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Abstract 

232 words 

 

The skin harbors numerous immune cells and a lymphatic vessel network coordinating initial 

steps of any immune response. Although the circadian clock has been identified as a key 

regulator of the immune system, influence of this clock on dermal lymphatic networks 

remains elusive. Here, I examined dermal dendritic cell (DC) trafficking using ex-vivo ear 

explant crawl-in assays allowing for the analysis of their migratory behavior. Assessment of 

cellular trafficking unveiled a time-of-day dependent migration of tissue-specific DCs towards 

and across lymphatic vessels, with the most prominent migration observed during the 

behavioral rest phase of mice. This circadian migration behavior was concerted by temporal 

up-regulation of trafficking molecules and enhanced chemokine micro patterning in lymphatic 

endothelial cells (LECs) as shown by quantitative immuno-fluorescence profiling. Moreover 

RNA sequencing of sorted dermal LECs uncovered an elevated adhesion gene expression 

during the rest phase. Chrono-pharmacological blockade and disturbance of chemotaxis, 

adhesion and transmigration of DCs within the lymphatic network abrogated circadian 

migration exclusively during the rest phase. Molecular oscillators of lymphatic vessels and DCs 

were then identified as key players since the genetic ablation of the core clock component 

Bmal1 in either cell type diminished the circadian phenotype in cell migration. Together, this 

study establishes a novel link between the circadian clock and lymphatic leukocyte trafficking 

in the skin and provides potential targets for the optimization of both timed treatment of 

immune-dermatological diseases and vaccination strategies.  



 

VIII 
 

Table of Contents 

Acknowledgements .......................................................................................................... V 

Abstract ......................................................................................................................... VII 

List of figures ................................................................................................................... XI 

List of tables .................................................................................................................. XIII 

List of abbreviations ...................................................................................................... XIV 

 Rationale .................................................................................................................. 1 1

 Introduction .............................................................................................................. 2 2

2.1 Basic concepts of immunity............................................................................................. 2 

2.1.1 Early steps of an immune response .............................................................................................. 3 

2.2 Lymphatic vasculature .................................................................................................... 4 

2.2.1 Anatomy and organization of the lymphatic system ................................................................... 5 
2.2.1.1 Lymphatic biomarkers .......................................................................................................... 7 

2.2.2 Lymphatic heterogeneity .............................................................................................................. 8 
2.2.2.1 The lung lymphatic system ................................................................................................... 8 
2.2.2.2 The small intestinal lymphatic system ................................................................................. 8 
2.2.2.3 The lymph node lymphatic system .................................................................................... 11 

2.3 The immune system of the skin ..................................................................................... 12 

2.3.1 The functional anatomy of the skin ............................................................................................ 12 
2.3.2 The immunological landscape of the skin .................................................................................. 13 

2.3.2.1 Dendritic cells ...................................................................................................................... 13 
2.3.2.1.1 Langerhans cells ............................................................................................................ 14 
2.3.2.1.2 Skin conventional dendritic cell 1 and 2 ...................................................................... 14 

2.3.2.2 T cells ................................................................................................................................... 17 
2.3.2.3 Keratinocytes and innate lymphoid cells ........................................................................... 18 
2.3.2.4 Other immune cells ............................................................................................................ 19 

2.4 Dermal lymphatic leukocyte trafficking ......................................................................... 19 

2.4.1 The skin lymphatic system .......................................................................................................... 19 
2.4.2 Dendritic cell migration through skin lymphatic vessels ........................................................... 21 

2.4.2.1 Interstitial migration ........................................................................................................... 21 
2.4.2.2 Adhesion and transmigration ............................................................................................. 24 
2.4.2.3 Intraluminal crawling .......................................................................................................... 26 

2.5 Circadian rhythms ......................................................................................................... 27 

2.5.1 The clock machinery .................................................................................................................... 27 
2.5.2 Synergy of clocks and entrainment ............................................................................................. 30 

2.5.2.1 Circadian terminologies ...................................................................................................... 31 
2.5.3 Circadian rhythms in immunity ................................................................................................... 31 

2.5.3.1 Circadian leukocyte trafficking ........................................................................................... 32 
2.5.3.2 Circadian rhythms in skin ................................................................................................... 35 

2.5.4 Chronotherapy and the benefit of rhythms in immunity .......................................................... 36 

2.6 Objective & aims ........................................................................................................... 37 

 Materials and Methods........................................................................................... 38 3

3.1 Materials ....................................................................................................................... 38 



 

IX 
 

3.1.1 Buffers and media ........................................................................................................................ 38 
3.1.2 Kits ................................................................................................................................................ 38 
3.1.3 Primers ......................................................................................................................................... 39 
3.1.4 Antibodies and staining reagents ................................................................................................ 39 

3.1.4.1 Primary antibodies .............................................................................................................. 39 
3.1.4.2 Secondary antibodies and streptavidin ............................................................................. 42 
3.1.4.3 Isotype antibodies .............................................................................................................. 43 
3.1.4.4 Neutralization antibodies ................................................................................................... 44 

3.1.5 Chemicals and reagents ............................................................................................................... 45 
3.1.6 Utilities.......................................................................................................................................... 46 
3.1.7 Machines ...................................................................................................................................... 46 

3.1.7.1 Microscope & flow-cytometer configurations .................................................................. 47 
3.1.8 Softwares ...................................................................................................................................... 48 

3.2 Methods ....................................................................................................................... 49 

3.2.1 Animals ......................................................................................................................................... 49 
3.2.1.1 Housing & animal law regulations ..................................................................................... 49 
3.2.1.2 Light / darkness (LD) experiments ..................................................................................... 50 
3.2.1.3 Tamoxifen treatment.......................................................................................................... 50 
3.2.1.4 DNA isolation ...................................................................................................................... 51 
3.2.1.5 Genotyping PCR .................................................................................................................. 51 
3.2.1.6 Genotyping gel electrophoresis ......................................................................................... 53 

3.2.2 Organ harvest & surgeries ........................................................................................................... 54 
3.2.2.1 Ear harvest .......................................................................................................................... 54 
3.2.2.2 Bone harvest for bone marrow-derived dendritic cell isolation ...................................... 55 
3.2.2.3 Superior cervical ganglionectomy ...................................................................................... 55 

3.2.3 Cell culture ................................................................................................................................... 56 
3.2.3.1 Bone marrow-derived dendritic cell culture ..................................................................... 56 
3.2.3.2 CellTrace Violet bone marrow-derived dendritic cell stain .............................................. 57 
3.2.3.3 Granulocyte-macrophage colony-stimulating factor producing hybridoma cell culture57 

3.2.4 Crawl-in assays (cell trafficking assays) ...................................................................................... 58 
3.2.4.1 Exogenous crawl-in assay (end-point) ............................................................................... 58 
3.2.4.2 Endogenous crawl-in assay ................................................................................................ 60 
3.2.4.3 Live imaging of exogenous crawl-in assays ....................................................................... 61 
3.2.4.4 Short crawl-in assays with zone segmentation ................................................................. 61 

3.2.5 Flow cytometry ............................................................................................................................ 62 
3.2.5.1 Crawl-out assay and ear cellularity quantification ............................................................ 62 
3.2.5.2 Sorting of skin LECs ............................................................................................................. 65 

3.2.6 Functional neutralization of proteins and chemokine gradient disturbance ........................... 66 
3.2.7 Immunofluorescence staining ..................................................................................................... 66 

3.2.7.1 Quantitative immunofluorescence staining ...................................................................... 66 
3.2.7.2 Whole mount immuno-fluorescence staining .................................................................. 68 
3.2.7.3 Intracellular whole mount staining of CCL21, GOLPH4, PROX-1 and KI67 ...................... 68 
3.2.7.4 CCL21 whole mount staining and gradient analysis ......................................................... 69 

3.2.8 RNA sequencing of lymphatic endothelial cells ......................................................................... 70 
3.2.9 Statistical analysis ........................................................................................................................ 71 

 Results .................................................................................................................... 72 4

4.1 Visualization of lymphatic vessels.................................................................................. 72 

4.2 Demonstration of rhythmic dendritic cell migration into dermal lymphatic capillaries .. 75 

4.3 Rhythmic protein and RNA levels in lymphatic endothelial cells .................................... 78 

4.4 Evaluation of migratory behavior and chemotaxis ability amongst dendritic cell subtypes 
 ...................................................................................................................................... 87 

4.5 Assessment of diurnal CCL21 gradient micro-patterning, adhesion and transmigration 93 



 

X 
 

4.6 Effects of lineage-specific clock deficiency on lymphatic dendritic cell migration .......... 99 

 Discussion and future perspectives....................................................................... 106 5

5.1 Circadian rhythms in lymphatic dendritic cell migration .............................................. 106 

5.2 The role of oscillations in lymphatic protein and RNA expression ................................ 108 

5.3 Temporal chemokine patterning during steady state – pointing towards rhythmic 
tolerance induction? ............................................................................................................... 112 

5.4 Chrono-pharmacological targeting of lymphatic leukocyte trafficking ......................... 114 

5.5 Do cell type-specific intrinsic clocks govern rhythmic dermal leukocyte trafficking? ... 118 

5.6 Outlook ....................................................................................................................... 119 

5.7 Conclusion .................................................................................................................. 122 

 Bibliography ............................................................................................................... i 6

 Appendices ............................................................................................................. xix 7

7.1 Additional data .............................................................................................................. xix 

7.2 Codes and algorithms..................................................................................................... xx 

7.3 Promoter binding sites of clock genes ......................................................................... xxxii 

7.5 List of publications ................................................................................................... xxxviii 

7.6 Affidavit ..................................................................................................................... xxxix 

7.7 Confirmation of congruency between printed and electronic version of the doctoral 
thesis ........................................................................................................................................ xl 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

XI 
 

List of figures 

 

Figure 2-1: Anatomy of lymphatic vessels ................................................................................... 6 

Figure 2-2: Lymphatic heterogeneity ........................................................................................ 10 

Figure 2-3: The lymphatic leukocyte trafficking cascade ........................................................... 23 

Figure 2-4: Components and interactions of the molecular clock .............................................. 29 

Figure 3-1: Genotyping gel electrophoresis ............................................................................... 54 

Figure 3-2: Bone marrow-derived dendritic cell culture viability and purity .............................. 57 

Figure 3-3: Imaging chamber for ear whole mounts .................................................................. 58 

Figure 3-4: Exogenous bone marrow-derived dendritic cell crawl-in assay ................................ 59 

Figure 3-5: Endogenous crawl-in assay ...................................................................................... 60 

Figure 3-6: Zone segmentation of the lymphatic interstitium.................................................... 62 

Figure 3-7: Skin dendritic cell & crawl-out assay gating strategy ............................................... 64 

Figure 3-8: Gating strategy of sorted lymphatic endothelial cells .............................................. 65 

Figure 3-9: Quantitative immunofluorescence analysis ............................................................. 67 

Figure 3-10: Extracellular CCL21 gradient analysis .................................................................... 69 

Figure 4-1: 2D Fluorescence microscopy of lymphatic biomarkers ............................................ 73 

Figure 4-2: 3D Lymphatic whole mounts of biomarkers in skin and small intestine ................... 74 

Figure 4-3: Higher trafficking capacity during the day in dermal lymphatic vessels ................... 76 

Figure 4-4: Circadian rhythm in dermal dendritic cell migration into lymphatic vessels ............ 78 

Figure 4-5: Tissue-specific oscillations in lymphatic adhesion and transmigration molecules .... 80 

Figure 4-6: Elevated expression, storage and traffic of intracellular CCL21 in dermal lymphatic 

endothelial cells ................................................................................................................ 82 

Figure 4-7: Lymphatic endothelial cells express a molecular clock and are transcriptionally most 

distinct between ZT1 and ZT19 ......................................................................................... 85 

Figure 4-8: Rhythmic adhesion gene signature in lymphatic endothelial cells ........................... 87 

Figure 4-9: Diurnal rhythmicity in skin cellularity ....................................................................... 88 

Figure 4-10: Dermal dendritic cell subtype-specific rhythms in migration ................................. 90 

Figure 4-11: Elevated activation and chemotaxis of dendritic cells during the day .................... 92 

Figure 4-12: Rhythmic CCL21 micro-patterning influences dermal dendritic cell distribution.... 94 

Figure 4-13: Manipulation of the CCL21 gradient leads to dysfunctional dendritic cell migration 

during the day ................................................................................................................... 96 

Figure 4-14: Chrono-pharmacological block of adhesion and transmigration reduces dendritic 

cell migration during the day ............................................................................................ 98 

file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923519
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923520
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923521
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923522
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923523
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923524
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923525
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923526
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923527
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923528
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923529
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923530
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923531
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923532
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923533
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923534
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923535
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923536
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923537
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923538
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923538
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923539
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923539
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923540
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923541
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923542
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923543
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923544
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923545
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923545
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923546
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923546


 

XII 
 

Figure 4-15: Lineage-specific clock deficiency leads to dysfunctional dermal dendritic cell 

trafficking ........................................................................................................................ 101 

Figure 4-16: Loss of Bmal1 in lymphatic endothelial cells leads to downregulation of trafficking 

factors and chemokine micro-patterning ........................................................................ 103 

Figure 4-17: Genetic ablation of Bmal1 leads to alteration in ear cellularity and increased 

dendritic cell emigration ................................................................................................. 105 

Figure 5-1: Future directions and arising projects ................................................................... 121 

Figure 5-2: Time-of-day dependent trafficking of leukocytes across lymphatics ...................... 123 

Figure 7-1: Live imaging of exogenous crawl-in assays .............................................................. xix 

Figure 7-2: Expression of genes associated with tolerance induction ........................................ xix 

Figure 7-3: Ear cellularity and crawl-out assay using SCGx and Myd88-/- mice ............................ xx 

 

  

file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923547
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923547
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923548
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923548
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923549
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923549
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923550
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923551
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923552
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923553
file:///D:/PhD%20Studium/scientific%20writing/Thesis%20writing/PhD_thesis_SJH_complete.docx%23_Toc51923554


 

XIII 
 

List of tables 

 

 

Table 2-1: Activation and migration markers of dermal dendritic cells ...................................... 17 

Table 2-2: Molecules involved in dermal lymphatic dendritic cell trafficking ............................. 25 

Table 2-3: Rhythms in murine trafficking molecules & chemokines .......................................... 35 

Table 3-1: Buffers and media .................................................................................................... 38 

Table 3-2: Kits ........................................................................................................................... 38 

Table 3-3: Genotyping primers .................................................................................................. 39 

Table 3-4: Primary antibodies ................................................................................................... 42 

Table 3-5: Secondary antibodies and streptavidin ..................................................................... 42 

Table 3-6: Isotype control antibodies ........................................................................................ 43 

Table 3-7: Neutralization antibodies ......................................................................................... 44 

Table 3-8: Chemicals and reagents ............................................................................................ 46 

Table 3-9: Utilities and materials ............................................................................................... 46 

Table 3-10: Machines ................................................................................................................ 47 

Table 3-11: Flow-cytometer configurations ............................................................................... 48 

Table 3-12: Microscope configurations ..................................................................................... 48 

Table 3-13: Softwares ............................................................................................................... 48 

Table 3-14: Genotyping PCR master mix ................................................................................... 52 

Table 3-15: Genotyping PCR reactions ...................................................................................... 52 

Table 3-16: Genotyping PCR product sizes ................................................................................ 53 

Table 3-17: Viability and purity check of bone marrow-derived dendritic cells .......................... 56 

Table 3-18: Staining panels for crawl-outs, ear cellularity and phenotyping .............................. 63 

Table 3-19: Staining panel for lymphatic endothelial cell sort ................................................... 65 

Table 3-20: Cell counts of sorted lymphatic endothelial cells .................................................... 70 

Table 5-1: Number of promoter binding sites for clock genes Bmal1, Dbp, Nfil and Rora ........ 111 

 

  



 

XIV 
 

List of abbreviations 

 

ACKR4 Atypical chemokine receptor 4 

ALCAM Activated leukocyte cell adhesion molecule 

APC Antigen presenting cell 

Arntl Aryl hydrocarbon receptor nuclear translocator-like protein 1 

BEC Blood endothelial cell 

BM Bone marrow 

BMAL1 Brain and muscle ARNT-like 1 

BrdU Bromodeoxyuridine 

BV Blood vessel 

CADM1 Cell adhesion molecule 1 

CCG Clock-controlled gene 

CCL21 C-C motif ligand 21 

CCR7 C-C chemokine receptor type 7 

cDC Conventional dendritic cell 

ChIP Chromatin immunoprecipitation 

CLEC9a C-type lectin domain family 9 

CLOCK Circadian locomotor output cycles kaput 

Cry Cryptochrome 

CS Cortical sinus 

CSF1 Colony-stimulating factor 1 

CT Circadian time 

CXCL1 CXC-chemokine ligand 1 

DBP D-box binding protein 

DC Dendritic cell 

Deaf1 Deformed epidermal auto-regulatory factor 1 

DETC Dendritic epidermal T cells 

dLN Draining lymph node 

DNGR-1 Dendritic cell natural killer cell lectin group receptor-1 

EC Endothelial cell 

ECM Extracellular matrix 

EdU 5-ethynyl-2’-desoxyuridine 

EPCAM Epithelial cell adhesion molecule 

ESAM Endothelial selective adhesion molecule 

FLT3 Fms-like tyrosine kinase 3 

FTT3L Fms-like tyrosine kinase 3 ligand 

HA Hyaluronan 

HAT Histone acetyl transferase 

HSC Hematopoietic stem cell 

ICAM1 Intercellular adhesion molecule 1 

iLN Inguinal Lymph node 

IRF8 Interferon regulating factor 8 

JAM-A Junctional adhesion molecule 

L1CAM L1 cell adhesion molecule 

LC Langerhans cell 

LEC Lymphatic endothelial cell 

LFA-1 Lymphocyte function-associated antigen-1 

LN Lymph node 

LTR Leukotrienes 

LV Lymphatic vessel 

LYVE-1 Lymphatic vessel endothelial hyaluronan receptor 



 

XV 
 

MADCAM-1 Mucosal vascular addressin cell adhesion molecule 1 

MALT Mucosal-associated lymphoid tissue 

MERTK Proto-oncogene tyrosine-protein kinase MER 

MHC Major histocompatibility complex 

MIP1 Macrophage inflammatory protein 1 

MMP Matrix-metalloproteinase 

MMR1 Macrophage mannose receptor 1 

MS Medullary sinus 

NFIL3 Nuclear factor interleukin 3 

NK Natural killer cell 

PAMP Pathogen-associated molecular pattern 

PD-L1 Programmed death ligand 1 

PDPLN PODOPLANIN 

PECAM-1 Platelet and endothelial cell adhesion molecule 1 

Per Period 

PGE2 Prostaglandin E2 

Plt Paucity of lymph node T cell 

PPAR Peroxisome proliferator-activated receptor 

PRC Polycomb repressive complexes 

Prox-1 Prospero homeobox protein 1 

PTA Peripheral tissue antigen 

RAC1 Ras-related C3 botulinum toxin substrate 1 

ROCK RHO associated kinase 

ROR Retinoid-related orphan receptor 

SCN Suprachiasmatic nucleus 

SCS Sub-capsular sinus 

SI Small intestine 

SIRP-α Signal regulatory protein α 

SMC Smooth muscle cells 

SMLV Sub-mucosal lymphatic vessel 

STR Stromal cell 

TCM Circulating T  

TEM Effector/memory T 

TGF-β Transforming growth factor β 

TH17 T helper 17 

TLR Toll-like receptor 

TNF Tumor necrosis factor 

TNFR Tumor necrosis factor receptor 

Treg Regulatory T 

TRM Resident memory T  

US-FDA United States food and drug administration 

VCAM1 Vascular cell adhesion molecule 1 

VE-Cadherin Vascular-endothelial-cadherin 

VEGFR3 Vascular endothelial growth factor receptor 3 

XCR1 X-c motif chemokine receptor 1 

ZT Zeitgeber time 

 

  



 

1 
 

 Rationale 1

 

Our immune system is in daily contact with the environment. Every contact shapes and 

develops the immune system. As a result of this, microbes are continuously adapting as well, 

leading to new inflammatory challenges. Despite success and advances in modern research 

and therapies, it becomes more and more challenging to quickly tackle new diseases and 

develop therapeutic agents and strategies. One recent example to be mentioned here is the 

outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlighting 

how difficult and time consuming discovery of new therapies and treatment is. Thus, 

innovative strategies and improvements in therapy are required to successfully face currently 

existing and future diseases.  

One way to more efficiently respond to potential threats is to partition immune responses to 

specific time windows during the day when they are most likely to occur. Daily, recurring 

rhythms in the environment greatly affect rhythms in intrinsic biological processes. Intrinsic 

rhythms are found in every aspect of physiology and allow for the adaptation and evolution of 

biological processes. In the last decades, researchers have identified biological rhythms to also 

occur in the immune system. Although research has uncovered circadian clocks in virtually 

every mature immune cell type, our understanding of how clocks influence the cell and 

overall immunity still remains relatively obscure. Thus, a better understanding of the rhythmic 

immune system is essential for the time-tailored application of immunotherapies.  

The skin is the largest organ of the body and harbors a great diversity of immune cells as it 

presents one of the predominant entry points for pathogens. Thus, it is not surprising that the 

skin is a major site of infection and disease. The lymphatic system is crucial for fluid control, 

nutrient uptake, can be a site of bacterial dissemination and is exploited by cancer. For 

immune cells to initiate an immune response, the skin lymphatic vessel network is of high 

importance as it facilitates the correct and fast transport of antigens to the lymph node. 

Although basic concepts of the skin lymphatic biology are understood, it is not known how 

biological rhythms influence the skin lymphatic system. Thus, uncovering circadian 

mechanisms in the biology of skin lymphatics might be beneficial for basic immunology 

research and therapeutic strategies in vaccination, inflammation and diseases.   
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 Introduction 2

2.1 Basic concepts of immunity 

 

Although the immune system functions as one entity, it consists of various distinct cell types, 

each having unique and important roles. In general, it can be divided into the innate and 

adaptive immune system. The term ‘innate’ implies that receptors and mediators involved in 

an innate immune response are genetically encoded and do not undergo rearrangements or 

genetic variations. On the other hand, ‘adaptive’ immunity describes the genetic 

rearrangement of proteins involved in the adaptive response to ensure greater immune 

diversity. Together, the major roles of both are the adequate and correct elimination of 

microbial agents via the innate immune system, activation of the adaptive immune system via 

innate immune cells if it is appropriate to initiate an adaptive response, creating memory of 

adaptive responses and tolerance of self-antigens (sources used for chapters 2.1 and 2.1.1 

include [1-3]). 

The adaptive immune system consists of lymphocytes, which are together made up by B and T 

cells. Although they occupy a central stage in an immune response by determining the 

specificity of immunity, they rely on the innate immune system. The innate immune system 

presents antigens to the adaptive immune system and mediates immunologic functions. It 

entails dendritic cells (DCs), Langerhans cells (LCs), monocytes/macrophages, natural killer 

(NK) cells, neutrophils, mast cells, basophils and eosinophils. Together with the lymphocytes, 

they are grouped as leukocytes. Importantly, every leukocyte is presented with a great 

heterogeneity between organs and is highly specialized according to the organ it is residing in 

or migrating to.  

The primary lymphoid organs, including thymus and bone marrow (BM), are the site of 

maturation of naïve leukocytes. Mature leukocytes then migrate to secondary lymphoid 

organs, consisting of lymph nodes (LNs), spleen, Peyer’s patches and mucosal-associated 

lymphoid tissues (MALTs), and in the case of lymphocytes are scanning tissues for the 

presence of antigens to commence adaptive immune responses. 
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2.1.1 Early steps of an immune response 

 

Early steps of an immune response include the capture of pathogens by antigen presenting 

cells (APCs) such as DCs, the processing of native antigens into peptides and their 

presentation by major histocompatibility complex (MHC) molecules, the migration of APCs 

through the extracellular matrix (ECM) and transmigration through blood and lymphatic 

vessels as well as the APC entry into LNs to activate and initiate the adaptive immune 

response. In this thesis the focus is on peripheral tissues and DCs. Therefore, the full adaptive 

immune response will not be discussed here. 

Before DCs encounter any pathogen, they are resting in a steady-state homeostasis. During 

this mode, they are capable of capturing and presenting antigens to T cells with an outcome 

of tolerance but not an immune response. The encounter with potentially harmful agents, 

however, allows the DC to become fully activated and initiate an immune response. This 

diverse response is possible due to the DC’s ability to sense changes in the environment by 

expression of different pattern recognition and activation receptors. These receptors, e.g. toll-

like receptors (TLRs), engage with viruses and microbes (pathogen-associated molecular 

patterns (PAMPs) or danger-associated molecular patterns (DAMPS)) as well as inflammatory 

cytokines and help internalizing the native antigen. 

Upon contact, DCs take up antigens by endocytosis, specifically macropinocytosis or receptor-

mediated phagocytosis. After internalization, antigens are processed into peptides, targeted 

to MHCII-positive endosomes, sequestered, and bound to MHCII dimers within the 

endosome. MHCII dimers carry the processed peptides and present them to by-passing cells 

on their cell surface. In the absence of harmful antigens or danger signals, however, the 

MHCII complex is loaded with self-peptides to limit the auto-immune reactivity and promote 

self-tolerance. MHCI is expressed on every nucleated cell, while MHCII is restricted to APCs 

and specific cells like epithelial cells, important for tolerance. MHCI on DCs initiates 

elimination of infected and malignant cells by CD8+ T cells, whereas MHCII initiate the CD4+ T 

cell immune response. Different DCs are better in sensing specific types of antigens (bacterial 

membrane proteins, nucleic acids, etc.) and are adapted to the microenvironment they reside 

in. 

To reach the LN and initiate an immune response or establish peripheral tolerance, the DC 

migrates through the ECM with the help of chemotactic gradients like chemokine C-C motif 

ligand 21 (CCL21). Due to receptors expressed on their surface, such as C-C chemokine 

receptor type 7 (CCR7), they are capable of following chemotactic gradients. DCs then utilize 
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lymphatic vessels (LV) as a route to reach the LN. The orchestrated mechanism of leukocyte 

trafficking into and through vessels depends on the type of vessel, but in general requires 

adhesion of the leukocyte to endothelial cells (ECs) lining the vessel wall and their subsequent 

transmigration through the endothelial layer. 

If DCs arrive at the LN via the lymphatic route, they enter the stromal layer through a sinus of 

lymphatic endothelial cells (LECs), from which they migrate into the T cell zone and initiate 

the immune response. After activation of T cells, DCs undergo apoptosis, as their presence is 

no longer required. 

 

2.2 Lymphatic vasculature 

 

Mice and humans harbor two distinct types of vessel systems. The closed blood circulatory 

system is the mediator of continuous movement of body fluids, transporting oxygen and 

nutrients to the tissues. Moreover, it regulates the migration of molecules and immune cells 

to and from tissues with the help of a muscular pump, the heart. 

On the other hand, the lymphatic system is a uni-directional and blind-ended system required 

for the high-pressure blood circulation. Small lymphatic capillaries line almost every major 

tissue, transport tissue draining fluid through larger collecting vessels into LN, from which it 

flows back to the blood stream. Movement of lymph through larger LVs is mediated by three 

major components: physical forces driving the initial formation of lymph in tissues, an intrinsic 

pump mechanism that pushes lymph forward, and extrinsic tissue pressures. Generally, LVs 

maintain fluid balances in every tissue by draining the blood capillary ultrafiltrate and 

extravasated plasma proteins back to the blood circulation. Furthermore, they are key players 

in transport of lipids and nutrients absorbed in the microvilli of the small intestine and are 

crucial for the transport of antigens and immune cells in case of an immune response and 

establishment of tolerance. Recently, it was also demonstrated that LVs play important roles 

in T cell development, are providing space for immune cell interactions and are targets of 

bacterial dissemination [4, 5].  

The lymphatic system was first described by Hippocrates and Aristotle around 400 BC and, 

later, the Greek physician Claudius Galen described the mesenteric lymph nodes to be filled 

with a milky lymph or chyle, consisting of fats originating from the small intestine [6]. From 

1622 onwards, first the small intestine villus LV (also called ‘lacteal’) was described [7], the 

back-flow of lymph from lacteals through larger LVs into the subclavian vein was found [8] and 



 

5 
 

the term vasae lymphaticae leading to the current term ‘lymphatic vessel’ was coined [6, 7]. 

With the help of electron microscopy [9], intra-vital microscopy [10], the development of LEC 

isolation techniques [11] and the generation of genetic reporter mice expressing fluorescent 

proteins under the promoters of biomarkers such as prospero homeobox protein 1(Prox-1)-

GFP [12], many aspects of the lymphatic role in the immune system have been revealed in 

modern research.  

 

2.2.1 Anatomy and organization of the lymphatic system 

 

LVs are described in almost every type of tissue. Although lymphatics in cartilage, cornea, or 

the central nervous system are yet to be fully understood, there are hints that also these 

organs harbor LVs either under steady-state or inflammatory conditions [13-16].  

The lymphatic system has a fractal and tree-like geometric organization, allowing for large 

surface area coverage with small initial lymphatics or capillaries. Lymphatic capillaries are 

located in close proximity to the microcirculation and – depending on the organ – form either 

a network/plexus or are completely blind-ended. They consist of a single layer of LECs and a 

discontinuous/porous basal membrane [17]. Capillary LECs have a distinct oak leaf shape 

allowing them to interdigitate and form loose discontinuous junctions and flaps (Figure 2-1). 

The formation of these ‘primary lymphatic valves’ is hypothesized to create a balance 

between high permeability for lymph uptake and adequate amounts of cellular trafficking [18-

20]. Necessary for functional valves are aggregates of junctional proteins forming tight 

junctions, which are anatomically and functionally different to blood EC (BEC) tight junctions, 

and called ‘buttons’. These contain junctional proteins like vascular endothelial (VE)-

CADHERIN, OCCLUDIN, CLAUDIN-5, endothelial selective adhesion molecule (ESAM) and 

junctional adhesion molecule A and C (JAM-A/C) holding LECs together [21]. The space 

between the buttons, also described as ‘flaps’, showcase another set of proteins like 

lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) and platelet and endothelial cell 

adhesion molecule 1 (PECAM-1/CD31; absent in buttons), and is the major site of leukocyte 

entry providing the lowest resistance [21, 22].  However, the exact shape of lymphatic 

capillaries depends largely on the tissue location (Figure 2-1 and Figure 2-2).  

Lymphatic capillaries drain into collecting lymphatics which are morphologically and 

functionally dissimilar. Collecting vessels have a single layer of LECs surrounded by a medial 

layer of circular smooth muscle cells (SMC), which can either be continuous or discontinuous 
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[23]. The larger the collecting vessels, the more layers of SMCs can be found. In contrast to 

capillary button structures, collecting vessel LECs form ‘zipper-like’ tight junctions, allowing 

for a more sealed vasculature prohibiting any fluid uptake or transmigration of cells under 

steady-state conditions [21, 24]. In addition to this, they embody periodic ‘secondary 

lymphatic valves’. These bicuspid valves prevent the backflow of lymph [25, 26] (Figure 2-1). 

Each space between two consecutive valves form a functional contractile unit or 

lymphangion, translated as ‘lymph heart’ [27]. The coordinated contraction of lymphangions 

together with functional secondary valves grants effective intrinsic pumping of the lymph and 

its content. Some tissues like the skin also have pre-collecting vessels that do not have SMCs 

but secondary valves, a mix of oak leaf- and rhombic-shaped LECs, together acting as conduits 

[21, 28] (Figure 2-2).  

Collecting vessels merge into large LVs (afferent lymphatics) that transport the lymph to the 

draining LN (dLN), from which the lymph is transported back to the blood circulation via 

efferent lymphatics (notably, in some parts of the system the lymph passes multiple LNs 

before coalescing into the blood circulation) [29]. Usually, 1 – 2 efferent lymphatics leave the 

LN and drain into the cisterna chyli, which leads into the left lymphatic duct, also known as 

the thoracic duct, depending on the site of origin [30, 31]. These large LVs flow back into the 

blood stream via the left and right subclavian vein [30]. In summary, most of the transported 

lymph reenters the blood circulation via the thoracic duct, the rest via the right lymphatic 

duct [32, 33]. 

Figure 2-1: Anatomy of lymphatic vessels 
(A) Lymphatic capillaries are blind-ended vessels surrounded by a discontinuous basal membrane 
(BM), embedded into an extracellular matrix (ECM) using anchoring filaments and fibrils. The oak 
leaf-shaped lymphatic endothelial cells (LECs) line the capillary and partly overlap each other at the 
junctions. LECs are connected via buttons, small aggregates of junctional proteins. Between buttons, 
flaps are formed helping cells such as dendritic cells (DCs) transmigrate. 
(B) Collecting vessels consist of rhombic-shaped LECs, covered with layers of smooth muscle cells 
(SMCs), inserted in a wide and continuous BM. They promote passive flow by generating pressure 
gradients. Valves made up by LECs prevent backflow and thus ensure uni-directional flow. 
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2.2.1.1 Lymphatic biomarkers 

 

In order to identify LECs and distinguish them from other types of ECs or stromal cells, 

research has uncovered several proteins currently used as common lymphatic biomarkers. 

Importantly, all these markers are expressed on other cells as well, but the combination of 

different markers allow for LEC discrimination. 

Probably the most important protein in lymphatic biology is PROX-1. Already at day 9.5 to 

14.5 of the embryological state the entire skin of the murine embryo is covered by lymphatic 

vasculature [34]. It is not surprising, that these initial LEC precursors are PROX-1+, as Prox1 

encodes a transcription factor directing lymphangiogenesis, LEC development and LEC 

movement during sprouting [35]. It is often described as the lymphatic master control gene, 

as it regulates the expression of other lymphatic markers such as the vascular endothelial 

growth factor receptor 3 (VEGFR3) and LYVE-1 [36]. 

VEGFR3 (also known as fms-related tyrosine kinase 4 (FLT4)) is a receptor tyrosine kinase 

binding VEGF-C and VEGF-D and mediating lymphangiogenesis [37-40]. Besides its expression 

on BECs during development, it is strongly expressed on LECs, with a high expression on 

lymphatic capillaries and lower expression on lymphatic collecting vessels [40].  

The integral membrane glycoprotein LYVE-1 is a homologue of CD44, involved in leukocyte 

migration [41] and, because of this, highly expressed in lymphatic capillaries (depending on 

the organ of interest) [42, 43]. Although LYVE-1 expression is also found on macrophages, 

liver and spleen sinusoidal endothelium, it is a commonly used marker for 

immunofluorescence staining of LECs in tissues [44]. Its specific role in lymphatic leukocyte 

trafficking is thoroughly discussed in 2.4.2.2. 

PODOPLANIN (PDPLN), initially described on rat kidney podocytes, is a mucin-type 

transmembrane glycoprotein suggested to be involved in intraluminal crawling of leukocytes 

within LVs [45, 46]. PDPLN together with CD31, a pan-endothelial marker, are widely used in 

fluorescence-activated cell sorting (FACS) of LECs as they are expressed in capillary and 

collecting LVs albeit differences in their degree of expression [20, 43]. PDPLN is also expressed 

on stromal cells, like fibroblastic reticular cells, in the LN [47]. The proposed role in lymphatic 

leukocyte trafficking is further discussed in 2.4.2.3. 

These proteins, together with Forkhead box protein C2 (FOXC2), important for lymphatic 

secondary valve maturation [48], REELIN, expressed especially in collecting LVs and important 

in T cell trafficking and leukocyte trafficking in the CNS [42, 49], and VE-CADHERIN have been 

extensively used as reporters for deletion, mutation or addition of genes in LECs [12, 50-53].  
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2.2.2 Lymphatic heterogeneity 

 

In the past years, researchers recognized the influence of the microenvironment of different 

organs in shaping their vessels, whether it is blood vessels or LVs, and creating a tissue-

specific entity and molecular heterogeneity [54-58]. The great majority of experiments 

performed in this thesis are focusing on the skin lymphatic system (see 2.4). However, some 

experiments also focus on the lymphatic system of the lung, small intestine and LN. 

Consequently, these lymphatic systems will be briefly introduced and their importance in the 

immune system highlighted. 

 

2.2.2.1 The lung lymphatic system 

 

The lymphatic system of the lung is heavily involved in fluid balance of alveoli, allowing for 

optimal gas exchange. In mice, LYVE-1+ lung capillary LECs are observed in lung lymphatic 

networks in juxta-alveolar connective tissue lining with airway or blood vessels but not within 

thinner alveolar walls. They further converge into larger collecting vessels having valves and 

SMCs [59-62] (Figure 2-2).  

Apart from clearing excess fluids, the lung lymphatic system is involved in trafficking of 

immune cells. Lung lymphatics express chemokines like CCL21 and facilitate the transport of 

antigen loaded APCs to dLNs [63]. Lung lymphatics show strong chemokine immunoreactivity 

and increase expression after infection with Mycoplasma pulmonis [59]. Furthermore, lung 

LECs have unique expression patterns of surface molecules supporting the trafficking of 

immune cells like the activated leukocyte cell adhesion molecule (ALCAM) [64]. However, 

extensive research is required to further understand how immune cells use the lymphatic 

route in the lung to migrate to dLNs and initiate immune responses or tolerance.  

 

2.2.2.2 The small intestinal lymphatic system 

 

In comparison to the lung lymphatic system, the small intestinal lymphatic system is 

understood in more detail. Roles of LECs in the small intestine are very diverse, as they range 

between dietary absorption, tolerance of symbiotic microflora and food antigens to 

protection against infections [62].  
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The small intestine contains millions of micro-villi, each comprising a central lacteal that is 

surrounded by a dense network of villus blood capillaries [65]. Lacteals branch into a 

submucosal network of lymphatics [66]. Additionally, the small intestine harbors another 

lymphatic network, located in parallel with circular or longitudinal muscle fibers in the 

muscularis mucosae [66]. These two networks then merge near the mesenteric border and 

flow into mesenteric dLNs via mesenteric LVs [66]. Notably, the small intestinal lymphatic 

system by definition does not have collecting vessels [67] (Figure 2-2). 

For its role in fat metabolism, lacteal LECs can take up chylomicrons containing fatty acids and 

nutrients released from enterocytes by transcellular crossing [68, 69]. Lacteals then transport 

the chylomicrons with the help of SMCs into the submucosal lymphatics [70, 71].  

Small intestinal LECs support tolerance induction and aid in immunity against pathogens from 

the lumen of the small intestine. It has been shown that lymphatics are established in close 

relation to parafollicular regions in the small intestine [62]. Loss of intestinal and mesenteric 

dLN LECs in mice expressing diphtheria toxin under the promoter of Lyve1 resulted in severe 

gut inflammation, sepsis and lethality [52].  

Generally, small intestinal lymphatics express common markers such as LYVE-1, PROX-1, 

NEUROPILIN-2 and VEGFR3 [72]. Nevertheless, global transcriptomic analyses of intestinal 

LECs have proven their uniqueness in comparison to for example skin LECs [73]. 

In the small intestine, DCs are one of the major cell types migrating through lymphatics to 

mesenteric dLNs. Vital for migration is a CCL21 gradient as CCR7-/- mice have reduced 

numbers of mesenteric dLN DCs [74, 75]. Likewise, innate lymphoid cells (ILCs) use the CCL21 

gradient and lymphatic route for trafficking to mesenteric dLNs [76]. Currently, it is not 

known, how neutrophils and T cells migrate through intestinal lymphatics and more research 

is required to fully understand the immune function of the lymphatic system in the small 

intestine. 
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Figure 2-2: Lymphatic heterogeneity 
(A) Skin lymphatics comprise blind-ended capillaries (Cap.) flowing into pre-collecting vessels (Pre-CV) 
and drain into collecting vessels (CV) resembling the afferent lymphatic vessels (LV). While capillaries 
have a discontinuous basal membrane (BM), Pre-CVs and CVs are mounted with smooth muscle cells 
(SMCs) and a sealing BM. Afferent LVs transport lymph to draining lymph nodes (dLN). 
(B) Within the lung lobus, small lymphatic capillaries reside in the juxta-alveolar space and neighbor 
blood vessels (BVs) and bronchioles (Bro.). Capillaries then drain into CVs via pre-CVs in the 
interlobular septa, shown as a cross-section. Alv. = alveolus.  
(C) Small intestinal lymphatics start with singular capillaries / lacteal LVs in the villus, embedded in 
SMCs. They flow into submucosal LVs, which converge and form mesenteric LVs, flowing to 
mesenteric LNs. The submucosal LVs can be divided into two networks. All lymphatics in the small 
intestine are capillaries as they have a discontinuous BM, only mesenteric LVs outside the small 
intestine resemble a CV shape. 
(D) Afferent lymphatics feed into the LN and merge into a subcapsular sinus (SCS), that consist of two 
layers, ceiling and floor LECs. The floor LECs form cortical sinusoids, which coalesce into the interstitial 
space, from which the medullary sinus drains towards the hilum. Efferent LVs then leave the LN via 
the hilus containing the drained lymph from the medullary sinus. 
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2.2.2.3 The lymph node lymphatic system 

 

The lymphatic system of the LN is one of the best studied lymphatic systems. The LN creates a 

special environment for LEC and BEC interaction and is the major site for the initiation of an 

immune response.  

Modern approaches using single-cell RNA sequencing and immunofluorescence microscopy 

have shown molecularly and geographically distinct lymphatic beds within the LN [58]. 

Afferent lymphatics feed into a subcapsular sinus (SCS) that is lined by two different layers of 

LECs, ceiling and floor LECs. Ceiling LECs are adhering to the collagenous matrix of the capsule 

and floor LECs rest on a meshwork of stromal cells and conduit bundles [77]. The SCS contains 

migrating leukocytes from the afferent lymph, as well as resident SCS macrophages, that 

constantly survey the lumen and bypassing DCs [78] (Figure 2-2).  

Further downstream are several LEC sinusoids. Due to high complexity, exact lining and 

morphology of medullary and cortical sinusoids are not completely understood. However, 

recent advances in optical tissue clearing of LNs have opened new possibilities in the analysis 

of sinus architectures [79, 80]. In mice, at the hilum of the LN, LECs form a medullary sinus 

(MS) that traverses through the medulla into the cortical area of the LN and thus becomes a 

cortical sinus (CS). At the hilum, this medullary sinus converges into an efferent lymphatic 

vessel, leaving the LN. These sinusoids are filled with egressing lymphocytes and resident 

medullary sinus macrophages [81] (Figure 2-2). 

Every type of LEC in the LN expresses numerous biomarkers (PROX-1, LYVE-1, mucosal 

vascular addressin cell adhesion molecule 1 (MADCAM1), CCL20, programmed death-ligand 1 

(PD-L1), macrophage receptor MARCO and PENTRAXIN3) enabling molecular differentiation. 

Additionally, they express cytokines (IL-7, macrophage colony-stimulating factor 1 (CSF1) or 

VEGF), chemokines (CCL21, CCL20, CXC-chemokine ligand 1 (CXCL1), CCL5, CXCL19 and 

atypical chemokine receptor 4 (ACKR4)), trafficking molecules (intercellular adhesion 

molecule 1 (ICAM1) and vascular cell adhesion molecule 1 (VCAM1)), C-type lectins, 

scavenging receptors, Fc receptors as well as TLRs [82, 83]. A strong geographical and 

molecular heterogeneity promotes diverse immunological roles for LN LECs, including the 

adequate transport of leukocytes, antigen binding and uptake, interaction with resident 

macrophages, shaping of stromal cells and BECs as well as the immune response.  

 



 

12 
 

2.3 The immune system of the skin 

 

The skin is the major focus point of this thesis. In the following parts, the functional anatomy, 

and immune cell landscape of the skin will be introduced in detail.  

 

2.3.1 The functional anatomy of the skin 

 

Histologically, murine skin does not differ much from that of other mammals. From outside to 

inside, the outer epithelial epidermis covers the connective tissue of the dermis, separated by 

a basement membrane, which in turn covers an underlying hypodermis composed of mostly 

fatty tissue. Between the hypodermis and a layer of loose connective tissue called adventitia 

are fine layers of skeletal muscle (panniculus carnosus) [84]. 

Although the epidermis is rather thin, it consists of four distinct layers (top to bottom), the 

keratinized stratum corneum, stratum granulosum (containing granules feeding the chemical 

barrier of the skin), stratum spinosum (supporting the integrity of the epidermal layer) and 

stratum basale (accommodating stem cells as well as melanin pigment). The dermis contains 

connective tissue together with blood and lymphatic vessels, hair follicles, associated adnexal 

glands and a strong innervation. The mouse ear skin specifically contains a thick layer of 

cartilage at the hypodermal / adventitial layer [84].  

Physiologically, the skin can be divided into four distinct layers or barriers (outside to inside): 

The microbiome barrier, chemical barrier, physical barrier, and immune barrier. Although 

their functions are distinct, they partly overlap.  

The outermost microbiome barrier hosts commensal bacteria, fungi, and viruses, covering all 

surface areas of the skin. The microbiome of the skin in mice and humans is unique and differs 

from the microbiome of the large intestine [85, 86]. The skin microbiome serves as a barrier 

as it actively stimulates immune cells to produce antimicrobial peptides and proteins, 

increases innate immune alertness and produces antibiotics to prevent survival of harmful, 

non-symbiotic bacteria, as shown in human studies [87-89].   

Although the second barrier, called the chemical barrier, is less defined, it is pivotal for the 

third, the physical barrier. The chemical barrier contains factors that create an acidic milieu 

and together with amino acids and their derivatives, electrolytes, urea, and lactates form the 

natural moisturizing factor of the skin [90, 91]. 
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The physical barrier is built up by the stratum corneum and incorporates a vast system of tight 

junctions. Corneocytes (cells making up the stratum corneum) are continuously built up by 

terminal differentiation of maturing and moving keratinocytes [92, 93]. Additionally, the 

granulocytes of the stratum granulosum secrete granules containing keratin filaments and 

lipids [92].  

Lastly, the immune barrier contains an armada of resident and migratory immune cells. 

Together, they maintain barrier integrity, sense PAMPs and DAMPs, initiate adequate immune 

responses and local dermal inflammations, recruit cells from the circulation and further 

contribute to barrier repair and homeostasis [94]. 

 

2.3.2 The immunological landscape of the skin 

Under steady-state conditions, the cellular composition of epidermis and dermis spans a 

variety of resident immune sentinels like DCs (and other APCs), T cells, keratinocytes, innate-

like cells, as well as adaptive tissue-resident memory cells. Together they form one unit to 

build up a functional immune system. During an inflammation or pathological conditions, 

macrophages, monocytes, mast cells, B cells, neutrophils and eosinophils become key players 

as well. 

 

2.3.2.1 Dendritic cells 

 

DCs are the major APC type in the immune system and observed in every tissue. Since DCs are 

mainly responsible for the generation of the adaptive immune response, they are vital for the 

establishment of long-term and protective immunity. DCs make up a major leukocyte 

population in the skin and are highly motile considering  they can enter the skin from the 

circulation, migrate and patrol through the ECM, and traffic into dLN via lymphatics. 

Skin DCs are a highly heterogeneous population with functionally specialized subsets. 

Ontogenetically, LCs do not belong to DCs but arise from yolk-sac derived macrophages while 

dermal DCs are closely related to conventional DCs (cDCs, henceforth named as dermal cDCs), 

and derive from hematopoietic stem cells (HSC) and thus the BM. During steady-state 

conditions, LCs reside in the epidermis, whereas dermal cDCs localize in the dermis. Generally, 

DCs are phenotypically described as CD3-, CD66b-, CD19-, CD20- but MHCII+ cells, separating 

them from T cells, B cells and neutrophils. All DC subsets interact with skin-resident and –
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infiltrating immune cells during steady state and inflammation and transport cutaneous 

antigens to dLNs to initiate T cell responses. In order to fulfill their immune functions, DCs 

utilize and up-regulate a great variety of activation markers. An overview can be seen in Table 

2-1. 

 

2.3.2.1.1 Langerhans cells 

 

During skin homeostasis, LCs are the only resident APCs in the epidermis, making up for 3-5% 

of epidermal cells, and protrude their dendrites into the interstitial space of the epidermis to 

acquire antigens [95]. Murine LCs are CD11c+, LANGERIN/CD207+, epithelial cell adhesion 

molecule positive (EPCAM+), as well as CD11b+, CX3CR1+ and signal regulatory protein α 

(SIRPα)/CD172α+ [96, 97] (Table 2-1).  EPCAM is commonly used for FACS- and LANGERIN for 

immunofluorescence microscopy-based identification of LCs. LCs have a unique ontology as 

they do not need fms like tyrosine kinase 3 (FLT3) and its ligand FLT3L to develop (in contrast 

to cDCs). Instead, they require interactions with keratinocytes (see 2.3.2.3) and derive from 

macrophage progenitors via IL-34, CSF1 signaling and transforming growth factor β (TGF-β) 

[98, 99]. 

Once LCs are activated by external stimuli, e.g. UV light exposure or haptens, they reduce 

their adhesion to epithelial cells by down-regulating E-CADHERIN and start migrating towards 

LVs in the dermis [100]. Emigration from the epidermis is particularly facilitated by EPCAM 

(reduction of adhesion to keratinocytes) and CXCR4/CXCL12 interaction [96, 101]. 

Additionally, IL-1β, IL18 and tumor necrosis factor (TNF) secreted from keratinocytes are 

described to be important as Il1b−/− and Tnfr2−/− mice show decreased hapten-induced 

migration [102-105]. Within the dLN, LCs primarily initiate tolerogenic immune responses and 

promote the activation of T helper 17 (TH17) cells. The migration of LCs through the ECM and 

into LVs is explained in more detail in 2.4.2. In this thesis, LCs are defined as MHCIIhigh, 

CD11chigh, EPCAM/LANGERIN+ and CD103-. 

 

2.3.2.1.2 Skin conventional dendritic cell 1 and 2 

 

Skin cDCs can be divided into cDC1s, cDC2s and double-negative (DN) cDCs, exclusively found 

in the skin, whereas cDC1s and cDC2s are found across all lymphoid tissues. In skin, cDCs are 

restricted to the dermis. The major focus of this thesis lies on cDC1 and cDC2. 
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In contrast to LCs, skin cDC1s, cDC2s and DN cDCs are derivatives of BM HSCs and make up 

the majority of DCs. In general, the development and differentiation of cDC1 and cDC2 is 

rather complex. Throughout development, cDCs share the same progenitors until they diverge 

into cDC1 and cDC2. Two of the major growth factors involved in their development are FLT3L 

and CSF2 [97]. One important protein to be mentioned here is C-type lectin domain family 9 

member a (CLEC9a) also known as dendritic cell natural killer lectin group receptor-1 (Dngr-1), 

which is a phenotypic marker of common cDC progenitor cells [106]. CLEC9a expression is 

preserved in cDC1s, whereas cDC2s lose CLEC9a expression during development [107]. This is 

particularly important for the mouse model of EYFP;Clec9acre-Bmal1flox/flox used here. Due to 

the nature of cDC development, it is possible to only target cDCs and not LCs or macrophages 

by using the promotor of Clec9a [107]. 

 

CDC1s are characterized as X-C motif chemokine receptor 1 (XCR1)+, CLEC9a+, cell adhesion 

molecule 1 (CADM1)+, TLR3+, CD141+, CD11c+ and interferon regulatory factor 8 (IRF8)+ [108] 

(Table 2-1). Moreover, they are positive for CD103, which is a marker frequently used for 

identification in flow-cytometric analyses. One of the major differences between dermal 

cDC1s and lymphoid tissue cDC1s is the expression of CD103 instead of CD8α [109]. cDC1s are 

highly mobile and have a high turnover rate, rapidly migrating into the T cell zone of the LN 

[110]. Although cDC1s are not as efficient as cDC2s in activating CD4+ T cells in the LN [111], 

they are adroit in the presentation of soluble exogenous and cell-associated antigens on MHCI 

proteins, a process called cross-presentation or cross priming [112]. This is particularly 

important in herpes simplex virus-1, influenza virus or vaccinia virus infections [113-116]. It 

has also been shown that cDC1s are more efficient in priming CD8+ T cells due to their 

expression of XCR1, the receptor of XCL-1 expressed by memory CD8+ T cells, and initiating 

TH1 immune responses [117]. Notably, a lot of knowledge is missing on dermal cDC1s, as the 

majority of knowledge derives from CD8α+ cDC1s. 

 

cDC2s are the most common population of dermal DCs. cDC2s are described as IRF+, CD11b+, 

CX3CR1+, SIRPα+, CCR2+ and CD11c+ [97] as well as negative for CD64, proto-oncogene 

tyrosine-protein kinase MER (MERTK) and Ly6C to allow absolute discrimination from 

macrophages and monocytes [118] (Table 2-1). In contrast to cDC1s, cDC2s co-express many 

genes associated with monocyte-derived DCs and their transcriptome is less unique [119]. 

However, this might be due to unresolved heterogeneity within cDC2s. Whereas cDC1s 

specifically migrate into the T cell zone, cDC2s are particularly described in the lymphatic 

sinusoids within the LN [120]. Functionally, cDC2s are specialized for detection of pathogens 
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within the cytoplasm, express a broad range of TLRs (except for TLR3 and TLR12) and are the 

only murine cDC subset expressing TLR7 [121, 122]. Furthermore, they seem to be involved in 

chemo-attraction, as they continuously express macrophage inflammatory protein 1 α/β 

(MIP1 α/β) and CCL5, especially after exposure to TLR7 and TLR9 agonists [123]. In addition, 

cDC2s are better in CD4+ T cell priming due to more efficient MHCII presentation and promote 

TH2 immune responses [124, 125]. Given these data, more knowledge is required on dermal 

cDC2s, as most of the studies have focused on non-dermal cDC2s. 

 

Finally, the mouse dermis contains a very minor population of DCs, which has been 

phenotyped as XCR1−, CD11blow (coining the name ‘double-negative’) LANGERIN−, CD11clow-int, 

CD103low, CD301b−, EPCAMlow, CD64−, SIRPα+, and CX3CR1+ [97]. This population is not 

described in any other mouse tissue than the skin and does not have a human homolog. 

Studies have shown that they are critical in a contact hypersensitivity response after 

administration of the agent dibutyl phthalate on the skin [110]. 

 

In this thesis, skin cDC1s and cDC2s are defined as MHCIIhigh, CD11chigh, EPCAM-/LANGERIN- 

and CD103+/- (respectively). DN DCs are not investigated in this study. 
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Protein Function LC cDC1 cDC2 Ref 

CD103 
αEβ7 integrin, binding E-CADHERIN, 
adhesion 

- + - 
[108, 
126] 

XCR1 Chemokine receptor, CD8+ T cell activation - + - 
[108, 
117] 

CLEC9a 
Antigen cross-presentation, dead cell 
receptor, binds F-ACTIN 

- + - 
[108, 
127] 

CD11b CD18 binding integrin, adhesion, migration  + - + 
[108, 
128] 

LANGERIN Anti-viral immunity, pathogen binding + - - 
[108, 
129] 

CD301b Antigen presentation, CD4+ T cell activation -/+ - + 
[124, 
125] 

SIRPα Docking SHP-1 & SHP-2, migration + - + 
[97, 
130] 

CCR2 Chemotaxis to inflammatory sites - - + [97] 

F4/80 T cell activation and peripheral tolerance + - + 
[97, 
131] 

EPCAM 
CLAUDIN, CADHERIN and general junctional 
interaction 

+ - - 
[96, 
100] 

CX3CR1 CX3CL1 receptor, inflammation, chemotaxis + - + 
[97, 
132] 

CCR7 CCL21/19 receptor, chemotaxis + + + 
See 

2.4.2.1 

CD24 CD4+ T cell activation + + - 
[133, 
134] 

CD205 
Cross-presentation, dead cell receptor 
antigen uptake 

+ + + 
[133, 
135] 

CD80 Costimulatory molecule T cell activation + + + [136] 
CD86 Costimulatory molecule T cell activation + + + [136] 
Table 2-1: Activation and migration markers of dermal dendritic cells 
Role and function of molecules in dendritic cell migration through skin lymphatics. LC= Langerhans cell, 
cDC1/2= conventional dendritic cell 1/2. All other abbreviations are explained in text. 

 

2.3.2.2 T cells 

 

The majority of T cells found in the skin are resident (epidermis and dermis), but to a lesser 

extend recirculating and adaptive T cells can also be found in the dermis: resident γδ T cells 

and CD8+ resident memory T (TRM) cells line the stratum spinosum of the epidermis (only in 

mice) and upper layers of the dermis. Less CD4+ TRM are found in the dermis together with 

circulating CD4+ and CD8+ T cells (TCM). In general, T cells are defined as CD3+ cells. γδ T cells, 

also known as dendritic epidermal T cells (DETCs; only in mice) have a T cell receptor (TCR) 

with a single antigenic specificity [137]. It is believed that γδ T cells in the epidermis are 
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representing a primitive and limited adaptive immune system that is replaced by TRM over 

time after accumulating antigenic pathogen contacts. Albeit their inability to recognize 

peptides bound to MHC molecules [138], they are activated by stress proteins and can secrete 

IL-17 to activate other immune cells further downstream [139, 140].    

In comparison to γδ T cells, CD8+ TRM are better understood. One unique feature of CD8+ TRM 

throughout the body is that the core gene expression signature is conserved between organs 

[141]. CD8+ TRM can directly kill virally infected cells [142] and promote an antiviral state in the 

skin by releasing type I interferons (IFNs) and thus activating keratinocytes and other skin cells 

[143]. CD4+ TRM are rapidly activated by pathogen re-challenge and promote pathogen 

clearance from the skin [144].  

In case of an inflammation, the skin is also accommodating regulatory T cells (Treg) aiding in 

the local immune response [5]. 

 

2.3.2.3 Keratinocytes and innate lymphoid cells 

 

Keratinocytes constitute a major element in the immune system of the epidermis. They are 

acting as a first line of defense against potentially harmful microbes [145] and release 

cytokines like IL-1β, IL-18, IL-6, IL-10, TNFs and under specific circumstances chemokines like 

CXCL9, CXCL10, CXCL11, and CCL20 for immune cell activation and guidance [146]. 

Furthermore, keratinocytes express TLRs, thus contributing to their role in the forefront of an 

immune response [146].  An immune response is often induced by keratinocytes as the initial 

contact with PAMPs leads to a release of cytokines activating APCs, in turn upregulating MHCII 

molecules [146]. Keratinocytes are necessary for self-renewal and existence of LCs as they 

release IL-34 and express the keratinocyte-derived integrins αvβ6 and αvβ8 compulsory for LC 

residency [147]. 

Accumulating evidence has shown that also ILCs (ILC1-3) are found in skin [148]. Skin ILC 

subsets comprise migratory ILC1-3s. ILC1s are constantly trafficking between the circulation 

and LNs promoting TH1 cell generation via IFN-y production after immunization in a CD62L- 

and CCR7--dependent manner. In contrast to this, ILC2s are resident in hypodermal areas 

whereas ILC3s are most likely residing in the epidermis [149]. 
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2.3.2.4 Other immune cells 

 

The dermal layer of the skin comprises various other immune cells, such as monocytes and 

macrophages, mast cells, neutrophils, eosinophils, and B cells.  

Skin macrophages are MHCIIint, CD115+, F4/80+, CD11b+, CSF1R+, Ly6C± (monocytes are Ly6C+, 

macrophages Ly6C-) , CCR2−, CD64+, and MERTK+ and thus just by the phenotype are similar to 

cDCs [133]. However, tracing of genetic lineage and for example specific expression levels of 

CD64 and MHCII allow for a differentiation between DCs and macrophages. Monocytes and 

macrophages closely associate with hair follicles and are pivotal to local immunity [150].  

Monocyte derived macrophages and DCs are especially important in local inflammations (e.g. 

after hapten painting) and activation of T cells [151]. More importantly, macrophages actively 

contribute to a healthy skin homeostasis by being a positive regulator in hair regeneration, 

wound repair, cancer defense, and nutritional salt balance [152].  

Mast cells play a crucial role in allergic responses and the recruitment of immune cells. 

Further they are involved in wound healing by interaction with fibroblasts [153]. Skin 

neutrophils (CD66b+) come into play during inflammatory events by phagocytosing invading 

pathogens in case of a skin barrier malfunction, releasing of neutrophil extracellular traps 

(NETs) to immobilize pathogens and releasing chemokines to recruit more neutrophils to 

inflamed sites [153]. Neutrophils also secret LAMININ 5β-3 to induce adhesion of 

keratinocytes and are involved in angiogenesis to help out in wound repair [154, 155].  

Likewise, B cells (CD19+/B220+) are involved in delayed-type hypersensitivity reactions and 

involved in cutaneous autoimmune diseases by producing skin specific autoantibodies [153]. 

 

2.4 Dermal lymphatic leukocyte trafficking 

 

The major focus point in this thesis is the migration of skin DCs through LVs, as introduced in 

the following. 

2.4.1 The skin lymphatic system 

 

The skin lymphatic system is substantial for fluid homeostasis, transport of lymph containing 

various immune cells and antigens to the dLN as well as adequate immune responses, 

vaccinations and tolerance establishment [72, 156-158]. The structure of the network is 
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dependent on the thickness of the skin [159], but in general, capillaries and collecting vessels 

are lined in the upper and lower dermis and resemble a typical shape already described  (see 

2.2.1 and Figure 2-1). Just below the epidermis, lymphatic capillaries form a network of 

draining vessels with 10-30µm in diameter (but can reach up to 70µm depending on the type 

of skin and inflammatory state) [159, 160]. These capillaries then drain deeper into the lower 

cutaneous layer, forming a plexus of collecting vessels (via pre-collecting vessels) including 

intraluminal valves, a thick basement membrane and coverage of SMCs (see 2.2.1) [161]. 

These collecting LVs then merge and form large afferent LVs by decreasing their density but 

increasing their diameter in hypodermis and subcutaneous layers [159]. Finally, large 

collecting afferent LVs follow alongside arteries and eventually merge into the SCS of the dLN 

[162] (Figure 2-2). 

Dermal LECs from the lymphatic capillaries are defined as CD31+, LYVE-1+, PDPLNint,  VEGFR3+, 

CCL21high, VE-CADHERIN+ and PROX-1+; LECs from pre-collecting vessels are CD31+, LYVE-1low, 

PDPLN+,  VEGFR3inermediate, CCL21high, VE-CADHERIN+ and PROX-1+; collecting vessel LECs are 

CD31+, LYVE-1-, PDPLN+,  VEGFR3low, CCL21intermediate, VE-CADHERIN+ and PROX-1+ [35, 40, 41, 

45]. Another marker to identify the LVs of the skin is LAMININ, a structural protein in the 

basement membrane of vessels [163].  

Under homeostatic, non-inflammatory conditions and based on early cannulation studies 

conducted in sheep and healthy humans, the lymph of the skin contains numerous 

leukocytes, such as T cells (80-90%), DCs (5-15%) and in lower numbers neutrophils, 

eosinophils, basophils, monocytes, and B cells [164-166].  The T cell fraction can be divided 

into effector/memory CD4+ TEMs (majority), CD4+ Tregs (approximately 20%, numbers increased 

during inflammation) and CD8+ T cells (minority), as demonstrated using adoptive transfers of 

naïve lymphocytes and transgenic mice expressing photo-convertible proteins like Kaede or 

Kikume [167-173]. Interestingly, and in contrast to the studies presented above, in laboratory 

mice equal percentages of DCs and T cells migrate to the dLN [167]. This is likely due to 

housing within an almost-pathogen free and sterile environment, leading to general antigen-

inexperience and thus, lower numbers of CD4+ TEMs [174].  

Herein, the focus of lymphatic trafficking is set onto DCs only. In general, trafficking of T cells 

and neutrophils through lymphatics is less well described, but has been concisely reviewed by  

Schineis and colleagues [175]. 
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2.4.2 Dendritic cell migration through skin lymphatic vessels 

 

In the past 20 years, the majority of the current understanding of DC trafficking has been 

established. Despite major efforts and great studies, the migration cascade is only now 

starting to be understood.  

In summary, the DC trafficking cascade can be divided into interstitial migration, LV entry via 

adhesion and transmigration, intralymphatic crawling, and the passive transport for entering 

the dLN.  

Except for passive transport in large collecting vessels, DCs rely on specific molecules involved 

in chemotactic guidance, and cell to cell contact. The current knowledge is largely based on 

either (time-lapse) imaging and flow-cytometric analyses of ear explants (crawl-in assay or 

crawl-out assay, see 3.2.4 or 3.2.5.1) or adoptive transfers of DCs into the skin and dLN [22, 

176]. Together they could show, that DCs first actively migrate through small pores within the 

ECM of the skin [177]. They are guided by chemotactic cues to be able to reach capillaries 

[178]. Surpassing the flap valves of LECs, they first adhere to LECs and then transmigrate into 

the lumen of the vessel. Once intraluminal, DCs crawl back and forth on the inner wall of LECs, 

until they eventually enter the collecting vessels [179]. With the help of pressure gradients, 

the secondary valves and contractions, the DCs are then passively transported to the dLN 

[180, 181] (Figure 2-3). The current state-of-the-art research investigating proteins involved in 

DC migration to dLN via LVs is summarized in Table 2-2. 

 

2.4.2.1 Interstitial migration  

 

In order to migrate through LVs, DCs first need to arrive at the lymphatic capillary and become 

activated. To overcome a dense environment of heparin sulfate proteoglycans, hyaluronan 

(HA), fibronectin and type I collagen fibrils, DCs perform an amoeboid migration pattern [182-

184]. Under steady-state conditions, DCs migrate through the ECM with a speed of 

approximately 4µm/min [185] and require about 1h for up to 100µm to navigate to a 

lymphatic capillary from the point of initial mobilization [186]. The number of DCs migrating 

towards lymphatics is considerably low at steady-state. However, under inflammatory 

conditions such as contact hypersensitivity the amount and speed of trafficking DCs is 

increased. This is due to keratinocyte-mediated activation of resident DCs via released 

prostaglandins, cytokines and leukotrienes [186, 187]. Additionally, inflammation also causes 
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increased interstitial fluid flow, accelerating the DC movement. Nevertheless, the interstitial 

migration appears to be random, unless a chemokine gradient has been reached [178]. 

Once the DC is activated, it relies on chemotactic guidance to reach the lymphatic capillary. To 

date, only a few chemokines and respective receptors have been functionally described to be 

involved in the DC guidance and migration within the skin: CCR7/CCL21/CCL19, ACKR4, 

CXCL12/CXCR4 as well as CX3CL1/CX3CL1R (Table 2-2). 

The chemokine CCL21 (and its receptor CCR7) is by far the best-studied molecule in skin 

lymphatic trafficking. CCR7 is upregulated on maturing DCs [188], whereas CCL21 is 

continuously expressed and released from LECs [189, 190], with higher expression in 

capillaries than in collecting vessels [179]. Genetic ablation of CCR7 and antibody-mediated 

blockade of CCL21 led to a stark reduction of lymphatic DC migration, proving its importance 

[191-193]. The positively charged C-terminus of CCL21 is bound to heparan sulfate-containing 

glycosaminoglycans present in the ECM and on the surface of LECs [194, 195]. Due to this and 

to continuous release, CCL21 forms a haptotactic, interstitial gradient, radiating around LVs 

with a maximum length of 80µm [178]. In contrast to other chemotactic gradients, CCL21 is 

built up exponentially, which is uniquely sensed by DCs [178]. Upon binding to CCR7, CCL21 

increases the activation state of DCs directing the amoeboid movement through a complex 

environment and intensifies both the actin polymerization through small GTPases Ras-related 

C3 botulinum toxin substrate 1 and 2 (RAC1/2) and the nuclear contraction via the RHO 

associated kinase ROCK [177, 185, 196].  

In mice, CCL21 exists in two forms, CCL21-Leucine and CCL21-Serine (due to its two genes 

Ccl21a and CCl21b/c). Experiments with paucity of LN T cells (Plt−/−) KO mice could show, that 

CCL21-Leucine is mainly expressed by peripheral LVs, whereas CCL21-Serine by e.g. LN LECs 

[197, 198]. CCL21 is stored in the Golgi network of the LEC before release [199]. Besides its 

continuous release, CCL21 is immediately secreted upon docking of DCs onto LECs due to 

enhanced Ca2+ signaling and in turn boosts the activation of transmigrating DCs [199]. DCs can 

proteolytically cleave off the positively charged C-terminal of CCL21, which increases the 

solubility of CCL21 and leads to a stronger recruitment of DCs, but this has only been shown 

in-vitro [200] (Figure 2-3).  

In contrast to CCL21, CCL19 is not expressed by LECs but by DCs playing only a minor role in 

trafficking as for example FITC-painting on CCL19−/− ears did not reveal any DC migration 

defects through dermal LVs [201]. Other chemotactic pathways like ACKR4, CX3CL1 or CXCL12 

are either involved in sequestering CCL19 to inhibit sensitization of CCR7 receptors or 

upregulated during inflammation to increase DC chemotaxis [202-206]. Dermal LECs also 

produce other chemokines and receptors, such as CCL26, CXCL1 or CXCR1, but these are 
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either utilized by other immune cells or functional studies about their impact on DC trafficking 

in the skin are lacking, which is why they are not further described here [206]. 

Before DCs can adhere to LECs, they need to migrate through a porous basement membrane. 

1µm pores within the basement membrane can be extended to 2µm making enough room for 

transmigrating DCs. Additionally, small deposits of CCL21 within these pores aid DCs to 

ascertain correct migration via haptotaxis [22, 187] (Figure 2-3). Once the DCs have 

successfully crossed the basement membrane, they are ready to adhere to LECs and 

transmigrate into the lumen. 

Figure 2-3: The lymphatic leukocyte trafficking cascade 
(A) During interstitial migration, dendritic cells (DCs) perform an amoeboid movement towards a 
chemotactic CCL21-Leucine (Leu) gradient built-up by lymphatic endothelial cells (LECs) lining 
lymphatic capillaries (Cap.). The exponential, extralymphatic gradient has a length of approx. 80µm, is 
attached to extracellular matrix (ECM) fibrils and interacts with CCR7 on the surface of DCs. Upon 
binding of DCs, actin starts polymerizing and contractions occur, creating propulsions. 
(B) Adhesion of DCs onto LECs is initiated by interactions of CCL21, residing in the pores of the basal 
membrane (BM). Upon contact, hyaluronan (HA) on the DC surface binds to LYVE-1 on the LEC surface. 
DCs dock onto LECs, which in turn release further CCL21 aiding in DC activation. Transmigration is 
facilitated by homophilic interactions between CD31 and CD99. 
(C) Within the lumen of capillaries, DCs follow an intraluminal gradient of CCL21-Leu and bind 
molecules like PODOPLANIN (PDPLN) on the surface of LECs with CLEC2. Crawling of DCs on the luminal 
surface occurs bi-directionally. STR= stromal cell. 
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2.4.2.2 Adhesion and transmigration  

 

In contrast to leukocyte transmigration through the blood vessel (BV) endothelium, for which 

interactions between β2 integrins and their Ig superfamily counter receptors are crucial [207], 

the crossing of the lymphatic endothelium relies on a bipartite system. Early studies 

investigating the function of ICAM1 revealed a role in cDC and LC trafficking from skin to dLN 

– but only under inflammatory conditions [208]. Moreover, antibody-based blockade of 

ICAM1, VCAM1 or lymphocyte function-associated antigen 1 (LFA-1) markedly reduced 

inflammation-induced DC trafficking from the skin to the dLN [205]. On the contrary, a study 

using adoptively transferred pan-integrin−/− DCs showed no defects in steady-state migration 

into lymphatic capillaries and dLNs, which was confirmed using CD11c YFP+/VE-CADHERIN 

Cre/Rosa26 Fl RFP+ chimeric mice [177, 187]. Thus, under steady-state conditions, dermal DCs 

traffic in an integrin-independent manner, whereas during inflammation, integrins are 

important and upregulated to maximize DC recruitment [206].  

As a consequence, recent studies started out identifying trafficking markers important under 

steady-state conditions. One marker strongly expressed by capillaries is LYVE-1. LYVE-1 and its 

interaction with HA on the DC surface is vital for skin DC transmigration as pharmacological 

blockage or genetic ablation of LYVE-1 reduced transmigration of dermal DCs [41]. Employing 

superselectivity, LYVE-1 is able to only interact with HA on the DC surface but not on the ECM 

[209]. This is possible due to a high density of HA on the DC surface glycocalyx, selectively 

required for homo-dimerization and finally binding to LYVE-1 [210-212]. Further LYVE-1 is 

involved in lymphatic endothelial junctional relaxation, promoting the diapedesis of DCs [213] 

(Figure 2-3). A full list of other proteins involved in transmigration or chemotaxis is 

summarized in Table 2-2. 
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Molecules State of knowledge ST? Ref 

ACKR2 
On LECs, regulating discrimination between mature 
and immature DCs. 

+ [214] 

ACKR4 On keratinocytes, scavenges CCL19 in epidermis. + [202] 
ALCAM On hLECs, block reduces DC emigration from LVs. - [215] 

CCR7/CCL21 
DC chemotaxis by extra- and intravascular gradients, 
CCR7-/- & CCL21 blockade reduce DC migration to 
dLNs, plt-/- mice do not reduce dermal DC trafficking.  

+ 

[178, 179, 
188, 190-
193, 197, 

198] 
CCR8/CCL1 Regulation of monocyte-derived DC migration to dLN. + [216] 

CD137 
On LECs, potentiates DC transmigration by 
upregulating ICAM1, VCAM1 and CCL21, shown in-
vitro. 

- [217] 

CD31 & CD99 
Support DC adhesion and transmigration by 
homophilic interaction, shown in-vitro. 

+ [218] 

CX3CL1/CX3CL1R CX3CL1 block and deletion reduces DC traffic to dLNs. - [204] 

CXCL12/CXCR4 
DC chemotaxis by extravascular gradient, 
CXCR4 block reduces DC traffic to dLNs. 

+ [205] 

ICAM1/VCAM1 
On LECs, upregulated during inflammation & 
regulating DC migration. 

- 
[206, 208, 

219] 

JAM-A/C 
JAM-A-/- mice & JAM-C block enhance DC migration to 
dLNs. 

+ [220, 221] 

L1CAM 
On LCs and LECs during inflammation, 
Tie2-Cre;L1camfl/fl mice reduce DC migration to dLNs. 

+/- [222] 

LTR-B4 & LTR C4 
Binding to DCs, upregulate CCR7 & CCL19, enhance 
migration to dLNs. 

+ [223, 224] 

LYVE-1 
On LECs, mediates DC adhesion to LECs, Lyve1-/- & 
blockade reduces DC migration to dLNs 

+ [209] 

MMP-2 & MMP-
9 

In cDCs & LCs, block reduces LV emigration of DCs. +/- [225, 226] 

MMR-1 
On LECs, influencing migration of LCs to dLNs (not 
significant). 

+ [227, 228] 

PDPLN/CLEC2 
Less intraluminal CLEC2-/- DC crawling, reduced traffic 
to dLNs, CLEC2 initiates actin polymerization. 

+ [229] 

PGE2 
Binds to DCs, enhances migration to dLN modulating 
CCR7 signaling and MMP-9 expression. 

+ [226] 

ROCK 
In DCs, induces integrin de-adhesion, block reduces 
DC migration to dLNs 

+ [185] 

S1P1 Regulation of DC migration to dLNs. +/- [230] 

SEMA3A 
In LECs, activates nuclear contraction in DCs, DCs in 
Sema3a-/- mice reduce migration to dLNs & LV entry. 

+/- [231] 

Table 2-2: Molecules involved in dermal lymphatic dendritic cell trafficking 
ACKR= atypical chemokine receptor, ALCAM= activated leukocyte cell adhesion molecule, ICAM1= 
intercellular adhesion molecule 1, VCAM1= vascular cell adhesion molecule 1, JAM-A/C= junctional 
adhesion molecule A/C, L1CAM= L1 cell adhesion molecule, LTR= LEUKOTRIENE, LYVE-1= lymphatic 
vessel endothelial receptor 1, MMP-2 = matrix metalloproteinase-2, MMR-1= macrophage mannose 
receptor 1, PGE2= prostaglandin E2, ROCK= rho-associated protein kinase, Sema3A= SEMAPHORIN 3A, 
ST= steady state, Tie2= ANGIOPOIETIN-1 receptor tyrosine kinase. Other abbreviations are found in 
text. 
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2.4.2.3 Intraluminal crawling  

 

After successful transmigration into the lumen of LVs, DCs start relocating to the dLN. In 

contrast to blood vessels, in LVs DCs crawl bi-directionally until they eventually enter 

collecting vessels, as shown by time-lapse imaging of YFP+ tagged DCs [179]. Recent studies 

have proposed, that the intra-capillary space is more than a highway to the dLN since DCs 

have been observed interacting with T cells within the space [179] (Figure 2-3).  

The term ‘intraluminal crawling’ is based on the fact, that the movement of DCs is not or only 

partly based on passive flow and pressure gradients, but rather on protein interactions and 

chemotactic gradients, that stimulate physical propulsion of DCs. Initial capillaries are not 

contractile due to missing SMCs, have an estimated lymph flow rate of only 200-300µm/min 

(2-3 orders of magnitude slower than blood capillaries and only a bit faster than the 

interstitial flow rate) and do not provide secondary valves [185, 232, 233]. Together, these 

features do not favor passive flow. Instead, DCs follow an intraluminal CCL21 gradient 

together with interactions of proteins like PDPLN or ICAM1 on the intraluminal LEC surface 

with a speed of around 5.7µm/min [185] (Figure 2-3).  

The intraluminal CCL21 gradient is sequestered on the surface of LECs and could be rebuilt in-

vitro. During in-vitro shear stress of 0.015dynes/cm2, close to physical lymph flow rates within 

the capillary, LECs secrete CCL21 from the luminal surface, which is rebound downstream to 

form a directionally oriented gradient [179]. The functionality of this gradient was further 

evidenced by employing CCL21 blocking antibodies or CCR7-/- DCs ablating DC emigration from 

lymphatic capillaries [179] (Figure 2-3). 

Despite required flow rates, CCL21 is likely sequestered with the help of other proteins like 

PDPLN. PDPLN is expressed on the intra- and extra luminal side of skin LECs, binds CCL21 with 

a high affinity and is involved in DC trafficking, as it binds CLEC2 on the surface of DCs [45, 

229, 234]. Furthermore, Clec2-deficient DCs display decreased crawling on PDPLN+ vessels and 

reduced overall migration to dLN [229] (Figure 2-3 and Table 2-2). 

Under inflammatory conditions, proteins like ICAM1 are upregulated on the intra-luminal 

surface, promoting an accelerated DC movement, which could be pharmacologically reduced 

in an in-vitro environment [206]. As with adhesion to the outer LEC surface, the adhesion and 

retraction at the inner surface also requires ROCK [185]. Nevertheless, the intraluminal 

crawling is by far the least investigated part of lymphatic migration. 

Once the DCs have reached the collecting vessels, passive transport takes over: internal 

(contractions through SMCs) and external pressure gradients together with controlled back-

flow via secondary valves establish a passive flow of lymph. Recent observations reported by 
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Cornelia Halin (ETH Zurich, Switzerland) displayed direct trafficking of DCs into collecting 

vessels with the help of upregulated VCAM1 during inflammation (3rd Swiss vascular research 

symposium, Lucerne, November 14, 2019). This evokes the hypothesis that LVs under 

inflammation undergo a remodeling towards a venular phenotype, allowing for maximal and 

fast paced trafficking of DCs. This, however, remains to be elucidated. 

The entry of DCs into the dLN is gated by numerous proteins, chemotactic gradients and 

interactions with other immune cells but will not be discussed here. 

 

2.5 Circadian rhythms 

 

Not only are many proteins on immune cells under the control of a circadian clock, but also 

factors in different vasculatures show rhythmicity in expression. In this part, the molecular 

clock and entrainment of peripheral clocks and their influence on rhythmic leukocyte 

trafficking are discussed. 

 

2.5.1 The clock machinery 

 

The majority of organisms on this planet coordinates its behavior to daily environmental 

changes generated by the earth’s rotation. These changes include temperature, 

light/darkness and seasonal cycles. Additionally, behavior is adapted according to food uptake 

and availability. The continuous exposure to environmental cycles acts as a driving force for 

evolution and development of organisms. As a response organisms tune their metabolism and 

the immune system accordingly by establishing 24h rhythms in physiological processes [235]. 

These daily, circadian rhythms (circa diem, ‘for about a day’) impose oscillations in cells across 

many species, including fungi, cyanobacteria, plants, flies, birds and humans. Approximately 

10-20% of the mammalian genome is under direct, more than 20% under indirect, circadian 

control [236, 237]. This means, that at least 20% of genes experience a peak in expression 

once every 24h. 

This temporal programming is concerted by an intrinsic biological clock, preserved across 

different species [235]. In mice, virtually every cell contains the components of the clock 

machinery in its nucleus, including all leukocyte subsets [238]. Cells devoid of a nucleus, like 

erythrocytes, also possess a time-keeping mechanism, which, however, is driven by a 
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rhythmic redox sensing system [239, 240]. The most obvious output of this clock machinery is 

the sleep-wake cycle, but also many other aspects of the mouse are influenced, such as 

locomotor activity, body temperature, cardiovascular and digestive system as well as 

endocrine and immune system [241-243]. It is possible that these biological clocks evolved a 

billion years ago as a response to potential damage through ionizing radiation and oxidative 

stress during exposition of single-stranded nucleic acids, e.g. during cell division [244]. This 

might be supported by the fact that DNA excision repair is tightly controlled by the molecular 

clock as well [245].  

The central circadian pacemaker, or central clock, is located in the suprachiasmatic nucleus 

(SCN) in the hypothalamus, consists of around 20,000 nerves [246] and entrains the 

peripheral clocks via endocrine and systemic cues [238, 247]. The SCN receives direct light 

input from the retina and resides above the optic chiasm, allowing it to translate the light 

information from the solar cycle into biological rhythms; it is furthermore resistant to phase 

perturbations from internal cues [238, 247]. Both the peripheral and central clocks work cell-

autonomously. Yet, the interaction between both is required for synchrony. This synchrony is 

vital as otherwise oscillations in peripheral clocks of multicellular organisms become 

desynchronized and flatten out over time [238].  

Essentially, both the master and peripheral clock share the same molecular architecture [248, 

249] as demonstrated in serum shock experiments on fibroblasts in an in-vitro culture setting 

[250]. The core clock components consist of intertwined oscillatory transcription-translation 

feedback loops concentrating around the transcription factor aryl hydrocarbon receptor 

nuclear translocator-like protein 1 (ARNTL) or brain and muscle ARNT-Like 1 (BMAL1, encoded 

by Arntl) and its heterodimerization partner circadian locomotor output cycles kaput (CLOCK) 

[251]. Molecularly, the clock machinery consists of at least three interlocking feedback loops 

(Figure 2-4). 

 

The BMAL1:CLOCK feedback loop. 

 

Within the nucleus, BMAL1 and CLOCK form the heterodimeric basic helix-loop-helix-PAS 

(PER-ARNT-SIM) transcription factor complex BMAL1:CLOCK, which activates the transcription 

of clock controlled genes (CCGs) by binding to respective E-boxes [251]. Two of these genes 

are the repressor genes Period 1/2/3 (Per) and Cryptochrome 1/2 (Cry). PER and CRY 

heterodimerize in the cytoplasm, form the repressor complex PER:CRY and relocate into the 

nucleus to inhibit BMAL1:CLOCK, reducing further transcription of CCGs. PER:CRY are 

degraded via ubiquitin-dependent pathways and a 24h cycle starts anew with fresh 
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BMAL1:CLOCK dimers being formed [252-254] (Figure 2-4). In addition to this, kinases (CKIα, 

CKIδ, and CKIε) and phosphatases (PP1, PP5) play an important role in PER:CRY degradation, 

nuclear movement as well as regulation of its activity, respectively [255, 256]. 

 

The REV-ERB – ROR feedback loop 

 

The second transcription-translation feedback loop is generated by the clock controlled 

transcription factors retinoid-related orphan receptors (ROR α, β, γ) and REV-ERBs (α, β; 

encoded as Nr1d1 and Nr1d2) [257, 258]. While RORs generally activate the transcription of 

BMAL1, REV-ERBs decrease the transcription rate of Bmal1 by binding to orphan receptor 

elements (ROREs) in its promoter region in a competitive fashion. This connects the first and 

second loop and fine tunes the Bmal1 transcription rate [259]. Furthermore, the REV-

ERB/ROR feedback loop delays Cry1 mRNA expression, which is critical for correct  circadian 

timing [260] (Figure 2-4).  

 

 

 

 

Figure 2-4: Components and interactions of the molecular clock 
Heterodimer BMAL1:CLOCK positively regulates the transcription of clock controlled genes like Per, 
Cry (forming the heterodimer PER:CRY), Dbp, Ror and Nr1d1/2 (REV-ERBs; REV). PER:CRY and REV-
ERBs negatively regulate Bmal1, whereas RORs positively influence Bmal1 transcription. DBP 
positively and NFIL3 negatively regulate PER transcription and are modulated by ROR/REV-ERB. These 
also delay the expression of Cry mRNA. Other abbreviations can be found in the text. 
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The DBP – NFIL3 feedback loop 

 

The third transcription-translation feedback loop comprises the albumin D-box binding 

protein (DBP), directly regulated by BMAL1 (loop 1), and repressor nuclear factor interleukin 3 

(NFIL3; also known as E4BP4), regulated via RORE elements (loop 2). Together, they act by 

binding to D-box elements and modulating the transcription of for example Per, where NFIL3 

acts inhibitory and DBP stimulating [242] (Figure 2-4).  

This tripartite system is pivotal for a functional clock with a 24h periodicity. Mutations in clock 

genes, such as PER2 (S662G), can lead to diseases and malfunctions in humans [261]. 

Moreover, disruption of the clock due to abnormal lighting or feeding behavior can induce 

pathological changes. As an example, shift work is associated with an increased risk of cancer, 

metabolic disorders and cardiovascular diseases [262-264]. 

 

2.5.2 Synergy of clocks and entrainment 

 

The major entrainment factor or Zeitgeber (from the German ‘time giver’) for the SCN is light. 

The eye is a light receptor in mammals. The SCN needs to transform this light information into 

neuronal signals and transmit it to peripheral clocks. This is possible owing to connections 

between the SCN and the hypothalamus-pituitary-adrenal (HPA) axis and autonomic nervous 

system (ANS). In turn, glucocorticoids as well as temperature act as internal Zeitgebers to 

orchestrate peripheral clocks in e.g. immune cells and vessels [238, 243, 265]. Albeit the 

humoral entrainment, feeding-related metabolic cues for clock synchronization are now 

recognized as being crucial to circadian rhythms as well. One example that is heavily 

influenced by food-uptake is the liver [266, 267]. Currently discussed other entrainment 

factors for leukocytes are reactive oxygen species (ROS) as well as the microbiota [268-270]. 

Studies have shown the influence of systemic cues on clocks within blood vessels and 

leukocytes [243, 271]; however the entrainment of the skin, whether by neuronal, thermal or 

microbial factors, remains elusive. 
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2.5.2.1 Circadian terminologies 

 

In order to fully understand the research of circadian rhythms in immunity, one needs to be 

aware of different terminologies. For a biological process to be truly circadian with an 

approximately 24h period, meaning the time from peak to peak, it is required to be 

entrainable by external stimuli and endurable in constant conditions, such as permanent 

darkness. 

In chronobiology, researchers are interested in the amplitude of oscillations, difference 

between mean and peak values, as well as the acrophase, time of the peak value, and the 

trough/nadir, time of the lowest value. To transform the environmental timing, for example 

light and darkness, into internal timing, the term ‘Zeitgeber time’ (ZT) is used. ZT contains the 

timing of an entrainment stimulus, such as light. Therefore, ZT0 is regarded as the onset of 

light and ZT6 is 6h post light onset. Consequently, it easily allows for comparison of different 

chronobiological investigations and settings across studies. An oscillation in biological 

pathways between different ZTs is described as diurnal. However, if external stimuli do not 

change, e.g. constant darkness, the term ‘circadian time’ (CT) is used, as it reflects the 

subjective time of an organism without external cues.  

Thus, under light/darkness conditions, ZTs are used to represent timing of external cues (e.g. 

ZT12 = onset of light in a 12h:12h light/darkness schedule in an animal house), whereas under 

darkness/darkness conditions, CTs are used (e.g. CT12 = the start of the subjective night, 

when the lights would have switched off). 

 

2.5.3 Circadian rhythms in immunity 

 

Already around 60 years ago diurnal rhythmicity in host responses to lethal infections and 

endotoxins were demonstrated [272]. Likewise, susceptibility to pneumococcal infection 

shows periodicity that is dependent on light/darkness and rhythmic adrenocortical secretions 

[273]. Nevertheless, it is only recently, that research has identified molecular clocks in various 

leukocyte populations and described their role in trafficking of immune cells, host-pathogen 

interactions as well as activation of both innate and adaptive immunity [242, 274]. Every 

leukocyte population examined provides a functional molecular clock, including neutrophils 

[275], monocytes and macrophages [276-278], T cells [279, 280], B cells [278], and DCs [278]. 

Their development is influenced by the molecular clock. For example, NFIL3 controls the 
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development of ILC lineages and lymphocytes like IL-17-producing CD4+ T helper (TH17) cells 

and Bmal1-/- animals show defects in B cell development [279, 281-283]. However, general 

CD4+ and CD8+ T cells are not affected in their development by the clock. 

The molecular clock may help shaping the immune responses to maximize their efficiency but 

at the same time reduce metabolic costs. First, it temporarily limits innate immunity, to 

prevent synchronous and potentially over-reactive activation. This is translated into different 

peaks and troughs in expression and release of complement factors, antimicrobial peptides, 

cytokines and chemokines as well as activation of phagocytes such as DCs [276, 284-286]. For 

example, TLR9 expression is oscillating in mice and peaking at ZT10 in macrophages and ZT16 

in B cells whereas in DCs, no rhythmicity was found [284]. Rhythmic regulation of TLRs in turn 

is immune-protective against harmful events such as sepsis [287]. Secondly, due to temporal 

expression of inflammatory genes, the immune cell clock might control the length of 

inflammatory responses to find a compromise between fast activation and over-activation of 

immune compartments. For example, genetic deletion of Bmal1 or Nr1d1 does not alter the 

peak but alleviates the trough of LPS-induced inflammatory responses in macrophages [288]. 

As another example, it was shown that CRY proteins can directly modulate the inflammatory 

NF-κB pathway [289]. On the contrary, microbial products such as LPS also disrupt the phase, 

period and amplitude of immune cell clocks, shifting basal oscillations of genes towards 

pathogen-associated transcriptional programs [276, 290]. 

In conclusion, the circadian machinery influences every arm of immunity of various organisms. 

One important aspect is rhythmic immune cell trafficking, which will be explained in more 

detail. 

 

2.5.3.1 Circadian leukocyte trafficking 

 

Another way to control the efficiency of immune responses may be to direct the localization 

of immune cells. In the past years, multiple studies have established a strong impact of the 

molecular clock on immune cell distribution and locomotion. For instance, numbers of 

leukocytes in blood show oscillations throughout the day, with leukocytes leaving the blood 

and entering tissue at the behavioral rest phase of an organism (ZT13 in mice and inverted in 

humans) [56]. This time-of-day difference can be abolished by genetic ablation of Bmal1, thus 

linking phenotype and molecular clock [56, 243, 291]. To date, there is no study published 

showing circadian rhythms in lymphatic leukocyte trafficking from skin to the dLN, however, 
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many other tissues experience rhythms in homing and egress of leukocytes from the innate 

and adaptive immune system. 

In general, leukocytes cross the endothelial wall of veins at different times, e.g. the evening in 

mice. Indeed, genes involved in the trafficking cascade like Icam1, Vcam1, Sele, Selp, Cxcl1, 

Cxcl2 and Ccl2 as well as their proteins ICAM1, VCAM1, E-SELECTIN and P-SELECTIN show 

rhythmic variation across the day [271]. He and colleagues could show that circadian rhythms 

in leukocyte trafficking in the blood system are heterogeneous across organs, with a unique 

mosaic of trafficking molecules being expressed in organ-specific BECs and leukocytes. Albeit 

the organ-specific differences, homing to organs via the blood stream is generally elevated at 

ZT13 and depends both on the clock from the microenvironment as well as the intrinsic 

immune cell clock [56]. 

Specifically, chemokines seem to be strongly regulated by the clock machinery, as this has 

been shown for different organs and cell types. Neutrophil trafficking across the organism is 

highly influenced by circadian rhythms, as their recruitment to the lung and sites of parasite 

infections as well as their overall location is temporally gated by rhythmic expression of the 

chemokines CXCL5, CXCL12 and CXCL2 [275, 290, 292]. Likewise, CXCR4 or CCL2 regulate the 

migration of inflammatory monocytes from blood to BM and sites of infection in a time-of-day 

dependent fashion [276, 293]. Oscillations of T cells in human blood have been linked to 

oscillations in CXCR4 and CX3CR1, again indicating chemokine levels to be a key output of 

circadian immune control [294]. Druzd and colleagues could prove that the cellularity of LNs 

exhibits strong circadian oscillations, with highest lymphocyte numbers at the onset of the 

night in mice [291]. This was due to time-of-day dependent homing and egress of 

lymphocytes to and from the LN. Two of the key regulatory elements found were CCL21 

(tested on high-endothelial venules) and its receptor CCR7 (tested on T cells and B cells), both 

showing a peak in their expression at around ZT7 and suggesting molecular control by Bmal1 

since CCR7 rhythmicity was ablated in T cell specific Bmal1-/- mice. Both the 

microenvironment of the organ and the cell intrinsic clock promote rhythms in trafficking. 

Lymphocyte egress via efferent LVs from LNs is highly rhythmic, with highest counts in lymph 

observed at around ZT9 due to rhythmicity in the expression of S1pr1, a key gene involved in 

egress of lymphocytes [291, 295]. Thus, chemokines are a target of the molecular clock and 

seem to be strongly affected. Rhythms in trafficking molecules including chemokines are 

summarized in Table 2-3.  

Although it was demonstrated that DCs own a molecular clock, a lot of research is lacking 

about how the molecular clock regulates DC-specific immune aspects. DCs play a major role in 

rhythmic immune responses as recently shown in parasitic worm infections. DC-specific 
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Bmal1-/- mice lost the circadian rhythmicity of humoral immune response with a dampened 

immunoglobulin production at night [296]. Additionally, circadian variations in responses to 

antigens have been observed in mice and since DCs are the major APCs in the immune 

system, this might suggest circadian control mechanisms in DC biology [297]. DCs might also 

play a role in circadian variation in vaccination and disease as highlighted in the next 

paragraphs.  

 

Protein / 
Gene 

Origin AP Ref 

CCL2 Serum, art & ven BECs, brain CT12, ZT1, 7, 6 
[271, 288, 

298] 
CCL21 LN HEV 9 [291] 
CCL5 Serum CT12 [288] 
CCR1 B, eos, IM N/A [56] 

CCR10 CD4+ N/A [56] 
CCR2 CD8+, NIM N/A [56] 
CCR3 Eos N/A [56] 
CCR4 CD8+ N/A [56] 
CCR6 B N/A [56] 
CCR7 B, CD4+, CD8+ 13 [56, 291] 

CD11a N, B, CD4+, CD8+, eos, IM N/A [56] 
CD11b NIM N/A [56] 
CD18 CD4+, CD8+ N/A [56] 
CD29 N, IM N/A [56] 
CD44 Skin & SI BECs, B, CD4+, CD8+, eos, IM, NIM N/A [56] 

CD49d N, B, CD4+, CD8+, eos 7, 9, 9, 9, 13 [56] 
CD49e IM, NIM N/A [56] 
CD49f CD8+ N/A [56] 
CD62L N 1 [299] 

CX3CR1 IM, NIM N/A [56] 
CXCL1 Serum, art & ven BECs CT12, ZT1, 7 [271, 288] 

CXCL12 BM fluid, Plasma 21, 17 [299, 300] 
Cxcl2 Art & ven BECs 1,17 [271] 

CXCR2 N N/A, 13-21 [56, 299] 
CXCR3 CD4+, eos, NIM N/A [56] 

CXCR4 N, B, CD4+, CD8+, NK, eos, IM, NIM, HSC 
13/17, 13, 13, 

13, 9, 13, 13, 13, 
13 

[56, 286, 
291, 301] 

CXCR5 B, CD8+ N/A [56] 

E-SELECTIN Liver BECs, BM, ven BECs N/A, 13 
[56, 243, 

271] 

ICAM1 
Splenic, LN, liver, SI, PPs, muscle, art & ven 

BECs 
Ø 13, 1/7, 17 

[56, 243, 
271] 

ICAM2 Thymic, liver, gut, PPs BECs Ø 13 [56] 
L-SELECTIN N, B, CD4+, CD8+, eos 1, 13, 13, 17, 17 [56] 
MADCAM LN BECs N/A [56] 

PNAd SI BECs N/A [56] 
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Protein / 
Gene 

Origin AP Ref 

P-selectin BM, thymic, splenic, ven BECs 13, N/A, 17 
[56, 243, 

271] 
PSGL-1 N, B, CD4+, CD8+, NK, eos, IM, NIM N/A [56] 
S1pr1 LN tissue 5 [291] 
S1pr3 LN tissue 5 [291] 
S1pr4 LN tissue 1 [291] 
S1pr5 LN tissue 1 [291] 

VCAM1 
Thymic, splenic, LN, lung, PPs, BM, art & 
ven BECs 

Ø 13, 1, 17 
[56, 243, 

271] 
Table 2-3: Rhythms in murine trafficking molecules & chemokines 
Comparative list of rhythmic trafficking molecules and chemokines in mice. Exact acrophases (Aps) of 
respective proteins are mentioned if stated in the publication. Italic indicates mRNA. AP shown in ZT as 
otherwise indicated. N= neutrophils, B= B cells, CD4

+
 & CD8

+
= T cells, NK= natural killer cells, eos= 

eosinophils, IM= inflammatory monocytes, NIM= non-inflammatory monocytes, HSC= hematopoietic 
stem cell, LN= lymph node, PPs= Peyer’s patches, SI= small intestine, BM= bone marrow, art= arterial, 
ven= venular, BEC= blood endothelial cell, HEV= high endothelial venule. PSGL-1= P-selectin 
glycoprotein ligand-1, other abbreviations explained in text. Ø = no organ-specific ZTs but only averages 
are given in the publication. 

 

2.5.3.2 Circadian rhythms in skin  

 

To date, there is no study examining the molecular clock of skin LECs or DCs under steady 

state. Although literature covering circadian rhythms in skin is scarce, there are studies 

showing that skin is heavily influenced by environmental factors. Mouse skin contains a 

functional molecular clock that is controlled by the SCN and feeding time [98, 302, 303]. One 

regulator of dermal clocks is melatonin [304]. It is secreted by the pineal gland in a rhythmic 

fashion, being high during the behavioral rest phase and low during the active phase [305]. 

Melatonin has been associated with suppression of skin UV damage, hair growth, wound 

healing and antitumor effects [304-306]. Collectively, this allows for the assumption that the 

immune landscape of the skin might be under circadian control.  

Although it was already shown about two decades ago that the skin expresses clock genes 

[307], time-of-day influence on the skin’s immune system is only now starting to be 

uncovered. Transcriptome analysis of total mouse skin harvested every 4h for 48h revealed a 

circadian regulation of more than 1400 genes including chemokines, pro- and anti-

inflammatory cytokines as well as anti-microbial peptides, with the majority peaking during 

the onset of the resting phase [302, 308]. Moreover, skin permeability in the stratum corneum 

is higher in the onset of the behavioral rest phase as AQUAPORIN 3 is regulated by the clock 

[309], which in turns promotes rhythms in dermal itch [310]. Generally, the epidermis harbors 
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more proliferating keratinocytes during the resting phase [311]. Finally, clock genes heavily 

influence the nature of hair follicles, even during missing influence of the SCN [312].  

Various skin immune diseases like psoriasis disease show circadian variability [313, 314] and 

genetic clock ablation might even enhance pathological skin reactions [315]. This has also 

been observed in humans, for which night-shift work increases the incidence of psoriatic 

lesions due to misalignment of clocks in the skin [316]. Another study has shown that 

abolishment of circadian rhythms changes the trafficking of APCs in skin and impaired 

hypersensitivity reactions [317]. In addition to that, researchers applied imiquimod, a TLR7 

agonist, to murine skin to dampen the rhythmicity of skin inflammation and thereby could 

show circadian control of IFN-sensitive gene expression in skin [318]. 

Uncovering and examining the molecular clock of skin immune cells and vessels might aid in 

chronotherapy and timed vaccination strategies, as the skin is one of the major sites for 

vaccinations. 

 

2.5.4 Chronotherapy and the benefit of rhythms in immunity 

 

Scientists currently try to decipher how genetic or environmental disruption of the clock can 

translate into or exacerbate pathological conditions as outlined in many animal models and 

human studies [313, 316, 319-321].  It is well known in humans that diseases like asthma, 

rheumatoid arthritis, acute myocardial infarction and ventricular arrhythmias as well as acute 

coronary syndrome show time-of-day variation in occurrence, symptoms and disease markers 

[322-326]. Many studies investigating chrono-immunotherapy are arising from this, e.g. 

administration of drugs at specific times during the day. Notably, numerous drugs used in 

treatment of inflammatory, metabolic, neurologic and cancerous diseases influence clock 

controlled targets [327].  

More and more studies are initiated testing the timed delivery of vaccines. For vaccination, a 

functional lymphatic system and trafficking of dermal DCs are required. One study revealed 

that morning vaccination yields an enhanced antibody-response in comparison with afternoon 

vaccination in a cluster-randomized human trial [328]. Another recent study testing the anti-

tuberculosis vaccine Bacillus Calmette-Guérin pointed towards higher effectivity of 

vaccination in the morning. This circadian influence on vaccination efficacy could even be 

extended to very preterm infants and non-mammalian animals [329, 330]. Less knowledge 

exists on how the immune system creates such time-of-day differences. CD8+ T cells seem to 



 

37 
 

be heavily involved as administration of vaccine during the day leads to a stronger and more 

efficient activation as well as proliferation during the day compared to the night [331]. 

Unfortunately, there are no circadian vaccination studies available surveying the skin DC 

trafficking. 

Taken together, a better understanding of the molecular clock of DCs and the lymphatic 

system would be of great benefit for the chronotherapeutic targeting of diseases as well as 

novel approaches such as timed vaccination and therapies. 

 

2.6 Objective & aims 

 

Within this thesis, I aim to decipher how the molecular clock of the lymphatic system and to 

lesser extent of the dermal DCs are influencing rhythmic dermal lymphatic leukocyte 

trafficking. This is accomplished by the following aims: 

 

1. Establishment of ex-vivo crawl-in trafficking assays as well as visualization of LECs and 

DCs. 

2. Demonstration of rhythmic DC trafficking into initial skin lymphatic capillaries. 

3. Assessment of the dermal LEC intrinsic clock by measuring rhythmic RNA and protein 

expression in LECs. 

4. Analysis of the dermal DC intrinsic clock functionality.  

5. Survey of functional rhythmic trafficking molecules and chemokine micro-patterning 

in skin. 

6. Establishment of genetic clock ablation and scrutinizing the molecular link between 

DC clock, LEC clock and rhythmic trafficking in skin. 
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 Materials and Methods 3

3.1 Materials 

3.1.1 Buffers and media 

Buffer / medium Supplements Application 

R10 – RPMI 1640 

10% FCS (heat-inactivated) 
20mM penicillin & 
Streptomycin 
2mM L-glutamine 
50µM β-mercaptoethanol 

Bone marrow-derived 
dendritic cell culture, staining 
buffer, crawl-in & crawl-out 
assay 

R10 + HEPES –  
Phenol-red free RPMI 1640 

10% FCS (heat-inactivated) 
20mM penicillin & 
Streptomycin 
2mM L-glutamine 
50µM β-mercaptoethanol 
10mM HEPES 

Live-imaging of crawl-in 
assays 

FACS buffer (PEB) 
PBS 
0.02M EDTA 
20% FCS (heat-inactivated) 

FACS 

50x tris-EDTA (TE) buffer 
2M tris 
50mM EDTA 

gDNA isolation 

50x tris-acetate-EDTA (TAE) 
buffer 

2M tris 
50mM EDTA 
1M acetic acid  

Gel electrophoresis 

Genotyping digestion buffer 

0.5mM EDTA 
0.1M tris 
0.2% SDS 
0.2M NaCl 
(pH = 8.5) 

gDNA isolation 

Table 3-1: Buffers and media 
 

3.1.2 Kits 

Kit Application Supplier Location 
GM-CSF Quantikine 
ELISA Kit 

GM-CSF producing 
hybridoma cell culture 

R&D systems 
Wiesbaden, 
Germany 

Streptavidin / biotin 
blocking kit 

IF 
Vector Laboratories 
Inc. 

Burlingame CA, 
USA 

Table 3-2: Kits 
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3.1.3 Primers 

All primers were designed using the PCR primer design tool and purchased at Eurofins 

(Munich, Germany). F= forward, R= reverse, MT= mutant, C= common, WT= wild type. 

Primer Sequence (5’ → 3’) 
Generic CRE F GCG GTC TGG CAG TAA AAA CTA TC 
Generic CRE R GTG AAA CAG CAT TGC TGT CAC TT 
Bmal1 flox F ACT GGA AGT AAC TTT ATC AAA CTG 
Bmal1 flox R CTG ACC AAC TTG CTA ACA ATT A 
Clec9acre C AAA AGT TCC ACT TTC TGG ATG ATG A 
Clec9acre WT TCA CTT ACT CCT CCA TGC TGA CG 
Clec9acre MT GGC TCT CTC CCC AGC ATC CAC A 
Prox1cre WT F GTG GAA AGG AGC GTA CAC TGA 
Prox1cre C CAC ACA CAC ACA CGC TTG C 
Prox1cre MT F GCC AGA GGC CAC TTG TGT AG 
Table 3-3: Genotyping primers 
 

3.1.4 Antibodies and staining reagents 

All antibodies used in this thesis target mouse proteins. 

3.1.4.1 Primary antibodies 

Antigen Conj. Dil. Clone Appl. Catalog # Supplier 

ALCAM PE 1:100 Polyclonal IF FAB1172P 
R&D Systems 
Wiesbaden, 
Germany 

B220/CD45R PE-Cy7 1:100 RA3-6B2 FACS 103222 
Biolegend 
London, UK 

CCL21 Biotin 1:100 Polyclonal IF BAF457 
R&D Systems 
Wiesbaden, 
Germany 

CCR7 / CD197 BV786 1:25 4B12 FACS 564355 
BD Biosciences 
Laagstraat, 
Belgium 

CD103 FITC 1:100 2E7 
IF 
FACS 

121419 
Biolegend 
London, UK 

CD103 BV480 1:50 M290 FACS 566118 
BD Biosciences 
Laagstraat, 
Belgium 

CD11b AF700 1:200 M1/70 FACS 101222 
Biolegend 
London, UK 

CD11c PE 1:100 N418 
IF 
FACS 

117308 
Biolegend 
London, UK 

CD11c APC/Cy7 1:400 N418 FACS 117323 
Biolegend 
London, UK 

CD11c BV510 1:300 N418 FACS 117337 
Biolegend 
London, UK 

CD11c APC-R700 1:200 N418 FACS 565872 BD Biosciences 
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Antigen Conj. Dil. Clone Appl. Catalog # Supplier 

Laagstraat, 
Belgium 

CD16/32 - 1:50 93 FACS 101302 
Biolegend 
London, UK 

CD19 PE-Cy5 1:200 eBio 1D3 FACS 2025768 
Thermo Fisher 
Munich, 
Germany 

CD205 PE-Cy7 1:200 205yekta FACS 
25-2051-
43 

Biolegend 
Luzern, 
Switzerland 

CD3 PE-Cy5 1:200 17A2 FACS 2132345 
Thermo Fisher 
Munich, 
Germany 

CD301b 
PerCP-
Cy5.5 

1:200 URA-1 FACS 146810 
Biolegend 
Luzern, 
Switzerland 

CD31/PECAM-1 APC 1:100 390 
IF 
FACS 

102410 
Biolegend 
London, UK 

CD31/PECAM-1 AF488 1:100 390 IF 102413 
Biolegend 
London, UK 

CD4 BV605 1:100 RM4-5 FACS 100548 
Biolegend 
London, UK 

CD40 BUV737 1:200 3/23 FACS 741749 
BD Biosciences 
Laagstraat, 
Belgium 

CD45 
PE-Dazzle 
594 

1:500 30-F11 FACS 103145 
Biolegend 
London, UK 

CD45 AF488 1:500 30-F11 FACS 103122 
Biolegend 
London, UK 

CD45 BV421 1:400 30-F11 FACS 563890 
BD Bioscience 
Heidelberg, 
Germany 

CD45 BUV395 1:300 30-F11 FACS 565967 
Biolegend 
London, UK 

CD80 BUV605 1:200 16-10A1 FACS 563052 
BD Biosciences 
Laagstraat, 
Belgium 

CD86 BUV395 1:200 GL1 FACS 564199 
BD Biosciences 
Laagstraat, 
Belgium 

CD8a APC-Cy7 1:100 53-6.7 FACS 100713 
Biolegend 
London, UK 

CD99 PE 1:100 Polyclonal IF FAB3905P 
Novusbio 
Wiesbaden, 
Germany 

EPCAM/CD326 AF647 1:1000 G8.8 FACS 118212 London, UK 

EPCAM/CD326 PE 1:200 G8.8 FACS 563477 
BD Biosciences 
Laagstraat, 
Belgium 

E-SELECTIN PE 1:100 10E9.6 IF 553751 BD Bioscience 
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Antigen Conj. Dil. Clone Appl. Catalog # Supplier 

Heidelberg, 
Germany 

GOLPH4/GPP13
0 

- 1:100 Polyclonal IF Ab28049 
Abcam 
Cambridge, UK 

GP38/PODOPLA
NIN 

PE 
1:100 
1:200 

8.1.1. 
IF 
FACS 

127407 
Biolegend 
London, UK 

ICAM1 PE 1:100 YNI.7.4 IF 116108 
Biolegend 
London, UK 

JAM-A/CD321 PE 1:100 H202-106 IF 
B100-
65340PE 

Novusbio 
Wiesbaden, 
Germany 

JAM-A/CD321 FITC 1:200 REA854 FACS 
51910285
95 

Miltenyi Biotech 
Bergisch 
Gladbach, 
Germany 

JAM-C/CD323 APC 1:100 209628 IF - 
Internal gift 
Geneva, 
Switzerland 

JAM-C/CD323 APC 1:100 209628 
IF 
FACS 

209628 
R&D Systems 
Wiesbaden, 
Germany 

KI67 PE 1:100 16A8 IF 652403 
Biolegend 
London, UK 

L1CAM PE 1:100 555 IF FAB5674P 
R&D Systems 
Wiesbaden, 
Germany 

LAMININ - 1:100 Polyclonal IF 
L9393-
100UL 

Sigma-Aldrich 
Taufkirchen, 
Germany 

LANGERIN AF647 1:100 929F3.01 IF 
DDX0362
A647-5 

Origene (Acris) 
Herford, 
Germany 

Ly6C PE 1:100 HK1.4 FACS 128007 
Biolegend 
London, UK 

Ly6G 
PerCP-
Cy5.5 

1:100 1A8 FACS 127615 
Biolegend 
London, UK 

LYVE-1 AF488 1:100 ALY7 IF 
53-0443-
82 

eBioscience 
Munich, 
Germany 

LYVE-1 DL405 1:100 ALY7 IF 
NBP1-
43411V 

Novusbio 
Wiesbaden, 
Germany 

LYVE-1 - 1:100 223322 IF 
MAB2125-
SP 

R&D Systems 
Wiesbaden, 
Germany 

MHCII/I-A/I-E BV711 1:300 
M5/114.1
5.2 

FACS 107643 
Biolegend 
London, UK 

MHCII/I-A/I-E PE/Cy7 1:1000 
M5/114.1
5.2 

FACS 107629 
Biolegend 
London, UK 

MHCII/I-A/I-E AF700 1:300 M5/114.1 FACS 107621 Biolegend 
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Antigen Conj. Dil. Clone Appl. Catalog # Supplier 

5.2 London, UK 

MHCII/I-A/I-E PE/Cy5 1:1000 
M5/114.1
5.2 

FACS 107611 
Biolegend 
London, UK 

MHCII/I-A/I-E BV650 1:2000 
M5/114.1
5.2 

FACS 107641 
Biolegend 
Luzern, 
Switzerland 

MMR1 PE 1:100 Polyclonal IF FAB2535P 
Novusbio 
Wiesbaden, 
Germany 

NEUROPILIN PE 1:100 3E12 IF 145204 
Biolegend 
London, UK 

PROX-1 APC 1:100 5G10 IF 
NBP1-
30045APC 

Novusbio 
Wiesbaden, 
Germany 

SEMA3A PE 1:100 215803 IF IC1250P 
R&D Systems 
Wiesbaden, 
Germany 

VCAM1 PE 1:100 
429 
(MVCAM.
A) 

IF 105714 
Biolegend 
London, UK 

VE-CADHERIN PE 1:100 BV13 IF 
NBP1-
43348PE 

Novusbio 
Wiesbaden, 
Germany 

Table 3-4: Primary antibodies 
 

3.1.4.2 Secondary antibodies and streptavidin 

Target Host Conj. Dilution Clone Catalog # Supplier 

Rabbit Goat FITC 1:100 Polyclonal 111-095-144 
Jackson 
Immuno 
Cambridge, UK 

Rabbit Goat Cy3 1:700 Polyclonal 111-165-144 
Jackson 
Immuno 
Cambridge, UK 

Rat Donkey AF488 1:500 Polyclonal 712-546-150 
Jackson 
Immuno 
Cambridge, UK 

Biotin Streptavidin PE 1:500 - S866 
Invitrogen 
Schwerte, 
Germany 

Biotin Streptavidin AF647 1:400 - 019-600-084 
Jackson 
Immuno 
Cambridge, UK 

Table 3-5: Secondary antibodies and streptavidin 
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3.1.4.3 Isotype antibodies 

Isotype Conj. Dil. Clone Appl. Catalog # Supplier 

Goat IgG Biotin 1:100 Polyclonal IF BAF108 
R&D Systems 
Wiesbaden, 
Germany 

Goat IgG PE 1:100 Polyconal IF IC108P 
Novusbio 
Wiesbaden, 
Germany 

Hamster IgG2, κ BV605 1:200 B81-3 FACS 563012 
BD Biosciences 
Laagstraat, 
Belgium 

Human IgG1 FITC 1:200 RTK2758 FACS 
130-113-
437 

Miltenyi Biotech 
Bergisch 
Gladbach, 
Germany 

Human IgG1 APC 1:200 REA-293 FACS 
130-113-
434 

Miltenyi Biotech 
Bergisch 
Gladbach, 
Germany 

Rat IgG1, κ PE 1:100 
E3-34 
(RUO) 

IF 553925 
BD Biosciences 
Heidelberg, 
Germany 

Rat IgG2a BV786 1:25 R35-95 FACS 563335 
BD Biosciences 
Laagstraat, 
Belgium 

Rat IgG2a, κ PE 1:100 RTK2758 IF 400508 
Biolegend 
London, UK 

Rat IgG2a, κ BUV395 1:200 R35-95 FACS 563556 
BD Biosciences 
Laagstraat, 
Belgium 

Rat IgG2a, κ BUV737 1:200 R35-95 FACS 612760 
BD Biosciences 
Laagstraat, 
Belgium 

Rat IgG2a, κ PE-Cy7 1:200 R35-95 FACS 552784 
BD Biosciences 
Laagstraat, 
Belgium 

Rat IgG2a, λ 
PerCP-
Cy5.5 

1:200 R35-95 FACS 552784 
BD Biosciences 
Laagstraat, 
Belgium 

Rat IgG2b, κ PE 1:100 RTK4530 IF 400608 
Biolegend 
London, UK 

Table 3-6: Isotype control antibodies 
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3.1.4.4 Neutralization antibodies 

Target Host IG Conc. Clonality Catalog # Supplier 

CCL21 Goat IgG 20µg/ml Polyclonal AF457 
R&D Systems 
Wiesbaden, 
Germany 

Isotype 
control 

Goat IgG 20µg/ml Polyclonal AB-108-C 
R&D Systems 
Wiesbaden, 
Germany 

CD99 Rabbit IgG 30µg/ml Polyclonal 
Gift from 
Dietmar 
Vestweber 

MPI Molecular 
Biomedicine, 
Münster, 
Germany 

Isotype 
control 

Rabbit IgG 30µg/ml Polyclonal AB-105-C 
R&D Systems 
Wiesbaden, 
Germany 

JAM-
A/CD321 

Rat IgG2b 30µg/ml BV1 MABT128 

Sigma-Aldrich 
Taufkirchen, 

Germany 

Isotype 
control  

Rat IgG2b 30µg/ml 141945 MAB0061 
R&D Systems 
Wiesbaden, 
Germany 

JAM-C Rat IgG2a 30µg/ml H33 
Gift from 
Prof. Beat 
Imhof 

University of 
Geneva, 
Geneva, 
Switzerland 

Isotype 
control 

Rat IgG2a 30µg/ml 54447 MAB006 
R&D Systems 
Wiesbaden, 
Germany 

LYVE-1 Rat IgG2A 30µg/ml 22322 
MAB2125-
100 

R&D Systems 
Wiesbaden, 
Germany 

Isotype 
control 

Rat IgG2A 30µg/ml 54447 MAB006 
R&D Systems 
Wiesbaden, 
Germany 

CD31 Rat IgG2A 30µg/ml MEC13.3 
NB600-
1475 

Novusbio, 
Wiesbaden, 
Germany 

Isotype 
control 

Rat IgG2A 30µg/ml 54447 MAB006 
R&D Systems 
Wiesbaden, 
Germany 

Table 3-7: Neutralization antibodies 
All neutralization bodies are NA/low for endoxotin. 
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3.1.5 Chemicals and reagents 

Chemical / reagent Supplier Location 
5x GoTaq Flexi Promega Madison WI, USA 
Agarose Biozym Scientific Oldendorf, Germany 
Buprenorphine / Temgesic Indivior UK Limited Hull, UK 
CellTrace Violet Thermofisher Darmstadt, Germany 
Collagenase IV Sigma-Aldrich Taufkirchen, Germany 

Corn oil Sigma-Aldrich Taufkirchen, Germany 

CountBrightTM absolute counting 
beads 

Life Technologies Darmstadt, Germany 

DAPI Biolegend London, UK 

dATP, dCTP, dGTP, dTTP 
nucleotides 

Promega Madison WI, USA 

Dispase II Sigma-Aldrich Taufkirchen, Germany 

DNAse I AmbionTM Life Technologies Darmstadt, Germany 

EDTA Life Technologies Darmstadt, Germany 

Absolute ethanol for molecular 
Biology 

AppliChem Darmstadt, Germany 

FastGene 11bp DNA Marker Nippon Genetics Düren, Germany 

FastGene Optima PCR HotStart Nippon Genetics Düren, Germany 

FCS  Life Technologies Darmstadt, Germany 

GoTaq Hot Start Promega Madison WI, USA 

Heparinase II & IV Sigma-Aldrich Taufkirchen, Germany 

HyPureTM Molecular Biology Grad 
Water (nuclease-free) 

GE Healthcare 
LifeSciences 

South Logan, Utah, USA 

Isoflurane CP-Pharma Burgdorf, Germany 

Isopropanol (Propan-2-ol) Applichem Darmstadt, Germany 

Ketamine Medistar Munich, Germany 

L-glutamine Sigma-Aldrich Taufkirchen, Germany 

Lipopolysaccharide (LPS) from 
Escherichia coli 

Sigma-Aldrich Taufkirchen, Germany 

Magnesium Chloride (MgCl2) Promega Madison WI, USA 

mCCL21 Peprotech Hamburg, Germany 

Murine GM-CSF In house produced Martinsried, Germany 

Midori Green Advance Nippon Genetics Düren, Germany 

Normal Goat Serum Sigma-Aldrich Taufkirchen, Germany 

OCT compound Sakura Finetek 
Alphen aan den Rijn, 
Germany 

Paraformaldehyde solution 4% in 
PBS (PFA) 

ChemCruz Heidelberg, Germany 

PBS 
Apotheke Klinikum 
Universität München 

Munich, Germany 

Pen/Strep Sigma-Aldrich Taufkirchen, Germany 

Proteinase K Life Technologies Darmstadt, Germany 

RPMI Gibco Darmstadt, Germany 

SDS 10% Sigma-Aldrich Taufkirchen, Germany 

Sodium Chloride (NaCl2) Sigma-Aldrich Taufkirchen, Germany 

Tamoxifen Sigma-Aldrich Taufkirchen, Germany 
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Chemical / reagent Supplier Location 
Tris AppliChem Darmstadt, Germany 

Triton-X100 Sigma-Aldrich Taufkirchen, Germany 

Trizol-LS Qiagen Hilden, Germany 

Xylazine / Rompun Bayer vital GmbH Leverkusen, Germany 

β-mercaptoethanol (β-me) Gibco Darmstadt, Germany 
Table 3-8: Chemicals and reagents 
 

3.1.6 Utilities 

Utility Supplier Location 
24-well plates Thermo Fisher Scientific Darmstadt, Germany 
Petri dish (4cm, 6cm and 10cm) Corning Kaiserslautern, Germany 
Surgery utilities Fine Science Tools Heidelberg, Germany 
Modelling Clay Städtler Nürnberg, Germany 
Cover glass Thermo Scientific Darmstadt, Germany 
Tissue Slide Thermo Scientific Darmstadt, Germany 
1.5ml & 2ml microfuge tubes Eppendorf Hamburg, Germany 

1ml, 2ml and 10ml syringes BBraun and Terumo 
Melsungen, Germany and 
Shibuya City, Japan 

15ml and 50ml Polypropylene 
conical centrifuge (falcon) tube 

Falcon / Fisherscientific Darmstadt, Germany 

Needles for injection BD Microlance Heidelberg, Germany 
40µm and 70µm strainer Fisherbrand Darmstadt, Germany 
1ml, 200µl, 20µl and 2.5µl pipette 
tips 

Starlab Hamburg, Germany 

Cryomold Tissue Tek Sakura Staufen, Germany 
S35 microtome blade Feather / Cellpath Ltd Newtown, UK 
Cell culture filter 50ml and 500ml Sigma-Aldrich Taufkirchen, Germany 
5ml FACS tubes w/o filter Falcon Darmstadt, Germany 
Cryotubes Thermo Fisher Scientific Darmstadt, Germany 
Table 3-9: Utilities and materials 
 

3.1.7 Machines 

Machine Supplier Location 
Gallios flow cytometer Beckmann Coulter Krefeld, Germany 
Light / Darkness cabinet (small) Parkbio Gaveland, MA, USA 
Light / Darkness cabinet (large) Tecniplast Buguggiate, Italy 
Mastercycler Epgradient S Eppendorf Munich, Germany 
NanoDropTM 2000 Life Technologies Darmstadt, Germany 
Coulter Z2 (cell counter) Beckmann Coulter Krefeld, Germany 
PowerPac Basic (for gel 
electrophoresis) 

BioRad Munich, Germany 

Electrophoresis chamber BioRad Munich, Germany 
ThermoMixer F1.5 Eppendorf Munich, Germany 
Vortex Genie 2 Scientific Industries Munich, Germany 
UVP Minidizer Oven AnalyticJena Jena, Germany 
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Machine Supplier Location 
Heraeus Multifuge X3R Thermo Fisher Scientific Munich, Germany 
Cryotom CM3050 S Leica Wetzlar, Germany 

Cell culture incubator Galaxy 170S 
New Brunswick 
(Eppendorf) 

Munich, Germany 

Bright-field microscope (cell 
culture) 

Leica Wetzlar, Germany 

Gel imaging chamber INTAS Science Imaging Göttingen, Germany 
Mastercycler nexus Eppendorf Munich, Germany 
Minicentrifuge Eppendorf Munich, Germany 
Spinning disk confocal microscope Zeiss Jena, Germany 
LSRFortessa BD Heidelberg, Germany 
Gallios flow-cytometer  Beckmann Coulter Munich, Germany 
FACSAriaIIIu BD Heidelberg, Germany 

Isoflurane chamber 
Groppler 
Medizintechnik 

Deggendorf, Germany 

Table 3-10: Machines 
 

3.1.7.1 Microscope & flow-cytometer configurations 

Flow-cytometer 
Excitation laser 

[nm] 
Fluorescence 

channel 
Default filter Filter range [nm] 

Gallios flow-
cytometer 

405 
9 

10 
450/50 
550/40 

425-475 
530-570 

488 

1 
2 
3 
4 
5 

525BP 
575BP/26 

620/30 
695/30 
755LP 

xxx-550 
562-588 
606-635 
680-710 

>755 

633 
6 
7 
8 

660BP 
725/20 
755/LP 

650-670 
715/735 

>755 

 
 

BD LSR Fortessa 
flow-cytometer 

LMU Munich 
core-facility 

 

and 
 

BD LSR Fortessa 
flow-cytometer 

Geneva core 
facility 

(diverging 
default filter & 
filter range are 

355 

1 
1 
1 
2 
2 

450/50 
380/30 
379/08 
530/30 
740/35 

425-475 
365-395 
375-383 
515-545 
723-757 

405 

3 
4 
5 
6 
7 
8 

450/40 
525/50 
610/20 
660/20 
710/50 
780/60 

430-470 
500-550 
600-620 
650-670 
685-735 
750/810 

488 
9 

10 
530/30 
710/50 

515-545 
685-735 

561 

11 
12 
13 
14 
15 

586/15 
610/20 
670/30 
710/50 
780/60 

579-593 
600-620 
655-685 
685-735 
750-810 
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Flow-cytometer 
Excitation laser 

[nm] 
Fluorescence 

channel 
Default filter Filter range [nm] 

shown in dark 
green) 640 

16 
17 
18 

670/14 
730/45 
780/60 

663-677 
708-752 
750-810 

FACSAriaIIIu 
(cell sorter) 

405 

1 
2 
3 
4 
5 
6 

450/40 
525/50 
610/20 
660/20 
710/50 
780/60 

430-470 
500-550 
600-620 
650-670 
685-735 
750/810 

488 
7 
8 

530/30 
695/40 

515-545 
675-715 

561 
9 

10 
11 

582/15 
610/20 
780/60 

575-589 
600-620 
750-810 

640 
12 
13 
14 

660/20 
730/45 
780/60 

650-670 
708-752 
750-810 

Table 3-11: Flow-cytometer configurations 
 

Microscope Objectives 
Numerical 
aperture 

Excitation laser 
[nm] 

Default 
filter 

Filter range 
[nm] 

Upright Zeiss 
Axio 

Examiner.Z1 
confocal 

spinning disk 
microscope 

5x (n-plan) 
10x (w-plan) 
20x (w-plan) 
63x (w-plan) 

0.15 
0.3 
1.0 
1.0 

405 387/11 382-391 

488 485/20 475-495 

561 560/25 552-572 

640 650/13 644-656 

10x ocular – (magnification = ocular x objective) 

Table 3-12: Microscope configurations 
 

3.1.8 Softwares 

The Matlab licence was kindly provided by the group of Dr. Tobias Bonhoeffer at the Max-

Planck Institute for Neurobiology Martinsried, Germany. 

Software Version Supplier Location 
ImageJ / Fiji 1.51n Open-Source USA 

Slidebook 6.0 
3i – Intelligent 
Imaging 
Innovations 

USA 

Matlab R2018b Mathworks USA 
Prism 7.0 GraphPad USA 
Excel  2010/2017 Microsoft USA 

Galaxy, storage platform - 
LAFUGA Gene 
Center 

LMU Munich, 
Germany 

Table 3-13: Softwares 
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3.2 Methods 

3.2.1 Animals 

 

All animals referred to as wild type animals (WT) in this doctoral thesis were male C57BL6/6N 

mice aged 6-8 weeks (or otherwise indicated) and purchased from either Charles River 

Laboratories (Sulzfeld, Germany) or Janvier labs (Le Genest-Saint-Isle, France). Genetically 

modified animals used in this work include: Cdh5-creERT2-Bmal1flox/flox (referred to as EC-

Bmal1-/-), Prox1-creERT2-Bmal1flox/flox (referred to as LEC-Bmal-/-), EYFP;Clec9acre-Bmal1flox/flox 

(referred to as DC-Bmal1-/-), Cd99-/- and Myd88-/- mice. Cdh5-creERT2 mice (B6) were 

previously obtained as a kind gift from Dr. Ralf Adams (Max-Planck-Institute for Molecular 

Biomedicine Münster, Germany) and crossbred with B6 Bmal1flox/flox mice obtained from 

Jackson Laboratories (Sulzfeld, Germany; as previously used in [56]) to be able to target blood 

and lymphatic ECs. B6 Prox1-creERT2 mice (purchased at Jackson Laboratories Sulzfeld, 

Germany) were crossbred with Bmal1flox/flox mice to obtain Prox1-creERT2-Bmal1flox/flox mice to 

specifically target LECs. B6 EYFP;Clec9acre mice were a kind gift from Dr. Barbara Schraml 

(LMU Munich, Germany) and were crossbred with Bmal1flox/flox at ENVIGO (Milano, Italy) to 

solely target cDC1 & cDC2. B6 Cd99-/- mice were a kind gift from Dr. Dietmar Vestweber (Max-

Planck-Institute for Molecular Biomedicine Münster, Germany, which was also the site of the 

experiments) and Myd88-/- mice were purchased from Jackson Laboratories. 

 

3.2.1.1 Housing & animal law regulations 

 

All animals except CD99-/- mice (14h:10h) were housed under a 12h:12h light:dark schedule 

with ad libitum access to water and food in the Core Facility Animal Models at the Biomedical 

Centre (CAM; LMU, Germany). Animals were supervised by multiple care takers and 

veterinarians. Upon each shipment, animals were given seven days to adjust to the new 

environment before experiments. All experiments were performed using age- and sex-

matched groups. All animal procedures and experiments were in accordance with the ministry 

of animal welfare of the region of Oberbayern and with the German law of animal welfare.  

Mice were always euthanized using an isoflurane chamber (>5% isoflurane) with subsequent 

dislocation of the neck. 
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3.2.1.2 Light / darkness (LD) experiments 

 

For each experiment, animals were either removed from the animal facility and directly used 

at time points indicated or placed into time shifted light cabinets to facilitate simultaneous 

experiments at different time points of the day. For each shift of 1h, animals were placed in a 

cabinet at least 1 day prior to the experiment (e.g., animals for experiments at ZT19, 2am, 

were harvested at 2pm and were thus placed into a +/- 12h shifted cycler 12 days prior to the 

experiment). 

For constant darkness experiments (to obtain information without rhythmic light influence), 

mice were kept under constant darkness conditions in red cages for at least 24h prior to 

experiments. As mice cannot perceive red light information [332], this simulated complete 

darkness. These animals were euthanized under red light. 

 

3.2.1.3 Tamoxifen treatment 

 

Cre/lox-directed gene knockout is based on the ‘floxing’ of an essential exon of the gene of 

interest with two loxP sites with ensuing expression of a recombinase Cre to excise the 

flanked exon, thus generating a null allele (or dysfunctional protein) in all cells where cre is 

active. The ligand-dependent chimeric CRE recombinases (CreER) consist of a CRE fused to 

mutated hormone-binding domains of the estrogen receptor which inhibits the release and 

function of CRE. CreER recombinases can be activated by the synthetic estrogen receptor 

ligand 4-hydroxitamoxifen (henceforth referred to as tamoxifen), allowing for temporal 

release and activation of CRE. The CreERT2 specifically contains a triple mutation 

(G400V/M543A/L544A) and is currently the best tool in the CreER utility box [333].  

To induce CRE expression, animals were given intraperitoneal (i.p.) tamoxifen injections for 5 

consecutive days at the age of 6 weeks. Prior to the injection, each mouse was weighed. For 

each 20g of mouse, 1mg of tamoxifen was injected (0.02 g/mL). Fresh tamoxifen was 

dissolved in corn oil under sterile conditions, sterile filtrated and directly used for injection 

using a 25G x 5/8 needle attached to a 1ml syringe.  Each day, the site of injection was altered 

to avoid further injuries and every injection was performed at the same time of day. Animals 

were given a recovery period of 3 weeks until the final experiment.  
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3.2.1.4 DNA isolation 

 

To obtain the genotype of Cdh5-creERT2-Bmal1flox/flox, Prox1-creERT2-Bmal1flox/flox and 

EYFP;Clec9acre-Bmal1flox/flox mice, ear clips were harvested by animal caretakers and used for 

genotyping. Biopsies were digested overnight in 200µl genotyping lysis buffer (Table 3-1) 

together with 1µl proteinase K (in total 1.5 U per sample) at 55°C while shaking at 700rpm. 

The next day, samples were thoroughly mixed, centrifuged at 4°C for 10min at 18,000 x g and 

its supernatant was transferred to a new tube containing 500µl isopropanol. Tubes were 

inverted multiple times to let the DNA precipitate and spun down at 4°C for 10min at 18,000 x 

g. The supernatant was removed and the DNA pellet was dissolved in 100µl TE-buffer (Table 

3-1) while being slowly shaken for 1h at 300rpm and 37°C. Either samples were directly used 

for polymerase chain reaction (PCR) or frozen and stored at -20°C.  

 

3.2.1.5 Genotyping PCR 

 

Cdh5cre & Bmal1, Prox1cre & Clec9acre genotyping had an individual PCR protocol. 

Consistently, 1µl of extracted DNA in TE-buffer was used. The primer concentration used was 

10µM (Table 3-3). DNA was added to the reaction mix (Table 3-14) and amplified according to 

PCR programs (Table 3-15) on a Mastercycler Epgradient S.  

 

 

Reagent 1x solution (19µl reaction vol.) [µl] 

Cdh5cre and Bmal1 reaction 
Nuclease-free H2O 8 
2x Fast gene buffer 10 

10µM F primer (1:10) 0.5 
10µM R primer (1:10) 0.5 

Prox1cre reaction 
Nuclease-free H2O 6,36 

5x Green buffer goTaqflix 4 
25 mM MgCl2 1.6 

1mM dNTP 4 
WT primer (1:10) 1 

Common primer (1:10) 1 
Mutant primer (1:10) 1 

GoTaq 0.04 
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Clec9acre reaction 
Nuclease-free H2O 7,875 

5x Green buffer goTaqflix 4 
25 mM MgCl2 1.5 

1mM dNTP  4 
WT primer (1:10) 0.5 

Common primer (1:10) 0.5 
Mutant primer (1:10) 0.5 

GoTaq 0.125 
Table 3-14: Genotyping PCR master mix 
 

Temperature [°C] Time Reaction 

Cdh5cre reaction 

95 3 mins Initial denaturation 

Start cycle 

95 20 sec Denaturation 

62 30 sec Primer annealing 

72 30 sec Polymerization 

End cycle – repeat 38x 

72 10 mins Final extension 

Bmal1 reaction 

94 3 mins Initial denaturation 

Start cycle 

94 30 sec Denaturation 

55 30 sec Primer annealing 

72 30 sec Polymerization 

End cycle – repeat 35x 

72 2 mins Final extension 

Prox1cre reaction 

94 3 mins Initial denaturation 

Start cycle 

94 15 sec Denaturation 

61.4 15 sec Primer annealing 

72 10 sec Polymerization 

End cycle – repeat 35x 

72 2 mins Final extension 

Clec9acre reaction 

94 3 mins Initial denaturation 

Start cycle 

94 30 sec Denaturation 

61.4 30 sec Primer annealing 

72 40 sec Polymerization 

End cycle – repeat 35x 

72 10 mins Final extension 

Table 3-15: Genotyping PCR reactions 
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3.2.1.6 Genotyping gel electrophoresis 

 

For visualization, 1% agarose gels including Midori Green (1:25,000) were used. 10µl of the 

PCR product were added to the agarose gel. DNA samples ran for around 30-50min 

(depending on the product) at 200V together with a 100bp DNA ladder marker (Table 3-8). 

The gel was imaged using ultraviolet light on an UV transilluminator. The respective PCR 

products and examples of genotypes can be seen below (Table 3-16 and Figure 3-1). Only mice 

that express CRE in a hetero/hemizygotic fashion (abbreviated as CRE+) or WT were used, as 

hemizygotic CRE expression is sufficient for Bmal1 excision. For Bmal1, only mice homozygotic 

for flox (fl/fl) were used. Cre negative mice were used as control mice. 

 

 

Product  Size [bp] Reaction 

CRE band 324 Cdh5cre 

Flox band 431 Bmal1 fl/fl 

WT band 327 Bmal1 fl/fl 

CRE band 160 Prox1cre 

WT band 280 Prox1cre 

CRE band 597 Clec9acre 

WT band 407 Clec9acre 

Table 3-16: Genotyping PCR product sizes 
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3.2.2 Organ harvest & surgeries 

3.2.2.1 Ear harvest 

 

Once the mouse was euthanized (see 3.2.1), the ears were freed from loose hair using 70% 

ethanol and cut off at the transition from ear to head (seen by a color change of the skin, dark 

to bright). Ear sheets were then separated into dorsal and ventral sides using blunt forceps. 

The ear was placed ventral side up and held down with one pair of forceps. The other pair of 

Figure 3-1: Genotyping gel electrophoresis 
From top to bottom: Cdh5cre, Bmal1, Prox1cre and Clec9acre reactions. Bands were size matched and 
based on this, genotypes were created. Numbers on the left indicate the size of the DNA marker. 
Results of the respective reactions can be seen in Table 3-16. 
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forceps then carefully and slowly pulled off the almost transparent uppermost layer of the 

skin. Both layers contain epidermis and dermis, the ventral side contains less cartilage and 

was always used. 

 

3.2.2.2 Bone harvest for bone marrow-derived dendritic cell isolation 

 

To harvest femur and tibia for experiments, the mouse was euthanized as described 

beforehand (see 3.2.1). Legs were released from the pelvic bone by cutting the surrounding 

skin. A straight pair of scissors was used to cut major ligaments and muscle strands. Reverse 

rotations of the bone then separated the femur from the tibia. Intact bones were further 

cleaned with tissue paper and a scalpel and immersed in 70% EtOH.  

 

3.2.2.3 Superior cervical ganglionectomy 

 

The superior cervical ganglionectomy (SCGx) surgery was performed by Dr. Chien-Sin Chen 

(LMU Munich, Germany). Prior to the surgery, mice were anaesthetized by intraperitoneal 

(i.p.) injection of ketamine (100mg/kg) and xylazine (20mg/kg). Skin on the ventral neck area 

was depilated and the whole surgery was commenced as described in [243, 334]. Briefly, a 

ventral incision of the skin was performed from the anterior tip of the sternum to the chin to 

expose the mandibular glands. These were then separated by carefully tearing apart the 

connective tissues. After separation, the carotid bifurcation of the internal and external 

carotid arteries was exposed. This bifurcation was flipped outwards to the side using a fine 

suturing threat to expose the SCG, which was then gently removed by dissection with sharp 

forceps. The incision was then closed by using fine suture threats. Animals were given a 2 

weeks recovery period until the final experiment and received pain medication 

(buprenorphine, 0.1 mg/kg, subcutaneously) twice a day for 4 consecutive days. 
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3.2.3 Cell culture 

 

Cells cultured and used for experiments in this thesis include WT and CCR7-/- bone marrow-

derived dendritic cells (BMDCs) as well as hybridoma cells for producing murine granulocyte-

macrophage colony-stimulating factor (GM-CSF).  

 

3.2.3.1 Bone marrow-derived dendritic cell culture 

 

To culture BMDCs, femur and tibia were harvested from euthanized mice as described above 

(see 3.2.2.2). Single cell suspensions were isolated from femur and tibia using a 21G needle 

attached to a small 1 mL syringe filled with PBS, quantified on a cell counter and used for 

plating 2.75x106 BM cells. BMDCs were cultured using full R10 medium (Table 3-1) 

supplemented with 20ng/ml GM-CSF.  

Depending on whether BMDCs were used for ex-vivo crawl-in live imaging or endpoint 

analysis, cells were cultured for 9 or 10 days, respectively, at 37°C and 5% CO2. On day 3, 10ml 

of R10 medium supplemented with 20ng/ml GM-CSF were added. On day 6 and 8, 10ml 

medium of the cell culture were exchanged with 10ml fresh R10 medium supplemented with 

20ng/ml GM-CSF. At day 9 or 10, all non- and semi-adherent cells were harvested and plated 

on a 6cm petri dish in R10 medium supplemented with 10ng/ml GM-CSF and stimulated with 

100ng/ml LPS for 24h.  

Viability and purity of BMDCs was tested before every experiment measuring the expression 

of MHCII and CD11c on DAPI- BMDCs. For this purpose, 1x106 BMDCs were first Fc receptor 

blocked with anti-mouse CD16/32 for 5min at RT and subsequently stained with fluorescence-

conjugated antibodies (Table 3-4 and Table 3-17) for 30min at 4°C. DAPI (0.3µM) was added to 

the cells, whose purity and viability were then analysed by flow-cytometry using a Gallios Flow 

Cytometer (Figure 3-2, Table 3-11 and Table 3-17). Viability and purity of cells were always 

greater than 94% and 80%, respectively, in every experiment. 

Antigen Fluorophore Machine 
MHCII PE/Cy5 

Gallios Flow Cytometer 
CD11c APC/Cy7 
Table 3-17: Viability and purity check of bone marrow-derived dendritic cells 
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3.2.3.2 CellTrace Violet bone marrow-derived dendritic cell stain 

 

After maturation and stimulation (see 3.2.3.1), the BMDCs were stained with CellTrace Violet 

(CTV). CTV dye was added to 1x106 cells (working concentration of 5µM, diluted in PBS) and 

incubated for 20min at 37°C in the dark, followed by 2x5min washes (300 x g and RT) using 

R10 medium. The cell concentration was then adjusted to 500,000 or 750,000 cells/ml and 

used for exogenous crawl-in assays. 

 

3.2.3.3 Granulocyte-macrophage colony-stimulating factor producing hybridoma cell culture 

 

GM-CSF producing hybridoma cells were a kind gift of Dr. Cornelia Halin. Frozen hybridoma 

cells were washed and then resuspended in 5ml R10 (day 0). Here, R10 was not 

supplemented with β-me. On day 3, 10ml of R10 were added to the cells. On day 6, cells were 

Figure 3-2: Bone marrow-derived dendritic cell culture viability and purity 
1x10

6
 bone marrow-derived dendritic cells (BMDCs) were cultured for 10 days and lipopolysaccharide 

(LPS) activated for 24h. Cells were then stained and analysed on a flow-cytometer. After single cell 
discrimination, viability and purity of CD11c

+
MHCII

+
 BMDCs were checked. In each experiment, viability 

and purity were always greater than 94% and 80% respectively. 
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transferred to a larger cell culture flask and medium with 150ml R10 (3 days incubation time 

each). On the final day, hybridoma cells were harvested and spun down at 300 x g for 5min at 

RT and the supernatant was collected. GM-CSF in the supernatant was quantified using a GM-

CSF ELISA kit according to the manufacturer’s instructions (Table 3-2). GM-CSF was then 

sterile filtered, aliquoted and frozen until further usage.  

 

3.2.4 Crawl-in assays (cell trafficking assays) 

3.2.4.1 Exogenous crawl-in assay (end-point) 

 

To identify and examine the time-of-day dependent difference in lymphatic leukocyte 

trafficking, an exogenous crawl-in assay was utilized. 

For the ex-vivo mouse ear sheet crawl-in migration assay (here referred to as exogenous 

crawl-in assay), mice were euthanized as described above (see 3.2.1). The initial protocol was 

based on [178] and then adapted for rhythmic analyses. Ears were quickly harvested (see 

3.2.2.1) and rinsed in R10 medium (Table 3-1). The ear halves were then placed in custom 

built imaging chambers and immobilized (Figure 3-3A). Around 25,000-37,500 labelled BMDCs 

(exact numbers depending on the assay) were added on top of the open ears which were 

placed in 37°C, 5% CO2 for 10-30min (WT BMDCs were incubated for 15min, CCR7-/- BMDCs 

and controls for 30min). During this incubation, BMDCs attach to the dermal tissue. After 

washing off any unbound BMDCs with PBS, the ears were completely covered with R10 

medium and incubated for 3h at 37°C, 5% CO2. Within this incubation time, BMDCs migrate 

towards LVs. 

Figure 3-3: Imaging chamber for ear whole mounts 
Imaging chambers were always assembled the day before the experiment.  
(A) The glass on top of the open ear ensures even flattening of the ear half and thus massively improves 
the imaging quality. Except for live imaging and initial incubation of added bone marrow-derived 
dendritic cells (BMDCs), the cover slip was always added for every skin whole mount. 
(B) For live imaging and initial incubation time of BMDCs, the ear was flattened using clay in an ellipsoid 
shape. The central part was then filled with R10 medium. 
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Ear sheets were then stained with different combinations of LYVE-1, CD31 or PDPLN (Table 

3-4) for 30min at RT and subsequently fixed for 1h in 4% PFA. For the end point analyses, 

staining was performed after the migration incubation, to reduce any effects of protein 

staining and possibly blocking of BMDC migration. After placing ear sheets in the custom build 

image chamber (Figure 3-3B), images were obtained using a Zeiss Axio Examiner.Z1 confocal 

spinning disk microscope (Figure 3-4 and Table 3-12). 

At least 8 images / ear sheet were taken from LVs (pre-collecting and capillaries) using a 20x 

magnification. For analysis, the number of cells outside or inside the vessels was counted 

using 3D visualization tools in Fiji and Slidebook 6.0 as well as orthogonal views and optical 

slicing (Figure 3-4). This number was then normalized to the calculated volume of the vessels. 

To calculate the volume of the vessels, an elipsoid structure of the vessels was assumed. 

  

Figure 3-4: Exogenous bone marrow-derived dendritic cell crawl-in assay 
(A) 25,000 CellTrace Violet

+
 bone marrow-derived dendritic cells (BMDCs) were added onto split ears 

& incubated for 180min at 37°C and 5% CO2. After 180min, BMDCs have localized inside the lumen of 
PODOPLANIN

+
 (PDPLN) vessels as exemplified with a 10x objective. 

(B) Higher magnification and 3D rendering visualizes BMDCs migrating into lymphatic capillaries.  
(C) Mean-fluorescence.-intensity (MFI) profiling of BMDCs enables a clear separation of BMDCs inside 
and outside of vessels. Scale bar = 100 / 50 / 10µm. 
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3.2.4.2 Endogenous crawl-in assay 

 

To analyse and better understand the time-of-day difference in endogenous dermal DC 

trafficking through LVs, an endogenous crawl-in assay was designed. For the endogenous skin 

DC mobilization and crawl-in migration assay (in this thesis referred to as endogenous crawl-in 

assay), mice were euthanized and ear halves harvested as described above (see 3.2.1 and 

3.2.2.1). After a 15min wash in R10 medium, ear sheets were stored on R10 medium dermis 

facing down at 37°C 5% CO2 for 6h or 24h in 24-well cell culture plates. During the incubation 

period, dermal DCs become mobilized and migrate towards lymphatic capillaries (see Figure 

3-5). Afterwards, ear sheets were fixed for 2h in 4% PFA and stained for CD11c and either 

LYVE-1 or CD31 for 30min at RT (Table 3-4). The number of cells in and outside the vessels as 

well as the vessel volume was then analysed as before (see 3.2.4.1, Figure 3-4B&C and Figure 

3-5). 

 

Figure 3-5: Endogenous crawl-in assay 
Ears were harvested, split and cultured dermis facing down for 0h, 12, 18h or 24h and stained for LYVE-
1 and CD11c. The longer ears were incubating on medium, the more CD11c

+
 dendritic cells migrated 

into LYVE-1
+
 lymphatic capillaries as shown using 20x and 63x magnification. Scale bars= 10 / 50µm. 
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3.2.4.3 Live imaging of exogenous crawl-in assays 

 

For live-imaging of the exogenous crawl-in assay, mice were euthanized and ear halves were 

harvested as described above (see 3.2.1 and 3.2.2.1).  

Ear sheets were then stained for LAMININ with a primary antibody for 45min in R10 medium 

at RT, followed by a secondary FITC conjugated antibody for another 45min at RT in R10 

medium (Table 3-5) prior to the assay. Ear sheets were placed in custom built imaging 

chambers (Figure 3-3), immobilized and 50,000 BMDCs in R10 medium were added on top. 

After 10min incubation at 37°C 5%, CO2, unbound BMDCs were washed off with R10 medium 

and ear halves were immersed in phenol-red free R10 supplemented with 10 mM HEPES 

(Table 3-1). Imaging in a 5% CO2 chamber at 37°C was then commenced with one 30-40µm 

deep 3D image per 120 seconds for around 60min using either 10x or 20x objectives. 

 

3.2.4.4 Short crawl-in assays with zone segmentation 

 

To decipher the role of time-of-day dependent differences in the CCL21 chemokine gradient, 

short crawl-ins with zone segmentation of the dermal interstitium were employed. Mice were 

euthanized and ears harvested as described above (see 3.2.1 and 3.2.2.1). 

37,500 BMDCs in R10 medium were cultured for 10 days, LPS activated for 24h and then 

added to the opened & immobilized ear sheets for 15min at 37°C and 5% CO2. After a wash in 

R10, sheets were incubated in either 0min, 10min, 20min, 30min, 40min, 50min or 60min. 

Immediately after the assay, sheets were washed in PBS and stained for CD31-488 at RT for 

30min. After another wash, sheets were fixed in 4% PFA for 1h and mounted for imaging using 

custom-built imaging chambers (Figure 3-3). 5 3D (20x objective) with 30-40µm depth were 

acquired / sheet and transformed into maximum z-projections. In each projection, the LVs 

were manually outlined and a binary mask and distance dependent map was generated with 

distance zones as shown in Figure 3-6 using algorithms (see 7.2). CTV+ BMDCs were counted 

and visualized as parts of total CTV+ BMDCs. 
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3.2.5 Flow cytometry 

3.2.5.1 Crawl-out assay and ear cellularity quantification 

 

To quantify and phenotype the ear cellularity and how well dermal DCs can emigrate the skin 

into medium, ears were harvested from euthanized mice as described beforehand (see 3.2.2.1 

and 3.2.1.1), weighed and placed  onto R10 medium (Table 3-1) dermis facing down for 1h to 

wash. 

After incubation, ear halves were stored on fresh R10 medium for 24h which was either plain 

or supplemented with 1µg/ml mCCL21 (henceforth described as crawl-out assay). 24h later, 

ear halves were harvested, pooled and gently digested for 20min at 37°C with collagenase IV 

(1mg/ml), DNase (0.2mg/ml) and dispase II (0.2mg/ml). If no crawl-out but direct 

quantification or phenotyping of the ear cellularity was desired, ear halves were quickly 

washed in PBS after harvest and directly digested. After digestion, cells were filtered through 

a 70µm cell strainer, washed in PBS (5min, 300 x g at RT) and resuspended in FACS buffer 

(Table 3-1). Simultaneously, the medium containing emigrated DCs was harvested, pooled, 

washed with PBS (5min, 300 x g at RT) and both the ear cell suspension and medium cell 

suspension were first Fc receptor blocked with anti-mouse CD16/32 for 5min at RT and 

subsequently stained with fluorescence-conjugated antibodies for 30min at 4°C (Table 3-4 and 

Table 3-18). DAPI (0.3µM) and full-bright counting beads were added to the cells, which were 

then analysed by flow-cytometry using either a Gallios Flow Cytometer or LSRFortessa flow-

cytometer at the LMU Munich or University of Geneva (Table 3-11 and Figure 3-7 for the 

gating strategy). 

 

Figure 3-6: Zone segmentation of the lymphatic interstitium 
Segmentation of the interstitium of lympativ vessels (LV) was performed using Matlab. A region of 
interest was drawn based on CD31 signal resembling LVs. An algorithm then segmented the space 
into 20µm contours that were used for analysis. Cells in the LV were excluded from the analysis. The 
code can be found in the appendix (see 7.2). Legend on the right is shown in µm. Scale bar = 50µm. 
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Antigen Fluorophore Experiment Machine 

CD103 FITC 

Ear cellularity WT 
animals, crawl-out 

+/- mCCL21 

Gallios flow 
cytometer 

Ly6C PE 

CD45 PE/dzl594 

Ly6G PerCP/Cy5.5 

MHCII PE/Cy7 

EPCAM AF647 

CD11b AF700 

CD11c APC/Cy7 

CD45 BUV395 

MyD88 and SCGx ear 
cellularity & crawl-

outs 

LSRFortessa flow-
cytometer LMU core 

facility 

MHCII BV711 

CD11c BV510 

EpCAM AF647 

CD103 FITC 

CD11b AF700 

Ly6C PE 

Ly6G PerCP-Cy5.5 

B220 PE-Cy7 

CD4 BV605 

CD8 APC-Cy7 

CD86 BUV395 

Ear skin  DC 
phenotyping 

LSR Fortessa flow-
cytometer University 

of Geneva core 
facility 

CD40 BUV737 

CD45 BV421 

CD103 BV480 

CD80 BV605 

MHCII BV650 

CCR7 BV786 

CD321 FITC 

CD301b PerCP-Cy5.5 

EpCAM PE 

CD3 PE-Cy5 

CD19 PE-Cy5 

CD205 PE-Cy7 

CD11c APC-R700 

Table 3-18: Staining panels for crawl-outs, ear cellularity and phenotyping 
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Figure 3-7: Skin dendritic cell & crawl-out assay gating strategy 
(A) For flow-cytometric analysis of ear cellularity & phenotyping, ears of mice were harvested and 
directly digested and stained.  
(B) To quantify the amount of emigrated skin dendritic cells (DCs; crawl-out assay), ears were cultured 
on R10 medium for 24h. Medium was then harvested, pooled and cells were stained.  
DCs were gated as CD45

+
CD11c

+
MHCII

+
 and can be classified as either Langerhans cells (LC; 

EPCAM
+
CD103

-
), conventional DC 1 (cDC1; EPCAM

-
CD103

+
) or cDC2 (EPCAM

-
CD103

-
). Counting beads 

and DAPI were always added for quantification of absolute cell numbers and viability check. 
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3.2.5.2 Sorting of skin LECs  

 

To sort murine skin LECs for RNA sequencing, 4 ears from two mice were harvest, digested as 

described above (see 3.2.4.1 and 3.2.5.1) and pooled per biological replicate and time point. 

Harvesting of ears was always done at 8am using light/darkness cabinets to minimize side 

effects. After isolation, the cell suspensions were prepared solely on ice for sorting on a BD 

FACSAriaIIIu (Table 3-11). The cell fraction was stained with fluorescence-conjugated 

antibodies for 30min at 4°C (Table 3-4 and Table 3-19). Immediately before the sort, DAPI 

(0.3µM) was added to the cells. Live PDPLN+CD31+ LECs were sorted directly into 350µl Trizol-

LS at 4°C using a 100µm nozzle and with a purity > 90% as determined after every sort (Figure 

3-8). The cell numbers sorted ranged between 3000 and 5000 cells / two pooled ear pairs (see 

3.2.8 for exact numbers). Directly after sorting, the samples were shock-frozen on dry-ice.  

 

Antigen Fluorophore Experiment Machine 

PODOPLANIN PE 

LEC sort FACSAriaIIIu CD45 PE/dzl594 

CD31 APC 

Table 3-19: Staining panel for lymphatic endothelial cell sort 

Figure 3-8: Gating strategy of sorted lymphatic endothelial cells  
Ears were harvested, split, digested and stained to discriminate live CD45

-
CD31

+
PODOPLANIN

+
(PDPLN

+
) 

lymphatic endothelial cells (LECs). LECs were sorted on a FACSAriaIIIu with 1 70µm nozzle and purity 
>90%. 
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3.2.6 Functional neutralization of proteins and chemokine gradient disturbance 

 

To investigate the functional relevance of proteins involved in rhythmic dermal DC trafficking, 

neutralization antibodies or chemokine disturbances were utilized. Split ears used for 

exogenous crawl-in assays were incubated with R10 medium containing diluted neutralization 

antibodies prior to the cell migration assay for 1h at RT (Table 3-7). In case of the endogenous 

crawl-in assay, neutralization antibodies or reagents were directly added to the R10 medium 

for 24h. In general, isotype antibodies of neutralization antibodies were used as controls 

(Table 3-7). Endogenous and exogenous crawl-in assays were further performed as described 

above (see 3.2.4). 

For disturbing the extracellular CCL21 gradient in the skin, ear halves were incubated with 

either heparinase II and IV (100 mIU) at 37°C for 1h or placed in PBS containing 0.1% BSA and 

0.6µg/ml CCL21 at 4°C for 90min prior to the endogenous crawl-in (Table 3-8). After 

heparinase incubation, ear halves were thoroughly washed to remove any remaining CCL21. 

Ear halves were then stored on R10 for 24h and the endogenous crawl-in assay was 

performed as described above (see 3.2.4.2). 

 

3.2.7 Immunofluorescence staining 

 

All immunofluorescence stainings were imaged using a Zeiss Axio Examiner.Z1 confocal 

spinning disk microscope. In general, ear whole mounts were imaged using a custom-built 

imaging chamber (Figure 3-3).  

 

3.2.7.1 Quantitative immunofluorescence staining 

 

To measure the expression levels of trafficking molecules in LECs, mice were euthanized as 

previously described (see 3.2.1) and organs (ear, inguinal LN, lung and small intestine 

(cleaned)) were harvested, placed in OCT, shock frozen on dry ice and stored at -80°C. The 

next day, organs were shifted to -20°C and sectioned at a thickness of 10µm on a cryostat to 

ensure only having one layer of cells on a glass slide (organs were given 1h to warm up to -20 

before cutting). Tissue sections were thawed to RT and encircled with a hydrophobic alcohol-
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resistant pen. Sections were then fixed with cold methanol (100%) for 10 min at RT followed 

by a 5min wash in PBS at RT and blocked and permeabilized in PBS containing Triton-X100 

(0.5%) and normal goat serum (20%). Sections were always stained for LYVE-1-AF488 in 

combination with the proteins of interest labelled with either PE or APC o/n at 4°C (Table 3-4). 

For quantification and as negative controls, isotype stains (Table 3-6) were employed. On the 

next day, samples were washed with PBS for 2x5min in PBS at RT and imaged. 

For staining intracellular CCL21 in sections using a biotinylated anti-CCL21 antibody, the tissue 

slides were fixed for 10min using cold methanol (100%) and blocked and permeabilized in PBS 

containing triton-X100 (0.5%), normal goat serum (20%) and avidin (20%; Table 3-2). After a 

wash for 10min in PBS at RT and incubation in PBS containing 20% biotin, the sections were 

stained for LYVE-1 and CCL21 o/n at 4°C (Table 3-4). On the next day, samples were 3x5min 

washed with PBS, incubated in streptavidin-PE (2.5µg/slice) at RT for 15min (Table 3-5) and 

washed again for 3x5min using PBS for. 

2D images were obtained using a 20x objective with at least 5 pictures of the region of 

interest. For quantification, 5 images of one slice were averaged and counted as one 

biological replicate. Automated thresholding was applied to identify LYVE-1+ capillaries and 

create a mask, which was then applied to the fluorescent signal of the protein of interest 

(Figure 3-9). 

The average mean-fluorescence intensity of 5 isotype stains was then deducted from the 

mean fluorescence intensity of the protein of interest. It was always made sure, that the LYVE-

1+ area size did not differ significantly between samples within one type of organ.  

 

Figure 3-9: Quantitative immunofluorescence analysis 
(A) 10µm skin sections were stained for LYVE-1 and JAM-A o/n. LYVE-1

+
 lymphatic vessels were selected 

with a region of interest (ROI; shown in yellow). 
(B) Images were cleared for any fluorescent signal outside the ROI. 
(C) Using automated thresholding, only the LYVE-1

+
 capillary was selected (shown in red). 

(D) The ROI (shown in yellow) of the automated thresholding was applied to the JAM-A fluorescent signal 
to measure its intensity. Scale bar = 50µm. 



 

68 
 

3.2.7.2 Whole mount immuno-fluorescence staining 

 

To better understand the 3D architecture of proteins expressed on LVs or cellular structures 

in the skin, ears were collected as described beforehand (see 3.2.1 and 3.2.2.1). In general for 

whole-mount staining of skin, split ears were either 4% PFA fixed for 1h before or after 

staining of proteins with fluorescence-conjugated and primary/ secondary antibodies or biotin 

and streptavidin (see 3.1.4). In case of staining for CD31 or PROX-1, fixation was done after 

staining. If staining for LYVE-1, PODOPLANIN, LAMININ, CCL21, JAM-A, JAM-C, CD99, VE-

CADHERIN, CD11c, CD103, LAMININ, KI67 and GOLPH4, split ears were fixed before staining. 

For proteins expressed on the surface of cells, split ears were blocked in R10 medium for 2h at 

RT. Split ears were then placed in the staining solution for either 30min at RT or o/n at 4°C. 

After 3x15min wash in PBS at RT, the whole mounts were ready to image. 

 

3.2.7.3 Intracellular whole mount staining of CCL21, GOLPH4, PROX-1 and KI67 

 

To image intracellular proteins in skin whole mounts, harvested ears were first fixed in 4% PFA 

at RT for 1h and then blocked and permeabilized in R10 medium containing 0.3% triton-X100 

for 1h. Ear halves were further (without washing) incubated in R10 medium supplemented 

with primary or in the case of PROX-1 and KI67 staining fluorescence-conjugated antibodies 

o/n at 4°C (Table 3-4). Ears were washed for 2x15min in PBS at RT and either directly imaged 

(PROX-1 + DAPI (0.3µM)) or incubated in R10 containing secondary antibodies and 

streptavidin (Table 3-5). After 3x15min wash in PBS at RT, DAPI (if needed; 0.3µM) was added 

to the cells and whole mounts were imaged.  

To analyse the intracellular amounts of golgi- and vesicular CCL21 in LYVE-1+ LECs in skin, 5 

different regions of lymphatic capillaries were imaged. Maximum z-projections of 30-40µm 

deep z-stacks were then taken for analysis in FIJI. A makro (see 7.2) was used to minimize any 

human bias. The makro first created a ROI based on LYVE-1 expression and automatically 

excluded non-lymphatics and lymphatic-membrane regions, so that only the nucleus and 

cytoplasm of LECs were left. CCL21 was then first quantified in GOLPHhigh regions, resembling 

the golgi apparatus (regarded as golgi CCL21). The golgi area was then deducted from the 

cellular compartment, and CCL21 in the remaining GOLPH4low staining was quantified 

(regarded as vesicular CCL21). MFIs from 5 different regions from one ear were averaged and 
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the isotype MFI signal from GOLPH4high and GOLPH4low regions was deducted (analysis is 

based on the example shown in Figure 3-9) 

 

3.2.7.4 CCL21 whole mount staining and gradient analysis 

 

To visualize and analyse the extracellular CCL21 gradient, ears from euthanized mice were 

harvested as described above (see 3.2.1 and 3.2.2.1) and directly fixed for 1h in 4% PFA. After 

blocking in R10 medium containing avidin (20%) for 1h at RT, leaving split ears in PBS and 

Biotin (20%) for 30min, split ears were stained for LYVE-1 and CCL21 (Biotin) o/n at 4°C (Table 

3-4). Next day, ears were incubated in streptavidin-PE for 3h at 4°C in the dark (Table 3-5). 

After washing for 3x15min in PBS at RT, split ears were mounted and imaged. 

Images used to quantify the average intensities of interstitial CCL21 chemokine signal were 

maximum intensity projections ranging between 30-40µm Z-stacks with a z-step size of 1µm. 

Within an area of 512x512 pixels (341.33µm x 341.33µm), LV capillaries were manually 

outlined based on LYVE-1 staining, converted into binary masks and transformed into distance 

maps (via Matlab, see 7.2). The average intensity images of CCL21 staining were then 

integrated into distance-dependent fluorescence intensities (Figure 3-10). 5 average distance-

dependent fluorescence intensities from different locations within one mouse ear were 

averaged and counted as one biological replicate.  All samples from ZT7 and ZT19 were 

normalized to the highest average fluorescence intensity of ZT7. Isotype stains were taken as 

negative controls. 

  

Figure 3-10: Extracellular CCL21 gradient analysis 
(A) Ear sheets were stained for LYVE-1 and CCL21 o/n and subjected to analysis. 
(B) LYVE-1

+
 capillaries were outlined to create a region of interest. Based on this, the image was 

transformed into a binary mask. 
(C) The image was converted into a distance map which was applied to (D) to measure the averaged 
intensity at every distance from the binary mask. The algorithm can be seen in the appendix (see 7.2). 
Scale bar = 50µm. 
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3.2.8 RNA sequencing of lymphatic endothelial cells 

 

Shock frozen, sorted LECs (see 3.2.5.2) were stored at -80°C and then given to Dr Julia 

Phillipou-Massier in the Laboratory for Functional Genome Analysis (LAFUGA; Gene Center 

LMU, Germany), which performed the RNA isolation, cDNA reverse transcription, gene bank 

generation as well as the RNA sequencing. The analyses were partly done by Julia Philippou-

Massier and Stephan Holtkamp. The methods description was provided by Julia Philippou-

Massier. 

Zeitgeber Time # Cells Purity [%] RNA conc. [ng/µl) RIN value 

1.1 3544 91 

Not provided by 
Core Facility 

Not provided by Core 
Facility 

1.2 3627 94 

1.3 3448 96 

1.4 3791 93 

1.5 3217 95 

7.1 4355 96 

7.2 4894 97 

7.3 5595 91 

7.4 5599 91 

7.5 3847 92 

13.1 3449 94 

13.2 3807 95 

13.3 3424 93 

13.4 3906 95 

13.5 3398 97 

19.1 6819 96 

19.2 3538 95 

19.3 5684 92 

19.4 5465 91 

19.5 5659 92 

Table 3-20: Cell counts of sorted lymphatic endothelial cells 
 

Briefly, RNA of cells harvested in TriZol LS was purified using Direct-zol RNA mini Prep Kit 

(ZymoResearch) following manufacturer’s instructions. Isolated RNA was quantified using the 

Nanodrop (Thermofisher) and analyzed on a Bioanalyzer (Agilent) using the RNA 6000 Nano or 

Pico Kit (Agilent). Next, 75 ng of eluted total RNA was digested with DNase (Thermofisher) to 

remove DNA contaminations. An additional purification step with RNAClean XP Beads 

(Agencourt) was performed. The purified, bead bounded RNA was directly used as input in the 

SMART-Seq v4 Ultra Low Input RNA Kit (TaKaRA Bio). Full-length cDNA was generated 

following manufacturer’s instructions. Full-length cDNA was quantified using the Qubit dsDNA 
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HS Assay Kit (Invitrogen) with the Qubit fluorometer. Finally, sequencing libraries were 

generated using 500 pg full-length cDNA following the NexteraXT protocol (Illumina). Briefly, 

in a single tube enzymatic reaction cDNA is simultaneously tagmentated and tagged with 

Illumina sequencing adapters before the obtained sequencing libraries are amplified. Finally, 

sequencing libraries were quantified on a Bioanalyzer (Agilent) using the DNA 1000 Kit 

(Agilent) and sequenced on a HiSeq1500 system (Illumina) with a readlength of 100 nt, single-

end mode.   

For data processing, obtained transcriptome profiles were processed on a Galaxy web 

interface [335] hosted by LAFUGA, Gene Center, Munich. After demultiplexing and 

recommended trimming data was mapped against the mouse genome (mm10) using RNA-

STAR mapper (Galaxy Version 2.5.2b-0). Abundant reads were counted using HTSeq-count 

(Galaxy Version 1.0.0). Afterwards gene expression analysis to detect differentially expressed 

genes was performed using DESeq2 (Galaxy Version 2.11.40.6) setting the FDR <0.05. 

Shown RNA counts in the results section were normalized to gene length and presented as 

either log2 or raw values. Heat maps of genes were generated using GraphPad Prism 7.0. 

 

3.2.9 Statistical analysis 

Statistical analyses were performed using GraphPad Prism 7.0. All data are represented as 

mean ± SEM. For comparison of two groups, either an unpaired student’s t-test or a Mann-

Whitney test was performed. One-way ANOVA followed by Tukey’s post hoc test, two-way 

ANOVA followed by a Šidák correction or a Kruskal-Wallis test were executed if three or more 

groups were analysed.  

In order to examine the oscillations and rhythmicity of data, a cosinor-based 

rhythmometry/statistical technique was employed [336]. The more a fitting curve lining 

through the data of different time points mirrors the shape of a cosinor’s curve, the lower the 

p-value and more significant the oscillation of the data is. Statistical significance was assessed 

as *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001.  
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 Results 4

 

4.1 Visualization of lymphatic vessels 

 

The study was commenced by establishing the visualization of LECs in skin, LN, small intestine 

and lung using quantitative immunofluorescence imaging and a spinning disk confocal 

microscope.  

First, 10µm sections of these four organs were stained for LYVE-1, PDPLN and CD31. Imaged 

sections of the skin revealed large triple positive LVs (Figure 4-1A). Notably, the depicted 

central large vessel is marked with an arrow, and surrounded by small, blind-ended LYVE-1+ 

capillaries (Figure 4-1A). LN LECs were triple positive for LYVE-1, PDPLN and CD31 as well, with 

LYVE-1 showing the strongest signal intensity. This triple positivity extended to all lymphatic 

sub-regions, the SCS, CS and MS (Figure 4-1B). 

Captured small intestine sections presented LYVE-1+ lacteals and outer small intestinal 

submucosal LVs (SMLVs). This LYVE-1+ signal overlapped with PDPLN+ and CD31+ signals, 

forming a triple positivity for these biomarkers as well (Figure 4-1C).  

Finally, stained lung sections displayed a dense vascular network, in which evenly distributed 

small LYVE-1+ vessels could be observed. These LVs were double positive for CD31 and PDPLN. 

Additionally, BECs from this network express LYVE-1 and PDPLN as well but to a lower extent 

(Figure 4-1D). 
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I then moved from 2D visualization to 3D visualization allowing for a better understanding of 

the 3D lymphatic architecture. For this purpose, a whole mount staining technique for the 

skin and small intestine was set up (see 3.2.7.2). 

Similar to 2D images, 3D images of stained whole-mounted ears showed LYVE-1high capillaries 

merging into LYVE-1low pre-collecting vessels. These vessels were also positive for PDPLN, 

CD31 and LAMININ. Since CD31 and LAMININ stain other cellular structures as well, LVs in the 

respective images are highlighted with an arrow (Figure 4-2A). Higher magnification visualized 

an accumulation of LYVE-1 and CD31 in cell to cell contact regions (junctions), whereas PDPLN 

was evenly dispersed on the LEC surface and LAMININ on the basal membrane (Figure 4-2A).  

Figure 4-1: 2D Fluorescence microscopy of lymphatic biomarkers 
Fixed and permeabilized 10µm slices of sectioned ears (A), inguinal lymph node (B), small intestine (C) 
and lung (D) were stained for LYVE-1, PODOPLANIN (PDPLN), and CD31. Each image contains 4 
patched images to facilitate a greater view. 
(A) Arrow directs at a large lymphatic vessel. Scale bar = 70µm 
(B) Scale bar = 100µm. SCS = subcapsular sinus, CS = cortical sinus, MS = medullary sinus. 
(C) Scale bar = 100µm. Lac = lacteal, SMLV = submucosal lymphatic vessel. 
(D) Scale bar = 70µm. 
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This was visualized with a Slidebook 3D software tool at higher magnification, confirming 

LYVE-1 to be expressed on LEC junctions and that PDPLN was evenly distributed on the LEC 

membrane (Figure 4-2B). 3D visualization of lacteals in the small intestine exposed a singular 

LYVE-1+ LV, which is engrafted into an intertwined CD31+ small capillary network (Figure 4-2C). 

Lacteals flow into outer SMLVs, that were LYVE-1+ and CD31+ (Figure 4-2C).  

Based on these results, I decided to make use of LYVE-1, CD31 and PDPLN for visualizing LVs in 

all following experiments.  

  

Figure 4-2: 3D Lymphatic whole mounts of biomarkers in skin and small intestine 
(A) Split ears were stained for LYVE-1, PODOPLANIN (PDPLN), CD31 or LAMININ. Upper pictures 
consist of 4 patched images of skin whole mounts; lower pictures show a higher magnification. Arrows 
indicate lymphatic vessels. Scale bar = 70 / 50µm. 
(B) Split ears were stained for LYVE-1 and PDPLN and visualized with the Slidebook 3D visualization 
tool. Scale bar = 10µm. 
(C) Small intestines were cut, cleaned, and stained for LYVE-1 and CD31. Both the lacteal and 
submucosal lymphatic vessel (SMLV) regions were visualized with the Slidebook 3D visualization tool. 
Scale bar = 50µm. 
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4.2 Demonstration of rhythmic dendritic cell migration into dermal 
lymphatic capillaries 

 

I then moved on to design two complementing trafficking assays, exogenous and endogenous 

crawl-in assays (see 3.2.4). Using these approaches, it was tried to assess the migratory 

properties of either dermal DCs or exogenous BMDCs in the skin with respect to the time of 

day.  

First, an ex-vivo mouse ear crawl-in migration assay using cultured BMDCs was adapted for 

circadian experiments as this allowed a survey of the initial steps in an immune response and 

conclusions with respect to the micro-environment. Fresh BM cells were isolated and 

differentiated into BMDCs. BMDCs were then stained with CTV and subsequently added onto 

split ears harvested from mice at four different times of the day. In the first experiment, ears 

from different time points received their own batch of cells (Figure 4-3A). Surprisingly, BMDC 

migration into lymphatic capillaries and pre-collecting vessels was highly dependent on the 

time the ear was harvested. BMDCs migrated into lymphatic capillaries with a rhythm, peaking 

at ZT7 and troughing at ZT19, with a significantly higher ratio of cells being located within the 

lymphatics compared to cells located on the outside (Figure 4-3B). Neither were differences 

seen between overall transferred BMDC cell counts present in the ear after the assay, nor 

were differences observed in the analyzed vascular volume (Figure 4-3C). Since using different 

batches of cells might compromise the comparability between different ZTs, I further 

harvested ears at the same time from phase-shifted mice allowing us to simultaneously 

transfer the same batch of BMDCs onto different ears (Figure 4-3D). The data generated in 

this manner were almost identical to the previous experiment with BMDCs predominantly 

migrating into afferent lymphatics at ZT7 compared to other time points (Figure 4-3E). As 

before, LV volume and the amount of overall transferred CTV+ BMDCs did not differ between 

time points (Figure 4-3F). This rhythmic behavior is shown as an example in skin whole 

mounts, indicating a higher percentage of BMDCs within PDPLN+ vessels at ZT7 compared to 

ZT19 (Figure 4-3G). Viability and purity of transferred BMDCs in both experiments were not 

lower than 92% and 70%, respectively, and did not vary between cells (see 3.2.3.1 for gating 

strategy and exemplary flow-cytometry plots; data shown in Figure 4-3H). These data thus 

demonstrated the ear micro-environment to govern a rhythmic migration capacity of BMDCs 

into lymphatics. 
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I subsequently assessed whether endogenous dermal DCs located within ears exhibit this 

rhythmic trafficking pattern as well, by measuring their ability to migrate into lymphatic 

capillaries of the skin. Split ears were cultured with the dermis facing down for 6h and stained 

for endogenous DCs (CD11c+) and lymphatic capillaries and  finally the number of DCs within 

or outside LVs was tracked (Figure 4-4A). Due to the small trauma induced by the ear sheet 

separation, dermal DCs slowly become activated and migrate towards lymphatic capillaries 

allowing for scrutiny of the initial step of an immune response. 

In close analogy to the migration assays using ex-vivo generated BMDCs, site-specific dermal 

DCs showed elevated numbers inside the lymphatic capillaries at ZT7 compared to ZT19 after 

6h incubation (Figure 4-4B). The volume of analyzed LVs as well as total imaged CD11c+ cell 

numbers did not differ between time points (Figure 4-4C). I additionally performed 

Figure 4-3: Higher trafficking capacity during the day in dermal lymphatic vessels 
(A/D) Schematic overviews of exogenous crawl-in setups. Numbers represent Zeitgeber time (ZT) of ear 
harvest. 
(B) Individual bone marrow-derived dendritic cell (BMDC) batches were used for different crawl-ins. 
Left: numbers of Celltrace Violet (CTV

+
) BMDCs intralymphatic or extralymphatic normalized to 

lymphatic vessel (LV) volume (# = two-way ANOVA, *= Šidák’s multiple comparisons test); right: ratio of 
intravascular versus extravascular BMDCs (#= one-way ANOVA, * = Tukey’s multiple comparisons test). 
N = 3 mice across 4 time points measured each.  
(C/F) Left: LV volume; right: absolute number of imaged CTV

+
 BMDCs normalized to LV volume (C refers 

to B and F refers to E). 
(E) One BMDC batch was used for different ZTs. Statistical testing and arrangement equal to B. N = 3 
mice across 4 time points measured each.  
(G) Exemplary whole mount staining of split ears for PODOPLANIN (PDPLN) containing migrated CTV

+
 

BMDCs after exogenous crawl-in assays. Arrows point at orthogonal views. Scale bar = 50 / 10µm. 
(H) Flow-cytometric analyses of BMDC viability and purity used for crawl-in assays in E (left) and B 
(right); *p<0.05, **p<0.01, ***p<0.001. All data are represented as mean ± SEM. 
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endogenous crawl-in assays with 24h incubation of ears harvested at the peak and trough 

times observed thus far (ZT7 and ZT19, respectively), as 6h incubation time might be too short 

for the majority of DCs to become activated and migrate into LVs (Figure 4-4D). After 24h 

incubation, an even more pronounced migration difference was observed between ZT7 and 

ZT19, with ZT7 presenting a ratio of 1.8 and ZT19 a ratio of 0.5 (Figure 4-4E). Again, no 

differences in either imaged DC counts or LV volume were found (Figure 4-4F). These data 

indicated, that even after a longer incubation period, the time point at ZT19 was insufficient in 

catching up with the ZT7 time point. Indeed, examination of both ratios of intravascular 

versus extravascular DCs after 6h and 24h incubation revealed only a mere increase in ears 

harvest at ZT19, whereas at ZT7, the ratio had more than doubled (Figure 4-4B/E). This 

difference is exemplified in Figure 4-4H, in which the majority of DCs is associated with LVs at 

ZT7. 

Diurnal DC trafficking through lymphatic capillaries can only be termed circadian, if the 

oscillation persists under constant conditions. I thus performed LD/DD/DL experiments to 

allow the conclusion of circadian rhythmicity and regulation via intrinsic clocks. While DC 

trafficking in mice housed under LD and DD condition peaked at ZT7 and had its nadir at ZT19, 

DC trafficking in mice housed under DL (jetlag) condition exhibited an inversed rhythm (Figure 

4-4G). Consequently, mice exhibit a circadian rhythmicity in dermal DC trafficking, peaking 

during the behavioral rest phase, which might be under the control of the circadian clocks.  
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4.3 Rhythmic protein and RNA levels in lymphatic endothelial cells 

 

In my initial experiments different timing of the dermal environment impacted changes in 

BMDC and dermal DC migration. Thus, I investigated whether molecules, essential for DC 

adhesion and transmigration, on tissue-specific LECs oscillate over the course of 24h during 

steady-state conditions. I performed quantitative immunofluorescence profiling on non-

inflamed, sectioned ears, lungs, small intestines and inguinal LNs harvested over four time 

points of the day (see 3.2.7.1). In detail, I examined dermal lymphatic capillaries, overall lung 

LVs, lacteals and SMLV of small intestines and SCS, CS and MS of inguinal LNs using LYVE-1 as 

biomarker (Figure 4-5A). Surprisingly, this method yielded a mosaic of temporally expressed 

Figure 4-4: Circadian rhythm in dermal dendritic cell migration into lymphatic vessels 
(A/D) Schematic overviews of endogenous crawl-in setups. Numbers represent Zeitgeber time (ZT) of 
ear harvest.  
(B/E) 6h (B) or 24h (E) endogenous crawl-in assays. Left: number of dermal CD11c

+
 dendritic cells (DCs) 

normalized to lymphatic vessel (LV) volume (# = two-way ANOVA, * = Šidák’s multiple comparisons 
test); right: ratio of intravascular versus extravascular DCs (# = one-way ANOVA, * = Tukey’s multiple 
comparisons test for B and * = unpaired student’s t-test for E). N = 3 mice across 4 (B) or two (E) time 
points measured each.  
(C/F) Left: LV volume; right: absolute number of imaged CD11c

+
 DCs normalized to LV volume (C refers 

to B and F refers to E). 
(G) 24h endogenous crawl-in assay performed with animals kept in Light (L): Dark (D), DD or DL 
conditions. # = one-way ANOVA. N = 3 mice across all time points measured each. 
(H) Exemplary whole mount staining of split ears harvested at ZT7 or ZT19 for CD11c and LYVE-1 after a 
24h endogenous crawl-in assay. Scale bar = 50µm; *p<0.05, **p<0.01. All data are represented as mean 
± SEM. 
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proteins with a marked tissue-specificity (Figure 4-5AB). The skin shows strong rhythmicity for 

LYVE-1, JAM-A, CD99 and JAM-C on capillaries, while other markers were either present but 

not oscillatory or not expressed. Every marker except JAM-A peaked at ZT1, whereas JAM-A 

peaked at ZT7 (Figure 4-5E). In lung, LYVE-1 (peaking ZT1), ICAM1 (peaking ZT7), ALCAM 

(peaking ZT1) and CD99 (peaking ZT7) showed rhythmicity in expression (Figure 4-5F). The 

other two investigated lymphatic structures and respective sub-regions presented a high 

heterogenic temporal expression of trafficking markers. For instance, on small intestinal 

lacteals LYVE-1 (peaking ZT1), MMR1 (peaking ZT1), L1CAM (peaking ZT7), ICAM1 (peaking at 

ZT7), JAM-A (peaking ZT7), JAM-C (peaking ZT7), CD99 (peaking ZT7) and E-SELECTIN (peaking 

ZT1) displayed an oscillatory expression. However, on SMLVs, only LYVE-1 (peaking ZT1), 

L1CAM (peaking ZT7), ICAM1 (peaking ZT1) and E-SELECTIN (peaking ZT1) exhibited rhythmic 

expression. Remarkably, ICAM1 peaks at different time points although examined LVs are 

situated in the same organ (Figure 4-5G). Similar phenotypes were observed in different 

regions of the LN (Figure 4-5H). In all tissues analyzed, the averaged, integrated expression of 

rhythmic proteins revealed a peak in expression between ZT1 and ZT7 and nadir at ZT19 

(Figure 4-5C). This was also true for integration of dermal-only protein expression data (Figure 

4-5D). To better understand the expression of JAM-A, JAM-C and CD99 on LVs in the skin, 

whole mount staining of each molecule using LYVE-1 as biomarker was performed. JAM-A and 

JAM-C were expressed evenly on the LEC surface comparable with PDPLN, and CD99 is 

expressed on LECs in the fashion of CD31 or LYVE-1 (Figure 4-5I/J/K). 

These data might be responsible for the strong circadian influence of the micro environment 

on rhythmic DC trafficking as shown in the crawl-in assays. Moreover, they point towards site-

specific regulation of proteins by LEC intrinsic clocks, highlighting the importance of 

heterogeneity between LVs. 
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Figure 4-5: Tissue-specific oscillations in lymphatic adhesion and transmigration molecules 
(A) LYVE-1 expression on 10µm slices from sectioned ears (skin), lung, small intestine (SI) lacteals, SI submucosal 
lymphatic vessels (SMLV) and inguinal lymph node (iLN) subcapsular sinus (SCS), medullary sinus (MS) and cortical 
sinus (CS). Scale bar = 50µm. 
(B) Quantitative immuno-fluorescence microscopy protein screen of LYVE-1

+
 lymphatic vessels (LVs) using 10µm 

organ sections. Dark green = >2 fold significant difference in expression between Zeitgeber times (ZTs), light green = 
<2 fold difference in expression, grey = no rhythmic expression (Not rh.) and white = no expression (No exp.) as 
mean fluorescence intensity (MFI) <1.5% of max MFI. For calculations, isotype MFIs were substracted beforehand. 
N = 5 mice with 4 ZTs measured each.  
(C-D) Integration of all rhythmically expressed molecules over all organs (C) or skin (D) across 4 time points and 
normalized to ZT1 or ZT7 values. * = one-way ANOVA, # = cosinor analysis. N = 5 mice with 4 ZTs measured each. 
Dotted line represents SD, dashed line represents fit curve. 
(E-H) MFI profiles of screened molecules on LVs in skin (E), lung (F), SI (G) and LN (H) from B. Isotype MFIs were 
deducted from shown MFIs. * = one-way ANOVA, # = cosinor analysis. Dotted line represents SD, dashed line 
represents fit curve. 
(I-K) Whole mount staining of split ears for LYVE-1 with JAM-A (I), JAM-C (J) or CD99 (K). Scale bars = 50µm; *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001. All other data are represented as mean ± SEM. 
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Besides adhesion and transmigration, chemotactic cues and their guidance through the 

interstitial space are integral parts of dermal lymphatic DC trafficking. Different chemokines 

were screened and the focus was set on CCL21, as it is not only the best described but also 

most important chemokine in dermal lymphatic trafficking (see 2.4.2).  

As an initial experiment, I stained and quantified the expression of CCL21 within LYVE-1+ areas 

in sectioned skin (Figure 4-6A). Quantification of the signal intensity uncovered a peak of 

CCL21 expression on LECs at ZT7 (Figure 4-6B). To generate further insight into the 

intracellular CCL21 architecture in LECs, whole mount staining of permeabilized LVs in the skin 

was performed and stained for LYVE-1 and CCL21 (see 3.2.7.2). The majority of intracellular 

CCL21 was confined to a small region, less CCL21 was evenly dispersed in the cell (Figure 

4-6C). Skin whole mount staining of the Golgi apparatus using the biomarker GOLPH4 unveiled 

CCL21 and GOLPH4 double-positive regions in LYVE-1+ capillary LECs (Figure 4-6D). To further 

dissect the temporal regulation of the intracellular CCL21 quantity, I evaluated the CCL21+ 

signal in either GOLPH4high (resembling the Golgi apparatus) or GOLPH4low regions (resembling 

small vesicles within the cell) employing LYVE-1 mask algorithms (see 3.2.7.4 for methods and 

Figure 4-6E for data) [199]. In both examined regions, the CCL21 fluorescence intensity was 

maximal at ZT7 and lowest at ZT19. Although the highest CCL21+ signal intensity was found in 

the Golgi apparatus (GOLPH4high), the difference between ZT7 and ZT19 was most striking in 

GOLPH4low regions, pointing towards higher vesicular trafficking and possibly release of CCL21 

at ZT7 (Figure 4-6F). 

Taken together, temporal expression of various molecules involved in lymphatic leukocyte 

adhesion and transmigration as well as chemotactic guidance was found. Not only does this 

hint at a functional intrinsic clock of LECs, but could also explain the elevated migration 

capacity of DCs at ZT7 shown in both crawl-in assays (Figure 4-3 and Figure 4-4). 
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Given the strong oscillatory protein expression in LECs, I next sought to elucidate how LECs 

adapt to environmental changes on a broader molecular level in a time-of-day-dependent 

manner. Dermal CD31+PDPLN+ LECs were sorted at four different time points to perform RNA-

sequencing analyses. Every sort (with purities > 90%) was performed at the same time of day 

using phase-shifted mice to minimize side-effects. Isolated RNA of LECs had sufficient quality 

Figure 4-6: Elevated expression, storage and traffic of intracellular CCL21 in dermal lymphatic 
endothelial cells 
(A) Representative 2D immuno-fluorescence microscopy staining of CCL21 and LYVE-1 in 10µm skin 
slices. Scale bar = 50µm. 
(B) Quantitative immune-fluorescence microscopy profiling of the CCL21 mean fluorescence intensity 
(MFI) on LYVE-1

+
 lymphatic vessels (LVs) in 10µm skin sections. * = one-way ANOVA, # = cosinor 

analysis. N = 5 mice with 4 Zeitgeber times (ZTs) measured each. Dotted line represents SD, dashed 
line represents fit curve. 
(C) Whole mount staining of split and permeabilized ears for LYVE-1, CCL21 and DAPI. Left: picture 
contains 4 patched images. Scale bar = 70 / 10µm. 
(D) Representative whole mount staining of split and permeabilized ears for CCL21, GOLPH4, LYVE-1, 
and DAPI. Left: CCL21 staining, 20x objective; center: CCL21, GOLPH4 and LYVE-1 staining, 20x 
objective; right: CCL21, GOLPH4, LYVE-1 and DAPI staining, scale bars = 50 / 10µm. 
(E) Representative whole mount staining of split and permeabilized ears for GOLPH4. Arrows indicate 
GOLPH

low 
regions, resembling small intracellular vesicles. Scale bar = 10µm. 

(F) Quantitative immuno-fluorescence microscopy profiling of the CCL21 MFI in LYVE-1
+
 lymphatic 

endothelial cells (LECs) in whole-mounted, permeabilized and split ears. Left: CCL21 MFI in the 
GOLPH4

high
 area (intra-golgi); right: CCL21 MFI in GOLPH4

low
 area (intra-vesicle). N = 3 mice ZT7 and 

ZT19 measured each, * = unpaired student’s t-test; *p<0.05, **p<0.01. All other data are represented 
as mean ± SEM. 
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and amounts for performing RNA sequencing (see Figure 3-8 for LEC gating strategy and 

3.2.5.2 and 3.2.8 for experimental procedures). 

Robust expression of dermal LEC-specific marker genes Lyve-1, Flt4, Prox-1, Pdpln, Pecam1 

and Reelin (Reln) ensured high purity of samples used for sequencing. On the contrary, the 

dermal BEC-, leukocyte- or stromal cell-specific markers Integrin subunit alpha 2b (Itga2b), 

Flt1, Notch receptor 4 (Notch4), Neuropilin 1 (Nrp1), Von willebrand factor (Vwf), E-selectin 

(Sele; encoding for E-SELECTIN), Protein tyrosine phosphatase receptor type C (Cd45/Ptprc), 

Fibulin 1 (Fbln1) and Procollagen C-endopeptidase enhancer (Pcolce) were not expressed 

(Figure 4-7A). Notably, Esele is only upregulated in dermal LVs under inflammatory conditions, 

demonstrating the non-activated state of examined LECs. Interestingly, the two markers Prox-

1 and Reln displayed a peak in expression at ZT1 (Figure 4-7G). 

Principal-component analysis (PCA) could not entirely cluster sequenced samples according to 

time of harvest. However, samples harvested at ZT1 and ZT19 give an indication of grouping in 

opposite directions (Figure 4-7B). Importantly, PCA analyses are relying on strong differences 

between sample groups and rhythmic gene expression often fails to provide high amplitudes. 

Indeed, gene overlap analysis revealed 265 differentially expressed genes between ZT1 and 

ZT19, as represented by the outer arc of the circos plot. Likewise, ZT13:ZT19 comprise 163 

and ZT1:ZT7 155 differentially expressed genes, respectively (Figure 4-7C). Moreover, 

overlapping genes which appear in multiple sample comparisons (for example gene A is 

significantly different between time points ZT1:19 and ZT7:19) and genes that were unique to 

one gene comparison and do not appear in other comparisons (gene A is only significantly 

different in ZT1:19 and not in ZT7:19) were illustrated in the inner arc of the plot. Strikingly, 

the majority of genes was not connected with other comparisons (inner arc) and thus found 

to be unique to the ZT1 and ZT19 comparison (Figure 4-7C). In general, gene expression 

analyzed at ZT19 was most distinct compared to other time points (Figure 4-7C).  I then 

continued with further analyses considering that samples harvested at ZT1 and ZT19 provided 

uniquely altered transcriptional regulation. 

Since ZT1:ZT19 had by far the most significant targets based on the DeSeq2 analysis, I decided 

to further dissect transcriptional alterations (Figure 4-7D). All significant genetic comparisons 

were clustered into functionally related groups based on gene ontology. Enriched gene 

ontology clustering, however, did not reveal differences between ZT1/ZT7 and ZT19 with 

respect to adhesion. ZT1:ZT13 provided differences for adhesion, extracellular matrix 

organization, ZT7:ZT13 variation in water homeostasis and ZT13:19 change in cell motility 

regulation. Many other gene ontologies were enriched that were not the main topic of this 

thesis (Figure 4-7E/H).  
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Given LECs present oscillatory, transcriptional alterations in several pathways, initial targets 

for further analysis were molecular clock genes. Indeed, Bmal1 (peak at ZT1/19), Clock (peak 

at ZT1), Per2 (peak at ZT13), Per3 (peak at ZT13), Dbp (peak at ZT7), Nr1d1 (peak at ZT7) and 

Nr1d2 (peak at ZT7/13) show significant differences in their expression across 24h. This 

demonstrated that components of the circadian clock were expressed in a rhythmic manner 

and proved a good quality control for the experiment, given that these were peaking at the 

expected times. Per1 and Cry2 expression levels did not exhibit statistically significant 

oscillation (Figure 4-7F). In summary, RNA sequencing of sorted LECs exposed major 

transcriptional differences between ZT1 and ZT19. Moreover, RNA sequencing uncovered 

robust rhythms in molecular clock gene expression, potentially regulating genes involved in 

adhesion and migration.  
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Figure 4-7: Lymphatic endothelial cells express a molecular clock and are transcriptionally 
most distinct between ZT1 and ZT19 
(A) Expression of lymphatic endothelial cell (LEC-), blood endothelial cell (BEC-, leukocyte (LEU-) and stromal cell 
(SRC-) -specific genes as measure for the high purity of sorted and sequenced skin LECs. N = 20 mice, # = one-way 
ANOVA.  
(B) Principal component analysis (PCA) of sequenced cDNA from sorted LECs based on all genes. N = 5 across 4 
different Zeitgeber times (ZT) each.  
(C) Gene overlap analysis depicted as a circos plot (left) and corresponding table of overlapping genes (right). 
Each ZT contains the average of 5 biological replicates. The inner arc highlights the overlapping genes which 
appear in multiple sample comparisons in dark orange and genes in light orange are unique to one gene 
comparison and do not appear in other comparisons. 
(D) MA plot visualizing the transformed values of ‘M’ (log ratio) and ‘A’ (mean average) ZT1 and ZT19.  
(E/H) Enriched ontology cluster cumulating hierarchically enriched terms/pathways based on sequencing data 
between different ZTs (E). –log10 of p values shown to express significance. List of terms/ GO pathways shown in 
H. 
(F) Molecular clock gene expression profile of sorted LECs. * = one-way ANOVA, # = cosinor analysis. N = 5 mice 
across 4 ZTs measured each. Dotted line represents SD, dashed line represents fit curve. 
(G) Visualization of LEC specific genes from A across 4 ZTs. # = one-way ANOVA, * = Tukey’s multiple comparisons 
test. N= 5 mice with 4 time points measured each; *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. All other data 
are represented as mean ± SEM. 
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Considering the clear expression profile of the molecular clock components and required high 

amplitudes for successful principal-component and DeSeq2 analysis, an overlooked temporal 

regulation of adhesion genes was estimated. Analyses of adhesion genes listed in the ontology 

cluster ‘cell adhesion’ (GO:0007155) were performed and each gene was tested for its 

rhythmic expression using one-way ANOVA statistics. A list of rhythmic adhesion genes (121 

expressed adhesion genes experienced a peak in expression once during 24h) was compiled in 

a structured heat map, showing the gene with the highest counts at ZT1 first and the gene 

with the lowest counts at ZT1 last. Interestingly, a great majority of genes peaking at ZT1 was 

downregulated at ZT19 and vice versa (Figure 4-8A). Of note, a large fraction of these genes 

was not significant in the DeSeq2 analysis as their amplitudes between time points tested 

were too little. Nevertheless, this supports the initially reported difference in temporal 

transcriptional regulation between ZT1 and ZT19 (Figure 4-7B-D). 

I thereafter grouped genes of interest based on their role in migration and activation, the 

cytoskeleton, neuronal influence and voltage gated channels, permeability and extracellular 

matrix in a second heat map (Figure 4-8B). Integration of all rhythmic adhesion genes (except 

Ackr4, see 5.2) uncovered a peak in expression at ZT1 and a trough at ZT19 (Figure 4-8C). 

Integration of classified adhesion genes illustrated the transcriptional upregulation of 

migration and activation, as well as cytoskeletal genes at ZT1 (Figure 4-8D). In comparison 

with the protein screen in Figure 4-5, Lyve1, Ccl21, Cd99, F11r/Jam1 and Jam2 could either 

not be sequenced or were not found to be rhythmically transcribed.  

However, other enriched targets from the sequencing include interleukins and receptor 

components such as Il20r, Il2r and Il6, chemotaxis genes Cxcl12 and Ackr4, neuronal receptor 

Adrb2, and several genes involved in permeability and the cytoskeleton regulation, such as 

Myoc, Cdh5 and Fbn1 (values are shown in the appendix).  

Together these data provide novel temporal adaptation of adhesion gene expression 

according to the time of day in dermal LECs. Adhesion genes were upregulated at ZT1, 

coinciding with a higher trafficking capacity as previously shown (Figure 4-3 and Figure 4-4). 

Moreover these results hint at rhythmic neuronal control of LECs and rhythms in 

lymphangiogenesis.  
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4.4 Evaluation of migratory behavior and chemotaxis ability amongst 
dendritic cell subtypes 

 

Transcriptome and protein signatures of dermal LECs seemed to be strongly influenced by the 

time of day. I next searched for possible consequences of rhythmic regulation in skin under 

steady-state conditions. Specifically, I further dissected the influence of biological rhythms on 

dermal DC subtypes. 

Figure 4-8: Rhythmic adhesion gene signature in lymphatic endothelial cells 
(A) Heat map of rhythmic adhesion genes (Gene ontology (GO):0007155) based on one-way ANOVA 
testing in sorted and sequenced lymphatic endothelial cells (LECs). Normalized gene counts shown as 
binary logarithm. N = 5 mice across 4 different time points measured each. ZT = Zeitgeber time. 
(B) Grouping of selected adhesion genes from A into migration and activation, cytoskeleton, neuronal 
influence (Neu.-inf.) and voltage-gated channels (V-g. ch.), permeability (Perm.) and extracellular matrix 
(ECM). Normalized counts shown as binary logarithm.   
(C-D) Integration of all rhythmic adhesion genes from A (C) or selected genes from B (D). Normalized 
counts shown as binary logarithm. # = one-way ANOVA, * = Tukey’s multiple comparisons test; *p<0.05, 
**p<0.01, ***p<0.001. All data are represented as mean ± SEM. 



 

88 
 

Ears from phase-shifted mice were harvested at four different time points and the amount of 

dermal DCs and respective subtypes was quantified using flow-cytometry (see Figure 3-7 for 

gating strategy and 3.2.5.1 for methods). Importantly, the weight of collected ears did not 

vary across time points tested (Figure 4-9A). Surprisingly, the number of assayed CD45+ 

leukocytes oscillated, peaking at ZT7 and troughing at ZT19. Likewise, CD11c+MHCII+ DC cell 

numbers increased at ZT7 and were lowest at night and onset of day. This extended to 

EPCAM+ LCs and EPCAM-CD103- cDC2s but not CD103+ cDC1s with highest numbers at ZT7 

(Figure 4-9B). Apart from rhythmic egress being a likely contributor for the oscillatory count, I 

speculated whether a higher turnover of cells may also be caused by varying proliferation 

states of DCs within the skin. For this purpose the marker KI67 was utilized, which is 

associated with cellular proliferation [337], and whole mount staining of KI67 in skin to 

visualize proliferating cells was established (Figure 4-9C). Interestingly, the amount of KI67 in 

CD11c+ cells as well as relative numbers of KI67+ CD11c+ cells varied throughout the day, 

peaking at ZT7 (Figure 4-9D). This might represent a possible mechanism in the temporal 

regulation of cellularity in skin and could be important in the regulation of immune responses. 

Figure 4-9: Diurnal rhythmicity in skin cellularity 
(A) Weight of harvested ears in milligrams (mg). N = 9 mice at 4 different Zeitgeber times (ZT) each. 
(B) Flow-cytometric analyses of cellularity normalized to tissue weight from harvested ears. LC = 
Langerhans cell, cDC1/2 = conventional dendritic cell 1/2. # = one-way ANOVA, * = Tukey’s multiple 
comparisons test. N = 9 mice across 4 time points measured each. 
(C) Representative whole mount staining of CD11c, KI67 and DAPI in permeabilized, split ears. Scale 
bar = 50µm. 
(D) Left: mean fluorescence intensity (MFI) profile of KI67 signal in CD11c

+
 DCs from skin whole 

mounts. Right: relative number of imaged KI67
+
 CD11c

+
 cells in skin whole mounts. # = one-way 

ANOVA and cosinor analysis, * = Tukey’s multiple comparisons test. Dotted line represents SD, dashed 
line represents fit curve. N = 3 mice across 4 time points measured each; *p<0.05, **p<0.01. All other 
data are represented as mean ± SEM. 
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Quantity and migration capacity of dermal DCs vary throughout the day as shown by several 

crawl-in assays and flow-cytometric profiling of the skin. I was wondering if by splitting ears 

and performing crawl-in assays, dermal DCs also emigrate into the incubation medium in a 

time-of-day dependent manner. Thus, I designed a crawl-out assay, in which split ears were 

cultured on plain or supplemented medium for 24h. During these 24h the majority of DCs 

remain in the ear within the LVs. However, a small fraction emigrates into the medium, which 

was quantified by FACS (see 3.2.5.1 for methods and Figure 3-7 for gating strategies). By 

reason of altering total numbers of DCs in the ear, I decided to analyze the number of 

emigrated DCs in relation to remaining DCs. After 24h incubation, 22% of total DCs (the sum 

of ear and medium cellularity) emigrated the ear at ZT7 compared to 15% at ZT19. This 

difference could be extended to LCs (only a tendency) and cDC2s, but not cDC1s (Figure 

4-10A-C). On the one hand this secured that the majority of DCs remains in the ear, justifying 

the used crawl-in cell migration assays. On the other hand, this implied differences in 

transitory migration behavior between DC subtypes. 

I expanded my endogenous crawl-in assay to explore, which DC subtype is migrating into the 

lymphatic capillaries. First, I established the whole-mount staining of LANGERIN and CD103 in 

the epidermis and dermis. Under steady-state conditions, the great majority of LANGERIN+ 

DCs (LCs) resides in the epidermis, whereas cDC1s and cDC2s populate the dermis (Figure 

4-10D). In light of low cDC1 numbers and lack of rhythmicity in the crawl-out assay, I excluded 

them from the experiment. Split ears from phase-shifted mice were cultured for 24h and 

subsequently examined. The total and relative numbers of imaged DCs did not differ between 

the time points (Figure 4-10E). Analysis of intravascular versus extravascular LCs and cDC2s 

revealed a marked increase in migration of both subtypes at ZT7 compared to ZT19. 

Interestingly, this difference was slightly more pronounced in LCs (Figure 4-10F/G). Together, 

these differences pinpoint heterogeneity between different dermal DCs in terms of migration 

and activation throughout the course of a day, potentially exerted by DC-specific molecular 

clocks. This might be especially of relevance for pathogen-specific immune responses and the 

positioning of LCs in the epidermis. 
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Figure 4-10: Dermal dendritic cell subtype-specific rhythms in migration 
(A) Flow-cytometric analyses of emigrated CD11c

+
MHCII

+ 
dendritic cells (DCs) from cultured, split ears 

(crawl-out assay) into medium. Values shown as fraction of total DCs, the sum of ear and medium DCs. 
LC = Langerhans cell, cDC1/2 = conventional DC 1/2. N = 3 mice across Zeitgeber Time (ZT) 7 and ZT19 
measured each. * = unpaired student’s t-test. 
(B) Representative flow-cytometry plots of DCs (top) and DC subtypes (bottom) using EPCAM and CD103 
for differentiation at ZT7 and ZT19. 
(C) Ratio of DCs that either emigrated or remained inside the ear tissue. N = 3 mice across ZT7 and ZT19 
measured each. # = two-way ANOVA. 
(D) Representative whole mount staining of epidermis (left) and dermis (right) of permeabilized, split 
ears for LANGERIN, CD103 and CD11c during steady state. Arrows point at LCs, star shows cDC1. Scale 
bar = 50 / 10µm.  
(E) 24h endogenous crawl-in assays of CD11c

+
 DCs divided into LANGERIN

+
 LCs and LANGERIN

-
 cDC2s. 

Top: relative amount of CD11c
+
 DCs that are LCs or cDC2s. Bottom: absolute number of CD11c

+
 cells 

imaged normalized to the lymphatic vessel volume. # = two-way ANOVA. N = 3 mice across ZT7 and ZT19 
measured each.  
(F) Ratio of intravascular versus extravascular cDC2s (top) or LCs (bottom) after 24h endogenous crawl-in 
assays. N = 3 mice across ZT7 and ZT19 measured each. * = unpaired student’s t-test.  
(G) Representative images stained for LANGERIN, CD11c and LYVE-1. Scale bar = 50µm; *p<0.05, 
**p<0.01. All data are represented as mean ± SEM. 
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This potential heterogeneity within dermal DCs was subjected to further analysis. First, I 

assayed the individual chemotaxis abilities of DCs regarding CCL21 by combining a crawl-out 

with a chemotaxis assay. Ears from phase-shifted mice were simultaneously harvested, split 

and cultured dermis facing down onto medium supplemented with CCL21 at ZT7 and ZT19. 

During the 24h crawl-out assay, dermal DCs were activated by exogenous CCL21 and migrated 

towards the extracellular chemokine source to localize inside the medium. Interestingly, at 

ZT7 around 65% of total (sum of ear and medium cellularity) dermal DCs emigrated whereas 

at ZT19 only 37% left the ear. Specifically, LCs and cDC2s, but not cDC1s, presented significant 

differences in migratory behavior between time points (Figure 4-11A-C). Collectively, this 

suggests a transitory upregulation of trafficking molecules such as CCR7 on the DC surface 

concomitant with an elevated global alertness and better migration of DCs at ZT7.  

Because of this, Coline Barnoud (University of Geneva, Switzerland) phenotyped non-

activated, homeostatic LCs, cDC1s and cDC2s isolated from harvested ears at four time points 

across the day using flow-cytometric quantitative immunofluorescence profiling. She 

quantified activation markers (CD80, CD86, CD40, CD201, CD301b) as well as molecules 

involved in the trafficking cascade (CCR7, JAM-A) on respective DC subsets. This approach 

yielded a temporal expression map for dendritic cell molecules that seemed to be DC subtype-

specific (Figure 4-11D). LCs probed during the onset of the day show higher expression levels 

of CCR7, CD86 as well as JAM-A and cDC2s higher expression levels of CD86 and CD40 (Figure 

4-11E-F). These findings support the idea of an elevated global alertness and chemotaxis 

ability of steady state DCs during the day and corroborate the trafficking data obtained earlier 

(Figure 4-3 and Figure 4-4).  
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Figure 4-11: Elevated activation and chemotaxis of dendritic cells during the day 
(A) Flow-cytometric analyses of emigrated CD11c

+
MHCII

+
 dendritic cells (DCs) from cultured, split ears 

(crawl-out assay) into medium. Values shown as fraction of total DCs, the sum of ear and medium DCs. 
Ears were cultured on culture medium supplemented with 100ng/µl CCL21. LC = Langerhans cell, 
cDC1/2 = conventional DC 1/2. N = 3 mice across Zeitgeber time (ZT) 7 and ZT19 measured each. * = 
unpaired student’s t-test. 
(B) Representative flow-cytometry plots of Dcs (top) and DC subtypes (bottom) using EPCAM and CD103 
for discrimination at ZT7 and ZT19. 
(C) Ratio of DCs that either emigrated or remained in the skin tissue. N = 3 mice across ZT7 and ZT19 
measured each. # = two-way ANOVA. 
(D) Flow-cytometric quantitative analyses of activation markers and trafficking molecules across 4 
different time points on the surface of LCs, cDC1s and cDC2s. Blue = rhythmic expression validated by 
one-way ANOVA testing. Grey = non-rhythmic expression. White = not expressed as mean-fluorescence 
intensity (MFI) < 1.5% of max MFI. N = 5 mice across 4 different time points measured each.  
(E-F) MFI profile of screened LCs (E) or cDC2s (F) from D. * = one-way ANOVA and # = Tukey’s multiple 
comparisons test; *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. All data are represented as mean ± 
SEM. 
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4.5 Assessment of diurnal CCL21 gradient micro-patterning, adhesion and 
transmigration 

 

Both, LECs and DCs together govern rhythms in dermal DC trafficking. Further, LCs and cDC2s 

were shown to better migrate towards an external CCL21 source and upregulate pro-

migratory factors during the day. Based on this, I sought to delineate the functional relevance 

of molecules partaking in the multi-faceted cascade of lymphatic trafficking with respect to 

the time of day.  

Since adhesion and transmigration of dermal DCs heavily rely on functional chemotaxis, I 

studied the spatio-temporal gating of dermal chemotactic gradients first. I determined CCL21 

to be the perfect candidate for investigation due to its rhythmicity in the intracellular 

compartment and importance for trafficking (Figure 4-6). For this purpose, I employed 

quantitative immunofluorescence imaging to quantify the naturally built-up gradient. Staining 

for CCL21 and LYVE-1 in non-permeabilized, whole-mounted ear sheets revealed a chemokine 

gradient that is concentrating in close proximity to lymphatic capillaries (Figure 4-12A). By 

adopting distance-dependent fluorescence maps of CCL21+ signal in LYVE-1+ capillary 

environments, I was able to quantify the exponential CCL21 gradient. Interestingly, gradients 

varied according to the time of the day with ZT7 presenting a higher concentration at close 

proximity to LVs which is why statistical analysis was only significant for a total distance of 

around 50µm (Figure 4-12B/C). These findings highly support the rhythmicity observed in 

crawl-in assays as a more pronounced chemotaxis at ZT7 might enhance interstitial DC 

migration.  

The intralymphatic space harbors low numbers of DCs for induction of self-tolerance and T 

cell communication. In order to quantify the intralymphatic amount of DCs under steady-state 

conditions, ears were harvested from phase-shifted mice at four different time points of the 

day, split, stained and directly imaged. Quantification of the intravascular versus extravascular 

ratio of DCs uncovered an increased cellularity within the lymphatic space during the day 

compared to night time points (Figure 4-12D). Thus, rhythmic CCL21 gradients functionally 

influence the intradermal distribution of DCs under steady state. 
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Additionally, I designed short exogenous BMDC crawl-in assays ranging from 0-60min, 

allowing me to delineate the physiological relevance of rhythmic gradients for DC migration. 

For the analysis, interstitial space between LVs was segregated into five different zones (see 

3.2.4.4 and Figure 3-6). Next, the number of cells was counted in the respective zones at ZT7 

and ZT19 from exogenous crawl-in assays. Throughout the course of 60min, more DCs 

accumulated within 20µm distance to the LV at ZT7, whereas in ZT19, the increase was much 

lower (Figure 4-12E). 

Figure 4-12: Rhythmic CCL21 micro-patterning influences dermal dendritic cell distribution 
(A) Representative whole mount staining of split, non-permeabilized ears for CCL21 and LYVE-1. 
Scale bar = 50µm. 
(B) Normalized (to highest value at ZT7) and averaged mean fluorescence intensity (MFI) profile of 
CCL21 in specific distances to lymphatic vessels (LVs). Top displays a maximum distance of 50µm, 
bottom a maximum distance of 100µm.  N = 5 mice at Zeitgeber time (ZT) 7 and ZT19 measured 
each. * = Mann-Whitney U test. 
(C) Exemplary whole mount staining of CCL21 in split and non-permeabilized ears at ZT7 or ZT19. 
LVs are indicated with a dotted line (based on LYVE-1 staining). Scale bar = 50µm. 
(D) Cumulative distance distribution of CD11c

+
 cells in relation to LYVE-1

+
 LVs in split ears under 

steady state conditions. N = 3 mice at ZT7 and ZT19 measured each.  
(E) Relative number of bone-marrow derived dendritic cells (BMDCs) after 0-60min (indicated by 
colored lines) crawl-in assays in specific distances to CD31

+ 
LVs. Left: all time points; right: 60min 

crawl-in assay for ZT7 and ZT19. * = Tukey’s multiple comparisons test, # = unpaired student’s t-test. 
N= 1 mouse across all incubation and Zeitgeber times measured each; *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001. All other data are represented as mean ± SEM. 
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Following this, I explored the consequences of disturbing CCL21 gradients in the skin at ZT7 

and ZT19. I either masked, by adding exogenous CCL21, or completely ablated, using 

heparinase digestion or antibody blockade, the extracellular gradient of CCL21 while 

performing endogenous and/or exogenous crawl-in assays (see 3.2.6).  

For antibody-mediated blockade of CCL21, ears from different ZTs were simultaneously 

harvested, incubated in blocking or isotype antibodies and subjected to trafficking assays 

using time-shifted mice. In the exogenous assay, chrono-pharmacological inhibition of CCL21 

led to a 2.5-fold decrease of DC trafficking at ZT7, while no change was seen at ZT19 (Figure 

4-13A). Similarly, targeting CCL21 in endogenous crawl-in assays, I noticed a 4.5-fold decrease 

in DC migration only at ZT7 (Figure 4-13B). Importantly, isotype antibody administration did 

not interfere with the diurnal trafficking phenotype in both experiments. Antibody-mediated 

neutralization of CCL21 led to a loss of DC orientation, as they appeared to be randomly 

distributed in the interstitial space and less directed towards LVs compared to isotype 

controls (Figure 4-13C).  

Heparinase cleaves the heparin sulfate at the linkage between hexosamines and CCL21, thus 

releasing the bound CCL21 from the ECM and disturbing the naturally built-up gradient 

(Figure 4-13D).  Digestion of the CCL21 gradient using heparinase caused a 1.5-fold decrease 

in DC trafficking at ZT7 compared to ZT19 and controls (Figure 4-13E).  

Applied exogenous CCL21 binds to hexosamine structures on the ECM of the skin, leading to 

accumulation of CCL21 and thereby masking the natural gradient (Figure 4-13F). 

Correspondingly, adding exogenous CCL21 led to a 2.2-fold reduced DC trafficking solely at 

ZT7 (Figure 4-13G). 

To confirm the neutralization of CCL21, I employed genetically modified BMDCs lacking CCR7 

expression. CCR7-KO BMDCs are not able to sense CCL21 or CCL19 gradients and are thus 

blind to the stimulus. After culture and activation, CCR7 KO or WT BMDCs were added to split 

ears from time-shifted mice for exogenous crawl-in assays. The migratory behavior of CCR7 

KO BMDCs was almost completely ablated as they failed to migrate towards LVs. ZT7 ears 

containing CCR7-KO BMDCs present a 16-fold, whereas ZT19 ears containing CCR7-KO BMDCs 

a 5-fold decrease in migration compared to WT levels (Figure 4-13H).  

These results suggest a fundamental role for diurnal dermal CCL21 gradients to promote 

lymphatic trafficking of DCs during the day.  
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After interstitial migration DCs adhere and transmigrate into the lumen of LVs. Previously, I 

described factors involved in these two steps to be rhythmically expressed. Consequently, I 

performed endogenous and exogenous crawl-in assays and neutralized molecules involved in 

adhesion and transmigration via antibody-mediated blockade together with employing 

isotype-matched controls. Specifically, I decided to target LYVE-1, CD99, JAM-A and JAM-C as 

Figure 4-13: Manipulation of the CCL21 gradient leads to dysfunctional dendritic cell migration 
during the day 
(A-B) Exogenous (A) or endogenous (B) crawl-in assays using αCCL21 or isotype antibody-treated ears. 
Left shows the ratio of intravascular versus extravascular bone marrow-derived dendritic cells (BMDCs) 
or dermal CD11c

+
 DCs, respectively, in LYVE-1

+
 lymphatic vessels (LVs; #= two-way ANOVA, *= Šidák’s 

multiple comparisons test); right displays the fold change of antibody blockade in comparison with 
isotype controls (* = unpaired student‘s t-test). N = 4-5 (A) or 3 (B) mice across Zeitgeber Time (ZT) 7 
and ZT19 measured each. 
(C) Exemplary whole mount staining of split ears for CD11c and LYVE-1 after 24h incubation of an 
endogenous crawl-in using αCCL21 or isotype antibodies at ZT7. Arrows direct at higher magnifications. 
Scale bar = 50 / 10µm. 
(D) Exemplary whole mount staining of CCL21 and LYVE-1 in non-permeabilized, split ears after 
heparinase or PBS treatment. Scale bar = 50µm. 
(E) Endogenous crawl-in using heparinase or PBS treated ears. Arrangement and statistical tests equal 
to B. N = 3 mice across ZT7 and ZT19 measured each.  
(F) Exemplary whole mount staining of CCL21 and LYVE-1 of non-permeabilized, split ears after addition 
of PBS or exogenous CCL21. Dotted lines resemble LVs (aligned with LYVE-1 staining). Scale bar = 50µm. 
(G) Endogenous crawl-in using ears treated with exogenous CCL21 or PBS. Arrangement and statistical 
tests equal to B. N = 3 mice across ZT7 and ZT19 measured each. MFI = mean fluorescence intensity. 
(H) Exogenous crawl-in using WT or CCR7 KO BMDCs. Arrangement and statistical tests equal to B. N = 3 
mice across ZT7 and ZT19 measured each; *p<0.05, **p<0.01, ***p<0.001. All data are represented as 
mean ± SEM. 
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they showed strong oscillations in expression across the day during homeostasis and have 

been implicated in DC adhesion and transmigration before (Table 2-2). 

In exogenous crawl-in assays, targeting LYVE-1 (3-fold reduction), JAM-A (2.2-fold reduction) 

and CD99 (1.5-fold reduction) reduced DC trafficking at ZT7, whereas at ZT19 these effects 

were not detected (Figure 4-14A/D/G). I then tried to reproduce the effects of LYVE-1, JAM-A, 

and CD99 neutralization in endogenous crawl-in assays. Similarly, targeting LYVE-1 led to a 3-

fold reduction, JAM-A led to a 1.7-fold and CD99 led to a 2.0-fold reduction in DC migration at 

ZT7 (Figure 4-14B/E/H). Close observations of whole-mount staining of LVs and CD11c+ DCs 

after blockade unveiled that DCs manage to arrive at LVs in each of these scenarios, however 

they seemed to be immobilized on the LV wall and transmigrate at lower rate compared to 

isotype controls (Figure 4-14C/F/I). Due to strong oscillations of CD99 expression in LECs 

(Figure 4-5), I used genetically modified mice lacking CD99 expression. In an endogenous 

crawl-in setting using CD99-/- ears, DC trafficking was markedly reduced at ZT7 compared to 

expected WT values, whereas at ZT19 only a slight reduction was noted (Figure 4-14J).  

Neutralizing JAM-C in an endogenous crawl-in setting did not reduce DC migration in a 

statistically significant manner (Figure 4-14K). Since the effect of blockage was low, I did not 

follow up on the functional role of JAM-C with an exogenous crawl-in assay.  

Moreover, CD31 was not found to be rhythmic in skin and thus, neutralization should 

decrease trafficking both at ZT7 and ZT19 serving as a control experiment. Endogenous crawl-

in assays of CD31-blocked or isotype-stained ears led to a strong reduction in DC trafficking at 

both time points (Figure 4-14L).  

In summary, these data highlight the relevance of rhythms in adhesion and transmigration 

molecules on LECs. Malfunction of targeted molecules led to dysfunctional migration of DCs 

into the lumen of LVs. This functionality, together with diurnal micro-patterning of CCL21 

gradients, might prove a valuable insight into timing of vaccination as well as infection times.  
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Figure 4-14: Chrono-pharmacological block of adhesion and transmigration reduces dendritic 
cell migration during the day 
(A-B) Exogenous (A) or endogenous (B) crawl-in using αLYVE-1 or isotype antibody-treated ears. Left 
shows the ratio of intravascular versus extravascular bone marrow-derived dendritic cells (BMDCs) or 
dermal CD11c

+
 DCs, respectively, in CD31

+
/LYVE-1

+
 lymphatic vessels (LVs; #= two-way ANOVA, *= 

Šidák’s multiple comparisons test); right displays the fold change of antibody blockade in comparison 
with isotype controls (* = unpaired student‘s t-test). N = 5 (A) or 3 (B) mice across Zeitgeber time (ZT) 7 
and ZT19 measured each. 
(C/F/I) Exemplary whole mount stainings of split ears for CD11c and CD31/LYVE-1 from 24h endogenous 
crawl-in assays using αLYVE-1 (C), αJAM-A (F) or αCD99 (I), or respective isotype antibodies at ZT7. 
Dotted lines (cross) and arrows facilitate magnifications and orthogonal views. Scale bars = 50 / 30µm. 
(D-E) Exogenous (D) or endogenous (E) crawl-in assays using either αJAM-A or isotype antibody-treated 
ears. Arrangement and statistical tests equal to A-B. N = 5 (D) or 3 (E) mice across ZT7 and ZT19 
measured each. All data are represented as mean ± SEM. 
 (G-H) Exogenous (G) or endogenous (H) crawl-in assays using either αCD99 or isotype antibody-treated 
ears. Arrangement and statistical tests equal to A-B. N = 5 (G) or 3 (H) mice across ZT7 and ZT19 
measured each. 
 (J) Endogenous crawl-in assay using WT or CD99-KO ears. Dotted lines resemble expected WT levels at 
different ZTs. N = 5 mice at ZT7 and ZT19 measured each. 
(K-L) Endogenous crawl-in assay using αJAM-C (K) or αCD31 (L) and respective isotype antibody-treated 
ears. Arrangement and statistical tests equal to B. N = 3 (K) and 4-5 (L) mice across ZT7 and ZT19 
measured each; *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. All data are represented as mean ± 
SEM. 
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4.6 Effects of lineage-specific clock deficiency on lymphatic dendritic cell 
migration 

 

In previous experiments, I could link oscillations in pro-migratory molecules with rhythmic 

trafficking behavior and tried to uncover their functionality in the context of time-of-day 

dependent trafficking. However, for drawing conclusions to intrinsic clocks as initiator of 

rhythmic trafficking, a definite molecular link was yet to be uncovered.  

For this purpose, I generated genetically modified mice lacking a functional molecular clock in 

key cell subsets to explore the link between rhythmic trafficking and the intrinsic clock 

machinery. In detail, together with my research group I generated mice deficient in the 

circadian clock gene Bmal1 specifically in ECs using two different models, inducible 

Cdh5creERT2 mice, targeting both BECs and LECs and inducible Prox1creERT2 only targeting LECs. 

As tested in whole-mount staining of the skin, biomarkers PROX-1 and VE-CADHERIN are 

strongly expressed in dermal LECs and thus are eligible promoters for Cre expression in LECs 

(Figure 4-15A/B). I then performed exogenous (3h) and endogenous (6h and 24h) crawl-in 

assays to appraise the migration capacity of LVs using WT or KO ears. Interestingly, compared 

to control animals, Cdh5cre-Bmal1-/- and Prox1cre-Bmal1-/- mice failed to exhibit a rhythm in 

the immigration capacity of DCs into lymphatic capillaries at ZT7 in all migration assays tested 

with no significant differences between the two genetic models (Figure 4-15C/D/F/G). DCs 

required more time to arrive at the LVs concomitant with slower transmigration ability as 

shown in exemplary whole mount images (Figure 4-15E/H). These experiments implied LEC-

specific Bmal1 as a key player for rhythmic lymphatic DC trafficking and a molecular link 

between the previously observed phenotypes and the clock machinery.  

In line with my previous experiment, I additionally investigated the DC molecular clock. For 

this, my research group generated mice deficient in the clock gene Bmal1 using Cre 

expression within the promoter of Clec9a (Clec9acre-Bmal1-/- mice). cDC1s and cDC2s in the 

skin both express Clec9a during their development whereas LCs have a different, macrophage 

origin and do not express Clec9a. As a consequence, Bmal1 is not expressed in the cDCs of 

these mice. I decided to use a cDC Bmal1 KO model, since cDC2s were the most abundant DC 

cell type measured in skin and showed strong rhythmicity in trafficking behavior and they 

were readily available in the lab (Figure 4-9 and Figure 4-10). I performed 24h endogenous 

crawl-in assays to examine to what extend the DC intrinsic clock contributes to rhythms in 

lymphatic DC trafficking. Surprisingly, the migration of DCs was only reduced in Clec9acre-

Bmal1-/- mice tested at ZT7 in comparison with control animals (Figure 4-15I). Likewise, the 

majorities of DCs in KO ears failed to arrive at LVs, indicating a reduced interstitial migration 
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capacity (Figure 4-15J). In comparison with data from Cdh5cre-Bmal1-/- and Prox1cre-Bmal1-/- 

mice, Clec9acre-Bmal1-/- mice yielded a slightly lower reduction at ZT7.  

Together these data for the first time link both lymphatic vasculature and cDC clocks with 

rhythmic cDC migration within the skin. Interstitial migration as well as transmigration of the 

lymphatic endothelium was markedly reduced in Bmal1 KO animals. Both the LEC and DC 

clock partially influenced the rhythmic behavior and both cellular clocks were required to 

facilitate a functional rhythm. These findings should be helpful in exploring the consequences 

of jetlag, shiftwork and other disruptions of the clock.  
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Figure 4-15: Lineage-specific clock deficiency leads to dysfunctional dermal dendritic 
cell trafficking 
(A-B) Whole mount staining of split, permeabilized ears for PODOPLANIN (PDPLN), PROX-1 
and DAPI (A) or for LYVE-1 and VE-CADHERIN (VE-CADH; B). Arrows point towards and dashed 
line outlines lymphatic vessels (LV). Scale bars = 50 / 10µm. 
(C-D) Ratio of intravascular versus extravascular dermal CD11c

+
 dendritic cells (DCs) or bone 

marrow-derived DCs (BMDCs) in endogenous (C; left 6h, right 24h) or exogenous crawl-in (D) 
assays, respectively, using Cdh5cre-Bmal1

-/-
 (EC-KO) or WT ears. #= two-way ANOVA, *= 

Šidák’s multiple comparisons test. N = 5-7 (C) or 5-6 (D) mice across 4 or two time points 
measured each. Zeitgeber time = ZT. 
(E/H/J) Exemplary wholemount staining of split ears for CD11c and LYVE-1 after 24h 
endogenous crawl-in assays using Cdh5cre-Bmal1

-/- 
(EC-KO; E), Prox1cre-Bmal1

-/- 
(LEC-KO; H), 

or Clec9acre-Bmal1
-/-

 (DC- KO; J) and WT animals at ZT7. Scale bars = 50µm. 
(F-G) Ratio of intravascular versus extravascular dermal CD11c

+
 DCs or BMDCS in endogenous 

(F; left 6h, right 24h) or exogenous (G) crawl-in assays, respectively, using Prox1cre-Bmal1
-/-

 
(LEC- KO) or WT ears. Statistical tests equal to C-D. N = 4-6 (F) or 4-5 (G) mice across 4 or two 
time points measured each.  
(I) Ratio of intravascular versus extravascular dermal CD11c

+
 DCs in exogenous crawl-in assays 

using Clec9acre-Bmal1
-/-

 (DC-KO) or WT ears. Statistical testing equal to C-D. N = 4-5 across 
ZT7 and ZT19 measured each; *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. All data are 
represented as mean ± SEM. 
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Since mice lacking Bmal1 in LECs exhibit defects in DC migration, I further wanted to 

investigate the connection between the molecular clock and rhythmic migration. For this 

purpose, I repeated the quantitative immune-fluorescence profiling of chemokines, adhesion 

and transmigration proteins in sectioned skin samples from both Cdh5cre-Bmal1-/- and 

Prox1cre-Bmal1-/- as well as control animals. Loss of Bmal1 reduced levels of previously 

described rhythmic proteins LYVE-1, JAM-A, JAM-C, CD99 and intracellular CCL21 at ZT7 but 

not ZT19 in comparison to WT controls (Figure 4-16A/B). As expected, non-rhythmic CD31 

levels were not affected in both genetic models (Figure 4-16A/B).  

To further shed light on the link between the molecular clock and chemokine micro-

patterning I analyzed the extracellular CCL21 in Prox1cre-Bmal1-/- and control animals. By 

employing the same algorithm used in Figure 4-12, I visualized the CCL21 gradient in the 

dermal capillary environment. Surprisingly, the CCL21 gradient analyzed in Prox1cre-Bmal1-/- 

mice at ZT7 presented dramatically lower concentration and loss of diurnal upregulation 

compared to gradients in WT ZT7 as well as WT ZT19 and KO ZT19 ears (Figure 4-16C). Genetic 

ablation of Bmal1 also reduced the shape of the CCL21 gradient (Figure 4-16C/D) possibly 

owing to reduced production or release in KO mice. 

These data create a strong link between regulation of DC trafficking and intrinsic molecular 

clocks. In particular, the LEC clock influences chemotaxis, adhesion and transmigration of 

dermal DCs within the skin. 
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Figure 4-16: Loss of Bmal1 in lymphatic endothelial cells leads to downregulation of 
trafficking factors and chemokine micro-patterning 
(A-B) Mean fluorescence intensity (MFI) profile of trafficking molecules measured by quantitative 
immuno-fluorescence microscopy in 10µm ear sections from WT and Cdh5cre-Bmal1

-/- 
(EC-KO; A) or 

Prox1cre-Bmal1
-/- 

(LEC-KO; B) mice at Zeitgeber time (ZT) 7 or ZT19. 
(C) Normalized (to highest value of WT ZT7) and averaged MFI profile of CCL21 in specific distances 
around the lymphatic vessel (LV) using either WT or Prox1cre-Bmal1

-/- 
(KO) ears. N = 5 mice at ZT7 

and ZT19 measured each. * = Dunn’s correction for multiple comparisons, # = Kruskal-Wallis test. 
Dotted line represents SEM. 
(D) Exemplary whole mount stainings of split and non-permeabilized ears for CCL21 at ZT7 from 
either WT or Prox1cre-Bmal1

-/- 
(KO) animals. LVs are indicated with a dashed line (based on LYVE-1 

staining). Scale bar = 50µm. LEC = lymphatic endothelial cell; *p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001. All data are represented as mean ± SEM. 
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In a final approach, I sought to further scrutinize the consequence of genetic ablation of 

Bmal1 in LECs. I surveyed the DC cellularity of Cdh5cre-Bmal1-/- and WT ears across four 

different time points using flow-cytometry. Strikingly, the previously observed rhythm in DC 

cell numbers in KO animals was abolished compared to WT control animals, especially at ZT7 

(Figure 4-17A). Specifically, LC and cDC2 oscillations were ablated (Figure 4-17A). This could 

point towards a functional role of BVs and LVs and their respective clocks in the regulation of 

ear cellularity. 

I further assessed the emigration capacity of dermal DCs employing crawl-out assays since an 

altered CCL21 gradient and less lymphatic trafficking in KO animals might lead to increased 

lymphatic vessel-independent emigration of DCs, as shown by Förster and colleagues [191]. 

Whilst in WT animals, only a low number of DCs emigrated the ear and reproduced the results 

depicted in Figure 4-10, in Cdh5cre-Bmal1-/- animals, a greater absolute number of DCs 

emigrated the ear at ZT7 and ZT19 (Figure 4-17B). In detail, cDC2s showed significant 

differences between KO and WT animals and harvest times specifically in KO animals. On the 

contrary LCs and cDC1s gave a trend but no significant differences in emigration tested.  

Importantly, the increase in emigration was more pronounced at ZT7 compared to ZT19 

(Figure 4-17B). This might be partially explained by an altered or reduced CCL21 gradient, 

leading to loss of orientation and elevated emigration of DCs. However, this needs to be 

confirmed in Prox1cre-Bmal1-/- mice, as this model is tailored to solely LECs.  

Irrespectively, the loss of Bmal1 clearly alters the ability of DCs to migrate to LVs and modifies 

the ear cellularity.  

Together, these genetic KO data create a strong link between the observed rhythmic 

processes and the molecular clock. Both the LEC and DC clock seem to either be capable to 

influence the rhythmic behavior and both cellular clocks are required to facilitate a functional 

rhythm. 
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Figure 4-17: Genetic ablation of Bmal1 leads to alteration in ear cellularity and increased 
dendritic cell emigration 
(A) Flow-cytometric analyses of ear CD11c

+
MHCII

+
 dendritic cell (DC) cellularity normalized to ear 

weight from either WT or Cdh5cre-Bmal1
-/- 

(EC-KO) mice. LC = Langerhans cell, cDC1/2 = conventional 
DC 1/2. #= two-way ANOVA, *= Tukey’s multiple comparisons test. N = 9 mice across 4 Zeitgeber times 
(ZT) measured each.  
(B) Flow-cytometric analyses of emigrated DCs from cultured, split ears (crawl-out assay) from either 
WT or Cdh5cre-Bmal1

-/- 
(EC-KO) mice normalized to ear weight. Statistical testing equal to A. N = 4-5 

mice across ZT7 and ZT19 measured each; *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. All data are 
represented as mean ± SEM. 
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 Discussion and future perspectives 5

 

In the past years, the circadian clock has been identified as an elemental modulator of the 

immune system. Various components of immunity are under the control of the molecular 

clock [338-340], but we only just commenced understanding the molecular circuits. Very little 

is known about how the lymphatic system, an important component of the immune system, is 

shaped by environmental factors throughout the day. This study provides first evidence for 

rhythmic lymphatic immune cell migration, temporal regulation of protein and RNA 

expression within LECs and sheds light on tissue-specific loss of the molecular clock and its 

consequences on dermal immune cell trafficking.   

In this final chapter of the work, rhythmic leukocyte trafficking of dermal DCs into lymphatics 

and its potential future investigation are discussed. 

5.1 Circadian rhythms in lymphatic dendritic cell migration  

 

Ex-vivo ear migration assays using dermal DCs or BMDCs revealed a circadian migration 

capacity, peaking during the behavioral resting phase of the mouse at ZT7 (Figure 4-3 and 

Figure 4-4). The endogenous and exogenous crawl-in assays address different questions. The 

exogenous assay gives a clear indication about the influence of the microenvironment, as 

cultured BMDCs do not display a synchronized clock during typical culture conditions [331]. 

Individual BMDCs express all clock components, but on average, the population as a whole 

does not show a rhythm in expression across 24h. On the contrary, the endogenous crawl-in 

assay only allows for the assumption of general rhythms in lymphatic DC migration. 

Additionally, examined CD11c+ cells in the endogenous assay comprise all dermal DC 

subtypes, which were previously described owning distinct differences in their migratory 

behavior (see 4.4 and [108]). Moreover, BMDCs are transcriptionally and evolutionary distinct 

from dermal (especially cDC1 and cDC2) DCs and thus, differing activation state, cytoskeletal 

components as well as expression of chemokine receptors and trafficking molecules might 

influence the outcome of the trafficking assay. A study by Helft and colleagues could reveal 

differences amongst BMDCs which adds another level of complexity to the reasons presented 

above [341]. Another culture method, e.g. Flt3L culture rather than GM-CSF or a pre-sort 

between culture and crawl-in assay could be employed here. Nonetheless, during both 

migration assays, trafficking was highest during the day. The difference observed in the 
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strength of immigration into lymphatics is likely being explained by the higher activation 

status of LPS-derived BMDCs compared to non-activated tissue-resident cells. 

Reported oscillations in dermal DC cell numbers (Figure 4-9) could not be observed in total 

CD11c+ DC numbers per field of view analyzed in the endogenous crawl-in assay (Figure 4-4). 

Due to physical reasons, spinning disk confocal microscopy of dermal explants is not able to 

visualize and quantify the whole ear cellularity (owing to limiting imaging depth). Additionally, 

DCs do not only arrange in close proximity to LVs, they also reside in dermal segments directly 

underneath the epidermis and thus are missed during image acquisition. This is why the 

cellularity shown in Figure 4-4 is only used as a control for even distribution of cell numbers 

amongst different groups to ascertain comparability.  

Collectively, both cell migration assays strongly support the hypothesis of rhythmic DC 

trafficking across lymphatics. Velocity, directionality towards LVs and other migration 

parameters were not assessed but are currently being investigated in real-time assays. In 

contrast to end point analyses, live imaging of migrating BMDCs allows further resolution of 

rhythmic migration [178], especially in the context of the rhythmic CCL21 gradient and the 

consequence of genetic Bmal1 ablation. Preliminary data show that the method per se is 

working and data can be readily generated in the future (see appendix Figure 7-1). 

What could be the functional importance of an increased migration capacity during the 

behavioral rest phase? Herein, migration capacities of dermal DCs were highest at ZT7, 

whereas in other studies, leukocytes show an elevated migratory state and enter organs at 

ZT13, and DCs peaked in migration in mesenteric LNs at around ZT9 [56, 291]. Migration 

regulation of different leukocytes and ECs by the circadian clock seems to be tissue-specific. 

This was also reported in a study by Druzd et al., in which the egress rate of lymphocytes via 

efferent LVs from the LN was assessed. This rate was highest between ZT7 and ZT9, revealing 

a pro-migratory state of efferent LVs during the behavioral rest phase of mice due to temporal 

upregulation of S1pr1, a receptor binding the factor S1P promoting lymphocyte egress [291]. 

Conversely, LN BVs adopt a pro-migratory protein signature and homing of lymphocytes to 

the LN via BVs was highest at ZT13 [56, 291]. Diversity in rhythmic leukocyte trafficking allows 

for flexibility and a balanced immunity. Complete concentration of immune effectivity at one 

time point during the day would increase the risk of immune overreaction during that time 

and susceptibility to pathogens at other times of the day. Thus, differing peaks in migration 

enhance the flexibility and secure adequate immune reactions. Another explanation could be 

found in increased LN lymphocyte numbers at the onset of the active phase [291]. During the 

active phase, organisms capture antigens of all kinds on the surface of the skin. Afterwards, 

antigen capture, activation, initial migration to LVs as well as re-localization to dLNs of DCs 
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requires multiple hours. Consequently, DCs are likely to arrive at the dLN after several hours, 

coinciding with a higher cellularity and an increasing chance of antigen cross-presentation to T 

cells. By maximizing the efficiency of immune responses, metabolic costs are reduced, which 

may be one of the main reasons why the immune system temporally changes its reactivity 

and activity [339].  

5.2 The role of oscillations in lymphatic protein and RNA expression 

 

Quantitative immuno-fluorescence profiling of organ sections and RNA sequencing of sorted 

dermal LECs at different times of the day unveiled a rhythmic expression map of proteins and 

genes (see 4.3). Rhythmic pro-migratory proteins investigated peak at ZT1 or ZT7, coinciding 

with an upregulation of adhesion genes at ZT1 (Figure 4-5, Figure 4-6, Figure 4-7, Figure 4-8).  

The protein screen employed a LYVE-1 based mask of the region of interesting, in which the 

target protein was then quantified. Interestingly, LYVE-1 exhibited a rhythm in expression, 

which could lead to varying mask sizes through the analysis. The algorithm generating the 

mask (see appendix 7.2) is based on relative fluorescence intensities. Consequently, absolute 

changes in LYVE-1 MFIs do not alter the mask size, unless LYVE-1 is changing its distribution 

pattern on the surface of the cell. Although this was not investigated, differing distribution 

patterns should only negligibly alter the mask size. Irrespectively, approaching distribution 

patterns of proteins of interest could be important for time-of-day dependent cargo-transport 

of proteins to the cell surface, especially for released chemokines such as CCL21.  

Similar to differences in leukocyte trafficking, regulation of trafficking factors seems to be 

differing between BVs and LVs. Under steady-state conditions, dermal LECs maintain unique 

expression patterns of migratory factors when compared to inflammation, during which they 

acquire a BEC-like phenotype by up-regulating integrin ligands such as ICAM-1 [206]. In BVs, 

organ- and site-specific BECs up-regulate pro-migratory factors at the onset of the active 

phase (e.g. ZT13; Table 2-3) [55, 243, 271]. Tissue-specific LECs contrarily display augmented 

expression of pro-migratory factors during the resting phase (ZT1/ZT7; Figure 4-5). The 

question remains, how heterogeneity between different ECs and within organ-specific LECs 

can be established by the circadian clock. In the following, multiple reasons are discussed. 

Temporal regulation of clock controlled genes relies on genetic regulatory elements, such as 

E-boxes and ROR elements, as well as post-transcriptional modifications [338]. An 

evolutionary reason for this might be the multiplication of diversity in gene regulation and a 

flexible metabolism and immune system. As an example, REV-ERB is a potent regulator of 
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CCL2 in human and murine macrophages as proven by pharmacological activation (REV-ERB 

ligand GSK4112) of REV-ERBα and chromatin immunoprecipitation (ChIP) assays, in which 

REV-ERBα binds to a proximal ROR element in the promoter region [288, 342]. At the same 

time the cognate receptor of CCL2, CCR2, is regulated by PER1 together with the nuclear 

receptor peroxisome proliferator-activated receptor gamma (PPARγ) [343]. Additionally, 

RORα opposes REV-ERBα in its regulation and positively influences the Ccl2 expression via 

binding to ROR elements, whereas BMAL1 promotes methylation of Ccl2 together with 

reducing its expression using E-boxes at ZT7 in peritoneal macrophages [276, 342].  

Despite the complexity of E-box- and ROR-mediated gene regulation, differences between cell 

types also heavily depend on individual interactions with hormone signals. Hormones are an 

essential internal entrainment factor [243] and their receptors are expressed on cells in a 

tissue-specific manner. For example, adrenaline and noradrenaline are important 

neurotransmitters and hormones in the periphery and are able to entrain the circadian clock 

via numerous adrenoceptors including α1A, α1B, α1D, α2A/D, α2B, α2C, β1, β2, and β3 receptors 

[243, 344, 345]. Tissue-specific BECs or myocytes provide different signatures of these 

receptors to maximize the flexibility in physiological function. For instance, in humans 

adrenaline consistently reduces renal and skin blood flow because α-adrenoceptors are 

predominant, whereas in skeletal muscle and splanchnic vasculature adrenaline acts mainly 

via β-adrenoceptors and induces vasodilatation [345]. As another example, β2 adrenergic 

receptor agonists cause a dilatation of smooth muscles in the lung leading to opening of the 

airways, although in large arteries and heart tissue their binding enhances myocyte 

contraction [346, 347]. The functional role of the autonomic nervous system on LECs under 

physiological conditions was only recently described by Bachmann et al., demonstrating 

functional expression of α1 (contraction) and β2 (dilatation) adrenoceptors on flank collector 

LVs in-vivo, whereas lacteals express β2 adrenoceptors only [348]. Furthermore, RNA-

sequencing of sorted dermal LECs performed here could reveal and oscillation in the β2 

receptor subunit, pointing at a possible entrainment of LECs by the peripheral nervous system 

(Figure 4-8). Although more research is required to disentangle the role of the nervous system 

on regulating LECs, distinctive humoral signals might increase tissue-specificity and generate 

differences observed in this thesis.  

Epigenetic changes in chromatin accessibility of different cell types or methylation processes 

regulating transcription of clock-controlled genes might contribute to the observed 

heterogeneity. For example, CLOCK functions as histone acetyl transferase (HAT) regulating 

glucocorticoid receptors [349]. Furthermore, polycomb repressive complexes (PRC) such as 

PRC2 can be induced by BMAL1 and bind to methylated regions to repress gene expression in 
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a rhythmic manner [276]. Finally, recent in-vivo quantification of circadian phosphorylation in 

the liver suggests a crucial role for phosphorylation-dependent circadian tuning of molecular 

pathways as well [350]. 

Accordingly, circadian regulation of target genes is depending on numerous factors and could 

explain differences between cell types. This complex regulation might lead to differences in 

protein expression within organ-specific LEC subtypes, such as ICAM1 expression levels in 

lacteal and SMLV LECs (Figure 4-4). 

Results from the protein and RNA screen can only be interpreted to a certain extent as the 

direct molecular link, how clock genes regulate respective lymphatic genes is yet to be 

discovered. Localization of E-boxes and other regulatory elements in the promoter region of 

genes of interest together with promoter binding assays of BMAL1 or other transcription 

factors such as REV-ERBα could be a first step linking rhythmic expression with the binding of 

transcription factors of the circadian clock family. An overview of proposed binding regions for 

the clock genes Bmal1, Dbp, Nfil3 and ROR-binding clock genes Rora and Nr1d1/Nr1d2 in 

promoters of genes relevant for this thesis is provided in Table 5-1 and appendix 7.3. Based on 

the results from the promoter database, F11r and Jam3 (JAM-A and JAM-C, respectively), 

Ackr4 and Cd86 might be directly regulated via ROR-binding clock proteins, whereas Reln 

could be under the direct control of Bmal1. Other genes such as Ccl21-a, Ccl21-c or Lyve-1 

yield elements for a more complex regulation (Table 5-1 and appendix 7.3). Importantly, loss 

of Bmal1 in ECs led to a downregulation of target proteins LYVE-1, JAM-A, JAM-C, CD99 and 

CCL21, pointing towards a direct molecular link between the circadian clock and pro-

migratory molecules in lymphatics (Figure 4-16). BMAL1 or REV-ERBα could be possible 

candidates in LECs, as they have been involved in chemokine expression as mentioned above 

and are strongly expressed at the beginning of the behavioral rest and active phase, 

respectively. 
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Transcr. 

factors 
Bmal1 Dbp Nfil3 Rora 

p-value 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001 0.01 0.001 0.0001 

Ccl21-a 29|9 4|2 1 28 2 0 34 3 0 40 5 0 

Ccl21-c 26 3 1 28 2 0 31 2 0 40 3 1 

Lyve1 44 6 1 43 8 0 28 3 1 42 4 0 

Jam3 22 1 0 15 0 0 21 0 0 23 3 0 

F11r 19 0 0 9 0 0 18 1 0 47 6 0 

Cd99L2  45 1 0 25 1 0 18 2 0 40 3 1 

Reln 61 9 1 14 0 0 18 1 0 30 1 0 

Ackr4 32 2 0 26 1 0 24 2 0 41 3 0 

Ccr7 49 6 0 19 2 0 20 2 0 44 6 0 

Cd80 32 5 0 19 0 0 26 2 0 40 2 0 

Cd86 37 0 0 22 1 0 20 3 0 31 2 0 

Cd40 32 2 0 10 1 0 8 2 0 37 4 0 

Table 5-1: Number of promoter binding sites for clock genes Bmal1, Dbp, Nfil and Rora  
Genes were screened using the eukaryotic promoter database provided by the Swiss Institute of 
Bioinformatics. Motifs were searched within -2000bp to +100bp distance in the promoter region using 
the JASPAR CORE 2018 vertebrates library and with different p-values. Canonical binding sites (CAN 
NTG) for Bmal1 in the Ccl21a promoter region calculated in red as an example (see 7.3 for sequence) . 
Cd99 was not found in database; instead the closely related Cd99L2 was presented as an example. 
Jam3 = JAM-C, F11r = JAM-A, Transcr. = transcription. The exact sites and example of Ccl21a are shown 
in the appendix 7.3. 

RNA sequencing of sorted LECs revealed oscillations in clock gene expression. Internal control 

of sufficient RNA quality (not provided but ensured by the sequencing core facility), high 

amount of detected transcripts (>10,000) with more than 35 million reads and satisfactory 

gene body coverage to avoid the bias of RNA degradation at the 5’ / 3’ end ensured a 

successful and well-controlled RNA sequencing (controls not shown). Besides this, confidence 

in the sequencing results can be built on the observed clock gene expression (Figure 4-7). 

Other studies have shown similar expression patterns in different cell types, including 

neutrophils [299], NK cells [351], eosinophils and mast cells [352], T cells and LN tissue [280, 

291], large arteries and veins [271], macrophages and monocytes [277, 353], as well as B cells 

and DCs [278]. In LECs, Bmal1 peaks at the transition of active to resting phase (ZT19-ZT1), 

and Per2 and Per3 peak during the trough of Bmal1, at the transition of active to resting phase 

(ZT13). Dbp, Nr1d1 and Nr1d2 peak during the active phase (ZT7 and ZT7-13 for Nr1d2). 

Consequently these results are consistent with the published literature.  

Sorted LECs presented an upregulation of adhesion genes during the resting phase, as shown 

by DeSeq2 and one-way ANOVA statistical evaluation. Ackr4 was excluded from the adhesion 

gene clustering (Figure 4-8) as it represents a negative regulator of leukocyte trafficking [202]. 

Studies have shown, that Ackr4 expressed on keratinocytes sequesters chemokines such as 

CCL19 to prevent overreaction of the immune system and keep leukocyte trafficking within 
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physiological frames [202]. Expression and relevance of Ackr4 within the LEC has not been 

fully understood yet, but was found to be important in the development of the lymphatic 

system at the embryonic day 6 and might be of similar relevance compared to ACKR4 on 

keratinocytes in adult mice [214]. Down-regulation of Ackr4 at ZT1 might therefore positively 

influence leukocyte trafficking and is in support of this proposed role in LECs (Figure 4-5).  

Other genes encoding rhythmic proteins of interest could not be sequenced or proven 

rhythmic. A complete lack of signal during sequencing could be due to RNA degradation or 

complexity in gene and RNA structure, e.g. by splicing. Notably, there is no published study 

showing the mRNA expression profile of Ccl21b/c in the skin.  

For other genes, e.g. LYVE-1, high but non-rhythmic expression could be quantified. 

Nonetheless, studies by Hughes and colleagues as well as Geyfman et al. describe rhythmic 

expression of Lyve1 in liver and epidermal tissue with a peak occurring at CT14 and ZT14 and a 

trough at CT3 and ZT2, respectively [308, 354]. Besides regulatory elements in promoters, the 

temporal regulation of CCGs is heavily dependent on post-transcriptional modifications by 

clock genes. In particular, a study by Kojima and colleagues could identify circadian rhythms in 

mouse liver mRNA poly(A) tails uncoupled from rhythmic transcription. This means that the 

circadian clock can regulate the post-transcriptional regulation of mRNA resulting in 

oscillatory protein expression irrespective of steady-state mRNA levels [355]. Consequently, 

the RNA expression profile does not necessarily have to reflect the rhythmic pattern in order 

for its protein product to be rhythmically expressed. Nevertheless, a second proof of diurnal 

protein expression by quantitative flow-cytometric screening and quantitative real-time PCR 

of RNA could aid in clarification. Targets should include Ccl21 and Lyve1 to not only validate 

the previous results but also gain further insight into mRNA abundance. 

Collectively, these data support the hypothesis that up-regulation of pro-migratory factors 

heavily contributes to rhythmic trafficking of DCs within the skin and might be under the 

control of the molecular clock. 

 

5.3 Temporal chemokine patterning during steady state – pointing 
towards rhythmic tolerance induction? 

 

CCL21 was found to be rhythmically expressed in dermal LECs, with a peak at ZT7 (Figure 4-6). 

This timed-expression of CCL21 was already published by Druzd and colleagues in the LN, in 

which gene (Ccl21a) and protein expression peaked during the day and night, respectively, 
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[291]. This is in line with micro-array profiling of the gene Ccl21a in liver tissue [354]. Profiling 

of CCL21 in skin whole mounts indicated that not only the storage, but specifically the release 

of CCL21 might be rhythmic (Figure 4-6). Further experiments assaying the CCL21 release 

capacity and RNA sequencing for rhythmic factors involved in cargo-transport are required for 

a better understanding of temporal CCL21 release. Several chemical compounds interfering 

with secretion pathways, such as brefeldin A, Exo1 or secramine B could be used to further 

dissect molecular mechanisms [356, 357]. Moreover, generated RNA-sequencing data could 

be screened for genes associated with transport of proteins.  Nevertheless, an increased 

storage or release rate at ZT7 might be beneficial in immediate inflammatory responses and 

would be a novel phenomenon to be observed in rhythmic leukocyte trafficking.  

Furthermore, an oscillation in dermal CCL21 micro-patterning could be visualized, which 

influenced the localization and migration of dermal DCs under steady-state conditions (Figure 

4-12). Since CCL21 is rhythmically expressed and released in dermal and LN LECs under 

steady-state conditions [291], the question arises, whether other LEC activities important for 

tissue homeostasis might oscillate as well.  

One possible role of steady-state rhythms in migration and chemotaxis might be the induction 

of self- and peripheral tolerance, which partially relies on interactions with DCs [358]. Indeed, 

LECs from the thymus [359, 360], LN [361] and (to a lesser extent) from colon and diaphragm 

[362] were demonstrated to be heavily involved in T cell- and self-tolerance. In detail, LN LECs 

present peripheral tissue antigens (PTA) under the control of autoimmune regulatory 

elements [359] and members of the SAND family such as Deformed epidermal autoregulatory 

factor 1 homolog (Deaf1) [363, 364]. They display tyrosinase antigen by MHCI molecules to 

activate CD8+ T cell proliferation, which undergo apoptosis and deletion rather than 

accumulation (resembling a form of extra-thymic negative selection). LN LECs additionally 

express a particularly high level of PD-L1 instead of co-stimulatory molecules such as OX40L, 

CD86, CD80, or CD70 to regulate other cells [361, 365, 366]. Finally, LECs express 

intermediate levels of MHCII, proposing a role in CD 4+ T cell tolerance that requires DC 

interaction [358, 367] as well as IL-7 and its receptor IL-7Rα, important in T cell homeostasis 

and lymphatic drainage [368, 369]. Results from this thesis give compelling hints at rhythmic 

self-tolerance induction as described below.  

First, sorted and sequenced LECs from the skin in this study strongly expressed Deaf1, and at 

lower levels Cd274 (encoding the protein PD-L1) and H2-ab1 (encoding the protein MHCII) 

with slight oscillations, peaking at ZT13/19 for Deaf1 (not significant but indicative) and ZT7 

for Cd274 (significant) and H2-ab1 (not significant but indicative). Data are shown in appendix 
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Figure 7-2 since they are not relevant for this thesis per se but could imply steady-state 

rhythms in self- and peripheral-tolerance induction.  

Secondly, more DCs localized inside the LVs during steady-state conditions at ZT7 compared 

to ZT19, which could be a direct consequence of augmented interstitial CCL21 micro-patterns 

and facilitate T cell: DC communication (Figure 4-12).  

Third, LECs displayed rhythms in a variety of genes and proteins that facilitate permeability as 

well as adhesion during the resting phase, possibly aiding in induction of self-tolerance, which 

is supported by two studies showing rhythmicity in AQUAPORIN 3 and 4 in skin and the 

glymphatic system in the CNS, respectively, leading to increased interstitial fluid clearance 

during the resting phase (Figure 4-5) [309, 370]. Moreover, LN LECs displayed rhythmicity in 

protein expression, with differences between anatomical sub-regions (Figure 4-5). This might 

be relevant as self- and peripheral-tolerance induction includes site-specificity within the LN. 

The fact that dermal DCs were more efficient in following an external source of CCL21 during 

crawl-out assays supports the hypothesis of rhythmic CCL21 chemotaxis to be essential during 

steady state (Figure 4-11). Since ears used for the crawl-out assay were not inflamed and 

splitting of the ears without an external CCL21 source only led to an emigration of around 

22% and 15% for ZT7 and ZT19, respectively, CCL21 seems to be very potent in activating and 

attracting DCs during the day. The up-regulation of the cognate receptor CCR7 and several 

activation markers of DCs corroborate the elevated chemotaxis ability of DCs during the day 

(Figure 4-11). Notably, results from the flow-cytometric profiling require repetition as all 

rhythmic markers provide the exact same peaks in expression.  

Although more experiments are necessary to fully clarify the role of steady-state rhythms in 

chemokine micro-patterning and DC migration in the skin, results in this thesis point towards 

rhythms in steady-state functions of LECs. 

 

5.4 Chrono-pharmacological targeting of lymphatic leukocyte trafficking 

 

In this study, circadian DC trafficking was abrogated by time-of-day-dependent administration 

of neutralization antibodies against LYVE-1, CD99, JAM-A, JAM-C and CCL21 (Figure 4-13 and 

Figure 4-14). These effects link the oscillation of target molecules in LECs with the peak in 

migration capacity at ZT7. Literature showing time-of-day neutralization of leukocyte 

trafficking is very limited. He and colleagues for example could reduce leukocyte trafficking by 

timed administration of blocking antibodies [56].  
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LYVE-1 is involved in early adhesion of DCs onto lymphatics by binding surface HA. Although 

literature is scarce concerning manipulation of LYVE-1-mediated migration, Johnson and 

colleagues could reduce trafficking of DCs by blocking or genetically ablating LYVE-1. 

Employing adoptive transfer assays as well as FITC painting and crawl-out assays, they 

highlighted the involvement of LYVE-1 in DC migration across lymphatics [209]. Here, and in 

line with the presented peak in expression at ZT7, LYVE-1-mediated trafficking could only be 

reduced during the day (Figure 4-5 and Figure 4-14). Another proof-of-concept might be found 

in CD44-mediated trafficking of leukocytes, since CD44 is the homologue of LYVE-1 and also 

binds HA [371]. CD44 supports the rolling and firm adhesion of various leukocytes [371-373] 

and has been implied as regulator of trans-endothelial migration and chemotaxis [142] by use 

of neutralization antibodies. Further studies on LYVE-1 might reveal a more defined role 

especially in the context of molecular clock regulation.   

CD99 and CD31 are mediators of leukocyte transmigration across lymphatic endothelial 

barriers. Blockade of CD99 or CD31 markedly reduced trafficking, with CD99 blockade 

showing highest reduction at ZT7, and CD31 blockade reducing DC trafficking at both ZT7 and 

ZT19 (Figure 4-14). CD99 has been implicated in lymphatic transmigration of human DCs. 

Torzicky et al. could quantify the expression of CD99 on cultured human LECs and skin LECs 

and could impair reverse transmigration of monocyte-derived DCs in vitro and in situ by 

manipulating CD99 [218]. It is currently discussed, whether CD31 acts ahead of CD99, with 

CD99 being higher expressed on the intra-luminal side of LECs, whereas CD31 is found rather 

on the extra-luminal side of the cellular junctions [374, 375], similar to what has been 

described for BECs [376]. Nevertheless, more research is required on CD99 and its role in 

lymphatic trafficking. This evokes the question, to what degree transmigration of DCs in 

dermal LVs might be influenced by time. Blocking data shown here indicate control of CD99 

but not CD31, as CD31 was neither rhythmically expressed, nor did its neutralization show 

time-of-day dependent effects. The study of Torzicky et al. revealed comparable results for 

CD31 blockade, consequently showing that both CD31 and CD99 are required for DC 

trafficking into LVs [218]. Notably, here the effect of CD31 blockage is unexpectedly strong, 

hence further experiments are required for validation. 

Two other molecules involved in the transmigration of leukocytes are the tight junctional 

adhesion molecules JAM-A and JAM-C. Block of each reduced DC trafficking across dermal LVs 

especially at ZT7, with JAM-A showing a stronger effect (Figure 4-14). JAM-A is expressed on 

multiple leukocytes, including DCs, whereas in mice, JAM-C – with respect to leukocyte 

migration – is restricted to endothelial and stromal cells [377-380]. So far, JAM-A has received 

relatively little attention in terms of involvement in the lymphatic transmigration process. 
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JAM-A can either engage in homotypic cis interactions, regulating the tight junctional 

stabilization or simultaneously perform trans interactions, allowing the modulation of tight 

junctions to support leukocyte migration as shown in BVs [21]. In the only published study to 

date, endothelial specific deletion of JAM-A did not result in significant impairment in DC 

trafficking in vivo. On the contrary, cultured JAM-A-/- DCs displayed increased transmigration 

through JAM-A+/+ LEC monolayers in vitro and an elevated migration capacity in vivo when 

adoptively transferred into WT mice under inflammatory conditions [221]. The results 

obtained here seem contradictory. However, both studies used different models of leukocyte 

trafficking in addition to steady state and inflammation. Thus, comparability of both studies is 

compromised and requires further experiments. It is known that lymphatics alter their 

transcriptional landscape during inflammation and consequently, a bipartite system could be 

possible, since in BVs antibody-mediated neutralization of JAM-A led to a significant reduction 

in neutrophil transmigration in-vitro under inflammatory conditions [381]. Notably, it is 

possible that the culture of JAM-A-/- DCs caused compensatory mechanisms as they will lose 

their clock synchrony that could change their migration in an unexpected manner. 

JAM-C interacts with JAM-B and can simultaneously bind the integrin αMβ2 [382]. 

Neutralization of JAM-C leads to reduced JAM-B binding and subsequent redistribution of 

JAM-C on the endothelial surface [383]. Lamagna and colleagues neutralized JAM-C and 

subsequently observed an increase in adhesion of neutrophils and monocytes on BECs. In a 

more recent study by Ballet et al., neutralization of JAM-C increased trafficking of leukocytes 

including dermal DCs, monocyte-derived DCs as well as neutrophils in an infection model of 

Leishmania major. The effect of blockade here contradicts the results of the previously 

mentioned study. Although experiments in this thesis where performed under almost steady-

state conditions, a repetition of JAM-C and JAM-A blockage should lead to clarification if 

blockade of respective molecules is different under steady-state compared to inflammatory 

conditions. For this purpose a repetition with the same conditions together with a repetition 

under inflammatory condition is necessary since JAMs could be pro-migratory in steady-state 

but inhibitory in inflammation. 

In all neutralization experiments, including various modes of CCL21 blockade, trafficking could 

not be reduced below a certain baseline. Remarkably, no neutralization (except for the CCR7-/- 

BMDC and CD31 neutralization experiment) alone could completely abrogate DC trafficking 

(Figure 4-13 and Figure 4-14). This might be due to pro-migratory factors compensating for 

the loss of a single factor. Hence, a multi-blockade approach might be necessary, if other 

molecules compensate the “loss of functionality” of one molecule. One hint that supports this 

hypothesis is the KO of CD99, as the DC trafficking was only partly ablated. It is likely that 
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CD31 alone meets the requirements to facilitate successful transmigration. On the other 

hand, loss of CCR7 completely abolished BMDC trafficking, possibly owing to an inability of 

cells to detect the CCL21 gradient within the tissue.  

Many other interesting targets were not screened in this study, but might be a subject in the 

future, such as ACKR4 (important in embryonic development of lymphatics and expressed on 

LECs [214]) or REELIN, which was recently shown to be of importance in CNS leukocyte 

trafficking during autoimmune encephalomyelitis [49] and was strongly and rhythmically 

expressed in dermal LECs in this study (Figure 4-7).  One of the pitfalls of pharmacological 

intervention via antibodies is the missing guarantee for complete neutralization of 

antigenicity, which might explain the different results obtained between loss of CCR7 and 

CCL21 blockade. Of note, although endotoxin levels of commercially available antibodies are 

advertised as being low, small traces of sodium azide or endotoxins are sufficient to damage 

the sensitive dermis. Moreover, a FC-block during a crawl-in assay should be performed, as 

FC-receptors on both LECs and DCs could also oscillate throughout the day and might thus 

additionally influence the neutralization experiments.  

Nonetheless, neutralization of oscillatory proteins validates the concept of time-of-day 

dependent administration of antibodies for chrono-therapeutic targeting of diseases. As of 

the end of 2019, 79 therapeutic monoclonal antibodies have been approved by the United 

States Food and Drug Administration (US FDA) for treating various human diseases [384]. By 

targeting proteins such as α4β7 integrin, P-selectin, CCR4, IL-5 or IL-17α essential arms of the 

immune system are blocked to treat diseases [384]. Financially (estimated market value of 

monoclonal antibodies is about to be 300 billion in 2025 [384]) and from the perspective of 

therapy, this market is very important for research and development, which is why its 

optimization is of greatest interest. One relatively easy and cost-saving method is to 

investigate the timed administration of antibodies and other drugs. Chronotherapy has long 

been acknowledged in treatment of diseases, yet it remains relatively scarce in clinical trials. 

Theophylline was one of the first drugs for which circadian variation in pharmacokinetic 

parameters was proven and since then, many studies have supported the chronotherapy of 

medicines such as statins, antihypertensive agents and proton pump inhibitors [385]. Despite 

evidence received in vaccination studies (see 2.5.4) timed administration of antibodies or 

antigens is not commonly pursued and this study should add valuable insight into avenues for 

the timed dosing of anti-migration interventions with respect to vaccinations and 

chronotherapy of lymphatic diseases.  

 



 

118 
 

5.5 Do cell type-specific intrinsic clocks govern rhythmic dermal leukocyte 
trafficking? 

 

Tissue-specific genetic ablation of Bmal1 in either LECs or DCs was sufficient to ablate 

oscillations in DC migration and cellularity (Figure 4-15 and Figure 4-17). Moreover, loss of 

Bmal1 perturbed oscillations of pro-migratory trafficking molecules (Figure 4-16). The protein 

screen indicated that the daily rhythms in migration were driven (at least in part) by the LEC 

clock. Molecules such as dermal CCL21 were starkly decreased in their expression at ZT7 in 

LEC specific Bmal1-/- mice, which points at a possible direct regulation. This effect was also 

reported for BECs using the model of Cdh5cre-Bmal1fl/fl, in which ICAM-1 levels were 

significantly reduced in liver BECs [56]. Knocking out other components of the clock such as 

Per2 or Nr1d1/Nr1d2, could further shine light on which pro-migratory factor is regulated by 

which clock protein in LECs. For this purpose, a mouse harboring floxed Nr1d1 and Nr1d2 loci 

would be beneficial, which was recently generated for metabolic research by Dierickx and 

colleagues [386]. Another faster method would be ChIP-sequencing to survey regulatory sides 

for molecular clock components. The list of binding motifs provided in Table 5-1 and appendix 

7.3 also offers possible sites for the introduction of targeted mutations, which could lead to a 

down-regulation of respective proteins and thus create a strong mechanistic link between 

immune cell clocks and rhythms in protein expression. Collectively, these experiments could 

give compelling evidence of molecular clock regulation. 

Skin circadian clocks have already been implicated as regulators of immune cellularity, as 

described in human epidermal stem cells [387]. Here, flow-cytometric analysis of ears 

revealed a diurnal rhythm in ear cellularity (Figure 4-9). In addition, time-of-day dependent 

proliferation of CD11c+ cells using KI67 as marker could be shown. Although this is an 

interesting first indication of rhythmic dermal cellularity, further experiments are required to 

validate time-of-day dependent proliferation. Intra-cellular flow-cytometric analysis of KI67 

together with another model such as 5-ethynyl-2’-deoxyuridine (EdU) or bromodeoxyuridine 

(BrdU) staining could give further insights into the proliferative state of immune cells. Of note, 

EdU would be favored as its incorporation is not influenced by steric hindrance of double-

stranded DNA [388]. This association of dermal clock genes and cell cycle was already shown 

early on in 2001 [389]. Other cells such as keratinocytes in the epidermis were also indicated 

to be rhythmic (circadian rhythms in the G2-M phase of the cell cycle) [311], and thus, a 

complete 24h overview of immune cell demographics in the skin would be of high interest. 

For the DC intrinsic clock, data presented using Clec9acre-Bmal1-/- mice can only give limited 

conclusion about its functional role in migration (Figure 4-15). All trafficking assays used in this 
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study do not allow assumptions to what degree the DC clock influences the observed 

phenotypes. The screening of activation markers and receptors involved in trafficking as well 

as the DC-specific KO indicates that the DC clock might be involved. However, for a more 

profound understanding, further experiments are required. BMDC synchronization might be a 

possible experiment to regard the influence of the DC intrinsic clock on the phenotype 

observed during crawl-in assays [331]. Secondly, further in-vitro chemotaxis assays using 

sorted DCs from phase-shifted mice could identify chemotaxis abilities of different DCs. Use of 

other cell type-specific Bmal1 KOs would also be important, such as Langerin-Cre or CD11c-

Cre mice. Although Cd11c-Cre mice will also affect macrophages and monocytes, it will cover 

all DCs. In the literature, a molecular link between leukocyte specific clocks and migratory 

behavior and immune function could be shown in BMDCs,  (Cd11c-Cre [296]) T cells (Cd4-Cre 

[279, 291] and Lck-Cre [291]), B cells (Cd19-Cre [56, 291] and Mb1-Cre [279]), 

macrophages/monocytes and neutrophils (Lyz2-Cre / LysM-Cre [56, 276, 288, 390] and 

hMRP8-Cre [299]) and site-specific immune cells, such as microglia in the CNS (Cd11b-Cre 

[391]) or club cells in the lung (Ccsp-iCre [292]). Yet, the study by Hopwood and colleagues 

does not address the migration of DCs, and thus, the molecular link between the circadian 

clock and DCs, especially dermal DCs, remains elusive [296]. Nevertheless, given the long list 

of cell-specific effects of Bmal1 in leukocytes, a direct link between immune function and 

migratory capacity in dermal DCs can be assumed and should be the subject to future 

investigations. 

 

5.6 Outlook 

 

WIn this study, it was shown that LECs governed rhythmic DC trafficking into lymphatic 

capillaries. Future experiments (Figure 5-1) should dissect how the molecular clock of LECs 

regulates respective pro-migratory components, since a direct molecular link was not 

established in this study. For this purpose, ChIP sequencing might be a perfect candidate to 

understand which pro-migratory genes harbor regulatory elements of clock genes (Table 5-1 

and appendix 7.3). Moreover, other KO models of various clock genes can further specify 

which transcription factor is modulating the expression of pro-migratory factors. A special 

focus should lie on CCL21, as it is by far the most promising candidate to regulate lymphatic 

leukocyte trafficking. 
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Further studies are required to understand the link between the circadian clock and DCs on a 

cell type-specific level. Using synchronized BMDCs (for example by horse serum shock) in 

exogenous crawl-in assays will give an estimate to what degree the DC clock influences the 

observed phenotype. To further differentiate the differences between dermal DCs, other cell 

type-specific Bmal1 KOs are necessary. A combination of Cd11c (targeting all DCs), Langerin 

(to target LCs only) and possibly Cd103 (only cDC1) mediated CRE expression will allow 

complete differentiation between LCs, cDC1s and cDC2s. Additionally this could be used to 

investigate if dermal DCs influence each other in their rhythm in migration, for example by 

releasing chemokines such as CCL17 [392]. Furthermore, RNA-sequencing of genetically 

modified LECs and DCs is required to understand the impact of loss of the clock on a more 

global level. 

As already alluded in the introduction, microbiota and the nervous system heavily influence 

circadian rhythms, as they are entrainment factors [340]. Consequently, the observed 

phenotype might be altered during loss of microbial or neuronal influence.  

To analyze the involvement of the autonomic nervous system, various methodologies can be 

employed. SCGx (see 3.2.2.3) or adrenoceptor KO mice could be used to gather a first glimpse 

into the impact of loss of neuronal influence onto the clock of LECs. 

Recently rhythms in the microbiota and the closely related topic of intestinal microbiota 

tolerance were receiving more attention. For example, restricted feeding influences the 

intestinal microbiome-epithelial-immune homeostasis in the intestine [393]. To investigate 

the role of the microbiota in the skin on circadian leukocyte trafficking, Myd88-/- or germ-free 

mice together with mice treated with antibiotics (erasing the microbiota of the skin) could be 

utilized. Early experiments performed by me and my colleague Chien-Sin Chen (LMU, Munich) 

of ear cellularity and crawl-out assays showed ablated or inverse rhythmic immune cell 

cellularity in Myd88-/- mice (see appendix Figure 7-3). Likewise, local sympathetic tone in SCGx 

mice perturbed time-of-day dependent differences in ear cellularity (see appendix Figure 7-3). 

Other cells like T cells and neutrophils might be an interesting target, as they also migrate 

through LVs. For this purpose, single-cell RNA-sequencing of the whole leukocyte populations 

could be employed to gain a complete overview of the immune cell landscape in the skin. 

Additionally, quantitative immunofluorescence of respective cell types and crawl-in assays can 

be performed to possibly reveal other rhythms in leukocyte trafficking.  

This study opens up potential future projects regarding dermal leukocyte trafficking, dermal 

immunity and vaccination studies. These and other ideas are again summarized in Figure 5-1. 
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Figure 5-1: Future directions and arising projects 
Many possible experiments and projects can arise from this thesis. By investigating the molecular 
clock connection, neuronal and microbial influence on the dermis, dendritic cell (DC) clock 
involvement on trafficking as well as a general cellularity screen and self-tolerance induction, a 
more profound understanding of how circadian clocks influence the immune system of the skin and 
its draining lymph nodes (LN) can be gained. LEC = lymphatic endothelial cell, ChIP = chromatin 
immunoprecipitation, SCGx = superior cervical ganglionectomy, BMDC = bone marrow-derived DC. 
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5.7 Conclusion 

 

Migration of DCs through LVs is an integral part of immune responses, induction of self-

tolerance, as well as inflammatory processes. By employing ex-vivo trafficking assays using 

split ear halves and spinning disk confocal microscopy, I showed that migration of dermal DCs 

into LVs is time-of-day dependent, experiencing a peak during the day and a trough at night. 

This oscillation was facilitated by temporal up-regulation of trafficking factors in dermal LECs, 

such as LYVE-1, CCL21 and CD99. In addition, rhythmic micro-patterning of CCL21 heavily 

contributed to time-of-day differences in DC migration, with a more pronounced CCL21 

gradient found in close proximity to lymphatic capillaries during the day. Dermal DCs could 

follow this gradient better during the day as they transiently up-regulated the cognate 

receptor (CCR7), along with a subset of activation markers. 

Pharmacological neutralization of the rhythmic CCL21 gradient or the oscillatory proteins such 

as LYVE-1 and CD99 abrogated time-of-day dependent trafficking only during the day. The 

circadian migration of DCs as well as the up-regulation of trafficking factors might be under 

the control of the circadian clock, since tissue-specific genetic ablation of the core clock 

component Bmal1 led to a reduction in trafficking and loss of rhythms in pro-migratory 

factors. The results are summarized in a graphical abstract shown in Figure 5-2. 

This study reveals a novel understanding of lymphatic trafficking, as the molecular clock 

comes into play as a new regulator. This study underlines the importance of circadian rhythm 

in regulating immunity. Moreover, results point to the importance of maintaining healthy 

biological rhythms to regulate immune tolerance. This regulation could be used for future 

experiments dissecting the timing of self- and peripheral-tolerance induction, vaccination, 

cancer metastasis and metabolic disorders that are influenced by the lymphatic system.  
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Figure 5-2: Time-of-day dependent trafficking of leukocytes across lymphatics 
During the day, more dermal DCs migrate into the lymphatic vessels (LVs) due to a stronger 
extracellular CCL21 gradient and up-regulation of trafficking factors such as LYVE-1, CCR7, CD99 and 
intracellular / surface CCL21 in both lymphatic endothelial cells (LECs) and dendritic cells (DCs). 
Collectively, this allows for higher motility, interstitial migration, adhesion and transmigration of DCs 
into LVs.  
At night, these factors are downregulated and a lower migratory state is induced. Consequently, less 
DCs are found within the lymphatic capillaries since interstitial migration, adhesion and transmigration 
are reduced. ECM = extracellular matrix, BM = basal membrane, LN = lymph node.  
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 Appendices 7

 

7.1 Additional data 

 

 

 

Figure 7-1: Live imaging of exogenous crawl-in assays 
(A) 50,000 Activated and stained bone-marrow-derived dendritic cells (BMDCs) were added on 
explanted, split ear halves previously stained for LAMININ. After 35 min incubation in an imaging 
CO2 chamber with 37°C, the majority of BMDCs has migrated to the lymphatic vessels (LV), as 
indicated by the arrows. Scale bar = 50µm. 
(B) 3D views of BMDCS migrating into LAMININ

+
 LVs after 0 and 35 min. Arrows indicate 

transmigrating BMDCs. Scale bar = 40µm. 

Figure 7-2: Expression of genes associated with tolerance induction 
Measured expression of genes associated with self-tolerance induction in sorted dermal LECs. N = 5 
mice measured for 4 time points each. # = one-way ANOVA; * = Tukey’s multiple comparisons test, 
*p<0.05. All data are represented as mean ± SEM. 
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7.2 Codes and algorithms 

 

LYVE-1 mask / protein screen (FIJI) 

 

makeRectangle(3, 2, 506, 509); 

setBackgroundColor(0, 0, 0); 

run("Clear Outside", "slice"); 

setAutoThreshold("Otsu dark"); 

run("Create Selection"); 

roiManager("Add"); 

run("Next Slice [>]"); 

run("Measure"); 

close(); 

 

GOLPH4 mask (FIJI) 

 

run("Next Slice [>]"); 

makeRectangle(0, 1, 512, 504); 

setAutoThreshold("Triangle dark"); 

Figure 7-3: Ear cellularity and crawl-out assay using SCGx and Myd88-/- mice 
(A) Flow-cytometric analyses of cellularity normalized to tissue weight from harvested WT or Myd88

-/-
 

ears. LC = Langerhans cell, cDC1/2 = conventional dendritic cell, T = T cell.  
(B) Flow-cytometric analyses of emigrated immune cells from cultured, split ears (crawl-out assay) into 
medium. Cell counts normalized to tissue weight from harvested WT or Myd88

-/-
 ears.  

(C) Flow-cytometric analyses of cellularity normalized to tissue weight from ears harvested from sham 
or SCGx mice. Briefly, the anterior tip of the sternum to the chin was opened and the cervical ganglion 
of anaesthetized mice was gently removed during a surgery, after which animals were given a 2 weeks 
recovery period. #= two-way ANOVA, *= Šidák’s multiple comparisons test, n = 2 mice across 2 time 
points measured each, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. All data are represented as 
mean ± SEM. 
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run("Create Selection"); 

setBackgroundColor(0, 0, 0); 

run("Clear Outside", "stack"); 

resetThreshold(); 

run("Subtract Background...", "rolling=2 slice"); 

setAutoThreshold("Otsu dark"); 

run("Create Selection"); 

run("Clear", "stack"); 

run("Next Slice [>]"); 

makeLine(260, 190, 260, 190); 

setAutoThreshold("IJ_IsoData dark"); 

run("Create Selection"); 

run("Next Slice [>]"); 

run("Measure"); 

run("Clear", "stack"); 

makeLine(227, 200, 227, 200); 

setAutoThreshold("Mean dark"); 

run("Create Selection"); 

resetThreshold(); 

run("Measure"); 

close(); 

 

 

LYVE-1 dependent binary mask for further analysis (Matlab) 

#1 

 

function [ROI_Mask] = Stephan_LymphaticROIs(RawData_Directory,ImageName,Nr_ROIs) 

  

  

% change directory 

cd(RawData_Directory) 

  

% load Lymphatic AB tiff 

AB_Lymph = imread(ImageName); 

  

% preallocate ROI structure 

ROIs = cell(1,Nr_ROIs); 

  

% draw ROIs for binary mask on lymphatic antibody picture 

for i = 1:Nr_ROIs 

    imshow(AB_Lymph) 

    ROI = drawfreehand(); 

    ROIs{i} = ROI.createMask(); 

end 

  

% combine all ROIs 
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for j = 1:Nr_ROIs 

    if j == 1 

        ROI_Mask = ROIs{j}; 

    else 

        ROI_Mask = ROI_Mask + ROIs{j}; 

    end 

end 

  

% binarize in case of overlap 

ROI_Mask(ROI_Mask > 1) = 1; 

ROI_Mask = logical(ROI_Mask); 

  

save(['ROI_Mask_' ],ROI_Mask); 

 

#2 

 

function Stephan_DrawSave_LymphaticROIs 

  

  

close all 

clear all 

  

% select all tifs to be ROI-ed 

[FileNames,~] = uigetfile('.tif','Select all images to be ROI-ed','MultiSelect','on');     

  

% enter number of picture to be ROI-ed 

Nr_Reps = length(FileNames); 

clear FileNames 

  

  

% draw and extract ROIs for each picture 

for i = 1:Nr_Reps 

  

    % select & load Lymphatic AB tiff 

    [FileName,FilePath] = uigetfile({'.tif'},'Select an image'); 

    AB_Lymph = imread(strcat(FilePath,FileName)); 

  

    % define number of necessary ROIs to be drawn based on picture 

    imshow(AB_Lymph) 

    answer = inputdlg('Define number of necessary ROIs','Lymphatic Sample'); 

    Nr_ROIs = str2num(answer{1}); 

    clear answer 

    close gcf 

  

    % preallocate ROI structure 

    ROIs = cell(1,Nr_ROIs); 
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    % draw ROIs for binary mask on lymphatic antibody picture 

    for i = 1:Nr_ROIs 

        imshow(AB_Lymph) 

        ROI = drawfreehand(); 

        ROIs{i} = ROI.createMask(); 

    end 

  

    % combine all ROIs 

    for j = 1:Nr_ROIs 

        if j == 1 

            ROI_Mask = ROIs{j}; 

        else 

            ROI_Mask = ROI_Mask + ROIs{j}; 

        end 

    end 

  

    % binarize in case of overlap 

    ROI_Mask(ROI_Mask > 1) = 1; 

    ROI_Mask = logical(ROI_Mask); 

  

    % Save ROI Mask for later processing 

    cd(FilePath) 

    save(['ROI_Mask_' FileName(1:end-4) '.mat'],'ROI_Mask'); 

    close gcf 

end 

 

CCL21 gradient analysis (Matlab) 

 

function Stephan_LymphaticVessels_FluoDistance 
  
% define number of staining protocols 
answer = inputdlg('Define number of staining protocols','Lymphvessel experiments'); 
Nr_StainingProtocols = str2num(answer{1}); 
clear answer 
  
% preallocate 
DistanceStatistics = []; 
for m = 1:Nr_StainingProtocols             
    DistanceStatistics(m).RawDistancePixelFs = []; 
    DistanceStatistics(m).NormDistancePixelFs = []; 
    DistanceStatistics(m).AllNormDistancePixelFs = []; 
    DistanceStatistics(m).AllRawDistancePixelFs = []; 
    DistanceStatistics(m).DistanceMeans = []; 
    DistanceStatistics(m).DistanceSTDs = []; 
    DistanceStatistics(m).DistanceSEMs = []; 
    DistanceStatistics(m).GlobalDistanceMeans = []; 
    DistanceStatistics(m).GlobalDistanceSTDs = []; 
    DistanceStatistics(m).GlobalDistanceSEMs = []; 
    DistanceStatistics(m).normGlobalDistanceMeans = []; 
    DistanceStatistics(m).normGlobalDistanceSTDs = []; 
    DistanceStatistics(m).normGlobalDistanceSEMs = []; 
end 
  
tic 
  
for k = 1:Nr_StainingProtocols          
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    %% parameter switchboard 
  
    % select all Interstitium images 
    if Nr_StainingProtocols == 2 
        if k == 1 
            [FileNames,FilePath] = uigetfile('.tif','Select non-control Interstitium images','MultiSelect','on'); 
        else 
            [FileNames,FilePath] = uigetfile('.tif','Select control Interstitium images','MultiSelect','on');                 
        end 
    elseif Nr_StainingProtocols == 4 
        if k == 1 
            [FileNames,FilePath] = uigetfile('.tif','Select non-control ZT7 Interstitium images','MultiSelect','on'); 
        elseif k == 2 
            [FileNames,FilePath] = uigetfile('.tif','Select non-control ZT19 Interstitium images','MultiSelect','on'); 
        elseif k == 3 
            [FileNames,FilePath] = uigetfile('.tif','Select iso-control ZT7 Interstitium images','MultiSelect','on'); 
        elseif k == 4 
            [FileNames,FilePath] = uigetfile('.tif','Select iso-control ZT19 Interstitium images','MultiSelect','on'); 
        end 
    elseif Nr_StainingProtocols == 6 
        if k == 1 
            [FileNames,FilePath] = uigetfile('.tif','Select WT non-control ZT7 Interstitium images','MultiSelect','on'); 
        elseif k == 2 
            [FileNames,FilePath] = uigetfile('.tif','Select WT non-control ZT19 Interstitium images','MultiSelect','on'); 
        elseif k == 3 
            [FileNames,FilePath] = uigetfile('.tif','Select WT iso-control ZT7 Interstitium images','MultiSelect','on'); 
        elseif k == 4 
            [FileNames,FilePath] = uigetfile('.tif','Select WT iso-control ZT19 Interstitium images','MultiSelect','on'); 
        elseif k == 5 
            [FileNames,FilePath] = uigetfile('.tif','Select KO non-control ZT7 Interstitium images','MultiSelect','on'); 
        elseif k == 6 
            [FileNames,FilePath] = uigetfile('.tif','Select KO non-control ZT19 Interstitium images','MultiSelect','on'); 
        end 
    end 
    Nr_files = length(FileNames); 
  
    % change directory to filepath 
    cd(FilePath) 
  
    % preallocate 
    AB_Interstitium = cell(Nr_files,1); 
    LymphMasks = cell(Nr_files,1); 
%     AB_Lymph = cell(Nr_files,1); 
    Pixel2Microns = NaN(Nr_files,1); 
  
    % load Interstitium images and Lymph ROIs with Pixel Conversion Factors 
    for i = 1:Nr_files 
        FileName_temp = FileNames{i}; 
        AB_Interstitium{i} = double(imread(FileName_temp)); 
%         ImInfo_temp = imfinfo(FileName_temp); 
%         Pixel2Microns(i) = 1/ImInfo_temp.XResolution; 
        Pixel2Microns(i) = 1/1.5; 
        if Nr_StainingProtocols == 2 
            LymphMasks{i} = load(['ROI_Mask_' FileName_temp(1:end-10) '_LV.mat']); 
%             AB_Lymph{i} = double(imread([FileName_temp(1:end-10) '_LV.tif'])); 
        elseif Nr_StainingProtocols == 4 
            LymphMasks{i} = load(['ROI_Mask_' FileName_temp(1:end-5) '0.mat']); 
%             AB_Lymph{i} = double(imread([FileName_temp(1:end-5) '0.tif'])); 
        elseif Nr_StainingProtocols == 6 
            LymphMasks{i} = load(['ROI_Mask_' FileName_temp(1:end-5) '0.mat']); 
%             AB_Lymph{i} = double(imread([FileName_temp(1:end-5) '0.tif'])); 
        end 
        clear FileName_temp 
        clear ImInfo_temp 
    end 
  
  
    %% calculate and plot Distance Mask from Lymphatic ROI 
     
    % determine longest distance from Lymph vessel from all pictures for preallocation 
    for h = 1:Nr_files 
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        DistanceLength = length(unique(round(bwdist(LymphMasks{h,1}.ROI_Mask,'euclidean')*Pixel2Microns(h)))); 
        if h == 1 
            MaxDistance = DistanceLength; 
        elseif DistanceLength > MaxDistance 
            MaxDistance = DistanceLength; 
        end 
    end 
     
    % determine longest distance from Lymph vessel from all pictures for preallocation 
    PixelFrequency = zeros(MaxDistance,1); 
    for h = 1:Nr_files 
        [~,~,PixelFrequency_ic] = unique(round(bwdist(LymphMasks{h,1}.ROI_Mask,'euclidean')*Pixel2Microns(h))); 
        PixelFrequency_temp = accumarray(PixelFrequency_ic,1); 
        PixelFrequency(1:length(PixelFrequency_temp)) = PixelFrequency(1:length(PixelFrequency_temp)) + PixelFrequency_temp; 
    end 
    MaxPixelFrequency = max(max(PixelFrequency)); 
     
    % preallocate 
    DistanceStatistics(k).AllNormDistancePixelFs = NaN(MaxPixelFrequency,MaxDistance); 
    DistanceStatistics(k).AllRawDistancePixelFs = NaN(MaxPixelFrequency,MaxDistance); 
    if k == 1 
        Excel_ZT7 = NaN(MaxDistance,Nr_files); 
    elseif k == 2 
        Excel_ZT19 = NaN(MaxDistance,Nr_files); 
    elseif k == 3 
        Excel_isoZT7 = NaN(MaxDistance,Nr_files); 
    elseif k == 4 
        Excel_isoZT19 = NaN(MaxDistance,Nr_files); 
    elseif k == 5 
        Excel_KO_ZT7 = NaN(MaxDistance,Nr_files); 
    elseif k == 6 
        Excel_KO_ZT19 = NaN(MaxDistance,Nr_files); 
    end 
     
    for j = 1:Nr_files 
  
        % create distance mask around Lymph Vessel mask (round to nearest decimal) 
        DistanceMask = round(bwdist(LymphMasks{j,1}.ROI_Mask,'euclidean')*Pixel2Microns(h)); 
  
        % find pixels of Lymph Vessel Mask and Perimeter 
%         [ROI_IDs_Y,ROI_IDs_X] = find(LymphMasks{j,1}.ROI_Mask == 1); 
%         Lymph_mask_perim = bwperim(LymphMasks{j,1}.ROI_Mask); 
%         [ROIperim_IDs_Y,ROIperim_IDs_X] = find(Lymph_mask_perim); 
%  
%         % plot original picture and Distance Mask with ROI 
%         f1 = figure('Name','Lymphatic ROI & Distance Mask','color','w','Visible','off'); 
%         p = uipanel('Parent',f1,'BorderType','none');  
%         p.Title = 'Lymphatic ROI & Distance Mask';  
%         p.TitlePosition = 'centertop'; 
%         p.FontSize = 12; 
%         p.FontWeight = 'bold'; 
%  
%         subplot(1,2,1,'Parent',p); 
%         imshow(AB_Lymph{j}); 
%         hold on 
%         plot(ROIperim_IDs_X,ROIperim_IDs_Y,'.r','MarkerSize',1.5) 
%         title('Lymphatic ROI') 
%         colormap(gca,'gray') 
%         axis off 
%         hold off 
%  
%         subplot(1,2,2,'Parent',p); 
%         imagesc(DistanceMask) 
%         hold on 
%         colormap(gca,'cool'); 
%         colorbar 
%         plot(ROI_IDs_X,ROI_IDs_Y,'.k') 
%         plot(ROIperim_IDs_X,ROIperim_IDs_Y,'.w','MarkerSize',1.5) 
%         title('Distance Mask') 
%         axis square 
%         axis off 
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%         hold off 
%  
%         % save figure 
%         saveas(f1,[char(FileNames(j)) '_ROI_DistanceMask.fig']); 
%         saveas(f1,[char(FileNames(j)) '_ROI_DistanceMask.svg']); 
%         saveas(f1,[char(FileNames(j)) '_ROI_DistanceMask.pdf']); 
  
  
        %% extract distance dependent fluorescence values (normalized to F(max)) of Interstitium (relative from Lymph Vessel) 
  
        % preallocate 
        Fluorescence_Dist = cell(1,length(unique(DistanceMask))-1); 
        MEAN_FDist = NaN(1,length(unique(DistanceMask))-1); 
        STD_FDist = NaN(1,length(unique(DistanceMask))-1); 
        SEM_FDist = NaN(1,length(unique(DistanceMask))-1); 
  
        % find F(max) for normalization 
        Fmax = max(max(AB_Interstitium{j}(~LymphMasks{j,1}.ROI_Mask))); 
        
        % extract distance dependent fluorescence values & stats 
        Mask_Distances = unique(DistanceMask); 
        for i = 1:length(Mask_Distances) 
            ID = Mask_Distances(i); 
            if ID > 0 
                DistanceIDs = (DistanceMask == ID); 
                Fluorescence_Dist{ID} = AB_Interstitium{j}(DistanceIDs); 
                MEAN_FDist(ID) = nanmean(Fluorescence_Dist{ID}); 
                STD_FDist(ID) = nanstd(Fluorescence_Dist{ID}); 
                SEM_FDist(ID) = nanstd(Fluorescence_Dist{ID})/sqrt(length(Fluorescence_Dist{ID})); 
                clear DistanceIDs 
  
                % save variables 
                DistanceStatistics(k).RawDistancePixelFs{j,ID} = Fluorescence_Dist{ID}; 
                DistanceStatistics(k).NormDistancePixelFs{j,ID} = Fluorescence_Dist{ID}/Fmax; 
                if j == 1 
                    DistanceStatistics(k).AllNormDistancePixelFs(1:length(Fluorescence_Dist{ID}),ID) = Fluorescence_Dist{ID}/Fmax; 
                    DistanceStatistics(k).AllRawDistancePixelFs(1:length(Fluorescence_Dist{ID}),ID) = Fluorescence_Dist{ID}; 
                else 
                    First_NaN_position = find(isnan(DistanceStatistics(k).AllNormDistancePixelFs(:,ID)) == 1, 1,'first'); 
                    DistanceStatistics(k).AllNormDistancePixelFs(First_NaN_position:First_NaN_position+length(Fluorescence_Dist{ID})-
1,ID) = Fluorescence_Dist{ID}/Fmax; 
                    DistanceStatistics(k).AllRawDistancePixelFs(First_NaN_position:First_NaN_position+length(Fluorescence_Dist{ID})-
1,ID) = Fluorescence_Dist{ID}; 
                    clear First_NaN_position 
                end 
                DistanceStatistics(k).DistanceMeans(j,ID) = MEAN_FDist(ID); 
                DistanceStatistics(k).DistanceSTDs(j,ID) = STD_FDist(ID); 
                DistanceStatistics(k).DistanceSEMs(j,ID) = SEM_FDist(ID); 
                if k == 1 
                    Excel_ZT7(ID,j) = MEAN_FDist(ID); 
                elseif k == 2 
                    Excel_ZT19(ID,j) = MEAN_FDist(ID); 
                elseif k == 3 
                    Excel_isoZT7(ID,j) = MEAN_FDist(ID); 
                elseif k == 4 
                    Excel_isoZT19(ID,j) = MEAN_FDist(ID); 
                elseif k == 5 
                    Excel_KO_ZT7(ID,j) = MEAN_FDist(ID); 
                elseif k == 6 
                    Excel_KO_ZT19(ID,j) = MEAN_FDist(ID); 
                end 
            end 
            clear ID 
        end    
    end 
  
    % calculate Means, STDs and SEMs for each distance over all pictures (repetitions) 
    for i = 1:length(DistanceStatistics(k).AllNormDistancePixelFs(1,:)) 
        DistanceStatistics(k).GlobalDistanceMeans(i) = nanmean(DistanceStatistics(k).AllRawDistancePixelFs(:,i)); 
        DistanceStatistics(k).GlobalDistanceSTDs(i) = nanstd(DistanceStatistics(k).AllRawDistancePixelFs(:,i)); 
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        DistanceStatistics(k).GlobalDistanceSEMs(i) = 
nanstd(DistanceStatistics(k).AllRawDistancePixelFs(:,i))/sqrt(sum(~isnan(DistanceStatistics(k).AllRawDistancePixelFs(:,i)))); 
    end 
end 
  
  
%% Normalize Means, STDs and SEMs to Means (non-control) for plotting 
  
if Nr_StainingProtocols == 2 
    for m = 1:Nr_StainingProtocols 
        if m == 1 
            DistanceStatistics(m).normGlobalDistanceMeans = 
DistanceStatistics(m).GlobalDistanceMeans/max(DistanceStatistics(m).GlobalDistanceMeans); 
            DistanceStatistics(m).normGlobalDistanceSTDs = 
DistanceStatistics(m).GlobalDistanceSTDs/max(DistanceStatistics(m).GlobalDistanceMeans); 
            DistanceStatistics(m).normGlobalDistanceSEMs = 
DistanceStatistics(m).GlobalDistanceSEMs/max(DistanceStatistics(m).GlobalDistanceMeans); 
        else 
            DistanceStatistics(m).normGlobalDistanceMeans = DistanceStatistics(m).GlobalDistanceMeans/max(DistanceStatistics(m-
1).GlobalDistanceMeans); 
            DistanceStatistics(m).normGlobalDistanceSTDs = DistanceStatistics(m).GlobalDistanceSTDs/max(DistanceStatistics(m-
1).GlobalDistanceMeans); 
            DistanceStatistics(m).normGlobalDistanceSEMs = DistanceStatistics(m).GlobalDistanceSEMs/max(DistanceStatistics(m-
1).GlobalDistanceMeans);         
        end 
    end 
elseif Nr_StainingProtocols == 4 
    for m = 1:Nr_StainingProtocols 
        if m == 1 || 2 
            DistanceStatistics(m).normGlobalDistanceMeans = 
DistanceStatistics(m).GlobalDistanceMeans/max(DistanceStatistics(m).GlobalDistanceMeans); 
            DistanceStatistics(m).normGlobalDistanceSTDs = 
DistanceStatistics(m).GlobalDistanceSTDs/max(DistanceStatistics(m).GlobalDistanceMeans); 
            DistanceStatistics(m).normGlobalDistanceSEMs = 
DistanceStatistics(m).GlobalDistanceSEMs/max(DistanceStatistics(m).GlobalDistanceMeans); 
        elseif m == 3 || 4 
            DistanceStatistics(m).normGlobalDistanceMeans = DistanceStatistics(m).GlobalDistanceMeans/max(DistanceStatistics(m-
2).GlobalDistanceMeans); 
            DistanceStatistics(m).normGlobalDistanceSTDs = DistanceStatistics(m).GlobalDistanceSTDs/max(DistanceStatistics(m-
2).GlobalDistanceMeans); 
            DistanceStatistics(m).normGlobalDistanceSEMs = DistanceStatistics(m).GlobalDistanceSEMs/max(DistanceStatistics(m-
2).GlobalDistanceMeans);     
        end 
    end 
elseif Nr_StainingProtocols == 6 
    for m = 1:Nr_StainingProtocols 
        if m == 1 || 2 
            DistanceStatistics(m).normGlobalDistanceMeans = 
DistanceStatistics(m).GlobalDistanceMeans/max(DistanceStatistics(m).GlobalDistanceMeans); 
            DistanceStatistics(m).normGlobalDistanceSTDs = 
DistanceStatistics(m).GlobalDistanceSTDs/max(DistanceStatistics(m).GlobalDistanceMeans); 
            DistanceStatistics(m).normGlobalDistanceSEMs = 
DistanceStatistics(m).GlobalDistanceSEMs/max(DistanceStatistics(m).GlobalDistanceMeans); 
        elseif m == 3 || 4 
            DistanceStatistics(m).normGlobalDistanceMeans = DistanceStatistics(m).GlobalDistanceMeans/max(DistanceStatistics(m-
2).GlobalDistanceMeans); 
            DistanceStatistics(m).normGlobalDistanceSTDs = DistanceStatistics(m).GlobalDistanceSTDs/max(DistanceStatistics(m-
2).GlobalDistanceMeans); 
            DistanceStatistics(m).normGlobalDistanceSEMs = DistanceStatistics(m).GlobalDistanceSEMs/max(DistanceStatistics(m-
2).GlobalDistanceMeans);  
        elseif m == 5 || 6 
            DistanceStatistics(m).normGlobalDistanceMeans = 
DistanceStatistics(m).GlobalDistanceMeans/max(DistanceStatistics(m).GlobalDistanceMeans); 
            DistanceStatistics(m).normGlobalDistanceSTDs = 
DistanceStatistics(m).GlobalDistanceSTDs/max(DistanceStatistics(m).GlobalDistanceMeans); 
            DistanceStatistics(m).normGlobalDistanceSEMs = 
DistanceStatistics(m).GlobalDistanceSEMs/max(DistanceStatistics(m).GlobalDistanceMeans); 
        end 
    end 
end 
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%% plot distance dependent fluorescence values (normalized to F(max)) of Interstitium (relative from Lymph Vessel) 
  
% plot mean F with SEM  
if Nr_StainingProtocols == 2 
    f2 = figure('Name','Distance Dependent F','color','w'); 
    hold on 
    
errorbar((1:length(DistanceStatistics(1).normGlobalDistanceMeans)),DistanceStatistics(1).normGlobalDistanceMeans,DistanceSta
tistics(1).normGlobalDistanceSEMs,'.','MarkerSize',15) 
    
errorbar((1:length(DistanceStatistics(2).normGlobalDistanceMeans)),DistanceStatistics(2).normGlobalDistanceMeans,DistanceSta
tistics(2).normGlobalDistanceSEMs,'.','MarkerSize',15) 
    title('Distance Dependent Fluorescence'); 
    xlabel('Distance from LV [um]'); 
    ylabel('Normalized Fluorescence Intensity'); 
    legend('ZT7','iso control') 
    xlim([0 100]); 
    ylim_curr = get(gca,'ylim');  
    ylim_curr(2) = 1; 
    set(gca,'ylim',ylim_curr) 
    hold off 
elseif Nr_StainingProtocols == 4 
    f2 = figure('Name','Distance Dependent F','color','w'); 
    hold on 
    
errorbar((1:length(DistanceStatistics(1).normGlobalDistanceMeans)),DistanceStatistics(1).normGlobalDistanceMeans,DistanceSta
tistics(1).normGlobalDistanceSEMs,'.','MarkerSize',15) 
    
errorbar((1:length(DistanceStatistics(2).normGlobalDistanceMeans)),DistanceStatistics(2).normGlobalDistanceMeans,DistanceSta
tistics(2).normGlobalDistanceSEMs,'.','MarkerSize',15) 
    
errorbar((1:length(DistanceStatistics(3).normGlobalDistanceMeans)),DistanceStatistics(3).normGlobalDistanceMeans,DistanceSta
tistics(3).normGlobalDistanceSEMs,'.','MarkerSize',15) 
    
errorbar((1:length(DistanceStatistics(4).normGlobalDistanceMeans)),DistanceStatistics(4).normGlobalDistanceMeans,DistanceSta
tistics(4).normGlobalDistanceSEMs,'.','MarkerSize',15) 
    title('Distance Dependent Fluorescence'); 
    xlabel('Distance from LV [um]'); 
    ylabel('Normalized Fluorescence Intensity'); 
    legend('ZT7','ZT19','ZT7 iso control','ZT19 iso control') 
    xlim([0 100]); 
    ylim_curr = get(gca,'ylim');  
    ylim_curr(2) = 1; 
    set(gca,'ylim',ylim_curr) 
    hold off 
elseif Nr_StainingProtocols == 6 
    f2 = figure('Name','Distance Dependent F','color','w'); 
    hold on 
    
errorbar((1:length(DistanceStatistics(1).normGlobalDistanceMeans)),DistanceStatistics(1).normGlobalDistanceMeans,DistanceSta
tistics(1).normGlobalDistanceSEMs,'.','MarkerSize',15) 
    
errorbar((1:length(DistanceStatistics(2).normGlobalDistanceMeans)),DistanceStatistics(2).normGlobalDistanceMeans,DistanceSta
tistics(2).normGlobalDistanceSEMs,'.','MarkerSize',15) 
    
errorbar((1:length(DistanceStatistics(3).normGlobalDistanceMeans)),DistanceStatistics(3).normGlobalDistanceMeans,DistanceSta
tistics(3).normGlobalDistanceSEMs,'.','MarkerSize',15) 
    
errorbar((1:length(DistanceStatistics(4).normGlobalDistanceMeans)),DistanceStatistics(4).normGlobalDistanceMeans,DistanceSta
tistics(4).normGlobalDistanceSEMs,'.','MarkerSize',15) 
    
errorbar((1:length(DistanceStatistics(5).normGlobalDistanceMeans)),DistanceStatistics(5).normGlobalDistanceMeans,DistanceSta
tistics(5).normGlobalDistanceSEMs,'.','MarkerSize',15) 
    
errorbar((1:length(DistanceStatistics(6).normGlobalDistanceMeans)),DistanceStatistics(6).normGlobalDistanceMeans,DistanceSta
tistics(6).normGlobalDistanceSEMs,'.','MarkerSize',15) 
    title('Distance Dependent Fluorescence'); 
    xlabel('Distance from LV [um]'); 
    ylabel('Normalized Fluorescence Intensity'); 
    legend('WT ZT7','WT ZT19','WT ZT7 iso control','WT ZT19 iso control','KO ZT7','KO ZT19') 
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    xlim([0 100]); 
    ylim_curr = get(gca,'ylim');  
    ylim_curr(2) = 1; 
    set(gca,'ylim',ylim_curr) 
    hold off 
end 
  
  
toc 
  
  
%% save plot and data matrix 
  
% save plot 
saveas(f2,'DistanceDependentF.fig'); 
saveas(f2,'DistanceDependentF.svg'); 
saveas(f2,'DistanceDependentF.pdf'); 
  
% save data matrix 
save('DistanceDependentF_ExcelMeanMatrices.mat','Excel_ZT7','Excel_ZT19','Excel_isoZT7','Excel_isoZT19') 
save('DistanceDependentF_DataMatrix.mat','DistanceStatistics','-v7.3') 
xlswrite('DistanceDependentF_ZT7.xlsx',Excel_ZT7); 
xlswrite('DistanceDependentF_ZT19.xlsx',Excel_ZT19); 
xlswrite('DistanceDependentF_isoZT7.xlsx',Excel_isoZT7); 
xlswrite('DistanceDependentF_isoZT19.xlsx',Excel_isoZT19); 
xlswrite('DistanceDependentF_KO_ZT7.xlsx',Excel_KO_ZT7); 
xlswrite('DistanceDependentF_KO_ZT19.xlsx',Excel_KO_ZT19); 

 

“Mini” crawl-in assay with interstitial segmentation (Matlab) 

 

function Stephan_20MicronContourLines 

  

         

%% select and load all relevant data 

  

% select all Cell/Interstitium images 

[FileNames,FilePath] = uigetfile('.tif','Select Cell images','MultiSelect','on'); 

Nr_files = length(FileNames); 

  

% change directory to filepath 

cd(FilePath) 

  

% preallocate 

LymphMasks = cell(Nr_files,1); 

Cell_image = cell(Nr_files,1); 

Lymph_image = cell(Nr_files,1); 

Pixel2Microns = NaN(Nr_files,1); 

  

% load Cell/Interstitium images and Lymph ROIs with Pixel Conversion Factors 

for i = 1:Nr_files 

    FileName_temp = FileNames{i}; 

%         ImInfo_temp = imfinfo(FileName_temp); 

%         Pixel2Microns(i) = 1/ImInfo_temp.XResolution; 

    Pixel2Microns(i) = 1/1.5; 

    if exist(['ROI_Mask_' FileName_temp(1:end-10) '_LV.mat'],'file') > 0 

        LymphMasks{i} = load(['ROI_Mask_' FileName_temp(1:end-10) '_LV.mat']); 
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        Cell_image{i} = imread([FileName_temp(1:end-10) '_LV.tif']); 

    elseif exist(['ROI_Mask_' FileName_temp(1:end-5) '0.mat'],'file') > 0 

        LymphMasks{i} = load(['ROI_Mask_' FileName_temp(1:end-5) '0.mat']); 

        Cell_image{i} = imread([FileName_temp(1:end-5) '0.tif']); 

    else 

        LymphMasks{i} = load(['ROI_Mask_' FileName_temp(1:end-5) '1.mat']); 

        Cell_image{i} = imread(FileName_temp); 

        Lymph_image{i} = imread([FileName_temp(1:end-5) '1.tif']); 

    end 

    clear FileName_temp 

    clear ImInfo_temp 

end 

  

  

%% calculate and plot 20 microns contour lines from Lymphatic ROI for each selected image 

  

for j = 1:Nr_files 

  

    % create distance mask around Lymph Vessel mask (round to nearest decimal) 

    DistanceMask = round(bwdist(LymphMasks{j,1}.ROI_Mask,'euclidean')*Pixel2Microns(j)); 

  

    % extract contour lines in 20 micron steps up to 100 microns 

    [CL20_Y,CL20_X] = find(DistanceMask == 20); 

    [CL40_Y,CL40_X] = find(DistanceMask == 40); 

    [CL60_Y,CL60_X] = find(DistanceMask == 60); 

    [CL80_Y,CL80_X] = find(DistanceMask == 80); 

    [CL100_Y,CL100_X] = find(DistanceMask == 100); 

  

    % find pixels of ROI and Perimeter 

    Lymph_mask_perim = bwperim(LymphMasks{j,1}.ROI_Mask); 

    [ROIperim_IDs_Y,ROIperim_IDs_X] = find(Lymph_mask_perim); 

     

    % define colormap for colormap indexing 

    Colormap = cool(5); 

  

    % plot cell picture and overlay contour lines 

    f1 = figure; 

    imshow(Cell_image{j}); 

    hold on 

    plot(ROIperim_IDs_X,ROIperim_IDs_Y,'.w','MarkerSize',1.5) 

    plot(CL20_X,CL20_Y,'.','Color',[Colormap(1,:)],'MarkerSize',1.5) 

    plot(CL40_X,CL40_Y,'.','Color',[Colormap(2,:)],'MarkerSize',1.5) 

    plot(CL60_X,CL60_Y,'.','Color',[Colormap(3,:)],'MarkerSize',1.5) 

    plot(CL80_X,CL80_Y,'.','Color',[Colormap(4,:)],'MarkerSize',1.5) 

    plot(CL100_X,CL100_Y,'.','Color',[Colormap(5,:)],'MarkerSize',1.5) 

%     title('20 micron contour lines') 

    axis off 

    hold off 
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    % save figure 

    saveas(f1,[char(FileNames(j)) '_Cell_ROI_20umContour.fig']); 

    export_fig(f1,[char(FileNames(j)) '_Cell_ROI_20umContour.png']); 

%     saveas(f1,[char(FileNames(j)) '_Cell_ROI_20umContour.pdf']); 

     

     

    % plot lymph picture and overlay contour lines 

    f2 = figure; 

    imshow(Lymph_image{j}); 

    hold on 

    plot(ROIperim_IDs_X,ROIperim_IDs_Y,'.w','MarkerSize',1.5) 

    plot(CL20_X,CL20_Y,'.','Color',[Colormap(1,:)],'MarkerSize',1.5) 

    plot(CL40_X,CL40_Y,'.','Color',[Colormap(2,:)],'MarkerSize',1.5) 

    plot(CL60_X,CL60_Y,'.','Color',[Colormap(3,:)],'MarkerSize',1.5) 

    plot(CL80_X,CL80_Y,'.','Color',[Colormap(4,:)],'MarkerSize',1.5) 

    plot(CL100_X,CL100_Y,'.','Color',[Colormap(5,:)],'MarkerSize',1.5) 

%     title('20 micron contour lines') 

    axis off 

    hold off 

  

    % save figure 

    saveas(f2,[char(FileNames(j)) '_Lymph_ROI_20umContour.fig']); 

    export_fig(f2,[char(FileNames(j)) '_Lymph_ROI_20umContour.png']); 

%     export_fig(f2,[char(FileNames(j)) '_Lymph_ROI_20umContour.pdf']); 

end 
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7.3 Promoter binding sites of clock genes  

 

Ccl21a 

Arntl [p-value = 0.01]: 83, 82, -72, -73, -86, -98, -172, -292, -293, -409, -418, -448, -449, -966, -967, -1221, -1228, -1235, -1244, -

1261, -1342, -1384, -1405, -1586, -1587, -1833, -1968, -1982, -1983  

Arntl [p-value = 0.001]: -966, -1586, -1587, -1982  

Arntl [p-value = 0.0001]: -1586  

Dbp [p-value = 0.01]: 49, -29, -81, -82, -299, -300, -362, -363, -399, -400, -413, -414, -565, -650, -651, -720, -721, -740, -956, -957, 

-1273, -1274, -1405, -1406, -1434, -1900, -1901, -1977 

Dbp [p-value = 0.001]: -650, -651 

Dbp [p-value = 0.0001]: none 

Nfil3 [p-value = 0.01]: -31, -298, -301, -401, -412, -472, -564, -567, -599, -616, -644, -649, -719, -722, -811, -814, -884, -891, -916, 

-942, -958, -960, -970, -1240, -1272, -1275, -1311, -1483, -1493, -1541, -1644, -1692, -1899, -1962 

Nfil3 [p-value = 0.001]: -301, -884, -1692 

Nfil3 [p-value = 0.0001]: none 

Rora/Nr1d1/Nr1d2 [p-value = 0.01]: 91, 77, 37, 12, -78, -164, -192, -238, -425, -513, -535, -539, -660, -721, -736, -789, -901, -946, 

-961, -1008, -1176, -1195, -1216, -1233, -1244, -1298, -1400, -1417, -1497, -1529, -1663, -1669, -1683, -1779, -1814, -1888, -

1900, -1938, -1952, -1967 

Rora/Nr1d1/Nr1d2 [p-value = 0.001]: -1008, -1417, -1888, -1900, -1952 

Rora/Nr1d1/Nr1d2 [p-value = 0.0001]: none 

 

Promoter sequence of Ccl21a and Bmal1 canonical binding sites (as an example of methodology): 

Red shows canonical (CAN NTG) Bmal1 binding site. 

(-2000) gaaagaacat  ccacacacat   gaaataaaat   cactttttta   atttaaaaga   tcaagtcatt (-1941) 

gaagtcaaaa gtgaaagtag ggacatcagt ataatttgac ataaataaaa aaggtccaat (-1881) 

aaaccgggtg tggtggtgct tgcttttaat cccagactgg ggaggcaggg ggaggtggat (-1821) 

ctctgagttc aaagccagcc tgctctacag agcaagttct aggatagcca gggctacaca (-1761) 

gagaaaccct gtctcaaaac aaaaaacaaa caacaaagca aaaaacaaac aaacaaaaag (-1701) 

agtgtgctat gtatgactct gttccaacct aggtgaaatg gataaattcc aaactcacaa (-1641) 

aatctaccaa aatcagctgg agaggaaacg cacctccgag tgcattcaca ccacgtgaga (-1581) 

acacggaata aggagtaaca attgccaaat acccaaacta agaaaatacc aggtccaatg (-1521) 

gcttcagtgt gaattctctt caacatcaca acagttttaa catccattgt tctcaaagtt (-1461) 

tccaaaagtc tgaagagctg gcattcccta acacagtgtc tgaggtcagc gttacctgat (-1401) 

cctgaggctg gaaaacgagc ctacaggaaa acagcagacc aacccccatc cctcatacat (-1341) 

gaaaacacaa aagtcctcca caaaatatta aaaaaaaaac aaactcagca gcacagtgaa (-1281) 

gtattatata ctacgaccaa gtggggtctg ctctcaggtt aaaacaagac cacattaaca (-1221) 

tgaaggggaa acccatactt cttcggatca ggaacataca agatgctcac ttcaacccaa (-1161) 

cagtgcaagc tatagtggag agagggaggg agggagagag agagagagag agagagagag (-1101) 

agagagagag agagagagag agagagagaa ctattagcaa ttaataattc cagcactcag (-1041) 

aggcagaggc aggtagatct ctgtgagttc aaggccaacc tggtctatga atcccagaac (-981) 

agccaaggct acatgtgaca ttgtgtctca aaaaagtaac aacaataaca acaacaacaa (-921) 

aattccaaaa ggaaataaag aacacaatta tatttataac agcaccaaac agaatactta (-861) 

cagacaaatt taatccagta ggtataagac ttatactgtg aaaaatacaa aacattctaa (-801) 
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ttaaaggagg cctaaatgaa taaaaagcta tcccttattc ttggattgaa ttctaatttt (-741) 

acaaagacag tgataacgac gtaagtggtc ctcagattca gtacaatatc tattagaatc (-610) 

cctagggagg gatggaaagg ggacagttgt gtaattatat tataatccca aaagctaaaa (-621) 

gaaataataa taaataaaac ataagggagg ggcagaaaga tggctcagca cttatggaag (-561) 

ggtgttgctc ttgcagagga cctgagttca gttccctgca ccctcaccta ccacttccac (-501) 

ttacagccac acaaaaatac acattgtttt aaaaagcaga ggaaagtttc atgggcttgg (-441) 

atctgttaat gatcggttca gtgtgatgtc gcggtagtaa catcacagct agtaggggaa (-381) 

gagggggagt tgggtttcac aaaactttaa aattttgtgc gctactatca ggaagtctat (-321) 

agactgagag gatgcagtta tatatcatat gtctaaaata aggcctattg tcagggatct (-261) 

ataaagaact cctagtcatt agctagatta ttacttgccg aaaggagagg agatgtgtgg (-201) 

ggcctgaagg gcagggagga agcaatcatg ctttggggac agtggctgga aggaccaggg (-141) 

agagatgagg agctgaacag ctaggagctg actgtatgct cacactaatg ccatctgatc (-81) 

caactcacag gaaaaggagg gggagcgagg gaagcgaaag tctcagactg cataaatagg (-21) 

cagcaagcca gtcgcagccc (0) ACACACACAG ACCCCAACTT GCGGCTGTCC ATCTCACCTA (+40) 

CAGCTCTGGT CTCATCCTCA ACTCAACCAC AATCATGGCT CAGATGATGA CTCTGAGCCTC (+100) 

 

Ccl21b/c 

Arntl [p-value = 0.01]: -1761, -1760, -1579, -1558, -1516, -1435, -1418, -1402, -1395, -1341, -1330, -967, -966, -449, -448, -418, -

293, -292, -172, -105, -98, -86, -73, -72, 82, 83 

Arntl [p-value = 0.001]: -1761, -1760, -966 

Arntl [p-value = 0.0001]: -1760 

Dbp [p-value = 0.01]: -1608, -1580, -1579, -1519, -1518, -1448, -1447, -1361, -1360, -957, -956, -740, -721, -720, -651, -650, -565, 

-414, -413, -400, -399, -363, -362, -300, -82, -81, -29, 49 

Dbp [p-value = 0.001]: -651, -650 

Dbp [p-value = 0.0001]: none 

Nfil3 [p-value = 0.01]:  -1866, -1715, -1667, -1657, -1520, -1449, -1446, -1414, -1362, -1281, -970, -960, -958, -942, -916, -891, -

884, -814, -811, -722, -719, -649, -644, -616, -599, -567, -564, -472, -412, -401, -31 

Nfil3 [p-value = 0.001]: -1866, -884 

Nfil3 [p-value = 0.0001]: none 

Rora/Nr1d1/Nr1d2 [p-value = 0.01]: -1988, -1953, -1857, -1843, -1837, -1703, -1671, -1591, -1574, -1472, -1418, -1407, -1390, -

1336, -1271, -1243, -1222, -1213, -1194, -1008, -961, -946, -901, -789, -736, -721, -660, -539, -535, -513, -425, -238, -192, -164, -

108, -78, 12, 37, 77, 91 

Rora/Nr1d1/Nr1d2 [p-value = 0.001]: -1591, -1407, -1008 

Rora/Nr1d1/Nr1d2 [p-value = 0.0001]:  -1008 

Lyve1 

Arntl [p-value = 0.01]: 31, -54, -147, -148, -177, -239, -275, -276, -355, -372, -454, -455, -553, -554, -617, -618, -673, -696, -796, -

836, -853, -916, -917, -1139, -1153, -1171, -1339, -1340, -1381, -1382, -1402, -1457, -1478, -1489, -1490, -1515, -1516, -1558, -

1592, -1671, -1694, -1818, -1846, -1872 

Arntl [p-value = 0.001]: -276, -455, -916, -917, -1339, -1516 

Arntl [p-value = 0.0001]: -276 

Dbp [p-value = 0.01]: -123, -172, -173, -330, -331, -374, -375, -448, -449, -536, -537, -644, -645, -742, -743, -800, -801, -819, -820, 

-848, -849, -887, -950, -951, -1024, -1025, -1212, -1213, -1314, -1351, -1352, -1471, -1472, -1597, -1711, -1712, -1740, -1741, -

1763, -1764, -1888, -1889, -1956 

Dbp [p-value = 0.001]: -819, -820, -848, -849, -1471, -1472, -1888, -1889 

Dbp [p-value = 0.0001]: none 
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Nfil3 [p-value = 0.01]: -376, -414, -447, -505, -729, -741, -744, -799, -802, -821, -847, -949, -1140, -1211, -1317, -1350, -1353, -

1470, -1473, -1509, -1679, -1710, -1713, -1739, -1842, -1887, -1890, -1919 

Nfil3 [p-value = 0.001]: -741, -799, -1890 

Nfil3 [p-value = 0.0001]: -1890 

Rora/Nr1d1/Nr1d2 [p-value = 0.01]: 67, -68, -72, -123, -135, -149, -172, -365, -441, -456, -510, -543, -562, -644, -731, -848, -922, -

1073, -1194, -1207, -1235, -1254, -1258, -1278, -1297, -1315, -1322, -1340, -1372, -1392, -1437, -1472, -1521, -1562, -1569, -

1699, -1722, -1749, -1815, -1910, -1944, -1968 

Rora/Nr1d1/Nr1d2 [p-value = 0.001]: -1073, -1562, -1749, -1910 

Rora/Nr1d1/Nr1d2 [p-value = 0.0001]: none 

Jam3 

Arntl [p-value = 0.01]: 86, 51, 0, -35, -36, -96, -97, -180, -181, -226, -351, -352, -412, -413, -449, -471, -496, -518, -519, -550, -574, 

-895 

Arntl [p-value = 0.001]: -519 

Arntl [p-value = 0.0001]: none 

Dbp [p-value = 0.01]: -255, -256, -294, -295, -461, -524, -562, -684, -685, -769, -770, -836, -837, -895, -896 

Dbp [p-value = 0.001]: none 

Dbp [p-value = 0.0001]: none 

Nfil3 [p-value = 0.01]: -87, -186, -254, -257, -275, -282, -541, -562, -587, -621, -683, -705, -768, -835, -838, -894, -897, -973, -974, 

-987, -990 

Nfil3 [p-value = 0.001]: none 

Nfil3 [p-value = 0.0001]: none 

Rora/Nr1d1/Nr1d2 [p-value = 0.01]: 88, 64, -7, -128, -135, -166, -201, -309, -367, -371, -401, -441, -454, -532, -579, -611, -704, -

780, -793, -825, -858, -873, -935 

Rora/Nr1d1/Nr1d2 [p-value = 0.001]: -128, -454, -611 

Rora/Nr1d1/Nr1d2 [p-value = 0.0001]: none 

F11r 

Arntl [p-value = 0.01]: -1975, -1880, -1879, -1698, -1536, -1533, -1107, -1106, -1026, -841, -840, -371, -356, -337, -211, -137, -

136, 9, 10 

Arntl [p-value = 0.001]: none 

Arntl [p-value = 0.0001]: none 

Dbp [p-value = 0.01]: -1980, -1979, -1594, -1359, -1358, -810, -805, -773, -772 

Dbp [p-value = 0.001]: none 

Dbp [p-value = 0.0001]: none 

Nfil3 [p-value = 0.01]: -1981, -1978, -1769, -1532, -1384, -1307, -1207, -1067, -1037, -1022, -804, -774, -771, -747, -670, -577, -

547, -468 

Nfil3 [p-value = 0.001]: -747 

Nfil3 [p-value = 0.0001]: none 

Rora/Nr1d1/Nr1d2 [p-value = 0.01]: -1940, -1910, -1893, -1874, -1828, -1801, -1795, -1760, -1724, -1716, -1707, -1693, -1664, -

1644, -1602, -1557, -1541, -1497, -1437, -1418, -1364, -1350, -1329, -1324, -1277, -1218, -1192, -1175, -1163, -1066, -1031, -

956, -846, -727, -696, -644, -620, -589, -573, -545, -345, -312, -207, -196, -186, -26, -4 

Rora/Nr1d1/Nr1d2 [p-value = 0.001]: -1801, -1602, -1175, -644, -589, -345 

Rora/Nr1d1/Nr1d2 [p-value = 0.0001]: none 

CD99L2 

Arntl [p-value = 0.01]: 42, 41, -13, -58, -59, -79, -96, -97, -135, -167, -220, -223, -324, -325, -379, -408, -486, -487, -545, -558, -

575, -576, -748, -769, -770, -844, -849, -1030, -1187, -1188, -1234, -1331, -1463, -1464, -1690, -1691, -1715, -1716, -1880, -1881, 

-1917, -1960, -1961, -1979, -1980 

Arntl [p-value = 0.001]: 41 
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Arntl [p-value = 0.0001]: none 

Dbp [p-value = 0.01]: -162, -163, -227, -228, -390, -433, -434, -495, -496, -758, -1118, -1119, -1195, -1196, -1357, -1451, -1452, -

1468, -1469, -1544, -1545, -1664, -1958, -1959, -1976 

Dbp [p-value = 0.001]: -1118 

Dbp [p-value = 0.0001]: none 

Nfil3 [p-value = 0.01]: -139, -350, -392, -517, -980, -1107, -1117, -1120, -1194, -1228, -1283, -1358, -1453, -1457, -1522, -1536, -

1543, -1960 

Nfil3 [p-value = 0.001]: -1117, -1453 

Nfil3 [p-value = 0.0001]: none 

Rora/Nr1d1/Nr1d2 [p-value = 0.01]: 60, -35, -53, -64, -162, -215, -257, -261, -281, -306, -380, -428, -451, -507, -550, -711, -779, -

783, -827, -946, -978, -1138, -1171, -1207, -1246, -1276, -1325, -1364, -1387, -1406, -1458, -1487, -1642, -1703, -1813, -1850, -

1875, -1886, -1952, -1984 

Rora/Nr1d1/Nr1d2 [p-value = 0.001]: -64, -257, -1952 

Rora/Nr1d1/Nr1d2 [p-value = 0.0001]: -1952 

Reln 

Arntl [p-value = 0.01]: 93, 75, 74, 22, 21, -7, -39, -71, -72, -97, -117, -133, -134, -153, -154, -218, -247, -263, -264, -294, -363, -

433, -445, -454, -475, -499, -500, -555, -556, -623, -742, -818, -821, -834, -835, -854, -855, -880, -888, -921, -1107, -1202, -1203, -

1245, -1246, -1317, -1404, -1411, -1463, -1464, -1570, -1605, -1672, -1757, -1758, -1769, -1770, -1892, -1904, -1987, -1988 

Arntl [p-value = 0.001]:  21, -71, -72, -854, -1203, -1570, -1757, -1758, -1987 

Arntl [p-value = 0.0001]: -72 

Dbp [p-value = 0.01]: -537, -996, -997, -1083, -1084, -1216, -1217, -1269, -1270, -1639, -1849, -1850, -1908, -1909 

Dbp [p-value = 0.001]: none 

Dbp [p-value = 0.0001]: none 

Nfil3 [p-value = 0.01]: -712, -812, -861, -995, -1072, -1082, -1268, -1271, -1515, -1521, -1583, -1586, -1601, -1637, -1655, -1693, -

1872, -1910 

Nfil3 [p-value = 0.001]: -1601 

Nfil3 [p-value = 0.0001]: none 

Rora/Nr1d1/Nr1d2 [p-value = 0.01]: -26, -246, -266, -403, -426, -444, -501, -536, -698, -721, -734, -810, -942, -996, -1036, -1064, -

1136, -1177, -1255, -1343, -1364, -1552, -1593, -1665, -1745, -1799, -1838, -1881, -1897, -1969 

Rora/Nr1d1/Nr1d2 [p-value = 0.001]: -1838 

Rora/Nr1d1/Nr1d2 [p-value = 0.0001]: none 

Ackr4 

Arntl [p-value = 0.01]: 78, -44, -71, -72, -96, -97, -172, -173, -229, -230, -402, -456, -472, -512, -766, -767, -1149, -1150, -1168, -

1237, -1288, -1456, -1484, -1485, -1587, -1601, -1615, -1616, -1738, -1739, -1835, -1873 

Arntl [p-value = 0.001]:  -1149, -1150 

Arntl [p-value = 0.0001]: none 

Dbp [p-value = 0.01]: -60, -73, -74, -148, -288, -289, -304, -410, -953, -976, -1048, -1049, -1157, -1158, -1460, -1461, -1473, -

1474, -1582, -1583, -1599, -1632, -1633, -1757, -1839, -1840 

Dbp [p-value = 0.001]: -1757 

Dbp [p-value = 0.0001]: none 

Nfil3 [p-value = 0.01]: -201, -331, -646, -694, -954, -975, -1000, -1047, -1050, -1159, -1211, -1385, -1388, -1553, -1581, -1584, -

1707, -1720, -1751, -1756, -1770, -1861, -1959, -1980 

Nfil3 [p-value = 0.001]: -1707, -1751 

Nfil3 [p-value = 0.0001]: none 

Rora/Nr1d1/Nr1d2 [p-value = 0.01]: 3, -34, -62, -85, -122, -161, -183, -210, -228, -344, -517, -543, -597, -621, -632, -647, -696, -

746, -777, -789, -805, -945, -998, -1035, -1061, -1130, -1146, -1197, -1273, -1325, -1338, -1444, -1512, -1557, -1600, -1744, -

1792, -1820, -1868, -1885, -1924 
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Rora/Nr1d1/Nr1d2 [p-value = 0.001]: -85, -1061, -1557 

Rora/Nr1d1/Nr1d2 [p-value = 0.0001]: none 

Ccr7 

Arntl [p-value = 0.01]: 51, 50, -54, -85, -93, -103, -116, -257, -258, -324, -373, -374, -484, -485, -740, -748, -769, -770, -887, -914, -

915, -937, -965, -966, -990, -991, -1025, -1057, -1085, -1135, -1136, -1187, -1188, -1269, -1270, -1337, -1338, -1507, -1529, -

1530, -1555, -1669, -1670, -1751, -1935, -1936, -1952, -1953, -1963 

Arntl [p-value = 0.001]: -914, -915, -965, -966, -990, -1269 

Arntl [p-value = 0.0001]: none 

Dbp [p-value = 0.01]: -199, -200, -341, -428, -429, -568, -569, -771, -772, -955, -956, -1198, -1199, -1430, -1610, -1611, -1646, -

1647, -1755 

Dbp [p-value = 0.001]: -428, -429 

Dbp [p-value = 0.0001]: none 

Nfil3 [p-value = 0.01]: -97, -116, -198, -245, -430, -499, -667, -857, -873, -1024, -1126, -1418, -1429, -1551, -1612, -1630, -1648, -

1704, -1818, -1821 

Nfil3 [p-value = 0.001]: -198, -1612 

Nfil3 [p-value = 0.0001]: none 

Rora/Nr1d1/Nr1d2 [p-value = 0.01]: 88, 85, -80, -261, -303, -323, -326, -386, -490, -560, -665, -684, -704, -764, -787, -802, -856, -

868, -973, -985, -1042, -1056, -1067, -1197, -1220, -1264, -1300, -1405, -1423, -1438, -1441, -1475, -1502, -1568, -1596, -1627, -

1655, -1754, -1823, -1847, -1865, -1886, -1958, -1971 

Rora/Nr1d1/Nr1d2 [p-value = 0.001]: -323, -490, -684, -787, -1264, -1958 

Rora/Nr1d1/Nr1d2 [p-value = 0.0001]: none 

Cd80 

Arntl [p-value = 0.01]: -1904, -1883, -1858, -1769, -1745, -1644, -1643, -1525, -1524, -1464, -1426, -1414, -1413, -1334, -1309, -

1289, -1288, -1132, -1131, -1069, -1068, -992, -796, -795, -586, -432, -431, -226, -192, -87, -19, 78 

Arntl [p-value = 0.001]: -1769, -1643, -1525, -1413, -431 

Arntl [p-value = 0.0001]: none 

Dbp [p-value = 0.01]: -1623, -1622, -1545, -1544, -828, -771, -665, -540, -539, -503, -469, -468, -330, -315, -314, 15, 16, 83, 84 

Dbp [p-value = 0.001]: none 

Dbp [p-value = 0.0001]: none 

Nfil3 [p-value = 0.01]: -1899, -1868, -1685, -1652, -1546, -1452, -1423, -1393, -1276, -1233, -959, -948, -897, -875, -780, -663, -

502, -467, -435, -336, -313, -195, -154, 17, 43, 82 

Nfil3 [p-value = 0.001]: -897, 17 

Nfil3 [p-value = 0.0001]: none 

Rora/Nr1d1/Nr1d2 [p-value = 0.01]: -1934, -1863, -1845, -1829, -1787, -1774, -1633, -1590, -1532, -1507, -1467, -1431, -1396, -

1327, -1239, -1228, -1216, -1197, -1147, -1115, -1099, -1005, -987, -916, -882, -841, -794, -649, -620, -589, -567, -412, -378, -

236, -113, -100, -86, -34, -22, -9 

Rora/Nr1d1/Nr1d2 [p-value = 0.001]: -620, -412 

Rora/Nr1d1/Nr1d2 [p-value = 0.0001]: none 

Cd86 

Arntl [p-value = 0.01]: 87, 58, -150, -161, -251, -380, -405, -423, -496, -564, -752, -818, -900, -961, -962, -1001, -1002, -1026, -

1027, -1135, -1152, -1251, -1259, -1401, -1476, -1477, -1535, -1536, -1564, -1681, -1765, -1792, -1793, -1843, -1844, -1905, -

1906 

Arntl [p-value = 0.001]: none 

Arntl [p-value = 0.0001]: none 

Dbp [p-value = 0.01]: -141, -396, -397, -450, -459, -495, -496, -520, -521, -592, -680, -681, -801, -802, -1254, -1255, -1509, -1510, 

-1664, -1686, -1977, -1978 

Dbp [p-value = 0.001]: -1664 
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Dbp [p-value = 0.0001]: none 

Nfil3 [p-value = 0.01]: -31, -265, -347, -395, -451, -519, -615, -682, -756, -803, -894, -1052, -1088, -1215, -1362, -1394, -1662, -

1665, -1685, -1979 

Nfil3 [p-value = 0.001]: -451, -519, -682 

Nfil3 [p-value = 0.0001]: none 

Rora/Nr1d1/Nr1d2 [p-value = 0.01]: -4, -24, -77, -104, -152, -287, -357, -376, -410, -495, -520, -555, -569, -670, -1015, -1074, -

1090, -1107, -1157, -1187, -1380, -1527, -1569, -1619, -1631, -1717, -1723, -1782, -1794, -1915, -1946 

Rora/Nr1d1/Nr1d2 [p-value = 0.001]: -410, -1717 

Rora/Nr1d1/Nr1d2 [p-value = 0.0001]: none 

Cd40 

Arntl [p-value = 0.01]: -1911, -1870, -1869, -1832, -1791, -1722, -1486, -1415, -1414, -1344, -1234, -1199, -1143, -1142, -1092, -

1089, -1002, -1001, -812, -811, -610, -609, -599, -596, -476, -359, -304, -22, -10, -2, 89, 90 

Arntl [p-value = 0.001]: -610, -609 

Arntl [p-value = 0.0001]: none 

Dbp [p-value = 0.01]: -1130, -1129, -1044, -1043, -1014, -1013, -377, -376, -226, -225 

Dbp [p-value = 0.001]: -1013 

Dbp [p-value = 0.0001]: none 

Nfil3 [p-value = 0.01]: -1896, -1625, -1365, -1286, -1012, -690, -227, -224 

Nfil3 [p-value = 0.001]: -1012, -690 

Nfil3 [p-value = 0.0001]: none 

Rora/Nr1d1/Nr1d2 [p-value = 0.01]: -1974, -1944, -1895, -1882, -1860, -1827, -1794, -1741, -1606, -1586, -1519, -1420, -1406, -

1349, -1313, -1294, -1229, -1186, -1137, -1084, -1079, -841, -835, -824, -806, -693, -624, -571, -514, -454, -435, -362, -269, -265, 

-200, -155, -24 

Rora/Nr1d1/Nr1d2 [p-value = 0.001]: -1586, -1313, -1137, -693 

Rora/Nr1d1/Nr1d2 [p-value = 0.0001]: none 
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