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1 INTRODUCTION 

1.1 Atherosclerosis 

1.1.1 Atherosclerosis is an unresolvable inflammatory disease 

Inflammation arises when the immune system is activated to remove harmful pathogens and/or other 

invading organisms or molecules1. Inflammation can be resolvable if the immune system is capable 

of removing the causative factors with resultant restoration of tissue homeostasis. It will, however, 

become unresolvable and chronic if the immune system fails to eliminate the invaders. Unresolvable 

inflammation is uncontrolled, progresses over time, and may cause severe tissue damage resulting in 

organ dysfunction, which - when not compensated - leads to clinically significant diseases and 

possibly death2.  

The majority of chronic human diseases are caused by unresolvable inflammation initiated by 

immune cells (i.e., all white blood cells) infiltration of peripheral tissues. The immune system is 

activated when it recognizes harmful activity (“danger signals”), and it is then prompted to infiltrate 

peripheral tissues by exogenous or - in some instances - endogenous agents, including modified lipids 

or lipoproteins. Human unresolvable inflammatory diseases include atherosclerosis (the major cause 

of death worldwide), Alzheimer´s disease (the major cause of dementia), chronic obstructive lung 

disease, obesity, diabetes, cancer, multiple sclerosis (a major autoimmune disease), rheumatoid 

arthritis, and many more2,3. 

A report by the World Health Organization demonstrates that the major mortality worldwide is caused 

by chronic diseases (Fig. 1). Mortalities were reported for every four years between 2002 and 2018, 

and are predicted for 2022 - 2030. The mortality of chronic diseases increased between 2002 and 

2018. Especially deaths caused by cardiovascular diseases were expected to increase. In 2017, 

cardiovascular diseases related to death reached ~18 million4. At the same time, death rates of 

infectious diseases are predicted to decrease over time. The data indicate a major shift in distinct 

disease conditions, from communicable to non-communicable diseases5. 
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Figure 1. Global Burden of Chronic and Infectious Diseases worldwide. Reproduced from Valentin Fuster5. The figure 

demonstrates the number of deaths caused by chronic and infectious diseases between 2002 and 2018, and the predictions 

between 2022 and 2030 worldwide. The left side shows that mortalities of cardiovascular diseases slightly increased 

between 2002 and 2018, but are predicted to increase further by 2030 to become the major cause of human death globally. 

The right side shows the total number of deaths caused by infectious diseases, which decreased between 20002 and 2018, 

and are predicted to decrease further by 2030. 

 

1.1.2 Development of atherosclerosis 

Atherosclerosis is a chronic inflammatory disease6,7 that occurs in the vessel wall of large- and 

medium-sized arteries, including the aorta, coronary arteries, cerebral arteries, and other beds of the 

arterial tree8. Several genetic and environmental risk factors are known to contribute to the 

development of atherosclerosis, including hyperlipidemia, aging, hypertension, obesity, diabetes 

mellitus, smoking, sedentary lifestyle, and high-fat diets9. Atherosclerosis is the most common cause 

of death worldwide10,11. Depending on organ manifestation, it may lead to myocardial infarcts, stroke, 

kidney dysfunction, and a large number of other diseases9,12. Atherosclerotic plaques, i.e., the ultimate 

cause of tissue damage, are initiated in the intima layer of the arterial wall. The intima - in normal 

arteries – consists of a monolayer of endothelial cells that line the internal basement membrane 

separating the lamina intima and the lamina media. Sub-endothelial accumulation of low-density 

lipoprotein in the intima is considered as one of the most important initiators for atherosclerotic 

plaque development. Low-density lipoprotein is thought to be oxidized in the intima followed by the 

expression of adhesion molecules including intercellular adhesion molecule 1, vascular cell adhesion 

molecule 1 on endothelial cells leading to monocyte migration into the intima, and differentiation of 
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the monocytes into macrophages and dendritic cells (DCs), which may locally proliferate in the 

plaque. Macrophages engulf the oxidized low-density lipoprotein and become foam cells. During 

atherogenesis, neutrophils, granulocytes, mast cells, and T cells accumulate in the plaque. Moreover, 

smooth muscle cells (SMCs) proliferate and migrate from the media into the plaque. During plaque 

progression, migrating SMCs and collagenous connective tissue form a fibromuscular connective 

tissue cap that covers the lipid-rich necrotic core of the plaque. The recent studies on SMCs in 

atherosclerosis demonstrated that the activated SMCs communicated with immune cells in both of 

the atherosclerotic plaque and adventitia, and initiated the atherosclerosis immunity and the formation 

of ATLOs. Moreover, calcium deposits may be observed in advanced plaques. Fully developed 

plaques contain a large acellular part having necrotic cores and a cellular part containing macrophages, 

mast cells, granulocytes, lipid-laden foam cells, DCs, T cells, and SMCs9,13,14. 

 

1.1.3 Plaque vulnerability 

In advanced stages, the atherosclerotic plaque can be classified into stable or unstable (vulnerable) 

types. Characteristics of a vulnerable plaque include: thin fibrous cap, large necrotic core, tissue 

proteolysis, increased lipid-rich macrophage accumulation, and reduced SMCs and collagen content. 

Unstable plaques are the major causes of plaque rupture and subsequent thrombosis leading to acute 

cardiovascular events such as stroke or myocardial infarction15,16. The term plaque vulnerability index 

(PVI)17 is an important indicator of whether the plaque that is at higher risk of rupture leading to 

thrombosis and a useful parameter to evaluate the effectiveness of potential new therapies17. The 

higher the plaque vulnerability index, the higher the instability of the plaque. Unlike humans, 

apolipoprotein E knock-out (ApoE-/-) mice do not develop ruptured or rupture-prone plaques (no 

thrombus, plaque hemorrhage, etc.), and myocardial infarction – even in mice as old as 120 weeks 

age with heavy atherosclerosis18,19. However, some features of vulnerable plaques and myocardial 

infarcts have been induced in ApoE-/- mice under distinct experimental conditions20. 

1.1.4 Atherosclerosis and aging 

Aging is one of the most important risk factors for atherosclerosis development, but it remains the 

least understood of all risk factors. As a complex process, aging involves cell cycle arrest, chromatin 
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silencing, epigenetic modifications, morphology remodeling with functional impairments, changes in 

metabolism, senescence, and apoptosis21,22. Since several biochemical pathways and vascular 

alterations are common features of aging and atherosclerosis, atherosclerosis can be viewed as one 

form of accelerated vascular aging23. Even in the absence of atherosclerosis, vascular aging develops 

intimal and medial thickening and loss of elasticity, which leads to vessel wall stiffness24. In the 

experimental ApoE-/- mouse model, atherosclerotic plaque emerges in the aortic root at early age, then 

travels down the aorta through the aortic arch to reach the abdominal aorta at later stage of the disease 

over time during aging. Importantly, aging was found to be a major determinant of adventitia 

restructuring. Fully developed ATLOs in the abdominal aorta form during advanced stages of 

atherosclerosis at 78 weeks but early ATLOs form at around 52 weeks in ApoE-/- mice, indicating 

ATLO development depends on aging25,26. Aging is systemically associated with immune senescence 

of T cells, B cells, and in particular expansion of Regulatory T (Treg) cells locally in ATLOs25,27,28. 

 

1.1.5 Mouse models of atherosclerosis 

Hyperlipidemic mice have been used to investigate the molecular mechanisms underlying human 

atherosclerosis29. In hyperlipidemic mice, atherosclerotic plaques emerge in the aortic root within the 

first 32 weeks of life (this is the case for ApoE-/- mice). With time, plaques develop in other segments 

of the arterial tree, including the abdominal aorta and carotid arteries9. In the past decades, several 

hypotheses on the molecular mechanisms underlying atherosclerosis have been proposed. However, 

the details and molecular mechanisms of the initiation of atherosclerosis remain largely elusive. To 

study atherosclerosis, the ApoE-/- mouse has evolved as one of the most widely used experimental 

models of atherosclerosis. The ApoE-/- mouse is constitutively hyperlipidemic and develops 

atherosclerosis spontaneously29. The majority of studies have employed a high-fat cholesterol-rich 

diet (HFD)30 to examine the structure and the cellularity of the plaques. In addition, low-density 

lipoprotein receptor-deficient (LDLR-/-) mice have also been used to study atherosclerosis. LDLR-/- 

mice develop no or mild atherosclerosis on normal chow diet. However, these mice have dramatically 

elevated cholesterol levels and increased lesion formation throughout the aorta on a variety of high-

fat diets (HFD)31,32. More recently, new experimental models based on tamoxifen-induced conditional 

ApoE deletion in adult mice and adeno-associated virus-mediated proprotein convertase 
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subtilisin/kexin type 9 (PCSK9) gain-of-function in mice or hamsters have been developed to study 

atherosclerosis33,34. 

 

1.1.6 Immune responses in atherosclerosis 

Most chronic inflammatory diseases show mixed innate and adaptive immune responses. Innate 

immune responses are carried out by macrophages, DCs, neutrophils, mast cells, and innate lymphoid 

cells35. These cells recognize non-self danger molecules such as danger-associated molecular patterns 

or pathogen-associated molecular patterns through broad specificity-acting receptors and then 

become activated to protect the body by eliminating the foreign dangers7,36. In addition, self-derived 

molecules may mimic cellular infection, damage, and multiple forms of stress, which can be 

recognized by the immune system, and initiate inflammation. Some of these molecules are recognized 

by danger-associated molecular patterns37. The innate immune response is, however, nonspecific, i.e., 

antigen epitope-independent. All pathogens, including viruses, bacteria, parasites, prions, fungi, or 

toxins, can be detected by innate immune cells. Innate immunity defends the body as its rapid first 

line, which begins within minutes to hours7,36. In contrast, adaptive immune responses are antigen-

specific. They are initiated when a pathogen cannot be eliminated by innate defense mechanisms 

within a very short period of time. Antigen-presenting cells, including activated macrophages and 

DCs, present antigen to lymphocytes. T cells recognize antigens presented by antigen-presenting cells 

through their T cell receptor (TCR), while B cells recognize antigen through B cell receptors. 

Subsequently, the lymphocytes are activated and proliferate, forming distinct clones of memory cells 

that will become active when the antigen persists or when the antigen will invade the organisms again 

during a later stage in life. The adaptive responses that follow antigen exposure include direct attack 

by cytotoxic T lymphocytes (CD8 positive T cells), CD4 positive T cells of various sub-lineages (also 

termed T helper cells), and antigen-specific B cell clones to produce antibodies against the antigens. 

Thus, the adaptive immune response is slower than innate but more powerful and very specific7,36,38. 

The immune responses in atherosclerosis include both innate and adaptive responses. In 

atherosclerosis, potentially harmful molecules are detected by the innate immune system7,36. 

Monocytes are recruited from the circulation and migrate into the intima, then they proliferate and 

differentiate into macrophages and dendritic cells. T cells also migrate into the intima, constituting a 
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major cell type of atherosclerosis immunity. Several adhesion molecules and chemokines, such as 

selectins, i.e., vascular-cell adhesion molecule 1, intercellular adhesion molecule 1, and monocyte 

chemoattractant protein-1 (also known as CC-type chemokine, CCL2) promote monocyte recruitment 

as well as the attraction of T cells. Most of the T cells in atherosclerotic plaques are CD3+CD4+ T 

cells. Moreover, antigen-presenting cells, including macrophages and DCs, present antigens to T cells. 

Plaque macrophages, DCs, and T cells secrete pro-inflammatory cytokines such as interferon-γ, 

interleukin-2 (IL-2), tumor necrosis factor-α, and -β, as well as anti-inflammatory cytokines such as 

IL-10 and IL-4. These cytokines promote or dampen inflammation, and thus critically participate in 

cellular immunity. In addition to CD4+ helper T cells (Th), atherosclerotic plaques harbor CD8+ T 

cells36. However, the role of plaque CD8+ T cells for atherosclerosis immunity has remained unclear39. 

Treg cells are an important component of the immune system, specialized for the suppression of both 

Th1 and Th2 pathogenic immune responses against self or foreign antigens. They control T cell and 

other immune cells’ homeostasis by suppressing their activity, and few can also be observed in the 

diseased arterial wall40. 

 

1.1.7 Artery tertiary lymphoid organ neogenesis 

Lymphoid organs include primary lymphoid organs (PLOs), secondary lymphoid organs (SLOs), and 

tertiary lymphoid organs (TLOs). PLOs are the bone marrow and the thymus, which emerge during 

embryonic development. SLOs, including the spleen, lymph nodes, and Peyer’s patches, also develop 

during embryogenesis at predetermined sites where stromal lymphoid tissue organizer cells interact 

with hematopoietic lymphoid tissue inducer cells41. In sharp contrast, TLOs develop at diverse 

locations during unresolvable or chronic inflammation as immune cell aggregates within or around 

the inflamed tissue in adult organisms through the involvement of lymphoid tissue organizer like 

cells26. Thus, TLOs function as transient organizers of adaptive immune responses in chronically 

inflamed tissues depending on the disease conditions, unlike SLOs. 

Previously, our group has shown that immune cells infiltrate the inflamed abdominal aorta adventitia 

adjacent to atherosclerotic plaque in aged hyperlipidemic mice with advanced atherosclerosis and 

form a follicle-like structure, which we named as artery tertiary lymphoid organs (ATLOs)42,25. 

Meanwhile, ATLOs have been observed in human atherosclerotic tissues, including coronary arteries 
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and abdominal aorta43, indicating that ATLO is an important component of human atherosclerosis. In 

aged ApoE-/- mice, atherosclerosis activates the lymphotoxin β receptor on media SMCs to become 

lymphoid tissue organizer cells and induce the lymphorganogenic chemokines, i.e., CXC chemokine 

ligand 13 and CC chemokine ligand 2127,44. These chemokines, in turn, trigger the formation of 

ATLOs, which share functional and structural features with SLOs, including separate T cell areas and 

B cell follicles45. ATLO development occurs in 3 stages. Stage I is defined as a small aggregate of 

mixed T cells with few B cells, stage II contains larger aggregates with separated B and T cell areas 

but - at this stage - no follicular dendritic cells (FDCs) can be observed, whereas stage III, i.e., the 

advanced form of an ATLO, contains separate B cell follicles with FDCs in activated germinal centers, 

T cell areas contain mainly T cells, Treg cells, DCs, and macrophages, and plasma cells in the shoulder 

region of ATLOs45, 26. Plasma cell niches are home to short- and long-lived plasma cells46. In ATLOs, 

angiogenesis and lymph vessel neogenesis becomes prominent together with a dense network of 

conduits connecting the arterial media with newly formed high endothelial venules within the T-cell 

areas of ATLOs25,26,45,47. This distinctive anatomy of conduits in SLOs versus ATLOs is interesting in 

view of the hypothesis that chemokine gradients may exist within ATLOs with possible CXCL13 

derived from activated media segments adjacent to atherosclerotic plaques. ATLO transcriptomes 

resembled those of SLOs, yet inflammation-regulating genes were expressed at significantly higher 

levels in ATLOs compared to lymph nodes27,28,47. 

Tissue-specific homing and education of effector memory T cells and central memory T cells are 

essential for long-term immunosurveillance in general and in ATLOs in particular. ATLOs have been 

shown to directly trigger homing of naïve CD4+ and naïve CD8+ T cells into the abdominal aorta 

adventitia, and thus, they control aorta T cell responses in aged ApoE-/- mice27. ATLOs promote T cell 

recruitment, prime CD4+ T cells, and locally generate and activate CD4+, CD8+, and induced Treg 

cells. These events mimic many events normally carried out in SLOs, such as lymph nodes. 

Importantly, when the ATLO structure was disrupted by VSMC-specific deletion of the lymphotoxin 

β receptor, atherosclerosis was increased in aged ApoE-/- mice27. These data indicate that the immune 

system employs ATLOs to organize aorta T and B cell homeostasis during aging, which is consistent 

with the hypothesis that ATLOs protect the arterial wall from atherosclerosis via VSMC-LTβRs27. 

Since ATLOs contain both pro- and anti-inflammatory immune cells, the dichotomic nature of ATLO 

generate opposing immune responses that promote the generation of antigen-specific lymphocyte 

subsets. It is very likely that the initial purpose of ATLO neogenesis is to eliminate antigen and/or 
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fight against atherosclerosis inflammation. 

 

 

Figure 2. The cellularity and structure of ATLOs. Reproduced from Mohanta, S. K. et al.26. The schematic graph shows 

the structure and cellularity of stage III ATLOs. ATLOs stage III contains T cell areas with T cells, Treg cells, macrophages, 

and DCs; B cell follicles with FDCs and plasma cell niches. Moreover, ATLOs are supplied with multiple newly formed 

lymph vessels, blood vessels, high endothelial venules, and conduits. 

 

1.2 Nervous system 

The nervous system (NS) can be divided into the central NS (CNS) and the peripheral NS (PNS) (Fig. 

3). The CNS in mammals consists of the brain and the spinal cord. The PNS is distributed throughout 

the organism, containing the autonomic NS and the sensory/somatic NS. Nerve fibers, their individual 

axons, and corresponding peripheral ganglia of the PNS transport electrical nerve impulses from the 

periphery to the CNS (afferents) or from the CNS to the target organs (efferents). The autonomic NS, 
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including the sympathetic NS (SNS) and the parasympathetic NS (PSNS) function unconsciously. 

The SNS serves as a so-called “fight or flight” system. On the other hand, the PSNS is known as the 

"rest and digest" system implicating fundamentally different and principally distinct roles in tissue 

homeostasis. Pre-ganglionic nerves connect ganglia and CNS, post-ganglionic nerves connect ganglia 

and target organs. The PNS also includes the enteric NS, which is independently regulated by multiple 

circumstances, including the microbiome48 that are crucial for the regulation of food digestion. It 

should be noted, however, that the gut is also connected to the brain via the SNS and PSNS49,50. 

The SNS is an important component of the autonomic nervous system. The SNS in the brain includes 

sympathetic neurons in the cortex, hypothalamus, midbrain, pons, and medulla. The SNS in the spinal 

cord includes the lateral gray column and the intermediolateral column. The SNS in the periphery 

originates from intermediolateral column of spinal cord segments thorax (T) T1 to segments lumbar 

(L) L3. It connects target organs via sympathetic chain ganglia and para-aortic ganglia. In peripheral 

sympathetic ganglia, acetylcholine is the neurotransmitter, whereas in the target organs, sympathetic 

neurons release NE and epinephrine as neurotransmitters. Peripheral sympathetic ganglia include 

sympathetic chain ganglia, celiac ganglia, and the superior and inferior mesenteric ganglia51. 

 

 

Figure 3. Constituents of the NS. The NS consists of the CNS and the PNS. The PNS contains the autonomic NS and 

the sensory/somatic NS. The autonomic NS includes the SNS and the PSNS. All three NSs consist of afferent and efferent 

nerves. Preganglionic neurons connect the CNS and the PNS ganglia, whereas postganglionic neurons connect the PNS 

ganglia and the peripheral target organs. The enteric NS is not depicted here for ease of reading. 
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1.2.1 Role of PNS in peripheral tissue homeostasis and inflammation 

The NS can impact peripheral tissue homeostasis through distinct mechanisms: Afferent sensory 

neurons receive internal or external stimuli, including touch, pain, temperature, pressure, and 

chemicals. Sensory axon endings are in contact with immune cells and receive information from 

inflammatory mediators or cytokines through corresponding receptors52-54. In the afferent axon 

endings, the chemical signals of inflammation are transformed into action potentials55. The 

interneurons in the CNS receive and integrate these action potentials, and then relay them to the 

efferent neurons. Efferent neurons transduce information from the CNS to the peripheral organs. In 

particular, the efferent parasympathetic nerves directly release acetylcholine or instruct immune cells 

to produce acetylcholine at the site of inflammation, which inhibits pro-inflammatory cytokine release 

and thereby attenuates peripheral inflammation52. This inhibitory pathway mediated by 

parasympathetic vagus nerve is called as cholinergic anti-inflammatory pathway54,56. In addition, the 

efferent sympathetic nerves are equally important in regulating peripheral inflammation54,57-59. 

Interestingly, the SNS has been reported to play opposing roles in acute and chronic inflammation, 

e.g., the SNS is pro-inflammatory in the acute phase of collagen-induced arthritis, whereas it appears 

to be anti-inflammatory in chronic rheumatoid arthritis and chronic intestinal inflammation57,60,61. 

It is known that both PLOs and SLOs are extensively innervated by the SNS62: The bone marrow is 

innervated by both the SNS63 and the PSNS64,65, whereas the thymus is innervated by the PSNS and 

the sensory NS65,66. Moreover, the spleen receives innervation from the SNS43,67,68 and the 

PSNS65,66,69,70. Finally, peripheral lymph nodes are innervated by the sensory NS64,71,72, and Peyer’s 

patches are innervated by the PSNS65,73. For the SNS and PSNS, it was reported that sensory neurons 

could be activated by bacterial stimuli and modulate pain and inflammation74; the immune system is 

regulated by nociceptor sensory neurons in bacterial infection of the lung75. These data provide 

important evidence of a direct relation between immunity and the NS. 

 

1.2.2 SNS functions in health and disease 

SNS functions in the brain consist of the dopaminergic pathway, the adrenergic pathway, and the 
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cholinergic pathway67,76,77, whereas the SNS mainly consists of the adrenergic pathway in the 

periphery78,79. Activation of the peripheral adrenergic pathway causes constriction of blood vessels, 

and its inhibition causes dilatation of blood vessels. SNS activation also increases heart rate, 

relaxation of bronchi, vasoconstriction in the kidney, and lipolysis in adipocytes80. 

In the cardiovascular system, the SNS controls heart function during stress, including heart rate 

variability and left ventricular output81. In the immune system, the SNS impacts both innate and 

adaptive immunity in health and disease82: Stress causes SNS activation-induced inhibition of pro-

inflammatory cytokine (IL-1β, IL-6, and tumor necrosis factor-α) production by splenic 

macrophages83. NE stimulates the generation of CD8+ T cell lytic activity in cultured murine spleen 

cells and human peripheral blood cells62. 

The effects of aging and disease conditions on sympathetic innervations of different organs have been 

delineated. The sympathetic neurohormone/neurotransmitter NE is increased in human plasma during 

aging84. A previous theory claimed that the periarterial nervous system development would stop at 

about two weeks after birth85,  whereas more recently, this view has been revised, and studies 

reported that the axon network in the rat aorta undergoes restructuring in aging animals55. 

Furthermore, the tissue NE was determined to be increased in stress, stroke, or MI mouse models86-

88. 

Because of the potential importance of the SNS, several groups performed chemical sympathectomy 

to study the effect of sympathetic denervation on the immune system and inflammation. 

Sympathectomy increases Foxp3+ Treg cells in the CD4+ T cell population in Fas-deficient lpr/lpr 

(lymphoproliferative diseased) spleen89 and affects multiple immune system-dependent diseases, 

including myocardial infarction88,90 and collagen- and antigen-induced arthritis61,91. Sympathectomy 

reduces early arthritis scores in collagen-induced arthritis mouse models through increased anti-

inflammatory cytokines like IL-4 and IL-10 production by lymph node (LN) cells before injection of 

collagen-II, whereas it increased arthritis at later stages through increased pro-inflammatory 

cytokines like tumor necrosis factor and interferon-γ production by LN cells and splenocytes. 

However, no data on cytokine production in early arthritis were reported43,91. Atherosclerosis 

triggered by myocardial infarction (MI) was reported to be attenuated by chemical sympathectomy 

in ApoE-/- mice fed with HFD88. The same experiments also reduced the number of myeloid cells in 

plaque after MI90, whereas the infarct size was reduced by chemical sympathectomy in rats92. 
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Importantly, sympathectomy has been demonstrated to affect the immune system in normal and 

diseased mice. Sympathectomy decreased norepinephrine (NE) level in spleen but increased splenic 

Treg cell percentages in WT mice. Additionally, NE treatment induced apoptosis of CD4+ T cells and 

CD4+Foxp3+ Treg cells in vitro, suggesting that the SNS maintains the Treg cell population in spleen 

through NE secretion89. Weights of the spleen and inguinal lymph nodes (iLNs), as well as total cell 

numbers in iLNs, were increased after sympathectomy during arthritis93. Moreover, sympathectomy 

reduced myeloid cells in blood after MI in ApoE-/- mice90, whereas it decreased T and B cell numbers 

in the blood of WT mice94. In addition, surgical denervation of celiac ganglia reduced placental 

growth factor in spleen and lymphocytes infiltration in para-aortic tissue and kidney, thereby 

attenuated angiotensin-II induced hypertension68. These data indicated that the SNS can be pro- or 

anti-inflammatory depending on the disease conditions and that it regulates lymphocyte homeostasis 

in the circulation and tissues (see Table 1). 

 

Table.1. Effects of sympathetic denervation in health and diseases. 

Animal 
Model 

Diet Approach 
(Dose) 

Effects in Health References 

C57Bl/6 Normal diet 6-OHDA 
(150 mg/kg) 

Sympathectomy increased Treg percentages in spleen  89 

C57Bl/6 Normal diet 6-OHDA 
(200 mg/kg) 

Sympathectomy decreased T and B cell numbers in blood  94 

DBA/1J Normal diet 6-OHDA 
(80 mg/kg) 

Sympathectomy increased total cell numbers and organ weights in 
iLNs and spleen 

 93 

   Effects in Diseases  

C57Bl/6 Normal diet 6-OHDA 
(150 mg/kg) 

Sympathectomy reduced acute antigen-induced arthritis   95 

DBA/1J Normal diet 6-OHDA 
(80 mg/kg) 

Early sympathectomy reduced collagen-induced arthritis, whereas 
late sympathectomy increased arthritis. 

 61 

C57/Bl6 Normal diet Celiac 
ganglionect
omy (CGX) 

CGX reduced placental growth factor in spleen and lymphocytes 
infiltration in periaortic tissue and kidney, thereby attenuated 
angiotensin-II induced hypertension. 

68 

ApoE-/- High 
cholesterol 
diet 

6-OHDA 
(250 mg/kg) 

Sympathectomy decreased adhesion molecules expression in aortic 
endothelial cells and reduced myeloid cells in blood, and plaque after 
myocardial infarction 

 88,90 

Rat Normal diet 6-OHDA 
(100 mg/kg) 

6-OHDA denervation significantly reduced the myocardial infarct 
size induced by physical and psychological stress. 

 92 
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Adrenergic receptors (ADRs) are a class of G protein-coupled receptors and constitute the targets of 

catecholamines, especially NE (noradrenaline) and epinephrine (adrenaline). ADRs include ADRα1, 

α2, β1, β2, and β396. In the circulation, ADRβ1 play an essential role in the regulation of the 

cardiovascular system97; activation of ADRβ2 relaxes smooth muscle and dilates blood vessels; 

ADRβ3 present in endothelium and myocardium may have specific beneficial effects in the 

cardiovascular system including cardioprotection98. 

 

1.3 Interactions of the immune system and the SNS 

Though it has been considered that the immune system and nervous systems functioned independently, 

it is now well-established that prominent bidirectional communication pathways exist between them99, 

which established the field of neuroimmunology53,56,62,100-102. The PLOs and SLOs, including bone 

marrow, thymus, spleen, and LNs are innervated by the SNS, but not by the parasympathetic NS62. 

Increasing evidence of pharmacology, electrophysiology, and molecular biology indicated that 

immune cells in the lymphoid microenvironment could release neurotransmitters and often express 

receptors for neurotransmitters103-105. The following points on the study progress of the immune 

system and SNS interactions should be noticed: 

1) Multiple pathways (both neural and non-neural) of communication are available to transfer 

information between local or systemic immune status and CNS106-108. 2) Sympathetic nerves release 

catecholamines, including epinephrine and norepinephrine109. Immune cells can also synthesize 

neurotransmitters and express neuroimmune receptors. For instances, macrophages, and B cell can 

produce catecholamines60,110,111; and express β2 adrenergic receptors (ADRβ2)53. Moreover, T and B 

cells can produce acetylcholine, whereas macrophages, T cells, and B cells can express nicotinic 

acetylcholine receptor112-114. 3) Neuronal responses can regulate homing/recruitment, activation, 

migration, and maturation of immune cells in lymphoid organs. For instance, sympathetic 

innervations promote homing of leukocytes to bone marrow115, and activation of sympathetic NS can 

enhance recruitment and activation of lymphocytes, including CD4+ T cells in spleen and lymph 

nodes116. 4) Receptors and autonomic nuclei, which present at many levels of the supraspinal neuraxis 

and neural-immune interactions, can occur at a huge number of sites in these distributed systems 
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(brain and selective nuclei)99,107,117-119. 5) The autonomic nervous system is highly responsive to the 

administration of cytokines and immune cell factors administered via a number of different routes, 

including; intravenous120,121, intra-arterial122, and central microinjections123,124 in selected nuclei99. 6) 

SNS innervates the spleen and other secondary lymphoid organs, and alterations in splenic 

sympathetic nerve discharge can influence peripheral immune responses, including changes in splenic 

cytokine gene expression99,125. 

In mouse models of collagen-induced arthritis, tyrosine hydroxylase (TH) positive, sympathetic nerve 

fibers were reduced in spleen accompanied with splenic cytokine release126. Moreover, T and B cell-

deficient SCID mice show a reduced TH+ sympathetic axon density in white pulp of the spleen, which 

becomes normal after the reconstitution of adaptively transferred T cells indicating the modulation of 

peripheral innervations by immune cells127. Likewise, TH+ sympathetic axons were abundant in 

splenic red pulp of chronic arthritic rats, possibly due to the migration of activated immune cells from 

the white pulp128. When taken together, the distribution pattern of nerve axons in lymphoid organs, 

the presence of neurotransmitters and their receptors in immune cells, the neuromodulation of 

immune functions, and the immune regulation of the NS altogether provide the anatomical, cellular 

and molecular basis for bidirectional communications between the NS and the immune system53,54,129. 

 

1.4 Interplay of the vascular system and the NS 

The vascular system closely interacts with the NS. Axons contribute to the branching of blood vessels 

and, vice versa, the development of axons in the vascular system requires neurotrophic proteins 

secreted by cellular constituents of the blood vessel130,131. For example, vascular SMCs in mesenteric 

and cutaneous arteries produce axon guidance protein netrin-1, and lack of netrin-1 significantly 

decreased TH+ axons in mesenteric arteries, suggesting that netrin-1 is essential for the development 

of sympathetic arterial innervation in mice132. In addition, coronary artery VSMCs in the developing 

mouse heart during angiogenesis and branching secrete nerve growth factor and regulate axon growth 

to reach target cells131. 

Intriguingly, peripheral nerves are essential for arterial differentiation and branching in vivo during 

embryonic vascular development131. Sensory neurons secrete vascular endothelial growth factor to 

regulate arteriogenesis and branching131. The autonomic innervations, which are located in the 
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adventitia of medium- and large arteries, can affect endoluminal inflammation, including 

atherosclerosis133. As one of the two interacting divisions of the ANS, the SNS regulates heart rate, 

blood pressure, vasomotor tone of the blood vessel, and myocardial contractility134-138. In contrast, 

parasympathetic stimulation decreases heart rate. However, arteries do not respond to 

parasympathetic stimulation since most of them lack parasympathetic innervation. The contractility 

of arteries is therefore largely regulated by sympathetic nervous system input as an increase in 

sympathetic stimulation leads to vasoconstriction while its decrease induces vasodilatation137. 

 

1.5 Atherosclerosis and the SNS 

During the past decades, increasing evidence for sympathetic and sensory innervation in peripheral 

inflamed tissues has been delineated65,73. Sympathetic nerves are present in and around the arterial 

wall adventitia65. It has been hypothesized that local nerve endings secrete neurotransmitters and may 

affect blood vessel homeostasis and/or adventitial immune cells directly139 though evidence for this 

possibility has yet to be obtained. Conversely, there is ample evidence that soluble neurotransmitters 

affect blood vessel homeostasis, including endothelial cell homeostasis, in many ways133. In large- 

and medium-sized arteries, unlike arterioles, nerve axons reach only to the adventitia/media border 

and never innervate the outer portion of the media, and no axons are present in the intima or in 

atherosclerotic plaques of medium- and large arteries (unpublished data of our lab). This is in sharp 

contrast to arterioles, which contribute to blood pressure regulation where sympathetic NS axons 

innervate the VSMCs to contract. 

The density of periadventitial neurofilament (NF) positive nerves appeared to be increased in human 

coronary arteries with increasing stages of atherosclerosis, and the NF positive axons co-localized 

with mast cells in human coronary adventitia140. However, axon density with increasing 

atherosclerosis did not reach statistical significance though there was a significant correlation of axon 

density and mast cell abundance. MI enhanced TH positive area in the aortic root and aortic arch NE 

content of HFD fed ApoE-/- mice88. However, as the number of axons was not determined, it was not 

clear whether this reflects an increase of TH per nerve axon or an increase of the nerve axon density 

per tissue volume. Moreover, it remained unclear whether the extent of atherosclerosis in MI-induced 

HFD-fed ApoE-/- mice correlated with the adventitial nerve axon density. Therefore, the relation 
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between axon density in the adventitia and atherosclerosis remains unknown.  



INTRODUCTION 

17 

1.6 Aims of the thesis 

The overarching goal of this thesis was to investigate the pathophysiological relevance of arterial 

SNS innervation in atherosclerosis. Because ATLOs develop in advanced atherosclerosis, the 

investigation of SNS function in atherosclerosis was extended to ATLOs. Based on previous 

observations of ATLOs in the adventitia of aged hyperlipidemic mice and atherosclerosis-associated 

adventitial sympathetic innervation, we hypothesized that SNS innervation might be a consequence 

of atherosclerosis or vice versa that an increase in adventitial axons density of the NS directly affects 

atherosclerosis. 

In particular, the aim of my experimental work was to examine the role of the SNS on atherosclerosis, 

the immune system, and ATLO neogenesis in young and aged ApoE-/- mice. To address these issues 

experimentally, we asked the following specific questions: 

1) Does atherosclerosis affect aortic sympathetic innervation? 

2) Does sympathetic denervation affect atherosclerosis and ATLOs of the diseased aorta? 
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2 MATERIALS AND METHODS 

2.1 Materials 

2.1.1 Mice 

WT C57BL/6J and ApoE-/- mice on a C57BL/6J background were purchased from Jackson Lab (USA) 

and Janvier lab (France) and housed in the animal facility of University Hospital of Munich. Mice 

were housed in a specific pathogen-free environment on a 12 hours light/dark cycle and fed standard 

diet and water ad libitum. To minimize variability, only male mice were used. All animal experiments 

were performed in strict adherence to local governmental and institutional animal care regulations 

(Gz.: 55.2-1-54-2532-6-2014, Regierung Oberbayern München). 

 

2.1.2 Reagents, buffers, and equipment 

The following tables contain the list of reagents, buffers, and equipment. 

Table 2: List of reagents 

Reagents  Company  Catalogue No.  Storage  

6-Hydroxydopamine hydrochloride Sigma-aldrich H4381-1G 4° C 

Paraformaldehyde (PFA)  Sigma  P-6148  RT  

Ethylenediaminetetraacetic acid (EDTA)  Roth  8040.1  RT  

Sucrose  Sigma-Aldrich  90M003524V  RT  

Oil red O  Romeis  S378  RT  

Sudan IV Sigma 198102 RT 

Sucrose Sigma S9378 RT 

Hematoxylin  Dako  S2020  RT  

Giemsa  Merck  192040100  RT  

10% bovine serum albumin (BSA)  Aurion  70411/1  4° C  

Sirius Red Waldeck 1A-280 RT 

Picric acid Sigma P6744 RT under hood 

Glacial acetic acid Sigma A-6283 RT under hood 
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Acetone  Merck  K40718714  RT under hood  

Isopentane  Roth  3926.1  RT under hood  

Isopropanol  Merck  K40615718  RT under hood  

Methanol  Roth  Sorte420  RT under hood  

Tissue Tec  Sakura  0827400006  RT  

Fluromount G  DAKO  S3023  4° C 

Roti- Histokit 2 Roth 9713 RT 

Faramount Aqueous Mounting Medium DAKO S3025 4° C 

NE ELISA kit Labor Diagnostika 
Nord (LDN) 

BA E-5200 4° C 

 

Table 3: List of buffers 

Solution  Composition  Storage  
PBS (1X) 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.76 mM KH2PO4, 

pH 7.4; 
RT 

FACS buffer PBS with 2% fetal calf serum(FCS; Lonza) 4°C 

Ammonium-Chloride-
Potassium lysis buffer 

0.15 mM NH4Cl, 1 mM KHCO3, 0.1 mM Na2EDTA, pH 7.2-7.4; RT 

PBS for Giemsa stain  Na2HPO4·2H2O, KH2PO4 with dist. water; 0.1M, pH 6.8  RT  

PBST  PBS with 0.05% Triton-X 100  4°C  
4% PFA  40 g paraformaldehyde in PBS (1000 ml final), pH 7.2-7.4  4°C  

PBA  PBS with 1% BSA  Prepare fresh  
Blocking solution  PBS with 1% BSA and 0.05% Triton-X 100  Prepare fresh  

Oil red O stock  0.5 g Oil red O in 100 ml isopropanol  RT  

Sudan IV stock 0.5 g Sudan IV in a mixture of 35 ml ethanol, 50 ml acetone, and 
20 ml water 

RT 

Catecholamine stabilizing 
solution for homogenization65  

0.01N HCl, 1mM EDTA, 4mM Na2S2O5, 
pH 7.5 

4°C 

Acidified water141 5ml glacial acetic acid into 1000ml d water RT 

Picro-Sirius red solution141 Sirius red powder dissolved in picric acid, the final concentration 
as 0.1%.  

RT 

 

Table 4: List of equipment 

Name Company  Model/Type  
Balance Ohaus Analytical Plus 

Centrifuge Eppendorf Centrifuge5415 R 
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Thermo Scientific Heraeus®Multifuge®3S-R 

Black dissection wax CR Scientific C3541 
Minutien Pins Fine Scientific Tools 26002-15 

Complete blood cell counter scil Vet abc scil animal care company GmbH 
Flow cytometer BD Canto-II 
Dissection Stereomicroscope  Leica  Stemi 2000  

Light microscope Leica DM LB 

Fluorescence microscope Leica DM 6000 B 
Veroklav Laboratory Autoclave  Thermo Scientific  Ype:500  

-80°C freezer  Miele  C7736CD  

Cryostat microtome  Leica Biosystems Leica RM2235 
Microplate Reader Tecan Spectra Fluor Plus 

NanoDrop Thermo Scientific ND-2000 

Confocal laser scanning microscope  Leica  True Confocal Scanner (TCS)-SP8 

 

2.1.3. Antibodies for immunofluorescence microscopy 

The following tables contain the primary and secondary antibodies used to characterize PNS axons, 

immune cells, TLO structures by immunofluorescence confocal microscopy and their working 

dilutions, and company details. 

 

2.1.3.1. Primary antibodies 

Table 5: List of primary neuronal antibodies used to define PNS axons 

Antibody  Clone  Cells/Structure  Host  Dilution  Company  
Anti-neurofilament 200 (NF200) Polyclonal  Pan-neuronal  Rabbit  1:1000  Sigma  

Anti-neurofilament M (NFM)  Polyclonal  Pan-neuronal Chicken  1:500  Chemicon  

Anti-TH Rabbit Polyclonal  Sympathetic  Rabbit  1:500  Millipore 

Anti-TH Sheep Polyclonal  Sympathetic  Sheep  1:200  Millipore 

Anti-NeuN MAB377X Neuronal cell body Mouse 1:100 Millipore 

 

Table 6: List of primary antibodies used to characterize immune cells and TLO structures 

Antibody  Clone  Cells/Structure  Host  Dilution  Company  
Anti-CD45  YW62.3  Pan-leukocyte marker  Rat  1:100  Biozol  
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Anti-CD68  FA-11  Macrophage or monocyte Rat  1:50  Serotec  

Anti-CD3e  145-2C11  Pan-T cell  A. Hamster 1:100  BD  

Anti-B220  RA3-6B2  Pan-B cell  Rat  1:200  BD  
Anti-Foxp3 FJK-16s Treg cell Rat 1:200 eBioscience 

Anti-SMA-FITC 1A4 SMC Mouse 1:400 ThermoFisher 

 

2.1.3.2. Secondary antibodies 

Table 7: List of secondary antibodies 

Antibody  Host  Format  Dilution  Company  
Anti-rabbit IgG  Goat  Alexa 488  1:200  Invitrogen  

Donkey Cy3; Cy5  1:300  Dianova  

Goat Cy3; Cy5  1:300  Dianova  

Anti-rat IgG  Donkey  Alexa 488  1:100  Molecular Probes 
Donkey Cy3; Cy5  1:300  Dianova  

Anti-A. Hamster IgG  Goat  Cy3  1:300  Dianova  

 Cy5 1:300  Dianova  

Anti-chicken IgY  Donkey  Cy3  1:300  Dianova  
Anti-sheep IgG  Donkey  Cy3  1:300  Dianova  

Anti-FITC IgG  Mouse  Cy3  1:300  Dianova  

 

2.1.4 Antibodies for flow cytometry 

Table 8: List of flow cytometry antibodies 

Antibody  Clone  Format  Dilution  Company  
FVD - APC-Cy7 1:200 eBioscience 
Anti-CD45  30-F11 Percp-Cy5.5 1:200  eBioscience  
Anti-TCRβ H57-597 BV605 1:200  Biolegend 
Anti- CD4 GK1.5  PE-Cy7 1:200  eBioscience  
Anti-CD8α 53-6.7 V450 1:200  eBioscience  
Anti-B220 RA3-6B2 V500 1:200 eBioscience 
Anti-CD11b M1/70 APC 1:200 eBioscience 
Anti-CD11c N418 FITC 1:200 eBioscience 
Anti-Foxp3 FJK-16s PE 1:200 eBioscience 
Anti- CD44 IM7 APC-Cy7 1:200 eBioscience 
Anti- CD62L MEL-14 FITC 1:200 eBioscience 
Anti- CD69 H1.2F3 PE 1:200 BD 
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Anti- Sca1 D7 BV605 1:500 Biolegend 
Anti- CD135 A2F10 APC 1:500 Biolegend 
Anti- CD127 A7R34 APC-Cy7 1:500 Biolegend 
Anti- TER-119 TER-119 Pacific Blue 1:500 Biolegend 
Anti-Gr-1 RB6-8C5 Pacific Blue 1:500 Biolegend 
Anti- B220 RA3-6B2 Pacific Blue 1:500 Biolegend 
Anti-CD11b M1/70 Pacific Blue 1:500 Biolegend 
Anti-CD3 17A2 Pacific Blue 1:500 Biolegend 
Anti-CD150 TC15-12F12 PerCP/Cy5.5 1:500 Biolegend 
Anti-CD34 RAM34 FITC 1:500 BD 
Anti- CD16/32 93 PE 1:500 Biolegend 
Anti- CD48 HM48-1 BV510 1:500 Biolegend 
Anti-c-kit 2B8 PE-Cy7 1:500 Biolegend 

 

2.2. Methods 

2.2.1 Sympathetic denervation 

2.2.1.1 Chemical sympathectomy 

Chemical sympathetic ablation was performed by injecting sympathetic neurotoxin, 6-

hydroxydopamine (6-OHDA, Sigma) in 0.1% ascorbic acid in saline61,90,93. 6-OHDA was injected i.p. 

at a dose of 100 mg per kg body weight two days before day 0 and 250 mg per kg body weight on 

day 0 (after 48 hours) followed by 250 mg per kg body weight per week until 4 wks. The control 

group received the same amount of vehicle injection (0.1% ascorbic acid, i.p.) for the same duration 

of time. Animals were sacrificed one week after the last injection. Only male mice were used to 

minimize variability and were randomly assigned for treatments. 

6-OHDA binds to dopaminergic transporter or norepinephrine transporter on the cell surface to enter 

the cell. It then forms free radicals or reversibly inhibits the mitochondrial respiratory chain 

complexes I and IV leading to increase reactive oxygen species (ROS) production and membrane 

permeability and decrease in ATP levels, disruption of mitochondrial membrane potential and 

function, and eventually cell death142. 
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2.2.1.2 Surgical sympathectomy 

Surgical transection of the coeliac ganglia (CGX) was performed in collaboration with Profs. Daniela 

Carnevale and Giuseppe Lembo at Department of Angiocardioneurology and Translational Medicine, 

IRCCS Neuromed, Pozzilli, Italy. For this purpose, 8 months old mice were anesthetized with 

isoflurane supplemented with oxygen (5% induction, 1.5% maintenance) as previously described68. 

CGX allowed removal of sympathetic splanchnic innervation, including splenic nerve and fibers, 

nerve and fibers innervating the abdominal aorta, and a part of the coeliac vagus nerve. For sham 

procedure mice underwent the same surgery for the exposure of the coeliac ganglion but without 

performing the removal. The animals were sacrificed 8 months post-surgery. To minimize variability, 

only male mice were used, and animals were randomized to denervation or sham treatments. 

 

2.2.2. Blood counter measurement 

Blood was withdrawn from the heart using a 1 ml syringe with a 23-gauge needle and collected in 

1.5 ml EDTA-precoated tubes. 2 µl anticoagulated blood was used for the measurement of blood 

parameters using complete blood cell counter Scil Vet abc (scil animal care company GmbH). The 

measurement and outcomes of the blood counter were automatically recorded. 

 

2.2.3. Lipid ultracentrifugation of plasma samples. 

Blood was withdrawn from the heart using a 1 ml syringe with a 23-gauge needle and collected in 

1.5 ml EDTA-precoated tubes. The anticoagulated blood samples were centrifuged at 6,000 rpm for 

10 min. The plasma was collected, aliquoted at 50µl of volume, and stored at 4°C. Plasma cholesterol 

and triglycerides were determined by lipid ultracentrifugation in collaboration with Prof. Daniel 

Teupser and Dr. Wolfgang Wilfert (Institute of Laboratory Medicine, Clinical Chemistry and 

Molecular Diagnostics, University Hospital of Munich). 
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2.2.4. Tissue preparation, embedding, and sectioning 

Mice were anesthetized with ketamine, intraperitoneal (i.p.), and the body weight was measured. The 

vasculature was perfused by left ventricular puncture with 10 ml of 0.5 mM ice-cold EDTA in 

phosphate-buffered saline (PBS) followed by 20 ml ice-cold PBS and 10 ml ice-cold FACS buffer by 

using a 10 ml syringe with a 23-gauge needle attached. 

The weights of the whole spleen, liver, heart, left kidney, and iLNs (both) were measured. For the 

gonadal adipose tissue (gAT), the gonadal fat fads around testicles (left and right sides) were carefully 

isolated and weighed. The tissues from vital organs, including a lobe of the lung, a piece of liver, half 

of a kidney, a piece of intestine, including Payer’s Patch, were embedded in Tissue Tek (Sakura 

Finetek). The spleen was cut into three pieces: one half for flow cytometry, about 1mm length of 

spleen tissue from the tip was immediately frozen in the liquid nitrogen and stored at -80°C for the 

NE concentration and the rest for sectioning. Renal LN, mesenteric LN, and lumbar LN were isolated 

to examine the immune cells by flow cytometry. To analyze the development of atherosclerotic plaque, 

the whole aorta was isolated and stained with Sudan IV. For the sectioning purpose, the whole aorta 

with adjacent adipose tissue (up to 1 mm peripheral to the aorta) was isolated under a dissecting 

microscope. From the level above the coronary artery near the atria onto the level below the iliac 

bifurcation of the abdominal aorta, the aorta was cut into four parts: thorax-I: thoracic aorta from the 

level of the coronary artery to the level of 5th rib that includes the short ascending aorta, aortic arch 

containing no branching with it. The innominate and aortic arch were embedded for the sectioning 

purpose, while the left common carotid and the left subclavian arteries were quickly frozen in liquid 

nitrogen for measuring of the NE concentrations; thorax-II: thoracic aorta from the level of 7th rib to 

the diaphragm level including intercostal arteries; abdomen-I: abdominal aorta below the diaphragm 

to the middle of the abdominal aorta including the celiac, the superior mesenteric, the right and left 

renal arteries; and abdomen-II: abdominal aorta from the middle of the abdominal aorta to below the 

level of iliac bifurcation. The common iliac arteries at the iliac bifurcation were immediately frozen 

for NE measurement. Different parts of the aorta were then embedded in Tissue-Tec. All tissue blocks 

were frozen in chilled isopentane over dry ice, and tissue blocks were stored at -80°C until 

cryosectioning. Serial 10 μm-thick cross-sections were prepared with a microtome cryostat at -20°C, 

mounted on Polysine glass slides (Thermo Scientific), and air-dried. All slides were kept in slide 

holders and stored at -80°C until further use. 
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Fig.4. Schematic graph of aorta segments and workflow.35 Reproduced from Mohanta, S. K., et al. The aorta was 

collected including the thorax-I (cyan) with its branches, i.e., the innominate artery including the right subclavian artery 

and the right common carotid artery, the left carotid artery, and the left subclavian artery; thorax-II (green); the abdomen-

I (yellow) with its branches including the celiac artery, the superior mesenteric artery, the right and left renal arteries, and 

the abdomen-II (red) with its branches including the inferior mesenteric artery, and the common iliac arteries at the iliac 

bifurcation. The diaphragm delineates the border between the thorax and the abdomen. The inset below shows the four 

sections of the complete aorta in tissue block. Rotate thorax-I at 180° angle before embedding. Arrow indicates the 

direction of cutting. 

 

For the sectioning of aortic roots, the heart was dissected and placed on wet tissue. The heart was 

separated from the aorta by holding the heart with the forceps and cutting with a scalpel blade at the 

top approximately one-third of it, as showed in Figure 5. The upper portion of the heart that contains 

the aortic root was placed in a cryomold and filled with Tissue-Tec. It should be positioned to be 

perpendicular to the bottom surface of the tissue mold and avoid the bubbles inside of the heart. 
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Figure 5. Schematic for positioning of the heart for aortic root cross-sectioning. (Adapted from “Methods in Mouse 

Atherosclerosis”, by Vicente Andrés and Beatriz Dorado). The cutting position of the heart for aortic root sectioning is as 

shown in the schematic diagram55. 

 

2.2.5. En-face staining and quantification 

To perform en-face whole-mount staining, the aorta was cleaned of all para-aortic adipose tissue 

under the dissecting microscope. The entire length of the isolated aorta was longitudinally split to 

expose the intimal surface, pined to flat black wax plate and immersed in a 5% sucrose solution in 4% 

PFA, fixed overnight at 4°C. Aortae were rinsed with PBS for 3 x 10 minutes prior to 5-minutes wash 

in 70% ethanol. A working solution of Sudan IV was made by dissolving 500 mg of Sudan IV in a 

mixture of 35 ml ethanol, 50 ml acetone, and 20 ml distilled water. The whole aorta was immersed in 

Sudan IV working solution for 10 min, followed by two washes in 70% ethanol and a further rinsing 

in distilled water35. 

In order to quantify the percentages of lipid deposition in the thoracic, abdominal, and entire aorta, 

images were taken using a digital camera (DSLR-a580, Sony) with a standard bar. The Sudan IV 

positive area in the aorta was quantified using Java-based image processing software Image J. The 

percentage area of the lesion was calculated using the Sudan IV positive area and area of the thoracic, 

abdominal, and total aorta. The images to be measured were opened with the software Image J. Then, 

the image scale was set with the standard bar on the images. After the calibration for the image, on 

the measurement toolbar “polygon selections” icon was used to outline and measure the area of the 
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thoracic aorta and abdominal aorta. The aorta was separated into the thoracic and abdominal aorta at 

the level of the diaphragm 143. The Sudan IV positive lesion areas on each part were outlined and 

traced with “polygon selections”. Then the selected lesions were checked through the microscope. 

The selections were saved to the ‘ROI Manager’. The data were exported using the ‘measure’ in the 

ROI Manager. 

The percentage of the area of the lesions in the aorta area was calculated, respectively. The sum of 

the thoracic aorta area and abdominal aorta area together is total aorta area. And the percentage of 

lesions in the total aorta was calculated with the total lesion area and the total aorta area. 

 

2.2.6. Histological staining 

Frozen aortic root cryosections (10 μm) were warmed on a hot plate maintained at 37° C for 1 min, 

followed by air-dry for 30 min at room temperature. Every 10th serial section at 100 μm intervals was 

stained with Oil Red O/hematoxylin (OR/H) or with hematoxylin/eosin (H/E) staining. For OR/H 

staining, sections were stained with Oil Red O working solution (1: 0.66 dilutions in distilled water) 

for 10 min, briefly rinsed in 60% isopropanol, and stained with hematoxylin for 6 min. Then sections 

were thoroughly washed in tap water (pH>7) for 10 min and mounted with an aqueous Faramount 

Mounting Medium. For H/E staining, sections were fixed in 4% PFA for 10 min, rehydrated in PBS 

for 10 min, and stained with hematoxylin for 6 min, then thoroughly washed in tap water (pH>7) for 

10 min. Afterward, the sections were stained with eosin working solution for 10 minutes and then 

washed with absolute ethanol for 30 seconds, and then air-dried and mounted in Roti-Histokit II. 

Images were taken with a microscope (Leica DM6000B, Leica Microsystems) connected to a camera 

(Leica DFC295, Leica Microsystems). All pictures of sections were taken with 10x objective and 10x 

ocular lens. All sections were evaluated with Leica LAS V4.6 software (Leica, Germany) and ImageJ 

(NIH, USA). 

 

2.2.7. Immunofluorescence staining 

Immunofluorescence staining was performed for CD68+ macrophage/DC, CD3e+ T cells, alpha-
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smooth muscle actin (SMA)+ SMC. 10 µm fresh frozen tissue sections were prepared by microtome 

and stored at -80 ℃. The frozen sections were thawed on the hotplate at 37°C for 1 minute and air 

dry for 30 minutes. Sections were fixed with 4% PFA for 10 minutes. Sections were rehydrated in 

PBS at RT for 10 min and incubated in blocking buffer (PBS containing 5% serum) for 1 hour. After 

blocking, sections were incubated for 2 hours or overnight with primary antibodies or cocktail of 

primary antibodies for neuronal and immune cell markers, as shown in Table 2.4 and 2.5, diluted at 

the appropriate dilution in PBS with 0.25% BSA at room temperature. For intranuclear and 

intracellular staining, depending on the requirements of different primary antibodies, sections were 1) 

incubated with 2% PFA solution for 5 minutes at room temperature, then rinsing with PBS. Before 

and after the fixation in 100% acetone for 2 min at 4°C, sections were submerged in 50% acetone; 2) 

fixed with acetone for 5 minutes, then air-dried for 30 min; or 3) fixed with 1% PFA for 10 min, 

permeabilized with 0.05% Triton X-100 in 1% BSA-PBS for 30 min, and incubated with primary 

antibody for 2 hours or overnight diluted with 0.25% BSA and 0.05% Triton X-100. After three 5-

mins washes in PBS, sections were incubated 1 hour with fluorescent-labeled secondary antibodies 

(indicated in table 2.6) diluted with 0.25% BSA and 4',6-diamidino-2-phenylindole (DAPI) nuclear 

stain (1:1000 or 500 dilutions). Secondary antibodies were conjugated with Cy3, Cy5, and Alexa 488. 

Following three 5-mins washes, specimens were mounted in Flouromount-G mounting media. For 

negative controls, primary antibodies were omitted, whereas the rest of the procedure was done 

exactly as described. No immunostaining was observed in negative controls. In the case of high 

background staining, 0.05% Triton X-100 was added with PBS for final washing to reduce the 

unspecific background of the specimen. Single immunostaining procedure was routinely used before 

double or triple immunostaining. 

 

2.2.8. Fluorescence microscopy 

Stained tissue sections were analyzed using a laser microscope DM 6000 B (Leica, Germany). 

Fluorophores were visualized by using a 488-nm excitation filter and 505/530-nm emission filter for 

Alexa 488, a 568-nm excitation and 575/615-nm emission filter for Cy3 and 633-nm excitation, and 

650-nm emission long-pass filter for Cy5. Single 1024 ×1024-pixel images or 512 × 512-pixel images 

were captured. Images from WT and ApoE-/- tissue sections were acquired under identical microscope 
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settings using the sequential acquisition of different channels to avoid overlap between fluorophores. 

 

2.2.9. Confocal microscopy 

Confocal images were acquired using a Leica TCS SP8 (Leica Microsystems, Germany) equipped 

with a UV laser, a white light laser, hybrid detectors, and a 20X multi-immersion objective. Each dye 

was excited and acquired sequentially as follows: DAPI: excitation 405nm, detection 420-470nm; 

FITC/Alexa Fluor 488: excitation 490nm, detection 500-550nm; Cy3: excitation 591nm, detection 

600-640nm; Cy5: excitation 652nm, detection 670-720nm. Single 1024×1024-pixel images were 

captured. Images from WT and ApoE-/- tissue sections were acquired. For co-localization analysis, 

non-overlapping fluorophores such as Alexa 488 and Cy5 were used to avoid cross-talk and/or 

bleeding through. Raw images were analyzed with the Leica Application Suite X (v.3.1 Leica 

Microsystems, Germany). 

 

2.2.10. Image analysis and processing 

ImageJ (NIH, USA) was routinely used for image processing. Only brightness and contrast were 

adjusted for the whole frame, and no part of a frame was enhanced or modified in any way. All images 

were saved as TIF files and exported to adobe illustrator CS6 (Adobe software) for figure arrangement. 

 

2.2.11. Morphometry 

2.2.11.1. Morphometry of TH+ axon density in adventitia 

10 µm thick frozen sections were prepared. From each mouse, we obtained approximately 80 sections 

per aortic root, and approximately 700 sections per abdominal aorta, of which 8 - 10 serial sections 

were used of adventitia innervations studies. Serial tissue sections were stained with NFM and TH 

antibodies, and confocal images were acquired using a 20X objective of Leica TCS SP8 (Leica, 

Germany). 3-5 images per section were acquired, and the TH+ axons of at least 5 μm length in the 
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aorta adventitia were manually counted. The adventitia axon density was determined as the number 

of NFM+TH+ axons per mm2 adventitia area. 

 

2.2.11.2. Morphometry of TH+ axons in spleen 

For quantification of TH+ sympathetic axons in the spleen, 10 µm thick cryosections were prepared 

from the middle half of the spleen. 6 serial sections at every 500 µm interval were stained with NFM 

and TH antibodies, and confocal images were acquired with 20X objective as described above. 6-8 

images per section were acquired, and the axon area was determined. Briefly, the scale was set for 

each image. The border of the region of interest was depicted with the “Polygon selections” tool and 

recorded. The “Threshold” tool was applied. The areas of NFM+TH+ double-positive signals in the 

region of interest were recorded and measured in Excel. 

 

2.2.11.3. Morphometry of plaque, and ATLO size 

To quantify plaque and ATLO sizes, every 10th serial sections were stained with Oil Red 

O/Hematoxylin (OR/H) staining. The OR/H images were opened with the software Image J, and the 

scale was set for each image. The borders of the lumen, internal elastic layer, external elastic layer, 

and adventitia were all depicted with the “Polygon selections” tool and saved to the “ROI Manager”. 

Then the data were exported using the “measure” in the ROI Manager. The difference between the 

areas covered by the internal elastic lamina and lumen was considered as intima area, while the 

difference between the areas of the external elastic lamina and internal elastic lamina was considered 

as media area, and the difference between the areas occupied by the adventitia and external elastic 

lamina was considered as adventitia area. Plaque size was determined by the ratio of intima area : 

media area, whereas ATLO size was determined by the ratio of adventitia area : media area. In 

addition, every 10th serial sections in the entire abdominal aorta were examined for counting the 

number of ATLOs. 
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2.2.11.4. Quantification of necrotic core and fibrous cap thickness in plaque areas 

Serial frozen aortic tissue sections (10 µm thick) at 100 μm intervals were stained with H/E staining 

for quantification of necrotic core area and fibrous cap thickness. 

Stained sections were examined using an epi-fluorescence microscope DM6000B (Leica, Germany) 

with a bright field filter. All pictures of sections were taken with a 10x objective. To quantify the 

image with H/E staining, the scale was set for each image. Necrotic core areas and fibrous cap 

thickness in plaques were quantified in 5-8 sections per mouse in 3-5 mice per group using Image J 

(NIH, USA). The borders of the region of interest, i.e., atherosclerotic plaques and the acellular empty 

necrotic core areas, were depicted with the “Polygon selections” tool respectively and recorded. The 

necrotic core area was normalized to plaque area percentage. Fibrous cap thickness was averaged 

from 3-5 measurements in each plaque. 

 

2.2.11.5. Quantification of immune cell density in plaque and ATLO  

Serial frozen aortic tissue sections (10 µm thick) at 100 μm intervals were stained for macrophages 

(CD68), SMCs (SMA), T cells (CD3e), and Treg cells (CD3e/Foxp3) with the immunofluorescence 

staining method above. Stained sections were examined using a confocal laser scanning microscope 

TCS SP8 (Leica, Germany) with appropriate excitation and emission filters. All pictures were taken 

with a 20X objective. Identical staining protocols, including the equal concentration of the same 

primary and secondary antibody and identical microscope settings (channel settings, channel, 

intensity, and resolution), were applied for both the control and treated tissue sections. 

The CD68+ macrophage, SMA+ SMC, and CD3e+ T cell infiltration in the plaque areas were 

quantified with CD68, SMA, and CD3e antibody stained pictures, whereas Foxp3+CD3e+ Treg cells 

in ATLOs were quantified with Foxp3 and CD3e antibody stained pictures using the software ImageJ. 

The images were opened with the software Image J. The image scale was set with the standard bar 

on the images. After the calibration for the image, the intimal layer was encircled using the “polygon 

selections” tool. The intimal layer was defined by the internal elastic lamina and the lumen. The 

intima area was saved to the “ROI Manager”. Then the immunofluorescence pictures of CD68 were 

segmented by thresholding to create binary images144. The “area fraction” of CD68+ macrophage in 
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plaque area and the plaque area can be exported with the “measure” tool in the “ROI Manager”. 

Macrophage density was normalized to stained area percentage in abdominal adventitia per mouse. 

SMA+ SMC area in plaque was quantified in a similar way as macrophage area. In order to count the 

CD3e+ T cell numbers in the plaque area, the CD3e antibody and DAPI stained images were merged, 

and CD3e and DAPI double-positive cells were counted as the CD3e+ T cells. 

For adventitia or ATLO Treg cell density, 5-8 parallel sections of the same location i.e., abdominal 

aorta below the renal artery were used. To count the CD3e+ Foxp3+ Treg cell numbers in the ATLO 

area, the CD3e/Foxp3 antibodies and DAPI stained images were merged, and CD3e, Foxp3 and DAPI 

triple-positive cells were counted as the Treg cells. The numbers of Treg cells were quantified among 

total T cells in each field of view (FOV) with 2-3 FOVs per ATLO section. 

 

2.2.11.6. Quantification of TH+ sympathetic neurons in the locus coeruleus in brain 

The serial brain cryosections (20 μm thick) with cerebellum from the posterior parts of the brain at 

100 μm intervals were stained with TH and NeuN antisera with the immunofluorescence staining 

method above. Stained sections were examined using a confocal laser scanning microscope TCS SP8 

(Leica, Germany) with appropriate excitation and emission filters, and with a 20X objective. 

The locus coeruleus (LC) area below the 4th ventricle was defined using Allen mouse brain ATLAS 

(https://mouse.brain-map.org/). The TH+ sympathetic neurons and NeuN+ neuronal nuclei in the LC 

areas were quantified using the software ImageJ. Briefly, the images were opened with the software 

Image J. The image scale was set with the standard bar on the images. After the calibration for the 

image, the LC area was encircled using the “polygon selections” tool. The TH+NeuN+ and NeuN+ 

neurons were manually counted using the ‘analyze particle’ parameter. The percentage of TH/NeuN 

double-positive neurons among NeuN positive neurons were analyzed. 

 

2.2.12. Picro-Sirius red staining for collagen area in plaque 

Picro-Sirius Red staining was used for histological analysis of collagen. The protocol was a gift from 

Anders & Vielhauer Research Laboratory, Munich141. 

https://mouse.brain-map.org/
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Cryo-sections were thawed on the hotplate at 37° C for 1 minute and air-dried for 30 minutes. 4% 

PFA was used to fix the air-dried sections for 5 minutes. Slides were immersed in PBS for 5 minutes 

and thereafter in Sirius-red solution for 1 hour. The slides were washed twice with acidified water. 

The water was removed, followed by three times washing with 100% Ethanol. The slides were cleared 

by two times washing with Xylene. 

To quantify the image with Sirius Red staining, the scale was set for each image. The borders of 

atherosclerotic plaques were firstly depicted. The “Threshold” tool was applied, and the percentages 

of Sirius Red stained area in plaques were measured and recorded. 

 

2.2.13. Plaque vulnerability index 

To analyze the stability of the plaque, the Plaque Vulnerability Index (PVI) was calculated using the 

formula below15. 

𝑃𝑃𝑃𝑃𝑃𝑃 =
(𝑁𝑁𝑁𝑁 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎% + 𝐶𝐶𝐶𝐶68 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎%)

(𝑆𝑆𝑆𝑆𝑆𝑆 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎% + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎%)
 

 

2.2.14. Flow cytometry 

Flow cytometry (FACS) experiments were performed using the established protocols for sample 

preparations and measurements from our lab. 

 

2.2.14.1. Preparation of single leukocyte suspensions from blood 

Blood was drawn by heart puncture using a 1 ml syringe with a 23-gauge needle and immediately 

mixed with 5 ml 5 mM EDTA-PBS buffer in a 15 ml Falcon tube. The blood was then centrifuged, 

and the red pellet was resuspended and lysed in 5 ml Ammonium-Chloride-Potassium lysis buffer for 

5 min at RT. An additional 5 ml FACS buffer was added, and centrifugation was carried out. The lysis 

step was repeated if the pellet still contained red blood cells. The final pellet was resuspended in 2 ml 

of ice-cold FACS buffer and counted for cell number. 
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2.2.14.2. Preparation of single-cell suspensions from spleen and LNs 

Mouse spleen was cut into small pieces, and the lymph nodes were cut into half. The tissues were 

transferred to a 70 μm cell strainer placed on a falcon tube. The cell suspension was collected in a 

tube by softly mashing the tissue with a syringe-piston and by intermittently adding FACS buffer. A 

total volume of the cell suspension was made-up to give 5 ml. The cell suspension was centrifuged, 

and the supernatant was carefully discarded. The pellet was re-suspended in 5 ml Ammonium-

Chloride-Potassium lysis buffer and incubated for 5 minutes at RT to lyse red blood cells. This red 

blood cell lysis step is not necessary when working with mouse LNs. An additional 5 ml FACS buffer 

was added, and centrifugation was carried out at 400 × g for 5 min at 4°C. The pellet was resuspended 

in 5 ml of ice-cold FACS buffer (the volume of FACS buffer may change depending on the size of 

the pellet), and a single cell suspension was obtained by filtering again through a 70 μm cell strainer. 

The concentrations of the cell suspensions were counted as indicated above. 

 

2.2.14.3. Preparation of single-cell suspensions from bone marrows 

The mouse femurs were dissociated from the muscles and cleaned. The distal metaphysis was 

removed, and the femur was placed into the 1.5 ml Eppendorf tube with the cut end facing down. 

Bone marrow was flushed via centrifugation at 5000 rpm for 5 min at 4°C. The bone marrow sample 

in the tube was resuspended in 1ml ice-cold FACS buffer. 

 

2.2.14.4. Extracellular staining for FACS 

One to three million cells were aliquoted in 96-well v-bottom plate or 1.5 ml Eppendorf tube and 

centrifuged. The pellet was resuspended with 50 μl diluted antibody cocktail (up to 8 colors) in FACS 

buffer and incubated for 30 minutes at 4°C except for progenitor antibody cocktail where bone 

marrow cells were incubated for 60 minutes at 4°C. After incubation, cells were centrifuged and 

washed twice with FACS buffer. For biotin-labeled antibodies, the cell sample was incubated with 50 
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μl diluted streptavidin-conjugated antibody for 20 minutes at 4°C. The sample was centrifuged and 

washed twice. Then it was measured on the same day or stained for intracellular protein. 

Single cells from blood, spleen, and lymph nodes were stained with antibodies against CD45, CD11b, 

CD11c, TCRb, CD4, CD8, B220, Foxp3. Leukocyte populations were defined as follows: B cells 

(CD45+TCRb-B220+), CD4 T cells (CD45+TCRb+B220-CD8-CD4+), Foxp3 Treg cells 

(CD45+TCRb+B220-CD8-CD4+Foxp3+), CD8 T cells (CD45+TCRb+B220-CD8+CD4-), CD11b+ 

monocytes/macrophages/neutrophils (CD45+TCRb-B220-CD11b+CD11c-), DCs (CD45+TCRb-B220-

CD11b+CD11c+). 

Cells from bone marrow were stained with antibodies against TER-119, Gr1, B220, CD3, CD11b, 

CD150, CD34, CD48, CD16/32, c-kit, Sca1. Hematopoietic cell populations were defined as follows: 

LSK as Lin-c-Kit+Sca-1+ gate, myeloid progenitor cells (MPC) as Lin-c-kit+sca-1- gate, hematopoietic 

stem cells (HSC) as Lin-c-kit+Sca-1+CD48-CD150+ gate, common lymphoid progenitors (CLP) as 

Lin-c-kit+Sca-1+CD127+ gate, common myeloid progenitor (CMP) as Lin-c-kit+sca-1-

CD34+CD16/32- gate, granulocyte-monocyte progenitor cells (GMP) as Lin-c-kit+Sca-1-

CD34+CD16/32+ gate. 

 

2.2.14.5. Intracellular staining for FACS 

After surface staining as described above, the cell sample was fixed and permeabilized according to 

the manufacturer’s instruction with minor changes. The cell pellet was incubated with 200 μl of 

freshly prepared fixation/permeabilization working solution (1part fixation/permeabilization 

concentrate buffer was mixed with 3 parts fixation/ permeabilization dilute buffer) for 50 minutes at 

4°C. Then the sample was centrifuged and washed with 300 μl of 1 × permeabilization buffer (which 

was prepared from 10 × permeabilization buffer dilution by sterile water). After centrifugation, the 

sample was re-suspended with 100 μl 1 × permeabilization buffer and kept at 4°C for 20 minutes. 

Without washing, 0.4 μl PE anti-mouse Foxp3 antibody or 2 μl APC anti-mouse. Then the sample 

was centrifuged and washed twice with 300 μl 1× permeabilization buffer. Single cells from blood, 

spleen, and lymph nodes were stained with antibodies against CD45, CD11b, CD11c, TCRb, CD4, 

CD8, B220, and Foxp3. After the staining, the pellet was re-suspended with 200 μl FACS buffer and 
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was used for FACS analysis. 

 

2.2.14.6. Analysis of cells by flow cytometry 

Flow cytometry measurements were performed using the BD FACS Canto-II. Data were analyzed 

using the FACS Diva v6.1 software (BD) or FlowJo software (Tree Star). The monoclonal antibodies 

used for flow cytometric analysis were purchased from eBiosciences and BD Biosciences (see Table 

8). The fluorescence labels on the antibodies are light-sensitive. Therefore, staining was performed 

in the dark. Unless otherwise indicated, all centrifugations were performed at 1500 rpm for 5 minutes 

at 4°C. 

 

2.2.15. Flow cytometry derived t-SNE reduction maps of total leukocytes 

The t-Distributed Stochastic Neighbor Embedding (t-SNE) is a state-of-the-art dimensionality 

reduction algorithm for non-linear data representation that allows visualization of multi-dimensional 

flow cytometry data in fewer dimensions or a low dimensional distribution (map) while still 

maintaining the structure of the data. Living cells (singlets) were manually gated from multicolor 

flow cytometry data and were exported in an FCS file. The t-SNE dimensionality reduction mapping 

was performed on total CD45+ leukocytes of spleen and lymph nodes using FlowJo (version 10)145,146. 

5000 flow cytometry events from the total leukocytes were used for the t-SNE analysis. We used auto 

t-SNE (opt-SNE) using the following parameters: Iterations: 1200; Perplexity: 20; learning rate: 200; 

and KNN algorithm with Barnes-Hut approximations, and visualized different populations using t-

SNE map. 

 

2.2.16. Enzyme-linked immunosorbent assay (ELISA) 

In order to obtain the NE levels in mouse serum, approximately 200 μl of mouse blood was collected 

into tubes and centrifuged at 10,000 rpm for 15 min. The serum samples were then collected and 
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frozen in 20 μl aliquots in liquid nitrogen and stored at -80°C until further use for the measurement 

of NE levels with ELISA as described below. In order to determine tissue NE levels, small pieces of 

spleen, aortic tissues were snap-frozen in liquid nitrogen and stored at -80°C until further use. Spleen 

samples were homogenized in 200 µl of the catecholamine-stabilizing solution, which contained 0.01 

N HCl, 1 mM EDTA, 4 mM Na2S2O5, and pH was adjusted to 7.588. The iliac/aortic arch samples 

were homogenized in 50 µl of catecholamine-stabilizing solution. The homogenized samples were 

centrifuged at 5000 rpm for 5 min at RT. The supernatants were collected, and the protein 

concentrations were measured with the “Protein 280” feature of NanoDrop (ThermoFisher). 

The serum and the homogenized tissue samples were prepared for NE ELISA following the 

instructions provided in the manual of the ELISA kit (NE-5200, Labor Diagnostika Nord GmbH & 

Co.KG). All the samples were put into the 48-well extraction plate by using a cis-diol-specific affinity 

gel (provided in the ELISA kit) and washed several times to remove unspecific proteins or tissue 

fragments. The target proteins were dissolved into hydrochloric acid and transferred to 96-wells plate 

(both are provided in the ELISA kit) for acylation and enzymatic processing. Finally, the samples 

were transferred into an antigen-coated 96-well plate and kept with the anti-serum (both are provided 

in the ELISA kit) overnight at 4° C; absorbance was measured using a multi-well plate reader 

(SpectraFluor Plus, Tecan) at 450 nm. NE concentrations of serum samples were reported as ng/ml, 

whereas NE levels of tissue samples were normalized to total tissue protein concentration 

(ng/mg)88,111, or reported as ng/ml. 

 

2.2.17. Laser capture microdissection (LCM) and microarray analyses 

Aorta tissue mRNA microarray analyses were performed using Affymetrix mouse whole-genome 430 

A 2.0 microarrays, as previously reported45,147. Total aortas of 3 WT and 3 ApoE-/- mice each at 6, 32, 

and 78 weeks and LCM-derived arterial wall compartments at 78 weeks were extracted. Briefly, RNA 

was extracted from different tissues and purified using the RNeasy Micro kit (QIAGEN). cDNA and 

cRNA were synthesized, amplified, and purified as previously described147. The raw transcriptome 

data (CEL files) were mined for sympathetic nervous system-associated genes, which represents my 

contribution (not previously published). Signal intensities were calculated from the raw data and 

scaled to an array trimmed mean of 200. All further steps were performed using R and 
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Bioconductor148. Logarithmized signals were normalized across arrays of every analysis using 

quantile normalization149, and data were filtered before statistical analysis to remove genes with low 

expression or without variability between 2 groups. Probe sets were included if, in one group, a 

minimum of 2 arrays was called the present (detection P ≤ 0.05), and 2 or 3 arrays showed a log signal 

≥ log2 (200). Recorded genes were required to be up-regulated with a fold change of at least log2 

(2.0) between groups. The log2 value of genes expression (normal distribution) was used for the 

quantification of highly expressed genes. To correct media effects in LCM experiments (error caused 

by nearby media tissue) on adventitia measurements, i.e., WT abdominal adventitia, ApoE-/- adventitia 

without plaque, or ATLO, a correction procedure was performed as previously described (RME ≤ 

0.666)147. After applying filters, the resulting list was subjected to a one-way analysis of variance 

(ANOVA) with Benjamini and Hochberg correction for multiple testing between several WT and 

ApoE-/- groups45 or a Student’s t-test (P ≤ 0.05) for comparing two WT and/or ApoE-/- groups147. The 

resulting total lists of differentially expressed probe sets (P ≤ 0.05) were used as the basis for derived 

lists of GO terms. 

 

2.2.18. Statistical analyses 

All measurements were expressed as means of N samples ± SEM. Data were analyzed with two-sided 

unpaired Student’s t-test to compare two groups and/or one-way analysis of variance (ANOVA) to 

compare multiple groups by GraphPad Prism 8 (GraphPad Software, San Diego). We used Welch’s 

correction for the two-sided Student’s t-test and Bonferroni’s post-hoc correction for ANOVA. Values 

of P<0.05 were considered to be statistically significant. 

 



RESULTS 

39 

3 RESULTS 

3.1. NE concentrations increased during aging and atherosclerosis 

Norepinephrine (NE) is the key sympathetic neurotransmitter in peripheral tissues. Plasma NE 

concentrations were shown to increase during aging in normotensive rats and humans150,151. Moreover, 

the splenic NE concentration was known to be increased in angiotensin II-treated hypertensive mice68. 

While no literature data regarding the changes of tissue NE during aging were found, it has been 

reported that bone marrow NE concentrations in WT mice increased after stroke87 or other types of 

stress86. Moreover, NE concentrations in the aortic arch of ApoE-/- mice were shown to be increased 

after MI88. However, the alteration of tissue NE concentration during aging is unknown. 

To examine the effect of aging on NE levels in our model, NE levels in the blood of 9 weeks old 

young, 30 weeks old adult, and 78 weeks old aged mice, respectively, were determined first. Serum 

NE concentrations in adult mice were similar to that of young mice, whereas serum NE levels in aged 

mice were significantly higher than in adult or young mice (Fig.6.A). These data on increased serum 

NE concentrations in mice were consistent with published data in rats and humans. To examine 

changes in tissue NE levels, including SLOs during aging, we next measured NE concentrations in 

the spleen of young, adult, and aged ApoE-/- mice. Interestingly, adult spleen NE concentration was 

significantly higher vs. young spleen but lower than aged spleen, indicating an increase in spleen NE 

levels across their lifespan (Fig.6.B). To determine the effect of atherosclerosis on tissue NE level, 

we measured NE concentrations in aged WT abdominal aorta, ApoE-/- abdominal aorta without or 

with plaque. NE concentrations in ApoE-/- abdominal aorta without plaque were similar to those in 

WT abdominal aorta. However, NE levels were markedly increased in abdominal aorta with plaques 

vs. ApoE-/- abdominal aorta without plaque or WT abdominal aorta (Fig.6.C). Our data indicated that 

the NE concentrations increased during aging in both genotypes and that atherosclerosis was 

associated with enhanced aortic NE concentrations in a highly territorialized way. 
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Figure 6. NE concentrations increase during aging in ApoE-/- mice. A) Serum NE levels in young, adult, and aged WT 

and ApoE-/- mice. Young mice were 9 weeks old, adult mice were 30 weeks old, and aged mice were 78 weeks old. N = 3 

young, 27 adult and 7 aged ApoE-/- mice; 4 young, 4 adult, and 8 aged WT mice. B) Spleen NE levels in young, adult, 

and aged ApoE-/- mice. N = 10 young, 19 adult and 17 aged ApoE-/- mice. C) Tissue NE in the abdominal aorta of aged 

WT and ApoE-/- mice. NE concentrations of the lower segment of the abdominal aorta (A2) in aged WT mice, A2 segment 

without plaque or with plaques in aged ApoE-/- mice. N = 8 young, 5 adult and 4 aged ApoE-/- mice. Data represent means 

± SEM; two-tailed unpaired Student´s t-test, *: p<0.05; **: p<0.01; n.s.: not significant. 

 

3.2. TH+ sympathetic axon density in the arterial adventitia of ApoE-/- mice 

Unpublished data of our group showed that NF200+ axons, including TH+ sympathetic axons, 

innervate both the WT and ApoE-/- aorta adventitia (Mohanta S. K., PhD thesis, 2014; Mohanta S. K. 

et al. 2020, under review). Quantification of these axons demonstrated that the NF200+ axon density 

in abdominal aorta with plaque was significantly higher than in the abdominal aorta without plaque 

or WT abdominal aorta. Moreover, NF200+ axon density was further increased in ATLOs vs. other 

aorta segments (Mohanta S. K. et al. 2020, under review). These data indicated that the NS was 

directly affected by atherosclerosis in a highly territorialized fashion. The presence of NFM+TH+ 

sympathetic axons in the adventitia, together with aortic NE data, raised the possibility that the 

increased NE levels in the diseased aorta might be due to enhanced TH (tyrosine hydroxylase, key 

enzyme for NE synthesis)+ sympathetic axons in the atherosclerotic aorta adventitia. To confirm this 

hypothesis, we quantified TH+ axon density in the aortic root and abdominal aorta of adult and aged 

WT and ApoE-/- mice, respectively. It is important to note that we never observed NF200-stained 

axons penetrate the external lamina in WT or ApoE-/- mice at any age. 
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3.2.1 TH+NFM+ sympathetic axon density increased in adult aortic roots  

To determine the effect of early atherosclerosis in adventitia sympathetic innervation, we examined 

aortic roots of 32 weeks old adult WT or ApoE-/- mice. TH/NFM double-positive axons (arrow) were 

detected in the adventitia, but not in the media (dotted line) nor in plaque (Fig.7. A). Few TH+ axons 

were detected in the adventitia-media border in both genotypes. Comparatively more TH/NFM 

double-positive axons (arrow) were detected in the adventitia adjacent to atherosclerotic plaques in 

adult ApoE-/- mice vs. the WT adventitia (Fig.7. A). Quantification TH/NFM double-positive axons 

per adventitia area in aortic root sections (every 10th section) demonstrated that the TH+NFM+ 

sympathetic axon density in the adventitia of adult ApoE-/- mice was ~2.5 fold vs. WT mice (Fig.7. 

B). 

 

 

Figure 7. Sympathetic axon density increased in adult ApoE-/- mice. A) Representative images of the 

immunofluorescence stained aortic root in adult WT and ApoE-/- mice. TH was stained red; NFM was stained green; DNA 

was stained blue. The area between dotted lines designates the media layer. Arrows indicate TH+/NFM+ axons. Scale bar: 

50 µm. B) Quantification of TH+/NFM+ axons in aortic root sections. N = 3 adult WT and 3 adult ApoE-/- mice. Data 

represent means ± SEM; two-tailed unpaired Student´s t-test, **: p<0.01. 

 

3.2.2 TH+NFM+ sympathetic axon density increased in the aged aorta 

To determine how advanced atherosclerosis affected adventitia sympathetic innervation, we 

examined the abdominal aorta of 78 weeks old aged WT or ApoE-/- mice. TH/NFM double-positive 
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axons (arrow) were detected in the adventitia/ATLO, but not in the media (dotted line) nor in the 

plaque (Fig.8. A). Few TH+ sympathetic axons were detected in the adventitia-media border in both 

genotypes. Comparatively more TH/NFM double-positive axons (arrow) were detected in the 

adventitia adjacent to atherosclerotic plaque in aged ApoE-/- mice vs. WT adventitia (Fig.8. A). 

Quantification of TH/NFM double-positive axons in WT abdominal aorta sections (every 10th section) 

and in ApoE-/- abdominal aorta sections with ATLOs (every 10th section) demonstrated that the 

TH+NFM+ sympathetic axon density in the adventitia of aged ApoE-/- mice was 2 fold higher vs. WT 

mice (Fig.8. B). 

 

 

Figure 8. Sympathetic axon density increased in aged ApoE-/- mice. A) Representative images of the 

immunofluorescence stained abdominal aorta adventitia in aged WT and ApoE-/- mice. TH was stained red; NFM was 

stained green; DNA was stained blue. The dotted line indicates media. Arrows indicate TH+/NFM+ axons. Scale bar: 50µm. 

B) Quantification of TH+/NFM+ axons in WT abdominal aorta vs. ATLO. N = 5 aged WT and 4 aged ApoE-/- mice. Data 

represent means ± SEM; two-tailed unpaired Student´s t-test, ***: p<0.005. 

 

3.3 Laser capture microdissection arrays revealed the presence of SNS 

constituents in atherosclerotic adventitia 

Our data demonstrated i) that NE levels in serum and spleen increased during aging and that NE 

concentrations increased in aorta segments afflicted with atherosclerosis; ii) that sympathetic axons 

innervated the aorta adventitia and ATLOs; iii) that the sympathetic innervations specifically 
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increased in ATLOs vs. WT adventitia. Moreover, unpublished data from our lab provide evidence 

that ATLO immune cells directly interacted with innervating nerve fibers that were associated with 

disease severity (Mohanta S. K. et al. 2020, under review). Similar to SLOs, immune cells in ATLOs 

could express neurotransmitter-receptors and produce neurotransmitters. Recent data supported the 

hypothesis that ATLOs in atherosclerosis secreted numerous neuronal cues that were responsible for 

axon growth, guidance, and survival, including Semaphorin (Sema) 3A, Sema4D, and Plexin (Plxn) 

B227,45,152. Interestingly, Sema3E and Sema4D were known to play roles in the regulation of 

infiltration and migration of macrophages in atherosclerotic plaques153,154. Our own data on ATLOs 

and the results of others on neuroimmune crosstalk raised important questions: i) how does 

atherosclerosis influence adventitia sympathetic innervations, and ii) does ATLO neogenesis promote 

SNS growth, development, and guidance and/or vice versa? 

To answer these questions, we used our whole mouse genome mRNA expression arrays data bank45, 

to examine differential nervous system gene expression in the whole aorta, RNA extracts of WT and 

ApoE-/- mice as well as in abdominal aorta adventitia by laser capture microdissection (LCM)-based 

approach. To examine the effect of aging on SNS development, whole aortae RNA extracts of WT 

mice and ApoE-/- mice at 6 weeks, 32 weeks, and 78 weeks of ages were analyzed. Multiple 

differentially expressed genes of interest were examined by using gene ontology (GO) terms 

according to the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/) and 

the gene ontology data banks (http://www.geneontology.org/) such as nervous system development 

(GO: 0007399; 373 genes), autonomic nervous system development (GO: 0048483; 22 genes), 

sympathetic nervous system development (GO: 0048485; 10 genes), axon (GO: 0030424; 196 genes), 

regulation of axon guidance (GO: 1902667; 20 genes) in WT and ApoE-/- aortas (Fig.9; supplement 

Table S1). 

The mining of differential gene expression profiles in the diseased total aorta during aging yielded 

important candidates of neuroimmune crosstalk including bex1 (brain expressed X-linked 1); 

interleukin 6; nerve growth factor, purinergic receptor P2X ligand-gated ion channel 4 (P2X4), Unc-

5, netrin receptor C. Each of these genes plays important roles in the PNS, and many of them are 

mediators of neuroimmune cardiovascular crosstalk. Heatmaps demonstrated multiple up-regulated 

genes such as Sema4D, early growth response 2 (Egr2), and neuropilin 2 (Nrp2) and down-regulated 

genes such as Sema3A, Sema3F, neuron navigator 2 (Nav2) and neurotrophin 3 (Ntf3) in WT vs. 

http://www.ncbi.nlm.nih.gov/
http://www.geneontology.org/
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ApoE-/- aorta during aging (Fig.9). Semaphorins are known to play important roles in the formation 

and functioning of the cardiovascular and immune systems in addition to their roles in the NS 

development and in axonal guidance155. As the semaphorin class-3 receptor, Nrp2 guides axonal 

growth during the development of the nervous system156. Nav2 plays an important role in CNS 

development157. Ntf3 supports the survival and differentiation of neurons of the peripheral and central 

nervous systems and promotes growth and differentiation of new neurons and synapses158,159. 

Neuronal guidance gene Sema4D was highly up-regulated in WT vs. ApoE-/- mice. Notably, Sema4D 

was also up-regulated in adult and aged ApoE-/- aortas vs. their young and adult counterparts, 

respectively. Importantly, in ApoE-/- aortae at 78 week multiple axonogenesis and axon repellent genes 

including Sema3A and Sema3F were down-regulated vs. 78 week-old WT aortas, and Sema3A and 

Sema3F had a tendency of down-regulation in aged ApoE-/- aortas vs. young and adult mice. These 

data revealed dramatic changes in the aortae of aged ApoE-/- mice at 78 weeks and indicated that age-

dependent changes in axon growth and guidance factors occurred in WT and ApoE-/- mice (Fig.9; 

supplement Table S1). 

In addition, LCM-derived tissues of adventitia, adventitia without plaque, and ATLOs from WT and 

ApoE-/- mice were compared by microarray analyses147. This mRNA expression database was also 

used to search for neuronal growth, survival, and guidance molecules. Genes of interest including 

nervous system development (GO: 0007399; 136 genes), neuron projection development (GO: 

0031175; 120 genes), regulation of neuron projection development (GO: 0010975; 69 genes), axon 

(GO: 0030424; 62 genes), and regulation of axon guidance (GO: 1902667; 5 genes), in aged WT and 

ApoE-/- abdominal adventitia were examined (Fig.10; supplement Table S2). 

Heatmaps, together with the statistical analyses of each mRNA, demonstrated many up-regulated 

genes such as PlxnB2, PlxnC1, Sema4D, and thymus cell antigen 1 (Thy1, CD90) and down-

regulated genes such as reticulon 4 (Rtn4), and Neurofibromin 1 (Nf1) in ATLOs (Fig.10). Plexins, 

together with semaphorins, was reported to stabilize synaptic transmission in the developing and 

mature NS160-162, while Thy1 is associated with neurovascular function163. By contrast, Rtn4 provides 

inhibitory signals for neurite outgrowth164, and loss of Nf1 led to neurotrophin-independent survival 

of embryonic sensory and sympathetic neurons165. Notably, neuron projection development genes, 

including the axon guidance-regulating gene, i.e., Sema4D and neuron projection development 
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regulating gene PlxnB2, were up-regulated in ATLOs vs. aged WT and ApoE-/- adventitia without 

plaque (Fig.10G-I). 

In summary, the microarrays data indicate that the nervous system development-related genes in 

ApoE-/- mice were affected by aging and atherosclerosis, and in particular, within ATLOs of diseased 

aorta adventitia. These findings, together with immunofluorescence and ELISA data, suggest that 

enhanced sympathetic NS development-related genes in ApoE-/- mice were possibly expressed by 

newly formed axons during atherosclerosis and the immune cells recruited in an inflammatory 

microenvironment in ATLOs. This provides strong evidence for robust atherosclerosis-SNS crosstalk 

and, in particular robust ATLO-SNS crosstalk, highlighting the existence of a hitherto unrecognized 

atherosclerosis-SNS circuit in aged hyperlipidemic mouse aortas. 
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Figure 9. Differential Neuronal Gene Expression in WT and ApoE-/- Aortas. A) Heatmaps of differentially regulated 

genes in total aorta RNA extracts based on the reanalysis of published microarray data45. Gene expression in aortae was 

displayed separately from 6, 32, and 78 weeks old WT and ApoE-/- mice. The following GO terms were analyzed from 

total genes: B) nervous system development (GO: 0007399); C) autonomic nervous system development (GO: 0048483); 

D) sympathetic nervous system development (GO: 0048485); E) axon (GO: 0030424); F) regulation of axon guidance 

(GO: 1902667). G,H,I) Quantitation of aorta genes expression (log2 value) for semaphrine3A, semaphrine3F, 

semaphrine4D in WT and ApoE-/- mice during aging. Data represents Means ± SEM. The statistical analyses on the raw 

CEL-file data. 6 groups of samples were compared using one-way ANOVA with Bonferroni's post-hoc test. *:P<0.05, 

**:P<0.001; 6 weeks WT (N=3); 32 weeks WT (N=3); 78 weeks WT (N=3); 6 weeks ApoE-/- (N=3); 32 weeks 

ApoE-/- (N=3); 78 weeks ApoE-/- (N=3). 
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Figure 10. Differential Neuronal Gene Expression in WT and ApoE-/- Abdominal Adventitia. A) Heatmaps of 

differentially regulated genes (ANOVA; RME ≤ 0.66) in abdominal adventitia RNA extracts, based on reanalysis of 

published microarray data (reference). Gene expression in LCM-derived abdominal adventitia was shown from aged WT 

adventitia, aged ApoE-/- abdominal aortae without plaque and ATLO in ApoE-/- abdominal adventitia. The following GO 

terms were analyzed from total genes: B) nervous system development (GO: 0007399); C) axon (GO: 0030424); D) 

neuron projection development (GO: 0048483); E) regulation of neuron projection development (GO: 0048485); F) 

regulation of axon guidance (GO: 1902667). G, H) Quantitation of mRNA expression (log2 value) for semaphorin 4D, 

and plexin B2 in ApoE-/- abdominal aortae without plaque and ATLO in ApoE-/- abdominal adventitia vs. WT adventitia 

in aged WT and ApoE-/- mice. Means ± SEM, *:P<0.05, ****:P<0.0001; one-way ANOVA with Bonferroni's post-hoc 
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test. 78 weeks WT (N=3); 78 weeks ApoE-/- adventitia without plaque (N=4); 78 weeks ApoE-/- adventitia with ATLO 

(N=4). 

 

3.4 Chemical sympathectomy by 6-OHDA 

Since we observed that sympathetic innervation and NE levels markedly increased during 

atherosclerosis in the diseased artery adventitia, we wished to examine the effect of the SNS on 

atherosclerosis progression. For this purpose, chemical sympathetic denervation was performed using 

6-OHDA in adult and aged ApoE-/- mice by adapting previously described methods in mice61,90. 6-

OHDA was demonstrated to deplete the sympathetic axons in peripheral tissues93. 

 

3.4.1 Effects of chemical sympathectomy in adult mice 

To determine the effects of chemical sympathectomy in early atherosclerosis, ApoE-/- male mice at 

28 weeks of age were injected with 6-OHDA for 4 weeks and sacrificed one week after the last 

injection according to the workflow shown below in Fig.11. Blood, spleen, LNs, kidney, liver, heart, 

aorta, and adipose tissue were harvested for further analyses. 

 

 

Figure 11. Workflow for 6-OHDA treatment in adult mice. Treatment was started at the age of 28 weeks. The treated 

group received a 6-OHDA injection of 100 mg/kg body weight two days before day 0. On day 0, mice received 250 mg/kg 

body weight. 6-OHDA was dissolved in saline containing 0.1% ascorbic acid. Thereafter, the animals were treated three 

more times, one injection every week. The control group received the same volume of vehicle, which is in saline 



RESULTS 

49 

containing 0.1% ascorbic acid but without 6-OHDA. Animals were fed with normal diet and sacrificed 1 week after the 

last injection. 

 

3.4.1.1 NE concentration was reduced in treated adult mice 

To determine the effectiveness of the 6-OHDA treatment, NE levels in spleen and the aorta were 

measured. We observed that the NE concentration in the spleen of sympathetically denervated mice 

was more than 90% reduced vs. vehicle-treated controls. Similarly, the NE level in the iliac artery of 

6-OHDA-treated mice was about 85% reduced vs. the control mice (Fig.12.). This indicated that 

chemical denervation of the SNS was successful. 

 

Figure 12. Tissue NE concentrations reduced by 6-OHDA in spleen and iliac artery of adult mice in time window 

of 4 weeks of 6-OHDA treatment. The figure showed the quantitative analysis of the NE concentrations in spleen and 

iliac artery of control and treated animals. Spleens and iliac arteries were frozen in liquid nitrogen. NE levels were 

measured with ELISA. N = 11 spleens from control mice, 14 spleens from 6-OHDA-treated mice, 11 iliac arteries from 

control mice, 14 iliac arteries from 6-OHDA-treated mice. Data represent means ± SEM; two-tailed unpaired Student´s 

t-test, **: p<0.01; ****: p<0.001; n.s.: not significant. 

 

3.4.1.2 Effect of chemical sympathectomy on physiological parameters in adult mice 

Depletion of the peripheral SNS caused changes in various physiological parameters of the animal, 

including heart rate166, body temperature167, and behavior168,169. To monitor the status of the mice 

following treatment, body weights and plasma cholesterol were measured. The data demonstrated 
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that the body weight of 6-OHDA-treated groups significantly declined (Fig.13.A), which was 

consistent with published data170. To determine the cause of the body weight reduction and to detect 

potential side effects of 6-OHDA, the weights of spleen, kidney, liver, heart, and iLNs were measured. 

Based on the body weight of the animals, the relative organ weight of individual mice was also 

calculated (to determine organ-specific changes), but this parameter did not show significant 

differences between control and treated animals (Fig.13.B). The data indicated that chemical 

sympathectomy moderately reduced the body weight of the animals, but did not disproportionately 

affect the relative weights of spleen, kidney, liver, heart, or LNs. However, we noticed that treatment 

led to a significant decrease of gonadal adipose tissue (gAT, circles in Fig.13.C) weight. Though 6-

OHDA was applied in in vivo research for decades, its effect on adipose tissue weight was not yet 

determined. In our experiments, the weight of gAT was reduced by ~50% in 6-OHDA-treated mice 

vs. controls (Fig.13.D). 

Since ApoE-/- mice were hyperlipidemic under normal chow diet, it was important to determine 

whether the blood lipid levels were altered after sympathetic denervation under our experimental 

conditions. To determine the effect of chemical sympathectomy on blood lipid, total cholesterol 

concentrations were measured by ultracentrifugation. Although the means of total cholesterol showed 

a tendency of decrease, these levels (amounting to a decrease of about 15%) did not reach statistical 

significance (Fig.13.E). Until today, the effect of 6-OHDA treatment on circulating cholesterol levels 

has not been reported to our knowledge. 
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Figure 13. Absolute and relative body weights and gonadal adipose tissue of adult mice. A) Body weights of the 

animals were determined on the day of sacrifice. N = 13 control mice and 13 6-OHDA-treated mice. B) The organ 

weight/body weight ratio of spleen, kidney, liver, heart, and iLN. N = 10 controls and 9 treated mice. C) Representative 

images of gAT (circled) in control and 6-OHDA-treated mice. D) The ratio of gAT weight from body weight. N = 6 control 

and 5 treated mice. Data represent means ± SEM; two-tailed unpaired Student´s t-test, *: p<0.05; **: p<0.01; n.s.: not 

significant. E) Total plasma cholesterol concentrations. Plasma was collected after 4 weeks of chemical sympathectomy. 

N = 10 controls and 9 6-OHDA-treated. 

 

3.4.1.3 Effect of chemical sympathectomy on blood parameters of adult mice 

To determine the effect of chemical sympathectomy on hematological changes, the blood of 32 weeks 

old ApoE-/- mice treated with 6-OHDA for 4 weeks was analyzed. The data did not reveal changes in 

the total number of white blood cells or numbers of their subtypes, red blood cells, and platelets 

(Fig.14.A). Moreover, the other blood parameters remained unchanged (Fig.14.B), suggesting that 6-

OHDA treatment did not produce major hematological alterations171. 
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Figure 14. No hematological alteration with 6-OHDA treatment. A) Blood leukocyte counts. Blood samples were 

taken at endpoints through cardiac puncture under anesthesia. Total number of white blood cells (WBC), numbers of 

lymphocytes (LYM), monocytes (MO) and granulocytes (GRA), red blood cells (RBC) and platelets (PLT) were 

demonstrated. B) Determination of other blood components by automated blood counter. Hemoglobin (HGB), hematocrit 

(HCT), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin 

concentration (MCHC), red cell distribution width (RDW) and mean platelet volume (MPV) were demonstrated. N = 10 

control and 9 treated mice. Data represent means ± SEM; two-tailed unpaired Student´s t-test, n.s.: not significant. 

 

3.4.1.4 Effect of chemical sympathectomy on myeloid and lymphocyte subsets in SLOs and the 

circulation  

The lack of effect of chemical sympathectomy on blood leukocyte counts was somewhat unexpected 

since the immune system is known to be regulated by the SNS172,173. Acute MI had been reported to 

trigger the SNS in ApoE-/- mice, and CD11b+ monocytes/macrophages/neutrophils increased after 

MI90. SLOs and blood were regulated by chemical sympathectomy. 6-OHDA treatment in WT mice 

was reported to reduce CD11b+ leukocytes in blood and spleen and increased Foxp3+ Treg cells in 

spleen174. Furthermore, 6-OHDA or apparent splenic nerve sympathectomy were reported to reduce 

CD11b+ monocytes/macrophages/neutrophils cells in the spleen reservoir of diabetic mice175. Foxp3+ 

Treg cells were reported to be increased 10 days after 6-OHDA treatment vs. control WT mice89. 

Therefore, we sought to determine the immune cell composition in lymphoid organs and the 

circulation in our mouse cohorts in more detail. Spleens, lymph nodes, and blood were analyzed with 

flow cytometry using appropriate gating strategy (Fig.15.A). FACS analyses of T cells showed that 
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the percentage of the CD4+ T helper (Th) cells among total CD45+ leukocytes decreased in SLOs and 

blood of treated animals (Fig.15.B, C), whereas CD4+ Foxp3+ Treg cells among total CD45+ 

leukocytes markedly increased in spleen, para-aortic LNs and blood in 6-OHDA-treated vs. controls 

(Fig.15.D, E). Moreover, myeloid cell analyses showed that CD11b+CD11c+ DCs among total CD45+ 

leukocytes significantly decreased in spleen and blood, but not in paraaortic LNs of treated mice 

compared to controls (Fig.15.F, G). Our data indicated that CD4+ Th cells, Foxp3+ Treg cells, and 

CD11b+CD11c+ DCs were affected by the chemical sympathectomy. The data on increased Treg cells 

were consistent with previously published literature89,93,94. 
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Figure 15. CD4+ Th cells and CD11b+CD11c+ DCs decreased, and Treg cells increased in SLOs and the circulation 

of 6-OHDA-treated adult mice. A) Gating strategy of FACS analysis in spleen, para-aortic LN, and blood of adult mice. 

B) Gating of CD4+ T helper cells. C) Quantification of Th cells as percentage of CD4+ among all CD45+ leukocytes of 

SLOs and circulation. N = 8 spleens of control mice, 5 spleens of 6-OHDA-treated mice, 8 para-aortic LNs of control 

mice, 5 para-aortic LNs of treated mice, 8 blood samples of control mice and 5 blood samples of treated mice. D) Gating 

strategy of Foxp3+ Treg cells. E) Quantification of Treg cells as percentage of Foxp3+ among all CD45+ leukocytes in SLOs 

and circulation. N = 8 spleens of control mice, 5 spleens of 6-OHDA-treated mice, 8 para-aortic LNs of control mice, 5 
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para-aortic LNs of treated mice, 8 blood samples of control mice and 5 blood samples of treated mice. F) Gating strategy 

of CD11b+ and CD11b+CD11c+ myeloid cells. G) Quantification of CD11b+CD11c+ DCs as percentage of all CD45+ 

leukocytes in SLOs and blood. N = 8 controls and 5 treated mice. Data represent means ± SEM; two-tailed unpaired 

Student´s t-test, *: p<0.05; **: p<0.01; ****: p<0.001; n.s.: not significant. 

 

3.4.1.5 Correlation between NE and Treg cells in the spleen 

Published data suggest that increasing Treg counts might largely be due to the reduction in NE levels89. 

Therefore, a possible correlation between splenic NE levels and Treg cells was analyzed. We observed 

that tissue NE levels dramatically decreased upon chemical sympathectomy, while the Foxp3+ Treg 

cells sharply increased in SLOs and the circulation of 6-OHDA-treated mice. As expected, Pearson’s 

correlation analysis of NE levels and Treg cells confirmed that spleen NE concentration was negatively 

correlated with Treg cell frequencies, which is in agreement with the published data (Fig.16.). 

 

 

Figure 16. Negative correlation between tissue NE and spleen Treg cells. A) Representative images of TH+ area and 

Foxp3+ cells in spleens of control and sympathetically denervated mice. 10 μm fresh frozen sections of spleen were stained 

with TH and Foxp3 antibodies. TH was stained red; Foxp3 was stained green; DNA was stained blue. Scale bar: 100 µm. 

B) Pearson’s correlation coefficient of splenic NE concentration with Foxp3 expressing cells (r = -1.158; p = 0.0172) 

indicates the relation between the percentage of Treg cells and tissue NE concentrations. Treg cells were quantified in 10 

spleen sections per mouse. N = 10 serial sections per mouse in 6 controls and 7 treated mice. 
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3.4.1.6 Effect of chemical sympathectomy in 32 weeks old adult mice on a chow diet 

To analyze the effect of 6-OHDA on atherosclerotic plaque size during a short time window of 4 

weeks treatment, aortas of 32 weeks old mice were examined. It should be noted that mice at this age 

and maintained on chow diet did not show significant atherosclerosis in the abdominal aorta and that 

atherosclerosis development at this early time point in the thoracic aorta was rather limited 

implicating considerable variability between individual mice. The primary purpose of these 

experiments, therefore, was to examine the toxicity of the drug and to examine its effect on the 

immune system and to compare its effects with that of surgical denervation of the SNS using CGX. 

No apparent major toxicity was observed (but see data on aged mice below). In addition, aortas were 

stained with Sudan IV to perform en-face analyses. The data revealed a moderate increase in en-face 

stained plaque areas in the thoracic aorta, including aortic arch and descending thoracic aorta (data 

not shown). Similarly, the plaque of the aortic root also seemed to show a moderate increase in size, 

particularly when the specific distances of the aortic root from the aortic sinus were examined (data 

not shown). Parameters of plaque vulnerability (macrophage content, SMC area, necrotic core area, 

fibrous cap thickness, and collagen content), however, remained unchanged under these experimental 

conditions (see below similar measurements in aged mice). However, we noticed multiple effects of 

the drug on the immune system, including the bone marrow, secondary lymphoid organs, and the 

circulation. Nevertheless, some of the short term effects are noteworthy in view of my analyses to 

compare the systemic effects of the drug and the surgical approach to take out the celiac ganglion 

followed by a longer period of 8 months thereafter (see below). When taken together, however, these 

data in adult mice should be interpreted with caution because a longer period of treatment would be 

required to definitely ascertain the effects of 6-OHDA on atherosclerosis development. 

 

3.4.2 Effects of chemical sympathectomy in aged mice during a short time window of 4 weeks 

To study the effect of chemical sympathectomy on advanced atherosclerosis and ATLOs, ApoE-/- male 

mice at the age of 66 weeks were treated with 6-OHDA following the workflow below (Fig.17.). 



RESULTS 

57 

 

Figure 17. Workflow of 6-OHDA treatment in aged mice. Injection began at -2 days at the age of 66 weeks. The treated 

group received 6-OHDA injection of 100 mg/kg bodyweight at -2 day. On day 0, mice received 250 mg/kg body weight. 

Thereafter, the animals were treated three more times, one injection every 7 days. The control group received the same 

volume of vehicle. Animals were maintained on normal diet and sacrificed 7 days after the last injection. 

 

3.4.2.1 NE concentrations and TH+ areas were reduced in 6-OHDA-treated aged mice 

To determine the specificity of 6-OHDA treatment, NE levels in spleen and aorta were measured with 

ELISA. The spleen was sectioned and stained with TH antibody. Tissue NE concentrations of the 

spleen were reduced ~70% (Fig.18.A), and it decreased ~90% in iliac arteries (Fig.18.B) upon 

treatment. Our data demonstrated that TH+ sympathetic axons in spleen decreased ~90% upon 

treatment (Fig.18.C&D). The data indicated that our treatment protocol was effective. 
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Figure 18. NE concentrations reduced in spleen and iliac artery; the TH+ area reduced in spleen. A) Quantification 

of splenic NE concentrations in control and treated animals. N = 4 control mice and 7 6-OHDA-treated mice. B) 

Quantification of tissue NE concentrations in iliac aorta of control and treated animals. N = 3 control mice and 4 treated 

mice. C) Representative images of TH+ area in the spleen of control and treated mice, showing the sympathetic axon 

areas. 10 μm fresh frozen spleen sections were stained for TH+ sympathetic axons. TH was stained red; DNA was stained 

blue. Scale bar: 50µm. D) Quantitative analysis of TH+ area in the spleen of control and treated animals. N = 10 spleen 

sections per mouse in 5 controls and 4 treated mice. Data represent means ± SEM; two-tailed unpaired Student´s t-test, *: 

p<0.05; **: p<0.01. 

 

3.4.2.2 Effect of chemical sympathectomy on physiological parameters in aged mice 

To monitor the status of the treated animals, body weights and plasma cholesterol concentrations were 

measured. The body weight of 6-OHDA-treated mice was moderately reduced (Fig.19.A). To 

determine whether chemical sympathectomy affected lipids in the circulation, plasma samples were 

taken before sacrifice. The data showed that the levels did not reach significance (Fig.19.B). The 

weights of spleen, liver, heart, and gAT were determined. Relative to body weight, the percentages of 

the individual body weight were calculated. Similar to adult mice, the relative weights of gAT showed 

significant decreases in the treated animals (Fig.19.C). 
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Figure 19. Total body weight was moderately reduced, and gonadal adipose tissue weight was significantly reduced 

in aged mice. A) Body weight after 4 weeks of treatment. B) Ratio of organ weight/body weight of spleen, liver, heart, 

and gAT. C) Total plasma cholesterol concentrations. Plasma samples were collected after 4 weeks of chemical 

sympathectomy. N = 5 control and 5 6-OHDA-treated mice. Data represent means ± SEM; two-tailed unpaired Student´s 

t-test, *: p<0.05; n.s.: not significant. 

 

3.4.2.3 Effect of chemical sympathectomy on blood parameters in aged mice 

To determine the effect of chemical sympathectomy on hematological parameters, blood of 70 weeks 

old ApoE-/- mice treated with 6-OHDA for 4 weeks was analyzed. The data did not show significant 

changes in the total number of leukocytes or the numbers of lymphocytes, monocytes or granulocytes, 

but the number of red blood cells was moderately decreased (Fig.20.A). Other components remained 

unchanged except for the red blood cell distribution width, which slightly increased (Fig.20.B). 
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Figure 20. No major hematological side effects with 6-OHDA treatment. A) The number of white blood cells (WBC), 

numbers of lymphocytes (LYM), monocytes (MO) and granulocytes (GRA), red blood cells (RBC) and platelets (PLT) 

were demonstrated. Blood samples were taken through heart puncture under anesthesia. B) The other components of 

blood. Hemoglobin (HGB), hematocrit (HCT), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), 

mean corpuscular hemoglobin concentration (MCHC), red cell distribution width (RDW) and mean platelet volume 

(MPV) were demonstrated. N = 4 controls and 3 6-OHDA-treated mice. Data represent means ± SEM; two-tailed unpaired 

Student´s t-test, *: p<0.05, n.s.: not significant. 

 

3.4.2.4 Effect of chemical sympathectomy on leukocytes in SLOs and hematopoietic progenitors 

in the bone marrow 

To determine the effect of chemical sympathectomy on immune cells in lymphoid organs, spleen, 

para-aortic LNs, and blood were examined by flow cytometry using a similar gating strategy that we 

used for adult mice (Fig.21.A). Our data demonstrated that CD4+ Th cells among total leukocytes 

decreased in spleen and blood, but not in the para-aortic LNs of treated vs. control mice (Fig.21.B, 

C); while CD4+Foxp3+ Treg cells increased in paraaortic LNs, but decreased in blood of 6-OHDA 

treated mice, and spleen showed tendency to increase (Fig.21.D, E). However, the percentage of 

CD11b+CD11c+ myeloid cells among total leukocytes decreased in blood, but did not show any 

change in the treated spleen and LNs (Fig.21.F, G). 
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Figure 21. CD4+ Th cells decreased in spleen, Foxp3+ Treg cells increased in SLOs, but CD11b+CD11c+ myeloid cells 

decreased in blood of sympathetic denervated aged mice. A) Gating strategy of FACS analysis in spleen, para-aortic 

LN, and blood of aged mice. B) Gating of CD4+ Th cells. C) Quantification of CD4+ Th cells in total CD45+ leukocytes 

of SLOs and the circulation. D) Gating of Foxp3+ Treg cells. E) Quantification of Foxp3+ Treg cells in total CD45+ 
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leukocytes of SLOs and the circulation. N = 5 controls and 4 treated mice. F) Gating of CD11b+CD11c+ DCs populations. 

G) Quantification of CD11b+CD11c+ DCs in all CD45+ leukocytes of SLOs and blood. Para-aortic LNs were pooled from 

renal LNs and lumbar LNs. N = 5 controls and 4 treated mice. Data represent means ± SEM; two-tailed unpaired Student´s 

t-test, *: p<0.05; **: p<0.01; n.s.: not significant. 

 

Loss of sympathetic innervation during aging increased hematopoietic stem cells (HSCs) in bone 

marrow in aged WT mice171,176, whereas ODHA denervation increased stem cell retention factor 

CXCL12 and did not alter HSCs and progenitor cells in bone marrow in young WT and ApoE-/- 

mice90,177. However, granulocyte-monocyte progenitors (GMPs) in the spleen and splenic CD11b+ 

monocytes/macrophages/neutrophils decreased after 6-OHDA treatment175. To determine the effect 

of chemical sympathectomy on hematopoiesis, progenitors in bone marrow were examined by flow 

cytometry. Our data demonstrated that Lin-c-kit+Sca-1+CD48-CD150+ HSCs were reduced in LSK 

cells in bone marrow, but did not show statistical difference among total lineage- cells (Fig.22.C). 

Likewise, Lin-c-kit+Sca1-CD34+CD16/32+ GMP was reduced in LSK cells in bone marrow but did 

not show a statistical difference in total lineage- cells (Fig.22.E). Moreover, Lin-c-kit+Sca1-

CD34+CD16/32- common myeloid progenitor (CMP) frequency among all lineage- cells was 

significantly reduced (Fig.22.F). Thus, our data confirmed and extended the published reports. 
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Figure 22. HSC, GMP, and CMP decreased in bone marrow of sympathetic denervated aged mice. 

A) Progenitor gating strategy of FACS analysis in bone marrow of aged mice. B) Gating of Lin-c-kit+Sca1+CD48-CD150+ 

HSCs from the Lin-c-Kit+Sca-1+ (LSK) gate. C) Quantification of Lin-c-kit+Sca1+CD48-CD150+ HSCs as frequency 

among all Lin- progenitors. N =5 control mice and 4 treated aged ApoE-/- mice. D) Gatings of Lin-c-kit+Sca1-

CD34+CD16/32+ GMPs and Lin-c-kit+Sca1-CD34+CD16/32- CMPs from the Lin-c-kit+sca-1- myeloid progenitor cells 

(MPC) gate. E) Quantification of Lin-c-kit+Sca1-CD34+CD16/32+ GMPs among all Lin- progenitors. N =5 control mice 

and 4 treated aged ApoE-/- mice. F) Quantification of Lin-c-kit+Sca1-CD34+CD16/32- CMPs in the Lin- gate of bone 

marrow. N =5 control mice and 4 treated aged ApoE-/- mice. Data represent means ± SEM; two-tailed unpaired Student´s 

t-test, *: p<0.05; n.s.: not significant.  
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3.4.2.5 Effect of systemic sympathetic denervation on plaque and ATLO size 

To determine the effect of chemical sympathectomy on ATLO and plaque structures, the abdominal 

aorta was sectioned and quantified. The images showed that the size of the plaque and ATLO 

structures were differentially affected. Whereas the size of atherosclerotic plaques was not affected 

during the time window of 4 weeks treatment with 6-OHDA, surprisingly, the effects of treatment on 

ATLOs were dramatic and occurred within the short period of time of 4 weeks (Fig.23 & 24). Both 

the ATLO number and size decreased, respectively, and ATLO structures were disturbed. These data 

strongly indicate that the SNS affects the maintenance of ATLOs in the aorta of aged mice.  

 

 

Figure 23. Atherosclerotic plaque size was not changed in aged mice after short term 6-OHDA treatment. A) 

Representative images of Oil red O/Hematoxylin (OR/H) stained abdominal aorta sections. The dotted line delineates 

ATLO (A), and P indicates atherosclerotic plaque. 10 μm fresh frozen sections of the abdominal aorta were stained with 

OR/H. Scale bar: 50µm. B) Quantitative analysis of the plaque sizes in the abdominal aorta. Plaque size was presented as 

intima (I) area/media (M) area ratio. On average, 12 aorta sections per mouse were evaluated. N =5 control mice and 6 6-

OHDA-treated mice. Data represent means ± SEM; two-tailed Student´s t-test, n.s.: not significant. 
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Figure 24. ATLO size and numbers were reduced in aged mice after 6-OHDA treatment. A) Representative images 

of OR/H stained abdominal aorta sections of control and treated mice in higher magnification. The dotted line delineates 

the media (M), A indicates ATLO, and P indicates atherosclerotic plaque. 10 μm fresh frozen sections of the abdominal 

aorta were stained with OR/H. Scale bar: 50µm. B) Quantitative analysis of the ATLO size (A) normalized to the media 

(M) area. C) Quantitative analysis of the ATLO numbers. On average, 12 aorta sections per mouse were evaluated. N =5 

control mice and 6 treated mice. Data represent means ± SEM; two-tailed unpaired Student´s t-test, *: p<0.05; **: p<0.01. 

 

3.4.2.6 Effect of 6-OHDA denervation on ATLO cellularity 

To determine the effect of 6-OHDA treatment on the cellularity of the ATLO in more detail, sections 

of the abdominal aorta were stained with the combinations of CD3e/B220 and CD3e/Foxp3 

antibodies. The representative images demonstrate that both the T and B cells in ATLOs were reduced 

in 6-OHDA-treated mice vs. age-matched controls to a similar extend (Fig.25.A&B). Of special 

interest was our observation that 6-OHDA disrupted the separate B cell versus T cell areas, which 

occurs in advanced stage 2 or 3 ATLOs. Moreover, quantitative data demonstrated that CD3e+Foxp3+ 

Treg cells increased about 2-fold upon treatment (Fig.25.C). 
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Figure 25. Dramatic alterations of ATLO structure following 6-OHDA treatment. A) Representative images of 

CD3e/B220 stained abdominal aorta sections. 10 μm fresh frozen abdominal aorta sections of control and 6-OHDA-

treated mice were stained for CD3e+/B220+ T and B cells. CD3e was stained red; B220 was stained green; DNA was 

stained blue. The dotted line delineates media. Scale bar: 20 µm. B) Representative images of CD3e/Foxp3 stained 

abdominal adventitia, showing the CD3e+Foxp3+ Treg cells. 10 μm fresh frozen abdominal aorta sections of ATLO-like 

structures from control and 6-OHDA-treated mice were stained for CD3e+Foxp3+ Treg cells. CD3e was stained red; Foxp3 

was stained green; DNA was stained blue. Scale bar: 20µm. C) Quantitative analysis of CD3e+Foxp3+ Treg cell density in 

ATLO. The number of counted CD3e+Foxp3+ cells among the CD3e+ T cells in the field of view (FOV). N = 10 aorta 

sections per mouse in 3 control mice and 4 6-OHDA-treated mice. Two-tailed unpaired Student´s t-test, *: p<0.05. 

 

3.4.2.7 Effect of chemical sympathectomy on cellularity and structures in plaques 

Macrophages, SMCs, necrotic core area, fibrous cap thickness, and collagen area in abdominal aorta 

plaques were stained and quantified. The macrophage area in plaque was not significantly altered 

upon treatment (Fig.26.B), whereas plaque SMC area was significantly increased (Fig.27.B). In 6-

OHDA treated mice, the necrotic core area showed a tendency of decreasing, but not significant 
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(Fig.28.B); however, the fibrous cap thickness increased ~ 70% of the control group (Fig.28.C). In 

addition, the collagen area increased significantly (Fig.29.B). Overall, the plaque vulnerability index 

(PVI) calculated as the ratio of the vulnerable area (necrotic core area + macrophage area) and stable 

fibromuscular area (collagen area + smooth muscle cell area) was markedly decreased in mice with 

chemical sympathectomy (Fig.29.C), suggesting that the short treatment period of 4 weeks was 

sufficient to induce more stable abdominal aorta plaques in aged mice. 

 

 

Figure 26. No changes occurred in plaque macrophage content in 6-OHDA-treated aged mice. A) Representative 

images of macrophage (CD68, red) staining in 10 μm thick fresh frozen abdominal aorta sections; DNA was stained with 

DAPI (blue). The dotted line delineates media (M) and plaque (P). Scale bar: 100 µm. B) Quantitative analysis of 

macrophage areas per total plaque area. On average, 8~10 sections per mouse were analyzed in 5 control mice and 4 6-

OHDA-treated mice. Data represent means ± SEM; two-tailed unpaired Student´s t-test, *: p<0.05; n.s.: not significant. 

 

 

Figure 27. Plaque SMC content increased in aged mice after 6-OHDA treatment. A) Representative images of SMA 

(red) staining of SMCs in abdominal aorta (10 μm frozen sections); DNA was stained with DAPI (blue). The dotted line 

delineates media (M) and plaque (P). Scale bar: 100 µm. B) Quantitative analysis of SMC area in percent of total plaque 

area. On average, 10 sections per mouse, n= 3 mice per group. Data represent means ± SEM; two-tailed unpaired Student´s 
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t-test, *: p<0.05; n.s.: not significant. 

 

 

Figure 28. Fibrous cap thickness increased, but no change in necrotic core size in plaque of aged mice in short time 

window of 4 weeks of 6-OHDA treatment. A) Representative images of Hematoxylin/Eosin (H/E) stained abdominal 

aorta sections (10 μm cryosection), showing the necrotic core areas (circles) and fibrous cap thickness (short straight lines) 

in plaques. Scale bar: 100 µm. B) Quantitative analysis of necrotic core area in total plaque area. C) Quantitative analysis 

of fibrous cap thickness in plaques. On average, 12 aorta sections per mouse were evaluated. N = 4 control mice and 3 

treated mice. Data represent means ± SEM; two-tailed unpaired Student´s t-test, *: p<0.05; n.s.: not significant. 
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Figure 29. Collagen area in plaque increased; the PVI decreased within the short time window of 4 weeks of 6-

OHDA treatment. A) Representative images of Sirius red stained abdominal aorta sections (10 μm cryosection), showing 

the collagen area in plaques. Scale bar: 100µm. B) Quantitative analysis of collagen areas in total plaque areas. C) 

Quantitative analysis of the plaque vulnerability index in the abdominal aorta of control and 6-OHDA-treated mice. On 

average, 12 aorta sections per mouse were evaluated. N = 4 control mice and 4 treated mice. Data represent means ± SEM; 

two-tailed unpaired Student´s t-test, *: p<0.05; n.s.: not significant. 

 

3.4.2.8 6-OHDA did not significantly affect TH+ neurons in the CNS 

Published studies demonstrated that the blood-brain barrier was compromised in ApoE-/- mice178 

raising the possibility that 6-OHDA could affect TH+ neurons in the CNS. TH staining was therefore 

performed in the locus coeruleus (LC) area (Fig.30.A), which contained numerous TH+ neurons 

(Fig.30.B&C). Our data demonstrated that the TH+ neuron percentage per total neurons did not 

change (Fig.30.D). These data are in line with the previous finding that 6-OHDA selectively depletes 

sympathetic nerve terminals in the periphery, but not in the central nervous system179. 

 

 

Fig.30. 6-OHDA treatment did not affect SNS neurons in the CNS of aged mice in 6-OHDA treatment. A) Schematic 

depiction of the LC, according to Allen’s mouse brain atlas180. B, C) Representative images of TH (red)/NeuN (green) 

stained 20 μm brain cryosections, showing the LC area. Nuclei were stained with DAPI (blue). Scale bar: 100 µm. D) 

Quantitative analysis of TH+ neurons. 3 brain sections per mouse were evaluated. N =3 control mice and 3 6-OHDA-

treated mice. Data represent means ± SEM; two-tailed unpaired Student´s t-test, n.s.: not significant. 
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3.5 Surgical sympathectomy by celiac ganglionectomy 

Recently, our group demonstrated via imaging that the celiac ganglion directly projects axons to the 

abdominal aorta adventitia (Mohanta S. K. et al. 2020, under review). In collaboration with Profs. 

Carnevale and Lembo, we performed surgical ganglionectomy to study the effect of local 

sympathectomy on the development of atherosclerosis and ATLOs using denervation of celiac ganglia 

(CGX) for extended periods of time thereafter, i.e., a method that they have pioneered68. CGX was 

performed on ApoE-/- male mice at 8 months of age, subsequently maintained for 8 months, and then 

sacrificed for a comprehensive evaluation of atherosclerosis and the immune system (Fig.31.). 

Surgical experiments were performed in the laboratory of Carnevale and Lembo while I sacrificed 

the mice with my colleagues, collected the aortas and other tissues, and transferred them to our 

laboratory in Munich for further analyses (see below). 

 

 

Figure 31. Workflow of CGX in aged mice. Surgical excision of celiac ganglia (CGX) or sham surgery was performed 

at the age of 8 months, and mice were sacrificed 8 months after surgery. 

 

3.5.1 Tissue NE concentration was reduced after 8 months in CGX mice 

To determine the specificity of CGX in prototypical target organs of the celiac ganglion, the NE 

concentrations in the spleen were determined. NE concentration in the spleen of CGX mice was 

significantly reduced vs. the sham group at the end of the 8 months time window (Fig.32.). It is 

noteworthy that the degree of decrease in spleen NE tissue concentration did not reach the level of 

what was achieved by systemic 6-OHDA treatment. 
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Figure 32. NE concentrations were reduced in the spleen upon CGX. Splenic NE concentrations in CGX and Sham 

groups. N = 4 sham mice and 6 CGX mice. Data represent means ± SEM; two-tailed unpaired Student´s t-test, *: p<0.05. 

 

3.5.2 Effect of celiac ganglionectomy on physiological parameters in aged mice 

To monitor the status of the treated animals, body weights were measured every two months, by our 

collaborators Profs. Carnevale and Lembo. The data demonstrated that the bodyweight of the mice in 

the CGX and control groups increased over time, but no significant difference among them (data not 

shown; Mohanta S. K. et al. 2020, under review). In addition, the body weights of the two groups 

were also measured before the sacrifice, and the data did not show a significant difference at the 

endpoint (Fig.33.A). To determine the effect of the surgical denervation on organs, the weights of 

spleen, heart, and kidney were determined. Based on the body weight of the animals, the ratios relative 

to the body weights were calculated. The normalized organ weights expressed as organ weight per 

body weight ratio did not show significant differences between the sham and CGX groups (Fig.33.B). 

To determine whether the surgical sympathectomy affected plasma lipids in the circulation, the 

plasma samples were taken before sacrifice. However, the analysis of total cholesterol revealed 

comparable levels between the two groups (Fig.33.C). Interestingly, we observed in some of these 

basic parameters different outcomes following chemical sympathectomy via 6-OHDA treatment or 

local surgical removal of the celiac ganglion. 
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Fig.33. Body weight, organ weights and plasma cholesterol did not change after prolonged periods following CGX. 

A) The body weight of the animals of the two groups was measured on the day of sacrifice i.e., after 8 months of surgery. 

N = 3 sham mice and 9 CGX mice. B) Ratios of organ weight/body weight of spleen, heart, and liver, calculated per organ 

and individual animal. N = 3 sham mice and 9 CGX mice. C) Total plasma cholesterol concentrations. N = 3 sham mice 

and 9 CGX mice. Data represent means ± SEM; two-tailed unpaired Student´s t-test, *; p<0.05; n.s.; not significant. 

 

3.5.3 Effect of CGX on immune cells in SLOs 

Our data on chemical sympathectomy groups demonstrated that the CD11b+CD11c- myeloid cell 

population increased in spleen, but not in paraaortic LNs of adult and aged mice, while 

CD11b+CD11c+ monocyte-derived DCs decreased in the spleen rather than in paraaortic LN of adult 

mice. Based on these data, we further examined the effects of SNS on the regulation of these myeloid 

cells. T-distributed stochastic neighbor embedding (t-SNE) is a newly developed algorithm, which 

gives each multi-dimensional data point a location in a two-dimensional map to achieve visualization 

of such data181. It had widely been used to interpret complex biological datasets by making the high-

dimensional data to be easily understood. We used t-SNE analysis to determine the effect of CGX on 

immune cells in spleens and LNs. The t-SNE analysis of CD45+ leukocytes illustrates the finding that 

myeloid cells overall decreased by 60% in spleens of CGX mice (Fig.34.A), but not in the LNs of the 

CGX mice vs. age-matched sham mice (Fig.34.B). 
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Figure 34. Effect of CGX on immune cells in SLOs. A) t-SNE analysis of the CD45+ leukocytes showing the CD11b+ 

myeloid cell populations in spleens are massively reduced, while the T cells were unchanged. B) Flow cytometric 

quantification of CD11b+ myeloid cells in sham and CGX groups. N =3 spleens of sham mice, 4 spleens of CGX mice, 4 

LNs of sham mice, and 3 LNs of CGX mice. Data represent means ± SEM; two-tailed unpaired Student´s t-test, *: p<0.05; 

n.s.: not significant. 

 

3.5.4 Effect of local sympathetic denervation on plaque and ATLO size 

To determine the effect of CGX on plaque and ATLO, we sectioned the abdominal aorta and 

quantified plaque sizes after the sacrifice of 8 months. Plaque sizes were significantly smaller in CGX 

mice versus the sham group (Fig.35.A & B). Consistent with the observation after short-term chemical 

sympathectomy, CGX reduced the numbers (Fig.36.B) and sizes (Fig.36.C) of ATLOs. These data 

support that SNS input via the celiac ganglion affects the inflammatory infiltrate of the adventitia in 

ApoE-/- mice, and in particular, in ATLOs. It should be noted, however, that the celiac ganglion gives 

rise to the splenic nerve and therefore, CGX, not only affected sympathetic nerves that directly 

innervated the adventitia but also the spleen, with possible effects on splenic myeloid cells. 
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Figure 35. Abdominal aorta plaque and ATLO size decreased following prolonged CGX. A) Representative images 

of OR/H stained abdominal aorta cross-sections (10 μm cryosection) from sham and CGX mice. P indicates 

atherosclerotic plaque, and A indicates ATLO. Scale bar: 20µm B) Quantitative analysis of plaque sizes, calculated as 

intima (I) area normalized to the media (M) area. Approximately 16 serial abdominal aorta cross-sections per mouse were 

evaluated. N = 5 sham mice and 9 CGX mice. Data represent means ± SEM; two-tailed unpaired Student´s t-test, *: 

p<0.05. 

 

 

Figure 36. ATLO number and size were reduced in aged mice after CGX treatment. A) Representative images of 

OR/H stained abdominal aorta sections (10µm cryosection) from sham and CGX mice in higher magnification. The dotted 

line delineates media (M), P indicates atherosclerotic plaque, and A indicates ATLO. Scale bar: 50µm. B) Quantitative 

analysis of the ATLO numbers in the abdominal aorta. C) Quantitative analysis of the ATLO size (A) normalized to the 

media (M) area. On average, 16 serial abdominal aorta cross-sections per mouse were evaluated. N =5 sham mice and 9 

CGX mice. Data represent means ± SEM; two-tailed unpaired Student´s t-test, *: p<0.05. 

 

3.5.5 Effect of CGX on ATLO cellularity 

To determine the effect of CGX on the cellularity of the ATLO in more detail, sections of the 



RESULTS 

75 

abdominal aorta were stained with the combination of CD3e/B220 antibodies. The representative 

images demonstrate that both the T and B cells in ATLOs were reduced in CGX mice vs. age-matched 

controls (Fig.37). Similar to the chemical sympathectomy, CGX denervation disrupted the separate 

B cell versus T cell areas, which occurs in advanced stages of ATLOs. 

 

 

Figure 37. Dramatic alterations of ATLO structure following CGX.  Representative images of B cell (B220, red) 

and T cell (CD3e, green) staining in abdominal aorta, 10 μm fresh frozen abdominal aorta sections of sham, and CGX -

treated mice were stained for CD3e+/B220+ T and B cells. Dotted line delineates media (M), A indicates ATLO, and P 

indicates atherosclerotic plaque. Scale bar: 200 µm.  

 

3.5.6 Effect of prolonged CGX on plaque vulnerability 

To assess possible changes in abdominal aorta plaque composition, immunostaining of macrophages 

and SMCs was performed, as well as histological analysis of collagen content, necrotic core, and 

fibrous cap thickness. The analyses revealed a significant decrease in the relative plaque macrophage 

area (Fig.38.B). However, the SMC area increased by about 2 fold (Fig.39.B). The necrotic core area 

was significantly reduced (Fig.40.B), while fibrous cap thickness (Fig.40.C) and the collagen plaque 

content were significantly increased (Fig.41.B). As a result, the plaque vulnerability index was 

significantly decreased (Fig.41.C), suggesting that CGX increased plaque stability in aged mice. 
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Figure 38. Macrophage area in atherosclerotic plaque decreased following CGX. A) Representative images of 

macrophage (CD68, red) staining in 10 µm thick fresh frozen abdominal aorta sections; DNA was stained with DAPI 

(blue). The dotted line delineates media (M) and plaque (P). Scale bar: 200 µm. B) Quantitative analysis of macrophage 

areas per total plaque area. On average, 10~16 aorta sections per mouse were analyzed in 5 sham mice and 6 CGX mice. 

Data represent means ± SEM; two-tailed unpaired Student´s t-test, *: p<0.05. 

 

 

Figure 39. SMCs area in plaque increased in aged mice after CGX. A) Representative images of SMCs (SMA, red) 

staining in 10 µm thick fresh frozen abdominal aorta sections; DNA was stained with DAPI (blue). The dotted line 

delineates media (M) and plaque (P). Scale bar: 200 µm. B) Quantitative analysis of SMC areas per total plaque area. On 

average, 10~16 sections per mouse were analyzed in 5 sham mice and 6 CGX mice. Data represent means ± SEM; two-

tailed unpaired Student´s t-test, *: p<0.05. 
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Figure 40. Necrotic core area decreased, and fibrous cap thickness increased following CGX. A) Representative 

images of H/E stained abdominal aorta sections (10 μm cryosection), showing the necrotic core (circles) and fibrous cap 

(short straight lines) in plaques. Scale bar: 20µm. B) Quantitative analysis of necrotic core area in total plaque area. C) 

Quantitative analysis of fibrous cap thickness in plaques. On average, 12 ~ 16 aorta sections per mouse were evaluated. 

N = 5 sham mice and 6 CGX mice. Data represent means ± SEM; two-tailed unpaired Student´s t-test, *: p<0.05. 

 

 

Figure 41. Collagen areas increased, and the PVI decreased in aged mice upon CGX. A) Representative images of 
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Sirius red stained abdominal aorta sections (10 μm cryosection), showing the collagen areas in plaques. Scale bar: 50µm. 

B) Quantitative analysis of the collagen area in total plaque areas. C) Quantitative analysis of the PVI in abdominal aorta 

of sham and CGX mice. On average, 12 ~ 16 aorta sections per mouse were evaluated. N = 5 sham mice and 6 CGX mice. 

Data represent means ± SEM; two-tailed unpaired Student´s t-test, *: p<0.05;**: p<0.01. 

 



DISCUSSION 

79 

4. DISCUSSION 

Data described above support the conclusion that the SNS engages in a tripartite model, in which it 

bidirectionally interacts with both the immune system and the diseased arterial wall in a highly 

territorialized way: The neurotransmitter NE is selectively up-regulated in the adventitia of 

atherosclerotic aorta segments; TH+ axon density specifically increases in atherosclerotic adventitia 

segments reaching maximal levels in ATLOs; multiple genes regulating axon neogenesis and other 

neuroimmune mediators exclusively increase in atherosclerotic adventitia segments whereas axon 

repellants decrease; both chemical and surgical SNS denervation by 6-OHDA and CGX, respectively, 

disrupt ATLO structure and size; plaque vulnerability decreases by both systemic chemical and 

surgical CG denervation, respectively, in aged ApoE-/- mice; and most importantly, the SNS affects 

atherosclerosis progression via the CG and possibly via one of its major nerves, i.e., the splenic nerve. 

When taken together, our analyses support a concept of neuroimmune cardiovascular interfaces in the 

healthy artery and that these interfaces undergo major restructuring events in those adventitia 

segments that are burdened by atherosclerosis. Adventitial neuroimmune cardiovascular interfaces 

establish biological platforms that allow the efferent SNS to affect the immune system and vice versa 

enables the immune system to alert the peripheral SNS. The discovery of such an unexpected novel 

crosstalk may provide a host of novel opportunities to develop new therapeutic strategies to treat 

atherosclerosis, by interfering with the regulatory role of the SNS in atherosclerotic plaque 

progression and stability (Fig.40 & Table 9). 

 

 

Figure 40. The adventitia of diseased artery segments is a biological platform for the interaction of the SNS with 

both the immune system and the cardiovascular system. Left panel: The adventitia is innervated by the SNS in normal 

arteries; middle panel: tyrosine hydroxylase positive axons begin to increase (axon neogenesis) and release 
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norepinephrine in response to plaque formation in the intima; right panel: ATLOs in the adventitia interact with the SNS 

and the arterial wall in advanced atherosclerosis; green arrow up in middle and right panels: genes involved in axon 

neogenesis; blue arrow down in middle and right panels: genes involved in inhibition (axon repellants) and guidance of 

axons. Abbreviations: FDC, follicular dendritic cell; danger-associated molecular patterns, damage-associated molecular 

patterns; Ngf, nerve growth factor; Aldh1a2, aldehyde dehydrogenase 1 family member A2; Sema4d, semaphorin 4D; 

Plxnb2, plexin B2; Syngr2, synaptogyrin 2; Nrp2, neuropilin 2; Sox4, SRY-box transcription factor 4; Nrtk3, neurotrophic 

receptor tyrosine kinase 3; Nf1, Neurofibromin 1; Rtn4, reticulon 4. 

 

 

Table 9. Effects of SNS denervation in atherosclerosis and ATLO. Four weeks of chemical sympathectomy reduced 

the number of Treg cells in ATLOs of aged ApoE-/- mice. Eight months after CGX, the plaque macrophage area is reduced, 

as are the necrotic core area and the plaque size. The plaque vulnerability index is decreased, and the SMC area, collagen 

area, and the fibrous cap thickness are all increased; moreover, the ATLO number and size and the lymphocyte numbers 

in ATLOs decreased after both chemical and surgical sympathectomy. 

 

4.1 Territoriality of the arterial SNS innervation in atherosclerosis 

To understand neuroimmune crosstalk in atherosclerosis, it was important to define the anatomy of 

SNS innervation in arterial wall laminae. It is well established that the SNS uses the adventitia 

medium-sized or large-sized arteries as its main conduit to reach its targets, indicating strict regulatory 

mechanisms of axon network formation in both physiology and disease182,183. Axon guidance is 

regulated by a balance of axon neogenesis-stimulating genes and axon repellants, resulting in a well-

controlled SNS network. Our results show that nerve axons from perivascular sympathetic ganglia 

and nerves extend into the adventitia but not the media of the normal WT aorta. The SNS is restricted 

to the lamina adventitia, while the lamina media, as well as lamina intima of the arterial wall, is devoid 
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of any TH+ sympathetic axons, although few axons were detected in the media/adventitia border 

(Fig.7 & 8). Earlier studies of our group showed that adventitia axon density gradually increases along 

the aortic tree in healthy WT mice (Mohanta S. K. et al. 2020, under review). We further observed 

that sympathetic axon density was higher in the abdominal aorta adventitia segment of aged WT mice 

compared to the aortic root (Fig.7 & 8). Interestingly, NE tissue concentrations increased in blood 

and arteries during aging in WT mice (Fig.6). In the diseased aorta, we show a further marked increase 

in adventitia sympathetic innervations preferentially in the aortic root and abdominal aorta segments 

afflicted with atherosclerosis (Fig.7 & 8). These results were consistent with the idea that 

atherosclerosis affects the PNS innervation pattern, including its growth and guidance184-186. When 

taken together, these results support the conclusion that the SNS in the arterial wall adventitia 

undergoes restructuring depending on age and atherosclerotic plaque burden in a highly territorialized 

fashion88. 

Furthermore, earlier studies from our lab have shown that in advanced atherosclerosis, the adventitia 

in the abdominal aorta of aged ApoE-/- mice was inflamed to form ATLOs25,45. ATLOs contain all 

innate and adaptive immune cells that can be found in SLOs. These immune cells also produce 

neurotransmitters, neuroendocrine hormones, neuropeptides, and axon guidance 

molecules53,56,101,103,129,153,187. Interestingly, some of these neuronal mediators, such as ephrins and 

semaphorins, were shown to play potential roles in atherogenesis though none of these studies showed 

any direct connections with the disease140,153,154,188-191. In this study, we observed an ATLO-associated 

increase in axon density during atherosclerosis progression within the abdominal aorta (Fig.8). 

Adventitia axon density was more pronounced in atherosclerotic aorta segments with ATLOs when 

compared to plaque-free ApoE-/- aorta segments or WT abdominal aorta segments (Fig.8, data not 

shown), likely reflecting that ATLOs neogenesis promotes atherosclerosis-dependent axon sprouting 

in the diseased abdominal aorta. These results corroborate our LCM-based microarray analyses (see 

below). We did not observe TH+ axons in the adventitia that crossed the ATLO-media border, 

indicating that axon neogenesis is limited to ATLOs. Multiple lines of evidence reported here support 

the conclusion that the SNS is locally affected by atherosclerosis and its adjacent inflammatory 

infiltrates in the adventitia: NE levels selectively increase in adventitia segments that are burdened 

by atherosclerosis. These data require attention for several reasons: They raise the question of the 

source of NE in the diseased adventitia segments. Two possible sources should be considered: i. The 
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SNS axon endings are well known to produce NE, and these data are strongly supported by my 

findings of TH+ axon endings in the adventitia; ii. several immune cell lineages and their subtypes 

have recently been demonstrated to express TH and therefore are likely producers of 

neurotransmitters, including NE in the adventitia175. Cells that have been shown to express TH, i.e., 

the key enzyme of catecholamine formation, are B cells and macrophages, but T cells are also 

expressing the enzyme173. These data indicate that most likely, there are two independent sources of 

NE in the inflamed adventitia, particularly in ATLOs: axon endings and immune cells. Irrespective 

of its source, NE and other catecholamines have a variety of biological effects on the immune system 

both locally and systemically91. In general, catecholamines are stress hormones acting on the immune 

system in the bone marrow, secondary lymphoid organs such as lymph nodes and spleen104,175. 

Moreover, they affect a number of other cells, including arterial wall cells such as SMCs and 

endothelial cells to exert not only effects on the vascular tone but also a variety of proinflammatory 

functions all being considered to be proatherogenic60,86. Therefore, catecholamines can be viewed as 

proinflammatory in many diseases, including cancer192 and atherosclerosis90. Furthermore, FACS 

analyses of adventitial immune cells also obtained in our group have demonstrated that various types 

of immune cells express several adrenergic β receptor subtypes, including ADRβ2 (Mohanta S. K. et 

al. 2020, under review). However, we observed that there is a differential expression of the three 

major adrenergic β receptors 1,2,3. In earlier studies, the ADβR2 in adventitia innate lymphocytes 

has been identified as a regulator of atherosclerosis35. Certainly, the role and differential expression 

of ADβR subtypes by distinct immune cell subsets in the diseased arterial wall remains to be studied 

in more detail in the future. Yet, as immune cells directly interact with axon endings of the SNS in 

the adventitia, we propose that major types of crosstalk may occur in the diseased aorta adventitia, 

including autocrine adrenergic receptor activation in immune cells and release of NE from axon 

endings of the SNS. 

 

4.2 Site of neuronal responses in the aorta 

We observed that SNS axons dramatically increase in adventitia segments of aged ApoE-/- mice that 

are affected by atherosclerosis, particularly the segments with ATLOs (Fig.8) and that these newly 

formed axons are likely to participate in the neuroimmune cardiovascular crosstalk. Other data in our 
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group demonstrate that the aberrant axons of the SNS also undergo restructuring by the formation of 

newly formed small diameter axon networks (Mohanta S. K. et al. 2020, under review). These data 

lead us to discuss several questions: i) how does atherosclerosis influence adventitia innervations, 

and ii) how do ATLOs promote axon sprouting in the diseased aorta? Comparison of nervous system 

gene expression in total aortas of WT versus ApoE-/- mice during aging revealed a dramatic shift in 

neuronal gene expression profiles that are involved in the maintenance and development of the NS, 

particularly at 32 wk and 78 wk ApoE-/- mice (Fig.9; supplement Table S1). The mining of differential 

gene expression profiles in diseased whole aortas during aging yielded important candidates of 

neuroimmune crosstalk including GO terms nervous system development (bex1; brain expressed gene; 

interleukin 6; brain-derived growth factor; nerve growth factor, VCAM1), autonomic nervous system 

development (purinergic receptor P2X, ligand-gated ion channel 4; unc-5, netrin receptor C 

neurotrophin, neuron navigator 2 which was markedly down-regulated), sympathetic nervous system 

development (a series of semaphorins; neuropilin 2), regulation of axon guidance (CXCL12; 

semaphorins). Each of these genes plays important roles in the PNS, and many of them are mediators 

of neuroimmune cardiovascular crosstalk, while some of them are genes that can be expressed by 

neuronal cells and by bona fide arterial wall cells such as endothelial cells and SMCs130,185,186. For 

example, neuropilin 2 guides axon growth during nervous system development156; neurotrophin 3 

supports growth, differentiation, and survival of new neurons in the PNS and CNS158,159; semaphorins 

regulate axon guidance and NS development as well as influence cardiovascular and immune 

functions155,185,186. These data indicated that age-dependent changes in axon growth and guidance 

factors occur in WT and ApoE-/- mice (Fig.9; supplement Table S1). These data were particularly 

pronounced when aorta transcriptomes of laser capture microdissection-derived laminae were mined: 

When we inspected the transcriptomes of diseased adventitia segments with ATLOs versus other 

arterial tissue compartments in the normal or diseased aorta, we observed significant up-regulation 

of multiple SNS genes responsible for axon growth, guidance, and maturation in ATLOs including 

genes in GO terms nervous system development, neuron projection development, axons, and 

regulation of axon guidance (Fig.10; supplement Table S2). Adventitia segments afflicted with 

atherosclerotic plaques showed much higher expression of mRNAs coding for Sema4D (semaphorin 

4D), multiple other semaphorins, and plxnB2 (plexin B2) when compared to their plaque-free 

segments, and adventitia segments with ATLOs were the highest among all tissues studied. 

Semaphorins and plexins are well-established mediators of axon neogenesis160-162. In the NS, 
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CXCL12 is required for neuronal development193, migration194, axon branching195,196, and Sema4D 

controls axon guidance in hippocampal neurons197,198. These results support our morphological 

evidence on enhanced adventitial sympathetic innervations in ApoE-/- aorta segments afflicted with 

plaques and ATLOs. When the laser capture microdissection-based gene expression data are 

considered, many of the aging-related genes were specifically up- or down-regulated in the adventitial 

layer of the arterial wall. Importantly, many of the axon pathfinding genes were downregulated in 

adult and aged ApoE-/- aorta, which coincides with plaque formation and axon neogenesis. It is 

plausible that inflammatory signals from intimal plaque activates adventitial sympathetic axons to 

release NE. According to this scenario, NE would modulate medial SMC phenotypes199 and would 

attract leukocytes in the adventitia200. ATLO immune cells release axon growth and guidance 

molecules, including NGF, semaphorins to initiate axon neogenesis129,201-203 in a feed-back loop (Fig. 

40). In addition, ATLOs protect atherosclerosis progression under distinct experimental conditions27. 

 

It is further tempting to suggest that the neuronal responses in the normal and diseased aorta might 

be organized by adventitia and/or ATLOs to participate in arterial wall homeostasis. These data also 

support the notion that atherosclerosis induces the neuronal responses in the diseased aorta during 

aging. In addition, our bidirectional neuroimmune crosstalk hypothesis is based on the fact that highly 

expressed ATLO-specific neuronal transcript such as Aldh1a1, Cxcl12, Sema4D, and Plxnb2 were 

shown in other models to have pleiotropic roles in the development and maintenance of SLOs129,204-

207. Moreover, Raldh1- expressing nerve axons were found to be increased in ATLOs (data not shown), 

which were reported to initiate SLO formation during embryogenesis via retinoic acid208. Further 

studies are required to understand the biological network of differentially regulated gene products in 

the aged diseased arterial wall and how they relate to atherosclerosis pathogenesis. Single-cell 

transcriptome analyses of the diseased aorta will help to identify and quantify transcripts coding for 

enzymes involved in NE biosynthesis in immune cell subtypes in the inflamed aorta adventitia and 

in particular in ATLOs in addition to TH+ SNS axon endings as reported here. These studies are 

currently being performed in our group. To fully understand the effects of the SNS on the diseased 

arterial wall, such studies need to analyze other cells involved in atherosclerosis, i.e., SMCs and 

endothelial cells as well. 
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4.3 Immunometabolic effects of SNS denervation 

Another aspect of the current data requires consideration: 6-OHDA specifically and systemically 

denervates the SNS73,90. It has been shown to affect stress-induced inflammatory responses in 

myocardial infarction88 apparently via a bone marrow-derived myeloid axis that involves the spleen 

reservoir of myeloid cells. Using 6-OHDA, we confirmed a series of previously reported effects of 

chemical SNS denervation, including effects of the drug on the bone marrow, secondary lymphoid 

organs, and the circulation74,91,173,175. In addition, we observed that 6-OHDA had a major effect on 

the gonadal white adipose tissue in adult mice that has not previously been reported. In view of the 

impacts of the SNS in regulating metabolism in adipose tissue (we did not observe apparent decreases 

in the visceral white adipose tissue of the peritoneum), it will be important to investigate the effects 

of 6-OHDA on energy metabolism and brown adipose tissue metabolism including body temperature 

using single-cell transcriptome analyses of both immune cells and adipocytes. Since a multitude of 

effects of 6-OHDA on the immune system were evident, we reasoned, however, that the drug is not 

well suited to study its effect on atherosclerosis progression in long-term experiments: given the many 

effects of 6-OHDA on multiple immune cell subtypes at different locations of the immune system 

including the bone marrow, data would be very difficult to interpret regarding specific actions on 

atherosclerosis progression. For this purpose, we examined the effect of surgical SNS denervation in 

long-term CGX studies on atherosclerosis in collaboration with our collaborators Profs. Carnevale 

and Lembo at IRCCS Neuromed, Pozzilli, Italy. These studies allowed us to compare the systemic 

effects of 6-OHDA on adventitial immunity with that of local SNS denervation using CGX.  

 

4.4 Sympathetic denervation prevents athero-progression 

Earlier, members of our group used tissue clearing approaches to demonstrate that the celiac ganglion 

directly innervates the abdominal aorta adventitia (Mohanta S. K. et al. 2020, under review). In 

parallel studies, our colleagues in Italy performed CGX to selectively deplete the celiac ganglion, 

which is a major peripheral SNS ganglion innervating the abdominal aorta. We had the opportunity 

to examine the acute (4 weeks of time window) effects of 6-OHDA on aorta immunity in ApoE-/- mice 

during aging and compare these effects with that of long-term CGX within a time window of 8 months 

after surgery. Surprisingly, 6-OHDA (within a period of 2 weeks) leads to rapid collapse and 
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disintegration of structures of ATLOs, including the disappearance of separate B cell and T cell areas, 

reduction of ATLO sizes and an increase in adventitial Treg cells. In view of previous data of our group 

that the turnover of naïve T cells is rapid in ATLOs, these data indicate a rapid effect of the SNS on 

arterial wall immunity. It is likely that the effect of 6-OHDA is specifically due to an effect of the 

SNS on arterial wall inflammation for the following reasons: i. similar changes could be observed in 

CGX mice 8 months after surgery, including a disruption of the ATLO structure; and ii. importantly, 

similar to 6-OHDA, CGX reduced several critical parameters of plaque instability.  

 

A major finding of the CGX-denervation analyses was the observation that 8 months after CGX, 

atherosclerotic plaques were significantly smaller, with increased plaque stability (as was ATLO size 

and number). These data of selective surgically removing a major SNS ganglion which innervates the 

abdominal aorta adventitia resulting in atherosclerosis attenuation provide a new paradigm of 

atherosclerosis research: They provide for the first time evidence in an experimental mouse model 

that the SNS directly affects disease progression through its action on the adventitia and/or spleen. 

These data may open the possibility to develop new therapeutic targets, including approaches that 

have been developed in the recently exploding area of bioelectronic medicine to interfere with 

electrical signals in the NS to treat peripheral inflammatory diseases209.  

 

4.5 Outlook 

This thesis proposes a new concept of adventitial neuroimmune cardiovascular interfaces, allowing 

the efferent SNS to affect the immune system and vice versa. We conclude that the aortic adventitia 

of WT mice is innervated by sympathetic axons connecting the arterial wall to the perivascular 

sympathetic ganglia that connect the PNS and the CNS; that atherosclerosis-dependent adventitial 

inflammation enhances the expression of neurotrophic molecules to trigger axon sprouting in a 

localized and segmental manner; and that long term local sympathetic denervation attenuates 

atherosclerosis, halts ATLO neogenesis and increases plaque stability. Data in this thesis also provide 

evidence that the SNS undergoes restructuring during atherosclerosis. However, many questions 

remain to be addressed, including the following: i) how does atherosclerosis influence arterial 

innervation in other hyperlipidemic mouse models, including Ldlr-/- mice? ii) What are the 
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mechanisms of interactions between immune cells and axons in ATLO? Which receptors and 

signaling molecules are involved? iii) Finally, what is the impact of arterial denervation on vascular 

function? Do changes of arterial tone in response to systemic or abdominal aorta denervation 

contribute in part to the observed changes in atherosclerotic plaque progression and ATLO numbers? 
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5. SUMMARY 

The SNS engages in multilevel and multifactorial crosstalk with the immune system and the 

cardiovascular system in aged atherosclerosis-burdened mice. NE is selectively up-regulated in the 

adventitia of atherosclerotic aorta segments; TH+ axon density specifically increases in 

atherosclerotic adventitia segments reaching maximal levels in ATLOs; genes regulating axon 

neogenesis and other neuroimmune mediators increase in atherosclerotic adventitia segments whereas 

axon repellants decrease; chemical and surgical SNS denervation by 6-OHDA and CGX, respectively, 

disrupt ATLO structure and sizes; plaque vulnerability decreases by systemic chemical or surgical 

celiac ganglia denervation; and most importantly, the SNS affects atherosclerosis progression via the 

celiac ganglia and possibly via the splenic nerve. When taken together, my analyses support a concept 

of neuroimmune cardiovascular interfaces that are pronounced and highly developed in those 

adventitia segments that are burdened by atherosclerosis. Adventitial neuroimmune cardiovascular 

interfaces establish biological platforms that allow the efferent SNS to affect the immune system and 

vice versa, allow the immune system to affect the peripheral SNS, restructure it, and which are 

associated with the emergence of a potentially vicious cycle of disease development during aging. 

These data provide a host of unexpected opportunities to develop new strategies to treat 

atherosclerosis by interfering with the apparently detrimental and direct role of the SNS in 

atherosclerosis progression and plaque vulnerability. 
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6. ZUSAMMENFASSUNG  

Das sympathische Nervensystem (SNS) interagiert auf verschiedenen Ebenen mit dem Immunsystem 

und dem kardiovaskulären System von alten hyperlipidämischen Mäusen mit fortgeschrittener 

Atherosklerose. Die Gewebekonzentrationen von Adrenalin sind selektiv in Adventitiaabschnitten 

erhöht, die von Atherosklerose betroffen sind; die Dichte von Tyroxinhydroxylase exprimierenden 

Nervenaxone nimmt in erkrankten Adventitiaabschnitten deutlich zu mit maximalen Werten in 

ATLOs; Gene, die in die Regulation der Neubildung von Nervenaxonen involviert sind und andere 

Mediatoren, die die Interaktion des Immunsystems und dem Nervensystem regulieren, werden 

selektiv in Adventitiaabschnitten exprimiert, die Atherosklerose in der Intima zeigen; die 

pharmakologische Denervierung durch 6-OHDA oder die chirurgische Entfernung des Ganglion 

Coeliacum führt zu einem Kollaps der ATLO Struktur; die Plaquevulnerabilität wird durch 6-OHDA 

oder die chirurgische Intervention reduziert. Die chirurgische Intervention in das sympathische 

Nervensystem führt zu einer Abschwächung der Atheroskleroseprogression. Zusammenfassend 

zeigen die Ergebnisse, dass die Interaktion des Sympathischen Nervensystems, des Immunsystems 

und das kardiovaskulären Systems in der Adventitia biologische Plattformen darstellen, um die 

Krankheitsentwicklung zu beeinflussen. Aus diesen Ergebnissen ergeben sich zahllose bisher 

unbekannte Optionen für neue Therapiestrategien der Atherosklerose. 
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9. SUPPLEMENT 

Table S1. Probe sets of abdominal aorta up and down-regulated transcripts in WT and ApoE-/- adventitia during aging. 

Differential expression of probe sets was determined as described in Material and Methods for Nervous System related Gene Ontology terms: A. nervous system 

development (GO: 0007399), B. autonomic nervous system development (GO: 0048483), C. sympathetic nervous system development (GO: 0048485), 

D. axon (GO: 0030424), E. regulation of axon guidance (GO: 1902667). Further data are displayed as heat maps in Fig. 9. Probe sets are ordered according to 

fold change between aorta from 78 weeks old ApoE-/- mice versus 6 weeks old WT mice. Gene symbols and gene names are indicated for ease of reading. Columns of 

the mean value for each gene show signal intensity without normalization. 

 

A. Nervous system development (GO: 0007399) 

Affymetrix 

Probe set ID 
Gene Symbol Gene Name 

Entrez 

Gene ID 

Mean 

WT 

aorta 6 

weeks 

Mean 

WT 

aorta 32 

weeks 

Mean 

WT 

aorta 78 

weeks 

Mean 

ApoE-/- 

aorta 6 

weeks 

Mean 

ApoE-/- 

aorta 32 

weeks 

Mean 

ApoE-/- 

aorta 78 

weeks 

Fold change 

ApoE-/- 

aorta 78 

weeks vs. 6 

weeks 

p ANOVA 

1448595_a_at Bex1 brain expressed gene 1 19716 66 41 55 50 1511 2221 44.48 0.000006 

1436312_at Ikzf1 IKAROS family zinc finger 1 22778 40 43 212 35 338 948 27.12 0.000004 

1440878_at Runx1 runt related transcription factor 1 12394 14 74 21 21 216 523 24.72 0.0005 

1450297_at Il6 interleukin 6 16193 21 10 57 21 290 523 24.46 0.0001 

1451715_at Mafb v-maf musculoaponeurotic fibrosarcoma oncogene family, protein 

B (avian) 

16658 15 15 102 16 192 372 23.94 0.00004 

1418126_at Ccl5 chemokine (C-C motif) ligand 5 20304 24 73 420 67 406 1222 18.28 0.009 

1437540_at Mcoln3 mucolipin 3 171166 26 9 18 26 287 468 18.26 0.0002 
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Affymetrix 

Probe set ID 
Gene Symbol Gene Name 

Entrez 

Gene ID 

Mean 

WT 

aorta 6 

weeks 

Mean 

WT 

aorta 32 

weeks 

Mean 

WT 

aorta 78 

weeks 

Mean 

ApoE-/- 

aorta 6 

weeks 

Mean 

ApoE-/- 

aorta 32 

weeks 

Mean 

ApoE-/- 

aorta 78 

weeks 

Fold change 

ApoE-/- 

aorta 78 

weeks vs. 6 

weeks 

p ANOVA 

1448710_at Cxcr4 chemokine (C-X-C motif) receptor 4 12767 80 112 107 77 529 1120 14.50 0.00001 

1422864_at Runx1 runt related transcription factor 1 12394 32 22 35 23 162 289 12.44 0.0007 

1427682_a_at Egr2 early growth response 2 13654 23 75 125 39 203 395 10.20 0.0008 

1420380_at Ccl2 chemokine (C-C motif) ligand 2 20296 99 49 126 95 414 915 9.65 0.0001 

1424727_at Ccr5 chemokine (C-C motif) receptor 5 12774 106 121 172 113 704 959 8.46 0.00002 

1425548_a_at Lst1 leukocyte specific transcript 1 16988 105 154 402 155 440 1266 8.14 0.00005 

1451716_at Mafb v-maf musculoaponeurotic fibrosarcoma oncogene family, protein 

B (avian) 

16658 333 458 367 317 1256 2418 7.62 0.000002 

1421186_at Ccr2 chemokine (C-C motif) receptor 2 12772 154 154 132 130 619 939 7.21 0.00003 

1459850_x_at Glrb glycine receptor, beta subunit 14658 10 52 233 82 120 582 7.13 0.00008 

1422789_at Aldh1a2 aldehyde dehydrogenase family 1, subfamily A2 19378 129 153 190 89 410 604 6.81 0.003 

1435349_at Nrp2 neuropilin 2 18187 144 221 258 172 631 1151 6.70 0.000004 

1420715_a_at Pparg peroxisome proliferator activated receptor gamma 19016 29 476 171 60 375 400 6.65 0.002 

1435190_at Chl1 cell adhesion molecule with homology to L1CAM 12661 94 82 109 75 200 449 5.99 0.0005 

1418939_at Hlx H2.0-like homeobox 15284 96 177 76 73 232 436 5.99 0.009 

1419675_at Ngf nerve growth factor 18049 96 124 154 81 284 480 5.92 0.0002 

1429055_at 4930506M07Rik RIKEN cDNA 4930506M07 gene 71653 151 242 229 146 492 829 5.67 0.0000009 

1434920_a_at Evl Ena-vasodilator stimulated phosphoprotein 14026 401 319 244 361 1291 1927 5.34 0.000003 

1434653_at Ptk2b PTK2 protein tyrosine kinase 2 beta 19229 261 463 424 263 748 1346 5.12 0.000001 

1419156_at Sox4 SRY-box containing gene 4 20677 45 29 24 52 139 266 5.07 0.002 

1448424_at Frzb frizzled-related protein 20378 506 369 489 454 1836 2240 4.93 0.000003 

1416658_at Frzb frizzled-related protein 20378 1100 1421 1480 1239 4409 6059 4.89 0.000001 
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1422865_at Runx1 runt related transcription factor 1 12394 89 117 181 101 255 487 4.84 0.000004 

1425546_a_at Trf transferrin 22041 639 1302 813 496 2340 2368 4.78 0.0002 

1419754_at Myo5a myosin VA 17918 220 271 225 234 836 1112 4.76 0.000002 

1455678_at Sema4b sema domain, immunoglobulin domain (Ig), transmembrane domain 

(TM) and short cytoplasmic domain, (semaphorin) 4B 

20352 85 190 229 85 222 401 4.69 0.0003 

1433471_at Tcf7 transcription factor 7, T-cell specific 21414 53 91 158 76 117 356 4.67 0.002 

1422259_a_at Ccr5 chemokine (C-C motif) receptor 5 12774 60 72 104 57 206 266 4.64 0.0001 

1422046_at Itgam integrin alpha M 16409 128 116 120 118 435 542 4.60 0.00004 

1417574_at Cxcl12 chemokine (C-X-C motif) ligand 12 20315 577 562 615 474 1216 2174 4.58 0.00001 

1427683_at Egr2 early growth response 2 13654 116 167 305 129 304 582 4.52 0.00004 

1431320_a_at Myo5a myosin VA 17918 242 253 283 248 618 1092 4.40 0.00006 

1455745_at Cln8 ceroid-lipofuscinosis, neuronal 8 26889 98 39 150 92 119 397 4.33 0.01 

1421187_at Ccr2 chemokine (C-C motif) receptor 2 12772 59 71 18 57 218 244 4.27 0.0001 

1439902_at C5ar1 complement component 5a receptor 1 12273 128 130 163 108 287 460 4.24 0.00007 

1417378_at Cadm1 cell adhesion molecule 1 54725 353 320 421 290 608 1230 4.24 0.000009 

1451318_a_at Lyn Yamaguchi sarcoma viral (v-yes-1) oncogene homolog 17096 462 582 644 492 947 2046 4.16 0.0004 

1434069_at Prex1 phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange 

factor 1 

277360 329 307 310 286 624 1159 4.06 0.00001 

1434447_at Met met proto-oncogene 17295 104 240 130 88 282 347 3.97 0.007 

1420980_at Pak1 p21 protein (Cdc42/Rac)-activated kinase 1 18479 206 351 527 184 452 714 3.88 0.0002 

1450106_a_at Evl Ena-vasodilator stimulated phosphoprotein 14026 204 102 102 167 472 644 3.85 0.00001 

1425598_a_at Lyn Yamaguchi sarcoma viral (v-yes-1) oncogene homolog 17096 289 305 374 285 703 1086 3.81 0.00002 

1420653_at Tgfb1 transforming growth factor, beta 1 21803 516 538 551 440 1292 1670 3.79 0.0000008 
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1436205_at Nfasc neurofascin 269116 115 213 425 121 331 448 3.71 0.0001 

1420824_at Sema4d sema domain, immunoglobulin domain (Ig), transmembrane domain 

(TM) and short cytoplasmic domain, (semaphorin) 4D 

20354 442 582 773 550 1135 2039 3.71 0.00002 

1436659_at Dclk1 doublecortin-like kinase 1 13175 489 280 341 231 543 850 3.68 0.00007 

1450070_s_at Pak1 p21 protein (Cdc42/Rac)-activated kinase 1 18479 121 221 345 128 285 461 3.59 0.00002 

1434376_at Cd44 CD44 antigen 12505 1791 1902 1898 1744 4193 5926 3.40 0.000002 

1434028_at Arnt2 aryl hydrocarbon receptor nuclear translocator 2 11864 122 76 123 92 125 306 3.33 0.0004 

1417376_a_at Cadm1 cell adhesion molecule 1 54725 233 253 273 241 443 802 3.33 0.00004 

1419717_at Sema3e sema domain, immunoglobulin domain (Ig), short basic domain, 

secreted, (semaphorin) 3E 

20349 45 246 371 49 223 161 3.31 0.00008 

1452534_a_at Hmgb2 high mobility group box 2 97165 241 207 303 190 313 618 3.25 0.003 

1417377_at Cadm1 cell adhesion molecule 1 54725 70 106 76 97 176 303 3.13 0.03 

1422286_a_at Tgif1 TGFB-induced factor homeobox 1 21815 202 310 281 230 397 713 3.11 0.00001 

1448110_at Sema4a sema domain, immunoglobulin domain (Ig), transmembrane domain 

(TM) and short cytoplasmic domain, (semaphorin) 4A 

20351 125 336 187 117 357 358 3.05 0.002 

1423135_at Thy1 thymus cell antigen 1, theta 21838 627 1056 1441 602 1257 1828 3.04 0.00006 

1426528_at Nrp2 neuropilin 2 18187 374 498 438 366 711 1099 3.01 0.0001 

1436329_at Egr3 early growth response 3 13655 185 349 793 270 575 811 3.01 0.00002 

1419296_at Arhgap4 Rho GTPase activating protein 4 171207 98 128 194 112 189 335 2.98 0.002 

1451596_a_at Sphk1 sphingosine kinase 1 20698 244 221 377 250 360 741 2.96 0.00002 

1417275_at Mal myelin and lymphocyte protein, T-cell differentiation protein 17153 137 222 231 132 305 391 2.96 0.005 

1435277_x_at Nme1 non-metastatic cells 1, protein (NM23A) expressed in 18102 601 729 835 612 940 1797 2.94 0.0002 

1450718_at Sh2b2 SH2B adaptor protein 2 23921 63 262 99 80 234 233 2.92 0.001 
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1423760_at Cd44 CD44 antigen 12505 1662 1238 1431 1711 3226 4914 2.87 0.00001 

1428142_at Etv5 ets variant gene 5 104156 196 328 548 227 537 647 2.86 0.000001 

1436051_at Myo5a myosin VA 17918 576 563 492 535 998 1526 2.85 0.000007 

1421188_at Ccr2 chemokine (C-C motif) receptor 2 12772 167 187 236 166 349 465 2.81 0.0002 

1421385_a_at Myo7a myosin VIIA 17921 228 269 272 241 408 673 2.79 0.00003 

1438767_at Osm oncostatin M 18413 163 165 212 132 206 365 2.77 0.01 

1422190_at C5ar1 complement component 5a receptor 1 12273 195 215 240 175 354 473 2.71 0.003 

1424271_at Dclk1 doublecortin-like kinase 1 13175 292 165 234 212 323 565 2.66 0.0002 

1437313_x_at Hmgb2 high mobility group box 2 97165 346 344 347 274 557 714 2.61 0.004 

1423319_at Hhex hematopoietically expressed homeobox 15242 379 409 524 346 644 902 2.61 0.0001 

1420992_at Ankrd1 ankyrin repeat domain 1 (cardiac muscle) 107765 360 408 520 408 418 1054 2.58 0.001 

1435172_at Eomes eomesodermin homolog (Xenopus laevis) 13813 87 83 131 84 79 209 2.49 0.02 

1449024_a_at Hexa hexosaminidase A 15211 3981 4203 4253 3815 6526 9294 2.44 0.000001 

1434222_at Sipa1l1 signal-induced proliferation-associated 1 like 1 217692 323 423 492 281 437 682 2.43 0.007 

1424110_a_at Nme1 non-metastatic cells 1, protein (NM23A) expressed in 18102 985 921 1138 860 1215 2081 2.42 0.00001 

1437341_x_at Cnp 2',3'-cyclic nucleotide 3' phosphodiesterase 12799 549 1181 1058 646 1392 1561 2.42 0.00005 

1456722_at Chrdl1 chordin-like 1 83453 321 865 1330 243 893 586 2.42 0.00002 

1420979_at Pak1 p21 protein (Cdc42/Rac)-activated kinase 1 18479 117 153 183 151 188 365 2.41 0.0002 

1460180_at Hexb hexosaminidase B 15212 2074 1861 1956 2155 3581 5176 2.40 0.000005 

1456200_at Ipmk inositol polyphosphate multikinase 69718 143 158 211 134 227 321 2.39 0.02 

1443086_at Alcam activated leukocyte cell adhesion molecule 11658 132 94 114 110 183 263 2.38 0.003 

1418872_at Abcb1b ATP-binding cassette, sub-family B (MDR/TAP), member 1B 18669 296 463 365 244 637 582 2.38 0.03 

1428393_at Nrn1 neuritin 1 68404 477 526 619 424 808 983 2.32 0.0004 
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1455664_at Rtn4rl1 reticulon 4 receptor-like 1 237847 133 204 427 140 271 319 2.27 0.0004 

1452014_a_at Igf1 insulin-like growth factor 1 16000 1344 786 740 1302 1591 2903 2.23 0.00007 

1431619_a_at Dtnbp1 dystrobrevin binding protein 1 94245 606 702 737 566 907 1258 2.22 0.0002 

1451435_at Cux1 cut-like homeobox 1 13047 555 875 1049 728 1068 1618 2.22 0.00003 

1417073_a_at Qk quaking 19317 754 1094 772 790 1532 1755 2.22 0.00001 

1424988_at Mylip myosin regulatory light chain interacting protein 218203 1745 2337 2721 2229 3751 4924 2.21 0.000006 

1425536_at Stx3 syntaxin 3 20908 726 546 694 525 780 1156 2.20 0.00002 

1433532_a_at Mbp myelin basic protein 17196 199 406 286 170 516 373 2.20 0.0005 

1459866_x_at Cyfip1 cytoplasmic FMR1 interacting protein 1 20430 2214 1931 4813 2570 2430 5622 2.19 0.003 

1434768_at Tpp1 tripeptidyl peptidase I 12751 602 1005 777 677 1428 1443 2.13 0.0001 

1417627_a_at Limk1 LIM-domain containing, protein kinase 16885 172 228 202 165 299 343 2.08 0.005 

1448823_at Cxcl12 chemokine (C-X-C motif) ligand 12 20315 5885 5864 6394 5182 8384 10772 2.08 0.000007 

1450148_at Mcoln3 mucolipin 3 171166 126 148 159 118 236 245 2.07 0.006 

1451031_at Sfrp4 secreted frizzled-related protein 4 20379 3168 3328 3227 3125 4790 6466 2.07 0.00006 

1450020_at Cx3cr1 chemokine (C-X3-C) receptor 1 13051 104 116 64 146 283 302 2.06 0.0003 

1440885_at Evl Ena-vasodilator stimulated phosphoprotein 14026 280 281 310 280 349 578 2.06 0.0002 

1438934_x_at Sema4a sema domain, immunoglobulin domain (Ig), transmembrane domain 

(TM) and short cytoplasmic domain, (semaphorin) 4A 

20351 279 620 406 326 749 662 2.03 0.0001 

1458276_x_at Cit citron 12704 527 625 736 586 814 1185 2.02 0.0002 

1437467_at Alcam activated leukocyte cell adhesion molecule 11658 1218 853 801 1161 1573 2332 2.01 0.00001 

1420991_at Ankrd1 ankyrin repeat domain 1 (cardiac muscle) 107765 393 368 562 463 354 916 1.98 0.0008 

1456873_at Clic5 chloride intracellular channel 5 224796 253 465 378 199 416 388 1.95 0.002 

1452483_a_at Cd44 CD44 antigen 12505 362 174 68 354 614 673 1.90 0.0001 
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1448028_at Tbc1d24 TBC1 domain family, member 24 224617 245 360 313 237 481 450 1.90 0.0002 

1448789_at Aldh1a3 aldehyde dehydrogenase family 1, subfamily A3 56847 214 338 347 199 408 375 1.88 0.001 

1454714_x_at Phgdh 3-phosphoglycerate dehydrogenase 236539 672 347 513 511 401 930 1.82 0.00004 

1433575_at Sox4 SRY-box containing gene 4 20677 1496 1042 950 1407 2361 2518 1.79 0.0005 

1450723_at Isl1 ISL1 transcription factor, LIM/homeodomain 16392 263 345 497 169 404 302 1.79 0.0002 

1450722_at Nup50 nucleoporin 50 18141 394 263 276 362 405 641 1.77 0.01 

1455422_x_at Sept4 septin 4 18952 184 346 341 197 401 345 1.75 0.007 

1424950_at Sox9 SRY-box containing gene 9 20682 72 134 46 113 313 192 1.71 0.0008 

1434201_at Chrdl1 chordin-like 1 83453 532 736 1039 350 782 591 1.69 0.002 

1421267_a_at Cited2 Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-

terminal domain, 2 

17684 539 282 377 381 284 635 1.67 0.01 

1437347_at Ednrb endothelin receptor type B 13618 604 655 708 488 1040 812 1.66 0.04 

1439505_at Clic5 chloride intracellular channel 5 224796 161 350 237 141 320 232 1.65 0.003 

1427844_a_at Cebpb CCAAT/enhancer binding protein (C/EBP), beta 12608 525 607 345 459 607 739 1.61 0.02 

1434298_at Zeb2 zinc finger E-box binding homeobox 2 24136 585 781 619 542 1106 873 1.61 0.002 

1417706_at Naglu alpha-N-acetylglucosaminidase (Sanfilippo disease IIIB) 27419 795 663 570 757 881 1210 1.60 0.003 

1419519_at Igf1 insulin-like growth factor 1 16000 1239 830 842 1231 1164 1823 1.48 0.002 

1416041_at Sgk1 serum/glucocorticoid regulated kinase 1 20393 4259 2102 2122 2774 3162 4106 1.48 0.003 

1448610_a_at Sod2 superoxide dismutase 2, mitochondrial 20656 2162 4794 2950 2349 4920 3410 1.45 0.00005 

1448260_at Uchl1 ubiquitin carboxy-terminal hydrolase L1 22223 921 1386 2253 1093 1256 1577 1.44 0.001 

1431292_a_at Twf2 twinfilin, actin-binding protein, homolog 2 (Drosophila) 23999 311 331 170 266 334 381 1.43 0.008 

1420705_at Foxb1 forkhead box B1 64290 106 81 213 108 80 154 1.43 0.01 

1452968_at Cthrc1 collagen triple helix repeat containing 1 68588 532 173 171 375 514 531 1.42 0.00001 
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1440847_at Mtss1 metastasis suppressor 1 211401 232 198 167 270 256 380 1.41 0.002 

1419380_at Zfp423 zinc finger protein 423 94187 342 436 384 171 334 237 1.39 0.01 

1437466_at Alcam activated leukocyte cell adhesion molecule 11658 1174 896 721 1080 1307 1484 1.37 0.0005 

1455287_at Cdk6 cyclin-dependent kinase 6 12571 1570 828 752 1241 1062 1691 1.36 0.0008 

1418824_at Arf6 ADP-ribosylation factor 6 11845 104 201 59 74 137 98 1.33 0.004 

1437270_a_at Clcf1 cardiotrophin-like cytokine factor 1 56708 122 162 123 194 244 248 1.28 0.001 

1426300_at Alcam activated leukocyte cell adhesion molecule 11658 837 704 452 853 812 1083 1.27 0.0003 

1435293_at Adam22 a disintegrin and metallopeptidase domain 22 11496 188 320 465 205 304 258 1.26 0.0009 

1439364_a_at Mmp2 matrix metallopeptidase 2 17390 3914 2827 2177 3996 3443 4990 1.25 0.0002 

1449281_at Nrtn neurturin 18188 798 1222 1747 897 950 1097 1.22 0.002 

1436334_at Synj1 synaptojanin 1 104015 306 248 175 344 389 411 1.20 0.004 

1416136_at Mmp2 matrix metallopeptidase 2 17390 5328 3177 2750 5567 4910 6603 1.19 0.000007 

1416544_at Ezh2 enhancer of zeste homolog 2 (Drosophila) 14056 388 231 178 362 334 424 1.17 0.0003 

1422168_a_at Bdnf brain derived neurotrophic factor 12064 379 154 134 211 196 244 1.16 0.01 

1426301_at Alcam activated leukocyte cell adhesion molecule 11658 1020 869 430 1033 1316 1191 1.15 0.00005 

1429590_at Tacc1 transforming, acidic coiled-coil containing protein 1 320165 642 400 985 786 457 902 1.15 0.0001 

1438166_x_at Ndufs4 NADH dehydrogenase (ubiquinone) Fe-S protein 4 17993 240 491 382 281 370 311 1.11 0.0003 

1424945_at Chrdl1 chordin-like 1 83453 113 293 176 123 226 127 1.03 0.03 

1426413_at Neurod1 neurogenic differentiation 1 18012 129 154 261 162 169 166 1.02 0.02 

1422054_a_at Skil SKI-like 20482 246 101 121 163 127 166 1.02 0.006 

1418815_at Cdh2 cadherin 2 12558 290 241 136 332 384 337 1.01 0.0001 

1443857_at Hook3 hook homolog 3 (Drosophila) 320191 206 174 80 161 182 155 -1.03 0.007 

1456487_at Adcy1 adenylate cyclase 1 432530 268 258 597 169 163 159 -1.06 0.0003 
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1456344_at Tnc tenascin C 21923 629 178 202 583 237 540 -1.08 0.0007 

1424114_s_at Lamb1 laminin B1 16777 538 636 261 540 661 492 -1.10 0.02 

1416774_at Wee1 WEE 1 homolog 1 (S. pombe) 22390 290 100 82 157 112 137 -1.15 0.01 

1419988_at Map3k7 mitogen-activated protein kinase kinase kinase 7 26409 315 258 126 237 304 204 -1.17 0.009 

1450923_at Tgfb2 transforming growth factor, beta 2 21808 1865 763 913 1661 846 1372 -1.21 0.00002 

1426873_s_at Jup junction plakoglobin 16480 549 887 616 536 1012 438 -1.22 0.01 

1423136_at Fgf1 fibroblast growth factor 1 14164 1327 1623 3023 1506 1479 1194 -1.26 0.0004 

1424113_at Lamb1 laminin B1 16777 238 253 78 240 302 189 -1.27 0.01 

1436475_at Nr2f2 nuclear receptor subfamily 2, group F, member 2 11819 457 720 910 552 624 421 -1.31 0.001 

1423250_a_at Tgfb2 transforming growth factor, beta 2 21808 1242 785 543 952 797 724 -1.31 0.002 

1448395_at Sfrp1 secreted frizzled-related protein 1 20377 1584 999 626 1162 1758 870 -1.33 0.0003 

1448181_at Klf15 Kruppel-like factor 15 66277 763 795 754 497 452 369 -1.35 0.01 

1437401_at Igf1 insulin-like growth factor 1 16000 3422 1365 1164 3131 1932 2309 -1.36 0.00001 

1451229_at Hdac11 histone deacetylase 11 232232 358 503 669 373 473 274 -1.36 0.001 

1433888_at Atp2b2 ATPase, Ca++ transporting, plasma membrane 2 11941 184 246 187 166 238 119 -1.40 0.03 

1420946_at Atrx alpha thalassemia/mental retardation syndrome X-linked homolog 

(human) 

22589 339 121 192 292 173 208 -1.40 0.0002 

1434413_at Igf1 insulin-like growth factor 1 16000 5137 2144 1819 4645 2785 3305 -1.41 0.000002 

1420375_at Kif3a kinesin family member 3A 16568 880 427 407 698 599 474 -1.47 0.001 

1424801_at Enah enabled homolog (Drosophila) 13800 4220 5157 6251 4372 3675 2948 -1.48 0.000007 

1416081_at Smad1 MAD homolog 1 (Drosophila) 17125 422 266 160 386 270 258 -1.50 0.006 

1427256_at Vcan versican 13003 4054 3298 4216 3156 2766 2102 -1.50 0.0001 

1427086_at Slit3 slit homolog 3 (Drosophila) 20564 3299 3281 4585 3368 3146 2243 -1.50 0.0002 
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1422553_at Pten phosphatase and tensin homolog 19211 1496 1011 617 1534 1229 973 -1.58 0.006 

1421907_at Med1 mediator complex subunit 1 19014 1092 681 497 1138 844 722 -1.58 0.05 

1458492_x_at Ntm neurotrimin 235106 274 111 166 270 84 171 -1.58 0.007 

1444240_at Shank1 SH3/ankyrin domain gene 1 243961 377 214 162 282 209 177 -1.59 0.0004 

1420416_at Sema3a sema domain, immunoglobulin domain (Ig), short basic domain, 

secreted, (semaphorin) 3A 

20346 592 635 742 571 371 353 -1.62 0.0007 

1449522_at Unc5c unc-5 homolog C (C. elegans) 22253 1347 1626 1830 1126 1257 695 -1.62 0.00003 

1416594_at Sfrp1 secreted frizzled-related protein 1 20377 476 46 81 379 384 230 -1.64 0.000007 

1420508_at Sema3f sema domain, immunoglobulin domain (Ig), short basic domain, 

secreted, (semaphorin) 3F 

20350 612 478 695 562 440 339 -1.66 0.009 

1428816_a_at Gata2 GATA binding protein 2 14461 317 363 391 301 360 176 -1.71 0.007 

1450869_at Fgf1 fibroblast growth factor 1 14164 1018 1045 1341 1104 810 644 -1.71 0.002 

1418572_x_at Tnfrsf12a tumor necrosis factor receptor superfamily, member 12a 27279 4018 1875 1871 2661 1230 1534 -1.73 0.001 

1425940_a_at Ssbp3 single-stranded DNA binding protein 3 72475 719 852 350 679 798 389 -1.75 0.00009 

1421624_a_at Enah enabled homolog (Drosophila) 13800 655 503 706 521 380 293 -1.78 0.00002 

1436326_at Rora RAR-related orphan receptor alpha 19883 1392 760 671 1244 696 699 -1.78 0.000008 

1418534_at Fzd2 frizzled homolog 2 (Drosophila) 57265 1454 1890 2149 1830 1602 1021 -1.79 0.002 

1436962_at Prdm6 PR domain containing 6 225518 1150 1382 1488 1267 1097 703 -1.80 0.0004 

1420867_at Tmed2 transmembrane emp24 domain trafficking protein 2 56334 4283 2576 2103 4101 2231 2275 -1.80 0.0003 

1424034_at Rora RAR-related orphan receptor alpha 19883 2711 1328 1522 2238 1085 1240 -1.80 0.000007 

1437312_at Bmpr1b bone morphogenetic protein receptor, type 1B 12167 793 878 772 646 485 356 -1.82 0.00008 

1419638_at Efnb2 ephrin B2 13642 1432 1271 913 1071 1162 576 -1.86 0.0005 

1423260_at Id4 inhibitor of DNA binding 4 15904 1324 835 1462 1167 626 628 -1.86 0.0003 
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1418690_at Ptprz1 protein tyrosine phosphatase, receptor type Z, polypeptide 1 19283 342 326 409 325 286 174 -1.87 0.01 

1450040_at Timp2 tissue inhibitor of metalloproteinase 2 21858 4561 3836 2257 4847 4523 2578 -1.88 0.000003 

1455188_at Ephb1 Eph receptor B1 270190 416 222 152 277 142 147 -1.89 0.0009 

1418525_at Pcm1 pericentriolar material 1 18536 478 528 248 467 498 238 -1.96 0.0004 

1434572_at Hdac9 histone deacetylase 9 79221 1063 818 854 827 532 419 -1.98 0.0001 

1437497_a_at Hsp90aa1 heat shock protein 90, alpha (cytosolic), class A member 1 15519 5723 2848 2686 4499 2669 2264 -1.99 0.0005 

1423201_at Ncor1 nuclear receptor co-repressor 1 20185 1470 1205 688 1381 1386 690 -2.00 0.002 

1427489_at Itga8 integrin alpha 8 241226 13018 11974 11136 12649 10626 6308 -2.01 0.00004 

1460647_a_at Nr2f6 nuclear receptor subfamily 2, group F, member 6 13864 548 268 250 589 280 292 -2.01 0.0006 

1423503_at Jam3 junction adhesion molecule 3 83964 1694 1509 1630 1718 1241 853 -2.01 0.00002 

1451109_a_at Nedd4 neural precursor cell expressed, developmentally down-regulated 4 17999 8225 6612 5788 8615 6658 4257 -2.02 0.000002 

1449549_at Efnb2 ephrin B2 13642 375 201 119 295 244 145 -2.03 0.002 

1418533_s_at Fzd2 frizzled homolog 2 (Drosophila) 57265 1179 1358 1420 1520 1179 745 -2.04 0.001 

1426864_a_at Ncam1 neural cell adhesion molecule 1 17967 5818 5284 6280 5493 4292 2691 -2.04 0.0009 

1433716_x_at Gfra2 glial cell line derived neurotrophic factor family receptor alpha 2 14586 391 406 407 410 263 199 -2.05 0.0006 

1449865_at Sema3a sema domain, immunoglobulin domain (Ig), short basic domain, 

secreted, (semaphorin) 3A 

20346 309 247 260 222 152 108 -2.05 0.0003 

1423341_at Cspg4 chondroitin sulfate proteoglycan 4 121021 2867 3151 3031 3480 2631 1691 -2.06 0.0004 

1416513_at Lamb2 laminin, beta 2 16779 2960 2931 2397 3051 2454 1472 -2.07 0.0009 

1455377_at Ttll7 tubulin tyrosine ligase-like family, member 7 70892 1065 1212 1244 1119 796 538 -2.08 0.00001 

1424893_at Ndel1 nuclear distribution gene E-like homolog 1 (A. nidulans) 83431 589 345 258 562 383 269 -2.09 0.0006 

1429021_at Epha4 Eph receptor A4 13838 285 252 191 281 263 134 -2.10 0.002 

1426565_at Igf1r insulin-like growth factor I receptor 16001 855 656 557 894 689 425 -2.11 0.00004 
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1424035_at Rora RAR-related orphan receptor alpha 19883 289 153 146 329 133 156 -2.11 0.0008 

1453103_at Ablim1 actin-binding LIM protein 1 226251 792 461 382 680 551 323 -2.11 0.001 

1421889_a_at Aplp2 amyloid beta (A4) precursor-like protein 2 11804 7353 6298 5048 7604 6126 3587 -2.12 0.000003 

1425511_at Mark1 MAP/microtubule affinity-regulating kinase 1 226778 1032 681 697 1004 585 473 -2.12 0.002 

1434788_at Fzd3 frizzled homolog 3 (Drosophila) 14365 340 236 236 278 208 131 -2.12 0.0006 

1427433_s_at Hoxa3 homeobox A3 15400 832 1458 1118 1077 952 507 -2.13 0.004 

1439163_at Zbtb16 zinc finger and BTB domain containing 16 235320 4351 2731 1642 2374 1436 1113 -2.13 0.003 

1426086_a_at Fmr1 fragile X mental retardation syndrome 1 homolog 14265 310 177 173 262 139 123 -2.14 0.008 

1448507_at Efhd1 EF hand domain containing 1 98363 7289 8109 9155 7989 6499 3717 -2.15 0.0002 

1455165_at Rora RAR-related orphan receptor alpha 19883 1506 1025 992 1296 785 602 -2.15 0.0003 

1453734_at Atrx alpha thalassemia/mental retardation syndrome X-linked homolog 

(human) 

22589 1169 1154 711 1256 1062 582 -2.16 0.00008 

1418532_at Fzd2 frizzled homolog 2 (Drosophila) 57265 987 1111 1082 1452 843 673 -2.16 0.003 

1418876_at Foxd1 forkhead box D1 15229 128 211 207 170 219 79 -2.16 0.0003 

1429591_at Tacc1 transforming, acidic coiled-coil containing protein 1 320165 304 259 141 355 261 164 -2.17 0.0002 

1415877_at Dpysl3 dihydropyrimidinase-like 3 22240 1396 989 1066 1613 1105 742 -2.17 0.01 

1420583_a_at Rora RAR-related orphan receptor alpha 19883 2192 981 1052 1729 829 794 -2.18 0.00001 

1422399_a_at Rab23 RAB23, member RAS oncogene family 19335 521 290 206 440 289 202 -2.18 0.006 

1416484_at Ttc3 tetratricopeptide repeat domain 3 22129 660 268 328 548 296 250 -2.19 0.0004 

1435933_at Scn2a1 sodium channel, voltage-gated, type II, alpha 1 110876 447 462 580 585 392 266 -2.20 0.003 

1425491_at Bmpr1a bone morphogenetic protein receptor, type 1A 12166 1823 1470 1341 1657 1225 752 -2.20 0.000001 

1448662_at Fzd6 frizzled homolog 6 (Drosophila) 14368 396 250 225 414 288 187 -2.21 0.001 
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1425840_a_at Sema3f sema domain, immunoglobulin domain (Ig), short basic domain, 

secreted, (semaphorin) 3F 

20350 1159 829 701 1090 946 494 -2.21 0.005 

1436917_s_at Gpsm1 G-protein signalling modulator 1 (AGS3-like, C. elegans) 67839 498 636 511 687 546 310 -2.22 0.002 

1425745_a_at Tacc2 transforming, acidic coiled-coil containing protein 2 57752 5102 5051 5910 5301 3972 2393 -2.22 0.0009 

1421105_at Jag1 jagged 1 16449 418 399 208 413 343 185 -2.23 0.001 

1435382_at Ndn necdin 17984 2585 2248 2023 2687 2385 1192 -2.25 0.000003 

1433825_at Ntrk3 neurotrophic tyrosine kinase, receptor, type 3 18213 2815 3219 2805 3246 2590 1433 -2.26 0.00001 

1456398_at Tug1 taurine upregulated gene 1 544752 1135 660 536 1093 909 479 -2.28 0.0001 

1416168_at Serpinf1 serine (or cysteine) peptidase inhibitor, clade F, member 1 20317 9990 7808 6654 9590 7008 4163 -2.30 0.0000009 

1419356_at Klf7 Kruppel-like factor 7 (ubiquitous) 93691 791 730 543 1009 720 437 -2.31 0.02 

1425911_a_at Fgfr1 fibroblast growth factor receptor 1 14182 2689 2462 1520 2733 2404 1179 -2.32 0.00008 

1434917_at Cobl cordon-bleu 12808 698 431 535 635 387 274 -2.32 0.0005 

1429459_at Sema3d sema domain, immunoglobulin domain (Ig), short basic domain, 

secreted, (semaphorin) 3D 

108151 1876 2526 2559 2190 2061 941 -2.33 0.00002 

1449416_at Fzd4 frizzled homolog 4 (Drosophila) 14366 155 197 60 170 133 73 -2.33 0.0001 

1417307_at Dmd dystrophin, muscular dystrophy 13405 3103 3461 3449 3440 2644 1467 -2.35 0.0001 

1428967_at Igf1r insulin-like growth factor I receptor 16001 571 494 387 594 476 253 -2.35 0.001 

1428948_at Kcnma1 potassium large conductance calcium-activated channel, subfamily 

M, alpha member 1 

16531 1313 1673 1494 1674 1297 711 -2.36 0.0004 

1437673_at Wnt5a wingless-related MMTV integration site 5A 22418 246 284 183 201 226 85 -2.37 0.003 

1429308_at Prdm16 PR domain containing 16 70673 1061 1059 1212 1350 973 568 -2.38 0.003 

1427646_a_at Arhgef2 rho/rac guanine nucleotide exchange factor (GEF) 2 16800 707 443 469 802 425 336 -2.39 0.01 

1422872_at Bmpr1b bone morphogenetic protein receptor, type 1B 12167 284 214 97 201 174 84 -2.41 0.002 
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1426057_a_at Epha3 Eph receptor A3 13837 354 175 106 275 185 114 -2.41 0.00002 

1420948_s_at Atrx alpha thalassemia/mental retardation syndrome X-linked homolog 

(human) 

22589 909 593 427 852 586 351 -2.42 0.000006 

1421028_a_at Mef2c myocyte enhancer factor 2C 17260 1504 712 697 1362 767 561 -2.43 0.00005 

1451758_at Lamc3 laminin gamma 3 23928 660 609 738 782 547 322 -2.43 0.0003 

1456862_at Six4 sine oculis-related homeobox 4 homolog (Drosophila) 20474 297 233 130 260 191 107 -2.43 0.0002 

1423259_at Id4 inhibitor of DNA binding 4 15904 2223 1799 2564 2286 1425 935 -2.45 0.0001 

1418467_at Smarcd3 SWI/SNF related, matrix associated, actin dependent regulator of 

chromatin, subfamily d, member 3 

66993 3088 2973 3145 3357 2028 1365 -2.46 0.0002 

1419302_at Heyl hairy/enhancer-of-split related with YRPW motif-like 56198 2146 3375 3364 3282 2862 1332 -2.46 0.002 

1420893_a_at Tgfbr1 transforming growth factor, beta receptor I 21812 500 241 176 395 282 160 -2.47 0.002 

1456072_at Ppp1r9a protein phosphatase 1, regulatory (inhibitor) subunit 9A 243725 572 559 542 620 434 251 -2.47 0.004 

1425987_a_at Kcnma1 potassium large conductance calcium-activated channel, subfamily 

M, alpha member 1 

16531 869 718 649 1004 538 406 -2.48 0.0002 

1448665_at Dmd dystrophin, muscular dystrophy 13405 3866 4810 3735 4342 3542 1754 -2.48 0.0005 

1435857_s_at Aplp1 amyloid beta (A4) precursor-like protein 1 11803 1201 1062 913 1482 888 598 -2.48 0.00008 

1418106_at Hey2 hairy/enhancer-of-split related with YRPW motif 2 15214 1458 1593 1187 1741 1431 697 -2.50 0.002 

1442223_at Enah enabled homolog (Drosophila) 13800 2649 1163 1426 2010 803 803 -2.50 0.0003 

1421042_at Arhgef2 rho/rac guanine nucleotide exchange factor (GEF) 2 16800 1304 849 791 1487 796 594 -2.50 0.0007 

1419874_x_at Zbtb16 zinc finger and BTB domain containing 16 235320 6278 3341 1805 1960 1297 780 -2.51 0.002 

1433571_at Serinc5 serine incorporator 5 218442 794 889 562 818 743 325 -2.52 0.000004 

1425575_at Epha3 Eph receptor A3 13837 1622 1172 800 1599 964 625 -2.56 0.0001 

1442623_at Mef2a myocyte enhancer factor 2A 17258 485 334 264 559 360 217 -2.57 0.006 
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1423671_at Dner delta/notch-like EGF-related receptor 227325 323 165 139 247 143 96 -2.57 0.00009 

1435383_x_at Ndn necdin 17984 2452 2158 1894 2563 2106 993 -2.58 0.00001 

1429348_at Sema3c sema domain, immunoglobulin domain (Ig), short basic domain, 

secreted, (semaphorin) 3C 

20348 5840 4811 4881 5391 3746 2088 -2.58 0.00001 

1440037_at Pbx1 pre B-cell leukemia transcription factor 1 18514 1840 1511 984 2209 1537 854 -2.59 0.0005 

1429870_at Tnik TRAF2 and NCK interacting kinase 665113 481 278 285 449 281 171 -2.63 0.001 

1434776_at Sema5a sema domain, seven thrombospondin repeats (type 1 and type 1-

like), transmembrane domain (TM) and short cytoplasmic domain, 

(semaphorin) 5A 

20356 1173 1042 923 1225 893 465 -2.64 0.00005 

1425071_s_at Ntrk3 neurotrophic tyrosine kinase, receptor, type 3 18213 1353 1313 1101 1485 1088 562 -2.64 0.00002 

1455792_x_at Ndn necdin 17984 1755 1284 1276 1795 1136 672 -2.67 0.0000008 

1448695_at Prkci protein kinase C, iota 18759 341 254 228 358 176 133 -2.68 0.0008 

1422863_s_at Pdlim5 PDZ and LIM domain 5 56376 3167 1691 1849 3366 1639 1254 -2.69 0.000008 

1422329_a_at Ntrk3 neurotrophic tyrosine kinase, receptor, type 3 18213 444 460 378 557 350 207 -2.69 0.001 

1422862_at Pdlim5 PDZ and LIM domain 5 56376 1326 526 692 1270 512 472 -2.69 0.001 

1421276_a_at Dst dystonin 13518 2715 2134 2214 2977 1577 1095 -2.72 0.00001 

1425594_at Lamc3 laminin gamma 3 23928 813 623 783 829 528 302 -2.75 0.0001 

1453148_at Sema3d sema domain, immunoglobulin domain (Ig), short basic domain, 

secreted, (semaphorin) 3D 

108151 486 368 333 414 354 151 -2.75 0.0005 

1423885_at Lamc1 laminin, gamma 1 226519 3172 2150 1557 3542 2064 1289 -2.75 0.000003 

1440870_at Prdm16 PR domain containing 16 70673 3472 3400 2883 3750 2950 1362 -2.75 0.0006 

1450928_at Id4 inhibitor of DNA binding 4 15904 1805 1460 1906 1864 1282 675 -2.76 0.0008 

1420894_at Tgfbr1 transforming growth factor, beta receptor I 21812 728 397 262 618 485 221 -2.79 0.0003 
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1425574_at Epha3 Eph receptor A3 13837 550 193 247 534 236 189 -2.82 0.00004 

1455256_at Tnik TRAF2 and NCK interacting kinase 665113 894 747 720 946 526 335 -2.82 0.000003 

1420847_a_at Fgfr2 fibroblast growth factor receptor 2 14183 1774 1326 1323 1872 962 658 -2.84 0.000001 

1439753_x_at Six4 sine oculis-related homeobox 4 homolog (Drosophila) 20474 337 251 107 265 151 93 -2.86 0.001 

1458129_at Rora RAR-related orphan receptor alpha 19883 783 531 348 754 409 262 -2.87 0.000007 

1419592_at Unc5c unc-5 homolog C (C. elegans) 22253 899 521 732 739 391 256 -2.89 0.000002 

1450839_at D0H4S114 DNA segment, human D4S114 27528 2835 976 1037 2379 1041 820 -2.90 0.00004 

1420518_a_at Igsf9 immunoglobulin superfamily, member 9 93842 648 634 643 921 509 317 -2.90 0.002 

1437422_at Sema5a sema domain, seven thrombospondin repeats (type 1 and type 1-

like), transmembrane domain (TM) and short cytoplasmic domain, 

(semaphorin) 5A 

20356 1698 981 693 1562 940 534 -2.93 0.001 

1427019_at Ptprz1 protein tyrosine phosphatase, receptor type Z, polypeptide 1 19283 3136 3922 3540 3893 3168 1327 -2.93 0.00002 

1421027_a_at Mef2c myocyte enhancer factor 2C 17260 2673 1597 972 2514 1694 854 -2.94 0.00002 

1438886_at Heyl hairy/enhancer-of-split related with YRPW motif-like 56198 1213 1722 1813 1831 1479 606 -3.02 0.005 

1422861_s_at Pdlim5 PDZ and LIM domain 5 56376 1520 574 587 1358 499 448 -3.03 0.000007 

1436736_x_at D0H4S114 DNA segment, human D4S114 27528 4527 1701 1559 3896 1847 1285 -3.03 0.00009 

1415923_at Ndn necdin 17984 2186 1652 1489 2317 1765 764 -3.03 0.000003 

1449876_at Prkg1 protein kinase, cGMP-dependent, type I 19091 522 270 273 534 314 172 -3.10 0.02 

1460292_a_at Smarca1 SWI/SNF related, matrix associated, actin dependent regulator of 

chromatin, subfamily a, member 1 

93761 532 258 229 478 225 154 -3.10 0.000009 

1420816_at Ywhag tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation 

protein, gamma polypeptide 

22628 282 232 24 242 210 77 -3.12 0.00007 

1452284_at Ptprz1 protein tyrosine phosphatase, receptor type Z, polypeptide 1 19283 5834 6396 6604 6978 4095 2212 -3.15 0.0002 
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1450944_at Cspg4 chondroitin sulfate proteoglycan 4 121021 2950 2322 2043 3391 1949 1074 -3.16 0.0003 

1427280_at Scn2a1 sodium channel, voltage-gated, type II, alpha 1 110876 405 391 294 526 320 165 -3.19 0.001 

1434802_s_at Ntf3 neurotrophin 3 18205 1438 1549 1601 1608 1120 505 -3.19 0.0001 

1420924_at Timp2 tissue inhibitor of metalloproteinase 2 21858 4447 2888 1116 4616 3785 1443 -3.20 0.000001 

1421413_a_at Pdlim5 PDZ and LIM domain 5 56376 1083 385 357 952 358 297 -3.21 0.00001 

1459211_at Gli2 GLI-Kruppel family member GLI2 14633 626 825 781 942 651 293 -3.22 0.0006 

1436791_at Wnt5a wingless-related MMTV integration site 5A 22418 706 850 713 786 717 241 -3.26 0.00002 

1450786_x_at Pdlim5 PDZ and LIM domain 5 56376 3095 1273 1382 2923 1191 895 -3.27 0.0000009 

1416504_at Ulk1 Unc-51 like kinase 1 (C. elegans) 22241 331 259 149 310 231 94 -3.29 0.02 

1421955_a_at Nedd4 neural precursor cell expressed, developmentally down-regulated 4 17999 4175 2268 1932 4365 2670 1326 -3.29 0.000001 

1439556_at Ncam1 neural cell adhesion molecule 1 17967 840 957 1281 1242 644 374 -3.32 0.004 

1421239_at Il6st interleukin 6 signal transducer 16195 1217 641 455 1220 907 366 -3.33 0.00001 

1425444_a_at Tgfbr2 transforming growth factor, beta receptor II 21813 389 251 90 474 366 140 -3.39 0.0008 

1451022_at Lrp6 low density lipoprotein receptor-related protein 6 16974 207 120 45 199 131 58 -3.46 0.0002 

1415900_a_at Kit kit oncogene 16590 224 229 153 266 226 74 -3.58 0.03 

1430309_at Nipbl Nipped-B homolog (Drosophila) 71175 555 342 115 493 442 131 -3.78 0.006 

1425070_at Ntrk3 neurotrophic tyrosine kinase, receptor, type 3 18213 432 387 283 506 358 133 -3.79 0.002 

1426865_a_at Ncam1 neural cell adhesion molecule 1 17967 4525 3020 2488 4655 2914 1221 -3.81 0.00001 

1450803_at Ntf3 neurotrophin 3 18205 1538 1352 1448 1623 1055 421 -3.86 0.0001 

1420696_at Sema3c sema domain, immunoglobulin domain (Ig), short basic domain, 

secreted, (semaphorin) 3C 

20348 1722 945 955 1502 729 389 -3.86 0.0000004 

1421306_a_at Hdac9 histone deacetylase 9 79221 305 172 99 215 135 54 -3.94 0.0005 

1453724_a_at Serpinf1 serine (or cysteine) peptidase inhibitor, clade F, member 1 20317 5890 3518 3372 5656 2741 1400 -4.04 0.0000001 
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1432344_a_at Aplp2 amyloid beta (A4) precursor-like protein 2 11804 4061 2836 1879 4704 2582 1163 -4.05 0.000009 

1460305_at Itga3 integrin alpha 3 16400 702 715 415 747 569 184 -4.05 0.002 

1422014_at Foxp2 forkhead box P2 114142 402 281 164 414 238 101 -4.09 0.0002 

1427688_a_at Ptprs protein tyrosine phosphatase, receptor type, S 19280 213 90 64 211 124 51 -4.11 0.03 

1421850_at Mtap1b microtubule-associated protein 1B 17755 321 179 106 278 160 67 -4.14 0.005 

1426179_a_at Twsg1 twisted gastrulation homolog 1 (Drosophila) 65960 1585 840 684 1549 918 373 -4.15 0.00006 

1421832_at Twsg1 twisted gastrulation homolog 1 (Drosophila) 65960 4431 2685 2017 4815 2345 1154 -4.17 0.0000009 

1450437_a_at Ncam1 neural cell adhesion molecule 1 17967 633 313 183 560 291 127 -4.40 0.0003 

1442467_at Nav2 neuron navigator 2 78286 256 224 391 668 223 146 -4.57 0.004 

1439713_at Itga1 integrin alpha 1 109700 410 304 118 425 278 92 -4.61 0.0002 

1440970_at Kalrn kalirin, RhoGEF kinase 545156 393 365 487 325 275 70 -4.65 0.002 

1427771_x_at Itgb1 integrin beta 1 (fibronectin receptor beta) 16412 1680 2297 732 2442 1692 505 -4.83 0.001 

1451550_at Ephb3 Eph receptor B3 13845 655 344 323 633 328 130 -4.86 0.006 

1449548_at Efnb2 ephrin B2 13642 626 323 205 479 304 97 -4.93 0.0006 

1448818_at Wnt5a wingless-related MMTV integration site 5A 22418 653 606 253 721 519 140 -5.14 0.000008 

1441057_at Myh10 myosin, heavy polypeptide 10, non-muscle 77579 233 220 105 293 218 57 -5.16 0.002 

1443315_at Dmd dystrophin, muscular dystrophy 13405 623 553 418 811 338 146 -5.55 0.00007 

1421851_at Mtap1b microtubule-associated protein 1B 17755 2988 1811 1372 2899 1315 505 -5.74 0.000005 

1450397_at Mtap1b microtubule-associated protein 1B 17755 439 236 98 416 256 67 -6.20 0.01 

1424848_at Kcnma1 potassium large conductance calcium-activated channel, subfamily 

M, alpha member 1 

16531 198 143 95 211 133 29 -7.20 0.005 

1421426_at Hhip Hedgehog-interacting protein 15245 616 323 306 592 238 82 -7.26 0.000004 

1455277_at Hhip Hedgehog-interacting protein 15245 1020 806 831 1058 605 135 -7.86 0.00002 
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1450043_at Fzd7 frizzled homolog 7 (Drosophila) 14369 233 108 68 207 105 24 -8.51 0.0008 

1456379_x_at Dner delta/notch-like EGF-related receptor 227325 429 105 86 281 116 33 -8.55 0.00004 

1438083_at Hhip Hedgehog-interacting protein 15245 525 362 217 639 306 50 -12.81 0.00001 

1425426_a_at Mef2a myocyte enhancer factor 2A 17258 361 123 58 300 202 23 -13.03 0.00009 

1431162_a_at Enah enabled homolog (Drosophila) 13800 321 104 108 260 80 14 -19.06 0.0001 

1437933_at Hhip Hedgehog-interacting protein 15245 1160 928 476 1468 666 54 -26.96 0.000002 
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Affymetrix 

Probe set ID 
Gene Symbol Gene Name 

Entrez 

Gene ID 

Mean 

WT 

aorta 6 

weeks 

Mean 

WT 

aorta 32 

weeks 

Mean 

WT 

aorta 78 

weeks 

Mean 

ApoE-/- 

aorta 6 

weeks 

Mean 

ApoE-/- 

aorta 32 

weeks 

Mean 

ApoE-/- 

aorta 78 

weeks 

Fold change 

ApoE-/- 

aorta 78 

weeks vs. 6 

weeks 

p ANOVA 

1427682_a_at Egr2 early growth response 2 13654 23 75 125 39 203 395 10.2 0.0008 

1435349_at Nrp2 neuropilin 2 18187 144 221 258 172 631 1151 6.70 0.000004 

1448162_at Vcam1 vascular cell adhesion molecule 1 22329 1927 2139 2776 1455 7397 8838 6.07 0.0000001 

1418939_at Hlx H2.0-like homeobox 15284 96 177 76 73 232 436 5.99 0.009 

1451314_a_at Vcam1 vascular cell adhesion molecule 1 22329 902 949 1671 857 3474 5052 5.89 0.000001 

1419156_at Sox4 SRY (sex determining region Y)-box 4 20677 45 29 24 52 139 266 5.07 0.002 

1456778_at Nrp2 neuropilin 2 18187 177 400 352 199 748 912 4.59 0.00001 

1415989_at Vcam1 vascular cell adhesion molecule 1 22329 1174 1182 1475 1035 3424 4723 4.56 0.0000004 

1427683_at Egr2 early growth response 2 13654 116 167 305 129 304 582 4.52 0.00004 

1426528_at Nrp2 neuropilin 2 18187 374 498 438 366 711 1099 3.01 0.0001 

1433575_at Sox4 SRY (sex determining region Y)-box 4 20677 1496 1042 950 1407 2361 2518 1.79 0.0005 

1437347_at Ednrb endothelin receptor type B 13618 604 655 708 488 1040 812 1.66 0.04 
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Affymetrix 

Probe set ID 
Gene Symbol Gene Name 

Entrez 

Gene ID 

Mean 

WT 

aorta 6 

weeks 

Mean 

WT 

aorta 32 

weeks 

Mean 

WT 

aorta 78 

weeks 

Mean 

ApoE-/- 

aorta 6 

weeks 

Mean 

ApoE-/- 

aorta 32 

weeks 

Mean 

ApoE-/- 

aorta 78 

weeks 

Fold change 

ApoE-/- 

aorta 78 

weeks vs. 6 

weeks 

p ANOVA 

1420416_at Sema3a sema domain, immunoglobulin domain (Ig), short basic domain, 

secreted, (semaphorin) 3A 

20346 592 635 742 571 371 353 -1.62 0.0007 

1420508_at Sema3f sema domain, immunoglobulin domain (Ig), short basic domain, 

secreted, (semaphorin) 3F 

20350 612 478 695 562 440 339 -1.66 0.009 

1449865_at Sema3a sema domain, immunoglobulin domain (Ig), short basic domain, 

secreted, (semaphorin) 3A 

20346 309 247 260 222 152 108 -2.05 0.0003 

1434788_at Fzd3 frizzled class receptor 3 14365 340 236 236 278 208 131 -2.12 0.0006 

1425840_a_at Sema3f sema domain, immunoglobulin domain (Ig), short basic domain, 

secreted, (semaphorin) 3F 

20350 1159 829 701 1090 946 494 -2.21 0.005 

1444706_at Nav2 neuron navigator 2 78286 498 427 270 526 428 185 -2.84 0.003 

1434802_s_at Ntf3 neurotrophin 3 18205 1438 1549 1601 1608 1120 505 -3.19 0.0001 

1450803_at Ntf3 neurotrophin 3 18205 1538 1352 1448 1623 1055 421 -3.86 0.0001 

1443968_at Adarb1 adenosine deaminase, RNA-specific, B1 110532 661 471 231 803 428 202 -3.98 0.0002 

1442467_at Nav2 neuron navigator 2 78286 256 224 391 668 223 146 -4.57 0.004 

 

C. Sympathetic nervous system development (GO: 0048485) 

Affymetrix 

Probe set ID 
Gene Symbol Gene Name 

Entrez 

Gene ID 

Mean 

WT 

aorta 6 

weeks 

Mean 

WT 

aorta 32 

weeks 

Mean 

WT 

aorta 78 

weeks 

Mean 

ApoE-/- 

aorta 6 

weeks 

Mean 

ApoE-/- 

aorta 32 

weeks 

Mean 

ApoE-/- 

aorta 78 

weeks 

Fold change 

ApoE-/- 

aorta 78 

weeks vs. 6 

weeks 

p ANOVA 

1435349_at Nrp2 neuropilin 2 18187 144 221 258 172 631 1151 6.70 0.000004 
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Affymetrix 

Probe set ID 
Gene Symbol Gene Name 

Entrez 

Gene ID 

Mean 

WT 

aorta 6 

weeks 

Mean 

WT 

aorta 32 

weeks 

Mean 

WT 

aorta 78 

weeks 

Mean 

ApoE-/- 

aorta 6 

weeks 

Mean 

ApoE-/- 

aorta 32 

weeks 

Mean 

ApoE-/- 

aorta 78 

weeks 

Fold change 

ApoE-/- 

aorta 78 

weeks vs. 6 

weeks 

p ANOVA 

1419156_at Sox4 SRY (sex determining region Y)-box 4 20677 45 29 24 52 139 266 5.07 0.002 

1456778_at Nrp2 neuropilin 2 18187 177 400 352 199 748 912 4.59 0.00001 

1426528_at Nrp2 neuropilin 2 18187 374 498 438 366 711 1099 3.01 0.0001 

1433575_at Sox4 SRY (sex determining region Y)-box 4 20677 1496 1042 950 1407 2361 2518 1.79 0.0005 

1420416_at Sema3a 
sema domain, immunoglobulin domain (Ig), short basic domain, 

secreted, (semaphorin) 3A 
20346 592 635 742 571 371 353 -1.62 0.0007 

1420508_at Sema3f 
sema domain, immunoglobulin domain (Ig), short basic domain, 

secreted, (semaphorin) 3F 
20350 612 478 695 562 440 339 -1.66 0.009 

1449865_at Sema3a 
sema domain, immunoglobulin domain (Ig), short basic domain, 

secreted, (semaphorin) 3A 
20346 309 247 260 222 152 108 -2.05 0.0003 

1434788_at Fzd3 frizzled class receptor 3 14365 340 236 236 278 208 131 -2.12 0.0006 

1425840_a_at Sema3f 
sema domain, immunoglobulin domain (Ig), short basic domain, 

secreted, (semaphorin) 3F 
20350 1159 829 701 1090 946 494 -2.21 0.005 

 

D. Axon (GO: 0030424) 

Affymetrix 

Probe set ID 
Gene Symbol Gene Name 

Entrez 

Gene ID 

Mean 

WT 

aorta 6 

weeks 

Mean 

WT 

aorta 32 

weeks 

Mean 

WT 

aorta 78 

weeks 

Mean 

ApoE-/- 

aorta 6 

weeks 

Mean 

ApoE-/- 

aorta 32 

weeks 

Mean 

ApoE-/- 

aorta 78 

weeks 

Fold change 

ApoE-/- 

aorta 78 

weeks vs. 6 

weeks 

p ANOVA 

1423478_at Prkcb protein kinase C, beta 18751 16 30 23 23 185 358 15.24 0.00005 

1448710_at Cxcr4 chemokine (C-X-C motif) receptor 4 12767 80 112 107 77 529 1120 14.5 0.00001 
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Affymetrix 

Probe set ID 
Gene Symbol Gene Name 

Entrez 

Gene ID 

Mean 

WT 

aorta 6 

weeks 

Mean 

WT 

aorta 32 

weeks 

Mean 

WT 

aorta 78 

weeks 

Mean 

ApoE-/- 

aorta 6 

weeks 

Mean 

ApoE-/- 

aorta 32 

weeks 

Mean 

ApoE-/- 

aorta 78 

weeks 

Fold change 

ApoE-/- 

aorta 78 

weeks vs. 6 

weeks 

p ANOVA 

1455269_a_at Coro1a coronin, actin binding protein 1A 12721 169 336 625 275 1527 3332 12.12 0.00001 

1416246_a_at Coro1a coronin, actin binding protein 1A 12721 334 325 498 336 1586 3943 11.75 0.00001 

1419127_at Npy neuropeptide Y 109648 108 319 439 119 643 1319 11.11 0.005 

1420380_at Ccl2 chemokine (C-C motif) ligand 2 20296 99 49 126 95 414 915 9.65 0.0001 

1424471_at Rapgef3 Rap guanine nucleotide exchange factor (GEF) 3 223864 48 79 109 30 179 247 8.20 0.007 

1460419_a_at Prkcb protein kinase C, beta 18751 250 359 588 265 1076 2126 8.01 0.000002 

1417788_at Sncg synuclein, gamma 20618 439 893 1492 340 1742 2668 7.85 0.000002 

1435349_at Nrp2 neuropilin 2 18187 144 221 258 172 631 1151 6.70 0.000004 

1419675_at Ngf nerve growth factor 18049 96 124 154 81 284 480 5.92 0.0002 

1450731_s_at Tnfrsf21 tumor necrosis factor receptor superfamily, member 21 94185 139 239 322 135 462 774 5.75 0.00005 

1429055_at Shtn1 shootin 1 71653 151 242 229 146 492 829 5.67 0.0000009 

1424942_a_at Myc myelocytomatosis oncogene 17869 145 158 147 90 250 500 5.53 0.0004 

1434653_at Ptk2b PTK2 protein tyrosine kinase 2 beta 19229 261 463 424 263 748 1346 5.12 0.000001 

1418099_at Tnfrsf1b tumor necrosis factor receptor superfamily, member 1b 21938 300 400 416 308 986 1555 5.05 0.000006 

1419754_at Myo5a myosin VA 17918 220 271 225 234 836 1112 4.76 0.000002 

1416956_at Kcnab2 potassium voltage-gated channel, shaker-related subfamily, beta 

member 2 

16498 55 104 109 89 245 420 4.74 0.01 

1427038_at Penk preproenkephalin 18619 426 738 1575 396 1376 1826 4.61 0.000007 

1456778_at Nrp2 neuropilin 2 18187 177 400 352 199 748 912 4.59 0.00001 

1431320_a_at Myo5a myosin VA 17918 242 253 283 248 618 1092 4.40 0.00006 

1450027_at Sdc3 syndecan 3 20970 682 646 963 681 1884 3001 4.40 0.0000001 

1417378_at Cadm1 cell adhesion molecule 1 54725 353 320 421 290 608 1230 4.24 0.000009 
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Affymetrix 

Probe set ID 
Gene Symbol Gene Name 

Entrez 

Gene ID 

Mean 

WT 

aorta 6 

weeks 

Mean 

WT 

aorta 32 

weeks 

Mean 

WT 

aorta 78 

weeks 

Mean 

ApoE-/- 

aorta 6 

weeks 

Mean 

ApoE-/- 

aorta 32 

weeks 

Mean 

ApoE-/- 

aorta 78 

weeks 

Fold change 

ApoE-/- 

aorta 78 

weeks vs. 6 

weeks 

p ANOVA 

1434069_at Prex1 phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange 

factor 1 

277360 329 307 310 286 624 1159 4.06 0.00001 

1420980_at Pak1 p21 (RAC1) activated kinase 1 18479 206 351 527 184 452 714 3.88 0.0002 

1440802_at Clasp2 CLIP associating protein 2 76499 80 60 195 60 65 228 3.80 0.0001 

1420653_at Tgfb1 transforming growth factor, beta 1 21803 516 538 551 440 1292 1670 3.79 0.0000008 

1436205_at Nfasc neurofascin 269116 115 213 425 121 331 448 3.71 0.0001 

1450070_s_at Pak1 p21 (RAC1) activated kinase 1 18479 121 221 345 128 285 461 3.59 0.00002 

1439662_at Homer1 homer scaffolding protein 1 26556 101 190 47 61 194 216 3.54 0.02 

1449473_s_at Cd40 CD40 antigen 21939 84 45 100 68 145 230 3.39 0.03 

1417376_a_at Cadm1 cell adhesion molecule 1 54725 233 253 273 241 443 802 3.33 0.00004 

1417870_x_at Ctsz cathepsin Z 64138 2419 2069 2395 2250 4491 7458 3.31 0.000004 

1416882_at Rgs10 regulator of G-protein signalling 10 67865 904 825 1195 831 1420 2749 3.31 0.00002 

1425525_a_at P2rx4 purinergic receptor P2X, ligand-gated ion channel 4 18438 981 1075 1000 992 2007 3273 3.30 0.000005 

1452202_at Pde2a phosphodiesterase 2A, cGMP-stimulated 207728 132 257 146 97 229 315 3.24 0.002 

1417869_s_at Ctsz cathepsin Z 64138 1722 2299 1558 1723 4678 5493 3.19 0.00002 

1450970_at Got1 glutamic-oxaloacetic transaminase 1, soluble 14718 316 334 392 278 478 879 3.16 0.00001 

1417377_at Cadm1 cell adhesion molecule 1 54725 70 106 76 97 176 303 3.13 0.03 

1423135_at Thy1 thymus cell antigen 1, theta 21838 627 1056 1441 602 1257 1828 3.04 0.00006 

1426528_at Nrp2 neuropilin 2 18187 374 498 438 366 711 1099 3.01 0.0001 

1419296_at Arhgap4 Rho GTPase activating protein 4 171207 98 128 194 112 189 335 2.98 0.002 

1451596_a_at Sphk1 sphingosine kinase 1 20698 244 221 377 250 360 741 2.96 0.00002 

1451461_a_at Aldoc aldolase C, fructose-bisphosphate 11676 126 87 166 81 126 236 2.91 0.003 

1436051_at Myo5a myosin VA 17918 576 563 492 535 998 1526 2.85 0.000007 
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Affymetrix 

Probe set ID 
Gene Symbol Gene Name 

Entrez 

Gene ID 

Mean 

WT 

aorta 6 

weeks 

Mean 

WT 

aorta 32 

weeks 

Mean 

WT 

aorta 78 

weeks 

Mean 

ApoE-/- 

aorta 6 

weeks 

Mean 

ApoE-/- 

aorta 32 

weeks 

Mean 

ApoE-/- 

aorta 78 

weeks 

Fold change 

ApoE-/- 

aorta 78 

weeks vs. 6 

weeks 

p ANOVA 

1436482_a_at Sdc3 syndecan 3 20970 142 143 248 206 465 583 2.83 0.000005 

1440481_at Stat1 signal transducer and activator of transcription 1 20846 104 104 103 117 165 316 2.71 0.002 

1452527_a_at P2rx4 purinergic receptor P2X, ligand-gated ion channel 4 18438 795 656 705 788 1380 2060 2.62 0.00002 

1460365_a_at Dnm1 dynamin 1 13429 360 488 540 351 619 915 2.60 0.0003 

1420915_at Stat1 signal transducer and activator of transcription 1 20846 300 422 402 313 628 778 2.49 0.00002 

1436958_x_at Tpm3 tropomyosin 3, gamma 59069 1979 1809 2504 1784 2952 4300 2.41 0.00001 

1420979_at Pak1 p21 (RAC1) activated kinase 1 18479 117 153 183 151 188 365 2.41 0.0002 

1443086_at Alcam activated leukocyte cell adhesion molecule 11658 132 94 114 110 183 263 2.38 0.003 

1437302_at Adrb2 adrenergic receptor, beta 2 11555 177 216 102 100 244 233 2.32 0.02 

1447707_s_at Pde2a phosphodiesterase 2A, cGMP-stimulated 207728 449 827 783 473 891 1092 2.31 0.0001 

1431619_a_at Dtnbp1 dystrobrevin binding protein 1 94245 606 702 737 566 907 1258 2.22 0.0002 

1425536_at Stx3 syntaxin 3 20908 726 546 694 525 780 1156 2.20 0.00002 

1433532_a_at Mbp myelin basic protein 17196 199 406 286 170 516 373 2.20 0.0005 

1417868_a_at Ctsz cathepsin Z 64138 5736 5108 5096 4892 8001 10740 2.20 0.00003 

1424470_a_at Rapgef3 Rap guanine nucleotide exchange factor (GEF) 3 223864 331 405 457 280 487 612 2.19 0.002 

1459866_x_at Cyfip1 cytoplasmic FMR1 interacting protein 1 20430 2214 1931 4813 2570 2430 5622 2.19 0.003 

1418701_at Comt catechol-O-methyltransferase 12846 365 543 655 378 654 819 2.17 0.001 

1416531_at Gsto1 glutathione S-transferase omega 1 14873 1050 1347 1262 1054 1423 2257 2.14 0.0007 

1450033_a_at Stat1 signal transducer and activator of transcription 1 20846 462 539 381 447 740 951 2.12 0.0008 

1448564_at Cib1 calcium and integrin binding 1 (calmyrin) 23991 634 676 740 622 957 1300 2.09 0.002 

1417627_a_at Limk1 LIM-domain containing, protein kinase 16885 172 228 202 165 299 343 2.08 0.005 

1444089_at Sptbn1 spectrin beta, non-erythrocytic 1 20742 369 360 441 417 549 868 2.08 0.00002 

1418829_a_at Eno2 enolase 2, gamma neuronal 13807 196 295 276 201 357 415 2.07 0.0002 
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Affymetrix 

Probe set ID 
Gene Symbol Gene Name 

Entrez 

Gene ID 

Mean 

WT 

aorta 6 

weeks 

Mean 

WT 

aorta 32 

weeks 

Mean 

WT 

aorta 78 

weeks 

Mean 

ApoE-/- 

aorta 6 

weeks 

Mean 

ApoE-/- 

aorta 32 

weeks 

Mean 

ApoE-/- 

aorta 78 

weeks 

Fold change 

ApoE-/- 

aorta 78 

weeks vs. 6 

weeks 

p ANOVA 

1426475_at Hmbs hydroxymethylbilane synthase 15288 292 401 439 312 504 637 2.04 0.002 

1436930_x_at Hmbs hydroxymethylbilane synthase 15288 265 265 397 278 386 564 2.03 0.005 

1416514_a_at Fscn1 fascin actin-bundling protein 1 14086 639 483 355 708 1135 1424 2.01 0.0003 

1437467_at Alcam activated leukocyte cell adhesion molecule 11658 1218 853 801 1161 1573 2332 2.01 0.00001 

1450468_at Myoc myocilin 17926 219 361 481 191 426 374 1.96 0.002 

1460415_a_at Cd40 CD40 antigen 21939 95 54 83 119 130 222 1.88 0.01 

1428104_at Tpx2 TPX2, microtubule-associated 72119 192 118 95 112 209 198 1.77 0.005 

1435495_at Adora1 adenosine A1 receptor 11539 149 258 96 89 185 158 1.77 0.004 

1436037_at Itga4 integrin alpha 4 16401 583 457 457 585 753 1018 1.74 0.002 

1441248_at Clcn3 chloride channel, voltage-sensitive 3 12725 133 79 240 167 115 249 1.49 0.005 

1448260_at Uchl1 ubiquitin carboxy-terminal hydrolase L1 22223 921 1386 2253 1093 1256 1577 1.44 0.001 

1431292_a_at Twf2 twinfilin actin binding protein 2 23999 311 331 170 266 334 381 1.43 0.008 

1437466_at Alcam activated leukocyte cell adhesion molecule 11658 1174 896 721 1080 1307 1484 1.37 0.0005 

1448280_at Syp synaptophysin 20977 132 270 250 150 227 203 1.35 0.01 

1427567_a_at Tpm3 tropomyosin 3, gamma 59069 1164 720 702 1098 1349 1470 1.34 0.00002 

1426300_at Alcam activated leukocyte cell adhesion molecule 11658 837 704 452 853 812 1083 1.27 0.0003 

1435293_at Adam22 a disintegrin and metallopeptidase domain 22 11496 188 320 465 205 304 258 1.26 0.0009 

1449281_at Nrtn neurturin 18188 798 1222 1747 897 950 1097 1.22 0.002 

1422168_a_at Bdnf brain derived neurotrophic factor 12064 379 154 134 211 196 244 1.16 0.01 

1426301_at Alcam activated leukocyte cell adhesion molecule 11658 1020 869 430 1033 1316 1191 1.15 0.00005 

1456741_s_at Gpm6a glycoprotein m6a 234267 321 375 691 339 405 372 1.10 0.005 

1416936_at Aatk apoptosis-associated tyrosine kinase 11302 183 256 405 222 288 238 1.07 0.001 

1437064_at Ar androgen receptor 11835 496 815 1038 657 700 592 -1.11 0.001 



SUPPLEMENT 

126 

Affymetrix 

Probe set ID 
Gene Symbol Gene Name 

Entrez 

Gene ID 

Mean 

WT 

aorta 6 

weeks 

Mean 

WT 

aorta 32 

weeks 

Mean 

WT 

aorta 78 

weeks 

Mean 

ApoE-/- 

aorta 6 

weeks 

Mean 

ApoE-/- 

aorta 32 

weeks 

Mean 

ApoE-/- 

aorta 78 

weeks 

Fold change 

ApoE-/- 

aorta 78 

weeks vs. 6 

weeks 

p ANOVA 

1417319_at Nectin3 nectin cell adhesion molecule 3 58998 242 192 118 204 171 170 -1.2 0.006 

1450923_at Tgfb2 transforming growth factor, beta 2 21808 1865 763 913 1661 846 1372 -1.21 0.00002 

1423250_a_at Tgfb2 transforming growth factor, beta 2 21808 1242 785 543 952 797 724 -1.31 0.002 

1420375_at Kif3a kinesin family member 3A 16568 880 427 407 698 599 474 -1.47 0.001 

1460214_at Pcp4 Purkinje cell protein 4 18546 178 200 303 147 184 96 -1.53 0.001 

1425270_at Kif1b kinesin family member 1B 16561 446 260 160 355 267 226 -1.57 0.0003 

1458492_x_at Ntm neurotrimin 235106 274 111 166 270 84 171 -1.58 0.007 

1436819_at Sept6 septin 6 56526 411 539 598 456 460 286 -1.6 0.0003 

1420416_at Sema3a sema domain, immunoglobulin domain (Ig), short basic domain, 

secreted, (semaphorin) 3A 

20346 592 635 742 571 371 353 -1.62 0.0007 

1449522_at Unc5c unc-5 netrin receptor C 22253 1347 1626 1830 1126 1257 695 -1.62 0.00003 

1433600_at Adra2a adrenergic receptor, alpha 2a 11551 514 662 743 565 691 344 -1.64 0.005 

1420472_at Mtpn myotrophin 14489 1844 1008 761 1637 1166 915 -1.79 0.00004 

1455779_at Map1a microtubule-associated protein 1 A 17754 667 856 1039 817 703 455 -1.8 0.001 

1418690_at Ptprz1 protein tyrosine phosphatase, receptor type Z, polypeptide 1 19283 342 326 409 325 286 174 -1.87 0.01 

1450040_at Timp2 tissue inhibitor of metalloproteinase 2 21858 4561 3836 2257 4847 4523 2578 -1.88 0.000003 

1455188_at Ephb1 Eph receptor B1 270190 416 222 152 277 142 147 -1.89 0.0009 

1436043_at Scn7a sodium channel, voltage-gated, type VII, alpha 20272 824 1112 671 989 1056 524 -1.89 0.0001 

1423331_a_at Nectin3 nectin cell adhesion molecule 3 58998 798 487 362 703 494 355 -1.98 0.00003 

1437497_a_at Hsp90aa1 heat shock protein 90, alpha (cytosolic), class A member 1 15519 5723 2848 2686 4499 2669 2264 -1.99 0.0005 

1436876_at Rgs7bp regulator of G-protein signalling 7 binding protein 52882 1395 1561 1446 1411 1562 697 -2.02 0.00007 

1459457_at Camk2d calcium/calmodulin-dependent protein kinase II, delta 108058 781 570 418 816 545 401 -2.04 0.001 

1426864_a_at Ncam1 neural cell adhesion molecule 1 17967 5818 5284 6280 5493 4292 2691 -2.04 0.0009 
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Probe set ID 
Gene Symbol Gene Name 

Entrez 

Gene ID 

Mean 

WT 

aorta 6 

weeks 

Mean 

WT 

aorta 32 

weeks 

Mean 

WT 

aorta 78 

weeks 
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ApoE-/- 

aorta 6 
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ApoE-/- 

aorta 32 
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Mean 

ApoE-/- 

aorta 78 

weeks 

Fold change 

ApoE-/- 

aorta 78 

weeks vs. 6 

weeks 

p ANOVA 

1449865_at Sema3a sema domain, immunoglobulin domain (Ig), short basic domain, 

secreted, (semaphorin) 3A 

20346 309 247 260 222 152 108 -2.05 0.0003 

1432004_a_at Dnm2 dynamin 2 13430 392 371 174 429 440 208 -2.07 0.00008 

1450038_s_at Usp9x ubiquitin specific peptidase 9, X chromosome 22284 602 551 524 735 457 354 -2.08 0.006 

1419256_at Sptbn1 spectrin beta, non-erythrocytic 1 20742 1848 1034 1192 1997 1043 960 -2.08 0.00003 

1424893_at Ndel1 nudE neurodevelopment protein 1 like 1 83431 589 345 258 562 383 269 -2.09 0.0006 

1452379_at Auts2 autism susceptibility candidate 2 319974 398 364 179 331 255 158 -2.09 0.006 

1429021_at Epha4 Eph receptor A4 13838 285 252 191 281 263 134 -2.1 0.002 

1457139_at Auts2 autism susceptibility candidate 2 319974 3168 2656 2496 3522 2293 1676 -2.1 0.004 

1426565_at Igf1r insulin-like growth factor I receptor 16001 855 656 557 894 689 425 -2.11 0.00004 

1434788_at Fzd3 frizzled class receptor 3 14365 340 236 236 278 208 131 -2.12 0.0006 

1426086_a_at Fmr1 fragile X mental retardation 1 14265 310 177 173 262 139 123 -2.14 0.008 

1427495_at Scn7a sodium channel, voltage-gated, type VII, alpha 20272 317 406 219 385 317 179 -2.15 0.0005 

1460286_at Sept6 septin 6 56526 208 240 236 260 178 121 -2.15 0.004 

1415877_at Dpysl3 dihydropyrimidinase-like 3 22240 1396 989 1066 1613 1105 742 -2.17 0.01 

1423872_a_at Dag1 dystroglycan 1 13138 1787 1488 1041 2019 1467 926 -2.18 0.0005 

1434766_at Prkaa2 protein kinase, AMP-activated, alpha 2 catalytic subunit 108079 979 1180 867 982 830 448 -2.19 0.00004 

1435933_at Scn2a sodium channel, voltage-gated, type II, alpha 110876 447 462 580 585 392 266 -2.2 0.003 

1418497_at Fgf13 fibroblast growth factor 13 14168 1336 1516 1982 1500 1170 678 -2.21 0.00007 

1427293_a_at Auts2 autism susceptibility candidate 2 319974 535 351 201 468 318 210 -2.22 0.009 

1425292_at Dtna dystrobrevin alpha 13527 745 384 270 468 297 208 -2.25 0.00008 

1433825_at Ntrk3 neurotrophic tyrosine kinase, receptor, type 3 18213 2815 3219 2805 3246 2590 1433 -2.26 0.00001 

1437390_x_at Stx1a syntaxin 1A (brain) 20907 2144 2174 1812 2304 1827 1008 -2.28 0.00004 
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Probe set ID 
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Gene ID 

Mean 

WT 

aorta 6 

weeks 
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WT 

aorta 32 
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WT 
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aorta 6 
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aorta 78 

weeks vs. 6 

weeks 

p ANOVA 

1416168_at Serpinf1 serine (or cysteine) peptidase inhibitor, clade F, member 1 20317 9990 7808 6654 9590 7008 4163 -2.3 0.0000009 

1434917_at Cobl cordon-bleu WH2 repeat 12808 698 431 535 635 387 274 -2.32 0.0005 

1428967_at Igf1r insulin-like growth factor I receptor 16001 571 494 387 594 476 253 -2.35 0.001 

1433504_at Pygb brain glycogen phosphorylase 110078 2663 2588 3256 2997 2770 1273 -2.35 0.0001 

1428948_at Kcnma1 potassium large conductance calcium-activated channel, subfamily M, 

alpha member 1 

16531 1313 1673 1494 1674 1297 711 -2.36 0.0004 

1450384_at Bace1 beta-site APP cleaving enzyme 1 23821 646 484 315 716 484 304 -2.36 0.0005 

1424398_at Dhx36 DEAH (Asp-Glu-Ala-His) box polypeptide 36 72162 1099 832 305 975 944 413 -2.36 0.0001 

1458534_at Rgs7bp regulator of G-protein signalling 7 binding protein 52882 491 461 651 493 349 208 -2.37 0.00002 

1438680_at Auts2 autism susceptibility candidate 2 319974 3299 2291 2458 3970 1826 1654 -2.4 0.00003 

1423221_at Tubb4a tubulin, beta 4A class IVA 22153 1339 1400 884 1627 1253 670 -2.43 0.0004 

1441507_at Sptbn1 spectrin beta, non-erythrocytic 1 20742 639 537 336 783 564 320 -2.45 0.00007 

1448541_at Klc1 kinesin light chain 1 16593 682 412 303 673 442 274 -2.46 0.0002 

1448468_a_at Kcnab1 potassium voltage-gated channel, shaker-related subfamily, beta 

member 1 

16497 5653 5003 5882 5456 3743 2217 -2.46 0.00002 

1439527_at Pgr progesterone receptor 18667 1070 1270 1283 1023 564 415 -2.46 0.0002 

1456131_x_at Dag1 dystroglycan 1 13138 1930 1503 1015 2194 1497 889 -2.47 0.0004 

1437967_at Ccdc141 coiled-coil domain containing 141 545428 787 564 576 530 462 215 -2.47 0.0003 

1456072_at Ppp1r9a protein phosphatase 1, regulatory subunit 9A 243725 572 559 542 620 434 251 -2.47 0.004 

1425987_a_at Kcnma1 potassium large conductance calcium-activated channel, subfamily M, 

alpha member 1 

16531 869 718 649 1004 538 406 -2.48 0.0002 

1427569_a_at Utrn utrophin 22288 1009 880 682 985 673 392 -2.51 0.0002 

1429463_at Prkaa2 protein kinase, AMP-activated, alpha 2 catalytic subunit 108079 1407 1460 827 1475 1117 580 -2.54 0.0005 
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1456069_at Dtna dystrobrevin alpha 13527 792 393 280 510 261 198 -2.58 0.00002 

1431973_at Sept6 septin 6 56526 216 231 334 234 115 90 -2.6 0.009 

1425071_s_at Ntrk3 neurotrophic tyrosine kinase, receptor, type 3 18213 1353 1313 1101 1485 1088 562 -2.64 0.00002 

1437559_at Rgs7bp regulator of G-protein signalling 7 binding protein 52882 841 957 658 931 892 351 -2.65 0.000009 

1454729_at Tmem108 transmembrane protein 108 81907 246 193 158 345 172 129 -2.67 0.001 

1450439_at Hcfc1 host cell factor C1 15161 378 249 201 398 254 149 -2.67 0.01 

1422329_a_at Ntrk3 neurotrophic tyrosine kinase, receptor, type 3 18213 444 460 378 557 350 207 -2.69 0.001 

1421276_a_at Dst dystonin 13518 2715 2134 2214 2977 1577 1095 -2.72 0.00001 

1426066_a_at Dtna dystrobrevin alpha 13527 435 343 359 463 323 164 -2.82 0.00004 

1448366_at Stx1a syntaxin 1A (brain) 20907 603 579 500 677 411 239 -2.83 0.00005 

1429768_at Dtna dystrobrevin alpha 13527 1176 1275 984 1264 864 437 -2.89 0.0002 

1419592_at Unc5c unc-5 netrin receptor C 22253 899 521 732 739 391 256 -2.89 0.000002 

1420518_a_at Igsf9 immunoglobulin superfamily, member 9 93842 648 634 643 921 509 317 -2.9 0.002 

1427019_at Ptprz1 protein tyrosine phosphatase, receptor type Z, polypeptide 1 19283 3136 3922 3540 3893 3168 1327 -2.93 0.00002 

1421471_at Npy1r neuropeptide Y receptor Y1 18166 1628 1362 1385 1301 828 434 -3 0.00009 

1450462_at Crhr2 corticotropin releasing hormone receptor 2 12922 221 256 193 293 209 97 -3.02 0.0006 

1455886_at Cbl Casitas B-lineage lymphoma 12402 268 191 60 223 236 72 -3.09 0.007 

1450037_at Usp9x ubiquitin specific peptidase 9, X chromosome 22284 470 480 247 568 439 182 -3.12 0.001 

1452284_at Ptprz1 protein tyrosine phosphatase, receptor type Z, polypeptide 1 19283 5834 6396 6604 6978 4095 2212 -3.15 0.0002 

1427280_at Scn2a sodium channel, voltage-gated, type II, alpha 110876 405 391 294 526 320 165 -3.19 0.001 

1434802_s_at Ntf3 neurotrophin 3 18205 1438 1549 1601 1608 1120 505 -3.19 0.0001 

1420924_at Timp2 tissue inhibitor of metalloproteinase 2 21858 4447 2888 1116 4616 3785 1443 -3.2 0.000001 

1416504_at Ulk1 unc-51 like kinase 1 22241 331 259 149 310 231 94 -3.29 0.02 
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1429946_at Ccdc141 coiled-coil domain containing 141 545428 384 95 125 330 127 100 -3.29 0.00005 

1439556_at Ncam1 neural cell adhesion molecule 1 17967 840 957 1281 1242 644 374 -3.32 0.004 

1419223_a_at Dtna dystrobrevin alpha 13527 778 568 466 766 439 205 -3.74 0.000004 

1425070_at Ntrk3 neurotrophic tyrosine kinase, receptor, type 3 18213 432 387 283 506 358 133 -3.79 0.002 

1426865_a_at Ncam1 neural cell adhesion molecule 1 17967 4525 3020 2488 4655 2914 1221 -3.81 0.00001 

1450803_at Ntf3 neurotrophin 3 18205 1538 1352 1448 1623 1055 421 -3.86 0.0001 

1456329_at Prtg protogenin 235472 173 161 99 230 116 59 -3.88 0.005 

1418430_at Kif5b kinesin family member 5B 16573 2416 1642 741 2530 1690 636 -3.98 0.0001 

1453724_a_at Serpinf1 serine (or cysteine) peptidase inhibitor, clade F, member 1 20317 5890 3518 3372 5656 2741 1400 -4.04 0.0000001 

1460305_at Itga3 integrin alpha 3 16400 702 715 415 747 569 184 -4.05 0.002 

1421850_at Map1b microtubule-associated protein 1B 17755 321 179 106 278 160 67 -4.14 0.005 

1454043_a_at Kcnab1 potassium voltage-gated channel, shaker-related subfamily, beta 

member 1 

16497 2379 1571 1474 2214 1077 512 -4.33 0.0000003 

1450437_a_at Ncam1 neural cell adhesion molecule 1 17967 633 313 183 560 291 127 -4.4 0.0003 

1441057_at Myh10 myosin, heavy polypeptide 10, non-muscle 77579 233 220 105 293 218 57 -5.16 0.002 

1418431_at Kif5b kinesin family member 5B 16573 565 266 138 528 333 102 -5.2 0.0003 

1421851_at Map1b microtubule-associated protein 1B 17755 2988 1811 1372 2899 1315 505 -5.74 0.000005 

1450397_at Map1b microtubule-associated protein 1B 17755 439 236 98 416 256 67 -6.2 0.01 

1424848_at Kcnma1 potassium large conductance calcium-activated channel, subfamily M, 

alpha member 1 

16531 198 143 95 211 133 29 -7.2 0.005 

 

E. Regulation of axon guidance (GO: 1902667) 
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1455678_at Sema4b sema domain, immunoglobulin domain (Ig), transmembrane domain 

(TM) and short cytoplasmic domain, (semaphorin) 4B 

20352 85 190 229 85 222 401 4.69 0.0003 

1417574_at Cxcl12 chemokine (C-X-C motif) ligand 12 20315 577 562 615 474 1216 2174 4.58 0.00001 

1420824_at Sema4d sema domain, immunoglobulin domain (Ig), transmembrane domain 

(TM) and short cytoplasmic domain, (semaphorin) 4D 

20354 442 582 773 550 1135 2039 3.71 0.00002 

1419717_at Sema3e sema domain, immunoglobulin domain (Ig), short basic domain, 

secreted, (semaphorin) 3E 

20349 45 246 371 49 223 161 3.31 0.00008 

1448110_at Sema4a sema domain, immunoglobulin domain (Ig), transmembrane domain 

(TM) and short cytoplasmic domain, (semaphorin) 4A 

20351 125 336 187 117 357 358 3.05 0.002 

1448823_at Cxcl12 chemokine (C-X-C motif) ligand 12 20315 5885 5864 6394 5182 8384 10772 2.08 0.000007 

1438934_x_at Sema4a sema domain, immunoglobulin domain (Ig), transmembrane domain 

(TM) and short cytoplasmic domain, (semaphorin) 4A 

20351 279 620 406 326 749 662 2.03 0.0001 

1420416_at Sema3a sema domain, immunoglobulin domain (Ig), short basic domain, 

secreted, (semaphorin) 3A 

20346 592 635 742 571 371 353 -1.62 0.0007 

1420508_at Sema3f sema domain, immunoglobulin domain (Ig), short basic domain, 

secreted, (semaphorin) 3F 

20350 612 478 695 562 440 339 -1.66 0.009 

1449865_at Sema3a sema domain, immunoglobulin domain (Ig), short basic domain, 

secreted, (semaphorin) 3A 

20346 309 247 260 222 152 108 -2.05 0.0003 

1425840_a_at Sema3f sema domain, immunoglobulin domain (Ig), short basic domain, 

secreted, (semaphorin) 3F 

20350 1159 829 701 1090 946 494 -2.21 0.005 

1429459_at Sema3d sema domain, immunoglobulin domain (Ig), short basic domain, 

secreted, (semaphorin) 3D 

108151 1876 2526 2559 2190 2061 941 -2.33 0.00002 

1437673_at Wnt5a wingless-type MMTV integration site family, member 5A 22418 246 284 183 201 226 85 -2.37 0.003 
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1429348_at Sema3c sema domain, immunoglobulin domain (Ig), short basic domain, 

secreted, (semaphorin) 3C 

20348 5840 4811 4881 5391 3746 2088 -2.58 0.00001 

1434776_at Sema5a sema domain, seven thrombospondin repeats (type 1 and type 1-like), 

transmembrane domain (TM) and short cytoplasmic domain, 

(semaphorin) 5A 

20356 1173 1042 923 1225 893 465 -2.64 0.00005 

1453148_at Sema3d sema domain, immunoglobulin domain (Ig), short basic domain, 

secreted, (semaphorin) 3D 

108151 486 368 333 414 354 151 -2.75 0.0005 

1437422_at Sema5a sema domain, seven thrombospondin repeats (type 1 and type 1-like), 

transmembrane domain (TM) and short cytoplasmic domain, 

(semaphorin) 5A 

20356 1698 981 693 1562 940 534 -2.93 0.001 

1436791_at Wnt5a wingless-type MMTV integration site family, member 5A 22418 706 850 713 786 717 241 -3.26 0.00002 

1420696_at Sema3c sema domain, immunoglobulin domain (Ig), short basic domain, 

secreted, (semaphorin) 3C 

20348 1722 945 955 1502 729 389 -3.86 0.0000004 

1448818_at Wnt5a wingless-type MMTV integration site family, member 5A 22418 653 606 253 721 519 140 -5.14 0.000008 

 
Table S2. Probe sets of up and down regulated genes in WT and ApoE-/- aorta adventitia. 

Differential expression of probe sets was determined as described in Material and Methods for Nervous System related Gene Ontology terms: A. nervous system 

development (GO: 0007399), B. axon (GO: 0030424), C. neuron projection development (GO: 0031175), D. regulation of neuron projection development 

(GO: 0010975), E. regulation of axon guidance (GO: 1902667). Further data are displayed as heat maps in Fig. 10. Probe sets are ordered according to fold 

change between between ATLO versus ApoE-/- adventitia no plaque. Gene symbols and gene names are indicated for ease of reading. Columns of the mean value for 

each gene show signal intensity without normalization. 
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A. Nervous system development (GO: 0007399) 

Affymetrix 
Probe set ID 

Gene 
Symbol 

Gene Name 
Entrez 
Gene 
ID 

Mean WT 
adventitia 

Mean 
ApoE-/- 
adventitia 
no plaque 

Mean 
ApoE-/-

adventitia 
ATLO 

Fold 
Change 

p ANOVA 

1420994_at B3gnt5 UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 5 108105 181 56 422 7.47 0.01 

1448710_at Cxcr4 chemokine (C-X-C motif) receptor 4 12767 173 108 679 6.28 0.0006 

1418126_at Ccl5 chemokine (C-C motif) ligand 5 20304 365 370 2237 6.05 0.0005 

1421186_at Ccr2 chemokine (C-C motif) receptor 2 12772 199 276 1663 6.03 0.0004 

1416034_at Cd24a CD24a antigen 12484 789 219 1319 6.03 0.03 

1417795_at Chl1 cell adhesion molecule with homology to L1CAM 12661 91 70 410 5.89 0.003 

1437313_x_at Hmgb2 high mobility group box 2 97165 206 137 673 4.90 0.03 

1425548_a_at Lst1 leukocyte specific transcript 1 16988 299 324 1456 4.49 0.0006 

1448182_a_at Cd24a CD24a antigen 12484 2015 885 3938 4.45 0.02 

1437270_a_at Clcf1 cardiotrophin-like cytokine factor 1 56708 73 65 278 4.26 0.002 

1423760_at Cd44 CD44 antigen 12505 973 709 2965 4.18 0.0009 

1437502_x_at Cd24a CD24a antigen 12484 734 528 2209 4.18 0.007 

1433471_at Tcf7 transcription factor 7, T-cell specific 21414 63 127 496 3.90 0.007 

1451031_at Sfrp4 secreted frizzled-related protein 4 20379 1995 1856 7019 3.78 0.0008 

1434920_a_at Evl Ena-vasodilator stimulated phosphoprotein 14026 241 258 922 3.57 0.006 

1424727_at Ccr5 chemokine (C-C motif) receptor 5 12774 203 243 867 3.57 0.0002 

1439377_x_at Cdc20 cell division cycle 20 homolog (S. cerevisiae) 107995 199 138 488 3.53 0.05 

1448823_at Cxcl12 chemokine (C-X-C motif) ligand 12 20315 5201 4107 14034 3.42 0.0006 

1419296_at Arhgap4 Rho GTPase activating protein 4 171207 114 114 387 3.38 0.002 

1416136_at Mmp2 matrix metallopeptidase 2 17390 1350 1003 3223 3.21 0.001 

1422571_at Thbs2 thrombospondin 2 21826 133 83 262 3.17 0.006 

1451318_a_at Lyn Yamaguchi sarcoma viral (v-yes-1) oncogene homolog 17096 898 815 2503 3.07 0.002 
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Gene Name 
Entrez 
Gene 
ID 

Mean WT 
adventitia 
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ApoE-/- 
adventitia 
no plaque 

Mean 
ApoE-/-

adventitia 
ATLO 

Fold 
Change 

p ANOVA 

1426392_a_at Actr3 ARP3 actin-related protein 3 homolog (yeast) 74117 1572 2277 6934 3.05 0.002 

1420380_at Ccl2 chemokine (C-C motif) ligand 2 20296 97 93 277 2.99 0.02 

1450020_at Cx3cr1 chemokine (C-X3-C) receptor 1 13051 111 120 358 2.98 0.01 

1417399_at Gas6 growth arrest specific 6 14456 3662 2195 6547 2.98 0.001 

1435172_at Eomes eomesodermin homolog (Xenopus laevis) 13813 114 88 260 2.96 0.04 

1437874_s_at Hexb hexosaminidase B 15212 2147 1450 4123 2.84 0.0002 

1425598_a_at Lyn Yamaguchi sarcoma viral (v-yes-1) oncogene homolog 17096 250 147 418 2.84 0.04 

1460180_at Hexb hexosaminidase B 15212 805 619 1749 2.82 0.004 

1427464_s_at Hspa5 heat shock protein 5 14828 2559 2061 5766 2.80 0.01 

1419221_a_at Rgs14 regulator of G-protein signaling 14 51791 378 220 592 2.70 0.003 

1422789_at Aldh1a2 aldehyde dehydrogenase family 1, subfamily A2 19378 33 137 364 2.66 0.003 

1451716_at Mafb v-maf musculoaponeurotic fibrosarcoma oncogene family, protein B (avian) 16658 263 203 534 2.62 0.01 

1420979_at Pak1 p21 protein (Cdc42/Rac)-activated kinase 1 18479 92 85 220 2.59 0.007 

1421188_at Ccr2 chemokine (C-C motif) receptor 2 12772 142 224 578 2.58 0.001 

1420824_at Sema4d sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) and short 
cytoplasmic domain, (semaphorin) 4D 

20354 346 351 905 2.58 0.001 

1424271_at Dclk1 doublecortin-like kinase 1 13175 241 155 398 2.58 0.01 

1434968_a_at Actr3 ARP3 actin-related protein 3 homolog (yeast) 74117 3293 2952 7470 2.53 0.0003 

1416064_a_at Hspa5 heat shock protein 5 14828 9764 5738 13652 2.38 0.01 

1452051_at Actr3 ARP3 actin-related protein 3 homolog (yeast) 74117 2427 2081 4932 2.37 0.0004 

1416683_at Plxnb2 plexin B2 140570 892 575 1346 2.34 0.01 

1452870_at Apaf1 apoptotic peptidase activating factor 1 11783 322 235 533 2.26 0.005 

1423135_at Thy1 thymus cell antigen 1, theta 21838 1210 1017 2298 2.26 0.006 

1421141_a_at Foxp1 forkhead box P1 108655 149 87 194 2.24 0.03 
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1450663_at Thbs2 thrombospondin 2 21826 204 136 303 2.22 0.0006 

1450106_a_at Evl Ena-vasodilator stimulated phosphoprotein 14026 98 123 267 2.17 0.01 

1434312_at Arf6 ADP-ribosylation factor 6 11845 462 539 1155 2.14 0.01 

1415849_s_at Stmn1 stathmin 1 16765 1019 545 1160 2.13 0.05 

1420895_at Tgfbr1 transforming growth factor, beta receptor I 21812 1033 860 1823 2.12 0.0005 

1426247_at Stk24 serine/threonine kinase 24 (STE20 homolog, yeast) 223255 284 281 594 2.11 0.002 

1421205_at Atm ataxia telangiectasia mutated homolog (human) 11920 203 149 311 2.09 0.05 

1415961_at Itm2c integral membrane protein 2C 64294 3233 2407 5024 2.09 0.01 

1439440_x_at Twf2 twinfilin, actin-binding protein, homolog 2 (Drosophila) 23999 465 836 1743 2.08 0.0002 

1434653_at Ptk2b PTK2 protein tyrosine kinase 2 beta 19229 211 345 718 2.08 0.0005 

1449278_at Eif2ak3 eukaryotic translation initiation factor 2 alpha kinase 3 13666 512 335 693 2.07 0.0007 

1449018_at Pfn1 profilin 1 18643 1301 964 1989 2.06 0.02 

1431394_a_at Lrrk2 leucine-rich repeat kinase 2 66725 342 219 451 2.06 0.007 

1437341_x_at Cnp 2',3'-cyclic nucleotide 3' phosphodiesterase 12799 2606 2006 4120 2.05 0.004 

1426983_at Fnbp1 formin binding protein 1 14269 549 417 854 2.05 0.0007 

1419754_at Myo5a myosin VA 17918 241 258 525 2.03 0.006 

1439364_a_at Mmp2 matrix metallopeptidase 2 17390 1244 1404 2789 1.99 0.003 

1421142_s_at Foxp1 forkhead box P1 108655 369 167 324 1.94 0.007 

1426301_at Alcam activated leukocyte cell adhesion molecule 11658 141 209 395 1.89 0.03 

1426300_at Alcam activated leukocyte cell adhesion molecule 11658 152 175 327 1.87 0.02 

1426587_a_at Stat3 signal transducer and activator of transcription 3 20848 692 909 1647 1.81 0.005 

1417440_at Arid1a AT rich interactive domain 1A (SWI-like) 93760 224 306 541 1.77 0.004 

1417574_at Cxcl12 chemokine (C-X-C motif) ligand 12 20315 929 1295 2254 1.74 0.001 

1435176_a_at Id2 inhibitor of DNA binding 2 15902 1279 1571 2611 1.66 0.003 
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1431292_a_at Twf2 twinfilin, actin-binding protein, homolog 2 (Drosophila) 23999 161 216 341 1.58 0.009 

1424089_a_at Tcf4 transcription factor 4 21413 531 781 1124 1.44 0.0006 

1417627_a_at Limk1 LIM-domain containing, protein kinase 16885 147 244 303 1.24 0.02 

1425492_at Bmpr1a bone morphogenetic protein receptor, type 1A 12166 1146 564 677 1.20 0.001 

1422912_at Bmp4 bone morphogenetic protein 4 12159 679 315 363 1.15 0.003 

1426645_at Hsp90aa1 heat shock protein 90, alpha (cytosolic), class A member 1 15519 2856 1044 1175 1.13 0.02 

1425315_at Dock7 dedicator of cytokinesis 7 67299 97 208 228 1.10 0.003 

1426805_at Smarca4 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily 
a, member 4 

20586 92 226 221 -1.02 0.003 

1417304_at Chrd chordin 12667 234 130 117 -1.11 0.02 

1460251_at Fas Fas (TNF receptor superfamily member 6) 14102 194 493 416 -1.19 0.008 

1423893_x_at Apbb1 amyloid beta (A4) precursor protein-binding, family B, member 1 11785 559 315 263 -1.2 0.01 

1454803_a_at Hdac11 histone deacetylase 11 232232 578 321 250 -1.28 0.01 

1421955_a_at Nedd4 neural precursor cell expressed, developmentally down-regulated 4 17999 520 262 197 -1.33 0.02 

1438067_at Nf1 neurofibromatosis 1 18015 255 169 126 -1.35 0.002 

1416855_at Gas1 growth arrest specific 1 14451 4395 2200 1609 -1.37 0.003 

1455422_x_at Sept4 septin 4 18952 224 492 339 -1.45 0.02 

1416077_at Adm adrenomedullin 11535 414 250 168 -1.49 0.03 

1451630_at Ttl tubulin tyrosine ligase 69737 407 257 171 -1.5 0.02 

1438093_x_at Dbi diazepam binding inhibitor 13167 3372 8997 5992 -1.5 0.002 

1436791_at Wnt5a wingless-related MMTV integration site 5A 22418 274 220 130 -1.68 0.02 

1432372_a_at Spr sepiapterin reductase 20751 451 378 224 -1.69 0.02 

1455792_x_at Ndn necdin 17984 1896 1540 904 -1.7 0.03 

1438143_s_at Atxn2 ataxin 2 20239 811 1651 937 -1.76 0.006 
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1419301_at Fzd4 frizzled homolog 4 (Drosophila) 14366 1285 1168 619 -1.89 0.01 

1421116_a_at Rtn4 reticulon 4 68585 1981 1673 886 -1.89 0.003 

1455976_x_at Dbi diazepam binding inhibitor 13167 21059 25870 12697 -2.04 0.002 

1427207_s_at Afg3l2 AFG3(ATPase family gene 3)-like 2 (yeast) 69597 790 1202 575 -2.09 0.01 

1426770_at Pex5 peroxisomal biogenesis factor 5 19305 296 376 176 -2.14 0.0007 

1449389_at Tal1 T-cell acute lymphocytic leukemia 1 21349 224 287 134 -2.14 0.01 

1417437_at Xrcc6 X-ray repair complementing defective repair in Chinese hamster cells 6 14375 415 642 293 -2.19 0.03 

1448154_at Ndrg2 N-myc downstream regulated gene 2 29811 1708 1877 852 -2.2 0.001 

1448601_s_at Msx1 homeobox, msh-like 1 17701 569 411 185 -2.23 0.004 

1420909_at Vegfa vascular endothelial growth factor A 22339 579 833 365 -2.28 0.007 

1418700_at Lias lipoic acid synthetase 79464 618 757 331 -2.29 0.0005 

1421889_a_at Aplp2 amyloid beta (A4) precursor-like protein 2 11804 1809 1580 687 -2.3 0.003 

1452031_at Slc1a3 solute carrier family 1 (glial high affinity glutamate transporter), member 3 20512 631 790 339 -2.33 0.009 

1424114_s_at Lamb1 laminin B1 16777 988 1852 787 -2.35 0.03 

1422471_at Pex13 peroxisomal biogenesis factor 13 72129 2404 2414 1023 -2.36 0.0004 

1421888_x_at Aplp2 amyloid beta (A4) precursor-like protein 2 11804 419 553 233 -2.37 0.005 

1422541_at Ptprm protein tyrosine phosphatase, receptor type, M 19274 821 889 371 -2.4 0.0006 

1424113_at Lamb1 laminin B1 16777 194 544 227 -2.4 0.007 

1449214_a_at Opa1 optic atrophy 1 homolog (human) 74143 191 411 171 -2.41 0.009 

1417456_at Gnpat glyceronephosphate O-acyltransferase 14712 1537 1493 615 -2.43 0.001 

1460653_at Atxn2 ataxin 2 20239 317 385 157 -2.45 0.002 

1428179_at Ndufv2 NADH dehydrogenase (ubiquinone) flavoprotein 2 72900 4751 6134 2502 -2.45 0.003 

1427206_at Afg3l2 AFG3(ATPase family gene 3)-like 2 (yeast) 69597 372 566 228 -2.48 0.003 

1448610_a_at Sod2 superoxide dismutase 2, mitochondrial 20656 7304 10047 4007 -2.51 0.01 
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1426688_at Sdha succinate dehydrogenase complex, subunit A, flavoprotein (Fp) 66945 6709 7056 2802 -2.52 0.0004 

1452692_a_at Ndufv2 NADH dehydrogenase (ubiquinone) flavoprotein 2 72900 8706 11959 4710 -2.54 0.004 

1419457_at Rgnef Rho-guanine nucleotide exchange factor 110596 406 519 202 -2.57 0.005 

1422432_at Dbi diazepam binding inhibitor 13167 13218 17922 6882 -2.6 0.0006 

1426340_at Slc1a3 solute carrier family 1 (glial high affinity glutamate transporter), member 3 20512 668 895 332 -2.7 0.003 

1423260_at Id4 inhibitor of DNA binding 4 15904 700 546 197 -2.77 0.001 

1419107_at Ophn1 oligophrenin 1 94190 223 416 147 -2.83 0.005 

1423259_at Id4 inhibitor of DNA binding 4 15904 465 420 148 -2.84 0.005 

1449379_at Kdr kinase insert domain protein receptor 16542 922 1344 460 -2.92 0.0003 

1426689_s_at Sdha succinate dehydrogenase complex, subunit A, flavoprotein (Fp) 66945 5287 7847 2625 -2.99 0.0006 

1417193_at Sod2 superoxide dismutase 2, mitochondrial 20656 4093 4932 1631 -3.02 0.004 

1448959_at Ndufs4 NADH dehydrogenase (ubiquinone) Fe-S protein 4 17993 1670 2617 849 -3.08 0.001 

1418472_at Aspa aspartoacylase 11484 1180 1324 425 -3.11 0.001 

1438159_x_at Ndufv2 NADH dehydrogenase (ubiquinone) flavoprotein 2 72900 5369 8751 2790 -3.14 0.005 

1438166_x_at Ndufs4 NADH dehydrogenase (ubiquinone) Fe-S protein 4 17993 640 1051 332 -3.16 0.009 

1416665_at Coq7 demethyl-Q 7 12850 1221 1672 518 -3.23 0.001 

1427677_a_at Sox6 SRY-box containing gene 6 20679 314 329 99 -3.32 0.0008 

1450718_at Sh2b2 SH2B adaptor protein 2 23921 312 781 232 -3.36 0.005 

1450928_at Id4 inhibitor of DNA binding 4 15904 742 990 251 -3.94 0.005 

1420715_a_at Pparg peroxisome proliferator activated receptor gamma 19016 1214 2486 541 -4.59 0.002 

 

B. Axon (GO: 0030424) 
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1415857_at Emb embigin 13723 246 33 698 21.2 0.002 

1416246_a_at Coro1a coronin, actin binding protein 1A 12721 586 614 4470 7.28 0.001 

1455269_a_at Coro1a coronin, actin binding protein 1A 12721 729 1006 6703 6.66 0.0005 

1448710_at Cxcr4 chemokine (C-X-C motif) receptor 4 12767 173 108 679 6.28 0.0006 

1416956_at Kcnab2 potassium voltage-gated channel, shaker-related subfamily, beta member 2 16498 103 80 327 4.09 0.0007 

1449473_s_at Cd40 CD40 antigen 21939 82 106 366 3.47 0.002 

1419296_at Arhgap4 Rho GTPase activating protein 4 171207 114 114 387 3.38 0.002 

1460419_a_at Prkcb protein kinase C, beta 18751 558 515 1600 3.11 0.001 

1448950_at Il1r1 interleukin 1 receptor, type I 16177 304 400 1241 3.10 0.001 

1420380_at Ccl2 chemokine (C-C motif) ligand 2 20296 97 93 277 2.99 0.02 

1415856_at Emb embigin 13723 357 250 730 2.92 0.004 

1455796_x_at Olfm1 olfactomedin 1 56177 236 232 674 2.90 0.03 

1424181_at Sept6 septin 6 56526 246 152 410 2.69 0.006 

1420979_at Pak1 p21 (RAC1) activated kinase 1 18479 92 85 220 2.59 0.007 

1418099_at Tnfrsf1b tumor necrosis factor receptor superfamily, member 1b 21938 249 293 744 2.54 0.0005 

1416882_at Rgs10 regulator of G-protein signalling 10 67865 666 498 1262 2.53 0.005 

1423478_at Prkcb protein kinase C, beta 18751 128 169 405 2.39 0.007 

1417379_at Iqgap1 IQ motif containing GTPase activating protein 1 29875 1088 837 2001 2.39 0.005 

1423135_at Thy1 thymus cell antigen 1, theta 21838 1210 1017 2298 2.26 0.006 

1421917_at Pdgfra platelet derived growth factor receptor, alpha polypeptide 18595 2511 1052 2377 2.26 0.006 

1416759_at Mical1 microtubule associated monooxygenase, calponin and LIM domain containing 1 171580 195 209 469 2.25 0.006 

1415903_at Slc38a1 solute carrier family 38, member 1 105727 355 247 540 2.19 0.009 

1436958_x_at Tpm3 tropomyosin 3, gamma 59069 2270 2037 4370 2.15 0.001 

1439440_x_at Twf2 twinfilin actin binding protein 2 23999 465 836 1743 2.08 0.0002 
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1434653_at Ptk2b PTK2 protein tyrosine kinase 2 beta 19229 211 345 718 2.08 0.0005 

1431394_a_at Lrrk2 leucine-rich repeat kinase 2 66725 342 219 451 2.06 0.007 

1450033_a_at Stat1 signal transducer and activator of transcription 1 20846 577 396 806 2.04 0.03 

1419754_at Myo5a myosin VA 17918 241 258 525 2.03 0.006 

1450027_at Sdc3 syndecan 3 20970 499 538 1074 2.00 0.001 

1426301_at Alcam activated leukocyte cell adhesion molecule 11658 141 209 395 1.89 0.03 

1451992_at Grk2 G protein-coupled receptor kinase 2 110355 286 337 634 1.88 0.0004 

1426300_at Alcam activated leukocyte cell adhesion molecule 11658 152 175 327 1.87 0.02 

1420622_a_at Hspa8 heat shock protein 8 15481 2008 4254 7834 1.84 0.002 

1416514_a_at Fscn1 fascin actin-bundling protein 1 14086 696 1277 2268 1.78 0.003 

1427260_a_at Tpm3 tropomyosin 3, gamma 59069 2558 2975 5173 1.74 0.008 

1448279_at Arpc3 actin related protein 2/3 complex, subunit 3 56378 2398 2856 4949 1.73 0.002 

1431292_a_at Twf2 twinfilin actin binding protein 2 23999 161 216 341 1.58 0.009 

1417869_s_at Ctsz cathepsin Z 64138 1441 2202 3160 1.43 0.0005 

1417627_a_at Limk1 LIM-domain containing, protein kinase 16885 147 244 303 1.24 0.02 

1435884_at Itsn1 intersectin 1 (SH3 domain protein 1A) 16443 305 514 630 1.23 0.02 

1426645_at Hsp90aa1 heat shock protein 90, alpha (cytosolic), class A member 1 15519 2856 1044 1175 1.13 0.02 

1423893_x_at Apbb1 amyloid beta (A4) precursor protein-binding, family B, member 1 11785 559 315 263 1.20 0.01 

1438067_at Nf1 neurofibromin 1 18015 255 169 126 1.35 0.002 

1416936_at Aatk apoptosis-associated tyrosine kinase 11302 375 248 176 1.41 0.03 

1451200_at Kif1b kinesin family member 1B 16561 1062 797 472 1.69 0.006 

1436930_x_at Hmbs hydroxymethylbilane synthase 15288 346 791 443 1.78 0.005 

1421116_a_at Rtn4 reticulon 4 68585 1981 1673 886 1.89 0.003 

1450468_at Myoc myocilin 17926 493 184 96 1.92 0.003 
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1449183_at Comt catechol-O-methyltransferase 12846 3957 3057 1530 2.00 0.005 

1416203_at Aqp1 aquaporin 1 11826 2374 2250 1117 2.01 0.006 

1428835_at Myh14 myosin, heavy polypeptide 14 71960 335 400 196 2.04 0.007 

1456036_x_at Gsto1 glutathione S-transferase omega 1 14873 1871 3391 1659 2.04 0.0007 

1436945_x_at Stim1 stromal interaction molecule 1 20866 326 678 311 2.18 0.0006 

1449097_at Txnrd2 thioredoxin reductase 2 26462 225 462 188 2.45 0.002 

1419107_at Ophn1 oligophrenin 1 94190 223 416 147 2.83 0.005 

1426785_s_at Mgll monoglyceride lipase 23945 4158 6890 2338 2.95 0.004 

1450391_a_at Mgll monoglyceride lipase 23945 2951 4634 1549 2.99 0.004 

1426235_a_at Glul glutamate-ammonia ligase (glutamine synthetase) 14645 1762 2441 813 3.00 0.001 

1453836_a_at Mgll monoglyceride lipase 23945 1691 2149 690 3.12 0.002 

1425534_at Stau2 staufen double-stranded RNA binding protein 2 29819 235 319 99 3.23 0.001 

1455961_at Mme membrane metallo endopeptidase 17380 904 1246 350 3.56 0.0007 

1415984_at Acadm acyl-Coenzyme A dehydrogenase, medium chain 11364 12039 12144 3085 3.94 0.0008 

 

C. Neuron projection development (GO: 0031175) 
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1415857_at Emb embigin 13723 250 34 696 20.68 0.002 

1448710_at Cxcr4 chemokine (C-X-C motif) receptor 4 12767 176 111 677 6.12 0.0006 

1450757_at Cdh11 cadherin 11 12552 531 194 1144 5.91 0.0004 
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1416034_at Cd24a CD24a antigen 12484 787 223 1310 5.89 0.03 

1455332_x_at Fcgr2b Fc receptor, IgG, low affinity IIb 14130 470 384 2239 5.83 0.0002 

1417795_at Chl1 cell adhesion molecule L1-like 12661 93 71 414 5.79 0.003 

1417620_at Rac2 Rac family small GTPase 2 19354 550 374 2077 5.56 0.002 

1451941_a_at Fcgr2b Fc receptor, IgG, low affinity IIb 14130 616 351 1765 5.03 0.0009 

1422105_at Cd3e CD3 antigen, epsilon polypeptide 12501 53 66 329 4.97 0.02 

1435477_s_at Fcgr2b Fc receptor, IgG, low affinity IIb 14130 1277 1053 5197 4.93 0.0003 

1448756_at S100a9 S100 calcium binding protein A9 (calgranulin B) 20202 75 168 751 4.47 0.05 

1448182_a_at Cd24a CD24a antigen 12484 1990 881 3934 4.46 0.02 

1425548_a_at Lst1 leukocyte specific transcript 1 16988 304 329 1438 4.38 0.0006 

1423760_at Cd44 CD44 antigen 12505 966 707 2925 4.14 0.0009 

1437502_x_at Cd24a CD24a antigen 12484 734 530 2180 4.11 0.007 

1435476_a_at Fcgr2b Fc receptor, IgG, low affinity IIb 14130 1563 952 3610 3.79 0.0003 

1448823_at Cxcl12 chemokine (C-X-C motif) ligand 12 20315 5242 4093 15383 3.76 0.0005 

1428112_at Manf mesencephalic astrocyte-derived neurotrophic factor 74840 1423 1177 4297 3.65 0.009 

1434920_a_at Evl Ena-vasodilator stimulated phosphoprotein 14026 245 262 916 3.49 0.006 

1424727_at Ccr5 chemokine (C-C motif) receptor 5 12774 207 247 862 3.48 0.0002 

1439377_x_at Cdc20 cell division cycle 20 107995 202 142 490 3.46 0.05 

1450905_at Plxnc1 plexin C1 54712 133 125 421 3.37 0.003 

1419296_at Arhgap4 Rho GTPase activating protein 4 171207 117 117 390 3.34 0.002 

1416136_at Mmp2 matrix metallopeptidase 2 17390 1334 995 3187 3.20 0.001 

1426392_a_at Actr3 ARP3 actin-related protein 3 74117 1554 2244 7131 3.18 0.001 

1438115_a_at Slc9a3r1 solute carrier family 9 (sodium/hydrogen exchanger), member 3 regulator 1 26941 573 324 966 2.98 0.002 

1427464_s_at Hspa5 heat shock protein 5 14828 2542 2032 5846 2.88 0.01 
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1415856_at Emb embigin 13723 361 254 727 2.86 0.004 

1455796_x_at Olfm1 olfactomedin 1 56177 240 236 673 2.85 0.03 

1427746_x_at H2-K1 histocompatibility 2, K1, K region 14972 2590 3208 9009 2.81 0.007 

1419033_at Stk26 serine/threonine kinase 26 70415 145 132 366 2.78 0.02 

1433741_at Cd38 CD38 antigen 12494 782 576 1560 2.71 0.001 

1434968_a_at Actr3 ARP3 actin-related protein 3 74117 3254 2911 7730 2.66 0.0003 

1438116_x_at Slc9a3r1 solute carrier family 9 (sodium/hydrogen exchanger), member 3 regulator 1 26941 642 449 1169 2.60 0.001 

1420979_at Pak1 p21 (RAC1) activated kinase 1 18479 94 87 224 2.58 0.007 

1423213_at Plxnc1 plexin C1 54712 289 260 670 2.57 0.02 

1416064_a_at Hspa5 heat shock protein 5 14828 10376 5824 14936 2.56 0.02 

1460555_at Ripor2 RHO family interacting cell polarization regulator 2 193385 244 281 718 2.56 0.006 

1424271_at Dclk1 doublecortin-like kinase 1 13175 245 158 402 2.54 0.01 

1420824_at Sema4d sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) and short 
cytoplasmic domain, (semaphorin) 4D 

20354 350 355 898 2.53 0.001 

1452050_at Camk1d calcium/calmodulin-dependent protein kinase ID 227541 170 182 448 2.46 0.006 

1452051_at Actr3 ARP3 actin-related protein 3 74117 2390 2050 4951 2.42 0.0004 

1417379_at Iqgap1 IQ motif containing GTPase activating protein 1 29875 1078 832 1972 2.37 0.005 

1416683_at Plxnb2 plexin B2 140570 886 576 1331 2.31 0.01 

1452587_at Actr2 ARP2 actin-related protein 2 66713 2897 1833 4127 2.25 0.001 

1423135_at Thy1 thymus cell antigen 1, theta 21838 1198 1009 2267 2.25 0.006 

1421141_a_at Foxp1 forkhead box P1 108655 152 89 198 2.23 0.03 

1421858_at Adam17 a disintegrin and metallopeptidase domain 17 11491 558 468 1020 2.18 0.001 

1450106_a_at Evl Ena-vasodilator stimulated phosphoprotein 14026 100 126 271 2.16 0.01 

1415961_at Itm2c integral membrane protein 2C 64294 3191 2373 5053 2.13 0.01 
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1452410_a_at Fes feline sarcoma oncogene 14159 148 154 329 2.13 0.002 

1449315_at Tenm3 teneurin transmembrane protein 3 23965 166 97 206 2.12 0.01 

1434312_at Arf6 ADP-ribosylation factor 6 11845 465 541 1144 2.12 0.01 

1419873_s_at Csf1r colony stimulating factor 1 receptor 12978 2473 2512 5285 2.10 0.007 

1415849_s_at Stmn1 stathmin 1 16765 1011 546 1148 2.10 0.05 

1426247_at Stk24 serine/threonine kinase 24 223255 289 286 594 2.08 0.002 

1437341_x_at Cnp 2',3'-cyclic nucleotide 3' phosphodiesterase 12799 2570 1977 4104 2.08 0.005 

1417676_a_at Ptpro protein tyrosine phosphatase, receptor type, O 19277 295 207 428 2.07 0.03 

1439440_x_at Twf2 twinfilin actin binding protein 2 23999 468 831 1720 2.07 0.0002 

1434653_at Ptk2b PTK2 protein tyrosine kinase 2 beta 19229 215 350 716 2.04 0.0005 

1431394_a_at Lrrk2 leucine-rich repeat kinase 2 66725 346 223 454 2.03 0.007 

1428103_at Adam10 a disintegrin and metallopeptidase domain 10 11487 1623 1760 3527 2.00 0.002 

1439364_a_at Mmp2 matrix metallopeptidase 2 17390 1231 1387 2752 1.98 0.003 

1421142_s_at Foxp1 forkhead box P1 108655 373 171 329 1.92 0.007 

1426301_at Alcam activated leukocyte cell adhesion molecule 11658 144 213 399 1.88 0.03 

1426300_at Alcam activated leukocyte cell adhesion molecule 11658 156 179 332 1.85 0.02 

1417574_at Cxcl12 chemokine (C-X-C motif) ligand 12 20315 923 1280 2221 1.73 0.001 

1431292_a_at Twf2 twinfilin actin binding protein 2 23999 164 220 345 1.57 0.009 

1450170_x_at H2-D1 histocompatibility 2, D region locus 1 14964 77 232 347 1.50 0.001 

1417869_s_at Ctsz cathepsin Z 64138 1425 2170 3119 1.44 0.0005 

1455978_a_at Matn2 matrilin 2 17181 914 1411 1903 1.35 0.01 

1432466_a_at Apoe apolipoprotein E 11816 15735 99 130 1.31 0.0002 

1417627_a_at Limk1 LIM-domain containing, protein kinase 16885 150 248 307 1.24 0.02 

1435884_at Itsn1 intersectin 1 (SH3 domain protein 1A) 16443 310 516 630 1.22 0.02 
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1438506_s_at Abi1 abl-interactor 1 11308 177 393 465 1.18 0.002 

1417937_at Dact1 dishevelled-binding antagonist of beta-catenin 1 59036 1064 490 577 1.18 0.01 

1422912_at Bmp4 bone morphogenetic protein 4 12159 678 319 367 1.15 0.003 

1426645_at Hsp90aa1 heat shock protein 90, alpha (cytosolic), class A member 1 15519 2832 1035 1164 1.12 0.02 

1425315_at Dock7 dedicator of cytokinesis 7 67299 99 212 232 1.09 0.003 

1448050_s_at Map4k4 mitogen-activated protein kinase kinase kinase kinase 4 26921 179 342 365 1.06 0.03 

1460251_at Fas Fas (TNF receptor superfamily member 6) 14102 198 495 419 1.18 0.008 

1423893_x_at Apbb1 amyloid beta (A4) precursor protein-binding, family B, member 1 11785 560 319 268 1.19 0.01 

1421955_a_at Nedd4 neural precursor cell expressed, developmentally down-regulated 4 17999 522 266 201 1.33 0.03 

1438067_at Nf1 neurofibromin 1 18015 259 173 128 1.35 0.002 

1416855_at Gas1 growth arrest specific 1 14451 4400 2169 1588 1.37 0.004 

1416936_at Aatk apoptosis-associated tyrosine kinase 11302 379 252 180 1.40 0.03 

1416077_at Adm adrenomedullin 11535 417 254 171 1.49 0.03 

1451630_at Ttl tubulin tyrosine ligase 69737 411 261 175 1.49 0.02 

1436791_at Wnt5a wingless-type MMTV integration site family, member 5A 22418 279 224 133 1.68 0.02 

1455792_x_at Ndn necdin 17984 1872 1521 898 1.69 0.03 

1437992_x_at Gja1 gap junction protein, alpha 1 14609 5453 4558 2678 1.70 0.04 

1438143_s_at Atxn2 ataxin 2 20239 807 1630 930 1.75 0.006 

1419301_at Fzd4 frizzled class receptor 4 14366 1271 1156 619 1.87 0.01 

1421116_a_at Rtn4 reticulon 4 68585 1952 1652 880 1.88 0.003 

1435537_at Ptprd protein tyrosine phosphatase, receptor type, D 19266 1086 842 443 1.90 0.004 

1450468_at Myoc myocilin 17926 495 188 98 1.91 0.003 

1451411_at Gprc5b G protein-coupled receptor, family C, group 5, member B 64297 245 315 153 2.07 0.003 

1427207_s_at Afg3l2 AFG3-like AAA ATPase 2 69597 786 1191 575 2.07 0.01 
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1422673_at Prkd1 protein kinase D1 18760 463 512 247 2.08 0.006 

1426773_at Mfn1 mitofusin 1 67414 288 362 170 2.13 0.001 

1421999_at Tshr thyroid stimulating hormone receptor 22095 227 276 124 2.22 0.001 

1420909_at Vegfa vascular endothelial growth factor A 22339 580 828 370 2.24 0.007 

1419247_at Rgs2 regulator of G-protein signaling 2 19735 1376 2335 1031 2.26 0.02 

1424114_s_at Lamb1 laminin B1 16777 981 1827 784 2.33 0.03 

1422541_at Ptprm protein tyrosine phosphatase, receptor type, M 19274 816 883 375 2.35 0.0006 

1424113_at Lamb1 laminin B1 16777 198 546 231 2.37 0.008 

1449214_a_at Opa1 OPA1, mitochondrial dynamin like GTPase 74143 195 414 174 2.38 0.009 

1460653_at Atxn2 ataxin 2 20239 321 389 161 2.42 0.002 

1427206_at Afg3l2 AFG3-like AAA ATPase 2 69597 377 567 232 2.44 0.003 

1425321_a_at Clmn calmin 94040 215 235 93 2.53 0.007 

1419457_at Arhgef28 Rho guanine nucleotide exchange factor (GEF) 28 110596 410 521 205 2.54 0.006 

1419107_at Ophn1 oligophrenin 1 94190 227 419 150 2.79 0.005 

1449379_at Kdr kinase insert domain protein receptor 16542 915 1329 462 2.87 0.0003 

1450391_a_at Mgll monoglyceride lipase 23945 2911 4631 1530 3.03 0.004 

1426785_s_at Mgll monoglyceride lipase 23945 4136 7080 2307 3.07 0.003 

1453836_a_at Mgll monoglyceride lipase 23945 1669 2118 688 3.08 0.002 

1425534_at Stau2 staufen double-stranded RNA binding protein 2 29819 240 323 101 3.20 0.001 

1420545_a_at Chn1 chimerin 1 108699 215 221 64 3.46 0.006 

1434465_x_at Vldlr very low density lipoprotein receptor 22359 1604 3380 977 3.46 0.001 

1417900_a_at Vldlr very low density lipoprotein receptor 22359 506 972 223 4.36 0.0002 
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1448710_at Cxcr4 chemokine (C-X-C motif) receptor 4 12767 173 108 679 6.28 0.0006 

1416034_at Cd24a CD24a antigen 12484 789 219 1319 6.03 0.03 

1448756_at S100a9 S100 calcium binding protein A9 (calgranulin B) 20202 74 165 753 4.56 0.05 

1448182_a_at Cd24a CD24a antigen 12484 2015 885 3938 4.45 0.02 

1437502_x_at Cd24a CD24a antigen 12484 734 528 2209 4.18 0.007 

1424727_at Ccr5 chemokine (C-C motif) receptor 5 12774 203 243 867 3.57 0.0002 

1439377_x_at Cdc20 cell division cycle 20 107995 199 138 488 3.53 0.05 

1450905_at Plxnc1 plexin C1 54712 130 122 418 3.42 0.003 

1448823_at Cxcl12 chemokine (C-X-C motif) ligand 12 20315 5201 4107 14034 3.42 0.0006 

1419296_at Arhgap4 Rho GTPase activating protein 4 171207 114 114 387 3.38 0.002 

1426392_a_at Actr3 ARP3 actin-related protein 3 74117 1572 2277 6934 3.05 0.002 

1455796_x_at Olfm1 olfactomedin 1 56177 236 232 674 2.9 0.03 

1427464_s_at Hspa5 heat shock protein 5 14828 2559 2061 5766 2.8 0.01 

1433741_at Cd38 CD38 antigen 12494 785 575 1581 2.75 0.001 

1427746_x_at H2-K1 histocompatibility 2, K1, K region 14972 2625 3220 8602 2.67 0.007 

1423213_at Plxnc1 plexin C1 54712 285 256 671 2.62 0.02 

1420979_at Pak1 p21 (RAC1) activated kinase 1 18479 92 85 220 2.59 0.007 

1420824_at Sema4d sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) and short 
cytoplasmic domain, (semaphorin) 4D 

20354 346 351 905 2.58 0.001 

1434968_a_at Actr3 ARP3 actin-related protein 3 74117 3293 2952 7470 2.53 0.0003 

1452050_at Camk1d calcium/calmodulin-dependent protein kinase ID 227541 166 179 445 2.49 0.006 

1417379_at Iqgap1 IQ motif containing GTPase activating protein 1 29875 1088 837 2001 2.39 0.005 
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p ANOVA 

1416064_a_at Hspa5 heat shock protein 5 14828 9764 5738 13652 2.38 0.01 

1452051_at Actr3 ARP3 actin-related protein 3 74117 2427 2081 4932 2.37 0.0004 

1416683_at Plxnb2 plexin B2 140570 892 575 1346 2.34 0.01 

1423135_at Thy1 thymus cell antigen 1, theta 21838 1210 1017 2298 2.26 0.006 

1452587_at Actr2 ARP2 actin-related protein 2 66713 2936 1858 4150 2.23 0.001 

1421858_at Adam17 a disintegrin and metallopeptidase domain 17 11491 557 465 1029 2.21 0.001 

1452410_a_at Fes feline sarcoma oncogene 14159 145 151 324 2.15 0.002 

1434312_at Arf6 ADP-ribosylation factor 6 11845 462 539 1155 2.14 0.01 

1449315_at Tenm3 teneurin transmembrane protein 3 23965 163 95 202 2.12 0.01 

1426247_at Stk24 serine/threonine kinase 24 223255 284 281 594 2.11 0.002 

1416006_at Mdk midkine 17242 270 172 362 2.1 0.03 

1415961_at Itm2c integral membrane protein 2C 64294 3233 2407 5024 2.09 0.01 

1439440_x_at Twf2 twinfilin actin binding protein 2 23999 465 836 1743 2.08 0.0002 

1434653_at Ptk2b PTK2 protein tyrosine kinase 2 beta 19229 211 345 718 2.08 0.0005 

1431394_a_at Lrrk2 leucine-rich repeat kinase 2 66725 342 219 451 2.06 0.007 

1428103_at Adam10 a disintegrin and metallopeptidase domain 10 11487 1643 1784 3559 1.99 0.002 

1417574_at Cxcl12 chemokine (C-X-C motif) ligand 12 20315 929 1295 2254 1.74 0.001 

1431292_a_at Twf2 twinfilin actin binding protein 2 23999 161 216 341 1.58 0.009 

1450170_x_at H2-D1 histocompatibility 2, D region locus 1 14964 75 228 343 1.51 0.002 

1417869_s_at Ctsz cathepsin Z 64138 1441 2202 3160 1.43 0.0005 

1432466_a_at Apoe apolipoprotein E 11816 14332 96 127 1.31 0.0002 

1417627_a_at Limk1 LIM-domain containing, protein kinase 16885 147 244 303 1.24 0.02 

1435884_at Itsn1 intersectin 1 (SH3 domain protein 1A) 16443 305 514 630 1.23 0.02 

1422912_at Bmp4 bone morphogenetic protein 4 12159 679 315 363 1.15 0.003 
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1448050_s_at Map4k4 mitogen-activated protein kinase kinase kinase kinase 4 26921 176 338 360 1.07 0.03 

1423893_x_at Apbb1 amyloid beta (A4) precursor protein-binding, family B, member 1 11785 559 315 263 1.2 0.01 

1421955_a_at Nedd4 neural precursor cell expressed, developmentally down-regulated 4 17999 520 262 197 1.33 0.02 

1422444_at Itga6 integrin alpha 6 16403 275 634 473 1.34 0.04 

1438067_at Nf1 neurofibromin 1 18015 255 169 126 1.35 0.002 

1416936_at Aatk apoptosis-associated tyrosine kinase 11302 375 248 176 1.41 0.03 

1451630_at Ttl tubulin tyrosine ligase 69737 407 257 171 1.5 0.02 

1436791_at Wnt5a wingless-type MMTV integration site family, member 5A 22418 274 220 130 1.68 0.02 

1419301_at Fzd4 frizzled class receptor 4 14366 1285 1168 619 1.89 0.01 

1421116_a_at Rtn4 reticulon 4 68585 1981 1673 886 1.89 0.003 

1435537_at Ptprd protein tyrosine phosphatase, receptor type, D 19266 1096 847 440 1.93 0.004 

1451411_at Gprc5b G protein-coupled receptor, family C, group 5, member B 64297 240 311 149 2.08 0.003 

1422673_at Prkd1 protein kinase D1 18760 460 510 242 2.11 0.006 

1426773_at Mfn1 mitofusin 1 67414 283 358 167 2.15 0.001 

1419247_at Rgs2 regulator of G-protein signaling 2 19735 1393 2367 1040 2.28 0.02 

1420909_at Vegfa vascular endothelial growth factor A 22339 579 833 365 2.28 0.007 

1449214_a_at Opa1 OPA1, mitochondrial dynamin like GTPase 74143 191 411 171 2.41 0.009 

1426785_s_at Mgll monoglyceride lipase 23945 4158 6890 2338 2.95 0.004 

1450391_a_at Mgll monoglyceride lipase 23945 2951 4634 1549 2.99 0.004 

1453836_a_at Mgll monoglyceride lipase 23945 1691 2149 690 3.12 0.002 

1425534_at Stau2 staufen double-stranded RNA binding protein 2 29819 235 319 99 3.23 0.001 

1434465_x_at Vldlr very low density lipoprotein receptor 22359 1625 3416 984 3.47 0.001 

1420545_a_at Chn1 chimerin 1 108699 211 217 62 3.48 0.006 

1417900_a_at Vldlr very low density lipoprotein receptor 22359 504 980 219 4.48 0.0002 
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E. Regulation of axon guidance (GO: 1902667) 
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Probe set ID 

Gene 
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Gene 
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Fold 
Change 

p ANOVA 

1448823_at Cxcl12 chemokine (C-X-C motif) ligand 12 20315 5201 4107 14034 3.42 0.0006 

1420824_at Sema4d sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) and short 
cytoplasmic domain, (semaphorin) 4D 

20354 346 351 905 2.58 0.001 

1417574_at Cxcl12 chemokine (C-X-C motif) ligand 12 20315 929 1295 2254 1.74 0.001 

1436791_at Wnt5a wingless-type MMTV integration site family, member 5A 22418 274 220 130 1.68 0.02 

1420909_at Vegfa vascular endothelial growth factor A 22339 579 833 365 2.28 0.007 
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