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ABSTRACT

ABSTRACT

Substantial terrestrial carbon (C) reservoirs on Earth are formed by soil and living
vegetation as well as dead plant litter. Carbon dioxide (CO2) emissions resulting from the
conversion of forests into agricultural land and the burning of vegetation are estimated to
account for up to 15 % of annual global CO2 emissions. However, these estimates are
currently still highly speculative and show a wide range in the literature. Neither accurate
quantifications of the carbon stock stored in the vegetation and soils, nor the resulting
emissions through deforestation and fire are available to provide reliable data for global
climate models. By accumulating dead plant debris over thousands of years, peat soils
form gigantic carbon sinks storing about 1,200 — 2,000 gigatons (Gt) C. Global peatlands
are known for being one of the largest terrestrial long-term carbon sinks in relation to
their total area. It is estimated that they store carbon in the range of 180 — 700 Gt
worldwide, covering only 3 % of the Earth's terrestrial surface. Besides, it is assumed that
the carbon stock of living vegetation is between 400 — 800 Gt C.

In particular, tropical rainforest ecosystems, one of the most species-rich habitats on
Earth, serve as significant carbon reservoirs. Its vegetation is assumed to store carbon in
a range of 200 — 475 Gt. Furthermore, the tropical peatlands act as relevant carbon sinks
with an estimated total amount of 80 — 90 Gt C. The world's largest peat areas are located
South East Asia, with Indonesia extending over an area of approximately 210,000 km?,
which accounts for 47 % of the earth's tropical peatland area. Scientists assume that
Indonesian peatlands alone hold quantities of 14 — 58 Gt C. Furthermore, Indonesian
rainforests are estimated to have a carbon stock ranging from 6 — 40 Gt.

Global population growth, oil palm plantation business, and unsustainable usage of
tropical forests increasingly lead to a release of the stored carbon. Deforestation and
degradation conducted for selling timber, but also for gaining agricultural land, does not
only release considerable quantities of greenhouse gas. Additionally, these interventions
encourage further damage: peat domes are disturbed by the loss of vegetation growing on
top, and the construction of drainage channels permanently dries out the generally moist
soil. These weakened and drained carbon-rich ecosystems are now vulnerable to fire,
which is used by the Indonesian population and the timer or oil pal industry to clear
forested areas. Consequently the carbon previously retrained in the soil is released and
contributes to climate change as COz. Besides anthropogenic influences, extreme events
such as El Nifio droughts (1997/1998, 2002/2003, 2006, 2015/2016 and 2019) affect the
attenuated ecosystem immensely. Fires spread more rapidly due to the dry and carbon-
rich soil, leading to additional loss of forest and peat. Recurrent fires on peatlands have

made Indonesia one of the largest emitters of greenhouse gases. As a result, the country
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has become a prime target for carbon-related projects, for example REDD+ (Reducing
Emissions from Deforestation, forest Degradation, and the role of conservation,
sustainable management of forests, and enhancement of forest carbon stocks).

An accurate estimation of the amount of carbon e.g. in the tropical forest or peatlands is
complicated and usually achieved by collecting extensive biomass field data. In very large
or poorly accessible areas as in tropical forests, however, this is a labor- and time-
consuming method. The scientific field of remote sensing has established itself as an
economical and fast alternative to large-scale data collection. In tropical regions, which
are characterized by a high annual cloud cover, the use of long-wave active remote
sensing systems, such as radar, is the first choice. These systems are almost unaffected
by clouds and smoke and not dependent on daylight. An additional advantage of active
systems is, depending on the wavelength, the radiation's penetration into the vegetation,
what enables to gain an insight into the vertical vegetation structure. This allows a more
accurate estimation of above-ground biomass (AGB) and, consequently, the carbon
content. Nevertheless, field inventory data is essential for calibrating and validating AGB

estimations based on remote sensing data.

The main goal of the present thesis was to investigate whether new satellites can be used
to estimate the carbon stock in vegetation and peat in carbon-rich Indonesian tropical
forest ecosystems more accurately than previous sensors. Furthermore, the insufficient
accuracy of current biomass models is to be improved, in order to obtain more accurate
and robust input data for carbon and thus climate models.

In the first study, the radar backscatter signals of Sentinel-1 and ALOS PALSAR C- and
L-band synthetic aperture radar (SAR) systems of three years (2007, 2009, and 2016)
were analyzed. The data were successfully used to robustly model accurate and high-
resolution AGB maps of Kalimantan, the Indonesian part of the island Borneo for the first
time. A change analysis was carried out to identify areas of forest and thus biomass loss
and gain including their uncertainties for a period of ten years. The second study compares
the results of the first one to biomass studies in other habitats, which are representative
for numerous forest biomes and biomass levels worldwide. As part of a comprehensive
international project funded from the European Space Agency (ESA), this work is so far
the widest inter-comparison of regional-to-national AGB maps in terms of area, forest
types, input datasets, and retrieval methods. In the third study, canopy heights were
derived, and AGB was modelled for a smaller area of Kalimantan. In order to test the
possibility to overcome the limitation of the saturation effect, a complex Pol-InSAR
(polarimetric SAR interferometry) approach based on TerraSAR-X and Radarsat-2 X-
and C-band data were used to derive canopy height. Besides the estimation of AGB in
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Kalimantan, an analysis of the soil organic carbon content within carbon-rich peatlands
in Central Kalimantan was performed using the new and freely available LiDAR satellite
ICESat-2 (study four). ICESat-2 terrain height transects were compared with a highly-
precise but cost-intensive airborne LiDAR digital terrain model (DTM) and a radar-based
WorldDEM DTM. Since the comparison showed a strong correlation between multiple
DTM datasets, an interpolation of comprehensive DTMs based on ICESat-2 transects was
carried out to model the surface topography of peat domes within the study area. The
methodology reflects a cost-effective and robust alternative for deriving the topography
of peatlands. Knowing the surface topography of typically curved peat domes allows
conclusions to be drawn about the volume of the peat dome and the associated estimation
of the stored carbon.

Different remote sensing instruments were investigated and new methods were developed
in order to improve currents estimations of above-ground biomass and below-ground
carbon stocks in tropical forest ecosystems. The results demonstrate that more robust
estimations in a higher spatial resolution can be achieved with these new technologies,
which can contribute to REDD+ monitoring projects hopefully support the Indonesian

government towards a more sustainable development policy.
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Die wichtigsten und grof3ten terrestrischen Kohlenstoff (C) -Speicher weltweit werden
vom Boden sowie der lebenden Vegetation als auch abgestorbenem Pflanzenstreu
gebildet. Die Kohlendioxid- (CO2) Emissionen die aus der Umwandlung von Wéldern in
Agrarflichen sowie der Verbrennung von Vegetation resultieren, tragen bis zu 15 % zu
den globalen CO: Emissionen bei. Sowohl der Kohlenstoffvorrat, also auch die
resultierenden Emissionen sind jedoch noch nicht hinreichend genau bekannt, um
verldssliche Daten fiir globale Klimamodelle bereitzustellen und decken in der Literatur
ein breites Spektrum an Angaben zu ihrer Menge ab. So gehen Wissenschaftler davon
aus, dass der Kohlenstoffvorrat der lebenden Vegetation zwischen 400 — 800 Gigatonnen
(Gt) C liegt. Weitere 1,200 — 2,000 Gt C werden im Boden gebunden. Insbesondere
Torfgebiete sind im Verhéltnis zu ihrer Gesamtflache als eine der groBten terrestrischen
Langzeit-Kohlenstoffsenken bekannt. Nach Schétzungen speichern sie Kohlenstoff in
einem Umfang von 180 — 700 Gt weltweit, wobei sie lediglich 3 % der terrestrischen
Oberflache der Erde bedecken.

Insbesondere tropische Okosysteme dienen aufgrund ihrer dichten Vegetation und der
damit einhergehenden hohen Biomasse als signifikante Kohlenstoffspeicher. Jedoch sind
auch hier sowohl der Kohlenstoffvorrat, als auch die aus Entwaldung und Degradierung
resultierenden Emissionen nicht ausreichend genau bekannt, um zuverldssige
Eingangsdaten fiir globale Klimamodelle zu liefern. Es wird angenommen, dass die
Vegetation der Tropenwélder 200 — 475 Gt C speichert. Tropische Torfgebiete fungieren
mit einer geschitzten Gesamtmenge von 80 — 90 Gt C als relevante Kohlenstoffsenken.
Die grofiten tropischen Torfgebiete befinden sich dabei in Siidost-Asien. Alleine in
Indonesien erstrecken sich Torfgebiete iiber eine Fliche von ca. 207,000 km?, was 47 %
threr weltweiten Fliche ausmacht. Schidtzungen zufolge sind allein in indonesischen
Torfgebieten 14 — 58 Gt C gebunden. Dariiber hinaus wird angenommen, dass die
lebende Vegetation der indonesischen Regenwilder einen Kohlenstoffspeicher von
6 — 40 Gt aufweist.

Das globale Bevdlkerungswachstum und eine damit einhergehende nicht nachhaltige
Nutzung der Tropenwilder fiihren jedoch zunehmend zu einer Freisetzung des
gebundenen Kohlenstoffs. Abholzung zum Zweck des Holzverkaufs, aber auch zur
Gewinnung von Agrarflachen fiir Palmdl Plantagen sowie die Degradierung der Boden
setzen nicht nur kurzfristig groe Mengen des Treibhausgases CO:2 frei. Zudem
begiinstigen diese Eingriffe weitere Schiden innerhalb der Okosysteme. So werden
Torfgebiete durch den Verlust der dariiber befindlichen Vegetation gestort und der Bau

von Entwésserungskanilen trocknet die in der Regel feuchten Boden dauerhaft aus. Diese
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geschwichten und trockengelegten Okosysteme sind nunmehr anfillig fiir Feuer. Neben
den anthropogenen Einfliissen wirken sich auch Extremwetterereignisse wie El Nifio
Trockenperioden (1997/1998, 2002/2003, 2006, 2015/2016 and 2019) negativ auf die
Okosysteme aus. Brinde kénnen sich aufgrund des trockenen und kohlenstoffreichen
Bodens rasant ausbreiten, was zu einem zusétzlichen Verlust an Wald und Torf fiihrt. Da
Feuer in der Regel von der Bevolkerung und der Palmél-Industrie genutzt werden, um
bewaldete Fldchen zu roden, kommt es nicht selten zu erheblichen Brinden.
Wiederkehrende Feuer in Torfgebieten machten Indonesien in den letzten Jahrzehnten zu
einem der groBBten Emittenten von Treibhausgasen, was das Land zu einem Hauptziel fiir
kohlenstoffbezogene Projekte wie z.B. REDD+ (Reducing Emissions from Deforestation,
forest Degradation, and the role of conservation, sustainable management of forests, and
enhancement of forest carbon stocks) werden lie3.

Die Abschitzung des Kohlenstoffgehalts erfolgt in der Regel anhand von Feldmessungen
der Biomasse. In sehr gro3en oder nur schwer zugédnglichen Gebieten stellt dies jedoch
eine arbeits- und =zeitintensive Methode dar. Bis heute gibt es keine genauen
Biomasseschdtzungen von Wéldern und Torfgebieten in tropischen Regionen wie dem
Amazonasraum, dem Kongobecken oder Indonesien. Als wirtschaftliche und
zeitsparende  Alternative zur grof3flichigen Datengewinnung hat sich das
wissenschaftliche Feld der Fernerkundung etabliert. In tropischen Regionen, die durch
eine hohe jihrliche Bewolkungsrate geprégt sind, ist der Einsatz von langwelligen aktiven
Fernerkundungssystemen wie Radar die geeignetste Methode. Diese Systeme sind
aufgrund ihrer systemimmanenten Eigenschaften in der Lage Wolken sowie Rauch, die
eine hohe Prédsenz in den Tropen haben, zu durchdringen. Dariiber hinaus ermoglicht das
Eindringen der Strahlung in die Vegetation je nach Wellenldnge einen Einblick in die
vertikale Vegetationsstruktur und erlaubt somit eine genauere Abschidtzung der
oberirdischen Biomasse und einhergehend des Kohlenstoffgehalts. Nichtsdestotrotz
werden Feldmessungen bendtigt, um die Fernerkundungsdaten zu kalibrieren sowie zu

validieren.

Hauptziel der vorliegenden Arbeit ist es zu untersuchen, ob neue Satellitendaten zur
besseren sowie robusteren Abschitzung der Kohlenstoffvorrite in Vegetation und Torf
in den Okosystemen der indonesischen Tropenwilder verwendet werden konnen.
Dariiber hinaus soll die unzureichende Genauigkeit der derzeitigen Biomasse-Modelle
verbessert werden, um akkuratere Eingangsdaten fiir Kohlenstoff- und Klimamodelle zu
generieren.

Das Untersuchungsgebiet befindet sich in Kalimantan, dem indonesischen Teil der Insel

Borneo. Dieses Gebiet ist von tropischen Torfsumpfwildern und Torfgebieten geprégt,
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welche aufgrund der stetig wachsenden Nachfrage nach Palmdl seit mehreren
Jahrzehnten wunter starkem und anhaltendem anthropogenem Einfluss und
wirtschaftlichem Druck stehen.

Im Rahmen der ersten Studie dieser Arbeit wurde das Radarriickstreusignal von Sentinel-
1 und ALOS PALSAR C- und L-Band Synthetic Aperture Radar (SAR) Systemen
erfolgreich eingesetzt, um eine moglichst akkurate, hochauflésende oberirdische
Biomassekarte von Kalimantan fiir drei verschiedene Jahre (2007, 2009, 2016) zu
modellieren. Anhand der drei Karten, die fiir einen Zeitraum von zehn Jahren abgeleitet
wurden, konnte zusitzlich eine Verdnderungsanalyse durchgefiihrt werden. Diese
ermdglicht die Quantifizierung von Waldflachen- und damit Biomasseverlusten sowie -
gewinnen. Die zweite Studie vergleicht die Ergebnisse der ersten mit Biomasseanalysen
in anderen Okosystemen, die fiir zahlreiche Waldbiome und Biomasseniveaus weltweit
reprasentativ sind. Als Teil eines umfassenden internationalen Projekts, das von der
Europdischen Weltraumorganisation (ESA) finanziert wurde, ist diese Arbeit der bisher
umfangreichste Vergleich von regionalen und nationalen AGB-Karten in Bezug auf
Flache, Waldtypen, Eingabedatensédtze und Methoden zur Biomasseabschitzung.

Um die Limitierung der Séttigung der Radarriickstreuintensititen beziiglich oberirdischer
Biomasse zu verbessern, erfolgte im Rahmen einer zweiten Studie die Ableitung der
Baumkronenhohe mit Hilfe des komplexeren Pol-InSAR-Ansatzes (polarimetrische
SAR-Interferometrie) auf der Grundlage von hochaufgelosten TerraSAR-X und
Radarsat-2 X- und C-Band Daten. Basierend auf der resultierenden Baumkronenhdhe
wurde ein AGB-Modellierungsansatz auf Basis der interferometrischen Kohérenz
implementiert.

Neben der Abschétzung der oberirdischen Biomasse in Kalimantan erfolgte zudem eine
Analyse der Topographie von kohlenstoffreichen Torfgebieten in Zentral-Kalimantan
anhand des neuen und frei verfligbaren LiDAR-Satelliten ICESat-2. ICESat-2 Transekte
mit Messungen zur Geldndehohe wurden mit einem hochprizisen, aber kostenintensiven
luftgestiitzten digitalen LIDAR-Geldndemodell (Digital Terrain Model, DTM) und einem
radargestiitzten WorldDEM DTM verglichen. Da der Vergleich eine starke Korrelation
zwischen den verschiedenen DTM-Datensdtzen ergab, konnte eine erfolgreiche
Interpolation eines groBflichigen DTMs auf der Grundlage von ICESat-2-Transekten
durchgefiihrt werden. Diese Interpolation erlaubt es, die Oberfldchentopographie von
Torfkuppen innerhalb des Untersuchungsgebiets zu modellieren. Die Ableitung der
Oberfliachentopographie von typischerweise konvexen Torfkuppen erlaubt Riickschliisse
auf das Volumen der Torfkuppe und die damit verbundene Abschitzung des

gespeicherten Kohlenstoffs. Die erstmals vorgestellte Methodik zeigt eine kostengiinstige
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und robuste Alternative zur Ableitung der Topographie von Torfgebieten und bietet somit

ein grof3es Potential in der Ableitung ihrer Kohlenstoffgehalte.

Verschiedene Fernerkundungsmethoden und -datensédtze wurden eingesetzt, um die
Abschétzung der oberirdischen und unterirdischen Biomasse in den Tropenwéldern zu
verbessern. Die Ergebnisse liefern eine robustere Abschdtzung in einer hdheren
raumlichen Auflésung. Die Ergebnisse konnen zum einem zu REDD+ Projekten
beitragen, helfen zum anderen jedoch auch, die Haltung der indonesischen Regierung zur

nachhaltigen Entwicklung des Landes zu verbessern.
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I. Introduction

1. Climate change and carbon dioxide

The fact that life was able to develop on our planet as we know it today is partly due to
the good climatic conditions on earth. The mild temperatures enable water to appear in
its liquid form and provide plants with ideal growing conditions. The optimal climatic
conditions are primarily due to the so-called greenhouse effect. This effect ensures that
some of the gases the atmosphere contains, the so-called greenhouse gases, absorb
thermal radiation. The main components of our atmosphere are nitrogen and oxygen,
which together make up 99 % of the atmosphere. However, these elements are not able
to absorb infrared radiation. The greenhouse effect is the result of the trace gases water
vapor, carbon dioxide (CO2) and methane (CHa4), which why these elements were termed
greenhouse gases (King 2005). Without greenhouse gases, the crucial heat radiation
would be reflected into space. The greenhouse effect ensures that the average surface
temperature of our planet is 15 °C instead of being -18 °C (King 2005). However, this is
a very fragile balance. An increase in the concentration of these greenhouse gases
amplifies the greenhouse effect and increases the temperature on our planet. In addition
to a rise in global temperature by only a few degrees, global warming has far-reaching
effects on the overall climate, and local weather phenomena. The rise in temperature leads
to changes in humidity, precipitation rates, solar radiation intensity, wind speed, and
evapotranspiration (Hulme 2005). The weather becomes unsteady and entire ecosystems
(land and water) change due to changing climatic conditions.

Regarding the climatic history of the earth, climatic fluctuations are regular appearances.
Earlier climate changes resulted from small fluctuations in the distance of the earth to the
sun or the continuous change in the position of the continental plates and the associated
changes in ocean currents (Atwood 2018). A total of eight fluctuation cycles have been
identified over the last 750,000 years. Only 12,000 years ago, with the end of the last ice
age, the relatively stable climate of our present time began (King 2005). However, these
historical climatic changes developed over centuries or even millennia, thus leaving the
biosphere enough time to adapt to the changing conditions. In the current climate change,
warming and associated changes in the weather are occurring much faster. The main

reason for this is considered to be the anthropogenic emissions of recent decades (King
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2005). These emissions are dominated by carbon dioxide (CO2), methane (CHa4), nitrous
oxide (N20) and fluorinated gases (F-gases) (IPCC 2015).

Figure I-1 shows how significantly CO2 emissions have increased between 1950 and
2011. According to the IPCC 2015, a cumulative amount of 2040 = 310 Gt CO2 was
released into the atmosphere between 1750 and 2011. Merely from 1970 to 2011, the
emission rates tripled due to the burning of fossil fuels and cement production. In
addition, emissions from forestry and other land use increased by about 40 %
simultaneously.

In total, 49 Gt of CO2 and its equivalents (-eq) were emitted in 2010 consisting of 76 %
COz2, 16 % CHa, 6 % N20 and 2 % f-gases. 65 % (32 Gt) of the overall emissions for 2010
result from fossil fuel and industrial processes and 11 % (5 Gt) from forestry and other
land-use change (IPCC 2015). However, other studies, e. g. van der Werf et al. (2009)
discovered high uncertainties in the estimates of deforestation and degradation and
preferred to specify a contribution to the total anthropogenic CO2 emission due to forestry
in a range of 6 — 17 %. Combining deforestation and forest degradation with tropical
peatland oxidation and fires, this estimate of the contribution of forest and peatland loss

amount to approximately 24 % of total the global CO2 emissions (IPCC 2015).

Global anthropogenic CO, emissions Cumulative CO
Quantitative information of CH, and N,0 emission time series from 1850 to 1970 is limited emissions
40 T T T T T T T T T T T T T T T T T
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Figure I-1: Left side: Annual global anthropogenic CO; emissions 1850 — 2011. Right side: Cumulative
emissions and their uncertainties 1750 — 2011 (IPCC 2015).

In 2019, emissions of CO:2 from fossil fuel were reported at 37 Gt (Levin and Lebing
2019; Friedlingstein et al. 2019). The CO2 emissions from all human activities in 2019,
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including forestry and land-use change are estimated between 40 — 46 Gt (Friedlingstein
et al. 2019) but are expected to be higher in reality since the emission rate increases
annually, even if the increase is diminishing.

From the anthropogenic CO2 emissions between 1750 and 2011, approximately 40 %
(880 = 35 Gt CO2) have remained in the atmosphere. The other 60 % were absorbed as
carbon (C) by plants, soils and the ocean (IPCC 2015). In order to decrease these high
uncertainty ranges, data availability and estimation methods for carbon emissions need to

be improved.

2. Tropical forest ecosystems of Indonesia in the carbon context

Tropical ecosystems are among the most carbon-rich ecosystems in the world and are,
therefore, an essential element of the global carbon cycle. Indonesia's tropical forests are
considered one of the oldest and most species-rich tropical rainforests on earth, storing
6 — 40 Gt C in above-ground biomass (AGB), defined as the living biomass above soil.
In addition to the dense vegetation of Indonesian rainforests, underlying tropical
peatlands make a vital contribution to terrestrial carbon storage, storing 14 — 58 Gt C
(Page et al. 2011; Harrison et al. 2020). An accurate estimation of the amount of C in the
forests or soils is complicated and usually achieved by collecting extensive biomass field
data. In the following section the characteristics of tropical peatlands and tropical forests

are presented.

2.1. Tropical peatlands

Peatland ecosystems are known as the largest terrestrial near-surface long-term carbon
sinks, storing 180 — 700 Gt C worldwide while covering no more than 3 % of the earth's
surface (Agus et al. 2011; Joosten et al. 2016; Page and Hooijer 2016; Evans et al. 2019;
Jurasinski et al. 2020). In comparison to mineral soils, peatlands store 3.5 times more in
(sub-)polar, seven times more in boreal and ten times more carbon per ha in tropical
regions of the world (Parish et al. 2008). In general, tropical peatlands can be found in
the Caribbean, Central America, South America, Southeast Asia and Central Africa,
containing an estimated total carbon stock of 80 — 90 Gt (United Nations Environment

Programme et al. 2008; Page et al. 2011; Page and Hooijer 2016; Lohberger et al. 2018).
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The entire area of tropical peatlands worldwide covers about 441,000 km? of which
248,000 km? and thus 56 % of the world's peatlands, can be found in Southeast Asia
(Parish et al. 2008; Page et al. 2011; Jurasinski et al. 2020). The largest peat areas are
located in Indonesia, extending over an area of approximately 207,000 km? which
account for 83 % of the total peatland area of Southeast Asia and 47 % of worldwide
tropical peatland area (Jaenicke et al. 2008; Page et al. 2011; Agus et al. 2011; Baccini et
al. 2012; Page and Hooijer 2016).

Peatlands are formed over tens of thousands of years from deposited plant remains, which
accumulate in water-filled oxygen-free depressions (Figure I-2) (World Wide Fund for
Nature Germany 2009; Warren et al. 2017). Due to the formation being based on organic
matter containing 48 — 63 % of carbon, peatlands are one of the largest near-surface
storages of terrestrial carbon (IPCC 2015; Joosten et al. 2016). Water prevents the organic
substance from reacting with oxygen and thus the decomposition of organic matter by
micro-biological processes called oxidation (World Wide Fund for Nature Germany
2009). Two forms of peatlands are distinguished: on the one hand topogenous peat and
the other hand ombrogenous peat. Topogenous peatlands were formed from organic
matter accumulated in depressions, mainly under the influence of fluctuating water levels
of rivers. This type of peat is found near rivers, in floodplains, and flood zones.
Ombrogenous peat is formed in low altitudes under the influence of rainfall. This type of
peat is the dominant species in Southeast Asia due to the heavy rainfall in the tropics.

They are mostly bordered by rivers or the coast (Page et al. 2006).
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Figure I-2: Schematic overview of the formation of a peat dome in Indonesia. A) Dead plant material
accumulates in a water-filled depression that lacks oxygen. B) The accumulation rate is about 1 — 2 mm/y.
After thousands of years an up-to a several meters thick convex shaped peat dome is formed. The dome is
generally covered by forests such as peat swamp forest (Ballhorn 2012; World Wide Fund for Nature
Germany 2009).

Covering about 15 — 21 million ha, Indonesia has the largest area of tropical peatlands
(Anshari et al. 2004; Agus et al. 2011; Palamba et al. 2018). The below-ground carbon
stock of Indonesia is estimated at approximately 14 — 58 Gt (Agus et al. 2011; Page et al.
2011; Harrison et al. 2020). Indonesian peatlands typically form convex-shaped peat
domes up to 20 m thick and up to 100 km wide (Figure I-2) (Agus et al. 2011; Mitchard
2018). Peatlands within Indonesia are covered by evergreen tropical forests which
contribute a large amount of organic matter and plant debris to the formation of peatland.
The annual accumulation rate is approximately 1 —2 mm/y in undisturbed peatlands,
which is more than twice as much compared to temperate peatlands (0.2 — 1.0 mm/y) or
boreal peatlands (0.2 — 0.8 mm/y) (Yule 2010; Ballhorn 2012; Warren et al. 2017).

Different peat swamp forest types are an indicator for variations in the pH value, nutrient
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and water availability (Page et al. 2006). This can be seen in the number and variety of

species.

However, peatlands are under pressure due to anthropogenic influences. In particular,
deforestation and drainage to gain land for agricultural use disrupt the hydrological
stability of peatlands (Agus et al. 2011; Carlson et al. 2015; Warren et al. 2017). Draining
the naturally waterlogged carbon-rich ecosystems leads to peat loss due to oxidation and
increases the susceptibility to fire (Figure I-3 (World Wide Fund for Nature Germany
2009; Carlson et al. 2015; Konecny et al. 2016; Palamba et al. 2018)). Since land in
Indonesia is traditionally cleared by fire (slash and burn) to make it suitable for oil palms
and timber plantations, fires often spread rapidly and erratically on the dried peat soils

(Page et al. 2007; Page et al. 2009; Palamba et al. 2018).
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Figure I-3: A) Schematic overview of a beginning degradation of a peat dome due to drainage to lower
groundwater level (GWL) for new agricultural areas in Indonesia B) The GWL sinks, resulting in carbon
emissions from micro-biological decomposition. Furthermore, the dry peat is highly susceptibility to fire

(Ballhorn 2012; World Wide Fund for Nature Germany 2009).
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Nowadays it is estimated that peatland fires in combination with forest degradation and
deforestation contribute 23 % of annual global CO2 emissions and release of 17 % of
anthropogenic greenhouse gases into the atmosphere (van der Werf et al. 2009; Englhart
2012). In the years 2001 — 2010, forest and peat fires released 3.2 Gt CO2-eq/y into the
atmosphere. Furthermore, 0.9 Gt CO2-eq/y were emitted through peat degradation and
drainage (FAO 2013). In the last 20 years, there have been recurrent extreme climate
events that have caused large-scale fires in Indonesia and thus a higher carbon release
than in other years. There were particularly strong El Nifio episodes (1997/1998,
2002/2003, 2006, 2015/2016, 2019) occurring in a higher frequency than previously
observed (Ballhorn 2012; Harrison et al. 2016; Setyawati and Suwarsono 2018; Harrison
et al. 2020). In 1997/1998, 2.4 — 6.8 million ha of peatlands burned, which released
2.97 — 69.43 Gt CO2-eq (Agus et al. 2013; Huijnen et al. 2016; Lohberger et al. 2018). In
2015, 4.6 million ha burned, causing emissions of 0.89 — 1.75 Gt CO2-eq (The World
Bank 2015; Huijnen et al. 2016; Lohberger et al. 2018). Due to those strong fires and peat
emissions, Indonesia became one of the top five greenhouse gas emitting countries

worldwide (Warren et al. 2017).

2.2. Tropical forests

Besides tropical peatland burning, deforestation and degradation contribute further to
carbon emissions (van der Werf et al. 2009; IPCC 2015; Mitchard 2018). Forests are one
of the most essential carbon sinks since they absorb CO:2 from the atmosphere. It is
estimated that tropical forests worldwide store 200 — 300 Gt C (Avitabile et al. 2016;
Mitchard 2018). The tropical forests of Indonesia store about 6 — 40 Gt C (FAO 2009;
Page et al. 2011; Baccini et al. 2012; Page and Hooijer 2016). Indonesian tropical forests
contain different forest ecosystems, mainly dipterocarp forests, freshwater forests, peat
swamp forests, heath forests (Kerangas), and along the coast forests dominated by
mangroves and Nypa palms (MacKinnon et al. 2013; Paoli et al. 2010; Ferraz et al. 2018).
The majority of Indonesian carbon emissions stem from the deforestation of peat swamp
forests located on waterlogged peatlands and dipterocarp forests on drained mineral soils
(Paoli et al. 2010).

Tropical peat swamp forest ecosystems fulfil important ecological and hydrological

functions such as protection against seawater intrusion, water retention, and flood
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reduction, but they also host endemic species (Parish et al. 2008; Mitchard 2018). The
predominant vegetation of Indonesian lowland peat swamp forests are trees with buttress
or stilt roots (Posa et al. 2011). These roots allow for good stability on the water-saturated
peat soils. In addition, the trees have so-called breathing roots that protrude above the
soil. The dominant tree species are assigned to the family of dipterocarps (Takahashi et
al. 2017), mainly "Anacardiaceae, Annonaceae, Burseraceae, Clusiaceae, Dip-
terocarpaceae, Euphorbiaceae, Lauraceae, Leguminosae, Myristicaceae, Myrtaceae, and
Rubiaceae" (Page et al. 2006). Due to differences in water and nutrient availability, but
also pH characteristics of soils, the forest structure and composition is influenced (Posa
et al. 2011; Harrison et al. 2016). In general, the distribution of plants in the peatlands
shows a concentric pattern associated with the increase of the thickness of the peat dome.
In the peripheral areas, where the peat is relatively flat, up to 240 different tree species
per ha can be counted. In the center of the peat domes, where the deepest and thus wettest
peat is found, a significant decline in the number of tree species is found. Usually,
30 — 55 tree species per ha can be found in these peat affluent areas. Furthermore, the
trees in this area, the center, are most likely smaller compared to the periphery (Page et
al. 2006; Harrison et al. 2020).

In ombrotrophic tropical lowland peatlands, species diversity is generally lower than on
mineral soils of adjacent ecosystems. Nevertheless, in ombrotrophic ecosystems, due to
the extreme hydrological and chemical conditions, the plants are mostly very specialized
and often endemic to these areas (Posa et al. 2011; Yule et al. 2018). Tall peat swamp
forest sub-types have the most extensive diversity of trees among peat forests and thus
the highest canopy stratification. This ecosystem also hosts the greatest diversity of fauna.
In addition to the diversity of flora and fauna, differences in terms of biomass can be
identified as well (Page et al. 2006). Dipterocarps can reach a height of 45 — 60 m and are
a valuable tree species prone to logging (MacKinnon et al. 2013). Lowland dipterocarp
forests are more diverse, have taller trees and a more closed canopy than peat swamp
forests.

The AGB in Central Kalimantan, Indonesia, varies from 252 t/ha for low pole forest on
peat > 7 mto 314 t/ha for mixed swamp forest on shallow peat. AGB up to 395 — 641 t/ha
were measured in mixed swamp forest on peat of 3 — 6 m thickness, but only 85 — 177 t/ha

for low pole forests on peat thicker than 9 m in eastern Sumatra (Page et al. 2006; Ferraz
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et al. 2018). For lowland primary forests, a mean value of 400 t/ha is assumed, varying

depending on the forest type (MacKinnon et al. 2013).

In recent decades there has been a significant decline in tropical forests due to illegal
logging, deforestation for agricultural development, but also natural and anthropogenic
fires (Harrison et al. 2020). However, deforestation not only results in a loss of this vital
carbon sink but also increases the emission of CO2 through the release of carbon stored
in the vegetation and underlying soils (Yule et al. 2018; Harrison et al. 2020).

In total, 200 — 300 Gt C is stored in tropical woody vegetation worldwide (Avitabile et
al. 2016; Mitchard 2018). Throughout the years 2000 — 2010, Baccini et al. (2012)
estimated a total net emission of 1.0 Gt CO2/y from tropical deforestation in America,
Asia and Africa. Mitchard et al. (2018) quantified the release of carbon and equivalents
from tropical deforestation and degradation at 0.5 — 3.5 Gt COz-eq/y. Pearson et al.
(2017) estimated the emissions due to tropical forest degradation between 2005 — 2010 at
around 2.1 Gt COz2-eq/y. Furthermore, the authors summarized that Indonesia has the
most substantial forest degradation emissions of all 74 analyzed developing countries
within the tropics (0.3 Gt COz2-eq/y), making climate protection within the country a
priority.

In addition to deforestation, forests are nowadays also threatened by global warming itself
(Mitchard 2018). The increase in temperature and the accompanying decrease in
precipitation will threaten ecosystems by causing drought for which they are not prepared
(King 2005). Ecosystems are also becoming more vulnerable to forest fires and pests,

which results in a positive feedback.

3. Forest carbon stock monitoring

The carbon content in plants is usually derived from biomass measurements. In literature,
the carbon content of dried biomass is estimated at approximately 50 % (Goetz and
Dubayah 2011).

The most accurate method to measure tree biomass is to harvest and dry a tree and weigh
it (Klinge et al. 1975). Nevertheless, this method does not allow to calculate biomass
without felling the tree and is only suitable for small areas (Lu et al. 2015). However, so

gained knowledge about the typical biomass values for specific species can be used as
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input in allometric models (Pagel et al. 1991). Within allometric models, biomass is
calculated as the function of different in situ measurements such as tree height, diameter
at breast height (DBH) and/or wood density (Chave et al. 2005). In tropical forests with
a high amount of diversity, allometric models for individual species cannot be
implemented without losing accuracy. To overcome this limitation, special allometric
models for tropical forests (e. g. moist tropical forests) were invented (Chave et al. 2005)
and improved (Chave et al. 2014). However, the collection requires a costly and time-
consuming field inventory. Tropical forests are often highly inaccessible due to terrain,
vegetation and the lack of road networks which complicates field data acquisitions.
Remote sensing presents a solution for collecting biomass data without retrieval on-site.
Instead, data can be recorded remotely by aircraft or satellite. This allows data
acquisitions with extensive spatial and temporal coverage (Mitchard 2018; Goetz et al.
2009). Nevertheless, in-situ data are necessary to calibrate and validate biomass

estimations derived from remote sensing signals.

4. Basics of Remote Sensing

The following section gives an introduction to remote sensing to enable a better
understanding of its ability to derive AGB.

All objects in the universe emit electromagnetic radiation, except for objects at absolute
zero. Remote sensing sensors record the emitted or reflected electromagnetic radiation
from earth surface features (Campbell and Wynne 2011). Electromagnetic radiation can
be sub-divided in gamma-ray, x-ray, ultraviolet (UV), visible, infrared, microwaves, and

radio waves, which together form the electromagnetic spectrum (Figure 1-4).

10
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Figure I-4: The electromagnetic spectrum, including wavelength, frequency, and energy (ESA / AOES
Medialab 2012).

All parts of the electromagnetic spectrum can be described according to the fundamental
wave theory. Electromagnetic radiation consists of an electric field (E) and a magnetic
field (H) oriented at right angles and both perpendicular to the axis of dispersion
(Campbell and Wynne 2011). A schematic overview of the components of

electromagnetic radiation is displayed in Figure I-5.

Figure I-5: Electric (E) and magnetic (H) fields of electromagnetic radiation (Campbell and Wynne 2011)

Electromagnetic energy is characterized by the parameters wavelength, frequency, and
amplitude. A wavelength (1) is defined as the distance from one peak to the next and is
measured in units of length. The frequency (v), expressed in hertz (Hz), is the number of

waves passing a fixed point per second. The energy level of an electromagnetic wave is

11
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called the amplitude. It is equivalent to the height of each crest, measured as watts per
square meter per micrometer (W * m? * um) (Campbell and Wynne 2011).
Electromagnetic waves travel with the velocity of light (¢), a constant of
299,792.458 km/s, expressed by

c=Av. (eq. I-1)
The relation of frequency and wavelength indicates that frequency and wavelength are
inversely proportional, as can be seen also in Figure I-4.
Even if the physical principles are the same, the field of remote sensing distinguishes
between active and passive systems. In the following section, the general physics of
passive systems is introduced. While different active remote sensing systems and their

potential to derive biomass and thus carbon are presented in section I-5.2.

4.1. Passive systems

Passive systems measure the radiation that is reflected or emitted by an object. They are
dependent on an external energy source such as the reflected sunlight or thermal infrared
signals from fires (Schowengerdt 2007). Passive systems measure wavelength in a range
from 0.4 — 14 pm (400 — 14,000 nm), which is the visible (VIS), near-infrared (NIR),
mid-infrared (MIR), and thermal infrared (TIR) part of the electromagnetic spectrum
(Figure I-4) (Lillesand et al. 2015). The TIR, which is the self-emitted thermal radiation
from the earth, is not directly dependent on the sun as an energy source, and, therefore,
measurements can be carried out at night (Schowengerdt 2007).

Materials on Earth react differently to the incident radiation because they can reflect,
emit, transmit or absorb the sunlight. Reflection refers to the processes that are
characterized by a change in the radiation's direction but without absorption or emission
of radiation energy. Reflection can be diffuse (diffuse reflectance) or directed (specular
reflectance). Absorption, on the other hand, is the intake of part of the energy by an object.
In contrast, emission is the radiation of secondary heat radiation and transmission refers
to the transit of radiation through an object without any further change in energy
(Borengasser et al. 2008). These properties vary depending on material, shape, size, and
physical and chemical characteristics, such as the moisture content, of the regarded
object. The most important properties that influence reflection are color, structure and
surface condition. Since every material on the earth's surface has unique properties in this

respect, it is possible to identify the substances by analyzing the spectral signatures in the

12
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same way as a fingerprint (Campbell and Wynne 2011). Figure 1-6 displays typical
spectral signatures of water, soil, and green (and healthy) vegetation in a spectral range
from 500 — 2,500 nm. The figure shows the high separability between the different land
cover types using the electromagnetic spectrum. Strong absorption values in the VIS at
490 nm and 650 nm, consequently in the blue and red wavelength range, are typical for
vital vegetation (Borengasser et al. 2008; Thenkabail et al. 2012). These features are
referred to as chlorophyll absorption bands since the blue and red light is required and
absorbed by chloroplasts for photosynthesis. This absorption indicates high chlorophyll
a and b contents within healthy leaf cells (Curran et al. 1991). Green light, on the other
hand, is reflected by healthy vegetation forming the so-called green peak, a higher
reflectance in the green-wave range at 600 nm (Gitelson et al. 1996). Another
characteristic feature for green vegetation is the significant increase in range between
680 — 700 nm, referred to as the red edge (Horler et al. 1983). This phenomenon results
from the fact that healthy vegetation absorbs red light for photosynthesis, but strongly
reflects infrared light at the interfaces of leaf cell walls and intercellular space. Depending
on the plant type, reflectance ranges between 30 — 70 % (Borengasser et al. 2008).
Furthermore, a decrease of the reflectance in the SWIR (1,300 — 2,500 nm) can be
detected in the vegetation signature. The strongest absorption can be identified in the
water absorption bands, especially at 1,450 nm and 1,950 nm (Chemura et al. 2017).
Water absorption bands originate from the vibrational process of hydrogen bonds
(Thenkabail et al. 2012). The spectral signature of vegetation varies according to the
vegetation type, which is why it is possible to classify not only vegetation but also

different vegetation types.

13
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Figure I-6: Spectral signatures of different land cover types (Lillesand et al. 2015; Eumetrain 2017).

4.2. Active systems

Active systems, on the other hand, actively emit energy and detect the energy, which is
reflected and backscattered by the objects. This measurement method makes the sensors
independent from other energy sources such as the sun-light. In the following section the
two active systems radar (radio detection and ranging) and LiDAR (light detection and

ranging) are presented and discussed.

4.2.1. Radar (radio detection and ranging)

Synthetic Aperture Radar (SAR) can overcome the limitations of passive remote sensing.
It is an active remote sensing technique that transmits microwave pulses at a given
frequency to the earth's surface and measures the backscattered energy, which is recorded
as magnitude and phase measurements (Campbell and Wynne 2011). Since the system
uses its own source of energy, acquisitions can be made independent of the sun at any
time of the day. The relatively long wavelengths used by radar (1 mm — 1 m) penetrate
through clouds and thus enable imaging under almost all weather conditions (Richards
2009).

A radar system primarily measures time. The antenna sends out pulsed microwaves and
detects the time it takes for the echoes to return to the antenna. This measured time
determines the accurate distance of the target. Energy is transmitted and received either

by one (monostatic) or two (bistatic) antennas (Richards 2009).
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The geometrical orientation of the oscillations of a wave is specified by its polarization
(Campbell and Wynne 2011). Most radar systems use the simple linear polarization for
transmitting and receiving electromagnetic waves. In general, the systems either transmit
linear horizontally (H) or linear vertically (V) polarized energy. Since scatterers can
change the polarization of the wave, sensors receive both horizontally and vertically

polarized energy in different channels of a radar system (Cloude 2010):

e horizontal transmission and horizontal reception = HH
e vertical transmission and vertical reception = VV
e horizontal transmission and vertical reception = HV, and

e vertical transmission and horizontal reception = VH.

HH and VV are called like-polarized or co-polarized since their transmitted and received
polarization are identical. With an orthogonal transmitted and received polarization, HV
and VH are referred to as cross-polarized (Campbell and Wynne 2011). In general,
horizontally polarized waves are more sensitive to objects that are horizontally oriented,
and vertically polarized waves are more sensitive to vertically oriented targets. Besides,
the cross-polarized waves are influenced more by volume scatterers than the co-polarized
waves. However, co-polarization is affected strongly by surface properties such as
moisture (Le Toan et al. 1992). Using different polarizations thus allows distinguishing
between different land cover types and properties (Campbell and Wynne 2011). Radar
systems can be single-polarized, dual-polarized or quad-polarized, depending on the level
of polarization used by the sensor. Single-polarized systems are based on one polarization
(HH or VV or HV or VH), whereas dual-pol sensors are using two different polarizations
as HH and HV or VV and VH. Quad-polarization systems can transmit and receive all
four polarizations and thus allow the best separability of land cover classes (Richards
2009).

In addition to different polarizations, SAR systems transmit energy in varying frequencies
and wavelengths Figure [-4. The deviation based on bands originates from the military
development of radars. Operational radar systems generally use a single band. Table I-1
displays the satellites used during this thesis, their specific band names, wavelength and

frequency.
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Table I-1: Radar frequencies and wavelengths (European Space Agency 2020).

Band Frequency [GHz] | Wavelength [cm] | Satellites used in this thesis
P 0.255-0.39 133.00 — 76.90

L 0.39-1.55 76.90 — 19.30 ALOS PALSAR-1 and -2
S 1.55-4.20 19.30-7.10

C 4.20-5.75 7.10 -5.20 Sentinel-1, Radarsat-2

X 5.75-10.90 5.20-2.70 TerraSAR-X, Tandem-X
Ku 10.90 —22.00 2.70-1.36

Ka 22.00 - 36.00 1.36 - 0.83

Q 36.00 — 46.00 0.83 -0.65

\" 46.00 — 56.00 0.65-0.53

w 56.00 — 100.00 0.53-0.30

For imaging airborne and space-borne radar remote sensing the most commonly used
bands are C-, K-, X-, L- and P-band (Campbell and Wynne 2011). Radar bands and their
characteristic wavelength differ in the penetration depth of the signal into the soil or
vegetation. Under dry conditions, the penetration depth increases with increasing
wavelength. Furthermore, waves are sensitive to objects similar in size to the wavelength.
The energy transmitted by the sensor is scattered back from features on the earth's surface.
Scattering is defined as the redirection of electromagnetic energy (Campbell and Wynne
2011). Depending on the chemical and physical properties of the target, such as roughness
or moisture, radiation is backscattered differently, which influences the received amount
of energy backscattered to the sensor. Furthermore, the backscattered signal is influenced
by sensor parameters such as the wavelength and the polarization, as mentioned before.
The three most common scattering mechanisms are surface scattering, volume scattering
and double-bounce as displayed in Figure I-7 (Richards 2009). Surface scattering
describes the scattering process where energy is scattered back from an object without
interacting with other objects. Depending on the target's roughness, parts of the energy
are scattered back to the sensor, where they are measured. The roughness of the surface
is relative to the wavelength of the sensor. With increasing wavelength, the surface
appears smoother to the sensor (Richards 2009). A very smooth surface behaves similar
to a mirror and scatters the radiation away from the sensor. With increasing roughness,
more scattered energy reaches the sensor (see Figure 1-7). Volume scattering, on the
contrary, is influenced by numerous scattering elements. This type of scattering occurs if
the radar pulse penetrates a 3D body (Campbell and Wynne 2011). Tree canopies are

typical volume scatterers because the energy is scattered between leaves and/or branches.
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Double-bounce, or dihedral scattering, occurs when the radar pulse hits two relatively
smooth surfaces that are perpendicular to each other. The returned signal is particularly

strong since the energy is scattered back into the direction of the sensor (Richards 2009).

Sensor Sensor Sensor Sensor

smooth surface rough surface volume double-bounce

Figure 1-7: Schematic overview of the different scattering mechanisms surface scattering, volume

scattering and double-bounce, arrows simulate directions of energy (own graphic).

Interferometric SAR (InSAR) refers to the method of correlating two SAR images
acquired from slightly different positions of the sensor. Two SAR images can be acquired
using either single-pass InSAR (two or more receiving antennas on a platform that
collects two images within milliseconds) or repeat-pass InSAR (one receiving antenna
that collects two images during two different overpasses of the sensor). The result of
correlating the SAR images is called interferogram and consists of two parts, first the
coherence, second the phase difference of the backscattered signal (Santoro et al. 2018).
Coherence is hereby defined as the amplitude of the complex correlation coefficient
between those two SAR acquisitions (Baltzer et al. 2007; Lu et al. 2015). The phase
describes the oscillation of an electromagnetic wave, measured as the phase angle.

InSAR can be combined with the so-called polarimetric SAR (PolSAR) approach, during
which the SAR imaging process is repeated for all the different polarizations (HH, V'V,
HV, and VH) and their coherent combination (Cloude 2010; Lavalle and Hensley 2015).
The combination of both techniques leads to the complex polarimetric InSAR (Pol-
InSAR) technique, which unites the advantages of both SAR techniques and enables the
investigation of the structure of volume scatterers, such as forests, based on phase and

coherence (Cloude and Papathanassiou 2003; Cloude 2010).
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4.2.2. LiDAR (light detection and ranging)

LiDAR sensors are active systems that emit pulses of light in the infrared or visible
spectrum and measure the time it takes for the pulse to return to the sensor. Depending
on the land cover, the pulse can generate one or many returns, for example, in a canopy
cover. LIDAR systems can be on board aircrafts or satellites. The area that is illuminated
by the sensor is called laser footprint. Its size varies from centimeters (airborne) to several
meters (space-borne). The distance between the sensor and the signal reflecting object is
defined as the return time (Lillesand et al. 2015). LiDAR can penetrate the tree canopy,
enabling the detection of the 3D canopy structure as well as ground information (Lefsky
et al. 2002).

LiDAR systems are divided into two recording methods. On the one hand the discrete-
return and on the other hand the full-waveform LiDAR systems (Lefsky et al. 2002). The
first one uses real-time pulse acquisition of the returned signal. This approach results in
a waveform partitioned in discrete time-stamped pulses, from which the individual
position of the objects can be derived (Mallet and Bretar 2009). This type of LiDAR
system typically only detects the first and last pulses and some intermediate pulses.
Therefore, an accurate canopy cover estimation is limited by the small number of echoes
(Nie et al. 2017). The newer generation of LiDAR systems, on the other hand, record the
entire backscatter energy for equal time intervals (Mallet and Bretar 2009). These so-
called full-waveform LiDAR systems enhance the accuracy and resolution of the pulse
detection and thus produce more information about the canopy structure. Remote sensing

for biomass monitoring

5. Remote sensing for biomass monitoring

The relationships between the biophysical properties of vegetation and remote sensing
observations can be used to derive biomass and thus the carbon content (Goetz et al. 2009;
Englhart et al. 2011; Goetz and Dubayah 2011; Saatchi et al. 2011; Englhart et al. 2012).
Several studies investigated and summarized the derivation of AGB and the carbon
content, based on different remote sensing sensors and methods (Goetz et al. 2009; Lu et
al. 2015). AGB can be derived by remote sensing in two ways, directly and indirectly
(McRoberts et al. 2015). The first method relates the remote sensing data directly to the

biomass stock by calibrating it to AGB field measurements using machine learning
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algorithms (Goetz et al. 2009; Avitabile et al. 2012). The indirect approach is based on
parameters that are first obtained from remote sensing data. These include parameters
such as the fraction of forest cover, canopy density or diameter, on the basis of which the
biomass is then derived by, e.g. multivariate regressions, K nearest-neighbor, and neural
network (Lu 2006; Sousa et al. 2015). The development of robust relationships between
forest attributes such as crown height, basal area, DBH, and remote sensing parameters

are good examples (Goetz and Dubayah 2011).

5.1. Passive Systems

The wide range of different spatial, spectral, radiometric, and temporal resolutions of
optical sensors offers multiple suitable techniques to extract parameters for AGB
modeling (Lu 2006; Baccini et al. 2008; Avitabile et al. 2012; Singh et al. 2014).

Via land cover information derived from spectral signatures as described in section [-4.1,
indirect estimations of AGB become a possibility. The spectral bands can be used to
calculate vegetation indices that minimize solar irradiance and emphasize the vegetation
signal (Foody et al. 2003; Sousa et al. 2015; Li et al. 2020). Within this approach, known
values for individual land cover types and their density can be used to map different types
of forests and estimate AGB over a large area (Bourdeau et al. 2008; Steininger 2010;
Goetz and Dubayah 2011; Lu et al. 2015). In addition, the subpixel-based variables can
be used as input variables for AGB estimation (Huang et al. 2009; Yan et al. 2015).
Information within a pixel originates from the combination of several land coverages in
that area. Using spectral unmixing techniques like the spectral mixture analysis (SMA),
the reconstruction of the individual components of the pixel, based on pure reference
signatures is possible. This approach reveals more comprehensive information about a
single pixel and improves the AGB estimation using spectral features (Basuki et al. 2012;
Lu et al. 2015; Peroni Venancio et al. 2020). Besides spectral properties, image texture
properties can be used to derive AGB estimations from optical data (Lu and Batistella
2005; Sarker and Nichol 2011; Lu et al. 2015; Phua et al. 2017). This approach uses the
multi-dimensional variance, which is observed for the image under a moving window (Lu
et al. 2015). For complex forest structures, these textures provide better results than the

sole use of spectral signatures.
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The potential and the limits of applying optical remote sensing for deriving biomass have
been sufficiently discussed in many studies (Foody et al. 2003; Lu et al. 2005; Lu et al.
2015; Li et al. 2020). A sensitivity to the structure and density of vegetation, and thus
AGB, in the visible and near-infrared wavelength range was demonstrated (Avitabile et
al. 2012). However, the methodology has not always proven to be robust for large areas.
The spectral variables are influenced by external factors such as soil moisture, vegetation
phenology and the atmosphere (Lu et al. 2015). This is often due to the fairly long
repetition time of the satellite acquisitions (mostly days to weeks), compared to the rapid
changes in weather and surface conditions (Goetz et al. 2009).

Moreover, due to the relatively short wavelengths in which passive sensors record, the
sensors are limited in high biomass ranges because the satellite signal is saturated (Lu et
al. 2015). The point of saturation primarily depends on the forest density and partly on
the forest structure, but also the quality of the reference and remote sensing data (Ghasemi
et al. 2011). Scientific literature reports a saturation level for biomass values of 80 —
200 t/ha for optical sensors such as Landsat and Sentinel-2, depending on the forest cover
types (Li et al. 2010; Avitabile et al. 2012; Zhao et al. 2016; Pandit et al. 2018; Li et al.
2020). This saturation results in AGB underestimations especially in dense forests such
as tropical forests (Lu et al. 2015).

Besides the limitation of the optical satellite signal in dense tropical forests, a central issue
in the humid tropical regions is the omnipresent cloud cover (Asner 2010). To overcome

these limitations, the thesis at hand is focused on active remote sensing systems.
5.2. Active Systems

5.2.1. Radar

SAR data is often used for AGB estimations since the systems are weather and day light
independent. Especially the issue if substantial cloud cover in humid tropical regions can
be overcome by SAR systems. Furthermore, and even more importantly, SAR can
penetrate vegetation and is sensitive to the water content of vegetation and other objects
(Koch 2010; Lu et al. 2015). There are generally three different methods when using SAR
for biomass estimations: the backscatter approach, coherence approach and phase-based

approach (Baltzer et al. 2007; Koch 2010; Ghasemi et al. 2011; Lu et al. 2015).
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a. AGB estimation based on backscatter amplitudes

The relationship of backscatter and AGB has been discussed in several studies so far (Le
Toan et al. 1992; Beaudoin et al. 1994; Saatchi et al. 2007; Sandberg et al. 2011; Sandberg
etal. 2014; Joshi et al. 2015; Yu and Saatchi 2016; Joshi et al. 2017; Urbazaev et al. 2018;
Cartus and Santoro 2019). This approach uses the backscatter, which is the energy
received by the sensor after transmission and relates it to reference AGB measurements.
The total backscatter from forest areas is composed of a combination of different
scattering mechanisms, while the main component results from volume scattering tree
canopies. However, surface scattering from the ground and double-bounce scattering
originating from the ground and tree trunks also contribute to the overall backscattering
intensity. Backscatter typically increases with augmented AGB values. Nevertheless, at
a certain point the sensitivity of the backscatter stagnates, which is called the biomass
saturation level. This level is dependent on the wavelength of the sensor (Sandberg et al.
2011; Joshi et al. 2017). Longer wavelength radar can penetrate the canopy and thus
collect more information on the vertical structure. The relatively short X- and C-bands (3
and 5 cm, respectively) are only able to penetrate through leaves that are about the same
size as the wavelength of the bands (Ghasemi et al. 2011). However, the energy can be
backscattered from branches located in the higher canopy. In contrast, the L-band with a
wavelength of up to 30 cm is mainly scattered on trunks and thick branches. The very
long wavelength P-band SAR data, can deeply penetrate the canopy and is backscattered
by trunks and the ground and is, therefore, more suitable for relatively high AGB contents
(Lu et al. 2015). Besides the wavelength, parameters such as the polarization, incidence
angle of the system, terrain properties (e.g. roughness and moisture), and the land cover
influence the backscattering amplitude and thus the biomass saturation level (Lu et al.
2015). Cross-polarizations, were found to be more suitable for biomass estimations than
co-polarized data (Le Toan et al. 1992). Furthermore, more shallow incident angles are
affected by weakened scatter contributions due to longer paths through the canopy
(Koyama et al. 2019).

Previous studies showed the sensitivity of long-wave L- and P-band data for biomass
estimations using backscatter in parametric (e.g. linear regression, multiple linear
regression) and non-parametric models such as K-nearest neighbor (K-NN), artificial
neural network (ANN), Random Forest, Support Vector Machine (SVM), and Maximum
Entropy (MaxEnt) (Ghasemi et al. 2011; Joshi et al. 2015; Urbazaev et al. 2015; Yu and
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Saatchi 2016; Thiel and Schmullius 2016; Kumar et al. 2017; Antropov et al. 2017;
Urbazaev et al. 2018; Cartus and Santoro 2019). Since, up to now, P-band is only
available on aircrafts, only few studies have been conducted, analyzing small areas
(Santos et al. 2003; Saatchi et al. 2019; Liao et al. 2019). AGB estimations based on
backscatter from the Advanced Land Observing Satellite's Phased Array-type L-band
Synthetic Aperture Radar (ALOS PALSAR) has been successfully performed by several
authors (Mermoz et al. 2014; Hamdan et al. 2014; Antropov et al. 2017; Urbazaev et al.
2018). Especially in tropical forests, an AGB estimation is often based on L-band SAR
to overcome the limitations of backscatter saturation in dense forests (Wijaya 2009;
Hamdan et al. 2011; Mitchard et al. 2011; Hamdan et al. 2015; Wijaya et al. 2015;
Mermoz and Le Toan 2016; Chaparro et al. 2019; Koyama et al. 2019). For L-band SAR,
the biomass saturation level for tropical forests ranges from 50 to 250 t/ha (Hamdan et al.
2011; Englhart et al. 2011; Saatchi et al. 2011; Chaparro et al. 2019). Using backscatter
ratios (Foody et al. 1997) and/or texture, measures (Kuplich et al. 2011) were found to

improve the AGB estimations.

b. AGB estimation based on coherence and phase

To overcome the limitations of the radar saturation effect, INSAR and Pol-InSAR are
well-known techniques for estimating the AGB (Solberg et al. 2017; Ghasemi et al. 2018;
Agrawal et al. 2019).

The coherence approach relies on the assumption that interferometric coherence is related
to the vertical distribution of the backscattering elements and thus allows an exact
localization of the scattering center of an object and the estimation of the canopy height
(Ghasemi et al. 2011; Santoro et al. 2018). Based on the canopy height, AGB can be
estimated by e.g. applying allometric equations or regression models (Chave et al. 2005;
Koch 2010; Mette et al. 2012). Since coherence based models are sensitive to the vertical
structure of trees, they are more suitable for AGB estimations than backscatter based
models, especially in tropical forests characterized by dense vegetation (Lu et al. 2015;
Santoro et al. 2018). Coherence can be applied to linear regression models (Fransson et
al. 2010) or machine learning algorithms, such as Random Forest or Maximum Entropy,
to estimate the AGB (Wilhelm et al. 2014; Stelmaszczuk-Gorska et al. 2016). A
combination of backscatter and coherence increases the value at which the saturation

effect occurs, as shown in Thiel and Schmullius 2016; Soja et al. 2017. However, the
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coherence based models can be limited by external factors such as wind speed,

temperature and humidity causing a decorrelation between two InSAR images.

Besides the coherence, the phase difference between two InSAR images is exploited for
canopy height estimations (Thiel and Schmullius 2013; Solberg et al. 2017; Santoro et al.
2018; Hosseini et al. 2019). This technique uses interference patterns, referred to as
fringes, to model the "topographic height of the scattering phase center" within a target
such as the canopy (Papathanassiou and Cloude 2001; Baltzer et al. 2007). For both, the
coherence and the phase-based approach, the height of the center relies on parameters
such as the density or canopy structure. Furthermore, the sensor characteristics -
frequency, incidence angle, and polarization - affect the scattering processes and thus, the
location of the scattering center (Koch 2010). Nevertheless, Ghasemi et al. (2018) showed
that the application of Pol-InSAR heights for AGB estimations increases the saturation
level compared to the backscatter approach for L-band data to a range from 150 to
300 t/ha.

Since the scattering centers derived from InSAR and Pol-InSAR data usually are not
located at the top of the canopy or the ground surface but somewhere in between, the
canopy height is not directly derived but can be retrieved with ambitious model-based
inversion techniques (Liao et al. 2018; Simard and Denbina 2018). The inversion

techniques are described in detail in section I-5.

5.2.2. LiDAR

a. Above-ground biomass estimation using LiDAR
This second active remote sensing system cannot measure AGB directly, but it enables
the collection of vegetation structure parameters. LIDAR does not only measure the top
of the canopy, but can derive the vertical structure and thus a 3D image of the vegetation
instead. This allows the determination of attributes such as the crown diameter or the
canopy height (Asner et al. 2012b). Since it is well known that AGB strongly correlates
with forest height and the canopy structure, LiDAR-derived height metrics and
penetration indices are widely used to model AGB (Ioki et al. 2014; Nie et al. 2017; Wan-
Mohd-Jaafar et al. 2017; Pereira et al. 2018; Dong et al. 2019; Tian et al. 2019). It has

been shown in several studies that LIDAR metrics, such as the mean canopy height
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(MCH) or quadratic mean canopy height (QMCH), are sensitive to vertical forest
structures (Asner et al. 2012b; Englhart et al. 2013). Since vertical canopy structures are
directly related to the AGB, a linear correlation between LiDAR metrics and the AGB
can be found (Drake et al. 2003; Jubanski et al. 2013; Meyer et al. 2013; Asner et al.
2018). AGB can be estimated based on LiDAR metrics with statistical modeling or
allometric models (Asner et al. 2012b).

Most LiDAR-related studies use airborne measurements to accurately predict the AGB
(Asner et al. 2010; Mascaro et al. 2011; Asner et al. 2012a). Ballhorn et al. (2009),
Kronseder et al. (2012), and Englhart et al. (2013) estimated AGB from in-situ data and
airborne LiDAR measurements in moist tropical forests in Indonesia. Although airborne
sensors provide highly accurate biomass estimates, the high costs involved usually limit
their application to small areas or transects (Avitabile et al. 2012; Asner et al. 2012a;
Asner et al. 2012b; Ellis et al. 2016; Levick et al. 2016; Asner et al. 2018; Dong et al.
2019). Nevertheless, AGB estimations derived from airborne LiDAR data in combination
with field inventory data can be used as an accurate reference data for satellite-based
AGB modeling (Asner et al. 2012b; Englhart et al. 2013). The accuracy is thereby
dependent on the sensor system (airborne or space-borne, photon-counting, full-
waveform or discrete-return LiDAR), the forest type and density but also the field
inventory plot size (Frazer et al. 2011).

As a cost-effective alternative for large areas, the full-waveform sensor of the Geoscience
Laser Altimeter System (GLAS) on board the Ice, Cloud and Elevation Satellite (ICESat)
(2003 — 2010) has already been proven to be valuable for biomass and crown height
estimations (Lefsky et al. 2005; Harding and Carabajal 2005; Carabajal and Harding
2006; Baccini et al. 2008; Bourdeau et al. 2008; Lefsky 2010; Chi et al. 2017).

With the launch of the follow-up mission, ICESat-2, in September 2018 carrying the
Advanced Topographic Laser Altimeter System (ATLAS), an improvement of previous
estimations is possible due to higher data availability and spatial resolution. ATLAS is a
photon-counting LiDAR that detects sensitivities at the photon level. The sensor works
at the wavelength of green light (532 nm) and a pulse repetition rate of 10 kHz
(Neuenschwander and Pitts 2019b). This significantly higher repetition rate compared to
GLAS enables a higher resolution in along-track direction. Furthermore, ATLAS uses six
beams arranged in three single pairs, separated by 90 m in across-track direction,

containing a low-energy and a high-energy beam. This constellation enables the detection
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of surfaces with low and high reflectivity (Neuenschwander and Pitts 2019b). The
nominal diameter footprint for each beam is about 17 m (Neuenschwander and Pitts
2019b). Within the ICESat-2 product, photons collected by ATLAS are classified as
terrain or canopy. All derived terrain and canopy height values are then defined as
absolute heights above the WGS84 ellipsoid (Neuenschwander and Pitts 2019a).

Narine et al. (2019) were the first to test a simulated ICESat-2 canopy product in
combination with optical data from Landsat for mapping AGB in Texas, US. The results
showed potential for biomass estimations, reaching an R? of 0.51. Since the analysis is
based on simulated data, there is still the possibility that real data would lead to model
improvements. Liu et al. (2020) investigated the suitability of ATLAS in combination
with optical data from Landsat 8 and Sentinel-2 canopy height data for mapping burned
areas in California and New Mexico, obtaining an R? of 0.61 with a moderate correlation
(r=0.78).

It can be concluded that aircraft data provides an excellent spatial resolution but cannot
cost- and time-effectively survey large areas on a continental or even global scale. The
use of satellite-based data allows cheaper and more comprehensive long-term data
acquisitions but at costs of the spatial resolution (Goetz et al. 2009). A combination of
these acquisition methods enables the coverage of large areas with a high accuracy and
an excellent spatial resolution.

In general, LIDAR can overcome the saturation limitations of optical and radar data, but
the limited availability of LIDAR data and the restricted spatial resolution prevents its
comprehensive application (Lu et al. 2015). Nevertheless, LiDAR offers accurate
calibration and validation data for large-scale AGB mapping using radar.

In this thesis, AGB reference data, which were extrapolated by relating field data to
airborne laser scanning (ALS) point cloud signals, were used. This AGB reference data
cover all ranges of AGB, from shrubs to tropical rainforests and presents a highly accurate

AGB reference.

b. Below-ground biomass estimation using LiDAR
Besides the estimation of AGB based on space-borne LiDAR data, Ballhorn et al. (2011)
used ICESat measurements to identify the topography of carbon-rich peatlands in
Indonesia successfully. This indirect approach for below-ground carbon content modeling

identifies convex-shaped peat domes beneath the forest vegetation with airborne and
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space-borne LiDAR instruments. Jeanicke et al. (2008) identified a strong correlation
between the convex peat dome surface derived from a digital terrain model (DTM) and
the thickness of the dome-shaped peat layer. An estimation of the carbon stock became
possible after modeling the 3D peat layer (Jaenicke et al. 2008). Measurements with
airborne LiDAR result in more accurate estimates due to the higher spatial resolution for
the surface 3D models. However, this technology is extremely costly for large areas. A
satellite-based approach allows screening the whole country. The launch of ICESat-2
presents new possibilities to model carbon-rich peatlands and are analyzed in the fourth
paper included in this thesis.

Resulting biomass and carbon local, nationwide or even global maps, derived from
remote sensing signals, support forest monitoring or risk managing systems under
REDD+ (Reducing Emissions from Deforestation, forest Degradation, and the role of
conservation, sustainable management of forests, and enhancement of forest carbon
stocks) and other programs and policymakers, protecting forests and analyzing carbon

release.

6. Modeling approaches

6.1. Canopy height modeling algorithms

Canopy height is the most crucial single forest variable to model AGB, e.g. by applying
allometric equations or regression models (Koch 2010; Chave et al. 2005; Mette et al.
2012). Based on InSAR and Pol-InSAR data, the canopy height can be derived. However,
the canopy height cannot directly be measured by InSAR or Pol-InSAR, but can be
derived with ambitious model-based inversion techniques. A frequently used model based
on coherence is the Interferometric Water Cloud Model (IWCM) developed by Attema
and Ulaby (Attema and Ulaby 1978; Soja et al. 2015; Soja et al. 2017; Askne et al. 2017;
Santoro et al. 2018; Agrawal et al. 2019). This model exploits the total coherence of a
forest and divides it into the individual coherence sums of soil and canopy cover (Lu et
al. 2015; Santoro et al. 2018). Cloude and Papathanassiou (2008) presented a new
algorithm for quantifying variations in vertical structures based on a new 3D radar
imaging technique called polarization coherence tomography (PCT). PCT reconstructs

vertical profiles based on measurements of volume height and topographic phase.
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Different parameters are defined to characterize an average vertical distribution profile of
relative reflectivity with SAR data (Luo et al. 2011; Li et al. 2015; Zhang et al. 2018).
Additionally, the coherence based Random Volume over Ground model (RVoG) was
successfully applied in multiple studies for estimating canopy heights as it interprets
interferometric coherence as a function of vertical backscatter profiles (Papathanassiou
and Cloude 2001; Cloude and Papathanassiou 2003; Lavalle et al. 2012; Sun and Song
2015; Olesk et al. 2016; Sportouche et al. 2018; Babu and Kumar 2018; Aghabalaei et al.
2020). Different studies have applied the RVoG model to various forest ecosystems and
frequencies, showing that the results are partly dependent on forest density (Garestier et
al. 2008; Neumann et al. 2010; Schlund et al. 2014; Chen et al. 2016). Using repeat-pass
InSAR data, the RVoG model can be affected by temporal decorrelation. To compensate
for errors due to temporal decorrelation and improve the AGB estimation, a model
combining the RVoG with a Gaussian-statistic motion model of canopy elements was
formulated in 2015 (Lavalle and Hensley 2015). This model is termed Random Motion
over Ground (RMoG) model and considers volumetric and temporal decorrelation effects
resulting from random motion. Up to date only a few studies have been conducted using
the novel RMoG model (Zhang et al. 2017; Jung et al. 2018; Ghasemi et al. 2018; Qi Z.
et al. 2019).

6.2. Biomass modeling algorithms

For biomass estimations from remote sensing signals, several types of models such as
parametric and non-parametric algorithms can be applied (Lu et al. 2015). Parametric
algorithms are models based on the relationship between dependent and independent
variables and specified by parameters, as found in linear and multiple linear regression
models.

Regression-based models are the most common parametric algorithm for AGB
estimations using remote sensing data (Le Toan et al. 1992; Sandberg et al. 2011; Soja et
al. 2013; Sinha et al. 2015; Makinano-Santillan et al. 2019). A simple linear regression
assumes a linear relationship between a dependent and an independent variable. The
approach can be extended to multiple predictors (multiple linear regression). In this case,
the remote sensing derived variables show a strong correlation with AGB but not with

each other. However, AGB and remote sensing derived variables are usually non-linear,
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which is why the linear regression can be transformed logarithmically to be more suitable.
Non-linear models, such as logistic regression models (McRoberts et al. 2013) or power
models (Neasset et al. 2011), are commonly applied for estimating AGB from purely
remote sensing derived variables (Lu et al. 2015).

The physically-based algorithms Water Cloud Model (WCM) and Interferometric Water
Cloud Model (IWCM) are built on linear regression models. These models describe the
total SAR signal (backscatter intensity or coherence) over vegetation as the sum of
ground- and vegetation-scattering (Attema and Ulaby 1978).

Non-parametric algorithms include models such as K-nearest neighbor (K-NN), support
vector machine (SVM), artificial neural network (ANN), Random Forest, and Maximum
Entropy (MaxEnt). These algorithms do not predefine the model structure and are more
flexible. Nevertheless, non-parametric models are often highly complicated, necessitate
longer computing times and a high amount of training data. Furthermore, non-parametric
algorithms are known to be prone to overfitting. Within this thesis, parametric models
were used to derive biomass estimations from earth observation data. However, an
extensive summary of major nonparametric algorithms for biomass estimation modeling

can be found in Lu et al. (2015).

6.3. Peat surface interpolation

Several interpolation approaches are known. Inverse Distance Weighting (IDW), Nearest
Neighbor (NN), Moving Average (MA), and Kriging are probably the best-known ones
(Wojciech 2018). To model peat dome surfaces from ICESat-2 point data, the
geostatistical interpolation method Kriging, developed by Matheron (1971) was used.
Kriging is often described in literature as the method with the best results for modeling
terrain (Barton et al. 1999; Jassim and Altaany 2013; Yilmaz and Uysal 2017; Ferreira et
al. 2017). In comparison to other interpolation methods, it can handle irregularly spaced
data like ICESat-2 measurements. Another advantage is the possibility to simply use the
kriging defaults or to adjust the model manually. The method supplies accuracies
associated with each prediction (Ferreira et al. 2017), while it is also the most time-
consuming approach with a computational time of eight to 20 times longer than other
methods (Jassim and Altaany 2013; Wojciech 2018).

Kriging assumes that the direction and distance between points have a spatial correlation.

This spatial correlation is used to explain surface variations. The value of a specific
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location is predicted by estimating a weighted average of the known values in the
location’s neighborhood (Wojciech 2018). As a result, the prediction is more accurate at
points that are closer to observations and declines with increasing distance. Kriging is

defined as:

z(SO) = Zliv=1 AiZ(sp) (Equation I-2)

Where Z(si) represents the measured values at position i, Aiis an unknown weight for the
Z(si), so defines the prediction location, and N is the number of measurements. The
approach is more sensitive to measurements than other interpolation methods such as
IDW since its weights are determined by a semi-variogram. Furthermore, it provides

unbiased estimates (Oliver and Webster 1990).

7. Sources of uncertainty in biomass estimations

An estimate of biomass and carbon as accurate as possible is necessary to develop
strategies for reducing carbon emissions. However, estimates of biomass and carbon
contents are highly imprecise, including different uncertainties, covering a wide range of
estimation values found in literature.

Uncertainty analyses of a product are performed to understand error sources, reduce
uncertainties and to guarantee a robust model. However, an internationally standardized
approach for the validation of large scale biomass products is not yet available.
Uncertainty can result both from random errors and systematic errors. Multiple studies
showed that the relative errors of biomass estimates could vary between 5 % and 30 %
(Chave et al. 2003; Saatchi et al. 2007; Mascaro et al. 2011; Lu et al. 2015; Avitabile et
al. 2016; Rodriguez-Veiga et al. 2019). The level of error depends on factors such as
forest type, topographic features, and spatial resolution of the sensors, as well as the
applied models.

For carbon estimations, many sources of uncertainty are accumulated and propagated
through a modeling or mapping system. Main sources of errors for AGB and carbon
estimations were identified, such as inaccuracies within the field inventory design, the
allometric models including conversion coefficients from volume to biomass, incorrect
regression models relating variables to AGB, sensor errors, atmospheric conditions, and

slope. Besides, the spatial accuracy can influence the result of biomass estimations,
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mainly due to inappropriate geometric corrections, different spatial resolutions, sample
plot locations, shape and size. The temporal difference between acquisitions can
furthermore cause inaccuracies, for example, during the model calibration process (Lu et
al. 2015). An overview of the sources of uncertainty for earth observation based AGB

estimations are displayed in Table I-2.

Table I-2: Main sources of uncertainty for the remote sensing based AGB estimation approach.

Error source | Explanation

In-situ data e Measurement errors while collecting field inventory data

e Allometric model prediction uncertainty

e Sampling errors due to incomplete representativeness of the
biomass range, plot size or plot shape

e Geolocation errors on the plot scale

Remote e Sensor errors (radiometric stability, noise, scanner motions)
sensing data | e Geolocation errors on pixel scale

e Spectral errors (due to atmosphere)

e Errors due to steep terrain (slope)

Spatial e Inaccuracies due to alignment and sizes of field plots and
mismatch remote sensing map units

Temporal e Inaccuracies due to temporal discrepancies between used
mismatch datasets (deforestation, degradation, regrowth)

Model e Prediction errors of the models applied to transform remote
errors sensing signals in AGB

Providing uncertainty quantifications at pixel level, taking the sources of uncertainties
mentioned above into account, helps users understand errors and increases the product’s
acceptance within the international community. Furthermore, the models can be improved

based on the accuracy assessment.

8. Objectives and structure of the thesis
In the context of climate change, monitoring carbon sources is essential. Indonesia
contains enormous carbon sinks in the form of tropical forests and underground peatlands.

However, the unsustainable management of these ecosystems has led to Indonesia,
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especially the regions Kalimantan and Sumatra, becoming one of the largest carbon
emitters in the world. Because many areas in Indonesia are still remote and difficult to
access, the derivation of biomass values using remote sensing is the only way to monitor
carbon sinks and sources reliably. Since optical remote sensing methods in the tropics are
limited by the constant cloud cover, but also because the short wavelengths cannot
penetrate the dense vegetation, it is necessary to use active remote sensing to derive
biomass estimates.

The main goals of this thesis are first the improvement of available AGB estimations,
including a lower uncertainty to make more accurate information about carbon storage in
moist tropical forests of Indonesia accessible. Second, the realization of a more accurate
peatland identification from space in Indonesia, since peatlands are insufficiently well-
known and located to date. These goals can be sub-divided in the tasks for the different

studies:

A. Above-ground biomass (AGB)

1) The robust mapping of high-resolution AGB for extensive areas and reduced
uncertainties
» Improvement of the spatial resolution of existing biomass maps enables the

identification of small-scale biomass variability and changes.

2) Examination of the potential to overcome the saturation limitations for biomass
modeling based on backscatter values with the Pol-InSAR approach, and to
provide high-resolution AGB maps of tropical forests
» Increasing the threshold at which saturation occurs facilitates the AGB

estimations in tropical forests containing high biomass values.

B. Below-ground biomass
Testing the possibility of identifying comprehensive carbon-rich ombrogenous
peat domes in Indonesia using up to date satellite LIDAR DTM measurements
» Knowledge about the peat dome topography allows the calculation of peat

volume and thus, the carbon content of peat domes
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This thesis is divided into four chapters based on stand-alone publications. In the context
of this thesis, different radar satellite instruments were used in order to analyze their
suitability for modeling accurate AGB in Kalimantan, Indonesia.

The first study (Chapter 1) is about AGB modeling based on L-band radar data of the
ALOS PALSAR satellite of the Japan Aerospace Exploration Agency (JAXA) and its
follow up mission ALOS-2. ALOS PALSAR and ALOS-2 PALSAR-2 mosaics with a
spatial resolution of 25 m were used to model biomass of tropical forests in Indonesia
using backscatter values, polarization ratios and textures for the years 2007, 2009, and
2015. In combination with L-band data, Sentinel-1a and b C-band radar, launched within
the Copernicus program by the ESA in 2014 and 2016, respectively, were used for the
modeling period of 2015.

Chapter II compares the results of Chapter I to biomass studies in other habitats, which
are representative of numerous forest biomes and biomass levels worldwide. As part of a
comprehensive international project funded by the European Space Agency (ESA), this
work is the so far most expansive inter-comparison of regional-to-national AGB maps in
terms of area, forest types, input datasets, and retrieval methods.

In Chapter III, TerraSAR-X (TS-X) and Radarsat-2 (RS-2) single-look complex (SLC)
imageries were used to model the canopy heights of tropical forests in Kalimantan,
Indonesia, based on Pol-InSAR. The RS-2 SAR satellite operates a C-band with a
wavelength of 5.6 cm and a frequency of 5.3 GHz and was launched by the Canadian
Space Agency (CSA) in 2007. TS-X was launched in June 2007 by the DLR (German
Aerospace Center). It provides different acquisition modes with varying spatial
resolutions at X-band wavelength (3.1 cm) with a frequency of 9.65 GHz.

The last chapter, Chapter IV, is based on the space-borne sensor ATLAS onboard the
ICESat-2 satellite. ICESat-2 was launched in September 2018 by the National
Aeronautics and Space Administration (NASA). The sensor is a photon-counting LiDAR,
that works at a wavelength of 532 nm (green) and a pulse repetition rate of 10 kHz.
Moreover, the sensor can illuminate the ground and detect terrain heights of the earth
because it penetrates sparse vegetation. The data is used to create a digital terrain model

product made accessible by NASA.

The results of the studies provide input for more precise carbon modeling, as well as risk

managing or forest monitoring systems. The analyses contribute to programs protecting
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forests and analyzing carbon releases such as (REDD+), "United Nations Environment
Programme World Conservation Monitoring Centre" (UNEP-WCMC), the "Global

Canopy Programme", and other similar programs national and subnational level.
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Abstract: Kalimantan poses one of the highest carbon emissions worldwide since its landscape is
strongly endangered by deforestation and degradation and, thus, carbon release. The goal of this
study is to conduct large-scale monitoring of above-ground biomass (AGB) from space and create
more accurate biomass maps of Kalimantan than currently available. AGB was estimated for 2007,
2009, and 2016 in order to give an overview of ongoing forest loss and to estimate changes between
the three time steps in a more precise manner. Extensive field inventory and LiDAR data were
used as reference AGB. A multivariate linear regression model (MLR) based on backscatter values,
ratios, and Haralick textures derived from Sentinel-1 (C-band), ALOS PALSAR (Advanced Land
Observing Satellite’s Phased Array-type L-band Synthetic Aperture Radar), and ALOS-2 PALSAR-2
polarizations was used to estimate AGB across the country. The selection of the most suitable model
parameters was accomplished considering VIF (variable inflation factor), p-value, R, and RMSE (root
mean square error). The final AGB maps were validated by calculating bias, RMSE, R?, and NSE
(Nash-Sutcliffe efficiency). The results show a correlation (R?) between the reference biomass and
the estimated biomass varying from 0.69 in 2016 to 0.77 in 2007, and a model performance (NSE)
in a range of .70 in 2016 to (.76 in 2007. Modelling three different years with a consistent method
allows a more accurate estimation of the change than using available biomass maps based on different
models. All final biomass products have a resolution of 100 m, which is much finer than other existing
maps of this region (=500 m). These high-resolution maps enable identification of even small-scaled
biomass variability and changes and can be used for more precise carbon modelling, as well as forest
monitoring or risk managing systems under REDD+ (Reducing Emissions from Deforestation, forest
Degradation, and the role of conservation, sustainable management of forests, and enhancement of
forest carbon stocks) and other programs, protecting forests and analyzing carbon release.

Keywords: above-ground biomass; carbon; SAR; backscatter approach; multivariate linear regression
modelling; biomass change mapping; Indonesia; tropical deciduous forest

1. Introduction

The Earth's land surface spans approximately 149.4 million km?, of which nearly 30% is
characterized by forested areas [1]. Tropical forest ecosystems (forests and soils) alone hold about
40% of terrestrial carbon [2,3]. However, due to unsustainable use and deforestation, the stored
carbon can be released into the atmosphere as COz (carbon dioxide) and will contribute significantly
to global climate change. According to the Intergovernmental Panel on Climate Change (IPCC),
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the resulting greenhouse gas emissions account for approximately 11% of all anthropogenic emissions
worldwide [4,5].

The forests of Indonesia are considered to be one of the oldest and most species-rich tropical
rainforests on the planet [6]. Indonesia’s forests alone store 18.6 Gt of carbon [7]. Additionally, the
country has some of the largest known tropical peat reservoirs on Earth, storing 55-58 Gt of carbon in
belowground peatlands ([8,9]). At the same time the deforestation and degradation of these tropical
ecosystems lead to a considerable release of carbon, making Indonesia, especially Kalimantan and
Sumatra, one of the largest carbon emitters worldwide [10]. Digging canals for means of transport is a
detrimental form of degradation, as it causes drying in peatlands and encourages the spread of fires
and, thus, increases the potential of forest and peatland loss. As a result of the significant emission
levels and immense loss of forests and peatlands, Indonesia has become a prime target for REDD+
projects (Reducing Emissions from Deforestation, forest Degradation, and the role of conservation,
sustainable management of forests, and enhancement of forest carbon stocks). One of the intentions
of REDD+ includes conditional payments to developing countries for reducing their emissions [11].
Within this framework, the most active projects and initiatives worldwide are taking place in Indonesia
and its provinces [12]. Nevertheless, Indonesia, especially Kalimantan, the largest isle of Indonesia, is
affected by ongoing deforestation and degradation processes.

To perform current REDD+ policies, accurate forest monitoring systems, consistent measurements,
and information about carbon emissions at national and subnational scales are necessary for
participating countries. Especially, subnational projects require accurate high-resolution maps
capturing small-scaled variability and changes in forested areas. Forest carbon stocks are usually
calculated using above-ground biomass (AGB) by assuming that typically 50% of AGB is carbon [13].
Biomass, as the fundamental biophysical parameter quantifying the Earth’s living vegetation [14],
describes the amount of woody matter within a forest. It is defined by the Global Climate Observing
System (GCOS) as an essential climate variable (ECV) [15]. Well-known methods for mapping AGB
include field-data, airborne and space-borne LiDAR (light detection and ranging) scanning, satellite
optical remote sensing, and imaging radar [14]. In contrast to ground-based inventories and LiDAR
surveys, Earth observation approaches are able to cover larger areas and in a more cost-effective
manner. Additionally, forest inventories are not always comparable, since the definition of national
forests and sampling strategies vary between countries [16].

An appropriate compromise represents the upscaling of accurate forest inventories or regional
LiDAR-derived biomass estimations with large-scale satellite imagery [17]. Since optical data are
limited by clouds, smoke, and lacking illumination, as well as not being able to capture the vertical
structures of trees [18], synthetic aperture radar (SAR) is more suitable in this scope of application,
as it is daylight- and almost weather-independent [19]. The SAR data-based backscatter approach is
well known for forest cover and biomass mapping. This method uses the energy that is received by
the sensor after transmission, the so-called backscatter, and relates it to field biomass measurements.
The backscatter typically increases with an increasing amount of biomass until a certain value, at which
the sensitivity of the backscatter to the AGB stagnates. This biomass saturation level is dependent on
the wavelength of the sensor [20]. With regard to the sensitivity of vegetation, wavelengths underlay
different physical characteristics. While the C-band is able to penetrate through leaves, but is scattered
by small branches, the L-band, with a wavelength of up to 30 c¢m, is scattered mainly by trunks and
tall branches. Since P-band SAR data, which is able to penetrate deeply into the canopy cover and
is backscattered by trunks and the ground, has been unavailable to date, the L-band represents the
most suitable operational data for biomass estimation [21]. AGB estimation based on Advanced Land
Observing Satellite’s Phased Array-type L-band Synthetic Aperture Radar (ALOS PALSAR) data has
already been successfully performed by [22,23]. AGB studies in tropical forests were also mostly
conducted on the basis of L-band SAR data [24-28]. Reported saturation levels using L-band in tropical
forests in Indonesia are at approximately 50 t/ha to 200 t/ha [25,29-32]. A combination of C- and
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L-bands has shown better results in tropical forests of Colombia than using a single band [33,34] found
a correlation of C-band ENVISAT ASAR backscatter and AGB up to 250 t/ha.

Existing biomass maps of pan-tropical ecosystems by [7,30] exhibit resolutions of 500 m or
1 km, respectively. In Southeast Asia the biomass map of [7] overestimates AGB in the lower
biomass ranges and does not identify heterogeneity in forests in detail. In contrast, the map of [30]
slightly underestimates high biomass ranges, but captures disturbances in forested areas [35].
Avitabile et al. [36] fuse those two maps in combination with additional data to create an improved
pan-tropical biomass map. The results show a smaller RMSE and bias for all continents. Nevertheless,
the spatial resolution is about 1 km, which is why the AGB heterogeneity and small-scaled changes
cannot be detected as accurate as necessary for most REDD+ projects. Freely available, large-scale
biomass maps at national or subnational scales for Indonesia are not available to date.

The aim of the ESA DUE GlobBiomass project is to improve existing AGB estimation products
and reduce uncertainties in different ecosystems by developing an innovative synergistic mapping
approach. Within the project above-ground biomass is estimated for five regional sites (Sweden, Poland,
Mexico, Eastern South Africa, Kalimantan) for the epochs 2005 (2005 = 2 years), 2010 (2010 + 2 years),
and 2015 (2015 £ 2 years), as well as a global map for the epoch 2010, using different data and methods.
Additionally, the change of biomass during the three epochs is estimated per region. As part of the
GlobBiomass project, the present study focuses on large-scale monitoring of biomass in Kalimantan,
Indonesia, from space. The aim of the study is to estimate AGB with a finer resolution and better
accuracy than other existing AGB maps. Therefore, ALOS PALSAR /ALOS-2 PALSAR-2 L-band, and
Sentinel-1 C-band data from 2007, 2009, and 2016 were used. A multivariate linear regression model
(MLR) based on SAR backscatter values, polarization ratios, and textures was set up in order to increase
the biomass saturation level. As the reference biomass for the model calibration and validation from
SAR data, a combination of field inventory data and LiDAR data was used in order to provide a
more accurate base. Modelling three different years with a consistent method allows a more accurate
estimation of changes between the three time steps than using the available biomass maps based
on different models. A higher spatial resolution is important in order to make them a promising
alternative building a forest monitoring or risk managing system, but also to achieve the objectives
of REDD+, the Global Canopy Programme, UNEP-WCMC, and other programs protecting forests or
analyzing carbon release at national and subnational levels.

2. Study Area and Data

Kalimantan, which is the Indonesian part of Borneo island, has a size of about 544,000 km? and
lies within the geographic coordinates 4°15'41”N to 3°45'44"'S latitude and 108°48'0"E to 118°49'41"E
longitude (Figure 1). The island’s climate is mainly conditioned by the dry southeast monsoon from
May to October and the wet northwest monsoon from November to April, and is influenced by
frequent rainfall and high temperatures throughout the year. Those conditions are ideal for plant
growth, which is why Kalimantan’s land cover is characterized mainly by tropical forests covering
301,750 km? and, thus, more than 55% of the country. The forests of Borneo are considered to be one of
the oldest and most species-rich tropical rainforests on Earth. The dominating forest ecosystems are
mangrove forests, peat swamp and freshwater swamp forests, riparian forests, heath forests, lowland
dipterocarp forests, ironwood forests, forests on limestone and ultrabasic soils, hill dipterocarp forests,
and various montane formations [6]. In general lowland dipterocarp and peat swamp forests can be
well discriminated in the field by means of average tree height, tree crown diameter, canopy closure,
and species composition. Lowland dipterocarp forests are more diverse with taller trees and a more
closed canopy [6]. Dipterocarps can reach a height of 45-60 m and are a valuable tree species prone
to logging. All of the forest types store an extensive amount of carbon [8]. Nevertheless, the most
significant carbon sinks in this area are belowground peatlands, which can store up to ten times more
carbon than the forests growing on top them, since they were formed over the past millennia, as plant
debris accumulated under waterlogged conditions [37]. The last decades witnessed a decrease of
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forest due to illegal logging, deforestation for agricultural development but also due to natural and
manmade fires. Additionally, the ability of peatlands to store carbon is reduced due to anthropogenic
activities like logging and drainage. In particular, draining the normally waterlogged peatlands makes
these ecosystems vulnerable to fires. For modelling the reference AGB layer a universal AGB model is
used for all different forest types.
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Figure 1. ALOS PALSAR false-color composite of Borneo Island using cross- and co-polarization as
RGB (HH; HV; HH). To achieve the full coverage of Borneo 21 images of the year 2009 are mosaicked.

2.1. Above-Ground Data

For the creation of the AGB reference layer existing field inventory data, collected across different
forest types using the nested plots method, based on the guidelines provided by [38], were utilized.
The methodology varies slightly for the various study sites, since they were processed as part of
different research projects. The data was gathered in four test sites across Kalimantan (Figure 1) during
2007, 2009, and 2016 (Table 1). In order to estimate AGB using allometric models after [39], information
about forest type, tree species, the diameter at breast height (DBH), and tree height are collected within
nested plots based on three or four subplots. Inside the different subplots, trees of a certain diameter
at breast height (DBH) were measured, for example, DBH < 10 cm (within the 3 m radius), =10 cm
to <20 em (10 m radius), =20 cm to <50 cm (20 m radius), and =50 cm (30 m radius). The sum of the
measured parameters of the subplots was multiplied by an expansion factor in order to obtain the
final values for 1 ha. In Pulang Pisau and Kapuas three circular subplots with radii of 20 m, 14 m, and
4 m, and 16 m, 8 m, and 4 m, and in Berau, Malinau and Kapuas Hulu four subplots with radii of
30/35 m, 20/25 m, 10 m, and 3 m were applied. In addition to circular nested plots, information was
collected in rectangular plots of 20 m x 50 m to record saplings and trees in regrowing areas in Pulang
Pisau and Kapuas. Moreover, nested rectangular plots with three subplots with sizes of 10 m x 10 m,
20m x 20 m, and 20 m x 50 m were applied in Kapuas Hulu.

Airborne LiDAR measurements were acquired during the dry seasons in 2007, 2011, and 2012
in the same areas as the field data was collected. In 2007 (May—October) a Riegl LMS-Q560 2D laser
scanner by RIEGL Laser Measurement Systems GmbH (Horn, Austria) was flown at a height of 500 m
above-ground and a half scan angle of +30° to collect the full-wave LiDAR data. The average point
density of the final data 2007 was 1.5 points per m”. For the years 2011 and 2012 (August-October)
the measurements were acquired using Optech Orion M200 and Optech ALTM 3100 airborne laser
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scanners by Teledyne Optech (Vaughan, Ontario, Canada) at an altitude of 800 m above-ground. A half
scan angle of +11° was used and the point density amounted to 10.7 points per m2. Since the accuracy
of biomass estimations derived from LiDAR metrics increase with a higher point density, a weighting
of the plots accordingly to their point density was applied [40]. In total, 8300 km? were surveyed in
different regions in East, West, and Central Kalimantan (Table 1) representing different ecosystems.
Since there was a lack of LIiDAR data for 2016 due to vast fires in Kalimantan, adjusted data of 2011
and 2012 was used.

Table 1. Overview of the measured field inventory plots (473) and the acquired LiDAR data (8300 km?)
in Kalimantan.

Field Plots LiDAR

. Reference

Test Site — — 3
Acquisition Date Number of Plots Acquisition Date Area [km~] Year
Pulang Pisau & Kapuas 2008 64 2007 300 2007
Kapuas Hulu 2009-2011 82 2012 420 2009
Pulang Pisau & Kapuas 2010-2011 87 2011 7000 2009
Berau 2012-2013 78 2012 340 2009
Malinau - - 2012 240 2009
Pulang Pisau & Kapuas 2013-2014 94 2011 * 7000 2016
Malinau 2015 24 2012 % 340 2016
Kapuas Hulu 2014 44 2012 % 240 2016

*adjusted using the MODIS fire hotspot product MDC14DL.

2.2. Earth Observing Datasets

2.2.1. SAR Data

SAR data was acquired in 2007, 2009, and 2016, using years with preferably dry conditions and
less active fires. The study is based on L-band radar data of the Phased Array Type L-band Synthetic
Aperture Radar (PALSAR), onboard the Advanced Land Observing Satellite (ALOS) of the Japan
Aerospace Exploration Agency (JAXA) and ALOS-2 in combination with C-band radar data based
on ENVISAT ASAR and Sentinel-1. ALOS PALSAR and ALOS-2 PALSAR-2 mosaics with a spatial
resolution of 25 m were provided by the Kyoto and Carbon Initiative. ENVISAT ASAR was launched in
2002 by the European Space Agency (ESA). Sentinel-1a and Sentinel-1b C-band radars were launched
within the Copernicus program by the ESA in 2014 and 2016, respectively. ALOS PALSAR (HH, HV)
images were used to estimate the biomass in Kalimantan for the years 2007 and 2009. As C-Band radar
data for the years 2007 and 2009 imageries of ENVISAT ASAR (VV) data were tested, certainly the
data had to be excluded as the study area is not fully covered by scenes acquired in one sensor mode
and because of strong moisture effects. In 2016, data of ALOS-2, launched in 2014, in combination with
Sentinel-1 GRD data, acquired in interferometric wide (IW) swath and a resolution of 10 m x 10 m,
was used.

2.22. SRTM

The Digital Elevation Model (DEM) from the Shuttle Radar Topography mission (SRTM) with a
vertical accuracy of £10 m and a spatial resolution of 30 m is used for topographic analyses. Slope
is used to clean up the final AGB map, since extreme overestimation of biomass occurs in steep
terrain. Besides, steep terrain can cause layover and shadow effects, decreasing the accuracy of the
AGB estimation.

2.2.3. TRMM

Since SAR backscatter is highly sensitive to water content of the surface due to its dielectric
properties, daily TRMM (Tropical Rainfall Measuring Mission) of the National Aeronautics and
Space Administration (NASA) and JAXA precipitation data with a spatial resolution of 0.25° were
incorporated in order to select satellite acquisition dates with dry and comparable conditions [41].
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2.2.4. MODIS Active Fire Data (MDC14DL)

MODIS hotspot information (product MCD14DL, provided by NASA) were used as an additional
layer to detect thermal anomalies and active fires in Kalimantan. In this layer active fires are represented
in the center of a 1 km x 1 km pixel that is identified by the MODIS MOD14/MYD14 Fire and Thermal
Anomalies algorithm as containing one or more fires within the pixel [42,43].

2.2.5. Water Body Mask

ESRI World Water Bodies was used for delineating water bodies within the study area. It provides
a base map layer for lakes, seas, oceans and large rivers and as generated on data with a spatial
resolution of 100 m [44].

2.2.6. Urban Areas

The ESA CCI land cover map provides three epoch series (2000, 2005, 2010) of global land cover
maps at 300 m spatial resolution which were used to evaluate settlement areas. ESA CCI land cover
maps were produced used a multi-sensor and multi-temporal strategy based on MERIS Full and
Reduced Resolution (FR and RR) archive. The 10-year product has been served as a baseline to derive
the 2000, 2005 and 2010 maps using MERIS and SPOT-Vegetation time series specific to each epoch [45].

3. Methods

3.1. Above-Ground Biomass Data

Inventory data and LiDAR data are combined to create more accurate biomass predictions for
an area within the SAR images. This upscaling from field inventory to LiDAR transects allows
creating a more precise basis for AGB model calibration and validation from SAR backscatter data [40].
An overview of the whole methodology of this study can be found in Figure 2.

. SAR daa
Field inventory data LIDAR data ALOS PALSAR 1/2, Sentinel-1

I a) Backscatter intensity J
[

AGB estimation using LiDAR metrics caleulation
allomefric models using points clouds
I b) Ratios (HV/HH, HHIHV} J
[

[ AGB reference layer ] Ic) Haralick Textures of a) and b)]

AGB modelling using
multiple linear regression made|

Calibration

analysis

Figure 2. Flow chart of the AGB map processing steps. Blue refers to the results, and green refers to the

Manual correction of
- slopa > 10°

- water bodies

- settlement areas

AGB layers for
2007, 2009, 2016

Change layer

main result.
The estimation of AGB in t/ha from field inventory data was achieved by using the tree height,

diameter at breast height (DBH), and wood specific density of each tree as the input for a combination
of different allometric models. Therefore, allometric models from [46] for saplings (if DBH < 5 cm and
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height < 1.3 m) or trees (if DBH < 5 cm and height > 1.3 m) and from [39] for moist tropical forest
stands (if DBH > 5 cm and height > 1.3 m) were applied. Those ground-based AGB values were
related to LiDAR transects in order to estimate biomass reference data using previously-established
regression models for the different study sites, as described in [40].

LiDAR height histograms were calculated by normalizing all points within a grid of, e.g., 30 m
(similar to the size of the largest nest of the field inventory plots) to the ground using a DTM as
reference, i.e., the height of each LiDAR return was calculated relative to the DTM [47,48]. The number
of points within each 0.5 m interval was stored as a histogram. The first (lowest) interval was considered
as the ground return and excluded from further processing. The LiDAR data enabled calculating
the two LiDAR point cloud metrics quadratic mean canopy height (QMCH) and centroid height
(CH), as described more in detail in [40]. Previous studies have shown that those two parameters are
able to estimate tropical forests AGB, as they take into account the point distribution of the LIiDAR
measurements [47,49]. This is why the QMCH and the CH were estimated based on height histograms
by weighting each 0.5 m height interval by the fraction of points within the interval. CH and QMCH
were related to AGB, estimated by the field inventories using regression models for each particular
study site in order to obtain large-scale biomass estimations [29,48]. Furthermore, the point density
was included in the regression model, since [47] showed that the accuracy of AGB estimations derived
from LiDAR height histograms increased with higher point densities. The coefficient of determination
(R?) of the AGB regression models vary from R? =0.7 (Berau and Kapuas Hulu) to R? = 0.8 (Malinau
and Central Kalimantan).

The upscaling from field inventory data to LiDAR transects allows creating numerous biomass
reference data for the calibration of SAR images and to upscale AGB across large areas and different
ecosystems. It provides AGB estimates over the whole biomass range from woody regrowth to pristine
forest, and is able to disclose a spatial variation due to varying growth conditions. In order to estimate
AGB based on SAR data the reference AGB was rescaled to a spatial resolution of 100 m.

Since there was a lack of LIDAR data for 2016 due to vast fires in Kalimantan, the data of 2011 and
2012 was used. Differences between the reference AGB and the SAR images over time were detected
and excluded using MODIS fire hotspots, as fire is the main reason for deforestation in this area.

3.2. SAR Data

Since SAR backscatter is highly sensitive to water content of the surface due to its dielectric
properties, daily TRMM (Tropical Rainfall Measuring Mission) precipitation data with a spatial
resolution of 0.25° were used to verify the moisture conditions within the SAR imageries. In order
to have dry and comparable conditions images with a high influence of precipitation were
excluded. During the pre-processing of the Sentinel-1 (10 m) and ALOS PALSAR (25 m) data a
co-registration based on an ALOS PALSAR mosaic with a spatial resolution of 25 m, a radiometric
calibration estimating y" backscatter coefficients in dB and a geometric correction were accomplished.
Furthermore, a multi-temporal speckle filtering using an enhanced Lee filter with a7 x 7 window was
applied [50]. The processed data was resampled to a resolution of 100 m resulting in pixels with a
spatial resolution of 1 ha.

In order to examine the potential for AGB estimation, ratio images were prepared, using the
following equations:

Rpwhn = HV/HH o]

Ripwy = VH/VV 2)

where HH, HV, VV, and VH indicate the polarization of the 0 backscattering coefficients, depending
on available polarizations of ALOS PALSAR and Sentinel-1. An evaluation of ratios and textures can
be found in [51].
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To improve the model accuracy, Haralick textures [52] and their relationship to AGB were also
investigated. Texture describes the properties of objects, such as regularity, smoothness, and tonal
variation [51]. Ten simple Haralick textures applying a gray level co-occurrence matrix (GLCM) and
eleven higher-order Haralick textures applying a gray level run-length matrix (GLRM) were calculated
within the open-source software Orfeo ToolBox by CNES (Centre National D'Etudes Spatiales) over a
moving window with user-defined radius based on single polarized images and the calculated ratios.
The radius used for single polarized images had a size of five, while a radius of three was used for
calculating textures based on ratios. The relationship between these generated SAR variables and
the LIDAR AGB was analyzed and showed an inversely proportional correlation. The variables were
linearized in order to use the variables as an input for a multivariate linear regression model (MLR).

3.3. Multivariate Linear Regression Model (MLR)

In Englhart et al. [53] it was found that artificial neural network (ANN) and support vector
regression (SVR) were suitable to predict AGB in tropical forests. Nevertheless, in terms of biomass
variability and saturation in tropical forest ecosystems, multivariate linear regression models (MLR)
are superior to ANN and SVR models [53]. Since very high biomass values are expected in the study
area, MLR is used to model the above-ground biomass. Multiple regressions are often affected by
overfitting and co-linearity among variables. In order to find a model with the greatest explanatory
power, a backward stepwise multiple linear regression was performed to automate the selection
of the best explanatory variables. The MLR was first set up with all linearized ratios and textures
and run iteratively. To decrease the number of inputs, the p-value and the variable inflation factor
(VIF) were investigated for each variable to identify their significance and co-linearity. Regarding
literature, parameters with a p-value <0.05 and a VIF >5 were excluded from the model [26,51,54].
After eliminating redundant information, three variables were finally used for 2007 and 2009 and four
variables for 2016. However, the extreme fire events in 2015 burned vast forest areas in Kalimantan.
Resulting burned and carbonized trunks enhance double bounce effects in this region, which caused
higher backscatter values and, thus, an overestimation of the biomass model. To minimize the
overestimation in this areas, a second model was set up for 2016 simply based on two variables that
were less sensitive to high backscatter. This model was applied only in burned areas, captured by a
mask based on high backscatter values. In the remaining parts of the scene the first model, using four
inputs, was used.

Settlements and areas with steep terrains cannot be captured correctly by the model. In order to
reduce errors due to radar shadow and layover effects, regions with a terrain steeper than 10° were
excluded from the biomass estimation using the Shuttle Radar Topography Mission (SRTM) DEM.
Mountainous areas in Kalimantan are less influenced by human activity since they are difficult to
access and due to a lack of transport routes, like canals. For this reason, the forests in mountainous
terrain are mostly unaffected by degradation. Altogether 27.2% of the study area of Kalimantan are
influenced by slopes steeper than 10° the main forest type in these regions is the hill- and sub-montane
forest which was determined during field inventory campaigns, as well as through detailed forest
classification mapping covering the LIDAR areas. The mean value of LIDAR AGB was calculated for
the area with a terrain steeper than 10° and resulted in 350 t/ha. Additionally, urban areas and water
bodies were excluded from the final results, using an ESRI World Water Body layer and the ESA CCI
land cover map of each particular year (2005, 2010, 2015).

3.4. Temporal Change Estimation

The temporal change between 2007-2009, 2009-2016, and 2007-2016 was assessed using the RMSE
in order to define a possible biomass range for each estimate at pixel level. The RMSE is calculated for
five classes 0-50 t/ha, 50-100 t/ha, 100-150 t/ha, 150-200 t/ha, and >200 t/ha. The specific RMSE of
the corresponding AGB range was subtracted from and added to the estimated AGB value at pixel
level. The results are two layers consisting of the highest (H) and lowest value (L) of a possible AGB
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range per pixel for two comparing time-steps (T1, T2). A change/no-change mask, with discrimination
of the increase and decrease, was generated by using threshold values based on the following decisions.
If HT1 > LT2 or LT1 < HT2, an overlap between the ranges exist and, thus, no-change is assumed.
In cases where HT1 < LT2, we suppose an increase of AGB and if LT1 > HT2 a decrease of AGB between
the two years, both indicates a change. In order to remove single separated pixel, a minimum change
unit of 300 m x 300 m was applied.

3.5. Validation and Uncertainty

For the validation of the AGB estimation, field inventory and LiDAR data, was used. The data was
randomly split into data used for training (70%) and validation (30%) of the SAR-AGB models. For each
map approximately 500 points were randomly set within the reference layer extent. To measure the
accuracy of the models different parameters like bias, RMSE, standard deviation (SD) and the R? were
calculated for each map within an AGB range of 50 t/ha starting from 0 up to >200 t/ha and the overall
range. Additionally, the NSE was estimated for the overall biomass range. Regarding [55], the NSE is
a dimensionless index measuring the efficiency of a model in a range from —co to 1. The closer the
NSE is to 1, the more accurate is the model. The NSE is calculated using the following equation:

NSE=1— (YN, (P -0)Y/¥ N (0-0)%) ®)

where N is the number of observations, P; is the predicted value, O; is the observed value, and O is the
mean of the observed value [55].

An uncertainty map at the pixel level is important for the interpretation of AGB maps, as shown
in [56,57]. The total uncertainty at the pixel level is composed of different sources of errors which
are assumed to be random and independent. These are propagated for each map using the equation
proposed by [30], taking into account the errors of measurement, allometry, sampling size, and
prediction. Similar to [26], a measurement error supposed to be 10%. In [39] the authors found an error
for the estimation of a tree’s biomass of approximately £5%. As we mainly used this allometry, an
error of 5% is assumed. According to [30,58], a sampling size error of 20% is supposed. The prediction
error includes the sampling error associated with the representativeness of the training data of the
actual spatial distribution of AGB and the model predictions and is estimated per pixel.

4. Results

4.1. Modelling Results

Using a backward stepwise approach allows to reduce the parameters within in the MLR, resulting
in the finally-used variables listed in Table 2. In addition, coefficient of determination and residual
standard error are displayed for each model calibration. Model 1 and model 2 of 2016 are used in
combination, whereas model 2 is only applied in burned areas. The overall R? of the combined models
is 0.69. The RP and the Low Grey-Level Run Emphasis (LGRE) showed the best relationship to LIDAR
AGB compared to all Haralick textures. Additionally, cross-polarized-based parameters perform
significantly better than co-polarized ones.
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Table 2. Overview of the used variables for the different MLR models per year and the R? and residual
standard error (RSE) for the calibration of the model (RP = higher texture run percentage).

Predictor B Std. Error Beta p Value R? RSE
PALSAR-1 HV (dB) ~72.51 44.00 ~0.057 0.0996 .
Model 2007 PALSAR-1 HVHH RP 0.61 0.04 0.347 <2 x 10716 %0 0.75 57.2
PALSAR-1 HV RP 22.35 1.34 0.612 <2 x 10716 ##+
PALSAR-1 HV (dB) ~105 6.72 0.262 <2 x 10716
Model 2009 PALSAR-1 HVHH RP 2.86 0.17 0.228 <2 x 10716 # 0.77 56.6
PALSAR-1 HV RP ~0.00000236  0.000005127  —0.345 <2 x 1016 %
PALSAR-1 HV (dB) 8931.00 1445.27 —0.662 8.67 x 10710 ¥+
PALSAR-1 HVHH RP 047 0.03 0.027 <2 x 10 16+
Model 2016 (1) PALSAR-1 HV RP —36.05 2.81 —0.001 <2 x 10716 0463 558
Sentinel-1 VH (dB) —3.99 203.88 0.109 0.0503 .
PALSAR-2 HVHH RP —67.18 221 —0.664 <2 x 10716
Model 2016 (2) Sentinel-1 VH (dB) 837.25 222.78 0.082 0.000179 *++ 0.49 38

Signif. codes: 0 ***' 0.001, **' 0.01, ** 0.05,°." 0.1, " " 1.

4.2. Biomass Maps and Temporal Change

The final biomass maps with a resolution of 100 m are presented in Figure 3a—c. Kalimantan is
dominated in all years by forests with biomass varying in a range of 50-350 t/ha. However, its land
cover is changing in time. Areas close to the coasts and along rivers show low biomass values between
0-50 t/ha. In 2007 15% of Kalimantan was covered by non-forested areas. Certainly, the portion
of this class is growing over the years, caused by a decrease of forest and, thus, a loss of biomass.
In 2009 the amount of non-forested extents is about 20%, though it reaches the maximum (25%) in 2016.
The highest biomass values are reached in areas of mountainous terrain, which can be found in the
north and center of Kalimantan. Nevertheless, the extent of forests containing high biomass values
is significantly shrinking. In 2007 the model found a percentage of 55% of Kalimantan with biomass
values >200 t/ha, while it is 38% in 2016. The biomass variability due to different degradation stages
in the forest, as well as different disturbances in contrast to non-disturbed areas or clear-cuts, can be
captured in the final maps.

A subset of Kalimantan, showing the change in the south of the island for the period 2009-2016,
is displayed in Figure 3d. Red colors show a decrease of biomass, while green colors indicate an
increase of AGB. The region is mainly dominated by a loss of biomass with values about — 300 to
—100 t/ha. In contrast, only few areas show increased biomass. A similar distribution can be observed
across the entire coastline of Kalimantan. Mountainous regions in the center of Kalimantan are less
influenced by change. Figure 4 is summarizing the percentage of the forest degradation level per year.
Highly-degraded areas increase from 15% in 2007 to 20% in 2009 to 25% in 2016. Accordingly, the
area covered by natural forest (AGB > 200 t/ha) decreases. The coverage of forested areas containing
an AGB from 50 to 200 t/ha are rising since areas with natural forest are affected by illegal logging,
where single trees are felled. Thus the class of natural forest is slowly converted into degraded forest.
Ongoing activities are further converting the degraded forest to highly-degraded areas.
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Figure 3. Final biomass maps for Kalimantan, per year and subset of the quantity of change layer for
2009-2016. Biomass ranges from 0-350 t/ha, and the quantity of change ranges from —300-100 t/ha.
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Figure 4. Percentage of the level of forest degradation per year, natural Forest = >200 t/ha, degraded =

50-200 t/ha, and highly-degraded = 0-50 t/ha AGB.

4.3. Comparison with Pan-Tropical Biomass Maps

Figure 5 displays a subset of a degraded peat swamp forest in Central Kalimantan near the capital
Palangka Raya. A visual comparison of the estimated AGB map, the LiDAR-derived reference AGB
map and other pan-tropical biomass maps [7,30,36] with a resolution of 500 m and 1 km, respectively,
points out that the developed MLR model correctly estimates the variability of biomass. The biomass
map of [7] overestimates AGB in the lower biomass ranges and is not identifying heterogeneity
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in forests in detail. In contrast, the map of [30] underestimates high biomass ranges, but captures
disturbances in forested areas. Avitabile etal. [36] combine the pantropical biomass maps of [7] and [30]
and additional data in order to create an improved pan-tropical biomass map. The final product of [36]
with a resolution of 1 km has a lower RMSE and bias than the two previous studies. Comparing maps
(a) and (e), a similar trend of the biomass distribution is visible. The estimated AGB map based on
the MLR model has a much finer resolution (100 m) which allows visualizing AGB variability more
precisely and detects even small-scaled changes for carbon modelling, as well as forest monitoring or
risk managing systems. Moreover, the modelled maps show a better accordance to the LIDAR-derived
AGB in the subset.

a) AGB MLR 2009 b) AGB LIDAR c) AGB Saatchi et al.
114°E i He'E

A Qverview Map
2] Kalimantan
[ Location
Biomass [t/ha]
350 MOOTE 120°00°E
I 150
- g 2 I
s
[ LIDAR Outline =
WGS 1984
Sarvice Layar: Esri, 0 500
USGS, NDAA, b) ALOS S
PALSAR (HV})

Figure 5. Comparison between different AGB maps (a) AGB MLR model result for 2009; (b) LIDAR;
(c) Saatchi et al. (2011); (d) Baccini et al. (2012); and (e) Avitabile et al. (2016) in a range of 0-350
t/ha for a subset in the south of Kalimantan. The resolution of AGB maps of the MLR model and the
LiDAR data is 100 m; the map of Saatchi et al., 1 km; the map of Baccini et al., 500 m; and the map of
Avitabile et al., 1 km.

4.4. Validation and Uncerlainty

Various validation statistics of the estimated AGB in Kalimantan, calculated using approximately
500 points per map, are listed in Table 3. The sample points were randomly distributed over areas,
where reference data was available (training sites, Figure 1). Average AGB estimates are consistently
higher than those obtained from the reference biomass, except to the AGB range >200 t/ha. Higher
averages indicate a positive bias, while the magnitude of the bias is variable across the AGB ranges
and points to the highest values in the biomass classes of 50-100 t/ha and 100-150 t/ha. In contrast,
AGB ranges >200 t/ha display a negative bias. The root mean square error (RMSE) is similar in all
years, with the highest relative errors exceeding 100% in the lower AGB ranges and low relative
errors of around 22% in the highest AGB ranges. The distribution of the relative RMSE is similar in
all three years. The relative overall RMSE ranges between 31% (2016), 36% (2009), and 38% (2007).
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The scatterplots of AGB estimates against the reference AGB display a similar distribution in all years
(Figure 6). AGB values up to 250 t/ha show an overestimation of the models, especially in 2007, while
AGB ranges higher than 250 t/ha indicate an underestimation. The coefficient of determination (R?)
varies in a range of 0.69 in 2016 to 0.77 in 2007 and the standard deviation (SD) is 53 t/ha in 2009 and
2016 to 56 t/ha in 2007. The NSE, indicating the efficiency of a model in a range from —co to 1, shows

48

a good model performance for all years, reaching values between 0.70 and 0.76.

Table 3. Overview of validation statistics per AGB ranges and year.

AGB  #0f AGBux AGB,.; RMSE  SD Bias Rel. )
Year  (yha) Points (Yha) (Yha) (Vha) (Wha)  (Vha) RMSE K NSE
0-50 134 27 7 41 36 20 586
50-100 19 151 68 90 35 84 132
sopy | 100-150 34 179 128 68 45 52 053 076
150-200 78 219 176 55 35 43 031 -
>200 154 239 273 62 52 _34 0.23
Overall 419 159 149 57 56 10 038 0.77
0-50 139 48 13 52 38 35 400
50-100 21 130 78 71 50 52 091
100-150 37 175 132 64 49 1 0.48
2009 q5000 115 194 178 40 35 18 0.22 0.71
>200 180 207 247 57 41 _39 0.23
Overall 492 154 149 53 53 5 036 0.71
0-50 82 19 9 27 37 10 3.00
50-100 24 130 72 75 48 58 1.04
100-150 37 162 126 54 41 36 0.43
2016 450500 115 19 179 a1 30 28 0.23 0.70
200 210 252 210 63 46 4 0.30
Overall 468 168 173 54 53 -5 031 0.69
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Figure 6. Linear regression of estimated above-ground biomass and reference above-ground biomass

using approximately 500 randomly-generated points across the reference layer for each year (red
dashed line = 1:1 line; black line = linear trend including confidence bounds).

Figure 7 shows the number of sample points (frequency) of the reference AGB in contrast to the
estimated AGB in each biomass range. The distribution of the frequency for the reference and the
modelled biomass per range are similar, showing just small discrepancies in each year. The histogram
of 2007 is affected by a smaller frequency of estimated biomass in each range, except the range
>200 t/ha with a relative error of about 25%. In contrast, the histogram of 2009 is dominated by a
lower sum of observations per range for all ranges except the smallest biomass range (0-50 t/ha) with
a relative error of 42%. 2016 shows only little differences in each biomass range.
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Figure 7. Histograms of reference above-ground biomass and estimated above-ground biomass per
biomass range for each year. Frequency refers to the number of observations per range.

The uncertainty per AGB range (Figure 8), computed as a percentage of the AGB estimates, shows
the highest relative errors in areas with low AGB estimates (Table 4). The relative errors in the biomass
range 0-50 t/ha vary between 61.3% to 117.9%, in which the lowest values were obtained in 2009 and
the highest in 2007. Areas with high biomass estimates show low relative errors of about 6% in each
year. Additionally, the overall relative error per year show similar values varying in a range from 7.8%
to 9.1%.

Table 4. Uncertainty per AGB range and year in percentage.

AGB (t/ha) 2007 2009 2016
0-50 1179 61.3 103.6
50-100 204 175 19.3
100-150 9.8 9.3 8.2
150-200 5.8 4.8 4.8
>200 6.0 6.4 5.8
Overall 9.1 8.5 7.8
a) Uneertainty 2007 b} Uncertainty 2009 ¢) Uncertainty 2016
N2E 116°E 1M12°E 116°E N2°E 116°E
120 % 5 i

2°N
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WGS 1984
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Figure 8. Uncertainty maps per AGB range for each year showing highest errors in low biomass ranges.
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5. Discussion

5.1. Biomass Estimation

The results suggest that a MLR using backscatter values in combination with ratios and textures
of ALOS PALSAR-1/2 L-band and Sentinel-1 C-band data is eligible to model AGB in tropical forests.
Englhart et al. [53], the authors found that in terms of biomass variability and saturation in tropical
forest ecosystems MLR models are superior to ANN and SVR models. Since Kalimantan is dominated
by high biomass values, a MLR was, therefore, used to model the AGB.

The use of highly accurate field inventory plots in combination with extensive LiDAR surveys
as reference datasets improved the SAR-based biomass modelling. These datasets were collected in
different ecosystems across Kalimantan, covering a wide range of ecosystems, vegetation types, forest
structures and, thus, biomass ranges, for which reason they provide more precise biomass estimates
than other sensors or the exclusive use of field inventory data [40]. Nevertheless, uncertainties
between field data and the modelled reference AGB can originate from different factors. First of
all, the lag time between field data and LiDAR data acquisitions can introduce uncertainties due
to regrowing or deforestation. For the reason that LiDAR data was not available for 2016, LIDAR
data from 2011/2012 was adjusted as the reference layer for 2016. In order to minimize the effect
of this temporal shift additional MODIS hotspot data (MCD14DL) was used to eliminate burned
areas between 2011 and 2016. Certainly, forest cover changes resulting from logging or regrowing is
not captured and can cause inaccuracies. Second, extrapolating field inventory data can introduce
errors, since the spatial variability cannot be covered. In addition, the accuracy and precision of
AGB extrapolated from field plots are affected by plot size and shape [59]. Previous studies showed
that errors in LiDAR-estimated AGB decrease exponentially with increasing field plot size, resulting
from a smaller effect of co-registration errors and a spatial averaging of errors [58-61]. In contrast,
smaller plots have less overlap with the LIDAR data, cannot capture the variability of a forest, and
are more sensitive to individual trees [13,62]. For lack of data, differing field plot sizes and shapes
were used to estimate the reference AGB. However, most of the used field plots exceed an area of
1000 m?, which is sufficiently large to be more robust against boundary effects [59,63,64]. In contrast,
Mauya et al. [65] show improvements of the model accuracy with increasing plot sizes in a range from
200-3000 m?. In addition to the size, the shape affects the precision and accuracy of the extrapolated
biomass. Circular plots are less influenced by the circumference to area ratio than rectangular ones [65].
As the number of rectangular plots in this study is limited and only within regrowing forest areas,
their influence in AGB estimation is marginal. The uncertainty resulting from different sampling
strategies are considered as the error of sampling size in the overall uncertainty of the SAR model with
20% [58]. Finally, uncertainties may also be introduced by reason that a universal AGB model was
applied for different forest types [66]. Since tropical forests consist of hundreds of different tree species
species-specific regression models cannot be applied [39].

After creating a reference biomass layer from LiDAR and field inventory data, AGB can be
estimated for large-scaled areas using remote sensing data. The applied SAR backscatter approach is
well known for radar-based forest cover and biomass mapping. It is computationally less intensive
than alternative approaches and transferable to other regions, but also limited by some factors like
backscatter saturation and backscatter variations due to terrain and wetness [19,67]. The resulting
maps point that the biomass variability due to different degradation stages in the forest, as well as
disturbances in contrast to non-disturbed areas or clear-cuts that can be captured very well. The R?
varies in a range of 0.69 in 2016 to 0.77 in 2007 and the NSE shows good model performance for all
years, reaching values between 0.70 and 0.76. Studies modelling biomass and carbon based on ALOS
PALSAR HV backscatter values in tropical forests found similar correlations, varying from 0.407 to
0.76 [68-70]. Nevertheless, all maps show an underestimation at higher AGB levels compared to
reference AGB. In addition to the underestimation in higher biomass ranges, biomass in lower AGB
ranges is overestimated. Similar distributions of estimated biomass are shown in other regional studies
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estimating biomass from SAR backscatter values for different forest ecosystems, as a characteristic of
SAR data for high biomass levels [17,66,71,72].

One of the general limitations of the applied approach is that SAR-based AGB retrieval suffers
from saturation of the backscatter signal in the higher biomass range. The saturation level varies
amongst others with the sensor wavelength and polarization, as well as the forest structure [20]. AGB
studies in tropical forests, such as in Kalimantan, were mostly conducted on the basis of L-band SAR
data, being the most suitable operational data for biomass estimation [24-28]. The saturation level
in tropical forests, using the L-band, varies around 50 t/ha to 200 t/ha [25,30,72]. Comparable to
Thapa et al. [51], the present study uses backscatter values and, additionally, backscatter ratios and
textures, which increases the saturation level to approximately 200-250 t/ha. A higher amount of
ratios and textures based on backscatter values of different polarizations could further improve the
model results, as shown in [51]. With an increasing model complexity, the correlation and the NSE also
increase in a range from 0.62 to 0.84 and from 0.54 to 0.83, respectively.

Another limiting factor of the backscatter approach are the moisture conditions of soil and
vegetation [73]. Especially in tropical forests, located in areas with a high amount of annual
precipitation, the estimation of biomass based on backscatter can causes errors. To reduce humidity
effects, scenes acquired during different periods of the year were averaged. Furthermore, images
with a high influence of precipitation were excluded from the mosaics by incorporating TRMM
data as selection criteria. Analogous to literature, variables based on HV backscatter were found as
less influenced by changes in moisture and topography conditions at longer wavelengths and more
sensitive to biomass than co-polarized data [21,25,30,34,70,72]. However, even with the use of variables
based on HV polarization, moisture effects can cause differences in the biomass estimation for the
different years [74]. The very dry conditions in 2007 may be an explanation for the higher backscatter
saturation in 2007 and, thus, a better overall correlation. The lower R? of 2016 may not only result from
the higher amount of precipitation in 2016, but also from the distribution of the validation samples.
In contrast to the other years, the biomass range >200 t/ha contains 45% of all samples, which makes
this class the most influential. The distinct underestimation of this AGB range is reflected in the overall
R? 0f 2016. The given distribution of sample points originated because of the fire catastrophe in 2015,
where a lot of areas within the reference biomass layer were burned. In order to reduce errors in the
later modelling, those areas were excluded from the reference layer with the use of a MODIS hotspot
product. The fires primarily occurred in areas that were already stressed by former burning or logging
activities, accordingly in the lower biomass ranges, which leads to a lack of validation data in this class.

Furthermore, topography influences biomass estimation based on SAR data. To reduce possible
errors caused by the effect of slope on radar backscatter, Mitchard et al. [26] suggested the use of a
DEM, which is why we excluded AGB estimations in steep terrain with slopes >10°, an area of 27% of
the study area. Since the mountainous areas are barely affected by degradation and human activity,
those regions were manually set to a biomass level of a healthy natural forest, 350 t/ha, as derived
from LiDAR data. Additionally, settlement areas are not reliable in the final AGB maps. The high
backscatter values due to double bounce effects result in backscatter values similar to those of forests.
The use of an additional urban layer allows to flag settlements in a quality assurance layer, which we
provided for each map.

Since models are minimizing the bias and overall error in order to get the best fit, the
overestimation in lower biomass ranges results from the model adjustment due to the inability of
estimating higher biomass ranges correctly [75].

In contrast to [33,76] a combination of C- and L-bands in the model of 2016 shows only minor
improvement in comparison to a single-band approach. The C-band is more sensitive to variabilities in
surface roughness resulting in improved modelling in burned areas or grass cover, so the combination
of the C-band with the L-band slightly improves the correlation of estimated and predicted biomass
compared to the use of the L-band alone.
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The final biomass maps have a spatial resolution of 100 m, which is much finer than other existing
large-scale biomass maps from Indonesia by [30], yet with a comparable accuracy. Additionally, the
model is transferable to other countries and regions, if precise reference data is available. The results
have important implications for carbon-related projects, such as UN-REDD, and can help to achieve the
objectives through supporting monitoring or risk managing systems. The fine-scaled resolution and
the sensitivity to AGB variability of our products allow capturing even small-scale logging activities,
and the results can be used as an early warning for more extensive changes of forests due to logging
and fire vulnerability. Furthermore, the more accurate biomass maps can lead to more precise carbon
estimations when used as input data for carbon-related models.

The results of the biomass estimation in tropical forests could be further improved using biomass
estimation approaches based on coherence or phase instead of backscatter, but these methods are
limited by data availability. A combined data approach using optical data/vegetation indices and SAR
data could also enhance biomass estimation. The launch of new P-band satellites, like ESA’s Earth
Explorer Biomass in 2021, will allow a more accurate estimation of biomass in tropical forests.

5.2. Temporal Change Estimation

To perform a change analysis a comparability of the three biomass maps is required. This is best
accomplished using the same processing steps, model, reference, and radar data type for each map in
order to avoid differences resulting from the methods and data. The three biomass maps of this study
were generated using the same processing steps and model, but included Sentinel-1 as an additional
sensor in the calculations for 2016. Differences between the three maps could also occur since different
reference layers for each year were used. Nevertheless, the use of contemporaneous reference layers is
essential, because of rapid changes in the landscape (e.g., fires and logging) and allows a more accurate
calibration of the model. The use of two MLR models in 2016 may also cause discrepancies, since
two variables were excluded from the second model. Using a confidence interval of 95% to identify
changes allows a reduction of errors during the change mapping.

The resulting change maps show a significant loss of forest and, thus, biomass during 2007-2009,
2009-2016, and for the overall period 2007-2016. In addition to fires, changes can result due to illegal
logging activities. The maps provide a helpful tool for REDD+, as well as national projects, since
small-scaled deforestation is detected in an accurate and low-cost way for the entirety of Kalimantan
over a period of approximately ten years using three time steps for the first time.

6. Conclusions

It was shown that a multivariate linear regression model using C- and L-band SAR-derived ratios
and textures is able to model biomass more precisely and at a better resolution than existing models in
this region. Nevertheless, the applied backscatter approach is limited by the fact that SAR-based AGB
estimation is defined by saturation effects of the backscatter signal in higher biomass ranges. Due to
the use of textures and the large amount of reference data, the saturation level could be increased to
approximately 250 t/ha. Accordingly, the estimated AGB maps show an underestimation in higher
AGB ranges, but also an overestimation in lower biomass ranges. The correlation of field biomass
and estimated biomass varies in a span between 0.69 and 0.77. The model is able to capture biomass
variability due to different degradation stages in forested areas. Additionally, different disturbances
in contrast to non-disturbed area or clear-cuts can be identified. A biomass overestimation in urban
areas and a reduced accuracy because of relief effects (layover, radar shadow) in steep slopes are
known issues using SAR data and have been corrected via additional data. Sentinel-1 data, which was
additionally used in 2016, did slightly improve the results. Modelling AGB for three different time steps
allowed the estimation of change products. The change maps detected, for the first time, deforestation
in an accurate and low-cost way for the entirety of Kalimantan over a period of approximately ten
years based on three different time steps. The much higher spatial resolution of all products (100 m)
allows capturing even small-scaled variabilities in forested areas, with the layer providing important
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assistance for recent UN-REDD projects and can help to achieve the objectives, as well as support
monitoring and risk managing systems. Furthermore, the fine-scaled biomass maps can be used to
estimate carbon stocks and carbon emission due to fires. The AGB estimation approach is transferable
and allows modeling of biomass in other tropical forests with similar conditions in an accurate and
less computationally intensive manner.
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Keywords: The amount and spatial distribution of forest aboveground biomass (AGB) were estimated using a range of

Aboveground biomass regionally developed methods using Earth Observation data for Poland, Sweden and regions in Indonesia

Forest biomes (Kalimantan), Mexico (Central Mexico and Yucatan peninsula), and South Africa (Eastern provinces) for the year

z"r?t PlOtSI 2010. These regions are representative of numerous forest biomes and biomass levels globally, from South
arbon cycle

optical African woodlands and savannas to the humid tropical forest of Kalimantan. AGB retrieval in each region relied
SAR on different sources of reference data, including forest inventory plot data and airborne LiDAR observations, and
LiDAR used a range of retrieval algorithms. This is the widest inter-comparison of regional-to-national AGB maps to
date in terms of area, forest types, input datasets, and retrieval methods. The accuracy assessment of all regional
maps using independent field data or LIDAR AGB maps resulted in an overall root mean square error (RMSE)
ranging from 10 tha™' to 55 tha ! (37% to 67% relative RMSE), and an overall bias ranging from —1 tha™' to
+5 tha ! at pixel level. The regional maps showed better agreement with field data than previously developed
and widely used pan-tropical or northern hemisphere datasets. The comparison of accuracy assessments showed
commonalities in error structures despite the variety of methods, input data, and forest biomes. All regional
retrievals resulted in overestimation (up to 63 tha™') in the lower AGB classes, and underestimation (up to 85 t
ha™') in the higher AGB classes. Parametric model-based algorithms present advantages due to their low
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demand on in situ data compared to non-parametric algorithms, but there is a need for datasets and retrieval
methods that can overcome the biases at both ends of the AGB range. The outcomes of this study should be
considered when developing algorithms to estimate forest biomass at continental to global scale level.

1. Introduction
1.1. Background

Forests cover around one third of the Earth’s land surface, are an
essential socio-cultural element of modern society, support biodiversity
and influence the climate system via coupled carbon-water-energy cy-
cles (Bonan, 2008). Quantifying forest aboveground woody biomass
(AGB), i.e. the amount of woody matter within a forest, has profound
social and economic importance, since it is a source of materials and
energy for direct human use, and its structure and temporal dynamics
exert substantial influence on the functioning of terrestrial ecosystems,
with direct impacts on biodiversity, as well as on the carbon and energy
cycles and consequently the whole Earth system (e.g. Bonan, 2008; Le
Quéré et al., 2018; Pan et al., 2011). As such, AGB can be used to
evaluate the dynamics of global vegetation and Earth system models
(e.g. Thurner et al., 2017; Carvalhais et al., 2014), was recognised by
the Global Climate Observing System (GCOS) as an Essential Climate
Variable (ECV) (Bojinski et al., 2014), and plays an important role in
several essential biodiversity variables (EBV) (Pereira et al., 2013).
However, quantification of AGB still presents a scientific challenge with
significant implications for our current knowledge about the Earth
system (Pan et al., 2011; Le Quéré et al., 2018).

Knowledge of the spatial distribution of forest AGB is typically de-
rived from ground measurements collected by national forest in-
ventories. From these, regional- to national-scale summary data are
generated for the FAO’s quinquennial Global Forest Resource
Assessment (FRA) reports (FAO, 2005, 2010; FAO, 2015), aiming at
giving a global portrait of biomass stocks and their changes in time.
Vast areas covered by forests mean that ground-based forest inventories
need a large amount of resources to provide accurate information on
the extent, spatial distribution and dynamics of forest AGB. However,
forest inventory data in developing countries can be fairly inaccurate
(Saatchi and Moghaddam, 2000) and often many years out of date
(Shvidenko and Schepaschenko, 2014). A review of the country FRA
reports (FAO, 2010) showed that 45 countries (i.e. around 20%) in-
dicated high quality for the reference data used (mostly located in
Europe and North America), while 171 did not report on quality (most
African and Asian countries). In addition, forest inventory data are not
always comparable and biomass estimates may be biased due to dif-
fering national forest definitions and differences in methods used to
produce the estimates, such as the choice of the minimum tree diameter
sampled (Searle and Chen, 2017) and plot size (Réjou-Méchain et al.,
2014). The only practical approach for consistent global or regional
woody biomass estimation therefore lies in systematic use of Earth
Observation (EQ) data, either in parameterised model-based ap-
proaches or in combination with high-quality reference data. Satellite
data have long been used for forest cover mapping, clear-cut or burnt
area monitoring and detection of disturbances (Hansen et al., 2013;
Healey et al., 2005; Fraser and Li, 2002; Rignot et al., 1997). However,
without biomass information this is insufficient to quantify the role of
forests in the global carbon and energy cycles and other biogeochemical
cycles. In addition, financial mechanisms aiming to reduce emissions
and enhance carbon stocks, such as the Reducing Emissions from De-
forestation and Forest Degradation (REDD+) initiative and carbon
trading schemes, require credible and consistent measurement, re-
porting and verification (MRV) systems that are spatially explicit with a
wall-to-wall extension and provide a full carbon account of forest
ecosystems (Steffen et al., 1998).
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1.2. Current status of biomass estimation from space

Studies aiming at wall-to-wall estimation of AGB at regional and
global scale have used passive optical, active or passive microwave, and
LiDAR data obtained from Earth Observation space platforms either
stand-alone or in synergy (e.g. Saatchi et al., 2011; Baccini et al., 2012;
Thurner et al., 2014; Gallaun et al., 2010; Hu et al., 2016, Liu et al.,
2015). Multispectral optical imagery contains information on the pho-
tosynthetic parts of vegetation rich in chlorophyll, while microwave
active sensors, such as Synthetic Aperture Radar (SAR), contain in-
formation on the dielectric (essentially moisture content) and structural
properties of objects, soil surface and plants. The main advantage of
microwave radar sensors is that, unlike optical imagery, radar images
are unaffected by cloud cover, allowing usable image acquisitions even
in the cloudiest places on Earth. Spaceborne LiDAR sensors, on the
other hand, give a sampled retrieval pattern along the orbit and to
measure elapsed time between emitted and received light pulses which
can be used to estimate forest canopy height at each footprint location.
However, these datasets present different degrees of saturation to AGB,
where saturation refers to the AGB level at which the sensitivity of the
signal (i.e. backscatter, reflectance) becomes too small to be measur-
able, or where the signal fails to penetrate the canopy (Fagan and
DeFries, 2009). This is particularly relevant for dense tropical forest,
which is a key biome where accurate biomass information is needed.

The search for consistent approaches over forested areas in the
tropics prompted the use of satellite data calibrated against in situ
biomass, with special emphasis on forest height estimates derived from
the first spaceborne LiDAR, the Geoscience Laser Altimeter System
(GLAS) on board the Ice, Cloud and land Elevation Satellite (ICESat)
(Lefsky, 2010). This led to the development of two pan-tropical biomass
maps (Saatchi et al., 2011; Baccini et al., 2012) at reporting grid size of
1km and 500 m respectively. The former reported a relative RMSE at
pixel level of approximately 30%, while the latter reported similar
figures in terms of RMSE (38-50t ha™!). These maps exhibited sig-
nificant regional differences, although these decreased when biomass
estimates were aggregated to country or biome scale (Mitchard et al.,
2013, 2014; Rodriguez-Veiga et al., 2016).

Avitabile et al. (2016) fused Saatchi et al. (2011), and Baccini et al.
(2012) datasets into a 1km pan-tropical map using a bias-removal
approach by incorporating additional field observations and locally-
calibrated high-resolution biomass maps. The bias in the overall mean
AGB was reduced to + 5t ha™', compared with the biases in the input
maps of + 21t ha~! and + 28t ha~! respectively.

Using very long time series of C-band radar data from Envisat ASAR,
Santoro et al. (2015a) produced a Growing Stock Volume (GSV) map
for the northern hemisphere at 1km spatial resolution. The relative
RMSE of the retrievals at provincial level was between 12% and 45%
(average 29%) when compared to National Forest Inventory data from
the major forested countries. This map provided the basis for a carbon
stock map of the boreal and temperate forests (Thurner et al., 2014).

A first composite global dataset of forest AGB was developed within
the European Commission-funded GEO-CARBON project. The product
merged, at a pixel size of 0.01°, the Saatchi et al. (2011), and Baccini
et al. (2012) pan-tropical datasets with the boreal and temperate da-
taset (Santoro et al., 2015a; Thurner et al., 2014) and used the IPCC
Tier 1 biomass values for the few remaining areas not covered by these
datasets (Avitabile et al., 2014, 2016). This exercise, despite being
hindered by limitations in the input EO data used by individual biomass
maps, approximations in the retrieval approaches and the fact that the
individual maps were based on data acquired at different times between
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2000 and 2010, is still the most consistent global AGB map to date. Hu
et al. (2016) also published a global AGB map at 1 km resolution de-
rived using GLAS metrics interpolations, MODIS NDVI and Land Cover
products and the SRTM DEM, together with climate data. However, the
dataset used to calibrate the map consisted of 3348 forest inventory
plots of different sizes (including very small plots of 0.05 ha). The ca-
libration dataset was also geographically biased as the plots were
mostly located in continental China (> 55% of plots) and Brazil (23%
of plots), while almost no plots were used from Europe, North America,
Australia, and Africa. These issues might explain the large differences
observed in this map when compared to previous global and pan-tro-
pical maps (Rodriguez-Veiga et al., 2017; Hu et al., 2016).

Liu et al. (2015) used vegetation optical depth (VOD) retrieved from
several passive microwave satellite sensors to map time series of AGB
for all vegetation types globally over the period 1993-2012at 27.5 km
resolution. Unfortunately, this approach was calibrated using the
Saatchi et al. (2011) map, which added the uncertainties from this
product to the final map, and make it difficult to validate due to the
coarse resolution of the product.

At continental scale, MODIS data and forest inventory plots have
been used to map AGB over Europe (Gallaun et al., 2010) at 500 m
resolution, and Africa (Baccini et al., 2008) at 1km resolution. The
woodlands and savannas of Africa were also mapped at 25m spatial
resolution using ALOS PALSAR data (Bouvet et al., 2018).

At national and regional scales, several examples have been pub-
lished, such as for Mexico (Rodriguez-Veiga et al., 2016; Cartus et al.,
2014), Canada (Beaudoin et al., 2014), Cameroon (Mermoz et al.,
2014), China (Yin et al., 2015; Piao et al., 2005; Liu et al., 2012), the
Amazon basin (Saatchi et al., 2007), Russia (Houghton et al., 2007),
USA (Kellndorfer et al., 2011) and Colombia (Anaya et al., 2009), with
spatial resolutions ranging from 30 m to 1 km and in most cases using a
combination of optical and SAR imagery. Regional approaches use field
AGB measurements to calibrate the algorithms, often complemented
with airborne LiDAR datasets (Asner et al., 2014, 2013; Perrin et al.,
2016; Lu et al., 2012). These regionally-calibrated products can use a
wider variety of datasets, as well as regional expertise, to provide the
best possible estimates of biomass. In contrast, global, pantropical or
continental products suffer from limitations in the amount and re-
presentativeness of data available for calibration and validation. Pan-
tropical maps from Saatchi et al. (2011), and Baccini et al. (2012)
circumvented the paucity of ground data for calibrating their non-
parametric machine learning approaches at large scale by using AGB
estimated from LiDAR footprints from the space-borne ICESAT-GLAS
instrument. However, they still used a fair amount of ground-based
values of AGB to calibrate the relationship between AGB and LiDAR
footprint metrics. An algorithm that avoids the use of in situ data for
model training is the BIOMASAR algorithm (Santoro et al., 2015a,
2011; Cartus et al., 2012); the algorithm is, however, constrained with
information on maximum biomass which are derived from inventory
data, regional and national statistics, as well as remote sensing-based
biomass estimates (Santoro et al., 2015a, 2011; Cartus et al., 2012).
Inaccurate data sources ultimately translate into local estimation biases
(Santoro et al., 2011).

The long list of AGB datasets presented above highlights that bio-
mass mapping methods are largely driven by data availability and are
scale-dependent. National and regional products can be generated by
different parametric and non-parametric approaches. Non-parametric
methods, such as machine learning techniques, usually out-perform
parametric approaches (Evans and Cushman, 2009) and are preferred at
national and regional level if enough ground data are available. At
global or continental level the lack of representative in situ measure-
ments is the motivation for using physically-based approaches that re-
quire few ground data (if any).

This paper describes a diverse set of regional approaches to AGB
mapping in different biomes carried out during the European Space
Agency (ESA) Data User Element GlobBiomass project (GlobBiomass,
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2015; Schmullius et al., 2015; Balzter et al., 2016; Schmullius, 2017).
This study aimed to produce spatially consistent and accurate maps of
AGB, using all available EO data and regional knowledge with the
objective of supporting the development of global biomass retrieval
algorithms and the assessment of thereof resulting estimates. These
maps can be used for direct estimation of carbon emission factors or
emissions contributing to greenhouse gas inventories. Further aims
were: i) to better understand the strengths and weaknesses of existing
methods to map AGB using available EO datasets, ii) to establish how
differences in forest structure and reference data affect methods to in-
vert EO data to AGB. Five regional AGB maps derived using reference
data and EO imagery and various retrieval methods were generated for
the year 2010 at 25-100 m spatial resolution. The regions were selected
to encompass a wide range of biomes and forest types. Each region was
at least 300,000 km? in size; it was either nationwide for Poland
(temperate forest) and Sweden (boreal forest), or covered a substantial
part of Indonesia (Kalimantan, tropical forest), Mexico (the Yucatan
peninsula & Central Mexico, tropical forest-woodland transition), and
South Africa (Eastern forest belt, subtropical dry forest). All maps were
evaluated quantitatively against an independent dataset, and qualita-
tively by local experts. They were also compared with existing con-
tinental scale AGB maps (Saatchi et al.,, 2011; Baccini et al., 2012;
Thurner et al., 2014) where these overlapped the study areas.

2. Study regions

The study regions cover the most common range of woody AGB
from low (< 50t ha™?) to high (> 300t ha™') and are representative
of major climates and forested biomes, including boreal, temperate, dry
tropical savanna and wet tropics (Fig. 1).

Sweden is mostly situated in the boreal region, while Poland lies in
the temperate forest zone. Sweden and Poland occupy approximately
447,000 km* and 313,000 km®, of which 60% and 30% are forests,
respectively. Coniferous forests predominate, though broadleaved for-
ests occupy a significant area in Poland.

The study areas in Central Mexico, the Yucatan peninsula and
Kalimantan represent a wide variety of tropical and subtropical forest
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Fig. 1. Mean annual precipitation vs. mean annual temperature (Fick and
Hijmans (2017) for global forests and study sites sampled at 0.5 ° grid scale. The
climate space is divided into global terrestrial biomes (Whittaker, 1962, 1970).
The global distribution of forests is according to the Global Land Cover
(GLC2000) map (Bartholomé and Belward, 2005).
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ecosystems. The Yucatan peninsula study area with approximately
160,000 km? comprises a mix of tropical moist, tropical dry forests and
mangroves, whilst an area of 353,000 km? in Central Mexico covers
subtropical coniferous forest, tropical dry forest, tropical moist forest,
xeric shrublands, and includes some of the forests with the highest
biomass density in Mexico (the Oyamel forest). The Indonesian part of
Borneo (Kalimantan) covers 73% of Borneo’s land mass (approximately
540,000 km?). The ecosystems of Kalimantan include different forest
types: mangrove forests, peat swamp and freshwater swamp forests, the
most extensive extent of heath forests in Southeast Asia, lowland dip-
terocarp forests, ironwood forests, forests on limestone and ultrabasic
soils, hill dipterocarp forests and various montane formations
(MacKinnon et al., 1996).

The South African study area of approximately 334,000 km? is si-
tuated along a 1300 km North-South transect running to the East of the
country next to Zimbabwe, Mozambique, Swaziland, and the Indian
Ocean, and is dominated by forested landscape. This area contains
various forest types: savanna (68% of the area), commercial planta-
tions, and scattered remnants of indigenous dense forests (Mucina and
Rutherford, 2006).

Landsat Landsat PTC SPOT SRTM DEM
5, 4&5

X

x

ALOS
PALSAR
X

X

X

X

X

3. Data

Remote sensing imagery from different airborne and satellite sen-
sors (optical, LIDAR and SAR) were utilized in this study (Table 1).
Except for Sweden, the main dataset used was the freely available ALOS
PALSAR 2009 and 2010 mosaics of gamma nought (y* = 0°/cos6,
where o° is the radar backscattering coefficient and cosf is the local
incidence angle) produced by JAXA at 25 m pixel spacing in HH and HV
polarizations (Shimada et al., 2014). The ALOS PALSAR mosaics are
processed according to a standard protocol (Shimada et al., 2014)
which involves calibration, multi-looking (16 looks), projection, ortho-
rectification and slope correction using the Shuttle Radar Topography
Mission (SRTM) Digital Elevation Model (DEM) data. A destriping
process (Shimada and Isoguchi, 2002) was also applied to try and
equalise intensity differences between neighbouring strips normally
attributed to seasonal and daily differences in soil moisture conditions.
As part of our methods, if significant strip effects still remained locally,
substitution by another year’s mosaic or histogram matching of the
problematic strip with neighbouring strips was performed. A multi-
temporal multichannel filter (Quegan and Yu, 2001) using a 7 X 7

Plot size / LiDAR point
1ha (4x0.04 ha sampled)

density
0.015ha -
0.030 ha

1lha/
0.5 - 4 points m ™2

points m

247 field plots & 1245 LiDAR samples calibration / 0.08ha - 0.38ha / 2 - 5
501 LiDAR samples validation

37 field plots calibration / 3188 LiDAR samples

285 field plots calibration / 84 field plots validation  0.05 ha

validation
18,401 field plots calibration / 3989 field plots

validation
5140 field plots calibration / 700 field plots

Reference data
validation

Datasets

window was also applied to all the annual mosaics. At this point, the § 8 g 8 g
remaining speckle effect was considered negligible. 3 .
Landsat 5 and 7 ETM + Surface Reflectance (SR) imagery computed E o a alB
by the Landsat Ecosystem Disturbance Adaptive Processing System = AoAM 2 2 2 2
(LEDAPS) method (http://ledaps.nascom.nasa.gov/) (Masek et al., 5 @
2006) were used to generate annual ( = 1 yr) median value composites £ £
from good quality pixels for all spectral bands in Mexico and Poland. ) < a
Landsat Percent Tree Cover (PTC) products (Hansen et al., 2013; Sexton g % a %
et al., 2013) for the year 2010 were acquired from USGS Land Cover ‘_i ,E % el
Institute (https://landcover.usgs.gov/), and the Global Land Cover Fa- »S E :E) £
cility (http://glcf.umd.edu/) for Mexico and Eastern South Africa, re- E‘;" ; g _ E
spectively. Additionally, freely available 30 m spatial resolution eleva- S é g g ﬁ
tion data from the Shuttle Radar Topography Mission (void-filled SRTM 8 E. £ = B ‘E ]
Plus NASA V3) was obtained for Mexico, Eastern South Africa and e 2 8 ; . g8 £ |z
Kalimantan from the USGS Earth Explorer repository (http:// I E28 £ 2 5%
earthexplorer.usgs.gov/). SPOT-4 High Resolution Visible Infrared ‘_‘g fi:
(HRVIR) and SPOT-5 High Resolution Geometric (HRG) data were ac- g ‘g
quired between 2008 and 2010 (approximately 80% from 2010) for z g g
Sweden; all images were geometrically precision-corrected to the 5 E g E £
Swedish National Grid, and the pixel size for all bands was resampled to 50 g L<E ] g
25m using cubic convolution, I s 5 g = g
The accuracies of the resulting maps were evaluated using either E Z i 2 g E g
AGB forest inventory plots or airborne LiDAR-derived AGB maps, col- -8 g g E 5§ E g3 E
lected and produced according to different protocols (Table 1), and % 8 E" '§ z 3 &‘f | &
with characteristics specific to each region. Airborne LiDAR-derived £4 == S
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AGB maps were used in Kalimantan for calibration and validation, but
only for validation in Eastern South Africa (Naidoo et al., 2015). A
subset of LiDAR-derived AGB maps or the field data (15-30%) was
excluded in each region and used as an independent validation dataset.
The subset was extracted by stratifying the reference dataset into dif-
ferent AGB classes in order to have a similar distribution of AGB in both
the calibration and validation datasets.

4. Methods
4.1. Biomass estimation methods

Both parametric and non-parametric methods were used to predict
AGB. These can be further grouped into data-driven and model-based
methods. The method for each region was selected based on data
availability and the expertise of each regional research group. Teams
working in areas with forest inventory and other in situ data of suffi-
cient number and quality for calibration purposes used non-parametric
machine learning algorithms, while areas with insufficient in situ data
used parametric models, such as model-based regression, and when
available, complemented the ground observations with airborne LiDAR
biomass predictions (Table 1).

The probabilistic outputs from the non-parametric MaxEnt algo-
rithm (Phillips et al., 2006, 2004) were used for Mexico (Rodriguez-
Veiga et al,, 2016). Machine learning algorithms Random Forest
(Breiman, 2001; Cartus et al., 2014) and a k-Nearest Neighbours (kNN)
(Tomppo et al., 2008; Reese et al., 2003) were applied in Poland and
Sweden respectively, both requiring large amounts of field plots for
calibration. The parametric method used in Kalimantan used a two-step
calibration approach where field plots are first used to calibrate air-
borne LiDAR measurements covering a larger area, and these were then
used to calibrate a multivariate linear regression model with back-
scatter intensity and texture parameters from the SAR imagery as pre-
dictors (Englhart et al., 2011, 2012). Bayesian inversion of a semi-
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empirical model (the water cloud model - WCM) was used to relate
PALSAR backscatter to AGB in South Africa (Bouvet et al., 2018). This
method relies on a small number of at least 1ha in situ AGB plots,
ancillary data and simulations from the Multi-static Interferometric and
Polarimetric Electromagnetic model for Remote Sensing (MIPERS)
(Villard and Borderies, 2007; Villard, 2009) for parameterization.

4.2. Accuracy assessment methods

A standardised accuracy assessment was carried out for all regional
AGB maps by making use of the independent reference data. The as-
sessment was based on stratifying the reference AGB into contiguous
ranges of values and quantifying the estimation bias, the standard de-
viation of the error and the Root Mean Square Error (RMSE) within
each range. The selected ranges varied with test site, depending on the
maximum value of biomass for the site and the need to have a sufficient
number of reference data within each range.

In more detail, we have a set of reference AGB values, B} (from in
situ or LiDAR data), and their estimates, BY), where the reference values
are restricted to a given range, B, < B,(;} < B,. For this range we define
the bias, b, as the average value of the error B — B,(:,),, and we also
calculate the standard deviation (SD) of the errors, ¢. The RMSE in the
given range is then given by \o? + b2, and the relative RMSE as
Rel. RMSE = RMSE /B,y X 100. Also of interest is the Coefficient of
Variation (CV) of the error, given by o/b. When the CV exceeds 1, the
RMSE is dominated by random error, but when it is less than 1 the
dominant error source is bias in the estimator. In particular, if CV = 10,
then bias makes up 10% of the RMSE, while if CV = 0.48 it contributes
90%.

5. Results

The constructed AGB maps for the year 2010 were generated with a
pixel size of 25m for Mexico-Yucatan Peninsula, Central Mexico,

a)g
d), f
=) bl
u c)u
-@.
05000 10000 S T

Aboveground
Biomass (t ha”)

E-200 [EEs1-100
- 200 @l 61 - 80

I 161 - 180 [ 41 - 60
[ 141 - 160 W 21 - 40
121 -140 M 11 -20
101 - 120 MM <10 i

BRUNEI
DARUSSAL

SIA

Makassar

Strait

b) T —— — c)

0100 200 400 600 800

CC——
0 75150 300 450 600

TTTH oA

CZECH
REPUBLIC

d)

N — w—
0 50 100 200 300 600 900

Sea LT HUA e
o f) e —
1,200 0 100 200 400 600 800

Fig. 2. Above-ground biomass (AGB) maps for a) the Mexico-Yucatan Peninsula, b) Indonesia-Kalimantan, ¢) Eastern South Africa, d) Central Mexico, €) Sweden, and

f) Poland. Warmer colours indicate higher AGB.
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Fig. 3. AGB histograms per forest biome (Olson et al., 2001) derived from the combined regional maps in this study (light grey) aggregated to 1 km spatial resolution
compared to the AGB histogram from the GEO-CARBON global map (dark grey) within the study areas. Flooded grasslands and savannas biome is not included in this
analysis due to the small amount of data available from the study regions, while the temperate grasslands, savannas, and shrublands biome was not encountered in
the study regions.
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Eastern South Africa, Sweden, and Poland, and 100 m for Indonesia-
Kalimantan (Fig. 2).

The regional maps cover the whole range of expected woody AGB
densities from low to high biomass. The histogram of the combined
regional maps was comparable to the histogram of AGB extracted from
the global AGB map of the GEO-CARBON project in the different forest
biomes (Olson et al., 2001) covered by this study (Fig. 3). The most
substantial differences are on the tropical and subtropical grasslands,
savannas and shrublands, and in the montane grasslands and shrub-
lands biomes, where the GEO-CARBON map showed a strongly skewed
histogram towards low AGB (< 50t ha™') and very low frequency of
higher AGB classes, while this study showed a more distributed de-
clining trend from low to high AGB classes in those biomes. Ad-
ditionally, the GEO-CARBON map shows the same skewed histogram
towards low AGB in the Mediterranean forests, woodlands, and scrub
biome, while this study’s histogram showed to be slightly skewed to-
wards higher AGB (50-100 t ha™ ). In the tropical and subtropical moist
broadleaf forests biome histograms are similarly skewed towards high
AGB, but GEO-CARBON’s histogram showed higher frequency at the
highest AGB range (> 250t ha™").

The accuracies of the regional AGB maps were assessed using the
independent validation datasets (Table 2, Figs. 4 and Fig. 5). LIDAR
AGB datasets were aggregated to the corresponding satellite map re-
solution for validation, while plot datasets used the average value of the
pixels within the plot boundaries.

Table 2

Int J Appl Earth Obs Geoinformation 77 (2019) 53-68

The accuracy analysis reveals several commonalities but also some
important differences between study regions. All regions over-estimate
AGB for the lower AGB ranges and, with the exception of Eastern S.
Africa which covers a very limited biomass range, under-estimate in the
upper ranges, especially in the highest AGB class. The bias in the lowest
AGB class is substantial in absolute terms for all regions except Central
Mexico and Eastern S. Africa, but even in these regions it has values that
are 47% and 40% of the mid-range values (i.e., 15 and 10t ha™ 1), re-
spectively. For most regions the bias decreases in absolute value before
increasing again. This is expected for regression-based approaches,
which ensure that the regression curve passes through the point defined
by mean of the reference and estimated data, but occurs for all
methods.

There are striking differences in the balance between bias and
random error in the RMSE, as is clear from Table 2 and Fig. 4. In Ka-
limantan, bias and random error are of similar magnitude except in the
middle AGB ranges, where random error dominates. For Central Mexico
and Eastern S. Africa, random error is dominant except for the highest
AGB class in Central Mexico, where it is comparable to bias. Note that
in these two regions the bias is roughly constant across all ranges (ex-
cept for the highest range in Central Mexico) so it decreases sharply
relative to the mid-range values. In the Yucatan Peninsula and Sweden,
bias and random error are comparable in the lower biomass ranges, the
middle ranges are dominated by random error, while bias is the largest
component of error in the highest AGB ranges. For Poland, bias is by the

Accuracy assessment of the regional AGB maps stratified by reference AGB range: Sample size (N), Root Mean Square Error (RMSE), Relative RMSE (Rel. RMSE),
Standard Deviation of the error (SD), Bias, and Coefficient of Variation (CV) of the error (when CV > 1 the random error dominates, when CV < 1 the bias does).

Study region Reference AGB range (t ha™") N RMSE Rel. RMSE Bias SD cv
(tha™) %) (tha™) (tha™")
Indonesia Kalimantan 0-50 141 54 415 37 39 1.1
50-100 21 71 91 52 50 1.0
100-150 38 66 50 39 54 1.4
150-200 117 42 24 16 39 2.4
> 200 184 60 24 —40 44 1.1
Overall 501 55 37 4 55 13.8
Central Mexico 0-30 83 21 159 7 19 27
30-60 48 30 69 8 29 3.6
60-90 25 34 47 -3 34 11.3
90-120 12 42 40 2 42 21.0
120-150 6 24 19 4 24 6.0
> 150 2 64 32 -41 49 1.2
Overall 176 28 67 5 28 5.6
Mexico Yucatan peninsula 0-30 130 33 237 21 26 1.2
30-60 109 33 75 15 30 2.0
60-90 111 23 31 6 22 37
90-120 85 25 24 -14 21 1.5
120-150 54 46 34 —42 17 0.4
= 150 35 67 40 —65 16 0.2
Overall 524 35 50 -1 35 35.0
Eastern South Africa 0-20 2,216 8 100 4 8 2.0
20-40 734 14 48 7 11 1.6
40-60 233 15 33 7 11 1.6
> 80 5 7 11 3 5 1.7
Overall 3188 10 63 5 9 1.8
Sweden 0-30 901 38 271 30 23 0.8
30-60 871 35 76 24 25 1.0
60-90 850 29 39 12 26 22
90-120 606 29 28 —6 29 4.8
120-150 361 43 32 =29 32 11
150-180 245 61 37 —50 35 0.7
> 180 155 82 42 -74 36 0.5
Overall 3989 32 39 —-13 29 2.2
Poland 0-50 13 67 258 63 23 0.4
50-100 19 54 67 49 24 0.5
100-150 17 26 20 8 25 3.1
150-200 16 32 18 =21 25 1.2
200-250 11 73 30 =70 20 0.3
> 250 8 86 32 -85 16 0.2
Overall 84 54 39 3 54 18.0
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Fig. 4. Scatterplots of average predicted AGB versus average reference AGB per reference AGB range. Error bars indicate the standard deviation (random error) of the
predicted AGB per reference AGB range. The dotted line indicates a fitting curve to the calculated points (second order polynomial) and the dashed line corresponds
to the y = x line. If the error bars do not overlap the y = x line then bias is the dominant error in that AGB range.
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far the dominant error source apart from the two middle ranges of AGB.

It is also noticeable that the SD of the error does not vary greatly
across the different AGB ranges for each region, though is markedly
different between regions (see Table 2 and Fig. 4). Hence, roughly
speaking, the random error is not strongly dependent on the true AGB,
and its value relative to the true AGB decreases as AGB increases
(Fig. 5). It can also be seen that the contribution of the random error to
the RMSE increases as AGB increases up to approximately 100t ha™?,
then reduces sharply with increasing AGB (Fig. 5).

The values given for the overall bias in each region are close to zero
(Table 2). This implies that all the methods cause the fitting curve (or
its equivalent) to go through the point defined by the averages of the
reference and estimated data, in common with normal regression
methods which force this to happen. This explains why the overall
RMSE and SD are nearly the same, since SD? = (RMSE)? — (overall
bias)? and the overall bias is constrained to be nearly zero (Table 2).

Previously published pan-tropical (Saatchi et al., 2011; Baccini
et al., 2012; Avitabile et al., 2016) and northern hemisphere (Thurner
et al., 2014) mapping studies show AGB distributions and spatial pat-
terns that are different from those for the regional maps from this study
and the independent validation data (Figs. 6 and 7). In particular, in
Mexico the distributions from Baccini et al. (2012) are shifted towards
much higher values than is found in the present study and the valida-
tion data.

Similar estimates can be found in areas with high AGB levels such as
Kalimantan, but they deviate from the reference AGB in areas of lower
AGB such as Eastern South Africa, Yucatan and Central Mexico. In
Central Mexico, the Saatchi et al. (2011) AGB distribution is similar to
those in our study and the validation data, but for the Yucatan pe-
ninsula and Eastern South Africa it is shifted towards higher values
while for Kalimantan is shifted towards lower values. In Avitabile et al.
(2016) and this study, the AGB distribution is similar to that obtained
from the validation data in Yucatan and Central Mexico but in Eastern
South Africa the Avitabile et al. (2016) data are shifted toward lower
values while this study is shifted towards higher values. In Kalimantan,
the distributions of the validation data and all the maps, except for
Avitabile et al. (2016), are highly skewed towards high values. Only the
Avitabile et al. (2016) AGB map provides estimates similar to the true

This study Avitabil

etal. (2016)
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AGB in the Mexican sites. In Sweden, the AGB distributions estimated in
this study and in Thurner et al. (2014) largely agree with the validation
data. In Poland, the AGB distribution from Thurner et al. (2014) looks
highly skewed and shifted towards lower values than the estimates from
this study and in the validation subset.

6. Discussion
6.1. Evaluation of the maps

The analysis of the regional maps affirms important properties of
AGB estimation methods, some of which have been previously reported
in the literature (e.g. Cartus et al., 2014; Carreiras et al., 2012; Englhart
et al., 2012; Baccini et al., 2008; Sandberg et al., 2011; Rauste, 2005;
Avitabile et al., 2016; Avitabile and Camia, 2018). The accuracy as-
sessment shows underestimation in the upper AGB ranges in which the
major error component of the RMSE originates from bias (Table 2). The
exception is in Eastern South Africa, where the reference values of AGB
are below 80t ha~'. Additionally, although less apparent in Eastern
South Africa and Central Mexico, AGB values below 100t ha~! are
overestimated, regardless of the choices of data and method used to
retrieve AGB (Table 2 & Fig. 4). Fig. 4 is derived from an independent
dataset not used in model fitting, but similar behaviour is seen for data
used in model fitting. This means that, although direct linear regression
is not being used, all model fits used to predict AGB have an intercept at
zero AGB that is too high, and/or the gradient of the model is too large
for lower AGB values.

A major problem with the observed biases is that they depend on the
true value of the AGB. If not, the data could easily be calibrated to
remove them. Even though the analysis quantifies how the bias depends
on the true AGB in each region, this does not lead to any way to correct
the estimated values. Although some of the methods incorporate bias
reduction measures, e.g. MaxEnt (Xu et al., 2016; Saatchi et al., 2011),
and post-processing bias reduction techniques are also available, there
is a risk of undesirable effects such as inflation of the overall mean
square error due to an increase of the variance (Kosmidis, 2014; Xu
et al.,, 2016). Addressing this problem requires new algorithms that
intrinsically remove the bias (if this is possible), new data that do not

Saatchi et al. (2011)

Fig. 7. Comparison of four AGB maps over two sites in the Yucatan peninsula (Mexico), showing the regional AGB map presented in this study, and the maps by

Avitabile et al. (2016); Saatchi et al. (2011), and Baccini et al. (2012).
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suffer saturation of the signal for higher biomass (assuming this is the
primary cause of the observed underestimation in this range of bio-
mass), or accepting that such bias will occur because AGB is only in-
directly related to the remote sensing observables considered in these
studies.

However, as has been shown, for some regions and methods bias is
not the dominant effect (i.e. Kalimantan and Central Mexico); instead,
the most important type of error is random scatter of the data points in
the model inversions, i.e., the model inversions are noisy. Some of this
scatter may be reducible if its source can be identified, e.g., there may
be errors due to inaccuracies in the ground data, geolocation errors (so
that the reference data and inversions are spatially mismatched), radar
speckle may have been insufficiently reduced (though our methodology
ensures this should be of negligible importance in our analysis), or the
remote sensing signal may be weakly correlated to AGB due to the
limited sensitivity to biomass of the sensor. Moreover, if the dominant
error term comes from scatter, it can be reduced by spatial averaging
(whereas bias cannot) at the expense of reduced spatial resolution and
aggregation to coarser spatial units.

Pan-tropical (Saatchi et al., 2011; Baccini et al., 2012; Avitabile
et al., 2016) and northern hemisphere maps (Thurner et al., 2014) were
compared to in situ data and the estimates from this study. Some si-
milarities were found between our study and Avitabile et al. (2016) in
the Mexico sites and Thurner et al. (2014) in Sweden. Even though
Avitabile’s map is a fusion of Saatchi’s and Baccini’s data, the fusion
method used additional ground measurements and higher resolution
regional maps to correct for the bias of the original estimates. This is the
case in Mexico, where the Avitabile et al. (2016) product was calibrated
with another regional AGB product (i.e. Cartus et al., 2014). However,
in Eastern South Africa, Avitabile’s map does not have calibration data
and systematically underestimates AGB with maximum predicted AGB
values just above 20t ha™!, close to a factor of three less than the
higher AGB values reported in the validation dataset (60t ha~ 1. In
general, the distributions of the AGB estimates from this study are
closer to those of the independent validation data than those of the
published AGB global maps.

6.2. Strengths and weaknesses of proposed retrieval methods and available
datasets

Several methods were used to predict AGB and showed specific
strengths and weaknesses (The requirement for only a limited number
of ground data points is an advantage of semi-empirical methods, such
as the Water Cloud Model (WCM) + Bayesian inversion used in Eastern
South Africa where only one parameter of the regression needs to be
derived from in situ biomass data. However, the formulation of the
WCM for this region does not produce estimates for AGB above “100 t

Int J Appl Earth Obs Geoinformation 77 (2019) 53-68

ha-1, and it is tuned for regions such as savannas with biomass below
the saturation level at r-band (Mermoz et al., 2015). A method for
global mapping, BIOMASAR (Santoro et al., 2011), is also based on the
WCM and does not need in situ data to fit the model parameters.
However, the BIOMASAR algorithm is understood to estimate growing
stock volume (GSV), so a further step is needed to estimate AGB, which
requires spatial information on specific wood density and biomass ex-
pansion factors, or similar proxies.

Table 3). A key factor in the performance of regional methods was
the amount and quality of available in situ data., In regions with
abundant in situ data from a forest inventory, non-parametric data-
driven methods, such as k-NN and MaxEnt were chosen, but in regions
where data were scarce a model-based parametric approach was se-
lected. Large numbers of forest plots were available in Sweden (22,548
plots) and Mexico (5140 plots). Poland (285 plots) and Kalimantan
(247 forest plots) had fewer, but in Kalimantan airborne LiDAR biomass
maps were developed to increase the size of the training and validation
dataset. In the data-scarce region of the South Africa savannas only 37
1-ha AGB plots were available, but they were complemented with air-
borne LiDAR-based biomass maps derived from locally developed
LiDAR models calibrated against field data (Naidoo et al., 2015) for
validation. LiDAR airborne data was used for calibration and validation
in Kalimantan, while only as validation in Eastern South Africa. This
study assumed the AGB predicted by the LiDAR airborne to be error-
free. However, the use of LiDAR data might introduce substantial errors
in the AGB prediction originated from the ground-to-LiDAR model used
(Saarela et al., 2016; Holm et al., 2017), which are not accounted for in
this study.

The requirement for only a limited number of ground data points is
an advantage of semi-empirical methods, such as the Water Cloud
Model (WCM) + Bayesian inversion used in Eastern South Africa where
only one parameter of the regression needs to be derived from in situ
biomass data. However, the formulation of the WCM for this region
does not produce estimates for AGB above “100t ha™ !, and it is tuned
for regions such as savannas with biomass below the saturation level at
L-band (Mermoz et al., 2015). A method for global mapping, BIOMA-
SAR (Santoro et al., 2011), is also based on the WCM and does not need
in situ data to fit the model parameters. However, the BIOMASAR al-
gorithm is understood to estimate growing stock volume (GSV), so a
further step is needed to estimate AGB, which requires spatial in-
formation on specific wood density and biomass expansion factors, or
similar proxies.

The most used dataset in this study was the i-band SAR ALOS
PALSAR annual mosaics (Shimada et al., 2014; Shimada and Ohtaki,
2010), which were used in all regional methods except for Sweden. The
saturation level of L-band SAR was found in previous studies to vary
between 40 t ha—? and 150t ha™® (Balzter et al., 2002a, b, Tansey et al.,

Table 3
Strengths and weaknesses of proposed methods/datasets when considering global implementation.
METHOD STRENGTHS 'WEAKNESSES
Two step LiDAR + SAR multiple linear regression ® Low demand on in situ data ® Requires airborne LiDAR (costly and not always available)
® Can combine different EO ® Overestimation at low AGB
datasets ® Underestimation at high AGB
‘WCM + Bayesian inversion ® Low demand on in situ data ® Requires large in situ plots (1 ha) (not always available)
® Assumes saturation of 1-band SAR above 100t ha™! (i.e., only applicable on low
AGB areas)
Random Forests ® Can combine different EO ® Medium / high demand on in situ data
datasets ® Overestimation at low AGB
® Underestimation at high AGB
MaxEnt ® Can combine different EO ® High demand on in situ data
datasets ® Overestimation at low AGB
® Underestimation at high AGB
kNN ® Can combine different EO ® SPOT data not freely available
datasets ® High demand on in situ data

® Overestimation at low AGB
® Underestimation at high AGB
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2004, Lucas et al.,, 2010; Hame et al., 2013) and generally HV gave
higher saturation levels than HH polarization (Le Toan et al., 1992;
Saatchi et al.,, 2007; Mitchard et al., 2009; Hamdan et al., 2011;
Mitchard et al., 2012; Saatchi et al., 2011; Englhart et al., 2011;
Hamdan et al., 2014). The saturation level at r-band depends on the
geometry of the radar measurements, and therefore on forest type and
environmental effects (Yu and Saatchi, 2016), as it can be observed in
the different relationships found in the Yucatan peninsula and Central
Mexico (Fig. 8). Use of the annual mosaics was also a limitation, as
better results have been obtained with the use of multi-temporal SAR
datasets due to the decrease in the retrieval error in AGB ranges to
which the sensitivity of the SAR signal is weak (Antropov et al., 2013;
Santoro et al., 2015b, 2006; Thiel and Schmullius, 2016; Antropov
etal., 2017; Cartus et al., 2012). However, this was necessary due to the
cost of acquiring the multiple ALOS PALSAR images used to generate
the mosaics over large areas and for a given year.

For the model-based approaches, information provided by optical
sensors, such as Landsat Percent Tree Cover (e.g. in Eastern South
Africa), was needed for parameterisation (Bouvet et al., 2018). Such
datasets were also used in the non-parametric machine learning
methods, where they contributed towards improving model perfor-
mance. Three out of the five regional methods used optical data as
predictor variables. DEM data from SRTM were also used in Mexico and
Poland as a predictor variable and in South Africa and Kalimantan for
correcting or masking terrain effects, respectively. The use of topo-
graphic information by machine learning approaches for forests located
in mountainous areas contributed to the estimation of AGB in Central
Mexico.

The evaluation of the maps showed that a crucial limitation of the
retrievals is that underestimation occurs at high AGB ranges, and
overestimation at low AGB ranges. Remote sensing of AGB (using either
reflectance or radar backscatter) is subject to decreasing sensitivity to
AGB as biomass increases. Hence changes in AGB above a saturation
level result in changes in the remotely sensed variable that are small
compared to the variability in the signal. In these circumstances it is
readily understood how linear regression would lead to these effects.
The regression line always passes through the point defined by the
mean of the reference data and the mean of the estimates, and the
fitting effectively rotates the line about this point in order to reduce the
sum of squared differences between the linear estimates and the re-
ference data. For a concave curve, such as is produced by saturation, it
is then inevitable that over-estimation will occur for low biomass and
under-estimation for high biomass: getting a good fit for low biomass
tends to steepen the line, while for high biomass it reduces the slope,
and the regression line trades one against the other. In the case just
discussed the model does not properly capture the relationship between
the signal and the reference AGB, either due to insufficient calibration
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data in the upper AGB range, or by fitting an inappropriate model to the
AGB observations. However, if instead a fitting curve is used that cor-
rectly represents the saturation, bias is still to be expected for higher
values of biomass. This occurs because, by definition, the backscatter
values in the saturation zone are the result of random variation around
the saturation level, with at most a weak dependence on biomass.
Hence, although it is possible to use an estimator that assigns values of
biomass above the saturation level, these represent the scatter in the
data and the estimator will be biased towards the saturation level.

However, for correctly fitted data the overestimation at low AGB
ranges is more difficult to explain. For SAR datasets, it could be con-
nected to the high variability of the signal under soil moisture changes,
as well as soil roughness (Mattia et al., 2009), but these do not apply to
an optical-based method or to methods using SAR and optical data in
synergy. Alternatively, it could be linked to the underestimation at high
AGB ranges, as models provide the best fit by minimising an overall
error term or cost function. The overestimation in the lower reference
AGB ranges may stem from the model compensating for its inability to
predict high AGB values accurately. In Kalimantan, the estimations
were the highest, above 300t ha™?, and underestimation can only be
observed above 200 t ha™'. That underestimation occurs at such a high
AGB level might be due to the large number of reference data points at
high AGB levels compared to all other regions, which resulted in a fitted
model with the largest errors and biases in the mid AGB ranges, be-
tween 50 and 150t ha~!, for which fewer calibration data were
available (Table 2 and Fig. 4).

Avitabile et al. (2016) also found overestimations in the low AGB
range and underestimations in the high AGB range when validating
pan-tropical datasets (Saatchi et al., 2011; Baccini et al., 2012) against
reference data. Several studies using the Random Forests regression
algorithm have found similar behaviour at both ends of the AGB range,
and report it as an effect of the averaging of tree-based algorithms
(Baccini, 2004; Baccini et al., 2008; Avitabile et al., 2011; Urbazaev
et al., 2018). Blackard et al. (2008) reported the same using a tree-
based method (i.e. recursive partitioning regression), but suggested that
saturation of optical data could explain the underestimation for high
AGB densities, and scaling issues between plot and pixel could explain
the underestimations at low AGB. This effect, characteristic of tree-
based algorithms, could also explain the results in Poland, but cannot
explain them in the other regions. Additionally other studies, such as
Tsui et al. (2013) which used Kriging, Chopping et al. (2011) which
used a geometric—optical canopy reflectance model, Del Frate and
Solimini (2004) which used Neural Networks, or Sun et al. (2011), and
Chi et al. (2015) which used multiple linear regression methods showed
the same effects. Kattenborn et al. (2015) also reported the same effect
for four semi- or non-parametric regression models (Random Forest,
Generalized Additive Model, Generalized Boosted Regression Models

ALOS PALSAR HV backscatter (dB)

200 300 400
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Fig. 8. Scatterplots of average ALOS PALSAR HV backscatter versus average reference AGB by reference AGB range. Error bars indicate the standard deviation of the
ALOS PALSAR HV backscatter per reference AGB range for the Yucatan peninsula (left) and Central Mexico (right).
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and Boosted Generalized Additive Model), and suggested insufficient
calibration data at the low and high AGB ends as the main cause.
However, the consistency across all these studies suggests that there is a
fundamental problem in retrieving biomass from the available data,
which may only be solved by the use of SAR data with higher sensitivity
to small scattering elements such as C-band (e.g. Sentinel-1) on the
lower AGB range, and data with greater sensitivity to large scattering
objects (i.e. high biomass) such as the P-band (Villard and Le Toan,
2015) to be exploited by the ESA BIOMASS mission.

7. Conclusions

The regional forest AGB mapping methods presented here reflect
both the variety of training data available in different regions and the
diverse range of algorithmic choices of each regional team. However,
the retrieved AGB values agree better with independent in situ data
than those published recently (Saatchi et al., 2011; Baccini et al., 2012;
Avitabile et al., 2016; Thurner et al., 2014). As the different methods
were not compared on the same site, we cannot comment on relative
performance. However, we can form conclusions based on the com-
monalities observed from the comparison of standardized accuracy
assessments.

The key EO dataset used in most methods was the 1-band ALOS
PALSAR mosaics, which provides the highest sensitivity to AGB of the
currently available spaceborne sensors. However, it is clear that all
current spaceborne sensors (SAR and optical) are inadequate for accu-
rately estimating AGB beyond 100-150t ha~'. The case studies pre-
sented here highlight challenges of using sub-optimal datasets for this
task. Any estimation beyond this range was dominated by negative bias
or presented large errors for any of the given study sites. The assess-
ment indicates, however, that one could push this limit in certain
conditions, as seen in Kalimantan or Central Mexico. This could be
linked to the use of large amounts of in situ data in the case of
Kalimantan. In Central Mexico, a forest structure which leads to a
higher 1-band saturation level, or the contribution of additional datasets
(i.e. the DEM) could be the cause.

There is also a general problem with overestimation at low AGB
densities which cannot be entirely explained by the datasets used, but
rather as an intrinsic problem of the proposed algorithms to correctly
capture the relationship between EO data and AGB in the low AGB
range. This means that we might have to consider alternative regression
schemes, or accept the biases at both ends of the biomass range, pro-
vided that the modelling framework captures the relationship between
observations and biomass.

This aspect shall deserve substantial attention in future studies as
currently existing models for large-scale biomass estimation rely on
simplifying assumptions that may not fully encompass the complex
interaction of the remote sensing signal with vegetation

The amount and type of reference data is also very relevant in terms
of achieving the most reasonable AGB prediction model. Eastern South
Africa used large plots (i.e. 1 ha), more suitable for calibration of EO
methods (Réjou-Méchain et al., 2014), which might explain the good
results for the low AGB ranges in this study area. Mexico, Sweden,
Poland and Kalimantan relied on datasets of numerous small plots for
calibration, supplemented with LiDAR in the case of Kalimantan. In the
future, similar research should be based on homogeneous field-based
datasets to avoid possible discrepancies resulting from the training
data.

Better quality and more abundant large plots for calibration of the
algorithms (Réjou-Méchain et al., 2014), the use of SAR time series
(from Sentinel-1, ALOS 2 PALSAR 2, or future NovaSAR and NISAR)
(Santoro et al., 2011; Antropov et al., 2017), the increasing availability
of airborne or spaceborne LiDAR sensors like GEDI (Dubayah et al.,
2014; Goetz et al., 2015) and MOLI (Kimura et al., 2017), satellites
specifically designed for biomass estimation such as NISAR (Rosen
et al., 2016, 2015), TanDEM-L (Moreira et al., 2015), and the P-band
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BIOMASS SAR mission (Le Toan et al., 2011), and algorithms capable of
reducing the errors in the low and high AGB ranges, are a promising
way forward to improve global biomass estimates and reduce biases
and errors in the map products in all biomass ranges.
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Abstract: Indonesia’s landscape is strongly characterized by degradation and deforestation, which
results in carbon release. This makes Indonesia one of the largest carbon sources worldwide. The
study at hand, investigates monitoring of canopy height and above-ground biomass (AGB) from
space in Indonesian tropical forests. Using data from 2015, the canopy height and AGB were
modelled in Kalimantan based on quad-pol Pol-InSAR data from RADARSAT-2 (RS-2) and dual-
pol Pol-InSAR data from TerraSAR-X (TS-X). Novel algorithms utilizing the Random Volume over
Ground (RVoG) interferometric model and the Random Motion over Ground (RMoG)
interferometric model were tested to obtain a more accurate and robust forest parameter estimation
during dry weather conditions. As a reference for modelling canopy height and AGB, extensive
field inventory as well as LIDAR and drone data collected in Kalimantan were used.

The RMoG model-based height inversion algorithm led to more accurate results for canopy height
than the RVoG model. Using RS-2 imagery, the independent validation displayed a coefficient of
determination (R?) of 0.63 and a slight overestimation for the modelled canopy height. The modelled
canopy height from TS-X data achieved an R? of up to 0.66 and resulted in underestimated modelled
canopy height. The resulting AGB estimation based on the modelled canopy height resulted in an
R2 of 0.83 for RS-2 data and 0.84 for TS-X data. The results of the different tested images varied since
the acquisition parameters and the weather conditions changed during acquisitions. It can be
concluded, that not all RS-2 and TS-X data is suitable for modelling canopy height from coherence.
The parameters that most affect the canopy height model were identified as the baselines (temporal
and perpendicular), HoA (height of ambiguity), incident angle and moist weather conditions, as
well as the wavelength. Ascending and descending flight directions did not display influence.
Globally available high-resolution information about canopy height and AGB is important for
carbon accounting. The present study showed that Pol-InSAR data from TS-X and RS5-2 could be
used together with field inventories and high-resolution data such as drone or LiDAR data to
support the carbon accounting in the context of REDD+ (Reducing Emissions from Deforestation
and Forest Degradation) projects.

Keywords: TerraSAR-X; RADARSAT-2 carbon; Pol-InSAR; Random Volume over Ground (RVoG);
Random Motion over Ground (RMoG); linear regression modelling; Indonesia; peat swamp forest

1. Introduction
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Tropical forests represent an extensive carbon reservoir containing approximately 40% of
terrestrial carbon [1]. The unsustainable use of these forests causes large greenhouse gas emissions,
which can be accounted for in form of carbon dioxide equivalents (CO2z-e). Deforestation and forest
degradation in the tropics account for approximately 11% of global anthropogenic CO: emissions
each year [2]. Particularly tropical, wooded peat lands form an additional carbon reservoir obtained
from the forests growing on top. Indonesia’s peatlands approximately store 55-58 Gt of carbon [34].
Nevertheless, the tropical forests in Indonesia are affected by severe anthropogenic impacts, resulting
in significant carbon emissions. Between 1990 and 2010, Borneo lost about half of its original peatland
forest. This is mainly due to legal and illegal logging, extensive expansion of plantations, massive
peatland drainage, and significant forest fires caused by extreme El Nifio droughts in 1997/98, 2009
and 2015. Due to this anthropogenic destruction, Indonesia has become one of the largest greenhouse
gas emitters [5] in the world and a prime target for REDD+ (Reducing Emissions from Deforestation
and Forest Degradation) projects [6]. The REDD+ projects require close monitoring of carbon stocks
of forests and their spatial distribution [7]. Forest carbon stocks are primarily derived based on the
assumption that 50% of above-ground biomass (AGB) is carbon [8]. Biomass itself is defined as the
fundamental biophysical parameter quantifying the Earth’s living vegetation [9]. It describes the
amount of woody matter within a forest and is specified by the Global Climate Observing System
(GCQS) as an essential climate variable (ECV) [10]. Thus, the urgency to develop suitable methods
for accurate, large-scale detection of canopy height and biomass has increased significantly.
Collecting punctual AGB field data is time-consuming and expensive, and only provides limited
information about the spatial variability within different forest types.

Remote sensing is able to overcome these limitations. Earth observation approach is able to cover
larger areas and in a more cost-effective manner. The inaccessibility of tropical forests is a hindrance
for extensive field inventory and highlights the benefits of remote sensing. Radar satellite data has
the advantage that it is independent of cloud cover and the time of day [11]. Especially in tropical
regions, cloud coverage is a reoccurring issue that aggravates monitoring based on multispectral
satellite data. The extrapolating of accurate forest inventories or regional LiDAR-derived biomass
estimations with large-scale satellite imagery represents an appropriate compromise [12-15]. Solberg
et al. [16] and Englhart et al. [17] investigated the suitability of airborne laser scanning (ALS) for
extrapolating biomass reference data from field plots. LIDAR data allows for accurate estimates of
canopy closure, tree height and AGB based on point cloud metrics [18,19]. Many studies have
demonstrated a great potential of LIDAR to estimate AGB in tropical forests [14,20,21]. Lidar point
height distributions, such as the Quadratic Mean Canopy Height (R? = 0.84) and Centroid Height (R?
=0.75, RMSE = 20.5 t ha) [22,23] were identified as appropriate parameters to estimate AGB from
LIDAR data. Kronseder et al. [20] found an R? = 0.83 for LIDAR based AGB estimates in Indonesia’s
peat forests. Besides, Englhart et al. [24] derived an R? of 0.81 in tropical forests of Kalimantan,
Indonesia and presented a robust application of LiDAR derived forest estimates. LIDAR provides
accurate AGB estimations and was therefore used to extrapolate field inventory data for large-scale
analysis based on Pol-InSAR data.

Other studies have successfully demonstrated the derivation of canopy height and AGB using
polarimetric SAR interferometry (Pol-InSAR) techniques. Pol-InSAR is a remote sensing method that
enables the investigation of the 3D structure of volume scatterers, such as forests. This results from
the fact that the interferometric coherence is directly related to the vertical distribution of the
backscattering elements and thus allows an exact 3D localization of the scattering center of an object.
Using a coherent combination of single- and multi-baseline interferograms with different
polarizations enables the characterization of vertical forest structure. Model based canopy height
retrieval using Pol-InSAR data has been widely established and validated. The Random Volume over
Ground (RVoG) model is often used for canopy height estimation from Pol-InSAR data as it interprets
interferometric coherence as a function of vertical backscatter profiles [25-27]. Different studies have
applied this model at various frequencies whereby the results were partly dependent on forest
density [28,29]. A comparison of airborne X-, L-, and P-band Pol-InSAR data showed that L- and P-
band achieved a lower variance in canopy height estimation than the X-band based canopy height
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derivation [30]. The INDREX-II campaign by the German Aerospace Center (DLR) provided airborne
X-, G-, L-, and P-band InSAR and Pol-InSAR data in tropical peat swamp forests on Borneo [31]. The
authors found a good applicability of the RVoG model in tropical forests for both, L- and P-band,
even if P-band estimations are on average higher than L-band estimations. In the context of INDREX-
II, Hajnsek et al., [32] showed that canopy height determination is possible in Indonesian forests with
L- and P-Band estimates within a 10% accuracy. The L-band estimates showed an R? of 0.91, while
the P-band estimates were characterized by an R? of 0.94. Interferometric X-band data also provided
an accurate estimate (R2? in a range from 0.51 to 0.94) and underlined the high potential of Terra-SAR-
X and Tandem-X X-band Pol-InSAR data for canopy height derivation. Kugler et al. [33] successfully
derived the canopy height from TandDEM-X Pol-InSAR data in boreal, temperate and tropical
forests. The authors achieved correlations between R? of 0.86 (boreal forest), R? of 0.77 (temperate
forest), and R? from (.54 to 0.69 (tropical forest) for dual-pol data. Besides X-, L-, and P-band, C-band
Pol-InSAR data has been used only to a very limited extent for the derivation of canopy height [34].
Varekamp et al. [35] concluded in their study that C-band InSAR data are more suitable for canopy
simulation than X-band InSAR data. The combination of X- and C-band Pol-InSAR data has only
been used to a very limited extent for the determination of canopy heights in tropical forests so far.

This study analyzes the use of TerraSAR-X (X-band) and RADARSAT-2 (C-band) Pol-InSAR
datasets for the determination of canopy height in tropical peat forests in Indonesia based on different
wavelengths, acquisition parameters, and weather conditions. (i) First, the suitability of two different
inversion models, Random Volume over Ground (RVoG) and Random Motion over Ground (RMoG),
regarding their performance modelling canopy height from X- and C-band Pol-InSAR data was
investigated. (ii) Secondly, regional regression models were set up based on the canopy height in
order to model AGB on a high-resolution basis. Canopy height and above-ground biomass (AGB)
derived from field inventory and LiDAR data were used as reference data for model calibration and
validation. The resulting canopy height and AGB maps ranging in resolution from 3-12 m allows a
monitoring of even small-scaled changes in the forests of Indonesia. This higher spatial resolution is
important in order to make them a promising alternative building a forest monitoring or risk
managing system, but also to achieve the objectives of REDD+, UNEP-WCMC, the Global Canopy
Programme, and other programs protecting forests or analyzing carbon release at national and
subnational levels.

2. Study Area and Data

2.1. Study Area

The study area is located south of Palangka Raya in Central Kalimantan on the island of Borneo,
Indonesia (Figure 1). The predominant vegetation in the area of interest is tropical peat swamp forest.
The subterranean peat dome was formed over thousands of years by plant residues under water-
saturated conditions [36]. In this area of Kalimantan, they can reach a width of 20 m and form a
gigantic carbon reservoir, up to ten times larger than the forests growing on top [3]. Due to severe
anthropogenic destruction, the peat domes release enormous emissions. Legal and illegal logging,
drainage and fires have degraded the forests and thus the peat domes.

The majority of the area of interest is located in the Sebangau National Park, which was
designated as such in 2004. Since this area is protected, a slight change in canopy height and AGB is
expected. Peat swamp forests usually have a maximum tree height of 20-30 m and an average AGB
of 252-314 t ha' in Central Kalimantan, depending on the soil conditions and the forest type [37,13].

2.2. Reference Data

2.2.1. Field Inventory Data

An overview of the reference data within the study area is visible in Figure 1. We collected field
inventory data in forest and reforestation areas in 2010 and 2011 (n = 53). The inventory plot design
was divided into two different recording systems based on the recommendations of the High Carbon
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Stock Science Study [38,24] and Pearson et al. 2005 [39]. In forested areas, with high biomass values,
we collected data in concentric circular nested plots (n = 36). Within each nest of the circular nested
plots, DBH, tree height, and tree species of trees with a certain breast height diameter (DBH) were
measured depending on degradation intensity: 2 cm to 10 cm or 5 cm to 20 cm (within the 4 m radius),
10 cm to 20 cm or 20 cm to 50 em (within 14 m radius), and greater than 20 cm or 50 cm (within 20 m
radius) [24]. In regrowing areas, e.g., after a forest fire, data was collected in rectangular plots with a
size of 50 m x 20 m (n = 17) in the context of former projects [23,24]. Within the rectangular plots all
trees were measured regarding DBH, tree height, and tree species.

2.2.2. LiDAR Data

LiDAR data was recorded during the dry season between August and October 2011.
Measurements were acquired using Optech Orion M200 and Optech ALTM 3100 airborne laser
scanners (Teledyne Optech, Vaughan, Ontario, Canada) at an altitude of 800 m above-ground. The
data was collected using a half scan angle of + 11°. Point density amounted up to 10.7 points per m2
The accuracy of AGB estimations derived from LiDAR metrics increases with a higher point density,
which is why a weighting of the plots accordingly to their point density was conducted [24]. In total,
4 340 ha were covered within the study area. The areas covered by LiDAR is depicted in Figure 1.

During a drone flight mission in 2016, 270 ha were flown, covering all inventory plots and other
areas. The unmanned aerial vehicle (UAV) used in the mission recorded optical data in RGB with a
1/2.3” CMOS sensor and with a resolution of 4 000 x 3 000 pixel. A lens with a field of view (FOV) of
94° above ground level (AGL) ensured a constant and terrain independent ground resolution of 5 cm.
All images were acquired in nadir and with an 80% forward- and side overlap. Furthermore, the
entire flight area was recorded in two directions of flight with perpendicular flight tracks in order to
increase data density and to attain a larger amount of matching points during the photogrammetric
processing.

114°100°E

2°30'0"S
2°30'0"S

Km
T —

0 5 10 20

Figure 1. RGB composite of Landsat-8 (short-wave infrared, near-infrared, red) from 2015 showing
the location of the area of interest including the field plots from 2010-2011 and the LiDAR (2011) and
UAV (2016) coverage.
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2.3. SAR Data

RS-2, launched by the Canadian Space Agency (CSA) in 2007, operates at C-band with a
wavelength of 5.6 cm and a frequency of 5.3 GHz. For this study, single look complex (SLC) imageries
acquired in the fine quad-polarization wide (FQW) mode with a nominal spatial resolution of 8 m
was used. Further information about the characteristics of the data are listed in Table 1.

The DLR launched the TS-X satellite in June 2007. TS-X provides different acquisition modes
with varying spatial resolutions at X-band wavelength (3 cm) with a frequency of 9.65 GHz. In the
study at hand, SLC data acquired in stripmap mode with dual polarization (HH/HV) and a resolution
of 6 m in both azimuth and ground range was used. The characteristics of the datasets are
summarized in Table 2.

The image parameters for both sensors vary concerning the perpendicular baseline, the height
of ambiguity (HoA), beam modes and incidence angles 6 in both far range (FR) and near range (NR).
Furthermore, the data was acquired in ascending and descending mode during the dry season in
2015.

Table 1. RS-2 data and the different acquisition parameters from 2015 applied in the study. (Date
format = DD.MM.2015. Perp. baseline = perpendicular baseline, HoA = height of ambiguity, 6 =
incidence angle in far range (FR) and near range (NR).

Ascending

Dates Perp. Baseline [m] HoA [m] Beam Mode O NR [°] 6 FR []
18.08.-11.09. 159.27 91.90 FQ14W 32.69 35.66
25.08.-18.09. 46.00 235.00 FQ7W 24.89 28.25
11.09.-05.10. 43.12 339.47 FQI4W 32.69 35.66
18.09.-12.10. 18.63 585.91 FQ7W 24.89 28.25
05.10.—29.10. 59.42 246.37 FQ14W 32.69 35.66
Descending

Dates Perp. Baseline [m] HoA [m] Beam Mode 6 NR [°] 8 FR [°]
10.08.—03.09. 45.00 193.00 FQ3W 20.06 23.63
03.09.-27.09. 56.55 155.53 FQ3W 20.06 23.63
27.09.-21.10. 34.8 252.83 FQ3W 20.06 23.63

Table 2. TS-X data and the different acquisition parameters from 2015 used in the study. (Date format
= DD.MM.2015. Perp. baseline = perpendicular baseline, HoA = height of ambiguity, 6 = incidence
angle in far range (FR) and near range (NR).

Ascending
Dates Perp. Baseline [m] HoA [m] Beam Mode O NR [°] O FR [°]
13.07.-24.07. 158.39 29.00 stripNear_007R 29.66 31.26
24.07.-04.08. 89.47 51.64 stripNear_007R 29.66 31.26
04.08.—15.08. 152.31 30.33 stripNear_007R 29.66 31.26
15.08.-26.08. 63.14 73.17 stripNear_007R 29.66 31.26
06.09.-17.09. 13.33 361.53 stripFar_007R 30.79 32.32
3. Methods

An overview of this study’s workflow is displayed in Figure 2. The applied steps are described
in the following section in detail.
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Figure 2. Workflow of the methodology applied in this study (bright grey = field data, grey = LIDAR
data, medium dark grey = SAR data, dark grey = validation).

3.1. Extrapolated Reference Data

Canopy height from LiDAR data and AGB based on field inventory and LiDAR height metrics
are used as reference data, representing the highest possible accuracy, for model calibration and
validation. In a first step, a Digital Surface Model (DSM) was estimated from the hierarchical filtered
highest points of the LIDAR point cloud. Besides, the DTM (Digital Terrain Model) with a resolution of
1 m was calculated from the filtered ground points of the 3D LiDAR point cloud [23,40]. By subtracting
the DTM from the LiDAR DSM, a very accurate determination of the canopy height became possible.
The final Canopy Height Model (CHM) based on LiDAR data has a spatial resolution of 1 m and is
resampled to the respective Pol-InSAR data.

The field inventory data enabled the estimation of AGB in t ha' by using the tree height, DBH,
and wood specific density of each tree as the input for a combination of different allometric models.
We applied allometric models according to [41] for saplings (DBH < 5 cm and height < 1.3 m) and
small trees (DBH < 5 cm and height > 1.3 m) and based on [42] for moist tropical forest stands (DBH
=5 cm and height > 1.3 m). The applied models are described in detail in [24]. In a next step this
ground-based AGB in t ha? was related to the LiDAR transects in order to estimate AGB reference
data based on centroid height derived from LiDAR using previously established regression models
[23,24]. For each AGB grid cell, we computed the LiDAR height histograms by normalizing all points
within a grid of 20 m (the same radius as the field plots) using the DTMs as ground reference as in
[23,24]. The regression models are based on a combination of a power function in the lower biomass
range and a linear function in the higher biomass range using the centroid height to calculate a certain
threshold [24]. The centroid height is an appropriate height parameter of the LIDAR point cloud. The
threshold of the centroid height was determined by increasing the value in steps of 0.001 m by
identifying the lowest RMSE. The resolution of the final AGB map is 5 m and is resampled to the
respective Pol-InSAR data. This extrapolating from field inventory data to LIDAR transects allows
the creation of numerous biomass reference data for the calibration of SAR images.
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In addition, inventory plots and surrounding areas were covered during a drone mission,
approximately 270 ha. With the use of a Semi-Global Matching (SGM), a dense stereo-matching
procedure, a 3D point cloud was created from the captured aerial photos. Similar to the LIDAR point
cloud, a DSM was derived from this point cloud, which allowed a very precise determination of the
canopy height minus the existing LIDAR DTM. We compared the unmanned aerial vehicle (UAV)
derived canopy height to the LIDAR derived canopy height resulting in a correlation of 0.89.

3.2. SAR Processing

We applied a speckle reduction using the Refined Lee filter. Besides filtering, the co-registration
of repeat pass SAR data is fundamental for generating an interferogram, as it ensures that a target on
the ground corresponds to the same pixel in the master as in the slave image. This step compensates
for different sensor attitudes, orbit crossings, along- and across track shifting and different sampling
rates. After co-registrating the image pairs, we computed an interferogram, also called the phase
difference, for each pixel. The interferogram of two registered complex images was calculated by the
multiplication of one image with the conjugate of the second image [43].

In a next step, we smoothed the interferogram by using an adaptive filter based on the local
fringe spectrum. The goal of the adaptive filter was to reduce phase noise, thereby reducing the
number of residues. It read the complex valued interferogram, computed the interferogram power
spectrum, designed a filter based on the power spectrum, filtered the interferogram, estimated the
phase noise coherence value for the filtered interferogram and finally wrote the filtered
interferogram.

3.3. Canopy Height Estimation

We tried two inversion models in order to estimate canopy height, the RVoG and the RMoG
model. The RVoG model is a simple two-layer model, in which one layer represents the forest canopy
and the other a reflective ground layer below the vegetation layer. It simulates vegetation as a
homogeneous layer of thickness () containing volume scatterers with randomly oriented particles
over a ground scatterer positioned at z. The model ignores the even-bounce scattering mechanism as
well as higher order interactions. Pol-InSAR data is commonly used as input because it provides a
number of independent parameters for modelling [26].

The RVoG presents the interferometric coherence 7 as
Vo +m

1+m

7 = exp(io) 0]

where ¢o is the phase and refers to the topography of the ground, m is the effective ground-to-volume
amplitude ratio. The complex coherence ¥, for the volume is given as [44—46]

hy
20z’
1= f exp (—) exp(ik,z")dz’

cosf,
W=r ! hv (2)

lo 20z’ ,
Iy = f exp (coseo) dz
0
with 8 as the mean incidence angle, the assumption of an exponential distribution of all scatterers is a
widely used approach, especially at higher frequencies such as X- and C-band [33]. ¥, depends on the

extinction coefficient for the random volume ¢ and its thickness (/). The variable dz is defined as an
independent distributed random variable that represent the physical displacement of scatterers along

z. The effective vertical interferometric wavenumber k: depends on the wavelength A and the imaging
geometry as the difference of the incidence angle AO [44]

ky=2o with k=" 3)

sinBy
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The RMoG links the RVoG coherence model with the temporal coherence model and volumetric
decorrelation to overcome those limitations [47]. The RMoG model separates temporal and
volumetric decorrelations into four structural parameters and two dynamic parameters. The
structural parameters are the tree height, wave extinction, ground topography and ground-to-
volume ratio. The dynamic parameters are known as ground and canopy motion standard deviations
induced by the temporal baseline [47].

The complex coherence y,, in the RMoG model is defined as

B foh" p(2)exp(jk,z) (— % (%”)2) 62(z)dz
- [ p(2)dz

where the scatterer motion function ¢7(z) is obtained from

@

Ym

zZ—Z
02(z) = o2 + (o2 — aj)—h g ©®)
T

with hr as reference height, which is a constant, A is the wavelength of the SAR system, and ggand geare
the ground and vegetation layer motion standard deviation. The term p(z) is the structure function
defining the vertical structure of the vegetation layer [47,48]. The structure of trees is assumed as a
Gaussian function.

To compare the estimation results with each other as well as with the ground truth, we applied
geo-referencing and ortho-rectifications. As a result, each pixel was mapped to a geographical
location (longitude and latitude). After modelling the canopy height, an overestimation of the model
was identified in the RS-2 results. For minimizing this overestimation, a linear correction factor of -
1.4 m was applied on the final canopy height results of the RS-2 datasets.

3.4. SAR Based AGB Modelling

In a next step, we used Pol-InSAR based canopy height and LiDAR AGB as reference to set up
a linear regression model for each scene based on 500 randomly selected pixels in the overlapping
area. AGB was modelled for each scene based on the respective linear regression equation. Using the
Cook’s distance (Cook’s D), influential outliers were removed from the set of predictor variables [49].
The Cook’s D identifies points with large residuals based on the observation’s leverage and the
residual values, and thus influential outliers. Following this approach points over 4/n, where n is the
number of observations, are removed from the modelling process [49]. The final resolution of the Pol-
InSAR AGB maps is 3 and 12 m depending on the used sensor.

3.5. Validation

The validation of the estimated canopy height and modelled AGB is achieved using the reference
data of the canopy height estimated from the drone DSM in combination with LiDAR DTM. A
random sampling strategy was applied in ArcGIS (ESRI) to collect 475 randomly selected pixel within
an overlapping area of the drone, as well as the LiDAR reference data and the modelled canopy
height. Our drone data was acquired one year after the SAR data, and the LiIDAR data was acquired
four years before the SAR data. Nevertheless, the coverage of the drone data with the Pol-InSAR data
is just about 270 ha. The LiDAR data on the other hand covers, depending on image, more than 4000
ha of the Pol-InSAR scenes. To overcome the limitations of the small coverage of the UAV data, the
validation for canopy height is achieved based on both reference datasets within the respective
overlapping areas. Since drone data is only available for canopy height, AGB is validated entirely
with LiDAR modelled AGB. The resolution of the AGB validation datasets is resampled to the
resolution of the respective SAR based canopy height and AGB map (3-12 m).

4. Results

4.1. RVoG vs. RMoG
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For testing RVoG model-based inversion, we used six sets of R5-2 pairs from different beam-
modes FQ3W (10.08. and 03.09., 27.09. and 21.10.), FQ7W (18.09. and 25.08., 18.09. and 12.10.) and
FQ14W (11.09. and 18.08, 11.09. and 05.10.) as inputs for the RVoG and RMoG algorithms.

The RVoG model shows a strong overestimation in canopy height modelling in comparison to
the LiDAR data in all tested datasets. An example for the modelling results using both inversion
models is shown in Figure 3. The scatterplots show a strong overestimation of modelled canopy
height using the RVoG model. The RMoG model demonstrates its superiority over the RVoG
resulting in a more significant p-value and a higher R2 As a result, we decided to use the better
suitable RMoG model for estimating canopy height based on Pol-InSAR data in the following.

RVoG RMoG
n =475 n =475
R?=0.50, P-value 0.0125* R?=0.62, P-value <2e-16 ***
30
E40 E
] =
[ o
2 ]
- .20
f= N =%
o o
8 8
3 B
320 3
3 310
= =
0 01,
0 10 20 30 Q 10 20 30
LiDAR canopy height [m] LiDAR canopy height [m]

Figure 3. Correlation of reference LiDAR canopy height and modelled RS-2 canopy height for the
RVoG (left) and RMoG (right) based on an interferogram from 27.09.-21.10. Dashed line = 1:1 line.

4.2. Canopy Height Estimation

In Figure 4, the canopy height of LiDAR, drone and two examples of RS-2 and TS-X based
canopy height are displayed for a transect of approximately 500 m. The general pattern of the canopy
height shows an appropriate overlap, but not all peaks match the reference height. The increase of
the canopy height at a distance of 175 m results from a transition zone from non-forested area to
forested area. The RS-2 based mean canopy height leads to an average overestimation of
approximately 0.6 m compared to LiDAR reference and an underestimation of 0.16 m compared to
the reference canopy height of the UAV. Mean tree height modelled from TS-X data is
underestimated by 1.1 m compared to drone data and underestimated by 0.36 m in comparison to
LiDAR canopy height. Both Pol-InSAR datasets tend to overestimate the canopy height in lower
heights and underestimate in forested areas.
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Canopy height profiles
Mean (LIDAR based CH:}) 11.11 m — LIDAR
Mean (Drone based CH:) 11.86 m — Drone
Mean (RS-2 based CH:) 11.27 m — RS2
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Figure 4. Example height profile of reference LIDAR canopy height, drone canopy height, modelled

RS-2 canopy height based on the interferogram from 03.09.-27.09 and modelled canopy height based

on TS-X from 06.09.-17.09.

Figure 5 gives an overview of the correlation of the modelled canopy height based on Pol-InSAR
data and the reference data based on LiDAR. The coefficient of determination (R?) for modelled
canopy height from RS-2 varies between 0.62-0.63. The canopy height based on Pol-InSAR is
overestimating heights ranging from 0-15 m and underestimates trees with heights taller than 15 m.

In Figure 6, the correlation of the reference and modelled canopy height based on TS-X is pointed
out. The coefficient of determination varies from 0.58-0.66. Canopy heights modelled based on TS-X
data result in an underestimation, whereby the image pair from July/August shows a stronger
underestimation and a higher Root Mean Square Error (RMSE) than the interferogram estimated
from two September images. A saturation effect can be identified at trees taller than 15 m.

CH LiDAR ~ RADARSAT-2 03.09.-27.09.

CH LiDAR ~ RADARSAT-2 27.09.-21.10.

n =475
R?=0.63

] w
(=] =]

Modelled canopy height [m]
(=]

0 10 20 30
LIDAR canopy height [m]

(S} w
o o

o

Modelled canopy height [m]

n=475
R2=0.62

10 20 30
LIDAR canopy height [m]

Figure 5. Correlation of reference LiDAR canopy height and modelled RS-2 canopy height using
RMoG model based on an interferogram from 03.09.-27.09. (left) and 27.09.-21.10. (right). Red

dashed line = 1:1 line; black line = linear trend including confidence bounds.
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CH LiDAR ~ TerraSAR-X 24.07.-04.08. CH LiDAR ~ TerraSAR-X 06.09.-17.09.
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Figure 6. Correlation of reference LIDAR canopy height and modelled TS-X canopy height using
RMoG model based on an interferogram from 24.07.-04.08. (left) and 06.09.-17.09. (right). Red
dashed line = 1:1 line; black line = linear trend including confidence bounds.

In Figure 7, the differences between the modelling results of TS-X and RS-2 become clear. The
correlation of the two sensors is strong until a canopy height of 10 m is reached. With increasing
height, a stronger underestimation of TS-X in comparison to RS-2 is visible. At a height of
approximately 15 m, a saturation effect in the TS-X data is monitored. For RS-2 the saturation effect
can be identified at about 20 m.

TerraSAR-X ~ RADARSAT-2

n =500
R*=0.73

TS-X canopy height [m]

0 10 20 30
RS-2 canopy height [m]

Figure 7. Correlation of modelled TS-X (06.09.-17.09.) canopy height and modelled RS-2 (03.09.—
27.09.) canopy height based on the RMoG model. Red dashed line = 1:1 line; black line = linear trend
including confidence bounds.

In Table 3 and 4, the validation statistics of the modelled canopy height are listed for both LIDAR
and drone data. Each result was validated against the LiDAR and UAV canopy height using 475
collected random points, respectively. The LiDAR bias shows a slight overestimation of
approximately 0.30-3.85 m for the modelled canopy height based on RS-2 and an underestimation

87



V. Biomass estimation in tropical forests based on Pol-INSAR
data (Chapter lll)

Remote Sens. 2019, 11, 2105 12 of 24

(3.5 = -6.07 m) for the TS-X data (Table 3). The coefficient of determination varies in a range from
0.39 - 0.66 for the different results, showing the highest correlation for the TS-X interferogram in the
date span of 06.09.-17.09. The standard deviation (SD) shows a higher value for the reference data
than for the modelled data, meaning that the model does not adequately capture the canopy height
range. The RMSE is about 4.65-6.74 m for RS-2 based canopy height and 5.2-8.44 m for TS-X based
canopy height. Two TS-X datasets could not be modelled since the coherence was too low. The four
results with the highest coefficient of determination were used to model AGB and to compare with
the UAV data from 2016 (Table 4). The drone data has a smaller time lag towards the SAR data than
the LiDAR data. Nevertheless, the area covered by drone data is very small. The results are
comparable to the LIDAR data, the RMSE is slightly lower, varying from 4.27-4.95. The bias is smaller
than for LiDAR data, especially for TS-X. Nevertheless, TS-X still shows an underestimation, while
RS-2 is overestimating canopy height in average.

Table 3. Validation statistics of canopy heights per interferogram based on LIDAR data. (CHRef =
mean of the reference canopy height, CHEst = mean of the estimated canopy height, SD = standard
deviation, RMSE = root mean square error)

Sensor Image Pair CHges[m] CHest[m] SDget[m] SDest[m] Bias[m] R? R?:SE
10.08.-03.09. 14.04 15.86 7.09 5.49 1.8 0.54 512
18.08.-11.09. 13.66 17.51 7.66 5.96 3.85 048 6.74
25.08.-18.09. 13.51 16.73 7.59 6.68 3.22 057 599
03.09.-27.09.* 13.08 13.43 7.61 6.36 0.35 0.63 4.65

RS2 11.09.-05.10. 13.45 15.58 7.75 6.93 2.13 0.59 543
18.09.-12.10. 13.43 13.62 7.69 6.31 0.18 0.60 4.88
27.09-21.10* 13.36 13.68 743 6.13 0.32 0.62 4.62
05.10.-29.10. 13.36 1498 7.80 5.88 1.62 041 622
13.07.-24.07. Coherence too low for modelling
24.07.-04.08.% 13.38 9.88 7.53 4.59 -3.5 0.58 6.10

TS-X 04.08.-15.08. Coherence too low for modelling
15.08.-26.08. 12.96 6.89 745 3.84 -6.07 0.39 8.44
06.09.-17.09.* 13.06 10.79 743 4.16 -2.27 0.66 521

*datasets used for AGB modelling.

Table 4. Validation statistics of canopy heights per interferogram based on drone data. (CHRef = mean
of the reference canopy height, CHEst = mean of the estimated canopy height, SD = standard
deviation, RMSE = root mean square error)

Sensor Image Pair  CHger[ml CHest[ml  SDret[m]  SDest[ml  Bias[m]l R? R?:SE
RS-2 03.09.-27.09. 13.95 15.21 7.36 6.40 1.25 0.69 427
27.09.-21.10. 13.91 15.03 7.34 6.08 1.12 0.65 4.47
TS-X 24.07.-04.08. 13.13 11.81 7.05 4.49 -1.31 0.55 4.95
06.09.-17.09. 13.50 12.38 7.06 4.17 -1.12 0.68 443

4.3. AGB Estimation

For AGB modelling, the datasets with the highest accuracy for the canopy height were used. The
statistics of the linear regression models for modelling AGB in t ha’based on the canopy height are
summarized in Table 5. In addition, coefficient of determination and the residual standard error (RSE)
are displayed for the different models. The R? varies between 0.66-0.77 and points out the ability of
the model to predict AGB based on canopy height. In Figure 8 and 9, the correlation of the reference
and modelled AGB based on RS-2 and TS-X are pointed out. The coefficient of determination varies
from 0.81-0.85 for RS-2 and from 0.60-0.85 for TS-X. RS-2 shows in general a better fit compared to
the 1:1 line than the TS-X datasets. Both sensors tend to overestimate the AGB in lower biomass
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ranges and underestimate in higher biomass ranges. Estimated AGB from TS-X based on the datasets
from 24.07.-04.08 depict a stronger scattering than the other datasets in the higher AGB range.

Table 5. Overview of the model statistics, adjusted R? and Residual Standard Error (RSE) for the linear
regression AGB model based on canopy height.

Sensor Image Pair B Esr t:)'r Beta P Value R2 [tl';S:; 1
RS-2 03.09.-27.09. 14.3462 0.4306 33.31 <2e-16 *** 0.74 60.68
27.09.-21.10. 14.516 0.469 30.952 <2e-16 *** 0.71 58.3
TS-X 24.07.-04.08. 21.2768 0.7791 27.309 <2e-16*** 0.66 63.67
06.09.-17.09. 22.6038 0.6227 36.30 <2e-16*** 077 52.16
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Figure 8. Correlation of reference LIDAR AGB and modelled RS-2 AGB based on an interferogram
from 03.09.-27.09. (left) and 27.09.-21.10. (right). Red dashed line = 1:1 line; black line = linear trend

including confidence bounds, n = 475.
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AGB LIiDAR ~ TerraSAR-X 24.07.-04.08. AGB LiDAR ~ TerraSAR-X 06.09.-17.09.
n =475 n =475
R*=0.60 . 200, R*=0.85

&
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o
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Figure 9. Correlation of reference LIDAR AGB and modelled TS-X AGB based on an interferogram
from 24.07.-04.08. (left) and 06.09.~17.09. (right). Red dashed line = 1:1 line; black line = linear trend
including confidence bounds.

The validation of the modelled AGB using 475 random points resulted in the statistics
summarized in Table 6. R? varies from 0.66 to 0.84 showing a good agreement between the modelled
AGB based on canopy height and the reference data. Nevertheless, the average AGB estimates are
consistently lower than the reference biomass. The bias shows an underestimation of all four datasets
and varies between 1.7% and 8.6%. Overall, the RMSE and coefficient of determination are similar in
all datasets except for the TS-X data from July/August. This dataset shows higher deviations from the
reference AGB than the other images. The relative RMSE varies from 20.2% to 23.3% for RS-2 datasets
and from 20.9% to 32.9% for TS-X.

The comparison of different AGB maps shows the advantage of high-resolution images (Figure
10). The displayed wetland in the Sebangau National Park consists of a pattern of linearly vegetated
and non-vegetated areas. TS-X with a resolution of 3 m is able to capture the pattern of the vegetation
and its AGB better than existing maps. Even small-scaled variabilities and heterogeneities can be
detected.
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Figure 10. Comparison between different biomass maps. A) True-color image of Sentinel-2 showing
a wetland in the Sebangau National Park, Central Kalimantan. B) AGB with a resolution of 3 m
modelled based on TerraSAR-X images from 06.09.-17.09.2015. C) AGB with a resolution of 100 m,
modelled by Berninger et al. [50] using ALOS PALSAR and Sentinel-1 from 2015. D) AGB with a
resolution of 500 m, modelled by Baccini et al. [51] based on ICE-5at data from 2007 through 2008 and
the TS-X based AGB results are from 06.09.-17.09.2015 (framed in red).
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Table 6. Validation statistics of AGB per image pair.

Sensor Image Pair AGBret [t ha'] AGBest [t ha'] SDrer [t ha™'] [f?:f] ItB;:'S'] R2 ﬁh::]l;
03.09.-27.09. 197.30 188.05 100.64 95.83 -9.25 0.81 46.34

RS2 27.09.-21.10. 198.14 188.02 100.10 93.68 -10.12 0.83 40.19
TS.X 24.07.-04.08. 196.94 191.08 100.49 87.82 -5.85 0.60 64.89
06.09.-17.09. 196.44 181.48 99.19 93.44 -14.96 0.85 41.11

5. Discussion

5.1. Comparison of the RVoG and RMoG Models

The choice of different models has an effect on the resulting estimation result since the models
differ in the in the number of input variables. The number of observables limits the complexity of the
model meaning that the inversion process can be deterministic. However, a certain number of
parameters is needed to deliver a good simulation of the scattering process. The RVoG model does
not take the temporal baseline resulting from repeat-pass Pol-InSAR into consideration. However, the
dynamic changes caused by wind, precipitations, seasonal variations and anthropogenic activities also
lead to further decorrelation, altering the magnitude and phase of the observed coherence by an amount
comparable to volumetric decorrelation.

Comparing the results of the two inversion models, the superiority of the RMoG model was
pointed out. This is expected since the RVoG model does not take temporal decorrelation, introduced
by the time gaps between acquisition dates, into consideration [48,47]. Especially the motion of
scatterers, like wind motion of trees, results in lower coherences and inaccuracies in the canopy height
estimation [52]. In addition, during this time period results of the inversion approach are not only
affected by the motion of canopies but also by changes of dielectric properties [53]. Since all datasets
of this study are multi-pass interferometric, temporal decorrelation is always present. The temporal
baseline is about eleven days for TS-X and even 24 days for RS-2. As expected, the RMoG model
demonstrates its capability to compensate parts of the temporal decorrelation.

5.2. Canopy Height Estimation

The results of the study indicate a suitability of Pol-InSAR C- and X-band data for canopy height
modelling. The results of the different tested Pol-InNSAR images against LIDAR and drone data varied
since the acquisition parameters and the weather conditions changed during acquisitions. It can be
concluded, that not all RS-2 and TS-X data is suitable for modelling canopy height from coherence.
The parameters that most affect the canopy height model were identified as the baselines (temporal
and perpendicular), the HoA, the incident angle and moist weather conditions, as well as the
wavelength. Ascending and descending flight direction was not showing an influence. Nevertheless,
our modelling results are comparable with several studies using InNSAR and Pol-InSAR data for
canopy height and AGB estimation. InNSAR images at C-band were used by [54] to estimate stem
volume and attained a RMSE value of 27%. Schlund et al. [55] modelled canopy height in boreal and
temperate forests based on single-polarized TandDEM-X data. The authors used the RVoG model to
estimate tree heights and validated their results with LIDAR data. The R? lied between 0.08-0.64 and
the RMSE varied from 4.8 to 13.5 m [55]. Khati et al. [53] analyzed Indian tropical canopy heights
based on TS-X/TanDEM-X data and attained RMSEs from 2.71-3.17 m for different seasons using the
RVoG inversion approach. Other studies in tropical forests showed an average error between 3-5m
in estimating tree heights using Pol-InSAR likewise [56]. Kugler et al. [33] found an underestimation
for tall forest stands and an overestimation for low canopy heights using dual-pol TanDEM-X data
in Central Kalimantan, similar to our outcomes. Depending on rainy or dry season, their correlations
(R?) varied between 0.55 and 0.69 for modelled canopy height based on the RVoG model [33].
Ghasemi et al. [48] modelled canopy height using P-band Pol-InSAR data and reached correlations
of 0.43-0.48.
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5.3. Possible Sources of Error

5.3.1. Acquisition Parameters

The quality of the interferogram is a useful parameter for determining the accuracy of the
registration procedure. SAR data pairs may not be registered properly, if the resulting interferogram
shows very little fringes and many decorrelated areas. However, co-registration of forested areas
plays a crucial role within interferogram formation and leads to a low coherence. This low coherence
in forests results from temporal decorrelation caused by wind effects in tree crowns. In the case of
zero ground contribution, coherence becomes independent of polarization [44]. To overcome this
limitation, a coherence optimization algorithm that accomplishes a pure signal-to-noise optimization
is applied [57]. The coherence optimization allows selecting ground that gives the highest coherence
under a random vegetation layer by maximizing the ground and minimizing the volume return [58].

Apart from the temporal baseline, the critical perpendicular baseline can cause decorrelation
within an interferogram. The critical baseline is defined as the perpendicular baseline at which the
interferometric correlation becomes zero and thus is completely decorrelated [53]. Longer
wavelengths are less sensitive to decorrelation due to the perpendicular baseline as found in the
comparison between X-and C-band. In general, the perpendicular baseline is inversely proportional
to the HoA. A decreasing perpendicular baseline means an increasing HoA and results in a
decreasing height sensitivity as shown in [59]. Nevertheless, for two TS-X datasets, the canopy height
could not be estimated since the perpendicular baseline was too long and thus the HoA to low. The
inversion process requires a HoA not smaller than the highest measured plot canopy height [53].
Since the HoA of two datasets was approximately 30 m and the tallest trees in the LIDAR reference
data are about 35 m, an adequate inversion model performance was not possible.

The general underestimation of TS-X data results from the weak penetration depth, limited by
the short wavelength of X-band [60]. Without this penetration capability, it is not possible to capture
the canopy volume in the interferogram and the canopy estimation is restricted [33]. This means, the
taller and denser the trees, the more saturated the canopy height estimation. The forests in Central
Kalimantan are very dense and reach a height of up to 30 m, which limits the canopy height
estimation. Alongside the density and height of the forest, the dielectric properties of the canopy also
influence the penetration depth. The dataset of July/August were influenced by precipitation,
consequently changing the dielectric properties of the forest.

Other studies found that the incidence angle also influences the canopy height inversion since
the vertical wavenumber is estimated based on the incidence angle [61,62]. A smaller angle causes a
larger vertical wavenumber relative to the effective baseline [61]. Using X-band and C-band with a
weak penetration depth, a larger vertical wavelength can be sensitive to canopy height inversion.
Additionally, very flat angles can cause radar shadows and introduce noise to the data [62].

With its longer wavelength the RS-2 data is able to penetrate the canopy layer more profoundly
to capture the canopy volume in a more accurate way than TS5-X. Nevertheless, TS-X has a better
spatial resolution than RS-2 data, which enables the identification of small-scaled differences in the
forest as e.g. because of logging. The fusion of RS-2 and TS-X was carried out to combine the
complementary information of the two sensors in order to achieve better performance. However, due
to difficulties in co-registering the two datasets originating from different sensors, and the general
underestimation of TS-X X-band data, fusion did not result in enhanced performance.

5.3.2. Validation Datasets

The modelled canopy height was validated using UAV and LiDAR canopy height. Differences
between LiDAR and drone data cannot only occur because of a temporal shift between the datasets,
but also since estimations of canopy height vary between the different datasets. The performance of
the photogrammetric products by drone can be influenced by structural complexity of a forest [63].
Nevertheless, UAV show good potential and derive similar results compared to LIDAR based canopy
height R2 = 0.89 which is consistent with results from [63].
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Besides differences in acquisition parameters and weather conditions, another possible source
of error is the four-year time shift between the LIDAR reference (2011) and the Pol-InSAR data (2015).
Due to the offset of four years, differences resulting from deforestation and growing cannot be ruled
out and are probable. Nevertheless, major changes during the four years can be excluded since the
data was checked for fires and deforestation. Validating the modelled canopy height with drone data
(2016) with a time shift of only one year resulted in higher correlations and lower biases and RMSEs
for each dataset. However, area covered by the UAV data is very small, leading to the decision to
include the LiDAR data for validation purposes to cover the whole range from low to high canopy
height. Furthermore, no AGB data is available modelled from drone data, which is why the
calibration and validation of AGB is based on LiDAR data.

Field and LiDAR data used as reference AGB also introduces errors, since spatial variability
cannot be fully covered. The precision and accuracy of AGB extrapolated from field plot data are
affected by the size and shape of the plots [64]. Most of the used field plots in the present study exceed
an area of 1000 m?, a size large enough to be more robust against boundary effects and less sensitive
to individual trees [65-67]. Aside from the size, the shape affects the results of extrapolated AGB.
Rectangular plots are more sensitive to the circumference to area ratio than circular plots [68]. As the
count of rectangular plots is limited and only within single regrowing forest areas, their influence is
marginal in the context of AGB estimation. In addition to the plot shape and size, the applied
allometric model for moist tropical forests can introduce inaccuracies since it does not differentiate
between different tree species [69]. We expect uncertainties using allometric equations varying from
+5 — + 25% as shown in other studies [70,42]. The use of species-specific regression models is not
realizable since tropical forests consist of hundreds of tree species. Nevertheless, the used information
about wood specific densities and tree species from field plot data helps to overcome those
limitations. By using the extrapolating approach from field plot to LiDAR AGB estimation for
reference AGB estimation, the advantage is the enormous amount of data, covering all ranges of AGB.
Furthermore, the data is representing the spatial variability in a more accurate way [17]. Even after
the separation of the data into calibration and validation samples, the use of a large number of
samples is guaranteed. The results of the validation are thus more accurate than in studies with a
more limited amount of in-situ data.

5.2. AGB Estimation

AGB can be estimated based on the canopy height [48,71,72]. Extrapolating from field inventory
data to LiDAR transects allows creating numerous biomass reference data for the calibration of SAR
images. Furthermore, it allows estimating AGB across large areas and different ecosystems taking in
account the advantage of mapping the spatial variability of AGB. The estimated AGB from Pol-InSAR
derived canopy height showed good correlations compared to reference canopy height. For AGB
modelling based on canopy height, most studies use a power function regression. The use of linear
regression in this context has been confirmed in few studies [73,74]. Nevertheless, testing both
regression models with our data resulted in significant p-values for both regressions but higher R?
and lower RMSE using a linear regression.

To overcome the inaccuracies introduced by the time gap between the LIDAR and the Pol-InSAR
data, the Cook’s D was applied. This standard measure of influence allows to remove influential
outlier identified by a combination of observation leverages and residual values [75]. Using the
Cook’s D, we analyzed each dataset of 500 variables regarding outliers that can influence the linear
regression AGB model. Per dataset 1-2% of the variables were identified as influential outliers and
removed from the linear regression modelling. In most cases, the identified variables were pixel,
where forest was degraded within the time gap of four years.

The comparison with pan-tropical biomass maps as seen in [36,50,51,76] with a resolution of 100
m-1 km in general showed a good consistency of the AGB estimates. Baccini et al. [51], using field
data from 2007-2008 and LiDAR waveform measurements from NASA’s ICESat, showed an
overestimation in lower biomass ranges. The map is not able identifying heterogeneity in tropical
forests in detail because of its coarse resolution of 500 m. The map of Saatchi et al. [76] also tends to
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underestimate high biomass values but represents disturbances better due to its spatial resolution of
250 m. Avitabile et al. [36] used the maps of [76] and [51] with additional data to create an improved
biomass map in the pan-tropical region. This final map shows lower RMSE and bias than the previous
studies. Nevertheless, the map with its spatial resolution of 1 km does not capture small
heterogeneities and disturbances. Berninger et al. [50] produced AGB maps of Kalimantan with a
spatial resolution of 100 m, preserving small scale disturbances and regrowing effects for different
years. The RMSE varies between 53-57 t ha' and relative RMSE from 31-8%. Other studies using L-
and P-band, estimated AGB with RMSE values between 30-40% for L-band and between 20-30% for
P-band for boreal forests [77,78]. We obtained a relative RMSE for biomass between 20-30% using X-
and C-band but with a much finer resolution of 3-12 m. Similar to the results of the present study, all
of the pan-tropical and Indonesian maps underestimate higher AGB ranges and overestimate lower
AGB values [36].

6. Conclusions

The results of the study show the suitability of Pol-InNSAR R5-2 and TS-X data for canopy height
estimation in tropical forests of Indonesia using the RMoG model (i). Since all data utilized are multi-
pass interferometric data, temporal decorrelation is always present. While the RMoG model
demonstrated good potential for compensating temporal decorrelation, this was not addressed in the
RVoG model. Regression models were successfully applied for modelling large-scale AGB based on
Pol-InSAR canopy height (ii). The validation of all modelled canopy heights and AGB values using
the RMoG model was achieved using extensive LIDAR and drone reference data. The results of the
different tested images varied since the acquisition parameters and the weather conditions changed
during acquisitions. It was shown that canopy height is slightly underestimated by TS-X, whereas
RS-2 overestimates the canopy height. Both sensors underestimate AGB, which can be explained with
the saturation effect of SAR data regarding biomass. However, a combined canopy height estimation
did not provide enhanced performance.

High-resolution information about canopy height and biomass is important for carbon
accounting. Since the collection of field data is time-consuming and not practicable in all areas of the
world, the use of LIDAR, drone and satellite data are helpful alternatives. Nevertheless, LIDAR and
drone data acquisitions are very cost-intensive. The use of earth observation approaches enables a
cost-effective way to cover large areas. Moreover, the high data availability and the combination of
different sensors enables the reduction of uncertainties in indirect measurement approaches such as
canopy height and biomass modelling from SAR data. We showed that the RMoG can help to
estimate high-resolution canopy height data and AGB from different sensors and thus allows a
support to monitoring and risk managing systems for spacious areas. The resulting outcomes
contribute to REDD+ and other carbon related projects. Future missions such as Tandem-L (DLR) and
the Earth Explorer Biomass (ESA) help to further improve data availability for biomass estimation.
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10 Abstract: Peatlands in Indonesia are one of the primary global storages for terrestrial organic
11 carbon. Poor land management, drainage, recurrent fires and logging lead to the release of huge
12 amounts of carbon dioxide. Field measurements of peatlands and their vegetation are difficult, as
13 these areas are covered by dense forests or, if destroyed, are inaccessible swamps. In the present
14 study, we investigated whether data from the new ICESat-2/ATLAS LiDAR satellite can contribute
15 to identifying and mapping ombrogenous carbon-rich peatlands as well as assessing the tree height

16 of the vegetation covering the peat layer. The spaceborne ICESat-2 LiDAR data was compared and
17 correlated with highly accurate field validated airborne LiDAR data as well as a global World DEM
18 DTM. When compared to the airborne DTM, the data produced an R? of 0.89 and an RMSE of 0.83
19 m. For the comparison with the WorldDEM DTM, the resulting R? lay at 0.94 and the RMSE at 0.86
20 m. Moreover, we modelled the surfaces of three peat hydrological units (PHU) based on ICESat-2
21 terrain height measurements with kriging interpolation in Kalimantan, Indonesia. These three
22 ICESat-2 based peatland models, compared to a comprehensive WorldDEM DTM, produced an R?
23 of 0.78, 0.84, and 0.94. The RMSE ranged from 0.68 m (relative RMSE 14.3%) to 2.68 (relative RMSE

24 22.5%). These results demonstrate the potential of ICESat-2 in assessing peat surface topography
25 and canopy heights of the forest vegetation growing on tropical peat in Indonesia. Since ICESat-2
26 will collect more data all over the globe in the years to come, it can be used to survey existing and
27 map yet unknown carbon-rich tropical peatlands. Accurate information about peatland extents,
28 canopy heights, and thus below-ground and above-ground biomass is crucial for assessing and
29 quantifying this globally relevant carbon store. ICESat-2 can thus be used as a tool to support carbon
30 accounting in the context of REDD+ (Reducing Emissions from Deforestation and Forest
31 Degradation) and other carbon-related projects.

32 Keywords: Light Detection and Ranging (LiDAR), WorldDEM, ICESat-2, ATLAS, tropical peat,
33 canopy height, Indonesia, carbon

34 1. Introduction

35 In the context of global warming and recurrent large scale fire disasters, the accurate
36 determination of carbon contents of vegetation and soil in terrestrial ecosystems is becoming
37  increasingly important. Tropical rainforests account for 40% of the earth's terrestrial carbon storage
38  [1]. However, these forests are continuously damaged and degraded by fire, land clearing, and
39  unsustainable management. Indonesia's forests are globally considered to be one of the most species-
40 rich tropical rainforests [2], storing about 18.6 Gt of carbon [3]. From 2001 — 2018, Indonesia lost 25.6
41  million ha of tree coverage [4]. This loss does not only result in decreased greenhouse gas storage
42 capacities but also in a release of millions of tons of CO2 into the atmosphere and the carbon sink,
43 consequently becoming a carbon source.

44 Furthermore, the country contains some of the largest known tropical peat reservoirs on the
45  globe. While peatlands only cover 3 — 5% of the earth's surface, they store about 30% of all terrestrial
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soil carbon [5]. With an amount of about 16.8 — 27.0 million ha of peat, Indonesia has the largest
known reservoirs of Asia [6,7]. The Indonesian peatlands developed over the past thousands of years
when the sea level rose to today's level. Plant debris accumulated under waterlogged conditions in
natural sinks such as lakes or alluvial floodplains and formed convex domes of up to 20 m depth and
up to 100 km width (see Figure 1) [8]. This ombrogenous type of peat results carries extremely high
carbon contents. It was estimated that Indonesian peatlands alone store about 55 - 75 Gt of carbon
[9-11]. Peat swamp forests that grow on top of the peatlands, form and protect the peat layer. The
biomass of these peatland forests can reach up to 600 t/ha, but on average, it ranges between 150 —
300 t/ha [6]. Peatland forests, therefore, contain up to ten times less carbon than their underlying peat
layer [12].

Due to deforestation, logging, and drainage, between 1990 — 2010, Southeast Asia lost about 40%
of its peatland forests [5]. From 2000 to 2010 alone, the isle of Borneo lost approximately 25% of its
peat swamp forest while Sumatra lost more than 40% [13].

Dead plant material

Groundwater level

m————
-
-,

Figure 1: Schematic overview of the formation of peat domes in Indonesia and other tropical countries

(WWE, 2009).

Drainage lowers the water level within the peat layer, which was found to be positively
correlated with CO2 emissions [14,15]. A low layer of water exposes the top of the peat layer to
oxygen. Subsequently, this leads to decomposition and, thus, carbon dioxide emissions [15]. When
peatlands are drained and peat swamp forests are logged, the ecosystem becomes extremely
vulnerable to massive long-lasting fire events.

Fires sweeping across the country often affect Indonesian tropical forest ecosystems. This is
especially true during strong El Nifio Southern Oscillation (ENSO) periods, as in the years 1982/83,
1997/98, 2003, 2006, 2015, and 2019 [12]. The fire disasters have increased in frequency and severity
over the past two decades. In 2019 alone, 942,000 ha were burned [16], which constitutes the most
substantial fire-related loss since 2015, when 4.6 million ha burned [17]. Economic costs for 2015 were
estimated at 16 billion USD, not including hard to quantify costs such as the loss of biodiversity [18].
The vast amount of aerosols emitted by fires did affect public health in Indonesia, as well as adjacent
countries such as Thailand, Malaysia, and Singapore [19]. From the perspective of climate change,
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76 the fires in 2015 released 0.89 - 1.75 Gt CO2 [17,20,21]. The extreme fire disaster of 1997/1998 was the

77 first to be analyzed by remote sensing. It was estimated that 2.4 — 6.8 million ha of peatlands burned

78 and up to 9.43 Gt CO2 were released into the atmosphere [17,20,22]. The economic costs were

79  estimated at 9.3 billion USD [22].

80 The total area of peatlands in Indonesia and Southeast Asia is still not precisely known. Even

81  less is known about the peat layers' thickness and carbon stock, which are highly challenging to

82  determine. The most accurate method for measuring the peat thickness and corresponding carbon

83  content is by collecting field data with peat corings, Nevertheless, coring is time-consuming and

84  expensive, especially in remote areas with poor accessibility, such as in intact peat swamp forests.

85 Multiple studies have shown that carbon-rich ombrogenous peatlands can be located by remote

86  sensing technologies. This time-saving indirect approach identifies raised peat domes beneath the

87  forest vegetation with airborne and spaceborne LiDAR instruments and radar satellites. LIDAR and

88 SAR instruments take measurements over vast areas in a short time. Jeanicke et al. [12] identified a

89  strong correlation between the convex peat dome surface derived from a digital terrain model (DTM)

90  and the thickness of the dome-shaped peat layer. This correlation allowed calculation of a 3-

91 dimensional model of the peat layer and thus, in combination with field data, an estimation of the

92 contained carbon stock. Measurements with airborne LiDAR are more accurate than spaceborne data,

93 butat the same time, it is extremely costly to cover large and remote areas. A satellite-based approach

94 would allow screening the whole country. The ability of satellite-based LiDAR datasets (e.g.,

95  ICESat/GLAS) to serve as an alternative measurement tool for forest structure and topography was

96 already shown by [23-28]. It was also mentioned that terrain analyses in areas with medium to high

97  reliefs result in higher errors [26,27], making the satellite-based LiDAR data more applicable for

98  flatter terrain.

99 In this study, we investigate the applicability of the new ICESat-2/ATLAS instruments and

100 compare the results to highly accurate airborne LiDAR DTMs. Since peatlands have an extremely
101 smooth topography, ICESat-2 could be a useful tool to identify dome-shaped ombrogenous
102 peatlands. In contrast to other LiDAR systems, ATLAS detects laser reflections at a single-photon
103 level, which reduces the laser power requirements and thus the payload. The repetition rate, on the
104 other hand, is operated at a higher level than in other sensors. Most other LiDAR systems record
105  thousands of photons for triggering a detection. The constellation allows for surfaces of low as well
106 as high reflectivity to be detected. The nominal diameter footprint for each beam is about 17 m, and
107 the received ranging precision is 25 - 35 cm in flat terrain [29,30].
108 We use the ATLAS derived DTM information as a tool for the indirect identification of carbon-
109 rich dome-shaped peatlands in Indonesia. A DTM is defined as a model of the elevation surface and
110 represents the bare earth referenced to a common vertical datum. Precise airborne LiDAR data,
111 validated with field data, is used as a reference for mapping the surface. In a second step, we use the
112 ICESat-2 footprints to generate a wall-to-wall model of the peat dome surface. This step is achieved
113 by interpolating the ICESat-2 footprints using the geostatistical interpolation method Kriging.
114 Kriging is considered to be one of the best methods for interpolating non-uniform and irregularly
115  spaced spatial data [31,32]. The resulting peat dome surface model is validated with an airborne
116 derived DTM and complemented with the Airbus World DEM DTM at a spatial resolution of 12 x 12
117 m in areas with no available airborne data. Knowledge about the peat dome surface permits
118  conclusions about its volume and thus its carbon content, which consequently shows ICESat-2 to be
119 an essential tool for carbon-related projects.

120 2. Materials and Methods

121 2.1 Study area

122 Indonesia's climate is mainly characterized by a wet northwest monsoon from November to
123 April and a dry southeast monsoon from May to October. Additionally, it is influenced by frequent
124 rainfall and high temperatures throughout the year. These conditions are ideal for plant growth,
125  which is why Indonesia's land cover is dominated by tropical forests covering 94,432,000 km2 and,
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126 thus, more than 52% of the country [33]. The main forest ecosystems are mangrove forests, peat
127 swamp and freshwater swamp forests, lowland dipterocarp forests, and various montane formations
128 [2]. All forests store significant amounts of carbon [9]. Nevertheless, the most significant carbon
129 storages in Indonesia are the peat soils. Literature quantification of the area covered by peatlands in
130 Indonesia varies between 17 and 27 million ha [7,12]. The peat depths are estimated from very
131 shallow (less than 0.5 m) to very deep peat with up to 20 m of depth [12]. Figure 1 shows the coastal
132 peatlands of Sumatra and Kalimantan, Indonesia, including the study area in Central Kalimantan.
133 Peatlands often cover areas wider than 10,000 ha with a complex structure of different soils,
134 transecting canals and rivers as well as different forest types. They can be divided into different peat
135 hydrological units (PHUs), depending on the connected river systems. Within the hydrological units,
136 convex-shaped peat domes are commonly found.
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139 Figure 2: Overview of the peatlands of Kalimantan and Sumatra, Indonesia. Three PHUs Sungai
140 Katingan Sebangau, Sungai Kahayan Sebangau and Sungai Kahayan Kapuas (from west to east)
141 within Central Kalimantan represent the study area.
142 We investigated one of the largest and less disturbed peat swamp forest complexes in Central

143 Kalimantan, which included the three PHUs Sungai Katingan Sebangau, Sungai Kahayan Sebangau
144 and Sungai Kahayan Kapuas (from west to east). The peat domes are ombrogenous and have a peat
145  depth varying from 0.5 — 12 m [34]. The peat swamp ecosystem of Central Kalimantan, including
146 Sungai Kahayan Sebangau and Sungai Kahayan Kapuas, have been extensively logged and drained
147 during the former Mega Rice Project, a resettlement project by the Indonesian Government in the
148 1990s [12]. The damaged and dried peatlands became susceptible to fire and burned more than once
149 [35]. Today, the area is mainly dominated by oil palm plantations and smallholder agriculture, as
150 well as burned areas covered by ferns and lianas. Sungai Katingan Sebangau contains the Sebangau
151  National Park, a peat swamp national park located between the rivers Kahayan and Katingan [36].
152 This area is characterized by dense low pole forest with a canopy height of about 20 m and tall peat
153 swamp forest trees of up to 45 m.
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154 2.2 Data

155  2.2.1 Airborne LiDAR Data

156 Airborne LiDAR data was collected during the dry season (May to October) in 2011 to avoid any
157  influence of standing water during the DTM generation. The acquisition was flown 800 m
158  aboveground with an Optech Orion M200. The discrete return airborne LiDAR sensor uses a
159  wavelength of 1.064 um. The data was recorded with a half scan angle of +22°, a point density of 2.8
160 points/m?, and a side overlap of 30% [37]. The LiDAR campaign covered an area of 700,000 ha and
161  diverse landcover, including peat swamp forests partly affected by former or recent selective logging,
162 old burn scars, fern, grassland, bushes, and agricultural land [38]. The vertical accuracy lies at 0.14 m
163 for the DSM and 0.18 m for the DTM [38]. The modelled DTM surface was within the 95% confidence
164  interval of the ground truth data.

165  2.2.2 WorldDEM data

166 For comparisons, we used the WorldDEM DTM produced by Airbus DS Geo GmbH. The
167  WorldDEM DTM is based on the WorldDEM product, a DSM provided by Airbus Defence and Space.
168  All WorldDEM products are generated based on X-band radar data acquired from the TanDEM-X
169  mission (2010 - 2014) operated by Airbus and the German Aerospace Center (DLR). Both radar
170  satellites of this mission operate as a single-pass Synthetic Aperture Radar Interferometer (INSAR).
171  Data is acquired with the bi-static INSAR StripMap mode [39].

172 The DTM contains information about the bare earth elevation, excluding surface features such
173 as vegetation and buildings [39]. With a resolution of 12 x 12 m, the data offers more details than the
174 SRTM (30 m or 90 m spatial resolution) or the ASTER Global Digital Elevation Map (GDEM, 30 m
175  spatial resolution). The vertical relative accuracy of the WorldDEM DTM is 5 m, and the absolute
176 vertical accuracy 10 m. Within flat terrain, the vertical accuracy is improved. The absolute horizontal
177 accuracy lies below 6 m [39].

178  2.2.3 ICESat-2 data

179 ICESat-2 was launched in September 2018, carrying a single instrument, the Advanced
180  Topographic Laser Altimeter System (ATLAS). This system is a photon-counting LiDAR that detects
181  sensitivities at the photon level. The sensor operates at a wavelength of 532 nm (green) and a pulse
182 repetition rate of 10 kHz [29]. It uses six beams arranged in three pairs containing a low-energy and
183 a high-energy beam, separated by 90 m in across-track direction. This constellation permits surfaces
184  of low and high reflectivity to be detected [29]. The nominal diameter footprint for each beam is about
185  17m(29].

186 Within the ICESat-2 ATL08 product, photons collected by ATLAS are classified as terrain or
187  canopy and used for computing the final ATLO8 parameters. To guarantee continuity, a fixed
188 segment size of 100 m was selected for all parameter calculations (mean, minimum, maximum, etc.)
189  in along-track direction [29]. Each 100 m segment is calculated using five sequential 20 m segments
190 from the ATL03 Product [30]. All derived terrain and canopy height values are defined as absolute
191  heights above the WGS84 ellipsoid [30].

192 In the study at hand, we analyzed the ATL08 parameters 'lat', 'lon’, 'h_te_best_fit', 'h_te_interp’,
193 and 'h_te_median’,and 'h_canopy'. 'Lat' and 'lon’ define the center latitude and longitude information
194 within each 100 m segment [30]. The parameter 'h_te_interp’ contains the ground height interpolated
195 from the surface at the center of each 100 m step. This parameter is calculated in case less than 5% of
196  the photons are classified as ground [29]. The height, calculated based on the ground photons, is
197  called 'h_te best fit' [30]. This parameter is adjusted according to the specific topography [29].
198 Moreover, the parameter 'h_te_median’ represents the median terrain height above the ellipsoid and
199 s derived from photons labeled as ground. The ATLO8 product also provides the relative canopy
200 height ('h_canopy'), defined as the height above an estimated ground representing the 98th percentile
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from the relative heights [29,30]. For the analysis, we used all available data from September 2018
through December 2019.

2.2.4 EGM2008

The Earth Gravitational Model 2008 (EGM2008) is a spherical harmonic model of the
gravitational potential of the earth [40] published by the National Geospatial-Intelligence Agency
(NGA). It can be downloaded at [41] for free. We used the EGM2008 to correct the ATLAS terrain
height for a potential geoid deviation.

2.3 Methods

2.3.1 ICESat-2/ATLAS Data

We downloaded the product ATL08 (land/vegetation) of ICESat-2 ATLAS and read the .h5
datasets in a jupyter notebook using python. The parameters 'lat’, 'lon’, 'h_te_best_fit', 'h_te_interp’,
and 'h_te_median’ were used to create a new data file including the earth’s location and the different
height values identified and derived from ICESat-2/ATLAS. The values from the extracted
parameters were stored into a newly created shapefile using the entries' latitude and longitude
information to generate a geolocated product. This process resulted in a point layer with spatially
correctly located information about the terrain and canopy height derived by ICESat-2.

The EGM2008 was then subtracted from the ICESat-2 terrain height information pointwise to
correct for potential geoid deviations [34,42]. The relative canopy height was added to the terrain
height to obtain the absolute canopy height.

2.3.2 WorldDEM Data

The WorldDEM DTM has a spatial resolution of 12 x 12 m, whereas the ICESat-2/ATLAS covers
footprints with a diameter of approximately 20 m [43]. Five of these 20 m footprints were combined
to a ~100 m segment. Using the function "zonal statics” in ArcGIS by ESRI, all WorldDEM pixels
covered by the specific ICESat-2 segment are identified. Afterwards, the mean of all pixels within this
ATLAS footprint is calculated and used for further data comparison and evaluation.

2.3.3 Peat Dome Surface Interpolation

To create a surface model from the ICESat-2 point data within the PHUs, we used the
geostatistical interpolation method Kriging, developed by Matheron [44]. Before applying the
interpolation to all ICESat-2 elevation measurements, the dataset was verified for errors resulting
from dense vegetation. On the basis of the dataset's canopy height information, points strongly
influenced by vegetation were identified. Consequently, we excluded those points before
interpolating the surface of the area to avoid overestimations. In addition, the data's characteristics
were analyzed regarding a normal distribution, stationarity, and trends before the interpolation [45].
Since a normal distribution was not inherent to the data, we transformed it within RCran using the
package bestNormalize. Since the dataset did not show any trends or stationarity, spherical kriging
interpolation can be applied. To model the surface topography of the PHUs, we used a peatland map,
which had been derived from historical and recent satellite data for delineating the unit. After the
Kriging, the data was retransformed to elevation values.

2.3.4 Validation

For the validation, we generated a random point layer using the software ArcGIS. The values of
the modelled and reference elevations at the random points were extracted and compared in the next
step. For this comparison, the coefficient of determination (R?), standard deviation, Root Mean Square
Error (RMSE), relative RMSE, also called the coefficient of variation (calculated as the ratio of the
RMSE to the mean of the observed variable), and the mean of the terrain heights in m were calculated.
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245  3.Results

246 3.1 Peat surface topography and forest canopy height

247 In the analysis of the different terrain height parameters provided by ICESat-2, all three
248 parameters (h_te_best_fit, h_te_med, h_te_interp) showed very similar values with a mean at
249 approximately 6.15 m. For the following analyses, we only used h_te_best_fit.

250 The study area lies in the coastal flatlands of Kalimantan, where the terrain heights vary between
251  0-40 m over a distance of more than 100 km from the shore towards the inland. The highest terrain
252 values were identified in the North of the study area, displayed in white on the map in Figure 3.
253  When comparing ICESat-2 with the airborne derived terrain elevation heights, overlapping datasets
254  showed a strong correlation as showed in the scatterplot in Figure 3. However, ICESat-2 tends to
255  overestimate the terrain heights slightly. The mean elevation of the ICESat-2 values lies at 4.00 m,
256  which islower than for the airborne derived elevations (5.28 m). The coefficient of determination (R2)
257  reached a value of 0.94, while the RMSE is + 1.61 m. Areas with a vegetation cover below 2 m showed
258 anRMSEof+1.38m.
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Figure 3: Scatterplot displaying the correlation between airborne and ICESat-2 derived terrain
height values (R? = 0.94, left side) and the location of the used point information within the study
area in Indonesia (red dots at the map, right side).
260 Extracting and plotting elevation values under different transects in peatland areas allowed a

261  detailed comparison of the two data sources. Figures 4 to 6 display three different transects and
262  corresponding estimated height values of ICESat-2 and airborne data. The transects have a length
263  between 40 —52 km and pass over dome-shaped ombrogenous peatlands that are covered by tall peat
264  swamp forests, palm oil plantations, frequently burned areas covered by grasses, ferns and vines,
265  rivers, and drainage canals. All figures show the location of the specific transect in a map on the right
266  side of the corresponding height profiles. Peat domes are characterized by a smooth topography that
267  ranges from 0 m (displayed in green) to 20 m (dark brown). Figure 4 shows a small section of the
268  dome that reaches heights up to 10 m, while the dome displayed in Figures 5 and 6 ranges from 0 m
269  inthe South to 20 m in the North. A transect of the highest section of the dome is illustrated in Figure
270 5, whereas Figure 6 presents the lower part of the dome. The whole area is influenced by rivers and
271 manmade drainage canals cutting into the peat. The airborne LiDAR DTM (dark grey) and DSM
272 (light grey) serve as a reference. The ICESat-2 elevations for terrain (red) and forest canopy (green)
273 are superimposed.
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Al ICESat-2 derived DTM measurements show a strong correlation with the airborne DTM data,
especially in non-forested areas. Even drainage canals can be detected, which are approximately 10
m wide and only 2 m deep. Plantations show a heterogeneous height pattern, which results from the
linear planting. However, in densely forested areas, as in Figure 4 (200 - 13,000 m), the ICESat-2 DTM
shows significant errors. The ground measurements for transect 1 exceed the ground reference by =
6.42 m. In areas with low vegetation (< 2 m), the accuracy of the ICESat-2 data lies in the range of +
0.55 cm. It is clear that the mean deviation of the ground correlates with the vegetation height. In
Figure 5, displaying transect 2, the discrepancy between the airborne and the satellite-derived
elevation for non-vegetated areas is + 0.34 m, whereas the forested areas with trees taller than 10 m
show differences at about + 2.00 m. The third transect (Figure 6) shows similar deviations with + 2.02
m for forested areas and = 1.05 m in non-vegetated areas.

The DSM describes a digital surface model and thus the top of the canopy. The comparison of
the airborne DSM with the ICESat-2 DSM shows, in general, a good agreement of both datasets.
However, the satellite-based canopy height is lower than the airborne one. The RMSE of the canopy
height is + 6.85 m for transect 1, + 9.49 m for transect 2, and + 6.66 m for transect 3. I[CESat-2 exceeds
the airborne-based canopy heights by 5 — 20 m in the beginning and end of the transect, as shown in
Figure 5. A similar observation can be made in Figure 6 between 5,000 — 15,000 m. This variation can
be attributed to forest growth or growing plantations, which was identified with optical satellite data
from Sentinel-2 (25.07.2019). Furthermore, Figure 6 shows a distinct discrepancy between the
airborne and the ICESat-2 derived DSM at 25,000 — 35,000 m. Comparisons with optical data showed
that those differences occur because of the temporal shift of seven years and significant land cover
changes between the acquisitions.

Height Profile Transect 1

Forest

Elevation height [m]

Plantation

Drainage 4,
0
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Aibome DSM - Airbome DTM -+ |CESat-2 Elevation - |CESat-2 Canopy

Figure 4: Transect of 40 km covering one peat dome from A to B, left to right in the plot, in Kalimantan,
Indonesia.
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Figure 5: Transect of 52 km covering one peat dome from A to B, left toright in the plot, in Kalimantan,
Indonesia.
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Burned area

Plantation

Elevation height [m]

o 10000 20000 30000 40000
Distance [m]
Airborne DSM - Airborne DTM  «  ICESal-2 Elevation - ICESat-2 Canopy

Figure 6: Transect of 46 km covering the edge of one peat dome from A to B, left to right in the plot,
in Kalimantan, Indonesia.

Since the airborne data is only available for a limited area, we furthermore validated ICESat-2
data with globally available WorldDEM DTM data. The first analysis is based on the overlapping
part of all three data sets to provide an accurate overview of the satellite-based DTMs compared to
the high-precision airborne DTM estimations. Figure 7 displays the scatterplots and the statistics for
each the ICESat-2 and WorldDEM DTM compared to the reference DTM of airborne data. Altogether,
13,129 pixels were analyzed. Within the overlapping area (254,055 ha), the elevation ranges from 0 —
13 m. The mean elevation of the airborne data is 3.35 m, which is similar to the World DEM DTM (3.30
m) and is slightly exceeded by ICESat-2 (3.69 m). With an RMSE of + 0.47 m and an R? of 0.95, low
deviations from the WorldDEM DTM to the airborne derived DTM are expected. The strong
agreement between the two datasets justifies the usage of the WorldDEM DTM as a reference dataset
for areas without available airborne data. Regarding the same area but comparing the ICESat-2 data
to the airborne elevations results in an R? of 0.89 and an RMSE of + 0.83. Besides, I[CESat-2 shows a
strong correlation to the WorldDEM DTM (R? = (0.94), with an RMSE at about + 0.86 m.
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Figure 7: Scatterplot displaying the correlation between airborne, World DEM, and ICESat-2 derived
terrain height values within the overlapping areas of all three data sets and the location of the used
point information within the study area in Indonesia (red dots on the map, right side).

Figure 8 contains a subset of the overlapping area of the three analyzed data sets. Figure 8
A displays a Sentinel-2 true-color image from 25.07.2019 with superimposed ICESat-2 canopy height
values from 2018 - 2019. The area is dominated by forest (dark green) and former burned areas with
young grass (lighter green). Drainage canals, in the form of linear structures, can also be identified.
Figure 8 B shows the airborne LiDAR canopy heights from 2011 in a color range from 0 — 20 m and
superimposed with ICESat-2 canopy height values derived in 2018 —2019. Within the forested areas,
ICESat-2 canopy heights reach a maximum of 18.67 m, whereas airborne LiDAR canopy heights have
amaximum of 19.73 m. One can see height differences within the white rectangles in Figure 8 A and
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331  B.Inthese areas, ICESat-2 has significant lower canopy height values than the airborne LiDAR data.
332 The Sentinel-2 image from 25.07.2019 shows new and old burned areas within these regions. Thus, it
333 can be concluded that substantial canopy height differences indicate forest losses during the study
334 period.

335 When comparing the WorldDEM DTM data in Figure 8 C and the airborne LiDAR DTM in
336 Figure 8 D, a strong correlation within the overlapping area becomes apparent. The mean height is
337  3.35m for the airborne LiDAR-derived DTM and 3.3 m for the World DEM DTM. The airborne LIDAR
338  DTM has a finer spatial resolution (1 x 1 m) in contrast to the World DEM DTM (12 x 12 m), which
339 allows the identification of more details, for example, canals. Furthermore, both datasets show a
340  strongagreement with the ICESat-2 derived DTM values that were plotted on top of the DTMs within
341  the overlapping area of the airborne and the WorldDEM data. With a mean height of 3.69 m, the
342 ICESat-2 derived DTM is slightly higher than the reference datasets. Compared with the optical
343 image and the canopy height, outliers are found entirely within forested regions.

344
B % : :
Canopy height [m] DTM [m]
345 ONENNNN; N 20 o W 20
346 Figure 8: Subset of a peat dome, all images show the same area. A) Sentinel-2 imagery from 25.07.2019,
347 including ICESat-2 canopy height values from 2019. B) Airborne LiDAR canopy height from 2011,
348 including ICESat-2 canopy height values from 2019. C) World DEM DTM including ICESat-2 DTM
349 values from 2019. D) Airborne Lidar DTM from 2011 including ICESat-2 DTM values. White
350 rectangles show areas with land cover change.

351 3.2 Peat Dome Surface Interpolation

352 To model the entire peat dome surface, a comprehensive DTM is generated, which is achieved
353 by interpolating the point ground information derived from the ICESat-2 footprints. Using the
354  geostatistical interpolation method Kriging, we modelled the peat surfaces of the three PHUs Sungai
355  Katingan Sebangau (western dome), Sungai Kahayan Sebangau (middle dome) and Sungai Kahayan
356  Kapuas (eastern dome) in Kalimantan, Indonesia. Since no airborne data is available for this area, we
357  used WorldDEM DTM data as a reference. Sungai Katingan Sebangau covers an area of 828,596 ha
358  (red), while Sungai Kahayan Sebangau and Sungai Kahayan Kapuas are smaller, covering 454,542 ha
359  (blue) and 403,000 ha (yellow), respectively (Figure 9). The highest elevations are found in the
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Northern part of Sungai Katingan Sebangau and Sungai Kahayan Kapuas, with altitudes of
approximately 30 m and 32 m, accordingly. In the South, on the coast, the elevation is about 1T m.
Sungai Kahayan Sebangau is characterized by lower altitudes that range from 1 — 9 m. The pattern of
the interpolated terrain elevation is visibly consistent with the World DEM DTM's. With 12 x 12 m,
the spatial resolution of the World DEM is fine enough to detect larger rivers and canals, whereas the
interpolated data set gives a good overview of the general terrain. However, small-scaled details
cannot be identified. Nevertheless, the dome shape of the peat dome is apparent. Only the southern
part of Sungai Katingan Sebangau shows noticeable differences in altitude. In this area, the
WorldDEM DTM displays lower values than ICESat-2 while being surrounded by higher values. This
indicates an error due to the manual correction of the World DEM DTM data.
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Figure 9: Comparison of the surface elevation of three peat hydrological units. The image on the left
displays the WorldDEM DTM; the one on the right shows the Kriging result based on ICESat-2 points,
including the points used for the interpolation.

For validation purposes, we used random points spread throughout the PHUs. The values per
dataset under all random points were extracted and plotted, the result of which is displayed in Figure
10. It shows scatterplots comparing the elevation values of both datasets, the World DEM DTM and
ICESat-2. The coefficient of determination for Sungai Katingan Sebangau reaches a value of 0.78 using
1,300 random points. In the smaller Sungai Kahayan Sebangau, the R? value is 0.84, based on 700
random points, which underlines a strong correlation between the two datasets. With an R? of 0.94
for 950 randomly selected points, the less forested Sungai Kahayan Kapuas produced the strongest
correlation. The RMSE is + 2.67 m for Sungai Katingan Sebangau, = 1.47 m for Sungai Kahayan
Kapuas, and + 0.68 m for Sungai Kahayan Sebangau. These result in a relative RMSE (coefficient of
variation) of 22.5%, 19.09%, and 14.3%, respectively, indicating the lowest deviations in the areas with
the lowest vegetation cover.
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Figure 10: Scatterplot and trendline of the TCESat-2 based interpolated peat model elevation in
comparison to the WorldDEM DTM elevation for the three peat domes Sungai Katingan and Sungai
Kahayan.

387 4. Discussion

388 Identifying tropical peatlands in Indonesia by field-based methods at a large scale is not feasible
389  due tothe large extent of potential peatlands (> 25 Million ha), poor accessibility, and remoteness. Up
390 to date, only a limited number of field measurements have been collected for selected areas in
391 Sumatra and Kalimantan to assess their carbon pools. Furthermore, pristine peatlands are covered
392 by dense tropical forests and shrubs and are thus highly inaccessible for ground surveys. Remote
393  sensing enables a countrywide data collection in a short period of time. Since peatlands have a
394 smooth, dome-shaped topography, the indirect detection of peatlands using the topography from
395  remote sensing data is possible [12,23]. The most accurate DTM can be derived from airborne LIDAR
396 [23]. Since airborne data acquisition is associated with high costs, it is not a solution for wall-to-wall
397  assessments in large countries like Indonesia. The first global topography was mapped by the SRTM.
398 Since the X-band SAR data of this product cannot penetrate the vegetation entirely, especially in
399  dense tropical forests, terrain heights cannot be assessed with sufficient accuracy on forested
400  peatlands [12]. A newer global DTM is the WorldDEM DTM derived from the TerraSAR-X Tandem
401  mission, which is corrected explicitly for vegetation artefacts. Space-born LiDAR (ICESat/GLAS) was
402 successfully tested for the identification of peatland topography by Ballhorn et al. (2011) [23] and
403  Hayashi et al. (2015) [46]. In a recent study, Vernimmen et al. (2020) demonstrated the great potential
404  of mapping peatlands from an airborne LiDAR-derived DTM in eastern Sumatra [47]. The authors
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visually compared an airborne derived DTM with an ICESat-2 derived DTM. The comparison
showed that ICESat-2 data reveals peat dome shapes in eastern Sumatra similar compared to high
precise airborne DTM.

4.1 Ground Height Results derived from ICESat-2

We investigated whether the space-born ICESat-2 LiDAR instrument, with its improved spatial
resolution and photon counting system, is suitable for identifying dome-shaped peatlands. This was
achieved by relating ICESat-2 measurements to highly accurate wall-to-wall airborne LiDAR
measurements. We compared the ICESat-2 'h_te_best_fit' data with an airborne LiDAR DTM
acquired in 2011, and the more comprehensive WorldDEM DTM data acquired in 2014. ICESat-2
elevation was derived with a vertical accuracy in three different transects in a range of £ 0.34 — 1.09
m compared to the airborne data. A coefficient of determination of 0.90 showed a strong correlation
between the airborne and the ICESat-2 data. Testing the suitability of the WorldDEM DTM for
extensive reference purposes equally resulted in a strong correlation of the data compared to highly
accurate airborne data (R? =0.95, RMSE =+ 0.47), making the World DEM DTM a good alternative for
areas with no available airborne data.

Within the overlapping area of the three datasets, the analysis of the ICESat-2 derived terrain
elevations in comparison to airborne data (R? = 0.89) and the WorldDEM DTM data (R? = 0.86)
resulted in strong correlations. The smooth shape of the peat domes was identified in multiple
different transects. Our results are comparable with those of Ballhorn et al. (2011) [34], who analyzed
ICESat/GLAS point cloud data as a measurement tool for peatlands in Indonesia. The authors
achieved an R? of 0.92 and 0.90, correlating the ICESat/GLAS data with the SRTM derived elevation
and the 3D peatland elevation models based on the SRTM. Besides, the ICESat/GLAS data was
compared to airborne LiDAR data and also displayed a strong correlation of R? = 0.91 [34].

However, in this study, we showed that in individual areas, terrain heights are overestimated
by ICESat-2. A more detailed investigation showed that this incidence proved accurate, especially
within densely forested areas, in which measurements labeled as ground are most likely dense
underwood or ground vegetation. This occurs because the canopy height values, as well as the
airborne DSM, are strongly influenced by vegetation. Neuenschwander et al. (2019) [29] identified a
decreasing accuracy for ground detection with an increasing canopy cover. This is expected due to
the sensitivity of LIDAR towards vegetation. Especially in dense tropical forests with several
vegetation layers and dense underwood, too few photons are reflected from the ground.
Furthermore, in Neuenshwander and Magruder (2016), the authors investigate the potential impact
of vertical sampling uncertainty on ICESat-2/ATLAS in different forest ecosystems [48]. The study
evaluates simulated ICESat-2 canopy and terrain heights with airborne LiDAR ground truth data.
The results show small mean bias errors and an error uncertainty of 0.06 m (+ 0.24 m RMSE) and -
0.13 m (+ 0.77 m RMSE) in wooded savannas and boreal forests, respectively. In ecosystems with
dense vegetation, terrain errors lay at about 1.93 m (+ 1.66 m RMSE) and 2.52 m (+2.63 m RMSE). The
authors explained the higher errors are due to reduced ground returns in dense forests.
Neuenschwander and Pitts (2019) mentioned that ICESat-2/ATLAS can lose its ground signal for
canopy closure of > 95% but also when cloud cover obscures the terrestrial signal [30]. In the tropical
forest of Indonesia, both restrictions are probable. Nevertheless, the forest within the study area is
affected by human activity and has a density below 95%. In conclusion, it can be stated that peat
domes with their smooth topography and convex shape can be identified from ICESat-2/ATLAS data.
However, the accuracy might be impared in areas with dense vegetation.

4.2 Canopy Height Results derived from ICESat-2

We showed that the relative canopy height measurements provided by ICESat-2 are comparable
to the airborne LiDAR data. However, on average, the vegetation heights derived from ICESat-2 are
5 - 20 m lower than the airborne LiDAR heights. Similarly, Neuenschwander et al. 2016 found that
simulated ICESat-2 underestimates the top of the canopy for all tested ecosystems [48]. The errors
ranged from 0.28 m (+ 1.39 m RMSE) to 1.25 m (+ 2.63 m RMSE) when analyzing wooden savanna,
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455  boreal forest, deciduous forest, and tropical forest with dense vegetation delivering the highest errors.
456  The general underestimation of vegetation heights in comparison to airborne measurements can be
457  attributed to the different signal sampling resolutions. Furthermore, the penetration depth of the
458  sensor plays a decisive role in deriving the vegetation height. Besides, the relative canopy height is
459  defined as the height between the absolute canopy height and the interpolated ground height [29].
460  Since the ground height is underestimated due to dense vegetation, the relative tree height is also
461  underestimated in the subsequent calculation. To mitigate this problem, the ICESat-2 derived
462 absolute canopy height could be used in combination with an external DTM to calculate the relative
463  canopy height [48].

464 4.3 Creating a continuous DTM model from ICESat-2

465 To model the surface topography of ombrogenous peatlands, we used a peatland classification
466  based on historical and recent satellite data. The modelled surface of the three peatlands based on
407  ICESat-2 measurements correlates well with the WorldDEM DTM data (R2 = 0.78, 0.84, and 0.94). In
468  addition, the interpolated surface shows a similar value distribution as the WorldDEM DTM.
469  However, cuts from rivers or channels within the PHUs can only be mapped to a limited extent
470 because of the limited availability of measuring points for the modelling. The relative RMSE of 14.3%
471  for Sungai Kahayan Sebangau shows a slightly better result than for Sungai Katingan Sebangau
472 (22.5%) and Sungai Kahayan Kapuas (19.09%). This can be explained by the variable numbers of
473 measurements (700 — 1,300) for each peatland.

474 Since the WorldDEM is recorded with an X-band radar, the wavelength is about 3 cm [49]. Such
475  short wavelengths are known to interact with the upper vegetation layer [50,51]. Penetrating the
476  vegetation to reach the ground is hardly possible, especially in dense tropical rainforests [52]. As a
477 result, the elevation measurements are overestimated, and vegetation artifacts in the results are
478 clearly visible.

479 4.4 Error Sources

480 Differences in resolution and extent also mean that different areas on the ground influence the
481 derived pixel value [53]. For an accurate comparison of the three datasets; airborne LiDAR,
482  WorldDEM, and ICESat-2; we overcame the problem of different resolutions by using the mean of all
483  pixels per dataset covered by the 100 m segment of ICESat-2. However, there may still be negligible
484  deviations because of edge effects.

485 Furthermore, different sensor accuracies should be considered. The utilized airborne LiDAR
486  product has a vertical accuracy of 0.14 m (DSM) and 0.18 m (DTM) [38]. ICESat-2 has a ranging
487  precision of 25— 35 em in flat terrain [29,30]. In steeper terrain, the sloping topography is incorporated
488 as a function of the "geolocation knowledge of the pointing multiplied by the tangent of the surface
489  slope" [30]. Since the study area is in an extremely flat region of Indonesia, we assume a ranging
490  precision no higher than 35 cm on bare ground. The global model of the WorldDEM DTM has a
491 relative vertical accuracy of <5 m, while for flat terrain, as for the study area, the vertical accuracy in
492 comparison with the airborne DTM lies at + 0.47 m. Regarding the size of the investigated area, the
493 inaccuracies of the individual sensors are negligibly small [12].

494 In addition to the different spatial resolutions, acquisition geometries, and sensor accuracies, the
495 different acquisition times of the sensors can lead to potential errors. During the acquisitions, peat
496 loss due to oxidation can result in subsidence. The subsidence rate for peatlands in Sumatra and
497  Kalimantan ranges from 2 cm*year-1 to 4 cm*year-1 depending on the distance to draining canals
498  and the unaffected forest cover of the respective peatland [47]. Furthermore, the vegetation height
499 can change from natural growth or fires and thus indirectly influence the terrain measurements.

500 5. Conclusions

501 We showed that carbon-rich ombrogenous peatlands could be identified based on terrain
502  heights derived from the freely available ICESat-2 data comparably fast and robustly. This
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identification becomes possible because of the peat domes' smooth convex topography, which is
visible in the transects of the ICESat-2 data.

Furthermore, we demonstrated the benefits of the ICESat-2 flight tracks for the first time in terms
of interpolating seamless peat dome surfaces robustly. By improving the knowledge of the surface
structure of a peat area, conclusions about the volume of this endangered ecosystem become possible.
Since it has already been proven that the surface and depth of a peat dome are related, the precise
topography estimates based on ICESat-2 also allow the determination of the peat domes’ volume.
Based on estimated peat volumes, the below-ground carbon content can then be calculated for large
areas. By 2022, ICESat-2 will reach almost global coverage, providing flight lines with a distance of
less than 2 km at the equator. These dense measurements will further enhance interpolations of the
peat dome surface topography and thus the estimation of the carbon content.

Besides accurate terrain height measurements, the canopy height provided by ICESat-2 showed
great potential for gaining information about tropical forests, such as the canopy height, which
enables the modelling of above-ground biomass - another essential parameter for deriving the carbon
content. Those highly accurate estimations of both above-ground and below-ground carbon contents
are significant input variables for global climate models and thus provide a crucial contribution to
emission reduction projects, such as REDD+.

In the near future, the new mission Global Ecosystem Dynamics Investigation (GEDI), a high-
powered laser system operating from the IS5, will provide additional information between 52° North
and South. The distance of GEDI's flight tracks is approximately 600 m, which further improves the
global coverage of publicly accessible LiDAR data. A combination of ICESat-2 and GEDI data offers
enhanced possibilities to derive below-ground and above-ground biomass from peatland
topographies as well as the forest structure of tropical forests.
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1. General discussion

Fossil fuel and industrial processes are responsible for 32 Gt COz2-eq/y, which equal 65 %
of the overall emissions for 2010. A further 5 Gt CO2-eq (11 %) originates from forestry
and other land-use changes (IPCC 2015). However, other studies, such as, van der Werf
et al. (2009) mentioned high uncertainties for estimating deforestation and degradation.
They prefer to specify the contribution of the total anthropogenic CO2 emissions due to
forestry at about 6 — 17 %. The total anthropogenic greenhouse gas emissions for 2010
are estimated at 49 Gt COz-eq, while 24 % of these emissions are connected to the
agricultural, forestry and other land-use sectors. These include the effects of forest and
peat fires as well as peat decay (IPCC 2015).

Deforestation and forest degradation in the tropics due to illegal logging and the
establishment of oil palm plantations account for a significant proportion of the estimated
numbers. Indonesia, especially Sumatra and Kalimantan, does not merely have the
world's highest rates of deforestation, but additionally is characterized by peat fires and
peat degradation (Warren et al. 2017; Enrici and Hubacek 2019). These circumstances
and processes release vast amounts of CO2 and other greenhouse gases, which is why
Indonesia became one of the main objectives of REDD+ (Edwards et al. 2012; Enrici and
Hubacek 2018; Irawan et al. 2019; Enrici and Hubacek 2019). REDD+ involves
industrialized countries in the protection of tropical forests in order to compensate for the
excess of their greenhouse gas emissions quota (Enrici and Hubacek 2018; Enrici and
Hubacek 2019). In addition to the Indonesian government's commitment to REDD+ and
the establishment of REDD+ projects, the government is trying to improve the country's
sustainability with projects such as the “Peat Prize” competition and a moratorium on the
issuing of new concession licenses (Atwood 2018; Enrici and Hubacek 2019). The
quantification and monitoring of carbon stocks is a central task for REDD+ projects. In
order to estimate greenhouse gas emissions accurately, information on the extent of forest

and peatland loss and damage, is indispensable.
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This thesis demonstrates the capability of active remote sensing systems (radar and
LiDAR) to serve as a tool for estimating above- and below-ground biomass and emissions

by burning and deforestation in tropical forest ecosystems.

In the first study of this thesis (Chapter I), Sentinel-1 C-band and ALOS PALSAR L-
band backscatter signals, ratios and textures were used to robustly estimate accurate and
high-resolution AGB maps of Kalimantan for three years using a multivariate linear
regression model. High-accurate AGB derived from the extrapolation of field- to airborne
LiDAR- data functioned as a reliable reference for calibrating and validating the SAR
data. The SAR backscatter approach was already well tested for radar-based forest cover
and biomass mapping (Joshi et al. 2015; Yu and Saatchi 2016; Cartus and Santoro 2019).
This approach is computationally less intensive than other approaches and transferable to
different ecosystems. Nevertheless the method is limited by some factors, such as
backscatter saturation and backscatter variations due to terrain and wetness (Koch 2010;
Cartus and Santoro 2019). The results of the analysis showed a correlation (R?) between
the reference biomass and the estimated biomass between 0.69 (2016) to 0.77 (2007). The
Nash-Sutcliffe efficiency for model performance ranged between 0.70 (2016) to 0.76
(2007). However, all maps show underestimations at higher AGB levels and an
overestimation in lower ranges compared to reference AGB. Similar results are shown in
other regional studies estimating biomass from SAR backscatter values (Joshi et al. 2015;
Hamdan 2015; Antropov et al. 2017; Urbazaev et al. 2018). One of the main limitations
of the backscatter approach is that SAR-based AGB estimations suffer from saturation of
the backscatter signal in the higher biomass range. The saturation level varies depending
on the sensor wavelength and polarization, as well as the forest structure (Joshi et al.
2017). AGB studies in tropical forests were mostly conducted based on L-band SAR data,
being the most suitable operational data for biomass estimation (Wijaya 2009; Wijaya et
al. 2015; Avitabile et al. 2016; Urbazaev et al. 2018). The saturation level in tropical
forests, using L-band, ranges about 50 t/ha to 200 t/ha (Hamdan et al. 2011; Englhart et
al. 2011; Hamdan et al. 2015; Urbazaev et al. 2018). Comparable to Thapa et al. (2015),
the saturation level could be increased to approximately 200 — 250 t/ha using backscatter
values and, additionally, backscatter ratios and textures. Besides the saturation effect,
another limiting factor of the backscatter approach are the moisture conditions of soil and

vegetation (Thoma et al. 2006; Lu et al. 2015). Especially for tropical forests, located in
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areas with a high amount of annual precipitation, the estimation of biomass based on
backscatter can introduce errors. Humidity effects in the Sentinel-1 imageries were
reduced using the average of scenes acquired during different periods of the year. The use
of the annual mosaic of ALOS PALSAR is furthermore compensating for humidity within
the L-band. Analogous to literature, variables based on cross-polarized backscatter were
found as less influenced by changes in moisture and topography conditions and more
sensitive to biomass than co-polarized data (Mitchard et al. 2009; Saatchi et al. 2011;
Hamdan 2015).

In addition to the biomass estimation, for a period of ten years, a change analysis was
carried out, identifying areas of forest and thus biomass loss and gain. Modeling the years
with a consistent method allows a more accurate estimation of the change than relying on
available biomass maps derived from different models. With the limitations in mind these
methods can be used for more improved carbon modeling, as well as forest monitoring or

risk managing systems under REDD+.

The second study (Chapter II) investigates the amount and spatial distribution of forest
AGB using a range of regionally developed methods based on Earth Observation data for
Poland, Sweden and regions in Indonesia (Kalimantan), Mexico (Central Mexico and
Yucatan peninsula), and South Africa (Eastern provinces) for the year 2010. The AGB
map of Kalimantan from the first study was used in this comparison of different biomes.
Applying an accuracy assessment for all regional maps using independent field data or
LiDAR AGB maps resulted in an overall RMSE ranging from 10 t/ha to 55 t/ha (37 % to
67 % relative RMSE), and an overall bias ranging from —1 t/ha to +5 t/ha at pixel level.
All regional estimates showcased in an overestimation (up to 63 t/ha) in the lower AGB
ranges, and an underestimation (up to 85 t/ha) in higher AGB ranges. The outcomes of
this study can be used as a support when developing algorithms to estimate AGB at
continental to global scale level. Chapter I and II fulfil the Task A1l of the objectives of
the thesis (The robust mapping of high-resolution AGB for extensive areas including
reduced uncertainties). Both studies were carried out as part of the DUE Globbiomass, a
comprehensive international project funded from the European Space Agency (ESA) in
order to improve existing biomass estimations with reduced uncertainties for different

forest ecosystems.
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The third study (Chapter I1I) analyzed the possibility to overcome the limitations of AGB
estimations due to the saturation effect (Task A2). Canopy heights of the tropical forest
were derived from TerraSAR-X and Radarsat-2 X- and C-band Pol-InSAR data for 2015
in a subset of Kalimantan. Consequently, based on the canopy height, AGB in a 3 m and
12 m spatial resolution was modelled. Algorithms utilizing the RVoG and the RMoG
interferometric model were tested to obtain a more accurate and robust forest parameter
estimation during dry weather conditions. The novel RMoG model-based height
inversion algorithm resulted in more accurate canopy height estimations than the RVoG
model. The RVoG model does not take the temporal baseline resulting from repeat-pass
Pol-InSAR into consideration and is influenced by decorrelation effects due to dynamic
changes (wind, precipitations, seasonal variations and anthropogenic activities). Using
Radarsat-2 imagery, the independent validation displayed an R? of 0.63, while the
modelled canopy heights from TS-X data achieved an R? of up to 0.66, which is
comparable to other studies within the tropical forests, but based on other models
(Schlund et al. 2014; Khati et al. 2017; Ghasemi et al. 2018; Schlund et al. 2019). It was
shown, that not all RS-2 and TS-X data were suitable for modeling canopy height from
coherence. The parameters that most affect the accuracy of the canopy height model were
identified as the baselines (temporal and perpendicular), the HoA, the incident angle and
moist weather conditions since they introduce a stronger decorrelation and thus a low
coherence. Furthermore, the wavelength affects the results. The general underestimation
of TS-X data results from the weak penetration depth, limited by the short wavelength of
X-band. Besides, the penetration depth is dependent from the density of the forest. Since
forests in Central Kalimantan are very dense and reach a height of up to 30 m, canopy
height estimation based on short wavelengths is limited. Alongside the density and height
of the forest, the dielectric properties of the canopy influence the penetration depth, why
images acquired in the wet season are not suitable for canopy height estimation (Schlund
et al. 2019). For AGB modeling based on canopy height, most studies use a power
function regression. The use of linear regression in this context has been confirmed in
few studies (Kohler and Huth 2010; Odipo et al. 2016). Testing both regression models
with our data resulted in significant p-values for both regressions but higher R? and lower
RMSE using a linear regression, why this model was implemented for AGB estimations.
The derived AGB showed good correlations compared to reference canopy height (R? =

0.83 for RS-2, R* = 0.84 for TS-X). Similar to the results, all of the pan-tropical and
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Indonesian maps underestimate higher AGB ranges and overestimate lower AGB values
(Saatchi et al. 2011; Avitabile et al. 2016). The present study showed that X- and C-band
Pol-InSAR data could be used together with field inventories and high-resolution data

such as drone or LiDAR data to support carbon accounting.

To answer Task B Chapter IV investigated the identification of carbon-rich peatlands in
Central Kalimantan using the novel LiDAR satellite ICESat-2. ICESat-2 terrain height
transects were compared with a highly-precise but cost-intensive airborne LiDAR digital
terrain model (DTM) and the radar-based WorldDEM DTM by Airbus. The results show
a strong correlation when compared to the DTM (R? = 0.89, RMSE = +0.83 m) and the
WorldDEM DTM (R? = 0.94, RMSE = =+0.86 m). However, terrain height is
overestimated by ICESat-2 in few areas. A more detailed investigation showed that this
incidence proved accurate especially within densely forested areas. Neuenschwander and
Pitts (2019b) found a decreasing accuracy for ground detection as canopy cover increases.
This is expected since LiDAR is sensitive to vegetation. Especially in dense tropical
forests with a complex forest structure and dense underwood, too few photons are
reflected from the ground (Neuenschwander and Magruder 2016). Neuenschwander and
Pitts (2019a) found that ICESat-2/ATLAS can lose its ground signal for canopy closure
of higher than 95 % but also when strong cloud cover obscures the terrestrial signal. In
the tropical forest of Indonesia, both restrictions are probable. Because of the positive
correlation analyses, an interpolation (kriging) of comprehensive DTMs based on
ICESat-2 transects was implemented to model the surface topography of three peat domes
within the study area. The comparison of the interpolated terrain heights of the peatland
area showed an R? of 0.78, 0.84, and 0.94 compared to WorldDEM DTM. The RMSE
ranged from 0.68 m to 2.68 (relative RMSE 14.3 % and 22.5 %). However, cuts by rivers
or channels within the peatlands can only be mapped to a limited extent because of the
limited availability of measuring points available for the modeling. In addition,
inaccuracies can be introduced by different spatial resolutions, acquisition geometries,
sensor accuracies, and the different acquisition times. The methodology represents a cost-
effective and robust alternative to derive the topography of peatlands. Knowing the
surface topography of typically curved peat domes allows conclusions to be drawn about
the volume of the peat dome and the associated estimation of the stored carbon and is

thus a contribution to carbon-related projects.
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In summary, the studies showed the capability of remote sensing instruments and novel
methodologies in order to improve current estimations of above-ground biomass and
below-ground carbon stocks in tropical forest ecosystems. The results demonstrate that
more robust AGB estimations, with a reduced uncertainty and in a higher spatial
resolution can be achieved and consequently contribute to REDD+ monitoring projects

and others.

2. Benefits and constraints

The stand-alone publications in the frame of this thesis showed benefits and constraints
for using active remote sensing data for biomass estimations in the tropical forests of
Indonesia.

The extrapolation from field measurements to LiDAR data results in a highly accurate
biomass estimation covering almost all biomass value ranges but is very time- (field data)
and cost- (airborne LiDAR data) intensive. Nevertheless, this dataset serves as a strong
basis for the calibration and validation of large-scale SAR data. The extrapolation from
this highly-accurate AGB reference dataset to SAR data allows a more accurate AGB
estimation for large areas in South-East Asia. In addition to the L-band SAR systems
ALOS PALSAR and ALOS PALSAR-2, the ability of the relatively new C-band SAR
satellite Sentinel-1 was regarded to estimate AGB. Unfortunately, due to the short
wavelength, the C-band SAR could only contribute minimally to the results. The use of
textures combined with backscatter and polarization ratios enables to shift the saturation
effect in tropical rainforests to a higher level. Nevertheless, the saturation effect is a
limitation of SAR data for AGB estimations.

The final biomass products of Chapter I have a resolution of 100 m, which is much more
detailed than other existing maps of this region (>500 m) why they are more sensitive for

small-scaled biomass variability and changes.

The comparison of different forest biomes in Chapter II is the widest inter-comparison of
regional-to-national AGB maps in terms of area, forest types, input datasets, and retrieval
methods to date. The outcomes of this chapter should be considered when developing

novel algorithms for estimating forest biomass at continental or even global scale level.
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In order to overcome the constraints of the saturation effect, a study based on more
complex Pol-InSAR data were carried out. In the course of analyzing the performance of
X- and C-band dual-pol and quad-pol data as inputs for the RVoG and RMoG
interferometric coherence models, the RMoG demonstrated good potential for estimating
AGB in tropical forests. Limitations of this approach could be found in the temporal
decorrelation, but also the perpendicular baseline, the height of ambiguity, the incident
angle and moist weather conditions, as well as the wavelength and the forest structure
itself. The analysis may be used as a guideline for further analyses on this topic since it
extensively discusses the constraints for coherence-based AGB estimations in tropical

forests.

The last study developed a scientifically novel approach to identify and derive the surface
area of carbon rich ombrogenous peat domes in Indonesia with a new LiDAR satellite
(ICESat-2). Furthermore, a secondary result of the analysis is that the sensor, in
combination with older remote sensing data, can identify burned areas. Very dense
vegetation with a canopy closure of above 95 % was recognized as a limitation to derive
accurate terrain height information from ICESat-2 data. The approach still needs to be
tested for transferability to other tropical regions (e.g. Congo or Brazil). It is assumed that
mountainous areas might produce limitations. However, for peatlands in flat terrain, the
transferability of the approach to other regions and countries seems feasible.

In conclusion, improved methods for AGB estimations in tropical forest ecosystems were
presented in this thesis. This is a crucial matter in order to obtain more accurate biomass

estimated with a better spatial resolution as a basis for carbon content analyses.

3. Future research

Within this thesis, it was demonstrated that remote sensing systems can be used as an
efficient tool for estimating and monitoring global carbon pools in tropical forest
ecosystems.

For an adequate derivation of AGB from remote sensing data the correct choice of the
allometric equation for the calculation of AGB from field data is necessary. Although
there are several allometric equations for species-rich tropical forests, there is still no

allometric equation for tropical peat swamp forests. Since tropical forests are
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characterized by very high biodiversity, general allometric models for tropical forests do
not necessarily provide a suitable representation of the actual biomass contribution.
Besides, the quality, frequency and spatial resolution of remote sensing data can cause
limitations for AGB estimations based on Earth Observation data. New and improved
technologies and satellites, such as the LiDAR satellite GEDI (NASA), Tandem-L (DLR)
or the BIOMASS mission (ESA) with a higher spatial resolution and more suitable
wavelengths, will provide opportunities for even more accurate AGB estimations in the
future.

In addition to new satellites, growing data availability from existing satellites enables
extensive time series to understand the global carbon cycle more accurately. With the
increasing amount of ICESat-2 data over the next years, but also with the new satellite
GEDI, it may become possible to investigate the annual accumulation rate, the subsidence
of peatlands, or the identification of peat domes threatened by drainage.

Other tropical countries, besides Indonesia, may have also extensive peatland areas not
yet known. The methods for estimating the topography of peatlands presented in this
study will be tested for the Republic of Congo or Amazonia.
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