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“Tout le monde y croit cependant, me disait un jour M. Lippmann, car les expérimentateurs 

s'imaginent que c'est un théorème de mathématiques, et les mathématiciens que c'est un fait 

expérimental.” 

- Henri Poincaré, Calcul des probabilités (2nd ed., 1912), p. 171. 

 

 

“Everybody believes in the exponential law of errors [i.e., the Normal distribution]: the 

experimenters, because they think it can be proved by mathematics; and the mathematicians, because 

they believe it has been established by observation.” 

- Whittaker, E. T. and Robinson, G. "Normal Frequency Distribution." Ch. 8 in The Calculus of 

Observations: A Treatise on Numerical Mathematics, 4th ed. New York: Dover, pp. 164-208, 

1967. p. 179. 

 

 

 

 

 

 

  



 



Giacomo Giacomelli, PhD thesis, Department I, Microbiology, LMU 
 

1 
 

Table of contents: 

Graphical Abstract .................................................................................................................................. 5 

Abstract………………… ................................................................................................................................ 6 

Zusammenfassung .................................................................................................................................. 7 

Abbreviations (Alphabetical order): ...................................................................................................... 8 

 Introduction .......................................................................................................................... 9 

1.1. History of microscopy and its consequences on microbiology .............................................. 9 

1.2. Resolution and the pioneers of single molecule analysis .................................................... 10 

1.3. Basis of single molecule microscopy (SMLM) ...................................................................... 11 

 Localization precision .................................................................................................... 12 

 Structural resolution ..................................................................................................... 13 

 Reconciling localization precision and structural resolution: Fundamental resolution 

measure (FREM) and the Fourier ring correlation (FRC) resolution ............................................. 14 

 Improving resolution and current challenges ............................................................... 14 

1.4. Photoactivated localization microscopy (PALM) ................................................................. 15 

 Fluorophores ................................................................................................................. 15 

 Fixed and live samples .................................................................................................. 17 

1.5. PALM data analysis .............................................................................................................. 18 

 Point pattern analysis (PPA) .......................................................................................... 19 

 Ordering points to identify the clustering structure (OPTICS) ...................................... 20 

 Coordinate based co-localization (CBC) ........................................................................ 22 

1.6. Aim of the study ................................................................................................................... 24 

 Data quality and fluorophore dependent data filtering ................................................... 25 

2.1. Determination of PSF width and photon count filtering parameters .................................. 26 

2.2. Spatio-temporal grouping of fluorescent events ................................................................. 29 

 Characterization of DipC spatio-temporal localization via conventional-like image 

analysis…………………………………………………………………………………………………………………………………………….32 



Giacomo Giacomelli, PhD thesis, Department I, Microbiology, LMU 
 

2 
 

3.1. The identification of novel DivIVA interaction partners in Corynebacterium glutamicum: the 

DNA damage induced proteins C and D (DipCD) ............................................................................... 33 

3.2. The septum as a reference: Normalized Gaussian rendering .............................................. 37 

3.3. Analysis of DipC mislocalization in a divS knock-out: Cumulative Histogram rendering and 

quantitative profiles .......................................................................................................................... 38 

 Single molecule localization microscopy data analysis ..................................................... 43 

4.1. About the distribution of points on a 2D plane and magnetosomes .................................. 43 

4.2. Local density and nearest neighbor distance ...................................................................... 46 

4.3. Cluster identification and characterization .......................................................................... 47 

 Intracluster heterogeneity analysis and ParB .................................................................... 50 

5.1. ParB form nucleoprotein complexes in a parS dependent manner .................................... 51 

5.2. ParB and cluster heterogeneity analysis .............................................................................. 55 

 Dual color imaging and co-localization analysis ................................................................ 60 

6.1. Script_R5P3 basics and CBC values interpretation .............................................................. 61 

6.2. The parameters choice depends on the biological question ............................................... 64 

 Analysis of the flagellar tip organization in trypanosomes ............................................... 67 

 Discussion ........................................................................................................................... 71 

8.1. An unbalanced effort ........................................................................................................... 71 

8.2. Data quality .......................................................................................................................... 72 

8.2.1. Experimental controls and autofluorescence ............................................................... 72 

8.2.2. ROIs determination ....................................................................................................... 73 

8.3. The pitfall of visualization .................................................................................................... 73 

8.3.1. Clustering should not be determined visually .............................................................. 74 

8.3.2. Co-localization methods used in conventional fluorescence microscopy are not useful 

for SMLM data ............................................................................................................................... 76 

8.3.3. Why and when to use conventional-like image analysis .............................................. 77 

8.4. Benefits and flaws of OPTICS, a quasi-parameter free approach to cluster analysis .......... 77 

8.4.1. Arbitrarity of thresholding and analysis complexity ..................................................... 78 

8.4.2. Alternatives and future prospects ................................................................................ 79 



Giacomo Giacomelli, PhD thesis, Department I, Microbiology, LMU 
 

3 
 

8.5. Benefits and flaws of CBC .................................................................................................... 80 

8.6. An extra layer of analysis ..................................................................................................... 81 

8.7. Conclusion and outlook ....................................................................................................... 81 

 Material and Methods ........................................................................................................ 84 

9.1. Code availability ................................................................................................................... 84 

9.2. Reagents ............................................................................................................................... 84 

9.3. Oligonucleotides and plasmids ............................................................................................ 84 

9.4. Bacterial strains .................................................................................................................... 90 

9.5. Construction of bacterial plasmids and strains .................................................................... 93 

9.5.1. Allelic replacement (pk19mobsacB based constructs) ................................................. 93 

9.5.2. Plasmid based expression (pEKEx2/3, pCLTON1PamtR, pET-16b, paC4….) .................. 96 

9.5.3. Strains construction .................................................................................................... 100 

9.6. Culture conditions .............................................................................................................. 100 

9.7. Sample fixation .................................................................................................................. 101 

9.8. Sample preparation ........................................................................................................... 102 

9.9. Microscopy ......................................................................................................................... 102 

9.9.1. Fluorescence microscopy ............................................................................................ 102 

9.9.2. PALM ........................................................................................................................... 103 

9.10. Software ........................................................................................................................... 103 

9.11. Molecular biology methods ............................................................................................. 104 

9.11.1. Plasmids isolation from E. coli .................................................................................. 104 

9.11.2. DNA amplification and colony PCRs .......................................................................... 104 

9.11.3. DNA separation and purification .............................................................................. 104 

9.11.4. DNA quantification and sequencing ......................................................................... 105 

9.11.5. Restriction digestion, dephosphorylation and ligation ............................................. 105 

9.12. Protein biochemical methods .......................................................................................... 105 

9.12.1. C. glutamicum lysates preparation ........................................................................... 105 

9.12.2. Polyacrylamide gel electrophoresis .......................................................................... 105 



Giacomo Giacomelli, PhD thesis, Department I, Microbiology, LMU 
 

4 
 

9.12.3. Colloidal Coomassie staining .................................................................................... 106 

9.12.4. Western Blot ............................................................................................................. 106 

9.12.5. Protein identification via pull-down and mass spectrometry .................................. 106 

9.12.6. Mass spectrometry ................................................................................................... 107 

9.13. Statistical analysis ............................................................................................................ 107 

 References ...................................................................................................................... 108 

List of figures: …………………………………………………………………………………………………………………………………116 

List of tables: ………………………………………………………………………………………………………………………….……..118 

Acknowledgements ............................................................................................................................ 119 

Curriculum Vitae: ................................................................................................................................ 121 

 

  



Giacomo Giacomelli, PhD thesis, Department I, Microbiology, LMU 
 

5 
 

Graphical Abstract 

  



Giacomo Giacomelli, PhD thesis, Department I, Microbiology, LMU 
 

6 
 

Abstract 

Photoactivated localization microscopy (PALM) is a single molecule fluorescence microscopy 

technique (SMLM) that relies on the controlled activation and imaging of photo-

activatable/convertible fluorescent proteins to determine their position with nanometer scale 

precision. The analysis of SMLM data is composed of two sequential aspects: the generation of a super-

resolution table/image and the subsequent analysis. In recent years, several data analysis packages 

dedicated to the generation of super-resolved images have been developed. These packages have 

been extensively characterized and compared in a community-wide effort, therefore allowing 

researchers to identify optimal solutions for their experiments and providing software developers with 

a gold standard. On the contrary, the development of data analysis packages dedicated to the study of 

protein coordinates has been lagging behind, and no comprehensive approach has been developed to 

date. 

Here, I present a combination of Fiji and R based scripts for the characterization, filtering and 

quality assurance of SMLM derived localizations. 

Furthermore, I demonstrate that specific conventional image analysis techniques can be applied, 

both quantitatively and qualitatively, to super resolution images. I then apply these analysis tools 

exemplarily on the characterization of the spatio-temporal localization of a novel DNA repair system 

in Corynebacterium glutamicum, termed Dip (DNA damage induced protein) C. 

Finally, I combine the multiple data analysis packages that I developed and/or adapted for the 

study of specific biological scenarios into a single cohesive pipeline, therefore providing a generalized 

and comprehensive approach toward the coordinate based analysis of the spatio-temporal localization 

of proteins in PALM and, in general, in SMLM. Each of the data analysis packages that comprise the 

pipeline is here presented together with the biological scenario that prompted its development. These 

include the study of magnetosome formation in Magnetospirillum gryphiswaldense, the study of the 

chromosome segregation machinery in C. glutamicum and the study of flagellar organization in 

Trypanosoma brucei. 
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Zusammenfassung 

Die photoaktivierte Lokalisationsmikroskopie (PALM) ist eine Einzelmolekül-

Fluoreszenzmikroskopie Technik (SMLM), die auf der kontrollierten Aktivierung und Aufnahme von 

photoaktivierbaren / konvertierbaren fluoreszierenden Proteinen beruht, um ihre Position mit einer 

Präzision im Nanometerbereich zu bestimmen. Die Analyse von SMLM-Daten besteht aus zwei 

aufeinander folgenden Aspekten: der Erzeugung einer Tabelle / eines hochauflösenden Bildes und der 

anschließenden Analyse. In den letzten Jahren wurden mehrere Datenanalysepakete entwickelt, die 

sich der Berechnung der hochaufgelösten Bilder widmen. Diese Pakete wurden in 

gemeinschaftsweiten Anstrengungen umfassend charakterisiert und verglichen, sodass Forscher eine 

optimale Lösung für eigene Experimente wählen können, während Softwareentwicklern einen 

Goldstandard zur Hand haben. Gegensätzlich wurde jedoch die Entwicklung von Datenanalysepaketen 

zur spezifischen Untersuchung von Proteinkoordinaten vernachlässigt, so dass in diesem Bereich keine 

umfassenden Instrumente existieren. 

In dieser Arbeit präsentiere ich eine Kombination aus Fiji- und R basierten Skripten zur 

Charakterisierung, Filterung und Qualitätssicherung von SMLM Proteinkoordinaten. 

Darüber hinaus zeige ich, dass bestimmte konventionelle Bildanalysetechniken sowohl quantitativ 

als auch qualitativ auf „Superresolution“ Bilder angewandt werden können. Im Folgenden verwende 

Ich diese Analysewerkzeuge dann beispielhaft zur Charakterisierung der räumlich-zeitlichen 

Lokalisierung eines neuartigen DNA-Reparatursystems in Corynebacterium glutamicum, welches ich 

DipC (DNA-Schaden-induziertes Protein) genannt habe. 

Schließlich kombiniere ich die genannten Datenanalysepakete, die ich für die Untersuchung 

spezifischer biologischer Szenarien entwickelt und / oder angepasst habe, zu einer einzigen 

zusammenhängenden Arbeitsroutine. Diese bietet einen allgemeinen und umfassenden Ansatz für die 

koordinatenbasierte Analyse der räumlich-zeitlichen Lokalisierung von Proteinen aus PALM- und im 

Allgemeinen aus SMLM-Experimenten. Jedes der Datenanalysepakete, die in beschriebener Routine 

enthalten sind, wird hier zusammen mit dem biologischen Szenario vorgestellt, das zu ihrer 

Entwicklung geführt hat. Dazu gehören die Untersuchung der Magnetosomenbildung in 

Magnetospirillum gryphiswaldense, die Untersuchung der Chromosomensegregationsmaschinerie in 

C. glutamicum und die Untersuchung der Flagellenorganisation in Trypanosoma brucei.  
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Abbreviations (Alphabetical order): 

BIC: Bayesian information criterion 
BMC: Bacteria microcompartments 
CM: Cytoplasmic mycelles 
dil: Dioctadecylindocarbocyanine 
FRAP: Fluorescence recovery after photobleaching 
FRC: Fourier ring correlation 
FREM: Fundamental resolution measure  
HaloTag: Haloalkane dehalogenase tag 
IMV: Intracellular membrane vescicles 
LDL: Low-density lipoproteins 
MC: magnetosome chain 
MINFLUX: Minimal photon fluxes 
mNeonGreen: monomeric NeonGreen 
NA: Numerical aperture 
OPTICS: Ordering points to identify the clustering structure 
PAINT: Points accumulation for imaging nanoscale topography 
PALM: Photoactivated localization microscopy 
PA-mCherry: Photo activatable monomeric Cherry 
PPA: Point pattern analysis 
PSF: Point spread function 
ROI: region of interest 
SIM: Structured illumination microscopy 
SIMFLUX: Method that combines centroid estimation and illumination pattern induced photon count 
variations in a conventional widefield imaging setup to extract position information over a typical 
micrometer-sized field of view (not a proper acronym, the term combines the SIM and MINFLUX 
acronyms) 
SMLM: Single molecule localization microscopy 
SNAP tag: Monomeric human O6-alkylguanine-DNA-alkyltransferase 
SOMAmers: Slow Off-rate Modified Aptamers 
SPT: Single particle tracking 
STORM: Stochastic optical reconstruction microscopy 
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 Introduction 

1.1. History of microscopy and its consequences on microbiology 

The origin of microscopy, intended as the use of magnifying lenses to observe microbes, goes back 

to a period between 1665 and 1683, when Robert Hooke and Antoni van Leeuwenhoek were able to 

observe and describe microscopic organisms via the use of simple microscopes that magnified objects 

between 25 and 250 fold. This technological advancement allowed for the identification of microbes 

as the cause of infectious diseases (Leeuwenhoek 1695/1697) and resulted in a wave of high 

expectations that can be summarized by the 1665 statement made by Robert Hooke himself: “by the 

help of microscopes, there is nothing too small, as to escape our inquiry” (Hooke 1665). In the next 

centuries, thanks to technical advancements in the construction of light microscopes, Robert Koch was 

able to demonstrate that specific microbes are responsible for specific diseases (Koch 1912), while 

staining techniques such as Gram (1884) and halum hematoxylin (1886) staining helped to move 

beyond an exclusively morphological description of the observed microorganisms. It also became clear 

that Hooke had been too optimistic and that light microscopy resolution was insufficient for the 

observation of smaller biological structures such as viruses and most cellular organelles. The discovery 

and imaging of said biological structures became possible only following the development of electron 

microscopy. Specifically, Helmut Ruska visualized viruses via electron microscopy for the first time in 

1940 (Ruska 1940), while most cellular organelles would be discovered even later.  

Around the same time (1938), Edouard Chatton proposed for the first time to divide living beings 

into two major groups based on the presence/absence of the nuclear cell membrane, therefore forging 

the terms prokaryotes (primordial nucleus) and eukaryotes (good nucleus). This categorization became 

accepted in the early 1960s in no small part thanks to electron microscopy and genetics (Stanier and 

Van Niel 1962, Sapp 2005).  

By the time the division between eukaryotes and prokaryotes had been accepted, it was already 

known that the presence of intracellular organelles was not an exclusivity of eukaryotic cells. Gas 

vacuoles in cyanobacteria had been observed already in 1895 by Heinrich Klebahn (Klebahn 1895), 

while bacterial microcompartments (BMC) had been imaged in 1956 by Dews and Nikowitz (Drews and 

Niklowitz 1956). Nevertheless, where eukaryotic cells were characterized by complex cell architecture 

including membrane-bound organelles and cytoskeleton, prokaryotes were smaller and generally 

characterized by an apparent lack of such complexity.  

It does therefore not come as a surprise that, even decades later, prokaryotes would often be 

described as simple “bags of enzymes” where enzymes float randomly within the cell and act 

independently from each other. 
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In the following years electron microscopy contributed toward the identification of several new 

membrane-enclosed prokaryotic organelles such as cytoplasmic mycelles (CM), the intracellular 

membrane vescicles (IMV) that form upon overproduction of certain membrane proteins in Escherichia 

coli (Arechaga et al. 2000, Aboulwafa and Saier 2011), the membrane encapsulated magnets that 

compose the magnetosomes in magnetotactic bacteria (Gorby et al. 1988) and more. Each single one 

of these discoveries contributed toward the clearing of the “bags of enzymes” misconception, 

however, it is not until the Green Fluorescent Protein (GFP) revolution in 1994 (Chalfie et al. 1994) that 

it became possible to fully explore the inner mechanics of a prokaryotic cell. The use of fluorescence 

microscopy added, in fact, a second layer of complexity to prokaryotes. Imaging of fluorescently-

tagged proteins not only highlighted the presence of several cytoskeletal like structures and scaffolds 

proteins, but also pointed toward a highly regulated spatio-temporal localization for such structures.  

In the early days of fluorescence microscopy, spatio-temporal regulation of proteins could only be 

observed from the point of view of the whole protein population. The inability to distinguish between 

single proteins meant that studies of protein dynamics via time lapse microscopy and/or fluorescence 

recovery after photobleaching (FRAP) were limited to population analysis and were therefore unable 

to distinguish between the behavior of protein subpopulation.  

It is not until the early 2000s that this problem got address with the development of super-

resolution light microscopy techniques (Hell and Wichmann 1994, Betzig et al. 2006). While there exist 

several super-resolution techniques, we can separate them into two groups: single molecule 

localization microscopy (SMLM) and non-SMLM techniques. As implied by its name, the SMLM group 

is composed by those techniques that achieve an increase in resolution by isolating fluorophores and 

fitting their emission profile with a point spread function (PSF) while non-SMLM use a variety of 

different methods. The ability to image single proteins with a nanometer scale precision did not only 

drastically increase the imaging resolution from a structural point of view, but it also allowed for sub-

population dynamicity studies. The importance of super-resolution techniques was immediately 

recognized by the scientific community and three of their developers were awarded in 2014 with the 

Nobel Prize in Chemistry: Eric Betzig, Stefan W. Hell and William E. Moerner. 

 

1.2. Resolution and the pioneers of single molecule analysis 

From a practical point of view, in fluorescence microscopy, resolution is defined as the smallest 

distance at which two fluorescent objects can be distinguished. Fluorescent proteins such as GFP and 

its derivatives are shaped like cylinders of approximately 3 nm in diameter and 4 nm in length (Hink et 

al. 2000). Under a fluorescent microscope, the light emitted by these proteins appears as a 2D pattern 



Giacomo Giacomelli, PhD thesis, Department I, Microbiology, LMU 
 

11 
 

(Airy pattern) where a central intensity maximum is surrounded by rings whose intensities decrease 

the farther you move from the emission centre. When two fluorescent proteins are emitting at the 

same time it will be possible to distinguish between them only when they are farther apart than the 

resolution limit. 

From a quantitative point of view, different standards can be used to determine whether or not 

two points can be distinguished. One of such standards is the Rayleigh criterion (Rayleigh 2009), which 

specifies that the contrast between the maximum and minimum intensity between the centres of two 

points needs to be at least 26% lower than the maximum. The distance is defined as: 

 
 

∆𝑥 =
1.22𝜆

2𝑛 𝑠𝑖𝑛𝜃
= 0.61

𝜆

𝑁𝐴
 

 

(1) 

 
 

where ∆𝑥 is the distance at which two points can be distinguished, 𝜆 is the wavelength of the light 

emitted by the fluorophores and NA (n sinθ) is the numerical aperture. It follows that two GFP 

molecules would need to be farther apart than 210 nm (given an emission peak at 505 nm and NA of 

1.46) in order to be able to distinguish between the two. 

While the resolution limit for fluorescent proteins is generally smaller than the size of both 

eukaryotic and prokaryotic cells, it is 60 to 70 time larger than the fluorophores themselves. It follows 

that simultaneous observation of the whole protein population and ability to distinguish between 

single fluorophores was limited to those cases where the emitters were located farther from each 

other than the resolution limit. Before the development of SMLM, these cases were quite rare and 

mainly consisted of studies of low-density receptor on cell surfaces. In the early 1980s, Barak and Webb 

(Barak and Webb 1981, Barak and Webb 1982) were the first to use single particle tracking in the field 

of fluorescence microscopy in a series of studies concerning the internalization of 

dioctadecylindocarbocyanine low-density lipoproteins (dil(3)-LDL) in fibroblast cells. Later on, Gross 

and Webb (Gross and Webb 1986, Gross and Webb 1988) used similar techniques to analyse the dil-

LDL receptor clustering. 

 

1.3. Basis of single molecule microscopy (SMLM) 

In chapter 1.2, it was explained that the existence of a resolution limit in fluorescent microscopy is 

dependent on the inability to separate the signal originated from separate emitters that are located 

closer to each other than a certain distance (Rayleigh criterion – Equation 1). Since SMLM techniques 

work in conditions where each diffraction limited area contains at most a single active fluorophore, 
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resolution as previously defined cannot be applied. In SMLM, instead, two different parameters are 

taken into account when talking about resolution: Localization Precision and Structural Resolution. 

 Localization precision 

The diffraction-limited spot originated from a single emitter can be described as the probability to 

detect a point within a two dimensional space: the point spread function (PSF). In the ideal case, the 

PSF correspond to the Airy Disk (the bright central region of the Airy pattern). In SMLM, several 

methods have been proposed in order to fit the PSF of a molecule and calculate its centroid position 

with nanometer scale precision and multiple software have been developed for that purpose (Sage et 

al. 2019). The most common way to approximate the diffraction pattern is to fit it via a 2D Gaussian 

distribution. In a 2D plane, the intensity distribution of the fluorophore I(x,y) can be described as: 

 
 

𝐼(𝑥, 𝑦) = 𝐼0 𝑒
−

(𝑥−𝑥0)2

2𝜎𝑥
2  − 

(𝑦−𝑦0)2

2𝜎𝑦
2

 

 

(2) 

 
 

where I0 is the maximum intensity of the distribution, x0 and y0 are the coordinates of the centroid of 

the Gaussian distribution and σx and σy its standard deviation in x and y, respectively. When using this 

approximation, the localization precision of a centroid on a single axis (∆𝑥), given that all sources of 

noise except from shot noise are negligible (shot noise is a result of the particle character of light), is 

inversely proportional to the square root of the number of photons that are collected (N) and can be 

described as: 

 
 

(∆𝑥)2 ≥  
𝜎𝑥

2

N
 

 

(3) 

 
 

Two other parameters are taken into consideration when calculating the localization precision: 

pixelation noise and background noise.  

The first kind of noise is given by the uncertainty of each photon localization due to pixel size (pixels 

are finite in size and a photon can localize anywhere within it) and yields to Equation 3 as follow: 

 
 

(∆𝑥)2 ≥  
𝜎𝑥

2 + 𝑝2/12

N
 

 

(4) 
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where 𝑝 is the pixel size and the 𝑝2/12 factor is the variance of a top hat distribution of size 𝑝. The 

addition of the pixilation noise results in an increase of the apparent size of the spot. Background noise 

(𝑏) originates from the detection of photons that are not emitted by the fluorophore itself. In a 

situation where background noise across the area being analysed is constant, Equation 4 can be further 

modified to take into account the presence of such noise as shown by Thompon et al. (Thompson et 

al. 2002): 

 
 

(∆𝑥)2 ≥  
𝜎𝑥

2 + 𝑝2/12

N
+

4√𝜋𝜎𝑥
3𝑏2

𝑝N2
 

 

(5) 

 
 

While the part of the localization precision dependent on background noise is inversely 

proportional to the collected number of photons, the remaining factor is inversely proportional to the 

square root of the collected number of photons. It follows that the influence of background noise is 

bigger for fluorophores that emit a low number of photons while events characterized by a high photon 

count will be dominated by shot noise (pixelation noise will also play a role but it is usually smaller than 

shot noise).  

 Structural resolution 

Out of the two resolution criteria that are used in SMLM, structural resolution is far more stringent 

than localization precision. While, as explained in 1.3.1, localization precision mainly depends on the 

number of photons emitted by the fluorophore and the goodness of its PSF fit, structural resolution is 

limited by the Nyquist-Shannon sampling criterion (Nyquist 1928, Shannon 1949). According to said 

criterion, in order to obtain a specific resolution, the labelling frequency needs to be of at least two 

molecules per desired spatial scale.  

The labelling frequency and quality in a biological sample is influenced by a multitude of factors. 

These factors include the number of molecules that comprise the label, their size, and the 

stoichiometry between the emitter and the molecule of interest. Labelling can be done via 

translational fusion of the protein of interest with fluorescent proteins/self-labelling protein tags (PA-

mCherry, HaloTag (Los et al. 2008), SNAP-tag (Keppler et al. 2003)) or via the binding of said protein 

with specific tags (primary antibodies, nanobodies) which are either conjugated to fluorophores or 

bound to a second molecule which is in turn conjugated to a fluorophore (secondary antibodies, DNA-

PAINT (Jungmann et al. 2010)). Since labels have a finite size, their presence will result in an increase 

of structural size which will in turn increase the distance between emitters, ultimately decreasing the 

maximum resolution that can be achieved. The decrease in resolution due to tagging ranges from 
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immunostaining (each antibody spans for 10-15 nm, meaning that the combination of primary and 

secondary antibodies has a length of almost 30 nm) to the use of fluorescent proteins (as previously 

mentioned a typical fluorescent protein can be described as a barrel of 3 nm in diameter and 4 nm in 

length). Further decrease in structural resolution is caused by the suboptimal stoichiometry between 

the label and its target. Since in most cases a 1:1 stoichiometry is not achieved, the imaged structure 

comprises of tagged and free target molecules which translates in an increase of average distance 

between labels. 

 Reconciling localization precision and structural resolution: Fundamental 

resolution measure (FREM) and the Fourier ring correlation (FRC) resolution 

SMLM imaging is diffraction-unlimited and its resolution depends on a multitude of factors 

(fluorophore choice, labelling density, tag-fluorophore combination size, stoichiometry between 

molecule of interest and emitter). Two complementary approaches that improve from the mere 

concepts of localization precision and structural resolution have been proposed in order to determine 

the resolution of an image in SMLM: fundamental resolution measure (FREM) and Fourier ring 

correlation (FRC). 

FREM ignores labelling density and is instead used to calculate the accuracy with which distances 

between two fluorophores can be estimated. This means that its use is limited to the study of 

structures characterized by low molecule numbers (Cases where the labelling density within the 

structure has no significance) (Ram et al. 2006). In all those cases where instead labelling density play 

a huge role (structures characterized by high number of molecules and quasi-continuous structure) 

FRC is the preferred method of choice. This approach describes the length scale below which the image 

cannot be resolved (Nieuwenhuizen et al. 2013). It is important to notice that the resulting resolution 

will always be larger than localization precision and structural density as previously described (1.3.1 

and 1.3.2). 

 Improving resolution and current challenges 

While it is common to obtain a final resolution of 20 nm via state of the art SMLM, the theoretical 

resolution limit achievable with these techniques correspond to the size of the emitter itself (a better 

resolution would fail to comply with the Nyquist-Shannon criterion) which would in turn lead to true 

molecular imaging. 

This limit scenario can only be obtained when the following conditions are satisfied: a 1:1 

stoichiometry between the molecules of interest and the fluorophores, an extremely small tag-

fluorophore combination and a localization precision comparable in size to the emitter itself. Steps 

toward this goal include improvements of the tag-fluorophore combinations themselves (Ries et al. 
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2012, Raulf et al. 2014, Grimm et al. 2015, Strauss et al. 2018) and technical/analysis improvements 

(dualObjective STORM, MINFLUX, SIMFLUX) (Xu et al. 2012, Balzarotti et al. 2017, Cnossen et al. 2020). 

Studies involving the development and optimization of tag-fluorophore combinations greatly 

contributed to improve structural resolution and localization precision while technical/analysis studies 

allowed for further improvement in localization precision. 

A recent example in tag enhancement came from the use of Slow Off-rate Modified Aptamers 

(SOMAmers: 21-28 kDa) as tags for high-resolution in situ DNA-PAINT imaging (Strauss et al. 2018). 

Before the use of SOMAmers, DNA-PAINT imaging was characterized by high localization precision 

(below 10 nm) and low structural resolution. The low structural resolution was a result of the use of 

antibodies as tags (antibodies are ~150 kDa in size and cannot guarantee a 1:1 stoichiometry ratio). 

While the use of SOMAmers had no effect from a localization precision point of view, it allowed for a 

great improvement in structural resolution due to decreased tag-fluorophore size and a 1:1 

stoichiometry ratio between tag and molecule of interest. 

The latest resolution improvement achieved via a technical enhancement consisted in the 

combination of SMLM techniques (DNA-PAINT and dSTORM) with the use of patterned illumination 

(Cnossen et al. 2020). The combination of these two techniques resulted in a near two fold 

improvement in FRC resolution (from 16.4 nm to 8.6 nm) with a value relatively close to the size of the 

probes themselves but that does not allow yet for true molecular imaging. 

 

1.4. Photoactivated localization microscopy (PALM) 

PALM is one of the most prominent SMLM techniques. Developed in 2006 (Betzig et al. 2006), this 

technique relies on finely tuned activation/switching and time-resolved localization of photo-

activatable/switchable fluorophores to construct high resolution images.  

 Fluorophores 

The fluorophores of choice in PALM are fluorescent proteins. The use of such fluorophores leads 

to both advantages and disadvantages. On one side it overcomes the need of extra experimental 

procedures such as membrane permeabilization and fixation that are in general not compatible with 

living systems, on the other side fluorescent proteins have a lower photon yield than organic synthetic 

dyes and the fusion between the protein of interest and the fluorescent protein may lead to 

partial/complete loss of function. 

The fluorescent proteins that are used in PALM can be split into the following categories: photo-

activatable (the protein can be activated from a non-fluorescent state), photo-switchable (the protein 
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can switch between two different states in a spontaneous or stimulated fashion) and photo-

convertible (the protein can change their emission spectrum) (Table 1.1). Photo-conversion between 

different conformational states is usually stimulated by the use of UV light (a 405 nm laser line), with 

the amount of converted protein being proportional to the 405 nm laser intensity and pulse length. 

While in most cases the number of active molecules at any given time can be titrated via the regulation  

 

Table 1.1: Proteins commonly used in PALM. The proteins are divided into photo-activatable, 

photo-convertible, photo-switchable and others. The maximum excitation and emission wavelength 

for two conformational state for each protein are shown. An empty conformational state in position 

1 signifies that the protein starts in a dark conformation state while an empty conformation state 

in position 2 signifies that the protein starts in an active conformational state. 

 

 State 1 State 2   

Protein 

acronym 
Ex/Em (nm)  Ex/Em (nm) PC laser (nm) Source 

Photo-activatable proteins (Irreversible conversion between State 1 and 2): 

PA-GFP  -/- 504/517 405 (Patterson and Lippincott-

Schwartz 2002) 

PA-TagRFP  -/- 562/595 405 (Subach et al. 2010) 

PA-mCherry2  -/- 570/596 405 (Subach et al. 2009) 

PA-mKate2  -/- 586/628 405 (Gunewardene et al. 2011) 

Photo-convertible proteins (Irreversible conversion between State 1 and 2): 

PS-CFP2  400/468 490/511 405 (Chudakov et al. 2004) 

mEos3.2  507/516 572/580 405 (Zhang et al. 2012) 

mMaple3  489/505 566/583 405 (Wang et al. 2014) 

Dendra2  490/507 553/573 405/488 (Turkowyd et al. 2017) 

Photo-switchable proteins (Reversible conversion between State 1 and 2): 

Dronpa  -/- 503/518 405 (Andresen et al. 2008) 

Dreiklang  -/- 515/529 365(on) 

405(off) 

(Brakemann et al. 2011) 

NijiFP* 469/507 526/569 405(G-R/on-G) 

440(on-R) 

488(off-G) 

561(off-R) 

(Adam et al. 2011) 

eYFP  513/527 -/- 405 (Ormo et al. 1996, Dickson 

et al. 1997) 

mNeonGreen  506/517 -/- - (Shaner et al. 2013, 

Stockmar et al. 2018) 

*NijiFP has three conformational states. The dark state (off) was omitted in the table. 
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of the photoconversion laser, this is not always the case. For instance, mNeonGreen is characterized 

by the lack of a photoconversion laser coupled with the tendency to spontaneously switch back and 

forth between a dark and an active state. It follows that these fluorophores will first need to be excited 

and brought to a dark state via the use of the imaging laser (i.e.: 488 nm for mNeonGreen), in what  

can be called a bleaching phase, and then imaged as single molecules once they stochastically 

return to their active state. The aforementioned process is not without flaws. The bleaching phase 

usually results in the permanent loss of part of the fluorophore population while the rate of return to 

the active state of the remaining fluorophores cannot be controlled and can lead to a condition where 

multiple fluorophores are active within a single diffraction limited area. This generally translates to a 

decrease in structural resolution, meaning that it is not recommended to use proteins belonging to 

this category when doing single color PALM (Stockmar et al. 2018). 

 While the inability to accurately control the switching rate of proteins such as mNeonGreen is a 

downside when doing single color PALM, these fluorophores are of extreme importance when 

performing dual color PALM. The reasoning behind this conclusion is that most of the other 

fluorophores share the same photoconversion laser (405 nm laser line), meaning that both proteins of 

choice will be converted to an active state at the same time. Although this limitation can be 

circumvented from a technical perspective by combining a beamsplitter with either a dual-camera 

system or, alternatively, with the partitioning of the camera chip, systems lacking said features will be 

unable to image two fluorophores that share the same photoconversion laser. This problem does not 

arise when imaging a protein that uses a photoconversion laser in combination with a protein that 

switch spontaneously between fluorescent and dark state, as the photo-activatable protein can be 

fully imaged prior the imaging of the second protein without loss of signal. 

 Fixed and live samples 

The time needed to image each single fluorescent protein within a cell via PALM is directly 

proportional to the number of fluorophores located within the cell itself and ranges from few seconds 

to hours. This means that in order to find the localization of the entire protein population at a given 

time it is first necessary to fix the sample. Sample fixation can be responsible for the formation of 

artefacts and an overall decrease in signal (Stockmar et al. 2018) and it is therefore necessary to 

appropriately optimize the fixation protocol in order to minimize such effects (Leyton-Puig et al. 2016). 

Once the sample is fixed, the imaging parameters depend exclusively on the characteristics of the 

fluorophore of choice, its abundancy and local density (Bach et al. 2017). The fluorophore localization 

and other pertinent parameters obtained by fitting each molecule signal are then collected into a table 

which will act as a starting point for the data analysis.  
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Live imaging differs from the imaging of fixed samples not only because the technical obstacles 

that need to be overcome for the two kind of imaging are different, but also because the imaging 

parameters depend on the hypothesis being tested. As previously mentioned, the time needed to 

image all the fluorophores that are comprised within a cell is proportional to their number. As, in 

regards to the average time frame needed for a PALM experiment, all proteins show a certain degree 

of dynamicity (moreover cell morphology itself can change within said time frame), it is not feasible to 

obtain a faithful representation of the whole protein population via in vivo PALM. It follows that live 

imaging in PALM is mainly used to perform single particle tracking (SPT). In order to precisely image 

protein kinetics it is necessary to isolate the signal drift originated from the protein movement from 

the drift caused by other sources such as cell growth, sample drift and cell motility. Since a fluorophore 

will usually bleach within few seconds (fluorescent proteins will bleach even faster, compared to 

synthetic dyes) changes in cell size due to cell growth do not influence protein kinetics measurements 

and no correction is therefore necessary. This is not the case for sample drift and cell motility. Sample 

drift is universal and is usually corrected via the use of fluorescent fiducials followed by drift correction 

(Thompson et al. 2002). The presence or absence of cell motility is instead dependent on the 

microorganism of choice, where sample immobilization is necessary only for motile organisms such as 

Bacillus subtilis (sample immobilization is usually performed by placing the sample on low fluorescence 

agarose pads) (de Jong et al. 2011, Stracy and Kapanidis 2017). 

An extra factor that need to be taken in consideration when performing single particle tracking via 

PALM is the aim of the experiment. If this involves the study of the kinetic changes of a protein upon 

different conditions, the use of short frame times (exposure time 5-15 ms) and low laser intensity will 

maximize the track length and the range of speeds that can be followed at the cost of localization 

precision (Uphoff et al. 2013, Stracy et al. 2016). On the opposite side, if the study focuses on the 

localization of the immobile population, it may be better to use longer frame times (up to 100 ms) or 

implement a dark time (interval time between consecutive frames where the lasers are off) between 

frames at the cost of being unable to image fast moving fluorophores.  

 

1.5. PALM data analysis 

PALM and, in general, SMLM techniques differ from other fluorescent microscopy techniques also 

with respect to the downstream image analysis. As explained in 1.4.2 the typical output of a PALM 

experiment is a table containing fluorophore localizations and fluorophore associated parameters 

(Table 1.2). The data contained within the table can either be used to build rendered fluorescent 

images and be analysed in a conventional-like fashion via image analysis software such as Fiji 

(Schindelin et al. 2012, Rueden et al. 2017), or analysed via coordinate based methods such as point 



Giacomo Giacomelli, PhD thesis, Department I, Microbiology, LMU 
 

19 
 

pattern analysis (PPA) (Spielman 2017), ordering points to identify the clustering structure (OPTICS) 

(Ankerst et al. 1999) and coordinate-based co-localization (CBC) (Malkusch et al. 2012). While analysis 

of rendered images can be of use and will be shown in chapter 3, it also results in a loss of data 

information. It is therefore suggested to treat the data as coordinates and use the appropriate type of 

analysis.  

Table 1.2: Exemplary table output obtained via the PSF fitting of single fluorophores signals in a 

PALM experiment. The information contained within this table represent only some of the 

information that can be extracted from the raw data images and vary according to the software 

used for the fitting of the raw images. Starting from the left: Index, Frame number (frame at which 

the signal is being perceived), Position X (localization of the centroid on the X axis in nanometers), 

Position Y (localization of the centroid on the axis), Precision (localization precision of the centroid), 

Photon number (number of photons emitted) and PSF (point spread function half width at 𝑒−1𝜎𝑥). 

 

Index Frame # Position X (nm) Position Y (nm) Precision (nm) Photon # PSF (nm) 

1 1711 29688.5 40718.9 20.6 152 96.3 

2 1721 31831.6 38985.2 29.3 99 98.0 

3 2311 29507.0 38742.3 24.5 142 104.6 

4 

244

 

1 

29482.8 38718.8 25.6 128 102.9 

5 

272

 

1 

29515.8 38720.0 29.7 147 121.1 

6 

277

 

1 

30847.0 39485.8 39.1 168 140.5 

n … … … … … … 

 

 Point pattern analysis (PPA) 

PPA is a set of analysis methods dedicated to the study of points distributed on a map, where the 

map consists of an axial plane of n axis (in 2D PALM it is a 2D plane) (Spielman 2017). PPA methods can 

be divided into two groups: one dedicated to the determination of the number of points within a 

specific region and one dedicated to examine the relative positioning of points (e.g. nearest neighbor 

distribution function 𝐺). In PPA, identification of a cluster or, more in general, of a pattern is based on 

the identification of statistical deviation from a null hypothesis, where the basic null hypothesis 

correspond to complete spatial randomness (e.g. Poisson point process) and more advanced ones take 

into consideration points dependence/interaction (e.g. Gibbs models (Baddeley et al. 2013)).  
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Given a dataset containing a point pattern in an area of arbitrary shape (fluorophores localizations 

within a cell), it is possible to estimate its nearest neighbor distribution 𝐺𝑒(𝑟) (𝐺𝑒 is the experimental 

estimate). Since this estimate is affected by the inability to observe points outside the area of analysis 

(edge effect), edge correction methods (e.g. Hanish estimator (Hanisch 2007)) are implemented in 

order to minimize its estimate bias (Ripley 2012, Baddeley 2019).  

A second nearest neighbor distribution, 𝐺𝑡(𝑟) (𝐺𝑡 is the theoretical estimate), is then calculated 

under the assumption that the points contained within the dataset follow a Poisson point process 

within the area being analysed (independent fluorophores randomly distributed within a cell). This 

function is defined as: 

 
 

𝐺𝑡(𝑟) = 1 − 𝑒−𝛿𝜋𝑟2
 

 

(6) 

 
 

where 𝛿 is the expected density of points, and 𝑟 is the distance at which 𝐺𝑡 is estimated. 𝐺𝑒 and 

𝐺𝑡 are then compared, with statistical deviation between the two estimates suggesting spatial 

clustering/spatial regularity in the experimental dataset (refusal of the null hypothesis). 

While, when applied to 2D PALM data, the aim of PPA is the identification of clusters on a two 

dimensional plane, it is important to point out that the definition of “cluster” varies between different 

coordinate analysis methods. Specifically, while PPA identify clusters via the use of a null hypothesis 

for statistical inference, other cluster analysis methods, such as OPTICS, aim to identify a set of 

meaningful subclasses present within a dataset. 

 Ordering points to identify the clustering structure (OPTICS) 

The aim of the OPTICS algorithm is to order the dataset in a way that represent its density-based 

clustering structure (Ankerst et al. 1999). In order to be able to understand density-based cluster-

ordering, we first need to understand the density-based clustering method that is at the base of 

OPTICS: DBSCAN (Ester et al. 1996). The definition of cluster according to DBSCAN is that, given a 

dataset of points, a circular area of radius 𝜀 centred on each element of the cluster will need to contain 

at least a certain number of other points (𝑀𝑖𝑛𝑃𝑡𝑠). The resulting cluster will be composed of two type 

of points: objects whom area contain at least 𝑀𝑖𝑛𝑃𝑡𝑠 (core points), and objects which do not satisfy 

the rule but that are found within the area of points that do (border points). As a result, all the points 

that do not satisfy the listed conditions will not be considered as belonging to clusters (Figure 1.1 A).  
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OPTICS differentiates itself from DBSCAN by linearly ordering the points contained within the 

dataset such as nearest neighbors are next to each other within the ordering. 𝜀, in this case, is the 

maximum distance to be considered and 𝑀𝑖𝑛𝑃𝑡𝑠 is the minimum number of points necessary to form 

a cluster. Within the ordered dataset will also be annotated two new parameters for each point: core 

distance (𝑑𝑐𝑜𝑟𝑒) and reachability distance (𝑑(𝑐,𝑐1)). These two parameters are defined as: 

where 𝑁𝜀(𝑐) is the number of points contained within a circular area of radius 𝜀 centred on 𝑐 and 

𝑑𝑖𝑠𝑡(𝑐, 𝑐1) is the Euclidean distance between 𝑐 and 𝑐1 (Figure 1.1 B). Lastly, it is important to specify 

that reachability distance cannot be defined unless 𝑐1is also a core point. 

  
 

𝑑𝑐𝑜𝑟𝑒(𝑐) = {
𝑈𝑁𝐷𝐸𝐹𝐼𝑁𝐸𝐷

𝑀𝑖𝑛𝑃𝑡𝑠 − 𝑡ℎ 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑁𝜀(𝑐)
 

𝑖𝑓 |𝑁𝜀(𝑐)| < 𝑀𝑖𝑛𝑃𝑡𝑠

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

(7) 

  
 

𝑑(𝑐,𝑐1)(𝑐) = {
𝑈𝑁𝐷𝐸𝐹𝐼𝑁𝐸𝐷

max (𝑑𝑖𝑠𝑡(𝑐, 𝑐1), 𝑑𝑐𝑜𝑟𝑒(𝑐))
 

𝑖𝑓 |𝑁𝜀(𝑐)| < 𝑀𝑖𝑛𝑃𝑡𝑠

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

(8) 

  
 

Figure 1.1: DBSCAN vs OPTICS. (A) In DBSCAN points are assigned to a cluster if they satisfy the 
conditions necessary to be a core point (𝑀𝑖𝑛𝑃𝑡𝑠 = 3, 𝑟𝑎𝑑𝑖𝑢𝑠 = 𝜀) or if their distance from a core 
point is smaller than 𝜀. Core points (𝑐) are highlighted in green, border points (𝑏) in orange and 
points not belonging to clusters (𝑛) in black. (B) In OPTICS 𝜀 is the maximum radius at which the 
𝑀𝑖𝑛𝑃𝑡𝑠 condition is tested for each point. The core distance of 𝑐 (𝑑𝑐𝑜𝑟𝑒) and reachability distance 
of 𝑐 from 𝑐1 (𝑑(𝑐,𝑐1)) are two extra parameters that are calculated in order to determine the points 

ordering. 
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The reachability distances obtained via OPTICS can be then be plotted according to the determined 

ordering and understood graphically (Figure 1.2). Following the construction of the reachability plot, it 

is possible to set one or more threshold limits for 𝜀 (𝜀𝑙𝑖𝑚𝑖𝑡) in order to isolate clusters of different 

minimum density (Figure 1.2). 

 Coordinate based co-localization (CBC) 

Adaptation of existing mathematical algorithms for the study of co-localization in SMLM data was 

first proposed in 2012 (Malkusch et al. 2012). This method, differently from quantitative co-localization 

algorithms used for conventional fluorescence microscopy such as the Pearson correlation coefficient 

(Pearson 1896), does not output a single co-localization value for the whole image but rather calculates 

a CBC value for each single molecule of the two examined species (𝐴 and 𝐵).  

Given a localization 𝐴𝑖  belonging to the 𝐴 species, the distributions of 𝐴 and 𝐵 around 𝐴𝑖  (𝐷𝐴𝑖,𝐴(𝑟) 

and 𝐷𝐴𝑖,𝐵(𝑟)) are defined as: 

 
 

𝐷𝐴𝑖,𝐴(𝑟) =
𝑁𝐴𝑖,𝐴(𝑟)

𝜋𝑟2
∗

𝜋𝑅𝑚𝑎𝑥
2

𝑁𝐴𝑖,𝐴(𝑅𝑚𝑎𝑥)
=

𝑁𝐴𝑖,𝐴(𝑟)

𝑁𝐴𝑖,𝐴(𝑅𝑚𝑎𝑥)
∗

𝑅𝑚𝑎𝑥
2

𝑟2
 

 

(9) 

 
 

𝐷𝐴𝑖,𝐵(𝑟) =
𝑁𝐴𝑖,𝐵(𝑟)

𝑁𝐴𝑖,𝐵(𝑅𝑚𝑎𝑥)
∗

𝑅𝑚𝑎𝑥
2

𝑟2
 

 

(10) 

 
 

Figure 1.2: Reachability plots 
and their visual interpretation. 
Points are color coded according 
to their local density in order to 
simplify the optical recognition 
of clustering area. The blue 
overlay (containing all points) is 
obtained by using an 𝜀𝑙𝑖𝑚𝑖𝑡 
above 50 while the orange 
overlay is obtained by using an 
𝜀𝑙𝑖𝑚𝑖𝑡 of 25 (dashed horizontal 
line within the reachability plot). 
Generally speaking, the 
presence of a “valley” within a 
reachability plot correspond to a 
cluster, where a steep “valley” 
correspond to a fast increase in 
density and deeper “valleys” will 
be characterized by higher 
density. 
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where 𝑁𝐴𝑖,𝐴(𝑟)  is the number of localizations of 𝐴 within a radius 𝑟 around 𝐴𝑖. The number of 

localizations is divided by area (𝜋𝑟2) resulting in a localization density. This value is normalized by 

dividing the obtained density by the density of localizations of 𝐴 observed at the maximum radius, 

which is characterized by 𝑁𝐴𝑖,𝐴(𝑅𝑚𝑎𝑥) and an area equal to 𝜋𝑅𝑚𝑎𝑥
2 . The same procedure is performed 

to calculate 𝐷𝐴𝑖,𝐵(𝑟). 

Using 𝐷𝐴𝑖,𝐵(𝑟) and 𝐷𝐴𝑖,𝐴(𝑟) it is then possible to calculate the Spearman´s rank correlation 

coefficient (𝑆) for 𝐴𝑖: 

 

where 𝑂𝐷𝐴𝑖,𝐴
(𝑟) is the rank calculated after Spearman, and �̅�𝐷𝐴𝑖,𝐴

 is the arithmetic average of 

𝑂𝐷𝐴𝑖,𝐴
(𝑟) for 0 ≤ 𝑟 ≤ 𝑅𝑚𝑎𝑥. A final equation in then necessary to obtain the CBC value of 𝐴𝑖  (𝐶𝐴𝑖

) 

from the Spearman´s rank correlation coefficient: 

where 𝐸𝐴𝑖,𝐵 is the distance between 𝐴𝑖  and the nearest neighbor from 𝐵. The obtained value can 

range between -1 and +1 with a value of +1 (perfect correlation) corresponding to high probability of 

co-localization, a value of 0 (non-correlation) corresponding to low probability of co-localization and 

finally, a value of -1 (anti-correlation). Similarly to what happen when performing co-localization 

analysis in conventional fluorescence microscopy (Zinchuk and Zinchuk 2008), the anti-correlation 

value is of difficult interpretation from a biological point of view and particular care needs to be used 

when drawing conclusions from it. 

  

 
 

𝑆𝐴𝑖
=

∑ (
𝑅𝑚𝑎𝑥
𝑟𝑗=0 𝑂𝐷𝐴𝑖,𝐴

(𝑟𝑗) − �̅�𝐷𝐴𝑖,𝐴
) ∗ (𝑂𝐷𝐴𝑖,𝐵

(𝑟𝑗) − �̅�𝐷𝐴𝑖,𝐵
)

√∑ (
𝑅𝑚𝑎𝑥
𝑟𝑗=0 𝑂𝐷𝐴𝑖,𝐴

(𝑟𝑗) − �̅�𝐷𝐴𝑖,𝐴
)2 ∗ √∑ (

𝑅𝑚𝑎𝑥
𝑟𝑗=0 𝑂𝐷𝐴𝑖,𝐵

(𝑟𝑗) − �̅�𝐷𝐴𝑖,𝐵
)2

 

 

(11) 

 
 

 
 

𝐶𝐴𝑖
= 𝑆𝐴𝑖

∗ 𝑒
(−

𝐸𝐴𝑖,𝐵

𝑅𝑚𝑎𝑥
)
 

 

(12) 
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1.6. Aim of the study 

PALM and, more in general, single molecule localization microscopy techniques differentiate from 

conventional fluorescence microscopy and other superresolution techniques for their ability to 

precisely localize single molecules. While the ability to localize single molecules results in an increase 

in information output and potentially give us the ability to answer otherwise unsolved biological 

questions, as any other technique, it comprises flaws. Factors such as homogeneity of the data quality 

across a field of view, background fluorescence, fluorophores behaviour and cell orientation need to 

be taken in consideration when analysing the data, whether we are talking about clustering (OPTICS), 

co-localization (CBC) or other type of analysis. It is therefore necessary to try and minimize the effect 

that each of these background sources have on the data. A second, non-technical, source of variability 

depends on the relative novelty of SMLM techniques, with know-how concerning data analysis being 

relatively fragmented and several possible approaches being proposed in order to study the same 

phenomenon (Malkusch et al. 2012, Levet et al. 2019, Khater et al. 2020). 

In this study I take a multistep combinatory analysis approach to PALM data in Fiji (Schindelin et 

al. 2012) and R (R_Core_Team 2020). Following a generalized filtering step dedicated to the polishing 

of the data, localizations are labelled and grouped according to specific parameters (Cell_ID, 

Cluster_ID, …) allowing for the application of a series of algorithms (PPA, OPTICS, CBC) in an ID 

specific/unspecific manner.  

Each part of the script is thoroughly discussed in regards to its strengths, weaknesses and 

branching possibilities via examples of its applications across different microorganisms. These include 

the characterization of novel proteins and of the chromosome segregation machinery in 

Corynebacterium glutamicum, the study of the magnetosome formation in Magnetospirillum 

gryphiswaldense and the study of the flagellar organization in Trypanosoma brucei brucei.  

Finally, by providing a step by step guide toward the polishing, analysis and interpretation of SMLM 

data, this dissertation does not intend to set an absolute standard for analysis but is rather aimed at 

easing the reader into the topic itself. Specifically, this work focuses on providing the reader with the 

ability to navigate, combine and extract the desired information with particular emphasis toward some 

of the most commonly required analysis methods (clustering, co-localization). 
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 Data quality and fluorophore dependent data filtering 

Scripts and macros used within this chapter:  

- Script_R1 
- Script_R2 
- Fiji macro 1 
- Fiji macro 2 

Results included within this chapter were published in:  

- Bach J. N., Giacomelli G., Bramkamp M. (2017). “Sample Preparation and Choice of 
Fluorophores for Single and Dual Color Photo-Activated Localization Microscopy (PALM) with 
Bacterial Cells.” Methods Mol Biol 1563: 129-141. 

 

When testing a hypothesis, it is always desirable to try and minimize the amount of artifacts and 

background noise contained within the data, thus decreasing the chance to obtain false positives or 

false negatives. Data quality is influenced by two mechanics: experimental planning/procedures and 

raw data processing/filtering. As most aspects of experimental design are determined in a case by case 

scenario, I will only briefly discuss them. I will instead focus on the steps that I repute necessary in 

order to isolate high quality PALM data from artifacts/background noise with specific emphasis on raw 

data filtering.  

In conventional fluorescence microscopy the quality of the data is assured by the use of a 

functional fluorescent fusion where the fluorophore is bright, monomeric and characterized by 

excitation and emission profiles that differ from the ones typical of the microorganism in use. 

Moreover, the imaged sample should be characterized by the absence of extracellular background 

signal and an appropriate cellular density (low enough so that each cell within the field of view can be 

observed separately). 

While most of the general requirements necessary in order to obtain high quality data via 

conventional fluorescence microscopy (cellular density, lack of extracellular background, functional 

fluorescent fusion) also apply to PALM, the ideal fluorophore characteristics differ substantially 

between the two techniques. The ideal scenario for quantitative imaging of a fixed sample via PALM 

requires a fluorophore characterized by a 1:1 stoichiometry ratio with the protein of interest, a very 

high signal efficiency (fraction of fluorophore that can be detected within a cell), a high number of 

photons per switching cycle, the presence of a single on state before permanent bleaching and a 

defined lifetime, with little to no variation between fluorophores (Wang et al. 2014).  

Since, at the present date, no fluorophore satisfies all of the conditions mentioned above and most 

biological samples show a certain degree of autofluorescence, correction and filtering methods are 

pivotal toward the improvement of the data quality. Here I approached the problem by establishing a 



Giacomo Giacomelli, PhD thesis, Department I, Microbiology, LMU 
 

26 
 

filtering pipeline based on a combination of fluorophore specific photo-characteristics (PSF width, 

photon count, persistence) and bright field derived regions of interest (ROIs). Since said pipeline can 

also be used for the determination of the photo-characteristic themselves (see Chapter 2.1), it can be 

readily applied even when the fluorophores properties are unknown.  

2.1 . Determination of PSF width and photon count filtering parameters 

 The first step within this pipeline is aimed at distinguishing molecules localizations derived from 

single fluorophores from those originated from background and/or multiple co-localizing fluorophores. 

Since, given a certain chemical environment, the number of photons emitted by a specific emitter and 

their PSF will have specific distributions, it is possible to isolate single fluorophore´s distribution and, 

based on that, establish filtering parameters (Figure 2.1). In order to determine the PSF width and 

photon count distribution for the fluorophores used within this dissertation (PAmCherry, Dendra2, 

mNeonGreen) I imaged cells containing the fluorophores of choice and emitter free cells with the same 

imaging parameters, where the parameters were aimed toward a low chance of having multiple active 

emitters within each diffraction limited area. This condition was achieved for PAmCherry and Dendra2 

by appropriate tethering of the 405 nm activation laser and for mNeonGreen by bleaching the majority 

of the fluorophores previous the imaging. Since the analysis procedure used to determine the filtering 

parameters is consistent between different fluorophores, I will explain the rationale behind it only for 

one of the fluorescent proteins used: PAmCherry (filtering parameters for all fluorophores used can be 

found in Table 2.1).  

 Following the collection of the localizations, I applied two semi-automated, self-written Fiji macros 

(Giacomelli 2020) to the bright field channel in order to establish three regions of interest (ROI): 

focused (Fiji macro 1-2), unfocused (Fiji macro 1) and background (Fiji macro 1) (Figure 2.1 A, B). ROIs 

belonging to the focused category comprise cells that lie within the optical focus (focus at cell center) 

(blue), ROIs belonging to the unfocused category comprise cells clusters and non-cells particles that 

are perceived by the macros during the construction of the binary mask (black) and ROIs belonging to 

the background category comprise all the remaining field of view (orange) (Figure 2.1 A, B). I then 

extracted the ROIs contours via a third Fiji macro (Giacomelli 2020), converted them into the 

appropriate format in R (Script_R1) (Giacomelli 2020), and split the emitter localizations obtained via 

PALM accordingly (Script_R2 – as the script uploaded on the GitHub page is the final version, PSF width 

and photon count based filtering are performed before the assignment to specific ROIs). In presence 

of PAmCherry, localizations belonging to the focused category show a quasi-normal distribution for 

both photon count (99% localizations: 36<x<383 photons) and PSF width (99% localizations: 47<x<215 

nm) (Figure 2.1 Ci, Di). Since these distributions differ from those obtained in absence of PAmCherry 
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in both positioning and number of localizations (Figure 2.1 Ei, Fi), we can conclude that PAmCherry is 

the main source of localizations in the focused category.  

Multiple peaks can be observed within the unfocused and background distributions in presence of 

PAmCherry (Figure 2.1 Cii-iii, Dii-iii) with the fluorophore being responsible for the majority of the 

signal. The presence of PAmCherry within these ROIs is corroborated by the fact that unfocused and 

background area include cells clusters (Figure 2.1 A) and that the distributions observed in presence 

and absence of the fluorophore differ (Figure 2.1 Cii-iii, Dii-iii, Eii-iii, Fii-iii), with the absence of the 

Figure 2.1: Photon count and PSF based filtering. WT cells (empty) and cells expressing the 
fluorophore of choice (PAmCherry) were imaged via PALM under the same imaging conditions. 
(A,B) The bright field image was transformed into a three colors binary mask (blue->focused, 
black->unfocused, orange->background). (C-F) PSF width (nm) and photon count were plotted for 
each condition and category (the histogram plots are color coded according to the category they 
belong to) and compared to determine the filtering parameters. The final filtering parameters are 
highlighted by dotted lines across all plots (Photon count: 70<x<350, PSF width: 70<x170 nm).  
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fluorophore resulting in a lower number of localizations. PAmcherry is responsible for the 

subpopulation characterized by PSF and photon count in agreement with the focused category and for 

the one characterized by higher PSF width (>180 nm) and photon count (>350), where the second 

subpopulation is the result of multiple fluorophores emitting within a single diffraction limited area. 

The presence of overlapping fluorescence signals exclusively in background and unfocused area can be 

explained by the overlapping of cells within cells clusters, which results in a higher fluorophore 

activation chance per diffraction limited area at any given time.  

A third, unique subpopulation can be observed within the background category (Figure 2.1 Ciii-

Diii). With PSF width (<80 nm) and photon count (<70) lower than the ones that characterize 

PAmCherry, these localizations can be traced to autofluorescent particles.  

 

Given the PSF width and photon count intervals that include 99% of the localizations perceived 

within the focused category (photons count: 36<x<383, PSF width: 47<x<215 nm), I performed a step-

wise refining aimed at limiting loss of information while improving data quality. The lower limit of the 

photon count was increased to 70 (exclusion of the autofluorescent particles population) while the 

upper limit was decreased to 350 (decreased chance of overlapping fluorophores). Similarly, the lower 

limit of the PSF width was increased to 70 nm while the upper limit was decreased to 170 nm (Table 

2.1).  

It is important to keep in mind that application of the described filtering parameters to different 

fields of view or experiments result in variable data loss amount, where the percentage of data loss is 

proportional to the ratio between the amount of background and overlap signal compared to the 

amount of signal derived from single fluorophores.  

 

Table 2.1: PSF width and photon count filtering parameters.  Filtering parameters were determined 

as described in chapter 2.1 and applied to all PALM data acquired within this dissertation prior 

analysis.  

 

Fluorophore Photon count filtering (photons) PSF width filtering (nm) 

PAmCherry 70-350 70-170 

Dendra2 100-500 80-160 

mNeonGreen 70-500 60-180 
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2.2. Spatio-temporal grouping of fluorescent events 

While, following the photon count and PSF width filtering process, we can be confident that each 

localization correspond to a single event, we still need to be able to distinguish between localizations 

originated from a fluorophore activation event and those caused by either the persistence of 

fluorophore over multiple frames or a blinking event (alternation of on and off state of the same 

fluorescent protein). 

Under imaging conditions that prevent the activation of multiple molecules within a diffraction 

limited area at any given time, such as the ones being used during the collection of these datasets, the 

persistence of a fluorophore across multiple frames will be reflected by a sudden spike in the number 

of localizations across the experiment timespan (Figure 2.2 A). It follows that this phenomenon can be 

easily identified also in absence of a priori knowledge concerning the fluorophore photo-

characteristics themselves. The same does not hold true for blinking. Since fluorophores can remain in 

an off state for relatively long time (few seconds) before returning to an active state (Annibale et al. 

2011, Durisic et al. 2014), the presence of blinking does not necessarily translate in a spike in 

localizations. Identification of blinking becomes even more complex in presence of multimeric protein 

structures, where the appearance of spatially clustered localizations is to be expected even in the 

absence of blinking. Ultimately, blinking correction can only be applied with previous knowledge 

concerning the fluorophore blinking characteristics which are in turn determined by imaging the 

fluorophore at very low density (Annibale et al. 2011, Durisic et al. 2014). Since the aim of this chapter 

is to improve data quality in absence of previous knowledge concerning the fluorophores, the 

determination of spatio-temporal grouping parameters will be aimed toward the correction of 

fluorescence persistence rather than blinking. 

The spatio-temporal grouping algorithm I used for this purpose is included within the ZEN 2.1 SP3 

software (black)(64bit)(Version 14.0.4.201) associated with the Zeiss Elyra P.1 microscope and is based 

on three separate parameters: maximum consecutive frames (maximum number of consecutive 

frames where the fluorophore is emitting during a blinking event), off frames (expected number of 

frames between two blinking events of the same fluorophore) and search distance (maximum distance 

at which consecutive localizations are considered to be originated from the same fluorophore). It is 

worth mentioning that since fluorescence persistence imply the absence of multiple on-off switching, 
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the off frames parameter will always be equal to 0 and the consecutive frames parameter is an 

estimate of the maximum number of frames a fluorophore can be active.  

The search radius for fluorescence persistence was chosen to be on the same order of magnitude 

of the localization precision observed for the fluorophore itself (typical localization precision: 20 nm, 

search radius: 30 nm) while the consecutive frames parameter was stepwise increased until the 

localizations characterized by a frame number equal to the maximum allowed value accounted for less 

than 5% of the total localizations count (Table 2.2).  

 

Table 2.2: Spatio-temporal grouping parameters. Grouping parameters were determined as 

described in chapter 2.2 and applied to all PALM data acquired within this dissertation prior analysis 

(the off frames are always set to 0). 

    

Fluorophore Number of frames (% of persisting events)   Search radius (nm) 

 1 (%) 2 (%) 3 (%) 4 (%) 5 (%)  

PAmCherry 83.49 11.58 4.92 - - 30 

Dendra2 91.79 6.47 1.74 - - 30 

mNeonGreen 60.17 19.48 10.39 5.63 4.33 30 

Figure 2.2: Spatiotemporal grouping of PAmCherry. (A) Fluorescent events frequency over 1000 
frames in a ROI containing a single cell expressing PAmCherry before (red) and after grouping 
(blue). The temporal distribution of events across the experiment is not uniform with a high 
number of consecutive frames containing events at a Frame Index of 200 and 500. (B) Visual 
representation of the events recorded in (A) with overlapping between raw data (red) and grouped 
data (blue). Multiple events were grouped together when within 30 nm of each other in 
consecutive frames for up to 3 frames. 
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Given that localization precision is inversely proportional to the number of photons emitted by a 

fluorophore, as described in chapter 1.3.1, and that the fluorophores I used emit photons within the 

same order of magnitude, it does not come as a surprise that the search radius adopted for the 

grouping does not vary between them (Table 2.2). In contrast, the persistence length varies across the 

three fluorophores.  Specifically, mNeonGreen events showed a higher degree of persistence (Table 

2.2).  

By combining careful experimental planning (i.e.: fluorophore choice, activation laser titration, …) 

and the mentioned filtering methods (ROI based, photon count based, PSF based, grouping based) it 

is possible to greatly reduce the degree of background signal, therefore laying the foundations for 

experimental reproducibility and a robust statistical analysis. 
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 Characterization of DipC spatio-temporal localization via 
conventional-like image analysis 

Scripts and macros used within this chapter:  

- Script_R3 
- Script_R4 

 

In order to apply conventional-like image analysis methods to PALM data, it is first necessary to 

extract the fluorophore localizations from the PALM result table (Table 1.2) and convert them back 

into an image. Two main approaches can be taken when converting the data from a list of localizations 

to an image: a PSF based approach (i.e.: Normalized Gaussian rendering) and a cumulative based 

approach. 

In a PSF based approach each single localization will be represented as a point spread function, 

where the intensity and the width of the PSF can be extracted from the PALM table itself (photon count 

and PSF width). In a way, the resulting image will be extremely close to what one would obtain via 

conventional fluorescence microscopy, with the difference that the pixel size is not limited by the 

camera itself, that the fluorescence dynamic range is infinite and that the image resolution is higher 

(Figure 3.1 A). As we will see in chapter 3.1 this reconstruction approach results in greater loss of 

information compared to the second approach and is not suitable for most type of analysis. 

While less visually appealing and simpler from a mathematical point of view, the cumulative based 

approach allows for quantitative analysis and is therefore generally preferred to Gaussian rendering. 

Figure 3.1: Conversion of PALM localizations to images for conventional-like analysis. DipC-
PAmCherry localizations are extracted from the PALM result table and plotted on a 2D plane as 
either Normalized Gaussian distributions (A) or as Cumulative Histograms (B) via ThunderSTORM. 
Scale bar: 1 µm 

A B 
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Briefly, each pixel´s gray value corresponds to the number of localizations residing within the pixel 

itself (Figure 3.1 B). It follows that while the exact position of each fluorophore is lost, quantitative 

analysis is, to a certain degree, still feasible. 

Both rendering methods are characterized by loss of information. However, the transformation of 

localization data into an image also translate into an easier visual interpretation and analysis. Such 

transformation is especially beneficial when the focus of the study is the analysis of the spatial 

organization of protein structures. It is important to notice that the increase in simplicity is not 

exclusively intrinsic of the data-type (pixel intensity rather than localization coordinate) but also 

derives from the greater availability and simplicity of use of image analysis software such as Fiji 

(Schindelin et al. 2012) when compared to the tools available for point pattern analysis (usually R 

and/or Matlab packages).  

Here, I showcase the potential use of conventional-like image analysis in unique and general 

scenarios. Briefly, I exploit the septal/polar enrichment of two putatively interacting proteins in 

Corynebacterium glutamicum, DipC (cg0839) and DivIVA (cg2361), to unravel their relation via 

conventional-like image analysis. Moreover, I exemplify how fixed cell PALM imaging and 

conventional-like image analysis can be used to describe and compare changes in protein localization 

across a cell cycle and/or genomic background. 

3.1. The identification of novel DivIVA interaction partners in Corynebacterium 

glutamicum: the DNA damage induced proteins C and D (DipCD) 

In C. glutamicum, the most evident example of spatial organization is the DivIVA-dependent polar 

localization of the cell elongation machinery (Daniel and Errington 2003, Letek et al. 2008). DivIVA is a 

conserved protein among many gram-positive bacteria that is able to autonomously localize at regions 

characterized by high degrees of negative curvature, such as poles and septa, via a process called 

molecular bridging (Lenarcic et al. 2009). Briefly, DivIVA subunits form dimers which, in turn, can 

interact with each other to form a net-like structure characterized by an intrinsic curvature. As DivIVA 

subunits also interact with the lipid bilayer, the oligomeric structure is more likely to form/is more 

stable when located within regions characterized by an intrinsic curvature similar to the one of the 

oligomers themselves: poles and newly forming septa (Lenarcic et al. 2009).  

DivIVA oligomers function as scaffold for a series of essential processes. Known mechanisms that 

rely on DivIVA for their localization in C. glutamicum include the cell elongation machinery, via the 

transglycosylase RodA (cg0061) (Sieger and Bramkamp 2014), and the chromosome segregation 
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machinery, via the ParB-mediated (cg3426) tethering of the ParABS system (Donovan et al. 2012, Bohm 

et al. 2020) (Figure 3.2). Members of the DivIVA superfamily are known to interact with a variety of 

different processes in different bacterial species (Kaval and Halbedel 2012). The ability of DivIVA 

members to interact with such a different array of proteins has been attributed to its least conserved 

region: the C-terminal region (Kaval and Halbedel 2012). As neither ParB nor RodA interact with said 

region (Donovan et al. 2012, Sieger and Bramkamp 2014), it is reasonable to hypothesize the existence 

of more DivIVA dependent pathways in C. glutamicum. Thus, I fished for novel DivIVA interaction 

partners via a pull-down experiment followed by mass spectrometry (full description of the method in 

Chapter 8.12.5-6). Briefly, I used colloidal Coomassie in order to compare the protein elution profiles 

obtained for the strain expressing the bait protein (strain C27: C. glutamicum RES167* divIVA::divIVA-

StrepTag) and the control strain (C. glutamicum RES167*) (Figure 3.3). I then isolated the parts of the 

elution profile that differ between the C27 strain and the control (for both C27 and control strain), 

identified the proteins contained within said samples via mass spectrometry (mass spectrometry was 

performed by the MSBioLMU service unit) and finally compared the list of proteins obtained for each 

of the four C27 regions with the ones obtained for RES167*.  

Figure 3.2: DivIVA dependent organization of the pole in C. glutamicum. The membrane 
associated DivIVA scaffold (in green) interacts with members of the elongasome (RodA – in blue) 
on the membrane side and with the chromosome segregation system (ParB – in yellow) on the 
cytoplasmic side. 
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Out of the four protein bands unique for the C27 strain, one could be attributed to the bait protein 

(DivIVA-Strep), two could be attributed to putative proteins (Cg0838 and Cg0839) while for the last 

one it was not possible to find differences with the respective RES167* region (Figure 3.3). 

Where the DipD (Cg0838) protein sequence is predicted to contain a DEAD, a DUF1998, a ResIII 

and a Helicase C motif, strongly suggesting that DipD is a helicase, the DipC (Cg0839) protein sequence 

is characterized by the lack of motifs/domains (the list of PFAM motifs contained within the two 

protein sequences is provided by the Kyoto Encyclopedia of Genes and Genomes - KEGG) (Kanehisa 

and Goto 2000, El-Gebali et al. 2019). DipC is also characterized by the lack of homology with other 

known protein sequences, with only closely related microorganisms expressing candidate homologous 

proteins (i.e.: Corynebacterium ammoniagenes KCCM 40472, Corynebacterium aurimucosum DSM 

44827, …) (candidate homologous proteins were identified via CoryneRegNet 7) (Parise et al. 2020). 

Finally, both proteins are predicted to not contain transmembrane helices (prediction via the 

PredictProteins online tool) (Yachdav et al. 2014). 

While the bioinformatic approach fails to provide meaningful data concerning DipC localization 

and function, it provides instead information concerning its expression. Specifically, it has been 

previously shown that a lexA box is located upstream cg0841 (dipA) (Figure 3.4 A) (Jochmann et al. 

2009), and microarray data suggest that both dipA and dipC undergo an increase in transcription upon 

Figure 3.3: Pull-down elution profiles of RES167* and C27. While the elution profile of the control 
strain (C. glutamicum RES167*) contains several protein bands, it is possible to visually identify four 
unique protein bands within the C27 elution profile (numbered 1 to 4). The unique bands 1 to 3 
can be attributed respectively to DivIVA-StrepTag (theoretical molecular weight: 39.67 kDa), 
Cg0839 (theoretical molecular weight: 139.33 kDa) and Cg0838 (theoretical molecular weight: 
179.00 kDa). No significant difference could be found via mass spectrometry for band 4 between 
C27 and RES167*. 
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addition of the DNA damage inducing agent mitomycin C (Jochmann et al. 2009, Pauling et al. 2012). 

Based on said predictions I treated the C. glutamicum RES167* dipC::dipC-mCherry strain (B1G2) with 

200 ng/ml of mitomycin C and followed the changes in DipC expression (Figure 3.4 B). Following the 

addition of the antibiotic, the B1G2 strain showed a gradual increase in fluorescence suggesting that 

dipC expression is upregulated in presence of DNA damage (Figure 3.4 B). Given the genetic proximity 

and shared regulatory behavior of cg0839 and cg0841, I tentatively assigned cg0841-38 to the same 

putative operon: the DNA damage induced proteins ABCD (dipABCD) operon. I included dipD within 

the putative operon due to its close genetic proximity to dipC (8 bp). 

As DipC-mCherry localization is not homogeneous but rather characterized by a combination of 

low, diffusive cytoplasmic signal and, similarly to DivIVA, an enriched polar and septal signal (Figure 

3.4 B), I constructed a strain that express fluorescently labeled versions of both DipC and DivIVA from 

Bright Field      DivIVA-mCherry      DipC-mNeonGreen 
 Overlap 

Figure 3.4: DipC is expressed upon DNA damage and localizes in a DivIVA fashion. (A) dipC 
transcription is regulated by a lexA box, a DNA sequence that is bound by LexA in absence of DNA 
damage inhibiting its transcription. (B) over-time expression of DipC-mCherry from its native locus 
(C. glutamicum RES167* dipC::dipC-mCherry - B1G2) following the addition of 200 ng/ml of 
mitomycin C. Scale bar: 5 µm (C) Co-expression of DivIVA-mCherry and DipC-mNeonGreen from their 
native loci (C. glutamicum RES167* divIVA::divIVA-mCherry dipC::dipC-mNeonGreen - B1F10) in 
presence of the DNA damage inducing agent mitomycin C (200 ng/ml). Scale bar: 2 µm  

A 

B 

C 

0 hours    1 hour      2 hours      3 hours              4 hours
   5 hours 

DipC-mCherry 
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their native loci: RES167* divIVA::divIVA-mCherry dipC::dipC-mNeonGreen (B1F10) (Figure 3.4 C). The 

imaging of the two fluorescently labeled proteins via conventional fluorescence microscopy show a 

shared pattern in presence of DNA damage (Figure 3.4 C), in agreement with the putative interaction 

between DipC and DivIVA. 

3.2. The septum as a reference: Normalized Gaussian rendering 

The distance between the two sides of a septum in C. glutamicum is both smaller than the 

resolution achieved via conventional fluorescence microscopy and bigger than the resolution that can 

be achieved via PALM (Marienfeld et al. 1997). It follows that proteins such as DivIVA and its interaction 

partners, which localize on both sides of the septum, will appear as a single structure (Figure 3.4 C) 

when imaged via conventional localization microscopy and as two separate structures when imaged 

via PALM (Figure 3.5 A-B). I hereby combine the increase in resolution obtained via the use of PALM 

microscopy, conventional-like image analysis and the unique characteristics of the septum to 

determine the relative positioning of DivIVA and DipC. 

This approach does not only shed light on the DipC-DivIVA relation but can also function as a 

general approach toward the study of septal organization. Given that the septum width distribution 

does not vary between the strains used, in this case C. glutamicum RES167 dipC::dipC-PAmCherry and 

RES167 divIVA::divIVA-PAmCherry, it is possible to image the tagged proteins via PALM independently, 

and use the reconstructed images to measure the distance between the two sides of the septum 

(Figure 3.5). It follows that each protein of interest can be tagged with the same fluorophore, therefore 

eliminating fluorophore dependent variability and reducing changes in imaging conditions. 

Specifically, I imported the reconstructed images in Fiji and manually defined linear ROIs of 600 

nm width spanning from pole to pole of cells containing a septum (Figure 3.5 A-B). I then extracted the 

intensity values along each ROI, where each value is the average across the width of the ROI itself at 

position X, and used them to plot the correspondent cell fluorescence profile (Figure 3.5 A-B). I then 

calculated the distance between the intensity maxima that surround each septum and fitted the 

resulting septal distances populations via normal distributions (Figure 3.5 C-D). Since the mean of the 

distribution for DivIVA (a membrane associated protein) is approximately 110 nm and is smaller than 

the one obtained for DipC (~170 nm) I concluded that DipC proximity to the septum does not derive 

from a direct interaction with the membrane but rather due to protein dependent anchoring, possibly 

due to DivIVA (Figure 3.5 E). Similarly, this approach can be applied to multiple septum associated 

proteins in order to construct a more complex hierarchical structure. 
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3.3. Analysis of DipC mislocalization in a divS knock-out: Cumulative Histogram 

rendering and quantitative profiles 

When using conventional fluorescence microscopy or Normalized Gaussian rendering the 

fluorescence profiles obtained from different fields of views/strains cannot be compared from a 

quantitative point of view. This means that the associated analysis is usually limited to the description 

of the changes in fluorescence profile and/or the tracking of a fluorescent spot over-time. In a 

Cumulative Histogram rendering the intensity values assigned to pixels correspond to the number of 

localizations that reside within the pixel itself (Figure 3.6 A). Assuming that all fluorophores have been 

imaged in the course of the PALM experiment, it is therefore possible to quantitatively compare 

Cumulative Histogram reconstructions obtained from different strains/in the course of different 

experiments from both an expression and a localization point of view (Figure 3.6). 

The expression of genes related to DNA damage induced SOS response in bacteria is generally 

controlled by RecA and LexA (Witkin 1976, Walker 1984). In C. glutamicum, LexA has been 

demonstrated to directly control the expression of 48 SOS genes involved in a variety of physiological 

functions comprising the repair of the DNA damage and the survival of the cell during/following the 

repairs (Jochmann et al. 2009). The survival of the cell is ensured via a multitude of processes, including 

Figure 3.5: DipC is recruited to the septum by a protein, possibly DivIVA. Normalized Gaussian 
rendering of C. glutamicum RES167 divIVA::divIVA-PAmCherry (A) and RES167 dipC::dipC-PAmCherry 
(B) and associated fluorescence profile (top-right corner). The fluorescence profiles of cells 
presenting septa (A-B) were used to calculate the distance between fluorophores localizing on the 
two sides of the septa themselves. The septal distance population of DivIVA (C) and DipC (D) were 
fitted via a normal distribution and compared. The relative positioning of DivIVA and DipC is shown 
via a reductive model of the septum (E). Scale bar: 0.5 µm. 
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and not limited to the DivS-dependent inhibition of cell division (Ogino et al. 2008). As DipC is 

expressed during the DNA damage-dependent SOS response and localizes both in proximity of the cell 

elongation machinery and the divisome, it is possible for it to be involved in the regulation of said 

processes. 

I therefore compared the localization and expression of DipC-PAmCherry during the DNA damage-

induced SOS response in a wild type background strain (RES167 dipC::dipC-PAmCherry) (B3B3) and in 

a strain lacking the protein responsible for cell division inhibition during the SOS response: DivS 

(RES167 ΔdivS dipC::dipC-PAmCherry) (B5E2). While the two strains appear morphologically identical 

under standard growth conditions (Ogino et al. 2008), the knock out strain does not show the cell 

elongation phenotype typical of C. glutamicum cells exposed to DNA damage-inducing agents (Kijima 

et al. 1998, Ogino et al. 2008) (Figure 3.7 A-B). I used the focused ROIs obtained during the pre-analysis 

data filtering phase (Chapter 2.1) to measure the cell areas of the two strains. As the cell area 

A 

B 

Figure 3.6: Analysis of Cumulative Histogram rendering data. (A) Example of extrapolation of 
quantitative information from cumulative histograms. The integration of the pixels´ grey values 
present within the focused ROIs obtained during the pre-analysis data filtering (2.1.1) equals to the 
number of fluorescence events perceived within the cell. (B) The determination and analysis of 
fluorescence profiles of Cumulative Histogram rendering data follows the same procedure used for 
Gaussian renderings in 2.2.1. The fluorescence profile (right) represents the average grey value 
obtained along the length of the cell for a segmented line of 1 µm width. Scale bar: 1 µm. 
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distributions of the two strains differ significantly, with ΔdivS being characterized by smaller cells (one-

sided Wilcoxon rank sum test with continuity correction, W = 34894, p-value < 2.2 ∗ 10−16) (Figure 3.7 

A-C), I normalized the number of events registered within each cell by the area itself (𝑒𝑣𝑒𝑛𝑡𝑠/µ𝑚2) 

before comparing the levels of DipC expression (Figure 3.7 D). The resulting fluorescence events 

density is statistically lower in the RES167 ΔdivS dipC::dipC-PAmCherry strain (one-sided Wilcoxon rank 

sum test with continuity correction, W = 33188, p-value < 1.21 ∗ 10−14) suggesting that DivS may 

influence DipC levels. 

Differently from the determination of the relative positioning of DipC and DivIVA (Chapter 3.2), the 

aim of the fluorescence profile analysis is here to provide information concerning the spatio-temporal 

localization of DipC in presence and absence of DivS during the SOS response. While cell fixation is a 

requirement for the complete imaging of the DipC protein population at a given time, it is also true 

that a fixed sample is a static representation of every possible state under which a cell can exist under 

the defined experimental conditions, whether we are talking about the stages of a bacterial cell cycle 

Figure 3.7: Absence of the cell division inhibitor protein DivS results in a decreased DipC protein 
density during the SOS response phase. C. glutamicum WT cells show an increase in cell length in 
presence of DNA damage due to inhibition of cell division (A) while cells lacking DivS lack such 
elongation phenotype (B). As the difference in cell area size distribution is statistically significant (C), 
I used DipC density to compare the protein expression levels across the different strains (D). Both 
cell area and DipC density distributions were compared via one-sided Wilcoxon rank sum test. Scale 
bar: 1 µm. 
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(B, C, D period) or the stages a cell undergoes during the SOS response. Since the age of a cell is typically 

correlated to its length, it is possible to order the fluorescence profiles accordingly and get a first insight 

toward the spatio-temportal localization of the protein itself (Script_R3). DipC-PAmCherry, in 

agreement with previously shown data (Chapter 3.1 and chapter 3.2), is characterized by an increased 

localization in polar and septal areas (Figure 3.8) in presence of mitomycin C. Surprisingly, its 

localization does not appear as well defined in absence of the cell division inhibitor protein DivS (Figure 

3.8 B). In order to compare the average DipC enrichment areas for the two genetic background, the 

fluorescence profiles were normalized by cell length and averaged (Script_R4 – Figure 3.8 C). The 

Figure 3.8: Visualization of the spatio-temporal localization of DipC-PAmCherry via demographs.  
(20 nm intervals). DipC-PAmCherry localization in presence in presence (A) and absence (B) of DivS 
in presence of mitomycin C (200 ng/ml). The correlation between absolute fluorescence intensity 
and the palette color is not maintained across cells (Fluorescence intensity is normalized so that each 
cell uses the full dynamic range permitted by the palette). Color Palette: (0) black -blue-red-white 
(max). Average fluorescence profiles of RES167 dipC::dipC-PAmCherry (red, n=192) and and RES167 
ΔdivS dipc::dipC-PAmCherry (blue, n=235) (C).  

A B 

C 

WT DipC-PAmCherry                                       ΔdivS dipC-PAmCherry 
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resulting averaged profiles confirmed the presence of a less pronounced polar localization in the knock 

out strain (Figure 3.8 C). As C. glutamicum divides asymmetrically (Messelink et al. 2020), the septal 

localization of DipC does not translate to a sharp increase in midcell fluoresce when normalized across 

the cell population (Figure 3.8 C). The fluorescence increase is instead spread across a broad area 

making it not suitable for in depth analysis (Figure 3.8 C). 
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 Single molecule localization microscopy data analysis 

Scripts and macros used within this chapter:  

- Fiji macro 1 
- Fiji macro 2 
- Script_R1 
- Script_R2 
- Script_Rv 
- Script_R5P1 
- Script_R5P2 

Results included within this chapter were published in:  

- Toro-Nahuelpan, M., et al. (2019). "MamY is a membrane-bound protein that aligns 
magnetosomes and the motility axis of helical magnetotactic bacteria." Nature Microbiology 
4(11): 1978-1989. 

 

The methods dedicated to the study of the spatial arrangements of points, whether it is on a 2D 

or a 3D area, have not been specifically developed for the study of PALM data and no consensus has 

yet been reached concerning which method is supposed to be used to answer specific questions. In 

the same way that multiple software packages have been developed in order to extract fluorophores 

localizations from PALM raw images (Sage et al. 2019), several scientific groups working with single 

molecules localization microscopy techniques developed their own analysis approach method to 

answer specific questions (Malkusch et al. 2012, Levet et al. 2019, Paul et al. 2019). I wrote a step-wise 

R script for the analysis of SMLM data (Giacomelli 2020) with the capability to extrapolate and combine 

a large variety of parameters (clustering, co-localization, events density, cell morphology) and to filter 

them from both a population and single cell point of view. The script is focused mainly toward the 

collection, translation (some of the methodologies were not available in R (Malkusch et al. 2012)) and 

integration of a series of known point pattern tools that, when combined, output a relatively complete 

description of said pattern. Finally, the separate part of the script can be used independently from 

each other and will be described as such in order to better exemplify their function within the script, 

however they greatly benefit from each other (i.e.: estimation of G(r) as a pre-requisite for OPTICS, 

cluster dependent co-localization analysis, …) and are meant to be used together.  

4.1. About the distribution of points on a 2D plane and magnetosomes 

In order to analyze the intracellular distribution of a protein of interest it is important to have two 

sets of data: the localization of the subunits, that can be obtained via SMLM, and the area in which 

these subunits localize (ROIs), which can be extrapolated via bright field/phase contrast images or 

other methodologies. As the two data sets are already available following the application of the 

filtering script (Script_R2), it is possible to perform a first analysis of the point pattern without further 
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data processing (Script_Rv). This first exploratory step consists of the estimation of the nearest 

neighbor distribution function 𝐺(𝑟) (edge corrected via one of the following estimators: border 

method estimator, Kaplan-Meier estimator (Baddeley and Richard 1997) and Hanisch estimator 

(Hanisch 1984)) and its comparison with the true value of G for a completely random process (Poisson). 

This step is a semi-mandatory prerequisite when the aim of the study is to characterize clusters (Figure 

4.1) but it can also be used, for instance, to determine the modality and conditions under which a 

protein is able to form oligomers (Toro-Nahuelpan et al. 2019) (Figure 4.2).  

The necessity of determining the deviation of 𝐺(𝑟) from the G of a Poisson process prior to the 

identification and study of the protein clusters themselves (Figure 4.1 A) is caused by the fact that 

algorithms dedicated to the identification of clusters such as OPTICS focus exclusively on the 

identification of clusters without specifying whether the clusters themselves originated due to a 

Poisson process (Figure 4.1 B) or, in the case of a protein, due to a specific biological process (Figure 

4.1 C). The ability to determine whether the heterogeneity in protein distribution observed within a 

cell is to be expected due to randomness or is rather the result of biological interactions is crucial when 

studying oligomerization. 

In the course of the collaboration with Dr. Toro-Nahueln concerning MamY, a membrane bound 

protein responsible for the correct alignment of the magnetosome in Magnetospirillum 

gryphiswaldense, we could show via 3D-SIM and PALM that the natively expressed mCherry-MamY 

(strain FM52) preferentially localize along the geodetic axis (Figure 4.2A) (Toro-Nahuelpan et al. 2019). 

As single protein subunits are too small to be able to recognize cell membrane curvatures and bacterial 

two-hybrid data suggested that MamY subunits are able to interact with one another, it became 

A B C 

Figure 4.1: Clustering and point pattern distributions. Comparison of the 𝐺(𝑟) obtained from 
simulated data following a Poisson distribution (blue) and a clustered distribution (red – Matern 
cluster process) with a theoretical Poisson distribution (black) (A). The 𝐺(𝑟) for both simulated 
dataset are corrected via the Hanisch estimator. Visualization of the simulated dataset and of the 
respective clusters identified via OPTICS (same parameters) (B-C).  
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evident that oligomerization plays a pivotal role toward the recognition of the geodetic axis. We 

therefore set out to determine how MamY subunits come together to form said geodetically cell-

spanning structure. 

In order to follow the de novo emergence of MamY structures, we expressed Dendra2-MamY 

under the control of a tetracycline promoter (Ptet) in a ΔmamY strain (MT022) and exploited the 

resulting expression variability to study its clustering behavior via PALM. The estimation of the nearest 

neighbor distribution function 𝐺(𝑟), corrected via the Hanisch estimator, deviates from a Poisson 

distribution for all the average localizations densities tested (Figure 4.2 B-F) (average localizations 

density is here a proxy for protein concentration) highlighting the tendency of MamY to cluster at both 

high (Figure 4.2 B) and low (Figure 4.2 F) cellular concentrations. Next, I further processed the data 

with the goal to identify and characterize the nature of the clusters. 

Figure 4.2: MamY form clusters at a wide variety of protein concentrations. Gaussian rendering of 
MamY-Dendra2 localizations in a M. gryphiswaldense WT background strain (strain eMT018) (A). 
Estimation of ectopically expressed Dendra2-MamY nearest neighbor distribution 𝐺(𝑟) at five 
different protein concentrations (including the three available edge correction methods: border 
method, Kaplan-Meier and Hanisch and the associated theoretical Poisson distribution) in a ΔmamY 
background strain (strain MT022) (B-F). The localizations density is shown in decreasing order from 
B (~7800 𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠/µ𝑚2) to F (~600 𝑙𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠/µ𝑚2). Scale bar: 500 nm. 

A B C 

D E F 



Giacomo Giacomelli, PhD thesis, Department I, Microbiology, LMU 
 

46 
 

4.2. Local density and nearest neighbor distance 

Following the application of the filtering script (Script_R2) the data table is composed exclusively 

by filtered localization data and cell related parameters extrapolated from the ROIs used for the 

filtering itself (Cell ID, Cell Diameter, Cell Area). Script_R5P1 expands on said table by calculating a 

series of new localizations centered parameters such as nearest neighbor distances and local density 

(Figure 4.3 A-F), where local density is defined as the number of localizations contained within a 

squared area of lateral side equal to 50 nm centered on the localization itself. 

I visualized the same Dendra2-MamY expressing cells that I used for the estimation of 𝐺(𝑟) in 

Chapter 4.1 in a local density dependent manner (Figure 4.3 A-F). In agreement with what was 

previously determined via the analysis of 𝐺(𝑟), I was able to observe signal heterogeneity for all the 

tested expression levels. Furthermore, each condition shows, to a certain degree, higher Dendra2-

MamY local density in correspondence of the geodetic path of the cell (the tendency is more 

pronounced at higher protein concentrations). As local density and nearest neighbor distance are 

correlated, it is possible to observe the same pattern via the use of a nearest neighbor distance 

dependent color code (data not shown).  

Figure 4.3: MamY clusters localize along the geodetic axis of the cell. Local density is expressed as 
the number of localizations residing within a square area (50 nm lateral side, 2500 nm2) centred 
around the localization itself. The interval values shown in the legend are shared among the different 
plots (A). Local density based visualization of MT022 cells ordered by decreasing Dendra2-MamY 
cellular concentration (B-F). Scale bar = 1µm. 

A 

B C 

D E F 
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4.3. Cluster identification and characterization 

So far, I showed that Dendra2-MamY subunits oligomerize across a variety of protein 

concentrations and that, at all protein concentrations tested, MamY is enriched along the geodetic 

path. I did not, however neither identified nor characterized the oligomers themselves. While it is 

possible to broadly deduce the localization of MamY clusters based exclusively on protein densities, 

the identification and characterization of oligomers allows for a deeper understanding of MamY 

clusters internal organization in relation, for example, to their size. 

Following the application of Script_R5P1, the dataset is composed of cell related (Cell ID, Cell 

Diameter, Cell Area) and localization related (Nearest Neighbor Distance, Local Density) data 

categories. Script_R5P2 expands on said dataset by including clustering related categories (Cluster and 

Subcluster ID, Cluster and Subcluster Size, Subclusters/Cluster) and making readily available some 

commonly used filtering parameters (Localizations/Cell, Localizations/µm2, Clusters and 

Subclusters/Cell, Clusters and Subclusters /µm2). 

Identification of clusters via OPTICS requires the selection of a parameter indicating the minimum 

number of points necessary to form a cluster (𝑀𝑖𝑛𝑃𝑡𝑠) and a threshold maximum distance at which 

these points need to be found (𝜀𝑙𝑖𝑚𝑖𝑡) (Chapter 1.5.2). As the only parameter that changes across the 

five cells is the protein concentration itself, there is no reason to expect differences in Dendra2-MamY 

clustering requirements. It follows that a single combination of parameter and threshold is sufficient 

to identify the clusters across the different conditions. I therefore defined Dendra2-MamY clusters as 

a minimum of 20 points localizing within a circle of 50 nm in diameter (𝑀𝑖𝑛𝑃𝑡𝑠 = 20, 𝜀𝑙𝑖𝑚𝑖𝑡 = 25𝑛𝑚), 

where the maximum radius was chosen in order to maximize the ability of the algorithm to identify 

clusters across all the tested conditions (Figure 4.4). For simplicity of expression and clarity of form I 

will now refer to the separate Dendra2-MamY cellular concentration levels as “Expression Level” 1 to 

Figure 4.4: Identification of Dendra2-MamY clusters via OPTICS. Reachability plots of MT022 cells 
ordered by decreasing Dendra2-MamY cellular concentration (A-E) for 𝑀𝑖𝑛𝑃𝑡𝑠 = 20. Points lying 
below the 𝜀𝑙𝑖𝑚𝑖𝑡 of 25 nm (blue horizontal line) are color coded and extracted as clusters via 
Script_R5P2.  

A B C D E 
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5 (EL1-5), with EL1 being the one characterized by the highest protein expression (Figure 4.2 B, Figure 

4.3 B and Figure 4.4 A) and EL5 being the one with the lowest (Figure 4.2 F, Figure 4.3 F and Figure 4.4 

E).  

Excluding EL1, where a single cluster includes the majority of the localizations (Figure 4.4 A), the 

reachability plots show a jagged appearance, with valleys (clusters) characterized by steep slopes 

(Figure 4.4 B-E). As the steepness of the slopes surrounding a valley can be used as a qualitative 

descriptor of the cluster border, with a steep slope mirroring a sharp cluster edge and a mellow one 

mirroring a gradient, we can conclude that Dendra2-MamY clusters are not the result of a protein 

gradient. 

I then compared the nearest neighbor distance distribution across the different conditions for the 

general localizations population and for localizations belonging to clusters. The five conditions 

significantly differ from each other (p-value < 0.05) when comparing samples derived from the general 

localization population (Table 4.1). This does not hold true when comparing localizations samples 

derived from clusters. EL3 to 5 show no significant difference with each other while EL1 differ 

significantly from all other conditions. EL2 shows an intermediate result (Table 4.1). While statistically 

significant, the difference in nearest neighbor distances within clusters between different expression 

levels does not translate in a drastic change of value (Figure 4.5). For all conditions tested the average 

nearest neighbor distance is below 5 nm, with 95% of the measurements below 11 nm (Figure 4.5). As 

the distances values are on the same scale of those expected for interacting molecules and do not 

drastically decrease with an increase in protein concentration, we can suggest that Dendra2-MamY 

clusters do not undergo significant cluster structure reorganization upon size increase.  

 

Figure 4.5: Intracluster nearest neighbor distance. Boxplot representing the nearest neighbor 
distance distribution of localizations belonging to clusters for EL1-5. The value separating the top 5% 
of the distances is labelled in red. Each boxplot is composed by the median (thick line), the 
interquartile range (accounts for 50% of the values), the whiskers (account for a maximum of 
1.5xIQR) and the outliers (black dots). 
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In accordance with all the data collected, we can finally propose a model for the de novo 

oligomerization and localization of MamY. Briefly, MamY form oligomers at the membrane which will 

then relocate preferentially within the geodetic axis region, presumably by a membrane topology-

sensing mechanism. Here, based on subunits availability, they will further increase in size while leaving 

their intracluster structure relatively unchanged. Moreover, the nearest neighbor distances observed 

for MamY subunits in clusters is within intermolecular interaction range, and bacterial two-hybrid data 

suggested that MamY subunits are able to interact with one another (Toro-Nahuelpan et al. 2019), 

supporting a model where the clusters are composed of directly interacting MamY subunits. Finally, 

the data do not support a filament-like assembly but rather favor a three-dimensional domain 

swapping mechanism. 

Table 4.1: Nearest neighbor distance comparison. Multiple comparison test after Kruskal-Wallis 

(Siegel and Castellan 1988) of nearest neighbor distances for general and clustered localizations at 

five different expression levels (EL1-5). 600 localizations belonging to each expression level were 

sampled and used for the comparison. Sampling was repeated three times. 

General population analysis 

Comparison Obs. Dif. 1 Obs. Dif. 2 Obs. Dif. 3 Crit. Dif. (p-value: 0.05) Difference* 

EL1-EL2 502.4525 440.8842 465.1650 140.3751 TRUE (3/3) 

EL1-EL3 678.7250 691.0333 645.5733 140.3751 TRUE (3/3) 

EL1-EL4 847.9742 856.3292 755.0342 140.3751 TRUE (3/3) 

EL1-EL5 994.7858 1008.8575 956.8525 140.3751 TRUE (3/3) 

EL2-EL3  176.2725 250.1492 180.4083 140.3751 TRUE (3/3) 

EL2-EL4  345.5217 415.4450 289.8692 140.3751 TRUE (3/3) 

EL2-EL5 492.3333 567.9733 491.6875 140.3751 TRUE (3/3) 

EL3-EL4  169.2492 165.2958 109.4608 140.3751 TRUE (2/3) 

EL3-EL5 316.0608 317.8242 311.2792 140.3751 TRUE (3/3) 

EL4-EL5  146.8117 152.5283 201.8183 140.3751 TRUE (3/3) 

 

Clustered population analysis 

Comparison Obs. Dif. 1 Obs. Dif. 2 Obs. Dif. 3 Crit. Dif. (p-value: 0.05) Difference* 

EL1-EL2 172.2375 115.8050 264.1400 140.3751 TRUE (2/3) 

EL1-EL3 365.1542 304.7333 362.2100 140.3751 TRUE (3/3) 

EL1-EL4 235.8375 186.5033 293.6350 140.3751 TRUE (3/3) 

EL1-EL5 341.5417 295.3875 364.5941 140.3751 TRUE (3/3) 

EL2-EL3  192.9167 188.9283 98.0700 140.3751 TRUE (2/3) 

EL2-EL4  63.6000 70.6983 29.4950 140.3751 FALSE(0/3) 

EL2-EL5 169.3042 179.5825 100.4516 140.3751 TRUE(2/3) 

EL3-EL4  129.3167 118.2300 68.5750 140.3751 FALSE(0/3) 

EL3-EL5 23.6125 9.3458 2.3841 140.3751 FALSE(0/3) 

EL4-EL5  105.7042 108.8841 70.9591 140.3751 FALSE(0/3) 

*TRUE if at least two out of three sampling comparison show a p-value < 0.05 
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 Intracluster heterogeneity analysis and ParB 

Scripts and macros used within this chapter:  

- Fiji macro 1 
- Fiji macro 2 
- Script_R1 
- Script_R2 
- Script_Rv 
- Script_R5P1 
- Script_R5P2 

Results included within this chapter were published in:  

- Bohm, K., et al. (2020). "Chromosome organization by a conserved condensin-ParB system in 
the actinobacterium Corynebacterium glutamicum." Nat Commun 11(1): 1485. 

 

Before the advent of SMLM, clustering studies via fluorescence microscopy were limited to a broad 

determination of the cluster size and localization while all the data concerning the oligomeric 

structures themselves were derived from cryo-electron microscopy and by crystal structures (Zhang et 

al. 2007, Oliva et al. 2010). 

Changes in a protein cluster structure, whether we are talking about an array of channels 

distributed on a membrane or a single oligomeric structure, usually involve a change in the average 

distance between subunits. SMLM data are therefore the perfect tool to study such phenomena. 

Script_R5P2 identify and characterize two types of cluster via OPTICS. The two cluster categories are 

automatically organized in a density dependent hierarchy, with a “lv1” cluster category having the 

lowest density and a “lv2” cluster category having the highest density. As OPTICS require exclusively a 

lower bound limit (𝜀𝑙𝑖𝑚𝑖𝑡) for the identification of a cluster, “lv2” cluster will always be localized within 

Figure 5.1: Schematics of subclusters and high density clusters. “Lv2” clusters (blue outline) can be 
generally divided into two separate types: subclusters (A-B) and high density clusters (C-D). 
Subclusters visually appear as a variable number of small regions of higher density found within an 
already identified “lv1” cluster (A) while a high density cluster spans for the almost entirety of the 
“lv1” cluster to which it belongs (C). In the ideal scenario, the two separate levels of clustering can 
be easily identified via the visualization/analysis of the reachability plots, where valleys 
characterized by different reachability distances correspond to different levels (B, D).  

A B C D 
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a “lv1” cluster. Extra steps are therefore necessary to determine whether the two cluster categories 

need to be analysed separately or as a cluster-subcluster combination (Figure 5.1). 

From a biological point of view, heterogeneity in clustering can be caused by a multitude of 

phenomena. Whether the changes in clustering are due to human-made genetic modifications (Bohm 

et al. 2020)  or due to a change in substrate (Martins et al. 2019), the study of these changes can be of 

extreme value for the understanding of the underlying biological process. One of such processes is the 

ParB dependent oriC domain compaction in C. glutamicum. 

5.1. ParB form nucleoprotein complexes in a parS dependent manner 

While I previously mentioned ParB in chapter 3.1 as a DivIVA interaction partner involved in 

chromosome segregation (Ireton et al. 1994, Donovan et al. 2012), this interaction plays a role in only 

one of the ParB many functions: the tethering of the origin of replications to the polar regions. ParB is 

also involved in the segregation of the origin of replication over the existing nucleoid toward the center 

of the cell (Leonard et al. 2005, Zhang and Schumacher 2017, Bohm et al. 2020) and in the loading of 

the structural maintenance of chromosomes (SMC) proteins onto the DNA (Gruber and Errington 2009, 

Sullivan et al. 2009, Minnen et al. 2011, Bohm et al. 2020).  

ParB dimers bind to 16 bp long DNA sequences (parS) located in proximity of the oriC. From here, 

ParB complexes have been shown to further extend by mean of spreading and bridging between 

dimers (Rodionov et al. 1999, Murray et al. 2006, Graham et al. 2014). Said spreading has been recently 

shown to be regulated in a CTP dependent manner (Osorio-Valeriano et al. 2019, Soh et al. 2019). 

While there exist ten parS sites in C. glutamicum, chromatin immunoprecipitation followed by 

sequencing (ChIP-seq) highlighted the presence of three separate nucleation zones (Bohm et al. 2020). 

As wild type-like growth and morphology are supported even in presence of a single oriC proximal parS 

sequence, this suggests that the presence of multiple ParB-binding sites is not a requirement but rather 

acts as an insurance toward the robustness of the chromosome segregation system (Bohm et al. 2020).  

ParB clusters differ from the structures analysed in chapter 4.3. MamY oligomers are characterized 

by a 2D semi-constant internal structure that span between poles and follows the geodetic path 

(MamY is a membrane protein). As the geodetic path is spirally shaped, MamY oligomers periodically 

exit the focus plane causing a gradual fading of the structure (gradual decrease in local density) (Figure 

4.3 B). On the other side, it has been recently proposed that ParB subunits nucleate around a single 

parS site in E. coli to form a spherical non-canonical liquid-liquid phase separated condensate (LLPS) 

(Guilhas et al. 2020). The description of ParB nucleoprotein structures is even more complex in C. 

glutamicum as there exist multiple closely located nucleation zones that combine into a variety of 

shapes when imaged via conventional-like fluorescence microscopy. 
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Here, I use PALM and intracluster heterogeneity analysis to show that ParB form highly 

heterogeneous nucleoprotein complexes. Furthermore, by comparing the clusters formed in presence 

of no, one or ten parS sites, I identify the source of said heterogeneity.  

In details, I imaged and analysed C. glutamicum parB::parB-PAmCherry strains differing for the 

number of parS sites contained within their genome (Bohm et al. 2020). The three genomic 

backgrounds I used for this comparison contain ten (WT - CBK009), one (parS2-10mut - CBK029) and no 

parS sites (parS1-10mut - CBK087) and as such should be respectively characterized by three, one and no 

nucleation zones for each oriC (Bohm et al. 2020). While post-imaging analysis of ParB-PAmCherry data 

follows, the same procedure as the one used for Dendra2-MamY (Script_Rv, Script_R5P1, ScriptR5P2), 

the difference in the experimental question is reflected by a different analysis focus. Moreover, due to 

the use of a different tag (PAmCherry vs Dendra2) and of the different nature of the protein studied, 

some analysis parameters, such as photon count and PSF width filtering, are changed (Table 2.1). 

ParB-PAmCherry nearest neighbor distribution function 𝐺(𝑟) differs from the one of a Poisson 

distribution in all the imaged genetic backgrounds (WT, parS2-10mut and parS1-10mut) suggesting that ParB 

is able to form clusters also in absence of parS binding sites (Figure 5.2 A-C). In agreement with what 

can be observed via conventional fluorescence microscopy (Bohm et al. 2020), ParB enrichment can 

be observed at various locations along the cell length axis in presence of parS (Figure 5.2 E-F). On the 

contrary, while conventional live imaging of cells expressing fluorescently labeled ParB in absence of 

parS results in a homogeneously labeled cytoplasm, PALM imaging highlights the presence of clusters 

(Figure 5.2 D). 

As shown before (Chapter 4), protein concentration has a great influence on the size and frequency 

with which clusters form. Protein concentration can be changed by altering its expression or 

degradation rate. One of the strains tested, C. glutamicum parB::parB-PAmCherry parS1-10mut, is not 

only characterized by the lack of parS, but also by more than 20% DNA free cells and aberrant 

morphology, similarly to a ΔparB strain (Donovan et al. 2013, Bohm et al. 2020). As ParB concentration 

could be altered within anucleate cells, I compared protein concentration and cell morphology across 

the three strains.  

Firstly, I tested whether the cell area size distribution of the three strains follow a normal 

distribution via the Shapiro-Wilk test (Royston 1995) (Figure16A-C). While the data from the WT (W = 

0.98286, p-value = 0.4842) and parS2-10mut (W = 0.99067, p-value = 0.8816) cells can be treated as 

normally distributed, this is not the case for parS1-10mut cells (W = 0.93647, p-value = 0.02913). While, 

in fact, the quasi-symmetric cell division of WT and parS2-10mut cells is mirrored by a single normally 

distributed cell area size, the asymmetric cell division typical of the parS1-10mut cells is likely to result in 
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a multi-modal distribution. I therefore fitted the data with a Gaussian finite mixture model via the 

Mclust R package (Scrucca et al. 2016) and determined the number of normal components that 

optimize the Bayesian information criterion (BIC) for each strain (Figure 5.3 A-C). The BIC of the parS1-

10mut strain is minimized in presence of two normal components (the likelihood ratio test returns a 

~10% chance to have obtained parS1-10mut cell area size data from a single component distribution). 

The subpopulation characterized by a smaller average size and smaller standard deviation (red line– 

Figure 5.3 A) accounts for almost a third of the cells and is mainly composed of minicells (anucleate 

cells and cells containing a truncated chromosome) while the subpopulation characterized by higher 

mean and higher standard deviation is composed of the cells from which the anucleate cells divided 

and of the cells that divided without defects (black line – Figure 5.3 A). Finally, comparison of the parS2-

Figure 5.2: ParB-PAmcherry form clusters in all the genetic backgrounds analysed. ParB-PAmCherry 
nearest neighbor distribution function 𝐺(𝑟) in a parS1-10mut (CBK087) (A), a parS2-10mut (CBK029) (B) 
and a WT (CBK009)(C) C. glutamicum background strain. The plots show three different edge 
correction methods: border method, Kaplan-Meier and Hanisch. The associated theoretical Poisson 
distribution is shown in blue. ParB-PAmCherry localizations distributions of representative parS1-10mut 
(D), a parS2-10mut (E) and a WT (F) C. glutamicum cells. Local density is expressed as the number of 
localizations residing within a square area (50 nm lateral side, 2500 nm2) centred around the 
localization itself. The interval values shown in the legend are shared among the different plots. 
Scale bar = 0.5 µm. 
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10mut and WT strains via Welch's t-test (two-sided, p-value = 0.6931) does not highlight differences in 

cell area size distribution between the two strains supporting the idea that cells containing a single 

parS site are wild-type like.  

I then compared the average localizations density of cells belonging to the three different genetic 

backgrounds. The ParB-PAmCherry localizations densities can be described in all genetic background 

by two normal components (the likelihood ratio test returns a <10% chance to have obtained said data 

from a single component distribution for all strains) (Figure 5.3 D-F). In all cases, the component 

accounting for the majority of the population is the one characterized by a smaller average density 

(parS1-10mut: ~64%, parS2-10mut: ~58%, WT: ~64%) (Figure 5.3 D-F: red line). As the three set of data 

do not follow a normal distribution, I compared them via the multiple comparison test after Kruskal-

Wallis (comparison between treatments). The average ParB-PAmCherry localizations density of the WT 

strain differs significantly from both the parS1-10mut and parS2-10mut strains (p-value<0.05) while no 

difference can be observed between the remaining two strains (p-value>0.05).  

The changes in protein concentration observed across the strains cannot be attribute to changes 

in cell morphology (parS1-10mut and parS2-10mut protein concentrations do not differ), meaning that it is 

not necessary to filter the data in a morphology dependent manner prior further analysis. 

The duality in expression observed for all three strains, with one subpopulation being 

characterized by approximately double the protein concentration (Figure 5.3 D-F) is not caused by a 

difference in morphology nor a change in number of parS sites (the two distributions are visible also 

Figure 5.3: Cell area size and ParB-PAmCherry localizations density changes with the number of 
parS sites. Cell size area distribution of parS1-10mut (A), parS2-10mut (B) and WT (C) cells. The cell area 
size distributions of parS2-10mut and WT are characterized by a single normal component (B-C) while 
parS1-10mut data are better described by two normal components (A). The ParB-PAmCherry 
localization density of the three genetic backgrounds can be fitted in all cases by two normal 
components (D-F). The normal components are represented as continuous red and black lines. 
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in the parS1-10mut strain). It may instead be caused by the duplication of the genetic area responsible for 

ParB expression following genome replication. 

Finally, the shift toward higher values observed for the WT strain when comparted to the parS2-

10mut strain can instead be attributed to the change in number of parS sites (no morphological 

difference can be observed between the two strains). 

5.2. ParB and cluster heterogeneity analysis 

If we assume that ParB in C. glutamicum behaves similarly to what observed in E. coli, with the 

formation of spherical non-canonical LLPS condensate surrounding a single parS site, clusters should 

be characterized by a defined size, shape and lack of heterogeneity. While this may hold true for the 

parS2-10mut strain, Chip-seq data show that each chromosome contains multiple, closely located, ParB 

nucleation zones, each corresponding to a defined propagation area (Bohm et al. 2020).  

The presence of multiple parS sites within each nucleation zone, together with the proximity 

between each nucleation zone and the presence of multiple chromosomes within each cell means that 

the three-dimensional ParB nucleoprotein structures will appear as a dense highly heterogeneous area 

when imaged via 2D-PALM.  

I first determined suitable clustering thresholds (𝜀𝑙𝑖𝑚𝑖𝑡) for the WT genomic background and then 

applied them to the other strains. Specifically, given an exemplary WT background cell (Figure 5.4 C) I 

calculated its reachability plot (𝑀𝑖𝑛𝑃𝑡𝑠 = 32) and, based on the shape of said plot, determined two 

separate thresholds (𝜀1_𝑙𝑖𝑚𝑖𝑡 = 50 𝑛𝑚, 𝜀2_𝑙𝑖𝑚𝑖𝑡 = 35 𝑛𝑚) (Figure 5.4 A-B). The first threshold is aimed 

toward the identification of areas generally enriched in ParB (“lv1”), while the second threshold 

Figure 5.4: Identification of two levels of clustering for ParB-PAmCherry via OPTICS. Reachability 
plot for ParB-PAmCherry in a WT background C. glutamicum cell for 𝑀𝑖𝑛𝑃𝑡𝑠 = 32 (A,B). Dual level 
clustering was determined via the use of two separate threshold levels (𝑏𝑙𝑢𝑒 𝑙𝑖𝑛𝑒 − 𝑙𝑣1_𝜀𝑙𝑖𝑚𝑖𝑡 =
50𝑛𝑚 (A), 𝑜𝑟𝑎𝑛𝑔𝑒 𝑙𝑖𝑛𝑒 − 𝑙𝑣2_𝜀𝑙𝑖𝑚𝑖𝑡 = 35𝑛𝑚 (B)). The clusters obtained can be visualized as 
convex areas overlapping the localizations themselves (Threshold line and cluster border share the 
same color) (C). The color scale used for the localizations is the same of the one used in Figure 5.2. 
Scale bar= 0.5 µm. 
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focuses on the characterization of the heterogeneity contained within the “lv1” clusters (Isolation of 

the valleys present within the clusters identified within the “lv1” reachability plot). 

While “Lv1” clusters mostly resemble in size and positioning the fluorescence profile shown by 

ParB via conventional fluorescence, I could also identify several smaller, randomly distributed clusters 

that are not observed in conventional fluorescence microscopy images (Figure 5.4 C). As it was not 

possible to determine a priori size threshold to distinguish between “lv1” clusters that originated from 

a parS dependent ParB nucleation event and those that originated in a different way, I separated the 

data based on a different criterion. Specifically, given that each C. glutamicum cell has typically at least 

two nucleoids (Bohm et al. 2017), I extracted the two larger “lv1” clusters from each cell and analysed 

them separately. From this point on I will refer to these clusters and the “lv2” clusters localizing within 

them as “lv1M” and “lv2M” respectively. 

The “lv1M” clusters size data (cluster size is defined as the number of localizations composing the 

cluster) do not follow a normal distribution in any of the strains tested (p-value<0.05). I therefore 

compared the strains via multiple comparison test after Kruskal-Wallis. The size of “lv1M” clusters in 

the WT background strain is significantly higher than the two remaining strains (p-value < 0.05) while 

no difference can be observed between the “lv1M” clusters size distributions of cells containing a 

single or no parS sites (Figure 5.5 A). 

A B 

Figure 5.5: “Lv1M” and “Lv2M” ParB clusters are bigger in the WT background strain. Number of 
fluorescence events (ParB-PAmCherry localizations) composing a “Lv1M” cluster in a WT, parS1-10mut 
and parS2-10mut C. glutamicum background strain (A). Number of fluorescence events (ParB-
PAmCherry localizations) composing a “Lv2M” cluster in a WT, parS1-10mut and parS2-10mut C. 
glutamicum background strain (B). In both cases statistical significance is asserted via multiple 
comparison test after Kruskal-Wallis and is highlighted via lowercase letters (a,b). Each boxplot is 
composed by the median (thick line), the interquartile range (accounts for 50% of the values), the 
whiskers (account for a maximum of 1.5xIQR) and the outliers (dots located outside the whiskers 
boundaries). 
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I performed the same comparison procedure for the “lv2M” clusters size data. Once again, the 

data did not follow a normal distribution in any of the strains tested (Shapiro-Wilk test: p-value < 0.05). 

The size of the “lv2M” clusters in the WT background is significantly higher than the strain containing 

a single parS site (multiple comparison test after Kruskal-Wallis, p-value < 0.05) while no statistical 

difference is found between parS1-10mut and the two remaining strains (Figure 5.5 B). 

I then characterized parameters related to the heterogeneity of the “lv1M” clusters and compared 

the results across the three strains. When describing the heterogeneity based on subclustering we can 

observe that the proportion of “lv1M” clusters containing no subclusters is double for parS1-10mut and 

parS2-10mut strains compared to WT (~30% against a 15%) (Figure 5.6 A). As the absence of subclusters 

can be attributed to the ParB structures three-dimensional positioning respective to the objective 

focus, these clusters were excluded from further analysis. The distribution of the number of 

subclusters (lv2M) localizing within each cluster (lv1M) does not follow a normal distribution in any of 

the strains analysed (Shapiro-Wilk test: p-value < 0.05). While we can observe more than two 

subclusters only for “lv1M” clusters belonging to the WT background strain (Figure 5.6 A), multiple 

comparison test after Kruskal-Wallis highlights no statistical difference between the strains (p-value > 

0.05).  

A B 

Figure 5.6: The WT background strain “Lv1M” clusters are characterized by higher heterogeneity. 
Number of distinct subclusters (“Lv2M”) observed within a “Lv1M” cluster in a WT (blue), parS1-10mut 
(green) and parS2-10mut (orange) C. glutamicum background strain (A) Proportion of “Lv1M” cluster 
occupied by “Lv2M” clusters in a WT (blue), parS1-10mut (green) and parS2-10mut (orange) C. glutamicum 
background strain (B).  
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As a second parameter to determine “lv1M” clusters heterogeneity I choose occupancy. Given a 

“lv1M” cluster and its subclusters (“lv2Mk”), the occupancy of “lv1M” is here defined as: 

where k ranges from 1 to n, where n is the number of subclusters located within lv1M and N is the 

number of localizations of which a cluster is composed. Occupancy ranges from 0 (absence of 

subclustering), to 1 (subclusters occupy the entirety of the cluster) (Figure 5.6 B). The distribution of 

occupancy for the three strains analysed do not follow a normal distribution (Shapiro-Wilk test: p-value 

< 0.05). I therefore compared ParB cluster distributions via multiple comparison test after Kruskal-

Wallis. The occupancy distribution for the pars1-10mut strain is significantly higher than the one of the 

other two strains (p-value < 0.05), while no difference can be observed between the pars2-10mut and the 

WT strains (p-value > 0.05). 

To summarize, ParB concentration follows a bimodal distribution. While the number of parS sites 

have an effect on ParB expression levels (shift of the distribution toward higher values), the dual 

modality of the function is independent from the number of parS sites and is likely to be caused by the 

duplication of the parB genes following genome duplication. 
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Figure 5.7: Interpretation of 2D-PALM data in regard to ParB heterogeneity. The protein density of 
a three-dimensional spanning cluster perceived via 2D-PALM depends on its position along the focal 
plane (A). Spherical/Quasi-spherical clusters are characterized by a radial density gradient (parS2-

10mut) when imaged via 2D-PALM (B). The partial overlap of multiple spherical clusters on a 2D plane 
result in an increase in heterogeneity (C). Further complexity is derived by the three-dimensional 
localization of the clusters (D) 
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In absence of parS, ParB form “LV1M” clusters comparable in size and density with what observed 

in presence of a single parS site. These clusters are characterized by high occupancy and low internal 

heterogeneity, similarly to what it is expected for randomly localized spherical shaped clusters (Figure 

5.7 B). The clusters observed in presence of a single parS site are characterized by a statically lower 

occupancy and low heterogeneity, in agreement with the increase chance of proximity between two 

ParB complexes due to genome duplication. The ParB “LV1M” clusters observed in the WT background 

strain are bigger than those observed in the pars1-10mut and pars2-10mut strain. Moreover, more than two 

high density regions within a single LV1M cluster can only be observed in the WT scenario in agreement 

with the presence of multiple, closely located, nucleation zone within each ParB nucleoprotein 

complex (Figure 5.7 D).  
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 Dual color imaging and co-localization analysis 

Scripts and macros used within this chapter:  

- Fiji macro 1 
- Fiji macro 2 
- Script_R1 
- Script_R2 
- Script_R5P3 

The analysis approaches presented in the previous chapters show some of the ways in which the 

script I wrote can be used while highlighting the case to case dependent nature of SMLM data analysis. 

While analysis of dual color data does not differ from the one of single color data, with the exception 

of the calculation of the coordinate based co-localization value (CBC), the same is not true for the 

imaging itself. 

When imaging a dual color sample via SMLM the following conditions need to be met: a buffer 

that allows for the biochemical functioning of both fluorophores, a combination of instrument and 

experimental design that allows for the independent imaging of the fluorophores, and a reference 

system that can be used to align the different channels.  

The imaging of multiple organic dyes, or a combination of organic dyes and fluorescent proteins, 

requires the accurate selection of an appropriate imaging buffer (Endesfelder et al. 2011). This 

selection is not trivial as can be observed by the abundant literature entries on the topic (Nahidiazar 

et al. 2016, Glushonkov et al. 2018). While there is no lack of studies where fluorescent proteins have 

also being tested under various buffer conditions, the aim of such works focused on imaging 

fluorescent proteins in combination with organic dyes  (Endesfelder et al. 2011). Fluorescent proteins 

themselves work under physiological conditions, meaning that buffers such as PBS or non-fluorescent 

growth media can be used during imaging. It follows that PALM imaging does not require the 

development of combination/fluorophore specific buffers (Shroff et al. 2008). 

PALM imaging is only possible under conditions where fluorescent profiles can be separated in 

space and time. Currently there are three separate methods that allows for dual color PALM imaging. 

The first method involves the simultaneous activation and imaging of two photoactivatable fluorescent 

proteins characterized by different emission profiles, where the separation of the fluorescent profiles 

is guaranteed by the use of two cameras and different emission filter sets. The second and third 

methods involves the sequential imaging of the fluorescent proteins. In one case the two fluorophores 

can share the same emission profile and are selectively activated via Primed Photoconversion and UV-

Photoactivation (Dempsey et al. 2015, Klementieva et al. 2016, Virant et al. 2017). In the last case the 
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fluorophores cannot share the same emission profile and only one of the two fluorophores is 

photoactivatable (Bach et al. 2017). 

Finally, alignment between different wavelength is guaranteed by the presence of a reference 

system. The reference system usually consists of an array of multispectral fluorescent beads and can 

be used for lateral drift correction, calibration of a dual camera system and the calculation of a local 

weighted-mean matrix for aberration correction (Malkusch et al. 2012). 

While both co-localization and cluster analysis can be theoretically applied directly on any point 

pattern (in our case the output of Script_R2), only co-localization analysis (Script_R5P3) can be directly 

used on such dataset. The artificially created inability to identify clusters (Script_R5P2) prior a more 

general analysis is voluntary. As previously detailed (Chapter 4), clustering algorithms are usually not 

able to autonomously differ between randomly and biologically derived clustering. It is therefore 

recommended to apply clustering algorithms exclusively in presence of data supporting the idea that 

the studied protein is indeed clustering (estimation of 𝐺(𝑟) via Script_Rv, visualization and 

characterization of the distribution in a density/nearest neighbor distance dependent manner via 

Script_R1). Co-localization analysis differs from clustering analysis on this aspect, as its aim is to test 

whether the relative positioning of each subunit within the two protein populations differ from what 

it is expected from two unrelated ones (similarly to what Script_Rv does for clustering). 

6.1. Script_R5P3 basics and CBC values interpretation 

Similarly to Script_Rv, where the presence of clustering is determined based on the deviation of 

𝐺(𝑟) from the 𝐺 of a Poisson process, the CBC value is expression of the deviation of the distribution 

of two protein populations in the neighborhood of the localization itself from the one of two non-co-

localizing proteins (See chapter 1.5.3 for a more detailed description).  

Although similar, there exist major differences in the way the two scripts construct their respective 

control datasets. In the case of Script_Rv the Poisson process shares with the experimental distribution 

the number of points and the area in which they are contained (shape included), while in the case of 

Script_R5P3 the control distributions share with the experimental ones the number of points and the 

maximum radius that is used to construct the distributions themselves (shape excluded). Moreover, 

while Script_Rv includes edge correction of the data, the edge effect is not taken into consideration 

when calculating the CBC value. It follows that, in order to avoid border artifacts (Figure 6.1), the 

maximum radius used for the calculation of the CBC value needs to be defined in relation to the size 

and shape of the area in which the protein localizes. In order to find a valid interval range for 𝑅𝑚𝑎𝑥 I 

first simulated two Poisson point pattern distributions of equal intensity (𝜆 = 0.001 localizations/

nm2) contained within a circular shaped area. As the point pattern distributions are independent from 
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each other, only minor degree of co-localization is to be expected. I therefore calculated the CBC values 

for one of the two distributions at different 𝑅𝑚𝑎𝑥 and visually compared the extent of border related 

artifacts (Figure 6.1 A-E). I could then broadly divide 𝑅𝑚𝑎𝑥 values into three separate categories. The 

first category (𝑅𝑚𝑎𝑥 ≤ 0.2𝑟) is characterized by negligible border artifacts and LOESS estimator stably 

in the proximity 0 (Figure 6.1 A,F). The second category (0.2𝑟 < 𝑅𝑚𝑎𝑥 < 2𝑟) is characterized by 

perimetral increase of the CBC values with consequent deviation of the LOESS estimator from 0 for 

high distances from the center (Figure 6.1 B-D,F). The third category (𝑅𝑚𝑎𝑥 ≥ 2𝑟) is characterized by 

a strong compression of the CBC values and the LOESS estimator toward 1 (Figure 6.1 E-F). As the three 

categories are expression of the same phenomenon (CBC values increase due to border related 

artifacts) and passage between categories is gradual (Figure 6.1 B-D), the threshold values should be 

used as general guidelines rather than as laws.  

An under-appreciation of the degree of co-localization can be instead observed for very small 𝑅𝑚𝑎𝑥 

in presence of overlapping structures. In order to test the magnitude of this effect, I simulated a series 

Figure 6.1: Effect of 𝑹𝒎𝒂𝒙 on the calculation of CBC values. CBC dependent visualization of one out 
of two independent Poisson point pattern distributions of identical intensity (𝜆 = 0.001) tested for 
co-localization (A-E). The 𝑅𝑚𝑎𝑥 used for the calculation of the CBC values is expressed as a fraction 
of the radius (𝑟) defining the area that contains the point patterns. Distance from the center of the 
area and CBC values for the five 𝑅𝑚𝑎𝑥 tested were plotted together with the locally estimated 
scatterplot smoothing (LOESS)(red line) (F). 𝑟 = 500 𝑛𝑚, 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑤𝑖𝑑𝑡ℎ =  5 𝑛𝑚. 
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of point patterns distributions pairs (𝑝𝑝𝐴𝑖  and 𝑝𝑝𝐵𝑖, where “i” assumes the value of the associated 

cluster radius) (Figure 6.2 A-E). Each pair simulates the distribution of two proteins, 𝐴 and 𝐵, that form 

overlapping circular clusters of identical size within a circular shaped cell (each pair varies in 𝑟𝑐𝑙𝑢𝑠𝑡𝑒𝑟). 

𝑝𝑝𝐴𝑖  and 𝑝𝑝𝐵𝑖  are respectively comprised of two overlapping Poisson point pattern distributions each, 

one that simulates a circular cluster ( 𝜆𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 0.01 localizations/nm2) and one for the cytoplasmic 

portion of the protein population ( 𝜆𝑐𝑦𝑡𝑜𝑝𝑙𝑎𝑠𝑚 = 0.001 localizations/nm2, 𝑟𝑐𝑒𝑙𝑙  ). The two clusters 

not only overlap but are merely a slightly shifted version of each other (𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐵(𝑥,𝑦) =

𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐴(𝑥+𝑐,𝑦+𝑐)), and it is therefore expected to observe high CBC values for localizations belonging 

to these clusters. Hence, I compared the clusters CBC values obtained for 𝑝𝑝𝐴𝑖  at different 𝑟𝑐𝑙𝑢𝑠𝑡𝑒𝑟 and 

constant 𝑅𝑚𝑎𝑥 (𝑅𝑚𝑎𝑥 = 0.2𝑟𝑐𝑒𝑙𝑙). None of the CBC values distributions followed a normal distribution 

Figure 6.2: CBC values are affected by the size of overlapping clusters. CBC dependent visualization 
of 𝑝𝑝𝐴𝑖  for five different 𝑟𝑐𝑙𝑢𝑠𝑡𝑒𝑟 (A-E). Each 𝑝𝑝𝐴𝑖  is composed of two separate Poisson point pattern 
distributions (one describing the cluster and one describing the cytoplasmic fraction). The 𝑅𝑚𝑎𝑥 used 
for the calculation of the CBC values is constant across the five simulations. The CBC values for 
localizations residing within the clusters are visualized as boxplots (F). Each boxplot is composed by 
the median (thick line), the interquartile range (accounts for 50% of the values), the whiskers 
(account for a maximum of 1.5xIQR) and the outliers (black dots). A horizontal dashed line at 𝐶𝐵𝐶 =
0.5 is drawn as threshold for co-localization. Statistical significance between the CBC values 
distributions was tested via multiple comparison test after Kruskal-Wallis (p-value<0.05) (conditions 
that do not differ are grouped via cursive letters). 𝑟𝑐𝑒𝑙𝑙 = 500 𝑛𝑚, 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑤𝑖𝑑𝑡ℎ =  5 𝑛𝑚. 
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(Shapiro-Wilk test, p-value < 0.05) and were therefore compared with each other via multiple 

comparison test after Kruskal-Wallis. According to statistical significance (p-value < 0.05), the five 

conditions can be divided into three groups (Figure 6.2 F), with inverse relation between CBC values 

and 𝑟𝑐𝑙𝑢𝑠𝑡𝑒𝑟 size.  

While the CBC values are indeed mostly above 0 for all conditions tested (Figure 6.2 F), CBC values 

are function of the deviation of the local relative distribution of 𝑝𝑝𝐴𝑖  and 𝑝𝑝𝐵𝑖  from their overall 

relative distribution (calculated at 𝑅𝑚𝑎𝑥). It follows that the average co-localization values will be 

decreased when the overall relative distribution is mostly calculated from within the co-localizing area 

(𝑅𝑚𝑎𝑥 ≤ 2𝑟𝑐𝑙𝑢𝑠𝑡𝑒𝑟) (Figure 6.2 C-E). 

Finally, for microorganisms where cell width and protein clusters are on a comparable size scale 

(e.g.> bacteria, trypanosome flagellum) there may be no 𝑅𝑚𝑎𝑥 interval that satisfies both conditions 

(2𝑟𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ≤ 𝑅𝑚𝑎𝑥 ≤ 0.2𝑟𝑐𝑒𝑙𝑙). Alternatively, it could be impossible to determine one of the two 

thresholds. As, under these conditions, interpretation of the absolute CBC values becomes less 

obvious, it is pivotal to compare said values with both positive and negative controls. 

6.2. The parameters choice depends on the biological question 

While, due to a lack in localization precision, co-localization cannot yet be used to describe the 

direct interaction between two protein populations (see chapter 1.3.4) (Dunn et al. 2011), it can be 

used to determine whether and in which proportion said proteins are associated to a certain biological 

element. As the term co-localization can be used to refer to a multitude of different situations (co-

expression within a cell, polar/septal co-localization, co-association with a protein complex), each of 

which relies on a different size scale, the ability to determine CBC values for each of these scales grants 

the researcher a great degree of flexibility (Figure 6.3). 

In chapter 6.1 I described how changes in one of the two parameters (𝑅𝑚𝑎𝑥) used in co-localization 

analysis are mirrored by a change in CBC values (Figure 6.1, 6.2) and then established boundaries for 

𝑅𝑚𝑎𝑥 in relation to the study of co-localization intended as association of two proteins to the same 

cluster (Figure 6.2). As the same approach can be applied to different biological questions (interaction 

range, co-association to a protein complex, co-expression) (Figure 6.3) it is possible to generalize the 

boundaries obtained for 𝑅𝑚𝑎𝑥 as follow: 

 
 

2𝑟𝐴 ≤ 𝑅𝑚𝑎𝑥 ≤ 0.2𝑟𝐵 (14) 
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where 𝑟𝐴 is the radius of the structure toward which we are testing for co-localization and 𝑟𝐵 is the 

radius of the area in which the structure is confined. As the size scale changes with the biological 

question, 𝑟𝐴 and 𝑟𝐵 can each refer to clusters/cell structure, cells, or artificial ROIs.  

The second parameter, interval width (or interval size), determines the resolution at which the 

localizations distributions are described. As a general rule, changes in interval width are not mirrored 

Figure 6.3: Co-localization at different size scales. A composite point process is simulated for each 
channel within a circular area of 𝑟 = 500 𝑛𝑚 (Top right). Each point process is respectively 
composed of a Poisson point pattern (𝜆𝑐𝑦𝑡𝑜𝑝𝑙𝑎𝑠𝑚 = 0.001 and 𝑟𝑐𝑒𝑙𝑙 = 500 𝑛𝑚) that represent the 

cytoplasmic fraction and either two or three Poisson point patterns that represent the clustering 
fraction (𝜆𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 0.01 and 𝑟𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 100 𝑛𝑚). Localizations are color coded according to their 
CBC value. The combination of parameters (𝑅𝑚𝑎𝑥 and interval size) suitable for the analysis of 
specific features (Co-expression, cluster association, Interaction range) are labeled accordingly 
(dashed color boxes). 
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by significant changes in CBC values so long as the interval width is sufficiently small compared to the 

𝑅𝑚𝑎𝑥 (Figure 6.3). An upper threshold can therefore be applied to interval size: 

While the use of extremely low interval sizes has no downside from a theoretical point of view, as 

a better resolved distribution will always allow for a better description of the CBC, it is computationally 

heavy and, beyond a certain point, yields no real benefit (Figure 6.3).  

  

 
 

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑤𝑖𝑑𝑡ℎ ≤ 0.1𝑅𝑚𝑎𝑥 (15) 
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 Analysis of the flagellar tip organization in trypanosomes 

Scripts and macros used within this chapter:  

- Fiji macro 1 
- Fiji macro 2 
- Script_R1 
- Script_R2 
- Script_R5P3 

Results included within this chapter will be published in:  

- Bachmaier, S., et al. "Unpublished data." 

 

Here, I apply the co-localization concepts that I developed in the previous chapter (Chapter 6) to 

the characterize the organization of a subcellular compartment: the flagellar tip of Trypanosoma 

brucei.  

The flagellar tip of Trypanosoma brucei is here proposed to function as a cAMP microdomain 

essential for trypanosome vector transmission (Bachmaier, S., et al., “Unpublished data”). Biochemical 

and genetic data show that a newly identified cAMP response protein (CARP3) plays a major role in 

the maintenance of said domain. Furthermore, CARP3 has been found to co-localize with the adenylate 

cyclase 1 (AC1) and to be dependent in its localization on FLAM8 (Bachmaier, S., et al., “Unpublished 

data”) (Figure 7.1 A). By using dual-color PALM and coordinate-based co-localization we not only 

corroborated the data concerning CARP3 interactions and dependencies, but also further 

characterized and modeled the cAMP microdomain itself. Briefly, I tested two different fluorescence 

Figure 7.1: Dual-color PALM imaging of proteins enriched at the flagellar tip in trypanosomes. 
Overlap between bright field and normalized Gaussian rendering of CARP3-PAmCherry (red) and 
FLAM8-mNeonGreen (green). Both proteins are enriched at the flagellar tip (white circle). Scale bar: 
1 µm (A). CARP3-PAmCherry was imaged via PALM in combination with three other fluorescently 
labeled proteins: calpain 1.3-mNeonGreen (B), AC1-mNeonGreen (C) and FLAM8-mNeonGreen (D). 
Only protein subunits localizing within the flagellar tip, or in proximity of the tip, were tested for co-
localization. Scale bar: 0.5 µm (B, C, D)  

A                          B    
     C 

D 
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pairs for co-localization via PALM (Figure 7.1 C-D) and compared the obtained results with a positive 

(experimental) and negative (simulated) control. Furthermore, a previously known membrane 

associated protein that localize at the flagellar tip, calpain 1.3 (Liu et al. 2010), was also tested for co-

localization in order to establish CARP3 relative position to the membrane (Figure 7.1 B). The imaged 

pairs always comprised the novel cAMP response protein (CARP3) tagged with PAmCherry and a 

second protein tagged with mNeonGreen (AC1, calpain 1.3, FLAM8 and CARP3 for the positive control). 

As the aim of the study is to characterize the adenylate cyclase complex located at the flagellar tip, 

only localizations residing within the terminal part of the flagella were analysed. 

The flagellar tip of Trypanosoma brucei is characterized by a lateral width of approximately 1 

micrometer (𝑟𝐵  =  500 𝑛𝑚). It follows that the theoretical upper boundary for 𝑅𝑚𝑎𝑥 is 100 nm 

(0.2 𝑟𝐵). However, the proteins that are tested for co-localization against CARP3 all appear to form 

structures that span for more than 100 nm (𝑟𝐴 ≥ 50 𝑛𝑚) (Figure 7.1 B-D), suggesting that the minimum 

value for 𝑅𝑚𝑎𝑥 should be higher than 100 nm. It follows that it is not possible to establish a boundary 

for the determination of 𝑅𝑚𝑎𝑥 that completely avoid border artefacts. 

Further unreliability in the analysis derives from the fact that AC1, calpain 1.3 and FLAM8 are 

tagged with mNeonGreen, a non-photoactivatable fluorophore. As quantitative analysis of the 

localizations/clustering of mNeonGreen-tagged proteins is not reliable, the interpretation of the 

absolute CBC values is less obvious (Chapter 6.1).  

I circumvented the unreliability caused by the inability to determine a boundary for 𝑅𝑚𝑎𝑥 and by 

the use of mNeonGreen via the application of appropriate controls. Specifically, as a positive control 

for co-localization I imaged procyclic T. brucei AnTat 1.1 expressing CARP3-PAmCherry and CARP3-

mNeonGreen. Based on the data obtained from the positive control I then simulated the negative 

control. Precisely a rectangular area of equal size to the one from the positive control and one 

micrometer in width was simulated. Within this area I simulated two Poisson point pattern 

distributions characterized by intensities (𝜆𝑃𝐴𝑚_𝑠𝑖𝑚 = 0.000141 localizations/nm2, 𝜆𝑚𝑁𝑒𝑜_𝑠𝑖𝑚 =

0.000021 localizations/nm2) in agreement with what observed within the positive control. 

As I could only establish an upper threshold for 𝑅𝑚𝑎𝑥, I tested all proteins pairs for co-localization 

at different 𝑅𝑚𝑎𝑥 (50, 100, 200, 300, 400, 500 nm) (Figure 7.2). All proteins pairs tested, simulations 

included, show a shift in the CBC distribution toward high values with an increase in 𝑅𝑚𝑎𝑥 (Figure 7.2 

A-E). While the shift is present also in the negative control (border artifact), the degree of the 

phenomenon varies greatly between the negative control and the remaining protein pairs, as shown 

by the comparison of the percentages of CBC values above 0.5 (CBC values of mNeonGreen tagged 

proteins toward CARP3) (Figure 7.2 F). Finally, I compared the CBC value distributions of all proteins 
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pairs (mNeonGreen tagged proteins toward CARP3) against the negative control via multiple 

comparison test after Kruskal-Wallis for all 𝑅𝑚𝑎𝑥 tested (one-tailed). All protein pairs are characterized 

by significantly higher CBC values than the negative control for at least five of the 𝑅𝑚𝑎𝑥 tested (p-

value<0.05) (Figure 7.2 A-E, blue dots) supporting the idea that CARP3, AC1 and Calpain1.3 co-localize 

with CARP3.  

As the various 𝑅𝑚𝑎𝑥 used for the determination of the CBC values cover the study of interaction 

range (~ 50 𝑛𝑚), cluster association (~ 200 𝑛𝑚) and more (Figure 6.3) it is possible to further 

Figure 7.2: Co-localization analysis between CARP3 and three other components of the flagellar 
tip adenylate cyclase complex (AC1, Calpain1.3, FLAM8). CBC value density distributions for CARP3-
AC1 (A), CARP3-Calpain1.3 (B), CARP3-FLAM8 (C), negative control (D) and CARP3-CARP3 (E) 
calculated for six different 𝑅𝑚𝑎𝑥 (50, 100, 200, 300, 400 and 500 nm). The CBC value density 
distributions for mNeonGreen tagged proteins toward PAmCherry tagged proteins is shown in 
green, while the opposite is shown in red. Distributions that differ significantly from the negative 
control for the respective 𝑅𝑚𝑎𝑥 via multiple comparison test after Kruskal-Wallis (one-tailed, p-
value<0.05) are marked with a blue dot, while those that do not differ are marked with an orange 
one. While the percentage of CBC values above 0.5 increases with the increase in 𝑅𝑚𝑎𝑥 for all tested 
pairs (CBC values calculated for mNeonGreen tagged proteins against PAmCherry tagged protein), 
the percentages of CARP3-AC1, CARP3-Calpain1.3 and CARP3-FLAM8 are equal or greater than the 
ones of the positive control (F). Interval width = 5 nm.   

A                               B                              C         

D                               E                               F         
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interpret the data. Precisely, the CARP3-AC1 pair is the closer in behavior to the positive control (Figure 

7.2 F). The CARP3-FLAM8 and CARP3-calpain 1.3 pairs are also characterized by similar CBC values at 

low 𝑅𝑚𝑎𝑥, however these two pairs are characterized by a faster increase in CBC values for higher 

𝑅𝑚𝑎𝑥. The sharper increase in CBC values for the CARP3-FLAM8 pair can be explained by the presence 

of two closely located FLAM8 fractions, one possibly involved with CARP3 transport and tip deposition 

(locating within interaction range of CARP3) (Bachmaier, S., et al., “Unpublished data”) and one located 

in proximity of the axonemal microtubules (Rotureau et al. 2014) (Figure 7.3). Similarly, the sharper 

increase in CBC values for the CARP3-calpain 1.3 pair can be attributed to the presence of closely 

located membrane associated calpain 1.3 and CARP3 clusters within the flagellar tip (Figure 7.3). 

 

 

  

Figure 7.3: Organization of the flagellar tip in Trypanosoma brucei:  CARP3, AC1, Calpain1.3, 
FLAM8. FLAM8 possibly transport and deposit CARP3 to the flagellar tip. Here, FLAM8 subunits form 
a structure that appear to span from the end of the axonemal microtubules to the membrane itself 
maintaining CARP3 localization. AC1 localizes within the flagellar tip membrane where it possibly 
interacts with CARP3. Finally, Calpain 1.3 forms distinct membrane associated patches, similarly to 
CARP3. 
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 Discussion 

8.1. An unbalanced effort 

Following the development of single molecule localization microscopy techniques, there has been 

an extensive effort from the scientific community towards the development of data analysis packages. 

These packages mainly focused on the optimization and automatization of the image processing 

necessary for the extraction of the super-resolved localizations of fluorescent molecules from raw 

microscopy images (Sage et al. 2019). As algorithm efficiency and quality are pivotal toward achieving 

a resolving power close to electron microscopy, it soon became necessary to quantitatively compare 

the available packages. Results concerning the comparison of the different packages were first 

collected and published in 2015 by Daniel Sage et al. and later expanded in 2019 (Sage et al. 2015, Sage 

et al. 2019) with a total of 36 different packages being compared for multiple competition modalities. 

While it is undeniable that these packages greatly improved the quality of the data extracted from 

the raw microscope images, SMLM data quantification and interpretation methods are lagging behind 

(Khater et al. 2020), meaning that a case by case approach has been generally used for the analysis of 

the point patterns obtained by said packages (especially when analysing non SPT data). In the same 

way that point pattern representations are fundamentally different from pixel intensity-based 

representations used in conventional fluorescent microscopy, the analysis approaches used in the two 

scenarios also differ. Analysis and interpretation of SMLM point patterns is generally more complex 

(Owen and Gaus 2013, Griffié et al. 2018) and often requires the development of new methods and/or 

the adaptation of analysis approaches that are encountered in different fields.  

Currently, the scarcity in quantification and interpretation methods for SMLM data combined with 

a general lack of know-how concerning the analysis of point patterns within the fluorescence 

microscopy community act as a major bottleneck toward the achievement of the full potential by 

SMLM techniques. 

Within this dissertation I described a series of novel, diverse biological scenarios that cover a broad 

spectrum of the possible challenges encountered in SMLM and the corresponding analytical methods 

that I developed/used for their analysis.  

By providing a step by step guide toward the polishing, analysis and interpretation of SMLM data, 

this dissertation does not provide the reader with a full technical understanding of the statistics and 

analysis methods, but is rather aimed at easing the reader into the topic, enabling the interpretation 

and usage of said methods, therefore reducing said bottleneck.  
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8.2. Data quality 

Even a technically correct data analysis leads to wrong conclusions/results if the underlying dataset 

is of insufficient quality. It follows that in order to obtain biologically meaningful information it is 

required to collect reliable datasets. The first step toward this purpose is the ability to distinguish 

between the localizations that originates from the fluorophore of choice and all other localizations. 

With that in mind, I constructed a combination of macros (Fiji macro 1-3) and scripts (Script_R1-2) that 

allows for the characterization and polishing of the obtained localizations in a ROI dependent manner 

(Chapter 2).  

Briefly, the separation of the imaged field of view into separate categories (i.e.: cells within the 

objective focal plane, cells outside the objective plane and outside area) combined with a low 

fluorophore activation rate allows for the characterization of the localizations parameters within each 

separate category, therefore providing as an internal control for the identification and exclusion of, for 

instance, localizations derived from background fluorescence events.  

8.2.1. Experimental controls and autofluorescence 

The comparison of localizations originated in WT C. glutamicum cells and those expressing 

PAmCherry fusion constructs (Figure 2.1) is not only meant to serve as an example for the ROI 

dependent localizations polishing process, but also to highlight the importance of experimental design 

in SMLM. As most microorganisms exhibits some degree of autofluorescence (i.e.: chlorophyll, 

carotenoids, flavoproteins, …) (Croce and Bottiroli 2014, Kalaji et al. 2017, Surre et al. 2018), 

comparison between fluorescence profiles observed in presence and absence of the fluorophore of 

choice are essential. When imaging WT C. glutamicum cells under the same experimental conditions 

used for the imaging of PAmCherry we can observe autofluorescence (Figure 2.1 Ei,Fi). Most of the 

localizations that compose the autofluorescence population are characterized by higher PSF half width 

and photon count compared to PAmCherry (Figure 2.1) and it is therefore possible to exclude these 

localizations from further analysis. The remaining autofluorescence localizations cannot be 

distinguished from PAmCherry and act as a de facto noise signal. 

In the example shown in chapter 2, the probability to register a localization that satisfy the filtering 

parameters in a given average sized WT C.glutamicum cell in any given frame is 0.0017 while this 

chance increases to 0.07 (~40 times higher) in cells expressing PAmCherry for the same experimental 

conditions. As autofluorescence signals are usually recorded with a semi-constant frequency across 

the length of the experiment, it is possible to increase the ratio between PAmCherry localizations and 

autofluorescence by either decreasing the number of frames imaged or increasing the PAmCherry 

photo-activation rate (photo-activation rate needs to be maintained below levels which causes 

multiple PAmCherry localizations to occur simultaneously within diffraction limited areas). A higher 
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ratio between will in turn translate in the ability to detect smaller variations in the tagged protein 

behavior. 

Finally, case dependent filtering and/or ROI applications can be applied to those cases where 

autofluorescence does not localize homogeneously. 

8.2.2. ROIs determination 

In its current form, the detection of regions of interest via the Fiji macros 1, 2 and 3 comprises the 

conversion of a bright field image to a binary mask followed by semi-automated watersheding and 

ROIs coordinates extraction. The final outputs of these three macros are collected within a “Cells” 

folder and consist of a series of .txt files, one for each ROI, that contain the coordinates of the ROIs as 

a “tab” separated X/Y table (Giacomelli 2020). These outlines will then be imported in R and processed 

via the Script_R1 in order to make them compatible with Script_R2.  

Development and implementation of automated and semi-automated cell segmentation, whether 

we are taking about bacterial or eukaryotic cells, is a rapidly evolving field. While, at first, parameters 

based software such as MicrobeJ and Oufti (Ducret et al. 2016, Paintdakhi et al. 2016) struggled to 

segment crowded fields of view, machine learning algorithms stood up to the challenge (Van Valen et 

al. 2016, Arganda-Carreras et al. 2017, Berg et al. 2019). I therefore deliberately implemented a 

simplistic segmentation method via the Fiji macros1-3. This approach can be easily replaced with 

alternative/more accurate segmentation methodologies so long as the final output of these 

segmentation methods include the ROIs coordinates. 

Regardless of the segmentation method used for the identification of the ROIs, the establishment 

of boundaries is essential for the reliable analysis of the point patterns obtained in the course of a 

SMLM experiment. This does not only allow for the exclusion of localizations residing outside the ROIs 

from the dataset, but also for the association between localizations and ROIs (Script_R2). Moreover, 

point pattern analysis often requires border correction methods (Hand 2008, Baddeley et al. 2015), as 

absence of such correction can translate in artifacts (Chapter 6.1). Finally, the determination of 

morphological parameters (area, length, width) for the ROIs is a necessary step toward the 

normalization of the data (i.e.: localizations density) and can be instrumental for the division of the 

obtained localizations into multiple subsets. This is especially relevant when analysing bacteria, where 

cell size/length can be used as direct indicators of the cell cycle state or of a phenotype (i.e.: increase 

in cell length due to DNA damage). 

8.3. The pitfall of visualization 

Following the exclusion of localizations that reside outside the ROIs and the application of 

fluorophore dependent filtering parameters (Script_R2), the data comprise exclusively filtered 



Giacomo Giacomelli, PhD thesis, Department I, Microbiology, LMU 
 

74 
 

fluorophore localizations and associated ROIs. These data can either be converted back into a 

fluorescent-like image (i.e.: Normalized Gaussian rendering, Cumulative Histograms, …) or analysed as 

point patterns. It is however necessary to be keep in mind specific notions prior further processing. 

These notions are especially important for people that are already in possess of previous experience 

with fluorescence microscopy, as they may be tempted to analyse and interpret the data, especially 

when transformed into rendering, in the same way as conventional fluorescent images. 

When describing the intracellular localization of a fluorescently labeled protein via conventional 

fluorescence microscopy there are few questions we can directly answer without the necessity to 

perform measurements: is the fluorescence homogeneously distributed or do we observe 

heterogeneity? Is the protein localizing in the cytoplasm or is it a membrane-integrated/membrane-

associated protein? While these questions can also be answered via SMLM, the answer is not always 

as trivial and visualization of the data via rendering can be misleading. The scenario that best exemplify 

this phenomenon is the distinction between homogeneous and heterogeneous fluorescence. 

8.3.1. Clustering should not be determined visually 

When imaging a cell expressing a free monomeric fluorophore via conventional fluorescence 

microscopy it will appear as a uniform fluorescence signal, where the fluorescence intensity is function 

of the fluorophore density. If the same cell is imaged via SMLM, it will instead appear as a distribution 

of points on a plane. This distribution follows a homogeneous Poisson point process, also called purely 

random process (Chiu et al. 2013). Briefly, each localization/fluorophore is stochastically independent 

from the others and has the same probability to localize anywhere within the cell, while the number 

of points localizing within the cell is determined by the intensity (𝜆, expressed as localizations/area) of 

the Poisson process. As each point is independent, local distribution variability can still be observed 

Figure 8.1: Normalized Gaussian rendering of four homogeneous Poisson point processes. Four 
homogeneous Poisson point processes of increasing density (𝜆 = 100, 1000, 10000, 100000 
localizations/µm2) and 1 µm2 in area were simulated via the “rpoispp()” command from the 
“spatstat” package. The localizations were then imported in ThunderSTORM and visualized as 
normalized Gaussian rendering. Lateral uncertainty was forced to 20 nm for the visualization 
(common uncertainty found within a PALM experiment). The visual dynamic range was maximized 
for each image individually. 
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and recognized by clustering algorithms (Figure 4.1). Moreover, rendering of randomly distributed 

localizations will translate to uniform fluorescence only in presence of high fluorophore density, while 

lower concentrations will appear spotty (Figure 8.1) (the field of view appears spotty even at 10000 

localizations/µm2, with 95% of the localizations characterized by a nearest neighbor distance < 10 nm).  

Given the approximate size of a conventional GFP derived fluorophore barrel (3nm in diameter, 4 

nm in length), a nearest neighbor distance smaller than 10 nm signify quasi-proximity and implies that 

the majority/entirety of the space is occupied by a single fluorescently labelled protein (barely any 

space left for other proteins). It follows that the Normalized Gaussian rendering of a cytoplasmic 

monomeric protein can never translate into uniform fluorescence and that homogeneity cannot be 

determined visually in SMLM. 

Moreover, while the rendering of SMLM data usually appear spotty and theoretically preclude the 

viewer from easily determining whether a protein is uniformly/randomly distributed across the 

cytoplasm/membrane, this determination, when done via conventional fluorescence microscopy, does 

not give a complete view of the actual situation. In fact, a cell expressing sufficiently high levels of 

fluorescently labelled cytoplasmic protein will appear homogeneously stained whether the protein is 

monomeric or oligomeric.  

We therefore need to rely on a different methodological approach in order to determine whether 

the tagged protein form clusters/localizes randomly. One such methods is the determination of the 

nearest neighbor distance function 𝐺(𝑟) (edge corrected) for the experimental process and its 

comparison with a theoretical function (Chapter 4.1). This analysis approach cannot only be used as a 

preliminary test for clustering but also to determine under which conditions a given protein undergoes 

clustering. Exemplary for the use of 𝐺(𝑟) toward such goal is the study of MamY clustering at variable 

protein concentrations (Chapter 4.1) (Toro-Nahuelpan et al. 2019). 

Similarly, it is possible to determine whether the distribution of dimers/small oligomers follow a 

Poisson distribution by comparing their estimate of 𝐺(𝑟) with the one obtained for a Matern cluster 

process characterized by the same Poisson process intensity and average cluster size of the 

experimental oligomers (a Matern cluster process consist of a series of randomly distributed clusters 

of normally distributed size – “rMatClust” command) (Matern 1960, Matern 1986, Waagepetersen 

2007). 

While there exist other equally viable methods to determine deviation from a Poisson point 

process (Empty space function 𝐹(𝑟), Ripley's reduced second moment function - 𝐾(𝑟), summary 

function - 𝐽(𝑟)), the estimation of 𝐺(𝑟) is both of simpler interpretation and can provide useful 

information concerning the nature of the clusters themselves.  
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The script responsible for the estimation and comparison of 𝐺(𝑟) (Script_Rv) selectively implement 

specific functions contained within the “spatstat” R package to the filtered localizations and ROIs. 

Moreover, with the purpose of improving the reader familiarity with the estimation and comparison 

of 𝐺(𝑟), I also included within Script_Rv the possibility to simulate uniform, Poisson and clustered point 

processes (“rMatClust”). 

8.3.2. Co-localization methods used in conventional fluorescence microscopy are 

not useful for SMLM data 

A second analytical aspect where SMLM differs on a fundamental level from conventional 

fluorescence microscopy is the study of co-localization. While neither in SMLM nor in conventional 

fluorescence microscopy co-localization is synonym of interaction (Dunn et al. 2011), the resolution 

limit of light limits co-localization analysis in conventional fluorescence microscopy to the study of 

protein co-occurrence within subcellular compartments.  

As the typical resolution in conventional fluorescence microscopy is approximately 200 nm (see 

chapter 1.2), co-localization between two fluorescently tagged proteins will translate in overlap of 

signal (Figure 3.4 C). It follows that when described statistically, co-localization analysis comprises the 

determination of an overall co-localization coefficients based on pixels intensity values across the 

fluorescent channels (Pearson Correlation Coefficient, Mander overlap coefficient, Fractional overlap) 

(Pearson 1896, Manders et al. 1992, Manders et al. 1993, Dunn et al. 2011). 

In the same way that, due to an increase in resolution, the rendering of randomly distributed 

localizations obtained via a SMLM experiment does not result in a fluorescently homogeneous field of 

view (see chapter 8.3.1) (Figure 8.1), the imaging of two proteins that co-localize in conventional 

fluorescence microscopy (Figure 3.4 C) does not necessarily translate to signal overlap in SMLM (Figure 

3.5).  

In details, the Normalized Gaussian and histogram rendering derived from the localizations 

obtained from a SMLM experiment are characterized by higher resolution compared to conventional 

fluorescence microscopy images. Therefore, the signal overlap that is observed in conventional 

fluorescence microscopy translates into a series of different protein arrangements when imaged via 

SMLM. Two proteins may, in fact, localize within the same cell structure and show no overlap in their 

rendering due to low localization density (i.e.: two membrane proteins) or be associated to different 

parts of the same structure (i.e.: membrane protein and membrane-associated protein), resulting in a 

shift between the two colors. Consequently, if the aim of the co-localization analysis described here is 

to verify whether said proteins belong to the same structure, the analysis methods used for 

conventional fluorescence microscopy are not viable.  
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8.3.3. Why and when to use conventional-like image analysis 

In chapter 3 I characterized DipC, a novel putative DivIVA interaction partner expressed during the 

DNA damage induced SOS response in C. glutamicum. Furthermore, I explored the advantages and 

limits of conventional-like image analysis in both qualitative and quantitative studies.  

First, by combining qualitative fluorescence profiles and the unique positioning of DivIVA and DipC 

within the septal area I was able to determine that DipC is recruited to the septum indirectly, possibly 

by DivIVA. Then, by comparing quantitative DipC fluorescence profiles across genetically different 

strains I was able to show that DipC localization and expression levels are altered in absence of DivS, 

the protein responsible for division inhibition during the DNA damage induced SOS response in C. 

glutamicum (Ogino et al. 2008). 

Fluorescence profiles can be calculated from both normalized Gaussian rendering and cumulative 

histogram rendering, with the latter being less appealing from a visual point of view but having the 

advantage of being quantitative (the pixel intensity value in a cumulative histogram rendering 

correspond to the number of localizations residing within the pixel). 

While everything that was determined in chapter 3 via conventional-like image analysis can also 

be calculated via point pattern analysis methods, image analysis tools (Fiji, MicrobeJ, Oufti, BactMAP) 

(Schindelin et al. 2012, Ducret et al. 2016, Paintdakhi et al. 2016, van Raaphorst et al. 2020) are 

generally more common and user friendly. Therefore, a significant difference in the required effort and 

skills is currently necessary to achieve the same goal (whether this means the ability to use R, Matlab 

or other script driven statistical computing tools) (R_Core_Team 2020, The_Mathworks_Inc 2020). This 

may appear counterintuitive as I dedicated two separate scripts to the analysis of conventional-like 

image analysis in chapter 3.2., however visualization of data via Script_R3 can be replaced by other 

software such as MicrobeJ, Oufti and BactMAP, while Script_R4 can be replaced by the use of 

spreadsheets analysis tools such as Microsoft Excel (Microsoft_Corporation 2019). 

Finally, it is likely that the development of SMLM focused point pattern analysis tools will 

eventually make the combined use of rendered SMLM images and conventional-like image analysis 

obsolete. However, this is currently not the case and conventional-like image analysis will still play a 

role in the close future. 

8.4. Benefits and flaws of OPTICS, a quasi-parameter free approach to cluster 

analysis 

Currently available point pattern clustering algorithms such as Density-based spatial clustering 

analysis with noise (DBSCAN) require difficult to determine parameters and output different results 

based on the parameters used (Nan et al. 2013, Deschout et al. 2014, Khater et al. 2020). OPTICS, on 
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the other side, requires a single parameter for the determination of the clustering organization of a 

point process (ε is not a necessary parameter as it is only required to fasten the computing) and is 

rather insensitive to the parameter itself (Ankerst et al. 1999). Moreover, visualization of OPTICS 

outputs via reachability plots is of easy interpretation (Figure 1.2). I therefore implemented OPTICS 

within the part of the SMLM analysis script I developed dedicated to cluster analysis.  

8.4.1. Arbitrarity of thresholding and analysis complexity 

Following the construction of a reachability plot, Script_R5P2 allows for the identification of two 

separate clustering levels via the manual establishment of thresholds (chapters 4.3 and 5) (Figure 8.2 

A, C). As the OPTICS algorithm normally allows for automatic analysis of cluster-ordering and generate 

accordingly a hierarchical clustering structure (Ankerst et al. 1999)(Figure 8.2 B, D), the manual 

A                                   B                            

Figure 8.2: Manual and automated clustering of ParB-PAmCherry via OPTICS. The two reachability 
distance thresholds selected highlight general ParB enrichment areas (royalblue) and density 
variability within said areas (orange) (see chapter 5 for more details) (A). While more detailed, 
hierarchical clustering visualization gives no hint concerning which clusters share similar 
characteristics (B). Similarly, the interpretation of reachability plots in presence of two threshold 
levels is of immediate understanding (C) while the use of the same color for multiple hierarchical 
levels, combined with the high number of levels, makes it virtually impossible to interpret and 
recognize clusters within reachability plots originated from automated hierarchical clustering (D). 

C                                   D                            
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selection of thresholds somehow limits OPTICS potential and can subject it to the arbitrarity of the 

user.  

While the exact definition of the thresholds will always maintain a certain degree of arbitrarity, the 

approximate value each threshold is based on is determined visually according to the reachability plots 

(Figure8.2 C), as described in chapters 5 and 5.2, and is aimed toward the subdivision of the dataset 

into biologically relevant categories (enriched areas, cluster heterogeneity, identification of separate 

low/high density areas). It follows that this process excels in the determination and comparison of such 

features, as exemplified by the characterization of ParB clustering behavior in presence/absence of 

parS sites (Chapter 5.2)(Bohm et al. 2020). The segmentation of localizations via a finite number, in 

this case two, of manually established thresholds results in a loss of descriptive ability (Figure 8.2). 

However, hierarchical structuring focuses on identifying clusters rather than grouping (Figure 8.2 B). It 

follows that post-structuring analysis is required for the grouping of the obtained clusters into 

meaningful categories (a process that is once again partially arbitrary).  

I therefore did not implement within Script_R5P2 the commands required for the automated 

determination of the hierarchical clustering structure, but rather focused instead into separating the 

dataset in three clustering categories (background, level_1 and level_2) and integrate labels with 

localizations specific data (obtained via Script_R5P1), therefore enabling the characterization of the 

clusters themselves and cluster dependent analysis. 

8.4.2. Alternatives and future prospects 

There currently exist multiple analysis approaches dedicated to the identification and 

characterization of clusters in SMLM. Generally, these methods can be divided into Statistical 

(estimation of 𝐺(𝑟)), Bayesian, Density based (OPTICS), Voronoi based and Graph based (Khater et al. 

2020). Each of these approaches has strengths and weaknesses. While some of these weaknesses 

cannot be circumvented (computational time/scalability), most of them can be bypassed via the use 

of appropriate biological and in silico controls. Moreover, while some algorithms are better apt at 

recognizing specific type of clusters compared to others (Khater et al. 2020), the lack of benchmark 

datasets dedicated to the assessment of the quality of the algorithms in regards to said clusters means 

that no full scale objective comparison has been made to this date. Currently, an ideal scenario would 

therefore require the freedom to implement and compare multiple clustering algorithms from the 

same software/platform, enabling the exploitation of each algorithm strength in a case by case 

scenario. However, it is not trivial to construct such a platform due to the speed at which the analysis 

methods have been evolving in the last years. Finally, the role of machine learning algorithms have 

been increasing, covering aspects ranging from the segmentation of clusters (Williamson et al. 2020) 
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to the classification of biological structures (Khater et al. 2019) and are expected to play an even bigger 

role in the years to come. 

8.5. Benefits and flaws of CBC  

Script_R5P3 currently implements and expand on the coordinate-based co-localization (CBC) 

approach based on the user defined input of interval width (nm) and 𝑅𝑚𝑎𝑥 (Malkusch et al. 2012, 

Georgieva et al. 2016, Pageon et al. 2016). While neither this method nor other currently available co-

localization methods can be used to determine protein-protein interaction (Dunn et al. 2011), the 

determination of CBC values can be used to infer on a variety of different biological scenarios, from 

the co-occurrence of two proteins within the same subcellular compartment, to the characterization 

of a microcompartment (Chapter 6). Furthermore, as each localization is characterized by a separate 

CBC value, it is possible to study the change in CBC values across a protein population relative to, for 

instance, its oligomeric state. 

While the coordinate-based co-localization method is quite robust in regards to changes in local 

molecular density, it is also strongly influenced by the parameters used for its determination (Levet et 

al. 2019) (Figure 6.3). The dependency between results and input parameters is usually seen as a 

weakness for an analysis method, as it implies that the method itself is inconsistent. However, making 

such a claim for CBC analysis would not make sense, as changes in the input parameters do not 

correspond to an alteration in the results, but rather to a change in experimental question (Lagache et 

al. 2015), making this analysis method extremely flexible (Chapter 6). 

In recent years, there have been developed several methods dedicated to the analysis of co-

localization in SMLM experiments (Malkusch et al. 2012, Lagache et al. 2015, Pageon et al. 2016, Levet 

et al. 2019). While most of the available methods, including the one described within this dissertation, 

rely directly on coordinates for the determination of co-localization (Malkusch et al. 2012, Pageon et 

al. 2016), there has been recently proposed a method that is instead based on tessellation (Levet et al. 

2019). 

This analysis approach, named Coloc-Tesseler (CT), derives the spatial co-organization of two 

molecular species based on the overlap between Voronoi diagrams in a parameters free manner while 

also allowing for the determination of image-based co-localization coefficients, such as the Manders 

and Spearman’s coefficients, in a straightforward manner (Levet et al. 2019). While the lack of 

parameters translates into a more consistent and straightforward analysis, it also means that it is not 

possible to determine the type of co-localization to which we are interested, therefore limiting its 

potential. 
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Overall, coordinate-based co-localization (CBC) requires a certain degree of knowledge concerning 

the proteins distributions (interaction range/cluster size/cell size) that are being analysed in order to 

determine appropriate boundaries for the parameters (chapter 6.3). However, as said knowledge can 

be provided by the script hereby presented prior to the co-localization analysis itself, the choice of 

acceptable parameters is quasi-trivial. Finally changes in CBC values due to a change in the 

experimental question are gradual, allowing a certain degree of tolerance in the choice of parameters, 

and quality of the data can be assured by the presence of negative and positive controls (Chapter 6.2). 

8.6. An extra layer of analysis 

The analysis of SMLM data differ from the analysis of fluorescence in conventional fluorescence 

microscopy similarly to how single cell analysis differ from whole population analysis. The ability to 

assign to each fluorophore parameters concerning its localization, clustering environment, co-

localization status and concerning the cell it localizes in, means that a change in paradigm is necessary 

when approaching SMLM data for the first time.  

For instance, in conventional fluorescence microscopy, Abbe limit and fluorescent background 

conveniently act as technical lower bound thresholds for both clustering and co-localization. The lack 

of this limits in SMLM means that it is up to us to establish new analysis thresholds. These limits are 

determined according to the distribution of the studied parameters (cluster size, density, cell size, …) 

and should ideally have biological significance (see chapters 5.1 and 5.2). 

Furthermore, while within this dissertation I purposely refrained from integrating/combining 

multiple analysis aspects where unnecessary, it is not only common but also beneficial to study 

localization/co-localization in a clustering-dependent manner. With this in mind, I structured the data 

in a way that allows for the simultaneous application of multiple filtering parameters on a cell, cluster 

and localization level. As this increases the degree of control over the data themselves, it is possible to 

isolate and characterize structures/phenotypes that would be otherwise lost (Martins et al. 2019). 

8.7. Conclusion and outlook 

This work covers, via the use of multiple biologically relevant scenarios, pre- and post-processing 

of SMLM data while emphasizing the differences, benefits and limits of point pattern analysis.  

I presented each module/script with possible alternatives while showing both their strength and 

weaknesses/limitations. It is worth mentioning that the pipeline presented within this dissertation is 

the result of a combination and optimization process that finds its origins within the necessity to 

determine specific protein features in the course of published (Martins et al. 2019, Toro-Nahuelpan et 

al. 2019, Bohm et al. 2020) and unpublished studies (Bachmaier, S., et al., “Unpublished data”) and 



Giacomo Giacomelli, PhD thesis, Department I, Microbiology, LMU 
 

82 
 

both the current version of the pipeline and the versions used for each individual study are collected 

within my GitHub page (Giacomelli 2020) and are freely available. 

In its current version, the script uses as sole inputs a bright field image, for the determination of 

the ROIs, and a Zeiss Elyra P1 derived molecules localizations table (the table format is shown in the 

GitHub page). As not all table parameters are used within the script (Relevant parameters: index, first 

frame, position X, position Y, precision, number of photons, PSF width), it is possible to use localizations 

tables obtained from other microscopes/software, so long as the relevant parameters are available 

and the dataset is formatted accordingly.  

The SMLM data filtering/analysis pipeline hereby presented allows for the characterization and 

comparison of a wide range of variables. Said variables describe and allow for the combination of 

multiple levels of analysis (single molecule, cluster, cell, field of view). Generally, I was able to filter 

raw localizations tables according to specific ROIs and in a fluorophore-dependent manner (photon 

count/PSF width). I was then able to convert the filtered data to a rendered image and analyse it via 

conventional-like image analysis (Script_R3-4), and/or directly process the filtered localizations table 

via point pattern analysis (Script_Rv, Script_R5P1-3). I then showcased multiple aspects of each part 

of the pipeline via experimental and/or simulated data with specific focus toward clustering/cluster 

heterogeneity and co-localization. 

Specifically, using the conventional-like image analysis approach (Script_R3, Script_R4), I 

determined the relative positioning of DivIVA and DipC within C. glutamicum septal region, with the 

difference between DivIVA and DipC cross-septal distances supporting a model where DipC does not 

directly interact with the membrane but is rather recruited by a membrane associated protein, possibly 

DivIVA. I also used a variation of the same approach (histogram based rendering vs normalized 

Gaussian rendering) to determine in a semi-quantitative fashion the changes in DipC localization and 

expression in two different C. glutamicum genomic backgrounds (WT and ΔdivS) while exposed to the 

DNA inducing antibiotic Mitomycin C. Briefly, absence of DivS resulted both in a decrease in DipC signal 

and its delocalization. 

Via the use of point pattern analysis methods (Script_Rv, Script_R5P1-2) I was then able to 

determine that the filament-like structures formed by the protein responsible for magnetosome 

alignment in M. gryphiswaldense, MamY, do not originate from a single nucleation event. They are 

instead the result of the independent localization of multiple oligomeric structures of similar molecular 

density that can recognize the geodetic membrane area. I subsequently showcased a separate aspect 

of cluster analysis (multi-leveled clustering) by comparing ParB clustering across different C. 

glutamicum genomic backgrounds (WT, parS1-10mut and parS2-10mut). Briefly, while high density ParB 



Giacomo Giacomelli, PhD thesis, Department I, Microbiology, LMU 
 

83 
 

areas (LV1 clusters) are composed of a significantly higher number of localizations in the WT strain, 

suggesting that the degree of ParB propagation is dependent on the number of parS sequences, no 

statistical difference can be observed concerning the number of subclusters/cluster across the three 

strains.  I could instead observe a significantly higher occupancy for the strain possessing no parS sites, 

supporting the idea of a decreased cluster heterogeneity in said strain (see chapter 5). 

Based on simulated point patterns, I then established a general rule for the determination of co-

localization in all its forms (2𝑟𝐴 ≤ 𝑅𝑚𝑎𝑥 ≤ 0.2𝑟𝐵) via CBC values (Malkusch et al. 2012) (ScriptR5P3). I 

hence determined CBC values for different 𝑅𝑚𝑎𝑥 in a biologically relevant scenario, including a positive 

biological control and a negative simulated control. Briefly, I tested the cAMP response protein CARP3 

for co-localization with itself and three other proteins involved in the organization of the flagellum tip 

in Trypanosoma brucei brucei (AC1, Calpain1.3, FLAM8) and compared them with the co-localization 

values obtained for the CARP3-NegativeControl pair. I proceeded to show that for all 𝑅𝑚𝑎𝑥 tested (50 

to 500 nm) AC1, Calpain1.3 and FLAM8 return CBC values similar or higher than the once returned by 

the positive control, suggesting that all these proteins are part of the same molecular complex.  

Finally, as SMLM data analysis is still in its dawn, new computational methods are sure to be 

developed in the near future. While some of these methods will be aimed toward the extraction of 

specific biosignatures/have a niche field of use, others will overlap in function to existing analysis 

methods, possibly making the current version of this pipeline obsolete. While said increase in analysis 

methods has theoretically a positive effect, it will also make it extremely difficult for researchers being 

introduced for the first time to SMLM to navigate their way through the data. As an increase in 

methods without an objective way to compare these methods is somehow pointless, it is pivotal for 

the scientific community to establish in the near future benchmark SMLM data with known features 

with the sole aim of validating/comparing the separate methods, similarly to what was done 

concerning the identification of localizations from raw data (Sage et al. 2019). 
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 Material and Methods 

9.1. Code availability 

The complete collection of macros and scripts used in the analysis of SMLM data has been 

deposited in Github (https://github.com/GiacomoGiacomelli). 

9.2. Reagents 

Experiments were performed using chemicals purchased from the following companies: 

AppliChem (Darmstadt, Germany), Ibidi (Gräfelfing, Germany), Merck (Darmstadt, Germany), Roth 

(Karlsruhe, Germany), Sigma Aldrich Chemie (Steinheim, Germany), VWT (Radnor, PA, USA). Molecular 

biology products were further obtained from GE Healthcare (Chicago, IL, USA), Genaxxon Bioscience 

(Ulm, Germany), Invitrogen (Carlsbad, CA, USA), Macherey & Nagel (Düren, Germany), New England 

Biolabs (Ipswich, MA, USA) Roche (Rotkreuz, Switzerland), Thermo Fisher Scientific (Waltham, MA, 

USA) with purity grades “per analysis”, unless otherwise noted. 

9.3. Oligonucleotides and plasmids 

Oligonucleotides used for the construction of plasmids and sequencing are listed in table 9.1. 

Plasmids used in the course of the doctoral study and/or used during the collaborations mentioned 

within this dissertation are listed in table 9.2. Construction of the plasmids is described in the next 

chapters. 

Table 9.1: Oligonucleotides used for the construction and sequencing of plasmids 

Restriction sites are underlined. STOP codons, thrombin cleavage site, HisTag, StrepTagII and linkers 

are indicated in bold. 

Oligonucleotides 

(Plasmids construction) 
Sequence 5´- 3´ Restriction Site 

HindIII-5´AdhA-F GCATCGAAGCTTATGACCACTGCTGCAC HindIII 

SalI-IsceIrec-5´AdhA-R GCATCGGTCGACATTACCCTGTTATCCCTACGGGCG

GGTTTCAG 
SalI 

SalI-3´AdhA-F GCATCGGTCGACGGCCAATTCATGGTGATC SalI 

XbaI-3´AdhA-R GCATCGTCTAGATTAGAAACGAATCGCCACAC XbaI 

SalI-PAmCherry-F CATGTCGACATGGTGAGCAAGGG SalI 

XbaI-STOP-PAmCherry-R CATTCTAGATTACTTGTACAGCTCGTC XbaI 

SalI-mNeon-F TATGTCGACATGGTGAGCAAGG SalI 

XbaI-STOP-mNeon-R ATGTCTAGATTACTTGTACAGCTCGTC XbaI 

HindIII-3´Cg0839-F CATAAGCTTTTAATGTGATTCGT HindIII 

SalI-3´Cg0839-R CATGTCGACAATTGCAGTTGG SalI 

XbaI-Cg0839-Do-F CATTCTAGAGGATCACTATGTCC XbaI 

XmaI-Cg0839-Do-R TATCCCGGGCGGGATGAGGAAAG XmaI 

HindIII-DivS-Do-F CGATGCAAGCTTGTGTCTGCTAGTCCCTTC HindIII 

https://github.com/GiacomoGiacomelli
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SalI-DivS-Do-R CGATGCGTCGACTCGGGAATAGATCAATGCTG SalI 

SalI-DivS-Up-F CGATGCGTCGACTTCAAAACTCCCGCCTCAATTG SalI 

EcoRI-DivS-Up-R CGATGCGAATTCGGATTGAAGTCCTGCAGCATC EcoRI 

SalI TAA StrepTag 

3´Cg0839 R  

GCATCGGTCGACTTACTTTTCAAACTGCGGATGGCT

CCAAATTGCAGTTGGGATTATATTG 

SalI 

HindIII 3´Cg0839 F  GCATCGAAGCTTCCACAAGCCACTGAG HindIII 

SalI-Cg0839-Do-F  GCATCGGTCGACGGATCACTATGTCCAACG SalI 

XbaI-Cg0839-Do-R  GCATCGTCTAGACGGGATGAGGAAAGAC XbaI 

OH1-Cg0839-Do-F TCTACCGACGCACTCATGGGATCACTATG - 

SalI-Cg0839-Do-R CATAGTCGACCGGGATGAGGAAAG SalI 

OH2-Cg0839-Up-R CATGAGTGCGTCGGTAGAGGAATGAGGCC - 

HindIII-Cg0839-Up-F CATAAAGCTTATGGTGCCATCG HindIII 

EcoRI-Cg0838-Do-R CATG GAATTC CACCAGCCACGCTAC EcoRI 

OH1-Cg0838-Do-F TCTACCGACGCACTCATGGAGTAGATAACACCAGCT

ACC 
- 

OH2-Cg0839-Up-R CATGAGTGCGTCGGTAGAGGAATGAGGCCTTTG - 

XbaI-Cg0839-Up-F CATGTCTAGAGTGCCATCGATTTTG XbaI 

HindIII-Cg0838-Up-F GCATCGAAGCTTCACCACAAGCCACTGAG HindIII 

SalI-Cg0838-Up-R GCATCGGTCGACAGTGATCCTTAAATTGCAGTTGG SalI 

XbaI-5´Cg0838-F GCATCGTCTAGAATGTCCAACGCACCTAAAAAG XbaI 

BamHI-5´Cg0838-R GCATCGGGATCCCGGAGCAGTTGGTCAAAG BamHI 

XbaI-mCherry-R GCATCGTCTAGACTTGTACAGCTCGTC XbaI 

XbaI-mNeon-R ATGTCTAGACTTGTACAGCTCGTC XbaI 

HindIII-3´FtsZ-F CAGAAGCTTGAAGTCAACGCAGCTGCA HindIII 

SalI-StrepTag-3´FtsZ-R CATGGTCGACTTACTTTTCAAACTGCGGATGGCTCC

ACTGGAGGAAGCTG 
SalI 

SalI-FtsZ-Do-F CATGGTCGACTTAAGAAGGAGAATAG SalI 

EcoRI-FtsZ-Do-R CAGGAATTCGCACCCATGAGCGCATG EcoRI 

EcoRI-MurJ-Do-R GCGGGAATTCGTTTGTGGAGCC EcoRI 

OH1-MurJ-Do-F TCTACCGACGCACTCATGATTACGCGTTTGTG - 

OH2-MurJ-Up-R CATGAGTGCGTCGGTAGAATCAGAATCGGAG - 

XbaI-MurJ-Up-F CATGTCTAGATCTCACGTTGTG XbaI 

PstI-3´MurJ-F CATCTGCAGGTGGGATGACGGTGC PstI 

SalI-3´MurJ-R GATCGTCGACCCAACCAACAAGTTG SalI 

XbaI-MurJ-Do-F CATTCTAGAATTACGCGTTTGTGA XbaI 

EcoRI-MurJ-Do-R CATGAATTCGGTTTCCGCCCGTA EcoRI 

PstI-3´Cg0838-F CATGCTGCAGCCAAACTGACATCG PstI 

SalI-3´Cg0838-R CATGGTCGACCTCAGATTTTGGCATC SalI 

XbaI-Cg0838-Do-F CATGTCTAGAATAACACCAGCTACCCAC XbaI 

BamHI-Cg0838-Do-R CATAGGATCCTCGCACTTCACGC BamHI 

HindIII-3´Cg0841-F CATGAAGCTTACCACGGGCTTTTTG HindIII 

SalI-3´Cg0841-R CATGGTCGACGCTATCCAATTC SalI 

XbaI-Cg0841-Do-F CATGTCTAGATAGCCGTAGTCG XbaI 

XmaI-Cg0841-Do-R CATGCCCGGGAAAACGCACTGT XmaI 

HindIII-Cg0841-Up-F GCATCGAAGCTTCGAAACGGACACAATTG HindIII 
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SalI-Cg0841-Up-R GCATCGGTCGACTGGATATTCACCCTTAGAATTG SalI 

XbaI-5´Cg0841-F GCATCGTCTAGAATGCGTGGTGACGTTC XbaI 

BamHI-5´Cg0841-R GCATCGGGATCCGATTCGCTGCGGATCATC BamHI 

HindIII-LexA-Up-F CGATGCAAGCTTCAACGAGGAGAACAGCTTTTTCG HindIII 

SphI-LexA-Up-R CGATGCGCATGCCTTCCGTTCCCTTCCTCTC SphI 

SphI-LexA-Do-F CGATGCGCATGCGTCGCTTTTCAGGTTCCC SphI 

EcoRI-LexA-Do-R CGATGCGAATTCGGCAATGGAGTACTTTGCTG EcoRI 

EcoRI-STOP-PAmCherry-R CATGAATTCTTACTTGTACAGCTCGTC EcoRI 

BamHI-5´GFP-F CATGGATCCATGAGTAAAGGAGAAG BamHI 

EcoRI-STOP-3´GFP-R CATGAATTCTTATTTGTATAGTTCATCC EcoRI 

BamHI-mNeon-F CATGGATCCATGGTGAGCAAGGGC BamHI 

EcoRI-STOP-mNeon-R CATGAATTCTTACTTGTACAGCTCGTCCATGCC EcoRI 

BamHI-PSmOrg.2-F CATGGGATCCATGGTGAGCAAGGGCG BamHI 

EcoRI-STOP-PSmOrg.2-R CATGGAATTCTTACTTGTACAGCTCGTCCATG EcoRI 

SalI-5'Murj-F CATGTCGACGTGGTGCGCTCGAC SalI 

BamHI-STOP-3'Murj-R CATGGATCCTTACCAACCAACAAGTTG BamHI 

BamHI-STOP-6His-3'MurJ-

R 

CATGGATCCTTAATGGTGGTGGTGATGATG 

CCAACCAACAAGTTG 
BamHI 

PstI-5´MurJ-F GATACTGCAGGTGGTGCGCTCGAC PstI 

PstI-RBS-5´MurJ-F GATCTGCAGCACACCTCCGATTCTG PtsI 

Sal-RBS-His-5'GFP-F 
CATGTCGACATCGAAGGGAATCCGCAAATGCATCA

TCATCATCATCATATGAGTAAAGGAGAAG 
SalI 

BamHI-3'GFP-R CATGGATCCTTTGTATAGTTCATCC BamHI 

BamHI-THR-5'DivIVA-F 
CATGGATCCCTGGTTCCGCGTGGTTCCATGCCGTTG

ACTCCAG 
BamHI 

SacI-STOP-3'DivIVA-R CATGAGCTCTTACTCACCAGATGGCTTG SacI 

SalI-RBS-5'DivIVA-F CATGTCGACATCGAAGGGAATCCGCAAATGCCGTT

GACTCCAG 
SalI 

BamHI-THR-3'DivIVA-R 
CATGGATCCGGAACCACGCGGAACCAGCTCACCAG

ATGGCTTG 
BamHI 

SacI-STOP-His-3'GFP-R 
CATGAGCTCTTAATGATGATGATGATGATGTTTGTA

TAGTTCATCC 
SacI 

BamHI-3'DivIVA-R CCGGGATCCCTCACCAGATGGC BamHI 

BamHI-Dendra2-F GAGGGATCCATGAACACCCCG BamHI 

SacI-STOP-Dendra2-R CCGGAGCTCTTACCACACCTGG SacI 

SalI-Cg0847-F CATGGTCGACGTGACTGAAAAGTATCGTCC SalI 

BamHI-Cg0847-R CATGGGATCCGTTAACGCAACGGGGAC BamHI 

SalI-Cg0842-F CATGGTCGACATGGTTTCTTATAGCGTGCAC SalI 

BamHI-Cg0842-R CATGGGATCCAACCCGCGGCAGC BamHI 

SalI-Cg0841-F CATGGTCGACATGCGTGGTGACGTTC SalI 

BamHI-Cg0841-R CATGGGATCCGCTATCCAATTCCTCTAAACG BamHI 

EcoRI-STOP-Dendra2-R CATGGAATTCTTACCACACCTGG EcoRI 

EcoRI-STOP-3'mCherry-R CATGAATTCTTACTTGTACAGCTCGTCC EcoRI 

SalI-RBS-5´FtsZ-F CATGGTCGACATGACCTCACCGAAC SalI 

SacI-3´FtsZ-R CATGGAGCTCCTGGAGGAAGCTGGG SacI 
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SacI-linker-mCherry-F  CATGGAGCTCGGGGGTGGCGGTTCAGGCGGTGGG

GGTATG GTGAGCAAGGGCGAG 
SacI 

EcoRI-STOP-3´mCherry-R CATGGAATTCTTACTTGTACAGCTCGTC EcoRI 

SacII-linker-5´PAmCherry-

F 

GCATCGCCGCGGTCGAGATGGTGAGCAAGGGCGA

G 
SacII 

NheI-linker-3´PAmCherry-

R 

GCATCGGCTAGCTCCCTCGAGCTTGTACAGCTCGTC

CATGCC 
NheI 

NdeI-5´mNeon-F GCATCGCATATGGTGAGCAAGGGCG NdeI 

BamHI-STOP-3´mNeon-R GCATCGGGATCCTTACTTGTACAGCTCGTCCATG BamHI 

XhoI-6His-F GCATCGCTCGAGATGGGCCATCATCATC XhoI 

HindIII-GA-3´Neon-R GCATCGAAGCTTGACTTGTACAGCTCGTCC HindIII 

NdeI-5´DivIVA-F CATGCATATGATGCCGTTGACT NdeI 

BamHI-STOP-3´DivIVA-R CATGAATTCTTACTCACCAGATGG BamHI 

BamHI-T-5´Cg0847-F CATAGGATCCTGTGACTGAAAAG BamHI 

SalI-3´Cg0847 CATAGTCGACGTTAACGCAACG SalI 

Oligonucleotides 

(Sequencing) 
Sequence 5´- 3´ 

pEKEX2_seq_F CATCGGCTCGTATAATGTGT 

pEKEX2_seq_R CCGCTTCTGCGTTCTGATTT 

pk19mobsacB_seq_F GCTTCCGGCTCGTATGTTG 

pk19mobsacB_seq_R GCTGCAAGGCGATTAAGTTG 

StrepTag _seq_F GGAGCCATCCGCAG 

FtsZdo_seq_R GTGGTGCCTTTTGTCGTAC 

cg0839up_F_seq GCAACCAATGAGAAGACAACCCACCGTATCTAG 

cg0839do_R_seq CCTGATCATTTGCAAGAGC 

cg0838do_R_seq GAAGATCCCGACAATGGCATCGCC 

Isce_ins_Fw_seq GATGCTTTTAAAGGGAATTGTGTG 

Isce_ins_Rv_seq GAGCAGTTTCAACACAATCCG 

divSup_F_seq CTGCGCAGGAAGCC 

divSdo_R_seq TATCGGCGCAGAGAATCC 

 

Table 9.2: Plasmids 

Plasmid Characteristics Reference 

pk19mobsacB Integration vector, oripUC, Kmr, mob sac (Schäfer et al. 1994) 

pk19mobsacB-IsceI-

recognition-site 

Integration vector, oripUC, Kmr, mob sac, 

Insertion of the I-SceI meganuclease 

recognition site within the adhA gene 

This study 

pk19mobsacB-Cg0839-

PAmCherry 

Integration vector, oripUC, Kmr, mob sac, 

cg0839-PAmCherry 
This study 

pk19mobsacB-Cg0839-

mNeonGreen 

Integration vector, oripUC, Kmr, mob sac, 

cg0839-mNeonGreen 
This study 

pk19mobsacB-ΔdivS 
Integration vector, oripUC, Kmr, mob sac, 

deletion of divS 
This study 
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pk19mobsacB-DivIVA-

PAmCherry 

Integration vector, oripUC, Kmr, mob sac, 

divIVA-PAmCherry 
This study 

pk19mobsacB-DivIVA-

mNeonGreen 

Integration vector, oripUC, Kmr, mob sac, 

divIVA-mNeonGreen 
(Schubert et al. 2017) 

pk19mobsacB-ParB-

mNeonGreen 

Integration vector, oripUC, Kmr, mob sac, 

parB-mNeonGreen 
(Bohm et al. 2020) 

pk19mobsacB-ParB-

PAmCherry 

Integration vector, oripUC, Kmr, mob sac, 

parB-PAmCherry 
(Bohm et al. 2020) 

pk19mobsacB-Cg0839-

mCherry 

Integration vector, oripUC, Kmr, mob sac, 

cg0839 (dipC)-mCherry 
This study 

pk19mobsacB-Cg0839-

StrepTagII 

Integration vector, oripUC, Kmr, mob sac, 

cg0839 (dipC)-StrepTagII 
This study 

pk19mobsacB-Δcg0839 
Integration vector, oripUC, Kmr, mob sac, 

deletion of cg0839 (dipC) 
This study 

pk19mobsacB-

Δcg0838/39 

Integration vector, oripUC, Kmr, mob sac, 

deletion of cg0838 (dipD) and cg0839 (dipC) 
This study 

pk19mobsacB-mCherry-

Cg0838 

Integration vector, oripUC, Kmr, mob sac, 

mCherry-cg0838 (dipD) 
This study 

pk19mobsacB-

PAmCherry-Cg0838 

Integration vector, oripUC, Kmr, mob sac, 

PAmCherry-cg0838 (dipD) 
This study 

pk19mobsacB-

mNeonGreen-Cg0838 

Integration vector, oripUC, Kmr, mob sac, 

mNeonGreen-cg0838 (dipD) 
This study 

pk19mobsacB-FtsZ-

StrepTagII 

Integration vector, oripUC, Kmr, mob sac, 

ftsZ-StrepTagII 
This study 

pk19mobsacB-DivIVA-

mCherry 

Integration vector, oripUC, Kmr, mob sac, 

divIVA-mCherry 
(Donovan 2012) 

pk19mobsacB-ΔmurJ 
Integration vector, oripUC, Kmr, mob sac, 

deletion of murJ 
This study 

pk19mobsacB-MurJ-

mNeonGreen 

Integration vector, oripUC, Kmr, mob sac, 

murj-mNeonGreen 
This study 

pk19mobsacB-Cg0838-

mNeonGreen 

Integration vector, oripUC, Kmr, mob sac, 

cg0838 (dipD)-mNeonGreen 
This study 

pk19mobsacB-Cg0841-

mCherry 

Integration vector, oripUC, Kmr, mob sac, 

cg0841 (dipA)-mCherry 
This study 

pk19mobsacB-Cg0841-

mNeonGreen 

Integration vector, oripUC, Kmr, mob sac, 

cg0841 (dipA)-mNeonGreen 
This study 

pk19mobsacB-mCherry-

Cg0841 

Integration vector, oripUC, Kmr, mob sac, 

mCherry-cg0841 (dipA) 
This study 

pk19mobsacB-ΔlexA (in 

ΔdivS) 

Integration vector, oripUC, Kmr, mob sac, 

deletion of lexA in a ΔdivS genomic 

background 

This study 

pEKEx2 

E. coli-C. glutamicum shuttle expression 

vector, Ptac, lacIq, Kmr, pBL1 oriVC.g., pUC18 

oriVE.c. 

(Eikmanns et al. 1991) 

pEKEx2-mCherry pEKEx2, mCherry This study 
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pEKEx2-GFP pEKEx2, GFP This study 

pEKEx2-mNeonGreen pEKEx2, mNeonGreen This study 

pEKEx2-PS-CFP2 pEKEx2, PS-CFP2 This study 

pEKEx2-PSmOrange2 pEKEx2, PSmOrange2 This study 

pEKEx2-murJ-TAA peKEx2, murJ (TAA) This study 

pEKEx2-murJ-6xHisTag peKEx2, murJ-6xHisTag This study 

pEKEx2-RBS-MurJ-

mNeonGreen 
peKEx2, RBSmurJ, murJ, mNeonGreen This study 

pEKEx2-RBS-6xHisTag-

GFP-Thr-DivIVA 

peKEx2, RBSdivIVA, 6xHisTag-GFP-thrombin 

cleavage site-divIVA 
This study 

pEKEx2-RBS-DivIVA-Thr-

GFP-6xHisTag 

peKEx2, RBSdivIVA, divIVA-thrombin cleavage 

site-GPF-6xHisTag 
This study 

pEKEx2-RBS-DivIVA-

mNeonGreen 
peKEx2, RBSdivIVA, divIVA-mNeonGreen This study 

pEKEx2-RBS-DivIVA-

Dendra2 
peKEx2, RBSdivIVA, divIVA-Dendra2 This study 

pEKEx2-RBS-DivIVA-GFP peKEx2, RBSdivIVA, divIVA-GFP This study 

pEKEx2-RBS-DivIVA-PS-

CFP2 
peKEx2, RBSdivIVA, divIVA-PS-CFP2 This study 

pEKEx2-RBS-DivIVA-

PSmOrange2 
peKEx2, RBSdivIVA, divIVA-PSmOrange2 This study 

pEKEx2-Cg0847-Dendra2 peKEx2, cg0847 (lcpA)-dendra2 This study 

pEKEx2-Cg0842-Dendra2 peKEx2, cg0842-dendra2 This study 

pEKEx2-Cg0841-Dendra2 peKEx2, cg0841 (dipA)-dendra2 This study 

pEKEx3 

E. coli-C. glutamicum shuttle expression 

vector, Ptac, lacIq, Specr, pBL1 oriVC.g., pUC18 

oriVE.c. 

(Hoffelder et al. 2010) 

pEKEx3-mCherry pEKEx3, mCherry This study 

pEKEx3-RBS-FtsZ-linker-

mCherry 
pEKEx3, RBSftsZ, ftsZ-GGGGSGGGG-mCherry This study 

pCLTON1PamtR Modified pCLTON1 expression vector Gerd Seibold 

pCLTON1PamtR-Dendra2 pCLTON1PamtR, Dendra2 Gerd Seibold 

pCLTON1PamtR-sce(a) pCLTON1PamtR, sce(a) This study 

pCLTON1PamtR-FtsZ-

SW-PAmCherry 

pCLTON1PamtR, ftsZ-SW-PAmCherry 

(sandwich) 
This study 

pAC4-AviTag™  

Expression vector, AviTagTM-MCS, Ptrc 

promoter, rrnB T1 terminator, rrnB T2 

terminator, beta lactamase, lacIq, Ampr 

Avidity 

paC4-HisTag-

mNeonGreen-AviTagTM 
paC4 AviTagTM, 6xHisTag-mNeonGreen This study 

pAN4-AviTag™  

Expression vector, MCS-AviTagTM, Ptrc 

promoter, rrnB T1 terminator, rrnB T2 

terminator, beta lactamase, lacIq, Ampr 

Avidity 

pET-16b 
E. coli protein expression vector, pT7-lac, 

AmpR, N-10xHisTag, pBR322 
Novagen 
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pET-16b-HisTag-

mNeonGreen 
pET-16b, 10xHisTag-mNeonGreen This study 

pET-16b-HisTag-DivIVA pET-16b, 10xHisTag-divIVA This study 

pETDuet-1 Beta lactamase, pT7lac, lacI, AmpR Novagen 

pETDuet-1-ParB-eCFP pETDuet-1, parB-eCFP (Sieger et al. 2013) 

pETDuet-1-ParB-eCFP-

DivIVA-eYFP 
pETDuet-1, parB-eCFP divIVA-eYFP (Sieger et al. 2013) 

pETDuet-1-Cg0847-eCFP-

DivIVA-eYFP 
pETDuet-1, cg0847 (lcpA)-eCFP divIVA-eYFP This study 

pETDuet-1-Cg0847-eCFP pETDuet-1, cg0847 (lcpA)-eCFP This study 

Source plasmids 

Name Characteristics (source) Reference 

pNCS-mNeonGreen pUC ori, SV40 ori, bla (mNeonGreen) Allele Biotechnology 

pDendra2-N pUC ori, SV40 ori, PCMVIE, aph3 (dendra2) Evrogen 

pmCherry2 mCherry2 source plasmid 
Laboratory collection 

(Shen et al. 2017) 

pPAmCherry PAmCherry source plasmid 
Laboratory collection 

(Subach et al. 2009) 

pBAD-PSmOrange2 pBAD (PSmOrange2) (Subach et al. 2012) 

pUC57-Kan-PS-CFP2 pUC57, PSCFP2 Genewiz (Synthesized) 

pUC57-Kan-FtsZ-SW-

mNeon 
pUC57, ftsZ-SW-mNeonGreen (sandwich) Genewiz (Synthesized) 

pUC57-Kan-sce(a) pUC57, sce(a) Genewiz (Synthesized) 

 

9.4. Bacterial strains 

Bacterial strains and cell lines utilized in this study are listed in table 9.3. The table also contains 

bacterial strains used in the course of my doctoral studies that are not mentioned within this 

dissertation. 

Table 9.3: Cell lines and bacterial strain utilized in this study 

Dissertation strains and cell lines 

Name Characteristics Reference 

E. coli DH5α 
F- φ80lacZΔM15 (lacZYA-argF)U169 recA1 endA1 

hsdR17(rK- mK+) supE44 phoA thi-1 gyrA96 relA1 λ- 
Invitrogen 

E. coli NEB5α 
fhuA2 a(argF-lacZ)U169 phoA glnV44 a80a(lacZ)M15 

gyrA96 
NEB 

E. coli BL21 F-, ompT, hsdSB (rB-mB-), dcm, gal, λ(DE3), Cmr 
Thermo Fisher 

Scientific 

C. glutamicum RES 

167 

Restriction-deficient mutant, otherwise considered wild 

type  

(Tauch et al. 

2002) 

C. glutamicum RES 

167* 

Restriction-deficient mutant, otherwise considered wild 

type (Undergone mutations_- tandem amplification of 

tus-Locus)  

(Tauch et al. 

2002) 
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C27 RES167* derivative, divIVA::divIVA- StrepTag Lab. Collection 

CDC010 RES167* derivative, divIVA::divIVA-mCherry (Donovan 2012) 

B1G2 RES167* derivative, dipC::dipC-mCherry This study 

B1F10 CDC010, dipC::dipC-mNeonGreen This study 

B2H6 RES167 derivative, adhA:: adhA_ IsceI_rsSW This study 

B3B3 B2H6 derivative, dipC::dipC-PAmCherry This study 

B5E2 B3B3 derivative, ΔdivS This study 

CBK009 RES167 derivative, parB::parB-PAmCherry 
(Bohm et al. 

2020) 

CBK029 RES167 derivative, parB::parB-PAmCherry, parS2-10 mutated 
(Bohm et al. 

2020) 

CBK087 RES167 derivative, parB::parB-PAmCherry, parS1-10 mutated 
(Bohm et al. 

2020) 

M. gryph WT M. gryphiswaldense wild-type 
(Schultheiss and 

Schuler 2003) 

eMT018 M. gryph WT, conjugated with pMT102, KmR 
(Toro-Nahuelpan 

et al. 2019) 

MT022 M. gryph ΔmamY, conjugated with pMT102, KmR 
(Toro-Nahuelpan 

et al. 2019) 

Tbb ´Munich´ Trypanosoma brucei brucei AnTat 1.1 ’Munich’ 
(Bachmaier et al. 

2020) 

Tbb ´Paris´ Trypanosoma brucei brucei AnTat 1.1E 'Paris‘ 
(Bachmaier et al. 

2020) 

CARP-CARP 
Tbb ´Paris´ carp3a::carp3a-PAmCherry, carp3b::carp3b-

mNeonGreen 

(Bachmaier, S., et al., 

“Unpublished data”) 

CARP-AC1 
Tbb ´ Paris´ carp3::carp3-PAmCherry, AC1::AC1-

mNeonGreen 

(Bachmaier, S., et al., 

“Unpublished data”) 

CARP-FLAM8 
Tbb ´ Paris´ carp3::carp3-PAmCherry, FLAM8::FALM8-

mNeonGreen 

(Bachmaier, S., et al., 

“Unpublished data”) 

CARP-Calpain1.3 
Tbb ´ Paris´ carp3::carp3-PAmCherry, 

calpain1.3::calpain1.3-mNeonGreen 

(Bachmaier, S., et al., 

“Unpublished data”) 

Strains: allelic replacements 

Name Characteristics Reference 

B1C8 RES167* derivative, divIVA::divIVA-mNeonGreen This study 

B1E8 RES167* derivative, divIVA::divIVA-PAmCherry This study 

B4A4 B3B3 derivative, divIVA-divIVA-mNeonGreen This study 

B4B7 B2H6 derivative, divIVA-divIVA-mNeonGreen This study 

B1C10 RES167* derivative, parB::parB-mNeonGreen This study 

B1E10 RES167* derivative, dipC::dipC-mNeonGreen This study 

B1F2 B1E8 derivative, dipC::dipC-mNeonGreen This study 

B2E9 RES167 derivative, dipC::dipC-StrepTag This study 

B1G4 B1C8 derivative, dipC::dipC-mCherry This study 

B2I6 B2H6 derivative, dipC::dipC-mNeonGreen This study 

B1H5 RES167* derivative, ΔdipC This study 

B2I8 B2H6 derivative, ΔdipC This study 
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B2I3 B2H6 derivative, ΔdipCD This study 

B1H7 RES167 derivative, dipD::mCherry-dipD This study 

B4I4 B2H6 derivative, dipD::mNeonGreen-dipD This study 

B5B8 B2H6 derivative, dipD::PAmCherry-dipD This study 

B1G10 RES167* derivative, ftsZ::ftsZ-StrepTag This study 

B5C1 B2H6 derivative, ftsZ::ftsZ-StrepTag This study 

B5D5 B2H6 derivative, ΔdivS This study 

B5D7 B2I8 derivative, ΔdivS This study 

B5D9 B2I3 derivative, ΔdivS This study 

B5E2 B3B3 derivative, ΔdivS This study 

B5E4 B5B8 derivative, ΔdivS This study 

Strains: Plasmid based expression 

Name Characteristics Reference 

ggb1b1 RES167 derivative, pEKEx2-mNeonGreen This study 

ggb1b3 RES167 derivative, pEKEx2-RBS-divIVA-mNeonGreen This study 

ggb1b4 RES167 derivative, pEKEx2-RBS-divIVA-Thr-gfp-6His This study 

ggb1b6 RES167 derivative, pEKEx2-RBS-6His-gfp-Thr-divIVA This study 

ggb1c1 RES167 derivative, pEKEx2-RBS-murj-mNeonGreen This study 

ggb1c5 RES167 derivative, pEKEx2-GFP This study 

ggb1c7 RES167 derivative, pEKEx2-RBS-divIVA-gfp This study 

ggb1c9 RES167 derivative, pEKEx2-RBS-divIVA-dendra2 This study 

ggb1d5 RES167 derivative, pEKEx2-murj-6His This study 

ggb1d6 RES167 derivative, pEKEx2-murj-TAA This study 

B1J7 RES167 derivative, pEKEx2-RBS-divIVA-PSCFP2 This study 

B2A3 RES167 derivative, pEKEx2-RBS-divIVA-PSmOrange2 This study 

B1J9 RES167 derivative, pEKEx2-PSCFP2 This study 

B2A5 RES167 derivative, pEKEx2-PSmOrange2 This study 

B2A1 RES167* derivative, pEKEx2-mCherry This study 

B2A7 B1C8 derivate, pEKEx2-mCherry This study 

B2C9 RES167 derivative, pEKEx2-dipA-Dendra2 This study 

B2D1 RES167 derivative, pEKEx2-cg0842-Dendra2 This study 

B2D3 RES167 derivative, pEKEx2-lcpA-Dendra2 This study 

B3G5 B2H6 derivative, pEKEx3-mCherry This study 

B3G7 B2J4 derivative, pEKEx3-mCherry This study 

B2J4 B2H6 derivative, pCLTON1PamtR-sce(a) This study 

B2J10 B2H6 derivative, pCLTON1PamtR-dendra2 This study 

B3C4 B2I6 derivative, pCLTON1PamtR-sce(a) This study 

B3C6 B2I8 derivative, pCLTON1PamtR-sce(a) This study 

B3C8 B2I3 derivative, pCLTON1PamtR-sce(a) This study 

B3D5  B3B3 derivative, pCLTON1PamtR-sce(a) This study 

B4I6 B4I4 derivative, pCLTON1PamtR-sce(a) This study 

B5C3 B5B8 derivative, pCLTON1PamtR-sce(a) This study 

B5C5 B5C1 derivative, pCLTON1PamtR-sce(a) This study 
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9.5. Construction of bacterial plasmids and strains 

Oligonucleotides, plasmids and strains mentioned below are listed in table 9.1, 9.2 and 9.3 

Chemically competent E. coli NEB5α or DH5α were used for plasmids cloning (Green and Rogers 2013). 

9.5.1. Allelic replacement (pk19mobsacB based constructs) 

Derivatives of pk19mobsacB were used for clean allelic replacements in C. glutamicum (insertions, 

deletions). Up- and downstream homologous flanking sequences used for recombination span for 

~500 bp each. 

Plasmid pk19mobsacB-IsceI-recognition-site was constructed for the insertion of the I-SceI 

meganuclease recognition site within the adhA gene. Homologous regions were amplified from C. 

glutamicum RES167 genomic DNA using the primers pairs HindIII-5´AdhA-F/SalI-IsceIrec-5´AdhA-R and 

SalI-3´AdhA-F/XbaI-3´AdhA-R. The IsceI meganuclease recognition site sequence was included within 

the SalI-IsceIrec-5´AdhA-R primer. The amplified fragments were digested with HindIII/SalI and 

SalI/XbaI restriction enzymes and subsequently ligated in the pk19mobsacB plasmid. 

C- terminal fluorescent of the DivIVA protein were obtained via the pk19mobsacB-DivIVA-

PAmCherry plasmid. Fluorophore sequence was amplified using the corresponding source plasmid as 

template and the primers SalI-PAmCherry-F/XbaI-STOP-PAmCherry-R. The PCR product and 

pk19mobsacB-DivIVA-mNeonGreen were digested with the SalI/XbaI restriction. Finally, the digested 

vector and PAmCherry were ligated. 

C-terminal fluorescent and non-fluorescent fusions of the DipC protein were obtained via the 

pk19mobsacB-Cg0839-PAmCherry, pk19mobsacB-Cg0839-mNeonGreen, pk19mobsacB-Cg0839-

mCherry and pk19mobsacB-Cg0839-Strep plasmids. Homologous regions were amplified from C. 

glutamicum RES167 genomic DNA using the primers pairs HindIII-3´Cg0839-F/SalI-3´Cg0839-R and 

XbaI-Cg0839-Do-F/XmaI-Cg0839-Do-R for the flurescent fusions and HindIII-3´Cg0839-F/SalI-TAA-

StrepTag-3´Cg0839-R for the non-fluorescent fusion. Fluorophores sequences were amplified using the 

corresponding source plasmids as templates and the primers pairs SalI-PAmCherry-F/XbaI-STOP-

PAmCherry-R (used for both PAmcherry and mCherry) and SalI-mNeon-F/XbaI-STOP-mNeon-R. The 

non-fluorescent tag sequence (StrepTagII) was included within the SalI-TAA-StrepTag-3´Cg0839-R 

primer. The 3´Cg0839 fragment was digested with HindIII/SalI restriction enzymes while the 

downstream homologous region was digested with XbaI/XmaI restriction enzymes prior ligation to 

pk19mobsacB. Finally, fluorophores PCR products were digested with SalI/XbaI and ligated to the 

construct. 

N-terminal fluorescent fusions of the DipD protein were obtained via the pk19mobsacB-mCherry-

Cg0838, pk19mobsacB-PAmCherry-Cg0838 and pk19mobsacB-mNeonGreen-Cg0838 plasmids. 
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Homologous regions were amplified from C. glutamicum RES167 genomic DNA using the primers pairs 

HindIII-Cg0838-Up-F/SalI-Cg0838-Up-R and XbaI-5´Cg0838-F/BamHI-5´Cg0838-R. Fluorophores 

sequences were amplified using the corresponding source plasmids as templates and the primers pairs 

SalI-PAmCherry-F/XbaI-mCherry-R (used for both PAmcherry and mCherry) and SalI-mNeon-F/XbaI-

mNeon-R. The upstream homologous region was digested with HindIII/SalI restriction enzymes while 

the 5´Cg0838 fragment was digested with XbaI/BamHI restriction enzymes prior ligation to 

pk19mobsacB. Finally, fluorophores PCR products were digested with SalI/XbaI and ligated to the 

construct. 

C-terminal fluorescent fusion of the DipD protein was obtained via the pk19mobsacB-Cg0838-

mNeonGreen plasmid. Homologous regions were amplified from C. glutamicum RES167 genomic DNA 

using the primers pairs PstI-3´Cg0838-F/SalI-3´Cg0838-R and XbaI-Cg0838-Do-F/BamHI-Cg0838-Do-R. 

mNeongGreen sequence was amplified using the corresponding source plasmids as template and the 

primers pairs SalI-mNeon-F/XbaI-STOP-mNeon-R. The 3´Cg0838 fragment was digested with PstI/SalI 

restriction enzymes while the downstream homologous region was digested with XbaI/BamHI 

restriction enzymes prior ligation to pk19mobsacB. Finally, mNeonGreen PCR product was digested 

with SalI/XbaI and ligated to the construct. 

N-terminal fluorescent fusion of the DipA protein was obtained via the pk19mobsacB-mCherry-

Cg0841 plasmid. Homologous regions were amplified from C. glutamicum RES167 genomic DNA using 

the primers pairs HindIII-Cg0841-Up-F/SalI-Cg0841-Up-R and XbaI-5´Cg0841-F/BamHI-5´Cg0841-R. 

mCherry sequence was amplified using the corresponding source plasmid as template and the primers 

pairs SalI-PAmCherry-F/XbaI-mCherry-R. The upstream homologous region was digested with 

HindIII/SalI restriction enzymes while the 5´Cg0841 fragment was digested with XbaI/BamHI restriction 

enzymes prior ligation to pk19mobsacB. Finally, mCherry PCR products was digested with SalI/XbaI and 

ligated to the construct. 

C- terminal fluorescent fusions of the DipA protein were obtained via the pk19mobsacB-Cg0841-

mCherry and pk19mobsacB-Cg0841-mNeonGreen plasmids. Homologous regions were amplified from 

C. glutamicum RES167 genomic DNA using the primers pairs HindIII-3´Cg0841-F/SalI-3´Cg0841-R and 

XbaI-Cg0841-Do-F/XmaI-Cg0841-Do-R. Fluorophore sequences were amplified using the 

corresponding source plasmids as templates and the primers pairs SalI-PAmCherry-F/XbaI-STOP-

PAmCherry-R (used for mCherry) and SalI-mNeon-F/XbaI-STOP-mNeon-R. The 3´Cg0841 fragment was 

digested with HindIII/SalI restriction enzymes while the downstream homologous region was digested 

with XbaI/XmaI restriction enzymes prior ligation to pk19mobsacB. Finally, the fluorophores PCR 

products were digested with SalI/XbaI and ligated to the construct. 
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C-terminal fluorescent fusion of the MurJ protein was obtained via the pk19mobsacB-MurJ-

mNeonGreen plasmid. Homologous regions were amplified from C. glutamicum RES167 genomic DNA 

using the primers pairs PstI-3´MurJ-F/SalI-3´MurK-R and XbaI-MurJ-Do-F/EcoRI-MurJ-Do-R. 

mNeonGreen sequence was amplified using the corresponding source plasmids as template and the 

primers SalI-mNeon-F/XbaI-STOP-mNeon-R. The 3´MurJ fragment was digested with PstI/SalI 

restriction enzymes while the downstream homologous region was digested with XbaI/EcoRI 

restriction enzymes prior ligation to pk19mobsacB. Finally, mNeonGreen PCR product was digested 

with SalI/XbaI and ligated to the construct. 

StrepTagII C-terminal fusion of the FtsZ protein were obtained via the pk19mobsacB-FtsZ-

StrepTagII plasmids. Homologous regions were amplified from C. glutamicum RES167 genomic DNA 

using the primers pairs HindIII-3´FtsZ-F/SalI-StrepTag-3´FtsZ-R and SalI-FtsZ-Do-F/EcoRI-FtsZ-Do-R. The 

StrepTagII sequence was included within the SalI-StrepTag-3´FtsZ-R primer. The 3´FtsZ fragment was 

digested with HindIII/SalI restriction enzymes while the downstream homologous region was digested 

with SalI/EcoRI restriction enzymes prior ligation to pk19mobsacB. 

Deletion of the cg0839 gene was obtained via the pk19mobsacB-Δcg0839 plasmid. Homologous 

regions were amplified from C. glutamicum RES167 genomic DNA using the primers pairs HindIII-

Cg0839-Up-F/OH2-Cg0839-Up-R and OH1-Cg0839-Do-F/SalI-Cg0839-Do-R. The upstream and 

downstream PCR products were then combined via overlap PCR using the primers pairs HindIII-

Cg0839-Up-F/SalI-Cg0839-Do-R.  The resulting PCR product was digested with HindIII/SalI restriction 

enzymes prior ligation to pk19mobsacB. 

Deletion of the cg0838-cg0839 genomic region was obtained via the pk19mobsacB-Δcg0838/39 

plasmid. Homologous regions were amplified from C. glutamicum RES167 genomic DNA using the 

primers pairs XbaI-Cg0839-Up-F/OH2-Cg0839-Up-R and OH1-Cg0838-Do-F/EcoRI-Cg0838-Do-R. The 

upstream and downstream PCR products were then combined via overlap PCR using the primers pairs 

XbaI-Cg0839-Up-F/EcoRI-Cg0838-Do-R.  The resulting PCR product was digested with XbaI/EcoRI 

restriction enzymes prior ligation to pk19mobsacB. 

Deletion of the murJ gene was obtained via the pk19mobsacB-ΔmurJ plasmid. Homologous regions 

were amplified from C. glutamicum RES167 genomic DNA using the primers pairs XbaI-MurJ-Up-

F/OH2-MurJ-Up-R and OH1-MurJ-Do-F/EcoRI-MurJ-Do-R. The upstream and downstream PCR 

products were then combined via overlap PCR using the primers pairs XbaI-MurJ-Up-F/EcoRI-MurJ-Do-

R.  The resulting PCR product was digested with XbaI/EcoRI restriction enzymes prior ligation to 

pk19mobsacB. 
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Deletion of the divS gene was obtained via the pk19mobsacB-ΔdivS plasmid. Homologous regions 

were amplified from the C. glutamicum RES167 genomic DNA using the primers pairs HindIII-DivS-Do-

F/SalI-DivS-Do-R and SalI-DivS-Up-F/EcoRI-DivS-Up-R. The downstream homologous region was 

digested with HindIII/SalI restriction enzymes while the upstream homologous region was digested 

with SalI/EcoRI restriction enzymes prior ligation to pk19mobsacB. 

Deletion of the lexA gene in a C. glutamicum ΔdivS genomic background was obtained via the 

pk19mobsacB-ΔlexA plamid. Homologous regions were amplified from the C. glutamicum RES167 

derivative adhA::adhA_ IsceI_rsSW ΔdivS (B5D5) genomic DNA using the primers pairs HindIII-LexA-

Up-F/SphI-LexA-Up-R and SphI-LexA-Do-F/EcoRI-LexA-Do-R. The upstream homologous region was 

digested with HindIII/SphI restriction enzymes while the downstream homologous region was digested 

with SphI/EcoRI restriction enzymes prior ligation to pk19mobsacB. 

9.5.2. Plasmid based expression (pEKEx2/3, pCLTON1PamtR, pET-16b, paC4….) 

Derivatives of E. coli/C. glutamicum pEKEx2 and pEKEX3 shuttle vectors were used for the 

controlled expression of fluorophores, untagged and tagged proteins in C. glutamicum.  

Expression of free mCherry was obtained via the pEKEx2-mCherry and the pEKEx3-mCherry 

plasmids. mCherry sequence was amplified using the corresponding source plasmid as template and 

the primers SalI-PAmCherry-F/EcoRI-STOP-PAmCherry-R (for the pEKEx2 construct) and SalI-

PAmCherry-F/EcoRI-STOP-3'mCherry-R (for the pEKEx3 construct). The amplified PCR products were 

digested with SalI/EcoRI restriction enzymes and ligated to pEKEx2 and pEKEx3 respectively. 

Expression of free GFP was obtained via the pEKEx2-GFP plasmid. gfp sequence was amplified 

using the corresponding source plasmid as template and the primers BamHI-5´GFP-F/EcoRI-STOP-

3´GFP-R. The amplified PCR product was digested with BamHI/EcoRI restriction enzymes and ligated 

to pEKEx2. 

Expression of free mNeonGreen was obtained via the pEKEx2-mNeonGreen plasmid. mNeonGreen 

sequence was amplified using the corresponding source plasmid as template and the primers BamHI-

mNeon-F/EcoRI-STOP-mNeon-R. The amplified PCR product was digested with BamHI/EcoRI 

restriction enzymes and ligated to pEKEx2. 

Expression of free PSmOrange2 was obtained via the pEKEX2-PSmOrange2 plasmid. PSmOrange2 

sequence was amplified using the corresponding source plasmid as template and the primers BamHI-

PSmOrg.2-F/EcoRI-STOP-PSmOrg.2-R. The amplified PCR product was digested with BamHI/EcoRI 

restriction enzymes and ligated to pEKEx2. 
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Expression of free PS-CFP2 was obtained via the pEKEx2-PS-CFP2 plasmid. PS-CFP2 sequence was 

extracted from pUC57-Kan-PS-CFP2 via restriction digestion (BamHI/EcoRI) and ligated to pEKEx2. 

Expression of C-terminal fusions of the DivIVA protein were obtained via the pEKEx2-RBS-DivIVA-

PS-CFP2, pEKEx2-RBS-DivIVA-PSmOrange2, pEKEx-RBS-DivIVA-mNeonGreen, pEKEx-RBS-DivIVA-

Dendra2 and pEKEx2-RBS-DivIVA-GFP plasmids. RBSDivIVA-divIVA was amplified from C. glutamicum 

RES167 genomic DNA using the primers pair SalI-RBS-5´DivIVA-F/BamHI-3´DivIVA-R, digested with 

SalI/BamHI restriction enzymes and ligated to pEKEx2. Dendra2 was amplified from the corresponding 

source plasmid via the primers pair BamHI-Dendra2-F/SacI-STOP-Dendra2-R. PS-CFP2 sequence was 

extracted from pUC57-Kan-PS-CFP2 via restriction digestion (BamHI/EcoRI). PSmOrange2 and 

mNeonGreen were amplified from the corresponding source plasmids via the same primers pairs used 

for the respective free fluorophore expression. Dendra2 PCR product was digested with BamHI/SacI 

restriction enzymes while the remaining fluorophores sequences were digested with BamHI/EcoRI 

restriction enzymes. All digested fragments were ligated to pEKEx2-RBS-DivIVA. 

Expression of His-GFP-THR-DivIVA was obtained via the pEKEx2-RBS-6xHisTag-GFP-Thr-DivIVA 

plasmid. RBSDivIVA-6xHisTag-gfp was amplified from the corresponding source plasmid using the 

primers pair SalI-RBS-His-5´GFP-F/BamHI-3´GFP-R. The RBSDivIVA-6xHisTag sequence was included 

within the SalI-RBS-His-5´GFP-F primer. The fluorophore PCR product was digested with SalI/BamHI 

restriction enzymes and ligated to pEKEx2. THR-divIVA was amplified from C. glutamicum RES167 

genomic DNA using primers pair BamHI-THR-5´DivIVA-F/SacI-STOP-3´DivIVA-R. The thrombin cleavage 

site (THR) was included within the BamHI-THR-5´DivIVA-F primer. The amplified PCR product was 

digested with BamHI/SacI restriction enzymes and ligated to the construct. 

Expression of DivIVA-THR-GFP-His was obtained via the pEKEx2-RBS-DivIVA-Thr-GFP-6xHisTag 

plasmid. RBSDivIVA-divIVA was amplified from C. glutamicum RES167 genomic DNA using the primers 

pair SalI-RBS-5´DivIVA-F/BamHI-THR-3´DivIVA-R. The RBSDivIVA sequence was included within the SalI-

RBS-5´DivIVA-F primer while the thrombin cleavage site (THR) was included within the BamHI-THR-

3´DivIVA-R primer. The amplified PCR product was digested with SalI/BamHI restriction enzymes and 

ligated to pEKEx2. The 6xHisTag-gfp sequence was amplified from the corresponding source plasmid 

using the primers pair BamHI-5´GFP-F/SacI-STOP-His-3´GFP-R. The 6xHisTag was included within the 

SacI-STOP-His-3´GFP-R primer. The amplified fluorophore sequence was digested with BamHI/SacI 

restriction enzymes and ligated to the construct. 

Expression of MurJ-6xHisTag was obtained via the pEKEx2-murJ-6xHisTag plasmid. murJ-6xHisTag 

was amplified from C. glutamicum RES167 genomic DNA using the primers pair PtsI-5´MurJ-F/BamHI-

STOP-6His-3´MurJ-R. The 6xHisTag sequence was included within the BamHI-STOP-6His-3´MurJ-R 
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primer. The amplified PCR product was digested with PtsI/BamHI restriction enzymes and ligated to 

pEKEx2. 

Expression of MurJ was obtained via the pEKEx2-murJ-TAA plasmid. murJ was amplified from C. 

glutamicum RES167 genomic DNA using the primers pair SalI-5´MurJ-F/BamHI-STOP-3´MurJ-R. The 

amplified PCR product was digested with SalI/BamHI restriction enzymes and ligated to pEKEx2. 

Expression of MurJ-mNeonGreen was obtained via the pEKEx2-RBS-MurJ-mNeonGreen plasmid. 

RBSMurJ-murJ was amplified from C. glutamicum RES167 genomic DNA using the primers pair PstI-RBS-

5´MurJ-F/SalI-3´MurJ-R. RBSMurJ sequence was included within the PstI-RBS-5´MurJ-F primer. The 

amplified PCR product was digested with the PstI/SalI restriction enzymes and ligated to pEKEx2. 

mNeonGreen was amplified from the corresponding source plasmid using the primers pair SalI-mNeon-

F/EcoRI-STOP-mNeon-R. The amplified PCR product was digested with the SalI/EcoRI restriction 

enzymes and ligated to the construct. 

Expression of LcpA-Dendra2 was obtained via the pEKEx2-Cg0847-Dendra2 plasmid. cg0847 was 

amplified from C. glutamicum RES167 genomic DNA using the primers pair SalI-Cg0847-F/BamHI-

Cg0847-R. The amplified PCR product was digested with the SalI/BamHI restriction enzymes and 

ligated to pEKEx2. Dendra2 was amplified from the corresponding source plasmid using the primers 

pair BamHI-Dendra2-F/EcoRI-STOP-Dendra2-R. The amplified PCR product was digested with the 

BamHI/EcoRI restriction enzymes and ligated to the construct. 

Expression of Cg0842-Dendra2 was obtained via the pEKEx2-Cg0842-Dendra2 plasmid. cg0842 was 

amplified from C. glutamicum RES167 genomic DNA using the primers pair SalI-Cg0842-F/BamHI-

Cg0842-R. The amplified PCR product was digested with the SalI/BamHI restriction enzymes and 

ligated to pEKEx2. Dendra2 was amplified from the corresponding source plasmid using the primers 

pair BamHI-Dendra2-F/EcoRI-STOP-Dendra2-R. The amplified PCR product was digested with the 

BamHI/EcoRI restriction enzymes and ligated to the construct. 

Expression of DipA-Dendra2 was obtained via the pEKEx2-Cg0841-Dendra2 plasmid. dipA was 

amplified from C. glutamicum RES167 genomic DNA using the primers pair SalI-Cg0841-F/BamHI-

Cg0841-R. The amplified PCR product was digested with the SalI/BamHI restriction enzymes and 

ligated to pEKEx2. Dendra2 was amplified from the corresponding source plasmid using the primers 

pair BamHI-Dendra2-F/EcoRI-STOP-Dendra2-R. The amplified PCR product was digested with the 

BamHI/EcoRI restriction enzymes and ligated to the construct. 

Expression of FtsZ-linker-mCherry was obtained via the pEKEx3-RBS-FtsZ-linker-mCherry plasmid. 

RBSftsZ-ftsZ was amplified from C. glutamicum RES167 genomic DNA using the primers pair SalI-RBS-

5´FtsZ-F/SacI-3´FtsZ-R. RBSftsZ sequence was included within the SalI-RBS-5´FtsZ-F primer. The 
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amplified PCR product was digested with the SalI/SacI restriction enzymes and ligated to the pEKEx3. 

linker-mCherry was amplified from the corresponding source plasmid using the primers pair SacI-

linker-mCherry-F/EcoRI-STOP-3´mCherry-R. The linker sequence was included within the SacI-linker-

mCherry-F primer. The amplified PCR product was digested with the SacI/EcoRI restriction enzymes 

and ligated to the construct. 

Expression of I-SceI was obtained via the pCLTON1PamtR-sce(a) plasmid. sce(a) sequence was 

extracted from pUC57-Kan-sce(a) via restriction digestion (KpnI/SacI) and ligated to pCLTON1PamtR. 

Expression of FtsZ-SW-PAmCherry was obtained via the pCLTON1PamtR-FtsZ-SW-PAmCherry 

plasmid. ftsZ-SW-mNeonGreen sequence was extracted from pUC57-Kan-FtsZ-SW-mNeon via 

restriction digestion and ligated to pCLTON1PamtR (KpnI/SacI) and ligated to pCLTON1PamtR. For the 

substitution of the mNeonGreen sequence, PAmCherry sequence was amplified with the primers pairs 

SacII-linker-5´PAmCherry-F/NheI-linker-3´PAmCherry-R. Both pCLTION1PamtR-FtsZ-SW-mNeonGreen 

and the PCR product were digested with the SacII/NheI restriction enzymes and ligated. 

Expression of HisTag-mNeonGreen was obtained via the pET-16b-HisTag-mNeonGreen plasmid. 

mNeonGreen was amplified from the corresponding source plasmid using the primers pair NdeI-

5´mNeon-F/BamHI-STOP-3´mNeon-R. 10xHisTag sequence was included within the pET-16b vector. 

The amplified PCR product was digested with NdeI/BamHI restriction enzymes and ligated to pET-16b. 

Expression of HisTag-mNeonGreen-AviTagTM was obtained via the paC4-HisTag-mNeonGreen-

AviTagTM. HisTag-mNeonGreen sequence was amplified from pET-16b-HisTag-mNeonGreen using the 

primers pair XhoI-6His-F/HindIII-GA-3´Neon-R. AviTagTM sequence was included within the paC4 

vector. The amplified PCR product was digested with XhoI/HindIII restriction enzymes and ligated to 

paC4. 

Expression of HisTag-DivIVA was obtained via the pET-16b-HisTag-DivIVA plasmid. divIVA was 

amplified from C. glutamicum RES167 genomic DNA using the primers pair NdeI-5´DivIVA-F/BamHI-

STOP-3´DivIVA-R. 10xHisTag sequence was included within the pET-16b vector. The amplified PCR 

product was digested with NdeI/BamHI restriction enzymes and ligated to pET-16b. 

Expression of LcpA-eCFP was obtained via the pETDuet-1-Cg0847-eCFP. lcpA was amplified from 

C. glutamicum RES167 genomic DNA using the primers pair BamHI-T-5´Cg0847/SalI-3´Cg0847. The 

amplified PCR product was digested with BamHI/SalI restriction enzymes. pETDuet-1-RodA-eCFP was 

also digested with BamHI/SalI in order to remove rodA sequence. Finally, digested vector and PCR 

product were ligated. 
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Expression of LcpA-eCFP was obtained via the pETDuet-1-Cg0847-eCFP-DivIVA-eYFP. lcpA was 

amplified from C. glutamicum RES167 genomic DNA using the primers pair BamHI-T-5´Cg0847/SalI-

3´Cg0847. The amplified PCR product was digested with BamHI/SalI restriction enzymes. pETDuet-1-

Cg0847-eCFP-DivIVA-eYFP was also digested with BamHI/SalI in order to remove rodA sequence. 

Finally, digested vector and PCR product were ligated. 

9.5.3. Strains construction 

pk19mobsacB based constructs were transformed into C. glutamicum competent cells via 

electroporation (Schäfer et al. 1994). The first crossover event necessary for allelic replacement via the 

pk19mobsacB plasmid was selected for via growth in presence of kanamycin. The second crossover 

event was selected for via growth in presence of 10% sucrose.  

Insertion of the I-SceI meganuclease recognition site within the adhA gene was confirmed via 

colony PCR with the primers pair Isce_ins_Fw_seq/Isce_ins_Rv_seq followed by digestion of the PCR 

product via SalI. Deletions of dipC, dipC-D and divS were screened via colony PCR with the respective 

primers pairs cg0839up_F_seq/cg0839do_R_seq, cg0839up_F/cg0838do_R_seq and divSup_F_seq/ 

divSdo_R_seq. C-terminal fluorescent fusions of dipC were screened via colony PCR with a combination 

of cg0839do_R_seq and the respective 5´ forward fluorophore primer (SalI-PAmCherry-F and SalI-

mNeon-F). C-terminal fluorescent fusion of divIVA was screened via colony PCR with the primers pair 

SalI-RBS-5´DivIVA-F/XbaI-STOP-PAmCherry-R. N-terminal fluorescent fusions of dipD were screened 

via colony PCR with a combination of cg0838do_R_seq and the respective 5´ forward fluorophore 

primer (SalI-PAmCherry-F and SalI-mNeon-F). C- terminal fusion of StrepTagII to ftsZ and dipC were 

screened via colony PCR with a combination of StrepTag_seq_F and the respective downstream 

reverse primer (FtsZdo_R_seq and cg0839do_R_seq). 

pEKEx2, pEKEx3 and pCLTON1PamtR based constructs were transformed into C. glutamicum 

competent cells via electroporation (Schäfer et al. 1994). Once transformed, the plasmids were 

maintained by growing the strains in presence of the respective antibiotic (kanamycin for pEKEx2 and 

pCLTON1PamtR, chloramphenicol for pEKEx3). 

pETDuet-1, pET-16b and pAC4 based constructs were transformed into chemically competent E. 

coli BL21 cells (Green and Rogers 2013). Once transformed, the plasmids were marinated by growing 

the strains in presence of the respective antibiotic (Carbenicillin for pETDuet-1, pET-16b and pAC4). 

9.6. Culture conditions 

E. coli NEB5α, DH5α and BL21 cells were grown at 37 °C in Lysogeny Broth (LB-Miller) medium at 

200 rpm supplemented, when needed, with antibiotic (50 µg/mL kanamycin or 100 µg/mL 

carbenicillin). Protein expression based on pETDuet-1 and pET-16b vectors was induced using variable 
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concentrations (0.1 to 1 mM) of isopropyl β-D-1-thiogalactopyranoside (IPTG) at an OD600 between one 

and two. 

C. glutamicum cells were grown at 30°C and 200 rpm in Brain Hearth Infusion complex medium 

(BHI, OxoidTM) (chapter 3) or minimal salt medium CGXII (Keilhauer et al. 1993) supplemented with 

120 𝑚𝑀 acetate (chapter 5) (Bohm et al. 2020). Cells were always preinoculated in BHI overnight. Cells 

grown in minimal medium were additionally re-diluted in CGXII supplemented with acetate and grown 

overnight following the preinoculation step. Cell cultures were adjusted to an OD600 of 0.5 for BHI 

based experiments and to an OD600 of 1 for growth in minimal medium. DNA damage was induced 

either by supplementing the medium with mitomycin C (final concentration: 200 𝑛𝑔/𝑚𝐿) or inducing 

the expression of the I-SceI meganuclease by supplementing the medium with anhydrotetracycline 

(125 𝑛𝑔/𝑚𝐿) in cultures at an OD600 of one. 

M. gryphiswaldense cells were grown at 30°C and 120 rpm under microoxic conditions in 2% 

oxygen aerated modified flask standard medium (FSM) (Chapter 4) (Heyen and Schuler 2003) 

containing 50 µ𝑀 ferric citrate. Medium was supplemented with anhydrotetracycline (final 

concentration: 50 𝑛𝑔/𝑚𝐿) for Dendra2-MamY induction. Growth of the strains was performed by Dr. 

Dr. Toro-Nahueln. 

Pleomorphic Trypanosoma brucei brucei AnTat 1.1 ’Munich’ bloodstream forms (Bachmaier et al. 

2020) were grown at 37°C and 5% CO2 in modified HMI-9 medium (Vassella et al. 1997) supplemented 

with 10% (v/v) heat-inactivated fetal bovine serum (FBS) and 1.1% methylcellulose. Differentiation to 

the procyclic stage was initiated by density-dependent transformation of long slender bloodstream 

forms to growth-arrested short stumpy bloodstream forms (culture with starting density of 

5 ×  105 𝑐𝑒𝑙𝑙𝑠/𝑚𝐿 was grown for 36 hours without dilution). Short stumpy forms were transferred 

into modified DTM medium (Vassella and Boshart 1996) complemented with 15% (v/v) heat-

inactivated FBS at 2 × 106 𝑐𝑒𝑙𝑙𝑠/𝑚𝐿, followed by addition of 6 𝑚𝑀 cis-aconitate and cultivation at 

27°C. Procyclic forms of AnTat 1.1 ’Munich’ were grown at 27°C in SDM-79 medium (Brun and 

Schonenberger 1979) supplemented with 10% (v/v) heat-inactivated FBS and 20 𝑚𝑀 glycerol. Growth 

of the cell lines was performed by Dr. Bachmaier. 

9.7. Sample fixation 

C. glutamicum cells were fixed in 3% formaldehyde solution (36.5–38% in H2O + 10–15% methanol, 

Sigma Aldrich) for 30 minutes at 30°C and 200 rpm. Cells were sedimented at 3200 x g for 3 minutes 

and resuspended in PBS supplemented with glycine (final concentration 10 𝑚𝑀) in order to quench 

the excess formaldehyde. Following the resuspension, the samples were incubated in the quenching 
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solution for 5 minutes. The washing was repeated three times. Finally, cells were diluted in buffer 

containing 50 mM Tris pH 7.4, 50 mM NaCl, 10 mM EDTA, and 0.5 M sucrose (TSEMS). 

M. gryphiswaldense cells were fixed in 1% formaldehyde solution (36.5–38% in H2O + 10–15% 

methanol, Sigma Aldrich) for 30 min at room temperature. Next, cells were spun down at 3000 x g for 

10 min and the cell pellet was gently resuspended in 10 mL of HEPES buffer (10 mM, pH 7) and 10 mM 

glycine, incubated for 10 min and spun at 3000 x g for 10 min. Then, the cell pellet was washed with 

10 mL of HEPES (10 mM, pH 7) and again spun at 3000 x g for 10 min. Finally, cells were resuspended 

in 300 μL of HEPES (10 mM, pH 7). 

1.6 × 107 trypanosomes were fixed in 2% (w/v) paraformaldehyde (PFA) solution in water for 20 

min at room temperature, washed 2-4 times with glycine supplemented PBS (1400 x g, 10 min, final 

concentration: 10 mM glycine) and finally resuspended in 50 μL PBS. 

9.8. Sample preparation 

Each well from an 8 well glass bottom μ-slide (Ibidi, Martinsried, Germany) was incubated with 200 

μL of 0.1 % (w/v) poly-L-lysine in water for at least one hour at RT. Following the incubation, poly-L-

Lysine solution was removed and each well was washed three times with 200 μL sterile filtered TMSEM 

or PBS. 5 μL fixed cells were mixed with 1.5 μL (1:5000) 100 nm diameter fluorescent TetraSpeck 

Microbeads (Thermo Fisher Scientific) and 200 μL buffer (TMSEM for C. glutamicum cells and PBS for 

trypanosomes cells) and loaded into an 8 well glass bottom μ-slide. Finally, the 8 well glass bottom μ-

slides containing the fixed samples were centrifuged (3200 x g for C. glutamicum cells and 1400 x g for 

trypanosomes) for 10 min at 15°C in order to sediment the cells. 

Agarose pads were prepared by using 65 μL gene frames (Thermo ScientificTM) and 1.5 % low 

melting agarose solution (Biozym). 5 μL fixed cells (M. gryphiswaldense) were mixed with 1.5 μL 

(1:5000) 100 nm diameter fluorescent TetraSpeck Microbeads (Thermo Fisher Scientific). 2 μL of the 

mix was loaded on the agarose pad and covered with 18 x 18 mm2 high-precision coverslips of 170 ±

0.005 μm thickness (Zeiss). Glass slides and coverslips were plasma-cleaned for 5 min and kept sealed 

until use. 

9.9. Microscopy 

9.9.1. Fluorescence microscopy 

Images were acquired on an Axio-Imager M1 fluorescence microscope (Carl Zeiss) with an EC Plan 

Neofluar 100x/1.3 oil Ph3 objective and a Hamamatsu Orca-R2 camera. mCherry and PAmCherry 

tagged proteins were detected using the filter set 43 HECy 3 shift free (EX BP 550/25, BS FT 570, EM 

BP 605/70). mNeonGreen tagged proteins were detected using a BP 495-550 / LP 750 emission filter 

set. 
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9.9.2. PALM 

PALM experiments were performed with an ELYRA P.1 (Zeiss) microscopy system. The microscope 

was equipped with a 405 nm Diode-Laser (50 mW), a 488 nm laser (200 mW), a 561 nm laser (200 mW) 

and a 640 nm laser (150 mW). The emission filter sets were the following: a 77 HE GFP+mRFP+Alexa 

633 shift free (EX TBP 483+564+642, BS TFT 506+582+659, EM TBP 526+601+688), a 49 DAPI shift free 

(EX G 365, BS FT 395, EM BP 445/50), a BP 420-480 / LP 750, a BP 495-550 / LP 750, a LP 570 and a LP 

655 filter set. All the imaging was performed with an alpha Plan-Apochromat 100x/1,46 Oil DIC M27 

objective (Zeiss), in combination with a 1.6x Optovar. Images were recorded with an Andor EM-CCD 

camera iXon DU 897. 

Imaging lasers were set in integration mode (active only while the camera is collecting photons) 

while the activation laser was left on for the all duration of the imaging. 

 PAmCherry and Dendra2 fusions were recorded at 50 ms exposure time and 200 EMCCD gain with 

a LP 570 emission filter set. The imaging laser (561 nm laser) was kept at constant power (20%) while 

the activation laser (405 nm laser) was linearly increased over the course of the experiment (increase 

rate dependent on the fusion). Experiment length (Number of frames) and maximum activation power 

were determined in order to activate and image all fluorophores by the end of experiment. 

mNeonGreen fusions were recorded at 50 ms exposure time and 200 EMCCD gain with a BP 495-

550 / LP 750 filter set. The imaging laser (488 nm laser) was kept at constant power (20%) while no 

activation laser was used. Samples were imaged until complete bleaching was achieved. 

Zeiss ZEN 2.1 SP3 Black software was used for the determination of localizations coordinates. In 

details, a 2D x/y Gaussian fit was applied with a mask size of 9 pixels (1 pixel: 100 x 100 nm) and a 

signal to noise ratio of 6. 100 nm TetraSpeck microspheres were used as fiducials for lateral drift 

correction via the Zeiss ZEN 2.1 SP3 Black software. Parameters based data filtering and grouping were 

performed in a fluorophore specific manner as described in chapter 2. 

The input localizations table for the script described within this study has been extracted via the 

Zeiss ZEN 2.1 SP3 Black software. It follows that, usage of the script via a different microscope requires 

adaptation of the table format. Input examples can be found on the associated GitHub page 

(https://github.com/GiacomoGiacomelli) (Giacomelli 2020). 

9.10. Software 

PALM imaging, PSF fitting, lateral shift correction, and spatio-temporal grouping were performed 

via the ZEN 2.1 SP3 (black) (64bit) software (Version 14.0.4.201).  

https://github.com/GiacomoGiacomelli
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Bright field based definition of all regions of interest (ROIs) and data extraction for conventional-

like image analysis was performed via Fiji (Schindelin et al. 2012). Conversion of PALM localizations 

tables to Normalized Gaussian distributions or Cumulative Histograms was performed via 

ThunderSTORM (Ovesny et al. 2014). Fiji macros (Fiji_Macro_1, Fiji_Macro_2, Fiji_Macro_3, 

Fiji_Macro_4) were written in ImageJ Macro language (IJM). 

R scripts (Script_R1, Script_R2, Script_R3, Script_R4, Script_R5P1, Script_R5P2, Script_R5P3, and 

Script_Rv) were written in RStudio (version 1.1.456) (RStudio_Team 2016) and run on R version 3.6.3 

(2020-02-29) (R_Core_Team 2020). The following packages were used in the R scripts: gplots (Warnes 

et al. 2020), ggplot2 (Wickham 2016), plotrix (Lemon 2006), fields (Nychka et al. 2017), spatstat 

(Baddeley et al. 2015), pgirmess (Giraudoux 2018), RColorBrewer (Neuwirth 2014), dbscan (Hahsler et 

al. 2019), patchwork (Pederson 2019), mixtools (Benaglia et al. 2009), MASS (Venables and Ripley 

2002) and agricolae (de Mendiburu 2020).  

9.11. Molecular biology methods 

9.11.1.  Plasmids isolation from E. coli 

Plasmid extraction from E. coli were performed via NucleoSpin® Plasmid Kit (Macherey-Nagel) 

according to the protocol provided by the manufacturer. 

9.11.2.  DNA amplification and colony PCRs 

DNA fragments were amplified using Phusion® high fidelity polymerase (New England Biolabs) or 

ReproFast Polymerase (Genaxxon Bioscience) according to the protocol provided by the respective 

manufacturer. C. glutamicum RES167 genomic DNA or source plasmids (Table 8.2) DNA were used as 

PCR templates. Primers used are listed in table 8.1. 

Successful allelic replacement in C. glutamicum and plasmid construction in E. coli were checked 

via colony PCR. Colony PCRs were performed via EconoTaq PLUS GREEN 2X Master Mix according to 

the protocol provided by the manufacturer with minor differences between the two bacteria. C. 

glutamicum cells were incubated at 95°C for 30 min while E. coli cells were incubated for 15 min. 

Primers used are listed in table 8.1. 

9.11.3.  DNA separation and purification 

PCR products, colony PCR products and nucleic acids digested via restriction enzymes were run in 

1 % agarose gels in TAE buffer (40 𝑚𝑀 Tris − Hcl pH 8, 1 𝑚𝑀 𝐸𝐷𝑇𝐴, 20 𝑚𝑀 𝑎𝑐𝑒𝑡𝑖𝑐 𝑎𝑐𝑖𝑑) at 90 V, 

stained within a 0.5 µ𝑔/𝑚𝐿 EtBr bath and visualized using a UV table. When necessary, nucleic acids 

were extracted and purified using a NucleoSpin® Gel Kit and PCR Clean-up Kit (Macherey-Nagel). 
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9.11.4.  DNA quantification and sequencing 

The concentration of PCR products and plasmids was determined using a UV/VIS 

spectrophotometer (BioDrop µLite, Serva). Plasmids sequencing was performed by the in-house 

sequencing service (Genomics service unit, Genetics, Faculty of Biology, LMU – Munich). Samples 

comprised 150-300 ng plamid DNA and 3 pmol sequencing primer in 5 mM TrisHCl (7 µ𝐿  final volume). 

9.11.5.  Restriction digestion, dephosphorylation and ligation 

All enzymatic reactions listed within this chapter were performed according to manufacturer´s 

protocols (New England Biolabs). PCR products and plasmids were digested with the respective 

restriction enyzmes (see chapter 8.5.3). Following plasmid digestion, re-ligation of the DNA ends was 

prevented via addition of alkaline phosphatase. Constructs were ligated overnight at 4°C with T4 DNA 

ligase. 

9.12. Protein biochemical methods 

9.12.1. C. glutamicum lysates preparation 

X mL of cells (culture state depending on the aim of the experiment) were harvested and diluted 

to an OD600 of 1 to a final volume of 10 mL (PBS pH 7.4) and put on ice. Cells were washed in PBS (3200 

x g, 10 min, 4°C) and finally resuspended in 1 mL PBS pH 7.4. Following ten cycles of cell disruption via 

FastPrep®-24 (MP Biomedicals) at 6.5 m/sec for 30 sec, cell debris was removed by centrifugation at 

18000 g (15 min). 

9.12.2. Polyacrylamide gel electrophoresis 

Proteins contained within the cell lysates were separated by size via polyacrylamide gel 

electrophoresis (Laemmli 1970). Resolving (Tris-HCl pH 8.8, 10 % (v/v) acrylamide, 0.1 % (w/v) SDS, 

0.05 % (w/v) ammonium persulfate, 0.05 % (w/v) tetramethylethylenediamine) and stacking gel (Tris-

HCl pH 6.8, 4 % (v/v) acrylamide, 0.1 % (w/v) SDS, 0.05 % (w/v) ammonium persulfate, 0.13 % (w/v) 

tetranethylethylenediamine) were cast using a Mini-PROTEAN®Systems (Bio-Rad). Cell lysates were 

mixed with 4 x loading buffer (200 mM Tris-HCl pH 6.8, 50 % (w/v) glycerol, 10 % (w/v) SDS, 4 % β-

mercaptoethanol, 0.08 % (w/v) bromophenol blue) to a final 1 x loading buffer concentration and run 

in electrophoresis chambers (Mini-PROTEAN®, Bio-Rad). The chambers were filled with running buffer 

(25 mM Tris, 0.192 M glycine, 3.5 mM SDS) and run at 90 V until the samples reached the interface 

between stacking and resolving gel. Voltage was then increased to 120 V and kept running for 40-60 

min. Protein size was ascertained via the use of a pre-stained protein ladder (PageRulerTM, Therm 

Fisher Scientific). 
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9.12.3. Colloidal Coomassie staining 

The colloidal Coomassie staining solution was prepared according to Dyballa and Metzger (Dyballa 

and Metzger 2009). Briefly, 100 g of aluminum sulfate were dissolved in Milli-Q water, followed by the 

addition of 200 ml of ethanol, 0.4 of CBB G-250 and 47 ml of 85% orthophosphoric acid (the solution 

needs to be homogeneous before the addition of each subsequent ingredient) (the addition order 

needs to be kept as is). Finally, Milli-Q water is added to a final volume of 2 liters. SDS-gels were 

incubated with staining solution over-night, washed twice in Milli-Q water, destained up to 60 minutes 

in order to increase the contrast (destaining solution: 10% ethanol, 2% orthophosphoric, 88% Milli-Q 

water) and washed twice in Milli-Q water. 

9.12.4. Western Blot 

Successful allelic replacement was confirmed, when possible, via the use of Western Blots. Proteins 

separated via SDS-gels were transferred to methanol activated PVDP membranes. Electrophoretic 

chambers (Bio-Rad) were filled with transfer buffer (25 mM Tris-HCl pH 8.3, 0.2 M glycine, 20 % (v/v) 

methanol) and run at 200 mA for 3 h. Following the transfer, the PVDP membranes were incubated for 

one hour in 5 % skimmed milk powder in TBS-T (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.1 % Tween 

20) in order to block non-specific binding sites. PVDP membranes were then incubated with dilutions 

of the respective primary antibodies (1:2000 polyclonal rabbit anti-mCherry IgG (BioVision Inc.) for 

mCherry and PAmCherry fusions, 1:1000 monoclonal mouse anti-StrepTag IgG (Thermo Fisher 

Scientific) for StrepTagII fusions) in 5 % skimmed milk powder in TBS-T for one hour. Secondary anti-

rabbit (ployclonal goat IgG, alkaline phosphatase conjugate, Sigma-Aldrich®) and anti-mouse 

antibodies (polyclonal goat IgG, alkaline phosphatase conjugate, Sigma-Aldrich®) were diluted in 5 % 

skimmed milk powder in TBS-T for 1 h (final antibody concentration 1:10000). The membranes were 

then incubated for one hour in the secondary antibody dilution. The membranes were finally washed 

in TBS-T and developed. Detection of antibodies was performed via incubation of the membranes in 

the dark with chromogenic alkaline phosphate substrates 5-bromo-4-chloro-3-indolyl phosphate/nitro 

blue tetrazolium. 

9.12.5. Protein identification via pull-down and mass spectrometry 

For the identification of putative novel DivIVA interaction partners, strain C27 (C. glutamicum 

RES167* divIVA::divIVA-StrepTag) and a WT control (C. glutamicum RES167*) were cultivated in 50 ml 

of BHI medium using culture flasks pretreated with 0.5% sodium hypochlorite. Cells were harvested at 

an OD600 of 2 (exponential phase) and lysed as described in 8.12.1 (Lysis buffer: 50 mM TRIS/HCl pH 

8.0, 200 mM NaCl, 100 mM KCl, 1 mM EDTA, 0.1% SDS, EDTA free protease inhibitor, DNAse). MagStrep 

“type3” XT beads (IBA) were used to specifically bind DivIVA-StrepTag in the course of the pull down. 

40 µl (approximately 2 mg) of magnetic beads were used for each sample. 



Giacomo Giacomelli, PhD thesis, Department I, Microbiology, LMU 
 

107 
 

Beads were washed twice in 400 µl of lysis buffer at room temperature prior the addition of the 

respective lysate sample. The beads were then moved to 4°C and resuspended in 200 µl of a 1:1 

mixture of lysis buffer and cleared lysate. The mixture was incubated 30 minutes on ice with occasional 

resuspension of the beads via gentle shaking. Following the incubation, the beads were washed three 

times in lysis buffer. Finally, the beads were incubated with elution buffer (Elution buffer: 50 mM 

TRIS/HCl pH 8.0, 200 mM NaCl, 100 mM KCl, 1 mM EDTA, 0.1% SDS, EDTA free protease inhibitor, 2 

mM D-biotin) for 5 minutes with occasional shaking. The elution step was repeated twice.  

For both C27 and the WT control, 10 µl of the cell lysate, clear lysate, washing step 1-3, elution 

step 1-2 and boiled beads were loaded in a 10% polyacrylamide gel and separated via gel 

electrophoresis. The gels were then stained via colloidal Coomassie as described in 8.12.3. Then, the 

elution profiles of C27 and WT were compared. The protein bands visible exclusively within the C27 

elution profile and the correspondent area within the WT elution profile were physically removed from 

the gels and analysed via mass spectrometry. 

9.12.6. Mass spectrometry 

Mass spectrometry, including sample/protein digestion, was performed by the Mass Spectrometry 

of Biomolecules at LMU (MSBioLMU) service unit. The service unit used a Linear Trap Quadropole (LTQ) 

Orbitrap mass spectrometer (Thermo) combined with a nano liquid chromatography (LC) system 

including an autosampler (automated injection). RP C18 capillary columns were used for the LC. 

9.13. Statistical analysis 

All statistical tests performed outside and within the various scripts (Script_R1, 2, 3, 4, v, 5P1, 5P2, 

5P3) were performed using R (R_Core_Team 2020). 
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