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 ABSTRACT 

Substantial terrestrial carbon (C) reservoirs on Earth are formed by soil and living 

vegetation as well as dead plant litter. Carbon dioxide (CO2) emissions resulting from the 

conversion of forests into agricultural land and the burning of vegetation are estimated to 

account for up to 15 % of annual global CO2 emissions. However, these estimates are 

currently still highly speculative and show a wide range in the literature. Neither accurate 

quantifications of the carbon stock stored in the vegetation and soils, nor the resulting 

emissions through deforestation and fire are available to provide reliable data for global 

climate models. By accumulating dead plant debris over thousands of years, peat soils 

form gigantic carbon sinks storing about 1,200 – 2,000 gigatons (Gt) C. Global peatlands 

are known for being one of the largest terrestrial long-term carbon sinks in relation to 

their total area. It is estimated that they store carbon in the range of 180 – 700 Gt 

worldwide, covering only 3 % of the Earth's terrestrial surface. Besides, it is assumed that 

the carbon stock of living vegetation is between 400 – 800 Gt C. 

In particular, tropical rainforest ecosystems, one of the most species-rich habitats on 

Earth, serve as significant carbon reservoirs. Its vegetation is assumed to store carbon in 

a range of 200 – 475 Gt. Furthermore, the tropical peatlands act as relevant carbon sinks 

with an estimated total amount of 80 – 90 Gt C. The world's largest peat areas are located 

South East Asia, with Indonesia extending over an area of approximately 210,000 km², 

which accounts for 47 % of the earth's tropical peatland area. Scientists assume that 

Indonesian peatlands alone hold quantities of 14 – 58 Gt C. Furthermore, Indonesian 

rainforests are estimated to have a carbon stock ranging from 6 – 40 Gt.  

Global population growth, oil palm plantation business, and unsustainable usage of 

tropical forests increasingly lead to a release of the stored carbon. Deforestation and 

degradation conducted for selling timber, but also for gaining agricultural land, does not 

only release considerable quantities of greenhouse gas. Additionally, these interventions 

encourage further damage: peat domes are disturbed by the loss of vegetation growing on 

top, and the construction of drainage channels permanently dries out the generally moist 

soil. These weakened and drained carbon-rich ecosystems are now vulnerable to fire, 

which is used by the Indonesian population and the timer or oil pal industry to clear 

forested areas. Consequently the carbon previously retrained in the soil is released and 

contributes to climate change as CO2. Besides anthropogenic influences, extreme events 

such as El Niño droughts (1997/1998, 2002/2003, 2006, 2015/2016 and 2019) affect the 

attenuated ecosystem immensely. Fires spread more rapidly due to the dry and carbon-

rich soil, leading to additional loss of forest and peat. Recurrent fires on peatlands have 

made Indonesia one of the largest emitters of greenhouse gases. As a result, the country 
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has become a prime target for carbon-related projects, for example REDD+ (Reducing 

Emissions from Deforestation, forest Degradation, and the role of conservation, 

sustainable management of forests, and enhancement of forest carbon stocks). 

An accurate estimation of the amount of carbon e.g. in the tropical forest or peatlands is 

complicated and usually achieved by collecting extensive biomass field data. In very large 

or poorly accessible areas as in tropical forests, however, this is a labor- and time-

consuming method. The scientific field of remote sensing has established itself as an 

economical and fast alternative to large-scale data collection. In tropical regions, which 

are characterized by a high annual cloud cover, the use of long-wave active remote 

sensing systems, such as radar, is the first choice. These systems are almost unaffected 

by clouds and smoke and not dependent on daylight. An additional advantage of active 

systems is, depending on the wavelength, the radiation's penetration into the vegetation, 

what enables to gain an insight into the vertical vegetation structure. This allows a more 

accurate estimation of above-ground biomass (AGB) and, consequently, the carbon 

content. Nevertheless, field inventory data is essential for calibrating and validating AGB 

estimations based on remote sensing data. 

 

The main goal of the present thesis was to investigate whether new satellites can be used 

to estimate the carbon stock in vegetation and peat in carbon-rich Indonesian tropical 

forest ecosystems more accurately than previous sensors. Furthermore, the insufficient 

accuracy of current biomass models is to be improved, in order to obtain more accurate 

and robust input data for carbon and thus climate models.  

In the first study, the radar backscatter signals of Sentinel-1 and ALOS PALSAR C- and 

L-band synthetic aperture radar (SAR) systems of three years (2007, 2009, and 2016) 

were analyzed. The data were successfully used to robustly model accurate and high-

resolution AGB maps of Kalimantan, the Indonesian part of the island Borneo for the first 

time. A change analysis was carried out to identify areas of forest and thus biomass loss 

and gain including their uncertainties for a period of ten years. The second study compares 

the results of the first one to biomass studies in other habitats, which are representative 

for numerous forest biomes and biomass levels worldwide. As part of a comprehensive 

international project funded from the European Space Agency (ESA), this work is so far 

the widest inter-comparison of regional-to-national AGB maps in terms of area, forest 

types, input datasets, and retrieval methods. In the third study, canopy heights were 

derived, and AGB was modelled for a smaller area of Kalimantan. In order to test the 

possibility to overcome the limitation of the saturation effect, a complex Pol-InSAR 

(polarimetric SAR interferometry) approach based on TerraSAR-X and Radarsat-2 X- 

and C-band data were used to derive canopy height. Besides the estimation of AGB in 
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Kalimantan, an analysis of the soil organic carbon content within carbon-rich peatlands 

in Central Kalimantan was performed using the new and freely available LiDAR satellite 

ICESat-2 (study four). ICESat-2 terrain height transects were compared with a highly-

precise but cost-intensive airborne LiDAR digital terrain model (DTM) and a radar-based 

WorldDEM DTM. Since the comparison showed a strong correlation between multiple 

DTM datasets, an interpolation of comprehensive DTMs based on ICESat-2 transects was 

carried out to model the surface topography of peat domes within the study area. The 

methodology reflects a cost-effective and robust alternative for deriving the topography 

of peatlands. Knowing the surface topography of typically curved peat domes allows 

conclusions to be drawn about the volume of the peat dome and the associated estimation 

of the stored carbon. 

Different remote sensing instruments were investigated and new methods were developed 

in order to improve currents estimations of above-ground biomass and below-ground 

carbon stocks in tropical forest ecosystems. The results demonstrate that more robust 

estimations in a higher spatial resolution can be achieved with these new technologies, 

which can contribute to REDD+ monitoring projects hopefully support the Indonesian 

government towards a more sustainable development policy. 
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 ZUSAMMENFASSUNG 

Die wichtigsten und größten terrestrischen Kohlenstoff (C) -Speicher weltweit werden 

vom Boden sowie der lebenden Vegetation als auch abgestorbenem Pflanzenstreu 

gebildet. Die Kohlendioxid- (CO2) Emissionen die aus der Umwandlung von Wäldern in 

Agrarflächen sowie der Verbrennung von Vegetation resultieren, tragen bis zu 15 % zu 

den globalen CO2 Emissionen bei. Sowohl der Kohlenstoffvorrat, also auch die 

resultierenden Emissionen sind jedoch noch nicht hinreichend genau bekannt, um 

verlässliche Daten für globale Klimamodelle bereitzustellen und decken in der Literatur 

ein breites Spektrum an Angaben zu ihrer Menge ab. So gehen Wissenschaftler davon 

aus, dass der Kohlenstoffvorrat der lebenden Vegetation zwischen 400 – 800 Gigatonnen 

(Gt) C liegt. Weitere 1,200 – 2,000 Gt C werden im Boden gebunden. Insbesondere 

Torfgebiete sind im Verhältnis zu ihrer Gesamtfläche als eine der größten terrestrischen 

Langzeit-Kohlenstoffsenken bekannt. Nach Schätzungen speichern sie Kohlenstoff in 

einem Umfang von 180 – 700 Gt weltweit, wobei sie lediglich 3 % der terrestrischen 

Oberfläche der Erde bedecken.  

Insbesondere tropische Ökosysteme dienen aufgrund ihrer dichten Vegetation und der 

damit einhergehenden hohen Biomasse als signifikante Kohlenstoffspeicher. Jedoch sind 

auch hier sowohl der Kohlenstoffvorrat, als auch die aus Entwaldung und Degradierung 

resultierenden Emissionen nicht ausreichend genau bekannt, um zuverlässige 

Eingangsdaten für globale Klimamodelle zu liefern. Es wird angenommen, dass die 

Vegetation der Tropenwälder 200 – 475 Gt C speichert. Tropische Torfgebiete fungieren 

mit einer geschätzten Gesamtmenge von 80 – 90 Gt C als relevante Kohlenstoffsenken. 

Die größten tropischen Torfgebiete befinden sich dabei in Südost-Asien. Alleine in 

Indonesien erstrecken sich Torfgebiete über eine Fläche von ca. 207,000 km², was 47 % 

ihrer weltweiten Fläche ausmacht. Schätzungen zufolge sind allein in indonesischen 

Torfgebieten 14 – 58 Gt C gebunden. Darüber hinaus wird angenommen, dass die 

lebende Vegetation der indonesischen Regenwälder einen Kohlenstoffspeicher von 

6 – 40 Gt aufweist.  

Das globale Bevölkerungswachstum und eine damit einhergehende nicht nachhaltige 

Nutzung der Tropenwälder führen jedoch zunehmend zu einer Freisetzung des 

gebundenen Kohlenstoffs. Abholzung zum Zweck des Holzverkaufs, aber auch zur 

Gewinnung von Agrarflächen für Palmöl Plantagen sowie die Degradierung der Böden 

setzen nicht nur kurzfristig große Mengen des Treibhausgases CO2 frei. Zudem 

begünstigen diese Eingriffe weitere Schäden innerhalb der Ökosysteme. So werden 

Torfgebiete durch den Verlust der darüber befindlichen Vegetation gestört und der Bau 

von Entwässerungskanälen trocknet die in der Regel feuchten Böden dauerhaft aus. Diese 
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geschwächten und trockengelegten Ökosysteme sind nunmehr anfällig für Feuer. Neben 

den anthropogenen Einflüssen wirken sich auch Extremwetterereignisse wie El Niño 

Trockenperioden (1997/1998, 2002/2003, 2006, 2015/2016 and 2019) negativ auf die 

Ökosysteme aus. Brände können sich aufgrund des trockenen und kohlenstoffreichen 

Bodens rasant ausbreiten, was zu einem zusätzlichen Verlust an Wald und Torf führt. Da 

Feuer in der Regel von der Bevölkerung und der Palmöl-Industrie genutzt werden, um 

bewaldete Flächen zu roden, kommt es nicht selten zu erheblichen Bränden. 

Wiederkehrende Feuer in Torfgebieten machten Indonesien in den letzten Jahrzehnten zu 

einem der größten Emittenten von Treibhausgasen, was das Land zu einem Hauptziel für 

kohlenstoffbezogene Projekte wie z.B. REDD+ (Reducing Emissions from Deforestation, 

forest Degradation, and the role of conservation, sustainable management of forests, and 

enhancement of forest carbon stocks) werden ließ. 

Die Abschätzung des Kohlenstoffgehalts erfolgt in der Regel anhand von Feldmessungen 

der Biomasse. In sehr großen oder nur schwer zugänglichen Gebieten stellt dies jedoch 

eine arbeits- und zeitintensive Methode dar. Bis heute gibt es keine genauen 

Biomasseschätzungen von Wäldern und Torfgebieten in tropischen Regionen wie dem 

Amazonasraum, dem Kongobecken oder Indonesien. Als wirtschaftliche und 

zeitsparende Alternative zur großflächigen Datengewinnung hat sich das 

wissenschaftliche Feld der Fernerkundung etabliert. In tropischen Regionen, die durch 

eine hohe jährliche Bewölkungsrate geprägt sind, ist der Einsatz von langwelligen aktiven 

Fernerkundungssystemen wie Radar die geeignetste Methode. Diese Systeme sind 

aufgrund ihrer systemimmanenten Eigenschaften in der Lage Wolken sowie Rauch, die 

eine hohe Präsenz in den Tropen haben, zu durchdringen. Darüber hinaus ermöglicht das 

Eindringen der Strahlung in die Vegetation je nach Wellenlänge einen Einblick in die 

vertikale Vegetationsstruktur und erlaubt somit eine genauere Abschätzung der 

oberirdischen Biomasse und einhergehend des Kohlenstoffgehalts. Nichtsdestotrotz 

werden Feldmessungen benötigt, um die Fernerkundungsdaten zu kalibrieren sowie zu 

validieren. 

 

Hauptziel der vorliegenden Arbeit ist es zu untersuchen, ob neue Satellitendaten zur 

besseren sowie robusteren Abschätzung der Kohlenstoffvorräte in Vegetation und Torf 

in den Ökosystemen der indonesischen Tropenwälder verwendet werden können. 

Darüber hinaus soll die unzureichende Genauigkeit der derzeitigen Biomasse-Modelle 

verbessert werden, um akkuratere Eingangsdaten für Kohlenstoff- und Klimamodelle zu 

generieren.  

Das Untersuchungsgebiet befindet sich in Kalimantan, dem indonesischen Teil der Insel 

Borneo. Dieses Gebiet ist von tropischen Torfsumpfwäldern und Torfgebieten geprägt, 
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welche aufgrund der stetig wachsenden Nachfrage nach Palmöl seit mehreren 

Jahrzehnten unter starkem und anhaltendem anthropogenem Einfluss und 

wirtschaftlichem Druck stehen.  

Im Rahmen der ersten Studie dieser Arbeit wurde das Radarrückstreusignal von Sentinel-

1 und ALOS PALSAR C- und L-Band Synthetic Aperture Radar (SAR) Systemen 

erfolgreich eingesetzt, um eine möglichst akkurate, hochauflösende oberirdische 

Biomassekarte von Kalimantan für drei verschiedene Jahre (2007, 2009, 2016) zu 

modellieren. Anhand der drei Karten, die für einen Zeitraum von zehn Jahren abgeleitet 

wurden, konnte zusätzlich eine Veränderungsanalyse durchgeführt werden. Diese 

ermöglicht die Quantifizierung von Waldflächen- und damit Biomasseverlusten sowie -

gewinnen. Die zweite Studie vergleicht die Ergebnisse der ersten mit Biomasseanalysen 

in anderen Ökosystemen, die für zahlreiche Waldbiome und Biomasseniveaus weltweit 

repräsentativ sind. Als Teil eines umfassenden internationalen Projekts, das von der 

Europäischen Weltraumorganisation (ESA) finanziert wurde, ist diese Arbeit der bisher 

umfangreichste Vergleich von regionalen und nationalen AGB-Karten in Bezug auf 

Fläche, Waldtypen, Eingabedatensätze und Methoden zur Biomasseabschätzung. 

Um die Limitierung der Sättigung der Radarrückstreuintensitäten bezüglich oberirdischer 

Biomasse zu verbessern, erfolgte im Rahmen einer zweiten Studie die Ableitung der 

Baumkronenhöhe mit Hilfe des komplexeren Pol-InSAR-Ansatzes (polarimetrische 

SAR-Interferometrie) auf der Grundlage von hochaufgelösten TerraSAR-X und 

Radarsat-2 X- und C-Band Daten. Basierend auf der resultierenden Baumkronenhöhe 

wurde ein AGB-Modellierungsansatz auf Basis der interferometrischen Kohärenz 

implementiert.   

Neben der Abschätzung der oberirdischen Biomasse in Kalimantan erfolgte zudem eine 

Analyse der Topographie von kohlenstoffreichen Torfgebieten in Zentral-Kalimantan 

anhand des neuen und frei verfügbaren LiDAR-Satelliten ICESat-2. ICESat-2 Transekte 

mit Messungen zur Geländehöhe wurden mit einem hochpräzisen, aber kostenintensiven 

luftgestützten digitalen LiDAR-Geländemodell (Digital Terrain Model, DTM) und einem 

radargestützten WorldDEM DTM verglichen. Da der Vergleich eine starke Korrelation 

zwischen den verschiedenen DTM-Datensätzen ergab, konnte eine erfolgreiche 

Interpolation eines großflächigen DTMs auf der Grundlage von ICESat-2-Transekten 

durchgeführt werden. Diese Interpolation erlaubt es, die Oberflächentopographie von 

Torfkuppen innerhalb des Untersuchungsgebiets zu modellieren. Die Ableitung der 

Oberflächentopographie von typischerweise konvexen Torfkuppen erlaubt Rückschlüsse 

auf das Volumen der Torfkuppe und die damit verbundene Abschätzung des 

gespeicherten Kohlenstoffs. Die erstmals vorgestellte Methodik zeigt eine kostengünstige 
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und robuste Alternative zur Ableitung der Topographie von Torfgebieten und bietet somit 

ein großes Potential in der Ableitung ihrer Kohlenstoffgehalte.  

 

Verschiedene Fernerkundungsmethoden und -datensätze wurden eingesetzt, um die 

Abschätzung der oberirdischen und unterirdischen Biomasse in den Tropenwäldern zu 

verbessern. Die Ergebnisse liefern eine robustere Abschätzung in einer höheren 

räumlichen Auflösung. Die Ergebnisse können zum einem zu REDD+ Projekten 

beitragen, helfen zum anderen jedoch auch, die Haltung der indonesischen Regierung zur 

nachhaltigen Entwicklung des Landes zu verbessern. 
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I. Introduction 

1. Climate change and carbon dioxide 

The fact that life was able to develop on our planet as we know it today is partly due to 

the good climatic conditions on earth. The mild temperatures enable water to appear in 

its liquid form and provide plants with ideal growing conditions. The optimal climatic 

conditions are primarily due to the so-called greenhouse effect. This effect ensures that 

some of the gases the atmosphere contains, the so-called greenhouse gases, absorb 

thermal radiation. The main components of our atmosphere are nitrogen and oxygen, 

which together make up 99 % of the atmosphere. However, these elements are not able 

to absorb infrared radiation. The greenhouse effect is the result of the trace gases water 

vapor, carbon dioxide (CO2) and methane (CH4), which why these elements were termed 

greenhouse gases (King 2005). Without greenhouse gases, the crucial heat radiation 

would be reflected into space. The greenhouse effect ensures that the average surface 

temperature of our planet is 15 °C instead of being -18 °C (King 2005). However, this is 

a very fragile balance. An increase in the concentration of these greenhouse gases 

amplifies the greenhouse effect and increases the temperature on our planet. In addition 

to a rise in global temperature by only a few degrees, global warming has far-reaching 

effects on the overall climate, and local weather phenomena. The rise in temperature leads 

to changes in humidity, precipitation rates, solar radiation intensity, wind speed, and 

evapotranspiration (Hulme 2005). The weather becomes unsteady and entire ecosystems 

(land and water) change due to changing climatic conditions.  

Regarding the climatic history of the earth, climatic fluctuations are regular appearances. 

Earlier climate changes resulted from small fluctuations in the distance of the earth to the 

sun or the continuous change in the position of the continental plates and the associated 

changes in ocean currents (Atwood 2018). A total of eight fluctuation cycles have been 

identified over the last 750,000 years. Only 12,000 years ago, with the end of the last ice 

age, the relatively stable climate of our present time began (King 2005). However, these 

historical climatic changes developed over centuries or even millennia, thus leaving the 

biosphere enough time to adapt to the changing conditions. In the current climate change, 

warming and associated changes in the weather are occurring much faster. The main 

reason for this is considered to be the anthropogenic emissions of recent decades (King 
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2005). These emissions are dominated by carbon dioxide (CO2), methane (CH4), nitrous 

oxide (N2O) and fluorinated gases (F-gases) (IPCC 2015).  

Figure I-1 shows how significantly CO2 emissions have increased between 1950 and 

2011. According to the IPCC 2015, a cumulative amount of 2040 ± 310 Gt CO2 was 

released into the atmosphere between 1750 and 2011. Merely from 1970 to 2011, the 

emission rates tripled due to the burning of fossil fuels and cement production. In 

addition, emissions from forestry and other land use increased by about 40 % 

simultaneously.  

In total, 49 Gt of CO2 and its equivalents (-eq) were emitted in 2010 consisting of 76 % 

CO2, 16 % CH4, 6 % N2O and 2 % f-gases. 65 % (32 Gt) of the overall emissions for 2010 

result from fossil fuel and industrial processes and 11 % (5 Gt) from forestry and other 

land-use change (IPCC 2015). However, other studies, e. g. van der Werf et al. (2009) 

discovered high uncertainties in the estimates of deforestation and degradation and 

preferred to specify a contribution to the total anthropogenic CO2 emission due to forestry 

in a range of 6 – 17 %. Combining deforestation and forest degradation with tropical 

peatland oxidation and fires, this estimate of the contribution of forest and peatland loss 

amount to approximately 24 % of total the global CO2 emissions (IPCC 2015).  

 

 

Figure I-1: Left side: Annual global anthropogenic CO2 emissions 1850 – 2011. Right side: Cumulative 

emissions and their uncertainties 1750 – 2011 (IPCC 2015). 

 

In 2019, emissions of CO2 from fossil fuel were reported at 37 Gt (Levin and Lebing 

2019; Friedlingstein et al. 2019). The CO2 emissions from all human activities in 2019, 
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including forestry and land-use change are estimated between 40 – 46 Gt (Friedlingstein 

et al. 2019) but are expected to be higher in reality since the emission rate increases 

annually, even if the increase is diminishing.  

From the anthropogenic CO2 emissions between 1750 and 2011, approximately 40 % 

(880 ± 35 Gt CO2) have remained in the atmosphere. The other 60 % were absorbed as 

carbon (C) by plants, soils and the ocean (IPCC 2015). In order to decrease these high 

uncertainty ranges, data availability and estimation methods for carbon emissions need to 

be improved. 

 

2. Tropical forest ecosystems of Indonesia in the carbon context 

Tropical ecosystems are among the most carbon-rich ecosystems in the world and are, 

therefore, an essential element of the global carbon cycle. Indonesia's tropical forests are 

considered one of the oldest and most species-rich tropical rainforests on earth, storing 

6 – 40 Gt C in above-ground biomass (AGB), defined as the living biomass above soil. 

In addition to the dense vegetation of Indonesian rainforests, underlying tropical 

peatlands make a vital contribution to terrestrial carbon storage, storing 14 – 58 Gt C 

(Page et al. 2011; Harrison et al. 2020). An accurate estimation of the amount of C in the 

forests or soils is complicated and usually achieved by collecting extensive biomass field 

data. In the following section the characteristics of tropical peatlands and tropical forests 

are presented. 

 

2.1. Tropical peatlands 

Peatland ecosystems are known as the largest terrestrial near-surface long-term carbon 

sinks, storing 180 – 700 Gt C worldwide while covering no more than 3 % of the earth's 

surface (Agus et al. 2011; Joosten et al. 2016; Page and Hooijer 2016; Evans et al. 2019; 

Jurasinski et al. 2020). In comparison to mineral soils, peatlands store 3.5 times more in 

(sub-)polar, seven times more in boreal and ten times more carbon per ha in tropical 

regions of the world (Parish et al. 2008). In general, tropical peatlands can be found in 

the Caribbean, Central America, South America, Southeast Asia and Central Africa, 

containing an estimated total carbon stock of 80 – 90 Gt (United Nations Environment 

Programme et al. 2008; Page et al. 2011; Page and Hooijer 2016; Lohberger et al. 2018). 
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The entire area of tropical peatlands worldwide covers about 441,000 km² of which 

248,000 km² and thus 56 % of the world's peatlands, can be found in Southeast Asia 

(Parish et al. 2008; Page et al. 2011; Jurasinski et al. 2020). The largest peat areas are 

located in Indonesia, extending over an area of approximately 207,000 km², which 

account for 83 % of the total peatland area of Southeast Asia and 47 % of worldwide 

tropical peatland area (Jaenicke et al. 2008; Page et al. 2011; Agus et al. 2011; Baccini et 

al. 2012; Page and Hooijer 2016). 

Peatlands are formed over tens of thousands of years from deposited plant remains, which 

accumulate in water-filled oxygen-free depressions (Figure I-2) (World Wide Fund for 

Nature Germany 2009; Warren et al. 2017). Due to the formation being based on organic 

matter containing 48 – 63 % of carbon, peatlands are one of the largest near-surface 

storages of terrestrial carbon (IPCC 2015; Joosten et al. 2016). Water prevents the organic 

substance from reacting with oxygen and thus the decomposition of organic matter by 

micro-biological processes called oxidation (World Wide Fund for Nature Germany 

2009). Two forms of peatlands are distinguished: on the one hand topogenous peat and 

the other hand ombrogenous peat. Topogenous peatlands were formed from organic 

matter accumulated in depressions, mainly under the influence of fluctuating water levels 

of rivers. This type of peat is found near rivers, in floodplains, and flood zones. 

Ombrogenous peat is formed in low altitudes under the influence of rainfall. This type of 

peat is the dominant species in Southeast Asia due to the heavy rainfall in the tropics. 

They are mostly bordered by rivers or the coast (Page et al. 2006).  
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Figure I-2: Schematic overview of the formation of a peat dome in Indonesia. A) Dead plant material 

accumulates in a water-filled depression that lacks oxygen. B) The accumulation rate is about 1 – 2 mm/y. 

After thousands of years an up-to a several meters thick convex shaped peat dome is formed. The dome is 

generally covered by forests such as peat swamp forest (Ballhorn 2012; World Wide Fund for Nature 

Germany 2009). 

 

Covering about 15 – 21 million ha, Indonesia has the largest area of tropical peatlands 

(Anshari et al. 2004; Agus et al. 2011; Palamba et al. 2018). The below-ground carbon 

stock of Indonesia is estimated at approximately 14 – 58 Gt (Agus et al. 2011; Page et al. 

2011; Harrison et al. 2020). Indonesian peatlands typically form convex-shaped peat 

domes up to 20 m thick and up to 100 km wide (Figure I-2) (Agus et al. 2011; Mitchard 

2018). Peatlands within Indonesia are covered by evergreen tropical forests which 

contribute a large amount of organic matter and plant debris to the formation of peatland. 

The annual accumulation rate is approximately 1 – 2 mm/y in undisturbed peatlands, 

which is more than twice as much compared to temperate peatlands (0.2 – 1.0 mm/y) or 

boreal peatlands (0.2 – 0.8 mm/y) (Yule 2010; Ballhorn 2012; Warren et al. 2017). 

Different peat swamp forest types are an indicator for variations in the pH value, nutrient 
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and water availability (Page et al. 2006). This can be seen in the number and variety of 

species.  

 

However, peatlands are under pressure due to anthropogenic influences. In particular, 

deforestation and drainage to gain land for agricultural use disrupt the hydrological 

stability of peatlands (Agus et al. 2011; Carlson et al. 2015; Warren et al. 2017). Draining 

the naturally waterlogged carbon-rich ecosystems leads to peat loss due to oxidation and 

increases the susceptibility to fire (Figure I-3 (World Wide Fund for Nature Germany 

2009; Carlson et al. 2015; Konecny et al. 2016; Palamba et al. 2018)). Since land in 

Indonesia is traditionally cleared by fire (slash and burn) to make it suitable for oil palms 

and timber plantations, fires often spread rapidly and erratically on the dried peat soils 

(Page et al. 2007; Page et al. 2009; Palamba et al. 2018). 

 

 

Figure I-3: A) Schematic overview of a beginning degradation of a peat dome due to drainage to lower 

groundwater level (GWL) for new agricultural areas in Indonesia B) The GWL sinks, resulting in carbon 

emissions from micro-biological decomposition. Furthermore, the dry peat is highly susceptibility to fire 

(Ballhorn 2012; World Wide Fund for Nature Germany 2009). 
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Nowadays it is estimated that peatland fires in combination with forest degradation and 

deforestation contribute 23 % of annual global CO2 emissions and release of 17 % of 

anthropogenic greenhouse gases into the atmosphere (van der Werf et al. 2009; Englhart 

2012). In the years 2001 – 2010, forest and peat fires released 3.2 Gt CO2-eq/y into the 

atmosphere. Furthermore, 0.9 Gt CO2-eq/y were emitted through peat degradation and 

drainage (FAO 2013). In the last 20 years, there have been recurrent extreme climate 

events that have caused large-scale fires in Indonesia and thus a higher carbon release 

than in other years. There were particularly strong El Niño episodes (1997/1998, 

2002/2003, 2006, 2015/2016, 2019) occurring in a higher frequency than previously 

observed (Ballhorn 2012; Harrison et al. 2016; Setyawati and Suwarsono 2018; Harrison 

et al. 2020). In 1997/1998, 2.4 – 6.8 million ha of peatlands burned, which released 

2.97 – 69.43 Gt CO2-eq (Agus et al. 2013; Huijnen et al. 2016; Lohberger et al. 2018). In 

2015, 4.6 million ha burned, causing emissions of 0.89 – 1.75 Gt CO2-eq (The World 

Bank 2015; Huijnen et al. 2016; Lohberger et al. 2018). Due to those strong fires and peat 

emissions, Indonesia became one of the top five greenhouse gas emitting countries 

worldwide (Warren et al. 2017).  

 

2.2. Tropical forests  

Besides tropical peatland burning, deforestation and degradation contribute further to 

carbon emissions (van der Werf et al. 2009; IPCC 2015; Mitchard 2018). Forests are one 

of the most essential carbon sinks since they absorb CO2 from the atmosphere. It is 

estimated that tropical forests worldwide store 200 – 300 Gt C (Avitabile et al. 2016; 

Mitchard 2018). The tropical forests of Indonesia store about 6 – 40 Gt C (FAO 2009; 

Page et al. 2011; Baccini et al. 2012; Page and Hooijer 2016). Indonesian tropical forests 

contain different forest ecosystems, mainly dipterocarp forests, freshwater forests, peat 

swamp forests, heath forests (Kerangas), and along the coast forests dominated by 

mangroves and Nypa palms (MacKinnon et al. 2013; Paoli et al. 2010; Ferraz et al. 2018).  

The majority of Indonesian carbon emissions stem from the deforestation of peat swamp 

forests located on waterlogged peatlands and dipterocarp forests on drained mineral soils 

(Paoli et al. 2010). 

Tropical peat swamp forest ecosystems fulfil important ecological and hydrological 

functions such as protection against seawater intrusion, water retention, and flood 
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reduction, but they also host endemic species (Parish et al. 2008; Mitchard 2018). The 

predominant vegetation of Indonesian lowland peat swamp forests are trees with buttress 

or stilt roots (Posa et al. 2011). These roots allow for good stability on the water-saturated 

peat soils. In addition, the trees have so-called breathing roots that protrude above the 

soil. The dominant tree species are assigned to the family of dipterocarps (Takahashi et 

al. 2017), mainly "Anacardiaceae, Annonaceae, Burseraceae, Clusiaceae, Dip-

terocarpaceae, Euphorbiaceae, Lauraceae, Leguminosae, Myristicaceae, Myrtaceae, and 

Rubiaceae" (Page et al. 2006). Due to differences in water and nutrient availability, but 

also pH characteristics of soils, the forest structure and composition is influenced (Posa 

et al. 2011; Harrison et al. 2016). In general, the distribution of plants in the peatlands 

shows a concentric pattern associated with the increase of the thickness of the peat dome. 

In the peripheral areas, where the peat is relatively flat, up to 240 different tree species 

per ha can be counted. In the center of the peat domes, where the deepest and thus wettest 

peat is found, a significant decline in the number of tree species is found. Usually, 

30 – 55 tree species per ha can be found in these peat affluent areas. Furthermore, the 

trees in this area, the center, are most likely smaller compared to the periphery (Page et 

al. 2006; Harrison et al. 2020).  

In ombrotrophic tropical lowland peatlands, species diversity is generally lower than on 

mineral soils of adjacent ecosystems. Nevertheless, in ombrotrophic ecosystems, due to 

the extreme hydrological and chemical conditions, the plants are mostly very specialized 

and often endemic to these areas (Posa et al. 2011; Yule et al. 2018). Tall peat swamp 

forest sub-types have the most extensive diversity of trees among peat forests and thus 

the highest canopy stratification. This ecosystem also hosts the greatest diversity of fauna. 

In addition to the diversity of flora and fauna, differences in terms of biomass can be 

identified as well (Page et al. 2006). Dipterocarps can reach a height of 45 – 60 m and are 

a valuable tree species prone to logging (MacKinnon et al. 2013). Lowland dipterocarp 

forests are more diverse, have taller trees and a more closed canopy than peat swamp 

forests. 

The AGB in Central Kalimantan, Indonesia, varies from 252 t/ha for low pole forest on 

peat > 7 m to 314 t/ha for mixed swamp forest on shallow peat. AGB up to 395 – 641 t/ha 

were measured in mixed swamp forest on peat of 3 – 6 m thickness, but only 85 – 177 t/ha 

for low pole forests on peat thicker than 9 m in eastern Sumatra (Page et al. 2006; Ferraz 
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et al. 2018). For lowland primary forests, a mean value of 400 t/ha is assumed, varying 

depending on the forest type (MacKinnon et al. 2013). 

 

In recent decades there has been a significant decline in tropical forests due to illegal 

logging, deforestation for agricultural development, but also natural and anthropogenic 

fires (Harrison et al. 2020). However, deforestation not only results in a loss of this vital 

carbon sink but also increases the emission of CO2 through the release of carbon stored 

in the vegetation and underlying soils (Yule et al. 2018; Harrison et al. 2020).  

In total, 200 – 300 Gt C is stored in tropical woody vegetation worldwide (Avitabile et 

al. 2016; Mitchard 2018). Throughout the years 2000 – 2010, Baccini et al. (2012) 

estimated a total net emission of 1.0 Gt CO2/y from tropical deforestation in America, 

Asia and Africa. Mitchard et al. (2018) quantified the release of carbon and equivalents 

from tropical deforestation and degradation at 0.5 – 3.5 Gt CO2-eq/y. Pearson et al. 

(2017) estimated the emissions due to tropical forest degradation between 2005 – 2010 at 

around 2.1 Gt CO2-eq/y. Furthermore, the authors summarized that Indonesia has the 

most substantial forest degradation emissions of all 74 analyzed developing countries 

within the tropics (0.3 Gt CO2-eq/y), making climate protection within the country a 

priority.  

In addition to deforestation, forests are nowadays also threatened by global warming itself 

(Mitchard 2018). The increase in temperature and the accompanying decrease in 

precipitation will threaten ecosystems by causing drought for which they are not prepared 

(King 2005). Ecosystems are also becoming more vulnerable to forest fires and pests, 

which results in a positive feedback. 

 

3. Forest carbon stock monitoring 

The carbon content in plants is usually derived from biomass measurements. In literature, 

the carbon content of dried biomass is estimated at approximately 50 % (Goetz and 

Dubayah 2011).  

The most accurate method to measure tree biomass is to harvest and dry a tree and weigh 

it (Klinge et al. 1975). Nevertheless, this method does not allow to calculate biomass 

without felling the tree and is only suitable for small areas (Lu et al. 2015). However, so 

gained knowledge about the typical biomass values for specific species can be used as 
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input in allometric models (Pagel et al. 1991). Within allometric models, biomass is 

calculated as the function of different in situ measurements such as tree height, diameter 

at breast height (DBH) and/or wood density (Chave et al. 2005). In tropical forests with 

a high amount of diversity, allometric models for individual species cannot be 

implemented without losing accuracy. To overcome this limitation, special allometric 

models for tropical forests (e. g. moist tropical forests) were invented (Chave et al. 2005) 

and improved (Chave et al. 2014). However, the collection requires a costly and time-

consuming field inventory. Tropical forests are often highly inaccessible due to terrain, 

vegetation and the lack of road networks which complicates field data acquisitions. 

Remote sensing presents a solution for collecting biomass data without retrieval on-site. 

Instead, data can be recorded remotely by aircraft or satellite. This allows data 

acquisitions with extensive spatial and temporal coverage (Mitchard 2018; Goetz et al. 

2009). Nevertheless, in-situ data are necessary to calibrate and validate biomass 

estimations derived from remote sensing signals.  

 

4. Basics of Remote Sensing 

The following section gives an introduction to remote sensing to enable a better 

understanding of its ability to derive AGB.  

All objects in the universe emit electromagnetic radiation, except for objects at absolute 

zero. Remote sensing sensors record the emitted or reflected electromagnetic radiation 

from earth surface features (Campbell and Wynne 2011). Electromagnetic radiation can 

be sub-divided in gamma-ray, x-ray, ultraviolet (UV), visible, infrared, microwaves, and 

radio waves, which together form the electromagnetic spectrum (Figure I-4).  
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Figure I-4: The electromagnetic spectrum, including wavelength, frequency, and energy  (ESA / AOES 

Medialab 2012). 

 

All parts of the electromagnetic spectrum can be described according to the fundamental 

wave theory. Electromagnetic radiation consists of an electric field (E) and a magnetic 

field (H) oriented at right angles and both perpendicular to the axis of dispersion 

(Campbell and Wynne 2011). A schematic overview of the components of 

electromagnetic radiation is displayed in Figure I-5.  

 

 

Figure I-5: Electric (E) and magnetic (H) fields of electromagnetic radiation (Campbell and Wynne 2011) 

 

Electromagnetic energy is characterized by the parameters wavelength, frequency, and 

amplitude. A wavelength (λ) is defined as the distance from one peak to the next and is 

measured in units of length. The frequency (v), expressed in hertz (Hz), is the number of 

waves passing a fixed point per second. The energy level of an electromagnetic wave is 
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called the amplitude. It is equivalent to the height of each crest, measured as watts per 

square meter per micrometer (W * m² * µm) (Campbell and Wynne 2011).  

Electromagnetic waves travel with the velocity of light (c), a constant of 

299,792.458 km/s, expressed by 

𝑐 = 𝜆𝑣.     (eq. I-1) 

The relation of frequency and wavelength indicates that frequency and wavelength are 

inversely proportional, as can be seen also in Figure I-4.  

Even if the physical principles are the same, the field of remote sensing distinguishes 

between active and passive systems. In the following section, the general physics of 

passive systems is introduced. While different active remote sensing systems and their 

potential to derive biomass and thus carbon are presented in section I-5.2. 

4.1. Passive systems 

Passive systems measure the radiation that is reflected or emitted by an object. They are 

dependent on an external energy source such as the reflected sunlight or thermal infrared 

signals from fires (Schowengerdt 2007). Passive systems measure wavelength in a range 

from 0.4 – 14 µm (400 – 14,000 nm), which is the visible (VIS), near-infrared (NIR), 

mid-infrared (MIR), and thermal infrared (TIR) part of the electromagnetic spectrum 

(Figure I-4) (Lillesand et al. 2015). The TIR, which is the self-emitted thermal radiation 

from the earth, is not directly dependent on the sun as an energy source, and, therefore, 

measurements can be carried out at night (Schowengerdt 2007).  

Materials on Earth react differently to the incident radiation because they can reflect, 

emit, transmit or absorb the sunlight. Reflection refers to the processes that are 

characterized by a change in the radiation's direction but without absorption or emission 

of radiation energy. Reflection can be diffuse (diffuse reflectance) or directed (specular 

reflectance). Absorption, on the other hand, is the intake of part of the energy by an object. 

In contrast, emission is the radiation of secondary heat radiation and transmission refers 

to the transit of radiation through an object without any further change in energy 

(Borengasser et al. 2008). These properties vary depending on material, shape, size, and 

physical and chemical characteristics, such as the moisture content, of the regarded 

object. The most important properties that influence reflection are color, structure and 

surface condition. Since every material on the earth's surface has unique properties in this 

respect, it is possible to identify the substances by analyzing the spectral signatures in the 
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same way as a fingerprint (Campbell and Wynne 2011). Figure I-6 displays typical 

spectral signatures of water, soil, and green (and healthy) vegetation in a spectral range 

from 500 – 2,500 nm. The figure shows the high separability between the different land 

cover types using the electromagnetic spectrum. Strong absorption values in the VIS at 

490 nm and 650 nm, consequently in the blue and red wavelength range, are typical for 

vital vegetation (Borengasser et al. 2008; Thenkabail et al. 2012). These features are 

referred to as chlorophyll absorption bands since the blue and red light is required and 

absorbed by chloroplasts for photosynthesis. This absorption indicates high chlorophyll 

a and b contents within healthy leaf cells (Curran et al. 1991). Green light, on the other 

hand, is reflected by healthy vegetation forming the so-called green peak, a higher 

reflectance in the green-wave range at 600 nm (Gitelson et al. 1996). Another 

characteristic feature for green vegetation is the significant increase in range between 

680 – 700 nm, referred to as the red edge (Horler et al. 1983). This phenomenon results 

from the fact that healthy vegetation absorbs red light for photosynthesis, but strongly 

reflects infrared light at the interfaces of leaf cell walls and intercellular space. Depending 

on the plant type, reflectance ranges between 30 – 70 % (Borengasser et al. 2008). 

Furthermore, a decrease of the reflectance in the SWIR (1,300 – 2,500 nm) can be 

detected in the vegetation signature. The strongest absorption can be identified in the 

water absorption bands, especially at 1,450 nm and 1,950 nm (Chemura et al. 2017). 

Water absorption bands originate from the vibrational process of hydrogen bonds 

(Thenkabail et al. 2012). The spectral signature of vegetation varies according to the 

vegetation type, which is why it is possible to classify not only vegetation but also 

different vegetation types. 
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Figure I-6: Spectral signatures of different land cover types (Lillesand et al. 2015; Eumetrain 2017). 

 

4.2. Active systems  

Active systems, on the other hand, actively emit energy and detect the energy, which is 

reflected and backscattered by the objects. This measurement method makes the sensors 

independent from other energy sources such as the sun-light. In the following section the 

two active systems radar (radio detection and ranging) and LiDAR (light detection and 

ranging) are presented and discussed.  

4.2.1. Radar (radio detection and ranging) 

Synthetic Aperture Radar (SAR) can overcome the limitations of passive remote sensing. 

It is an active remote sensing technique that transmits microwave pulses at a given 

frequency to the earth's surface and measures the backscattered energy, which is recorded 

as magnitude and phase measurements (Campbell and Wynne 2011). Since the system 

uses its own source of energy, acquisitions can be made independent of the sun at any 

time of the day. The relatively long wavelengths used by radar (1 mm – 1 m) penetrate 

through clouds and thus enable imaging under almost all weather conditions (Richards 

2009).  

A radar system primarily measures time. The antenna sends out pulsed microwaves and 

detects the time it takes for the echoes to return to the antenna. This measured time 

determines the accurate distance of the target. Energy is transmitted and received either 

by one (monostatic) or two (bistatic) antennas (Richards 2009).  
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The geometrical orientation of the oscillations of a wave is specified by its polarization 

(Campbell and Wynne 2011). Most radar systems use the simple linear polarization for 

transmitting and receiving electromagnetic waves. In general, the systems either transmit 

linear horizontally (H) or linear vertically (V) polarized energy. Since scatterers can 

change the polarization of the wave, sensors receive both horizontally and vertically 

polarized energy in different channels of a radar system (Cloude 2010): 

 horizontal transmission and horizontal reception = HH 

 vertical transmission and vertical reception = VV 

 horizontal transmission and vertical reception = HV, and 

 vertical transmission and horizontal reception = VH. 

HH and VV are called like-polarized or co-polarized since their transmitted and received 

polarization are identical. With an orthogonal transmitted and received polarization, HV 

and VH are referred to as cross-polarized (Campbell and Wynne 2011). In general, 

horizontally polarized waves are more sensitive to objects that are horizontally oriented, 

and vertically polarized waves are more sensitive to vertically oriented targets. Besides, 

the cross-polarized waves are influenced more by volume scatterers than the co-polarized 

waves. However, co-polarization is affected strongly by surface properties such as 

moisture (Le Toan et al. 1992). Using different polarizations thus allows distinguishing 

between different land cover types and properties (Campbell and Wynne 2011). Radar 

systems can be single-polarized, dual-polarized or quad-polarized, depending on the level 

of polarization used by the sensor. Single-polarized systems are based on one polarization 

(HH or VV or HV or VH), whereas dual-pol sensors are using two different polarizations 

as HH and HV or VV and VH. Quad-polarization systems can transmit and receive all 

four polarizations and thus allow the best separability of land cover classes (Richards 

2009).  

In addition to different polarizations, SAR systems transmit energy in varying frequencies 

and wavelengths Figure I-4. The deviation based on bands originates from the military 

development of radars. Operational radar systems generally use a single band. Table I-1 

displays the satellites used during this thesis, their specific band names, wavelength and 

frequency.  
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Table I-1: Radar frequencies and wavelengths (European Space Agency 2020). 

Band Frequency [GHz] Wavelength [cm] Satellites used in this thesis 

P 0.255 – 0.39 133.00 – 76.90  

L 0.39 – 1.55 76.90 – 19.30 ALOS PALSAR-1 and -2 

S 1.55 – 4.20 19.30 – 7.10  

C 4.20 – 5.75 7.10 – 5.20 Sentinel-1, Radarsat-2 

X 5.75 – 10.90 5.20 – 2.70 TerraSAR-X, Tandem-X 

Ku 10.90 – 22.00 2.70 – 1.36  

Ka 22.00 – 36.00 1.36 – 0.83  

Q 36.00 – 46.00 0.83 – 0.65  

V 46.00 – 56.00 0.65 – 0.53  

W 56.00 – 100.00 0.53 – 0.30  

 

For imaging airborne and space-borne radar remote sensing the most commonly used 

bands are C-, K-, X-, L- and P-band (Campbell and Wynne 2011). Radar bands and their 

characteristic wavelength differ in the penetration depth of the signal into the soil or 

vegetation. Under dry conditions, the penetration depth increases with increasing 

wavelength. Furthermore, waves are sensitive to objects similar in size to the wavelength. 

The energy transmitted by the sensor is scattered back from features on the earth's surface. 

Scattering is defined as the redirection of electromagnetic energy (Campbell and Wynne 

2011). Depending on the chemical and physical properties of the target, such as roughness 

or moisture, radiation is backscattered differently, which influences the received amount 

of energy backscattered to the sensor. Furthermore, the backscattered signal is influenced 

by sensor parameters such as the wavelength and the polarization, as mentioned before. 

The three most common scattering mechanisms are surface scattering, volume scattering 

and double-bounce as displayed in Figure I-7 (Richards 2009). Surface scattering 

describes the scattering process where energy is scattered back from an object without 

interacting with other objects. Depending on the target's roughness, parts of the energy 

are scattered back to the sensor, where they are measured. The roughness of the surface 

is relative to the wavelength of the sensor. With increasing wavelength, the surface 

appears smoother to the sensor (Richards 2009). A very smooth surface behaves similar 

to a mirror and scatters the radiation away from the sensor. With increasing roughness, 

more scattered energy reaches the sensor (see Figure I-7). Volume scattering, on the 

contrary, is influenced by numerous scattering elements. This type of scattering occurs if 

the radar pulse penetrates a 3D body (Campbell and Wynne 2011). Tree canopies are 

typical volume scatterers because the energy is scattered between leaves and/or branches. 
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Double-bounce, or dihedral scattering, occurs when the radar pulse hits two relatively 

smooth surfaces that are perpendicular to each other. The returned signal is particularly 

strong since the energy is scattered back into the direction of the sensor (Richards 2009).  

 

 

Figure I-7: Schematic overview of the different scattering mechanisms surface scattering, volume 

scattering and double-bounce, arrows simulate directions of energy (own graphic).  

 

Interferometric SAR (InSAR) refers to the method of correlating two SAR images 

acquired from slightly different positions of the sensor. Two SAR images can be acquired 

using either single-pass InSAR (two or more receiving antennas on a platform that 

collects two images within milliseconds) or repeat-pass InSAR (one receiving antenna 

that collects two images during two different overpasses of the sensor). The result of 

correlating the SAR images is called interferogram and consists of two parts, first the 

coherence, second the phase difference of the backscattered signal (Santoro et al. 2018). 

Coherence is hereby defined as the amplitude of the complex correlation coefficient 

between those two SAR acquisitions (Baltzer et al. 2007; Lu et al. 2015). The phase 

describes the oscillation of an electromagnetic wave, measured as the phase angle. 

InSAR can be combined with the so-called polarimetric SAR (PolSAR) approach, during 

which the SAR imaging process is repeated for all the different polarizations (HH, VV, 

HV, and VH) and their coherent combination (Cloude 2010; Lavalle and Hensley 2015). 

The combination of both techniques leads to the complex polarimetric InSAR (Pol-

InSAR) technique, which unites the advantages of both SAR techniques and enables the 

investigation of the structure of volume scatterers, such as forests, based on phase and 

coherence (Cloude and Papathanassiou 2003; Cloude 2010). 
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4.2.2. LiDAR (light detection and ranging) 

LiDAR sensors are active systems that emit pulses of light in the infrared or visible 

spectrum and measure the time it takes for the pulse to return to the sensor. Depending 

on the land cover, the pulse can generate one or many returns, for example, in a canopy 

cover. LiDAR systems can be on board aircrafts or satellites. The area that is illuminated 

by the sensor is called laser footprint. Its size varies from centimeters (airborne) to several 

meters (space-borne). The distance between the sensor and the signal reflecting object is 

defined as the return time (Lillesand et al. 2015). LiDAR can penetrate the tree canopy, 

enabling the detection of the 3D canopy structure as well as ground information (Lefsky 

et al. 2002).  

LiDAR systems are divided into two recording methods. On the one hand the discrete-

return and on the other hand the full-waveform LiDAR systems (Lefsky et al. 2002). The 

first one uses real-time pulse acquisition of the returned signal. This approach results in 

a waveform partitioned in discrete time-stamped pulses, from which the individual 

position of the objects can be derived (Mallet and Bretar 2009). This type of LiDAR 

system typically only detects the first and last pulses and some intermediate pulses. 

Therefore, an accurate canopy cover estimation is limited by the small number of echoes 

(Nie et al. 2017). The newer generation of LiDAR systems, on the other hand, record the 

entire backscatter energy for equal time intervals (Mallet and Bretar 2009). These so-

called full-waveform LiDAR systems enhance the accuracy and resolution of the pulse 

detection and thus produce more information about the canopy structure. Remote sensing 

for biomass monitoring 

 

5. Remote sensing for biomass monitoring 

The relationships between the biophysical properties of vegetation and remote sensing 

observations can be used to derive biomass and thus the carbon content (Goetz et al. 2009; 

Englhart et al. 2011; Goetz and Dubayah 2011; Saatchi et al. 2011; Englhart et al. 2012). 

Several studies investigated and summarized the derivation of AGB and the carbon 

content, based on different remote sensing sensors and methods (Goetz et al. 2009; Lu et 

al. 2015). AGB can be derived by remote sensing in two ways, directly and indirectly 

(McRoberts et al. 2015). The first method relates the remote sensing data directly to the 

biomass stock by calibrating it to AGB field measurements using machine learning 



I. Introduction 

19 

algorithms (Goetz et al. 2009; Avitabile et al. 2012). The indirect approach is based on 

parameters that are first obtained from remote sensing data. These include parameters 

such as the fraction of forest cover, canopy density or diameter, on the basis of which the 

biomass is then derived by, e.g. multivariate regressions, K nearest-neighbor, and neural 

network (Lu 2006; Sousa et al. 2015). The development of robust relationships between 

forest attributes such as crown height, basal area, DBH, and remote sensing parameters 

are good examples (Goetz and Dubayah 2011). 

 

5.1. Passive Systems 

The wide range of different spatial, spectral, radiometric, and temporal resolutions of 

optical sensors offers multiple suitable techniques to extract parameters for AGB 

modeling (Lu 2006; Baccini et al. 2008; Avitabile et al. 2012; Singh et al. 2014).  

Via land cover information derived from spectral signatures as described in section I-4.1, 

indirect estimations of AGB become a possibility. The spectral bands can be used to 

calculate vegetation indices that minimize solar irradiance and emphasize the vegetation 

signal (Foody et al. 2003; Sousa et al. 2015; Li et al. 2020). Within this approach, known 

values for individual land cover types and their density can be used to map different types 

of forests and estimate AGB over a large area (Bourdeau et al. 2008; Steininger 2010; 

Goetz and Dubayah 2011; Lu et al. 2015). In addition, the subpixel-based variables can 

be used as input variables for AGB estimation (Huang et al. 2009; Yan et al. 2015). 

Information within a pixel originates from the combination of several land coverages in 

that area. Using spectral unmixing techniques like the spectral mixture analysis (SMA), 

the reconstruction of the individual components of the pixel, based on pure reference 

signatures is possible. This approach reveals more comprehensive information about a 

single pixel and improves the AGB estimation using spectral features (Basuki et al. 2012; 

Lu et al. 2015; Peroni Venancio et al. 2020). Besides spectral properties, image texture 

properties can be used to derive AGB estimations from optical data (Lu and Batistella 

2005; Sarker and Nichol 2011; Lu et al. 2015; Phua et al. 2017). This approach uses the 

multi-dimensional variance, which is observed for the image under a moving window (Lu 

et al. 2015). For complex forest structures, these textures provide better results than the 

sole use of spectral signatures.  
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The potential and the limits of applying optical remote sensing for deriving biomass have 

been sufficiently discussed in many studies (Foody et al. 2003; Lu et al. 2005; Lu et al. 

2015; Li et al. 2020). A sensitivity to the structure and density of vegetation, and thus 

AGB, in the visible and near-infrared wavelength range was demonstrated (Avitabile et 

al. 2012). However, the methodology has not always proven to be robust for large areas. 

The spectral variables are influenced by external factors such as soil moisture, vegetation 

phenology and the atmosphere (Lu et al. 2015). This is often due to the fairly long 

repetition time of the satellite acquisitions (mostly days to weeks), compared to the rapid 

changes in weather and surface conditions (Goetz et al. 2009).  

Moreover, due to the relatively short wavelengths in which passive sensors record, the 

sensors are limited in high biomass ranges because the satellite signal is saturated (Lu et 

al. 2015). The point of saturation primarily depends on the forest density and partly on 

the forest structure, but also the quality of the reference and remote sensing data (Ghasemi 

et al. 2011). Scientific literature reports a saturation level for biomass values of 80 – 

200 t/ha for optical sensors such as Landsat and Sentinel-2, depending on the forest cover 

types (Li et al. 2010; Avitabile et al. 2012; Zhao et al. 2016; Pandit et al. 2018; Li et al. 

2020). This saturation results in AGB underestimations especially in dense forests such 

as tropical forests (Lu et al. 2015).  

Besides the limitation of the optical satellite signal in dense tropical forests, a central issue 

in the humid tropical regions is the omnipresent cloud cover (Asner 2010). To overcome 

these limitations, the thesis at hand is focused on active remote sensing systems. 

5.2. Active Systems 

5.2.1. Radar 

SAR data is often used for AGB estimations since the systems are weather and day light 

independent. Especially the issue if substantial cloud cover in humid tropical regions can 

be overcome by SAR systems. Furthermore, and even more importantly, SAR can 

penetrate vegetation and is sensitive to the water content of vegetation and other objects 

(Koch 2010; Lu et al. 2015). There are generally three different methods when using SAR 

for biomass estimations: the backscatter approach, coherence approach and phase-based 

approach (Baltzer et al. 2007; Koch 2010; Ghasemi et al. 2011; Lu et al. 2015).  
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a. AGB estimation based on backscatter amplitudes 

The relationship of backscatter and AGB has been discussed in several studies so far (Le 

Toan et al. 1992; Beaudoin et al. 1994; Saatchi et al. 2007; Sandberg et al. 2011; Sandberg 

et al. 2014; Joshi et al. 2015; Yu and Saatchi 2016; Joshi et al. 2017; Urbazaev et al. 2018; 

Cartus and Santoro 2019). This approach uses the backscatter, which is the energy 

received by the sensor after transmission and relates it to reference AGB measurements.   

The total backscatter from forest areas is composed of a combination of different 

scattering mechanisms, while the main component results from volume scattering tree 

canopies. However, surface scattering from the ground and double-bounce scattering 

originating from the ground and tree trunks also contribute to the overall backscattering 

intensity. Backscatter typically increases with augmented AGB values. Nevertheless, at 

a certain point the sensitivity of the backscatter stagnates, which is called the biomass 

saturation level. This level is dependent on the wavelength of the sensor (Sandberg et al. 

2011; Joshi et al. 2017). Longer wavelength radar can penetrate the canopy and thus 

collect more information on the vertical structure. The relatively short X- and C-bands (3 

and 5 cm, respectively) are only able to penetrate through leaves that are about the same 

size as the wavelength of the bands (Ghasemi et al. 2011). However, the energy can be 

backscattered from branches located in the higher canopy. In contrast, the L-band with a 

wavelength of up to 30 cm is mainly scattered on trunks and thick branches. The very 

long wavelength P-band SAR data, can deeply penetrate the canopy and is backscattered 

by trunks and the ground and is, therefore, more suitable for relatively high AGB contents 

(Lu et al. 2015). Besides the wavelength, parameters such as the polarization, incidence 

angle of the system, terrain properties (e.g. roughness and moisture), and the land cover 

influence the backscattering amplitude and thus the biomass saturation level (Lu et al. 

2015). Cross-polarizations, were found to be more suitable for biomass estimations than 

co-polarized data (Le Toan et al. 1992). Furthermore, more shallow incident angles are 

affected by weakened scatter contributions due to longer paths through the canopy 

(Koyama et al. 2019).   

Previous studies showed the sensitivity of long-wave L- and P-band data for biomass 

estimations using backscatter in parametric (e.g. linear regression, multiple linear 

regression) and non-parametric models such as K-nearest neighbor (K-NN), artificial 

neural network (ANN), Random Forest, Support Vector Machine (SVM), and Maximum 

Entropy (MaxEnt) (Ghasemi et al. 2011; Joshi et al. 2015; Urbazaev et al. 2015; Yu and 
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Saatchi 2016; Thiel and Schmullius 2016; Kumar et al. 2017; Antropov et al. 2017; 

Urbazaev et al. 2018; Cartus and Santoro 2019). Since, up to now, P-band is only 

available on aircrafts, only few studies have been conducted, analyzing small areas 

(Santos et al. 2003; Saatchi et al. 2019; Liao et al. 2019). AGB estimations based on 

backscatter from the Advanced Land Observing Satellite's Phased Array-type L-band 

Synthetic Aperture Radar (ALOS PALSAR) has been successfully performed by several 

authors (Mermoz et al. 2014; Hamdan et al. 2014; Antropov et al. 2017; Urbazaev et al. 

2018). Especially in tropical forests, an AGB estimation is often based on L-band SAR 

to overcome the limitations of backscatter saturation in dense forests (Wijaya 2009; 

Hamdan et al. 2011; Mitchard et al. 2011; Hamdan et al. 2015; Wijaya et al. 2015; 

Mermoz and Le Toan 2016; Chaparro et al. 2019; Koyama et al. 2019). For L-band SAR, 

the biomass saturation level for tropical forests ranges from 50 to 250 t/ha (Hamdan et al. 

2011; Englhart et al. 2011; Saatchi et al. 2011; Chaparro et al. 2019). Using backscatter 

ratios (Foody et al. 1997) and/or texture, measures (Kuplich et al. 2011) were found to 

improve the AGB estimations.  

b. AGB estimation based on coherence and phase 

To overcome the limitations of the radar saturation effect, InSAR and Pol-InSAR are 

well-known techniques for estimating the AGB (Solberg et al. 2017; Ghasemi et al. 2018; 

Agrawal et al. 2019).  

The coherence approach relies on the assumption that interferometric coherence is related 

to the vertical distribution of the backscattering elements and thus allows an exact 

localization of the scattering center of an object and the estimation of the canopy height 

(Ghasemi et al. 2011; Santoro et al. 2018). Based on the canopy height, AGB can be 

estimated by e.g. applying allometric equations or regression models (Chave et al. 2005; 

Koch 2010; Mette et al. 2012). Since coherence based models are sensitive to the vertical 

structure of trees, they are more suitable for AGB estimations than backscatter based 

models, especially in tropical forests characterized by dense vegetation (Lu et al. 2015; 

Santoro et al. 2018). Coherence can be applied to linear regression models (Fransson et 

al. 2010) or machine learning algorithms, such as Random Forest or Maximum Entropy, 

to estimate the AGB (Wilhelm et al. 2014; Stelmaszczuk-Górska et al. 2016). A 

combination of backscatter and coherence increases the value at which the saturation 

effect occurs, as shown in Thiel and Schmullius 2016; Soja et al. 2017. However, the 
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coherence based models can be limited by external factors such as wind speed, 

temperature and humidity causing a decorrelation between two InSAR images. 

  

Besides the coherence, the phase difference between two InSAR images is exploited for 

canopy height estimations (Thiel and Schmullius 2013; Solberg et al. 2017; Santoro et al. 

2018; Hosseini et al. 2019). This technique uses interference patterns, referred to as 

fringes, to model the "topographic height of the scattering phase center" within a target 

such as the canopy (Papathanassiou and Cloude 2001; Baltzer et al. 2007). For both, the 

coherence and the phase-based approach, the height of the center relies on parameters 

such as the density or canopy structure. Furthermore, the sensor characteristics - 

frequency, incidence angle, and polarization - affect the scattering processes and thus, the 

location of the scattering center (Koch 2010). Nevertheless, Ghasemi et al. (2018) showed 

that the application of Pol-InSAR heights for AGB estimations increases the saturation 

level compared to the backscatter approach for L-band data to a range from 150 to 

300 t/ha.  

Since the scattering centers derived from InSAR and Pol-InSAR data usually are not 

located at the top of the canopy or the ground surface but somewhere in between, the 

canopy height is not directly derived but can be retrieved with ambitious model-based 

inversion techniques (Liao et al. 2018; Simard and Denbina 2018). The inversion 

techniques are described in detail in section I-5.  

 

5.2.2. LiDAR 

a. Above-ground biomass estimation using LiDAR 

This second active remote sensing system cannot measure AGB directly, but it enables 

the collection of vegetation structure parameters. LiDAR does not only measure the top 

of the canopy, but can derive the vertical structure and thus a 3D image of the vegetation 

instead. This allows the determination of attributes such as the crown diameter or the 

canopy height (Asner et al. 2012b). Since it is well known that AGB strongly correlates 

with forest height and the canopy structure, LiDAR-derived height metrics and 

penetration indices are widely used to model AGB (Ioki et al. 2014; Nie et al. 2017; Wan-

Mohd-Jaafar et al. 2017; Pereira et al. 2018; Dong et al. 2019; Tian et al. 2019). It has 

been shown in several studies that LiDAR metrics, such as the mean canopy height 
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(MCH) or quadratic mean canopy height (QMCH), are sensitive to vertical forest 

structures (Asner et al. 2012b; Englhart et al. 2013). Since vertical canopy structures are 

directly related to the AGB, a linear correlation between LiDAR metrics and the AGB 

can be found (Drake et al. 2003; Jubanski et al. 2013; Meyer et al. 2013; Asner et al. 

2018). AGB can be estimated based on LiDAR metrics with statistical modeling or 

allometric models (Asner et al. 2012b).  

Most LiDAR-related studies use airborne measurements to accurately predict the AGB 

(Asner et al. 2010; Mascaro et al. 2011; Asner et al. 2012a). Ballhorn et al. (2009), 

Kronseder et al. (2012), and Englhart et al. (2013) estimated AGB from in-situ data and 

airborne LiDAR measurements in moist tropical forests in Indonesia. Although airborne 

sensors provide highly accurate biomass estimates, the high costs involved usually limit 

their application to small areas or transects (Avitabile et al. 2012; Asner et al. 2012a; 

Asner et al. 2012b; Ellis et al. 2016; Levick et al. 2016; Asner et al. 2018; Dong et al. 

2019). Nevertheless, AGB estimations derived from airborne LiDAR data in combination 

with field inventory data can be used as an accurate reference data for satellite-based 

AGB modeling (Asner et al. 2012b; Englhart et al. 2013). The accuracy is thereby 

dependent on the sensor system (airborne or space-borne, photon-counting, full-

waveform or discrete-return LiDAR), the forest type and density but also the field 

inventory plot size (Frazer et al. 2011). 

As a cost-effective alternative for large areas, the full-waveform sensor of the Geoscience 

Laser Altimeter System (GLAS) on board the Ice, Cloud and Elevation Satellite (ICESat) 

(2003 – 2010) has already been proven to be valuable for biomass and crown height 

estimations (Lefsky et al. 2005; Harding and Carabajal 2005; Carabajal and Harding 

2006; Baccini et al. 2008; Bourdeau et al. 2008; Lefsky 2010; Chi et al. 2017).  

With the launch of the follow-up mission, ICESat-2, in September 2018 carrying the 

Advanced Topographic Laser Altimeter System (ATLAS), an improvement of previous 

estimations is possible due to higher data availability and spatial resolution. ATLAS is a 

photon-counting LiDAR that detects sensitivities at the photon level. The sensor works 

at the wavelength of green light (532 nm) and a pulse repetition rate of 10 kHz 

(Neuenschwander and Pitts 2019b). This significantly higher repetition rate compared to 

GLAS enables a higher resolution in along-track direction. Furthermore, ATLAS uses six 

beams arranged in three single pairs, separated by 90 m in across-track direction, 

containing a low-energy and a high-energy beam. This constellation enables the detection 
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of surfaces with low and high reflectivity (Neuenschwander and Pitts 2019b). The 

nominal diameter footprint for each beam is about 17 m (Neuenschwander and Pitts 

2019b). Within the ICESat-2 product, photons collected by ATLAS are classified as 

terrain or canopy. All derived terrain and canopy height values are then defined as 

absolute heights above the WGS84 ellipsoid (Neuenschwander and Pitts 2019a).  

Narine et al. (2019) were the first to test a simulated ICESat-2 canopy product in 

combination with optical data from Landsat for mapping AGB in Texas, US. The results 

showed potential for biomass estimations, reaching an R² of 0.51. Since the analysis is 

based on simulated data, there is still the possibility that real data would lead to model 

improvements. Liu et al. (2020) investigated the suitability of ATLAS in combination 

with optical data from Landsat 8 and Sentinel-2 canopy height data for mapping burned 

areas in California and New Mexico, obtaining an R² of 0.61 with a moderate correlation 

(r = 0.78). 

It can be concluded that aircraft data provides an excellent spatial resolution but cannot 

cost- and time-effectively survey large areas on a continental or even global scale. The 

use of satellite-based data allows cheaper and more comprehensive long-term data 

acquisitions but at costs of the spatial resolution (Goetz et al. 2009). A combination of 

these acquisition methods enables the coverage of large areas with a high accuracy and 

an excellent spatial resolution.  

In general, LiDAR can overcome the saturation limitations of optical and radar data, but 

the limited availability of LiDAR data and the restricted spatial resolution prevents its 

comprehensive application (Lu et al. 2015). Nevertheless, LiDAR offers accurate 

calibration and validation data for large-scale AGB mapping using radar. 

In this thesis, AGB reference data, which were extrapolated by relating field data to 

airborne laser scanning (ALS) point cloud signals, were used. This AGB reference data 

cover all ranges of AGB, from shrubs to tropical rainforests and presents a highly accurate 

AGB reference. 

b. Below-ground biomass estimation using LiDAR 

Besides the estimation of AGB based on space-borne LiDAR data, Ballhorn et al. (2011) 

used ICESat measurements to identify the topography of carbon-rich peatlands in 

Indonesia successfully. This indirect approach for below-ground carbon content modeling 

identifies convex-shaped peat domes beneath the forest vegetation with airborne and 



I. Introduction 

 

26 

space-borne LiDAR instruments. Jeanicke et al. (2008) identified a strong correlation 

between the convex peat dome surface derived from a digital terrain model (DTM) and 

the thickness of the dome-shaped peat layer. An estimation of the carbon stock became 

possible after modeling the 3D peat layer (Jaenicke et al. 2008). Measurements with 

airborne LiDAR result in more accurate estimates due to the higher spatial resolution for 

the surface 3D models. However, this technology is extremely costly for large areas. A 

satellite-based approach allows screening the whole country. The launch of ICESat-2 

presents new possibilities to model carbon-rich peatlands and are analyzed in the fourth 

paper included in this thesis.  

Resulting biomass and carbon local, nationwide or even global maps, derived from 

remote sensing signals, support forest monitoring or risk managing systems under 

REDD+ (Reducing Emissions from Deforestation, forest Degradation, and the role of 

conservation, sustainable management of forests, and enhancement of forest carbon 

stocks) and other programs and policymakers, protecting forests and analyzing carbon 

release. 

 

6. Modeling approaches  

6.1. Canopy height modeling algorithms 

Canopy height is the most crucial single forest variable to model AGB, e.g. by applying 

allometric equations or regression models (Koch 2010; Chave et al. 2005; Mette et al. 

2012). Based on InSAR and Pol-InSAR data, the canopy height can be derived. However, 

the canopy height cannot directly be measured by InSAR or Pol-InSAR, but can be 

derived with ambitious model-based inversion techniques. A frequently used model based 

on coherence is the Interferometric Water Cloud Model (IWCM) developed by Attema 

and Ulaby (Attema and Ulaby 1978; Soja et al. 2015; Soja et al. 2017; Askne et al. 2017; 

Santoro et al. 2018; Agrawal et al. 2019). This model exploits the total coherence of a 

forest and divides it into the individual coherence sums of soil and canopy cover (Lu et 

al. 2015; Santoro et al. 2018). Cloude and Papathanassiou (2008) presented a new 

algorithm for quantifying variations in vertical structures based on a new 3D radar 

imaging technique called polarization coherence tomography (PCT). PCT reconstructs 

vertical profiles based on measurements of volume height and topographic phase. 
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Different parameters are defined to characterize an average vertical distribution profile of 

relative reflectivity with SAR data (Luo et al. 2011; Li et al. 2015; Zhang et al. 2018). 

Additionally, the coherence based Random Volume over Ground model (RVoG) was 

successfully applied in multiple studies for estimating canopy heights as it interprets 

interferometric coherence as a function of vertical backscatter profiles (Papathanassiou 

and Cloude 2001; Cloude and Papathanassiou 2003; Lavalle et al. 2012; Sun and Song 

2015; Olesk et al. 2016; Sportouche et al. 2018; Babu and Kumar 2018; Aghabalaei et al. 

2020). Different studies have applied the RVoG model to various forest ecosystems and 

frequencies, showing that the results are partly dependent on forest density (Garestier et 

al. 2008; Neumann et al. 2010; Schlund et al. 2014; Chen et al. 2016). Using repeat-pass 

InSAR data, the RVoG model can be affected by temporal decorrelation. To compensate 

for errors due to temporal decorrelation and improve the AGB estimation, a model 

combining the RVoG with a Gaussian-statistic motion model of canopy elements was 

formulated in 2015 (Lavalle and Hensley 2015). This model is termed Random Motion 

over Ground (RMoG) model and considers volumetric and temporal decorrelation effects 

resulting from random motion. Up to date only a few studies have been conducted using 

the novel RMoG model (Zhang et al. 2017; Jung et al. 2018; Ghasemi et al. 2018; Qi Z. 

et al. 2019). 

 

6.2. Biomass modeling algorithms 

For biomass estimations from remote sensing signals, several types of models such as 

parametric and non-parametric algorithms can be applied (Lu et al. 2015). Parametric 

algorithms are models based on the relationship between dependent and independent 

variables and specified by parameters, as found in linear and multiple linear regression 

models. 

Regression-based models are the most common parametric algorithm for AGB 

estimations using remote sensing data (Le Toan et al. 1992; Sandberg et al. 2011; Soja et 

al. 2013; Sinha et al. 2015; Makinano-Santillan et al. 2019). A simple linear regression 

assumes a linear relationship between a dependent and an independent variable. The 

approach can be extended to multiple predictors (multiple linear regression). In this case, 

the remote sensing derived variables show a strong correlation with AGB but not with 

each other. However, AGB and remote sensing derived variables are usually non-linear, 
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which is why the linear regression can be transformed logarithmically to be more suitable. 

Non-linear models, such as logistic regression models (McRoberts et al. 2013) or power 

models (Næsset et al. 2011), are commonly applied for estimating AGB from purely 

remote sensing derived variables (Lu et al. 2015).  

The physically-based algorithms Water Cloud Model (WCM) and Interferometric Water 

Cloud Model (IWCM) are built on linear regression models. These models describe the 

total SAR signal (backscatter intensity or coherence) over vegetation as the sum of 

ground- and vegetation-scattering (Attema and Ulaby 1978). 

Non-parametric algorithms include models such as K-nearest neighbor (K-NN), support 

vector machine (SVM), artificial neural network (ANN), Random Forest, and Maximum 

Entropy (MaxEnt). These algorithms do not predefine the model structure and are more 

flexible. Nevertheless, non-parametric models are often highly complicated, necessitate 

longer computing times and a high amount of training data. Furthermore, non-parametric 

algorithms are known to be prone to overfitting. Within this thesis, parametric models 

were used to derive biomass estimations from earth observation data. However, an 

extensive summary of major nonparametric algorithms for biomass estimation modeling 

can be found in Lu et al. (2015).  

6.3. Peat surface interpolation  

Several interpolation approaches are known. Inverse Distance Weighting (IDW), Nearest 

Neighbor (NN), Moving Average (MA), and Kriging are probably the best-known ones 

(Wojciech 2018). To model peat dome surfaces from ICESat-2 point data, the 

geostatistical interpolation method Kriging, developed by Matheron (1971) was used. 

Kriging is often described in literature as the method with the best results for modeling 

terrain (Barton et al. 1999; Jassim and Altaany 2013; Yilmaz and Uysal 2017; Ferreira et 

al. 2017). In comparison to other interpolation methods, it can handle irregularly spaced 

data like ICESat-2 measurements. Another advantage is the possibility to simply use the 

kriging defaults or to adjust the model manually. The method supplies accuracies 

associated with each prediction (Ferreira et al. 2017), while it is also the most time-

consuming approach with a computational time of eight to 20 times longer than other 

methods (Jassim and Altaany 2013; Wojciech 2018). 

Kriging assumes that the direction and distance between points have a spatial correlation. 

This spatial correlation is used to explain surface variations. The value of a specific 
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location is predicted by estimating a weighted average of the known values in the 

location’s neighborhood (Wojciech 2018). As a result, the prediction is more accurate at 

points that are closer to observations and declines with increasing distance. Kriging is 

defined as: 

Ẑ(𝑠0) = ∑ 𝜆𝑖𝑍(𝑠𝑖)𝑁
𝑖=1     (Equation I-2) 

Where Z(si) represents the measured values at position i, λi is an unknown weight for the 

Z(si), s0 defines the prediction location, and N is the number of measurements. The 

approach is more sensitive to measurements than other interpolation methods such as 

IDW since its weights are determined by a semi-variogram. Furthermore, it provides 

unbiased estimates (Oliver and Webster 1990).  

 

7. Sources of uncertainty in biomass estimations 

An estimate of biomass and carbon as accurate as possible is necessary to develop 

strategies for reducing carbon emissions. However, estimates of biomass and carbon 

contents are highly imprecise, including different uncertainties, covering a wide range of 

estimation values found in literature.  

Uncertainty analyses of a product are performed to understand error sources, reduce 

uncertainties and to guarantee a robust model.  However, an internationally standardized 

approach for the validation of large scale biomass products is not yet available. 

Uncertainty can result both from random errors and systematic errors. Multiple studies 

showed that the relative errors of biomass estimates could vary between 5 % and 30 % 

(Chave et al. 2003; Saatchi et al. 2007; Mascaro et al. 2011; Lu et al. 2015; Avitabile et 

al. 2016; Rodríguez-Veiga et al. 2019). The level of error depends on factors such as 

forest type, topographic features, and spatial resolution of the sensors, as well as the 

applied models.  

For carbon estimations, many sources of uncertainty are accumulated and propagated 

through a modeling or mapping system. Main sources of errors for AGB and carbon 

estimations were identified, such as inaccuracies within the field inventory design, the 

allometric models including conversion coefficients from volume to biomass, incorrect 

regression models relating variables to AGB, sensor errors, atmospheric conditions, and 

slope. Besides, the spatial accuracy can influence the result of biomass estimations, 
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mainly due to inappropriate geometric corrections, different spatial resolutions, sample 

plot locations, shape and size. The temporal difference between acquisitions can 

furthermore cause inaccuracies, for example, during the model calibration process (Lu et 

al. 2015). An overview of the sources of uncertainty for earth observation based AGB 

estimations are displayed in Table I-2. 

 

Table I-2: Main sources of uncertainty for the remote sensing based AGB estimation approach. 

Error source Explanation 

In-situ data  Measurement errors while collecting field inventory data 

 Allometric model prediction uncertainty 

 Sampling errors due to incomplete representativeness of the 

biomass range, plot size or plot shape 

 Geolocation errors on the plot scale 

Remote 

sensing data 
 Sensor errors (radiometric stability, noise, scanner motions) 

 Geolocation errors on pixel scale 

 Spectral errors (due to atmosphere) 

 Errors due to steep terrain (slope) 

Spatial 

mismatch 
 Inaccuracies due to alignment and sizes of field plots and 

remote sensing map units 

Temporal 

mismatch 
 Inaccuracies due to temporal discrepancies between used 

datasets (deforestation, degradation, regrowth)  

Model 

errors 
 Prediction errors of the models applied to transform remote 

sensing signals in AGB 

 

Providing uncertainty quantifications at pixel level, taking the sources of uncertainties 

mentioned above into account, helps users understand errors and increases the product’s 

acceptance within the international community. Furthermore, the models can be improved 

based on the accuracy assessment. 

 

8. Objectives and structure of the thesis 

In the context of climate change, monitoring carbon sources is essential. Indonesia 

contains enormous carbon sinks in the form of tropical forests and underground peatlands. 

However, the unsustainable management of these ecosystems has led to Indonesia, 
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especially the regions Kalimantan and Sumatra, becoming one of the largest carbon 

emitters in the world. Because many areas in Indonesia are still remote and difficult to 

access, the derivation of biomass values using remote sensing is the only way to monitor 

carbon sinks and sources reliably. Since optical remote sensing methods in the tropics are 

limited by the constant cloud cover, but also because the short wavelengths cannot 

penetrate the dense vegetation, it is necessary to use active remote sensing to derive 

biomass estimates. 

The main goals of this thesis are first the improvement of available AGB estimations, 

including a lower uncertainty to make more accurate information about carbon storage in 

moist tropical forests of Indonesia accessible. Second, the realization of a more accurate 

peatland identification from space in Indonesia, since peatlands are insufficiently well-

known and located to date. These goals can be sub-divided in the tasks for the different 

studies: 

A. Above-ground biomass (AGB) 

1) The robust mapping of high-resolution AGB for extensive areas and reduced 

uncertainties  

 Improvement of the spatial resolution of existing biomass maps enables the 

identification of small-scale biomass variability and changes.  

2) Examination of the potential to overcome the saturation limitations for biomass 

modeling based on backscatter values with the Pol-InSAR approach, and to 

provide high-resolution AGB maps of tropical forests  

 Increasing the threshold at which saturation occurs facilitates the AGB 

estimations in tropical forests containing high biomass values. 

 

B. Below-ground biomass 

Testing the possibility of identifying comprehensive carbon-rich ombrogenous 

peat domes in Indonesia using up to date satellite LiDAR DTM measurements  

 Knowledge about the peat dome topography allows the calculation of peat 

volume and thus, the carbon content of peat domes  
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This thesis is divided into four chapters based on stand-alone publications. In the context 

of this thesis, different radar satellite instruments were used in order to analyze their 

suitability for modeling accurate AGB in Kalimantan, Indonesia. 

The first study (Chapter I) is about AGB modeling based on L-band radar data of the 

ALOS PALSAR satellite of the Japan Aerospace Exploration Agency (JAXA) and its 

follow up mission ALOS-2. ALOS PALSAR and ALOS-2 PALSAR-2 mosaics with a 

spatial resolution of 25 m were used to model biomass of tropical forests in Indonesia 

using backscatter values, polarization ratios and textures for the years 2007, 2009, and 

2015. In combination with L-band data, Sentinel-1a and b C-band radar, launched within 

the Copernicus program by the ESA in 2014 and 2016, respectively, were used for the 

modeling period of 2015.  

Chapter II compares the results of Chapter I to biomass studies in other habitats, which 

are representative of numerous forest biomes and biomass levels worldwide. As part of a 

comprehensive international project funded by the European Space Agency (ESA), this 

work is the so far most expansive inter-comparison of regional-to-national AGB maps in 

terms of area, forest types, input datasets, and retrieval methods. 

In Chapter III, TerraSAR-X (TS-X) and Radarsat-2 (RS-2) single-look complex (SLC) 

imageries were used to model the canopy heights of tropical forests in Kalimantan, 

Indonesia, based on Pol-InSAR. The RS-2 SAR satellite operates a C-band with a 

wavelength of 5.6 cm and a frequency of 5.3 GHz and was launched by the Canadian 

Space Agency (CSA) in 2007. TS-X was launched in June 2007 by the DLR (German 

Aerospace Center). It provides different acquisition modes with varying spatial 

resolutions at X-band wavelength (3.1 cm) with a frequency of 9.65 GHz.  

The last chapter, Chapter IV, is based on the space-borne sensor ATLAS onboard the 

ICESat-2 satellite. ICESat-2 was launched in September 2018 by the National 

Aeronautics and Space Administration (NASA). The sensor is a photon-counting LiDAR, 

that works at a wavelength of 532 nm (green) and a pulse repetition rate of 10 kHz. 

Moreover, the sensor can illuminate the ground and detect terrain heights of the earth 

because it penetrates sparse vegetation. The data is used to create a digital terrain model 

product made accessible by NASA.  

 

The results of the studies provide input for more precise carbon modeling, as well as risk 

managing or forest monitoring systems. The analyses contribute to programs protecting 
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forests and analyzing carbon releases such as (REDD+), "United Nations Environment 

Programme World Conservation Monitoring Centre" (UNEP-WCMC), the "Global 

Canopy Programme", and other similar programs national and subnational level. 
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VI. Synthesis 

1. General discussion 

Fossil fuel and industrial processes are responsible for 32 Gt CO2-eq/y, which equal 65 % 

of the overall emissions for 2010. A further 5 Gt CO2-eq (11 %) originates from forestry 

and other land-use changes (IPCC 2015). However, other studies, such as, van der Werf 

et al. (2009) mentioned high uncertainties for estimating deforestation and degradation. 

They prefer to specify the contribution of the total anthropogenic CO2 emissions due to 

forestry at about 6 – 17 %. The total anthropogenic greenhouse gas emissions for 2010 

are estimated at 49 Gt CO2-eq, while 24 % of these emissions are connected to the 

agricultural, forestry and other land-use sectors. These include the effects of forest and 

peat fires as well as peat decay (IPCC 2015).  

Deforestation and forest degradation in the tropics due to illegal logging and the 

establishment of oil palm plantations account for a significant proportion of the estimated 

numbers. Indonesia, especially Sumatra and Kalimantan, does not merely have the 

world's highest rates of deforestation, but additionally is characterized by peat fires and 

peat degradation (Warren et al. 2017; Enrici and Hubacek 2019). These circumstances 

and processes release vast amounts of CO2 and other greenhouse gases, which is why 

Indonesia became one of the main objectives of REDD+ (Edwards et al. 2012; Enrici and 

Hubacek 2018; Irawan et al. 2019; Enrici and Hubacek 2019). REDD+ involves 

industrialized countries in the protection of tropical forests in order to compensate for the 

excess of their greenhouse gas emissions quota (Enrici and Hubacek 2018; Enrici and 

Hubacek 2019). In addition to the Indonesian government's commitment to REDD+ and 

the establishment of REDD+ projects, the government is trying to improve the country's 

sustainability with projects such as the “Peat Prize” competition and a moratorium on the 

issuing of  new concession licenses (Atwood 2018; Enrici and Hubacek 2019). The 

quantification and monitoring of carbon stocks is a central task for REDD+ projects. In 

order to estimate greenhouse gas emissions accurately, information on the extent of forest 

and peatland loss and damage, is indispensable.  
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This thesis demonstrates the capability of active remote sensing systems (radar and 

LiDAR) to serve as a tool for estimating above- and below-ground biomass and emissions 

by burning and deforestation in tropical forest ecosystems.  

 

In the first study of this thesis (Chapter I), Sentinel-1 C-band and ALOS PALSAR L-

band backscatter signals, ratios and textures were used to robustly estimate accurate and 

high-resolution AGB maps of Kalimantan for three years using a multivariate linear 

regression model. High-accurate AGB derived from the extrapolation of field- to airborne 

LiDAR- data functioned as a reliable reference for calibrating and validating the SAR 

data. The SAR backscatter approach was already well tested for radar-based forest cover 

and biomass mapping (Joshi et al. 2015; Yu and Saatchi 2016; Cartus and Santoro 2019). 

This approach is computationally less intensive than other approaches and transferable to 

different ecosystems. Nevertheless the method is limited by some factors, such as 

backscatter saturation and backscatter variations due to terrain and wetness (Koch 2010; 

Cartus and Santoro 2019). The results of the analysis showed a correlation (R2) between 

the reference biomass and the estimated biomass between 0.69 (2016) to 0.77 (2007). The 

Nash-Sutcliffe efficiency for model performance ranged between 0.70 (2016) to 0.76 

(2007). However, all maps show underestimations at higher AGB levels and an 

overestimation in lower ranges compared to reference AGB. Similar results are shown in 

other regional studies estimating biomass from SAR backscatter values (Joshi et al. 2015; 

Hamdan 2015; Antropov et al. 2017; Urbazaev et al. 2018). One of the main limitations 

of the backscatter approach is that SAR-based AGB estimations suffer from saturation of 

the backscatter signal in the higher biomass range. The saturation level varies depending 

on the sensor wavelength and polarization, as well as the forest structure (Joshi et al. 

2017). AGB studies in tropical forests were mostly conducted based on L-band SAR data, 

being the most suitable operational data for biomass estimation (Wijaya 2009; Wijaya et 

al. 2015; Avitabile et al. 2016; Urbazaev et al. 2018). The saturation level in tropical 

forests, using L-band, ranges about 50 t/ha to 200 t/ha (Hamdan et al. 2011; Englhart et 

al. 2011; Hamdan et al. 2015; Urbazaev et al. 2018). Comparable to Thapa et al. (2015), 

the saturation level could be increased to approximately 200 – 250 t/ha using backscatter 

values and, additionally, backscatter ratios and textures. Besides the saturation effect, 

another limiting factor of the backscatter approach are the moisture conditions of soil and 

vegetation (Thoma et al. 2006; Lu et al. 2015). Especially for tropical forests, located in 
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areas with a high amount of annual precipitation, the estimation of biomass based on 

backscatter can introduce errors. Humidity effects in the Sentinel-1 imageries were 

reduced using the average of scenes acquired during different periods of the year. The use 

of the annual mosaic of ALOS PALSAR is furthermore compensating for humidity within 

the L-band. Analogous to literature, variables based on cross-polarized backscatter were 

found as less influenced by changes in moisture and topography conditions and more 

sensitive to biomass than co-polarized data (Mitchard et al. 2009; Saatchi et al. 2011; 

Hamdan 2015).  

In addition to the biomass estimation, for a period of ten years, a change analysis was 

carried out, identifying areas of forest and thus biomass loss and gain. Modeling the years 

with a consistent method allows a more accurate estimation of the change than relying on 

available biomass maps derived from different models. With the limitations in mind these 

methods can be used for more improved carbon modeling, as well as forest monitoring or 

risk managing systems under REDD+.  

 

The second study (Chapter II) investigates the amount and spatial distribution of forest 

AGB using a range of regionally developed methods based on Earth Observation data for 

Poland, Sweden and regions in Indonesia (Kalimantan), Mexico (Central Mexico and 

Yucatan peninsula), and South Africa (Eastern provinces) for the year 2010. The AGB 

map of Kalimantan from the first study was used in this comparison of different biomes. 

Applying an accuracy assessment for all regional maps using independent field data or 

LiDAR AGB maps resulted in an overall RMSE ranging from 10 t/ha to 55 t/ha (37 % to 

67 % relative RMSE), and an overall bias ranging from −1 t/ha to +5 t/ha at pixel level. 

All regional estimates showcased in an overestimation (up to 63 t/ha) in the lower AGB 

ranges, and an underestimation (up to 85 t/ha) in higher AGB ranges. The outcomes of 

this study can be used as a support when developing algorithms to estimate AGB at 

continental to global scale level. Chapter I and II fulfil the Task A1 of the objectives of 

the thesis (The robust mapping of high-resolution AGB for extensive areas including 

reduced uncertainties). Both studies were carried out as part of the DUE Globbiomass, a 

comprehensive international project funded from the European Space Agency (ESA) in 

order to improve existing biomass estimations with reduced uncertainties for different 

forest ecosystems. 



VI. Synthesis 

 

124 

The third study (Chapter III) analyzed the possibility to overcome the limitations of AGB 

estimations due to the saturation effect (Task A2). Canopy heights of the tropical forest 

were derived from TerraSAR-X and Radarsat-2 X- and C-band Pol-InSAR data for 2015 

in a subset of Kalimantan. Consequently, based on the canopy height, AGB in a 3 m and 

12 m spatial resolution was modelled. Algorithms utilizing the RVoG and the RMoG 

interferometric model were tested to obtain a more accurate and robust forest parameter 

estimation during dry weather conditions. The novel RMoG model-based height 

inversion algorithm resulted in more accurate canopy height estimations than the RVoG 

model. The RVoG model does not take the temporal baseline resulting from repeat-pass 

Pol-InSAR into consideration and is influenced by decorrelation effects due to dynamic 

changes (wind, precipitations, seasonal variations and anthropogenic activities). Using 

Radarsat-2 imagery, the independent validation displayed an R² of 0.63, while the 

modelled canopy heights from TS-X data achieved an R² of up to 0.66, which is 

comparable to other studies within the tropical forests, but based on other models 

(Schlund et al. 2014; Khati et al. 2017; Ghasemi et al. 2018; Schlund et al. 2019). It was 

shown, that not all RS-2 and TS-X data were suitable for modeling canopy height from 

coherence. The parameters that most affect the accuracy of the canopy height model were 

identified as the baselines (temporal and perpendicular), the HoA, the incident angle and 

moist weather conditions since they introduce a stronger decorrelation and thus a low 

coherence. Furthermore, the wavelength affects the results. The general underestimation 

of TS-X data results from the weak penetration depth, limited by the short wavelength of 

X-band. Besides, the penetration depth is dependent from the density of the forest. Since 

forests in Central Kalimantan are very dense and reach a height of up to 30 m, canopy 

height estimation based on short wavelengths is limited. Alongside the density and height 

of the forest, the dielectric properties of the canopy influence the penetration depth, why 

images acquired in the wet season are not suitable for canopy height estimation (Schlund 

et al. 2019). For AGB modeling based on canopy height, most studies use a power 

function regression. The use of linear regression in this context has been confirmed in 

few studies (Köhler and Huth 2010; Odipo et al. 2016). Testing both regression models 

with our data resulted in significant p-values for both regressions but higher R² and lower 

RMSE using a linear regression, why this model was implemented for AGB estimations. 

The derived AGB showed good correlations compared to reference canopy height (R² = 

0.83 for RS-2, R² = 0.84 for TS-X). Similar to the results, all of the pan-tropical and 
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Indonesian maps underestimate higher AGB ranges and overestimate lower AGB values 

(Saatchi et al. 2011; Avitabile et al. 2016). The present study showed that X- and C-band 

Pol-InSAR data could be used together with field inventories and high-resolution data 

such as drone or LiDAR data to support carbon accounting.  

 

To answer Task B Chapter IV investigated the identification of carbon-rich peatlands in 

Central Kalimantan using the novel LiDAR satellite ICESat-2. ICESat-2 terrain height 

transects were compared with a highly-precise but cost-intensive airborne LiDAR digital 

terrain model (DTM) and the radar-based WorldDEM DTM by Airbus. The results show 

a strong correlation when compared to the DTM (R² = 0.89, RMSE = ±0.83 m) and the 

WorldDEM DTM (R² = 0.94, RMSE = ±0.86 m). However, terrain height is 

overestimated by ICESat-2 in few areas. A more detailed investigation showed that this 

incidence proved accurate especially within densely forested areas. Neuenschwander and 

Pitts (2019b) found a decreasing accuracy for ground detection as canopy cover increases. 

This is expected since LiDAR is sensitive to vegetation. Especially in dense tropical 

forests with a complex forest structure and dense underwood, too few photons are 

reflected from the ground (Neuenschwander and Magruder 2016). Neuenschwander and 

Pitts (2019a) found that ICESat-2/ATLAS can lose its ground signal for canopy closure 

of higher than 95 % but also when strong cloud cover obscures the terrestrial signal. In 

the tropical forest of Indonesia, both restrictions are probable. Because of the positive 

correlation analyses, an interpolation (kriging) of comprehensive DTMs based on 

ICESat-2 transects was implemented to model the surface topography of three peat domes 

within the study area. The comparison of the interpolated terrain heights of the peatland 

area showed an R² of 0.78, 0.84, and 0.94 compared to WorldDEM DTM. The RMSE 

ranged from 0.68 m to 2.68 (relative RMSE 14.3 % and 22.5 %). However, cuts by rivers 

or channels within the peatlands can only be mapped to a limited extent because of the 

limited availability of measuring points available for the modeling. In addition, 

inaccuracies can be introduced by different spatial resolutions, acquisition geometries, 

sensor accuracies, and the different acquisition times. The methodology represents a cost-

effective and robust alternative to derive the topography of peatlands. Knowing the 

surface topography of typically curved peat domes allows conclusions to be drawn about 

the volume of the peat dome and the associated estimation of the stored carbon and is 

thus a contribution to carbon-related projects.  
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In summary, the studies showed the capability of remote sensing instruments and novel 

methodologies in order to improve current estimations of above-ground biomass and 

below-ground carbon stocks in tropical forest ecosystems. The results demonstrate that 

more robust AGB estimations, with a reduced uncertainty and in a higher spatial 

resolution can be achieved and consequently contribute to REDD+ monitoring projects 

and others. 

 

2. Benefits and constraints  

The stand-alone publications in the frame of this thesis showed benefits and constraints 

for using active remote sensing data for biomass estimations in the tropical forests of 

Indonesia.  

The extrapolation from field measurements to LiDAR data results in a highly accurate 

biomass estimation covering almost all biomass value ranges but is very time- (field data) 

and cost- (airborne LiDAR data) intensive. Nevertheless, this dataset serves as a strong 

basis for the calibration and validation of large-scale SAR data. The extrapolation from 

this highly-accurate AGB reference dataset to SAR data allows a more accurate AGB 

estimation for large areas in South-East Asia. In addition to the L-band SAR systems 

ALOS PALSAR and ALOS PALSAR-2, the ability of the relatively new C-band SAR 

satellite Sentinel-1 was regarded to estimate AGB. Unfortunately, due to the short 

wavelength, the C-band SAR could only contribute minimally to the results. The use of 

textures combined with backscatter and polarization ratios enables to shift the saturation 

effect in tropical rainforests to a higher level. Nevertheless, the saturation effect is a 

limitation of SAR data for AGB estimations.  

The final biomass products of Chapter I have a resolution of 100 m, which is much more 

detailed than other existing maps of this region (>500 m) why they are more sensitive for 

small-scaled biomass variability and changes.   

 

The comparison of different forest biomes in Chapter II is the widest inter-comparison of 

regional-to-national AGB maps in terms of area, forest types, input datasets, and retrieval 

methods to date. The outcomes of this chapter should be considered when developing 

novel algorithms for estimating forest biomass at continental or even global scale level. 
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In order to overcome the constraints of the saturation effect, a study based on more 

complex Pol-InSAR data were carried out. In the course of analyzing the performance of 

X- and C-band dual-pol and quad-pol data as inputs for the RVoG and RMoG 

interferometric coherence models, the RMoG demonstrated good potential for estimating 

AGB in tropical forests. Limitations of this approach could be found in the temporal 

decorrelation, but also the perpendicular baseline, the height of ambiguity, the incident 

angle and moist weather conditions, as well as the wavelength and the forest structure 

itself. The analysis may be used as a guideline for further analyses on this topic since it 

extensively discusses the constraints for coherence-based AGB estimations in tropical 

forests.  

 

The last study developed a scientifically novel approach to identify and derive the surface 

area of carbon rich ombrogenous peat domes in Indonesia with a new LiDAR satellite 

(ICESat-2). Furthermore, a secondary result of the analysis is that the sensor, in 

combination with older remote sensing data, can identify burned areas. Very dense 

vegetation with a canopy closure of above 95 % was recognized as a limitation to derive 

accurate terrain height information from ICESat-2 data. The approach still needs to be 

tested for transferability to other tropical regions (e.g. Congo or Brazil). It is assumed that 

mountainous areas might produce limitations. However, for peatlands in flat terrain, the 

transferability of the approach to other regions and countries seems feasible. 

In conclusion, improved methods for AGB estimations in tropical forest ecosystems were 

presented in this thesis. This is a crucial matter in order to obtain more accurate biomass 

estimated with a better spatial resolution as a basis for carbon content analyses.  

 

3. Future research 

Within this thesis, it was demonstrated that remote sensing systems can be used as an 

efficient tool for estimating and monitoring global carbon pools in tropical forest 

ecosystems.  

For an adequate derivation of AGB from remote sensing data the correct choice of the 

allometric equation for the calculation of AGB from field data is necessary. Although 

there are several allometric equations for species-rich tropical forests, there is still no 

allometric equation for tropical peat swamp forests. Since tropical forests are 
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characterized by very high biodiversity, general allometric models for tropical forests do 

not necessarily provide a suitable representation of the actual biomass contribution. 

Besides, the quality, frequency and spatial resolution of remote sensing data can cause 

limitations for AGB estimations based on Earth Observation data. New and improved 

technologies and satellites, such as the LiDAR satellite GEDI (NASA), Tandem-L (DLR) 

or the BIOMASS mission (ESA) with a higher spatial resolution and more suitable 

wavelengths, will provide opportunities for even more accurate AGB estimations in the 

future. 

In addition to new satellites, growing data availability from existing satellites enables 

extensive time series to understand the global carbon cycle more accurately. With the 

increasing amount of ICESat-2 data over the next years, but also with the new satellite 

GEDI, it may become possible to investigate the annual accumulation rate, the subsidence 

of peatlands, or the identification of peat domes threatened by drainage.  

Other tropical countries, besides Indonesia, may have also extensive peatland areas not 

yet known. The methods for estimating the topography of peatlands presented in this 

study will be tested for the Republic of Congo or Amazonia.  
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