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Summary

Post-transcriptional control of gene expression by small regulatory RNAs (sRNAs) is a widespread

regulatory principle among bacteria. The sRNAs typically act in concert with RNA binding pro-

teins such as the RNA chaperone Hfq to bind mRNA targets via imperfect base pairing. They

affect translation initiation and/or transcript stability. Additionally, sRNAs can influence tran-

scription termination of their targets or function indirectly as so-called sponges for other sRNAs.

Regulation often involves the major endoribonuclease RNase E, which contributes to both sRNA

biosynthesis and function.

In the first part of this thesis, we globally identified RNase E cleavage sites in the major human

pathogen Vibrio cholerae by employing TIER-seq (transiently inactivating an endoribonuclease

followed by RNA-seq). We validated the involvement of RNase E in the synthesis and maturation of

several previously uncharacterized sRNAs. Two examples, OppZ and CarZ, were chosen for further

study due to their unique regulatory mechanism. They are processed from the 3’ untranslated

regions (3’ UTR) of the oppABCDF and carAB operons, respectively, and subsequently target

mRNAs transcribed from the very same operons by binding to base pairing sites upstream of the

second (oppB) or first (carA) cistrons. This leads to translational inhibition and triggers premature

transcription termination by the termination factor Rho, thereby establishing an autoregulatory

feedback loop involving both the protein-coding genes and the processed sRNAs. In the case of

OppZ, the regulation is limited to the oppBCDF part of the operon in a discoordinate fashion

due to the position of the OppZ base pairing site. This mechanism of target regulation by Opp

and CarZ represents the first report of an RNA-based feedback regulation that does not rely on

additional transcription factors.

The second study included in the thesis characterizes two sRNAs involved in the envelope

stress response (ESR) of V. cholerae. Misfolded outer membrane proteins (OMPs) induce the

σ
E-dependent transcriptional activation of the sRNAs MicV and VrrA, which reduce membrane

stress by repressing the mRNAs of several OMPs and other abundant membrane protein. MicV

and VrrA share a conserved seed region with their functionally analogous counterpart from Es-

cherichia coli, RybB, indicating that this seed sequence might represent a universally functional

RNA domain. To study the involvement of this seed domain in the ESR in an unbiased fashion, we

constructed a complex library of artificial sRNAs and performed laboratory selection experiments

under membrane-damaging conditions. We isolated the most highly enriched sRNA variants and

indeed discovered a strong enrichment of the conserved seed-pairing domain. We were able to

pinpoint the repression of ompA as the key factor responsible for the sRNA-mediated resistance

xiii



Summary

to ethanol-induced membrane damage.

Taken together, this thesis expanded the knowledge on the mechanisms of sRNA-dependent

gene regulation by reporting a novel autoregulatory feedback loop. Additionally, it introduced

a synthetic sRNA library as a tool to study complex microbial phenotypes and their underlying

sRNA-target interactions.
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Zusammenfassung

Post-transkriptionelle Kontrolle der Genexpression durch regulatorische kleine RNAs (sRNAs) ist

ein weitverbreitetes regulatorisches Prinzip in Bakterien. Gewöhnlich binden sRNAs an ihre Ziel-

mRNAs durch unperfekte Basenpaarung, meist in Zusammenarbeit mit RNA bindenden Proteinen

wie Hfq. Dadurch kontrollieren sie die Initiation der Translation und/oder die Stabilität der mR-

NAs. Desweiteren können sRNAs auch die Termination der Transkription beeinflussen oder ihre

Zielgene indirekt regulieren, in dem sie als sogenannte „sponges“ andere regulatorische sRNAs ab-

fangen. Häufig ist auch die zentrale Endoribonuklease RNase E in die Regulation involviert, indem

diese sowohl zur Biosynthese der sRNAs, als auch zu deren Funktionalität beiträgt.

Im ersten Teil dieser Dissertation wurden zunächst Schnittstellen für RNase E im Genom des

bedeutenden humanpathogenen Bakteriums Vibrio cholerae untersucht. Für deren genomweite

Identifizierung wurde das TIER-seq-Protokoll angewendet (transiently inactivating an endoribo-

nuclease followed by RNA-seq). Die Bedeutung von RNase E für die Synthese und Prozessierung

von sRNAs wurde anhand von mehreren bisher uncharakterisierten sRNAs bestätigt. Zwei dieser

sRNAs, OppZ und CarZ, wurden aufgrund ihres einzigartigen Regulationsmechanismus eingehen-

der analysiert. Beide sRNAs werden aus der 3‘ untranslatierten Region (3‘ UTR) ihres jeweiligen

Operons (oppABCDF-oppZ bzw. carA-carZ ) herausprozessiert und regulieren anschließend jeweils

weitere mRNAs von genau diesen Operons, indem sie Basenpaarungen mit dem mRNA-Bereich

vor dem zweiten (oppB) bzw. ersten (carA) Gen bilden. Dadurch inhibieren sie die Translation

der folgenden Gene und induzieren die vorzeitige Termination der Transkription durch den Termi-

nationsfaktor Rho. Es entsteht ein autoregulatorischer Feedback-Mechanismus, der sowohl die die

proteinkodierenden Gene als auch die sRNAs selbst umfasst. Im Falle von OppZ ist diese Regulati-

on, bedingt durch die Position der Bindestelle der sRNA, begrenzt auf den oppBCDF umfassenden

Teil des Operons. Der für OppZ und CarZ beschriebene Mechanismus der Genregulation ist der

erste Bericht über eine neuartige, RNA-basierte Autoregulation, die unabhängig von zusätzlichen

Transkriptionsfaktoren agiert.

Die zweite in dieser Dissertation enthaltene Publikation charakterisiert zwei sRNAs als Teil

der Membranstressreaktion von V. cholerae. Die Akkumulation von fehlgefalteten Protein der

äußeren Membran (OMP) führt zur σE-abhängigen Aktivierung der Transkription von MicV und

VrrA. Diese sRNAs wirken dem Membranstress entgegen, indem sie die Translation von OMPs

und anderen abundanten Membranprotein inhibieren. MicV und VrrA haben einen konservierten

Bereich (die sogenannte Seed-Region) gemeinsam mit der sRNA RybB, ihrem funktional analogen

Gegenstück aus Escherichia coli. Diese Gemeinsamkeit deutet darauf hin, dass es sich bei der Seed-
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Zusammenfassung

Region um eine universell funktional RNA-Domäne handeln könnte. Um die Bedeutung dieser

konservierten RNA-Domäne für die Membranstressreaktion zu untersuchen, wurde eine Bibliothek

von synthetischen sRNAs konstruiert. Damit wurden Selektions-Experimente unter Membranstress

durchgeführt und die am stärksten angereicherten sRNA-Varianten wurden isoliert. Dabei wurde

in der Tat eine starke Selektion der zuvor beschriebenen, konservierten RNA-Domäne festgestellt.

Die Repression der Translation eines bestimmten Membranproteins, ompA, wurde als zentraler

Faktor für die sRNA-abhängige Resistenz gegen Ethanol-bedingten Membranstress identifiziert.

Zusammenfassend leistet diese Dissertation einen wertvollen Beitrag zum Forschungsstand über

sRNA-abhängige Genregulation durch die Beschreibung eines neuen autoregulatorischen Feedback-

mechanismus. Darüber hinaus wurde mit der synthetischen sRNA-Bibliothek ein neues Werkzeug

vorgestellt, mit dem komplexe mikrobielle Phänotypen und die zugrunde liegenden sRNA-mRNA-

Interaktionen untersucht werden können.

xvi



1 Introduction

1.1 Regulatory RNAs in bacteria

Our understanding of RNA and its importance has changed tremendously over the past decades.

While initially considered as merely transferring information from DNA to protein, RNA is now

assigned increasingly diverse regulatory functions. Similarly, bacterial gene expression had been

described as almost exclusively regulated at the transcriptional level. Extensive research on bac-

terial regulatory RNAs has challenged this assumption and revealed a complex network of post-

transcriptional control affecting basically all cellular processes [59, 348].

This thesis focuses specifically on the class of trans-encoded, base pairing small RNAs (referred

to as sRNAs). There is a plethora of regulatory RNAs in bacteria with distinct modes of action

that will not be discussed in this work, but are covered by several comprehensive reviews. These

include among others housekeeping RNAs like RNase P [96, 98] or tmRNA [223], small RNAs

acting by protein sequestration (like 6S or the CsrB/RsmZ family [346, 286]), antisense RNAs that

are transcribed from the complementary strand of their targeted gene [179], cis-acting elements

within mRNAs like riboswitches or thermosensors [45, 188], or CRISPR RNAs for the defense

against foreign genetic elements [219].

The first example of a trans-acting, RNA-based regulator, MicF, was serendipitously discovered

upstream of the ompC promoter sequence in 1984 [217]. It set the stage for a whole new field of

research investigating the so far overlooked regulatory potential of bacterial RNAs. The sRNAs

are commonly described as non-coding transcripts that interact with their trans-encoded target

mRNAs through short and often imperfect base pairing to regulate their translation and/or stability

[343]. They can form extensive regulatory networks, as most sRNAs regulate multiple targets and

for example the csgD mRNA has been shown to be regulated by no less than seven different

sRNAs [11, 176]. Bacterial sRNAs are often expressed under stress conditions and typically rely

on protein partners such as the RNA chaperone Hfq and the endoribonuclease RNase E for their

functionality [334]. But as there is no rule without an exception, this classic definition of sRNAs

does not cover all studied regulators. The non-coding nature of sRNAs is one example for initial

assumptions that had to be revised, as several regulators were reported to encode short peptides

that may act independently from or in concert with the RNA function [33, 342]. Bacterial sRNAs

are sometimes considered functional analogs to eukaryotic microRNAs (miRNAs), with whom they

share some fundamental characteristics like their regulation via seed region-mediated base pairing

1



1 Introduction

[121]. But while miRNAs are very uniform in their size and structure and always act in concert

with a complex of protein partners, bacterial sRNAs come in lengths of of 50 to 500 nt with diverse

secondary structures and not all of them require partners like Hfq [25, 343].

The majority of sRNA regulators have been studied in the Gram-negative enterobacterial model

organisms Escherichia coli and Salmonella typhimurium, whereas the work presented in this thesis

has been conducted in the major human pathogen Vibrio cholerae. While many underlying princi-

ples of post-transcriptional regulation are conserved throughout the bacterial tree, not all results

will be fully transferable. For example, only a subset of the well-characterized sRNAs from E. coli

is also known outside of the Enterobacteriales, as most sRNAs evolved after the split from the other

γ-proteobacteria [258]. However, as this work focuses more on the general molecular mechanism of

sRNA-based regulation rather than on the phenotypical characterization of individual regulators,

most studied principles will apply equally well to the studied organism V. cholerae.

1.2 Various types of sRNAs in bacteria

1.2.1 sRNA-encoding loci

The first systematic, genome-wide searches in the early 2000s revealed the presence of dozens of

new sRNA-encoding genes in E. coli [17, 284, 347, 68]. These studies were limited to intergenic

regions (IGRs), which were at that time considered to be the only source for sRNA biogenesis.

Candidate sRNAs were determined based on predictions of intergenic promoters and terminators

or on phylogenetic conservation of RNA sequence or structure. These primary (unprocessed)

transcripts from free-standing genes typically have well-defined promoters and terminators and are

transcribed independently from their adjacent genes. However, in some cases the genetic context

still provided some hints on their transcriptional control, as e.g. the sRNA GcvB is encoded

adjacent to its transcriptional regulator GcvA [335]. Moreover, some well-defined sRNA promoters

could be screened for the consensus motifs of known transcriptional regulators, revealing e.g. RybB

as part of the σE regulon and indicating a functional connection [252].

Additional studies following shortly after the initial sRNA searches already identified abundant

sRNAs derived from untranslated regions (UTRs) of mRNAs [163], giving rise to the concept of

“parallel transcriptional output”: protein-coding genes would produce both mRNAs and regulatory

RNAs by sharing promoter or terminator sequences [340]. However, only the emergence of high-

throughput, RNA-seq-based methods allowed the discovery of sRNAs in a more unbiased fashion

compared to the initial, IGR-restricted searches and uncovered the vast extent of sRNAs derived

from a variety of genomic locations (Fig. 1.1) [317, 306, 38, 251]. Especially 3’ UTRs turned

out to be a rich source for sRNAs biogenesis [61]. These 3’ UTR-derived regulators depend on

one of two pathways for their synthesis with large consequences for sRNA expression and the

chemical nature of its 5’ end [61]: sRNAs can either be transcribed from independent, mRNA-

internal promoters (type I sRNAs like MicL [126]) or they are released from the longer mRNA

transcript by endonucleolytic cleavage (type II sRNAs such as SroC [214]). Use of an independent

2



1.2 Various types of sRNAs in bacteria

Figure 1.1: Different sRNA-encoding loci. (A) Schematic genomic organization of genes en-
coding mRNAs or tRNAs (dark blue) and sRNA genes (orange). Arrows denote tran-
scriptional start sites. (B) RNA species transcribed from the genes in (A) with mRNAs
and tRNAs in dark blue and regulatory RNAs in orange. RNase E or other ribonucle-
ases (light blue) are important for the production of some sRNAs.

promoter uncouples sRNA and mRNA expression, thereby allowing independent regulation despite

a potential overlap of the two genes, and equips the regulator with a triphosphate at its 5’ end. In

contrast, processed sRNAs carry a 5’ monophosphate, depend on the upstream mRNA promoter

for their expression and are often functionally connected to the corresponding regulatory networks

[166, 62]. Either way, both mRNA and sRNA commonly share a Rho-independent terminator,

which is often bound by Hfq to stabilize the released regulator [220, 242].

Fewer examples are known for 5’ UTR-encoded sRNAs produced from the same promoter as

their associated mRNAs [187, 350, 72, 209]. One example with an intriguing biosynthesis pathway

is derived from a riboswitch in Listeria monocytogenes [187]: in its ’ON’ state, the riboswitch al-

lows transcription of the downstream operon, while the ’OFF’ state causes premature transcription

termination and accumulation of a short RNA species called SreA. This RNA, however, is not only

a byproduct of riboswitch function but rather a trans-acting sRNA itself, which represses a viru-

lence master regulator. Additional stable riboswitch-dependent transcripts have been detected in

different species [163, 251], potentially encoding more functional regulators. While many bacterial

sRNAs have been identified through Hfq cross-linking experiments, these methods might not be

suitable for a comprehensive detection of sRNAs from 5’ UTRs. Due to their overlap with the

downstream-encoded parental mRNA transcripts, the known examples of 5’ UTR-derived sRNAs

lack the classic Rho-independent terminator that is involved in Hfq binding [242]. Consequently,

most of them act independently of Hfq and cannot be captured by co-purification with Hfq. An ex-

ception is the recently reported mgtC leader that represses its target in trans in an Hfq-dependent

fashion, similar to many classic sRNAs [72].

Finally, there are individual reports of sRNAs derived from other genomic locations. One of the

most unusual sRNAs was reported to be excised from the external spacer of a polycistronic tRNA

precursor. 3’ETSleuZ is presumably constitutively expressed and binds to the two sRNAs RybB

and RyhB. Most likely it inactivates the regulators generated by transcriptional noise and setting

a threshold expression level for their stress response pathways [175]. Furthermore, a transposon-

3



1 Introduction

derived sRNA regulates pathogenesis-related genes in Salmonella and may provide a selective

advantage of transposon maintenance [97].

1.2.2 Control of sRNA expression

Apart from a few constitutively expressed exceptions like the housekeeping tmRNA, bacterial

regulatory RNAs are made only under certain conditions or in response to distinct environmental

signals [343]. They bear unique regulatory properties and are often important stress regulators

(see section 1.4). Their expression can be regulated at the levels of transcription initiation and

termination, by maturation from precursor transcripts, or modulation of sRNA stability.

Initiation of sRNA transcription

Many sRNAs encoded by free-standing genes within IGRs are transcriptionally controlled by al-

ternative sigma factors [252, 107, 129], transcriptional activators and repressors [7, 198] or two-

component systems [124, 222, 194]. Deciphering the inducing signals for the transcriptional reg-

ulators of an sRNA can give hints to its physiological function. Underlining their importance for

the respective biological pathways, sRNAs can be found among the most strongly regulated genes

within the corresponding regulons [230, 303].

This connection between expression conditions and functionality is more difficult to establish for

sRNAs processed from untranslated regions, as they share the transcriptional control with their

parental mRNA. Sometimes, mRNA and sRNA act as complementing arms of the same stress

response, as it was described for the inner membrane stress-induced factors CpxP and CpxQ:

the cpxP mRNA encodes a chaperone mediating the degradation of misfolded membrane proteins

in the periplasm, while the CpxQ sRNA is cleaved from its 3’ UTR and represses the de novo

synthesis of the same proteins by binding to their mRNAs in the cytoplasm [62]. Thus, the

simultaneous expression of both RNAs by the regulator CpxR results in a dual output within the

Cpx stress pathway. In other cases, the connection is less clear, e.g. for the ProQ-dependent sRNA

RaiZ processed from the raiA mRNA [321]. While raiA encodes a cold shock-inducible protein

involved in ribosome inactivation, its 3’ UTR-derived sRNA RaiZ acts to remodel the composition

of the histone-like HU complexes. Is is not yet fully understood how raiA-raiZ expression is

transcriptionally controlled or if processing of the sRNA always occurs with the same efficiency

[321].

Although uncommon, some sRNAs actually do seem to be expressed constitutively, such as the

tRNA-derived 3’ETSleuZ described above [175]. Its continuous synthesis (at least under fast growth

conditions) provides a constant pool of sponge RNAs that filter out transient bursts in RyhB or

RybB expression. Thus, instead of being a stress-induced sRNA itself, it helps to modulate the

response of other stress-related sRNA regulators.

4



1.2 Various types of sRNAs in bacteria

Control of transcription termination

Transcription of sRNA genes typically stops at Rho-independent (intrinsic) terminators [186].

These are sequence-encoded elements consisting of a GC-rich palindrome followed by a T stretch

(constituting a stem loop and a poly-U tail in the transcribed RNA), at which the RNA polymerase

(RNAP) pauses and dissociates from the DNA [285]. The strength of the terminator hairpin and

the length of the U stretch have been reported to determine the exact position of termination and

thereby affect sRNA functionality [242, 227]. Intrinsic termination does not depend on additional

proteins like the termination factor Rho (which dissociates RNAP from the DNA at so-called Rho-

dependent terminators) and has long been considered a static process. However, recent results

imply that sRNA termination is not always fully efficient, but can be remarkably increased under

stress conditions, thereby enhancing sRNA production [228]. Intrinsic terminators not only act as

transcription termination signals, but are also crucial for the ability of sRNAs to bind Hfq [152,

208]. Especially a stretch of at least six contiguous Us is involved in binding to the proximal face

of Hfq [242, 297]. Nevertheless, some sRNAs that harbor a disrupted U stretch still regulate their

targets in an Hfq-dependent way [276].

Maturation by ribonucleases

While the majority of IGR-derived sRNAs are produced in their functional form by transcription,

some regulators undergo an additional maturation step [81, 254, 250]. The best-studied example is

ArcZ from Salmonella, which is transcribed from its own promoter during aerobic growth, resulting

in a full-length transcript of low abundance [194]. While it is unclear if this full-length ArcZ also

fulfills a regulatory function in the cell, processing by RNase E generates a shorter form of the

sRNA from the 3’ end and places the conserved seed region at the 5’ end of this shorter form.

This maturation step is essential for the function of the short ArcZ species, most likely due to

the increased accessibility of the now exposed seed region [60]. Similarly, MicX in V. cholerae is

processed by RNase E from an sRNA precursor transcript into a shorter form that still includes

the base pairing site. In this case, maturation is needed for sRNA stability, as the short MicX

form exhibits a strongly increased half-life compared to the full-length precursor [81].

sRNA stability and turnover

Apart from its special role for MicX stability, cleavage by RNase E usually results in rapid turnover

of the respective RNA [316]. Binding to RNA chaperones like Hfq or ProQ can protect sRNAs

from both exo- and endoribonucleolytic decay [220, 10, 140]. Also features within the sRNA itself

such as stem loops and other structured regions contribute to increased stability [9, 304, 262].

In contrast, mRNA binding often results in turnover of the sRNA together with its target [197,

266]. The GlmZ sRNA is even targeted for RNase E-dependent decay through interaction with

its highly specific adapter protein RapZ [119]. More generally, sRNAs can be rapidly degraded

in the absence of their targets, contributing to a ’proofreading’ function that removes unpaired

regulators [22]. Finally, accumulating studies report on sRNA sponges that bind to and destabilize
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Figure 1.2: Architecture and binding partners of bacterial sRNAs. A prototypical sRNA
(orange) consists of structured regions formed by stem loops and its terminator hairpin
and of accessible seed sequences in single-stranded regions or loops. Interaction with
accessory factors (blue) like ribonucleases and Hfq contribute to and modulate sRNA-
mediated regulation. Additional key characteristics of the respective components are
listed in the grey boxes.

their cognate sRNAs, often introducing cross-talk between different sRNA targets [214, 208]. In

summary, sRNA stability is controlled by a plethora of different factors, which strongly influence

the abundance of the active regulator.

1.3 Molecular Mechanisms of bacterial small RNAs

1.3.1 Components involved in sRNA-based regulation

Bacterial sRNAs need to meet several requirements to exert their designated functions within

the cell. Generally speaking, they need to be expressed, stable and able to base pair and induce

downstream effects on their targets. While the role of promoter and terminator sequences for

sRNA expression and stability have been described above, the following chapter will introduce the

properties of target-binding sequences within sRNAs, the importance of RNA chaperones such as

Hfq, as well as the involvement of additional protein partners like the endoribonuclease RNase E

(Fig 1.2).

Seed region

Base pairing RNAs need to identify their partners within a large pool of nucleic acids in a cell,

reliably discriminating between true targets and non-specific interactions. To achieve this degree

of specificity, regulatory RNAs have evolved to carry specialized subregions for target search and

binding, referred to as “seed sequences” [333]. The general concept of seed pairing is wide-spread

among regulatory RNAs, as bacterial sRNAs share this feature with both CRISPR RNAs and

eukaryotic miRNAs and siRNAs [172, 121].
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The minimal length of the essential seed region in bacterial sRNAs is commonly described as six

to seven consecutive nucleotides, although the actual duplexes formed with targets in vivo might

extend further including adjacent, probably non-essential base pairs [162, 21, 73]. Within this

short stretch of complementarity, single mismatches can have drastic effects on target regulation

and provide a basis to distinguish between targets [253, 289]. Increasing the seed length would

likely reduce such discriminatory potential of individual positions, thereby increasing the risk of

off-target effects [262, 121]. sRNAs do not necessarily regulate all their targets with the same seed

region; up to three different target-binding sites have been described for a single sRNA [30, 135].

Identification of the seed region within an sRNA tremendously increases the performance of

bioinformatic target predictions, since the search for potential RNA-RNA interactions can be re-

stricted to the base pairing-competent regions within the regulator [165, 351]. Systematic analyses

of up to 23 sRNAs in E. coli and Salmonella have revealed evolutionary conservation and structural

accessibility as two key features of their seed regions [257, 283]. While conservation may be a con-

sequence of various evolutionary constraints on both regulator and target side (reviewed by [333]),

structural organization of many sRNAs indicates a division of labor between different parts of the

regulator. Due to the limited chemical diversity of nucleic acids, RNA folding into secondary and

tertiary structures can be important to define sequences involved in target regulation. Specificity

is increased by sequestering sequences not relevant for base pairing in structurally inaccessible

conformations, while exposing the seed sequences as unstructured regions or single-stranded loops

[257, 121]. Additional studies show the importance of different sRNA parts for different functions

such as target regulation, binding of RNA chaperones like Hfq or protection against endo- and

exonucleolytic decay. This proposed modularity is also in agreement with the observation that

seed regions transferred to unrelated sRNA scaffolds are sufficient to mediate target regulation by

the chimeric RNAs [265, 249, 108].

RNA chaperones

The most common protein partner of bacterial sRNAs is the Sm/LSm-family protein Hfq, which is

found in ~50% of all bacterial species and binds dozens of sRNAs [161, 144, 207]. It is often called

a molecular matchmaker, as it provides a platform for the binding of sRNAs to their targets. Hfq

fulfills many roles in sRNA-based regulation, including but not restricted to sRNA stabilization,

melting of RNA structures to allow base pairing, increasing sRNA-mRNA duplex rate formation,

or recruiting RNase E to induce target degradation [296, 293, 139, 334, 161]. Consistent with

its central role in RNA metabolism, hfq deletions show pleiotropic phenotypes and Δhfq cells are

often more susceptible to environmental stresses [323]. Hfq has been shown to bind hundreds

of mRNAs and sRNAs and co-immunoprecipitation experiments followed by RNA-seq have con-

tributed strongly to the identification of new sRNA candidates in different bacterial species [61,

38, 133]. In accordance with this large target spectrum, Hfq is considered to be limited in the cell

compared to the excess of binding partners and sRNAs compete for Hfq by active cycling [101,

147].
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The homohexameric ring made out of six Hfq monomers can generally bind RNAs via four dif-

ferent sites [300]: its proximal site (binding the intrinsic terminators of most sRNAs [152]), its

distal site (for binding A-rich sequences in mRNAs and some sRNAs [354]), the rim (providing a

secondary binding site for UA-rich sequences [296]) and its unstructured C-terminal tail (impor-

tant for some RNA contacts and hexamer stabilization [339]). While structural information about

ternary Hfq-sRNA-mRNA complexes is limited, a recent study presented the first crystal structure

of Hfq in conjunction with the sRNA RydC, proposing a model for the association of sRNA and

mRNA to the chaperone [93]. Apparently, Hfq exposes the single-stranded seed region at the 5’ end

of RydC at its outer rim, near the conserved arginine residues that have been assigned an essential

role in mediating base pairing [246]. It should be noted that in addition to its well-characterized

matchmaker function, Hfq seems to play a variety of sRNA-independent roles in cellular processes,

which are only beginning to be uncovered [294].

Hfq is the most common sRNA chaperone, but not all bacterial species encode an Hfq variant

and not all sRNAs are Hfq-dependent. The recently discovered FinO-domain protein ProQ binds

and stabilizes dozens of sRNA and has been shown to mediate target regulation in trans by the

sRNA RaiZ [320, 321]. While Hfq preferably binds single-stranded, AU-rich sequences at the base

of RNA hairpins [242, 152], ProQ seems to recognize RNAs by highly structured elements rather

than by their primary sequence, but the detailed mechanism is still unknown [140]. Two other

members of the FinO family, RocC and FinO itself, specifically associate with single sRNAs, while

the vast majority of FinO-like proteins in diverse bacteria is still uncharacterized [19, 37]. Yet these

results indicate that the FinO family might constitute a second major class of RNA chaperones

[239].

RNase E and other ribonucleases

Alteration of mRNA stability is often part of sRNA-mediated gene regulation (see section 1.3.2).

To this end, sRNAs in conjunction with Hfq can manipulate the access of RNases to their targets

[177]. Typically, this blocks or induces cleavage by the major endoribonuclease RNase E [197, 58,

349], which will be briefly characterized below.

RNase E was initially discovered as the enzyme responsible for the processing of rRNA precursors

[13]. It also mediates the crucial first step in tRNA maturation and is essential for cell viability

under most growth conditions [244, 328]. Accordingly, the rne gene is present in ~80% of all

sequenced bacterial genomes and organisms lacking RNase E like Bacillus subtilis typically encode

functional homologs such as RNase J1/J2 [100, 5]. RNase E consists of a globular N-terminal

domain harboring the catalytically active site and an unstructured C-terminal domain, which acts

as a scaffold for a multi-protein complex called the degradosome [52, 53]. Preferred substrates for

RNase E are single-stranded, AU-rich RNA regions with a degenerate consensus cleavage motif

[60]. The central role of RNase E for sRNA-based regulation can be illustrated by some key

findings from recent years: Hfq-bound sRNAs can form a ternary ribonucleoprotein complex with
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RNase E, thereby destabilizing targeted mRNAs by locally increasing RNase E concentration or

actively stimulating target cleavage through allosteric activation of RNase E [225, 22, 349]. The

opposite effect, target stabilization, can be achieved by masking sensitive cleavage sites through

sRNA-mRNA duplex formation [108, 255]. Moreover, accumulating reports of 3’ UTR-derived

sRNAs underline the importance of RNase E for sRNA biogenesis, while the majority of sRNAs is

also turned over by the ribonuclease [61, 60, 86].

In addition to RNase E, other ribonucleases are involved in sRNA-based regulation as well.

A central player in target inhibition by many sRNAs is RNase III, which specifically recognizes

double-stranded RNA. Cleavage within the sRNA-mRNA duplexes degrades the target while si-

multaneously inactivating the sRNA, contributing to unique regulatory dynamics [197, 3, 146].

Additionally, the 3’-to-5’ exonuclease polynucleotide phosphorylase (PNPase) is involved in sRNA

base pairing, turnover and stabilization, most likely by interaction with Hfq and RNase E [84, 10,

23, 56]. Recently, PNPase was also shown to degrade short mRNA fragments that would otherwise

sponge sRNAs by titrating them away from their true targets [57].

1.3.2 Mechanisms of target regulation

The standard mode of action for sRNAs has long been considered to be translational inhibition by

direct competition for the ribosome binding site. However, sRNA studies from recent years have

shown that there is a plethora of novel mechanisms to be characterized (and even more probably yet

to be identified). Individual sRNAs can employ different mechanisms to regulate different targets

(sometimes using the very same sRNA region for activation and repression, as described for SgrS;

[39]) or can combine multiple modes for the control of a single target [268]. The following chapter

provides an overview on the most common regulatory pathways and some atypical mechanisms,

described along selected sRNA/mRNA examples (Fig. 1.3).

Control of translation initiation

Many well-characterized sRNAs regulate their mRNA targets by pairing close to the translation

initiation region (TIR), thus inhibiting ribosome assembly at the Shine-Dalgarno (SD) sequence

(Fig. 1.3A) [343]. Systematic analysis of the inhibition-competent region revealed that pairing

from ~35 nt upstream to ~15 nt downstream of the AUG start codon (also called the “five codon

window”) allows sRNAs to block ribosome binding [43, 149]. However, inhibition of translation

was also described for sRNAs pairing outside of this region. These can bind to other translational

elements than the SD and start codon such as upstream enhancer elements (GcvB/gltI [305]) or

ribosome standby sites (IstR1/tisB [79]). Repression can also occur indirectly, e.g. by the control

of a translationally-coupled leader ORF (RyhB/fur [338]), by competition with the ribosomal S1

protein for binding of a translational enhancer element (SgrS/manY [20]), or by recruitment of

Hfq to the TIR of the mRNA where the protein, not the sRNA, competes with initiating ribosomes

(Spot 42/sdhC [89]).

In contrast to the above described examples, sRNAs may also positively influence translation
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Figure 1.3: Mechanisms of post-transcriptional gene regulation by sRNAs. Most com-
monly, sRNAs repress their targets by blocking the ribosome binding site (A) and/or in-
ducing mRNA decay (B). Increased mRNA translation and/or stability can be achieved
by opening self-inhibitory structures in the mRNA (C) or protecting the target from
ribonucleases (D). At the level of transcription termination, sRNAs can repress targets
by allowing access of termination factor Rho to rut sites (E) or activate gene expres-
sion by blocking rut sites (F). sRNA-sRNA cross-talk through sponges can reduce the
strength of mRNA regulation (G).

initiation. This typically involves an anti-antisense mechanism, where a long 5’ UTR folds into a

self-inhibitory structure sequestering the ribosome binding site (RBS) in a stable stem-loop struc-

ture (Fig. 1.3C). sRNA pairing to an upstream target site leads to remodeling of the mRNA

structure and allows ribosome access to the TIR, as it was first reported for RNAIII/hla in Staphy-

lococcus aureus [224] and DsrA/rpoS in E. coli [191].

Target degradation or stabilization as secondary effects

Translation and mRNA stability are often closely connected in bacteria due to the coupling of

transcription and translation [18, 44, 87]. Accordingly, sRNA-mediated repression of translation

is typically followed by rapid mRNA decay, as the “naked” transcript is no longer protected from

endonucleolytic attacks by translating ribosomes [197, 225, 252]. Conversely, increased translation

of sRNA targets is associated with mRNA stabilization [269, 205]. This secondary effect of altered

target RNA stability can be important for sRNA function if target regulation is dependent on the

combined effect of translational inhibition and RNA degradation [70]. In other cases, mRNA decay

is dispensable for target repression, as studied in detail for SgrS/ptsG and RyhB/sodB [226].
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Translation-independent regulation of mRNA stability

Changes in target stability are not necessarily a secondary consequence of translational deregu-

lation, as multiple sRNAs have been shown to directly affect mRNA stability without altering

translation initiation (Fig. 1.3B). One prominent example is MicC, the first sRNA discovered

to repress its target by binding deep in the coding sequence(CDS) and thus far downstream of

the TIR [265]. Mechanistically, MicC pairing to ompD promotes mRNA decay by recruiting the

degradosome and stimulating RNase E activity through the sRNA’s monophosphorylated 5’ end

[22]. Four different sRNAs are currently known to repress ompD under various stress conditions,

with MicC and SdsR sharing the same mechanism of pairing within the CDS and recruitment of

RNase E [107].

Once again, sRNA-based regulation can also have positive effects on target expression. RydC

and SgrS are two examples for translation-independent target stabilization by interference with

RNase E-mediated decay (Fig. 1.3D). RydC binds a cfa isoform with a long 5’ UTR and base

pairing at a region ~100 nt upstream of the start codon protects the transcript from degradation

[108]. SgrS targets a decay intermediate of the dicistronic pldB-yigL operon by pairing within the

CDS of the upstream pldB gene. Binding of the sRNA blocks the process of RNase E scanning

along the mRNA from the monophosphorylated 5’ end for downstream cleavage sites. Thereby it

limits further processing and increases the abundance of the yigL mRNA and YigL protein without

directly affecting its translation [255, 282].

sRNA-controlled transcription termination

While translation initiation and mRNA stability are arguably the hotspots of sRNA-based control,

less common mechanisms have also been reported for several regulators. Of particular relevance for

the present work is the interference with Rho-dependent transcription termination. This process

is the second pathway for transcription termination in bacteria, in addition to the intrinsic termi-

nation described in section 1.2.2. It depends on so-called Rho utilization (rut) sites on the nascent

transcript. Termination factor Rho recognizes these sequence motifs in newly synthesized RNA

and subsequently terminates transcription [285]. Accessibility of rut sites is key for Rho-dependent

termination and sRNAs can regulate this process (Fig. 1.3E).

This type of regulation was first reported for ChiX-mediated control of the chiPQ operon. At

the first glance, ChiX affects chiP expression through the canonical mode of target repression by

binding to its RBS, inhibiting translation and promoting mRNA decay [104]. However, also the

distal chiQ gene in the operon was co-regulated by an unknown mechanism. In-depth analysis

of this polarity effect revealed that inhibition of chiP translation exposes a normally hidden rut

site in the ribosome-free mRNA, thereby promoting premature transcription termination within

the chiP coding sequence [42]. A similar mechanism is described for the galETKM operon, where

base pairing of Spot 42 to the galK leader inhibits expression of galKM by translational repres-

sion and Rho-dependent transcription termination [345]. Promoting intra-operonic transcription

termination could be a general pathway for sRNAs to uncouple the expression of co-transcribed
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genes.

While stripping an mRNA from translating ribosomes to allow Rho access to rut sites is a rather

indirect process, sRNAs can also directly antagonize Rho function (Fig. 1.3F). The aforementioned

positive regulation of rpoS translation by anti-antisense sRNA pairing is complemented by directly

blocking Rho-dependent termination within the rpoS leader sequence through the action of RprA,

DsrA and ArcZ [301]. Another example is protection of the rho leader itself by the sRNA SraL,

implying that cells might modulate Rho protein levels through a second mechanism independent

of the protein-based autoregulation [314].

RNA decoys

The complexity of RNA-based control is further increased by the emergence of RNA decoys (also

called RNA predators, traps or sponges) as a new paradigm in post-transcriptional regulation

(Fig. 1.3G) [103]. Detailed study of the above described ChiX sRNA revealed that the roles

of regulator and target can get swapped depending on the sRNA/mRNA stoichiometry or the

involvement of additional players: ChiX normally represses the chitoporin chiP and a chitobiose

transporter encoded by parts of chbBCARFG in the absence of their substrate. Upon chitosugar-

induced chb transcription, the mRNA is produced in excess and turns from a ChiX target into a

decoy RNA as it binds and destabilizes ChiX, thereby indirectly de-repressing chiPQ [266].

Such sponges have been described to originate from various sources and exert diverse functions.

For example, they can set a substrate threshold for transporter biosynthesis (ChiX/chb), contribute

to feedback control of metabolic enzymes (RNA mimicry by GlmY/GlmZ to regulate glmS [119]),

sequester sRNAs produced by transcriptional noise (tRNA spacer-derived 3’ETSleuZ/RybB, RyhB

[175]) and many more. If decoy RNAs act on multiple regulators (like 3’ETSleuZ ), they can also

interconnect and balance the corresponding regulatory networks. New methodologies like RIL-

seq (RNA interaction by ligation and sequencing [208]) or CLASH (cross-linking, ligation, and

sequencing of hybrids [171]) allow the identification of RNA-RNA interactions at the transcriptome-

wide level. The vast amount of potential interactions recently revealed by these techniques in E. coli

implies that cross-talk and sponging between RNAs could be much more common than previously

appreciated. However, most detected interactions and their regulatory relevance still need to be

experimentally confirmed [208, 349].

1.3.3 Requirements for productive base pairing

The development of the RIL-seq technology has led to the discovery of many RNA-RNA inter-

actions that have no effect on the expression of either of the two binding partners, thereby con-

stituting so called non-productive base pairings. This stresses the importance of understanding

which molecular features of an RNA-RNA interaction are required to mediate target regulation,

a question which various studies have tried to answer for more than a decade. Despite great im-

provements in the sensitivity and accuracy of bioinformatic algorithms for target prediction, the

amount of false positive predictions is still high [245]. Constraints on the sRNA side, which have

12



1.3 Molecular Mechanisms of bacterial small RNAs

been discussed above, include the seed region, structural elements like hairpins, a tightly regulated

sRNA expression pattern and interactions with protein partners such as Hfq or RNase E. In addi-

tion, also mRNAs require specific features to be an sRNA target, such as a sequence that is able

to pair with the respective sRNA.

As described above, systematic mutational analyses have narrowed down the essential base pairing

regions to as few as six to seven nucleotides [162, 21]. But adjacent bases often have the potential

to pair as well and the formation of longer duplexes has been validated by structural probing of

multiple sRNA-mRNA pairs [305, 141, 291]. As the length of a paired RNA duplex determines

the thermodynamic stability of the interaction, different studies have analyzed the influence of

binding strength and extended complementarity on target regulation. They report a correlation

between calculated hybridization energy and strength of the regulation, supporting the use of free

hybridization energy as a widely used criterion in computational target predictions tools [131, 31,

262, 39]. However, not all observed variability in regulation can be explained by thermodynamic

differences. Especially, some nucleotide positions within a stretch of complementarity seem to be

more crucial for target regulation than others [253]. These often represent the actual seed, i.e.

those critical nucleotides that establish the initial contacts to the mRNA before pairing extends

further to the adjacent nucleotides [121].

Some sRNAs can base pair with more than one region within their mRNA targets. These in-

teraction sites can be in close proximity or even overlapping [16, 307] or at different genes within

a polycistronic operon [31, 281]. Such multiplicity is assumed to increase the efficiency of target

regulation, although the stoichiometry of sRNA binding is not always clear. One sRNA molecule

can establish multiple connection to one mRNA transcript at the same time [16] or multiple reg-

ulators can bind to different parts of the mRNA independently [281]. It is also hypothesized that

binding to either of two target sites in close proximity could be mutually exclusive, while together

they still increase the affinity of the sRNA for its target [31].

Motivated by the obvious discrepancy between predicted and truly regulated sRNA targets, Beisel

and colleagues performed a systematical search for requirements on the mRNA site that allowed

regulation by the sRNA Spot 42 [31]. Increasing the strength of RNA-RNA interactions by ex-

tending the complementary duplex resulted in stronger target repression, as long as the interacting

sequences were located in unstructured regions of the regulator. Similarly, secondary structures

within the mRNA that enclose the predicted pairing site to Spot 42 prohibited regulation and

mutations opening these inhibitory structures established Spot 42-dependent control [31]. These

results are agreement with the observation that interaction regions are typically structurally ac-

cessible in both sRNAs and targets [257, 283] and with a recent study reporting a role of Hfq in

melting an mRNA secondary structure to free the sRNA-binding site [139]. Accordingly, most

bioinformatic tools for target prediction include calculations of structural accessibility in addition

to hybridization energy and other features like sequence conservation [229, 49, 352, 165]. The

majority of known sRNAs to date depend on Hfq for their functionality [341]. While this can
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sometimes be due to the need of Hfq for sRNA stability rather than for actually mediating target

regulation [220, 131], many mRNAs are also bound directly by Hfq [317, 38, 144]. In the above

mentioned study on Spot 42 targets, non-regulated mRNAs with the potential to base pair to Spot

42 but lacking an Hfq site could be converted into true targets by transferring such an Hfq site

from another target [31]. Additionally, mRNA targets have to bind Hfq in the right distance and

in the correct orientation relative to the base pairing site [247, 259, 300].

These demands that mRNAs need to fulfill to be regulated by an sRNAs indicate that probably

not all mRNAs can be sRNA targets. In this regard, it is noteworthy that many mRNAs are

regulated by multiple sRNAs to different extent and with distinct outcomes. For example, rpoS is

activated by direct base pairing of three sRNAs (DsrA, RprA and ArcZ) and repressed by pairing

of another sRNA (CyaR) [168], while no less than seven sRNAs (OmrA/B, McaS, RprA, RybB,

GcvB and RydC) directly repress the biofilm master regulator csgD [11]. Different sRNAs often use

at least slightly variable binding sites on their target, but even the use of the very same binding

site by an activating and a repressing sRNAs has been reported [85]. In general, such mRNA

hubs of post-transcriptional regulation might reflect a potential evolutionary pathway of sRNA

targets: establishing the necessary features for the first sRNA-mRNA interaction could increase

the likelihood of an mRNA to acquire additional regulatory connections [333].

1.4 Physiological roles of sRNAs

The large diversity of sRNAs in many bacterial species is reflected by the variety of cellular processes

that are subject to their post-transcriptional control (Fig. 1.4). Bacterial sRNAs provide fast

and efficient means to adapt gene expression over a large range in response to sudden stimuli

[312, 206]. Thus they are very suitable for fast adaptation of the bacterial transcriptome in

fluctuating environmental conditions. Indeed, the majority of known sRNAs are expressed under

very specific conditions and many are found in regulatory networks connected to cellular stress

response pathways [138, 143]. For example, the Fur-dependent sRNA RyhB is upregulated under

iron limitation [198] and replenishes the cellular iron pool, mainly by repressing non-essential iron-

utilizing proteins [199, 269, 90]. Regulation of iron homeostasis is critical for cell integrity and

many bacterial species encode either RyhB homologs or other sRNAs acting as functional analogs

[12, 238]. Moreover, the general stress regulator RpoS is both controlling the expression of at least

four sRNAs [240, 315, 106, 129] and is itself controlled by three different sRNAs [117, 194, 192],

which help to fine-tune the RpoS response [26, 122].

In addition to stress responses, core cellular processes are also subject to sRNA-dependent con-

trol. Spot 42 and SgrS remodel the carbohydrate metabolism by contributing to CRP-dependent

carbon catabolite repression [120, 30] or by counter-acting phosphosugar stress [336, 342, 255], re-

spectively. Regulation of quorum sensing and virulence gene expression by sRNAs are best studied

in Vibrionaceae and Gram-positive Staphylococci, where the Qrr sRNAs [332, 304, 248] or the dual

function regulator RNAIII [237, 235, 46] constitute the heart of the respective quorum sensing
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Figure 1.4: Physiological processes involving sRNA-based control. Regulation by sRNAs
influences many cellular pathways ranging from stress response systems like the ones
based on σE and σS to amino acid, carbon and iron metabolism. Also quorum sensing,
group behavior and the decision between sessile and mobile lifestyles are mediated by
and modulated through sRNAs.

systems. But also other group behaviors like motility or biofilm formation are tightly controlled by

numerous sRNAs [85, 158]. This incomplete set of cellular processes involving sRNAs emphasizes

their global importance for bacterial physiology [343]. The two sRNA-controlled processes that

are most relevant for the present work are the regulation of amino acid metabolism by GcvB and

the envelope stress response mediated by σE-dependent sRNAs, which will be described in the

following section in more detail.

1.4.1 Regulation of amino acid metabolism

GcvB is one of the few sRNAs that are conserved beyond the Enterobacteriales, indicating an early

evolutionary origin [258]. It is also among those sRNAs with the largest validated targetome, as

it directly affects the expression of up to 1-2% of the Salmonella transcriptome [307, 208]. This

unusually large set of direct targets is further extended through GcvB-dependent regulation of

the key transcriptional regulator Lrp, which in turn regulates ~10% of all genes in E. coli [218,

329]. So far, 31 direct mRNA targets of GcvB have been validated in vivo, all of them repressed

by the sRNA [176]. Through one of them, cycA encoding a glycine transporter, GcvB establishes

a negative-feedback loop and limits its own transcriptional activation by the glycine-responsive

transcription factor GcvA [335, 271]. Mechanistically, GcvB represses most of its targets through

the same conserved seed region, which is very G/U-rich and binds to C/A-rich translational en-

hancer elements on the mRNA targets [305]. Deletion of the gcvB gene leads to strongly increased

expression of its targets, e.g. of the periplasmic substrate-binding proteins of the major peptide

transporters, DppA and OppA. GcvB is mainly expressed when cells are growing fast in rich media

and it targets many additional ABC transporters for amino acids and peptides as well as genes
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involved in amino acid biosynthesis [305, 307]. Thus, its major function has been described as

the limitation of energy-intensive amino acid uptake and biosynthesis under nutrient-rich condi-

tions. However, the physiological rationale behind this GcvB-mediated shutdown of amino acid

metabolism is still not fully understood [176]. An additional layer of complexity is added by the

discovery of a target-derived sponge of GcvB called SroC. It is processed from the gltIJKL mRNA

(which is repressed by GcvB) and strongly destabilizes GcvB [214]. This establishes a feed-forward

loop, in which transcriptional activation of gltIJKL also produces the sponge RNA SroC that

blocks the inhibitor GcvB. At the same time, SroC indirectly de-represses the other GcvB targets,

leading to a coordinate response of the GcvB regulon.

Another sRNA involved in the regulation of amino acid metabolism has been discovered in

the 3’ UTR of the dapB gene (encoding an essential protein for lysine biosynthesis) [61]. The

sRNA DapZ is independently transcribed from a dapB-internal promoter and regulates the major

ABC transporters encoded by the dpp and opp operons, which are responsible for the uptake of

dipeptides and oligopeptides, respectively [83]. Remarkably, DapZ not only shares these targets

with GcvB, but it also uses a very similar G/U-rich seed region to target the same mRNA regions

in the first genes of the operons, dppA and oppA [305, 61].

1.4.2 The σE-dependent envelope stress response

The cell envelope of Gram-negative bacteria is a multilayered structure composed of the inner

membrane, the aqueous periplasm, a thin peptidoglycan layer and the outer membrane (reviewed

by [313]). Many (glyco)proteins are inserted into the outer membrane governing processes like

nutrient uptake or surface attachment. One class of transmembrane proteins called OMPs (for

Outer Membrane Proteins) are often highly abundant and mostly function as pores and channels

[234]. But misfolding of OMPs can occur under unfavorable conditions (such as pH or redox stress)

or stochastically in unstressed cells. As misfolded OMPs are highly toxic to the cell, their folding

status is constantly monitored by the σE signaling system: misfolded OMPs release σE from the

repression of its anti-sigma factor, allowing it to transcriptionally activate a large regulon including

chaperones and proteases to counteract the experienced stress [279, 212].

However, as a transcriptional activator, σE itself is unable to repress gene expression. This func-

tion is exerted by the post-transcriptional arm of the response in the shape of multiple sRNAs such

as MicA, MicL and RybB in E. coli and Salmonella. These are strongly upregulated by σE and

repress many mRNAs encoding major OMPs by inhibiting translation and initiating decay of the

unusually stable omp transcripts [252, 157, 249, 126]. Additional sRNA targets include the highly

abundant lipoprotein Lpp and some other lipoproteins and transporters [118, 126]. By reducing

the overall OMP synthesis, the sRNAs contribute to a fast relieve of the σE-inducing envelope

stress, thereby providing a feedback loop. This regulation is not only relevant under σE-inducing,

unfavorable conditions, but rather constitutes a permanent surveillance system. Thus, deletion

of the sRNA genes leads to chronic envelope stress also in the absence of any external envelope

damage [252].
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While the general principle of the σE-dependent response is widely conserved in Gram-negative

bacteria and essential for cell viability also in V. cholerae, its associated sRNAs are limited to

Enterobacteriales [82, 212, 258]. However, V. cholerae encodes an unrelated but functionally anal-

ogous sRNA called VrrA, which is also controlled by σE and represses major OMPs as well as

biofilm components [324, 325]. Through its repression of ompA, VrrA also increases the formation

of outer membrane vesicles, which has been proposed as an additional envelope stress response

system [204].

The σE-dependent envelope stress response has become a paradigm for mixed regulatory net-

works composed of transcription factors and regulatory RNAs. It exhibits many characteristic

features of such mixed circuits like feedback regulation or inversion of the sign of transcription

factor (TF) control by the sRNA, as described in the next section.

1.5 Concepts of bacterial gene regulation

Post-transcriptional control of gene expression by bacterial sRNAs is of course not isolated from

other regulatory networks in the cell, but rather closely intertwined with e.g. transcriptional regu-

lation. Research on bacterial gene expression in the past decades has uncovered some fundamental

concepts that are widely conserved among and even beyond bacterial species, for instance cer-

tain regulatory motifs that are recurrently found within transcriptional networks [6]. They form

autoregulatory loops, feedback circuits, feed-forward loops and many more. The discovery of per-

vasive sRNA-based control has revealed that these networks can also include sRNAs in addition to

the well-studied transcriptional regulators and multiple regulons can be connected via sRNA hubs.

The following chapter will highlight two concepts which are particularly relevant for this work:

transcription factor-based autoregulation and mixed regulatory networks that combine regulation

by both TFs and sRNAs.

1.5.1 Autoregulation

When studying bacterial transcription networks, one of the most abundant motifs is (direct) au-

toregulation: a transcription factor binds to its own promoter and thereby influences its own

expression, typically in a repressive way leading to negative autoregulation (NAR) [330]. This

regulatory architecture is employed by approximately 50% of all bacterial regulators [6]. One con-

sequence of NAR (and probably one of the reasons for its widespread occurrence) is the accelerated

response time of the system. NAR allows the use of a strong promoter for a fast initial rise of protein

levels, as the synthesis of new proteins is efficiently slowed down when the protein concentration

gets closer to its repression threshold [288, 55]. Additionally, NAR reduces the stochastic noise in

gene expression, as high TF concentrations reduce the de novo synthesis, while low concentrations

increase it. This dampens the amplitude of protein level fluctuations between different cells [28].

Negative autoregulation is also described for the termination factor Rho, which regulates the levels
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of its own mRNA by inducing termination within its leader sequence [202]. For sRNAs, such direct

autoregulation is naturally impossible, as they cannot bind DNA to regulate their transcription.

However, indirect autoregulation by influencing their cognate transcription factors within feedback

loops has been observed for some sRNAs (see below and [327, 142]).

1.5.2 Mixed regulatory networks

By their post-transcriptional mode of action, sRNAs add a second layer to the regulation of gene

expression, acting in addition to the well-characterized transcriptional control (Fig. 1.5). This

seemingly trivial observation opens up many possibilities for regulation that would not be possible

with only transcriptional control. Moreover, many transcription factors are themselves regulated

by sRNAs, giving rise to multi-layered and interconnected regulatory cascades.

Switching the sign of regulation

Most fundamentally, sRNAs can switch the sign of regulation of a transcriptional regulator (Fig. 1.5A):

some regulators are intrinsically defined to act as either activators (such as sigma factors guiding

RNAP to their designated promoters [134]) or as repressors (like the transcriptional repressor Fur

that binds to fur boxes at promoters and blocks RNAP access [99]). The existence of σE-repressed

genes or Fur-activated genes has long been puzzling, until the discovery of sRNAs within the re-

spective regulons solved the riddle [95, 279]. While σE directly activates the transcription of ~100

genes in E. coli, its partner sRNAs MicA, MicF and RybB together repress ~30 genes encoding

abundant OMPs, which need to be silenced under envelope stress conditions (see section 1.4.2 and

[118, 126]). Conversely, the RyhB sRNA negatively regulates non-essential iron-utilizing genes

during iron scarcity. By transcriptional repression of RyhB under iron-replete conditions, Fur acts

as an activator for these genes [198].

Tight control of genes in an ’OFF’ state

Transcription factors and sRNAs can also act simultaneously on the same target to establish an

even tighter control (Fig. 1.5B). Transcriptional repression of an mRNA target keeps synthesis of

new transcripts at a low level. However, short bursts of transcription can occur stochastically and

are amplified during translation, giving rise to relatively large fluctuations in protein production

despite the transcriptional ’OFF’ state of the gene [51]. The additional repression by an sRNA

helps to avoid these escapes from target repression by blocking translation of the mRNA transcripts

produced during a transcriptional burst [15]. As the rate of mRNA synthesis is kept low by

the transcriptional repressor, continuous moderate expression of the sRNA is sufficient to silence

protein production [182]. Thus, the combined action of both repressors strongly enhances target

regulation above the regulatory capacity of the individual players.

Such dual repression by TF and sRNA is for example predicted to control genes mediating

bistable behavior such as the csgD master regulator of biofilm formation [123]. CsgD indirectly
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1.5 Concepts of bacterial gene regulation

Figure 1.5: Mixed regulatory networks of transcription factors and sRNAs. (A) sRNAs
can inverse the sign of regulation of a transcriptional regulator by e.g. repressing mRNA
targets of the transcriptional activator σE. (B) Additional repression by an sRNA can
tighten the control of a transcriptionally inactive gene. (C) Transcriptionally coupled
genes can be differentially regulated by sRNAs at the post-transcriptional level. (D)
Some sRNAs regulate their own transcription factors, either through direct binding of
its mRNA or indirectly by modulating target gene expression that feeds back on the
TF. (E) Feed-forward loops are constituted of two regulatory arms acting on the same
target. sRNAs can be placed in the middle of the loop (left) or at its top (right).

enhances its own expression, thereby establishing a positive feedback loop and promoting the for-

mation of multi-cellular aggregates important for environmental persistence [190]. The csgD gene

is part of a complicated transcriptional network and additionally regulated by seven repressive

sRNAs, although experimental evidence on how these sRNAs actually influence the CsgD bista-

bility is currently lacking [190, 11].

Dynamics of target gene repression

In addition to increasing the strength of target repression, sRNAs can also contribute to a faster

regulation. When synthesis of a certain protein is supposed to be turned off, the respective tran-

scriptional regulator acts to terminate synthesis of new mRNAs. However, the existing transcripts

can still be translated until they are degraded, which can substantially delay the response for

mRNAs with long half-lives. In this case, sRNAs directly acting on the mRNAs allow an immedi-

ate block of protein synthesis, thereby speeding up the regulation. An example is the accelerated

reduction of CRP targets by the sRNA Spot 42 upon CRP inactivation (see below and [30]).
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Uncoupling of transcriptional units

Bacterial genes are often organized into operons to coordinate the expression of functionally linked

genes. Binding of sRNAs to such polycistronic mRNAs can either lead to the regulation of all

encoded genes simultaneously or to uncoupling of the operon (Fig. 1.5C). Regulation of the full

operon is often achieved when the individual cistrons are translationally coupled and binding of

the sRNA to the first RBS abolishes translation of all downstream genes (PhrS/pqsR [326]). In

a different pathway, the above described ChiX sRNA indirectly represses the second gene in the

chiPQ operon by blocking chiP translation, which exposes a normally hidden rut site in chiP

and induces Rho-dependent transcription termination before chiQ [42]. Alternatively, sRNAs may

pair at multiple binding sites along the mRNA, thereby blocking translation of multiple genes

independently (SgrS/manXYZ [281]).

In contrast, differential expression of transcriptionally coupled genes can be advantageous when

only a subset of the gene products is needed under a specific condition. Base pairing sRNAs can

mediate this uncoupling by selectively stabilizing parts of the operon (SgrS/yigL [255]). Conversely,

some cistrons can be protected from sRNA-induced decay of the remaining transcript by stable

secondary structures (RyhB/iscRSUA [90]). Moreover, sRNA-based translational inhibition of

a subset of genes within an operon does not necessarily reduce the stability of the full mRNA,

whose other cistrons are then unaffected by sRNA binding (Spot 42/galETKM [221]). Apparently,

sRNA binding at various positions along a polycistronic mRNA can lead to very different outcomes

and regulation of the individual cistrons has to be studied on a case-to-case basis to uncover the

respective regulation.

Feedback circuits

Under stress conditions, cells commonly induce the expression of gene products that counteract

the stress and thereby reduce the signals that initially induced their own expression. One example

for such an indirect example is the σE-dependent envelope stress response (see section 1.4.2 and

Fig. 1.5D). But sRNAs also contribute to much simpler feedback loops consisting of only two

components: a transcriptional regulator that controls synthesis of an sRNA, which in turn represses

or activates the TF. Such loops can in principle lead to three outcomes [6]: (i) signal amplification

if both regulations are positive (not yet observed for sRNAs), (ii) balanced expression of both

partners if positive and negative regulation is combined (e.g. Qrr1-4/luxO [327]) or (iii) bistable

behavior with inversely correlated expression levels if both regulations are negative (MicF/lrp

[142]). However, these feedback loops never work in isolation, but are rather embedded into

other regulatory connections that additionally modulate the output of the system. This becomes

especially clear when looking at the complex quorum sensing response in Vibrio, where multiple

direct and indirect feedback loops tightly control collective behavior [332, 290].
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Various feed-forward loops

Feed-forward loops (FFLs) are network motifs consisting of three components and have been stud-

ied in detail for transcriptional regulators [6]. Briefly, component A regulates target C directly,

but also indirectly through control of factor B (Fig. 1.5E). Depending on the signs of all their

regulatory connections, FFLs are categorized into eight types and called either coherent (if both

arms result in the same target regulation) or incoherent (if one arm is repressing and the other

one is activating the target) [196]. A variety of such FFLs have been reported to include sRNAs

as the factor B: they are controlled by a TF and regulate another direct target within the TF

regulon [236]. One of the best-studied coherent FFLs is composed of the transcription factor CRP,

the sRNA Spot 42 and various genes of the carbon catabolite repression pathway [30]. When cells

grow on glucose, Spot 42 represses genes for the uptake and utilization of non-preferred carbon

sources. During glucose starvation, CRP transcriptionally induces these genes and at the same

time inhibits expression of the repressor Spot 42, thus contributing to the metabolism of alternative

carbon sources via two ways [120, 30]

A more unusual FFL is the RprA-RpoS-ricI circuit, as it is one of the few described examples

where an sRNA is placed at the top level of the circuit [250, 236]. RprA post-transcriptionally

activates the general stress response regulator rpoS as well as ricI, a direct target of σS activation.

Thus, it constitutes another coherent FFL, where both arms result in target activation. However,

activation of rpoS alone, e.g. by other sRNAs, is not sufficient for full ricI induction, as RprA is

needed to activate ricI translation by an anti-antisense mechanism. This AND-gate logic ensures

that σS induction only leads to RicI synthesis if RprA is simultaneously present in the cell. Thus,

RprA induces a specialized form of the RpoS response that cannot be mediated by other σS-

inducing conditions. Physiologically, this circuit limits transfer of a virulence plasmid in Salmonella

under unfavorable conditions [250].

1.6 Aim of this work

In recent years, bacterial sRNAs have emerged as powerful regulators that can rival transcrip-

tion factors with regard to their regulatory scope and function. They establish extensive post-

transcriptional networks by a variety of molecular mechanisms, with novel modes of action still

being uncovered. While a number of sRNAs has been studied in great detail in the model organisms

E. coli and Salmonella, less is known about the sRNA repertoire in the major human pathogen

V. cholerae. In this organism, sRNAs constitute central components of multiple physiologically

important processes such as quorum sensing and virulence [181, 260], natural competence [353], or

maintenance of envelope integrity [324, 325]. An initial study from our group had identified a large

set of previously unknown candidate sRNAs in V. cholerae, most of which still await functional

characterization [251]. One goal of this study is to extend the knowledge on V. cholerae sRNAs

encoded in varying genomic loci and produced via different biogenesis pathways. A special focus

is set on their molecular characteristics and regulatory mechanisms.
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Negative autoregulation is a central motif in regulatory networks, where a transcription factor

controls its own expression by binding to its own promoter [6]. NAR has also been reported for

sRNAs in a more indirect way through sRNA-dependent regulation of their cognate TFs which in

turn control sRNA transcription [327, 142, 48]. However, such feedback loops are always dependent

on the action of a transcriptional regulator. Given the increasing complexity of sRNA-based

regulatory mechanisms that are explored, we speculated that sRNAs could also be able to establish

protein-independent autoregulation. Indeed, the emergence of processed, 3’ UTR-derived sRNAs

opened up a novel possibility for feedback control: they depend on the expression of their parental

mRNA, which could also be regulated at the post-transcriptional level, i.e. by sRNAs. Motivated

by this idea, we started the first project of this thesis by studying the central ribonuclease RNase

E in V. cholerae to find sRNAs that are processed from mRNA 3’ UTRs. Subsequently, we

screened these sRNAs for potential feedback regulation of their own operons by bioinformatic target

predictions. We identified two potentially autoregulatory sRNAs and validated our hypothesis by

characterizing the underlying molecular mechanism.

Our second study focuses on the mechanistic details of evolved sRNA-mRNA target pairs. As

described in section 1.4.2, the σE-dependent envelope stress response is generally conserved between

E. coli and V. cholerae, but the sRNAs constituting its repressive arm are not. Still they carry

out the same function by regulating almost identical targets [118, 212]. It is yet unclear if this

functional analogy is the consequence of a selective pressure for effective removal of stable omp

mRNAs. It is also an open question if these sRNAs represent the only (or most efficient) way for

the cells to cope with envelope stress. Moreover, the discovery of three σE-dependent sRNAs in

E. coli suggests that VrrA might not be the only one in V. cholerae. We addressed these questions

in the second study presented in this thesis by initially searching for other σE-dependent sRNAs in

V. cholerae. Subsequently, we constructed a complex library of synthetic sRNAs based on a natural

scaffold equipped with a randomized seed region. This library was transferred to V. cholerae to

provide the cells with a large pool of potential regulators, from which the most suitable variants

could be selected in the context of the σE response. We used laboratory selection experiments

under membrane-damaging conditions to enrich beneficial regulators in an unbiased fashion and

analyzed their regulatory properties and function. Finally, we compared the synthetic regulators

to the native σE-dependent sRNAs from V. cholerae and E. coli to identify shared characteristics.
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2 Gene autoregulation by 3’ UTR-derived

bacterial small RNAs

Mona Hoyos, Michaela Huber, Konrad U. Förstner, and Kai Papenfort (2020). “Gene autoregula-

tion by 3’ UTR-derived bacterial small RNAs.” eLife 9, e58836

Source online: https://doi.org/10.7554/eLife.58836

This publication describes two examples of an RNA-based, autoregulatory loop by a 3’ UTR-

derived sRNA. OppZ and CarZ are processed from their parental mRNAs by RNase E and bind to

upstream cistrons in their respective operons. Thereby, they inhibit mRNA translation and induce

premature, Rho-dependent transcription termination.
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Abstract Negative feedback regulation, that is the ability of a gene to repress its own synthesis,

is the most abundant regulatory motif known to biology. Frequently reported for transcriptional

regulators, negative feedback control relies on binding of a transcription factor to its own

promoter. Here, we report a novel mechanism for gene autoregulation in bacteria relying on small

regulatory RNA (sRNA) and the major endoribonuclease, RNase E. TIER-seq analysis (transiently-

inactivating-an-endoribonuclease-followed-by-RNA-seq) revealed ~25,000 RNase E-dependent

cleavage sites in Vibrio cholerae, several of which resulted in the accumulation of stable sRNAs.

Focusing on two examples, OppZ and CarZ, we discovered that these sRNAs are processed from

the 3’ untranslated region (3’ UTR) of the oppABCDF and carAB operons, respectively, and base-

pair with their own transcripts to inhibit translation. For OppZ, this process also triggers Rho-

dependent transcription termination. Our data show that sRNAs from 3’ UTRs serve as

autoregulatory elements allowing negative feedback control at the post-transcriptional level.

Introduction
Biological systems function on a mechanism of inputs and outputs, each triggered by and triggering

a specific response. Feedback control (a.k.a. autoregulation) is a regulatory principle wherein the

output of a system amplifies (positive feedback) or reduces (negative feedback) its own production.

Negative feedback regulation is ubiquitous among biological systems and belongs to the most thor-

oughly characterized network motifs (Nitzan et al., 2017; Shen-Orr et al., 2002). At the gene regu-

latory level, negative feedback control has been qualitatively and quantitatively studied. Most

commonly, a transcription factor acts to repress its own transcription by blocking access of RNA

polymerase to the promoter region. This canonical mode of negative autoregulation is universally

present in living systems and in Escherichia coli more than 40% of the known transcription factors

are controlled by this type of regulation (Rosenfeld et al., 2002). Several characteristics have been

attributed to negative autoregulatory circuits including an altered response time and improved

robustness towards fluctuations in transcript production rates (Alon, 2007).

More recently, the mechanisms underlying RNA-based gene regulation have also been investi-

gated for their regulatory principles and network functions (Nitzan et al., 2017; Pu et al., 2019). In

bacteria, small regulatory RNAs (sRNAs) constitute the largest class of RNA regulators and fre-

quently bind to one of the major RNA-binding proteins, Hfq or ProQ. Hfq- and ProQ-associated

sRNAs usually act by base-pairing with trans-encoded target mRNAs affecting translation initiation

and transcript stability (Holmqvist and Vogel, 2018; Kavita et al., 2018). The sRNAs frequently tar-

get multiple transcripts and given that regulation can involve target repression or activation, it has
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become ever more clear that sRNAs can rival transcription factors with respect to their regulatory

scope and function (Hör et al., 2018).

Another key factor involved in post-transcriptional gene regulation is ribonuclease E (RNase E),

an essential enzyme in E. coli and related bacteria required for ribosome biogenesis and tRNA matu-

ration (Mackie, 2013). RNase E’s role in sRNA-mediated expression control is manifold and includes

the processing of sRNAs into functional regulators (Chao et al., 2017; Dar and Sorek, 2018a;

Papenfort et al., 2015a; Updegrove et al., 2019; Chao et al., 2012) as well as the degradation of

target transcripts (Massé et al., 2003; Morita et al., 2005). Inhibition of RNase E-mediated cleavage

through sRNAs can stabilize the target transcript and activate gene expression (Fröhlich et al.,

2013; Papenfort et al., 2013; Richards and Belasco, 2019).

Global transcriptome analyses have revealed the presence of numerous sRNAs produced from 3’

UTRs (untranslated regions) of mRNAs, a significant subset of which requires RNase E for their matu-

ration (Adams and Storz, 2020). These 3’ UTR-derived sRNAs can be produced from monocistronic

(Chao and Vogel, 2016; Grabowicz et al., 2016; Huber et al., 2020; Wang et al., 2020) as well as

long, operonic mRNAs (Davis and Waldor, 2007; De Mets et al., 2019; Miyakoshi et al., 2019)

and typically act to regulate multiple target mRNAs in trans. The RNase E C-terminus also provides

the scaffold for a large protein complex, called the degradosome, which in the major human patho-

gen, Vibrio cholerae, has recently been implicated in the turn-over of hypomodified tRNA species

(Kimura and Waldor, 2019).

The present work addresses the regulatory role of RNase E in V. cholerae at a genome-wide level.

To this end, we generated a temperature-sensitive variant of RNase E in V. cholerae and employed

TIER-seq (transiently-inactivating-an-endoribonuclease-followed-by-RNA-seq) to globally map RNase

E cleavage sites (Chao et al., 2017). Our analyses identified ~25,000 RNase E-sensitive sites and

revealed the presence of numerous stable sRNAs originating from the 3’ UTR of coding sequences.

Detailed analyses of two of these sRNAs, OppZ and CarZ, showed that 3’ UTR-derived sRNAs can

act in an autoregulatory manner to reduce the expression of mRNAs produced from the same

genetic locus. The molecular mechanism of sRNA-mediated gene autoregulation likely involves inhi-

bition of translation initiation by the sRNA followed by Rho-dependent transcription termination.

This setup directly links the regulatory activity of the sRNAs to their de novo synthesis, analogous to

their transcription factor counterparts. However, we show that, in contrast to transcriptional regula-

tors, autoregulatory RNAs can act at a subcistronic level to allow discoordinate operon expression.

Results

TIER-seq analysis of V. cholerae
The catalytic activity of RNase E (encoded by the rne gene) is critical for many bacteria, including V.

cholerae (Cameron et al., 2008). To study the role of RNase E in this pathogen, we mutated the

DNA sequence of the V. cholerae chromosome encoding leucine 68 of RNase E to phenylalanine

(Figure 1—figure supplement 1). This mutation is analogous to the originally described N3071

rneTS isolate of E. coli (Apirion and Lassar, 1978) and exhibits full RNase E activity at permissive

temperatures (30˚C), but is rendered inactive under non-permissive temperatures (44˚C). We vali-

dated our approach by monitoring the expression of two known substrates of RNase E in V. chol-

erae: A) 5S rRNA, which is processed by RNase E from the 9S precursor rRNA (Papenfort et al.,

2015b), and B) the MicX sRNA, which contains two RNase E cleavage sites (Davis and Waldor,

2007). For both RNAs, transfer of the wild-type strain to 44˚C only mildly effected their expression,

whereas the equivalent procedure performed with the rneTS strain led to the accumulation of the 9S

precursor and the full-length MicX transcript (Figure 1A, lanes 1–2 vs. 3–4). Additionally, accumula-

tion of the two RNase E-dependent processing intermediates of MicX was reduced in the rneTS

strain at the non-permissive temperature.

These results showed that we successfully generated a temperature-sensitive RNase E variant in

V. cholerae and enabled us to employ TIER-seq to determine RNase E-dependent cleavage sites at

a global scale. To this end, we cultivated V. cholerae wild-type and rneTS strains at 30˚C to late expo-

nential phase (OD600 of 1.0), divided the cultures in half and continued incubation for 60 min at

either 30˚C or 44˚C. Total RNA was isolated and subjected to deep sequencing. We obtained ~187

million reads from the twelve samples (corresponding to three biological replicates of each strain
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and condition; Figure 1—figure supplement 2A), resulting in ~98 million unique 5’ ends mapping

to the V. cholerae genome. Comparison of the 5’ ends detected in wild-type and rneTS at 30˚C

showed almost no difference between the two strains (Pearson correlation coefficients R2 ranging

from 0.82 to 0.99 depending on the compared replicates), whereas the same analysis at 44˚C

revealed 24,962 depleted sites in the rneTS strain (Figure 1—figure supplement 2B–C). Given that

g-proteobacteria such as V. cholerae do not encode 5’ to 3’ exoribonucleases (Mohanty and Kush-

ner, 2018), we designated these positions as RNase E-specific cleavage sites (Supplementary file

1).

Figure 1. TIER-seq analysis of V. cholerae. (A) V. cholerae wild-type and rneTS strains were grown at 30˚C to stationary phase (OD600 of 2.0). Cultures

were divided in half and continuously grown at either 30˚C or 44˚C for 60 min. Cleavage patterns of 5S rRNA and 3’ UTR-derived MicX were analyzed on

Northern blots. Closed triangles indicate mature 5S or full-length MicX, open triangles indicate the 9S precursor or MicX processing products. (B, C, D)

Biological triplicates of V. cholerae wild-type and rneTS strains were grown at 30˚C to late exponential phase (OD600 of 1.0). Cultures were divided in

half and continuously grown at either 30˚C or 44˚C for 60 min. Isolated RNA was subjected to RNA-seq and RNase E cleavage sites were determined as

described in the materials and methods section. (B) Number of cleavage sites detected per gene. (C) Classification of RNase E sites by their genomic

location. (D) The RNase E consensus motif based on all detected cleavage sites. The total height of the error bar is twice the small sample correction.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Full Northern blot images for the corresponding detail sections shown in Figure 1 and RNase E cleavage site counts within genes or

transcript categories.

Figure supplement 1. Conservation of RNase E between E. coli and V. cholerae.

Figure supplement 2. TIER-Seq read mapping statistics.

Figure supplement 2—source data 1. Number of obtained sequencing reads and Pearson correlation coefficients for library comparisons.

Figure supplement 3. Position and characteristics of RNase E cleavage sites.

Figure supplement 4. RNase E-mediated maturation of sRNAs from 3’ UTRs.

Figure supplement 4—source data 1. Full Northern blot images for the corresponding detail sections shown in Figure 1—figure supplement 4.

Figure supplement 5. RNase E-mediated maturation of sRNAs from IGRs.

Figure supplement 5—source data 1. Full Northern blot images for the corresponding detail sections shown in Figure 1—figure supplement 5.

Figure supplement 6. Expression of RNase E-independent sRNAs.

Figure supplement 6—source data 1. Full Northern blot images for the corresponding detail sections shown in Figure 1—figure supplement 6.
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Next, we analysed the ~25,000 RNase E sites with respect to frequency per gene and their distri-

bution among different classes of transcript. We discovered that RNase E cleavage sites occur with a

frequency of 2.8 (median)/6.3 (mean) sites per kb (Figure 1B). The majority of cleavage events

occurs in coding sequences (~69.1%), followed by 5’ UTRs (~8.4%), antisense RNAs (~7.1%), 3’ UTRs

(~5.3%), intergenic regions (~4.0%), and sRNAs (~0.6%) (Figure 1C). RNase E sites were slightly

enriched around start and stop codons of mRNAs (Figure 1—figure supplement 3A). Furthermore,

cleavage coincided with an increase in AU-content (Figure 1—figure supplement 3B) and a rise in

minimal folding energies (Figure 1—figure supplement 3C), suggesting reduced secondary struc-

ture around RNase E sites. Together, these data allowed us to determine a consensus motif for

RNase E in V. cholerae (Figure 1D). This 5-nt sequence, i.e. ‘RN#WUU’, is highly similar to previously

determined RNase E motifs of Salmonella enterica (Chao et al., 2017) and Rhodobacter sphaeroides

(Förstner et al., 2018), indicating that RNase E operates by a conserved mechanism of recognition

and cleavage.

RNase E-mediated maturation of sRNAs
Earlier work on sRNA biogenesis in bacteria revealed that the 3’ UTR of coding transcripts can serve

as source for non-coding regulators and that RNase E is frequently required to cleave the sRNA

from the mRNA (Miyakoshi et al., 2015). In V. cholerae, we previously annotated 44 candidate

sRNAs located in the 3’ UTR of mRNAs (Papenfort et al., 2015b). To analyse which of these sRNAs

depend on RNase E for maturation, we searched for RNase E-cleavage sites matching with the first

three bases of the annotated sRNAs. 17 sRNAs revealed potential RNase E-dependent maturation

(Supplementary file 2A) and using Northern blot analyses of wild-type and rneTS samples, we were

able to confirm these results for 9 sRNAs (Vcr016, Vcr041, Vcr044, Vcr045, Vcr053, Vcr064, FarS,

Vcr079, and Vcr084; Figure 1—figure supplement 4). In all cases, transfer of the rneTS strain to non-

permissive temperatures led to a change in mature sRNA levels and/or their upstream processing

intermediates. We also discovered several sRNAs undergoing maturation by RNase E

(Supplementary file 2B). Specifically, Northern blot analysis of Vcr043, Vcr065, and Vcr082 revealed

that these sRNAs accumulate as multiple stable intermediates (Figure 1—figure supplement 5) that

may contain different regulatory capacities as previously described for ArcZ and RprA of S. enterica

(Chao et al., 2017; Papenfort et al., 2015a; Soper et al., 2010). In addition, we also analysed the

expression of several RNase E-independent sRNAs (RyhB, Spot 42 and VqmR; Figure 1—figure sup-

plement 6) on Northern blots. Inactivation of RNase E did not affect the levels of the mature sRNAs

or any processed intermediates.

OppZ is produced from the oppABCDF 3’ end
To understand the regulatory functions of 3’ UTR-derived sRNAs in V. cholerae, we focussed on

Vcr045, which is processed from the 3’ end of the oppABCDF mRNA (encoding an oligopeptide

transporter) and which we hence named OppZ. The oppZ gene is 52 bps long and conserved among

the Vibrios (Figure 2A). RNase E-mediated cleavage of oppABCDF occurs immediately downstream

of the oppF stop codon and using the rneTS strain, we were able to validate RNase E-dependent

processing of OppZ (Figure 2B). Northern and Western blot analysis of a V. cholerae strain carrying

a 3XFLAG epitope at the C-terminus of the chromosomal oppA and oppB genes revealed that

OppZ expression coincided with the expression of both proteins (Figure 2C, lanes 1–4). Previous

transcriptome data showed that expression of oppABCDF is controlled by a single promotor

located ~120 bps upstream of oppA (Papenfort et al., 2015b), indicating that the sRNA is co-

expressed with all five opp genes. To test this prediction, we replaced the native promoter upstream

of the chromosomal oppA gene with the L-arabinose-inducible pBAD promoter and monitored

OppA, OppB, and OppZ expression under inducing and non-inducing conditions. In the absence of

the inducer, expression of OppA/B and OppZ was strongly reduced (Figure 2C, lanes 5–8) and

L-arabinose had no effect on the activity of the native oppA promoter (Figure 2C, lanes 9–10). In

contrast, activation of the pBAD promoter led to a significant increase in OppA/B and OppZ

(Figure 2C, lanes 11–12), indicating that expression of the oppABCDF-oppZ operon is indeed con-

trolled by a single promoter.

To support these results and confirm production of OppZ from the longer precursor transcript,

we generated two plasmids carrying either only oppZ or oppF-oppZ under the control of the
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constitutive PTac promoter (Figure 2—figure supplement 1A) and compared OppZ expression in

wild-type and DoppZ cells. Expression of mature OppZ was readily detected from the precursor (Fig-

ure 2—figure supplement 1B, lane 1 vs. 4) and the size of the processed OppZ transcript was com-

parable to endogenously expressed OppZ (lane 1) and OppZ transcribed directly by the PTac

promoter (lane 3). We also repeated these experiments in a V. cholerae hfq

mutant (Svenningsen et al., 2009). Here, processing of the precursor into OppZ was still detected

Figure 2. OppZ is produced from the oppABCDF 3’ end. (A) Top: Genomic organization of oppABCDF and oppZ. Bottom: Alignment of oppZ

sequences, including the last codons of oppF, from various Vibrio species. The oppF stop codon, the RNase E cleavage site and the Rho-independent

terminator are indicated. (B) V. cholerae wild-type and rneTS strains were grown at 30˚C to stationary phase (OD600 of 2.0). Cultures were divided in half

and continuously grown at either 30˚C or 44˚C for 30 min. OppZ synthesis was analyzed by Northern blot with 5S rRNA as loading control. The triangle

indicates the size of mature OppZ. (C) Protein and RNA samples were obtained from V. cholerae oppA::3XFLAG oppB::3XFLAG strains carrying either

the native oppA promoter or the inducible pBAD promoter upstream of oppA. Samples were collected at the indicated OD600 and tested for OppA

and OppB production by Western blot and for OppZ expression by Northern blot. RNAP and 5S rRNA served as loading controls for Western and

Northern blots, respectively. Lanes 1–8: Growth without L-arabinose. Lanes 9–12: Growth with either H2O (-) or L-arabinose (+) (0.2% final conc.). (D) V.

cholerae wild-type (control) and hfq::3XFLAG (Hfq-FLAG) strains were grown to stationary phase (OD600 of 2.0), lysed, and subjected to

immunoprecipitation using the anti-FLAG antibody. RNA samples of lysate (total RNA) and co-immunoprecipitated fractions were analyzed on Northern

blots. 5S rRNA served as loading control.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Full Northern and Western blot images for the corresponding detail sections shown in Figure 2.

Figure supplement 1. Hfq dependence of OppZ processing.

Figure supplement 1—source data 1. Full Northern blot images for the corresponding detail sections shown in Figure 2—figure supplement 1.

Figure supplement 2. Hfq dependence of OppZ stability.

Figure supplement 2—source data 1. Quantification of OppZ levels in wild-type and Dhfq cells from Northern blots.
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Figure 3. Feedback autoregulation at the suboperonic level. (A) Volcano plot of genome-wide transcript changes in response to inducible OppZ over-

expression. Lines indicate cut-offs for differentially regulated genes at 3-fold regulation and FDR-adjusted p-value�0.05. Genes with an FDR-adjusted

p-value<10�14 are indicated as droplets at the top border of the graph. (B) Predicted OppZ secondary structure and base-pairing to oppB. Arrows

indicate the mutations tested in (C) and (D). (C) E. coli strains carrying a translational reporter plasmid with the oppAB intergenic region placed

between mKate2 and gfp were co-transformed with a control plasmid or the indicated OppZ expression plasmids. Transcription of the reporter and

oppZ were driven by constitutive promoters. Cells were grown to OD600 = 1.0 and fluorophore production was measured. mKate and GFP levels of

strains carrying the control plasmid were set to 1. Error bars represent the SD of three biological replicates. (D) Single-plasmid regulation was measured

by inserting the indicated oppZ variant into the 3’ UTR of a translational oppB::gfp fusion. Expression was driven from a constitutive promoter. E. coli

strains carrying the respective plasmids were grown to OD600 = 1.0 and GFP production was measured. Fluorophore levels from control fusions without

an sRNA gene were set to one and error bars represent the SD of three biological replicates. OppZ expression was tested by Northern blot; 5S rRNA

served as loading control.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Full Northern blot images for the corresponding detail sections shown in Figure 3 and raw data for fluorescence measurements.

Figure supplement 1. Pulse expression of OppZ reduces oppBCDF transcript levels.

Figure supplement 1—source data 1. Full Northern blot images for the corresponding detail sections shown in Figure 3—figure supplement 1 and

raw data for transcript changes as determined by qRT-PCR.

Figure supplement 2. Hfq-dependent, post-transcriptional repression of OppBCDF by OppZ.

Figure supplement 2—source data 1. Full Northern blot images for the corresponding detail sections shown in Figure 3—figure supplement 2 and

raw data for fluorescence measurements.

Figure supplement 3. Mutational analysis of the RNase E site in oppZ.

Figure supplement 3—source data 1. Full Northern blot images for the corresponding detail sections shown in Figure 3—figure supplement 3.
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(lane 8), however, the steady-state levels of OppZ were lower, suggesting that OppZ binds Hfq.

Indeed, stability experiments using rifampicin-treated V. cholerae showed that OppZ half-life is

reduced in Dhfq cells (Figure 2—figure supplement 2), and RNA co-immunoprecipitation experi-

ments of chromosomal Hfq::3XFLAG revealed that OppZ interacts with Hfq in vivo (Figure 2D).

Together, these data show that OppZ is an Hfq-dependent sRNA that is processed from the 3’ UTR

of the polycistronic oppABCDF mRNA by RNase E.

Feedback Autoregulation at the suboperonic level
Hfq-binding sRNAs control gene expression by base-pairing with trans-encoded target transcripts

(Kavita et al., 2018). To determine the targets of OppZ in V. cholerae, we cloned the sRNA (starting

from the RNase E cleavage site) on a plasmid under the control of the pBAD promoter. Induction of

the pBAD promoter for 15 min resulted in a strong increase in OppZ levels (~30 fold, Figure 3—fig-

ure supplement 1A) and RNA-seq experiments of the corresponding samples revealed four

repressed genes (Figure 3A and Figure 3—figure supplement 1B). Interestingly, these genes were

oppBCDF, i.e. the same transcript that OppZ is processed from. We validated OppZ-mediated

repression of all four genes using qRT-PCR (Figure 3—figure supplement 1C), which also confirmed

that the first gene of the operon, oppA, is not affected by OppZ. Despite the reduced transcript lev-

els of oppBCDF, OppZ over-expression did not reduce the stability of the oppB messenger (Fig-

ure 3—figure supplement 1D). Using the RNA-hybrid algorithm (Rehmsmeier et al., 2004), we

were able to predict RNA duplex formation of the oppB translation initiation site with the 5’ end of

the OppZ sRNA (Figure 3B). We confirmed this interaction using a variant of a previously reported

post-transcriptional reporter system (Corcoran et al., 2012). Here, the first gene of the operon is

replaced by the red-fluorescent mKate2 protein, followed by the oppAB intergenic sequence and

the first five codons of oppB, which were fused to gfp (Figure 3C, top). Transfer of this plasmid into

E. coli and co-transformation of the OppZ over-expression plasmid resulted in strong repression of

GFP (~7 fold), while mKate2 levels remained constant. Mutation of either OppZ or oppB (mutations

M1, see Figure 3B) abrogated regulation of GFP and combination of both mutants restored control

(Figure 3C, bottom). In contrast, OppZ-mediated repression of OppB::GFP was strongly reduced in

E. coli lacking hfq (Figure 3—figure supplement 2A–B). We also generated three additional variants

of the reporter plasmids in which we included the oppBC, oppBCD, and oppBCDF sequences fused

to GFP (Figure 3—figure supplement 2C). In all cases, OppZ readily inhibited GFP but did not

affect mKate2. These results confirm that OppZ promotes discoordinate expression of the

oppABCDF operon.

Next, we aimed to reproduce OppZ-mediated repression from a single transcript. To this end, we

compared GFP production of a translational oppB::gfp reporter with the same construct carrying the

oppZ sequence downstream of gfp (Figure 3D, top). Northern blot analysis revealed that OppZ was

efficiently clipped off from the gfp transcript in this construct and fluorescence measurements

showed that OppZ also inhibited GFP expression (Figure 3D, bottom, lane 1 vs. 2). We confirmed

that this effect is specific to base-pairing of OppZ with the oppAB intergenic sequence as we were

able to recapitulate our previous compensatory base-pair exchange experiments using the single

plasmid system (Figure 3D). In addition, mutation of the RNase E recognition site in oppZ (UU!GG,

mutation M2; Figure 3—figure supplement 3A) blocked OppZ maturation and abolished OppB::

GFP repression (Figure 3D, lane 4; Figure 3—figure supplement 3B), whereas expression of OppZ

M2 from a separate plasmid efficiently reduced OppB:GFP levels (Figure 3C). Together, our data

demonstrate that OppZ down-regulates protein synthesis from its own cistron. Furthermore, muta-

tion M2 shows that this autoregulation is not mediated by long-distance intramolecular base-pairing

of OppZ with the oppB 5’ UTR, but rather requires RNase E-dependent maturation of the transcript

followed by Hfq-dependent base-pairing.

Translational control of OppZ synthesis
The above experiments revealed that OppZ inhibits protein production through feedback control,

however, it was not clear if OppZ would also inhibit its own synthesis. To address this question, we

generated an OppZ over-expression plasmid in which we mutated the sequence of the terminal

stem-loop at eight positions. We call this construct ‘regulator OppZ’ (Figure 4A). These mutations

are not expected to inactivate the base-pairing function of OppZ, but will allow us to differentiate
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the levels of native OppZ and regulator OppZ on Northern blots. Indeed, when tested in V. chol-

erae, over-expression of regulator OppZ inhibited OppB::3XFLAG production, but did not affect

OppA::3XFLAG levels (Figure 4B, left). Importantly, regulator OppZ also reduced the expression of

native OppZ (Figure 4B, right) and introduction of the M1 mutation (see Figure 3B) in regulator

OppZ abrogated this effect. These results revealed that OppZ also exerts autoregulation of its own

transcript.

Gene expression control by sRNAs typically occurs post-transcriptionally (Gorski et al., 2017)

raising the question of how OppZ achieves autoregulation at the molecular level. Given that OppZ

inhibits OppB production (Figure 4B), we hypothesized that OppZ synthesis might be linked to

oppB translation. To test this prediction, we inactivated the chromosomal start codon of oppB

(ATG!ATC) and monitored OppA/B and OppZ expression by Western and Northern blot, respec-

tively. As expected, mutation of the oppB start codon had no effect on OppA::3XFLAG levels, but

nullified OppB::3XFLAG production (Figure 4C, top). Lack of oppB translation also resulted in a

strong decrease in OppZ levels (Figure 4C, bottom), however, did not change OppZ stability (Fig-

ure 4—figure supplement 1A). In addition, plasmid-based complementation of OppB::3XFLAG in

the oppB start codon mutant failed to restore OppZ expression (Figure 4—figure supplement 1B),

showing that OppZ production is independent of the cellular OppB levels. Based on these and the

results above, we propose that autorepression of oppBCDF-oppZ must occur by a mechanism

involving both translation inhibition, as well as transcription termination.

Figure 4. Translational control of OppZ synthesis. (A) Schematic of the analyzed OppZ variants containing the native stem loop sequence (produced

from the genomic oppZ locus) or a mutated stem loop sequence (‘regulator OppZ’ produced from a plasmid-based constitutive promoter). (B) V.

cholerae oppA::3XFLAG oppB::3XFLAG carrying a control plasmid (pCMW-1) or a plasmid expressing regulator OppZ (pMD194, pMD195) were grown

to stationary phase (OD600 of 2.0). OppA and OppB production were tested by Western blot and expression of native OppZ and regulator OppZ was

monitored on Northern blot using oligonucleotides binding to the respective loop sequence variants. RNAP and 5S rRNA served as loading controls for

Western blot and Northern blot, respectively. (C) The oppB start codon was mutated to ATC in an oppA::3XFLAG oppB::3XFLAG background. V.

cholerae strains with wild-type or mutated oppB start codon were grown in LB medium. Protein and RNA samples were collected at the indicated

OD600 and tested for OppA and OppB production by Western blot and for OppZ expression by Northern blot. RNAP and 5S rRNA served as loading

controls for Western and Northern blots, respectively.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Full Northern and Western blot images for the corresponding detail sections shown in Figure 4.

Figure supplement 1. Translational control of OppZ synthesis.

Figure supplement 1—source data 1. Quantification of OppZ levels in wild-type and oppB ATC cells from Northern blots and full blot images for the

corresponding detail sections shown in Figure 4—figure supplement 1.
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OppZ promotes transcription termination through Rho
To explain the reduction of OppZ expression in the absence of oppB translation, we considered pre-

mature transcription termination as a possible factor. This hypothesis was supported by our finding

that OppZ over-expression efficiently reduced oppB mRNA levels without significantly affecting tran-

script stability (Figure 3—figure supplement 1C–D). In E. coli, Rho protein accounts for a major

fraction of all transcription termination events (Ciampi, 2006) and has previously been associated

with the regulatory activity of Hfq-dependent sRNAs (Bossi et al., 2012; Sedlyarova et al., 2016;

Wang et al., 2015). Rho is specifically inhibited by bicyclomycin (BCM; Zwiefka et al., 1993) and

consequently we tested the effect of the antibiotic on OppZ expression in V. cholerae wild-type and

the oppB start codon mutant. Whereas BCM had no effect on OppZ synthesis in wild-type cells

(Figure 5A, lane 1 vs. 2), it strongly increased OppZ and oppBCDF expression in the absence of

oppB translation (Figure 5A, lane 3 vs. 4, and Figure 5B). We confirmed these results by employing

Term-Seq analysis (Dar et al., 2016) to wild-type and oppB start codon mutants cultivated with or

without BCM. Detailed inspection of transcript coverage at the oppABCDF-oppZ genomic locus

showed that lack of oppB translation down-regulated the expression of oppBCDF-oppZ, while pres-

ence of BCM suppressed this effect (Figure 5C and Supplementary file 3B). Similarly, inhibition of

the oppBCDF mRNA and OppZ by over-expression of regulator OppZ (see Figure 4A) was sup-

pressed in the presence of BCM, whereas OppB protein levels remained low presumably due to con-

tinued repression of oppB translation initiation by OppZ (Figure 5D–E).

To map the position of Rho-dependent transcription termination in oppB, we generated five

additional strains carrying a STOP mutation at the 2nd, 15th, 65th, 115th, or 215th codon of the chro-

mosomal oppB gene (Figure 6A). In addition, we mutated the start codons of oppC, oppD, and

oppF and probed OppZ levels on Northern blot (Figure 6B). In accordance with the data presented

in Figure 4C, mutation of the oppB start codon resulted in strongly decreased OppZ levels

(Figure 6B, lane 1 vs. 2) and we observed similar results when the STOP mutation was introduced at

the 2nd, 15th, and 65th codon of oppB (Figure 6B, lanes 3–5). In contrast, a STOP mutation at codon

115 led to increased OppZ expression (lane 6) and OppZ levels were fully restored when the STOP

was placed at codon 215 of oppB (lane 7). Likewise, mutation of the oppC, oppD, and oppF start

codons had no effect on OppZ production (Figure 6B, lanes 8–10). To summarize, our data indicate

that autorepression of the oppBCDF-oppZ genes relies on inhibition of oppB translation initiation by

OppZ, which triggers Rho-dependent transcription termination in the distal part of the oppB

sequence.

CarZ is another autoregulatory sRNA from V. cholerae
Our TIER-seq analysis revealed 17 3’ UTR-derived sRNAs produced by RNase E-mediated cleavage

in V. cholerae (Supplementary file 2A). Detailed analysis of OppZ showed that this sRNA serves as

an autoregulatory element inhibiting the oppBCDF genes as well as its own synthesis (Figures 4–

6). We therefore asked how wide-spread RNA-mediated autoregulation is and if the other 16 3’

UTR-derived sRNAs might serve a similar function in V. cholerae. To this end, we searched for poten-

tial base-pairing sequences between the sRNAs and the translation initiation regions of their associ-

ated genes using the RNA-hybrid algorithm (Rehmsmeier et al., 2004). Indeed, we were able to

predict stable RNA duplex formation between the Vcr084 sRNA (located in the 3’ UTR of the carAB

operon; encoding carbamoyl phosphate synthetase) and the 5’ UTR of carA, which is the first gene

of the operon (Figure 7A–B). In analogy to OppZ, we named this sRNA CarZ. Plasmid-borne expres-

sion of CarZ strongly inhibited GFP production from carA::gfp and carAB::gfp reporters in E. coli

(Figure 7—figure supplement 1A–B) and we obtained similar results using a single transcript carA::

gfp::carZ construct (Figure 7C). CarZ binds Hfq in vivo (Figure 7—figure supplement 1C) and

repression of carA::gfp by CarZ requires Hfq, possibly due to reduced CarZ levels in the hfq mutant

(Figure 7—figure supplement 1D–E). We validated the predicted interaction using compensatory

base-pair exchange experiments (Figure 7B–C, Figure 7—figure supplement 1A–B). Transcription

of carAB-carZ is controlled by a single promoter located upstream of carA and the three genes are

co-expressed in vivo (Figure 7D and Papenfort et al., 2015b). These results suggested that CarZ

provides feedback regulation and using an experimental strategy analogous to Figure 4A, we were

able to show that CarZ inhibits CarA and CarB protein expression as well as its own synthesis

(Figure 7B,E). Furthermore, introduction of a STOP codon at the 2nd codon of the chromosomal
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Figure 5. OppZ promotes transcription termination through Rho. (A) V. cholerae oppA::3XFLAG oppB::3XFLAG

oppF::3XFLAG strains with wild-type or mutated oppB start codon were grown to early stationary phase (OD600 of

1.5). Cultures were divided in half and treated with either H2O or BCM (25 mg/ml final conc.) for 2 hr before protein

and RNA samples were collected. OppA, OppB and OppF production were tested by Western blot and OppZ

expression was monitored by Northern blot. RNAP and 5S rRNA served as loading controls for Western and

Northern blots, respectively. (B) Biological triplicates of V. cholerae oppA::3XFLAG oppB::3XFLAG strains with

wild-type or mutated oppB start codon were treated with BCM as described in (A). oppABCDF expression in the

oppB start codon mutant compared to the wild-type control was analyzed by qRT-PCR. Error bars represent the

SD of three biological replicates. (C) Triplicate samples from (B) were subjected to Term-seq and average

coverage of the opp operon is shown for one representative replicate. The coverage cut-off was set at the

maximum coverage of annotated genes. (D) V. cholerae oppA::3XFLAG oppB::3XFLAG strains carrying a control

plasmid (pMD397) or a plasmid expressing regulator OppZ (pMD398) were treated with BCM as described in (A).

OppA and OppB production were tested by Western blot and expression of native OppZ and regulator OppZ was

monitored on Northern blot using oligonucleotides binding to the respective loop sequence variants. RNAP and

5S rRNA served as loading controls for Western and Northern blots, respectively. (E) Levels of oppABCDF in the

experiment described in (D) were analyzed by qRT-PCR. Error bars represent the SD of three biological replicates.

The online version of this article includes the following source data for figure 5:

Source data 1. Full blot images for the corresponding detail sections shown in Figure 5 and raw data for tran-

script changes as determined by qRT-PCR.
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carA gene abrogated CarZ expression and similar results were obtained when the STOP codon was

placed at the 2nd codon of carB (Figure 7F). Of note, inactivation of carA translation also blocked

CarB production indicating, among other possibilities, that translation of the two ORFs might be

coupled and that expression of CarZ relies on active translation of both ORFs. Together, these

results provide evidence that CarZ is an autoregulatory sRNA and suggest that this function might

be more wide-spread among the growing class of 3’ UTR-derived sRNAs.

Autoregulatory sRNAs modify the kinetics of gene induction
Bacterial sRNAs acting at the post-transcriptional level have recently been reported to add unique

features to gene regulatory circuits, including the ability to promote discoordinate operon expres-

sion (Nitzan et al., 2017). Plasmid-borne over-expression of OppZ resulted in decreased expression

of the oppBCDF cistrons, while leaving oppA levels unaffected (Figure 3—figure supplement 1B–

C). We therefore asked if OppZ expression had a similar effect on the production of their corre-

sponding proteins. To this end, we cultivated wild-type and oppZ-deficient V. cholerae (both carry-

ing a control plasmid), as well as DoppZ cells carrying an OppZ over-expression plasmid, to various

stages of growth and monitored OppA and OppB levels on Western Blot (Figure 8—figure supple-

ment 1A). Quantification of the results revealed a moderate increase in OppB expression (~1.8 fold)

in cells lacking oppZ and ~5 fold decreased OppB levels when OppZ was over-expressed. Neither

lack of oppZ, nor OppZ over-expression significantly affected OppA production (Figure 8—figure

supplement 1B–C).

Figure 6. Influence of OppBCDF translation on OppZ expression. (A) The depicted mutations were individually

inserted into the opp locus to inactivate the start codons of oppB, oppC, oppD or oppF or to insert STOP codons

at the positions 2, 15, 65, 115 or 215 of oppB. (B) V. cholerae oppA::3XFLAG oppB::3XFLAG strains with the

described opp mutations were grown: wild-type (lane 1), the oppB start codon mutated (lane 2), a STOP codon

inserted at the 2nd, 15th, 65th, 115th or 215th codon of oppB (lanes 3–7) or mutated start codons of oppC, oppD or

oppF (lanes 8–10). At stationary phase (OD600 of 2.0), protein and RNA samples were collected and tested for

OppA and OppB production by Western blot and for OppZ expression by Northern blot. RNAP and 5S rRNA

served as loading controls for Western and Northern blots, respectively.

The online version of this article includes the following source data for figure 6:

Source data 1. Full Northern and Western blot images for the corresponding detail sections shown in Figure 6.
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Figure 7. CarZ is another autoregulatory sRNA from V. cholerae. (A) Top: Genomic context of carAB and carZ. Bottom: Alignment of carZ sequences,

including the last codons of carB, from various Vibrio species. The carB stop codon, the RNase E cleavage site and the Rho-independent terminator are

indicated. (B) Predicted CarZ secondary structure and base-pairing to carA. Arrows indicate the single nucleotide mutations tested in (C). (C) Single-

plasmid feedback regulation of carA by CarZ was measured by inserting the indicated carZ variant into the 3’ UTR of a translational carA::gfp fusion.

Expression was driven from a constitutive promoter. E. coli strains carrying the respective plasmids were grown to OD600 = 1.0 and GFP production was

measured. Fluorophore levels from control fusions without an sRNA gene were set to one and error bars represent the SD of three biological replicates.

CarZ expression was tested by Northern blot; 5S rRNA served as loading control. (D) Protein and RNA samples were obtained from V. cholerae

carA::3XFLAG carB::3XFLAG carrying either the native carA promoter or the inducible pBAD promoter upstream of carA. Samples were collected at the

indicated OD600 and tested for CarA and CarB production by Western blot and for CarZ expression by Northern blot. RNAP and 5S rRNA served as

loading controls for Western and Northern blots, respectively. Lanes 1–8: Growth without L-arabinose. Lanes 9–12: Growth with either H2O (-) or

L-arabinose (+) (0.2% final conc.). (E) V. cholerae carA::3XFLAG carB::3XFLAG strains carrying a control plasmid or a plasmid expressing a CarZ variant

with a mutated stem loop (regulator CarZ) were grown to late exponential phase (OD600 of 1.0). CarA and CarB production were tested by Western blot

and expression of native CarZ or regulator CarZ was monitored on Northern blot using oligonucleotides binding to the respective loop sequence

Figure 7 continued on next page
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Given the relatively mild effect of oppZ deficiency on steady-state OppB protein levels (Figure 8—

figure supplement 1A), we next investigated the role of OppZ on the dynamics of OppABCDF

expression. Specifically, transcription factor-controlled negative autoregulation has been reported to

affect the response time of regulatory networks (Rosenfeld et al., 2002) and we speculated that

sRNA-mediated feedback control could have a similar effect. To test this hypothesis, we employed a

V. cholerae strain in which we replaced the native promoter upstream of the chromosomal oppA

gene with the L-arabinose-inducible pBAD promoter (see Figure 2C) and monitored the kinetics of

OppA and OppB production in wild-type and DoppZ cells before and at several time-points post

induction (Figure 8A). Whereas OppA protein accumulated equally in wild-type and oppZ mutants

(Figure 8B), expression of OppB was significantly increased in DoppZ cells (Figure 8C). This effect

was most prominent at later stages after induction (>30 min) and coincided with accumulation of

OppZ (Figure 8A). Calculation of the OppB response time (50% of the maximal expression value)

showed a significant delay in DoppZ cells (~78 min), when compared to the wild-type control (~52

min). We therefore conclude that alike transcription factors, autoregulatory sRNAs change the

dynamics of their associated genes, however, in contrast to transcription factors, sRNAs act at the

post-transcriptional level and can direct this effect towards a specific subgroup of genes within an

operon.

Discussion
Base-pairing sRNAs regulating the expression of trans-encoded mRNAs are a major pillar of gene

expression control in bacteria (Gorski et al., 2017). Transcriptomic data obtained from various

microorganisms have shown that sRNAs are produced from almost all genomic loci and that the 3’

UTRs of coding genes are a hotspot for sRNAs acting through Hfq (Adams and Storz, 2020).

Expression of 3’ UTR-derived sRNAs can either occur by independent promoters, or by ribonucleo-

lytic cleavage typically involving RNase E (Miyakoshi et al., 2015). In the latter case, production of

the sRNA is intimately connected to the activity of the promoter driving the expression of the

upstream mRNA, suggesting that the regulatory function of the sRNA is linked to the biological role

of the associated genes. Indeed, such functional interdependence has now been demonstrated in

several cases (Chao and Vogel, 2016; De Mets et al., 2019; Huber et al., 2020; Miyakoshi et al.,

2019; Wang et al., 2020), however, it remained unclear if and how these sRNAs also affected their

own transcripts. In this regard, OppZ and CarZ provide a paradigm for 3’ UTR-derived sRNAs allow-

ing autoregulation at the post-transcriptional level. This new type of feedback inhibition is indepen-

dent of auxiliary transcription factors and we could show that autoregulation by sRNAs can either

involve the full transcript (CarZ), or act at the suboperonic level (OppZ).

Features of RNase E-mediated gene control
RNase E is a principal factor for RNA turnover in almost all Gram-negative bacteria (Bandyra and

Luisi, 2018). The protein forms a tetramer in vivo and serves as the scaffold for the degradosome, a

large, multi-enzyme complex typically containing the phosphorolytic exoribonuclease PNPase, the

RNA-helicase RhlB, and the glycolytic enzyme enolase (Aı̈t-Bara and Carpousis, 2015). Substrates

of RNase E are preferentially AU-rich and harbor a 5’ mono-phosphate. Thus, the enzyme relies on

Figure 7 continued

variants. RNAP and 5S rRNA served as loading controls for Western blot and Northern blot, respectively. (F) V. cholerae carA::3XFLAG carB::3XFLAG

strains with the following carA or carB mutations were grown: wild-type (lane 1) or a STOP codon inserted at the 2nd codon of carA (lane 2) or carB (lane

3), respectively. At late exponential phase (OD600 of 1.0), protein and RNA samples were collected and tested for CarA and CarB production by

Western blot and for CarZ expression by Northern blot. RNAP and 5S rRNA served as loading controls for Western and Northern blots, respectively.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Full blot images for the corresponding detail sections shown in Figure 7 and raw data for fluorescence measurements.

Figure supplement 1. Hfq-dependent, post-transcriptional repression of CarA and CarB by CarZ.

Figure supplement 1—source data 1. Full Northern blot images for the corresponding detail sections shown in Figure 4—figure supplement 1 and

raw data for fluorescence measurements.

Figure supplement 2. CarZ induces carAB degradation.

Figure supplement 2—source data 1. Raw data for transcript changes as determined by qRT-PCR.
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RNA pyrophosphohydrolases such as RppH, which convert the 5’ terminus from a triphosphate to a

monophosphate, before transcript degradation can be initiated (Deana et al., 2008). Recognition of

a substrate is followed by scanning of RNase E for suitable cleavage sites along the transcript

(Richards and Belasco, 2019). TIER-seq-based identification of a consensus sequence for RNase E

target recognition revealed highly similar motifs for V. cholerae (Figure 1D) and S. enterica

(Chao et al., 2017). These results further support the previously proposed ‘U+2 Ruler-and-Cut’

mechanism, in which a conserved uridine located two nts down-stream of the cleavage site is key for

RNase E activity. However, in contrast to the data obtained from S. enterica, we discovered only a

mild enrichment of RNase E cleavage sites occurring at translational stop codons (Figure 1—figure

supplement 3A). This observation might be explained by differences in stop codon usage between

V. cholerae and S. enterica (Korkmaz et al., 2014) and could point to species-specific features of

RNase E activity.

Figure 8. Modified kinetics of gene induction by autoregulatory OppZ. (A) Expression of the opp operon

including the oppA::3XFLAG and oppB::3XFLAG genes and the native oppZ gene (lanes 1–6) or an oppZ deletion

(lanes 7–12) was induced from the pBAD promoter at late exponential phase (OD600 of 1.0) by the addition of

L-arabinose (0.2% final conc.). Protein and RNA samples were obtained at the indicated time points and tested for

OppA and OppB production by Western blot and for OppZ expression by Northern blot. RNAP and 5S rRNA

served as loading controls for Western and Northern blots, respectively. (B, C) Quantification of OppA (B) or

OppB (C) levels from the experiment in (A); error bars represent the SD of three biological replicates. Data are

presented as fold regulation of OppA or OppB in DoppZ compared to the wild-type. Dashed lines in (C) indicate

the time points of half-maximum OppB expression.

The online version of this article includes the following source data and figure supplement(s) for figure 8:

Source data 1. Quantification of OppAB protein levels from Western blots and full blot images for the corre-

sponding detail sections shown in Figure 8.

Figure supplement 1. OppZ-dependent repression of OppA and OppB protein levels.

Figure supplement 1—source data 1. Quantification of OppAB protein levels from Western blots and full blot

images for the corresponding detail sections shown in Figure 8—figure supplement 1.
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The role of termination factor Rho in sRNA-mediated gene expression
control
Approximately 25–30% of all genes in E. coli depend on Rho for transcription termination

(Cardinale et al., 2008; Dar and Sorek, 2018b; Peters et al., 2012). BCM treatment of V. cholerae

wild-type cells revealed 699 differentially regulated genes (549 upregulated and 150 repressed

genes; Supplementary file 3A), suggesting an equally global role for Rho in this organism. Rho-

dependent transcription termination is modulated by various additional factors (Mitra et al., 2017).

This includes anti-termination factors such as NusG, as well as Hfq and its associated sRNAs

(Bossi et al., 2020). For sRNAs, the effect on Rho activity can be either activating or repressing. Pre-

vious work has shown that sRNAs can mask Rho-dependent termination sites and thereby promote

transcriptional read-through (Lin et al., 2019; Sedlyarova et al., 2016). Negative gene regulation

involving sRNAs and Rho typically includes translation inhibition by the sRNA resulting in separation

of transcription and translation complexes (Figure 9). Coupling of transcription and translation nor-

mally protects the nascent mRNA from Rho action and loss of ribosome binding supports

Figure 9. Model of the OppZ-dependent mechanism of opp regulation. Transcription of the oppABCDF operon initiates upstream of oppA and in the

absence of OppZ (left) involves all genes of the operon as well as OppZ. In this scenario, all cistrons of the operon are translated. In the presence of

OppZ (right), the sRNA blocks translation of oppB and the ribosome-free mRNA is recognized by termination factor Rho. Rho catches up with the

transcribing RNAP and terminates transcription pre-maturely within oppB. Consequently, oppBCDF are not translated and OppZ is not produced.
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transcription termination (Bossi et al., 2012). In addition, lack of ribosome-mediated protection can

render the mRNA target vulnerable to ribonucleases, e.g. RNase E, which can also lead to the degra-

dation of the sRNA (Feng et al., 2015; Massé et al., 2003). Which of these mechanisms are at play

for a given sRNA-target mRNA pair is most often unknown and it is likely that both types of regula-

tion can occur either independently or in concert. For example, over-expression of OppZ did not

affect oppB transcript stability (Figure 3—figure supplement 1D), suggesting that induction of Rho-

mediated transcription termination is the main mechanism for gene repression in this sRNA-target

mRNA pair. In contrast, analogous experiments testing the stability of the carA and carB transcripts

upon CarZ over-expression revealed a significant drop in transcript stability for both mRNAs (Fig-

ure 7—figure supplement 2A–B). These results suggest that translation inhibition of carA by CarZ

has two outcomes: 1st) accelerated ribonucleolytic decay of the carAB transcript and 2nd) Rho-medi-

ated transcription termination. Using two regulatory mechanisms (CarZ-carA) instead of one (OppZ-

oppB) might explain the strong inhibition of carA::gfp by CarZ (~10 fold, Figure 7C), when com-

pared to the relatively weak repression (1.8-fold) of oppB::gfp by OppZ (Figure 3D).

Employing multiple regulatory mechanisms on one target mRNA might have led to an underesti-

mation of the prevalence of Rho-mediated transcription termination in sRNA-mediated gene control.

In fact, sRNAs frequently repress genes that are downstream in an operon with their base-pairing

target, which could point to a possible involvement of Rho (Bossi et al., 2020). Rho is known to bind

cytosine-rich RNA elements (Allfano et al., 1991), however, due to the strong variability in size and

composition of these sequences, predicting Rho binding sites (a.k.a. rut sites) from genomic or tran-

scriptomic data has been a difficult task (Nadiras et al., 2018). Indeed, while our transcriptomic

data of the oppB start codon mutant did not allow us to pinpoint the position of the rut site in oppB

(Figure 5C), evidence obtained from genetic analyses using various oppB STOP codon mutants

revealed that Rho-dependent termination likely occurs at or close to codon 115 in oppB (Figure 6B).

We attribute the lack of this termination event in the transcriptomic data to the activity of 3’�5’ act-

ing exoribonucleases (e.g. RNase II or PNPase Bechhofer and Deutscher, 2019; Mohanty and

Kushner, 2018), which degrade the untranslated oppB sequence. Identifying the relevant exonu-

cleases might well allow for an advanced annotation of global Rho-dependent termination sites and

cross-comparison with documented sRNA-target interaction could help to clarify the relevance of

Rho-mediated termination in sRNA-based gene control.

Dynamics of RNA-based feedback regulation
Transcription factors and sRNAs are the principal components of gene networks. While the regula-

tory outcome of sRNA and transcription factor activity is often very similar, the underlying regulatory

dynamics are not (Hussein and Lim, 2012). Regulatory networks involving sRNAs and transcription

factors are called mixed circuits and have now been studied in greater detail. Similar to systems rely-

ing on transcription factors, feedback regulation is common among sRNAs (Nitzan et al., 2017).

However, unlike the examples presented in this study, these circuits always involve the action of a

transcription factor, which has implications for their regulatory dynamics. For example, the OmpR

transcription factor activates the expression of the OmrA/B sRNAs, which repress their own synthesis

by inhibiting the ompR-envZ mRNA (Guillier and Gottesman, 2008). This constitutes an autoregula-

tory loop, however, given that transcription of OmrA/B ultimately relies on OmpR protein levels, this

regulation will only become effective when sufficient OmpR turn-over has been achieved

(Brosse et al., 2016). In contrast, autoregulatory circuits involving 3’ UTR-derived sRNAs are inde-

pendent of such auxiliary factors and therefore provide a more rapid response. In case of OppZ-

oppB, we showed that the sRNA has a rapid effect on OppB expression levels (Figure 8C) and given

the involvement of Rho-mediated transcription termination in this process, we expect similar dynam-

ics for OppZ autoregulation (Figure 9).

Another key difference between feedback regulation by transcription factors and 3’ UTR-derived

sRNAs is the stoichiometry of the players involved. In transcription factor-based feedback loops, the

mRNA coding for the autoregulatory transcription factor can go through multiple rounds of transla-

tion, which will lead to an excess of the regulator over the target promoter. The degree of autoregu-

lation is then determined by the cellular concentration of the transcription factor and the affinity

towards its own promoter (Rosenfeld et al., 2002). In contrast, autoregulatory sRNAs which are

generated by ribonucleolytic cleavage come at a 1:1 stoichiometry with their targets. However, this

situation changes when the sRNA controls multiple targets. For OppZ, we have shown that
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oppBCDF is the only transcript regulated by the sRNA (Figure 3A) and we currently do not know if

CarZ has additional targets besides carAB. In addition, not all sRNA-target interactions result in

changes in transcript levels as previously reported for the interaction of the Qrr sRNAs with the luxO

transcript (Feng et al., 2015). New technologies, for example RIL-Seq (Melamed et al., 2020;

Melamed et al., 2016), capturing the global interactome of base-pairing sRNAs independent of

their regulatory state could help to address this question and clarify the stoichiometric requirements

for sRNA-mediated autoregulation.

Possible biological relevance of autoregulatory sRNAs
Autoregulation by 3’ UTR-derived sRNAs allows for discoordinate operon expression, which is in

contrast to their transcription factor counterparts. This feature might be particularly relevant for long

mRNAs containing multiple cistrons, such as oppABCDF. The oppABCDF genes encode an ABC

transporter allowing high affinity oligopeptide uptake (Hiles et al., 1987). OppBCDF constitute the

membrane-bound, structural components of the transport system, whereas OppA functions as a

periplasmic binding protein. The overall structure of the transporter requires each one unit of OppB,

OppC, OppD, and OppF, while OppA does constitutively interact with the complex and typically

accumulates to higher concentrations in the periplasm (Doeven et al., 2004). Given that transcrip-

tion of oppABCDF is controlled exclusively upstream of oppA (Figure 2C and Papenfort et al.,

2015b), OppZ-mediated autoregulation of oppBCDF (rather than the full operon) might help to

achieve equimolar concentrations of OppB, OppC, OppD, and OppF in the cell without affecting

OppA production.

The carAB genes, which are repressed by CarZ, encode carbamoyl phosphate synthetase; an

enzyme complex catalyzing the first step in the separate biosynthetic pathways for the production of

arginine, and pyrimidine nucleotides (Castellana et al., 2014). Similar to OppBCDF, the CarAB com-

plex contains one subunit of CarA and one subunit of CarB. Transcriptional control of carAB is com-

plex and controlled by several transcription factors integrating information from purine, pyrimidine,

and arginine pathways (Charlier et al., 2018). While the exact biological role of CarZ-mediated feed-

back regulation of carAB requires further investigation, transcription factor-based feedback regula-

tion has been reported to reduce transcriptional noise (Alon, 2007), which could also be an

important feature of sRNA-mediated autoregulation. The OppZ and CarZ sRNAs identified in this

study now provide the framework to test this prediction.

Orthogonal use of gene autoregulation by 3’ UTR-derived sRNAs
Regulatory RNAs have now been established as powerful components of the synthetic biology tool-

box (Qi and Arkin, 2014). RNA regulators are modular, versatile, highly programmable, and there-

fore ideal candidates for synthetic biology approaches. Similarly, autoregulatory loops using

transcriptional repressors find ample use in synthetic regulatory circuits (Afroz and Beisel, 2013).

While it might be counterintuitive for a transcript to also produce its own repressor, negative feed-

back regulation has been reported to endow regulatory networks with improved robustness when

disturbances to the system are imposed. Hfq-binding sRNAs providing feedback control have

recently also been demonstrated to efficiently replace transcriptional regulation in artificial genetic

circuits (Kelly et al., 2018). However, these sRNAs were produced from separate genes and there-

fore required additional transcriptional input, which increases noise. In contrast, the autoregulatory

sRNAs presented here are produced by ribonucleolytic cleavage and we have shown that both

OppZ and CarZ are efficiently clipped off from foreign genes, such as gfp (Figure 3—figure supple-

ment 3, Figure 7C). We therefore propose that autoregulatory sRNAs can be attached to the 3’

UTR of other genes as well, offering a simple and highly modular concept to introduce autoregula-

tion into a biological system. These circuits can be further tuned by modifying the base-pairing

strength of the RNA duplex formed between the sRNA and the target, as well as the introduction of

Rho-dependent termination events. The latter could be used to avoid over-production of the sRNA,

which will further shape the regulatory dynamics of the system. Given that transcriptomic analyses

have revealed thousands of stable 30 UTR RNA tails derived from human transcripts (Gruber and

Zavolan, 2019; Malka et al., 2017), we believe that RNA-based gene autoregulation also could be

present and find applications in higher organisms.
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Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Strain, strain
background
(Escherichia coli)

See Supplementary file 4 This study See Supplementary file 4

Strain, strain
background
(Vibrio cholerae)

See Supplementary file 4 This study See Supplementary file 4

Recombinant
DNA reagent
(plasmids)

See Supplementary file 4 This study See Supplementary file 4

Sequence-
based reagent
(oligonucleotides)

See Supplementary file 4 This study See Supplementary file 4

Antibody ANTI-FLAG M2
antibody
(mouse
monoclonal)

Sigma-Aldrich Cat#F1804;
RRID:AB_262044

(Western blot 1:1.000)

Antibody RNA Polymerase
alpha antibody
4RA2 (rabbit
monoclonal)

BioLegend Cat#WP003;
RRID:AB_2687386

(1:10.000)

Antibody anti-mouse IgG
HRP (goat
polyclonal)

ThermoFischer Cat#31430;
RRID:AB_228307

(1:10.000)

Antibody anti-rabbit IgG
HRP (goat
polyclonal)

ThermoFischer Cat#A16104; RRID:AB_2534776 (1:10.000)

Commercial
assay or kit

TURBO DNA-free Kit Invitrogen Cat#AM1907

Commercial
assay or kit

NEBNext Ultra II
Directional RNA
Library Prep
Kit for Illumina

NEB Cat#E7760

Commercial
assay or kit

Ribo-Zero rRNA
Removal Kit
(Gram-Negative
Bacteria)

Illumina Cat#MRZGN126

Chemical
compound,
drug

Protein G
Sepharose

Sigma-Aldrich Cat##P3296

Chemical
compound,
drug

Bicyclomycin (BCM) SantaCruz
Biotech.

Cat#sc-391755;
CAS ID:
38129-37-2

Software,
algorithm

MultAlin Corpet, 1988
(PMID:2849754)

http://multalin.
toulouse.inra.
fr/multalin

Software,
algorithm

RNAhybrid Rehmsmeier
et al., 2004
(PMID:15383676)

http://bibiserv2.
cebitec.uni-bielefeld.de
RRID:SCR_003252

Software,
algorithm

CLC Genomics
Workbench

Qiagen https://
qiagenbioinformatics.com
RRID:SCR_011853

Software,
algorithm

SigmaPlot SYSTAT https://
systatsoftware.com
RRID:SCR_003210

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Software,
algorithm

GelQuantNET biochemlabsolutions http://
biochemlabsolutions.
com/GelQuantNET.html
RRID:SCR_015703

Software,
algorithm

BIO-1D VILBER http://vilber.de/
en/products/
analysis-software

Software,
algorithm

ImageJ Schneider et al., 2012
(PMID:22930834)

https://imagej.
nih.gov/ij/
RRID:SCR_003070

Software,
algorithm

cutadapt Martin, 2011 https://doi.org/
10.14806/ej.17.1.200

Software,
algorithm

READemption Förstner et al., 2014
(PMID:25123900)

https://doi.org/
10.5281/zenodo.591469

Software,
algorithm

DESeq2 Love et al., 2014
(PMID:25516281)

http://www.bioconductor.
org/packages/release/
bioc/html/DESeq2.html

Software,
algorithm

RNAfold Lorenz et al., 2011
(PMID:22115189)

http://www.tbi.
univie.ac.at/RNA

Software,
algorithm

WebLogo Crooks et al., 2004
(PMID:15173120)

http://weblogo.
threeplusone.com/

Software,
algorithm

BEDTools Quinlan and
Hall, 2010
(PMID:20110278)

http://code.google.
com/p/bedtools

Strains, plasmids, and growth conditions
Bacterial strains, plasmids and DNA oligonucleotides used in this study are listed in

Supplementary file 4. Throughout the study, V. cholerae C6706 (Thelin and Taylor, 1996) was used

as the wild-type strain. V. cholerae and E. coli strains were grown aerobically in LB medium at 37˚C

except for temperature-sensitive strains. For stationary phase cultures of V. cholerae, samples were

collected with respect to the time point when the cells reached an OD600 >2.0, i.e., 3 hr after cells

reached an OD600 reading of 2.0. For transcript stability experiments, rifampicin was used at 250 mg/

ml. To inhibit Rho-dependent transcription termination, bicyclomycin (BCM; sc-391755; Santa Cruz

Biotechnology, Dallas, Texas) was used at 25 mg/ml. Other antibiotics were used at the following

concentrations: 100 mg/ml ampicillin; 20 mg/ml chloramphenicol; 50 mg/ml kanamycin; 50 U/ml poly-

myxin B; and 5,000 mg/ml streptomycin.

For transient inactivation of RNase E, V. cholerae wild-type and a temperature-sensitive strain har-

boring the rne-3071 mutation were grown at 30˚C to the indicated cell density. Cultures were

divided in half and either continuously grown at 30˚C or shifted to 44˚C. RNA samples were collected

from both strains and temperatures at the indicated time points after the temperature shift.

RK2/RP4-based conjugal transfer was used to introduce plasmids into V. cholerae from E. coli

S17lpir plasmid donor strains (Simon et al., 1983). Subsequently, transconjugants were selected

using appropriate antibiotics and polymyxin B to specifically inhibit E. coli growth. V. cholerae

mutant strains were generated as described previously (Papenfort et al., 2015b). Briefly, pKAS32

plasmids were transferred into V. cholerae strains by conjugation and cells were screened for ampi-

cillin resistance. Single colonies were streaked on streptomycin plates for counter-selection and colo-

nies were tested for desired mutations by PCR or sequencing. Strain KPEC53467 was generated by

phage P1 transduction to transfer the Dhfq::KanR allele (Baba et al., 2006) into E. coli Top 10 and

subsequent removal of the KanR cassette using plasmid pCP20 Datsenko and Wanner, 2000 follow-

ing standard protocols.
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Plasmid construction
The plasmids used in this study are listed in Supplementary file 4B, used DNA oligonucleotides are

listed in Supplementary file 4C. For pMD004, the rrnB terminator from pKP8-35 (Papenfort et al.,

2015b) was amplified with KPO-1484/1485 and cloned by Gibson assembly into pKP-331

(Papenfort et al., 2015b) linearized with KPO-0196/1397. pMD089 was generated by amplification

of oppZ from KPS-0014 chromosomal DNA using KPO-2552/2553 and Gibson assembly with

pMD004 linearized with KPO-0196/1397. pMD373 was constructed by amplification of oppB::3XFlag

from KPVC11709 chromosomal DNA using KPO-5878/5879 and Gibson assembly with pMD004 line-

arized with KPO-2789/pBAD-ATGrev. pCMW-2 was obtained by removing the promoterless gfp

from pCMW-1 (Waters and Bassler, 2006) by amplification with KPO-2757/5421. pMD090 was gen-

erated by amplification of oppZ from KPS-0014 chromosomal DNA using KPO-2568/2553 and Gib-

son assembly with pEVS143 (Dunn et al., 2006) linearized with KPO-0092/1397. The M1 point

mutation was introduced into pMD090 by site-directed mutagenesis with KPO-2619/2620, yielding

pMD118. pMD194 and pMD195 were obtained by site-directed mutagenesis of pMD090 and

pMD118, respectively, with KPO-3190/3191. pMD397 and pMD398 were obtained by replacing the

p15a origin of replication in pCMW-1 and pMD194, respectively, by the pSC101 origin including an

E93K mutation in the repA sequence. To this end, pCMW-1 and pMD194 were linearized with KPO-

2041/2049, the pSC101 origin was amplified from pXG10-SF (Corcoran et al., 2012) in three parts

(with KPO-6490/6493, KPO-6492/6495 and KPO-6494/6491) and fragments were joined with Gibson

assembly. pMD173 and pMD174 were generated by amplification of the pBR322 origin from pBAD-

Myc-His (Invitrogen) with KPO-2042/2043 and Gibson assembly with pCMW-1 or pMD090, respec-

tively (both linearized with KPO-2041/2049). pMD197 was obtained by replacing the oppZ gene in

pMD174 with a longer oppF-oppZ fragment (amplified from KPS-0014 chromosomal DNA using

KPO-3197/2553) by Gibson assembly. pNP015 was constructed by amplification of carZ from KPS-

0014 chromosomal DNA using KPO-1013/1014 and subcloning into linearized pEVS143 (KPO-0092/

1023) with XbaI. Again, the M1 point mutation was introduced into pNP015 by site-directed muta-

genesis with KPO-1782/1783, yielding pMH013. pMD361 and pMD362 were obtained by site-

directed mutagenesis of pNP015 and pMH013, respectively, with KPO-5686/5687.

For translational GFP reporters, pMD093 was generated by amplification of the oppAB intergenic

region and the first 5 codons of oppB from KPS-0014 chromosomal DNA using KPO-2580/2583 and

Gibson assembly with pXG10-SF linearized with KPO-1702/1703. Site-directed mutagenesis of

pMD093 with KPO-2615/2616 yielded pMD125. Accordingly, pMH010 and pMD374 were generated

by amplification of the carA 5’UTR and the first 20 codons of carA with KPO-1674/1675 (for

pMH010) or a fragment including the carA 5’ UTR, the complete carA gene and the first 20 codons

of carB with KPO-1674/5874 (for pMD374) from KPS-0014 chromosomal DNA, followed by Gibson

assembly with pXG10-SF linearized with KPO-1702/1703. Site-directed mutagenesis of pMH010 and

pMD374 with KPO-1778/1779 yielded pMH012 and pMD375, respectively. For discoordinate trans-

lational reporters for oppB to oppF, fragments from the oppAB intergenic region to the first 5

codons of oppB or the first 20 codons of oppC, oppD or oppF were amplified from KPS-0014 chro-

mosomal DNA using KPO-2622 and KPO-2583 (oppB), KPO-2577 (oppC), KPO-2578 (oppD) or

KPO-2579 (oppF). mKate2 was amplified from pMD079 (Herzog et al., 2019) with KPO-2511/2625

and the pXG10-SF backbone was linearized with KPO-2621/1703. Gibson assembly was used to join

the pXG10-SF backbone, mKate2 and the respective opp fragment to generate pMD120, pMD352,

pMD353 and pMD354. Site-directed mutagenesis of pMD120 and pMD354 with KPO-2615/2616

yielded pMD129 and pMD355, respectively.

pMD091 and pMD112 were constructed by amplification of oppZ from KPS-0014 chromosomal

DNA using KPO-2585/2586 and Gibson assembly with pXG10-SF (for pMD091) or pMD093 (for

pMD112), both linearized with KPO-2584/2508. The M1 mutations in the oppAB IGR or oppZ were

obtained by site-directed mutagenesis of pMD112 with KPO-2615/2616 or KPO-2617/2618, respec-

tively, to construct pMD117, pMD127 and pMD128. Site-directed mutagenesis of pMD91 and

pMD93 with KPO-2665/2666 to introduce the M2 mutation into oppZ yielded pMD124 and

pMD126, respectively. Accordingly, pMD294 and pMD297 were constructed by amplification of

carZ from KPS-0014 chromosomal DNA using KPO-4815/4817 and Gibson assembly with pMH010

(for pMD294) or pMH012 (for pMD297), both linearized with KPO-2584/2508. Site-directed muta-

genesis of pMD294 and pMD297 with KPO-1782/1783 yielded pMD296 and pMD298, respectively.
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All pKAS32-derived plasmids (Skorupski and Taylor, 1996) were constructed by Gibson assem-

bly of the respective up and down flanks with the pKAS32 backbone (linearized with KPO-0267/

0268) and an additional fragment containing the 3XFLAG sequence or an araC-pBAD fragment

where appropriate. Flanks were amplified from KPS-0014 chromosomal DNA unless otherwise

stated. Plasmids for gene deletions or chromosomal point mutations are listed in the following with

the respective primer pairs for up and down flanks indicated: pMD003 (KPO-1440/1443 and KPO-

1441/1442), pMD160 (KPO-2753/1199 and KPO-1200/2754), pMD350 (KPO-1429/1289 and KPO-

1290/1430), pMD349 (KPO-5243/5244 from KPVC11709 chromosomal DNA and KPO-5245/5246),

pMD357 (KPO-5243/5672 and KPO-5673/5246, both from KPVC11709 chromosomal DNA),

pMD358 (KPO-5243/5674 and KPO-5675/5246, both from KPVC11709 chromosomal DNA),

pMD370 (KPO-5880/5884 and KPO-5885/5881, both from KPVC11709 chromosomal DNA),

pMD371 (KPO-5880/5886 and KPO-5887/5881, both from KPVC11709 chromosomal DNA),

pMD372 (KPO-5882/5890 and KPO-5891/5883, both from KPVC11709 chromosomal DNA),

pMD356 (KPO-3183/5670 and KPO-5671/3186, both from KPVC11709 chromosomal DNA),

pMD367 (KPO-4395/5824 from KPVC11709 chromosomal DNA and KPO-5823/4400), pMD369

(KPO-4379/5828 and KPO-5827/4384), pMD385 (KPO-5235/6029 and KPO-6030/5238, both from

KPVC12872 chromosomal DNA) and pMD386 (KPO-5223/6031 and KPO-6032/5226, both from

KPVC12872 chromosomal DNA). For pMD199 and pMD200, flanks were amplified with KPO-3179/

3180 and KPO-3181/3182 (for pMD199) or with KPO-3183/3184 and KPO-3185/3186 (for pMD200).

The 3XFLAG fragment was obtained by annealing of the oligonucleotides KPO-3157/3158. Flanks

and 3XFLAG tag for pMD269, pMD346 and pMD347 were amplified with the following oligonucleo-

tides: KPO-4385/4386, KPO-4387/4388 and KPO-4389/4390 (for pMD269); KPO-5223/5224, KPO-

5225/5226 and KPO-5231/5232 (for pMD346); KPO-5227/5228, KPO-5229/5230 and KPO-5233/

5234 (for pMD347). pMD199 was used as template for the 3XFLAG fragments. For pMD280 and

pMD351, a fragment containing the araC gene and the pBAD promoter was amplified from

pMD004 using 4529/0196. Flanks were amplified with KPO-4527/4528 and KPO-4530/4531 (for

pMD280) or with KPO-5235/5236 and KPO-5237/5238 (for pMD351).

RNA isolation, Northern blot analysis and quantitative real-time PCR
For Northern blot analyses, total RNA was prepared and blotted as described previously

(Papenfort et al., 2017). Membranes were hybridized in Roti-Hybri-Quick buffer (Carl Roth, Karls-

ruhe, Germany) with [32P]-labeled DNA oligonucleotides at 42˚C or with riboprobes at 63˚C. Ribop-

robes were generated using the MAXIscript T7 Transcription Kit (Thermo Fisher Scientific, Waltham,

Massachusetts). Signals were visualized using a Typhoon Phosphorimager (GE Healthcare, Chicago,

Illinois) and quantified using GelQuant (RRID:SCR_015703; BioChemLabSolutions, San Francisco,

California). Oligonucleotides for Northern blot analyses are provided in Supplementary file 4C. For

qRT-PCR, total RNA was isolated with the SV Total RNA Isolation System (Promega, Fitchburg, Wis-

consin). qRT–PCR was performed in three biological and two technical replicates using the Luna Uni-

versal One-Step RT-qPCR Kit (New England BioLabs, Ipswich, Massachusetts) and the MyiQ

Single-Color Real-Time PCR Detection System (Bio-Rad, Hercules, California). 5S rRNA and recA

were used as reference genes; oligonucleotides used for all qRT-PCR analyses are provided in

Supplementary file 4C.

Hfq co-immunoprecipitation
Hfq co-immunoprecipitations were performed as previously described (Huber et al., 2020). Briefly,

V. cholerae wild-type (KPS-0014) and hfq::3XFLAG (KPS-0995) (Peschek et al., 2019) strains were

grown in LB medium to OD600 of 2.0. Lysates corresponding to 50 OD600 units were subjected to

immunoprecipitation using monoclonal anti-FLAG antibody (#F1804; Sigma-Aldrich, St. Louis, Mis-

souri) and Protein G Sepharose (#P3296; Sigma-Aldrich).

Western blot analysis and fluorescence assays
Total protein sample preparation and Western blot analyses were performed as described previously

(Papenfort et al., 2017). Signals were visualized using a Fusion FX EDGE imager (Vilber Lourmat,

Marne-la-Vallée, France) and band intensities were quantified using the BIO-1D software (Vilber

Lourmat). 3XFLAG-tagged fusions were detected using mouse anti-FLAG antibody (#F1804; RRID:
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AB_262044; Sigma-Aldrich) and goat anti-mouse HRP-conjugated IgG antibody, (#31430; RRID:AB_

228307; Thermo Fisher Scientific). RNAPa served as a loading control and was detected using rabbit

anti-RNAPa antibody (#WP003; RRID:AB_2687386; BioLegend, San Diego, California) and goat anti-

rabbit HRP-conjugated IgG antibody, (#16104; AB_2534776; Thermo Fisher Scientific). Fluorescence

assays of E. coli strains to measure mKate and GFP expression were performed as previously

described (Urban and Vogel, 2007). Cells were washed in PBS and fluorescence intensity was quan-

tified using a Spark 10 M plate reader (Tecan, Männedorf, Switzerland). Control strains not express-

ing fluorescent proteins were used to subtract background fluorescence.

RNA-seq analysis: TIER-seq
V. cholerae wild-type and rneTS strains were grown in biological triplicates at 30˚C to OD600 of 1.0.

Cultures were divided in half and either continuously grown at 30˚C or shifted to 44˚C. Cells were

harvested from both strains and temperatures at 60 min after the temperature shift by addition of

0.2 volumes of stop mix (95% ethanol, 5% (v/v) phenol) and snap-frozen in liquid nitrogen. Total

RNA was isolated and digested with TURBO DNase (Thermo Fisher Scientific). cDNA libraries were

prepared by vertis Biotechnology AG (Freising, Germany): total RNA samples were poly(A)-tailed

and 5’PPP structures were removed using RNA 5’Polyphosphatase (Epicentre, Madison, Wisconsin).

An RNA adapter was ligated to the 5’ monophosphate and first-strand cDNA synthesis was per-

formed using an oligo(dT)-adapter and M-MLV reverse transcriptase. The resulting cDNAs were

PCR-amplified, purified using the Agencourt AMPure XP kit (Beckman Coulter Genomics, Chaska,

Minnesota) and sequenced using a NextSeq 500 system in single-read mode for 75 cycles.

After quality trimming and adapter clipping with cutadapt (version 2.5, DOI: https://doi.org/10.

14806/ej.17.1.200) the sequencing reads were mapped to the V. cholerae reference genome (NCBI

accession numbers: NC_002505.1 and NC_002506.1) including annotations for Vcr001-Vcr107

(Papenfort et al., 2015b) using READemption’s (Förstner et al., 2014, v0.5.0, https://doi.org/10.

5281/zenodo.591469) sub-command ‘align’ (building on segemehl version 0.3.4, Hoffmann et al.,

2009) and nucleotide-specific coverage values were calculated with the sub-command ‘coverage’

based on the first base of the reads. Positions with a coverage of 20 reads or more were used to

perform an enrichment analysis using DESeq2 (v.1.20.0, Love et al., 2014) comparing the WT to the

mutant libraries. Nucleotides for which DESeq2 calculated an absolute fold-change of 3.0 or more

and an adjusted (Benjamini-Hochberg corrected) p-value of 0.05 were treated in following analysis

steps as bona fide cleavage sites.

The Minimum free energy (MFE) of sequence windows was computed with RNAfold (version

2.4.14) of the Vienna package (Lorenz et al., 2011). Sequence logos were created with WebLogo

(version 3.7.4; Crooks et al., 2004). Overlaps of cleavage sites with other features were found by

BEDTools’ (version 2.26.0, Quinlan and Hall, 2010) sub-command ‘intersect’. Pair-wise Pearson cor-

relation coefficients between all samples were calculated based on the above mentioned first-base-

in read coverages taking positions with a total sum of at least 10 reads in all samples combined into

account. Positions that represent outliers with coverage values above the 99.99 percentile in one or

more read libraries were not considered. The values were computed using the function ‘corr’ of the

pandas Dataframe class (https://doi.org/10.5281/zenodo.3509134). For further details, please see

the analysis scripts linked in the data and code availability section.

RNA-seq analysis: Identification of OppZ targets
V. cholerae strains carrying either pBAD1K-ctrl or pBAD1K-oppZ were grown in biological triplicates

to OD600 of 0.5 and treated with 0.2% L-arabinose (final conc.). Cells were harvested after 15 min by

addition of 0.2 volumes of stop mix (95% ethanol, 5% (v/v) phenol) and snap-frozen in liquid nitro-

gen. Total RNA was isolated and digested with TURBO DNase (Thermo Fisher Scientific). Ribosomal

RNA was depleted using the Ribo-Zero kit for Gram-negative bacteria (#MRZGN126; Illumina, San

Diego, California) and RNA integrity was confirmed with an Agilent 2100 Bioanalyzer. Directional

cDNA libraries were prepared using the NEBNext Ultra II Directional RNA Library Prep Kit for Illu-

mina (#E7760; NEB). The libraries were sequenced using a HiSeq 1500 System in single-read mode

for 100 cycles. The read files in FASTQ format were imported into CLC Genomics Workbench v11

(RRID:SCR_011853; Qiagen, Hilden, Germany) and trimmed for quality and 3’ adaptors. Reads were

mapped to the V. cholerae reference genome (NCBI accession numbers: NC_002505.1 and
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NC_002506.1) including annotations for Vcr001-Vcr107 (Papenfort et al., 2015b) using the ‘RNA-

Seq Analysis’ tool with standard parameters. Reads mapping in CDS were counted, and genes with

a total count cut-off >15 in all samples were considered for analysis. Read counts were normalized

(CPM), and transformed (log2). Differential expression was tested using the built-in tool correspond-

ing to edgeR in exact mode with tagwise dispersions (‘Empirical Analysis of DGE’). Genes with a fold

change �3.0 and an FDR-adjusted p-value�0.05 were considered as differentially expressed.

RNA-seq analysis: Bicyclomycin-dependent transcriptomes
V. cholerae oppA::3XFLAG oppB::3XFLAG oppF::3XFLAG strains with wild-type or mutated oppB

start codon were grown in biological triplicates to OD600 of 1.5, divided in half and treated with

either bicyclomycin (25 mg/ml final conc.) or water. Cells were harvested after 120 min by addition of

0.2 volumes of stop mix (95% ethanol, 5% (v/v) phenol) and snap-frozen in liquid nitrogen. Total

RNA was isolated and digested with TURBO DNase (Thermo Fisher Scientific). cDNA libraries were

prepared by vertis Biotechnology AG in a 3’ end-specific protocol: ribosomal RNA was depleted

and the Illumina 5’ sequencing adaptor was ligated to the 3’ OH end of RNA molecules. First strand

synthesis using M-MLV reverse transcriptase was followed by fragmentation and strand-specific liga-

tion of the Illumina 3’ sequencing adaptor to the 3’ end of first-strand cDNA. Finally, 3’ cDNA frag-

ments were amplified, purified using the Agencourt AMPure XP kit (Beckman Coulter Genomics)

and sequenced using a NextSeq 500 system in single-read mode for 75 cycles. The read files in

FASTQ format were imported into CLC Genomics Workbench v11 (Qiagen) and trimmed for quality

and 3’ adaptors. Reads were mapped to the V. cholerae reference genome (NCBI accession num-

bers: NC_002505.1 and NC_002506.1) including annotations for Vcr001-Vcr107 (Papenfort et al.,

2015b) using the ‘RNA-Seq Analysis’ tool with standard parameters. Reads mapping in CDS were

counted, and genes with a total count cut-off >8 in all samples were considered for analysis. Read

counts were normalized (CPM), and transformed (log2). Differential expression was tested using the

built in tool corresponding to edgeR in exact mode with tagwise dispersions (‘Empirical Analysis of

DGE’). Genes with a fold change �3.0 and an FDR-adjusted p-value�0.05 were considered as differ-

entially expressed.

TIER-seq input data, analysis scripts and results are deposited at Zenodo (https://doi.org/10.

5281/zenodo.3750832). Further information and requests for resources and reagents should be

directed to and will be fulfilled by the corresponding author, Kai Papenfort (kai.papenfort@uni-jena.

de).
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Papenfort K, Espinosa E, Casadesús J, Vogel J. 2015a. Small RNA-based feedforward loop with AND-gate logic
regulates extrachromosomal DNA transfer in Salmonella. PNAS 112:E4772–E4781. DOI: https://doi.org/10.
1073/pnas.1507825112, PMID: 26307765

Papenfort K, Förstner KU, Cong JP, Sharma CM, Bassler BL. 2015b. Differential RNA-seq of Vibrio cholerae
identifies the VqmR small RNA as a regulator of biofilm formation. PNAS 112:E766–E775. DOI: https://doi.org/
10.1073/pnas.1500203112, PMID: 25646441

Papenfort K, Silpe JE, Schramma KR, Cong JP, Seyedsayamdost MR, Bassler BL. 2017. A Vibrio cholerae
autoinducer-receptor pair that controls biofilm formation. Nature Chemical Biology 13:551–557. DOI: https://
doi.org/10.1038/nchembio.2336, PMID: 28319101

Peschek N, Hoyos M, Herzog R, Förstner KU, Papenfort K. 2019. A conserved RNA seed-pairing domain directs
small RNA-mediated stress resistance in enterobacteria. The EMBO Journal 38:e101650. DOI: https://doi.org/
10.15252/embj.2019101650, PMID: 31313835

Peters JM, Mooney RA, Grass JA, Jessen ED, Tran F, Landick R. 2012. Rho and NusG suppress pervasive
antisense transcription in Escherichia coli. Genes & Development 26:2621–2633. DOI: https://doi.org/10.1101/
gad.196741.112, PMID: 23207917

Pu M, Chen J, Tao Z, Miao L, Qi X, Wang Y, Ren J. 2019. Regulatory network of miRNA on its target:
coordination between transcriptional and post-transcriptional regulation of gene expression. Cellular and
Molecular Life Sciences 76:441–451. DOI: https://doi.org/10.1007/s00018-018-2940-7, PMID: 30374521

Hoyos et al. eLife 2020;9:e58836. DOI: https://doi.org/10.7554/eLife.58836 27 of 28

Research article Chromosomes and Gene Expression Microbiology and Infectious Disease



Qi LS, Arkin AP. 2014. A versatile framework for microbial engineering using synthetic non-coding RNAs. Nature
Reviews. Microbiology 12:341–354. DOI: https://doi.org/10.1038/nrmicro3244, PMID: 24736794

Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics
26:841–842. DOI: https://doi.org/10.1093/bioinformatics/btq033, PMID: 20110278

Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R. 2004. Fast and effective prediction of microRNA/target
duplexes. RNA 10:1507–1517. DOI: https://doi.org/10.1261/rna.5248604, PMID: 15383676

Richards J, Belasco JG. 2019. Obstacles to scanning by RNase E govern bacterial mRNA lifetimes by hindering
access to distal cleavage sites.Molecular Cell 74:284–295. DOI: https://doi.org/10.1016/j.molcel.2019.01.044

Rosenfeld N, Elowitz MB, Alon U. 2002. Negative autoregulation speeds the response times of transcription
networks. Journal of Molecular Biology 323:785–793. DOI: https://doi.org/10.1016/S0022-2836(02)00994-4,
PMID: 12417193

Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH image to ImageJ: 25 years of image analysis. Nature
Methods 9:671–675. DOI: https://doi.org/10.1038/nmeth.2089, PMID: 22930834

Sedlyarova N, Shamovsky I, Bharati BK, Epshtein V, Chen J, Gottesman S, Schroeder R, Nudler E. 2016. sRNA-
Mediated control of transcription termination in E. coli. Cell 167:111–121. DOI: https://doi.org/10.1016/j.cell.
2016.09.004

Shen-Orr SS, Milo R, Mangan S, Alon U. 2002. Network motifs in the transcriptional regulation network of
Escherichia coli. Nature Genetics 31:64–68. DOI: https://doi.org/10.1038/ng881, PMID: 11967538

Simon R, Priefer U, Pühler A. 1983. A broad host range mobilization system for in vivo genetic engineering:
transposon mutagenesis in gram negative Bacteria. Bio/Technology 1:784–791. DOI: https://doi.org/10.1038/
nbt1183-784

Skorupski K, Taylor RK. 1996. Positive selection vectors for allelic exchange. Gene 169:47–52. DOI: https://doi.
org/10.1016/0378-1119(95)00793-8, PMID: 8635748

Soper T, Mandin P, Majdalani N, Gottesman S, Woodson SA. 2010. Positive regulation by small RNAs and the
role of hfq. PNAS 107:9602–9607. DOI: https://doi.org/10.1073/pnas.1004435107, PMID: 20457943

Svenningsen SL, Tu KC, Bassler BL. 2009. Gene dosage compensation calibrates four regulatory RNAs to control
Vibrio cholerae quorum sensing. The EMBO Journal 28:429–439. DOI: https://doi.org/10.1038/emboj.2008.
300, PMID: 19165149

Thelin KH, Taylor RK. 1996. Toxin-coregulated pilus, but not mannose-sensitive hemagglutinin, is required for
colonization by Vibrio cholerae O1 el Tor biotype and O139 strains. Infection and Immunity 64:2853–2856.
DOI: https://doi.org/10.1128/IAI.64.7.2853-2856.1996, PMID: 8698524

Updegrove TB, Kouse AB, Bandyra KJ, Storz G. 2019. Stem-loops direct precise processing of 30 UTR-derived
small RNA MicL. Nucleic Acids Research 47:1482–1492. DOI: https://doi.org/10.1093/nar/gky1175

Urban JH, Vogel J. 2007. Translational control and target recognition by Escherichia coli small RNAs in vivo.
Nucleic Acids Research 35:1018–1037. DOI: https://doi.org/10.1093/nar/gkl1040, PMID: 17264113

Wang X, Ji SC, Jeon HJ, Lee Y, Lim HM. 2015. Two-level inhibition of galK expression by spot 42: degradation of
mRNA mK2 and enhanced transcription termination before the galK gene. PNAS 112:7581–7586. DOI: https://
doi.org/10.1073/pnas.1424683112, PMID: 26045496

Wang C, Chao Y, Matera G, Gao Q, Vogel J. 2020. The conserved 3’ UTR-derived small RNA NarS mediates
mRNA crossregulation during nitrate respiration. Nucleic Acids Research 48:2126–2143. DOI: https://doi.org/
10.1093/nar/gkz1168, PMID: 31863581

Waters CM, Bassler BL. 2006. The Vibrio harveyi quorum-sensing system uses shared regulatory components to
discriminate between multiple autoinducers. Genes & Development 20:2754–2767. DOI: https://doi.org/10.
1101/gad.1466506, PMID: 17015436

Zwiefka A, Kohn H, Widger WR. 1993. Transcription termination factor rho: the site of bicyclomycin inhibition in
Escherichia coli. Biochemistry 32:3564–3570. DOI: https://doi.org/10.1021/bi00065a007, PMID: 8466900

Hoyos et al. eLife 2020;9:e58836. DOI: https://doi.org/10.7554/eLife.58836 28 of 28

Research article Chromosomes and Gene Expression Microbiology and Infectious Disease





3 A conserved RNA seed-pairing domain

directs small RNA-mediated stress

resistance in enterobacteria

Nikolai Peschek, Mona Hoyos, Roman Herzog, Konrad U. Förstner, and Kai Papenfort (2019). “A

conserved RNA seed-pairing domain directs small RNA-mediated stress resistance in enterobacte-

ria.” The EMBO Journal 38.16, e101650

Source online: https://doi.org/10.15252/embj.2019101650

This publication characterizes the σE-dependent sRNAs MicV and VrrA as non-coding arm of

the envelope stress response. A complex library of synthetic sRNAs is employed in laboratory

selection experiments to identify post-transcriptional repression of the porin ompA as key factor

for cell survival under membrane-damaging conditions.

53



Article

A conserved RNA seed-pairing domain directs small
RNA-mediated stress resistance in enterobacteria
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Abstract

Small regulatory RNAs (sRNAs) are crucial components of many
stress response systems. The envelope stress response (ESR) of
Gram-negative bacteria is a paradigm for sRNA-mediated stress
management and involves, among other factors, the alternative
sigma factor E (rE) and one or more sRNAs. In this study, we identi-
fied the MicV sRNA as a new member of the rE regulon in Vibrio
cholerae. We show that MicV acts redundantly with another sRNA,
VrrA, and that both sRNAs share a conserved seed-pairing domain
allowing them to regulate multiple target mRNAs. V. cholerae lack-
ing rE displayed increased sensitivity toward antimicrobials, and
over-expression of either of the sRNAs suppressed this phenotype.
Laboratory selection experiments using a library of synthetic sRNA
regulators revealed that the seed-pairing domain of rE-dependent
sRNAs is strongly enriched among sRNAs identified under
membrane-damaging conditions and that repression of OmpA is
crucial for sRNA-mediated stress relief. Together, our work shows
that MicV and VrrA act as global regulators in the ESR of
V. cholerae and provides evidence that bacterial sRNAs can be
functionally annotated by their seed-pairing sequences.
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Introduction

Regulatory RNAs are key factors for efficient gene expression

control in all domains of life. It is now clear that RNA regulators can

rival transcription factors with respect to their regulatory scope, as

many regulatory RNAs control multiple and sometimes dozens of

transcripts (Hor et al, 2018). Various RNA-sequencing-based tech-

nologies have led to the discovery of RNA regulators from almost all

regions of the genome. However, while these approaches provided a

great deal of information about the expression, conservation, and

overall distribution of regulatory RNAs, they allowed only limited

conclusions toward their physiological roles (Cruz & Westhof, 2009;

Storz et al, 2011).

Regulatory RNAs have now been found by the hundreds in

bacterial genomes (Sorek & Cossart, 2010). The largest and most

thoroughly studied group of bacterial RNAs are called small regula-

tory RNAs (sRNAs) and frequently associate with the RNA chaper-

one Hfq (Kavita et al, 2018). Hfq belongs to the large family of

RNA-binding Lsm/Sm-like proteins and is required for efficient

stabilization and annealing of sRNAs to their transcript targets. In

analogy to their miRNA (microRNA) and crRNA (CRISPR RNA)

counterparts, the sRNAs recognize cognate targets by a short stretch

of base-pairing nucleotides, called the “seed” sequence (Gorski

et al, 2017). Seed sequences are ~6–12 nucleotides long and struc-

turally accessible. Hfq-dependent sRNAs of c-proteobacteria have

been reported to carry up to three seed-pairing domains, and muta-

tion of either of these domains results in loss of regulation for a

subset of target mRNAs (Herzog et al, 2019). Initial base-pairing by

the seed typically relies on Watson–Crick base-pairing; however, it

is not fully understood how these interactions discriminate against

off-target interactions involving non-canonical G-U base-pairs

(Papenfort et al, 2012).

Several sRNAs have been investigated for their seed-pairing

capacities (Gorski et al, 2017). Here, the RybB sRNA, controlling

envelope homeostasis of Gram-negative bacteria, has emerged as a

model to study the mechanisms underlying seed-pairing regulatory

RNAs (Bouvier et al, 2008; Balbontin et al, 2010; Papenfort et al,

2010). Transcription of RybB is controlled by the alternative sigma

factor rE (encoded by the rpoE gene; Johansen et al, 2006; Papen-

fort et al, 2006; Thompson et al, 2007). rE belongs to the large class

of extracytoplasmic function r factors (ECFs), which are negatively

controlled by a corresponding anti-sigma factor (Sineva et al, 2017).

Under regular growth conditions, rE activity is weak as the protein

is tethered to the inner membrane-bound anti-sigma factor, RseA.

Misfolded outer membrane proteins (OMPs) trigger a cascade of

regulated proteolysis events degrading RseA and releasing rE into

the cytoplasm. rE associates with the core RNA polymerase and

directs transcription toward specific promoters. Besides RybB, rE

activates � 100 genes in Escherichia coli and related bacteria

(Rhodius et al, 2006), including two additional Hfq-dependent
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sRNAs, MicA and MicL. RybB and MicA regulate multiple target

mRNAs in response to activation of rE. Targets of MicA and RybB

are enriched for mRNAs encoding OMPs, suggesting that the sRNAs

function to reduce the production of newly synthesized OMPs when

the outer membrane is damaged (Brosse & Guillier, 2018). In

contrast, MicL acts to inhibit translation of the highly abundant Lpp

protein, which tethers the outer membrane to the peptidoglycan

layer (Guo et al, 2014). Given that rE-bound RNA polymerase is

restricted to act as a transcriptional activator, the rE-activated

sRNAs have been suggested to provide an important inhibitory func-

tion to the system (Gogol et al, 2011).

rE-dependent sRNAs have also been described in other organ-

isms. For example, in the major human pathogen Vibrio cholerae,

the VrrA sRNA is activated by rE and inhibits the expression of four

mRNA targets: the transcripts of the major OMPs, OmpA and OmpT;

the biofilm matrix protein, RbmC; and the ribosome hibernation

protein, Vrp (Song et al, 2008, 2010, 2014; Sabharwal et al, 2015).

VrrA has also been shown to promote the production of outer

membrane vesicles and to modulate virulence (Song et al, 2008).

In this study, we harnessed transcriptomic data to search for

rE-dependent genes in V. cholerae. Our analysis identified the MicV

sRNA as a new member of the rE regulon and we show that MicV

associates with Hfq to regulate multiple target transcripts, including

several mRNAs encoding OMPs. Global identification of target

mRNAs revealed that MicV and VrrA control at least 32 mRNAs.

While each sRNA controls a set of specific transcripts, the majority

of targets are shared by the two sRNAs. We discovered that a

conserved seed-pairing sequence present in MicV and VrrA accounts

for the overlapping target regulation and that combined mutation of

micV and vrrA impairs survival of V. cholerae under membrane-

damaging conditions. This phenotype can be overcome by over-

expression of MicV, VrrA, or RybB from E. coli, which also carries

the conserved seed-pairing sequence of rE-dependent sRNAs. By

employing an sRNA library carrying randomized base-pairing

sequences, we show that the seed-pairing domain of rE-dependent

sRNAs is strongly enriched during laboratory selection experiments

and high-throughput sequencing of the selected seed sequences

revealed a strong prevalence for sRNAs capable of repressing the

OmpA protein. Indeed, deletion of ompA efficiently alleviated stress

sensitivity of rpoE-deficient V. cholerae. Our data highlight the

crucial role of seed-pairing domains in regulatory RNAs and

describe a novel sRNA-based approach to study complex bacterial

phenotypes in an unbiased fashion.

Results

MicV is a rE-dependent sRNA

We have recently determined the transcriptomes of V. cholerae

under conditions of low and high cell densities and identified a total

of 7,240 transcriptional start sites (TSS; Papenfort et al, 2015).

However, these analyses did not provide information on how the

activities of these TSS are controlled and which sigma factors could

be involved. To address this question, we used a bioinformatics

approach and searched for the rE consensus motif upstream of the

7,240 TSS in V. cholerae. We discovered 73 TSS associated with the

rE motif (Appendix Table S1), including several TSS of genes

previously linked with rE. For example, the 73 TSS included the

promoters for lptD, rpoH, and rpoE itself, which have been docu-

mented to be activated by rE in E. coli (Rhodius et al, 2006), as well

as the promoter for the VrrA sRNA. Thus, our approach allows the

identification of rE-controlled genes in V. cholerae.

In addition to VrrA, we discovered that the promoter of another

68-nucleotide sRNA, Vcr089 (Papenfort et al, 2015), carried a

sequence that aligned with the rE consensus (Fig 1A). The vcr089

sRNA is conserved among Vibrios (Fig 1A). In analogy to the

rE-dependent MicA sRNA (Udekwu et al, 2005), we renamed this

sRNA MicV. In V. cholerae, the micV gene is located in the inter-

genic region of the vc2640 (encoding a hypothetical protein) and

vc2641 (encoding argininosuccinate lyase) genes (Fig EV1A). North-

ern blot analysis showed that MicV expression peaks in stationary

phase and that two MicV isoforms can be detected: the full-length

transcript and a processed shorter variant (Fig EV1B). A similar

expression pattern is observed for the VrrA sRNA (Fig EV1B). We

also recovered both MicV isoforms in Hfq co-immunoprecipitation

experiments (Fig EV1C), and MicV stability was strongly reduced in

hfq-deficient V. cholerae (Fig EV1D) showing that MicV is a Hfq-

dependent sRNA. For comparison, VrrA stability was only mildly

affected in cells lacking hfq (Fig EV1D).

To test whether micV is controlled by rE, we generated an rpoE

deletion mutant in V. cholerae. The rpoE gene is considered essen-

tial in V. cholerae and to avoid unpredictable suppressor mutations,

we first deleted the vchM gene, encoding a known suppressor of rE

(Chao et al, 2015), followed by deletion of rpoE. The vchM deletion

did not affect the expression of MicV or VrrA (Fig EV1B). Northern

blot analysis of MicV and VrrA showed that both sRNAs are unde-

tectable in cells lacking vchM and rpoE (from here on referred to as

DrpoE), whereas plasmid-borne production of rE from the inducible

PBAD promoter strongly activated the expression of both sRNAs

(Fig 1B). To compare MicV and VrrA expression detected by North-

ern blot analysis with the activity of their associated promoters, we

generated mKate2-based transcriptional reporters for both sRNAs

and monitored production of the fluorescent protein at various

points in growth. In wild-type V. cholerae, activity of the micV

promoter was weak in exponentially growing cells and strongly

increased when cells entered stationary phase growth (Fig 1C).

Comparable levels were found for the PvrrA::mKate2 reporter

(Fig EV1E). Mutation of vchM did not have a significant effect on

the performance of both reporters; however, mKate2 production

was hardly detectable in DrpoE cells (Figs 1C and EV1E). Given the

conserved role of rE in enterobacteria, we also monitored the activ-

ity of PmicV::GFP in wild-type and DrpoE E. coli. Again, GFP

production in wild-type cells reached a maximum in stationary

phase growth, whereas promoter activity was strongly reduced

in rpoE-deficient cells (Fig EV1F). PBAD-driven production of

V. cholerae and E. coli rE rescued and further elevated GFP produc-

tion in E. coli, indicating that the micV promoter is recognized and

activated by rE.

VrrA is required for ethanol resistance in Vibrio cholerae

Exposure to ethanol has been reported to induce rE-mediated gene

expression in V. cholerae (Chatterjee & Chowdhury, 2013). To test

the effect of ethanol on vrrA and micV expression, we cultivated

wild-type and DrpoE V. cholerae carrying the PmicV::mKate2 or
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Figure 1. Transcriptional regulation of micV.

A Alignment of micV sequences, including the promoter regions, from various Vibrio species. The -35 box, -10 box, the TSS, the highly conserved seed region, and the
rho-independent terminator are indicated. Lower part: consensus motif of E. coli rE-dependent promoters.

B Vibrio cholerae wild-type and DrpoE strains carrying the indicated plasmids were grown in LB medium to early stationary phase (OD600 of 1.5) and induced with
L-arabinose (0.2% final conc.). Expression of MicV and VrrA was monitored on Northern blots. 5S rRNA served as loading control.

C Vibrio cholerae wild-type, DvchM, and DvchM DrpoE strains harboring the PmicV::mKate2 plasmid were grown in M9 minimal medium. Samples were collected at
various stages of growth and analyzed for fluorescence.

D, E Vibrio cholerae wild-type and DrpoE strains carrying PmicV::mKate2 (D) or PvrrA::mKate2 (E) plasmids were cultivated in LB medium to exponential phase (OD600 of 0.4)
and treated with ethanol (3.5% final conc.) or water. Fluorescence was determined 180 min after ethanol treatment, and mKate2 levels of the mock-treated samples
were set to 1. Corresponding Northern blot analyses of MicV and VrrA expression are shown at the bottom. 5S rRNA served as loading control.

F Vibrio cholerae wild-type, DmicV, DvrrA, or DvrrA DmicV strains were grown in LB medium to OD600 of 0.2 and treated with ethanol (3.5% final conc.). After 5 h of
treatment, serial dilutions were prepared, recovered on agar plates, and CFU/ml were determined.

Data information: In (C–E), data are presented as mean � SD, n = 3. In (F), the box plots indicate the median, 75th and 25th percentiles (boxes), and 90th and 10th

percentiles (whiskers), n = 8. Statistical significance was determined using one-way ANOVA and post hoc Holm–Sidak test.
Source data are available online for this figure.
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PvrrA::mKate2 reporters to exponential phase (OD600 of 0.4) and

treated cells with ethanol (3.5% final conc.). After 180 min of expo-

sure, we detected ~5-fold elevated mKate2 levels from the micV and

vrrA promoters in wild-type cells, which we also confirmed at the

transcript levels using Northern blot analysis (Fig 1D and E). In

contrast, rpoE-deficient V. cholerae failed to significantly activate

VrrA and MicV expression.

These results motivated us to investigate the role of micV and

vrrA in V. cholerae challenged with ethanol. To this end, we treated

exponential cultures (OD600 of 0.2) of wild-type, DmicV, DvrrA, and
DvrrA DmicV V. cholerae with ethanol (3.5% final conc.) and deter-

mined CFU (colony forming units) after 5 h of incubation. While we

discovered no significant difference in CFU for wild-type and DmicV

V. cholerae, DvrrA and DvrrA DmicV cells displayed ~10-fold

reduced CFU, when compared to the other two strains (Fig 1F).

These data show that micV and vrrA are activated in response to

membrane perturbations in V. cholerae, but only VrrA confers

ethanol resistance.

MicV inhibits OmpT protein production

To study the role of MicV in gene regulation in V. cholerae, we

constructed a MicV over-expression plasmid (pMicV) from which

MicV production is driven by the constitutive PTac promoter. We

transformed this plasmid into V. cholerae lacking micV and

compared global changes in protein expression with wild-type and

DmicV V. cholerae carrying a control plasmid (pCtr) using SDS–

PAGE (Appendix Fig S1A). Our data showed increased levels of a

~40 kDa protein in DmicV cells and repression of the same protein

when MicV was over-expressed (Appendix Fig S1A, compare lanes

3, 4 vs. 7, 8 vs. 11, 12). We excised the band from the gel and identi-

fied the protein as OmpT (VC1854) by mass spectrometry.

These data indicated that MicV inhibits OmpT expression in

V. cholerae, as was also previously reported for the VrrA sRNA

(Song et al, 2010). Given that both sRNAs are controlled by rE

(Fig 1 and Song et al, 2008), we aimed to determine the contribu-

tion of each of the sRNAs to OmpT repression. To this end, we

added a 3XFLAG epitope to the chromosomal ompT locus and moni-

tored OmpT protein expression in wild-type, DvrrA, DmicV, and

DvrrA DmicV V. cholerae at several stages of growth (Appendix Fig

S1B, top). In accordance with the data presented in Appendix Fig

S1A, OmpT production increased under stationary phase growth

conditions and was elevated up to ~6-fold in cells lacking micV,

when compared to wild-type V. cholerae (Appendix Fig S1B, lanes 1

vs. 3, 5 vs. 7, 9 vs. 11, and 13 vs. 15). OmpT was over-produced in

DmicV cells under all tested growth conditions (~6-fold at OD600 of

0.5 and 1.0, ~2.5-fold under stationary phase conditions), whereas

lack of vrrA did not increase OmpT levels (lanes 2, 6, 10, and 14).

However, mutation of both sRNAs (lanes 4, 8, 12, and 16) revealed

an additive effect of the two sRNAs resulting in more than 12-fold

higher OmpT levels when cells were cultivated to late exponential

phase (OD600 of 1.0). Together, these results show that both MicV

and VrrA repress OmpT production in V. cholerae with MicV being

the dominant regulator under the tested conditions.

Over-production of OMPs has previously been reported to

increase rE activity (Mecsas et al, 1993). Consequently, we

predicted that elevated OmpT levels produced in DmicV and DvrrA
DmicV cells would also increase rE activity in V. cholerae. To test

this hypothesis, we collected total RNA samples using our previous

experimental setup (Appendix Fig S1B) and probed VrrA and MicV

levels on Northern blots. Indeed, we discovered increased VrrA

accumulation in cells lacking micV, while mutation of vrrA had only

a minor effect on micV expression (Appendix Fig S1B, bottom). In

accordance with the hypothesis that increased OmpT production

activates the ESR in V. cholerae, VrrA production was highest when

OmpT levels were most strongly induced (~6-fold) in the micV

mutant (Appendix Fig S1B, bottom, lanes 5 vs. 7). To corroborate

these data with the status of the rE response, we used the PmicV::

mKate2 reporter as a proxy for rE activation in wild-type, DvrrA,
DmicV, and DvrrA DmicV V. cholerae at several stages of growth

(Appendix Fig S1C). When compared to wild-type V. cholerae,

mKate2 levels did not change significantly in the vrrA mutant and

were moderately induced in cells lacking micV (~1.5-fold). In

contrast, mutation of both sRNAs had an additive effect on the acti-

vity of the micV promoter (~ 2.5-fold), suggesting that MicV and

VrrA act redundantly to control rE activation in V. cholerae.

Global target profiles of MicV and VrrA in Vibrio cholerae

The VrrA sRNA has previously been shown to regulate multiple

mRNAs through direct base-pairing, including ompT (Song et al,

2010). Likewise, we suspected that MicV inhibits ompT at the post-

transcriptional level through translation repression and transcript

degradation. To test whether MicV-mediated repression of ompT

involves transcript degradation, we constructed an L-arabinose-

inducible pBAD-micV plasmid. To avoid cross-regulation from chro-

mosomal MicV and VrrA production, we transferred this plasmid

into a V. cholerae mutant lacking vrrA and micV and investigated

ompT levels by Northern blot analysis. Indeed, induction of MicV

from this plasmid resulted in a rapid reduction of ompT mRNA

(Fig 2A, lanes 3–7), whereas L-arabinose did not affect ompT levels

in the same strain carrying a control vector (lanes 1–2). Moreover,

the dynamics of MicV-mediated ompT repression were comparable

to an equivalent experiment using a pBAD-vrrA plasmid (lanes 8–

12), indicating that both sRNAs act post-transcriptionally on ompT.

These observations prompted us to design an experimental setup

for the identification of MicV and VrrA target mRNA candidates at a

genome-wide level. To this end, we cultivated DvrrA DmicV

V. cholerae carrying either pBAD-micV, pBAD-vrrA, or a control

plasmid to early stationary phase (OD600 of 1.5) and induced sRNA

expression from the PBAD promoter for 10 min. Differentially

expressed genes were determined by RNA-sequencing comparing cells

induced for MicV or VrrA to the empty vector control. Transcripts

displaying ≥ 3-fold change in abundance by either of the two sRNAs

were considered potential target mRNAs. In total, we discovered 28

and 27 differently regulated genes for MicV and VrrA, respectively

(Appendix Table S2 and Appendix Fig S2). Importantly, 23 of these

targets, including ompT, were regulated by both sRNAs (Fig 2B).

Next, we tested whether the newly identified targets are regu-

lated at the post-transcriptional level by MicV and/or VrrA. Specifi-

cally, we employed a well-established GFP-based reporter system

tailored to determine post-transcriptional gene control in bacteria

(Corcoran et al, 2012). In this system, the 50 UTR (untranslated

region) and the sequence corresponding to the first 20 amino acids

of the target genes were fused to gfp under the control of the PTetO
promoter. These plasmids were transferred into V. cholerae along
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Figure 2. Target profiles of MicV and VrrA.

A Vibrio cholerae DvrrA DmicV strains carrying pBAD-micV, pBAD-vrrA, or an empty vector control (pCtr) were cultivated to early stationary phase (OD600 of 1.5) in LB
medium. Cells were treated with L-arabinose (0.2% final conc.), and RNA samples were collected at the indicated time points after induction. Northern blot analysis
was performed to determine VrrA, MicV, and ompT levels. 5S rRNA served as loading control. For comparison, RNA samples of a wild-type strain carrying pCtr were
collected during various growth phases, which indicated ~18-fold and ~7-fold higher levels of VrrA and MicV expressed from the pBAD plasmids, respectively (see
Source data for quantifications).

B Venn diagram summarizing the RNA-Seq results: RNA samples were collected from V. cholerae DvrrA DmicV strains carrying pBAD-micV, pBAD-vrrA, or an empty
vector control. Depicted are genes displaying a fold change of ≥ 3 and FDR-adjusted p-value ≤ 1E-8 obtained from MicV-expressing conditions (blue) or vrrA-
expressing conditions (green). Genes regulated by both sRNAs (fold change ≥ 3 in one condition, fold change ≥ 2.0 in the other) are depicted in light green.

C–E Vibrio cholerae DvrrA DmicV strains carrying the indicated reporter plasmids (x-axis) and either an empty vector control (pCtr), the pMicV, or the pVrrA plasmid
were cultivated in M9 minimal medium, and GFP fluorescence was measured. Fluorescence of the control strains was set to 1. The target genes were classified
according to (B): regulated by both sRNAs (C), regulated only by MicV (D), or regulated only by VrrA (E).

Data information: In (C–E), data are presented as mean � SD, n = 3.
Source data are available online for this figure.
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with a second plasmid transcribing either micV or vrrA from a PTac
promoter. We confirmed post-transcriptional control of 16 target

mRNAs: Eight of these targets were regulated by both sRNAs, five

targets were specific to MicV, and three targets were only regulated

by VrrA (Fig 2C–E). Although gene expression changes obtained by

RNA-sequencing were confirmed by qRT–PCR (Appendix Fig S2),

we have not been able to further validate post-transcriptional

control of dsbA, vc1743-vc1744, vca0996, vc2240, vc1485, vc0429,

vca0447, vca0845, and vca0789 by MicV and/or VrrA with the

reporter assays (Appendix Table S2), suggesting that these genes

might not be directly controlled by the sRNAs or that the relevant

base-pairing sequences are lacking in the GFP reporter constructs.

In agreement with our initial hypothesis, we discovered that VrrA

and MicV both post-transcriptionally regulate ompT and that the

protein products of several of the newly identified target genes are

predicted to localize to the outer membrane or periplasmic space of

V. cholerae (e.g., OmpA, OmpU, Pal, Lpp, BamD, DsbD, BtuB, TolC,

AcfA, and UshA). In addition, the operon encoding rE, the anti-

sigma factor RseA, and the auxiliary regulators RseB and RseC is

repressed at the post-transcriptional level by MicV and VrrA

(Fig 2C, Appendix Fig S2A and Appendix Table S2). These data indi-

cate that the rE response of V. cholerae comprises an auxiliary

autoinhibitory loop that involves the base-pairing capacity of the

two sRNAs.

Molecular basis for target mRNA recognition by MicV and VrrA

To understand how MicV and VrrA distinguish between shared and

unique target genes, we selected three representative examples

showing stable RNA duplexes (Appendix Fig S3) for further analy-

sis: MicV-ompT (shared target), MicV-ushA (MicV-specific), and

VrrA-lpp (VrrA-specific). We used the RNA hybrid algorithm

(Rehmsmeier et al, 2004) to search for potential RNA duplexes

formed between the sRNAs and their targets (Fig 3A–C and

Appendix Fig S3A–C). For the MicV-ompT interaction, we predicted

a 16-bp-long consecutive interaction involving the sequence of the

MicV 50 end and the ribosome binding site (RBS) of ompT (Fig 3A).

The MicV and ushA RNA duplex was also predicted to involve the

50 end of MicV; however, the interaction was shorter (10 bp) and

required a sequence located upstream of the RBS in the 50 UTR of

ushA (Fig 3B). Interaction of VrrA and lpp was predicted to involve

the RBS of lpp and a conserved sequence element located in the

distal part of VrrA (nucleotides 90–107; Figs 3C and EV2A), which

is separated from the sequence required to form the VrrA-ompT

interaction (Song et al, 2010).

Next, we tested these predictions by mutational analysis

(Figs 3D–F and EV2B). Point mutations in MicV (M1) abrogated

repression of ompT::gfp, and conversely, mutation of ompT blocked

target regulation by native MicV. Combination of the two dinu-

cleotide mutations restored regulation and confirmed the predicted

interaction (Fig 3A and D). The MicV M1 mutation also abrogated

repression of ushA::gfp, which was restored by the compensatory

change in the ushA mRNA (Fig 3E), showing that MicV uses a seed

sequence located at the 50 end of the sRNA to interact with ompT

and ushA. To test the interaction between VrrA and lpp, we mutated

three consecutive nucleotides in vrrA (M2, Fig 3C). Indeed, this

mutation blocked repression of lpp::gfp and conversely mutation of

the lpp interaction site prevented repression by native VrrA (Fig 3F).

Regulation was restored and further increased when the two

mutated variants were co-transformed, validating the predicted RNA

duplex formation.

To study the relevance of shared versus specific base-pairing by

MicV and VrrA in the context of the ESR, we introduced an indu-

cible pBAD-rpoE plasmid into DrpoE, DrpoE DvrrA, DrpoE DmicV,

and DrpoE DvrrA DmicV V. cholerae, cultivated these strains to early

stationary phase (OD600 of 1.5), and induced the rE response by

adding L-arabinose. We collected total RNA samples before and at

several time points after rE induction and followed ompT, ushA,

and lpp expression by qRT–PCR (Fig 3G–I). We also probed VrrA

and MicV expression by Northern blot analysis, which validated the

expected induction of these sRNAs (Fig EV2C). In all three cases,

production of rE resulted in target mRNA repression. However,

while ompT was inhibited by MicV or VrrA (Fig 3G), downregula-

tion of ushA was significantly delayed in the absence of MicV

(Fig 3H). Conversely, lpp repression relied on the presence of VrrA

(Fig 3I). Together, our data show that MicV and VrrA both control a

set of shared and specific targets, which are repressed upon activa-

tion of rE.

A conserved seed-pairing sequence in rE-dependent sRNAs

A comparison of the VrrA-ompT (Fig EV2D) and MicV-ompT

(Fig 3A) RNA duplexes showed that both sRNAs sequester the RBS

of ompT. Indeed, compensatory bp exchange experiments showed

that region R1 of VrrA is required for ompT repression, while region

R2 is dispensable (Fig EV2E). These data suggested that VrrA and

MicV use similar seed-pairing domains to interact with ompT. An

alignment of the VrrA R1 sequence with the 50 end of MicV revealed

a conserved sequence element of ten consecutive base-pairs,

CRCUGCUUUU (R = purine), all of which engage in base-pairing

with ompT (Fig 4A). In addition, the identical sequence was also

found in the seed sequence of rybB, a rE-dependent sRNA

conserved among enterobacteria but lacking in V. cholerae (Fig 4A

and Papenfort et al, 2010). RybB acts analogous to MicV and VrrA

by reducing the levels of OMP mRNAs, when the ESR is activated

(Brosse & Guillier, 2018). Consequently, we hypothesized that all

three sRNAs employ one conserved domain to mediate OMP repres-

sion. To test this idea, we performed three complementary experi-

ments: First, we introduced a constitutive RybB plasmid (pRybB)

into V. cholerae and compared OmpT production with strains carry-

ing the VrrA plasmid, the MicV plasmid, or a vector control. In all

three cases, sRNA over-expression resulted in strong OmpT repres-

sion (Fig 4B). Second, in the reciprocal experiment, we transferred

the pMicV, pVrrA, or pRybB plasmids and a relevant control vector

into a heterologous host, i.e., E. coli. We cultivated these cells to

stationary phase (OD600 of 2.0) and investigated total protein

samples using SDS–PAGE and Coomassie blue staining. For all three

sRNAs, we discovered repression of OmpA and OmpC (Fig 4C),

which are previously reported targets of RybB (Papenfort et al,

2010). Third, we tested the effect of MicV, VrrA, and RybB over-

expression on the survival of rpoE-deficient V. cholerae when chal-

lenged with ethanol. In agreement with previous observations

(Kovacikova & Skorupski, 2002), treatment with ethanol (3.5% final

conc.) drastically reduced the CFU of DrpoE V. cholerae when

compared to wild-type cells (Fig 4D). In contrast, over-expression of

either of the three sRNAs strongly suppressed this phenotype, with
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VrrA and RybB supporting cell survival ~10-fold more efficiently

than MicV. These data show that, when over-expressed, rE-depen-

dent sRNAs can bypass the requirement of a conditionally essential

transcriptional regulator, i.e., rE, and suggested that a conserved

seed sequence present in MicV, VrrA, and RybB is responsible for

this phenotype.
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Figure 3. Patterns of target regulation by VrrA and MicV.

A–C Predicted base-pairings of MicV with the 50UTR of ompT (A) and with the 50UTR of ushA (B) or VrrA with the 50UTR of lpp (C). Mutations tested in (D, E, F) are
indicated.

D–F Vibrio cholerae DvrrA DmicV strains carrying the ompT::gfp or ompT M1*::gfp fusions (D), ushA::gfp or ushA M1*::gfp fusions (E), or lpp::gfp or lpp M2*::gfp fusions (F)
and an empty vector control (pCtr), the micV expression plasmids (pMicV, pMicV M1), or the vrrA expression plasmids (pVrrA, pVrrA M2) were grown in M9 minimal
medium, and GFP fluorescence was measured. M1 and M2 denote the mutations indicated in (A, B, C). Fluorescence of the control strains was set to 1.

G–I Vibrio cholerae DrpoE, DrpoE DvrrA, DrpoE DmicV, or DrpoE DvrrA DmicV strains carrying pBAD-rpoE or an empty vector control (pCtr) were grown in LB medium to
OD600 of 1.5, and L-arabinose (0.2% final conc.) was added. RNA samples were collected at the indicated time points and monitored for ompT (G), ushA (H), or lpp (I)
levels using qRT–PCR.

Data information: In (D–I), data are presented as mean � SD, n = 3.
Source data are available online for this figure.
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Strong enrichment for the seed-pairing sequence of
rE-dependent sRNAs by selection experiments with
randomized libraries

These results prompted us to develop an unbiased method to test

the in vivo relevance of the conserved seed sequence present in

MicV, VrrA, and RybB under stress conditions (Fig 5A). Specifically,

we used the 30 end of E. coli RybB, including the Hfq binding

domain and the rho-independent terminator (Sauer et al, 2012), as a

sRNA scaffold and randomized the first nine nucleotides of the

seed-pairing sequence using a gene synthesis approach (see Materi-

als and Methods for details). These constructs were cloned into a

multi-copy plasmid and transferred into V. cholerae DrpoE cells.

High-throughput sequencing of these plasmids revealed the pres-

ence of 253,570 sequence variants representing ~97% of all possible

(262,144) permutations. Importantly, no single sequence variant

constituted more than 0.0029% of the complete sRNA library

(Fig EV3A), suggesting no major biases occurred during the

construction process. Moreover, the nucleotide distribution was

similar at the nine randomized positions (Fig EV3B). To select for

sRNA variants providing improved stress resistance, we cultivated

DrpoE cells containing the sRNA library to low cell density (OD600

of 0.2) and added ethanol (3.5% final conc.) to induce cell envelope

stress. Following 6 h of incubation, cell dilutions were spotted on

agar plates and screened for survival (Sel1; Fig 5B). Indeed, we

observed a ~10-fold increase in survival of DrpoE cells carrying the

sRNA library, when compared to V. cholerae DrpoE transformed

with a control plasmid. Next, we collected the surviving cells and

performed two additional rounds of selection. When compared to

the DrpoE control carrying a control plasmid, survival was improved

by ~1,000-fold in the second selection (Sel2) and by ~10,000-fold in

the final selection (Sel3). Together, these data suggest that our

approach allowed for the selection of sRNA variants providing

ethanol resistance in V. cholerae.

To further investigate this possibility, we isolated the sRNA-

containing plasmids from all three rounds of selection and
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Figure 4. A conserved sRNA seed sequence inhibits OMP production.

A Alignment of the seed-pairing sequences of VrrA, MicV, and RybB.
B Vibrio cholerae DvrrA DmicV strains carrying the ompT::3XFLAG gene and

pMicV, pVrrA, pRybB, or an empty vector control (pCtr) were cultivated in LB
medium to an OD600 of 2.0. RNA and protein samples were collected and
analyzed for MicV, VrrA, and RybB expression on Northern blots.
OmpT::3xFLAG production was tested on Western blots. RNAPa and 5S rRNA
served as loading controls for Western and Northern blots, respectively.

C Escherichia coli wild-type strains carrying pMicV, pVrrA, pRybB, or an empty
vector control (pCtr) were grown in LB medium to an OD600 of 2.0. RNA and
protein samples were collected and investigated on Northern blots and
SDS–PAGE, respectively. For comparison, we included the E. coli insertional
mutant strains ompA::kanR and ompC::kanR for specific assignment of OmpA
and OmpC bands.

D Vibrio cholerae wild-type and DrpoE strains carrying pMicV, pVrrA, pRybB, or
an empty vector control (pCtr) were cultivated in LB medium to OD600 of
0.2 and treated with ethanol (3.5% final conc.). After 5 h of treatment, serial
dilutions were prepared, recovered on agar plates, and CFU/ml were
determined.

Data information: In (D), the box plots indicate the median, 75th and 25th

percentiles (boxes), and 90th and 10th percentiles (whiskers), n = 8. Statistical
significance was determined using one-way ANOVA and post hoc Holm–Sidak test.
Source data are available online for this figure.
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determined the number of detectable sRNA sequence variants in

two biological replicates using high-throughput sequencing. After

the first round of selection, the number of detected sequence vari-

ants dropped by ~40% relative to the initial sRNA library and was

further reduced to ~7% and ~5% in the following two selection

steps, respectively (Fig 5C). We note that the steep drop in library

complexity from the first to the second selection step coincided with

a substantial increase in cell survival (compare Fig 5B and C). At

the same time, we also discovered a very strong enrichment (~140-

fold) of the conserved seed-pairing domain present in the MicV,

VrrA, and RybB sRNAs (Figs 4A and 5C; for more details on

enriched variants, see below and Figs EV4 and EV5), further docu-

menting that this motif provides protection from ethanol-induced

membrane damage in V. cholerae.

OmpA repression mediates ethanol resistance in Vibrio cholerae

To investigate the molecular basis of sRNA-mediated ethanol resis-

tance in V. cholerae, we hypothesized that, analogous to the native

RybB, VrrA, and MicV sRNAs, the selected sRNA variants could act

by modulating the accumulation of OMPs in V. cholerae. To test this

idea, we cultivated the initial and selected sRNA libraries in LB

medium to stationary phase (OD600 of 2.0) and isolated membrane

fractions to monitor OMP production (Fig 6A). We discovered a signifi-

cant decrease in the abundance of two bands in the selected sRNA

libraries (lanes 5–7), when compared to the initial library (lane 4).

Similarly, over-expression of the RybB sRNA, which we have shown to

mediate ethanol resistance (Fig 4D), also reduced these two bands

(lane 3), and mutation of DrpoE resulted in increased protein levels

when compared to a wild-type control (compare lanes 1 and 2). Using

mass spectrometry, we determined that both bands corresponded to

OmpA, which is detectable as a premature and mature variant (Freudl

et al, 1986). We also discovered that the abundances of OmpT and

OmpU, which are targets of MicV and VrrA (Fig 2C and D), did not

change during these experiments. Similarly, qRT–PCR analysis of total

RNA isolated during the selection process revealed that the selected

sRNAs specifically repressed ompA, while the mRNA levels of addi-

tional MicV/VrrA targets encoding major OMPs (ompT, lpp, pal, and

B

C
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Figure 5. A conserved sRNA motif is enriched in laboratory
selection experiments.

A Experimental strategy of the laboratory selection experiments: An sRNA
library was generated using the rybB scaffold with nine randomized
nucleotides at the 50 end, cloned into a broad-range plasmid backbone, and
transferred into V. cholerae DrpoE cells. These colonies were pooled, grown
to OD600 of 0.2, and treated with ethanol (3.5% final conc.) for 6 h.
Surviving cells were recovered on agar plates, pooled, and subjected to
another round of selection (3 selections total). After each selection, the
plasmids of surviving cells were analyzed using high-throughput
sequencing.

B Vibrio cholerae wild-type and DrpoE strains carrying an empty vector
control (pCtr), pRybB, or the sRNA library after consecutive selection
experiments (Sel1, Sel2, and Sel3) were grown in LB medium to OD600 of
0.2. Cells were treated with ethanol (3.5% final conc.) for 6 h. Serial
dilutions were prepared and spotted onto agar plates. R1 and R2 indicate
two independent biological replicates.

C Plasmid contents of the strains carrying the sRNA libraries before selection
(input) and after consecutive ethanol treatments (Sel1, Sel2, and Sel3) were
analyzed using high-throughput sequencing. Relative library complexity
(left y-axis) was determined by counting sequence variants present in the
normalized samples. To test for the enrichment of possible sequence
motifs, the sequence variants present in each sample were counted and
normalized for sequencing depth. The resulting data were analyzed for the
enrichment of the conserved CRCUGCUUUU motif (right y-axis).

Data information: In (C), data are presented as mean � SD, n = 2.
Source data are available online for this figure.
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ompU) remained unchanged (Fig EV4A), suggesting that OmpA

repression could be key for ethanol resistance in V. cholerae. To

explore this possible link, we focused on the 15 most abundant sRNA

variants obtained from our final round of selection (Sel3, Figs 5B and

EV4B). These top 15 sRNA variants constituted ~54% of all detected

sequence variants in the final selection (Fig EV4B) and were strongly

enriched during the selection process (Fig EV4C). To confirm the regu-

latory capacity of these sRNA variants, we isolated all 15 plasmids,

transformed them into independent V. cholerae DrpoE cells, and tested

for ethanol resistance. In all 15 cases, the presence of the sRNA-expres-

sing plasmid promoted survival (Fig EV4D). In contrast, a plasmid

expressing only the rybB sRNA scaffold failed to restore ethanol resis-

tance (Fig EV4D).

Next, we investigated the effect of the top 15 sRNAs on OmpA

production. To this end, we added a 3XFLAG epitope to the chromo-

somal ompA locus of V. cholerae and transformed this strain with
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Figure 6. Enriched sRNA variants mediate ethanol resistance by OmpA repression.

A Vibrio cholerae wild-type and DrpoE strains carrying an empty vector control (pCtr), pRybB, or the sRNA library before (input) or after consecutive ethanol selection
experiments (Sel1, Sel2, and Sel3) were cultivated in LB medium to OD600 of 2.0. Membrane fractions were identified by SDS–PAGE. The indicated bands were
identified by mass spectrometry.

B Vibrio cholerae DvrrA DmicV cells expressing the ompA::3xFLAG gene and carrying an empty vector control (pCtr), or plasmids producing the 15 most highly enriched
sRNA variants (sRNA variants 1–15) were grown in LB medium to an OD600 of 2.0. RNA and protein samples were collected and tested for sRNA and OmpA::3xFLAG
expression on Northern and Western blots, respectively (with 5S rRNA and RNAPa as loading controls).

C Vibrio cholerae DvrrA DmicV strains carrying the ompA::gfp fusion and an empty vector control (pCtr) or the enriched sRNA expression plasmids were grown in M9
minimal medium, and GFP fluorescence was measured. Fluorescence of the control strains was set to 1.

D Vibrio cholerae wild-type, DrpoE, DompA, or DrpoE DompA strains were grown in LB medium to OD600 of 0.2 and treated with ethanol (3.5% final conc.). After 5 h of
treatment, serial dilutions were prepared, recovered on agar plates, and CFU/ml were determined.

Data information: In (C), data are presented as mean � SD, n = 3. In (D), the box plots indicate the median, 75th and 25th percentiles (boxes), and 90th and 10th

percentiles (whiskers), n = 8. Statistical significance was determined using one-way ANOVA and post hoc Holm–Sidak test.
Source data are available online for this figure.
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each of the 15 sRNA-expressing plasmids. We cultivated these cells

to stationary phase (OD600 of 2.0) and monitored OmpA levels by

Western blot (Fig 6B). For all 15 sRNA variants, we discovered

significantly reduced OmpA production. However, the efficiency of

the sRNA variants differed considerably with sRNA variant #1

providing only modest inhibition (~1.5-fold) and variant #8 showing

the strongest repression (~14-fold), when compared to the control.

All sRNA variants could be detected by Northern blot analysis indi-

cating that the rybB 30 end provides a stable sRNA scaffold (Fig 6B).

To corroborate these results with a potential post-transcriptional

regulatory mechanism exerted by the sRNA variants, we generated

a ompA::gfp translational reporter whose transcription is driven by

the constitutive PTetO promoter. Co-transformation of this reporter

with the plasmids expressing the sRNA variants into V. cholerae

followed by GFP measurements revealed that all 15 sRNAs inhibited

OmpA::GFP production (Fig 6C). Overall, the degree of OmpA

protein repression observed in V. cholerae (Fig 6B) matched the

results of the ompA::gfp reporter (Fig 6C), suggesting that OmpA

repression by the sRNA variants occurs predominantly at the post-

transcriptional level.

Our results indicated elevated OmpA levels as a possible cause of

the increased ethanol sensitivity of V. cholerae DrpoE cells (Fig 6A–

C). To test this possibility, we deleted the ompA gene in wild-type

and DrpoE V. cholerae and assayed ethanol resistance. In line with

our previous observation (Fig 4D), V. cholerae lacking rpoE

displayed strongly reduced ethanol resistance, when compared to

wild-type cells (Fig 6D). In contrast, cells deficient for rpoE and

ompA exhibited ~10,000-fold improved survival when challenged

with ethanol, whereas V. cholerae wild-type and DompA strains

showed highly similar survival numbers (Fig 6D). Taken together,

our screen using synthetic sRNAs pinpointed OmpA repression as a

key factor for ethanol tolerance in V. cholerae and provided

evidence that regulation at the post-transcriptional level is a crucial

for this phenotype.

Discussion

A main form of transcriptional regulation in bacteria occurs through

the exchange of the primary sigma factor subunit of RNA poly-

merase with alternative sigma factors, which direct the complex to

specific promoter sequences. In sharp contrast to r70, which recog-

nizes the majority of promoters in enterobacterial cells, promoter

recognition by extracytoplasmic function r factors (ECFs) is highly

stringent, which restricts the number of target promoters, allowing

ECFs to mediate very specific responses (Campagne et al, 2015). In

E. coli, rE has been reported to control 89 unique transcription

units, which typically function to safeguard the synthesis and home-

ostasis of the outer membrane and its protein components (Rhodius

et al, 2006). Here, we identified 73 potential rE-controlled TSSs in

V. cholerae (Appendix Table S1), one of which is responsible for

driving micV expression (Fig 1).

Three key signals have been suggested to modulate the activity

of rE. First, rE responds to misfolded OMPs activating DegS-

mediated cleavage of the anti-sigma factor, RseA, which results in

the release of rE into the cytoplasm (Mecsas et al, 1993). Second,

periplasmic lipopolysaccharide intermediates can disassemble the

RseA-RseB complex and facilitate proteolytic degradation of RseA

(Lima et al, 2013). Third, rE activity is also activated by limited

nutrient availability, which is caused by the production of the alar-

mone ppGpp and its cofactor DksA (Costanzo et al, 2008). In all

three cases, activation of rE results in the transcription of the rpoE-

rseA-rseB-rseC operon; however, only conditions supporting contin-

uous degradation of RseA will amplify the response (Chaba et al,

2007). Our data suggest the existence of an additional autoregula-

tory loop controlling the rpoE-rseA-rseB-rseC operon. In contrast to

the activating function of rE on the rpoE promoter, MicV and VrrA

both base-pair with and reduce the production of rpoE (Figs 2C and

7, and Appendix Figs S2A and S3A). rE-dependent sRNAs were

previously reported to limit rE activation; however, in this case the

underlying mechanism was associated with the inhibitory effect of

these sRNAs on OMP production (Papenfort et al, 2006; Thompson

et al, 2007). Direct repression of rpoE by MicV and VrrA could add

an additional layer of autorepression, which is independent from

the status of OMP synthesis and assembly. Recently, a global screen

for base-pairing interactions of Hfq-binding sRNAs suggested that

the MicL sRNA, which is also controlled by rE (Guo et al, 2014),

binds to the rpoE mRNA in E. coli (Melamed et al, 2016).
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Figure 7. Conserved seed sequences control envelope homeostasis in
V. cholerae.

Misfolded OMPs activate an intra-membrane proteolysis cascade resulting in the
release of rE from its anti-r factor RseA. Free rE activates the the expression of at
least 73 transcripts in V. cholerae, including the rpoE-rseABC operon and the MicV
and VrrA sRNAs. MicV and VrrA employ the conserved base-pairing region R1 to
repress omp mRNAs, restoring membrane homeostasis, and the rpoE-rseABC
operon. VrrA specifically downregulates pal and lpp, encoding two major
lipoproteins, via the base-pairing region R2.
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Autorepression of their own transcriptional activator has now been

reported for numerous sRNAs (Brosse & Guillier, 2018), and it is

interesting to speculate that sRNA-mediated repression of rpoE

could be a conserved feature of rE regulons in various bacterial

species. Of note, base-pairing of these sRNAs with the rpoE mRNA

is not only likely to decrease rE levels, but could also inhibit the

production of the anti-sigma factor RseA, as well as RseB and RseC,

which could further modulate the overall output of the response.

Our work also provides relevant insights into how sRNAs evolve

in the context of microbial stress response systems. For example,

the micL gene is located in the 30 end of the cutC gene of E. coli, and

although V. cholerae also encodes a cutC homolog (vc0730), we did

not detect significant transcription from this locus in V. cholerae

(Papenfort et al, 2015). However, MicL has been shown to repress

Lpp synthesis in E. coli (Guo et al, 2014), and in V. cholerae, this

function is carried out by VrrA (Figs 2E and 7). Pal, an outer

membrane component relevant for cell division and outer membrane

integrity (Gerding et al, 2007), is repressed by MicA in E. coli (Gogol

et al, 2011) and reduced by VrrA in V. cholerae. Finally, OmpA is

inhibited by MicA and RybB in E. coli and Salmonella (Rasmussen

et al, 2005; Udekwu et al, 2005; Papenfort et al, 2010) and repressed

by VrrA and MicV in V. cholerae (Figs 2C and 7). These data suggest

that rE-dependent sRNAs act as functional analogs, similar to what

has been proposed for the widespread group of RyhB-like sRNAs

controlling bacterial iron homeostasis (Salvail & Masse, 2012). It also

indicates that the establishment of an sRNA–target mRNA interaction

is a dynamic process that is driven by the physiological constraints of

the overarching physiological pathways (Updegrove et al, 2015). In

other words, sRNA-mediated repression of major OMPs, such as Lpp,

Pal, and OmpA, might be crucial for a fully functional rE response

and regulation can be achieved by various different base-pairing

interactions. Indeed, sequence comparison of the lpp, pal, and ompA

base-pairing sites in V. cholerae (Fig 3 and Appendix Fig S3) and

E. coli (Gogol et al, 2011; Guo et al, 2014) showed that these are not

conserved among the two organisms.

Another question pertinent to the evolution of sRNAs and their

targets is why certain mRNAs are controlled by two sRNAs, while

others only require one. This is particularly interesting for sRNAs

which are activated by the same transcription factor, such as RybB and

MicA, or MicV and VrrA. Studies in E. coli have shown that RybB and

MicA share repression of lamB, ompA, ompW, tsx, htrG, and yfeX

(Gogol et al, 2011), whereas MicV and VrrA both regulate ompT,

vca0951, rpoE, vc1563, dsbD, vc1485, ompA, and bamD (Fig 2C). In

fact, the total number of potentially co-regulated MicV/VrrA targets is

significantly higher (23; Fig 2B) given that several of these targets are

organized in larger operons (Appendix Fig S2). One possible explana-

tion could be that these mRNAs accumulate to high copy numbers in

the cell and that rapid repression requires the action of two sRNA regu-

lators. In addition, differences in sRNA stabilities (Fig EV1D) and

potency in target regulation (e.g., due to the accessibility of relevant

base-pairing sequences) could add to the picture. However, following

the decay of the ompT mRNA upon rE activation, we observed that

either VrrA or MicV sufficiently reduced cellular ompT levels (Fig 3G).

Despite this redundancy in regulation, certain targets are more effi-

ciently regulated by one of the sRNAs. For example, mutation of micV

resulted in significantly higher OmpT levels, which remained

unchanged in cells lacking vrrA (Appendix Fig S1B). A potential divi-

sion of labor among VrrA and MicV is also supported by our

phenotypic observations. Laboratory selection experiments suggested

that repression of OmpA is key for ethanol resistance of rpoE-deficient

cells (Fig 6), and although both MicV and VrrA repress ompA (Fig 2C),

only cells lacking vrrA or both vrrA and micV display a significant

reduction in survival upon ethanol exposure (Fig 1F). Therefore, it is

likely that VrrA is most relevant in ethanol-stressed cells, while MicV

is the more dominant regulator under standard growth conditions, as

evident from increased rE activity in DmicV relative to wild-type and

DvrrA cells (Appendix Fig S1C). Therefore, one might speculate that

MicV and VrrA act as part of the global rE regulon to provide protec-

tion against specific stress conditions, e.g., ethanol stress.

Detailed analyses of the sequences involved in base-pairing of VrrA

and MicV revealed that both sRNAs share a highly conserved seed

domain, which is also present in the RybB sRNA of E. coli and Salmo-

nella (Fig 4A). The same sequence motif was also recovered in our

laboratory selection experiments (Fig 5C); the exact rybB sequence was

also among the top 15 sRNA candidates, which we tested for repression

of ompA (#11; Fig EV5A). Inspection of the nucleotide distribution of

the variable sequence in these 15 highly selected sRNAs revealed a pref-

erence for guanine and cytosine residues at the 50 end of the sequence

(Fig EV5B), which could facilitate stable seed pairing with target

mRNAs (Gorski et al, 2017). Remarkably, all of the 15 sRNA variants

selected from > 250,000 initial sequence variants inhibited OmpA

production through direct base-pairing with the mRNA (Fig 6C). In

silico prediction of the corresponding base-pairing sequences suggests

that all 15 sRNAs act by blocking access of 30S ribosomes to the ompA

mRNA (Fig EV5C), and it is also noteworthy that the majority of these

sRNAs (12/15) are predicted to interact with a sequence immediately

downstream of the ompA start codon. In fact, mutation of codons 2–5

in chromosomal ompA (while leaving the amino acid sequence

unchanged) in DrpoE cells abrogated rescue of ethanol sensitivity by

ten of the selected sRNA variants (Fig EV5C and D; sRNA variants #2

and #14 are still able to base-pair with the mutated ompA variant, while

variants #1, #3, and #8 base-pair outside the ompA coding sequence).

The same mutation in ompA is also predicted to abolish base-pairing of

MicV and VrrA, and consequently, we discovered that a V. cholerae

strain carrying this mutation displayed ~10-fold reduced ethanol resis-

tance, when compared to the parental wild-type strain (Fig EV5E). This

effect is comparable to the decreased ethanol resistance observed for

the DvrrA DmicV strain (Fig 1F).

Our laboratory selection experiment identified repression of

OmpA as the single key factor for ethanol resistance, at least in

rpoE-deficient cells. It would be interesting to test whether other

membrane-damaging agents, such as antimicrobial peptides or

related antibiotics, would result in the selection of other sRNA

variants with altered target specificities. In general, we believe that

our strategy of using synthetic sRNA libraries to screen complex

microbial phenotypes could become a powerful genetic tool to

circumvent the tedious and cost-intensive generation of gene

deletion libraries.

Materials and Methods

Bacterial strains and growth conditions

All strains used in this study are listed in Appendix Table S3.

Details for strain construction are provided in the
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Appendix Supplementary Material and Methods section. V. c-

holerae and E. coli cells were grown under aerobic conditions

(200 rpm, 37°C) in either LB or M9 minimal medium containing

0.4% glucose and 0.4% casamino acids (final conc.). For station-

ary phase cultures, samples were collected with respect to the

time points when the cells reached an OD600 > 2.0, i.e., 6 h and

18 h after cells reached an OD600 reading of 2.0. Where appropri-

ate, media were supplemented with antibiotics at the following

concentrations: 100 lg/ml ampicillin; 20 lg/ml chloramphenicol;

50 lg/ml kanamycin; 50 U/ml polymyxin B; and 5,000 lg/ml

streptomycin.

Plasmids and DNA oligonucleotides

A complete list of plasmids and DNA oligonucleotides used in this

study is provided in Appendix Tables S4 and S5, respectively.

Details on plasmid construction are provided in the Appendix Sup-

plementary Material and Methods section.

RNA isolation and Northern blot analysis

Total RNA was prepared and blotted as described previously

(Papenfort et al, 2017). Membranes (GE Healthcare Amersham)

were hybridized with [32P]-labeled DNA oligonucleotides at 42°C or

63°C when using riboprobes. Riboprobes were generated using the

MAXIscriptTM T7 Transcription Kit (Thermo Fisher Scientific),

according to the manufacturer’s instructions. Signals were visual-

ized using a Typhoon Phosphorimager (GE Healthcare) and quanti-

fied using GelQuant (BioChemLabSolutions).

Quantitative real-time PCR

Experiments were performed as previously described (Papenfort

et al, 2017). Briefly, total RNA was isolated using the SV Total RNA

Isolation System (Promega), according to the manufacturer’s

instructions. qRT–PCR was performed using the Luna Universal

One-Step RT-qPCR Kit (New England BioLabs) and the MyiQTM

Single-Color Real-Time PCR Detection System (Bio-Rad). recA was

used as a reference gene.

Transcript stability experiments

Stability of sRNAs was determined as described previously (Papen-

fort et al, 2015). Briefly, biological triplicates of V. cholerae wild-

type (KPS-0014) and Dhfq (KPS-0054) strains were grown to OD600

of 1.0 and transcription was terminated by addition of 250 lg/ml

rifampicin. Transcript levels were probed and quantified using

Northern blot analysis.

Hfq co-immunoprecipitation

Hfq co-immunoprecipitations were performed as previously

described (Chao et al, 2012). Briefly, V. cholerae wild-type (KPS-

0014) and hfq::3xFLAG tagged strains (KPS-0995) were grown in LB

medium to OD600 of 2.0. Lysates corresponding to 50 OD600 units

were subjected to immunoprecipitation, using monoclonal anti-

FLAG antibody (Sigma, #F1804) and Protein G Sepharose (Sigma,

#P6649).

RNA-Seq analysis

Biological triplicates of V. cholerae DvrrA DmicV strains harboring

the pBAD1K-Ctr, pBAD1K-vrrA, or pBAD1K-micV plasmids were

grown to early stationary phase (OD600 = 1.5) in LB medium. sRNA

expression was induced by addition of L-arabinose (0.2% final

conc.). After 10 min of induction, cells were harvested by addition

of 0.2 volumes of stop mix (95% ethanol, 5% (v/v) phenol) and

snap-frozen in liquid nitrogen. Total RNA was isolated and digested

with TURBO DNase (Thermo Fisher Scientific). Ribosomal RNA

was depleted using Ribo-Zero kits (Epicentre) for Gram-negative

bacteria, and RNA integrity was confirmed using a Bioanalyzer

(Agilent). Directional cDNA libraries were prepared using the

NEBNext Ultra II Directional RNA Library Prep Kit for Illumina

(NEB, #E7760). The libraries were sequenced using a HiSeq 1500

System in single-read mode for 100 cycles. The read files in FASTQ

format were imported into CLC Genomics Workbench v11 (Qiagen)

and trimmed for quality and 30 adaptors. Reads were mapped to the

V. cholerae reference genome (NCBI accession numbers:

NC_002505.1 and NC_002506.1) using the “RNA-Seq Analysis” tool

with standard parameters. Reads mapping to annotated coding

sequences were counted, normalized (CPM), and transformed

(log2). Differential expression between the conditions was tested

using the “Empirical Analysis of DGE” command. Genes with a fold

change ≥ 3.0 and a FDR-adjusted P-value ≤ 1E-8 were defined as

differentially expressed.

Western blot analysis

Experiments were performed as previously described (Papenfort

et al, 2017). If not stated otherwise, 0.05 OD/lane were separated

using SDS–PAGE, stained with “Coomassie blue-silver,” or trans-

ferred to PVDF membranes for Western blot analysis. 3XFLAG-

tagged fusions were detected using anti-FLAG antibody (Sigma,

#F1804). RNAPa served as a loading control and was detected using

anti-RNAPa antibody (BioLegend, #WP003).

Preparation of membrane protein fractions

Preparation of membrane protein fractions was performed as

described previously with minor modifications (Thein et al, 2010).

Briefly, bacteria were grown to an OD600 of 2.0, harvested by

centrifugation, and washed in buffer 1 (0.2 M Tris–HCl pH 8, 1 M

sucrose, 1 mM EDTA, and 1 mg/ml lysozyme). Cells were centri-

fuged (200,000 g, 4°C, 45 min), and the resulting pellet was

resuspended in buffer 2 (10 mM Tris–HCl pH 7.5, 5 mM EDTA,

0.2 mM DTT, and 0.5 mg/ml DNase). Cells were opened using a

Bead Ruptor (OMNI International; 6 passes, 30-s ON, 30-s OFF,

40% amplitude, 4°C) and centrifuged to pellet unbroken cells

(15,700 g, 4°C, 15 min). The resulting supernatants were

subjected to ultra-centrifugation (300,000 g, 4°C, 3 h) to obtain

membrane fractions.

Fluorescence measurements

Fluorescence assays to measure GFP expression were performed as

described previously (Corcoran et al, 2012). Vibrio cholerae strains

expressing translational GFP-based reporter fusions were grown
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overnight in M9 minimal medium and resuspended in PBS. Fluores-

cence intensity was quantified using a Spark 10 M plate reader

(Tecan). Vibrio cholerae strains carrying mKate2 transcriptional

reporters were grown in M9 minimal medium, samples were

collected at the indicated time points, and mKate2 fluorescence was

measured using a Spark 10 M plate reader (Tecan). Control samples

not expressing fluorescent proteins were used to subtract back-

ground fluorescence.

Generation of a synthetic sRNA library

To construct the synthetic sRNA library, a 210 bp PL-rybB fragment

was synthesized in vitro (GeneArt) with random nucleotides at posi-

tions 1–9 of rybB. The fragment was re-amplified with KPO-1491/

1492 and cloned into the pMD30 backbone with XbaI and XhoI.

Ligated plasmids were transformed into E. coli S17 by electropora-

tion and plated on selection agar. Single colonies were harvested by

washing the cells off the plates with sterile PBS. Two million clones

were pooled to obtain eightfold coverage. The library was conju-

gated into V. cholerae DrpoE lacZ::kanR to allow for selection on

kanamycin and chloramphenicol. Again, single colonies were

pooled to obtain the full library, which was subsequently used as

input for the selection experiments. Complexity of the obtained

library was determined using high-throughput sequencing of the

isolated plasmids.

sRNA library sequencing and analysis

To assess the complexity of the initial and selected RybB libraries,

the plasmids were re-isolated and digested with XbaI and XhoI. The

obtained PL-rybB fragment was purified from agarose gels and used

as input for library generation using the NEBNext Ultra II DNA

Library Prep Kit for Illumina (NEB, #E7645) and sequenced using an

Illumina MiSeq. The read files in FASTQ format were imported into

CLC Genomics Workbench v11 (Qiagen) and trimmed to remove PL
promoter and rybB backbone sequences to obtain reads containing

only the nine randomized nucleotides. Abundance of the individual

sequences was determined using the custom python script

FrequencyAnalyzer, accessible on GitHub (https://github.com/

Loxos/srna-tool-kit-python). To normalize for different sequencing

depths when comparing library complexity, 800,000 reads were

sampled from each replicate and the number of different sequences

was counted in each sample.

Ethanol stress assays

Vibrio cholerae strains were grown to exponential phase (OD600 of

0.2) in LB medium and challenged with ethanol (3.5% final conc.).

Following 5 h of incubation, serial dilutions were prepared and

recovered on agar plates to determine CFU/ml. For laboratory selec-

tion experiments, the initial DrpoE sRNA library and control strains

(WT pCtr, DrpoE pCtr, and DrpoE pRybB) were grown in LB

medium to exponential phase (OD600 of 0.2) and challenged with

ethanol (3.5% final conc.). Following 6 h of incubation, cells were

recovered on agar plates to test for survival. At least 1 million single

clones were pooled to generate the enriched sRNA libraries, which

were used as input for the next round of selection following the

same protocol. High-throughput sequencing of the isolated plasmids

after each selection step was used to determine library complexity

and distribution of the sRNA variants.

Quantification and statistical analysis

Statistical parameters for the respective experiment are indicated in

the corresponding figure legends. Details for the performed statistical

tests are provided in the corresponding Source data files. Statistical

analysis of CFU recovered during ethanol stress assays was performed

as follows: The data were log10-transformed and tested for normality

and equal variance using Kolmogorov–Smirnov and Brown–Forsythe

tests, respectively. The data were tested for significant differences

using one-way ANOVA and post hoc Holm–Sidak test or t-test. Signifi-

cance levels are reported in the corresponding figure legends and

Source data files. Statistical analysis was performed using SigmaStat

v04 (Systat). No blinding or randomization was used in the experi-

ments. No estimation of statistical power was used before performing

the experiments, and no data were excluded from analysis.

Data and software availability

The datasets and computer code produced in this study are available

in the following databases:

• RNA-Seq and NGS data: Gene Expression Omnibus (GEO)

GSE125224 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE125224).

• Variant analysis computer scripts: GitHub (https://github.com/

Loxos/srna-tool-kit-python).

• Motif search computer script: Zenodo (https://zenodo.org/rec

ord/2543422).

Expanded View for this article is available online.
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Figure EV1. Genomic context and conserved transcriptional control of rE-dependent sRNAs in V. cholerae (related to Fig 1).

A Gene synteny analysis between the genomic loci encoding micV in various Vibrio strains. Homologous genes are indicated by the same colors.
B Vibrio cholerae wild-type and DvchM strains carrying empty vector control plasmids (pCtr) were grown in LB medium. At the indicated time points, RNA samples were

collected and tested for micV and vrrA expression by Northern blot analysis. A size marker is provided on the left (M), and 5S rRNA was used as loading control.
C Vibrio cholerae wild-type (control) and hfq::hfq-3xFLAG (Hfq-FLAG) strains were grown to stationary phase (OD600 of 2), lysed, and subjected to immunoprecipitation

using the anti-FLAG antibody. RNA samples of lysate (total RNA) and co-immunoprecipitated fractions were analyzed on Northern blots. 5S rRNA served as loading
control.

D Vibrio cholerae wild-type and Dhfq strains were cultivated in LB medium to an OD600 of 1.0. Cells were treated with rifampicin to terminate transcription. Total RNA
samples were collected at the indicated time points, and MicV or VrrA transcript levels were monitored on Northern blots.

E Vibrio cholerae wild-type, DvchM, and DvchM DrpoE strains harboring PvrrA::mKate2 plasmids were grown in M9 minimal medium. Samples were collected at various
stages of growth and analyzed for fluorescence.

F Escherichia coli BW25113 wild-type and DrpoE strains carrying PmicV::gfp plasmids and either empty vector control (pBAD-Ctr) or plasmids expressing rpoE of E. coli
(pBAD-rpoE (E.c)) or of V. cholerae (pBAD-rpoE (V.c)) were grown in LB medium, supplemented with L-arabinose (0.2% final conc.). Samples were collected at various
stages of growth and analyzed for fluorescence.

Data information: In (D–F), data are presented as mean � SD, n = 3.

Source data are available online for this figure.

▸Figure EV2. VrrA harbors two conserved base-pairing regions to regulate mRNA targets (related to Fig 3).

A Alignment of the vrrA sequences of several Vibrio species. The boxes indicate the conserved seed regions R1 and R2. Mutations used in (B, D, E) are indicated.
B Vibrio cholerae DvrrA DmicV strains carrying pMicV, pMicV M1, pVrrA, pVrrA M1, pVrrA M2, or an empty vector control (pCtr) were grown to OD600 of 1.0 in LB

medium. RNA samples were collected and monitored for micV and vrrA expression by Northern blot analysis. 5S rRNA served as loading control.
C Vibrio cholerae DrpoE, DvrrA DrpoE, DmicV DrpoE, or DvrrA DmicV DrpoE strains carrying pBAD-rpoE plasmids or an empty vector control (pCtr) were grown to early

stationary phase (OD600 of 1.5), and rpoE expression was induced by treatment with L-arabinose (0.2% final conc.). RNA samples were collected at the indicated time
points and monitored for micV and vrrA expression by Northern blot analysis. 5S rRNA served as loading control.

D Predicted base-pairing of VrrA with the 50UTR of ompT.
E Vibrio cholerae DvrrA DmicV strains carrying ompT::gfp or ompT M1*::gfp fusions and an empty vector control (pCtr) or vrrA expression plasmids (pVrrA, pVrrA M1, or

pVrrA M2) were grown in M9 minimal medium. GFP fluorescence was measured, and fluorescence of the control strains was set to 1.

Data information: In (E), data are presented as mean � SD, n = 3.

Source data are available online for this figure.

◀

The EMBO Journal Nikolai Peschek et al

EV2 The EMBO Journal e101650 | 2019 ª 2019 The Authors



A

B

GATTG T G - T T G- TCTCGA CCG G CAC AATTAC TTT AC - G A A G CA A T GT AC A C T AG GT TT CA T G T T C G T T CC C A C G TGTTAG G T A T AC GGCCGT AA T T C C CTGC TT T TTATTAACTCCTAT TT GT T GCCCA T TGGGC TTTTTT
TAG C A C T AG GT TT A C C T T T C T G T T C GT A C GA C T TGTTC TTTGC T A - G G - C TCTT-T GC AAC GA A TTAC ---- - A T GTCAG G T A T AC GGCCGT AA T T C C CTGC TT T TTATTAACTCCTAT TT GT T GCCCA T TGGGC TTTTTT

TT G C CTT -AG A TCTTGA G AC ACTAA TTAC ---- T A G CA CTAG A C A C T TT A A CT GTT T A T T G T T C GT A C GA C GT TG TC TAG G T A T AC GGCCGT AA T T C C CTGC TT T TTATTAACTCCTAT TT GT T GCCCA T TGGGC TTTTTT
AC A G A TA A C T ------ T T C GT ACG A - --- - T CCA G AA AAA CA T GT T CA CT GTT T A T T T T TTG T C GT A C GACC T GT C TAG G T A T AC GGCCGT AA T T C C CTGC TT T TTATTAACTCCTAT TT GT T GCCCA T TGGGC TTTTTT

A A CA T G GT T CA CT GTT T TT T TTG T T C GT A CC G C T T C TAC GTT G - T A C T ------ CAT AA GT ACG T --- - T AAAT AGGAG G T A T AC GGCCGT AA T T C C CTGC TT T TTATTAACTCCTAT TT GT T GCCCA T TGGGC TTTTTT
A T T A ------ C G T AA A A --- AC - A GC G -TAG AAAC A AT TAG GT T A CA CT GTT T A T TTT CTT TT T CC A CC ACC GT GTT TAG G T A T AC GGCCGT AA T T C C CTGC TT T TTATTAACTCCTAT TT GT T GCCCA T TGGGC TTTTTT

Vch G
Vfu -
Vco -
Vvu --
Val --
Vsp -

vrrA R1 vrrA R2

1 10 20 30 40 50 60 70 80 90 100 110 120 130 140

C

pC
tr

pV
rrA

re
la

tiv
e 

flu
or

es
ce

nc
e 

[A
U

]

0.0

0.5

1.0

1.5

2.0
ompT 

pC
tr

pV
rrA

pV
rrA

 M
1

ompT M1* 

pV
rrA

 M
1

pV
rrA

 M
2

E

pC
tr

pM
ic

V

pM
ic

V
 M

1

pV
rr

A 

pV
rr

A 
M

1

pV
rr

A 
M

2

MicV

5S rRNA

VrrA

1 62 3 4 5

D

VrrA

MicV

[min]0 15 0 5 10 15 0 15 0 5 10 15 0 15 0 5 10 15 0 15 0 5 10 15

pCtr pBAD-rpoE
WT ΔrpoE ΔvrrA ΔrpoE ΔmicV ΔrpoE ΔvrrA ΔmicV ΔrpoE

5S rRNA

       -24         (M1*)                                              
        |           CG      |      
ompT 5'-AUU               GAU-3'           
           AAG AAAAGGCAGUG        
           ||| ||||:||||:|                    
           UUC UUUUUCGUCGC                 
VrrA 3'-UUU   C           AUU-5'  
        |           GC      |                  
        86         (M1)     66

CGM1CGM1 M2GAA

pCtr pBAD-rpoE pCtr pBAD-rpoE pCtr pBAD-rpoE

1 62 3 4 5 7 8 9 10 11 12 1 62 3 4 5 7 8 9 10 11 12

-5

Figure EV2.

Nikolai Peschek et al The EMBO Journal

ª 2019 The Authors The EMBO Journal e101650 | 2019 EV3



A

sRNA base position

1 2 3 4 5 6 7 8 9

nu
cl

eo
tid

e 
co

nt
rib

ut
io

n 
[%

]

0

25

50

75

100

sRNA base position

1 2 3 4 5 6 7 8 9
0

25

50

75

100

sRNA base position

1 2 3 4 5 6 7 8 9
0

25

50

75

100

sRNA base position

1 2 3 4 5 6 7 8 9
0

25

50

75

100
A 
T 
C 
G 

Input Sel1 Sel2 Sel3

B

sequence reads per variant

0 20 40 60 80 100

 c
ou

nt
s

0

5,000

10,000

15,000

20,000

25,000

max.105
(~0.0029%)

Input
total sequence reads:
                  3,679,965

Figure EV3. Synthetic sRNA library composition and nucleotide contributions (related to Fig 5).

A, B A synthetic sRNA library based on a RybB scaffold with nine randomized nucleotides at the 50 end was cloned into plasmid backbones and transferred into
V. cholerae DrpoE. The resulting clones were pooled and treated with ethanol (3.5% final conc.) for 6 h. After treatment, the surviving cells were recovered on agar
plates, pooled, and subjected to consecutive rounds of ethanol treatment for a total of three selections. After each selection, plasmid contents of surviving cells
were analyzed by high-throughput sequencing. (A) Density histogram depicting the sequence read counts of obtained sRNA variants before ethanol treatment
(Input). (B) Nucleotide contributions at the randomized positions in the synthetic sRNA libraries, before ethanol treatment (Input) and after consecutive ethanol
treatments (Sel1, 2, 3). A = adenine, T = thymine, C = cytosine, G = guanine.

Data information: In (B), data are presented as mean, n = 2.
Source data are available online for this figure.

▸Figure EV4. Synthetic sRNA variants are enriched in laboratory selection experiments and mediate ethanol resistance (related to Fig 6).

A Vibrio cholerae DrpoE strains carrying the sRNA library before (input) or after consecutive ethanol selection experiments (Sel1, Sel2, and Sel3) were cultivated in LB
medium to OD600 of 2.0. RNA samples were collected and analyzed for omp mRNA levels using qRT–PCR.

B Pie chart indicating the distribution of synthetic sRNA variants after three consecutive ethanol treatments (Sel3). The dashed red line indicates the fraction of the 15
most abundant sequence variants.

C The frequency of the 15 most abundant (top 15) sRNA variants was determined before ethanol treatment (Input) and after consecutive ethanol treatments (Sel1, 2, 3).
D Vibrio cholerae wild-type and DrpoE strains carrying an empty vector control (pCtr), synthetic sRNA expression plasmids (psRNA1-15), rybB expression plasmids

(pRybB), or expression plasmids containing a rybB variant with deletion of nine nucleotides at the 50 end (pRybBD9) were grown to OD600 of 0.2. Cells were treated
with ethanol (3.5% final conc.) for 5 h. After treatment, the strains were serially diluted (1:10 steps) and spotted onto agar plates.

Data information: In (A, C), data are presented as mean � SD, n = 2.
Source data are available online for this figure.
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Figure EV5. Base-pairing of enriched sRNA variants to ompA mRNA is sufficient to mediate ethanol resistance (related to Fig 6).

A Sequence alignment of the 15 most abundant (top 15) sRNA variants.
B Consensus motif for the top 15 sRNA variants.
C Secondary structure model of ompA mRNA including the predicted base-pairing interactions of the top 15 sRNA variants. Straight lines indicate pairing bases, and

bulges indicate non-pairing bases. Pairing bases corresponding to the variable region of the variants are depicted in color, and pairing bases corresponding to the
backbone are depicted in black. MicV and VrrA are shown in gray. Numbers indicate the position on the ompA mRNA relative to the AUG start codon. The predicted
position of the 30S ribosomal subunit and the ompA scr mutation are indicated.

D Vibrio cholerae wild-type ompA scr and DrpoE ompA scr strains carrying an empty vector control (pCtr) or synthetic sRNA expression plasmids (psRNA1-15) were
grown to OD600 of 0.2. Cells were treated with ethanol (3.5% final conc.) for 5 h. After treatment, the strains were serially diluted (1:10 steps) and spotted onto agar
plates.

E Vibrio cholerae wild-type and ompA scr mutant strains carrying empty vector controls (pCtr) were grown to OD600 of 0.2 and challenged with ethanol (3.5% final
conc.). After 5 h of treatment, serial dilutions were prepared, recovered on agar plates, and CFU/ml were determined.

Data information: In (E), data are presented as mean � SD, n = 4. Statistical significance was determined using a two-tailed, unpaired Student’s t-test.
Source data are available online for this figure.
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4 Concluding discussion

4.1 Studies of the RNA metabolism in a major pathogen

4.1.1 Identification of RNase E sites

The endoribonuclease RNase E plays a major role in post-transcriptional regulation by contributing

to sRNA synthesis and turnover as well as target regulation [177, 295]. To study its relevance in V.

cholerae, we identified RNase E cleavage sites (CS) on a genome-wide level by applying the TIER-

seq method (transiently inactivating an endoribonuclease followed by RNA-seq [60]). This approach

is based on the temperature-sensitive rne-3071 mutation first described in E. coli [13], which we

successfully transferred to the corresponding V. cholerae gene based on the strong conservation

of the rne genes between E. coli and V. cholerae (chapter 2, Figs. 1A and 1-S1). We detected

~25.000 RNase E cleavage sites by comparing the 5’ end profiles of transcripts from the wild-type

and rneTS mutant strains at the non-permissive temperature (chapter 2, Figs. 1 and 1-S2). This

number is comparable to the TIER-seq results from Salmonella [60] and the α-proteobacterium

Rhodobacter sphaeroides [105]. However, it has to be noted that the detected cleavage patterns can

only provide a snapshot of the RNase E activity during the respective growth phase and conditions

chosen for the experiment (late exponential phase in rich medium for our study). Especially many

stress conditions such as starvation, hypoxia or temperature shock have been shown to globally

affect mRNA turnover rates [173, 8, 328, 337]. This could be a result of differential RNase E

cleavages, and it would be interesting to repeat the TIER-seq experiment under such conditions.

Nevertheless, the present data provides valuable insights into the importance of RNase E for the

RNA metabolism in V. cholerae.

Approximately 70% of all genes contained at least one cleavage site, supporting the global role

of RNase E in bulk RNA turnover [145, 27]. While the majority of CS was found in coding

sequences, we also detected 2.348 cleavage events (9.4%) in 5’ UTRs. These might contribute to

post-transcriptional control as it has been shown for the cfa 5’ UTR in Salmonella, which gets

protected from RNase E by binding of the sRNA RydC [108]. Another CS was found in the rne 5’

UTR itself, which has been reported to be the subject of negative autoregulation through RNase E-

mediated cleavage [154]. Although less frequent than in 5’ UTRs, 1.475 cleavage sites (5.9%) were

discovered in 3’ UTRs. Some of these correspond at the same time to the 5’ ends of sRNAs that

are encoded within the respective 3’ UTRs, indicating that these sRNAs are released from their

mRNA transcripts through endonucleolytic processing [215, 60, 1]. In total, we detected matching

RNase E sites for 15 different 3’ UTR-derived sRNAs (chapter 2, Tab. S2). However, this likely
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4 Concluding discussion

underestimates the true number of processed sRNAs from 3’ UTRs, as the detection of an RNase

E site by TIER-seq is also dependent on the stability of the respective RNA fragment. In another

study recently published by our group, we showed that the FarS sRNA (formerly called Vcr076) is

processed from the fabB 3’ UTR by RNase E [144]. However, we did not detect the corresponding

CS in the fabB mRNA in our TIER-seq analysis. This can be attributed to the high stability of

FarS (half-life > 32 min): as we could not observe a decrease in mature FarS abundance during one

hour of RNase E inactivation, our TIER-seq analysis was not able to capture the corresponding

cleavage site. The same could be true for other 3’ UTR-derived sRNAs, which would then be missed

in our analysis. Furthermore, it is likely that not all existing sRNAs have yet been discovered in

V. cholerae. One part of the aforementioned study on FarS was an Hfq-immunoprecipitation

experiment, which revealed 30 new sRNA candidates [144]. About half of them are derived from 3’

UTRs and for six of these potential new sRNAs (Vcr203, Vcr213, Vcr216, Vcr219, Vcr222, Vcr228)

we could detect matching RNase E sites in our TIER-seq analysis.

RNase E is not only involved in the biogenesis of sRNAs, but also in their maturation and

turnover. Our TIER-seq analysis captured the reported processing of the MicX sRNA into two

smaller fragments, which we had used to test the functionality of our rneTS mutant ([81] and

chapter 2, Fig. 1A). Additionally, we detected internal CS in 46 sRNAs, with numbers ranging

from 1 to 103 cleavage sites per sRNA. Remarkably different cleavage patterns could be observed for

the three homologous CsrB/C/D sRNAs [180], which showed 65/6/103 cleavage sites, respectively.

While the CsrB/C/D sRNAs were initially considered to be fully redundant transcripts [180],

these deviating cleavage patterns support recent findings that the three Csr sRNAs differ in their

regulation, stability and function [50]. In contrast, the four Qrr sRNAs share a conserved cleavage

site at the same position in their second stem loop, which is involved in the regulation of almost all

Qrr targets [304, 102]. Similarly, cleavage sites inside seed regions were found for MicX [81], RyhB

[210], TfoR [353], VadR (Herzog et al., 2020, in revision) and VqmR [251]. These could potentially

contribute to coupled degradation after target regulation [197] or inactivation of the sRNAs in the

absence of their targets [22].

RNase E is known to target its substrates through one of two processing pathways: in the 5’

end-dependent pathway, a monophosphorylated RNA is recognized by a special binding pocket on

the surface of RNase E, which stimulates enzymatic activity at a downstream cleavage site [189,

282]. The resulting 5’ fragment is rapidly degraded by exonucleases, while the 3’ fragment provides

a new target for RNase E, leading to step-wise degradation of the full mRNA [145]. In contrast,

the direct entry pathway is independent of the nature of the 5’ end. Cleavage occurs efficiently

at an internal site without 5’ end binding, while secondary structures in the target might be

important [74, 24]. These distinct pathways could explain the differential cleavage patterns that

were observed for the two 3’ UTR-derived sRNAs that were studied in detail in chapter 2, OppZ

and CarZ: both are processed from their respective operons by RNase E, but cleavage frequency

within the operons varies strongly. While the ~5.8 kb oppABCDF-OppZ operon shows 42 cleavage

sites (on average 1 CS every 138 nt), only two cleavage sites can be found in the ~4.5 kb carAB-
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carZ operon, one of them at the sRNA’s 5’ end. It is tempting to speculate that OppZ might

be produced through step-wise processing of the opp operon in the 5’ end-dependent pathway,

while CarZ could be produced by a specific internal cleavage of the carAB-carZ operon through

the direct entry pathway. However, this hypothesis is challenged by the appearance of multiple

longer cleavage intermediates for both sRNAs when RNase E is inactivated (chapter 2, Fig. 1-

S4), which rather point towards a similar step-wise processing of the oppF and carB mRNAs.

To distinguish between these two pathways, one could employ several mutants that are impaired

in different aspects of RNA turnover: (i) Targets of the 5’ end-dependent pathway are often

strongly stabilized upon inactivation of rppH, which encodes the pyrophosphohydrolase involved

in conversion of the 5’ triphosphate to monophosphate [88, 189]. (ii) Monophosphate sensing can be

abolished by mutations in the 5’ sensor domain, allowing only processing of substrates recognized

via the direct entry pathway [113]. (iii) Conversely, RNase E mutations that block recognition

of structured RNA regions affect the direct entry mode without interfering with 5’ sensing [24].

Thus, studying the effects of an rppH mutant or of RNase E mutants defective in either of the two

modes of target recognition could help to identify the relevant processing pathways for OppZ and

CarZ.

Finally, we also detected substantial numbers of cleavage sites in intergenic regions (4.4%) and

antisense to annotated genes (asRNA; 7.9%). RNase E activity on IGRs suggests the existence of

non-annotated transcripts, which would presumably be non-coding due to the lack of encoded open

reading frames. For instance, multiple CS were found within the new sRNA candidates proposed

by [144], indicating that the identification of additional sRNAs could be guided by the inspection

of IGRs with abundant RNase E sites. The amount of cleavage sites on the antisense strand is

in line with reports on widespread antisense transcription from bacterial genomes, which has been

assigned both specific and global regulatory roles [306, 274, 251, 114]. A detailed study of multiple

individual antisense transcripts showed frequent processing by RNase E [331] and the abundance

of CS in asRNA detected by our TIER-seq analysis is comparable to the data from Salmonella

[60].

4.1.2 3’ ends of transcripts and their sensitivity to bicyclomycin

In the publication presented in chapter 2, we showed that the autoregulatory sRNA OppZ induces

premature transcription termination within the opp operon. To identify the steady-state 3’ end

of the terminated transcript, we applied Term-seq, a 3’ end-specific RNA-seq protocol [76], to our

wild-type strain and an oppB start codon mutant (chapter 2, Fig. 5C). We also sequenced RNA

samples from cultures treated with the antibiotic bicyclomycin (BCM), which specifically inhibits

the termination factor Rho by interfering with its ATPase activity [357, 318]. Comparison with

mock-treated samples allowed us to determine the sensitivity of RNA 3’ ends to bicyclomycin and

thus the involvement of Rho in the respective transcription termination events on a genome-wide

scale. The following section will focus on the general results obtained from the Term-seq data and

BCM dependency, while the results specific to OppZ and CarZ will be discussed in the context of
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their functional characterization in section 4.2.

To validate the results obtained by Term-seq, I analyzed the abundance of Term-seq reads at

known termination sites in V. cholerae. In contrast to the thoroughly studied model organisms E.

coli and Salmonella, the genome of V. cholerae is less well annotated and lacks annotations for full

transcripts including their untranslated regions [132]. Thus, the sites of transcription termination

are defined best for small transcripts that have been studied individually, mostly sRNAs. For all of

the 24 sRNAs characterized in V. cholerae, the 3’ end detected by Term-seq correlated well with the

annotated termination site. Moreover, coverage at the 3’ end of the transcript was very strongly

increased compared to the upstream part. Together, these results indicate that our Term-seq

experiment readily captured the steady-state 3’ ends of transcripts. It has to be noted that most

sRNAs terminate at Rho-independent (intrinsic) terminators and therefore have clearly defined 3’

ends [67]. Although Rho-dependent termination has been reported to be more loosely controlled

and to terminate in a diffuse manner, most Rho-dependent transcripts still exhibit distinct 3’ ends

[213, 285]. These can form for instance when the termination site coincides with a stable RNA

structure or when structurally unprotected ends are subsequently trimmed by exonucleases [78].

In the case of such trimming, the steady-state 3’ ends derived from Rho-dependent terminators do

not necessarily match the actual site of transcription termination, but can also be located further

upstream.

It was also noteworthy that despite the 3’ end-specific protocol for library preparation, many

sequencing reads still mapped to the full length of the transcript. The extent of such intragenically

mapped reads was comparable to the data from the original Term-seq publication [76]. These

reads do not necessarily indicate a lack of technical quality during library preparation, but rather

correspond to ongoing transcription and/or degradation processes. In the context of our bicy-

clomycin treatment, we used these intragenic reads to globally compare the expression levels with

or without the antibiotic. While this method cannot produce fully accurate results due to the bias

for transcript 3’ ends, it still allowed us to have a preliminary glimpse on the importance of Rho

for the V. choleare transcriptome. For a full analysis of Rho-dependent transcription termina-

tion, we would need to prepare standard RNA-seq libraries from our BCM treatment experiment

to obtain unbiased read coverage of the transcriptome [76, 78]. The clearest observation in our

BCM data was the strong increase in antisense transcription: in non-treated samples, ~6.9% of all

reads mapped antisense to annotated coding sequences, whereas this fraction increased fourfold

to ~28.1% upon BCM treatment (Fig. 4.1A). This supports the observations from E. coli and B.

subtilis that Rho and NusG are responsible for silencing genome-wide antisense transcription [264,

36]. Moreover, we could observe the action of Rho at some individual transcripts, such as its own

messenger RNA. Rho is known to autoregulate its expression by terminating transcription within

the 5’ UTR of the rho gene [202]. We did indeed detect abundant RNA 3’ termini in the rho

5’ UTR, whose levels decreased upon Rho inhibition through BCM (Fig. 4.1B). Simultaneously,

read coverage over the rho CDS increased strongly as a result of BCM-induced read-through from

the upstream terminator. On a more global scale, our analysis revealed 150 repressed and 549
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Figure 4.1: Effect of bicyclomycin on the V. cholerae transcriptome. (A) Percentage of
reads mapped in antisense orientation to annotated coding sequences. (B) Read cov-
erage of the rho gene. (C) Relative distribution of fold changes for 699 differentially
regulated genes in wild-type background after BCM treatment (absolute fold change
≥3, FDR p-value ≤ 0.05)

activated genes in the BCM treated cells (Fig. 4.1C). On average, the observed gene repression

upon Rho inhibition was weaker than gene activation, which is in accordance with the role of Rho

as a transcriptional repressor [213].

4.1.3 Connections to other large-scale data sets

The large data sets generated during this work on RNase E sites, RNA 3’ termini and bicyclomycin

sensitivity provide a valuable resource to the Vibrio community. Still, there is more potential in the

combination of these results with other data sets that have been generated in previous studies or

still have to be obtained. As already mentioned, the V. cholerae genome still lacks a comprehensive

annotation of transcripts with their 5’ and 3’ untranslated regions [132]. A previous study from our

group identified transcriptional start sites in V. cholerae by differential RNA-seq and also suggested

substantial corrections of misannotated ORFs [251]. These RNA 5’ ends could be combined with

the Term-seq data from this work to obtain full mRNA annotations a genome-wide level. Correctly

annotated transcripts would also increase the accuracy of future deep sequencing experiments: as

current analyses can only be based on read counts mapping to the annotated CDS, any differential

regulation in untranslated regions remains undetected during the analysis of regulated genes.

Additional in-depth studies are also necessary to understand the role of Rho in V. cholerae.

As discussed above, standard RNA-seq without enrichment of RNA 3’ ends would be necessary

for the bicyclomycin-treated samples to analyze the transcriptomic response to the antibiotic and

to determine BCM-dependent read-through at the identified terminators. Following the analyses

performed in the Sorek lab [76, 78], RNA termini could be attributed to intrinsic or Rho-dependent
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termination events on a genome-wide scale. Moreover, exoribonuclease mutants could be used to

define the exact sites of transcription termination, especially for Rho-dependent terminators [78].

Additional application of bioinformatic tools for terminator prediction could help to precisely locate

terminator structures [233, 232, 91].

Finally, both the data on RNase E sites and on RNA termini could facilitate the characterization

of sRNAs and their targets. While the majority of the detected RNase E sites are likely the result

of bulk mRNA turnover [145, 27], some sites could also be targeted by sRNAs to stabilize the

respective transcripts [108, 295]. Especially for activated sRNA targets, it might be a promising

strategy to compare the site of base-pairing on the mRNA to the presence of any RNase E sites

that could be blocked by sRNA binding. Similarly, transcription terminators are predominantly

found at the ends of genes and operons to define transcript borders, but many terminators within

transcriptional units also have regulatory functions [285]. sRNAs can contribute to this regulation

by inducing or inhibiting Rho-dependent termination by uncovering or blocking rut sites, respec-

tively ([301, 67, 314, 41] and section 4.2.2). Thus, if for instance a terminator sequence can be

found within the 5’ UTR of an sRNA target, it might be regulated by an sRNA and should be

screened for a potential involvement in sRNA-based control of transcription termination.

4.2 Autoregulatory sRNAs from 3’ UTRs

4.2.1 Dual output: interplay of mRNA and sRNA functions from the same

transcript

With increasing numbers of sRNA genes being identified in numerous bacterial species, it has

become clear that they are not only located within IGRs, but rather frequently overlap with mRNA

genes and operons [1]. Conversely, some sRNAs also encode small peptides, thereby functioning as

mRNAs themselves [116]. These observations gave rise to the concept of “parallel transcriptional

output”, which was suggested for both eukaryotic and prokaryotic RNA already two decades ago

[203, 340]. Still we do not fully understand the underlying principles and multiple questions

remain open for many of the discovered examples: (i) Are overlapping genes transcribed into a

single transcript or are multiple independent transcripts produced? (ii) Are the mRNA and sRNA

functions of a single transcript mutually exclusive? (iii) If so, what decides which of the two

functions is exerted? Is it a timely coordinated process with one function preceding the other, or

can a single transcript only ever carry out a single function during its lifetime?

The diverse answers that can be given to these questions for different examples reflect the large

variety of bacterial sRNA loci and functions. Some sRNAs that overlap with mRNAs, especially

with 3’ UTRs, are transcribed from their own sRNA promoters and are therefore independently

expressed from the corresponding mRNAs [81, 61, 126]. The two types of transcripts then share

some sequence and their transcriptional terminator but are typically functionally unrelated. Thus,

mRNA and sRNA functions are uncoupled and exerted by two independent transcripts. In contrast,

the sRNAs derived from riboswitches or transcriptional attenuators constitute a mutually exclusive
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transcriptional output to their mRNAs [187, 209]. In its OFF state, the riboswitch/attenuator

induces premature transcription termination in a way that only the sRNA is produced and can

regulate its targets in trans. However in the ON state, transcription is continued into the coding

region and the sRNA is “trapped” inactively as 5’ UTR of the mRNA. Such mutually exclusive

expression is again different from peptide-encoding sRNAs, which are at least theoretically able

to exert both base pairing and protein coding simultaneously through a single transcript, as the

respective regions on the sRNA typically do not overlap [40, 342].

The two sRNAs presented in the study in chapter 2, OppZ and CarZ, belong to yet another class

of sRNAs, which are derived from mRNA 3’ UTRs by endonucleolytic processing. These sRNAs

are transcriptionally coupled to their corresponding mRNAs and are often functionally related

[166, 214, 62, 208, 344, 144]. They have to be processed into short regulators to be functionally

active ([61, 215] and chapter 2, Fig. 3D). As discussed in section 4.1.1, both OppZ and CarZ

are likely produced by step-wise processing of their parental mRNA transcripts through RNase

E. Thus, the mRNA is probably inactivated upon production of the functional regulator [61, 62].

Theoretically, 3’ UTR-derived sRNAs could also be cleaved from an intact mRNA through the

direct entry pathway of RNase E, which would separate both transcripts without destroying either

of them. Although such direct entry processing has been shown for SdhX [216], maintaining the

intact mRNA despite sRNA processing is rather unlikely: most sRNA genes either overlap to a

significant extent with the upstream gene or the sRNA 5’ end can be found in close proximity to

the stop codon [340, 251, 61, 60]. Cleavage to free the sRNA would therefore truncate the mRNA

and result in stalled ribosomes [137]. Additionally, many mRNAs lack a protective stem-loop

structure upstream of the cleavage position and are thus susceptible to rapid 3’-to-5’ digestion by

exonucleases [145, 27].

From an experimental point of view, it has to be noted that the mature OppZ and CarZ species

generated in vivo will carry a monophosphate at their 5’ end due to their processing from the

corresponding mRNAs. In contrast, for the plasmid-based sRNA over-expressions used in chapter

2, the sRNAs were transcribed from artificial promoters as primary transcripts starting at their

RNase E sites. While this generated sRNAs with the same nucleotide sequence as the processed

native variants, such over-expressed sRNAs had a triphosphate group at their 5’ ends. The nature

of an sRNA’s 5’ end can affect its regulatory capacity, as monophosphorylated sRNAs can e.g.

allosterically stimulate RNase E activity [22]. But over-expressing an sRNA in its processed form

without simultaneously over-expressing the corresponding mRNA genes is technically challenging.

For our assessment of OppZ processing in wild-type and the Δhfq background (chapter 2, Fig.

2-S1), we constructed a plasmid-based precursor including the 3’ end of oppF to allow OppZ pro-

cessing, which would generate monophosphorylated OppZ. However, processing of this truncated

oppZ -OppF fragment was less efficient than native processing of the full opp mRNA and led to the

accumulation of the full-length precursor transcript and distinct cleavage intermediates, whereas

mature OppZ levels were lower than for direct sRNA over-expression. As the regulatory function

of these longer fragments carrying OppZ at their 3’ end was unclear, we decided to use only the
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sRNA genes for sRNA over-expression despite the caveat of generating triphosphorylated sRNA.

The observation of mRNA inactivation upon sRNA synthesis indicates that mRNA and sRNA

functions would be mutually exclusive for transcripts with processed 3’ UTR-derived sRNA. How-

ever, transcripts may fulfill both mRNA and sRNA functions sequentially, as protein production

may occur before the mRNA is turned over and the sRNA is released. In this model, mRNAs

may undergo several rounds of translation before giving rise to sRNA production. This should

cause a delay in sRNA synthesis compared to the initiation of transcription, as not all mRNA

molecules are immediately processed to release the sRNA. Such a delay has been observed for

some sRNAs including OppZ (chapter 2, Fig. 8A, and [344]). The mRNA half-live would act as

an intrinsic “timer” to define the point of switching from protein production to regulator synthesis

and this timing could be tuned by changes in translation efficiency, accessibility of RNase E sites or

other factors governing mRNA half-live [44, 87, 282]. Short-term increases or decreases of mRNA

turnover should therefore cause a transient rise or drop in the sRNA synthesis rate, respectively,

while eventually production of the the two RNA species from the same transcript is inherently fixed

to occur at a 1:1 ratio. OppZ and CarZ add another level of complexity to this connection through

their feedback capabilities, which will be discussed in section 4.2.3. Despite the equimolarity of

mRNA and sRNA synthesis at the transcript level, the ratio of protein and sRNA levels can be

different. While this ratio obviously depends on protein and sRNA stabilities, also the half-live of

the mRNA is an important factor: higher mRNA stability means more time for protein production

from the same transcript before its turnover, increasing the amount of protein produced relative

to the sRNA. Tuning mRNA half-live might therefore be an important factor for transcripts where

both protein and sRNA are components of the same regulatory pathway and balancing of their

abundances is necessary [62, 344, 144]. Additionally, it has to be noted that the 1:1 ratio of mRNA

and sRNA production is not necessarily reflected by their steady-state levels in the cell. On the

contrary, many processed sRNA showed higher abundance than their corresponding mRNA [61],

which is likely caused by their higher stability compared to mRNAs [34, 340].

4.2.2 Divergent regulatory properties of OppZ and CarZ

Molecular mechanisms of target regulation

A variety of molecular mechanisms has been described for sRNA-based regulation and many sRNAs

employ more than one mechanism to control the expression of their targets [343, 161]. The most

common mode of blocking target translation is often followed by mRNA degradation, although

the latter is not always crucial for target regulation [226, 280]. Many experimental approaches

to identify sRNA targets, such as sRNA pulse expression experiments, screen for reduced mRNA

levels in the presence of the sRNA, which are commonly attributed to fast turnover of the untrans-

lated mRNA [308, 307, 106]. However, although OppZ pulse expression readily reduced oppBCDF

transcript levels (chapter 2, Figs. 3A and 3-S1C), it did not induce oppB turnover (chapter 2, Fig.

3-S1D). Additionally, plasmid-based OppZ over-expression reduced the amount of OppZ produced

from the native oppZ locus (chapter 2, Fig. 4B). These findings could only be explained by pre-
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mature transcription termination as a consequence of inhibited translation, which we validated by

observing strongly reduced OppZ levels in an oppB start codon mutant (chapter 2, Fig. 4C). Bac-

teria use two distinct pathways for transcription termination: either intrinsic termination, which

depends on structural RNA elements consisting of a strong hairpin followed by an U stretch, or

Rho-dependent termination, where the termination factor Rho binds to rut sites on the nascent

transcript and dislodges RNAP [213, 285]. Due to their sequence-encoded features, intrinsic ter-

minators can be computationally predicted with high accuracy [233] and the only such terminator

in the opp operon was found at the 3’ end of oppZ. In contrast, rut sites are more loosely defined

and their bioinformatic detection is challenging [232, 91]. Instead, we used the Rho inhibitor bicy-

clomycin to treat the oppB start codon mutant and observed a strong increase of oppBCDF and

OppZ levels, thereby validating the involvement of Rho in the repression of oppBCDF (chapter 2,

Figs. 5A-B). We obtained similar results when oppB translation was inhibited by plasmid-based

over-expression of OppZ (chapter 2, Figs. 5D-E). So far, Rho-dependent transcription termination

induced by sRNA binding has only been shown for Salmonella ChiX and E. coli Spot 42 [42, 345].

While the mechanism for increased Rho-dependent termination at the galTK junction though Spot

42 is still unknown [345], ChiX represses the distal gene in the chiPQ operon by a similar mech-

anism to the one employed by OppZ: it blocks chiP translation and exposes an otherwise hidden

rut site in chiP [42].

Our data on CarZ shares the main findings with the data presented for OppZ: plasmid-based

CarZ over-expression represses not only CarA and CarB, but also reduces synthesis of CarZ from

the native carZ locus in the carB 3’ UTR (chapter 2, Fig. 7E). This is likely a consequence of

blocked carAB translation, as stop codon insertions that abolish carA or carB translation also lead

to strongly reduced CarZ levels (chapter 2, Fig. 7F). We therefore concluded that CarZ-dependent

regulation follows the same mechanism involving transcription termination as the OppZ regulation.

According to OppZ, we proposed the unmasking of rut sites within the upstream carAB genes as

a result of inhibited translation initiation by CarZ. However, in contrast to OppZ, we were unable

to directly validate the involvement of Rho by treatment with BCM, as these experiments yielded

inconsistent and partly conflicting results regarding CarZ synthesis. We attribute this phenotype

to an unexpected interference with the gene encoded downstream of CarZ, vc2388, which is tran-

scribed in antisense direction to carZ. According to our BCM Term-seq data, vc2388 transcription

is highly Rho-dependent and results in strong antisense transcription at the carZ locus upon BCM

treatment (Fig. 4.2). This impedes an independent analysis of the BCM effect on CarZ synthesis,

as the antisense transcription from vc2388 likely interferes with correct transcription of the carAB-

carZ locus [322, 47]. To fully characterize the importance of Rho for CarZ regulation, we would

need to isolate the carAB-carZ locus from vc2388 transcription. Nevertheless, we still propose that

CarZ regulation by transcription termination is mediated through Rho due to the high similarity

to the OppZ pathway and the lack of Rho-independent terminators within the carAB sequence.

Despite their shared regulatory pathway of transcription termination, OppZ and CarZ differ in
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Figure 4.2: Bicyclomycin-dependent transcription of vc2388 . V. cholerae was treated with
BCM as described in chapter 2, Fig. 5, and Term-seq coverage is shown for one rep-
resentative biological replicate. Sequencing reads mapping to the forward or reverse
strand of the genome are shown in red or green, respectively. The location of vc2388,
carZ and carB is indicated above.

their effects on target transcript stability. As discussed above, reduced oppBCDF transcript levels

result from Rho-dependent termination and repression can be relieved by BCM treatment, as OppZ

does not destabilize the oppB mRNA (chapter 2, Figs. 5E and 3-S1D). In contrast, over-expression

of CarZ reduces the half-lives of carA and carB, thereby rendering the regulation irreversible

through transcript degradation (chapter 2, Figs. 7-S2). This mechanistic variance between the

two sRNAs likely reflects the difference in localization of their target genes: as OppZ repression

does not affect oppA translation, ribosomes on oppA protect the oppABCDF mRNA from 5’ end-

dependent turnover by RNase E. In contrast, CarZ inhibits translation of both cistrons, thereby

rendering the full carAB mRNA susceptible to nucleolytic attack. It can be assumed that BCM

treatment would only partially restore carAB levels upon CarZ over-expression, as presumably

both premature transcription termination and mRNA turnover contribute to the tight regulation

observed for carAB.

The example of CarZ suggests that sRNA-induced transcription termination through Rho could

be more wide-spread in the sRNA world than currently appreciated: without the observation that

the sRNA influences its own production from the transcript’s 3’ end, we would have attributed the

decrease in carAB transcript levels solely to the increased degradation rates upon CarZ binding.

But as discussed in section 4.2.1, faster carAB turnover should reduce the delay of CarZ synthesis

compared to the onset of transcription, but not decrease absolute CarZ levels. Thus, we only

discovered the underlying transcription termination mechanism because of the repression of the

3’ UTR-derived sRNA. As most target mRNAs do not carry such sRNAs in their 3’ UTRs, RNA

levels are typically not compared for multiple positions along the transcript. Thus, transcription

termination in addition to accelerated mRNA decay might be an often overlooked regulatory

mechanism of sRNAs. It is indeed frequently observed that sRNAs repress multiple genes in an
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operon by binding only to the first cistron [307, 251, 261]. While this is commonly attributed to

the loss of translational coupling and accelerated degradation of the full messenger transcript, it

could just as well involve Rho-dependent transcription termination [41]. To uncouple these effects,

pulse expression experiments of an sRNA in question could be repeated in the presence of BCM to

detect targets that are no longer regulated at the level of mRNA abundance when Rho is inhibited.

Strength of target repression

OppZ and CarZ share a mechanistically similar regulation of their target genes, nevertheless, they

differ in their regulatory capacity: plasmid-borne OppZ over-expression affected OppB protein

levels less efficiently than CarZ over-expression affected CarA and CarB levels, both as GFP

reporter fusions (chapter 2, Figs. 3C vs. 7-S1B) and as epitope-tagged variants expressed from

the native genomic loci (chapter 2, Figs. 4B vs. 7E). The difference was even more pronounced

when the sRNAs were not over-expressed from an independent locus, but rather processed from the

mRNAs as in their native biogenesis pathway. We generated reporter fusions of oppB or carA to gfp

and added the respective sRNA gene to the 3’ end of gfp to monitor sRNA production and mRNA

regulation at the same time (chapter 2, Figs. 3D and 7C). While both sRNAs were efficiently

cleaved from the long transcripts, OppB-GFP was repressed ~2-fold by OppZ, whereas CarA-GFP

levels decreased ~13-fold when CarZ was present. This quantitative difference in the regulatory

capacity of OppZ and CarZ likely results from the interplay of the regulatory mechanisms employed

by the two sRNAs as discussed above: while OppZ uses two regulatory mechanisms (translational

inhibition and transcription termination), CarZ additionally causes transcript degradation. The

individual contributions of the different molecular mechanisms are hard to untangle due to the

closely intertwined sRNA production from and regulation of the same locus. For example, blocking

mRNA degradation by inactivation of RNase E could normally help to separate the effects of

inhibited translation initiation and subsequent mRNA degradation on overall protein repression

[226, 125, 107]. But in the case of OppZ and CarZ, RNase E inactivation would at the same

time inhibit sRNA synthesis, thereby reducing the levels of active regulator and likely weakening

translational repression (chapter 2, Fig. 1-S4). In vitro experiments might help to study the

different effects individually: toeprinting assays could be used to compare the capability of OppZ

and CarZ to block formation of the translation initiation complex, while in vitro transcription

assays of the oppB and carAB mRNAs in the presence of Rho and the sRNAs could help to

determine the strength of Rho-dependent transcription termination within the two operons [308,

301, 153]. Conversely, inhibiting the action of Rho through BCM or through the identification and

mutation of all rut sites in oppB and carAB could shed light on the contribution of transcription

termination on target regulation [42]. However, analysis of the carAB-carZ locus during BCM

treatment is hampered by the interference with antisense transcription from the downstream gene

(as discussed in section 4.2.3) and fully excluding any Rho-dependent termination by mutations

might be challenging. Additionally, Rho inhibition by either means would simultaneously inactivate

the negative feedback on sRNA synthesis and should thereby increase sRNA levels (similar but

87



4 Concluding discussion

opposite to the side-effect of RNase E inactivation).

The regulatory capacity of an sRNA seems to depend as well, at least in part, on its binding

strength to the target [131, 31, 262]. I thus analyzed this effect for OppZ and CarZ by calculating

the free energy of the RNA duplexes depicted in chapter 2, Figs. 3B and 7B with two different

bioinformatic tools. First, I determined the hybridization energy using the RNAhybrid algorithm

[277] and obtained similar values (-22.9 kcal/mol for oppB-OppZ vs. -20.0 kcal/mol for carA-CarZ).

However, when comparing the seed regions of both sRNAs to their predicted secondary structures,

a remarkable difference is the accessibility of the CarZ seed in a single-stranded region between

two stem loops (chapter 2, Fig. 7B), while the first stem loop of OppZ has to be opened to allow

oppB binding (chapter 2, Figs. 3B and 3-S3). To take this effect into account, I then analyzed

the binding strengths with IntaRNA, which also includes the energy for unfolding intramolecular

structures [49]. While IntaRNA generally calculated weaker binding energies than RNAhybrid, the

difference was much stronger for oppB-OppZ (-8.7 kcal/mol with IntaRNA vs. -22.9 kcal/mol with

RNAhybrid) due to the energy needed for melting the hairpin than for carA-CarZ (-13.4 kcal/mol

with IntaRNA vs. -20.0 kcal/mol with RNAhybrid). To test if the weaker duplex strength of

oppB-OppZ is responsible for the corresponding variation in target regulation, we mutated a single

nucleotide of OppZ (C6U) in the oppB-gfp-oppZ fusion. This mutation would be expected to

increase OppB repression by two means: (i) it improves pairing of OppZ to oppB by changing the

unpaired C-A in the duplex to an U-A pair (compare chapter 2, Fig. 3B) and (ii) it decreases

the strength of the intramolecular OppZ hairpin including the seed region by mutating a C-G pair

to an U-G pair (compare chapter 2, Fig. 3-S3). Accordingly, the free energy of oppB binding

calculated with both tools decreased strongly (RNAhybrid: -28.7 kcal/mol for the C6U mutant

vs. -22.9 kcal/mol for wild-type OppZ; IntaRNA: -17.4 kcal/mol for the C6U mutant vs. -8.7

kcal/mol for wild-type OppZ). However, the extent of the OppB-GFP repression did not differ

between wild-type and mutated OppZ, despite the large difference in binding strength (data not

shown). Thus, at least for OppZ, the hybridization energy to oppB does not determine the target

repression strength. Finally, it has to be noted that in vivo, binding of the OppZ and CarZ to their

mRNA targets occurs co-transcriptionally. This might affect folding of the mRNAs and render

their sRNA-binding sites more or less accessible than in the steady state structure predictions that

were used for the above calculations.

Fate of the sRNA after target binding

The strength of target regulation by an sRNA does not only depend on its regulatory mechanism

or the target binding strength, but also on the consequences of target binding for the sRNA itself.

The fate of an sRNA after successful base pairing with a target is an important characteristic of any

sRNA-dependent target regulation. Three possible outcomes have been described for repressing

regulators: (i) sRNA and target are both turned over in a process called coupled degradation [197],

(ii) the sRNA is recycled after target degradation, thereby establishing a catalytic reaction [243], or

(iii) neither sRNA nor target are degraded, but they sequester each other in an inactive form [102].
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These modes of sRNA action differ fundamentally in their associated regulatory properties and

kinetics. Coupled degradation results in a stoichiometric regulation, where the relative production

rates of sRNA and mRNA determine target expression levels in a threshold-linear response model

[183]. A catalytic mode of action resembles transcription factor-based control and is thought to

contribute to very tight regulation of strongly expressed targets [130, 102]. Finally, the biological

consequence of sequestration is similar to that of coupled degradation as it permanently inactivates

sRNA and target, although it does not lead to a detectable reduction of RNA levels [102]. For

autoregulatory sRNAs like OppZ and CarZ, the production rates of sRNA and mRNA cannot be

tuned individually, as regulator and target are made as one transcript from the same promoter.

Thus, the observed strong difference in target regulation strength could stem from different sRNA

recycling efficiencies. If CarZ acted by catalytic degradation, sRNA and mRNA levels would

become uncoupled despite their connected synthesis, as CarZ could induce carAB turnover without

being degraded itself. The recycled CarZ molecules would accumulate and contribute to strong

carAB repression. In contrast, OppZ does not induce oppB degradation and thus follows neither

the coupled degradation nor the catalytic mode of action. Instead, OppZ might be sequestered

upon oppB binding, which would inhibit OppZ accumulation after oppB repression. Indeed, when

the mildly autoregulated oppB-gfp-oppZ fusion from chapter 2, Fig. 3D is combined with OppZ

over-expression from a second plasmid, the abundance of OppB-GFP is strongly reduced (data not

shown). This indicates that the level of free OppZ is a limiting factor for oppB repression.

The molecular features determining the fate of an sRNA after target regulation are not yet

understood, although there are hints on the importance of RNA duplex binding strength and the

mode of binding to Hfq [102, 300]. The Qrr sRNAs employ all of the three described modes of

actions to repress three central actors of the QS pathway with distinct kinetics. When comparing

the binding strength of the targets, the authors proposed a very tight sRNA-mRNA binding to be

the reason for the Qrr sequestration capability of one target [102]. However as discussed above,

the oppB-OppZ duplex is not very strong and a mutation to increase the binding strength did not

affect oppB regulation. Thus, if OppZ is indeed sequestered upon oppB binding, this outcome is

likely mediated by other factors than strong RNA duplex formation.

4.2.3 Feedback on sRNA synthesis through transcription termination

Sequestration or co-degradation of an sRNA upon target binding are important means to control

the cellular abundance of the regulator. However, in contrast to other sRNAs, regulation of their

respective mRNA targets does not only affect OppZ and CarZ through potential degradation after

target binding. As both sRNAs regulate genes encoded upstream in their own operons, inducing

transcription termination within these target genes establishes a negative feedback loop on sRNA

expression. This adds a novel layer of complexity to the dual output concept discussed for 3’

UTR-derived sRNAs in general in section 4.2.1. As illustrated by our model (chapter 2, Fig. 9),

during the initial transcription of the opp operon, OppZ production is delayed but not reduced

compared to mRNA synthesis. However, once the first sRNA molecules have been produced, they
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repress the subsequent synthesis of additional OppZ transcripts through a negative feedback circuit:

they uncouple transcription and translation by blocking oppB translation initiation, rendering

the ribosome-devoid oppB mRNA more susceptible to being targeted by Rho. This terminates

transcription prematurely and reduces OppZ production. Considering the strikingly different half-

lives of oppB (~50 s; chapter 2, Fig. 3-S1D) and OppZ (> 32 min; chapter 2, Fig. 4-S1A), the

feedback regulation through Rho might be necessary to prevent overshooting sRNA synthesis and

mRNA repression. We propose that autoregulation of CarZ generally follows the same principles as

the OppZ feedback. The main difference is that CarZ additionally destabilizes the carAB mRNA,

thereby reducing the time for protein production before mRNA turnover and establishing a tighter

repression. At the same time, this should decrease the delay of sRNA synthesis compared to the

initiation of transcription, a prediction that still awaits experimental validation.

In summary, we consider expression of both sRNAs to be intrinsically limited through Rho-

dependent feedback regulation of their own synthesis. However, the distribution of rut sites seems

to differ between the two operons. According to our stop codon mutants, the oppB gene may exhibit

multiple rut sites with the most important one being located close to the 115th codon, whereas

blocked translation of oppC, oppD or oppF did not affect OppZ synthesis (chapter 2, Fig. 6). The

locations of the rut sites in oppB that we inferred from our genetic mutations do not correlate well

with the dominant 3’ end determined by Term-Seq of the oppB start codon mutant, which was found

in close proximity to the oppAB intergenic region and thus ~300-450 nt upstream of the presumed

terminator. This discrepancy between the site of transcription termination and the observed

steady-state 3’ end of the transcript can be attributed to the activity of 3’ to 5’ exonucleases, which

probably rapidly digest the unprotected part of oppB [145, 78, 27]. This decay is likely halted at

a stable stem loop structure within the oppAB intergenic region, which probably also protects

oppA from OppZ-dependent regulation [66]. The limited dependency of OppZ production on

translation of the oppCDF genes is in contrast to the CarZ situation, where abolishing translation

of either carA or carB strongly reduced CarZ levels, indicating that both genes carry at least one

rut site (chapter 2, Fig. 7F). Alternatively, the two genes could be translationally coupled and

blocking carA translation would only indirectly induce transcription termination by concurrently

blocking carB translation and exposing a rut site in carB. Deletion of carB in the carA stop codon

background could help to determine the presence of a potential terminator sequence within carA.

Similar to OppA, CarA production is not affected by blocked translation of carB and subsequent

transcription termination (chapter 2, Fig. 7F). Indeed, inspection of the carAB sequence also

revealed a stable stem loop structure within the 5’ CDS of carB, which could protect the upstream

gene from exonucleolytic decay.

4.2.4 Biological relevance of autoregulatory sRNAs

Negative feedback regulation of their corresponding mRNAs

Negative autoregulation is one of the most common network motifs in biology [6]. The smallest

negative feedback loop consists of just one TF that binds and represses its own promoter like the
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tet repressor [288]. Feedback circuits involving sRNAs can act directly on the mRNA of the TF

that regulates sRNA expression (such as the OmrA/B sRNAs repressing the mRNA of their TF

OmpR [125, 48]) or mediate a more indirect feedback by relieving a stress signal that induces the

activity of the TF (like the σvE-dependent sRNAs that counteract envelope stress [252, 261]).

In contrast, the autoregulation by OppZ and CarZ presented in chapter 2 constitutes a novel

type of regulatory feedback on the RNA level. It is not dependent on auxiliary transcription fac-

tors and is thus the first reported example of an RNA-only negative autoregulatory circuit. The

strength of the feedback repression is proportional to the overall transcriptional output, which

might be particularly relevant when the complex transcriptional regulation of the two operons is

considered. The oppABCDF operon encodes a high affinity ABC transporter for the uptake of

oligopeptides, which is also involved in the control of virulence, quorum sensing and competence

in diverse bacteria [112, 111, 319]. Thus, its transcription is typically controlled by several differ-

ent factors such as the leucine responsive protein Lrp and the iron regulator Fur in E. coli and

Salmonella or the global nutritional regulators CodY and ScoC in Gram-positive bacteria [54, 69,

32]. Similarly, the carAB genes encoding carbamoyl phosphate synthetase are subject to intricate

transcriptional control involving several transcriptional regulators from the arginine, pyrimidines

and purines pathways [64]. With regard to this complexity, it seems unfavorable to establish a

negative autoregulation loop through an additional DNA-binding transcriptional repressor that

would be co-expressed with the operon: the repressor would need to compete with multiple other

regulators for promoter binding and the efficiency of autoregulation might be impaired under

certain conditions where the other transcriptional regulators are highly active. In contrast to a

protein-based feedback loop, expression of the autoregulatory sRNA from the 3’ UTR correlates

to the absolute promoter activity that results as sum of all transcriptional inputs. This establishes

a negative feedback regulation at the RNA level that acts downstream and independent of any

transcriptional control.

Regulation by OppZ adds yet another layer of complexity due to its discoordinate nature (chapter

2, Figs. 3C and 4B). Stoichiometry of the proteins encoded by the oppABCDF operon follows

the typical distribution for ABC transporters with higher abundance of the periplasmic substrate

binding protein (OppA) compared to the membrane-bound, structural components of the trans-

porter (OppBCDF) [136, 200]. While a recent publication suggested some internal transcription

initiation in the oppAB intergenic region of E. coli [201], we did not observe any protein expres-

sion when the promoter upstream of oppA was deleted (chapter 2, Fig. 2C). Thus we conclude

that the full opp mRNA is transcribed as a single unit and post-transcriptional repression of the

oppBCDF part by OppZ contributes to the discoordinate expression of the operon. Uncoupling

of transcriptionally linked genes has been observed for several sRNAs [221, 90, 255, 86, 344] and

this additional flexibility may provide an advantage of OppZ-based regulation over solely tran-

scriptional control of the opp operon. Nevertheless, OppZ is probably not the only relevant factor

for the discoordinate expression of the opp operon, as deletion of oppZ only mildly alleviated the
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steady-state levels of OppB, whose abundance was still relatively low compared to OppA (chapter

2, Figs. 8-S1). Bacteria have evolved various molecular mechanisms to uncouple the expression of

genes linked in an operon such as internal transcription start sites, leaky transcription termination

within the operon, varying half-lives of the different cistrons, or different translation efficiencies

[2, 273, 77]. Not all of these mechanisms seem to be at play in the opp regulation, as the oppA

mRNA is even slightly less stable than oppB (26 vs. 35 s; data not shown) and there is no in-

ternal promoter ([251] and chapter 2, Fig. 2C). There is a prominent 3’ terminus within the long

oppAB intercistronic region that becomes less abundant upon bicyclomycin treatment and could

represent an intra-operonic Rho-dependent terminator (chapter 2, Fig. 5C). But this structure

does not contribute to transcription termination in E. coli [136] and mutation of the hairpin in

the post-transcriptional reporter plasmid from chapter 2, Fig. 3C had no effect on mKate or GFP

fluorescence levels (data not shown). When comparing post-transcriptional gfp fusions for oppA

(starting at the oppA TSS) or oppB (starting at the oppAB IGR), the oppA-gfp fusion yields much

higher fluorescence than the oppB-gfp fusion, suggesting a variation in translation efficiency (data

not shown). This is supported by a ribosome profiling study in E. coli, which determined a ~4-fold

higher translation efficiency for oppA compared to oppB [184].

In contrast to the relatively mild influence of the oppZ knockout on steady-state OppB levels, this

effect became much more prominent during the dynamic onset of oppABCDF expression, which

we studied by replacing the native opp promoter by the arabinose-inducible pBAD promoter to

artificially control the opp expression. Upon transcriptional induction of the operon, OppB accu-

mulated more strongly and over a longer time period in the ΔoppZ background (chapter 2, Fig. 8).

In contrast, OppB levels in the wild-type strain rapidly reached a plateau at relatively low protein

abundance. Accelerated response time and reduced total protein production have been reported to

be inherent features of negative autoregulation by transcription factors [288] and we conclude that

the RNA-based autoregulation by OppZ shares this behavior. Moreover, we hypothesize that it

may help to balance the gene regulatory output in fluctuating environments: the costly production

of the structural transporter components OppBCDF would be limited during short-term availabil-

ity of peptides, while the substrate binding protein OppA would not be not part of the feedback

control and its levels could be rapidly increased to capture all available peptides. Additionally,

the long half-live of OppZ (> 32 min, chapter 2, Fig. 4-S1A) could provide a memory function

by repressing de novo OppBCDF synthesis following too shortly after a previous induction of opp

expression.

Integration of OppZ and CarZ into regulatory networks

With increasing numbers of characterized sRNAs, it has become evident that sRNA-based reg-

ulation is often embedded into larger regulatory networks consisting of both transcriptional and

post-transcriptional regulators [195, 236]. The ability of many trans-acting sRNAs to regulate

multiple targets allows them to function as central hubs of their respective regulons and allows for
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Figure 4.3: Post-transcriptional repression of vc0763 by CarZ.
A translational vc0763::gfp reporter was constructed by fus-
ing the 5’ UTR and the first 20 codons of vc0763 to the sfgfp
gene in the pXG10 vector [75]. The reporter was combined
with a control plasmid or a CarZ over-expression plasmid
and fluorescence was measured as described in chapter 2,
Fig. 7-S1B.

target hierarchy and cross-talk [256, 29, 266, 39]. While we did not detect any other targets for

OppZ than the oppBCDF mRNA (chapter 2, Fig. 3A), bioinformatic target predictions suggested

additional targets for CarZ. Preliminary results obtained in our group validated repression of at

least one other gene by CarZ (vc0763 coding for the GTPase EngA involved in ribosome assem-

bly [35]; Fig. 4.3). Depending on the nature of this additional target-sRNA interaction, it may

influence the outcome of the carA-CarZ regulation by competition between the two mRNAs for

their shared regulator: if vc0763 binding induces for example CarZ degradation or sequestration,

increased vc0763 transcription would titrate CarZ away from the carAB mRNA, thereby relieving

their CarZ-dependent repression. A similar pattern has been observed for the ChiX-dependent reg-

ulation of chitosugar uptake, where ChiX represses both the inner membrane transporter chbBCA

and the outer membrane chitoporin chiP. Chitosugar-induced transcriptional activation of chbBCA

depletes the cellular ChiX pool through coupled degradation and thereby de-represses chiP, allow-

ing for coordinated transport of chitosugars over both membranes [243, 104, 266]. Accordingly,

the levels of vc0763 or potentially other CarZ targets could modulate the strength of the carAB

repression. Moreover, the existence of a least one trans-encoded CarZ target in addition to carAB

contributes to the necessity of the 3’ UTR-derived sRNA instead of a transcriptional feedback

regulation of carAB: processing of the sRNA does not only serve to control its own operon, but it

also links the expression of multiple genes at the post-transcriptional level.

Cross-talk between multiple transcripts is not limited to the competition of mRNAs for a shared

sRNA regulator. Instead, sRNA sponges can directly bind other sRNAs and modulate their ex-

pression level and regulatory capacity [214, 175, 103]. For instance, the target derived sponge

SroC base pairs to GcvB and induces its degradation, thereby alleviating the repression of its

parental mRNA and other GcvB targets [214]. The discovery of such sRNA sponges was greatly

accelerated by the development of technologies for the study of RNA-RNA interactions such as

RIL-seq [208, 207]. When we recently applied RIL-seq to V. cholerae in our lab, we detected the

sRNA Vcr222 [144] as a potential sponge for OppZ (unpublished data). It is processed from the

3’ UTR of astD (vc2616 ), an aldehyde dehydrogenase involved in the arginine catabolic pathway

[299]. The interaction between Vcr222 and OppZ still has to be validated experimentally and its

potential functional consequences are currently unclear. But the involvement of oppABCDF in

peptide transport and of astD in amino acid degradation indicates a possible functional connection
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within the nitrogen metabolism network [278]. Additionally, the sRNA GcvB, which targets many

genes involved in amino acid transport and metabolism, has been reported to repress oppA in E.

coli and Salmonella [335, 305, 270] and a potential GcvB binding site was detected in the 5’ UTR

of V. cholerae oppA (data not shown). But GcvB in V. cholerae was solely identified by homology

to the enterobacterial sRNAs [305, 270] and awaits further characterization in this organism. It is

thus unclear if and how GcvB-dependent regulation of the opp operon would extend to OppZ or

influence its feedback regulation. Nevertheless, the potential connections to GcvB and the sponge

Vcr222 suggest that OppZ may be part of an intertwined regulatory network, despite its seemingly

isolated target spectrum consisting of only its own operon [267].

4.3 Synthetic sRNAs for targeted gene regulation

Over the past decade, regulatory RNAs in prokaryotes have emerged as versatile tools for the field

of synthetic biology and metabolic engineering [272, 263, 14, 178]. Base-pairing sRNAs are espe-

cially useful due to the programmability of their molecular interactions based on Watson-Crick base

pairings and their compact, modular structure. They are considered as fast and economic regula-

tors, as they do not require a translation step and control their targets at the post-transcriptional

level [206, 148, 160]. Metabolic engineering approaches that involve sRNAs typically rely on dele-

tion or over-expression of native sRNAs, but some of them also employ synthetic sRNAs [110,

71]. Various strategies have been applied to the generation of such synthetic regulators, typically

based on a native sRNA scaffold for structure, Hfq binding and transcription termination, which

is equipped with an artificial seed region to redirect its target specificity. This seed is often (semi-

)rationally designed to match the designated mRNA target sequence [193, 231, 174], but it can also

be selected by screening a library of randomly generated seed regions [310, 309]. The present work

discusses both design strategies: while we suggest the 3’ UTR-derived sRNAs OppZ and CarZ as

starting points for rational sRNA engineering, we constructed and employed a large randomized

sRNA library for the unbiased study of complex microbial phenotypes.

4.3.1 OppZ and CarZ as blue-prints for RNA-based autoregulation

Negative autoregulation has been reported for almost 40% of all transcriptional regulators in E. coli

[311, 288] and is also widely used in synthetic gene networks to reduce noise, increase robustness

and accelerate the response time of the system [6, 4]. In contrast to the TF-based autoregulation

known so far, OppZ and CarZ add an RNA-based feedback loop to their own operons (chapter

2, Fig. 9) and for OppZ, we could show its contribution to faster dynamics of OppB production

(chapter 2, Fig. 8). A critical step for OppZ functionality is its processing by RNase E to release

the mature regulator from the polycistronic mRNA. Although RNase E sites are only loosely

defined on the sequence level ([60, 105] and chapter 2, Fig. 1D), we were able to transfer the

sRNA together with its processing site to the 3’ UTR of a heterologous gfp transcript, indicating

that the native sequence context of the opp operon is dispensable for functional sRNA maturation
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(chapter 2, Fig. 3-S3). Adding the targeted oppB sequence to the 5’ UTR established feedback

regulation of the the gfp transcript, an effect that we could repeat for the carA-CarZ system

(chapter 2, Figs. 3C and 7C). In combination with previous reports on rational re-targeting of

natural sRNA scaffolds [193, 231, 174], this suggests that OppZ and CarZ could serve as blue-

prints for sRNA-based feedback regulation. Such synthetic sRNAs could be inserted into the 3’

UTR of any gene without altering the transcriptional control of the gene or regulatory sequences

in its 5’ UTR. Instead, the sRNA would be equipped with a rationally designed seed sequence

targeting the translation initiation region to establish feedback repression. The programmability

of the RNA duplex would help to modify feedback strength by adjusting the base pairing strength

[131, 231]. This system would require only minimal genetic engineering and could be introduced

in addition to any existing regulatory connections, Moreover, synthesis of the regulator would be

intrinsically coupled to transcription of the target gene without the need for additional regulatory

input controlling sRNA synthesis [164]. Thus, we propose that engineered 3’ UTR-derived sRNAs

could be used as modular components to add negative autoregulation to any given gene without

interfering with established regulatory networks.

4.3.2 A complex library of synthetic sRNAs

A major part of this work was the generation of a synthetic sRNA library. It was motivated by

previous reports from our group and others on the modular architecture of sRNAs [265, 249, 152,

9, 108, 262] and is designed for the unbiased study of the underlying regulatory principles of sRNA

regulation. Additionally, it can also be used as a tool to decipher complex microbial phenotypes

or for the development of synthetic gene regulation. While the following section discusses some

general considerations for the construction and application of the library, section 4.4 focuses on

the specific use of the library in the context of the V. cholerae envelope stress response.

RybB as a scaffold to carry a randomized seed region

When searching for an appropriate scaffold for the sRNA library, RybB from Salmonella was chosen

as an ideal candidate for several reasons: (i) Its seed sequence is exposed as a single-stranded region

at the very 5’ end and therefore well accessible for manipulation without changing the overall sRNA

structure [21, 249]. This is in contrast to e.g. the seed of OppZ, which is located in the loop region

of the first hairpin and requires melting of the stem for target regulation (see section 4.2.2), or to

the GcvB seed placed between two hairpins, where sequence changes could lead to rearrangements

in the secondary structure [305]. With 79 nt, RybB is relatively short and natively does not fold

into secondary structures other than the terminator hairpin [43, 249]. The sequence between the

randomized seed and the terminator is relatively AU-rich and part of the Hfq binding site [21],

which makes it unlikely to form secondary structures with the randomized seed. (ii) No additional

seed regions have been reported for RybB. The existence of a second, non-randomized seed in the

sRNA scaffold could establish target regulation independent the actual sRNA variant and thereby

bypass sRNA selection based on the randomized seed. (iii) Binding to Hfq and the requirement of

95



4 Concluding discussion

Hfq for base-pairing are well established for RybB [252, 297, 296, 356]. As Hfq-binding sRNAs are

to date the most widespread class of known sRNAs [343], we expected an Hfq-dependent library to

provide the most valuable insights. (iv) Finally, the rybB gene itself is not present in V. cholerae

[252], which should avoid problems arising through homologous recombination events.

The length of the randomized seed was considered as a trade-off between target binding capacity

and the number of resulting permutations. Nine nucleotides are more than the reported minimal

seed length of 6-7 nt [162, 21], thereby allowing some flexibility in the positions used for mRNA

binding. Still, achieving sufficient coverage for the resulting 262,144 possible variants is within the

range of transformation efficiency obtained by standard laboratory methods [94, 151]. Expression

of the sRNA library from an inducible promoter on a broad host-range plasmid was chosen to

allow (i) easy transfer of the library into different strain backgrounds and subsequent isolation

from pooled cells by standard methods, (ii) selection for a single plasmid per cell by an antibiotic

resistance marker and (iii) sRNA expression only under the studied condition to maintain variants

that would have detrimental effects on bacterial fitness under other conditions.

A regulatory context allowing sRNA selection

The general idea of the sRNA library is to provide V. cholerae or another organism of choice

with a large pool of potential regulators, from which best-suited candidates to fulfill a designated

function can be selected. This function could be mediated through mRNA binding and translational

repression following the canonical mode of sRNA action, but it could also involve target activation,

regulation of transcription termination, or sponging of other sRNA regulators (see section 1.3.2).

To identify the ideal synthetic sRNA variants, they need to be enriched compared to all neutral

or detrimental sRNAs. Therefore, every individual cell should carry only a single sRNA variant

and a selective pressure is needed to allow those cells with the best variants to become the most

abundant. Subsequent analysis of the changed sRNA pool reveals the most strongly enriched sRNA

variants, which can then be studied in more detail.

The necessary selective pressure can be achieved by either natural selection (cells with matching

sRNA candidates gain a fitness advantage under a given condition) or by an artificially established

selection (cells with the desired regulatory outcome are technically sorted based on e.g. fluores-

cence intensity of a reporter). The strength of the selection will determine the degree of sRNA

enrichment: if beneficial sRNA variants provide a strong fitness advantage, they will be rapidly

selected over neutral or detrimental variants. Additionally, multiple rounds of selection can be

exerted sequentially to further increase the abundance of beneficial sRNAs.

Limitations to the sRNA selection approach

In principle, the complexity of the randomized seed region should allow targeting of any given

mRNA without restrictions at the sequence level. However, not all targets may be suitable for

sRNA-mediated control depending on additional requirements. For instance, due to the Hfq de-

pendence of the RybB-based library, mRNA targets might need to bind Hfq as well, as described
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for Spot 42 targets [31]. This could impede the discovery of a matching regulator especially when

the selection context is very narrow, for instance in a technical sorting of cells capable of regulating

a specific target-reporter gene fusion. When the selection is defined more broadly as a biological

process involving multiple regulatory factors, it is likely that the selected sRNAs will control sev-

eral of these components. Still, the library might be unable to regulate a specific factor, thereby

masking its involvement in the respective process.

Furthermore, it is likely that target repression would be easier to achieve than activation. Target

repression by the canonical mode of blocking translation is the predominant outcome of known reg-

ulations [343] and the window in which sRNAs can pair to directly suppress translation by ribosome

occlusion is relatively broad [43]. In contrast, translational activation by anti-antisense binding

requires a self-inhibitory structure as prerequisite, which is not readily found in all mRNAs [191,

128, 269]. Alternatively the synthetic sRNAs could inhibit mRNA turnover by blocking cleavage

sites for RNase E, which should be present in basically all mRNAs [316, 108, 60]. This could lead

to target activation, as long as mRNA stabilization contributes sufficiently to increased protein

levels [275, 108].

Similarly to non-targetable mRNAs, probably not all sRNA variants will be functional regula-

tors. Specific seed permutations could fold into inhibitory secondary structures, thereby masking

the seed region itself, blocking Hfq binding or interfering with correct folding and function of the

terminator hairpin. This could lead to regulator instability or inactivity, reducing the number

of regulation-competent variants as starting point for the selection. Additionally, some variants

might be toxic for E. coli, the host used for library cloning, or V. cholerae itself. We chose an

IPTG-inducible sRNA promoter to avoid potential toxic effects, but we still observed weak sRNA

expression in the absence of IPTG, presumably due to promoter leakiness, which might also deplete

some sRNA variants from the library. However, we were able to obtain at least 253,570 variants

(97%) in the V. cholerae ΔrpoE background (see chapter 3), indicating that only very few sRNA

variants have been lost during library construction and transfer.

4.4 Unbiased selection of sRNAs counter-acting envelope stress

4.4.1 Regulatory context for the laboratory selection experiments

In the first part of the publication presented in chapter 3, my colleague Nikolai Peschek identified

a new σvE-dependent sRNA, MicV, which is involved in the envelope stress response in V. cholerae

together with the previously described sRNA VrrA [324, 325]. He characterized both sRNAs and

showed that they act to relieve envelope stress by regulating unique and shared targets including

the mRNAs for major OMPs and lipoproteins (chapter 3, Fig. 2B and C). As a proxy for envelope-

damaging conditions, cells were exposed to ethanol to induce the σvE regulon [65] and to study the

relevance of σvE and both sRNAs under these conditions. He showed that cell survival upon ethanol

treatment is dramatically decreased in a ΔrpoE background (in agreement with [170]), while over-
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expression of MicV, VrrA or the homologous RybB from E. coli restored survival almost back to

wild-type levels (chapter 3, Fig. 4D).

This phenotype provided an ideal background to employ the synthetic sRNA library: a strong

selection context, in which cell survival can be increased by several orders of magnitude through

sRNA over-expression. It allowed us to generally study the characteristics of sRNAs selected from

a large pool of potential regulators and, more specifically, to elucidate the biological determinants

underlying the observed cell survival rates.

4.4.2 Detailed study of the 15 most strongly enriched sRNA variants

We performed three consecutive rounds of selection by subjecting ΔrpoE cells carrying the sRNA

library to ethanol stress, plating surviving cells, and determining survival rates and sRNA content

before using the pooled cells for the next selection round (chapter 3, Fig. 5). After the third

selection, cell survival had increased by four orders of magnitude and was close to wild-type levels.

Simultaneously, the number of detected sRNA variants had decreased to only ~5% of the initial

complexity, while the 15 most enriched sRNA variants constituted ~54% of the overall library

content (chapter 3, Fig. EV4B). Within the scope of the presented study, we focused on these top

15 sRNAs for further characterization. Strikingly, all of them bound to the ompA mRNA encoding

an outer membrane porin at almost identical regions in the ompA coding sequence (except for

three variants, which bound slightly upstream at the RBS) (chapter 3, Fig. EV5C). Binding was

not restricted to the randomized seed regions, but rather extended into the first few nucleotides

of the RybB backbone. The ompA translation initiation region contains four poly-A stretches of 3

to 6 consecutive A’s, which probably facilitated the extended pairing to the U-rich 5’ part of the

RybB backbone. While all of the top 15 sRNA variants repressed OmpA protein production post-

transcriptionally, the strength of repression varied from ~1.5-fold to ~14-fold (chapter 3, Figs. 6B

and C). Several reasons for these differences are evaluated below, although the lack of experimental

data limits some considerations to a theoretical discussion.

sRNA expression levels

Expression of all sRNA variants was confirmed via Northern blot. The expression levels

differed ~2.5-fold between the most and least abundant variants (#10 and #3, respectively;

chapter 3, Fig. 6B). Most likely, this can be attributed to different stabilities of the sRNA

variants. These may result from of variations in their intrinsic half-lives due to the individual

seed sequences or from different target binding capacities or alternative targets (see below),

which would influence base pairing-dependent sRNA turnover. Either way, absolute sRNA

levels do not allow conclusions about their target repression strength: when the extend of

ompA repression is plotted against the sRNA expression level (normalized to the weakest

variant, #3), no correlation is detectable (Fig. 4.4A). Of note, processing into shorter 3’

fragments can be observed for almost all variants (12/15) to varying extent, indicating again

that they undergo decay with different efficiencies. Still, these processed bands are unlikely

to contribute to ompA repression, as they should lack the 5’ encoded seed region. Thus, they
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Figure 4.4: Characteristics of the 15 most strongly enriched sRNA variants upon
ethanol stress. (A) Relative OmpA protein levels in sRNA over-expressing strains
compared to a control strain (as shown in chapter 3, Fig. 6B) are plotted against the
expression levels of the respective sRNA variants (normalized to the weakest expressed
sRNA #3). Grey and blue dots represent sRNAs pairing to the ompA RBS and coding
sequence, respectively. (B) Relative OmpA levels as in (A) are plotted against the hy-
bridization energy of the sRNA-mRNA duplexes (depicted in chapter 3, Fig. EV5C).
(C) Number of targets predicted for the 15 sRNA variants by TargetRNA2. Blue and
grey bars represent targets uniquely predicted for the respective sRNA or also predicted
for other sRNAs, respectively. (D) Number of targets that were predicted for only a
single sRNA variant or for up to 6 different sRNA variants.

are not taken into account for the relative sRNA expression levels shown in Fig. 4.4A.

Position of base pairing

Remarkably, 12 out of 15 variants pair to an almost identical region on the ompA mRNA

spanning the first 6 codons, which is also the exact same part where MicV binds (chapter 3,

Fig. EV5C). Only three variants pair further upstream, at least partly covering the ompA

RBS. Base pairing to the most 5’ coding region has been shown to block ribosome entry

similarly to direct pairing at the Shine-Dalgarno sequence, although it is not clear whether

the exact pairing position has an influence on the regulation strength [43, 149]. At least for

the top 15 sRNA variants, this seems not to be the case, as the three variants pairing at the

RBS include both the strongest and the weakest repressor (#8 and #1, respectively; see red

dots in Fig. 4.4A).

Strength of base pairing

Previous studies have shown a linear correlation between the strength of target regulation and
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the free energy of duplex formation [131, 262], while others doubt that thermodynamics are

solely responsible for variations in target regulation strength [31, 39]. For ompA repression

by the top 15 sRNA variants, no dependency on the strength of the sRNA-mRNA duplex

was observed (Fig. 4.4B). Almost all base pairings showed similar free energy values between

-15 and -21 kcal/mol. The only exception is variant #1, for which the only predicted base

pairing sites exhibits a very small change in free energy (-8 kcal/mol). At the same time, the

variant shows the weakest ompA repression. However, experimental mutational data would

be necessary to determine (i) if the predicted base pairing is indeed the true site of RNA-

RNA duplex formation and (ii) if the mild OmpA repression is due to the weak binding and

could e.g. be increased by strengthening the duplex.

Mechanistic properties of the individual variants

A variety of other factors potentially influencing the regulatory outcome of ompA binding

could not be studied experimentally within the publication presented in chapter 3. These

include especially the mechanistic details of the respective sRNA variants. It is for instance

unclear if blocked ompA translation initiation is followed by mRNA decay for some or all

sRNA variants. If so, it is also unknown if the sRNAs would act by coupled degradation

and be turned over together with the ompA mRNA, as it has been shown for other sRNAs

[197, 102]. If some variants were instead recycled after ompA repression, they could establish

a tighter target regulation despite lower sRNA abundance. For instance, variant #3 is the

most weakly expressed sRNA, but still shows the third strongest ompA repression (chapter

3, Fig. 6B).

Potential additional targets

As multi-targeting is a common feature of native sRNAs [21, 298, 39], it would not be surpris-

ing if the synthetic sRNA variants controlled multiple targets, too. Such additional targets

would most likely affect ompA repression indirectly, for example by competing for the shared

regulator. However, as the top 15 sRNAs were obtained through a strong selective pressure,

they can be expected to represent the variants which are suited best to survive the ethanol

treatment. Hence any additional targets should have beneficial effects, either directly be con-

stituting other factors important for ethanol resistance, or indirectly by modulating ompA

regulation to an ideal strength. Within the publication presented in chapter 3, we could

not perform additional target identification experiments for all sRNA variants. However, to

estimate the potential multi-targeting properties of the selected sRNAs, I performed biocom-

putational target predictions for the top 15 variants using TargetRNA2, a tool which can

work independently of phylogenetic conservation of the sRNA or its targets [165]. As the pre-

viously determined sRNA pairings to ompA extended into the RybB backbone, the first eight

nucleotides of the backbone were included into the prediction. The interaction site on the

target mRNA was constrained to 80 nt upstream and 20 nt downstream of the start codon,

while the minimal length of the required seed region was set to six consecutive nucleotides

[162]. The tool correctly identified the interactions with ompA for 40% of the sRNA variants
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(6/15) and predicted between six and 25 additional targets per sRNA (Fig. 4.4C). Of the

166 targets predicted in total for any of the top 15 sRNAs, about one quarter (41/166) was

predicted for more than one sRNA (Fig. 4.4D) with ompA being the most commonly shared

target. The fraction of predicted targets that were specific to the respective sRNA ranged

from none (0/9; sRNA #9) to all targets (18/18; sRNA #6) (Fig. 4.4C). Targets predicted

up to four times included the Fe-S cluster regulator iscR (involved in pathogenesis of V.

vulnificus [185] and in the oxidative stress response of Pseudomonas aeruginosa [287]), the

tmRNA-binding protein smpB [223], several metabolic proteins and some uncharacterized

genes. However, no obvious functional connections to OmpA and ethanol stress could be

discovered and a gene ontology enrichment analysis [211] of all predicted targets produced

no significant results.

4.4.3 Further analysis of enriched or depleted variants

In silico analysis of the top 50 sRNA variants

Our results from the top 15 sRNA variants indicated that ompA is the primary target of the

selected library and base pairing occurs predominantly in the 5’ CDS. To evaluate whether these

findings also apply to less strongly enriched variants, I extended the analysis to the top 50 sRNAs,

which collectively account for 73% of the complete sRNA library after the third selection round

(see appendix 6.3 for sRNA sequences). Indeed, base pairing predictions using the full ompA 5’

UTR and the first 15 codons as input for the RNAhybrid tool [277] suggested ompA binding for

all of the additional 35 sRNA variants (Fig 4.5A). Again, the majority of the sRNAs (20/35)

were predicted to bind to the first few codons of the ompA CDS, but binding around the RBS

(14/35 = 40%) was more common than in the top 15 variants (3/15 = 20%). Base pairing seems

to predominantly occur at these two regions either upstream or downstream of the start codon,

although a few pairings are predicted at the very 5’ end of the mRNA (Fig. 4.5A). The strength of

the predicted duplex shows no correlation with the rank of the respective sRNA (sorted by sRNA

frequency, Fig. 4.5B) and neither does the position of base pairing (indicated by the dot color in

Fig. 4.5B), suggesting that other factors determine the variation in sRNA enrichment. For a few

variants, more than one potential binding site was predicted on ompA, which are then individually

counted for Fig. 4.5A and represented by multiple dots for the same sRNA in Fig 4.5B.

The consensus sequence generated from the top 50 sRNA genes (Fig. 4.5C) differs slightly from

the one of the top 15 sRNAs (chapter 3, Fig. EV5B), reflecting the more diverse binding sites on

the ompA mRNA. Half of the top 15 variants pair to ompA at the very same position, binding the

same GCGGC nucleotide stretch with their very 5’ end and thereby strongly influencing the top

15 consensus towards the complementary GCCGC sequence at sRNA positions 1 to 5. In contrast,

base pairing of the top 50 variants is initiated at 19 different positions, which reduces the influence

of a single sequence stretch on the overall consensus motif. There is generally still a preference of

G and C over A, probably due to the stronger base pairing capacity of G-C pairs, while the high

frequency of T stretches most likely reflects the presence of multiple poly-A sequences within the
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Figure 4.5: Characteristics of the 50 most strongly enriched sRNA variants upon
ethanol stress. (A) Predicted binding sites of sRNA variants 1-15 (grey) and 16-
50 (blue) on the ompA mRNA. Numbers indicate positions relative to the A of the
ompA start codon. Top: Full ompA mRNA from the TSS to the 15th codon. Bottom:
Zoom on the ompA TIR, the start codon is highlighted in yellow. (B) The hybridization
energy of the predicted sRNA-mRNA duplexes is plotted against the rank of the re-
spective variant in the selected library sorted by sRNA frequency. Dot color represents
the position of the predicted pairing at the ompA RBS (grey), coding sequence (blue)
or upstream in the 5’ UTR (yellow). (C) Consensus motif of the top 50 sRNA vari-
ants. (D) Nucleotide content at the 3’ flanking position of the predicted sRNA-mRNA
duplexes and within the ompA TIR.

ompA translation initiation region.

It has been reported previously for the native Salmonella RybB that mRNAs often exhibit a

flanking adenosine 3’ to the base pairing site [249], reminiscent of the flanking A in eukaryotic

miRNA targets [25]. Examining the ompA-sRNA pairings for the top 50 variants showed that a

flanking A indeed appears significantly more often than any of the other three nucleotides (Fig.

4.5D). However, almost all predicted pairings are in the ompA translation initiation region, which

is generally rich of adenosines. When the 3’ flanking positions of the duplexes are compared to the

overall nucleotide content of the ompA region in which they occur, no enrichment of a particular

nucleotide is detectable. Still it cannot be ruled out that the ompA TIR might be especially

prone to sRNA-based regulation because of the abundance of potential flanking A’s. Due to the

observed limitation on a narrow binding region on a single mRNA target, the ethanol stress-

selected sRNA library cannot contribute substantially to the question of the necessity of a 3’ A

for sRNA binding. In contrast, the 24 MicV and VrrA base pairings reported in this publication

correspond to 16 different targets (Fig. S3 in chapter 3) and show a 3’ flanking A for 14 base

pairings. This indicates that 3’ adenosines are probably not strictly necessary for sRNA pairing,

but are nevertheless over-represented compared to other nucleotides.
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Derivatives of enriched sRNA variants

Base pairing by trans-encoded sRNAs is often imperfect involving bulges and unpaired nucleotides

[257, 31, 251, 39]. In this regard it is interesting to note that only some synthetic sRNA variants

are specifically enriched, whereas very similar ones are not selected, although they might pair to

ompA equally well or even better. To study this effect along a representative example, I analyzed

the relative sRNA enrichment of sRNA #2 and any of the 27 variants that differ in one of the

nine randomized positions (Fig. 4.6A). The original variant is ranked on position 2 when sRNAs

are sorted by frequency and is enriched ~7.300-fold compared to the initial, unselected library.

In contrast, none of the variants that differ in only one nucleotide is enriched more than 15-fold.

To compare the strength of ompA binding, I predicted the base pairings for two selected variants

that base pair either better (green) or worse (red) than the original #2 variant (blue) (Fig. 4.6B)

and calculated their hybridization energy (Fig. 4.6C). Although the calculated strength of pairing

to ompA differs almost two-fold between the green variant (-22.9 kcal/mol) and the red variant

(-12.5 kcal/mol), both are very similarly enriched to an only mild extent (3.3-fold and 3.4-fold,

respectively).

Without experimental data on the regulatory properties of such closely related variants, any

considerations of potential reasons for their different enrichment can only be speculative. They

could differ in their stability and expression levels or in the extent of OmpA protein repression.

However, at least for the top 15 sRNA variants, neither sRNA levels, nor base pairing strength or

OmpA protein levels could explain their differential enrichment (Fig. 4.4). Seed mutations might

also establish or interrupt pairing to unknown additional targets, thereby rewiring a possible regu-

latory network that is needed in a very specific state to cause high enrichment of the corresponding

sRNA variant. Additionally, stochastic events during the first selection round might lead to a bot-

tleneck effect and randomly enrich one potential regulator over another, although both would have

had comparably beneficial effects on cell survival. This initial differential enrichment would then

be amplified during the next two selection rounds, giving rise to the observed strong differences in

frequency of very similar sRNA variants.

4.4.4 A single mRNA target responsible for stress relieve

The results presented above and in chapter 3 identified ompA as the key target for ethanol resistance

in V. cholerae. In wild-type cells, ethanol stress induces MicV and VrrA through the σvE response,

which in turn repress ompA. In rpoE-deficient cells, sRNA transcription and ompA regulation are

abolished and cell survival upon ethanol exposure is strongly reduced. The crucial role of ompA

repression is emphasized by the fact that after an unbiased selection from ~250.000 sRNA variants,

all of the 50 most abundant variants are predicted to base pair to ompA (Fig. 4.5A) and the top

15 variants have been experimentally shown to reduce OmpA protein levels (chapter 3, Fig. 6B).

Bacterial ethanol tolerance is an important factor in both industrial and medical settings, where

it is either a desired feature during microbial production processes or a problem for successful

disinfection and food safety [92, 156, 159, 169]. Still the molecular mechanisms of ethanol toxicity
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Figure 4.6: Single nucleotide variants of a highly enriched sRNA. (A) Relative sRNA en-
richment of 27 variants of sRNA #2. Variants were obtained by individually replacing
the nine positions of the randomized seed by any of the three other nucleotides. (B)
Base pairing to the ompA coding sequence of the sRNA #2 (blue), a variant with the C
at position 8 replaced by G (C8G; green) or a variant with the C at position 3 replaced
by G (C3G; red). (C) Library rank by sRNA frequency for the three sRNAs from (B)
and hybridization energy for their respective base pairings to ompA.

remain incompletely understood. Most intensively studied is the ethanol-induced increase in cell

envelope permeability [150, 302]. Moreover, ethanol has been shown to target the central cellular

processes of transcription and translation in E. coli, causing aberrant transcription termination,

ribosome stalling and translational errors [127]. This could be connected to the SmpB protein

of the tmRNA system [223] being predicted as target for multiple synthetic sRNA variants (see

section 4.4.2). How reduced OmpA levels can mechanistically protect from ethanol toxicity is yet

to be investigated. It might be involved in ethanol uptake, as an E. coli ΔompA mutant showed

slightly decreased intracellular ethanol concentrations [355]. Alternatively, OmpA itself might be

altered upon ethanol exposure, e.g. becoming permeable to other toxic compounds.

While sRNA-mediated opmA repression strongly contributed to ethanol resistance in our exper-

imental setting, several observations indicated it might not be the only relevant factor: (i) Deleting

the ompA gene in theΔrpoE background, thereby bypassing the need for the σvE-dependent sRNAs,

increased cell survival ~10.000-fold. Nevertheless, survival was still ~4-fold reduced in the ΔrpoE

ΔompA double mutant compared to the wild-type or the ΔompA single mutant, indicating that

additional σvE targets might be involved in ethanol resistance. (ii) Furthermore, deletion of micV

and vrrA in a wild-type background reduced ethanol resistance only ~10-fold and a similar decrease

was observed for the ompA scr mutant, which can no longer base pair to the sRNAs. Thus, the

effect of blocking sRNA-mediated ompA repression is much less severe when the remaining σvE

response is functionally intact. Together with the potential role of OmpA in the import of ethanol

(or another toxic compound), this suggests the following hypothesis: in wild-type cells, uptake of

ethanol or another substance is prevented by ompA repression through MicV and VrrA. Inhibiting

this regulation reduces cell survival, but the effects of toxicity can still be counterbalanced by other

members of the σvE regulon. In contrast, rpoE-deficient cells strongly suffer upon ethanol exposure,

104



4.5 Summary and Outlook

as they can neither reduce the uptake nor mitigate the damage. Deleting ompA or suppressing

ompA translation by direct sRNA over-expression strongly decreases intracellular concentrations

of ethanol or another compound, thereby reducing but not completely abolishing the need for the

other protective σvE functions.

4.4.5 Specialized sequence domains within sRNAs

Despite originating from different bacterial species, MicV and VrrA from V. cholerae share a con-

served seed domain with RybB from E. coli and Salmonella. RybB is also able to protect the V.

cholerae ΔrpoE mutant from ethanol stress (chapter 3, Figs. 4A and 4D). This prompted us to

search for the conserved seed sequence motif in our selected sRNA library and we detected both

the original RybB variant as the 11th most strongly enriched sRNA variant and a ~140-fold enrich-

ment of the shared seed sequence motif (chapter 3, Figs. 5C and EV5A). These results indicate

that functionally analogous sRNAs might have evolved shared seed domains despite being phylo-

genetically unrelated and encoded in different species. Such a connection would be reminiscent

of the families of protein domains that can be inferred bioinformatically from protein structure

predictions [155, 241]. A highly similar seed region has also been reported for the DapZ and GcvB

sRNAs, which both recognize the same binding sites on their shared targets oppA and dppA [305,

61]. These observations suggest a functional classification of sRNAs by their seed regions .

On the other hand, the conserved MicV-like seed sequence is not present in MicA and MicL,

the other two σvE-dependent sRNAs in E. coli [252, 126]. Both repress similar targets as MicV

and VrrA, but neither the sRNAs themselves nor their target interactions are conserved at the

sequence level [118, 126]. Similarly, functional homologs of the iron-responsive RyhB sRNA have

been described in many different species [198, 80, 109, 167, 115]. They exert comparable functions

in iron homeostasis and regulate some conserved targets, but the regulators themselves share only

little or no sequence conservation [292, 63].

Taken together, these observations suggest that the concept of "seed families" might be limited

to act in one direction: detection of a seed region that is very similar to that of an existing sRNA

can indicate a functional connection, but the absence of such a conserved seed does not exclude

functional analogy.

4.5 Summary and Outlook

The present work expands the so far limited knowledge on the sRNA repertoire of V. cholerae by

the characterization of several candidate sRNAs. Additionally, it provides valuable resources to

the field of research on Vibrio bacteria, such as the Term-seq data on RNA 3’ termini, the analysis

of potential σvE-dependent promoters, and the genome-wide identification of RNase E sites. At the

same time, our findings point towards future directions of research. Comparison of the RNase E

activity in V. cholerae to the previously determined cleavage patterns in Salmonella could identify

conservation of cleavage sites, which would likely serve specific regulatory functions instead of just
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contributing to bulk RNA turnover. The data on RNA 3’ ends could be combined with the previous

data on transcriptional start sites to obtain full transcript annotations of the V. cholerae genome,

which would increase the accuracy of transcriptomic analyses in this organism.

The post-transcriptional autoregulation exerted by OppZ and CarZ is the first report of a solely

RNA-based feedback circuit that is not dependent on the action of additional transcription factors.

It represents a novel implementation of the concept of negative autoregulation, a well-studied

network motif which is found ubiquitously throughout biology. Many questions arise from the

initial characterization of the sRNA-dependent autoregulation: How does it affect the propagation

of noise and phenotypic heterogeneity of the genes under control? How does it compare to TF-

based autoregulation with regard to the dynamics and robustness of gene expression? What

are the minimal molecular determinants to transfer the autoregulatory sRNA as an orthogonal

module to heterologous genes? Is Rho-dependent feedback within the target gene only employed to

increase the strength of target repression by using a second mechanism in addition to translational

inhibition? Or is it necessary to avoid overshooting sRNA expression, as it limits production of

the regulator after successful target regulation? Answers to these question will contribute to both

fundamental research on regulatory networks and its application in the context of synthetic biology

and engineered feedback loops.

Our work on the sRNAs involved in the envelope stress response of V. cholerae identified the

OmpA porin as a critical factor during ethanol stress, but the molecular basis for its importance

is yet unclear. The synthetic sRNA library that was used to identify the ompA repression proved

to be a versatile tool to study sRNA-target interactions and their underlying molecular features.

Its application to other microbial phenotypes might yield a more diverse target spectrum of the

enriched sRNA variants and thus allow a systematic comparison of different sRNA-target pairs

and their contribution to the studied phenotype. To facilitate the identification of mRNA targets

of the sRNA library, the RIL-seq protocol could be modified to specifically amplify only those

sRNA-mRNA chimera that include the synthetic library scaffold. This would allow the simultane-

ous detection of enriched sRNA variants and their targets without prior knowledge on potentially

involved regulatory pathways. It would circumvent the limitations in bioinformatic target predic-

tion for the synthetic sRNAs that naturally lack conservation and it would greatly reduce the time

and costs compared to target identification experiments for all individual sRNA variants.
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Figure 1. TIER-seq analysis of V. cholerae. (A) V. cholerae wild-type and rneTS strains were grown at 30˚C to stationary phase (OD600 of 2.0). Cultures

were divided in half and continuously grown at either 30˚C or 44˚C for 60 min. Cleavage patterns of 5S rRNA and 3’ UTR-derived MicX were analyzed

on Northern blots. Closed triangles indicate mature 5S or full-length MicX, open triangles indicate the 9S precursor or MicX processing products. (B, C,

D) Biological triplicates of V. cholerae wild-type and rneTS strains were grown at 30˚C to late exponential phase (OD600 of 1.0). Cultures were divided in

half and continuously grown at either 30˚C or 44˚C for 60 min. Isolated RNA was subjected to RNA-seq and RNase E cleavage sites were determined as

described in the materials and methods section. (B) Number of cleavage sites detected per gene. (C) Classification of RNase E sites by their genomic

location. (D) The RNase E consensus motif based on all detected cleavage sites. The total height of the error bar is twice the small sample

correction.
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Figure 1—figure supplement 1. Conservation of RNase E between E. coli and V. cholerae. Sequence alignment of the first 80 N-terminal amino acids

of RNase E from E. coli and V. cholerae. The temperature-sensitive rne-3071 mutation changing a leucine to phenylalanine at position 68 is indicated.
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Figure 1—figure supplement 2. TIER-Seq read mapping statistics. TIER-seq was performed as described in Figure 1. (A) Total number of raw cDNA

reads obtained for all samples, showing the fractions of uniquely aligned reads (dark green), multiply aligned reads (light green) or unaligned reads

(grey). R1-R3 indicate the biological triplicates. (B) Similarity of 5’ ends profiles of uniquely aligned reads, obtained by comparison of all detected 5’ end

positions between the respective cDNA libraries. Colored rectangles show the Pearson correlation coefficient corresponding to the scale bar on the

right. (C) Global analysis of 5’ profiles at the permissive (30˚C, left) and non-permissive temperature (44˚C, right). Plots show average coverage levels of

5’ read ends and the respective log2 fold change in wild-type samples compared to rneTS samples. Candidate RNase E cleavage sites were determined

as positions enriched �3 fold in the wild-type (p-value<0.05) and are shown in dark blue.
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Figure 1—figure supplement 3. Position and characteristics of RNase E cleavage sites. TIER-seq was performed as described in Figure 1. (A)

Frequency of RNase E sites or the same number of randomly selected genome positions dependent on their relative position to start codons (left) and

stop codons (right). (B) AU content around the RNase E cleavage sites. The 95% confidence interval is indicated in light blue. (C) Degree of RNA

structure around RNase E cleavage sites. Minimal folding energy (MFE) was calculated in five nt steps for each 25 nt window. The 95% confidence

interval is indicated in light blue.
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Figure 1—figure supplement 4. RNase E-mediated maturation of sRNAs from 3’ UTRs. V. cholerae wild-type and rneTS strains were grown at 30˚C to

stationary phase (OD600 of 2.0). Cultures were divided in half and continuously grown at either 30˚C or 44˚C for 30 min. Cleavage patterns of 3’ UTR-

derived sRNAs were monitored on Northern blots. The genomic locations and relative orientations are shown above the gels. Genes are shown in gray;

sRNAs are shown in blue. Filled triangles indicate the size of mature sRNAs. 5S rRNA served as loading control.
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Figure 1—figure supplement 5. RNase E-mediated maturation of sRNAs from IGRs. V. cholerae wild-type and

rneTS strains were grown at 30˚C to stationary phase (OD600 of 2.0). Cultures were divided in half and continuously

grown at either 30˚C or 44˚C for 30 min. Cleavage patterns of intergenic sRNAs were monitored on Northern

blots. The genomic locations and relative orientations are shown above the gels. Genes are shown in gray; sRNAs

are shown in blue. Filled triangles indicate the size of unprocessed sRNAs. 5S rRNA served as loading control.
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Figure 1—figure supplement 6. Expression of RNase E-independent sRNAs. V. cholerae wild-type and rneTS

strains were grown at 30˚C to early exponential phase (OD600 of 0.2; RyhB and Spot 42) or to stationary phase

(OD600 of 2.0; VqmR). Cultures were divided in half and continuously grown at either 30˚C or 44˚C for 30 min.

Cleavage patterns of sRNAs without detectable RNase E cleavage sites were monitored on Northern blots. The

genomic locations and relative orientations are shown above the gels. Genes are shown in gray; sRNAs are shown

in blue. Filled triangles indicate the size of full-length sRNAs. 5S rRNA served as loading control.
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Figure 2. OppZ is produced from the oppABCDF 3’ end. (A) Top: Genomic organization of oppABCDF and oppZ. Bottom: Alignment of oppZ

sequences, including the last codons of oppF, from various Vibrio species. The oppF stop codon, the RNase E cleavage site and the Rho-independent

terminator are indicated. (B) V. cholerae wild-type and rneTS strains were grown at 30˚C to stationary phase (OD600 of 2.0). Cultures were divided in half

and continuously grown at either 30˚C or 44˚C for 30 min. OppZ synthesis was analyzed by Northern blot with 5S rRNA as loading control. The triangle

indicates the size of mature OppZ. (C) Protein and RNA samples were obtained from V. cholerae oppA::3XFLAG oppB::3XFLAG strains carrying either

the native oppA promoter or the inducible pBAD promoter upstream of oppA. Samples were collected at the indicated OD600 and tested for OppA

and OppB production by Western blot and for OppZ expression by Northern blot. RNAP and 5S rRNA served as loading controls for Western and

Northern blots, respectively. Lanes 1–8: Growth without L-arabinose. Lanes 9–12: Growth with either H2O (-) or L-arabinose (+) (0.2% final conc.). (D) V.

cholerae wild-type (control) and hfq::3XFLAG (Hfq-FLAG) strains were grown to stationary phase (OD600 of 2.0), lysed, and subjected to

immunoprecipitation using the anti-FLAG antibody. RNA samples of lysate (total RNA) and co-immunoprecipitated fractions were analyzed on Northern

blots. 5S rRNA served as loading control.
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Figure 2—figure supplement 1. Hfq dependence of OppZ processing. (A) Schematic description of the analyzed

OppZ variants. OppZ was produced natively from the genomic opp locus, expressed as mature sRNA from a

plasmid (pOppZ) or cleaved from a plasmid-encoded precursor transcript including the 3’ end of oppF

(pPrecursor). Expression of both plasmid-based oppZ variants was driven by a constitutive promoter. (B) V.

cholerae wild-type, DoppZ, Dhfq or Dhfq DoppZ strains carrying oppA::3XFLAG oppB::3XFLAG genes and a

control plasmid or the indicated OppZ expression plasmid were grown to stationary phase (OD600 of 2.0). RNA

samples were collected and OppZ processing was analyzed by Northern blot. 5S rRNA served as loading

control.
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Figure 2—figure supplement 2. Hfq dependence of

OppZ stability. V. cholerae wild-type and Dhfq strains

were grown to early stationary phase (OD600 of 1.5) and

treated with rifampicin to terminate transcription. RNA

samples were obtained at the indicated time points

and OppZ transcript levels were monitored by

Northern blot and normalized to 5S rRNA levels as

loading control. Error bars represent the SD of three

biological replicates.
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Figure 3. Feedback autoregulation at the suboperonic level. (A) Volcano plot of genome-wide transcript changes in response to inducible OppZ over-

expression. Lines indicate cut-offs for differentially regulated genes at 3-fold regulation and FDR-adjusted p-value�0.05. Genes with an FDR-adjusted

p-value<10�14 are indicated as droplets at the top border of the graph. (B) Predicted OppZ secondary structure and base-pairing to oppB. Arrows

indicate the mutations tested in (C) and (D). (C) E. coli strains carrying a translational reporter plasmid with the oppAB intergenic region placed

between mKate2 and gfp were co-transformed with a control plasmid or the indicated OppZ expression plasmids. Transcription of the reporter and

oppZ were driven by constitutive promoters. Cells were grown to OD600 = 1.0 and fluorophore production was measured. mKate and GFP levels of

strains carrying the control plasmid were set to 1. Error bars represent the SD of three biological replicates. (D) Single-plasmid regulation was measured

by inserting the indicated oppZ variant into the 3’ UTR of a translational oppB::gfp fusion. Expression was driven from a constitutive promoter. E. coli

strains carrying the respective plasmids were grown to OD600 = 1.0 and GFP production was measured. Fluorophore levels from control fusions without

an sRNA gene were set to one and error bars represent the SD of three biological replicates. OppZ expression was tested by Northern blot; 5S rRNA

served as loading control.
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Figure 3—figure supplement 1. Pulse expression of OppZ reduces oppBCDF transcript levels. (A) V. cholerae carrying pBAD1K-oppZ (pOppZ) or a

control plasmid (pCtrl) were grown in biological triplicates to exponential phase (OD600 of 0.5) and oppZ expression was induced by L-arabinose (0.2%

final conc.). RNA samples were collected after 15 min and analyzed for OppZ levels by Northern blot; 5S rRNA served as loading control. (B) Samples

from (A) were subjected to RNA-seq and average coverage of the opp operon is shown for one representative replicate. (C) V. cholerae DoppZ carrying

pBAD1K-oppZ or a control plasmid were grown to late exponential phase (OD600 of 1.0) and oppZ expression was induced by L-arabinose (0.2% final

conc.) for 15 min. mRNA levels of oppABCDF were analyzed by qRT-PCR. Bars show mRNA levels upon OppZ induction compared to the control; error

bars represent the SD of three biological replicates. (D) V. cholerae DoppZ strains carrying either pBAD1K-ctrl (pCtrl) or pBAD1K-oppZ (pOppZ) were

grown to late exponential phase (OD600 of 1.0) and treated with L-arabinose (0.2% final conc.) to induce sRNA expression. After 15 min of induction,

rifampicin was added to terminate transcription. RNA samples were obtained at the indicated time points and oppB transcript levels were monitored

by qRT-PCR. Error bars represent the SD of three biological replicates.
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Figure 3—figure supplement 2. Hfq-dependent, post-transcriptional repression of OppBCDF by OppZ. (A) E. coli Dhfq strains carrying the

translational oppB-gfp reporter plasmid and either a control plasmid or the indicated OppZ expression plasmids were grown to OD600 = 1.0 and

fluorophore production was measured. GFP levels of the control strain were set to 1. Error bars represent the SD of three biological replicates. (B) E.

coli wild-type or Dhfq strains carrying the translational oppB-gfp reporter plasmid and either a control plasmid or the indicated OppZ expression

plasmids were grown to OD600 = 1.0. RNA samples were analyzed for OppZ levels by Northern blot; 5S rRNA served as loading control. (C) E. coli

strains carrying translational reporter plasmids with the indicated parts of the opp operon placed between mKate2 and gfp were co-transformed with a

control plasmid or the respective OppZ expression plasmids. Transcription of the reporter and oppZ were driven by constitutive promoters. Cells were

grown to OD600 = 1.0 and fluorophore production was measured. mKate and GFP levels of strains carrying the control plasmid were set to 1. Error bars

represent the SD of three biological replicates.
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Figure 3—figure supplement 3. Mutational analysis of the RNase E site in oppZ. (A) Predicted structure of the

OppZ sRNA. The M2 mutation blocking cleavage by RNase E is indicated. (B) E. coli strains carrying the empty

pXG10-SF plasmid or derivatives with the indicated oppZ gene in the 3’ UTR of gfp were grown to OD600 = 1.0.

RNA samples were analyzed for OppZ processing by Northern blot; 5S rRNA served as loading control.
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Figure 4. Translational control of OppZ synthesis. (A) Schematic of the analyzed OppZ variants containing the native stem loop sequence (produced

from the genomic oppZ locus) or a mutated stem loop sequence (‘regulator OppZ’ produced from a plasmid-based constitutive promoter). (B) V.

cholerae oppA::3XFLAG oppB::3XFLAG carrying a control plasmid (pCMW-1) or a plasmid expressing regulator OppZ (pMD194, pMD195) were grown

to stationary phase (OD600 of 2.0). OppA and OppB production were tested by Western blot and expression of native OppZ and regulator OppZ was

monitored on Northern blot using oligonucleotides binding to the respective loop sequence variants. RNAP and 5S rRNA served as loading controls for

Western blot and Northern blot, respectively. (C) The oppB start codon was mutated to ATC in an oppA::3XFLAG oppB::3XFLAG background. V.

cholerae strains with wild-type or mutated oppB start codon were grown in LB medium. Protein and RNA samples were collected at the indicated

OD600 and tested for OppA and OppB production by Western blot and for OppZ expression by Northern blot. RNAP and 5S rRNA served as loading

controls for Western and Northern blots, respectively.
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Figure 4—figure supplement 1. Translational control of OppZ synthesis. (A) V. cholerae wild-type and oppB ATC

strains were grown to stationary phase (OD600 of 2.0) and treated with rifampicin to terminate transcription. RNA

samples were obtained at the indicated time points and OppZ transcript levels were monitored by Northern blot

and normalized to 5S rRNA levels as loading control. Error bars represent the SD of three biological replicates. (B)

V. cholerae wild-type and oppB ATC strains carrying either a control plasmid (pCtrl) or an inducible oppB

complementation plasmid (pOppB) were grown to late exponential phase (OD600 of 1.0) and oppB expression was

induced by the addition of L-arabinose (0.2% final conc.). Protein and RNA samples were obtained after 60 min

and tested for OppA and OppB production by Western blot and for OppZ expression by Northern blot. RNAP

and 5S rRNA served as loading controls for Western and Northern blots, respectively.
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Figure 5. OppZ promotes transcription termination through Rho. (A) V. cholerae oppA::3XFLAG oppB::3XFLAG oppF::3XFLAG strains with wild-type

or mutated oppB start codon were grown to early stationary phase (OD600 of 1.5). Cultures were divided in half and treated with either H2O or BCM (25

mg/ml final conc.) for 2 hr before protein and RNA samples were collected. OppA, OppB and OppF production were tested by Western blot and OppZ

expression was monitored by Northern blot. RNAP and 5S rRNA served as loading controls for Western and Northern blots, respectively. (B) Biological

triplicates of V. cholerae oppA::3XFLAG oppB::3XFLAG strains with wild-type or mutated oppB start codon were treated with BCM as described in (A).

oppABCDF expression in the oppB start codon mutant compared to the wild-type control was analyzed by qRT-PCR. Error bars represent the SD of

three biological replicates. (C) Triplicate samples from (B) were subjected to Term-seq and average coverage of the opp operon is shown for one

representative replicate. The coverage cut-off was set at the maximum coverage of annotated genes. (D) V. cholerae oppA::3XFLAG oppB::3XFLAG

strains carrying a control plasmid (pMD397) or a plasmid expressing regulator OppZ (pMD398) were treated with BCM as described in (A). OppA and

OppB production were tested by Western blot and expression of native OppZ and regulator OppZ was monitored on Northern blot using

oligonucleotides binding to the respective loop sequence variants. RNAP and 5S rRNA served as loading controls for Western and Northern blots,

respectively. (E) Levels of oppABCDF in the experiment described in (D) were analyzed by qRT-PCR. Error bars represent the SD of three biological

replicates.
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Figure 6. Influence of OppBCDF translation on OppZ expression. (A) The depicted mutations were individually

inserted into the opp locus to inactivate the start codons of oppB, oppC, oppD or oppF or to insert STOP codons

at the positions 2, 15, 65, 115 or 215 of oppB. (B) V. cholerae oppA::3XFLAG oppB::3XFLAG strains with the

described opp mutations were grown: wild-type (lane 1), the oppB start codon mutated (lane 2), a STOP codon

inserted at the 2nd, 15th, 65th, 115th or 215th codon of oppB (lanes 3–7) or mutated start codons of oppC, oppD or

oppF (lanes 8–10). At stationary phase (OD600 of 2.0), protein and RNA samples were collected and tested for

OppA and OppB production by Western blot and for OppZ expression by Northern blot. RNAP and 5S rRNA

served as loading controls for Western and Northern blots, respectively.

Hoyos et al. eLife 2020;9:e58836. DOI: https://doi.org/10.7554/eLife.58836 19 of 26

Research article Chromosomes and Gene Expression Microbiology and Infectious Disease



Figure 7. CarZ is another autoregulatory sRNA from V. cholerae. (A) Top: Genomic context of carAB and carZ. Bottom: Alignment of carZ sequences,

including the last codons of carB, from various Vibrio species. The carB stop codon, the RNase E cleavage site and the Rho-independent terminator are

Figure 7 continued on next page
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Figure 7 continued

indicated. (B) Predicted CarZ secondary structure and base-pairing to carA. Arrows indicate the single nucleotide mutations tested in (C). (C) Single-

plasmid feedback regulation of carA by CarZ was measured by inserting the indicated carZ variant into the 3’ UTR of a translational carA::gfp fusion.

Expression was driven from a constitutive promoter. E. coli strains carrying the respective plasmids were grown to OD600 = 1.0 and GFP production was

measured. Fluorophore levels from control fusions without an sRNA gene were set to one and error bars represent the SD of three biological replicates.

CarZ expression was tested by Northern blot; 5S rRNA served as loading control. (D) Protein and RNA samples were obtained from V. cholerae

carA::3XFLAG carB::3XFLAG carrying either the native carA promoter or the inducible pBAD promoter upstream of carA. Samples were collected at the

indicated OD600 and tested for CarA and CarB production by Western blot and for CarZ expression by Northern blot. RNAP and 5S rRNA served as

loading controls for Western and Northern blots, respectively. Lanes 1–8: Growth without L-arabinose. Lanes 9–12: Growth with either H2O (-) or L-

arabinose (+) (0.2% final conc.). (E) V. cholerae carA::3XFLAG carB::3XFLAG strains carrying a control plasmid or a plasmid expressing a CarZ variant

with a mutated stem loop (regulator CarZ) were grown to late exponential phase (OD600 of 1.0). CarA and CarB production were tested by Western blot

and expression of native CarZ or regulator CarZ was monitored on Northern blot using oligonucleotides binding to the respective loop sequence

variants. RNAP and 5S rRNA served as loading controls for Western blot and Northern blot, respectively. (F) V. cholerae carA::3XFLAG carB::3XFLAG

strains with the following carA or carB mutations were grown: wild-type (lane 1) or a STOP codon inserted at the 2nd codon of carA (lane 2) or carB (lane

3), respectively. At late exponential phase (OD600 of 1.0), protein and RNA samples were collected and tested for CarA and CarB production by

Western blot and for CarZ expression by Northern blot. RNAP and 5S rRNA served as loading controls for Western and Northern blots, respectively.
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Figure 7—figure supplement 1. Hfq-dependent, post-transcriptional repression of CarA and CarB by CarZ. (A) Predicted CarZ secondary structure

and base-pairing to carA. Arrows indicate the single nucleotide mutations tested in (B). (B) E. coli strains carrying translational reporter plasmids for

carA::gfp or carAB::gfp were co-transformed with a control plasmid or the indicated CarZ expression plasmids. Transcription of the reporter and carZ

were driven by constitutive promoters. Cells were grown to OD600 = 1.0 and fluorophore production was measured. GFP levels of strains carrying the

control plasmid were set to 1. Error bars represent the SD of three biological replicates. (C) V. cholerae wild-type (control) and hfq::3XFLAG (Hfq-FLAG)

strains were grown to stationary phase (OD600 of 2.0), lysed, and subjected to immunoprecipitation using the anti-FLAG antibody. RNA samples of

lysate (total RNA) and co-immunoprecipitated fractions were analyzed on Northern blots. 5S rRNA served as loading control. (D) E. coli Dhfq strains

carrying the translational carA::gfp reporter plasmid and either a control plasmid or the indicated CarZ expression plasmids were grown to OD600 = 1.0

and fluorophore production was measured. GFP levels of the control strain were set to 1. Error bars represent the SD of three biological replicates. (E)

E. coli wild-type or Dhfq strains carrying the translational carA::gfp reporter plasmid and either a control plasmid or the indicated CarZ expression

plasmids were grown to OD600 = 1.0. RNA samples were analyzed for CarZ levels by Northern blot; 5S rRNA served as loading control.
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Figure 7—figure supplement 2. CarZ induces carAB degradation. (A, B) V. cholerae DcarZ strains carrying either

pBAD1K-ctrl (pCtrl) or pBAD1K-carZ (pCarZ) were grown to late exponential phase (OD600 of 1.0) and treated with

L-arabinose (0.2% final conc.) to induce sRNA expression. After 15 min of induction, rifampicin was added to

terminate transcription. RNA samples were obtained at the indicated time points and transcript levels of carA (A)

and carB (B) were monitored by qRT-PCR. Error bars represent the SD of three biological replicates.
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Figure 8. Modified kinetics of gene induction by autoregulatory OppZ. (A) Expression of the opp operon including the oppA::3XFLAG and

oppB::3XFLAG genes and the native oppZ gene (lanes 1–6) or an oppZ deletion (lanes 7–12) was induced from the pBAD promoter at late exponential

phase (OD600 of 1.0) by the addition of L-arabinose (0.2% final conc.). Protein and RNA samples were obtained at the indicated time points and tested

for OppA and OppB production by Western blot and for OppZ expression by Northern blot. RNAP and 5S rRNA served as loading controls for

Western and Northern blots, respectively. (B, C) Quantification of OppA (B) or OppB (C) levels from the experiment in (A); error bars represent the SD

of three biological replicates. Data are presented as fold regulation of OppA or OppB in DoppZ compared to the wild-type. Dashed lines in (C) indicate

the time points of half-maximum OppB expression.
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Figure 8—figure supplement 1. OppZ-dependent repression of OppA and OppB protein levels. (A) V. cholerae wild-type and DoppZ strains carrying

the oppA::3XFLAG and oppB::3XFLAG genes and either a control plasmid or a constitutive OppZ expression plasmid were grown to obtain protein

and RNA samples at the indicated OD600. OppA and OppB production were analyzed by Western blot and OppZ expression was tested by Northern

blot. RNAP and 5S rRNA served as loading controls for Western and Northern blots, respectively. (B) Quantification of (A), bars show fold regulation of

OppA and OppB in DoppZ compared to the wild-type; error bars represent the SD of four biological replicates. (C) Quantification of (A), bars show fold

regulation of OppA and OppB upon OppZ overexpression in the DoppZ background compared to the wild-type control; error bars represent the SD of

four biological replicates.
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Figure 9. Model of the OppZ-dependent mechanism of opp regulation. Transcription of the oppABCDF operon initiates upstream of oppA and in the

absence of OppZ (left) involves all genes of the operon as well as OppZ. In this scenario, all cistrons of the operon are translated. In the presence of

OppZ (right), the sRNA blocks translation of oppB and the ribosome-free mRNA is recognized by termination factor Rho. Rho catches up with the

transcribing RNAP and terminates transcription pre-maturely within oppB. Consequently, oppBCDF are not translated and OppZ is not produced.
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Figure Appendix S1: MicV controls OmpT production and OMP homeostasis  

A) V. cholerae wild-type and ΔmicV strains carrying empty vector control (pCtr) or micV 

expression plasmids (pMicV) were grown in LB. At the indicated time points, protein samples 

were collected and analyzed using SDS-PAGE and Coomassie staining. A molecular weight 

marker is provided on the left (M). Bands with different intensities were analyzed by mass 

spectrometry. B) V. cholerae wild-type, ΔvrrA, ΔmicV or ΔvrrA ΔmicV (ΔΔ) strains carrying the 

ompT::3XFLAG gene were grown in LB and at the indicated stages of growth, RNA and protein 

samples were collected. RNA samples were monitored for MicV and VrrA expression on 

Northern blots. Protein samples were investigated for OmpT::3xFLAG production using 

Western blot analysis. RNAPα served as a loading control for Western blots and 5S rRNA 

served as loading control for Northern blots. C) V. cholerae wild-type, ΔvrrA, ΔmicV or ΔvrrA 

ΔmicV  strains carrying PmicV::mKate2 plasmids were cultivated in M9 minimal medium and 

at the indicated stages of growth, samples were collected and tested for mKate2 fluorescence.  

Data information: In (C), data are presented as mean ± SD, n = 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 



 

 

Appendix Figure S2: MicV and VrrA mRNA target validation 

A, B and C) V. cholerae ΔvrrA ΔmicV strains carrying either an empty vector control (control), 

pBAD-micV (MicV) or pBAD-vrrA (VrrA) were grown in LB to OD600=1.5. RNA samples were 

collected 10 min after induction with L-arabinose (0.2% final conc.) and analyzed for mRNA 

levels using RNA-seq or qRT-PCR. Targets determined by RNA-seq are depicted by arrows 

and are labelled with the fold change (white numbers). Arrows are colored according to the 

log2 transformed fold change (right scalebar). For targets validated using qRT-PCR, the 

resulting fold-change is indicated above the tested mRNA target. The targets were grouped as 

follows: regulated by both sRNAs (A), regulated only by VrrA (B) or regulated only by MicV (C). 

Data information: In (A-C), qRT-PCR data are presented as mean ± SD, n = 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Appendix Figure S3: Base-pairing interactions of MicV and VrrA with target mRNAs 

A, B and C) Prediction of base-pairing interactions of the MicV and VrrA sRNAs with their 

respective target mRNAs. The numbers indicate the position relative to the AUG start codon 

(mRNA) or the transcriptional start site (sRNA). The targets were grouped as follows: regulated 

by both sRNAs (A), regulated only by VrrA (B) or regulated only by MicV (C). 

 



 

 

Appendix Table S1: Global identification of σE-dependent promoters in V. cholerae 

Potential promotor sites in V. cholerae predicted with MEME on a motif search based on σE-

dependent promotor sites that are found in maximal distance of 50 nt to a TSS (see Appendix 

Supplementary Methods). Entries marked as “orphans” are TSS which are not associated with 

any gene, i.e. are not located 300 nt or less upstream or downstream of an ORF (see Papenfort 

et al., 2015, Figure 1B). 

 
NC_ 
002505  

Motif hit 
start 

Motif hit 
end  

Motif hit seq TSS 
position 

TSS 
strand 

TSS 
locus_tag 

TSS gene product 

13737 13764 GAAATTTAGAGAAAAAAGGAAAGTCTAA 13729 - orphan orphan 

134057 134084 TAAACGTTCTTCACAACTGGTAATCAAT 134017 - VC0140 hypothetical protein 

139822 139849 TGAACCTGTTTAAGTGATGGTGGTCATA 139855 + VC0150 RNA polymerase factor sigma-32 

142040 142067 CAAATTTATCGGCACTGTAGGTGTCGAT 142104 + VC0151 soluble pyridine nucleotide 
transhydrogenase 

163858 163885 GGAACTAGAGCAAAAAATGTTTGCCAAA 163852 - VC0165 hypothetical protein 

255476 255503 CGAACTCTATAAAATTTAGCTGTTCTGA 255435 - VC0249*,# RfbL protein 

282410 282437 CGAACTCAACAATGCCGGTTTTATCTGA 282451 + VC0276 bifunctional 
phosphoribosylaminoimidazolecarboxamide 
formyltransferase%2FIMP cyclohydrolase 

369659 369686 TGAACTTCGCTTTGAGAAGATGGTCGAA 369692 + VC0346 tRNA delta%282%29-
isopentenylpyrophosphate transferase 

477347 477374 TGAATTTTTCTGGAGTGAAGCGGTCTGA 477308 - VC0446* organic solvent tolerance protein 

491005 491032 GGCACTTTATCGGTCCACTACAGTCGAA 490998 - VC0461 hypothetical protein 

522911 522938 TGAATTTATTGGTTTTGGTTTTATCTGT 522955 + orphan orphan 

523404 523431 GGAAATAAACTTGACTTGGCTGATCATA 523444 + VC0490 hypothetical protein 

530444 530471 TGAACTTATAGATAGTTGAACGGCCTAA 530436 - VC0496 hypothetical protein 

573241 573268 TGAACCGTTTGGCGCTTTGGATGCCAAA 573275 + VC0541 sulfate ABC transporter ATP-binding 
protein 

580501 580528 GGCACCATTGAGAGTTTACGATGTCATA 580551 + VC0548 carbon storage regulator 

586889 586916 CGAACTGATTCACAAAAACAAGGTCATA 586922 + VC0554 insulinase family protease%2Finsulinase 
family protease 

598379 598406 GGAACCTTTCAGAATCACACTCGTCTAA 598413 + VC0565 protease DegS 

609707 609734 GGAACTTCCACAGATGAAAATCGTCGAA 609700 - VC0580 hypothetical protein 

743157 743184 GAACATAAACACTGATTTTGTGGTCAAA 743191 + VC0694 hypothetical protein 

757821 757848 CGAACTTTTTAAAAAACCGTGAGACTAA 757815 - VC0708*,# hypothetical protein 

772170 772197 TGAACCTTATATGAAAATTTGTTTGCAA 772227 + VC0719 DNA-binding response regulator PhoB 

803818 803845 CGAACTTTGCCCCGGCTCTGCAATCTGA 803811 - VC0751 co-chaperone HscB 

867987 868014 CGCATTTTCCGGGTTAATTGCTGCCAAA 868043 + VC0812 helicase-like protein 

916669 916696 GCAACCAAACTCAAAATTCACAGTCTCA 916662 - VC0851* small protein A 

929880 929907 TGAATTAAATCGCTTTCCTGTTGTCAGA 929861 - orphan orphan 

1063364 1063391 GAACCTTGAATATGTTGAGTCGATCAAA 1063426 + VC0997 glutaminyl-tRNA synthetase 

1114450 1114477 TGAACTCCTTCGCATAATTTCTGTCCTA 1114444 - VC1045 RNA polymerase sigma factor 

1158499 1158526 TGAATTAATTTGCCATAAAAATGTCTTA 1158493 - orphan orphan 

1169175 1169202 TCAAATTTTTTTTGTTATATTTGTCCAT 1169156 - VC1098 acetate kinase 

1301806 1301833 GGAACTCCATCGAAAACTCGAAGTCTGA 1301799 - orphan orphan 

1374686 1374713 CGAACATTTTTTGAGTGGTCGTATCAGA 1374748 + orphan orphan 

1469405 1469432 TCCACTTCTTCCTTATTATGTTATCTAT 1469364 - VC1376 GGDEF family protein 

1591531 1591558 GGAACTTTTGGAAGAATTGCTTGCCAAT 1591525 - VC1486 ABC transporter ATPase 

1591564 1591591 TGAACCAACCAACGATTTAGATATCGAA 1591525 - VC1486 ABC transporter ATPase 

1602295 1602322 GAAATGTTACTGAACAGGTGTTGTCCAA 1602328 + VC1492 hypothetical protein 

1617120 1617147 AAAACCTGTCGCTAATTTCAGTATCTGT 1617163 + orphan orphan 

1675554 1675581 TGAACTTTCCTTATCATCCTTAGTCTGA 1675587 + VC1563 pseudo 



 

 

1744512 1744539 GGAACATCACGCCATTAATCGAATCGAA 1744545 + VC1623 carboxynorspermidine decarboxylase 

1856343 1856370 GGAACTTTTTGCGTGTCCAGTTGACTGA 1856377 + VC1718 hypothetical protein 

1878650 1878677 GGAACTCTTTGCCAAACGCCCAGTCTGA 1878684 + orphan vrrA 

1903913 1903940 TGCACTAATCAGCATATTGTTTATCTGA 1903967 + VC1764 hypothetical protein 

1937499 1937526 CAAACTATTAGCTGTAGTGGTCAACTAA 1937568 + VC1788 hypothetical protein 

2049280 2049307 TAAACTTTCGTTAAAAAACGCGATCTAA 2049274 - orphan orphan 

2068844 2068871 CGAACCTTTTGAAATTATGCGCATCCTA 2068808 - VC1918 peptidyl-prolyl cis-trans isomerse D 

2093516 2093543 CAAACGTTTGCCTGTGGATGTTATCAAA 2093565 + VC1942 bifunctional 5%2C10-methylene-
tetrahydrofolate dehydrogenase%2F 
5%2C10-methylene-tetrahydrofolate 
cyclohydrolase 

2111173 2111200 GAACAGTATGCGCAATTTGGTTGTCAGA 2111167 - VC1957 hypothetical protein 

2140363 2140390 GGAACTTGCGCAGCTACTTGGGGTCGAT 2140356 - VC1987*,# outer membrane lipoprotein Slp 

2164623 2164650 TGACTTTATCGAGGATTATGGTGTCTGA 2164617 - orphan orphan 

2196838 2196865 GCAACCAAAGCTGGAATTCACTGTCTGA 2196871 + VC2040 hypothetical protein 

2248788 2248815 GGAATTTCGCACCAAGATAGCGCTCTAA 2248822 + VC2087 2-oxoglutarate dehydrogenase E1 

2302696 2302723 TAAATCGATTGGCAAGTTATTGATCAAA 2302657 - VC2149 hypothetical protein 

2306486 2306513 GGAACCAGCACGCCCAATCGTTGCCCAA 2306480 - VC2156* lipoprotein 

2524108 2524135 GGAACCCTGAGAGTATTCGCTTGTCAGA 2524101 - VC2366 ribonuclease activity regulator protein RraA 

2613708 2613735 TGAATTTTTAGCGCAATATCTGGTCTTA 2613701 - VC2437 pseudo 

2649846 2649873 TGAACTTTCTCGATAATGCCGAGTCTCT 2649839 - VC2467*,# RNA polymerase sigma factor RpoE 

2654232 2654259 CACACTATTTTTGTTTAGGTTTTTCTAT 2654270 + VC2473 hypothetical protein 

2709569 2709596 GGAACCTTCACTGCTGGAGATTGCCAAA 2709603 + VC2524 3-deoxy-D-manno-octulosonate 8-
phosphate phosphatase 

2812169 2812196 TGAACCTTTTGCTTAGAGCTCTGTCTAT 2812162 - VC2640 micV 

2908373 2908400 GGAACTCATTGCCACATTGCCTCTCTAA 2908365 - VC2734 general secretion pathway protein C 

NC_ 
002506 

Motif hit 
start  

Motif hit 
end 

Motif hit seq TSS 
position 

TSS 
strand 

TSS 
locus_tag 

TSS gene product 

35140 35167 GGCACTTTCTGCTCCTGCATCAGTCAAA 35174 + VCA0027 chitinase 

67115 67142 CAAATTTTTTCCAGACAAATTTGTCACT 67182 + VCA0061 DEAD%2FDEAH box helicase 

92487 92514 TGAACAAGCTGTCATTCTCTCTATCAAA 92447 - VCA0080 diguanylate cyclase 

214685 214712 GAAACTCATTGACAAAACGAACATCAAA 214667 - VCA0198 site-specific DNA-methyltransferase 

357164 357191 CAAACTATTAGCTGTAGTGGTCAACTAA 357233 + VCA0370 hypothetical protein 

400386 400413 GGCAATTTAATGTCAAAAATTTATCAAA 400463 + VCA0447 hemagglutinin associated protein 

424133 424160 TAAACAAGAAGTCGATGAAGTTGTCGAA 424183 + VCA0485 MazG domain-containing protein 

510200 510227 GAAACTTCACATTGAATGAACTATCATA 510193 - VCA0572 D-alanyl-alanine synthetase A 

513961 513988 CAACCTTATATTGATAAAGGTGAACTAA 513940 - VCA0575 LysR family transcriptional regulator 

524874 524901 GAAACTCAAAGCCTATTTGAGAATCCAA 524866 - VCA0588 peptide ABC transporter ATP-binding 
protein 

921498 921525 TGCCATTTTCGCTGAAAAACTTGTCCAT 921452 - VCA0974 methyl-accepting chemotaxis protein 

929810 929837 GGAATCCAAAGCCATTTGCTTAGTCCAT 929863 + VCA0981 hypothetical protein 

949359 949386 TAAAATTTATCGATTGAAATTCATCAAA 949317 - VCA0994 hypothetical protein 

957852 957879 TAAACTAACCGCTGATAAACTACTCAGA 957911 + VCA1004 hypothetical protein 

 

 
*Listed as σE-dependent in E. coli K12, according to Ecocyc database (https://ecocyc.org/) 

 

#Listed as σE-dependent in E. coli K12 (Rhodius et al., 2006) 

  



 

 

Appendix Table S2: Genes differentially regulated by either micV or vrrA pulse expression 

Gene Description# Fold change* 
micV pulse 

Fold change* 
vrrA pulse 

ompT outer membrane protein OmpT -22.38  -10.55  

vca0951 hypothetical protein -18.22  -12.25  

vc1743 hypothetical protein -13.76  -8.61  

vca0966 hypothetical protein -6.82  -4.49  

rpoE RNA polymerase sigma factor RpoE -6.50  -5.18  

rseA sigma-E factor negative regulatory protein RseA -6.33  -4.33  

vc1563 pseudogene -5.86  -8.13  

dsbA thiol:disulfide interchange protein DsbA -5.81  -4.45  

rseB sigma-E factor negative regulatory protein RseB -5.15  -3.41  

rseC sigma-E factor negative regulatory protein RseC -5.08  -3.71  

vc1744 hypothetical protein -4.82  -3.86  

tolC outer membrane protein TolC -4.54  -9.40  

vc2240 phenolic acid decarboxylase -4.26  -3.02  

vc1566 putative ABC transport system permease  -4.10  -5.47  

dsbD thiol:disulfide interchange protein DsbD -3.74  -3.49  

vc1567 putative ABC transport system permease  -3.53  -3.73  

vc1485 hypothetical protein -3.38  -3.44  

ompA outer membrane protein OmpA -3.20  -10.29  

bamD outer membrane protein assembly factor BamD -3.08  -2.69  

vc1568 ABC transporter ATP-binding protein -2.82  -3.78  

vca0447 site-specific DNA-methyltransferase  2.21  3.21  

vca0845 hypothetical protein 3.29  2.72  

vca0789 putative membrane protein 3.65  2.59  

pal peptidoglycan-associated lipoprotein 1.11  -5.82  

lpp major outer membrane lipoprotein -1.05  -5.47  

acfA accessory colonization factor AcfA 1.26  -3.64  

vc0429 hypothetical protein 1.24  -3.30  

prtV immune inhibitor A, protease -5.54  -1.31  

btuB vitamin B12 transporter -4.03  1.24  

oppA oligopeptide transport substrate-bind. protein -3.52  -1.17  

ushA 5'-nucleotidase / UDP-sugar diphosphatase -3.49  1.14  

ompU outer membrane protein OmpU -3.06  -1.18  

 
#Description is based on the annotation at KEGG (https://www.genome.jp/kegg) 

 

*Fold change is based on transcriptomic analysis of pBAD-derived micV or vrrA expression 

using RNA-seq. Genes with a fold-change of at least 3.0-fold in either condition and a FDR 

adjusted p-value ≤ 1E-8 were considered to be differentially expressed.  

 
 
 
 
 
 
 
 
 
 
 
 



 

 

Appendix Table S3: Bacterial strains used in this study 

Strain Relevant markers/ genotype Reference/ source 

V. cholerae   

KPS-0014 C6706 Wild-type (Thelin & Taylor, 1996) 

KPS-0054 C6706 Δhfq (Svenningsen et al., 2009) 

KPS-0995 C6706 hfq::hfq-3XFlag This study 

KPVC-10072 C6706 ΔvrrA This study 

KPVC-10075 C6706 ΔmicV ΔvrrA This study 

KPVC-10076 C6706 ΔmicV This study 

KPVC-10122 C6706 ompT::ompT-3xFLAG This study 

KPVC-10124 C6706 ∆micV ompT::ompT-3xFLAG This study 

KPVC-10137 C6706 ∆vrrA ompT::ompT-3xFLAG This study 

KPVC-10139 C6706 ∆micV ∆vrrA ompT::ompT-3xFLAG This study 

KPVC-10814 C6706 ΔvchM This study 

KPVC-10822 C6706 ΔvchM ΔrpoE This study 

KPVC-10824 C6706 ∆vchM ∆rpoE ∆vrrA This study 

KPVC-10826 C6706 ∆vchM ∆rpoE ∆micV This study 

KPVC-10828 C6706 ∆vchM ∆rpoE ∆vrrA ∆micV This study 

KPVC-12139 C6706 ∆ompA This study 

KPVC-12143 C6706 ∆vchM ∆rpoE ∆ompA This study 

KPVC-12203 C6706 ΔmicV ΔvrrA ompA::ompA-3xFlag This study 

KPVC-12647 C6706 ompA::ompA scr This study 

KPVC-12651 C6706 ΔvchM ΔrpoE ompA::ompA scr This study 

E. coli   

BW25113 lacI+rrnBT14 ΔlacZWJ16 hsdR514 ΔaraBADAH33 ΔrhaBADLD78 rph-1  
Δ(araB–D)567 Δ(rhaD–B)568 ΔlacZ4787(::rrnB-3) hsdR514 rph-1  

(Datsenko & Wanner, 2000) 

TOP10 F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 nupG recA1 
araD139 Δ(ara-leu)7697 galE15 galK16 rpsL(StrR) endA1 λ- 

Invitrogen 

S17λpir ΔlacU169 (ΦlacZΔM15), recA1, endA1, hsdR17, thi-1, gyrA96, relA1, 
λpir 

(Simon et al., 1983) 

ECA101 E.coli BW25113 ΔrpoE (Egler et al., 2005) 

KPEC-52214 BW25113 ompA::kanR (Baba et al., 2006) 

KPEC-52215 BW25113 ompC::kanR (Baba et al., 2006) 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Appendix Table S4: Plasmids used in this study 

Plasmid trivial 

name 

Plasmid stock 

name- 

Relevant 

fragment 

Comment Origin, 

marker 

Reference 

pBAD1K-Ctr pMD004  Control plasmid p15A,  

KanR 

Papenfort lab 

plasmid collection 

pBAD1K-micV pNP016 PBAD-micV micV expression plasmid p15A,  

KanR 

This study 

pBAD1K-rpoE pNP018 PBAD-rpoE rpoE expression plasmid p15A,  

KanR 

This study 

pBAD1K-vrrA pNP022 PBAD-vrrA vrrA expression plasmid p15A,  

KanR 

This study 

pBAD5A pKP8-35 empty Control plasmid pBR322,  

AmpR 

(Papenfort et al., 
2006) 

pBAD5A-rpoE 

(E.c.) 

pKP142-2 rpoE (E.coli) rpoE expression plasmid pBR322,  

AmpR 

(Papenfort et al., 
2010) 

pBAD5A-rpoE 

(V.c.) 

pRH011 rpoE 

(V.cholerae) 

rpoE expression plasmid pBR322,  

AmpR 

This study 

pCMW-1C pCtr  Promotorless plasmid for 

transcriptional reporters 

p15A,  

CmR 

(Herzog et al., 2019) 

pCMW-1C-

mKATE2 

pYH-010 mKATE2 Promoterless plasmid for 

transcriptional reporters 

p15A,  

CmR 

(Herzog et al., 2019) 

pCMW-1C-

PmicV::mKate2 

pNP074 PmicV::mKATE2 Transcriptional reporter 

PmicV::mKATE2 

p15A,  

CmR 

This study 

pCMW-1C-

PvrrA::mKate2 

pNP075 PvrrA::mKATE2 Transcriptional reporter 

PvrrA::mKATE2 

p15A,  

CmR 

This study 

pCMW-1K pCtr  Control plasmid p15A,  

KanR 

Papenfort lab 

plasmid collection 

pCMW-1K-

PmicV::gfp 

pNP017 PmicV::gfp Transcriptional reporter 

PmicV::gfp 

p15A,  

KanR 

This study 

pEVS143-1K  Ptac promoter Constitutive over-

expression plasmid 

p15A, 
KanR 

(Dunn et al., 2006) 

pEVS143-1C  Ptac promoter Constitutive over-

expression plasmid 

p15A, 
CmR 

Papenfort lab 
plasmid collection 

pEVS-micV pNP002 micV  micV expression plasmid p15A, 
kanR 

This study 

pEVS-micV M1 pRG001 micV M1 micV M1 expression 

plasmid 

p15A,  

KanR 

This study 

pEVS-PL-rybB pMD030 rybB rybB expression plasmid p15A,  

CmR 

This study 

pEVS-PL-rybB pMD251 rybB rybB expression plasmid p15A,  

KanR 

This study 

pEVS-PL-rybBΔ9 pNP088 rybBΔ9 rybBΔ9 expression 

plasmid 

p15A,  

KanR 

This study 

pEVS-PL-sRNA 

var.01 

pMD241 sRNA var.1 sRNA var.1 expression 

plasmid 

p15A,  

KanR 

This study 

pEVS-PL-sRNA 

var.02 

pMD242 sRNA var.2 sRNA var.2 expression 

plasmid 

p15A,  

KanR 

This study 

pEVS-PL-sRNA 

var.03 

pMD243 sRNA var.3 sRNA var.3 expression 

plasmid 

p15A,  

KanR 

This study 



 

 

pEVS-PL-sRNA 

var.04 

pMD244 sRNA var.4 sRNA var.4 expression 

plasmid 

p15A,  

KanR 

This study 

pEVS-PL-sRNA 

var.05 

pMD245 sRNA var.5 sRNA var.5 expression 

plasmid 

p15A,  

KanR 

This study 

pEVS-PL-sRNA 

var.06 

pMD246 sRNA var.6 sRNA var.6 expression 

plasmid 

p15A,  

KanR 

This study 

pEVS-PL-sRNA 

var.07 

pMD247 sRNA var.7 sRNA var.7 expression 

plasmid 

p15A,  

KanR 

This study 

pEVS-PL-sRNA 

var.08 

pMD248 sRNA var.8 sRNA var.8 expression 

plasmid 

p15A,  

KanR 

This study 

pEVS-PL-sRNA 

var.09 

pMD249 sRNA var.9 sRNA var.9 expression 

plasmid 

p15A,  

KanR 

This study 

pEVS-PL-sRNA 

var.10 

pMD250 sRNA var.10 sRNA var.10 expression 

plasmid 

p15A,  

KanR 

This study 

pEVS-PL-sRNA 

var.11 

pMD251 sRNA var.11 sRNA var.11 expression 

plasmid 

p15A,  

KanR 

This study 

pEVS-PL-sRNA 

var.12 

pMD252 sRNA var.12 sRNA var.12 expression 

plasmid 

p15A,  

KanR 

This study 

pEVS-PL-sRNA 

var.13 

pMD253 sRNA var.13 sRNA var.13 expression 

plasmid 

p15A,  

KanR 

This study 

pEVS-PL-sRNA 

var.14 

pMD254 sRNA var.14 sRNA var.14 expression 

plasmid 

p15A,  

KanR 

This study 

pEVS-PL-sRNA 

var.15 

pMD255 sRNA var.15 sRNA var.15 expression 

plasmid 

p15A,  

KanR 

This study 

pEVS-PL-sRNA 

library 

 sRNA 9nt 

variants 

sRNA library expression 

plasmid 

p15A,  

CmR 

This study 

pEVS-rybB pRH013 rybB rybB expression plasmid p15A,  

KanR 

This study 

pEVS-vrrA pRH001 
 

vrrA vrrA expression plasmid p15A, 
kanR 

This study 

pEVS-vrrA M1 pRG002 vrrA M1 vrrA M1 expression 

plasmid 

p15A,  

KanR 

This study 

pEVS-vrrA M2 pRG004 vrrA M2 vrrA M2 expression 

plasmid 

p15A,  

KanR 

This study 

pKAS32 pKAS32  suicide plasmid for allelic 

exchange 

R6K, 

AmpR 

(Skorupski & Taylor, 

1996) 

pKAS32-

hfq::3xFLAG 

pKP431 hfq:3xFLAG: hfq::3xFLAG allelic 

replacement 

R6K, 

AmpR 

This study 

pKAS32-

ompA::3xFLAG 

pNP089 ompA::3xFLAG  ompA::3xFLAG allelic 

replacement 

R6K, 

AmpR 

This study 

pKAS32-ompA  pNP090 ompA  ompA region R6K, 

AmpR 

This study 

pKAS32-ompA 

scr  

pNP091 ompA scr ompA scr allelic 

replacement 

R6K, 

AmpR 

This study 

pKAS32-

ompT::3xFLAG 

pNP021 ompT::3xFLAG ompT::3xFLAG allelic 

replacement 

R6K, 

AmpR 

This study 

pKAS32-ΔmicV pNP024 up-/downstream 

flanks of micV 

suicide plasmid for micV 

knock-out 

R6K, 

AmpR 

This study 

pKAS32-ΔompA pEE001 up-/downstream 

flanks of ompA 

suicide plasmid for ompA 

knock-out 

R6K, 

AmpR 

This study 



 

 

pKAS32-ΔrpoE pNP023 up-/downstream 

flanks of rpoE 

suicide plasmid for rpoE 

knock-out 

R6K, 

AmpR 

This study 

pKAS32-ΔvchM pNP076 up-/downstream 

flanks of vchM 

suicide plasmid for vchM 

knock-out 

R6K, 

AmpR 

This study 

pKAS32-ΔvrrA pNP026 up-/downstream 

flanks of vrrA 

suicide plasmid for vrrA 

knock-out 

R6K, 

AmpR 

This study 

PL-rybB pFM1-1 PL-rybB rybB expression plasmid ColE1, 

AmpR 

(Bouvier et al., 2008) 

pXG10-1C pXG10-1C 'lacZ::gfp template plasmid for 

translational reporters 

pSC101*, 

CmR 

Papenfort lab 

plasmid collection 

pXG10-1C-

acfA::gfp 

pNP059 acfA::gfp Translational reporter 

acfA::gfp 

pSC101*, 

CmR 

This study 

pXG10-1C-

bamD::gfp 

pNP082 bamD::gfp Translational reporter 

bamD::gfp 

pSC101*, 

CmR 

This study 

pXG10-1C-

btuB::gfp 

pNP029 btuB::gfp Translational reporter 

btuB::gfp 

pSC101*, 

CmR 

This study 

pXG10-1C-

dsbD::gfp 

pNP079 dsbD::gfp Translational reporter 

dsbD::gfp 

pSC101*, 

CmR 

This study 

pXG10-1C-lpp M2 pNP087 lpp M2*::gfp Translational reporter lpp 

M2*::gfp 

pSC101*, 

CmR 

This study 

pXG10-1C-

lpp::gfp 

pNP086 lpp::gfp Translational reporter 

lpp::gfp 

pSC101*, 

CmR 

This study 

pXG10-1C-

ompA::gfp 

pNP081 ompA::gfp Translational reporter 

ompA::gfp 

pSC101*, 

CmR 

This study 

pXG10-1C-ompT 

M1 

pRG009 ompT M1*::gfp Translational reporter 

ompT M1*::gfp 

pSC101*, 

CmR 

This study 

pXG10-1C-

ompT::gfp 

pKP465 
 

ompT::gfp Translational reporter 

ompT::gfp 

pSC101*, 

CmR 

This study 

pXG10-1C-

ompU::gfp 

pNP085 ompU::gfp Translational reporter 

ompU::gfp 

pSC101*, 

CmR 

This study 

pXG10-1C-

oppA::gfp 

pNP084 oppA::gfp Translational reporter 

oppA::gfp 

pSC101*, 

CmR 

This study 

pXG10-1C-

pal::gfp 

pNP062 pal::gfp Translational reporter 

pal::gfp 

pSC101*, 

CmR 

This study 

pXG10-1C-

prvT::gfp 

pNP083 prvT::gfp Translational reporter 

prvT::gfp 

pSC101*, 

CmR 

This study 

pXG10-1C-

rpoE::gfp 

pNP044 rpoE::gfp Translational reporter 

rpoE::gfp 

pSC101*, 

CmR 

This study 

pXG10-1C-ushA 

M1 

pRG008 ushA M1*::gfp Translational reporter 

ushA M1*::gfp 

pSC101*, 

CmR 

This study 

pXG10-1C-

ushA::gfp 

pNP054 ushA::gfp Translational reporter 

ushA::gfp 

pSC101*, 

CmR 

This study 

pXG10-1C-

vc1485::gfp 

pNP080 vc1485::gfp Translational reporter 

vc1485::gfp 

pSC101*, 

CmR 

This study 

pXG10-1C-

vc1563::gfp 

pNP078 vc1563::gfp Translational reporter 

vc1563::gfp 

pSC101*, 

CmR 

This study 

pXG10-1C-

vca0951::gfp 

pNP077 vca0951::gfp Translational reporter 

vca0951::gfp 

pSC101*, 

CmR 

This study 

pXG10-SF pXG10SF 'lacZ::gfp template plasmid for 

translational reporters 

PSC101*, 

CmR 

(Corcoran et al., 

2012) 



 

 

Appendix Table S5: DNA oligonucleotides used in this study 

ID Sequence (5’→3’); P denotes a monophosphate Description 

KPO-0012 GCAGATCGAACTGGAAGCT pKP431 

KPO-0019 CGAGATTATCGATCTTATTCA pKP431 

KPO-0066 TATCATGATCTTTATAATCACCGTCATGGTCTTTGTAGTCCTCTTCAGACTTC 

TCTGCTGG 

pKP431 

KPO-0067 GATCATGATATCGACTACAAAGATGACGATAAATAGTTCTTTGCACAATTATT 

TAAGGAG 

pKP431 

KPO-0092 CCACACATTATACGAGCCGA pNP002, pRH001/013 

KPO-0148 GTTTTTGGTACCATCCCAATGATCCACAAAGA pKP431 

KPO-0149 GTTTTTCCTAGGAAACAGTCTCTACCGCTTGG pKP431 

KPO-0196 GGAGAAACAGTAGAGAGTTGCG pNP016/018/022 

KPO-0236 GGGCGTACACAAGTATAGGAGT VrrA oligoprobe 

KPO-0243 TTCGTTTCACTTCTGAGTTCGG 5S rRNA oligoprobe 

KPO-0267 TAATAGGCCTAGGATGCATATG pNP026/076/089, pEE01 

KPO-0268 CGTTAACAACCGGTACCTCTA pNP026/076/089, pEE01 

KPO-0282 CACTGACACCCTCATCAGTG pMD241-255 

KPO-0640 P-TTTTACCGCGACACCGTGGC pNP16 

KPO-0820 GGCCTTCTTAGAGTCTTCTAAGAA MicV oligoprobe 

KPO-0999 P-ACCACTGCTTTTTCTTAGAAGAC pNP002/016 

KPO-1000 GTTTTTTCTAGAGGATTAGAACCCGAATTAAACT pNP002 

KPO-1023 GTTTTTTCTAGAGGATCCGGTGATTGATTGAG pRH001/013, pNP002 

KPO-1064 GTTTTTTATGCATGAATCTAATGGCGGTGGTG pKP465 

KPO-1065 GTTTTTTGCTAGCAGCTGCGTTTACAGAGCCT pKP465 

KPO-1082 P-GTGATTGACAGAGCTTTGAGA pRH001 

KPO-1083 GTTTTTTCTAGATCGCCAATGAACCGACTTG pRH001 

KPO-1180 GCTTATTTGGAGATGTTTGAGC pNP024 

KPO-1181 AGAGCTCTAAGCAAAAGGTTCAT pNP024 

KPO-1182 AACCTTTTGCTTAGAGCTCTTGCGTAGCAGAAAGTTTAATTCG pNP024 

KPO-1183 ACCAAATCCCGCTGCTGCAT pNP024 

KPO-1184 GTTTTTGGTACCCTAGCGCGTTTAAACACCTCA pNP024 

KPO-1185 GTTTTTCCTAGGAGATCAAGGACGCATTGCCG pNP024 

KPO-1186 TCAATCGTAAAAGGCTCGACAC pNP023 

KPO-1187 GAAGGTAGGGGAATAACAATATTCCGTAATGACTATGGTGAATAG pNP023 

KPO-1188 ATTGTTATTCCCCTACCTTCTC pNP023 

KPO-1189 TTATCTTCAGTGATCAAATCCAGC pNP023 

KPO-1214 GTTTTTGGTACCTTCATCACCACGGCGGATC pNP023 

KPO-1215 GTTTTTCCTAGGTTATCTTGCAAGGACGTCTGC pNP023 

KPO-1235 GTTTTTTGTCGACTGCTCTTCAGCAAGCTCAAGC pNP017/074 

KPO-1236 GTTTTTTGCATGCGTGGTACAGTAATAGACAGAG pNP017/074 

KPO-1237 GTTTTTGGTACCGGATTAGAACCCGAATTAAACT pNP016 

KPO-1324 AGAGGTACCGGTTGTTAACGGATAATGGTGCAGCTTGGTG pNP026 

KPO-1325 ATGAACCGACTTGAACTATTCAGACTGGGCGTTTG pNP026 

KPO-1326 GTTCAAGTCGGTTCATTGG pNP026 

KPO-1327 TATGCATCCTAGGCCTATTAGGTGTAGATAAAGCAAGTTTC pNP026 

KPO-1397 GATCCGGTGATTGATTGAGC pNP018/022 

KPO-1398 CGCAACTCTCTACTGTTTCTCCTAGGGGAATAACAATAGGAGTG pNP018 

KPO-1399 GCTCAATCAATCACCGGATCACCATAGTCATTACGGAATTTGC pNP018 



 

 

KPO-1409 TCGTATAATGTGTGGGCCACTGCTTTTCTTTGATGTC pRH013 

KPO-1410 ACCGGATCCTCTAGAGGTTGAGAGGGTTGCAGGG pRH013 

KPO-1417 TAGAGGTACCGGTTGTTAACGCAAAGAGTTGGAAAACCACCTTC pNP021 

KPO-1418 CCAGTAGATACGAGCACCGA pNP021 

KPO-1419 GATCTCGAACACGTTTATTGAG pNP021 

KPO-1420 CATATGCATCCTAGGCCTATTAGAAGAGCGCTCTCGATTTC pNP021 

KPO-1421 TCGGTGCTCGTATCTACTGGGACTACAAAGACCATGACGGTG pNP021 

KPO-1422 CTCAATAAACGTGTTCGAGATCTTACTATTTATCGTCATCTTTGTAGTC pNP021 

KPO-1423 TCTAGATTAAATCAGAACGCAGAAG pRH011 

KPO-1424 GGAGAAACAGTAGAGAGTTGC pRH011 

KPO-1425 GCAACTCTCTACTGTTTCTCCTAGGGGAATAACAATAGGAGTG pRH011 

KPO-1426 GCGTTCTGATTTAATCTAGAACCATAGTCATTACGGAATTTGC pRH011 

KPO-1478 CGCAACTCTCTACTGTTTCTCCGTGATTGACAGAGCTTTGAGA pNP022 

KPO-1479 GCTCAATCAATCACCGGATCTCGCCAATGAACCGACTTG pNP022 

KPO-1491 CTTTCGTCTTCACCTCGAGAATTGTGAGCGGATAACAATTGAC synthetic sRNA library 

KPO-1492 GATAAAACGAAAGGCCCAGTCTTTCGACTGAGCCTTTCG synthetic sRNA library 

KPO-1505 GTTTTTTTAATACGACTCACTATAGGGAGGGCACTGCGAGTGCTAATAGAG ompT riboprobe 

KPO-1506 GGTGACCAAACAAAGAGTTGG ompT riboprobe 

KPO-1525 GCGGCCCTCTCACTTCC pMD241-255 

KPO-1529 GGAAGTGAGAGGGCCGCGGCAAAGCCGTTTTTCCATAG pMD241-255 

KPO-1660 GTTTTTATGCATATGACCTATACCGTCCGC pMD241-255 

KPO-1681 GTTTTTATGCATGTTATGCAGTGGTATTGCAC pNP029 

KPO-1682 GTTTTTGCTAGCGGTAAGCAGCGATGCTAGA pNP029 

KPO-1683 GTTTTTATGCATAAGTTTTATCCGCACTCCAAG pNP054 

KPO-1684 GTTTTTGCTAGCAATGGCTGCACTGAGGAC pNP054 

KPO-1702 ATGCATGTGCTCAGTATCTCTATC pNP081/084/085 

KPO-1703 GCTAGCGGATCCGCTGG pNP081/084/085 

KPO-1704 GAGATACTGAGCACATGCATACGAAAATGGCTGAGCCATC pNP085 

KPO-1712 GAGATACTGAGCACATGCATATGATTGCTAATGTGTGCCGCA pNP084 

KPO-1716 GAGATACTGAGCACATGCATGCGGTGAAACCAAGCGTTTAAC pNP062 

KPO-1717 GAGCCAGCGGATCCGCTAGCTGGTAGCGCAATCAGCAGAC pNP062 

KPO-1718 GAGATACTGAGCACATGCATAATAAAATGTGAAACACAGGTAAAAATAG pNP059 

KPO-1719 GAGCCAGCGGATCCGCTAGCCGGTGCTGCATTTGCTGATAAAG pNP059 

KPO-1826 GAGCCAGCGGATCCGCTAGCAGCAAAAAGTAACGTCGCTGAA pNP081 

KPO-1831 GAGATACTGAGCACATGCATGACAAAAAGGTGATCTGGCTC pNP081 

KPO-1840 GTTTTTATGCATGCTCATGCAAGTAGTGGTGTC pNP044 

KPO-1841 GTTTTTGCTAGCCTGAACTCGCTCAATCAACAC pNP044 

KPO-1846 GTGTGTATGGAAGGCCCTAATC ushA qRT-PCR 

KPO-1847 CACTCGTAAGCTTGAACAATGTAAG ushA qRT-PCR 

KPO-1850 TGCCGGAGAGAAAGACAAATC oppA qRT-PCR 

KPO-1851 ACCCATCATCATCACGAAGTAAG oppA qRT-PCR 

KPO-1852 CTGAGCAAGAACTGAAAGAACAAG pal qRT-PCR 

KPO-1853 AGCTAGCATTGCTTCGTAGTC pal qRT-PCR 

KPO-2193 AGAGGTACCGGTTGTTAACGCACTGTCTGATGAACTGATCTTC pNP076 

KPO-2194 TGAAGCATGTAAAAAGGGAGTTAACTGTATCACCATACTACCTC pNP076 

KPO-2195 CTCCCTTTTTACATGCTTCACAG pNP076 

KPO-2196 TATGCATCCTAGGCCTATTACGATCTTTGCGTTGATATTCAGG pNP076 

KPO-2297 GTCTGATGCACTACACGATTCT ompT qRT-PCR 

KPO-2298 GCTAGCTCTTGCTTTGCATTATC ompT qRT-PCR 



 

 

KPO-2311 GACCACTCGTTTTTCTTAGAAGACTCTAAGAAGG pRG001 

KPO-2312 TCTAAGAAAAACGAGTGGTCCCACACATTATACG pRG001 

KPO-2313 CAATTACGCTCGTTTTTCCTTTTTATTAACTCCTATAG pRG002 

KPO-2314 AGGAAAAACGAGCGTAATTGGTGACAGCG pRG002 

KPO-2315 CTATAGAAGTGTACGCCCAAAGCCAGATTG pRG004 

KPO-2316 CTTTGGGCGTACACTTCTATAGGAGTTAATAAAAAG pRG004 

KPO-2378 GGTAACCCAGAAACTACCACTG recA qRT-PCR 

KPO-2379 CACCACTTCTTCGCCTTCTT recA qRT-PCR 

KPO-2418 CAACGAGTGGTTTTCATCAGTTCAAAGGTATGAC pRG008 

KPO-2419 GAACTGATGAAAACCACTCGTTGAAATGTCGTTG pRG008 

KPO-2426 CCATATTAAGAAAAGCGAGTGGATTAAC pRG009 

KPO-2427 CACTCGCTTTTCTTAATATGGGAATTCC pRG009 

KPO-2503 GTTTTTGCATGCCAAGCGATTAACATCACATTTTCTCG pNP075 

KPO-2504 GTTTTTGTCGACGTCTATTCAGACTGGGCGTTTG pNP075 

KPO-3328 GATGCGGTTGATTGGCTTAAA vca0447 qRT-PCR 

KPO-3329 CCGTGTAGTCGTACCTATTTGTC vca0447 qRT-PCR 

KPO-3330 TTCAGGGTAAGGTGGCTTTG vca0845 qRT-PCR 

KPO-3331 GCGAGCAGCAGACTAAAGAT vca0845 qRT-PCR 

KPO-3332 GACCGCCTATGTCTTGATGTT  vca0789 qRT-PCR 

KPO-3333 GTGTAGAGCCGATCAAGGTATT vca0789 qRT-PCR 

KPO-3334 CAACAACGCATGCCCAATAC vc1743 qRT-PCR 

KPO-3335 GGAGCCATTCGAGCATTTCTA vc1743 qRT-PCR 

KPO-3336 CCAAGCAAAGATCTGACCAAAG vca0966 qRT-PCR 

KPO-3337 CGCGTATTTCTTCACGCTTATG vca0966 qRT-PCR 

KPO-3338 GAAGCCATTCTTGGTGCTAAC vca0951 qRT-PCR 

KPO-3339 TCTCGTTCATAAGTGCCAGAG vca0951 qRT-PCR 

KPO-3340 GTTTTTATGCATGTTTTTTTGAACTTTCCTTATCATCC pNP078 

KPO-3341 GTTTTTGCTAGCTGAAGACTCAGGGGTATAAGTG pNP078 

KPO-3346 GTTTTTATGCATTACTATCACCGGTAAATGATTAATC pNP079 

KPO-3347 GTTTTTGCTAGCGTTATTGCCAGCGTTATTACCAA pNP079 

KPO-3348 GTTTTTATGCATGAACTTGAAGCTCTTCCGCAA pNP080 

KPO-3349 GTTTTTGCTAGCCATCACTTGGTAGAGTGCCG pNP080 

KPO-3350 GTTTTTATGCATACATCAAAAACATCCCTTGAGGAA pNP077 

KPO-3351 GTTTTTGCTAGCGTTAGCACCAAGAATGGCTTC pNP077 

KPO-3360 GTTTTTATGCATACTAGTATGGAAAAATACGCCGAC pNP082 

KPO-3361 GTTTTTGCTAGCGCAACCAAATAACAGGGATAACG pNP082 

KPO-3362 GTTTTTATGCATAAATACTTTACATATGGATATGTACTATG pNP083 

KPO-3363 GTTTTTGCTAGCGCCTAAATCAATGGGTGTTTGAG pNP083 

KPO-3364 GTTTTTATGCATGTCCATATTTTAATTTTCGATAAGTATAG pNP086 

KPO-3365 GTTTTTGCTAGCTGCAGTGGTAGCTTCATCAGG pNP086 

KPO-3418 CCAGCGGATCCGCTAGCAACATTCGCTGCAAAAGAGGTG pNP084 

KPO-3419 CCAGCGGATCCGCTAGCAGCGTAAGCGCCAGTAGC pNP085 

KPO-3420 AGCGTCTTCCGTACTTCTACT lpp qRT-PCR 

KPO-3421 GCTGACCTGAGTGCTGATTT  lpp qRT-PCR 

KPO-3422 CAGTGTCACCGAAAGTGTAGAT ompU qRT-PCR 

KPO-3423 CTGTTGACGCAATGGGTAATG ompU qRT-PCR 

KPO-3424 CTGAACTGGATGACTGGCTTAC vc1565 qRT-PCR 

KPO-3425 CCACTTTGACTCTGCTGCTTAG vc1565 qRT-PCR 

KPO-3426 CCAATTCGCTGCCTTTGATTAC prvT qRT-PCR 



 

 

KPO-3427 CCTGTGTACTGGGTGTCATATTC prvT qRT-PCR 

KPO-3428 AAACGGCGCACCATAGAA dsbA qRT-PCR 

KPO-3429 CGTAAGCCACCGAAAGATGA dsbA qRT-PCR 

KPO-3464 CCTCGTAACTCAAGCCATCAA rpoE qRT-PCR 

KPO-3465 ATCGAACCCGGAGAACATTAC rpoE qRT-PCR 

KPO-3466 CATCACGGTACGCTTCCATAA vc2240 qRT-PCR 

KPO-3467 GCATGGTGCCATTTACTTTCC vc2240 qRT-PCR 

KPO-3468 GTACTCATTGACCGAAGGTGAG dsbD qRT-PCR 

KPO-3469 AGGCAGCGGAACAGATAAAG dsbD qRT-PCR 

KPO-3470 TTCCATGCACGGGTATATAAGG vc1485 qRT-PCR 

KPO-3471 GACGTGACAACGTATCGTAGAA vc1485 qRT-PCR 

KPO-3472 CTGGAATTCAGGGATCACTAGC ompA qRT-PCR 

KPO-3473 CAGCTAAAGGTCTAGGCGAAAG ompA qRT-PCR 

KPO-3474 GTGCTGACCTTCACCTTCTT vc0429 qRT-PCR 

KPO-3475 GCTCGACAATCTGCTCTAACT vc0429 qRT-PCR 

KPO-3478 CGAAGCACAACCTCAAGAAAC btuB qRT-PCR 

KPO-3479 TCGATATCTTGGCGGGTAATG btuB qRT-PCR 

KPO-3480 CTCCAGCGTTACCCAAACA bamD qRT-PCR 

KPO-3481 AGAAATCTGCGGTCGCTAAA bamD qRT-PCR 

KPO-3484 TTTAGGCTAACAGCGTCACTT acfA qRT-PCR 

KPO-3485 GCAAATGCAGCACCGTATATT acfA qRT-PCR 

KPO-3562 CCTTCTTAAGGAGTTCTCTATGAAC pNP087 

KPO-3563 CTTAAGAAGGTAAGTCGGTGTTATTG pNP087 

KPO-4040 AGAGGTACCGGTTGTTAACGCACTGCTAAACCATGACTCAAG pEE001 

KPO-4041 CATCAAGATTCAATCTACAAAGGC pEE001 

KPO-4042 TTGTAGATTGAATCTTGATGAGCCTTTCGGTTATTATTTTGTCAC pEE001 

KPO-4043 TATGCATCCTAGGCCTATTAGTGCAATGATCTTGGGTGATG pEE001 

KPO-4110 AGAGGTACCGGTTGTTAACGGGAAATACCATGAAAAAGCTAGC pNP089 

KPO-4111 TTCAGTAACTTGGTACTGGAATTC pNP089 

KPO-4112 TCCAGTACCAAGTTACTGAAGACTACAAAGACCATGACGGTG pNP089 

KPO-4113 ATCTTGATGATTACCGTAAATTACTATTTATCGTCATCTTTGTAGTC pNP089 

KPO-4114 TTTACGGTAATCATCAAGATTCAATC pNP089 

KPO-4115 TATGCATCCTAGGCCTATTAAACCATGACTCAAGTCCATGC pNP089 

KPO-4308 GTGCTCAGTATCTTGTTATCCGCTC pNP088 

KPO-4309 GATAACAAGATACTGAGCACTTTCTTTGATGTCCCCATTTTGTGGAG pNP088 

KPO-4356 GCTCCACAAAATGGGGAC rybB-scaffold oligoprobe 

KPO-4962 AGAGGTACCGGTTGTTAACGCACTCGATTTTTGTTATCACCAG pNP090 

KPO-4963 TATGCATCCTAGGCCTATTAGTGCAATGATCTTGGGTGATG pNP090 

KPO-5122 ATTATAGCAGCAAATTTCTTCATGGTATTTCCTTTTTTCTTTATG pNP091 

KPO-5123 GAAGAAATTGGCTGCTATAATTTCAGCGACGTTACTTTTTGC pNP091 

 

 

 

 

 

 



 

 

APPENDIX SUPPLEMENTARY MATERIALS AND METHODS 

Plasmid construction 

The plasmids used in this study are listed in Table S4, used DNA oligonucleotides are listed in 

Table S5. The plasmids pNP074, pNP075 and pNP017 were obtained by amplification of the 

promotor regions of micV and vrrA from KPS-0014 chromosomal DNA, using the 

oligonucleotides KPO-1235/1236 and KPO-2503/2504, respectively. The promotor inserts 

were digested using SphI and SalI restriction enzymes and ligated into an equally treated 

pYH010 backbone (pNP074, pNP075) or a pCMW-1K backbone (pNP017). The inserts for the 

sRNA expression plasmids pRH001, pRH013 and pNP002 were obtained by amplification with 

KPO-1082/1083, KPO-1409/1410 or KPO-0999/1000, respectively. Fragments were 

introduced into linearized pEVS plasmid backbones (KPO-0092/1023) using XbaI restriction 

(pRH001, pNP002) and ligation, or Gibson assembly (pRH013). The plasmid pRH011 was 

generated via Gibson assembly using linearized pBAD5A backbone (KPO-1423/1424) and a 

KPO-1425/1426 amplified rpoE insert, obtained from KPS-0014 chromosomal DNA. The micV, 

vrrA and rpoE fragments were PCR amplified from KPS-0014 chromosomal DNA using the 

primer pairs KPO-0999/1237, KPO-1398/1399 or KPO-1478/1479, respectively. KpnI 

restriction of the micV fragment and a KPO-0196/0640 linearized pBAD5K backbone, yielded 

pNP016. Gibson assembly of the vrrA and rpoE fragments with KPO-0196/1397 linearized 

pBAD5K backbone yielded pNP022 and pNP018, respectively. Plasmid pKP431 was cloned 

by PCR amplification of the hfq flanking regions with KPO-0012/0066 and KPO-0019/0067, 

thereby introducing the 3xFLAG tag with primer overhangs. The resulting fragments were 

fused via overlap PCR using KPO-0148/0149, and introduced into pKAS32 backbone using 

KpnI and AvrII restriction sites. The plasmids pNP023 and pNP024 were constructed by 

amplification of insert fragments using KPO-1186/1187 and KPO-1188/1189, or KPO-

1180/1181 and KPO-1182/1183, respectively. The inserts were fused using overlap PCR with 

the oligonucleotides KPO-1214/125 (pNP023) or KPO-1184/1185 (pNP024), digested with 

KpnI and AvrII and ligated into an equally digested pKAS32 backbone. The plasmids pNP026, 

pNP076, pEE001, pNP021 and pNP089 were constructed by Gibson assembly, using a KPO-

0267/0268 linearized pKAS32 backbone. The insert fragments were PCR amplified from KPS-

0014 chromosomal DNA using the following oligonucleotides: pNP021 (KPO-1324/1325 and 

KPO-1326/1327), pNP076 (KPO-2193/2194 and KPO-2195/2196), pEE001 (KPO-4040/4041, 

KPO-4042/4043), pNP021 (KPO-1417/1418, KPO-1419/1420 and KPO-1421/1422 amplified 

from KPS-0995 chromosomal DNA), pNP089 (KPO-4110/4111, KPO-4114/4115 and KPO-

4112/4113 amplified from KPS-0995 chromosomal DNA). GFP fusions were cloned as 

described previously (Corcoran et al., 2012) and employing previously determined 

transcriptional start site annotations (Papenfort et al., 2015). Briefly, acfA (pNP059), bamD 

(pNP082), btuB (pNP029), dsbD (pNP079), lpp (pNP086), ompA (pNP081), ompT (pKP465), 



 

 

ompU (pNP085), oppA (pNP084), pal (pNP062), prvT (pNP083), rpoE (pNP044), ushA 

(pNP054), vc1485 (pNP080), vc1563 (pNP078), vca0951 (pNP077) inserts for translational 

reporters were PCR amplified using the primers indicated in Table S6 and introduced into 

pXG10-1C backbones using NheI, NsiI restriction sites or Gibson assembly. The pMD030 

plasmid was constructed by restriction digest of pFM1-1 with XbaI and XhoI, yielding the PL-

rybB fragment and insertion into an equally treated pEVS backbone. pNP088 was obtained by 

site-directed mutagenesis PCR using KPO-4308/4309 and the parental plasmid pMD251 as a 

template. pMD241-255 plasmids were obtained by sequencing plasmids derived from EtOH 

resistant colonies. The CmR resistance cassettes were replaced with KanR cassettes using 

linearization with KPO-0282/1529 and amplification of the KanR cassette from the pCMW-1K 

plasmid using KPO-1160/1525. The plasmid pNP089 was generated by amplification of the 

insert from KPS-0014 chromosomal DNA using KPO-4962/4963 and Gibson assembly with 

KPO-0267/0268 linearized pKAS32 backbone. Quickchange PCR using pNP090 as template, 

and KPO-5122/5123 yielded pNP091. Mutations for compensatory base pair exchanges were 

introduced using the oligonucleotides listed in Table S5, and the respective parental plasmids 

as a template. 

 

V. cholerae strain construction  

A complete list of strains used in this study is provided in Table S3. V. cholerae C6706 was 

used as the wild-type strain in this study. V. cholerae mutant strains were generated as 

described previously (Papenfort et al., 2017). RK2/RP4-based conjugal transfer was used to 

introduce plasmids into V. cholerae from E. coli S17λpir plasmid donor strains. Subsequently, 

transconjugants were selected using appropriate antibiotics, and polymyxin B to specifically 

inhibit E. coli growth.  

 

Identification of σE-dependent promoters in V. cholerae  

To detect σE-dependent promoters in V. cholerae, the promotor sequence of 60 σE-dependent 

genes of E. coli (Mutalik et al., 2009) were used to construct a motif with MEME (Bailey et al., 

2015). The motif was searched with FIMO (Bailey et al., 2015) in the genome sequence of V. 

cholerae (Accession NC_002505, NC_002506) accepting only hits with a p-value below 

0.0001. The 626 motif matching sites in V. cholerae were filtered by proximity to transcription 

start site (Papenfort et al., 2015) and only those with a maximal distance of 50 nt were reported 

in Table S1. A Unix shell script that represents the analyses has been deposited at Zenodo 

(https://doi.org/10.5281/zenodo.2543422) 

 

 



 

 

 

In silico analyses 

Genomic loci encoding micV in various Vibrio strains were analyzed for gene synteny using 

SyntTax (Fig. EV1A) (Oberto, 2013). The following strains were used for analysis: V.ch., Vibrio 

cholerae (NCBI:txid243277); V.vu., Vibrio vulnificus (NCBI:txid914127); V.co., Vibrio 

coralliilyticus (NCBI:txid1384040); V.tu., Vibrio tubiashii (NCBI:txid1051646); V.ha., Vibrio 

harveyi (ATCC:33843); V.an., Vibrio anguillarum (NCBI:txid882102); V.al., Vibrio alginolyticus 

(NCBI:txid1219076).  To generate the alignment of micV sequences (Fig. 1A), the following 

strains were used: Vch, Vibrio cholerae (NCBI:txid243277); Vfu, Vibrio furnissii 

(NCBI:txid903510); Vvu, Vibrio vulnificus (NCBI:txid216895); Van, Vibrio anguillarum 

(NCBI:txid882102); Vsp, Vibrio splendidus (NCBI:txid575788); Vex, Vibrio sp. Ex25 

(NCBI:txid150340); Vpa, Vibrio parahaemolyticus (NCBI:txid223926); Vej, Vibrio sp. EJY3 

(NCBI:txid1116375); Asa, Aliivibrio salmonicida (NCBI:txid316275); Afi, Aliivibrio fischeri 

(NCBI:txid312309). To generate the alignment of vrrA sequences (Fig. EV2A), the following 

strains were used: Vch, Vibrio cholerae (NCBI:txid243277); Vco, Vibrio coralliilyticus 

(NCBI:txid1384040); Vvu, Vibrio vulnificus (NCBI:txid672); Val, Vibrio alginolyticus 

(NCBI:txid1219076); Vsp, Vibrio splendidus (NCBI:txid575788). 
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6.3 Top 50 sRNA variants from chapter 3

6.3 Seed sequences of the top 50 enriched sRNA variants from

chapter 3

# sequence # sequence
1 GAGAGCCTA 26 CGCCGAACC
2 GCCGCAACC 27 CGCCAACTT
3 AAAATGGTA 28 TTATGGTGT
4 GCCGCTCCT 29 ACAGCTAGC
5 GCCTCTGGC 30 GCTAGCCGT
6 GCCGCTCGG 31 GTCGCTCCT
7 GCTGCGGTT 32 TACTTGGTA
8 TGGTATTCC 33 GGATAGCTT
9 AGAGAGCTT 34 GGTAATTCC
10 TGCTCGGCT 35 ATGTTAGCT
11 GCCACTGCT 36 GGTATTTCC
12 GCCGTACCT 37 TGGTAGCTT
13 GGAGAGCTT 38 AACTTGGTA
14 TAGCTAGCC 39 GCAATTAGC
15 TACGCTAGC 40 GTATTTCCT
16 TTGCCGCCT 41 GCCACTCGC
17 AGCATGGTG 42 GTTGCTAGG
18 CGCCACTGG 43 TGTTTCCTT
19 CGCCGGAGC 44 GACCTTACC
20 ATCGCTAGC 45 GACATGGTG
21 AGATGGTAT 46 GCCCAACTT
22 CAGCTAGTC 47 TGCTACTCC
23 AGGTATTCC 48 AACATGGTG
24 GACTTGGTA 49 AGCTTGGTA
25 AACGTTAGC 50 GTCGTTAGG

Table 6.1: Seed sequences of the top 50 enriched sRNA variants
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