-field channel was computed for each pixel position in 

each z-slice and an index of the slice with the maximum sharpness was recorded and smoothed 

with a Gaussian kernel (sigma = 5 px). Both bright-field and fluorescent 2D images were 

reconstituted by taking the value of the sharpest slice for each pixel. 

Image alignment. Wing images were aligned using the veins as a reference. 14 landmarks 

placed on vein intersections and end points, and 26 sliding landmarks equally spaced along the 

veins were placed on bright field images using a semi-automatized pipeline. Landmark 

coordinates on the image were then used to warp with a deformable model (thin plate spline) 

bright field and fluorescent images to match the landmarks of an arbitrarily chosen reference 

wing by the thin plate spline interpolation (43). All wings were then in the same coordinate 

system, defined by their venation. 

Fluorescent signal description. A transgenic line with an empty reporter vector (ø) was used 

as a proxy to measure noise and tissue autofluorescence. The median raw fluorescent image 

was computed across all ø images and used to remove autofluorescence, subtracted from all 

raw images before the following steps. All variation of fluorescence below the median ø value 

was discarded. The DsRed reporter signal was mostly localized in the cell nuclei. We measured 

the local average fluorescent levels by smoothing fluorescence intensity, through a Gaussian 

filter (sigma = 8 px) on the raw 2D fluorescent signal. The sigma corresponded roughly to 2 

times the distance between adjacent nuclei. To lower the memory requirement, images were 
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then subsampled by a factor of 2. We used the 89735 pixels inside the wings as descriptors of 

the phenotype for all subsequence analyses. 

Average phenotypes, differences, logRatio colormaps and normalization. Average reporter 

expression phenotypes were computed as the average smoothed fluorescence intensity at every 

pixel among all individuals in a given group (tens of individuals from the same transgenic line). 

The difference between groups was computed as the pixel-wise difference between the average 

of the groups (Figure S3). logRatio between two constructs represents the fold change of a 

phenotype relative to another and is calculated as the pixel-wise logarithm of the ratio between 

the two phenotypes. Averages, difference, and logRatio images were represented using colors 

equally spaced in CIELAB perceptual color space (44). With these colormaps the perceived 

difference in colors corresponds to the actual difference in signal. Colormaps were spread 

between the minimal and maximal signals across all averages for average phenotypes. 

Difference and logRatio spread between minus and plus represent the absolute value of all 

difference for the phenotype differences, grey colors meaning that the two compared 

phenotypes are equal. 

Mutation effect direction and intensity. We proposed to represent the necessity of a stretch of 

sequence along the enhancer with the activity levels of mutants of this stretch relatively to wild-

type ([+]) activity. To summarize the overall effect of mutants (overexpression or 

underexpression), we measured the average level of activity across each wing relatively to that 

of a reference. The reference level was defined as the average level of activity of all [+] 

individuals. The value at each position corresponds to the average of all individuals that present 

a sequence that have an effect on this position. The effect of a mutation is not strictly limited 

to the mutated bases, as they can also modify properties of DNA of flanking positions (45). To 

take this effect into account and produce a more realistic and conservative estimation of 

necessity measure at each position, we weighted the phenotypic contribution of each mutant 

line to the measure by the strength of the changes they introduce to the DNA shape descriptors 

at this position. At each position, the phenotype of constructs not affecting the DNA shape 

descriptors compared to [+] were not considered. When two mutants modify the DNA shape 

descriptors at one position, typically near the junction of two adjacent mutations, the effect at 

this position was computed as the weighted average of the effect of the two mutants, where the 

weight is the extent of the DNA shape modification relatively to [+] sequence. DNA shape 

descriptors were computed by the R package DNAshapeR (46). Of note, with an average of 

11.5 bp, our A-tract mutations are somewhat larger than an average eukaryotic TFBS (~10 bp 
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(32)) and each mutation is likely to affect up to two TFBSs. This size represents the limit of 

regulatory content that we can discriminate in this study. 

Principal component analysis (PCA), and difference significance. The intensity measure is an 

average of the overall and variable expression across the wing. Hence, mutations causing a 

different effect on the phenotype can have the same intensity value. To test whether mutant 

significantly differ from [+], we used comprehensive and unbiased phenotype descriptors 

provided by principal component analysis (PCA), which removes correlation between pixel 

intensities and describe the variation in reporter gene expression. PCA was calculated on the 

matrix regrouping intensities of all pixels for every individual, of dimensions (n_individuals x 

n_pixels on the wing). The significance of the difference between two constructs considers the 

multivariate variation of the phenotypes, and is tested using MANOVA on all 5 first 

components explaining more than 0.5% of the total variance (Data file S3). 

 

Overall expression intensity and significance. The overall expression level was measured for 

each individual as the average intensity across the wing. This was used to test the significance 

of overall increase and decrease in expression levels relatively to the wild-type levels. 

 

DNA rigidity scores. A-tracts are runs of consecutive A/T bp without a TpA step. Stacking 

interactions and inter-bp hydrogen bonds in ApA (TpT) or ApT steps of A-tracts lead to 

conformational rigidity (28). The length of an A-tract directly correlates with increased rigidity 

(47). To parametrize DNA rigidity at nucleotide resolution, we used A-tract length as a metric. 

For each position in a given DNA sequence, we find the longest consecutive run of the form 

AnTm that contains this position (with the requirement of n≥0, m≥0, and n+m≥2), and score 

DNA rigidity at that position using the length of this sub-sequence. For example, the sequence 

AATCGCAT will map to the scores 3,3,3,0,0,0,2,2 because AAT and AT are A-tracts of 

lengths 3 and 2 bp, respectively. 
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Figures 

 

Figure 1. A mutational scan of the Drosophila biarmipes spot196 enhancer with a 

quantitative reporter assay. (A) Wild-type ([+]) and mutant ([0] to [16]) versions of the 

spot196 enhancer from the D. biarmipes yellow locus (depicted at the panel top) were cloned 

upstream of a DsRed reporter to assay their respective activities in transgenic D. melanogaster. 

Each mutant targets a position of the enhancer where the native sequence was replaced by an 

A-tract (color code: light green=guanine, purple=adenine, dark green=cytosine, pink=thymine). 

Four characterized binding sites for the TF Distal-less (Dll-a, Dll-b, Dll-c and Dll-d) (19) are 
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highlighted in red and a single binding site for the TF Engrailed (20) is highlighted in blue 

across all constructs. (B) Average wing reporter expression for each construct depicted in (A) 

and an empty reporter vector (ø). Each wing image is produced from 11 to 77 individual wing 

images (38 on average; Data file S2), aligned onto a unique wing model. The average image is 

smoothened and intensity levels are indicated by a colormap. (C) Mutational effect on intensity 

of activity along the spot196 sequence. The phenotypic effect of each mutation described in (A) 

along the spot196 sequence (x-axis) is plotted as the average level of expression across the wing 

relatively to the wild-type average levels. Shaded grey areas around the curve represent the 95% 

confidence interval of the average levels per position. 1 on the y-axis represents the mean wild-

type intensity of reporter expression. The graph shows how each construct departs from the 

wild-type activity (see methods). Mutation positions in constructs [0]-[16] are indicated above 

the graph. The locations of blocs A, B and C, analyzed in Figure 3 are also indicated above the 

graph. The yellow curve above the graph indicates the helical phasing. 
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Figure 2. trans-regulatory integration along the spot196 sequence. (A) Average phenotypes 

reproduced from Figure 1B. (B) logRatio images (log([mutant]/[+] for intensity values of each 

pixel of registered wing images) reveal what spatial information is integrated by each position 
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along the enhancer sequence. For instance, a blue region on an image indicates that the 

enhancer position contains information for activation in this region. When mutated, this 

enhancer position results in lower activity than [+] in this region of the wing. Note that 

logRatio illustrates local changes between [+] and mutants far better than image differences 

(Figure S3) in regions of relatively low activity. (C) Summary of spatial information integrated 

along the enhancer sequence.  
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Figure 3. Regulatory interactions in the spot196 sequence. (A) Schematics of constructs with 

block randomizations. spot196 sequence was arbitrarily divided into 3 blocks (A: 63 bp; B: 54 

bp; C: 79 bp). In each construct, the sequence of one, two or all 3 blocks was randomized. (B) 

Terminology for parts of the wing where constructs from (A) drive reporter expression. (C) 

Average phenotypes resulting from constructs in (A). Constructs where single blocks remain 

indicate the sufficiency of these blocks to promote wing activity: A in the veins, B in the alula 

and C at high levels across the wing blade. Constructs with two non-randomized blocks show 

the effect of one block on the other. For instance, B is sufficient to suppress the wing blade 

activation promoted by C, as seen by comparing [-B-], [--C] and [-BC]. Colormap of average 

phenotypes normalized for all constructs of the block series, including block permutations of 

Figure 4B. (D) Block interactions is best visualized with logRatio images of constructs 

phenotypes shown in (C). For each logRatio, the denominator is the reference construct, and 

the image shows on a logarithmic scale how much the construct in the numerator changes 
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compared to this reference. For instance, log([-BC]/[--C]) shows the effect of B on C, a global 

repression, except in the spot region. Colormap indicates an increase or a decrease of activity 

compared to the reference (denominator). For an overview of all comparisons, particularly the 

relative contribution of each block to the entire enhancer activity, see Figure S4C-F. 
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Figure 4. Block permutations scale the activity of the spot196 enhancer. (A) Schematics of 

constructs with block permutations. In this series, the same blocks of sequences as in Figure 

3A were permutated. (B) Average phenotypes resulting from constructs in (A). Colormap of 

average phenotypes normalized for all constructs of the block series, including block 

randomizations of Figure 3C and Figure S4B. (C) Average phenotypes in (B) compared to the 

average phenotype of the wild type [ABC] (logRatio). Note that, in contrast to constructs with 

randomized blocks (Figure 3), constructs with block permutations results in near-uniform 

changes of activity across the wing. Colormap indicates an increase or a decrease of activity 

compared to the wild-type enhancer [ABC]. 
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Figure 5. A model of the regulatory logic governing the spot196 enhancer. (A)-(D) The 

schematics shows step by step how regulatory information and interactions integrated along 

the enhancer sequence produce a spatial pattern of activity. (A) three independent inputs, 

respectively in blocks A, B and C, promote activity (arrows) in the wing veins, the alula and 

the wing blade, as illustrated with average phenotypes of constructs [A--], [-B-] and [--C], 

respectively. Note that activity levels in the wing blade, stemming from block C, match the 

final levels of the spot196 enhancer activity in the spot region. (B) a first set of repressive inputs 

suppress activity in the wing blade (stemming from blocks A and B) and the veins (stemming 

from blocks B). The overall combined output of the initial activation and the global repressive 

inputs is a near complete loss of activity, except in the alula. (C) A second set of repressive 

inputs, whose action is localized in the distal wing region, counters the global repression, 

thereby carving a pattern of distal activity promoted by block C. (D) The distal activity is 
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repressed in the posterior wing compartment, likely through the repressive action of Engrailed, 

resulting in a final pattern of activity in the spot region. 
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H2: Supplementary Materials 
 

 
Figure S1. First two axes of variation in a principal component analysis of all individual 

wings used to generate the average reporter expression of Figure 1. Each wing is depicted 

by a colored dot, and each construct by a color. PC1 captures 87.8% of the variation and 

corresponds to overall changes in the activity of the spot196 CRE. PC2 captures 2.1% of the 

variation and appears to represent spatial difference in CRE activity between lines. The 

direction of variation along each principal component is represented on a wing with a colormap 

next to each axis. 
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Figure S2. Local rigidity along the wild-type and mutant spot196. (A) Each graph is a plot 

of the length of the longest consecutive AnTn sequence that a base pair participates in, a proxy 

for sequence rigidity at this position. The first graph on top is the wild type ([+]) alone. The 

remaining graphs show plots for each mutant ([0], …, [16]) with a solid black line, compared 

to the wild type represented with a dotted magenta line. (B) Schematics illustrating the 

hypothetical consequence of local DNA rigidity (caused by an A-tract) on TF interactions. A 

flexible linker between two TFBSs would favor interactions between 2 bound TFs, while a 

stiffer linker of the same length would limit, or prevent these interactions. 
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Figure S3. Pattern changes between wild-type and mutant spot196 constructs.  (A) Average 

phenotypes reproduced from Figure 1B. (B) difference images ([+] – [mutant]) for intensity 

values of each pixel of registered wing images) highlight changes in the distribution of the 

enhancer activity across the wing. Note that this operation introduces a visual bias towards 

changes in region of high expression, contrasting with logRatio images of Figure 2. 
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Figure S4. logRatio of all block constructs. (A) Schematics of block constructs repeated from 

Figure 3A for legibility. (B) Average phenotypes of constructs shown in (A), repeated from 

Figure 3B for legibility. Colormap of average phenotypes normalized for all constructs of the 

block series, including block permutations of Figure 4B. (C) Average phenotypes in (B) 

compared to the average phenotype of the wild type [ABC] (logRatio). (D) Average phenotypes 

in (B) compared to the average phenotype of [A--] (logRatio). (E) Average phenotypes in (B) 

compared to the average phenotype of [-B-] (logRatio). (F) Average phenotypes in (B) 

compared to the average phenotype of [--C] (logRatio). Colormaps in (C)-(F) indicate an 

increase or a decrease of activity compared to the reference (denominator). 
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Table S1. Sequences of spot196 enhancer variants. 
 

• wild type [+] or [ABC] 
>spot196 [+] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGA
GATCTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTA
TTAAAACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCA
ATCCGCCTAATTGATGTGCGCCCATGCAAT 
 

• single mutants [0] to [16] 
>spot196 [0] 
AAAAAAAAAAAAAAAAAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAG
AGATCTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCT
ATTAAAACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTC
AATCCGCCTAATTGATGTGCGCCCATGCAAT 
 
>spot196 [1] 
TCTAATTATTCCGTTTAAAAAAAAAAAATTCTGAGCTAAAACTCGCTTATGGAGA
GATCTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTA
TTAAAACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCA
ATCCGCCTAATTGATGTGCGCCCATGCAAT 
 
>spot196 [2] 
TCTAATTATTCCGTTTAAGGACGCAATTAAAAAAAAAAAAACTCGCTTATGGAGA
GATCTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTA
TTAAAACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCA
ATCCGCCTAATTGATGTGCGCCCATGCAAT 
 
>spot196 [3] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAAAAAAAAAATGGAGA
GATCTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTA
TTAAAACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCA
ATCCGCCTAATTGATGTGCGCCCATGCAAT 
 
>spot196 [4] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTAAAAAAA
AAAATAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCT
ATTAAAACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTC
AATCCGCCTAATTGATGTGCGCCCATGCAAT 
 
>spot196 [5] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGA
GATCAAAAAAAAAAAGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCT
ATTAAAACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTC
AATCCGCCTAATTGATGTGCGCCCATGCAAT 
 
>spot196 [6] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGA
GATCTAAATTTCCCCAAAAAAAAAAAAAATAAATTAATCGAATTCCCCGCTGGC
TATTAAAACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCT
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CAATCCGCCTAATTGATGTGCGCCCATGCAAT 
 
>spot196 [7] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGA
GATCTAAATTTCCCCGCTTTTGGCTTGAAAAAAAAAAAAGAATTCCCCGCTGGCT
ATTAAAACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTC
AATCCGCCTAATTGATGTGCGCCCATGCAAT 
 
>spot196 [8] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGA
GATCTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCAAAAAAAAAAAAGGCT
ATTAAAACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTC
AATCCGCCTAATTGATGTGCGCCCATGCAAT 
 
>spot196 [9] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGA
GATCTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTAAAA
AAAAAAACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTC
AATCCGCCTAATTGATGTGCGCCCATGCAAT 
 
>spot196 [10] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGA
GATCTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTA
TTAAAAAAAAAAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCA
ATCCGCCTAATTGATGTGCGCCCATGCAAT 
 
>spot196 [11] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGA
GATCTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTA
TTAAAACACACAAAAAAAAAAAAAATCTGTTTCAATGTAAATTGCAAATTGCTC
AATCCGCCTAATTGATGTGCGCCCATGCAAT 
 
>spot196 [12] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGA
GATCTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTA
TTAAAACACACAAAAGGCGCTCTCGAAAAAAAAAATGTAAATTGCAAATTGCTC
AATCCGCCTAATTGATGTGCGCCCATGCAAT 
 
>spot196 [13] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGA
GATCTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTA
TTAAAACACACAAAAGGCGCTCTCGTCTGTTTCAAAAAAAAAAAAAAATTGCTC
AATCCGCCTAATTGATGTGCGCCCATGCAAT 
 
>spot196 [14] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGA
GATCTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTA
TTAAAACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAAAAAAAA
AAACCGCCTAATTGATGTGCGCCCATGCAAT 
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>spot196 [15] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGA
GATCTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTA
TTAAAACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCA
ATAAAAAAAAAAAATGTGCGCCCATGCAAT 
 
>spot196 [16] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGA
GATCTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTA
TTAAAACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCA
ATCCGCCTAATTGAAAAAAAAAAAAAAAAA 
 

• Permutations of blocks 
> spot196 [ACB] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGA
GATCTAAACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCT
CAATCCGCCTAATTGATGTGCGCCCATGCAATTTTCCCCGCTTTTGGCTTGAATAA
ATTAATCGAATTCCCCGCTGGCTATTAAAA 
 
>spot196 [BAC] 
TTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAAAATC
TAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGA
TCTAAACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCA
ATCCGCCTAATTGATGTGCGCCCATGCAAT 
 
>spot196 [BCA] 
TTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAAAACA
CACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCCT
AATTGATGTGCGCCCATGCAATTCTAATTATTCCGTTTAAGGACGCAATTTTCTGA
GCTAAAACTCGCTTATGGAGAGATCTAAA 
 
>spot196 [CBA] 
CACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGC
CTAATTGATGTGCGCCCATGCAATTTTCCCCGCTTTTGGCTTGAATAAATTAATCG
AATTCCCCGCTGGCTATTAAAATCTAATTATTCCGTTTAAGGACGCAATTTTCTGA
GCTAAAACTCGCTTATGGAGAGATCTAAA 
 

• Randomized blocks 
>spot196 [A--] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGA
GATCTAAATCCGAATTTTTTCTTGTCCGACTAGAAACGACTAATTTAGCCGTACC
ACATGTTGTCGACTCAGAAACATTATTCCCATTTACGCGTAAGCAAAAAATGCGT
CCTTATCGAACTTACACTCGCCTGCGTTGGT 
 
>spot196 [-B-] 
ATAATATTGCATCTCATTGTGGTGCTAGATAATCATCTAGGCTAAATCCAAAACT
GTTGCATGTTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTA
TTAAAAGTCGACTCAGAAACATTATTCCCATTTACGCGTAAGCAAAAAATGCGTC
CTTATCGAACTTACACTCGCCTGCGTTGGT 
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>spot196 [--C] 
ATAATATTGCATCTCATTGTGGTGCTAGATAATCATCTAGGCTAAATCCAAAACT
GTTGCATGTCCGAATTTTTTCTTGTCCGACTAGAAACGACTAATTTAGCCGTACC
ACATGTTCACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTC
AATCCGCCTAATTGATGTGCGCCCATGCAAT 
 
>spot196 [AB-] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGA
GATCTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTA
TTAAAAGTCGACTCAGAAACATTATTCCCATTTACGCGTAAGCAAAAAATGCGTC
CTTATCGAACTTACACTCGCCTGCGTTGGT 
 
>spot196 [A-C] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGA
GATCTAAATCCGAATTTTTTCTTGTCCGACTAGAAACGACTAATTTAGCCGTACC
ACATGTTCACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTC
AATCCGCCTAATTGATGTGCGCCCATGCAAT 
 
>spot196 [-BC] 
ATAATATTGCATCTCATTGTGGTGCTAGATAATCATCTAGGCTAAATCCAAAACT
GTTGCATGTTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTA
TTAAAACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCA
ATCCGCCTAATTGATGTGCGCCCATGCAAT 
 
>spot196 [---] 
ATAATATTGCATCTCATTGTGGTGCTAGATAATCATCTAGGCTAAATCCAAAACT
GTTGCATGTCCGAATTTTTTCTTGTCCGACTAGAAACGACTAATTTAGCCGTACC
ACATGTTGTCGACTCAGAAACATTATTCCCATTTACGCGTAAGCAAAAAATGCGT
CCTTATCGAACTTACACTCGCCTGCGTTGGT 
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genotype number of individuals 
ø 38 
[+] 49 
[0] 27 
[1] 31 
[2] 25 
[3] 22 
[4] 38 
[5] 35 
[6] 51 
[7] 60 
[8] 67 
[9] 27 
[10] 46 
[11] 33 
[12] 61 
[13] 39 
[14] 44 
[15] 77 
[16] 23 
WT-[ABC] 61 
[-BC] 32 
[A-C] 49 
[AB-] 24 
[A--] 33 
[-B-] 35 
[--C] 32 
[---] 37 
[ACB] 39 
[BAC] 34 
[BCA] 37 
[CBA] 34 

 

Table S2. Number of individuals analyzed for each construct in this study. 
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regulatory potential 
(sufficiency) 

necessity 

[A--] A is sufficient for vein 
expression 

 

[-B-] B is sufficient for alula 
expression 

 

[--C] C is sufficient for wing 
blade expression 

 

[AB-] 
 

C is necessary for high levels in 
the spot 

[A-C] A is sufficient to repress 
wing blade expression 
(outside of spot region) 

B is necessary for alula 
expression 
B is necessary for full spot levels 

[-BC] B is sufficient to repress 
wing blade expression 
(outside of spot region) 

A is necessary for full spot levels 

 

Table S3. Analysis of necessity and sufficiency of each block. 
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Data file S1. Scores for the PCA shown in Figure S1. 

 

Data file S2. Significance of difference in activity between pairs of groups, using the first 

6 principal components. 

 

Data file S3. Significance of the difference in average expression levels among constructs 

of the first mutant series ([0]-[16]). 

 

Data file S4. Significance of difference in average expression levels among constructs of 

the second mutant series (blocks). 

 

 

Additional notes on logRatios. 

Using average phenotypes to evaluate the effect of the mutations we introduced is useful but 

limited. Indeed, the differences we observe are visually driven by changes in regions of the 

wing with elevated enhancer activity. It is then difficult to appreciate whether a mutation affects 

enhancer activity locally or uniformly across the wing. Differential gene expression is generally 

represented using log ratios (30), which measure the fold changes in expression level of a gene 

relative to a reference (e.g., the expression of the same gene under different conditions). We 

applied this principle to our image data to visually compare the activity of different constructs 

across the wing. Classical log ratio translates here to the log of the pixel-wise ratio between 

two average phenotypes at every pixel (hereafter noted logRatio). logRatio images of mutants 

vs. wild type are of particular interest to decipher the regulatory logic, because they reveal in 

which proportion a mutant affects the enhancer activity across the wing.  

 

Compared to absolute difference, logRatio are not driven by regions with high levels of 

expression, but by regions with a large fold change, irrespective of the wild-type activity 

pattern. In a theoretical case where the enhancer activity depends directly and linearly on a 

given TF concentration, the logRatio image reflects logically the spatial distribution of this 

particular TF. This is also the case if this integration of this TF information is only modulated 

by uniformly distributed TFs. The underlying logic is straightforward: in this theoretical case, 

a sequence mutation breaking the interaction between the DNA and the TF will have a 

significant effect on the phenotype. The intensity of the local phenotypic effect (relatively to 

the wild-type levels) will depend on the local intensity of the TF-DNA interaction across the 
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wing, and therefore on the local concentration of the TF. Logically, this interaction is not 

happening where the TF is absent, with no effect on the phenotype. For any situation departing 

from these ideal conditions, the resemblance between the logRatio and the TF distribution is 

compromised. For instance, when a TF is locally repressed by another, logRatio will 

correspond to the net loss of spatial information integration, including the loss of this repression. 

The logRatio of a mutant affecting a known TFBS for which the corresponding TF distribution 

is known therefore informs us on its contribution in the regulatory logic of the enhancer, and 

how linearly this integration happens. Moreover, even without additional knowledge on the 

regulatory logic and TF spatial variation, the variety of logRatio patterns suggests the action of 

different spatial inputs integrated by the enhancer. 
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Rita Jaenichen, Yann Le Poul, Laurent Arnoult, Johanna M. Kobler, Ilona C. Grunwald Kadow, 

Lisa Rodermund, Benjamin Prud’homme, Nicolas Gompel 
Developmental Biology 15 June 2018.  

 
 
 
 
This paper investigates the temporal and developmental process of pigment formation using 

the pigment gene yellow in Drosophila. We generated a fluorescent protein-tagged yellow allele, 

and then examined the dynamics of Yellow distribution and cellular targeting in relationship 

to the process of pigment formation during development. Our analysis resolves the relationship 

between Yellow expression in space and time, its cellular distribution in the epidemis during 

development, and its function in pigment formation. In addition, the results showed that Yellow 

is expressed in a few neurons in the brain and the ventral nerve chord from the second larval 

instar to adult stage, indicating a neuro-developmental function of yellow. Finally, the results 

suggested a structural role of Yellow in the establishment of pigmentation patterns. 
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General Discussion 

 

 
Summary of findings 
 
Morphological diversity results largely from the recycling of the conserved developmental 

genes. This recycling happens mainly at the level of CREs such as enhancers. Their emergence 

and their modification during evolution result in new gene expression patterns, in particular for 

developmental genes. Enhancers are known as short modular DNA segments controlling gene 

expression. They contain TFBSs bound by TFs in a sequence-specific and tissue-specific 

manner, and their combinatorial interplay determines the activity of an enhancer.  

 

One of the mechanisms underlying enhancer emergence is the co-option of preexisting 

regulatory information. While enhancer co-option represents a likely evolutionary path for the 

birth of new enhancers, its molecular mechanism still remains elusive. 

 

In this thesis, using the spot enhancer underlying the evolutionary origin of a novel spot 

expression pattern, I answered two main questions:  

 

1. How has the novel spot enhancer evolved in the context of the preexisting wing blade 

enhancer? 

For the first question, starting with two qualitatively and arbitrarily defined enhancers, the spot 

and the wing blade enhancers, I used a quantitative and systematic approach to map the 

sequence boundaries of segments driving each full enhancer activity.  The results showed that 

the full spot and wing blade activities were located in a much larger region (3.5 kb) than 

previously described (1.1 kb together). The regulatory information both necessary and 

sufficient for the respective spot and wing blade activities was extensively overlapping. The 

results further revealed that a particular site contributed to both activities and was required for 

the local chromatin accessibility. The results thus demonstrated a case of novel enhancer 
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evolution by co-option of an ancestral enhancer, and suggested that chromatin accessibility 

might be one of the molecular components seeding evolutionary co-option. 

 

2. What is the regulatory logic underlying the activity of the minimal spot196 enhancer? 

Having identified that the spot enhancer evolved through co-option, we sought to understand 

how the core of this regulatory activity, the short segment named spot196, was built. In this part, 

we used systematic and quantitative analysis to deconstruct the regulatory logic of the spot196 

element and understand how it reads the wing trans-regulatory environment to encode a spatial 

pattern. The results revealed an unexpected density of regulatory information, and also 

uncovered multiple tiers of repression to produce the spatial pattern of activity.  

 

I will hereafter discuss some aspects of these results. 

 

 

How to define an enhancer? 
 
By precisely quantifying the spatial enhancer activity, I found that a ~3.5-kb region from the 

yellow 5´drove full activities of both the novel spot and preexisting wing blade enhancers in D. 

biarmipes. Regulatory sequences required for the spot activity also contribute to the wing blade 

activity. Their extensive positional and functional overlap therefore highlight the pleiotropic 

nature of these enhancers and undermines the conception of enhancer modularity.  

 

Over the 40 years since their discovery, enhancers have been depicted as discrete, arrayed 

boxes with clearly cut boundaries (Shlyueva, Stampfel, and Stark 2014). Enhancers have been 

identified by testing the sufficiency, rather than the necessity, of short DNA fragments to drive 

a similar or identical expression pattern (in a reporter assay) as that of the gene they normally 

control. The criterion to assess the similar expression, however, is based on qualitative 

measurements, ignoring the expression levels (Milewski et al. 2004; Corbo, Levine, and Zeller 

1997). Therefore, most of the well-studied enhancers likely drive lower levels and imprecise 

expression patterns compared to those of the endogenous gene. 

 

Our precise quantitative measurement, which takes both levels and pattern into account, 

enabled us to map all the regulatory sequences necessary and sufficient to recapitulate the 

faithful enhancer activities. 
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It is found that compared to the minimal spot196 enhancer (196 bp) identified previously 

(Gompel et al. 2005), which drove a spot spatial expression pattern but at weak levels, the full 

spot enhancer element (~3.5 kb) drove a much higher expression levels as well as a more 

precise expression pattern with sharper boundaries on the wing. The sequences flanking 

minimal enhancers have been implicated in fine-tuning gene expression, conferring the 

precision of gene expression (Dunipace, Ozdemir, and Stathopoulos 2011). Our findings of the 

contribution of the flanking sequences thus provided evidence for the above implications.  

 

In addition, flanking sequences were also implicated in the robustness of gene expression 

against genetic and environmental perturbation (Michael Z. Ludwig et al. 2011; Frankel et al. 

2010; Swami 2010). A minimal “stripe element” of the embryonic segmentation gene even-

skipped in Drosophila was shown to be sufficient for the biological function under normal 

conditions. However, under genetic and environmental perturbation, the flanking sequences 

are required for robustness of gene expression and fly viability. I speculate that the full spot 

enhancer, which spans ~3.5 kb of the y 5´ region, might be required for a more robust 

expression of yellow, which therefore can increase the robustness of the wing pigmentation 

spot.  

 

Our results also indicate that regulatory information required for the full enhancer activities is 

continuously distributed over a much larger region, rather than clustered into short modular 

DNA elements. This is consistent with other findings. For example, the regulation of runt gene 

in Drosophila embryos is controlled by TFBSs dispersed over a 5 kb segment region (Klingler 

et al. 1996). A systematic survey of the Ultrabithorax (Ubx) locus failed to identify the cis-

regulatory regions of Ubx that drive expression on the posterior second femur in Drosophila, 

suggesting that this enhancer structure is complex and regulatory information might be spread 

over a larger region (Davis et al. 2007). These results call for a reappraisal of our definition of 

enhancers and a possible change in our methodology when attempting to isolate enhancers. 

 

 

Pleiotropy in enhancer function 
 

Our precise quantitative analysis of the yellow 5´ region in D. biarmipes provided a revised 

understanding of the cis-regulatory architecture of gene yellow. It is surprising to find that the 
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yellow 5´ regulatory region is less modular than previously thought. Rather, the cis-regulatory 

architecture of yellow 5´ region displays pleiotropy as the same segment and TFBSs affect 

enhancer activities in both the spot and the wing blade. Actually, I also found that the same 

segments also affect the enhancer activities in the abdomen (data not shown).   

 

Similar with our results, a recent study found that 5 characterized CREs of optix underlying 

wing color pattern variation in Heliconius butterflies are pleiotropic and functionally 

interdependent. 4 of them are shown to be required for the red color pattern and wing vein 

development (J. J. Lewis et al. 2019). 

 

Recently, several genome-wide studies have also confirmed that thousands of enhancers 

function in multiple developmental contexts (Infante et al. 2015; Lonfat et al. 2014; Preger-

Ben Noon et al. 2018; McKay and Lieb 2013; Fish, Chen, and Capra 2017; J. J. Lewis et al. 

2016; Schep et al. 2016; Vizcaya-Molina et al. 2018). For example, Infante et al. showed that 

in mouse and Anolis Lizards, many enhancers were used during the limb and phallus 

development. A specific pleiotropic enhancer HLEB of Tbx4 contributed to the development 

of both hindlimb and genitalia in mice (Infante et al. 2015b). Lonfat et al. also showed several 

enhancers were shared by the digits and the genitalia structure (Lonfat et al. 2014). These cases 

indicate that enhancer pleiotropy is gaining rapid attention and might be pervasive.  

 

When two distinct regulatory activities share a DNA segment, within the shared region, the 

pleiotropy can simply result from this overlap, although both activities rely on distinct sets of 

TFBSs. Alternatively, the two activity may share same TFBSs, which deepens the level of 

enhancer pleiotropy and lead to “site pleiotropy” (Preger-Ben Noon et al. 2018). The further 

mutational analysis of the spot196 core that I presented here revealed that at least two sets of 

TFBSs, Dll sites and site [6], whose mutations significantly reduced both the spot and the wing 

blade activities, functioned in these two contexts.  

 

Since enhancer pleiotropy is not frequently investigated, and TFBS pleiotropy even less so, 

few studies have dissected individual pleiotropic enhancer to this resolution. One example 

concerns enhancers from the Drosophila shavenbaby (svb) gene. In a comprehensive study of 

enhancers of D. melanogaster svb gene, the same TFBSs were found to be used in the epidermis 

in embryonic and pupal development in one enhancer, while in another enhancer, distinct sets 

of TFBSs were used to regulate different expression patterns (Preger-Ben Noon et al. 2018). 
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In another study, this time on an enhancer of the Drosophila gene poxn , the same TFBSs for 

Abd-B and STAT were shown to be required for the development of the adult male genitalia 

posterior lobe and for the development of the embryonic posterior spiracle (Glassford et al. 

2015).  

 

These two examples of TFBS pleiotropy have been shown with enhancers active in distinct 

tissues and at different developmental stages, where the mutational effect of the same TFBS 

can be examined by tissue dissection followed by imaging. However, if the two activities to be 

examined are overlapping in the same tissue and at the same developmental timing, such as the 

spot and the wing blade activities in our studies, the investigation of site pleiotropy could be 

hindered because it is impossible to separate these two activities. Our image quantification 

analysis can separate the two overlapping expression patterns and attribute each activity to 

respective DNA sequences. It therefore provides insight into the mechanism of enhancer 

pleiotropy and site pleiotropy when two activities occur simultaneously in the same tissue. Our 

approach could inspire other scientists to explore the consequences of pleiotropy on phenotypic 

variation in similar situations. 

 

Even if a same TFBS is used in distinct regulatory instances, it may be used differently. 

Because TFs are expressed differentially in a tissue- and time-specific manner (Spitz and 

Furlong 2012), the same TFBSs can be bound by distinct TFs in different developmental 

contexts. This is the case for a site in the Drosophila scute enhancer. In the genitalia, this site 

is bound by Abd-B where Abd-B is expressed, while in the leg a single mutation alters its 

binding for another factor expressed in the leg (Nagy et al. 2018). On the contrary, if the same 

TFBS is used at the same space and time, where the same TFs are available to the site, the 

pleiotropic site might respond to a common TF. Therefore, it is tempting to speculate that the 

pleiotropic site identified in our study might control the spot and the wing blade activities by 

responding to a pioneer factor which opens the local chromatin accessibility (Cirillo et al. 2002). 

However, this speculation needs to be confirmed.  

 

 

Evolution of novel enhancers from preexisting regulatory 
sequences 
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In D. biarmipes, the novel spot enhancer, which underlies the evolution of a morphological 

novelty, was found in the vicinity of the preexisting wing blade enhancer (Gompel et al. 2005). 

While the positional proximity suggested a case of enhancer co-option, the scenario of de novo 

emergence could not be ruled out. In this thesis, I revisited the positional relationship of the 

novel spot and the preexisting wing blade activities using a quantitative measurement instead, 

and found that the regulatory sequences required for these two activities overlapped extensively, 

and the sequences required for the spot activity also contributed to the wing blade activity. A 

detailed analysis of the shared core region revealed that at the timing when the spot enhancer 

became active, the chromatin was accessible around the core region, and a shared site was 

required for this local chromatin accessibility. This has confirmed that the novel spot activity 

has evolved by co-option of sequences from the ancestral wing blade element. 

 

Consistent with my results, several examples of new enhancer origin have involved the co-

option of preexisting regulatory sequences, and this phenomenon might be common.  

 

A novel expression pattern of the Nep1 gene in the optic lobe in D. santomea has evolved by 

reusing preexisting regulatory sequences that are active in multiple tissues (Rebeiz et al. 2011). 

In another species D. guttifera, a novel vein-tip expression pattern of the gene wingless evolved 

by co-opting an ancestral enhancer (Koshikawa et al. 2015). The TFBSs for STAT and Abd-B 

of the poxn enhancer active in the ancestral posterior spiracle are reused to evolve a novel 

expression pattern in the derived posterior lobe structure of the male Drosophila genitalia 

(Glassford et al. 2015).It is conceivable that enhancer co-option is widely spread across the 

whole genome. Reinforcing this idea, a genome-wide analysis of enhancers in mammalian liver 

showed a great number of enhancers have recently emerged by exaptation from ancestral DNA 

sequences (Villar et al. 2015). Compared to de novo emergence, the emergence of new 

enhancers through co-option requires fewer mutational steps and is therefore more likely 

(Gompel and Prud’homme 2009).  

 

Indeed, enhancer co-option represents a shorter evolutionary path. The emergence of a new 

enhancer activity requires a correct (functional) combination of TFBSs. Generating such 

TFBSs by random mutation is a game of chance. By reusing some preexisting regulatory 

information, in the form of TFBSs already bound by TFs and functional, the new activity can 

emerge with fewer mutations. Especially when the new and the preexisting activities are in the 
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same tissue and at the same developmental stage, multiple spatially expressed TFs are available 

for any new generated TFBS. This could shorten the evolutionary path to build a new activity. 

 
The other important biological reason proposed to explain enhancer co-option is the favorable 

chromatin environment. From all possible mutations generating new TFBSs, only those 

occurring in accessible chromatin regions have the chance to be caught by TFs. The increased 

chromatin accessibility of the preexisting enhancer therefore provides a favorable chromatin 

environment for the emergence of a new activity. Within a chromatin region that is already 

accessible, unlike in a compacted chromatin region, any mutation resulting in the formation of 

new TFBSs could be immediately exposed to the prepatterned spatial inputs and more 

efficiently be incorporated to the novel regulatory context. 
 

The importance of chromatin accessibility in enhancer evolution has been extensively studied 

genome-wide using bioinformatics in recent years (Peng et al. 2019; Maeso and Tena 2016). 

However, no studies have confirmed the role of chromatin accessibility at the molecular level 

of individual enhancer. The pleiotropic site contributing to both the novel spot and the 

preexisting wing blade activities by maintaining the local chromatin accessibility therefore 

opens a door to investigate the proposed role of chromatin accessibility in enhancer co-option. 

 

Of course, it is still not known whether this open chromatin profile observed is ancestral or 

derived. Sequence comparision of this pleiotropic site reveals its conservation between 

different closely related species (not shown), which suggests a conserved function to contribute 

to the chromatin accessibility. On the other hand, it cannot be ruled out that other sites nearby, 

such as the sites for Dll, are also necessary for the local chromatin accessibility as no other 

sites have been tested by ATAC-seq. It is also possible that the pleiotropic site [6] is necessary 

but not sufficient for the chromatin opening. To solve these open questions, ATAC-seq on the 

spotted and outgroup species as well as on constructs with additional mutations are needed.  

 

 

The regulatory logic of enhancer activities 
 

Previous work has shown that the spot196 element contains at least 4 TFBSs for the activator 

Dll and one TFBS for the repressor En, and these two inputs appear sufficient to explain the 

spatial spot activity in the wing (Gompel et al. 2005; Arnoult et al. 2013). However, combining 
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TFBSs for these factors on a naive sequence failed to produce the spatial spot activity (B. 

Prud'homme and N. Gompel unpublished results). This suggests that other sequences are 

required for the spot activity. Yet the function of the remaining sequences between the known 

TFBSs has not been explored. 

 

We used systematic mutation of the yellow spot196 enhancer and quantified the effect of each 

mutated position on the enhancer activity. Our results demonstrate an unexpected density of 

regulatory information along the spot196 enhancer. Other than the characterized Dll and En 

TFBSs, all other mutated positions are shown to significantly contribute to the enhancer 

activity. Moreover, the results demonstrate that the spatial spot pattern is achieved by a 

complex interplay between activators and multiple tiers of repressors.  

 

An enhancer contains clusters of TFBSs as well as the remaining sequences between the TFBSs. 

Deciphering the regulatory logic of an enhancer therefore requires understanding how all these 

sequences within the enhancer encode the gene expression output. Our results here shed light 

on several aspects of how a spatial quantitative pattern is encoded.  

 

 

A high density of regulatory information along the spot196 sequence 

 

Our quantitative analysis of the activities from the enhancer variants have demonstrated that 

there is a lot more information in the spot196 sequence than just the characterized TFBSs, and 

the regulatory logic of this enhancer in vivo is much more complex. 

 

Most studies to decipher the enhancer “grammar” have focused on the necessity of the 

characterized TFBSs for activators and repressors (Weingarten-Gabbay and Segal 2014; Spitz 

and Furlong 2012; Barolo 2016). The remaining sequences between the TFBSs are less 

examined. These remaining sequences turn out to be necessary for the enhancer function, as 

TFBSs alone are not sufficient to generate the enhancer activity. Most synthetic enhancers built 

by combining characterized TFBSs in their original arrangement have failed to recapitulate the 

native gene expression pattern in transgenic animals (Johnson et al. 2008; Vincent, Estrada, 

and DePace 2016) .  
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Similar conclusions have been drawn by other studies. For example, Swanson et al. performed 

an exhaustive dissection of the sparkling (spa) enhancer of the Drosophila pax2 gene, and 

discovered that other than the twelve identified TFBSs, spa enhancer is densely packed with 

previously unknown regulatory sequences which are necessary for normal enhancer activity in 

vivo (Christina I Swanson, Evans, and Barolo 2010). Another similar study found that 

randomizing the spacer sequences separating the characterized ETS and GATA sites of the 

Ciona Otx gene enhancer affected the level of the enhancer activity (Guéroult-Bellone et al. 

2017). 

 

Compared to the above studies, as well as others that also reveal the function of the spacing 

sequence on enhancer activity including those through massively parallel reporter assays in 

cell lines or embryos (Verfaillie et al. 2016; Inoue and Ahituv 2015; Grossman et al. 2017; 

Farley et al. 2016; D. M. King et al. 2020; Farley et al. 2015), our study here has revealed 

several different aspects, which will deepen the current understanding on enhancer regulatory 

logic. First, unlike most in vivo studies that keep the fixed TFBSs, we introduced systematic 

mutations at all the positions along the enhancer without prior assumption on the role of 

sequences at each position. Second, instead of using randomized sequences which could 

potentially introduce unexpected TFBSs, we maximized the disruption of sequence 

information by introducing A-tracts. Thus, each enhancer mutant is identical to the wild-type 

except for the replaced segment. Third, our quantitative approach enables us to directly 

quantify the spatial enhancer activity in the tissue, which can better discriminate the distinct 

sequence functions on enhancer activity (e.g., pattern or levels. More discussion below). In this 

respect, our method can be adapted to other systems to better understand the regulatory logic 

of different sets of enhancers.  

 

Of course, it cannot be ruled out that the replaced A-tracts might influence TF-TF interactions 

and might also create unknown TFBSs that could affect the enhancer activity. 

 

Regarding the function of the remaining uncharacterized sequences, it is possible that these 

sequences might contain functional TFBSs for Dll or other unknown TFs, as ChIP-seq has 

revealed that a TF can bind multiple different motifs with different intensities in vivo (Wang et 

al. 2012; Yang et al. 2006). Besides, these sequences might also affect the transcriptional rate 

by affecting DNA looping, chromatin structure or TF-TF interactions (Amit et al. 2011) . 
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The trans-regulatory integration along the spot196 enhancer sequence 

 

We used logRatio images (log ([mutant] / [+]) to decipher the possible trans-regulatory 

landscape integrated into spot196 enhancer sequence. logRatio images can visually reveal how 

much a mutant affects the enhancer activity across the wing proportionally to the local activity 

levels, and can reflect logically the spatial distribution of the inputs received and integrated 

along the spot196 sequence.  

 

The logRatio images reveal two classes of spatial information integrated by each position along 

the spot196: patterned activation/repression and uniform activation/repression. 

 

For the 2 known patterned TFs Dll and En (Gompel et al. 2005; Arnoult et al. 2013), our 

logRatio images have successfully shown that the mutants of Dll and En TFBSs proportionally 

affect the activity in the wing that correlate with their distribution and are consistent with their 

effect.  

 

Interestingly, the logRatio of mutant [6] reveals a stronger, more uniform decrease in enhancer 

activity across the wing. In another study we have shown that this site is required for the local 

chromatin accessibility (Xin et al. 2020). This suggests that site [6] most probably integrates 

chromatin regulators such as pioneer factors (Zaret and Carroll 2011a; Iwafuchi-Doi 2019), 

which uniformly express in the wing, to activate the spot196 activity. It might also be the same 

case for site [5] whose logRatio reveals a stronger, more uniformly increased effect on the wing. 

It is tempting to speculate that site [5] might integrate chromatin regulators with uniform 

expression in the wing to repress the spot196 activity. If this is the case, then the DNA sequence 

encompassing site [5] and site [6] will be required for a proper chromatin environment to 

maintain a correct activity of spot196. To find out, whether chromatin regulators bind to this 

region will require further experiments. Previous work (Arnoult et al. 2013) with RNAi screens 

on wing TFs has identified the chromatin regulator Trithorax (TRX) (Kassis, Kennison, and 

Tamkun 2017) as an activator for the spot196 activity. To test whether TRX could function 

through interactions with site [6] or other sites nearby, further work such as CHIP-seq on TRX 

or histone marks (e.g., H3K4me1) (Tie et al. 2014) will be required. 
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Since the activation of enhancers requires an open chromatin, we speculate that the reason why 

most synthetic enhancers are not functional might be because they lack such accessibility sites. 

Consistent with this, Crocker et al. constructed a fully synthetic enhancer platform in 

Drosophila embryos. They confirmed that activation of synthetic enhancers requires the 

pioneer factor Zelda to establish an open chromatin state (Crocker, Tsai, and Stern 2017). In 

the Drosophila embryo, Zelda is expressed ubiquitously and appears to increase enhancer 

accessibility (Foo et al. 2014; Harrison et al. 2011; Schulz et al. 2015; Xu et al. 2014). 

 

Overall, the analysis of the mutational effects by logRatio images suggest that more (possibly 

6 to 8) factors might regulate the spot196 enhancer. These factors include activators for the 

uniform wing blade expression and for expression in the wing vein. These factors possibly 

work in concert for the construction of the spot196 activity. Some factors such as Dll and En 

can contribute to the patterning of the spatial spot pattern, while some others might be required 

for the correct TF-TFBS binding, chromatin state or the 3D DNA structure which could affect 

enhancer-promoter interactions. 

 

 

Evolution of the spatial spot expression pattern by multiple tiers of repression 

 

Our results from the systematic and combinatorial dissections of the spot196 enhancer 

demonstrate that the spatial spot expression pattern mainly results from multiple tiers of 

repression rather than from local activation. The spot196 enhancer mainly integrates two 

unknown activators, one promoting a uniform expression in the wing blade, and the other 

activating activity in the wing veins. This activation is in turn repressed by an unknown 

repressor throughout the wing. Upon this first two regulatory layers, the spatial spot expression 

pattern is established by two spatially localized repressors, resulting in a spatially limited 

repression to the anterior distal region of the wing whose boundary is confined by another 

repressor in the posterior compartment of the wing. 

 

This result is consistent with the idea that spatial enhancer activity is often determined by the 

localized activity of transcriptional repressors (Mannervik et al. 1999; Spitz and Furlong 2012), 

and this is confirmed by multiple studies from the dissection of regulatory enhancers (E. H. 

Davidson 2006; Ferrándiz, Liljegren, and Yanofsky 2000; Roeder, Ferrándiz, and Yanofsky 

2003; Stanojevic, Small, and Levine 1991). For example, the spatial activity of the Drosophila 
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even-skipped (eve) stripe 2 enhancer is activated by broadly expressed Bicoid and Hunchback, 

and repressed by Giant on the anterior and Krüppel on the posterior region of the embryo 

(Stanojevic, Small, and Levine 1991). 

 

The spatial spot expression pattern has evolved from the preexisting uniform activity in the 

wing blade. These two activities share at least one pleiotropic binding site which integrates 

uniformly expressed activator(s) (Gompel et al. 2005; Xin et al. 2020). To avoid pleiotropic 

effects, evolution of binding sites for spatially and/or temporally restricted repressors might 

serve as a possible mechanism for a novel spot expression pattern to emerge from the uniform 

activity in the wing blade.  

 

Given that the evolutionary rate of gene repression is significantly higher than the rate of gene 

activation (Oakley, Østman, and Wilson 2006), recruitment of regulatory repression might be 

a general rule for enhancer and phenotypic evolution. 

 

Several studies have provided evidence that the evolution of differential repression often 

involves changes in gene expression patterns and morphological diversities (Ronshaugen, 

McGinnis, and McGinnis 2002; Carroll, Weatherbee, and Langeland 1995; Ochi et al. 2012; 

Preger-Ben Noon, Davis, and Stern 2016). In D. sechellia, the evolution of a spatially restricted 

repressor Abrupt for a shavenbaby (svb) gene enhancer results in the complete loss of the gene 

expression in the embryo and thus contributes to morphological evolution (Preger-Ben Noon, 

Davis, and Stern 2016). Similarly, the positioning of insect wings on two thoracic segment was 

shown to have evolved through the repression of the wing developmental program in different 

segments by different homeotic genes (Carroll, Weatherbee, and Langeland 1995). 
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